

Routers

- How do routers process IP packets
- How do you build a router
- · Assigned reading
 - [P+98] A 50 Gb/s IP Router
 - [D+97] Small Forwarding Tables for Fast Routing Lookups

© Srinivasan Seshan, 200

1 -4: 1-24-01

Forwarding vs. Routing

- Forwarding: the process of moving packets from input to output
 - · The forwarding table
 - · Information in the packet
- Routing: process by which the forwarding table is built and maintained
 - · One or more routing protocols
 - Procedures (algorithms) to convert routing info to forwarding table.

© Srinivasan Seshan, 2001

L-4; 1-24-0

Outline

- Alternative methods for packet forwarding
- · IP packet routing
- · Variable prefix match
- IP router design
- Routing protocols distance vector

Srinivasan Seshan, 2001

L-4; 1-24-01

Techniques for Forwarding Packets

- · Source routing
 - · Packet carries path
- · Table of virtual circuits
 - Connection routed through network to setup state
 - Packets forwarded using connection state
- Table of global addresses (IP)
 - Routers keep next hop for destination
 - Packets carry destination address

Srinivasan Seshan, 2001

L-4; 1-24-01

Source Routing

- List entire path in packet
 - Driving directions (north 3 hops, east, etc..)
- · Router processing
 - Examine first step in directions
 - Strip first step from packet
 - · Forward to step just stripped off

Srinivasan Seshan, 2001

L -4; 1-24-01

- Advantages
 - Switches can be very simple and fast
- Disadvantages
 - Variable (unbounded) header size
 - Sources must know or discover topology (e.g., failures)
- Typical use
 - · Ad-hoc networks (DSR)
 - Machine room networks (Myrinet)

asan Seshan, 2001 L -4; 1-24-01

Virtual Circuits/Tag Switching

- · Connection setup phase
 - Use other means to route setup request
 - Each router allocates flow ID on local link
 - Creates mapping of inbound flow ID/port to outbound flow ID/port
- · Each packet carries connection ID
 - Sent from source with 1st hop connection ID
- Router processing
 - Lookup flow ID simple table lookup
 - Replace flow ID with outgoing flow ID
 - Forward to output port

Srinivasan Seshan, 2001 L-4; 1-24

Virtual Circuits Examples

Virtual Circuits

Advantages

- More efficient lookup (simple table lookup)
- More flexible (different path for each flow)
- Can reserve bandwidth at connection setup
- Easier for hardware implementations

Disadvantages

- Still need to route connection setup request
- More complex failure recovery must recreate connection state

Typical uses

- ATM combined with fix sized cells
- MPLS tag switching for IP networks

P Srinivasan Seshan, 201

4 4 04 04

IP Datagrams on Virtual Circuits

- Challenge when to setup connections
 - At bootup time permanent virtual circuits
 - Large number of circuits
 - For every packet transmission
 - Connection setup is expensive
 - For every connection
 - What is a connection?
 - How to route connectionless traffic?

© Srinivasan Seshan, 2001

L-4; 1-24-01

IP Datagrams on Virtual Circuits

- · Traffic pattern
 - Few long lived flows
 - Flow set of data packets from source to destination
 - Large percentage of packet traffic
 - · Improving forwarding performance by using virtual circuits for these flows
- Other traffic uses normal IP forwarding

Global Addresses (IP)

- · Each packet has destination address
- · Each switch has forwarding table of destination → next hop
 - At v and x: destination → east
 - At w and y: destination → south
 - At z: destination → north
- · Distributed routing algorithm for calculating forwarding tables

Global Address Example

Router Table Size

- · One entry for every host on the Internet
 - 100M entries, doubling every year
- One entry for every LAN
 - Every host on LAN shares prefix
 - Still too many, doubling every year
- One entry for every organization
 - Every host in organization shares prefix
 - · Requires careful address allocation

Outline

- Alternative methods for packet forwarding
- IP packet routing
- · Variable prefix match
- IP router design
- Routing protocols distance vector

