Claims

[c1] 1.A method for performing an electromigration check for conductors with alternating current flow adjacent to conductors with direct current flow in an integrated circuit comprising:

determining resistances R_{WIRE} and a capacitance matrix C for the integrated circuit;

converting the capacitance matrix C into a thermal conductance matrix G;

determining temperature differences ΔT_{ni} between conductors from thermal conductances G_{thi} of the thermal conductance matrix G;

approximating power flow P_n into conductors with direct current flow due to adjacent conductors with alternating current flow in the integrated circuit from the temperature differences ΔT_{ni} between conductors and the thermal conductances G_{thi} ; determining a power limit as a function of the maxi-

mum temperature difference ΔT_{MAX} that ensures reliability of the integrated circuit; and

performing the electromigration check by limiting power generated in the conductors with alternating current flow to less than the power limit.

- [c2] 2.The method of claim 1, wherein the thermal conductance matrix G is determined from the product of the capacitance matrix C and a scalar factor F and the scalar factor is given by a ratio of thermal conductivity K to permittivity E.
- [c3] 3.The method of claim 1, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference ΔT_{ntot}
- 4.The method of claim 1, wherein the I_{RMS} value is determined by the expression:
 C *V *frequency*Switching factor.
- [05] 5. The method of claim 1, wherein the thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{ni} as outputs of the circuit simulator.
- [c6] 6.The method of claim 1, wherein the capacitance matrix C and resistances R are determined by using simulation and analysis tools that at least include capacitance/resistance extraction capabilities.
- [c7] 7.A method for performing an electromigration check for conductors with alternating current flow adjacent to con-

ductors with direct current flow comprising:

determining resistances R and capacitances C ni for conductors with alternating current flow and conductors with direct current flow;

converting the capacitances C_{ni} into thermal conductances G_{thi} ;

determining temperature differences $\Delta T_{\rm ni}$ between conductors from the thermal conductances $G_{\rm thi}$; approximating power flow $P_{\rm n}$ into conductors with direct current flow due to adjacent conductors with alternating current flow from the temperature differences $\Delta T_{\rm ni}$ between conductors and thermal conductances $G_{\rm thi}$;

determining a power limit as a function of a maximum temperature difference ΔT_{MAX} for the conductors that ensures reliability of the conductor; and performing the electromigration check by limiting power generated in the conductors with alternating current flow to less than the power limit.

[08] 8. The method of claim 7, wherein the thermal conductances G_{thi} are determined from the product of the capacitances C_{ni} and a factor F and the scalar factor F is given by a ratio of thermal conductivity κ to permittivity ϵ .

- [c9] 9.The method of claim 7, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference ΔT
- [c10] 10.The method of claim 7, wherein the I_{RMS} value is determined by the expression:
 C_{load} *V *frequency*Switching factor.
- [c11] 11. The method of claim 7, wherein the thermal conductions G_{thi} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{ni} as outputs of the circuit simulator.
- [c12] 12.The method of claim 7, wherein the capacitances C_{ni} and resistances R_{WIRE} are determined by using simulation and analysis tools that at least include capacitance/resistance extraction capabilities.
- [c13] 13.A method for performing a check of local heating in a device comprising:

determining resistances R_{WIRE} and at least one of capacitances C_{ni} and a capacitance matrix C for the device;

determining thermal conductances G_{thi} from the at least one of capacitances C_{ni} and a capacitance matrix C;

setting a maximum temperature difference ΔT_{MAX} in accordance with electromigration requirements; determining a power limit F $^*C_{ntot}^*\Delta T_{MAX}$ as a function of the maximum temperature difference ΔT_{MAX} ; checking each interconnect conductor with an alternating current flow to determine if power generated I *R 2 is less than the power limit F *C $^*\Delta T$ indicating no local heating problem with an interconnect conductor when power generated I *R VIRE 2 is less than the power limit F * C_{ntot} * ΔT_{MAX} ; indicating a local heating problem exist with current interconnect conductor when the power generated I * $R_{MS}^*R_{WIRE}^{2}$ is equal to or greater than power limit F * $C_{ntot}^*\Delta T_{MAX}^*$ and taking corrective action to reduce the power generated $I_{RMS}^*R_{WIRE}^{2}$; and continuing to check each interconnect conductor with alternating current flow until all interconnect conductors have a value for power generated I *R WIRE ² less than the power limit F *C $_{ntot}$ * ΔT_{MAX} .

[c14] 14. The method of claim 13, wherein the thermal conductances G_{thi} are determined from the product of the capacitances C_{ni} and a factor F and the scalar factor F is given by a ratio of thermal conductivity κ to permittivity ϵ .

- [c15] 15.The method of claim 13, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference ΔT_{ntot}
- [c16] 16.The method of claim 13, wherein the I_{RMS} value is determined by the expression:
 C *V *frequency*Switching factor.
- [c17] 17. The method of claim 13, wherein thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences ΔT_{ni} as outputs of the circuit simulator.
- [c18] 18.The method of claim 13, wherein the capacitances C_{ni} and resistances R_{WIRE} are determined by using simulation and analysis tools that at least include capacitance/resistance extraction capabilities.
- [c19] 19.A computer-readable medium having a plurality of computer executable instructions for causing a computer to perform an electromigration check for conductors with alternating current flow adjacent to conductors with direct current flow in an integrated circuit, the computer executable instructions comprising:

determining resistances R_{WIRE} and a capacitance ma-

trix C for the integrated circuit; converting the capacitance matrix C into a thermal conductance matrix G; determining temperature differences ΔT_{ni} between conductors from thermal conductances G_{thi} of the thermal conductance matrix *G*; approximating power flow P_n into conductors with direct current flow due to adjacent conductors with alternating current flow in the integrated circuit from the temperature differences ΔT_{ni} between conductors and the thermal conductances G_{thi}; determining a power limit as a function of the maximum temperature difference ΔT_{max} that ensures reliability of the integrated circuit; and performing the electromigration check by limiting

power generated in the conductors with alternating

[c20] 20. The method of claim 19, wherein the thermal conductance matrix G is determined from the product of the capacitance matrix C and a scalar factor F and the scalar factor is given by a ratio of thermal conductivity K to permittivity E.

current flow to less than the power limit.

[c21] 21. The method of claim 1, wherein the power limit is given by the product of scalar factor F, the total capacitance C_{ntot} and the maximum temperature difference ΔT

- [c22] 22.The method of claim 1, wherein the I_{RMS} value is determined by the expression:
 C_{load} *V_{dd} *frequency*Switching factor.
- [c23] The method of claim 1, wherein the thermal conductances G_{thi} are inputs for a circuit simulator that determines temperature differences between conductors ΔT_{ni} as outputs of the circuit simulator.