Théorème

Soit X un espace topologique muni d'une opération continue d'un groupe G. Supposons que $\forall x, x' \in X$ tq $O_X \neq O_{X'} \exists$ un voisinage U de x et un voisinage U' de x' tq

$$U \cap gU' = \emptyset \qquad \forall g \in G.$$

Alors, X/G est Hausdorff (et $\pi: X \to X/G$ est une application ouverte).

Démonstration.

Soit $U \subset X$ ouvert et $V := \pi(U)$. Puisque

$$\pi^{-1}(V) = \bigcup_{g \in G} gU \tag{*}$$

est ouvert comme la réunion des ouverts, $V \subset X/G$ est ouvert par définition de la topologie induite. Ainsi, π est une application ouverte.

1/4

Démonstration (suite).

Soient maintenant x, x' et U, U' comme dans la formulation de ce théorème. Donc, $V = \pi(U)$ est un voisinage de $[x], V' = \pi(U')$ est un voisinage de [x'] et on a

$$\pi^{-1}(V \cap V') = \pi^{-1}(V) \cap \pi^{-1}(V').$$

En utilisant (*), on obtient

$$\pi^{-1}(V \cap V') = \Big(\bigcup_{g \in G} gU\Big) \bigcap \Big(\bigcup_{h \in G} hU'\Big) = \bigcup_{g,h \in G} \Big(gU \cap hU'\Big).$$

Puisque

$$gU \cap hU' = g(U \cap g^{-1}hU') = \emptyset,$$

on obtient $\pi^{-1}(V \cap V') = \emptyset$. Enfin, par la surjectivité de π on obtient $V \cap V' = \emptyset$. Ainsi, X/G est Hausdorff.

Exemple

1. Considérons l'opération de $(\mathbb{Z}, +)$ sur $X = \mathbb{R}$ définie par $(n, x) \mapsto x + n$. Pour $x, x' \in \mathbb{R}$ tq $O_X \neq O_{X'}$, posons

$$\delta := \frac{1}{4} \inf \{ |x - x' - n| : n \in \mathbb{Z} \} > 0.$$

Il suit que $U := (x - \delta, x + \delta)$ et $U' := (x' - \delta, x' + \delta)$ satisfont l'hypothèse du théorème. Alors, \mathbb{R}/\mathbb{Z} est un espace Hausdorff.

Exercice : Montrer, que l'application $F: \mathbb{R} \to S^1$ définie par $F(t) = (\cos 2\pi t, \sin 2\pi t)$ induit un homéomorphisme $f: \mathbb{R}/\mathbb{Z} \to S^1$.

2. Considérons l'opération de \mathbb{Z}^2 sur $X = \mathbb{R}^2$ définie par $((n,m),(x,y)) \mapsto (x+n, y+m)$.

Exercice : Montrer, que l'espace quotient $\mathbb{R}^2/\mathbb{Z}^2$ est Hausdorff et que l'application $F: \mathbb{R}^2 \to S^1 \times S^1$ definie par

$$F(x, y) = (\cos 2\pi x, \sin 2\pi x, \cos 2\pi y, \sin 2\pi y)$$

induit un homéomorphisme $f: \mathbb{R}^2/\mathbb{Z}^2 \to S^1 \times S^1$.

3/4

Exemple (suite)

3. Considérons l'opération de $\mathbb{Z}_2 = \{\pm 1\}$ sur $X = S^n$ définie par $\varepsilon \cdot x = (\varepsilon x_0, \dots, \varepsilon x_n)$.

Si $O_X \neq O_{X'}$, on a $X \neq X'$ et donc on peut trouver des voisinages $U_0 \ni X$ et $U_0' \ni X'$ tq $U_0 \cap U_0' = \emptyset$ parce que S^n est Hausdorff. De la même manière, il existe des voisinages $U_1 \ni X$ et $U_1' \ni -X'$ tq $U_1 \cap U_1' = \emptyset$. Donc, si on pose

$$U := U_0 \cap U_1$$
 et $U' := U'_0 \cap \left(-U'_1 \right)$

on obtient $U \cap U' = \emptyset = U \cap (-U')$. Ainsi, S^n/\mathbb{Z}_2 est Hausdorff.

 S^2/\mathbb{Z}_2 est clairement le plan projectif \mathbb{RP}^2 , càd que le plan projectif est un espace Hausdorff.