

a Go package for presentations

DECK: a package for presentations

Deck is a package written in Go

That uses a singular markup language

With elements for text, lists, code, and graphics

All layout and sizes are expressed as percentages

Clients are interactive or create formats like PDF or SVG

Elements

Hello, World

A block of text, word-wrapped to a specified width. You may specify size, font, color, and opacity.

```
package main
import "fmt"
func main() {
   fmt.Println("Hello, World")
}
```

<text>...</text>

bullet

Point A

Point B

Point C

Point D

plain

First item

Second item

The third item

the last thing

number

1. This

2. That

3. The other

4. One more

</

height

width

<image .../>

height (relative to element or canvas width)

width

<rect .../>

height (relative to element or canvas width)

x, y

width

<ellipse .../>

end

<.../>

angle2 (90 deg)

x, y angle1 (0 deg)

<arc .../>

control

<curve .../>

Markup and Layout

```
Start the deck
                    <deck>
Set the canvas size
                       <canvas width="1024" height="768" />
Begin a slide
                       <slide bg="white" fg="black">
Place an image
                           <image xp="70" yp="60" width="256" height="179" name="work.png" caption="Desk"/>
                           <text xp="20" yp="80" sp="3">Deck uses these elements</text>
Draw some text
Make a bullet list
                           <list xp="20" yp="70" sp="2" type="bullet">
                              text, list, image
                              line, rect, ellipse
                              arc, curve
End the list
                           </list>
Draw a line
                           ne
                                    xp1="20" yp1="10" xp2="30" yp2="10"/>
                                    xp="35" yp="10" wp="4" hr="75" color="rgb(127,0,0)"/>
Draw a rectangle
                           <rect
Draw an ellipse
                           <ellipse xp="45" yp="10" wp="4" hr="75" color="rgb(0,127,0)"/>
Draw an arc
                                    xp="55" yp="10" wp="4" hp="3" a1="0" a2="180" color="rgb(0,0,127)"/>
                           <arc
Draw a quadratic bezier
                                    xp1="60" yp1="10" xp2="75" yp2="20" xp3="70" yp3="10" />
                           <curve
End the slide
                      </slide>
```

End of the deck

</deck>

Anatomy of a Deck

Deck uses these elements

- text, list, image
- line, rect, ellipse
- arc, curve

Desk

Text and List Markup

```
Position, size
         <text xp="..." yp="..." sp="...">
Block of text
         <text ... type="block">
Lines of code
         <text ... type="code">
Attributes
          <text ... color="..." opacity="..." font="..." align="...">
Position, size < xp="..." yp="..." sp="..." >
Bullet list type="bullet">
Numbered list list ... type="number">
```

Common Attributes for text and list

```
xp horizontal percentage
```

yp vertical percentage

sp font size percentage

type "bullet", "number" (list), "block", "code" (text)

align "left", "middle", "end"

color SVG names ("maroon"), or RGB "rgb(127,0,0)"

opacity percent opacity (0-100, transparent - opaque)

font "sans", "serif", "mono"

Graphics Markup

Percentage-based layout

bullet

Point A

Point B

Point C

Point D

plain

First item

Second item

The third item

the last thing

number

1. This

2. That

3. The other

4. One more

</

bullet

- Point A
- Point B
- Point C
- Point D

plain

First item

Second item

The third item

the last thing

number

- 1. This
- 2. That
- 3. The other
- 4. One more

</

Design Examples

hello, world

Top

Left

Right

30%

70%

Header (top 20%)

Summary

(30%)

Detail

(70%)

Footer (bottom 20%)

Two Columns

One

Two

Three

Four

Tree and Sky

Five

Six

Seven

Eight

Rocks

This is not a notecard

Rich Can't buy me love Bliss Worse Better Misery We have each other Poor

Code

```
package main
import (
    "os"
    "github.com/ajstarks/svgo"
func main() {
    canvas := svg.New(os.Stdout)
    width := 850
    height := 1100
    canvas.Start(width, height)
    canvas.Gstyle("fill-opacity:0.3;font-size:480pt")
    for r := 0.0; r < 360.0; r += 45 {
        canvas.TranslateRotate(width/2, height/2, r)
        canvas.Text(0, 0, "a")
        canvas.Gend()
     canvas.Gend()
     canvas.End()
```

Output

A few months ago, I had a look at the brainchild of a few serious heavyweights working at Google. Their project, the Go programming language, is a static typed, c lookalike, semicolon-less, self formatting, package managed, object oriented, easily paralellizable, cluster fuck of genius with an unique class inheritance system. It doesn't have one.

