

McEliece cryptosystem based on LDPC codes

Marco Baldi

Università Politecnica delle Marche - DEIT Ancona, Italy m.baldi@univpm.it

Outline

- The McEliece cryptosystem
- LDPC codes
- First LDPC-based version
- QC-LDPC codes
- Cryptanalysis
- Revision of the cryptosystem
- Complexity
- Conclusions

The McEliece Cryptosystem

- Public Key Cryptosystem (PKC) proposed by R. J. McEliece in 1978 [1].
- Based on algebraic coding theory (difficulty of decoding a linear large code with no visible structure).
- Still unbroken!
- Faster than competing solutions, like RSA.
- Adopts Goppa codes with:
 - □ length *n* = 1024
 - \square dimension k = 524
 - \square minimum distance $d_{min} = 101$
 - \square error correction capability t = 50 errors

^[1] R. J. McEliece, "A public-key cryptosystem based on algebraic coding theory." *DSN Progress Report*, pp. 114–116, 1978.

The McEliece Cryptosystem (2)

- **G** is the generator matrix of a *t*-error correcting Goppa code, in systematic form
- **S** is a *k* x *k* non-singular scrambling matrix
- **P** is an *n* x *n* permutation matrix
- The encryption map is:

$$x = uG' + e$$

e is a vector of t intentional errors

The McEliece Cryptosystem (3)

■ After receiving **x**, Bob computes:

$$x' = xP^{-1} = uSG + eP^{-1}$$

He then corrects all the t errors and recovers:

$$u' = uS$$

- Finally, Bob calculates u'S-1, thus obtaining u.
- Requisites for the codes:
 - □ For given *n*, *k* and *t*, the family of codes is large enough to avoid any enumeration.
 - □ An efficient algorithm is known for decoding.
 - □ A generator (or parity-check) matrix of a permutation equivalent code gives no information on the secret code.
- Main drawbacks:
 - □ Long keys
 - □ Low transmission rate

LDPC Codes

- Low-Density Parity-Check (LDPC) codes are state-of-art forward error correcting (FEC) codes.
- Firstly introduced by Gallager in 1962 [2] and recently rediscovered [3].
- They are able to approach the channel capacity under belief propagation (BP) decoding [4].
- [2] R. G. Gallager, "Low-density parity-check codes," IRE Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.
- [3] D. J. C. MacKay and R. M. Neal, "Good codes based on very sparse matrices," in Cryptography and Coding. 5th IMA Conference, ser. Lecture Notes in Computer Science, C. Boyd, Ed. Berlin: Springer, 1995, no. 1025, pp. 100–111.
- [4] C. Sae-Young, G. Forney, T. Richardson, and R. Urbanke, "On the design of low-density parity-check codes within 0.0045 dB of the shannon limit," IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

LDPC Codes (2)

- Many applications and hardware implementations.
- Inclusion in several telecommunications standards.

LDPC Codes are Linear Block Codes

A binary linear block code is a map:

$$C(n, k)$$
: $GF_2^k \rightarrow GF_2^n$ with image Γ , a vectorial subspace of GF_2^n .

It exists a kxn generator matrix G such that:

$$\Gamma = Im\{G\}$$

It exists an rxn (r = n - k) parity-check matrix **H** such that: $\Gamma = \text{Ker}\{\mathbf{H}\}$

LDPC codes have parity-check matrices with special characteristics.

LDPC matrices

- The parity-check matrix **H** is associated with a bipartite (Tanner) graph.
- It has n variable nodes and r control nodes.
- The BP decoding algorithm works on the Tanner graph.

- In order to reach optimality, BP needs a graph free of short cycles.
- This can be achieved in sparse graphs → sparse H matrices.

LDPC decoding

- The LLR-SPA decoder uses likelihood values on the logarithmic scale.
- For a random variable U:

$$LLR(U) = \ln \left[\frac{\Pr(U=0)}{\Pr(U=1)} \right]$$

- The initial LLRs are derived from the channel.
- They are then updated by exchanging messages on $LLR(x_6) \rightarrow$ the Tanner graph.

