

Lecture Notes by Dylan Yu*

Last Updated September 21, 2020

Contents

1	Geo	eometry Formulas		
	1.1	Circles	2	
	1.2	Square & Rectangle	2	
	1.3	Rhombus & Parallelogram	9	
	1.4	Trapezoid	9	
	1.5	Triangle	3	
	1.6	Other Formulas	4	
	1.7	Novice Problems	Į.	
	1 0	Advanced Duckland	6	

$\S~1~$ Geometry Formulas

^{*}The ASE playlist can be found here.

2

§ 1.1 Circles

Everyone's seen a circle before. There are a few important properties about it.

- 1. The diameter of a circle with radius r is d = 2r.
- 2. The area of a circle with radius r is $A = \pi r^2$.
- 3. The circumference (perimeter) of a circle with radius r is $C = 2\pi r$.
- 4. The arc of a sector with degree θ has length $S = \frac{\pi r \theta}{180}$.
- 5. The area of a sector with degree θ is $A = \frac{\pi r^2 \theta}{360}$.

§ 1.2 Square & Rectangle

Squares and rectangles have very nice properties.

- 1. The angles in a rectangle are 90°
- 2. The perimeter of a rectangle with length a and width b is 2(a + b).
- 3. The area of a rectangle with length a and width b is ab.
- 4. The diagonal of a rectangle has length $\sqrt{a^2+b^2}$ (Pythagorean Theorem).

Squares are considered regular polygons.

- 1. Everything above applies to squares.
- 2. The side lengths are all the same.
- 3. The perimeter of a square with length s is 4s.
- 4. The area of a square with length s is s^2 .
- 5. The diagonal of a square has length $s\sqrt{2}$.

§ 1.3 Rhombus & Parallelogram

A rhombus is a parallelogram with equal side lengths. For parallelograms:

1.
$$\angle A = \angle C$$
, $\angle B = \angle D$.

2.
$$\angle A + \angle D = \angle B + \angle C = 180^{\circ}$$
.

3.
$$2(AB^2 + BC^2) = AC^2 + BD^2$$
.

4.
$$[ABCD] = ah$$
.

For rhombi:

- 1. Everything above applies to rhombi.
- 2. a = b.

§ 1.4 Trapezoid

A trapezoid has one set of parallel sides.

1.
$$\angle A + \angle D = 180^{\circ}$$
.

2.
$$\angle B + \angle C = 180^{\circ}$$
.

3. If
$$a>b,$$
 $a=\sqrt{c^2-h^2}+\sqrt{d^2-h^2}+b$. Using this, if we know a,b,c,d we can solve for h .

4.
$$[ABCD] = \frac{1}{2}(a+b)h$$
.

§ 1.5 Triangle

For equilateral triangles:

- 1. The angles are equal to 60° and the sides are equal.
- 2. The height of an equilateral triangle with side length s is $\frac{s\sqrt{3}}{2}$.
- 3. The area is $\frac{s^2\sqrt{3}}{4}$.

For right triangles:

- 1. The area of a right triangle with legs a and b is $\frac{ab}{2}$.
- 2. The hypotenuse is $c = \sqrt{a^2 + b^2}$.

For isosceles triangles:

- 1. The height from the vertex opposite the base bisects the base.
- 2. If $\triangle ABC$ is isosceles such that AB = BC, then the height from the vertex opposite the base bisects $\angle ABC$.

For all triangles:

- 1. If the side lengths are a, b, c, then a + b > c, b + c > a, c + a > b.
- 2. If the semiperimeter is $s = \frac{a+b+c}{2}$, then the area is $\sqrt{s(s-a)(s-b)(s-c)}$.

§ 1.6 Other Formulas

- 1. Area of a pentagon: if the side length is s, then $\frac{1}{4}\sqrt{5(5+2\sqrt{5})}s^2$.
- 2. Volume of a sphere: if the radius is r, then $\frac{4}{3}\pi r^3$.
- 3. Surface area of a sphere: if the radius is r, then $4\pi r^2$.
- 4. Volume of a cylinder: if the radius is r and height is h, then $\pi r^2 h$.
- 5. Surface area of a cylinder: if the radius is r and height is h, then $2\pi r(r+h)$.
- 6. Volume of a cone: if the radius is r and height is h, then $\frac{1}{3}\pi r^2 h$
- 7. Surface area of a cone: if the radius is r and height is h, then $\pi r(r + \sqrt{r^2 + h^2})$.
- 8. Volume of a pyramid: if the area of the base is A and the height is h, then $\frac{1}{3}Ah$. For example, if the base is a square with side length s, then $A = s^2$.

