Appendix A

Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber Type	<i>V_f</i> (%)	$D_f(\mu m)$	L_f (mm)	E _f (GPa)	T _f (MPa)	I_f	σ_{cs} (MPa)	σ_u (MPa)	Gt (MJ/m3)	D_{spread} (cm)
		1	CM	0.00	0.35	0.00	0.005	/	0.00	0	0	0	0	0.000	55.00	2.46	/	46.00
		2	PS1	0.00	0.35	0.00	0.005	PP	0.01	20	6	3.45	400	0.147	55.00	2.62	/	45.00
		3	PS2	0.00	0.35	0.00	0.005	PP	0.03	20	6	3.45	400	0.147	53.20	2.80	/	45.00
		4	PS3	0.00	0.35	0.00	0.005	PP	0.05	20	6	3.45	400	0.147	53.00	2.84	/	44.00
		5	PS4	0.00	0.35	0.00	0.005	PP	0.07	20	6	3.45	400	0.147	52.00	2.88	/	43.00
		6	PS5	0.00	0.35	0.00	0.005	PP	0.10	20	6	3.45	400	0.147	51.70	3.06	/	43.00
		7	PS6	0.00	0.35	0.00	0.005	PP	0.30	20	6	3.45	400	0.147	50.70	3.06	/	42.00
		8	PS7	0.00	0.35	0.00	0.005	PP	0.50	20	6	3.45	400	0.147	50.00	3.15	/	40.00
		9	PS8	0.00	0.35	0.00	0.005	PP	0.70	20	6	3.45	400	0.147	48.30	3.15	/	37.00
		10	PM1	0.00	0.35	0.00	0.005	PP	0.01	20	12	3.45	400	0.175	53.00	2.62	/	44.00
		11	PM2	0.00	0.35	0.00	0.005	PP	0.03	20	12	3.45	400	0.175	52.00	2.68	/	43.00
	Arezoo	12	PM3	0.00	0.35	0.00	0.005	PP	0.05	20	12	3.45	400	0.175	52.00	2.86	/	42.00
2015	Emdadi [80]	13	PM4	0.00	0.35	0.00	0.005	PP	0.07	20	12	3.45	400	0.175	51.00	2.96	/	42.00
	Emdadi [60]	14	PM5	0.00	0.35	0.00	0.005	PP	0.10	20	12	3.45	400	0.175	51.50	3.12	/	42.00
		15	PM6	0.00	0.35	0.00	0.005	PP	0.30	20	12	3.45	400	0.175	50.50	3.20	/	37.00
		16	PM7	0.00	0.35	0.00	0.005	PP	0.50	20	12	3.45	400	0.175	47.80	3.25	/	34.00
		17	PM8	0.00	0.35	0.00	0.005	PP	0.70	20	12	3.45	400	0.175	41.00	3.10	/	32.00
		18	PL1	0.00	0.35	0.00	0.005	PP	0.01	20	28	3.45	400	0.217	53.00	2.70	/	43.00
		19	PL2	0.00	0.35	0.00	0.005	PP	0.03	20	28	3.45	400	0.217	53.00	3.00	/	43.00
		20	PL3	0.00	0.35	0.00	0.005	PP	0.05	20	28	3.45	400	0.217	53.00	3.10	/	42.00
		21	PL4	0.00	0.35	0.00	0.005	PP	0.07	20	28	3.45	400	0.217	52.00	3.22	/	42.00
		22	PL5	0.00	0.35	0.00	0.005	PP	0.10	20	28	3.45	400	0.217	51.70	3.40	/	39.50
		23	PL6	0.00	0.35	0.00	0.005	PP	0.30	20	28	3.45	400	0.217	43.00	3.30	/	30.00
		24	PL7	0.00	0.35	0.00	0.005	PP	0.50	20	28	3.45	400	0.217	38.60	3.00	/	28.00
-		25	PL8	0.00	0.35	0.00	0.005	PP	0.70	20	28	3.45	400	0.217	33.40	2.80	/	24.00
	Iman	26	CM	0.00	0.35	0.00	0.005	/	0.00	0	0	0	0	0.000	55.00	2.46	/	46.00
2013	Mehdipour	27	SG1	0.00	0.35	0.00	0.005	GF	0.10	40	6	70	3000	0.197	55.00	2.60	/	45.00
	Menapour	28	SG2	0.00	0.35	0.00	0.005	GF	0.20	40	6	70	3000	0.197	54.00	2.66	/	43.00

Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber	$V_f(\%)$	$D_f(\mu m)$	$L_f(mm)$	E_f	T_f	I_f	σ_{cs}	σ_u	Gt (MI) 2)	D_{spread}
								Type				(GPa)	(MPa)		(MPa)	(MPa)	(MJ/m3)	(cm)
	[75]	29	SG3	0.00	0.35	0.00	0.005	GF	0.50	40	6	70 70	3000	0.197	54.00	2.80	/	38.00
		30	SG4	0.00	0.35	0.00	0.005	GF	1.00	40	6	70 70	3000	0.197	56.00	3.50	/	35.00
		31	SG5	0.00	0.35	0.00	0.005	GF	2.00	40	6	70 70	3000	0.197	53.00	4.30	/	30.00
		32	SG6	0.00	0.35	0.00	0.005	GF	3.00	40	6	70 70	3000	0.197	53.00	5.20	/	28.00
		33	SG7	0.00	0.35	0.00	0.005	GF	4.00	40	6	70 7 0	3000	0.197	37.00	4.20	/	22.00
		34	SG8	0.00	0.35	0.00	0.005	GF	5.00	40	6	70 7 0	3000	0.197	30.00	3.10	/	12.00
		35	LG1	0.00	0.35	0.00	0.005	GF	0.50	60	12	70 7 0	3000	0.162	56.00	3.70	/	36.00
		36	LG2	0.00	0.35	0.00	0.005	GF	1.00	60	12	70	3000	0.162	52.00	4.50	/	32.00
		37	LG3	0.00	0.35	0.00	0.005	GF	2.00	60	12	70 7 0	3000	0.162	50.00	5.60	/	28.00
		38	LG4	0.00	0.35	0.00	0.005	GF	3.00	60	12	70	3000	0.162	28.00	3.30	/	11.00
