Pricing Options and Computing Implied Volatilities Using Neural Networks

Qiyao Zhou, Yibo Wang

M2 IFMA, Sorbonne Université

10 Janvier 2025

Introduction

Objectif du projet:

- Reproduire les résultats de l'article "Pricing Options and Computing Implied Volatilities Using Neural Networks".
- Comparer les méthodes classiques aux approches basées sur les réseaux de neurones artificiels (ANN).

Méthodologie:

- Générer des données avec les modèles de Black-Scholes et Heston.
- Entraîner et appliquer des ANNs pour évaluer les options et calculer les volatilités implicites.
- Comparaison des approches : 'MonteCarlo + Brent' VS 'Heston-ANN + IV-ANN'.

Modèle de Black-Scholes

Équation différentielle stochastique:

$$dS_t = S_t(r dt + \sigma dW_t)$$

Prix de l'option d'achat européenne:

$$V(t,S) = SN(d_1) - Ke^{-r(T-t)}N(d_2)$$

$$d_1 = \frac{\ln(S/K) + \left(r - \frac{\sigma^2}{2}\right)(T - t)}{\sigma\sqrt{T - t}}, \quad d_2 = d_1 - \sigma\sqrt{T - t}.$$

Paramètres d'entrés: r: Taux sans risque, σ : Volatilité, τ : Temps à l'échéance, $\frac{S_0}{K}$: Moneyness.

Paramètre de sortie: $\frac{V}{K}$: Prix de l'option.

Modèle de Heston

Processus stochastiques:

$$dS_t = rS_t dt + \sqrt{v_t} S_t dW_t^1,$$

$$dv_t = \kappa(\theta - v_t) dt + \gamma \sqrt{v_t} dW_t^2, dW_t^1 dW_t^2 = \rho dt$$

Paramètres d'entrés:

- κ : Vitesse de retour à la moyenne
- θ : Variance moyenne de long terme
- γ: Volatilité de la volatilité
- ullet ho: Corrélation entre les mouvements brownien W^1 et W^2
- $\frac{S_0}{K}$: Moneyness
- r: Taux sans risque
- τ : Temps à l'échéance
- v_0 : Variance initiale

Paramètres de sortie: V : Prix de l'option

Volatilité Implicite

Propriétés:

- $\lim_{\sigma \to 0} V(\sigma) = (S_t Ke^{-r(T-t)})_+$
- $\lim_{\sigma \to +\infty} V(\sigma) = S_t$
- $\frac{\partial V(\sigma)}{\partial \sigma} = S_t n(d_1) \sqrt{T t} > 0$

Ces propriétés définissent le **Véga** de l'option et assurent l'existence et l'unicité de la volatilité implicite σ^* .

Formule de Black-Scholes:

$$BS(\sigma^*; S, K, \tau, r) = V^{\mathsf{mkt}}$$

Définition de la volatilité implicite:

- $\sigma^*(K, T) = BS^{-1}(V^{\text{mkt}}; S, K, \tau, r)$
- En adoptant le ratio de moneyness $m = \frac{S_t}{K}$, et $\tau = T t$, on exprime σ^* sous la forme $\sigma^*(m, \tau)$.

Résolution:

$$g(\sigma^*) = BS(S, \tau, K, r, \sigma^*) - V^{\mathsf{mkt}} = 0$$

Méthods numériques et Génération de données

Utilisation de la méthode de Brent pour estimer σ^* .

Méthode Monte Carlo:

- Utilisée pour simuler les trajectoires des modèles.
- Approche flexible mais convergence lente.

Méthode de Brent:

- Recherche de racines pour calculer les volatilités implicites.
- Combine dichotomie, sécante, et interpolation parabolique.

Génération de données:

- La technique d'échantillonnage Latin Hypercube Sampling (LHS).
- qmc.LatinHypercube(d = 4) (par exemple)

Artificial Neural Networks

Objectifs des ANNs:

- Évaluer les options d'achat.
- Calculer les volatilités implicites.

