<110>	Gregor, Polly Concetti, Antonio Houghton, Alan Venanzi, Franco Maria
<120>	Compositions and Methods for Synergistic Induction of Antitumor Immunity
<130>	D6547PCT
<150>	USSN 60/519,498
<151>	2003-11-13
<160>	13
<210>	1
<211>	5220
<212>	DNA
<213>	artificial sequence
<220>	
<223>	nucleotide sequence for mouse TEM8
<400>	1
	tcgactgcaa agcttcaagc gcagcctggg agcggcctgg 50
	ccggcagete cacacageag aacgceetgg gteeetgaaa 100
	gggctcagaa ccagcggaaa ccaaagcgaa atccttgaac 150 aattgcttcc gggcgtttgc tgagagccgg gggacctgac 200
	aattgcttcc gggcgtttgc tgagagccgg gggacctgac 200 gccgcgtatg gcgcccct gatgtcacac ggacgccagc 250
-	ctccggctgc agcatggacc gcgcggggcg cctgggtgcg 300
-	gactetgegt ggetgeacte gtgetegtgt gegeeggaca 350
	cgcgaggatg ggggaccagc ttgctacgga ggattcgacc 400
tctacttcat	cctggacaag tcaggaagtg tgctgcacca ctggaatgaa 450

atctactact	tcgtggagca	gttggctcat	agattcatca	gcccacagct	500
aaggatgtcc	ttcattgtct	tctctactcg	agggacaact	ttaatgaaac	550
taactgagga	cagggaacag	atccgacaag	gcctagaaga	gctccagaaa	600
gttctgccag	gaggagacac	ttacatgcac	gaaggattcg	agagggccag	650
tgagcagatt	tactatgaga	acagtcaagg	atacaggacg	gcgagcgtca	700
tcatcgcgtt	gacggatggg	gagctgcacg	aggacctctt	cttctactca	750
gagaggagg	ctaaccgatc	ccgagacctt	ggtgcgattg	tttactgcgt	800
tggcgtgaag	gatttcaatg	aaactcagtt	ggctcggatt	gcagacagta	850
aggaccacgt	gtttcctgtg	aacgacggct	tccaggctct	ccaaggcatt	900
atccactcaa	ttttaaagaa	atcctgcatc	gaaattctgg	cggctgaacc	950
atccaccatc	tgcgcgggag	agtcctttca	agtggtcgta	agaggaaatg	1000
gcttccgaca	tgcccgcaat	gtggacaggg	tcctctgcag	cttcaaaatc	1050
aatgactcag	tcacgctcaa	tgagaagccc	tttgctgtgg	aagacactta	1100
tttgctgtgc	ccagcaccaa	tcttgaaaga	agttggcatg	aaagctgcac	1150
tgcaggtcag	catgaacgac	ggcctgtcct	tcatctccag	ttctgtcatc	1200
atcaccacca	cacactgttc	agacggctcc	atcctggcga	ttgctctgct	1250
ggtcctcttc	ctgctgctgg	ccctggcgct	gctctggtgg	ttctggcccc	1300
tctgctgcac	agtgatcatc	aaggaggtcc	ctccaccccc	tgttgaggag	1350
agtgaggaag	aagacgatga	tggtttgcca	aagaagaaat	ggcccacagt	1400
agatgcctct	tattatggtg	gacgcggtgt	gggaggcatt	aaaagaatgg	1450
aggtccgctg	gggagaaaag	ggctccacag	aagaaggggc	gaagttagaa	1500
aaggcaaaga	atgcacgagt	caagatgcca	gagcaagaat	atgagttccc	1550
agaaccccga	aacctcaaca	acaacatgcg	ccggccttcc	tcgcctcgga	1600
agtggtactc	gcccatcaag	ggaaaactcg	atgccttgtg	ggttctgctg	1650
agaaaaggat	atgaccgagt	gtctgtgatg	aggccacagc	caggagacac	1700
gggacgctgt	atcaacttca	ccagagtgaa	gaacagtcag	ccagccaagt	1750
atcccctgaa	caacacctac	caccccagct	ccccacctcc	cgctcctatc	1800
tacacacccc	cacccctgc	tccccactgc	cctccccag	ccccagtgc	1850
ccccactcct	cccattcctt	ccccaccatc	cactctcccc	cctcctc	1900
aggccccacc	ccctaacagg	gcacctcccc	cctcccgacc	tcctccaagg	1950
ccttctgtct	agaacccaaa	gtccgagctc	tgggctgcct	gagcaactcc	2000
agcaggaggc	ttctctgctg	aaagaaagat	ctgcccagcc	tatgtggtga	2050
gtggcggctg	atgtttgcac	gatttaaaag	caagtcgtga	tgggcagaac	2100
aaaatgggca	ttttgaactg	cctgaagaca	gacaatgaga	caataacagt	2150
cacattatag	cctgtgaccc	ctcacctcta	gaggaaggtt	cccgagatgg	2200
ccacattgcc	acagtgctct	cagccagatt	atgtcccatg	aagaccagga	2250
agaaagtgac	ttccaagaat	ggaatgcagc	attggataag	aaacacctgg	2300
ctgagattct	gacctcactg	atttgactct	tgattcttgg	actgggagcc	2350
aggccatctc	cacccctggt	accacccagc	aactctgaaa	atgtgcagtg	2400
tccctagtat	gcatcgaata	ggtatccaac	tgggatctgc	aggttgcctt	2450
ataaagagca	tatgctctat	tctctttccc	gaacttcctg	gtttcccagt	2500
				gaggacgtca	
gtgctcagca	ctgatggaga	agcgttgatg	ggagtgtcca	gctcttacat	2600
ctagaaatgg	ctggcttcag	caggcacagt	tcctaaacca	acaagccttg	2650

