MONTHLY WEATHER REVIEW.

Editor: Prof. CLEVELAND ABBE.

Vol. XXVIII.

JUNE, 1900.

No. 6

INTRODUCTION.

on reports from about 3,101 stations furnished by employees and voluntary observers, classified as follows: regular stations of the Weather Bureau, 158; West Indian service stations, 12; special river stations, 132; special rainfall stations, 48; voluntary observers of the Weather Bureau, 2,562; Army post hospital reports, 22; United States Life-Saving Service, 9; Southern Pacific Railway Company, 96; Canadian Meteorological Service, 32; Mexican Telegraph Service, 20; Mexican voluntary stations, 7; Mexican Telegraph Company, 3. International simultaneous observations are received from a few stations and used, together with

trustworthy newspaper extracts and special reports.

Special acknowledgment is made of the hearty cooperation of the Dominion of Canada; Mr. Curtis J. Lyons, Meteorologist ment Meteorologist, Kingston, Jamaica; Capt. S. I. Kimball, standard; otherwise, the local standard is mentioned.

The Monthly Weather Review for June, 1900, is based Superintendent of the United States Life-Saving Service; and Commander Chapman C. Todd, Hydrographer, United States Navy.

The REVIEW is prepared under the general editorial super-

vision of Prof. Cleveland Abbe.

Attention is called to the fact that the clocks and selfregisters at regular Weather Bureau stations are all set to seventy-fifth meridian or eastern standard time, which is exactly five hours behind Greenwich time; as far as practicable, only this standard of time is used in the text of the REVIEW, since all Weather Bureau observations are required to be taken and recorded by it. The standards used by the public in the United States and Canada and by the voluntary observers are believed to conform generally to the modern of Prof. R. F. Stupart, Director of the Meteorological Service international system of standard meridians, one hour apart, beginning with Greenwich. The Hawaiian standard meridian to the Hawaiian Government Survey, Honolulu; Señor Manuel is 157° 30′ or 10h 30m west of Greenwich. Records of mis-E. Pastrana, Director of the Central Meteorological and Magnetic Observatory of Mexico; Camilo A. Gonzales, Director-General of Mexican Telegraphs; Mr. Maxwell Hall, Govern-respondents are sometimes corrected to agree with the eastern standards of time by voluntary observers or newspaper cor-

FORECASTS AND WARNINGS.

By Prof. E. B. GARRIOTT, in charge of Forecast Division.

No severe storms of a general character occurred in the United States or the West Indies during June, 1900.

The weather continued very dry in the Northwestern States, and the upper Mississippi River reached the lowest June stage noted in many years.

The local rains of the month were, as a rule, forecast.

CHICAGO FORECAST DISTRICT.

No special warnings of storms were issued. The daily forecasts, however, were of great value, especially on account of the critical condition of the spring wheat in the Northwest. The showers which occurred in that section were generally forecast.-H. J. Cox, Professor.

SAN FRANCISCO FORECAST DISTRICT.

The month has been, as a whole, uneventful. There were no serious northers.—Alexander G. McAdie, Forecast Official.

PORTLAND, OREG., FORECAST DISTRICT.

The month was free from all unusual atmospheric disturbances, and no frost or storm warnings were issued.-Edward A. Beals, Forecast Official.

HAVANA FORECAST DISTRICT.

No disturbances occurred during the month, and no special warnings were issued .- William B. Stockman, Forecast Official.

AREAS OF HIGH AND LOW PRESSURE.

During the month there were charted five highs and eight lows. (See Charts I and II.) A brief description of some of their more marked characteristics follows herewith:

Highs.—No. I was the final development of the Pacific coast high which persisted, with varying intensity, during the second and third decades of the previous month. On the last day of May it began to move eastward from the Washington coast, maintained an almost due easterly course, and in four days passed over Cape Breton Island into the Atlantic. During its passage over Montana and the Dakotas, on the 1st and 2d, light frosts were quite numerous. No. II originated in the Valley of the Red River of the North, and moved eastward off the Massachusetts coast in two and one-half days. No. III originated in the central Rocky Mountain region, moved northeastward to Lake Superior, and thence eastward over Cape Breton Island. No. IV first appeared in southern Alberta, moved southeastward to northern Kansas, and thence northeastward to western Lake Superior; afterwards its progress was generally eastward to central Ontario, where it dissipated. No. V was first noticed on the California coast,

33-

moved northward to British Columbia, thence eastward to Manitoba, and thence east-southeastward to the southern New Jersey coast. It was last noticed at Bermuda, seven and one-half days after leaving California, and was then at its maximum intensity.

In addition to the highs which had a definite movement, there were several others, which remained stationary for a number of days and then disappeared. Of such a character were those on the Pacific coast from the 3d to the 7th, the 15th to the 19th, and after the 25th. This latter high persisted, after sending off to the northward and eastward a moderate wave, which has already been described above as No. V

It is also worthy of note that none of the highs moved across that portion of the country south of the fortieth parallel.

Movements of centers of areas of high and low pressure.

	First o	bser	ved.	Last o	bserv	red.	Pat	th.	veloc	
Number.	Date.	Lat. N.	Long. W.	Date.	Lat. N.	Long W.	Length.	Duration.	Daily.	Hourly.
High areas.	31. a. m.*	0 47	o 123	4, a, m.	0	60	Miles. 3,425	Days.	Miles.	Miles 85.7
İİ		47	97	10, p. m.	42	70	1,480	2.5	592	24.7
111	10. a. m.	43	109	14, a. m.	46	60	2,630	4.0	658	27.4
IV	12, a. m.	51	114	15, p. m.	45	80	2,395	3.5	684	28.5
V	25, p. m.	41	124	3, a. m. t	33	65	4, 195	7-5	559	28.8
Sums	********			*******		*****	14, 125	21.5	8, 349	139.6
paths	********								670	97.1
days	********			*******					657	27.4
Low areas.										
AND IN CASE	30, p. m.*	39	109	2, p. m.	43	70	2, 100	3.0	700	29.1
I		54	114	3, p. m.	43	100	1,075	1.5	717	29.5
II	5, a. m.	54	114	8, p. m	48	68	2,220	3.5	634	26.4
V	7, p. m.	52	114	512, a.m.	48	52	2,960	4.5	658	27.4
		-		(14, p. m.	85	90	2,960	7.0	423	17.6
V		42	91	16,a.m.	48	50	1,935	3.0	645	26.9
VI	22, p. m.	82	96	24, p. m.	85	90	655	2.0	328	18.7
VII	24, p. m.	48 43	104	1, p. m.†		68	2, 275	7.0	325	18.
/ш	28, p. m.	-93	112	9, a. m.+	48	98	3, 575	10.5	340	14.5
Sums	*********	****	*****	*********			19,755	42.0	4,770	198.8
paths									580	22.1
days									470	19.6

*May. †July.

Lows.-No. I originated in western Colorado, moved northeastward to western South Dakota, and thence eastward off the Maine coast. Nos. II, III, and IV first came within the field of observation in Alberta. No. II moved southeastward to northern Nebraska, where it dissipated. No. III and one section of No. IV continued almost due eastward to the Atlantic. The second section of No. IV moved southeastward and southward through Texas to western Gulf of Mexico, turned northward through Mississippi, and dissipated in extreme western Tennessee. No. V was an offshoot from the northern edge of the lower section of No. IV. It moved from eastern Iowa northeastward through the St. Lawrence Valley and Newfoundland. No. VI was a moderate local disturbance in the west Gulf States. No. VII originated in northwestern North Dakota, and quite closely followed the paths of No. III and the upper section of No. IV. No. VIII was at once the most pronounced, peculiar, and persistent depression of the month. It originated during the 28th in southeastern Idaho, pursued a very slow and erratic course for seven and one-half days over the northern and middle slopes, dipping down into eastern Colorado, and finally, turning eastward from eastern North Dakota, it passed out of the St. Lawrence Valley ten and one-half days after it was first noted in Idaho. The minimum pressure reached was 29.20 inches, at Winnipeg, on the morning of July 6.

There was a pronounced low over Texas from the evening of the 16th until the morning of the 19th. It moved very slightly and was accompanied by high temperatures with very little rain. There was also a practically continuous depression over the British Northwest Territory from the 14th to the 26th, resulting, as a rule, in temperatures considerably above normal over the district from the Mississippi Valley westward to the Rocky Mountains.

There were two lows which first came within the field of observation in northern New Brunswick. The center of one depression reached Father Point on the evening of the 21st, and the other three days later. A study of the pressure conditions for several days previous leads to the conclusion that these lows moved southeastward over the country north of the sixtieth parallel, and were probably prevented from extending farther to the southward by the ridge of high pressure which at that time overspread the country from Minnesota eastward.—H. C. Frankenfield, Forecast Official.

RIVERS AND FLOODS.

In the Mississippi River above the mouth of the Ohio River there was a gradual though steady decrease in the water stages, except below the mouth of the Missouri River, where the fall was interrupted by the advent of a moderate tide from the latter river, which set in about the 21st. The average stages in the Missouri River were about 1.5 foot higher than during May 1900.

higher than during May, 1900.

Below Cairo, Ill., the average stages of the Mississippi River were also somewhat lower than during May, although there was a rise during the third decade, due to a combination of the rise out of the Missouri River and another from the Tennessee River. This latter river was above the danger line of 21 feet at Johnsonville, Tenn., after the 26th, reaching a stage of 29.5 feet on the 30th, but with only some minor damage to growing crops.

damage to growing crops.

As compared with June, 1899, the stages throughout the entire Mississippi system were considerably lower, except in the Tennessee River.

River matters over the Atlantic and Gulf systems were uneventful except in Alabama and the South Atlantic States. In the former State the heavy rains from the 23d until the 28th caused a rapid rise in the rivers, and danger-line stages were reached at many points. The following report on the floods in the Coosa and Alabama rivers was made by Mr. F. P. Chaffee, Official in Charge of the Weather Bureau office at Montgomery, Ala:

Heavy rains over the watershed of the Coosa River on June 23 and 24 started a rather rapid rise in the tributaries of that river on the 24th, and warning was then issued for a rapid rise at Rome, Ga., and as far south as Wetumpka, Ala., during the next two days, with moderate flood stages at Gadsden, Ala. The heavy rains continued through the 25th, spreading southward over the middle portion of the State, and supplemental warnings were issued for about a 22-foot stage (or 4 feet above danger line) at Gadsden, 33 feet at Wetumpka, 31 feet at Montgomery, and 32 feet at Selma, Ala. The rivers rose steadily at all points during the 25th and 26th, the rise being nearly 14 feet in forty-eight hours at Wetumpka, about 13 feet at Montgomery, and nearly 11 feet at Selma. Additional heavy rains fell over the entire watershed on the 27th and 28th, and further warning was issued on the morning of the 28th for a continued but slow rise in the Alabama River, and advising the removal of stock and other movable property from lands subject to overflow at 35 feet, from above Wetumpka, to about 100 miles south of Selma. The waters reached the 34.8-foot mark at Wetumpka, during the night of 27-28th, 33.2 feet at Montgomery during afternoon of the 29th, and 35 feet at Selma, by morning of the 30th. The warnings were very widely distributed by telegraph, telephone, and mail, and through the local press; it is thought that there was not a city, town, or village, along the rivers mentioned, which did not receive ample warning in advance of these high waters, which were the highest in any June for which we have a record. The stages specified were not exceeded, and were very nearly, if not quite, reached in every case.

