Homework 7-8

November 14, 2023

1 Homework 7-8

1.1 Regression

Load the data.

```
[]: import pandas as pd

df = pd.read_csv('Advertising.csv')
  df = df.drop('Unnamed: 0', axis=1)
  df.head(5)
```

```
[]:
         TV radio newspaper
                             sales
    0 230.1
              37.8
                        69.2
                              22.1
    1 44.5
              39.3
                        45.1 10.4
      17.2
              45.9
                        69.3
                               9.3
                        58.5
    3 151.5
             41.3
                             18.5
    4 180.8
              10.8
                        58.4
                              12.9
```

Scale the features.

```
[]: from sklearn.preprocessing import MinMaxScaler
import numpy as np

x = np.array(df[['TV', 'radio', 'newspaper']])
y = np.array(df[['sales']])

x_scaled = MinMaxScaler().fit_transform(x)
```

Split scaled data into training and testing splits.

1.1.1 Exercise 1

Fit linear regression to training data.

```
[]: from sklearn.linear_model import LinearRegression

ex1_model = LinearRegression().fit(x_train, y_train)
```

Read off the learned model parameters.

```
[]: print(f'Coefficients: {ex1_model.coef_}')
print(f'Intercept: {ex1_model.intercept_}')
```

```
Coefficients: [[13.22651832 9.38407469 0.3139387]]
Intercept: [3.01120633]
```

Compare \mathbb{R}^2 scores of training and test data.

```
[]: print(f'Training R^2: {ex1_model.score(x_train, y_train)}')
print(f'Test R^2: {ex1_model.score(x_test, y_test)}')
```

```
Training R^2: 0.8957008271017817
Test R^2: 0.8994380241009119
```

The training and testing R^2 are both fairly close to 1 and similar in value (though for different values of random_state, that is, different training and testing splits, the test R^2 tends to be a bit lower than the training R^2).

1.1.2 Exercise 2

Fit K-nearest neighbors model to the training data with K = 1.

```
[]: from sklearn.neighbors import KNeighborsRegressor

ex2_model = KNeighborsRegressor(n_neighbors=1).fit(x_train, y_train)
```

Compare R^2 scores for training and testing data.

```
[]: print(f'Training R^2: {ex2_model.score(x_train, y_train)}')
print(f'Test R^2: {ex2_model.score(x_test, y_test)}')
```

```
Training R<sup>2</sup>: 1.0
Test R<sup>2</sup>: 0.9025380308603167
```

K-nearest neighbors is perfect ($R^2 = 1$) on the training data when K = 1 by construction. On the test data, however, its performance is similar to that of the linear regression in Exercise 1.

Repeat the above for $K \in \{2, 3, ..., 10\}$.

```
[]: ex2_models = [ex2_model]
for k in range(2, 11):
    ex2_models.append(KNeighborsRegressor(k).fit(x_train, y_train))
```

Print \mathbb{R}^2 scores from each model.

```
[]: for k in range(10):
       print(f'K = \{k + 1\}')
       print(f'Training R^2: {ex2_models[k].score(x_train, y_train)}')
       print(f'Test R^2: {ex2_models[k].score(x_test, y_test)}')
       print()
    K = 1
    Training R<sup>2</sup>: 1.0
    Test R^2: 0.9025380308603167
    K = 2
    Training R^2: 0.9812430719552749
    Test R^2: 0.9324894681867459
    K = 3
    Training R^2: 0.9718620977717801
    Test R^2: 0.9364836092038614
    K = 4
    Training R^2: 0.9671987204202612
    Test R^2: 0.9299073794472469
    K = 5
    Training R^2: 0.9665527977251915
    Test R^2: 0.9337192077502264
    K = 6
    Training R^2: 0.9632464215142899
    Test R^2: 0.9498780845328242
    K = 7
    Training R^2: 0.9597421955914276
    Test R^2: 0.9503836147120786
    K = 8
    Training R^2: 0.9570375379536363
    Test R^2: 0.9461417178612622
    K = 9
    Training R^2: 0.9512721124742588
    Test R^2: 0.9420403901172719
    K = 10
    Training R^2: 0.9477586389705528
    Test R^2: 0.9382764359650904
```

For K > 1, the K-nearest neighbors regression is no longer perfect on the training data. Indeed, as

K increases the training R^2 decreases, but the test R^2 tends to increase (though it is still always lower than the training R^2).

