A.A. 2021-2022

Elementi di Elettronica (INF) Prof. Paolo Crippa

Transistore MOS

II Transistore MOS

Il Transistore nMOS: Simboli Grafici

II Transistore nMOS: Funzionamento

Per Vgs > Vth si crea sotto il Gate un canale conduttivo tra il Source e il Drain

Il Transistore nMOS: Funzionamento

Funzionamento dell'NMOS ad arricchimento al variare della Vds.

Il canale viene rastremato e la sua resistività aumenta al crescere della Vds. In questo caso la Vgs è mantenuta costante ad un valore > di Vth.

nMOSFET: Funzionamento in Regione Lineare

Caratteristica Id-Vds per piccoli valori di Vds

Il dispositivo funziona come un resistore lineare il cui valore è controllato tramite Vgs

nMOSFET: Caratteristica Id – Vds

nMOSFET: La Modulazione di Canale

Al crescere di Vds il canale viene rastremato.

Per Vds= Vgs – Vth il canale si strozza verso il Drain (pinch-off). Al crescere di Vds oltre questo valore si rileva solo un piccolo effetto sulla forma del canale (il punto di strozzamento si sposta verso il Source)

nMOSFET: Equazioni delle Correnti

$$i_G = 0$$

$$i_{D} = \begin{cases} 0 & \text{per } v_{GS} \leq V_{TH} \\ \beta \left[\left(v_{GS} - V_{TH} \right) v_{DS} - \frac{v_{DS}^{2}}{2} \right] & \text{per } v_{GS} > V_{TH}, \ v_{DS} \leq v_{GS} - V_{TH} \\ \frac{\beta}{2} \left(v_{GS} - V_{TH} \right)^{2} & \text{per } v_{GS} > V_{TH}, \ v_{DS} \geq v_{GS} - V_{TH} \end{cases}$$

Interdizione
$$v_{GS} - V_{TH}$$
 Triodo

$$v_{GS} > V_{TH}$$

per
$$v_{GS} > V_{TH}$$
, $v_{DS} \ge v_{GS} - V_{TH}$ Saturazione

$$\beta = 2K = k_n \frac{W}{L} = \mu_n C_{OX} \frac{W}{L}$$
 $C_{OX} = \frac{\mathcal{E}_{OX}}{t_{OY}}$ valore di esempio $\beta = 20 \,\mu\text{A/V}^2$

$$C_{OX} = \frac{\mathcal{E}_{OX}}{t_{OX}}$$

valore di esempio
$$\beta$$
= 20 μ A/V

valore di esempio $V_{TH} = 0.5V$

$$V_{TH} = V_{T0} + \gamma \left[\sqrt{2\phi_F - v_{BS}} - \sqrt{2\phi_F} \right]$$

$$\gamma = \frac{\sqrt{2\varepsilon_s q N_A}}{C}$$
 Effetto Body

Caratteristica Id – Vds

Effetto della Modulazione di Canale su Id – Vds

nMOSFET: Equazioni delle Correnti

$$i_G = 0$$

$$i_{D} = \begin{cases} 0 & \text{per } v_{GS} \leq V_{TH} \\ \beta \left[\left(v_{GS} - V_{TH} \right) v_{DS} - \frac{v_{DS}^{2}}{2} \right] & \text{per } v_{GS} > V_{TH}, \ v_{DS} \leq v_{GS} - V_{TH} \\ \frac{\beta}{2} \left(v_{GS} - V_{TH} \right)^{2} \left(1 + \lambda v_{DS} \right) & \text{per } v_{GS} > V_{TH}, \ v_{DS} \geq v_{GS} - V_{TH} \end{cases}$$

per
$$v_{GS}$$

$$\leq V_{TH}$$
 Interdizione $v_{SS} \leq v_{GS} - V_{TH}$ Triodo

$$\frac{\beta \left[\left(v_{GS} - V_{TH} \right) v_{DS} - \frac{v_{DS}}{2} \right]}{\beta \left[\left(v_{GS} - V_{TH} \right)^2 \left(1 + \lambda v_{DS} \right) \right]}$$

per
$$v_{GS} > V_{TH}$$
, $v_{DS} = v_{GS} + v_{TH}$ Irlodo
$$\text{per } v_{GS} > V_{TH}, \ v_{DS} \geq v_{GS} - V_{TH} \quad \text{Saturazione}$$

