EE1030: Matrix Theory

EE24BTECH11007 - Arnav Makarand Yadnopavit

6. The number of distinct solutions of equation $\frac{5}{4}\cos^2 2x + \cos^4 x + \sin^4 x + \cos^6 x + \sin^6 x = 2$

in the interval $[0,2\pi]$ is

(JEE Adv. 2015)

7. Let a, b, c be three non-zero real numbers such that the equation:

 $\sqrt{3}acosx + 2bsinx = c, x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, has two distinct real roots α and β with $\alpha + \beta = \frac{\pi}{3}$. Then, the value of $\frac{b}{a}$ is ______. (JEE Adv. 2018)

Section-B JEE Main/AIEEE

1. The period of $sin^2\theta$ is

[2002]

- (a) π^2
- (b) π
- (c) 2π
- (d) $\pi/2$
- 2. The number of solution of tanx + secx = 2cosxin $[0, 2\pi]$ is [2002]
 - (a) 2
- (*b*) 3
- (c) 0
- (*d*) 1
- 3. Which one is not periodic

[2002]

- $(a) |\sin 3x| + \sin^2 x$
- (b) $\cos \sqrt{x} + \cos^2 x$
- (c) $cos4x + tan^2x$
- (d) cos2x + sinx
- 4. Let α, β be such that $\pi < \alpha \beta < 3\pi$ If $sin\alpha + sin\beta = -\frac{21}{65}$ and $cos\alpha + cos\beta = -\frac{27}{65}$, then the value of $cos\frac{\alpha-\beta}{2}$ [2004]

- 5. If $u = \sqrt{a^2 \cos^2\theta + b^2 \sin^2\theta} + \sqrt{a^2 \sin^2\theta + b^2 \cos^2\theta}$ then the difference between the maximum and minimum values of u^2 is given by

- $(a) (a b)^2$ (c) $(a + b)^2$
- (b) $2\sqrt{a^2 + b^2}$ (d) $2(a^2 + b^2)$

1

- 6. A line makes the same angle θ , with each of the x and z axis. If the angle β , which it makes with y-axis, is such that $sin^2\beta = 3sin^2\theta$, then $\cos^2\theta$ equals [2004]
 - (a) $\frac{2}{5}$

 $(c)^{\frac{3}{5}}$

- $(d)^{\frac{2}{3}}$
- 7. The number of values of x in the interval $[0, 3\pi]$ satisfying the equation $2\sin^2 x + 5\sin x - 3 = 0$ is [2006]
 - (a) 4
- (*b*) 6
- (c) 1
- (d) 2
- 8. If $0 < x < \pi$ and $cosx + sinx = \frac{1}{2}$, then tanx is
 - (a) $\frac{(1-\sqrt{7})}{4}$ (c) $-\frac{(4+\sqrt{7})}{2}$

- (b) $\frac{(4-\sqrt{7})}{3}$ (d) $\frac{(1+\sqrt{7})}{4}$
- 9. Let **A** and **B** denote the statements

 $\mathbf{A} : \cos\alpha + \cos\beta + \cos\gamma = 0$

 $\mathbf{B}: \sin\alpha + \sin\beta + \sin\gamma = 0$

If $cos(\beta - \gamma) + cos(\gamma - \alpha) + cos(\alpha - \beta) = -\frac{3}{2}$, then: [2009]

- (a) A is false and B is true
- (b) both **A** and **B** are true
- (c) both **A** and **B** are false
- (d) A is true and B is false
- 10. Let $cos(\alpha + \beta) = \frac{4}{5}$ and $sin(\alpha \beta) = \frac{5}{13}$, where $0 \le \alpha$, $\beta \le \frac{\pi}{4}$. Then $tan2\alpha =$ [2010]

- (a) $\frac{56}{33}$ (b) $\frac{19}{12}$ (c) $\frac{20}{7}$ (d) $\frac{25}{16}$
- 11. If $A=\sin^2 x + \cos^4 x$, Then for all real x:

[2010]

(a) $\frac{13}{16} \le A \le 1$ (b) $1 \le A \le 2$ (c) $\frac{3}{4} \le A \le \frac{13}{16}$ (d) $\frac{3}{4} \le A \le 1$

12. In a $\triangle PQR$, If 3sinP + 4cosQ = 6 and 4sinQ +3cosP = 1, then the angle R is equal to:

[2012]

(a) $\frac{5\pi}{6}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{3\pi}{4}$

13. ABCD is a trapezium such that AB and CD are parallel and BC \perp CD. If \angle ADB= θ , BC=pand CD=q, then AB is equal to:

[JEEM2013]

(a) $\frac{(p^2+q^2)\sin\theta}{p\cos\theta+q\sin\theta}$ (c) $\frac{p^2+q^2}{p\cos^2\theta+q\sin^2\theta}$

(b) $\frac{p^2+q^2\cos\theta}{p\cos\theta+q\sin\theta}$ (d) $\frac{(p^2+q^2)\sin\theta}{(p\cos\theta+q\sin\theta)^2}$