Large numbers of stock which were pastured in the low grounds were driven to places of safety; considerable hay and oats, which would otherwise have been ruined, were cut and carried to higher ground, and much green corn, which would have been a total loss, was cut down and saved for stock food. However, much damage was done, which no warning could avert, especially to lowland corn and cotton, large areas of which were inundanted and entirely ruined, though the waters have now receded and much of the inundated district will be replanted in corn. The warnings, it is thought, were the means of saving at least \$35,000 worth of stock and other property. least \$35,000 worth of stock and other property.

The lower Tombigbee and the Black Warrior rivers were also from 17 to 20 feet above the danger lines, but no reports City, on the Missouri; Little Rock, on the Arkansas; and of serious damage have been received. The rivers of the Shreveport, on the Red.—H. C. Frankenfield, Forecast Official.

South Atlantic States, while quite high, did not reach dangerline stages.

The highest and lowest water, mean stage, and monthly range at 132 river stations are given in Table XI. Hydrographs for typical points on seven principal rivers are shown on Chart V. The stations selected for charting are: Keokuk, St. Louis, Memphis, Vicksburg, and New Orleans, on the Mississippi; Cincinnati and Cairo, on the Ohio; Nashville, on the Cumberland; Johnsonville on the Tennessee; Kansas

CLIMATE AND CROP SERVICE.

By JAMES BERRY, Chief of Climate and Crop Service Division

The following extracts relating to the general weather conditions in the several States and Territories are taken from the monthly reports of the respective sections of the Climate and Crop Service. The name of the section director is given after each summary.

Rainfall is expressed in inches and temperature in degrees Fahrenheit.

Alabama.—The mean temperature was 76.4°, or about 2.0° below normal; the highest was 98°, at Brewton on the 30th, and the lowest, 58°, at Clanton on the 5th. The average precipitation was 11.08, or about 7.00 above normal; the greatest monthly amount, 26.67, occurred at Mobile, and the least, 5.55, at Marion.—F. P. Chaffee.

Arisona.—The mean temperature was 81.5°, or 0.5° above normal; the highest was 120°, at Texas Hill on the 27th, and the lowest, 30°, at Snowflake on the 3d. The average precipitation was 0.03, or 0.21 below normal; the greatest monthly amount, 7.2, occurred at Flagstaff, while normal; the greatest monthly amount, 7.7, or 0.5° above normal; the greatest monthly amount, 7.7, or 0.21 below normal; the greatest monthly amount, 7.7, or 0.21 below normal; the greatest monthly amount, 7.8, or 0.21 below normal; the greatest monthly amount, 7.8, or 0.21 below normal; the greatest monthly amount, 7.8, or 0.21 below normal; the greatest monthly amount, 7.8, or 0.21 below normal; the greatest monthly amount, 7.8, or 0.21 below normal; the greatest monthly amount, 7.8, or 0.21 below normal; the greatest monthly amount, 7.8, or 0.21 below normal; the greatest monthly amount, 7.8, or 0.21 below normal; the greatest monthly amount, 7.9, or 0.6° below normal; the service of the climate and the least, 0.55, at Delphos.—T. B. Hensel, 1.85, at Frankfort.—H. B. Hersey.

Louisiana.—The mean temperature was 79.3°, or nearly normal; the flagstaff, while was 10°, at Texas Hill on the 27th, and the lowest, 40°, at Maryland and Delaware.—The mean temperature was 71.4°, or 0.3° above normal; the greatest monthly amount, 7.6.0 above normal; the greatest monthly amount, 7.6.0 above normal; t

Rainfall is expressed in inches and temperature in degrees Fahrenheit.

Rainfall is expressed in inches and temperature was 76.4°, or about 2.0° below normal; the highest was 98°, at Brewton on the 30th, and the lowest, 50°, at Canton on the 50th. The average precipitation was 10.8°, or about 50°, and the lowest, 50°, at Marion. **F. P. Chaffee.**

Ardona.—The mean temperature was 76.4°, or 0.5° below normal; the highest was 120°, at Texas Hill on the 27th, and the lowest, 50°, or 0.5° above normal; the highest was 120°, at Texas Hill on the 27th, and the lowest, 50°, or 0.5° above normal; the highest was 10°, at Jonesboro on the 10th, and the lowest, 50°, or 0.5° above normal; the highest was 10°, at Arkadelphia. **E. B. Richards.**

Arkansa.—The mean temperature was 71.4°, or 0.9° above normal; the highest was 10°, at Arkadelphia. **E. B. Richards.**

Arkansa.—The mean temperature was 71.4°, or 0.9° above normal; the highest was 10°, at Royal and the least, 3.0°, at Arkadelphia. **E. B. Richards.**

Arkansa.—The mean temperature was 71.4°, or 0.9° above normal; the highest was 10°, at Royal and the least, 3.0°, at Arkadelphia. **E. B. Richards.**

Colorado.—The mean temperature was 71.4°, or 0.9° above normal; the highest was 10°, at Royal and the lowest, 20°, at Wagonwheel Gap on the 4th and 15th. The average precipitation was 0.8°, or 0.8° above normal; the highest was 10°, at 10° above 10° and the lowest, 20°, at Wagonwheel Gap on the 4th and 15th. The average precipitation was 0.8°, or 0.8° above normal; the highest was 10°, at 10° above 10° at Wagonwheel Gap on the 4th and 15th. The average precipitation was 0.8°, or 0.8° above normal; the highest was 10°, at 10° above 10° abo

32°, at Newton, N. H., on the 5th. The average precipitation was 2.74, or 0.14 below normal; the greatest monthly amount, 5.51, occurred at Farmington, Me., and the least, 0.63, at South Portsmouth, R. I.—

New Jersey.—The mean temperature was 70.4°, or 0.7° above normal; the highest was 97°, at Beverly and Vineland on the 27th, and the lowest, 39°, at Charlotteburg on the 5th. The average precipitation was 3.08, or 0.46 below normal; the greatest monthly amount, 4.91, occurred at Asbury Park, and the least, 1.10, at Rocktown.— E. W.

McGann.

New Mexico.—The mean temperature was 71.2°, or 1.2° above normal; the highest was 111°, at Lyons Ranch on the 27th, and the lowest, 28°, at Winsors on the 5th. The average precipitation was 1.00, or 0.09 below normal; the greatest monthly amount, 4.67, occurred at Fort Union, while at Eagle, Lordsburg, and Rincon, none was recorded, and only a trace at Alma, Hillsboro, Los Lunas, Lyons Ranch, and Olio.—

R. M. Hardinge.

New York.—The mean temperature was 66.6°, or 0.8° above normal; the highest was 96°, at Penn Yan on the 24th and 26th, at Ticonderoga on the 28th and at Primrose on the 29th; the lowest was 25°, at South Kortright on the 9th. The average precipitation was 2.63, or 0.88 below normal; the greatest monthly amount, 5.91, occurred at Ogdensburg, and the least, 0.75, at Nunda.—R. G. Allen.

North Carolina.—The mean temperature was 74.4°, or normal; the highest was 99°, at Tarboro on the 13th and at Southern Pines on the 29th, and the lowest, 45°, at Linville on the 20th. The average precipitation was 6.05, or 1.69 above normal; the greatest monthly amount, 19.92, occurred at Horse Cove, and the least, 1.02, at Currituck Inlet.—

North Dakota.—The mean temperature was 66.9°, or 3.5° above contents the highest.

19.92, occurred at Horse Cove, and the least, 1.02, at Currituck Iniet.—

C. F. von Herrmann.

North Dakota.—The mean temperature was 66.9°, or 3.5° above normal; the highest was 109°, at Minto on the 23d, and the lowest, 27°, at Churchs Ferry on the 8th. The average precipitation was 1.39, or 1.30 below normal; the greatest monthly amount, 3.45, occurred at Napoleon, and the least, 0.27, at Mayville.—B. H. Bronson.

Ohio.—The mean temperature was 69.8°, or 0.5° below normal; the highest was 96°, at Annapolis on the 24th and at Norwalk on the 26th, and the lowest, 38°, at Colebrook and Garrettsville on the 30th. The average precipitation was 2.99, or 0.42 below normal; the greatest monthly amount, 6.64, occurred at New Paris, and the least, 0.81, at Ashtabula.—J. Warren Smith.

Oklahoma and Indian Territories.—The mean temperature was 77.7°, or 0.9° above normal; the highest was 106°, at Waukomis on the 27th, and

0.9° above normal; the highest was 106°, at Waukomis on the 27th, and the lowest, 50°, at Newkirk on the 14th. The average precipitation was 2.58, or 0.88 below normal; the greatest monthly amount, 7.18, occurred at Osage and the least, trace, at Healdton and Pauls Valley.—C. M. Strong.

M. Strong.

Oregon.—The mean temperature was 63.5°, or 3.0° above normal; the highest was 103°, at Pendleton on the 20th, and the lowest, 24°, at Riverside on the 9th. The average precipitation was 2.17, or 0.50 above normal; the greatest monthly amount, 8.65, occurred at Nehalem, while none fell at Klamath Falls.—E. A. Beals.

Pennsylvania.—The mean temperature was 69.9°, or 1.0° above normal; the highest was 97°, at Irwin on the 24th, at Lockhaven on the 25th and at Athens on the 28th; the lowest, 35°, at Lawrenceville on the 30th. The average precipitation was 3.60, or slightly below normal; the greatest monthly amount, 10.29, occurred at Somerset, and the least, 1.35, at Coopersburg.—L. M. Dey.

South Carolina.—The mean temperature was 76.2°, or 1.9 below normal; the highest was 97°, at Yemassee on the 25th and 29th, and the lowest, 52°, at Georgetown on the 1st and 21st. The average precipitation was 7.94, or 3.41 above normal; the greatest monthly amount, 15.43, occurred at Holland, and the least, 4.15, at Trenton.—J. W. Bauer.

South Dakota.—The mean temperature was 69.4°, or about 2.0° above normal; the highest was 109°, at Interior on the 30th, and the lowest, 28°, at St. Lawrence on the 2d. The average precipitation was 2.40, or about 1.38 below normal; the greatest monthly amount, 6.90, occurred at Gannvalley, and the least, 0.11, at Ipswich.—S. W. Glenn.

Tennessee.—The mean temperature was 74.1°, or 0.9 below normal; the highest was 95°, at Madison on the 10th, and the lowest, 40°, at Andersonville on the 3d. The average precipitation was 9.84, or 5.14 above normal; the greatest monthly amount, 17.93, occurred at Hohenwald, and the least, 2.26, at Bristol.—H. C. Bate.

