# Digital Systems

# EIC 0844091 Digital Circuit and Logic Design

Associate Prof. Luo Jie
Huazhong University of Science & Technology

Office: South first building (middle) 210 南一楼 (中) 210

### Elementary



Digital Systems EIC- 0844091 © Luo Jie – slide 2

### Class Material

"Digital fundamentals", 7thed.

by Thomas L. Floyd.("TN79 W6/7")

"Introduction to logic design", 2nd ed.

by Marcovitz Alan B. ("TP302 W1/2Y" in our library)

"Digital Design", 4th ed.

by M. Morris Mano, Michael D. Ciletti.

"Digital design: principles & practices", 3thed.

by John F. Wakerly. ("TN431.2 W26/3Y")

"数字逻辑基础与Verilog设计",2th ed.

(Stephen Brown, Zvonko Vranesic著, 夏宇闻译.)

"电子技术基础(数字部分,第6版)".康华光主编. 高教社

"数字电子技术基础 (第3版)".罗杰, 彭容修主编. 高教社

### Class Material

#### **\*Lecture Slides:**

http://pan.baidu.com/s/1hqszsMg

不是英文字母,而是数字1

## Class topics

- Introductory digital concepts
- Number system, Operation, and Codes
- Logic operation fundamentals
- Logic gate circuits
- Combinational logic
- Functions of combinational logic
- Latches and Flip-flops
- Counters
- Shift registers
- Memory and storage
- Introduction to programmable logic devices
- DAC and ADC
- Verilog HDL and EDA Tools

### What will You Learn in this Course?

- Towards the end of this course, you should be able to:
  - ♦ Carry out arithmetic computation in various number systems
  - ♦ Apply rules of Boolean algebra to simplify Boolean expressions
  - Translate Boolean expressions into equivalent truth tables and logic gate implementations and vice versa
  - Design efficient combinational and sequential logic circuit implementations from functional description of digital systems
  - Carry out simple CAD simulations to verify the operation of logic circuits

### Is it Worth the Effort?

- Absolutely!
- ❖ Digital circuits are employed in the design of: (...用于设计: )
  - ♦ Digital computers
  - ♦ Data communication
  - ♦ Digital phones
  - ♦ Digital cameras
  - ♦ Digital TVs, etc.
- This course presents the basic tools for the design of digital circuits and provides the fundamental concepts used in the design of digital systems

### Class objective

The development of the skills of analysis and design of digital circuit

It requires sustained (持续的) problem-solving exercises, so you will be asked to do some exercises as assignment (homework).

## Grading Policy

❖ Assignments 20%

❖ Final Exam 80%

#### **Announcement**

Don't plagiarize each other in the assignment.

If this case would be found, the marks of this assignment of both plagiarist and plagiarized person would be assigned 0 point.

### Presentation Outline

- Analog versus Digital Systems
- Digitization of Analog Signals
- Binary Numbers and Number Systems
- Number System Conversions
- Representing Fractions
- Binary Codes

# Analog versus Digital

- Analog means continuous
- Analog parameters have continuous range of values

  - → Temperature increases/decreases continuously
  - ♦ Like a continuous mathematical function, No discontinuity points
  - ♦ Other examples?
- Digital means using numerical digits
- Digital parameters have fixed set of discrete values

  - → Thus, the month number is a digital parameter (cannot be 1.5!)
  - ♦ Other examples?

### Analog versus Digital System

- Are computers analog or digital systems?Computer are digital systems
- Which is easier to design an analog or a digital system?
  Digital systems are easier to design, because they deal with a limited set of values rather than an infinitely large range of continuous values
- The world around us is analog
- It is common to convert analog parameters into digital form
- This process is called digitization

# Digitization of Analog Signals

- Digitization is converting an analog signal into digital form
- Example: consider digitizing an analog voltage signal
- Digitized output is limited to four values = {V1,V2,V3,V4}



Digital Systems EIC- 0844091 © Luo Jie – slide 13

# Digitization of Analog Signals - cont'd



- ❖ Some loss of accuracy(精度), why?
- How to improve accuracy? Add more voltage values

