Отчет по лабораторной работе №4

Дисциплина: Компьютерный практикум по статистическому анализу данных

Оразгелдиев Язгелди

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Выводы	34

Список иллюстраций

3.1	Примеры с поэлементными операциями над многомерными массивами	8
3.2	Примеры с поэлементными операциями над многомерными массивами	9
3.3	Примеры с поэлементными операциями над многомерными массивами	9
3.4	Примеры с транспонированием, следом, рангом, определителем и ин-	
	версией матрицы	10
3.5	Примеры с транспонированием, следом, рангом, определителем и ин-	
	версией матрицы	11
3.6	Примеры с транспонированием, следом, рангом, определителем и ин-	
	версией матрицы	11
3.7	Примеры с вычислением нормы векторов и матриц, поворотами, вра-	
	щением	12
3.8	Примеры с вычислением нормы векторов и матриц, поворотами, вра-	
	щением	12
3.9	Примеры с вычислением нормы векторов и матриц, поворотами, вра-	
	щением	13
3.10	Примеры с матричным умножением, единичной матрицей, скалярным	
	произведением	13
3.11	Примеры с матричным умножением, единичной матрицей, скалярным	
	произведением	14
3.12	Примеры с факторизацией	14
3.13	Примеры с факторизацией	15
3.14	Примеры с факторизацией	15
3.15	Примеры с факторизацией	16
3.16	Примеры с факторизацией	16
3.17	Примеры с факторизацией	17
3.18	Примеры с факторизацией	17
3.19	Примеры с факторизацией	18
3.20	Примеры с факторизацией	18
3.21	Примеры с факторизацией	19
3.22	Примеры с общей линейной алгеброй	19
3.23	Примеры с общей линейной алгеброй	20
3.24	Произведение векторов	20
3.25	Задание 2.1	21
3.26	Системы линейных уравнений	22
3.27		22
3.28	Задание 2.2	23

3.29	Системы линейных уравнений	24
3.30	Системы линейных уравнений	24
3.31	Задание 3.1	24
3.32	Задание 3.1	25
3.33	Системы линейных уравнений	25
3.34	Системы линейных уравнений	26
3.35	Задание 3.2	26
3.36	Операции с матрицами	27
3.37	Задание 3.3	27
3.38	Операции с матрицами	28
3.39	Операции с матрицами	28
3.40	Задание 4.1	29
3.41	Линейные модели экономики	30
3.42	Задание 4.2	30
3.43	Линейные модели экономики	31
3.44	Задание 4.3	32
3.45	Линейные модели экономики	32
3.46	Линейные модели экономики	33

Список таблиц

1 Цель работы

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

2 Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 4.2.
- 2. Выполните задания для самостоятельной работы (раздел 4.4)

3 Выполнение лабораторной работы

1. Повторила примеры с поэлементными операциями над многомерными массивами.

```
[4]: #Поэлементные операции над многомерными массивами
     # Массив 4х3 со случайными целыми числами (от 1 до 20):
     a = rand(1:20, (4,3))
[4]: 4×3 Matrix{Int64}:
     13 2 9
3 2 6
[5]: # Поэлементная сумма:
     sum(a)
[6]: # Поэлементная сумма по столбцам:
    sum(a,dims=1)
[6]: 1×3 Matrix{Int64}:
     28 19 41
[7]: # Поэлементная сумма по строкам:
     sum(a,dims=2)
[7]: 4×1 Matrix{Int64}:
      25
      28
```

Рисунок 3.1: Примеры с поэлементными операциями над многомерными массивами

```
[8]: #Поэлементное произведение:
prod(a)

[8]: 2435968080

[9]: #Поэлементное произведение по столбцам:
prod(a,dims=1)

[9]: 1×3 Matrix{Int64}:
1365 216 8262

10]: #Поэлементное произведение по строкам:
prod(a,dims=2)

10]: 4×1 Matrix{Int64}:
567
510
234
36
```

