Разработка алгебраических методов аппроксимации неотрицательных матриц при наличии ограничений

Подчищайлов Андрей Александрович, 19Б.04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н., профессор Кривулин Н. К., Рецензент: научный сотрудник Губанов С. А.

> Санкт-Петербург 2023г

Задача аппроксимация матриц

Задача аппроксимации положительной матрицы $A\in\mathbb{R}^{n\times n}$ матрицей K из класса матриц $\mathfrak{M}\subset\mathbb{R}^{n\times n}$ записывается в виде

$$\min_{\boldsymbol{K}\in\mathfrak{M}}\rho(\boldsymbol{A},\boldsymbol{K}),$$

где ho — некоторая функция расстояния. Примеры функции расстояния:

- ullet Расстояние Минковского: $ho_p(m{A},m{K}) = (\sum_{i,j} |a_{ij}-k_{ij}|^p)^{1/p}$
- ullet Расстояние Чебышёва: $ho_{\infty}(oldsymbol{A},oldsymbol{K})=\max_{i,j}|a_{ij}-k_{ij}|$
- ullet Log-чебышёвское расстояние с основанием логарифма больше единицы: $ho_{\log}(m{A},m{K}) = \max_{i,j} |\log a_{ij} \log k_{ij}|$

Постановка задачи

- Рассмотрим задачу аппроксимации положительной квадратной матрицы ${m A}=(a_{ij})$ с использованием log-чебышёвского расстояния положительной матрицей единичного ранга.
- Аппроксимирующая матрица может быть представлена в форме ${m K}=(y_i/x_j)$, где ${m x}=(x_j)$, ${m y}=(y_i)$ положительные вектора.
- Задача с ограничениями, задаваемыми элементами неотрицательных матриц $m{P}=(p_{ij}), \ m{Q}=(q_{ij}), \ m{R}=(r_{ij}), \ m{S}=(s_{ij}),$ имеет вид

$$\min_{\boldsymbol{x},\boldsymbol{y}} \quad \max_{i,j} \left| \log a_{ij} - \log \frac{y_i}{x_j} \right|;$$

$$p_{ij}y_j \leq x_i, \quad q_{kl}x_l \leq y_k,$$

$$r_{ij}x_j \leq x_i, \quad s_{kl}y_l \leq y_k.$$

Сравнение подходов к решению

Использование классических методов теории оптимизации (которые, в основном, являются итеративными, т.е. численными) может быть осложнено

- Многоэкстремальностью.
- Негладкостью функции расстояния.
- Возможностью существования не единственного решения.

Альтернативой классическому подходу может являться подход на основе методов тропической оптимизации, позволяющий

- Получить полное решение задачи оптимизации.
- Записать решение в компактной векторно-матричной форме.

Приведём определения из тропической математики, требуемые для формулирования задачи в тропической форме.

Идемпотентное полуполе

Алгебраическая система (X, \oplus , \odot , \mathbb{O} , $\mathbb{1}$) называется идемпотентным полуполем, если:

- Для операций сложения ⊕ и умножения ⊙ с нейтральными элементами 0 и 1 выполнены все аксиомы поля, за исключением существование обратного по сложению.
- ullet Сложение идемпотентно, т.е. $x \oplus x = x$ для любого $x \in \mathbb{X}$.

Идемпотентное сложение индуцирует частичный порядок на X: $a \leq b$ означает, что $a \oplus b = b$.

В работе использовано идемпотентное полуполе, называемое max-алгеброй \mathbb{R}_{\max} : ($\mathbb{R}_+, \max, \times, 0, 1$).

Матрицы и векторы

- $\mathbb{X}^{m \times n}$ множество матриц над \mathbb{X} размерности $m \times n$. \mathbb{X}^n множество векторов над \mathbb{X} .
- Вектор называется регулярным, если он не содержит нулевых элементов.
- Матрица $m{A}^-=(a_{ij}^-)\in \mathbb{X}^{n imes m}$ называется мультипликативно сопряженной к $m{A}=(a_{ij})\in \mathbb{X}^{m imes n}$, если $a_{ij}^-=1/a_{ji}$ если $a_{ji}\neq 0$ и $a_{ij}^-=0$ иначе.
- След квадратной матрицы tr определён как обычно с использованием операции ⊕ вместо арифметического сложения.

Собственные значения и оператор Клини

ullet Скаляр $\lambda \in \mathbb{X}$ называется собственным числом квадратной матрицы $oldsymbol{A}$ если выполнено

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x},$$

для ненулевого вектора x, называемого собственным.

• Спектральным радиусом матрицы ${m A} \in {\mathbb X}^{n imes n}$ называется максимальное с. ч. λ , которое находится по формуле

$$\lambda = \operatorname{tr} \mathbf{A} \oplus \operatorname{tr}^{1/2}(\mathbf{A}^2) \oplus \ldots \oplus \operatorname{tr}^{1/n}(\mathbf{A}^n).$$

ullet Для квадратных матриц $oldsymbol{A} \in \mathbb{X}^{n imes n}$ введём функцию

$$\operatorname{Tr}(\boldsymbol{A}) = \operatorname{tr} \boldsymbol{A} \oplus \operatorname{tr}(\boldsymbol{A}^2) \oplus \ldots \oplus \operatorname{tr}(\boldsymbol{A}^n).$$

ullet Если для матрицы $m{A} \in \mathbb{X}^{n imes n}$ выполнено $\mathrm{Tr}(m{A}) \leq \mathbb{1}$, то для неё определён оператор Клини

$$\boldsymbol{A}^* = \bigoplus_{k=0}^{n-1} \boldsymbol{A}^k.$$

Приведённые в работе доказательства опираются, в основном, на следующую теорему [Krivulin, 2015]

Теорема (О двустороннем неравенстве)

Для любой матрицы $oldsymbol{A} \in \mathbb{X}^{n imes n}$ и вектора $oldsymbol{b} \in \mathbb{X}^n$ при решении неравенства вида

$$Ax \oplus b \leq x$$

возможно две альтернативы

- 1) Если $\mathrm{Tr}(A) \leq \mathbb{1}$, то все регулярные решения имеют вид $x=A^*u$, где u регулярный вектор такой, что $u\geq b$.
- 2) Если $\mathrm{Tr}(oldsymbol{A})>\mathbb{1}$, то регулярных решений нет.

Тропический вид задачи аппроксимации

В работе показано, что введённая задача аппроксимации

$$\min_{\boldsymbol{x},\boldsymbol{y}} \quad \max_{i,j} \left| \log a_{ij} - \log \frac{y_i}{x_j} \right|;
p_{ij}y_j \leq x_i, \quad q_{kl}x_l \leq y_k,
r_{ij}x_j \leq x_i, \quad s_{kl}y_l \leq y_k,$$

может быть представлена в терминах тропического полуполя \mathbb{R}_{\max} следующим образом

$$egin{aligned} \min_{oldsymbol{x},oldsymbol{y}} & oldsymbol{y}^-oldsymbol{A}oldsymbol{x} \oplus oldsymbol{x}^-oldsymbol{A}^-oldsymbol{y}; \ & oldsymbol{P}oldsymbol{y} \leq oldsymbol{x}, \quad oldsymbol{Q}oldsymbol{x} \leq oldsymbol{y}, & oldsymbol{S}oldsymbol{y} \leq oldsymbol{y}. \end{aligned}$$

Были рассмотрены частные случаи ограничений.

Частный случай ограничений матрицей Р

Теорема

Пусть задача имеет следующий вид $(oldsymbol{P}=oldsymbol{A}^-)$

$$egin{array}{ll} \min_{oldsymbol{x},oldsymbol{y}} & oldsymbol{y}^- oldsymbol{A} oldsymbol{x} + oldsymbol{A}^- oldsymbol{y} \leq oldsymbol{x}, \ & oldsymbol{A}^- oldsymbol{y} \leq oldsymbol{x}, \end{array}$$

и пусть спектральный радиус матрицы ${m A}{m A}^-$ равен $\lambda>0$. Тогда минимум в задаче равен λ , а все регулярные решения имеют вид

$$x = (\lambda^{-1} \mathbf{A}^{-} \mathbf{A})^* \mathbf{u} \oplus \mathbf{A}^{-} (\lambda^{-1} \mathbf{A} \mathbf{A}^{-})^* \mathbf{v},$$

$$y = \lambda^{-1} \mathbf{A} (\lambda^{-1} \mathbf{A}^{-} \mathbf{A})^* \mathbf{u} \oplus (\lambda^{-1} \mathbf{A} \mathbf{A}^{-})^* \mathbf{v},$$

где u и v — произвольные регулярные векторы.

Общий случай ограничений матрицей Р

Рассмотрим следующую подзадачу:

$$egin{array}{ll} \min_{oldsymbol{x},oldsymbol{y}} & oldsymbol{y}^- oldsymbol{A} oldsymbol{x} \oplus oldsymbol{x}^- oldsymbol{A}^- oldsymbol{y}; \ & oldsymbol{P} oldsymbol{y} \leq oldsymbol{x}. \end{array}$$

Пусть C и D — квадратные матрицы одинакового размера. Для натуральных k и m при условии $k \leq m$ введём обозначение

$$m{W}_{k,m}(m{C},m{D}) = igoplus_{0 \leq i_0 + \dots + i_k = m-k} m{D}^{i_0} m{C} m{D}^{i_1} \cdots m{C} m{D}^{i_k}.$$

