# Constraints Handling for MOEAs (Ch 7 by Deb)

# Typical constrained MOOP

$$\label{eq:minimize_model} \begin{array}{ll} \text{Minimize/Maximize} & f_{\mathfrak{m}}(\mathbf{x}), & \mathfrak{m} = 1, 2, \dots, M; \\ \text{subject to} & g_{\mathfrak{j}}(\mathbf{x}) \geq 0, & \mathfrak{j} = 1, 2, \dots, J; \\ & h_{k}(\mathbf{x}) = 0, & k = 1, 2, \dots, K; \\ & \chi_{\mathfrak{i}}^{(L)} \leq x_{\mathfrak{i}} \leq x_{\mathfrak{i}}^{(U)}, & \mathfrak{i} = 1, 2, \dots, n. \end{array} \right\}$$

- Constraints divide the search space into feasible and infeasible regions
- Constraint types: equality and inequality
- Consider only inequality constraint, because equality constraint can be converted into inequality constraint
- Smaller-than form can also be converted into greater-than form
- Constraint violation for  $g_j(\mathbf{x}^{(i)}) < 0$  implies the amount of constraint violation is

$$\left|g_{j}\left(\mathbf{X}^{(i)}\right)\right|$$

#### EXAMPLE 9.3 THE DUAL OF AN LP PROBLEM WITH EQUALITY AND "≥ TYPE" CONSTRAINTS

Write the dual for the problem

Maximize

$$z_p = x_1 + 4x_2 \tag{a}$$

subject to

$$x_1 + 2x_2 \le 5$$
 (b)

$$x_1 + 2x_2 \le 5$$
 (b)  
 $2x_1 + x_2 = 4$  (c)

$$x_1 - x_2 \ge 1 \tag{d}$$

$$x_1, x_2 \ge 0 \tag{e}$$

#### Solution

The equality constraint  $2x_1 + x_2 = 4$  is equivalent to the two inequalities  $2x_1 + x_2 \ge 4$  and  $2x_1 + x_2 \le 4$ . The " $\ge$  type" constraints are multiplied by -1 to convert them into the " $\le$ " form. Thus, the standard primal for the given problem is

Maximize

$$z_p = x_1 + 4x_2 \tag{f}$$

subject to

$$x_1 + 2x_2 \le 5 \tag{g}$$

$$2x_1 + x_2 \le 4 \tag{h}$$

$$-2x_1 - x_2 \le -4 \tag{i}$$

$$-x_1 + x_2 \le -1 \tag{j}$$

$$x_1, x_2 \ge 0$$
 (k)

### An Example



0.2

0.3

0.5

X1

0.6

0.7

0.8

0.9



# Ignoring infeasible solutions

- A common and simple way to handle constraints
- Ignore any solution that violates any of the assigned constraints (discard infeasible solutions)
- Simple to implement!
- A naïve approach!
- In reality, finding even one feasible solution is difficult, let alone finding a set of Pareto optimal solutions! That is, ignoring infeasible solutions might be time-consuming, even for finding a feasible one.

- As a result, we have to handle infeasible solutions!
- Measurement of constraint violation:
   Overall constraint violation of an infeasible solution.
- By assigning more selection pressure to solutions with less-violated constraints, an EA may provide a direction for reaching the feasible region.
- Once solutions reach the feasible region, a regular MOEA can be used to guide the search towards the Pareto optimal region.

# Penalty Function Approach

- Popular constraint handling strategy
- All constraints are of the form  $g_i(\mathbf{x}^{(i)}) \ge 0$
- Steps:
  - Calculate the constraint violation for each solution  $\mathbf{x}$

$$\omega_{j}(\mathbf{x}^{(i)}) = \begin{cases} \frac{|\underline{g}_{j}(\mathbf{x}^{(i)})|, & \text{if } \underline{g}_{j}(\mathbf{x}^{(i)}) < 0; \\ 0, & \text{otherwise.} \end{cases}$$

 All constraint violations are added together to get the overall violation

$$\Omega(\mathbf{x}^{(i)}) = \sum_{j=1}^{J} \omega_{j}(\mathbf{x}^{(i)}).$$

# Penalty Function Approach

 Constraint violation is then multiplied with a penalty parameter R<sub>m</sub> and the product is added to each of the objective function values

$$F_{m}(\mathbf{x}^{(i)}) = f_{m}(\mathbf{x}^{(i)}) + R_{m}\Omega(\mathbf{x}^{(i)}).$$

$$F_m(\mathbf{x}^{(i)}) = f_m(\mathbf{x}^{(i)}) + R_m\Omega(\mathbf{x}^{(i)}).$$

- f<sub>m</sub> → F<sub>m</sub>, taking into account the constraint violation
- For a feasible solution, f<sub>m</sub> = F<sub>m</sub>
- For an infeasible solution, F<sub>m</sub> > f<sub>m</sub>
- Penalty parameter R<sub>m</sub>: make both terms to have the same order of magnitude
- Any constrained optimization methods can be used with the newly established F<sub>m</sub>

- Different objective functions have different magnitudes.
  - → Penalty parameter R<sub>m</sub> must vary from one objective to another!

