

#### **Chpt. 5 MagnetoStatics**

- **→** Introduction --- Current and its Density
- **→** Fundamental Equations
- **→** M-Vector Potential
- **→** Materials in MagnetoStatics
- **→** Boundary Conditions
- **→** Inductance
- → Energy & Force in MagnetoStatics\*

Field and Wave Electromagnetics

1

#### What's static magnetic field?



- → Current: macroscopical & directional motion of charges
- **♦ Steady current:** current that does not vary with time.
- → Static magnetic field: M-field around the steady current which is changeless with time.
- → Magnetostatics & electrostatics, though different in nature, possess much similar properties and correspond to similar method of analysis.
- → Similar to chapter 3, in this chapter we start with related experiment laws, and then present general mathematical expressions, i.e. fundamental equs, and thereafter go on to study the other knowledge points.

Field and Wave Electromagnetics

2

#### **Introduction --- Current & its Density**



3

Current: the rate at which the charges are transported.

$$i = \lim_{\Delta t \to 0} \left( \frac{\Delta q}{\Delta t} \right) = \frac{dq}{dt}$$

- ➤ Unit: A (Ampere, in memory of a French physicist)
- ➤ The current is a scalar.

For Steady Current 
$$\frac{dq}{dt} \equiv I \text{ (constant)}$$
  
 $\Rightarrow q \propto t$ 

It means the number of charges passing a given surface in given time is proportional to the time.

#### Current Density



#### **Current Volume Density**

- 1. Take a differential surface element ( $\Delta S$ ) normal to the current.
- 2. Assume the current across  $\Delta S$  is  $\Delta I$ .
- 3. Define the current volume density as  $\vec{J}$ 
  - in direction coinciding the motion of +q
  - with quantity as the current per unit area

$$J = \lim_{\Delta S \to 0} \left( \frac{\Delta I}{\Delta S} \right) = ?(A/m^2) \qquad (A/m^2)$$

#### Distance of +q in $\Delta t$ is $\vec{v} \Delta t$



Charges across  $\Delta S$ :  $\Delta Q = \rho \cdot (\vec{v} \Delta t) \cdot \Delta \vec{S}$ 

Current across 
$$\Delta S$$
: 
$$\Delta I = \frac{\Delta Q}{\Delta t} = \rho \cdot (\vec{v} \cdot \Delta \vec{s})$$

Then the density 
$$J = \lim_{\Delta S \to 0} \left( \frac{\Delta I}{\Delta S} \right)$$

$$\vec{J} = \rho \vec{v}$$
A Vector

$$\therefore I = \int_{S} \vec{J} \cdot d\vec{S}$$

A Scalar



#### **Current Surface Density**



In the case that the current flows within a thin film.

$$J_{S} = \left(\frac{\Delta I}{\Delta l_{\perp}}\right) = ?(A_{m}) \qquad (A_{m})$$



$$\Delta Q = \sigma_S \cdot (v \cdot \Delta t) \cdot \Delta l_{\perp}$$

$$\Delta I = \sigma_{\scriptscriptstyle S} \cdot v \cdot \Delta l_{\scriptscriptstyle \perp}$$

$$\vec{J}_S = \sigma_S \vec{v} = ?(A_m) \quad (A_m)$$

Field and Wave Electromagnetics

5

Field and Wave Electromagnetics

#### **Current Line Density**



7

NO!

There is no such a parameter.

### 电流元-单位长度的电流元





#### § 5.1 Fundamental Equations



#### **Contents**

- **◆ Old Contents: Experimental Laws** 
  - → Ampere's Force Law
  - → Biot-Savart Law
  - → Ampere's Circuital Law
- **→** New Contents
  - Variables for Magnetostatics
  - → M-Flux Density, or M-Induction Intensity
  - → M-Field Intensity
  - → Fundamental Equs

Field and Wave Electromagnetics

#### Variables for Magnetostatics



磁通: Magnetic Flux Ф

磁通密度: Magnetic Flux Density  $\vec{B}$  M-Induction Intensity

磁场强度: Magnetic Field Intensity H

 $\vec{B}$  Unit: (1)Wb/m<sup>2</sup> (2)Tesla (T) (3)Gauss

 $1Wb/m^2 = 1Tesla = 1 \times 10^4Gauss$ 

Field and Wave Electromagnetics

10

#### **Clue of our Study**



- **→** From experiments to math expressions
  - **→** Ampere's Force Law **→** M-Flux Density
  - → Biot-Savart Law → Div. Equations
  - **→** Ampere's Circuital Law **→** Curl Equations
- **→** Examples

