نظریه علوم کامپیوتر

نظریه علوم کامپیوتر - بهار ۱۴۰۰-۱۴۰۱ - جلسه دوم: زبانهای منظم

Theory of computation - 002 - S02 - Regular Languanges

نكات صنفى

• در CW عضو شوید

States: q1 q2 q3

States: q1 q2 q3

Transitions: $-\frac{1}{}$

States: q1 q2 q3

Transitions: $\xrightarrow{1}$

Start state: →

States: q1 q2 q3

Transitions: $-\frac{1}{}$

Start state: →

Accept states:

States: q1 q2 q3

Transitions: $\frac{1}{}$

Start state: →

Accept states:

Input: finite string

Output: Accept or Reject

States: q1 q2 q3

Transitions: $\xrightarrow{1}$

Start state: →

Accept states:

Input: finite string

Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, <u>Accept</u> if end with accept state, <u>Reject</u> if not.

States: q1 q2 q3

Transitions: $-\frac{1}{}$

Start state: →

Accept states:

Input: finite string

Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, <u>Accept</u> if end with accept state, <u>Reject</u> if not.

Examples: $01101 \rightarrow Accept$ $00101 \rightarrow Reject$

States: q1 q2 q3

Transitions: $-\frac{1}{}$

Start state: →

Accept states:

Input: finite string

Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, <u>Accept</u> if end with accept state, <u>Reject</u> if not.

Examples: $01101 \rightarrow Accept$ $00101 \rightarrow Reject$

M1 accepts exactly those strings in A where $A = \{w \mid w \text{ contains substring } 11\}$.

States: q1 q2 q3

Transitions: $-\frac{1}{}$

Start state: →

Accept states:

Input: finite string

Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, <u>Accept</u> if end with accept state, <u>Reject</u> if not.

Examples: $01101 \rightarrow Accept$ $00101 \rightarrow Reject$

M1 accepts exactly those strings in A where $A = \{w \mid w \text{ contains substring } 11\}$.

Say that \overline{A} is the language of $\overline{M1}$ and that $\overline{M1}$ recognizes \overline{A} and that A = L(M1).

States: q1 q2 q3

Transitions: $-\frac{1}{}$

Start state: →

Accept states:

Input: finite string

Output: Accept or Reject

Computation process: Begin at start state, read input symbols, follow corresponding transitions, <u>Accept</u> if end with accept state, <u>Reject</u> if not.

Examples: $01101 \rightarrow Accept$ $00101 \rightarrow Reject$

M1 accepts exactly those strings in A where $A = \{w \mid w \text{ contains substring } 11\}$.

Say that \overline{A} is the language of $\overline{M1}$ and that $\overline{M1}$ recognizes \overline{A} and that A = L(M1).

Finite Automata — Formal Definition

Defn: A finite automaton M is a 5-tuple

 $(Q, \Sigma, \delta, q0, F)$

Finite Automata – Formal Definition

Defn: A finite automaton M is a 5-tuple

 $(Q, \Sigma, \delta, q0, F)$

Q finite set of states

Finite Automata — Formal Definition

- $(Q, \Sigma, \delta, q0, F)$
 - Q finite set of states
 - Σ finite set of alphabet symbols

Finite Automata — Formal Definition

- $(Q, \Sigma, \delta, q0, F)$
 - Q finite set of states
 - Σ finite set of alphabet symbols
 - δ transition function $\delta \colon Q \times \Sigma \to Q$

Finite Automata – Formal Definition

- $(Q, \Sigma, \delta, q0, F)$
 - Q finite set of states
 - Σ finite set of alphabet symbols
 - δ transition function $\delta: Q \times \Sigma \rightarrow Q$

$$\delta(q, a) = r \text{ means } q \xrightarrow{a} r$$

Finite Automata – Formal Definition

- $(Q, \Sigma, \delta, q0, F)$
 - Q finite set of states
 - Σ finite set of alphabet symbols
 - δ transition function $\delta: Q \times \Sigma \rightarrow Q$
 - q0 start state $\delta(q, a) = r$ means q

Finite Automata — Formal Definition

Defn: A finite automaton M is a 5-tuple

- $(Q, \Sigma, \delta, q0, F)$
 - Q finite set of states
 - Σ finite set of alphabet symbols
 - δ transition function $\delta: Q \times \Sigma \rightarrow Q$
 - q0 start state $\delta(q, a) = r$ means q r

F set of accept states

Finite Automata — Formal Definition

Defn: A finite automaton M is a 5-tuple

- $(Q, \Sigma, \delta, q0, F)$
 - Q finite set of states
 - Σ finite set of alphabet symbols
 - δ transition function $\delta: Q \times \Sigma \rightarrow Q$
 - q0 start state
- $\delta(q, a) = r \text{ means } (q) \xrightarrow{a}$

F set of accept states

Example:

Finite Automata – Formal Definition

Defn: A finite automaton M is a 5-tuple

- $(Q, \Sigma, \delta, q0, F)$
 - Q finite set of states
 - Σ finite set of alphabet symbols
 - δ transition function $\delta: Q \times \Sigma \rightarrow Q$
 - q0 start state
- $\delta(q, a) = r \text{ means } (q) \xrightarrow{a} (r)$

F set of accept states

Example:

$$M1 = (Q, \Sigma, \delta, q1, F)$$
 $Q = \{q1, q2, q3\}$
 $\Sigma = \{0, 1\}$
 $F = \{q3\}$

Finite Automata – Formal Definition

Defn: A finite automaton M is a 5-tuple

- $(Q, \Sigma, \delta, q0, F)$
 - Q finite set of states
 - Σ finite set of alphabet symbols
 - δ transition function $\delta: Q \times \Sigma \rightarrow Q$
 - q0 start state

 $\delta(q, a) = r \text{ means } (q) \xrightarrow{a} (r)$

F set of accept states

Example:

$$M1 = (Q, \Sigma, \delta, q1, F)$$
 $\delta = \begin{vmatrix} 0 & 1 \\ q1 & q1 & q2 \\ q2 & q1 & q3 \\ \Sigma = \{0, 1\} & q3 & q3 \\ F = \{q3\}$

Strings and languages

- A string is a finite sequence of symbols in Σ
- A <u>language</u> is a set of strings (finite or infinite)