$$\beta = 2K = k_n \frac{W}{L} = \mu_n C_{OX} \frac{W}{L}$$

$$C_{OX} = \frac{\mathcal{E}_{OX}}{t_{ox}}$$

$$C_{OX} = \frac{\mathcal{E}_{OX}}{t_{OX}}$$
 valore di esempio $\beta = 20 \,\mu\text{A/V}^2$

$$V_{TH} = V_{T0} + \gamma \left[\sqrt{2\phi_F - v_{BS}} - \sqrt{2\phi_F} \right]$$

valore di esempio
$$V_{TH} = 0.5V$$

$$\gamma = \frac{\sqrt{2\varepsilon_s q N_A}}{C_{ov}}$$
 Effetto Body

Caratteristica Id – Vgs

nMOSFET: Livelli di Tensione Relativi

Livelli di tensione relativi dei terminali di un NMOS ad arricchimento nel funzionamento in regione di triodo e in regione di saturazione

Il Transistore MOS a canale P

pMOSFET: Equazioni delle Correnti

$$i_G = 0$$

$$i_{D} = \begin{cases} 0 & \text{per } v_{SG} \leq -V_{TH} \\ \beta \left[\left(v_{SG} + V_{TH} \right) v_{SD} - \frac{v_{SD}^{2}}{2} \right] & \text{per } v_{SG} > -V_{TH}, \ v_{SD} \leq v_{SG} + V_{TH} \\ \frac{\beta}{2} \left(v_{SG} + V_{TH} \right)^{2} \left(1 + \lambda v_{SD} \right) & \text{per } v_{SG} > -V_{TH}, \ v_{SD} \geq v_{SG} + V_{TH} \end{cases}$$

Interdizione

Triodo

per $v_{SG} > -V_{TH}$, $v_{SD} \ge v_{SG} + V_{TH}$ Saturazione

$$\beta = 2K = k_p \frac{W}{L} = \mu_p C_{OX} \frac{W}{L}$$
 $C_{OX} = \frac{\mathcal{E}_{OX}}{t_{OY}}$ valore di esempio $\beta = 20 \,\mu\text{A/V}^2$

 $V_{TH} = V_{T0} - \gamma \left| \sqrt{2\phi_F - v_{SB}} - \sqrt{2\phi_F} \right|$

$$C_{OX} = \frac{\mathcal{E}_{OX}}{t_{OX}}$$

valore di esempio $V_{TH} = -0.5V$

$$\gamma = \frac{\sqrt{2\varepsilon_s q N_D}}{C_{con}}$$
 Effetto Body

pMOSFET: Livelli di Tensione Relativi

Livelli di tensione relativi dei terminali di un PMOS ad arricchimento nel funzionamento in regione di triodo e in regione di saturazione

Tecnologia CMOS

Realizzazione in tecnologia planare CMOS di un nMOSFET e di un pMOSFET

Riassumendo: nMOSFET

Riassumendo: nMOSFET

Riassumendo: nMOSFET

Riassumendo: pMOSFET

Riassumendo: pMOSFET

Riassumendo: pMOSFET

MOSFET: Equazioni per Piccoli Segnali

Elementi di Elettronica (INF) A.A. 2021-22

$$i_{D} = i_{D} (v_{GS}, v_{DS}, v_{BS}) =$$

$$=i_{D}\left(v_{GS},v_{DS},v_{BS}\right)\Big|_{Q}+\frac{\partial i_{D}}{\partial v_{GS}}\Big|_{Q}\Delta v_{GS}+\frac{\partial i_{D}}{\partial v_{DS}}\Big|_{Q}\Delta v_{DS}+\frac{\partial i_{D}}{\partial v_{BS}}\Big|_{Q}\Delta v_{BS}$$

