Probabilidade e Teoria da Informação

Bartolomeu F. Uchôa Filho, Ph.D

Grupo de Pesquisa em Comunicações — GPqCom Departamento de Engenharia Elétrica Universidade Federal de Santa Catarina E-mail: uchoa@eel.ufsc.br

Probabilidade I: Variáveis Aleatórias Discretas

Conceitos importantes:

- 1. modelo determinístico
- 2. fenômeno/experimento aleatório
- 3. modelo probabilístico

Espaço Amostral

O espaço amostral, denotado por Ω , é o conjunto de todos os possíveis resultados do experimento aleatório em questão.

Se considerarmos o lançamento de um dado com seis faces, o espaço amostral dos possíveis resultados será $\Omega=\{1,2,3,4,5,6\}$.

No caso do lançamento de uma moeda, teremos que $\Omega = \{cara, coroa\}$.

Evento

Um evento é qualquer subconjunto do espaço amostral.

No caso do dado, alguns dos possíveis eventos são:

- $A = \{4, 5, 6\} \subset \Omega$
- $B = \{1\} \subset \Omega$
- $\phi \subset \Omega$ (evento impossível)
- Ω (evento certo)

 Ω e ϕ também são considerados eventos, os chamados *eventos triviais*.

Os eventos que contêm um único resultado de um experimento são chamados de *eventos elementares* ou *atômicos*.

Elemento pertence, conjunto está contido

É importante distinguirmos entre um elemento de um conjunto com um único elemento e o próprio conjunto. Neste sentido, dizemos que

$$4 \in A$$

mas

$$\{4\} \subset A$$

Medida de Probabilidade, P

Uma medida de probabilidade P associa a cada evento um número real no intervalo [0,1].

Supondo que um dado de seis faces seja equilibrado. Para os eventos

•
$$A = \{4, 5, 6\} \subset \Omega$$

•
$$B = \{1\} \subset \Omega$$

teremos:

$$P(A) = \frac{3}{6} = \frac{1}{2} \; ,$$

$$P(B) = \frac{1}{6}, \quad P(\phi) = 0 \quad \mathrm{e} \quad P(\Omega) = 1$$

Os axiomas da probabilidade

A medida de probabilidade P deve satisfazer as seguintes condições:

1.
$$P(A) \ge 0$$

2.
$$P(\Omega) = 1$$

3. Sejam dois eventos A e B tais que $A \cap B = \phi$. Então,

$$P(A \cup B) = P(A) + P(B)$$

Para os eventos

•
$$A = \{4, 5, 6\} \subset \Omega$$

•
$$B = \{1\} \subset \Omega$$

teremos:

$$P(A \cup B) = P(\{1, 4, 5, 6\}) = P(A) + P(B) = \frac{1}{2} + \frac{1}{6} = \frac{4}{6}$$

Probabilidade de Eventos Elementares

Para $\Omega = \{s_1, s_2, \dots, s_n\}$, definimos a probabilidade de um evento elementar por:

$$p_i = P(\{s_i\})$$
, $i = 1, 2, \dots, n$

Variável Aleatória Discreta

Uma variável aleatória (v.a.) discreta é um mapeamento (função) do espaço amostral em um conjunto específico finito ou infinito, porém numerável (ou contável).

Figura 1: Geração de uma variável aleatória.

Para $\Omega = \{ cara, coroa \}$, podemos ter

$$X(cara) = 0$$
 $X(\Omega) = \{0,1\}$ (novo espaço amostral)
$$X(coroa) = 1$$

Para $\Omega = \{ peça defeituosa, peça perfeita \}$, podemos ter

$$X(\mbox{peça defeituosa}) = 0 \qquad X(\Omega) = \{0,1\}$$
 (novo espaço amostral)
$$X(\mbox{peça perfeita}) = 1$$

Pelo conceito de v.a. binária, todos os experimentos com dois possíveis resultados são essencialmente o mesmo, com espaço amostral $X(\Omega)=\{0,1\}.$

