BLACK FRIDAY SALES PREDICTION

PROJECT USING MongoDB AND PySpark

VAIBHAV ARORA

IMPORTANT LINKS

COLAB NOTEBOOK:

https://colab.research.google.com/drive/1eGfaM5o8QZoRWGpR1omgDFOswgYlbSrm?usp=sharing

DATA:

https://drive.google.com/file/d/132RNyVqCpz6U-uvIZv AUkwkrkYL35Pw/view?usp=share link

PROBLEM STATEMENT

Retail is the sale of goods and services from individuals or businesses to the end- user. The retail industry provides consumers with goods and services for their everyday needs. In retail one of crucial part is to understand the consumer behavior and make various arrangements for the sales of the company. A retail company "ABC Private Limited" wants to understand the customer purchase behavior (specifically, purchase amount) against various products of different categories. They have shared purchase summary of various customers for selected high volume products from last month.

ABOUT THE DATASET

This dataset comprises of sales transactions captured at a retail store. This is a regression problem. The dataset has 550,069 rows and 12 columns.

Problem: Predict purchase amount.

Data Overview

Dataset has 550068 rows (transactions) and 12 columns (features) as described below:

- ➤ User_ID: Unique ID of the user.
- Product_ID: Unique ID of the product.
- Gender: indicates the gender of the person making the transaction.
- Age: indicates the age group of the person making the transaction.
- Cocupation: shows the occupation of the user, already labeled with numbers 0 to 20.
- City_Category: User's living city category. Cities are categorized into 3 different categories 'A', 'B' and 'C'.
- >Stay_In_Current_City_Years: Indicates how long the users has lived in this city.
- Marital_Status: is 0 if the user is not married and 1 otherwise.
- ➤ Product_Category_1 to _3: Category of the product. All 3 are already labaled with numbers.
- > Purchase: Purchase amount.

EDA on MongoDB

```
# null value
print("Null Values:")
 for i in list columns[1:]:
    print(i,":", table.count documents({"{}}".format(i): "none"}))
Null Values:
User ID: 0
Product ID: 0
Gender: 0
Age: 0
Occupation: 0
City Category: 0
Stay In Current City Years: 0
Marital Status : 0
Product Category 1:0
Product Category 2:0
Purchase: 0
```

```
[23] table = db.Project
    table.count_documents({})
    # Total number of rows in dataframe is 550068.
```

```
df.info()
class 'pandas.core.frame.DataFrame'>
    RangeIndex: 550068 entries, 0 to 550067
    Data columns (total 12 columns):
         Column
                                     Non-Null Count
                                                      Dtype
                                                      object
     0
                                     550068 non-null
                                     550068 non-null
                                                      int64
        User ID
         Product ID
                                     550068 non-null
                                                      object
         Gender
                                     550068 non-null
                                                      object
         Age
                                     550068 non-null
                                                      object
         Occupation
                                     550068 non-null
                                                      int64
         City Category
                                     550068 non-null
                                                      object
         Stay In Current City Years
                                                      object
                                    550068 non-null
        Marital Status
                                     550068 non-null
                                                      int64
         Product Category 1
                                     550068 non-null
                                                      int64
     10 Product Category 2
                                     550068 non-null
                                                      float64
     11 Purchase
                                     550068 non-null int64
    dtypes: float64(1), int64(5), object(6)
    memory usage: 50.4+ MB
```

```
[340] # Creating Dataframe
     df = pd.DataFrame(list(table.find({},{" id":0})))
     df.head()
           User_ID Product_ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1 Product_Category_2 Purchase
                                                     10
      0 1 1000001
                     P00248942
                                     F 0-17
                                                                    Α
                                                                                                                                                     6.0
                                                                                                                                                             15200
           1000001
                     P00087842
                                     F 0-17
                                                     10
                                                                    Α
                                                                                                                                  12
                                                                                                                                                     9.0
                                                                                                                                                              1422
           1000001
                     P00069042
                                     F 0-17
                                                                                                                                                     9.0
                                                                                                                                                              8370
                                                     10
                                                                                                2
           1000001
                     P00085442
                                     F 0-17
                                                     10
                                                                    Α
                                                                                                                                  12
                                                                                                                                                     14.0
                                                                                                                                                              1057
                                                                    C
      4 4 1000002
                     P00285442
                                    M 55+
                                                     16
                                                                                                                                                     9.0
                                                                                                                                                              7969
```

Categorical Variables

Insights from Variable

Cheapest Product

Product ID: P00370293 has the Expensive Product with Amount 12.

