

- Introdução: noções elementares
- Objectivo / Requisito básico
 - cooperação entre entidades que comunicam entre si para troca de dados
- Noção de protocolo de comunicação
 - conjunto de regras que regem a comunicação entre intervenientes,
 i.e. entre entidades ao mesmo nível funcional
 - uma entidade é uma abstração de um ou mais processos computacionais
 - as regras ou funções protocolares são implementadas pelas entidades de uma camada ou nível protocolar
 - as funções protocolares são variadas e têm âmbitos ou contextos distintos, e.g. endereçamento

Comunicação de dados Funções gerais dos protocolos: exemplos

- geração de sinais
- definição interfaces
- sincronização
- formatação dados
- endereçamento
- detecção de erros
- correcção de erros
- controlo de fluxo

- formatação de msgs
- encaminhamento msgs
- transporte de msgs
- verificação de msgs
- recuperação de msgs
- independência dados
- privacidade/segurança
- gestão da comunicação

Comunicação de dados Introdução: noções elementares

- Noção de organização protocolar
 - agrupamento e estruturação de tarefas em níveis ou camadas funcionais, hierárquicas, com funções independentes e bem definidas -> constituição de uma <u>pilha de protocolos</u>
- Noção de serviço de comunicação
 - o resultado das tarefas executadas pela camada protocolar N para realização da função da camada superior (N+1), podendo envolver o recurso a serviços da camada N-1
 - cada camada protocolar oferece um serviço à camada superior e solicita um serviço à camada inferior através de primitivas específicas

Comunicação de dados Modelos protocolares de referência

 Modelo protocolar de referência OSI da ISO.

7 camadas funcionais:

- camada de aplicação
- camada de apresentação
- camada de sessão
- camada de transporte
- camada de rede
- camada de ligação lógica
- camada física

Designado ISO OSI-RM (ISO Reference Model for Open Systems Interconnection)

 Modelo protocolar TCP/IP: tem 4 camadas funcionais

Comunicação de dados *Modelo TCP/IP*

APLICAÇÃO

- SERVIÇOS DO UTILIZADOR
- HTTP, FTP, TELNET, ...

TRANSPORTE

- TCP: TRANSMISSÃO FIÁVEL E ORDENADA DE DADOS
- EXTREMO-A-EXTREMO

REDE

- IP: ENCAMINHAMENTO ATRAVÉS DE MÚLTIPLAS (SUB)REDES INTERLIGADAS (INTERNETWORKING)
- IMPLEMENTADO EM COMPUTADORES (HOSTS) E NÓS INTERMÉDIOS (ROUTERS)

LIGAÇÃO DE DADOS (ACESSO À (SUB)REDE)

– ACESSO À (SUB)REDE E COMUNICAÇÃO ENTRE ESTAÇÕES (HOSTS/ ROUTERS) LIGADAS À MESMA (SUB)REDE

FÍSICO

Destination System– CARACTERÍSTICAS ELÉCTRICAS E MECÁNICAS DA LIGAÇÃO FÍSICA AO MEIO DE TRANSMISSÃO

[DCC,Stallings07]

Localização de protocolos TCP/IP no OSI-RM

Estratégia: encapsulamento da unidade dados na camada inferior

Encapsulamento protocolar

Exemplo: aplicação FTP

```
----- MAC HEADER -----
 Frame size is 67 (0x0043) bytes
 Destination = station 0050FC5CE9AB, pc4
 Source
            = station 0050FC5CE9B0, pc2
 Ethertype = 0800 (IPv4)
----- IP HEADER -----
Version = 4, Header length = 20 bytes
Diff Serv Field = 0xC0 (DSCP 0x30: Class Selector 6; ECN: 0x00)
1 1 0 0 0 0 . . = DSCP: Class Selector 6 (0x30)
. . . . . 0 . = ECN-Capable Transport (ECT): 0
. . . . . . . 0 = ECN-CE: 0
Total length = 53 bytes
Identification = 5974
Flags = 0x4
 . 1 . . . . . = don't fragment
  . . 0 . . . . = last fragment
Fragment offset = 0 bytes
Time to live = 60
Protocol = 6 (TCP)
Header checksum = AFAO (correct)
Source address = [192.168.89.12], pc2.labcom.uminho.pt
Destination address = [192.168.89.14], pc4.labcom.uminho.pt
No options
```

```
----- TCP HEADER -----
Source port = 1062
Destination port = 21 (FTP)
Sequence number = 532928015
Acknowledgment number = 549440112
Data offset = 20 bytes
Flags = 0x18
 . . 0 . . . . = (No urgent pointer)
  . . . 1 . . . . = Acknowledgment
  . . . . 1 . . . = Push
  . . . . . 0 . . = (No reset)
  . . . . . . 0 . = (No SYN)
 ... 0 = (No FIN)
Window = 33580
Checksum = CE68 (correct)
No TCP options
[13 byte(s) of data]
----- FTP data -----
PASS Visita<0D0A>
```

