Notes

Maksim Levental

December 6, 2019

Contents

Differential Geometry 1

T	וווע	erenti	ai Geometry	~			
	1.1	Direct	tional Derivative	1	Contents		
	1.2 Derivations			2			
	1.3	1.3 Vector Fields			2 1.1 Directional Derivative		
	1.4 Dual Space			2			
			ential Forms on \mathbb{R}^n	3	1.3 Vector Fields		
		1.5.1	Differential of a Function	3	1.4 Dual Space		
		1.5.2	Differential k -forms	4	1.5 Differential Forms on \mathbb{R}^n		
		1.5.3	Differential Forms as Multilinear	_	1.5.1 Differential of a Function 3		
		1.0.0	Functions on Vector Fields	5	1.5.2 Differential k -forms 4		
		1.5.4	Exterior Derivative	5	1.5.3 Differential Forms as Multilinear		
		1.0.1	Executor Derivative	0	Functions on Vector Fields 5		
2	App	oendix		6	1.5.4 Exterior Derivative 5		
	2.1						
		2.1.1	Linear Operator	6	1.1 Directional Desirrative		
		2.1.2	Germs	6			
		2.1.3	Algebra	6			
		2.1.4	Module	6	Elements of the tangent space $T_p(\mathbb{R}^n)$ anchored at a point		
		2.1.5	Tensor Product	6	$p=(p^1,\ldots,p^n)\in\mathbb{R}^n$ can be visualized as arrows emanat-		
		2.1.6	Wedge Product	7	ing from p . These arrows are called <i>tangent vectors</i> and		
		2.1.7	Graded Algebra	7	represented by column vectors:		
		4.1.1	Graded Higebra	•	·		

 $\boldsymbol{v} = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix}$ (1)

The line through a point p with direction v has parameterization

$$c(t) = \left(p^1 + tv^1, \dots, p^n + tv^n\right) \tag{2}$$

If $f \in C^{\infty}$ in a neighborhood of p and v is a tangent vector at p, the directional derivative of f in the direction of \boldsymbol{v} at p is defined

$$D_{\mathbf{v}}f = \lim_{t \to 0} \left. \frac{f(c(t)) - f(p)}{t} = \frac{\mathrm{d}}{\mathrm{d}t} f(c(t)) \right|_{t=0}$$
 (3)

By the chain rule

$$D_{\mathbf{v}}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \bigg|_{t=0}$$
 (4)

$$= \sum_{i=1}^{n} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \bigg|_{t=0} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \tag{5}$$

$$= \sum_{i=1}^{n} v^{i} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \tag{6}$$

(7)

3 4

The directional derivative operator at p is defined

$$D_{\mathbf{v}} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{8}$$

The association $v \mapsto D_v$ offers a way to isomorphically identify tangent vectors with operators on functions. The following makes this rigorous.

1.2 Derivations

For each tangent vector v at a point $p \in \mathbb{R}^n$, the directional derivative at p gives a map of vector spaces

$$D_{\boldsymbol{v}} \colon C_{\boldsymbol{p}}^{\infty} \to \mathbb{R}$$

 $D_{\boldsymbol{v}}$ is a linear map that satisfies the Leibniz rule

$$D_{\mathbf{v}}(fg) = (D_{\mathbf{v}}f)g(p) + f(p)(D_{\mathbf{v}}g) \tag{9}$$

because the partial derivative satisfy the product rule. In general, any linear map $L \colon C_p^{\infty} \to \mathbb{R}$ that satisfies the Leibniz rule is called a *derivation* at p. Denote the set of all derivations at p by $\mathcal{D}_p(\mathbb{R}^n)$. This set is also a real vector space.

So far we know directional derivatives $D_{\boldsymbol{v}}$ at p are derivations at p. Thus, there is a map

$$\phi \colon T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$$
$$\mathbf{v} \mapsto D_{\mathbf{v}}$$

Theorem 1.1

The linear map ϕ is an isomorphism of vector spaces.

