Normal modes calculation*

Shuvojit Paul[†] and Second Author[‡]
Authors' institution and/or address
This line break forced with \\
(MUSO Collaboration)

Charlie Author[§]

Second institution and/or address

This line break forced and

Third institution, the second for Charlie Author

Delta Author

Authors' institution and/or address

This line break forced with \\

(CLEO Collaboration)

(Dated: June 29, 2016)

An article usually includes an abstract, a concise summary of the work covered at length in the main body of the article.

Usage: Secondary publications and information retrieval purposes.

PACS numbers: May be entered using the \pacs{#1} command.

Structure: You may use the description environment to structure your abstract; use the optional argument of the \item command to give the category of each item.

I. NORMAL MODES CALCULATION

The force balance equation of two optically trapped spherical particles near to each other in a highly viscous medium (Reynold's number tends to zero) is,

$$-\gamma \dot{\mathbf{x}} - \mathbf{k}\mathbf{x} = \xi \tag{1}$$

Where γ is the many body friction tensor, **k** is the stiffness tensor for those two optical traps and ξ is the noise tensor of thermal origin which is correlated as $\langle \xi(t)\xi^{\mathbf{T}}(t')\rangle = 2K_BT\gamma\delta(t-t')$. The many body friction tensor is given by

$$\gamma = \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix}$$

where $\gamma_{12} = \gamma_{21}$ and for two spherical beads of same radius, $\gamma_{11} = \gamma_{22}$. The stiffness tensor

$$\mathbf{k} = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$$

. If ${\bf S}$ be a similarity transformation matrix which diagonalizes γ then

$$-\mathbf{S}^{-1}\gamma_{\mathbf{D}}\mathbf{S}\dot{\mathbf{x}} - \mathbf{k}\mathbf{x} = \xi$$
$$-\gamma_{\mathbf{D}}\mathbf{S}\dot{\mathbf{x}} - \mathbf{S}\mathbf{k}\mathbf{x} = \mathbf{S}\xi$$
$$-\gamma_{\mathbf{D}}\dot{\mathbf{y}} - \mathbf{k}\mathbf{y} = \mathbf{S}\xi \tag{2}$$

where we used $\mathbf{S}\mathbf{x} = \mathbf{y}, \mathbf{S}^{-1}\gamma_{\mathbf{D}}\mathbf{S} = \gamma$ and $[\mathbf{S}, \mathbf{k}] = 0$. The diagonalized friction tensor is given by

$$\gamma_{\mathbf{D}} = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} \tag{3}$$

$$\lambda_{1,2} = \left(\frac{\gamma_{11} + \gamma_{22}}{2}\right) \pm \frac{1}{2}\sqrt{(\gamma_{11} - \gamma_{22})^2 + 4\gamma_{12}\gamma_{21}}$$

and the similarity transformation matrix is

$$\mathbf{S} = \begin{bmatrix} \frac{\lambda_1 - \gamma_{22}}{\gamma_{21}} & \frac{\lambda_2 - \gamma_{22}}{\gamma_{21}} \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

Here we assumed $\gamma_{11} = \gamma_{22}$. So, from Eq 2 we get two equations of motions describing the normal modes of the movements of the two trapped beads as

$$-\lambda_1 \dot{y}_1 - k_1 y_1 = (\xi_2 - \xi_1) \tag{4}$$

$$-\lambda_2 \dot{y_2} - k_2 y_2 = (\xi_1 + \xi_2) \tag{5}$$

From Eq 6 and 7 we get

$$y_1(\omega) = \frac{\xi_1(\omega) - \xi_2(\omega)}{i\omega\lambda_1 - k_1} \tag{6}$$

$$y_2(\omega) = \frac{\xi_1(\omega) + \xi_2(\omega)}{i\omega\lambda_2 - k_1} \tag{7}$$

Hence the corresponding power spectrums are given by

$$\langle y_1(\omega)y_1^*(\omega)\rangle = \frac{\langle (\xi_1 - \xi_2)(\xi_1 - \xi_2)^*\rangle}{\omega^2 \lambda_1^2 + k_1^2}$$

$$4k_B T(\gamma_{11} - \gamma_{12})$$

$$\langle y_1(\omega)y_1^*(\omega)\rangle = \frac{4k_BT(\gamma_{11} - \gamma_{12})}{\omega^2\lambda_1^2 + k_1^2}$$
 (8)

^{*} A footnote to the article title

[†] Also at Physics Department, XYZ University.