Общий случай ограничений матрицей Р

Теорема

Пусть P — ненулевая матрица а λ — спектральный радиус матрицы AP. Тогда минимум μ в задаче равен

$$\mu = \lambda \oplus \bigoplus_{m=1}^{n} \bigoplus_{k=1}^{m} \operatorname{tr}^{1/(k+m)} (W_{k,m}(AA^{-}, AP)),$$

а все регулярные решения имеют вид

$$x = (\mu^{-1}MA)^* u \oplus M(\mu^{-1}AM)^* v,$$

$$y = \mu^{-1}A(\mu^{-1}MA)^* u \oplus (\mu^{-1}AM)^* v,$$

где $oldsymbol{M}=\mu^{-1}oldsymbol{A}^-\oplus oldsymbol{P}$, $oldsymbol{u}$ и $oldsymbol{v}$ — произвольные регулярные векторы.

Общий случай ограничений матрицами R и S

Теорема

Пусть ограничения в задаче имеют вид

$$egin{aligned} \min_{oldsymbol{x},oldsymbol{y}} & oldsymbol{y}^- oldsymbol{A} oldsymbol{x} \oplus oldsymbol{x}^- oldsymbol{A}^- oldsymbol{y}; \ & oldsymbol{R} oldsymbol{x} \leq oldsymbol{x}, \quad oldsymbol{S} oldsymbol{y} \leq oldsymbol{y}. \end{aligned}$$

Пусть матрицы ${m R}$ и ${m S}$ таковы, что ${
m Tr}\,({m R}) \le 1$ и ${
m Tr}\,({m S}) \le 1$. Положим λ — спектральный радиус матрицы ${m A}^-{m S}^*{m A}{m R}^*$. Тогда минимум μ в задаче равен

$$\mu = \lambda^{1/2},$$

а все регулярные решения имеют вид

$$x = R^* (\mu^{-2} A^- S^* A R^*)^* u \oplus \mu^{-1} R^* (\mu^{-2} A^- S^* A R^*)^* A^- S^* v,$$

$$y = \mu^{-1} S^* (\mu^{-2} A R^* A^- S^*)^* A R^* u \oplus S^* (\mu^{-2} S^* A R^* A^- S^*)^* v,$$

где $oldsymbol{u}$ и $oldsymbol{v}$ — произвольные регулярные векторы.

Аналитический пример с n=2

Найдем минимум относительно элементов матрицы $oldsymbol{A}$ в следующей задаче

$$egin{array}{ll} \min_{oldsymbol{x},oldsymbol{y}} & oldsymbol{y}^-oldsymbol{A}oldsymbol{x} + oldsymbol{x}^-oldsymbol{A}^-oldsymbol{y} \leq oldsymbol{x}, \end{array}$$

при условии размерности матрицы $m{A}$ равной 2. Зададим

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \qquad A^{-} = \begin{pmatrix} 1/a_{11} & 1/a_{21} \\ 1/a_{12} & 1/a_{22} \end{pmatrix}.$$

По теореме необходимо вычислить спектральный радиус матрицы ${m A}{m A}^-$. Построим матрицу

$$AA^- = \begin{pmatrix} 1 & a_{11}/a_{21} \oplus a_{12}/a_{22} \ a_{21}/a_{11} \oplus a_{22}/a_{12} & 1 \end{pmatrix}.$$

Аналитический пример с n=2

Найдём след матрицы $({m A}{m A}^-)^2$, вычислив её диагональные элементы

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{A}^{-})^{2} = 1 \oplus a_{11}a_{22}/a_{12}a_{21} \oplus a_{12}a_{21}/a_{11}a_{22}.$$

Ясно, что одно из двух последних слагаемых не меньше единицы. Тогда минимум есть

$$\mu = \operatorname{tr} \boldsymbol{A} \boldsymbol{A}^- \oplus \operatorname{tr}^{1/2} (\boldsymbol{A} \boldsymbol{A}^-)^2$$

Поскольку $\operatorname{tr} {m A} {m A}^- = 1$, а $\operatorname{tr} ({m A} {m A}^-)^2 \geq 1$, то

$$\mu = \operatorname{tr}^{1/2}(\mathbf{A}\mathbf{A}^{-})^{2} = \sqrt{a_{11}a_{22}/a_{12}a_{21} \oplus a_{12}a_{21}/a_{11}a_{22}}$$

В случае, если матрица ${m A}$ имеет единичный ранг, минимум равен $\mu=1$.

Заключение

В работе были получены следующие результаты:

- Исследована задача одноранговой аппроксимации положительной матрицы в log-чебышёвской метрике при наличии ограничений.
- Использован аппарат тропической математики для формулирования эквивалентной задачи.
- Получено полное решение для некоторых частных случаев ограничений при помощи методов тропической оптимизации.