Національний Технічний Університет України «Київський політехнічний інститут імені Ігоря Сікорського» Навчально-Науковий Комплекс «Інститут прикладного системного аналізу»

Лабороторна робота № 2 з дисципліни «Моделювання складних систем»

Виконали: студенти гр. КА-41 Мельничук Валентин Лочман Ярослава Снігірьова Валерія

Прийняв: професор кафедри ММСА, д.т.н. Степашко В.С.

Зміст

1	Мод	Модель Фергюльста											
	1.1	Рівняння моделі	2										
	1.2	Різницеве рівняння	2										
	1.3	Генерування вибірки	2										
	1.4	Робота алгоритму МНКО	3										
	1.5	Таблиця залежності оцінок від рівня шуму	5										
2	Рівн	Рівняння згасаючих коливань											
	2.1	Модель рівняння	6										
	2.2	Різницеве рівняння	6										
	2.3	Генерування вибірки	6										
	2.4	Робота алгоритму МНКО	8										
	2.5	Таблиця залежності оцінок від рівня шуму	9										
	2.6	Генерування вибірки	0										
	2.7	Робота алгоритму МНКО	1										
	2.8	Таблиця залежності оцінок від рівня шуму	13										
	2.9	Об'єднана таблиця для двох видів апроксимацій	4										
3	Дос	Дослідження закономірностей селекції оптимальних моделей за різними критеріями 16											
	3.1	Генерування вибірки	16										
	3.2	Результати роботи МНКО для кожної складності моделі	16										
	3.3	Результати роботи МНКО для кожної складності моделі з перестановками 3	38										
4	Вис	новки	39										
5	Код	програми	10										
	5.1	Імпорт необхідних бібліотек; налаштування	10										
	5.2	· · · · · · · · · · · · · · · · · · ·	10										
	5.3	Модель Фергюльста: реалізація класу, методів, функцій	11										
	5.4		15										
	5.5		18										

- 1 Модель Фергюльста
- 1.1 Рівняння моделі

$$N' = \mu N(k - N) \mid N_0$$

1.2 Різницеве рівняння

$$\Delta t = 1$$

$$N'(t) pprox N(t+1) - N(t)$$
 — різниця вперед

$$N'(t) pprox N(t) - N(t-1)$$
 — різниця назад

$$N'(t)pprox rac{N(t+1)-N(t-1)}{2}$$
 — центральна різниця

Розглядатимемо для різниці вперед:

$$\begin{cases} N(t+1) - N(t) = \mu N(t)[k - N(t)] \\ N(0) = N_0 \end{cases}$$

$$\iff \begin{cases} N(t+1) = (\mu k + 1)N(t) - \mu N^2(t) \\ N(0) = N_0 \end{cases}$$

Отже, лінійна регресійна залежність виглядає таким чином:

$$\begin{cases} y_i = \theta_1 x_{i1} + \theta_2 x_{i2} + \xi_i \\ \theta_1 = \mu k + 1 \\ \theta_2 = -\mu \\ E\xi = 0_n; \ cov(\xi) = \sigma^2 I_n \end{cases}$$

$$\Rightarrow \begin{cases} \mu = -\theta_2 \\ k = (1 - \theta_1)/\theta_2 \end{cases}$$

1.3 Генерування вибірки

Initial parameters:
$$\mu = \text{0.0001}$$

$$\text{k} = \text{100}$$

$$\text{NO} = \text{10}$$

Noise generation: C = 3Sample length: n = 50

Time starting from 0 to 500

with discretization frequency 10

Intermediate parameters values: $\theta_1 = 1.01$ $\theta_2 = -0.0001$ Regression model: $\theta_1 = 0.001$ $\theta_2 = 0.0001$

```
Out[41]:
                      N(t)
                               N^2(t) N(t+1)
           i
               t
        0
              0 10.000000 100.000000 10.090
           2 10 10.956582 120.046684 11.054
        2
           3 20 11.992475 143.819461 12.098
        3
           4 30 13.111886 171.921546 13.226
        4
           5 40 14.318785 205.027597 14.441
        5
           6 51 15.616808 243.884680 15.749
           7 61 17.009139 289.310822 17.150
        6
        7
           8 71 18.498393 342.190549 18.649
        8
           9 81 20.086481 403.466709
                                       20.247
          10 91 21.774481 474.128027 21.945
```

1.4 Робота алгоритму МНКО

In [25]: config.run_single_RMNK(verbose=True, deep_verbose=True)

Recurrent Least Squares Method

Step 1

h_1: [0]

eta_1: 192021.11695382808

alpha_1: [0]

beta_1: 192021.11695382808

gamma_1: 192454.57239914758 nu_1: [1.00225733]

 $> \theta_1$: [1.00225733]

> H_1_inv:

[[5.20776056e-06]]

> RSS_1: 0.5984206103312317

Step 2

h_2: [14865979.31260227] eta_2: 1210738873.994198

alpha_2: [77.41846078]

beta_2: [[59837637.56477976]]

gamma_2: 14893552.79759949 nu_2: [[-0.0001]]

 $> \theta_2$: [1.00999944e+00 -1.00003420e-04]

> H_2_inv:

[[1.05372445e-04 -1.29380878e-06] [-1.29380878e-06 1.67118897e-08]]

> RSS_2: 3.3057016820547958e-06

INTERMEDIATE PARAMETERS

True values: $\theta_1 = 1.01$ $\theta_2 = -0.0001$

Estimates: θ_1 * = 1.0099994430189054 θ_2 * = -0.00010000341994466655

INITIAL PARAMETERS

True values: $\mu = 0.0001$ k = 100

Estimates: $\mu * = 0.00010000341994466655$ k* = 99.9910105518219

1.5 Таблиця залежності оцінок від рівня шуму

In [26]: config.run_grid_RMNK(verbose=False)

Out[26]:		C	num_samples	$\theta\mathtt{_1}$	θ _1*	θ _2	θ _2*	μ	μ*	\
	0	0.0	10.0	1.01	0.998957	-0.0001	0.000044	0.0001	-0.000044	
	1	0.0	50.0	1.01	1.010265	-0.0001	-0.000106	0.0001	0.000106	
	2	0.0	100.0	1.01	1.009688	-0.0001	-0.000097	0.0001	0.000097	
	3	2.0	10.0	1.01	1.009857	-0.0001	-0.000098	0.0001	0.000098	
	4	2.0	50.0	1.01	1.009994	-0.0001	-0.000100	0.0001	0.000100	
	5	2.0	100.0	1.01	1.009956	-0.0001	-0.000099	0.0001	0.000099	
	6	5.0	10.0	1.01	1.010000	-0.0001	-0.000100	0.0001	0.000100	
	7	5.0	50.0	1.01	1.010000	-0.0001	-0.000100	0.0001	0.000100	
	8	5.0	100.0	1.01	1.010000	-0.0001	-0.000100	0.0001	0.000100	
		ŀ	k*							
	0	100.0	23.826999							
	1	100.0	96.768521							
	2	100.0	100.083587							
	3	100.0	100.559471							
	4	100.0	100.105598							
	5	100.0	100.113571							
	6	100.0	100.000233							
	7	100.0	100.000141							
	8	100.0	100.000091							

- 2 Рівняння згасаючих коливань
- 2.1 Модель рівняння

$$x'' + 2\delta x' + \omega_0^2 x = 0 \mid x_0, x_0'$$

2.2 Різницеве рівняння

$$\Delta t = 1$$

$$x'(t)pprox x(t+1)-x(t)$$
 — різниця вперед $x'(t)pprox x(t)-x(t-1)$ — різниця назад $x'(t)pprox rac{x(t+1)-x(t-1)}{2}$ — центральна різниця $x''(t)pprox x(t+1)-2x(t)+x(t-1)$

Розглянемо для апроксимації різницею вперед:

$$\begin{cases} x(t+1) - 2x(t) + x(t-1) + 2\delta[x(t+1) - x(t)] + \omega_0^2 x(t) = 0 \\ x(0) = x_0 \\ x(1) = x(0) + x'(0) = x_0 + x'_0 \end{cases}$$

$$\iff \begin{cases} x(t+2) = \frac{2+2\delta - \omega_0^2}{1+2\delta} x(t+1) - \frac{1}{1+2\delta} x(t) \\ x(0) = x_0 \\ x(1) = x_0 + x'_0 \end{cases}$$

Отже, лінійна регресійна залежність виглядає таким чином:

$$\begin{cases} y_i = \theta_1 x_{i1} + \theta_2 x_{i2} + \xi_i \\ \theta_1 = \frac{2 + 2\delta - \omega_0^2}{1 + 2\delta} \\ \theta_2 = -\frac{1}{1 + 2\delta} \\ E\xi = 0_n; \ cov(\xi) = \sigma^2 I_n \end{cases}$$

2.3 Генерування вибірки

Initial parameters: $\delta = 0.005$ $\omega 0^2 = 0.01$ x0 = 5 x00 = 2

Noise generation: C = 2Sample length: n = 80

Time starting from 0 to 500

with discretization frequency 6

Intermediate parameters values: $\theta_{-}1 = 1.98019801980198$ $\theta_{-}2 = -0.9900990099009901$ Regression model: y = (1.98019801980198) * x1 + (-0.990099009901) * x2

Out [53]: x(t)x(t+1) x(t+2)5.000000 7.000000 2.97 0 2 6 15.514879 17.135487 13.76 1 18.72 2 3 12 19.560926 20.217068 3 4 18 16.016072 15.520598 16.35 4 5 25 6.676531 5.286058 7.99 5 31 -4.596447 -6.305073 -2.86 6 6 37 -13.452646 -14.818532 -11.97 7 8 44 -16.715857 -17.247299 -16.02 8 50 -13.504159 -13.052839 -13.82 9 10 56 -5.420258 -4.215867 -6.56

2.4 Робота алгоритму МНКО

In [43]: config.run_single_RMNK(verbose=True, deep_verbose=True)

Recurrent Least Squares Method

Step 1

h_1: [0]

eta_1: 3496.0743024036183

alpha_1: [0]

beta_1: 3496.0743024036183

gamma_1: 3349.3120437748094 nu_1: [0.95802084]

 $> \theta_1$: [0.95802084]

> H_1_inv: [[0.00028604]]