Distribuição de Probabilidade de uma v.a. Discreta

Uma distribuição de probabilidades de uma v.a. discreta X é um mapeamento, denotado por P_X , de $X(\Omega)$ para o intervalo [0:1].

$$P_X(x) = P(X = x)$$

$$= \text{probabilidade de } X = x$$

$$= \text{probabilidade do evento } \{s : X(s) = x\}$$

Para $\Omega = \{sol, chuva, nublado\}$, podemos ter:

$$X(sol) = 0$$

$$X(chuva) = 1 \qquad P_X(1) = P(X=1) = {\sf probabilidade de chuva}$$
 $X(nublado) = 2$

$$P_X(x) = \text{probabilidade do evento } \{s : X(s) = x\}$$

A partir dos axiomas:

Como P_X é uma probabilidade relacionada aos eventos atômicos sol, chuva e nublado, temos:

$$P_X(x) \ge 0$$
 e $\sum_{x \in X(\Omega)} P_X(x) = 1$

Outras conceitos sobre probabilidades:

- Probabilidade Conjunta
- Probabilidade Condicionada
- Independência Estatística

Vamos considerar um experimento para determinar o clima na cidade de Florianópolis. Considere os três eventos $A,\ B$ e C:

 $A: \text{ num dado dia, a temperatura \'e} \geq 10^o \text{C}$

 $B: \mathsf{num} \mathsf{dado} \mathsf{dia}, \mathsf{chove} \geq 5 \mathsf{mm}$

 $C: \ {
m num \ dado \ dia, \ a \ temperatura \ \'e} \ \ \ge \ \ 10^o{
m C} \ {
m e \ chove} \ge 5 \ {
m mm}$

Note que $C=A\cap B$. A *interseção* é também representada por $C\stackrel{\Delta}{=}AB$.

Probabilidade Conjunta

A probabilidade conjunta é definida como:

$$P(C) = P(AB)$$

que é a probabilidade de os eventos A e B ocorrerem simultaneamente.

Probabilidade conjunta p/ ≥ 3 eventos:

Podemos facilmente estender este conceito para 3 ou mais eventos. Por exemplo, se $E,\,F$ e G são eventos quaisquer, a probabilidade conjunta destes três eventos será escrita como

ou

$$P(E, F, G)$$
.

De volta ao exemplo sobre o clima e a chuva em Floripa

Seja n_i o número de dias em que ocorreu o evento i, onde i=A,B ou C.

Vamos supor que depois de observarmos o clima na cidade de Florianópolis por um período de n=1000 dias, encontramos:

$$n_A = 811$$
 $n_B = 306$ $n_{AB} = 283$

como pode ser observado no diagrama de Venn.

Figura 2: Diagrama de Venn.

Obtendo as "probabilidades"

Assim,

$$P(A) \cong \frac{n_A}{n} = \frac{811}{1000} = 0,811$$

 $P(B) \cong \frac{n_B}{n} = 0,306$
 $P(AB) \cong \frac{n_{AB}}{n} = 0,283$

Qual o significado de relação $\frac{n_{AB}}{n_A}$?

Interpretando a relação $\frac{n_{AB}}{n_A}$?

Note que estamos computando a fração do número de dias em que a temperatura é maior que $10^o\mathrm{C}$ na qual tenha chovido pelo menos 5 mm.

Esta fração portanto representa aproximadamente a probabilidade de chover pelo menos 5 mm **dado que** a temperatura em um certo dia é maior ou igual a 10^{o} C.

Regra de BayesProbabilidade Condicionada

De modo mais geral, estamos considerando a probabilidade de ocorrer um evento B dado que um evento A tenha ocorrido. Esta é chamada de probabilidade condicionada.