[‡] Second.Author@institution.edu

[§] http://www.Second.institution.edu/~Charlie.Author

Similarly,

$$\langle y_2(\omega)y_2^*(\omega)\rangle = \frac{4k_BT(\gamma_{11} + \gamma_{12})}{\omega^2\lambda_2^2 + k_2^2}$$
(9)

The auto correlations can be calculated by performing inverse Fourier transformations on the corresponding power spectrums. We get

$$\langle y_1(t)y_1(0)\rangle = \frac{2k_BT}{k_1}e^{-\frac{k_1}{\lambda_1}t}$$
 (10)

$$\langle y_2(t)y_2(0)\rangle = \frac{2k_BT}{k_2}e^{-\frac{k_2}{\lambda_2}t}$$
 (11)

Here, $\lambda_1=(\gamma_{11}-\gamma_{12})$ and $\lambda_2=(\gamma_{11}+\gamma_{12}).$ Now, we can write

$$x_1 = a_1 y_1 + a_2 y_2 \tag{12}$$

$$x_2 = a_1 y_1 - a_2 y_2 \tag{13}$$

Where a_1, a_2 are constants.

$$\langle x_1(\omega)x_1^*(\omega)\rangle = \langle a_1^2y_1(\omega)y_1^*(\omega)\rangle + \langle a_1a_2y_1(\omega)y_2^*(\omega)\rangle + \langle a_2a_1y_2(\omega)y_1^*(\omega)\rangle + \langle a_2^2y_2(\omega)y_2^*(\omega)\rangle$$

Now,
$$\langle y_1(\omega)y_2^*(\omega)\rangle = 0$$
, if $\gamma_{11} = \gamma_{22}$ and $\gamma_{12} = \gamma_{21}$. So,

$$\langle x_1(\omega)x_1^*(\omega)\rangle = \langle a_1^2y_1(\omega)y_1^*(\omega)\rangle + \langle a_2^2y_2(\omega)y_2^*(\omega)\rangle$$
$$\langle x_1(0)x_1^*(t)\rangle = \langle a_1^2y_1(0)y_1^*(t)\rangle + \langle a_2^2y_2(0)y_2^*(t)\rangle$$

Hence,

$$\langle x_1(\omega)x_1^*(\omega)\rangle = \langle a_1^2y_1(\omega)y_1^*(\omega)\rangle + \langle a_2^2y_2(\omega)y_2^*(\omega)\rangle$$
$$\langle x_1(0)x_1^*(t)\rangle = 2k_BT \left[\frac{a_1^2}{k_1}e^{-\frac{k_1}{\lambda_1}t} + \frac{a_2^2}{k_2}e^{-\frac{k_2}{\lambda_2}t} \right]$$

Similarly,

$$\langle x_2(0)x_2^*(t)\rangle = 2k_BT \left[\frac{a_1^2}{k_1} e^{-\frac{k_1}{\lambda_1}t} + \frac{a_2^2}{k_2} e^{-\frac{k_2}{\lambda_2}t} \right]$$

II. EXPERIMENT

We know k_1, k_2 experimentally and also know that $\lambda_1 = \gamma_{11} - \gamma_{12}, \lambda_1 = \gamma_{11} + \gamma_{12}$. If

$$\gamma = \mu^{-1}$$

then,

$$\begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{bmatrix} = \frac{1}{\mu_{11}^2 - \mu_{12}^2} \begin{bmatrix} \mu_{22} & -\mu_{12} \\ -\mu_{21} & \mu_{11} \end{bmatrix}$$
(14)

$$\lambda_1 = \frac{\mu_{11} + \mu_{12}}{\mu_{11}^2 - \mu_{12}^2} = \frac{1}{\mu_{11} - \mu_{12}} \tag{15}$$

$$\lambda_1 = \frac{\mu_{11} - \mu_{12}}{\mu_{11}^2 - \mu_{12}^2} = \frac{1}{\mu_{11} + \mu_{12}} \tag{16}$$

So, the first time constant should match with $\frac{k_1}{\lambda_1}$ and the second time constant should match with $\frac{k_2}{\lambda_2}$.