Granice za Remzijeve brojeve i primene

Mihailo Milenković, Dejan Gjer, Bojana Čakarević15.1.2020

Contents

1	Uvod	3
2	Gornja ograničenja za Remzijeve brojeve	4
3	Donja ograničenja za Remzijeve brojeve	5
4	Primene Remziieve teoreme	8

1 Uvod

Za svaka dva broja l_1 i l_2 možemo pronaći prirodan broj n, takav da svai graf sa n brojem čvorova u sebi sadrži potpun podgraf sa l_1 čvorova ili njegov komplement sadrži podgraf sa l_2 nezavisnih čvorova.

Najmanji broj za koji ovo važi naziva se $\mathbf{Remzijev}$ broj i on se zapisuje kao R(l,k)

Tačne vrednosti Remzijevih brojeva se teško računaju i uglavnom su samo ograničeni intervalima. Trenutno je poznato 9 Remzijevih brojeva za $l_1, l_2 > 2$.

$R(l_1, l_2)$	1	2	3	
1	1	1	1	1
2	1	2	3	
3	1	3		
	1			

Table 1: $R(l_{1,2} = 1, 2)$

$R(l_1, l_2)$	3	4	5	6
3	6	9	14	18
4	9	18		
5	14			
6	18			

Table 2: $R(l_{1,2} > 2)$

Teorema 1.1.

$$R(l_1, 1) = (1, l_2) = 1$$

Teorema 1.2.

$$R(l,2) = R(2,l) = l$$

2 Gornja ograničenja za Remzijeve brojeve

Teorema 2.1.

$$R(l_1, l_2) \le R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$$

Dokaz. Iz prethodne teoreme znamo da $R(2, l_1) = l_1$ i $R(2, l_2) = l_2$. Koristeći induciju potvrđujemo da ovo važi i za svako t i s takvo da $t \leq l_2$ i $s < l_2$ ili $s \leq l_1$ i $t < l_2$.

Pretpostavimo sada suprotno, tj. da važi tvrđenje $R(l_1, l_2) \geq R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$, odnosno da postoji graf sa $R(l_1, l_2)$ čvorova koji ne sadrži podgraf sa $l_1 - 1$ čvorova niti njegov komplement sadrži podgraf sa $l_2 - 1$ čvorova.

Neka je u proizvoljan broj čvorova grafa G, broj njemu susednih čvorova označićemo sa N, a broj nesusednih čvorova biće M. To se drugačije može zapisati kao $M = V(G) - N_G(u) - u$. Kako ne bi važilo da graf G sadrži podgraf sa $l_2 - 1$ čvorova mora da važi $N \leq R(l_2 - 1, l_1) - 1$, a samim tim i $M \leq R(l_2, l_1 - 1) - 1$. Ukupan broj čvorova n jednak je zbiru navedenog (čvora u, kao i njegovih susednih i nesusednih čvorova).

$$n = N + M + 1$$

$$n = R(l_2 - 1, l_1) - 1 + R(l_2, l_1 - 1) - 1 + 1$$

$$n = R(l_2 - 1, l_1) + R(l_2, l_1 - 1) - 1$$

Dobijeni izraz je kontradikcija, te sledi tačno tvrđenje ove teoreme.

Teorema 2.2.

$$R(l_1, l_2) \le {l_1 + l_2 - 2 \choose l_1 - 1}$$

Dokaz. Kod ovog dokaza koristićemo indukciju. Naša baza biće da dokažemo da nejednakost važi za $l_1=l_2=2,$ odnosno

$$R(2,2) \le \binom{2+2-2}{2-1}$$
$$\binom{2 \le 2}{1}$$
$$2 \le 2$$

Pretpostavimo sada da važi $\forall (l_1, l_2)$ pri čemu je $l_1 + l_2 \geq 4$.

$$l_1, l_2 \ge 2$$

$$l_1 + l_2 = n + 1$$

$$R(l_1, l_2) \le R(l - 1, l_2) + R(l_1, l_2 - 1)$$

$$R(l_1, l_2) \le {l_1 - 1 + l_2 - 2 \choose l_1 - 1 - 1} + {l_1 + l_2 - 1 - 2 \choose l_1 - 1}$$

$$R(l_1, l_2) \le {l_1 + l_2 - 3 \choose l_1 - 2} + {l_1 + l_2 - 3 \choose l_1 - 1}$$
$$R(l_1, l_2) \le {l_1 + l_2 - 2 \choose l_1 - 1}$$

