S'instal·la en una cadira de rodes manual un sistema electromecànic dissenyat per a ajudar l'assistent que empeny la cadira. El sistema d'accionament està format per una bateria ideal d'ió liti de tensió  $U_{\rm bat}=12~{\rm V}$  i energia  $E_{\rm bat}=240~{\rm W}$  h, un motor de rendiment  $\eta_{\rm mot}=0.87$ , un reductor de rendiment  $\eta_{\rm red}=0.95$  i dues rodes auxiliars de diàmetre  $d=200~{\rm mm}$  que toquen a terra. La relació de transmissió entre la velocitat de rotació de les rodes  $n_{\rm r}$  i la velocitat de rotació del motor  $n_{\rm mot}$  és  $\tau=n_{\rm r}/n_{\rm mot}=0.08$ .

En les condicions d'estudi, es fa avançar la cadira en línia recta a una velocitat constant v = 3.7 km/h per un terreny horitzontal i sense que les rodes llisquin. El motor consumeix una potència  $P_{cons} = 75$  W. Determineu, per a aquestes condicions:

- a) La velocitat angular de les rodes auxiliars  $\omega_r$  i la velocitat angular a l'eix del motor  $\omega_r$ .
- **b)** La potència a l'eix de les rodes  $P_{\text{subm}}$ .
- c) El parell  $\Gamma$  a l'eix del motor.
- d) El temps màxim t de funcionament del conjunt i la distància màxima recorreguda  $s_{rec}$ .

## Exercici 2

Una bicicleta elèctrica està equipada amb una bateria de liti (de comportament ideal) que subministra una energia  $E_{\rm bat}=400\,{\rm W}$  h. La bateria alimenta un motor de rendiment  $\eta_{\rm motor}=0,957$  connectat a un reductor de rendiment  $\eta_{\rm red}=0,93$ . La relació de transmissió entre la velocitat de rotació de les rodes  $n_{\rm r}$  i la velocitat de rotació del motor  $n_{\rm motor}$  és  $\tau=n_{\rm r}/n_{\rm motor}=0,065$ . El diàmetre de les rodes és  $d=710\,{\rm mm}$ . A l'inici del trajecte la bateria està totalment carregada. En les condicions d'estudi, la bicicleta avança sempre a una velocitat constant  $v=25\,{\rm km/h}$  per un terreny horitzontal, el ciclista no pedala i el reductor subministra a l'eix de la roda una potència  $P_{\rm subm}=250\,{\rm W}$ . Les pèrdues per rodolament i les causades per l'aerodinàmica es poden negligir. Determineu:

a) L'energia dissipada  $E_{\text{diss}}$  en el conjunt motor-reductor quan s'ha esgotat la bateria.

[0,5 punts]

- b) El temps màxim  $t_{\text{màx}}$  que pot funcionar la bicicleta i la distància màxima recorreguda  $s_{\text{màx}}$ . [1 punt]
- c) La velocitat angular de les rodes  $\omega$ .

[0,5 punts]

d) El parell  $\Gamma$  a l'eix de sortida del motor.

[0,5 punts]



Una escala mecànica transporta passatgers que pugen una altura  $\Delta h = 6$  m en un temps  $t_p = 45$  s. La massa mitjana d'un passatger s'estima en  $m_p = 70.8$  kg. L'escala transporta de mitjana  $n_p = 20$  passatgers de manera simultània i funciona durant  $t_t = 10$  h al dia.

Quan l'escala treballa en buit (sense passatgers) consumeix una potència elèctrica  $P_{\text{buit}} = 3.2 \text{ kW}$ . El grup motor (motor, reductor i transmissió) que acciona l'escala té un rendiment electromecànic  $\eta = 0.58$ . Determineu:

- a) La potència mecànica mitjana  $P_p$  addicional que cal per a pujar de manera simultània  $n_p = 20$  passatgers. [1 punt]
- b) El nombre total  $n_i$  de passatgers que l'escala transporta en un dia. [0,5 punts]
- c) L'energia elèctrica total  $E_{\rm t}$  que consumeix l'escala en un dia, considerant el consum elèctric en buit i el consum associat a pujar els passatgers. [1 punt]

### Exercici 4

Una plataforma elevadora puja amb una velocitat constant una càrrega fins a una altura  $\Delta h = 4.5$  m en un temps t = 50 s. La plataforma s'acciona amb un motor elèctric de corrent continu en sèrie amb un reductor d'engranatges. Segons el catàleg del fabricant, el rendiment del reductor d'engranatges és  $\eta_{\rm red} = 0.72$ . El motor s'alimenta amb una tensió U = 220 V, consumeix un corrent I = 17.5 A i gira a una velocitat n = 1500 min<sup>-1</sup>. El parell a l'eix de sortida del motor és  $\Gamma_{\rm m} = 19.5$  N m. Si les resistències passives a la plataforma elevadora es consideren negligibles, determineu:

- a) La potència elèctrica  $P_{\rm elèctr}$  que consumeix el motor i el rendiment electromecànic  $\eta_{\rm mot}$  d'aquest motor. [1 punt]
- b) La potència total dissipada  $P_{\text{diss}}$  pel conjunt motor-reductor. [0,5 punts]
- La potència mecànica P<sub>càrrega</sub> requerida per a elevar la càrrega i la massa m d'aquesta càrrega. [0,5 punts]
- d) El corrent I' que consumiria el motor si la massa de la càrrega fos la meitat, m' = m/2, i es mantingués la velocitat (considereu que els rendiments i la tensió d'alimentació del motor es mantenen constants). [0,5 punts]



Un elevador puja amb una velocitat constant una càrrega  $m=2\,500\,\mathrm{kg}$  fins a una altura  $\Delta h=5\,\mathrm{m}$  en un temps  $t=60\,\mathrm{s}$ . L'elevador s'acciona amb un motor elèctric de corrent continu en sèrie amb un reductor d'engranatges. Segons el catàleg del fabricant, el rendiment del reductor d'engranatges és  $\eta_{\mathrm{red}}=0,70$ . El motor s'alimenta amb una tensió  $U=220\,\mathrm{V}$ , gira a una velocitat  $n=1\,500\,\mathrm{min}^{-1}$  i té un rendiment electromecànic  $\eta_{\mathrm{mot}}=0,78$ . Si les resistències passives a l'elevador es consideren negligibles, determineu:

| a) La potència mecànica $P_{\text{carrega}}$ requerida per a elevar la càrrega.       | [0,5 punts] |
|---------------------------------------------------------------------------------------|-------------|
| b) La potència $P_{\rm m}$ i el parell $\Gamma_{\rm m}$ a l'eix de sortida del motor. | [1 punt]    |
| c) La intensitat I que consumeix el motor elèctric.                                   | [0,5 punts] |
| d) La potència total dissipada $P_{diss}$ pel conjunt motor-reductor.                 | [0,5 punts] |

### Exercici 6

El parell motor  $\Gamma$  d'un motor de corrent continu i la intensitat I del corrent que hi circula són donats per les expressions següents, en què U és la tensió d'alimentació,  $\omega$  és la velocitat angular de l'eix,  $R=0.03~\Omega$  i  $c=0.02~\mathrm{N}$  m/A.

$$\Gamma = c I$$

$$I = \frac{U - c \,\omega}{R}$$

Quan la intensitat *I* és de 50 A, la potència que consumeix el motor és de 600 W. Determineu:

a) La tensió d'alimentació U del motor quan I = 50 A. [0,5 punts]

Si el motor s'alimenta amb la tensió obtinguda en l'apartat anterior:

- b) Determine la velocitat angular  $\omega$  de l'eix del motor quan I = 100 A. [1 punt]
- c) Dibuixeu, d'una manera aproximada i indicant les escales, la corba del rendiment en funció de la velocitat de gir per a 0 ≤ ω ≤ 600 rad/s. [1 punt]



Un muntacàrregues és accionat per un motor reductor i un sistema de politges. El motor reductor és elèctric i té un rendiment  $\eta_{mr} = 0,65$ . El sistema de politges té un rendiment  $\eta_{\rm pol} = 0.85$  i proporciona una relació de transmissió entre la velocitat  $\nu$  de pujada de la càrrega, en m/s, i la rotació  $n_{\rm mr}$  de l'eix de sortida del motor reductor, en s<sup>-1</sup>, de  $\tau = \nu/n_{\rm mr} = 0,9918$  m. El motor s'alimenta amb una tensió U = 230 V i, en règim de funcionament nominal, consumeix una intensitat I = 6,4 A quan la càrrega puja a v = 0,4 m/s constant. Determineu:

- a)~ La potència  $P_{\mbox{\tiny mr}}$ i el parell $\varGamma_{\mbox{\tiny mr}}$ a l'eix de sortida del motor reductor. [1 punt] b) La massa m de la càrrega que està pujant. [1 punt]
- c) El rendiment global  $\eta_{\text{tot}}$  del muntacàrregues.

