#### 情報学基礎 第六回

3章 ハードウェア

理工学部 管理工学科 担当: 篠沢佳久

#### 本日の内容①

- コンピュータにおける情報の表現(2章)
  - 音声や音楽(2.7節)
  - 情報量について(コラム)

- ・ 情報処理の基礎概念1:ハードウェア
  - コンピュータの仕組み(3.1節)
  - コンピュータの三要素(3.2節)
  - プログラム格納型の原理(3.3節)
  - (コラム)コンピュータ略史:各自読んでおいて下さい

#### 本日の内容②

(時間があれば...)

- 情報処理の基礎概念2:ソフトウェア
  - ソフトウェアの役割(4.1節)
  - アルゴリズムとプログラム(4.2節)



# (1) コンピュータのいろいろ パーソナルコンピュータ

- 個人が使うコンピュータ
- Personal Computer (PC)
- デスクトップ型とラップトップ型(ノートPC)
- ・ 応答性能, グラフィック性能が重要





デスクトップ型(http://www.dell.com/jp/より)

ラップトップ型

# (1) コンピュータのいろいろサーバ

- 企業, 官公庁, データセンターなどに置かれる
- 巨大なデータ, Webページなどを管理
  - チケット予約、ネット通販、ソーシャルネットワークなどもサーバが管理
- Amazon, Googleなどは強力な検索エンジンを装備
- 一定時間に処理するジョブ数, 信頼性が重要



6

# (1) コンピュータのいろいろ スーパーコンピュータ

- 科学技術計算を高速に行う巨大なコンピュータ
- 気象解析,物理学計算など
- 浮動小数演算能力が重要



スーパーコンピュータ: 京は一度は世界一を奪取した

#### (1) コンピュータのいろいろ 組み込みコンピュータ

- テレビ、DVDプレーヤー、ビデオカメラ、ゲーム、ネットワークコントローラ、 車、エアコンなどに組み込まれるコンピュータ
- 特定の処理以外は行わない
- コスト, 消費電力が重要
- 特定の処理に対しては高い性能が要求される場合もある



# (1) コンピュータのいろいろ スマートフォン, タブレット

- パーソナルコンピュータと組み込みコンピュータの中間的な性格を持つ
  - アプリを入れて動作する → パーソナルコンピュータ
  - 携帯電話、カメラ → 組み込みコンピュータ
- ・ パーソナルコンピュータの分野を急激に侵食しつつある





NTT DOCOMOのスマートフォン

SONYのタブレット

#### (2)コンピュータはデジタル回路でできている



- 2進数(0と1)で表現
- 2進数の一桁を1ビットと呼ぶ



| ON | OFF |
|----|-----|
| 1  | 0   |

- 8ビット(8桁), 16ビット(16桁), 32ビット(32桁), 64ビット(64桁)
- 8ビットを1バイトと呼ぶ

|--|

8桁=8ビット(1バイト)

- ・ 情報の演算
  - デジタル論理回路
  - 単純な論理演算を行なう論理ゲートで構成

#### 論理ゲート(基本ゲート)



A,Bどちらかが

A,Bどちらかが 1ならYがO

# 論理ゲート①

#### NOTゲート

#### 真理值表

| 入力 | 出力 |
|----|----|
| Α  | Y  |
| 0  | 1  |
| 1  | 0  |







# 論理ゲート②

#### ANDゲート

| 入力 |   | 出力 |
|----|---|----|
| Α  | В | Y  |
| 0  | 0 | 0  |
| 0  | 1 | 0  |
| 1  | 0 | 0  |
| 1  | 1 | 1  |





ORゲートでAND演算を行なう場合



# 論理ゲート③

#### • ORゲート

| 入力 |   | 出力 |
|----|---|----|
| Α  | В | Y  |
| 0  | 0 | 0  |
| 0  | 1 | 1  |
| 1  | 0 | 1  |
| 1  | 1 | 1  |