Prvu nejednakost dokazali smo , a samu jednakost upotreom Paskalovog identiteta $\binom{n}{l_2}=\binom{n-1}{l_2-1}+\binom{n-1}{l_2}.$

Teorema 2.3. Za $k \ge 2$ važi

$$R(l_1, l_2, ..., l_k) \le 2 + \sum_{i=1}^{k} (R(l_1, l_2, ..., l_{i-1}, l_i - 1, l_{i+1}, ..., l_k) - 1)$$

Neka su $l_1, l_2, l_3, ..., l_k \in \mathbb{N}$. Tada postoji neki Remzijev broj, neko n za koje važi $n \to (l_1, l_2, l_3, ..., l_k)$. Najmanje n za koje ovo važi označićemo kao $R(l)_k$.

Dokaz. Ovu teoremu dokazaćemo takođe indukcijom. Naša baza biće Remzijeva teorema za dve boje, odnosno k=2.

$$R(l_1, l_2) \le 2 + R(l_2 - 1, l_1) - 1 + R(l_2, l_1 - 1) - 1$$

 $R(l_1, l_2) \le R(l_2 - 1, l_1) + R(l_2, l_1 - 1)$

3 Donja ograničenja za Remzijeve brojeve

Teorema 3.1. Neka su dati prirodni brojevi n i k, takvi da $n \ge k > 0$. Ako je

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < 1,$$

onda važi R(k, k) > n.

Dokaz. Posmatrajmo proizvoljno bojenje grana grafa K_n u dve boje - crvenu i plavu takvo da je verovatnoća da je grana uv u grafu obojena crvenom bojom jednaka verovatnoći da je obojena plavom bojom i iznosi

$$P(uv \text{ je crvena}) = P(uv \text{ je plava}) = \frac{1}{2}.$$

Prvo ćemo odrediti verovatnoću da je neki k-podskup K_k početnog grafa monohromatski. Sa M_s označimo događaj da je K_k monohromatski. Kako nam od svih mogućih bojenja ovog k-podskupa odgovaraju samo dva gde su sve grane isključivo crvene ili plave dobijamo da je

$$P(M_s) = 2\left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{1-\binom{k}{2}}.$$

Odredimo sada verovatnoću da se u celom K_n grafu nalazi monohromatski K_k podskup i označimo taj događaj sa A. U celom grafu ima $\binom{n}{k}$ ovakvih podskupova koje ćemo označiti sa S. Ipak pošto događaj da je neki K_k monohromatski nije nezavisan u odnosu na to da su ostali podskupovi S monhromatski dobijamo

$$P(A) = P(\bigcup_{|S|=k} M_S) \le \sum_{|S|=k} P(M_S) = \binom{n}{k} 2^{1-\binom{k}{2}}.$$

Iz ovoga sledi da ako je $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ onda važi i P(A) < 1, čime dobijamo da pri ovakvim bojenjima grafa K_n postojanje monohromatskog K_k nije garantovano, tj. postoji bojenje koje ga ne sadrži i odatle da je R(k,k) > n.

Teorema 3.2. Neka su dati prirodni brojevi n, k i l, takvi da $n \ge k > 0$ i $n \ge l > 0$. Ako za neki broj $p, 0 \le p \le 1$ važi

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}} < 1$$

onda je R(k, l) > n

Dokaz. Dokaz ove teoreme je sličan dokazu prethodne Teoreme 3.1. Neka je verovatnoća da je proizvoljna grana uv u grafu K_n crvena jednaka p. Tada je verovatnoća da je ona plava jednaka 1-p, pa možemo pisati

$$P(uv \text{ je crvena}) = p, P(uv \text{ je plava}) = 1 - p, \forall uv \in E(K_n)$$

Neka je S potpun k-elementan poskup, a T potpun l-elementan poskup grafa K_n . Označimo sa A_S događaj da je neki podskup S monohromatski crven, a B_T događaj da je poskup T monohromatski plav. Onda je ukupna verovatnoća da u grafu K_n postoji monohromatski obojen K_k u crveno ili K_l u plavo jednaka

$$P\left(\bigcup_{|S|=k} A_S \cup \bigcup_{|T|=l} B_T\right) \le \sum_{|S|=k} P(A_S) + \sum_{|T|=l} P(B_T) \le \binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}}$$

Ako postoji p za koji je krajnji izraz manji od 1, onda zaključujemo da postoji K_n koji sadrži potpuno crveni K_k ili potpuno plavi K_l , pa mora biti R(k,l) > n.

