

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170700802

FCC REPORT

(WIFI)

Applicant: SHENZHEN COOTEL FONE TECHNOLOGY CO., LTD

No.311, 3rd Floor, Langfeng Building, No.2, Kefa Road, Central

Address of Applicant: Area of Science and Technology Park, Nanshan District,

Shenzhen, China

Equipment Under Test (EUT)

Product Name: Feature phone

Model No.: M32

FCC ID: 2AHS2-M32

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 June, 2017

Date of Test: 12 June, to 11 July, 2017

Date of report issued: 11 July, 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	11 Jul., 2017	Original

Covey Chen
Test Engineer Tested by: Date: 11 Jul., 2017

Reviewed by: Date: 11 Jul., 2017

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7 6.7.	SPURIOUS EMISSION	
	6.7.		
			
7	TES	ST SETUP PHOTO	58
8	EU1	CONSTRUCTIONAL DETAILS	59

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Conducted and Radiated Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN COOTEL FONE TECHNOLOGY CO., LTD
Address of Applicant:	No.311, 3rd Floor, Langfeng Building, No.2, Kefa Road, Central Area of Science and Technology Park, Nanshan District, Shenzhen, China
Manufacturer:	SHENZHEN COOTEL FONE TECHNOLOGY CO., LTD
Address of Manufacturer:	No.311, 3rd Floor, Langfeng Building, No.2, Kefa Road, Central Area of Science and Technology Park, Nanshan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Feature phone
Model No.:	M32
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 72.2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.13 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2550mAh
AC adapter:	Model: UOB2DOA50070 Input: AC100-240V 50/60Hz 120mA Output: DC 5.0V, 700mA

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCISE170700802

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.					
Mode Data rate					
802.11b	1Mbps				
802.11g	6Mbps				
802.11n(H20) 6.5Mbps					
Final Tast Mode:					

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE170700802

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax: +86-755-23116366 Email: info@ccis-cb.com

5.7 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018		
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018		
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.13 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kl						
Limit:	Frequency range Limit (dBuV)						
Littie.	(MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the loga	arithm of the frequency.					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test setup:	AUX Equipment Test table/Insula Remark E.U.T: Equipment Under LISN: Line Impedence Ste	E.U.T EMI Receiver	ilter — AC power				
	Test table height=0.8m						
Test Instruments:	Refer to section 5.7 for d	etails					
Test mode:	Refer to section 5.3 for d	etails					
Test results:	Passed						

Measurement Data:

Neutral:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Feature phone

Model : M32 Test Mode : Wifi mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Yaro