> RSS_1: 29.453858680093163

Step 2

h_2: [3609.56221018] eta_2: 3756.7578218698554

alpha_2: [1.03246153]

beta_2: [[30.02371322]] gamma_2: 3428.2987274811694 nu_2: [[-0.99045368]]

 $> \theta_2$: [1.98062616 -0.99045368]

> H_2_inv:

INTERMEDIATE PARAMETERS

True values: θ_1 = 1.98019801980198 θ_2 = -0.9900990099009901 Estimates: θ_1 * = 1.9806261560117218 θ_2 * = -0.9904536768605774

INITIAL PARAMETERS

True values: $\delta = 0.005$ $\omega 0^2 = 0.01$

Estimates: $\delta * = 0.004819166894145632$ $\omega 0^2 * = 0.009922241775108143$

2.5 Таблиця залежності оцінок від рівня шуму

Розміри вибірки: [30, 80, 150]

Округлення (кількість знаків після коми) до: [0, 2, 5]

Out[44]:	C	num_samples	$\theta\mathtt{_1}$	θ _1*	θ _2	θ _2*	δ	$\delta*$	\
0	0.0	30.0	1.980198	2.092809	-0.990099	-1.100300	0.005	-0.045579	
1	0.0	80.0	1.980198	1.959643	-0.990099	-0.966105	0.005	0.017542	
2	0.0	150.0	1.980198	1.985392	-0.990099	-0.991847	0.005	0.004110	
3	2.0	30.0	1.980198	1.980402	-0.990099	-0.990257	0.005	0.004919	
4	2.0	80.0	1.980198	1.980626	-0.990099	-0.990454	0.005	0.004819	
5	2.0	150.0	1.980198	1.980007	-0.990099	-0.989910	0.005	0.005096	
6	5.0	30.0	1.980198	1.980197	-0.990099	-0.990098	0.005	0.005001	
7	5.0	80.0	1.980198	1.980199	-0.990099	-0.990100	0.005	0.005000	
8	5.0	150.0	1.980198	1.980197	-0.990099	-0.990098	0.005	0.005000	
	ω 0_s	$ m sqr$ ω 0_ $ m sqr*$							
0	0.	01 0.006809							
1	0.	01 0.006689							
2	0.	01 0.006507							
3	0.	01 0.009952							
4	0.	01 0.009922							
5	0.	01 0.010005							
6	0.	01 0.010000							

```
7
    0.01 0.010000
    0.01 0.010000
```

Розглянемо для апроксимації центральною різницею:

Розглянемо для апроксимації центральною різницею:
$$\begin{cases} x(t+1) - 2x(t) + x(t-1) + \delta[x(t+1) - x(t-1)] + \omega_0^2 x(t) = 0 \\ x(0) = x_0 \\ x(1) = x(0) + x'(0) = x_0 + x'_0 \\ \end{cases}$$

$$\begin{cases} x(t+2) = \frac{2-\omega_0^2}{1+\delta}x(t+1) - \frac{1-\delta}{1+\delta}x(t) \\ x(0) = x_0 \\ x(1) = x_0 + x'_0 \\ \end{cases}$$

$$\begin{cases} y_i = \theta_1 x_{i1} + \theta_2 x_{i2} + \xi_i \\ \theta_1 = \frac{2-\omega_0^2}{1+\delta} \\ \theta_2 = -\frac{1-\delta}{1+\delta} \\ E\xi = 0_n; \ cov(\xi) = \sigma^2 I_n \end{cases}$$

2.6 Генерування вибірки

```
In [50]: config = OscillationModelConfig(difference='center')
          config.show()
          plt.scatter(config.t, config.y)
          plt.show()
          print('Intermediate parameters values: \theta_1 = \{\} \setminus t\theta_2 = \{\}' \cdot format(*config.theta))
          print('Regression model: y = ({}) * x1 + ({}) * x2'.format(*config.theta))
          config.df.head(10)
```

 δ = 0.005 Initial parameters: ω 0^2 = 0.01 x0 = 5

x00 = 2

Noise generation: C = 2Sample length: n = 80

Time starting from 0 to 500

with discretization frequency 6

Intermediate parameters values: $\theta_{-}1$ = 1.9800995024875623 $\theta_{-}2$ = -0.9900497512437811 Regression model: y = (1.9800995024875623) * x1 + (-0.9900497512437811) * x2

```
Out [50]:
                                x(t+1) x(t+2)
                       x(t)
                   5.000000
                                         2.97
        0
                              7.000000
               6 15.514879 17.135487
                                         13.76
        1
        2
            3 12 19.560926 20.217068
                                        18.72
        3
            4 18 16.016072 15.520598
                                         16.35
        4
            5 25
                   6.676531
                            5.286058
                                         7.99
                                         -2.86
        5
            6
               31 -4.596447 -6.305073
        6
            7
               37 -13.452646 -14.818532 -11.97
        7
            8 44 -16.715857 -17.247299
                                        -16.02
               50 -13.504159 -13.052839 -13.82
        8
           10
               56 -5.420258 -4.215867
                                         -6.56
```

2.7 Робота алгоритму МНКО

In [33]: config.run_single_RMNK(verbose=True, deep_verbose=True)

Recurrent Least Squares Method

Step 1

· -----

h_1: [0]

eta_1: 3496.0743024036183

alpha_1: [0]

beta_1: 3496.0743024036183

3496.0743024 3349.2782321079894 gamma_1: [0.95801117] nu_1:

 $> \theta_{-}1$: [0.95801117]

> H_1_inv: [[0.00028604]]

> RSS_1: 29.447942916061038

Step 2

h_2: [3609.56221018]

eta_2: 3756.7578218698554

alpha_2: [1.03246153]

beta_2: [[30.02371322]]

gamma_2: 3428.266809326686 nu_2: [[-0.99035405]]

 $> \theta_2$: [1.98051363 -0.99035405]

> H_2_inv:

[[0.03579053 -0.0343882] [-0.0343882 0.03330701]]

> RSS_2: 0.0006504761399703796

INTERMEDIATE PARAMETERS

True values: $\theta_1 = 1.9800995024875623$ $\theta_2 = -0.9900497512437811$ Estimates: $\theta_1 = 1.980513626457381$ $\theta_2 = -0.9903540525860997$

INITIAL PARAMETERS

True values: $\delta = 0.005$ ω 0^2 = 0.01

Estimates: $\delta * = 0.004846347513582927$ $\omega 0^2 * = 0.009888116253420117$

2.8 Таблиця залежності оцінок від рівня шуму

Розміри вибірки: [30, 80, 150]

Округлення (кількість знаків після коми) до: [0, 2, 5]

```
Out [34]:
               С
                  num_samples
                                    \theta_{-}1
                                              \theta_1*
                                                         \theta_2
                                                                   \theta_2*
                                                                              δ
             0.0
                          30.0
                                 1.9801
                                          2.092809 -0.99005 -1.100300
                                                                          0.005 -0.047755
         0
             0.0
          1
                          80.0
                                 1.9801
                                          1.959643 -0.99005 -0.966105
                                                                          0.005
                                                                                  0.017240
         2
             0.0
                         150.0
                                 1.9801
                                          1.985392 -0.99005 -0.991847
                                                                          0.005
                                                                                  0.004093
         3
             2.0
                          30.0
                                 1.9801
                                          1.980023 -0.99005 -0.989908
                                                                          0.005
                                                                                  0.005071
          4
             2.0
                          80.0
                                 1.9801
                                          1.980514 -0.99005 -0.990354
                                                                          0.005
                                                                                  0.004846
             2.0
         5
                         150.0
                                 1.9801
                                          1.979936 -0.99005 -0.989861
                                                                          0.005
                                                                                  0.005095
             5.0
                                 1.9801
                                          1.980099 -0.99005 -0.990050
         6
                          30.0
                                                                          0.005
                                                                                  0.005000
         7
             5.0
                          80.0
                                 1.9801
                                          1.980099 -0.99005 -0.990050
                                                                          0.005
                                                                                  0.005000
         8
             5.0
                         150.0
                                          1.980100 -0.99005 -0.990050
                                                                          0.005
                                 1.9801
                                                                                  0.005000
             \omega0_sqr
                       \omega0_sqr*
         0
               0.01
                      0.007134
          1
               0.01
                      0.006574
          2
               0.01
                      0.006481
         3
               0.01
                      0.009935
          4
               0.01
                      0.009888
         5
               0.01
                      0.009975
         6
               0.01
                      0.010000
```

```
7 0.01 0.010000
8 0.01 0.010000
```