Teorema 3.3. Neka su dati prirodni brojevi n, m i k tako da je $1 \le k \le n-2$. Tada je

$$R(m,n) \ge R(m,n-k) + R(m,k+1) - 1.$$

Dokaz. Neka je $r_1=R(m,n-k)$ i $r_2=R(m,k+1)$ i bez umanjenja opštosti prva boja crvena, a druga plava. Posmatrajmo grafove $G_1=K_{r_1-1}$ i $G_2=K_{r_2-1}$, takve da su im sve grane obojene u crvenu ili plavu boju i da G_1 ne sadrži nijedan crveni K_m i nijedan plavi K_{n-k} , a G_2 ne sadrži nijedan crveni K_m ni plavi K_{k+1} podgraf. Primetimo da na osnovu definicije Remzijevih brojeva

ovakvi grafovi siguro postoje. Neka je $G=G_1 \bigtriangledown G_2$, tako da svaku granu uv, gde $u \in V(G_1)$ i $v \in V(G_2)$ obojimo u plavo. Sada vidimo da je $G=K_{r_1+r_2-2}$ i kako su sve dodate grane između grafova G_1 i G_2 plave, jasno je da G ne sadrži crveni K_m . Sa druge strane najveći monohromatski plavi kompletan podgraf nema više od (n-k-1)+(k+1-1)=n-1 čvorova, pa graf G sigurno ne sadrži ni plavi K_n . Odavde sledi $R(m,n)>r_1+r_2-2$ odakle dobijamo traženu nejednakost.

Teorema 3.4. Neka su dati prirodni brojevi $m, n \geq 2$. Tada važi

$$R(m,n) \ge R(m,n-1) + 2m - 3.$$

Dokaz. Neka je r=R(m,n-1) i $G_1=K_{r-1}$ takav da ne sadrži crveni K_m i plavi K_{n-1} . Dokažimo da G_1 sigurno sadrži K_{m-1} . Pretpotstavimo suprotno. Tada u G_1 možemo dodati čvor u i povezati ga sa svima ostalima crvenom bojom. Neka je k takvo da je K_k najveći monohromatski crven podgraf grafa G_1 . Tada ako mu dodamo čvor u on postaje K_{k+1} . Ako je k < m-1 tj. k+1 < m onda graf nastao dodavanjem čvora u na ovaj način ima r čvorova i ne sadrži ni crveni K_m ni plavi K_{n-1} , što je kontradikcija sa izborom r.

U daljem delu dokaza koristićemo samo činjenicu da onda postoji i crven K_{m-2} . Obeležimo njegove čvorove sa u_1,u_2,\ldots,u_{m-2} . Obeležimo sada sa G_2 graf koji nastaje dodavanjem još m-2 čvorova v_1,v_2,\ldots,v_{m-2} , tako da G_2 bude K_{r+m-3} i gde su nove dodate grane incidentne sa v čvorovima obojene na sledeći način. Za svako i povezaćemo u_i i v_i plavom granom, a za svako $i\neq j$ u_i i v_j povežemo crveno, i v_i sa v_j takođe crveno. Za svako $x\in V(G_1)$ i $x\notin \{u_1,u_2,\ldots,u_{m-2}\}$ povežimo v_i i x istom bojom kao i što je grana xu_i . Na osnovu ovog bojenja jasno je da se neko v_i može nalaziti u nekom crvenom monohromatskom kompletnom podgrafu G_2 akko se na njegovom mestu u G_1 nalazio u_i . Pošto je u_iv_i plavo oni se zajedno ne mogu nalaziti u njemu pa G_2 ne sadrži crveni K_m . Sa druge strane se K_{n-1} može pojaviti. Jasno je da on mora sadržati bar jedan od čvorova iz $\{v_1,v_2,\ldots,v_{m-2}\}$, ali pošto su svaka dva čvora iz tog skupa povezana crveno, dobijamo da svaki K_{n-1} mora sadržati tačno jedan čvor v_i i njegov parnjak u_i .

