

UNIVERSIDAD DE GRANADA

Escuela Técnica Superior de Ingeniería Informática y Telecomunicaciones

Práctica 1: Análisis de eficiencia de algoritmos

 $Doble\ Grado\ Ingeniería\ Informática\ y\ Matemáticas$

Autores:

Jose Alberto Hoces Castro Javier Gómez López Moya Martín Castaño

Este trabajo se distribuye bajo una licencia CC BY-NC-SA 4.0.

Eres libre de distribuir y adaptar el material siempre que reconozcas a los autores originales del documento, no lo utilices para fines comerciales y lo distribuyas bajo la misma licencia.

creativecommons.org/licenses/by-nc-sa/4.0/

Índice

1.	ntroducción
	1. Análisis de la eficiencia teórica
	2. Análisis de la eficiencia empírica
	3. Análisis de la eficiencia híbrida
2.	esarrollo
	1. Inserción
	2. Selección
	3. Quicksort
	4. Heapsort
	5. Floyd
	2.5.1. Eficiencia teórica
	2.5.2. Eficiencia empírica
	6. Hanoi

1. Introducción

Esta primera práctica, **Práctica 1**, consiste en el análisis de eficiencia de algoritmos, consiste en tres partes distintas:

- Análisis de la eficiencia teórica: estudio de la complejidad teórica del algoritmos (Mejor caso, peor caso y caso promedio).
- Análisis de la eficiencia empírica: ejecución y medición de tiempos de ejecución de los algoritmos estudiados.
- Análisis de la eficiencia híbrida: obtención de las constantes ocultas

A continuación, se explican en más profundidad dichas partes.

1.1. Análisis de la eficiencia teórica

El análisis de la **eficiencia teórica** consiste en analizar el tiempo de ejecución de los algoritmos dados para encontrar el peor de los casos, es decir, en qué clase de funciones en notación \mathcal{O} grande se encuentran. Para ello, hemos utilizado las técnicas de análisis de algoritmos vistas en clase y en la asignatura *Estructura de Computadores*.

1.2. Análisis de la eficiencia empírica

Para el análisis de la **eficiencia empírica**, hemos ejecutado los algortimos en cada uno de nuestros equipos bajo las mismas normas y condiciones, hemos medido el tiempo de ejecución de dichos algoritmos con la biblioteca <chrono>, basándonos en la siguiente estructura del código:

```
#include <chrono>
...
high_resolution_clock::time_point tantes, tdespues;
duration <double> transcurrido;
...
tantes = high_resolution_clock::now();
//Sentencia o programa a medir
tdepues = high_resolution_clock::now();
transcurrido = duration_cast <duration <double>>(tdespues-tantes);
```

Además, para automatizar el proceso de ejecución de los algortimos, hemos usado la siguiente estrucutra para generar nuestros scripts:

```
i = #valor de la primera iteracion
while [ $i -le #valor ultima iteracion ]
do
./programa_a_ejecutar $i >> salida.dat
i=$[i+#salto entre valores para conseguir 26 puntos]
done
```

Hemos ejecutado cada algoritmo 15 veces en cada uno de los tamaños que han sido probados, y hemos hecho la media de ellos para reducir perturbaciones que puedan ocurrir de manera aleatoria y que nos lleven al mejor o peor caso, obteniendo de esta forma casos promedio.

Cabe destacar que para seleccion e insercion hemos además ejecutado dos programas adicionales para obtener el mejor y peor caso de estos, pero este hecho lo detallaremos más adelante.

1.3. Análisis de la eficiencia híbrida

Para el análisi de la eficiencia híbrida, hemos tomado los datos de cada uno de los alumnos del grupo y hemos hallado la K(constante oculta). Para ello, hemos usado gnuplot.

Lo primero que hacemos es definar la función a la que queremos ajustar los datos. Tenemos que tener en cuenta el análisis teórico que hemos realizado previamente para saber cuál va a ser la forma de esta función. Podemos definir esta función en gnuplot mediante el siguiente comando (ejemplo para $\mathcal{O}(n^2)$):

```
gnuplot> f(x) = a0*x*x+a1*x+a2
```

El siguiente paso es indicarle a gnuplot que haga la regresión:

```
gnuplot> fit f(x) 'salida.dat' via a0,a1,a2
```

donde 'salida.dat' es nuestro dataset.

