## Course Title: Peripherals, Interfacing and Embedded Systems Lab (CSE-4640)

# Department of Computer Science and Engineering (CSE) Islamic University of Technology (IUT), Gazipur

#### Lab # 5

LED and Seven Segment Display Interfacing using EMU8086 and Proteus.

## **Objective:**

To understand LED and Seven Segment Display interfacing by using 8086 Microprocessor and 74HC373 Latch, 8255 PPI and LED-BIRY in Proteus.

#### Theory:

## Example Program for LED Interfacing

DATA SEGMENT
PORTA EQU 00H
PORTB EQU 02H
PORTC EQU 04H
PORT\_CON EQU 06H
DATA ENDS
CODE SEGMENT
MOV AX,DATA
MOV DS, AX

ORG 0000H

START:

MOV DX, PORT\_CON

MOV AL, 10000000B; port C (output), port A (output) and port B (OUTPUT) in mode 0 OUT DX, AL

JMP XX

XX:

MOV AL, 0000H

MOV DX, PORTA

OUT DX,AL

MOV CX,0DF36H; Delay

loopy1:loop loopy1

MOVAL, 00FFH

MOV DX, PORTA

OUT DX,AL

MOV CX,0DF36H; Delay

loopy2:loop loopy2

JMP XX

CODE ENDS

**END** 

## **Circuit Diagram for LED Interfacing:**



## • Seven Segment Display

The 7 segment is used to display numbers. This requires 8255A ports which need to be connected to the 7 segment internally. Through the code we can access the PIO 8255 ports and provide binary or hex value to switch the required segment on and off. In order to turn a segment ON, a logical 1 is required as shown below. Any number from 0-9 can be displayed on the 7 segment by providing the actual hex or binary value which turns those segments ON to display the digit.



Seven-Segment Display

#### • Seven Segment Display Data Generation Rule:

| Digit | BCD  | g | f | e | d | c | b | a |
|-------|------|---|---|---|---|---|---|---|
| 0     | 0000 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1     | 0001 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 2     | 0010 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 3     | 0011 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 4     | 0100 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 5     | 0101 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 6     | 0110 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 7     | 0111 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 8     | 1000 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 9     | 1001 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |

#### • Example Program for Seven Segment Display Interfacing

DATA SEGMENT
PORTA EQU 00H
PORTB EQU 02H
PORTC EQU 04H
PORT\_CON EQU 06H
DATA ENDS

CODE SEGMENT MOV AX,DATA MOV DS, AX

ORG 0000H START:

MOV DX, PORT\_CON MOV AL, 10000000B OUT DX, AL

JMP XX

XX:

MOV AL, 00111111B; displaying 0 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay0:loop Delay0

MOV AL, 00000110B; Displaying 1 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay1:loop Delay1 MOV AL, 01011011B; Displaying 2 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay2:loop Delay2

MOV AL, 01001111B; Displaying 3 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay3:loop Delay3

MOV AL, 01100110B; Displaying 4 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay4:loop Delay4

MOV AL, 01101101B ;Displaying 5 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay5:loop Delay5

MOV AL, 01111101B; Displaying 6 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay6:loop Delay6

MOV AL, 00000111B; Displaying 7 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay7:loop Delay7

MOV AL, 01111111B; Displaying 8 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay Delay8:loop Delay8

MOV AL, 01101111B ; Displaying 9 MOV DX, PORTA OUT DX,AL MOV CX,0DF36H; Delay

Delay9:loop Delay9

JMP XX JMP START

CODE ENDS END

## • Circuit Diagram for Seven Segment Display Interfacing