First LDPC-based McEliece PKC

- Basically derived from the proposal in [5]
- H is the private LDPC matrix
- H' = TH is the public parity-check matrix (must be dense)
- G is a generator matrix derived from H'
- [5] C. Monico, J. Rosenthal, and A. Shokrollahi, "Using low density parity check codes in the McEliece cryptosystem," in *Proc. IEEE ISIT 2000*, Sorrento, Italy, Jun. 2000, p. 215.

First LDPC-based McEliece PKC (2)

- Also this version uses a scrambling matrix S.
- Alice calculates G' = S⁻¹G and uses the standard encryption map:
 x = uG' + e
- The BP decoder works only on sparse and short cycle free Tanner graphs.
- Bob, who knows **H**, can correct all the *t* errors and apply the decryption map.
- An eavesdropper only knows H', that is unsuitable for BP decoding.

- However, the secret code is completely exposed (**G** is a valid generator matrix for it)...
- ...while in the original system it was hidden.

Choice of t for LDPC Codes

- This application of LDPC codes can be modeled as transmission over a particular BSC channel with error probability p = t/n.
- Log-likelihood ratio of a priori probabilities associated with the codeword bit at position i:

$$LLR(x_i) = \ln \left[\frac{P(x_i = 0 \mid y_i = y)}{P(x_i = 1 \mid y_i = y)} \right]$$

Applying the Bayes theorem:

$$LLR(x_i \mid y_i = 0) = \ln\left(\frac{1-p}{p}\right) = \ln\left(\frac{n-t}{t}\right)$$

$$LLR(x_i \mid y_i = 1) = \ln\left(\frac{p}{1-p}\right) = \ln\left(\frac{t}{n-t}\right)$$

Choice of t for LDPC Codes (2)

QC-LDPC code with n = 8000, k = 6000 and $d_v = 13$. Decoding by **H** and by **H**'.

QC-LDPC code with n = 16128, k = 12096 and $d_v = 13$, under q = 6 bit quantization.

Quasi-Cyclic codes

- A linear block code is a Quasi-Cyclic (QC) code if [6]:
 - 1. It has dimension and length both multiple of an integer p ($k = k_0 p$ and $n = n_0 p$).
 - 2. Each block of n_0 bits in a codeword is formed by k_0 information bits followed by $r_0 = n_0 k_0$ parity bits.
 - 3. Every cyclic shift of a codeword by n_0 positions yields another codeword.
- Property 2 can be extended to the non-systematic case.
- The generator and parity-check matrices of a QC code can assume two alternative forms:
 - Circulant of blocks
 - Block of circulants

Block of circulants form for H

H is formed by $r_0 \times n_0$ blocks \mathbf{H}_{ij}^c :

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{00}^c & \mathbf{H}_{01}^c & \cdots & \mathbf{H}_{0(n_0-1)}^c \\ \mathbf{H}_{10}^c & \mathbf{H}_{11}^c & \cdots & \mathbf{H}_{1(n_0-1)}^c \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{H}_{(r_0-1)0}^c & \mathbf{H}_{(r_0-1)1}^c & \cdots & \mathbf{H}_{(r_0-1)(n_0-1)}^c \end{bmatrix},$$

■ Each \mathbf{H}_{ii}^{c} is a $p \times p$ circulant matrix:

$$\mathbf{H}_{ij}^{c} = egin{bmatrix} h_{0}^{ij} & h_{1}^{ij} & \cdots & h_{p-1}^{ij} \ h_{p-1}^{ij} & h_{0}^{ij} & \cdots & h_{p-2}^{ij} \ dots & dots & \ddots & dots \ h_{1}^{ij} & h_{2}^{ij} & \cdots & h_{0}^{ij} \ \end{bmatrix}$$

QC-LDPC codes with rate $(n_0 - 1)/n_0$

- \blacksquare For $r_0 = 1$, a particular family of codes with length $n = n_0 p$, dimension $k = k_0 p$ and rate $(n_0 - 1)/n_0$ is derived.
- H assumes the form of a single row of circulants:

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_0^c & \mathbf{H}_1^c & \cdots & \mathbf{H}_{n_0-1}^c \end{bmatrix}$$

- In order to be non-singular, H must have at least one non-singular block (suppose the last).
- In this case, G (in systematic form)

