Semana 1 - Material de Apoio

Texto editado do capitulo 1 do livro digital Álgebra Linear I (UFSC-EAD), de Castro Bean e Kozakevich. O texto completo poder ser baixado na biblioteca virtual da UFSC ou em nossa biblioteca do Moodle.

Matrizes

Ao finalizar o estudo deste Capítulo você será capaz de identificar alguns tipos de matrizes, fazer operações e provar propriedades e teoremas sobre matrizes. Também, será capaz de compreender e aplicar o conceito de matrizes em situações reais.

1.1 Matriz

As matrizes são estruturas matemáticas que podem ser encontradas em muitos problemas do nosso dia-a-dia. Por isso, neste capítulo, iniciaremos o estudo das matrizes com um problema vindo do nosso cotidiano.

Problema 1. Já pensou que a temperatura que temos em cada estação do ano pode ser registrada dia a dia e hora a hora (e até minuto a minuto!), com ajuda de dispositivos especiais? Isso é feito pelo Instituto de Meteorologia de cada uma das regiões. Considere a seguinte situação:

As temperaturas de cinco cidades brasileiras nas primeiras horas da manhã de um determinado dia (durante o inverno) foram registradas da forma seguinte:

- Cidade nº 1: São Joaquim (SC) às 3 horas da manhã apresenta
 –3 graus centígrados;
- Cidade n° 2: Rio de Janeiro (RJ) às 5 horas da manhã apresenta
 14 graus centígrados;
- Cidade nº 3: Turvo (SC) às 7 horas da manhã apresenta 5 graus centígrados;
- Cidade nº 4: Florianópolis (SC) às 9 horas da manhã apresenta
 16 graus centígrados;

• Cidade n° 5: São Luis (MA) às 11 horas da manhã apresenta 20 graus centígrados.

Essas informações podem ser arranjadas em tabelas de várias formas, como as que apresentamos a seguir:

Cidade	Temperatura (°C)
1	-3
2	14
3	5
4	16
5	20

Cidade	Hora		
1	3		
2	5		
3	7		
4	9		
5	11		

Hora	Temperatura (°C)
3	-3
5	14
7	5
9	16
11	20

Hora	Cidade
3	1
5	2
7	3
9	4
11	5

Observe que dessa forma as informações estão dispostas em forma vertical, mas também podemos colocar as mesmas informações em forma horizontal.

Pergunta 1. De que forma podem ser arranjados os dados acima de modo a estarem dispostos horizontalmente?

Se considerarmos H como sendo a hora e T a temperatura da cidade, então, a terceira tabela pode ser disposta da seguinte maneira:

Н	3	5	7	9	11
T (°C)	-3	14	5	16	20

Deixamos de atividade para você completar essa disposição horizontal no caso das outras tabelas.

Continuando com o **Problema 1**, suponhamos que por algum motivo é do nosso interesse os dados do arranjo dado pela última tabela.

Assim, podemos formular o seguinte:

Em cinco cidades brasileiras, em determinadas horas, foram registradas as seguintes temperaturas:

Н	T (°C)
3	-3
5	14
7	5
9	16
11	20

Observação. A mesma informação poderia ter sido colocada da seguinte forma:

Н	3	5	7	9	11
T (°C)	-3	14	5	16	20

Os dois jeitos de arranjar os dados estão nos fornecendo o que denominaremos como **Matriz**.

1.1.1 Definição de matriz

Uma matriz é um arranjo de números, símbolos, letras, etc., dispostos em linhas e colunas.

1.1.2 Ordem de uma matriz

As matrizes geralmente são denotadas por letras maiúsculas e seus elementos por letras minúsculas. Se uma matriz possui m linhas e n colunas diremos que a matriz tem ordem $m \times n$.

Exemplo 1. Denominemos por A e B as duas matrizes definidas no **Problema 1** e na **Pergunta 1**, respectivamente. Assim:

$$A = \begin{bmatrix} 3 & -3 \\ 5 & 14 \\ 7 & 5 \\ 9 & 16 \\ 11 & 20 \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} 3 & 5 & 7 & 9 & 11 \\ -3 & 14 & 5 & 16 & 20 \end{bmatrix}.$$

É de nosso interesse trabalhar apenas com números reais neste Livro, assim sendo tudo o que será definido mais adiante, no caso das matrizes ou vetores, será com elementos reais (mais adiante você terá a possibilidade de trabalhar com números complexos também!).

A matriz A tem 5 linhas e 2 colunas, ou seja, é de ordem 5×2 ; já a matriz B tem 2 linhas e 5 colunas e é de ordem 2×5 .

O elemento da 2^a linha e 2^a coluna da matriz A é igual a 14, ou seja:

$$a_{22} = 14$$
.

O elemento da 1ª linha e 4ª coluna da matriz *B* é igual a 9, isto é:

$$b_{14} = 9$$
.

Quando uma matriz é obtida por algum problema específico (como o explicitado no **Problema 1**), é possível fornecer alguma interpretação aos seus elementos.

Por exemplo, as matrizes A e B do **Exemplo 1** com elementos $a_{22} = 14$ e $b_{14} = 9$ podem ser interpretadas da seguinte forma:

"No **segundo** horário (5 horas da manhã) o **segundo** valor da temperatura (no Rio de Janeiro) é 14 graus".

"São 9 horas da manhã quando a temperatura em Florianópolis é 16 graus".

E, claro, após fornecermos todas as interpretações podemos fazer algumas conclusões:

- Eu gosto do frio, portanto irei para São Joaquim no inverno.
- Não, não gosto de tanto frio, por isso no inverno ficarei no Rio de Janeiro.

Bom, você deve estar se perguntando: onde está a matemática nesse papo todo? Se estiver fazendo esse tipo de questionamento está indo por um bom caminho, pois a matemática, por incrível que pareça, está presente em muitas situações! E é isso que esperamos mostrar ao longo deste material!

Lembrete. A partir de agora, serão apresentados vários exercícios que pediremos para você resolver.