2.9 Об'єднана таблиця для двох видів апроксимацій

```
In [35]: center_df['difference'] = 'center'
         forward_df['difference'] = 'forward'
         pd.concat([center_df, forward_df], axis=0).sort_values(by=['C',
                                                                           'num_samples',
                                                                           'difference'])
                                                \theta_{-}1*
                                                            \theta_{-}2
                                                                      \theta_2*
Out [35]:
               С
                  num_samples
                                      \theta_{-}1
                                                                                 δ
                                                                                           \delta *
         0
             0.0
                          30.0
                                1.980100
                                           2.092809 -0.990050 -1.100300
                                                                            0.005 -0.047755
             0.0
         0
                          30.0
                                1.980198
                                            2.092809 -0.990099 -1.100300
                                                                            0.005 -0.045579
         1
             0.0
                          80.0
                                1.980100
                                            1.959643 -0.990050 -0.966105
                                                                            0.005
                                                                                    0.017240
         1
             0.0
                          80.0
                                1.980198
                                            1.959643 -0.990099 -0.966105
                                                                            0.005
                                                                                    0.017542
             0.0
         2
                         150.0
                                 1.980100
                                            1.985392 -0.990050 -0.991847
                                                                            0.005
                                                                                    0.004093
         2
             0.0
                         150.0
                                1.980198
                                            1.985392 -0.990099 -0.991847
                                                                             0.005
                                                                                    0.004110
         3
             2.0
                          30.0
                                1.980100
                                            1.980023 -0.990050 -0.989908
                                                                            0.005
                                                                                    0.005071
         3
             2.0
                          30.0
                                1.980198
                                            1.980402 -0.990099 -0.990257
                                                                            0.005
                                                                                    0.004919
         4
             2.0
                          0.08
                                1.980100
                                            1.980514 -0.990050 -0.990354
                                                                            0.005
                                                                                    0.004846
         4
             2.0
                                1.980198
                                            1.980626 -0.990099 -0.990454
                                                                            0.005
                          0.08
                                                                                    0.004819
         5
             2.0
                         150.0
                                1.980100
                                            1.979936 -0.990050 -0.989861
                                                                            0.005
                                                                                    0.005095
         5
             2.0
                         150.0
                                            1.980007 -0.990099 -0.989910
                                                                            0.005
                                 1.980198
                                                                                    0.005096
         6
             5.0
                          30.0
                                1.980100
                                            1.980099 -0.990050 -0.990050
                                                                            0.005
                                                                                    0.005000
         6
             5.0
                          30.0
                                1.980198
                                            1.980197 -0.990099 -0.990098
                                                                            0.005
                                                                                    0.005001
         7
             5.0
                          80.0
                                1.980100
                                           1.980099 -0.990050 -0.990050
                                                                            0.005
                                                                                    0.005000
         7
             5.0
                                            1.980199 -0.990099 -0.990100
                                                                            0.005
                          80.0
                                 1.980198
                                                                                    0.005000
         8
             5.0
                         150.0
                                1.980100
                                           1.980100 -0.990050 -0.990050
                                                                            0.005
                                                                                    0.005000
         8
             5.0
                         150.0
                                1.980198
                                           1.980197 -0.990099 -0.990098
                                                                            0.005
                                                                                    0.005000
             \omega0_sqr
                       \omega0_sqr* difference
         0
               0.01
                     0.007134
                                    center
         0
               0.01
                     0.006809
                                   forward
         1
               0.01
                     0.006574
                                    center
         1
               0.01
                     0.006689
                                   forward
         2
               0.01
                     0.006481
                                    center
         2
               0.01
                     0.006507
                                   forward
         3
               0.01
                     0.009935
                                    center
         3
               0.01
                     0.009952
                                   forward
         4
                     0.009888
               0.01
                                    center
         4
               0.01
                     0.009922
                                   forward
         5
               0.01
                     0.009975
                                    center
         5
               0.01
                     0.010005
                                   forward
         6
               0.01
                     0.010000
                                    center
         6
               0.01
                     0.010000
                                   forward
         7
               0.01
                     0.010000
                                    center
         7
               0.01
                     0.010000
                                   forward
```

8 0.01 0.010000 center 8 0.01 0.010000 forward 3 Дослідження закономірностей селекції оптимальних моделей за різними критеріями

Розглянемо настпуні критерії RSS(s)

RSS(s) (як функція дискретного аргумента s) є строго спадною. Тобто при підвищенні складності (число аргументів або регресорів) моделі, наприклад, за рахунок шумів, значення цієї функції зменшиться. Тому її не можна використовувати в якості критерія оптимальності моделі.

Тож введемо такі два критерії, які будемо використовувати для селекції оптимальних моделей

```
C_p(s) = RSS(s) + 2s — спрощений критерій Меллоуза FPE(s) = \frac{n+s}{n-s}RSS(s) — критерій фінальної помилки передбачення Акаіке
```

3.1 Генерування вибірки

```
In [49]: config = ModelConfig()
        config.generate_noise_and_output()
        config.show()
Sample length: n = 10
Noise generation: \sigma = 0.01
X[:10]:
[1.99661548 1.10312016 0.47063081 0.6743167 0.32270018]
 [0.50521783 1.94305153 0.2321996 1.57475096 1.7151454 ]
 [1.45231104 0.84137512 1.6251626 1.55947169 1.65454129]
 [0.30540542 0.59276023 0.81413665 1.63787871 0.78084218]
 [0.35927949 1.59431491 0.59784151 0.89101901 0.11862545]
 [1.66405542 0.4946509 1.41582645 0.42319989 0.14946643]
 [0.25641774 0.39958445 0.1393855 1.55680484 1.58562454]
 [0.16804735 0.58465338 0.66805314 0.25416042 0.67679176]
 [0.52214368 0.30785052 0.81917318 1.88955457 1.13773672]]
v[:10]:
[ 1.53935532e+00 4.24655357e+00 -2.13879892e+00 4.28630293e+00
  5.42699716e-01 -1.53415571e+00 5.41475184e+00 1.17818043e-01
 -2.70343421e-04 1.78361145e+00]
3.2 Результати роботи МНКО для кожної складності моделі
  Розміри вибірки: [10, 30, 100]
```

In [47]: config.run_grid_RMNK_model_selection()

Дисперсії: [0.1, 0.5, 1]

SAMPLE #1

```
CONFUGURATIONS & DATA
Sample length: n = 10
Noise generation: \sigma = 0.1
X[:10]:
[[1.74499128 1.36387688 0.97317271 0.91202505 0.82077243]
[0.25024059 0.71549269 0.67900453 1.56559033 1.60674223]
[0.78587479 1.4332687 0.72735019 0.80508076 1.44407207]
[0.92653795 1.16807282 1.81264013 1.87331243 1.26766465]
[1.37688235 1.55669921 0.41909229 1.71869654 0.44395493]
[0.06463555 1.91239844 1.86896445 1.56800728 1.53465654]
[1.6610133 0.98512173 1.79487906 1.51341071 1.51509083]
[1.41194792 1.36280981 0.38997994 1.53333186 0.61675108]
[0.03745953 1.65573554 0.41078422 1.58074669 1.24010989]
[0.50865276 1.78581802 0.58324822 1.6045627 1.52076612]]
v[:10]:
4.69829369 1.89906112 -2.76304196 -1.67492179]
            RLSM ITERATIONS
-----
      Step 1
_____
> \theta_1: [1.75888448]
> H_1_inv:
[[0.08698404]]
> RSS_1: 24.34948235855881
_____
      Step 2
_____
> \theta_2: [ 3.28244712 -1.51445048]
> H_2_inv:
[[ 0.19950471 -0.1118477 ]
[-0.1118477 0.11117876]]
> RSS_2: 3.720000469205509
      Step 3
_____
> \theta_3: [ 3.04616316 -1.98965346 0.9481994 ]
> H_3_inv:
[[ 0.21506781 -0.08054793 -0.0624542 ]
[-0.08054793  0.17412736  -0.1256049 ]
[-0.0624542 -0.1256049
                     0.25062656]]
> RSS_3: 0.13266281282578296
_____
      Step 4
_____
```

 $> \theta_4$: [3.04862082 -1.97302879 0.95465723 -0.02234266]

> H_4_inv:

[[0.2217556 -0.03530892 -0.04488117 -0.06079878]

[-0.03530892 0.48014312 -0.00673353 -0.41126856]

[-0.04488117 -0.00673353 0.29680197 -0.15975667]

[-0.06079878 -0.41126856 -0.15975667 0.55272261]]

> RSS_4: 0.1317596574980914

Step 5

 $> \theta_5$: [3.01994177 -1.93297116 1.01152629 0.02558417 -0.13454104]

> H_5_inv:

[[0.25394333 -0.08026732 -0.10870776 -0.11458912 0.15100118]

[-0.08026732 0.54293903 0.08241662 -0.33613661 -0.21091176]

[-0.11458912 -0.33613661 -0.05309326 0.642614 -0.2523447]

[0.15100118 -0.21091176 -0.2994274 -0.2523447 0.70838647]]

> RSS_5: 0.10620681153214041

RESULTS

PARAMETERS

True values: θ : [3 -2 1 0 0]

Estimates: θ *: [3.01994177 -1.93297116 1.01152629 0.02558417 -0.13454104]

s RSS Cp FPE 0 1.0 24.349482 26.349482 29.760478

```
1 2.0
      3.720000 7.720000
                           5.580001
2 3.0 0.132663 6.132663 0.246374
3 4.0
      0.131760 8.131760 0.307439
4 5.0 0.106207 10.106207
                           0.318620
s* by Cp: 3
s* by FPE: 3
                     SAMPLE #2
              CONFUGURATIONS & DATA
Sample length: n = 10
Noise generation: \sigma = 0.5
X[:10]:
[[0.33492291 1.08563438 1.68194974 0.29033474 1.78802504]
 [0.2159277  0.81205598  0.53006163  1.53257466  1.88128202]
[0.39104558 0.91036983 0.36540506 1.12260893 1.52395021]
[1.22387016 0.962584 0.69919347 1.47873658 1.06353278]
 [1.98865213 1.88135532 1.62673745 1.07394478 0.38639772]
[0.21440056 0.00601832 0.63623142 0.72337703 0.98327312]
 [0.71403784 1.08255883 0.15211974 0.74150085 0.19634336]
[1.82350366 1.98757221 0.10940998 1.41456159 1.19650657]
 [1.00166412 1.39490568 0.49255994 0.91280459 1.37797455]
 [0.7371997    1.43040815    0.65326362    1.36619623    1.98564815]]
y[:10]:
[ \ 0.12993849 \ -0.54116239 \ \ 0.15820152 \ \ 3.12991112 \ \ 3.43588371 \ \ 2.54449243
 -0.1174249 1.47193416 -0.00622622 0.01589706]
              RLSM ITERATIONS
_____
       Step 1
_____
> \theta_{-}1: [1.23329701]
> H_1_inv:
[[0.08934883]]
> RSS_1: 13.568114398236023
      Step 2
_____
> \theta_2: [ 3.28209475 -1.8105654 ]
> H_2_inv:
[[ 0.75766193 -0.59060225]
[-0.59060225 0.52192756]]
> RSS_2: 7.287267551556573
_____
       Step 3
_____
```

 $> \theta_3$: [3.42991111 -2.54163368 1.20115625]

```
> H_3_inv:
[[ 0.76239897 -0.61403067  0.03849325]
[-0.61403067  0.63779955  -0.19037944]
[ 0.03849325 -0.19037944  0.3127963 ]]
> RSS_3: 2.674756662545904
_____
     Step 4
_____
> \theta_4: [ 3.45280477 -3.20182555 1.21173671 0.80394412]
> H_4_inv:
[ 0.03863695 -0.19452329  0.31286271  0.00504615]
[ 0.01091868 -0.31486561  0.00504615  0.38342543]]
> RSS_4: 0.989093427444625
_____
     Step 5
_____
> \theta_{-}5: [ 3.89786176 -3.50690387 1.06884173 0.47639856 0.33843127]
> H_5_inv:
[[ 2.37527968 -1.7283837 -0.47911276 -1.17587332 1.22623406]
[-0.47911276 0.16038454 0.47909723 0.38609088 -0.39370844]
[-1.17587332 0.49865831 0.38609088 1.25686066 -0.90246313]
[ 1.22623406 -0.84056072 -0.39370844 -0.90246313  0.93245575]]
> RSS_5: 0.8662610858480779
                 RESULTS
PARAMETERS
```

