GATE-All BRANCHES Engineering Mathematics

Vector Calculus

Lecture No.- 02

Recap of Previous Lecture

Topic

Concept of line integral

Topic

Problem based on line integral

Topic

Concept and problems based of curl

Topics to be Covered

Topic

Concept of curl

Topic

Greens theorem and Stokes theorem

Topic

Problems based on Green's theorem and stokes theorem

Monday- Differential regin Complex Analysis Laplace transform fourier sories Numerical methods

Cuzl of a vector Function: A) Vector Function Vector function \(\frac{\forall}{\lambda}\) Scales Function

Scaler Functions \(\forall \) \(\forall \) Vector functions

Vector functions \(\forall \) \(\forall B) Scales Function (another form) Three Dimensional change m

Curl of a vector Function: Vector Function - V(del) vector F = Fir+Fzi+Fax Curl F = Vector quanting = CRoss product VXF = ensl F (mag + Direction) V River Claw Thelation (No) (mag + Direction)

CWI - Line Integral for Small element $\nabla X \vec{F} = lt \oint \vec{F} d\vec{r}$ $dS \rightarrow 0$ > vector quantity (mag + Disection) magnitude + Direction How to evaluate The Cush: If F= F21+42)+43K Xaxis L K (zaxu)

n change m Yz Direction + K' (2 F2 - 2 F1) XX Direction vo ume Vector quantity - > Another Vector quantity magnitude + Direction 3 F3 - 3 F2) 2 XZ Discution X-Y Discetion

Topic: Vector calculus

$$F = (\chi^2 - \gamma^2) \hat{i} + 2 \times y \hat{j} + (y^2)$$

#Q. If
$$\vec{F} = (x^2 - y^2)\hat{i} + 2xy\hat{j} + (y^2 - xy)\hat{z}$$

$$\nabla XF = \left| \begin{array}{c} 1 \\ \frac{\partial}{\partial x} \end{array} \right| \frac{\partial}{\partial y} \frac{\partial}{\partial z} \\ \left(\frac{\partial^2}{\partial x^2} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial x^2} \right)^2 \\ \left(\frac{\partial^2}{\partial x^2} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y^2} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y^2} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y^2} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y^2} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y^2} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y^2} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial y} \right)^2 \\ \left(\frac{\partial^2}{\partial y} \right)^2 2 \frac{\partial^2}{\partial y} \left(\frac{\partial^2}{\partial$$

The curl of \vec{F} at (1, 1, 1) is equal to

If
$$\nabla x \vec{F} = Cusl \vec{F} = \vec{D} = Irrolational$$
 $\mathcal{R} = x \hat{i} + r \hat{j} + z \hat{k}$
 $\nabla x \vec{R} = \begin{vmatrix} \hat{i} \\ \frac{\partial}{\partial x} \end{vmatrix} = 0 = Irrolational$ Visitor

 $\vec{X} = \vec{X} =$

Stokes Theorem: F=Fii+Fzj+FzK (Three Dimensional Vector function/fold) 3) inveneronal = $\int \vec{F} d\vec{r} = ((cwl\vec{F}) n' ds)$ Space Where n'= outword Drawn Normal ds = surface element They depend on surface surface surfaceStatement: OF di = \(\(\frac{7}{2}\)\n'ds (DXF) n'ds = lt of Fall n'ds n = of Fall

Far = 30 invensional Space In XY Plane Vising stokes Theorem $\oint F di = \iint (\nabla X F) K dy dx$ XYPlaneMICROSODIC In yz Plane. φ F di = ∫(7XF) î dydz yz Plane Zx Plane $\int \vec{r} d\vec{r} = \int (\vec{r} \times \vec{r}) \vec{r} dz dz$

ease 02 If Fuld is given (2d) $\vec{F} = F_1(x,y) \hat{i} + F_2(x,y) \hat{j}$ (XXP lane)

ds = dy dx Vlong stokes Theorem & Fai = ((0xF) n' ds $\nabla X \vec{F} = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{j} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{i} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{k} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{k} & \hat{k} \end{array} \right] = \left[\begin{array}{cc} \hat{k} & \hat{k} \end{array}$ $\int \vec{f} d\vec{r} = \iint \hat{\chi} \left(\frac{\partial \vec{f}_2}{\partial x} - \frac{\partial \vec{f}_1}{\partial y} \right) \hat{k} dy dx$

Green & Theoremi (2 d space)

$$\oint F dx = \iint \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dy dx$$

$$\oint F_1 dx + F_2 dy = \iint \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dy dx$$
Work done xy

THANK - YOU