tcattgtcaa aggcaaccta ctaatgattc accttaaaca tcaaggttga 2700 ctgtggcata ggtcagagct gatcacacag aaccttcccc atgaaatcgc 2750 aaggtteete atetteaaat acceaggace eeagagattt etaaateeag 2800 ctaagagaca gtagtcctga cttggcaaga aaaccattcc cagttgtttt 2850 actctgaaac aggccgttgt atgtatggta tatctctcct tggcctttca 2900 acctgctcac aagtattacc agttatgaag caaggagaaa tacatccagt 2950 gtgtaataga aaagetetge ceacaateee catgteacte etetacatta 3000 ttctgaagct gcttggtcag tgagcccttt aacctcatgt agactctgga 3050 cactgtcacc caatcatgaa aacagaggtc attgtcaaag gcagtgtata 3100 gcctgtacaa aaatgatgct tccttcctca gtttccacag gccccaaaat 3150 tcctgtctta ggctcctaaa cctctaaact ttttcctgga acaaaagata 3200 taaaacgggc ataagttttt atgttttggg ctgtgatctc caaagatcct 3250 tcaagaactc aagttagcct cattcttcca gcttgtttag aacagaggca 3300 tccaggtgtc atgcactcca tagacaccaa tccttgttcc caaggcagac 3350 attattaatc aatctcagca ctagttctca atttaatcca attatatttt 3400 tccacagtac ttcacatctc ttatgacctg ttggtcatca gttagaattg 3450 agagagataa acactgtttg taatccctac cttagaaaga aaagcagagg 3500 agaatggggg aaccaccagc ataaaagtta ttatctgggg aaaatcgacc 3550 tgaaagaacg cccaagtcca agacctatgg tgctgacacc aaagtaacac 3600 tttcccaagt gtaccccaga ccccactctt ctccctgtgg ccaccactcc 3650 ctgcttttca ggagttgtga aaaagatctc cttcaccctt actgtgcccc 3700 catattagaa caaggettgt ttagtgtagt eettgttaaa caggtgecag 3750 aatgtctcag ccacctgaga tgacattgct gggccccaga aaaccattcc 3800 aaggagaatg ggctccccag gctcagagca tgcaactatg agcccatggc 3850 aactgttttg actgctggca gtacaaaacg ggccacccca cattacagct 3900 gcaggatttg tgcagccata agaaagtatg aaccaagatg ctggtgttgc 3950 tgttcaacaa gcatgggctt cggggaaggc agcagactcc gagagcaggc 4000 cttgtgcagt gtcccaaggg gctgtggtga agtgtctgag gaaaaatgaa 4050 tgctgataca tggtgattct gagaagaatt tgcaaggttt gaccttagaa 4100 tttatggaat gtcttccctg gtcattcaga attatggcta gaagtttcta 4150 gaaaccgtca aggttaatac ctttcagagt aggtgattac aggcaggaag 4200 agetttgatg tggtttacaa ageceateag ttetgtgtea tteeetgtaa 4250 gcaacaggag atggtggttg tgattagcaa actgcatgtg ttatttgttt 4300 gactccttgt tattgtcctt acggaggatt ttttttatat aagccaaatt 4350 ttgttgtata tattcatatt ccacgtgaca gatggaagca cgtcctatca 4400 gtgtgaataa aaagaacagt tgtagtaaat tattaaagcc agtgatttca 4450 tggcaggtta ccctaccaag ctgtgcttgt tgatctccca tgaccatact 4500 gettttacaa tgtacaaata gtteetaggt gacgagaeee teetttacat 4550 aatgccgatg acagccttgc tgggaactgc ggtccttctg ctgtgacagc 4600 cagetegaaa acaggteetg cetggagett gecacacact ttagggagae 4650 ataagagctg tctttcccca gcgtcaggga caaagctacc ataaagaagt 4700 ggaaaagtet tggeteteca geetgggaca gaggtetete tggaacecea 4750 aggaagagca gaaatgatcc ttgcctgcca ctgcacacaa tgtgatggtg 4800 gaaaatccat caaggaataa ttgtgagata atgaccgaca gttcaggcgc 4850

