36-710: Advanced Statistical Theory

Fall 2018

Lecture 23: November 19

Lecturer: Alessandro Rinaldo Scribe: Ron Yurko

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

23.1 Last Time

Want to bound supremum of empirical process,

$$||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^n (f(X_i) - \mathbb{E}[f(X_i)])|$$

where $(X_1, \ldots, X_n) \stackrel{iid}{\sim} P$ on probability space $(\mathcal{X}, \mathcal{B})$. \mathcal{F} is a class of real value functions on \mathcal{X} , and uniformly bounded:

$$\sup_{x \in \mathcal{X}} |f(x)| \le B, \ \forall f \in \mathcal{F}.$$

We will rely on the Rademacher complexity of \mathcal{F} ,

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\substack{X, \epsilon \\ \sim \\ \sim}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} | \sum_{i=1}^n \epsilon_i f(X_i) | \right]$$

Theorem 23.1 Let \mathcal{F} be a class of functions $(\mathcal{X}, \mathcal{B})$ uniformly bounded by B > 0. Then for any data generating distribution P for (X_1, \ldots, X_n) and for all t > 0,

$$\mathbb{P}(||P_n - P||_{\mathcal{F}} \le 2\mathcal{R}_n(\mathcal{F}) + t) \le exp(\frac{-nt^2}{2B^2})$$

Remark If $\mathcal{R}_n(\mathcal{F}) \to 0$ as $n \to \infty$, then $||P_n - P||_{\mathcal{F}} \stackrel{ae}{\to} 0$ (this is actually a if and only if statement). Proof. Proof has 2 parts:

- 1. Show $||P_n P||_{\mathcal{F}}$ concentrates around $\mathbb{E}[||P_n P||_{\mathcal{F}}]$ (easy part)
- 2. Bound $\mathbb{E}[||P_n P||_{\mathcal{F}}]$ by $2\mathcal{R}_n(\mathcal{F})$ (hard part)

<u>Part 1:</u> Use the <u>Bounded Difference</u> inequality \rightarrow off-the-shelf inequality meant for this situation.

Let $(X_1,\ldots,X_n)\subset\mathcal{X}$ be arbitrary n-tuple of points. Define the function $G:\mathcal{X}^n\Rightarrow\mathbb{R}$,

$$x_1^n = (x_1, \dots, x_n) \Rightarrow \sup_{f \in \mathcal{F}} \frac{1}{n} |\sum_i^n \bar{f}(x_i)|,$$

23-2 Lecture 23: November 19

where $\bar{f}(x_i) = f(x_i) - \mathbb{E}[f(x_i)]$. Let x_1^n, y_1^n be in \mathcal{X}^n such that $x_i = y_i$ all $i \neq j$ for some $j \in \{1, \ldots, n\}$. For $x_1^n = (x_1, \ldots, x_n)$ and $y_1^n = (y_1, \ldots, y_n)$ differ only along coordinates j, then $|G(x_i^n) - G(y_i^n)| \leq \frac{2B}{n}$. So by the bounded difference inequality,

$$\mathbb{P}(||P_n - P||_{\mathcal{F}} \ge \mathbb{E}[||P_n - P||_{\mathcal{F}}] + t) \le \exp(\frac{-nt^2}{2R^2})$$

End of part 1.

Step 2: Need to bound $\mathbb{E}[||P_n - P||_{\mathcal{F}}]$. We will handle this with a general result:

Theorem 23.2 (Symmetrization Inequalities)

Let \mathcal{F} be a class of integrable functions on $(\mathcal{X}, \mathcal{B})$. Let $||\mathcal{R}_n||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \frac{1}{n} |\sum_i^n \epsilon_i f(X_i)|$ where $X = (X_1, \dots, X_n) \stackrel{iid}{\sim} P \perp \stackrel{\epsilon}{\sim} = (\epsilon_1, \dots, \epsilon_n) \stackrel{iid}{\sim} Rademacher$. Then for any convex non-decreasing function $\phi : \mathbb{R}_+ \to \mathbb{R}_+$,

$$\mathbb{E}[\phi(||P_n - P||_{\mathcal{F}})] \leq \mathbb{E}_{\underset{\sim}{X}, \underset{\sim}{\varepsilon}} [\phi(2||\mathcal{R}_n||_{\mathcal{F}})]$$

$$also \ \mathbb{E}_{\underset{\sim}{X}, \underset{\sim}{\varepsilon}} [\phi(\frac{1}{2}||\mathbb{R}_n||_{\widetilde{\mathcal{F}}})] \leq \mathbb{E}[\phi(||P_n - P||_{\mathcal{F}})]$$

$$\stackrel{\sim}{\mathcal{F}} = \{f - \mathbb{E}[f(X_1)], \ f \in \mathcal{F}\}$$

