PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-101672

(43) Date of publication of application: 16.04.1996

(51)int.Ci.

G09G 5/02

H04N 11/08

HO4N 11/24

(21)Application number: 07-182106

(71)Applicant: SONY CORP

(22)Date of filing:

26.06.1995

(72)Inventor: ARAI NAOHISA

TAKAHASHI TAKAO

(30)Priority

Priority number: 06202866

Priority date: 04.08.1994

Priority country: JP

(54) FIELD SEQUENTIAL COLOR DISPLAY DEVICE AND ITS DRIVE CIRCUIT

(57)Abstract:

PURPOSE: To prevent color split in a field sequential

color display.

CONSTITUTION: A minimum value is detected from digitized R, G, B signals (three primary colors) for every pixel (a sample) in a minimum value detection circuit 5, and the minimum value is supplied to a fourfold speed signal processing circuit 9 as a Wht signal (achromatic signal). By subtracting the minimum value detected from the R. G. B signals, R', G', B' signals (modified three primary colors signals) are generated, and the modified three primary colors signals are supplied to the four-fold speed signal processing circuit 9. In the four-fold speed signal processing circuit 9, time-division multiplex in which horizontal and vertical synchronizing signals are made four-fold, is performed. By turning on (0° rotation) and/or off (90°) rotation) π cells 16, 18 based on the timedivision multiplex signal, a color image of which one frame consists of four fields is obtained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other

than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8−101672✓

(43)公開日 平成8年(1996)4月16日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

G09G 5/02 H04N 11/08 11/24

H 9377-5H

H 0 4 N 11/08

審査請求 未請求 請求項の数7 FD (全 8 頁)

(21)出願番号

特願平7-182106

(31) 優先権主張番号 特願平6-202866

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(22)出顧日

(32) 優先日

(33)優先権主張国

平成7年(1995)6月26日

平6 (1994) 8月4日

日本(JP)

(72)発明者 荒井 尚久

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 高橋 孝夫

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 杉浦 正知

(54) 【発明の名称】 面順次カラーディスプレイ装置、および駆動方法

(57) 【要約】

【目的】 面順次カラーディスプレイにおいて、色割れ を防止することができる。

【構成】 最小値検出回路5において、ディジタル化さ れたR、G、B信号(3原色信号)から1画素(1サン プル) 毎に、最小値が検出され、その最小値がWht信 号 (無彩色信号) として、4倍速信号処理回路9へ供給 される。R、G、B信号から検出された最小値を減算す ることによりR´、G´、B´信号(修正3原色信号) が生成され、修正3原色信号は、4倍速信号処理回路9 へ供給される。4倍速信号処理回路9では、水平および 垂直同期信号が4倍とする時分割多重がなされる。その 時分割多重信号に基づいて、πセル16、18をON

(0°回転) および/またはOFF (90°回転) する ことにより、1フレームが4フィールドからなるカラー 画像を得ることができる。

1

【特許請求の範囲】

【請求項1】 モノクロ画像表示手段と、

入力された3原色信号から3原色信号および無彩色信号 を生成する色生成手段と、

生成された上記3原色信号および無彩色信号によって、 上記モノクロ画像表示手段を順次駆動する駆動手段と、 生成された上記3原色信号および無彩色信号の駆動と同 期する外部からの信号によって切り換えられ、上記モノ クロ画像表示手段と光軸上直列に配されるカラーシャッ ターとからなる面順次カラーディスプレイ装置。

【請求項2】 請求項1に記載の面順次カラーディスプ レイ装置において、上記色生成手段は、入力された上記 3 原色信号の中から最小値または最大値が検出され、検 出された上記最小値または最大値を無彩色信号とする無 彩色信号決定手段と、

決定された上記無彩色信号と入力された上記 3 原色信号 との差分値を修正3原色信号とすることを特徴とする面 順次カラーディスプレイ装置。

【請求項3】 請求項1に記載の面順次カラーディスプ 3 原色信号の中から最小値または最大値が検出され、検 出された上記最小値または最大値を無彩色信号とする無 彩色信号決定手段と、

