Unidade Curricular: Análise Matemática - EIC0004 MIEIC 2017/2018

Prof. Catarina Castro (M304)
Prof. Luisa Costa Sousa (M304)
Prof. Mariana Seabra
Prof. Carolina Furtado

OBJETIVOS ESPECÍFICOS:

Aquisição de conhecimentos teóricos e práticos sobre cálculo diferencial e integral em R que possibilitem a aplicação das ferramentas básicas da análise matemática ao tratamento e resolução dos problemas mais adaptados ao perfil do curso.

Capacitar o estudante para a inovação, complementando os conhecimentos de forma a desenvolver soluções para resolução de novas questões.

RESULTADOS ESPERADOS:

- 1. Analisar funções, derivar e desenhar gráficos.
- 2. Dominar as técnicas de integração e utilizar os integrais em aplicações de engenharia.
 - 3. Compreender e utilizar as equações diferenciais e transformadas de Laplace.
 - 4. Saber relacionar séries e polinómios e perceber os conceitos de aproximação.

Programa

- 1- Diferenciação e aplicações da diferenciação à engenharia
- 2- Integração Integral indefinido e Integral definido
- 3- Técnicas de integração e aplicações
- 4- Equações Diferenciais de 1º ordem e de 2º ordem
- 5- Transformadas de Laplace e sua aplicação à resolução de equações diferenciais
- 6- Séries Critérios de convergência Séries trigonométricas e séries de potências
- 7- Aproximação de funções: Séries de Taylor e Séries de Fourier

Bibliografia Principal

APONTAMENTOS ELABORADOS PELAS REGENTES E DISPONIBILIZADOS NO SIGARRA NA PÁGINA DA DISCIPLINA

Carlos A. Conceição António; Análise Matemática 1 - Conteúdo teórico e aplicações, AEFEUP, 2017. ISBN: 978-989-98632-3-1

Luísa Madureira; Problemas de equações diferenciais ordinárias de Laplace.

ISBN: 972-752-065-0

Bibliografia Complementar

Apostol, Tom M.; <u>Calculus</u>. ISBN: 84-291-5001-3

Horário de Atendimento/Dúvidas:

3ª feira das 15h30m às 16h30m - gabinete M304 (Catarina Castro)

REGRAS DE AVALIAÇÃO

Obtenção de Frequência

O estudante deverá cumprir com as normas gerais de avaliação em vigor na FEUP.

Ao longo do semestre serão realizados três minitestes sem consulta.

É obrigatória a realização de **TODOS** os minitestes e obtenção de classificação superior ou igual a 5 valores (em 20) em cada miniteste.

Os estudantes que já tenham obtido frequência no ano anterior, estão dispensados da frequência das aulas mas terão que efetuar obrigatoriamente todos os minitestes.

Cálculo da Classificação Final

A classificação final considera a média das classificações dos três minitestes.

Para obter aprovação é necessário uma média superior ou igual a 9.5 (em 20) e uma classificação mínima de 5 valores (em 20) em cada um dos mintestes.

O estudante que não tenha obtido aprovação, pode apresentar-se a Recurso para avaliação sobre a matéria de UM dos minitestes à sua escolha ou sobre a totalidade da matéria.

O estudante que já tenha obtido aprovação, pode apresentar-se a Recurso para avaliação sobre a totalidade da matéria.

Datas provisórias do

1º Miniteste: 2º feira, 6 de Novembro às 17h.

2º Miniteste: 2º feira, 4 de Dezembro às 17h

3º Miniteste: 3º feira, 9 de Janeiro às 17h

https://sigarra.up.pt/feup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=384922

DIFERENCIAÇÃO EM R

- 1.1 Conceito de derivada
- 1.2 Interpretação física do conceito de derivada
- 1.3 Derivação de funções compostas (regra da cadeia)
- 1.4 Derivação da função inversa
- 1.5 Teorema dos acréscimos finitos (ou de Lagrange)

- 2. Noção de diferencial e regras de cálculo
- 3. Teorema de Cauchy e Regra de L'Hôpital

Bibliografia obrigatória:

Análise Matemática I – Conteúdo teórico e aplicações : pág 1 até pág 25

Análise Matemática - EIC0004 MIEIC 2017/2018 1º aula

Prof. Catarina Castro

DIFERENCIAÇÃO e INTEGRAÇÃO na

ENGENHARIA INFORMÁTICA

http://pcfarina.eng.unipr.it/Differentiation_Integration.htm

- Como é que se modifica a voz de uma testemunha anónima na TV?
- No filme Alvin e os Esquilos, a voz fininha dos esquilos?
- No Star Wars, quando Dart Vader fala através da máscara negra?
- Como é que se coloca um filtro sobre a face de uma personagem na TV?
- Como funciona o Photoshop?

1.1 CONCEITO DE DERIVADA

Considere-se a reta que passa pelos pontos P e Q na Figura. Esta reta é designada como **reta secante** do gráfico da função y=f(x).

Com base na Figura e considerando as coordenadas P(a, f(a)) e Q(a+h, f(a+h)) pode-se estabelecer a **razão incremental**:

$$m_{PQ} = \frac{f(a+h) - f(a)}{h}$$

O ponto Q pode situar-se à esquerda ou à direita do ponto P. Considere-se um ponto genérico Q(x, f(x)) no gráfico da função representada na figura.

Se f(x) é contínua em a, pode-se fazer Q(x, f(x)) tender para P(a, f(a)) fazendo x tender para a, o que por outras palavras equivale a dizer que a reta secante torna-se tangente ao gráfico da função no ponto P.

CC

DEFINIÇÕES

O declive ou coeficiente angular da reta secante também designado como

taxa de variação média

$$m_{PQ} = \frac{f(a+h) - f(a)}{h}$$

O declive ou coeficiente angular da reta tangente ao gráfico de uma função f

em
$$P(a, f(a))$$
 é

$$m_{\alpha} = \lim_{h \to 0} \frac{f(\alpha + h) - f(\alpha)}{h}$$

desde que o limite exista

Definição de derivada de uma função num ponto:

A derivada da função f no ponto x é a função f'(x) definida por:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

desde que o limite exista (*)

(*) f(x) deve estar definida numa vizinhança de x

(1.4)

14

f'(x): coeficiente de variação de f com x

Aplicações do conceito de derivada:

- (i) Tangente: O coeficiente angular da tangente ao gráfico de y=f(x) no ponto (a, f(a)) é f'(a).
- (ii) Taxa de variação: Se y=f(x), a taxa instantânea de variação de y em relação a x em a é f*(a).

Definição:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

se o limite existe.

Definição:

Uma função é diferenciável num intervalo aberto (a,b) se f'(x) existe para todo o x em (a,b).

