Abstractions de sémantiques

TAS : Typage et analyse statique M2, Master STL INSTA, Sorbonne Université

Antoine Miné

Année 2021-2022

Cours 9 4 mars 2022

Plan du cours

But:

construire une analyse statique par abstraction de la sémantique concrète

- notion intuitive d'abstraction les signes
- formalisation de la notion d'abstraction correspondance de Galois, abstraction sûre, abstraction optimale quelques preuves **
- analyse non-relationnelle dérivation systématique depuis une abstraction de valeurs
- exemple 1 : le domaine des constantes
- exemple 2 : le domaine des intervalles gestion précise des tests **
- conseils d'implantation pour le projet : analyse non-relationnelle en OCaml

analyse des constantes à compléter analyse des intervalles à réaliser

Interprétation abstraite

- Cadre unifié pour les sémantiques : sémantiques définies comme des points-fixes sémantiques définies par induction sur la syntaxe (interprétation)
- Comparer le pouvoir d'expression des sémantiques via des fonctions d'abstraction et de concrétisation déterminer ce qui peut et ne peut pas être prouvé par une sémantique
- Dériver systématiquement des analyses statiques par abstraction d'une sémantique concrète
- Deux aspects à la notion d'abstraction :
 - approximation
 {0,80} n'est pas exprimable dans les intervalles, il est approximé par l'intervalle [0,80]
 - représentation [0, 80] n'est pas représenté par un ensemble $\{0, 1, \ldots, 80\}$, mais par la paire (0, 80)
- Assurer la sûreté (soundness)
 toute propriété prouvée dans l'abstrait est vraie dans le concret incomplétude: on ne peut pas tout prouver dans l'abstrait
- Assurer la calculabilité effective domaines finis (signes) ou accélération de point-fixes (cours 10)

Rappel : sémantique concrète collectrice (1/2)

```
\mathbb{E}[\exp r]: \mathcal{E} \to \mathcal{P}(\mathbb{Z}) état mémoire \to valeurs possibles de l'expression expr
                                            def
\mathbb{E} \llbracket V \rrbracket \rho
                                                         \{\rho(V)\}
                                           \stackrel{\mathsf{def}}{=} \{c\}
\mathbb{E} \llbracket c \rrbracket \rho
\mathbb{E}[ \operatorname{rand}(a, b) ] \rho \stackrel{\text{def}}{=} \{ x \in \mathbb{Z} \mid a < x < b \}
                                \stackrel{\mathsf{def}}{=} \quad \{ \ v_1 + v_2 \ | \ v_1 \in \mathsf{E} \llbracket \ e_1 \ \rrbracket \ \rho, \ v_2 \in \mathsf{E} \llbracket \ e_2 \ \rrbracket \ \rho \ \}
\mathbb{E} \llbracket e_1 + e_2 \rrbracket \rho
. . .
\mathbb{C}\llbracket cond \rrbracket : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})
                                                                états mémoire qui peuvent passer le test cond
C[[true]]R
                                                    R
                                                    Ø
C[[false]]R
\mathbb{C}[\![ c_1 \wedge c_2 ]\!] R \stackrel{\mathsf{def}}{=} \mathbb{C}[\![ c_1 ]\!] R \cap \mathbb{C}[\![ c_2 ]\!] R
C[c_1 \lor c_2]R \stackrel{\text{def}}{=} C[c_1]R \cup C[c_2]R
\mathbb{C}\llbracket e_1 = e_2 \rrbracket R \stackrel{\text{def}}{=} \{ \rho \in R \mid \exists v_1 \in \mathbb{E}\llbracket e_1 \rrbracket \rho, v_2 \in \mathbb{E}\llbracket e_2 \rrbracket \rho : v_1 = v_2 \}
C[e_1 < e_2]R \stackrel{\mathsf{def}}{=}
                                                    \{ \rho \in R \mid \exists v_1 \in E[[e_1]] \rho, v_2 \in E[[e_2]] \rho : v_1 < v_2 \}
Environnements : \mathcal{E} \stackrel{\text{\tiny def}}{=} \mathbb{V} \to \mathbb{Z}
```

états mémoire, associant à chaque variable dans $\mathbb {V}$ une valeur dans $\mathbb {Z}$

Rappel : sémantique concrète collectrice (2/2)

```
\underline{\mathsf{S}[\![\,\mathsf{stat}\,]\!]\,:\mathcal{P}(\mathcal{E})\to\mathcal{P}(\mathcal{E})}
```

```
S[skip]R
                                                R
S[[halt]]R
                                       def
=
S[X \leftarrow e]R
                                               \{ \rho[X \mapsto v] \mid \rho \in R, v \in \mathbb{E}[\![e]\!] \rho \}
                                               S[s_2](S[s_1]R)
S[s_1; s_2]R
                                       def
                                               S[s_1](C[c]R) \cup S[s_2](C[\neg c]R)
S[ if c then s_1 else s_2 ] R
                                        def
                                              C[c]R
S[assert c]R
                                        def
==
S \llbracket while c do s \rrbracket R
                                             C[\![\neg c]\!] (\mathsf{Ifp} \lambda X.R \cup S[\![s]\!] (C[\![c]\!] X))
```

états mémoire en entrée de stat \rightarrow états mémoire possibles en sortie de stat

Limite à l'automatisation

La sémantique concrète n'est pas calculable car :

- ① les éléments du domaine concret $\mathcal{P}(\mathcal{E})$ ne sont pas tous représentables en mémoire ;
- le point fixe Ifp λX.R ∪ S[s] (C[c]X)
 peut faire intervenir un nombre infini d'itérations
 théorème de Kleene

L'interprétation abstraite fournit une solution à ces deux problèmes :

- remplacer P(E) par un domaine abstrait dont les éléments sont représentables en mémoire
 ⇒ ce cours
- Q calculer les itérations de point fixe avec accélération de convergence
 ⇒ prochain cours

Analyse abstraite, analyse approchée

Plutôt que de raisonner sur le comportement réel des programmes, nous raisonnons à un niveau d'abstraction plus simple.

Exemple: l'abstraction des signes

- oublier la valeur exacte des variables et ne se souvenir que de leur signe $: \ge 0, \le 0, 0, \top$ (aucune information) $\implies 2$ devient ≥ 0
- remplacer un calcul sur les valeurs par un calcul sur les signes; au lieu de 2+2=4, nous écrivons $(\geq 0)+(\geq 0)=(\geq 0)$. \Longrightarrow plus efficace!
- perte de précision dans les concret (valeurs) : 2-1=1, qui est positif après abstraction (signes) : $(\geq 0) (\geq 0) = \top$ (pas d'information)
- si l'analyseur indique $X = (\ge 0)$ en fin d'analyse, nous savons que X sera positif (sans connaître précisément ses valeurs).

Ensembles et propriétés

Nous raisons sur des propriétés, i.e., des ensembles de comportements.

Exemple : abstraction d'une valeur entière par un signe

- domaine concret : $\mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(\mathbb{Z})$
- domaine abstrait : $\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \{0, \geq 0, \leq 0, \top, \bot\}$
 - $\bullet \geq 0$ signifie « positif » $\simeq \mathbb{N}$
 - $_{\bullet}$ 0 signifie « nul » $\simeq \{0\}$
 - ullet T signifie « pas d'information » $\simeq \mathbb{Z}$
 - \perp signifie « impossible » $\simeq \emptyset$

La valeur $x \in \mathbb{Z}$ a la propriété Y si $x \in Y$.

L'ensemble $X \in \mathcal{P}(\mathbb{Z})$ a la propriété Y si $X \subseteq Y$.

 \implies une valeur, un ensemble peut satisfaire plusieurs propriétés de \mathcal{D}^{\sharp}

Ordre d'information, meilleur abstraction

Intuitivement, les propriétés peuvent être ordonnées par un ordre d'information \sqsubseteq : $\bot \sqsubseteq 0 \sqsubseteq (\ge 0) \sqsubseteq \top$.

C'est un ordre partiel : ≤ 0 et ≥ 0 ne sont pas comparables.

Pour les signes, nous avons même une structure de treillis complet.

L'ordre est compatible avec l'interprétation ensembliste, en effet : $\bot \sqsubseteq 0 \sqsubseteq (\ge 0) \sqsubseteq \top$ implique $\emptyset \subseteq \{0\} \subseteq \mathbb{N} \subseteq \mathbb{Z}$.