The implication is that we may identify tangent vectors at p with derivations at p (by way of directional derivatives against germs). Under this isomorphism $T_p(\mathbb{R}^n) \simeq \mathcal{D}_p(\mathbb{R}^n)$, the standard basis $\{e_1, \ldots, e_n\}$ for $T_p(\mathbb{R}^n)$ maps

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\} \tag{10}$$

Therefore from now on we write a tangent vector as

$$\mathbf{v} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{11}$$

The point being that, while not as geometrically intuitive as arrows, $\mathcal{D}_p(\mathbb{R}^n)$ generalizes to manifolds.

1.3 Vector Fields

A vector field X on an open $U \subset \mathbb{R}^n$ is function that assigns to $p \in U$ a tangent vector $X_p \in T_p(\mathbb{R}^n)$. Notice,

carefully, that the vector field assigns at each point a vector in the tangent space anchored at that point. Using the tangent basis (eqn. (10))

$$X \colon p \mapsto \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p}$$
 (12)

Note that both the coefficients **and** the partial derivatives are evaluated at p. Having said that, we often omit p in the specification of a vector field when it clear from context.

Example 1.1. On $\mathbb{R}^n - \{\mathbf{0}\}$, let p = (x, y). Then

$$X = \frac{-y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}$$
$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} \\ \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} & \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}^T$$

See figure ??

In general we can identify vector fields with parameterized column vectors

$$X = \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p} \leftrightarrow \begin{bmatrix} a^{1}(p) \\ \vdots \\ a^{n}(p) \end{bmatrix}$$
 (13)

1.4 Dual Space

The dual space V^{\wedge} of V is the set of all real-valued linear functions on V i.e. all $f: V \to \mathbb{R}$. Elements of V^{\wedge} are called *covectors*.

Assume V is finite dimensional and let $\{e_1, \ldots, e_n\}$ be a basis V. Recall that $e_i := \partial_{x_i}$. Then $X = \sum a^i \partial_{x_i}$ for all $X \in T_p$. Let $\alpha^i \colon V \to \mathbb{R}$ be the linear function that picks out the ith coordinate of a **vector**, i.e. $\alpha^i(X) = a^i(p)$. Note that

$$\alpha^i(\partial_j) = \alpha^i(1 \cdot \partial_j) \tag{14}$$

$$= \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases} \tag{15}$$

$$=\delta_{j}^{i} \tag{16}$$

Note that position of indices is important – upper indices are for covectors.

Proposition 1.1

 $\{\alpha^i\}$ form a basis for V^{\wedge} .

Proof. We first prove that $\{\alpha^i\}$ span V^{\wedge} . If $f \in V^{\wedge}$ and $X = \sum a^i \partial_{x_i} \in V$, then

$$f(X) = \sum a^i f(\partial_{x_i}) \tag{17}$$

$$= \sum \alpha^{i}(X) f(\partial_{x_{i}}) \tag{18}$$

$$= \sum f(\partial_{x_i})\alpha^i(X) \tag{19}$$

which shows that any f can be expanded as a linear sum of α^i . To show linear independence, suppose $\sum c_i \alpha^i = 0$ with at least one c_i non-zero. Applying this to an arbitrary ∂_{x_i} gives

$$0 = \left(\sum_{i} c_{i} \alpha^{i}\right) (\partial_{x_{i}}) = \sum_{i} c_{i} \alpha^{i} (\partial_{x_{i}}) = \sum_{i} c_{i} \delta^{i}_{j} = c_{j}$$

which is a contradiction. Hence α^i are linearly independent.

This basis $\{\alpha^i\}$ for V^{\wedge} is said to be *dual* to the basis $\{\partial_{x_i}\}$ for V.

Example 1.2. Coordinate functions With respect to a basis $\{\partial_{x_i}\}$ for V, every $X \in V$ can be written uniquely as a linear combination $X = \sum a^i \partial_{x_i}$ with $a^i \in \mathbb{R}$. Let $\{\alpha^i\}$ be the dual basis (i.e. the basis for V^{\wedge}). Then

$$\alpha^{i}(X) = \alpha^{i} \left(\sum_{j} a^{j} \partial_{x_{j}} \right)$$

$$= \sum_{j} a^{j} \alpha^{i} (\partial_{x_{j}})$$

$$= \sum_{j} a^{j} \delta_{j}^{i}$$

$$= \alpha^{i}$$

Thus, the dual basis $\{\alpha^i\}$ to $\{\partial_{x_i}\}$ is the set of coordinate functions. The sense here is that since tangent vectors are directional derivatives (i.e. operators on functions) and the dual space is a mapping from those operators to \mathbb{R} , then a mapping from operators to scalars means hitting an operator with a function (or vice-versa). And the coordinate functions are constant with respect to each other coordinate (and hence partials wrt them are naturally zero).

