If the dimension of the Kernel of T is not one, I propose to add a Cauchy matrix below A instead of adding something to T. We are still adding some constraints to ensure that x is unique and x relains a solution.

Assume $A = [A_r \ B]$ with $det(A_r) \neq 0$ and consider

$$\mathsf{A'}\!=\!\left[\begin{array}{c|c}\mathsf{A}_r&\mathsf{B}\\\hline \left(\left[\begin{smallmatrix}c_1\\\vdots\\c_s\end{smallmatrix}\right]\!\left[\begin{smallmatrix}l_1&\dots&l_r\end{smallmatrix}\right]\right)\!\odot\mathsf{C'}\left(\left[\begin{smallmatrix}c_1\\\vdots\\c_s\end{smallmatrix}\right]\!\left[\begin{smallmatrix}l_{r+1}&\dots&l_{r+s}\end{smallmatrix}\right]\right)\!\odot\mathsf{C}}\right]$$

where $c_1, ..., c_s, l_1, ..., l_{r+s}$ are indeterminates, and C, C' are Cauchy matrices for good vectors u, v_0 and u, v_1 (u can be chosen freely, while $\mathsf{v}_0, \mathsf{v}_1$ depend on the Cauchy structure of respectively A_r and B).

The principal leading minor A_{r+1} is a non zero polynomial in $k[c_1, ..., c_s, l_1, ..., l_{r+s}]$ because its term in $c_1 l_{r+1}$ is $c_1 l_{r+1} \det(A_r) \det(C_1)$ which is non zero since the principal leading minor C_1 is non zero.

Now the principal leading minor A_{r+2} is a non zero polynomial because its term in $c_1 c_2 l_{r+1} l_{r+2}$ is $c_1 c_2 l_{r+1} l_{r+2} \det(A_r) \det(C_2) \neq 0$ since $\det(C_2) \neq 0$. Indeed the presence of $l_{r+1} l_{r+2}$ in $\det(A_{r+2})$ means that we chose a permutation that involves two terms of the bottom right part of A', and the other terms must come from A_r .