Structure:

- 4 couches cachées, 400 neurones par couche.
- Fonction d'activation: ReLU.
- Optimiseur: Adam, taille de batch: 1024.

Figure: Un exemple d'ANN

Optimisation des hyperparamètres :

Options
4
400
ReLU
0.0
No
Glorot_uniform
Adam
1024

Table: Le modèle sélectionné après recherche aléatoire

Préparation de l'entraînement des ANNs

Déterminer le taux d'apprentissage optimal

- Estimer un taux d'apprentissage optimal consiste à ajuster la vitesse à laquelle les poids sont mis à jour pendant la phase d'entraînement.
- Un taux trop élevé peut entraîner une divergence, tandis qu'un taux trop faible ralentit la convergence.
- L'intervalle optimal du taux d'apprentissage se situe entre 10^{-6} et 10^{-4} , comme illustré ci-dessous.

Comparaison des calendriers de taux d'apprentissage

- Nous avons comparé l'historique des pertes lors de l'entraînement du réseau de neurones de modèle Black-Scholes (BS ANN) avec différents calendriers : DecayLR, CyclicalLR et ConstantLR.
- DecayLR a offert les meilleures performances d'entraînement.
- Pour cette raison, DecayLR a été appliqué à l'ensemble des réseaux de neurones dans notre projet.

Figure: Figure: Average training loss selon-learning rate

Zhou, Wang (M2 IFMA) Pricing Options 10 Janvier 2025 10 / 28

Résultats Numériques

BS-ANN

• Fonction de perte : MSE

• Optimisateur : Adam (Pytorch)

• Calendrier : DecayLR

• Entraı̂nement : 3000 époques

Paramètres	Plage Large	Plage Étroite	Unité
Prix de l'actif (S_0/K)	[0.4, 1.6]	[0.5, 1.5]	-
Temps à l'échéance (au)	[0.2, 1.1]	[0.3, 0.95]	année
Taux sans risque (r)	[0.02, 0.1]	[0.03, 0.08]	-
Volatilité (σ)	[0.01, 1.0]	[0.02, 0.9]	-
Prix d'achat (V/K)	(0.0, 0.89)	(0.0, 0.73)	-

BS-ANN

BS-ANN	MSE	RMSE	MAE	MAPE	R^2
Article					
Entraînement-large	8.04×10^{-9}	8.97×10^{-5}	6.73×10^{-4}	3.75×10^{-4}	_
Test-large		9.06×10^{-5}			
Test-étroit	7.00×10^{-9}	8.37×10^{-5}	6.49×10^{-4}	3.75×10^{-4}	_
Projet					
Entraînement-large		1.09×10^{-4}			
Test-large		1.20×10^{-4}			
Test-étroit	9.28×10^{-9}	9.64×10^{-5}	7.16×10^{-5}	8.82×10^{-2}	0.9999997

BS-ANN

L'erreur absolue maximale : $8 \times 10^{-4} > 7 \times 10^{-4}$

IV-ANN (BS)

$$V/K --> log(V_t/K) \ ilde{V} = V_t - max(S_t - Ke^{-r au}, 0)$$

Parameter	Range	Unit
Prix de l'actif (S_0/K)	[0.5, 1.4]	-
Temps à l'échéance (au)	[0.05, 1.0]	year
Taux sans risque (r)	[0.0, 0.1]	-
$\log(Valeur\;d'achat)\;(\log(ilde{V}/K))$	[-16.12, -0.94]	-
Volatilité output (σ)	(0.05, 1.0)	-

IV-ANN

IV-ANN	MSE	MAE	MAPE	R^2
Article				
Standard	6.36×10^{-4}	1.24×10^{-2}		0.97510
Log transformé	1.55×10^{-8}	9.73×10^{-5}	2.11×10^{-3}	0.9999998
Projet				
Standard	6.06×10^{-4}	8.03×10^{-3}	3.87×10^{-2}	0.9919511
Log transformé	6.40×10^{-7}	5.87×10^{-4}	1.56×10^{-3}	0.9999908

