sistemas electrónicos

MOSFET: exercícios

1. - Considere: $R_1=7k\Omega$; $R_2=3k\Omega$; $R_2=5k\Omega$; $V_{DD}=+10V$ e que o MosFet é canal N de enriquecimento.

Para as polaridades indicadas na figura, indique (1, 2 e 3) a porta, o dreno e a fonte.

Com V_{to} =2V ; K=1mA/V² , determine VGS, VDS e ID e verifique que o transistor está na zona de saturação.

2. - Considere: R_D =500 Ω ; V_{DD} =+1,8V ; V_{to} = 0,4V ; K=4,8mA/ V^2 . Pretende-se obter I_D =0,8mA e R_{in} = R_1 // R_2 =200k Ω . Determine R_1 e R_2 e verifique que o transistor está na zona de saturação.

3. - Considere: $R_i=0\Omega$; $R_1=40k\Omega$; $R_2=10k\Omega$; $R_D=1k\Omega$; $R_S=100\Omega$; $R_L=\infty\Omega$ e que $V_{DD}=+20V$; $V_{to}=1V$; K=2,5 mA/ V^2 . Considere ainda que os condensadores $C\infty$ se comportam como curto-circuitos para pequeno sinal e circuito-abertos para dc.

a) Determine o ponto de funcionamento do do circuito (VGS, VDS e ID); verifique que o transistor está na zona de saturação.

- b) Desenhe o esquema equivalente para pequenos sinais.
- c) Calcule o ganho de tensão Vo/Vi, sabendo que gm=10mA/V.
- 4. Usando o esquema do problema anterior considere, agora: Ri=1kΩ; R1=10kΩ; RD=2kΩ; RS=1kΩ; RL=8kΩ; VDD=+10V; Vto=1V; K=0,5mA/V²; gm=2mA/V. Considere ainda que os condensadores C∞ se comportam como curto-circuitos para pequeno sinal e circuito-abertos para dc.
 - a) Pretende-se VGS=3V. Calcule ID e R2 e verifique que o transistor está na zona de saturação.
 - b) Desenhe o esquema equivalente para pequenos sinais.
 - c) Calcule o ganho de tensão Vo/Vi (atenção ao divisor de tensão R_1 com R_1 // R_2).

sistemas electrónicos

5. - Considere M1=M2 e que V_{to} =0,4V ; K=1,8 mA/V². Calcule para cada transistor VGS, VDS e ID.

6.- O circuito abaixo é usado para acender e apagar o LED ($V\gamma$ =2V). V_{to} =0,55V ; K=2,4mA/V².

Para VI = 5V, pretende-se obter VDS = 0.5V. Calcule ID = RD.

Nota: verifique que o transistor está na zona triodo e não na de saturação.