Encapsulamento protocolar

Exemplo: aplicação TFTP

----- UDP HEADER -----

```
----- MAC HEADER -----
Frame size is 60 (0x003C) bytes
Destination = station 0050FC5CE9B0, pc2
Source
             = station 0050FC5CE9B1, pc3
-Ethertype = 0800 (IPv4)
----- IP HEADER -----
Version = 4, Header length = 20 bytes
Diff Serv Field = 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0 0 0 0 0 0 . . = DSCP: Default (0x00)
 . . . . . 0 . = ECN-Capable Transport (ECT): 0
 . . . . . . . 0 = ECN-CE: 0
Total length = 32 bytes
Identification = 5827
Flags = 0x0
 . 0 . . . . . = may fragment
 . . 0 . . . . = last fragment
Fragment offset = 0 bytes
Time to live = 30
Protocol = 17 (UDP)
Header checksum = OEFF (correct)
Source address = [192.168.89.13], pc3.labcom.uminho.pt
Destination address = [192.168.89.12], pc2.labcom.uminho.pt
No options
```

```
Source port = 1897 (TFTP)
Destination port = 1035
Length = 12
Checksum = 7D51 (correct)

------ Trivial file transfer -----

Opcode = 4 (Ack)
Block number = 1

[Normal end of "Trivial file transfer".]
```


Protocolo: regras de associação entre camadas homónimas

[DCC,Stallings07]

conceitos gerais

Wide-area

network

Redes alargadas, WAN (Wide Area Networks)

- linhas ponto-a-ponto
- nós de acesso à rede
- comutadores de tráfego
- longas distâncias

backbones mantidos pelos operadores de comunicações.

Local area

network

Switching

node

Redes locais, LAN (Local Area Networks)

- linhas e acessos multiponto, ponto-a-ponto
- pequenas distâncias
- acesso directo à rede
- gestão local

[DCC,Stallings07]

Destination

conceitos gerais

- WAN, MAN, LAN, PAN, BAN
 - designação depende da área geográfica coberta
 - WAN (wide area networks): área alargada, acima das dezenas de kilómetros
 - MAN (metropolitan area networks): cobertura de uma área metropolitana, até poucas dezenas de kilómetros
 - LAN (local areas networks): área local, até poucas centenas ou dezenas de metros
 - PAN (personal area networks): área pessoal, até poucos metros
 - BAN (body area networks): até cerca de um metro
 - condicionam o tipo de protocolos e tecnologias a usar

conceitos gerais

- WAN, MAN, LAN, PAN, BAN: exemplos de tecnologias
 - WANs: Metro/Carrier Ethernet (IEEE 802.1), (Ethernet over) MPLS,
 ATM
 - MANs: WiMAX (IEEE 802.16); DQDB (IEEE 802.6); MPLS
 - LANs: Ethernet (IEEE 802.3); Wi-Fi (IEEE 802.11)
 - PANs: Infravermelhos, Bluetooth (IEEE 802.15), Wi-Fi
 - BANs: ZigBee, IEEE 802.15.4

Universidade do Minho Escola de Engenharia Departamento de Informática

Objectivo das LANs

- Acesso e partilha de recursos locais:
 - servidores, equipamentos especializados, etc.
- Comunicação para cooperação entre processos
 - computação distribuída
- Acesso a redes alargadas (WAN ou MAN)
 - interface partilhada para ligação a redes externas, e.g. Internet
 - e.g. UMinho (desde 2013) acesso com ligação a 10Gbps

Universidade do Minho Escola de Engenharia Departamento de Informática

Características das LANs

- Elevadas velocidades de transmissão
 - mega (10⁶), giga (10⁹) bps ...
- Protocolo de controlo de acesso ao meio (MAC)
 - específico da tecnologia; acesso garantido ou em contencioso
- Utilização dos recursos
 - baixo factor de utilização conduz a melhor desempenho
- Desempenho "aceitável" para tráfego distincto
 - tempo real, transacional, regular, etc...

