Chromatic discrepancy of locally s-colourable graphs

Timothée Corsini¹, Lucas Picasarri-Arrieta², Théo Pierron³, François Pirot⁴, Eileen Robinson⁵

31 October 2025

¹Université de Bordeaux, France.

²National Institute of Informatics, Japan.

³Université Lyon 1, France.

⁴Université Paris-Saclay, France.

⁵Université libre de Bruxelles, Belgium.

Proper colouring and Chromatic number

Definition

- Proper colouring: colouring of vertices s.t. adjacent vertices receive distinct colours.
- Chromatic number $\chi(G)$: minimum number of colours in a proper colouring of G.

Definition

• The **discrepancy** of a proper colouring *c* of *G*:

$$\varphi_c(G) = \max_{H \subseteq_{\text{ind}} G} (|c(V(H))| - \chi(H)).$$

• The chromatic discrepancy of G:

$$\varphi(G) = \min_{c \in \mathscr{C}(G)} \varphi_c(G)$$

Remark: we may always choose H rainbow in the definition of $arphi_c$.

$$\varphi_c = 4 - 3 = 1$$

Definition

• The **discrepancy** of a proper colouring c of G:

$$\varphi_c(G) = \max_{H \subseteq_{\text{ind}} G} (|c(V(H))| - \chi(H)).$$

• The chromatic discrepancy of G:

$$\varphi(G) = \min_{c \in \mathscr{C}(G)} \varphi_c(G).$$

Remark: we may always choose H rainbow in the definition of φ_c .

$$\varphi_c = 3 - 1 = 2$$

$$\varphi_c = 4 - 3 = 1$$

Definition

• The **discrepancy** of a proper colouring *c* of *G*:

$$\varphi_c(G) = \max_{H \subseteq_{\text{ind}} G} (|c(V(H))| - \chi(H)).$$

• The chromatic discrepancy of G:

$$\varphi(G) = \min_{c \in \mathscr{C}(G)} \varphi_c(G).$$

Remark: we may always choose H rainbow in the definition of φ_c .

$$\varphi_c = 3 - 1 = 2$$

$$\varphi_c = 4 - 3 = 1$$

Definition

• The discrepancy of a proper colouring c of G:

$$\varphi_c(G) = \max_{H \subseteq_{\text{ind}} G} (|c(V(H))| - \chi(H)).$$

• The chromatic discrepancy of G:

$$\varphi(G) = \min_{c \in \mathscr{C}(G)} \varphi_c(G).$$

Remark: we may always choose H rainbow in the definition of φ_c .

$$\varphi_c = 4 - 3 = 1$$

$$\varphi(G) = \min_{c \in \mathscr{C}(G)} \ \max_{H \subseteq \operatorname{ind} G} (|c(V(H))| - \chi(H))$$

Proposition

Every graph $G \neq \emptyset$ satisfies $0 \leqslant \varphi(G) \leqslant \chi(G) - 1$, and both inequalities are tight.

Question: Are there conditions guaranteeing that $\varphi(G)$ is close to $\chi(G)-1$?

$$\varphi(G) = \min_{c \in \mathscr{C}(G)} \ \max_{H \subseteq \operatorname{ind} G} (|c(V(H))| - \chi(H))$$

Proposition

Every graph $G \neq \emptyset$ satisfies $0 \leq \varphi(G) \leq \chi(G) - 1$, and both inequalities are tight.

Question: Are there conditions guaranteeing that $\varphi(G)$ is close to $\chi(G)-1$?

$$\varphi(G) = \min_{c \in \mathscr{C}(G)} \ \max_{H \subseteq \operatorname{ind} G} (|c(V(H))| - \chi(H))$$

Proposition

Every graph $G \neq \emptyset$ satisfies $0 \leq \varphi(G) \leq \chi(G) - 1$, and both inequalities are tight.

Question: Are there conditions guaranteeing that $\varphi(G)$ is close to $\chi(G) - 1$?

$$\varphi(G) = \min_{c \in \mathscr{C}(G)} \ \max_{H \subseteq \operatorname{ind} G} (|c(V(H))| - \chi(H))$$

Proposition

Every graph $G \neq \emptyset$ satisfies $0 \leq \varphi(G) \leq \chi(G) - 1$, and both inequalities are tight.

Question: Are there conditions guaranteeing that $\varphi(G)$ is close to $\chi(G)-1$?

