Day 9: Airline Operations & Flight Disruption Management System

Domain: Aviation / Operations Analytics

Difficulty Level: (A) Expert+ (Complex Multi-Table Relations, Nested Queries, Window Functions, and Edge Cases)

Goal: Build and analyze a real-world **airline management and disruption system** that tracks flights, crew assignments, airport operations, delays, and maintenance issues to derive insights and optimize airline performance.

X Scenario Description

An international airline operates hundreds of daily flights across multiple countries.

They need a system to track flight schedules, crew assignments, passenger loads, aircraft maintenance, and disruption causes (weather, technical faults, air traffic delays, etc.).

The analytics team must answer critical questions such as:

- · Which aircrafts or routes are most delay-prone?
- · Are delays related to crew or maintenance issues?
- · Which flights consistently exceed capacity utilization?

This dataset simulates a **complete airline operations analytics system** with deep inter-table relationships and realistic edge cases.

Database Schema Overview

Tables

Column	Туре	Constraints	Description
airport_id	INT	PRIMARY KEY	Unique airport ID
airport_code	VARCHAR(10)	UNIQUE NOT NULL	IATA code (e.g., DEL, JFK)
city	VARCHAR(100)		City where the airport is located

Column	Туре	Constraints	Description
country	VARCHAR(100)		Country name
timezone	VARCHAR(50)		Local timezone

2 Aircrafts

Column	Туре	Constraints	Description
aircraft_id	INT	PRIMARY KEY	Unique aircraft ID
tail_number	VARCHAR(20)	UNIQUE NOT NULL	Aircraft registration number
model	VARCHAR(50)		Aircraft model (e.g., A320, B737)
manufacturer	VARCHAR(50)		Manufacturer name
seat_capacity	INT		Total seats
last_maintenance_date	DATE		Last maintenance performed

3 Crew

Column	Туре	Constraints	Description
crew_id	INT	PRIMARY KEY	Unique crew member
name	VARCHAR(100)	NOT NULL	Crew member name
role	VARCHAR(50)		Role (Pilot, Co-Pilot, Cabin Crew)
base_airport_id	INT	FOREIGN KEY → Airports(airport_id)	Home base

4 Flights

Column	Туре	Constraints	Description
flight_id	INT	PRIMARY KEY	Unique flight number
aircraft_id	INT	FOREIGN KEY → Aircrafts(aircraft_id)	Assigned aircraft
origin_airport_id	INT	FOREIGN KEY → Airports(airport_id)	Departure airport
destination_airport_id	INT	FOREIGN KEY → Airports(airport_id)	Arrival airport
scheduled_departure	DATETIME		Planned departure time
scheduled_arrival	DATETIME		Planned arrival time
status	VARCHAR(20)		Scheduled, Completed, Cancelled

5 Crew_Assignments

Column	Туре	Constraints	Description
assignment_id	INT	PRIMARY KEY	Unique ID
flight_id	INT	FOREIGN KEY → Flights(flight_id)	Flight assigned
crew_id	INT	FOREIGN KEY → Crew(crew_id)	Crew member
assigned_role	VARCHAR(50)		Role during flight

6 Passengers

Column	Туре	Constraints	Description
passenger_id	INT	PRIMARY KEY	Unique passenger
name	VARCHAR(100)		Passenger name
country	VARCHAR(100)		Country of origin

7 Bookings

Column	Туре	Constraints	Description
booking_id	INT	PRIMARY KEY	Unique booking
passenger_id	INT	FOREIGN KEY → Passengers(passenger_id)	Passenger
flight_id	INT	FOREIGN KEY → Flights(flight_id)	Flight
booking_date	DATE		When booked
ticket_price	DECIMAL(10,2)		Price paid
seat_number	VARCHAR(10)		Seat assigned
checked_in	BOOLEAN		Whether passenger checked in

8 Delays

Column	Туре	Constraints	Description
delay_id	INT	PRIMARY KEY	Unique delay ID
flight_id	INT	FOREIGN KEY → Flights(flight_id)	Flight affected
delay_type	VARCHAR(100)		Weather, Technical, Crew, Air Traffic, etc.
delay_minutes	INT		Delay duration
reported_at	DATETIME		When delay was reported

9 Maintenance_Logs

Column	Туре	Constraints	Description
log_id	INT	PRIMARY KEY	
aircraft_id	INT	FOREIGN KEY → Aircrafts(aircraft_id)	Aircraft maintained
issue_reported	VARCHAR(255)		Description of issue
maintenance_date	DATE		Maintenance performed
severity	VARCHAR(20)		Minor / Major
cost	DECIMAL(12,2)		Maintenance cost

ERD (Textual Representation)

Relationships:

- One flight uses one aircraft but can have many delays.
- One aircraft may have multiple maintenance logs.
- · Crew are assigned per flight.
- Passengers have bookings linked to flights.