Рисунок 3.2: Примеры с поэлементными операциями над многомерными массивами

```
[11]: # Подключение пакета Statistics:
      import Pkg
Pkg.add("Statistics")
      using Statistics
         Updating registry at `C:\Users\Полина\.julia\registries\General.toml`
         Resolving package versions...
        Updating `C:\Users\Полина\.julia\environments\v1.11\Project.toml`[10745b16] + Statistics v1.11.1
       No Changes to `C:\Users\Полина\.julia\environments\v1.11\Manifest.toml`
[12]: # Вычисление среднего значения массива:
      mean(a)
[12]: 7.333333333333333
[13]: # Среднее по столбцам:
       mean(a,dims=1)
[13]: 1×3 Matrix{Float64}:
       7.0 4.75 10.25
[14]: # Среднее по строкам:
      mean(a,dims=2)
[14]: 4×1 Matrix{Float64}:
        8.33333333333334
       9.333333333333334
        8.0
        3.66666666666665
```

Рисунок 3.3: Примеры с поэлементными операциями над многомерными массивами

2. Повторил примеры с транспонированием, следом, рангом, определителем и инверсией матрицы.

```
[15]: #Транспонирование, след, ранг, определитель и инверсия матрицы
# Подключение пакета LinearAlgebra:
        import Pkg
        Pkg.add("LinearAlgebra")
        using LinearAlgebra
            Resolving package versions...
         Updating C:\Users\Полина\.julia\environments\v1.11\Project.toml`
[37e2e46d] + LinearAlgebra v1.11.0
No Changes to `C:\Users\Полина\.julia\environments\v1.11\Manifest.toml`
        b = rand(1:20,(4,4))
[16]: 4×4 Matrix{Int64}:
         2 14 2 20
12 3 15 9
         5 11 12 12
19 5 11 15
[17]: # Транспонирование:
        transpose(b)
[17]: 4×4 transpose(::Matrix{Int64}) with eltype Int64:
         2 12 5 19
14 3 11 5
2 15 12 11
         20 9 12 15
[18]: b'
[18]: 4×4 adjoint(::Matrix{Int64}) with eltype Int64:
         2 12 5 19
14 3 11 5
2 15 12 11
         20 9 12 15
```

Рисунок 3.4: Примеры с транспонированием, следом, рангом, определителем и инверсией матрицы

```
[19]: # След матрицы (сумма диагональных элементов):
tr(b)

[19]: 32

[20]: # Изблечение диагональных элементов как массив:
diag(b)

[20]: 4-element Vector{Int64}:
2
3
12
15

[21]: # Ранг матрицы:
rank(b)

[21]: 4

[22]: # Инверсия матрицы (определение обратной матрицы):
inv(b)

[22]: 4×4 Matrix{Float64}:
-0.0869308 -0.16578 0.0910704 0.142519
-0.129509 -0.3014 0.278533 0.130692
0.00620934 0.130889 -0.00650503 -0.0816085
0.148729 0.214469 -0.20343 -0.0975754

[23]: # Определитель матрицы:
det(b)

[23]: 10145.99999999998
```

Рисунок 3.5: Примеры с транспонированием, следом, рангом, определителем и инверсией матрицы

Рисунок 3.6: Примеры с транспонированием, следом, рангом, определителем и инверсией матрицы

3. Повторил примеры с вычислением нормы векторов и матриц, поворотами, вращением.

```
[25]: #Вычисление нормы бекторов и матриц, повороты, вращения

# Создание вектора X:

X = [2, 4, -5]

[25]: 3-element Vector{Int64}:
2
4
-5

[26]: #Вычисление евклидовой нормы:
norm(X)

[26]: 6.708203932499369

[27]: #Вычисление р-нормы:
p = 1
norm(X,p)

[27]: 11.0

[28]: #Расстояние между двумя векторами X и Y:
X = [2, 4, -5];
Y = [1,-1,3];
norm(X-Y)

[28]: #Лроверка по базовому определению:
sqrt(sum((X-Y).^2))

[29]: 9.486832980505138
```

Рисунок 3.7: *Примеры с вычислением нормы векторов и матриц, поворотами, вращением*

```
[31]: # Угол между двумя векторами:
acos((X'*Y))/(norm(X)*norm(Y)))

[31]: 2.4404307889469252

[32]: # Создание матрицы:
d = [5 -4 2; -1 2 3; -2 1 0]

[32]: 3×3 Matrix[Int64]:
5 -4 2
-1 2 3
-2 1 0

[33]: # Вычисление Евклидовой нормы:
opnorm(d)

[33]: 7.147682841795258

[34]: # Вычисление р-нормы:
p=1
opnorm(d,p)

[34]: 8.0
```

Рисунок 3.8: *Примеры с вычислением нормы векторов и матриц, поворотами, вращением*

```
[35]: # Поворот на 180 градусов:
rot180(d)

[35]: 3×3 Matrix{Int64}:
0 1 -2
3 2 -1
2 -4 5

[36]: # Переворачивание строк:
reverse(d,dims=1)

[36]: 3×3 Matrix{Int64}:
-2 1 0
-1 2 3
5 -4 2

[37]: # Переворачивание столбцов
reverse(d,dims=2)

[37]: 3×3 Matrix{Int64}:
2 -4 5
3 2 -1
0 1 -2
```

Рисунок 3.9: *Примеры с вычислением нормы векторов и матриц, поворотами, вращением*

4. Повторил примеры с матричным умножением, единичной матрицей, скалярным произведением.

```
[38]: #Матричное умножение, единичная матрица, скалярное произведение
       # Матрица 2х3 со случайными целыми значениями от 1 до 10:
      A = rand(1:10,(2,3))
[38]: 2×3 Matrix{Int64}:
       3 2 9
4 9 2
[39]: # Матрица 3х4 со случайными целыми значениями от 1 до 10:
      B = rand(1:10,(3,4))
[39]: 3×4 Matrix{Int64}:
       9 1 2 1
5 1 3 7
       6 1 9 3
[40]: # Произведение матриц А и В:
      A*B
[40]: 2×4 Matrix{Int64}:
       91 14 93 44
93 15 53 73
[41]: # Единичная матрица 3х3:
      Matrix{Int}(I, 3, 3)
[41]: 3×3 Matrix{Int64}:
       1 0 0
0 1 0
0 0 1
```

Рисунок 3.10: *Примеры с матричным умножением, единичной матрицей, скалярным произведением*

```
[42]: # Скалярное произведение векторов X и Y:
X = [2, 4, -5]
Y = [1,-1,3]
dot(X,Y)

[42]: -17

[43]: # тоже скалярное произведение:
X'Y
```

Рисунок 3.11: Примеры с матричным умножением, единичной матрицей, скалярным произведением

5. Повторил примеры с факторизацией.

Рисунок 3.12: Примеры с факторизацией

```
[79]: # LU-φακπορυσαιμπ:
Alu = lu(A)

[79]: LU{Float64, Matrix{Float64}, Vector{Int64}}
L factor:
3×3 Matrix{Float64}:
1.0 0.0 0.0 0.0
0.74552 1.0 0.0
0.585207 0.0266086 1.0
U factor:
3×3 Matrix{Float64}:
0.942454 0.777511 0.239333
0.0 0.297903 -0.018768
0.0 0.0 0.0 0.389832

[80]: # Mampuya nepecmahoθοκ:
Alu.P

[80]: 3×3 Matrix{Float64}:
0.0 1.0 0.0 0.0
[81]: # Bekmop nepecmahoθοκ:
Alu.p

[81]: 3-element Vector{Int64}:
2
3
1
```

Рисунок 3.13: Примеры с факторизацией

Рисунок 3.14: Примеры с факторизацией

```
[87]: # Детерминант матрицы А через объект факторизации:
       det(Alu)
[87]: 0.10944902518719724
[88]: # QR-факторизация:
       Aqr = qr(A)
[88]: LinearAlgebra.QRCompactWY{Float64, Matrix{Float64}, Matrix{Float64}}
       Q factor: 3×3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}} R factor: 3×3 Matrix{Float64}:
        -1.29849 -1.2358 -0.484961
0.0 0.248451 -0.112888
0.0 0.0 -0.33926
       Agr.Q
[89]: 3x3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}}
[90]: # Матрица R:
       Aqr.R
[90]: 3×3 Matrix{Float64}:
-1.29849 -1.2358 -0.484961
0.0 0.248451 -0.112888
0.0 0.0 -0.33926
[91]: # Проверка, что матрица Q - ортогональная:
       Aqr.Q'*Aqr.Q
-1.11022e-16
1.0
```