上記無彩色信号決定手段からの上記無彩色信号に対して 輸郭強調処理を施す手段と、

離隔強調された上記無彩色信号と入力された上記3原色 信号との差分値を修正3原色信号とすることを特徴とす る面順次カラーディスプレイ装置。

【請求項4】 請求項3に記載の面順次カラーディスプ レイ装置において、

上記3原色信号輝度レベルおよび動きを検出する輝度/ 動き検出手段と、

検出された上記輝度レベルが大きい場合に上記輪郭強調 処理を行うようにしたことを特徴とする面順次カラーデ ィスプレイ装置。

【請求項5】 請求項4に記載の面順次カラーディスプ レイ装置において、

さらに、上記輝度/動き検出手段からの上記動きレベル が第1のしきい値より大きく、第2のしきい値より小さ い場合に上記輸郭強調処理を行うようにしたことを特徴 40 器によりディジタル化されている。 とする面順次カラーディスプレイ装置。

【請求項6】 請求項1に記載の面順次カラーディスプ レイ装置において、

上記駆動手段は、上記色生成手段において、生成された 上記3原色信号および無彩色信号を4倍速の時分割多重 することにより上記モノクロ画像表示手段を順次駆動す ることを特徴とする面順次カラーディスプレイ装置。

【請求項7】 入力された3原色信号から無彩色信号が 検出されるステップと、

検出された上記無彩色信号に基づいて修正3原色信号が

生成されるステップと、

上記無彩色信号と上記修正3原色信号との4倍速の時分 割多重信号が生成されるステップと、

上記時分割多重信号に基づいてフィールドが切り換えら れるモノクロ画像表示手段と光軸上直列に配されるカラ ーシャッターとを駆動するステップとからなることを特 徴とするカラーディスプレイ装置の面順次駆動方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、フィールド毎または 数枚分の1フィールド毎に3原色画像を切り換えること によりカラー表示を可能とする面順次カラーディスプレ イ装置および駆動方法に関する。

[0002]

【従来の技術】従来、2色以上の光が人間の目に入射さ れた場合、網膜上において混合され、入射された色とは 異なる色として知覚される。これを加法混色と呼ぶ。こ の加法混色を用いて得ることができない色光が一般に光 の3原色と言われるR(赤)、G(緑)、B(青)であ レイ装置において、上記色生成手段は、入力された上記 20 る。この3つの独立した色光の加法混色により、任意の 色光を得ることができ、カラーディスプレイの基本原理 として使用されている。

> 【0003】一般的にはカラーディスプレイにおいて、 並置加法混色、継続加法混色および同時加法混色等の混 色が行われる。これら何れの手法も人間の目の分解能の 限界がもたらす加法混色の手法である。上述の継続加法 混色は、一般的に面順次方式と呼ばれ、この面順次方式 は、主にカラーシャッター方式とバックライト方式の2 種類の方式にまとめられる。

【0004】ここで、図6は、カラーシャッター方式を 30 用いた面順次方式のカラーディスプレイの従来例のプロ ック図を示す。また、図7は、図6に示すプロック図の 各部の信号波形の一例を示す。入力端子61から図7A に示す複合カラービデオ信号から分離されたR信号が供 給され、入力端子62から同様のG信号が供給され、入 力端子63から同様のB個号が供給され、さらに入力端 子64から同期信号Syncが供給される。なお、図7 Aでは、簡単のため搬送色信号の図示が省略されてい る。これらのR、G、B信号は、図示しないA/D変換

【0005】入力端子61~64から供給された各信号 は、3倍速信号処理回路65へ供給される。3倍速信号 処理回路65は、フィールドメモリ66を有し、各信号 の時間軸を1/3へ圧縮し、圧縮3原色信号を時分割多 重する。すなわち、図7Bに示す3倍速信号が3倍速信 号処理回路65から発生する。この3倍速信号がCRT (Cathode Ray Tube) ディスプレイ 6 7 と同期分離回路 68へ供給される。同期分離回路68では、供給された 3倍速信号から分離された同期信号が偏向回路69とL

