IRIE NORIFUMI

Table of contents

			5
1			6
I	1.	(Mach Basics)	7
2	1.	(Statistics) 2.0.1 1	8
11	2.	(Machine Learning)	9
3	1.	(Machine Learning Basics) 3.0.1 1	10 10
111	3.	(Basic Deep-learning)	11
4	1.	(Feedforward Neural Network)	12
		4.0.1 1	12
		4.0.2 2	12
		4.0.3 3	13
		4.0.4 4	13
5	2.	(Optimization)	15
		5.0.1 1	15
		5.0.2 2	17
		5.0.3 3	17
6	3.	(Convolutional Neural)	19
		6.0.1 1	19

IV		4. (A	dvanced Deep-learning)	20
7	1.	(Imag	e Recognition)	21
		7.0.1	1	21
		7.0.2	2	21
		7.0.3	3	21
8	2.	(Obje	ct Detection)	22
			1	
			2	
		8.0.3	3	22
9	3.	Semanti	c Segmentation (Semantic Segmentation)	23
		9.0.1	1	23
10	4.	(Na	tural Language Processing)	24
			1	
			2	
			3	
		10.0.4	4	25
11	5.	Recurrer	nt Neural Network (Recurrent Neural Network)	26
		11.0.1	1	26
		11.0.2	2	26
12	6.	(Ger	nerative Model)	27
		12.0.1	1	27
13	7.	(Re	inforcement Learning)	28
		13.0.1	1	28
		13.0.2	2	28
		13.0.3	3	29
14	8.	(Va	rious Learning Methods)	30
		14.0.1	1	30
		14.0.2	2	30
15	9.	(E:	xplainability of Deep-learning)	31
		15.0.1	1	31
		15.0.2	2	31
		15.0.3	3	31

V	5 .	. (Infrastructure)	32
16	4.	(Accelerator) 16.0.1 1	33
17			34
18		(Mach Basics) 1. (Statistics)	35
19		(Machine Learning) 1. (Machine Learning Basics)	36
20		(Basic Deep-learning) 1. (Feedforward Neural Network) 2. (Optimization) 3. (Convolutional Neural)	
21	4 . 21.1	(Advanced Deep-learning) 1. (Image Recognition)	39
	21.2	 (Object Detection) Semantic Segmentation (Semantic Segmentation) 	39 39
	21.421.521.6	5. Recurrent Neural Network (Recurrent Neural Network)	39 39 40
		7. (Reinforcement Learning)	40 40 40
22	5.	(Infrastructure) 4. (Accelerator)	40 41 41
23	<i>∆</i> ∠.1	4. (Accelerator)	41

JDLA E E2024#2

E E GPT5

• E

•

•

• GPT5 SOTA

E E2024#2

Part I

1. (Mach Basics)

2 1. (Statistics)

2.0.1 1

$$KL \qquad D_{KL}(P||Q) \qquad \text{H(P,Q)}$$

$$D_{KL}(P||Q) = H(P,Q) - H(P)$$

$$P \qquad Q \qquad \text{H(P)} \ P$$

$$A. \qquad \qquad Q \qquad P$$

$$B. \quad P \qquad \text{H(P)} \qquad \text{KL}$$

$$C. \ \text{KL} \qquad \qquad P = Q \quad 0$$

$$D. \ \text{KL} \qquad \qquad D_{KL}(P||Q) = D_{KL}(Q||P)$$

Part II

2. (Machine Learning)

3 1. (Machine Learning Basics)

3.0.1 1

MAP

MAP Maximum A Posteriori Estimation MLE Maximum Likelihood Estimation

I.

A. MLE MAP

B. MLE MAP

C. MLE MAP

D. MAP

 θ_{MAP} θ_{MAP} MAP

$$\theta_{\mathrm{MAP}} = \arg\max_{\theta} \, P(\theta \mid X) \; = \;$$

II.

