# VI Algorithmes récursifs

### VI.1 Récursivité : Définition



La récursivité est la possibilité de faire figurer dans la définition d'un objet une référence à lui-même. En programmation, cela se traduit par la possibilité pour un sous-programme de s'appeler lui-même.

### Définition : Algorithme récursif

Un algorithme est dit *récursif* lorsqu'il est défini en fonction de lui-même.

### Soit la définition récursive du nombre d'embranchement :

### Exemple : fonctions récursives : puissance et factorielle

La fonction puissance  $x^n$  peut se définir **récursivement** par :

$$x^n = \begin{cases} 1 & \text{si } n = 0 \\ x \cdot x^{n-1} & \text{si } n \geqslant 1 \end{cases}$$

la fonction factorielle x! peut se définir récursivement par :

$$x^{n} = \begin{cases} 1 & \text{si } x = 0 \\ x \cdot (x - 1)! & \text{si } x > 0 \end{cases}$$

### Algorithme récursif et appel récursif

### Définition : Algorithme récursif

Un algorithme calculant la solution d'un problème sur une donnée x est dit *récursif* si, parmi les instructions utilisées dans l'algorithme, on trouve l'expression du même problème sur une donnée y.

### Définition : Appel récursif

Dans un algorithme récursif (une fonction récursive), on nomme appel récursif l'appel de la même fonction, c'est à dire l'instruction contenant l'expression du même problème sur une autre donnée.

### Règle: Terminaison

Tout algorithme récursif doit distinguer plusieurs cas, dont l'un au moins ne doit pas comporter d'appel récursif.

#### Définition: Condition de terminaison

Les conditions, que doivent satisfaire les données pour déclencher l'exécution des instruction d'un cas ne comportant pas d'appel récursif, s'appellent les conditions de terminaison.

#### **Théorème**

Il n'existe pas de suite infinie strictement décroissante d'entiers positifs ou nuls.



### Règle: Croissance

Tout appel récursif doit se faire avec des données plus « proches » des données satisfaisant une condition de terminaison.

### Définition: Récursivité simple

Un algorithme *récursif* est *simple* si chaque cas qu'il distingue se résout en au plus un appel récursif.

## VI.2 Récursivité multiple

Le calcul du nombre de combinaisons grâce à la relation de

Pascal s'obtient par : 
$$C_n^p = \begin{cases} 1 \text{ si } p = 0 \text{ ou } p = n \\ C_{n-1}^p + C_{n-1}^{p+1} \text{ sinon} \end{cases}$$

### Exemple: Algorithme de calcul du nombre de combinaisons

```
func combinaison(n, p: Int) -> Int

//calcule le nombre de combinaison de p valeurs parmi n selon

// la relation de Pascal

//données : n, p entier > 0

//pre : n \ge p \ge 0

//résultat : C_n^p

if (p == 0) or (p == n) then return 1

else return combinaison(n-1,p)+combinaison(n-1,p-1)

endif

endfunc
```

## VI.2 Récursivité multiple



### Définition: Récursivité multiple

Un algorithme *récursif* est *multiple* si l'un des cas qu'il distingue se résout avec plusieurs appels récursifs.

### Exemple: Algorithme de calcul du nombre de combinaisons

```
func combinaison(n, p: Int) -> Int

//calcule le nombre de combinaison de p valeurs parmi n selon

// la relation de Pascal

//données : n, p entier > 0

//pre : n \ge p \ge 0

//résultat : C_n^p

if (p == 0) or (p == n) then return 1

else return combinaison(n-1,p)+combinaison(n-1,p-1)

endif

endfunc
```

### VI.3 Récursivité mutuelle

Il y a d'autres formes encore plus compliquées de récursivité, par exemple la *récursivité mutuelle*. On parle aussi de *récursivité* cachée.

$$pair(n) = \begin{cases} vrai & \text{si } n = 0\\ impair(n-1) \text{ sinon} \end{cases}$$

$$impair(n) = \begin{cases} faux & \text{si } n = 0\\ pair(n-1) & \text{sinon} \end{cases}$$

#### Définition: Récursivité mutuelle

Deux algorithmes sont *mutuellement récursifs* si l'un fait appel à l'autre, et l'autre fait appel à l'un.

## VI.4 Récursivité imbriquée

Enfin, un appel récursif peut contenir un autre appel récursif. En effet, on peut, lors de l'appel à une fonction, donner un appel récursif comme paramètre d'un autre appel récursif.

$$\mathcal{A}(m,n) = \begin{cases} n+1 & \text{si } m = 0\\ \mathcal{A}(m-1,1) & \text{si } m > 0 \text{ et } n = 0 \end{cases}$$
 
$$\mathcal{A}(m,n-1) & \text{si } m > 0 \text{ et } n = 0$$

### Exemple: Algorithme de la fonction d'Ackerman

```
func ackermann(m, n : Int) -> Int
  if m == 0 then return n+1
  elsif n == 0 then return ackermann(m-1,1)
  else return ackerman(m-1,ackerman(m,n-1))
endfunc
```

## VI.4 Récursivité imbriquée



Enfin, un appel récursif peut contenir un autre appel récursif. En effet, on peut, lors de l'appel à une fonction, donner un appel récursif comme paramètre d'un autre appel récursif.

### Définition: Récursivité imbriquée

Lorsqu'un paramètre d'une fonction récursive est un appel récursif, on parle de récursivité imbriquée.

### Exemple: Algorithme de la fonction d'Ackerman

```
func ackermann(m, n : Int) -> Int
  if m == 0 then return n+1
  elsif n == 0 then return ackermann(m-1,1)
  else return ackerman(m-1,ackerman(m,n-1))
endfunc
```

### VI.5 Récursivité : Conclusion

### 178 POLYTECH

- la récursivité est un moyen naturel de résolution de certains problèmes;
- tout algorithme peut s'exprimer de manière récursive ;
- c'est un moyen de se ramener d'un cas « compliqué » à un cas « plus simple » ;
- la récursivité permet d'écrire des algorithmes concis et élégants.

### Exercice

### **Exercice**

Programmer un algorithme de résolution de sudoku