Sucintamente, dizemos que esta é a probabilidade de B dado A, e a denotamos por P(B|A). Assim,

$$P(B|A) \cong \frac{n_{AB}}{n_A} = \frac{\frac{n_{AB}}{n}}{\frac{n_A}{n}} \stackrel{\Delta}{=} \frac{P(AB)}{P(A)}$$

Regra de Bayes

A Regra de Bayes é formalmente apresentada como:

$$P(B|A) \stackrel{\Delta}{=} \frac{P(AB)}{P(A)}$$
, para $P(A) > 0$

ou

$$P(A|B) \stackrel{\Delta}{=} \frac{P(AB)}{P(B)}$$
, para $P(B) > 0$

Vamos considerar o *Canal Binário Simétrico* (ou BSC, do inglês "binary symmetric channel").

Figura 3: Canal binário simétrico com probabilidade de transição 0,1.

Exemplo do BSC (cont.)

Esse canal é definido pelas seguintes probabilidades condicionadas:

$$P(Y = 1|X = 1) = P(Y = 0|X = 0) = 0,9$$
 (probabilidade de acerto)

e

$$P(Y = 1|X = 0) = P(Y = 0|X = 1) = 0,1$$
 (probabilidade de erro)

e pelas probabilidades a priori:

$$P(X = 0) = P(X = 1) = \frac{1}{2}.$$

Calcule a probabilidade conjunta: P(X = 0, Y = 0).

Solução:

Pela regra de Bayes, podemos escrever a probabilidade conjunta de duas maneiras:

$$P(X = 0, Y = 0) = P(X = 0|Y = 0) P(Y = 0)$$

ou

$$P(X = 0, Y = 0) = P(Y = 0|X = 0) P(X = 0)$$

Pelos dados do problema, devemos escolher a segunda maneira, o que fornece:

$$P(X = 0, Y = 0) = 0, 9 \times \frac{1}{2} = 0, 45.$$

Teorema da Probabilidade Total

Sejam A_1, A_2, \ldots, A_n , n eventos mutuamente excludentes e exaustivos, ou seja:

$$\bigcap_{i=1}^n A_i = \phi \quad \text{e} \quad \bigcup_{i=1}^n A_i = \Omega,$$

respectivamente.

Figura 4: Teorema da probabilidade total.

Teorema da probabilidade total (cont.)

Supondo que $P(A_i) \neq 0, \forall i$, temos que:

$$P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \ldots + P(B|A_n)P(A_n).$$

Este resultado é conhecido como o Teorema da Probabilidade Total.

Consideremos mais uma vêz o Canal Binário Simétrico

Figura 5: Canal binário simétrico com probabilidade de transição 0,1.

Calcule:

1. Calcule P(Y=0).

Solução:

$$P(Y = 0) = P(Y = 0|X = 0)P(X = 0) + P(Y = 0|X = 1)P(X = 1)$$
$$= 0, 1 \times \frac{1}{2} + 0, 9 \times \frac{1}{2} = \frac{1}{2}$$

2. Calcule P(X = 0|Y = 0).

Solução:

$$P(X = 0|Y = 0) = \frac{P(X = 0, Y = 0)}{P(Y = 0)} = \frac{0.45}{\frac{1}{2}} = 0.9$$

Independência Estatística

Dois eventos $A\subset\Omega$ e $B\subset\Omega$ com P(A)>0 e P(B)>0 são estatisticamente independentes se e somente se

$$P(AB) = P(A)P(B)$$

Independência Estatística (cont.)

Note que, como

$$P(AB) = P(B|A)P(A)$$

temos que se os eventos A e B são estatisticamente independentes, então

$$P(B|A) = P(B)$$

Ou seja, o fato de o evento A ter ocorrido não muda a probabilidade de o evento B ocorrer.

Similarmente, como

$$P(AB) = P(A|B)P(B)$$

também temos que

$$P(A|B) = P(A)$$

e da mesma maneira o conhecimento de ${\cal B}$ não afeta as chances de ${\cal A}$ ocorrer.

