Modelo de Datos Orientado a Grafos

Equipo: Datafinders

Allison Audrey Anzaldo Barrón Daniel Peregrina Camacho Esteban Pérez Flores Alejandro Rondero Garcia

Índice

- 1. Descripción del modelo de datos.
- 2. Nombre de los elementos del modelo de datos.
- 3. Representación gráfica.
- 4. Independencia de datos.
- 5. Navegación de información.
- 6. Seguridad.
- 7. Visualización de grafos y sistema representativo del modelo.
- 8. Conclusiones.
- 9. Referencias.

Descripción del modelo de datos

- El modelo se basa en la "teoría de grafos".
 Estudia las propiedades de los grafos.
- 2. Un grafo es un grupo de objetos que llevan por nombre "vértices" y "aristas"

Descripción

3. Algunos usos: analítica social, circuitos eléctricos, blanqueo de capital.

Representación de un grafo:

$$G = (V, A)$$

V = vectores

A = aristas

Descripción del modelo de datos

Historia

- En 1736 Leonhard Euler resolvió el problema de los 7 puentes de Königsberg
- Que consistía en cruzar al menos 1 vez por los 7 puentes de la ciudad de manera eficiente.
- Gustavo Kirchhoff (1845) hizo aportaciones con los circuitos de voltaje y Francis Guthrie (1852) con la hipótesis de los 4 colores.

Créditos de las imágenes a Meza & Ortega (2006)

Elementos del modelo de datos

Nodos y Relaciones

Peña, Pinilla y Bello (2017) establecen que en el modelo de estructura de grafos se tienen dos tipos de elementos principales: los nodos (vértices) y las relaciones (aristas). Los nodos son frecuentemente usados para representar entidades y, dependiendo del dominio de las relaciones, pueden usarse para cualquier propósito.

Elementos del modelo de datos

Tabla 1. Comparación Modelo Relacional – Modelo de Grafos

Bases de Datos Relacionales	Bases de Datos de Grafos
Filas	Nodos
Columnas	Propiedades
Nombre de las Tablas	Etiquetas en Nodos/Aristas
Claves Foráneas	Aristas entre Nodos

Fuente: Migani y Vera (2019)

Representación gráfica

Tipos de aristas

Aristas Adyacentes

Aristas paralelas

Arista Cíclica.

Si un vértice no se relaciona con ninguna arista, se dice que es un *vértice aislado*.

Elaboración propia. Figura 1: Tipos de aristas

Representación gráfica

Caracterización de grafos

Grafo No Dirigido: No hay dirección establecida (se considera bidireccional).

Grafo Dirigido: Existe una dirección.

Elaboración propia . Figura 2: Tipos de Grafos

Representación gráfica

Existen 12 nodos (círculos) y aristas (líneas).

Cada nodo con sus correspondientes atributos (id, nickname, nombre, apellidos, activo).

Cada etiqueta es representada: correo, usuario y tweet.

Cada arista con sus respectivas propiedades.

Las aristas rojas reflejan que un cierto usuario escribe un tweet, mientras que las aristas amarillas reflejan que a un usuario le gusta un tweet.

Figura 3. Ejemplo de modelo de Grafos. Caravantes (2019).

Independencia de datos

Un sistema de SGBG sigue los principios básicos de un SGBD estándar (Migani & Vera, 2019), es decir, sigue también la independencia física y lógica.

Navegación de Información

En este modelo aparenta asociar libremente los nodos que la conforman, añadir propiedades y relaciones de manera arbitraria; sin embargo, para poder navegar entre la información es necesario tomar en cuenta:

Esto generará una restricción para minimizar los posibles errores.

Créditos de las imágenes a Sancho (2008)

De acuerdo con Lombardi (2018), grafos utiliza el modelo de consistencia ACID para la realización de transacciones:

Seguridad

- Atomicidad.- Si una de las múltiples operaciones falla, toda la transacción se invalida.
- Consistencia.- Asegurar la integridad de la base de datos.
- Aislamiento.- Asegurar que una transacción no afecte a otra.
- Durabilidad.- Asegurar que los cambios realizados a los datos persistan en la base de datos.

Seguridad

Teorema CAP

Figura 4. Teorema CAP

Fuente: Fernández (2017)

Seguridad

Lombardi (2018) explica que para asegurar la redundancia y una alta disponibilidad de los datos se utiliza la arquitectura master-slave clustering.

Figura 5. Master-slave clustering

Crédito a la imagen a Lombardi (2018)

Seguridad

Control de acceso e identidad y protocolo LDAP (Protocolo Ligero de Acceso a Directorios - Lightweight Directory Access Protocol).

Figura 6.