Tout ensemble d'entiers a une meilleur représentation sous forme d'information de signe (i.e., plus petite pour \sqsubseteq)

0 est une meilleur représentation que \geq 0 ou \top pour $\{0\}$ elle donne plus d'information, elle représente un ensemble plus petit d'entiers

Opérateurs abstraits

Exemple : la règle des signes

×	≥ 0	≤ 0	0	Т	\perp
≥ 0	≥ 0	≤ 0	0	Т	1
≤ 0	≤ 0	≥ 0	0	Т	T
0	0	0	0	0	\perp
T	Т	Т	0	Т	T
	上		T	1	\perp

+		≥ 0	≤ 0	0	Т	Т
\geq	0	≥ 0	Т	≥ 0	Т	1
\leq	0	Т	≤ 0	≤ 0	Τ	\perp
0		≥ 0	S 0	0	Τ	\perp
Т		Т	Т	Τ	Τ	\perp
			Τ	Т	T	T

Principe:

Remplacer un calcul d'opérateur \diamond sur $\mathbb Z$ par un calcul abstrait \diamond^\sharp sur $\mathcal D^\sharp$.

Raisonnement dans les signes \mathcal{D}^\sharp compatible avec celui dans $\mathcal{P}(\mathbb{Z})$:

- si a, b ∈ Z ont la propriété a[‡], b[‡] ∈ D[‡] alors a ⋄ b a bien la propriété a[‡] ⋄ b[‡]
 ⇒ sûreté
- parfois, ⋄[♯] donne la plus forte propriété dans D[♯]
 ⇒ optimalité

La sûreté sera toujours garantie;

l'optimalité sera garantie dans certains cas seulement.

domaine concret \mathcal{D} : abstraction des polyèdres \mathcal{D}_{p}^{\sharp} : $6X + 11Y \geq 33 \wedge \cdots$

 $\{(0,3),(6,0),(12,7),\ldots\}$


```
domaine concret \mathcal{D}: \{(0,3),(6,0),(12,7),\ldots\} abstraction des polyèdres \mathcal{D}_p^{\sharp}: 6X+11Y\geq 33\wedge\cdots abstraction des octogones \mathcal{D}_p^{\sharp}: X+Y\geq 3\wedge Y\geq 0\wedge\cdots
```



```
\begin{array}{ll} \text{domaine concret } \mathcal{D}: & \{(0,3),(6,0),(12,7),\ldots\} \\ \text{abstraction des polyèdres } \mathcal{D}_p^{\sharp}: & 6X+11Y\geq 33\wedge\cdots \\ \text{abstraction des octogones } \mathcal{D}_o^{\sharp}: & X+Y\geq 3\wedge Y\geq 0\wedge\cdots \\ \text{abstraction des intervalles } \mathcal{D}_i^{\sharp}: & X\in[0,12]\wedge Y\in[0,8] \end{array}
```



```
domaine concret \mathcal{D}: \{(0,3),(6,0),(12,7),\ldots\} abstraction des polyèdres \mathcal{D}_{\rho}^{\sharp}: 6X+11Y\geq 33\wedge\cdots abstraction des octogones \mathcal{D}_{o}^{\sharp}: X+Y\geq 3\wedge Y\geq 0\wedge\cdots abstraction des intervalles \mathcal{D}_{i}^{\sharp}: X\in[0,12]\wedge Y\in[0,8]
```

non calculable coût exponentiel coût cubique coût linéaire

L'abstraction correspond à une sur-approximation. Compromis entre coût et expressivité / précision.

But : prouver qu'un programme P satisfait sa spécification S

<u>But</u>: prouver qu'un programme P satisfait sa spécification S Une abstraction polyédrique A peut prouver la correction.

<u>But</u>: prouver qu'un programme P satisfait sa spécification S Une abstraction polyédrique A peut prouver la correction. Une abstraction d'intervalle ne peut pas prouver la correction \implies fausse alarme.

But: prouver qu'un programme P satisfait sa spécification S Une abstraction polyédrique A peut prouver la correction. Une abstraction d'intervalle ne peut pas prouver la correction \implies fausse alarme.

L'analyse est toujours sûre ⇒ jamais de faux négatif!

Formalisation de la correspondance concret/abstrait

Correspondance de Galois

Étant donnés deux posets (C, \leq) et (A, \sqsubseteq) ,

la paire $(\alpha: C \to A, \gamma: A \to C)$ est une correspondance de Galois si :

$$\forall a \in A, c \in C, \alpha(c) \sqsubseteq a \iff c \leq \gamma(a)$$

ce que nous notons : $(C, \leq) \stackrel{\gamma}{\longleftarrow} (A, \sqsubseteq)$.

- α est l'adjoint supérieur, ou abstraction; A est le domaine abstrait;
- γ est l'adjoint inférieur, ou concrétisation; C est le domaine concret.

Exemple : correspondance de Galois pour les signes

Les signes représentent des ensembles d'entiers :

- $C \stackrel{\text{def}}{=} \mathcal{P}(\mathbb{Z})$;
- $A \stackrel{\text{def}}{=} \{\bot, 0, \ge 0, \le 0, \top\};$
- I'ordre concret \leq est \subseteq .

$$\gamma(\perp)$$
 $\stackrel{\text{def}}{=}$ \emptyset
 $\gamma(0)$ $\stackrel{\text{def}}{=}$ $\{0\}$
 $\gamma(\geq 0)$ $\stackrel{\text{def}}{=}$ \mathbb{N}
 $\gamma(\leq 0)$ $\stackrel{\text{def}}{=}$ $-\mathbb{N}$
 $\gamma(\top)$ $\stackrel{\text{def}}{=}$ \mathbb{Z}

$$\alpha(S) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \bot & \text{si } S = \emptyset \\ 0 & \text{si } S = \{0\} \\ \geq 0 & \text{sinon, si } \forall s \in S, \ s \geq 0 \\ \leq 0 & \text{sinon, si } \forall s \in S, \ s \leq 0 \\ \top & \text{sinon} \end{array} \right.$$

À vérifier : $\alpha(c) \sqsubseteq a \iff c \subseteq \gamma(a) \dots$

Caractérisation alternative

Une paire $(\alpha: C \to A, \gamma: A \to C)$ est une correspondance de Galois si et seulement si elle satisfait :

- ② α est croissante $\forall c, c', c \leq c' \implies \alpha(c) \sqsubseteq \alpha(c')$
- $\gamma \circ \alpha$ est extensive $\forall c, c \leq \gamma(\alpha(c))$
- $\alpha \circ \gamma$ est réductrice $\forall a, \alpha(\gamma(a)) \sqsubseteq a$

En particulier :

- les ordres abstraits et concrets sont compatibles (croissance)
- passer par l'abstrait est une sur-approximation vis-à-vis du concret $(\gamma \circ \alpha \text{ est extensive})$

Quelques preuves sur les correspondances de Galois **

Si $\forall a, c, \alpha(c) \sqsubseteq a \iff c \le \gamma(a)$, alors :

- ① $\gamma \circ \alpha$ est extensive : $\forall c, c \leq \gamma(\alpha(c))$ \star^*_{\star} preuve : $\alpha(c) \sqsubseteq \alpha(c) \implies c \leq \gamma(\alpha(c))$
- $\bullet \quad \alpha \circ \gamma \text{ est réductrice} : \forall a, \alpha(\gamma(a)) \sqsubseteq a$
- ② α est croissante ***preuve: $c \le c' \implies c \le \gamma(\alpha(c')) \implies \alpha(c) \sqsubseteq \alpha(c')$
- \bigcirc γ est croissante

- \bigcirc $\alpha \circ \gamma$ est idempotente : $\alpha \circ \gamma \circ \alpha \circ \gamma = \alpha \circ \gamma$

Cours 9

Meilleur abstraction, unicité des adjoints

Si
$$(C, \leq) \stackrel{\gamma}{\longleftrightarrow} (A, \sqsubseteq)$$

alors chaque adjoint peut être défini de manière unique en fonction de l'autre :

Conséquence importante

$$\alpha(c) = \prod \{ a \mid c \leq \gamma(a) \}$$
 signifie:

 $\alpha(c)$ est la meilleur abstraction de c dans A

i.e., la sur-approximation la plus précise

* Preuve : de 1

 $\forall a, c \leq \gamma(a) \implies \alpha(c) \sqsubseteq a$, donc $\alpha(c)$ est un minorant de $\{a \mid c \leq \gamma(a)\}$. Supposons que a' est un autre minorant.