Digital Systems EIC- 0844091 © Luo Jie – slide 14

### ADC and DAC Converters

- Analog-to-Digital Converter (ADC)
  - ♦ Produces digitized version of analog signals
- Digital-to-Analog Converter (DAC)
  - ♦ Regenerate analog signal from digital form
- Our focus is on digital systems only
  - ♦ Both input and output to a digital system are digital signals



### Next...

- Analog versus Digital Systems
- Digitization of Analog Signals
- Binary Numbers and Number Systems
- Number System Conversions
- Representing Fractions
- Binary Codes

# How do Computers Represent Digits?

- ❖ Binary digits (0 and 1) are used instead of decimal digits
- Using electric voltage
  - ♦ Used in processors and digital circuits
  - → High voltage = 1, Low voltage = 0
- Using electric charge
  - ♦ Used in memory cells
  - ♦ Charged memory cell = 1, discharged memory cell = 0
- Using magnetic field
  - ♦ Used in magnetic disks, magnetic polarity indicates 1 or 0
- Using light
  - ◆ Used in optical disks, surface pit(表面凹洞) indicates 1 or 0



### Binary Numbers

- ❖ Each binary digit (called a bit) is either 1 or 0
- Bits have no inherent meaning, they can represent ...

  - ♦ Fractions
  - ♦ Characters
  - → Images, sound, etc.
- ❖ Bit Numbering(位编号)

  - ♦ Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)



## Decimal Value of Binary Numbers

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2
- **•** Decimal Value =  $(d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- **Sinary**  $(10011101)_2 = 2^7 + 2^4 + 2^3 + 2^2 + 1 = 157$

| 7                     | 6                     | 5                     | 4              | 3                     | 2                     | 1                     | 0                     |
|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1                     | 0                     | 0                     | 1              | 1                     | 1                     | 0                     | 1                     |
| <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | 2 <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |

 $2^{8}$  $2^{0}$ 256  $2^{1}$ 512  $2^{10}$  $2^{2}$ 1024  $2^{11}$  $2^3$ 2048  $2^{4}$  $2^{12}$ 4096 16  $2^{13}$ 32 8192 26  $2^{14}$ 64 16384

2<sup>n</sup>

 $2^{15}$ 

**Decimal Value** 

32768

**Decimal Value** 

128

Some common powers of 2



 $2^{7}$ 

### Positional Number Systems

#### Different Representations of Natural Numbers

XXVII Roman numerals (not positional)

27 Radix-10 or decimal number (positional)

11011<sub>2</sub> Radix-2 or binary number (also positional)

#### Fixed-radix positional representation with *n* digits

Number 
$$N$$
 in radix  $r = (d_{n-1}d_{n-2} \dots d_1d_0)_r$   
 $N_r$  Value =  $d_{n-1} \times r^{n-1} + d_{n-2} \times r^{n-2} + \dots + d_1 \times r + d_0$   
Examples:  $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$   
 $(2107)_8 = 2 \times 8^3 + 1 \times 8^2 + 0 \times 8 + 7 = 1095$ 

Digital Systems EIC- 0844091 © Luo Jie – slide 20

### Convert Decimal to Binary

- \* Repeatedly divide the decimal integer by 2
- Each remainder is a binary digit in the translated value
- ❖ Example: Convert 37<sub>10</sub> to Binary

|                          | ainder | Quotient | Division |
|--------------------------|--------|----------|----------|
| least significant bit    | 1 ←    | 18       | 37 / 2   |
|                          | 0      | 9        | 18 / 2   |
| $37 = (100101)_2$        | 1      | 4        | 9/2      |
| 1 - (100101)2            | 0      | 2        | 4/2      |
|                          | 0      | 1        | 2/2      |
| most significant bit     | 1      | 0        | 1/2      |
| op when quotient is zero | st     |          |          |

Digital Systems EIC- 0844091 © Luo Jie – slide 21

# Decimal to Binary Conversion

$$N = (d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$$

❖ Dividing N by 2 we first obtain

$$\Rightarrow$$
 Quotient<sub>1</sub> =  $(d_{n-1} \times 2^{n-2}) + ... + (d_2 \times 2) + d_1$ 

