МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО "ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. П.О. СУХОГО"

Кафедра "Электроснабжение"

	ЛАБОРАТОРНАЯ І	РАБОТА №5	
ФУНКЦИОНАЛЬНЫ	Е ЭЛЕМЕНТЫ НА	ОПЕРАПИОННО	ОМ УСИЛИТЕЛЕ

Выполнил: студент гр.

Руководитель:

Исследование инвертирующего усилителя

Цель работы: изучить принципы работы инвентирующего усилителя, собрать схему, записать значения выходного напряжения, произвести необходимые вычисления и сравнить полученные данные.

На рисунке 1 приведена схема инвертирующего усилителя

Рисунок 1 – Схема инвентирующего усилителя

В результате работы была собрана схема инвентирующего усилителя (резисторы $R_1=R_{11}$ и $R_2=R_{16}$ были взяты исходя из варианта №3). С помощью регулируемого резистора изменяли входное напряжение от минимума до максимума. В ходе работы зафиксировали 20 точек характеристики (10 в положительной области и в 10 отрицательной). Все результаты измерений занесены в таблицу 1.

Таблица 1 – Результаты измерений инвентирующего усилителя

	arbi iisiiiepeiiiiii	1.0
$N_{\pi\pi}$	U_{BX} , B	$U_{\text{вых}}, B$
1	4,057	-12,966
2	1,104	-13,052
3	0,995	-11,701
4	0,859	-10,189
5	0,744	-8,723
6	0,606	-7,284
7	0,462	-5,431
8	0,328	-3,861
9	0,140	-1,626
10	0,041	-0,452
11	-0,052	0,612
12	-0,167	1,950
13	-0,348	4,161
14	-0,433	5,208
15	-0,610	7,270
16	-0,780	9,254
17	-0,877	10,440
18	-1,030	12,351
19	-1,104	12,420
20	-4,103	12,337

Рассчитаем значения выходного напряжения Uвых для теоретической передаточной характеристики по формуле:

$$K_{yc} = \frac{U_{ebix}}{U_{ex}} = \frac{-R_2}{R_1}$$

где $U_{\text{вых}}$ – выходное напряжение;

 $U_{\scriptscriptstyle BX}-$ входное напряжение;

 $R_{1,2}$ – резисторы (значения согласно варианту №3).

$$K_{yc} = \frac{-51 \cdot 10^3}{4,3 \cdot 10^3} = -11,86$$

Изобразим теоретическую и экспериментальную передаточные характеристики на одном графике.

Передаточные характеристики инвентирующего усилителя представлены на рисунке 2.

Рисунок 2 – Передаточные характеристики инвентирующего усилителя

Вывод: Теоритическое и экспериментальное напряжения на выходе инвентирующего усилителя заметно отличаются друг от друга (примерно на 1,160 В в отрицательной области и на 0,62 В в положительной). Возможно это связано с тем, что теоретические (расчетные) значения рассчитываются в идеальных случаях. Значения сопротивлений идеальны, как указано на компонентах, но на практике это отличается от отмеченных значений.