§ 1.7 Novice Problems

1.

2.

3.

Answer:

Answer: _____

Answer:

4.

5.

6.

Answer: _____

Answer: _____

Answer: _____

7.

8.

9.

Answer: _____

Answer: _____

Answer: _____

10.

11.

12.

Answer:

Answer:

Answer:

- 13. What is the volume and surface area of a sphere with diameter 6?
- 14. What is the area of a triangle with sides 13, 14, and 15?
- 15. What is the volume and surface area of a cylinder with radius 3 and height 6?
- 16. What is the volume and surface area of a cone with radius 3 and height 6?
- 17. What is the area of a square pyramid with a square base with side length of 3 and height of 6?

§ 1.8 Advanced Problems

These problems require more skills than the formulas above. This is just to practice for AMC 8.

Problem 1 (AMC 8 2000/6). Figure ABCD is a square. Inside this square three smaller squares are drawn with the side lengths as labeled. The area of the shaded L-shaped region is

Problem 2 (AMC 8 2000/13). In triangle CAT, we have $\angle ACT = \angle ATC$ and $\angle CAT = 36^{\circ}$. If \overline{TR} bisects $\angle ATC$, then $\angle CRT =$

Problem 3 (AMC 8 2000/15). Triangles ABC, ADE, and EFG are all equilateral. Points D and G are midpoints of \overline{AC} and \overline{AE} , respectively. If AB = 4, what is the perimeter of figure ABCDEFG?

3 Part Question To promote her school's annual Kite Olympics, Genevieve makes a small kite and a large kite for a bulletin board display. The kites look like the one in the diagram below. For her small kite Genevieve draws the kite on a one-inch grid. For the large kite she triples both the height and width of the entire grid.

Problem 4 (AMC 8 2001/7). What is the number of square inches in the area of the small kite?

Problem 5 (AMC 8 2001/8). Genevieve puts bracing on her large kite in the form of a cross connecting opposite corners of the kite. How many inches of bracing material does she need?

Problem 6 (AMC 8 2001/9). The large kite is covered with gold foil. The foil is cut from a rectangular piece that just covers the entire grid. How many square inches of waste material are cut off from the four corners?

Problem 7 (AMC 8 2002/15). Which of the following polygons has the largest area?

Problem 8 (AMC 8 2002/16). Right isosceles triangles are constructed on the sides of a 3-4-5 right triangle, as shown. A capital letter represents the area of each triangle. Which one of the following is true?

(A)
$$X+Z=W+Y$$
 (B) $W+X=Z$ (C) $3X+4Y=5Z$ (D) $X+W=\frac{1}{2}(Y+Z)$ (E) $X+Y=Z$

Problem 9 (AMC 8 2002/20). The area of triangle XYZ is 8 square inches. Points A and B are midpoints of congruent segments \overline{XY} and \overline{XZ} . Altitude \overline{XC} bisects \overline{YZ} . The area (in square inches) of the shaded region is

Problem 10 (AMC 8 2003/6). Given the areas of the three squares in the figure, what is the area of the interior triangle?

Problem 11 (AMC 8 2003/21). The area of trapezoid ABCD is 164 cm². The altitude is 8 cm, AB is 10 cm, and CD is 17 cm. What is BC, in centimeters?

Problem 12 (AMC 8 2004/14). What is the area enclosed by the geoboard quadrilateral below?

Problem 13. In quadrilateral ABCD, sides \overline{AB} and \overline{BC} both have length 10, sides \overline{CD} and \overline{DA} both have length 17, and the measure of angle ADC is 60°. What is the length of diagonal \overline{AC} ?

Problem 14. The area of polygon ABCDEF is 52 with AB = 8, BC = 9 and FA = 5. What is DE + EF?

Problem 15. What is the perimeter of trapezoid *ABCD*?