ORゲート



ANDゲートでOR演算を行なう場合



# 論理ゲート4

#### NANDゲート

| 入力 |   | 出力 |
|----|---|----|
| Α  | В | Y  |
| 0  | 0 | 1  |
| 0  | 1 | 1  |
| 1  | 0 | 1  |
| 1  | 1 | 0  |



ORゲートでNAND演算を行なう場合



#### 論理ゲート⑤

#### NORゲート

| 入力 |   | 出力 |
|----|---|----|
| Α  | В | Y  |
| 0  | 0 | 1  |
| 0  | 1 | 0  |
| 1  | 0 | 0  |
| 1  | 1 | 0  |





ANDゲートでNOR演算を行なう場合



#### 半加算器(参考)

• 2進数1ビットの加算



#### 全加算器(参考)

2進数1ビットの加算(繰り上がり考慮)



| 入力 |   | 出力 |   |                |
|----|---|----|---|----------------|
| Α  | В | Ci | S | C <sub>o</sub> |
| 0  | 0 | 0  | 0 | 0              |
| 0  | 0 | 1  | 1 | 0              |
| 0  | 1 | 0  | 1 | 0              |
| 0  | 1 | 1  | 0 | 1              |
| 1  | 0 | 0  | 1 | 0              |
| 1  | 0 | 1  | 0 | 1              |
| 1  | 1 | 0  | 0 | 1              |
| 1  | 1 | 1  | 1 | 1              |



#### 加算器(参考)

- 2進数nビットの加算
  - n-1個の全加算器, 1個の半加算器





#### コンピュータの構成(デジタル論理回路)

- 論理ゲート
  - 単純な機能だが、動作は高速(数ピコ秒=10<sup>-12</sup>秒)

- コンピュータ=デジタル論理回路
  - コンピュータの演算,制御機能は,論理ゲートを組み合わせることによって構成
  - 数千万個を半導体上に搭載可能
  - CMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化膜半導体)

#### コンピュータの構成(デジタル論理回路)

- コンピュータ=デジタル論理回路
  - ブール代数(論理演算)による論理設計技術

- コンピュータの設計
  - ハードウェア記述言語(HDL: Hardware Description Language)による回路の記述
  - CAD(Computer Aided Design)による回路の自動生成

#### CDでの音楽データ

- 標本化周波数: 44.1 kHz = 44,100 Hz
- 量子化ビット数:16ビット
- 左右のチャンネルそれぞれのデータがある

(問)コンパクト・ディスクに入っている60分の音楽データの大きさを求めなさい(バイト単位)

# 標本化と量子化



#### コンピュータの三要素(3.2節)

- 中央処理装置(CPU: Central Processing Unit)
- メモリ



#### 中央処理装置(CPU)

• CPUの構成



- データパス(Datapath)
  - 算術論理装置(ALU, Arithmetic Logic Unit)
    - 加算, 減算, 論理演算などを行う
  - レジスタ
    - ・演算するデータを一時的に保存
- ・コントローラー
  - 制御装置

#### CPUの演算回路



#### プログラム格納型(3.3節) (例)A+B-Cの実行方法①



#### (例)A+B-Cの実行方法②



# (例)A+B-Cの実行方法③



#### (例)A+B-Cの実行方法(4)



# (例)A+B-Cの実行方法⑤



# メモリ(1)

- CPUで実行する命令と処理対象のデータを保管
- データを記憶するための表\*

| 番地 | 命令, データ |
|----|---------|
| 10 | 命令      |
| 20 | データ     |
| 30 |         |
| 40 |         |
| 50 |         |
| 60 |         |
| 70 |         |
| 80 |         |

<sup>\*</sup>実際の番地、命令、データは2進数の値で扱われる

# メモリ(2)

- メモリの容量は幅w(bit), 深さ2<sup>n</sup>(nをアドレス本数)
- n=8の場合



# メモリ③

- メモリの容量
- 幅×深さ(2<sup>アドレス本数</sup>)

| アドレス本数 | 容量         | 呼び名  |
|--------|------------|------|
| 8      | 256        | 256  |
| 10     | 1024       | 1K   |
| 12     | 4096       | 4K   |
| 16     | 65536      | 64K  |
| 18     | 262144     | 256K |
| 20     | 1048576    | 1M   |
| 24     | 16777216   | 16M  |
| 28     | 268435456  | 256M |
| 30     | 1073741824 | 1G   |
| 32     | 4294967296 | 4G   |

