Polinômios Ortogonais

Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha

21 de setembro de 2019 Londrina

Introdução

 A variável analisada na análise de variância nos delineamentos discutidos anteriormente pode ser qualitativa ou quantitativa.

Introdução

- A variável analisada na análise de variância nos delineamentos discutidos anteriormente pode ser qualitativa ou quantitativa.
- Uma variável quantitativa é aquela cujos níveis podem ser associados com pontos em uma escala numérica, tal como temperatura, pressão ou tempo.

Introdução

- A variável analisada na análise de variância nos delineamentos discutidos anteriormente pode ser qualitativa ou quantitativa.
- Uma variável quantitativa é aquela cujos níveis podem ser associados com pontos em uma escala numérica, tal como temperatura, pressão ou tempo.
- Variáveis qualitativas, por outro lado, apresentam valores que não podem ser colocados em ordem de magnitude.

Teste F

 Se o efeito do fator for significativo e, os níveis desse fator forem quantitativos, pode-se decompor os graus de liberdade dos tratamentos em regressão linear, quadrática e cúbica desde que a relação seja linear.

- Se o efeito do fator for significativo e, os níveis desse fator forem quantitativos, pode-se decompor os graus de liberdade dos tratamentos em regressão linear, quadrática e cúbica desde que a relação seja linear.
- Nas situações em que os níveis do fator são igualmente espaçados, esta decomposição pode ser feita pelo método dos polinômios ortogonais, com o auxílio de coeficientes dados em tabelas.

Tabela ANAVA

Tabela 1: Quadro da Análise de Variância.

CV	G.L.	S.Q.	Q.M.	F_{calc}	F_{tab}
(Trat)	(a-1)	(SQ_{Trat})	$\frac{SQTrat}{a-1}$	<u>QMTrat</u> QMRes	$F_{(lpha;GL_{Trat},GL_{Res})}$
Linear	1	$SQ_{\hat{Y}_L}$	$QM_{\hat{Y}_L}$	$rac{QM_{\hat{Y}_L}}{QM_{res}}$	
Quadrática	1	$SQ_{\hat{Y}_Q}$	$QM_{\hat{Y}_Q}$	$rac{QM_{\hat{Y}_{Q}}}{QM_{res}}$	
Cúbica	1	$SQ_{\hat{Y}_C}$	$QM_{\hat{Y}_C}$	$\frac{QM_{\hat{Y}_C}}{QM_{res}}$	
Resíduo	a(b-1)	SQ_{Res}	$\frac{SQRes}{a(b-1)}$	-	-
Total	ab-1	SQ_{Total}	-	-	-

 As somas de quadrados das regressões (contrastes) é definida por:

$$SQ\widehat{Y}_{reg} = \frac{\left(\sum_{i=1}^{a} c_i T_i\right)^2}{b \times K};$$

em que: T_i são os totais dos tratamentos; b é o número de repetições; c_i e K são obtidos da tabela de polinômios ortogonais.

Exemplo

Num experimento de alimentação de suínos em crescimento realizado no delineamento inteiramente casualizado foram utilizadas guatro tipos de ração: A, B, C e D. Os animais da raça Duroc-Jersey, com idade aproximada de 3 meses.

Nas rações, a farinha de carne era substituída total ou parcialmente pelo farelo de soja torrada, de tal modo que a porcentagem desta última nas rações eram as seguintes:

- A zero de soja;
- **B** 10% de soja;
- C 20% de soja;
- D 30% de soja;

O experimento foi conduzido por 98 dias, procedendo-se às pesagens regulares dos animais a cada 14 dias, sempre pela manhã e com animais em jejum por mais de 15 horas.

Tabela 2: Índices de conversão (kg de ração / kg de ganho de peso)

0	10%	20%	30%
3,66	3,15	3,14	3,17
3,38	3,33	3,47	3,04
2,93	3,42	3,11	2,97
3,71	3,28	3,38	3,13
3,67	3,16	3,15	2,75
3,39	3,47	3,00	2,62
3,22	3,35	3,06	3,37
3,34	2,99	3,01	3,05
27,3	26,15	25,32	24,10

Fazer a análise de variância e caso haja significância entre os tratamentos fazer a decomposição dos graus de liberdade dos tratamentos por meio da técnica dos polinômios ortogonais (regressão linear, quadrática, cúbica, etc). Utilize ($\alpha=5\%$).

