Probabilidad y estadística Introducción al curso

1. Comparta con el grupo

- Compartir:
 - Su nombre
 - Algo que REALMENTE me gusta en la vida
 - ¿Por qué estoy aquí? ¿Por qué estudio computación?

2. Carta al estudiante

3. Introducción al curso

¿Para qué sirven la probabilidad y estadística?

Expectativas en la música

• https://www.youtube.com/watch?v=ne6tB2KiZuk

El cerebro anticipa...

Anticipación

• Mediante la experiencia, aprendemos a anticipar qué es lo que va a ocurrir con alta probabilidad

• Esto guía nuestra percepción, como en el caso de la música...

• Y nuestro comportamiento, como en el caso del niño jugando en la calle...

Predecir las búsquedas del usuario

Con base en lo que es más probable

Sugerir información con base en el historial

¿Qué es lo que un usuario podría querer basado en sus características?

Otros ejemplos

- Encuesta para candidatos a presidencia
- Predecir comportamiento humano con respecto a cambio climático
- Predecir comportamiento de bolsa de valores
- Anticipar cuándo será el próximo terremoto
- La predicción del cerebro de las señales del cuerpo: predictive coding

4. Problema

Enunciado

• Un compañero de su clase de Probabilidad le plantea una apuesta. Si dos de las personas de la clase tienen el mismo cumpleaños usted gana 100,000 colones y de lo contrario pierde 100,000. ¿De cuántas personas tiene que ser la clase para que sea conveniente aceptar la apuesta?

- Discuta y resuelva este problema en grupos de 3 personas
- Trabaje por cuenta propia por 5 minutos antes de conversar

5. Conceptos de probabilidad

Ejemplo de un experimento estadístico

Lanzar una moneda

• Ejemplo 1: se lanza una moneda una vez.

Ejemplo de un experimento estadístico

Lanzar un dado

• Ejemplo 2: se lanza un dado una vez.

Espacios muestrales

• **Definición**: al conjunto de todos los resultados posibles de un experimento estadístico se le llama *espacio muestral*

• Ejemplo: {H, T}, en el lanzamiento de moneda, con H: "sale cara" y T: "sale cruz"

• **Ejemplo**: {1, 2, 3, 4, 5, 6} en el lanzamiento de dado

Ejercicio

• **Ejercicio**. Para avanzar en el juego de Monopoly (o Gran Banco), se lanzan dos dados. ¿Cuál es el espacio muestral de cada lanzamiento de dados?

Ejercicio

- Para ello, debemos obtener todas las combinaciones posibles de los lanzamientos de dados, cada uno teniendo las posibilidades {1, 2, 3, 4, 5, 6}.
- Obtenemos entonces las siguientes combinaciones: 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2,... 6-5, 6-6
- En total son: $6 \times 6 = 36$ posibilidades

Eventos

• **Definición**: un evento es la ocurrencia de un resultado específico. Es un subconjunto del espacio muestral.

• Ejemplos:

- A: "sacar una "cara" en el lanzamiento de moneda"
- B: "sacar un numero par en el lanzamiento del dado"

Ejercicio: Probabilidad de eventos

• **Ejercicio**: en el juego de Monopoly, cuando salen dos dados con el mismo número (doble) se repite el turno. Cuando salen 3 dobles seguidos, el jugador va a la cárcel. ¿Cuál es la probabilidad de que un jugador saque tres dobles seguidos y le toque ir a la cárcel?

Ejercicio: Eventos

- Primero, podemos obtener la probabilidad de que salga un doble para un tiro específico. Esto es: una de las siguientes posibilidades: {1,1}, {2,2}, {3,3}, {4,4}, {5,5}, {6,6}.
- Como vimos anteriormente, el espacio muestral de un lanzamiento de dos dados es de 36 posibilidades.

Ejercicio: Eventos

- Para obtener la probabilidad del evento D: "que salga un tiro doble", se toma la cantidad de casos en los que se cumple el evento, dividido por el tamaño del espacio muestral.
- Es decir: P(D) = 6/36 = 1/6

Ejercicio: Eventos

- Para obtener la probabilidad de que salga un tiro doble 3 veces (evento E), primero determinamos si son eventos independientes. En este caso, cada lanzamiento de dados es independiente del anterior.
- La probabilidad de que ocurran varios eventos independientes se obtiene multiplicando las probabilidades individuales. En el ejemplo:
- $P(E) = P(D1) \times P(D2) \times P(D3) = 1/6 \times 1/6 \times 1/6 = 1/216$

Ejercicio: Demostración

Veamos por qué esto es así

- En cada lanzamiento de dos dados se tiene 36 posibles combinaciones.
- En los tres lanzamientos de dados se tiene $36 \times 36 \times 36 = 46656$ posibles combinaciones
- En cada lanzamiento de dos dados hay 6 posibles dobles.
- En los tres lanzamientos de dados se tiene $6 \times 6 \times 6 = 216$ posibles combinaciones de dobles
- P(E) = 216/46656 = 1/216