Strings and languages

- A string is a finite sequence of symbols in Σ
- A <u>language</u> is a set of strings (finite or infinite)
- The <u>empty string</u> ε is the string of length 0
- The empty language ϕ is the set with no strings

Strings and languages

- A string is a finite sequence of symbols in Σ
- A <u>language</u> is a set of strings (finite or infinite)
- The empty string ε is the string of length 0
- The empty language ϕ is the set with no strings

```
Defn: M accepts string w = w1w2...wn each wi \in \Sigma
```

if there is a sequence of states $\ r0,\ r1,\ r2,\ ,...,\ rn\ \ \epsilon\ \ Q$ where:

- -r0 = q0
- $-ri = \delta(r_{i-1}, wi)$ for $1 \le i \le n$
- $-rn\ \epsilon F$

Strings and languages

- A string is a finite sequence of symbols in Σ
- A <u>language</u> is a set of strings (finite or infinite)
- The <u>empty string</u> ε is the string of length 0
- The empty language ϕ is the set with no strings

Defn: M accepts string $w=w1w2\dots wn$ each $wi \in \Sigma$

if there is a sequence of states $r0, r1, r2, ..., rn \in Q$ where:

- -r0 = q0
- $-ri = \delta(r_{i-1}, wi)$ for $1 \le i \le n$
- $rn \in F$

Recognizing languages

- $L(M) = \{w \mid M \text{ accepts } w\}$
- L(M) is the language of M
- M recognizes L(M)

Strings and languages

- A string is a finite sequence of symbols in Σ
- A <u>language</u> is a set of strings (finite or infinite)
- The empty string ε is the string of length 0
- The empty language ϕ is the set with no strings

Defn: M accepts string $w=w1w2\dots wn$ each $wi \in \Sigma$

if there is a sequence of states $r0, r1, r2, ..., rn \in Q$ where:

- -r0 = q0
- $-ri = \delta(r_{i-1}, wi)$ for $1 \le i \le n$
- $rn \in F$

Recognizing languages

- $L(M) = \{w \mid M \text{ accepts } w\}$
- L(M) is the language of M
- M recognizes L(M)

Defn: A language is <u>regular</u> if some finite automaton recognizes it.

Strings and languages

- A string is a finite sequence of symbols in Σ
- A <u>language</u> is a set of strings (finite or infinite)
- The empty string ε is the string of length 0
- The empty language ϕ is the set with no strings

Defn: M accepts string $w=w1w2\dots wn$ each $wi \in \Sigma$

if there is a sequence of states $r0, r1, r2, ..., rn \in Q$ where:

- -r0 = q0
- $-ri = \delta(r_{i-1}, wi)$ for $1 \le i \le n$
- $rn \in F$

Recognizing languages

- $L(M) = \{w \mid M \text{ accepts } w\}$
- L(M) is the language of M
- M recognizes L(M)

Defn: A language is <u>regular</u> if some finite automaton recognizes it.

$$L(M_1) = \{w \mid w \text{ contains substring } 11\} = A$$

 $L(M_1) = \{w \mid w \text{ contains substring } 11\} = A$

Therefore A is regular

$$L(M_1) = \{w \mid w \text{ contains substring } 11\} = A$$

Therefore *A* is regular

More examples:

Let $B = \{w \mid w \text{ has an even number of 1s}\}$ B is regular (make automaton for practice).

 $L(M_1) = \{w \mid w \text{ contains substring } 11\} = A$

Therefore *A* is regular

More examples:

Let $B = \{w \mid w \text{ has an even number of 1s}\}$ B is regular (make automaton for practice).

Let $C = \{w \mid w \text{ has equal numbers of 0s and 1s}\}$ C is <u>not</u> regular (we will prove).

$$L(M_1) = \{w \mid w \text{ contains substring } 11\} = A$$

Therefore A is regular

More examples:

Let $B = \{w \mid w \text{ has an even number of 1s}\}$ B is regular (make automaton for practice).

Let $C = \{w \mid w \text{ has equal numbers of 0s and 1s}\}$ C is <u>not</u> regular (we will prove).

Goal: Understand the regular languages

Regular Expressions

5

Regular operations. Let A, B be languages:

Regular operations. Let A, B be languages:

- Union:
$$A \cup B = \{w \mid w \in A \text{ or } w \in B\}$$

Regular operations. Let A, B be languages:

- Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$

Regular operations. Let A, B be languages:

- Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$

- Star: $A^* = \{x_1 \dots x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$

Note: $\varepsilon \in A^*$ always

Regular operations. Let A, B be languages:

- Union:
$$A \cup B = \{w \mid w \in A \text{ or } w \in B\}$$

- Concatenation:
$$A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$$

- Star:
$$A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$$
 Note: $\varepsilon \in A^*$ always

Regular operations. Let A, B be languages:

- Union:
$$A \cup B = \{w \mid w \in A \text{ or } w \in B\}$$

- Concatenation:
$$A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$$

- Star:
$$A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$$
 Note: $\varepsilon \in A^*$ always

Example. Let $A = \{ good, bad \}$ and $B = \{ boy, girl \}$.

- $A \cup B = \{\text{good, bad, boy, girl}\}$

Regular operations. Let A, B be languages:

- Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$

- Star: $A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$ Note: $\varepsilon \in A^*$ always

- $A \cup B = \{\text{good, bad, boy, girl}\}\$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$

Regular operations. Let A, B be languages:

- Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$
- Star: $A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$ Note: $\epsilon \in A^*$ always

- $A \cup B = \{\text{good, bad, boy, girl}\}\$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \text{goodgoodgood}, \text{goodgoodbad}, ... \}$

Regular operations. Let A, B be languages:

- Union:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$
- Star:

$$A^* = \{x_1 \dots x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$$

Note: $\varepsilon \in A^*$ always

Regular expressions

- $A \cup B = \{\text{good, bad, boy, girl}\}\$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \text{goodgoodgood}, \text{goodgoodbad}, \dots \}$

Regular operations. Let A, B be languages:

- <u>Union</u>:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$
- Star: $A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$ Note: $\varepsilon \in A^*$ always

Example. Let $A = \{ good, bad \}$ and $B = \{ boy, girl \}$.