In this case, **G** (in systematic form) is easily derived:
$$\mathbf{G} = \begin{bmatrix} \left(\mathbf{H}_{n_0-1}^c\right)^{-1} \cdot \mathbf{H}_0^c \end{bmatrix}^T \\ \left[\left(\mathbf{H}_{n_0-1}^c\right)^{-1} \cdot \mathbf{H}_1^c \right]^T \\ \left[\left(\mathbf{H}_{n_0-1}^c\right)^{-1} \cdot \mathbf{H}_1^c \right]^T \\ \left[\left(\mathbf{H}_{n_0-1}^c\right)^{-1} \cdot \mathbf{H}_{n_0-2}^c \right]^T \end{bmatrix}$$
 completely described by its $(k+1)$ -th column, *i.e.* by k bits (key length)

QC-LDPC codes based on DFs

- A difference family is a series of subsets of a finite group G (base-blocks) such that every non-zero element of G appears exactly λ times as a difference of two elements from a base-block.
- If $G \equiv Z_p$, each base-block can be associated to a pxp circulant matrix (its elements give the positions of the 1 symbols in the matrix first row).
- If a difference family with $\lambda = 1$ is used to obtain a QC-LDPC matrix in the form:

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_0^c & \mathbf{H}_1^c & \cdots & \mathbf{H}_{n_0-1}^c \end{bmatrix}$$

H is free of 4-length cycles [7].

QC-LDPC codes based on RDFs

- We define "Random Difference Family" a random multi-set with the properties of a difference family.
- The random-based approach permits to design large family of codes with fixed parameters.
- Given n_0 , p and d_v (degree of variable nodes), the number of different codes is:

$$N(n_0, d_v, p) \ge \frac{1}{p} \binom{p}{d_v}^{n_0} \prod_{l=0}^{n_0-1} \prod_{j=1}^{d_v-1} \frac{p-j[2-p \bmod 2 + (j^2-1)/2 + ld_v(d_v-1)]}{p-j}$$

QC-LDPC codes based on RDFs (2)

■ The number of different codes is very high:

$$\begin{cases} N\left(n_{0}=4, d_{v}=11, p=4032\right) \geq 2^{391} \\ N\left(n_{0}=4, d_{v}=13, p=4032\right) \geq 2^{94} & \leftarrow \quad \text{estimated through sub-RDFs} \end{cases}$$

- The error correction performance of codes based on (n_0, d_v, p) -RDFs is equivalent, since they share:
 - □ code length and rate
 - parity check matrix density
 - □ nodes degree distributions
 - □ girth length distribution

QC-LDPC codes in the McEliece PKC

- QC-LDPC codes based on RDFs seem able to overcome the main drawbacks of the original McEliece PKC.
- We consider QC-LDPC codes with:
 - $\Box p = 4032$
 - $\Box r_0 = 1$
 - $\Box n_0 = 4 \text{ (rate R = 3/4)}$
 - $\Box n = n_0 p = 16128$
 - $\Box k = k_0 p = 12096$
- Their applicability must be subject to cryptanalysis.

Information Set Decoding Attacks

- An eavesdropper could select only k elements of \mathbf{x} and \mathbf{e} , chosen at fixed positions (the first k, for example), together with the corresponding k columns of \mathbf{G} .
- The encryption map for this "information set" would be:

$$\mathbf{x}_k = \mathbf{uG'}_k + \mathbf{e}_k$$

- If, by random choice, it is $\mathbf{e}_k = \mathbf{0}$, \mathbf{u} can be easily obtained as $\mathbf{x}_k \mathbf{G'}_k^{-1}$ (assuming $\mathbf{G'}_k$ non-singular).
- Lee and Brickell generalized this attack by exploiting also the case $\mathbf{e}_k \neq \mathbf{0}$ [8].
- Considering a subset of all the possible \mathbf{e}_k vectors (those with weight $\leq j$) can be convenient for the eavesdropper.

