Výroková a predikátová logika - III

Petr Gregor

KTIML MFF UK

ZS 2015/2016

1/19

Teorie

Neformálně, teorie je popis "světa", na který vymezujeme svůj diskurz.

- Výroková teorie nad jazykem P je libovolná množina T výroků z VF_P. Výrokům z T říkáme axiomy teorie T.
- Model teorie T nad \mathbb{P} je ohodnocení $v \in M(\mathbb{P})$ (tj. model jazyka), ve kterém platí všechny axiomy z T, značíme v = T.
- Třída modelů T je $M^{\mathbb{P}}(T) = \{ v \in M(\mathbb{P}) \mid v \models \varphi \text{ pro každé } \varphi \in T \}.$ Např. pro teorii $T = \{p, \neg p \lor \neg q, q \to r\}$ nad $\mathbb{P} = \{p, q, r\}$ je

$$M^{\mathbb{P}}(T) = \{(1,0,0), (1,0,1)\}$$

- Je-li teorie T konečná, lze ji nahradit konjunkcí jejích axiomů.
- Zápis $M(T,\varphi)$ značí $M(T \cup \{\varphi\})$.

Sémantika vzhledem k teorii

Sémantické pojmy zobecníme vzhledem k teorii, respektive k jejím modelům. Nechť T je teorie nad $\mathbb P$. Výrok φ nad $\mathbb P$ je

- pravdivý v T (platí v T), pokud platí v každém modelu T, značíme $T \models \varphi$, Říkáme také, že φ je (sémantickým) důsledkem teorie T.
- $\frac{|\vec{z}|}{|\vec{v}|} \frac{|\vec{v}|}{|\vec{v}|} \frac{|\vec{v}|}{|\vec{v}|} (sporný v T)$, pokud neplatí v žádném modelu teorie T,
- nezávislý v T, pokud platí v nějakém modelu teorie T a neplatí v jiném,
- splnitelný v T (konzistentní s T), pokud platí v nějakém modelu T.

Výroky φ a ψ jsou *ekvivalentní* v T (T-ekvivalentní), psáno $\varphi \sim_T \psi$, pokud každý model teorie T je modelem φ právě když je modelem ψ .

Poznámka Jsou-li všechny axiomy teorie T pravdivé (tautologie), např. pro $T = \emptyset$, všechny pojmy vzhledem k T se shodují s původními (logickými) pojmy.

3/19

Důsledek teorie

Důsledek teorie T nad \mathbb{P} je množina $\theta^{\mathbb{P}}(T)$ všech výroků pravdivých v T, tj.

$$\theta^{\mathbb{P}}(T) = \{ \varphi \in VF_{\mathbb{P}} \mid T \models \varphi \}.$$

Tvrzení Pro každé dvě teorie $T \subseteq T'$ a výroky $\varphi, \varphi_1, \ldots, \varphi_n$ nad \mathbb{P} platí

- $(1) \quad T \subseteq \theta^{\mathbb{P}}(T) = \theta^{\mathbb{P}}(\theta^{\mathbb{P}}(T)) \subseteq \theta^{\mathbb{P}}(T'),$
- (2) $\varphi \in \theta^{\mathbb{P}}(\{\varphi_1, \dots, \varphi_n\})$ právě když $\models (\varphi_1 \land \dots \land \varphi_n) \rightarrow \varphi$.

(1)
$$\varphi \in T \Rightarrow M(T) \subseteq M(\varphi) \Leftrightarrow T \models \varphi \Leftrightarrow \varphi \in \theta(T) \Leftrightarrow M(\theta(T)) \subseteq M(\varphi) \Leftrightarrow \theta(T) \models \varphi \Leftrightarrow \varphi \in \theta(\theta(T)) \Rightarrow M(T') \subseteq M(\varphi) \Leftrightarrow T' \models \varphi \Leftrightarrow \varphi \in \theta(T')$$

Část (2) plyne obdobně z $M(\varphi_1, \ldots, \varphi_n) = M(\varphi_1 \wedge \ldots \wedge \varphi_n)$ a $\models \psi \rightarrow \varphi$ právě když $M(\psi) \subseteq M(\varphi)$. \square