aaagggaatt catgctgtgt aaagtgggtg gaattcgttt gcaagctatg 4900 caaagcctga tcttactcac caggaggatg gaaagggttt ttttagttat 4950 ctgagctcag ctgagttatc acgcttggag aaccgattta aaggaattag 5000 aatatgattt ctgaatacac ataacattaa actcttctct ttttctatgg 5050 taatttagtt atggacgttc agcgtctctg agttattgtt ataaaagact 5100 tgtcatcacc gcactgtgct gtaggagact gggctgaacc tgtacaatgg 5150 tataccctgg aagttgcttt tttaaaaaaa aataataata aacacctaaa 5200 atcaaaaaaa aaaaaaaaa

<210> 2
<211> 561
<212> PRT
<213> artificial sequence
<220>
<223> amino acid sequence for mouse TEM8

<400> 2 Met Asp Arg Ala Gly Arg Leu Gly Ala Gly Leu Arg Gly Leu Cys Val Ala Ala Leu Val Leu Val Cys Ala Gly His Gly Gly Arg Arg 30 20 25 Glu Asp Gly Gly Pro Ala Cys Tyr Gly Gly Phe Asp Leu Tyr Phe 40 35 Ile Leu Asp Lys Ser Gly Ser Val Leu His His Trp Asn Glu Ile 50 55 Tyr Tyr Phe Val Glu Gln Leu Ala His Arg Phe Ile Ser Pro Gln 70 75 Leu Arg Met Ser Phe Ile Val Phe Ser Thr Arg Gly Thr Thr Leu Met Lys Leu Thr Glu Asp Arg Glu Gln Ile Arg Gln Gly Leu Glu 95 100 105 Glu Leu Gln Lys Val Leu Pro Gly Gly Asp Thr Tyr Met His Glu 110 120 115 Gly Phe Glu Arg Ala Ser Glu Gln Ile Tyr Tyr Glu Asn Ser Gln 130 125 135 Gly Tyr Arg Thr Ala Ser Val Ile Ile Ala Leu Thr Asp Gly Glu 140 145 150

