Our data

- To illustrate making graphs, we need some data.
- Data on 202 male and female athletes at the Australian Institute of Sport.
- Variables:
 - categorical: Sex of athlete, sport they play
 - quantitative: height (cm), weight (kg), lean body mass, red and white blood cell counts, haematocrit and haemoglobin (blood), ferritin concentration, body mass index, percent body fat.
- Values separated by tabs (which impacts reading in).

2 / 17

Packages for this section

library(tidyverse)

Reading data into R

- Use read_tsv ("tab-separated values"), like read_csv.
- Data in ais.txt:

Wt = col double()

##

)

```
athletes <- read tsv(mv url)
##
## -- Column specification -----
## cols(
##
    Sex = col character().
##
    Sport = col character(),
##
    RCC = col_double(),
##
    WCC = col double(),
##
    Hc = col double(),
##
    Hg = col_double(),
    Ferr = col double(),
##
    BMI = col double().
##
    SSF = col double().
##
##
    `%Bfat` = col double(),
    LBM = col double().
##
##
    Ht = col double(),
```

my url <- "http://www.utsc.utoronto.ca/~butler/c32/ais.txt"

Drawing graphs 4 / 17

The data (some)

athletes	

Sport

Netball

Nothall

Netball

Netball

Netball

Netball

Netball

RCC

4.56

4.02

4.39

4.52

4.25

4.46

WCC

13.30

6 00

9.10

9.60

5.10

10.70

10.90

Sex

female

famala

female

female

female

female

female

remaie	ivetbali	4.15	0.00	38.0	12.7	59	21.15	110.2	25.20	47.09
female	Netball	4.16	7.60	37.5	12.3	22	21.40	89.0	19.39	53.44
female	Netball	4.32	6.40	37.7	12.3	30	21.03	98.3	19.63	48.78
female	Netball	4.06	5.80	38.7	12.8	78	21.77	122.1	23.11	56.05
female	Netball	4.12	6.10	36.6	11.8	21	21.38	90.4	16.86	56.45
female	Netball	4.17	5.00	37.4	12.7	109	21.47	106.9	21.32	53.11
female	Netball	3.80	6.60	36.5	12.4	102	24.45	156.6	26.57	54.41
female	Netball	3.96	5.50	36.3	12.4	71	22.63	101.1	17.93	55.97
famala	Nethall	1 11	0.70	11 I	1/1 1	64	22.80	126.4	24.07	51.62

Hg

13.6

107

Ferr

20

E٥

107

39

58

127

102

BMI

19.16

21 15

23.01

24.64

18.26

24.47

23.99

Hc

42.2

20 N

37.7

38.3

38.8

39.5

39.7

SSF

49.0

77.0

148.9

80.1

156.6

115.9

110 2

%Bfat

11.29

25 26

18.14

26.78

17.22

26.50

23.01

LBM

53.14

47.00

57.30

54.18

42.96

54.46

57.20

5/17

temale Netball 4.44 9.70 41.4 14.1 04 22.80 126.4 24.91 51.62 female Netball 4.27 10.60 37.7 12.5 68 23.58 114.0 22.62 58.27 female Netball 3.90 6.30 35.9 12.1 78 20.06 70.0 15.01 57.28

12.7

12.5

13.1

13.2

13.7

Types of graph

Depends on number and type of variables:

Categorical	Quantitative	Graph
1	0	bar chart
0	1	histogram
2	0	grouped bar charts
1	1	side-by-side boxplots
0	2	scatterplot
2	1	grouped boxplots
1	2	scatterplot with points identified by
		group (eg. by colour)

With more variables, might want *separate plots by groups*. This is called facetting in R.

ggplot

- R has a standard graphing procedure ggplot, that we use for all our graphs.
- Use in different ways to get precise graph we want.
- Let's start with bar chart of the sports played by the athletes.

Bar chart

ggplot(athletes, aes(x = Sport)) + geom_bar()

Histogram of body mass index

Which sports are played by males and females?

Grouped bar chart:

```
ggplot(athletes, aes(x = Sport, fill = Sex)) +
  geom_bar(position = "dodge")
```


BMI by gender

Height vs. weight

Scatterplot:

ggplot(athletes, aes(x = Ht, y = Wt)) + geom_point()

With regression line

```
ggplot(athletes, aes(x = Ht, y = Wt)) +
  geom_point() + geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'
 125 -
 100 -
  50 -
                                   180
                                                      200
```

BMI by sport and gender

ggplot(athletes, aes(x = Sport, y = BMI, colour = Sex)) +
 geom_boxplot()

Height and weight by gender

```
ggplot(athletes, aes(x = Ht, y = Wt, colour = Sex)) +
  geom_point()
```


Height by weight for each sport, with facets

```
ggplot(athletes, aes(x = Ht, y = Wt, colour = Sex)) +
  geom_point() + facet_wrap(~Sport)
```


Filling each facet

Default uses same scale for each facet. To use different scales for each facet, this:

17 / 17