Рисунок 3.15: Примеры с факторизацией

```
[92]: # Симметризация матрицы А:
       Asym = A + A'
       1.10306 1.40539 1.23201
1.40539 1.55502 1.11689
1.23201 1.11689 0.31932
[93]: # Спектральное разложение симметризованной матрицы:
       AsymEig = eigen(Asym)
 [93]: \  \  Eigen\{Float64,\ Float64,\ Matrix\{Float64\},\ Vector\{Float64\}\} 
       values:
       3-element Vector{Float64}: -0.5873869922610678
        -0.02297178677478906
         3.5877632318320987
       vectors:
3×3 Matrix{Float64}:
        0.835889 0.311884 -0.451683
[94]: # Собственные значения:
       AsymEig.values
[94]: 3-element Vector{Float64}: -0.5873869922610678
        -0.02297178677478906
3.5877632318320987
[95]: #Собственные векторы:
       AsymEig.vectors
```

Рисунок 3.16: Примеры с факторизацией

```
# Проверяем, что получится единичная матрица:
       inv(AsymEig)*Asym
[96]: 3×3 Matrix{Float64}:
         1.0 -3.81917e-14 -5.77316e-15
3.90799e-14 1.0 1.28786e-14
        -1.59872e-14 -2.13163e-14 1.0
[97]: # Mampuya 1000 x 1000:
       A = randn(n,n)
[97]: 1000×1000 Matrix{Float64}:
                      1.49552
                                   -0.0800027 ...
                                                                              0.489334
        -2.21123
                                                                 0.287116
        -1.61715
                     -1.19851
                                   -0.520879
                                                   -0.340143
                                                                 0.836955
                                                                             -0.317155
         1.0039
                                                    0.684426
                                                                 0.485467
        -1.11308
                     -0.503773
                                    0.662727
                                                    1.69777
                                                                -1.30953
                                                                             -0.778417
         0.422197
                                                    1.24173
                                                                 -0.446
                                                                              0.0483074
                      0.00782534
                                    0.320535
         0.324208
                      -0.469507
                                    1.69774
                                                    0.832636
                                                                 0.894876
                                                                              0.696623
         0.78462
                      0.877493
                                    1.77879
                                                    -2.06824
                                                                 0.766819
                                                                              1.01932
         -0.0452582
                      0.0214964
                                   -1.6168
                                                   -0.894698
                                                                 -0.284973
                                                                              0.0288325
         1.68032
                      0.952413
                                    0.134991
                                                    1.2106
                                                                 1.68641
                                                                              0.955969
         -0.68542
                      0.730857
                                   -1.02571
                                                   -0.258665
                                                                -1.09236
                                                                             -1.57978
         1.88223
                      0.028493
                                    -1.30407
                                                    0.70995
                                                                 0.0860891
         1.37706
                      0.0634672
                                    0.502746
                                                   -0.383901
                                                                 -0.424257
                                                                             -0.748692
         -0.463588
                                    1.28139
                                                    0.0356126
                                                                             -0.249698
         -1.62627
                                    0.837636
                                                    0.281486
                                                                             -1.1722
         0.150812
                     -1.18037
                                   -1.15633
                                                   -1.49511
                                                                 1.26137
                                                                              0.576786
         -0.415434
                      -0.0905179
                                   -1.49928
                                                    -0.643082
                                                                 0.88309
                                                                              0.898478
        -0.499404
                     -2.28215
                                    1.65194
                                                    0.520678
                                                                -0.375621
                                                                             -0.251754
         -1.31017
                      0.704631
                                    0.777236
                                                    0.0546234
                                                                 -0.443469
         1.52842
                      -0.859274
                                    1.64819
                                                    0.986682
                                                                 0.597711
                                                                              0.564677
         -1.58124
                      0.315807
                                    0.661945
                                                    0.373102
                                                                 0.159406
                                                                              0.577015
         -0.725211
                      -0.335825
                                    0.692725
                                                    1.68964
                                                                -0.235074
                                                                              0.111309
         0.533782
                      0.942887
                                    -0.562174
                                                    0.673415
                                                                 -0.763457
                                                                              0.263159
         0.5751
                      0.556507
                                   -0.612258
                                                   -0.245984
                                                                 0.495394
                                                                              1.54353
```

Рисунок 3.17: Примеры с факторизацией

```
# CHMMG
       Asym = A + A'
[98]: 1000×1000 Matrix{Float64}:
                     -0.121627
        -4.42247
                                  0.923896
                                                   1.61154
                                                                1.91082
                                                                             0.0643163
        -0.121627
                                  -2.55845
                                                   0.216364
                                                                2.14339
                                                                            -0.786335
                     -2.39702
         0.923896
                     -2.55845
                                   0.0773238
                                                   0.0721682
                                                                3.68557
                                                                            4.07451
        -2.04304
                     -1.34501
                                  -0.689001
                                                   1.92147
                                                               -1.32493
                                                                            -1.4391
                                                                0.0744139
        -1.5396
                      -0.778088
                                   0.554126
                                                   1.42853
                                                                             0.540589
         0.205376
                     -0.447025
                                   3.65558
                                                   1.48534
                                                               -0.414697
                                                                             1.81156
         0.154791
                      1.34348
                                  -1.29527
                                                   -2.13208
                                                                -0.66017
                                                                             1.54498
         0.852045
                      3.13639
                                  -0.781097
                                                  -0.697632
                                                               -0.630185
                                                                             0.0521465
                      -0.237203
                                  -0.70463
                                                   1.93532
                                                                             0.0314685
        -2.10326
                     -0.0592971
                                  -1.50522
                                                   0.416827
                                                               -2.06459
                                                                            -2.04976
         0.629218
                      1.10381
                                  -1.85902
                                                   -1.31295
                                                                0.510115
                                                                             0.382771
         0.763118
                      1.66157
                                  -0.288943
                                                   1.75658
                                                               -1.1151
                                                                            -0.985488
                                                               -1.09749
         -1.74386
                      -0.738943
                                   0.307054
                                                  -0.265365
                                                                             0.0363151
                                                                            -1.79772
        -0.0551953
                     -0.899751
                                  -1.71652
                                                  -1.8575
                                                                1.74603
                                                                             0.463956
                                                   0.108653
        -0.772616
                     -2.07813
                                   3.09038
                                                   0.346363
                                                               -0.960159
                                                                            -1.50093
        -2.64617
                      2.04766
                                   1.08653
                                                   0.822263
                                                                0.0911967
                                                                             1.65553
         1.60719
                      -0.841101
                                   0.157655
                                                   1.96522
                                                                2.13915
                                                                             0.658992
         -0.55921
                     -1.16312
                                   0.901499
                                                   0.867904
                                                               -1.78357
                                                                             2.24253
         -0.496712
                     -0.0442799
                                  -0.172507
                                                   2.9909
                                                                0.653923
                                                                             0.694089
         1.99153
                      -0.402386
                                  -0.436316
                                                   1.62488
                                                               -2.21985
                                                                             0.275544
         1.61154
                      0.216364
                                   0.0721682
                                                   0.491969
                                                                0.75926
                                                                             4.27267
                                   3.68557
                                                   0.75926
                      2.14339
                                                                2.00448
                                                                            -0.342474
         1.91082
         0.0643163 -0.786335
                                  -4.07451
                                                   4.27267
                                                               -0.342474
                                                                            -1.15349
[99]: # Проверка, является ли
       issymmetric(Asym)
[99]: true
```