Texas.—The mean temperature, determined by comparison of 45 sta-

Texas.—The mean temperature, determined by comparison of 45 stations distributed throughout the State, was 1.9° above the normal. Nearly normal conditions prevailed along the coast, over southwest Texas, and the panhandle, while there was a general excess over the other portions of the State, ranging from 1.0 to 4.8, with the greatest in the vicinity of Tyler. The highest was 108°, at Colorado on the 17th and at Brownwood on the 26th, and the lowest, 53°, at Amarillo on the 1st. The average precipitation determined by comparison of 17th and at Brownwood on the 26th, and the lowest, 53°, at Amarillo on the 1st. The average precipitation, determined by comparison of 54 stations distributed throughout the State, was 1.69 below normal. There was an excess, ranging from 1.00 to 8.96, over the extreme eastern portion of the State and in the vicinity of Cuero and Henrietta, with the greatest in the vicinity of Beaumont, while there was a general deficiency over the other portions of the State, with the greatest, 4.46, at Temple. The rainfall for the month was very unevenly distributed, there being comparatively none in localities over central Texas, while heavy rains occurred over the eastern portion of the State. The greatest monthly amount, 12.70, occurred at Beaumont, while none fell at Beeville, San Marcos, and Temple.—I. M. Cline.

ville, San Marcos, and Temple.—I. M. Cline.

Utah.—The mean temperature was 69.7°, or 4.8° above normal; the highest was 111°, at Hite on the 28th, and the lowest, 30°, at Henefer on the 11th and at Tropic on the 15th and 16th. The average precipitation was 0.16, or 0.27 below normal; the greatest monthly amount, 1.00, occurred at Holyoake; none fell at Kelton and 6 additional stations, while a number of stations received but a trace.—L. H. Murdoch. Virginia.—The mean temperature was 72.5°, or 0.5° above normal; the highest was 101°, at Doswell on the 30th, and the lowest, 42°, at Meadowdale on the 20th. The average precipitation was 4.61, or 1.83 above normal; the greatest monthly amount, 8.87, occurred at Christianburg, and the least, 0.65, at Birdsnest.—E. A. Evans.

Washington.—The mean temperature was 62.9°, or 3.8° above normal; the highest was 102°, at Mottingers Ranch on the 20th, and the lowest, 31°, at Republic on the 6th and at Cle-Elum, Colville, and Rosalia on the 9th. The average precipitation was 2.51, or 0.96 above normal; the greatest monthly amount, 13.92, occurred at Clearwater, and the least, trace, at Cheney.—G. N. Salisbury.

West Virginia.—The mean temperature was 71.2°, or 0.9° above normal;

West Virginia.—The mean temperature was 71.2°, or 0.9° above normal; the highest was 98°, at Oldfields on the 11th, and the lowest, 41°, at Philippi on the 1st. The average precipitation was 5.30, or 0.69 above normal; the greatest monthly amount, 15.62, occurred at Chapel, and the least, 2.49, at Southside.—E. C. Vose.

the least, 2.49, at Southside.—E. C. Vose.

Wisconsin.—The mean temperature was 65.5°, or 0.8° below normal; the highest was 103°, at Medford on the 19th, and the lowest, 28°, at Barron on the 11th. The average precipitation was 2.01, or 2.33 below normal; the greatest monthly amount, 3.70, occurred at Koepenick, and the least, 0.57, at Spooner.—W. M. Wilson.

Wyoming.—The mean temperature was 66.0°, or 5.8° above normal; the highest was 116°, at Bittercreek on the 26th, and the lowest, 22°, at Thayne on the 10th. The average precipitation was 0.47, or 1.07 below normal; the greatest monthly amount, 1.31, occurred at Fort Laramie, and the least, trace, at Alcora, Bedford, Bittercreek, and Burlington.—W. S. Palmer.

SPECIAL CONTRIBUTIONS.

EXTENSION OF WEATHER BUREAU WORK.

By E. B. GARRIOTT, Professor of Meteorology.

A recent report on the system of hurricane warnings in the West Indies, by Mr. Wm. B. Stockman, Forecast Official in charge of the United States Weather Bureau at Havana, Cuba, suggests the following comments on recent extensions of the work of the Weather Bureau:

The West Indian branch of the United States Weather Bureau was established in the summer of 1898, as an emergency measure for providing the United States fleets and the merchant marine in West Indian waters with timely notice of approaching hurricanes. The unquestioned value of this

in the West Indies, the province of which is to give warning to all interests concerned, of the approach of tropical storms of a destructive character, and to collect data and issue reports on the climate and crops of the islands of Cuba and Puerto Rico.

During the present hurricane season practically all of the cable islands and ports of the West Indies and the Caribbean coast of South America receive advices regarding tropical storms at the expense of the United States, and this information is given effective distribution, and is bulletined and exposed in conspicuous places for the benefit of the public.

The central station of the West Indian service is located information to the maritime and commercial interests has at Havana, Cuba, where telegraph and cable reports of meteled to the establishment, on a permanent basis, of a service orological observations taken at Weather Bureau West Indian

stations are received during the hurricane season, and advices regarding disturbances are prepared for transmittal to the various islands of the West Indies. The observational data thus collected are promptly telegraphed to the Central Office of the Weather Bureau at Washington, D. C., together with warnings or advices that may have been issued.

The West Indian observation stations, which are regularly equipped and officered by the Weather Bureau, number thirteen, and provision has been made for ordering and displaying, through these stations, hurricane warnings at more than one hundred points in the West Indies. The distribution of hurricane information and advices throughout the West Indies is limited only by the telegraphic and messenger services possessed by the several islands.

During the summer of 1899 reports by telegraph were begun from well-distributed Mexican stations. These reports are furnished through the cooperation and courtesy of the Director General of the federal telegraph lines of Mexico, who delivers them (free of expense to the United States) to the official in charge of the Weather Bureau office at Galveston, Tex., who, in turn, promptly transmits them by telegraph to Washington. Credit for arranging the plan of exchange of meteorological reports between the United States and Mexico is in a large measure due to Dr. I. M. Cline, official in charge of the Weather Bureau office at Galveston.

The Central Office of the Weather Bureau at Washington now has for its consideration reports from an area which extends from the South American coast to northern Canada, a region whose extreme limits cover latitude 11° to 53° north, and longitude 60° to 125° west, or more than 42° of latitude and 65° of longitude.

The advantage afforded by this great area of telegraphic observations can scarcely be estimated. By means of the West Indian reports the tropical storms which cross the more eastern islands of that group can be detected almost in their inception. They can be traced day by day, and the probable time of their arrival at any point in their line of advance can be forecast.

By means of the Mexican Gulf coast reports the development of storms near the Yucatan and Mexican coasts can be detected, and the course of West Indian storms which cross the Gulf of Mexico can be determined. These reports furnish information which render possible warnings of the severe cold waves and northerly gales which visit the Gulf districts of Mexico during the winter months. It is believed that the reports received from northern and western parts of Mexico will lead to a better understanding of the important storms which sweep northeastward from the tropical Pacific over northern Mexico and cross the United States from the Rio Grande and southern Rocky Mountain districts to the Atlantic.

Reports from the extreme British Northwest Territory, which have been added within the last two years, have furnished valuable data regarding the movements of north Pacific storms, and will contribute to present knowledge of the mechanism of the severe cold waves which appear in that region.

The extensions referred to constitute one of the most substantial advances in the history of the Weather Bureau. The telegraphed reports afford daily and twice daily meteorological surveys of the populated parts of North America and a great part of Central America and adjacent waters, by means of which weather changes and conditions calculated to benefit or injure maritime or commercial interests can be forseen. And it is believed that each extension of the area of observation brings nearer that desideratum of permanent cyclones and anticyclones the science of mete- the Monthly Weather Review as being of general interest.

orology will advance from a knowledge of effects to a more perfect understanding of one of the causes thereof.

OBSERVATIONS AT HONOLULU.

Through the kind cooperation of Mr. Curtis J. Lyons, Meteorologist to the Government Survey, the monthly report of meteorological conditions at Honolulu is now made partly in accordance with the new form, No. 1040, and the arrangement of the columns, therefore, differs from those previously published.

Meteorological observations at Honolulu, June, 1900.

Meteorological observations at Honolulu, June, 1900.

The station is at 31° 18′ N., 157° 50′ W.
Hawaiign standard time is 10h 30m slow of Greenwich time. Honolulu local mean time is 10h 31m slow of Greenwich.
Pressure is corrected for temperature and reduced to sea level, and the gravity correction, —0.06, has been applied.

The average direction and force of the wind and the average cloudiness for the whole day are given unless they have varied more than usual, in which case the extremes are given. The scale of wind force is 0 to 12, or Beaufort scale. Two directions of wind, or values of wind force or amounts of cloudiness, connected by a dash, indicate change from one to the other.

The rainfall for twenty-four hours has always been measured at 9 a. m. local or 7:31 p. m. (not 1 p. m.), Greenwich time, on the respective dates.

The rain gage, 8 inches in diameter, 1s 1 foot above ground. Thermometer, 9 feet above ground. Ground is 43 feet, and the barometer 50 feet above sea level.

	vel.	Ten	pera-	Dui	wie wie	wenty ch tim	r-four ie, or	2:30 a. m	eced., Ho	ing 1 noluli	p. m. 6 a time.	reen-	di on ,
	sea le		ire.		pera-	Mer	nns.	Wine	đ.	-ipno		level sures.	all at
Date.	Pressure at sea level.	Dry bulb.	Wet bulb.	Maximum.	Minimum.	Dew-point.	Relative humidity.	Prevailing direction.	Force.	Average cloudi- ness.	Maximum.	Minimum.	Total rainfall m., local th
1	29, 97 29, 97 30, 00 29, 99 30, 00 29, 99 30, 00 39, 97 29, 91 29, 91 29, 91 29, 98 30, 03 30, 03 30, 03 30, 03 30, 02 30, 02 30, 02 29, 99 29, 99	73 73 69 7 74 77 77 77 77 77 77 77 77 77 77 77 7	+ 5.5 67.5 67.5 69.5 69.5 69.5 69.5 69.5 79.5 69.5 770.5 770.5 770.5 770.5	832 833 835 855 85 85 85 85 85 86 86 88 88 85 85 85 85 85 85 85 85 85 85 85	74276867769877276677757757757775777577757777577777777	\$ 4.5 66.5 0 65.0 65.0 65.0 66.3 67.7 66.3 67.7 65.5 0 67.7 65.5 0 67.3 7 68.0 67.3 65.7 68.0 67.3 65.7 68.8 65.7 65.7 65.7 68.8 65.7 65.7 65.7 65.7 65.7 65.7 65.7 65.7	\$\frac{1}{67}\$? 76 66 65 66 65 66 66 65 66 66 66 66 66 66	ne. ne. ne. ne. ne. ne. ne. ne. ne. ne.	2-5 2-4	3 3 5 5 5 - 2 3 1 - 4 1 1 2 - 5 3 - 1 1 - 0 0 4 5 5 1 - 4 2 - 5 3 3 3 - 6 1 - 4 5 5 1 - 7 3 - 7 - 7	30.04 30.02	29. 28. 29. 14. 48. 29. 16. 29. 17. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 18. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29	5 0.00 1 0.00 5 0.00 5 0.00 5 0.00 6 0.00 6 0.00 6 0.00 7 0.00 9 0.00
30	29.97 29.99	77	70	84 85	75 77	68.0 67.0	78 65	ne. ne.	3.5	3	30.01	29.94 29.96	0.02
Sums Means.	29,983	78.7	68.3	84.7	79.9	66.0	68.0	******	8.0	8.1	30, 029	29.956	0.88
Depar-	-0.02												-0.79

Mean temperature for June, 1900 $(6+2+9)+3=77.6^\circ$; normal is 75.9°. Mean pressure for June (9+8)+2 is 29.991; normal is 30.012.