Leu	His	Glu	Asp	Leu 155	Phe	Phe	Tyr	Ser	Glu 160	Arg	Glu	Ala	Asn	Arg 165
Ser	Arg	Asp	Leu	Gly 170	Ala	Ile	Val	Tyr	Cys 175	Val	Gly	Val	Lys	Asp 180
Phe	Asn	Glu	Thr	Gln 185	Leu	Ala	Arg	Ile	Ala 190	Asp	Ser	Lys	Asp	His 195
Val	Phe	Pro	Val	Asn 200	Asp	Gly	Phe	Gln	Ala 205	Leu	Gln	Gly	Ile	Ile 210
His	Ser	Ile	Leu	Lys 215	Lys	Ser	Cys	Ile	Glu 220	Ile	Leu	Ala	Ala	Glu 225
Pro	Ser	Thr	Ile	Cys 230	Ala	Gly	Glu	Ser	Phe 235	Gln	Val	Val	Val	Arg 240
Gly	Asn	Gly	Phe	Arg 245	His	Ala	Arg	Asn	Val 250	Asp	Arg	Val	Leu	Cys 255
Ser	Phe	Lys	Ile	Asn 260	Asp	Ser	Val	Thr	Leu 265	Asn	Glu	Lys	Pro	Phe 270
Ala	Val	Glu	qaA	Thr 275	Tyr	Leu	Leu	Cys	Pro 280	Ala	Pro	Ile	Leu	Lys 285
Glu	Val	Gly	Met	Lys 290	Ala	Ala	Leu	Gln	Val 295	Ser	Met	Asn	Asp	Gly 300
				305	Ser				310					315
Ser	Asp	Gly	Ser	Ile 320	Leu	Ala	Ile	Ala	Leu 325	Leu	Val	Leu	Phe	Leu 330
Leu	Leu	Ala	Leu	Ala 335	Leu	Leu	Trp	Trp	Phe	Trp	Pro	Leu	Cys	Cys 345
				350	Glu				355					360
				365	Asp	_			370	_	_	_		375
				380	Tyr				385			_		390
				395	Trp	_			400					405
				410	Ala				415					420
		_		425	Pro				430					435
Arg	Arg	Pro	Ser	Ser 440	Pro	Arg	Lys	Trp	Tyr 445	Ser	Pro	Ile	Lys	Gly 450
_				455	Trp				460					465
Val	Ser	Val	Met	Arg 470	Pro	Gln	Pro	Gly	Asp 475	Thr	Arg	Cys	Ile	Asn 480

```
Phe Thr Arg Val Lys Asn Ser Gln Pro Ala Lys Tyr Pro Leu Asn
                485
                                     490
                                                         495
Asn Thr Tyr His Pro Ser Ser Pro Pro Pro Ala Pro Ile Tyr Thr
                500
                                    505
Pro Pro Pro Pro Ala Pro His Cys Pro Pro Pro Ala Pro Ser Ala
                515
                                    520
Pro Thr Pro Pro Ile Pro Ser Pro Pro Ser Thr Leu Pro Pro
                530
                                    535
                                                         540
Pro Gln Ala Pro Pro Pro Asn Arg Ala Pro Pro Pro Ser Arg Pro
                                    550
                                                         555
Pro Pro Arg Pro Ser Val
                560
```

<210> 3 <211> 252

<212> PRT

<213> artificial sequence

110

<220>

<223> amino acids 27-279 for mouse TEM8

<400> 3 Gly Arg Arg Glu Asp Gly Gly Pro Ala Cys Tyr Gly Gly Phe Asp 5 10 Leu Tyr Phe Ile Leu Asp Lys Ser Gly Ser Val Leu His His Trp 25 Asn Glu Ile Tyr Tyr Phe Val Glu Gln Leu Ala His Arg Phe Ile 35 40 Ser Pro Gln Leu Arg Met Ser Phe Ile Val Phe Ser Thr Arg Gly 50 55 Thr Thr Leu Met Lys Leu Thr Glu Asp Arg Glu Gln Ile Arg Gln 65 70 Gly Leu Glu Glu Leu Gln Lys Val Leu Pro Gly Gly Asp Thr Tyr 80 85 Met His Glu Gly Phe Glu Arg Ala Ser Glu Gln Ile Tyr Tyr Glu 95 100 Asn Ser Gln Gly Tyr Arg Thr Ala Ser Val Ile Ile Ala Leu Thr

