

Oncogenic KRAS and the Non-coding Transcriptome Roman E. Reggiardo, Haley Halasz, Sree Lakshmi Velandi Maroli, Daniel H. Kim

UC Santa Cruz, Department of Biomolecular Engineering

:Context

- RAS genes are the most frequently mutated oncogenes in human cancer.
- We analyzed the transcriptomes of human lung and kidney cells transformed with mutant KRAS to define the landscape of RASregulated noncoding RNAs.

Experimental Design

To determine the landscape of noncoding RNAs affected by oncogenic RAS signaling, we performed RNA-seq on human lung epithelial cells (AALE) that undergo malignant transformation upon introduction of mutant KRAS

Conclusion

- upregulated noncoding transcripts throughout the genome that are enriched for transposable elements that are preferential targets of **KRAB** zinc-finger proteins.
- KRAS-mediated reprogramming of repetitive RNA induces an interferon response that contributes to cellular transformation.

Transcriptome reprogramming by mutant KRAS

- Phosphorylation
- IFN Gamma Response

279 Significantly DE IncRNA

GSEA

- KRAS Signaling Up
- IFN Alpha Response
- MYC Targets V1

165 Significantly DE IncRNA

Coordinated regulation of IFN-related genes and transposable elements

Single Cell data clustered weakly but aggregating signal into gene sets reveals coordination between TE expression and IFN signaling in select subpopulations

Mutant KRAS activates IFN-related genes and transposable elements