Agora verifique se você está acompanhando as discussões que fizemos, resolvendo os seguintes exercícios.

Exercício 1. Coloque mais alguma condição no Problema 1 para construir uma matriz de ordem 3 x 5.

Dica: Imagine que os dados são colhidos durante 3 dias.

Exercício 2. Será que você pode imaginar e criar um problema do seu cotidiano diferente do dado acima para chegar a uma matriz?

Dada uma linha i e uma coluna j de uma matriz A, o elemento na posição (i, j) será denotado por a_{ij} . Assim, uma matriz com $m \times n$ elementos pode ser escrita na seguinte forma estendida:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

Também podemos colocá-la na forma abreviada:

$$A = \left[a_{ij} \right]_{m \times n}$$

Assim, a matriz A de ordem $m \times n$ possui $m \cdot n$ elementos da forma a_{ii} com i = 1, ..., m e j = 1, ..., n.

Alguns livros denotam a matriz A de elementos a_{ij} na forma

$$A=(a_{ij})_{m\times n}.$$

Muitas vezes é fornecida uma lei de formação para obtermos os elementos de uma matriz. Por exemplo, se $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{2\times 3}$ com $a_{ij} = i + j$, com m = 2 e n = 3, estaremos construindo a seguinte matriz A:

$$A = \begin{bmatrix} 1+1 & 1+2 & 1+3 \\ 2+1 & 2+2 & 2+3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}.$$

Exemplo 2. Vamos obter a matriz $B = (b_{ij})_{3\times 4}$, de ordem 3×4 , cujos elementos são da forma

$$b_{ij} = \begin{cases} i^j, & i = 1, 2 \\ 0, & i = 3 \end{cases}.$$

Solução. Observe que não há nenhuma condição para os índices j, isto é, j está variando conforme o número de colunas que a matriz tem. Já na 3^a linha (i=3) todos os elementos serão nulos. Assim sendo, a matriz B é dada por:

$$B = \begin{bmatrix} 1^1 & 1^2 & 1^3 & 1^4 \\ 2^1 & 2^2 & 2^3 & 2^4 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 16 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

1.2 Tipos de Matrizes

1.2.1 Matriz Retangular

São denominadas assim aquelas matrizes cujo número de linhas é diferente do número de colunas. Por exemplo:

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 9 \\ 5 & -2 \end{bmatrix} B = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 7 & -2 & 3 & 8 & 0 \\ -1 & 3 & 3 & 2 & 6 \\ 3 & 5 & 0 & 0 & 9 \end{bmatrix} e C = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 3 & 9 \end{bmatrix},$$

e podem ser colocadas na forma $A = \begin{bmatrix} 1 \\ 3 \times 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 3 \times 5 \end{bmatrix}$ e $C = \begin{bmatrix} 1 \\ 2 \times 3 \end{bmatrix}$. No que segue podemos omitir a ordem na representação da matriz toda vez que ela venha dada na forma estendida.

1.2.2 Matriz Linha

A matriz linha é uma matriz que tem apenas uma linha. Por exemplo:

$$L = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$
 $M = \begin{pmatrix} 0 & 0 & 1 & 8 \end{pmatrix}$.

Observação. É comum colocarmos vetores no plano e no espaço como matrizes linha entre parênteses, onde os elementos estão separados por vírgula. Exemplo: (0,0,1,8).

1.2.3 Matriz Coluna

A matriz coluna é uma matriz que tem apenas uma coluna. Por exemplo: $\begin{pmatrix} 0 \end{pmatrix}$

$$B = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \qquad D = \begin{bmatrix} 1 \\ -1 \\ 4 \\ 3 \end{bmatrix}.$$

Observação. Sabia que um vetor no plano (ou no espaço) pode ser considerado como uma matriz coluna? Mais adiante (capítulo de Sistemas Lineares) usaremos essa forma ao representar a solução de um sistema de equações. Assim, se tivermos duas ou três incógnitas elas podem ser alocadas numa forma vetorial no plano ou no espaço, respectivamente; você também encontrará essa notação no livro "Um curso de geometria analítica e álgebra linear", citado na bibliografia comentada.

1.2.4 Matriz Nula

A matriz nula é uma matriz cujos elementos são todos nulos. Por exemplo:

Esses tipos de matrizes geralmente são denotados pela letra maiúscula O e dependendo do problema deverá discernir a ordem da matriz no exercício ou problema em questão. Alguns autores denotam essa matriz da forma: $O = \begin{bmatrix} 0_{ij} \end{bmatrix}_{m \times n}$.

1.2.5 Matriz Quadrada

Uma matriz quadrada é uma matriz onde o número de linhas é igual ao número de colunas. Nas seguintes matrizes, A é uma matriz de ordem n e B uma matriz de ordem 3:

$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_n \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 2 \\ 3 & 7 & 0 \end{pmatrix}$$

Para facilitar, usamos apenas a notação $A = \begin{bmatrix} a_{ij} \end{bmatrix}_n$ para representar, de forma abreviada, matrizes quadradas de ordem n.

No caso de matrizes quadradas, é possível definir duas diagonais:

- A diagonal principal de uma matriz quadrada está dada pelos elementos na posição *i* = *j*. Por exemplo, os valores 1, −1 e 0 são os elementos da diagonal principal da matriz *B*.
- A diagonal secundária está dada pelos elementos da matriz cujos índices contabilizam o valor i + j = n + 1, assim, na mesma matriz B dada acima os elementos 1, -1 e 3 são aqueles cujos índices sempre somam i + j = 3 + 1 = 4, esses elementos são b_{13} , b_{22} e b_{31} .

Exemplo 3: Considere a matriz
$$B = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$
.

 $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

Diagonal Secundária

Os elementos {1, -1, 0} formam a diagonal principal e os elementos {3, -1, 1} formam a diagonal secundária.

A partir de agora, falaremos um pouco mais sobre matrizes quadradas.

