Computer Network

Me lol

June 11, 2025

Notes

- PYQs of BEX's CT657, BEI's CT613 and BCT's CT702 are combined.
- BEX's and BCT's are kept with normal font.
- BEI's are kept with this styling to differentiate.

Contents

1	Intr 1.1	oduction to Computer Network Computer Network & Uses			
	1.2	Networking model: client/server, P2P, active network			
	1.3	Network Software, Protocols and Standards			
	1.4	OSI model and TCP/IP model			
	1.5 1.6	Comparison of OSI and TCP/IP model			
	1.7	Example network: The Internet, X.25, Frame Relay, Ethernet, VoIP, NGN and MPLS, xDSL			
2	Dhy	hysical Layer			
4	2.1	Network monitoring: delay, latency, throughput			
	2.2 2.3	Transmission media: Twisted pair, Coaxial, Fiber optic, Line-of-site, Satellite Multiplexing, Circuit switching, Packet switching, VC Switching, Telecommunication			
		switching system (Networking of Telephone exchanges)			
	2.4	ISDN: Architecture, Interface, and Signaling			
3	Dat	a Link Layer			
	3.1	Functions of Data link layer			
	3.2	Framing			
	3.3 3.4	Error Detection and Corrections			
	$3.4 \\ 3.5$	Examples of Data Link Protocol, HDLC, PPP			
	3.6	The Medium Access Sub-layer			
	3.7	The channel allocation problem			
	3.8	Multiple Access Protocols			
	3.9 3.10	Ethernet			
	3.11	Numericals			
4	Net	Network Layer			
-	4.1	Internet working and devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway			
	4.2	Addressing: Internet address, classful address			
	4.3	Subnetting			
	4.4 4.5	Routing: techniques, static vs. dynamic routing, routing table for classful address Routing Protocols: RIP, OSPF, BGP, Unicast and multicast routing protocols			
	4.6	Routing algorithms: shortest path algorithm, flooding, distance vector routing, link state routing; Protocols: ARP, RARP, IP, ICMP			
5	Trai	Transport Layer			
•	5.1	The transport service: Services provided to the upper layers			
	5.2	Transport protocols: UDP, TCP			
	5.3	Port and Socket			
	5.4	Connection establishment, Connection release			
	5.5 5.6	Flow control and buffering			
	5.6 5.7	Multiplexing and de-multiplexing			

6	App	plication Layer	10		
	6.1	Web: HTTP and HTTPS	10		
	6.2	File Transfer: FTP, PuTTY, WinSCP	10		
	6.3	Electronic Mail: SMTP, POP3, IMAP	10		
	6.4	DNS	10		
	6.5	P2PApplications	10		
	6.6	Socket Programming	10		
	6.7	Application server concept proxy caching, Web/Mail/DNS server optimization	10		
	6.8	Concept of traffic analyzer: MRTG, PRTG, SNMP, Packet tracer, Wireshark	10		
7	Introduction to IPV6				
	7.1	IPv6- Advantages	11		
	7.2	Packet formats	11		
	7.3	Extension headers	11		
	7.4	Transition from IPv4 to IPv6: Dual stack, Tunneling, Header Translation	11		
	7.5	Multicasting	11		
8	Net	Network Security			
	8.1	Properties of secure communication	12		
	8.2	Principles of cryptography: Symmetric Key and Public Key	12		
	8.3	RSA Algorithm	12		
	8.4	Digital Signatures	12		
	8.5	Securing e-mail (PGP)	12		
	8.6	Securing TCP connections (SSL)	12		
	8.7	Network layer security (IPsec, VPN)	12		
	8.8	Securing wireless LANs (WEP)	12		
	89	Firewalls: Application Gateway and Packet Filtering and IDS	12		

1 Introduction to Computer Network

(5 Hours/8 Marks)

1.1 Computer Network & Uses

- 1. What are the applications of computer networks? [2] (76 Ba) [1] (76 Ba) [2] (71 Shr)
- 2. What is computer network?

[3] (72 Ma)

4. Explain five instances of how networks are a part of your life today.

[5] (**72** Ch)

1.2 Networking model: client/server, P2P, active network

- 1. Discuss Client-Server model and Peer-to-Peer model. [4] (81 Ba)
- 2. How does client-server model work?

[3] (73 Ma)

3. What are the features of Client/Server Architecture?

[4] (70 Ch, 76 Ash)

4. Draw the architecture for Client/Server network model.

- [2] (**75 Ch**) [3] (**77 Ch**)
- 5. Explain briefly the architecture for peer-to-peer network model with example. \rightarrow How does P2P works? Explain.

3. What are the advantages of computer network?

- [6] (80 Bh)
- \rightarrow Explain in details about P2P network model with supportive examples.
- [6] (**75** Ch)

- 6. Distinguish between Client-Server network and Peer-Peer network.
- [3] (**74 Ch**) [5] (73 Ma)

1.3 Network Software, Protocols and Standards

- [1] (**76 Ch,72 Ash**) [4] (bo79 Ch) 1. Define protocol. 2. Explain about connection oriented and connection less service. [3] (**71 Bh**)
- 3. Mention service primitives for implementing connection oriented service. [2] (75 Ash)
- 4. What do you mean by network architecture? [2] (**71 Ch**)
- 5. Why do you need layering?

[2] (80 Bh)

6. Why do we need layered protocol architecture?

[2] (**72** Ash)

- 7. What are the reasons for using layered network architecture?
- [2] (**76 Ch**) [3] (**73 Ch**, 75 Ba)

8. Why layering is important? 9. What are the layer design issues? [2] (79 Bh, 75 Ash) [4] (**73 Bh**) [3] (**71 Bh**)

10. Explain design issues for layers in detail.

[4] (75 Ash)

11. Explain about the design issues of Computer Network software.

[5] (**74 Bh**)

OSI model and TCP/IP model 1.4

1. Explain Open System Interconnection (OSI) model.

[5] (**74 Ch**, 71 Ma)

 \rightarrow Explain OSI reference model with suitable diagram.

- [6] (80 Ba) [5] (**76 Bh**)
- \rightarrow Explain the different layers of OSI reference Model with appropriate figure. 2. What is the significance of OSI layer?
- [2] (74 Ash)

 \rightarrow What are the reasons for using layered protocol?

[3] (75 Bh)

3. Explain in which level of OSI layer following tasks are done.

[3] (**72** Ch)

- (i) Error detection and correction
- (ii) Encryption and Decryption of data
- (iii) Logical identification of computer
- (iv) Point-to-point connection of socket

(v) Dialogue control

- (vi) Physical identification of computer
- 4. Explain each layer of TCP/IP protocols architecture in detail.

- [5] (**72** Ash)
- 5. List out the functions of physical lapper in TCP/IP reference model.

[2] (72 Ka)

1.5 Comparison of OSI and TCP/IP model

- 1. Differentiate between TCP/IP and OSI Model.
 - [3] (**76 Bh,71 Ch**, 71 Ma) [4] (81 Ba) [5] (**77 Ch,76 Ch,72 Ch**, 76 Ba, 75 Ba, 73 Shr, 72 Ma) [6] (71 Shr) → Explain OSI model and compare OSI with TCP/IP reference model. [6] (**79 Bh**)
- 2. How do you differentiate OSI's network and transport layer with TCP/IP's Network and transport layer? [4] (79 Ch)

1.6 Data Encapsulation

1. What is data encapsulation?

[2] (80 Ba)

- 2. How the process of data encapsulation occurs in transmission mode described by seven layers of OSI model. [5] (75 Bh)
- 3. What are headers and trailers and how do they get added and removed?

[4] (76 Ash, 70 Ch) [5] (**73 Ch**)

1.7 Example network: The Internet, X.25, Frame Relay, Ethernet, VoIP, NGN and MPLS, xDSL

1. Explain X.25 Network with its key feature.

[3] (**71 Ch**)

2. Define Frame Relay in detail.

[3] (73 Shr)

3. What is Internet work?

[2] (71 Bh)

4. Explain the function of following of following devices in brief:

[6] (**73** Bh)

- (i) Hub (ii) Bridge (iii) Router
- 5. You are assigned to design a network infrastructure for a 3-start hotel. Recommend a network solution with hardwares and softwares in current trend that can be used in the hotel. Make necessary assumptions and justify your recommendation with logical arguments where possible.[8] (72 Ka)

2 Physical Layer

(5 Hours/8 Marks)

2.1 Network monitoring: delay, latency, throughput

2.2 Transmission media: Twisted pair, Coaxial, Fiber optic, Line-of-site, Satellite

1. What is transmission medium? [1] (**76** Ch,**71** Bh) [2] (**71** Shr) [3] (**74** Ch) 2. Write down the transmission medium used for networking. [4] (**72** Ash) 3. Explain different types of transmission media. [6] (72 Ka) \rightarrow Explain about any three transmission media in detail. [6] (71 Shr) 4. What are the factors to be considered while selecting transmission media? [2] (79 Bh, 81 Ba) 5. Explain twisted pair cable with its practical applications. [4] (**77** Ch) 6. Explain optical fiber cable in detail with its advantages and disadvantages. [6] (81 Ba) 7. Explain different transmission medium with their merits and demerits. [6] (**76** Ch) 8. Explain the characteristics of twisted pair, coaxial and optical fiber cable. [6] (76 Ba) 9. Explain about any two guided transmission media in detail. [6] (74 Ash)10. List guided and unguided media used in computer network. [2] (73 Ma) 11. Explain Ethernet cable standards. [6] (73 Ma) 12. Compare different types of guided transmission media with appropriate figures. [6] (80 Ba) 13. Differentiate between wired and wireless media with their benefits and drawbacks. [3] (75 Ba) 14. Compare among Twisted Pair, Coaxial cable and Fiber optic. [5] (**74** Ch) 15. Why, now a day all communication media like twisted pair, co-axial pair even wireless media are replaced by optical fibre? Justify your answer with necessary diagram, working principle and [7] (**71 Bh**) transmission mechanism. 16. Explain various cabling techniques used in IEEE 802.3 standard. [4] (71 Ma)

2.3 Multiplexing, Circuit switching, Packet switching, VC Switching, Telecommunication switching system (Networking of Telephone exchanges)

1.	What is switching?	[1] (75 Ch , 74 Ash) [2] (74 Bh ,	73 Shr)[3] (75 Bh)
2.	What are the various switching techniques?		[2] (75 Ch)
	$ \!\rightarrow\! \text{Explain}$ about various switchings with pr	ractical implementation example.	[6] (70 Ch)
3.	What do you mean by data switching?		[2] (70 Ch)
4.	Define multiplexing.		[1] (74 Ash)
5.	Explain different types of multiplexing used	in communication system.	[4] (72 Ma)
6.	Compare switching with multiplexing.		[2] (73 Shr)
7.	Elaborate packet switching with a proper dis	agram.	[5] (75 Ch)

- 8. (Assumed) Discuss how data or packets goes through switch to switch in Frame Relay Virtual-circuit network. [5] (80 Bh)
 9. Differentiate between datagram switching and virtual circuit switching approach. [4] (72 Ma) [6] (79 Bh) |→ with suitable diagram. [6] (74 Bh)
 10. Differentiate between circuit switching and packet switching. [3] (75 Bh, 75 Ash) [4] (77 Ch,76 Bh,72 Ash) |→ Compare and which would you prefer and why? [2+2] (71 Ma)
- |→ Compare and which would you prefer and why? [2+2] (71 Ma) 11. Discuss Packet and Circuit switching concepts with example. [5] (75 Ba)

2.4 ISDN: Architecture, Interface, and Signaling

1. What is ISDN?	[2] (71 Ch)
2. Explain about the ISDN architecture in detail with example.	[6] (71 Ch)
3. Why the telephone companies developed ISDN?	[2] (76 Ash)
4. Explain the working principle of ISDN with its interface and functional group.	[6] (76 Ash)
5. Explain ISDN channels with architecture.	[5] (75 Ash)
6. Explain the E1 Telephone hierarchy system.	[4] (73 Shr)