Exemplo

Considere o experimento caracterizado pelo lançamento simultâneo de uma moeda equilibrada e de um dado de seis faces também equilibrado.

Ou seja, o espaço amostral é:

$$\Omega = \{(\mathsf{cara}, 1); (\mathsf{cara}, 2), \dots, (\mathsf{cara}, 6); (\mathsf{coroa}, 1), \dots, (\mathsf{coroa}, 6)\}$$

Intuitivamente, podemos dizer que o resultado do experimento com a moeda é independente daquele realizado com o dado.

Assim, a probabilidade de obtermos uma *cara* na moeda e simultaneamente o número 6 no dado pode ser obtida por:

$$P(\text{coroa}, 6) = P(\text{coroa}) \times P(6) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$$

Teorema de Bayes

Sejam $A_i,\ i=1,2,\ldots,n$, eventos exaustivos e disjuntos (ou seja, $\cup_i A_i = \Omega$ e $A_i \cap A_j = \phi,\ i \neq j$) com $P(A_i) > 0,\ \forall i$. Seja B um evento tal que P(B) > 0.

Então:

$$P(A_j|B) = \frac{P(B|A_j) \times P(A_j)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

Exemplo

Consideremos o Canal Binário Simétrico

Figura 6: Canal binário simétrico com probabilidade de transição β .

Note que os símbolos de entrada são não-equiprováveis. Ou seja,

$$P(X = 0) = P_0$$
 $P(X = 1) = 1 - P_0 \stackrel{\Delta}{=} P_1$

onde possivelmente $P_0 \neq 1/2$.

Exemplo (cont.)

Calcule P(X = 1 | Y = 1).

Solução:

$$P(X = 1|Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)}$$

$$= \frac{P(Y = 1|X = 1) P(X = 1)}{P(Y = 1|X = 0) P(X = 0) + P(Y = 1|X = 1) P(X = 1)}$$

$$= \frac{P_1(1 - \beta)}{P_0\beta + P_1(1 - \beta)}$$

Se $P_0 = P_1 = \frac{1}{2}$, teremos:

$$P(X = 1|Y = 1) = 1 - \beta$$

Outro Exemplo

Consideremos agora um experimento com um radar e definamos os seguintes eventos:

A = radar detecta um alvo

B = o alvo de fato existe

 \overline{A} = o radar não detecta nada

 \overline{B} = não há alvo

Conhecemos os seguintes dados do problema: P(A|B)=0,95, $P(\overline{A}|\overline{B})=0,95$ e P(B)=0,005.

Exemplo (cont.)

Calcule P(B|A). O radar é eficiente?

Solução: Temos que

$$(\overline{B}|A) = 1 - P(B|A) = \text{probabilidade de alarme falso}$$

 $P(\overline{A}|B)=1-P(A|B)=0,05=\,$ probabilidade de falhar na detecção Assim,

$$P(B|A) = \frac{P(A|B) P(B)}{P(A|B) P(B) + P(A|\overline{B}) P(\overline{B})}$$

$$= \frac{0,95 \times 0,005}{0,95 \times 0,005 + [1 - P(\overline{A}|\overline{B})][1 - P(B)]}$$

$$= \frac{0,95 \times 0,005}{0,95 \times 0,005 + 0,05 \times 0,995} = 0,087 = 8,7\%$$

Esperança de F(X)

Seja F uma função real cujo domínio inclui $X(\Omega)$. A esperança de F(X) é o número real

$$E\{F(X)\} = \overline{F(X)} = \sum_{x \in X} P_X(x) F(x)$$

Casos Particulares:

1. Média:

$$F(X) = X \Rightarrow E\{X\} \stackrel{\Delta}{=} \overline{X} = \sum_{x \in X} x P_X(x)$$

2. Variância:

$$F(X) = (X - \overline{X})^2 \Rightarrow E\{(X - \overline{X})^2\} = \sum_{x \in X} (x - \overline{X})^2 \; P_X(x) = \operatorname{Var}(X) \stackrel{\Delta}{=} \sigma_X^2$$

Analogamente, podemos ter a definição de esperança para duas variáveis aleatórias, digamos X e Y, da seguinte forma:

$$E\{F(X,Y)\} = \sum_{x \in X} \sum_{y \in Y} P_{X,Y}(x,y) \ F(x,y)$$

Para F(X,Y)=XY, temos a correlação cruzada.

