

STUDENT ID NO

--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2020/2021

PTG0116 – TRIGONOMETRY AND COORDINATE GEOMETRY

(All sections / Groups)

XX OCTOBER 2020
2:30 pm – 4:30 pm
(2 Hours)

INSTRUCTIONS TO STUDENTS

1. This question paper consists of 4 pages (excluding the cover page) with 4 questions and appendix.
2. Answer all **FOUR** questions. All questions carry equal marks and the distribution of the marks for each question is given.
3. Please write all your answers in the Answer Booklet provided.

Question 1

- a) The Faculty of Engineering of Multimedia University is located at $2^{\circ}55'34''$ N, 101.641° E under the Global Positioning Coordinate. Convert
- 101.641° E into DMS format. [3 marks]
 - $2^{\circ}55'34''$ N into decimal format. (accurate to 3 decimal place) [3 marks]
- b) Given $A = 12$ cm, $B = 8$ cm and $C = 10$ cm. Solve the angle a, b and c. [9 marks]
- c) Proof that
- $\sin 3A = 3\sin A - 4\sin^3 A$ [3 marks]
 - $\cos 3A = 4\cos^3 A - 3\cos A$ [3 marks]
 - $\cot 3\theta = \frac{\cot^3 \theta - 3\cot \theta}{3\cot^2 \theta - 1}$. [4 marks]

Question 2

- a) A person is standing at the origin of the Cartesian coordinate system. He then moves to Cartesian coordinate $(5, 12)$. Express his new position using the polar coordinate equivalent with reference to origin Cartesian coordinate system. [5 marks]
- b) Given $\vec{A} = 2\hat{i} - 3\hat{j} + \hat{k}$ and $\vec{B} = 5\hat{i} + 3\hat{j} + \hat{k}$. Find:
- $3\vec{A} + 2\vec{B}$ [2 marks]
 - $\vec{A} \bullet \vec{B}$ [2 marks]
 - $\vec{A} \times \vec{B}$ [6 marks]
- c) Given $z_1 = 3+i2$ and $z_2 = 4-i3$. Find:
- $z_1 + z_2$ [2 marks]
 - $z_1 z_2$ [2 marks]
 - $\frac{z_1}{z_2}$ [6 marks]

Express your answer in $a+ib$ format.

Continued ...

Question 3

- a) Show that $x^2 + y^2 + 2x + 4y - 4091 = 0$ is an equation for a circle. Determine its centre and radius. [5 marks]
- b) $4x^2 + y^2 - 8x + 4y + 4 = 0$ is an equation for an ellipse. Determine
- i) its centre. [8 marks]
 - ii) the major axis. [1 mark]
 - iii) the foci. [5 marks]
- c) Calculate the distance between A(1, 0, 5) and B(5, -1, 7) [3 marks]
- d) Determine the midpoint of C(3, 11, -1) and D(7, 1, 4) [3 marks]

Question 4

Consider the following system of three linear equations.

$$x - y + z = -4$$

$$2x - 3y + 4z = -15$$

$$5x + y - 2z = 12$$

- a) Find the determinant, D . [5.5 marks]
- b) Find the determinant, D_x , D_y and D_z . [3 \times 5.5 marks]
- c) Solve for x, y and z. [3 marks]

Continued ...

Appendix**Formulae****Cofunction Identities**

$$\sin \theta = \cos(90^\circ - \theta)$$

$$\cos \theta = \sin(90^\circ - \theta)$$

$$\tan \theta = \cot(90^\circ - \theta)$$

$$\cot \theta = \operatorname{sec}(90^\circ - \theta)$$

$$\sec \theta = \operatorname{cosec}(90^\circ - \theta)$$

$$\operatorname{cosec} \theta = \operatorname{cosec}(90^\circ - \theta)$$

$$\cos(-\theta) = \cos(\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\tan(-\theta) = -\tan(\theta)$$

Sum and Difference Formulas

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin(A + B) + \sin(A - B) = 2 \sin A \sin B$$

$$\sin(A + B) - \sin(A - B) = 2 \cos A \sin B$$

$$\cos(A + B) + \cos(A - B) = 2 \cos A \cos B$$

$$\cos(A + B) - \cos(A - B) = -2 \sin A \sin B$$

Double Angle Formulas

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Sum to Product

$$\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$

$$\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$

$$\vec{A} \bullet \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

$$\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \sin \theta \hat{a}_{AB}$$

Equations of a parabola: Vertex at (h,k) ; Axis of symmetry parallel to a coordinate axis; $a>0$

Vertex	Focus	Directrix	Equation	Description
(h,k)	$(h+a,k)$	$x = h - a$	$(y-k)^2 = 4a(x-h)$	Axis symmetry is parallel to the x-axis open right
(h,k)	$(h-a,k)$	$x = h + a$	$(y-k)^2 = -4a(x-h)$	Axis symmetry is parallel to the x-axis open left
(h,k)	$(h,k+a)$	$y = k - a$	$(x-h)^2 = 4a(y-k)$	Axis symmetry is parallel to the y-axis open up
(h,k)	$(h,k-a)$	$y = k + a$	$(x-h)^2 = -4a(y-k)$	Axis symmetry is parallel to the y-axis open down

Equations of a ellipse: Center at (h,k) ; Major axis parallel to a coordinate axis

Center	Major Axis	Foci	Vertices	Equation
(h,k)	Parallel to the x-axis	$(h+c,k)$ $(h-c,k)$	$(h+a,k)$ $(h-a,k)$	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ $a>b>0$ and $b^2 = a^2 - c^2$
(h,k)	Parallel to the y-axis	$(h,k+c)$ $(h,k-c)$	$(h,k+a)$ $(h,k-a)$	$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$ $a>b>0$ and $b^2 = a^2 - c^2$

Equations of a hyperbola: Center at (h,k) ; Transverse axis parallel to a coordinate axis

Center	Transverse Axis	Foci	Vertices	Equation	Asymptotes
(h,k)	Parallel to the x-axis	$(h \pm c, k)$	$(h \pm a, k)$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ $b^2 = c^2 - a^2$	$y - k = \pm \frac{b}{a}(x - h)$
(h,k)	Parallel to the y-axis	$(h, k \pm c)$	$(h, k \pm a)$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ $b^2 = c^2 - a^2$	$y - k = \pm \frac{a}{b}(x - h)$

End of Appendix