Zmiany przeciwciał limfocytów B w mukowiscydozie

Hanna Pęciak 113752

Piotr Hajduk 121687

Odpowiedź immunologiczna w mukowiscydozie: Skupienie na zakażeniach *Pseudomonas aeruginosa*

- Mukowiscydoza (CF) często wiąże się z przewlekłymi zakażeniami Pseudomonas aeruginosa (PA), które przyczyniają się do postępującego uszkodzenia płuc.
- Pomimo sprawnego działania układu odpornościowego u osób z CF obecne terapie przeciwciałami skierowanymi przeciwko czynnikom zjadliwości PA, takim jak PcrV, nie przyniosły skutecznych rezultatów klinicznych.
- Cel: Zbadanie, czy istnieją istotne różnice w sekwencjach receptorów komórek B (BCR) i mutacjach somatycznych pomiędzy osobami z CF przewlekle zakażonymi PA a tymi bez takiego zakażenia w celu lepszego zrozumienia odpowiedzi adaptacyjnej i identyfikacji potencjalnych celów terapeutycznych.

Komórki B i mechanizmy tworzenia przeciwciał swoistych dla *Pseudomonas aeruginosa*

- Komórki B odgrywają kluczową rolę w odpowiedzi adaptacyjnej, wytwarzając przeciwciała, które wiążą antygeny bakterii, takie jak białko PcrV – czynnik zjadliwości Pseudomonas aeruginosa.
- Przeciwciała są produkowane przez komórki B po aktywacji i dojrzewaniu, a ich swoistość zależy od unikalnych sekwencji w regionach zmiennych receptorów komórkowych – tzw. B cell receptors (BCR).
- Regiony te powstają poprzez rekombinację segmentów genów V (Variable), D (Diversity) i J
 (Joining) w trakcie rozwoju komórki B w szpiku kostnym.
- Kombinacja różnych segmentów V, D i J, wraz z mutacjami somatycznymi, prowadzi do ogromnej różnorodności przeciwciał – umożliwiając organizmowi rozpoznanie szerokiego wachlarza patogenów.
- W kontekście CF i zakażeń *Pseudomonas*, analiza regionów V(D)J pozwala ocenić, **jak skutecznie organizm tworzy przeciwciała specyficzne dla PA**, oraz czy przewlekła infekcja wpływa na sposób doboru i mutacji tych regionów.

Confidential

Regiony V(D)J

Locus ciężkiego łańcucha immunoglobulin (IGH@) na <u>chromosomie 14</u> zawiera segmenty genowe dla ciężkiego łańcucha immunoglobulin.

Locus łańcucha lekkiego typu kappa (κ) immunoglobulin (IGK@) na **chromosomie 2** zawiera segmenty genowe dla jednego typu (κ) lekkiego łańcucha immunoglobulin.

Locus łańcucha lekkiego typu lambda (λ) immunoglobulin (IGL@) na **chromosomie 22** zawiera segmenty genowe dla innego typu (λ) lekkiego łańcucha immunoglobulin.

Dane wejściowe

Dawca	ID	Wiek	Na ETI?*	Nasilenie choroby płuc	Historia zakażenia PA
1	_	33	Tak	Umiarkowane	Przewlekłe
2	SRR32572151	19	Tak	Minimalne	Ujemna hodowla w czasie pobrania krwi. Dodatnia 6 mies. wcześniej. Wcześniej 5 lat ujemnych hodowli.
3	SRR32572150	18	Tak	Minimalne	Przewlekłe

*ETI to skrót od triple terapii składającej się z elexacaftor, tezacaftor i ivacaftor, stosowanej w leczeniu mukowiscydozy

Trimming: parametry

PE -phred33 – tryb parowany, jakość kodowana w formacie Phred+33

ILLUMINACLIP:...:2:30:10 – usuwanie adapterów (max 2 niedopasowania, próg 30/10)

LEADING:10 – usuwa niskiej jakości bazy (<10) z początku odczytu

TRAILING:10 – usuwa bazy <10 z końca odczytu

SLIDINGWINDOW:5:30 – tnie, gdy średnia jakość w 5-bazowym oknie spada poniżej 30

MINLEN:70 – odrzuca odczyty krótsze niż 70 bp

Trimming: wyniki

Próbka	Input Read Pairs	Both Surviving (%)	Forward Only Surviving (%)	Reverse Only Surviving (%)	Dropped (%)
SRR32572150	58906	12996 (22.06%)	38818 (65.90%)	846 (1.44%)	6246 (10.60%)
SRR32572151	116294	4783 (4.11%)	102274 (87.94%)	98 (0.08%)	9139 (7.86%)

Input Read Pairs:

Całkowita liczba par odczytów (forward i reverse) przekazanych do Trimmomatic.

Both Surviving (%):

Procent par, w których oba odczyty przeszły przycinanie i zostały zachowane jako pary.

Forward Only Surviving (%):

Tylko odczyt forward przeszedł przycinanie; odczyt reverse został odrzucony. Wynik jako odczyt pojedynczy.

Reverse Only Surviving (%):

Tylko odczyt reverse przeszedł przycinanie; odczyt forward został odrzucony. Wynik jako odczyt pojedynczy.

Dropped (%):

Oba odczyty zostały odrzucone – nie spełniły kryteriów jakości i długości.

Podsumowanie QC (góra przed trimmingiem, dół po trimmingu)

Sample Name	Dups	GC	Seqs
SRR32572150_1	88.8%	52.0%	0.1 M
SRR32572150_2	69.4%	54.0 %	0.1 M
SRR32572151_1	92.4%	57.0%	0.1 M
SRR32572151_2	67.8%	55.0 %	0.1 M

Sample Name	Dups	GC	Median len	Seqs
SRR32572150_forward_paired	85.0%	58.0%	251 bp	0.0 M
SRR32572150_forward_unpaired	90.0%	57.0%	157 bp	0.0 M
SRR32572150_reverse_paired	65.3%	58.0%	251 bp	0.0 M
SRR32572150_reverse_unpaired	46.6%	57.0%	251 bp	0.0 M
SRR32572151_forward_paired	75.2%	57.0%	251 bp	0.0 M
SRR32572151_forward_unpaired	93.1%	57.0%	251 bp	0.1 M
SRR32572151_reverse_paired	68.1%	57.0%	172 bp	0.0 M
SRR32572151_reverse_unpaired	83.7%	59.0%	112 bp	0.0 M

150 bp

200 bp

100 bp

50 bp

Alignment | Post-alignement | BQSR

Alignement bwa mem

Przypisanie odczytów do sekwencji referencyjnej i dodanie RG (read groups)

@SRR32572147.1 M02172:273:000000000-DJPRD:1:1101:15616:1365 length=251

Post-alignment samtools

- sort sortowanie po nazwie odczytu
- fixmate dodanie informacji o parach odczytów
- sort sortowanie po pozycji w genomie
- markdup usunięcie duplikatów
- index indeksowanie
- flagstat ocena jakości dopasowania
- depth głębokość dopasowania

BGQR applyBGQSR

Korekta błędów w ocenie jakości wynikających z konkretnego sekwenatora i z wykorzystaniem danych o znanych wariantach (VCF)

indeksowanie

Base Quality Score Recalibration

Base Quality Score Recalibration

Zidentyfikowane warianty

Sample	Tool	Variants identified	Varians filered	Variants after filtration
SDD22572450	BCF	182	- 57% (78)	104
SRR32572150	GATK	208	- 65% (71)	137
CDD22572454	BCF	96	- 42% (55)	41
SRR32572151	GATK	115	- 46% (61)	54

Narzędzia użyte do identyfikacji wariantów:

- GATK HaplotypeCaller
- BCF mplieup

Zastosowane parametry filtrowania:

- Jakość wariantu QUAL > 30
- Pokrycie 10 < DP > 500
- Allele alternatywne < 2

Liczba wariantów na chromosom

Variant Effect Predictor - BCF

Variant Effect Predictor results @

Job details ±

Summary statistics =

 Category
 Count

 Variants processed
 104

 Variants filtered out
 0

 Novel / existing variants
 22 (21.2) / 82 (78.8)

 Overlapped genes
 61

 Overlapped transcripts
 75

 Overlapped regulatory features
 10

Variant Effect Predictor results @

Job details ±

Summary statistics □

SRR32572151

Category	Count
Variants processed	41
Variants filtered out	0
Novel / existing variants	10 (24.4) / 31 (75.6)
Overlapped genes	61
Overlapped transcripts	64
Overlapped regulatory features	13

