SCIENCE 10	Name:
Мк. Кокватт	вlk: б ате:
	<u>STARS</u>
Warm-up QUIZ	
Briefly outline the evid	ence that supports the big bang & the age of the universe.

What did the energy change into when the universe cooled? After the Big Bang • All the hydrogen atoms spread across the universe • The universe was a cold and dark • According to the ______, stars form nebulae, dense clouds of gas and dust exist • How did the universe change from hydrogen to all the other elements? Force of • Anything that has mass will experience a force of them together. began to the hydrogen atoms within the clouds of gas. **Critical Mass + HEAT** • Over time, the collection of the hydrogen atoms became • With so many hydrogen atoms close together, it got • The hydrogens did something that had never been done before.... occurred, which produced huge amounts of A star is a massive sphere of gases with a core that **fuses** together. The fusion in stars gives off incredible amounts of energy every second. The energy the US uses in a in .

all the beaches on Earth.

• For most of a stars life, hydrogen is fused into helium

They are the most common _____

It is estimated there are more stars in the universe than there are grains of sand on

in the universe

light years away

Мк. Кокватт

BLK: SATE:

• Towards the end of a stars life, larger elements are then fused inside stars to form				
even bigger elements	Helium-capture reactions			
	¹⁶ O ²⁰ Ne ²⁴ Mg (8p, 8n) ¹⁶ O (10p, 10n) ²⁰ Ne (12p, 12n)			
p p energy				
p p				
4 ¹ H 1 ⁴ He	⋄			
	⁴ He ⁴ He ⁴ He			
	Other reactions			
	12C 16O 28Si 26Sp			
	(14p, 14n) (16p, 15n) (26p, 30n)			
Copyright © 201	16O 29SI 4P Pearson Education, publishing as Addison Wesley.			
Life Pa	ths of Stars			
• It starts with a , but th	e path of development of each star takes			
depends on the of the	newborn star.			
• There are main life paths for star.				
Low Mass Stars				
• These small stars exist for most of their lives as dim, cool .				
Red Dwarfs burn their fuel very slowly and may last for 100 billion years				
 When the fuel for fusion is completely used up, the temperature and pressure of the 				
core can no longer support the weight of the outer layers, the star				
o the nuclei are squeezed tightly together and this can form a				
with its fuel gone, the temperature, even though it shines brightly				
• eventually it becomes a				
Intermediate Mass Stars				
• These stars are of similar mass to the				
• The burn through hydrogen faster that low mass star. These stars have a lifespan of				
about billion years.				
• After a long period of stability, the star has used up its "stable" fuel in the fusion				
process, the gravity forces are unbalanced, and the star becomes				
o This causes the core to contract, making the star hotter, and the outer layers				
expand. As expansion continues the star becomes a				
oelements such a carbon, oxygen, nickel and iron form				
Sheds its outer layers and collapses in on itself becoming a white dwarf and				
eventually a black dwarf				
High Mass Stars				
• Stars x mass of the Sun, have a violent end				
• The life of an average high mass star will last for around billion years.				
	<u> </u>			
Supernova				
A supernova is the largest stellar explosion in the				
The explosion shoots material at up to				

Мк. Кокватт

	•	
BI k.	δλτε.	
DLK:_	Oate:	

- They shine so brightly, they can be seen from Earth even during the
 ______. They can out shine entire ______.
- They are caused by the core of an old massive star undergoing sudden
- This occurs when the star begins to fuse nuclei together.

Life from Supernova

- Supernova are extremely important for life in the universe for TWO REASONS
 - O They create the _____elements and _____ these elements across the cosmos
- The explosion shock waves stir up _____ and can trigger the

Hertzsprung-Russel Diagram

- Russel (US) and Hetzsprung (Holland) both concluded that stars _____ stay the ____ forever
- Stars have a clear evolutionary or development
- Both their research brought together in diagram
- Data shows relationship between star's _____ (energy released) and its
- When plotted most stars fall into what is called the

Your Assignment

- Read p. 336-349
- Do:
- o Work book 4.3 p. 206-213
- o Optional: Questions 1-9 p.349