- I. Introduction and Motivation
 - A. Motivation
 - B. Scope of Work
- II. Background and Literature Review
 - A. Previous Space Reactor Work
 - 1. RTGs
 - 2. SP-100
 - 3. INL paper
 - 4. Kilopower
 - 5. Nuclear Thermal Propulsion
 - B. Cermet Fuel Work
 - 1. INL paper
 - 2. NASA testing
- III. Reactor Physics Parameter Sweeps
 - A. Parameters
 - 1. Thermal Power
 - 2. Core Radius
 - 3. Enrichment
 - 4. Fuel Fraction
 - 5. Core Aspect Ratio
 - B. Results
 - C. Statistical Analysis of Results
- IV. Mass Modeling Methods
 - A. Initial Reactor Design Choices
 - B. Thermal Hydraulic Analysis Methods
 - 1. Core Geometry
 - 2. Flow Properties
 - a. Temperature
 - b. Pressure
 - c. Thermal Conductivity
 - d. Viscosity
 - e. Specific Heat
 - 3. Fuel Properties
 - a. Thermal Conductivity

- b. Density
- c. Maximum Temperature
- 4. Flow Analysis
 - a. Mass Flux
 - b. Reynold's Number
 - c. Nusselt Number
 - d. Heat Transfer Coefficient
- 5. 1D Heat Transfer
 - a. Plane Wall Condution Approximation
 - b. Radius of Conduction
 - c. 1D Resistance Network
 - d. Max Q at Centerline
 - e. Flux Shape Scaling of Thermal Power
- 6. Fuel Fraction Iteration Scheme
- C. Critical Radius Requirements
 - 1. Critical Radius Search with MCNP6
 - 2. Results
 - a. CO2-UW Cermet
 - b. CO2-UO2
 - c. H2O-UW Cermet
 - d. CO2-UW Cermet
- D. Mass Modeling Iterations
 - 1. Reflector Design
 - 2. Core Aspect Ratio
 - 3. Martian Regolith Reactivity Impact
- E. Mass Modeling Results
- V. Coupling With Power Cycle Optimization
 - A. Coupling Scheme
 - B. Optimal Reactor Design
- VI. Full-Core Concept Model
 - A. Modeling Methods
 - 1. Neutron Transport
 - 2. Depletion
 - 3. Data
 - B. Fuel Design
 - C. Cooling
 - D. Reactivity Control

- E. Depletion
- F. Shielding
- G. Safety Analysis
- H. Reactor Dynamics Analysis

VII. Summary and Future Work