Information Set Decoding Attacks

Binary Work Factor (average number of binary operations required by a successful attack):

$$W_{j} = T_{j} \left(\alpha k^{3} + N_{j} \beta k \right)$$

$$T_{j} = 1/\sum_{i=0}^{j} {t \choose i} {n-t \choose k-i} / {n \choose k}$$

$$N_{j} = \sum_{i=0}^{j} {k \choose i}$$

$$\alpha = \beta = 1$$

- For $n_0 = 4$, $d_v = 13$, p = 4032, the minimum work factor is achieved for j = 2.
- The choice t > 25 implies $W_2 > 2^{80}$.

Brute force attacks

- Excluded, since every enumeration attempt is too demanding...
- ...even considering each circulant block of H (H_i)

Message-Resend and Related-Message Attacks

- Berson proved that ISD attacks become very easy in such cases [9].
- Bob's LDPC decoder may (very rarely) need message resending.
- Attacks can be avoided through a simple modification of the encryption/decryption map based on a hash function:

$$x = [u + h(e)]G' + e$$
 $u = [u + h(e)] + h(e)$

Minimum Weight Codewords Attacks

Given an intercepted ciphertext x, the linear block code generated by:

$$G'' = \begin{bmatrix} G' \\ x \end{bmatrix}$$

contains only one minimum weight codeword, and this coincides with the error vector **e**.

- So, the problem of finding e translates into that of finding the minimum weight codeword of a linear block code.
- A clever probabilistic algorithm to find minimum weight codewords is due to Stern [10].

Stern Algorithm

Probability of finding, in one iteration, a codeword with weight w (supposed unique):

$$P_{w} = \frac{\binom{w}{g}\binom{n-w}{k/2-g}\binom{w-g}{g}\binom{n-k/2-w+g}{k/2-g}\binom{n-k-w+2g}{l}}{\binom{n-k/2}{k/2}} \frac{\binom{n-k-w+2g}{l}}{\binom{n-k}{l}}$$

where g and I are two parameters to optimize.

- Average number of iterations: $c = P_w^{-1}$.
- Total work factor: W = cB, with B (binary operations per iteration): $(k/2)^2$

$$B = \frac{r^3}{2} + kr^2 + 2gl\binom{k/2}{g} + \frac{2gr\binom{k/2}{g}}{2^l}$$

Minimum Weight Codewords Attacks

- The original McEliece PKC adopts Goppa codes with n = 1024, k = 524 and w = t = 50.
- In this case, the minimum work factor is $W \sim 2^{64}$, found with (g, I) = (3, 28).
- Adopting longer codes increases the work factor.
- For n = 16128, k = 12096 and w = t = 27 it reaches 2^{72} (minimum for g = 3 and l = 46).
- High enough for a local deduction attack.
- The choice of a small *t* does not compromise security.

Density Reduction Attacks

- Already conceived for the original LDPC-based McEliece PKC.
- If matrix T is sparse, matrix H' is sparse too.
- It is highly probable that sparse vectors are orthogonal.
- The rows of H' are linear combinations of those of H.
- When a row of H is involved in two rows of (a sparse) H' their product could directly reveal the row of H.
- The solution consists in adopting dense T matrices to avoid rows orthogonality.
- Dense H' matrices have no advantage on the key size.
- We propose to use QC-LDPC codes to fill the gap.

Attack to Circulant Permutation Matrices

- QC-LDPC codes based on circulant permutation blocks are widespread (also included in the <u>IEEE 802.16e</u> standard).
- Without null blocks, their parity-check matrices <u>cannot</u> have full rank.
- Null blocks are commonly inserted so that to impose the lower triangular (or quasi-lower triangular) form.
- A <u>total-break attack</u> is possible, in the form of a global deduction (find \mathbf{T}_d and \mathbf{H}_d such that $\mathbf{H}' = \mathbf{T}_d \mathbf{H}_d$ and \mathbf{H}_d is suitable for BP decoding).
- It does not depend on the <u>T density</u>.