50 CS (Liquid Crystal Switch) ドライブ回路70へ供

2

給される。

【0006】偏向回路69では、供給された同期信号に基づいて、CRTディスプレイ67の偏向が行われ、CRTディスプレイ67の偏向が行われ、CRTディスプレイ67によって、映像が表示される。水平および垂直偏向周波数のそれぞれは、通常のものの3倍とされ、1フィールド内においてR信号、G信号、B信号による映像が順次表示される。LCSドライブ回路70では、供給された同期信号を用いてπセル72および74のドライブのタイミングが生成される。

【0007】LCSドライブ回路70からのドライブパルスLCS1は、πセル72へ供給され、ドライブパルスLCS2は、πセル74へ供給される。この従来例では、CRTディスプレイ67からの表示を3枚のカラー偏光板71、73および75と2枚のπセル72および74の構成により面順次方式のカラーディスプレイとされている。図7Cは、ドライブパルスLCS1のタイミングチャートを示し、図7Dは、ドライブパルスLCS2のタイミングチャートを示す。ここで、πセル72および74は、ON状態のとき入射光を0°回転し、すなわち入射光の状態のまま出力し、OFF状態のとき入射光を90°回転し、出力する。

【0008】このことより、ドライブパルスLCS1がON、ドライブパルスLCS2がONの場合、G画像が表示され、ドライブパルスLCS1がON、ドライブパルスLCS2がOFFの場合、R画像が表示され、ドライブパルスLCS1がOFF、ドライブパルスLCS2がONの場合、B画像が表示される。すなわち、このR、G、B画像を繰り返し表示することによりフルカラーの映像が写し出される。

【0009】また、特公平5-34672号公報に記載 30 された画像フレーム順次表示手段の前に2色光シャッター手段を配置し、偏光板2枚ともう1枚の偏光板の間にネマチック型液晶可変光学リターダを挟む手段を有するフィールド順次方式カラー表示装置等が知られている。

[0010]

【発明が解決しようとする課題】しかしながら、これらのカラーディスプレイは、人間の視線が固定されている場合は、何ら問題が起きないが、人間の視線が移動した場合、面順次方式のため、網膜上のR、G、B信号の残色の位置が変化することで、無彩色にもかかわらず、色 40 が付いたような問題が生じる。

【0011】図8Aでは、視線が固定されているため、 白球と対応する3原色の残像の網膜上の位置が変化しない。しかしながら、図8Bに示すように、視線が移動すると、3原色像の残像の位置が網膜上で異なり、その結果、白球が色付いて見える問題が生じる。

【0012】また、図8Aに示すように視線が固定されていても、白球の移動が速い場合、R、G、B信号のうち白球の移動に追従せず、例えばR信号がG、B信号とずれる場合、残像の位置が網膜上で異なり、白球のエッ

4

ジがなまるように見える問題が生じる。これらの現象を 色割れと呼び、この色割れの性質として、高輝度な物ほ ど色割れが見えやすい。また、無彩色な物ほど色割れが 見えやすいという性質がある。

【0013】従って、この発明の目的は、面順次方式のカラーディスプレイにおいて、色割れすることなく表示することが可能な面順次カラーディスプレイ装置および 駆動方法を提供することにある。

[0014]

【課題を解決するための手段】請求項1に記載の発明は、モノクロ画像表示手段と、入力された3原色信号から3原色信号および無彩色信号を生成する色生成手段と、生成された3原色信号および無彩色信号によって、モノクロ画像表示手段を順次駆動する駆動手段と、生成された3原色信号および無彩色信号の駆動と同期する外部からの信号によって切り換えられ、モノクロ画像表示手段と光軸上直列に配されるカラーシャッターとからなる面順次カラーディスプレイ装置である。