Variant Effect Predictor - GATK

Variant Effect Predictor results @

Job details ±

Summary statistics

SRR32572150

Category	Count
Variants processed	137
Variants filtered out	0
Novel / existing variants	56 (40.9) / 81 (59.1)
Overlapped genes	84
Overlapped transcripts	137
Overlapped regulatory features	15

Variant Effect Predictor results @

Job details ±

Summary statistics

Category	Count
Variants processed	54
Variants filtered out	0
Novel / existing variants	20 (37.0) / 34 (63.0)
Overlapped genes	72
Overlapped transcripts	77
Overlapped regulatory features	11

SRR32572150:

- Większa liczba wariantów ogółem.
- Wysoki udział wariantów missense oraz frameshift mogą silnie wpływać na funkcję białek.
- Obecność wariantów stop-gained i protein-altering potencjalnie szkodliwe mutacje.

SRR32572151:

- Mniej wariantów, ale większy udział w regionach regulatorowych.
- W kodujących regionach dominują warianty typu coding_sequence i missense.
- Obecne warianty start lost mogą zakłócać inicjację translacji białka

Wniosek:

SRR32572150 wykazuje silniejszy wpływ na regiony kodujące, natomiast SRR32572151 może oddziaływać na regulację ekspresji genów.

Variant Effect Predictor results @

Job details ±

Summary statistics =

Category	Count
Variants processed	104
Variants filtered out	0
Novel / existing variants	22 (21.2) / 82 (78.8)
Overlapped genes	61
Overlapped transcripts	75
Overlapped regulatory features	10

Variant Effect Predictor results @

Job details ±

Summary statistics □

GATK

BCF

Category	Count
Variants processed	137
Variants filtered out	0
Novel / existing variants	56 (40.9) / 81 (59.1)
Overlapped genes	84
Overlapped transcripts	137
Overlapped regulatory features	15

Porównanie wyników BCF vs GATK (VEP analiza)

Liczba wykrytych wariantów:

GATK zidentyfikował więcej wariantów (137 vs. 104) i wyższy udział nowych wariantów (41% vs. 21%).

• Pokrycie genomowe:

GATK lepiej pokrywa geny, transkrypty i elementy regulatorowe.

Konsekwencje funkcjonalne:

BCF – więcej wariantów *missense* i *synonymous* (łagodniejsze).

GATK – większa różnorodność, więcej wariantów o silniejszym wpływie (frameshift, stop gained).

Wniosek:

GATK oferuje większą czułość i głębszą anotację, podczas gdy BCF daje bardziej zachowawcze wyniki.

Analiza funkcjonalna - GProfiler BCF

SRR32572150

Analiza funkcjonalna - GProfiler

GATK

SRR32572150

Interpretacja wyników

W obu próbkach (SRR32572150 i SRR32572151) najistotniejsze zmiany były w kategoriach:

• antigen binding / adaptive immune response (GO:MF:0003823, GO:BP:0002250)

Powiązane z rozpoznawaniem antygenów i inicjację odpowiedzi immunologicznej, np. w genach kodujących przeciwciała. Takie polimorfizmy mogą wpływać na zdolność do rozpoznawania patogenów i efektywność odpowiedzi odpornościowej

• immunoglobulin complex (GO:CC:0019814)

Zmiany składu, stabilności lub funkcji kompleksów immunoglobulinowych, mogące zaburzać zdolność wiązania patogenów oraz zmiany w poziomie aktywności układu odpornościowego.

extracellular region / plasma membrane / blood microparticle

Te zmiany mogą powodować zaburzenie komunikacji między komórkami odpornościowymi i przekazywania sygnałów zapalnych, a nawet zwiększoną przepuszczalnością nabłonka oddechowego (co sprzyja kolonizacji przez bakterie).

Metryka (g:Profiler)	SRR32572150	SRR32572151	Interpretacja
Liczba znaczących terminów GO:CC	43	17	Większa liczba struktur komórkowych związanych z odpornością w próbce SRR32572150 .
Najsilniejsze p_adj (GO:MF)	3.3 × 10 ⁻⁴⁸	5.7 × 10 ⁻⁴⁰	Różnica 8 rzędów wielkości, nadal ekstremalnie istotne statystycznie.

Dziękujemy za uwagę

Hanna Pęciak 113752

Piotr Hajduk 121687