Ficha 6 - Teoremas da Continuidade e Função Inversa.

Exercício 1

Utilize o Teorema de Bolzano (ou do Valor Intermediário) para demonstrar a existência de solução para as seguintes equações nos intervalos indicados:

(a)
$$x^2 = e^x - \frac{3}{2}$$
 $x \in]0,1[$

(b)
$$e^x = \tan(x) \quad x \in \left] 0, \frac{\pi}{2} \right[$$

(c)
$$\frac{x}{x+1}\cos\left(\frac{1}{x}\right) = \frac{\sin(x)}{x}$$
 $x \in]0, +\infty[$

Indicações:

- (a) Considere $h(x)=x_2-e^x+\frac{3}{2}$, definida no intervalo [0,1]. Verifique $h(0)\cdot h(1)<0$ e confirme que são cumpridas as condições do Teorema de Bolzano.
 - (c) Considere

$$g(x) = \frac{x}{x+1}\cos\left(\frac{1}{x}\right) - \frac{\sin(x)}{x}, \qquad x \in]0, +\infty[$$

Verifique que $\lim_{x\to 0^+} g(x) = -1$ e que $\lim_{x\to +\infty} g(x) = 1$

Exercício 2

- (a) Mostre que todo o polinómio \tilde{p} de grau ímpar definido em $\mathbb R$ tem uma raíz real.
- (b) Mostre que todo o polinónimio \hat{p} de grau par definido em \mathbb{R} tem máximo ou tem mínimo.

(Sugestão: comece por analisar os limites em $-\infty$ e em $+\infty$.)

Indicações:

(a) Sem perde de generalidade, admita que p(x) é um polinómio de grau ímpar com primeiro coeficiente positivo. Estude os limites em $-\infty$ e $+\infty$ para concluir que existem $a, b \in \mathbb{R}$ tais que p(a) < 0 e p(b) > 0. Aplique o Teorema de Bolzano no intervalo fechado de extremos a e b.

Exercício 3

- (a) Existe alguma função f contínua em \mathbb{R} cujo contradomínio seja o conjunto $\mathbb{R}\setminus\{0\}$?
 - (b) Existe alguma função contínua em [0,1] cujo contradomínio seja $[0,+\infty[$?
- (c) Existe alguma função contínua em \mathbb{R} cuja imagem de qualquer ponto racional é um ponto irracional?
- (d) Existe alguma função definida em \mathbb{R} que tenha máximo e mínimo em qualquer intervalo mas que não seja contínua em nenhum ponto?

Indicações:

- (a) Não. A afirmação contradiz o Teorema de Bolzano.
- (b) Não. A afirmação contradiz o Teorema de Weierstrass.
- (c) Sim. $f(x) = \sqrt{2} + x$.
- (d) Sim. g(x) = 0 se $x \in \mathbb{Q}$ e g(x) = 1 se $x \in \mathbb{R} \setminus \mathbb{Q}$.

Exercício 4

(a) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua tal que, para um certo $x_0 \in \mathbb{R}$, tem-se $f(x_0) > 0$ e

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$$

Mostre que a função f tem máximo.

(b) Considere a função definida em \mathbb{R} por $f(x) = \sin(x)e^{-x^2}$. Mostre que f tem máximo e mínimo.

Indicações:

(a) Comece por justificar a existência de $m, M \in \mathbb{R}$, com $m < x_0 < M$, tais que:

$$\sup_{]-\infty, m[} f < \frac{f(x_0)}{2} \quad e \quad \sup_{]M, +\infty[} f < \frac{f(x_0)}{2}$$

e justifique que a função atinge um máximo no intervalo [m,M], sendo esse máximo absoluto.

(b) Aplique o resultado da alínea anterior.

Exercício 5

Seja $f:[a,b]\mapsto [a,b]$ uma função contínua.

- (a) Mostre que existe $x \in [a,b]$ tal que f(x) = x. (Diz-se que x é um ponto fixo de [a,b]).
 - (b) Admita que, para um certo $\alpha \in]0,1[$,

$$|f(x) - f(y)| \le \alpha |x - y| \quad \forall x, y \in [a, b].$$

Mostre que o ponto fixo é único.

(c) Sabendo que

$$|\cos(x) - \cos(y)| \le \sin(1)|x - y| \quad \forall x, y \in [0, 1]$$

mostre que a equação

$$x = \cos(x)$$

possui uma e uma só solução x_0 . Indique uma sucessão definida por recorrência que seja convergente para x_0 .

Exercício 6

- (a) Dê um exemplo de uma função bijectiva $f:[0,1]\mapsto [0,1]$ que não tenha pontos fixos.
- (b) Dê um exemplo de uma função contínua $f:[0,1[\mapsto [0,1[$ que não tenha pontos fixos.

Indicações:

(a) Defina, por exemplo,

$$f(x) = 1 - x$$
 se $x \in]0,1] \setminus \left\{ \frac{1}{2} \right\}, \quad f(0) = \frac{1}{2}, \quad f\left(\frac{1}{2}\right) = 1.$

(b) Defina, por exemplo, $f(x) = \frac{1}{2} + \frac{\sqrt{x}}{2}$.

Exercício 7

(a) Considere a função $h:[1,+\infty[\mapsto\mathbb{R}$ definida por

$$h(x) = \ln(\sqrt{x-1} + 1)$$

Justifique que h é uma função injectiva e determine o seu contradomínio I. Caracterize h^{-1} explicitando a sua fórmula.

(b) Mesmo exercício para a função $g:[-\sqrt{\frac{\pi}{2}-1},0]\mapsto \mathbb{R}$ definida por

$$g(x) = \sin(x^2 + 1)$$

Exercício 8

Considere a função $f:[0,1]\mapsto \mathbb{R}$ tal que

$$f(x) = x^2 + 2^x$$

- (a) Justifique que f é injectiva e que por isso admite inversa f^{-1} para a composição de funções.
 - (b) Indique o domínio e o contradomínio de f^{-1} .
 - (c) Justifique que a equação

$$f^{-1}(x) = 2 - x$$

admite uma única solução em]1,3[.

Exercício 9

(a) Mostre que para todo o $x \in [-1, 1]$

$$\sin(\arccos(x)) = \sqrt{1 - x^2} = \cos(\arcsin(x))$$

(b) Mostre que para todo o $x, y \in \mathbb{R}$

$$\tan(\arctan(x) + \arctan(y)) = \frac{x+y}{1-xy}$$

(sugestão: recorde a fórmula trigonométrica $\tan(\alpha+\beta)=\frac{\tan(\alpha)+\tan(\beta)}{1-\tan(\alpha)\tan(\beta)}$)

Problema 10

Seja $f:I\mapsto J,$ com $I,J\subset\mathbb{R},$ uma função bijectiva. Mostre que

$$f(x) = x \quad \Rightarrow \quad f^{-1}(x) = f(x)$$

Será a implicação inversa verdadeira?

Indicações: Aplique f^{-1} a ambos os membros da igualdade f(x) = x para concluir $f(x) = x = f^{-1}(x)$. Repare que se $f = f^{-1}$, ou seja f é igual à sua inversa para a composição de funções, podemos ter a conclusão sem que a hipótese seja verdadeira.