115

120

```
Asp Gly Glu Leu His Glu Asp Leu Phe Phe Tyr Ser Glu Arg Glu
                125
                                     130
                                                          135
Ala Asn Arg Ser Arg Asp Leu Gly Ala Ile Val Tyr Cys Val Gly
                140
                                     145
Val Lys Asp Phe Asn Glu Thr Gln Leu Ala Arg Ile Ala Asp Ser
                155
                                     160
                                                          165
Lys Asp His Val Phe Pro Val Asn Asp Gly Phe Gln Ala Leu Gln
                170
                                     175
                                                          180
Gly Ile Ile His Ser Ile Leu Lys Lys Ser Cys Ile Glu Ile Leu
                185
                                     190
Ala Ala Glu Pro Ser Thr Ile Cys Ala Gly Glu Ser Phe Gln Val
                200
                                     205
                                                          210
Val Val Arg Gly Asn Gly Phe Arg His Ala Arg Asn Val Asp Arg
                215
                                     220
                                                          225
Val Leu Cys Ser Phe Lys Ile Asn Asp Ser Val Thr Leu Asn Glu
                230
                                     235
                                                          240
Lys Pro Phe Ala Val Glu Asp Thr Tyr Leu Leu Cys
                245
                                     250
```

<210> 4 5540 <211> <212> DNA artificial sequence <213> <220> nucleotide sequence for human TEM8 <223> <400> 4 aattgcttcc ggggagttgc gagggagcga gggggaataa aggacccgcg aggaagggcc cgcggatggc gcgtccctga gggtcgtggc gagttcgcgg agegtgggaa ggageggaee etgeteteee egggetgegg gecatggeea cqgcggagcg gagagccete ggcategget tecagtgget etetttggee actctggtgc tcatctgcgc cgggcaaggg ggacgcaggg aggatggggg tccagcctgc tacggcggat ttgacctgta cttcattttg gacaaatcag qaagtgtgct gcaccactgg aatgaaatct attactttgt ggaacagttg qctcacaaat tcatcagccc acagttgaga atgtccttta ttgttttctc cacccgagga acaaccttaa tgaaactgac agaagacaga gaacaaatcc

