STAT 111

Recitation 11

Mo Huang

Email: mohuang@wharton.upenn.edu

Office Hours: Wednesdays 3:00 - 4:00 pm, JMHH F96

Slides: github.com/mohuangx/STAT111-Fall2018

November 29, 2018

Hypothesis testing outline

- ► Test of binomial/proportion
- ► Test of means/regression
 - One-sample t test
 - ► Two-sample *t* test (unpaired)
 - ▶ Regression *t* test
 - Paired two-sample t test
- ► Test of equality of two binomial parameters (two-by-two table)

Regression t test

- Linear Regression Model: for the *i*th observation,
 - Mean of $Y_i = \alpha + \beta x_i$, Variance of $Y_i = \sigma^2$.

- \triangleright β is estimated by $b = s_{xy}/s_{xx}$
- $ightharpoonup \alpha$ is estimated by $a = \bar{y} b\bar{x}$
- $ightharpoonup \sigma^2$ is estimated by $s_r^2 = \frac{s_{yy} b^2 s_{xx}}{r^2}$
- We want to test $H_0: \beta = 0$ (x has no effect on Y).
- The test statistic is

$$t = \frac{b}{s_r/\sqrt{s_{xx}}}$$
 with $n-2$ degrees of freedom.

We observe

$$\overline{x} = 21, \overline{y} = 79.7, s_{xx} = 80, s_{yy} = 83.54, s_{xy} = 25, n = 20.$$

- Step 1 $H_0: \beta = 0$ vs. $H_1: \beta \neq 0$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is

$$t = \frac{b}{s_r / \sqrt{s_{xx}}}$$

$$b = \frac{s_{xy}}{s_{xx}} = \frac{25}{80} = 0.3125$$

$$s_r = \sqrt{\frac{s_{yy} - b^2 s_{xx}}{n - 2}} = \sqrt{\frac{83.54 - 0.3125^2(80)}{20 - 2}} = 2.051$$

$$t = \frac{b}{s_r / \sqrt{s_{xx}}} = \frac{0.3125}{2.051 / \sqrt{80}} = 1.363$$

▶ We observe

$$\overline{x} = 21, \overline{y} = 79.7, s_{xx} = 80, s_{yy} = 83.54, s_{xy} = 25, n = 20.$$

- Step 1 $H_0: \beta = 0$ vs. $H_1: \beta \neq 0$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is t = 1.363.
- Step 4 Find the critical region.

How many degrees of freedom do we have? n-2=18

So we need to look at t_{18} . What is the critical region?

$$t \ge t_{18,0.025} = 2.101$$
 and $t \le -t_{18,0.025} = -2.101$.

▶ We observe

$$\overline{x} = 21, \overline{y} = 79.7, s_{xx} = 80, s_{yy} = 83.54, s_{xy} = 25, n = 20.$$

- Step 1 $H_0: \beta = 0$ vs. $H_1: \beta \neq 0$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is t = 1.363.
- Step 4 Find the critical region: $t \ge 2.101$ and $t \le -2.101$
- Step 5 Do we reject H_0 ? No, t = 1.363 is not in the critical region.

Paired two sample t test

- Suppose we have two samples where there is a natural pairing of data between the two samples. Let μ_d be the mean difference between the two samples.
- For example, we have n patients and we are interested in determining if a drug decreases cholesterol levels. We collect cholesterol levels before (x_{11}, \ldots, x_{1n}) and after (x_{21}, \ldots, x_{2n}) administering the drug.
- We want to test $H_0: \mu_d = 0$.
- Consider $d_i = x_{2i} x_{1i}$, the difference in measurement between sample 2 and sample 1 for subject i.
 - ▶ Estimate of μ_d : $\bar{d} = \frac{1}{n} \sum_{i=1}^n d_i$
 - Estimate of σ^2 : $s_d^2 = \frac{d_1^2 + d_2^2 + \dots + d_n^2 n(\bar{d})^2}{n-1}$
- ► The test statistic is

$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is

$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

$$\bar{d} = -6.9$$
 $s_d = 9.96$ $t = \frac{\bar{d}}{s_d/\sqrt{n}} = \frac{-6.9}{9.96/\sqrt{10}} = -2.191$

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region.

How many degrees of freedom do we have? n-1=9

So we need to look at t_9 . What is the critical region?

$$t \le -t_{9,0.01} = -2.821.$$

Suppose we have 10 patients and we are interested in determining if a drug decreases cholesterol levels. We collect the following cholesterol levels before and after administering the drug:

Patient	1	2	3	4	5	6	7	8	9	10
Before	204	243	253	212	239	241	256	267	231	251
After	200	235	256	200	232	210	249	270	233	243
Difference	-4	-8	3	-12	-7	-31	-7	3	2	-8

- Step 1 $H_0: \mu_d = 0$ vs. $H_1: \mu_d < 0$. One-sided test.
- Step 2 Choose $\alpha = 0.01$.
- Step 3 Test-statistic is t = -2.191.
- Step 4 Find the critical region: $t \le -2.821$
- Step 5 Do we reject H_0 ? No, t = -2.191 is not in the critical region.

Testing for equality of two binomial parameters using two-by-two tables

- Suppose we have two binomial parameters θ_1 and θ_2 and we want to test if they are equal.
- ▶ For example, we want to see if there is a difference in voter turnout between men and women. Let θ_1 be the voter turnout for men and θ_2 be the voter turnout for women. The two-by-two table would be

	voted	did not vote	total
men	011	012	r_1
women	<i>o</i> ₂₁	022	<i>r</i> ₂
total	<i>c</i> ₁	<i>c</i> ₂	n

- We want to test $H_0: \theta_1 = \theta_2$.
- ► The test statistic is

$$z = \frac{(o_{11} \times o_{22} - o_{21} \times o_{12})\sqrt{n}}{\sqrt{r_1 \times r_2 \times c_1 \times c_2}}$$

► Suppose we have the following data on voter turnout:

	voted	did not vote	total
men	170	140	310
women	120	110	230
total	290	250	540

- Step 1 $H_0: \theta_1 = \theta_2$ vs. $H_1: \theta_1 \neq \theta_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is

$$z = \frac{(o_{11} \times o_{22} - o_{21} \times o_{12})\sqrt{n}}{\sqrt{r_1 \times r_2 \times c_1 \times c_2}}$$

$$z = \frac{(170 \times 110 - 120 \times 140)\sqrt{540}}{\sqrt{310 \times 230 \times 290 \times 250}} = 0.6141$$

▶ Suppose we have the following data on voter turnout:

	voted	did not vote	total
men	170	140	310
women	120	110	230
total	290	250	540

- Step 1 $H_0: \theta_1 = \theta_2$ vs. $H_1: \theta_1 \neq \theta_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is z = 0.6141.
- Step 4 Find the critical region and p-value.

$$z \le z_{0.025} = -1.96$$
 and $z \ge z_{0.975} = 1.96$.

$$p$$
-value = $2P(Z \ge |0.6141|) \approx 2(0.27) = 0.54$

► Suppose we have the following data on voter turnout:

	voted	did not vote	total
men	170	140	310
women	120	110	230
total	290	250	540

- Step 1 $H_0: \theta_1 = \theta_2$ vs. $H_1: \theta_1 \neq \theta_2$. Two-sided test.
- Step 2 Choose $\alpha = 0.05$.
- Step 3 Test-statistic is z = 0.6141.
- Step 4 Find the critical region *p*-value: $z \le -1.96$ and $z \ge 1.96$. p-value = 0.54.
- Step 5 Do we reject H_0 ? No, z = 0.6141 is not in the critical region and the p-value is greater than 0.05.