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>	dB	dBu∜	dBu₹	<u>dB</u>	
0.150	36.23	-0.38	10.78	46.63	66.00	-19.37	QP
0.206	37.34	-0.34	10.76	47.76	63.36	-15.60	QP
0.214	21.64	-0.34	10.76	32.06	53.05	-20.99	Average
0.277	34.99	-0.32	10.74	45.41	60.90	-15.49	QP
0.346	22.16	-0.32	10.73	32.57	49.05	-16.48	Average
0.415	33.34	-0.32	10.73	43.75	57.55	-13.80	QP
0.481	23.17	-0.30	10.75	33.62	46.32	-12.70	Average
0.899	23.99	-0.29	10.84	34.54	46.00	-11.46	Average
0.968	35.17	-0.29	10.86	45.74	56.00	-10.26	QP
1.032	24.08	-0.29	10.87	34.66	46.00	-11.34	Average
1.172	33.74	-0.28	10.89	44.35	56.00	-11.65	QP
1.449	20.67	-0.27	10.92	31.32	46.00	-14.68	Average
	MHz 0. 150 0. 206 0. 214 0. 277 0. 346 0. 415 0. 481 0. 899 0. 968 1. 032 1. 172	Freq Level MHz dBuV 0.150 36.23 0.206 37.34 0.214 21.64 0.277 34.99 0.346 22.16 0.415 33.34 0.481 23.17 0.899 23.99 0.968 35.17 1.032 24.08 1.172 33.74	Freq Level Factor MHz dBuV dB	MHz dBuV dB dB 0.150 36.23 -0.38 10.78 0.206 37.34 -0.34 10.76 0.214 21.64 -0.34 10.76 0.277 34.99 -0.32 10.74 0.346 22.16 -0.32 10.73 0.415 33.34 -0.32 10.73 0.481 23.17 -0.30 10.75 0.899 23.99 -0.29 10.84 0.968 35.17 -0.29 10.86 1.032 24.08 -0.29 10.87 1.172 33.74 -0.28 10.89	MHz dBuV dB dB dBuV 0.150 36.23 -0.38 10.78 46.63 0.206 37.34 -0.34 10.76 47.76 0.214 21.64 -0.34 10.76 32.06 0.277 34.99 -0.32 10.74 45.41 0.346 22.16 -0.32 10.73 32.57 0.415 33.34 -0.32 10.73 43.75 0.481 23.17 -0.30 10.75 33.62 0.899 23.99 -0.29 10.84 34.54 0.968 35.17 -0.29 10.86 45.74 1.032 24.08 -0.29 10.87 34.66 1.172 33.74 -0.28 10.89 44.35	MHz dBuV dB dB dBuV dBuV 0.150 36.23 -0.38 10.78 46.63 66.00 0.206 37.34 -0.34 10.76 47.76 63.36 0.214 21.64 -0.34 10.76 32.06 53.05 0.277 34.99 -0.32 10.74 45.41 60.90 0.346 22.16 -0.32 10.73 32.57 49.05 0.415 33.34 -0.32 10.73 43.75 57.55 0.481 23.17 -0.30 10.75 33.62 46.32 0.899 23.99 -0.29 10.84 34.54 46.00 0.968 35.17 -0.29 10.86 45.74 56.00 1.032 24.08 -0.29 10.87 34.66 46.00 1.172 33.74 -0.28 10.89 44.35 56.00	MHz dBuV dB dB dBuV dBuV dB 0.150 36.23 -0.38 10.78 46.63 66.00 -19.37 0.206 37.34 -0.34 10.76 47.76 63.36 -15.60 0.214 21.64 -0.34 10.76 32.06 53.05 -20.99 0.277 34.99 -0.32 10.74 45.41 60.90 -15.49 0.346 22.16 -0.32 10.73 32.57 49.05 -16.48 0.415 33.34 -0.32 10.73 32.57 49.05 -16.48 0.481 23.17 -0.30 10.75 33.62 46.32 -12.70 0.899 23.99 -0.29 10.84 34.54 46.00 -11.46 0.968 35.17 -0.29 10.86 45.74 56.00 -10.26 1.032 24.08 -0.29 10.87 34.66 46.00 -11.34 1.172 33.74 -

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Line:

Trace: 7

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: Feature phone EUT

Model : M32

: Wifi mode Test Mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Yaro

Remark

OMALK	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∛	<u>dB</u>	
1	0.206	36.41	-0.52	10.76	46.65	63.36	-16.71	QP
2	0.274	19.85	-0.51	10.74	30.08	50.98	-20.90	Average
2	0.346	35.60	-0.50	10.73	45.83	59.05	-13.22	QP
4 5 6 7 8 9	0.481	34.96	-0.49	10.75	45.22		-11.10	
5	0.481	23.09	-0.49	10.75	33.35	46.32	-12.97	Average
6	0.621	34.65	-0.48	10.77	44.94		-11.06	
7	0.690	21.42	-0.48	10.77	31.71	46.00	-14.29	Average
8	0.894	35.09	-0.49	10.84	45.44	56.00	-10.56	QP
9	0.899	22.72	-0.49	10.84	33.07	46.00	-12.93	Average
10	0.968	23.02	-0.49	10.86	33.39	46.00	-12.61	Average
11	1.032	34.21	-0.49	10.87	44.59	56.00	-11.41	QP
12	1.100	22.41	-0.48	10.88	32.81	46.00	-13.19	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

modela monte bata.							
Test CH	Maximum	Conducted Output P	Limit(dBm)	Result			
Test CIT	802.11b	802.11g	Lillit(dBill)	Nesuit			
Lowest	13.00	11.82	11.73				
Middle	13.08	11.97	11.73	30.00	Pass		
Highest	13.04	11.83	11.65				