1.1.3 Exercise 3

Create linear model using keras.

```
[]: import tensorflow as tf

ex3_model = tf.keras.Sequential(layers=[
          tf.keras.layers.Input(3), tf.keras.layers.Dense(1)
], name='Exercise3Model')

optim = tf.keras.optimizers.Adam(learning_rate=.15)
ex3_model.compile(loss='mse', optimizer=optim)
```

Train with 5000 epochs.

```
[]: x_train_t = tf.convert_to_tensor(x_train)
y_train_t = tf.convert_to_tensor(y_train)

ex3_model.fit(
    x_train_t, y_train_t,
    epochs=5000,
    batch_size=len(x_train),
    verbose=0
)
```

[]: <keras.src.callbacks.History at 0x2b15fef9610>

Get the trained parameters.

```
[]: print(f'Weights: {ex3_model.layers[0].weights[0].value()}')
    print(f'Bias: {ex3_model.layers[0].bias.value()}')

Weights: [[13.226515]
    [ 9.384072 ]
    [ 0.31393996]]
    Bias: [3.0112088]
```

These parameters are comparable to those obtained using ordinary least squares (Exercise 1).

```
2/2 [======] - 0s 1ms/step
Test R^2: 0.8994379998671596
```

The \mathbb{R}^2 values are similar for the training and test splits and similar to the \mathbb{R}^2 values obtained in Exercise 1.

Overall, this model is nearly the same as that obtained in Exercise 1.

1.1.4 Exercise 4

Create the model.

```
[]: ex4_model = tf.keras.Sequential([
          tf.keras.layers.Input(3),
          tf.keras.layers.Dense(128, activation='relu'),
          tf.keras.layers.Dense(64, activation='relu'),
          tf.keras.layers.Dense(32, activation='relu'),
          tf.keras.layers.Dense(1)
], name='Exercise4Model')

optim = tf.keras.optimizers.Adam(learning_rate=.05)
          ex4_model.compile(loss='mse', optimizer=optim)
```

Train for 5000 epochs.

```
[]: ex4_model.fit(
    x_train_t, y_train_t,
    batch_size=len(x_train), verbose=0,
    epochs=5000
)
```

[]: <keras.src.callbacks.History at 0x2b161490590>

Get \mathbb{R}^2 scores for training and testing data.

```
Training R^2: 0.9969724869682755
Test R^2: 0.988450162299337
```

This model performs much better on both training and testing data than any of the previous ones.

1.2 Classification

Load the data, scale features, and split into training and testing data.

```
[]: df = pd.read_csv('diagnosis.csv')
    df.head(5)
```

```
[]:
              id diagnosis
                             radius_mean texture_mean perimeter_mean area_mean \
          842302
                                   17.99
                                                                  122.80
                                                                              1001.0
     0
                          Μ
                                                  10.38
     1
          842517
                          М
                                   20.57
                                                  17.77
                                                                  132.90
                                                                              1326.0
     2
       84300903
                          Μ
                                   19.69
                                                  21.25
                                                                  130.00
                                                                              1203.0
     3 84348301
                                                                   77.58
                          Μ
                                   11.42
                                                  20.38
                                                                               386.1
     4 84358402
                                   20.29
                                                  14.34
                                                                  135.10
                                                                              1297.0
        smoothness_mean
                         compactness_mean
                                             concavity_mean concave points_mean
     0
                0.11840
                                   0.27760
                                                     0.3001
                                                                           0.14710
                                                                           0.07017
     1
                0.08474
                                   0.07864
                                                     0.0869
     2
                                                                           0.12790
                0.10960
                                   0.15990
                                                     0.1974
     3
                0.14250
                                                     0.2414
                                   0.28390
                                                                           0.10520
     4
                0.10030
                                   0.13280
                                                     0.1980
                                                                           0.10430
           texture_worst
                           perimeter_worst
                                             area_worst
                                                          smoothness_worst \
     0
                   17.33
                                    184.60
                                                 2019.0
                                                                    0.1622
     1
                    23.41
                                     158.80
                                                 1956.0
                                                                    0.1238
     2
                   25.53
                                     152.50
                                                 1709.0
                                                                    0.1444
     3
                   26.50
                                                 567.7
                                                                    0.2098
                                      98.87
                                                                    0.1374
     4
                   16.67
                                     152.20
                                                 1575.0
        compactness worst
                            concavity_worst
                                             concave points_worst symmetry_worst
                                                             0.2654
     0
                   0.6656
                                      0.7119
                                                                              0.4601
                    0.1866
                                      0.2416
                                                             0.1860
                                                                              0.2750
     1
     2
                   0.4245
                                      0.4504
                                                             0.2430
                                                                              0.3613
     3
                                      0.6869
                    0.8663
                                                             0.2575
                                                                              0.6638
     4
                                                             0.1625
                   0.2050
                                      0.4000
                                                                              0.2364
        fractal_dimension_worst
                                  Unnamed: 32
     0
                         0.11890
                                           NaN
     1
                         0.08902
                                           NaN
     2
                         0.08758
                                           NaN
     3
                         0.17300
                                           NaN
                         0.07678
                                           NaN
```

[5 rows x 33 columns]

Get relevant features.

```
[]: # output class is 1 if diagnosis is malignant, 0, if benign
y = np.where(df['diagnosis'] == 'M', 1., 0.)
x = np.array(df[['radius_mean', 'texture_mean', 'smoothness_mean']])
```

Scale features using MinMaxScaler.

```
[]: x_scaled = MinMaxScaler().fit_transform(x)
```

Split data into train and test splits.

