Network Programming and Security TNM031

Pierangelo Dell'Acqua www.itn.liu.se/~piede

Background

- Information Security requirements have changed
 - Traditionally provided by physical and administrative mechanisms
 - Nowadays the use of networks and communications links requires:
 - measures to protect data during transmission
 - automated tools to protect files and other stored information

Aim of the course

- Computer Security
 - generic name for the collection of tools designed to protect data
- Network Security
 - consists of measures to protect data during transmission
- This course focuses on network security

Lec1: Outline

- 1. Attack trends 2015
- 2. Types of Attacks
- 3. Security Goals
- 4. Plan-Protect-Respond Cycle
- 5. Password Cracking

1. Attack Trends 2015

Security Surveys

- Symantec
 - Internet Security Threat Report
- Microsoft
 - Security Intelligence Report
- F-secure
 - Threat Report

Attack Trends

- Growing Randomness in Victim Selection
 - In the past, large firms were targeted
 - Now, targeting is increasingly random
- Growing <u>Malevolence</u>
 - Most early attacks were not malicious
 - Malicious attacks are becoming the norm
- Targeted attacks continue to evolve

- In 2015, the number of Zero-Day vulnerabilities more than doubled from 2014
- Four of the five most exploited zero-day vulnerabilities in 2015 were
 Adobe Flash
- Over half a billion personal records were stolen or lost in 2015
- Over one million web attacks in 2015
- Ransomware increased 35 Percent in 2015
- Symantec blocked 100 million fake technical support scams in 2015

Attackers trick people with pop-ups that alert them to a serious error or problem, thus steering the victim to call a technical support representative that attempts to sell the victim worthless services

Top 10 Types of Information Exposed

Financial information includes stolen credit card details and other financial credentials.

	2015 Type	2015 %	2014 Type	2014
1	Real Names	78%	Real Names	69%
2	Home Addresses	44%	Gov. ID Numbers (e.g., SSN)	45%
3	Birth Dates	41%	Home Addresses	43%
4	Gov. ID Numbers (e.g., SSN)	38%	Financial Information	36%
5	Medical Records	36%	Birth Dates	35%
6	Financial Information	33%	Medical Records	34%
7	Email Addresses	21%	Phone Numbers	21%
8	Phone Numbers	19%	Email Addresses	20%
9	Insurance	13%	User Names & Passwords	13%
10	User Names & Passwords	11%	Insurance	11%

Network attacks, 2015

Top Countries Hosting Botnet Control Servers

This quarter we recorded a 72% increase in new mobile malware samples. We believe that Google's August 2015 notification that it would release monthly updates to its Android mobile operating system forced malware authors to develop new malware more frequently in response to the enhanced security in each monthly release of the operating system. The detection of newly developed mobile malware is reflected in our Q4 statistics.

New Mobile Malware

Types of Security Technology Used

By Percent of Respondents

2. Types of Attacks

Types of Attacks

Social Engineering Attacks

- Opening Attachments
- Password Theft
- Information Theft

Penetration Attacks

- Scanning
- Break-in
- Denial of Service
- Malware

Dialog Attacks

- Eavesdropping
- Impersonation
- Message Alteration

Social Engineering Attacks

- Social Engineering is tricking someone to give out information
 - Asking for a file to be sent to you
 - Asking for a password claiming to be someone with rights to know it
 - Tricking someone to open an e-mail attachment that may contain a virus

Social Engineering Attacks

- Social Engineering Defenses
 - Training
 - Enforcement through sanctions (punishment)

Eavesdropping = to listen secretly to a private communication

Eavesdropping Defense: Encryption for Confidentiality

Impersonation

Message Alteration

defeats encryption eavesdropping defeats authentication impersonation encryption gives data integrity authentication

Secure Dialog System

Eve cannot read messages, alter messages, or impersonate

- One or many messages (packets) are sent to an internal network of a corporation
 - to explore its defenses
 - o to do damage

Internal Network and Firewalls

Scanning (Probing)

Probing = to make a critical exploration

Break-in

Denial-of-Service (DoS)

Intrusion Detection System (IDS)

Malware

- Essentially, a category of attacks consisting of virus and worms
 - The attacker releases them, and they spread to their victims autonomously
 - Virus are spread via the opening of e-mail attachments, drive-by downloads, etc
 - Executing an infected file infects other files
 - Worms spread autonomously using scanning and break-in attacks

Summary

Penetration Attacks

- Scanning
- Break-in attacks
- Denial-of-Service attacks
- Malware

Defenses

- Firewall (actually drops attack packets)
- Intrusion detection system (only gives warnings)

