Applied Probability

1 Continuous time Markov Chains

- right continuous $\forall t, \exists \epsilon, X_t(\omega) = X_{t+s}(\omega)$ for all $s \in [0, \epsilon]$
- finite dimension marginals $\mathbb{P}(X_{t_1} = x_1, \dots, X_{t_n} = x_n)$

Fact. process can be determined from the finite dimension marginals

– Memoryless property $\mathbb{P}(S>t+s|S>s)=\mathbb{P}(S>t)$

Theorem 1.1. Memoryless iff exponential distribution

1.1 Poisson process

- Poisson process with intensity λ
 - (i) $N(0) = 0, N(s) \le N(t)$ for s < t

(ii)
$$\mathbb{P}(N(t+h) = n + m | N(t) = n) = \begin{cases} \lambda h + o(h) & \text{if } m = 1\\ o(h) & \text{if } m > 1\\ 1 - \lambda h + o(h) & \text{if } m = 0 \end{cases}$$

(iii) N(t) - N(s) independent of $(N(k))_{k \le s}$

Theorem 1.2. $N(t) \sim Poi(\lambda t)$

Proof. derive differential equation, then generating function

- $p_j(t) = \mathbb{P}(N(t) = j)$
- Generating function $G(s,t) = \sum p_j(t)s^j$
- Arrival time T_n
- interarrival time U_n

Theorem 1.3.

- (i) $U_i \sim Exp(\lambda)$
- (ii) U_i independent

Proof. use N(t) Poisson

Fact. $N(t) \geq j \iff T_j \leq t$

- order statistics

Theorem 1.4. T_1, \ldots, T_n conditional on $\{N(t) = n\}$ same as joint distribution of order statistics of n i.i.d. Uniform[0,t]

Proof. U to T, then calculate density

Theorem 1.5. (X_n) increasing right-continuous, taking values $\{0,1,\ldots\}$, $X_0=0$, then following equivalent:

- (i) holding times $S_i \sim Exp(\lambda)$ i.i.d. ,jump chain $Y_n = n$, (Sousi defined X Poisson process in this manner)
- (ii) (infinitesimal) X independent increments, $h \downarrow 0$ uniformly in t, $\begin{cases} \mathbb{P}(X_{t+h} X_t = 1) = \lambda h + o(h) \\ \mathbb{P}(X_{t+h} X_t = 0) = 1 \lambda h + o(h) \end{cases}$
- (iii) X has independent, stationary increments, $X_t \sim Poi(\lambda t)$

Theorem 1.6 (Superposition). X, Y independent Poisson process, with parameters λ, μ , then $Z_t = X_t + Y_t$ Poisson process with parameters $\lambda + \mu$

Proof. infinitesimal

Theorem 1.7 (Thining). X Poisson process with parameters λ , $(Z_i) \sim Bernoulli(p)$ i.i.d., Y jumps \iff X jumps and $Z_{X_t} = 1$, then Y Poisson process of parameter λp , X - Y independent Poisson process of parameter $\lambda(1-p)$

Proof. infinitesimal for Poisson process, independence follows from expanding $\mathbb{P}(Y_t = n, X_t - Y_t = m)$ (suffice to prove independence using finite dimension marginals)

1.2 Birth process

- birth process with birth rates $\lambda_0, \lambda_1, \dots$
 - (i) N(0) = 0, N(s) < N(t) for s < t

(ii)
$$\mathbb{P}(N(t+h) = n + m | N(t) = n) = \begin{cases} \lambda_n h + o(h) & \text{if } m = 1\\ o(h) & \text{if } m > 1\\ 1 - \lambda_n h + o(h) & \text{if } m = 0 \end{cases}$$

(iii) N(t) - N(s) independent of $(N(k))_{k \le s}$

Example.

(i) Poisson process: $\lambda_n = \lambda$

(ii) Simple birth: $\lambda_n = n\lambda$

(iii) Simple birth with immigration: $\lambda_n = n\lambda + \nu$

Proposition 1.8. $T_k \sim Exp(q_k)$ independent, $0 < q = \sum q_k < \infty$, $T = \inf_k T_k$, then

- (i) infimum attained at unique K with probability 1
- (ii) T, K independent

(iii)
$$T \sim Exp(q), \mathbb{P}(K = k) = \frac{q_k}{q}$$

$$-T_{\infty} = \lim T_n = \sum_{i=1}^{\infty} U_i$$

– non-explosive / honest —— $\mathbb{P}(T_{\infty} = \infty) = 1$

Theorem 1.9. birth process N, $\lambda_n > 0$, then non-explosive $\iff \sum_n \frac{1}{\lambda_n} = \infty$

Lemma 1.10.
$$U_n \sim Exp(\lambda_n)$$
, independent, then $\mathbb{P}(T_\infty < \infty) = \begin{cases} 0 & \text{if } \sum_n \frac{1}{\lambda_n} = \infty \\ 1 & \text{if } \sum_n \frac{1}{\lambda_n} < \infty \end{cases}$

- forward system of equations: $p'_{ij}(t) = \lambda_{j-1}p_{i,j-1}(t) \lambda_{j}p_{ij}(t)$
- backward system of equations: $p'_{ij}(t) = \lambda_i p_{i+1,j}(t) \lambda_i p_{ij}(t)$

Theorem 1.11.

