4 Nanomyths and 3 Nanotruths

A Brief Introduction to the Paradoxes of Nanobusiness

Nathan Tinker Lux Research, Inc.

The myths

Nanomyth 1:

There is a "nanotech bubble"

Nanomyth 2:

No one's making money from nanotech

Nanomyth 3:

Nanotech companies will be valued like IT and software companies

Nanomyth 4:

There is a nanotechnology market

Some basics

Total public pure plays

12

Total number of small private "nanotech" companies in US ~670

Total receiving VC \$

74

114 individual deals since 1998 \$960.83 million (avg. ~\$13M / company)

For comparison

	F. (9) (1)	Total \$M
<u>Year</u>	# of Deals	Invested
1998	3691	21244.29
1999	5604	54350.59
2000	8068	105904.4
2001	4609	40693.76
2002	3033	21309.08
2003	2779	18352.14
	27784	\$261,854.2

Nano represents 0.4% of VC funding since 1998

Nanomyth 1: The Nanotech Bubble

- "Bubble" requires
 - -Investment opportunities
 - -Investors

Where are they?

Merrill Lynch Nanotech Index (NNZ)

Index is not a tradable product

Altair Amcol Intl Biosante Pharma Cabot CBT Combimatrix **FEI Company** Flamel Technol Harris & Harris Headwaters JMAR Tech M T S Systems Nanogen Nanophase Tech Novavax NVE Pharmacopeia Skyepharma Symyx Tegal Ultratech Veeco Instr Westaim

Punk Zeigel Nanotechnology Index Index is not a tradable product

Micro/Nano Conference Portland OR July 2004

Venture capital investment, 1999-2004

Nanomyth 2: No \$ in Nano

- Established applications already in the billions that don't represent any new innovation
 - nano-TiO2 (\$ market)
 - carbon black (\$5 billion market)
 - 90nm semiconductors (\$ market)
- Any market estimate is useless unless its established and emerging components are teased apart.

The upshot

 While these established applications will continue to dominate overall market size for the next ten years, emerging applications will dominate growth with a triple-digit CAGR and account for the majority of gross profits generated by nanotechnology.

Nanomyth 3: Nanotech cos will be valued like IT & software cos

IT / software cos: typically 10x-100x valuations

NOT NANO

Commodity materials purchased on price and availability (i.e. most nanomaterials -- CNTs, dendrimers, etc.), once performance and reliability characteristics are established for >1 supplier,

Near-term nanomarkets will resemble commodity markets for pork bellies: 1x-3x valuations

Nanomyth 4: There is a nanotech market

- Media and market analysts tend to refer to nanotechnology as a single, cohesive market and establish its "size" by
 - 1. Adding up "shipments" (CNTs in a box) or
 - 2. Add up end product sales (the whole car)

Neither produces market numbers that can be reconciled to GDP or to SIC codes, and therefore are of little strategic value

Good numbers?

- Cientifica: counted up the shipments of all 44 global nanotube suppliers
- Business Communications Company: 150
 interviews to count up nanomaterials shipments
 (most of which, BTW, are not new but produced
 using established top-down techniques)
- Freedonia: 180-some individual nanomaterials suppliers

New model: Nanotech value chain

Nanomaterials

Nanoscale structures in pure form

- 1) Particles/powders
- 2) Nanofilms
- 3) Nanoporous materials
- 4) Nanotubes
- 5) Quantum dots
- 6) Dendrimers
- 7) Other (wires, rods, horns, belts...)

Nanoenablers

Nanomaterials processed into components or sub-assemblies

- Polymer composites
- 2) Solar cells
- 3) Memory cells
- 4) Disk drive assemblies
- 5) Drug delivery carriers
- 6) Biological labels
- 7) Biomagnetic separations media
- (8) MRI/other imaging contrast media
- 9) Orthopedic materials
- 10) Slurries
- 11) Coatings
- 12) Lubricants
- 13) Nanostructured metal (steel, aluminum)
- 14) Display assemblies
- 15) Sensors
- 16) Catalysts
- 17) Additives
- 18) Filters
- 19) Phosphors
- 20) Magnetic fluid seals
- 21) Optical fibers (?)
- 22) Ceramic membranes
- 23) Propellants and explosives
- 24) Structural ceramics (?)
- 25) Nanocable assemblies

Nano-enabled products

Final products incorporating nanomaterials or nanoenablers

Too many to list in...

- Manufacturing
- Electronics
- Life sciences

the 3 truths

- Nanotruth 1: Nanotechnologies represent a new value chain framework of nanomaterials, nanoenablers, and nano-enabled products – each with its own characteristics and market dynamics: only the nano-enabled products category captures a GDP-style measure
- Nanotruth 2: There is an analytical axis of established versus emerging (disruptive) applications – both are valid measures, but must be separated and market value apportioned appropriately
- Nanotruth 3: There is an emerging "nanotechnology economy" as nanotech penetrates key markets there will be a ripple effect across industrial sectors – requires extrapolation of total economic impact of nanotechnology based on good market forecast numbers

The big questions, part 1

- How big is the market for nanomaterials versus nanoenablers versus nano-enabled products? How do these markets interrelate – which drives which and over what time period? (And where does your nanobreakthrough fit in?)
- What portion of market value is attributable to established products and methods of production versus emerging, disruptive alternatives? How will this change over time?
- Where are the profits which segments have high, defensible gross margins and which are ruled by ruthless commodity economics?

The big questions, part 2

- How does the market size break down by industry grouping (manufacturing versus electronics versus life sciences) and by geography (US, Europe, Asia, ROW)?
- Are these numbers big or small relative to the big picture of spending and output in affected industries?
- What will be the broader economic impact of these numbers (i.e. total value created)?

