CS2040S

AY23/24S2 Finals

Original by: github.com/jovyntls Modified by: github.com/zeepheru

ORDERS OF GROWTH

$$T(n) = \Theta(f(n))$$

$$\iff T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

$$T(n) = O(f(n))$$
 if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \leq cf(n)$
$$T(n) = \Omega(f(n))$$
 if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \geq cf(n)$

properties

Let T(n) = O(f(n)) and S(n) = O(g(n))

- addition: T(n) + S(n) = O(f(n) + g(n))
- multiplication: T(n) * S(n) = O(f(n) * g(n))
- composition: $f_1 \circ f_2 = O(g_1 \circ g_2)$ only if both increasing
- if/else statements: cost = max(c1, c2) < c1 + c2
- max: $\max(f(n), g(n)) \le f(n) + g(n)$
- $\Theta(f(n))$ time complexity $\Rightarrow O(f(n))$ space complexity
- · space complexity: once we exit the function, release all memory that was used

notable

- $O(\sqrt{n}\log n) = O(n)$, $O(2^{2n}) \neq O(2^n)$
- $O(\log(n!)) = O(n \log n) \rightarrow \text{sterling's approximation}$
- $T(n-1) + T(n-2) + \cdots + T(1) = 2T(n-1)$

Peak-Finding

- 1D-array: $O(\log n)$
- 2D-array: $O(n \log m)$ or O(n+m)
- T(n,m) = T(n/2,m/2) + O(n+m)

QUICKSORT

- stable quicksort: $O(\log n)$ space (due to recursion stack)
- worst case $O(n^2)$: pivot first/last/middle element
- worst case $O(n \log n)$: median/random element/fraction
- · choose at random: runtime is a random variable

TREES

AVL Trees

- height-balanced (maintained with rotations)
- ← |v.left.height v.right.height| < 1
- each node is augmented with its height v.height =
- space complexity: O(LN) for N strings of length L

insertion - max 2 rotations; deletion - recurse up to root;

rebalancing

[case 1] B is balanced: right-rotate

$$h(L) = h(M), \quad h(R) = h(M) - 1$$

[case 2] B is left-heavy: right-rotate

$$h(L) = h(M) + 1, \quad h(R) = h(M)$$

[case 3] B is right-heavy: left-rotate(v.left), right-rotate(v)

$$h(L) = h(M) - 1, \quad h(R) = h(L)$$

Note: need to update nodes (weight/max) aft. rotation

binary search trees (BST)

- balanced: $O(h) = O(\log n)$ (depends on insertion order)
- for a full-binary tree of size $n, \exists k \in \mathbb{Z}^+$ s.t. $n = 2^k 1$
- height, h(v) = max(h(v.left), h(v.right))
- leaf nodes: h(v) = 0• search, insert - O(h)
- delete O(h)
- · no children remove the node
- 1 child remove the node, connect parent to child
- 2 children delete successor; replace node w successor
- searchMin/Max O(h) recurse into left/right subtree
- successor O(h)
 - if node has a right subtree: searchMin(v.right)
- · else: traverse upwards and return the first parent that contains the key in its left subtree

- search, insert O(L) (for string of length L)
- space: O(size of text · overhead)

interval trees

- search(key) $\Rightarrow O(\log n)$
- · if value is in root interval, return
- if value ¿ max(left subtree), recurse right
- else recurse left (go left only when can't go right)
- all-overlaps $\Rightarrow O(k \log n)$ for k overlapping intervals

orthogonal range searching

- binary tree; leaves store points, internal nodes store max value in left subtree
- buildTree(points[]) $\Rightarrow O(n \log n)$ (space is O(n))
- query(low, hight) $\Rightarrow O(k + \log n)$ for k points
 - v=findSplit() $\Rightarrow O(\log n)$ find node b/w low & high • leftTraversal(v) $\Rightarrow O(k)$ - either output all the right
 - subtree and recurse left, or recurse right
- rightTraversal(v) symmetric • insert(key), insert(key) $\Rightarrow O(\log n)$
- 2D_query() $\Rightarrow O(\log^2 n + k)$ (space is $O(n \log n)$)
- build x-tree from x-coordinates; for each node, build a y-tree from y-coordinates of subtree
- 2D_buildTree(points[]) $\Rightarrow O(n \log n)$

kd-Tree

(a, b)-trees

rules

- stores geometric data (points in an (x, y) plane)
- alternates splitting (partitioning) via x and y coordinates