- (i) forward system has unique solution $\{p_{ij}(t)\}$
- (ii) $\{p_{ij}(t)\}$ satisfy backward system

Theorem 1.12. $\{p_{ij}(t)\}$ unique solution of forward equations, $\{\pi_{ij}(t)\}$ any solution of backward equations, then $p_{ij}(t) \leq \pi_{ij}(t)$

Fact.
$$\sum_{j} p_{ij}(t) = 1 \iff \mathbb{P}(T_{\infty} > t) = 1$$

- weak Markov property
- stopping time
- strong Markov property
- right continuity
- stationary independent increments
 - (i) N(t) N(s) only depends on t s
 - (ii) $\{N(t_i) N(s_i)\}$ independent where $s_1 \leq t_1 \leq \cdots \leq s_n \leq t_n$

1.3 Continuous Markov Chain

Setting 1. (X(t)) takes values in countable S

- Markov property $\mathbb{P}(X(t_n) = j | X(t_{n-1}) = i_{n-1}, \dots, X(t_1) = i_1) = \mathbb{P}(X(t_n) = j | X(t_{n-1}) = i_{n-1})$
- continuous-time Markov chain —— right-continuous, Markov property
- transition probability $p_{ij}(s,t) = \mathbb{P}(X(t) = j|X(s) = i)$
- homogeneous $p_{ij}(s,t) = p_{ij}(0,t-s)$
- transition semigroup $(P_t)_{ij} = p_{ij}(t)$
- stochastic semigroup
 - (i) $P_0 = I$
 - (ii) P_t stochastic non-negative entries, row sum 1
 - (iii) (Chapman-Kolmogorov) $P_{s+t} = P_s P_t$

Setting 2. (X(t)) homogeneous Markov chain

Theorem 1.13. P_t stochastic semigroup

- \mathbb{P}_i —— probability measure conditional on X(0)=i
- $-\mathbb{E}_i$
- t-historical events given by $\{X(s) : s < t\}$
- t-future —— events given by $\{X(s): s > t\}$
- stopping time T —— $\{T \le t\}$ given by $\{X(s) : s \le t\}$

Theorem 1.14 (Extended Markov property). H t-historical, F t-future, then $\mathbb{P}(F|X(t)=j,H)=\mathbb{P}(F|X(t)=j)$

Theorem 1.15 (Strong Markov property). T stopping time, conditional on $\{T \leq T_{\infty}\} \cap \{X(T) = i\}$, then

- (i) $(X_{T+u})_u$ continuous Markov chain start at state i
- (ii) same transition prob
- (iii) independent to $\{X(s) : s < T\}$

Setting 3. X(0) = i

$$-U_0 = \inf\{t : X(t) \neq i\}$$

Fact. right continuous $\Rightarrow U_0 > 0$

Theorem 1.16.

- (i) $U_0 \sim Exp(g_i)$
- (ii) U_0 stopping time

Proof. Extended Markov and homogeneity to deduce memoryless

- transition matrix $\mathbf{Y} = (y_{ij})$ $y_{ij} = \begin{cases} \delta_{ij} & \text{if } g_i = 0\\ \mathbb{P}_i(X(U_0) = j) & \text{if } g_i > 0 \end{cases}$
- generator $\mathbf{G} = (g_{ij})$ $g_{ij} = \begin{cases} g_i y_{ij} & \text{if } j \neq i \\ -g_i & \text{if } j = i \end{cases}$

Fact. $\mathbb{P}(X(t+h) = j | X(t) = i) = g_{ij}h + o(h)$

Fact. $g_{ij} = g_i(y_{ij} - \delta_{ij})$

Theorem 1.17. X(0) = i, then

- (i) $X(U_0)$ independent of U_0
- (ii) conditional on $X(U_0) = j$, $X^*(s) = X(U_0 + s)$ continuous-time Markov chain, same transition prob, initial state j, independent to the past
- $-T_m$
- holding time $U_m = T_{m+1} T_m$
- jump chain $Y = \{Y_n\}$
- $-T_{\infty} = \lim T_n$
- minimal process
- explode from state $i \mathbb{P}_i(T_{\infty} < \infty) > 0$

Proposition 1.18. X minimal process, then $P_{s+t} = P_s P_t$

Proof. may go to $\{\infty\}$

Theorem 1.19. $i \in S$, non-explosive from i if any of the following holds:

- (i) S finite
- (ii) $\sup_{j} g_{j} < \infty$
- (iii) i recurrent in jump chain Y

Proof. be dominated by Poisson process which is non-explosive

- irreducible $\longrightarrow \forall i, j, \exists t > 0, p_{ij}(t) > 0$

Theorem 1.20.

- (i) (Levy dichotomy) X irreducible, then $\forall t > 0, p_{ij}(t) > 0$
- (ii) X irreducible \iff Y irreducible

Proof. look at jump chain, $g_{i_0} \cdots g_{i_n} > 0$, $p_{i_k, i_{k+1}}(t) > 0$

Fact. birth process not irreducible

- $-T_A = \inf\{t > 0 : X_t \in A\}$
- $H_A = \inf \{ n \ge 0 : Y_n \in A \}$
- hitting probability $h_A(x) = \mathbb{P}_x(T_A < \infty)$
- expected hitting time $k_A(x) = \mathbb{E}_x(T_A)$

Theorem 1.21. $(h_A(x))_x$ minimal non-negative solution to

$$\begin{cases} h_A(x) = 1 & \forall x \in A \\ Qh_A(x) = \sum_y q_{xy} h_A(y) = 0 & \forall x \notin A \end{cases}$$

