Barème DS 1

N°	Elts de rép.	Pts	Note
1-4	Capteur capacitif	5.5	
1	N armatures face à face \Leftrightarrow à N condo en //	0.5	
	$i = \sum i_C \Rightarrow \Rightarrow C_{eq} = NC$	0.5	
2.	$i = C \frac{du}{dt} = \text{cte} \Rightarrow i = C \frac{u(t) - u(0)}{t}$	0.5	
	$i = C \frac{du}{dt} = \text{cte} \Rightarrow i = C \frac{u(t) - u(0)}{t}$ $C = \frac{i\Delta t}{U_{ref}}$	0.5	
3.	$U_{ref} = (R + \frac{1}{jC\omega})i + i = jC\omega u \Rightarrow RC\frac{du}{dt} + u = U_{ref}$ graphe exp.	1	
	$u = \frac{i}{C}t$ graphe droite	1	
	tension finale asymptote vs temps fini	0.5	
4.	filtre RC avec freq. de coupure ou avec temps de rép. à 63% gé-	1	
	nérateur de courant ou pont de Wien		

N°	Elts de rép.	Pts	Note
	Mesure de la fréquence Doppler		
5.	$u_{s1} = Ku_{1m}\cos(\omega_1 t)u_{2m}\cos(\omega_2 t + \phi)$	0.5	
	$u_{s1} = \frac{Ku_{1m}u_{2m}}{2}(\cos(\omega_1 t + \omega_2 t + \phi) + \cos(\omega_1 t - \omega_2 t - \phi))$	0.5	
6.	deux pics à f_D et $f + f_r$	1	
7.	filtre passe bas à coupure $\ll 2f$ et $> f_D$ pour éliminer $f + f_r$	1	
8.	ex : filtre RC - circuit équi. pour passe-bas	0.5	
	calcul ordre de grandeur $f_D \sim 100~\mathrm{Hz}$	0.5	
	choix R et C pour coupure entre 1 kHz et 100 MHz	0.5	
9.	zoom freq. de 2 GHz donc pic du spectre à $f + f_r$	0.5	
	oscillation lente à 100 Hz donc pic du spectre à f_D	0.5	
10.	oscillation lente uniquement	1	
11.	$v = \frac{cf_D}{2f}$	0.5	
	$v = 54 \text{ km.h}^{-1}$	0.5	

N°	Elts de rép.	Pts	Note
	Signal de marche		
12.	$T_{d\mathring{roit}} = 1,0 \text{ s}; T_{ga\mathring{u}che} = 1,0 \text{ s}; T_{cu\mathring{m}ul\acute{e}} = 0,5 \text{ s}$	1	
13.	1ère bosse = talon, 2ième bosse = orteil, plat = pied levé	1	
14.	tjrs un pied au sol + pas d'impact	1	
15.	1 seul impact + phase de vol	1	
16.	valeur moy. + harm. élevée car point anguleux \Rightarrow spectre 1	1	

N°	Elts de rép.	Pts	Note
	Le Millenium Bridge	8	
17.	PFD $m\vec{a} = \sum \vec{F}_{ext}$	0.5	
	$m\ddot{x} + k(x - \overline{l_0}) + \alpha \dot{x} + mg = 0$	0.5	
	position d'eq. $\tilde{x} = l_0 - \frac{mg}{k}$	0.25	
	pulsation propre $\omega_0 = \sqrt{\frac{k}{m}}$	0.25	
	facteur d'amortissement $\xi = \frac{\alpha}{2\sqrt{mk}}$	0.25	
18.	$\xi = 0 \Rightarrow \text{oscillateur harmonique}$	0.25	
	$\Rightarrow X(t) = X_0 \cos(\omega_0 t) + \frac{V_0}{\omega_0} \sin(\omega_0 t)$	0.5	
	$0 < \xi < 1 \Rightarrow$ oscillateur amortit d'eq. carac. $r^2 + 2\xi\omega_0 r + \omega_0^2 = 0$	0.25	
	$X(t) = \exp(-\xi\omega_0 t) \left(X_0 \cos(\omega_0 t) + \frac{V_0 + \xi\omega_0 X_0}{\omega} \sin(\omega t) \right)$	0.5	
	α remplacé par $\alpha - \beta$ risque de devenir négatif \Rightarrow instabilité voir	0.25	
	pont Tacoma 1940		
19.	éq. diff. de Y avec forçage $\ddot{Y} + 2\xi\omega_0\dot{Y} + \omega_0^2Y = -\frac{F_1}{m}\cos(2\pi ft)$	0.5	
	notat. complexe $-\omega^2 \underline{Y} + 2\xi \omega_0 j\omega \underline{Y} + \omega_0^2 \underline{Y} = -\frac{F_1}{m} \exp(2j\pi ft) = -\underline{E}$	0.5	
	$\underline{H}=rac{Y}{\overline{\underline{E}}}=-rac{1}{\omega_0^2} imesrac{1}{1-\Omega^2+2j\xi\Omega}$	0.5	
20.	résonance si pic de \underline{H} pour $\Omega > 0$, soit calcul de $(1-\Omega)^2 + 4\xi^2\Omega^2 < 0$	0.5	
	$1 \Rightarrow \xi < \frac{1}{\sqrt{2}}$ soit $\frac{d}{d(\Omega^2)}((1-\Omega)^2 + 4\xi^2\Omega^2) = 0$ à une solution non		
	nulle si $\Rightarrow \xi < \frac{1}{\sqrt{2}}$		
	pulsation de resonance à $\omega_r = \omega_0 \sqrt{1 - 2\xi^2}$	0.5	
	$\xi^2 \ll 1 \Rightarrow \Omega = 1 \Rightarrow \underline{H} = \frac{1}{2\xi\omega_0^2}$	0.5	
21.	$\omega_0^2 \underline{H} = \frac{1}{2\xi} = 9 \text{ dB} = 6 + 3 \text{ dB} = 2 \times 1.4 = 2.8 \Rightarrow \xi = 0.17$	0.5	
	$\omega_0 = 12 \text{ rad.s}^{-1}$	0.5	
22.	pour éviter les déplacements de structures trop important	0.5	