A basic observation is that:

- 1. Product P00265242 is the most popular product.
- 2. Most of the transactions were made by men.
- 3. Age group with most transactions was 26-35.
- 4. City Category with most transactions was B

Minimum orders and Purchase

Age: 0-17 ~ Purchase: 134913183 is the category of Age where purchase frequency is minimum and purchase amount is also minimum

Maximum orders

Occupation Category: 0 ~ Purchase: 635406958 is the category of Occupation where purchase frequency is maximum

The Whale Customer

User_ID: 1004277 ~ Purchase_Amount: 10536909 has the maximum Purchase.

High End Product

Product ID: P00052842 has the Expensive Product with Amount 23961.

Maximum Purchase

Occupation Category: 4 ~ Purchase: 2031770578 is the category of Occupation where purchase is maximum

Maximum Purchase

Age: 26-35 ~ Purchase: 2031770578 is the category of Age where purchase is maximum

The Loyal Customer

User ID: 1001680 ~ Purchase Amount: 8699596 has max frequency.

Numerical Variable

Checking for Multicollinearity

From the correlation heatmap we can see that the linear association/ correlation between our variables is not more than 0.4 in all the cases which can be considered as weak correlation. So we can conclude that there are minimal chances of multicollinearity in our dataset.

Data Pre-Processing

- ➤ Dropping Irrelevant Variables
- For the purpose of data preprocessing we have used the following tools:
 - String Indexer
 - Assembler
 - Standard Scaler

	_assembler.sh	. ,										
Gen	der Age Occup	oation City_C	ategory Stay_In_Curr	ent_City_Years Marital	Status Product	_Category_1 Product_	Category_2 P	urchase Gend	lerIndex Age	eIndex City_C	ategoryIndex Stay_In_Curren	t_City_YearsIndex fea
+	F 0-17	10	A	2	0	 1	6.0	+ 15200	1.0	6.0	2.0	1.0 [1.0,6.0,10.0,2
İ	F 0-17	10	Αİ	2	0	12	9.0	1422	1.0	6.0	2.0	1.0 [1.0,6.0,10.0,2
i .	F 0-17	10	A	2	0	3	9.0	8370	1.0	6.0	2.0	1.0 [1.0,6.0,10.0,2
Ĺ	F 0-17	10	A	2	0	12	14.0	1057	1.0	6.0	2.0	1.0 [1.0,6.0,10.0,2
İ	M 55+	16	c	4+	0	8	9.0	7969	0.0	5.0	1.0	3.0 [0.0,5.0,16.0,1

	-+						+-					
Gende	er Age Occu	pation City_0	Category Stay_In_Curr	ent_City_Years Marita]	_Status Product_	_Category_1 Product	_Category_2 P	urchase Geno	derIndex Ag	eIndex City_Ca	tegoryIndex Stay_In_Curr	ent_City_YearsIndex features features_sc
	-++											
	F 0-17	10	A	2	0	1	6.0	15200	1.0	6.0	2.0	1.0 [1.0,6.0,10.0,2.0 [2.3190800189947
	F 0-17	10	A	2	0	12	9.0	1422	1.0	6.0	2.0	1.0 [1.0,6.0,10.0,2.0 [2.3190800189947
	F 0-17	10	A	2	0	3	9.0	8370	1.0	6.0	2.0	1.0 [1.0,6.0,10.0,2.0 [2.3190800189947
	F 0-17	10	Αİ	2	øİ	12	14.0	1057	1.0	6.0	2.0	1.0 [1.0,6.0,10.0,2.0 [2.3190800189947
	M 55+	16	cİ	4+	øİ	8	9.0	7969	0.0	5.0	1.0	3.0 [0.0,5.0,16.0,1.0 [0.0,3.071233404

Train Test Split

Our dataset is split into training and testing in the ratio of 80 percent, 20 percent respectively.