The Go Programming Language

is a static typed, c lookalike, semicolon-less, self formatting, package managed, object oriented, easily paralellizable, cluster fuck of genius with an unique class inheritance system.

The Go Programming Language

is a static typed, c lookalike,

semicolon-less,

self formatting,

package managed,

object oriented,

easily paralellizable,

cluster fuck of genius

with an unique class inheritance system.

The Go Programming Language

is a static typed, c lookalike, semicolon-less, self formatting, package managed, object oriented, easily paralellizable, cluster fuck of genius with an unique class inheritance system.

It doesn't have one.

So, the next time you're about to make a subclass, think hard and ask yourself

what would Go do

FOR, LO,

the winter is past,

the rain is over and gone;

The flowers appear on the earth;

the time for the singing of birds is come,

and the voice of the turtle is heard in our land.

Clients

```
package main
import (
   "log"
   "github.com/ajstarks/deck"
func main() {
   presentation, err := deck.Read("deck.xml", 1024, 768) // open the deck
   if err != nil {
      log.Fatal(err)
   for _, t := range slide.Text {
                                // process the text elements
         x, y, size := deck.Dimen(presentation.Canvas, t.Xp, t.Yp, t.Sp)
         slideText(x, y, size, t)
      for _, l := range slide.List {
                                // process the list elements
         x, y, size := deck.Dimen(presentation.Canvas, 1.Xp, 1.Yp, 1.Sp)
         slideList(x, y, size, 1)
```



```
func main() {
   benchmarks := []Bardata{
        {"Macbook Air", 154.701},
        {"MacBook Pro (2008)", 289.603},
        {"BeagleBone Black", 2896.037},
        {"Raspberry Pi", 5765.568},
    ts := 2.5
   hts := ts / 2
   x := 10.0
   bx1 := x + (ts * 12)
   bx2 := bx1 + 50.0
   y := 60.0
    maxdata := 5400.0
    linespacing := ts * 2.0
    text(x, y+20, "Go 1.1.2 Build and Test Times", ts*2, "black")
    for _, data := range benchmarks {
        text(x, y, data.label, ts, "rgb(100,100,100)")
       bv := vmap(data.value, 0, maxdata, bx1, bx2)
        line(bx1, y+hts, bv, y+hts, ts, "lightgray")
       text(bv+0.5, y+(hts/2), fmt.Sprintf("%.1f", data.value), hGenerating a Barchart
        y -= linespacing
```

Go 1.1.2 Build and Test Times

Macbook Air MacBook Pro (2008) BeagleBone Black Raspberry Pi

\$ (echo '<deck><slide>'; go run deckbc.go; echo '</slide></deck>')

go get github.com/ajstarks/deck/vgdeck

go get github.com/ajstarks/deck/pdfdeck

go get github.com/ajstarks/deck/svgdeck

pdfdeck [options] file.xml...

- -sans, -serif, -mono [font] specify fonts
- -pagesize [Letter, Legal, Tabloid, A2, A3, A4, A5, ArchA, Index, 4R, Widescreen]
- -pagewidth [page width (pt)]
- -pageheight [page height (pt)]
- -stdout (output to standard out)
- -outdir [directory] directory for PDF output
- -fontdir [directory] directory containing font information
- -author [author name] set the document author
- -title [title text] set the document title
- -grid [percent] draw a percent grid on each slide

svgdeck [options] file.xml...

- -sans, -serif, -mono [font] specify fonts
- -pagesize [Letter, Legal, A3, A4, A5]
- -pagewidth [canvas width]
- -pageheight [canvas height]
- -stdout (output to standard out)
- -outdir [directory] directory for PDF output
- -title [title text] set the document title
- -grid [percent] draw a percent grid on each slide

vgdeck [options] file.xml...

- -loop [duration] loop, pausing [duration] between slides
- -slide [number] start at slide number
- -w [width] canvas width
- -h [height] canvas height
- -g [percent] draw a percent grid

vgdeck Commands

```
Next slide
+, Ctrl-N, [Return]
                                      Previous slide
-, Ctrl-P, [Backspace]
                                      First slide
^, Ctrl-A
                                      Last slide
$, Ctrl-E
                                      Reload
r, Ctrl-R
                                      X-Ray
x, Ctrl-X
                                      Search
/, Ctrl-F [text]
                                      Save
s, Ctrl-S
                                      Quit
q
```


X-Ray mode shows the percent grid, and highlights images

github.com/ajstarks/deck

ajstarks@gmail.com @ajstarks