

数字逻辑设计及应用 (Digital Logic Design and Applications)

1.2 模拟与数字 (Analog versus Digital)

- *1.2.1 关于 "数字设计" (Digital Design)
- * 又称"逻辑设计" (Logic Design)
- 设计的目标是构建系统(Build System)
- 数字设计是系统工程,工程意味着"解决问题" (Problem Solving)

只有5%-10%是数字设计的创造性部分,其余90%-95%都是常规的设计方法

1.2 模拟与数字 (Analog versus Digital)

模拟量:

其变化在时间或数值 上是连续的

数字量:

其变化在时间或数量 上都是离散的 数值大小是某一个最 小数量单位的整数倍

1.2 模拟与数字 (Analog versus Digital)

- → 模拟信号在传输过程中失真
- ⇒ 数字信号仍然可以保持 ()、1

THE STATE OF THE S

1.2 模拟与数字 (Analog versus Digital)

数字系统

所有输入和输出都只能是 1 或 0!

7

1.2 模拟与数字 (Analog versus Digital)

* 数字系统的优越性

- *结果再现性 (Reproducibility), 稳定可靠、特度 更高
- * 易于设计, 灵活性 (Flexibility) 更高, 功能性 (Functionality) 更强
- *可编程性 (Programmability), 使用HDL (硬件描述语言)
- *快速、经济、稳步发展的技术

1.2 未来: 可能绝大部分事物都被数字化了

1.2 本节主要内容

- * 主要介绍模拟和数字的关系
- 数字设计(Digital Design)
- 模拟 (Analog) 信号和数字 (Digital) 信
- * 数字系统
- * 数字系统的优越性

数字逻辑设计及应用 (Digital Logic Design and Applications)

谢!

