Reading Assignment

symbol codes

expected length of symbol code

let $X \sim \{p(x)\}_{x \in \mathcal{X}}$, and consider code $C(\cdot)$, and let $\ell(x) = |C(x)|$ the expected length of C is $\mathbb{E}[L(C,X)] = \sum_{x} p(x)\ell(x)$

what we want from symbol code C:

- unique decodability: $\forall x_1 x_2 \dots x_n \neq y_1 y_2 \dots y_n$, we have
 - $C(x_1)C(x_2)\ldots C(x_n)\neq C(y_1)C(y_2)\ldots C(y_n)$

- easy to decode
- small $\mathbb{E}[L(C,X)]$

types of symbol codes

consider source producing
$$X \sim \{a, b, c, d\}$$
 with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Symbol consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

Consider $X \sim \{a, b, c, d\}$ and X

the limits of unique decodability

Kraft-McMillan inequality (conservation laws) for any $C \equiv \text{uniquely decodable}$ binary code over \mathcal{X} , with $\ell(x) = |C(x)|$ $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$ fraction of leaf notes in partition x moreover, for any $\{\ell(x)\}$ satisfying this, we can find a prefix code

Kraft's symbol-code supermarket

Kraft's symbol-code supermarket

optimizing expected code length

- entropy of
$$X$$
: $H(X) = \sum_{i \in \mathcal{X}} p_i \log_2 \left(\frac{1}{p_i}\right)$

- Kraft-McMillan inequality: UD code $\{\ell_i\}_{\{i\in\mathcal{X}\}}$ satisfies $\sum_{i\in\mathcal{X}} 2^{-\ell_i} \leq 1$

min
$$\sum_{x \in x} p(x) l(x)$$
 s.f $\sum_{x \in x} 2^{-l(x)} \leqslant 1$ $l(x) \in \{1, 2, -\}$
• $ldec 1 - q(x) = 2^{-l(x)} / 2$, where $2 = \sum_{x \in x} 2^{-l(x)} \leqslant 1$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$$

$$\Rightarrow min \sum_{x \in X} p(x) \log_2 \left(\frac{1}{2} q(x) \cdot \frac{p(x)}{p(x)} \right) \Rightarrow 0$$

$$= H(X) + \sum_{x \in X} p(x) \log_2 \left(\frac{p(x)}{q(x)} \right) + \log \left(\frac{1}{2} \right)$$

optimizing expected code length

$$\left(q(x) = 2^{-y(x)}/2\right)$$

let $X \sim \{p(x)\}_{x \in \mathcal{X}}$, and consider code $C(\cdot)$, and let $\ell(x) = |C(x)|$ the expected length of C is $\mathbb{E}[L(C,X)] = \sum_{x} p(x)\ell(x)$

For any 0-error (uniquely decodable) code 'rounding loss'
$$\mathbb{E}\left[l(x)\right] = H(x) + D_{KL}(P|I|Q) + \log_2(1/2)$$

$$\mathbb{E}\left[l(x)\right] = \frac{1}{2} \left(\frac{1}{2}\right) + \log_2(1/2) > 0$$

relative entropy and Gibb's inequality ("distance between dist")

relative entropy (or Kullback-Leibler (KL) divergence)

the relative entropy $D_{KL}(p||q)$ between two distributions p(x) and q(x) defined over alphabet $\mathcal X$ is

$$D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} p(x) \ln \left(\frac{p(x)}{q(x)} \right)$$
(Gibb's heap)

the function
$$\phi(x) = x \ln x$$

$$\phi'(x) = 1 + \ln x$$

$$\phi''(x) = \frac{1}{2} > 0 \forall x > 0$$

$$\Rightarrow \phi(x) \text{ is corvex}$$

$$\Rightarrow \left[\phi(x) \right] > \phi(E[x]) = 1$$

relative entropy and Gibb's inequality

the relative entropy
$$D_{\mathcal{KL}}(p||q) = \sum_{x \in \mathcal{X}} p(x) \ln\left(rac{p(x)}{q(x)}
ight) \geq 0$$
 for all p,q

$$= \sum_{x \in X} q(x) \left(\frac{p(x)}{q(x)} \right) \ln \left(\frac{p(x)}{q(x)} \right)$$

$$= \mathbb{E} \left[\frac{1}{2} \ln \frac{1}{2} \right] \ln \left(\frac{p(x)}{q(x)} \right) \ln \left(\frac{p(x)}{q(x)} \right)$$

$$\geq \mathbb{E} \left[\frac{1}{2} \ln \frac{1}{2} \right] \ln \left[\frac{p(x)}{q(x)} \right] = \frac{1}{2} \left(\frac{p(x)}{q(x)} \right) q(x) = 1$$

$$= 0$$

optimizing expected code length

from before

$$E[L(X)] \gg H(X)$$

$$\mathbb{E}[L(x)] \gg H(x) + D(P)$$

$$\geqslant c$$

$$\geqslant c$$
 and $= 0$

 $\left[\left[E(x) \right] > H(x) \right] + loss less (odes)$

 $(q(z) = 2^{-l(z)}/z)$

) Change
$$l(x)$$
 s.t $2^{-l(x)} = Z p(x) \forall x$

$$il \quad l(x) = log l = h(x)$$

$$(l.) \quad (x) = \log_{1} \frac{1}{p(x)}$$

$$\log_{1} \log \log_{1} \log \log_{1$$

the cross entropy of
$$p$$
 given q : $H_p(q) = \sum_{x \in \mathcal{X}} p(x) \ln \left(\frac{1}{q(x)} \right)$ – avg length of message from if ' p mis-estimated as q '

$$D(PIQ) = H_{P}(Q) - H(P) > 0$$

how good is the best symbol code?

i.e. - How good is the Huffman code?

$$\begin{aligned}
& = \sum_{x \in X} p(x) \left[\log_2 \frac{1}{p(x)} \right] \\
& \leq \sum_{x \in X} p(x) \left[\log_1 \left(\frac{1}{p(x)} \right) + 1 \right] \\
& = \sum_{x \in X} p(x) \left[\log_1 \left(\frac{1}{p(x)} \right) + 1 \right]
\end{aligned}$$

Huffman code

consider
$$X \sim \{a, b, c, d\}$$
 with prob $\{0.5, 0.25, 0.125, 0.125\}$

[dea - Solve max $\{p(x) | f(x) \}$ of $f(x) = prefix free$

[order of the content of the

Huffman code

consider $X \sim \{a, b, c, d, e, f\}$ with prob $\{0.4, 0.14, 0.13, 0.12, 0.11, 0.10\}$

aside: information content in a perfect code

let C be a perfect code for X, and given database $X_1X_2...X_n$, suppose we pick one bit at random from the encoded sequence $C(X_1)C(X_2)...C(X_n)$. what is the probability this bit is a 1?

$$\sum_{i=1}^{\infty} \frac{1}{2} = \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{8} \cdot \frac{2}{3} + \frac{1}{8} \cdot \frac{1}{8}$$