1.5 Differential Forms on \mathbb{R}^n

A differential k-form assigns a k-covector from the dual space at each point p. The wedge product (alternation of tensor product) of differential forms is defined pointwise (as the wedge product of multi-covectors). Differential forms exist on an open set (why?) there is a notion of differentiation (called exterior derivative). Exterior derivative is coordinate independent and intrinsic to a manifold; it is the abstraction of gradient, curl, divergence to arbitrary manifolds. Differential forms extend Grassmann's

exterior algebra (graded algebra of multi-covectors) from the tangent space at a point globally, i.e. to the entire manifold (how? bundles?).

1.5.1 Differential of a Function

Definition 1.1: Cotangent Space

The cotangent space to \mathbb{R}^n at p, denoted $T_p^*(\mathbb{R}^n)$, is defined to be the dual space $(T_p(\mathbb{R}^n))^{\vee}$ of the tangent space $T_p(\mathbb{R}^n)$.

Thus, an element of the cotangent space $T_p^*(\mathbb{R}^n)$ is a **covector of linear functional on tangent space**.

Definition 1.2: Differential 1-form

A covector field or a differential 1-form on an open subset U of \mathbb{R}^n is a function ω that assigns at each point p in U a covector $\omega_p \in T_p^*(\mathbb{R}^n)$

$$\omega \colon U \to \bigcup_{p \in U} T_p^*(\mathbb{R}^n)$$

$$p \mapsto \omega_p \in T_p^*(\mathbb{R}^n)$$
(21)

We call a differential 1-form a 1-form for short.

Definition 1.3: Differential

From any C^{∞} function $f: U \to \mathbb{R}$, we can construct the 1-form df, called the *differential* of f, as follows: for $p \in U$ and $X_p \in T_p(U)$

$$(\mathrm{d}f)_p(X_p) \coloneqq X_p f \tag{22}$$

In words the differential of f is the application of X_p to f or the directional derivative of f in the direction of the tangent vector defined by the coefficients of X_p .

Let x^1, \ldots, x^n be the standard coordinates on \mathbb{R} , $\{(\mathrm{d}x^1)_p, \ldots, (\mathrm{d}x^n)_p\}$ their differentials defined

$$(\mathrm{d}x^i)_p(X_p) \coloneqq (X_p)(x^i)$$

and

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\}$$

be the standard basis for $T_p(\mathbb{R}^n)$.

Proposition 1.2

 $\{(\mathrm{d}x^1)_p,\ldots,(\mathrm{d}x^n)_p\}$ is the basis for $T_p^*(\mathbb{R}^n)$ dual to the coordinate basis for $T_p(\mathbb{R}^n)$.

Proof. By definition,

$$(\mathrm{d} x^i)_p \left(\frac{\partial}{\partial x^j} \bigg|_p \right) = \frac{\partial x^i}{\partial x^j} \bigg|_p = \delta^i_j$$

If ω is a 1-form on $U \in \mathbb{R}^n$ then by proposition (1.2), at each point $p \in U$

$$\omega_p = \sum a_i(p)(dx^i)_p$$

Note the lower index on $a_i(p)$ as opposed to the upper index on $X_p = \sum a^i(p) \partial_{x_i}|_p$. If $x := x^1, y := x^2, z := x^3$, then dx, dy, dz.

