Профиль «Информационные технологии» Командный кейс «Обход опасных препятствий»

Условия

Молодой сталкер планирует вылазку в зону. В результате очередного выброса образовалось небывалое количество гравитационных аномалий, именуемых «Воронка». Перед походом он решил обратиться к старожилу Сидоровичу за помощью.

Перед последним выбросом Сидоровичу удалось расставить специализированные измерительные комплексы (детекторы) в некоторых участках зоны. К сожалению, он пока не смог найти толковых разработчиков, которые смогли бы разобраться с информацией, поступающей от них.

Сидорович научил молодого сталкера дистанционно отправлять запросы детекторам и принимать от них ответные сообщения, а также поведал о некоторых принципах работы детекторов.

- Детектор способен улавливать и отличать друг от друга воздействия нескольких аномалий. Детектор проводит измерение интенсивности аномалии в точке, где установлен.
- Детектор измеряет интенсивность воздействия каждой обнаруженной аномалии отдельно. В результате измерения детектор получает два значения: уникальный идентификатор аномалии и значение интенсивности её воздействия.
- Детекторы обмениваются данными друг с другом. Если два или более детектора улавливают воздействие одной и той же аномалии, то при измерениях её воздействия они получат одинаковый уникальный идентификатор аномалии.
- Для любой детектированной аномалии минимум три детектора проводят измерения и предоставляют их результаты дистанционно.
- В ответ на запрос детектор сообщает координаты своего местоположения и данные об измеренных интенсивностях в следующем формате:

Профиль «Информационные технологии» Командный кейс «Обход опасных препятствий»

```
[
       "id": idd1,
       "coords": [
                   Y
       ],
       "swans": [
                   "id": "ids1",
                  "rate": int1
                },
                  "id": "idsn",
                   "rate": intn
       "id": iddn,
       "coords": [
       "swans": [
                    "id": "id1",
                    "rate": int1
                 },
                    "id": "idn",
                    "rate": intn
    }
]
```

Профиль «Информационные технологии» Командный кейс «Обход опасных препятствий»

где idd — порядковый номер детектора, X и Y — координаты детектора в метрах, ids — уникальный идентификатор аномалии, int — соответствующая интенсивность в g.

Всем сталкерам известно, что у гравитационных аномалий есть центральная точка, в которой интенсивность воздействия аномалии максимально. И с удалением от этой точки интенсивность обратно пропорциональна квадрату расстояния от центра аномалии.

$$int(r) = \frac{int_0}{r^2},$$

где int_0 — значение интенсивности в центре аномалии, r — расстояние до центра аномалии, int(r) — значение интенсивности в точке, удалённой на расстояние r от центра аномалии. Интенсивность воздействия аномалии измеряется в единицах g.

Помогите молодому сталкеру разобраться с данными об аномалиях и создать приложение, опрашивающее детекторы, строящее карту аномалий и

рассчитывающее наиболее безопасный маршрут от точки А до точки В.

Карта местности с аномалиями дана в виде растрового изображения. 50 пикселей изображения соответствуют одному метру карты. Скачать карту можно по ссылке: https://dt.miet.ru/shared-folder/map.png.

Сталкеру придётся в дороге, находясь в зоне, сверяться с маршрутом, поэтому стоит предусмотреть возможность работы с приложением на носимых устройствах.

Некоторые детекторы выходят из строя и не отвечают на запросы, но продолжают проводить измерения. Молодой сталкер может собрать данные от них вручную. Предусмотрите возможность ввода таких данных в приложение и перестройку карты аномалий и маршрута в соответствии с ними.

Профиль «Информационные технологии» Командный кейс «Обход опасных препятствий»

Техническое задание

Имеется программный интерфейс, с помощью которого можно получить данные от детекторов, расположенных в зоне. Интерфейс предоставляет данные в заранее известном формате — данные содержат координаты детектора, идентификаторы аномалий и соответствующие им значения интенсивности.

Для получения данных необходимо выполнить GET-запрос к серверу, расположенному по адресу: https://dt.miet.ru/ppo_it_final. В заголовках запроса необходимо указать токен авторизации, выданный организаторами: {"X-Auth-Token": "<token>"}

Необходимо разработать программный продукт, который позволит отобразить на карте центральные точки аномалий и круговые диаграммы, показывающие изменение интенсивности воздействия аномалий.

На основании информации о расположении аномалий необходимо построить кратчайший максимально безопасный маршрут. Маршрут считается безопасным, если в каждой его точке интенсивность воздействия аномалий не превышает 2g. Интенсивности от нескольких аномалий не складываются!