Chromatic Discrepancy and Clique Number

Conjecture (Aravind, Kalyanasundaram, Sandeep, Sivadasan '15)

Every graph G satisfies $\varphi(G) \geqslant \chi(G) - \omega(G)$.

Theorem (Aravind, Cambie, Cames van Batenburg, Joannis de Verclos, Kang, Patel '21)

For every $r \geqslant 3$ and $k \geqslant 1$, there exists G with $\omega(G) = r$, $\chi(G) \geqslant k$, and

$$\varphi(G) \leqslant \chi(G) - \Omega\left(\chi(G)^{1/4}\right)$$

Theorem (Aravind, Cambie, Cames van Batenburg, Joannis de Verclos, Kang, Patel '21

Every triangle-free graph G satisfies $\varphi(G) \geqslant \chi(G) - \log(\chi(G)) - 1$.

Chromatic Discrepancy and Clique Number

Conjecture (Aravind, Kalyanasundaram, Sandeep, Sivadasan '15)

Every graph G satisfies $\varphi(G) \geqslant \chi(G) - \omega(G)$.

Theorem (Aravind, Cambie, Cames van Batenburg, Joannis de Verclos, Kang, Patel '21)

For every $r\geqslant 3$ and $k\geqslant 1$, there exists G with $\omega(G)=r$, $\chi(G)\geqslant k$, and

$$\varphi(G) \leqslant \chi(G) - \Omega\left(\chi(G)^{1/4}\right).$$

Fheorem (Aravind, Cambie, Cames van Batenburg, Joannis de Verclos, Kang, Patel '21)

Every triangle-free graph G satisfies $\varphi(G) \geqslant \chi(G) - \log(\chi(G)) - 1$.

Chromatic Discrepancy and Clique Number

Conjecture (Aravind, Kalyanasundaram, Sandeep, Sivadasan '15)

Every graph G satisfies $\varphi(G) \geqslant \chi(G) - \omega(G)$.

Theorem (Aravind, Cambie, Cames van Batenburg, Joannis de Verclos, Kang, Patel '21)

For every $r \geqslant 3$ and $k \geqslant 1$, there exists G with $\omega(G) = r$, $\chi(G) \geqslant k$, and

$$\varphi(G) \leqslant \chi(G) - \Omega\left(\chi(G)^{1/4}\right).$$

Theorem (Aravind, Cambie, Cames van Batenburg, Joannis de Verclos, Kang, Patel '21)

Every triangle-free graph G satisfies $\varphi(G) \geqslant \chi(G) - \log(\chi(G)) - 1$.

Chromatic Discrepancy of Triangle-Free Graphs

Theorem (Corsini, P., Pierron, Pirot, Robinson '25)

Every triangle-free graph G satisfies $\varphi(G) \geqslant \chi(G) - 2$.

Remark: best possible (Micyelski graphs)

$$\chi = 2, \ \varphi = 0$$

$$\chi = 4, \ \varphi = 2$$

Chromatic Discrepancy of Triangle-Free Graphs

Theorem (Corsini, P., Pierron, Pirot, Robinson '25)

Every triangle-free graph G satisfies $\varphi(G) \geqslant \chi(G) - 2$.

Remark: best possible (Micyelski graphs).

$$\chi=4$$
, $\varphi=2$

Chromatic Discrepancy of Triangle-Free Graphs

Theorem (Corsini, P., Pierron, Pirot, Robinson '25)

Every triangle-free graph G satisfies $\varphi(G) \geqslant \chi(G) - 2$.

Proof. Follows from the following lemma.

Lemma

For every graph G and every proper $(\chi(G) + k)$ -colouring c of G, there exists $X \subseteq V(G)$ s.t. $|X| \leq k+1$ and $|c(N[X])| = \chi(G) + k$.

if triangle-free: $\chi(N[X]) \leqslant k+2$

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i\in [\chi(G)+k]$, there exists $X\subseteq V(G)$ s.t. $|X|\leqslant k+1$, $|c(N[X])|=\chi(G)+k$, and $i\in c(X)$.

Proof. By recurrence on k.

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i \in [\chi(G)+k]$, there exists $X \subseteq V(G)$ s.t. $|X| \leq k+1$, $|c(N[X])| = \chi(G)+k$, and $i \in c(X)$.