42 73

1. (a,b)-child policy where 2 < a < (b+1)/2

min

1

a-1

a-1

keys

max

b-1

b-1

b-1

2. an internal node has 1 more child than its number of

3. all leaf nodes must be at the same depth from the root

• max height = $O(\log_a n) + 1$; min height = $O(\log_b n)$

• = $O(\log_2 b \cdot \log_a n)$ for binary search at each node

2. move median key to parent; re-connect remaining

3. (if the parent is now unbalanced, recurse upwards; if

• if the node becomes empty, merge(y, z) - join it with

• if the combined nodes exceed max size: share(y, z)

Let the m be the table size; let n be the number of items; let

the root is reached, median key becomes the new root)

e.g. a (2, 4)-tree storing 18 keys

node type

root

internal

leaf

• search(key) $\Rightarrow O(\log n)$

• insert(key) $\Rightarrow O(\log n)$

• delete(key) $\Rightarrow O(\log n)$

• split() a node with too many children

1. use median to split the keylist into 2 halves

71 72 \Rightarrow 48 65 71 72

its left sibling & replace it with their parent

⇒ 15 23

possible augmentation: use a linkedList to connect

= merge(y, z) then split()

cost(h) be the cost of the hash function

B-Tree (aka (B, 2B)-trees)

between each level

HASH TABLES

• $load(hash table), \alpha = \frac{n}{m}$

keys

- construct(points[])
- $\Rightarrow O(n \log n)$
- search(point) $\Rightarrow O(h)$
- · multiplication method -• searchMin() $\Rightarrow O(\sqrt{n})$

children

max

b

b

0

min

2

a

0

$$\Rightarrow T(n) = 2T(\frac{n}{4}) + O(1)$$

$$h(k) = (Ak) \mod 2^w \gg (w - r) \text{ for odd constant } A$$
and $m = 2^r$ and $w = \text{size of a key in bits}$

simple uniform hashing assumption

• (1) every key has an equal probability of being mapped to every bucket; (2) keys are mapped independently

• = average & expected number of items per bucket

• division method: $h(k) = k \mod m$ (m is prime)

• if k and m have common divisor d, only $\frac{1}{4}$ of the

· uniform hashing assumption

designing hashing techniques

• don't choose $m=2^x$

table will be used

- every key is equally likely to be mapped to every permutation, independent of every other key.
- · NOT fulfilled by linear probing

· properties of a good hash function

- 1. able to enumerate all possible buckets
 - $h: U \to \{1..m\}$
 - for every bucket i, $\exists i$ such that h(key, i) = i
- 2. simple uniform hashing assumption

hashCode

(Java) rules for the hashCode() method

- 1. always returns the same value, if object hasn't changed
- 2. if two objects are equal, they return the same hashCode

(Java) rules for the equals method

- · reflexive, symmetric, transitive for $xRy \iff x.equals(y)$
- · consistent always returns the same answer
- null is null x.equals(null) => false

chaining

- insert(key, value) $O(1 + cost(h)) \Rightarrow O(1)$
- for *n* items: expected maximum cost = $O(\log n)$
- = $\Theta(\frac{\log n}{\log(\log(n))})$
- search(key)
- worst case: $O(n + cost(h)) \Rightarrow O(n)$
- expected case: $O(\frac{n}{m} + cost(h)) \Rightarrow O(1)$
- total space: O(m+n)

