Optymalizacja dawkowania leku przy leczeniu raka

Tomasz Kanas

19 marca 2020

Problem

Lek zabija komórki raka, ale szkodzi też pacjentowi. Ponadto niektóre komórki mogą się uodpornić na lek. Kiedy i w jakich dawkach podawać lek, aby zmaksymalizować jego skuteczność?

To niezbyt precyzyjne

Jak działa ten lek? Od czego zależy skuteczność? Co to znaczy skuteczność?

Bardziej formalnie

More lepiej bytoby advotés six de pojes, litere populare six us modeln?

- Pacjent ma pewien stan zdrowia.
- Ten stan zmienia się w czasie.
- Zmiana stanu zależy od dawkowania leku.
- Nie można przekroczyć maksymalnej dawki leku.
- Mamy pewną funkcję celu która dla danego dawkowania i przebiegu leczenia zwróci jak dobrze nam poszło.

Problem optymalnego sterowania

Olypo Larto na macyi, te surhane "g" fest fulige, byé more viene gty.

Omecania vie konseleventre.

$$\bigvee$$

 $\min_{g} J(X,g)$ gdzie

$$\dot{X}(t) = F(X,g,t), \ 0 \le t \le T$$
$$X(0) = x_0$$

$$\forall_t 0 \leq g(t) \leq c_{max}$$

- g sterowanie
- F dynamika układu
- *J* funkcja celu

Ne norst. slejdrie bydrie V, a vie X. Nie bydre tei jui "steum zdrovie".

$$V_1' = \lambda_1 V_1 F(\frac{V_1 + \alpha_{12} V_2}{K}) - \beta_1 V_1 g$$

$$V_2' = \lambda_2 V_2 F(\frac{V_2 + \alpha_{21} V_1}{K}) - \beta_2 V_2 g$$

$$K' = -\mu K + (V_1 + V_2) - d(V_1 + V_2)^{2/3} K - \beta K g$$

- g stężenie leku (sterowanie)
- V₁ Komórki guza podatne na lek
- V₂ Komórki guza odporne na lek
- K Unaczyknienie
- J Funkcja celu

$$J(V_1, V_2, K, g) = \int_0^T V_1(t) + V_2(t) dt + \omega \int_0^T G(\frac{V_2(t) - V_1(t)}{\epsilon}) dt$$

 $F=-\ln,~G=rac{1+ ext{tgh}}{2}$ $\alpha,\beta,\lambda,\mu,d,\omega,\epsilon,g_{max},T$ — stałe (znane) Na nast. slajdnie prodorīoby się ryjeżnie, o co dodi z nimuliacyć telicy

Pierwsze spostrzeżenia

- Problem optymalnego sterowania wygląda na bardzo ogólny i w ogólności trudny do rozwiązania.
- Model wygląda na dość skomplikowany.

Wniosek

Trzeba trochę uprościć problem.

Pan nic ngraszena Problem, tyllo
bednie szuhań normigranie problemego
lettre redefiningen jeho normigranie
Problem Problemo z nast. slajdu

Pomysł

Weźmy pewien skończony zbiór punktów w czasie:

$$0 = t_0 < t_1 < \ldots < t_n = T$$
beginning problems fully benefit ship

Załóżmy, że sterowanie jest stałe między tymi punktami.

- Mając takie sterowanie możemy numerycznie rozwiąża w równanie róźniczkowe oraz obliczyć funkcję celu.

Podsumowując

Musimy już tylko zapisać funkcję celu w zależności od wartości na przedziałach i znaleźć minimum.

NLP — Optymalizacja nieliniowa (NonLinear Programming)

Lougher required por posts: "zade nie objekte he jako redente opłym. niek niowaj z ogr."

min
$$J(x)$$
 przy zachowaniu

 $f(z)$ of $f(z)$

Spostrzeżenie¹

Ten problem, jak wiemy, nadal nie jest prosty w rozwiązaniu, ale przynajmniej istnieją gotowe biblioteki które mogą rozwiązać go za nas.

Plan rozwiązania

Nie sprecy roset Pan, johie osteternie radonie dice nozinjujuici...
Apolsymegie proseduja do

- Sprowadzenie problemu do zadania optymalizacji nieliniowej u skończonego wymiaru.
 - Implementacja rozwiązania w MATLAB-ie z wykorzystaniem gotowych narzędzi do optymalizacji nieliniowej.
 - Znalezienie parametrów przy których optymalizacja zbiega i daje możliwie dobry wynik.
 - Testy numeryczne metody weryfikacja.
 - Opis rozwiązania wraz z motywacją dokonanych wyborów, dyskusją i krytyką otrzymanych wyników.

Możliwe problemy

shouronego upriem

- Problem może okazać się za duży i skomplikowany dla tak prostego podejścia.
- Interesuje nas minimum globalne, a narzędzia znajdują zwykle minimum lokalne, więc trzeba znaleźć dobry punkt startowy.
- W praktyce, często-optymalne sterowanie jest nieciągłe, co może zmniejszyć dokładność wyniku i tempo zbiezności.
- Jak mierzyć poprawność otrzymanego wyniku?

by i suddem [julish howhi]

hub vige Imgeh algorphise?

Pomysły jak poprawić rozwiązanie

- Przybliżanie splajnem (funkcją ciągłą, kawałkami wielomianową) zamiast funkcją kawałkami stałą.
- Automatyczne znajdowanie odpowiednio gęstego zbioru punktów i odpowiednich stopni wielomianów na przedziałąch.
- Automatyczne szukanie najlepszego punktu startowego.
- Modyfikacja algorytmów optymalizacji nieliniowej.
- Wyliczenie różnych (dostępnych w literaturze) miar błędu i analiza wpływu parametrów na nie.

Koniec

Dziękuję za uwagę