

mp_id	emp_name	job_name	manager_id	hire_date	salary	commission	dep_id
68319	KAYLING	PRESIDENT		1991-11-18	6000.00		1001
66928	BLAZE	MANAGER	68319	1991-05-01	2750.00		3001
67832	CLARE	MANAGER	68319	1991-06-09	2550.00		1001
65646	JONAS	MANAGER	68319	1991-04-02	2957.00		2001
67858	SCARLET	ANALYST	65646	1997-04-19	3100.00		2001
69062	FRANK	ANALYST	65646	1991-12-03	3100.00		2001
63679	SANDRINE	CLERK	69062	1990-12-18	900.00		2001
64989	ADELYN	SALESMAN	66928	1991-02-20	1700.00	400.00	3001
65271	WADE	SALESMAN	66928	1991-02-22	1350.00	600.00	3001
66564	MADDEN	SALESMAN	66928	1991-09-28	1350.00	1500.00	3001
68454	TUCKER	SALESMAN	66928	1991-09-08	1600.00	0.00	3001
68736	ADNRES	CLERK	67858	1997-05-23	1200.00		2001
69000	JULIUS	CLERK	66928	1991-12-03	1050.00		3001
69324	MARKER	CLERK	67832	1992-01-23	1400.00		1001

grade	min_sal	max_sal
1	800	1300
2	1301	1500
3	1501	2100
4	2101	3100
5	3101	9999

dep_id	dep_name	dep_location
1001	FINANCE	SYDNEY
2001	AUDIT	MELBOURNE
3001	MARKETING	PERTH
4001	PRODUCTION	BRISBANE

- **1.** From the following table return complete information about the employees.
 - → Select * from employees;
- 2. Write a SQL query to find the salaries of all employees. Return salary.
 - → Select salary from employees;
- **3.** Write a SQL query to find the unique designations of the employees. Return job name.
 - → select distinct job_name from employees;
- **4.** Write a SQL query to list the employees' name, increased their salary by 15%, and expressed as number of Dollars.
 - → SELECT emp_name,concat('\$',(salary+salary*0.15)) as increased_salary from employees;
- **5.** Write a SQL query to list the employee's name and job name as a format of "Employee & Job".
 - → Select concat(emp_name,' ',job_name) as 'Employee & Job' FROM employees;
- **6.** Write a query in SQL to produce the output of employees as follows.

```
OUTPUT:- Employee JONAS(manager).
```

- → SELECT concat(emp_name,'(',job_name,')') AS Employee FROM employees;
- 7. Write a SQL query to find those employees with hire date in the format like February 22, 1991. Return employee ID, employee name, salary, hire date.
 - → SELECT emp_name,emp_id,salary,DATE_FORMAT(hire_date,'%m %d %y') AS hire_date FROM employees;
- **8.** Write a SQL query to count the number of characters except the spaces for each employee name. Return employee name length.

- → SELECT length(trim(emp_name)) FROM employees;
- **9.** Write a SQL query to find the employee ID, salary, and commission of all the employees.
 - → SELECT emp_name,emp_id,salary,commission FROM employees;
- **10.** Write a SQL query to find the unique department with jobs. Return department ID, Job name.
 - → SELECT DISTINCT dep_id, job_name FROM employees;
- **11.** Write a SQL query to find those employees who do not belong to the department 2001. Return complete information about the employees.
 - → SELECT * FROM employees where dep_id != 2001;
- **12.** Write a SQL query to find those employees who joined before 1991. Return complete information about the employees.
 - → SELECT * FROM employees where hire_date < ('1991-1-1');
- **13.** Write a SQL query to compute the average salary of those employees who work as 'ANALYST'. Return average salary.
 - → SELECT avg(salary) FROM employees where job_name = 'ANALYST';
- 14. Write a SQL query to find the details of the employee 'BLAZE'.
 - → SELECT * FROM employees where emp_name = 'BLAZE';
- **15.** Write a SQL query to find those employees whose commission is more than their salary. Return complete information about the employees.
 - → SELECT * FROM employees where commission > salary;
- **16.** Write a SQL query to find those employees whose salary exceeds 3000 after giving 25% increment. Return complete information about the employees.
 - → SELECT * FROM employees where salary+salary*0.25 > 3000;
- **17.** Write a SQL query to find the names of the employees whose length is six. Return employee name.