IV-ANN

IV-ANN

L'erreur absolue maximale : 6×10^{-3}

$$dS_t = rS_t dt + \sqrt{v_t}S_t dW_t^1$$

$$dv_t = \kappa(\bar{v} - v_t) dt + \gamma \sqrt{v_t} dW_t^2$$

ANN	Paramètres	Plage	Méthode
	Monneyage, $m = S_0/K$	(0.6, 1.4)	LHS
	Temps à l'échéance, τ	(0.1, 1.4) (année)	LHS
	Taux sans risque, r	(0.0%, 10%)	LHS
NN Input	Corrélation, ρ	(-0.95, 0.0)	LHS
	Vitesse de réversion, κ	(0.0, 2.0)	LHS
	Variance moyenne long-terme, $\bar{\nu}$	(0.0, 0.5)	LHS
	Volatilité de la volatilité, γ	(0.0, 0.5)	LHS
	Variance initiale, ν_0	(0.05, 0.5)	LHS
NN Output	Prix d'achat européen, V	(0, 0.67)	MC

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ 壹 ○ 夕へで

$$dS_t = rS_t dt + \sqrt{v_t}S_t dW_t^1$$

$$dv_t = \kappa(\bar{v} - v_t) dt + \gamma \sqrt{v_t} dW_t^2$$

ANN	Paramètres	Plage	Méthode
	Monneyage, $m = S_0/K$	(0.6, 1.4)	LHS
	Temps à l'échéance, τ	(0.1, 1.4) (année)	LHS
	Taux sans risque, r	(0.0%, 10%)	LHS
NN Input	Corrélation, ρ	(-0.95, 0.0)	LHS
	Vitesse de réversion, κ	(0.0, 2.0)	LHS
	Variance moyenne long-terme, $\bar{\nu}$	(0.0, 0.5)	LHS
	Volatilité de la volatilité, γ	(0.0, 0.5)	LHS
	Variance initiale, ν_0	(0.05, 0.5)	LHS
NN Output	Prix d'achat européen, V	(0, 0.67)	MC

◆ロト ◆個ト ◆差ト ◆差ト を めへで

• Dans l'article : Méthode de COS

• Dans notre projet : Méthode de MC

	Trajectoires (M)	Prix estimé (mean)	Variance
0	100	0.263399	1.031622e-04
1	1000	0.250541	4.040018e-05
2	10000	0.249881	3.415849e-06
3	100000	0.249806	6.007312e-07
4	1000000	0.249592	3.325770e-08

Heston-ANN	MSE	MAE	MAPE	R^2
Entraînement	8.98×10^{-6}	2.12×10^{-3}	4.05×10^{-2}	0.9995891
Test	1.82×10^{-5}	2.92×10^{-3}	4.03×10^{-2}	0.9991755

L'erreur absolue maximale : 3×10^{-2}

Approches ANNs vs Méthodes Numériques

- Volatilité implicite par rapport à Black-Scholes
- Volatilité implicite par rapport à Heston

Volatilité implicite par rapport à Black-Scholes

Method	GPU (sec)	CPU (sec)	Robustness
Brent	129.84	131.97	Yes
IV-ANN	0.45	1.77	Yes

Conclusion: IV-ANN sur GPU meilleur!

Volatilité implicite par rapport à Heston

Volatilité implicite par rapport à Heston

Heston-ANN & IV-ANN	MSE	MAE	MAPE	R^2
Résultats :	2.22×10^{-4}	9.13×10^{-3}	1.85×10^{-2}	0.9774944

Volatilité implicite par rapport à Heston

Surface de volatilité implicite (Heston)

$$m\in[0.7,1.3]$$
 , $\tau\in[0.5,1.0]$ $\rho=-0.05,~\kappa=1.5,~\gamma=0.3,~\bar{\nu}=0.1,~\nu_0=0.1$, $r=0.02$

Merci beaucoup pour votre attention !

Yibo WANG & Qiyao ZHOU

10 Janvier 2025