Engenharia de Sistemas

CONCEITOS BÁSICOS

SISTEMA

- •Sistema é um conjunto de partes interagentes e interdependentes que, conjuntamente, formam um todo unitário com determinado objetivo e efetuam determinada função.
- •O sistema fornece informações sobre o passado, o presente, e o futuro projetado sobre efeitos relevantes dentro e fora da organização.
- •Caracterizamos um sistema, pelo simples fato do processo de transformação.
- -Indústria de frutas: recebe as frutas e as transforma em doces embalados e entrega ao comércio.
- –Jornal: atividade que capta informações e as transforma em notícias.

SISTEMA

•Assim, fica claro que sistemas são de fato um processo de transformação de energias. E, por que energias?

 Dada a variedade de inputs passíveis de transformação, matérias, palavras, pensamentos, etc.

Informação?

Dado?

Dado

Informação

Dado

Dado = Fato no estado bruto

Informação = dado com significado

- Dado
- -Elemento bruto que por si só não conduz à compreensão de determinado fato ou situação.
- Informação
- -Dado trabalhado que permite ao executivo tomar decisões.
- -Conduz à compreensão de um fato ou situação.

- O que diferencia um dado de uma informação???
- •É o conhecimento que ela propicia ao tomador de decisões.

DADO TRANSFORMADO

GERA CONHECIMENTO

- Exemplo de dados numa empresa:
- -Quantidade de produção mensal.
- -Custo de matéria-prima.
- -Número de empregados.

TRANSFORMAÇÃO

RESULTADO DA ANÁLISE DOSDADOS

QUALIDADE DA INFORMAÇÃO

Tempo	Prontidão: fornecida quando necessária
	Aceitação: atualizada quando fornecida
	Freqüência: fornecida sempre que necessária
	Período: abrange passado, presente e futuro
Conteúdo	Precisão: isenta de erros
	Relevância: foco nas necessidades dos receptores e das situações
	específicas
	Integridade: informação completa
	Concisão: apenas o que for necessário será fornecido
	Amplitude: alcance amplo ou estreito; foco interno ou externo
Forma	Clareza: de fácil compreensão
	Detalhe: modo detalhado ou resumido
	Ordem: seqüência de organização da informação
	Apresentação: narrativa, numérica, gráfica etc.
	Mídia: eletrônica, impresso, vídeo, foto, etc.

Engenharia de Sistemas

Sistemas

- Conjunto de partes coordenadas que concorrem para a realização de um determinado objetivo
- Conjunto de <u>elementos identificáveis</u> que tem entre si <u>relações</u> e que atuam segundo um <u>objetivo</u>

O objetivo da "prática de sistemas" é como usar os conceitos de sistemas na solução de problemas.

É possível construir sistemas sociotécnicos (de atividades humanas) usando um ciclo clássico da engenharia

• análise, projeto e implementação de sistemas

Elementos de um sistema

O que é Engenharia de Sistemas?

Antes de fabricar o software precisamos entender o "sistema" no qual ele será inserido.

Para isto precisamos:

- Determinar o objetivo do sistema
- Definir o papel do hardware, software, pessoal, base de dados e procedimentos
- Os requisitos operacionais devem ser obtidos, analisados, especificados, modelados, validados e gerenciados (Gestão de configuração e mudanças)
- Esta é a base da Engenharia de Sistemas

Quem faz?

 Um Engenheiro de Sistemas (normalmente um consultor) em conjunto com o cliente e os usuários

Por que é importante?

- Não dá para conhecer a floresta à partir das árvores.
- É preciso usar abordagem top-down
- O software é construído para atender o sistema

Passos: Objetivos ⇒ Requisitos operacionais.

Produto: Modelo do sistema

Check: Clareza, completude e consistência

Simulação de Sistemas

Uma vez criado o modelo ele pode ser submetido à simulações, com dados históricos, para validar o comportamento

Objetivo:

 Além do comportamento, os envolvidos podem ver como será o funcionamento, operações e respostas do sistema

Engenharia de Software

A engenharia de software é uma disciplina da engenharia que se preocupa com todos os aspectos da produção de software desde o início da especificação do sistema até a manutenção do sistema após esse estar sendo usado.

