

Animation for Computer Games COMP 477/6311

Prof. Tiberiu Popa

Forward Kinematics – part deux

Skeleton not the only rigging possible, but a classic widely used in games today

- 1. Construct and attach the skeleton to skin
- 2. Pose the skeleton
- 3. Transform the character
- 4. Interpolate transformations (i.e. rotations)

$$\mathbf{p}' = \sum_{i \in B} w_i(\mathbf{p}) T_i \mathbf{p}$$

$$\mathbf{p}' = \sum_{i \in B} w_i(\mathbf{p}) T_i \mathbf{p}$$

Transformations $T_1^l ... T_4^l$ - expressed locally w.r.t. the coordinate frame of the parent joint

When applying the skinning equation \rightarrow transformation w.r.t the world coordinate frame (i.e. the translation business we saw earlier)

Question 1: How do we convert from T_i^l to T_i^w

$$\mathbf{p}' = \sum_{i \in B} w_i(\mathbf{p}) T_i \mathbf{p}$$

Transformations $T_1^w ... T_4^w$ are expressed w.r.t the world coordinate frame so we could use them in the skinning equation if not for an additional problem?

Frame of the parent joint \rightarrow also inherits the transformations from parents

$$T_{4} = T_{1}^{w} T_{2}^{w} T_{3}^{w} T_{4}^{w}$$

$$T_{3} = T_{1}^{w} T_{2}^{w} T_{3}^{w}$$

$$T_{2} = T_{1}^{w} T_{2}^{w}$$

$$T_{1} = T_{1}^{w}$$