Returning to the proof, notice that $\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{X,\frac{\epsilon}{n}}[||\mathcal{R}_n||_{\mathcal{F}}]$. Take $\phi(t) = t$ (meaning ϕ is identity) to conclude that,

$$\mathbb{E}[||P_n - P||_{\mathcal{F}}] \le 2\mathbb{E}_{X,\epsilon}[||\mathcal{R}_n||_{\mathcal{F}}] = 2\mathcal{R}_n(\mathcal{F})$$

This proves the theorem.

Proof of upper bound of symmetrization inequalities:

$$\mathbb{E}_{\underset{\sim}{X}}[\phi(||P_n - P||_{\mathcal{F}})] = \mathbb{E}_{\underset{\sim}{X}}[\phi(\sup_{f \in \mathcal{F}} \frac{1}{n} | \sum_{i}^{n} (f(X_i) - \mathbb{E}[f(X_i)])|)]$$

Let $Y = (Y_1, \dots, Y_n) \stackrel{iid}{\sim} P$ be a "ghost" sample, where $Y \perp X$ then $\mathbb{E}[f(X_i)] = \mathbb{E}[f(Y_i)]$ so it

$$= \mathbb{E}_{\substack{X,Y \\ \sim}} \left[\phi(\sup_{f \in \mathcal{F}} \frac{1}{n} | \sum_{i=1}^{n} (f(X_i) - \mathbb{E}_{Y_i} [f(Y_i)]) |) \right]$$

By Jensen's inequality:

$$\leq \mathbb{E}_{X,Y}[\phi(\sup_{f\in\mathcal{F}}\frac{1}{n}|\sum_{i}^{n}(f(X_{i})-f(Y_{i}))|)].$$

Next $f(X_i) - f(Y_i) \stackrel{d}{=} \epsilon_i (f(X_i) - f(Y_i))$ where $\epsilon_i \perp X_i \& Y_i$ is Rademacher. Can now write

$$\leq \mathbb{E}_{X,Y,\epsilon} \left[\phi(\sup_{f \in \mathcal{F}} \frac{1}{n} | \sum_{i=1}^{n} \epsilon_{i} (f(X_{i}) - f(Y_{i}))|) \right]$$

Next use the triangle inequality and the fact that ϕ is non-decreasing to get

$$\leq \mathbb{E}_{X,Y,\epsilon} \left[\phi(\sup_{f \in \mathcal{F}} \frac{1}{n} | \sum_{i=1}^{n} \epsilon_{i} f(X_{i})| + \sup_{f \in \mathcal{F}} \frac{1}{n} | \sum_{i=1}^{n} \epsilon_{i} f(Y_{i})| \right) \right]$$

Lecture 23: November 19 23-3

Multiply and divide the two summands on the right-hand side by 2 (constructing a binary random variable),

$$\leq \mathbb{E}_{X,Y,\stackrel{\epsilon}{\sim},\stackrel{\epsilon}{\sim}} \Big[\phi(\frac{1}{2} \sup_{f \in \mathcal{F}} \frac{2}{n} | \sum_{i}^{n} \epsilon_{i} f(X_{i})| + \frac{1}{2} \sup_{f \in \mathcal{F}} \frac{2}{n} | \sum_{i}^{n} \epsilon_{i} f(Y_{i})|) \Big]$$