open addressing - linear probing

- · increment index until found empty slot.
- redefined hash function: $h(k, i) = h(k, 1) + i \mod m$
- delete(key): use a tombstone value DON'T set to null
- performance (assume $\alpha < 1$ and uniform hashing)
- if the table is $\frac{1}{4}$ full, there will be clusters of size $\Theta(\log n)$
- expected cost of an operation, $E[\#probes] \leq \frac{1}{1-\alpha}$

double hashing

for 2 functions
$$f, g$$
, define $h(k, i) = f(k) + i \cdot g(k) \mod m$

- if g(k) is relatively prime to m, then h(k, i) hits all buckets • e.g. for $q(k) = n^k$, n and m should be coprime.
- table size

assume chaining & simple uniform hashing

growing the table: $O(m_1 + m_2 + n)$

table growth	resize	insert n items
increment by 1	O(n)	$O(n^2)$
double	O(n)	O(n), average $O(1)$
square	$O(n^2)$	O(n)

SET ADT

- ✓ speed ✓ space ✓ no false negatives
- \times no ordering \times may have false positives

fingerprint hash table

- ullet only stores m bits does not store the key in a table
- P(no false positives) with SUHA $=(1-\frac{1}{m})^n \approx (\frac{1}{e}^{n/m})$ i.e. probability of nothing else in the given (same)
- for $P(\text{no false positives}) < p, \text{ need } \frac{n}{m} \le \log(\frac{1}{1-n})$

bloom filter

- 2 hash functions requires 2 collisions for a false positive
- for k hash functions (assume independent slots):
- $P(\text{a given bit is } \mathbf{0}) = (1 \frac{1}{m})^{kn} \approx (\frac{1}{a})^{kn/m}$
- $P(\text{false positive}) = (1 (\frac{1}{e})^{kn/m})^k$
- $P(\text{no false positives}) < p, \, \text{need} \, \frac{n}{m} \leq \frac{1}{k} \log(\frac{1}{1-p^{1/k}})$
- optimal $k = \frac{m}{n} \ln 2$ \rightarrow error probability = 2^{-k}
- delete operation: store counter instead of 1 bit
- insert. delete. guery $\rightarrow O(k)$
- intersection (bitwise AND), union (OR) $\rightarrow O(m)$
- · gives the same false positives as both

KnuthShuffle: O(n) - for (i = n-1..0) { swap(i, rand(0, i)) }

AMORTIZED ANALYSIS

an operation has **amortized cost** T(n) if for every integer k, the cost of ANY k operations is $\leq kT(n)$.

- binary counter ADT: increment $\rightarrow O(1)$
- hash table resizing: O(k) for k insertions $\rightarrow O(1)$
- search operation: expected O(1) (not amortized)
- Amortized runtime < worst-case.

GRAPHS

sort

bubble

heap

- · even cycles are bipartite!
- Strongly connected: every v is reachable from u.
- graph is **dense** if $|E| = \theta(V^2)$

best

 $\Omega(n)$

 $\Omega(n \log n)$

adj	space	(cycle)	(clique)	use for
list	O(V+E)	O(V)	$O(V^2)$	sparse
matrix	$O(V^2)$	$O(V^2)$	$O(V^2)$	dense

average

 n^2

 $n \log n$

searching

- breadth-first search $\rightarrow O(V+E)$ queue
- O(V) every vertex is added exactly once to a frontier
- O(E) every neighbourList is enumerated once
- ullet parent edges form a tree & shortest path from S
- depth-first search $\rightarrow O(V+E)$ stack
- O(V) DFSvisit is called exactly once per node
- O(E) DFSvisit enumerates each neighbour

