ENGINEERING TRIPOS PARTILA

EIETL

MODULE EXPERIMENT 3F3

RANDOM VARIABLES and RANDOM NUMBER GENERATION Short Report Template

Name:

College:

Lab Group Number:

This is a template suitable for the short report write-up. Simply edit the Latex or Word document to include your calculations/ results/ code.

1. Uniform and normal random variables.

Histogram of Gaussian random numbers overlaid on exact Gaussian curve (scaled): *Include your graphic here*

Include your graphic here
Kernel density estimate for Gaussian random numbers overlaid on exact Gaussian
curve: Include your graphic here
Kernel density estimate for Uniform random numbers overlaid on exact Gaussian
curve: Include your graphic here

	Verify your result by histogramming of transformed random samples: Include your graphic here
3.	Inverse CDF method Calculate the CDF and the inverse CDF for the exponential distribution:
	Text/maths answer here
	Matlab code for inverse CDF method for generating samples from the exponential distribution:
	Matlab code here

	Plot histograms/ kernel density estimates and overlay them on the desired expo- nential density:
	Include your graphic here
4.	Simulation from a `difficult' density. Matlab code to generate N random numbers drawn from the distribution of X:
4.	Simulation from a `difficult' density. Matlab code to generate N random numbers drawn from the distribution of X:
4.	
4.	
4.	
4.	
4.	
4.	
4.	
4.	

Plot some histogram density estimates with alpha= 0, 1.5 and several values of beta :

Hence comment on the interpretation of the parameters alpha and beta: