MATH 217 (Fall 2022)

Honors Advanced Calculus, I

Assignment #1

1. Let + and \cdot be defined on $\{ \spadesuit, \dagger, \bigcirc, A \}$ through:

+	^	†	0	A
•	•	†	0	A
†	†	0	A	•
0	0	A	•	†
A	A	•	†	0

	•	†	0	A	j
•	•	•	•	•]
†	•	†	0	A	
	•	0	^	0]
A	•	A	0	†	

Do these turn $\{ \spadesuit, \dagger, \bigcirc, A \}$ into a field?

2. Show that

$$\mathbb{Q}[i] := \{ p + i \, q : p, q \in \mathbb{Q} \} \subset \mathbb{C}$$

with + and \cdot inherited from \mathbb{C} , is a field. Is there a way to turn $\mathbb{Q}[i]$ into an ordered field?

3. Let $\emptyset \neq S \subset \mathbb{R}$ be bounded below, and let $-S := \{-x : x \in S\}$. Show that:

- (a) -S is bounded above;
- (b) S has an infimum, namely $\inf S = -\sup(-S)$.

4. Find sup S and inf S in \mathbb{R} for

$$S := \left\{ (-1)^n \left(1 - \frac{1}{n} \right) : n \in \mathbb{N} \right\}.$$

Justify, i.e., *prove*, your findings.

5. Let $S, T \subset \mathbb{R}$ be non-empty and bounded above. Show that

$$S + T := \{x + y : x \in S, y \in T\}$$

is also bounded above with

$$\sup(S+T) = \sup S + \sup T.$$

6*. An ordered field $\mathbb O$ is said to have the *nested interval property* if $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ for each decreasing sequence $I_1 \supset I_2 \supset I_3 \supset \cdots$ of closed intervals in $\mathbb O$.

Show that an Archimedean ordered field with the nested interval property is complete.

Due Monday, September 19, 2020, at 10:00 a.m.; no late assignments.

!!! IMPORTANT !!!

- 1. The completed assignment has to submitted through Assign2.
- 2. You are allowed to collaborate on homework assignments—in fact, I encourage you to do so. Still, every student must submit their own homework assignment.
- 3. All problems have equal weight.
- 4. Problems marked with an * are bonus problems: they allow you to earn extra marks on an assignment. On this assignment, for instance, you can thus get a mark of 120%.
- 5. Of the n (probably 9 or 10) homework assignments in the course, only the n-1 best will count towards your grade.