$$\left. rac{\partial i_D}{\partial v_{DS}} \right|_O$$

$$-\left|_{Q} \Delta v_{DS} + \frac{\partial}{\partial z} \right|_{Q}$$

$$\frac{1}{2} \left| \frac{\Delta v_{DS}}{Q} + \frac{1}{2} \right|$$

$$\left|_{Q} \Delta v_{DS} + \frac{1}{Q} \right|$$

$$Q \frac{\Delta V_{DS}}{\partial t}$$

$$\left. \frac{1}{\partial v_{BS}} \right|_{Q}$$

$$\partial v_{BS} \Big|_{Q}$$

$$\left| v_{BS} \right|_{Q}$$

$$\left|V_{BS}\right|_{Q}^{2}$$

$$S \mid_{Q} \stackrel{\Delta V_{BS}}{=}$$

$$\left. \partial v_{BS} \right|_{Q}$$

$$\left| \frac{\partial}{\partial D} \right| = \left(v \right)$$

$$=i_{D}\begin{vmatrix}v_{GS}\\v_{DS}\\V_{BS}\end{vmatrix}+\frac{\partial i_{D}}{\partial v_{GS}}\begin{vmatrix}v_{GS}\\v_{DS}\end{vmatrix}\begin{pmatrix}v_{GS}-V_{GS}\end{pmatrix}+\frac{\partial i_{D}}{\partial v_{DS}}\begin{vmatrix}v_{GS}\\v_{DS}\end{vmatrix}\begin{pmatrix}v_{DS}-V_{DS}\end{pmatrix}+\frac{\partial i_{D}}{\partial v_{BS}}\begin{vmatrix}v_{GS}\\v_{DS}\end{pmatrix}\begin{pmatrix}v_{GS}-V_{DS}\end{pmatrix}$$

$$i_d = g_m v_{gs} + g_o v_{ds} + g_{mb} v_{bs}$$

$$i_{d} = g_{m} v_{gs} + g_{o} v_{ds} + g_{mb} v_{bs} \qquad i_{g} = 0 \qquad i_{b} = 0$$

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \bigg|_{V_{GS}, V_{DS}, V_{BS}} \qquad g_{o} = \frac{\partial i_{D}}{\partial v_{DS}} \bigg|_{V_{GS}, V_{DS}, V_{BS}} \qquad g_{mb} = \frac{\partial i_{D}}{\partial v_{BS}} \bigg|_{V_{GS}, V_{DS}, V_{BS}}$$

 $=I_{D}+\frac{\partial i_{D}}{\partial v_{GS}}\bigg|_{\substack{V_{GS}\\V_{DS}\\V}}v_{gs}+\frac{\partial i_{D}}{\partial v_{DS}}\bigg|_{\substack{V_{GS}\\V_{DS}\\V}}v_{ds}+\frac{\partial i_{D}}{\partial v_{BS}}\bigg|_{\substack{V_{GS}\\V_{DS}\\V}}v_{bs}}v_{bs} \qquad i_{G}=0 \qquad i_{B}=0$

nMOSFET: Circuito per Piccoli Segnali

Circuito equivalente alle variazioni del MOSFET a canale n

$$i_b = 0$$

$$i_d = g_m v_{gs} + g_o v_{ds} + g_{mb} v_{bs}$$

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \bigg|_{V_{GS}, V_{DS}, V_{RS}}$$

$$g_o = \frac{\partial i_D}{\partial v_{DS}} \bigg|_{V_{GS}, V_{DS}, V_{RS}}$$

$$g_{mb} = \frac{\partial i_D}{\partial v_{BS}} \bigg|_{V_{GS}, V_{DS}, V_{BS}}$$

nMOSFET: Parametri Differenziali

Triodo

$$g_{m} = \beta V_{DS}$$

$$g_{o} = \beta (V_{GS} - V_{TH} - V_{DS})$$

$$g_{mb} = \frac{\partial i_D}{\partial V_{TH}} \frac{\partial V_{TH}}{\partial v_{BS}} = \beta V_{DS} \frac{\sqrt{2\varepsilon_s q N_A}}{C_{OX}} \left(\frac{1}{2\sqrt{2\phi_F - V_{BS}}} \right)$$

