LOGICKÉ SYSTÉMY

Prednáška 8, 2014-2015

Ing. Adam Jaroš, PhD - prednášky, cvičenia

Ing. Michal Chovanec - cvičenia

Katedra technickej kybernetiky

Web predmetu: http://frtk.fri.uniza.sk

OPAKOVANIE — ELEMENTÁRNE PAMÄTE—PAMÄŤ TYPU D

Klopný obvod D (Data)

- jednobitová pamäť, niekedy pamäť typu D
- praktický význam má len **synchrónna verzia pamäte** (hodiny—T_C, resp. CLOCK)
- výstup obvodu (pamäte) sa mení len v čase trvania hodinového signálu

Preklápací obvod typu D a) schematická značka b) pravdivostná tabuľka c) tabuľka budiacich funkcií d) prechodový diagram e) časový diagram.

OPAKOVANIE — ELEMENTÁRNE PAMÄTE—PAMÄŤ TYPU D

Bloková schéma pamäte typu D – a), príklad zapojenia pamäte D (vytvorené zo synchrónnej R-S pamäte "citlivej na hladinu") – b).

Správanie pamäte typu D:

- Pamäť typu D je vždy synchrónna, tzn. má "externý" vstup hodiny (clock). Avšak pamäť typu R-S môže byť synchrónna aj asynchrónna. Zapojenia majú hodiny citlivé na "jednotkovú hladinu". Počas trvania úrovne log. 1 na vstupe hodinového signálu môže dochádzať k prestaveniu výstupu Q.
- Periodický hodinový signál k riadeniu pamätí získavame najčastejšie z oscilátora.

OPAKOVANIE — ELEMENTÁRNE PAMÄTE—PAMÄŤ TYPU J-K

Klopný obvod J-K (J = Set, K = Reset)

- jednobitová pamäť, niekedy: pamäť typu J-K
- len synchrónna verzia pamäte (teda vždy obsauje hodiny—T_C, resp. CLOCK)
- je to zdokonalená synchrónna pamäť R-S; *nemá* zakázanú kombináciu vstupov

Preklápací obvod typu J-K a) schematická značka b) pravdivostná tabuľka c) tabuľka budiacich funkcií d) prechodový diagram e) časový diagram.

OPAKOVANIE — ELEMENTÁRNE PAMÄTE—PAMÄŤ TYPU J-K

Zapojenie pamäte J-K získame zdokonalením klopného obvodu R-S – a), odpovedajúca schematická značka – b).

Výstup obvodu (pamäte) sa mení len v čase trvania hodinového signálu (úrovne

High).

Zjednodušený zápis správania sa pamäte typu J-K z obrázku "bez" stavov – a), symbolický zápis správania sa pamäte J-K – b).

OPAKOVANIE - NÁVRH ELEMENTÁRNYCH PAMÄTÍ R-S

Príklad

Návrh asynchrónneho R-S klopného obvodu s nasledovným správaním.

Je zadaná mapa správania R-S.

Zapojte R-S s hradlami NAND.

Riešenie

Zapíšeme si Karnaughove mapy pre priamy – Q a komplementárny výstup – Q.

Z Karnaughovej mapy zapíšeme konfigurácie

$$Q_{t+1} = S + Q_t.\overline{R} \qquad \qquad \overline{Q}_{t+1} = R + \overline{Q}_t.\overline{S}$$

OPAKOVANIE - NÁVRH ELEMENTÁRNYCH PAMÄTÍ R-S (NAND)

Riešenie

(pokračovanie)

$$Q_{t+1} = S + Q_t . \overline{R}$$

$$\overline{Q}_{t+1} = R + \overline{Q}_t.\overline{S}$$

Oba výrazy upravíme do NAND:

$$Q_{t+1} = \overline{\overline{Q}}_{t+1} = \overline{\overline{S} + Q_t.\overline{R}} = \overline{\overline{S}.\overline{Q_t}.\overline{R}}$$

$$\overline{\overline{Q}}_{t+1} = \overline{\overline{\overline{Q}}}_{t+1} = \overline{\overline{R} + \overline{\overline{Q}}_t.\overline{\overline{S}}} = \overline{\overline{R}.\overline{\overline{\overline{Q}}_t.\overline{\overline{S}}}}$$

$$Q = \overline{\overline{S} \cdot \overline{Q}}$$

$$\overline{Q} = \overline{\overline{S} \cdot Q}$$

Zakreslíme elektrickú schému R-S zloženú z NAND.

