61908697 佐々木良輔

問 1

ここでは密度行列の Djikstra 法と Bellman-Ford 法を比較した。図 1 に Dijkstra 法でのノード数 N と Update の回数を示す。またそれぞれの系列について $y(x)=ax^n$ という関数で最小二乗fitting を行った。表 2 に Dense graph の場合と Sparse graph の場合で得られた n を示す。したがってそれぞれの系列で計算量は $O(N^2)$ 程度になっていることがわかる。

また図 2 に Bellman-Ford 法でのノード数 N と Update の回数を示す。これについても同様に $y(x)=ax^n$ で fitting を行い、その結果は表のようになった。 したがって Dense graph では概ね $O(N^2)$ の計算量であるのに対し、Sparse graph では計算量が減っていると考えられる。

表 1 Dijkstra 法での各系列の次数

	n
Dense graph	2.00 ± 0.00
Sparse graph	2.00 ± 0.00

表 2 Bellman-Ford 法での各系列の次数

	n
Dense graph	1.99 ± 0.00
Sparse graph	1.41 ± 0.00

図 1 Dijkstra 法でのノード数と計算量の関係

図 2 Bellman-Ford 法でのノード数と計算量の関係