Tabela 3: Análise de variância para índices de conversão.

CV	gl	SQ	QM	F_{calc}	Pr(>F)
Rações	3	0,68321	0,22774	5,025	0,0065**
Resíduos	28	1,26899	0,04532		
Total	31	1,952197			

Constrói-se uma tabela em que constam os totais dos tratamentos (T_i) e os coeficientes (c_i) a serem usados:

Tabela 4: Tabela Auxiliar com os coeficientes

Níveis dos	Totais de	Coeficientes dos contrastes ortogonais (c_i)			
Tratamentos	Tratamentos (T_i)	Linear	Quadrático	Cúbico	
0	27,30	-3	1	-1	
10	26,15	-1	-1	3	
20	25,32	1	-1	-3	
30	24,10	3	1	1	
	К	20	4	20	
	М	2	1	<u>10</u> 3	

Tabela 5: Decomposição dos graus de liberdade de tratamentos.

CV	gl	SQ	QM	F_{calc}	Pr(>F)
Rações	(3)	(0,68321)	0,22774	5,025	0,0065**
Linear	1	0,679906	0,679906	15,002**	0,0065**
Quadrática	1	0,000153	0,000153	$0,003^{ns}$	$0,954^{ns}$
Cúbica	1	0,003151	0,003151	$0,069^{ns}$	$0,794^{ns}$
Resíduos	28	1,26899	0,04532		
Total	31	1,952197			

Da Tabela 5 nota-se que apenas o modelo linear foi significativo.
Assim, deve-se determinar os coeficientes do modelo:

$$Y = \alpha_0 + \alpha_1 P_1(x)$$

em que:

- $\alpha_0 = \bar{y}$, ou seja, a média geral dos dados;
- $\bullet \ \alpha_1 = \frac{\sum_{i=1}^{s} c_{iL} T_i}{b \times K_L} = \frac{\hat{Y}_L}{b \times K_L}.$

Os primeiros cinco polinômios ortogonais são:

$$P_1(x) = M_1 \left[\frac{x - \bar{x}}{d} \right]$$

$$P_2(x) = M_2 \left[\left(\frac{x - \bar{x}}{d} \right)^2 - \left(\frac{a^2 - 1}{12} \right) \right]$$

$$P_3(x) = M_3 \left[\left(\frac{x - \bar{x}}{d} \right)^3 - \left(\frac{x - \bar{x}}{d} \right) \left(\frac{3a^2 - 7}{20} \right) \right]$$

$$P_4(x) = M_4 \left[\left(\frac{x - \bar{x}}{d} \right)^4 - \left(\frac{x - \bar{x}}{d} \right)^2 \left(\frac{3a^2 - 13}{14} \right) + \frac{3(a^2 - 1)(a^2 - 9)}{560} \right]$$

sendo \bar{x} a média dos níveis quantitativos e d a distância entre os níveis de x e a é o número de níveis dos tratamentos.

• Como $\alpha_0 = \bar{y}_{\cdot \cdot} = 3,214688, \ M_1 = 2, \ \text{tem-se}$

$$\hat{y} = \alpha_0 + \alpha_1 P_1(x)$$

$$\hat{y} = \bar{y} + \frac{\widehat{Y}_L}{b \times K_L} \times M_1 \left[\frac{x - \bar{x}}{d} \right]$$

$$\hat{y} = 3,2146 + \frac{-10,43}{8 \times 20} \times 2 \times \frac{(x-15)}{10}$$

Assim, o modelo de regressão linear ajustado aos dados é:

$$\hat{y} = 3,41 - 0,013 x$$

Exercício 1

Os dados a seguir são de um experimento com milho, com 4 blocos e 5 tratamentos (Dose de P_2O_5 : 0; 25; 50; 75; 100 kg/ha). A variável resposta é o rendimento em kg/parcela.

Blocos		ν				
Diocos	0	25	50	75	100	У.ј
	3,38	7,15	10,07	9,55	9,14	39,29
Ш	5,77	9,78	9,73	8,95	10,17	44,40
III	4,90	9,99	7,92	10,24	9,75	42,80
IV	4,54	10,10	9,48	8,66	9,50	42,28
<i>y</i> _i .	18,59	37,02	37,20	37,40	38,56	168,77
$\sum_{j=1}^{J} y_{ij}^2$	89,339	348,581	348,675	351,158	372,281	1510,034