1.2.1 Exercise 5

Perform logistic regression on the training data.

```
[]: from sklearn.linear_model import LogisticRegression

ex5_model = LogisticRegression(penalty=None).fit(x_train, y_train)
```

Print learned parameters.

```
[]: print(f'Coefficients: {ex5_model.coef_}')
print(f'Intercept: {ex5_model.intercept_}')
```

Coefficients: [[27.33747378 10.76746566 15.43661982]]

Intercept: [-19.74212166]

Compute accuracy on training and testing data.

```
[]: print(f'Training accuracy: {ex5_model.score(x_train, y_train)*100 : .02f}%') print(f'Test accuracy: {ex5_model.score(x_test, y_test)*100 : .02f}%')
```

Training accuracy: 92.75% Test accuracy: 94.74%

The training and test accuracies are both pretty good (>90%) and are similar. By chance, we got slightly better testing accuracy than training accuracy.

1.2.2 Exercise 6

Create and train a K-nearest neighbors model with K=1.

```
[]: from sklearn.neighbors import KNeighborsClassifier

ex6_model = KNeighborsClassifier(1).fit(x_train, y_train)
```

Compute training and test accuracy.

```
[]: print(f'Training accuracy: {ex6_model.score(x_train, y_train)*100 : .02f}%') print(f'Test accuracy: {ex6_model.score(x_test, y_test)*100 : .02f}%')
```

Training accuracy: 100.00% Test accuracy: 92.98%

As we saw in the case of KNN regression, the KNN method is perfect (100% accuracy) on training data with K=1 by construction. It still achieves high accuracy (but not 100%!) on the test data. The accuracy is comparable to that achieved by the logistic regression.

Repeat for $K \in \{2, 3, ..., 9\}$.

```
[]: ex6\_models = []
    for k in range(1, 12):
      ex6_models.append(KNeighborsClassifier(k).fit(x_train, y_train))
    for k in range(len(ex6_models)):
      print(f'K = \{k + 1\}')
      print(f'Training accuracy: {ex6_models[k].score(x_train, y_train)*100 : .
      →02f}%')
      print(f'Test accuracy: {ex6_models[k].score(x_test, y_test)*100 : .02f}%')
      print()
    K = 1
    Training accuracy: 100.00%
    Test accuracy: 92.98%
    K = 2
    Training accuracy: 94.29%
    Test accuracy: 86.84%
    K = 3
    Training accuracy: 93.85%
    Test accuracy: 90.35%
    K = 4
    Training accuracy: 92.53%
    Test accuracy: 91.23%
    K = 5
    Training accuracy: 92.75%
    Test accuracy: 92.98%
    K = 6
    Training accuracy: 91.87%
    Test accuracy: 92.98%
    K = 7
    Training accuracy: 92.75%
    Test accuracy: 94.74%
    K = 8
    Training accuracy: 91.65%
    Test accuracy: 95.61%
    K = 9
    Training accuracy: 92.97%
    Test accuracy: 95.61%
    K = 10
```

```
Training accuracy: 91.87%
Test accuracy: 94.74%

K = 11
Training accuracy: 92.97%
Test accuracy: 95.61%
```

A similar trend to what occurred with KNN regression is observable here: as K increases, training accuracy tends to decrease while test accuracy tends to increase. The training accuracy seems to level out at around 92% for $K \geq 4$, and the test accuracy seems to top out at around 95% for K > 8.

1.2.3 Exercise 7

Create one-layer neural network with sigmoid activation function and binary cross-entropy loss function.

```
[]: ex7_model = tf.keras.models.Sequential([
          tf.keras.layers.Input(3),
          tf.keras.layers.Dense(1, activation='sigmoid'),
], name='Exercise7Model')

optim = tf.keras.optimizers.Adam(learning_rate=.1)
  ex7_model.compile(loss='bce', optimizer=optim, metrics=['accuracy'])
```

Train for 5000 epochs on the training data.

```
[]: x_train_t = tf.convert_to_tensor(x_train)
y_train_t = tf.convert_to_tensor(y_train)

ex7_model.fit(
    x_train_t, y_train_t,
    batch_size=len(x_train),
    epochs=5000,
    verbose=0
)
```

[]: <keras.src.callbacks.History at 0x2b162857010>

Read the network parameters.

