Lecture 07

Ensemble Methods

STAT 479: Machine Learning, Fall 2018
Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/

Overview

Ensemble Methods

Bagging

Boosting

Random Forests

Stacking

Majority Voting

Majority Vote Classifier

where
$$h_i(\mathbf{x}) = \hat{y}_i$$

Why Majority Vote?

- ullet assume n independent classifiers with a base error rate $oldsymbol{\epsilon}$
- here, independent means that the errors are uncorrelated
- assume a binary classification task
- assume the error rate is better than random guessing (i.e., lower than 0.5 for binary classification)

$$\forall \epsilon_i \in \{\epsilon_1, \epsilon_2, \dots, \epsilon_n\}, \epsilon_i < 0.5$$

Why Majority Vote?

- ullet assume n independent classifiers with a base error rate $oldsymbol{\epsilon}$
- here, independent means that the errors are uncorrelated
- assume a binary classification task
- assume the error rate is better than random guessing (i.e., lower than 0.5 for binary classification)

$$\forall \epsilon_i \in \{\epsilon_1, \epsilon_2, \dots, \epsilon_n\}, \epsilon_i < 0.5$$

The probability that we make a wrong prediction via the ensemble if *k* classifiers predict the same class label

$$P(k) = \binom{n}{k} e^k (1 - \epsilon)^{n-k} \qquad k > \lceil n/2 \rceil$$

Why Majority Vote?

The probability that we make a wrong prediction via the ensemble if *k* classifiers predict the same class label

$$P(k) = \binom{n}{k} e^k (1 - \epsilon)^{n-k} \qquad k > \lceil n/2 \rceil$$

Ensemble error:

$$\epsilon_{ens} = \sum_{k}^{n} \binom{n}{k} \epsilon^{k} (1 - \epsilon)^{n-k}$$

$$\epsilon_{ens} = \sum_{k=6}^{11} {11 \choose k} 0.25^k (1 - 0.25)^{11-k} = 0.034$$

$$\epsilon_{ens} = \sum_{k}^{n} \binom{n}{k} \epsilon^{k} (1 - \epsilon)^{n-k}$$

"Soft" Voting

$$\hat{y} = \arg\max_{j} \sum_{i=1}^{n} w_{i} p_{i,j}$$

 $p_{i,j}$: predicted class membership probability of the *i*th classifier for class label j

$$W_j$$
: optional weighting parameter, default $w_i = 1/n, \forall w_i \in \{w_1, \dots, w_n\}$

"Soft" Voting

Use only for well-calibrated classifiers!

$$\hat{y} = \arg\max_{j} \sum_{i=1}^{n} w_{i} p_{i,j}$$

 $p_{i,j}$: predicted class membership probability of the *i*th classifier for class label j

 W_j : optional weighting parameter, default $w_i = 1/n, \forall w_i \in \{w_1, \dots, w_n\}$

"Soft" Voting

$$\hat{y} = \arg\max_{j} \sum_{i=1}^{n} w_{i} p_{i,j}$$

Binary classification example

$$j \in \{0,1\}$$
 $h_i (i \in \{1,2,3\})$

$$h_1(\mathbf{x}) \to [0.9, 0.1]$$

$$h_2(\mathbf{x}) \to [0.8, 0.2]$$

$$h_3(\mathbf{x}) \to [0.4, 0.6]$$

"Soft" Voting $\hat{y} = \arg \max_{j} \sum_{i=1}^{n} w_i p_{i,j}$

Binary classification example

$$j \in \{0,1\}$$
 $h_i (i \in \{1,2,3\})$
 $h_1(\mathbf{x}) \to [0.9,0.1]$
 $h_2(\mathbf{x}) \to [0.8,0.2]$
 $h_3(\mathbf{x}) \to [0.4,0.6]$

$$p(i = 0 \mid \mathbf{x}) = 0.2 \cdot 0.9 + 0.2 \cdot 0.8 + 0.6 \cdot 0.4 = 0.58$$

 $p(i = 1 \mid \mathbf{x}) = 0.2 \cdot 0.1 + 0.2 \cdot 0.2 + 0.6 \cdot 0.6 = 0.42$

$$\hat{y} = \arg \max_{j} \left\{ p(i = 0 \mid \mathbf{x}), p(i = 1 \mid \mathbf{x}) \right\}$$

Bagging

(Bootstrap Aggregating)

Breiman, L. (1996). Bagging predictors. *Machine learning*, 24(2), 123-140.

Algorithm 1 Bagging

- 1: Let n be the number of bootstrap samples
- 2:
- 3: for i=1 to n do
- 4: Draw bootstrap sample of size m, \mathcal{D}_i
- 5: Train base classifier h_i on \mathcal{D}_i
- 6: $\hat{y} = mode\{h_1(\mathbf{x}), ..., h_n(\mathbf{x})\}$

Bootstrap Sampling

Training Sets

$$P(\text{not chosen}) = \left(1 - \frac{1}{n}\right)^n,$$

$$\frac{1}{e} \approx 0.368, \quad n \to \infty.$$

$$P(\textbf{not chosen}) = \left(1 - \frac{1}{n}\right)^n,$$

$$\frac{1}{e} \approx 0.368, \quad n \to \infty.$$

$$P(\textbf{chosen}) = 1 - \left(1 - \frac{1}{n}\right)^n \approx 0.632$$

$$P(\text{chosen}) = 1 - \left(1 - \frac{1}{n}\right)^n \approx 0.632$$

	Bagging round I	88 8	•••
	2	7	•••
2	2	3	•••
3	I	2	•••
4	3	1	•••
5	7	I	•••
6	2	7	•••
7	4	7	•••
	h ₁	h_2	h_n

where $h_i(\mathbf{x}) = \hat{y}_i$

To be continued ...

This file will be updated with

- Boosting
- Random Forests
- Stacking