

介绍

笔记简介:

• 面向对象:深度学习初学者

• 依赖课程: 线性代数,统计概率,优化理论,图论,离散数学,微积分,信息论

知乎专栏:

https://zhuanlan.zhihu.com/p/693738275

Github & Gitee 地址:

https://github.com/mymagicpower/AIAS/tree/main/deep learning

https://gitee.com/mymagicpower/AIAS/tree/main/deep_learning

* 版权声明:

- 仅限用于个人学习
- 禁止用于任何商业用途

门控循环单元神经网络

门控循环单元(Gated Recurrent Unit, GRU)是一种常用的循环神经网络(RNN)变体,旨在解决传统RNN中的梯度消失问题和长期依赖问题。GRU于2014年提出,是LSTM(长短期记忆网络)的一种简化版本。

GRU具有以下几个关键部分:

- 重置门 (Reset Gate)
- 更新门 (Update Gate)
- 当前候选值 (Candidate Value)
- 隐藏状态 (Hidden State)

门控循环单元神经网络 - 重置门

重置门 (Reset Gate):帮助网络决定在当前时间步应该忽略多少过去的记忆。重置门的值在0到1之间,0表示完全忽略过去的记忆,1表示完全保留过去的记忆。

重置门用于控制保留多少之前的数据,使用 r_t 代表重置门,当 $r_t = 0$ 时,表示遗忘之前 的所有数据,重设为目前输入数据的状态。

计算公式如下:

$$r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)$$

- σ() 为Sigmoid函数
- h_{t-1}, x_t 为输入数据
- $W_r U_r$ 为重置门的权重
- b_r 为重置门的偏置

门控循环单元神经网络 – 更新门

更新门 (Update Gate) :控制有多少过去的记忆应该被保留。更新门的值在0到1之间,0表示完全忽略过去的记忆,1表示完全保留过去的记忆。

更新门用于控制数据的更新与保留,使用 z_t 代表更新门,当 $z_t = 0$ 时,表示保留之前的所有数据。

计算公式如下:

$$z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)$$

- > σ() 为Sigmoid函数
- $> h_{t-1}, x_t$ 为输入数据
- ➤ W_z U_z 为重置门的权重
- ▶ b_z 为重置门的偏置

门控循环单元神经网络 – 当前候选值

当前候选值 (Candidate Value) :根据当前输入和过去的记忆计算出的候选值,用于更新当前时间步的记忆。

候选数据 \tilde{h}_t 其输入数据是将重置门所保留下来的数据 r_t 和目前的输入数据合并成 $[r_t h_{t-1}, x_t]$ 向量。

计算公式如下:

 $\tilde{h}_t = \tanh \left(W x_t + r_t \odot U h_{t-1} + b \right)$

- r_t, h_{t-1}, x_t 为输入数据
- ▶ W U 为可学习的参数
- ▶ b 为偏置

门控循环单元神经网络 - 隐藏状态

隐藏状态 (Hidden State): GRU的输出,包含了当前时间步的信息。

最后,计算出GRU单元的输出数据 h_t 。

计算公式如下:

$$h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$$

- ➤ ① Hadamard积运算符,也就是 按元素乘积
- \triangleright $(1-z_t)$ \odot h_{t-1} 为之前保留的数据
- $\geq z_t \odot \tilde{h}_t$ 为更新的数据