A. $\arg\max_{\theta} P(X \mid \theta)$ B. $\arg\max_{\theta} \frac{P(\theta)}{P(X)}$

C. $\arg \max_{\theta} P(X' \mid \theta) P(\theta)$

D. $\arg\max_{\theta} \log P(X)$

Part III

3. (Basic Deep-learning)

4 1. (Feedforward Neural Network)

4.0.1 1

2

```
import numpy as np
def binary_crossentropy(y_true, y_pred):
    11 11 11
               [batch_size] (0 or 1)
    y_true:
    y_pred:
              [batch_size] (0~1)
    11 11 11
    epsilon = 1e-15
    y_pred =
    loss = -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
    return loss
A. np.clip(y_pred, epsilon, 1.0)
B. np.clip(y_pred, 0.0, 1 - epsilon)
C. np.clip(y_pred, epsilon, 1 - epsilon)
D. np.maximum(y_pred, epsilon)
```

4.0.2 2

```
#
x_max =
x_shifted = x - x_max

#
exp_x = np.exp(x_shifted)
sum_exp =
return exp_x / sum_exp
```

```
A. : np.max(x, axis=1, keepdims=True), : np.sum(exp_x, axis=1, keepdims=True)
B. : np.max(x, axis=0, keepdims=True), : np.sum(exp_x, axis=0, keepdims=True)
C. : np.max(x, axis=1), : np.sum(exp_x, axis=1)
D. : np.maximum(x, 0), : np.sum(exp_x)
```

4.0.3 3

tanh

```
import numpy as np

def tanh(x):
    y =
    return y
```

```
A. (np.exp(x) + np.exp(-x)) / (np.exp(x) + np.exp(-x))
B. (np.exp(x) + np.exp(-x)) / (np.exp(x) - np.exp(-x))
C. (np.exp(x) - np.exp(-x)) / (np.exp(x) - np.exp(-x))
D. (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))
```

4.0.4 4.

```
( ) ~ ( ) \sigma(x) \quad ( ) ( ) \sigma(x) \quad ( ) ( ) ( ) ( ) : A. \frac{1}{1+e^{-x}}
```

C. $\frac{1}{1+e^x}$ $\frac{1}{1+e^x}$

- ():
- $A. 1 \sigma(x)$
- B. $\sigma(x)(1-\sigma(x))$
- C. x(1-x)D. e^{-x}
- ():
- A.
- В.
- С.
- D.
- () :
- A.
- В. (0, 1)
- C. ReLU
- D. ReLU 1
- ()():
- A. ResNet
- B. Word2Vec Negative Sampling
- Discriminator C. GAN
- D. Transformer Multi-Head Attention

5 2. (Optimization)

5.0.1 1

$$(\ \mathbf{z} = [z_1,\, z_2,\, z_3]\) \eqno (\ \mathbf{L}\)$$

I. $\frac{\partial L}{\partial z_i}$

$$\hat{y}_i = \frac{\exp(z_i)}{\sum_k \exp(z_k)}$$

$$L = -\sum_i y_i \log(\hat{y}_i)$$

```
A. y_j - \hat{y}_j

B. \hat{y}_j - y_j

C. \frac{-y_j}{\hat{y}_j}

D. \hat{y}_j(1-y_j)

II.3 y = [0,1,0] \hat{y} = [0.2,0.3,0.5] \frac{\partial L}{\partial z_2}

A. -0.7

B. 0.7

C. -0.3

D. 0.3
```

5.0.2 2

AdaGrad

```
h_t = h_{t-1} + \nabla E(W_t) \odot \nabla E(W_t) \alpha_t = \alpha_0 \times (1/\surd(h_t + \varepsilon)) W_{t+1} = W_t - \alpha_t \odot \nabla E(W_t)
```

```
A. h_t
B. _t
C.
D. h_t
```

5.0.3 3

1 train_flag True False dropout_ratio

```
1
   import numpy as np
2
3
   class Dropout:
4
       def __init__(self, dropout_ratio=0.5):
5
           self.dropout_ratio = dropout_ratio
6
           self.mask = None
7
       def forward(self, x, train_flg=True):
9
           if train_flg:
               self.mask = ( ) self.dropout_ratio
10
11
               return ( )
12
           else:
13
               return ( )
```

```
14
15
       def backward(self, dout):
           return ( )
16
A. np.random.rand(*x.shape) >
B. np.random.rand(*x.shape) >
C. np.random.randn(*x.shape) <</pre>
D. np.random.rand(*x.shape) <</pre>
A.x * self.mask
B.x * (1.0 + self.mask)
C. x - self.mask
D.x * (1.0 - self.mask)
A.x * self.mask
B.x * (1.0 - self.mask)
C. x * self.dropout_ratio
D. x * (1.0 - self.dropout_ratio)
A. dout * self.mask
B. dout * (1.0 - self.mask)
C. dout * self.dropout_ratio
D. dout * (1.0 - self.dropout_ratio)
```