Then by Jensen's inequality,

$$\leq \frac{1}{2} \mathbb{E}_{X,Y,\stackrel{\epsilon}{\sim}} \left[\phi(\sup_{f \in \mathcal{F}} \frac{2}{n} | \sum_{i}^{n} \epsilon_{i} f(X_{i})|) \right] + \frac{1}{2} \mathbb{E}_{X,Y,\stackrel{\epsilon}{\sim}} \left[\phi(\sup_{f \in \mathcal{F}} \frac{2}{n} | \sum_{i}^{n} \epsilon_{i} f(Y_{i})|) \right]$$

$$= \mathbb{E}_{X,\stackrel{\epsilon}{\sim}} \left[\phi(\sup_{f \in \mathcal{F}} \frac{2}{n} | \sum_{i}^{n} \epsilon_{i} f(X_{i})|) \right]$$

$$= \mathbb{E}_{X,\stackrel{\epsilon}{\sim}} \left[\phi(2||\mathcal{R}_{n}||_{\mathcal{F}}) \right]$$

Our goal now (to use this result), is to upper bound,

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\substack{X, \epsilon \ \sum \ e \in \mathcal{F}}} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i}^{n} \epsilon_i f(X_i) \right| \right]$$

23.2 VC Theory

Definition 23.3 A class F of functions on \mathcal{X} has polynomial discrimination with parameter $\nu \geq 1$ if for each $n \in \mathbb{N}$ and each n-tuple $x_1^n = (x_1, \ldots, x_n) \subset \mathcal{X}$ then set $\mathcal{F}(x_i) = \{(f(x_1), \ldots, f(x_n)) \in \mathbb{R}^n, f \in \mathcal{F}\} \subset \mathbb{R}^n$ has cardinality no larger than $(n+1)^{\nu}$.

This is a purely combinatorial property of class \mathcal{F} , nothing stochastic, always have n-tuple, then doing this for each function in the class, and get this bound.

Lemma 23.4 Assume \mathcal{F} has polynomial discrimination with parameter ν , then $\forall n \in \mathbb{N}$ and for each $x_1^n \in \mathcal{X}^n$,

$$\mathbb{E}_{\stackrel{\epsilon}{\sim}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} | \sum_{i}^{n} \epsilon_{i} f(X_{i})| \right] \leq 2D(x_{1}^{n}) \sqrt{\frac{\nu \log(n+1)}{n}}$$

where $D(x_1^n) = \sup_{f \in \mathcal{F}} \sqrt{\frac{\sum_{i=1}^n f(x_i)^2}{n}}$.

Proof. (Exercise) Use $\sum \epsilon_i f(x_i) \sim SG(D(x_1^n)^2)$.

Corollary 23.5 If F is a class uniformly bounded (by B > 0), then $\mathcal{R}_n(\mathcal{F}) \leq 2B\sqrt{\frac{\nu \log(n+1)}{n}}$

Example: Let $\mathcal{F} = \{I\{(-\infty, z]\}, z \in \mathbb{R}\},\$

$$||P_n - P||_{\mathcal{F}} = \sup_{z \in \mathbb{R}} |\hat{F}_n(z) - F_X(z)|$$

23-4 Lecture 23: November 19

where $\hat{F}_n(z)$ is the empirical CDF (this is the maximal difference between the CDF and empirical CDF). The \mathcal{F} has polynomial discrimination with parameter $\nu=1$. Fix $x_1^n\subset\mathbb{R}$, let's order then

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$$

obtain n^{th} intervals

$$(-\infty, x_{(1)}], (x_{(1)}, x_{(2)}], \dots, (x_{(n)}, \infty)$$

as z varies over \mathbb{R} the function $z \Rightarrow I\{(-\infty, z]\}$ will be 1 or 0 depending on how many interval z crosses in total, there are only (n+1) possible realizations

$$\mathcal{F}(x_1^n) \le n+1$$
, all x_1^n

$$\Rightarrow \mathbb{P}(||P_n - P||_{\mathcal{F}} \ge 4\sqrt{\frac{\log n}{n}} + t) \le \exp{\frac{-nt^2}{2}}$$

Even stronger result <u>DKW</u>: (1990 Massart)

$$\mathbb{P}(\sup_{z\in\mathbb{R}}|\hat{F}_n(z) - F(z)| \ge t) \le 2\exp(\frac{-nt^2}{2})$$

This is a sharper result as the $\log n$ term is gone, but this is only for the empirical CDF.