Demostración de \mathcal{NP} -completitud \LaTeX

3 DIMENSIONAL MATCHING

Sofía Pizarro Arbelo

alu0100831696

Curso 2017/2018

Índice

1.	Introducción	2
2.	Clase P y NP	2
	2.1. Definición	2
	2.2. Relaciones entre las clases:	3
3.	Transformaciones polinomiales	3
4.	Problemas \mathcal{NP} Completos	3
5.	Descripción del problema 3DM	4
6.	Demostrar que un 3DM es NP completo	5
	6.1. Demostrar que un 3DM es NP	5
	6.1.1. ALGORITMO II'	5
	6.1.2. 3SAT α 3DM	6

1. Introducción

 \mathcal{NP} es el conjunto de lenguajes resolubles en tiempo polinómico no determinista, mientras que \mathcal{NP} -completo son los más difíciles de la clase, se caracterizan por ser todos iguales. La teoría \mathcal{NP} -completo se basa en el concepto de **transformación polinomial**.

Un ejemplo de \mathcal{NP} -completo: supongamos que queremos hacer algoritmo eficiente para un problema muy complicado a resolver. ¿Es algo imposible? Probablemente no, veamos por qué. Después de romperte la cabeza durante horas solo se te ocurre un algoritmo de fuerza bruta, con su respectivo tiempo exponencial y entonces piensas que se trata de un problema intratable, que no existe un algoritmo para ello y es ahí cuando puedes demostrar de alguna manera que es \mathcal{NP} -completo. Los \mathcal{NP} -completos parecen intratables, aunque nadie ha sabido demostrar que los \mathcal{NP} -completos son intratables. Son todos equivalentes, es decir:

- lacktriangleleft Si se encuentra un algoritmo eficiente para un \mathcal{NP} -completo entonces tenemos un algoritmo eficiente para cualquiera de ellos.
- Si probamos que un \mathcal{NP} -completo no tiene algoritmos eficientes entonces ninguno los tiene.

La necesidad de buscar una solución al problema no desaparecerá, pero podemos:

- Dejar de buscar un algoritmo en tiempo polinómico para el problema.
- Buscar un algoritmo eficiente para un problema diferente relacionado con el original.
- O bien intentar usar el algoritmo exponencial a ver qué tal funciona con varios valores a probar.

2. Clase P y NP

2.1. Definición

- Un problema de decisión está en la clase P si las instancias "sí" son reconocidas por una MTD polinomial.
- lacktriangle Un problema de decisión está en la clase \mathcal{NP} si las instancias "sí" son reconocidas por una MTND polinomial.

lacktriangle Alternativamente, La clase \mathcal{NP} se puede definir como el conjunto de problemas de decisión que

admiten un certificado polinomial.

2.2. Relaciones entre las clases:

1. $\mathcal{P} \subseteq \mathcal{NP}$

2. Problema abierto: ¿Es $\mathcal{P} = \mathcal{NP}$?

Transformaciones polinomiales 3.

ullet Una transformación o reducción polinomial de un problema de decisión $\Pi 1$ a uno $\Pi 2$ es una

función que se computa en tiempo polinomial y transforma una instancia I1 de Π1 en una

instancia I2 de $\Pi 2$ tal que I1 tiene respuesta "sí" para $\Pi 1$ si y solo si I2 tiene respuesta "sí" para

 $\Pi 2.$

■ El problema de decisión Π 1 se reduce polinomialmente a otro problema de decisión Π 2, Π 1 \leq p

 $\Pi 2$, si existe una transformación polinomial de $\Pi 1$ a $\Pi 2$.

■ Si Π " \leq p Π ' y Π ' \leq p Π entonces Π " \leq p Π , ya que la composición de dos reducciones polinomiales

es una reducción polinomial.

Problemas \mathcal{NP} Completos 4.

Un problema Π es \mathcal{NP} -completo si:

1. $\Pi \in \mathcal{NP}$.

2. Para todo $\Pi' \in \mathcal{NP}$, $\Pi' \leq \! p \; \Pi.$

3

5. Descripción del problema 3DM

- 1. Instancia
 - \blacksquare Un conjunto M c W x X x Y
 - $W \cap Y \cap X = \phi$ (disjuntos)
 - |W| = |X| = |Y| = q
- $2.~ \natural L1 \leq n~L?$
 - $\quad \blacksquare \ |M'| = q$
 - Todos los elementos W u X u Y están en alguna terceta de M' sin repetir ninguno.

$$M = \big\{ (x_1, y_1, z_1), (x_1, y_2, z_2), \\ (x_2, y_2, z_2), (x_3, y_3, z_3), (x_3, y_2, z_1) \big\}$$

6. Demostrar que un 3DM es NP completo

A partir del Teorema de Cook, la técnica estándar para probar que un problema Π es \mathcal{NP} -completo aprovecha la transitividad de $\leq p$, y consiste en lo siguiente:

- 1. Mostrar que Π está en \mathcal{NP} .
- 2. Elegir un problema Π ' apropiado que se sepa que es \mathcal{NP} -completo.
- 3. Construir una reducción polinomial f de Π ' en Π .