Interdizione

$$g_m = 0$$

$$g_o = 0$$

$$g_{mb} = 0$$

Saturazione

$$g_{m} = \beta (V_{GS} - V_{TH}) = \sqrt{2\beta I_{D}}$$
$$g_{o} = 0$$

$$g_{mb} = \frac{\partial i_D}{\partial V_{TH}} \frac{\partial V_{TH}}{\partial v_{BS}} = \beta \left(V_{GS} - V_{TH} \right) \frac{\sqrt{2\varepsilon_s q N_A}}{C_{OX}} \left(\frac{1}{2\sqrt{2\phi_F - V_{BS}}} \right)$$

nMOSFET: Parametri Differenziali

Triodo

$$g_m = \beta V_{DS}$$

$$g_o = \beta (V_{GS} - V_{TH} - V_{DS})$$

$$g_{mb} = \frac{\partial i_D}{\partial V_{TH}} \frac{\partial V_{TH}}{\partial v_{BS}} = \beta V_{DS} \frac{\sqrt{2\varepsilon_s q N_A}}{C_{OX}} \left(\frac{1}{2\sqrt{2\phi_F - V_{BS}}} \right)$$

Interdizione

$$g_m = 0$$

$$g_o = 0$$

$$g_{mb} = 0$$

Saturazione

$$g_{m} = \beta \left(V_{GS} - V_{TH}\right) \left(1 + \lambda V_{DS}\right) = \sqrt{2\beta I_{D}/\left(1 + \lambda V_{DS}\right)}$$

$$g_o = \lambda \frac{\beta}{2} (V_{GS} - V_{TH})^2 = I_D \frac{\lambda}{1 + \lambda V_{DS}} = \frac{I_D}{1/\lambda + V_{DS}}$$

$$g_{mb} = \frac{\partial i_D}{\partial V_{TH}} \frac{\partial V_{TH}}{\partial v_{BS}} = \beta \left(V_{GS} - V_{TH} \right) \left(1 + \lambda V_{DS} \right) \frac{\sqrt{2\varepsilon_s q N_A}}{C_{OX}} \left(\frac{1}{2\sqrt{2\phi_F - V_{BS}}} \right)$$

pMOSFET: Circuito per Piccoli Segnali

Circuito equivalente alle variazioni del MOSFET a canale p

$$g_{m} = \frac{\partial i_{D}}{\partial v_{SG}} \bigg|_{V_{-1}, V_{-2}, V_{-3}}$$

 $= g_m v_{sg} + g_o v_{sd} + g_{mb} v_{sb}$

$$g_o = \frac{\partial i_D}{\partial v_{SD}} \bigg|_{V_{SG}, V_{SD}, V_{SR}}$$

$$g_{mb} = \frac{\partial i_D}{\partial v_{SB}} \bigg|_{V_{SG}, V_{SD}, V_{SB}}$$

pMOSFET: Parametri Differenziali

Triodo

$$g_{m} = \beta V_{SD}$$

$$g_{o} = \beta (V_{SG} + V_{TH} - V_{SD})$$

$$\partial i \quad \partial V$$

$$g_{mb} = \frac{\partial i_D}{\partial V_{TH}} \frac{\partial V_{TH}}{\partial v_{SB}} = \beta V_{SD} \frac{\sqrt{2\varepsilon_s q N_D}}{C_{OX}} \left(\frac{1}{2\sqrt{2\phi_F - V_{SB}}} \right)$$

Interdizione

$$g_m = 0$$

$$g_o = 0$$

$$g_{mb} = 0$$

Saturazione

$$g_{m} = \beta (V_{SG} + V_{TH}) = \sqrt{2\beta I_{D}}$$
$$g_{o} = 0$$

$$g_{mb} = \frac{\partial i_D}{\partial V_{TH}} \frac{\partial V_{TH}}{\partial v_{SB}} = \beta \left(V_{SG} + V_{TH} \right) \frac{\sqrt{2\varepsilon_s q N_D}}{C_{OX}} \left(\frac{1}{2\sqrt{2\phi_F - V_{SB}}} \right)$$

pMOSFET: Parametri Differenziali

Triodo

$$g_m = \beta V_{SD}$$

$$g_o = \beta (V_{SG} + V_{TH} - V_{SD})$$

$$g_{mb} = \frac{\partial i_D}{\partial V_{TH}} \frac{\partial V_{TH}}{\partial v_{SB}} = \beta V_{SD} \frac{\sqrt{2\varepsilon_s q N_D}}{C_{OX}} \left(\frac{1}{2\sqrt{2\phi_F - V_{SB}}} \right)$$