Theorem 1.22. $q_x > 0 \forall x \notin A$, then $k_A(x)$ minimal non-negative solution to

$$\begin{cases} k_A(x) = 0 & \forall x \in A \\ Qk_A(x) = \sum_y q_{xy} k_A(y) = -1 & \forall x \notin A \end{cases}$$

- recurrent $\mathbb{P}(\{t: X(t) = i\} \text{ unbounded}) = 1$
- transient $\mathbb{P}(\{t: X(t) = i\} \text{ unbounded}) = 0$
- $R_i = \inf \{t > U_0 : X(t) = i\}$
- mean return time $m_i = \mathbb{E}(R_i)$
- positive recurrent / non-null recurrent $m_i < \infty$

Theorem 1.23. continuous-time chain X, jump chain Y

- (i) $g_i = 0$, then i recurrent for X
- (ii) $g_i > 0$, then i recurrent for $X \iff$ recurrent for Y
- (iii) i recurrent $\iff \int p_{ii}(t)dt = \infty$
- (iv) i transient $\iff \int p_{ii}(t)dt < \infty$
- (v) X irreducible, then every state recurrent or every state transient

Proof. main point is no explosion. Interchange summation, then old result.

- Forward equation: $P'_t = P_t G$ with boundary condition $P_0 = 1$
- Backward equation: $P'_t = GP_t$ with boundary condition $P_0 = 1$

Fact. If states S finite, then $P_t = e^{tG}$

- minimal solution $p_{ij}(t) \leq \pi_{ij}(t)$
- sub-stochastic $\sum_{j} p_{ij}(t) < 1$

Theorem 1.24. S countable, X minimal Markov chain with generator G, then

(i) P_t minimal non-negative solution of backward equation $P'_t = GP_t$ with boundary condition $P_0 = 1$

(ii) P_t minimal non-negative solution of forward equation $P_t' = P_t G$

Proof. Solution: condition on $T_1 > t$ or $T_1 \le t$.

Minimal: reverse argument and induction.

Fact. any solution to both equations sub-stochastic

Fact. non-explosive $\Rightarrow P_t$ unique solution to both equations

- measure

- stationary measure $\boldsymbol{\pi} = \boldsymbol{\pi} \boldsymbol{P}_t$
- stationary distribution
- unique measure unique up to scalar multiplication
- first return time R_i
- $-m_i = \mathbb{E}_i(R_i)$

Theorem 1.25. X irreducible, $|S| \geq 2$

- (i) some state k positive recurrent, then
 - (a) \exists unique stationary distribution π
 - (b) unique distribution st $\pi G = 0$
 - (c) all states positive recurrent
- (ii) X non-explosive, $\exists \pi \text{ st } \pi G = 0$, then
 - (a) all states positive recurrent
 - (b) π stationary
 - (c) $\pi_k = \frac{1}{m_k q_k}$

Proof. (i) use 1.26(iv) $\pi = \mu(k)/m_k$, then uniqueness of measure \Rightarrow all state non-null

(ii) $\nu' = \frac{\pi_i g_i}{\pi_k g_k}$, then $\rho(k) \leq \nu'$ from discrete MC

$$- \nu_i = x_i g_i$$

$$- \boldsymbol{\mu}(k) = (\mu_j(k))_j - \mu_j(k) = \mathbb{E}_k \left(\int_0^{R_k} \mathbb{1} \left\{ X(s) = j \right\} ds \right)$$

 $- \rho(k) = (\rho_j(k))$ — mean visit to j starting from k in jump chain Y

Lemma 1.26. X irreducible Markov chain, $|S| \geq 2$

- (i) measure x, then $xG = 0 \iff \nu Y = \nu$
- (ii) X recurrent, xG = 0 unique measure
- (iii) \boldsymbol{x} measure, $\boldsymbol{x}\boldsymbol{G} = 0$, then $x_j > 0$
- (iv) X recurrent, $k \in S$, then $\mu(k)G = 0$ and stationary

Proof. (i) expand

- (ii) $\nu Y = \nu$, then uniqueness from discrete MC
- (iii) $\mu_j(k) = \frac{1}{g_j} \rho_j(k)$, then $\boldsymbol{\rho}(k) \boldsymbol{Y} = \boldsymbol{\rho}(k)$ from discrete MC
- (iv) strong Markov to shift time t

Fact. X non-explosive, then $R_k = \sum_j \int_0^{R_k} \mathbb{1} \{X(s) = j\} ds$

Fact. X irreducible, \exists more than one stationary distribution, then X explosive

Theorem 1.27 (Markov chain limit theorem). X irreducible, non-explosive

- (i) if \exists stationary distribution π , then
 - (a) π unique
 - (b) $p_{ij}(t) \to \pi_j$
- (ii) if no stationary distribution, then $p_{ij}(t) \rightarrow 0$

Proof. skeleton $Z_n = X(nh)$

Lemma 1.28. X minimal, then $|p_{ij}(t+u) - p_{ij}(t)| \le 1 - e^{-g_i u}$

1.4 Reversibility

Theorem 1.29. X irreducible, non-explosive, with invariant distribution π , let $X_0 \sim \pi$, fix T, $\hat{X}_t = X_{T-t}$, then

- (i) \hat{X} Markov with generator \hat{Q} and invariant distribution π , $\pi(x)\hat{q}_{xy} = \pi(y)q_{yx}$
- (ii) \hat{X} irreducible, non-explosive