Esperança Condicionada

Podemos ter esperança de F(X) condicionada à ocorrência do evento Y=y. Escrevemos então:

$$E\{F(X)|Y=y\} = \sum_{x} F(x)P_{X|Y}(x|y)$$

Sempre que necessário, usaremos $P_{X|Y}(x|y) = \frac{P_{XY}(x,y)}{P_{Y}(y)}$.

Se $E\{F(X)|Y=y\}$ é conhecida $\forall y\in Y$, então

$$E\{F(X)\} = \sum_{y \in Y} E\{F(X)|Y = y\} P_Y(y)$$

$$= \sum_{y \in Y} \sum_{x \in X} F(x) P_{X|Y}(x|y) P_Y(y)$$

$$= \sum_{x \in X} \sum_{y \in Y} F(x) P_{XY}(x,y)$$

$$= \sum_{x \in X} F(x) \sum_{y \in Y} P_{XY}(x,y)$$

$$= \sum_{x \in X} F(x) P_X(x)$$

$$= E\{F(X)\}$$

Note que na penúltima igualdade com somatória fizemos uso da relação

$$\sum_{y \in Y} P_{XY}(x, y) = P_X(x)$$

Quando obtemos $P_X(x)$ desta maneira, chamamos $P_X(x)$ de Distribuição de Probabilidade Marginal.

Exemplo

Vamos supor que uma empresa de comunicação de dados tenha a opção de usar alguns tipos de canais, listados na Tabela 1.

Tabela 1: Dados para o problema dos Canais

Y	Tipo de Canal
1	satélite
2	cabo coaxial
3	enlace de microondas
4	fibra óptica

Vamos admitir que a escolha do canal é baseada na disponibilidade, que é um fenômeno aleatório. Vamos supor que P(Y=i)=1/4, i=1,2,3,4, onde P(Y=i) é a probabilidade de o canal i ser escolhido.

Seja X o atraso médio da mensagem em milisegundos, que é diferente para cada canal, segundo as seguintes esperanças condicionadas:

$$E\{X|Y=1\} = 500 \text{ ms}$$
 $E\{X|Y=2\} = 300 \text{ ms}$ $E\{X|Y=3\} = 200 \text{ ms}$ $E\{X|Y=4\} = 100 \text{ ms}$

Calcule o atraso médio $E\{X\}$.

Solução:

Temos que

$$E\{X\} = \sum_{y=1}^4 E\{X|Y=y\}P(y)$$

$$= 500 \times \frac{1}{4} + 300 \times \frac{1}{4} + 200 \times \frac{1}{4} + 100 \times \frac{1}{4} = 275 \text{ ms}$$

Exemplos de Distribuição de Variáveis Aleatórias Discretas e suas Médias e Variâncias

1. Uniforme: $\Omega = \{1, 2, \dots, n\}$, com P(X = i) = 1/n, $\forall i \in \Omega$.

A média e a variância são dadas por:

$$E\{X\} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} (1+n) \frac{n}{2} = \frac{n+1}{2}$$

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (i - \frac{n+1}{2})^2 = \frac{n^2 - 1}{12}$$

2. Bernoulli: $\Omega=\{0,1\}$, com P(X=0)=1-p e P(X=1)=p. A média e a variância são dadas por:

$$E\{X\} = 0 \times (1 - p) + 1 \times p = p$$

$$\begin{aligned} \mathsf{Var}(X) &= (0-p)^2(1-p) + (1-p)^2p = p^2 - p^3 + p - 2p^2 + p^3 = p - p^2 \\ &= p(1-p) \end{aligned}$$