		39	M	0.00	0.30	0.50	0.004	/	0.00	0	0	0	0	0.000	72.92	/	/	/
		40	CS0.1	0.00	0.30	0.50	0.004	PVA	0.10	40	6	36.7	1500	0.161	73.00	/	/	/
		41	CS0.3	0.00	0.30	0.50	0.004	PVA	0.30	40	6	36.7	1500	0.161	76.88	/	/	/
		42	CS0.5	0.00	0.30	0.50	0.004	PVA	0.50	40	6	36.7	1500	0.161	70.94	/	/	/
		43	CS0.8	0.00	0.30	0.50	0.004	PVA	0.80	40	6	36.7	1500	0.161	77.69	/	/	/
		44	CS1.0	0.00	0.30	0.50	0.004	PVA	1.00	40	6	36.7	1500	0.161	75.63	/	/	/
		45	CS1.5	0.00	0.30	0.50	0.004	PVA	1.50	40	6	36.7	1500	0.161	77.75	/	/	/
		46	CS2.0	0.00	0.30	0.50	0.004	PVA	2.00	40	6	36.7	1500	0.161	70.31	/	/	/
		47	CS2.5	0.00	0.30	0.50	0.004	PVA	2.50	40	6	36.7	1500	0.161	75.88	/	/	/
		48	CS3.0	0.00	0.30	0.50	0.004	PVA	3.00	40	6	36.7	1500	0.161	68.50	/	/	/
		49	CS3.5	0.00	0.30	0.50	0.004	PVA	3.50	40	6	36.7	1500	0.161	70.95	/	/	/
2020	Wen Si [76]	50	CL0.1	0.00	0.30	0.50	0.004	PVA	0.10	40	12	36.7	1500	0.192	72.63	/	/	/
		51	CL0.3	0.00	0.30	0.50	0.004	PVA	0.30	40	12	36.7	1500	0.192	73.13	/	/	/
		52	CL0.5	0.00	0.30	0.50	0.004	PVA	0.50	40	12	36.7	1500	0.192	71.81	/	/	/
		53	CL0.8	0.00	0.30	0.50	0.004	PVA	0.80	40	12	36.7	1500	0.192	75.88	/	/	/
		54	CL1.0	0.00	0.30	0.50	0.004	PVA	1.00	40	12	36.7	1500	0.192	72.38	/	/	/
		55	CL1.5	0.00	0.30	0.50	0.004	PVA	1.50	40	12	36.7	1500	0.192	72.75	/	/	/
		56	CL2.0	0.00	0.30	0.50	0.004	PVA	2.00	40	12	36.7	1500	0.192	71.38	/	/	/
		57	CL2.5	0.00	0.30	0.50	0.004	PVA	2.50	40	12	36.7	1500	0.192	69.31	/	/	/
		58	CL3.0	0.00	0.30	0.50	0.004	PVA	3.00	40	12	36.7	1500	0.192	68.13	/	/	/
		59	JL0.1	0.00	0.30	0.50	0.004	PVA	0.10	31	12	39	1600	0.247	69.94	/	/	/
		60	JL0.3	0.00	0.30	0.50	0.004	PVA	0.30	31	12	39	1600	0.247	78.50	/	/	/
		61	JL0.5	0.00	0.30	0.50	0.004	PVA	0.50	31	12	39	1600	0.247	79.63	/	/	/

Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber Type	$V_f(\%)$	$D_f(\mu m)$	$L_f(mm)$	E _f (GPa)	T _f (MPa)	I_f	σ_{cs} (MPa)	σ_u (MPa)	<i>Gt</i> (MJ/m3)	D_{spread} (cm)
		62	JL0.8	0.00	0.30	0.50	0.004	PVA	0.80	31	12	39	1600	0.247	80.00	/	/	/
		63	JL1.0	0.00	0.30	0.50	0.004	PVA	1.00	31	12	39	1600	0.247	82.56	/	/	/
		64	JL1.5	0.00	0.30	0.50	0.004	PVA	1.50	31	12	39	1600	0.247	80.44	/	/	/
		65	JL2.0	0.00	0.30	0.50	0.004	PVA	2.00	31	12	39	1600	0.247	77.94	/	/	/
		66	JL2.5	0.00	0.30	0.50	0.004	PVA	2.50	31	12	39	1600	0.247	77.88	/	/	/
		67	JL3.0	0.00	0.30	0.50	0.004	PVA	3.00	31	12	39	1600	0.247	78.63	/	/	/
		68	CM	0.00	0.50	0.00	0.000	/	0.00	0	0	0	0	0.000	/	/	/	/
		69	PAN3-0.1	0.00	0.50	0.00	0.000	CF	0.06	7.2	3	242	3800	1.170	/	/	/	/
		70	PAN3-0.2	0.00	0.50	0.00	0.000	CF	0.12	7.2	3	242	3800	1.170	/	/	/	/
		71	PAN3-0.3	0.00	0.50	0.00	0.000	CF	0.18	7.2	3	242	3800	1.170	/	/	/	/
		72	PAN3-0.4	0.00	0.50	0.00	0.000	CF	0.23	7.2	3	242	3800	1.170	/	/	/	/
		73	PAN3-0.5	0.00	0.50	0.00	0.000	CF	0.28	7.2	3	242	3800	1.170	/	/	/	/
		74	PAN3-1.0	0.00	0.50	0.00	0.000	CF	0.56	7.2	3	242	3800	1.170	/	/	/	/
		75	PAN6-0.1	0.00	0.50	0.00	0.000	CF	0.06	7.2	6	242	3800	1.392	/	/	/	/
2013	F.J. Baeza	76	PAN6-0.15	0.00	0.50	0.00	0.000	CF	0.09	7.2	6	242	3800	1.392	/	/	/	/
2013	[74]	77	PAN6-0.2	0.00	0.50	0.00	0.000	CF	0.12	7.2	6	242	3800	1.392	/	/	/	/
		78	PAN6-0.25	0.00	0.50	0.00	0.000	CF	0.14	7.2	6	242	3800	1.392	/	/	/	/
		79	PAN6-0.3	0.00	0.50	0.00	0.000	CF	0.17	7.2	6	242	3800	1.392	/	/	/	/
		80	PAN6-0.5	0.00	0.50	0.00	0.000	CF	0.29	7.2	6	242	3800	1.392	/	/	/	/
		81	PAN12-0.05	0.00	0.50	0.00	0.000	CF	0.03	7.2	12	242	3800	1.658	/	/	/	/