Proof. expand $\mathbb{P}(\hat{X}_{t_0} = x_0, \dots, \hat{X}_{t_n} = x_n)$, then \hat{P} satisfies Komogorov backward with \hat{Q} , then minimal, easy to show irreducible, finally $\hat{p}_{xy}(t) = \mathbb{P}_x(\hat{X}_t = y, t < \hat{\zeta})$ where ζ explosion time \Box

- reversible (X_t) , (X_{T-t}) same distribution
- detailed balanced $---- \lambda(x)q_{xy} = \lambda(y)q_{yx}$

Lemma 1.30. detail balanced $\Rightarrow \lambda$ invariant measure

Theorem 1.31. X irreducible, non-explosive, $X_0 \sim \pi$, then detail balanced \iff (X_t) reversible

Lemma 1.32. π invariant for birth-death chain \iff detail balanced

1.5 Ergodic theorem

– long run proportion of time spends at $x - \frac{1}{t} \int_0^t \mathbb{1}(X_s = x) ds$

Theorem 1.33. X irreducible, then

(i)
$$\frac{1}{t} \int_0^t \mathbb{1}(X_s = x) ds \xrightarrow{a.s.} \frac{1}{m_x g_x}$$

(ii) if
$$\pi$$
 invariant, f bounded, then $\frac{1}{t} \int_0^t f(X_s) ds \xrightarrow{a.s.} \sum_x f(x) \pi(x)$

1.6 Birth-death process and imbedding

- birth rate $\lambda_0, \lambda_1, \dots$
- death rate μ_1, μ_2, \dots
- birth-death process

Theorem 1.34. X birth-death process, generator G

(i) measure
$$x_n = \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} x_0$$
 satisfies $\mathbf{x} \mathbf{G} = 0$

(ii)
$$\exists$$
 distribution π satisfies $\pi G = 0 \iff \sum \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} < \infty$

(iii) if
$$\sum \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} (\lambda_n + \mu_n) < \infty$$
, then π stationary

Proof. (i) solve xG = 0

- (ii) trivial
- (iii) condition for jump chain Y recurrent, then non-explosive

Example.

- Pure birth $\mu_n = 0$
- Simple death with immigration $\lambda_n = \lambda, \mu_n = n\mu$

Theorem 1.35. X(t) asymptotically $Poi(\rho) = Poi\left(\frac{\lambda}{\mu}\right)$

- Simple birth-death $\lambda_n = n\lambda$, $\mu_n = n\mu$, X(0) = IFact. state 0 absorbing

 $\textbf{Theorem 1.36.} \ G(s,t) = \mathbb{E}(s^{X(t)}) = \begin{cases} \left(\frac{\lambda t(1-s)+s}{\lambda t(1-s)+1}\right)^I & \text{if } \mu = \lambda \\ \left(\frac{\mu(1-s)-(\mu-\lambda s)e^{-t(\lambda-\mu)}}{\lambda(1-s)-(\mu-\lambda s)e^{-t(\lambda-\mu)}}\right)^I & \text{if } \mu \neq \lambda \end{cases}$

Proof. Forward equation

Fact. non-explosive as $\sum p_j(t) = G(1,t) = 1$

Fact.
$$\mathbb{E}_I(X(t)) \to \begin{cases} 0 & \text{if } \rho < 1 \\ \infty & \text{if } \rho > 1 \end{cases}$$

• extinction probability $\eta(t) = \mathbb{P}_I(X(t) = 0)$

Corollary 1.37.
$$\eta(t) \to \begin{cases} 1 & \text{if } \rho \leq 1 \\ \rho^{-I} & \text{if } \rho > 1 \end{cases}$$

- imbedded random walk —— jump chain Y with parameter $\frac{\lambda}{\lambda + \mu}$, absorbing at 0
- imbedded branching process —— lives $Exp(\lambda+\mu)$, then born n individuals where $\begin{cases} p_0 = \mathbb{P}(n=0) = \frac{\mu}{\lambda+\mu} \\ p_2 = \mathbb{P}(n=2) = \frac{\lambda}{\lambda+\mu} \end{cases}$

- age-dependent branching process
- age density function $f_T(u) = (\lambda + \mu)e^{-(\lambda + \mu)u}$
- family-size generating function $G(s) = \frac{\mu + \lambda s^2}{\mu + \lambda} = p_0 + p_2 s^2$

2 Queues

- interarrival time X_n with common distribution F_X
- service time S_n with common distribution F_S
- *n*-th customer arrival time $T_n = \sum X_i$
- length of queue Q(t)
- $-A/B/s F_X/F_S/\#$ servers

Example.

- D(d) --- deterministic
- $M(\lambda)$ —— $Exp(\lambda)$ (Markovian)
- $\Gamma(\lambda,k)$
- $-\ G\ ---\ general$

Example.

- M/M/1
- -M/D/1
- G/G/1
- traffic intensity $\rho = \frac{\mathbb{E}(S)}{\mathbb{E}(X)}$

2.1 M/M/1

Setting 4.
$$M(\lambda)/M(\mu)/1$$
, $\lambda_n = \lambda$, $\mu_n = \mu$

Fact.
$$\rho = \frac{\lambda}{\mu}$$

Theorem 2.1.