1.2.6 Matriz Diagonal

A matriz diagonal é uma matriz quadrada cujos elementos fora da diagonal principal são nulos, isto é, $a_{ij} = 0$ se $i \neq j$. Por exemplo:

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix} \qquad E = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}.$$

Pelo fato das matrizes diagonais possuírem elementos, quase sempre não nulos. Apenas na posição (i,i) é que elas podem ser denotadas como $diag\{d_1,d_2,...,d_n\}$, ou ainda na forma $diag\{d_1,d_2,...,d_n\}$ onde $d_1,d_2,...,d_n$ indicam os elementos diagonais. Por exemplo, a matriz D dada anteriormente pode ser escrita como $D = diag\{1,3,6\}$.

1.2.7 Matriz Identidade

A matriz identidade é uma matriz diagonal onde todos os elementos da diagonal principal são iguais a um. É geralmente denotada

com a letra I e com um índice que denota a ordem, como ilustrado a seguir:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

1.2.8 Matriz Triangular Superior

A matriz triangular superior é uma matriz quadrada de ordem n cujos elementos a_{ij} são nulos quando i > j. Isto é:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}.$$

1.2.9 Matriz Triangular Inferior

A matriz triangular inferior é uma matriz quadrada de ordem n cujos elementos a_{ij} são nulos quando i < j, ou seja:

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

1.2.10 Matriz Simétrica

Uma matriz quadrada S, de ordem n, é simétrica se $a_{ij} = a_{ji}$, para quaisquer valores dos índices i, j. São exemplos de matrizes simétricas:

$$S_2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \qquad S_4 = \begin{pmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 4 & -5 \\ -1 & 4 & 0 & 0 \\ 3 & -5 & 0 & a \end{pmatrix}.$$

Observe que o elemento a na posição (4,4) da matriz S_4 não tem valor numérico, isto é, assume qualquer valor real.

Quando falamos de elementos assumindo qualquer valor real podemos denotá-los com $a \in \mathbb{R}$. Nesse caso, o símbolo \in é lido como "pertence a" e \mathbb{R} denota os números reais.

Exemplo 4. Encontre os valores de t, w, s, z, a, b para obtermos S simétrica:

$$S = \begin{bmatrix} a & 2 & 0 & -t \\ x & b & w & 0 \\ z & -z & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Solução. Pela definição de matriz simétrica, todos os elementos s_{ij} da matriz S devem ser tais que $s_{ij} = s_{ji}$. Como a matriz é de ordem n = 4 e considerando que i, j variam entre 1 e 4 (ou seja, $i, j = 1, \ldots, 4$), encontramos que:

$$s_{21} = x = 2 = s_{12}$$
.

Também:

$$s_{31} = z = 0 = s_{13},$$

e de forma similar:

$$S_{41} = 1 = -t = S_{14}$$
.

Assim,

$$t = -1$$
.

Também,

$$S_{32} = -z = w = S_{23}$$

como z = 0 e o oposto de zero é ele próprio, então:

$$w = 0$$
.

Por último,

$$s_{11} = a$$
 e $s_{22} = b_1$

mas não há nenhuma condição para esses valores. Portanto, $a \in b$ são valores reais quaisquer, isto é, $a,b \in \mathbb{R}$.

1.2.11 Matriz Anti-simétrica

Uma matriz quadrada A é anti-simétrica se $a_{ij} = -a_{ji}$. São exemplos de matrizes anti-simétricas as matrizes:

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 2 & 6 \\ -2 & 0 & -4 \\ -6 & 4 & 0 \end{bmatrix}$$

Exemplo 5. Considere a matriz S fornecida no **Exemplo 3**; encontre os valores de t, w, s, z, a, b para S ser uma matriz anti-simétrica.

Solução. Usando um raciocínio similar ao usado no Exemplo 3 e considerando que para cada valor de i e j deve se satisfazer $a_{ij} = -a_{ji}$, encontra-se x = -2, z = 0, t = 1, w = 0, a = 0 e b = 0. Assim:

$$S = \begin{bmatrix} 0 & 2 & 0 & -1 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Você percebeu que os elementos da diagonal principal das matrizes anti-simétricas fornecidas são todos nulos? Isso seria apenas uma coincidência? No exemplo seguinte, provaremos que esse resultado vale para qualquer matriz anti-simétrica.

Exemplo 6. Prove que os valores da diagonal principal de uma matriz anti-simétrica qualquer são todos nulos.

Solução. Se $A = [a_{ij}]_n$ é uma matriz anti-simétrica de ordem n, os seus elementos satisfazem a relação $a_{ij} = -a_{ji}$ para quaisquer valores i, j.

Os elementos na diagonal principal encontram-se na posição i=j, então $a_{ii}=-a_{ii}$.

Daí, $2a_{ii} = 0$ para qualquer valor de i. Em consequência, $a_{ii} = 0$ para qualquer i.

Um exemplo numérico que ilustra o que acabamos de provar foi dado no **Exemplo 4**. Nele, você encontrou que os valores diagonais são todos nulos!

1.2.12 Matriz Elementar

Uma matriz é denominada elementar se for obtida por meio de uma única mudança na matriz identidade. Essa mudança pode ser de um dos seguintes tipos:

- 1) A troca de uma linha (ou coluna) por outra linha (ou coluna);
- 2) A multiplicação de uma linha (ou coluna) por um valor $\alpha \in \mathbb{R}$;
- 3) A soma de uma linha (ou coluna), multiplicada pelo valor $\alpha \in \mathbb{R}$, com outra linha (ou coluna).

Exemplos:

a) A matriz elementar de ordem 2 obtida ao trocarmos a linha 1 pela linha 2 da matriz identidade de ordem 2 é dada por:

$$E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

b) A matriz elementar de ordem 4 obtida ao multiplicar na linha 3 da matriz identidade (de ordem 4) por −2 é dada por:

$$E_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

c) A matriz elementar de ordem 3 obtida ao multiplicar a linha 3 por -3 e somar com a linha 2 da matriz identidade (de ordem 3) é dada por:

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -3 \end{bmatrix}$$

Também, são matrizes elementares as matrizes:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Agora é com você!