Konstruišimo sada graf G_3 dodavanjem još m-1 čvorova $w_1, w_2, \ldots, w_{m-1}$ u graf G_2 koji su povezani na sledeći način. Za svako $i \neq j$ $w_i w_j$ je crveno, $w_i y$ je plavo za svako y koje nije u_j , v_j ili w_j . Za svako i i j $u_i w_j$ je crveno za $i \geq j$, dok je u suprotnom plavo. Sa druge strane bojimo $v_i w_j$ crveno za i < j, a u suprotnom u plavo. Da bismo završili dokaz potrebno je još pokazati da ovako dobijeni graf $G_3 = K_{r+2m-4}$ ne sadrži crveni K_m ni plavi K_n .

Pretpotstavimo suprotno, prvo da postoji crveni K_m . Tada se u njemu mora nalaziti bar jedan w_i , jer G_2 ne sadrži takav podgraf. Kako je svaki w_i povezan plavo sa svakim y koje nije među u i v čvorovima, sledi da se K_m sastoji isključivo od njih i w čvorova. Neka je k indeks najmanjeg, a l indeks najvećeg w čvora u K_m . Tada se u posmatranom K_m nalazi ne više od l-k+1 w čvorova. Pored toga svako u_i , mora ispunjavati uslov $i \geq l$, a svako v_i , uslov i < k. Zato dobijamo da je maksimalan broj čvorova u crvenom K_m jednak (l-k+1)+(m-1-l)+(k-1)=m-1. Kontradikcija.

Pretpotstavimo sada da postoji plavi K_n . Kako su svi w čvorovi povezani međusobno crveno, a bar jedan se mora nalaziti u datom K_n , onda je to tačno jedan w_i . To znači da je posmatrani K_n dobijen dodavanjem čvora w_i na već postojeći K_{n-1} iz G_2 . Ipak već smo dokazali da se u svakom takvom K_{n-1} nalazi tačno jedan par čvorova u_j i v_j . Odatle dobijamo da su i $w_i u_j$ i $w_i v_j$ povezani plavo, što je nemoguće zbog izbora bojenja grana incidentnih sa w_i . Kontradikcija. Tako dobijamo da postoji K_{r+2m-4} takav da ne sadrži ni crveni K_m ni plavi K_n pa mora važiti $R(m,n) \geq R(m,n-1) + 2m-3$.

4 Primene Remzijeve teoreme

Teorema 4.1. Za svako $k \in \mathbb{N} \setminus \{0\}$ postoji neko $n_0 \in \mathbb{N}$, takvo da za svako bojenje $\chi : \underline{n} \to \underline{k}$ postoje brojevi $x, y, z \in \underline{n}$ sa osobinom

$$x+y=z \ \mathrm{i} \ \chi(x)=\chi(y)=\chi(z)$$

Dokaz. Neka je $n \in \mathbb{N}, n+1 \ge R(3)_k = \underbrace{(3,3,\ldots,3)}_{\text{k puta}}$. Tada ono indukuje sledeće

bojenje:

$$\chi^* : [n+1]^2 \to \underline{k} : \{i,j\} \mapsto \chi(|i-j|)$$

Zbog $n+1 \to \underbrace{(3,3,\ldots,3)}_{\text{k-puta}}$, postoje i_1,i_2 i i_3 obojeni istom bojom, odnosno

 $\chi^*(\{i_1, i_2\}) = \chi^*(\{i_1, i_3\}) = \chi^*(\{i_2, i_3\})$. Neka je:

$$x := i_1 - i_2, y := i_2 - i_3 i_2 := i_1 - i_3$$

Imamo
$$x, y, z \in \{1, \dots, n\}$$
 i $x - y = i_1 - i_2 + i_2 - i_3 = i_1 - i_3 = z$.

Teorema 4.2. Za sve $m \in \mathbb{N} \setminus \{0\}$ postoji neko $n_0 \in \mathbb{N}$, takvo da za sve proste brojeve $p > n_0$ jednačina

$$x^m + y^m \equiv z^m \pmod{p}$$

ima netrivijalna rešenja. (Rešenje je trvijalno ako $x \cdot y \cdot z \equiv 0 \pmod{p}$)