Definição:

Uma função f é diferenciável num intervalo fechado [a,b] se f é diferenciável no intervalo aberto (a,b) e se os seguintes limites existem:

$$\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h} \quad \underset{h \to 0^-}{\underline{e}} \quad \lim_{h \to 0^-} \frac{f(b+h) - f(b)}{h}$$

Se f é definida num intervalo aberto que contém x, então f'(x) existe se e somente se as derivadas à esquerda e à direita (derivadas laterais) desse ponto existem e são iguais:

$$f'(x) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h}$$
(1.6)

Notação diferencial (Leibniz):

$$m = \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 $\frac{dy}{dx} = f'(x)$

(1.7)

16

Notações para derivadas:

$$\frac{dy}{dx}$$
 , $f'(x)$, y' , $\frac{d}{dx}[f(x)]$, $D_x[y]$

1.2 INTERPRETAÇÃO FÍSICA DO CONCEITO DE DERIVADA

Consideremos o caso do movimento rectilíneo, em que o móvel percorre uma recta e y=f(t) é a respectiva função posição. Neste caso tem-se

$$v = \frac{\Delta y}{\Delta t} = \frac{f(t + \Delta t) - f(t)}{\Delta t}$$

Velocidade média

$$v = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}$$

Velocidade instantânea

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

Aceleração

Regras da derivação: soma, diferença, produto e quociente

F(x)=g(x)+h(x)	F'(x)=g'(x)+h'(x)
F(x)=g(x)-h(x)	F'(x)=g'(x)-h'(x)
F(x)=g(x). h(x)	F'(x)=g'(x).h(x)+g(x).h'(x)
F(x)=g(x)/h(x)	$F'(x)=[g'(x).h(x)-g(x).h'(x)] / [h(x)]^2$

Regras de derivação das funções: potência, logaritmo e exponencial

F(x)=x ^k	F'(x)=k. x ^{k-1}
F(x)=ln(x), x>0	F'(x)=1/x
F(x)=e ^x	F'(x)=e ^x

Principais FUNÇÕES TRIGONOMÉTRICAS e suas derivadas:

f(x)	f'(x)
Sen(x)	Cos(x)
Cos(x)	-Sen(x)
Tang(x)	Sec ² (x)
Cotang(x)	-Cossec ² (x)
Sec(x)	Sec(x) . Tang(x)
Cossec(x)	- Cossec(x) . Cotang(x)

O seno é uma <u>função trigonométrica</u>.

Dado um <u>triângulo retângulo</u> com um de seus <u>ângulos</u> internos igual a θ , define-se $sen(\theta)$ como sendo a razão entre o <u>cateto</u> oposto a θ e a <u>hipotenusa</u> deste <u>triângulo</u>. Ou seja:

$$sen \theta = \frac{cateto \ oposto}{hipotenusa}$$

Exemplo: Um triângulo retângulo cuja hipotenusa é de valor 10 e seus catetos são de valores 6 e 8. O seno do ângulo oposto ao lado de valor 6 é 6/10, ou seja, **0.6**.

Num círculo trigonométrico unitário, o seno do ângulo

O **cosseno** (usam-se ainda as formas **coseno** e **co-seno**) é uma <u>função</u> <u>trigonométrica</u>.

Dado um <u>triângulo retângulo</u> com um de seus <u>ângulos</u> internos igual a θ , define-se $\cos(\theta)$ como sendo a proporção entre o <u>cateto</u> adjacente a θ e a <u>hipotenusa</u> deste triângulo. Ou seja:

$$\cos \theta = \frac{\text{Cateto adjacente}}{\text{Hipotenusa}}$$

Outra função função trigonométrica:

Num triângulo retângulo, define-se $tan(\theta)$ ou $tg(\theta)$, como sendo a proporção entre o <u>cateto</u> oposto a θ e o <u>cateto</u> adjacente a θ :

$$tg(\theta) = \frac{cateto \ oposto}{cateto \ adjacente}$$

Consequentemente também é dado pela razão entre o seno e o co-seno:

$$tg(\theta) = \frac{sen(\theta)}{cos(\theta)}$$

Definição de cotangente de um ângulo:

Num triângulo retângulo, define-se cotan(θ) ou cotg(θ), como sendo a proporção entre o <u>cateto</u> adjacente a θ e o <u>cateto</u> oposto a θ :

$$cotg(\theta) = \frac{cateto adjacente}{cateto oposto}$$

Consequentemente também é dado pela razão entre o <u>seno</u> e o <u>co-seno</u>:

$$\cot g(x) = \frac{\cos(x)}{\sin(x)}$$

Seja x um <u>ângulo agudo</u>, a fórmula fundamental da trigonometria apresenta-se desta forma: $sin^2(x) + cos^2(x) = 1$

A secante é uma função trigonométrica definida como

$$\sec x = \frac{1}{\cos x}$$

Num <u>triângulo retângulo</u>, a secante de um <u>ângulo agudo</u> corresponde à <u>razão</u> da <u>hipotenusa</u> pelo <u>cateto</u> adjacente.

$$\sec x = \frac{\text{Hipotenusa}}{\text{Cateto adjacente}}$$

CC

A co-secante é uma função trigonométrica definida como

$$\csc\theta = \frac{1}{\sin\theta}$$

Num <u>triângulo retângulo</u>, a co-secante de um <u>ângulo agudo</u> corresponde à <u>razão</u> da <u>hipotenusa</u> pelo <u>cateto</u> oposto.

$$\operatorname{cosec} heta = rac{\operatorname{hipotenusa}}{\operatorname{cateto} \operatorname{oposto}}$$

CC

Num círculo trigonométrico unitário:

Principais corolários da fórmula fundamental da trigonometria:

$$1 + \cot^2 x = \cos^2 x$$

$$1 + \tan^2 x = \sec^2 x$$

CC

Principais FUNÇÕES TRIGONOMÉTRICAS e suas derivadas:

f(x)	f'(x)
Sen(x)	Cos(x)
Cos(x)	-Sen(x)
Tan (x)	Sec ² (x)
Cotang(x)	-Cossec²(x)
Sec(x)	Sec(x) . Tan(x)
Cossec(x)	-Cossec(x) . Cotan(x)

Exercícios de derivação (com as regras que vimos até agora):

Vamos derivar a função: $y=(x^2+5x)^3$ queremos determinar a sua derivada dy/dx.

Uma forma de resolver é expandir a função

$$y = (x^2 + 5x)^3 = x^6 + 15x^5 + +75x^4 + 125x^3$$

e em seguida,
$$\ \, \frac{dy}{dx} = 6x^5 + 75x^4 + 300x^3 + 375x^2$$

Neste caso o processo é fácil, mas trabalhoso.

