Computer-Aided Design for VLSI Design

Homework1 (Student ID: 41047047S | Name: 楊子萱)

1. Provide a simple explanation of your code.

引用 library

```
1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.NUMERIC_STD.ALL;
```

定義電路的 input/output

Bitwise OR

```
when "00" => -- Mode 1: Bitwise OR

Y(7 downto 0) <= STD_LOGIC_VECTOR(UNSIGNED(A) OR UNSIGNED(B));

Y(15 downto 8) <= (others => '0');
```

乘法

```
when "01" => -- Mode 2: Multiplication

Y <= STD LOGIC VECTOR (RESIZE (UNSIGNED (A) * UNSIGNED (B), 16));</pre>
```

加法

```
when "10" => -- Mode 3: Addition
Y <= STD_LOGIC_VECTOR(RESIZE(UNSIGNED(A) + UNSIGNED(B), 16));</pre>
```

取餘數

2. Waveform diagram here (Simulation Results)

D ₆	Master Time Bar:		25.475 ns	Point	er: 2	.19 ns	Interval:	-23	29 ns	Start:		End:		
A			Ops 80.0 ns	160,0 ns	240,0 ns	320,0 ns	400,0 ns	480 _, 0 ns	560,0 ns	640,0 ns	720,0 ns	800,0 ns	880,0 ns	960,0 ns
æ		Name	25.475 ns		·				'					
€(₽ 0	⊕ A	00001000	00000001 X	00010000	01011010	\perp	00001010 X	00011000	11110000	X 10010110	TX T	00000000	
Din	₽ 9	● B	10000101	10100101 X	00000001	00001111	$\overline{}$	00000101	00001010	01011010	01101001	X	000000000	
	■ 18	⊞ S	00	X		01	\rightarrow	10		X	11	X	- 00	
99	21	₩ Y	0000000010001101	0000000010100101	00000000000010000	000001010100011	0000	000000001111	0000000000100010	0000000000111100	000000000010110	1 (000000000000000000000000000000000000000	
* →														

3. Reflections and discussions

由於進行乘法運算時,兩個 8 位元的數值相乘可能產生最多 16 位元的結果,因此需要使用 UNSIGNED 型別來正確處理位元擴展和溢位問題。此外,在執行取餘數 (MOD) 運算時,需特別考慮除數為 0 的情況。根據數學定義,除以 0 是未定義行為,因此在電路設計中,通常將此情況視為錯誤並將輸出設為 0,以避免不確定的狀態或硬體邏輯異常。透過在程式中加入條件判斷 (if B = 0) 來處理這個邊界情況,可確保電路在所有可能的輸入條件下都能穩定運行。