Exercício 3. Como foram obtidas as matrizes elementares *A* e *B* anteriores?

1.2.13 Igualdade de Matrizes

Duas matrizes A e B, de ordem $m \times n$, são ditas serem iguais se todos os seus elementos são iguais. Isso pode ser expressado com a seguinte relação de igualdade:

O símbolo matemático \forall é lido "para todo". Na relação dada, \forall i, j é lido "para todo i e para todo j".

$$a_{ij} = b_{ij}, \quad \forall i, j.$$

A expressão

$$a_{ii} = b_{ii}, \quad \forall i, j$$

também pode ser colocada como:

$$a_{ij} = b_{ij}, \ \forall i \in \{1, ..., m\}, \forall j \in \{1, ..., n\}.$$

Exemplo 7. Forneça condições para estabelecer a igualdade das matrizes A e S dadas a seguir.

$$A = \begin{bmatrix} 0 & 2 & 0 & -1 \\ -2 & 0 & 2 & -t \\ 0 & -2 & 0 & 0 \\ 1 & t & 0 & 0 \end{bmatrix} \qquad S = \begin{bmatrix} s_{11} & 2 & 0 & -1 \\ -2 & y & 2 & -t \\ 0 & -2 & 0 & 0 \\ 1 & -t & 0 & 0 \end{bmatrix}$$

Solução. Como as matrizes são de ordem 4, teremos $i, j \in \{1, ..., 4\}$. Se A = S, então, $a_{ij} = s_{ij} \ \forall i, j \in \{1, ..., 4\}$, assim:

$$a_{11} = 0 = s_{11}$$

$$a_{22} = 0 = s_{22} = y$$

daí resulta:

$$y = 0$$
.

Também,

$$a_{24} = -t = s_{24} = -t$$

com isso:

$$t \in \mathbb{R}$$
.

Mais,

$$a_{42} = t = s_{42} = -t$$

$$2t = 0$$

que implica:

$$t = 0$$
.

Por último, como $t \in \mathbb{R}$ e t = 0, implica t = 0.

Observação. As matrizes $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ possuem os mesmos elementos, mas não são iguais, você pode justificar o porquê?

Agora é com você!

Exercício 4. Quais são os valores de *b* para a matriz

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ b & 1 & b & 1 \\ 1 & b & 1 & 1 \\ 1 & 1 & b & b \end{bmatrix}$$
 ser simétrica?

1.3 Operações com Matrizes

A seguir, serão definidas as operações de adição, produto por um escalar e produto de matrizes.

1.3.1 Adição de Matrizes

Dadas as matrizes $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ e $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{m \times n'}$ a adição das matrizes A e B é a matriz $C = \begin{bmatrix} c_{ij} \end{bmatrix}_{m \times n'}$ onde $c_{ij} = a_{ij} + b_{ij}$, $\forall i, j$.

Notação. C = A + B.

$$A + B = \left[a_{ij} + b_{ij} \right]_{m \times n}$$

Exemplo 8. Se
$$A = \begin{bmatrix} 0 & 2 & 0 & -1 \\ -2 & 0 & 2 & -t \\ 0 & -2 & 0 & 0 \\ 1 & t & 0 & 0 \end{bmatrix}$$
 e $S = \begin{bmatrix} s_{11} & 2 & 0 & -1 \\ 2 & y & -2 & -t \\ 0 & -2 & 0 & 0 \\ 1 & -t & 0 & 0 \end{bmatrix}$, calcu-

le C = A + S para t, y e s_{11} quaisquer números reais.

Solução. Ao aplicarmos a definição de soma de matrizes nas matrizes *A* e *S*, teremos:

$$C = \begin{bmatrix} s_{11} & 4 & 0 & -2 \\ 0 & y & 0 & -2t \\ 0 & -4 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}.$$

1.3.2 Produto de uma matriz por um escalar

Dado o escalar α , o produto da matriz A pelo escalar é uma matriz da mesma ordem cujos elementos foram multiplicados pelo valor α . Em outras palavras, se $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ e $\alpha \in \mathbb{R}$, o produto de A pelo escalar α é uma matriz C de elementos c_{ij} com $c_{ij} = \alpha a_{ij}$ para todos os valores i, j definidos na matriz A. Isto é:

$$C = \begin{bmatrix} c_{ij} \end{bmatrix}_{m \times n}$$
, tal que $c_{ij} = \alpha a_{ij}$, $\forall i, j$.

Notação.
$$C = \alpha A = \left[\alpha a_{ij}\right]_{m \times n}$$

Exemplo 9. Multiplique a matriz I_4 pelo escalar $\alpha = -2$.

Solução.

$$C = \alpha I_4 = -2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

Nota. Quando $\alpha = -1$, podemos escrever $-1 \cdot A = -A$.

1.3.3 Produto de Matrizes

Dadas as matrizes $A = [a_{ik}]_{m \times t}$ e $B = [b_{kj}]_{t \times n}$, o produto das matrizes A e B é uma matriz $C = [c_{ij}]_{m \times n}$ cujos elementos c_{ij} são da forma:

$$c_{ij} = \sum_{k=1}^t a_{ik} b_{kj}.$$

Escalar

Na maioria dos casos, é um número real $\alpha \in \mathbb{R}$. É possível, também, tomarmos os escalares como números complexos, $\alpha \in \mathbb{C}$. Os escalares podem ser tomados de qualquer sistema numérico no qual podemos somar, subtrair, multiplicar e dividir de acordo com as leis habituais da aritmética.

Isto é, ao definirmos as matrizes

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1t} \\ a_{21} & a_{22} & \cdots & a_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mt} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{t1} & b_{t2} & \cdots & b_{tn} \end{bmatrix}, \quad \mathbf{e} \quad C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix},$$

os elementos da matriz produto adotam a forma:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{it}b_{tj}$$
$$c_{ij} = \sum_{k=1}^{t} a_{ik}b_{kj}.$$

Note que o número de colunas da matriz A é igual ao número de linhas da matriz B.