Bias: [-19.742088]

```
[]: print(f'Weights: {ex7_model.layers[0].weights[0].value()}')
    print(f'Bias: {ex7_model.layers[0].bias.value()}')

Weights: [[27.33742]
    [10.767428]
    [15.436617]]
```

These parameters are nearly the same as those obtained using LogisticRegression.

Training accuracy: 92.75% Test accuracy: 94.74%

The training and test accuracies are, of course, the same as those obtained from LogisticRegression in Exercise 5, as this model is virtually the same model – the parameters were optimized by a different method, but we have already seen that the end result was nearly the same.

Train with 12000 epochs.

```
[]: ex7_model_long = tf.keras.models.Sequential([
          tf.keras.layers.Input(3),
          tf.keras.layers.Dense(1, activation='sigmoid'),
], name='Exercise7Model_long')

optim = tf.keras.optimizers.Adam(learning_rate=.1)
  ex7_model_long.compile(loss='bce', optimizer=optim, metrics=['accuracy'])

ex7_model_long.fit(
    x_train_t, y_train_t,
    batch_size=len(x_train),
    epochs=12000,
    verbose=0
)
```

[]: <keras.src.callbacks.History at 0x2b166bb6850>

Show learned parameters and training and test accuracies.

Weights: [[27.33744] [10.767424] [15.436618]] Bias: [-19.74212] Training accuracy: 92.75% Test accuracy: 94.74%

The parameters and corresponding training and test accuracies are the same as those obtained

when training for only 5000 epochs; evidently, the optimization converges before 5000 epochs have passed.

1.2.4 Exercise 8

Create model with three hidden layers of size 128, 64, and 32, and one output layer.

```
[]: ex8_model = tf.keras.models.Sequential([
          tf.keras.layers.Input(3),
          tf.keras.layers.Dense(128, activation='relu'),
          tf.keras.layers.Dense(64, activation='relu'),
          tf.keras.layers.Dense(32, activation='relu'),
          tf.keras.layers.Dense(1, activation='sigmoid')
], 'Exercise8Model')

optim = tf.keras.optimizers.Adam(learning_rate=.1)
    ex8_model.compile(loss='bce', optimizer=optim, metrics=['accuracy'])
```

Train for 5000 epochs on the training data.

```
[]: ex8_model.fit(
    x_train_t, y_train_t,
    batch_size=len(x_train),
    epochs=5000,
    verbose=0
)
```

[]: <keras.src.callbacks.History at 0x2b16896c050>

Compute training and test accuracies.

```
[]: print(f'Training accuracy: {ex8_model.evaluate(x_train_t, y_train_t, \_ \top verbose=0)[1]*100 : .02f}%')

print(f'Test accuracy: {ex8_model.evaluate(x_test, y_test, verbose=0)[1]*100 : . \top 02f}%')
```

```
Training accuracy: 94.07% Test accuracy: 94.74%
```

This model achieves slightly higher training and test accuracy than the model from Exercise 7. It has a lot more parameters, though:

```
[]: ex7_model.summary()
```

```
Model: "Exercise7Model"
```

```
Layer (type) Output Shape Param #
------
dense_5 (Dense) (None, 1) 4
```

Total params: 4 (16.00 Byte)
Trainable params: 4 (16.00 Byte)
Non-trainable params: 0 (0.00 Byte)

Layer (type)	Output Shape	Param #
dense_5 (Dense)	(None, 1)	4

Total params: 4 (16.00 Byte)
Trainable params: 4 (16.00 Byte)
Non-trainable params: 0 (0.00 Byte)

[]: ex8_model.summary()

Model: "Exercise8Model"

Layer (type)	Output Shape	Param #
dense_7 (Dense)	(None, 128)	512
dense_8 (Dense)	(None, 64)	8256
dense_9 (Dense)	(None, 32)	2080
dense_10 (Dense)	(None, 1)	33

Total params: 10881 (42.50 KB)
Trainable params: 10881 (42.50 KB)
Non-trainable params: 0 (0.00 Byte)

Layer (type)	Output Shape	Param #
dense_7 (Dense)	(None, 128)	512
dense_8 (Dense)	(None, 64)	8256
dense_9 (Dense)	(None, 32)	2080
dense_10 (Dense)	(None, 1)	33

Total params: 10881 (42.50 KB)

Trainable params: 10881 (42.50 KB)
Non-trainable params: 0 (0.00 Byte)