- $A \cup B = \{\text{good, bad, boy, girl}\}\$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \text{goodgoodgood}, \text{goodgoodbad}, ... \}$

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]

Regular operations. Let A, B be languages:

- <u>Union</u>:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$
- Star: $A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$ Note: $\varepsilon \in A^*$ always

Example. Let $A = \{ good, bad \}$ and $B = \{ boy, girl \}$.

- $A \cup B = \{\text{good, bad, boy, girl}\}\$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{ \varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ... }$

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]
- By using ∪, ∘, * [Composite]

Regular operations. Let A, B be languages:

- <u>Union</u>:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$

- <u>Star:</u>

$$A^* = \{x_1 \dots x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$$

Note: $\varepsilon \in A^*$ always

Example. Let $A = \{good, bad\}$ and $B = \{boy, girl\}$.

- $A \cup B = \{\text{good, bad, boy, girl}\}\$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \text{goodgoodgood}, \text{goodgoodbad}, ... \}$

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]
- By using ∪, ∘, * [Composite]

Examples:

Regular operations. Let A, B be languages:

- <u>Union</u>:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$

- <u>Star:</u>

$$A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$$

Note: $\varepsilon \in A^*$ always

Example. Let $A = \{good, bad\}$ and $B = \{boy, girl\}$.

- $A \cup B = \{\text{good, bad, boy, girl}\}\$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{ \varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ... }$

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]
- By using ∪, ∘, * [Composite]

Examples:

- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ

Regular operations. Let A, B be languages:

- <u>Union</u>:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$

- <u>Star:</u>

$$A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$$

Note: $\varepsilon \in A^*$ always

Example. Let $A = \{good, bad\}$ and $B = \{boy, girl\}$.

- $A \cup B = \{\text{good, bad, boy, girl}\}$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ...} \}$

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]
- By using ∪, ∘, * [Composite]

Examples:

- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ
- Σ^*1 gives all strings that end with 1

Regular operations. Let A, B be languages:

- <u>Union</u>:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$

- <u>Star:</u>

$$A^* = \{x_1 ... x_k | \text{ each } x_i \in A \text{ for } k \ge 0\}$$

Note: $\varepsilon \in A^*$ always

Example. Let $A = \{good, bad\}$ and $B = \{boy, girl\}$.

- $A \cup B = \{\text{good, bad, boy, girl}\}$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{ \varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ... }$

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]
- By using ∪, ∘, * [Composite]

Examples:

- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ
- $\Sigma^* 1$ gives all strings that end with 1
- $\Sigma^* 11\Sigma^* = \text{ all strings that contain } 11$ = $L(M_1)$

Regular operations. Let A, B be languages:

- Union:

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$$

- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\} = AB$
- Star: $A^* = \{x_1 ... x_k \mid \text{ each } x_i \in A \text{ for } k \ge 0\}$ Note: $\varepsilon \in A^*$ always

Example. Let $A = \{good, bad\}$ and $B = \{boy, girl\}$.

- $A \cup B = \{good, bad, boy, girl\}$
- $A \circ B = AB = \{\text{goodboy, goodgirl, badboy, badgirl}\}$
- $A^* = \{\varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad}, \text{goodgoodgood}, \text{goodgoodbad}, \dots \}$

Regular expressions

- Built from Σ , members Σ , \emptyset , ε [Atomic]
- By using ∪, ∘, * [Composite]

Examples:

- $(0 \cup 1)^* = \Sigma^*$ gives all strings over Σ
- Σ^*1 gives all strings that end with 1
- $\Sigma^* 11 \Sigma^* =$ all strings that contain 11 $= L(M_1)$

Goal: Show finite automata equivalent to regular expressions

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input $\,w\,$ if either $M_1\,$ or $\,M_2\,$ accept w.

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

 $m{M}$ should accept input w if either $m{M}_1$ or $m{M}_2$ accept w.

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

Components of M:

M should accept input w if either M_1 or M_2 accept w.

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \overline{\delta_1},\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

$$\begin{split} Q &= Q_1 \times Q_2 \\ &= \left\{ \left(q_1, q_2 \right) \,\middle|\, q_1 \in Q_1 \text{ and } q_2 \in Q_2 \right\} \end{split}$$

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

$$\begin{aligned} Q &= Q_1 \times Q_2 \\ &= \left\{ \left(q_1, q_2\right) \middle| q_1 \in Q_1 \text{ and } q_2 \in Q_2 \right\} \\ q_0 &= \left(q_1, \ q_2\right) \end{aligned}$$

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

$$Q = Q_1 \times Q_2$$

$$= \left\{ (q_1, q_2) \middle| q_1 \in Q_1 \text{ and } q_2 \in Q_2 \right\}$$

$$q_0 = (q_1, q_2)$$

$$\delta((q, r), a) = \left(\delta_1(q, a), \delta_2(r, a)\right)$$

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

$$Q = Q_1 \times Q_2$$

$$= \left\{ \left(q_1, q_2 \right) \middle| q_1 \in Q_1 \text{ and } q_2 \in Q_2 \right\}$$

$$q_0 = \left(q_1, q_2 \right)$$

$$\delta\left(\left(q, r \right), a \right) = \left(\delta_1(q, a), \delta_2(r, a) \right)$$

$$F = \left(F_1 \times Q_2 \right) \cup \left(Q_1 \times F_2 \right)$$

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

$$Q = Q_1 \times Q_2$$

$$= \left\{ \left(q_1, q_2 \right) \middle| q_1 \in Q_1 \text{ and } q_2 \in Q_2 \right\}$$

$$q_0 = \left(q_1, q_2 \right)$$

$$\delta\left(\left(q, r \right), a \right) = \left(\delta_1(q, a), \delta_2(r, a) \right)$$

$$F = \left(F_1 \times Q_2 \right) \cup \left(Q_1 \times F_2 \right)$$

Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (closure under \cup)

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing $A_1 \cup A_2$

M should accept input w if either M_1 or M_2 accept w.

Check-in 1.1

In the proof, if $oldsymbol{M}_1$ and $oldsymbol{M}_2$ are finite automata where M_1 has k_1 states and M_2 has k_2 states Then how many states does $oldsymbol{M}$ have?

