

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN LÓGICA

Nombre y Apellido:

Legajo:

Examen Parcial

1. Sean $\phi, \psi \in PROP$. Sin usar soundness/corrección, demuestre:

a)
$$\phi \to \psi \models \phi \leftrightarrow (\phi \land \psi)$$

b)
$$(p_1 \wedge p_2) \rightarrow p_3 \not\models p_1 \rightarrow p_3$$

2. Sean $\phi, \psi \in PROP$. Pruebe la validez de los siguientes secuentes. Resuelva un ítem con un árbol y el restante con una prueba lineal.

a)
$$\vdash (\phi \to \psi) \to ((\neg \phi \to \psi) \to \psi)$$

b)
$$\neg(\neg\phi\vee\neg\psi)\vdash\phi\wedge\psi$$

3. El operador binario XOR (\oplus) tiene la siguiente tabla de verdad:

p	q	$p\oplus q$
F	F	F
F	Τ	${ m T}$
Τ	\mathbf{F}	${ m T}$
Τ	Τ	F

- a) Extender la definición de semántica para incluir al operador \oplus
- b) Definir reglas de introducción y eliminación para \oplus
- c) Demostrar:

$$p \oplus q \; \vdash \; \neg(p \to q) \lor \neg(q \to p)$$

4. Decidir cuáles de los siguientes conjuntos es consistente, y demostrar:

a)
$$\{(p \lor q) \land (\neg q \lor r), p \to r\}$$

b)
$$\{(p \lor q) \land (\neg q \lor r), p \to r, \neg r\}$$

Nota: Resuelva cada ejercicio en hoja separada. No es necesario que separe los ítems de cada ejercicio.