# [0,5 punts]

## Exercici 8

Una porta de garatge enrotllable és accionada per un motor reductor de rendiment global  $\eta_{\text{tot}} = 0,33$ . El motor reductor està format per un motor elèctric de rendiment  $\eta_{\text{motor}} = 0,83$  i un reductor de relació de transmissió  $\tau = \omega_s/\omega_e = 1/285$ . El motor s'alimenta amb una tensió U = 230 V i, en un instant concret, consumeix una intensitat I = 1.8 A quan la porta s'enrotlla a  $n_s = 10 \, \mathrm{min^{-1}}$  en un tambor de diàmetre  $d = 220 \, \mathrm{mm}$ . Determineu:

- a) La potència  $P_{ ext{motor}}$  i el parell  $\Gamma_{ ext{motor}}$  a l'eix de sortida del motor. b) La potència  $P_{ ext{s}}$  i el parell  $\Gamma_{ ext{s}}$  a l'eix del tambor (eix de sortida del reductor). [1 punt]
- [1 punt]
- c) La massa màxima m que pot tenir la part que penja de la porta. [0,5 punts]





$$L = 18 \text{ m}$$
  $d = 1.2 \text{ m}$   $v = 0.5 \text{ m/s}$   
 $P_{\text{buit}} = 2.4 \text{ kW}$   $P_{\text{nom}} = 3.5 \text{ kW}$   
 $\eta = 0.68$   $t_{\uparrow} = 7.5 \text{ h}$ 

Una cinta transportadora és accionada per un grup motriu (motor, reductor i transmissió) que té un rendiment electromecànic  $\eta=0,68$ . Quan la cinta es mou de buit (sense càrrega) es consumeix una potència elèctrica  $P_{\text{buit}}=2,4\text{ kW}$  i quan treballa en condicions nominals es consumeix  $P_{\text{nom}}=3,5\text{ kW}$ . La cinta té una llargada L=18 m i en condicions nominals es mou a v=0,5 m/s i la distància entre paquet i paquet és d=1,2 m. Determineu:

- a) El consum elèctric  $E_{\text{elèc}}$ , en kW·h, durant  $t_{\text{t}}$  = 7,5 h de funcionament nominal. [0,5 punts]
- b) El nombre n de paquets simultanis sobre la cinta i el temps  $t_{paquet}$  que cada paquet està sobre la cinta. [1 punt]
- c) L'energia mecànica E<sub>paquet</sub> que requereix la manipulació d'un paquet (associada a l'augment de consum respecte al de funcionament de buit).

### Exercici 10

En un motor de corrent continu alimentat a una tensió U, la relació entre el parell motor  $\Gamma$  i la velocitat angular  $\omega$  de l'eix ve donada per l'expressió

 $\Gamma = (k_1 U - k_2) - k_3 \omega$ , amb  $k_1 = 8.58 \cdot 10^{-3}$  Nm/V,  $k_2 = 2.84 \cdot 10^{-3}$  Nm,  $k_3 = 301 \cdot 10^{-6}$  Nm·s/rad. Si aquest motor s'alimenta a U = 24 V,

- a) Dibuixeu, de manera aproximada i indicant les escales, la corba característica parell-velocitat per a  $0 \le \omega \le 600$  rad/s. [1 punt]
- b) Determineu la velocitat angular màxima  $\omega_{\text{màx}}$  a la qual pot girar si no està unit a cap càrrega. [0,5 punts]
- c) Calculeu l'energia mecànica E que genera si funciona contínuament durant f = 2 hores a n = 3400 min<sup>-1</sup>.



El grup motriu (motor, reductor i transmissió) que acciona una escala mecànica de pujada té un rendiment electromecànic  $\eta=0.58$ . Quan l'escala treballa de buit (sense passatgers) consumeix una potència elèctrica  $P_{\text{buit}}=3.2$  kW. De mitjana, cada passatger està  $t_{\text{p}}=15$  s sobre l'escala i fa necessari que a aquesta se li subministri una energia mecànica addicional  $E_{\text{p}}=4.5$  kJ. Si l'escala funciona durant  $t_{\text{t}}=9$  h transportant una mitjana de  $n_{\text{p}}=10$  passatgers simultanis, determineu:

a) El nombre total n<sub>1</sub> de passatgers transportats.

[1 punt]

b) La potència elèctrica addicional  $P_{\mathrm{D}}$  a causa dels passatgers.

[1 punt]

c) L'energia elèctrica total consumida E<sub>t</sub>, en kW·h.

[0,5 punts]

## Exercici 12

En uns cavallets de fira cada viatge dura  $t_v = 204$  s i l'energia mecànica que consumeixen per fer-lo és  $E_{mv} = 103,6$  kJ. El grup motriu que els acciona (motor, reductor, transmissió) té un rendiment electromecànic = 0,64. Aquests cavallets funcionen 6 hores diàries a un ritme de 12 viatges cada hora. L'enllumenat i la megafonia consumeixen 25 kW. Determineu:

- a) La potència elèctrica mitjana que consumeix el grup motriu durant un viatge. [1 punt]
  - [1 punt]

c) L'energia elèctrica total, en kW·h, consumida en un dia.

b) L'energia elèctrica, en kW·h, consumida en un dia pel grup motriu.

[0,5 punts]