【0015】また、請求項7に記載の発明は、入力され 20 た3原色信号から無彩色信号が検出されるステップと、 検出された無彩色信号に基づいて修正3原色信号が生成 されるステップと、無彩色信号と修正3原色信号との4 倍速の時分割多重信号が生成されるステップと、時分割 多重信号に基づいてフィールドが切り換えられるモノクロ画像表示手段と光軸上直列に配されるカラーシャッターとを駆動するステップとからなることを特徴とするカラーディスプレイ装置の面順次駆動方法である。

[0016]

【作用】3枚のカラー偏光板と2枚のπセルとから構成され、R、G、B信号とWht信号によりモノクロ画像表示装置が順次駆動される。Wht信号は、R、G、B信号が共有するレベルを用いているため、高輝度、無彩色の映像に近づく程、Wht信号が他の信号より影響が強くなる。よって、高輝度、無彩色の映像においても色割れの発生を防ぐことができる。さらに、Wht信号に対して輪郭強調(エンファシス)処理を行うことによって輪郭(エッジ)を際立たせるため、高輝度信号のエッジ部分の色割れを取り除くことができる。

[0017]

40 【 実施例】以下、この発明の一実施例について図面を参照して説明する。図 1 は、カラーシャッター方式を用いた面順次方式のカラーディスプレイの一実施例のプロック図を示す。また、図 2 は、図 1 に示すブロック図の各部の信号波形の一例を示す。入力端子 1 から図 2 Aに示す複合カラーピデオ信号から分離されたR信号が供給され、入力端子 2 から同様のG信号が供給され、入力端子 4 から同期信号 S y n c が供給される。なお、図 2 A では、簡単のため搬送色信号の図示が省略されている。これらの 50 R、G、B信号は、図示しないA/D変換器により、デ

ィジタル化されている。

【0018】入力端子1から供給されたR信号は、最小 値検出回路5と減算器6へ供給される。同様にG信号 は、最小値検出回路5と減算器7へ供給され、B信号 は、最小値検出回路5と減算器8へ供給される。最小値 検出回路5では、入力されたR、G、B信号中の最小値 が検出され、検出された最小値は、Wht信号として、 滅算器6、7、8および4倍速信号処理回路9へ供給さ れる。上述した加法混色では、同じレベルのR、G、B 信号を用いることにより無彩色信号を得ることができる ため、この実施例では、3原色信号が共有するレベル、 すなわちR、G、B信号中の最小値が検出され、その最 小値は、Wht信号として最小値検出回路5から4倍速 信号処理回路9へ供給される。この最小値検出回路5 は、例えばディジタル化された1画素(1サンプル)毎 に、R信号とG信号、G信号とB信号、B信号とR信号 を比較し、比較結果に基づいて、最小値の色信号を検出 する。

【0019】減算器6では、R信号からWht信号を減算した結果、R´信号(修正R信号)を4倍速信号処理回路9へ供給される。同様に減算器7では、G信号からWht信号を減算した結果、G´信号(修正G信号)が4倍速信号処理回路9へ供給され、減算器8では、B信号からWht信号を減算した結果、B´信号(修正B信号)が4倍速信号処理回路9へ供給される。ここで、一例として、ディジタル化された各画素値をR信号が5[V]、G信号が6[V]、B信号が4[V]とした場合、最小値検出回路5において、最小値として4[V]が検出され、R´信号が1[V]、G´信号が2[V]、B´信号が0[V]、そして最小値、すなわちWht信号は、4[V]として、4倍速信号処理回路9へ供給される。

【0020】4倍速信号処理回路9は、フィールドメモリ10を有し、各信号の時間軸を1/4へ圧縮し、供給される修正3原色信号(R´、G´、B´信号)と無彩色信号(Wht信号)との時分割多重を行う。すなわち、図2Bに示す4倍速信号が4倍速信号処理回路9から発生する。この4倍速信号がCRTディスプレイ11と同期分離回路12へ供給される。同期分離回路12では、供給された4倍速信号から分離された同期信号が偏40向回路13とLCSドライブ回路14へ供給される。