*This pressure is as recorded at 1 p. m., Greenwich time. are observed at 6 a. m., local, or 4.31 p. m., Greenwich time. ‡These temperatures are observed at 6 a. m., local, or 4.31 p. m., Greenwich time. ‡These values are the means of (6+9+2+9)+4. § Beaufort scale.

RAINFALL AND DRAINAGE IN THE UPPER CHAGRES RIVER.

By Gen. HENRY L. ABBOT, dated July 10, 1900.

During the past year the matter of rainfall and drainage on the Isthmus of Panama has received special study. The meteorologists—long range forecasts. When this area shall following results are translated from my original paper com-have been extended to even partly include the great oceanic piled for the Compagnie Nouvelle and are communicated to

and those formerly sent, caused by errors in the report of rainfall first received from the Isthmus, but fortunately they are of no importance.

The Valley of the Chagres above Bohio may be divided into three subbasins, of which the general dimensions are given in the following table. The figures for the upper basin are only approximate, as toward the southern side the divide has not been accurately defined by surveys; but no material error is believed to exist. The two lower basins are well determined.

The upper basin includes the most mountainous district. About 7 miles above Alhajuela the principal stream takes the name of Pequini, and heads within about a dozen miles of the Atlantic coast, where the rainfall is greatest. It is from this region that the river receives its chief contributions, especially during the dry season; but during the eight months of rains the lower tributaries considerably increase the volume.

Geographical details of the basin of the Chagres.

	Are	n.				
Subbasins.	Square miles.		Length.	Width.	Length of channel.	Number of tributaries (about).
Bohlo-Camboa	250 180 290	37 19 44	Miles. 11 7 18	Miles. 23 18 16	Miles. 19.5 11.0 31.0	17
Total	670	100			61.5	

The discharge of the river was accurately determined during the past year from the automatic registers of the three gages at Bohio, Gamboa, and Alhajuela, and rating tables based on many hundred careful measurements were compiled. The water heights were taken every two hours to correct for any small changes of level in the torrential stream.

The daily rainfall was observed at Bohio, Gamboa, Alhajuela, and Colon. There is reason to believe that the rainfall at the latter measures quite approximately the precipitation near the sources of the Chagres, as both are situated near the Atlantic coast and not remote from each other.

Considering the limited areas and compact form of the three subbasins, it is not a violent assumption that the average precipitation for the lower subbasin may be estimated by the mean between that measured at Bohio and Gamboa; for the intermediate, by the mean between that measured at Gamboa and Alhajuela; and for the upper, by the mean between that measured at Alhajuela and Colon. Admitting this assumption, the numerical value of the desired ratio between downfall and drainage for the entire basin above Bohio results from the following formula. Similar expressions for the entire basin above Gamboa and for each subbasin are readily deduced. In the formula, Q denotes the discharge at Bohio in cubic metres per second; D, the number of days considered; B, G, A, and C, the rainfall at Bohio, Gamboa, Alhajuela, and Colon in metres; and R, the desired ratio for the days considered.

$$R = \frac{Q \times 3600 \times 24 \times D}{1610^{9} \times \left(\frac{250 (B+G)}{2} + \frac{130 (G+A)}{2} + \frac{290 (A+C)}{2}\right)}$$

Although the variable nature of the ratio between downfall and drainage is well known, depending on the character of the storms, the condition of the soil as to moisture and geological formation, the forest growth, and many other local peculiarities, it is not too much to assume that for a single month the variation will be confined to narrow limits in a valley like that of the Chagres. Its numerical value may be

There are some small differences between the inclosed figures charge per second at Bohio for Q; the number of days in the month for D; and the respective rainfall for B, G, A, C. The following table exhibits the results obtained from the observations of the past year, conducted with every care to secure accuracy, by the New Panama Canal Company:

Ratio between rainfall and drainage above Bohio,

	Abo	ove-		Subbasin,			values (7 above—
Month.	Bohio.	Gamboa.	Upper.	Inter- mediate.	Lower.	Bohio	Gamboa
1899.							
July	0.44	0.46	0.45	0.50	0.38	0.58	0,68
August	0.84	0,99	1.04	0.80	0.57	0.70	0.64
September	0.61	0.71	0.75	0.62	0.42	0.80	0,6
October	0.65	0.73	0.88	0.59	0.52	0.94	0.80
November	0.81	0.85	0.39	0.72	0.73	0.87	0.77
December	1.89	1.68	1.64	1.51	0.99	1.08	0.96
January	1.04	1.47	1.60	0.66	0.48	2.07	2,41
February	7.41	12.00	15.50		3.27	1.39	1.97
March	2.68	3.36	3.56		1.71	1.15	1.48
April	0.41	0.54	0.90		0.21	0,46	0.54
May	0.30	0.36	0.48		0.15	0.50	0.56
June						0.54	0.57

* No outflow.

The figures in the last two columns are added for comparison, although being based only on the discharges actually measured, and on the assumption that the rainfall at Colon measured that in the upper subbasin, where no rain measurements were then made, they are less trustworthy than those of the past year.

Without wishing to attach too much value to the exact figures in this table, it is to be remarked that they generally conform to known conditions in the several months, and accord well with each other. For example, in August and November some rather large freshets occurred, which should and did increase the ratios for those months; but in July, September, and October, when the discharge was less variable, the ratios fell, as they should have done. In leaving the hills and entering the more level district, the ratios become less, as is usually the case.

But the most important and most striking fact developed by these investigations is the exaggerated values of these ratios in the months of little or no rainfall, of which December, 1899, was one. This supplementary volume could only be ground water. For example, in February the rainfall at Bohio was only 0.47 inch; at Gamboa, 0.16; at Alhajuela, 0.04, and at Colon, 0.35. Nevertheless, after two months of previous drought, the average monthly discharge at Bohio was 1,060 cubic feet per second; at Gamboa, 812; and at Alhajuela, the same (812). This water could only have issued from the ground. It is a phenomenon common in the United States. The tributaries of the right bank of the Allegheny River drain a district of glacial drift, while those of the left bank issue from more impermeable soil. In times of severe drought the former often afford a fair discharge while the latter run nearly dry.

That the Chagres belongs to this class of streams is a matter of no small importance for the canal. It gives the explanation of the well-known fact that no fear of a lack of water in the dry season need be entertained with the reserves contemplated by the new company.

CLOUD-BURST AT ERWIN, TENN.

By S. G. WORTH.

The following communication from Mr. S. G. Worth, Superintendent of the United States Fish Commission station at Erwin, Tenn., dated October 13, 1898, relates to an unusual rainfall in that vicinity on August 12, 1898. The found from the above formula by substituting the mean dis- Weather Bureau did not have a gage very near this cloudburst, but heavy local rains were reported at surrounding stations.

In this connection I wish to advise you that the streams of this immediate vicinity are now in an abnormal state in consequence of the heavy rain which occurred here on August 12. From what I have seen of these streams I am confident that it will be two or three years before the normal (animal) forms become restored. The downpour of rain was greater than had been known here before in 20 or 30 years, and the beds of the streams were completely scoured of all loose material and now consists simply of round boulder rocks. Millions of and the beds of the streams were completely scoured of all loose material and now consists simply of round boulder rocks. Millions of forms, both large and small, must have been destroyed at that time. On the 26th of September, while taking a day's leave of absence, I went into the headwaters of one of the largest creeks near here for a day's outing and was completely astonished at the torn up condition of the mountain sides. I had never before witnessed the work of a so-called cloud-burst, but after that day's observation I came to the conclusion that if the Weather Bureau had an adequate conception of the destruction in this vicinity, in that rain, they would probably send a man out here to look over the ground and make a report upon it.

At the point where the cloud-burst occurred the ground was torn up a width of 15 to 30 feet and from 100 to 300 yards in length up and down the mountain side. At the bottom of the mountain slope there were evidences of a violent rush of water, mud, and hundreds of tons of loose rock, stumps, and fallen timber. On Rock Creek, and especially on Martins Creek, the disaster wrought by the storm was phenomenal and something beyond my imagination until I had witnessed it myself. The scars made on the mountain sides can be seen several miles distant.

THE SEISMOGRAPH AT THE OBSERVATORY AT CARSON CITY, NEV.

By C. W. FRIEND, Director of the Observatory.

The seismograph stands on a solid foundation that is about even with the surface of the ground. It is of the pattern known as the duplex-pendulum seismograph. A massive bob is hung by three parallel wires from the top of the threecornered box, and is reduced to nearly neutral equilibrium by being coupled by a ball-and-tube joint to the bob of an inverted pendulum below it. The two form a system which can be made as nearly astatic as is desirable, and so furnish a suitable steady-point for showing the horizontal component The motion is of earthquake movement in any azimuth. magnified (in the observatory seismograph about four and a half times), and recorded by a vertical lever geared to the upper bob by a ball-and-tube joint, supported on gimballs from a bracket fixed to the box, and furnished with a jointed index, which writes on a fixed plate of smoked glass.

Fig. 1.—Duplex-pendulum seismograph for horizontal motion.

MEXICAN CLIMATOLOGICAL DATA

Through the kind cooperation of Señor Manuel E. Pastrana, Director of the Central Meteorologic-Magnetic Observatory, the monthly summaries of Mexican data are now communicated in manuscript, in advance of their publication in the Boletin Mensual. An abstract, translated into English measures, is here given, in continuation of the similar tables published in the Monthly Weather Review since 1896. The barometric means have not been reduced to standard gravity, but this correction will be given at some future date when the pressures are published on our Chart IV.

Mexican data for June, 1900.

	16.	Temperature.		ita.	Prevailing direction.				
Stations.	Altítude.	Mean ba	Max.	Min.	Mean.	Relative humidity.	Precipi tion.	Wind.	Cloud.
	Feet.	Inch.	OF.	o F.	OF.	5	Inch.		
Durango (Seminario)	6, 243	24.03	99.5	48.2	74.5	43	0.67	wsw.	sw.
Leon (Guanajuato)	5,934	24.27	92.5	56.5	74.5	47	1.51	ne.	ne.
Mexico (Obs. Cent.)		23.05	84.2	51.8	66.6	50	1.20	n.	ne.
Morelia (Seminario)		23.96	87.4	56.5	71.1	66	5, 27	8.	ene.
Puebla (Col. Cat.)		23.36	86.5	50.5	69.4	59	4.88	ene.	ne.
Puebla (Col d. E.)		23. 33	86.9	51.1	68.4	58	3.78	ene.	ne.
Real del Monte		21.63	74.1	39.9	57.0		4.31	n.	*******
Saltillo(Col. S. Juan). San Isidro (Hac. de	5, 399	24.75	91.6	60.6	76.1	53	0.48	n.	w.
Guanajuato) San José del Cavo	•••••	• • • • • •	85.1	69.8	*****	*****	3.76	ne.	
(B. C.)			90.0	77.0	83.8			8.	n.
Silao	6,063	24.22	90.1	62.6	75.4	50	3.28	80.	ese.
Queretaro	6,070	24.18	93.2	56.7	72.9	46	1.30	e.	