[] # Split the data into train and test sets
 train_data, test_data = scaled_df.randomSplit([.8,.2],seed=1234)

iender Age Occ	ibactoulcity_car	egory Stay_In_Curre	nt_City_Years Marital	_scacus Fi oddcc_ca	tegory_I Froduct_t	category_z rui ciia:			0 / /	- /- '	features feat	stures_scal
F 0-17	0	A	2	0	1		113 1.0	6.0	2.0	1.0 [1.0,6.0,0.0),2.0, [2.319080	
F 0-17	0	A	2	0	3	4.0 109	962 1.0	6.0	2.0	1.0 [1.0,6.0,0.0	,2.0, [2.319080	3001899471
F 0-17	0 0 0	A	2	0	5		029 1.0	6.0	2.0		,2.0, [2.319080	
F 0-17	0	A	2	0	8			6.0	2.0),2.0, [2.319080	
F 0-17	0	A	2	0	8	9.0 98	835 1.0	6.0	2.0	1.0 [1.0,6.0,0.0),2.0, [2.319080	3001899471
est_data.show(5	5 rows											
est_data.show(5)								•	not City Vone Index		
est_data.show(5	pation City_Cat	egory Stay_In_Curre	nt_City_Years Marital	_Status Product_Ca	tegory_1 Product_0	Category_2 Purcha	ase GenderIndex Ag	geIndex City_C	ategoryIndex Stay_In_Curre	· ·	features feat	atures_sca
est_data.show(5	pation City_Cat	egory Stay_In_Curre	nt_City_Years Marital	_Status Product_Ca	tegory_1 Product_0	Category_2 Purcha	nase GenderIndex Ag	geIndex City_C	ategoryIndex Stay_In_Curre	ent_City_YearsIndex	features feat	atures_sca
est_data.show(5	pation City_Cat	egory Stay_In_Curre	nt_City_Years Marital	_Status Product_Ca	tegory_1 Product_0	Category_2 Purcha: 4.0 1080 14.0 713	ase GenderIndex Ag 	eIndex City_C 6.0 6.0	ategoryIndex Stay_In_Curre 	ent_City_YearsIndex 	features feat 	atures_sca 300189947: 300189947:
est_data.show(5 eender Age Occo F 0-17 F 0-17 F 0-17	pation City_Cat	egory Stay_In_Curre	nt_City_Years Marital	_Status Product_Ca	tegory_1 Product_0	Category_2 Purcha: 4.0 108 14.0 71: 6.0 152:		eIndex City_C 6.0 6.0 6.0	ategoryIndex Stay_In_Curre 2.0 2.0 0.0	ent_City_YearsIndex 	features feat 	atures_sca 3001899473 3001899473 3001899473
est_data.show(5 jender Age Occi F 0-17 F 0-17	pation City_Cat	egory Stay_In_Curre	nt_City_Years Marital	_Status Product_Ca	tegory_1 Product_0	Category_2 Purcha: 4.0 108 14.0 71: 6.0 152:		eIndex City_C 6.0 6.0	ategoryIndex Stay_In_Curre 	ent_City_YearsIndex 	features feat 	atures_sc 300189947 300189947 ,6,7],[2.

MODEL TRAINING USING PYSPARK

- 1. Linear Regression
- 2. Random Forest
- 3. Gradient Boost Regressor

3 different models used for training the data and the outputs were evaluated

```
[341] # Get the RMSE
    print("Linear Regression RMSE:", linearModel.summary.rootMeanSquaredError)
    Linear Regression RMSE: 4705.371320576718
```

```
print("Random Forest RMSE: ", rmse)

Random Forest RMSE: 3820.1179413368436
```

```
[343] print("Gradient Boost Regressor RMSE: ", rmse1)

Gradient Boost Regressor RMSE: 2902.2878086091832
```

MODEL EVALUATION

CONCLUSION

Gradient Boost Regressor is giving the best result in our case when compared with other models because GBR starts with building a primary model from available training data sets then it identifies the errors present in the base model. After identifying the error, a secondary model is built, and further, a third model is introduced in this process. In this way, this process of introducing more models is continued until we get a complete training data set by which model predicts correctly.