Proposition 1.3: df in terms of coordinates

If $f: U \to \mathbb{R}$, then

$$\mathrm{d}f = \sum \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i \tag{23}$$

Proof.

$$(\mathrm{d}f)_p = \sum a_i(p)(\mathrm{d}x^i)_p$$

for some real numbers $a_i(p)$ depending on p. Thus

$$df\left(\frac{\partial}{\partial x^{j}}\right) = \sum_{i} a_{i} dx^{i} \left(\frac{\partial}{\partial x^{j}}\right)$$
$$= \sum_{i} a_{i} \delta_{j}^{i} = a_{j}$$
(24)

On the other hand, by the definition of the differential

$$df = \left(\frac{\partial}{\partial r^j}\right) = \frac{\partial f}{\partial r^j} \tag{25}$$

Therefore

$$a_j = \frac{\partial f}{\partial x^j} \tag{26}$$

and hence

$$(\mathrm{d}f)_p = \frac{\partial f}{\partial x^i} \bigg|_p (\mathrm{d}x^i)_p$$

1.5.2 Differential k-forms

Definition 1.4: Differential k-forms

More generally, a differential form ω of degree k is a function that at each point assigns an alternating k-linear function on $T_p(\mathbb{R}^n)$, i.e. $\omega_p \in A^k(T_p(\mathbb{R}^n))$.

A basis for $A^k(T_p(\mathbb{R}^n))$ is

$$(\mathrm{d}x^I)_p := (\mathrm{d}x^{i_1})_p \wedge \dots \wedge (\mathrm{d}x^{i_k})_p \tag{27}$$

where $1 \le i_1 < \cdots < i_k \le n$.

What is the nuance here?

Therefore, at each point $p \in U$, ω_p is a linear combination

$$\omega_p = \sum_I a_I(p) (\mathrm{d}x^I)_p$$

$$1 \le i_1 < \dots < i_k \le n$$
(28)

and a k-form ω on open U is a linear combination

$$\omega = \sum_{I} a_{I} \, \mathrm{d}x^{I} \tag{29}$$

with function coefficients $a_I \colon U \to \mathbb{R}$. We say that a k-form ω is C^∞ on U if all of the coefficients a_I are C^∞ functions on U. Denote $\Omega^k(U)$ the vector space of k-forms on U. A 0-form on U assigns to each point p an element of $A^0(T_p(\mathbb{R}^n)) := \mathbb{R}$; thus, a 0-form on U is a constant function. Note there are no nonzero differential forms of degree > n on U since if $\deg \mathrm{d} x^I > n$ then at least two of the component 1-forms of dx^I must be the same and therefore $dx^I = 0$.

Definition 1.5: Wedge product of forms

The wedge product of a k-form ω and ℓ -form τ is defined pointwise

$$(\omega \wedge \tau)_p := \omega_p \wedge \tau_p$$

$$\omega \wedge \tau = \sum_{I,I} (a_I b_J) \, \mathrm{d} x^I \wedge \mathrm{d} x^J$$
 (30)

where $I \cap J = \emptyset$.

Hence the wedge product is bilinear

$$\wedge \colon \Omega^k(U) \times \Omega^\ell \to \Omega^{k+\ell}(U) \tag{31}$$

The wedge product of forms is also anticommutative and associate (owing to the associativity and anticommutativity of the wedge product on multi-covectors) as therefore induces a graded algebra on $\Omega(U) := \bigoplus_k \Omega^k(U)$.

Example 1.3. In the case of

$$\wedge : \Omega^0(U) \times \Omega^\ell(U) \to \Omega^\ell$$

we have the pointwise multiplication of a C^{∞} function and a C^{∞} ℓ -form

$$(f \wedge \omega)_p = f(p) \wedge \omega_p = f(p)\omega_p$$

Let x, y, z be the coordinates on \mathbb{R}^3 . Then, the 1-forms are

$$f dx + g dy + h dz$$

the 2-forms are

$$f dy \wedge dz + q dx \wedge dz + h dx \wedge dy$$

and the 3-forms are

$$f dx \wedge dy \wedge dz$$

1.5.3 Differential Forms as Multilinear Functions on Vector Fields

If ω is a 1-form and X is a vector field then

$$\omega(X)|_{p} := \omega_{p}(X_{p})$$

$$\omega = \sum a_{i} dx^{i} \quad X = \sum b^{i} \frac{\partial}{\partial x^{j}}$$

$$\omega(X) = \left(\sum a_{i} dx^{i}\right) \left(\sum b^{j} \frac{\partial}{\partial x^{j}}\right)$$

$$= \sum a_{i} b^{i}$$
(32)