Attack to Circulant Permutation Matrices (2)

$$\mathbf{H'} = \mathbf{T}\mathbf{H} = \mathbf{T}\mathbf{Z}\mathbf{Z}^{-1}\mathbf{H} = \mathbf{T}_{d}\mathbf{H}_{d} \qquad \qquad \mathbf{H} = \begin{bmatrix} \mathbf{P} \mid \mathbf{Z} \end{bmatrix}$$

$$\mathbf{H'} = \mathbf{T} \cdot \mathbf{H} = \begin{bmatrix} \mathbf{T}_{00} & \mathbf{T}_{01} & \mathbf{T}_{02} \\ \mathbf{T}_{10} & \mathbf{T}_{11} & \mathbf{T}_{12} \\ \mathbf{T}_{20} & \mathbf{T}_{21} & \mathbf{T}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{P}_{00} & \mathbf{P}_{01} & \mathbf{P}_{02} & \mathbf{P}_{03} & \mathbf{0} & \mathbf{0} \\ \mathbf{P}_{10} & \mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} & \mathbf{P}_{14} & \mathbf{0} \\ \mathbf{P}_{20} & \mathbf{P}_{21} & \mathbf{P}_{22} & \mathbf{P}_{23} & \mathbf{P}_{24} & \mathbf{P}_{25} \end{bmatrix}$$

$$\mathbf{Z}^{*} = \begin{bmatrix} \mathbf{P}_{03} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_{14} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{P}_{25} \end{bmatrix}$$

$$\mathbf{H}_{b} \text{ has the same density of } \mathbf{H} \text{ (total break)!}$$

$$\mathbf{Z}^{-1} = \begin{bmatrix} \mathbf{V}_{00} & \mathbf{0} & \mathbf{0} \\ \mathbf{V}_{10} & \mathbf{V}_{11} & \mathbf{0} \\ \mathbf{V}_{20} & \mathbf{V}_{31} & \mathbf{V}_{32} \end{bmatrix}$$
 weight 1 to derive \mathbf{H}_{b} , that corresponds to \mathbf{Z}^{*}
$$\mathbf{H'} = \mathbf{T}_{d}\mathbf{H}_{d} = \begin{bmatrix} \mathbf{T}_{d}\mathbf{Z}^{-1}\mathbf{P} \mid \mathbf{T}_{d} \end{bmatrix}$$
 weight 1 weight 1 weight 2 knowing \mathbf{T}_{d} , \mathbf{H}_{d} can be derived, that is sparse

Successful global deduction for n_0 = 24, r_0 = 6, p = 40

Unsuccessful global deduction for n_0 = 24, r_0 = 8, p = 40

Attack to the Dual Code

- The dual of the secret code has very low weight codewords.
- An opponent can directly search for them, thus recovering H.
- The dual of the secret code has, at least, $A_{d_c} \ge r$ codewords with weight $d_c = d_v/(1-R)$.
- Since $d_c << n$, we can consider $A_{d_c} \sim r$.
- Stern algorithm searches for low weight codewords through an iterative procedure.
- Probability of finding, in one iteration, a (supposed unique) *w*-weight codeword of the dual code:

$$P_{w} = \frac{\binom{w}{g} \binom{n-w}{r/2-g}}{\binom{n}{r/2}} \cdot \frac{\binom{w-g}{g} \binom{n-r/2-w+g}{r/2-g}}{\binom{n-r/2}{r/2}} \cdot \frac{\binom{n-r-w+2g}{l}}{\binom{n-r}{l}}$$

Attack to the Dual Code (2)

- If the code contains A_w codewords with weight w, it is $P_{w,A_w} \leq A_w P_w$.
- Average number of iterations needed to find one of them:

$$c \ge P_{w,A_w}^{-1}$$

Each iteration requires *N* binary operations:

$$N = \frac{k^3}{2} + rk^2 + 2gl\binom{r/2}{g} + \frac{2gk\binom{r/2}{g}}{2^l}$$

The total work factor is W = cN.

- $w = d_c = 52$

$$p = 4032 (A_{d_c} = r = 4032)$$
 $n_0 = 4 (n = 16128)$
 $W = 2^{37.5}$ (minimum for $g = 3$, $l = 43$)

Unless very long codes and low rates are adopted, the system is highly exposed to a total break!

New System Proposal

- Cryptosystems based on LDPC codes must avoid to expose the secret code or a permuted version of it.
- Neither the previous LDPC-based proposal nor the original cryptosystem are suitable.
- We propose a new cryptosystem version.
- It recovers the original version but replaces the permutation matrix P with a sparse circulant matrix Q.
- The new system still adopts QC-LDPC codes in order to reduce the key length.

