Байесовские сети

Владимир Анатольевич Судаков 2023

на основе [Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley]

Вероятностные модели

- Модели описывают как мир (или его часть) работает
- Модель это всегда упрощение
 - Может не учитывать каждую переменную
 - Может не учитывать все взаимодействия между переменными
 - «Все модели ошибочны; но некоторые из них полезны». - Джордж Э. П. Бокс

- Что можно делать с вероятностными моделями?
 - Нам (или нашим агентам) нужно сделать выводы о значениях неизвестных переменных, учитывая наблюдения
 - Пример: объяснение (диагностическое рассуждение)
 - Пример: предсказание (причинное рассуждение)
 - Пример: ценность информации

Независимость

Независимость

Две переменные независимы если:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- Это говорит о том, что их совместное распределение приводит к произведению двух более простых распределений.
- Другая форма:

$$\forall x, y : P(x|y) = P(x)$$

- lacktriangle Обозначается: $X \! \perp \!\!\! \perp \!\!\! \perp \!\!\! Y$
- Независимость это упрощающее предположение моделирования
 - Эмпирические совместные распределения: в лучшем случае «близкие» к независимым
 - Что мы могли предположить для {Weather, Traffic, Cavity, Toothache}?

Пример: Независимы ли?

D_{\bullet}	T	\mathcal{M}
1 I	$(\bot ,$	vv

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

 $P_2(T,W)$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Пример: Независимость

■ N честных, независимых подбрасываний монеты

$P(X_1)$		
Н	0.5	
Т	0.5	

$P(X_2)$		
Н	0.5	
Т	0.5	

- P(Toothache, Cavity, Catch)
- Если у меня есть полость, то вероятность того, что зонд застрянет в ней, не зависит от того, болит ли у меня зуб:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- Та же независимость сохраняется, если у меня нет полости:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch условно не зависит от Toothache с учетом Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Эквивалентные утверждения:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - Одно легко вывести из другого

- Безусловная (абсолютная) независимость очень редка (почему?)
- Условная независимость это наша самая основная и надежная форма знания о неопределенных средах.

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

или эквивалентно тогда и только тогда:

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- Безусловная (абсолютная) независимость очень редка (почему?)
- Условная независимость это наша самая основная и надежная форма знания о неопределенных средах.
- Х условно не зависит от Y при заданном Z тогда и только тогда:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

или эквивалентно тогда и только тогда:

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$X \perp \!\!\! \perp Y | Z$$

$$P(x|z,y) = \frac{P(x,z,y)}{P(z,y)}$$

$$= \frac{P(x,y|z)P(z)}{P(y|z)P(z)}$$

$$= \frac{P(x|z)P(y|z)P(z)}{P(y|z)P(z)}$$

• Рассмотрим домен:

- Трафик
- Зонтик
- Дождь

- Рассмотрим домен:
 - Fire
 - Smoke
 - Alarm

Условная независимость и цепное правило

- Цепное правило: $P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$
- Тривиальная декомпозиция:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

При предположении об условной независимости:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

Цепное правило охотников за привидениями

- Каждый датчик зависит только от того, где находится призрак
- Это означает, что два датчика условно независимы, учитывая положение призрака

Т: Верхний квадрат красный
 В: Нижний квадрат красный

G: Призрак вверху

Дано:

$$P(+g) = 0.5$$

 $P(-g) = 0.5$
 $P(+t + g) = 0$
 $P(+t - g) = 0$

$$P(+b \mid +g) = 0.4$$

 $P(+b \mid -g) = 0.8$

P(T,B,G) = P(G) P(T|G) P(B|G)

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+ t	+b	90	0.16
+ t	-b	gg +	0.24
+ t	-b	90	0.04
-t	+b	+g	0.04
-t	+b	- g	0.24
+	-b	+g	0.06
-t	-b	-g	0.06

Байесовские сети: общая картина

Байесовские сети: общая картина

- Есть две проблемы с использованием полных совместных таблиц распределения в качестве наших вероятностных моделей:
 - Даже если есть только несколько переменных, совместное распределение слишком велико, чтобы представлять его явно.
 - Трудно узнать (оценить) что-либо эмпирически о более чем нескольких переменных одновременно.
- Байесовские сети: метод описания сложных совместных распределений (моделей) с использованием простых локальных распределений (условных вероятностей).
 - Более правильно называть их графовыми моделями
 - Они описывают, как переменные локально взаимодействуют
 - Локальные взаимодействия объединяются в глобальные косвенные взаимодействия.

