ASSIGNMENT-1

AI24BTECH11026 - Pendem nitesh sri satya*

16)	Let a, b, c be real numbers, $a \neq 0$. If α is a root of $a^2x^2+bx+c=0$. β is the root of $a^2x^2-bx-c=0$ and $0 < \alpha < \beta$, then the equation $a^2x^2+2bx+2c=0$ has a root γ that always satisfies (a) $\gamma = \frac{\alpha+\beta}{2}$ (1989 - 2Marks) (b) $\gamma = \alpha + \frac{\beta}{2}$ (c) $\gamma = \alpha$ (d) $\alpha < \gamma < \beta$	23)	$x^2-2ax+a^2+a-3=0$ are real and less than 3, then (1999 - 2 <i>Marks</i>) (a) $a<2$ (b) $2 \le a \le 3$ (c) $3 < a \le 4p$ (d) $a>4$ If α and β ($\alpha < \beta$) are the roots of the equation $x^2+bx+c=0$, where $c<0< b$, then (2000S)
17)	The number of solutions of the equation $sin(e)^x$ = 5^x+5^{-x} is (a) 0 (1990 - 2 <i>Marks</i>) (b) 1	24)	(a) $0 < \alpha < \beta$ (b) $\alpha < 0 < \beta < \alpha $ (c) $\alpha < \beta < 0$ (d) $\alpha < 0 < \alpha < \beta$
	(c) 2(d) Infinitely many	24)	If a, b, c, d are positive real numbers such that $a+b+c+d=2$, then $M=(a+b)(c+d)$ satisfies
18)	Let α, β be the roots of the equation $(x - a)(x - b) = c$, $c \ne 0$ Then the roots of the equation $(x - a)(x - b) + c = 0$ are (a) a, c (1992 - 2 Marks)		the relation (2000S) (a) both roots in (a, b) (b) both roots in $(-\infty, a)$ (c) both roots in $(b, +\infty)$
	(b) b, c (c) a, b (d) a + c, b + c	25)	(d) one root in $(-\infty, a)$ and the other in $(b, +\infty)$ If $b > a$, then the equation $(x-a)(x-b)-1 = 0$ has (2000S)
19)	The number of point of intersection of two curves $y=2\sin x$ and $y=5x^2+2x+3$ is (a) 0 (1994) (b) 1 (c) 2	26)	(a) both roots in (a, b) (b) both roots in $(-\infty, a)$ (c) both roots in $(b, +\infty)$ (d) one root in $(-\infty, a)$ and the other in $(b, +\infty)$ For the equation $3x^2 + px + 3 = 0, p > 0$, if
20)	(d) ∞ If p,q,r are +ve and are in $A.P.$, the roots of	20)	one of the root is square of the other, then p is equal to (2000 S)
	quadratic equation $px^2 + qx + r = 0$ are all real for (a) $\left \frac{r}{p} - 7 \right \ge 4\sqrt{3}$ (b) $\left \frac{p}{r} - 7 \right \ge 4\sqrt{3}$	27)	(a) $\frac{1}{3}$ (b) 1 (c) 3 (d) $\frac{2}{3}$ If a_1, a_2, \ldots, a_n are positive real numbers whose
21)	(c) all p and r (d) no p and r Let $p, q \in 1, 2, 3, 4$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots is	21)	product is a fixed number c, then the minimum value of $a_1 + a_2 + \dots + a_{n-1} + 2a_n$ is (2002S) (a) $n(2c)^{\frac{1}{n}}$ (b) $(n+1)c^{\frac{1}{n}}$
	(a) 15 (b) 9	28)	(c) $2nc^{\frac{1}{n}}$ (d) $(n+1)(2n)^{\frac{1}{n}}$ The set of all real numbers x for which
22)	(c) 7 (d) 8 If the roots of the equation	/	$x^{2} - x + 2 + x > 0, \text{ is} $ (a) $(-\infty, -2) \cup (2, \infty)$ (b) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
			$(0) (-\omega, -\sqrt{2}) \cup (\sqrt{2}, \omega)$

- (c) $(-\infty, -1) \cup (1, \infty)$
- (d) $(\sqrt{2}, \infty)$
- 29) If $\alpha \in (0, \frac{\pi}{2})$ then $\sqrt{x^2 + x} + \frac{tan^2\alpha}{\sqrt{x^2 + x}}$ is always greater than or equal to (2003S)
 - (a) $2tan\alpha$
 - (b) 1
 - (c) 2
 - (d) $sec^2\alpha$
- 30) For all 'x', $x^2 + 2ax + 10 3a > 0$, then the interval in which 'a' lies is (2004S)
 - (a) a < -5
 - (b) -5 < a < 2
 - (c) a > 5
 - (d) 2 < a < 5