Reformer: the efficient transformer

Охрименко Дмитрий, 172

Проблемы обычного Трансформера

- Он показывает отличные результаты, но крайне неэффективен
- При работе с большим количеством данных приходится обучать трансформеры с 64 слоями, количество параметров каждого из которых больше полумиллиарда
- Это занимает огромное количество памяти, которое могут обеспечить только суперкомпьютеры

Проблемы обычного Трансформера

- 500 000 000 параметров = 2 ГБ памяти
- 64 000 значения функции активации * 1024 (embedding size) * 8 (batch size) = 2 ГБ памяти
- Кажется, что в таком случае вполне хватит памяти, если держать в ней по одному слою за раз

Проблемы обычного Трансформера

- Однако мы кое-что упускаем:
- - нужно хранить все значения всех слоев для бэкпропа (получаем N*N)
- - глубина средних слоев в случае прямой нейронной сети гораздо больше глубины слоев attention, что потребует больше памяти
- - сложность attention по памяти и по времени для последовательности длины L будет L*L
- В итоге такой трансформер не сможет быть обработан без суперкомпьютеров

Как эти проблемы решает Reformer

- - Использование Reversible layers, чтобы хранить только одну копию активаций для всей модели
- - Для нейронных сетей без рекуррентной связи разделять активацию внутри слоев и обрабатывать ее в блоках для сохранения памяти внутри этих слоев
- - Приблизительно вычислять attention (идея основана на локальном хешировании LSH (locality-sensitivity hashing) позволяет изменить O(L*L) на O(L*log(L))
- Данные методы позволяют не потерять в качестве, при этом сильно прибавить в эффективности относительно обычного Трансформера

Dot-product attention

Самый обычный вид attention.

На вход подаются запросы (Q), ключи (K) и значения (V).

Для получения весов значений запросы перемножаются с ключами, масштабируются по размерности ключей, после чего к полученному результату применяется softmax:

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V$$

Multi-head attention

- Усовершенствованный dot-product attention.
- Н раз линейно проецируем запросы, ключи и значения на dk, dk, dv
- Применяем Attention к каждой из прогнозируемых версий запросов, ключей и значений параллельно, давая двумерные выходные значения.
- Объединяем и еще раз проецируем промежуточные ответы и получаем окончательный разультат.

Memory-efficient attention

- Попробуем подсчитать сложность по памяти для $softmax(\frac{QK'}{\sqrt{d_k}})V.$
- Пусть все Q, K и V имеют размерности [batch size, length, dmodel]. Тогда размерность QK^T = [batch size, length, length].
- Для последовательностей длины 64 000, даже при размере батча 1, это матрица 64К × 64К, которая займет 16 ГБ памяти, что очень много.
- На самом деле, не обязательно хранить всю матрицу QK^T .
- Attention может быть вычислено для каждого запроса q_i отдельно, только вычисляя $softmax(\frac{q_i K^T}{\sqrt{d_k}})V$ один раз в памяти, а затем повторно вычислять его на обратном проходе, когда это необходимо для градиентов.
- Для данного способ сложность по памяти = O(L), хотя может слегка упасть эффективность.

Откуда берутся Q, K, V?

- Обычно нам дается только тензор активации A с размерностями [batch size, length, dmodel]
- Чтобы построить Q, K и V из A, используются 3 различных линейных слоя, проецирующих A в Q, K и V с различными параметрами.
- Идентичность Q и K достигается использованием одного и того же слоя для перехода из A в Q и в K соответственно.

Hashing attention

- D LSH attention на вход подается два тензора Q = K и V размерности [batch size, length, dmodel].
- Основная проблема возникает с матрицей QK^T .
- Однако на самом деле нас интересует softmax(QK^T).
- Поскольку в softmax наибольшие элементы вносят наибольший вклад, для каждого запроса q_i нам нужно сосредоточиться только на тех ключах в K, которые наиболее близки к q_i .

Locality sensitive hashing

- Соседние векторы получают одинаковый хэш с высокой вероятностью, а так же размер хэш-блоков должен быть равным.
- Достигается использованием случайных проекций, как на рисунке.

Чтобы получить b хешей, мы сначала фиксируем случайную матрицу R размера $[d_k, \frac{b}{2}]$. Затем мы определяем h(x) = argmax([xR; -xR]), где [u; v] обозначает конкатенацию двух векторов.

