Universidad Nacional Autónoma de Honduras Departamento de Matemática Pura Ejercicios complementarios de Repaso MM 512 Geometría II

Profesor: Dr. Fredy Vides

Instrucciones: Resolver las siguientes problemas, dejando evidencia de argumentos precisos y rigurosos que respalden sus resultados y conclusiones.

- 1. Calcular los siguientes grupos fundamentales:
 - (a) $\pi_1(\{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 10^{10^{10}}\}, (0,0,0)).$
 - (b) $\pi_1([0,1] \times \{-\pi\} \times [0,\infty), (0,-\pi,10^{499})).$
- 2. Dado un ET X. Probar o refutar que:
 - (a) Si $\pi_1(X, x_0) \simeq 0$ para cada $x_0 \in X$, entonces X es CPT.
 - (b) Si $\pi_1(X, x_0) \simeq 0$ para cada $x_0 \in X$, entonces X es conexo.
 - (c) Si X es SC y $S \subseteq X$, entonces S es SC.
- 3. Dado X tal que $|X| < \infty$, considerado como EM respecto de la métrica discreta d.
 - (a) Probar o refutar que $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$ para cualesquiera tres trayectorias α, β, γ en X para las que el producto está definido.
 - (b) Dado $Y \subseteq \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$ tal que X homeomorfo a Y, probar o refutar que dos trayectorias cualesquiera en Y son homotópicas con puntos extremos fijos.
 - (c) Para el conjunto Y definido en (b), calcular las componentes de trayectorias en Y.
- 4. Sean x_0 y x_1 puntos de un espacio CPT X. Probar que $\pi_1(X, x_0)$ es conmutativo (abeliano) si, y sólo si, para todo par de trayectorias α y β de x_1 a x_0 , se cumple que $\alpha_* = \beta_*$.
- 5. Para m entero, sea α_m un bucle en \mathbb{S}^1 definido por $\alpha_m(s) = e^{2\pi i s}$, $0 \le s \le 1$. Probar que cada bucle en \mathbb{S}^1 con base 1 es homotópico con puntos extremos fijos a precisamente uno de los bucles α_m .
- 6. Si X_0 es la componente de trayectoria de un espacio X que contiene el punto x_0 , probar que el mapa de inclusión $i: X_0 \hookrightarrow X$ induce in isomorfismo $\pi_1(X_0, x_0) \to \pi_1(X, x_0)$.
- 7. Probar que todo homomorfismo $\pi_1(\mathbb{S}^1) \to \pi_1(\mathbb{S}^1)$ puede interpretarse como el homomorfismo inducido φ_* por un mapa $\varphi: \mathbb{S}^1 \to \mathbb{S}^1$.
- 8. Calcular los siguientes grupos fundamentales:
 - (a) $\pi_1([0,1] \times \{0\}, (1,0))$
 - (b) $\pi_1(\mathbb{R}^5, (0,0,0,0,0))$
- 9. Dado un mapa $f \in C(\mathbb{S}^1, \mathbb{C}^*)$. Calcular $f_*(\pi_1(\mathbb{S}^1))$.
- 10. Probar o refutar que si X es un ET contractible, entonces X es homotópicamente equivalente a un conjunto con un solo punto.

- 11. Dado un mapa $f \in C(\mathbb{S}^1, \mathbb{C}^*)$.
 - (a) Probar o refutar que existe un entero m tal que $f \simeq (\cdot)^m$.
 - (a) Probar o refutar que existe un entero m tal que $f/(\cdot)^m \in Exp(\mathbb{S}^1)$.
- 12. Dado un mapa arbitrario f de \mathbb{S}^1 a \mathbb{C}^* . Calcular una expresión genérica para $\pi_1(f(\mathbb{S}^1))$.