Interdizione

$$g_m = 0$$

$$g_o = 0$$

$$g_{mb} = 0$$

Saturazione

$$g_{m} = \beta \left(V_{SG} + V_{TH}\right) \left(1 + \lambda V_{SD}\right) = \sqrt{2\beta I_{D}/\left(1 + \lambda V_{SD}\right)}$$

$$g_o = I_D \frac{\lambda}{1 + \lambda V_{SD}} = \frac{I_D}{1/\lambda + V_{SD}}$$

$$g_{mb} = \frac{\partial i_D}{\partial V_{TH}} \frac{\partial V_{TH}}{\partial v_{SB}} = \beta \left(V_{SG} + V_{TH} \right) \left(1 + \lambda V_{SD} \right) \frac{\sqrt{2\varepsilon_s q N_D}}{C_{OX}} \left(\frac{1}{2\sqrt{2\phi_F - V_{SB}}} \right)$$

nMOSFET: Circuito per Piccoli Segnali (Casi Particolari)

Esempio: NMOSFET a tre terminali (B=S) in <u>saturazione</u>

senza l'effetto di modulazione di canale

con l'effetto di modulazione di canale

nMOSFET: Circuito per Piccoli Segnali (Casi Particolari)

 Esempio: NMOSFET a tre terminali (B=S) senza effetto di modulazione di canale (λ = 0)

 $g_{mb}=0$

Triodo

Interdizione

$$g_{m} = \beta V_{DS}$$

$$g_{o} = \beta (V_{GS} - V_{TH} - V_{DS})$$

$$g_m = 0$$

$$g_o = 0$$

nMOSFET: Circuito per Piccoli Segnali Modello a T

Modello a T: nMOSFET in saturazione (senza e con ro)

II MOSFET come Amplificatore

II MOSFET come Amplificatore

Esempio di Soluzione Grafica di Circuito con MOSFET

Circuito in DC (determinazione del punto di lavoro)

$$\frac{V_{DD} - V_{out}}{R_C} = I_D = f(V_{GG}, V_{out})$$

Esempio di Soluzione Grafica di Circuito con MOSFET

Circuito equivalente alle variazioni

$$v_{out} = -g_m \frac{R_C 1/g_o}{R_C + 1/g_o} v_{in}$$

$$A_v = -g_m \frac{R_C 1/g_o}{R_C + 1/g_o}$$

$$se g_o = 0$$

$$A_v = -g_m R_C$$

$$v_{bs} = 0$$

MOSFET: Circuito equivalente alle variazioni completo

Circuito equivalente alle variazioni (con capacità parassite)

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \bigg|_{V_{GS}, V_{DS}, V_{BS}}$$

$$g_o = \frac{\partial i_D}{\partial v_{DS}} \bigg|_{V_{GS}, V_{DS}, V_{BS}}$$

$$g_{mb} = \frac{\partial i_D}{\partial v_{BS}} \bigg|_{V_{GS}, V_{DS}, V_{BS}}$$

Polarizzazione nei Circuiti Discreti

Circuito a 4 resistenze

$$V_{GG} = \frac{R_{G2}}{R_{G1} + R_{G2}} V_{DD}$$

Elementi di **Elettronica** (INF)

A.A. 2021-22

Polarizzazione nei Circuiti Discreti

Se $R_{\scriptscriptstyle S}=0$ $V_{\scriptscriptstyle GS}=V_{\scriptscriptstyle GG}$

$$V_{GS} = V_{GG}$$

Il punto di riposo può variare notevolmente a causa della dispersione delle caratteristiche

$$V_{GG} = V_{GS} + R_S I_D$$

Se
$$R_S \neq 0$$

$$V_{GG} = V_{GS} + R_S I_D$$

$$I_D = \frac{V_{GG}}{R_S} - \frac{1}{R_S} V_{GS}$$

Polarizzazione nei Circuiti Discreti

Circuito alternativo

Si ha:
$$V_{GS}=V_{DS}$$
 $\left(I_G=0\right)$
$$V_{GS}=V_{DD}-R_DI_D$$

$$I_D=\frac{V_{DD}}{R_D}-\frac{1}{R_D}V_{DS}$$

Amplificatori a Singolo Stadio: Source Comune (SC)

 C_{C1} C_{C2} Capacità di disaccoppiamento: bloccano la componente continua cosicché il punto di lavoro non dipende dal generatore di segnale e dal carico

 $C_{\it S}$ Capacità di bypass: serve a cortocircuitare la $R_{\it S}$ cosicché il guadagno risulta più elevato