Рисунок 3.18: Примеры с факторизацией

```
[100]: # Дοбαθπение шума:
Asym_noisy = copy(Asym)
Asym_noisy[1,2] += 5eps()
[100]: -0.12162668870773974
          issymmetric(Asym_noisy)
[101]: false
[102]: # Явно указываем, что м
          Asym_explicit = Symmetric(Asym_noisy)
[102]: 1000×1000 Symmetric{Float64, Matrix{Float64}}:
                                                                                                    0.0643163
-0.786335
-4.07451
                                                                                    1.91082
2.14339
              0.923896 -2.55845
                                              0.0773238
                                                                   0.0721682
                                                                                    3.68557
                            -1.34501
-0.778088
-0.447025
                                                                   1.92147
-1.42853
1.48534
            -2.04304
                                              -0.689001
                                                                                   -1.32493
                                                                                                    -1.4391
             -1.5396
0.205376
                                              0.554126
3.65558
                                                                                    0.0744139
-0.414697
              0.154791
                             1.34348
                                             -1.29527
                                                                  -2.13208
                                                                                    -0.66017
                                                                                                     1.54498
              0.852045
                              3.13639
                                             -0.781097
                                                                  -0.697632
                                                                                   -0.630185
                                                                                                     0.0521465
              3.3503
-2.10326
                             -0.237203 -0.70463
-0.0592971 -1.50522
                                                                   -1.93532
0.416827
                                                                                                    -0.0314685
-2.04976
              0.629218
                             1.10381
1.66157
                                             -1.85902
                                                                   -1.31295
1.75658
                                                                                   -0.510115
                                                                                                     0.382771
              0 763118
                                              -0 288943
                                                                                                     -0 985488
             -1.74386
                            -0.738943
                                              0.307054
                                                                  -0.265365
                                                                                   -1.09749
                                                                                                     0.0363151
                             -1.37024
            -3.00941
                                              2.39034
                                                                   1.82314
                                                                                   -0.380292
                                                                                                    -1.79772
             -0.0551953 -0.899751
-1.24547 -0.849534
-0.772616 -2.07813
                                             -1.71652
-2.47423
3.09038
                                                                  -1.8575
0.108653
0.346363
                                                                                    1.74603
0.940387
-0.960159
                                                                                                    0.463956
-0.146214
-1.50093
             -2.64617
                             -2.04766
                                               1.08653
                                                                    0.822263
                                                                                    0.0911967
                                                                                                     1.65553
             1.60719
-0.55921
-0.496712
                            -0.841101 0.157655
-1.16312 0.901499
-0.0442799 -0.172507
                                                                   1.96522
-0.867904
2.9909
                                                                                    2.13915
-1.78357
0.653923
                                                                                                     0.658992
-2.24253
```

Рисунок 3.19: Примеры с факторизацией

```
[103]: import Pkg
           Pkg.add("BenchmarkTools")
           using BenchmarkTools
             Resolving package versions...

Installed BenchmarkTools - v1.6.2

Updating `C:\Users\Nonwna\.julia\environments\v1.11\Project.toml`
[6e4b80f9] + BenchmarkTools v1.6.2

Updating `C:\Users\Nonwna\.julia\environments\v1.11\Manifest.toml`
[6e4b80f9] + BenchmarkTools v1.6.2

[9abbd945] + Profile v1.11.0
           Precompiling project...
3741.6 ms / BenchmarkTools
1 dependency successfully precompiled in 6 seconds. 465 already precompiled.
[104]: # Оценка эффективности выполнения операции по нахожденик
          # собственных эначений симметризованной матрицы:
@btime eigvals(Asym);
              41.776 ms (21 allocations: 7.99 MiB)
[105]: # Оценка эффективности выполнения операции по нахождению
           # собственных значений зашум
@btime eigvals(Asym_noisy);
                              их значений зашумлённой матрицы:
              359.688 ms (27 allocations: 7.93 MiB)
[106]: # Оценка эффективности выполнения операции по нахождению
           # собственных значений зашумлённой матрицы,
# для которой явно указано, что она симметричная:
           @btime eigvals(Asym_explicit);
              42.324 ms (21 allocations: 7.99 MiB)
```

Рисунок 3.20: Примеры с факторизацией

Рисунок 3.21: Примеры с факторизацией

6. Повторил примеры с общей линейной алгеброй.

Рисунок 3.22: Примеры с общей линейной алгеброй

Рисунок 3.23: Примеры с общей линейной алгеброй

- 7. Задал вектор v. Умножил вектор v скалярно сам на себя и сохранил результат в dot_v.
- 8. Умножил v матрично на себя (внешнее произведение), присвоив результат переменной outer_v.

```
*[119]:
# 1
v = [25, 86, 36]
dot_v = v'v

[119]:
9317

[120]:
outer_v = v*v'

[120]:
3×3 Matrix{Int64}:
625 2150 900
2150 7396 3096
900 3096 1296
```

Рисунок 3.24: Произведение векторов

9. Решил СЛАУ с двумя неизвестными.

