Algoritmi e Strutture Dati (08/11/2021)

* Albor di Ricorca

albero

→ modi x x. key

-c operazioni (h)

(se bilamciato: O(logm))

- alberi bimori di ricerco

-s alberi RED-BLACK

→ olberi AVL

- B-alberi

* Alberi bimorci di Ricerca (ABR/BST)

alberi bimori ordinati (figlio sx, figlio dx)

definizione induttiva: albero bimorio

otour avola a-

- A (TZ, TZ, TR) dove & modo
TL, TR alberi bimori

x x. Key 2. p

> a. Est a. right

mil (se vuoto)

* Albero bimorio di Ricerca

albero bimarcio (ordinato) per gni modo x

- ~ gmi modo y mel sottoolbers sx di x y. key ≤ x. key

-> " " / / - - - · · dx diz y. Key » x. Key

Esempio:

PROPRIETA' NON LOCALE

ESERCIZIO: FUMZIONE ISABR (T) retorma brue/folse a se conda du T sia o me mo um ABR

* Operazioni:

* Im Order

elencora gli elementi del sottalbero radicato in un modo « in ordina di diave crascante

Im Order
$$(x)$$

if $x \neq mil$
Im Order $(x. Qft)$
primt x $(x. qft)$
Im Order $(x. right)$

Esercizio 1 Dato T albera bi mario ardi mato

(è una visita dell'albera)

$$T(m) = T(\kappa) + T(m-\kappa-1) + \Theta(1)$$

z. eff x. eff x.

$$T(m) = \begin{cases} d & m=0 \\ T(K)+T(m-K-1)+C & m>0 \end{cases}$$

$$= cm+b$$

$$(m=0)$$
 $T(0) = d$ $= 0.0 + b = b$ $= d$

$$\begin{array}{lll}
(M>0) & T(M) = T(K) + T(M-K-1) + C & K_1M-K-1 < M \\
&= (QK+b) + (Q(M-K-1)+b) + C & Ip \cdot Imd \\
&= Q(X+M-K-1) + 2b + C & Ip \cdot Imd \\
&= QM - Q + 2b + C & Ip \cdot Imd \\
&= QM+b & Ip \cdot Imd & Ip \cdot Imd \\
&= QM - Q + 2b + C & Ip \cdot Imd & Ip \cdot Imd \\
&= QM - Q + QD + C & Ip \cdot Imd & Ip \cdot Im & Ip \cdot I$$

IPOTESi
$$T(m) = am + b$$
 verificate com $a = d + c$
 $b = d$

* Ricurca

data K drieve, corca mel sottallouro badicato mel modo ac um mado com drieve K

- se
$$x, Ky = K$$
 \sim rutozma x
- se $K < x, Ky \rightarrow cozca im $x.$ left
- se $K > x, Ky \rightarrow$ axce im $x.$ right$

else return x

Companità : coso paggiose: continuo fino ad una falsa e la commina sodice-falsa e la collessa cm reacm O(h) h oltezza olbero Note h put enere (a) (m) 1 2 4 1, 2, 4, 6, 7, 8, 8 9 * iterativa Scotch (& K) while (x \$ mil) and (x. key \$ k) if K < x Key x = x, Qft else x= x. wight return x Dato a : minimo mel sotto el boro realiato in a

& Mimimo

Mim (x) 1/2= ml while (2. left + mil) $x = \infty$. Left return 2

companità O(h)

- $-\infty$ minimo tra i modi pui grandi di ∞
- modo du segue a un uma visita in coduc

- -s se ze ha sottaalbero dx man vooto \Rightarrow min (x. right)
- se x. mom ha sotto albero dx ⇒ pri vicimo omtemoto di x di cui x è mel sottalb. SX

Imsert

(T. root) obom 13 vucm) cmodger Z mell'olbero ABR T

z.Key

Imsert (T, Z) x.= T. root y= mil while (x + mil) y= x if z key < x key oc= z. left else = = x. right

Z.P = 4 if y = mie $\overline{1}$, rest = 2

else

if z. key < y. key y. left = 2

else y. right = 2

1,1,1,1 EX

(h) companito

1 1 1 1

ESER CIZI

(1) Usore per ordinamento ABR

> Insert Α tuputo Juanto

ABR Im Order

Ą otamboo

compliantos?

- 2 dato A ~ trasf. (m mox-heap (m @ (n))

 i possibile trasformare A (m um ABR quasi completo?

 im tempo Emporee.
 - è possibile doto mox-herp A estraru gli elem. in ordine ouscente in tempo cineva.?
- 3) Imsurt ricuoiva