		82	PAN12-0.1	0.00	0.50	0.00	0.000	CF	0.06	7.2	12	242	3800	1.658	/	/	/	/
		83	PAN12-0.15	0.00	0.50	0.00	0.000	CF	0.09	7.2	12	242	3800	1.658	/	/	/	/
		84	PAN12-0.3	0.00	0.50	0.00	0.000	CF	0.17	7.2	12	242	3800	1.658	/	/	/	/
		85	PAN12-0.5	0.00	0.50	0.00	0.000	CF	0.29	7.2	12	242	3800	1.658	/	/	/	/
		86	wb32hr35	0.00	0.32	0.00	0.005	/	0.00	0	0	0	0	0.000	/	/	/	36.20
		87	wb32hr45	0.00	0.32	0.00	0.006	/	0.00	0	0	0	0	0.000	/	/	/	41.70
		88	wb32hr55	0.00	0.32	0.00	0.007	/	0.00	0	0	0	0	0.000	/	/	/	47.30
2012	Liberato	89	wb36hr35	0.00	0.36	0.00	0.005	/	0.00	0	0	0	0	0.000	/	/	/	39.00
2012	Ferrara [79]	90	wb36hr45	0.00	0.36	0.00	0.006	/	0.00	0	0	0	0	0.000	/	/	/	43.30
	F - J	91	wb36hr55	0.00	0.36	0.00	0.007	/	0.00	0	0	0	0	0.000	/	/	/	48.50
		92	wb40hr35	0.00	0.40	0.00	0.005	/	0.00	0	0	0	0	0.000	/	/	/	40.80
		93	wb40hr45	0.00	0.40	0.00	0.006	,	0.00	0	0	0	0	0.000	,	,	,	47.40
		93	WUTUIIITJ	0.00	0.40	0.00	0.000	/	0.00	U	U	U	U	0.000	/	/	/	7/.70

								Til				E	T				Cı	D
Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber	$V_f(\%)$	$D_f(\mu m)$	$L_f(\text{mm})$	E_f	T_f	I_f	σ_{cs} (MPa)	σ_u (MPa)	Gt (MJ/m3)	D_{spread}
		94		0.00	0.40	0.00	0.000	Type				(GPa)	(MPa)	0.000	(MFa)	(MFa)	(IVIJ/III3)	(cm)
			wb40hr55	0.00	0.40		0.008	/	0.00	0	0	0	0	0.000	/	/		50.50
		95	0.00-0.25	0.00	0.25	1.00	0.005	/	0.00	0	0	0	0	0.000	/	/	/	0.00
		96	0.00-0.30	0.00	0.30	1.00	0.005	/	0.00	0	0	0	0	0.000	/	/	/	14.20
		97	0.00-0.35	0.00	0.35	1.00	0.005	/	0.00	0	0	0	0	0.000	/	/	/	19.00
		98	0.00 - 0.40	0.00	0.40	1.00	0.005	/	0.00	0	0	0	0	0.000	/	/	/	22.70
		99	0.05-0.25	0.00	0.25	1.00	0.005	PP	0.06	30.5	6	3.45	400	0.100	/	/	/	0.00
		100	0.05-0.30	0.00	0.30	1.00	0.005	PP	0.05	30.5	6	3.45	400	0.100	/	/	/	10.90
		101	0.05-0.35	0.00	0.35	1.00	0.005	PP	0.05	30.5	6	3.45	400	0.100	/	/	/	15.80
		102	0.05-0.40	0.00	0.40	1.00	0.005	PP	0.05	30.5	6	3.45	400	0.100	/	/	/	22.70
		103	0.10-0.25	0.00	0.25	1.00	0.005	PP	0.12	30.5	6	3.45	400	0.100	/	/	/	0.00
		104	0.10-0.30	0.00	0.30	1.00	0.005	PP	0.11	30.5	6	3.45	400	0.100	/	/	/	10.60
		105	0.10-0.35	0.00	0.35	1.00	0.005	PP	0.10	30.5	6	3.45	400	0.100	/	/	/	14.80
2017	Leo Gu Li	106	0.10-0.40	0.00	0.40	1.00	0.005	PP	0.10	30.5	6	3.45	400	0.100	/	/	/	22.60
_01,	[81]	107	0.20-0.25	0.00	0.25	1.00	0.005	PP	0.23	30.5	6	3.45	400	0.100	/	/	/	0.00
		108	0.20-0.30	0.00	0.30	1.00	0.005	PP	0.22	30.5	6	3.45	400	0.100	/	/	/	5.80
		109	0.20-0.35	0.00	0.35	1.00	0.005	PP	0.21	30.5	6	3.45	400	0.100	/	/	/	14.30
		110	0.20-0.40	0.00	0.40	1.00	0.005	PP	0.20	30.5	6	3.45	400	0.100	/	/	/	18.70
		111	0.30-0.25	0.00	0.25	1.00	0.005	PP	0.35	30.5	6	3.45	400	0.100	/	/	/	0.00
		112	0.30-030	0.00	0.30	1.00	0.005	PP	0.33	30.5	6	3.45	400	0.100	/	/	/	5.20
		113	0.30-0.35	0.00	0.35	1.00	0.005	PP	0.31	30.5	6	3.45	400	0.100	/	/	/	11.80
		114	0.30-0.40	0.00	0.40	1.00	0.005	PP	0.30	30.5	6	3.45	400	0.100	/	/	/	18.10
		115	0.40-0.25	0.00	0.25	1.00	0.005	PP	0.46	30.5	6	3.45	400	0.100	/	/	/	0.00
		116	0.40-0.30	0.00	0.30	1.00	0.005	PP	0.44	30.5	6	3.45	400	0.100	/	/	/	1.00
		117	0.40-0.35	0.00	0.35	1.00	0.005	PP	0.42	30.5	6	3.45	400	0.100	/	/	/	11.40
		118	0.40-0.40	0.00	0.40	1.00	0.005	PP	0.40	30.5	6	3.45	400	0.100	/	/	/	14.60
		119	0.3-1.00	0.00	0.32	2.66	0.003	/	0.00	0	0	0	0	0.000	/	/	/	0.10
		120	0.3-1.25	0.00	0.40	2.66	0.003	/	0.00	0	0	0	0	0.000	/	/	/	4.20
		121	0.3-1.50	0.00	0.48	2.66	0.003	/	0.00	0	0	0	0	0.000	/	/	/	15.70
