

RAID

Sumário

Capítulo 1		
RAID		3
1.1. Mãos a obra		4
Capítulo 2		
Gerenciando		<u>C</u>
2.1. Objetivos		g
2.1. Troubleshooting		g
	Índice de tabelas	
	Índice de Figuras	

Capítulo 1 RAID

- •Criar volume com o RAID utilizando RAID 10;
- •Principais comandos de administração e solução "mdadm".

1.1. Mãos a obra

Raid (Redundant Array of Inexpensive Disks) é um conjunto redundante de discos independentes, proposto em 1983 como solução barata para falhas de discos. O RAID oferece ganho de desempenho no acesso aos discos, redundância em caso de falhas e pode ser feito via hardware ou software.

Mas existe muita diferença entre fazer vai hardware ou software?

Temos o desempenho e o custo para levar em conta, veja um balanço entre os dois modos onde o sinal de "+" representa o ponto positivo e o "-" o negativo:

Hardware

Desempenho (+)

Custo/Mesma controladora (-)

Misturar Sata/USB (-)

Software

Custo (+)

Misturar Sata/USB (+)

Desempenho (-)

Modos de operação do RAID

Você pode escolher como ira trabalhar com o RAID, selecionando o modo de operação. Essa escolha é de acordo com o cenário e com o que você pretende atingir, como por exemplo ganho na capacidade de armazenamento, desempenho e/ou alta disponibilidade em relação aos dados.

Vamos ver uma descrição rápida de cada modo.

- RAID 0 → Usado para desempenho tendo o dobro de velocidade na gravação.
 No mínimo são usados dois discos podendo ser de tamanhos diferentes, mas não implementa redundância.
- **RAID 1** → Usado para implementar redundância, pois tudo o que é gravado em um disco é espelhado para o outro, não substituindo o Backup. No mínimo são usados dois discos que devem ser iguais, e existe um ganho no dobro de velocidade na leitura.
- **RAID 10 (1+0)** → Usando para implementar redundância (RAID 1) e desempenho (RAID 0), pois é a combinação do modo 1 + 0 do RAID. No mínimo são usados 4 discos que devem ser iguais.
- **RAID 5** → Usado para implementar redundância, pois usa o sistema de paridade para garantir a integridade dos dados. No mínimo são usados 3 discos, seu ponto fraco é que ele suporta apenas a falha de um disco, pois se segundo falhar antes que o primeiro seja substituído você perde todos os dados.
- ${\bf RAID~6}
 ightarrow {\bf Usado~para~implementar~redundância~como~no~RAID~5, tendo como diferença o dobro de bits de paridade, garantindo a integridade dos dados caso até dois disco falhem ao mesmo tempo.$

Na prática vamos implementar o RAID 10, para começar instale o pacote mdadm no Debian.

aptitude install mdadm

Com o pacote instalado, vamos preparar as partições para criar o RAID 10. Nesta prática 4 partições serão usadas na criação, mas você pode usar no lugar discos inteiros.

Use comando cfdisk e prepare as partições mudando o tipo para "FD" (Linux raid autodetect). Vamos a prática:

cfdisk

sda10	Lógica	Linux raid autodetect	509,97
sda11	Lógica	Linux raid autodetect	509,97
sda12	Lógica	Linux raid autodetect	509,97
sda13	Lógica	Linux raid autodetect	509,97

Um dica para não precisar reiniciar a maquina após alterar a tabela de partição, é instalar o pacote **parted** e usar o comando **partprobe**.

aptitude install parted

partprobe

O comando **partprobe** faz a releitura da tabela de partição e informa as mudanças ao Kernel.

A nossa prática consiste em criar dois dispositivos do tipo RAID 1, que serão os dispotivos /dev/md0 e /dev/md1 e unir os dois para criar o RAID 0 que será o dispositivo /dev/md2

Prática: Criando o RAID 1

Para criar o primeiro RAID 1 use o comando mdadm com as opções abaixo:

mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sda10 /dev/sda11

```
[ 2256.442240] md: md0: raid array is not clean -- starting background reconstru
ction
mdadm: array /dev/md0 started.
```

Veja a descrição dos parâmetros do comando mdadm:

- --create /dev/md0 → Usado para criar o dispositivo md (Multiple Device);
- --level=1 → Define o modo de operação do RAID;
- --raid-devices=2 → Números de partições ou discos que serão utilizados;

/dev/sda10 /dev/sda11 → Quais partições ou discos que serão utilizados.