True values: θ : [3 -2 1 0 0]

Estimates: $\theta*$: [3.89786176 -3.50690387 1.06884173 0.47639856 0.33843127]


```
RSS
                         Ср
                                  FPE
  1.0 13.568114 15.568114 16.583251
1 2.0
       7.287268 11.287268 10.930901
        2.674757
                   8.674757
2 3.0
                             4.967405
3 4.0
        0.989093
                   8.989093
                             2.307885
4 5.0
        0.866261
                  10.866261
                              2.598783
```

s* by Cp: 3 s* by FPE: 4

SAMPLE #3

CONFUGURATIONS & DATA

Sample length: n = 10Noise generation: $\sigma = 1$

X[:10]:

[[0.14696984 1.64225686 0.81527383 0.5052387 1.74258384]
[0.54192376 1.77129056 0.69364413 1.91389457 1.11587571]
[1.46345848 0.70656644 0.33467826 1.80626046 1.15677286]
[0.15388681 1.80944155 0.56569552 0.16313333 1.6271434]
[1.55113002 0.30217504 0.42268223 1.36097742 0.80769278]
[0.90139168 1.54823504 0.90174186 0.59907987 0.66142068]
[0.87465941 1.822172 1.23629605 1.23502435 1.11140353]
[0.06916039 0.20130832 1.52169335 0.59426913 0.98419139]
[1.42907423 0.32435217 1.16714399 1.15158231 1.01927989]
[1.51590501 1.6155413 1.6922702 1.25023024 0.92448734]]

```
y[:10]:
[-1.35546965 -2.93986301 2.09830818 -2.84221758 2.75526638 0.02831423
 0.59059142 -0.01914911 4.41352945 2.51628973]
          RLSM ITERATIONS
_____
     Step 1
_____
> \theta_{-}1: [1.45961255]
> H_1_inv:
[[0.09251363]]
> RSS_1: 33.684904369399405
_____
     Step 2
_____
> \theta_{-}2: [ 2.72218064 -1.53371291]
> H_2_inv:
[[ 0.15498937 -0.07589281]
[-0.07589281 0.09219129]]
> RSS_2: 8.169747929934228
_____
     Step 3
_____
> \theta_3: [ 2.38566268 -1.88274339 0.847052 ]
> H_3_inv:
[[ 0.20876806 -0.02011451 -0.13536676]
[-0.02011451 0.15004357 -0.14040001]
[-0.13536676 -0.14040001 0.34073274]]
> RSS_3: 6.064000510738701
_____
     Step 4
_____
> \theta_4: [ 3.27963753 -1.61892154 0.89849639 -1.1196245 ]
> H_4_inv:
[[ 0.5134597
        0.06980336 -0.11783308 -0.38159936]
[-0.11783308 -0.13522563 0.34174173 -0.0219594 ]
[-0.38159936 -0.11261419 -0.0219594  0.47791947]]
> RSS_4: 3.44105023141445
     Step 5
> \theta_{-}5: [ 3.27075458 -1.57050896 0.93236985 -1.08868603 -0.11081723]
> H_5_inv:
Γ 0.0510798
         0.27862387 -0.0638268 -0.04740175 -0.23358169]
```

[-0.39356481 -0.04740175 0.02366863 0.51959403 -0.14927237]

```
[ 0.04285855 -0.23358169 -0.16343312 -0.14927237 0.53467246]] > RSS_5: 3.4180820437301587
```

RESULTS

PARAMETERS

True values: θ : [3 -2 1 0 0]

Estimates: $\theta*$: [3.27075458 -1.57050896 0.93236985 -1.08868603 -0.11081723]


```
    s
    RSS
    Cp
    FPE

    0
    1.0
    33.684904
    35.684904
    41.170439

    1
    2.0
    8.169748
    12.169748
    12.254622

    2
    3.0
    6.064001
    12.064001
    11.261715

    3
    4.0
    3.441050
    11.441050
    8.029117

    4
    5.0
    3.418082
    13.418082
    10.254246
```

s* by Cp: 4 s* by FPE: 4

SAMPLE #4

CONFUGURATIONS & DATA

Sample length: n = 30Noise generation: $\sigma = 0.1$

X[:10]:

```
[1.03237769 1.14966652 1.10723391 0.16075337 0.2289113 ]
 [1.65397925 1.45360209 0.83021713 0.78597958 0.43489001]
 [0.71856424 1.28416975 0.73402926 1.3018575 0.94595914]
 [0.80133343 0.43329017 1.09414303 0.98373604 0.62182217]
 [0.10070248 1.77904068 1.78430279 0.09961824 0.16469113]
 [0.59460095 0.28739308 1.33864153 1.84248439 0.03749578]
 [1.48062364 1.05328261 1.36069382 0.56938633 1.91588621]
 [0.5420078    0.63760454    1.89696076    0.86427491    1.31056505]]
y[:10]:
[ \ 0.49487737 \ \ 1.96984176 \ \ 3.44538533 \ \ 3.02811936 \ \ 0.23413413 \ \ 2.54153192
-1.56549911 2.5680147 3.57818677 2.40551953]
             RLSM ITERATIONS
_____
      Step 1
_____
> \theta_{-}1: [2.16725506]
> H_1_inv:
[[0.02894723]]
> RSS_1: 42.911961631672995
      Step 2
> \theta_2: [ 3.27016325 -1.34135586]
> H_2_inv:
[[ 0.07547652 -0.05658888]
[-0.05658888 0.06882334]]
> RSS_2: 16.769149956764263
_____
      Step 3
_____
> \theta_3: [ 3.02755153 -2.03001379 1.00549493]
> H_3_inv:
[[ 0.07904502 -0.04645962 -0.01478951]
[-0.04645962 0.09757541 -0.0419803 ]
[-0.01478951 -0.0419803 0.06129455]]
> RSS 3: 0.2746963575911856
      Step 4
_____
> \theta_4: [ 3.02592015e+00 -2.02963720e+00 1.00441252e+00 2.61162670e-03]
> H_4_inv:
[[ 0.11719665 -0.05526666  0.01052376 -0.06107561]
[-0.05526666 0.09960845 -0.04782369 0.01409888]
[ 0.01052376 -0.04782369  0.07808968 -0.04052313]
 [-0.06107561 0.01409888 -0.04052313 0.09777381]]
> RSS_4: 0.2746265986852164
```

Step 5

- $> \theta_{-}5$: [3.02427775e+00 -2.02995134e+00 1.00108958e+00 2.33265179e-03 6.88853109e-03]
- > H_5_inv:
- $[-0.05432778 \quad 0.09978804 \quad -0.04592412 \quad 0.01425836 \quad -0.00393785]$
- $[0.0204551 -0.04592412 \ 0.09818297 -0.03883621 -0.04165386]$
- $[-0.06024183 \quad 0.01425836 \quad -0.03883621 \quad 0.09791543 \quad -0.00349702]$
- [-0.02058789 -0.00393785 -0.04165386 -0.00349702 0.0863494]]
- > RSS_5: 0.2740770655149688

RESULTS

PARAMETERS

True values: θ : [3 -2 1 0 0]

Estimates: $\theta*$: [3.02427775e+00 -2.02995134e+00 1.00108958e+00 2.33265179e-03

6.88853109e-03]

	s	RSS	Ср	FPE
0	1.0	42.911962	44.911962	45.871407
1	2.0	16.769150	20.769150	19.164743
2	3.0	0.274696	6.274696	0.335740
3	4.0	0.274627	8.274627	0.359127
4	5.0	0.274077	10.274077	0.383708

```
s* by Cp: 3
s* by FPE: 3
                     SAMPLE #5
              CONFUGURATIONS & DATA
Sample length: n = 30
Noise generation: \sigma = 0.5
X[:10]:
[[0.72876001 1.31939899 0.25131668 1.02587873 1.08236842]
 [1.6790284 1.49552647 1.82319386 0.0662499 1.77054865]
[0.24189569 0.06920569 0.11676017 0.36094835 1.96565189]
 [0.03083241 0.48892639 1.62124848 0.57922692 1.94939807]
 [0.8968224 1.35714991 1.36761615 1.21381602 1.48231496]
 [0.62585452 0.74419252 1.41248933 1.82981646 0.6278084 ]
 [1.87687817 0.45745942 0.14204097 1.2282496 1.40724115]
 [0.74047996 1.79276388 0.18282914 0.33575151 1.06089481]
 [0.34882251 0.07366257 1.75406866 1.3220241 0.92124879]
[0.12071026 1.89096654 1.05274132 0.58485607 1.80056392]]
y[:10]:
\begin{bmatrix} -0.72240974 & 3.2231523 & 0.62399833 & 0.62839286 & 0.97950829 & 2.15486126 \end{bmatrix}
 6.06103113 -1.59945271 3.02280988 -3.09663769]
              RLSM ITERATIONS
_____
       Step 1
_____
> \theta_{-}1: [2.45358863]
> H_1_inv:
[[0.02866141]]
> RSS_1: 79.59086964249369
_____
       Step 2
> \theta_2: [ 3.90447742 -1.86582164]
> H_2_inv:
[[ 0.07155604 -0.05516186]
[-0.05516186 0.07093734]]
> RSS_2: 30.515298339401106
       Step 3
_____
> \theta_3: [ 3.24605609 -2.29954684 1.17928989]
> H_3_inv:
[[ 0.09271279 -0.04122516 -0.03789359]
 [-0.04122516 0.08011793 -0.02496184]
[-0.03789359 -0.02496184 0.06787072]]
```

> RSS_3: 10.024508583050252

Step 4

- > θ_4 : [3.12715944 -2.32002488 1.12147583 0.21910323]
- > H_4_inv:
- [[0.12126723 -0.03630712 -0.02400886 -0.05262023]
- $[-0.03630712 \quad 0.08096498 \quad -0.02257041 \quad -0.00906299]$
- [-0.02400886 -0.02257041 0.07462223 -0.02558683]
- [-0.05262023 -0.00906299 -0.02558683 0.09696876]]
- > RSS_4: 9.529439633710565