Notação:
$$C = AB = \left[\sum_{k=1}^{t} a_{ik} b_{kj}\right]_{3\times 4}$$
.

Exemplo 10. Seja a matriz $A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$ e a matriz B, de ordem

 3×4 com elementos $b_{ii}=i^{j}$. Obter a matriz produto C=AB.

Solução. Como o número de colunas de A é igual ao número de linhas de B, o produto pedido é possível. As matrizes explicitadas são dadas respectivamente por:

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$$
 e
$$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 16 \\ 3 & 9 & 27 & 81 \end{bmatrix}.$$

Para obtermos a matriz produto $C = AB = [c_{ij}]_{3\times4}$ com elementos

$$c_{ij} = \sum_{k=1}^{3} a_{ik} b_{kj}, i = 1, ..., 3, j = 1, ..., 4.$$

Percorrendo cada valor de i e j dado temos os elementos da:

• Primeira linha:

$$c_{11} = (2)(1) + (3)(2) + (4)(3) = 2 + 6 + 12 = 20$$

$$c_{12} = (2)(1) + (3)(4) + (4)(9) = 2 + 12 + 36 = 50$$

$$c_{13} = (2)(1) + (3)(8) + (4)(27) = 2 + 24 + 108 = 134$$

$$c_{14} = (2)(1) + (3)(16) + (4)(81) = 2 + 48 + 324 = 374$$

• Segunda linha:

$$c_{21} = (3)(1) + (4)(2) + (5)(3) = 3 + 8 + 15 = 26$$

$$c_{22} = (3)(1) + (4)(4) + (5)(9) = 3 + 16 + 45 = 64$$

$$c_{23} = (3)(1) + (4)(8) + (5)(27) = 3 + 32 + 135 = 170$$

$$c_{24} = (3)(1) + (4)(16) + (5)(81) = 3 + 64 + 405 = 472$$

• E, por último, os da terceira linha:

$$c_{31} = (4)(1) + (5)(2) + (6)(3) = 4 + 10 + 18 = 32;$$

 $c_{32} = (4)(1) + (5)(4) + (6)(9) = 4 + 20 + 54 = 78;$
 $c_{33} = (4)(1) + (5)(8) + (6)(27) = 4 + 40 + 162 = 206;$
 $c_{34} = (4)(1) + (5)(16) + (6)(81) = 4 + 80 + 486 = 570.$

Sendo assim, temos a seguinte matriz:

$$C = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \end{bmatrix} = \begin{bmatrix} 20 & 50 & 134 & 374 \\ 26 & 64 & 170 & 472 \\ 32 & 78 & 206 & 570 \end{bmatrix}.$$

Ao multiplicarmos matrizes devemos tomar cuidado com a ordem das linhas e colunas, ou seja, poderemos fazer o produto de matrizes quando o número de colunas da primeira matriz for igual ao número de linhas da segunda. Assim, a matriz produto C terá um número de linhas igual ao número de linhas da matriz A e um número de colunas igual ao número de colunas de B.

1.3.4 Propriedades das Operações com Matrizes

Considere $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$ e $C = [c_{ij}]_{m \times n}$, então temos as seguintes propriedades:

- 1) Propriedades da Adição
 - A₁) Comutatividade: A + B = B + A;
 - A₂) Associatividade: (A+B)+C=A+(B+C);
 - A_3) Elemento Neutro da Soma: A + O = A, $O = [0]_{m \times n}$;
 - A_A) Elemento Simétrico: A + (-A) = O (A A = O).

Observação.
$$-A = -1 \cdot A = \begin{bmatrix} -1 \cdot (a_{ij}) \end{bmatrix}_{m \times n} = \begin{bmatrix} -a_{ij} \end{bmatrix}_{m \times n}$$

Prova das Propriedades

A₁) Comutatividade: A + B = B + A

Seja
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$$
 e $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{m \times n}$
$$A + B = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n} + \begin{bmatrix} b_{ij} \end{bmatrix}_{m \times n}$$

$$= \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix}_{m \times n}$$

$$= \begin{bmatrix} (a_{ij} + b_{ij}) \end{bmatrix}_{m \times n}$$

Usando a propriedade comutativa dos números reais:

$$(x+y) = (y+x)$$
, com $x, y \in \mathbb{R}$

temos:

$$= \left[(b_{ij} + a_{ij}) \right]_{m \times n}$$
$$= \left[b_{ij} + a_{ij} \right]_{m \times n}$$
$$= B + A.$$

Logo,

$$A + B = B + A.$$

 A_2) Associatividade: (A+B)+C=A+(B+C).

Consideremos $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{m \times n}$ e $C = [c_{ij}]_{m \times n}$.

Da definição de soma de matrizes,

$$A + B = \left[a_{ij} + b_{ij} \right]_{m \times n}$$

$$e \quad (A+B) + C = \left[(a_{ij} + b_{ij}) + c_{ij} \right]_{m \times n}.$$

Usando a propriedade associativa dos números reais:

$$(x+y)+z=x+(y+z)$$
 com $x,y,z\in\mathbb{R}$.

Temos, então:

$$= \left[a_{ij} + (b_{ij} + c_{ij})\right]_{m \times n}.$$

E usando a definição de soma de matrizes:

$$= \left[a_{ij} \right]_{m \times n} + \left[b_{ij} + c_{ij} \right]_{m \times n}$$

$$= A + (B + C).$$

Logo,

$$(A+B)+C = A+(B+C).$$

 A_3) Elemento Neutro da Soma: A + O = A, $O = [0]_{m \times n}$.

Seja
$$A = \left[a_{ij}\right]_{m \times n}$$
 e $O = \left[0\right]_{m \times n}$
$$A + O = \left[a_{ij} + 0\right]_{m \times n} = \left[\left(a_{ij} + 0\right)\right]_{m \times n}.$$

Pela propriedade dos números reais:

$$x+0=x$$
 com $x \in \mathbb{R}$.

Então,

$$a_{ii} + 0 = a_{ii}, \forall i, j.$$

Com isso,

$$\left[a_{ij}+0\right]_{m\times n}=\left[a_{ij}\right]_{m\times n}=A.$$

Logo,

$$A + O = A$$
.

