Movimiento Browniano

Ejercicios entregables - Semana 1

Lucio Santi lsanti@dc.uba.ar

9 de abril de 2017

Ejercicio. Este ejercicio es para caracterizar la σ -álgebra de Borel \mathcal{B} en $C([0,T],\mathbb{R})$.

- a) Sea (E,d) un espacio métrico separable y completo (polaco). Probar que todo abierto $U \subset E$ se puede escribir como unión numerable de bolas abiertas.
- b) Sea (E,d) un espacio métrico polaco. Probar que existen numerables bolas B_1, \ldots, B_n, \ldots tal que la σ -álgebra de Borel $\mathcal{B}(E)$ verifica

$$\mathcal{B}(E) = \sigma\left(\left\{B_n : n \in \mathbb{N}\right\}\right)$$

c) Para $\omega \in C([0,T],\mathbb{R})$ definimos $\pi_t(\omega) = \omega(t)$. Probar que $\pi_t : C([0,T],\mathbb{R}) \to \mathbb{R}$ es continua.

En $(C([0,T],\mathbb{R}),\|\cdot\|_{\infty})$ definimos la σ -álgebra de Kolmogorov,

$$\mathcal{K} = \sigma\left(\left\{\pi_t^{-1}(B) : t \in [0, T], B \in \mathcal{B}(\mathbb{R})\right\}\right)$$

- d) Probar que las bolas abiertas están en K.
- e) Probar que K = B.

Resolución. TBD

Ejercicio. (1.6 - Mörters y Peres). Sea $\{B(t): t \geq 0\}$ un movimiento browniano standard. Probar que, casi seguramente,

$$\lim_{t\to\infty}\frac{B(t)}{t}=0$$

Resolución. TBD