6 3. (Convolutional Neural)

6.0.1 1.

```
im2col
 1 1
      5 \times 5
      3 \times 3
    1
    0
I.
A. (2, 2)
B. (3, 3)
C. (4, 4)
D. (5, 5)
  II.
                              im\_col.shape
                                                                   1
                                                                             1
          \mathrm{im}2\mathrm{col}
A. (3, 3)
B. (9, 9)
C. (9, 25)
D. (3, 9)
```

Part IV

4. (Advanced Deep-learning)

7 1. (Image Recognition)

7.0.1 1

A.

В.

C.

D.

7.0.2 2

 $\begin{array}{ll} C_{in} = 64 & \quad C_{out} = 256 & \quad H = W = 32 \\ 3{\times}3 & \quad \text{ResNet50} \end{array}$

MAC

 $\begin{array}{l} 1{\times}1 \text{ conv}: 64 \rightarrow 64 \\ 3{\times}3 \text{ conv}: 64 \rightarrow 64 \\ 1{\times}1 \text{ conv}: 64 \rightarrow 256 \end{array}$

A. 1/2

B. 1/4

C. 1/8

D. 1/16

7.0.3

Vision Transformer ViT 1

A. 1

CNN

В.

Transformer

C. CNN

D.

8 2. (Object Detection)

8.0.1 1

FCOS

A. FCOS

B. FCOS Feature Pyramid Network(FPN)

C. FCOS

D. FCOS Center-ness

8.0.2 2

R-CNN (A) ROI ROI (B) R-CNN (C)

8.0.3 3

SSD Single Shot MultiBox Detector

A. Single Shot 2 MultiBox 1 1

B. Single Shot 1 MultiBox

C. Single Shot 1 MultiBox GPU
D. Single Shot YOLO MultiBox

9 3. Semantic Segmentation (Semantic Segmentation)

9.0.1 1

FCN Fully Convolutional Network ResNet FCN

FCN-32s FCN-16s FCN-8s

CNN VG

$$L = -\sum_{x \in \Omega} \sum_{c \in C} y_c(x) log P_c(x)$$

10 4. (Natural Language Processing)

10.0.1 1

Seq2Seq

10.0.2 2

Word2Vec

- A. CBOW
- B. Skip-gram
- C.
- D. LSI

10.0.3 3

GPT

- A. GPT
- B. GPT
- C. GPT Masked Language Modeling
- D. GPT Few-shot Learning Fine-tuning

10.0.4 4

Word2Vec Skip-gram softmax
A. softmax

В. С.

D. skip-gram CBOW

11 5. Recurrent Neural Network (Recurrent Neural Network)

11.0.1 1

LSTM t LSTM RNN 3

()

```
A. np.random.randn(n_input * n_hidden, n_hidden * 3)
B. np.random.randn(n_input * n_hidden, n_hidden * 4)
C. np.random.randn(n_input + n_hidden, n_hidden * 3)
D. np.random.randn(n_input + n_hidden, n_hidden * 4)
```

11.0.2 2

LSTM GRU(Gated Recurrent Unit)

12 6. (Generative Model)

12.0.1 1

1

A. VAE Reparameterization Trick

B. Denoising Autoencoder

 \mathbf{C}

D. GAN VAE

13 7. (Reinforcement Learning)

13.0.1 1

MDP

$$\begin{array}{ccc} \gamma = 0.5 \\ s_0 & a_0 & r_0 = 2 & s_1 \\ s_1 & r_1 = 4 & 0 \end{array}$$

I. $V^{\pi}(s_1)$ II. $Q^{\pi}(s_0, a_0)$

13.0.2 2

DQN Q TD

$$TD = [] - Q(s, a)$$

A. Q(s', a')

В.