- $\Rightarrow$  Remainder<sub>1</sub> =  $d_0$
- ♦ Therefore, first remainder is least significant bit of binary number
- Dividing first quotient by 2 we first obtain

$$\Rightarrow$$
 Quotient<sub>2</sub> =  $(d_{n-1} \times 2^{n-3}) + ... + (d_3 \times 2) + d_2$ 

- $\Leftrightarrow$  Remainder<sub>2</sub> =  $d_1$
- Repeat dividing quotient by 2
  - ♦ Stop when new quotient is equal to zero
  - ♦ Remainders are the bits from least to most significant bit

## Popular Number Systems

- ❖ Binary Number System: Radix = 2
  - ♦ Only two digit values: 0 and 1
  - ♦ Numbers are represented as 0s and 1s
- ❖ Octal Number System: Radix = 8
- ❖ Decimal Number System: Radix = 10
  - → Ten digit values: 0, 1, 2, ..., 9
- ❖ Hexadecimal Number Systems: Radix = 16

  - $\Rightarrow$  A = 10, B = 11, ..., F = 15
- ❖ Octal and Hexadecimal numbers can be converted easily to Binary and vice versa(反之亦然)

### Octal and Hexadecimal Numbers

- ❖ Octal = Radix 8
- Only eight digits: 0 to 7
- Digits 8 and 9 not used
- ❖ Hexadecimal = Radix 16
- ❖ 16 digits: 0 to 9, A to F
- **❖** A=10, B=11, ..., F=15
- First 16 decimal values (0 to 15) and their values in binary, octal and hex. Memorize table

| Decimal<br>Radix 10 | Binary<br>Radix 2 | Octal<br>Radix 8 | Hex<br>Radix 16 |
|---------------------|-------------------|------------------|-----------------|
| 0                   | 0000              | 0                | 0               |
| 1                   | 0001              | 1                | 1               |
| 2                   | 0010              | 2                | 2               |
| 3                   | 0011              | 3                | 3               |
| 4                   | 0100              | 4                | 4               |
| 5                   | 0101              | 5                | 5               |
| 6                   | 0110              | 6                | 6               |
| 7                   | 0111              | 7                | 7               |
| 8                   | 1000              | 10               | 8               |
| 9                   | 1001              | 11               | 9               |
| 10                  | 1010              | 12               | Α               |
| 11                  | 1011              | 13               | В               |
| 12                  | 1100              | 14               | С               |
| 13                  | 1101              | 15               | D               |
| 14                  | 1110              | 16               | Е               |
| 15                  | 1111              | 17               | F               |

## Binary, Octal, and Hexadecimal

Binary, Octal, and Hexadecimal are related:

Radix 
$$16 = 2^4$$
 and Radix  $8 = 2^3$ 

- ❖ Hexadecimal digit = 4 bits and Octal digit = 3 bits
- Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
- \* Example: Convert 32-bit number into octal and hex

| 3 | 5  |   | 3  | , |   | 0 |   |   | 5 |   |   | 5 |   | 2   | ) |   | 3 |   |   | 6 |   |   | 2 |   |   | 4 |   | Octal  |        |
|---|----|---|----|---|---|---|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|--------|--------|
| 1 | 10 | 1 | 01 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 32-bit | binary |
| E |    |   | В  |   |   | 1 | L |   |   | ( | 6 |   |   | A   |   |   | 7 | 7 |   |   | 9 | ) |   |   | 4 | ļ |   | Hexade | cimal  |

### Converting Octal & Hex to Decimal

- **!** Octal to Decimal:  $N_8 = (d_{n-1} \times 8^{n-1}) + ... + (d_1 \times 8) + d_0$
- **!** Hex to Decimal:  $N_{16} = (d_{n-1} \times 16^{n-1}) + ... + (d_1 \times 16) + d_0$
- Examples:

$$(7204)_8 = (7 \times 8^3) + (2 \times 8^2) + (0 \times 8) + 4 = 3716$$

$$(3BA4)_{16} = (3 \times 16^3) + (11 \times 16^2) + (10 \times 16) + 4 = 15268$$

### Converting Decimal to Hexadecimal

- Repeatedly divide the decimal integer by 16
- \* Each remainder is a hex digit in the translated value
- Example: convert 422 to hexadecimal

| Division  | Quotient         | Remainder |                       |
|-----------|------------------|-----------|-----------------------|
| 422 / 16  | 26               | 6         | least significant dig |
| 26 / 16   | 1                | A         |                       |
| 1 / 16    | 0                | 1 -       | most significant di   |
| 422 = (1A | 6) <sub>16</sub> | stop wh   |                       |