LSH attention

- $softmax\left(\frac{QK^T}{\sqrt{d_k}}\right)V$ для q_i : $o_i=\sum_{\{j\in P_i\}}\exp\left(q_ik_j-z(i,P_i)\right)v_j$, где $\mathsf{P}=\{j,i\geq j\}$
- Р множество, к которому обращается запрос на позиции і
- z функция разбиения (нормализующий член в softmax)
- Удобно применять attention к $\widehat{P}_i = \{0, 1, ..., l\} \subseteq P_i$, маскируя элементы, не входящие в P:

•
$$o_i = \sum_{\{j \in \widehat{P_i}\}} \exp\left(q_i k_j - m(j, P_i) - z(i, P_i)\right) v_j$$
, $m(j, P_i) = \begin{cases} \infty, j \notin P_i \\ 0$, иначе

• Для LSH attention: $P_i = \{j: h(q_i) = h(k_i)\}$

LSH attention

- a) Полный attention, разреженная матрица, которое не используется
- b) Q и K отсортированы по хэшам
- c) Решаем проблему неравенства размеров Q и K: $h(k_j) = h(q_i) \ [k_j = \frac{q_j}{\|q_i\|}]$, затем сортируем запросы по номеру сегмента и, внутри каждого сегмента, по позиции последовательности
- d) После сортировки объекты взаимодействуют с объектами в своем и предыдущем сегментах
- $\widetilde{P}_i = \{j: \left\lfloor \frac{s_i}{m} \right\rfloor 1 \le \left\lfloor \frac{s_j}{m} \right\rfloor \le \left\lfloor \frac{s_i}{m} \right\rfloor \}.$
- Если $\max_i |P_i| < m$, то $P_i \subseteq \widetilde{P_i}$
- На практике берем $m = \frac{2l}{nbuckets}$

Результаты

- Задача продублировать последовательность символов
- 0w0w = 0 19 113 72 0 19 113 72
- Обучаем языковую модель, где каждый w имеет длину 511
- Точность при оценивании с 8 хэшами практически идеальна

Table 2: Accuracies on the duplication task of a 1-layer Transformer model with full attention and with locality-sensitive hashing attention using different number of parallel hashes.

Train Eval	Full Attention	LSH-8	LSH-4	LSH-2	LSH-1
Full Attention	100%	94.8%	92.5%	76.9%	52.5%
LSH-4	0.8%	100%	99.9%	99.4%	91.9%
LSH-2	0.8%	100%	99.9%	98.1%	86.8%
LSH-1	0.8%	99.9%	99.6%	94.8%	77.9%

Сравнение точностей различных attention

Table 1: Memory and time complexity of attention variants. We write l for length, b for batch size, n_h for the number of heads, n_c for the number of LSH chunks, n_r for the number of hash repetitions.

Attention Type	Memory Complexity	Time Complexity
Scaled Dot-Product	$\max(bn_h ld_k, bn_h l^2)$	$\max(bn_h ld_k, bn_h l^2)$
Memory-Efficient	$\max(bn_h ld_k, bn_h l^2)$	$\max(bn_h ld_k, bn_h l^2)$
LSH Attention	$\max(bn_h ld_k, bn_h ln_r (4l/n_c)^2)$	$\max(bn_h ld_k, bn_h n_r l(4l/n_c)^2)$

- Сложность может быть уменьшена с квадратной до линейной
- Активации перед каждым слоем уже имеют размер b · l · dmodel, поэтому использование памяти всей модели с nl слоями составляет не менее b · l · dmodel · nl.
- В Transformer с прямой связью это возрастает до $b \cdot l \cdot dff \cdot nl$.
- В больших Transformer устанавливают dff = 4 000 и nl = 16, поэтому при l = 64 000 это будет использовать 16 ГБ памяти

RevNets

- Основная идея состоит в том, чтобы позволить активациям на любом данном уровне быть восстановленными из активаций на следующем слое, используя только параметры модели.
- Суть в том, чтобы при бэкпропе инвертировать слои один за другим, а не проверять промежуточные значения
- Вместо работы с единичным входом и выходом: x -> y, y = x + F(x), RevNets работает на парах: (x1,x2) -> (y1,y2) с такими формулами:

$$y_1 = x_1 + F(x_2); y_2 = x_2 + F(x_1)$$

• Для переворота слоя достаточно вычесть остатки:

$$x_1 = y_1 - F(x_2); x_2 = y_2 - F(x_1)$$

Reversible transformer

• Применяем идею RevNet к трансформеру, комбинируя attention и слои с прямой связью внутри revnet блока:

$$Y_1 = X_1 + Attention(X_2); Y_2 = X_2 + FeedForward(Y_1)$$

- Не нужно хранить активации на каждом слое, поэтому множитель n_l уходит
- Если взять x1 и x2 размера dmodel, то аналогичен результату обычного Трансформера

Chunking

• Толстые слои все равно могут использовать много памяти, поэтому стоит разбить вычисления в них на куски:

$$Y_2 = [Y_2^{(1)}, \dots, Y_2^{(c)}] = [X_2^{(1)} + FeedForward(Y_1^{(1)}), \dots, X_2^{(c)} + FeedForward(Y_1^{(c)})]$$

• Обратный проход тоже делится на куски, кроме того, в случае модели с большим словарем мы также разбиваем логарифмические вероятности на выходе и рассчитываем потери для участков последовательности за раз.