【0021】偏向回路13では、供給された同期信号に基づいて、CRTディスプレイ11の偏向が行われ、CRTディスプレイ11、すなわち白黒表示装置へ映像が表示される。水平および垂直偏向周波数のそれぞれは、通常のものの4倍とされ、1フィールド内においてWht信号、R´信号、G´信号、B´信号による映像が順次表示される。LCSドライブ回路14では、供給された同期信号を用いてπセル16および18のドライブのタイミングが生成される。

6

【0022】LCSドライブ回路14からのドライブパルスLCS1は、πセル16へ供給され、ドライブパルスLCS2は、πセル18へ供給される。図2Cは、ドライブパルスLCS1のタイミングチャートを示し、図2Dは、ドライブバルスLCS2のタイミングチャートを示す。このπセル16および18は、上述したπセル52および54と同じ機能を有するものである。ドライブパルスLCS1およびLCS2のそれぞれのハイレベルの期間でπセル16および18がOFFされる。

【0023】ここで、CRTディスプレイ11の光軸上直列に配されている3枚のカラー偏光板15、17および19と2枚のπセル16および18の説明を図3を用いて説明する。Wht信号(無彩色信号)を取り出す場合、CRTディスプレイ11から色光がカラー偏光板15へ供給され、そのカラー偏光板15の縦軸はR、G、B信号を通過させ、横軸はR信号がπセル16へ供給される。πセル16では、LCSドライブ回路14からドライブパルスLCS1(ON)が供給され、そのドライブパルスLCS1(ON)に従って、供給された信号がそれぞれの状態を変化させることなくカラー偏光板17へ供給される。

【0024】カラー偏光板17の縦軸はR、G、B信号 を通過させ、横軸はB信号を通過させるため、供給され たそれぞれの信号から縦軸のR、G、B信号がπセル1 8へ供給される。πセル18では、LCSドライブ回路 14からのドライブパルスLCS2(ON)が供給さ れ、そのドライブパルスLCS2(ON)に従って、供 給された信号がそれぞれの状態を変化させることなくカ ラー偏光板19へ供給される。カラー偏光板19の縦軸 はR、G、B信号を通過させ、横軸はG信号を通過させ るため、供給されたそれぞれの信号から縦軸のR、G、 B信号がそれぞれの状態を変化させることなく出力さ れ、表示される。すなわち、Wht信号(無彩色信号) は、πセル16および18がON状態となることにより 得ることができる。同様に、2枚のπセルをON(0° 回転) および/またはOFF(90°回転) とすること でR、G、B信号およびWht信号の各信号を選択的に 得ることができる。

40 【0025】ドライブパルスLCS1がON、ドライブパルスLCS2がONの場合、Wht信号が出力され、ドライブパルスLCS1がOFF、ドライブパルスLCS1がOFF、ドライブパルスLCS1がOFFの場合、G信号が出力され、ドライブパルスLCS1がOFF、ドライブパルスLCS2がOFFの場合、B信号が出力される。すなわち、3枚のカラー偏光板15、17および19、2枚のπセル16および18から構成されている。このように、R、G、B信号(3原色信号)の共有するレベルをWht信号(無彩色信号)とするた

8

め、高輝度、無彩色の画像を表示する場合、Wht信号の影響が最も強くなることから、色割れの原因を取り除くことができる。

【0026】ここで、図4は、この発明の4倍速信号処理回路9の一例の詳細なプロック図を示す。入力端子21から供給されるR「信号は、フィールドメモリ26へ供給され、入力端子22から供給されるG「信号は、フィールドメモリ27へ供給され、入力端子23から供給されるB「信号は、フィールドメモリ28へ供給され、さらに入力端子24から供給されるWht信号は、フィールドメモリ29へ供給されるWht信号は、フィールドメモリ29へ供給される。入力端子25から供給される同期信号Syncは、書き込み制御回路30とクロック生成回路32へ供給される。この同期信号Syncは、水平同期信号および垂直同期信号を含む複合同期信号である。