❖ To convert decimal to octal divide by 8 instead of 16

### Important Properties

- ❖ How many possible digits can we have in Radix r?
  r digits: 0 to r − 1
- ❖ What is the result of adding 1 to the largest digit in Radix r?
  Since digit r is not represented, result is (10)<sub>r</sub> in Radix r

Examples: 
$$1_2 + 1 = (10)_2$$
  $7_8 + 1 = (10)_8$   $9_{10} + 1 = (10)_{10}$   $F_{16} + 1 = (10)_{16}$ 

❖ What is the largest value using 3 digits in Radix r?

In binary: 
$$(111)_2 = 2^3 - 1$$

In octal: 
$$(777)_8 = 8^3 - 1$$

In decimal: 
$$(999)_{10} = 10^3 - 1$$

largest value = 
$$r^3 - 1$$

# Important Properties - cont'd

How many possible values can be represented ...

Using *n* binary digits?  $2^n$  values: 0 to  $2^n - 1$ 

Using *n* octal digits  $8^n$  values: 0 to  $8^n - 1$ 

Using *n* decimal digits?  $10^n$  values: 0 to  $10^n - 1$ 

Using *n* hexadecimal digits  $16^n$  values: 0 to  $16^n - 1$ 

Using *n* digits in Radix r?  $r^n$  values: 0 to  $r^n - 1$ 

### Next...

- Analog versus Digital Systems
- Digitization of Analog Signals
- Binary Numbers and Number Systems
- Number System Conversions
- Representing Fractions
- Binary Codes

### Representing Fractions(小数)

 $\diamondsuit$  A number  $N_r$  in *radix r* can also have a fraction part:

$$N_r = d_{n-1}d_{n-2} \dots d_1d_0 \cdot d_{-1}d_{-2} \dots d_{-m+1}d_{-m}$$
  $0 \le d_i < r$ 
Integer Part Fraction Part

#### Radix Point

The number  $N_r$  represents the value:

$$N_r = d_{n-1} \times r^{n-1} + ... + d_1 \times r + d_0 +$$
 (Integer Part)  
 $d_{-1} \times r^{-1} + d_{-2} \times r^{-2} ... + d_{-m} \times r^{-m}$  (Fraction Part)

$$N_r = \sum_{i=0}^{i=n-1} d_i \times r^i + \sum_{j=-m}^{j=-1} d_j \times r^j$$

### Examples of Numbers with Fractions

$$(2409.87)_{10} = 2 \times 10^3 + 4 \times 10^2 + 9 + 8 \times 10^{-1} + 7 \times 10^{-2}$$

$$(1101.1001)_2 = 2^3 + 2^2 + 2^0 + 2^{-1} + 2^{-4} = 13.5625$$

$$(703.64)_8 = 7 \times 8^2 + 3 + 6 \times 8^{-1} + 4 \times 8^{-2} = 451.8125$$

$$(A1F.8)_{16} = 10 \times 16^2 + 16 + 15 + 8 \times 16^{-1} = 2591.5$$

$$(423.1)_5 = 4 \times 5^2 + 2 \times 5 + 3 + 5^{-1} = 113.2$$

♦ (263.5)<sub>6</sub> Digit 6 is NOT allowed in radix 6

# Converting Decimal Fraction to Binary

- Convert N = 0.6875 to Radix 2
- Solution: Multiply N by 2 repeatedly & collect integer bits

| Multiplication            | New Fraction | Bit |                      |
|---------------------------|--------------|-----|----------------------|
| $0.6875 \times 2 = 1.375$ | 0.375        | 1 - | → First fraction bit |
| $0.375 \times 2 = 0.75$   | 0.75         | 0   |                      |
| $0.75 \times 2 = 1.5$     | 0.5          | 1   |                      |
| $0.5 \times 2 = 1.0$      | 0.0          | 1 - | → Last fraction bit  |