2011	Leo Gu Li	122	0.4-1.00	0.00	0.32	1.99	0.003	/	0.00	0	0	0	0	0.000	/	/	/	11.60
	[77]	123	0.4-1.25	0.00	0.40	1.99	0.003	/	0.00	0	0	0	0	0.000	/	/	/	20.30
		124	0.4-1.50	0.00	0.48	1.99	0.003	,	0.00	0	0	0	0	0.000	,	,	,	21.80
				0.00	0.48	1.59	0.003	/		0	0	0	0	0.000	/	/	/	0.00
		125	0.5-0.75	0.00	0.24	1.39	0.003	/	0.00	U	U	U	U	0.000	/	/	/	0.00

Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber Type	$V_f(\%)$	$D_f(\mu m)$	L_f (mm)	E _f (GPa)	T _f (MPa)	I_f	σ_{cs} (MPa)	σ _u (MPa)	<i>Gt</i> (MJ/m3)	D_{spread} (cm)
-		126	0.5-0.85	0.00	0.27	1.59	0.003	/	0.00	0	0	0	0	0.000	/	/	/	0.00
		127	0.5-1.00	0.00	0.32	1.59	0.003	/	0.00	0	0	0	0	0.000	/	/	/	19.80
		128	0.5-1.25	0.00	0.40	1.59	0.003	/	0.00	0	0	0	0	0.000	/	/	/	24.80
		129	0.5-1.50	0.00	0.48	1.59	0.003	/	0.00	0	0	0	0	0.000	/	/	/	25.90
		130	0.6-0.75	0.00	0.24	1.33	0.003	/	0.00	0	0	0	0	0.000	/	/	/	0.00
		131	0.6-0.85	0.00	0.27	1.33	0.003	/	0.00	0	0	0	0	0.000	/	/	/	6.40
		132	0.6-1.00	0.00	0.32	1.33	0.003	/	0.00	0	0	0	0	0.000	/	/	/	26.40
		133	0.6-1.25	0.00	0.40	1.33	0.003	/	0.00	0	0	0	0	0.000	/	/	/	27.60
		134	0.6-1.50	0.00	0.48	1.33	0.003	/	0.00	0	0	0	0	0.000	/	/	/	31.40
		135	0.7-0.75	0.00	0.24	1.14	0.003	/	0.00	0	0	0	0	0.000	/	/	/	0.40
		136	0.7-0.85	0.00	0.27	1.14	0.003	/	0.00	0	0	0	0	0.000	/	/	/	17.40
		137	0.7-1.00	0.00	0.32	1.14	0.003	/	0.00	0	0	0	0	0.000	/	/	/	28.00
		138	0.7-1.25	0.00	0.40	1.14	0.003	/	0.00	0	0	0	0	0.000	/	/	/	30.50
		139	0.7-1.50	0.00	0.48	1.14	0.003	/	0.00	0	0	0	0	0.000	/	/	/	32.20
		140	0.8-0.75	0.00	0.24	1.00	0.003	/	0.00	0	0	0	0	0.000	/	/	/	1.30
		141	0.8-0.85	0.00	0.27	1.00	0.003	/	0.00	0	0	0	0	0.000	/	/	/	19.70
		142	0.8-1.00	0.00	0.32	1.00	0.003	/	0.00	0	0	0	0	0.000	/	/	/	28.90
		143	0.8-1.25	0.00	0.40	1.00	0.003	/	0.00	0	0	0	0	0.000	/	/	/	31.70
		144	0.8-1.50	0.00	0.48	1.00	0.003	/	0.00	0	0	0	0	0.000	/	/	/	34.30
		145	0.9-0.75	0.00	0.24	0.89	0.003	/	0.00	0	0	0	0	0.000	/	/	/	11.60
		146	0.9-0.85	0.00	0.27	0.89	0.003	/	0.00	0	0	0	0	0.000	/	/	/	23.80
		147	0.9-1.00	0.00	0.32	0.89	0.003	/	0.00	0	0	0	0	0.000	/	/	/	28.00
		148	0.9-1.25	0.00	0.40	0.89	0.003	/	0.00	0	0	0	0	0.000	/	/	/	31.30
		149	0.9-1.50	0.00	0.48	0.89	0.003	/	0.00	0	0	0	0	0.000	/	/	/	28.30
		150	M41	0.10	0.25	0.64	0.030	PVA	2.00	39	12	25.8	1620	0.176	/	5.48	1.87	/
		151	M42	0.20	0.24	0.64	0.030	PVA	2.00	39	12	25.8	1620	0.176	/	5.60	3.36	/
2007	Shuxin Wang	152	M43	0.80	0.24	0.65	0.030	PVA	2.00	39	12	25.8	1620	0.176	/	4.72	4.81	/
2007	[2]	153	M44	1.00	0.24	0.65	0.030	PVA	2.00	39	12	25.8	1620	0.176	/	5.56	9.88	/
	- -	154	M45	1.20	0.24	0.64	0.030	PVA	2.00	39	12	25.8	1620	0.176	/	4.86	11.17	/
-		155	M46	1.50	0.24	0.65	0.030	PVA	2.00	39	12	25.8	1620	0.176	/	4.47	10.98	/
	En-Hua Yang	156	1	1.20	0.26	0.36	0.005	PVA	2.00	39	8	42.8	1600	0.186	52.60	/	/	/ _
2007		157	2	1.60	0.27	0.37	0.005	PVA	2.00	39	8	42.8	1600	0.186	47.50	/	/	/
	[33]	158	3	2.00	0.26	0.37	0.004	PVA	2.00	39	8	42.8	1600	0.186	34.20	/	/	/

Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber Type	$V_f(\%)$	$D_f(\mu m)$	$L_f(\text{mm})$	E _f (GPa)	T _f (MPa)	I_f	σ_{cs} (MPa)	σ_u (MPa)	Gt (MJ/m3)	D _{spread} (cm)
		159	4	2.40	0.26	0.37	0.004	PVA	2.00	39	8	42.8	1600	0.186	38.40	/	/	/
		160	5	2.80	0.26	0.37	0.004	PVA	2.00	39	8	42.8	1600	0.186	35.20	/	/	/
		161	6	3.20	0.25	0.37	0.004	PVA	2.00	39	8	42.8	1600	0.186	26.70	/	/	/
		162	7	3.60	0.25	0.37	0.005	PVA	2.00	39	8	42.8	1600	0.186	23.90	/	/	/