13.00 dBm

Test plot as follows:

Tx Channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	6dB	Limit(kHz)	Result		
	802.11b	802.11g	802.11n(H20)	Ellilli(Ki iz)	Nesult
Lowest	8.24	15.84	17.28		
Middle	8.32	16.08	17.52	>500	Pass
Highest	8.64	15.92	16.80		
Test CH	99%	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	Limit(Kriz)	Nosuit
Lowest	13.12	17.44	17.60		
Middle	13.04	16.48	17.60	N/A	N/A
Highest	12.88	16.48	17.68		

Test plot as follows:

6dB EBW

Date: 11.JUL.2017 18:06:56

Lowest channel

Date: 11.JUL.2017 18:08:48

Middle channel

Date: 11.JUL.2017 18:11:17

Highest channel

Date: 11.JUL.2017 18:05:34

Lowest channel

Date: 11.JUL.2017 18:03:58

Middle channel

Date: 11.JUL.2017 18:25:25

Highest channel

Date: 11.JUL.2017 17:55:16

Lowest channel

Date: 11.JUL.2017 17:57:42

Middle channel

Date: 11.JUL.2017 18:00:00

Highest channel

Date: 11.JUL.2017 17:25:56

Lowest channel

Date: 11.JUL.2017 17:26:36

Middle channel

Date: 11.JUL.2017 17:27:04

Highest channel

Date: 11.JUL.2017 17:27:40

Lowest channel

Date: 11.JUL.2017 17:50:25

Middle channel

Date: 11.JUL.2017 17:50:53

Highest channel

Date: 11.JUL.2017 17:52:53

Lowest channel

Date: 11.JUL.2017 17:52:16

Middle channel

Date: 11.JUL.2017 17:51:39

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2					
Limit:	8dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

mododi omone bata.								
Test CH	Pow	ver Spectral Density (Limit(dBm)	Result				
	802.11b	802.11g	802.11n(H20)	Limit(dBin)	Nosuit			
Lowest	6.05	-0.65	-0.50					
Middle	5.31	0.15	-0.01	8.00	Pass			
Highest	5.86	0.26	0.02	1				

Test plot as follows:

Date: 11.JUL.2017 17:43:25

Lowest channel

Date: 11.JUL.2017 17:45:32

Middle channel

Date: 11.JUL.2017 17:45:00

Highest channel

Date: 11.JUL.2017 17:46:02

Lowest channel

Date: 11.JUL.2017 17:46:27

Middle channel

Date: 11.JUL.2017 17:46:54

Highest channel

Date: 11.JUL.2017 17:47:24

Lowest channel

Date: 11.JUL.2017 17:47:52

Middle channel

Date: 11.JUL.2017 17:48:17

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

0.0.2	.z Nadiated Elilission Wethou								
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1							
	Test Frequency Range:	2.3GHz to 2.5GHz							
	Test site:	Measurement D	istance: 3	3m					
	Receiver setup:	Frequency	Detecto		RBW	V	BW	Remark	
	reconversetup.	Above 1GHz	Peak		1MHz		ИНz	Peak Value	
			RMS		1MHz	31	ИНz	Average Value	
	Limit:	Frequency	У	Limit	(dBuV/m @:	3m)		Remark	
		Above 1GH	17		54.00			verage Value	
					74.00			Peak Value	
	Test setup:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenn tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quas peak or average method as specified and then reported in a data sheet. 						ted 360 degrees ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-	
	Test setup:	Som Som	AE EUT		3m Ground Reference Plane	n Antenna	Antenna Too	wer	
	Test Instruments:	Refer to section	5.7 for de	etails					
	Test mode:	Refer to section	5.3 for de	etails					
	Test results:	Passed							
		İ							