Disciplina de engenharia

Utiliza teorias e métodos adequados para resolver os problemas tendo em mente as restrições organizacionais e financeiras.

Todos os aspectos da produção de software

Não se preocupa apenas com o processo técnico de desenvolvimento, mas também com o gerenciamento de projetos e o desenvolvimento de ferramentas, métodos, para dar apoio à produção de software.

A importância da engenharia de software

- Cada vez mais, os indivíduos e a sociedade dependem de sistemas de software avançados.
- Precisamos ser capazes de produzir sistemas confiáveis com economia e rapidez.
- Geralmente, é mais barato, no longo prazo, usar métodos de engenharia de software e técnicas para os sistemas de software em vez de apenas escrever os programas como se fosse um projeto de programação pessoal.
- Para a maioria dos tipos de sistemas, a maior parte dos custos são os custos de alterar o software em uso.

Atividades de processo de software

- Especificação de software: onde os clientes e engenheiros definem o software que deve ser produzido e as restrições sobre o seu funcionamento.
- Desenvolvimento de software: em que o software é projetado e programado.
- Validação de software: em que o software é verificado para garantia de atender ao que o cliente necessita.
- Evolução de software: em que o software é modificado para refletir as mudanças de requisitos do cliente e do mercado.

Diversidade na engenharia de software

 Existem muitos tipos diferentes de sistemas de software e não existe um conjunto universal de técnicas de software aplicável a todos eles.

 Os métodos de engenharia de software e ferramentas usadas dependem do tipo da aplicação que será desenvolvida, os requisitos do cliente e os antecedentes da equipe de desenvolvimento.

Fundamentos de Engenharia de Software

Alguns princípios fundamentais se aplicam a todos os tipos de sistema de software, independentemente das técnicas de desenvolvimento utilizadas:

- 1. Os sistemas devem ser desenvolvidos através de um processo de desenvolvimento gerenciado e compreendido. Naturalmente, diferentes processos são usados para diferentes tipos de software.
- 2. Confiança e desempenho são importantes para todos os tipos de sistemas.
- 3. É importante entender e gerenciar as especificações e requisitos do software (o que o software deve fazer).
- 4. Quando possível, você deve reusar software que já foi desenvolvido, em vez de escrever um novo software.

Engenharia de Software e a Internet

- Atualmente, a Internet é uma plataforma de aplicativos em execução e, cada vez mais as organizações estão desenvolvendo sistemas baseadas na web, em vez de sistemas locais.
- Web services permitem que a funcionalidade da aplicação seja acessada pela Internet.
- Computação em Nuvem, é uma abordagem para a prestação de serviços de informática, em que as aplicações são executadas remotamente na 'nuvem'.
 - Usuários não compram softwares, mas pagam de acordo com o uso.

Custos de Software

- Os custos de software geralmente dominam os custos do sistema de computador.
- Em um PC, geralmente, os custos de software são maiores que os custos do hardware.
- Custa mais para se manter um software do que para desenvolvê-lo.
- Para sistemas com uma vida longa, os custos de manutenção podem ser várias vezes os custos do desenvolvimento.

Atributos essenciais de um bom software

Características do produto	Descrição
Manutenibilidade	O software deve ser escrito de forma que possa evoluir para atender às necessidades dos clientes. Esse é um atributo crítico, porque a mudança de software é um requisito inevitável de um ambiente de negócio em mudança.
Confiança e proteção	A confiança do software inclui uma série de características como confiabilidade, proteção e segurança. Um software confiável não deve causar prejuízos físicos ou econômicos no caso de falha de sistema. Usuários maliciosos não devem ser capazes de acessar ou prejudicar o sistema.
Eficiência	O software não deve desperdiçar os recursos do sistema, como memória e ciclos do processador. Portanto, eficiência inclui capacidade de resposta, tempo de processamento, uso de memória etc.
Aceitabilidade	O software deve ser aceitável para o tipo de usuário para o qual foi projetado. Isso significa que deve ser compreensível, usável e compatível com outros sistemas usados por ele.

