Regularization

What is regularization?

- One definition in the book
 - Any modification to the learning that aims to reduce generalization error, but not training error
- The problem
 - With high-capacity models (many layers, many parameters), there is a high risk of overfitting
 - If we just naively reduce the model capacity, we risk underfitting
 - Hitting the "sweet spot" in the middle is difficult

The solutions

- Regularization allows you to use high-capacity models
- Some constraint or clever strategy regularizes this model to behave more smoothly
- We are thus able to trade-off between capacity and robustness

Examples of regularization

- Parameter norm penalties
 - Classical problem in optimization: unstable parameter solutions
- Data augmentation
 - Artificially expand the training dataset
 - Allows the model to see a larger variation of training examples
- Noise injection
 - Add noise to parts of the model
 - Input noise: a bit like dataset augmentation
 - Noise on the units: dropout

Recall maximum likelihood - again

- We set up a model to predict y given \mathbf{x} : $p(y|\mathbf{x})$
- Now, we change notation a bit, realizing that y is really also a function of our parameters, which we now call θ : $p(y|\mathbf{x},\theta)$
- In ML estimation, what we really had was a likelihood function of the whole training data sample (X, Y):

$$heta_{ ext{ML}} = rg \max p(Y|X, heta) = rg \max \prod_i p(y_i|\mathbf{x}_i, heta)$$

$$heta_{ ext{ML}} = rg \max p(Y|X, heta) = rg \max \prod_i p(y_i|\mathbf{x}_i, heta)$$

- ullet Now let's think of the problem another way: p(heta|X,Y)
- Whenever there's a conditional, we may think of good ol' Bayes
- If we use Bayes' theorem, this part is equal to (just pretend that A is θ and that B is X, Y):

$$p(heta|X,Y) = rac{p(X,Y| heta)p(heta)}{p(X,Y)}$$

- Since we are trying to maximize, we can neglect the denominator: $p(\theta|X,Y) \propto p(X,Y|\theta)p(\theta)$
- What about $p(\theta)$?

• If we let $p(\theta)$ = const., we are back to something familiar:

$$p(X,Y| heta) = rac{p(X,Y, heta)}{p(heta)} = rac{p(Y|X, heta)p(X| heta)p(heta)}{p(heta)} = p(Y|X, heta)p(X| heta)$$

• If not, we have what is called a *prior* on our parameters:

$$p(heta|X,Y) \propto p(X,Y| heta)p(heta)$$

 $\overline{ heta_{
m ML}} = rg \max p(Y|X, heta)$

- \circ The left part that models θ is the *posterior* distribution
- The solution to this is called a *MAP estimator*: θ MAP = $rg \max p(Y|X,\theta)p(\theta)$

- Let's look at a known case
 - \circ Gaussian output distribution with a linear regression function: $y \sim \mathcal{N}(f(\mathbf{x}), \sigma^2)$
 - o But now, let's also assume a standard Gaussian prior on θ : $\theta \sim \mathcal{N}(0, \mathbf{I})$
- We then get the following:

$$egin{aligned} heta_{ ext{MAP}} &= rg \max p(Y|X, heta)p(heta) \ &= rg \max \left(\prod_{i=1}^m \mathcal{N}(y_i;f(\mathbf{x}_i),\sigma^2)
ight)\mathcal{N}(heta;0,\mathbf{I}) \ &= rg \max \mathcal{N}(heta;0,\mathbf{I}) \prod_{i=1}^m \mathcal{N}(y_i;f(\mathbf{x}_i),\sigma^2) \end{aligned}$$

$$heta_{ ext{MAP}} = rg \max \mathcal{N}(heta; 0, \mathbf{I}) \prod_{i=1}^m \mathcal{N}(y_i; f(\mathbf{x}_i), \sigma^2)$$

• If we plug in the Gaussian pdf and remove constants, we get:

$$heta_{ ext{MAP}} = rg \max e^{-rac{1}{2}(heta-0)^2} \prod_i e^{-rac{1}{2}(y_i-\hat{y}_i)^2} \qquad \hat{y} = f(\mathbf{x})$$

• As usual, we take the negative logarithm to arrive at a loss to minimize:

$$heta_{ ext{MAP}} = rg \min \left(rac{1}{2} \| heta\|^2 + rac{1}{2} \sum_i (y_i - \hat{y}_i)^2
ight)$$

- What if the "likelihood part" (rightmost) is multinoulli?
 - No problem the likelihood and the prior are separated in log-space:

$$heta_{ ext{MAP}} = rg \min \left(rac{1}{2} \| heta\|^2 - \sum_i y_i \log \hat{y}_i
ight)$$

Weight decay

- All this leads to a modified loss function that takes into account the prior:
- $L(y,\hat{y}; heta) = L(y,\hat{y}) + lpha\Omega(heta)$
- When using a Gaussian prior:

$$\Omega(heta) = rac{1}{2} \| heta\|^2$$

we also call it

- L₂ regularization/penalty
- Tikhonov regularization
- Ridge regression (mostly reserved for regression models)
- In deep learning: weight decay

