Calculating Meter Multipliers

Three wire - three phase using two element wattmeter with two C.T.'s and two P.T.'s

Assume: 11.55KV at 300 Amps., unity power factor

C.T.'s = 600/5 or 120/1, P.T.'s = 100/1

Pri. Watts = $11547 \times 300 \times 1.732$

= 6,000,000 watts or 6,000 KW

Sec. Watts = $115.47 \times 2.5 \times 1.732$

= 500 watts or 0.5 KW

Meter must be multiplied by Primary watts to convert Secondary watts meter watts to primary watts

Therefore multiplier = $\frac{6,000,000}{500}$ = 12,000

This is identical to the product of C.T. ratio x P.T. ratio (120×100) or 12,000

Three wire - two element metering: Multiplier = C.T. x P.T.

2. Four wire - three phase metering using two element wattmeter three C.T.'s and two P.T.'s connected phase to neutral (present 4 KV metering)

Assume: 2.4KV Ø to Neutral, 1000 Amps, unity P.F.

C.T.'s =
$$2000/5$$
 or $400/1$, P.T.'s = $20/1$

Pri. Watts = $3 \times 2400 \text{V}_{\text{Ø-N}} \times 1000 \text{A}$

= 7,200,000 watts or 7,200 KW

Sec. Watts = $4.33 \times 120 \times 1.732$

= 900 watts or 0.9 KW

Meter must be multiplied by Primary watts
Secondary watts
meter watts to primary watts.

Therefore multiplier = $\frac{7,200,000}{900}$ = 8,000

This is identical to the product of C.T. ratio \times P.T. ratio (400 \times 20) or 8,000

Pour wire - two element metering using three C.T.'s connected
delta and two P.T.'s connected phase to neutral: Multiplier = C.T. x P.T.

23. Four wire - three phase metering using two element wattmeter, three C.T.'s, two P.T.'s connected phase to phase and three auxiliary secondary phase shifting transformers. (present 12KV or 16KV metering)

Assume: 11.55KV, 300 Amps., unity power factor C.T.'s = 600/5 or 120/1, P.T.'s = 100/1

Meter must be multiplied by $\frac{\text{Primary watts}}{\text{Secondary watts}}$ to convert meter watts to primary watts

Therefore multiplier = $\frac{6,000,000}{866}$ = $\frac{6928}{6928}$

In This case the multiplier is not the product of C.T. ratio \times P.T. ratio (120 \times 100 = 12,000 \neq 6928)

Four wire - two element metering using three C.T.'s connected delta, two P.T.'s connected phase to phase and three auxiliary phase shifting transformers: Multiplier = $\frac{\text{C.T. x P.T.}}{1.732}$

4. Four wire - three phase metering using two element wattmeter, three C. T.'s, two P. T.'s connected phase to phase and three auxiliary secondary phase shifting transformers plus two 20/5 auxiliary C. T.'s for station with capacity in excess of 50 mva.

Assume: 11.55 kV, 300 Amps., unity power factor

C. T. s = 600/5 or 120/1,

P. T.'s = 100/1

Pri. Watts = $11547 \times 300 \times 1.732$ = 6,000,000 watts or 6,000 kw

Sec. Watts = 115.47 x 1.0825 x 1.732

= 216.5 watts

Therefore multiplier =
$$\frac{6,000,000}{216.5}$$
 = 27714

In this case the multiplier is not the product of C. T. ratio x P. T. ratio x Aux. C. T. Ratio (ILO x $100 \times 4 = 48000 \neq 27,714$)

Four wire - two element metering using three C. T.'s connected delta, OELTA two P. T.'s connected phase to phase and three auxiliary phase shifting transformers and two auxiliary C. T.'s: Multiplier = $C. T. \times P. T. \times Aux. C. T.$