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobil Phone EUT

Model : M1

: 802.11b-L Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike

REMARK

	Freq		Antenna Factor						
-	MHz	dBuV		<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Mobil Phone

Model : M1

Test mode : 802.11b-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Mike REMARK :

α_{i}	uı .									
	Freq		Antenna Factor							
	MHz	dBuV	$\overline{-dB/m}$	āB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
	2390.000 2390.000							-24.47 -17.39	Peak Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor. 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

 	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀	dB/m		<u>d</u> B	dBuV/m	dBuV/m	<u>ab</u>	
2483.500 2483.500				0.00 0.00				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

шини										
	Freq		Antenna Factor							
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBu√/m	dB		
1	2483.500	21.90	23.70	4.81	0.00	50.41	74.00	-23.59	Peak	
2	2483, 500	10.73	23.70	4 81	0.00	39. 24	54, 00	-14.76	Average	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Condition : FCC PART 15 (PK) 3m BI EUT : Feature phone Model : M32 Test mode : 802.11g-L Mode Power Rating : AV 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Yaro

	Freq		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	dB	<u>ab</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390,000 2390,000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site Condition EUT : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Feature phone

Model: M32
Test mode: 802.11g-L Mode
Power Rating: AV 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Yaro
REMARK

REMARK

	2000		Antenna Factor							
-	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		
L	2390.000									
3	2300 000	72 12	23 60	4 60	п оо	E1 E0	E4 00	-2 EO	Arrayaga	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Feature phone

Condition EUT

Model: M32
Test mode: 802.11G-H Mode
Power Rating: AV 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Yaro
RFMARK

REMARK

Freq		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor. 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL
EUT : Feature phone
Model : M32
Test mode : 802.11G-H Mode
Power Rating : AV 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Yaro
REMARK :
ReadAntenna Cable Preamp Limit

Freq		Factor				Remark
MHz	—dBu∜	dB/m	 <u>d</u> B	dBuV/m	dBuV/m	
2483.500 2483.500						

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site Condition EUT Model : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Feature phone : M32

model : M32 Test mode : 802.11n20-L Mode Power Rating : AV 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Yaro REMARK :

MARI	К :								
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	—dBu₹	— <u>d</u> B/π			dBuV/m	$\overline{dBuV/m}$		
1	2390.000	39.82	23.68	4.69	0.00	68.19	74.00	-5.81	Peak
2	2390,000	22.27	23.68	4.69	0.00	50.64	54,00	-3.36	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor. 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Site Condition EUT

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Feature phone

Model

Test mode : 802.11n20-L Mode
Power Rating : AV 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Yaro

_		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	dB		
	0000 000	40 40	05 45	4 00	0.00	70.00	74 00	0.40	D 1	

0.00 70.60 74.00 -3.40 Peak 0.00 52.66 54.00 -1.34 Average 2390.000 40.46 25.45 2390.000 22.52 25.45 4.69 4.69

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

REMARK

Freq		Antenna Factor						
 MHz	—dBu₹	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	dB	

2483.500 40.60 23.70 4.81 2483.500 20.65 23.70 4.81 0.00 69.11 74.00 -4.89 Peak 0.00 49.16 54.00 -4.84 Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

Condition

FIIT Model

model: M32
Test mode: 802.11n20-H Mode
Power Rating: AV 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Yaro
REMARK:

ReadAntenna Cable Preamp Level Factor Loss Factor Level Limit Over Freq Level Factor Line Limit Remark ₫<u>B</u> -dBuV dB/m MHz dB dBuV/m dBuV/m 4.81 4.81 2483.500 38.12 23.70 2483.500 19.25 23.70 0.00 66.63 74.00 -7.37 Peak 0.00 47.76 54.00 -6.24 Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor. 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Test mode: 802.11b