(i) if
$$\rho < 1$$
, then $\mathbb{P}(Q(t) = n) \to (1 - \rho)\rho^n = \pi_n$

(ii) if
$$\rho \geq 1$$
, then $\mathbb{P}(Q(t) = n) \rightarrow 0$

Fact. can define underlying discrete random walk $Q_{n+1} = \begin{cases} Q_n + 1 & \text{with probability } \frac{\lambda}{\lambda + \mu} = \frac{\rho}{1 + \rho} \\ Q_n - 1 & \text{with probability } \frac{\mu}{\lambda + \mu} = \frac{1}{1 + \rho} \end{cases}$ for $n \geq 1$, and $\mathbb{P}(Q_{n+1} = 1 | Q_n = 0) = 1$

Fact.
$$Q_n$$
 is
$$\begin{cases} positive \ recurrent & if \ \rho < 1 \\ null \ recurrent & if \ \rho = 1 \\ transient & if \ \rho > 1 \end{cases}$$

- waiting time of customer arrived at time t, W

Theorem 2.2. $\rho < 1$, queue in equilibrium, then $W \sim Exp(\mu - \lambda)$

Fact. expected queue length at equilibrium = $\frac{\lambda}{\lambda + \mu}$

$2.2 \quad M/M/\infty$

Setting 5.
$$\begin{cases} q_{i,i+1} = \lambda \\ q_{i,i-1} = i\mu \end{cases}$$

Theorem 2.3.

- (i) Q(t) positive recurrent
- (ii) invariant distribution $\pi \sim Poi(\rho)$

Proof. solve detail balanced for invariant, coupling to prove non-explosive

Setting 6. M/M/1 queue, $\rho < 1$

 $-D_t$ — number of customers have departed queue up to time t

Theorem 2.4 (Burke's theorem).

- (i) At equalibrium, $D_t \sim Poi(\lambda)$
- (ii) X_t independent from $(D_s: s \leq t)$

Proof. (i) fix T, time reversal, then Poisson process for all T, use independent increment criterion.

(ii) X_0 independent to [0,T], then reverse

2.3 Queues in tandem

Setting 7. two M/M/1 with λ, μ_1, μ_2

Theorem 2.5. X_t , Y_t queue length of first, second queue, then (X,Y) positive recurrent Markov chain $\iff \lambda < \mu_1, \mu_2$ In this case, $\pi(m,n) = (1-\rho_1)\rho_1^m(1-\rho_2)\rho_n$, so X_t, Y_t indepedent, geometric distributed

Proof. (i) (Proof 1:) $(m,n) \to \begin{cases} (m+1,n) & \text{with rate } \lambda \\ (m,n+1) & \text{with rate } \mu_1 \text{ if } m \geq 1, \text{ then check directly.} \\ (m,n-1) & \text{with rate } \mu_2 \text{ if } n \geq 1 \end{cases}$

Rate bounded so non-explosive

(ii) (Proof 2:) Burke's

Fact. r.v. independent while process not independent

2.4 Jackson network

Setting 8. finite set $S = \{s_1, \ldots, s_c\}$, $Q_i(t)$ individual in station i, $\mathcal{N} = \{n = (n_1, \ldots, n_c)\}$ count-

$$able, g_{\boldsymbol{m},\boldsymbol{n}} = \begin{cases} \lambda_{ij}\phi_i(m_i) & \text{if } \boldsymbol{n} = \boldsymbol{m} - \boldsymbol{e}_i + \boldsymbol{e}_j \text{ (transfer)} \\ \nu_j & \text{if } \boldsymbol{n} = \boldsymbol{m} + \boldsymbol{e}_j \text{ (arrival)} \\ \mu_i\phi_i(m_i) & \text{if } \boldsymbol{n} = \boldsymbol{m} - \boldsymbol{e}_i \text{ (departure)} \end{cases}, \begin{cases} \phi_i(0) = 0 \\ \phi_i(m) > 0 \end{cases}, \lambda_{ii} = 0$$

$$0 & \text{other } \boldsymbol{m} \neq \boldsymbol{n}$$

- closed migration process $\nu_j = \mu_j = 0$
- irreducible

Setting 9. closed migration process, N number of customers

Example (Base case).
$$N=1, \ \phi_j(1)=1, \ generator \ h_{ij}=\begin{cases} \lambda_{ij} & \ if \ i\neq j \\ -\sum_k \lambda_{ik} & \ if \ i=j \end{cases}$$
, $irreducible$

Fact (Traffic equations). $\sum_{j} \alpha_{j} \lambda_{ji} = \alpha_{i} \sum_{j} \lambda_{ij}$

 $-\alpha$ — stationary distribution for base case N=1

Theorem 2.6. irreducible closed migration process, N customers, then unique stationary distribution $\pi(\mathbf{n}) = B_N \prod_{i=1}^c \left\{ \frac{\alpha_i^{n_i}}{\prod_{i=1}^{n_i} \phi_i(r)} \right\}$

Proof. stationary condition gives $\sum_{i,j} \gamma(\boldsymbol{n} - \boldsymbol{e}_i + \boldsymbol{e}_j) \lambda_{ji} \phi_j(n_j + 1) = \gamma(\boldsymbol{n}) \sum_{i,j} \lambda_{ij} \phi_i(n_i)$ partial balance equation: $\sum_j \gamma(\boldsymbol{n} - \boldsymbol{e}_i + \boldsymbol{e}_j) \lambda_{ji} \phi_j(n_j + 1) = \gamma(\boldsymbol{n}) \sum_j \lambda_{ij} \phi_i(n_i)$, then plug in π

Fact. In equilibrium, not independence as constraint of $\sum n_i = N$

Example (Open migration process).