With adjacency matrix: O(V) per node \rightarrow total $O(V^2)$

shortest paths

- Bellman-Ford $\rightarrow O(VE)$
- · Works on all weighted graphs.
- · Except negative weight cycles.
- |V| iterations of relaxing every edge terminate when an entire sequence of |E| operations have no effect
- Dijkstra $\rightarrow O((V+E)\log V) = O(E\log V)$
- · no negative weight edges!
- using a PQ to track the min-estimate node, relax its outgoing edges and add incoming nodes to the PQ
- |V| times of insert/deleteMin ($\log V$ each)
- |E| times of relax/decreaseKey ($\log V$ each)
- with fibonacci heap $\rightarrow O(E + V \log V)$
- for DAG $\rightarrow O(E)$ (topo-sort and relax in this order) longest path: negate the edges/modify relax function
- for Trees $\rightarrow O(V)$ (relax each edge in BFS/DFS order)

topological ordering

- post-order DFS $\rightarrow O(V+E)$
- prepend each node from the post-order traversal
- Kahn's algorithm (lecture vers.) $\rightarrow O(E \log V)$
- add nodes without incoming edges to the topological order
- remove min-degree node from $PQ \rightarrow O(V \log V)$
- decreaseKey (in-degree) of its children $\to O(E \log V)$
- Kahn's algorithm (tutorial vers.) ightarrow O(E+V)
- add nodes with in-degree=0 to a gueue; decrement the in-degree of its adjacent nodes. degueue & repeat

spanning trees

- any 2 subtrees of the MSTs are also MSTs (cutting an MST)
- for every cycle, the max weight edge is NOT in the MST.
- · for every partition of the nodes, the minimum weight edge across the cut is in the MST.
- for every vertex, the minimum outgoing edge is in the
- Steiner Tree: (NP-hard) MST containing a given set of
- 1. calculate the shortest path between any 2 vertices
- 2. construct new graph on required nodes

invariant

3. MST the new graph and map edges back to original

MST algorithms

- Prim's $O(E \log V)$
- add the minimum edge across the cut to MST
- PQ to store nodes (priority: lowest incoming edge
- each vertex: one insert/extractMin $\rightarrow O(V \log V)$
- each edge: one decrease Key $\rightarrow O(E \log V)$
- Kruskal's $O(E \log V)$
- sort edges by weight, add edges if unconnected
- sorting $\rightarrow O(E \log E) = O(E \log V)$
- ullet each edge: find/union $o O(\log V)$ using union-find DS
- directed MST with one root $\rightarrow O(E)$
- for every node, add minimum weight incoming edge
- - Start by adding all minimum adjacent edges of all
 - · Then add minimum outgoing edges of components.

HEAPS

- 1. **heap ordering** priority[parent] > priority[child]
- 2. complete binary tree every level (except last level) is full; all nodes as far left as possible
- operations: all $O(\max height) = O(\lfloor \log n \rfloor)$
- insert: insert as leaf, bubble up to fix ordering
- increase/decreaseKey: bubble up/down larger key delete: swap w bottomrightmost in subtree: bubble

 - extractMax: delete(root), bubble down larger kev
- heap as an array:
- left(x) = 2x + 1, right(x) = 2x + 2
- parent(x) = $\lfloor \frac{x-1}{2} \rfloor$
- HeapSort: $\rightarrow O(n \log n)$ always • unsorted arr to heap: O(n) (bubble down, low to high)
- heap to sorted arr: $O(n \log n)$ (extractMax, swap to back)

UNION-FIND

- quick-find int[] componentId, flat trees
- O(1) find check if items have the same componently
- O(n) union enum all items in array to update id
- quick-union int[] parent deeper trees
- O(n) find check for same root (common parent)
- O(n) union add as a subtree of the root
- weighted union int[] parent, int[] size
- $O(\log n)$ find check for same root (common parent)
- $O(\log n)$ union add as a smaller tree as subtree of root

