

데이터개요

정형데이터

❖ movies.csv - 변수 14개, 표본 7,652개

비정형데이터

❖ lmdb.csv - 변수 2개, 표본 5,000개

데이터 출처

◆ Kaggle.com

주요 사용 툴

python

목차

정 형 데 이 터 분 석 전처리 회귀분석

단순회귀분석 다중회귀분석 분류 - 로지스틱회귀분석

Tree

의사결정나무 splitter ccp-alpha

모형결합 - 랜덤포레스트, 엑스트라트리

KNN 인공 신경망

Keras - 인공신경망

심층신경망

SVM

Clustering 군집화 밀도기반

비정형데이터분석 연관분석 텍스트마이닝

전처리

- 빈 값 검색해서 처리
- Rating을 6가지로 분류 장르를 8가지로 분류
- 국가를 대륙으로 나눠서 7가지로 분류
- 원핫인코딩
- 문자로 된 필드 제거
- 종속변수 0,1로 분류
- 언더샘플링
- 학습용:검증용=8:2

회귀분석 - 단순회귀분석

독립변수: 투표수 종속변수: 총수입

귀무가설: 투표수와 총수입은 상관관계가 없다. 대립가설: 투표수와 총수입은 상관관계가 있다.

LinregressResult(slope=635.717924870875, intercept=20722621.796298243, rvalue=0.632618503879609, pvalue=0.0, stderr=8.898590718911574, intercept stderr=1652746.984876386)

··· Text(0, 0.5, 'gross')

사회과학에서는 어떤 현상을 100% 설명하는 것은 현실적으로 불가능해서 결정계수가 0.3이상이면 의미가 있다고 본다.

P-value

결론

0.05보다 작으므로 통계적으로 유의하다.

모형적합도가 63%의 설명력이 있다.

투표수와 총수입은 상관관계가 있다.

다중 회귀 분석

다중회귀분석

R-squared:

0.428

현재와 기한이 짧을수록 총수입이 증가

		OLS Regres	sion Result	ts			
Dep. Varial	ole:	gro	SS	R-square	d:	0.428	
Model:		OLS A		Adj. R-squared:		0.427	
Meth	od:	Least Squar	es	F-statisti	ic:	1429.	
Da	ate: Mon	, 01 Aug 20	22 Prob	(F-statistic	c):	0.00	
Tir	me:	13:49:	59 Log-	Likelihoo	d: -1.534	45e+05	
No. Observatio	ns:	76	51	Al	C: 3.06	59e+05	
Df Residu	als:	76	46	BI	C: 3.07	70e+05	
Df Mod	del:		4				
Covariance Ty	pe:	nonrobu	ıst				
	coef	std err	t	P> t	[0.025	0.9	75]
Intercept 1.0	082e+08	1.2e+07	9.032	0.000	8.47e+07	1.32e+	+08
period -1.8	828e+06	1.31e+05	-13.956	0.000 -	2.09e+06	-1.57e+	+06
score -1.9	967e+07	1.7e+06	-11.600	0.000	-2.3e+07	-1.63e+	+07
votes 6	529.9613	9.855	63.924	0.000	610.643	649.2	280
runtime 7.2	289e+05	8.48e+04	8.591	0.000	5.63e+05	8.95e+	+05
Omnibus			n-Watson:	1	.902		
Prob(Omnibus)			-Bera (JB):	899317	.821		
Skev			Prob(JB):		0.00		
Kurtosis			Cond. No.				
Kui tosis	. 55.4	5-7	Cona. No.	1.576			

P-value:

투표수가 높을수록 총수입이 증가

상영시간이 길수록 총수입이 증가

분류 - 로지스틱회귀분석

연도, 투표수, 평점, 상영시간이 총수입과 상관관계가 있다고 볼 수 있는 확률

학습용: 0.8139377537212449

검증용: 0.8027027027027

정확도: 80%

의사결정나무

model1 = DecisionTreeClassifier(random_state=0, max_depth=8)

DecisionTreeClassifier(max_depth=8, random_state=0)

학습용: 0.9218538565629228 검증용: 0.8486486486486486

정확도: 84%

 $X[24] \le 0.341$

gini = 0.482

samples = 96

value = [57, 39]

gini = 0.49

samples = 65

value = [28, 37]

Tree – splitter

노드분할전략: 최선의 변수 선택 전략(기본 옵션)

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=3, random_state=0)

학습용: 0.8525033829499323

정확도: 82%

 $X[15] \le 0.749$ gini = 0.5samples = 2956

value = [1478, 1478]

samples = 275

value = [69, 206]

samples = 200

value = [129, 71]

samples = 691

value = [34, 657]

samples = 458

value = [88, 370]

Tree – sp litter

X[21] <= 23500.0

gini = 0.227

samples = 1332

value = [1158, 174]

 $X[12] \le 0.5$

gini = 0.073

samples = 843

value = [811, 32]

gini = 0.478

samples = 33

value = [20, 13]

samples = 277

value = [162, 115]

samples = 212

value = [185, 27]

gini = 0.046

samples = 810

value = [791, 19]

학습용: 0.7056833558863329

검증용: 0.6918918918919

정확도: 69%

Tree – sp litter

- . 랜덤분할전략보다 최선의 변수 선택 전략이 정확도가 더 높다.
- II. 최선의 변수 선택 전략에서 가장 높은 중요도를 보였던 votes가 랜덤분할전략에서는 그다지 높게 나오지 않았다.