 A_4) Elemento Simétrico: A + (-A) = O.

Seja
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$$
 e $-A = \begin{bmatrix} -a_{ij} \end{bmatrix}_{m \times n}$. Logo,
$$A + (-A) = \begin{bmatrix} a_{ij} + (-a_{ij}) \end{bmatrix}_{m \times n}.$$

Pela propriedade dos números reais:

$$x + (-x) = 0$$
 com $x \in \mathbb{R}$.

Então,

$$a_{ij} + (-a_{ij}) = 0, \ \forall i, j.$$

Assim,

$$\left[a_{ij}+(-a_{ij})\right]_{m\times n}=\left[0\right]_{m\times n}=O.$$

Logo,

$$A + (-A) = O.$$

2) Propriedades do Produto por um Escalar

Sejam A e B duas matrizes da mesma ordem e α, β dois escalares, então:

$$\mathbf{M}_{1}$$
) $\alpha(\beta A) = (\alpha \beta) A;$

$$M_2$$
) $\alpha(A+B) = \alpha A + \alpha B$;

$$\mathbf{M}_{2}$$
) $(\alpha + \beta) A = \alpha A + \beta A$;

$$\mathbf{M}_{4}$$
) $1 \cdot A = A$.

Observação. Quando trabalhamos com matrizes, pode acontecer a necessidade de multiplicá-las pelo escalar zero, dando como resultado a matriz nula. Isto é, $0 \cdot A = O$.

Você observou as diferenças entre o zero escalar e a matriz zero, denotada pela letra O?

Vejamos: se $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n'} O = [0]_{m \times n}$ e o escalar nulo (0):

$$\begin{aligned} O \cdot A &= 0 \left[a_{ij} \right]_{m \times n} \\ &= \left[0 \cdot a_{ij} \right]_{m \times n} \\ &= \left[0 \right]_{m \times n} \\ &= O. \end{aligned}$$

Prova das Propriedades

$$\mathbf{M}_{2}$$
) $(\alpha + \beta) A = \alpha A + \beta A$.

Sejam α, β dois escalares e a matriz $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$, então:

$$(\alpha + \beta) \cdot A = (\alpha + \beta) \left[a_{ij} \right]_{m \times n}$$
$$= \left[(\alpha + \beta) a_{ij} \right]_{m \times n}.$$

Usando a propriedade distributiva dos números reais

$$(x+y)\cdot z = xz + yz$$

para cada elemento da matriz, temos:

$$= \left[(\alpha a_{ij}) + (\beta a_{ij}) \right]_{m \times n}$$
$$= \left[\alpha a_{ij} \right]_{m \times n} + \left[\beta a_{ij} \right]_{m \times n}.$$

Pela definição de produto por um escalar,

$$= \alpha \left[a_{ij} \right]_{m \times n} + \beta \left[a_{ij} \right]_{m \times n}$$
$$= \alpha A + \beta A.$$

Logo,

$$(\alpha + \beta) \cdot A = \alpha A + \beta A$$
.

$$\mathbf{M}_{\mathbf{A}}$$
) $1 \cdot A = A$.

Seja
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$$
 e o escalar $1 \in \mathbb{R}$.

$$\begin{aligned} 1 \cdot A &= 1 \cdot \left[a_{ij} \right]_{m \times n} \\ &= \left[1 \cdot a_{ij} \right]_{m \times n} \\ &= \left[\left(1 \cdot a_{ij} \right) \right]_{m \times n}. \end{aligned}$$

Usando a propriedade do elemento neutro da multiplicação dos números reais,

$$1 \cdot x = x$$
, $\forall x \in \mathbb{R}$.

Temos:

$$\left[1 \cdot a_{ij}\right]_{m \times n} = \left[a_{ij}\right]_{m \times n} = A.$$

Logo,

$$1 \cdot A = A$$
.

Agora é com você!

Exercício 5. Prove as outras propriedades do produto de uma matriz por um escalar.

3) Propriedades do Produto de Matrizes

Considere *A*, *B* e *C* matrizes, então valem as seguintes propriedades de produto de matrizes:

 P_1) Associativa: (AB)C = A(BC);

 P_2) Distributiva: A(B+C) = AB + AC;

 P_3) (A+B)C = AC+BC;

 P_4) $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

Prova das Propriedades

 P_2) (A+B)C = AC+BC;

Sejam as matrizes $A = [a_{ik}]_{m \times p'}$ $B = [b_{ik}]_{m \times p'}$ $C = [c_{kj}]_{p \times n'}$ então:

$$(A+B)C = [(a_{ik}+b_{ik})]_{m \times p}.[c_{kj}]_{p \times n}.$$

Usando a definição do produto de matrizes para A+B e C, temos:

$$= \left[\sum_{k=1}^{p} \left(a_{ik} + b_{ik}\right) c_{kj}\right]_{m \times n}.$$

Ao enunciar as propriedades do produto de matrizes não explicitamos a ordem das mesmas, por exemplo, em P_1 , (AB)C = A(BC) supomos possíveis os produtos $AB \in BC$, isto é, o número de colunas de A é igual ao número de linhas de B e o número de colunas de B é igual ao número de linhas de B colunas de B colunas de B columas de B columnas de

Usando a propriedade distributiva dos números reais:

$$= \left[\sum_{k=1}^p a_{ik}c_{kj} + b_{ik}c_{kj}\right]_{m \times n}.$$

Pela propriedade 2 dos somatórios e da definição de adição de matrizes,

A lista de propriedades encontra-se no final desta Seção.

$$\left[\sum_{k=1}^{p} a_{ik} c_{kj} + \sum_{k=1}^{p} b_{ik} c_{kj}\right]_{m \times n} = \left[\sum_{k=1}^{p} a_{ik} c_{kj}\right]_{m \times n} + \left[\sum_{k=1}^{p} b_{ik} c_{kj}\right]_{m \times n}.$$