Alors,
$$\forall a, c \leq \gamma(a) \implies a' \sqsubseteq a$$
.

Par correspondance de Galois, il vient
$$\forall a, \alpha(c) \sqsubseteq a \implies a' \sqsubseteq a$$
.

Ceci implique :
$$a' \sqsubseteq \alpha(c)$$
.

Donc, le plus grand minorant de $\{a \mid c \leq \gamma(a)\}$ existe, et vaut $\alpha(c)$. La preuve de 2 est similaire.

Cours 9 Abstractions de sémantiques Antoine Miné

p. 18 / 67

Propriétés additionnelles des correspondances de Galois

Si $(\alpha: C \to A, \gamma: A \to C)$ est une correspondance de Galois, alors :

- \lozenge $\forall X \subseteq C$, si $\lor X$ existe, alors $\alpha(\lor X) = \sqcup \{\alpha(x) \mid x \in X\}$

Conséquence importante

Le domaine abstrait est clos par conjonction

la conjonction de deux propriétés expressibles exactement dans l'abstrait est également expressible exactement dans l'abstrait

```
\begin{array}{l} {}^{\star}_{x} \times \text{Preuve} : \text{de 2} \\ \text{Par définition des lubs, } \forall x \in X, \ x \leq \vee X. \\ \text{Par croissance, } \forall x \in X, \ \alpha(x) \sqsubseteq \alpha(\vee X). \\ \text{Or, } \alpha(\vee X) \text{ est un majorant de } \{\ \alpha(x) \mid x \in X\}. \\ \text{Supposons que } y \text{ soit un autre majorant de } \{\ \alpha(x) \mid x \in X\}. \\ \text{Alors, } \forall x \in X, \ \alpha(x) \sqsubseteq y. \\ \text{Par correspondance de Galois, } \forall x \in X, \ x \leq \gamma(y). \\ \text{Par définition des lubs, } \vee X \leq \gamma(y). \\ \text{Par correspondance de Galois, } \alpha(\vee X) \sqsubseteq y. \\ \text{Donc } \{\ \alpha(x) \mid x \in X\} \text{ a un lub, égal à } \alpha(\vee X). \\ \text{La preuve de 1 est similaire.} \end{array}
```

Optimalité et clôture par conjonction de propriétés

Nous avons:
$$\gamma(a \sqcap a') = \gamma(a) \land \gamma(a')$$

Contre-exemple : un domaine des signes imparfait

$$C \stackrel{\text{def}}{=} \mathcal{P}(\mathbb{Z})$$

dans C la conjonction de propriétés est l'intersection d'ensembles d'entiers

$$A \stackrel{\text{def}}{=} \{\bot, \le 0, \ge 0, \top\}$$

$$\gamma(\le 0) \cap \gamma(\ge 0) = \{0\} \notin \gamma(A)$$
pas de meilleur abstraction pour $\{0\}$

$$\implies \text{pas de correspondance de Galois}$$

Corrections possibles:

- compléter A par \cap : $A \stackrel{\text{def}}{=} \{\bot, 0, \le 0, \ge 0, \top\}$;
- vider A, en enlevant des éléments : $A \stackrel{\text{def}}{=} \{\bot, \ge 0, \top\}$;
- modifier des éléments : $A \stackrel{\text{def}}{=} \{\bot, < 0, \ge 0, \top\}$.

Cours 9

Opérations concrètes sur les ensembles entiers

Rappel : le monde concret est $C \stackrel{\text{def}}{=} \mathcal{P}(\mathbb{Z})$ (ensembles d'entiers)

But : définir les opérations sémantiques élémentaires sur C

Briques de base pour la définition de la sémantique concrète E [] , C [] , S [] .

opérations arithmétiques :

$$+$$
, $-$, $imes$, $/$, étendues aux ensembles $(\mathcal{P}(\mathbb{Z}))^n o \mathcal{P}(\mathbb{Z})$

- opérations ensemblistes : ∪, ∩
- \bullet relation d'ordre : \subseteq
- filtres : <, >, ... présentés plus tard

Abstraction d'opérateurs : abstraction sûre

Étant donnée une correspondance de Galois $(C, \leq) \xrightarrow{\leftarrow \alpha} (A, \sqsubseteq)$ et un opérateur concret $F: C \to C$ comment modéliser F dans l'abstrait? c'est à dire, comme une fonction dans $A \to A$

Sûreté:

$$a \in A$$
 est une abstraction sûre de $c \in C$ si $c \le \gamma(a)$ ou, de manière équivalente : $\alpha(c) \sqsubset a$.

Donc,
$$F^{\sharp}:A\to A$$
 est une abstraction sûre de $F:C\to C$ si $\forall a: F(\gamma(a))\leq \gamma(F^{\sharp}(a))$

ou, de manière équivalente : $\alpha(F(\gamma(a))) \sqsubseteq F^{\sharp}(a)$.

Nous le notons en raccourci : $F \circ \gamma \leq \gamma \circ F^{\sharp}$

un pas dans l'abstrait sur-approxime un pas dans le concret

Se généralise aux opérateurs n-aires : $F(\gamma(a_1), \ldots, \gamma(a_n)) \leq \gamma(F^{\sharp}(a_1, \ldots, a_n))$

 $\underline{\text{Note}}$: pour définir la sûreté, il nous suffit de la concrétisation γ

l'existence d'une abstraction lpha n'est pas nécessaire : pas de correspondance de Galois !

Abstraction d'opérateurs : abstraction optimale

Optimalité :

 F^{\sharp} définie par $F^{\sharp} \stackrel{\text{def}}{=} \alpha \circ F \circ \gamma$ est **optimale**.

```
En effet, F^{\sharp} est sûre \iff (\alpha \circ F \circ \gamma)(a) \sqsubseteq F^{\sharp}(a) donc \alpha \circ F \circ \gamma est l'abstraction sûre de F la plus précise!
```

Conséquences:

- la sémantique abstraite F^{\sharp} peut être dérivée systématiquement de la sémantique concrète F, étant donnée une correspondance de Galois (α, γ) ;
- mais $\alpha \circ F \circ \gamma$ n'est qu'une définition mathématique, encore faut-il trouver un algorithme effectif pour l'implanter. . .

Exemple : domaine des signes $\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \{\bot, 0, \le 0, \ge 0, \top\}$

- dans le concret $X \times Y \stackrel{\text{def}}{=} \{ a \times b \mid a \in X, b \in Y \}$
- $\times^{\sharp} \stackrel{\text{def}}{=} \alpha(\gamma(X^{\sharp}) \times \gamma(Y^{\sharp}))$ redonne la règle des signes $(\geq 0) \times^{\sharp} (\geq 0) = (\geq 0), (\geq 0) \times^{\sharp} (\leq 0) = (\leq 0), (\geq 0) \times^{\sharp} 0 = 0, \dots$
- X^{\sharp} / $^{\sharp}$ $Y^{\sharp} = \top$ est sûr, mais n'est pas optimal!

Cours 9 Abstractions de sémantiques Antoine Miné

p. 23 / 67

Abstraction d'opérateurs : abstraction exacte

Exactitude:

```
F^{\sharp} est une abstraction exacte de F si F \circ \gamma = \gamma \circ F^{\sharp} \Longrightarrow aucune perte à effectuer l'opération dans l'abstrait
```

 F^{\sharp} exacte implique F^{\sharp} sûre et optimale mais les fonctions optimales ne sont pas toujours exactes! \Longrightarrow l'abstraction α génère une perte d'information.

Exemples: domaine des signes alternatif $\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \{\bot, 0, <0, >0, \top\}$

- la règle des signes pour \times^{\sharp} reste sûre, optimale, et exacte;
- I'union abstraite $X^{\sharp} \cup^{\sharp} Y^{\sharp} \stackrel{\text{def}}{=} \alpha(\gamma(X^{\sharp}) \cup \gamma(Y^{\sharp}))$ est optimale mais pas exacte : $(>0) \cup^{\sharp} (<0) = \top$ or $\gamma(>0) \cup \gamma(<0) = \mathbb{Z} \setminus \{0\} \neq \mathbb{Z}$!