Original IP Route Lookup

- · Address classes
 - A: 0 | 7 bit network | 24 bit host (16M each)
 - B: 10 | 14 bit network | 16 bit host (64K)
 - C: 110 | 21 bit network | 8 bit host (255)
- Address would specify prefix for forwarding
 - · Simple lookup

Original IP Route Lookup – Example 💃

- www.cmu.edu address 128.2.11.43
 - Class B address class + network is 128.2
 - Lookup 128.2 in forwarding table
 - Prefix part of address that really matters for
- Forwarding table contains
 - List of class+network entries
 - A few fixed prefix lengths (8/16/24)
- · Large tables
 - 2 Million class C networks

CIDR Revisited

- Supernets
 - · Assign adjacent net addresses to same org
 - Classless routing (CIDR)
- How does this help routing table?
 - Combine routing table entries whenever all nodes with same prefix share same hop

CIDR Example

- · Network provide is allocated 8 class C chunks, 201.10.0.0 to 201.10.7.255
 - · Allocation uses 3 bits of class C space
 - Remaining 21 bits are network number, written as 201.10.0.0/21
- Replaces 8 class C routing entries with 1 combined entry
 - · Routing protocols carry prefix with destination network address
 - · Longest prefix match for forwarding

CIDR Illustration Provider is given 201.10.0.0/21 201.10.0.0/22 201.10.4.0/24 201,10,5,0/24 201.10.6.0/23

CIDR Shortcomings

- Multi-homing
- · Customer selecting a new provider

Routing to the Network

- Packet to 10.1.1.3 arrives
- Path is R2 R1 H1 - H2

Outline

- · Alternative methods for packet forwarding
- IP packet routing
- · Variable prefix match
- IP router design
- Routing protocols distance vector

How To Do Variable Prefix Match

- Traditional method Patricia Tree
 - Arrange route entries into a series of bit tests
- Worst case = 32 bit tests
 - Problem: memory speed is a bottleneck

Speeding up Prefix Match (P+98)

- Cut prefix tree at 16 bit depth
 - 64K bit mask
 - Bit = 1 if tree continues below cut (root head)
 - Bit = 1 if leaf at depth 16 or less (genuine head)
 - Bit = 0 if part of range covered by leaf

Prefix Tree

Prefix Tree

Speeding up Prefix Match (P+98)

- Each 1 corresponds to either a route or a subtree
 - Keep array of routes/pointers to subtree
 - Need index into array how to count # of 1s
 - Keep running count to 16bit word in base index + code word (6 bits)
 - Need to count 1s in last 16bit word
 - Clever tricks
- Subtrees are handled separately

Speeding up Prefix Match (P+98)

- · Scaling issues
 - . How would it handle IPv6
- Other possiblities
 - Why were the cuts done at 16/24/32 bits?
 - · Improve data structure by shuffling bits

© Srinivasan Seshan, 2001

-4: 1-24 -01

Speeding up Prefix Match - Alternative

- · Route caches
 - Temporal locality
 - Many packets to same destination
- Other algorithms
 - Waldvogel Sigcomm 97
 - · Binary search on hash tables
 - Works well for larger adresses
 - Bremler-Barr Sigcomm 99
 - Clue = prefix length matched at previous hop
 - Why is this useful?

© Srinivasan Seshan, 200

L-4: 1-24-01

Speeding up Prefix Match - Alternatives

Content addressable memory (CAM)

- Hardware based route lookup
- Input = tag, output = value associated with tag
- Requires exact match with tag
 - Multiple cycles (1 per prefix searched) with single CAM
 - Multiple CAMs (1 per prefix) searched in parallel
- Ternary CAM
 - 0,1,don't care values in tag match
 - Priority (I.e. longest prefix) by order of entries in CAM

Srinivasan Seshan, 2001

L-4; 1-24-0

Outline

- Alternative methods for packet forwarding
- IP packet routing
- · Variable prefix match
- IP router design
- Routing protocols distance vector

Srinivasan Seshan, 2001

L-4; 1-24-01

What Does a Router Look Like?