OPAKOVANIE – NÁVRH ELEMENTÁRNYCH PAMÄTÍ R-S

Príklad

Návrh asynchrónneho R-S klopného obvodu s nasledovným správaním.

Je zadaná mapa správania R-S.

Zapojte R-S s hradlami NOR.

Riešenie

Zapíšeme si Karnaughove mapy pre priamy - Q a komplementárny výstup - Q.

Z Karnaughovej mapy zapíšeme konfigurácie

$$Q_{t+1} = \overline{R}.(Q_t + S)$$
 $\overline{Q}_{t+1} = \overline{S}.(\overline{Q}_t + R)$

OPAKOVANIE – NÁVRH ELEMENTÁRNYCH PAMÄTÍ R-S (NOR)

Riešenie

(pokračovanie)

$$Q_{t+1} = \overline{R}.(Q_t + S)$$
 $\overline{Q}_{t+1} = \overline{S}.(\overline{Q}_t + R)$

Oba výrazy upravíme do NOR:

$$Q_{t+1} = \overline{\overline{Q}}_{t+1} = \overline{\overline{R}.(Q_t + S)} = \overline{R + \overline{(Q_t + S)}}$$

$$\overline{Q}_{t+1} = \overline{\overline{\overline{Q}}_{t+1}} = \overline{\overline{\overline{S}.(\overline{Q}_t + R)}} = \overline{S + (\overline{\overline{Q}_t + R})}$$

$$Q = \overline{R + \overline{Q}}$$

$$\overline{Q} = \overline{S + Q}$$

Zakreslíme elektrickú schému R-S zloženú z NOR.

OPAKOVANIE — NÁVRH ELEMENTÁRNYCH PAMÄTÍ – SYNCHRÓNNY R-S

Príklad

Návrh synchrónneho R-S klopného obvodu s nasledovným správaním.

Riešenie

Ak požadujeme, aby záznam informácie zo vstupov R a S do preklápacieho obvodu nastal *len v určitom čase*, je možné doplniť asynchrónny S - R preklápací obvod (asynchrónna časť) vstupnými hradlami, ktoré sa budú otvárať *taktovacím impulzom* T_c (riadiaca časť).

OPAKOVANIE — NÁVRH ELEMENTÁRNYCH PAMÄTÍ – SYNCHRÓNNY R-S

Riešenie

(pokračovanie)

Uveďme si len výsledok riešenia.

$$Q = \overline{\overline{S \cdot T_c} \cdot \overline{Q}}$$

$$\overline{Q} = \overline{R \cdot T_c} \cdot Q$$

OPAKOVANIE — NÁVRH ELEMENTÁRNYCH PAMÄTÍ – **DVOJFÁZOVÝ SYNCHRÓNNY** R-S

Dvojfázový bistabilný preklápací obvod R-S (Master—Slave)

- Pri statických preklápacích obvodoch je stav obvodu určený úrovňou vstupného signálu.
- V prípade, ak dôjde k prekrytiu vstupných signálov pri asynchrónnych obvodoch, alebo k nedodržaniu šírky synchronizačného impulzu pri synchrónnych obvodoch, môže dôjsť ku vzniku hazardov, alebo sa obvod rozkmitá.
- Toto možno odstrániť dvojfázovým režimom taktovania.

Dvojčinné preklápacie obvody sa nazývajú tiež obvody s medzi pamäťou.

Dvojčinné (dvojfázové) preklápacie obvody sú riadene hranou taktovacieho impulzu (dynamické riadenie).