1.5.4 Exterior Derivative

Definition 1.6: Exterior Derivative

The exterior derivative of a function $f \in C^{\infty}(U)$ is defined to be its differential df

$$\mathrm{d}f = \sum \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i$$

For $k \geq 1$, if $\omega = \sum_{I} a_{I} dx^{I}$ is a k-form, then

$$d\omega := \sum_{I} da_{I} \wedge dx^{I}$$

$$= \sum_{I} \left(\sum_{j} \frac{\partial a_{I}}{\partial x^{j}} dx^{j} \right) \wedge dx^{I}$$
(33)

Example 1.4. Let ω be the 1-form f dx + g dy on R^2 . Then

$$d\omega = df \wedge dx + dg \wedge dy$$

$$= \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right) \wedge dx$$

$$+ \left(\frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy\right) \wedge dy$$

$$= \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$$

where we use that $dx \wedge dy = -dy \wedge dx$ and $dx \wedge dx = 0$.

Definition 1.7: Antiderivation

et $A = \bigoplus_k A^k$ be a graded algebra over a field K. An antiderivation of the graded algebra A is a k-linear map $D: A \to A$ such that for $a \in A^k, b \in A^\ell$

$$D(ab) = (Da)b + (-1)^{k}aDb (34)$$

If there is an integer m such that D sends A^k to A^{k+m} for all k, then the antiderivation is of degree m.

Proposition 1.4: Properties of exterior differentiation

1. exterior differentiation is an antiderivation of degree 1:

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau$$

2.
$$d^2 = 0$$

Proposition 1.5: Characterization of the exterior derivative

The properties of proposition (1.4) completely characterize exterior differentiation.

$\mathbf{2}$ Appendix

Contents

2.1	Definitions					
	2.1.1	Linear Operator 6				
	2.1.2	Germs 6				
	2.1.3	Algebra 6				
	2.1.4	Module 6				
	2.1.5	Tensor Product 6				
	2.1.6	Wedge Product				
	2.1.7	Graded Algebra				

Definitions 2.1

2.1.1Linear Operator

A map $L: V \to W$ between vector spaces over a field K is a linear operator if

- 1. **distributivity**: L(u+v) = L(u) + L(v)
- 2. homogeneity: L(rv) = rL(v)

To emphasize the field, L is said to be K-linear.

2.1.2Germs

Consider the set of all pairs (f, U), where U is a neighborhood of p and $f: U \to \mathbb{R}$ is a C^{∞} function. We say that $(f, U) \sim (g, U')$ if there is an open W such that $p \in W \subset U \cap U'$ and f = g when restricted to W. The equivalence class [(f, U)] of (f, U) is the germ of f at p. We write

$$C_n^{\infty}(\mathbb{R}^n) := \{ [(f, U)] \} \tag{35}$$

for the set all germs of C^{∞} functions on \mathbb{R}^n at p.

2.1.3 Algebra

An algebra over field K is a vector space A over K with a multiplication map

$$\mu \colon A \times A \to A$$
 (36)

usually written $\mu(a,b) = a \cdot b$, such that μ is associative, distributive, and homogeneous, where homogeneity is defined:

- 1. associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. **distributivity**: $(a+b) \cdot c = a \cdot c + b \cdot c$ and $a \cdot b + a \cdot c$
- 3. homogeneity: $r(a \cdot b) = (ra) \cdot b = a \cdot (rb)$

If A, A' are algebras then an algebra homomorphism is a linear operator L that respects algebra multiplication Hence $\langle , \rangle = \sum g_{ij} \alpha^i \otimes \alpha^j$.

L(ab) = L(a)L(b). It's the case that addition and multiplication of functions induces addition and multiplication on the set of germs C_p^{∞} , making it into an algebra over \mathbb{R}^n .