		163	8	5.60	0.24	0.36	0.005	PVA	2.00	39	8	42.8	1600	0.186	21.40	/	/	/
		164	CM	0.00	0.50	3.00	0.000	/	0.00	0	0	0	0	0.000	61.73	/	/	/
		165	CF-0.5	0.00	0.50	3.00	0.000	CF	0.50	6.9	12	240	4200	1.719	52.92	/	/	/
		166	CF-1.0	0.00	0.50	3.00	0.000	CF	1.00	6.9	12	240	4200	1.719	50.43	/	/	/
		167	CF-1.5	0.00	0.50	3.00	0.000	CF	1.50	6.9	12	240	4200	1.719	50.40	/	/	/
		168	CF-2.0	0.00	0.50	3.00	0.000	CF	2.00	6.9	12	240	4200	1.719	50.28	/	/	/
		169	GF-0.5	0.00	0.50	3.00	0.000	GF	0.50	14	12	72	1700	0.620	50.94	/	/	/
		170	GF-1.0	0.00	0.50	3.00	0.000	GF	1.00	14	12	72	1700	0.620	48.38	/	/	/
	Ahmet	171	GF-1.5	0.00	0.50	3.00	0.000	GF	1.50	14	12	72	1700	0.620	41.34	/	/	/
2012		172	GF-2.0	0.00	0.50	3.00	0.000	GF	2.00	14	12	72	1700	0.620	33.21	/	/	/
	Çavdar [25]	173	PP-0.5	0.00	0.50	3.00	0.000	PP	0.50	18	12	4	400	0.202	55.40	/	/	/
		174	PP-1.0	0.00	0.50	3.00	0.000	PP	1.00	18	12	4	400	0.202	49.94	/	/	/
		175	PP-1.5	0.00	0.50	3.00	0.000	PP	1.50	18	12	4	400	0.202	48.50	/	/	/
		176	PP-2.0	0.00	0.50	3.00	0.000	PP	2.00	18	12	4	400	0.202	45.55	/	/	/
		177	PVA-0.5	0.00	0.50	3.00	0.000	PVA	0.50	660	12	23	900	0.013	47.80	/	/	/
		178	PVA-1.0	0.00	0.50	3.00	0.000	PVA	1.00	660	12	23	900	0.013	39.19	/	/	/
		179	PVA-1.5	0.00	0.50	3.00	0.000	PVA	1.50	660	12	23	900	0.013	41.90	/	/	/
		180	PVA-2.0	0.00	0.50	3.00	0.000	PVA	2.00	660	12	23	900	0.013	46.99	/	/	/
		181	PVA1	0.25	0.37	0.64	0.003	PVA	1.00	38	8	42	1600	0.190	/	3.53	2.45	/
		182	PVA2	0.25	0.37	0.64	0.003	PVA	1.50	38	8	42	1600	0.190	/	3.32	2.69	/
		183	PVA3	0.25	0.37	0.64	0.003	PVA	2.00	38	8	42	1600	0.190	/	3.09	2.54	/
		184	PVA4	0.25	0.37	0.64	0.003	PVA	2.50	38	8	42	1600	0.190	/	4.02	3.48	/
2015	Shwan H.	185	PVA5	0.25	0.37	0.64	0.003	PVA	3.00	38	8	42	1600	0.190	/	3.98	3.65	/
2013	Said [36]	186	PVA6	0.25	0.37	0.64	0.003	PVA	1.00	38	12	42	1600	0.210	/	4.04	4.60	/
		187	PVA7	0.25	0.37	0.64	0.003	PVA	1.50	38	12	42	1600	0.210	/	4.10	4.80	/
		188	PVA8	0.25	0.37	0.64	0.003	PVA	2.00	38	12	42	1600	0.210	/	4.09	5.17	/
		189	PVA9	0.25	0.37	0.64	0.003	PVA	2.50	38	12	42	1600	0.210	/	3.85	4.28	/
		190	PVA10	0.25	0.37	0.64	0.003	PVA	3.00	38	12	42	1600	0.210	/	4.37	6.30	/
		191	M19	2.40	0.28	0.36	0.002	PVA	1.00	39	12	42.8	1620	0.206	/	/	/	/

													_					
Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber Type	$V_f(\%)$	$D_f(\mu m)$	$L_f(mm)$	E_f (GPa)	T_f (MPa)	I_f	σ_{cs} (MPa)	σ_u (MPa)	<i>Gt</i> (MJ/m3)	D_{spread} (cm)
2015	Zuanfeng Pan	192	M20	2.40	0.28	0.36	0.003	PVA	1.60	39	12	42.8	1620	0.206	/	/	/	/
2013	[61]	193	M21	2.40	0.28	0.36	0.003	PVA	2.00	39	12	42.8	1620	0.206	/	/	/	/
	Mohamed	194	F_1.2_SS	1.20	0.27	0.36	0.086	PVA	2.00	39	8	42.8	1620	0.186	61.00	/	/	53.50
2015	A.A. Sherir [60]	195	F_2.2_SS	2.20	0.27	0.36	0.066	PVA	2.00	39	8	42.8	1620	0.186	52.00	/	/	53.00
		196	PE1	0.25	0.37	0.64	0.003	PE	1.00	38	12	39	1950	0.205	/	3.24	6.18	/
		197	PE2	0.25	0.37	0.64	0.003	PE	1.50	38	12	39	1950	0.205	/	3.32	8.72	/
		198	PE3	0.25	0.37	0.64	0.003	PE	2.00	38	12	39	1950	0.205	/	4.57	12.94	/
2015	Shwan H.	199	PE4	0.25	0.37	0.64	0.003	PE	2.50	38	12	39	1950	0.205	/	4.27	13.27	/
2013	Said [67]	200	PE5	0.25	0.37	0.64	0.003	PE	1.00	24	12	82	2700	0.393	/	4.79	14.06	/
		201	PE6	0.25	0.37	0.64	0.003	PE	1.50	24	12	82	2700	0.393	/	5.02	17.11	/
		202	PE7	0.25	0.37	0.64	0.003	PE	2.00	24	12	82	2700	0.393	/	5.91	25.38	/
		203	PE8	0.25	0.37	0.64	0.003	PE	2.50	24	12	82	2700	0.393	/	5.83	22.41	/