a)
$$\begin{cases} x + y = 2, \\ x - y = 3. \end{cases}$$
b)
$$\begin{cases} x + y = 2, \\ 2x + 2y = 4. \end{cases}$$
c)
$$\begin{cases} x + y = 2, \\ 2x + 2y = 5. \end{cases}$$
d)
$$\begin{cases} x + y = 1, \\ 2x + 2y = 2, \\ 3x + 3y = 3. \end{cases}$$
e)
$$\begin{cases} x + y = 2, \\ 2x + y = 1, \\ x - y = 3. \end{cases}$$
f)
$$\begin{cases} x + y = 2, \\ 2x + y = 1, \\ x - y = 3. \end{cases}$$
f)
$$\begin{cases} x + y = 2, \\ 2x + y = 1, \\ 3x + 2y = 3. \end{cases}$$

Рисунок 3.25: Задание 2.1

```
#2.1
A1 = [1 \ 1; \ 1 \ -1]

b1 = [2, \ 3]

x1 = A1 \setminus b1
[190]:
2-element Vector{Float64}:
2.5
-0.5
A2 = [1 1; 2 2]
b2 = [2, 4]
if det(A2) == 0
     print("Нет решений")
     x2 = A2\b2
.z = A2\b2
print(x2)
end
Нет решений
A3 = [1 1; 2 2]
b3 = [2, 5]
if det(A3) == 0
    print("Нет решений")
 else
      print(x3)
end
Нет решений
```

Рисунок 3.26: Системы линейных уравнений

Рисунок 3.27: Системы линейных уравнений

10. Решил СЛАУ с тремя неизвестными.

a)
$$\begin{cases} x+y+z=2, \\ x-y-2z=3. \end{cases}$$
 b)
$$\begin{cases} x+y+z=2, \\ 2x+2y-3z=4, \\ 3x+y+z=1. \end{cases}$$
 c)
$$\begin{cases} x+y+z=1, \\ x+y+z=0, \\ 2x+2y+3z=1. \end{cases}$$
 d)
$$\begin{cases} x+y+z=0, \\ 2x+2y+3z=0, \\ 2x+2y+3z=0. \end{cases}$$

Рисунок 3.28: Задание 2.2

```
#2.2
A7 = [1 \ 1 \ 1; \ 1 \ -1 \ -2]

b7 = [2, \ 3]
x7 = A7\b7
[196]:
 2.2142857142857144
0.35714285714285704
 -0.5714285714285712
A8 = [1 1 1; 2 2 -3; 3 1 1]
b8 = [2, 4, 1]
x8 = A8\b8
3-element Vector{Float64}:
 -0.5
2.5
  0.0
[198]:
A9 = [1 1 1; 1 1 2; 2 2 3]
x9 = A9 \b9
     print(x9)
Нет решений
```

Рисунок 3.29: Системы линейных уравнений

```
[199]:

A10 = [1 1 1; 1 1 2; 2 2 3]
b10 = [1, 0, 0]
if det(A10) == 0
    print("Нет решений")
else
    x10 = A10\b10
    print(x10)
end

Heт решений
```

Рисунок 3.30: Системы линейных уравнений

11. Привел приведённые ниже матрицы к диагональному виду.

Рисунок 3.31: Задание 3.1

b)
$$\begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$$

c) $\begin{pmatrix} 1 & -2 & 0 \\ -2 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix}$

Рисунок 3.32: Задание 3.1

```
a = [1 -2; -2 1]
[200]:
2×2 Matrix{Int64}:
1 -2
-2 1
[201]:
eigs = eigen(a)
[201]:
{\tt Eigen\{Float64,\ Float64,\ Matrix\{Float64\},\ Vector\{Float64\}\}}
values:
2-element Vector{Float64}:
-1.0
3.0
vectors:
2×2 Matrix{Float64}:
 -0.707107 -0.707107
-0.707107 0.707107
a_diag = diagm(eigs.values)
[202]:
2×2 Matrix{Float64}:
 -1.0 0.0
0.0 3.0
```

Рисунок 3.33: Системы линейных уравнений

Рисунок 3.34: Системы линейных уравнений

12. Вычислил

a)
$$\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}^{10}$$

b) $\sqrt{\begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix}}$
c) $\sqrt[3]{\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}}$
d) $\sqrt{\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}}$