Mas para funções como $y = (7x^5 + 19)^{100}$, o processo é inviável.

fazemos a introdução de uma nova variável auxiliar $u=7x^5+19\,$ de modo que a função pode ser decomposta em partes mais simples, como: $y=u^{100}\,$

Em linhas gerais y é uma função de u, onde u, por sua vez é uma função de x:

$$y = f(u)$$
 onde $u = g(x)$

A correspondente função composta é a função: $y=f\left(g(x)
ight)$

CC

Regra de derivação da função composta ou regra da cadeia :

A regra da cadeia é realmente uma regra para a diferenciação de uma função composta $f\circ g$. Seja y=f(u) e u=g(x), de modo que:

$$y=f(u)=f\left[g(x)
ight]=\left(f\circ g
ight)(x)$$

Desta forma, assumindo que g é diferenciável em x e f é diferenciável em g(x), pela regra da cadeia:

$$rac{dy}{dx} = rac{dy}{du}rac{du}{dx} = f'(u)g'(x) = f'\left[g(x)
ight]g'(x)$$

Se temos uma função composta $f\circ g$, tal que $(f\circ g)(x)=f[g(x)],$ Então, podemos estabelecer a regra da cadeia como sendo:

$$(f\circ g)'(x)=f'\left[g(x)\right]g'(x)$$

CC

Regra de derivação da função composta ou regra da cadeia - <u>Exercícios de aplicação</u>

Exemplo:

Aplicar a regra da cadeia para derivar $y = (x + x^2 - 2x^5)^6$.

Seja
$$u=x+x-2x^5$$
 , pela regra da cadeia: $\dfrac{dy}{dx}=\dfrac{dy}{du}\dfrac{du}{dx}$

fazendo
$$\frac{d}{dx}(u)^6 = 6(u)^{6-1}\frac{du}{dx}$$
, obtemos:

$$rac{dy}{dx}=6ig(x+x^2-2x^5ig)^5\cdotrac{d}{dx}ig(x+x^2-2x^5ig)$$

$$rac{dy}{dx}=6ig(x+x^2-2x^5ig)^5\cdotig(1+2x-10x^4ig)$$

Regra de derivação da função composta ou regra da cadeia - <u>Exercícios de aplicação</u>

Exemplo:

Aplicar a regra da cadeia para derivar $y = \left[\dfrac{(1-2x)}{(1+2x)}
ight]^4$

Neste caso, usamos a regra da cadeia e a regra do quociente:

$$egin{aligned} rac{dy}{dx} &= 4iggl[rac{(1-2x)}{(1+2x)}iggr]^3 rac{d}{dx}iggl(rac{1-2x}{1+2x}iggr) \ &= 4iggl(rac{1-2x}{1+2x}iggr)^3 \cdot rac{(-2)(1+2x)-(1-2x)(2)}{(1+2x)^2} \ &= 4iggl(rac{1-2x}{1+2x}iggr)^3 \cdot rac{(-2-4x-2+4x)}{(1+2x)^2} \ &= 4iggl(rac{1-2x}{1+2x}iggr)^3 \cdot rac{-4}{(1+2x)^2} = -16rac{(1-2x)^3}{(1+2x)^5} \end{aligned}$$

Regra de derivação da função composta ou regra da cadeia - <u>Exercícios de aplicação</u>

Exemplo : Aplicar a regra da cadeia para derivar $y = \mathrm{sen}\left(x^3
ight)$

Neste caso, a função externa é a função seno e a função interna é a função $g(x)=x^3$. Temos então que:

$$rac{dy}{dx} = \cosig(x^3ig)\ 3x^2 = 3x^2\cosig(x^3ig)$$

Exemplo : Aplicar a regra da cadeia para provar que se $f = \cos(x)$, então $f' = -\sin(x)$.

Começamos escrevendo a função cosseno em termos de seno:

$$\cos(x) = \sin\left(rac{\pi}{2} - x
ight)$$

Assim:

$$rac{dy}{dx} = \left[\cos\!\left(rac{\pi}{2} - x
ight)
ight](-1) = -\cos\!\left(rac{\pi}{2} - x
ight) = -\mathrm{sen}(x)$$

CC

Regra de derivação da função composta ou regra da cadeia

F(x)=g(h(x))	F'(x)=g'(h(x)) . h'(x)	
z(x)=z(y(x))	$\frac{\mathrm{dz}}{\mathrm{dx}} = \frac{\mathrm{dz}}{\mathrm{dy}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}$	
Pogra do derivação da função inversa		
Regra de derivação da função inversa		
g(h(x))=x	$h'(x) = \frac{1}{g'(h(x))}$	
	CC	

Mais Regras de derivação:

1) Regra do Produto:

$$[u(x).v(x).h(x)]' = [u(x).v(x)]'.h(x) + u(x).v(x).[h(x)]' =$$

$$= [u'(x).v(x) + u(x).v'(x)] .h(x) + u(x).v(x).[h(x)]' =$$

$$= u'(x).v(x).h(x) + u(x).v'(x).h(x) + u(x).v(x).[h(x)]'$$

$$[u(x).v(x).h(x)]' = u'(x).v(x).h(x) + u(x).v'(x).h(x) + u(x).v(x).h'(x)$$

2) Regra da Potência:

$$\frac{d[u(x)^{v(x)}]}{dx} = [u(x)^{v(x)}]' =$$

$$= u(x)^{v(x)} \cdot v'(x) \cdot \ln[u(x)] + v(x) \cdot u(x)^{v(x)-1} \cdot u'(x)$$

CC

Regras de derivação

• 1) Derivação da potência em que o expoente é uma constante:

Seja $f(x) = u(x)^k$ em que k é uma constante, então a derivada será

$$f'(x) = \frac{df}{dx} = k \ u(x)^{k-1} \ u'(x)$$

• 2) Derivação da exponencial:

Seja $g(x) = e^{v(x)}$ em que a base é a constante de Néper, a derivada da função

$$g'(x) = \frac{dg}{dx} = e^{v(x)} v'(x)$$

• 3) Derivação da potência sendo a base uma constante e o expoente uma função de x:

Seja
$$h(x) = k^{v(x)}$$

podemos reescrever introduzindo a função exponencial e a sua inversa que é a função logarítmo:

 $h(x) = k^{v(x)} = e^{\ln[k^{v(x)}]} = e^{v(x) \ln(k)}$ em que usamos as propriedades dos logarítmos

• 3) Derivação de $h(x) = k^{v(x)}$

$$h(x) = k^{v(x)} = e^{\ln[k^{v(x)}]} = e^{v(x) \ln(k)} e$$
 agora já sabemos derivar:

$$h'(x) = \frac{dh}{dx} = e^{v(x) \ln(k)} \times v'(x) \ln(k) = k^{v(x)} v'(x) \ln(k)$$

4) Derivação da potência sendo:

• a base uma função u(x) e o expoente outra função de v(x):

Seja
$$f(x) = u(x)^{v(x)}$$
 (vamos usar o mesmo processo)

$$f(x) = u(x)^{v(x)} = e^{\ln[u(x)^{v(x)}]} = e^{v(x) \ln[u(x)]}$$

CC

38

4) Derivação da potência sendo:

• a base uma função u(x) e o expoente outra função de v(x):

Seja
$$f(x) = u(x)^{v(x)}$$
 (vamos usar o mesmo processo)

$$f(x) = u(x)^{v(x)} = e^{\ln[u(x)^{v(x)}]} = e^{v(x) \ln[u(x)]}$$

$$f'(x) = \frac{df}{dx} = e^{v(x) \ln[u(x)]} \quad \{v(x) \ln[u(x)]' = u(x)^{v(x)} \quad \{v'(x) \ln[u(x)] + v(x) \frac{u'(x)}{u(x)}\} = u(x)^{v(x)} \quad v'(x) \ln[u(x)] + u(x)^{v(x)} v(x) \frac{u'(x)}{u(x)} = u(x)^{v(x)} \quad v'(x) \ln[u(x)] + v(x) \quad u(x)^{v(x)-1} u'(x)$$

É a soma das 2 regras: Regra da exponencial + Regra da potência

Exercício de aplicação:

Seja $f(x) = \left[sen\left(\frac{1}{x}\right) \right]^{tg(x)}$ para calcular a sua derivada podemos aplicar a regra:

$$f'(x) = \frac{df(x)}{dx} =$$

$$= \left[\operatorname{sen}\left(\frac{1}{x}\right) \right]^{tg(x)} \operatorname{sec}^{2}(x) \ln \left[\operatorname{sen}\left(\frac{1}{x}\right) \right] + tg(x) \left[\operatorname{sen}\left(\frac{1}{x}\right) \right]^{tg(x)-1} \cos \left(\frac{1}{x}\right) \left(-\frac{1}{x^{2}}\right)$$

Ou então

$$f(x) = \left[\operatorname{sen}\left(\frac{1}{x}\right) \right]^{tg(x)} = e^{\ln\left(\left[\operatorname{sen}\left(\frac{1}{x}\right)\right]^{tg(x)}\right)} = e^{tg(x)\ln\left(\left[\operatorname{sen}\left(\frac{1}{x}\right)\right]\right)}$$

A sua derivada fica

$$f'(x) = \frac{df(x)}{dx} = e^{tg(x)\ln\left(\left[\operatorname{sen}\left(\frac{1}{x}\right)\right]\right)} \left(\operatorname{sec}^{2}(x)\ln\left[\operatorname{sen}\left(\frac{1}{x}\right)\right] + tg(x)\frac{\cos\left(\frac{1}{x}\right)}{\sin\left(\frac{1}{x}\right)}\left(-\frac{1}{x^{2}}\right) \right)$$

CC

40

Regra de derivação da função composta ou regra da cadeia

Exercício de aplicação da Regra de derivação em cadeia:

Enche-se de água à razão de 1 metro cúbico por hora um depósito em forma de tronco de cone de secção circular. Tal como está indicado na figura, a altura do depósito é de 20 metros, o diâmetro da base é de 4 metros e o diâmetro da boca é de 12 metros.

Usando a regra de derivação em cadeia, calcule a razão de variação do nível de água h quando esta atinge metade da altura total do depósito?

Resolução:

As variáveis associadas a este problema são:

- t o tempo,
- V o volume de água dentro do depósito,
- h o nível de água e
- r o raio da superfície de água.

41

12m

O enunciado dá dV/dt e pede um dh/dt.

Exercício de aplicação da Regra de derivação em cadeia:

Resolução:

As variáveis associadas a este problema são: to tempo, Vo volume de água dentro do depósito, ho nível de água e ro raio da superfície de água.

O enunciado dá-nos $\frac{dV}{dt} = 1m^3/h$ e queremos calcular $\frac{dh}{dt}$.

Pela regra de derivação em cadeia temos,

$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$

Precisamos calcular $\frac{dV}{dh}$, temos que escrever V função de h.

O volume de um cone é 1/3 do volume de um cilindro. O volume de água será

$$V = \frac{1}{3}\pi r^2 (h + 10) - \frac{1}{3}\pi 2^2 \times 10$$

Pela regra de derivação em cadeia temos,

$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$

Precisamos calcular $\frac{dV}{dh}$, temos que escrever V função de h.

O volume de um cone é 1/3 do volume de um cilindro. O volume de água será

$$V = \frac{1}{3}\pi r^2(h+10) - \frac{1}{3}\pi 2^2 \times 10$$

20m h

O volume V vem função de 2 variáveis r e h. Como queremos derivar V em ordem a h temos que eliminar a variável r.

Vamos usar a semelhança de triângulos (ou teorema de Thales) para escrever *r* função de *h*:

$$\frac{10}{2} = \frac{10+h}{r} \iff r = \frac{2 \times (10+h)}{10} = \frac{10+h}{5}$$

Substituindo

$$V = \frac{1}{3}\pi \left(\frac{10+h}{5}\right)^2 (h+10) - \frac{1}{3}\pi 2^2 \times 10 = \frac{1}{3}\pi \frac{(h+10)^3}{25} - \frac{4}{3}\pi \times 10$$

Derivando em ordem a h, temos

$$\frac{dV}{dh} = \pi \; \frac{(h+10)^2}{25}$$

Substituindo para o caso geral, em qualquer instante,

$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt} = \pi \frac{(h+10)^2}{25} \cdot \frac{dh}{dt}$$
$$\frac{dh}{dt} = \frac{25}{\pi (h+10)^2} \cdot \frac{dV}{dt}$$

Para o caso particular em que $\frac{dV}{dt} = 1m^3/h$ e ainda h atinge metade da altura total do depósito, h=10m, tem-se

$$1 = \pi \frac{(10+10)^2}{25} \cdot \frac{dh}{dt} (h = 10\text{m})$$

$$\frac{dh}{dt}(h=10\text{m}) = \frac{25}{400\pi}\text{m/h}$$

A razão de variação do nível de água *h* quando esta atinge metade da altura total do depósito é de aproximadamente 0.020 metros por hora.

Exercício de Aplicação da Regra da Cadeia

- 2. A figura mostra um painel solar de 3 m de comprimento equipado com um ajustador hidráulico. À medida que o sol se eleva, o painel é ajustado automaticamente de modo que os raios do sol incidam perpendicularmente nele.
- a) Usando a regra da cadeia, determine a relação entre a taxa de variação dy/dt à qual o painel deve descer e a taxa $d\theta/dt$ à qual o ângulo de inclinação dos raios aumenta (observe-se que $\theta + \phi = \frac{\pi}{2}$).
 - b) Se, quando $\theta = \frac{\pi}{6}$, $d\theta / dt = \frac{\pi}{12}$ rad / hora, determine dy/dt.