2016	Hezhi Liu [42]	204	N-ECC	2.20	0.25	0.36	0.004	PVA	2.00	39	12	42.8	1600	0.206	/	5.47	8.27	/
2017	Chao Wu [69]	205	ECC-23	2.20	0.25	0.36	0.004	PVA	2.00	39	12	42	1600	0.205	45.70	4.90	4.17	/
2017	Dan Meng [54]	206	ECC	1.20	0.30	0.36	0.010	PVA	2.20	39	12	42.8	1620	0.206	59.86	5.17	3.60	/
2019	Hui Ma [57]	207	ECC-1	1.20	0.26	0.36	0.006	PVA	2.00	39	12	42.8	1620	0.206	/	7.08	14.15	/
2019	nui Ma [3/]	208	ECC-2	2.20	0.25	0.36	0.004	PVA	2.00	39	12	42.8	1620	0.206	/	5.15	13.28	/
		209	Ottawa-ECC	2.20	0.25	0.38	0.008	PVA	2.00	39	8	42.8	1600	0.186	/	3.81	4.01	21.20
2019	Hao-Liang	210	Gabbro-ECC	2.20	0.25	0.38	0.008	PVA	2.00	39	8	42.8	1600	0.186	/	4.98	6.49	20.30
2019	Wu [31]	211	MI-ECC	2.20	0.25	0.38	0.007	PVA	2.00	39	8	42.8	1600	0.186	/	4.15	2.46	19.60
		212	2NS-ECC	2.20	0.25	0.38	0.008	PVA	2.00	39	8	42.8	1600	0.186	/	3.38	3.06	20.00
		213	ECC_0_M	1.20	0.30	0.36	0.000	/	0.00	0	0	0	0	0.000	/	/	/	40.13
		214	ECC 0.01 M	1.20	0.30	0.36	0.000	/	0.00	0	0	0	0	0.000	/	/	/	32.13
		215	ECC 0.015 M	1.20	0.30	0.36	0.000	/	0.00	0	0	0	0	0.000	/	/	/	30.10
2013	Mo Li [82]	216	ECC 0.02 M	1.20	0.30	0.36	0.000	/	0.00	0	0	0	0	0.000	/	/	/	38.09
	- [~-]	217	ECC 0.025 M	1.20	0.30	0.36	0.000	/	0.00	0	0	0	0	0.000	/	/	/	34.08
		218	ECC 0.03 M	1.20	0.30	0.36	0.000	,	0.00	0	0	0	0	0.000	/	. /	/	33.98
		219	ECC 0.04 M	1.20	0.30	0.36	0.000	,	0.00	0	0	0	0	0.000	,	,	,	32.03
		21)	LCC_0.07_W	1.20	0.50	0.50	0.000	1	0.00	U	U	U	U	0.000	,	,	/	34.03

								Г'1				Г	T				G.	D
Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber	$V_f(\%)$	$D_f(\mu m)$	$L_f(mm)$	E_f	T_f	I_f	σ_{cs}	σ_u	Gt	D_{spread}
-		220	FCC A M	1.20	0.20	0.26	0.000	Туре				(GPa)	(MPa)	<i>J</i>	(MPa)	(MPa)	(MJ/m3)	(cm)
		220	ECC_0_M	1.20	0.30	0.36	0.000	PVA	2.00	39	12	42.8	1620	0.206	/	3.72	0.27	39.02
		221	ECC_0.01_F	1.20	0.30	0.36	0.000	PVA	2.00	39	12	42.8	1620	0.206	/	4.03	1.23	26.09
		222	ECC_0.015_F	1.20	0.30	0.36	0.000	PVA	2.00	39	12	42.8	1620	0.206	/	4.46	2.54	23.13
		223	ECC_0.02_F	1.20	0.30	0.36	0.000	PVA	2.00	39	12	42.8	1620	0.206	/	4.73	7.39	25.98
		224	ECC_0.025_F	1.20	0.30	0.36	0.000	PVA	2.00	39	12	42.8	1620	0.206	/	4.59	6.98	23.13
		225	ECC_0.03_F	1.20	0.30	0.36	0.000	PVA	2.00	39	12	42.8	1620	0.206	/	4.38	6.57	22.10
		226	ECC_0.04_F	1.20	0.30	0.36	0.000	PVA	2.00	39	12	42.8	1620	0.206	/	3.68	5.86	22.10
	Mustafa	227	ECC1_F	1.20	0.27	0.36	0.002	PVA	2.00	39	8	42.8	1620	0.186	62.50	5.14	7.02	/
2011	Sahmaran	228	ECC2_F	2.20	0.27	0.36	0.002	PVA	2.00	39	8	42.8	1620	0.186	54.10	4.82	7.28	/
2011	[30]	229	ECC1_M	1.20	0.27	0.36	0.002	/	0.00	0	0	0	0	0.000	60.30	/	/	/
	[30]	230	ECC2_M	2.20	0.27	0.36	0.002	/	0.00	0	0	0	0	0.000	52.40	/	/	/
		231	P1-HF-WA	2.80	0.23	0.00	0.007	PP	2.00	12	10	6	850	0.317	/	2.30	1.51	17.29
		232	P1-LF-WA	2.80	0.23	0.00	0.005	PP	2.00	12	10	6	850	0.317	/	2.41	3.65	15.45
		233	P1-HF-W	2.80	0.23	0.00	0.007	PP	2.00	12	10	6	850	0.317	/	2.49	3.46	17.29
		234	P1-LF-W	2.80	0.23	0.00	0.005	PP	2.00	12	10	6	850	0.317	/	2.58	6.07	15.45
	Burak	235	P2-HF-A	2.80	0.23	0.00	0.007	PP	2.00	12	10	6	850	0.317	/	4.05	2.96	17.29
2014	Felekoglu	236	P2-LF-A	2.80	0.23	0.00	0.005	PP	2.00	12	10	6	850	0.317	/	4.29	2.81	15.45
	[40]	237	P2-HF-W	2.80	0.23	0.00	0.007	PP	2.00	12	10	6	850	0.317	/	3.79	5.65	16.25
		238	P2-LF-W	2.80	0.23	0.00	0.005	PP	2.00	12	10	6	850	0.317	/	4.25	11.18	15.17
		239	P3-LF-A	2.80	0.23	0.00	0.005	PP	2.00	12	10	6	850	0.317	/	3.64	5.74	16.25