Tree-ccp-alpha

ccp_alpha가 증가하면 가지치기된 노드수 증가 => 불순도가 증가함 ccp_alpha가 감소하면 가지치기된 노드수 감소 => 불순도가 감소함

ccp alpha가 증가하면 노드 개수가 감소한다.

최적의 alpha: 0.0005228302544440571

최고 정확도: 88%

모형결합 -랜덤포레스트

model2 = RandomForestClassifier(n_estimators=1000, random_state=0, max_depth=10)

RandomForestClassifier(max_depth=10, n_estimators=1000, random_state=0)

학습용: 0.9448579161028416 검증용: 0.8770270270270271

<u> 엑스트라트리</u>

model3 = ExtraTreesClassifier(n_estimators=1000, random_state=0, max_depth=16)

ExtraTreesClassifier(max_depth=16, n_estimators=1000, random_state=0)

학습용: 0.9935723951285521

검증용: 0.8432432432432433

엑스트라 트리는 포레스트 트리의 각 후보 특성을 무작위로 분할하는 식으로 무작위성을 증가 시킨다.

정확도: 84%

모형결합

정확도

공통적으로 트리 만드는 결정에 votes의 중요도가 매우 높다

KNN

인공 신경망

스케일링 전

학습용 : 0.7547361299052774 검증용 : 0.7391891891892

정확도: 73%

스케일링 후

학습용 : 0.8626522327469553 검증용 : 0.8540540540540541

정확도: 85%

인공신경망

검증용 : 83.38%

idx: 0

최고정확도: 0.85

100 100

최적의 은닉노드수로 만든 모형

Hidden layer 2개 Hidden layer1 – 100 nodes Hidden layer2 – 100nodes

Keras- 인공신경망

상관계수 행렬 그래프

- ✔ Genre_Animation과 rating_G(전체관람가) 상관<u>관계가 높다.</u>
- ✓ votes와 gross 의 상관관계가 높다.

심층신경망


```
93/93 [============] - 1s 4ms/step - loss: 0.0118 - accuracy: 0.9882 학습용 [0.011780344881117344, 0.9881596565246582] 24/24 [=========] - 0s 3ms/step - loss: 0.1763 - accuracy: 0.8095 검증용 [0.17633011937141418, 0.8094594478607178] 감증용
```

```
import numpy as np
   test_set = np.array([7.5, 2004, 373000, 120]).reshape(1,4)
   test_set=scaler.transform(test_set)
                                                    np.array([score, year, votes, runtime])
   print(model.predict(test_set))
   test_set = np.array([5, 2020, 90, 100]).reshape(1,4)
   test_set=scaler.transform(test_set)
   print(model.predict(test set))

√ 0.3s

                                                           실제 데이터와
동일한 값
1/1 [======] - 0s 113ms/step
c:\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but RobustScaler was fitted with feature names
 warnings.warn(
c:\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but RobustScaler was fitted with feature names
 warnings.warn(
1/1 [=======] - 0s 19ms/step
[[1.7129097e-21]]
```

심층신경망

Hidden layer 2 : 64 nodes

Hidden layer 3 : 64 nodes

	Model: "sequential"		
ı	Layer (type)	Output Shape	Param #
ı	dense (Dense)	(None, 128)	640
ź	dense_1 (Dense)	(None, 64)	8256
ı	dense_2 (Dense)	(None, 64)	4160
ı	dense_3 (Dense)	(None, 1)	65
ı	=======================================		.=======
ı	Total params: 13,121		
	Trainable params: 13,121		
	Non-trainable params: 0		

_

SVM

Best Parameters:

{'C': 1, 'gamma': 1e-05}

Best Estimators:

SVC(C=1, gamma=1e-05)

학습용: 0.8487821380243572 검증용: 0.8135135135135

정확도: 81%

변수의 중요도

	0	1
0	year	0.0
1	score	0.0
2	votes	0.326569264069264
3	runtime	0.0

Clustering - 군집화

Clustering -밀도 기반

score

6~9

votes

0~0.5

일 때 밀도가 높음

runtime

0~125

연관분석

	support	itemsets
13	0.621	(movie)
5	0.550	(film)
9	0.471	(like)
7	0.353	(good)
4	0.349	(even)

연관분석

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(even)	(film)	0.349	0.550	0.208	0.595989	1.083616	0.016050	1.113830
1	(film)	(even)	0.550	0.349	0.208	0.378182	1.083616	0.016050	1.046930
2	(like)	(even)	0.471	0.349	0.204	0.433121	1.241034	0.039621	1.148393
3	(even)	(like)	0.349	0.471	0.204	0.584527	1.241034	0.039621	1.273248
4	(movie)	(even)	0.621	0.349	0.228	0.367150	1.052005	0.011271	1.028679

텍스트마이닝

결론

영화분석데이터

변수 중 votes가 대부분의 분석에서 가장 영향력이 크다.

영화리뷰데이터

- ① 영화 장르 중 comedy, action, horror가 선호도가 높다.
- ② 영화 관련 단어나 긍정적인 단어의 빈도수가 높다.

한계점&향후계획

1

투표수가 적으면 평점에 대한 표본수가 적어서 그 점수를 신뢰하기 어렵다는 한계가 있음

)

시계열분석 추가, 단어빈도분석 추가, 원핫인코딩 활용 추가

3

연관분석에서 특정 단어 불용어처리하기

