		APPELLO B (Scritto)							Febbraio 2020	
olvere il massimo numero d zi predisposti. NON SI ACC	i esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. <i>Inserire CETTANO RISPOSTE SCRITTE SU ALTRI FOGLI. Scrivere il proprio nome e</i> Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ul							le risposte neg nche nell'ultim		
	FIRMA	1 2	3 4	4 5	6	7	8 TOT	1.		
Rispondere alle sequenti o portano punteggio nullo):		endo una	giustifica	azione di	una 1	riga (g	giustificazi	oni inco	omplete o po	oco chiare con
a. Quali possono essere	tutti i possibi	li gruppi o	li Galois	dei polii	nomi (di grae	do 3 e 4 sı	ı Q e su	ı \mathbf{F}_2 ?	
b. Scrivere una $\mathbf{Q}[\sqrt{-3}]$	–base del cam	po di spez	zamento	o del poli	inomic	o X^3 -	$-2 \in \mathbf{Q}[$	$\overline{-3}][X].$		
b. Scrivere una $\mathbf{Q}[\sqrt{-3}]$	–base del cam	po di spez	zamente	o del poli	inomic	X^3 - \dots	$-2 \in \mathbf{Q}[$	$\overline{-3}$][X].		
b. Scrivere una $\mathbf{Q}[\sqrt{-3}]$	–base del cam	po di spez	zamento	o del poli	inomio	X^3 - \dots	$-2 \in \mathbf{Q}[$	$\overline{-3}$][X].		
b. Scrivere una $\mathbf{Q}[\sqrt{-3}]$	–base del cam	po di spez	zamento	o del poli	inomic		$-2 \in \mathbf{Q}[]$	$\overline{-3}$][X].		
b. Scrivere una $\mathbf{Q}[\sqrt{-3}]$ c. È vero che due polino										to non isomorfi
										to non isomorfi
										to non isomorfi
										to non isomorfi
	mi irriducibili	in $\mathbf{F}_p[X]$ a	venti lo	stesso gra	ado po	otrebb	ero avere o			to non isomorfi

e. Si scriva un espressione con radicali per $\cos 2\pi/24$ utilizzando la formula di duplicazione $\cos 2\alpha = 2\cos^2\alpha - 1$.

2	2. Dato un gruppo finito G , dimostrare che esiste una estensione di campi E/F opportuna tale che $Gal(E(F) \cong G$. Suggerimento: Usare il Teorema di Cayley, il fatto che l'enunciato è vero per $G = S_n$ e il Teorema di Corrispondenza.
3	3. Dimostrare che se $p > 5$ è primo tale che $(p-1)/2$ è il prodotto di k primi dispari distinti allora $\mathbf{Q}[\zeta_p]$ ammette esattamente 2^{k+1} sottocampi.
4	1. Descrivere il gruppo di Galois del polinomio $(X^3 - 2)(X^2 + X + 1) \in \mathbf{Q}[X]$ come sottogruppo di S_5 .
E	5. Dimostrare che se $p \ge 3$ è primo, allora il discriminante di $X^p - 2$ è $(-1)^{(p-1)/2}2^{p-1}p^p$. Suggerimento: Usare la formula per il discriminante che ha a che fare con la derivata prima.
6	i. Si enunci nella completa generalità il Teorema di corrispondenza di Galois dando qualche cenno sulla dimostrazione.

7. Quanti sono i fattori irriducibili del polinomio $(X^{80}-1)\in \mathbf{F}_3[X]$ e in $\mathbf{Q}[X]$?

8. Dopo aver fornito la definizione di numero costruibile, dimostrare che tutti gli elementi del campo di spezzamento del polinomio $x^4 - 4 \in \mathbf{Q}[x]$ sono costruibili.