Proof. By recurrence on k.

k = 0:

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i \in [\chi(G)+k]$, there exists $X \subseteq V(G)$ s.t. $|X| \le k+1$, $|c(N[X])| = \chi(G)+k$, and $i \in c(X)$.

Proof. By recurrence on k.

k = 0:

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i \in [\chi(G)+k]$, there exists $X \subseteq V(G)$ s.t. $|X| \le k+1$, $|c(N[X])| = \chi(G)+k$, and $i \in c(X)$.

Proof. By recurrence on k.

k = 0:

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i \in [\chi(G)+k]$, there exists $X \subseteq V(G)$ s.t. $|X| \le k+1$, $|c(N[X])| = \chi(G)+k$, and $i \in c(X)$.

Proof. By recurrence on k.

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i\in [\chi(G)+k]$, there exists $X\subseteq V(G)$ s.t. $|X|\leqslant k+1$, $|c(N[X])|=\chi(G)+k$, and $i\in c(X)$.

Proof. By recurrence on k.

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i \in [\chi(G)+k]$, there exists $X \subseteq V(G)$ s.t. $|X| \le k+1$, $|c(N[X])| = \chi(G)+k$, and $i \in c(X)$.

Proof. By recurrence on k.

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i \in [\chi(G)+k]$, there exists $X \subseteq V(G)$ s.t. $|X| \le k+1$, $|c(N[X])| = \chi(G)+k$, and $i \in c(X)$.

Proof. By recurrence on k.

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i \in [\chi(G)+k]$, there exists $X \subseteq V(G)$ s.t. $|X| \le k+1$, $|c(N[X])| = \chi(G)+k$, and $i \in c(X)$.

Proof. By recurrence on k.

Lemma

For every graph G, every proper $(\chi(G)+k)$ -colouring c of G, and colour $i\in [\chi(G)+k]$, there exists $X\subseteq V(G)$ s.t. $|X|\leqslant k+1$, $|c(N[X])|=\chi(G)+k$, and $i\in c(X)$.

Proof. By recurrence on k.

Conjecture

Every graph
$$G$$
 satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, where $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Remarks.

- True when s(G) = 2 (G is triangle-free iff s(G) = 2)
- Weakening of the initial (disproved) conjecture since $s(G) \geqslant \omega(G)$,
- Almost always tight: for all $2 \le s \le \chi$, there exists G with $\chi(G) = \chi$, s(G) = s, and

$$\varphi(G) \leqslant \chi - s + 1.$$

- True when $\chi(G) < \frac{11}{6}s(G) + \frac{8}{3}$. \hookrightarrow Based on Gallai's decomposition of k-critical graphs of order $\leqslant 2k-2$
- Every graph G satisfies $\varphi(G) \geqslant \chi_f(G) s(G)$. \hookrightarrow For every proper colouring c of G, there exists v with $|c(N[v])| \geqslant \chi_f(G)$

Conjecture

Every graph
$$G$$
 satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, where $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Remarks.

- True when s(G) = 2 (G is triangle-free iff s(G) = 2),
- Weakening of the initial (disproved) conjecture since $s(G) \geqslant \omega(G)$,
- Almost always tight: for all $2 \le s \le \chi$, there exists G with $\chi(G) = \chi$, s(G) = s, and

$$\varphi(G) \leqslant \chi - s + 1.$$

- True when $\chi(G) < \frac{11}{6}s(G) + \frac{8}{3}$. \hookrightarrow Based on Gallai's decomposition of k-critical graphs of order $\leqslant 2k-2$
- Every graph G satisfies $\varphi(G) \geqslant \chi_f(G) s(G)$. \hookrightarrow For every proper colouring c of G, there exists v with $|c(N[v])| \geqslant \chi_f(G)$

Conjecture

Every graph
$$G$$
 satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, where $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Remarks.

- True when s(G) = 2 (G is triangle-free iff s(G) = 2),
- Weakening of the initial (disproved) conjecture since $s(G) \geqslant \omega(G)$,
- Almost always tight: for all $2 \le s \le \chi$, there exists G with $\chi(G) = \chi$, s(G) = s, and

$$\varphi(G) \leqslant \chi - s + 1$$

- True when $\chi(G) < \frac{11}{6}s(G) + \frac{8}{3}$. \hookrightarrow Based on Gallai's decomposition of k-critical graphs of order $\leqslant 2k-2$
- Every graph G satisfies $\varphi(G) \geqslant \chi_f(G) s(G)$. \hookrightarrow For every proper colouring c of G, there exists v with $|c(N[v])| \geqslant \chi_f(G)$

Conjecture

Every graph
$$G$$
 satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, where $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Remarks.