2.1.4 Module

If R is a commutative ring with identity, then a (left) R-module is an abelian group A with a scalar multiplication map

$$\mu \colon R \times A \to A \tag{37}$$

such that μ is

- 1. **associative**: (rs)a = r(sa) for $r, s \in R$
- 2. identity: $1 \in R \implies 1a = a$
- 3. **distributive**: (r+s)a = ra+sa and r(a+b) = ra+rb

If R is a field, then an R-module is a vector space over R; in this sense modules generalize vector space to scalars from a ring rather than a field.

Let A, A' be R-modules. An R-module homomorphism $f: A \to A'$ is a map that preserves both addition and scalar multiplication.

2.1.5 **Tensor Product**

Let f be k-linear function and g be an ℓ -linear function on a vector space V. Then, their tensor product is the $(k+\ell)$ -linear function $f\otimes g$

$$(f \otimes g)(v_1, \dots, v_{k+\ell}) := f(v_1, \dots, v_k)g(v_{k+1}, \dots, v_{k+\ell})$$
(38)

Example 2.1. (Bilinear maps) Let $\{e_i\}$ be a basis for a vector space V and $\{\alpha^j\}$ be the dual basis for V^{\vee} . Also let $\langle , \rangle : V \times V \to \mathbb{R}$ be a bilinear map on V. Set $g_{ij} =$ $\langle e_i, e_i \rangle \in \mathbb{R}$. If

$$v = \sum v^i e_i \tag{39}$$

$$w = \sum w^i e_i \tag{40}$$

then $v^i = \alpha^i(v)$ and $w^j = \alpha^j(w)$, where α are the coordinate functions a^i, a^j . By bilinearity, we can express \langle , \rangle in terms of the tensor product

$$\langle v, w \rangle = \sum_{ij} v^i w^j \langle e_i, e_j \rangle$$

$$= \sum_{ij} \alpha^i (v) \alpha^i (w) g_{ij}$$

$$= \sum_{ij} (\alpha^i \otimes \alpha^j) (v, w) \times g_{ij}$$
(41)

2.1.6 Wedge Product

Let f be k-linear function and g be an ℓ -linear function on a vector space V. If f, g are alternating¹ then we would like their product to be alternating as well: the wedge product or exterior product $f \wedge g$

$$f \wedge g := \frac{1}{k!l!} A(f \otimes g) \tag{42}$$

$$:= \frac{1}{k!l!} \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn}(\sigma)) f(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$
 (43)

$$g(v_{\sigma(k+1)},\ldots,v_{\sigma(k+\ell)})$$

where $S_{k+\ell}$ is the permutation group on $k + \ell$ elements.

Note that the wedge product of three alternating functions f, g, h generalizes to

$$f \wedge g \wedge h = \frac{1}{k!\ell!m!} = A(f \otimes g \otimes h) \tag{44}$$

and any number of alternating functions.

Proposition 2.1

(Wedge product of 1-covectors) If $\{\alpha^i\}$ are linear functions on V and $v_i \in V$ then

$$\alpha^1 \wedge \dots \wedge \alpha^k(v_1, \dots, v_k) = \det([\alpha^i(v_j)])$$
 (45)

where $[\alpha^{i}(v_{j})]$ is the matrix where the i, j-entry is $\alpha^{i}(v_{j})$.

Proof.

$$\alpha^{1} \wedge \dots \wedge \alpha^{k}(v_{1}, \dots, v_{k}) = A(\alpha^{1} \wedge \dots \wedge \alpha^{k})(v_{1}, \dots, v_{k})$$
(46)

$$= \sum_{\sigma \in S_k} (\operatorname{sgn}(\sigma)) \alpha^1(v_{\sigma(1)}) \wedge \dots \wedge \alpha^k(v_{\sigma(k)})$$
 (47)

$$= \det([\alpha^i(v_j)]) \tag{48}$$

Let $\{e_i\}$ be a basis for a vector space V and let α_j be the dual basis for V^{\vee} . Define multi-index notation

$$I := (i_1, \dots, i_k)$$

$$e_I := (e_{i_1}, \dots, e_{i_k})$$

$$\alpha_I := \alpha^{i_1} \wedge \dots \wedge \alpha^{i_k}$$

$$(49)$$

A k-linear function on V is completely determined by its values on all k-tuples e_I . If f is alternating then you only need all increasing multi-indices $1 \leq i_1 \leq \cdots \leq i_k \leq n$.