Необходимо предусмотреть возможность задания точек А и В через интерфейс пользователя.

Допущения

Задача решается в двумерной плоскости: местность, отображаемая на карте, – горизонтальная плоскость, все аномалии и детекторы расположены в этой горизонтальной плоскости. Непроходимых для человека препятствий, кроме аномалий, нет.

Рекомендации к выполнению

Программный продукт должен работать или на носимых устройствах, или иметь веб-интерфейс.

Полезной будет возможность внесения новых данных от детекторов вручную в интерфейсе пользователя.

Профиль «Информационные технологии» Командный кейс «Обход опасных препятствий»

Необходимо предусмотреть сохранение данных, получаемых от детекторов в системе управления базами данных (СУБД). Выбор СУБД не регламентируется.

Разработку рекомендуется вести с помощью системы контроля версий git. Рекомендуется использовать unit-тестирование при разработке продукта.

Регламент испытаний

- Производится запуск программного продукта.
- Отображение опасных областей по данным, полученным от
- детекторов.
- Отображение опасных областей по заданным жюри данным.
- Построение маршрута по заданными жюри точкам А и В.
- Участники демонстрируют работу unit-тестов.

Профиль «Информационные технологии» Командный кейс «Обход опасных препятствий»

Критерии оценивания

Данные и расчёты

Уровень	Критерии	Максимальны йбалл
1	Данные от детекторов не получены или неверно разобраны (распарсены).	0
2	Данные от детекторов получены и разобраны. Не выполнены или неверно выполнены местоположения аномалий.	30
3	Данные от детекторов получены и разобраны. Выполнены расчёты местоположения аномалий. Допущены ошибки в построении маршрута.	60
4	Данные от детекторов получены и разобраны. Выполнены расчёты местоположения аномалий. Маршрут построен правильно.	90

Интерфейс

Уровень	Критерии	Максимальны йбалл
	Интерфейс отсутствует – нет возможности ввести данные, нет графического отображения местоположения аномалий.	
2	Интерфейс реализован в командной строке – (для ввода и вывода данных набирается команда в терминале).	

Профиль «Информационные технологии» Командный кейс «Обход опасных препятствий»

		
	Разработан графический интерфейс,	
	позволяющий просмотреть данные двух из	
	четырёх следующих типов:	
	- данные от детекторов и	
3	местоположение детекторов	50
3	расположение центров аномалий	30
	интенсивность воздействия аномалий в	
	точке, области с опасным уровнем	
	воздействия	
	местоположение точек А и В,	
	маршрут между ними.	
	Разработан графический интерфейс,	
	позволяющий просмотреть данные трёх из	
	четырёх следующих типов:	
	петырех следующих типов.	
	данные от детекторов и	
4	местоположение детекторов	60
	расположение центров аномалий	00
	интенсивность воздействия аномалий в	
	точке, области с опасным уровнем	
	воздействия	
	местоположение точек А и В, маршрут	
	между ними.	
	Разработан графический интерфейс,	
	позволяющий просмотреть данные	
	следующих типов:	
	· данные от детекторов и	
5	местоположениедетекторов	70
	• расположение центров аномалий	70
	• интенсивность воздействия аномалий в	
	точке, области с опасным уровнем	
	воздействия	
	• местоположение точек А и В, маршрут	
	между ними.	

Профиль «Информационные технологии» Командный кейс «Обход опасных препятствий»

Выполнение рекомендаций из ТЗ

Опции	Максимальны йбалл
Данные, с которыми работает приложение, хранятся и обрабатываются СУБД (не самописной).	10
Реализована возможность введения данных от детекторавручную.	10
Разработка велась с использованием системы контроля версий git. Предоставлен доступ к репозиториюс исходным кодом.	10
Приложение работает на носимом устройстве либо имеетвеб-интерфейс.	10
При разработке использовалось unit-тестирование, предоставлены unit-тесты.	10
Максимальный балл	50

Испытания по регламенту

Критерии	Балл	Комментарий
Программный продукт не работает	0	
Программный продукт работает без вмешательства разработчика.	50	30 если требуется вмешательство разработчика
Данные от детекторов принимаются, и отображается местоположение аномалий.	30	
Верно отображаются аномальные области по данным, полученным от жюри.	20	
Маршрут от точки А до точки В, введённыйжюри, построен корректно.	20	
Unit-тесты работают.	20	
Максимальный балл	140	