- True when s(G) = 2 (G is triangle-free iff s(G) = 2),
- Weakening of the initial (disproved) conjecture since $s(G) \ge \omega(G)$,
- Almost always tight: for all $2 \le s \le \chi$, there exists G with $\chi(G) = \chi$, s(G) = s, and

$$\varphi(G) \leqslant \chi - s + 1.$$

- True when $\chi(G) < \frac{11}{6}s(G) + \frac{8}{3}$. \hookrightarrow Based on Gallai's decomposition of k-critical graphs of order $\leqslant 2k-2$
- Every graph G satisfies $\varphi(G) \geqslant \chi_f(G) s(G)$. \hookrightarrow For every proper colouring c of G, there exists v with $|c(N[v])| \geqslant \chi_f(G)$

Conjecture

Every graph
$$G$$
 satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, where $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Remarks.

- True when s(G) = 2 (G is triangle-free iff s(G) = 2),
- Weakening of the initial (disproved) conjecture since $s(G) \ge \omega(G)$,
- Almost always tight: for all $2 \le s \le \chi$, there exists G with $\chi(G) = \chi$, s(G) = s, and

$$\varphi(G) \leqslant \chi - s + 1.$$

- $\bullet \ \ {\rm True} \ \ {\rm when} \ \ \chi(G) < \tfrac{11}{6} s(G) + \tfrac{8}{3}.$
 - \hookrightarrow Based on Gallai's decomposition of k-critical graphs of order $\leqslant 2k-2$.
- Every graph G satisfies $\varphi(G) \geqslant \chi_f(G) s(G)$. \hookrightarrow For every proper colouring c of G, there exists v with $|c(N[v])| \geqslant \chi_f(G)$

Conjecture

Every graph G satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, where $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Remarks.

- True when s(G) = 2 (G is triangle-free iff s(G) = 2),
- Weakening of the initial (disproved) conjecture since $s(G) \ge \omega(G)$,
- Almost always tight: for all $2 \le s \le \chi$, there exists G with $\chi(G) = \chi$, s(G) = s, and

$$\varphi(G) \leqslant \chi - s + 1.$$

- True when $\chi(G) < \frac{11}{6}s(G) + \frac{8}{3}$.
 - \hookrightarrow Based on Gallai's decomposition of k-critical graphs of order $\leqslant 2k-2$.
- Every graph G satisfies $\varphi(G) \geqslant \chi_f(G) s(G)$.
 - \hookrightarrow For every proper colouring c of G, there exists v with $|c(N[v])| \geqslant \chi_f(G)$.

A general logarithmic bound

Theorem

Every graph G with $s(G)\geqslant 3$ satisfies $\varphi(G)\geqslant \chi(G)-s(G)\cdot\ln\chi(G)$.

Remark. Not true when s(G) is replaced by $\omega(G)$.

Proof Idea

① There exists an independent set I spanning $\geqslant \chi(G)/s(G)$ colours. \hookrightarrow take a vertex v, remove N(v) and all vertices coloured c(v), and repea

A general logarithmic bound

Theorem

Every graph G with $s(G) \geqslant 3$ satisfies $\varphi(G) \geqslant \chi(G) - s(G) \cdot \ln \chi(G)$.

Proof Idea.

① There exists an independent set I spanning $\geq \chi(G)/s(G)$ colours. \hookrightarrow take a vertex v, remove N(v) and all vertices coloured c(v), and repeat.

A general logarithmic bound

Theorem

Every graph G with $s(G) \geqslant 3$ satisfies $\varphi(G) \geqslant \chi(G) - s(G) \cdot \ln \chi(G)$.

Proof Idea.

- **①** There exists an independent set I spanning $\geq \chi(G)/s(G)$ colours. \hookrightarrow take a vertex v, remove N(v) and all vertices coloured c(v), and repeat.
- ② Add I to H, remove all vertices coloured c(I) and repeat. Eventually $|c(V(H))| \chi(H) \geqslant \chi s \cdot \ln \chi$.