N°	Elts de rép.	Pts	Note
	Caractéristique tension-courant d'une jonction Josephson	4.5	
23.	$I_{ext} = I_s + I_R + I_C = I_c \sin \phi + \frac{V}{R} + C \frac{dV}{dt}$	0.5	
	$V = \frac{h}{4\pi e} \frac{d\phi}{dt} \Rightarrow \dots$	0.5	
24.	chgt de variable $\kappa \& \tau$ donnent $\frac{I_e x t}{I_o} = \frac{Ch}{4\pi e I_o} \omega_J^2 \frac{d^2 \phi}{d\tau^2} + \frac{h \omega_J}{4\pi Re I_o} \frac{d\phi}{d\tau} +$	0.5	
	$\sin \phi$		
	identification $\omega_J = \sqrt{\frac{4\pi e I_c}{Ch}}$ et $\beta_J = \sqrt{\frac{h}{4\pi R^2 Ce I_c}}$	0.5	
25.	expression de $\beta_J \Rightarrow$ petites capacités.	0.25	
	si $C \to 0$ alors $Z_C = \frac{1}{jC\omega} \to +\infty$ donc capacité \Leftrightarrow interrupteur ouvert	0.5	
200		0.75	
26.	si $I_ext \gg I_c$ alors $I_R \gg I_s$ donc $I_{ext} = I_R = \frac{V}{R}$ loi d'Ohm c'est	0.75	
	juste une résistance.		
27.	Apparition d'une tension non nulle pour $I_{SNS}=1\pm\mu\mathrm{A}$ donc	0.5	
	$I_c = 1 \mu A$		
	Pour $I_{SNS} = 4\mu A$, $V_{SNS} = 25\mu V$ donc $R = \frac{V_{SNS}}{\sqrt{I_{SNS}^2 - I_c^2}} = 6\Omega$	0.5	

N°	Elts de rép.	Pts	Note
	Les memristors - le quatrième dipôle	9.5	
28.	$q=Cu,u=Ri,\phi=Li,C$ en F, R en Ω,L en H	1	
29.	$i = \frac{dq}{dt}$	0.5	
	$u = L \frac{di}{dt}$ et $\phi = Li$	0.5	
30.	$dq = Cdu, du = Rdi, d\phi = Ldi, dq = idt, d\phi = udt$	1	
31.	analyse dimensionnelle avec $d\phi = Mdq$ et $u = L\frac{di}{dt}$ et $u = Ri$	1	
	donne même dimension M et R donc unité de M est Ω		
32.	en série $dq_1 = dq_2$ donc $d\phi = d\phi_1 + d\phi_2 = (M_1 + M_2)dq$	0.5	
	en parallèle $dq=dq_1+dq_2=\left(\frac{1}{M_1}+\frac{1}{M_2}\right)d\phi$	0.5	
33.	$q(t) - q(0) = \int_0^t i(t)dt = \frac{i_0}{\omega} (1 - \cos(\omega t))$	0.5	
	graphe	0.5	
34.	$u = \frac{d\phi}{dt}$ tracé de la dérivée	0.5	
35.	deux droites de $u = f(i)$, pente faible donc résistance faible donc	1	
	laisse passer le courant et pente forte donc résistance forte donc		
	bloque le courant		
36.	La résistance dépend du passé du memristor, phénomène d'hys-	1	
	térésis, il conserve mémoire de son utilisation, chaque réqime cor-		
	respond à 0 ou 1.		
37.	la seule possibilité pour changer l'état c'est d'appliquer un courant	1	
	fort, donc mémoire protégé contre les petites fluctuations autour		
	de u = 0 et i = 0		

N°	Elts de rép.	Pts	Note
	Le saut de Félix Baumgartner	5	
38.	question à traiter comme une RP, schéma + grandeurs (axe, hauteur, vitesse, poids) + expressions littérales (PFD, théorème de l'énergie mécanique) + application numérique	2.5	
39.	question à traiter comme une RP, estimer à partir de quelle hau- teur la force de frottement implique une vitesse limite qui empêche Félix d'atteindre la vitesse du son, donc il faut qu'il l'ait atteinte avant.	2.5	