#### メモリの種類

半導体メモリ



- 磁性体メモリ
  - 磁気ディスク
  - 磁気テープ

#### 記憶の階層

- 主記憶
  - 大容量のメモリ

- ・キャッシュ
  - 高速、小容量のメモリ
  - よく用いる命令, データを格納

#### 入出力装置

- データおよび結果の入出力
  - キーボード
  - マウス
  - ディスプレイ
  - ネットワーク
  - USBボード
- 入出力バスによって接続
  - PCI Express



ネットワークカード(intel)



マザーボード(ASUS)

# (3.3)プログラム格納型①



30

40

A=10

B = 20

# プログラム格納型②

- 命令を一個ずつ読み込み実行
- ADD R1, R2, R3
  - レジスタ2とレジスタ3を加算し、レジスタ1に格納
  - ADDをオプコード
  - 操作対象(R1, R2, R3)をオペランド
  - 3オペランド命令
  - オプコード、オペランドは2進数で表される(機械語)
  - (例)1011 0111 1001 1100

# プログラム格納型③

- 分岐命令
- BEQZ R1, n番地
  - レジスタ1が0の場合、プログラムカウンタの指定先をn番地に変更

# コンピュータ略史(コラム) (1)コンピュータ誕生

- ・ 機械式の計算機
  - バベジの階差機関、解析機関が有名
- 1940年代から真空管が利用可能に



1946年に開発されたENIAC 初めて実用的に利用された電子式計算機 →プログラム格納型の考え方が まとめられる

1949年のEDSAC:世界初の電子式 プログラム格納型計算機

ENIACは一部のプログラムを配線変 更により行った

#### コンピュータ略史

#### (2)メインフレームの時代

1950年→1980年初頭

- ・ 素子の発達により小型化, 複雑化が進む
  - 真空管(第1世代)→トランジスタ(第2世代)→集積回路 (第3世代)
- 事務計算, 科学技術計算用に普及
  - 企業, 大学単位で設置
  - パンチカードによるバッチ処理→ 端末を使った処理TSS (Time Sharing System)に
  - OS, プログラミング環境の発展
  - ミニコンピュータ, スーパーコンピュータ等目的別に分化 が進む

#### コンピュータ略史

#### (3)コンピュータ大発展時代

1980年中ごろ→2003年

- 個人が使うパーソナルコンピュータ、ワークステーションへ急 激に移行
  - インターネットの発達
  - Ethernetの普及
  - 標準OS(Windows, Linux)の普及
  - 半導体技術の発展
  - RISC(Reduced Instruction Set Computer)とこれに伴う高速化、パイプライン処理、スーパースカラ型
  - マイクロプロセッサの猛烈な性能向上
  - → 年間1.5倍に性能が向上(ムーアの法則)

動作周波数は3GHzに達する

コンピュータはあらゆる場所で使われ、なくてはならないものとなる

# コンピュータの歴史 2度の大変革



# コンピュータ略史

#### (4)マルチコア時代

2003年→現在

- 単体CPUの性能が限界に達する
  - 発熱、消費電力の問題
  - 同時に実行できる命令数が限界に
  - CPUのスピードにメモリが付いていけない
  - 半導体の性能向上の限界
- ・ 周波数を上げるのではなくCPU(コア)の数を増や す→マルチコア
  - GPU(Graphic Processing Unit)などのメニーコアによる 高速化も普及
- パーソナルコンピュータからタブレット、スマートフォンにコンピュータの主な使われ方が移りつつある

#### 本日のまとめ

情報処理の基礎概念1:ハードウェア

• 次回は4章を行ないます.