Random variables & distributions - Part 1

Lecture 3b (STAT 24400 F24)

1/11

Hierachical model for mixed random variables

We can think of this as a hierarchical model:

$$R \sim \text{ Bernoulli}(0.4)$$

$$X \mid R \sim \begin{cases} 0, & \text{if } R = 0, \\ \text{Exponential}(3), & \text{if } R = 1. \end{cases}$$

Remarks:

- Any (univariate) r.v. can be decomposed as a mixture of a discrete r.v. and a continuous r.v.
- For any type of r.v. (discrete / continuous / mixed), we can always use the CDF $F_X(x)$ to describe its distribution.
- But, for mixed r.v.'s, there is no analogue of the PMF or PDF.

Mixed random variables

Example (Rainfall)

What is the distribution of the amount of rain (in inches) that falls in Chicago on June 1?

- Possible values $[0, \infty)$
- We know that $\mathbb{P}(X=0) > 0$ (so X cannot be a continuous r.v.)
- We know $\mathbb{P}(X > 0)$ is positive, but $\mathbb{P}(X = x) = 0$ for any x > 0 (so X cannot be a discrete r.v.)
- X is neither continuous nor discrete.
- We can express X as a mixture of a discrete r.v. and a continuous r.v.

For example:

X = 0 with probability 0.6, $X \sim \text{Exponential}(3)$ otherwise.

2/11

Indicator variables

For an event A, the **indicator variable** for the event A, written as $\mathbb{1}_A$, is the Bernoulli random variable that indicates whether A has occurred (1 if yes, 0 if no).

We may write

$$\mathbb{1}_A = egin{cases} 1, & ext{if } A ext{ occurs;} \ 0, & ext{if } A ext{ does not occur.} \end{cases}$$

- In the rainfall example, R = 1_A
 where A is defined as the event that it does rain.
- For any event A with probability $\mathbb{P}(A) = p$, the distribution of $\mathbb{1}_A$ is Bernoulli(p):

$$\mathbb{P}(\mathbb{1}_A=1)=p, \qquad \mathbb{P}(\mathbb{1}_A=0)=1-p.$$

Example of mixed r.v. (using indicator variable)

A lightbulb's lifespan (in hours) is distributed as Exponential (0.002). However, 3% of all lightbulbs are broken and have a zero lifespan.

We will test one lightbulb to determine its lifespan.

Due to time limits, when testing the lightbulb, we terminate the test after 50 hours — if the lightbulb is still functional, we record its lifespan as equal to 50.

- (1) What is the CDF of the recorded lifespan L?
- (2) What is the distribution of $\mathbb{1}_A$, where A is the event that the lightbulb lasts at least 20 hours?

 $5\,/\,11$

Example of mixed r.v. (cont.)

(2) What is the distribution of $\mathbb{1}_A$, where A is the event that the lightbulb lasts at least 20 hours?

We know that $\mathbb{1}_A \sim \mathsf{Bernoulli}(p)$ where $p = \mathbb{P}(A)$.

To find p:

$$\mathbb{P}(A) = \mathbb{P}(L \ge 20) = 1 - \mathbb{P}(L < 20)$$

$$= 1 - F_L(20) = 1 - \left(0.03 + 0.97(1 - e^{-0.002 \cdot 20})\right) = 0.932$$
since $\mathbb{P}(L = 20) = 0$

So, $\mathbb{1}_A \sim \text{Bernoulli}(0.932)$.

Example of mixed r.v. (cont.)

(1) What is the CDF $F_L(x) = \mathbb{P}(L \le x)$ of the recorded lifespan L?

The support of L is [0, 50]. (Here it's important that this is a closed interval)

- $F_L(0) = \mathbb{P}(L \le 0) = 0.03$ (due to broken lightbulbs)
- $F_L(50) = \mathbb{P}(L \le 50) = 1$ (the test must end after 50 hours)
- For 0 < x < 50.

$$F_L(x) = \mathbb{P}(L \le x) = \mathbb{P}(\text{broken}) + \mathbb{P}(\text{not broken, \& lasts} \le x \text{ hours})$$

= $0.03 + 0.97 \cdot \int_{t=0}^{x} 0.002 \, e^{-0.002t} \, dt = 0.03 + 0.97 (1 - e^{-0.002x})$

6/11

Functions of a random variable

Suppose X is a random variable, and Y = g(X) for some known function g.

Then Y is also a random variable:

some outcome in \xrightarrow{X} Observed value $X \stackrel{g}{\longrightarrow}$ Observed value Y = g(X)

 \implies some outcome in the sample space Ω $\xrightarrow{g(X)}$ Observed value Y = g(X)

How are the distribution of X and the distribution of Y related?

Functions of a discrete r.v.

Suppose that X is a discrete r.v. with PMF $p_X(x)$, and Y = g(X).

What can we say about the distribution of Y?

Y will certainly be discrete, since it cannot have more possible values than X.

PMF of Y:

$$p_Y(y) = \mathbb{P}(Y = y) = \mathbb{P}(X \text{ takes some value so that } g(X) = y)$$

$$= \sum p_X(x)$$

9/11

Summary and heads-up

We have discussed

- discrete random variables
- continuous random variables
- mixed random variables
- use of indicator variables
- functions of discrete random variables

We will continue with

- functions of continuous random variables; useful transformations
- the mean of a random variable (expected value)
 - $\mathbb{E}(X) = \sum_{x} x \mathbb{P}(X = x)$ if X is discrete
 - $\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$ if X is continuous

(when the sum or integral converge)

Example of a function of a discrete r.v.

Example Roll a die.

If you get a 1, 2, or 3, you lose \$1.

If 4 or 5, \$0.

If 6, you win \$3.

Let X = number on the dice and Y = money earned.

What is the distribution of Y?

PMF of Y:

$$\mathbb{P}(Y=-1) = \mathbb{P}(X=1) + \mathbb{P}(X=2) + \mathbb{P}(X=3) = 1/2$$

$$\mathbb{P}(Y = 0)' = \mathbb{P}(X = 4) + \mathbb{P}(X = 5)' = 1/3$$

 $\mathbb{P}(Y = 3) = \mathbb{P}(X = 6) = 1/6$

$$\mathbb{P}(Y=3) = \mathbb{P}(X=6) = 1/6$$

10 / 11