La parte que más nos interesa es la parte donde pone Final set of parameters, pues ahí están nuestros coeficientes.

2. Desarrollo

A continuación, realizaremos el estudio individual de cada algortimo, como se ha descrito anteriormente.

- 2.1. Inserción
- 2.2. Selección
- 2.3. Quicksort
- 2.4. Heapsort
- 2.5. Floyd

```
void Floyd(int **M, int dim)
{
    for (int k = 0; k < dim; k++) //O(n)
        for (int i = 0; i < dim; i++) //O(n)
        for (int j = 0; j < dim; j++) //O(n)
        {
            int sum = M[i][k] + M[k][j];
            M[i][j] = (M[i][j] > sum) ? sum : M[i][j]; //O(1)
        }
}
//Total O(n^3)
```

2.5.1. Eficiencia teórica

Como podemos observar en los comentarios del código que hemos hecho en la función void Floyd, estamos ante una función que pertenece a $\mathcal{O}(n^3)$. Son tres bucles for que están anidados, cada uno $\mathcal{O}(n)$, por tanto, multiplicando los órdenes obtenemos que la función es $\mathcal{O}(n^3)$, es decir,

$$T(n) \in \mathcal{O}(n^3)$$

donde T(n) es la función que expresa el tiempo de ejecución del algoritmo.

2.5.2. Eficiencia empírica

Tras ejecutar el algoritmo en un rango de 176 a 2000 elementos, con saltos de 76 unidades por ejecución, obtenemos los siguientes resultados:

Ordenador Jota

Elementos (n) Tiempo (s) 176 0.0244106 252 0.0721776 328 0.155828 404 0.288165 480 0.465947 556 0.724968 632 1.09236 708 1.54374 784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559 1164 6.6698
252 0.0721776 328 0.155828 404 0.288165 480 0.465947 556 0.724968 632 1.09236 708 1.54374 784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
328 0.155828 404 0.288165 480 0.465947 556 0.724968 632 1.09236 708 1.54374 784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
404 0.288165 480 0.465947 556 0.724968 632 1.09236 708 1.54374 784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
480 0.465947 556 0.724968 632 1.09236 708 1.54374 784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
556 0.724968 632 1.09236 708 1.54374 784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
632 1.09236 708 1.54374 784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
708 1.54374 784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
784 2.13392 860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
860 2.67022 936 3.52897 1012 4.4074 1088 5.42559
936 3.52897 1012 4.4074 1088 5.42559
1012 4.4074 1088 5.42559
1088 5.42559
1164 6.6698
1240 8.06967
1316 9.55022
1392 11.4197
1468 13.3942
1544 15.5
1620 18.0399
1696 20.5893
1772 23.6714
1848 26.7337
1924 30.1601
2000 33.9673

Intel Core i7-6700 3.40 GHz

Elementos (n)	Tiempo (s)
176	0.0274773
252	0.0995705
328	0.20657
404	0.307902
480	0.51806
556	0.799187
632	1.16729
708	1.65895
784	2.42549
860	3.00331
936	3.84788
1012	4.84029
1088	5.97643
1164	7.78043
1240	9.08228
1316	10.7251
1392	12.9933
1468	14.6689
1544	17.2185
1620	20.2626
1696	22.9733
1772	26.0557
1848	30.2843
1924	33.4252
2000	38 5217

Ordenador Moya		
Elementos (n)	Tiempo (s)	
176	0.038495	
252	0.111472	
328	0.244523	
404	0.45528	
480	0.761621	
556	1.17395	
632	1.73408	
708	2.4355	
784	3.29426	
860	4.35444	
936	5.64407	
1012	7.16827	
1088	8.91362	
1164	10.9311	
1240	13.2386	
1316	15.8513	
1392	18.7744	
1468	21.9844	
1544	25.5768	
1620	29.5543	
1696	33.8275	
1772	38.5849	
1848	43.8038	
1924	49.4368	
2000	55.3965	

Cuadro 1: Experiencia empírica de algoritmo de Floyd sin optimizar

2.6. Hanoi