#### 1. Ampere's Force Law --- for M-Induction



- → In E-field, work is done by Coulomb Force.
- → In M-field, work is done by Ampere's Force
- → Two current loops in free space ---  $C_1$ ,  $C_2$
- ightharpoonup Force on  $C_2$  by  $C_1$  is... $F_{1-2}$

$$\vec{F}_{1-2} = \frac{\mu_0}{4\pi} \oint_{C_2C_1} \frac{I_2 d\vec{l}_2 \times (I_1 d\vec{l}_1 \times \vec{a}_R)}{R^2}$$



$$\vec{F}_{1-2} = \frac{\mu_0}{4\pi} \oint_{C_2 C_1} \frac{I_2 d\vec{l}_2 \times (I_1 d\vec{l}_1 \times \vec{a}_R)}{R^2}$$



- → Direction of the force?
- 1. Use cross product
- 2. Generic rule

同向电流相吸; 反向电流相斥。



Field and Wave Electromagnetics

13



Permeability in space (真空中磁导率):

$$\mu_0 = 4\pi \cdot 10^{-7} (H / m)$$

Dielectric Constant in space (真空中介电常数):

$$\varepsilon_0 = \frac{1}{4\pi \cdot 9 \times 10^9} = 8.85 \times 10^{-12} (F/m)$$

$$\frac{1}{\sqrt{\varepsilon_0 \cdot \mu_0}} = ?$$

Field and Wave Electromagnetics

# $\vec{F}_{1-2} = \frac{\mu_0}{4\pi} \oint_{C_2 C_1} \frac{I_2 d\vec{l}_2 \times (I_1 d\vec{l}_1 \times \vec{a}_R)}{R^2}$



- → Direction of the force?
- 1. Use cross product
- 2. Generic rule

同向电流相吸;

反向电流相斥。

More discuss



2. M-Flux Density





$$\vec{F}_{1-2} = \frac{\mu_0}{4\pi} \oint_{C_2 C_1} \frac{I_2 dl_2 \times (I_1 dl_1 \times \vec{a}_R)}{R^2}$$

$$= \oint_{C_2} I_2 d\vec{l}_2 \times \left[ \frac{\mu_0}{4\pi} \oint_{C_1} \frac{I_1 d\vec{l}_1 \times \vec{a}_R}{R^2} \right]$$

$$= \oint_{C_2} I_2 d\vec{l}_2 \times \vec{R}$$

$$= \oint_{C_2} I_2 d\vec{l}_2 \times \vec{B}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \oint_{C_1} \frac{I_1 d\vec{l_1} \times \vec{a_R}}{R^2}$$

#### M-flux density around any current



$$d\vec{B} = \frac{\mu_0}{4\pi} \left( \frac{I_{\text{source}} d\vec{l}_{\text{source}}}{R_{\text{Source-Spot}}^2} \times \vec{a}_R \right)$$



#### A Comparison



**M-Flux Density** (M-induction intensity) by current element

E-field intensity by charge element

Field and Wave Electromagnetics

17

Field and Wave Electromagnetics

11

#### Quantity & Direction in Spherical Coordinates







$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Idl}{R^2} (\vec{a}_z \times \vec{a}_R)$$
$$= \frac{\mu_0}{4\pi} \left( \frac{Idl \cdot \sin \theta}{R^2} \right) \vec{a}_{\varphi}$$



#### 3. Biot-Savart's Law





For volume current

$$\vec{B} = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}_v \times \vec{a}_R}{R^2} dV'$$

#### For surface current

$$\vec{B} = \frac{\mu_0}{4\pi} \int_S \frac{\vec{J}_s \times \vec{a}_R}{R^2} dS'$$

20

#### 5. Div. Equation for Magnetostatics



ightharpoonup The flux of  $\vec{B}$  passing through a surface.

$$\iint_{S} (\boldsymbol{n} \times \boldsymbol{a}) dS = \int_{V} \nabla \times \boldsymbol{a} \cdot dV$$

 $\Phi = \int \vec{B} \bullet d\vec{S}$ 

Unit: Wb (Weber)

→ If C is the current loop and S is an arbitrary closed path,

$$\Phi = \oint_{S} \left[ \frac{\mu_0}{4\pi} \oint_{C} \frac{Id\vec{l}' \times \vec{a}_R}{R^2} \right] \bullet d\vec{S}$$

$$\vec{B} = \frac{\mu_0 I}{4\pi} \oint_C \frac{d\vec{l}' \times \vec{a}_R}{R^2}$$

$$= \oint_C \frac{\mu_0 I}{4\pi} \oint_S \frac{\vec{a}_R \times d\vec{S}}{R^2} \bullet d\vec{l}'$$
由北邮教材 p419 倒数第3式