- auxiliary process —— add station $\{\infty\}$
- $\boldsymbol{\beta} = (\beta_1, \dots, \beta_c, \beta_{\infty})$ stationary distribution of auxiliary process
- $-\alpha_i = \frac{\beta_i}{\beta_{\infty}}$

Fact. $\nu_i + \sum_j \alpha_j \lambda_{ji} = \alpha_i \left(\mu_i + \sum_j \lambda_{ij} \right)$

- $D_i = \sum_{n=0}^{\infty} \frac{\alpha_i^n}{\prod_{r=1}^n \phi_i(r)}$
- $-\pi_i(n_i) = D^{-1} \frac{\alpha_i^{n_i}}{\prod_{r=1}^{n_i} \phi_i(r)}$

Theorem 2.7. auxiliary process irreducible, $D_i < \infty$, then stationary distribution $\pi(\mathbf{n}) = \prod_i^c \pi_i(n_i)$

Fact. In equilibrium, queue length of different stations independent r.v.

- $-g_i = \mu_i + \sum_{i \neq i} \lambda_{ij}$ total rate of departure of a customer at station i
- $\gamma_i = \alpha_i g_i$ —aggregate/effective arrival rate at i

Fact (Traffic equation). $\gamma_i = \nu_i + \sum_j \gamma_j y_{ij}$ where (y_{ij}) jump chain of single-customer system

Theorem 2.8. $Q = \{Q(t) : -\infty < t < \infty\}$ irreducible open migration process, \exists stationary dis-

tribution π , let $\mathbf{Q}'(t) = \mathbf{Q}(-t)$, then \mathbf{Q}' open migration network with parameters $\begin{cases} \lambda'_{ij} = \frac{\alpha_j \lambda_{ji}}{\alpha_i} \\ \nu'_{j} = \alpha_j \mu_j \\ \mu'_{i} = \frac{\nu_i}{\alpha_i} \end{cases}$

Proof. similar to reversal

Fact. arrival processes of different station independent Poisson process, so by reversal, departure process independent Poisson process

2.5 M/G/1

 $-Q(D_n)$ — $Q(D_n+)$ number of customers left after n-th customer left

Fact.
$$Q(D_{n+1}) = \begin{cases} U_n + Q(D_n) - 1 & \text{if } Q(D_n) > 0 \\ U_n & \text{if } Q(D_n) = 0 \end{cases}$$

Theorem 2.9. S typical service time, then Q(D) Markov chain with transition matrix

$$P_D = \begin{pmatrix} \delta_0 & \delta_1 & \delta_2 & \cdots \\ \delta_0 & \delta_1 & \delta_2 & \cdots \\ 0 & \delta_0 & \delta_1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \ \delta_j = \mathbb{E}\left(\frac{(\lambda S)^j}{j!}e^{-\lambda S}\right)$$

- traffic intensity $\rho = \lambda \mathbb{E}(S)$
- $-M_S$ moment generating function of service time

Theorem 2.10.

(i) $\rho < 1$, then Q(D) ergodic, unique stationary distribution π with generating function $G(s) = \sum \pi_j s^j = (1 - \rho)(s - 1) \frac{M_S(\lambda(s-1))}{s - M_S(\lambda(s-1))}$

- (ii) $\rho > 1$, Q(D) transient
- (iii) $\rho = 1$, Q(D) null recurrent

Proof. stationary
$$\iff \lim_{s \uparrow 1} G(s) = 1$$

- busy period B —— time during which server continuously occupied

$$\textbf{Fact.} \begin{cases} \mathbb{E}(B) < \infty & \text{if } \rho < 1 \\ \mathbb{E}(B) = \infty, \mathbb{P}(B = \infty) = 0 & \text{if } \rho = 1 \\ \mathbb{P}(B = \infty) > 0 & \text{if } \rho > 1 \end{cases}$$

– imbedded branching process —— C_2 offspring of C_1 if C_2 join when C_1 being served

Theorem 2.11.
$$\mathbb{P}(B<\infty)$$
 $\begin{cases} =1 & \textit{if } \rho \leq 1 \\ <1 & \textit{if } \rho > 1 \end{cases}$

Proof. branching process dies out
$$\iff$$
 mean number of offsprings = $\rho < 1$

3 Renewals

– X_i i.i.d. — non-negative, $\mathbb{P}(X_i > 0) = 1$

$$-T_n = X_1 + \dots + X_n$$

- renewal process N

Theorem 3.1. $\mathbb{P}(N(t) < \infty) = 1 \iff \mathbb{E}(X_1) > 0$

- F distribution of X
- F_k distribution of T_k

Lemma 3.2.
$$F_1 = F$$
, $F_{k+1}(x) = \int_0^x F_k(x-y)dF(y)$

Lemma 3.3.
$$\mathbb{P}(N(t) = k) = F_k(t) - F_{k+1}(t)$$

- renewal function $m(t) = \mathbb{E}(N(t))$

Lemma 3.4. $m(t) = \sum F_k(t)$

Lemma 3.5.
$$m(t) = F(t) + \int_0^t m(t-x)dF(x)$$

Proof. condition on X_1

– renewal-type equation $\mu(t) = H(t) + \int_0^t \mu(t-x) dF(x)$, H uniformly bounded

Theorem 3.6.