RECENT PAPERS BEARING ON METEOROLOGY.

W. F. R. PHILLIPS, in charge of Library, etc.

The subjoined list of titles has been selected from the contents of the periodicals and serials recently received in the library of the Weather Bureau. The titles selected are of papers or other communications bearing on meteorology or cognate branches of science. This is not a complete index of the meteorological contents of all the journals from which it has been compiled; it shows only the articles that appear to the compiler likely to be of particular interest in connection with the work of the Weather Bureau:

Comptes Rendus. Paris. Tome 130.
Violle, J. Observations actinométriques pendant l'éclipse du 28 mai, 1900. P. 1658.

La Nature. Paris. 28me Année.
Plumandon, J. R. La pluie à Nice. P. 75.

Technology Quarterly. Boston. V. 13.
Rotch, A. L. Use of Kites to obtain Meteorological Observations.
P. 89.

Das Wetter. Berlin. 17 Jahra.

Das Wetter. Muttrich, -

Vetter. Berlin. 17 Jahrg. Luttrich, —. Ueber die Einrichtung von meteorologischen Stationen zur Erforschung der Einwirkung des Waldes auf das

Stationen zur Erforschung
Klima. P. 121.
Pernter, J. M. Wetterschiessen. P. 134.
Scientific American Supplement. New York. Vol. 50.
McAdie, A. G. Frost Fighting. P. 20512.
Geographical Journal. London. Vol. 16.
Arctowski, H. Observations on the Aurora Australis. P. 92.
L'Aerophile. Paris. Sme Année.
Vincent, J. L'emploi des cerfs-volants en météorologie. P. 63.
Philosophical Magazine. London. Vol. 50.
Philosophical Magazine. London. Vol. 50.
Evolutions of Reflected Wave-Vincent, J. L'emploi des cerfs-volants en météorologie. P. 63.
ilosophical Magazine. London. Vol. 50.
Wood, R. W. Photography of Sound-Waves, and the Kinematographic Demonstration of the Evolutions of Reflected Wave-Fronts. P. 148.
iea. Leipzig. 36 Jahrg.
Klein, H. J. Wetterprognosen auf mehrere Tage und die täglichen Wetterkarten. P. 475.
inples Rendus. Paris. Tome 131.
Gautier. A. Gaz combustibles de l'air: air des bois: air des

lichen Wetterkarten. P. 475.

Inples Rendus. Paris. Tome 131.

Gautier, A. Gaz combustibles de l'air; air des bois; air des hautes montagnes. P. 13.

Gautier, A. Gaz combustibles de l'air; air de la mer. Existence de l'hydrogène libre dans l'atmosphère terrestre. P. 86.

Poncare, A. Combinaison des effets des révolutions synodique et tropique; son action sur la marche des dépressions. P. 132.

Popular Science Monthly. New York. Vol. 57.

Wood, R. W. Photography of Sound Waves. P. 354.

Aeronautical Journal. London. Vol. 4.

Wenham, F. H. On Forms of Surfaces impelled through the Air and their Effects in Sustaining Weights. P. 134.

DROUGHTS, FAMINES, AND FORECASTS IN INDIA.

By E. DOUGLAS ARCHIBALD.

The famine, which has now for the last two years been devastating India, is a matter of such serious importance in relation to the economy of Indian government and to the rapidly increasing population, that no excuse is needed for discussing in these pages the general causes of Indian famines and their relation to the prevision of Indian weather.

The general causes of Indian famine have been summarized by Mr. Eliot, the head of the Indian Meteorological Service, as follows:

1. Prolonged delay in the commencement of the rains, more especially of the summer monsoon.

2. A prolonged break in the middle of the southwest monsoon rains.
3. Scanty rainfall during the greater part or the whole of the season.
4. Unusually early termination of the southwest monsoon rains.

This last being especially fatal in the case of rice crops on

unirrigated land. In different parts of India these several factors work very

differently.

Thus in northern India, which comes under the incidence of both the southwest monsoon or summer rains, and of the comparatively minute but valuable fall in the winter months, famine is usually due either to the failure of two crops in succession, the "Khariff" or summer crop and the "rabi" or winter crop, or to the complete failure of one crop after a succession of poor or bad seasons.

In the Deccan they are usually due to the more or less complete failure of the southwest monsoon rainfall throughout.

In general, it may be said that failure of either the summer or winter rains, or both together, tend to produce famine in proportion to the intensity of the drought, the time of its duration and the area over which it extends. An untimely excess of rainfall seldom produces more than a local scarcity.

One very curious circumstance in regard to the prevalence of famine in India is that the area most subject to famine is not the most arid district, but a zone intermediate between this and the moister areas, which is technically designated as

Statistically, India may be divided into three areas (1) the arid area with a rainfall less than 15 inches per annum. Since all crops grown on this area are watered by irrigation it is practically independent of variation in the seasonal rainfall, and it is a nonfamine area.

2. The dry area, in which the annual rainfall ranges from 15 to 35 inches. This is the real famine area, and on the map appears as two great areas, one in central and southern India embracing the Deccan, Mysore, south Madras, and the other a belt stretching in the form of a boomerang from the Gujrat Peninsula northeastward to Lucknow and Allahabad, and thence northeastward to Peshawar.

In time of severe famines such as the present, when the conditions in both areas are coincidently prolonged, the famine area embraces both at once and extends more or less symmetrically over the areas adjoining their borders.

3. The moist zone, in which the rainfall ranges from 35 inches to 200 inches and upward. This area, which includes the rest of India, is practically a nonfamine area.

Various attempts have been made to correlate the occurrence of Indian famines with the variations in the energy

¹Reprinted from Symons's Monthly Meteorological Magazine for June and July, 1900.

derived from the sun corresponding to the periodic changes in the spotted area; but, though there are evidences of parallelism, the relation is not a simple or regular one. The condition of the sun is probably a contributory vera causa, but not a maxima causa.

Reacting conditions, initially determined by changes in the position of antarctic ice, slight deflections in the equatorial ocean currents and in the vertical and horizontal position of upper atmospheric air streams of abnormal condition, such as those recently shown to exist by means of the kite observations at Blue Hill Observatory, are likely to be far more potent prime causes of seasonal abnormals than the small and fairly regular changes which appear to follow the appearance and

disappearance of sun spots.

In fact, the study of famine prevision can only proceed successfully with that of the general terrestrial factors which lie at the base of the normal and abnormal occurrence of the monsoons.

The comparative regularity with which these periods of similar winds and weather alternate half-yearly is one of the most salient and remarkable features of the Indian weather system, and the study of their proximate and remote causes, their changes from year to year, and their general local distribution of rainfall, have for several years formed the maxima quæstio" of the Indian forecaster.

For the purpose of prediction, the American or European and the Indian meteorologist regard weather from entirely

different points of view.

To the former it appears to be mainly due to the passage of a succession of low and high pressure areas (technically termed cyclones and anticyclones), with their attendant respective characteristics of ephemeral stormy and fair weather.

To the Indian meteorologist, on the other hand, it appears to be chiefly a succession of broad seasonal changes, commencing suddenly in the case of the summer monsoon, and, though characterized by minor changes due to the similar passage of ephemeral moving cyclonic and anticyclonic systems, it remains of a fairly constant and dominant type when once it has fairly set in.

The marked changes from day to day which characterize the proverbially "fickle weather" in England are less marked in that of India, while the persistent seasonal tone of the latter

is comparatively unnoticed, even if present in the former.

This apparently radical difference between the weather in India and that of extratropical countries has led to an equally radical departure in the system of forecasting adopted there.

While in England and Europe we are still content with

twenty-four hourly predictions, founded chiefly on mere empirical sequences of changes already in existence, and in America the utmost limit at present adopted is forty-eight hours, India has boldly struck out into officially indorsed predictions, issued in May and November, of the average weather of the ensuing half year.

The success of the forecasts which have now been in operation for the last twelve years, has been such that in spite of its well-known financial difficulties, the Indian government has recently extended its field of observation so as to embrace portions of Persia, Kashmir, Arabia, east Africa, Mauritius, and communication with west Australia, and with good reason, for as the investigation of the conditions upon which the initiation and persistence of the monsoons depend proceeded, it was found that the local factors, such as early hot weather in the plains, or late snowfalls on the Himalaya, were insufficient to account for the large anomalies presented in different years, and that extraneous causes were at work in surrounding areas which dominated and often masked any apparent temporal coincidences such as were too readily accepted in the early period of Indian meteorology as sufficient to account for everything.

With regard to yearly anomalies in the monsoon and their rainfall, it appears to be a common delusion among those who are unacquainted with India, to imagine them to be extremely regular, both as to date of arrival and character, thus rendering their prediction a comparatively simple matter. This however, is far from being the case. Even taking India as a whole, the marked date of the burst of the southwest monsoon varies occasionally as much as from three weeks to thirty days, while the total annual rainfall of the entire Indian area has varied from 6.5 inches deficiency in 1868, to 9 inches excess in 1893. Concentrated in one spot this latter surplus would amount to 211 cubic miles of water. Let me give an illustration by which it may be brought home to the imagination. Suppose a gigantic hose pipe half an acre in section to stretch from the earth to the moon, and to be filled with water. This water would barely represent the excess of 9 inches rainfall spread over the Indian area, while if it were required to irrigate India by the hose pipe so as to allow the water poured out to amount to the given excess at the end of the six months of the southwest monsoon, it would have to be continuously projected from the hose with the enormous velocity of 55 miles per hour. Such variations of water supply can hardly be regarded as an insignificant variation from the annual average. It has, morever, been established by the late Mr. Blanford, that while the average rainfall variation over the whole area is not more than from 15 to 20 per cent, the rainfall is most variable when it is smallest in amount, and most regular and steady when it is greatest; so that in certain regions variations occur of several hundred per cent, leading to disastrous floods or droughts, especially in the dry zone.

Prevision of such anomalies in time to warn the local governments and agriculturists of impending unfavorable seasons, and possible scarcity and famine, through either drought or flood, is the principal aim of the Indian seasonal forecasts.

The method began under Mr. Blanford by the recognition of certain contrasts and sequences between the rainfall of the summer and winter seasons, and in particular the snowfall on the Himalaya, and the character of the subsequent summer monsoon over the neighboring plains. This was found to be inverse, so that a heavy snowfall, especially if it lasted well into the spring months, argued a deficient or retarded monsoon.

Though this factor is now found to be subordinate to the absolute strength of the monsoon current, it still forms one of the four main conditions from which the extension and character of the southwest monsoon is inferred. The others are:

2. The local peculiarities of the weather during the months immediately preceding the arrival of the monsoon, and which are best indicated by local variations of monthly barometric pressure from the normal.

3. The absolute force of the southeast trade wind in the south Indian Ocean before it breaks through the belt of equatorial calms and appears in the Indian seas as a southwest monsoon wind, and which at present can only be determined from the logs of ships traversing the Indian Ocean or by cable from the Seychelles and Mauritius.