qtcaaggcct agaagaactc cagaaagttc tgccaggagg agacacttac

atgcatgaag gatttgaaag ggccagtgag cagatttatt atgaaaacag

acaagggtac aggacagcca gcgtcatcat tgctttgact gatggagaac

50

100

150 200

250

300

350 400

450

550

600

500

tccatgaaga	tctcttttc	tattcagaga	gggaggctaa	taggtctcga	650
gatcttggtg	caattgttta	ctgtgttggt	gtgaaagatt	tcaatgagac	700
acagctggcc	cggattgcgg	acagtaagga	tcatgtgttt	cccgtgaatg	750
acggctttca	ggctctgcaa	ggcatcatcc	actcaatttt	gaagaagtcc	800
tgcatcgaaa	ttctagcagc	tgaaccatcc	accatatgtg	caggagagtc	850
atttcaagtt	gtcgtgagag	gaaacggctt	ccgacatgcc	cgcaacgtgg	900
acagggtcct	ctgcagcttc	aagatcaatg	actcggtcac	actcaatgag	950
aagccctttt	ctgtggaaga	tacttattta	ctgtgtccag	cgcctatctt	1000
aaaagaagtt	ggcatgaaag	ctgcactcca	ggtcagcatg	aacgatggcc	1050
tctcttttat	ctccagttct	gtcatcatca	ccaccacaca	ctgttctgac	1100
ggttccatcc	tggccatcgc	cctgctgatc	ctgttcctgc	tcctagccct	1150
ggctctcctc	tggtggttct	ggcccctctg	ctgcactgtg	attatcaagg	1200
aggtccctcc	accccctgcc	gaggagagtg	aggaagaaga	tgatgatggt	1250
ctgcctaaga	aaaagtggcc	aacggtagac	gcctcttatt	atggtgggag	1300
aggcgttgga	ggcattaaaa	gaatggaggt	tcgttgggga	gaaaagggct	1350
ccacagaaga	aggtgctaag	ttggaaaagg	caaagaatgc	aagagtcaag	1400
atgccggagc	aggaatatga	attccctgag	ccgcgaaatc	tcaacaacaa	1450
tatgcgtcgg	ccttcttccc	cccggaagtg	gtactctcca	atcaagggaa	1500
aactcgatgc	cttgtgggtc	ctactgagga	aaggatatga	tcgtgtgtct	1550
gtgatgcgtc	cacagccagg	agacacgggg	cgctgcatca	acttcaccag	1600
ggtcaagaac	aaccagccag	ccaagtaccc	actcaacaac	gcctaccaca	1650
cctcctcgcc	gcctcctgcc	cccatctaca	ctccccacc	tcctgcgccc	1700
cactgccctc	cccgcccc	cagcgcccct	acccctccca	tcccgtcccc	1750
accttccacc	cttccccctc	ctccccaggc	tccacctccc	aacagggcac	1800
ctcctccctc	ccgccctcct	ccaaggcctt	ctgtctagag	cccaaagttc	1850
ctgctctggg	ctctctcaga	aacttcagga	gatgttagaa	caagtctttc	1900
cagttagaga	agaggagtgg	tgataaagcc	cactgacctt	cacacattct	1950
aaaaattggt	tggcaatgcc	agtataccaa	caatcatgat	cagctgaaag	2000
aaacagatat	tttaaattgc	cagaaaacaa	atgatgaggc	aactacagtc	2050
agatttatag	ccagccatct	atcacctcta	gaaggttcca	gagacagtga	2100
aactgcaaga	tgctctcaac	aggattatgt	ctcatggaga	ccagtaagaa	2150
aatcatttat	ctgaaggtga	aatgcagagt	tggataagaa	atacattgct	2200
gggtttctaa	aatgctgcct	tcctgcctct	actccacctc	catccctgga	2250
ctttggaccc	ttggcctagg	agcctaagga	ccttcacccc	tgtgcaccac	2300
ccaagaaaga	ggaaaacttt	gcctacaact	ttggaaatgc	tggggtccct	2350
ggtgtggtaa	gaaactcaac	atcagacggg	tatgcagaag	gatgttcttc	2400
tgggatttgc	aggtacataa	aaaatgtatg	gcatctttc	cttgcaaatt	2450
cttccagttt	ccaagtgaga	aggggagcag	gtgtttactg	atggaaaagg	2500
tatgttgcta	tgttgatgtg	taagtgaaat	cagttgtgtg	caatagacag	2550
gggcgtattc	atgggagcat	cagccagttt	ctaaaaccca	caggccatca	2600
gcagctagag	gtggctggct	ttggccagac	atggacccta	aatcaacaga	2650
caatggcatt	gtcgaagagc	aacctgttaa	tgaatcatgt	taaaaatcaa	2700
ggtttggctt	cagtttaaat	cacttgaggt	atgaagttta	tcctgttttc	2750
cagagataaa	cataagttga	tcttcccaaa	ataccatcat	taggacctat	2800