Pela definição do produto de matrizes:

$$=AC+BC.$$

Logo,

$$(A+B)C = AC+BC.$$

$$P_A$$
) $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

Seja
$$\alpha \in \mathbb{R}$$
, $A = [a_{ik}]_{m \times t}$ e $B = [b_{ki}]_{t \times n}$

$$\alpha(AB) = \alpha[a_{ik}]_{m \times t} \cdot [b_{kj}]_{t \times n} = \left[\alpha \sum_{k=1}^{t} (a_{ik} \cdot b_{kj})\right]_{m \times n}.$$

Usando a propriedade do somatório:

$$c\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} cx_i$$
, c: constante,

temos:

$$= \left[\sum_{k=1}^{t} \alpha(a_{ik} \cdot b_{kj}) \right]_{m \times n}.$$

Da propriedade associativa dos números reais:

$$(xy) \cdot z = x \cdot (yz) \text{ com } x, y, z \in \mathbb{R}.$$

Temos:

$$\left[\sum_{k=1}^{t} (\alpha a_{ik}) \cdot b_{kj}\right]_{mag}.$$

E, pela definição de produto de matrizes e produto de uma matriz por um escalar,

$$= (\alpha A) B$$
.

Logo,

$$\alpha(AB) = (\alpha A)B$$
.

Observação. É importante observar que em geral $AB \neq BA$, isso será ilustrado com o seguinte exemplo.

Exemplo 11. Dadas as matrizes $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, a matriz

produto $AB = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$, entretanto $BA = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$, verificando que $AB \neq BA$.

No ambiente virtual da disciplina você encontrará algumas atividades nas quais poderá praticar tanto a multiplicação de matrizes numéricas, usando problemas do cotidiano, quanto a aplicação das propriedades.

Agora é com você!

Exercício 6. Prove as outras propriedades do produto de matrizes.

1.3.5 Transposta de uma Matriz

Seja $A = \left[a_{ij}\right]_{m \times n}$, a matriz transposta de A, denotada por A', é aquela matriz obtida trocando-se as linhas pelas colunas de A. Isto é:

$$A' = \begin{bmatrix} a_{ii} \end{bmatrix}_{m,m}$$
.

Por exemplo, se $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}_{2\times 3}$, a matriz transposta é uma matriz

de ordem 3×2 dada por:

$$A' = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}_{3 \times 2}.$$

Observe que na matriz transposta cada elemento na linha i e coluna j aparece como sendo um elemento da linha j e coluna i da matriz A.

Na literatura é também usual encontrarmos a transposta de uma matriz denotada como \boldsymbol{A}^T ou \boldsymbol{A}^t , mas usaremos tal notação pelo fato de ser a forma como trabalharemos computacionalmente com alguns softwares como MATLAB® ou SCILAB®, durante as nossas aulas ou no ambiente virtual.

Exemplo 12. Seja A uma matriz de ordem 2, encontre o valor de x de modo que A' = A.

$$A = \begin{bmatrix} 1 & x \\ -1 & 0 \end{bmatrix}.$$

Solução.

$$A' = \begin{bmatrix} 1 & -1 \\ x & 0 \end{bmatrix}.$$

Como A' = A é uma condição do exercício, então:

$$\begin{bmatrix} 1 & -1 \\ x & 0 \end{bmatrix} = \begin{bmatrix} 1 & x \\ -1 & 0 \end{bmatrix}.$$

Isso será válido apenas se x = -1.

Observação. Outra forma de definirmos a matriz simétrica é usando a matriz transposta. Assim, diremos que uma matriz é simétrica se ela coincide com a sua transposta, isto é, A' = A.

1.3.6 Propriedades da Matriz Transposta

Dadas as matrizes A e B, são válidas as propriedades da matriz transposta:

- 1) (A')' = A;
- 2) (A+B)' = A' + B';
- 3) (AB)' = B'A';
- 4) $(\alpha A)' = \alpha A', \ \alpha \in \mathbb{R}$.
- Prova da Propriedade 3

$$(AB)' = B'A'$$
.

Sejam
$$A = [a_{ik}]_{m \times p}$$
, $B = [b_{kj}]_{p \times n}$

$$AB = \left[\sum_{k=1}^{p} a_{ik} b_{kj}\right]_{m \times n}$$
$$= \left[c_{ii}\right]_{m \times n}.$$

Assim:

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

Pela definição de transposta de uma matriz,

$$(AB)' = [c_{ji}]_{n \times m}$$

$$= \left[\sum_{k=1}^{p} a_{jk} b_{ki}\right]_{n \times m}$$
(1)

Pode-se verificar que:

$$\sum_{k=1}^{p} b_{jk} a_{ki} = \sum_{k=1}^{p} a_{jk} b_{ki}.$$
 (2)

Por outro lado:

$$B' = [b_{jk}]_{n \times p}, A' = [a_{ki}]_{p \times m}.$$

Observe que $k \in \{1, ..., p\}$, e

$$B'A' = \left[\sum_{k=1}^{p} b_{jk} a_{ki}\right]_{n \times m}$$

(deixamos a você a tarefa de pesquisar a propriedade do somatório usado), substituindo (2) e (1):

$$(AB)' = \left[\sum_{k=1}^p b_{jk} a_{ki}\right]_{n \times m}.$$

Logo,

$$(AB)' = B'A'$$
.

Agora é com você!

Exercício 7. Prove as demais propriedades, justificando todos os passos do seu procedimento.

Exercício 8. Prove que se A' = -A, então A é anti-simétrica.

Exercício 9. Dado um escalar não nulo α , prove que, se A é uma matriz simétrica e B é uma matriz anti-simétrica, então, $\frac{1}{\alpha}A$ é simétrica e $\frac{1}{\alpha}B$ é anti-simétrica.

Exemplo 13. Prove que toda matriz quadrada pode ser colocada como a soma de uma matriz simétrica com outra anti-simétrica.

Solução. Seja $A = [a_{ij}]_n$. Em primeiro lugar, vejamos que A + A' é uma matriz simétrica.

