MIS 131: Information Systems Administration

Part VI: Networks

Section A: Introduction, History, and the OSI Reference Model

Networks and Communication

- Network (of computers)
 - Consists of machines that, regardless of their physical location, communicate with each other
- Data communications
 - Electronic collection, exchange, and processing of data or information digitally coded and intelligible to a variety of electronic machines
- Telecommunications
 - Refers to all types of long-distance communication through the use of common carriers such as telephone, satellite, and radio

A Brief History: Early Days

- Mainframe systems
- Input: punch card/tape readers
- Console (operators), data entry terminals (professionally-trained encoders)
- Users isolated from machine

A Brief History: The 70's

- Mainframe or minicomputer system
- Use of dumb terminals located on user area
- Proprietary network
- Processing power still provided by mainframe

A Brief History: The 80's

- Microcomputers (DOS)
- Initially, two machines → terminal emulator on PC
- First generation of LANs

A Brief History: Modern Era

- Widespread use of LANs and WANs
- Move to more open environment
 - Interconnectivity
 - Interoperability
- Internet, intranets, and extranets

Types of Networks

- Local Area Network (LAN)
- Metropolitan Area Network (MAN)
- Wide Area Network (WAN)
- Personal Area Network (PAN)
- Storage Area Network (SAN)

LANs Form the Basis

- Local Area Network network of personal computers spanning a limited geographical area for purposes of electronic communication
- Most common LAN services
 - Access to remote information
 - Application/device sharing
 - Load distribution
 - Electronic mail

Basic LAN Configurations

Network Components

- Servers
- Server O/S
- Workstations (clients)
- Workstation O/S
- Network Interface Card (NIC)
- Shared hardware (e.g. network printers)
- Data communications media
- Protocol
- Topology
- Application software

The Network Server

- Common tasks
 - Handles request from users
 - Distributes resources
 - Acts as traffic manager
- Can be a mainframe, mini, or micro
- Common types
 - File server
 - Print server
 - Database server
 - Communications server

The OSI Reference Model

- OSI Open Systems Interconnection
- Theoretical construction that separates network communications into 7 layers
- Collectively: protocol stack or networking stack
- Implements "encapsulation"

OSI Analogy

OSI Structure

Layer	Name	Job	Protocol Examples
7	Application Layer	Interface to application	HTTP, X.500, X.400, ODA, PC LAN Manager, Postscript
6	Presentation Layer	Translates data to and from language in Layer 7	NetBIOS
5	Session Layer	Controls dialog, acts as moderator for a session	SSL (Secure Sockets Layer)
4	Transport Layer	Controls flow, ensures reliable packet delivery	TCP
3	Network Layer	Addresses and routes packets	IP, X.25, Packet level Protocol
2	Logical Link Layer	Makes sure no data is lost or garbled	Ethernet, Token Ring, FDDI, ISDN, ATM, Frame Relay
1	Physical Layer	Defines physical connection to network	Ethernet 50 ohm coaxial cable, 10 Base-T, twisted pair, fiber optic cable

Layer 1: The Physical Layer

- Defines actual medium used to carry data from one computer to another
- Includes
 - Technology used to carry the data
 - Specifications how to install the equipment
 - Nature of signals used to encode data

Data Communications Media

- Bounded media (cable)
 - Co-axial
 - Shielded/Unshielded twisted pair (STP/UTP)
 - Fiber optic
- Unbounded media (air and light)
 - Radio
 - Microwave
 - Satellite
 - Infrared or laser
- Bandwidth: transmission speed (bits/sec)

Types of Cable

- Twisted Pair
 - Copper wires twisted to minimize interference
 - Can be shielded or unshielded
- Coaxial
 - One wire called central carrier surrounded by insulator
 - Can be thin or thick
- Fiber Optic
 - Core made of glass or plastic
 - Immune to electromagnetic forces

Wire

Comparison of Network Cables

	Twisted Pair	Coaxial	Fiber
Cost Bandwidth Max Length	Low Moderate 100 Meters	Moderate High 500 Meters	High Very high 2,000 M
Immunity to Interference	Low	Moderate	Very high
Connection Ease	Simple	Variable	Difficult
Installation Ease Reliability	Simple High	Variable Variable	Difficult Very high
Limitations	Distance	Distance	Ptto-pt.

Layer 2: The Data Link Layer

- Defined as the mechanism that regulates access to the shared network medium
- Concerned with getting the data to its next destination in the LAN and make sure it is not garbled
- Arbitrates access to the network medium using a process called media access control (MAC)
- Includes elements of the physical layer in their specification (e.g. cables supported by a protocol)

Network Interface Card (NIC)

- Determines cable access method
- Governs data transmission rate
- Determines data link layer protocol
 - -Ethernet
 - -Token ring
 - Fiber DistributedData Interface (FDDI)

Network Interface Card (NIC)

- Convert signals from digital to matter suitable for network medium (e.g. binary to electrical impulses, binary to light pulses)
- Breaks requests into packets and reconstructs them at destination
- A packet is a variable group of formatted data which includes user information, address of sender and/or destination, packet size, type of transmission; format depends on protocol

Data Link Layer Protocols

	Ethernet	Token Ring	FDDI
Developed By	Digital, Intel, Xerox	IBM	AT&T
Cables	All types	Twisted Pair Fiber	Fiber Twisted Pair
Speeds	10 Mbps 100 Mbps 1000 Mbps	4/16 Mbps 100 Mbps	100 Mbps
MAC	CSMA/CD (Party Line Method)	Token Passing	Token Passing

The FDDI Difference

- First to achieve 100 Mbps speed
- Larger packet size
- Original FDDI specs required physical ring topology
- Ideal backbone protocol but may also run to desktops (expensive)

Network Topology

- Refers to the way computers on a network are cabled together
- Basic types
 - Star
 - Ring
 - Bus
- May be:
 - Physical physical structure of network; how terminals are connected to each other
 - Logical bounded to network protocols that direct how the data moves across the network

Star Topology

- Cable connection to each component radiating from central point
- Requires more cable

Hubs and Switches

- Cabling nexus
- Used in star topology
- Amplifies signals (multiport repeater)
- •A switch is more intelligent

Bus Topology

- A single cable connects all devices
- A break in the cable splits network into two
- Backbone a separate cable segment that carries traffic between components

Ring Topology

Hybrid Topologies

 Combination of basic topologies

Bridge

- Divides the network into segments but does not create multiple LANs
- Also amplifies signals
- Does not prevent broadcast messages from being propagated across cable segments

Layer 3: The Network Layer

- Responsible for the packet's entire journey from the source system to its ultimate destination (end-to-end addressing)
- Logical envelope within the data link layer opened only at the final destination
- Popular protocols
 - IP (Internet Protocol)
 - IPX (Internetwork Packet Exchange)

Routers

- Connects two or more LANs (may be two different types of networks)
- Only forwards traffic to destination segment

Does not forward broadcast messages

Layer 4: The Transport Layer

- No longer concerned with getting packets from source to destination
- Concerned with such functions as guaranteed delivery, end-to-end error checking, etc.
- Popular protocols
 - TCP (Transmission Control Protocol)
 - SPX (Sequenced Packet Exchange)

Data Transfer Protocols

- Non-proprietary
 - TCP/IP (Internet Standard)
- Proprietary
 - SPX/IPX
 - NetBEUI

Other Data Communication Devices

- Repeater extends cabling distance limit
- Modem to modulate/demodulate (change from analog to digital signals and vice versa)