Anti-virus

3. Security Goals

Security Goals: CIA

- Confidentiality
 - Attackers cannot read messages
- Integrity
 - If attackers change messages, this will be detected
- Availability
 - System is able to serve users

Other Security Goals: AAA

Assurance
Anonymity
Authenticity

Assurance

 Refers to how trust is provided and managed in computer systems

Authenticity

- Ability to determine that statements, policies, and permissions issued by persons or systems are genuine
- Provides non-repudiation

Anonymity

 Property that certain records or transactions cannot be attributed to any individual

4. Plan-Protect-RespondCycle

Planning

- Need for comprehensive security (no gaps)
- Risk analysis
 - Enumerating threats
 - Threat severity = estimated cost of attack * probability of attack
 - Value of protection = threat severity cost of countermeasure
 - Prioritize countermeasures by value of protection

Threat Severity Analysis

	Threat	Α	В	С	D
1	Cost if attack succeeds	\$500,000	\$10,000	\$100,000	\$10,000
2	Probability of occurrence	80%	20%	5%	70%
3	Threat severity	\$400,000	\$2,000	\$5,000	\$7,000
4	Countermeasure cost	\$100,000	\$3,000	\$2,000	\$20,000
5	Value of protection	\$300,000	- \$1,000	\$3,000	- \$13,000
6	Apply countermeasure?	Yes	No	Yes	No
7	Priority	1	-	2	-

Protecting

- Installing protections: firewalls, IDSs, host hardening, etc.
- Updating protections as the threat environment changes
- Testing protections: security audits

Security audit = examination and review of a system to identify security weaknesses

Responding

- Incident detection and determination
 - Procedures for reporting suspicious situations
 - Determination that an attack really is occurring
 - Description of the attack

Responding

- Recovery
 - Stop the attack
 - Repair the damage
- Punishment
 - Prosecution
 - Employee Punishment
- Fixing the vulnerability that allowed the attack

Actions Taken After an Incident

By Percent of Respondents

TNM031

5. Password Cracking

Reusable Passwords

- Reusable Passwords
 - A password you use repeatedly to get access to a resource on several occasions
 - Bad because attacker will have time to learn it
- Difficulty of cracking passwords by guessing remotely
 - Usually cut off after a few attempts
 - However, if attacker can steal the password file, he/she can crack passwords

Password Cracking Programs

- IOphtcrack
 - Spelled: lower-case L, zero, phtcrack
 - Password cracking program
 - Run on a server (need physical access)
 - Or copy password file and run l0phtcrack on another machine

Brute-force Password Cracking

- Try all possible character combination
- Longer passwords take longer time to crack
- Using more characters also takes longer time
 - Alphabetic, no case sensitive (26 possibilities)
 - Alphabetic, case sensitive (52)
 - Alphanumeric (letters and numbers) (62)
 - All keyboard characters (~80)

Password Length

Password Length In Characters	Alphabetic, No Case (N=26)	Alphabetic, Case (N=52)	Alphanumeric: Letters & Digits (N=62)	All Keyboard Characters (N=~80)
1	26	52	62	80
2	26 ² =676	2,704	3,844	6,400
4	26 ⁴ =456,976	7,311,616	14,776,336	40,960,000
6	308,915,776	19,770,609,664	56,800,235,584	2.62144E+11
8	2.08827E+11	5.34597E+13	2.1834E+14	1.67772E+15
10	1.41167E+14	1.44555E+17	8.39299E+17	1.07374E+19

Password Length

Password Length In Characters	Alphabetic, No Case (N=26)	Alphabetic, Case (N=52)	Alphanumeric: Letters & Digits (N=62)	All Keyboard Characters (N=~80)
1	< 1sec	< 1sec	< 1sec	< 1sec
2	< 1sec	< 1sec	< 1sec	< 1sec
4	< 5 sec	< 2 min	< 3 min	< 7 min
6	< 52 min	< 55 hours	158 hours	8420 years

Suppose your PC can process 100.000 keys/sec

Password Cracking Methods

- Guess
- Brute Force Attacks
 - Try all possible character combinations
 - Slow with long passwords length
- Dictionary attacks
 - Try common words ("123456", "password", etc.)
 - There are only a few thousand of these
 - Cracked very rapidly

Password Cracking Methods

- Malware
 - A key logger can be installed by malware which records everything you type
- Offline cracking
 - Often the target was compromised
 - This provides access to the system servers and user password hash files

Social engineering

Password Cracking Defenses

- Good passwords
 - At least 6 characters long
 - Change of case not at beginning
 - Digit (0 through 9) not at end
 - Example: triV6#ial
 - Other keyboard character not at end
 - Password checker available
- Change your password frequently