A Tight Quadratic Lower-Bound on the KL-Divergence

April 18, 2014

1 Motivation

We have the following concentration bound for bernoulli trials (Sanov's Bound): Let X bernoulli(p), and take n iid samples $X_1,...X_n$ from X. Let $\hat{p} =_{def} \frac{1}{n} \sum_{i=1}^n X_i$ be the estimate for p based on these trials.

Then for any q > p, we have the following variant of Sanov's Bound:

$$P(\hat{p} > q) \le e^{-n \mathsf{KL}(q \parallel p)}$$

If we have some lower bound $\alpha_p(q-p)^2 \leq \mathtt{KL}(q\|p)$, we can re-write the bound as:

$$P(\hat{p} > q) \le e^{-n\alpha_p \epsilon^2}$$

where $\epsilon =_{def} (q - p) > 0$.

Let's say for q < p, we want $P(\hat{p} < q)$. Let $q' =_{def} 1 - q$ and $p' =_{def} 1 - p$, and $\hat{p'} = 1 - \hat{p}$. Then we have

$$P(\hat{p'} > q') \le e^{-n\alpha_{p'}(q'-p')^2}$$

from above, which is equivalent to

$$P(\hat{p} < q) \le e^{-n\alpha_{1-p}\epsilon^2}$$

Combining these, we have the following two-tailed bound:

$$P(|\hat{p}-p|>\epsilon) \leq e^{-n\alpha_{1-p}\epsilon^2} + e^{-n\alpha_p\epsilon^2} \leq 2e^{-n\min(\alpha_p,\alpha_{1-p})\epsilon^2}$$

2 Proposition

Define $\forall q \in (0, 1), p \in (0, 1)$

$$\mathtt{KL}(q\|p) = q \mathrm{log}\left(\frac{q}{p}\right) + (1-q) \mathrm{log}\left(\frac{1-q}{1-p}\right)$$

For each p, we want the largest α such that $\forall q > p$,

$$\alpha(q-p)^2 \leq \mathtt{KL}(q\|p)$$

The α that achieves this for each p is:

$$\alpha = \begin{cases} \frac{\text{KL}(1-p||p)}{(1-2p)^2} & p < 0.5\\ \frac{1}{2p(1-p)} & p \ge 0.5 \end{cases}$$

3 Proof

3.1 Case: p < 0.5

For p<0.5, we show that $\frac{d}{dq}\left[\mathtt{KL}(q\|p)-\alpha(q-p)^2\right]=0$ if and only if $q\in\{p,0.5,1-p\}$

Expanding/simplifying the derivative:

$$\begin{split} \frac{d}{dq} \left[\mathrm{KL}(q \| p) - \alpha (q - p)^2 \right] \\ &= \log \left(\frac{q}{1 - q} \right) - \log \left(\frac{p}{1 - p} \right) - 2\alpha (q - p) \\ &= \log \left(\frac{q}{1 - q} \right) - \log \left(\frac{p}{1 - p} \right) - 2 \frac{\log \left(\frac{1 - p}{p} \right)}{1 - 2p} (q - p) \\ \mathrm{since} \ \alpha &= \frac{\mathrm{KL}(1 - p \| p)}{(1 - 2p)^2} = \frac{(1 - 2p) \log \left(\frac{1 - p}{p} \right)}{(1 - 2p)^2} = \frac{\log \left(\frac{1 - p}{p} \right)}{1 - 2p} \\ &= \log \left(\frac{q}{1 - q} \right) - \log \left(\frac{p}{1 - p} \right) + 2 \frac{\log \left(\frac{p}{1 - p} \right)}{1 - 2p} (q - p) \end{split}$$

 (\rightarrow) PROVE THIS: there can be at most 3 roots.

 (\leftarrow)

$$\log\left(\frac{q}{1-q}\right) - \log\left(\frac{p}{1-p}\right) + 2\frac{\log\left(\frac{p}{1-p}\right)}{1-2p}(q-p) = (q=p)$$

$$\log\left(\frac{p}{1-p}\right) - \log\left(\frac{p}{1-p}\right) = 0$$

$$(q=1/2)$$

$$\log\left(\frac{1/2}{1/2}\right) - \log\left(\frac{p}{1-p}\right) + 2\frac{\log\left(\frac{p}{1-p}\right)}{1-2p}(1/2-p) =$$

$$\begin{aligned} -\log\left(\frac{p}{1-p}\right) + \frac{\log\left(\frac{p}{1-p}\right)}{1-2p}(1-2p) &= \\ -\log\left(\frac{p}{1-p}\right) + \log\left(\frac{p}{1-p}\right) &= 0 \end{aligned}$$

(q = 1 - p)

$$\begin{split} \log\left(\frac{1-p}{p}\right) - \log\left(\frac{p}{1-p}\right) + 2\frac{\log\left(\frac{p}{1-p}\right)}{1-2p}(1-2p) \\ = -2\log\left(\frac{p}{1-p}\right) + 2\log\left(\frac{p}{1-p}\right) = 0 \end{split}$$

This implies that the minimum of $KL(q||p) - \alpha(q-p)^2$ must be at one of the points $q \in \{p, 0.5, 1-p, 1\}$. Since all of these points are nonnegative, we have $\mathrm{KL}(q||p) - \alpha(q-p)^2 \ge 0$ and $\mathrm{KL}(q||p) \ge \alpha(q-p)^2$.

3.2 Case: p > 0.5

 $\alpha = \frac{1}{2p(1-p)} \ \emph{is sufficient.}$ We want to show for p > 0.5,

$$\mathtt{KL}(q\|p) \geq \frac{(q-p)^2}{p(1-p)}$$

At q = p, the values and derivatives at both sides are equal to 0. We will show that on q > p, the second derivative is strictly positive, and $0 \ q = p$.

For q > p > 1/2, q(1-q) < p(1-p). This is since $\frac{d}{dx}x(1-x) = 1-2x < 0$ for x > 1/2. Then

$$\frac{d^2}{dq^2} \mathtt{KL}(q \| p) = \frac{1}{q(1-q)} > \frac{1}{p(1-p)} = \frac{d^2}{dq^2} \frac{(q-p)^2}{p(1-p)}$$

for q > p > 1/2 $\alpha = \frac{1}{2p(1-p)}$ is optimal. Take some $\alpha > \frac{1}{2p(1-p)}$. Then at q = p, the strictly larger than the second derivative of the quadratic function. Thus for small enough ϵ , $\mathrm{KL}(p+\epsilon||p) > \alpha(p+\epsilon-p)^2$

3.3 Useful Facts

$$\begin{split} \frac{d}{dq} \mathrm{KL}(q \| p) &= \log \left(\frac{q}{1-q} \right) - \log \left(\frac{p}{1-p} \right) \\ \frac{d^2}{dq^2} \mathrm{KL}(q \| p) &= \frac{1}{q(1-q)} \\ \mathrm{KL}(1-p \| p) &= (1-2p) \log \left(\frac{1-p}{p} \right) \end{split}$$