- → SELECT emp_name FROM employees where emp_name = length(emp_name);
- **18.** Write a SQL query to find those employees who joined in the month January. Return complete information about the employees.
 - → SELECT * FROM employees where to_char(hire_date,'mon') = 'jan';
- **19.** Write a SQL query to find the name of employees and their manager separated by the string 'works for'.
 - → SELECT CONCAT(emp_name,'works for ',job_name) FROM employees;
- **20.** Write a SQL query to find those employees whose designation is 'CLERK'. Return complete information about the employees.
 - → SELECT * FROM employees WHERE job_name = 'CLERK';
- 21. Write a SQL query to find those employees whose experience is more than 27 years. Return complete information about the employees.
 - → SELECT * FROM employees WHERE ROUND(DATEDIFF(NOW(),hire_date)/365) > 27; //***
- **22.** Write a SQL query to find those employees whose salaries are less than 3500. Return complete information about the employees.
 - → SELECT * FROM employees WHERE salary < 3500;</p>
- **23.** Write a SQL query to find the employee whose designation is 'ANALYST'. Return employee name, job name and salary.
 - → SELECT emp_name,job_name,salary FROM employees WHERE job_name = 'ANALYST';
- **24.** Write a SQL query to find those employees who have joined in the year 1991.Return complete information about the employees.
 - → SELECT * FROM employees WHERE to char(hire date, 'yyyy') = '1991';

- 25. Write a SQL query to find those employees who joined before 1st April 1991. Return employee ID, employee name, hire date and salary.
 - → SELECT emp_id,emp_name,hire_date,salary FROM employees WHERE hire_date < '1991-04-01';</p>
- **26.** Write a SQL query to find those employees who are not working under a manager. Return employee name, job name.
 - → SELECT emp_name, job_name FROM employees WHERE job_name != 'manager';
- **27.** Write a SQL query to find those employees who joined on 1st May 91. Return complete information about the employees.
 - → SELECT * FROM employees WHERE hire_date = '1991-05-01';
- **28.** Write a SQL query to find those employees working under the manger whose ID is 68319. Return employee ID, employee name, salary, and age.
 - → SELECT emp_name,salary,age(CURRENT_DATE,hire_date) "EXPERIENCE" FROM employees WHERE manager_id = 68319;
- **29.** Write a SQL query to find those employees who earn more than 100 as daily salary. Return employee ID, employee name, salary, and age.
 - → SELECT emp_id,emp_name,age(CURRENT_DATE,hire_date) "EXPERIENCE" FROM employees WHERE (salary/30) > 100;
- **30.** Write a SQL query to find those employees who retired after 31-Dec-99, completion of 8 years of service period. Return employee name.
 - → SELECT emp_name FROM employees WHERE hire_date + interval '8 years' > '1999-12-31';
- **31.** Write a SQL query to find those employees whose salary is an odd value. Return complete information about the employees.
 - → SELECT * FROM employees WHERE salary%2 = 1;

- → SELECT * FROM employees WHERE mod(salary,2) = 1;
- **32.** Write a SQL query to find those employees whose salary contains only three digits. Return complete information about the employees.
- **33.** Write a SQL query to find those employees who joined in the month of APRIL. Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date,'mm') = '04';
- **34.** Write a SQL query to find those employees who joined in the company before 19th of a month. Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date,'DD') < '19';</p>
- **35.** Write a SQL query to find those employees who are SALESMAN and experience more than 10 months. Return complete information about the employees.
- **36.** Write a SQL query to find those employees of department id 3001 or 1001 and joined in the year 1991. Return complete information about the employees.
 - → SELECT * FROM employees WHERE (dep_id = 3001 OR dep_id=1001) AND (to_char(hire_date,'yyyy') = '1991');
- **37.** Write a SQL query to find those employees who are working for the department ID 1001 or 2001.Return complete information about the employees.
 - → SELECT * FROM employees WHERE dep_id = 1001 OR dep_id = 2001;
- **38.** Write a SQL query to find those employees whose designation is 'CLERK' and work in the department ID 2001. Return complete information about the employees.