La segunda condición en la definición de problema \mathcal{NP} -completo sale usando la transitividad: sea $\Pi 0$ " un problema cualquiera de \mathcal{NP} . Como Π ' es \mathcal{NP} -completo, Π " $\leq p \Pi$ '. Como probamos que Π ' $\leq p \Pi$, resulta Π " $\leq p \Pi$.

En este caso específico:

- 1. Demostrar que 3DM es \mathcal{NP} .
- 2. Seleccionar un problema Π ' que sea \mathcal{NP} -completo
- 3. Construir una transformación (f) Π ' α 3DM
- 4. Comprobar que la transformación f se hace en tiempo polinomial.

6.1. Demostrar que un 3DM es NP

Dada una instancia (M, X, Y, W) del 3DM se construye un algoritmo no determinista que genere una solución de |W| tercetas de M y compruebe en tiempo polinomial que no hay dos tercetas con elementos comunes.

6.1.1. ALGORITMO Π

 $\star 3$ SATISFABILITY (3SAT) Instancia: - Conjunto de m
 cláusulas C = c1, ..., cm \circ |ci| = 3 , 1 \leq i \leq m - Sobre un conjunto finito de n
 variables booleanas \circ U = u1, ..., un ¿Existe alguna asignación válida de U que satisfaga todas las cláusulas de C.?

6.1.2. 3SAT α 3DM

- \blacksquare Técnica para la demostración de \mathcal{NP} -completitud: Diseño de Componentes
- Notación:

- La demostración se basa en la construcción de tres tipos de componentes:
 - ullet Tercetas de asignación Para cada variable ui \in U se introduce una componente Ti.
 - o Ti depende del número de cláusulas m de C
 - o Estructura de Ti:
 - 1. Elementos internos:

$$\diamond$$
ai [j] $\in X,\, 1 \leq j \leq m$; bi [j] $\in Y,\, 1 \leq j \leq m$

No van a pertenecer a otras tercetas de otro Ti

2. Elementos externos:

$$\diamond$$
ui [j] , \neg [j] \in W, $1 \leq j \leq m$

Pueden pertenecer a otras tercetas

 El literal ui en 3SAT puede ser usado en varias cláusulas, en el 3DM debemos tener muchas m copias de ui.

$$\begin{split} T_i^t &= \{(\overline{u}_i[j], a_i[j], b_i[j]): 1 \leq j \leq m\} \\ T_i^f &= \{(u_i[j], a_i[j+1], b_i[j]): 1 \leq j \leq m\} \ \cup \{(u_i[m], a_i[1], b_i[m]): 1 \leq j \leq m\} \end{split}$$

- $\circ\,$ Si ningún elemento interno de la componente Ti aparece en otra Th (i $neq~{\rm h}):$
 - $\diamond\,$ M' será un matching con m
 elementos de Ti

- Si ui = true se elegirá como M' las tercetas grises, dejando libre el resto para poder utilizarlas en la construcción del resto de componentes.
- Tercetas de satisfacción
 - $\circ\,$ Para cada cláusula c
j \in C introducimos una componente Cj.
 - o Estructura:
 - 1. Elementos Internos:

$$\diamond \ sx \ [j] \in X, \, sy \ [j] \in Y : 1 \leq j \leq m$$

2. Elementos externos:

$$\diamond$$
ui $[j]$, ¬ui $[j] \in W: 1 \leq i \leq n; 1 \leq j \leq m$

- Cualquier matching M' c M debe contener una terceta de Cj para emparejar los elementos internos sx [j] y sy [j]:
 - 1. Sx [j] y Sy [j] pueden ser emparejados, sí sólo sí, al menos uno de los literales (ui) de cj no ha sido emparejado en alguna componente "Truth seeting" Ti (Ti \cap M')
 - 2. o Si tenemos una 3SAT-Instancia satisfacible, entonces las variables Sx[j] y Sy[j] pueden ser emparejadas
 - 3. o Si tenemos una 3SAT-Instancia no satisfacible, entonces las variables Sx[j] y Sy[j] no pueden ser emparejadas.