(a)
$$k_1 + k_2$$

(b)
$$(k_1)^2 + (k_2)^2$$

(c) $k_1 \times k_2$

(c)
$$k_1 \times k_2$$

$$\begin{split} Q &= Q_1 \times Q_2 \\ &= \left\{ \left(q_1, q_2 \right) \,\middle|\, q_1 \in Q_1 \text{ and } q_2 \in Q_2 \right\} \end{split}$$

$$q_0 = (q_1, q_2)$$

$$\delta(q,r),a = (\delta_1(q,a),\delta_2(r,a))$$

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

```
Theorem: If A_1, A_2 are regular languages, so is A_1A_2 (closure under \circ)
```

```
Proof: Let M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1) recognize A_1 M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2) recognize A_2
```

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $\overline{M}_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $\overline{M}_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Proof: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

M should accept input w if w=xy where M_1 accepts x and M_2 accepts y.

Doesn't work: Where to split w?

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

```
Theorem: If A_1, A_2 are regular languages, so is A_1A_2 (closure under \circ) Recall proof attempt: Let M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1) recognize A_1 M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2) recognize A_2
```

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Recall proof attempt: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Recall proof attempt: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Recall proof attempt: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Recall proof attempt: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

M should accept input w if w=xy where M_1 accepts x and M_2 accepts y.

 $w = \frac{y}{x}$

Doesn't work: Where to split w?

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2 (closure under \circ)

Recall proof attempt: Let $M_1=(Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ recognize A_1 $M_2=(Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ recognize A_2

Construct $M = (Q, \Sigma, \delta, q0, F)$ recognizing A_1A_2

M should accept input w if w=xy where M_1 accepts x and M_2 accepts y.

 $w = \frac{y}{x}$

Doesn't work: Where to split w?

Hold off. Need new concept.

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

Example inputs:

- ab

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

Example inputs:

- ab <u>accept</u>

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

- ab <u>accept</u>
- aa

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

- ab <u>accept</u>
- aa <u>reject</u>

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

- ab <u>accept</u>
- aa <u>reject</u>
- aba

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

- ab <u>accept</u>
- aa <u>reject</u>
- aba <u>accept</u>

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

- ab <u>accept</u>
- aa <u>reject</u>
- aba <u>accept</u>
- abb

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

- ab <u>accept</u>
- aa <u>reject</u>
- aba <u>accept</u>
- abb <u>reject</u>

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **accept**

Example inputs:

- ab <u>accept</u>
- aa <u>reject</u>
- aba <u>accept</u>
- abb <u>reject</u>

Nondeterminism doesn't correspond to a physical machine we can build. However, it is useful mathematically.

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **()** accept

Example inputs:

- ab <u>accept</u>
- aa <u>reject</u>
- aba <u>accept</u>
- abb <u>reject</u>

Nondeterminism doesn't correspond to a physical machine we can build. However, it is useful mathematically.

Nondeterminism doesn't correspond to a physical machine we can build. However, it is useful mathematically.

New features of nondeterminism:

- multiple paths possible (0, 1 or many at each step)
- ε-transition is a "free" move without reading input
- Accept input if <u>some</u> path leads to **()** accept

Example inputs:

- ab <u>accept</u>
- aa <u>reject</u>
- aba <u>accept</u>
- abb <u>reject</u>

Check-in 2.1

What does N_1 do on input aab?

- (a) Accept
- (b) Reject
- (c) Both Accept and Reject

Check-in 2.2

Defn: A <u>nondeterministic finite automaton (NFA)</u>

N is a 5-tuple $(Q, \Sigma, \delta, q0, F)$ $s_{t_{\partial I_{o}}}$ $s_{t_{\partial I_{o}}}$

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N$$
 is a 5-tuple $(Q, \Sigma, \delta, q0, F)$ s_{tates} s_{tates}

- all same as before except δ

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N \text{ is a 5-tuple } (Q, \ \Sigma, \ \delta, \ q0, \ F) \\ \text{$_{St_{\partial t_{e_s}}}$} \text{$_{\delta_{h_{\partial b_{e_t}}}}$} \text{$_{St_{\partial r_{o_t}}}$} \text{$_{\delta_{c_t}}$} \text{$_{$$

- all same as before except δ
- $-\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q) = \{R \mid R \subseteq Q\}$

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N$$
 is a 5-tuple $(Q, \Sigma, \delta, q0, F)$
$$s_{t_{\partial t_{e_s}}} s_{b_{h_{\partial b_{e_t}}}} s_{t_{\partial n_{s_{i_{t_{i_{o_t}}}}}}} s_{t_{\partial r_{s_{i_{t_{i_{o_t}}}}}}} s_{t_{\partial t_{e_s}}}} s_{t_{\partial t_{e_s}}}$$

- all same as before except δ
- $\begin{array}{c|c}
 \hline
 -\delta: Q \times \sum_{\varepsilon} \to \mathscr{P}(Q) = \{R \mid R \subseteq Q\} \\
 \hline
 \Sigma \cup \{\varepsilon\}
 \end{array}$

NFA – Formal Definition

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N$$
 is a 5-tuple $(Q, \Sigma, \delta, q0, F)$ $s_{t_{\partial t_{e_s}}}$ $s_{t_{\partial h_{\partial b_{e_t}}}}$ $s_{t_{\partial h_{\partial b_{e_t}}}}$

- all same as before except δ
- $-\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q) = \{ R \mid R \subseteq Q \}$ $\Sigma \cup \{ \varepsilon \}$ power set

NFA — Formal Definition

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N$$
 is a 5-tuple $(Q, \Sigma, \delta, q0, F)$
$$s_{t_{\partial t_{e_s}}} s_{b_{h_{\partial b_{e_t}}}} s_{t_{\partial n_{s_{i_{t_{i_{o_t}}}}}}} s_{t_{\partial r_{s_{i_{t_{i_{o_t}}}}}}} s_{t_{\partial t_{e_s}}}} s_{t_{\partial t_{e_s}}}$$

- all same as before except δ
- $-\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q) = \{ R \, \big| \, R \subseteq Q \}$ $\Sigma \cup \{ \varepsilon \}$ power set
- In the N_1 example: $\deltaig(q_1,\mathsf{a}\,ig)=\{q_1,q_2\}$

