

FACULTAD DE CS. EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPTO DE MATEMÁTICA.
PRIMER CUATRIMESTRE DE 2015

PRIMER CUATRIMESTRE DE 2015

ECUACIONES DIFERENCIALES (1913)

PRÁCTICA 3: SIMETRÍAS.

Ejercicio 1 Demostrar que las siguientes aplicaciones inducen grupos de Lie uniparamétricos

a.
$$\Gamma_{\epsilon}(x,y) = (x+\epsilon,y)$$
 y $\Gamma_{\epsilon}(x,y) = (x,y+\epsilon)$.

b.
$$\Gamma_{\epsilon}(x,y) = (e^{\epsilon}x,y)$$

c.
$$\Gamma_{\epsilon}(x,y) = \left(\frac{x}{1-\epsilon x}, \frac{y}{1-\epsilon x}\right)$$

d.
$$\Gamma_{\epsilon}(x,y) = \begin{pmatrix} \cos(\epsilon) & -\sin(\epsilon) \\ \sin(\epsilon) & \cos(\epsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Ejercicio 2 Encontrar coordenadas canónicas para las simetrías de los incisos a y b del ejercicio 1. Repetir este mismo cálculo pero usando SymPy (o SAGE) con los incisos a, b y d.

Ejercicio 3 Ejercicios 1.1, 1.2, 1.4 y 1.5 de [1]

Ejercicio 4 Hallar un grupo de Lie de transformaciones para los siguientes vectores tangentes

- a. $(\xi, \eta) = (1, y)$.
- b. $(\xi, \eta) = (1, y)$.

Referencias

[1] P.E. Hydon and P.E. Hydon. *Symmetry Methods for Differential Equations: A Beginner's Guide*. Cambridge University Press, 2000.