- ❖ Stop when new fraction = 0.0, or when enough fraction bits are obtained
- **!** Therefore,  $N = 0.6875 = (0.1011)_2$
- Check  $(0.1011)_2 = 2^{-1} + 2^{-3} + 2^{-4} = 0.6875$

# Converting Fraction to any Radix r

❖ To convert fraction N to any radix r

$$N_r = (0.d_{-1} d_{-2} \dots d_{-m})_r = d_{-1} \times r^{-1} + d_{-2} \times r^{-2} \dots + d_{-m} \times r^{-m}$$

 $\clubsuit$  Multiply *N* by *r* to obtain  $d_{-1}$ 

$$N_r \times r = d_{-1} + d_{-2} \times r^{-1} \dots + d_{-m} \times r^{-m+1}$$

- $\clubsuit$  The integer part is the digit  $d_{-1}$  in radix r
- **...** The new fraction is  $d_{-2} \times r^{-1} \dots + d_{-m} \times r^{-m+1}$
- $\clubsuit$  Repeat multiplying the new fractions by r to obtain  $d_{-2}$   $d_{-3}$  ...
- Stop when new fraction becomes 0.0 or enough fraction digits are obtained

### More Conversion Examples

- $\Rightarrow$  Solution: N = 139 + 0.6875 (split integer from fraction)
- The integer and fraction parts are converted separately

| Division | Quotient | Remainder |
|----------|----------|-----------|
| 139 / 8  | 17       | 3         |
| 17 / 8   | 2        | 1         |
| 2/8      | 0        | 2         |

| Multiplication          | New Fraction | Digit |
|-------------------------|--------------|-------|
| $0.6875 \times 8 = 5.5$ | 0.5          | 5     |
| $0.5 \times 8 = 4.0$    | 0.0          | 4     |

- **Therefore**,  $139 = (213)_8$  and  $0.6875 = (0.54)_8$
- Now, join the integer and fraction parts with radix point  $N = 139.6875 = (213.54)_8$

### Conversion Procedure to Radix r

- ❖ To convert decimal number N (with fraction) to radix r
- Convert the Integer Part
  - Repeatedly divide the integer part of number N by the radix r and save the remainders. The integer digits in radix r are the remainders in reverse order of their computation. If radix r > 10, then convert all remainders > 10 to digits A, B, ... etc.
- Convert the Fractional Part
  - Repeatedly multiply the fraction of N by the radix r and save the integer digits that result. The fraction digits in radix r are the integer digits in order of their computation. If the radix r > 10, then convert all digits > 10 to A, B, ... etc.
- ❖ Join the result together with the radix point

### Simplified Conversions

- Converting fractions between Binary, Octal, and Hexadecimal can be simplified
- Starting at the radix pointing, the integer part is converted from right to left and the fractional part is converted from left to right
- Group 4 bits into a hex digit or 3 bits into an octal digit

Use binary to convert between octal and hexadecimal

### Important Properties of Fractions

❖ How many fractional values exist with *m* fraction bits?
(在二进制数中,有m位小数,其小数值有多少个?)

2<sup>m</sup> fractions, because each fraction bit can be 0 or 1

- ❖ What is the largest fraction value if m bits are used? Largest fraction value =  $2^{-1} + 2^{-2} + ... + 2^{-m} = 1 - 2^{-m}$ Because if you add  $2^{-m}$  to largest fraction you obtain 1
- ❖ In general, what is the largest fraction value if *m* fraction digits are used in radix *r*? (在r进制数中,有m位小数,则最大的小数值是多少?)
  Largest fraction value = r⁻¹ + r⁻² + ... + r⁻m = 1 r⁻m
  For decimal, largest fraction value = 1 10⁻m

For hexadecimal, largest fraction value = 1 – 16<sup>-m</sup>

Digital Systems

© Luo Jie – slide 38

#### Next...

- Analog versus Digital Systems
- Digitization of Analog Signals
- Binary Numbers and Number Systems
- Number System Conversions
- Representing Fractions
- Binary Codes

### Binary Codes

- How to represent characters, colors, etc?
- ◆ Define the set of all represented elements (定义所有要表示元素的集合)
- Assign a unique binary code to each element of the set
- ❖ Given n bits, a binary code is a mapping from the set of elements to a subset of the 2<sup>n</sup> binary numbers
- Coding Numeric Data (example: coding decimal digits)
  - Coding must simplify common arithmetic operations
  - → Tight relation to binary numbers
- Coding Non-Numeric Data (example: coding colors)
  - ♦ More flexible codes since arithmetic operations are not applied