Sample Data

Due to complexity, small subset only:

Airports

airport_id	airport_code	city	country	timezone
1	DEL	Delhi	India	IST
2	вом	Mumbai	India	IST
3	DXB	Dubai	UAE	GST

Aircrafts

aircraft_id	tail_number	model	manufacturer	seat_capacity	last_maintenance_date
101	VT-A100	A320	Airbus	180	2024-11-01
102	VT-B777	B737	Boeing	200	2024-10-20

Flights

flight_id	aircraft_id	origin_airport_id	destination_airport_id	scheduled_departure	scheduled_arrival	status
201	101	1	2	2024-12-01 08:00:00	2024-12-01 10:00:00	Completed
202	102	2	3	2024-12-01 12:00:00	2024-12-01 16:00:00	Completed
203	101	1	3	2024-12-02 07:30:00	2024-12-02 11:30:00	Cancelled

Delays

delay_id	flight_id	delay_type	delay_minutes	reported_at
1	201	Weather	45	2024-12-01 07:30:00
2	202	Technical	120	2024-12-01 11:30:00

Maintenance_Logs

log_id	aircraft_id	issue_reported	maintenance_date	severity	cost
1	102	Engine Oil Leak	2024-10-15	Major	250000.00
2	101	Landing Gear Noise	2024-11-01	Minor	45000.00

SQL Questions

List all flights delayed by more than 60 minutes with origin, destination, and aircraft model.

SELECT f.flight_id, a1.city AS origin, a2.city AS destination, ac.model, d.delay_minutes FROM Flights f

JOIN Delays d ON f.flight_id = d.flight_id

JOIN Airports a1 ON f.origin_airport_id = a1.airport_id

JOIN Airports a2 ON f.destination_airport_id = a2.airport_id

JOIN Aircrafts ac ON f.aircraft_id = ac.aircraft_id

WHERE d.delay_minutes > 60;

Medium:

Find total maintenance cost per aircraft and flag those that exceeded ₹200,000 in the last 3 months.

SELECT ac.tail_number, SUM(m.cost) AS total_cost FROM Aircrafts ac JOIN Maintenance_Logs m ON ac.aircraft_id = m.aircraft_id WHERE m.maintenance_date >= DATE_SUB(CURDATE(), INTERVAL 3 MONTH) GROUP BY ac.tail_number HAVING SUM(m.cost) > 200000;

Hard:

Identify crew members who were on flights that were delayed due to technical reasons.

SELECT DISTINCT c.name, c.role, f.flight_id, d.delay_type FROM Crew c

JOIN Crew_Assignments ca ON c.crew_id = ca.crew_id

JOIN Flights f ON ca.flight_id = f.flight_id

JOIN Delays d ON f.flight_id = d.flight_id

WHERE d.delay_type = 'Technical';

Difficult:

Find top 3 airports with the highest total delay time for departing flights.

SELECT a.airport_code, a.city, SUM(d.delay_minutes) AS total_delay FROM Delays d

JOIN Flights f ON d.flight_id = f.flight_id

JOIN Airports a ON f.origin_airport_id = a.airport_id

GROUP BY a.airport_code

ORDER BY total_delay DESC

LIMIT 3;

Expert (Analytical):

Compute the **average flight punctuality score** (100 - delay minutes / 10) per aircraft model, and determine which **aircraft model performs worst** on average.

SELECT ac.model,
ROUND(AVG(100 - (d.delay_minutes / 10)), 2) AS avg_punctuality_score
FROM Aircrafts ac
JOIN Flights f ON ac.aircraft_id = f.aircraft_id
JOIN Delays d ON f.flight_id = d.flight_id
GROUP BY ac.model
ORDER BY avg_punctuality_score ASC

LIMIT 1;

Optimization & Insights

- $\bullet \ \ \textbf{Indexing:} \ \text{Use indexes on} \ \ _{\textbf{flight_id}} \ , \ \ _{\textbf{aircraft_id}} \ , \ \text{and} \ \ _{\textbf{delay_type}} \ \ \text{for query speed}.$
- Partitioning: Large tables like Flights and Delays should be partitioned by month or route.
- $\bullet \ \ \, \textbf{Data Cleaning:} \ \, \text{Handle cancelled flights carefully} -- \text{exclude them from delay calculations.} \\$
- Analytical Extensions: Combine this schema with Weather_Reports or Air_Traffic_Control tables for richer insights.