Algoritmo Genético aplicado ao problema de redução de perdas em redes primárias de distribuição

Aluno: Jônatas Trabuco Belotti

REDE DE DISTRIBUIÇÃO

REDE DE DISTRIBUIÇÃO

Fonte: Queiroz (2005).

CALCULO DAS PERDAS

Potência ativa:

$$P_{v,s} = \sum_{a \in A_s} P_a + P_{Ls}$$

Potência reativa:

$$Q_{v,s} = \sum_{a \in A_s} Q_a + Q_{Ls}$$

- $P_{v,s}$ é o fluxo de potência ativa entre os vértices v e s;
- $Q_{v,s}$ é o fluxo de potência reativa entre os vértices v e s;
- P_{LS} é a potência ativa da carga do nó s;
- Q_{LS} é a potência reativa da carga do nó s;

PROBLEMA

Função objetivo:

$$\min \sum_{v \in V} \sum_{a \in A_v} r_a (P_a + Q_a)^2$$

s.a.

$$\underline{P} \leq P_a \leq \overline{P}$$
 $\underline{Q} \leq Q_a \leq \overline{Q}$
 $G = (V, A)$ é uma árvore

REVISÃO LITERATURA

 L. M. O. de Queiroz, "Algoritmos genéticos híbridos para redução de perdas técnicas em redes primárias de distribuição considerando variações de demandas", (2005);

• E. M. B. Cavalheiro, A. H. B. Vergílio e C. Lyra, "Optimal configuration of power distribution networks with variable renewable energy resources", (2018).

ALGORITMO GENÉTICO

Crie a população inicial Avalie a população inicial

Repita

Selecione os pais

Realize o cruzamento

Realize a mutação

Avalie os novos indivíduos

Realize a busca local em todos os novos indivíduos

Selecione a nova população

Até que a condição de parada seja atendida

REPRESENTAÇÃO DA SOLUÇÃO

Arestas									
1	2	3	4	5	6	7	8	9	10
1	0	1	1	0	1	0	0	1	1
29	85	9	15	63	5	44	77	34	72

CONFIGURAÇÕES TESTADAS

- Conf1 (PADRÃO): Seleção por Torneio, Cruzamento de Ponto, Mutação Estática com taxa de 10%, Nova população substitui a antiga e Sem Busca Local;
- Conf2: Seleção por Roleta;
- Conf3: Seleção por Amostragem Universal Estocástica;
- Conf4: Cruzamento Uniforme;
- Conf5: Mutação Estática com taxa de 20%;

CONFIGURAÇÕES TESTADAS

- Conf6: Mutação adaptativa baseada no desvio padrão indo até 50%;
- Conf7: Elitismo de 1 individuo;
- Conf8: Nova população se junta com a anterior e são selecionados os melhores;
- Conf9: Com Busca Local;

CONFIGURAÇÕES TESTADAS

 Conf10: Seleção por Amostragem Universal Estocástica, Cruzamento Uniforme, Mutação adaptativa baseada no desvio padrão indo até 50%, Nova população se junta com a anterior e são selecionados os melhores e Sem Busca Local;

INSTÂNCIAS TESTADAS

Instância	Vértices	Arestas	Fontes	Tam. população
bus_13_3	13	16	3	30
bus_29_1	29	30	1	30
bus_32_1	32	37	1	30
bus_83_11	83	96	11	30
bus_135_8	135	156	8	30
bus_201_3	201	216	3	30
bus_873_7	873	900	7	50
bus_10476_84	10476	10736	84	100

• O critério de parada para todas as instâncias foi 30 minutos de execução.

• bus_13_3

GA	Perda original	Fitness	% Melhora
Conf1	113,9088	105,99475	6,94%
Conf2	113,9088	105,99475	6,94%
Conf3	113,9088	105,99475	6,94%
Conf4	113,9088	105,99475	6,94%
Conf5	113,9088	105,99475	6,94%
Conf6	113,9088	105,99475	6,94%
Conf7	113,9088	105,99475	6,94%
Conf8	113,9088	105,99475	6,94%
Conf9	113,9088	105,99475	6,94%
Conf10	113,9088	105,99475	6,94%

• bus_29_1

GA	Perda original	Fitness	% Melhora
Conf1	0,013709432	0,013709	0,00315%
Conf2	0,013709432	0,013709	0,00315%
Conf3	0,013709432	0,013709	0,00315%
Conf4	0,013709432	0,013709	0,00315%
Conf5	0,013709432	0,013709	0,00315%
Conf6	0,013709432	0,013709	0,00315%
Conf7	0,013709432	0,013709	0,00315%
Conf8	0,013709432	0,013709	0,00315%
Conf9	0,013709432	0,013709	0,00315%
Conf10	0,013709432	0,013709	0,00315%