cacacaatat	cactagtttt	ttttgtttgt	ttgttttttg	tttttttct	2850
	atgcaccaca				2900
	taaggatctt				2950
tacaaatata	cttctctttg	gcttttcgac	atagaacctc	agctgttaac	3000
caaggggaaa	tacatcagat	ctgcaacaca	gaaatgctct	gcctgaaatt	3050
tccaccatgc	ctaggactca	ccccatttat	ccaggtcttt	ctggatctgt	3100
ttaatcaata	agccctataa	tcacttgcta	aacactgggc	ttcatcaccc	3150
agggataaaa	acagagatca	ttgtcttgga	cctcctgcat	cagcctattc	3200
aaaattatct	ctctctctag	ctttccacaa	atcctaaaat	tcctgtccca	3250
agccacccaa	attctcagat	cttttctgga	acaaggcaga	atataaaata	3300
aatatacatt	tagtggcttg	ggctatggtc	tccaaagatc	cttcaaaaat	3350
acatcaagcc	agcttcattc	actcacttta	cttagaacag	agatataagg	3400
gcctgggatg	catttatttt	atcaatacca	atttttgtgg	ccatggcaga	3450
cattgctaat	caatcacagc	actatttcct	attaagccca	ctgatttctt	3500
cacaatcctt	ctcaaattac	aattccaaag	agccgccact	caacagtcag	3550
atgaacccaa	cagtcagatg	agagaaatga	accctacttg	ctatctctat	3600
cttagaaagc	aaaaacaaac	aggagtttcc	agggagaatg	ggaaagccag	3650
ggggcataaa	aggtacagtc	aggggaaaat	agatctaggc	agagtgcctt	3700
agtcagggac	cacgggcgct	gaatctgcag	tgccaacacc	aaactgacac	3750
atctccaggt	gtacctccaa	ccctagcctt	ctcccacagc	tgcctacaac	3800
agagtctccc	agccttctca	gagagctaaa	accagaaatt	tccagactca	3850
tgaaagcaac	ccccagcct	ctccccaacc	ctgccgcatt	gtctaatttt	3900
tagaacacta	ggcttcttct	ttcatgtagt	tcctcataag	caggggccag	3950
aatatctcag	ccacctgcag	tgacattgct	ggacccctga	aaaccattcc	4000
ataggagaat	gggttcccca	ggctcacagt	gtagagacat	tgagcccatc	4050
acaactgttt	tgactgctgg	cagtctaaaa	cagtccaccc	accccatggc	4100
actgccgcgt	gattcccgcg	gccattcaga	agttcaagcc	gagatgctga	4150
cgttgctgag	caacgagatg	gtgagcatca	gtgcaaatgc	accattcagc	4200
acatcagtca	tatgcccagt	gcagttacaa	gatgttgttt	cggcaaagca	4250
ttttgatgga	atagggaact	gcaaatgtat	gatgattttg	aaaaggctca	4300
gcaggatttg	ttcttaaacc	gactcagtgt	gtcatccccg	gttatttaga	4350
attacagtta	agaaggagaa	acttctataa	gactgtatga	acaaggtgat	4400
atcttcatag	tgggctatta	caggcaggaa	aatgttttaa	ctggtttaca	4450
aaatccatca	atacttgtgt	cattccctgt	aaaaggcagg	agacatgtga	4500
ttatgatcag	gaaactgcac	aaaattattg	ttttcagccc	ccgtgttatt	4550
gtccttttga	actgttttt	ttttattaaa	gccaaatttg	tgttgtatat	4600
attcgtattc	catgtgttag	atggaagcat	ttcctatcca	gtgtgaataa	4650
aaagaacagt	tgtagtaaat	tattataaag	ccgatgatat	ttcatggcag	4700
gttattctac	caagctgtgc	ttgttggttt	ttcccatgac	tgtattgctt	4750
ttataaatgt	acaaatagtt	actgaaatga	cgagaccctt	gtttgcacag	4800
cattaataag	aaccttgata	agaaccatat	tctgttgaca	gccagctcac	4850
agtttcttgc	ctgaagcttg	gtgcaccctc	cagtgagaca	caagatctct	4900
cttttaccaa	agttgagaac	agagctggtg	gattaattaa	tagtcttcga	4950
tatctggcca	tgggtaacct	cattgtaact	atcatcagaa	tgggcagaga	5000

<210> 5
<211> 564
<212> PRT
<213> artificial sequence
<220>
<223> amino acid sequence for human TEM8

<400> Met Ala Thr Ala Glu Arg Arg Ala Leu Gly Ile Gly Phe Gln Trp 15 5 10 Leu Ser Leu Ala Thr Leu Val Leu Ile Cys Ala Gly Gln Gly Gly 20 Arg Arg Glu Asp Gly Gly Pro Ala Cys Tyr Gly Gly Phe Asp Leu 45 40 35 Tyr Phe Ile Leu Asp Lys Ser Gly Ser Val Leu His His Trp Asn 60 55 50 Glu Ile Tyr Tyr Phe Val Glu Gln Leu Ala His Lys Phe Ile Ser Pro Gln Leu Arg Met Ser Phe Ile Val Phe Ser Thr Arg Gly Thr 85 80 Thr Leu Met Lys Leu Thr Glu Asp Arg Glu Gln Ile Arg Gln Gly 100 95 Leu Glu Glu Leu Gln Lys Val Leu Pro Gly Gly Asp Thr Tyr Met 115 110 His Glu Gly Phe Glu Arg Ala Ser Glu Gln Ile Tyr Tyr Glu Asn 135 130 125