Dans la plus part des domaines, \cup^{\sharp} n'est pas exact...

Quizz : comment définir ∩[‡] optimale ? est-elle exacte ?

Abstraction d'opérateurs : composition

la composition d'abstractions sûres est une abstraction sûre :
 si F est croissante
 et F[‡], G[‡] abstraient F et G de manière sûre

et
$$F^*$$
, G^* abstraient F et G de maniere sure alors $F^\sharp \circ G^\sharp$ est une abstraction sûre de $F \circ G$

Preuve: $\forall a, (F \circ G \circ \gamma)(a) \leq (F \circ \gamma \circ G^\sharp)(a) \leq (\gamma \circ F^\sharp \circ G^\sharp)(a)$

• la composition d'abstractions exactes est une abstraction exacte :

si
$$F \circ \gamma = \gamma \circ F^{\sharp}$$
 et $G \circ \gamma = \gamma \circ G^{\sharp}$, alors $(F \circ G) \circ \gamma = \gamma \circ (F^{\sharp} \circ G^{\sharp})$.

Principe

- réduire la sémantique concrète du langage à une composition d'un petit nombre d'opérations élémentaires
- abstraire chaque opération élémentaire
- composer les opérations abstraites pour obtenir une analyse

Abstraction d'opérateurs : composition (suite)

 la composition d'abstractions optimales est sûre mais pas forcément optimale

```
(\alpha \circ F \circ \gamma) \circ (\alpha \circ G \circ \gamma) n'est pas \alpha \circ (F \circ G) \circ \gamma
(le \gamma \circ \alpha peut générer une perte de précision)
```

Exemple:

- dans $\mathcal{P}(\mathbb{Z})$, prenons $F(X) \stackrel{\text{def}}{=} \{x+1 \mid x \in X\} \text{ et } G(X) \stackrel{\text{def}}{=} \{x-1 \mid x \in X\}$ on a donc $(G \circ F)(\{0\}) = \{0\}$;
- dans les signes : $F^{\sharp}(0) = (\alpha \circ F \circ \gamma)(0) = (\geq 0) \text{ et } G^{\sharp}(\geq 0) = (\alpha \circ G \circ \gamma)(\geq 0) = \top$ donc $(G^{\sharp} \circ F^{\sharp})(0) = \top$:
- pourtant $(\alpha \circ (G \circ F) \circ \gamma)(0) = \alpha(\{0\}) = 0!$

Conclusion

La granularité des opérations élémentaire compte. Une décomposition trop fine cause une perte de précision!

Absence de correspondance de Galois

Exemple : le domaine des polyèdres.

Il n'existe pas de meilleurs sur-approximation d'un disque par un polygone.

nous pouvons toujours raffiner le polygone en ajoutant des arrêtes

L'emploi d'un opérateur optimal $\alpha \circ F \circ \gamma$ n'est pas toujours possible :

- certains domaines abstraits n'ont pas de correspondance de Galois;
- $\alpha \circ F \circ \gamma$ peut être difficile ou coûteux à implanter;

Sans α , la notion de sûreté, $F \circ \gamma \leq \gamma \circ F^{\sharp}$ reste toujours utilisable!

⇒ nous nous contentons alors d'abstractions sûres, non optimales.

En pratique, l'analyse statique par interprétation abstraite avec seulement γ est fréquente!

Analyse non-relationnelle

Abstraction des environnements

- nous avons vu des abstractions de $\mathcal{P}(\mathbb{Z})$;
- mais notre sémantique concrète S[stat] manipule des ensembles d'environnements $\mathcal{P}(\mathcal{E}) = \mathcal{P}(\mathbb{V} \to \mathbb{Z})$.

Principe de l'analyse non-relationnelle :

- associer une valeur abstraite à chaque variable;
 (exemple : X est positif et Y est négatif)
- $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ est abstrait par $\mathcal{E}^{\sharp} \stackrel{\text{def}}{=} \mathbb{V} \to \mathcal{D}^{\sharp}$ • où \mathcal{D}^{\sharp} est une abstraction arbitraire de $\mathcal{P}(\mathbb{Z})$ (exemple: \mathcal{D}^{\sharp} est le domaine des signes)

Les opérations sur \mathcal{E}^{\sharp} seront systématiquement dérivées des opérations sur \mathcal{D}^{\sharp} .

Abstraction cartésienne

Tout domaine non-relationnel oublie les relations entre variables.

Le domaine non-relationnel le plus précis serait $\mathcal{E}^\sharp \stackrel{\mathsf{def}}{=} \mathbb{V} o \mathcal{P}(\mathbb{Z})$:

- abstraction variable par variable
- mais pas (encore) d'abstraction sur l'ensemble des valeurs possibles

$$\mathsf{alors}: \mathcal{P}(\mathbb{V} \to \mathbb{Z}) \stackrel{\gamma}{ \underset{\alpha}{\longleftarrow}} \mathbb{V} \to \mathcal{P}(\mathbb{Z})$$

- $\alpha(R) \stackrel{\text{def}}{=} \lambda V \in \mathbb{V}.\{ \rho(V) | \rho \in R \}$
- $\gamma(R^{\sharp}) \stackrel{\text{def}}{=} \{ \rho \mid \forall V \in \mathbb{V} : \rho(V) \in R^{\sharp}(V) \}$
- $(\gamma \circ \alpha)(R) = \{ \rho \mid \forall V \in \mathbb{V} : \exists \rho_V \in R : \rho(V) = \rho_V(V) \} \supseteq R$
 - ⇒ forme de nouveaux environnements en mélangeant des environnements de R

Exemple: $(\gamma \circ \alpha)(\{(X,Y) \mid X \in \{0,2\}, Y \in \{0,2\}, X + Y \leq 2\}) = \{0,2\} \times \{0,2\}.$

Signature de l'abstraction des valeurs

Abstraction de valeurs \mathcal{D}^{\sharp} :

\mathcal{D}^{\sharp}	ensemble de valeurs abstraites représentables en mémoire
$\gamma:\mathcal{D}^\sharp o\mathcal{P}(\mathbb{Z})$	concretisation
$lpha:\mathcal{P}(\mathbb{Z}) o\mathcal{D}^{\sharp}$	abstraction (optionnelle)
⊑	ordre partiel compatible avec γ (γ croissant)
⊥, ⊤	représentation de \emptyset et $\mathbb Z$
$+^{\sharp}$, $-^{\sharp}$, \times^{\sharp} , $/^{\sharp}$	abstractions sûres de $\overline{+}$, $\overline{-}$, $\overline{ imes}$, $\overline{/}$
c^{\sharp} , $[a,b]^{\sharp}$	abstractions sûres de $\{c\}$, $[a, b]$
∪ [‡] , ∩ [‡]	abstractions sûres de \cup et \cap

Dérivation systématique de \mathcal{D}^{\sharp}

\mathcal{E}^{\sharp} est défini par :

- $ullet \ \mathcal{E}^\sharp \stackrel{\mathsf{def}}{=} \mathbb{V} o \mathcal{D}^\sharp$
- ordre point à point : $X_1^{\sharp} \stackrel{\square}{\sqsubseteq} X_2^{\sharp} \iff \forall V \in \mathbb{V}: X_1^{\sharp}(V) \sqsubseteq X_2^{\sharp}(V)$
- union : $X_1^{\sharp} \stackrel{\cup^{\sharp}}{\cup} X_2^{\sharp} \stackrel{\text{def}}{=} \lambda V . X_1^{\sharp}(V) \cup^{\sharp} X_2^{\sharp}(V)$
- intersection : $X_1^{\sharp} \stackrel{\cap^{\sharp}}{\cap} X_2^{\sharp} \stackrel{\text{def}}{=} \lambda V. X_1^{\sharp}(V) \cap^{\sharp} X_2^{\sharp}(V)$
- \bullet $\dot{\perp}(V) \stackrel{\text{def}}{=} \lambda V. \perp$
- $\dot{\top}(V) \stackrel{\text{def}}{=} \lambda V.\top$