Date: 11.JUL.2017 20:51:24

30MHz~25GHz

Date: 11.JUL.2017 20:51:55

30MHz~25GHz

Date: 11.JUL.2017 20:52:17

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 11.JUL.2017 20:52:53

30MHz~25GHz

Middle channel

Date: 11.JUL.2017 15:58:08

30MHz~25GHz

Date: 11.JUL.2017 20:54:06

30MHz~25GHz

Test mode: 802.11n(H20)

RBW 100 kHz Marker 1 [T1] * VIBW 300 kHz -45.17 dBm Ref 16.5 dBm * Att 20 dB SWT 2.5 s 13.66362000 GHz

Date: 11.JUL.2017 20:54:39

30MHz~25GHz

Date: 11.JUL.2017 20:55:25

30MHz~25GHz

Date: 11.JUL.2017 20:55:46

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:201	13							
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Dis	stance: 3	3m						
Receiver setup:	Frequency	Detec	ctor	RBW	V	BW	Remark		
·	30MHz-1GHz	Quasi-	peak	120KHz	300)KHz	Quasi-peak Value		
	Above 1GHz	Pea		1MHz		ЛHz	Peak Value		
		RM		1MHz		ЛHz	Average Value		
Limit:	Frequency		Limit	t (dBuV/m @3	m)		Remark		
	30MHz-88MH			40.0			uasi-peak Value		
	88MHz-216MH			43.5			uasi-peak Value		
	960MHz-1GHz 54.0 Quasi Above 1GHz 54.0 Aver						uasi-peak Value		
							uasi-peak Value Average Value		
							Peak Value		
Test Procedure:	1GHz)/1.5m The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizor make the med 4. For each suscase and the meters and to find the meters and the	(above 1 as rotate ation. as set 3 rich was a height i o determital and veasurem spected en the arther ota the rota the aximum eiver systandwidth on level cified, the would be margin w	meters mount is varied in the vertical ent. emissing tenna table we readire the weather the tenna table we with Moof the en test report yould b	e top of a rot above the gr degrees to d away from the ed on the top ed from one re maximum value on, the EUT was turned from the ed on the EUT was turned from the ed on the et on the ed	he into of a meter value s of the was a being om 0 of a mode stopped the me by	at a 3 aine the erferent variable to four of the ine ante degree tect Fude. We was 1 peed and emission one us	meter chamber. e position of the ace-receiving le-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 es to 360 degrees		

Below 1GHz

Horizontal:

Site : 3m chamber
Condition : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL
EUT : Feature phone
Model : M32
Test mode : WIFI Mode
Power Rating : AV 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Yaro
REMARK :

TOTOTOL		92210000000		0.200020	_			SEA. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
	Freq		Antenna Factor				Limit Line		Remark
_	MHz	dBu₹	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	66.499	36.05	10.72	1.41	29.75	18.43	40.00	-21.57	QP
2	104.170	30.49	12.12	1.99	29.50	15.10	43.50	-28.40	QP
2 3 4	122.834	38.46	9.96	2.20	29.37	21.25	43.50	-22.25	QP
4	143.830	49.05	8.38	2.44	29.25	30.62	43.50	-12.88	QP
5	207.850	39.98	11.30	2.86	28.78	25.36	43.50	-18.14	QP
6	361.714	34.75	14.64	3.10	28.61	23.88	46.00	-22.12	QP

Site Condition

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : Feature phone

EUT

: M32
Test mode : WIFI Mode
Power Rating : AV 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Yaro
REMARK

THAKK.										
	Freq		Antenna Factor				Limit Line		Remark	
	MHz	—dBu₹	— <u>d</u> B/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	dB		
1	45.855	43.10	14.40	1.29	29.85	28.94	40.00	-11.06	QP	
2 3 4	124.133	49.94	9.62	2.21	29.36	32.41	43.50	-11.09	QP	
3	143.830	48.10	8.38	2.44	29.25	29.67	43.50	-13.83	QP	
4	294.114	37.12	13.22	2.92	28.46	24.80	46.00	-21.20	QP	
5	306.754	42.70	13.45	2.96	28.47	30.64	46.00	-15.36	QP	
6	322.189	40.82	13.57	3.01	28.50	28.90	46.00	-17.10	QP	