An improved bound for 2-locally s-colourable graphs

Theorem

$$\textit{Every graph G satisfies $\varphi(G) \geqslant \chi(G) - O(t(G)^2 \cdot \ln \ln \chi(G))$, where $t(G) = \max_{v \in V(G)} \chi(N^2[v])$.}$$

Proof Idea

- **©** Every graph H of order p has chromatic number at most $\sqrt{2 \cdot s(H) \cdot p}$
- ① There exist $v \in V(G)$ and an IS I s.t. $I \subseteq N(v)$ and I spans $\frac{p}{t(p-\chi+1)} \geqslant \frac{\sqrt{\chi}}{2t^2}$ colours
- lacktriangleq Remove N(I) and the vertices coloured c(I), and repeat. We eventually build I^\star an IS spanning $p-p^{1-1/4s_2^2}$ colours
- ullet Add I^{\star} to H, remove vertices coloured $c(I^{\star})$ and repeat

Theorem

$$\textit{Every graph G satisfies $\varphi(G) \geqslant \chi(G) - O(t(G)^2 \cdot \ln \ln \chi(G))$, where $t(G) = \max_{v \in V(G)} \chi(N^2[v])$.}$$

- Every graph H of order p has chromatic number at most $\sqrt{2 \cdot s(H) \cdot p}$.
- ① There exist $v \in V(G)$ and an IS I s.t. $I \subseteq N(v)$ and I spans $\frac{p}{t(p-\chi+1)} \geqslant \frac{\sqrt{\chi}}{2t^2}$ colours
- lacktriangleq Remove N(I) and the vertices coloured c(I), and repeat. We eventually build I^\star an IS spanning $p-p^{1-1/4s_2^2}$ colours
- ullet Add I^{\star} to H, remove vertices coloured $c(I^{\star})$ and repeat

Theorem

$$\textit{Every graph G satisfies $\varphi(G) \geqslant \chi(G) - O(t(G)^2 \cdot \ln \ln \chi(G))$, where $t(G) = \max_{v \in V(G)} \chi(N^2[v])$.}$$

- Every graph H of order p has chromatic number at most $\sqrt{2 \cdot s(H) \cdot p}$.
- ① There exist $v \in V(G)$ and an IS I s.t. $I \subseteq N(v)$ and I spans $\frac{p}{t(p-\chi+1)} \geqslant \frac{\sqrt{\chi}}{2t^2}$ colours
- © Remove N(I) and the vertices coloured c(I), and repeat. We eventually build I^* an IS spanning $p-p^{1-1/4s_2^2}$ colours.
- ullet Add I^* to H, remove vertices coloured $c(I^*)$ and repeat

Theorem

$$\textit{Every graph G satisfies $\varphi(G) \geqslant \chi(G) - O(t(G)^2 \cdot \ln \ln \chi(G))$, where $t(G) = \max_{v \in V(G)} \chi(N^2[v])$.}$$

- **Q** Every graph H of order p has chromatic number at most $\sqrt{2 \cdot s(H) \cdot p}$.
- ① There exist $v \in V(G)$ and an IS I s.t. $I \subseteq N(v)$ and I spans $\frac{p}{t(p-\chi+1)} \geqslant \frac{\sqrt{\chi}}{2t^2}$ colours.
- © Remove N(I) and the vertices coloured c(I), and repeat. We eventually build I^* an IS spanning $p-p^{1-1/4s_2^2}$ colours.
- **6** Add I^* to H, remove vertices coloured $c(I^*)$ and repeat

Theorem

$$\textit{Every graph G satisfies $\varphi(G) \geqslant \chi(G) - O(t(G)^2 \cdot \ln \ln \chi(G))$, where $t(G) = \max_{v \in V(G)} \chi(N^2[v])$.}$$

- Every graph H of order p has chromatic number at most $\sqrt{2 \cdot s(H) \cdot p}$.
- ① There exist $v \in V(G)$ and an IS I s.t. $I \subseteq N(v)$ and I spans $\frac{p}{t(p-\chi+1)} \geqslant \frac{\sqrt{\chi}}{2t^2}$ colours.
- Remove N(I) and the vertices coloured c(I), and repeat. We eventually build I^* an IS spanning $p-p^{1-1/4s_2^2}$ colours.
- ullet Add I^{\star} to H, remove vertices coloured $c(I^{\star})$ and repeat

Theorem

$$\textit{Every graph G satisfies $\varphi(G) \geqslant \chi(G) - O(t(G)^2 \cdot \ln \ln \chi(G))$, where $t(G) = \max_{v \in V(G)} \chi(N^2[v])$.}$$