Note : la structure de \mathcal{D}^{\sharp} se retrouve sur \mathcal{E}^{\sharp}

- \bullet $(\mathcal{E}^{\sharp}, \dot{\sqsubseteq})$ est un ordre partiel
- ullet si \mathcal{D}^{\sharp} est un treillis (complet), alors \mathcal{E}^{\sharp} est aussi un treillis complet
- ullet on peut définir une correspondance de Galois sur \mathcal{E}^\sharp :

$$\bullet \ (\mathcal{P}(\mathbb{V} \to \mathbb{Z}), \subseteq) \stackrel{\dot{\gamma}}{\varprojlim} (\mathbb{V} \to \mathcal{D}^{\sharp}, \dot{\sqsubseteq})$$

- $\dot{\alpha}(E) \stackrel{\text{def}}{=} \lambda V.\alpha(\{\rho(V) | \rho \in R\})$
- $\dot{\gamma}(X^{\sharp}) \stackrel{\text{def}}{=} \{ \rho \mid \forall V \in \mathbb{V} : \rho(V) \in \gamma(X^{\sharp}(V)) \}$

Notation : un point 'sert à distinguer les opérations sur \mathcal{D}^{\sharp} de celles sur $\mathbb{V} \to \mathcal{D}^{\sharp}$.

Sémantique abstraite des expressions

Définition par induction sur la syntaxe en suivant le modèle de $\mathbb{E}[\![expr]\!]$ mais dans l'abstrait!

Sûreté $\bigcup_{\rho \in \dot{\gamma}(X^{\sharp})} \mathsf{E} \llbracket \, e \, \rrbracket \, \rho \subseteq \gamma \big(\mathsf{E}^{\sharp} \llbracket \, e \, \rrbracket \, X^{\sharp} \big)$ par composition de la sûreté de $+^{\sharp}$, $-^{\sharp}$, etc.

Cours 9 Abstractions de sémantiques Antoine Miné p. 33 / 67

Sémantique abstraite (partielle)

```
\underline{S^{\sharp}\llbracket \textit{stat} \rrbracket : \mathcal{E}^{\sharp} \to \mathcal{E}^{\sharp}} \quad \text{version abstraite de S} \llbracket \textit{stat} \rrbracket : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})
```

- $S[skip]R \stackrel{\text{def}}{=} R$ $S^{\sharp}[skip]X^{\sharp} \stackrel{\text{def}}{=} X^{\sharp}$ (identité)
- S[halt] $R \stackrel{\text{def}}{=} \emptyset$ S[#][halt] $X^{\#} \stackrel{\text{def}}{=} \dot{\bot}$ (arrêt)

Réduction : si $\mathsf{E}^{\sharp} \llbracket \, e \, \rrbracket \, X^{\sharp} = \bot$, alors $\mathsf{S} \llbracket \, V \leftarrow e \, \rrbracket$ retourne \emptyset \Longrightarrow nous renvoyons donc $\dot{\bot}$, qui est la représentation la plus précise de \emptyset pour $\dot{\sqsubseteq}$

Sémantique abstraite (partielle) : tests

 $\underline{\mathsf{C}^{\sharp} \llbracket \ cond \ \rrbracket : \mathcal{E}^{\sharp} \to \mathcal{E}^{\sharp}} \quad \text{version abstraite de } \mathsf{C} \llbracket \ cond \ \rrbracket : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

Cas de base et par induction :

- $C^{\sharp}[true]X^{\sharp} \stackrel{\text{def}}{=} \dot{T}$
- C^{\sharp} [false] $X^{\sharp} \stackrel{\text{def}}{=} \dot{\bot}$
- $\bullet \ \mathsf{C}^{\sharp} \llbracket \ c_1 \lor c_2 \ \rrbracket \ X^{\sharp} \stackrel{\mathsf{def}}{=} \ (\mathsf{C}^{\sharp} \llbracket \ c_1 \ \rrbracket \ X^{\sharp}) \stackrel{\mathsf{i}^{\sharp}}{=} \ (\mathsf{C}^{\sharp} \llbracket \ c_2 \ \rrbracket \ X^{\sharp})$
- $\bullet \ \mathsf{C}^{\sharp} \llbracket \ c_1 \wedge c_2 \ \rrbracket \ \mathsf{X}^{\sharp} \stackrel{\mathsf{def}}{=} \ (\mathsf{C}^{\sharp} \llbracket \ c_1 \ \rrbracket \ \mathsf{X}^{\sharp}) \ \dot{\cap}^{\sharp} \ (\mathsf{C}^{\sharp} \llbracket \ c_2 \ \rrbracket \ \mathsf{X}^{\sharp})$

La comparaison d'expressions $C^{\sharp}[\![e_1 \bowtie e_2]\!]$, $\bowtie \in \{=, \neq, <, >, \leq, \geq\}$ sera présentée plus tard sur des exemples...

Sûreté
$$C[\![c]\!] \gamma(X^{\sharp}) \subseteq \gamma(C^{\sharp}[\![c]\!] X^{\sharp})$$

Sémantique abstraite (partielle)

- $S[[assert \ c\]] R \stackrel{\text{def}}{=} C[[c\]] R$ $S^{\sharp}[[assert \ c\]] X^{\sharp} \stackrel{\text{def}}{=} C^{\sharp}[[c\]] X^{\sharp}$
- S[if c then s_1 else s_2] R $\stackrel{\text{def}}{=} S[s_1] (C[c]R) \cup S[s_2] (C[\neg c]R)$ S[‡][if c then s_1 else s_2] X^{\sharp} $\stackrel{\text{def}}{=} S^{\sharp}[s_1] (C^{\sharp}[c]X^{\sharp}) \dot{\cup}^{\sharp} S^{\sharp}[s_2] (C^{\sharp}[\neg c]X^{\sharp})$
- S[while c do s] $R \stackrel{\text{def}}{=} C[\neg c]$ (Ifp $\lambda X.R \cup S[s]$ (C[c]X)) pour l'instant, nous pouvons écrire naïvement $S^{\sharp}[$ while c do s] $X^{\sharp} \stackrel{\text{def}}{=} C^{\sharp}[\neg c]$ (Ifp $\lambda Y^{\sharp}.X^{\sharp} \cup S^{\sharp}[s]$ ($C^{\sharp}[c]Y^{\sharp}$)) le prochain cours expliquera le traitement des boucles en détail...

Sûreté
$$\mathbb{S}\llbracket\,c\,\rrbracket\,\gamma(X^\sharp)\subseteq\gamma(\mathbb{S}^\sharp\llbracket\,c\,\rrbracket\,X^\sharp)$$

Le domaine des constantes

Treillis des constantes

Propriétés abstraites

Valeurs possibles d'une variable à un point de programme donné :

- $c \in \mathbb{Z}$: constante numérique (une seule valeur possible);
- T: non constante (plusieurs valeurs possibles);
- ⊥ : code non accessible (aucune valeur possible);

Treillis complet, infini en largeur, mais « plat ».

Cours 9 Abstractions de sémantiques Antoine Miné p. 38 / 67

Opérations sur les constantes

Correspondance de Galois :

$$\gamma(\perp) \stackrel{\text{def}}{=} \emptyset$$
 $\gamma(c) \stackrel{\text{def}}{=} \{c\}$
 $\gamma(\top) \stackrel{\text{def}}{=} \mathbb{Z}$

$$\alpha(S) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \bot & \text{si } S = \emptyset \\ c & \text{si } S = \{c\} \\ \top & \text{sinon} \end{array} \right.$$

Opérateurs optimaux dérivés :

- ∪[‡] et ∩[‡] sont ⊔ et □ pour l'ordre partiel;
- $c^{\sharp} \stackrel{\text{def}}{=} c$:
- $[a, b]^{\sharp} \stackrel{\text{def}}{=} a \text{ si } a = b, \top \text{ sinon };$

•
$$X^{\sharp} + {}^{\sharp} Y^{\sharp} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} \bot & \text{si } X^{\sharp} \text{ ou } Y^{\sharp} = \bot \\ \top & \text{sinon si } X^{\sharp} \text{ ou } Y^{\sharp} = \top \\ X^{\sharp} + Y^{\sharp} & \text{sinon} \end{array} \right.$$

$$\bullet \ X^{\sharp} \times^{\sharp} Y^{\sharp} \stackrel{\mathsf{def}}{=} \left\{ \begin{array}{ll} \bot & \mathsf{si} \ X^{\sharp} \ \mathsf{ou} \ Y^{\sharp} = \bot \\ 0 & \mathsf{sinon} \ \mathsf{si} \ X^{\sharp} \ \mathsf{ou} \ Y^{\sharp} = 0 \\ \top & \mathsf{sinon} \ \mathsf{si} \ X^{\sharp} \ \mathsf{ou} \ Y^{\sharp} = \top \\ X^{\sharp} \times Y^{\sharp} & \mathsf{sinon} \end{array} \right.$$

. . . .