		240	P3-LF-WA	2.80	0.23	0.00	0.005	PP	2.00	12	10	6	850	0.317	/	3.81	7.86	15.17
		241	P3-LF-W	2.80	0.23	0.00	0.005	PP	2.00	12	10	6	850	0.317	/	3.64	11.40	17.00
2014	Ravi Ranade	242	M45-ECC	1.21	0.26	0.36	0.002	PVA	2.00	39	12	42.8	1600	0.206	/	5.10	8.93	/
2014	[41]	243	HFA-ECC	2.80	0.26	0.37	0.002	PVA	2.00	39	12	42.8	1600	0.206	/	4.50	17.10	/
-	<u> </u>	244	M1	1.20	0.25	0.36	0.014	PVA	2.00	39	12	42.8	1620	0.206	47.00	/	/	/
2014	Zhigang	245	M2	2.20	0.25	0.36	0.009	PVA	2.00	39	12	42.8	1620	0.206	36.00	/	/	/
	Zhang [48]	246	M3	4.00	0.25	0.36	0.006	PVA	2.00	39	12	42.8	1620	0.206	24.00	/	/	/
	Mustafa	247	ECC-1	1.20	0.26	0.36	0.004	PVA	2.00	39	8	42.8	1620	0.186	50.20	4.96	6.70	/
2009	Şahmaran [28]	248	ECC-2	2.19	0.27	0.36	0.003	PVA	2.00	39	8	42.8	1620	0.186	36.30	4.35	7.63	/
	Mustafa	249	ECC1 0	1.20	0.27	0.36	0.002	PVA	2.00	39	8	42.8	1620	0.186	62.50	5.13	5.36	
2009		249	_	2.19	0.27		0.002	PVA PVA		39 39	8	42.8	1620	0.186		3.13 4.59	5.30 6.86	/
	Şahmaran	230	ECC2_0	2.19	0.27	0.36	0.002	ΓVA	2.00	39	ð	42.8	1020	0.180	54.10	4.39	0.80	/

Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber	V _c (%)	$D_f(\mu m)$	Le(mm)	E_f	T_f	I_f	σ_{cs}	σ_u	Gt	D_{spread}
		110.	Брееннен	171/ C	7771	5/10	SI /B	Type	7 (7 0)	$D_{j}(\mu m)$	Lj (IIIII)	(GPa)	(MPa)	15	(MPa)	(MPa)	(MJ/m3)	(cm)
	[47]																	
	Mustafa	251	SS_1.2_0.20	1.20	0.27	0.36	0.002	PVA	2.00	39	8	42.8	1620	0.186	62.50	5.13	5.36	/
2009	Şahmaran	252	SS_2.2_0.20	2.19	0.27	0.36	0.002	PVA	2.00	39	8	42.8	1620	0.186	54.10	4.59	6.86	/
	[39]	253	SS_4.2_0.20	4.41	0.27	0.36	0.001	PVA	2.00	39	8	42.8	1620	0.186	36.80	3.57	5.73	/
		254	C_0.5_0.3	0.00	0.30	0.50	0.000	PVA	0.00	0	0	0	0	0.000	/	/	/	/
		255	$C_0.5_0.35$	0.00	0.35	0.50	0.000	PVA	0.00	0	0	0	0	0.000	/	/	/	/
		256	$C_0.5_0.4$	0.00	0.40	0.50	0.000	PVA	0.00	0	0	0	0	0.000	/	/	/	/
		257	$C_0.6_0.3$	0.00	0.30	0.60	0.000	PVA	0.00	0	0	0	0	0.000	/	/	/	/
		258	$C_0.6_0.35$	0.00	0.35	0.60	0.000	PVA	0.00	0	0	0	0	0.000	/	/	/	/
		259	$C_0.6_0.4$	0.00	0.40	0.60	0.000	PVA	0.00	0	0	0	0	0.000	/	/	/	/
		260	F_0.5_0.3	0.00	0.30	0.50	0.002	PVA	2.00	40	8	42.8	1560	0.182	/	/	/	/
2016	Saptarshi	261	F_0.5_0.35	0.00	0.35	0.50	0.001	PVA	2.00	40	8	42.8	1560	0.182	/	/	/	/
2010	Sasmal [51]	262	F_0.5_0.4	0.00	0.40	0.50	0.000	PVA	2.00	40	8	42.8	1560	0.182	/	/	/	/
		263	F_0.6_0.3	0.00	0.30	0.60	0.002	PVA	2.00	40	8	42.8	1560	0.182	/	/	/	/
		264	F_0.6_0.35	0.00	0.35	0.60	0.002	PVA	2.00	40	8	42.8	1560	0.182	/	/	/	/
		265	F_0.6_0.4	0.00	0.40	0.60	0.000	PVA	2.00	40	8	42.8	1560	0.182	/	/	/	/
		266	F_1V_8L	0.00	0.30	0.50	0.002	PVA	1.00	40	8	42.8	1560	0.182	/	/	/	/
		267	F_1V_12L	0.00	0.30	0.50	0.002	PVA	1.00	40	12	42.8	1560	0.202	/	/	/	/
		268	F_2V_8L	0.00	0.30	0.50	0.002	PVA	2.00	40	8	42.8	1560	0.182	/	/	/	/
		269	F_2V_12L	0.00	0.30	0.50	0.002	PVA	2.00	40	12	42.8	1560	0.202	/	/	/	/
	HR Pakravan	270	PVA2%	1.20	0.25	0.36	0.011	PVA	2.00	38	8	42.8	1600	0.191	/	/	/	/
2016		271	PVA1.5%	1.20	0.25	0.36	0.011	PVA	1.50	38	8	42.8	1600	0.191	/	/	/	/
	[66]	272	PVA1.2%	1.20	0.25	0.36	0.011	PVA	1.20	38	8	42.8	1600	0.191	/	/	/	/
2014	Tahir Kemal Erdem [58]	273	ECC	1.20	0.27	0.36	0.002	PVA	2.00	39	8	42.8	1620	0.186	65.72	5.10	6.89	/
		274	ECC1	0.00	0.33	0.78	0.017	PVA	2.00	39	12	42.8	1620	0.206	45.57	5.51	13.56	/
2010	Hanwen	275	ECC2	0.00	0.33	0.78	0.017	PVA	2.00	39	12	22	1250	0.168	43.40	5.03	4.15	/