- Every graph H of order p has chromatic number at most $\sqrt{2 \cdot s(H) \cdot p}$.
- ① There exist $v \in V(G)$ and an IS I s.t. $I \subseteq N(v)$ and I spans $\frac{p}{t(p-\chi+1)} \geqslant \frac{\sqrt{\chi}}{2t^2}$ colours.
- Remove N(I) and the vertices coloured c(I), and repeat. We eventually build I^* an IS spanning $p-p^{1-1/4s_2^2}$ colours.
- **3** Add I^* to H, remove vertices coloured $c(I^*)$ and repeat.

Conjecture

Every $C_{\ell+1}$ -free graph G satisfies

$$\varphi(G) \geqslant \chi(G) - \ell$$
.

Moreover, equality holds only if $G = K_{\ell}$ or $\ell = 2$.

Remarks

• If G is $C_{\ell+1}$ -free then $s(G) \leq \ell$.

Partial results

- Every C_4 -free graph $G \neq K_3$ satisfies $\varphi(G) \geqslant \chi(G) 2$.
- Every $C_{\ell+1}$ -free graph $G \neq K_{\ell}$ with $\chi(G) < \frac{5}{3}\ell + \frac{2}{3}$ satisfies $\varphi(G) \geqslant \chi(G) \ell + 1$.
- Every $C_{\ell+1}$ -free graph G satisfies $\varphi(G) \geqslant \chi(G) O_{\ell}(\ln \ln \chi(G))$. \hookrightarrow if G is $C_{\ell+1}$ -free then $t(G) = O(\ell)$.

Conjecture

Every $C_{\ell+1}$ -free graph G satisfies

$$\varphi(G) \geqslant \chi(G) - \ell$$
.

Moreover, equality holds only if $G = K_{\ell}$ or $\ell = 2$.

Remarks.

• If G is $C_{\ell+1}$ -free then $s(G) \leq \ell$.

Partial results

- Every C_4 -free graph $G \neq K_3$ satisfies $\varphi(G) \geqslant \chi(G) 2$.
- Every $C_{\ell+1}$ -free graph $G \neq K_{\ell}$ with $\chi(G) < \frac{5}{3}\ell + \frac{2}{3}$ satisfies $\varphi(G) \geqslant \chi(G) \ell + 1$.
- Every $C_{\ell+1}$ -free graph G satisfies $\varphi(G) \geqslant \chi(G) O_{\ell}(\ln \ln \chi(G))$. \hookrightarrow if G is $C_{\ell+1}$ -free then $t(G) = O(\ell)$.

Conjecture

Every $C_{\ell+1}$ -free graph G satisfies

$$\varphi(G) \geqslant \chi(G) - \ell$$
.

Moreover, equality holds only if $G = K_{\ell}$ or $\ell = 2$.

Remarks.

• If G is $C_{\ell+1}$ -free then $s(G) \leq \ell$.

Partial results.

- Every C_4 -free graph $G \neq K_3$ satisfies $\varphi(G) \geqslant \chi(G) 2$.
- Every $C_{\ell+1}$ -free graph $G \neq K_{\ell}$ with $\chi(G) < \frac{5}{3}\ell + \frac{2}{3}$ satisfies $\varphi(G) \geqslant \chi(G) \ell + 1$.
- Every $C_{\ell+1}$ -free graph G satisfies $\varphi(G) \geqslant \chi(G) O_{\ell}(\ln \ln \chi(G))$. \hookrightarrow if G is $C_{\ell+1}$ -free then $t(G) = O(\ell)$.

Conjecture

Every $C_{\ell+1}$ -free graph G satisfies

$$\varphi(G) \geqslant \chi(G) - \ell$$
.

Moreover, equality holds only if $G = K_{\ell}$ or $\ell = 2$.

Remarks.

• If G is $C_{\ell+1}$ -free then $s(G) \leq \ell$.

Partial results.

- Every C_4 -free graph $G \neq K_3$ satisfies $\varphi(G) \geqslant \chi(G) 2$.
- Every $C_{\ell+1}$ -free graph $G \neq K_{\ell}$ with $\chi(G) < \frac{5}{3}\ell + \frac{2}{3}$ satisfies $\varphi(G) \geqslant \chi(G) \ell + 1$.
- Every $C_{\ell+1}$ -free graph G satisfies $\varphi(G) \geqslant \chi(G) O_{\ell}(\ln \ln \chi(G))$. \hookrightarrow if G is $C_{\ell+1}$ -free then $t(G) = O(\ell)$.