Nevýhody obvodov riadených úrovňou sú:

- možnosť zmeny výstupu po celú dobu aktívnej napäťovej úrovne na vstupe taktovacieho impulzu
- nemožnosť použiť tieto obvody v čítačoch a posuvných registroch, pretože by sa signály na riadiacich vstupoch preklápacích obvodov počas aktívnej úrovne hodinového impulzu preniesli okamžite až na výstup celého obvodu.

OPAKOVANIE — NÁVRH ELEMENTÁRNYCH PAMÄTÍ – DVOJFÁZOVÝ SYNCHRÓNNY R-S

Preto je nutné mať k dispozícii takéto preklápacie obvody, ktoré budú mať oddelené vstupy od výstupov. **Princíp riešenia:**

Dvojfázový bistabilný preklápací obvod R-S (Master—Slave) a jeho časovanie.

OPAKOVANIE — NÁVRH ELEMENTÁRNYCH PAMÄTÍ – DVOJFÁZOVÝ SYNCHRÓNNY J-K

Dvojfázový bistabilný preklápací obvod J-K (Master-Slave).

OPAKOVANIE — NÁVRH ELEMENTÁRNYCH PAMÄTÍ – DVOJFÁZOVÝ SYNCHRÓNNY J-K

Činnosť preklápacieho obvodu J-K (Master-Slave) a jeho časovanie.

Integrovaný obvod 7472 (J – K pamäť) Vstupy: $J = J_1.J_2.J_3$

$$K = K_1.K_2.K_3$$

OPAKOVANIE – NÁVRH ELEMENTÁRNYCH PAMÄTÍ – DVOJFÁZOVÝ SYNCHRÓNNY J-K

Integrovaný obvod 7472 pamäť J – K

Časový diagram a pravdivostná tabuľka obvodu:

ഗ	R	7	K	Tc	Q
0	1	Х	Χ	Х	1
1	0	Х	Х	Х	0
0	0	Х	Х	Х	-
1	1	0	0	0→1	Q
1	1	1	0	0→1	1
1	1	0	1	0→1	0
1	1	1	1	0→1	Q
1	1	Х	Χ	0	Q

OPAKOVANIE — NÁVRH SEKVENČNÝCH LOGICKÝCH SYSTÉMOV S ELEMENTÁRNYMI PAMÄŤAMI

Použitie elementárnych pamätí v návrhu má vplyv na prechodovú časť – δ . Návrh bloku – λ sa oproti návrhu s priamymi spätnými väzbami *nemení*.

Bloková schéma Moorovho a Mealyho automatu s elementárnymi pamäťami.

OPAKOVANIE – NÁVRH SEKVENČNÝCH LOGICKÝCH SYSTÉMOV S ELEMENTÁRNYMI PAMÄŤAMI

Zápis prechodovej rovnice Moorovho a Mealyho automatu budiacich funkcií pamätí, zjednodušený zápis bez "času":

$$\begin{aligned} w_{11} &= \delta_{11}(z_1 \cdots z_q, x_1 \cdots x_n) \\ w_{12} &= \delta_{12}(z_1 \cdots z_q, x_1 \cdots x_n) \\ &\cdots \\ w_{q1} &= \delta_{q1}(z_1 \cdots z_q, x_1 \cdots x_n) \\ w_{q2} &= \delta_{q2}(z_1 \cdots z_q, x_1 \cdots x_n) \end{aligned}$$

kde:

w_{ii} – funkcie budiacich signálov pamätí; kombinačný obvod

q – počet vnútorných premenných, ktoré kódujú stavy automatu

OPAKOVANIE — NÁVRH SEKVENČNÝCH LOGICKÝCH SYSTÉMOV S ELEMENTÁRNYMI PAMÄŤAMI

Príklad

Zapíšte Karnaughove mapy budiacich funkcií – w_{ii} v Moorovom automate.

Moorov automat zadaný tabuľkou prechodov – a), kód automatu – b) a zadané správanie pamäte J-K – c).

OPAKOVANIE — NÁVRH SEKVENČNÝCH LOGICKÝCH SYSTÉMOV S ELEMENTÁRNYMI PAMÄŤAMI

Riešenie

* Ako prvý krok zapíšeme *mapy správania sa J-K pamätí*. Každá mapa správania pamäte popisuje nastavenie hodnoty jednej vnútornej premennej určenej tabuľkou prechodov.

