ΟΠΤΙΚΗ ΜΕΤΑΓΩΓΗ

Όνομα: Γιώργος Χατζηευφραιμίδης

AEM:3503

ΑΣΚΗΣΗ 1

A)

Το K=22 οπότε το (K mod 4)=2.

ΔL=1+2=3

Ο δείκτης διάθλασης είναι 3 και ο συζεύκτης ισούται με 3 τότε έχουμε ότι το α=0,5.

Η ταχύτητα φωτός στο κενό είναι 3*10^8 m/s.

Από την σχέση : λ =c/f <=> f=c/ λ , όπου λ το μήκος κύματος που κυμαίνεται από 1540-1560nm και f η συχνότητα .

Το οπτικό φίλτρο πυριτίου συνδεσμολογίας Mach-Zehnder έχει δυο εξόδους το T και το R και η συνάρτηση μεταφοράς για το κάθε ένα αντίστοιχα είναι:

$$T^{T}(f) = 1 - 4 \cdot a \cdot (1 - a) \cdot \cos^{2}\left(\pi \cdot f \frac{n}{c} \cdot \Delta L\right)$$

$$\mathbf{T}^{\mathbf{R}}(f) = \left| \frac{E^R}{E^{in}} \right|^2 = 4 \cdot a \cdot (1 - a) \cdot \cos^2 \left(\pi \cdot \mathbf{f} \cdot \frac{n}{c} \cdot \Delta L \right)$$

B)

Η ελεύθερη φασματική ισχύς (FSR) υπολογίζεται από την φασματική απόσταση δυο κορυφών.

 $\Delta \tau = \Delta L/(c/n) = \Delta L*n/c$.

- ΔL: την διαφορά μεταξύ των δυο βραχιόνων
- c: την ταχύτητα του φωτός
- n: ο δείκτης διάθλασης του κυματοδηγού πυριτίου

Οποτε το $\Delta \tau$ = 3*(10^(-3))*3/3*(10^8) = 3 *10^(-11) s

$$FSR = \Delta f_{max} = \frac{1}{\Delta \tau}$$

Άρα FSR=1/ Δ τ =1/3*10^(-11)=3,33*10^(10)Hz.

Το φασματικό εύρος ημίσειας ισχύος Δfrwнм των κορυφών της συνάρτησης μεταφοράς του φίλτρου είναι σύμφωνα με τον τύπο :

$$FWHM = 2 \cdot f_{1/2} = \frac{1}{2 \cdot \Delta \tau}$$

Οπότε έχουμε $FSR=1/\Delta \tau <=> \Delta \tau = 1/FSR => \Delta \tau = 1/1,1*10^(-4) => \Delta \tau = 0,91*10^(-4)$.

FWHM = $\frac{1}{2} \Delta \tau = FWHM = 1 / 2*3*10^{-11} = 1,66*10^{10} Hz$.

Η λεπτότητα (Finesse) του φίλτρου στη φασματική περιοχή των 1550nm είναι :

F=FSR/FWHM => F = 2.

Γ)

Η διαφορά θερμοκρασίας υπολογίζεται από τον τύπο:

$$\Delta \phi = \frac{2\pi}{\lambda} \left(\frac{\mathrm{dn}}{\mathrm{dT}} \right)_{\mathrm{Si}} \Delta T L_H \tag{1}$$

- LH : το μήκος του φωτονικού κυματοδηγού , LH = 0,5mm = 0,5 * $10^{(-3)}$ m .
- $\Delta \phi$: $\phi = \pi/2$.
- λ: μήκος κύματος, λ=1550nm = 155 * 10^(-8)m.
- $dn/dT : Θερμο-οπτικός συντελεστής πυριτίου , <math>dn/dT = 2 * 10^{(-4)} K-1$.

Από τύπο (1) έχουμε:

$$(1) = \Delta T = (\Delta \phi^* \lambda) / 2 p^* (dn/dT) LH = \pi + 155 + 10^{-8} / 2 T = (\Delta \phi^* \lambda) / 2 p^* (dn/dT) LH = \pi + 155 T = (\Delta \phi^* \lambda) / 2 T = (\Delta \phi^*$$

Οπότε η διαφορά θερμοκρασίας : ΔΤ = Τ – ΤΟ = 3,875

Οι διάφορες ανάμεσα στο (α) και στο Θερμο-οπτικό φαινόμενο την βλέπουμε από τα διαγράμματα και από την διαφορές στη φασματική περιοχή FSR:

Η ελεύθερη φασματική ισχύς (FSR) υπολογίζεται από την φασματική απόσταση δυο κορυφών.

