

·	oae	; I	ISCEOIL		
			T		1

VI Semester Diploma Examination, April/May-2018

Register Number

ı	DESIGN OF STEEL AND MASONRY STRUC	TORLE	
Time	e: 3 Hours] [Max.	Marks: 100	j
Note	 (i) Use of IS 800-2007 and steel table are permitted, in the exam hall (ii) Missing data may be assumed suitably. 	le:	
	PART - A		
	Answer any five questions of the following. Each question carries five man	rks.	2
1.	What are the advantages and disadvantages of Steel Structures?	5	
2.	What are the different types of loads acting on Steel Structures?	5	
3.	Define Pitch, Gauge, Edge distance, Nominal dia and lap.		5
4.	What are the advantages of welded joints?		5
5.	Mention different types of failures in beams.		5
6.	Name different modes of failure of tension members and explain briefly a	ny one.	5 .
7.	Mention the end conditions of columns with their effective lengths	as per I.S.	3
	Standards.		5
	Name various conditions for stability of gravity dams		5

PART - B

Answer any	five questions of	the following.	Each question carry	fifteen marks
	questions of	the following.	Each question carry	fifteen marks

- Design a lap joint connecting two plates 100 mm × 8 mm to transmit a factored load of 150 kN. Use 16 mm diameter black bolts of grade 4.6, Steel having f_u = 410 N/mm².
- An I.S.A. 150 × 115 × 10 mm angle section is to be connected to a 10 mm thick gussette plate. Design a fillet weld to carry a load equal to the strength of the member. Fillet weld is provided on all the three sides.
- A simply supported steel beam of throughout. It carries total u.d.l. of 12 kN/m inclusive of self weight. Design the section using steel of grade 410.
- Design a tension member using two angles back to back on either side of a gussette plate 10 mm thick for an axial factored load of 375 kN. Use 20mm diameter black bolts. Take f_u = 410 N/mm² & f_y = 250 N/mm².
- Design a column 3.8 m long in a building subjected to a factored load of 600 kN.
 Both the ends of column are effectively restrained in direction and position. Use steel of grade 410.
- A 3.6 m long ISHB 250 @ 536.6 N/m carries factored axial load of 2500 kN. Design a slab base for the column which is resting on a concrete pedestal of M25 concrete.
 Also design the pedestal for SBC of soil 280 kN/m². Use 20 mm dia bolts.
- 15. A masonry retaining wall of trapezoidal section is 5 m height and 1 m wide at the top. It retains soil upto the top of wall. Face of the wall in contact with soil is vertical. Soil and masonry weigh 16 kN/m³ and 23 kN/m³ respectively. Calculate minimum bottom width of the wall so that no tension is induced at the base. Take angle of repose as 30°.