Para criar o segundo RAID 1 use o comando mdadm com as opções abaixo:


```
\# mdadm --create /dev/md1 --level=1 --raid-devices=2 /dev/sda12 /dev/sda13
```

```
[ 3517.367671] md: md1: raid array is not clean -- starting background reconstru
ction
mdadm: array /dev/md1 started.
```

Prática: Criando o RAID 0

Para criar o RAID 0 unindo os dispositivos do RAID 1:

mdadm --create /dev/md2 --level=0 --raid-devices=2 /dev/md0 /dev/md1

mdadm: array /dev/md2 started.

Com o dispositivo do RAID pronto é preciso aplicar algum sistema de arquivos e realizar a montagem para poder gravar dados. Vamos a prática:

Aplicar sistema de arquivos:

mkfs.ext3 /dev/md2

Criar ponto de montagem:

mkdir/mnt/raid10

Realizar a montagem do dispositivo:

mount -t ext3 /dev/md2 /mnt/raid10

Verifique o funcionamento do RAID

watch cat /proc/mdstat

497856 blocks [2/2] [UU]

Capítulo 2 Gerenciando

2.1. Objetivos

•Trobleshooting: Adicionar e remover discos do Raid10.

2.1. Troubleshooting

Como posso adicionar ou remover discos de meu Raid 10?

Isso é possível através dos parâmetros --add e --remove do comando mdadm. Antes de ser removido o disco deve apresentar falha, mas usando o parâmetro --fail podemos simular esta situação.

Para acompanhar na prática vamos usar 3 TTYs, no primeiro terminal (TTY1) use o comando watch para verificar o funcionamento do RAID.

watch cat /proc/mdstat

```
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [ra
id10]
md1 : active raid1 sda13[1] sda12[0]
497856 blocks [2/2] [UU]
md2 : active raid0 md1[1] md0[0]
995584 blocks 64k chunks
md0 : active raid1 sda11[1] sda10[0]
497856 blocks [2/2] [UU]
```

Agora no segundo terminal (TTY2) rode uma rotina em segundo plano, onde dados serão gravado na partição do RAID 10.

while true; do date >> /mnt/raid10/data.txt; sleep 3; done&

Ainda no TTY2 use o comando tail para acompanhar em tempo real os dados gravados na partição do RAID 10.

tail -f/mnt/raid10/data.txt

```
Qui Out 21 13:58:10 BRST 2010
Qui Out 21 13:58:13 BRST 2010
Qui Out 21 13:58:16 BRST 2010
Qui Out 21 13:58:19 BRST 2010
Qui Out 21 13:58:22 BRST 2010
Qui Out 21 13:58:25 BRST 2010
```

No terceiro terminal (TTY3) antes de simular a falha, adicione uma terceira partição ao dispositivo /dev/md0 do RAID 1.

mdadm /dev/md0 --add /dev/sda14

mdadm: added /dev/sda14

Alterne para o primeiro terminal (TTY1) e veja o novo disco /dev/sda14 adicionado como Spare (disco reserva). Use o comando watch para verificar o funcionamento do RAID.

watch cat /proc/mdstat

```
ndO : active raid1 sda14[2](8) sda11[1] sda10[0]
497856 blocks [2/2] [UU]
```

Com um novo disco reserva podemos simular um falha no /dev/sda10 do dispositivo /dev/md0 do RAID 1.

mdadm /dev/md0 --fail /dev/sda10

```
[ 1736.340501] raid1: Disk failure on sda10, disabling device.
mdadm: set /dev/sda10 faulty in /dev/md0
```

Após usar o comando, alterne para o primeiro terminal (TTY1) e veja a recuperação do RAID utilizando o disco reserva.

```
md0 : active raid1 sda14[2] sda11[1] sda10[3](F)
497856 blocks [2/1] [_U]
[=======>......] recovery = 52.7% (264000/497856) finish=0.1min sp
eed=37714K/sec
```

Veja que agora o /dev/sda10 tem um "F" ao lado indicando que é um disco com falhas. Para remover o disco alterne para o TTY3 e use o comando.

mdadm /dev/md0 --remove /dev/sda10

mdadm: hot removed /dev/sda10

Todos os comandos foram usados sem desmontar o diretório /mnt/raid10 do RAID 10 e sem perda dos dados.