- → SELECT * FROM employees WHERE job_name = 'CLERK' AND dep_id = 2001;
- 39. Write a query in SQL to find those employees where -
 - 1. The employees receive some commission which should not be more than the salary and annual salary including commission is below 34000.
 - 2. Designation is 'SALESMAN' and working in the department '3001'. Return employee ID, employee name, salary and job name.
 - → SELECT emp_id, emp_name, salary, job_name FROM employees WHERE (salary+commission)*12 < 34000 AND job_name = 'SALESMAN' AND dep_id = 3001;
- **40.** Write a SQL query to find those employees who are either CLERK or MANAGER. Return complete information about the employees.
 - → SELECT * FROM employees WHERE job_name = 'CLERK' OR job_name = 'MANAGER';
- **41.** Write a SQL query to find those employees who joined in any year except the month of February. Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date, 'MM') != '02';
- **42.** Write a SQL query to find those employees who joined in the year 91. Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date,'yyyy') = '1991';
- **43.** Write a SQL query to find those employees who joined in the month of June 1991. Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date, 'mon-1991') = 'jun-1991';

- **44.** Write a SQL query to find all the employees whose annual salary is within the range 24000 and 50000 (Begin and end values are included.). Return complete information about the employees.
 - → SELECT * FROM employees WHERE salary*12 >= 24000 AND salary*12 <= 50000;
 - → SELECT * FROM employees WHERE salary*12 BETWEEN 24000 AND 50000 ;
- **45.** Write a SQL query to find all those employees who have joined on 1st May, 20th Feb, and 3rd Dec in the year 1991. Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date, 'dd-mon-yyyy') IN ('01-may-1991','20-feb-1991','03-dec-1991');
- **46.** Write a SQL query to find those employees working under the managers 63679 or 68319 or 66564 or 69000. Return complete information about the employees.
 - → SELECT * FROM employees WHERE manager_id IN (63679,68319,66564,69000);
- **47.** Write a SQL query to find those employees who joined after the month JUNE in the year 1991 and within this year. Return complete information about the employees.
 - → SELECT * FROM employees WHERE hire_date BETWEEN '01-JUL-1991' AND '31-DEC-1991';
- **48.** Write a SQL query to find those employees who joined in 90's. Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date,'yy') BETWEEN '90' AND '99';
- **49.** Write a SQL query to find those managers who are in the department 1001 or 2001. Return complete information about the employees.
 - → SELECT * FROM employees WHERE job_name = 'MANAGER' AND (dep_id=1001 OR dep_id=2001);

- **50.** Write a SQL query to find those employees who joined in the month FEBRUARY with a salary range between 1001 to 2000 (Begin and end values are included.). Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date,'MON') = 'FEB' AND (salary >= 1001 OR salary <= 2000);
- **51.** Write a SQL query to find those employees who joined before or after the year 1991. Return complete information about the employees.
 - → SELECT * FROM employees WHERE to_char(hire_date,'yyyy') NOT LIKE '1991';
- **52.** Write a SQL query to find employees along with department name. Return employee ID, employee name, job name, manager ID, hire date, salary, commission, department ID, and department name.
 - → SELECT e.emp_id, e.emp_name, e.job_name, e.manager_id, e.hire_date, e.salary, e.commission, e.dep_id, d.dep_name FROM employees e, department d WHERE e.dep_id = d.dep_id;
- 53. Write a SQL query to find those employees who earn 60000 in a year or not working as an ANALYST. Return employee name, job name, (12*salary) as Annual Salary, department ID, and grade.
 - → SELECT e.emp_name, e.job_name, (e.salary*12) AS Salary, e.dep_id, s.grade FROM employees e, salary_grade s WHERE (e.salary*12) = 60000 AND e.job_name = 'ANALYST';
- **54.** Write a SQL query to find those employees whose salary is higher than the salary of their managers. Return employee name, job name, manager ID, salary, manager name, manager's salary.
 - → SELECT emp name, job name, manager id, salary,