• Tercetas de relleno

- Hay muchos ui [j] que no se emparejan con componentes de relleno ni con componentes de satisfacción
- o Introducimos m (n -1) variables nuevas:

1. gx [k]
$$\in X$$
 , gy [k] $\in Y : 1 \leq k \leq m(n\mbox{-}1)$

- \circ ; Por qué m (n-1) variables?
 - 1. Hay mxn variables u sin emparejar después de calcular las tercetas de asignación.
 - 2. Si todas las m cláusulas se satisfacen se han emparejado m variables.
 - 3. Finalmente quedan sin emparejar (mxn) m = m(n-1)
- o Cada pareja (gx [k], gy [k]) se enlazará con una única variable ui [j] o ¬ui [j] que no estén en las tercetas que se han formado con las componentes anteriores:

$$G = \{(u_i[j], g_x[k], g_y[k]), (\overline{u}_i[j], g_x[k], g_y[k]) : 1 \le k \le m(n-1), 1 \le i \le n, 1 \le j \le m\}$$

En resumen:

$$\begin{split} W &= \{(u_i[j], \overline{u}_i[j] : 1 \leq i \leq n, 1 \leq j \leq m\} \quad (2mn) \\ X &= A \cup S_X \cup G_X \quad (2mn) \\ A &= \{a_i[j] : 1 \leq i \leq n, 1 \leq j \leq m\} \\ S_X &= \{s_x[j] : 1 \leq j \leq m\} \\ G_X &= \{g_x[j] : 1 \leq j \leq m(n-1)\} \end{split}$$

$$Y &= B \cup S_Y \cup G_Y \quad (2mn)$$

$$B &= \{b_i[j] : 1 \leq i \leq n, 1 \leq j \leq m\} \\ S_Y &= \{s_y[j] : 1 \leq j \leq m\} \\ G_Y &= \{g_y[j] : 1 \leq j \leq m(n-1)\}. \end{split}$$

$$M &= \left(\bigcup_{i=1}^n T_i\right) \cup \left(\bigcup_{j=1}^m C_j\right) \cup G. \quad (2mn+3m+2m^2n(n-1))$$

- \bullet Se ha observado que las tercetas resultantes M son el producto cartesiano de W x X x Y
- Esta forma de definir las tercetas:
 - 1. Desde su definición en términos de una instancia (U,C) del 3SAT
 - 2. M se construye en tiempo polinomial

Para completar la demostración de NP Completitud falta por demostrar:

- \bullet Sea
t: U $\rightarrow~$ T, F $\,$ el dominio de valores para U que satisface las cláusulas C.
- Se construye un matching M' c M del modo siguiente:

- 1. Para cada cláusula cj $\in {\bf C}$:
 - $\circ \ Zj \in ui, \, \neg ui \colon 1 \leq i \leq n \, \cap \, cj$

Literales con asignación verdadera.

Debe de existir al menos uno, ya que t satisface a cj.

2. Se construye la M':

$$M' = \left(\bigcup_{t(u_i) = T} T_i^t\right) \cup \left(\bigcup_{t(u_i) = F} T_i^f\right) \cup \left(\bigcup_{j = 1}^m \{(z_j[j], s_x[j], s_y[j])\}\right) \cup G'$$

o G': conjunto de m(n-1) tercetas de G que incluyen:

Todos los gx $[k] \in X$, gy $[k] \in Y$

Y los ui[j], $\neg ui[j] \in W$ que no se han emparejado.

 Es fácil de verificar que siempre se puede construir un G' para que el resultado del conjunto M' sea un matching.

M' c M es un matching (U,C) es satisfacible

- ullet Se ha visto que para cada ui \in U, M' incluía exactamente m tercetas de Ti: Tt i o Tf i.
- Sea t
: U $\rightarrow~$ T, F~donde t(ui) = T \leftrightarrow M'
 \cap Ti = Tt i
 - 1. t será una asignación correcta que satisface C.
- \bullet Consideremos una cláusula arbitraria c
j $\in \mathcal{C}$
 - 1. Para cubrir los elementos internos de la componente Cj (de la componente de testing)
 - o Se necesita al menos una terceta de Cj contenida en M'.
 - o Esta terceta contiene un literal de c
j \in C, que no estará en M' \cap Ti
 - 2. Como t(ui) = T \leftrightarrow M' \cap Ti = Tt i
 - $\circ\,$ Entonces t
 satisface la cláusula c
j \cap Ti
 - 3. Si todas las cláusulas cj $\in C$ se satisfacen
 - o (U,C) es satisfacible

3-Dimensional Matching es NP-COMPLETO