 $(\vec{A} \times \vec{B}) \bullet \vec{C} = (\vec{B} \times \vec{C}) \bullet \vec{A} = (\vec{C} \times \vec{A}) \bullet \vec{B}$ 

$$= \iint_{C} \frac{\mu_{0} I d\vec{l}'}{4\pi} \bullet \iint_{S} -\nabla \frac{1}{R} \times d\vec{S} = \oint_{C} \frac{\mu_{0} I d\vec{l}'}{4\pi} \bullet \int_{V} \nabla \times \nabla \frac{1}{R} dV$$

$$= \oint_C \frac{\mu_0 I d\vec{l}'}{4\pi} \bullet \int_V \nabla \times \nabla \frac{1}{R} dV$$

Field and Wave Electromagnetics

#### 21

## $\oint \frac{\mu_0 Idl'}{4\pi} \bullet \int_V \nabla \times \nabla \frac{1}{R} dV$ Curl of a gradient is always 0



$$\Phi = \oint_C \frac{\mu_0 I d\vec{l}'}{4\pi} \bullet \int_V \nabla \times \nabla \frac{1}{R} dV = 0$$

$$\Phi = \oint_{S} \vec{B} \bullet d\vec{S} \equiv 0$$

-- Div. Equ. in integral form

From Gauss's Law

$$\iint_{S} \vec{B} \cdot d\vec{S} = \int_{V} \nabla \cdot \vec{B} dV \equiv 0$$

$$\nabla \bullet \vec{B} = 0$$

-- Div. Equ. in differential form

 $\rightarrow \rightarrow$  or, we may study the case from another point of view...

 $\vec{B} = \nabla \times \left| \frac{\mu_0 I}{4\pi} \oint_{\Omega} \frac{dl'}{R} \right| = \nabla \times \vec{A}$ 

Field and Wave Electromagnetics

22

#### From another point of view



**♦** According to Biot-Savart's Law

$$\vec{B} = \frac{\mu_0 I}{4\pi} \oint_C \frac{d\vec{l}' \times \vec{a}_R}{R^2} = \frac{\mu_0 I}{4\pi} \oint_C d\vec{l}' \times (-) \nabla \frac{1}{R} = \frac{\mu_0 I}{4\pi} \oint_C \nabla \frac{1}{R} \times d\vec{l}'$$

$$\therefore \nabla \frac{1}{R} \times d\vec{l}' = \nabla \times \frac{d\vec{l}'}{R} - \frac{1}{R} \nabla \times d\vec{l}' = \nabla \times \frac{d\vec{l}'}{R}$$

 $\nabla \times$  acts upon the observation spots.

while  $d\vec{l}$  is in fact the element of the source.

This term equals 0

$$\therefore \vec{B} = \frac{\mu_0 I}{4\pi} \oint_C \nabla \times \frac{d\vec{l}'}{R} = \nabla \times \left[ \frac{\mu_0 I}{4\pi} \oint_C \frac{d\vec{l}'}{R} \right]$$



Obviously, *M-flux density is the curl of a vector*.

The divergence of a curl is always 0.

$$\nabla \bullet \vec{B} = 0$$

Div. Equ. in differential form for M-field

Spread the wings of your fancy

$$\nabla \bullet \vec{D} = \rho_{fc}$$

 $\nabla \bullet D = \rho_{fc}$  Div. Equ. in differential form for E-field

 $B = \nabla \times A$ , A is in fact the M - vector potential.

#### 6. M-Field Intensity



$$\vec{H} = \frac{\vec{B}}{\mu}$$

From Biot-Savart's Law:

$$\vec{B} = \frac{\mu}{4\pi} \oint_C \frac{I_{\text{source}} d\vec{l}_{\text{source}}}{R_{\text{Source-Spot}}^2} \times \vec{a}_R$$

$$\vec{H} = \frac{I_{\text{source}}}{4\pi} \oint_{C} \frac{d\vec{l}_{\text{source}}}{R_{\text{Source-Spot}}^{2}} \times \vec{a}_{R}$$

Field and Wave Electromagnetics



#### 7. Ampere's Circuital Law



**→** The line integral of M-field intensity around a closed path equals the current enclosed.

$$\oint_C \vec{H} \bullet d\vec{l} = I$$

**♦** According to Stoke's Law, we have the differential form:

$$\iint_{C} \vec{H} \cdot d\vec{l} = \int_{S} \nabla \times \vec{H} \cdot d\vec{S} = I = \int_{S} \vec{J} \cdot d\vec{S}$$

$$abla imes \vec{H} = \vec{J}$$

→ They are in fact the Curl Equation for M-field, in integral and differential forms.