Vlastnosti teorií

Výroková teorie T nad \mathbb{P} je (sémanticky)

- $sporn\acute{a}$, jestliže v ní platí \perp (spor), jinak je $bezesporn\acute{a}$ ($splniteln\acute{a}$),
- kompletní, jestliže není sporná a každý výrok je v ní pravdivý či lživý, tj. žádný výrok v ní není nezávislý,
- extenze teorie T' nad \mathbb{P}' , jestliže $\mathbb{P}'\subseteq \mathbb{P}$ a $\theta^{\mathbb{P}'}(T')\subseteq \theta^{\mathbb{P}}(T)$, o extenzi T teorie T' řekneme, že je jednoduchá, pokud $\mathbb{P}=\mathbb{P}'$, a konzervativní, pokud $\theta^{\mathbb{P}'}(T')=\theta^{\mathbb{P}}(T)\cap \mathrm{VF}_{\mathbb{P}'}$,
- ekvivalentni s teorii T', jestliže T je extenzi T' a T' je extenzi T,

Pozorování Nechť T a T' jsou teorie nad \mathbb{P} . Teorie T je (sémanticky)

- (1) bezesporná, právě když má model,
- (2) kompletní, právě když má jediný model,
- (3) extenze T', právě když $M^{\mathbb{P}}(T) \subseteq M^{\mathbb{P}}(T')$,
- (4) ekvivalentní s T', právě když $M^{\mathbb{P}}(T) = M^{\mathbb{P}}(T')$.

Algebra výroků

Nechť T je bezesporná teorie nad \mathbb{P} . Na množině $VF_{\mathbb{P}}/\sim_T$ lze zadefinovat operace \neg , \land , \lor , \bot , \top (korektně) pomocí reprezentantů, např.

$$[\varphi]_{\sim_T} \wedge [\psi]_{\sim_T} = [\varphi \wedge \psi]_{\sim_T}$$

Pak $AV^{\mathbb{P}}(T) = \langle VF_{\mathbb{P}}/\sim_T, \neg, \wedge, \vee, \bot, \top \rangle$ je algebra výroků vzhledem k T.

Jelikož $\varphi \sim_T \psi \Leftrightarrow M(T,\varphi) = M(T,\psi)$, je $h([\varphi]_{\sim_T}) = M(T,\varphi)$ korektně definovaná prostá funkce $h: VF_{\mathbb{P}}/\sim_T \to \mathcal{P}(M(T))$ a platí

$$h(\neg[\varphi]_{\sim_T}) = M(T) \setminus M(T, \varphi)$$

$$h([\varphi]_{\sim_T} \wedge [\psi]_{\sim_T}) = M(T, \varphi) \cap M(T, \psi)$$

$$h([\varphi]_{\sim_T} \vee [\psi]_{\sim_T}) = M(T, \varphi) \cup M(T, \psi)$$

$$h([\bot]_{\sim_T}) = \emptyset, \quad h([\top]_{\sim_T}) = M(T)$$

Navíc h je na, pokud M(T) je konečná.

Důsledek Je-li T bezesporná nad konečnou \mathbb{P} , je $AV^{\mathbb{P}}(T)$ Booleova algebra *izomorfní* s (konečnou) potenční algebrou $\mathcal{P}(M(T))$ via h.

Analýza teorií nad konečně prvovýroky

Nechť T je bezesporná teorie nad \mathbb{P} , kde $|\mathbb{P}|=n\in\mathbb{N}^+$ a $m=|M^{\mathbb{P}}(T)|$. Pak

- neekvivalentních výroků (popř. teorií) nad \mathbb{P} je 2^{2^n} ,
- neekvivalentních výroků nad \mathbb{P} pravdivých (lživých) v T je 2^{2^n-m} ,
- neekvivalentních výroků nad \mathbb{P} nezávislých v T je $2^{2^n} 2 \cdot 2^{2^n m}$,
- neekvivalentních jednoduchých extenzí teorie T je 2^m , z toho sporná 1,
- neekvivalentních kompletních jednoduchých extenzí teorie T je m,
- T-neekvivalentních výroků nad ℙ je 2^m,
- T-neekvivalentních výroků nad \mathbb{P} pravdivých (lživých) (v T) je 1,
- T-neekvivalentních výroků nad \mathbb{P} nezávislých (v T) je $2^m 2$.