NFA — Formal Definition

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N$$
 is a 5-tuple $(Q, \Sigma, \delta, q0, F)$
$$s_{t_{\partial t_{e_s}}} s_{b_{h_{\partial b_{e_t}}}} s_{t_{\partial n_{s_{it_{io}_{n}}}}} s_{t_{\partial r_{t_{io}_{n}}}} s_{t_{\partial t_{e_s}}}} s_{t_{\partial t_{e_s}}} s_{t_{\partial t_{e_s}}}$$

- all same as before except δ
- $-\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q) = \{ R \, \big| \, R \subseteq Q \}$ $\Sigma \cup \{ \varepsilon \}$ power set
- In the N_1 example: $\deltaig(q_1,\mathsf{a}\,ig)=\{q_1,q_2\}$ $\deltaig(q_1,\mathsf{b}\,ig)=arnothing$

NFA – Formal Definition

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N$$
 is a 5-tuple $(Q, \Sigma, \delta, q0, F)$
$$s_{t_{\partial t_{e_s}}} s_{b_{\partial h_{\partial b_{e_t}}}} s_{t_{\partial n_{s_{i_{t_{i_{o_n}}}}}}} s_{t_{\partial t_{e_s}}}} s_{t_{\partial t_{e_s}}} s_{t$$

- all same as before except δ

$$-\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q) = \{ R \, \big| \, R \subseteq Q \}$$

$$\Sigma \cup \{ \varepsilon \}$$
power set

- In the N_1 example: $\deltaig(q_1,\mathsf{a}\,ig)=\{q_1,q_2\}$ $\deltaig(q_1,\mathsf{b}\,ig)=arnothing$

Ways to think about nondeterminism:

NFA — Formal Definition

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N$$
 is a 5-tuple $(Q, \Sigma, \delta, q0, F)$
$$s_{t_{\partial t_{e_s}}} s_{b_{h_{\partial b_{e_t}}}} s_{t_{\partial n_{s_{i_{t_{o_n}}}}}} s_{t_{\partial r_{t_{s_{i_{e_s}}}}}} s_{t_{\partial t_{e_s}}}} s_{t_{\partial t_{e_s}}}$$

- all same as before except δ
- $\begin{array}{c|c}
 \hline
 -\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q) = \{R \mid R \subseteq Q\} \\
 \hline
 \Sigma \cup \{\varepsilon\} & \text{power set}
 \end{array}$
- In the N_1 example: $\deltaig(q_1,\mathsf{a}\,ig)=\{q_1,q_2\}$ $\deltaig(q_1,\mathsf{b}\,ig)=arnothing$

Ways to think about nondeterminism:

<u>Computational:</u> Fork new parallel thread and accept if any thread leads to an accept state.

NFA – Formal Definition

Defn: A <u>nondeterministic finite automaton (NFA)</u>

- all same as before except δ
- $-\delta: Q \times \sum_{\varepsilon} \to \mathscr{P}(Q) = \{ R \mid R \subseteq Q \}$ $\Sigma \cup \{\varepsilon\}$ power set
- In the N_1 example: $\deltaig(q_1,\mathsf{a}\,ig)=\{q_1,q_2\}$ $\deltaig(q_1,\mathsf{b}\,ig)=arnothing$

Ways to think about nondeterminism:

<u>Computational:</u> Fork new parallel thread and accept if any thread leads to an accept state.

Mathematical: Tree with branches.

Accept if any branch leads to an accept state.

NFA — Formal Definition

Defn: A <u>nondeterministic finite automaton (NFA)</u>

$$N \text{ is a 5-tuple } (Q, \sum_{s_{ta_{te_s}}} \delta, \ q0, \ F) \\ s_{ta_{te_s}} s_{loh_{abe_t}} s_{ta_{to_n}} s_{ta_{te_s}} s_{ta_{te_s}} \\ s_{ta_{te_s}} s_{ta_{te_s}} s_{ta_{te_s}} s_{ta_{te_s}} \\ s_{ta_{te_s}} s_{ta_$$

- all same as before except δ
- $-\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q) = \{R \mid R \subseteq Q\}$ $\Sigma \cup \{\varepsilon\}$ power set
- In the N_1 example: $\deltaig(q_1,\mathsf{a}\,ig)=\{q_1,q_2\}$ $\deltaig(q_1,\mathsf{b}\,ig)=arnothing$

Ways to think about nondeterminism:

<u>Computational:</u> Fork new parallel thread and accept if any thread leads to an accept state.

Mathematical: Tree with branches.

Accept if any branch leads to an accept state.

Magical: Guess at each nondeterministic step which way to go. Machine always makes the right guess that leads to accepting, if possible.

Theorem: If an NFA recognizes A then A is regular

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M'=(Q',\; \Sigma,\delta',\;\; q_0',\; F')$ recognizing A

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q,\ \Sigma,\delta,\ q_0,\ F)$ recognize A Construct DFA $M'=(Q',\ \Sigma,\delta',\ q_0',\ F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q,\ \Sigma,\delta,\ q_0,\ F)$ recognize A Construct DFA $M'=(Q',\ \Sigma,\delta',\ q_0',\ F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M = (Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M'=(Q', \Sigma, \delta', q_0', F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

IDEA: DFA M' keeps track of the subset of possible states in NFA M.

