Modelling and Control of One Leg Hopper

Diagram

After simulating the simpler dynamics of systems like the pendulum and the cart pole, we are now moving ahead to the simulation of the dynamics of a small part of the final robot. I am making the assumption that the final robot will resemble four sections like the one pictured above connected together rigidly (at first) and eventually with a flexible spine. In this *Mathematica* notebook I will, using the Lagrangian of the system, get the equations of the dynamics of the system. These equations can be used both to mathematically model the system and to develop a model based controller.

Writing Down the Lagrangian

```
in[352]:= ClearAll["Global`*"];
       T[t_] = 1 / 2 M0 (x'[t]^2 + y'[t]^2) +
            1/2 M1 ((11 \theta 1'[t] Cos[\theta 1[t]] + x'[t])^2 + (11 \theta 1'[t] Sin[\theta 1[t]] + y'[t])^2) +
            1/2 M2 ((12 \theta 2'[t] Cos[\theta 1[t] + \theta 2[t]] + 11 \theta 1'[t] Cos[\theta 1[t]] + x'[t])^2 +
                  (12 \theta 2'[t] \sin[\theta 1[t] + \theta 2[t]] + 11 \theta 1'[t] \sin[\theta 1[t]] + y'[t])^2;
       V[t_] = M0 gy[t] + M1 g(y[t] - 11 Cos[\theta1[t]]) +
            M2 (y[t] - 11 \cos[\theta 1[t]] - 12 \cos[\theta 1[t] + \theta 2[t]]);
       \mathbf{L}[\mathsf{t}_{-}] = \mathbf{T}[\mathsf{t}] - \mathbf{V}[\mathsf{t}];
```

Solving Dynamics Using Euler-Lagrange

```
In[366]:= dynamics =
                                                                                                            Expand[\{D[D[L[t], x'[t]], t] - D[L[t], x[t]], D[D[L[t], y'[t]], t] - D[L[t], y[t]],
                                                                                                                                               D[D[L[t], \theta1'[t]], t] - D[L[t], \theta1[t]], D[D[L[t], \theta2'[t]], t] - D[L[t], \theta2[t]]
Out[366]= \{-11 \text{ M1 Sin}[\theta 1[t]] \theta 1'[t]^2 - 11 \text{ M2 Sin}[\theta 1[t]] \theta 1'[t]^2 - 11 \text{ M2 Sin}[\theta 1[t]] \theta 1'[t]^2 - 11 \text{ M2 Sin}[\theta 1[t]] \theta 1'[t]^2 - 11 \text{ M3 Sin}[\theta 1[t]] \theta 1'[t]^3 - 11 \text{ M3 Sin}[\theta 1[t]] \theta 1'
                                                                                                                              12 \text{ M2 Sin}[\Theta 1[t] + \Theta 2[t]] \Theta 1'[t] \Theta 2'[t] - 12 \text{ M2 Sin}[\Theta 1[t] + \Theta 2[t]] \Theta 2'[t]^2 + \Theta 12 \text{ M2 Sin}[\Theta 1[t] + \Theta 2[t]] \Theta 1'[t]^2 + \Theta 12 \text{ M2 Sin}[\Theta 1[t] + \Theta 1[t]] \Theta 1'[t] \Theta 
                                                                                                                              {
m M0~x''[t]} + {
m M1~x''[t]} + {
m M2~x''[t]} + {
m 11~M1~Cos}[\theta 1[t]] \theta 1''[t] +
                                                                                                                              11 M2 Cos[\theta 1[t]] \theta 1''[t] + 12 M2 Cos[\theta 1[t] + \theta 2[t]] \theta 2''[t],
                                                                                                              g M0 + g M1 + M2 + 11 M1 Cos[\theta 1[t]] \theta 1'[t]^2 + 11 M2 Cos[\theta 1[t]] \theta 1'[t]^2 +
                                                                                                                              12 \, \text{M2} \, \text{Cos} \, [\theta 1 \, [\text{t}] \, + \theta 2 \, [\text{t}]] \, \theta 1' \, [\text{t}] \, \theta 2' \, [\text{t}] \, + 12 \, \text{M2} \, \text{Cos} \, [\theta 1 \, [\text{t}] \, + \theta 2 \, [\text{t}]] \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\theta 1 \, [\text{t}]] \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\theta 1 \, [\text{t}]] \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\theta 1 \, [\text{t}]] \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\theta 1 \, [\text{t}]] \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\theta 1 \, [\text{t}]] \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\theta 1 \, [\text{t}]] \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\theta 1 \, [\text{t}]] \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, [\text{t}]^2 \, \theta 2' \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, [\text{t}]^2 \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, [\text{t}]^2 \, [\text{t}]^2 \, [\text{t}]^2 \, + 12 \, \text{M2} \, [\text{t}]^2 \, [\text{t}]^