 C_{C1} C_{C2} C_{S} devono essere sufficientemente elevate cosicché possono essere considerate dei cortocircuiti alle frequenze di interesse (medie frequenze)

Amplificatori a Singolo Stadio: Source Comune (SC) con Rs

Source Comune (SC) con resistenza di source non cortocircuitata

 $C_{c1} \ C_{c2}$: capacità di disaccoppiamento

 $C_{\scriptscriptstyle S}$: capacità di cortocircuito di $R_{\scriptscriptstyle S2}$ al source

Amplificatori a Singolo Stadio: Drain Comune (DC) – Source Follower

Drain Comune (DC) – Source Follower)

 $C_{c1} \ \ C_{c2}$: capacità di disaccoppiamento

 $C_{\scriptscriptstyle D}$: capacità di cortocircuito del drain

Amplificatori a Singolo Stadio: Gate Comune (GC)

Gate Comune (GC)

 $C_{{\it C}1}$ $C_{{\it C}2}$: capacità di disaccoppiamento

 $C_{\scriptscriptstyle G}$: capacità di cortocircuito del gate

Configurazione a Source Comune

 C_{C1} C_{C2} C_{S} devono essere sufficientemente elevate cosicché possono essere considerate dei cortocircuiti alle frequenze di interesse (medie frequenze)

La R_G evita che il gate sia flottante

Configurazione a Source Comune

Circuito equivalente alle variazioni

$$R_i = \frac{v_1}{i_1} = R_G$$

$$R_o' = \frac{v_2}{i_2} \Big|_{v_0 = 0} = r_o \| R_D$$

$$R_o = r_o \| R_D \| R_L$$

$$A_{v} = \frac{v_{2}}{v_{1}} = -g_{m} \left(r_{o} \| R_{D} \| R_{L} \right)$$

Configurazione a Drain Comune

 C_{C1} C_{C2} C_D devono essere sufficientemente elevate cosicché possono essere considerate dei cortocircuiti alle frequenze di interesse (medie frequenze)

La R_G evita che il gate sia flottante

Elementi di **Elettronica** (INF) A.A. 2021-22

Configurazione a Drain Comune

Circuito equivalente alle variazioni

$$R_i = \frac{v_1}{i_1} = R_G$$

$$R_o' = \frac{v_2}{i_2}\Big|_{v_i=0} = \frac{1}{g_m} \| r_o \cong \frac{1}{g_m} - R_o = \frac{1}{g_m} \| r_o \| R_L \cong \frac{1}{g_m} \| R_L$$

$$v_o = g_m v_{gs} (r_o || R_L)$$
 $v_i = v_{gs} + v_o$ $v_o = g_m (v_i - v_o) (r_o || R_L)$

$$v_o \left(1 + g_m r_o \| R_L \right) = g_m r_o \| R_L v_i \qquad A_v = \frac{v_2}{v_1} = \frac{v_o}{v_i} = \frac{g_m r_o \| R_L}{1 + g_m r_o \| R_L} < 1 \qquad \boxed{r_o \gg \frac{1}{g_m}}$$

Configurazione a Gate Comune

 C_{C1} C_{C2} C_{G} devono essere sufficientemente elevate cosicché possono essere considerate dei cortocircuiti alle frequenze di interesse (medie frequenze)

La R_G evita che il gate sia flottante

Configurazione a Gate Comune

Circuito equivalente alle variazioni

$$v_1 = v_i = -v_{gs}$$
 $i_1 \cong -g_m v_{gs}$ (si trascura la corrente assorbita da r_o)

$$R_i = \frac{v_1}{i_1} \cong \frac{1}{g_m}$$
 $R_o' = \frac{v_2}{i_2}\Big|_{v=0} = R_D$ $R_o = R_D \| R_L$

$$A_{v} = \frac{v_2}{v_1} \cong g_m \left(R_D \| R_L \right)$$

Circuiti Integrati MOS

Elementi di Elettronica (INF) A.A. 2021-22

Carico attivo

MOSFET enhancement

$$i = \frac{\beta}{2} \left(v - V_{TH} \right)^2$$

 $i_{D1}(v_{DS1}) = i_{D2}(v_{DS2}) = i_{D2}(V_{DD} - v_{DS1})$

Circuiti Integrati MOS

$$\begin{cases} i_{D1} = \frac{\beta_1}{2} (v_{GS1} - V_{TH})^2 = \frac{\beta_1}{2} (v_I - V_{TH})^2 \\ i_{D2} = \frac{\beta_2}{2} (v_{GS2} - V_{TH})^2 = \frac{\beta_2}{2} (V_{DD} - v_O - V_{TH})^2 \end{cases}$$