Considere-se o triângulo retângulo ABC e repare-se que $y = 3sen(\Phi) = 3cos(\Theta)$

A regra da cadeia para resolver este problema será, $\frac{dy}{dt} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dt}$

a)

$$\frac{dy}{dt} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dt} \quad e \quad y = \cos(\theta)$$

Logo $\frac{dy}{d\theta} = -3sen(\theta)$ e substituindo vem

46

$$\frac{dy}{dt} = -3sen(\theta) \cdot \frac{d\theta}{dt}$$

b)

$$\frac{dy}{dt}\left(\theta = \frac{\pi}{6}; \frac{d\theta}{dt} = \frac{\frac{\pi}{12}rad}{h}\right) = -3sen\left(\frac{\pi}{6}\right) \cdot \frac{\pi}{12} = -0.3927m/h$$

Unidade Curricular: Análise Matemática - ElC0004 MIEIC 2017/2018 2º aula

Prof. Catarina Castro

Principais FUNÇÕES TRIGONOMÉTRICAS e suas INVERSAS:

f(x)	f ⁻¹ (x)
Sen(x)	arcsen(x)
Cos(x)	arccos(x)
Tang(x)	arctg(x)
Cotang(x)	arccotg (x)
Sec(x)	arcsec(x)
Cossec(x)	arccossec(x)

FUNÇÕES TRIGONOMÉTRICAS

Num círculo trigonométrico unitário:

Principais corolários da fórmula fundamental da trigonometria:

$$1 + \cot^2 x = \cos^2 x$$

$$1 + \tan^2 x = \sec^2 x$$

A INVERSA DA FUNÇÃO TRIGONOMÉTRICA SENO É A FUNÇÃO ARCO-SENO:

Considere-se a função f(x)=sen(x), com domínio $[-\pi/2,\pi/2]$ e imagem no intervalo [-1,1].

A função inversa de f, diz-se arco cujo seno,

$$f^{-1}(x) = arcsen(x)$$
,

domínio [-1,1] e imagem no intervalo [- $\pi/2$, $\pi/2$]

Derivação da função y=arcsen(x)

Considere-se a função f(x)=sen(x), com domínio $[-\pi/2,\pi/2]$ e imagem no intervalo [-1,1].

A função inversa de f, diz-se arco cujo seno,

$$f^{-1}(x) = arcsen(x)$$
,

domínio [-1,1] e imagem no intervalo [$-\pi/2,\pi/2$]

Regra de derivação da função composta ou regra da cadeia

F(x)=g(h(x))	$F'(x)=g'(h(x)) \cdot h'(x)$	
z(x)=z(y(x))	$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$	
Regra de derivação da função inversa		
g(h(x))=x	$h'(x) = \frac{1}{g'(h(x))}$	
	CC	

Derivação da função y = arcsen(x)

Seja $y = \arcsin(x)$ e suponhamos que quero calcular $\frac{dy}{dx}$

Pelo Teorema de derivação da função inversa

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

Se $y = \arcsin(x)$ então sabemos que $x = \sin(y)$ e a derivada $\frac{dx}{dy} = \cos(y)$

Substituindo temos
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1 - [sen(y)]^2}} = \frac{1}{\sqrt{1 - x^2}}$$

porque
$$sen^2(y) + cos^2(y) = 1$$

Logo a derivada da função $\arctan(x)$ é a função $\frac{1}{\sqrt{1-x^2}}$

Atenção: A derivada de uma função de x em ordem a x é sempre uma função de x

A INVERSA DA FUNÇÃO TRIGONOMÉTRICA COSSENO É A FUNÇÃO ARCO-COSSENO:

Considere-se a função $f(x)=\cos(x)$, com domínio $[0, \pi]$ e imagem no intervalo [-1,1].

A função inversa de f, diz-se arco cujo cosseno,

$$f^{-1}(x) = arcos(x)$$

domínio [-1,1] e imagem no intervalo $[0, \pi]$

Derivação da função y=arcos(x)

Seja
$$y = \arccos(x)$$
 e quero calcular $\frac{dy}{dx}$

Pelo Teorema de derivação da função inversa

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

Se $y = \arccos(x)$ então sabemos que $x = \cos(y)$ e a derivada $\frac{dx}{dy} = -sen(y)$

Substituindo temos
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{-\sin(y)} = \frac{-1}{\sqrt{1 - [\cos(y)]^2}} = \frac{-1}{\sqrt{1 - x^2}}$$

porque
$$sen^2(y) + cos^2(y) = 1$$

Logo a derivada da função $\arccos(x)$ é a função $\frac{-1}{\sqrt{1-x^2}}$

Atenção: A derivada de uma função de x em ordem a x é sempre uma função de x

A INVERSA DA FUNÇÃO TRIGONOMÉTRICA <u>TANGENTE</u> É A FUNÇÃO <u>ARCO-TANGENTE</u>:

Considere-se a função f(x)=tg(x), com domínio $]-\pi/2,\pi/2[$ e imagem no intervalo $]-\infty$, $+\infty[$

A função inversa de f, diz-se arco cuja tangente,

$$f^{-1}(x) = arctg(x)$$
,

Domínio]- ∞ , + ∞ [e imagem no intervalo]- π /2, π /2[

Derivação da função y=arctg(x)

Seja
$$y = \operatorname{arctg}(x)$$
 e quero calcular $\frac{dy}{dx}$

Pelo Teorema de derivação da função inversa

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

Se $y = \operatorname{arctg}(x)$ então sabemos que $x = \operatorname{tg}(y)$ e a derivada $\frac{dx}{dy} = \sec^2(y)$

Substituindo temos
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2(y)} = \frac{1}{1 + tg^2(y)} = \frac{1}{1 + x^2}$$

porque
$$tg^2(y) + 1 = sec^2(y)$$

Logo a derivada da função $\arctan(x)$ é a função $\frac{1}{1+x^2}$

Atenção: A derivada de uma função de x em ordem a x é sempre uma função de x

Aprender a demonstrar as seguintes regras de derivação:

f(x)	f'(x)
arcsen(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctg(x)	$\frac{1}{1+x^2}$
arccotg(x)	$\frac{-1}{1+x^2}$
arcsec(x)	$\frac{1}{x\sqrt{x^2-1}}$
arccossec(x)	$\frac{-1}{x\sqrt{x^2-1}}$

Exercício de aplicação

Seja
$$y = \operatorname{arcsec}[x^2 + ln(x)]$$
 , quero calcular a derivada $\frac{dy}{dx}$

Para resolver este problema vou ter que considerar 2 Teoremas:

- O Teorema de derivação da função inversa e
- O Teorema de derivação da função composta

Vamos reescrever a função y da forma seguinte

$$y = \operatorname{arcsec}(u)$$
 em que $u = x^2 + \ln(x)$

Pelo Teorema de derivação da função composta (ou regra de derivação em cadeia)

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Vamos calcular cada um dos fatores separadamente.