Reformer

- Итак, благодаря кускованию и RevNets память, которую мы использует для активации во всей сети, не зависит от количества слоев
- Это не касается параметров, однако это может быть исправлено путем свапанья параметров слоя в память процессора и из нее, когда этот уровень не вычисляется.
- Этот же метод неэффективен в обычном Трансформере из-за медленной передачи данных на CPU и их большего количества

Результаты

Table 3: Memory and time complexity of Transformer variants. We write d_{model} and d_{ff} for model depth and assume $d_{ff} \geq d_{model}$; b stands for batch size, l for length, n_l for the number of layers. We assume $n_c = l/32$ so $4l/n_c = 128$ and we write $c = 128^2$.

Model Type	Memory Complexity	Time Complexity
Transformer	$\max(bld_{ff}, bn_h l^2)n_l$	$(bld_{ff} + bn_h l^2)n_l$
Reversible Transformer	$\max(bld_{ff},bn_hl^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
Chunked Reversible Transformer	$\max(bld_{model}, bn_h l^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
LSH Transformer	$\max(bld_{ff}, bn_h ln_r c)n_l$	$(bld_{ff} + bn_h n_r lc)n_l$
Reformer	$\max(bld_{model}, bn_h ln_r c)$	$(bld_{ff} + bn_h n_r lc)n_l$

Эксперименты

- Экспериментировали с задачами imagenet64 и enwik8-64К (enwik8, разбитый на подпоследовательности длины 2^16)
- Использовали трехслойные модели, чтобы была возможность сравнения с обычным Трансформером со сложностью O(L^2)
- Параметры: dmodel = 1024, dff = 4096, nheads = 8, batch size = 8
- Оптимизатор для обучения Adafactor
- Обучение для всех экспериментов было распараллелено на 8 устройствах

Эксперименты с QK и Reversible Transformer

- Эффект от приравнивания Q = K. Shared QK attention устанавливает $k_j = \frac{q_j}{\|q_j\|}$ левые графики. Результат не хуже, чем у обычного attention
- Эффект Reversible transformer. С одинаковыми параметрами кривые обучения Reversible и обычного трансформеров примерно равны правые графики

Figure 3: Effect of shared query-key space (left) and reversibility (right) on performance on enwik8 and imagenet64 training. The curves show bits per dim on held-out data.

Эксперименты с RevNets в машинном переводе

- Перевод с английского на немецкий языки
- При обучении на 100К шагов результат сравним с моделью VasWani 2017 года
- Наша модель очень эффективна по памяти

Table 4: BLEU scores on newstest2014 for WMT English-German (EnDe). We additionally report detokenized BLEU scores as computed by sacreBLEU (Post, 2018).

Model	BLEU	Uncased ³	Cased4
Vaswani et al. (2017), base model	27.3		
Vaswani et al. (2017), big	28.4		
Ott et al. (2018), big	29.3		
Reversible Transformer (base, 100K steps)	27.6	27.4	26.9
Reversible Transformer (base, 500K steps, no weight sharing)	28.0	27.9	27.4
Reversible Transformer (big, 300K steps, no weight sharing)	29.1	28.9	28.4
사람이 마다리 하시아니다 사는 이번에 있는 하나 이번에 가장 하면 하시네요? 그렇게 되는 아이들이 되는 아이들이 아니라 아이들이 아이들에게 되었다면 하는데 아이들에게 되었다면 하나 없는데 아이들이다.			

Эксперименты с LSH attention

- С увеличением числа хэшей LSH attention приближается к полному.
- В то время как обычный attention становится медленнее при большей длине последовательности, скорость внимания LSH остается неизменной.

Figure 4: LSH attention performance as a function of hashing rounds on imagenet64.

Эксперименты с большими моделями Reformer

• До 2—слойные модели Reformer на enwik8 и imagenet64 вписываются в память и обучаются на одном ядре.

Figure 5: Left: LSH attention performance as a function of number of layers on enwik8. Right: Speed of attention evaluation as a function of input length for full- and LSH- attention.

Выводы

- Reformer объединяет возможности Transformer с архитектурой, способной эффективно выполняться на длинных последовательностях с небольшим использованием памяти даже для моделей с большим количеством слоев
- Способность обрабатывать длинные последовательности дает возможность Reformer быть использованным в задачах прогнозирования временных рядов, генерации музыки, изображений или видео

Ссылки

https://arxiv.org/abs/2001.04451