Důkaz Díky bijekci $VF_{\mathbb{P}}/\sim$ resp. $VF_{\mathbb{P}}/\sim_T$ s $\mathcal{P}(M(\mathbb{P}))$ resp. $\mathcal{P}(M^{\mathbb{P}}(T))$ stačí zjistit počet podmnožin s vhodnou vlastností.

Formální dokazovací systémy

Naším cílem je přesně formalizovat pojem důkazu jako syntaktické procedury.

Ve (standardních) formálních dokazovacích systémech,

- důkaz je konečný objekt, může vycházet z axiomů dané teorie,
- $T \vdash \varphi$ značí, že φ je dokazatelná z T,
- pokud důkaz dané formule existuje, lze ho nalézt "algoritmicky",
 (Je-li T "rozumně zadaná".)

Od formálního dokazovacího systému obvykle očekáváme, že bude

- korektní, tj. každá formule φ dokazatelná z teorie T je v T pravdivá,
- nejlépe i úplný, tj. každá formule φ pravdivá v T je z T dokazatelná.

Příklady formálních dokazovacích systémů (kalkulů): tablo metody, Hilbertovské systémy, Gentzenovy systémy, systémy přirozené dedukce.

Tablo metoda - úvod

Budeme předpokládat, že jazyk je pevný a spočetný, tj. množina prvovýroků \mathbb{P} je spočetná. Pak každá teorie nad \mathbb{P} je spočetná.

Hlavní rysy tablo metody (neformálně)

- tablo pro danou formuli φ je binární značkovaný strom reprezentující vyhledávání protipříkladu k φ, tj. modelu teorie, ve kterém φ neplatí,
- formule má důkaz, pokud každá větev příslušného tabla selže, tj. nebyl nalezen protipříklad, v tom případě bude (systematické) tablo konečné,
- pokud protipříklad existuje, v (dokončeném) tablu bude větev, která ho poskytuje, tato větev může být i nekonečná.

Úvodní příklady

Komentář k příkladům

Vrcholy tabla jsou značeny *položkami*. Položka je formule s *příznakem T / F*, který reprezentuje předpoklad, že formule v nějakém modelu platí / neplatí. Je-li tento předpoklad u položky správný, je správný i v nějaké větvi pod ní.

V obou příkladech jde o dokončená (systematická) tabla z prázdné teorie.

• Vlevo je $tablo\ d\mathring{u}kaz$ pro ((p o q) o p) o p. Všechny větve tabla "selhaly", značeno \otimes , neboť je na nich dvojice $T\varphi$, $F\varphi$ pro nějaké φ (protipříklad tedy nelze nalézt). Formule má důkaz, píšeme

$$\vdash ((p \rightarrow q) \rightarrow p) \rightarrow p$$

• Vpravo je (dokončené) tablo pro $(\neg q \lor p) \to p$. Levá větev "neselhala" a je dokončená (není třeba v ní pokračovat) (ta poskytuje protipříklad v(p) = v(q) = 0).

Atomická tabla

Atomické tablo je jeden z následujících (položkami značkovaných) stromů, kde p je libovolná výroková proměnná a φ , ψ jsou libovolné výrokové formule.

Tp	Fp	$T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$	$F(\varphi \wedge \psi)$ $F\varphi \qquad F\psi$	$T(\varphi \lor \psi)$ $T\varphi \qquad T\psi$	$F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$
$T(\neg\varphi) \\ \\ F\varphi$	$F(\neg \varphi)$ $ $ $T\varphi$	$T(\varphi \to \psi)$ $F\varphi \qquad T\psi$	$F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$	$T(\varphi \leftrightarrow \psi)$ $T\varphi \qquad F\varphi$ $ \qquad \qquad $ $T\psi \qquad F\psi$	$ \begin{array}{c c} F(\varphi \leftrightarrow \psi) \\ \nearrow & \searrow \\ T\varphi & F\varphi \\ \mid & \mid \\ F\psi & T\psi \end{array} $

Pomocí atomických tabel a pravidel, jak tabla rozvinout (prodloužit), formálně zadefinujeme všechna tabla (popíšeme jejich konstrukci).