                                                                                                                           M0 y''[t] + M1 y''[t] + M2 y''[t] + 11 M1 Sin[\theta1[t]] \theta1''[t] +
                                                                                                                              11 \text{ M2 Sin}[\theta 1[t]] \theta 1''[t] + 12 \text{ M2 Sin}[\theta 1[t] + \theta 2[t]] \theta 2''[t],
                                                                                                              {\tt g 11 M1 Sin[\theta1[t]] + 11 M2 Sin[\theta1[t]] + 12 M2 Sin[\theta1[t] + \theta2[t]] + }
                                                                                                                              12 \text{ M2 Sin}[\theta 1[t] + \theta 2[t]] \text{ } \text{x'}[t] \theta 2'[t] - 12 \text{ M2 Cos}[\theta 1[t] + \theta 2[t]] \text{ } \text{y'}[t] \theta 2'[t] + \theta 2[t] \text{ } \text{min}[\theta 1[t] + \theta 2[t]] \text{ } \text{ } \text{min}[\theta 1[t] + \theta 2[t]] \text{ } \text{min}[\theta 1[t] + \theta 2[t]] \text{ } \text{m
                                                                                                                              11 12 M2 Cos[\theta1[t] + \theta2[t]] Sin[\theta1[t]] \theta2'[t]<sup>2</sup> -
                                                                                                                              11 12 M2 \cos[\theta 1[t]] \sin[\theta 1[t] + \theta 2[t]] \theta 2'[t]^2 + 11 M1 \cos[\theta 1[t]] x''[t] + 11 M2 \cos[\theta 1[t]] x''[t] x''[t] + 11 M2 \cos[\theta 1[t]] x''[t] 
                                                                                                                              11 \text{ M2 Cos}[\theta 1[t]] \text{ x"}[t] + 11 \text{ M1 Sin}[\theta 1[t]] \text{ y"}[t] + 11 \text{ M2 Sin}[\theta 1[t]] \text{ y"}[t] + 11 \text{ M2 Sin}[\theta 1[t]] \text{ y"}[t] + 11 \text{ M2 Sin}[\theta 1[t]] \text{ y"}[t]
                                                                                                                              11^{2} \,\mathrm{M1} \, \cos[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \,\mathrm{M2} \, \cos[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \,\mathrm{M1} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M2} \, \cos[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, \sin[\theta 1 \, [\mathrm{t}]]^{2} \, \theta 1'' \, [\mathrm{t}] + 11^{2} \, \mathrm{M3} \, [\mathrm{t}]^{2} \, \theta 1'' \, [\mathrm{t}]^
                                                                                                                              11^2 \text{ M2 Sin}[\theta 1[t]]^2 \theta 1''[t] + 11 12 \text{ M2 Cos}[\theta 1[t]] \text{ Cos}[\theta 1[t]] + \theta 2[t]] \theta 2''[t] +
                                                                                                                              11 12 M2 Sin[\theta 1[t]] Sin[\theta 1[t] + \theta 2[t]] \theta 2''[t],
                                                                                                              12 \text{ M2 Sin}[\theta 1[t] + \theta 2[t]] - 12 \text{ M2 Sin}[\theta 1[t] + \theta 2[t]] \text{ x}'[t] \theta 1'[t] +
                                                                                                                              12\;\mathrm{M2}\;\mathrm{Cos}\left[\theta 1\left[\mathsf{t}\right] + \theta 2\left[\mathsf{t}\right]\right]\;\mathrm{y'}\left[\mathsf{t}\right]\;\theta 1'\left[\mathsf{t}\right] + 12\;\mathrm{M2}\;\mathrm{Cos}\left[\theta 1\left[\mathsf{t}\right] + \theta 2\left[\mathsf{t}\right]\right]\;\mathrm{x''}\left[\mathsf{t}\right] + 12\;\mathrm{M2}\;\mathrm{M2}\left[\mathsf{t}\right]
                                                                                                                              12 M2 Sin[\theta 1[t] + \theta 2[t]] y''[t] + 11 12 M2 Cos[\theta 1[t]] Cos[\theta 1[t] + \theta 2[t]] \theta 1''[t] + \theta 1[t] \theta 1''[t] \theta 1[t] 
                                                                                                                              11 12 M2 Sin[\theta 1[t]] Sin[\theta 1[t] + \theta 2[t]] \theta 1''[t] +
                                                                                                                                12^{2}\,\mathrm{M2}\,\mathrm{Cos}\,[\theta1\,[\mathrm{t}]\,+\theta2\,[\mathrm{t}]\,]^{2}\,\theta2^{\prime\prime}[\mathrm{t}]\,+12^{2}\,\mathrm{M2}\,\mathrm{Sin}\,[\theta1\,[\mathrm{t}]\,+\theta2\,[\mathrm{t}]\,]^{2}\,\theta2^{\prime\prime}[\mathrm{t}]\,\Big\}