【0028】一例として、書き込みクロック信号の周波数に対して、読み出しクロック信号の周波数が4倍とされている。これにより時間軸が1/4に圧縮され、図2Bに示すような4倍速信号が出力端子34から取り出される。また、読み出し制御回路31からは、選択信号は、スイッチ33の切換信号として使用され、さらにフィールド識別あるいはしてS駆動等の信号として出力端子35から取り出される。また、読み出し制御回路31から出力される同期信号として、出力端子36から取り出される。

【0029】ここで、この発明のカラーシャッター方式を用いた面順次方式のカラーディスプレイの他の実施例を示すブロック図を図5に示す。この図5は、R、G、B信号の入力から4倍速信号処理回路9までのブロック図を示し、その4倍速信号処理回路9以降は、図1のブロック図と同じ構成となるため省略する。入力端子1から供給されたディジタル化されたR信号は、既にγ補正が施されているため逆γ補正回路41へ供給され、γ補正が施される前の信号へ変換される。同様に入力端子2から供給されたディジタル化されたG信号は、逆γ補正

回路42へ供給され、入力端子3から供給されたディジタル化されたB信号は、逆γ補正回路43へ供給される。

【OO30】R信号が供給された逆γ補正回路41で は、γ補正がキャンセルされる。同様に、G信号が供給 された逆γ補正回路42では、γ補正がキャンセルさ れ、B信号が供給された逆γ補正回路43では、γ補正 がキャンセルされる。最小値検出回路5では、 y 補正が キャンセルされたR、G、B信号中の最小値が検出さ 10 れ、この最小値検出回路5は、例えばディジタル化され た1画素(1サンプル)毎に、R信号とG信号、G信号 とB信号、B信号とR信号を比較し、比較結果に基づい て、最小値の色信号が検出される。検出された最小値 は、上述した実施例と同様にWht信号として、エンフ アシス回路 45 およびスイッチ 46 の一方の被選択端子 へ供給される。エンファシス回路45では、供給された Wht信号に対して輪郭(エッジ)を強調するような輪 郭強調(エンファシス)処理がなされ、スイッチ46の 他方の被選択端子へ供給される。

20 【0031】輝度検出/動き検出回路44では、まず輝度検出が行われ、設定されたしきい値より高い値を示した輝度レベルが高輝度として検出され、高輝度と検出された場合のみ、動き検出が行われる。この輝度検出/動き検出回路44で行われる動き検出は、フィールド間差分から動き量から検出され、その動き量に基づいてスイッチ46の制御がなされる。すなわち、スイッチ46は、Wht信号を伝送するにあたり、エンファシス処理がなされたWht信号を伝送するか否かが選択される。そして、スイッチ46の選択端子を介してWht信号の選択端子を介してWht信号は、減算器6、7、8およびγ補正回路50へ供給される。

【0032】減算器6では、γ補正がキャンセルされた R信号からWht信号を減算した結果、R^{*}信号(修正 R信号)が生成され、そのR^{*}信号は、γ補正回路47つ供給される。そして、γ補正回路47では、R^{*}信号に対してγ補正が施された後、4倍速信号処理回路9つ供給される。同様に減算器7では、γ補正がキャンセルされたG信号からWht信号を減算した結果、G^{*}信号(修正G信号)が生成され、そのG^{*}信号は、γ補正回 848つ供給される。そして、γ補正回路48では、G^{*}信号に対してγ補正が施された後、4倍速信号処理回路9つ供給される。

【0033】さらに、減算器8では、γ補正がキャンセルされたB信号からWht信号を減算した結果、B´信号(修正B信号)が生成され、そのB´信号は、γ補正回路49へ供給される。そして、γ補正回路49では、B´信号に対してγ補正が施された後、4倍速信号処理回路9へ供給される。また、γ補正回路50へ供給されたWht信号は、γ補正が施された後、4倍速信号処理回路9へ供給される。この4倍速信号処理回路9は、図

