Similitudes Planes

Chapitre 2

I. Généralités

Définition :

Une similitude est une transformation qui conserve les rapports de longueur et les angles géométriques

Théorème :

Une transformation est une similitude $\Leftrightarrow \exists \ k \in \mathbb{R}_+^*, \forall \ (M,N) \in \mathcal{P}^2, M'N' = kMN$ k est le rapport de la similitude

Théorème:

$$\varphi: z \to az + b$$
 et $\varphi: a\bar{z} + b$ sont des similitudes de rapport $k = |a|$

Théorème :

La composée de2 similitudes de rapports k_1 et k_2 a pour rapport $k_1 \times k_2$

Théorème :

Une similitude de **rapport** k a pour **réciproque** une similitude de rapport $\frac{1}{k}$

II. Similitudes directes $z' = az + b = ke^{i\theta}z + b$

Définition :

C'est une similitude qui conserve les angles orientés

Théorème:

Toute similitude qui n'est pas une translation admet un **point fixe** unique qui est le centre de la similitude. $\left(z_C = \frac{b}{1-a}\right)$

Théorème :

$$\forall (A,B) \in \mathcal{P}^2, A \neq B$$
, l'angle $(\overrightarrow{AB}, \overrightarrow{A'B'})$ est constant et est l'angle de la similitude

Théorème :

La **composée** de2 similitudes directes d'angles θ_1 et θ_2 a pour **angle** $\theta_1 + \theta_2$ [2 π]

Théorème:

Il existe une et une seule similitude S telle que S(A) = A' et S(B) = B'

Bilan:

Rapport	Angle	Туре
k = 1	$\theta \equiv 0 [2\pi]$	Translation
	θ ≢ 0 [2π]	Rotation
k ≠ 1	θ = 0 [π]	Homothétie
	θ ≢ 0 [π]	Similitude

III. Similitudes indirectes $z' = a\overline{z} + b = ke^{i\theta}\overline{z} + b$

Définition:

C'est une similitude qui ne conserve pas les angles orientés

Théorème:

C'est la composée d'une similitude directe et d'une symétrie axiale