Opérations sur les constantes (suite)

Exemples de test :

•
$$C^{\sharp} \llbracket X - c = 0 \rrbracket R^{\sharp} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} \dot{\bot} & \text{si } R^{\sharp}(X) \notin \{c, \top\} \\ R^{\sharp} [X \mapsto c] & \text{sinon} \end{array} \right.$$

•
$$C^{\sharp} \llbracket X - Y - c = 0 \rrbracket R^{\sharp} \stackrel{\text{def}}{=}$$

$$\left(\left\{ \begin{array}{c} C^{\sharp} \llbracket X - (R^{\sharp}(Y) + c) = 0 \rrbracket R^{\sharp} & \text{si } R^{\sharp}(Y) \notin \{\bot, \top\} \\ R^{\sharp} & \text{sinon} \end{array} \right) \stackrel{\dot{}}{\cap}^{\sharp}$$

$$\left(\left\{ \begin{array}{c} C^{\sharp} \llbracket Y - (R^{\sharp}(X) - c) = 0 \rrbracket R^{\sharp} & \text{si } R^{\sharp}(X) \notin \{\bot, \top\} \\ R^{\sharp} & \text{sinon} \end{array} \right)$$

une valeur constante détermine l'autre valeur constante

Note :
 C[#] | c | R[#] def R[#] est toujours un choix possible, sûr mais peu précis.

Cours 9

Exemple d'analyse

Exemple:

$$X \leftarrow 0$$
; $Y \leftarrow 10$;
while $X < 100$ do
 $Y \leftarrow Y - 3$;
 $X \leftarrow X + Y$; •
 $Y \leftarrow Y + 3$
done

Nous supposons ici que le **while** est calculé avec des itérations de Kleene, comme dans la sémantique concrète.

(c.f. cours suivant pour l'analyse détaillée des boucles)

L'analyse dans le domaine des constante trouve à • :
$$\begin{cases} X = T \\ Y = 7 \end{cases}$$

Note:

l'analyse découvre des constantes qui n'apparaissent pas syntaxiquement dans le programme; nous avons une analyse sémantique.

Cours 9 Abstractions de sémantiques Antoine Miné p. 41 / 67

Le domaine des intervalles

Cours 9 Abstractions de sémantiques Antoine Miné p. 42 / 67

Les intervalles entiers

Idée:

abstraire les comportements du programme par une borne supérieure et une borne inférieure pour chaque variable.

$$\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \{ [a, b] \mid a \in \mathbb{Z} \cup \{-\infty\}, b \in \mathbb{Z} \cup \{+\infty\}, a \leq b \} \cup \{\bot\}$$

• Les valeurs de borne $-\infty$, $+\infty$ sont nécessaires; elles permettent de représenter des ensembles non-bornés;

$$[-\infty, +\infty] = \top$$
 représente \mathbb{Z} , $[0, +\infty]$ représente \mathbb{N} , etc.

 \implies tout ensemble d'entiers a une sur-approximation dans \mathcal{D}^{\sharp}

```
au pire, cette sur-approximation est \top = [-\infty, +\infty]
```

 — est l'unique représentant de ∅
 dans [a, b], nous imposons a < b; les intervalles non-⊥ ne sont jamais vides

Cours 9 Abstractions de sémantiques Antoine Miné p. 43 / 67

Le treillis des intervalles

Structure algébrique

Ordre partiel : \sqsubseteq

- $\bullet \ \forall I \in \mathcal{D}^{\sharp} : \bot \sqsubseteq I$
- $[a,b] \sqsubseteq [c,d] \iff (a \ge c) \land (b \le d)$ où \le est étendu naturellement à $\mathbb{Z} \cup \{-\infty,+\infty\}$ par : $\forall c \in \mathbb{Z}: -\infty < c < +\infty$

Treillis: □, □

- plus petit majorant ⊔ pour ⊑
 - $\bullet \ \forall I \in \mathcal{D}^{\sharp} : \bot \sqcup I = I \sqcup \bot = I$
 - $[a, b] \sqcup [c, d] = [\min(a, c), \max(b, d)]$
- plus grand minorant □:
 - $\bullet \ \forall I: \bot \sqcap I = I \sqcap \bot = \bot$
 - $[a, b] \sqcap [c, d] = \begin{cases} [\max(a, c), \min(b, d)] & \text{si } \max(a, c) \leq \min(b, d) \\ \bot & \text{si } \max(a, c) > \min(b, d) \end{cases}$

Structure algébrique (suite)

Notes:

le treillis est complet;

```
\forall I \subseteq \mathcal{D}^{\sharp}: \sqcup I et \sqcap I existent \sqcup \{[a_j, b_j] | j \in J\} = [\min_{j \in J} a_j, \max_{j \in J} b_j] \sqcap \{[a_i, b_i] | j \in J\} = [\max_{i \in J} a_i, \min_{i \in J} b_i] si \max \leq \min, ou \bot sinon
```

∩[#] = □

l'ensemble des intervalles est clos par
$$\cap$$
; $[a,b] \cap [c,d] = [a,b] \cap [c,d]$

∪[#] = □

l'ensemble des intervalles n'est pas clos par ∪.

```
[0,0] \cup [2,2] = \{0,2\}, qui n'est pas un intervalle; [0,0] \sqcup [2,2] = [0,2]
```

⇒ perte de précision potentielle dans l'analyse!

Correspondance de Galois pour les intervalles

$$\begin{array}{lll} & \stackrel{\star}{\overset{\star}{\star}} \text{Preuve} : & \text{on a bien } \alpha(X) \sqsubseteq I \iff X \subseteq \gamma(I) \text{, car} \\ & \alpha(X) \sqsubseteq (a,b) \\ & \iff \min X \geq a \wedge \max X \leq b \\ & \iff \forall x \in X \text{: } a \leq x \leq b \\ & \iff \forall x \in X \text{: } x \in \{y \mid a \leq y \leq b\} \\ & \iff \forall x \in X \text{: } x \in \gamma([a,b]) \\ & \iff X \subseteq \gamma([a,b]) \\ & \iff X \subseteq \gamma([a,b]) \\ \end{array}$$

Arithmétique d'intervalles : addition, soustraction

- $\bullet \ \ ^{-\sharp} [a,b] = [-b,-a]$
- [a,b] + [c,d] = [a+c,b+d]
- $[a, b] -^{\sharp} [c, d] = [a d, b c]$
- $\forall I \in \mathcal{D}^{\sharp}$: $-^{\sharp} \perp = \perp +^{\sharp} I = I +^{\sharp} \perp = \cdots = \perp$ les opérateurs sont stricts : ils retournent \perp si un argument est \perp

```
où + et - sont étendus aux bornes +\infty et -\infty par : \forall x \in \mathbb{Z}: (+\infty) + x = +\infty, (-\infty) + x = -\infty, -(+\infty) = (-\infty), \dots
```

```
**Preuve: optimalité de +# \alpha(\gamma([a,b]) \overrightarrow{+} \gamma([c,d])) = \alpha(\{x \mid a \le x \le b\} \overrightarrow{+} \{y \mid c \le y \le d\}) = \alpha(\{x \mid y \mid a \le x \le b \land c \le y \le d\}) = [\min\{x + y \mid a \le x \le b \land c \le y \le d\}, \max\{x + y \mid a \le x \le b \land c \le y \le d\}] = [a + c, b + d] = [a,b] + (c,d)
```

Quizz : $+^{\sharp}$, $-^{\sharp}$ sont-ils exacts?