Se
$$u = x^2 + ln(x)$$
 então $\frac{du}{dx} = 2x + \frac{1}{x}$

CC

59

Falta calcular $\frac{dy}{du}$ em que $y = \operatorname{arcsec}(u)$.

Se $y = \operatorname{arcsec}(u)$ então a função inversa será $u = \sec(y)$ e $\frac{du}{dy} = \sec(y)$. $\operatorname{tg}(y)$

Pelo Teorema de derivação da função inversa

$$\frac{dy}{du} = \frac{1}{\frac{du}{dy}} = \frac{1}{\sec(y) \cdot tg(y)} = \frac{1}{\sec(y) \cdot \sqrt{\sec^2(y) - 1}} = \frac{1}{u\sqrt{u^2 - 1}}$$

porque $tg^2(y) + 1 = sec^2(y)$. Substituindo temos

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{(x^2 + \ln(x))\sqrt{[x^2 + \ln(x)]^2 - 1}} \cdot \left(2x + \frac{1}{x}\right)$$

Atenção: A derivada de uma função de x em ordem a x é sempre uma função de x

Exercício de aplicação

Seja
$$y = \operatorname{arccotg}[sen^x(x)]$$
 , quero calcular a derivada $\frac{dy}{dx}$

Para resolver este problema vou ter que considerar 2 Teoremas:

O teorema de derivação da função inversa e a regra de derivação em cadeia

Vamos reescrever a função y da forma seguinte

$$y = \operatorname{arccotg}(u) \text{ em que } u = \operatorname{sen}^{x}(x)$$

Pela regra de derivação em cadeia

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Vamos calcular cada um dos fatores separadamente.

Se
$$u = sen^x(x) = [sen(x)]^x$$
 então
$$\frac{du}{dx} = x[sen(x)]^{x-1}\cos(x) + [sen(x)]^x \cdot \ln[sen(x)]$$

Falta calcular $\frac{dy}{du}$ em que $y = \operatorname{arccotg}(u)$.

Se $y = \operatorname{arccotg}(u)$ então a função inversa será $u = \operatorname{cotg}(y)$ e $\frac{du}{dy} = -\cos \sec^2(y)$

Pelo Teorema de derivação da função inversa

$$\frac{dy}{du} = \frac{1}{\frac{du}{dy}} = \frac{1}{-cossec^{2}(y)} = \frac{-1}{cotg^{2}(y) + 1} = \frac{-1}{u^{2} + 1}$$

porque $cossec^2(y) = cotg^2(y) + 1$.

Substituindo em $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ temos

$$\frac{dy}{dx} = \frac{-1}{sen^{2x}(x) + 1} \cdot \{x[sen(x)]^{x-1}\cos(x) + [sen(x)]^x \cdot \ln[sen(x)]\}$$

Atenção: A derivada de uma função de x em ordem a x é sempre uma função de x

Análise Matemática - EIC0004

MIEIC 2017/2018
3ª aula

Prof. Catarina Castro

CC

63

2. Noção de Diferencial e Regras de Cálculo

Seja y = f(x) uma função diferenciável em [a, b] e considere-se,

$$\Delta x = b - a$$

 Δx é o incremento em x

$$\Delta y = f(b) - f(a)$$

 Δy é o incremento em y

Nas aplicações Δx e Δy são em geral muito pequenos numericamente.

Qual a relação existente entre o incremento Δy e a derivada da função? Podem ocorrer duas situações:

i)
$$f'(x) = constante, x \in [a, b] \rightarrow \Delta y = f'(a) \Delta x$$

ii)
$$f'(x) \neq constante, x \in [a, b] \rightarrow \Delta y \approx f'(a) \Delta x$$

Teorema de Rolle:

Seja f uma função contínua em todos os pontos de um intervalo fechado [a, b] e derivável em cada ponto do intervalo aberto (a, b). Admita-se também que

$$f(a) = f(b) .$$

Então existe pelo menos um ponto c no intervalo (a, b) tal que f'(c) = 0.

afirma muito simplesmente que a curva de f(x) deve admitir pelo menos uma tangente paralela a OX em algum ponto entre a e b.

Teorema dos Acréscimos Finitos (ou de Lagrange)

Se f é uma função contínua no intervalo fechado [a, b] tendo derivada em todo o ponto do intervalo aberto (a, b), então existe pelo menos um ponto interior c de (a, b) para o qual

$$f(b) - f(a) = f'(c)(b - a).$$

Para traduzir analiticamente esta propriedade geométrica, necessitamos unicamente ter presente que o paralelismo de duas retas implica a igualdade dos respetivos declives.

$$\frac{f(b) - f(a)}{b - a} = f'(c) \quad \text{para algum } c \text{ no intervalo aberto } (a, b).$$

Na realidade,

Pelo Teorema dos Acréscimos Finitos:

$$\Delta y = f'(c) \Delta x$$
 , $c \in (a, b)$ \leftarrow valor exacto

O objectivo é então o seguinte:

Sabendo qual o incremento Δx obtém-se uma estimativa rápida e simples do incremento Δy .

Figura 2.1

Figura 2.2

O produto f'(x) Δx tem a designação apresentada na seguinte definição:

Seja y=f(x), onde f é uma função diferenciável, e seja Δx um incremento de x.

(i) O diferencial dx da variável independente x é

$$dx = \Delta x$$

(ii) O diferencial dy da variável dependente y é

$$dy = f'(x) \Delta x = f'(x) dx$$

(2.4)

Figura 2.2

Figura 2.2 pode-se constatar a diferença existente entre os conceitos de *incremento* Δy e de *diferencial dy*. Com efeito, atendendo a (2.3) conclui-se que

dy é uma aproximação linear de ∆y

dy é uma aproximação linear de Δy

e tem-se,

$$f(x + \Delta x) = y + \Delta y \approx y + dy$$

$$f(x + \Delta x) \approx f(x) + f'(x) \Delta x \tag{2.5}$$

Fazendo x=a e $\Delta x = x-a$, obtém-se:

$$f(x) \approx f(a) + f'(a) (x-a)$$
 (2.6)

dy é uma aproximação linear de ∆y

Figura 2.3 Aproximação linear da função f na vizinhança do ponto x=a.

Noção de Diferencial

Grandeza relativa de dy e Δy :

Seja y=f(x) derivável em x com $f'(x) \neq 0$. Se $dx = \Delta x$, então

$$\lim_{\Delta x \to 0} \frac{\Delta y}{dy} = 1$$

onde
$$dy = f'(x) dx$$
 e $\Delta y = f(x + \Delta x) - f(x)$.