3 Data Link Layer

(5 Hours/8 Marks)

3.1 Functions of Data link layer

1. How does data link apply flow control technique in network communication? Explain with example. [6] (79 Ch)

3.2 Framing

1. What do you mean by Framing?

[2] (**79 Ch**)

- 3.3 Error Detection and Corrections
- 3.4 Flow Control
- 3.5 Examples of Data Link Protocol, HDLC, PPP
- 3.6 The Medium Access Sub-layer
 - 1. (Assumed) Through we have MAC address, why do we use IP address to represent the host in networks? Explain your answer. [3] (72 Ch)
- 3.7 The channel allocation problem
 - 1. Why do you think that static channel assignment is not efficient?

[2] (**73** Ch)

- 3.8 Multiple Access Protocols
- 3.9 Ethernet
- 3.10 Networks: FDDI, ALOHA, VLAN, CSMA/CD, IEEE 802.3(Ethernet), 802.4(Token Bus), 802.5(Token Ring), and 802.1(Wireless LAN)
 - 1. What is ALOHA system?

[2] (**79 Ch**)

2. How does CSMA-CD works? Explain.

[6] (**79** Ch)

3. Explain about operation of Carrier Sense Multiple Access with Collision Detection.

[6] (**73 Ch**)

3.11 Numericals

(a) A frame having size of 1000 bits is transmitted through a channel having capacity of 200 KB/Sec. Calculate the percentage of idleness of the channel assuming the round trip time of the channel to be 20ms. Is the channel efficient? What is your recommendation further?

[5+1+4] (73 Bh)

4 Network Layer

(9 Hours/16 Marks)

- 4.1 Internet working and devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway
- 4.2 Addressing: Internet address, classful address
 - 1. What are IPv4 address classes?

[2] (**79 Ch**)

4.3 Subnetting

- 1. How do you subnetwork a class C network block to following subnets of 41,14,102, and 21 computers respectively? Explain with example. [8] (79 Ch)
- 4.4 Routing: techniques, static vs. dynamic routing, routing table for classful address
- 4.5 Routing Protocols: RIP, OSPF, BGP, Unicast and multicast routing protocols
- 4.6 Routing algorithms: shortest path algorithm, flooding, distance vector routing, link state routing; Protocols: ARP, RARP, IP, ICMP

5 Transport Layer

(5 Hours/8 Marks)

- 5.1 The transport service: Services provided to the upper layers
- 5.2 Transport protocols: UDP, TCP
- 5.3 Port and Socket
- 5.4 Connection establishment, Connection release
- 5.5 Flow control and buffering
- 5.6 Multiplexing and de-multiplexing
- 5.7 Congestion control algorithm: Token Bucket and Leaky Bucket Transport Layer

6 Application Layer

(5 Hours/8 Marks)

- 6.1 Web: HTTP and HTTPS
- 6.2 File Transfer: FTP, PuTTY, WinSCP
- 6.3 Electronic Mail: SMTP, POP3, IMAP
- 6.4 DNS
- 6.5 P2PApplications
- 6.6 Socket Programming
- 6.7 Application server concept proxy caching, Web/Mail/DNS server optimization
- 6.8 Concept of traffic analyzer: MRTG, PRTG, SNMP, Packet tracer, Wireshark.

7 Introduction to IPV6

(4 Hours/8 Marks)

- 7.1 IPv6- Advantages
- 7.2 Packet formats
- 7.3 Extension headers
- 7.4 Transition from IPv4 to IPv6: Dual stack, Tunneling, Header Translation
- 7.5 Multicasting

8 Network Security

(7 Hours/16 Marks)

- 8.1 Properties of secure communication
- 8.2 Principles of cryptography: Symmetric Key and Public Key
- 8.3 RSA Algorithm
- 8.4 Digital Signatures
- 8.5 Securing e-mail (PGP)
- 8.6 Securing TCP connections (SSL)
- 8.7 Network layer security (IPsec, VPN)
- 8.8 Securing wireless LANs (WEP)
- 8.9 Firewalls: Application Gateway and Packet Filtering, and IDS