Zakrevsky AlA 20122024-160135

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

-	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который *не может* обеспечить согласование со стороны плеча 1 на частоте 8 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- 1 W_T меньше 62 Ом;
- 2 θ_{Π} меньше $\frac{\pi}{2}$.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\rm H}=0.76f_{\rm B}$:

```
s_{11} = -0.216 + 0.209і. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 38 O_M
- 2) 87 O_M
- 3) 32 O_M
- 4) 78 Om

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте 7.2 ГГц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

-0.47 + 0.88i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 29.6 см
- 2) 3.2 cm
- 3) 37.5 см
- 4) 12.6 cm

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=151~{\rm Om}.$ Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=2.2~\Gamma\Gamma$ ц и $f_{\rm B}=5.3~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.27+j0; 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\text{\tiny H}}, f_{\text{\tiny B}}]$?

Варианты ОТВЕТА:

- 1) 1.8 дБ
- 2) 1.4 дБ
- 3) 0.7 дБ
- 4) 0.3 дБ

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon = 3, 55$):

- 1 толщиной 0.406 мм и с волновым сопротивлением 92 Ом;
- 2 толщиной 0.305 мм и с волновым сопротивлением 55 Ом;
- 3 толщиной 0.203 мм и с волновым сопротивлением 48 Ом;
- 4 толщиной 0.508 мм и с волновым сопротивлением 92 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 3 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 3 – Различные реализаци и Г-образной цепи согласования