Arithmétique d'intervalles : multiplication

•
$$[a, b] \times^{\sharp} [c, d] = [\min(a \times c, a \times d, b \times c, b \times d), \max(a \times c, a \times d, b \times c, b \times d)]$$

où
$$\times$$
 est étendu aux bornes $+\infty$ et $-\infty$ par la règle des signes : $c \times (+\infty) = (+\infty)$ si $c > 0$, $(-\infty)$ si $c < 0$ $c \times (-\infty) = (-\infty)$ si $c > 0$, $(+\infty)$ si $c < 0$ et aussi la règle non-standard : $0 \times (+\infty) = 0 \times (-\infty) = 0$ e.g., $[0, +\infty] \times^{\sharp} [0, 0] = [0, 0]$, grâce à $+\infty \times 0 = 0 \times 0 = 0$

Quizz : \times^{\sharp} est-il exact? optimal?

Arithmétique d'intervalles : division

Exemples:

$$\begin{split} [-5,5]/^{\sharp}[0,0] &= \bot \\ [5,10]/^{\sharp}[-1,1] &= ([5,10]/^{\sharp}[1,1]) \cup^{\sharp} ([5,10]/^{\sharp}[-1,-1]) = [5,10] \cup^{\sharp} [-10,-5] = [-10,10] \end{split}$$

Cours 9

Test dans les intervalles : cas particuliers simples

Tests simples: comparaison entre variables et constantes

on note ici :
$$X^{\sharp}(V) = [a, b]$$
 et $X^{\sharp}(W) = [c, d]$

•
$$C^{\sharp} \llbracket V \le x \rrbracket X^{\sharp} \stackrel{\text{def}}{=} \begin{cases} X^{\sharp} [V \mapsto [a, \min(b, x)]] & \text{si } a \le v \\ \vdots & \text{si } a > v \end{cases}$$

$$\bullet \ \mathsf{C}^{\sharp} \llbracket \ V \leq W \ \rrbracket \ X^{\sharp} \stackrel{\mathsf{def}}{=} \left\{ \begin{matrix} X^{\sharp} \llbracket \ V \mapsto [a, \min(b, d)], & \text{si } a \leq d \\ W \mapsto [\max(a, c), d] \ \rrbracket \\ \dot{\bot} & \text{si } a > d \end{matrix} \right.$$

la borne supérieure de W raffine la borne supérieure de V la borne inférieure de V raffine la borne inférieure de W

Cours 9

Test dans les intervalles : cas complexe (étape 1) **

Exemple:
$$C^{\sharp}[X + Y - Z \le 0]X^{\sharp}$$

où $X^{\sharp} = \{X \mapsto [0, 10], Y \mapsto [2, 10], Z \mapsto [3, 5]\}$

Première étape : annoter l'arbre d'expression avec des intervalles

Évaluation bottom-up similaire à l'affectation d'intervalles, en utilisant les opérateurs abstraits $+^{\sharp}$, $-^{\sharp}$, etc. mais on se souvient en plus de tous les résultats intermédiaires.

Cours 9 Abstractions de sémantiques Antoine Miné p. 52 / 67

Test dans les intervalles : cas complexe (étape 2) **

Example:
$$C^{\sharp}[X + Y - Z \le 0]X^{\sharp}$$

avec $X^{\sharp} = \{X \mapsto [0, 10], Y \mapsto [2, 10], Z \mapsto [3, 5]\}$

Deuxième étape : raffinement de l'expression top-down.

- raffine l'intervalle à la racine, sachant que le résultat est négatif;
- propage les intervalles raffinés vers le bas, vers les feuilles;
- les intervalles aux feuilles variables fournissent des nouvelles informations, à stocker dans l'environnement abstrait : $\{X \mapsto [0,3], Y \mapsto [2,5], Z \mapsto [3,5]\}$

Cours 9 Abstractions de sémantiques Antoine Miné p. 53 / 67

Opérateurs arithmétiques et de comparaison en arrière **

Les opérateurs en arrière qui raffinent de manière sûre leurs arguments.

• Opérateur de comparaison, appliqué à la racine de l'expression :

$$\leq 0^{\sharp}(X^{\sharp}) \stackrel{\text{def}}{=} X^{\sharp} \cap^{\sharp} [-\infty, 0]^{\sharp}$$

• Opérateurs arithmétiques en arrière, appliqués aux nœuds :

$$\stackrel{\leftarrow}{=} (X^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} X^{\sharp} \cap^{\sharp} (-^{\sharp} R^{\sharp})$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (R^{\sharp} -^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (R^{\sharp} -^{\sharp} X^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (R^{\sharp} +^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (X^{\sharp} -^{\sharp} R^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (R^{\sharp} +^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (X^{\sharp} -^{\sharp} R^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (R^{\sharp} /^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (R^{\sharp} /^{\sharp} X^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (S^{\sharp} \times^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} ((X^{\sharp} /^{\sharp} S^{\sharp}) \cup^{\sharp} [0, 0]^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (S^{\sharp} \times^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} ((X^{\sharp} /^{\sharp} S^{\sharp}) \cup^{\sharp} [0, 0]^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (S^{\sharp} \times^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} ((X^{\sharp} /^{\sharp} S^{\sharp}) \cup^{\sharp} [0, 0]^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (S^{\sharp} \times^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} ((X^{\sharp} /^{\sharp} S^{\sharp}) \cup^{\sharp} [0, 0]^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (S^{\sharp} \times^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (X^{\sharp} (X^{\sharp} Y^{\sharp}))$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}, R^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (X^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (X^{\sharp} Y^{\sharp})$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (X^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (X^{\sharp} Y^{\sharp})$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (X^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (X^{\sharp} Y^{\sharp})$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (X^{\sharp} Y^{\sharp}), Y^{\sharp} \cap^{\sharp} (X^{\sharp} Y^{\sharp})$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (X^{\sharp}) (X^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (X^{\sharp}) (X^{\sharp}) (X^{\sharp})$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp} \cap^{\sharp} (X^{\sharp}) (X^{\sharp}) (X^{\sharp})$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}) \stackrel{\text{def}}{=} (X^{\sharp}, Y^{\sharp}) (X^{\sharp}) (X^{\sharp})$$

$$\stackrel{\leftarrow}{=} (X^{\sharp}, Y^{\sharp}) (X^{\sharp}) (X^{\sharp}) (X^{\sharp}) (X^{\sharp})$$

$$\stackrel{\longleftarrow}{=} (X^{\sharp}, Y^{\sharp}) (X^{\sharp}) (X^{\sharp}) (X^{\sharp}) (X^{\sharp})$$

$$\stackrel{\longleftarrow}{=} (X^{\sharp}, Y^{\sharp}) (X^{\sharp}) (X^{\sharp}) (X^{\sharp}) (X^{\sharp})$$

$$\stackrel{\longleftarrow}{=} (X^{\sharp}) (X^{\sharp}) (X^{\sharp}) (X^{\sharp}) (X^{\sharp})$$

Étant donnés des arguments X^{\sharp} , Y^{\sharp} originaux, et un résultat R^{\sharp} raffiné, $\overleftarrow{\Diamond}^{\sharp}$ retourne $X^{\sharp\prime}$ et $Y^{\sharp\prime}$ qui raffinent X^{\sharp} et Y^{\sharp} , tout en couvrant le résultat raffiné R^{\sharp} : $R^{\sharp} \Box X^{\sharp\prime} \overleftarrow{\Diamond}^{\sharp} Y^{\sharp\prime}$ (sûreté).

Implantation de la sémantique abstraite en OCaml

Cours 9 Abstractions de sémantiques Antoine Miné p. 55 / 67

Rappel : itérateur générique et domaine concret

L'itérateur est générique et paramétré par un domaine d'interprétation :

- foncteur Interprete dans interpreter/interpreter.ml
- paramétré par un domaine obéissant à la signature DOMAIN dans domains/domain.ml.
 abstraction de P(V → Z)

Dans le cours précédent, nous avons vu l'interprète concret :

 module Concrete dans domains/concrete_domain.ml qui implante DOMAIN.

Cours 9 Abstractions de sémantiques Antoine Miné p. 56 / 67

Rappel : schéma de fonctionnement de l'interprète concret

Cours 9 Abstractions de sémantiques Antoine Miné p. 57 / 67

Schéma de fonctionnement de l'interprète non-relationnel

Cours 9 Abstractions de sémantiques Antoine Miné p. 58 / 67

Analyse non-relationnelle

 pas de changement à l'itérateur pour l'instant...