Crédito a la imagen a Neo4j (2020)

Crédito de las imágenes a la página de Grapheverywhere (2020)

Ejemplos de Herramientas de Visualización de Grafos

Gephi: es un software usado en estudios científicos y en análisis de datos de internet y redes sociales.

Graphviz: es una herramienta de visualización de grafos creada en código abierto.

Sigma: es una biblioteca construida en JavaScript.

Cytoscape: es una plataforma de código abierto creada especialmente para la visualización de redes de interacción molecular.

Ejemplos de Herramientas de Visualización de Grafos

Igraph: es una colección de herramientas de análisis de red que se enfoca en la eficiencia y facilidad de uso.

Linkurious: es una plataforma de análisis y visualización de grafos que en los últimos tiempos ha ganado renombre internacional.

Neo4J: es probablemente el nombre que la mayoría de la gente piensa cuando escucha bases de datos de grafos. Es la opción más antigua y el nombre más conocido.

Crédito de las imágenes a la página de Grapheverywhere (2020)

Crédito de la imagen a la página de Neo4j (2020)

Sistema Representativo del Modelo

Aplicaciones:

Servicios Financieros

Detección de Fraudes

Gobierno

Gestión de accesos por identidad

Ciencia

Gestión de Master Data

Seguridad de Datos

Retail

Redes Sociales

Cadena de Suministros

Telecomunicaciones

Sistema Representativo del Modelo

Clientes

Ventajas:

Escalabilidad

Seguridad

Flexibilidad

Desarrollo amigable

Alto rendimiento

Backups

Crédito de la imagen a la página de Neo4j (2020)

Conclusiones

- Proporciona una mejor visión sobre los datos (percepción sobre las relaciones).
- La complejidad aumenta a medida que aumenta el número datos.
- No existe un modelo estándar.
- Permite una comprensión de las relaciones que existen entre los datos, logrando una rastreabilidad de cada variable para la solución de la problemática de origen.

GRACIAS

Referencias

- Carabantes, I. (10 de Junio de 2019). *Análisis, diseño y despliegue de una base de datos orientada a grafos para la investigación de Derivaciones de Responsabilidades*. Recuperado el 04 de Septiembre de 2020, de E.T.S. de Ingeniería Industrial, Informática y de Telecomunicación: https://academica-e.unavarra.es/xmlui/bitstream/handle/2454/33724/TFG%20-%20Ivan%20Carabantes.pdf?sequence=2&isAllowed=y
- Fernández, G. (30 de Mayo de 2017). NoSQL: clasificación de las bases de datos según el teorema CAP. Recuperado el 05 de Septiembre de 2020, de https://www.genbeta.com/desarrollo/nosql-clasificacion-de-las-bases-de-datos-segun-el-teorema-cap
- Grapheverywhere. (2020). Herramientas de visualización de grafos. Recuperado el 06 de Septiembre de 2020, de https://www.grapheverywhere.com/herramientas-de-visualizacion-de-grafos/
- Migani, S., & Vera, C. (2019). *Introducción a las Bases de Datos de Grafos: Experiencias en Neo4j*. Recuperado el 04 de Septiembre de 2020, de http://sedici.unlp.edu.ar/bitstream/handle/10915/77019/Documento_completo.pdf-PDFA.pdf?sequence=1&isAllowed=y
- Lombardi, I. (2018). Análisis y estudio de la tecnología de bases de datos orientadas a grafos, focalizado en el sistema Neo4j. Recuperado el 05 de Septiembre de 2020 de http://ezproxy.upaep.mx:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsbas&AN=edsbas.C66 7E51A&lang=es&site=eds-live

Referencias

- Meza, O., & Ortega, M. (2006). *Grafos y Algoritmos*. Valle de Sartenejas: Equinoccio.
- Neo4j, Inc. (2020). What Is Neo4j? Recuperado el 05 de Septiembre de 2020, de Neo4j: https://neo4j.com/neo4j-graph-database/
- Peña, C. C., Pinilla, C., y Bello, M. (2017). *Bases de datos orientadas a grafos*. Recuperado el 05 de Septiembre de 2020 de http://ezproxy.upaep.mx:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsbas&AN=edsbas.71F 891C6&lang=es&site=eds-live
- Sancho, F. (Noviembre de 24 de 2016). ¿Qué entendemos por información estructurada. Recuperado el 06 de Septiembre de 2020, de Estructurando y consultando información en grafos: http://www.cs.us.es/~fsancho/?e=84
- Tecnologías-Información. (2018). *Base de Datos basadas en Grafos*. Recuperado el 05 de Septiembre de 2020, de Bases de Datos de Grafos: Casos de Uso y Opciones: https://www.tecnologias-informacion.com/grafos.html