25

Field and Wave Electromagnetics

26

#### 补充说明:

- → 安培环路实验定律的严格证明比较繁琐
  - ◆北邮教材P74给出了特殊情况下(无限长直导线)的证明
- → 一般情况的证明:
  - →书(谢处方) 第2版pp.110-112,第3版pp.106-107
  - → 书(毕德显) pp.244-246, pp.254-255

#### **Summary --- Fundamental Equations for Magnetostatics**



#### Differential form:

• Div. Equation:

$$\nabla \bullet \vec{B} = 0$$

$$B = \mu_0 E$$

• Curl Equation:

$$\nabla \times \vec{H} = \vec{J}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

Integral form:

• Continuity of M-flux 
$$\oint_s \vec{B} \cdot d\vec{S} =$$

Ampere's Circuital Law

$$\vec{b} = I \quad \oint_C \vec{B} \cdot d\vec{l} = \mu_0 I$$

#### **Physical Meaning:**

- Lines of M-flux are always continuous. They start and end at nowhere.
- There is no divergence but curl for static M-field.



Lines of M-flux are always continuous. They start and end at nowhere.

We have found no example that the magnetic poles do not exist in pairs.

No single magnetic pole has been found up to now.

If you may find such one, you should be awarded the Nobel Prize.

**Comparisons** 



$$\begin{cases}
\nabla \bullet \vec{E} = \frac{\rho}{\varepsilon_0} \\
\nabla \times \vec{E} = 0
\end{cases}$$

$$\nabla \bullet B = 0$$

$$\nabla \times \vec{B} = \mu_0$$

$$\begin{cases}
\nabla \bullet \vec{E} = \frac{\rho}{\varepsilon_0} \\
\nabla \times \vec{E} = 0
\end{cases}$$

$$\begin{cases}
\nabla \bullet \vec{B} = 0 \\
\nabla \times \vec{B} = \mu_0 \vec{J}
\end{cases}$$

$$\begin{cases}
\oint_{S} \vec{E} \bullet d\vec{S} = \int_{V} (\nabla \bullet \vec{E}) dV = ? \\
\oint_{C} \vec{E} \bullet d\vec{l} = 0
\end{cases}$$

$$\begin{cases}
\oint_{S} \vec{B} \bullet d\vec{S} = 0 \\
\oint_{C} \vec{B} \bullet d\vec{l} = \mu_0 I
\end{cases}$$

$$\begin{cases} \oint_{S} \vec{B} \cdot d\vec{S} = 0 \\ \oint_{C} \vec{B} \cdot d\vec{l} = \mu_{0} \vec{R} \end{cases}$$

Field and Wave Electromagnetics

29

Field and Wave Electromagnetics

30

32

#### **Gauss's Law for Electrostatics**



$$\oint_{S} \vec{E} \cdot d\vec{S} = \int_{V} (\nabla \cdot \vec{E}) dV = ?$$

$$\begin{cases}
\oint_{S} \vec{E} \cdot d\vec{S} = 0 & \text{No single M-pole!} \\
\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_{0}} & \text{Single E-pole!} 
\end{cases}$$

### **Ampere's Circuital Law**

$$\oint_C \vec{B} \bullet d\vec{l} = \mu_0 \cdot I$$

$$\begin{cases} \oint_{S} \vec{E} \cdot d\vec{l} = 0 \\ \oint_{C} \vec{B} \cdot d\vec{l} = \mu_{0} \cdot \vec{B} \end{cases}$$

Note that *I* is current ringed by the closed path *C*.

#### Two Zero Integrals





#### Physical Meaning:

- (1) E-field, potential energy, conservative field
- (2) M-field, no single M-pole, no divergence  $\nabla \bullet B = 0$
- (3) We have only electric charge but not magnetic charge.