C. $\gamma * Q(s, a)$

D. $R(s, a) + \gamma * maxQ(s', a')$

13.0.3 3

Q(s,a) $\pi_{\theta}(a|s)$ $V(s_0)$ $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}}[()]$ _(|) ()

- A. $\nabla_{\theta}log\pi_{\theta}(a|s)Q^{\pi}(s,a)$ B. $\nabla_{\theta}\pi_{\theta}(a|s)Q^{\pi}(s,a)$ C. $\frac{\nabla_{\theta}\pi_{\theta}(a|s)}{Q^{\pi}(s,a)}$ D. $\frac{Q^{\pi}(s,a)}{\nabla_{\theta}\pi_{\theta}(a|s)}$

14 8. (Various Learning Methods)

14.0.1 1

Triplet Network Triplet Network Siamese Network Siamese Triplet Network 3 Network 2 d_p triplet loss L

2

L

 $\begin{aligned} &\text{A. } \max(d_p-d_n+m,0)\\ &\text{B. } \max(d_p-d_n,m) \end{aligned}$

C. $max(-d_p + d_n, m)$

D. $max(d_p - d_n - m, 0)$

14.0.2 2

A. Triplet Network

B. Siamese Network 2

C. Siamese Network 2 Triplet Network

D. Triplet Network

15 9. (Explainability of Deep-learning)

15.0.1 1

Grad-CAM Gradient-weighted Class Activation Mapping

- A. AlexNet CNN
- B. Grad-CAM
- C. Guided Grad-CAM Grad-CAM Guided Backpropagation
- D. CNN

15.0.2 2

1

- A. CAM Global Average Pooling
- B. Grad-CAM Global Average Pooling
- C. GoogLeNet Flatten \rightarrow CAM
- D. VGG Global Average Pooling CAM

15.0.3 3

Shapley Shapley

- A. 1
- B. Permutation
- С.
- D.

Part V

5. (Infrastructure)

16 4. (Accelerator)

16.0.1 1

AI Google TPU Tensor Processing Unit TPU GPU GPU

A.
B.
C.
D. 8bit 16bit

18 1. (Mach Basics)

18.1 1. (Statistics)

1. D

19 2. (Machine Learning)

19.1 1. (Machine Learning Basics)

1. I: A II: C

20 3. (Basic Deep-learning)

20.1 1. (Feedforward Neural Network)

1. C

2. A

3. D

4. ():A

():B

i

$$\frac{d}{dx}\frac{1}{f(x)} = -\frac{f'(x)}{f(x)^2}$$

 $f(x) = 1 + e^{-x}$

$$f(x) = 1 + e^{-x}, \quad f'(x) = -e^{-x}$$

$$\frac{d\sigma(x)}{dx} = \frac{d}{dx}\frac{1}{f(x)} = -\frac{f'(x)}{f(x)^2} = -\frac{-e^{-x}}{(1+e^{-x})^2} = \frac{e^{-x}}{(1+e^{-x})^2}$$

(x)

$$\sigma(x) = \frac{1}{1+e^{-x}} \implies 1-\sigma(x) = \frac{e^{-x}}{1+e^{-x}}$$

$$\frac{d}{dx}\sigma(x) = \frac{e^{-x}}{(1+e^{-x})^2} = \sigma(x)(1-\sigma(x))$$

():D

():B

()():B,C

i

(D) Transformer Multi-Head Attention

20.2 2. (Optimization)

1. I: B II: A 2. D

i 0

20.3 3. (Convolutional Neural)

1. I: B II: B

21 4. (Advanced Deep-learning)

21.1 1. (Image Recognition)

1. B

21.2 2. (Object Detection)

- 1. A
- 2. A: Region-based Convolutional Neural Network
- B: Region Proposal()
- C: Selective Search
- 3. B

21.3 3. Semantic Segmentation (Semantic Segmentation)

1. C

21.4 4. (Natural Language Processing)

- 1. B
- 2. C
- 3. B
- 2. C

21.5 5. Recurrent Neural Network (Recurrent Neural Network)

```
    D
    LSTM: (Forget Gate) (Input Gate) (Output Gate) (Memory Cell)
    GRU: (Reset Gate) (Update Gate)
```

21.6 6. (Generative Model)

1. C

21.7 7. (Reinforcement Learning)

- 1. I: 4 II: 4
- 2. D
- 3. A

21.8 8. (Various Learning Methods)

- 1. A
- 2. A

21.9 9. (Explainability of Deep-learning)

- 1. A
- 2. B
- 3. B

22 5. (Infrastructure)

22.1 4. (Accelerator)

1. A

• e

•	Transformer - Multi-Head Attention	vol.28
•	KL	, , , , ,
• E		
• E		