Conjecture

Every $C_{\ell+1}$ -free graph G satisfies

$$\varphi(G) \geqslant \chi(G) - \ell$$
.

Moreover, equality holds only if $G = K_{\ell}$ or $\ell = 2$.

Remarks.

• If G is $C_{\ell+1}$ -free then $s(G) \leq \ell$.

Partial results.

- Every C_4 -free graph $G \neq K_3$ satisfies $\varphi(G) \geqslant \chi(G) 2$.
- Every $C_{\ell+1}$ -free graph $G \neq K_{\ell}$ with $\chi(G) < \frac{5}{3}\ell + \frac{2}{3}$ satisfies $\varphi(G) \geqslant \chi(G) \ell + 1$.
- Every $C_{\ell+1}$ -free graph G satisfies $\varphi(G) \geqslant \chi(G) O_{\ell}(\ln \ln \chi(G))$. \hookrightarrow if G is $C_{\ell+1}$ -free then $t(G) = O(\ell)$.

Balls of radius $\ell/2$ have chromatic number $O(\ell)$ in $C_{\ell+1}$ -free graphs

Theorem

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$, $\chi\left(B_{\ell/2}(v)\right) \leqslant 2\ell$, where $B_{\ell/2}(v)$ is the subgraph of G induced by the vertices at distance at most $\ell/2$ from v.

Lemma

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \le r \le \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Balls of radius $\ell/2$ have chromatic number $O(\ell)$ in $C_{\ell+1}$ -free graphs

Theorem

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$, $\chi\left(B_{\ell/2}(v)\right) \leqslant 2\ell$, where $B_{\ell/2}(v)$ is the subgraph of G induced by the vertices at distance at most $\ell/2$ from v.

Lemma

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \leqslant r \leqslant \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Balls of radius $\ell/2$ have chromatic number $O(\ell)$ in $C_{\ell+1}$ -free graphs

Theorem

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$, $\chi\left(B_{\ell/2}(v)\right) \leqslant 2\ell$, where $B_{\ell/2}(v)$ is the subgraph of G induced by the vertices at distance at most $\ell/2$ from v.

Lemma

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \le r \le \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \leqslant r \leqslant \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Proof. Known for ℓ even (Pikhurko '12), so we assume ℓ odd. By induction on r. Assume $H \subseteq L_r(v)$ has minimum degree $\geqslant \ell$.

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \leqslant r \leqslant \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \le r \le \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \le r \le \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \le r \le \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Let G be a $C_{\ell+1}$ -free graph. For every $v \in V(G)$ and $1 \leqslant r \leqslant \ell/2$, $L_r(v)$ is $(\ell-1)$ -degenerate, where $L_r(v)$ is the subgraph of G induced by the vertices at distance exactly r from v.

Open problems

Conjecture

Every graph G satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Conjecture

Every $C_{\ell+1}$ -free graph G satisfies

$$\varphi(G) \geqslant \chi(G) - \ell.$$

Moreover, equality holds only if $G = K_{\ell}$ or $\ell = 2$.

Problem

Characterise the triangle-free graphs G with $\varphi(G) = \chi(G) - 2$.

Thank You

Open problems

Conjecture

Every graph
$$G$$
 satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Conjecture

Every $C_{\ell+1}$ -free graph G satisfies

$$\varphi(G) \geqslant \chi(G) - \ell$$
.

Moreover, equality holds only if $G = K_{\ell}$ or $\ell = 2$.

Problem

Characterise the triangle-free graphs G with $\varphi(G) = \chi(G) - 2$.

Thank You!

Open problems

Conjecture

Every graph G satisfies $\varphi(G) \geqslant \chi(G) - s(G)$, $s(G) = \max_{v \in V(G)} \chi(N[v])$.

Conjecture

Every $C_{\ell+1}$ -free graph G satisfies

$$\varphi(G) \geqslant \chi(G) - \ell$$
.

Moreover, equality holds only if $G = K_{\ell}$ or $\ell = 2$.

Problem

Characterise the triangle-free graphs G with $\varphi(G) = \chi(G) - 2$.

Thank You!