- ajout d'une signature de domaines pour les valeurs, fournie
 - VALUE_DOMAIN dans domains/value_domain.ml;
 - modélise des ensembles d'entiers $\mathcal{P}(\mathbb{Z})$.
- exemple de domaines de valeurs :
 - Constants dans domains/constant_domain.ml
 domaine des constantes (implantation partielle fournie, à compléter)
 - domaine des intervalles : non fourni, à faire intégralement!
- un foncteur non-relationnel générique, fourni :
 - NonRelational dans domains/non_relational;
 - prend un domaine de valeurs VALUE en argument;
 - fournit un domaine d'environnements DOMAIN avec la méthode vue en cours.

L'ajout d'une analyse non-relationnelle nécessite uniquement l'ajout d'un nouveau domaine de valeurs, de signature VALUE_DOMAIN :

plus simple que d'ajouter un nouveau module de signature DOMAIN!

Cours 9 Abstractions de sémantiques Antoine Miné p. 59 / 67

Domaine de valeurs : signature

```
domains/value domain.ml
module type VALUE_DOMAIN = sig
                                      (* \mathcal{P}(\mathbb{Z}) *)
    type t
    \begin{array}{lll} \text{val top: t} & (* \top *) \\ \text{val bottom: t} & (* \bot) *) \\ \text{val const: Z.t -> t} & (* \{c\} *) \end{array}
     val rand: Z.t -> Z.t -> t (* [a, b] *)
    val join: t \rightarrow t \rightarrow t (* \cup *)
     val meet: t \rightarrow t \rightarrow t (* \cap *)
     val subset: t \rightarrow t \rightarrow bool (* \subseteq *)
     val is_bottom: t -> bool (* = \emptyset ? *)
     val print: Format.formatter -> t -> unit
     val binary: t \rightarrow int_binary_op \rightarrow t (* +, -, ×, / *)
     val compare: t -> t -> compare_op -> (t * t) (* =, \neq, <, >. <. > *)
     (* pour les tests complexes, optionnel *)
     val bwd unary: t -> int unary op -> t -> t
     val bwd binary: t \rightarrow t \rightarrow int binary op \rightarrow t \rightarrow (t * t)
     (* pour les boucles, voir le prochain cours *)
     val widen: t. -> t. -> t.
end
```

Domaine des constantes : représentation et ordre

domains/constant domain.ml module Constants = struct type t = Cst of Z.t (*c*)| BOT (* ⊥ *) I TOP (* ⊤ *) let top = TOP let bottom = BOT let const c = Cst c let rand x y = if x=y then Cst x else if x<y then TOP else BOT let subset a b = match a.b with | BOT, | ,TOP -> true | Cst x. Cst v -> x=v | -> false let join a b = match a.b with $\mid BOT,x \mid x,BOT \rightarrow x$ | Cst x, Cst y when x=y -> a | -> TOP let meet a b = match a.b with $| TOP,x | x,TOP \rightarrow x$ | Cst x, Cst y when x=y -> a | -> BOT end: VALUE DOMAIN

Domaine des constantes : opérateurs

domains/constant domain.ml (* applique f à une constante, $\bot \to \bot$, $\top \to \top$ *) let lift1 f x = match x withI BOT -> BOT I TOP -> TOP | Cst a -> Cst (f a) (* idem pour une fonction binaire*) let lift2 f x v = ...(* ces opérations sont-elles optimales ? *) let neg = lift1 Z.neg let add = lift2 Z.add let sub = lift2 Z.sub let mul = lift2 Z.mul let div a b = if b = Cst Z.zero then BOT else lift2 Z.div a b (* à faire *) let eq a b = a.b (* dispatch *) let unary x op = match op with ... let binary x y op = match op with ... let compare x v op = match op with ... (* tests complexes, à lire chez soi *) let bwd unarv = ...

Domaine non-relationnel générique : représentation

```
domains/non relational.ml
module NonRelational(V:VALUE DOMAIN) =
struct
  module VarMap = Mapext.Make(String)
  type env = V.t VarMap.t (* \mathbb{V} \to \mathcal{D}\sharp *)
  type t = Val of env | BOT (* \mathcal{E}\sharp \stackrel{\mathrm{def}}{=} (\mathbb{V} \to \mathcal{D}\sharp) \cup \{\bot\} *)
  (* arbre d'expression annoté *)
  type atree =
    | A_unary of int_unary_op * atree * V.t
    | A_binary of int_binary_op * atree * V.t * atree * V.t
    | A_var of var * V.t
    | A cst of V.t
  (* évaluation d'expression : arbre annoté et valeur abstraite *)
  let rec eval (m:env) (e:int expr) : atree * V.t = match e with ...
  . . .
end: DOMAIN
```

Domaine non-relationnel générique : environnement

domains/non relational.ml let init () = Val VarMap.empty let bottom () = BOT let add_var a var = match a with | BOT -> BOT | Val m -> Val (VarMap.add var (V.const Z.zero) m) let del var a var = match a with I ROT -> ROT | Val m -> Val (VarMap.remove var m) (* assignment *) let assign a var e = match a with | BOT -> BOT | Val m -> let ,v = eval m e in if V.is_bottom v then BOT else Val (VarMap.add var v m)

Domaine non-relationnel générique : ordre

domains/non relational.ml let subset a b = match a,b with | BOT, -> true | .BOT -> false | Val m, Val n -> VarMap.for_all2z (fun _ x y -> V.subset x y) m n let join a b = match a,b with $\mid BOT,x \mid x,BOT \rightarrow x$ | Val m, Val n -> Val (VarMap.map2z (fun _ x y -> V.join x y) m n) exception Empty let meet a b = match a,b with $\mid BOT,x \mid x,BOT \rightarrow x$ | Val m. Val n -> try Val (VarMap.map2z (fun _ x y -> let r = V.meet x v in if V.is_bottom r then raise Empty;) m n) with Empty -> BOT

Domaine des intervalles : manipulation des bornes

Implanter d'abord l'arithmétique dans $\mathbb{Z} \cup \{\pm \infty\}$ qui sert pour manipuler les bornes d'intervalles.

_ domains/interval domain.ml $(* \mathbb{Z} \cup \{\pm \infty\} *)$ type bound = | Int of Z.t (* Z *) | PINF (* $+\infty$ *) I MINF $(* - \infty *)$ (* -a *)let bound neg (a:bound) : bound = match a with | MINF -> PINF | PINF -> MINF | Int i -> Int (Z.neg i) (* a + b *)let bound add (a:bound) (b:bound) : bound = match a,b with | MINF, PINF | PINF, MINF -> invalid_arg "bound_add" (* $(+\infty) + (-\infty)$ *) | MINF,_ | _,MINF -> MINF | PINF,_ | _,PINF -> PINF | Int i. Int i -> Int (Z.add i i) (* compare a et b, retourne -1, 0 ou 1 *) let bound cmp (a:bound) (b:bound) : int = match a,b with | MINF,MINF | PINF,PINF -> 0 | MINF,_ | _,PINF -> -1 | PINF, | ,MINF -> 1 | Int i, Int j -> Z.compare i j

Domaine des intervalles : intervalles

Puis implanter la signature VALUE_DOMAIN

en s'inspirant de constant_domain.ml.

```
__ domains/interval domain.ml
(* \{ [a, b] | a < b \} \cup \{\bot\} *)
type t = Itv of bound * bound | BOT
(* extension de f par f(\bot) = \bot *)
let lift1 f x = match x with
| Itv (a,b) -> f a b
I BOT -> BOT
(* idem pour f(\perp, y) = f(x, \perp) = \perp *)
let lift2 f x y = match x,y with ...
(* -x \text{ dans les intervalles }*)
let neg(x:t):t=
  lift1 (fun a b -> Itv (bound neg b, bound neg a)) x
(* x \subseteq y \text{ dans les intervalles } *)
let subset (x:t) (y:t) : bool = match x,y with
 | BOT, -> true
 | .BOT -> false
  | Itv (a,b), Itv (c,d) -> bound cmp a c >= 0 && bound cmp b d <= 0
. . .
```