**8. examples** --- How to calculate  $\vec{B} \& \vec{H}$ ?





→ Directly integral via Biot-Savart Law

$$\vec{B} = \frac{\mu_0 I}{4\pi} \oint_C \frac{d\vec{l}' \times \vec{a}_R}{R^2} \quad \frac{\text{Line}}{\text{current }} \vec{B} = \frac{\mu_0}{4\pi} \int_V \frac{\vec{J}_v \times \vec{a}_R}{R^2} dV'$$

$$\vec{B} = \frac{\mu_0}{4\pi} \int_S \frac{\vec{J}_s \times \vec{a}_R}{R^2} dS' \quad \text{Surface} \quad \text{Volume}$$

$$\text{current}$$

**→** In symmetrical cases

→ Ampere's circuital law

$$\oint_C \vec{B} \bullet d\vec{l} = \mu_0 I \qquad \oint_C \vec{H} \bullet d\vec{l} = I$$

Field and Wave Electromagnetics

33

#### Example 1. M-field at axis of a circular current



Example 5.2 in page 181

Symmetry? Yes! But no proper closed path that ...

Direct solution 
$$\vec{B} = \oint_{S} d\vec{B} = \frac{\mu_{0}}{4\pi} \oint_{C} \frac{I_{\text{source}} d\vec{l}_{\text{source}}}{R_{\text{Source-Spot}}^{2}} \times \vec{a}_{R}$$

$$Id\vec{l} = \vec{a}_{\varphi} (I \cdot a \cdot d\varphi)$$

$$\vec{R} = \vec{a}_{z} R \cos \alpha - \vec{a}_{r} R \sin \alpha = \vec{a}_{z} z - \vec{a}_{r} a$$
unit vector: 
$$\vec{a}_{R} = \vec{a}_{z} \cos \alpha - \vec{a}_{r} \sin \alpha$$

$$\vec{B} = \vec{a}_{z} \frac{\mu_{0} I a^{2}}{2(z^{2} + a^{2})^{\frac{3}{2}}} \qquad (T)$$

Field and Wave Electromagnetics

34

#### Example 3. current in infinite filamentary wire



35

Determine the M-Intensity in space.

Via Biot-Savart law 
$$\vec{B} = \frac{\mu_0 I_{\text{source}}}{4\pi} \oint_C \frac{d\vec{l}_{\text{source}} \times \vec{a}_R}{R_{\text{Source-Spot}}^2}$$



#### Solution 2. via Ampere's circuital law





$$\oint_C \vec{H} \bullet d\vec{l} = I$$

Passing through point P, construct an auxiliary line of a circular loop C, and I is normal to the plane of C.

$$\oint_{C} \vec{H} \bullet d\vec{l} = \oint_{C} H_{\varphi} dl = H_{\varphi} \cdot 2\pi r = I$$

$$\therefore H_{\varphi} = I/2\pi r$$

$$\therefore \vec{H} = \vec{a}_{\omega} I/2\pi r$$



Question: given a current *I* in infinite thin line, and a closed path *C.* please calculate the integral of M-intensity.



Field and Wave Electromagnetics

37

#### Example 4. cylindrical current with radius a

Exercise 5.16

→ The cylindrical current *I* uniformly distributes, with of radius a. Please determine the M-intensity.

- → Analysis: treat field inside/outside respectively
- → M-intensity outside: same as Example 3.



→ Within the volume current: construct an auxiliary circle within the wire and perpendicular to the axis.

$$\oint_C \vec{H} \bullet d\vec{l} = \oint_C H_{\varphi} dl = H_{\varphi} \cdot 2\pi r = ?$$

$$I_{\text{ringed}} = J \cdot \pi r^2 = \frac{I}{\pi a^2} \cdot \pi r^2 = \frac{Ir^2}{a^2}$$

$$\vec{H} = \frac{\vec{a}_{\varphi} Ir}{a^2}$$

Field and Wave Electromagnetics

38





$$\vec{H}_{\text{inner}} = \frac{\vec{a}_{\varphi} Ir}{2\pi a^2}$$

$$\vec{H}_{\text{outer}} = \vec{a}_{\varphi} \frac{I}{2\pi r}$$

#### **Summary:**



On applications of *A-C Law*:

- (1) Construct an auxiliary curve. (l)
- (2) Quantity of  $\vec{B}$  at the curve shall be constant.

$$\oint_C \vec{B} \bullet d\vec{l} = \oint_C B \cdot dl = "B \cdot l"$$

## By comparison, in electrostatics



If the charges distributes symmetrically, try E-Gauss's Law!

$$\oint_{S} \vec{E} \bullet d\vec{S} = \frac{Q}{\varepsilon_{0}}$$

On applications of *E-G Law*:

- (1) Construct an auxiliary surface.  $(\vec{S})$  (2) Quantity of  $\vec{E}$  on the surface shall be constant.