New System Proposal (2)

- **Q** is formed by $n_0 \times n_0$ circulants of size p.
- The public code has parity-check matrix H' = HQ^T.
- Q has column weight m and block diagonal form.
- The row weight of **H**' is $\sim md_c \rightarrow$ increased weight.
- The QC-LDPC code must be able to correct *t* = *t'm* errors (*t'* are those added by Alice).

Choice of the System Parameters

- QC-LDPC codes based on RDFs can still be adopted.
- We propose the following code parameters:
 - p = 4032
 - $n_0 = 4 (R = 3/4, n = 16128, k = 12096)$
 - \Box $d_v = 13 (d_c = n_0 d_v = 52)$
- The choice of t' = 27 protects against previous attacks.
- The choice of m = 7 protects against brute-force attempts on the blocks of \mathbf{Q} .
- We propose the same row/column weight for the blocks of $S \rightarrow s = mk_0 = 21$.
- Using Stern's algorithm to search for codewords with weight $md_c = 364$ is too demanding ($w = 200 \rightarrow W = 2^{88.1}$).
- The QC-LDPC codes must correct up to t'm = 190 errors.

Complexity

- **G**' has no more systematic form $\rightarrow n_0$ columns are needed to describe it (key length = $n_0 k$).
- Encryption complexity:
 - □ For a generic **G** matrix (dense): $C_{enc} = nk/2 + n$
 - ☐ For a QC **G** matrix the Toom-Cook algorithm can be applied:

$$C_{enc} = n_0 \left[k_0 C_{pm} (p) + (k_0 - 1) p \right] + n$$

 $C_{pm}(p)$ = binary operations for polynomial multiplication over $GF_2[x] \mod(x^p + 1)$ $(C_{pm}(4032) = 1.68 \times 10^6 \text{ with the Toom-Cook algorithm})$

Decryption complexity (SPA operations [11] + sparse matrix multiplications):

$$C_{dec} = n \cdot m + I_{ave} \left\{ n \left[q \left(8d_v + 12R - 11 \right) + d_v \right] \right\} + k \cdot s$$

Comparison with other PKCs

	McEliece (original) [12]	Niederreiter [12]	RSA [12]	McEliece (QC-LDPC)
Key Size (bytes)	67072	32750	256	6048
Information Bits	524	276	1024	12096
Transmission Rate	0.5117	0.5681		0.75
Enc Ops per bit	514	50	2402	1671
Dec Ops per bit	5140	7863	738112	4197

- Improved key length and transmission rate with respect to McEliece and Niederreiter.
- RSA has shortest keys and highest rate, but highest complexity.
- The new cryptosystem seems a good trade-off between the original McEliece and the RSA PKCs.
- [12] A. Canteaut and F. Chabaud, "A new algorithm for finding minimum-weight words in a linear code: application to McEliece's cryptosystem...," IEEE Trans. Inform. Theory, vol. 44, pp. 367–378, Jan. 1998.

Conclusions and future work

- The McEliece cryptosystem has long key and low rate.
- Can LDPC codes overcome such issues?
- Random-based LDPC codes do not permit to reduce the key length.
- QC-LDPC codes can hit the target, but not if based on permutation matrices.
- QC-LDPC codes based on DFs can overcome the drawbacks of the original system, while ensuring a good level of security...
- ...but a "killer" attack exists based on the dual code.

Conclusions and future work (2)

- We have proposed a revised version of the McEliece PKC that can:
 - □ Successfully employ QC-LDPC codes based on RDFs
 - Resist the attack to the dual code
 - Overcome the main drawbacks of the original system
- Do new attacks exist specifically conceived for the proposed PKC?
- Besides QC-LDPC codes, are other codes suitable for this framework?

For more details...

arXiv:0710.0142 [ps, pdf, other]

LDPC Codes in the McEliece Cryptosystem

Marco Baldi, Franco Chiaraluce

Comments: Submitted to the IEEE Transactions on Information Theory

Subjects: Information Theory (cs.IT)

http://arxiv.org/abs/0710.0142