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M'=(Q',\ \Sigma,\delta',\ q_0',\ F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M'=(Q', \Sigma, \delta', q_0', F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M = (Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

IDEA: DFA M' keeps track of the subset of possible states in NFA M.

$$Q' = \mathcal{P}(Q)$$

$$\delta'(R,a) = \left\{ q \,\middle|\, q \in \delta(r,a) \text{ for some } r \in R \right\}$$

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M'=(Q', \Sigma, \delta', q_0', F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

IDEA: DFA M' keeps track of the subset of possible states in NFA M.

$$Q' = \mathcal{P}(Q)$$

$$\delta'(R,a) = \left\{ q \,\middle|\, q \in \delta(r,a) \text{ for some } r \in R \right\}$$

$$q_0' = \{\mathbf{q}_0\}$$

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M = (Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

IDEA: DFA M' keeps track of the subset of possible states in NFA M.

$$Q' = \mathcal{P}(Q)$$

$$\delta'(R,a) = \left\{ q \,\middle|\, q \in \delta(r,a) \text{ for some } r \in R \right\}$$

$$q_0' = \{\mathbf{q}_0\}$$

$$F' = \{ R \in Q' \mid R \text{ intersects } F \}$$

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M = (Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M'=(Q', \Sigma, \delta', q_0', F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

IDEA: DFA M' keeps track of the subset of possible states in NFA M.

$$Q' = \mathcal{P}(Q)$$

$$\delta'(R,a) = \left\{ q \,\middle|\, q \in \delta(r,a) \text{ for some } r \in R \right\}$$

$$R \in Q'$$

$$q_0' = \{\mathbf{q}_0\}$$

$$F' = \{ R \in Q' \mid R \text{ intersects } F \}$$

Theorem: If an NFA recognizes A then A is regular

Proof: Let NFA $M=(Q, \Sigma, \delta, q_0, F)$ recognize A

Construct DFA $M'=(Q', \Sigma, \delta', q_0', F')$ recognizing A

(Ignore the ε -transitions, can easily modify to handle them)

IDEA: DFA M' keeps track of the subset of possible states in NFA M.

Check-in 2.2

If M has n states, how many states does M' have by this construction?

- (a) 2n
- (b) n^2
- (c) 2^n

$$Q' = \mathcal{P}(Q)$$

$$\delta'(R,a) = \left\{ q \,\middle|\, q \in \delta(r,a) \text{ for some } r \in R \right\}$$

$$\overrightarrow{R} \in Q'$$

$$q_0' = \{\mathbf{q}_0\}$$

$$F' = \{ R \in Q' \mid R \text{ intersects } F \}$$

Recall Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (The class of regular languages is closed under union)

Recall Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (The class of regular languages is closed under union)

Recall Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (The class of regular languages is closed under union)

Recall Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (The class of regular languages is closed under union)

Recall Theorem: If A_1 , A_2 are regular languages, so is $A_1 \cup A_2$ (The class of regular languages is closed under union)

New Proof (sketch): Given DFAs M_1 and M_2 recognizing A_1 and A_2 Construct NFA M recognizing $A_1 \cup A_2$

Nondeterminism
parallelism
vs
guessing

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2

Proof sketch: Given DFAs M_1 and M_1 recognizing A_1 and A_2

Construct NFA M recognizing A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2

Proof sketch: Given DFAs M_1 and M_1 recognizing A_1 and A_2 Construct NFA M recognizing A_1A_2

M should accept input w if w=xy where M_1 accepts x and M_2 accepts y. w=

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2

Proof sketch: Given DFAs M_1 and M_1 recognizing A_1 and A_2 Construct NFA M recognizing A_1A_2

M should accept input w if w=xy where M_1 accepts x and M_2 accepts y. w=

Theorem: If A_1 , A_2 are regular languages, so is A_1A_2

Proof sketch: Given DFAs M_1 and M_1 recognizing A_1 and A_2 Construct NFA M recognizing A_1A_2

M should accept input w if w=xy where M_1 accepts x and M_2 accepts y.

$$w = \frac{y}{-x}$$

Nondeterministic M' has the option to jump to M_2 when M_1 accepts.

Closure under * (star)

Theorem: If A is a regular language, so is A^*

Closure under * (star)

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Construct NFA M' recognizing A^st

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Construct NFA M' recognizing A^*

M' should accept input w

if
$$w = x_1 x_2 \dots x_k$$

where $k \ge 0$ and M accepts each x_i

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Construct NFA M' recognizing A^*

 M^\prime should accept input w

if
$$w = x_1 x_2 \dots x_k$$

where $k \ge 0$ and M accepts each x_i

$$w = \begin{array}{c|cc} x_1 & x_2 & x_3 & x_4 \end{array}$$

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Construct NFA M' recognizing A^*

 M^\prime should accept input w

if
$$w = x_1 x_2 \dots x_k$$

where $k \ge 0$ and M accepts each x_i

$$w = \begin{array}{c|cc} x_1 & x_2 & x_3 & x_4 \end{array}$$

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Make sure M' accepts ϵ

$$M'$$
 should accept input w if $w=x_1x_2\dots x_k$ where $k\geq 0$ and M accepts each x_i $v=x_1, x_2, x_3, x_4$

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Make sure M' accepts ϵ

$$M'$$
 should accept input w if $w=x_1x_2\dots x_k$ where $k\geq 0$ and M accepts each x_i $v=x_1, x_2, x_3, x_4$

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Make sure M' accepts ϵ

$$M'$$
 should accept input w if $w=x_1x_2\dots x_k$ where $k\geq 0$ and M accepts each x_i $v=x_1\dots x_2\dots x_3\dots x_4$

Theorem: If A is a regular language, so is A^*

Proof sketch: Given DFA M recognizing A

Construct NFA M' recognizing A^*

Check-in 2.3

If M has n states, how many states does M' have by this construction?

- (a) *n*
- (b) n + 1
- (c) 2n

• Is a string

- Is a string
- "a" (for a in Σ) matches to "a"

- Is a string
- "a" (for a in Σ) matches to "a"
- "R1 ∪ R2" matches to strings that match to R1 or R2

- Is a string
- "a" (for a in Σ) matches to "a"
- "R1 ∪ R2" matches to strings that match to R1 or R2
- "R1R2" matches to every string w if w could be written as w=xy where x matches to R1 and y matches to R2

- Is a string
- "a" (for a in Σ) matches to "a"
- "R1 ∪ R2" matches to strings that match to R1 or R2
- "R1R2" matches to every string w if w could be written as w=xy where x matches to R1 and y matches to R2
- "(R)" matches to strings that match to R

- Is a string
- "a" (for a in Σ) matches to "a"
- "R1 U R2" matches to strings that match to R1 or R2
- "R1R2" matches to every string w if w could be written as w=xy where x matches to R1 and y matches to R2
- "(R)" matches to strings that match to R
- "R*" matches to string s if s could be written as $s=x_1x_2...x_k$ where each x_i matches to R.