# Example

$$\text{Constr-Ex:} \left\{ \begin{array}{ll} \text{Minimize} & f_1(\mathbf{x}) = x_1, \\ \text{Minimize} & f_2(\mathbf{x}) = \frac{1+x_2}{x_1}, \\ \text{subject to} & g_1(\mathbf{x}) \equiv x_2 + 9x_1 \geq 6, \\ g_2(\mathbf{x}) \equiv -x_2 + 9x_1 \geq 1, \\ 0.1 \leq x_1 \leq 1, \\ 0 \leq x_2 \leq 5. \end{array} \right.$$

#### normalized

$$\underline{g}_1(\mathbf{x}) = \frac{9x_1 + x_2}{6} - 1 \ge 0,$$

$$\underline{g}_2(\mathbf{x}) = \frac{9x_1 - x_2}{1} - 1 \ge 0.$$

Table 25 Fitness assignment using the penalty function approach.

|                                               | Solution                              | $x_1$ | $\chi_2$ | f <sub>1</sub> | f <sub>2</sub> | $\omega_1$ | $\omega_2$ | Ω    |
|-----------------------------------------------|---------------------------------------|-------|----------|----------------|----------------|------------|------------|------|
|                                               | 1                                     | 0.31  | 0.89     | 0.31           | 6.10           | 0.39       | 0.00       | 0.39 |
| $a_{x}(\mathbf{x}) = \frac{9x_1}{x_1}$        | $\frac{+x_2}{6}-1\geq 0, \frac{2}{3}$ | 0.38  | 2.73     | 0.38           | 9.82           | 0.03       | 0.31       | 0.34 |
|                                               |                                       | 0.22  | 0.56     | 0.22           | 7.09           | 0.58       | 0.00       | 0.58 |
| $\underline{g}_2(\mathbf{x}) = \frac{9x_1}{}$ | $\frac{-x_2}{1} - 1 \ge 0.$ 4         | 0.59  | 3.63     | 0.59           | 7.85           | 0.00       | 0.00       | 0.00 |
|                                               | 5                                     | 0.66  | 1.41     |                | 3.65           |            | 0.00       | 0.00 |
|                                               | 6                                     | 0.83  | 2.51     | 0.83           | 4.23           | 0.00       | 0.00       | 0.00 |

#### For Solution 1:





Table 26 Penalized function values of all six solutions.

| Solution | $f_1$ | f <sub>2</sub> | Ω    | F <sub>1</sub> | $F_2$ | Front |
|----------|-------|----------------|------|----------------|-------|-------|
| 1        | 0.31  | 6.10           | 0.39 | 1.09           | 13.90 | 3     |
| 2        | 0.38  | 9.82           | 0.34 | 1.06           | 16.62 | 3     |
| 3        | 0.22  | 7.09           | 0.58 | 1.38           | 18.69 | 4     |
| 4        | 0.59  | 7.85           | 0.00 | 0.59           | 7.85  | 1     |
| 5        | 0.66  | 3.65           | 0.00 | 0.66           | 3.65  | 1     |
| 6        | 0.83  | 4.23           | 0.00 | 0.83           | 4.23  | 2     |



Non-dominated sorting for unconstrained objective functions: [(1,3,5), (2,4,6)]

Non-dominated sorting for constrained objective functions: [(4,5), (6), (1,2),(3)]

- Infeasible solutions get de-emphasized by penalty terms!
- Feasible solutions close to the Pareto-optimal front are allocated in the best non-dominated front
- Infeasible solutions close to the constraint boundary have better fronts
- It is possible that infeasible solutions can be on the same front with a feasible solution!
- However, classification largely depends on the chosen penalty parameters R<sub>m</sub>
- → One of the desired ways to assign fitness in a constraint-handling MOEA!

#### Simulations

- Apply NSGA II
- GA parameters:
  - Population size: 40
  - Crossover prob.: 0.9
  - Mutation prob.: 0
  - Max gen. no.: 500
- → Different penalty terms might form different Pareto-optimal front

#### **Simulations**

•  $R_1 = R$ , and  $R_2 = 10R$ 



The penalty parameter is too small.

→ The front resides in the infeasible regions after 500 generations.

 If a smaller than adequate penalty parameter is chosen, the penalty effect is less and the resulting optimal solution may be infeasible ~ by Deb.





The constraints are over-emphasized!

- → Spread of the obtained solutions is not good.
- → Converge near a portion of the Pareto-optimal front!

- Optimization results depend on the choice of penalty parameters.
- If the choice of R<sub>m</sub> is not adequate, either a set of infeasible solutions or poor distribution is likely to occur.