Рисунок 3.35: Задание 3.2

```
#3.2
a = [1 -2; -2 1]
 a^10
[205]:
2×2 Matrix{Int64}:
 29525 -29524
-29524 29525
b = [5 -2; -2 5]
sqrt(b)
[206]:
2×2 Matrix{Float64}:
 2.1889 -0.45685
-0.45685 2.1889
 c = [1 -2; -2 1]
cbrt(c)
2×2 Matrix{Float64}:
 0.221125 -1.22112
-1.22112 0.221125
d = [1 2; 2 3]
sqrt(d)
[208]:
2×2 Matrix{ComplexF64}:
 0.568864+0.351578im 0.920442-0.217287im 0.920442-0.217287im 1.48931+0.134291im
```

Рисунок 3.36: Операции с матрицами

13. Нашел собственные значения матрицы А, если

$$A = \begin{pmatrix} 140 & 97 & 74 & 168 & 131 \\ 97 & 106 & 89 & 131 & 36 \\ 74 & 89 & 152 & 144 & 71 \\ 168 & 131 & 144 & 54 & 142 \\ 131 & 36 & 71 & 142 & 36 \end{pmatrix}.$$

Рисунок 3.37: Задание 3.3

Создал диагональную матрицу из собственных значений матрицы А. Создал нижнедиагональную матрицу из матрица А. Оценила эффективность выполняемых операций.

Рисунок 3.38: Операции с матрицами

Рисунок 3.39: Операции с матрицами

14. Линейная модель экономики может быть записана как СЛАУ x - Ax = y, где элементы матрицы A и столбца y — неотрицательные числа. По своему смыслу в экономике элементы матрицы A и столбцов x, y не могут быть отрицательными числами.

Матрица А называется продуктивной, если решение х системы при любой неот-

рицательной правой части у имеет только неотрицательные элементы x_i . Используя это определение, проверил, являются ли матрицы продуктивными.

a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

b) $\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
c) $\frac{1}{10} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

Рисунок 3.40: Задание 4.1

Рисунок 3.41: Линейные модели экономики

15. Критерий продуктивности: матрица A является продуктивной тогда и только тогда, когда все элементы матрица (E-A)^-1 являются неотрицательными числами. Используя этот критерий, проверил, являются ли матрицы продуктивными.

a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$

b) $\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$
c) $\frac{1}{10} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$

Рисунок 3.42: Задание 4.2

```
[216]:

#4.2

A4 = [1 2; 3 1]
    x4 = (E-A4)^(-1)
    #mampuца не продуктивная

[216]:

2×2 Matrix{Float64}:
    -0.0    -0.333333
    -0.5    0.0

[217]:

A5 = 1/2*A4
    x5 = (E-A5)^(-1)
    #mampuца не продуктивная

[217]:

2×2 Matrix{Float64}:
    -0.4    -0.8
    -1.2    -0.4

[218]:

A6 = 1/10*A4
    x6 = (E-A6)^(-1)
    #mampuца продуктивная

[218]:

2×2 Matrix{Float64}:
    1.2    0.266667
    0.4    1.2
```

Рисунок 3.43: Линейные модели экономики

16. Спектральный критерий продуктивности: матрица А является продуктивной тогда и только тогда, когда все её собственные значения по модулю меньше 1. Используя этот критерий, проверил, являются ли матрицы продуктивными.

a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$

b) $\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$
c) $\frac{1}{10} \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$
d) $\begin{pmatrix} 0.1 & 0.2 & 0.3 \\ 0 & 0.1 & 0.2 \\ 0 & 0.1 & 0.3 \end{pmatrix}$

Рисунок 3.44: Задание 4.3

```
[219]:

#4.3
A7 = [1 2; 3 1]
eigs = eigen(A7)
abs.(eigs.values)

#матрица не продуктивная

[219]:
2-element Vector{Float64}:
1.4494897427831779
3.4494897427831783

[220]:
A8 = 1/2*A7
eigs = eigen(A8)
abs.(eigs.values)

#матрица не продуктивная

[220]:
2-element Vector{Float64}:
0.7247448713915892
1.724744871391589
```

Рисунок 3.45: Линейные модели экономики

Рисунок 3.46: Линейные модели экономики

4 Выводы

Я изучила возможности специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.