Step 5

- $> \theta_{-}5$: [3.1684059 -2.2741488 1.27557734 0.30493557 -0.35785053]
- > H_5_inv:
- [[0.12210233 -0.03537828 -0.02088882 -0.05088241 -0.00724528]
- $[-0.02088882 \ -0.01910017 \ \ 0.08627907 \ -0.01909414 \ -0.02706921]$
- [-0.05088241 -0.00713011 -0.01909414 0.1005851 -0.01507716]
- [-0.00724528 -0.00805851 -0.02706921 -0.01507716 0.06285941]]
- > RSS_5: 7.492242706240905

RESULTS

PARAMETERS

True values: θ : [3 -2 1 0 0]

Estimates: $\theta *: [3.1684059 -2.2741488 1.27557734 0.30493557 -0.35785053]$


```
RSS
                                FPE
                      Ср
 1.0 79.590870 81.590870 85.079895
1 2.0 30.515298 34.515298 34.874627
2 3.0 10.024509 16.024509 12.252177
3 4.0 9.529440 17.529440 12.461575
4 5.0 7.492243 17.492243 10.489140
s* by Cp: 3
s* by FPE: 5
                     SAMPLE #6
              CONFUGURATIONS & DATA
Sample length: n = 30
Noise generation: \sigma = 1
X[:10]:
[[1.4657479    1.0203736    0.27119653    0.76962363    0.12997583]
 [0.12688183 0.14651378 1.5920262 0.65060901 0.41573806]
[0.39620312 1.51504911 1.95252342 1.38204029 0.33692889]
 [1.30746237 1.12286779 0.00974265 0.85186273 1.39939848]
[0.36114552 0.02900568 0.24237525 0.37378936 1.51242997]
 [0.14718973 0.55690455 0.63306301 0.6750009 1.61196702]
Γ0.561286
           1.13888002 0.81831695 0.72452641 1.3125748 ]
 [1.6350668 1.38261912 0.66248552 1.09468795 0.14239637]
 [1.96966048 1.37709031 1.24864897 0.07716315 1.53212933]
 [1.67362771 1.12044411 1.36239841 1.73962138 0.13950526]]
y[:10]:
-1.13407385 3.14801966 4.0742737 2.62623902]
              RLSM ITERATIONS
_____
       Step 1
> \theta_1: [1.95439287]
> H_1_inv:
[[0.02786828]]
> RSS_1: 72.16315009756227
       Step 2
_____
> \theta_2: [ 3.18672401 -1.67285668]
> H_2_inv:
[[ 0.0744196 -0.06319218]
[-0.06319218 0.0857817]]
```

```
_____
    Step 3
_____
> \theta_3: [ 2.84257131 -2.09676554 0.88739358]
> H_3_inv:
[[ 0.0842777 -0.05104949 -0.02541901]
[-0.05104949 0.10073841 -0.03130977]
[-0.02541901 -0.03130977 0.0655426 ]]
> RSS_3: 27.525641486335502
Step 4
_____
> \theta_4: [ 2.82363745 -2.44083945 0.75675816 0.48181414]
> H_4_inv:
[[ 0.0844384   -0.04812916   -0.02431024   -0.0040894 ]
[-0.02431024 -0.01116076 0.07319263 -0.0282151 ]
[-0.0040894 -0.0743143 -0.0282151 0.10406392]]
> RSS_4: 25.294850332210924
_____
    Step 5
_____
> H_5_inv:
[-0.02530078 -0.0056135 \quad 0.07795357 -0.0225114 \quad -0.01755369]
[-0.0052761 -0.06766858 -0.0225114 0.11089706 -0.02102965]
> RSS_5: 23.11718154095141
             RESULTS
PARAMETERS
True values:
         \theta: [ 3 -2 1 0 0]
```

> RSS_2: 39.54022982150166

Estimates:

 $\theta*: [2.80245265 -2.3222004 0.85858036 0.60379904 -0.37542031]$


```
s RSS Cp FPE
0 1.0 72.163150 74.163150 77.139919
1 2.0 39.540230 43.540230 45.188834
2 3.0 27.525641 33.525641 33.642451
3 4.0 25.294850 33.294850 33.077881
4 5.0 23.117182 33.117182 32.364054
```

s* by Cp: 5
s* by FPE: 5

SAMPLE #7

CONFUGURATIONS & DATA

Sample length: n = 100Noise generation: $\sigma = 0.1$

X[:10]:

[[1.98504115e+00 1.37682418e-01 1.29076862e+00 1.61146647e+00

1.55773586e+00]

[1.68041062e-01 1.02261171e+00 6.52525865e-01 1.79307661e+00

7.81053943e-01]

[1.44758733e+00 5.79668061e-01 9.21768252e-01 1.75864705e+00

1.40988989e+00]

[1.60422920e+00 1.86154158e+00 6.18633827e-01 1.38958277e-03

8.07922782e-01]

[1.63708292e+00 5.86510715e-01 1.06373771e+00 1.48776152e+00

1.20121708e-01]

```
[9.66599051e-01 4.68436160e-01 2.89297431e-01 5.11833060e-01
 1.31440094e+00]
[4.81831012e-02 1.34767400e+00 7.61509565e-01 6.08325805e-01
 9.66134925e-02]
[1.71562470e+00 1.83542193e+00 7.19104070e-01 1.13391063e+00
 9.80065132e-01]
[1.08834028e+00 1.29009480e+00 1.92487873e+00 7.87675476e-01
 1.24867257e+001
[1.90783230e+00 1.57581923e+00 1.20548848e+00 1.24757961e+00
 1.16952879e+00]]
y[:10]:
[\ 7.0468222 \ -0.91133898 \ \ 3.94671901 \ \ 1.74501699 \ \ 4.79035547 \ \ 2.10071719
-1.80283288 2.28376996 2.54127111 3.74845277]
            RLSM ITERATIONS
_____
      Step 1
_____
> \theta_1: [2.20023113]
> H_1_inv:
[[0.00827928]]
> RSS_1: 139.90400552191068
_____
      Step 2
_____
> \theta_2: [ 3.27649717 -1.32743988]
> H_2_inv:
[[ 0.0194286 -0.0137513 ]
[-0.0137513 0.01696051]]
> RSS_2: 36.009931867380544
_____
      Step 3
_____
> \theta_3: [ 2.9906726 -1.96198542 0.97913501]
> H_3_inv:
[[ 0.02175901 -0.00857766 -0.00798317]
[-0.00857766 0.02844625 -0.01772306]
[-0.00798317 -0.01772306 0.02734756]]
> RSS_3: 0.9535903845829736
      Step 4
_____
> \theta_4: [ 3.00435631 -1.95577587 0.9914165 -0.03379706]
> H_4_inv:
[-0.00674726  0.02927688  -0.01608023  -0.00452088]
[-0.00436293 -0.01608023 0.03059683 -0.00894156]
```

[-0.00996246 -0.00452088 -0.00894156 0.02460603]]

> RSS_4: 0.9071691999350311

Step 5

- $> \theta_{-}5$: [3.00447526e+00 -1.95562053e+00 9.91512807e-01 -3.37209128e-02 -5.39683672e-04]
- > H_5_inv:
- [[0.02728664 -0.00479622 -0.00315327 -0.00900608 -0.00677842]
- [-0.00479622 0.03182468 -0.01450057 -0.00327198 -0.00885175]
- $\begin{bmatrix} -0.00315327 & -0.01450057 & 0.03157622 & -0.00816724 & -0.00548814 \end{bmatrix}$
- [-0.00900608 -0.00327198 -0.00816724 0.02521822 -0.00433901]
- [-0.00677842 -0.00885175 -0.00548814 -0.00433901 0.03075334]]
- > RSS_5: 0.9071597291441771

RESULTS

PARAMETERS

True values: θ : [3 -2 1 0 0]

Estimates: $\theta*$: [3.00447526e+00 -1.95562053e+00 9.91512807e-01 -3.37209128e-02

-5.39683672e-04]

	s	RSS	Ср	FPE
0	1.0	139.904006	141.904006	142.730349
1	2.0	36.009932	40.009932	37.479725
2	3.0	0.953590	6.953590	1.012575
3	4.0	0.907169	8.907169	0.982767

```
4 5.0
        0.907160 10.907160 1.002650
s* by Cp: 3
s* by FPE: 4
                    SAMPLE #8
             CONFUGURATIONS & DATA
Sample length: n = 100
Noise generation: \sigma = 0.5
X[:10]:
[[1.16187113 0.56692258 0.88095381 0.32026532 0.09746003]
 [0.38195709 1.42179186 1.01824668 0.34410347 1.71823047]
[1.46259151 0.68407143 0.29287657 1.28169498 1.92523134]
 [1.97185322 1.18134425 1.79891701 0.12145096 0.1565097 ]
 [0.95352219 0.65448288 0.0711204 0.71785963 0.33788788]
 [1.82159754 0.20021885 0.88754426 0.08819382 0.1003117 ]
 [0.07789955 1.81320805 0.38136005 0.43157208 0.93967719]
 [1.95729242 1.14355876 1.26371677 0.27375364 1.20363225]
 [0.62060307 1.0264235 0.58194768 0.69663503 1.41678501]
 [1.354261
         0.39651202 1.62760213 1.56285985 0.4112288 ]]
y[:10]:
[ 2.38814537 -0.266042
                     3.83982479 5.04186083 2.25968846 6.26543951
 -3.28538265 4.52274475 0.4938657 5.23045345]
             RLSM ITERATIONS
Step 1
_____
> \theta_{-}1: [2.40017533]
> H_1_inv:
[[0.00709572]]
> RSS_1: 149.33523273005187
_____
      Step 2
_____
> \theta_2: [ 3.34070496 -1.31207733]
> H_2_inv:
[[ 0.01687949 -0.01364876]
[-0.01364876 0.01904058]]
> RSS_2: 58.92059074839193
_____
      Step 3
_____
> \theta_3: [ 2.98275274 -1.91011335 1.00409455]
> H_3_inv:
[[ 0.02000003 -0.00843524 -0.00875343]
```

```
[-0.00875343 -0.01462449 0.02455432]]
> RSS_3: 17.860373938172174
_____
      Step 4
_____
> \theta_4: [ 2.96394998 -1.92331992 0.98658008 0.06439653]
> H_4_inv:
[[ 0.0223063 -0.00681537 -0.00660517 -0.00789865]
[-0.00681537  0.02888864  -0.01311561  -0.0055478 ]
[-0.00660517 -0.01311561 0.0265554 -0.00735746]
[-0.00789865 -0.0055478 -0.00735746 0.02705165]]
> RSS_4: 17.70707778387631
_____
       Step 5
_____
> \theta_{-}5: [ 2.95898496 -1.9600944   0.96301441   0.04528211   0.09973274]
> H_5_inv:
[[ 0.0223677   -0.0063606   -0.00631375   -0.00766227   -0.00123333]
[-0.0063606 \quad 0.03225696 \quad -0.01095713 \quad -0.00379704 \quad -0.00913492]
[-0.00631375 -0.01095713 0.02793858 -0.00623555 -0.0058538 ]
[-0.00766227 -0.00379704 -0.00623555 0.02796165 -0.00474809]
[-0.00123333 -0.00913492 -0.0058538 -0.00474809 0.02477398]]
> RSS_5: 17.305583185460527
                     RESULTS
PARAMETERS
                \theta: [ 3 -2 1 0 0]
True values:
```