Arg	Gln	Gly	Tyr	Arg 140	Thr	Ala	Ser	Val	Ile 145	Ile	Ala	Leu	Thr	Asp 150
Gly	Glu	Leu	His	Glu 155	Asp	Leu	Phe	Phe	Tyr 160	Ser	Glu	Arg	Glu	Ala 165
Asn	Arg	Ser	Arg	Asp 170	Leu	Gly	Ala	Ile	Val 175	Tyr	Cys	Val	Gly	Val . 180
				185	Thr				190					195
				200	Val				205					210
				215	Leu				220					225
				230	Ile				235					240
				245	Phe				250					255
				260	Ile				265					270
				275	Asp				280					285
	-			290	Met				295					300
				305	Ile				310					315
				320					325					Leu 330
				335					340					Leu 345
_				350					355					Glu 360
				365					370					Trp 375
				380					385					Gly 390
				395					400					Glu 405 Met
				410					415					Met 420 Asn
				425	ı				430					435
				440					445					450
Lys	g GTĀ	. rλs	ren	Asp 455		rea	r.r.b	val	460		, wro	, Lys	, сту	Tyr 465

Asp Arg Val Ser Val Met Arg Pro Gln Pro Gly Asp Thr Gly Arg 470 475 480 Cys Ile Asn Phe Thr Arg Val Lys Asn Asn Gln Pro Ala Lys Tyr 485 490 495 Pro Leu Asn Asn Ala Tyr His Thr Ser Ser Pro Pro Pro Ala Pro 500 505 510 Ile Tyr Thr Pro Pro Pro Pro Ala Pro His Cys Pro Pro Pro 515 520 525 Pro Ser Ala Pro Thr Pro Pro Ile Pro Ser Pro Pro Ser Thr Leu 530 535 540 Pro Pro Pro Pro Gln Ala Pro Pro Pro Asn Arg Ala Pro Pro Pro 545 550 555 Ser Arg Pro Pro Pro Arg Pro Ser Val 560

<210> 6

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> Sense strand oligonucleotide sequence to
 make pVAXXCDneu.

<400> 6
cgcaagcttc atcatggagc tggc 24

<210> 7

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> Antisense strand oligonucleotide sequence to
 make pVAXXCDneu.

```
<400>
             7
gcagaattct tatgtcaccg ggct 24
    <210> 8
    <211> 25
    <212> DNA
    <213> artificial sequence
   <220>
    <223>
             Sense strand oligonucleotide sequence to
             amplify TEM8 cDNA.
    <400>
             8
ggactctgcg tggctgcact cgtgc 25
    <210> 9
    <211>
           25
    <212>
            DNA
    <213>
            artificial sequence
    <220>
    <223>
             Antisense strand oligonucleotide sequence
             to amplify TEM8 cDNA.
    <400>
             9
agagcagcgc cagggccagc agcag 25
    <210>
            10
```

<211> 36

<212> DNA

<213> artificial sequence

<220>

<223> FWKpnIm8 sense strand oligonucleotide sequence to clone 28-278 amino acid sequence of TEM8.

<400> 10
gggggtaccg caatgggccg ccgcgaggat ggggga 36

<210>. 11

<211> 34

<212> DNA

<213> artificial sequence

<220>

<223> RVEcoRIm8 antisense strand oligonucleotide sequence to clone 28-278 amino acid of TEM8.

<400> 11
ggtggaattc ctagcacagc aaataagtgt cttc 34

<210> 12

<211> 55

<212> DNA

<213> artificial sequence

<220>

<223> attB1bis oligonucleotide sequence to amplify
TEM8 recombinant protein.

<400>	12				
ggggacaagt gggga	ttgtacaaaa aag	gcaggett	gatgggccgc	c cgcgaggatg	50 55
<210>	13				
<211>	51				
<212>	DNA				
<213>	artificia	l sequen	ce		
<220>					
<223>	attB2bis	oligonuc:	leotide sec	quence to amp	plify
	TEM8 recor	mbinant p	protein.		
<400>	13				
ggggaccact c	ttgtacaaga aag	gctgggtc	gcacagcaaa	a taagtgtctt	50 51