

7.2 Sensory perception

Cellular Mechanisms of Brain Function

Prof. Carl Petersen

Sensory perception

Sensory percepts are subjective

Sensory percepts are internal contructs, created by neuronal activity.

Lefort, Tomm, Sarria & Petersen, 2009

Sensory percepts are learned

Sensory percepts are learned through experience.

We can recognise objects because we have previously seen closely-related images.

We learn to see the world.

Experimental investigation of sensory perception

Sensory percepts must be reported through motor output to allow experimental investigation. Learned abstract sensorimotor transforms are therefore minimal essential core features of sensory perception.

Whisker detection task

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Learning

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Psychophysics

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Primary somatosensory barrel cortex - \$1

S1 is necessary for detection task

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Optogenetic substitution for whisker stimulus

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Optogenetic substitution for whisker stimulus

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Optogenetic programming of behavior

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Membrane potential correlates of perception

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Correlates of perception in humans

Late depolarisation contributes to perception

Sachidhanandam, Sreenivasan, Kyriakatos, Kremer & Petersen, 2013

Cellular mechanisms of sensory perception

- Head-restrained mice can be trained to perform simple perceptual tasks, allowing detailed investigation of the underlying goal-directed sensorimotor transformation.
- In a whisker detection task, an early sensory response in S1 reliably encodes stimulus, and a late component codes subjective percept.