Trigonométrie

Généralités

QCOP TRG.1

- 1. Définir la relation de congruence modulo 2π .
- **2.** Soient $x, x', y, y' \in \mathbb{R}$. Soit $\lambda \in \mathbb{R}^*$.
 - a) Montrer que

$$x \equiv x' \ [2\pi]$$

$$y \equiv y' \ [2\pi]$$

$$\implies x + y \equiv x' + y' \ [2\pi] .$$

b) Montrer que

$$x \equiv y \ [2\pi] \iff \frac{x}{\lambda} \equiv \frac{y}{\lambda} \ \left[\frac{2\pi}{\lambda}\right] \iff \lambda x \equiv \lambda y \ [2\pi].$$

3. Trouver quatre réels x, x', y, y' tels que

$$\begin{cases} x \equiv x' \ [2\pi] \\ y \equiv y' \ [2\pi] \end{cases} \quad \text{mais} \quad xy \not\equiv x'y' \ [2\pi].$$

QCOP TRG.2 ★

- 1. Définir le cercle trigonométrique, ainsi que $cos(\theta)$ et $sin(\theta)$ pour $\theta \in \mathbb{R}$.
- 2. Montrer que sin est une fonction impaire.
- 3. Montrer que

$$\forall heta \in \mathbb{R}, \quad \left| \sin(heta) \right| \leqslant 1.$$

4. a) Montrer que

$$\forall \theta \in [1, +\infty[, \sin(\theta) \leqslant \theta].$$

b) Montrer, à l'aide d'une étude de fonction, que

$$\forall \theta \in [0,1], \quad \sin(\theta) \leqslant x.$$

- c) Montrer que $\theta \mapsto \left| \sin(\theta) \right|$ est une fonction paire.
- d) En déduire que

$$\forall \theta \in \mathbb{R}, \quad \left| \sin(\theta) \right| \leqslant |\theta|.$$

Formules de trigonométrie

QCOP TRG.3

- **1.** Soient $\theta, \theta' \in \mathbb{R}$. Écrire les formules donnant $\cos(\theta + \theta')$, $\sin(\theta + \theta')$ et $\cos(2\theta)$.
- **2.** Calculer, pour $\theta, \theta' \in \mathbb{R}$, $tan(\theta + \theta')$, puis $tan(2\theta)$.
- **3.** Soit $heta \in \mathbb{R}$. On pose $t \coloneqq anigg(rac{ heta}{2}igg)$. Montrer que

$$\cos(heta) = \frac{1-t^2}{1+t^2}, \quad \sin(heta) = \frac{2t}{1+t^2} \quad ext{et} \quad \tan(heta) = \frac{2t}{1-t^2}.$$

QCOP TRG.4

- 1. Soient $\theta, \theta' \in \mathbb{R}$. Écrire les formules donnant $\cos(\theta + \theta')$ et $\cos(\theta \theta')$.
- **2.** Soient $p, q \in \mathbb{R}$. Montrer que

$$cos(p) + cos(q) = 2 cos\left(\frac{p+q}{2}\right) cos\left(\frac{p-q}{2}\right).$$

3. Soit $\theta \in \mathbb{R}$. Soit $n \in \mathbb{N}$.

On pose $X := \cos(\theta)$. On définit $T_n(\cos(\theta)) := \cos(n\theta)$.

Montrer que $T_{n+2}(X) + T_n(X) = 2X T_{n+1}(X)$.

Fonctions trigonométriques

QCOP TRG.5

- 1. Donner l'allure des courbes représentatives des fonctions $sin(\cdot)$ et $cos(\cdot)$.
- **2.** On admet que $\frac{\sin(\theta)}{\theta} \xrightarrow[\theta \to 0]{} 1$.
 - a) Montrer que $\frac{\sin\left(\frac{\theta}{2}\right)}{\theta} \xrightarrow[\theta \to 0]{} \frac{1}{2}$.
 - **b)** En déduire que $\frac{\cos(\theta) 1}{\theta} \xrightarrow[\theta \to 0]{} 0$.
- Montrer que sin(·) et cos(·) sont deux fois dérivables et préciser leur dérivée, puis leur dérivée seconde.

QCOP TRG.6

- 1. Définir la fonction $\theta \longmapsto \tan(\theta)$ et préciser son domaine de définition \mathcal{D}_{tan} .
- 2. Donner l'allure de la courbe représentative de tan(·).
- 3. Étudier la parité et la périodicité de $tan(\cdot)$.
- **4.** Montrer que $tan(\cdot)$ est dérivable sur \mathcal{D}_{tan} et exprimer tan' en fonction de cos^2 puis en fonction de tan^2 .