Noção de Diferencial e Regras de Cálculo

Regras de Cálculo de diferenciais:

$$d [cu] = c du$$

$$d [u \pm v] = du \pm dv$$

$$d [uv] = u dv + v du$$

$$d \left[\frac{u}{v}\right] = \frac{v du - u dv}{v^2}$$

Noção de Diferencial e Regras de Cálculo

Aplicações:

Propagação de erros:

erro da medida

erro propagado

$$\underbrace{f(x + \Delta x)}_{\uparrow} - \underbrace{f(x)}_{\uparrow} = \Delta y$$

CC

valor exacto valor medido

$$\varepsilon = \frac{\Delta y}{y} \times 100 \quad \leftarrow \quad \text{Erro relativo (\%)}$$

75

3. Teorema de Cauchy e Regra de L'Hôpital

Teorema de Cauchy: Sejam f e g duas funções contínuas no intervalo fechado [a,b] e deriváveis no intervalo aberto (a,b). Então para um certo x em (a,b), tem-se

$$f'(x)[g(b)-g(a)] = g'(x)[f(b)-f(a)]$$

Regra de L'Hôpital : Suponha -se que f e g são diferenciáveis numa vizinhança do ponto a e que $g'(x) \neq 0$ na referida vizinhança. Sup onha -se também que

$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x)$$

Então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Formas indeterminadas envolvendo ∞:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

com

$$\lim_{x \to \infty} f(x) = \pm \infty \quad \text{e} \quad \lim_{x \to \infty} g(x) = \pm \infty$$

Exercícios de aplicação

http://www.dm.ufscar.br/profs/sampaio/calculo1_aula13.pdf

Exemplo 13.1 Calcular
$$\lim_{x\to 2} \frac{x^2 - x - 2}{3x^2 - 5x - 2}$$

Solução. Um cálculo direto nos dá a forma indeterminada 0/0. Pelo método tradicional, usando fatorações, fazemos

$$\lim_{x \to 2} \frac{x^2 - x - 2}{3x^2 - 5x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)(3x + 1)} = \lim_{x \to 2} \frac{x + 1}{3x + 1} = 3/7$$

Aplicando regras de L'Hopital, não necessitamos da fatoração:

$$\lim_{x \to 2} \frac{x^2 - x - 2}{3x^2 - 5x - 2} = \lim_{x \to 2} \frac{(x^2 - x - 2)'}{(3x^2 - 5x - 2)'} = \lim_{x \to 2} \frac{2x - 1}{6x - 5} = 3/7$$

No caso de quociente de polinômios, não precisamos das regras de L'Hopital, mas às vezes as regras de L'Hopital são nosso único recurso para o cálculo de um limite:

Exemplo 13.2 Calcular $\lim_{x\to 0} \frac{x-\sin x}{x^3}$

O limite é indeterminado, da forma 0/0, a agora não podemos colocar em evidência nenhuma potência de x. Aplicando L'Hopital, temos

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{(x - \sin x)'}{(x^3)'}$$

$$= \lim_{x \to 0} \frac{1 - \cos x}{3x^2} \qquad (= 0/0, \text{ aplicamos novamente L'Hopital})$$

$$= \lim_{x \to 0} \frac{\sin x}{6x} = 1/6 \qquad (\text{usando } \lim_{x \to 0} \frac{\sin x}{x} = 1)$$

Exemplo 13.3 Calcular $\lim_{x \to +\infty} \frac{e^{2x}}{x^3}$

Aqui temos uma indeterminação da forma ∞/∞ . Aplicando L'Hopital, temos

$$\lim_{x \to +\infty} \frac{e^{2x}}{x^3} = \lim_{x \to +\infty} \frac{(e^{2x})'}{(x^3)'}$$

$$= \lim_{x \to +\infty} \frac{2e^{2x}}{3x^2} \qquad (= \infty/\infty, \text{ aplicamos novamente L'Hopital})$$

$$= \lim_{x \to +\infty} \frac{(2e^{2x})'}{(3x^2)'}$$

$$= \lim_{x \to +\infty} \frac{4e^{2x}}{6x} \qquad (= \infty/\infty, \text{ aplicamos novamente L'Hopital})$$

$$= \lim_{x \to +\infty} \frac{8e^{2x}}{6} = \frac{+\infty}{6} = +\infty$$

No cálculo de limites, sabemos que também $0\cdot\infty$ e $(+\infty)-(+\infty)$ são símbolos de indeterminação. No caso $0\cdot\infty$ também podemos aplicar regras de L'Hopital, após uma manipulação conveniente das funções no limite.

Suponhamos que $\lim_{x\to a} f(x)\cdot g(x)$ é indeterminado na forma $0\cdot\infty$, isto é, $\lim_{x\to a} f(x)=0$ e $\lim_{x\to a} g(x)=\infty$.

Neste caso, primeiramente fazemos

$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} \frac{f(x)}{1/g(x)} = 0/0$$

Exemplo 13.4 Calcular $\lim_{x\to 0^+} x \cdot \ln x$.

Temos
$$\lim_{x\to 0^+} x \cdot \ln x = 0 \cdot (-\infty)$$
. Recorde-se que $\lim_{x\to 0^+} \ln x = -\infty$ (veja aula 9).

Neste caso, fazemos

$$\lim_{x \to 0^{+}} x \cdot \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}} \qquad (= -\infty/+\infty)$$

$$= \lim_{x \to 0^{+}} \frac{(\ln x)'}{(\frac{1}{x})'} = \lim_{x \to 0^{+}} \frac{1/x}{-1/x^{2}} = \lim_{x \to 0^{+}} (-x) = 0$$

Exemplo 13.6 Calcular $\lim_{x\to 0} (1 + \sin 2x)^{1/x}$.

Aqui temos uma indeterminação 1^{∞} .

Fazemos $(1+\sin 2x)^{1/x}=e^{\ln(1+\sin 2x)^{1/x}}=e^{\frac{1}{x}\cdot\ln(1+\sin 2x)}$. Então $\lim_{x\to 0}(1+\sin 2x)^{1/x}=e^L$, sendo

$$L = \lim_{x \to 0} \frac{1}{x} \cdot \ln(1 + \sin 2x) = \lim_{x \to 0} \frac{\ln(1 + \sin 2x)}{x} \quad (= 0/0).$$

Aplicando L'Hopital,

$$\lim_{x \to 0} \frac{\ln(1 + \sin 2x)}{x} = \lim_{x \to 0} \frac{\left[\ln(1 + \sin 2x)\right]'}{(x)'} = \lim_{x \to 0} \frac{1}{1 + \sin 2x} \cdot 2\cos 2x = 2.$$

Portanto $\lim_{x\to 0} (1+\sin 2x)^{1/x}=e^2$.

CC

85

Exemplo 13.7 Calcular
$$\lim_{x \to +\infty} \frac{x + \sin x}{x}$$
.

Solução. Temos sen $x \ge -1$, daí $x + \operatorname{sen} x \ge x - 1$ para todo $x \in \mathbb{R}$.