- (i) $\mu(t) = H(t) + \int_0^t H(t-x)dm(x)$ solution of renewal-type equation
- (ii) H bounded on finite interval, then μ bounded on finite intervals, unique sol to equation

– Laplace-Stieltjes transform —
— $g^*(\theta) = \int_0^\infty e^{-\theta x} dg(x)$

Fact. after transform,
$$\mu^*(\theta) = \frac{H^*(\theta)}{1 - F^*(\theta)}$$
 if $H = F$, $m^*(\theta) = \frac{F^*(\theta)}{1 - F^*(\theta)}$

Theorem 3.7. $\frac{1}{t}N(t) \xrightarrow{a.s.} \frac{1}{\mu}$

Proof. Strong law on $T_{N(t)}$ and $T_{N(t)+1}$

Theorem 3.8. $Var(X_1) = \sigma^2$, $\frac{N(t) - \frac{t}{\mu}}{\sqrt{\frac{t\sigma^2}{\mu^3}}} \xrightarrow{d} \mathcal{N}(0,1)$

Theorem 3.9 (Elementary renewal theorem). $\frac{1}{t}m(t) \rightarrow \frac{1}{\mu}$

Proof. M = N(t) + 1 stopping time for X_i , then $t < T_{N(t)+1}$ with Wald giving lower bound. $t \ge T_{N(t)}$ and truncation for upper bound.

Lemma 3.10 (Wald's equation). X_i i.i.d., finite mean, M stopping time wrt (X_i) , $\mathbb{E}(M) < \infty$, then $\mathbb{E}\left(\sum_{i=1}^{M} X_i\right) = \mathbb{E}(X_1)\mathbb{E}(M)$

Fact. N(t) not stopping time

Fact. $\mathbb{E}_{N(t)+1} \neq \mu$ in general

– F_X arithmetic with span λ —— X take values $\{m\lambda\}$ a.s.

Theorem 3.11 (Blackwell's renewal theorem).

- (i) X_1 not arithmetic, then $m(t+h) m(t) \xrightarrow{t \to \infty} \frac{h}{\mu}$ for all h
- (ii) If X_1 arithmetic, still holds when h multiple of λ

Theorem 3.12 (Key renewal theorem). X_1 not arithmetic, g such that

- (i) $g(t) \ge 0$ for all t
- (ii) $\int_0^\infty g(t)dt < \infty$
- (iii) g non-increasing

then $\int_0^t g(t-x)dm(x) \to \frac{1}{\mu} \int_0^\infty g(x)dx$

3.1 Excess Life

- excess lifetime $E(t) = T_{N(t)+1} t$
- current lifetime/age $C(t) = t T_{N(t)}$
- total lifetime $D(t) = E(t) + C(t) = X_{N(t)+1}$

Theorem 3.13.
$$\mathbb{P}(E(t) \leq y) = F(t+y) - \int_0^t [1 - F(t+y-x)] dm(x)$$

Proof. consider $\mathbb{P}(E(t) > y)$ and condition on X_1 to get renewal-type equation

Corollary 3.14.
$$\mathbb{P}(C(t) \ge y) = \begin{cases} 0 & \text{if } y > t \\ 1 - F(t) + \int_0^{t-y} (1 - F(t-x)) dm(x) & \text{if } y \le t \end{cases}$$

Proof.
$$\mathbb{P}(C(t) \ge y) = \mathbb{P}(E(t-y) > y)$$

Setting 10. $X = X_1$

Theorem 3.15. X not arithmetic, $\mu = \mathbb{E}(X) < \infty$, then $\mathbb{P}(E(t) \leq y) \xrightarrow{t \to \infty} \frac{1}{\mu} \int_0^y (1 - F(x)) dx$

Proof. key renewal and $\mu = \int F(x)dx$

Theorem 3.16. X takes values in \mathbb{N} with span 1, $\mu = \mathbb{E}(X) < \infty$, then $\mathbb{P}(E(n) = k) \to \frac{1}{\mu}\mathbb{P}(X \geq k)$ for $k \in \mathbb{N}$

Proof.
$$p_{k,k-1}=1, p_{1,j}=\mathbb{P}(X=j),$$
 invariant distribution $\pi_k=\frac{1}{\mu}\mathbb{P}(X\geq k)$

3.2 Renewal-reward processes

Setting 11. $\{(X_i, R_i)\}$ *i.i.d.*

- reward process $C(t) = \sum_{i=1}^{N(t)} R_i$
- reward function $c(t) = \mathbb{E}(C(t))$

Theorem 3.17 (Renewal-reward theorem). $0 < \mathbb{E}X < \infty$, $\mathbb{E}|R| < \infty$, then

(i)
$$\frac{C(t)}{t} \xrightarrow{a.s.} \frac{\mathbb{E}R}{\mathbb{E}X}$$

(ii)
$$\frac{c(t)}{t} o \frac{\mathbb{E}R}{\mathbb{E}X}$$

Proof. (i) $\frac{C(t)}{t} = \frac{C(t)}{N(t)} \frac{N(t)}{t}$

(ii) 1) Wald, suffice $t^{-1}\mathbb{E}(R_{N(t)+1}) \to 0$, then condition on X_1 , renewal, then bound

2) uniform integrablity, then cvg in prob $\Rightarrow L^1$ convergence

Fact. also work for accumulative reward as long as monotone

Setting 12. Continuous Markov Chain, irreducible, mean return time μ_i

Theorem 3.18. $X(0) = i, \mu_i < \infty, then$

(i)
$$\frac{1}{t} \int_0^t \mathbb{1} \{X(s) = i\} ds \xrightarrow{a.s.} \frac{1}{\mu_i g_i}$$

(ii)
$$\frac{1}{t} \int_0^t p_{ii}(s) ds \rightarrow \frac{1}{\mu_i g_i}$$

Proof. process (P_r, Q_r) where P_r r-th passage time, Q_r r-th holding time

Fact. proportion of time spent in i, and corresponding expectation

Assumption 1.