Mapy správania sa J-K pamätí.

Mapa správania P_1 popisuje zmeny vnútornej premennej z_1 a mapa P_2 podobne z_2 .

Jednotlivé kroky určovania hodnôt sú označené číslami 1 až 4.

OPAKOVANIE – NÁVRH SEKVENČNÝCH LOGICKÝCH SYSTÉMOV S ELEMENTÁRNYMI PAMÄŤAMI

Riešenie

(pokračovanie)

Karnaughove mapy budiacich funkcií (signálov) určíme z máp správania sa pamätí a správania sa J-K pamäte.

Pre každú J-K pamäť zapíšeme dve Karnaughove mapy popisujúce hodnoty oboch budiacich logických signálov *J* a *K*.

OPAKOVANIE – NÁVRH SEKVENČNÝCH LOGICKÝCH SYSTÉMOV S ELEMENTÁRNYMI PAMÄŤAMI

Riešenie

(pokračovanie)

Karnaughove mapy budiacich funkcií J-K pamätí.

OPAKOVANIE — NÁVRH SEKVENČNÝCH LOGICKÝCH SYSTÉMOV S ELEMENTÁRNYMI PAMÄŤAMI

Riešenie

(pokračovanie)

Zapojenie prechodovej časti Moorovho automatu s pamäťami J-K je na obrázku.

Bloková schéma navrhnutej prechodovej časti – δ Moorovho automatu s elementárnymi pamäťami J-K.

PREDNÁŠKA 8

Témy prednášky:

- 1) Súbehové kódy
- 2) Hammingová vzdialenosť kódových slov
- 3) Kódovanie stavov automatu unikódy a multikódy
- 4) Fundamentálny automat
- 5) Priama realizácia fundamentálneho automatu 1. rádu
- 6) Synchrónne sekvenčné systémy
- 7) Synchrónne sekvenčné systémy—parametre hodinových impulzov
- 8) Synchrónne sekvenčné systémy—symboly hodinových impulzov
- 9) Časovanie pamätí

SÚBEHOVÉ KÓDY

Kritický súbeh

- princíp

Súbežné kódy

Jednoznačné cesty majú jeden spoločný bod

Ak zmením viac ako jednu vnútornú premennú pri prechode medzi dvoma stavmi, tak vždy dochádza ku kritickému súbehu.

HAMMINGOVÁ VZDIALENOSŤ KÓDOVÝCH SLOV

Hammingová vzdialenosť dvoch kódových slov S₁ a S₂

$$d(S_1, S_2)$$

- označuje počet vnútorných premenných, v ktorých sa hodnoty líšia

Príklad

$$d(S_a, S_c) = 0 + 1 + 1 = 2$$

Ak platí, že d > 1, potom prechod medzi stavmi je súbehový, inak bez súbehový.

Množina kódových slov, ktoré ležia medzi kódovými slovami S_1 a S_2 je označená $W(S_1, S_2)$. Počet prvkov množiny $W = 2^d$. Patria tu aj kódové slová počiatočného a koncového stavu.

HAMMINGOVÁ VZDIALENOSŤ KÓDOVÝCH SLOV

Príklad

Nech dva stavy sú kódované nasledovnými kódovými slovami (1011) a (1110).

Riešenie

Množina kódových slov medzi W(S_1 , S_2)={(1011), (1010), (1111), (1110)}. Platí $d(S_1, S_2) = 0 + 1 + 0 + 1 = 2$. A teda počet prvkov W je 2^2 .

Táto množina tvorí v kóde automatu pravidelnú konfiguráciu, ktorá je zároveň najmenšia.

KÓDOVANIE STAVOV AUTOMATU – UNIKÓDY A MULTIKÓDY FUNDAMENTÁLNY AUTOMAT

Stavy automatu, môžeme zakódovať pomocou:

- Unikódu každý stav je kódovaný jedinečným kódom
- Multikódu niektoré stavy môžeme kódovať viacerými kódovými slovami

Multikód vedie vždy na nepriamu realizáciu automatu.