$$i_{D1} = i_{D2}$$
 \Rightarrow $\frac{\beta_1}{2} (v_I - V_{TH})^2 = \frac{\beta_2}{2} (V_{DD} - v_O - V_{TH})^2$

Da cui:

$$v_O = \left(V_{DD} - V_{TH} + \sqrt{\frac{\beta_1}{\beta_2}} V_{TH}\right) - \sqrt{\frac{\beta_1}{\beta_2}} v_I$$

è lineare in v

$$A_{v} = \frac{dv_{O}}{dv_{I}} = -\sqrt{\frac{eta_{1}}{eta_{2}}} = -\sqrt{\frac{\left(W/L\right)_{1}}{\left(W/L\right)_{2}}}$$

Elementi di Elettronica (INF) A.A. 2021-22

Circuiti Integrati MOS

$$v_{gs2} = -v_o$$

$$v_{i} = v_{gs1} \qquad v_{o} = -g_{m1}v_{gs1} \left(\frac{1}{g_{m2}} \| r_{o1} \| r_{o2} \right) = \frac{-g_{m1}v_{gs1}}{g_{m2} + \frac{1}{r_{o1}} + \frac{1}{r_{o2}}}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = -\frac{g_{m1}}{g_{m2} + \frac{1}{r_{c1}} + \frac{1}{r_{c2}}}$$

$$A_{v} \cong -\frac{g_{m1}}{g_{m2}}$$

Effetto di Substrato

Effetto di Substrato

Elementi di Elettronica (INF) A.A. 2021-22

$$v_i = v_{gs1}$$
 $v_{gs2} = -v_o$ $v_{bs1} = 0$ $v_{bs2} = -v_o$

$$v_{o} = -g_{m1}v_{gs1} \left(\frac{1}{g_{m2}} \left\| \frac{1}{g_{mb2}} \right\| r_{o1} \left\| r_{o2} \right) = \frac{-g_{m1}v_{gs1}}{g_{m2} + g_{mb2} + \frac{1}{r_{o1}} + \frac{1}{r_{o2}}}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = -\frac{g_{m1}}{g_{m2} + g_{mb2} + \frac{1}{r_{o1}} + \frac{1}{r_{o2}}}$$

$$A_{v} \cong -\frac{g_{m1}}{g_{m2} + g_{mb2}}$$

Il guadagno si riduce

Elementi di **Elettronica** (INF) A.A. 2021-22

Lo Specchio di Corrente

 $\beta = 2K = k_n \frac{W}{I} = \mu_n C_{OX} \frac{W}{I}$

$$I_{REF} = \frac{\beta_1}{2} \left(V_{GS1} - V_{TH} \right)^2$$

$$I_{O} = \frac{\beta_{2}}{2} (V_{GS2} - V_{TH})^{2}$$

$$V_{GS}=V_{GS1}=V_{GS2}$$
 da cui:

$$I_O = I_{REF} \frac{\beta_2}{\beta}$$

$$I_O = I_{REF} rac{oldsymbol{eta}_2}{oldsymbol{eta}_1} \qquad \qquad I_O = I_{REF} rac{ig(W/Lig)_2}{ig(W/Lig)_1}$$

Generatore di Wilson

$$R_o = r_{o3} (g_{m3} r_{o1} + 2) \cong g_{m3} r_{o1} r_{o3}$$

Generatore di Wilson Modificato

Generatore Cascode

Generatore Cascode: Resistenza di Uscita

$$\begin{cases} v_o = (i_o - g_{m3} v_{gs3}) r_{o3} + i_o r_{o2} \\ v_{gs3} = -i_o r_{o2} \end{cases}$$

$$v_o = i_o (r_{o3} + g_{m3} r_{o2} r_{o3} + r_{o2})$$

$$R_o = r_{o3} + g_{m3} r_{o2} r_{o3} + r_{o2}$$

molto elevata