Dokaz. Neka je $n_0 = R(3)_m + 1$. Neka je g generator grupe \mathbb{Z}_p^* (g postoji zbog cikličnosti grupe \mathbb{Z}_p^*). Svaki elemenat $x \in \mathbb{Z}_p^*$ možemo zapisati x kao g^a . Imamo a = mj + i, za $0 \le i < m$, tako da je $x = g^{mj+i}$. Posmatrajmo bojenje koje boji elemenat x skupa \mathbb{Z}_p^* u boju i ako je $x = g^{mj+i}$. Na osnovu Šurove teoreme (4.1), postoje a, b i c obojeni istom bojom, takvi da važi a + b = c, odnoso eksponenti a, b i c su kongrueni po modulu m. Dakle,

$$g^{mj_a+i} + g^{mj_b+i} = g^{mj_c+i}$$

Neka su $x=g^{j_a},\,y=g^{j_b}$ i $z=g^{j_c}.$ Množenjem gornje jednačine sa g^{-i} dobijamo $x^m+y^m=z^m$

Teorema 4.3. Za svaki prirodan broj $n \geq 3$ postoji broj N(n) takav da bilo koji skup od bar N tačaka u ravni u opštem položaju sadrži konveksan n-tougao

Dokaz. Za n=4dokazaćemo da N=5zadovoljava uslove. Posmatrajmo 5 tačaka A,B,C,DiE.Ako je najmanji konveksni mnogougao petougao ili četvorougao, dokaz je trivijalan. U suprotnom, neka je najmanji takav mnogougao trougao $ABC.\ D$ i E se onda nalaze unutar $ABC.\ 2$ tačke od A,B i C se moraju nalaziti sa jedne strane prave DE. Neka su to A i C. Tada je ACDE traženi četvorougao.

Neka je X skup od bar $R_4(n,5)$ tačaka u opštem položaju. Na osnovu Remzijeve teoreme za hipergrafove (??) znamo da je ovaj broj konačan. Obojimo sve četvoročlane podskupove tačaka u plavo ako je četvorougao koje obrazuju konveksan ili u crveno ako je konkavan. Pošto ima ukupno $R_4(n,5)$ tačaka, mora postojati ili n-točlani skup tačaka čiji su svi četvoročlani podskupovi plave boje (konveksni) ili petočlani skup tačaka čiji su svi četvoročlani podskupovi crvene boje. Dokazali smo da među 5 tačaka u opštem položaju mora postojati konveksan četvorougao, dakle mora postojati n-točlani skup tačaka tako da su svi četvorouglovi koje oni obrazuju knoveksni, odnosno konveksan n-toguao od n tačaka. Dakle traženi N postoji i važi $N \leq R_4(n,5)$

Definicija 4.1. Polugrupa **S** je uređen par (S, \cdot) , takav da važi

$$\cdot: S \times S \to S$$
 i $\forall x, y, z \in S: x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

S je grupa ako dodatno važi:

$$\exists e \in S \ \forall s \in S : e \cdot s = s \cdot e = s \quad \mathbf{i}$$

$$\forall s \in S \ \exists t \in S : s \cdot t = t \cdot s = e$$

Definicija 4.2. Element s polugrupe $S = (S, \cdot)$ je idempotentan, ako je $s \cdot s = s$

Teorema 4.4. Neka je $\mathbf{S} = (S, \cdot)$ konačna polugrupa. Tada \mathbf{S} sadrži bar jedan idempotentan element.

Dokaz. Neka je S konačna polugrupa čiji je konačan generišući skup A. Izaberimo beskonačnu reč $a_1a_2\ldots$ nad A. Posmatrajmo bojenje grafa $0,1,2,\ldots$ koje boji granu izmedju i i j, $i \leq j$ u sliku $a_{i+1}\ldots a_j$ u S. Na osnovu Remzijeve teoreme za beskonačne grafove $(\ref{eq:condition})$, moraju postojati i < j < k izmedju kojih se nalaze grane iste boje, odnosno

$$a_{i+1} \dots a_j = a_{j+1} \dots a_k = a_{i+1} \dots a_k = a_{i+1} \dots a_j \cdot a_{j+1} \dots a_k = a_{i+1} \dots a_j \cdot a_{i+1} \dots a_j$$

Dakle, elemenat $a_{i+1} \dots a_j$ je idempotentan.

References

- [1] Martin Aigner, Günter M. Ziegler. Proofs from The BOOK. Springer, 1998
- [2] Ronald L. Graham, Jaroslav Nešetřil, Steve Butler. The Mathematics of Paul Erdős II. Springer, 1990.