Lemma 2.1

Let I, J be increasing multi-indices of length k, then

$$\alpha^{I}(e_{J}) = \delta^{I}_{J} := \begin{cases} 1 \text{ for } I = J \\ 0 \text{ for } I \neq J \end{cases}$$
 (50)

Proposition 2.2

The alternating k-linear functions α^I , $I := (i_1 < \cdots < i_k)$ form a basis for the space $A^k(V)$ of alternating k-linear functions on V.

Corollary 2.1

If the vector space V has dimension n, then the vector space $A^k(V)$ of k-covectors on V has dimension $\binom{n}{k}$.

Corollary 2.2

If $k > \dim(V)$, then $A^k(V) = 0$.

2.1.7 Graded Algebra

Definition 2.1

A graded algebra A over a field K is one that can be written as a direct sum^2

$$A = \bigoplus_{n \in \mathbb{N}_0} A^n = A^0 \oplus A^1 \oplus A^2 \oplus \cdots$$

such that the multiplication map μ

$$\mu \colon A^k \times A^\ell \to A^{k+\ell}$$

i.e. $A^k \cdot A^\ell \subset A^{k+\ell}$. Elements of any factor A^n of the decomposition are called homogeneous elements of degree n. $A = \bigoplus_k A^k$ is said to graded commutative or anticommutative if for all $a \in A^k, b \in A^\ell$

$$ab = (-1)^{k\ell} ba$$

Example 2.2. The polynomial algebra³ $A = \mathbb{R}[x, y]$ is graded by degree; A^k consists of all homogeneous polyno-

¹An alternating function is one that changes signs if arguments are transposed (e.g. cross-product or determinant).

 $^{^2}$ The direct sum of two abelian groups A and B is another abelian group $A \oplus B$ consisting of the ordered pairs (a,b) where $a \in A$ and $b \in B$. (Confusingly this ordered pair is also called the cartesian product of the two groups.) To add ordered pairs, we define the sum (a,b)+(c,d) to be (a+c,b+d); in other words addition is defined coordinate-wise. Note that $A^2 \coloneqq A \oplus A$. A similar process can be used to form the direct sum of any two algebraic structures, such as rings, modules, and vector spaces.

mials of total degree k. It is a direct sum of A^i consisting of homogeneous polynomials of degree i e.g.

$$\left(x\in A^1\right)\times \left(x+y\in A^1\right)=\left(x^2+xy\in A^2\right)$$

Definition 2.2

For a finite dimensional vector space V define

$$A^{*}(V) := \bigoplus_{k=0}^{\infty} A^{k}(V)$$

$$= \bigoplus_{k=0}^{n} A^{k}(V)$$
(51)

where $A^k(V)$ is the set of all k-linear covectors on V. With the wedge product as multiplication A^* becomes and anticommutative algebra called the $exterior\ algebra$ of covectors.

 $^{^3} The$ algebra of polynomials in two variables with coefficients and scalars in $\mathbb R$ where addition is degree-coefficient wise and "foil" multiplication

Index

```
R-module homomorphism, 6
{\bf Grassmann\ algebra},\, 8
exterior algebra, 8
1-form, 3
algebra, 6
algebra homomorphism, 6
antiderivation of the graded algebra, 5
Bilinear maps, 6
cotangent space, 3
covector field, 3
covectors, 2
derivation, 2
differential, 3
differential 1-form, 3
differential form \omega of degree k, 4
direct sum, 7
directional derivative, 1
dual space, 2
exterior product, 7
field, 6
germ, 6
graded algebra, 7
graded by degree, 7
graded commutative, 7
isomorphically, 2
Leibniz rule, 2
linear operator, 6
module, 6
multi-index notation, 7
permutation group, 7
polynomial algebra, 7
tangent space, 1
tangent vectors, 1
tensor product, 6
vector field, 2
wedge product, 7
wedge product of a k-form \omega and \ell-form \tau, 4
```