# Example of Coding Non-Numeric Data

- Suppose we want to code 7 colors of the rainbow
- ❖ As a minimum, we need 3 bits to define 7 unique values
- ❖ 3 bits define 8 possible combinations
- Only 7 combinations are needed
- Code 111 is not used
- Other assignments are also possible

| Color  | 3-bit code |  |  |  |  |  |
|--------|------------|--|--|--|--|--|
| Red    | 000        |  |  |  |  |  |
| Orange | 001        |  |  |  |  |  |
| Yellow | 010        |  |  |  |  |  |
| Green  | 011        |  |  |  |  |  |
| Blue   | 100        |  |  |  |  |  |
| Indigo | 101        |  |  |  |  |  |
| (青)    |            |  |  |  |  |  |
| Violet | 110        |  |  |  |  |  |

### Minimum Number of Bits Required

❖ Given a set of *M* elements to be represented by a binary code, the minimum number of bits, *n*, should satisfy:

$$2^{(n-1)} < M \le 2^n$$

 $n = \lceil \log_2 M \rceil$  where  $\lceil x \rceil$ , called the ceiling function, is the integer greater than or equal to x

How many bits are required to represent decimal digits with a binary code?

#### Decimal Codes

- Binary number system is most natural for computers
- But people are used to the decimal system
- Must convert decimal numbers to binary, do arithmetic on binary numbers, then convert back to decimal
- To simplify conversions, decimal codes can be used
- Define a binary code for each decimal digit
- Since 10 decimal digits exit, a 4-bit code is used
- ❖ But a 4-bit code gives 16 unique combinations
- 10 combinations are used and 6 will be unused

# Binary Coded Decimal (BCD)

- Simplest binary code for decimal digits
- Only encodes ten digits from 0 to 9
- BCD is a weighted code
- ❖ The weights are 8,4,2,1
- Same weights as a binary number
- There are six invalid code words 1010, 1011, 1100, 1101, 1110, 1111
- Example on BCD coding:

 $13 \Leftrightarrow (0001\ 0011)_{BCD}$ 

| Decimal | BCD  |  |  |  |  |
|---------|------|--|--|--|--|
| 0       | 0000 |  |  |  |  |
| 1       | 0001 |  |  |  |  |
| 2       | 0010 |  |  |  |  |
| 3       | 0011 |  |  |  |  |
| 4       | 0100 |  |  |  |  |
| 5       | 0101 |  |  |  |  |
| 6       | 0110 |  |  |  |  |
| 7       | 0111 |  |  |  |  |
| 8       | 1000 |  |  |  |  |
| 9       | 1001 |  |  |  |  |

### Warning: Conversion or Coding?

Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code

$$413_{10} = (1101)_2$$

This is conversion

**♦** 13 ⇔ (0001 0011)<sub>BCD</sub>

This is coding

- In general, coding requires more bits than conversion
- ❖ A number with *n* decimal digits is coded with 4*n* bits in BCD

#### Other Decimal Codes

- Many ways to assign 4-bit code to 10 decimal digits
- Each code uses only 10 combinations out of 16
- ❖ BCD and 8, 4, -2, -1 are weighted codes
- Excess-3 and 8,4,-2,-1 are self-complementing codes
- Note that BCD is NOT self-complementing

| Decimal | BCD  | Excess-3 | 8,4,-2,-1 |
|---------|------|----------|-----------|
| 0       | 0000 | 0011     | 0000      |
| 1       | 0001 | 0100     | 0111      |
| 2       | 0010 | 0101     | 0110      |
| 3       | 0011 | 0110     | 0101      |
| 4       | 0100 | 0111     | 0100      |
| 5       | 0101 | 1000     | 1011      |
| 6       | 0110 | 1001     | 1010      |
| 7       | 0111 | 1010     | 1001      |
| 8       | 1000 | 1011     | 1000      |
| 9       | 1001 | 1100     | 1111      |