- path compression set parent of each traversed node to the root - $O(\log n)$ find, $O(\log n)$ union
- · a binomial tree remains a binomial tree
- weighted union + path compression for m union/find operations on n objects: $O(n + m\alpha(m, n))$
- $O(\alpha(m,n))$ find, $O(\alpha(m,n))$ union

data structures assuming O(1) comparison

data structure	search	insert	
sorted array	$O(\log n)$	O(n)	
unsorted array	O(n)	O(1)	
linked list	O(n)	O(1)	
tree (kd/(a, b)/bst)	$O(\log n), O(h)$	$O(\log n), O(h)$	
trie	O(L)	O(L)	
heap	O(n)	$O(\log n), O(h)$	
dictionary	$O(\log n)$	$O(\log n)$	
symbol table	O(1)	O(1)	
chaining	O(n)	O(1)	
open addressing	$\frac{1}{1-\alpha} = O(1)$	O(1)	
priority queue	(contains) $O(1)$	$O(\log n)$	
skip list	$O(\log n)$	$O(\log n)$	

$$T(n) = 2T(\frac{n}{2}) + O(n) \Rightarrow O(n \log n)$$

$$T(n) = T(\frac{n}{2}) + O(n) \Rightarrow O(n)$$

$$T(n) = 2T(\frac{n}{2}) + O(1) \Rightarrow O(n)$$

$$T(n) = T(\frac{n}{2}) + O(1) \Rightarrow O(\log n)$$

$$T(n) = 2T(n-1) + O(1) \Rightarrow O(2^n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n \log n) \Rightarrow O(n(\log n)^2)$$

$$T(n) = 2T(\frac{n}{4}) + O(1) \Rightarrow O(\sqrt{n})$$

$$T(n) = T(n-c) + O(n) \Rightarrow O(n^2)$$

$$3^n \neq O(2^n) \text{ and } 2^{\log n} = O(n)$$

$$n^{1/p} \log^k n < O(n); \log^p n < O(n)$$
For $f(n) > 0$, $T(n^{1/f(n)}) = O(1)!$

master theorem

$$T(n) = aT(\frac{n}{b}) + f(n) \quad a \geq 0, b > 1$$

$$= \begin{cases} \Theta(n^{\log_b a}) & \text{if } f(n) < n^{\log_b a} \text{ polynomially} \\ \Theta(n^{\log_b a} \log n) & \text{if } f(n) = n^{\log_b a} \\ \Theta(f(n)) & \text{if } f(n) > n^{\log_b a} \text{ polynomially} \end{cases}$$
 orders of growth

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < 2^n < 2^{2n}$$
$$\log_a n < n^a < a^n < n! < n^n$$

n^2 O(1)largest k elem sorted \checkmark n^2 O(1)smallest k elem sorted X

space

O(n)

selection $\Omega(n^2)$ $\Omega(n)$ n^2 O(1)first k slots sorted insertion \checkmark $\overline{O(n)}$ $\Omega(n \log n)$ $n \log n$ $n \log n$ given subarray sorted merge partition in right position quick $\Omega(n \log n)$ $n \log n$ n^2 × O(1)

worst

 $n \log n$

stable?

- DYNAMIC PROGRAMMING 1. optimal sub-structure - optimal solution can be constructed from op-
- timal solutions to smaller sub-problems 2. overlapping sub-problems - can memoize
 - optimal substructure but no overlapping subproblems = divide-and-
- prize collecting: $\rightarrow O(kE)$ or $O(kV^2)$ for k steps

- · vertex cover (set of nodes where every edge is adjacent to at least one node) of a tree: $\rightarrow O(V)$ or $O(V^2)$
- diameter of a graph: SSSP all $\rightarrow O(V^2 \log V)$
- APSP: dijkstra all $\rightarrow O(VE \log V)$ or $O(V^2E)$
- APSP: floyd warshall $\rightarrow O(V^3)$
 - $S[v, w, P_k]$ = shortest path from v to w only using nodes from set P
 - $S[v, w, P_8] = \min(S[v, w, P_7], S[v, 8, P_7] + S[8, w, P_7])$