 $\Delta \tau = \Delta L/(c/n) = \Delta L*n/c$ (2)

- $\Delta L=0.5 \text{ mm} = 0.5 *10^{-3} \text{ m}$
- c=3*10^8 m/s
- n=3

$$(2) => \Delta \tau = 0.5 *10^{(-3)} *3 /3*10^8 = 0.5 *10^{(-11)} s$$
.

Άρα FSR=1/ Δ τ =1/0,5*10^(-11)=2*10^(11) Hz.

Οπότε βλέπουμε την διαφορά αναμεσά στα δυο FSR το FSR του (α) είναι 3,33 *10^(10) <2* 10^(11) . Στο (α) ερώτημα έχουμε πολλά συνημίτονα επειδή έχουμε μικρότερο FSR .

Κώδικας Άσκησης 1

```
clear all
clc

l=[1540:0.01:1560]*10^(-9);
c=3*10^8;
f=c./1;
a=0.5;
n=3;
DL=3*10^(-3);
k=pi*n*DL/c;
TR=4*a*(1-a)*(cos(f*k)).^2;
```

```
figure(1)
plot(1,TR);
xlabel('wavelegth');
TT=1-TR;
figure(2)
plot(1,TT);
xlabel('wavelegth');
10=1550*((10)^(-9));
DL_second=lo/(2*n);
k_second=pi*n*DL_second/c;
\overline{TR}_{second}=4*a*(1-a)*(cos(f*k_second)).^2;
figure(3)
plot(1,TR_second);
TT second=1-TR second;
figure(4)
plot(1,TT_second)
```

<u>ΑΣΚΗΣΗ 2</u>

DC (V)	P (mW)	
0	1.76	
0.2	1.18	
0.4	1	Ελάχιστη
0.6	1.25	
0.8	1.9	
1	2.81	
1.2	3.85	
1.4	4.83	
1.6	5.57	
1.8	5.96	Μέγιστη
2	5.92	
2.2	5.47	
2.4	4.67	
2.6	3.67	
2.8	2.64	
3	1.76	

Πρέπει να πολωθεί σε τάση 0,4V για να εξέρχεται η ελάχιστη δυνατή ισχύς.

Η τάση πόλωσης είναι η διαφορά τάσης μεταξύ μέγιστης και ελάχιστης τιμής ισχύος εξόδου δηλαδή $V\pi=1,8-0,4=1,4V$.

Ο λόγος σβέσης είναι ο λόγος μέγιστης προς ελάχιστη ισχύ δηλαδή 10 $\log(5,96/1)=7,75$ db .

a b φο Vπ	1 7 -0.8 3	rad V
DC (V)	P (mw)	
0	4.602198	
0.2	3.170392	
0.4		
0.4	1.968486	
	1.204303	E2 /
0.8	1.009975	Ελάχιστη
1	1.419104	
1.2	2.360949	
1.4	3.672654	
1.6	5.127416	
1.8	6.473691	
2	7.478697	
2.2	7.96866	
2.4	7.858859	
2.6	7.168282	
2.8	6.016334	
3	4.602198	

Πρέπει να πολωθεί σε τάση 0,8V για να εξέρχεται η ελάχιστη δυνατή ισχύς . Απαιτεί περισσότερη τάση πόλωσης για την ελάχιστη δυνατή ισχύ από την α περίπτωση .

Η τάση πόλωσης είναι η διαφορά φάσης μεταξύ μέγιστης και ελάχιστης τιμής ισχύος εξόδου δηλαδή $V\pi = 2,2-0,8 = 1,4V$. Ιδιά τάση πόλωσης με την α περίπτωση .

Ο λόγος σβέσης είναι ο λόγος μέγιστης προς ελάχιστη ισχύ δηλαδή 10*log(7,96/1,01)=8,96db.

Καλύτερο από τον λόγο σβέσης από την α περίπτωση .

DC (V)	P1 (mw)	P2(mW)
0	1.76	4.602198
0.2	1.18	3.170392
0.4	1	1.968486
0.6	1.25	1.204303
0.8	1.9	1.009975
1	2.81	1.419104
1.2	3.85	2.360949
1.4	4.83	3.672654
1.6	5.57	5.127416
1.8	5.96	6.473691
2	5.92	7.478697
2.2	5.47	7.96866
2.4	4.67	7.858859
2.6	3.67	7.168282
2.8	2.64	6.016334
3	1.76	4.602198

Κώδικας Άσκησης 2

```
clear all
clc
DC=[0:0.2:3];
P=[1.76 1.18 1 1.25 1.9 2.81 3.85 4.83 5.57 5.96 5.92 5.47 4.67 3.67 2.64
1.76];
figure(1)
plot(DC,P)
a=1;
b=7;
fo=(-0.8);
Vp=3;
y=DC./Vp;
Po=a+ b*(sin(fo+pi*y)).^2;
figure(2)
plot(DC,Po)
figure(3)
plot(DC,P,DC,Po)
```