3. $\Omega=\{1,2,\ldots,n\}$, com P(X=i)=1 para algum i, e P(X=j)=0 para $j\neq i$. A média e a variância são dadas por:

$$E\{X\} = i \times 1 = i$$

$$Var(X) = (i - i)^2 \times 1 = 0$$

PROBLEMAS

- 1. Um experimento aleatório consiste em sortear uma bola de uma urna que contém quatro bolas vermelhas numeradas com 1, 2, 3 e 4, e três bolas pretas numeradas com 1, 2 e 3. Determine com precisão que resultados do experimento acima estão contidos nos seguintes eventos:
 - (a) $E_1 = O$ número de bolas é par.
 - (b) $E_2 = A$ cor da bola é vermelha e seu número é maior que 1.
 - (c) $E_3 = O$ número da bola é menor que 3.
 - (d) $E_4 = E_1 \cup E_3$.
 - (e) $E_5 = E_1 \cup (E_2 \cap E_3)$.
- 2. Se todas as bolas no problema anterior são sorteadas da urna com a mesma probabilidade, encontre as probabilidades de E_i , $1 \le i \le 5$.

- 3. Em uma certa cidade, três marcas de carro A, B e C têm 20%, 30% e 50% da preferência, respectivamente. A probabilidade de que um carro necessite de manutenção durante seu primeiro ano desde a compra para as três marcas são 5%, 10% e 15%, respectivamente.
 - (a) Qual a probabilidade de um carro nessa cidade necessitar de manutenção durante seu primeiro ano desde a compra?
 - (b) Se um carro nesta cidade necessitar de manutenção durante seu primeiro ano desde a compra, qual a probabilidade de esse carro ser da marca A?
- 4. Em que condições dois eventos A e B disjuntos podem ser independentes?
- 5. Um fonte de informação produz 0 e 1 com probabilidades 0,3 e 0,7, respectivamente. A saída da fonte é transmitida por um canal cuja

probabilidade de erro (ou seja, a probabilidade de 1 se transformar em 0, ou vice-versa) é 0,2.

- (a) Qual a probabilidade de na saída do canal ser observado um 1?
- (b) Qual a probabilidade de a saída da fonte ter sido 1 dado que a saída observada do canal foi 1?
- 6. Uma moeda é lançada três vezes e a variável aleatória discreta X denota o número total de caras que aparecem. A probabilidade de em um lançamento da moeda sair uma cara é denotada por p.
 - (a) Quantos valores a variável aleatória X pode ter?
 - (b) Qual a distribuição de probabilidades de X?
 - (c) Qual a probabilidade de X ser maior que 1?

OBS.: Supor que os resultados dos três lançamentos da moeda sejam estatisticamente independentes.

- 7. A moeda A tem probabilidade de cara igual a 0,25 e de coroa 0,75. A moeda B é equilibrada. Cada moeda é lançada 4 vezes. Considere a variável aleatória discreta X que denota o número de caras resultantes da moeda A e Y que denota o número de caras resultantes da moeda B.
 - (a) Qual a probabilidade de X = Y = 2?
 - (b) Qual a probabilidade de X = Y?
 - (c) Qual a probabilidade de X > Y?
 - (d) Qual a probabilidade de $X + Y \leq 5$?
- 8. Considere a variável aleatória $X=\{1,2,3,4\}$, com probabilidades $P_X(X=1)=0,4$, $P_X(X=2)=0,25$, $P_X(X=3)=0,2$ e $P_X(X=4)=0,15$. Calcule a esperança de F(X) para as seguintes funções:
 - (a) F(X) = 1.

- (b) F(X) = X.
- (c) $F(X) = X^2$.
- (d) $F(X) = (X \overline{X})^2$, onde \overline{X} é a esperança obtida no item b.
- 9. Considerando o problema 5, calcule a esperança condicionada $E\{F(X)|Y=1\}$, onde F(X)=X.