Examenul de bacalaureat național 2020 Proba E. c)

Matematică M mate-info

Test 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $a = (4+3i)^2 + (3-4i)^2$ este natural, unde $i^2 = -1$.
- **5p** 2. Determinați cel mai mare număr întreg m pentru care soluțiile ecuației $x^2 11x + m = 0$ sunt numere reale.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_7(7x) + \log_x 7 = 3$.
- **5p 4.** Determinați numărul de elemente ale unei mulțimi, știind că aceasta are exact 45 de submulțimi cu două elemente.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,-2), B(-4,4) și C(-4,0). Calculați aria triunghiului ABC.
- **5p 6.** Determinați $x \in \left(0, \frac{\pi}{2}\right)$ pentru care $\cos x \sin\left(\frac{\pi}{2} x\right) \sin x \cos\left(\frac{\pi}{2} x\right) = \frac{1}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 1 & a & a^2 a \\ 0 & 1 & 2a \\ 0 & 0 & 1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b**) Demonstrați că A(a)A(b) = A(a+b), pentru orice numere reale $a \neq b$.
- **5p** c) Determinați matricea $X \in \mathcal{M}_3(\mathbb{R})$ pentru care $A(3) \cdot X = A(5)$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 2xy 3x 3y + 6.
- **5p** a) Arătați că $x * y = 2\left(x \frac{3}{2}\right)\left(y \frac{3}{2}\right) + \frac{3}{2}$, pentru orice numere reale x și y.
- **5p b)** Determinați numerele reale x pentru care x * x = 14
- **5p** c) Determinați numărul natural n, știind că $\left(2^n + \frac{3}{2}\right) * \left(2^{n+1} + \frac{3}{2}\right) * \left(2^{n+2} + \frac{3}{2}\right) = 2^{20} + \frac{3}{2}$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(1,+\infty)\to\mathbb{R}$, $f(x)=\frac{1}{(x-1)^2}-\frac{1}{x^2}$.
- **5p** a) Arătați că $f'(x) = \frac{-2(3x^2 3x + 1)}{x^3(x-1)^3}, x \in (1, +\infty).$
- **5p b)** Determinați ecuația dreptei care trece prin punctul A(0,3) și este paralelă cu tangenta la graficul funcției f în punctul de abscisă x = 2, situat pe graficul funcției f.
- **5p** c) Calculați $\lim_{n \to +\infty} (f(2) + f(3) + ... + f(n))^{n^2}$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 1}$.
- **5p** a) Arătați că $\int_{0}^{\sqrt{3}} \frac{x}{f(x)} dx = 1.$
- **5p b)** Calculați $\int_{0}^{1} f(x) dx$.
- **5p** c) Arătați că există un unic număr real x pentru care $\int_{0}^{x} e^{f^{2}(t)} dt = x$.