- Line cards
 - Network interface cards
- · Forwarding engine
 - Fast path routing (hardware vs. software)
- Backplane
 - Switch or bus interconnect
- Network controller
 - Handles routing protocols, error conditions

Srinivasan Seshan, 2001

L-4; 1-24-01

Router Processing (P+88)

- Packet arrives arrives at inbound line card
- Header transferred to forwarding engine
 - 24/56 bytes of packet + link layer info
- Forwarding engine transmits result to line card
- Packet copied to outbound line card

© Srinivasan Seshan, 2001

L-4; 1-24-01

Forwarding Engine (P+88)

- General purpose processor + software
- 8KB L1 Icache
 - · Holds full forwarding code
- 96KB L2 cache
 - · Forwarding table cache
- 16MB L3 cache
 - Full forwarding table x 2 double buffered for updates

© Srinivasan Seshan, 2001

L-4: 1-24-01

Forwarding Engine (P+88)

- · Checksum updated but not checked
- Options handled by network proc
- Fragmentation handed by network processor
- Multicast packets are copied on input line card
- Packet trains help route hit rate
 - Packet train = sequence of packets for same/similar flows

Srinivasan Seshan, 2001

L-4; 1-24-01

Network Processor

- Runs routing protocol and downloads forwarding table to forwarding engines
 - Two forwarding tables per engine to allow easy switchover
- · Performs "slow" path processing
 - Handles ICMP error messages
 - Handles IP option processing

© Srinivasan Seshan, 2001

L-4; 1-24-0

Switch Design Issues

- Have N inputs and M outputs
 - Multiple packets for same output output contention
 - Switch contention switch cannot support arbitrary set of transfers
 - Crossbar
 - Bus
 - High clock/transfer rate needed for bus
 - Banyan net
 - Complex scheduling needed to avoid switch contention
- Solution buffer packets where needed

Srinivasan Seshan, 200

L -4; 1-24-01

Switch Buffering

- Input buffering
 - Which inputs are processed each slot schedule?
 - Head of line packets destined for busy output blocks other packets
- · Output buffering
 - Output may receive multiple packets per slot
 - Need speedup proportional to # inputs
- Internal buffering
 - Head of line blocking
 - · Amount of buffering needed

Srinivasan Seshan, 2001

L-4; 1-24-01

Line Card Interconnect (P+88)

- Virtual output buffering
 - Maintain per output buffer at input
 - Solves head of line blocking problem
 - Each of MxN input buffer places bid for output
- Crossbar connect
- Challenge: map of bids to schedule for crossbar

© Srinivasan Seshan, 2001

L-4; 1-24-01

Switch Scheduling (P+88)

- Schedule for 128 byte slots
 - · Greedy mapping of inputs to outputs
- Fairness
 - Order of greedy matching permuted randomly
 - Priority given to forwarding engine in schedule (why?)
- Parallelized
 - · Check independent paths simultaneously

Srinivasan Seshan, 2001

L-4; 1-24-01

Outline

- · Alternative methods for packet forwarding
- IP packet routing
- · Variable prefix match
- IP router design
- Routing protocols distance vector

Srinivasan Seshan, 200

L-4; 1-24-01

Factors Affecting Routing

- Routing algorithms view the network as a graph
- Problem: find lowest cost path between two nodes
- Factors
 - Static topology
 - Dynamic load
 - Policy

© Srinivasan Seshan, 2

L-4; 1-24-01

Two Main Approaches

- Distance-vector (DV) protocols
- Link state (LS) protocols

Srinivasan Seshan, 2

L-4; 1-24-01

Distance Vector Protocols

- Employed in the early Arpanet
- Distributed next hop computation
- Unit of information exchange
 - Vector of distances to destinations
- Distributed Bellman-Ford Algorithm

0.000

Distributed Bellman-Ford

- Start Conditions:
 - Each router starts with a vector of (zero) distances to all directly attached networks
- Send step:
 - Each router advertises its current vector to all neighboring routers
- Receive step:
- Upon receiving vectors from each of its neighbors, router computes its own distance to each neighbor
- Then, for every network X, router finds that neighbor who is closer to X than to any other neighbor
 Router updates its cost to X
- After doing this for all X, router goes to send step

© Srinivasan Seshan, 2001

L -4; 1-24-01