4. The occurrence of long-period waves of barometric pressure (variations from the normal for the whole area), and in particular whether the wave is rising or falling. If rising, the probability is that the monsoon will be deficient; if falling, that it will be strong and rainy.

The second of these conditions used to be considered the only one which determined the monsoons, but is now found to be chiefly useful in determining the local character and irregularities of the monsoonal rains; in other words, the pressure differences act much as the inequalities in a mould into which molten lead is poured, in determining its flow and aggregation.

While the general troughs and ridges of pressure alter considerably from year to year, they always tend to preserve their initial type all through the monsoon period. Besides these, certain local sinks or barometric hollows which are associated with locally heavy downpours, appear to persist or recur several years in succession in the same locality.

A knowledge of the two last conditions, 3 and 4, is now recognized as displacing that of every other condition in point of primary importance in determining the strength and character of the southwest monsoon current.

The first two conditions are now chiefly used in determining the local behavior and limits of the current when it has once developed over the Indian area; and since such behavior is considerably modified by the strength of the current itself, their role is obviously subordinate to that of any means by which the strength of the current may be forecasted shortly

before it invades the Indian land area. As yet (3) can not be directly determined by any rational method of scientific deduction. Recent investigations, however, by the aid of the ample data which is now collected at the Indian ports from ships traversing the Indian Ocean, and embodied in a series of monsoon charts, show that during the prevalence of the southwest monsoon the equatorial calm belt where, according to the old text-book theory, the northeast and southeast trade winds were supposed to meet, rise, and after discharging their surplus burden of humidity in torrential rains, fall back as upper currents toward the poles, ceases to exist, and the southeast trade wind, finding its upward escape closed, like a torrent of lava breaks down the wall of opposing weaker northeast winds and, after a preliminary burst in the first week of June, settles down into quiet possession of the Indian land area. Impelled thither quite as much by a vis a tergo as a vis a fronte, and forming part of the general summer circulation of the northeastern quarto-sphere, it is impossible at present to trace how far variations in this current are due to southern oceanic or northern land conditions. Early information, however, of its strength and reliance on the principle of persistence is found to give very fairly reliable results. At the same time, an extension of the means of determining the causes and character of the particular type of circulation present in different years, by closer connection with Mauritius and west Australian stations, on the one hand, and with central Siberian, on the other, is a desideratum of the highest importance.

The last principle is regarded by several leading scientists as supplying the hitherto much desired "open sesame" to long-period prediction, not merely within the tropics, but elsewhere. As a matter of fact, it has been found that the pressure over the entire Indian area is subject to a series of oscillations (or waves), above and below the average, varying in length from six to twenty-four months, and usually some multiple of the half-year. Twelve of these occurred over India during the past twenty years, and, by comparison, it has been found that when the wave of pressure is rising during the monsoon period the rainfall is in defect, and vice

versa.

By a glance, therefore, at the slope of the pressure anomaly curve, which can be plotted out month by month, it is possible to read the symptoms of the coming monsoon with far greater accuracy than the day's weather in these islands can be prevised by tapping the hall barometer.

As Mr. Eliot says, these waves are due to variations (checks or accelerations) in the seasonal mass transfer of air across the equator between southern Asia and the Indian Ocean, and a proof of this is to be found in the remarkable fact that, as a general rule, they are found equally marked, but reversed in phase, at Mauritius.

Moreover, these waves are not merely useful in deciding the character of the summer monsoon, but are equally closely connected with the presence or absence of those valuable, if scanty, rains which drop from the upper southwest current followed by a severe drought and ensuing famine in northern more or less every year in northern India in the winter months-between November and March-when the northeast monsoon (so called) prevails near the surface.

The relation between the pressure anomaly curve and the winter rains is, curiously enough, precisely the reverse of that which obtains during the summer monsoon, a rising curve being associated with heavy and a falling curve with light

It would be unnecessary to enter into the reason for this, which is fairly obvious to the student of Indian meteorology. Empirical though it is at present, the fact is exceedingly valuable in relation to the prevision of the highly important winter rains and rabi crop of northern India, upon the success or failure of which the question of famine in that area so often hinges.

Apart from these six monthly barometric waves, there is little doubt that certain influences are at work in the atmospheric circulation over the Indian area which cooperate with other periodic factors in tending to cause excess or defect of rains at intervals of from 9 to 12 years. What these influences exactly are it is difficult to say. To some extent they appear to be associated, as we have above noticed, with the eleven year period of sun spots; and certain irregularities in the parallelism of the two phenomena are, in my opinion, no argument against their covariancy and even causal connection, since the northern and southern Indian areas are at some seasons meteorologically distinct. So far as the facts go they may be summarized as follows:

1. Extensive droughts occur in the dry area of southern India, embracing in particular northern Mysore, south Deccan, southwest Hyderabad, but occasionally reaching Guzerat and parts of the Bombay and Madras presidencies, at intervals of nine to twelve years and usually, but not regularly, about a year before the sun spot minimum. When the conditions are sufficiently acute, famine occurs in the ensuing year.

India in about 5 cases out of 7.

This sequence is attributed by Mr. Eliot to the empirical law of opposition in the seasonal rainfalls of northern India and the general monsoon conditions of northern and southern India.

Thus a drought and high barometric pressure in southern India usually coincides with low pressure and heavy summer monsoon in northern India. This latter tends to be followed by a heavy winter rainfall, and this again by the compensatory law, first discovered by Professor Hill and the writer in 1877, by subsequent deficient summer rainfall in northern India.

3. Besides these, summer droughts tend to occur in northern India alone in years of maximum sun spots, connected in some way with the abnormal high pressure over western Asia which prevails at such epochs.

There is thus a double periodicity of drought and famine in North India and a single periodicity in South India in the sun spot cycle, though the relation between the phenomena is too spasmodic and irregular to be utilized as a reliable factor for prevision.

Brückner's empirical cycle of thirty-five years, whatever its cause, undoubtedly exists in the Indian area. Under the title of the "grand cycle" it has long been known in Ceylon, and it is quite possible that the present famine, which, from its area and the immense number (6,000,000) of people who are still on relief works, appears to be the greatest famine of which we have any record, may be the aggregate effect of the simultaneous occurrence of a Brückner with a sun spot cycle

The problem is similar to that of the combinations of harmonic undulations which cause unusual tides, and its solution and application to prevision can only be effected by systematic study of the billows and ripples which appear in the long and short records of barometric pressure over wide areas and for many years.

NOTES BY THE EDITOR.

METEOROLOGICAL CABLEGRAMS.

For many years past the astronomical world has agreed upon a special cipher code for use in transmitting to all parts of the world cablegrams announcing such astronomical discoveries as need to be immediately made known. Thus a comet, or asteroid, discovered by some careful searcher among the myriad of stars is immediately brought to the attention of many industrious observers and is sure of being carefully watched from that time forward.

There are occasions when meteorologists and physicists need to interchange similar scientific despatches. For many years past the Weather Bureau has sent a daily cablegram to the Central Meteorological Bureau of France summarizing the conditions on this side of the Atlantic. Doubtless, many occasions may arise in which a short despatch would be very useful to others also. In order to facilitate this international exchange of telegrams, each bureau should have its own cable address and, if possible, one uniform system of cipher code should be introduced. All such addresses and codes should be registered and published in "The Atlantic Cable Directory of Registered Addresses and Code Book containing an alphabetical List of Names, Arranged by Cities and adopted "Afas" as its telegraphic and cable address, with States together with a classified Business Directory, Telegraph the added caution that this is not to be used for important and Cable Code, compiled by Chas. P. Bruch, Assistant Sec- written documents, or as the mail address.

retary of the Postal Telegraph Cable Company; a practical and useful general code, United States and Canada Section, for circulation throughout the world; subscription price, in United States, \$12.50; published by Atlantic Cable Directory and Code Company, New York and London."

The official vocabulary of code words compiled by the International Code Office at Bern, Switzerland, probably offers the best basis for an international meteorological code, but the directory code compiled by Mr. Bruch and published in his volume is a selection from the preceding and especially adapted to English and American usage. The registered cable address for official communications to the Chief of the Weather Bureau is simply "Weather," and that for the Editor of the Monthly Weather Review is "Cleveable." Nothing more in the way of address is needed, as such telegrams come direct to the Weather Bureau. Inasmuch as considerable saving of expense is effected by the use of such registered addresses, the Editor will take pleasure in publishing in the Monthly Weather Review the similar cable addresses for such other meteorologists or meteorological services as may become known to him.

Since writing the above the French Association for the Advancement of Sciences has announced that the Secretary has

A LOCAL WEATHER SIGN.

Almost every locality in the world has some special local weather sign, although these are not always recognized by the ordinary observer. We refer to signs that are rational and depend upon the physical properties of the atmosphere; and it is not derogatory to the reputation of the local weather prophet to study out and make use of these signs when he endeavors to make local weather predictions better than the general forecasts of the Weather Bureau. For a long time the audibility of sounds at a distance, or the visibility of distant objects, or the occurrence of mirage, have all been known to indicate special quiet and homogeneous conditions of the atmosphere, such as precede local disturbances. The explanation of the connection between these signs and the resulting phenomena involves the consideration that the air is peculiarly opaque to light and sound when it is a mixture of warm and cold currents, and is transparent to these when the distribution of temperature and moisture is very uniform. Thus, the English observers have for a century past recorded the visibility of objects and the audibility of sounds as indicative of approaching rain. The following interesting item may refer to some similar phenomenon, or it may possibly be that the roaring noise here described is produced by the wind blowing over the top of the mountain and forest before it has as yet reached the lowlands and distant observers. It is quite common for the wind to blow strongly night and day overhead while at the earth's surface it is calm at night but windy by day. This was explained by Espy as being due to the fact that during the daytime the sun warmed the ground and the adjacent air, which, therefore, rises by buoyancy and lets the rapid wind overhead descend to the earth's surface; whereas during the night-time the ground and the adjacent air are cold, therefore they do not rise, and the rapid upper winds flow overhead without descending to the ground. Whatever may be found to be the true explanation, it is evident that the phenomena observed at Waynesville, Haywood County, N. C., are worthy of study by the observers in that neighborhood, and the following extract from the Waynesville Courier is worthy of permanent record:

The Shewbird Mountain, 4 miles south of town, is to us the strangest thing in this whole mountain country. The mountain is full of large, rough cliffs, and by its peculiar shape and position serves as a weather signal to the people for miles around, because, as the general saying is "when old Shewbird hegins to rear you may preserve for rough weather." "when old Shewbird begins to roar you may prepare for rough weather." It generally commences about dark, and continues to roar until the rain or snow comes, which may be five hours or it may be ten. At dark the air may be perfectly still and not a cloud in sight, yet the mountain may begin to roar, and you may know that by the next morning the bad weather will be on hand. Though the mountain is 4 miles away, the roaring sounds like that made by a loaded freight train half a mile distant, and it is a continuous sound, too, with no intermission.

CLIMATOLOGY IN CALIFORNIA.