Estimates: $\theta*:$ [2.95898496 -1.9600944 0.96301441 0.04528211 0.09973274]

	s	RSS	Ср	FPE
0	1.0	149.335233	151.335233	152.352106
1	2.0	58.920591	62.920591	61.325513
2	3.0	17.860374	23.860374	18.965139
3	4.0	17.707078	25.707078	19.182668
4	5.0	17.305583	27.305583	19.127224
s*	by C	p: 3		

s* by Cp. 3
s* by FPE: 3

SAMPLE #9

CONFUGURATIONS & DATA

Sample length: n = 100Noise generation: $\sigma = 1$

X[:10]:

 $\hbox{\tt [[0.16317167\ 1.04009727\ 0.61903509\ 1.41726038\ 0.1041959\]}$

 $[0.03426191\ 1.54064845\ 1.38433454\ 1.95238531\ 1.57416181]$

 $[0.05619171\ 0.67891817\ 0.82471112\ 1.37210371\ 0.05593376]$

 $[1.4317724 \quad 0.92900862 \ 0.03548929 \ 1.2426427 \quad 0.01113482]$

[0.93923039 0.6533068 0.70056497 0.607301 0.71847807]

 $[0.97213425 \ 0.14949815 \ 1.82198766 \ 1.43888765 \ 1.94579019]$

 $[0.64720489 \ 0.85166612 \ 1.14092488 \ 0.22591394 \ 1.77904608]$

[1.55753117 1.50877538 1.94006306 1.67828737 1.39720275]

[0.81905904 0.07663614 1.13281294 0.28873397 0.3659255]

[0.18543698 1.66253315 0.45416154 0.10617749 0.08200263]]

```
y[:10]:
[-1.38886961 \ -1.10470176 \ \ 0.02462339 \ \ 1.37963429 \ \ 0.8109831 \ \ 5.42763679
 1.96177076 2.97733318 5.03682273 -2.54133726]
           RLSM ITERATIONS
_____
     Step 1
_____
> \theta_1: [2.29777755]
> H_1_inv:
[[0.00924745]]
> RSS_1: 321.732971393194
_____
     Step 2
_____
> \theta_{-}2: [ 3.62354553 -1.61403333]
> H_2_inv:
[[ 0.02015025 -0.01327342]
[-0.01327342 0.0161595]]
> RSS_2: 160.5210677852021
_____
     Step 3
_____
> \theta_3: [ 3.20833974 -2.08013516 1.01265985]
> H_3_inv:
[[ 0.02407731 -0.00886498 -0.00957786]
[-0.00886498 0.02110833 -0.01075191]
[-0.00957786 -0.01075191 0.02335977]]
> RSS_3: 116.62165726531734
_____
     Step 4
_____
> \theta_4: [ 3.14722556 -2.12966522 0.9258072 0.20096952]
> H_4_inv:
[[ 0.02596771 -0.0073329 -0.00689131 -0.00621643]
[-0.00621643 -0.00503812 -0.00883451 0.02044229]]
> RSS_4: 114.64591220959169
     Step 5
> \theta_{-}5: [ 3.14978672 -2.12652568 0.929833 0.20372165 -0.01407788]
> H_5_inv:
[[ 0.02684447 -0.00625814 -0.00551315 -0.00527429 -0.00481931]
[-0.00625814 0.02366748 -0.00688521 -0.00388321 -0.00590764]
[-0.00551315 \ -0.00688521 \ \ 0.02934404 \ -0.00735358 \ -0.00757532]
```

[-0.00527429 -0.00388321 -0.00735358 0.02145468 -0.00517866]

[-0.00481931 -0.00590764 -0.00757532 -0.00517866 0.02649024]] > RSS_5: 114.63843070995833

RESULTS

PARAMETERS

True values: θ : [3 -2 1 0 0]

Estimates: $\theta*$: [3.14978672 -2.12652568 0.929833 0.20372165 -0.01407788]

	s	RSS	Ср	FPE
0	1.0	321.732971	323.732971	328.232627
1	2.0	160.521068	164.521068	167.072948
2	3.0	116.621657	122.621657	123.835368
3	4.0	114.645912	122.645912	124.199738
4	5.0	114.638431	124.638431	126.705634
s*	by C	p: 3		
s*	by F	PE: 3		

3.3 Результати роботи МНКО для кожної складності моделі з перестановками

Оскільки алгоритм МНКО діє послідовно в порядку розташування регресорів, має сенс будувати моделі для перестановок (найвпливовіший регресор, наприклад, може бути розташований в кінці, а найменш впливовий - на початку; це потрібно відслідковувати).

Тож виконаємо МНКО для однієї вибірки довжини n=100, з дисперсією шуму $\sigma=1$ з перестановкою регресорів.

In [48]: config.run_single_full_RMNK_model_selection(sort_values_by=['Cp', 'FPE'])
['s', 'Cp', 'FPE']

Out[48]:		s	regressors	RSS	Ср	FPE
C	О	3.0	[1, 2, 3]	116.621657	122.621657	123.835368
1	1	4.0	[1, 2, 3, 4]	114.645912	122.645912	124.199738
2	2	4.0	[1, 2, 3, 5]	116.572858	124.572858	126.287262
3	3	5.0	[1, 2, 3, 4, 5]	114.638431	124.638431	126.705634
4	4	4.0	[1, 2, 4, 5]	144.102310	152.102310	156.110836
5	5	3.0	[1, 2, 4]	146.183425	152.183425	155.225699
6	6	3.0	[1, 2, 5]	153.827996	159.827996	163.343130
7	7	2.0	[1, 2]	160.521068	164.521068	167.072948
8	3	3.0	[1, 3, 5]	306.719568	312.719568	325.691912
S	9	2.0	[1, 5]	309.379084	313.379084	322.006802
1	10	4.0	[1, 3, 4, 5]	305.707017	313.707017	331.182602
1	11	3.0	[1, 4, 5]	309.249047	315.249047	328.377854
1	12	2.0	[1, 4]	318.070515	322.070515	331.052985
1	13	3.0	[1, 3, 4]	317.575349	323.575349	337.219185
1	14	1.0	[1]	321.732971	323.732971	328.232627
1	15	2.0	[1, 3]	321.610000	325.610000	334.736939
1	16	4.0	[2, 3, 4, 5]	484.217522	492.217522	524.568983
1	17	3.0	[2, 3, 4]	496.082280	502.082280	526.767782
1	18	3.0	[2, 3, 5]	517.356037	523.356037	549.357442
1	19	2.0	[2, 3]	544.137976	548.137976	566.347689
2	20	2.0	[3, 4]	572.017780	576.017780	595.365444
2	21	3.0	[3, 4, 5]	571.494826	577.494826	606.845021
2	22	3.0	[2, 4, 5]	572.337972	578.337972	607.740321
2	23	2.0	[3, 5]	584.595152	588.595152	608.456178
	24	1.0	[3]	589.415868	591.415868	601.323260
2	25	2.0	[4, 5]	616.452583	620.452583	641.613913
	26	2.0	[2, 4]	618.422055	622.422055	643.663771
	27	1.0	[4]	634.770928	636.770928	647.594583
2	28	2.0	[2, 5]	665.920341	669.920341	693.100763
	29	1.0	[5]	675.015687	677.015687	688.652368
3	30	1.0	[2]	812.130057	814.130057	828.536725

В даному випадку за другим критерієм оптимальною є модель складності 3 з регресорами 1, 2, 3.

4 Висновки

При побудові регресійних моделей для різницевого рівняння моделі Фергюльста та різницевого рівнянна згасаючих коливань ми показали, що алгоритм МНКО є ефективним при оцінюванні параметрів моделі. У порівнянні з МНК він є набагато менш затратним через те, що не виконує пряме обертання матриці, а рекурентно виконує апроксимацію оберненої матриці, і при цьому дає досить точні оцінки, залежність точності яких від шуму була показана в роботі. При відносно невеликих шумах алгоритм показує дуже хороші результати.

В ході проведення статистичних експериментів ми з'ясували, що критерії Маллоуза і критерій фінальної помилки передбачення Акаіке є досить стійкими до зростаючого рівня шуму, і при додаванні нерелевантних регресорів моделі, вони не обирають переускладнені моделі, оскільки в них наявний штраф за складність. За теоретичними оцінками відомо, що за умови наявності точної оцінки дисперсії (рівня) шуму критерій Маллоуза є оптимальним з точки зору теорії завадостійкого моделювання. Ми підтвердили це експериментально.