Tablo

Konečné tablo je binární, položkami značkovaný strom daný předpisem

- (i) každé atomické tablo je konečné tablo,
- (ii) je-li P položka na větvi V konečného tabla τ a τ' vznikne z τ připojením atomického tabla pro P na konec větve V, je τ' rovněž konečné tablo,
- (iii) každé konečné tablo vznikne konečným užitím pravidel (i), (ii).

Tablo je posloupnost $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ (konečná i nekonečná) konečných tabel takových, že τ_{n+1} vznikne z τ_n pomocí pravidla (ii), formálně $\tau = \cup \tau_n$.

Poznámka Není předepsané, jak položku P a větev V pro krok (ii) vybírat. To specifikujeme až v systematických tablech.

Konstrukce tabla

Konvence

Položku, dle které tablo prodlužujeme, nebudeme na větvi znovu zobrazovat.

Poznámka Její zopakování bude potřeba později v predikátové logice.

Tablo důkaz

Nechť P je položka na větvi V tabla τ . Řekneme, že

- položka P je redukovaná na V, pokud se na V vyskytuje jako kořen atomického tabla, tj. při konstrukci τ již došlo k jejímu rozvoji na V,
- větev V je *sporná*, obsahuje-li položky $T\varphi$ a $F\varphi$ pro nějakou formuli φ , jinak je *bezesporná*. Větev V je *dokončená*, je-li sporná nebo je každá její položka redukovaná na V,
- tablo τ je dokončené, pokud je každá jeho větev dokončená, a je sporné, pokud je každá jeho větev sporná.

Tablo důkaz (důkaz tablem) výrokové formule φ je sporné tablo s položkou $F\varphi$ v kořeni. φ je (tablo) dokazatelná, píšeme $\vdash \varphi$, má-li tablo důkaz.

Obdobně, *zamítnutí* formule φ *tablem* je sporné tablo s položkou $T\varphi$ v kořeni. Formule φ je *(tablo) zamítnutelná*, má-li zamítnutí tablem, tj. $\vdash \neg \varphi$.

Důkaz

Příklady

- a) $F(\neg p \land \neg q)$ neredukovaná na V_1 , V_1 sporná, V_2 je dokončená, V_3 není,
- b) zamítnutí tablem výrokové formule $\varphi: (p \to q) \leftrightarrow (p \land \neg q)$, tedy $\vdash \neg \varphi$.

Tablo z teorie

Jak do důkazu přidat axiomy dané teorie T?

Konečné tablo z teorie T je zobecnění konečného tabla přidáním pravidla (ii) je-li V větev konečného tabla (z T) a $\varphi \in T$, pak připojením $T\varphi$ na konec V vznikne (také) konečné tablo z T.

Přidáním dodatku "z teorie T" přirozeně zobecníme další pojmy

- *tablo z teorie* T je posloupnost $\tau_0, \tau_1, \dots, \tau_n, \dots$ konečných tabel z T takových, že τ_{n+1} vznikne z τ_n pomocí (*ii*) či (*ii*)', formálně $\tau = \cup \tau_n$,
- tablo důkaz formule φ z teorie T je sporné tablo z T s $F\varphi$ v kořeni, Má-li φ tablo důkaz z T, je (tablo) dokazatelná z T, píšeme $T \vdash \varphi$.
- zamítnutí formule φ tablem z teorie T je sporné tablo z T s $T\varphi$ v kořeni.

Narozdíl od předchozích definic, u tabla z teorie T je větev V dokončená, je-li sporná, nebo je každá její položka redukovaná na V a navíc obsahuje $T\varphi$ pro každé $\varphi \in T$.

Příklady tabla z teorie

- a) Tablo důkaz formule ψ z teorie $T = \{\varphi, \varphi \to \psi\}$, tedy $T \vdash \psi$.
- b) Dokončené tablo pro formuli p_0 z teorie $T=\{p_{n+1}\to p_n\mid n\in\mathbb{N}\}.$ Všechny větve jsou dokončené, nejlevější větev je bezesporná a nekonečná. Poskytuje (jediný) model teorie T, ve kterém p_0 neplatí.