$\rm MAT\text{-}206/360$: Inferencia Estadística

Certamen 3. Diciembre 13, 2018

Tiempo: 90 minutos Profesor: Felipe Osorio

1. (25 pts) Considere X_1, \ldots, X_n una m.a. (n) desde $\mathcal{N}(\theta, 1)$ y defina

$$Y_i = \begin{cases} 1, & X_i > 0, \\ 0, & X_i \leq 0. \end{cases}$$

Nombre: _

Sea $\psi = P(Y_1 = 1)$. Obtenga un intervalo de confianza asintótico para ψ .

2. Sean X_1, \ldots, X_n variables aleatorias independientes tal que $X_i \sim \mathsf{Exp}(\theta)$, para $i = 1, \ldots, n$. Considere

$$Q(\mathbf{X};\theta) = 2\theta \sum_{i=1}^{n} X_i,$$

cuya función de densidad es dada por:

$$f_Q(y) = \frac{1}{2^n \Gamma(n)} y^{n-1} \exp(-y/2), \quad y > 0.$$

Es decir, $Q(\boldsymbol{X}; \theta) \sim \chi_{2n}^2$.

a. (10 pts) $\xi Q(X; \theta)$ es cantidad pivotal? Justifique.

b. (15 pts) Usando $Q(X; \theta)$, determine un intervalo de confianza del $100(1 - \alpha)\%$ para θ .

3. (25 pts) Muestre que la distribución exponencial con densidad $f(x) = \theta \exp(-\theta x)$, x > 0 tiene razón de verosimilitud monótona. Halle el test UMP para la hipótesis a una cola, $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.

4. Considere $X = (X_1, \dots, X_n)$ muestra de observaciones independientes con $X_i \sim \mathsf{Poi}(n_i \lambda)$ con n_i conocido y

$$p_i(x) = \frac{(n_i \lambda)^x}{x!} \exp(-n_i \lambda).$$

 $\mathbf{a.} (10 \text{ pts})$ ¿La distribución de \boldsymbol{X} tiene razón de verosimilitud monótona?

b. (15 pts) Derive el test UMP para $H_0: \lambda \geq 1$ versus $H_1: \lambda < 1$.

Pauta de corrección:

