Lecture 7: Bayes Classification

Richa Singh

Google classroom code: wgzuohn

Recap: Bayes' Classification

Posterior, likelihood, prior, evidence

$$P(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)},$$

Evidence: In case of two categories

$$p(x) = \sum_{j=1}^{2} p(x|\omega_j)P(\omega_j)$$

$$posterior = \frac{likelihood \times prior}{evidence}$$

The Normal Density

Univariate density

$$N(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2 \right]$$

Multivariate density

$$N(x; \mu, \sigma^2) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (x - \mu)^t \Sigma^{-1} (x - \mu)\right]$$

$$P(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)},$$

- Minimum error-rate classification can be achieved by the discriminant function
- $gi(x) = In P(x \mid \omega i) + In P(\omega i)$
- Case of multivariate normal

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \Sigma_i \right| + \ln P(\omega_i)$$

Questions?

Solve the questionnaire shared on Webex. It will be used for attendance.

Analyzing Covariance Matrix

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$$

- Case $\Sigma_i = \sigma^2 I$ (I stands for the identity matrix)
- Case $\Sigma_i = \Sigma$ (covariance of all classes are identical but arbitrary!)
- Case Σ i = actual covariance

- Case $\Sigma_i = \sigma^2 I$ (I stands for the identity matrix)
 - $-\sigma_{ii}$ = 0: Features are statistically independent
 - $-\sigma_{ii}$ is same for all the features

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i}) \sum_{i=1}^{-1} (x - \mu_{i}) + \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(\omega_{i})$$

$$\frac{1/\sigma^{2}}{\text{Constant for all the classes}}$$

$$\frac{1}{\sigma^{2}} = \frac{1}{2} \ln |\Sigma_{i}| + \ln P(\omega_{i})$$

- Case $\Sigma_i = \sigma^2 I$ (I stands for the identity matrix)
 - $-\sigma_{ii}$ = 0: Features are statistically independent)
 - $-\sigma_{ii}$ is same for all the features

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \Sigma_i \right| + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} \left[\mathbf{x}^t \mathbf{x} - 2\mu_i^t \mathbf{x} + \mu_i^t \mu_i \right] + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} \left[\mathbf{x}^t \mathbf{x} - 2\mu_i^t \mathbf{x} + \mu_i^t \mu_i \right] + \ln P(\omega_i)$$

• Disregarding x^tx , we get a linear discriminant function

$$g_i(x) = w_i^t x + w_{i0}$$

where:

$$w_i = \frac{\mu_i}{\sigma^2}; \ w_{i0} = -\frac{1}{2\sigma^2} \mu_i^t \mu_i + \ln P(\omega_i)$$

 (ω_{i0}) is called the threshold for the *i*th category!)

- A classifier that uses linear discriminant functions is called "a linear machine"
- The decision surfaces for a linear machine are hyperplanes defined by $g_i(x) = g_i(x)$

$$\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0 \qquad \qquad \mathbf{w} = \boldsymbol{\mu}_i - \boldsymbol{\mu}_i$$

$$\mathbf{x}_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\sigma^{2}}{\|\mu_{i} - \mu_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mu_{i} - \mu_{j})$$

– The hyperplane separating \mathcal{R}_i and \mathcal{R}_j

$$x_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\sigma^{2}}{\|\mu_{i} - \mu_{j}\|^{2}} ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mu_{i} - \mu_{j})$$

is always orthogonal to the line linking the means!

if
$$P(\omega_i) = P(\omega_j)$$
 then $x_0 = \frac{1}{2}(\mu_i + \mu_j)$

$$g_i(x) = -\|x - \mu_i\|^2$$

FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of d-1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional examples, we indicate $p(\mathbf{x}|\omega_i)$ and the boundaries for the case $P(\omega_1) = P(\omega_2)$. In the three-dimensional case, the grid plane separates \mathcal{R}_1 from \mathcal{R}_2 . From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

FIGURE 2.11. As the priors are changed, the decision boundary shifts; for sufficiently disparate priors the boundary will not lie between the means of these one-, two- and three-dimensional spherical Gaussian distributions. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Questions?

• Case $\Sigma_i = \Sigma$ (covariance of all classes are identical but arbitrary!)

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln \left|\Sigma_i\right| + \ln P(\omega_i)$$

Expand the term and disregard the quadratic expression

where:

$$g_i(x) = w_i^t x + w_{i0}$$
 $w_i = \sum_{i=1}^{-1} \mu_i$, $w_{i0} = -\frac{1}{2} \mu_i^t \sum_{i=1}^{-1} \mu_i + \ln P(\omega_i)$

$$x_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{\ln[P(\omega_i)/P(\omega_j)]}{(\mu_i - \mu_j)^t \Sigma^{-1}(\mu_i - \mu_j)}.(\mu_i - \mu_j)$$

- Comments about this hyperplane:
 - It passes through x₀
 - It is NOT orthogonal to the line linking the means.
 - What happens when $P(\omega_i) = P(\omega_i)$?
 - If $P(\omega_i)$!= $P(\omega_j)$, then $\mathbf{x_0}$ shifts away from the more likely mean.

Thanks.