New hyperparameter

Norm penalties

• Another common prior is the *Laplacian*:

$$heta \sim$$
 Laplace $(0,1) = rac{1}{2} e^{-| heta|}$

• which leads to the L_1 penalty:

$$\Omega(heta) = \| heta\|_1$$

$$L(y,\hat{y}; heta) = L(y,\hat{y}) + lpha\Omega(heta)$$

Norm penalties

- Computing gradients is often very easy
- The first loss term we already solved with backprop
- The regularization term has a simple solution for L_1 and L_2

$$^{\circ}$$
 $^{L_1:}
abla_{ heta}\Omega=rac{ heta}{| heta|}= ext{sign}(heta)$

$$\circ$$
 L2: $abla_{ heta}\Omega= heta$

Weight decay

• Let's look at the L_2 case

$$L(y,\hat{y}; heta) = L(y,\hat{y}) + rac{1}{2}lpha \| heta\|^2$$

with the gradient

$$abla_{ heta}L(y,\hat{y}) + lpha heta$$

• When we take small steps along the negative:

$$heta \leftarrow heta - \epsilon \left(
abla_{ heta} L(y, \hat{y}) + lpha heta
ight)$$

• you should be able to see how this "shrinks" or "decays" the weights

Weight decay

Simple example

Augmentation

- When training data is scarce, we can artificially expand the training set
- Typical strategies
 - Noise
 - Additive, e.g. Gaussian
 - Multiplicative, e.g. Bernoulli (Dropout)
 - Affine transformation
 - Translations
 - Rotations
 - Scaling
 - Shearing
 - Truncation
 - Cropping
 - Non-linear operations
 - Brightness

https://hazvresearch.github.io/snorkel/blog/tanda.html

Early stopping

Early stopping

Number of updates per epoch

Best validation performance so far

New best performance achieved

Reset patience

Update parameters and performance

well with a variety of training algorithms and ways of quantifying error on the

validation set. Let n be the number of steps between evaluations. Let p be the "patience," the number of times to observe worsening validation set

error before giving up. Let θ_o be the initial parameters.

Algorithm 7.1 The early stopping meta-algorithm for determining the best amount of time to train. This meta-algorithm is a general strategy that works

 $\theta \leftarrow \theta_{o}$ $i \leftarrow 0$

 $v \leftarrow \infty$ $\theta^* \leftarrow \theta$

 $i^* \leftarrow i$ while i < p do

Update θ by running the training algorithm for n steps. $i \leftarrow i + n$

 $v' \leftarrow \text{ValidationSetError}(\boldsymbol{\theta})$ if v' < v then

 $i \leftarrow 0$ $\theta^* \leftarrow \theta$

 $i^* \leftarrow i$ $v \leftarrow v'$

 $j \leftarrow j + 1$

end while

else

end if

Best parameters are θ^* , best number of training steps is i^* .

Dropout

- A method for regularizing the network during training
- First the method:
 - \circ During forward pass, randomly set neurons to zero with a probability p < 1
 - This "weakens" the network so that it only has a "power" of 1 p
 - \circ To compensate, multiply all other neurons by 1 / (1 p)
 - The backward pass is trivial: some responses are just zero and provide no gradient
- Common values for p
 - o Input units: between 0 and 0.2
 - Hidden units: 0.5
 - Output units (e.g. linear, softmax): always 0!

Dropout

- Slightly more formal:
 - Multiply each neuron by a Bernoulli random variable $d \sim \text{Bernoulli}(p)$
 - \circ The rescaling of 1 / (1 p) ensures that the net input to any neuron stays the same
 - Each pass through a layer looks like this (no rescaling):

$$\mathbf{h}_i = \phi(\mathbf{W}_i \cdot (\mathbf{h}_{i-1} \odot \mathbf{d}_{i-1}) + \mathbf{b}_i)$$

And with rescaling:

$$\mathbf{h}_i = \phi\left(\mathbf{W}_i \cdot \left(\mathbf{h}_{i-1} \odot rac{\mathbf{d}_{i-1}}{1-p}
ight) + \mathbf{b}_i
ight)$$

Dropout performance

 Paper: Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." JMLR'14.

Dropout subnet interpretation

- Each time you drop a set of units, you effectively create a new "subnetwork"
- These subnetworks obviously share the same weights
- As such, repeated training like this, effectively corresponds to a variant of bagging
 - At each minibatch, dropout samples a new model
 - This model sees a small, random subset of the data
 - o In the end, this "ensemble" of models is combined

Ensemble of subnetworks

Exercise

- You are given only 1000 MNIST training examples
- The baseline model overfits (100% train acc, ~89% valid acc)
- Can you improve this with regularization?

Bonus:

What performance can you achieve using the whole dataset?