Algebraic Topology Homework

Simon Xiang

This is my homework for the Fall 2020 section of Algebraic Topology (Math 382C) at UT Austin with Dr. Allcock. The course follows *Algebraic Topology* by Hatcher. Source files: https://git.simonxiang.xyz/math_notes/files.html

Contents

1		tember 5, 2020: Homework 2
	1.1	Problem 1
	1.2	Problem 2
	1.3	Problem 9 Chapter 0
	1.4	Problem 20
	1.5	Problem 17 Section 1.1
	1.6	Problem 18
	1.7	Problem 20
	1.8	Problem 2 Section 1.2
	1.9	Problem 4

§1 September 5, 2020: Homework 2

Hatcher Chapter 0 (p. 18): 9, 20, Hatcher Section 1.1 (p. 38): 17, 18, 20, Hatcher Section 1.2 (p. 52): 2, 4.

§1.1 Problem 1

Problem. An *n*-dimensional manifold with boundary means a Hausdorff space M, such that every $x \in M$ has a neighborhood U such that the pair (U, x) is homeomorphic to either $(\mathbb{R}^n, 0)$ or $(\mathbb{R}^{n-1} \times [0, \infty), 0)$, where in both cases 0 means $(0, \ldots, 0)$. We call x an interior or boundary point according to which of these holds. Note that this is *not* the usual use of "interior" and "boundary" from point-set topology. The set of boundary points is written ∂M .

Prove that the inclusion $M \setminus \partial M \to M$ is a homotopy equivalence.

You may use without proof the fact that no point can be both an interior and a boundary point. You may also use the following additional hypotheses, which sound like they should follow from the definition, but turn out not to.

- 1. ∂M has countably many components.
- 2. *M* is second countable.
- 3. M is metrizable.

Also, the 2-dimensional case is enough to give a complete understanding. Finally, a hint: chain together an infinite sequence of homotopies, being careful that the result makes sense and is continuous.

Remarks: informally, I think of $M \setminus \partial M$ as a sort of deformation-retract of M. But it is easy to see that if $\partial M \neq \emptyset$ then M does not actually deformation retract to $M \setminus \partial M$. Also, without the extra hypotheses, the only solution I know uses something you probably have not seen: topological dimension, which lets you build an open cover with good overlap properties.

Solution. We want to show that the inclusion $M \setminus \partial M \to M$ is a homotopy equivalence, that is, it is one of the continuous maps f or g such that $f \circ g$ is homotopic to ι_M and $g \circ f$ is homotopic to $\iota_{M \setminus \partial M}$.

§1.2 Problem 2

Problem (A "bad" group action). Let $X = \mathbb{R}^2 \setminus 0$ where 0 is the origin. Let G be the group of homeomorphisms of X generated by the transformation $(x,y) \mapsto (2x,y/2)$. Let Y be the quotient space X/G.

(a) Prove that every orbit is discrete. This is meant as a stepping stone to the more general result (b).

- (b) Prove that G's action on X satisfies the hypothesis of the theorem from class about $\pi_1(X/G) \cong G$, namely: every $x \in X$ has a neighborhood U such that $U \cap g(U) = \emptyset$ for every $g \in G \setminus \{1\}$.
 - (c) Prove that Y is a manifold, except for the fact that it is *not* Hausdorff.

(When working on a theorem involving a group action, if I wonder whether some hypothesis can be omitted, checking it for this single example usually reveals the answer.) Solution. Discrete orbit: the orbit is endowed with the discrete topology (eg $\mathbb{Z} \leq \mathbb{R}$). What even is this group?

§1.3 Problem 9 Chapter 0

Problem. Show that a retract of a contractible space is contractible.

Solution. Let A be a retract of a contractible space X. Then there exists a deformation retract of X onto a point, and a retract of X onto A: denote this retract with f, and the homotopy encoding the deformation retraction as $H: X \times I \to X$, where $f|_A = \operatorname{id} A$, $H(x,0) = \operatorname{id}_X$, $H(x,1) = \{x_0\}$. Consider the homotopy $H' = f \circ H|_A$ from $A \times I \to A$. Then this homotopy is continuous since f and H are continuous, and is a deformation retraction onto a point since $H'(x,0) = \operatorname{id}_A$, $H'(x,1) = \{x_0\}$. Therefore A is contractible.

§1.4 Problem 20

Problem. Show that the subspace $X \subseteq \mathbb{R}^3$ formed by a Klein bottle intersecting itself in a circle, as shown in the figure, is homotopy equivalent to $S^1 \vee S^1 \vee S^2$.

Solution. We can contract the intersecting disk of the Klein bottle to itself, so the resulting structure resembles S^2/S^0 (the sphere with two points identified), which is homotopy equivalent to $S^1 \vee S^2$ by Example 0.8. Counting the boundary of the intersecting disk itself, this forms another S^1 identified with (now $S^1 \vee S^2$) at a point. Therefore the self-intersecting Klien bottle embedded in \mathbb{R}^3 has the homotopy type of $S^1 \vee S^1 \vee S^2$.

§1.5 Problem 17 Section 1.1

Problem. Construct infinitely many nonhomotopic retractions $S^1 \vee S^1 \to S^1$ (whoops, attempted this one last week).

Solution. Solution. (didn't finish) Take the family of retractions that map the first circle to it-self (identity) and wrap the second circle around the first n times, then if n in N this is an infinite family of retractions. (Not sure how to formalize this or show they're nonhomotopic).

§1.6 Problem 18

Problem. Using Lemma 1.15, show that if a space X is obtained from a path-connected subspace A by attaching a cell e^n with $n \geq 2$, then the inclusion $A \hookrightarrow X$ induces a surjection on π_1 . Apply this to show:

- (a) The wedge sum $S^1 \vee S^2$ has fundamental group \mathbb{Z} .
- (b) For a path-connected CW complex X the inclusion map $X^1 \hookrightarrow X$ of its 1-skeleton induces a surjection $\pi_1(X^1) \to \pi_1(X)$.

§1.7 Problem 20

Problem. Suppose $f_t: X \to X$ is a homotopy such that f_0 and f_1 are each the identity map. Use Lemma 1.19 to show that for any $x_0 \in X$, the loop $f_t(x_0)$ represents an element of the center of $\pi_1(X, x_0)$. [One can interpret the result as saying that a loop represents an element of the enter of $\pi_1(X)$ if it extends to a loop of maps $X \to X$.]

§1.8 Problem 2 Section 1.2

Problem. Let $X \subseteq \mathbb{R}^m$ be the union of convex open sets X_1, \dots, X_n such that $X_i \cap X_j \cap X_k \neq \emptyset$ for all i, j, k. Show that X is simply connected.

§1.9 Problem 4

Problem. Let $X \subseteq \mathbb{R}^3$ be the finite union of n lines through the origin. Compute $\pi_1(\mathbb{R}^3 \setminus X)$.