Experiment -8

Aim:

- 1. Design an inverting and non-inverting amplifier using opamp using an F/B network
- 2. Determine bandwidth of amplifier using ac analysis
- 3. Evaluate the open-loop gain. Loop gain and close loop gain of both the amplifier (VFB/VTEST) and do ac analysis
- 4. Comment on the stability of the feedback amplifier

Apparatus used: LTSpice software

Theory:

An Operational Amplifier, or op-amp for short, is fundamentally a voltage amplifying device designed to be used with external feedback components such as resistors and capacitors between its output and input terminals

Op-amp Parameter and Idealised Characteristic

- Open Loop Gain, (Avo): Infinite
- Input impedance, (Z_{IN}): Infinite
- Output impedance, (Z_{OUT}): Zero
- Bandwidth, (BW): Infinite
- Offset Voltage, (V_{IO}): Zero

Inverting amplifier:

Non Inverting amplifier:

Circuit Schematic: INVERTING AMPLIFIER:

DC operating Point:

* C:\Users\singh\Documents\LTSpice\Analog IC Design Lab\Lab8\inv

```
--- Operating Point ---
V(n004):
                  -15
                                   voltage
V(n001):
                  15
                                  voltage
                  0.000176517 voltage
V(out):
                  -2.01981e-008 voltage
V(n002):
V(n003):
                 0
                                  voltage
                  1.76537e-009 device_current
I(R2):
                 -2.01981e-012 device_current
0.000345921 device_current
I(R1):
I(Vee):
                 -0.000345919 device_current
I (Vcc):
I(V1):
                  -2.01981e-012 device current
                 1.76743e-009 subckt_current
1.76739e-009 subckt_current
0.000345919 subckt_current
Ix(u1:1):
Ix(u1:2):
               0.000345919
Ix(u1:3):
Ix(u1:4):
                 -0.000345921 subckt current
                 -1.75084e-009 subckt_current
Ix(u1:5):
```

Output Waveform: Transient response:

Inverting amplifier with VTest input

Waveform:

NON-INVERTING AMPLIFIER: Open-Loop

Operating point:

AC response:

CLOSED-LOOP:

CIRCUIT:

OUTPUT:

TRANSIENT:

Observation:

Open-loop:

Wgc = 1.984MHz. The phase doesn't cross -180 degrees so the system is stable.

Closed loop:

Wgc = 2.07 MHz, Wpc = 4.45 MHz.

Wgc < Wpc, so the system is stable.

Phase Margin = -39.2 degrees

Gain Margin = 10dB

Closed loop gain = 10

Result:

The Experiment has been performed with both configurations of OpAmp and found to be correct.