- Is a string
- "a" (for a in Σ) matches to "a"
- "R1 ∪ R2" matches to strings that match to R1 or R2
- "R1R2" matches to every string w if w could be written as w=xy where x matches to R1 and y matches to R2
- "(R)" matches to strings that match to R
- "R*" matches to string s if s could be written as $s=x_1x_2...x_k$ where each x_i matches to R.

Example:

 $(a \cup ab)^*$

Theorem: If R is a regular expr and A = L(R) then A is regular

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

Theorem: If R is a regular expr and A=L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If *R* is atomic:

$$R = a$$
 for $a \in \Sigma$

$$R = \varepsilon$$

$$R = \emptyset$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If *R* is atomic:

$$R = a$$
 for $a \in \Sigma$

$$R = \varepsilon$$

$$R = \emptyset$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If *R* is atomic:

$$R = a$$
 for $a \in \Sigma$

$$R = \varepsilon$$

$$R = \emptyset$$

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$

$$R = R_1^*$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

```
If R is atomic: Equivalent M is:
```

$$R = a$$
 for $a \in \Sigma$

$$R = \varepsilon$$

$$R = \emptyset$$

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$

$$R = R_1^*$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$

$$R = \emptyset$$

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$

$$R = R_1^*$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If
$$R$$
 is atomic: Equivalent M is:
$$R = a \text{ for } a \in \Sigma \xrightarrow{a} \bigcirc$$

$$R = \varepsilon \xrightarrow{} \bigcirc$$

$$R = \varnothing$$

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$

$$R = R_1^*$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If
$$R$$
 is atomic: Equivalent M is:
$$R = a \text{ for } a \in \Sigma \xrightarrow{a} \emptyset$$

$$R = \varepsilon \xrightarrow{} \emptyset$$

$$R = \emptyset$$

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$

$$R = R_1^*$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If
$$R$$
 is atomic: Equivalent M is:
$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon \qquad \longrightarrow \bigcirc$$

$$R - \varnothing \qquad \longrightarrow \bigcirc$$

$$R = \emptyset$$

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

Equivalent M is: If R is atomic:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R=\varepsilon$$

$$R = \varepsilon$$
 $\longrightarrow \bigcirc$ $R = \emptyset$

If *R* is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

Equivalent M is: If R is atomic:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R=\varepsilon$$

$$R = \varepsilon$$
 $\rightarrow \odot$ $\rightarrow \odot$

If *R* is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

Equivalent M is: If R is atomic: $R = a \text{ for } a \in \Sigma \longrightarrow 0$

$$K = u$$
 for $u \in Z$

$$R = \varepsilon \qquad \longrightarrow \bigcirc$$

$$R - \varnothing \qquad \longrightarrow \bigcirc$$

$$R = \emptyset$$

If *R* is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA a: →O a ⊚

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is: $R = a \text{ for } a \in \Sigma \longrightarrow 0$

$$R = \varepsilon$$

$$R = \varepsilon$$
 $\rightarrow \odot$ $\rightarrow \odot$

If *R* is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\longrightarrow \bigcirc$

$$R = \emptyset$$

If *R* is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

ab:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\longrightarrow \bigcirc$

$$R = \emptyset$$

If *R* is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\rightarrow \odot$

$$R = \emptyset$$

If *R* is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

a:
$$\rightarrow \bigcirc \stackrel{a}{\rightarrow} \bigcirc$$
b: $\rightarrow \bigcirc \stackrel{b}{\rightarrow} \bigcirc$
ab: $\rightarrow \bigcirc \stackrel{a}{\rightarrow} \bigcirc$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\rightarrow \odot$

$$R = \emptyset$$

If *R* is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is: $R = a \text{ for } a \in \Sigma \longrightarrow 0$ $R = \varepsilon$ $\longrightarrow \bigcirc$

If R is composite:

 $R = \emptyset$

 $R = R_1 \cup R_2$ $R = R_1 \circ R_2$ Use closure constructions $R = R_1^*$ Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a.
$$b = b$$

a U ab:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\rightarrow \odot$ $\rightarrow \odot$

$$R = \emptyset$$

If R is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R=\varepsilon$$

$$R = \varepsilon$$
 $\longrightarrow \bigcirc$ $R = \emptyset$

If R is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a ∪ ab:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\longrightarrow \bigcirc$

$$R = \emptyset$$

If R is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R=\varepsilon$$

$$R = \varepsilon$$
 $\longrightarrow \bigcirc$ $R = \emptyset$

If R is composite:

$$R = R_1 \cup R_2$$
 $R = R_1 \circ R_2$ Use closure constructions $R = R_1^*$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a ∪ ab:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R=\varepsilon$$

$$R = \varepsilon$$
 $\longrightarrow \bigcirc$ $R = \emptyset$

If R is composite:

$$R = R_1 \cup R_2$$
 $R = R_1 \circ R_2$ Use closure constructions $R = R_1^*$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a ∪ ab:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\longrightarrow \bigcirc$

$$R = \emptyset$$

If R is composite:

$$R = R_1 \cup R_2$$
 $R = R_1 \circ R_2$ Use closure constructions $R = R_1^*$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a∪ab:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R=\varepsilon$$

$$R = \varepsilon$$
 $\rightarrow \odot$ $\rightarrow \odot$

If R is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a ∪ ab:

$$\xrightarrow{\varepsilon} \xrightarrow{a} \xrightarrow{\emptyset} \xrightarrow{\varepsilon} \xrightarrow{b} \xrightarrow{\emptyset}$$

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\rightarrow \odot$

$$R = \emptyset$$

If R is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a ∪ ab:

Theorem: If R is a regular expr and A = L(R) then A is regular

Proof: Convert R to equivalent NFA M:

If R is atomic: Equivalent M is:

$$R = a \text{ for } a \in \Sigma \longrightarrow 0$$

$$R = \varepsilon$$
 $\rightarrow \odot$

$$R = \emptyset$$

If R is composite:

$$R = R_1 \cup R_2$$

$$R = R_1 \circ R_2$$
 Use closure constructions
$$R = R_1^*$$

Example:

Convert $(a \cup ab)^*$ to equivalent NFA

a ∪ ab:

Recall Theorem: If R is a regular expressipn and A = L(R) then A is regular

Proof: Conversion $R \to \mathsf{NFA}\ M \to \mathsf{DFA}\ M'$

Recall Theorem: If R is a regular expressipn and A = L(R) then A is regular

Proof: Conversion $R \rightarrow \mathsf{NFA}\ M \rightarrow \mathsf{DFA}\ M'$

Recall: we did $(a \cup ab)^*$ as an example

Recall Theorem: If R is a regular expressipn and A = L(R) then A is regular

Proof: Conversion $R \rightarrow \mathsf{NFA}\ M \rightarrow \mathsf{DFA}\ M'$

Recall: we did $(a \cup ab)^*$ as an example

Recall Theorem: If R is a regular expressipn and A = L(R) then A is regular

Proof: Conversion $R \to \mathsf{NFA}\ M \to \mathsf{DFA}\ M'$

Recall: we did $(a \cup ab)^*$ as an example

Today's Theorem: If A is regular then A=L(R) for some regular expr R

Proof: Give conversion DFA $M \rightarrow R$

WAIT! Need new concept first.

Defn: A <u>Generalized Nondeterministic Finite Automaton</u> (GNFA) is similar to an NFA, but allows regular expressions as transition labels

Defn: A <u>Generalized Nondeterministic Finite Automaton</u> (GNFA) is similar to an NFA, but allows regular expressions as transition labels

Defn: A <u>Generalized Nondeterministic Finite Automaton</u> (GNFA) is similar to an NFA, but allows regular expressions as transition labels

For convenience we will assume:

- One accept state, separate from the start state
- One arrow from each state to each state, except
 - a) only exiting the start state
 - b) only entering the accept state

We can easily modify a GNFA to have this special form.

Defn: A <u>Generalized Nondeterministic Finite Automaton</u> (GNFA) is similar to an NFA, but allows regular expressions as transition labels

For convenience we will assume:

- One accept state, separate from the start state
- One arrow from each state to each state, except
 - a) only exiting the start state
 - b) only entering the accept state

We can easily modify a GNFA to have this special form.

Defn: A <u>Generalized Nondeterministic Finite Automaton</u> (GNFA) is similar to an NFA, but allows regular expressions as transition labels

For convenience we will assume:

- One accept state, separate from the start state
- One arrow from each state to each state, except
 - a) only exiting the start state
 - b) only entering the accept state

We can easily modify a GNFA to have this <u>special form</u>.

Defn: A <u>Generalized Nondeterministic Finite Automaton</u> (GNFA) is similar to an NFA, but allows regular expressions as transition labels

For convenience we will assume:

- One accept state, separate from the start state
- One arrow from each state to each state, except
 - a) only exiting the start state
 - b) only entering the accept state

We can easily modify a GNFA to have this <u>special form</u>.

Lemma: Every GNFA G has an equivalent regular expression R

Lemma: Every GNFA G has an equivalent regular expression R

Proof: By induction on the number of states k of G

Lemma: Every GNFA G has an equivalent regular expression R

Proof: By induction on the number of states k of G

Basis (k = 2):

Lemma: Every GNFA G has an equivalent regular expression R

Proof: By induction on the number of states k of G

Lemma: Every GNFA G has an equivalent regular expression R

Proof: By induction on the number of states k of G

Basis
$$(k = 2)$$
:
$$G = r$$

Remember: G is in special form

Let
$$R = r$$

Lemma: Every GNFA G has an equivalent regular expression R

Proof: By induction on the number of states k of G

Remember: G is in special form

Let R = r

Induction step (k > 2): Assume Lemma true for k - 1 states and prove for k states

Lemma: Every GNFA G has an equivalent regular expression R

Proof: By induction on the number of states k of G

Basis
$$(k = 2)$$
:
$$G = r$$

Remember: G is in special form

Let R = r

Induction step (k > 2): Assume Lemma true for k - 1 states and prove for k states

IDEA: Convert k-state GNFA to equivalent (k-1) -state GNFA

Lemma: Every GNFA G has an equivalent regular expression R

Proof: By induction on the number of states k of G

Remember: G is in special form

Let R = r

Induction step (k > 2): Assume Lemma true for k - 1 states and prove for k states

IDEA: Convert k-state GNFA to equivalent (k-1) -state GNFA

1. Pick any state *x* except the start and accept states.

1. Pick any state x except the start and accept states.

- 1. Pick any state *x* except the start and accept states.
- 2. Remove x.

- 1. Pick any state x except the start and accept states.
- 2. Remove x.

- 1. Pick any state x except the start and accept states.
- 2. Remove x.
- 3. Repair the damage by recovering all paths that went through x.

- 1. Pick any state *x* except the start and accept states.
- 2. Remove x.
- 3. Repair the damage by recovering all paths that went through x.

- 1. Pick any state *x* except the start and accept states.
- 2. Remove x.
- 3. Repair the damage by recovering all paths that went through x.

- 1. Pick any state x except the start and accept states.
- 2. Remove x.
- 3. Repair the damage by recovering all paths that went through x.

- 1. Pick any state *x* except the start and accept states.
- 2. Remove x.
- 3. Repair the damage by recovering all paths that went through x.
- 4. Make the indicated change for each pair of states q_i, q_j .

Thus DFAs and regular expressions are equivalent.

- 1. Pick any state x except the start and accept states.
- 2. Remove x.
- 3. Repair the damage by recovering all paths that went through x.
- 4. Make the indicated change for each pair of states q_i, q_j .

Thus DFAs and regular expressions are equivalent.

- 1. Pick any state *x* except the start and accept states.
- 2. Remove x.
- 3. Repair the damage by recovering all paths that went through x.
- 4. Make the indicated change for each pair of states q_i , q_j .

Check-in 3.1

We just showed how to convert <u>GNFAs</u> to regular expressions but our goal was to show that how to convert <u>DFAs</u> to regular expressions. How do we finish our goal?

- (a) Show how to convert DFAs to GNFAs
- (b) Show how to convert GNFAs to DFAs
- (c) We are already done. DFAs are a type of GNFAs.

Thus DFAs and regular expressions are equivalent.

- 1. Pick any state *x* except the start and accept states.
- 2. Remove x.
- 3. Repair the damage by recovering all paths that went through x.
- 4. Make the indicated change for each pair of states q_i , q_j .

Check-in 3.1