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Pea	ık		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.44	31.20	6.81	41.82	42.63	74.00	-31.37	Vertical	
4824.00	47.85	31.20	6.81	41.82	44.04	74.00	-29.96	Horizontal	
T	Test mode: 802.11b					Remark: Average			
Lest	: mode: 802.	11b	Te	<u>st channel: L</u>	owest	Rem	ark: Avera	age	
Frequency (MHz)	mode: 802. Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	st channel: Lo Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	ark: Avera Over Limit (dB)	age Polar.	
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit		

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Pea	ık		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.73	31.20	6.85	41.84	42.94	74.00	-31.06	Vertical	
4874.00	47.65	31.20	6.85	41.84	43.86	74.00	-30.14	Horizontal	
Test	mode: 802.	11b	Te	st channel: M	1iddle	Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	41.58	31.20	6.85	41.84	37.79	54.00	-16.21	Vertical	
4874.00	42.69	31.20	6.85	41.84	38.90	54.00	-15.10	Horizontal	

Test mode: 802.11b		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.16	31.20	6.89	41.86	43.39	74.00	-30.61	Vertical
4924.00	46.91	31.20	6.89	41.86	43.14	74.00	-30.86	Horizontal
Test	mode: 802.	11b	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	42.69	31.20	6.89	41.86	38.92	54.00	-15.08	Vertical
4924.00	41.84	31.20	6.89	41.86	38.07	54.00	-15.93	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11g			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.58	36.06	6.81	41.82	47.63	74.00	-26.37	Vertical	
4824.00	47.39	36.06	6.81	41.82	48.44	74.00	-25.56	Horizontal	
Tes	t mode: 802.	11g	Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.21	36.06	6.81	41.82	41.26	54.00	-12.74	Vertical	
4824.00	41.33	36.06	6.81	41.82	42.38	54.00	-11.62	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.92	36.32	6.85	41.84	48.25	74.00	-25.75	Vertical	
4874.00	47.85	36.32	6.85	41.84	49.18	74.00	-24.82	Horizontal	
Tes	t mode: 802.	.11g	Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	41.95	36.32	6.85	41.84	43.28	54.00	-10.72	Vertical	
4874.00	42.36	36.32	6.85	41.84	43.69	54.00	-10.31	Horizontal	

Test mode: 802.11g		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.28	36.58	6.89	41.86	48.89	74.00	-25.11	Vertical
4924.00	46.43	36.58	6.89	41.86	48.04	74.00	-25.96	Horizontal
Tes	t mode: 802.	11g	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	42.63	36.58	6.89	41.86	44.24	54.00	-9.76	Vertical
4924.00	41.45	36.58	6.89	41.86	43.06	54.00	-10.94	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.31	31.20	6.81	41.82	42.50	74.00	-31.50	Vertical
4824.00	47.28	31.20	6.81	41.82	43.47	74.00	-30.53	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	40.13	31.20	6.81	41.82	36.32	54.00	-17.68	Vertical
4824.00	41.38	31.20	6.81	41.82	37.57	54.00	-16.43	Horizontal

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.27	31.20	6.85	41.84	42.48	74.00	-31.52	Vertical	
4874.00	47.36	31.20	6.85	41.84	43.57	74.00	-30.43	Horizontal	
Test m	ode: 802.11	n(H20)	Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	41.68	31.20	6.85	41.84	37.89	54.00	-16.11	Vertical	
4874.00	42.31	31.20	6.85	41.84	38.52	54.00	-15.48	Horizontal	

Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.82	31.20	6.89	41.86	44.05	74.00	-29.95	Vertical
4924.00	46.93	31.20	6.89	41.86	43.16	74.00	-30.84	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	42.36	31.20	6.89	41.86	38.59	54.00	-15.41	Vertical
4924.00	41.85	31.20	6.89	41.86	38.08	54.00	-15.92	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.