Aplicando L'Hopital, consideramos $\lim_{x\to +\infty} \frac{(x+\sin x)'}{(x)'} = \lim_{x\to +\infty} (1+\cos x)$. Este limite não existe (não é finito nem infinito) pois quando x cresce indefinidamente, $\cos x$ fica oscilando indefinidamente entre -1 e +1.

Entretanto $\lim_{x\to +\infty} \frac{\operatorname{sen} x}{x} = 0$, pois, sendo x>0, como $-1 \leq \operatorname{sen} x \leq 1$,

$$-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$$

Como
$$\lim_{x\to +\infty}\frac{1}{x}=0$$
, temos $0\leq \lim_{x\to +\infty}\frac{\sin x}{x}\leq 0$, e portanto $\lim_{x\to +\infty}\frac{\sin x}{x}=0$.

Assim,
$$\lim_{x \to +\infty} \frac{x + \sin x}{x} = \lim_{x \to +\infty} \left(1 + \frac{\sin x}{x}\right) = 1 + 0 = 1$$

Aplicações da noção de diferencial a cálculos aproximados:

1. <u>Se o lado de um quadrado aumentar 3%, qual será o aumento aproximado da área do quadrado?</u>

Resolução: A área do quadrado é dada por $A=x^2$ em que A é a medida da área e x a medida do lado do quadrado.

Usando a noção de diferencial:

$$dA = 2x dx$$

Como o enunciado fala em valores relativos (percentagens) vamos considerar, $\frac{dx}{x}=3\%$. Então

$$\frac{dA}{A} = \frac{2 \ x}{x^2} = \frac{2 \ dx}{x} = 2 \times 3\% = 6\%$$

Solução: A área aumentará aproximadamente 6%.

2. <u>Se a aresta de um cubo mede $x = 10 \ cm$ e diminuir de 0,03 cm qual será a diminuição aproximada do volume deste cubo?</u>

Resolução: Se x é a medida da aresta do cubo, o volume do cubo é dado por $V=x^3$. Usando a noção de diferencial:

$$dV = 3 x^2 dx$$

Para $x = 10 \ cm$ e $dx = 0.03 \ cm$ temos que

$$dV = 3 x^2 dx = 3 \times 100 \times 0.03 = 9 cm^3$$

Solução: O volume diminuirá aproximadamente de $9 cm^3$.

3. Considere um triângulo definido por 2 lados medindo um 2 m e outro 3 m e que formam um ângulo de 60 graus.

Se o equipamento que mede o ângulo comete um erro de 1% de 1 radiano, qual será o erro aproximado no cálculo da área do triângulo? Considere que os lados não têm erros de medição.

Resolução:

Se a e b são as medidas dos lados de um triângulo que formam um ângulo medindo x radianos, então a área desse triângulo pode ser calculada como

$$A = \frac{1}{2} \ a \ b \ sen(x).$$

Usando a noção de diferencial:

$$dA = \frac{1}{2} a b \cos(x) dx$$

Para $a=2\ m$, $b=3\ m$ e $dx=0.01\ {\rm radianos}\ {\rm temos}\ {\rm que}$

$$dA = \frac{1}{2} \times 2 \times 3 \cos\left(\frac{\pi}{3}\right) \times 0.01 = 3 \times 0.5 \times 0.01 = 0.015 \, m^2$$

<u>Solução</u>: O erro aproximado no cálculo da área do triângulo será de $0.015 m^2$.

Derivadas das funções trigonométricas

Referência: Nuno Tavares, J., Geraldo, A. (2013), WikiCiências, 4(05):0774

Autor: João Nuno Tavares e Ângela Geraldo

Editor: José Francisco Rodrigues

Conceito de derivada

Recordemos que, dada uma função real de variável real $f:I o\mathbb{R}$, definida num intervalo aberto $I\subseteq\mathbb{R}$.

define-se a derivada de f num ponto $x \in I$, através do limite (se existir)

$$f'(x)=rac{df}{dx}(x)=\lim_{h o 0}rac{f(x+h)-f(x)}{h}$$

Nesta fórmula $h \neq 0$ deve ser suficientemente pequeno para que $x + h \in I$.

Derivada da função \sin

Quando a variável x é expressa em radianos

Vamos usar a fórmula $\sin p - \sin q = 2\cos \frac{p+q}{2}\sin \frac{p-q}{2}$, válida quer p e q sejam expressos em graus ou radianos.

Suponhamos que x e h são ambos expressos em radianos. Vem, então, usando os Limites notáveis que

$$\sin'(x)=rac{d\sin}{dx}(x)=\lim_{h o 0}rac{\sin(x+h)-\sin x}{h} =\lim_{h o 0}rac{2\cos\left(x+rac{h}{2}
ight)\sinrac{h}{2}}{h}$$

$$=\lim_{h o 0}\cosigg(x+rac{h}{2}igg)\lim_{h o 0}rac{\sinrac{h}{2}}{rac{h}{2}} = (\cos x) imes 1.$$

Concluindo,

$$\sin'(x) = \frac{d\sin}{dx}(x) = \cos x.$$

Mas atenção que esta fórmula é válida apenas quando x e h são ambos expressos em radianos.

Só assim é que conseguimos garantir que
$$\lim_{h o 0} rac{\sin rac{h}{2}}{rac{h}{2}} = 1.$$

Quando a variável x é expressa em graus

Vamos usar de novo a fórmula $\sin p - \sin q = 2\cos rac{p+q}{2}\sin rac{p-q}{2}$, válida quer p e q sejam expressos em graus ou radianos.

Suponhamos que x e h são ambos expressos em graus. Vem, então, que

$$\sin'(x^\circ) = rac{d\sin}{dx}(x^\circ) = \lim_{h^\circ o 0} rac{\sin(x^\circ + h^\circ) - \sin x^\circ}{h^\circ} = \lim_{h^\circ o 0} rac{2\cos\left(x^\circ + rac{h^\circ}{2}
ight)\sinrac{h^\circ}{2}}{h^\circ}
onumber \ = \lim_{h^\circ o 0} \cos\left(x^\circ + rac{h^\circ}{2}
ight) \lim_{h^\circ o 0} rac{\sinrac{h^\circ}{2}}{rac{h^\circ}{2}} = (\cos x^\circ) imes rac{\pi}{180^\circ}.$$

Concluindo,

$$\sin'(x^{\scriptscriptstyle 0}) = rac{d\sin}{dx}(x^{\scriptscriptstyle 0}) = rac{\pi}{180^{\scriptscriptstyle 0}}{\cos x^{\scriptscriptstyle 0}}$$

já que, como vimos nos Limites notáveis, quando h é expresso em graus $\lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} = \frac{\pi}{180^\circ}$.

Note que este resultado é bem mais complicado do que o anterior, devido ao aparecimento do factor extra $\frac{\pi}{180^{\circ}}$.

Por isso há toda a conveniência em exprimir x em radianos, para que a derivada tenha uma expressão mais simples: $\sin'(x) = \cos x$.