- (i) customers arrive one by one, spend waiting time V_n time before departure
- (ii) \exists a.s. finite T st Q(T) = Q(0) = 0, and the distribution the same after time T

$$-X_i = T_i - T_{i-1}$$

- cycles
$$[T_{i-1}, T_i)$$

$$- P_i = \{Q(t) : t \in [T_{i-1}, T_i]\}$$

- N_i number of arrival in $[T_{i-1}, T_i]$

$$-\begin{cases} N = N_1 \\ X = T_1 \end{cases}$$

– waiting time V_n

Fact. let $R = \int_0^X Q(u) du$, $S = \sum^N V_i$

- (i) long run average queue length $L: \frac{1}{t} \int_0^t \xrightarrow{a.s.} \frac{\mathbb{E}R}{\mathbb{E}X}$
- (ii) long run rate of arrival $\lambda \colon \frac{N(t)}{t} \xrightarrow{a.s.} \frac{\mathbb{E}N}{\mathbb{E}X}$
- (iii) long run average waiting time $W \colon \frac{\sum^n V_i}{n} \xrightarrow{a.s.} \frac{\mathbb{E}S}{\mathbb{E}N}$

Theorem 3.19 (Little's theorem). Under assumption, $L = \lambda W$

Proof. use above, then suffice $\sum^{N} V_{i} = \int_{0}^{X} Q(u) du$

4 Spatial Poisson processes

- Poisson process with (constant) intensity λ , Π $\Pi \subset \mathbb{R}^d$ random countable, $N(A) = |\Pi \cap A|, A \in \mathcal{B}^d$
 - (i) $N(A) \sim Poi(\lambda |A|)$
 - (ii) A_1, \ldots, A_n disjoint, then $N(A_1), \ldots, N(A_n)$ independent
- density λ non-negative measurable
- mean measure $\Lambda(A) = \int_A \lambda(x) dx$
- non-homogeneous Poisson process with intensity function λ , $\Pi \longrightarrow \Pi \subset \mathbb{R}^d$ random countable, $N(A) = |\Pi \cap A|, A \in \mathcal{B}^d, \Lambda(A) < \infty$ for all bounded A

- (i) $N(A) \sim Poi(\Lambda(A))$
- (ii) A_1, \ldots, A_n disjoint, then $N(A_1), \ldots, N(A_n)$ independent

Fact. measures Λ no atoms

Theorem 4.1 (Superposition theorem). Π' , Π'' independent (non-homogeneous) Poisson process wrt λ' , λ'' , then $\Pi = \Pi' \bigcup \Pi''$ (non-homogeneous) Poisson process wrt $\lambda = \lambda' + \lambda''$

Proof. hard part: show $\Pi' \cap \Pi'' = \emptyset$, suffice to consider n-boxes

Setting 13. $f: \mathbb{R}^d \to \mathbb{R}^s$, Π non-homogeneous Poisson process, $\Lambda(f^{-1}\{y\}) = 0$

Theorem 4.2 (Mapping theorem). let $\mu(B) = \Lambda(f^{-1}B) = \int_{f^{-1}B} \lambda(x) dx$, $B \in \mathcal{B}^s$, $\mu(B) < \infty$ for all B, then $f(\Pi)$ non-homogeneous Poisson process on \mathbb{R}^s with mean measure μ

Proof. hard part: show $f(\Pi)$ a.s. distinct,

Theorem 4.3 (Conditional property). Π non-homogeneous Poisson process with λ , $A \subset \mathbb{R}^d$, $0 < \Lambda(A) < \infty$,

Conditional on $|\Pi \cap A| = n$, then n points in A have same distribution as n points chosen independently according $\mathbb{Q}(B) = \frac{\Lambda(B)}{\Lambda(A)}$ where $B \subset A$, i.e. density $\frac{\lambda(x)}{\Lambda(A)}$

```
Proof. A_1, \ldots, A_k partition of A, then calculate \mathbb{P}(N(A_i) = n_i \mid N(A) = n) where \sum n_i = n
```

Fact. used as prood of existence of Poisson process: A_i partition of \mathbb{R}^d , then sample n_i from $Poi(\Lambda(A_i))$, then sample according to \mathbb{Q}

Theorem 4.4 (Colouring theorem).
$$\Pi$$
 non-homogeneous Poisson process with λ , colour $x \in \Pi$ $\begin{cases} \text{green with probability } \gamma(x) \\ \text{scalet with probability } \sigma(x) = 1 - \gamma(x) \end{cases}$, $\begin{cases} \Gamma \text{ set of green points} \\ \Sigma \text{ set of scalet points} \end{cases}$, then $\Gamma, \Sigma \text{ independent Poisson processes with density } \lambda(x)\gamma(x), \lambda(x)\sigma(x) \end{cases}$

Proof. conditional on
$$|\Pi \cap A| = n$$
, work with \mathbb{Q} , $\begin{cases} \overline{\gamma} = \int_A \gamma(x) d\mathbb{Q} \\ \overline{\sigma} = \int_A \sigma(x) d\mathbb{Q} \end{cases}$

Theorem 4.5 (Renyi's theorem). Π random countable, λ non-negative integrable, $\Lambda(A) < \infty$ for bounded A, if $\mathbb{P}(\Pi \in A = \varnothing) = e^{-\lambda(A)}$ for any finite union of boxes A, then Π Poisson process with λ