        ln[370] = M0 = 1;
                                                                                        M1 = 1;
                                                                                        M2 = 1;
                                                                                        11 = 1;
                                                                                        12 = 1;
                                                                                        g = 9.81;
```

```
ln[435] = sol = NDSolve[{dynamics[[1]] == 0, dynamics[[2]] == 0, dynamics[[3]] == (\theta 2[t] - Pi / 6), dynamics[[3]] == (\theta 2[t] - Pi / 6),
                                                       x'[0] == 0, y'[0] == 0, \theta 1'[0] == 0, \theta 2'[0] == 0, \{x, y, \theta 1, \theta 2\}, \{t, 0, 10\}
                                                                                                                                                                                                                                                                                Domain: {{0., 10.}}
Output: scalar
Out[435]= \left\{\left\{\mathbf{x} \rightarrow \text{InterpolatingFunction}\right.\right\}
                                                                                                                                                                                                                                                                                 Domain: {{0., 10.}}
                                                y \rightarrow InterpolatingFunction
                                                                                                                                                                                                                                                                                 Output: scalar
                                                                                                                                                                                                                                                                                       Domain: {{0., 10.}}
                                                \theta 1 \rightarrow InterpolatingFunction
                                                                                                                                                                                                                                                                                       Output: scalar
                                                                                                                                                                                                                                                                                    Domain: {{0., 10.}}
                                                \theta 2 \rightarrow InterpolatingFunction
                                                                                                                                                                                                                                                                                       Output: scalar
```

```
 \begin{aligned} & \text{In}[436] = \  \, \text{xs} = \text{Part}[\text{sol}[[1, \text{All}, -1]], \ 1]; \\ & \text{ys} = \text{Part}[\text{sol}[[1, \text{All}, -1]], \ 2]; \\ & \theta 1 \text{s} = \text{Part}[\text{sol}[[1, \text{All}, -1]], \ 3]; \\ & \theta 2 \text{s} = \text{Part}[\text{sol}[[1, \text{All}, -1]], \ 4]; \\ & \text{Animate}[\text{Graphics}[\\ & \{\text{Thick}, \text{Green}, \text{Rectangle}[\{\text{xs}[t] - 0.3, \text{ys}[t] - 0.1\}, \{\text{xs}[t] + 0.3, \text{ys}[t] + 0.1\}], \\ & \text{Thick}, \text{Blue}, \text{Line}[\{\{\text{xs}[t], \text{ys}[t]\}, \{\text{xs}[t] + 11 \sin[\theta 1 \text{s}[t]], \text{ys}[t] - 11 \cos[\theta 1 \text{s}[t]]\}, \\ & \{\text{xs}[t] + 11 \sin[\theta 1 \text{s}[t]] + 12 \sin[\theta 1 \text{s}[t] + \theta 2 \text{s}[t]], \\ & \text{ys}[t] - 11 \cos[\theta 1 \text{s}[t]] - 12 \cos[\theta 1 \text{s}[t] + \theta 2 \text{s}[t]]\} \}], \\ & \text{Axes} \rightarrow \text{True}, \text{AxesOrigin} \rightarrow \{0, 0\}, \text{PlotRange} \rightarrow \{\{-5, 5\}, \{-5, 5\}\}], \\ & \{t, 0, 10\}, \text{AnimationRunning} \rightarrow \text{False}] \end{aligned}
```