• bus_32_1

GA	Perda original	Fitness	% Melhora
Conf1	55631859,18	40437254,585	27,3127%
Conf2	55631859,18	40569392,2075	27,0752%
Conf3	55631859,18	39954096,9075	28,1812%
Conf4	55631859,18	39221067,155	29,4989%
Conf5	55631859,18	38654432,925	30,5174%
Conf6	55631859,18	39954096,9075	28,1812%
Conf7	55631859,18	38654432,925	30,5174%
Conf8	55631859,18	38558920,065	30,6891%
Conf9	55631859,18	38558920,065	30,6891%
Conf10	55631859,18	38558920,065	30,6891%

• bus_83_11

GA	Perda original	Fitness	% Melhora
Conf1	123854986,7	117574888,85	5,0705%
Conf2	123854986,7	122905991,0	0,7662%
Conf3	123854986,7	118650549,11	4,202%
Conf4	123854986,7	113073479,59	8,7049%
Conf5	123854986,7	119462784,21	3,5462%
Conf6	123854986,7	118893877,53	4,0055%
Conf7	123854986,7	122128604,39	1,3938%
Conf8	123854986,7	129527901,04	-4,5802%
Conf9	123854986,7	111024024,11	10,3596%
Conf10	123854986,7	112168575,68	9,4355%

• bus_135_8

GA	Perda original	Fitness	% Melhora
Conf1	97708466,33	93501699,539268	4,3054%
Conf2	97708466,33	89035792,638231	8,8760%
Conf3	97708466,33	89136798,323128	8,7726%
Conf4	97708466,33	96791747,7865	0,9382%
Conf5	97708466,33	96818755,473554	0,9105%
Conf6	97708466,33	97244928,233904	0,4744%
Conf7	97708466,33	92371092,785871	5,4625%
Conf8	97708466,33	123391280,82535	-26,2851%
Conf9	97708466,33	93569595,835209	4,2359%
Conf10	97708466,33	94979944,223239	2,7925%

• bus_201_3

GA	Perda original	Fitness	% Melhora
Conf1	184509887,6	325293840,87621	-76,3015%
Conf2	184509887,6	184509887,639038	-2,1157e-08%
Conf3	184509887,6	183489356,761331	0,5531%
Conf4	184509887,6	267251964,477108	-44,8442%
Conf5	184509887,6	191552605,182492	-3,8169%
Conf6	184509887,6	180254401,29452	2,3063%
Conf7	184509887,6	226132879,540237	-22,5586%
Conf8	184509887,6	235414668,466637	-27,5891%
Conf9	184509887,6	180539954,324424	2,1516%
Conf10	184509887,6	177267903,602767	3,9249%

• bus_873_7

GA	Perda original	Fitness	% Melhora
Conf1	45803330890	20576500979,213936	55,0764%
Conf2	45803330890	18039863508,737392	60,6145%
Conf3	45803330890	16699630231,703117	63,5405%
Conf4	45803330890	16600256473,504797	63,7575%
Conf5	45803330890	18359267826,918983	59,9171%
Conf6	45803330890	15998265272,958487	65,0718%
Conf7	45803330890	23888383471,162514	47,8457%
Conf8	45803330890	21409563021,696877	53,2576%
Conf9	45803330890	16809903946,876883	63,2998%
Conf10	45803330890	18934281958,67709	58,6617%

• bus_10476_84

GA	Perda original	Fitness	% Melhora
Conf1	534527141823,62	601126855410,8429	-12,4595%
Conf2	534527141823,62	778714733253,3881	-45,6829%
Conf3	534527141823,62	495213551200,69867	7,3548%
Conf4	534527141823,62	318968752519,4673	40,3269%
Conf5	534527141823,62	434462299906,562	18,7202%
Conf6	534527141823,62	424325723812,9178	20,6166%
Conf7	534527141823,62	512008994975,2709	4,2127%
Conf8	534527141823,62	502933564227,95337	5,9105%
Conf9	534527141823,62	-	-
Conf10	534527141823,62	339252807064,8275	36,5321%

Geral

GA	Descrição	Num vitórias
Conf1	Padrão	2
Conf2	Seleção por Roleta	3
Conf3	Seleção por Amostragem	2
Conf4	Cruzamento Uniforme	3
Conf5	Mutação 20%	2
Conf6	Mutação Adaptativa	3
Conf7	Elitismo	2
Conf8	Seleciona melhores indivíduos	3
Conf9	Busca Local	4
Conf10	Misto	4

REFERÊNCIAS

L. M. O. de Queiroz, "Algoritmos genéticos híbridos para redução de perdas técnicas em redes primárias de distribuição considerando variações de demandas", Dissertação de Mestrado, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 2005.

E. M. B. Cavalheiro, A. H. B. Vergílio e C. Lyra. "Optimal configuration of power distribution networks with variable renewable energy resources" Computers & Operations Research 96 (2018), p 272-280.

15/02/2019