- nem sempre...
- tendência para diferenciação e priorização de tráfego
- Acesso democrático oferecido a todos os sistemas
- Fácil instalação, configuração e interligação

Características das LANs

- Utilização generalizada:
 - permitem a interligação de um elevado número de sistemas terminais (computadores, sistemas de voz e vídeo) em áreas limitadas
 - topologias mais frequentes:
 - barramento, anel, estrela e árvore, malha

características?

diferenças?

- em geral, constituem redes privadas
- Tecnologia normalizada e de baixo custo (normas IEEE 802)
- Elementos de uma rede:
 - estações possuem interfaces de rede [NIC, Network Interface Cards]
 - rede possui equipamentos de interligação
 - repetidores, bridges, switches, routers, etc.

equipamento interligado por cablagem ou meio sem fios.

Equipamentos de Interligação: Repetidor ou HUB

- Repetidor
 - opera ao nível físico (OSI), equipamento passivo
 - não interpreta as tramas
 - monitorização contínua de sinais e sua regeneração
 - repete tudo o que "ouve"
 - permite cobrir maiores distâncias
 - permite maior flexibilidade no desenho da rede
 - usado LANs, MANs, WANs

Ex. HUB Ethernet

Equipamentos de Interligação: Bridge

Bridge

- opera ao nível da ligação lógica (OSI)
- ligação por interface de rede; tem endereço físico
- interpreta o formato das tramas; faz aprendizagem
- permite isolar tráfego
- divide o domínio de colisão
- configuração transparente
- em configuração multipla, evita ciclos infinitos (Algoritmo Spanning Tree)

Acção	ListaSeg1	1 ListaSeg2					
boot	-	-					
U-V	U	-					
V-U	U,V	-					
Z-all	U,V	Z					
Y-V	U,V	Z,Y					
Y-X	U,V	Z,Y					
X-W	U,V	Z,Y,X					
W-Z	U,V,W	Z,Y,X					

Processo de Aprendizagem em **bridging transparente**

[CNI,Comer98]

Equipamentos de Interligação: Switch

Switch

- mais de 2 interfaces
- capacidade aprendizagem como as bridges
- permite paralelismo
- requer buffering adequado
- reduz carga na rede
- aumenta desempenho
- pode validar endereços MAC
- permite criar LANs virtuais
- usado em LAN, MAN e WAN

Escola de Engenharia Departamento de Informática

Escola de Engenharia

Departamento de Informática

Universidade do Minho Escola de Engenharia Departamento de Informática

Conceitos básicos

Transmissão ponto-a-ponto / multiponto

- simplex
 - unidireccional
- half-duplex
 - bidireccional, alternado
- full-duplex
 - bidireccional, simultâneo

a) Ligações ponto a ponto (PP)

b) Ligações multiponto (MP)

Universidade do Minho Escola de Engenharia Departamento de Informática

Meios de transmissão

- Efeitos indesejáveis
 - atenuação
 - distorção [ruído, interferência interna (cross-talk) e externa]
 Os sinais a transmitir são atenuados ou corrompidos nos meios de transmissão [erros nos dados]
- A atenuação e/ou distorção são influenciadas por:
 - distância entre o transmissor e o receptor; alta temperatura
 - ritmo de transmissão (bps)
 - tipo de meio de transmissão
- Tipos de meios:
 - não guiados: atmosfera, água do mar...
 (propagação omnidireccional vs. direccional)
 - guiados: par entrançado (xTP), cabo coaxial, fibra óptica

Meios de transmissão não guiados

- Propagação omnidireccional vs. direccional
- Principais aplicações:
 - radio FM, VHF e parte de UHF, redes de dados
 - micro-ondas terrestres comunicações de longa distância (TV e voz), ligações ponto-a-ponto, comunicação de dados em pequenas áreas (wireless)
 - micro-ondas por satélite- distribuição de TV, voz a longa distância, redes de dados

Inside the radio wave spectrum

* 〇

Almost every wireless technology – from cell phones to garage door openers – uses radio waves to communicate. Some services, such as TV and radio broadcasts, have exclusive use of their frequency within a geographic area. But many devices share frequencies, which can cause interference. Examples of radio waves used by everyday devices:

Universidade do Minho Escola de Engenharia Departamento de Informática

Most of the white

are reserved

areas on this chart

© 2008 MCT

Graphic: Nathaniel Levine, Sacramento Bee

Universidade do Minho

ormática

Meios de transmissão guiados

- Unshielded Twisted Pair (UTP)
 - cat3 (16MHz, até 10Mbps);
 - cat4 (20MHz, até 16Mbps);
 - cat5,5e (100MHz, até 1Gbps)
 - cat6 (over 1Gbps)
- Shielded Twisted Pair (STP)
 - cada par protegido por écran
- usado: redes telefónicas, redes locais actuais

Cabo coaxial

 usado: transmissão de tv, redes locais

[DCC,Stallings07]

Universidade do Minho Escola de Engenharia Departamento de Informática

Meios de transmissão guiados

Fibra óptica

- Monomodo: usado em longa distância
- Multimodo: curta distância (maior dispersão)
- elevada largura de banda, tamanho e peso reduzidos, baixa atenuação, isolamento electromagnético

Universidade do Minho
Escola de Engenharia
Departamento de Informática

camada física: transmissão

- Transmissão em série ou em paralelo?
 - Por regra, em telecomunicações, a transmissão faz-se em série por bit
- Transmissão, o que interessa conhecer?

cuidado com as unidades!

- ritmo binário (bits/s), kbps, Mbps, Gbps
- potência do sinal (em mW ou em dBm)
- código de linha utilizado (forma do sinal que representa os bits)
- probabilidade de erro do código ou probabilidade de erro total na linha de transmissão (P_e) também designado BER=bit error ratio)
- Técnicas de transmissão de dados em série:
 - transmissão assíncrona
 - transmissão síncrona

camada física: transmissão assíncrona (UART)

- Estratégia:
 - enviar dados em pequenas unidades (character)
 - os caracteres ocorrem assincronamente
 - muito usada para configuração de equipamento de comunicações e controlo de outro equipamento (micro-controladores)
 - envia código de caractere (5 a 8 bits) de cada vez

Formato de um caractere

camada física: transmissão assíncrona

- Vantagens:
 - sincronização no início e dentro de cada caractere
 - esquema simples e económico

Assincronismo entre caracteres

[DCC,Stallings07]

camada física: transmissão assíncrona

- Desvantagens:
 - overhead elevado (em geral > 20%)
 - erros resultantes de assimetrias

Timing error

[DCC,Stallings07]

Universidade do Minho
Escola de Engenharia
Departamento de Informática

camada física: transmissão assíncrona

Exemplo

Quanto tempo demora a transmissão de um volume de dados 80 kbytes, através de uma interface série RS-232c com uma codificação em 8 bits de dados, sem paridade, e 1 stop bit, com um débito de 112 kbps?

- quantos caracteres vão ser transmitidos (n_{char})?
- quanto tempo demora a transmitir um caracter (t_{char})?
- $tempo\ total = n_{char}\ x\ t_{char}$
- qual o "overhead" na transmissão (em percentagem)?
- qual a taxa de transmissão real a que os dados são transmitidos?

camada física: transmissão síncrona

- Usada para transmitir unidades de dados maiores
- Sincronização transmissor (Tx) com receptor (Rx):
 - não são usados start/stop bits
 - ou existe um canal separado de sincronização [chamada sincronização fora da banda]
 - ou a sincronização faz-se no canal dos dados [chamada sincronização dentro da banda]
- O formato de cada trama depende do tipo de transmissão ser orientado ao caractere ou ao bit.

Universidade do Minho
Escola de Engenharia
Departamento de Informática

camada física: transmissão síncrona

- Trama = campo de controlo + campo de dados
 - ex: campo de controlo = endereço(s) destino/origem, comprimento da trama, número de sequência, tipo dos dados (*Trama* é tb. a designação dada à *unidade de dados* ao nível físico)
- Detecção de início e fim de trama:
 - caracteres especiais ou padrão de bits de alinhamento (flag).
 Exemplo: <flag><trama><flag>