The report of the California section for June, 1900, contains a brief comparison by Mr. McAdie of the relative climates of the Weather Bureau stations in San Francisco and on Mount Tamalpais to which we must refer for many de-Mr. McAdie says:

The highest temperature recorded on the mountain was 96° on July

dryness is especially noticeable during the summer months, and is doubtless the cause of the agreeable change of climate noted by visitors. The maximum wind velocities are 91 miles on the mountain and 47 miles in the city. The total annual wind movement was 177,000 miles at Mount Tamalpais and 96,600 at San Francisco; the mean annual pressure was 29.87 and 27.55 inches; the mean annual temperature 54 9° and 55.7; mean annual dew-point, 48° and 36°; total annual rainfall, 23.23 and 36.86 inches, at the lower and upper stations, respectively. spectively.

METEOROLOGICAL CONDITIONS FAVORABLE TO SPONTANEOUS COMBUSTION.

Every meteorological or climatological condition that can affect the welfare of mankind comes under the consideration of the Weather Bureau, no matter whether explicitly mentioned in the acts of Congress or merely implied in general.

In the June report of the Ohio section, Mr. J. Warren Smith calls attention to the fires that are started by the spontaneous combustion of hay. Spontaneous combustion, whether of hay, cotton, oil and waste, or any other substance, becomes imminent only under certain atmospheric conditions as to temperature, pressure, and moisture. The heat caused by the oxidation of the oil in cotton waste or rags, or that caused by fermentation in moist hay and other substances, does not give rise to flame unless the temperature of the whole mass is above a certain limit, which is as yet ill defined In general, spontaneous combustion is not to be feared if the fresh supply of oxygen from the atmosphere is cut off. If the inflammable substance is confined within a non-conducting inclosure, such as the interior of a bale of cotton or a tight room or a closed box, its temperature may attain a point surpassing the point of ignition, but danger does not occur until the inclosure is opened and a fresh supply of oxygen is suddenly admitted when, of course, everything breaks out in The best preventative of spontaneous combustion is a rapid and complete ventilation, by which means the oxydizing and fermenting substances are kept cooled down below the point of ignition. Mr. J. Warren Smith states-

That the fermentation within moist hay may raise the temperature to 374° F., and that careful tests show that clover hay actually does ignite at temperatures approximately the same as this. He particularly requests that all details as to actual cases of spontaneous combustics. tion may be sent to him for further investigation.

WEATHER BUREAU SERVICE IN HAITI.

In connection with the improvement of the West Indian branch of the Weather Bureau service, we take pleasure in recording the very material assistance received through the active cooperation of Hon. W. F. Powell, United States Envoy Extraordinary and Minister Plenipotentiary at Port au Prince, through whom our Government has received from the Haitian Government the free use of its telegraph service in aid of this important work. At first the request of the Weather Bureau for permission to establish a meteorological and telegraph station at Mole St. Nicholas was declined, but after some delay the government gave consent to the establishment of an observatory at Cape Haiti. Unfortunately the immediate establishment of this important station was temporarily delayed for the want of the necessary funds. Meantime negotiations with the cable company and the Haitian Government land service led to an arrangement by which the cable expenses are paid by the Weather Bureau but the receipt and The highest temperature recorded on the mountain was 96° on July 18, while on the same date the maximum temperature at San Francisco was 66° and at Point Reyes Light, 52°. The highest temperature recorded at San Francisco during 1899 was 94° on October 8, while on the same date the maximum temperature on Mount Tamalpais was 88° and at Point Reyes, 74°. The lowest temperature corded during the year on the mountain was 23° on February 4, and on the same date at San Francisco and Point Reyes, 34°. During the summer months there is very frequently a cooling of 11° at the lower station according to the prevalence of fog. The mean relative humidity for the whole year is 59 per cent on the mountain and 83 per cent at San Francisco. This stood that advisory messages and hurricane warnings will be disseminated and hurricane signals displayed in Hayti the same as in the other West Indian Islands, beginning July 1, 1900. This information as to hurricanes will be available at the offices of the United States consuls, vice consuls, or consular agents, whenever such officials are available.

THE LAWS OF ATMOSPHERIC CIRCULATION.

A year ago, Prof. V. Bjerknes read before the German Association of Scientists, at Munich, a memoir on dynamics as applied to the circulation of the atmosphere, in which certain principles are developed that undoubtedly apply to many atmospheric movements although probably not to all of them. This memoir is the third that Professor Bjerknes has published on this subject, and one of his pupils, Mr. Sandstrom, has further developed the subject and applied this new method to a discussion of the American storm of September 21-24, 1898. The Editor is preparing to publish a complete translation of both these papers in order to make them available to American students. Meantime the following notice of the work of Professor Bjerknes is copied from Nature June 28, 1900, vol. 62, p. 200, and will give the reader a general idea of the considerations introduced into this latest effort to investigate the motions of the atmosphere in the light of rigorous mechanical laws:

ous mechanical laws:

The dynamical principle of atmospheric circulation is treated by Prof-V. Bjerknes in the Meteorologische Zeitschrift, March and April, 1900. Starting with the property that the circulation theorems of abstract hydrodynamics (according to which the circulation in any circuit formed by the same particles is constant) only hold good when the pressure is a function of the density alone, Professor Bjerknes points out that in the atmosphere this condition is not satisfied, owing to local differences both in the temperature and in the degree of moisture present in the air. Of these two causes the first seems to be the most important. The conception of "solenoids" is then introduced, a solenoid being an elementary unit tube bounded by pairs of consecutive surfaces of equal volume and equal pressure, respectively. The fundamental proposition in connection with circulation asserts that the rate of change of the circulation in any circuit is proportional to the number of solenoids inclosed by that circuit. A number of diagrams are given representing the cases of land and sea breezes, trade winds, local upward currents, hill and valley winds, cyclones, and anticyclones. The omission to take account of the extra complications arising from viscosity and terrestrial rotation probably prevents these investigations from being utilized for calculations in connection with weather prediction; and for this reason Professor Bjerknes' theory must be rather regarded in the same light as other dynamical theories of physical phenomena, in which certain simplifications not occurring in nature are made in order to bring the calculations within the range of mathematical analysis. But it is only by the aid of such simplifications that order can be evolved out of the chaos of statistics furnished by the experimentalist.

Prof. V. Bjerknes, of Stockholm, is the son of Prof. C. A. Bjerknes, of Upsala, and has lately published the first volume of the collected memoirs of his father. These memoirs bear especially on very important theorems in the motion of fluids and have been by him applied especially to the movements of spheres in liquids whence resulted an apparent explanation of the force of gravity, the attractions of molecules, and many correlated phenomena. In order that our readers may have some knowledge of the general character of the work of Prof. C. A. Bjerknes, we append the following review of this first volume of lectures, as published by Prof. Carl Barus, at page 395 of the Journal of Physical Chemistry for May,

Among the attempts to explain the nature of force in terms of the medium through which it acts, those based on the hydrodynamics of an incompressible frictionless fluid seem most at hand, inasmuch as the inevitable ether is given as such a fluid at the outset. The irrotationally moving fluid surrounding a vortex has been used as a field

of this kind by Kelvin; and J. J. Thomson has shown at length that whereas stable groups of aggregated vortices are possible up to eight in number, beyond this all grouping becomes unstable, thus suggesting close relations to atomicity. The technical difficulties in the way of the vortex hypothesis have barred its progress. On the other hand, the vibratory and pulsating theory, which had an independent origin throughout and need not be incompatible with the former, has now many achievements in its favor. That force can be derived from the impact of a wave train in evidence by the radiometer, but the mechanism of this apparatus is too complex to be suitable. Kelvin showed that waves lash the boundary of the medium with a pressure per square centimeter equal to the product of half the density of the medium and the square of the wave velocity. Mayer's famous experiment, with pivoted resonators rotating in the acoustic field of their own notes, was shortly after its discovery explained by Raleigh, proving that the inof this kind by Kelvin; and J. J. Thomson has shown at length that shortly after its discovery explained by Raleigh, proving that the in-ternal pressure in a resonator exceeds atmospheric pressure, so that a

ternal pressure in a resonator exceeds atmospheric pressure, so that a force exists at the mouth directed normally inward.

Long before all this, before Faraday had proclaimed his doctrine of lines of force, and before Maxwell had developed that doctrine, indeed, almost before Kelvin had published his method for the solution of hydrodynamic problems by Hamilton's principle, the elder Bjerknes had, independently, become dissatisfied with "action at a distance," and had tentatively suggested a remedy. As far back as 1868, (Maxwell's great treatise was completed in 1873) with the simplest of media (frictionless, incompressible fluid) and the geometrically simplest solid, (a sphere) Bjerknes had found that the force actuating the center of one of two spheres, and arising in a second moving sphere, has the same intensity and direction as if the former were ascent, and is equal to the acceleration in question, multiplied by three-halves of the medium displaced by the first sphere, certainly a suggestive proposition, though it did not then predict Newton's third law. Meanwhile Kirchhoff had adopted Kelvin's hydrodynamic method, and had developed it for problems of precisely the present kind, with his usual ability. Bjerknes was then able to apply the Kelvin-Kirchhoff investigation to his own researches with such success as not only to deduce the law of action and reaction as a necessary property of his own the law of action and reaction as a necessary property of his own mechanism, but to show that pulsating spheres act on each other through the medium by stressing it into a field of force, mutatis mutandis, identical in character with the action on each other of magnetic or electrical molecules.

These papers have been much sought after by physicists, in spite of their inaccessibility, and the fact that demonstrations were often withheld. It is therefore fortunate that the younger Bjerknes, an equally able investigator, has collected the work of his father in a systematic treatise, of which the first volume is now before us. As above indicated, the book treats at length of the motion (vibration, translation) of a system of spheres of variable (pulsating) volume submerged in the ideal fluid stated, preliminarily to deriving action at a distance from purely hydrodynamic phenomena. This book is, therefore, not without interest to the chemist, for the behavior of molecules imbedded in ether is precisely such as falls within the scope of Bjerknes' investigation.

ether is precisely such as falls within the scope of Bjerkhes latter tigation.

It would be going too far to examine the work in detail, and such an examination, without mathematics, would be most unsatisfactory. Investigations like the present are usually made by deriving the particular equations of motion, and then so transforming them that they may be identical in character with those of the known phenomenon which it is aimed to explain. The remainder of the work is an interpretation of corresponding terms, parameters, and constants. Suffice it to add, therefore, that in 1878 Bjerknes investigated the condition of rotational stability of the axis of permanent oscillation of spheres in an oscillating medium, and found both a pulsating pair or a single oscillating sphere to be subject to torque, the final link in his argument.

ment.

A reexamination thus reveals that Newton's first, second, and third laws have all been deduced, inclusive, of course, of inertia. Hydrodynamic forces may be superposed, which is a predication of vector summation. They are independent of the velocity of the body actuated. The system admits of concealed motions (potential energy); it is subject to the law of the conservation of energy, and its potential is subject to Laplace's equation. In a general way hydrodynamic forces vary as the product of the volumes (ultimately masses) of mutually reacting spheres. Specifically, two identically pulsating spheres attract each other, two oppositely pulsating spheres repel each other, with a force varying as the density of the medium and the intensity of pulsation, and inversely as the square of their distance apart. Furthermore, action of magnetic character (attraction, repulsion, rotation) occurs between oscillating and pulsating systems. Finally, heavy spheres of tween oscillating and pulsating systems. Finally, heavy spheres of opposed pulsations attract each other at long ranges and repel each other at short ranges, with a position of stable equilibrium for an intermediate range. The converse holds for spheres lighter than the medium.