1 に示したように入力端子 4 から供給される 8 y n c 信号に基づいて、R $^{'}$ 信号、G $^{'}$ 信号、B $^{'}$ 信号およびW h t 信号の処理が行われる。

【0034】この他の実施例を用いると、図8に示すよ うな白球の場合、最小値検出を行い、各R、G、B信号 から検出された最小値(Wht信号)を減算すると、白 球内については同じレベルのため、減算結果は、0とな らなければならない。しかしながら、白球の移動が速い 場合、特にエッジ部分では、最小値とR、G、B信号と の差が0とならないため、エッジの部分で色割れが発生 する。この色割れを防ぐためにエンファシス回路45で は、Wht信号に対して輪郭強調のためのエンファシス 処理がなされる。さらに、エンファシス処理がなされた Wht信号を用いて各R、G、B信号を減算することに より、各R、G、B信号が帯域制限の処理がされた効果 を得ることができる。すなわち、R、G、B信号からW h t 信号を減算することにより、エッジがなまる効果を 得ることができる。これによって、上述のエッジ部分で の色割れが目立たなくなる。

【0035】また、図8に示すような白球が移動する場合、人間の視覚特性によると、白球の移動が非常に遅い場合は、エッジのなまりを認識することができず、さらに白球の移動が非常に速い場合も、エッジのなまりを認識することができない。よって、この実施例で用いられている動き検出は、人間の視覚特性に応じて、エッジのなまりを認識することができる動き量が否かを検出し、エンファシス処理を行うか否かが判断される。

【0036】ここで、この実施例では、面順次カラーディスプレイ装置にCRTディスプレイが用いられているが、CRTディスプレイの代わりにLCD (Liquid Cry 30 stalDisplay) 等の他のモノクロ画素表示装置を使用することも可能である。

【0037】また、LCDを用いた場合、バックライトと液晶との間にカラー偏光板およびπセルを配置する構成にすることも可能である。

【0038】さらに、この実施例では、最小値を検出することにより、R´、G´、B´信号(修正3原色信号)とWht信号(無彩色信号)が生成されているが、最小値の代わりに最大値を用いても何ら問題はない。

[0039]

【発明の効果】この発明に依れば、R、G、B信号(3

10

原色信号)とWht信号(無彩色信号)の4フィールドで1フレームを構成する面順次方式のカラーディスプレイにおいて、従来最も色割れが発生していた高輝度、無彩色の映像に対して、R、G、B信号の共有のレベルからなるWht信号の影響が最も強くなるため、色割れの原因を取り除くことができる。

【0040】さらに、この発明に依れば、R、G、B信号の周波数帯域を制限することによりエッジをぼかし、Wht信号に対してエンファシス処理を行うことによってエッジを際立たせるため、高輝度、無彩色のエッジ部分で発生していた色割れを取り除くことができる。

【図面の簡単な説明】

【図1】この発明のカラーシャッター方式を用いた面順 次方式のカラーディスプレイの一実施例を示すブロック 図である。

【図2】この発明に係るカラーディスプレイの一例を示すタイミングチャートである。

【図3】πセルを説明するための一例を示した略線図である。

20 【図4】この発明に係る4倍速処理装置の一例を示すブロック図である。

【図5】この発明のカラーシャッター方式を用いた面順 次方式のカラーディスプレイの他の実施例を示すブロッ ク図である。

【図6】従来のカラーシャッター方式を用いた面順次方式のカラーディスプレイの一例を示すブロック図である。

【図7】従来のカラーディスプレイの一例のタイミング チャートである。

70 【図8】色割れを説明するための一例を示した略線図である。

【符号の説明】

- 5 最小值検出回路
- 9 4倍速信号処理回路
- 11 CRTディスプレイ
- 12 同期分離回路
- 13 偏向回路
- 14 LCSドライブ回路
- 15、17、19 カラー偏光板
- 40 16、18 πセル

[図1]

書き込み 読み出し

【図5】

【図6】