# Gray Code

❖ As we count up/down using binary codes, the number of bits that change from one binary value to the next varies

$$000 \rightarrow 001$$
 (1-bit change)

$$001 \rightarrow 010$$
 (2-bit change)

$$011 \rightarrow 100$$
 (3-bit change)

- Gray code: only 1 bit changes as we count up or down
- Binary reflected code

| Digit | Binary | Gray Code |
|-------|--------|-----------|
| 0     | 000    | 000       |
| 1     | 001    | 001       |
| 2     | 010    | 011       |
| 3     | 011    | 010       |
| 4     | 100    | 110       |
| 5     | 101    | 111       |
| 6     | 110    | 101       |
| 7     | 111    | 100       |

Gray code can be used in low-power logic circuits that count up or down, because only 1 bit changes per count

#### Character Codes

#### Character sets

- ♦ Standard ASCII: 7-bit character codes (0 127)
- ♦ Unicode: 16-bit character codes (0 65,535)
- Unicode standard represents a universal character set
  - Defines codes for characters used in all major languages
  - Used in Windows-XP: each character is encoded as 16 bits
- ♦ UTF-8: variable-length encoding used in HTML
  - Encodes all Unicode characters
  - Uses 1 byte for ASCII, but multiple bytes for other characters

#### Null-terminated String

♦ Array of characters followed by a NULL character

#### Printable ASCII Codes

|   | 0     | 1 | 2  | 3 | 4  | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | Е | F   |
|---|-------|---|----|---|----|---|---|---|---|---|---|---|---|---|---|-----|
| 2 | space | ! | ** | # | \$ | % | & | ٧ | ( | ) | * | + | , | _ | • | /   |
| 3 | 0     | 1 | 2  | 3 | 4  | 5 | 6 | 7 | 8 | 9 | : | ; | < | = | > | ?   |
| 4 | 9     | A | В  | С | D  | E | F | G | Н | I | J | K | L | M | N | 0   |
| 5 | P     | Q | R  | S | Т  | U | V | W | X | Y | Z | [ | \ | ] | ^ | 1   |
| 6 | ,     | a | b  | С | d  | е | f | g | h | i | j | k | 1 | m | n | 0   |
| 7 | р     | q | r  | s | t  | u | v | W | x | У | Z | { |   | } | ~ | DEL |

#### Examples:

- ♦ ASCII code for space character = 20 (hex) = 32 (decimal)
- $\Rightarrow$  ASCII code for 'L' = 4C (hex) = 76 (decimal)
- $\Rightarrow$  ASCII code for 'a' = 61 (hex) = 97 (decimal)

#### Control Characters

- The first 32 characters of ASCII table are used for control
- Control character codes = 00 to 1F (hexadecimal)
  - ♦ Not shown in previous slide
- Examples of Control Characters
  - ♦ Character 0 is the NULL character ⇒ used to terminate a string
  - ♦ Character 9 is the Horizontal Tab (HT) character
  - ♦ Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
  - ♦ Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
  - ♦ The LF and CR characters are used together
    - They advance the cursor to the beginning of next line
- One control character appears at end of ASCII table
  - ♦ Character 7F (hex) is the Delete (DEL) character

### Parity Bit & Error Detection Codes

- Binary data are typically transmitted between computers
- Because of noise, a corrupted bit will change value
- To detect errors, extra bits are added to each data value
- Parity bit: is used to make the number of 1's odd or even
- Even parity: number of 1's in the transmitted data is even
- Odd parity: number of 1's in the transmitted data is odd

| 7-bit ASCII Character | With Even Parity | With Odd Parity  |
|-----------------------|------------------|------------------|
| 'A' = 1000001         | <b>0</b> 1000001 | <b>1</b> 1000001 |
| 'T' = 1010100         | <b>1</b> 1010100 | <b>0</b> 1010100 |

### Detecting Errors



- Suppose we are transmitting 7-bit ASCII characters
- ❖ A parity bit is added to each character to make it 8 bits
- Parity can detect all single-bit errors
  - ♦ If even parity is used and a single bit changes, it will change the parity to odd, which will be detected at the receiver end
  - ♦ The receiver end can detect the error, but cannot correct it because it does not know which bit is erroneous
- Can also detect some multiple-bit errors
  - ♦ Error in an odd number of bits