Sergio Munguia Team (1) Member Final Project: Cats vs Dogs

By using computer vision, I can take advantage of machine learning techniques to detect objects of interest in images and classify or identify categories of objects.

In the project I extract features, and then use them to train a model to classify or learn patterns in the image data. I use local detectors for locally "interesting points" in the image.

These image features: are collections of locally interesting points

Combined to build classifiers

Standard image classification approach, Extract features

Using the features of a pre-trained network, I can achieve 90% accuracy in a minute-wise performance.

In the code I instantiate the convolutional part of the model, and everything up to the fully-connected layers. If training a large network, can use regularization to defeat overfitting.

1st I take in a trained model of data, either a CNN pretrained or CNN trained from scratch on 25,000 cats & dogs
-Locating the pre-trained "AlexNet" in file location of the folder cats_dogs_starter\networks
(Loading the MatConvNet data into ConvNet, a series network object from NN toolbox, using helperImportMavConvNet in Computer Vision System Toolbox.

I will use the series network object to inspect the network architecture, classify new data, and extract network activations from specific layers.

2nd Inspect the layers of the convnet.Layers

- -The convolutional layers, interspersed with rectified linear units (ReLU) and max-pooling layers
- -Following layers are the 3 Fully-connected layers
- -the last layer is a classification layer

Convet.Layers(end) # inspect the last layer)

3rd Inspect the network weights for the second convolutional layer

The first layer has learned filters for capturing blog and edge features.

 4^{th} Inspect and extract features from one of the deeper layers using activations method.

5th Classify the training Features, training Labels

- CNN trained from scratch

- CNN using pre-trained data
- SVM Classifier
- TREE Classifier
- Naive Bayes Classifier
- K-Nearest Classifier

6th Show predications of 4 different classifiers % accuracy

Note: At first had a bad GPU, an old computer and couldn't perform the computer CUDA computations to train.

So, I went to Best Buy and purchased a new computer...

Here I used an NVIDIA GeForce GTX 1060 on an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 2801 Mhz, 4 Core(s), 8 Logical Processor(s) to train a CNN from of the 25,000 dogs and cats images data set from Kaggle.

, Then tested it on a new test set image.

orna)	d Window												
	ining on s		1700										
nı.	tializing	1.0	iage	normalizati	101	1-							
		-			_			and the first of the second	7	and and the same	1		=!
1	Epoch			Iteration	e.	Time Elapsed (seconds)	1	Mini-batch		Mini-batch	1	Base Learning	31
1	202050000		20.	DUUEDUO-C-CC	4	(seconds)	A	Loss		Accuracy		Rate	1
		1	1	1	1	0.47		0.6927		57.00%		0.0010	- 1
1		1	1	50	1	1.99	1	0.6769		63.00%	1	0.0010	
1		1	1	100	1	3.47	1	0.6508	1	57.00%	1	0,0010	
1		4	10	150	1	4.98	Ŷ.	0.6570	1	56.00%	T.	0,0010	
1		1	1	200	1	6.47	1	0.6124	r	68,00%	1	0,0010	
1		1	1	250	1	7.96	1	0.6683	1	60.00%	- 1	0.0010	
1		2	11.	300	.1	9.51	1	0.6082	1.	63.00%	. 1	0.0010	
1		2	1	350	1	11.04	1	0.6009	1	63.00%	1	0,0010	
1		7	1	400	1	12.54	1	0.4738	1	78.00%	.1	0.0010	
1		0	1	450	1	14.07	1	0.6011	1	63.00%	1	0.0010	
1		2	1	500	1	15.53	1	0.5733	1	70.00%	1	0.0010	
1		3	1	550	1	17.10	1	0.5591	1	74.00%	1	0.0010	
1		3	1.	600	1	10.55	1	0.6014	1	800.00%	1	0.0010	
t:		3	1.	650	1	20.03	1	0.4205	1	84,00%	.1	0.0010	
1		3	1	700	1	21.52	1	0.5782	1	67,00%	-1	0.0010	
1		3	1	750		22.99	1	0.4957	1	78.00%	11	0,0010	
1		9	1	800	1	24.59	T.	0.5220	1	75.00%	1	0.0010	
1		4	1	850	1	26.09	1	0.5953	ï	68,00%	1	0,0010	
1		4	1	900	1	27.59	1	0.3796	1	86.00%	1	0.0010	
1		4	11.	950		29.07	1	0.5489	1.	71.00%	. 1	0.0010	
1		4	1	1000	1	30.57	1	0.4562	1	70.00%	1	0.0010	
1		5	1	1050	1	32.15		0.5191	1	78.00%	.1	0.0010	
1		5	1	1100	1	33.69		0.5744	T	70.00%	1	0.0010	
1		5	1	1150	1	35.18	1	0.3566	1	81.00%	- 1	0.0010	Y)
1		5	1	1200	1	36.65	1	0.5256	1	72.00%	-1	0.0010	- 1
1		5	1	1250	1	38.17	1	0.4233	1	80.00%	1	0,0010	1