5 Код програми

5.1 Імпорт необхідних бібліотек; налаштування In [20]: import numpy as np import pandas as pd from scipy.integrate import odeint from itertools import permutations import matplotlib.pyplot as plt %matplotlib inline from pylab import rcParams rcParams['figure.figsize'] = 14, 8 import plotly.offline as py import plotly.graph_objs as go py.offline.init_notebook_mode(connected=True) 5.2 Реалізація МНКО In [21]: def RMNK(X, y, s=None, sigma_estimation=1 verbose=False, deep_verbose=False, create_dataframe=False): assert X.ndim == 2 and X.shape[1] > 0 m = X.shape[1]if m > 1: if create_dataframe: w, H_inv, RSS, df = RMNK(X[:,:-1], y, s, sigma_estimation verbose, deep_verbose, create_dataframe) if s is not None and m > s: return w, H_inv, RSS, df else: w, H_inv, RSS = RMNK(X[:,:-1], y, s, sigma_estimation, verbose, deep_verbose, create_dataframe) if s is not None and m > s: return w, H_inv, RSS # w is of shape = [m-1, 1]; H_inv is of shape = [m-1, m-1] h = (X[:,:-1].T @ X[:,-1]).reshape(-1,1) # shape = [m-1, 1]eta = X[:,-1].T @ X[:,-1] # shape = [1, 1] $alpha = H_inv @ h # shape = [m-1, 1]$ beta = eta - h.T @ alpha # shape = [1, 1] beta_inv = 1 / beta # shape = [1, 1] gamma = X[:,-1].T @ y # shape = [1, 1]nu = beta_inv * (gamma - h.T @ w) # shape = [1, 1] w = np.vstack((w - nu * alpha, nu)) # shape = [m, 1]H_next_inv = np.vstack((np.hstack((H_inv + beta_inv * alpha @ alpha.T, (- beta_inv * alpha).reshape(-1, 1))), np.hstack((-beta_inv * alpha.T, beta_inv))))

RSS_next = (RSS - nu.flatten() ** 2 * beta.flatten())[0]

```
H_{inv} = np.array([[0]])
                eta = beta = X[:,-1].T @ X[:,-1]
                beta_inv = 1 / beta
                alpha = h = np.array([0])
                gamma = X[:,-1].T @ y
                nu = np.array([beta_inv * gamma])
                w = np.array([nu])
                H_next_inv = np.array(beta_inv).reshape(1, 1)
                RSS_next = (y.T @ y - y.T @ X[:,-1].reshape(-1, 1) @ w)[0]
                if create_dataframe:
                    df = pd.DataFrame(columns=['s', 'RSS', 'Cp', 'FPE'])
            if verbose:
                print('=======')
                print('\tStep {}'.format(m))
                print('======')
                if deep_verbose:
                    print('h_{{}}:\t\t\}'.format(m, h.reshape(-1,1)[:,0]))
                    print('eta_{{}}:\t\t{}'.format(m, eta))
                    print('alpha_{}:\t{}'.format(m, alpha.reshape(-1,1)[:,0]))
                    print('beta_{}:\t\t{}'.format(m, beta))
                    print('gamma_{}:\t{}'.format(m, gamma))
                   print('nu_{\}:\t\t{\}'.format(m, nu))
                    print('======"")
                print('> \theta_{\{\}}: {}'.format(m, w[:, 0]))
                print('> H_{{}_inv:\n{}'.format(m, H_next_inv))
                print('> RSS_{{}}: {}'.format(m, RSS_next))
            if create_dataframe:
                Cp = RSS_next + 2 * sigma_estimation * m
                n = y.shape[0]
                FPE = (n + m) / (n - m) * RSS_next
                df = df.append({'s': m, 'RSS': RSS_next, 'Cp': Cp, 'FPE': FPE},
                              ignore_index=True)
                return w, H_next_inv, RSS_next, df
            return w, H_next_inv, RSS_next
5.3 Модель Фергюльста: реалізація класу, методів, функцій
In [22]: def Verhulst_model_equation(N, t, \mu, k):
            return \mu * N * (k - N)
        class VerhulstModelConfig():
            k = 100
            \mu = 0.0001
            NO = 10
            t_start = 0
```

else: # 1

```
t_end = 500
num_samples = 50
num\_samples\_grid = [10, 50, 100]
C = 3
C_{grid} = [0, 2, 5]
def __init__(self):
    self.theta = self.init_to_inter_params()
    self.compile()
def compile(self):
    self.h = int((self.t_end - self.t_start) / (self.num_samples - 1))
    self.t = np.linspace(self.t_start, self.t_end, num=self.num_samples)
    self.N = odeint(Verhulst_model_equation,
                    self.NO, self.t, (self.\mu, self.k))
    self.create_data_sample()
def recompile(self, C, num_samples):
    self.C = C
    self.num_samples = num_samples
    self.compile()
def show(self):
    print('Initial parameters:\t\mu = {}\n\t\t
           k = {} \ln t \times 0 = {} \ln (self.\mu, self.k, self.N0))
    print('Noise generation: C = {}'.format(self.C))
    print('Sample length: n = {}'.format(self.num_samples))
    print('Time starting from {} to {} \
           with discretization frequency {}\n'.format(self.t_start,
                                                       self.t_end,
                                                        self.h))
def init_to_inter_params(self):
    w1 = self.\mu * self.k + 1
    w2 = -self. \mu
    return np.array([w1, w2])
def inter_to_init_params(self, w1, w2):
    \mu = - w2
    k = (1 - w1) / w2
    return \mu, k
def create_data_sample(self):
    self.df = pd.DataFrame()
    self.df['i'] = range(1, self.num_samples+1)
    self.df['t'] = list(map(int, self.t))
    self.df['N(t)'] = self.N.flatten()
    self.df['N^2(t)'] = np.square(self.N.flatten())
```

```
self.df['N(t+1)'] = np.array(self.df[['N(t)','N^2(t)']]) @ self.theta
    self.df['N(t+1)'] = np.round(self.df['N(t+1)'], self.C)
    self.X = np.array(self.df[['N(t)', 'N^2(t)']])
    self.y = np.array(self.df['N(t+1)'])
def plot_3D(self):
    trace1 = go.Scatter3d(
        x=self.df['N(t)'],
        y=self.df['N^2(t)'],
        z=self.df['N(t+1)'],
        mode='markers',
        marker=dict(
            size=12,
            line=dict(
                color='rgba(217, 217, 217, 0.14)',
                width=0.5
            ),
            opacity=0.8
        )
    )
    data = [trace1]
    layout = go.Layout(
        margin=dict(
            1=0,
            r=0,
            b=0.
            t=0
        )
    )
    fig = go.Figure(data=data, layout=layout)
    py.iplot(fig, filename='simple-3d-scatter')
def run_single_RMNK(self, verbose=True, deep_verbose=True):
    print('Recurrent Least Squares Method')
    self.theta_pred = RMNK(self.X, self.y, verbose=verbose,
                            deep_verbose=deep_verbose) [0] [:,0]
    self.\mu_pred, self.k_pred = \
    self.inter_to_init_params(*self.theta_pred)
    print('\nINTERMEDIATE PARAMETERS')
    print('True values:\t\theta_1 = \{\} \setminus t\theta_2 = \{\}' \cdot format(*self \cdot theta))
    print('Estimates:\t\theta_1* = {}\t\theta_2* = {}'.format(*self.theta_pred))
    print('\nINITIAL PARAMETERS')
    print('True values:\t\mu = {}\tk = {}'.format(self.\mu, self.k))
    print('Estimates:\tu* = {}\tk* = {}'.format(self.u_pred, self.k_pred))
    plt.scatter(self.t, self.y)
    t_for_plot = np.linspace(self.t_start, self.t_end,
```

```
num=self.num_samples * 10)
              plt.plot(t_for_plot, odeint(Verhulst_model_equation,
                                                                                                                    self.NO, t_for_plot,
                                                                                                                     (self.µ_pred, self.k_pred)), 'r')
              plt.show()
def run_grid_RMNK(self, verbose=False):
               intermediate_estimates_df = pd.DataFrame(columns=['C', 'num_samples',
                                                                                                                                                                                                     \theta_{1}, 
                                                                                                                                                                                                     \theta_{2}, \theta_{2*}
              initial_estimates_df = pd.DataFrame(columns=['C', 'num_samples',
                                                                                                                                                                                   '\mu', '\mu*', 'k', 'k*'])
              for C in self.C_grid:
                             for num_samples in self.num_samples_grid:
                                           self.recompile(C, num_samples)
                                           theta_pred = RMNK(self.X, self.y, verbose=False)[0][:,0]
                                           µ_pred, k_pred = self.inter_to_init_params(*theta_pred)
                                           intermediate_estimates_df = \
                                           intermediate_estimates_df.append({'C': self.C,
                                                                                                                                                                        'num_samples': self.num_samples,
                                                                                                                                                                        \theta_1': self.theta[0],
                                                                                                                                                                        \theta_1*: theta_pred[0],
                                                                                                                                                                        \theta_2: self.theta[1],
                                                                                                                                                                        \theta_2*: theta_pred[1]},
                                                                                                                                                                    ignore_index=True)
                                           initial_estimates_df = \
                                           initial_estimates_df.append({'C': self.C,
                                                                                                                                                      'num_samples': self.num_samples,
                                                                                                                                                      '\mu': self.\mu,
                                                                                                                                                      \mu*: \mu_pred,
                                                                                                                                                      'k': self.k,
                                                                                                                                                      'k*': k_pred},
                                                                                                                                                     ignore_index=True)
                                           if verbose:
                                                         print('=====
                                                          print('C: {}\t num_samples: {}'.format(self.C,
                                                                                                                                                                                                        self.num_samples))
                                                          print('\nINTERMEDIATE PARAMETERS')
                                                          print('Estimates:\t\theta_1* = {: 12.8}\t\theta_2* = \
                                                          {:12.8}'.format(*theta_pred))
                                                          print('\nINITIAL PARAMETERS')
                                                          print('Estimates:\t\mu* = {: 12.8}\tk* = \
                                                          \{: 12.8\}'.format(\mu_pred, k_pred))
              return pd.concat([intermediate_estimates_df,
                                                                                initial_estimates_df[['\mu', '\mu*', 'k', 'k*']]],
                                                                            axis=1)
```

