2.8 Minimização de um Autômato Finito

♦ Objetivo

- gerar um AF equivalente
- com o menor número de estados possível

♦ Minimização do número de estados

- adotada na maioria das soluções práticas
- entretanto, em algumas aplicações
 - * minimizar do número de estados pode não implicar no menor custo de implementação

exemplo

- * desenho de circuitos eletrônicos
- * pode ser desejável introduzir estados intermediários

- * para melhorar a eficiência
- * ou simplesmente facilitar as ligações físicas
- nestes casos o algoritmo deve ser modificado
 - * prevendo as variáveis específicas da aplicação

♦ O autômato mínimo é único

- a minimização de AF distintos
 - * que aceitam a mesma linguagem
 - * geram o mesmo AF mínimo

♦ Idéia básica do algoritmo

- unificar os estados equivalentes
- ♦ Definição. Estados Equivalentes
 - q e p são equivalentes sse

- * para qq W,
- * $\delta(q, w)$ e $\delta(p, w)$
- * resultam simultaneamente em estados finais, ou não-finais
- ou seja
 - * processamento de uma entrada qq
 - * a partir de estados equivalentes
 - * gera o mesmo resultado aceita/rejeita

♦ Pré-Requisitos do Algoritmo

- AF deve ser determinístico
- não pode ter estados inacessíveis
 - * não-atingíveis a partir do estado inicial
- a função programa deve ser total

Caso o AF não satisfaça algum dos pré-requisitos

- gerar um AFD equivalente
 - * algoritmos introduzidos nos teoremas
- eliminar os estados inacessíveis e suas correspondentes transições
 - * algoritmo relativamente simples
 - * sugerido como exercício
- função programa total

- * introduzir um novo estado não-final d
- * incluir as transições não-previstas, tendo como resultado o estado d
- * incluir um ciclo em d para todos os símbolos do alfabeto

♦ Idéia básica do algoritmo

- identifica os estados equivalentes
 - * por exclusão
- a partir de uma tabela de estados
 - * são marcados os estados não-equivalentes
- ao final do algoritmo
 - * as referências não-marcadas
 - * representam os estados equivalentes.

♦ Algoritmo de Minimização

- seja M = $(\Sigma, Q, \delta, q_0, F)$ um AFD * satisfaz aos pré-requisitos
- tabela: relaciona os estados distintos

• marcar na tabela os pares

* {estado final, estado nãofinal}

* estados finais não são equivalentes a não-finais

q 1				
q ₂				
•••				
q _n				
d				
	q ₀	9 1	 q _{n-1}	q _n

♦ Para $\{q_u, q_v\}$ não-marcado e a ∈ \sum

- suponha $\delta(q_u, a) = p_u e \delta(q_v, a) = p_v$ • se $p_u = p_v$
 - * qu é equivalente a q_v para o símbolo a
 - * não marcar
- se p_u ≠ p_v e o par {p_u, p_v} é não-marcado
 - * $\{q_u, q_v\}$ é incluído em uma lista a partir de $\{p_u, p_v\}$
 - * para posterior análise
- se $p_u \neq p_v$ e o par $\{p_u, p_v\}$ é marcado
 - * {qu, qv} é não-equivalente
 - * marcar
 - * se {qu, qv} encabeça uma lista marcar todos os pares da lista e, recursivamente, se algum par da lista encabeça outra lista

♦ Pares não-marcados são equivalentes: *unificar*

- a equivalência de estados é transitiva
- pares de estados equivalentes são unificados como um único estado
- se algum dos estados equivalentes é inicial
 - * estado unificado é inicial

♦ Estados inúteis devem ser excluídos

- um estado q é inútil
 - * se é não-final
 - * e a partir de q não é possível atingir um estado final
- o estado d
 - * se incluído
 - * sempre é inútil

♦ Exemplo: Considere o AFD

• satisfaz os pré-requisitos de minimização

- contrução da tabela
- marcação dos pares
 - * {estado final, estado não-final}

- análise dos pares de estado não-marcados
- {q₁, q₅}

$$\delta(q_1, a) = q_3 \delta(q_5, a) = q_4$$

$$\delta(q_1, b) = q_2 \delta(q_5, b) = q_3$$

{q2, q3} e {q3, q4} são não-marcados:

{q₁, q₅} é *incluído* nas listas de {q₂, q₃} e {q₃, q₄}

• {q₁, q₆}

$$\delta(q_1, a) = q_3 \delta(q_6, a) = q_3$$

$$\delta(q_1, b) = q_2 \delta(q_6, b) = q_4$$

{q2, q4} é não-marcado (e como {q3, q3} é trivialmente equivalente):

{q₁, q₆} é *incluído* na lista de {q₂, q₄}

• {q₂, q₃}

$$\delta(q_2, a) = q_2 \ \delta(q_3, a) = q_5$$

 $\delta(q_2, b) = q_1 \ \delta(q_3, b) = q_6$

{q2, q5} é marcado: {q2, q3} é *marcado* {q2, q3} encabeça uma lista: {q1, q5} é *marcado*

• {q₂, q₄}

$$\delta(q_2, a) = q_2 \ \delta(q_4, a) = q_6$$

 $\delta(q_2, b) = q_1 \ \delta(q_4, b) = q_5$

{q₂, q₆} e {q₁, q₅} são marcados: {q₂, q₄} é *marcado* {q₂, q₄} encabeça uma lista: {q₁, q₆} é *marcado*

• {q₃, q₄}

$$\delta(q_3, a) = q_5 \ \delta(q_4, a) = q_6$$

 $\delta(q_3, b) = q_6 \ \delta(q_4, b) = q_5$

{q5, q6} é não-marcado: {q3, q4} é *incluído* na lista de {q5, q6}

• {q₅, q₆}

$$\delta(q_5, a) = q_4 \ \delta(q_6, a) = q_3$$

$$\delta(q_5, b) = q_3 \delta(q_6, b) = q_4$$

Como {q3, q4} é não-marcado:

{q5, q6} é incluído na lista de {q3, q4}

- Como os pares {q3, q4} e {q5, q6} são não-marcados
 - * q34: unificação dos estados não-finais q3 e q4;
 - * q56: unificação dos estados finais q5 e q6.

♦ Teorema:

- O AFD construído
- usando o algoritmo de minimização
- é o autômato com menor número de estados para a linguagem

♦ Teorema:

- O AFD mínimo de uma linguagem é único
- a menos de ismomorfismo