Пример байесовской сети: Страхование

Пример байесовской сети: Автомобиль

Нотация графовой модели

- Вершины: переменные (с доменами)
 - Может быть назначенными (наблюдаемыми) или неназначенными (ненаблюдаемыми)

- Дуги: взаимодействия
 - Указывают «прямое влияние» между переменными
 - Формально: определяют условную независимость (подробнее позже)
- А пока: представьте, что стрелки означают прямую причинноследственную связь (хотя в общем случае нет!)

Пример: подбрасывание монет

N независимых подбрасываний монет

 Отсутствие взаимодействий между переменными: полная независимость

Пример: Пробки

• Переменные:

■ R: дождь

■ Т: пробки

■ Модель 2: дождь приводит к пробкам

■ Почему агент, использующий модель 2, лучше?

Пример: Сеть сигнализации

• Переменные

■ В: Взлом

• А: Сигнализация

■ М: Мэри звонит

■ Ј: Джон звонит

■ Е: Землетрясение!

Пример: Люди

- G: цель человека / параметры вознаграждения человека
- S: состояние физического мира
- А: действие человека

Пример: Сеть сигнализации

• Переменные

B: Взлом

• А: Сигнализация

• М: Мэри звонит

■ Ј: Джон звонит

■ Е: Землетрясение!

Пример: Пробки II

• Переменные

■ Т: Пробки

■ R: Дождь

■ L: Низкое давление

■ D: Капли с крыши

■ В: Игра в мяч

■ С: Полость в зубе

Семантика байесовской сети

Семантика байесовской сети

- Множество вершин, по одной на каждую переменную X
- Направленный, ациклический граф
- Условное распределение для каждого узла
 - Набор распределений по X, по одному для каждой комбинации родительских значений.

$$P(X|a_1\ldots a_n)$$

- СРТ: таблица условной вероятности
- Описание зашумленного «причинного» процесса

Байесовская сеть = топология (граф) + локальные условные вероятности

Вероятности в Байесовской сети

- Сети Байеса неявно кодируют совместные распределения
 - Как произведение локальных условных распределений
 - Чтобы увидеть, какую вероятность сеть дает для полного распределения, перемножьте все соответствующие условные операторы вместе. :

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

■ Пример:

P(+cavity, +catch, -toothache)

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)

Вероятности в Байесовской сети

Почему мы гарантируем, что

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

приводит к правильному совместному распределению?

- Цепное правило (действительно для всех $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$ распределений):
- <u>Предположим</u> условную независимость: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$

$$ightharpoonup$$
 Следствие: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | \textit{parents}(X_i))$

- Не каждая сеть Байеса может представлять каждое совместное распределение
 - Топология обеспечивает определенные условные независимости

Пример: Подбрасывание монет

 X_2

• •

 X_n

$$P(X_1)$$

h	0.5
t	0.5

D	1	\mathbf{v}	-	١
Γ	ĺ	Λ	つ)
	`		_	_

h	0.5
t	0.5

. . .

P	1	X		١
1	1	7	n	,

h	0.5
t	0.5

$$P(h, h, t, h) = P(h)P(h)P(t)P(h)$$

Только распределения, переменные которых абсолютно независимы, могут быть представлены байесовской сетью без дуг.

Пример: Пробки

$$P(+r, -t) = P(+r)P(-t|+r) = \frac{1}{4}*1/4$$

Пример: Сигнализация

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Е	P(E)
+e	0.002
-e	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

P(M|A)P(J|A)P(A|B,E)

Пример: Пробки

Направление причинности

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Пример: Пробки наоборот

• Реверсивная причинность?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Причинность?

- Когда сети Байеса отражают истинные причинноследственные связи:
 - Часто проще (узлы имеют меньше родителей)
 - Часто легче думать о...
 - Часто легче получить суждения экспертов
- Сети Байеса не обязательно должны быть причинноследственными
 - Иногда в домене не существует причинной сети (особенно если отсутствуют переменные).
 - Например, рассмотрим переменные Пробки и Капли
 - Возможны дуги, отражающие корреляцию, а не причинноследственную связь
- Что же дуги действительно значат?
 - Топология может кодировать каузальную структуру
 - Топология действительно кодирует условную независимость $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$