Eventos: complemento

Eventos: intersección de dos eventos

La intersección de dos eventos: $A \cap B$

Propiedades de la probabilidad

• Si $A \cap B = \emptyset$ (vacío), los eventos son disjuntos

Eventos: intersección de dos eventos

La unión de dos eventos: $A \cup B$

Ejercicio (5 min)

• ¿Cuántos números pares de cuatro dígitos se pueden formar con los dígitos o, 1, 2, 5, 6 y 9, si cada dígito se puede usar sólo una vez?

Ejercicio: Solución

- Para el dígito de las unidades sólo hay 3 opciones para que el número sea par
- Para el dígito de los millares no se puede usar el o
- Podemos separar los casos en que para el dígito de las unidades sea cero o no
 - Si es o, hay 5 opciones para los millares, 4 para las centenas y 3 para las decenas. En total: 60 combinaciones
 - Si no es o, hay 2 opciones para las unidades, 4 opciones para los millares (no puede ser cero), 4 opciones para las centenas, 3 opciones para las decenas. En total: 96
- Es decir, en total hay 156 posibles dígitos

Regla de la multiplicación

Regla 2.1:

Si una operación se puede llevar a cabo en n_1 formas, y si para cada una de éstas se puede realizar una segunda operación en n_2 formas, entonces las dos operaciones se pueden ejecutar juntas de n_1n_2 formas.

Walpole (2012), p.45

Ejercicio

• Se tiene un equipo de fútbol de 11 personas. Una persona quisiera ser portera y otra delantera. Las demás pueden ocupar cualquiera de las posiciones restantes. ¿Cuál es la cantidad de posibles equipos que se pueden conformar?

Permutaciones

• El número de permutaciones de n objetos es $n! = 1 \times 2 \times 3 \times ... \times n$

Ejercicio

• Si un dado está "cargado" de modo que los números impares tienen el doble de probabilidad de ocurrir que los pares, ¿cuál es la probabilidad de que salga un número menor o igual que 4?

Solución

- El espacio muestral es $S = \{1,2,3,4,5,6\}$. Podemos asignar una probabilidad de w a cada número par y 2w a cada impar. En total, la suma de todas las probabilidades es de 9w = 1, o bien w = 1/9. Los números pares tienen una probabilidad de 1/9 y los impares 2/9
- Por tanto, la probabilidad de (E) "que ocurra algún número menor o igual que 4" es:
 - P(E) = 2/9 + 1/9 + 2/9 + 1/9 = 6/9 = 2/3

Propiedades de la probabilidad

Regla 2.3: Si un experimento puede dar como resultado cualquiera de N diferentes resultados que tienen las mismas probabilidades de ocurrir, y si exactamente n de estos resultados corresponden al evento A, entonces la probabilidad del evento A es

$$P(A) = \frac{n}{N}.$$

• Walpole (2012), p.54

Ejercicio

• ¿Cuál es la probabilidad del evento C de obtener 3 ases y dos jotas en una mano de póquer de 5 cartas?

Solución

- Como hay 4 jotas y 4 ases, la cantidad de posibles combinaciones se obtiene así:
 - Cantidad de combinaciones de dos jotas: $4!/2!2! = \frac{4 \times 3 \times 2}{2 \times 2} = 6$
 - Cantidad de combinaciones de tres ases: 4!/3! = 4
- La cantidad total de manos de póquer es:

$$52!/5! \times 47! = 52 \times 51 \times 50 \times 49 \times 48/5 \times 4 \times 3 \times 2 = 2,598,960$$

• La probabilidad del evento C por tanto es:

$$P(C) = \frac{6 \times 4}{2,598,960} = 0.9 \times 10^{-5}$$

Combinatorias

Teorema 2.6: El número de combinaciones de *n* objetos distintos tomados de *r* a la vez es

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

• Walpole (2012), p.50

Propiedades de la probabilidad

• Ejercicio: exprese $P(A \cup B)$

Propiedades de la probabilidad

Regla aditiva

Teorema 2.7: Si A y B son dos eventos, entonces

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

6. Administrativo

Avisos (Grupos 2 y 3)

- Ingresar a Mediación Virtual antes de la próxima clase
- Contraseña: Probai
- La clase del viernes 15 será realizada de manera virtual asincrónica
 - El enlace a los videos será compartido por Mediación Virtual
 - El contenido de los videos será evaluado en una prueba corta en clases el 19/03
 - Como parte de las actividades, se realizará el laboratorio 1 con fecha de entrega para el viernes 22/03 (el enunciado está en Mediación Virtual)