2018	Deng [72]	276	ECC3	0.00	0.33	0.78	0.017	PE	0.50	24	7	116	2740	0.382	44.63	4.02	11.68	/
	Ø [· −]	277	ECC4	0.00	0.33	0.78	0.017	PE	0.80	24	7	116	2740	0.382	46.97	4.26	13.98	/
	77 1 Y	278	NE1	1.20	0.20	0.36	0.006	/	0.00	0	0	0	0	0.000	88.90	/	/	/
2018	Kwok L.	279	NE2	1.20	0.26	0.36	0.006	/	0.00	0	0	0	0	0.000	64.10	/	/	/
_010	Chung [32]	280	NE3	1.20	0.30	0.36	0.006	. /	0.00	0	0	0	0	0.000	41.80	/	/	/
		200	11123	1.20	0.50	0.50	3.000	,	0.00	•			· ·	3.000	11.00		,	

Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber Type	$V_f(\%)$	$D_f(\mu m)$	$L_f(mm)$	E _f (GPa)	T _f (MPa)	I_f	σ_{cs} (MPa)	σ_u (MPa)	Gt (MJ/m3)	D_{spread} (cm)
2017	Hezhi Liu [29]	281	ECC	2.20	0.25	0.36	0.004	PVA	2.00	39	12	42	1600	0.205	41.26	5.02	10.54	/
	Kamile	282	ECC-I	1.20	0.26	0.36	0.008	PVA	2.00	39	12	42.8	1620	0.206	/	6.30	7.48	
2014	Tosun-	283	ECC-II	1.20	0.26	0.36	0.005	PVA	2.00	39	12	42.8	1620	0.206	/	6.80	9.83	/
2014	Felekog 1u	284	ECC-I-M	1.20	0.26	0.36	0.008	/	0.00	0	0	0	0	0.000	/	/	/	/
	[68]	285	ECC-II-M	1.20	0.26	0.36	0.005	/	0.00	0	0	0	0	0.000	/	/	/	/
2012	Yu Zhu [71]	286	ECC70-0	2.33	0.25	0.36	0.012	PVA	2.00	40	8	42	1600	0.181	42.83	4.66	7.46	
-		287	1	1.00	0.25	0.36	0.014	PVA	2.00	40	8	42	1600	0.181	57.63	/	/	
2012	Zhitao Chen	288	2	1.51	0.25	0.36	0.013	PVA	2.00	40	8	42	1600	0.181	51.51	/	/	/
2012	[38]	289	3	2.33	0.25	0.36	0.012	PVA	2.00	40	8	42	1600	0.181	41.12	/	/	/
		290	4	3.99	0.25	0.36	0.010	PVA	2.00	40	8	42	1600	0.181	24.94	/	/	/
2012	Li-li Kan [50]	291	M45-ECC	1.22	0.27	0.37	0.007	PVA	1.00	39	12	42.8	1600	0.206	/	3.84	5.24	/
2012	Li-ii Kaii [30]	292	HFA-ECC	2.75	0.27	0.37	0.003	PVA	1.00	39	12	42.8	1600	0.206	/	3.40	6.07	/
2021	Long Liang [62]	293	ECC-ref	0.80	0.22	0.30	0.004	PE	2.00	24	18	116	2900	0.485	60.00	9.71	53.30	/
2021	Yu Jiangtao [53]	294	SS-0.4	1.09	0.19	0.40	0.021	PE	2.00	24	18	116	2400	0.485	86.60	11.73	57.44	/
	Minjin Cai	295	MA	1.50	0.20	0.30	0.008	PE	2.00	25	18	120	3000	0.472	80.61	10.90	46.33	18.90
2024	3	296	MB	1.50	0.20	0.30	0.008	PE	2.00	25	18	120	3000	0.472	83.43	13.61	95.29	19.00
	[49]	297	MC	1.50	0.20	0.30	0.008	PE	2.00	25	18	120	3000	0.472	85.72	14.49	107.24	19.20
2024	Liang Li [44]	298	E2	0.00	0.25	0.00	0.012	PE	2.00	39	12	210	2180	0.337	/	3.28	9.66	/
2027		299	S2	0.00	0.25	0.00	0.012	ST	2.00	262.5	12	210	3000	0.059	/	2.49	0.51	/
2022	Nuoyan Xu [63]	300	0%	0.50	0.35	0.20	0.000	PE	1.00	24	12	110	3000	0.431	/	/	/	19.80
2024	Hongxiang Gou [26]	301	E1	1.00	0.18	0.30	0.010	PE	1.20	40	12	38	1600	0.194	98.00	10.26	17.36	17.20
2022	Wen Zhou [43]	302	Mix-2	0.94	0.22	0.29	0.001	PE	1.00	24	12	116	3000	0.438	/	7.83	32.12	13.60
2023	WeiHsiu Hu [27]	303	OPC-2S00	1.33	0.28	0.30	0.000	PE	2.00	42	12	100.3	1550	0.251	44.30	4.48	20.27	/
		304	E1	1.00	0.34	0.33	0.006	PE	1.75	19	18	104	2974	0.581	31.10	5.00	/	/

Year	Researcher	No.	Speciment	FA/C	W/B	S/B	SP/B	Fiber Type	$V_f(\%)$	$D_f(\mu m)$	$L_f(mm)$	E _f (GPa)	T _f (MPa)	I_f	σ_{cs} (MPa)	σ _u (MPa)	Gt (MJ/m3)	$D_{spread} \ m (cm)$
	Lingfoi Liu	305	E2	1.00	0.34	0.33	0.006	PE	2.00	19	18	104	2974	0.581	33.50	5.50	/	/
2024	Lingfei Liu	306	E3	1.00	0.34	0.33	0.006	PE	2.25	19	18	104	2974	0.581	34.60	6.60	/	/
	[65]	307	E4	1.00	0.34	0.33	0.006	PE	2.50	19	18	104	2974	0.581	31.80	4.60	/	/
2024	Yanlin Huo [34]	308	E0	0.00	0.20	0.40	0.010	PE	1.50	20	18	113	3800	0.569	108.60	9.15	47.98	/

Note: / denote the data not provided in the original paper or the value didn't exist.