Seja $A = [a_{ij}]_n e A = B + C$ com B simétrica e C anti-simétrica (am-

bas de ordem n). Isto é, B' = B e C' = -C.

Transpondo, A' = B' + C'.

Somando a última expressão na equação A = B + C, temos:

$$A'+A=(B'+B)+(C'+C).$$

Sendo *B* simétrica e *C* anti-simétrica:

$$A'+A=2B$$

Então,

$$B = \frac{A + A'}{2}.$$

Como C é anti-simétrica, ao substituirmos as equações:

$$A - A' = B + C - B' - C'$$

= $B - B' + (C - C')$
= $2C$

Então:

$$C = \frac{A - A'}{2}.$$

Assim,

$$A = \left(\frac{A+A'}{2}\right) + \left(\frac{A-A'}{2}\right).$$

1.3.7 Potência de uma Matriz: A^p

Seja A uma matriz quadrada e p um número inteiro positivo, a potência p da matriz A, denotada por A^p está definida por:

$$A^p = \underbrace{A \cdot \ldots \cdot A}_{p \text{ vezes}}$$

Exemplo 14. Seja $A = [a_{ii}]_{n}$, com $a_{ii} = i - j$, calcule A^3 , para p = 2, 3, 4.

Solução. Pela lei de formação fornecida obtemos facilmente o valor de A:

Se n=2,

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Assim,

$$A^2 = AA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Se p = 3

$$A^{3} = AAA = A^{2}A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Deixamos como exercício calcular A^4 .

Observações:

- 1) Calcular A^p equivale a calcular $A^{p-1} \cdot A$. Assim, se quiser encontrar A^{50} , calcule A^{49} e multiplique o resultado por A (para o que previamente calculou o valor de A^{48} e assim por diante).
- 2) Por definição, se p = 0 e $A \neq O$, então $A^0 = I$.

1.3.8 Traço de uma Matriz

Dada $A = [a_{ij}]_{n}$, o traço de A, denotado por Tr(A), é o número dado pela soma dos elementos da diagonal principal. Isto é:

$$Tr(A) = \sum_{i=1}^{n} a_{ii} .$$

Por exemplo, se

$$A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 2 & 5 \\ 3 & 4 & 7 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix} \implies Tr(A) = 1 + 0 + 7 + 5 = 13.$$

1.3.9 Propriedades do Traço

Dados $A = [a_{ij}]_n$ e $B = [b_{ij}]_{n'}$ são verdadeiras as seguintes propriedades:

- 1) Tr(A+B) = Tr(A) + Tr(B);
- 2) $Tr(\alpha A) = \alpha Tr(A)$;
- 3) Tr(A') = Tr(A);
- 4) Tr(AB) = Tr(BA).
- Prova da Propriedade 1

$$Tr(A+B) = Tr(A) + Tr(B)$$

Sejam $A = [a_{ij}]_n$ e $B = [b_{ij}]_n$ duas matrizes quadradas.

Pela definição do traço,

$$Tr(A+B) = \sum_{i=1}^{n} (a_{ii} + b_{ii})_{i}$$

e pela propriedade do somatório:

$$= \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii}$$
$$= Tr(A) + Tr(B).$$

Agora é com você!

Exercício 10. Prove as outras propriedades.

Exercícios Resolvidos

1) Dada a matriz $A = \begin{bmatrix} 1 & -1 & 7 \\ 0 & 5 & -2 \end{bmatrix}_{2\times 3}$, encontre a sua transposta.

Solução.

$$A' = \begin{bmatrix} 1 & 0 \\ -1 & 5 \\ 7 & -2 \end{bmatrix}_{3\times 2}.$$

2) Encontre o traço de matriz identidade.

Solução. Seja I_n a matriz identidade de ordem n.

$$Tr(I_n) = \sum_{i=1}^n 1 = n.$$

3) Encontre o traço de uma matriz diagonal e de uma matriz triangular de qualquer ordem.

Solução. Usando a notação simplificada, temos a matriz diagonal $D = diag\{d_1, d_2, ..., d_n\}$. Assim:

$$Tr(D) = \sum_{i=1}^{n} d_i.$$

Deixamos para você o cálculo do traço no caso de se ter uma matriz triangular.

1.3.10 Propriedades de Somatórios

Os seguintes itens fornecem algumas propriedades de somatórios úteis para a prova das propriedades listadas anteriormente.

a)
$$\sum_{i=1}^{n} b_i = \sum_{j=1}^{n} b_j;$$

b)
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$
;

c)
$$\sum_{i=1}^{n} b_i a_k = a_k \sum_{i=1}^{n} b_i;$$

d)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} b_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} b_{ij}$$
.

Observação. No final deste Capítulo você encontrará um resumo de todas as propriedades até aqui utilizadas, que servirá de ajuda ao resolver exercícios de demonstração.

Agora é com você!

Exercício 11. Dadas as matrizes:

$$A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -3 & 2 \\ 1 & 4 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & 4 \\ -3 & -1 & -17 \end{bmatrix},$$

encontre:

- a) C = A + 2B;
- b) $C = B^2$:
- c) tr(A), tr(B) e tr(AB);

Expresse as matrizes A e B como somas de uma matriz simétrica com outra anti-simétrica.

Exercício 12. Sejam as matrizes A e B, de ordem 4, $A = \begin{bmatrix} a_{ij} \end{bmatrix}_4$ com $a_{ij} = \begin{cases} j^i & \text{se } i \geq j \\ 0 & \text{se } i < j \end{cases}$, e B uma matriz simétrica com $b_{ij} = i + j$ se $i \leq j$. Encontre:

- a) C = 2A 3B.
- b) $C = B^2$. C é uma matriz simétrica?

Exercício 13. Sejam *A* e *B* matrizes simétricas, justifique se os enunciados a seguir são falsos ou verdadeiros:

- A + B é uma matriz simétrica.
- *AB* é uma matriz simétrica.

Nota. Se sua resposta for verdade, prove. Se for falsa, apresente um contraexemplo.