5.4 Модель згасаючих коливань: реалізація класу, методів, функцій

```
In [27]: def Oscillation_model_equation(x, t, \delta, \omega0_sqr):
              \#x_0' = x_1 = x'
              \#x_1' = x'' = -2 * \delta * x[1] - (\omega 0 ** 2) * x[0]
              return [x[1], -2 * \delta * x[1] - \omega_{0} = x x[0]]
          class OscillationModelConfig():
              \delta = 0.005
              \omega0_sqr = 0.01
              x0 = 5
              x00 = 2
              t_start = 0
              t_end = 500
              num\_samples = 80
              num\_samples\_grid = [30, 80, 150]
              C = 2
              C_{grid} = [0, 2, 5]
              def __init__(self, difference='forward'):
                   self.difference = difference
                   self.theta = self.init_to_inter_params()
                   self.compile()
              def compile(self):
                  self.h = int((self.t_end - self.t_start) / (self.num_samples - 1))
                   self.t = np.linspace(self.t_start, self.t_end, num=self.num_samples)
                   self.x = odeint(Oscillation_model_equation,
                                    np.array([self.x0, self.x00]),
                                     self.t, (self.\delta, self.\omega0_sqr))
                   self.x1 = self.x0 + self.x00
                   self.x11 = self.x00
                   self.x_1 = odeint(Oscillation_model_equation,
                                       np.array([self.x1, self.x11]), self.t+1,
                                       (self.\delta, self.\omega0_sqr))
                   self.create_data_sample()
              def recompile(self, C, num_samples):
                   self.C = C
                   self.num_samples = num_samples
                   self.compile()
              def show(self):
                   print('Initial parameters:\t\delta = \{\}\n\t\t\omega0^2 = \{\}\
                         \n \times t \times 0 = {} \n \times t \times 0 = {} \n' \cdot format(self \cdot \delta, self \cdot \omega_sqr,
                                                                         self.x0, self.x00))
                   print('Noise generation: C = {}'.format(self.C))
                   print('Sample length: n = {}'.format(self.num_samples))
```

```
print('Time starting from {} to {} \
           with discretization frequency {}\n'.format(self.t_start,
                                                         self.t_end,
                                                         self.h))
def init_to_inter_params(self):
    if self.difference == 'center':
        divider = 1 + self.\delta
        w1 = (2 - self.\omega 0_sqr) / divider
        w2 = -(1 - self.\delta) / divider
    elif self.difference == 'forward':
        divider = 1 + 2 * self.\delta
        w1 = (2 + 2 * self.\delta - self.\omega0_sqr) / divider
        w2 = -1 / divider
    return np.array([w1, w2])
def inter_to_init_params(self, w1, w2):
    if self.difference == 'center':
        \delta = (1 + w2) / (1 - w2)
        \omega_0 = (2 - 2 * w1 - 2 * w2) / (1 - w2)
    elif self.difference == 'forward':
        \delta = - (1 / w2 + 1) / 2
        \omega0_sqr = 1 - 1 / w2 + w1 / w2
    return \delta, \omega0_sqr
def create_data_sample(self):
    self.df = pd.DataFrame()
    self.df['i'] = range(1, self.num_samples+1)
    self.df['t'] = list(map(int, self.t))
    self.df['x(t)'] = self.x[:,0].flatten()
    self.df['x(t+1)'] = self.x_1[:,0].flatten()
    self.df['x(t+2)'] = np.array(self.df[['x(t)', 'x(t+1)']]) @ self.theta
    self.df['x(t+2)'] = np.round(self.df['x(t+2)'], self.C)
    self.X = np.array(self.df[['x(t)', 'x(t+1)']])
    self.y = np.array(self.df['x(t+2)'])
def plot_3D(self):
    trace1 = go.Scatter3d(
        x=self.df['x(t)'],
        y=self.df['x(t+1)'],
        z=self.df['x(t+2)'],
        mode='markers',
        marker=dict(
            size=12,
            line=dict(
                 color='rgba(217, 217, 217, 0.14)',
                 width=0.5
            ),
```

```
opacity=0.8
        )
    )
    data = [trace1]
    layout = go.Layout(
        margin=dict(
            1=0,
            r=0,
             b=0.
             t=0
        )
    )
    fig = go.Figure(data=data, layout=layout)
    py.iplot(fig, filename='simple-3d-scatter')
def run_single_RMNK(self, verbose=True, deep_verbose=False):
    print('Recurrent Least Squares Method')
    self.theta_pred = RMNK(self.X, self.y, verbose=verbose,
                             deep_verbose=deep_verbose) [0] [:,0]
    self.\delta_pred, self.\omega0_sqr_pred = \
    self.inter_to_init_params(*self.theta_pred)
    print('=======')
    print('\nINTERMEDIATE PARAMETERS')
    print('True values:\t\theta_1 = \{\}\t\theta_2 = \{\}'.format(*self.theta))
    print('Estimates:\t\theta_1* = {}\t\theta_2* = {}'.format(*self.theta_pred))
    print('\nINITIAL PARAMETERS')
    print('True values:\t\delta = {}\t\t\t\\omega^2 = {}\t.format(self.\delta,
                                                            self.\omega 0_sqr)
    print('Estimates:\t\delta* = {}\t\omega0^2* = {}'.format(self.\delta_pred,
                                                       self.\omega0_sqr_pred))
    plt.scatter(self.t, self.y)
    t_for_plot = np.linspace(self.t_start, self.t_end,
                               num=self.num_samples * 10)
    plt.plot(t_for_plot, odeint(Oscillation_model_equation,
                                  np.array([self.x0, self.x00]),
                                  t_for_plot,
                                   (self.\delta_pred,
                                    self.\omega0\_sqr\_pred))[:,0], 'r')
    plt.show()
def run_grid_RMNK(self, verbose=True):
    intermediate_estimates_df = pd.DataFrame(columns=['C', 'num_samples',
                                                           \theta_{1}, \theta_{1}, \theta_{1}
                                                           \theta_{2}, \theta_{2*}
    initial_estimates_df = pd.DataFrame(columns=['C', 'num_samples',
                                                     \delta', \delta*',
                                                      \omega_0 = \omega_0 = \omega_0
```

```
for num_samples in self.num_samples_grid:
                            self.recompile(C, num_samples)
                            intermediate_estimates_df
                            theta_pred = RMNK(self.X, self.y, verbose=False)[0][:,0]
                            \delta_{pred}, \omega_{0sqrpred} = self.inter_to_init_params(*theta_pred)
                            intermediate_estimates_df = \
                            intermediate_estimates_df.append({'C': self.C,
                                                                  'num_samples': self.num_samples,
                                                                  \theta_1': self.theta[0],
                                                                  \theta_1*: theta_pred[0],
                                                                  \theta_2': self.theta[1],
                                                                  \theta_2*: theta_pred[1]},
                                                                 ignore_index=True)
                            initial_estimates_df = \
                            initial_estimates_df.append({'C': self.C,
                                                             'num_samples': self.num_samples,
                                                             \delta': self.\delta,
                                                            \delta *: \delta_pred,
                                                            \omega_0sqr': self.\omega_0sqr,
                                                            \omega_0_{\text{sqr}}: \omega_0_{\text{sqr}}
                                                            ignore_index=True)
                            if verbose:
                                print('====
                                print('C: {}\t num_samples: {}'.format(self.C,
                                                                            self.num_samples))
                                print('\nINTERMEDIATE PARAMETERS')
                                print('Estimates:\t\theta_1* = {: 12.8}\t\theta_2* = \
                                {:12.8}'.format(*theta_pred))
                                print('\nINITIAL PARAMETERS')
                                print('Estimates:\t\delta* = {: 12.8}\tk* = \
                                \{: 12.8\}'.format(\delta_pred, \omega_0_sqr_pred))
                   return pd.concat([intermediate_estimates_df,
                                       initial_estimates_df[['\delta', '\delta*', \
                                                                \omega_0_{qr'}, \omega_0_{qr*'},
                                      axis=1)
5.5 Селекція оптимальних моделей: реалізація класу, методів, функцій
In [ ]: class ModelConfig():
             m = 5
             n = 10
             n_{grid} = [10, 30, 100]
             theta = np.array([3, -2, 1, 0, 0])
             a = 0
             b = 2
             sigma = 0.01
```

for C in self.C_grid:

```
sigma_grid = [0.1, 0.5, 1]
s = 5
s_{grid} = [1, 2, 3, 4, 5]
def __init__(self):
   self.compile()
def generate_noise_and_output(self):
   self.ksi = np.random.normal(0, self.sigma, size=self.n)
   self.y = self.X @ self.theta + self.ksi
def compile(self):
   self.X = np.random.uniform(self.a, self.b, size=(self.n, self.m))
   self.generate_noise_and_output()
def recompile(self, n, sigma):
   self.n = n
   self.sigma = sigma
   self.compile()
def show(self):
     print('Regressors: m = {}'.format(self.m))
     print('True\ parameters: \theta = \{\}'.format(self.theta))
   print('Sample length: n = {}'.format(self.n))
   print('Noise generation: \sigma = \{\}'.format(self.sigma))
   print('X[:10]:\n{}'.format(self.X[:10]))
   print('y[:10]:\n{}'.format(self.y[:10]))
def run_grid_RMNK_model_selection(self):
   for i, n in enumerate(self.n_grid):
       for j, sigma in enumerate(self.sigma_grid):
           self.recompile(n, sigma)
           print('-----')
           print('\t\t\SAMPLE #{}'.format(i * len(self.n_grid) + j + 1))
           print('-----')
           print('\t\tCONFUGURATIONS & DATA')
           self.show()
           print('\n\t\tRLSM ITERATIONS')
           theta_pred, _, _, df = RMNK(self.X, self.y, s=self.s,
                                      verbose=True,
                                      create_dataframe=True)
           print('\n\t\t\tRESULTS')
           print('\nPARAMETERS')
           print('True values:\t\theta: {}'.format(self.theta))
           print('Estimates:\t\theta*: {}'.format(theta_pred[:,0]))
           plt.plot(df['s'], df['RSS'], label='RSS')
           plt.plot(df['s'], df['Cp'], label='Cp')
           plt.plot(df['s'], df['FPE'], label='FPE')
```

```
plt.legend()
            plt.show()
            print(df)
            print('s* by Cp: {}'.format(np.array(df['Cp']).argmin()+1))
            print('s* by FPE: {}'.format(np.array(df['FPE']).argmin()+1))
           print()
def run_single_full_RMNK_model_selection(self,
                                         sort_values_by=['Cp', 'FPE']):
    total_df = pd.DataFrame()
    for p in permutations(range(self.X.shape[1])):
        p = np.array(p)
        theta_pred, _, _, df = RMNK(self.X[:,p], self.y, s=self.s,
                                    verbose=False, create_dataframe=True)
        df['regressors'] = [str(sorted(p[:int(s)]+1)) for s in df.s]
        total_df = pd.concat([total_df, df], axis=0)
    total_df['RSS'] = np.round(total_df['RSS'], 6)
    total_df['Cp'] = np.round(total_df['Cp'], 6)
    total_df['FPE'] = np.round(total_df['FPE'], 6)
    total_df = total_df.drop_duplicates()
    total_df = total_df.sort_values(by=sort_values_by).reset_index()\
               [['s', 'regressors', 'RSS', 'Cp', 'FPE']]
    return total_df
```