Používa sa u asynchrónnych automatov, k riešeniu kritických súbehov.

Fundamentálny automat - FA

Je taký zápis automatu, v ktorom sa *z každého stavu* pri *konečnom opakovaní* ľubovoľného *vstupného symbolu* dostanem *do stabilného stavu*. Stabilný stav je ten, kde "sa cyklím".

Unikódy sa *môžu použiť bez kontroly len vo FA 1. rádu* (tzn. na jedno opakovanie ľubovoľného vstupného symbolu prejdeme vždy do stabilného stavu).

PRIAMA REALIZÁCIA FUNDAMENTÁLNEHO AUTOMATU 1. RÁDU

Priama realizácia automatu

Požiadavka: automat musí byť fundamentálny 1. rádu.

Môžem použiť súbehový kód.

Na predmete Logické systémy navrhujeme práve takéto typy automatov.

SYNCHRÓNNE SEKVENČNÉ SYSTÉMY

Synchrónnosť či asynchrónnosť automatu nám určuje len blok δ .

Asynchrónny automat

Synchrónny automat

kde: t_i – čas (doba) predstihu platných údajov (dát) vstupu x, t_x – čas priebehu zmien vstupu (x_i) cez blok δ , t_s – čas priebehu zmien vnútorných premenných (z_i) cez blok δ , t_{su} – čas (doba) predstihu platných údajov (dát) na vstupe pamätí, t_q – čas (doba) vystavenia platných údajov (dát) na výstupe pamäte.

SYNCHRÓNNE SEKVENČNÉ SYSTÉMY

Ako je zapojený—realizovaný blok τ?

Asynchrónny automat

Blok τ tam fyzicky nie je. Avšak využijeme oneskorenie konštrukčných prvkov v bloku δ .

Synchrónny automat

Blok τ je reprezentovaný elementárnymi pamäťami. Pokiaľ nie sú hodiny aktívne, potom blok τ si pamätá posledný stav, inak zapíše nový stav S' do aktuálneho S. Zároveň nám oddeľuje aktuálny S a nový stav S'.

SYNCHRÓNNE SEKVENČNÉ SYSTÉMY – PARAMETRE HODINOVÝCH IMPULZOV (CLOCK)

Zaveď me si nasledovné označenie:

- pre minimálny čas index m
- pre maximálny čas index *M*

Parametre hodinových impulzov, hodín určíme nasledovne:

$$T \ge \max\{(t_q^M + t_s^M + t_{su}), (t_i^M + t_s^M + t_{su})\}$$

t-nesmie trvať dlhšie ako minimálny čas potrebný pre zmenu S', inak vzniknú (aplikujú sa) kritické súbehy;

t - hodnota vychádza u TTL malá cca. 10-20ns, preto používame *pamäte* s *krátkym vzorkovaním* (citlivá na "*hranu*" — v okamžiku zmeny hodnoty)

$$t \leq \min\{(t_q^m + t_s^m - t_{su}), (t_i^m + t_x^m - t_{su})\}$$

Vstup x musí byť synchronizovaný tými istými hodinami (vzorkovaný napr. s pamäťami D; register)

SYNCHRÓNNE SEKVENČNÉ SYSTÉMY – SYMBOLY HODINOVÝCH IMPULZOV

Označovanie hodín s krátkym vzorkovaním-symboly pre hodiny (CLK) pamäte

Hodiny citlivé na "*nábežnú*" (vzostupnú) a "*dobežnú*" (závernú) hranu:

ČASOVANIE PAMÄTÍ

Časovanie pamätí D a J-K

Pre správnu činnosť obvodu musíme pri návrhu zaručiť určitú časovú následnosť signálov. Je to najmä doba predstihu údajov— $t_{\rm set\ up}$ a doba presahu údajov— $t_{\rm hold}$ voči hodinovému signálu $T_{\rm c}$.

Časová závislosť signálov J, K a T_c.

Pamäť typu J-K

Časová závislosť signálov D a T_c .

Pamäť typu D