Couche 2 : liaison de données

- L'élément manipulé par cette couche est la trame.
- Elle doit permettre l'acheminement sur un support physique d'une trame de l'émetteur vers le récepteur
- Indiquer/détecter les débuts et fins de trames
- Puis finalement elle demandera à la couche 1 de transporter les bits vers un autre nœud

Fonctions de la couche

- Identification début/fin de trame
 - Drapeau (suite de bits particulière)
 - Rendre cette suite unique, mécanisme d'insertion de bits dans des suites proche de la suite particulière
 - Systèmes à clés
 - Drapeau plus long
- Gestion de l'accès au support physique
- Y ont été rajoutées des fonctions de la couche 3 (transfert de trame)

Routage de trames

Algo simplifié de la couche 2 du hôte A et/ou B : Si @MAC destinataire de la trame = la mienne alors Je décapsule la trame Je transmet le paquet à ma couche 3 Sinon si je possède des fonctions de routage alors Hôte A Hôte B je re-route la trame vers la bonne direction Sinon j'ignore la trame réseau réseau Liaison de Liaison de Liaison de nœud 1 données données données Ex: commutateur physique physique physique Réseau R1 Réseau R3

adressage

- Issue du monde Ethernet, l'adressage se fait par le biais de l'adresse physique de l'interface réseau sur 6 octets.
- Pour ATM, il y a utilisation d'une référence

Adresse MAC

- Media Access Control Address
- 48 bits (6 octets) représentés en hexadécimale
 - AA:11:11:AA:11:AA
 - 1er bit : 0 adresse individuelle, ou 1 de groupe
 - 2ème bit : 0 adresse universelle ou 1 adresse locale
 - 22 bits réservés pour l'adresse du constructeur sinon tous à 0
 - 24 bits : adresse unique alloué au matériel réseau (2²⁴ adresses par fabricant)

Quelques protocoles

- High-Level Data Link Control
- Point-to-Point Protocol
- Asynchronous Tranfert Mode
- Ethernet partagé et Ethernet Commuté

HDLC

- Protocole ancien quasi plus utilisé
- Liaison point à point
- Full duplex synchrone
- En-tête: 8 bits de début, 8 bits d'adresse, 8 bits pour le type de la trame, les données, 8 bits de contrôle et 8 bits de fin
- 3 types de trames
 - Information (pour les données)

HDLC (suite)

- Supervision : pour l'acquittement et le contrôle de flux
- Unnumbered : gestion de la liaison

PPP

- Utilisé dans Internet
- Version simplifié de HDLC
- La trame comprend un champ supplémentaire indiquant le protocole transporté

Ethernet

Cette architecture fera l'objet d'un cours spécifique

Trame Ethernet

 Initialement conçu pour un mode de partage du support (tout le monde a accès au support), elle s'est ensuite adapté à un mode de commutation

octets

Préambule	début	adresse dest.	adresse emt.	long. Trame	données	remplissage	checksum
7 octets	1 octet	6	6	2	46 à 1500		4

 Pour la commutation, les commutateurs utilisent l'adresse destination comme d'une référence pour diriger la trame. Besoin d'une table de commutation (lookup table) avec toutes les références du réseau ... difficile à mettre en place. A cela a succédé : Multi Protocol label-Switching

ATM

- Trame fixe de 53 octets, 4 d'en-tête, 1 de contrôle d'erreur et 48 de données
- Facilité de discerner les trames