[DCC,Stallings07]

camada física: transmissão síncrona

Dec Hx Oct Char		Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Hx	Oct	Html Ch	hr_
0 0 000 <mark>NUL</mark> (ni	ulli	32	20	040	a#32;	Space	64	40	100	a#64;	0	96	60	140	`	8
	tart of heading)				a#33;			41	101	A	A					a
	tart of text)	34	22	042	۵#3 4 ;	rr .	66	42	102	B	В	98	62	142	a#98;	b
3 3 003 ETX (er	nd of text)	35	23	043	a#35;	#	67	43	103	C	С	99	63	143	c	C
4 4 004 E0T (er	nd of transmission)	36	24	044	4#36 ;	ş	68	44	104	4#68;	D	100	64	144	d	d
5 5 005 ENQ (er	nquiry)	37	25	045	%	*	69	45	105	E	E	101	65	145	e	e
6 6 006 ACK (ad	cknowledge)				a#38;	6				F		_			f	
	ell)				@#39;	1	-			G					a#103;	
•	ackspace)				a#40;					@#72;					a#104;	
	orizontal tab)				a#41;					6#73;					i	
•	L line feed, new line)				@# 4 2;					a#74;					j	
•	ertical tab)				a#43;	+		_		<u>@</u> #75;					k	
	P form feed, new page)				a#44;	F				a#76;					l	
'	arriage return)				a#45;	E 3.1				M					m	
	hift out)				a#46;	+ \		_		a#78;					n	
'	hift in)				6#47;					a#79;					o	
16 10 020 DLE (da	ata link escape)				a#48;					480; a#80					p	
	evice control 1)				a#49;					۵#81;	-				q	_
18 12 022 DC2 (de	evice control 2)				a#50;					R					a#114;	
19 13 023 DC3 (de		-			a#51;					S					s	
20 14 024 <mark>DC4</mark> (de	evice control 4)				۵#52;					۵#8 4 ;		ı — — -			t	
	egative acknowledge)				a#53;					U					u	
22 16 026 <mark>SYN</mark> (sy	ynchronous idle)				a#54;					4#86;					v	
	nd of trans. block)				7					a#87;					w	
24 18 030 CAN (ca	ancel)				a#56;					X					x	
	nd of medium)				a#57;		I			Y					y	
26 lA 032 <mark>SUB</mark> (sı					a#58;					Z					z	
27 1B 033 ESC (es	scape)	59	3В	073	<u>4,59;</u>	<i>‡</i>	91	5B	133	[[{	
28 1C 034 FS (fi	ile separator)				O;					\					4 ;	
29 1D 035 <mark>GS</mark> (gı	roup separator)				=					@#93;					}	
30 lE 036 <mark>RS</mark> (re	ecord separator)	62	3E	076	>	>	94	5E	136	4 ;					~	
31 1F 037 <mark>US</mark> (ur	nit separator)	63	3 F	077	4#63;	2	95	5F	137	%#95;	_	127	7F	177		DEL
												-			T - L1	

Source: www.LookupTables.com

Exemplo de um código de caracteres (ASCII)

detecção de erros

- A cada trama, o Tx adiciona um número de bits que será usado pelo Rx para detecção de erros.
- Em caso de erro, ou o Rx corrige o erro, ou o Tx deve ser notificado.
- Técnicas:
 - utilização de bit e de caractere de paridade
 - verificação de redundância cíclica (CRC)

detecção de erros - CRC

Cyclic Redundacy Check

Dada uma mensagem inicial de *k* bits, o transmissor gera uma sequência de *n-k* bits [CRC ou FCS *Frame Check Sequence*] tal que, os *n* bits da trama resultante sejam divisíveis por um número prédeterminado G.

Comunicação de dados detecção de erros - CRC

- Detecção de erros na recepção
 - dividir a trama recebida por G(x)
 - se Resto = 0 conclui que não há erro, senão
- Exemplo de um polinómio gerador G(x):
 CRC-32:

$$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$$
 normalizado para transmissão síncrona ponto-a-ponto (IEEE-802.x)

Universidade do Minho
Escola de Engenharia
Departamento de Informática

correcção de erros

- Técnica de Forward Error Correction (FEC)
 - é o receptor que corrige o erro
 - probabilidades de erro aceitáveis exigem que o código seja gerado por polinómio com grau da mesma ordem de grandeza do dos dados.
 - técnica pouco usada em comunicação de dados
 - apenas usada em situações onde é impraticável a retransmissão (e.g. Bluetooth usa FEC para aumentar a imunidade a erros)
 - em geral, é preferível retransmitir

Comunicação de dados correcção de erros

- Técnica de Automatic Repeat Request (ARQ)
 - o receptor n\u00e3o tenta corrigir os erros
 - o código de controlo de erros é usado no receptor apenas como detector erros
 - detectados erros, o receptor pede a retransmissão da unidade de dados
 - probabilidades de erro aceitáveis podem ser obtidas com polinómios de menor grau
 - técnica mais usada em comunicação de dados