

Introduction aux télécommunications

Département sciences du numérique Première année

Séquence 2 : en résumé

Mise en place un bloc modulateur / démodulateur en bande de base Mise en évidence du problème d'interférences entre symboles et critère de Nyquist.

- 1- Le canal de propagation et sa modélisation,
- 2- Problème de l'interférence entre symboles,
- 3- Critère de Nyquist dans le domaine temporel,
- 4- Diagramme de l'œil,
- 5- Critère de Nyquist dans le domaine fréquentiel,
- 6-Impact du canal de propagation

Nathalie Thomas, IRIT/ENSEEIHT Nathalie.Thomas@enseeiht.fr

Canal de propagation Modélisation pour une transmission en bande de base

n(t)

 \rightarrow Bruit **blanc**: de DSP = $N_0/2$ quelle que soit la fréquence

Signal reçu y(t)

Ajout de bruit :

- \rightarrow Bruit **Gaussien**, de puissance σ^2
- → Une mesure de dégradation : le **rapport signal sur bruit** (SNR : Signal to Noise Ratio)

$$SNR_{dB} = 10 log \frac{P_{signal utile}}{P_{bruit}}$$

Mais aussi canal non stationnaire, sélectif en temps ... (voir en 2A)

Interférences entre symboles Domaine temporel

$$g(t) = h(t) * h_c(t) * h_r(t)$$

$$z(t_0 + mT_s) = \underbrace{a_m g(t_0)}_{k \neq m} + \sum_{k \neq m} a_k g(t_0 + (m-k)T_s) + w(t_0 + mT_s)$$
 Terme d'interferences entre symboles (ISI : Inter Symbol Interference)

Interférences entre symboles Domaine temporel : critère de Nyquist

$$\begin{cases} g(t_0) \neq 0 \\ g(t_0 + pT_s) = 0 \text{ for } p \in \mathbb{Z}^* \end{cases}$$

Critère de Nyquist

(écrit dans le domaine temporel)

$$g(t) = h(t) * h_c(t) * h_r(t)$$

Exemples:

Le critère de Nyquist est satisfait pour $t_0=T_s$

Le critère de Nyquist est satisfait pour t₀=4T_s

Interférences entre symboles Diagramme de l'œil

- → Tracé en sortie du filtre de réception,
- → Outil de visualisation de l'interférence : on superpose sur le même tracé tout ce qui se produit pendant T_s sur le signal en sortie du filtre de réception => permet de retrouver les instants optimaux d'échantillonnage.

\rightarrow Exemple 1:

Obtenu avec, un canal AWGN ($h_c(t) = \delta(t)$) et deux filtres d'émission et de réception de réponses impulsionnelles rectangulaires de durée T_s

Le critère de Nyquist est satisfait pour t₀=T_s

Diagramme de l'œil associé (sans bruit) :

En numérique $T_s=N_sT_e$ - On échantillonera à n_0+mN_s $N_s=8$ dans l'exemple

On retrouve que le critère de Nyquist est respecté pour $n_0=N_s$

=> On échantillonnera à n₀+mN_s avec n₀=8

Indice échantillon (sur N_s)

Interférences entre symboles Diagramme de l'œil

\rightarrow Exemple 2:

Obtenu avec, un canal AWGN ($h_c(t) = \delta(t)$) et deux filtres d'émission et de réception de réponses impulsionnelles en racine de cosinus surélevé de même roll off => g(t) cosinus surélevé

Le critère de Nyquist est satisfait pour t₀=4T_s

<u>Diagramme de l'œil associé (sans bruit) :</u>

En numérique $T_s=N_sT_e$ - On échantillonera à n_0+mN_s $N_s=8$ dans l'exemple

On retrouve sur le diagramme de l'oeil que le critère de Nyquist est respecté pour $n_0=1$, attention le retard lié à la causalité du filtre (ici = $4N_s$) a été supprimé avant le tracé du diagramme de l'œil

 \Rightarrow On échantillonnera à n_0+mN_s avec $n_0=1$ sur le signal en sortie du filtre de réception, une fois le retard supprimé ! (signal z(4Ns+1:end))

Sinon on peut échantillonner à n_0+mN_s avec $n_0=4N_s+1$ sur le signal en sortie du filtre de réception sans suppression du retard (z)

Indice échantillon (sur N_s)

Remarque: on ne peut pas retrouver le retard sur le diagramme de l'œil, on ne peut trouver n_0 que sur la durée N_s . Si le retard lié à la causalité des filtres de la chaine est supérieur à N_s , le diagramme de l'œil ne pourra être utilisé pour trouver les instants optimaux d'échantillonnage qu'après suppression du retard.

Interférences entre symboles Domaine fréquentiel : critère de Nyquist

Exemples:

Interférences entre symboles Impact du canal de propagation

Critère de Nyquist (domaine fréquentiel)

$$\sum_k G^{(t_0)} \left(f - \frac{k}{T_s} \right) = cte$$
 avec
$$G^{t_0}(f) = \operatorname{TF} \left[\frac{g(t+t_0)}{g(t_0)} \right]$$
 H(f) $\operatorname{H_c(f)} \operatorname{H_r(f)}$

H_c(f): Réponse en fréquence du canal de propagation

Exemples pour un canalidéal à bande passante limitée BW

Si BW>F_{max} un canal AWGN à bande limitée BW Permet de continuer à respecter le critère de Nyquist

$$F_{max}=kR_s=>$$

$$R_s < \frac{BW}{k}$$
Bande passante du canal pour continuer à respecter le critère de Nyquist Dépend des filtres de la chaine.