It is hardly necessary to give further examples of the contents of this remarkable book. The author has been gracious in collecting the chief dynamic and hydrodynamic principles in the introduction, for the convenience of the reader, but a good working knowledge of applied mathematics is necessarily presupposed.

¹ Vorlesungen über hydrodynamische Fernkräfte, nach C. A. Bjerknes' Theorie. By V. Bjerknes. Band I. 17 by 26 cm., pp. xvi, 33 S. Leipzig: Johann Ambrosius Barth, 1900. Price: paper, 10 marks.

PREVENTION OF HAIL BY CANNONADING.

Several articles have appeared during the past year in American newspapers and journals urging that some trial be made in this country of the new system of cannonading devised by Mr. Stiger in order to prevent destruction by hail. Mr. Stiger is a burgomaster of Windisch-Feistritz, Styria, who conceived the idea that by shooting a vortex ring upward into the cloud he could so disturb the process of the formation of hail as to protect his own vineyards. Within the past five years thousands of the special form of cannon used by him for this purpose, and particularly those devised by G. Suschnig of the manufacturing firm of Karl Greinitz and Nephews at Gratz, have been established in northern Italy and southern Austria. Although it is claimed that by firing these cannon frequently, and when placed quite close together, storms have been diverted, yet the details thus far published are too meagre to afford a basis for any rational opinion as to whether or no the Stiger system is useful. Inasmuch as there is no reason to believe on a priori grounds in its efficacy, we must rely wholly upon a careful discussion of the recorded observations in order to ascertain the efficiency of the cannonading. Such a discussion has not yet come to hand and will, in fact, be very difficult to make, owing to the absence of the long-continued records that are needed in order to establish normal values. Meanwhile, in order to respond to the popular interest in the subject, the Editor has appealed to Mr. Suschnig for information as to the expense and other details attending a fair trial of Stiger's method, and the reply is given below. The printed pamphlets describing the special shooting apparatus manufactured at the forges at St. Katharein on the Lamming, near Bruck on the Muir in Styria, enumerate the following types:

		9 -71							Crown
No.	A-200,	cannon	standing	2.	8	meters high,	price	complete.	110
	B-250,	6.6	66	2.		"	•	"	130
6.6	C-300,	6.6	4.4	3.	3	44		66	160
64	D-350,	6.6	6.6	3.	9	6.6		66	200
86	E-400,	44	44	4.	5	44		44	240

These prices include all the apparatus required in the experiment. It must not, however, be supposed that a single cannon or shooting station is sufficient to produce any decided effect. On this point Mr. Suschnig writes, as follows:

In regard to your question as to where the apparatus can be obtained in America, I must reply that we have not as yet sent any of the apparatus to America because none have ever been asked for from that country. We have only delivered apparatus on our own continent because on the other continents interest has not yet been awakened in this important matter. The only exception is the Asiatic Indian government which has announced to us the visit of its delegates for inspection on their way to the Paris Exposition. We believe that the installation of an observing region of 40 square kilometers, with 40 apparatus in 4 lines would be necessary in order that your Government should obtain reliable studies as material for investigation. We would recommend placing in the first of these lines the apparatus of type E-400; in the second line, type D-350; in the third line, type C-300; and in the fourth line, type B-250; we believe that type A-200 can only be used to advantage at places of high altitude (700-1000 meters above sea level).

The apparatus can be sent to America by us either via Genoa and Gibraltar or via Hamburg.

We consider that the various types of cannon should be adapted to he altitude of the station above sea level. The larger cannon for the lower stations about as shown in the following:

For altitude	0-200	meters		 		 					 		 Type	E
For altitude 2	201-350	meters		 	 	0 4				0	 		 Type	D
For altitude 3														
For altitude	501-650	meters		* 1				 	*	 ×			 Type	B
For altitude 6	350 and	upwar	ds	 									Type	A

It would seem that if there be any small region in this country peculiarly liable to destructive hail the Stiger method could be satisfactorily tried by covering this region with forty firing stations arranged in four lines each 10 kilometers long and 1 kilometer apart, so as to cover 40 square kilo- in the course of the Dyrenforth experiments, made by himself

meters. A kilometer is about 0.62 mile, so that 10 kilometers would represent a little over 6 miles. The cost of the apparatus would be about 7,300 crowns in Austria. Probably we include all other expenses it would cost about \$10,000 to start the experiment at any convenient place in the United States. The annual cost of maintenance would depend upon whether each farmer attends to the apparatus himself or whether several persons are employed to see that the experiment is carried on properly and fairly. We do not recommend any such experiment since we know of no region of this small size in this country that is troubled frequently by destructive hail and it might easily happen that one would have to wait fifty years before having a good chance to try the efficiency of Stiger's vortices. The frequency with which destructive hail occurs at any spot in this country is about the same as the frequency of local tornadoes and with hail, as with the tornado, it is more reasonable and cheaper to insure one's self against the financial loss that may be incurred rather than to protect one's self against the material loss that may occur. In either case, we have to spend money and the loss of money and destroyed material is eventually distributed through the community, just as in the case of fire. Experience has shown that, although up to a certain point, it is wise to protect against fire, yet beyond that point one may waste his money in attempted protection and will do better to spend it in insurance against the inevitable accidents of life.

While the above remarks apply more directly to the economy of Stiger's method of preventing hail, they are not to be considered as implying any doubts as to the scientific correctness of his method. On that point we know too little, either for or against, to justify any very decided opinion in this matter.

Inasmuch as we know that hailstorms are usually accompanied by rapidly ascending currents within large cumulus clouds, it may plausibly be supposed that if the vortices from Stiger's cannon could materially interfere with these currents, they might also interfere with the formation of hail. Stiger himself at first supposed that the calm period that preceded the severe local storm was the feature favorable to the formation of hail, and that his cannonading so greatly disturbed this calm as to prevent the hail from forming, but subsequently he thought that his vortices affected the cloud itself.

Our own conviction is that the energy of the movements within the vortex is too slight in comparison with the energy within a hail cloud to justify us in expecting any appreciable mechanical disturbance. On the other hand, the descriptions of the European experiments show that the Stiger vortex is essentially a white cloud of fine particles resulting from the explosion of the gunpowder. Now, a cumulus cloud is, as is well known, composed of aqueous particles condensed primarily upon dust nuclei. We have already (see Monthly Weather Review, April, 1900, pp. 156-159) explained how the condensation of moisture within a rising cloud is hindered until a state of extreme supersaturation is attained because the condensing moisture has no nuclei on which to collect except the small drops of water already formed. Now, the Stiger vortex brings to the cloud a fresh accession of innumerable dust nuclei and, moreover, nuclei that are especially favorable to the condensation of moisture. This must, therefore, to a moderate degree, facilitate the formation of new drops of water and the prevention of that stage of supersaturation as the result of which large drops of water, or large hailstones, or large snowflakes, and balls of snow are formed.

Although this forcible addition of dust nuclei to a thunder cloud may thus possibly have some effect on the cloud and its hail, yet we are bound to confess that even this hypothesis seems to be inapplicable in view of the fact that and others, both in Texas and in New York, both gunpowder and nitroglycerine were sent both by bombshells and small balloons up into the cloud region and exploded there without any appreciable effect, notwithstanding the immense number of particles of dust and powder thus violently thrown into the cloud. The experiments of Carl Barus, for the Weather Bureau, in 1893–94 (see Weather Bureau Bulletin No. 12), showed that the vapors of phosphorus and sulphur were peculiarly effective in producing cloudy condensation. We have, therefore, no good reason for believing that the Stiger vortices can influence even the molecular processes within the cloud.

THE WEATHER BUREAU IN DOMINICA, W. I.

The Chief of the Weather Bureau has received, under date of July 12, a letter from Dr. H. A. Alford Nicholls, C. M. G., M. D., Vice-President of the Dominica Agricultural Society, informing him that—

The officer in charge of the Dominica branch of your department has been elected an honorary member of the Dominica Agricultural Society.

The pleasure that it gives the Chief to receive this appreciative recognition of the good work that the Weather Bureau is doing in the interests of the general public in the West Indies, is heightened by the receipt of the following letter from Charles E. Ashcraft, Jr., observer Weather Bureau and official in charge of the station at Roseau, Dominica. Mr. Ashcraft says:

I have the honor to inform you that I am in receipt of a letter dated the 3d instant, from the Acting Secretary of the Dominica Agricultural Society, stating that the council of the society has elected me, as the official in charge of this station of the United States Weather Bureau, an honorary member of the Society, and requesting me to inform you of the same.

This action is taken, presumably, as a token of the appreciation of the planters and other residents of Dominica, for the establishment and maintenance of one of our stations in the island. I have already extended, on behalf of the service, thanks for the compliment and assurance that it is an honor duly appreciated.

It is oftentimes difficult to distinguish between the honor due to an individual, on account of his own personal labors, and the honor due to him as representative of a government or institution. In the present case we doubt not that Mr. Ashcraft has taken the proper view of his appointment, and his admirable letter shows that he was eminently worthy of it.

THE NILE FLOODS AND THE INDIAN MONSOONS.

The official journal of the Manchester Cotton Association is entitled "Cotton," and is edited by Richard J. Allen; we copy the following from the number for Saturday, July 14, 1900:

Whether there is any relation between the Nile floods and the monsoon rains in India has been investigated by Mr. John Eliot, the meteorological reporter to the government of India. His investigations suggest that the relation is found more exact and complete than had been supposed. He gathers from the statistics and conditions for the last twenty-five years that during six of these years when the rainfall in India was about normal the Nile was also in very high flood. Mr. Eliot says that the facts are sufficient to indicate that these two agricultural countries, which are almost solely dependent for their prosperity on the distribution and amount of rainfall, are similarly affected by general meteorological conditions and variations of conditions from one year to another. It is suggested that the coincidence is due to the fact that the rainfall of the period June to September or October in Abysinia, the south Arabian highlands, and northern India is derived from a common source. The whole of the regions mentioned become intensely heated in May, when practically no rain falls there. The solar action during that month, he argues, gives rise to meteorological changes which prepare for the advance of the monsoon currents, but do not primarily and directly induce the currents. If the currents are

deflected by local conditions, or if the southeast trade winds are weaker than usual, droughts in India and small rainfall in the Abyssinian highlands result. Last year the currents in question were deflected to south Africa. After June the monsoon current practically collapsed in the Arabian Sea, and during July, August, and September the atmospheric movements were little different from those of May, and little aqueous vapor was brought up by them from the Indian Ocean. What are the influences which cause the deflection of the currents? Mr. Eliot has previously suggested that the problem may be solved by a closer study of the meteorology of Australia, the Indian Ocean, and possibly the Antarctic Ocean. It is suggested that the new cable from the Cape to Australia and a station well south of Mauritius may be useful in enabling observers in India to get more information from the Southern Hemisphere in good time.

We have not yet seen the original paper by Mr. Eliot, to which the above seems to refer, but recall the very important paper by Eliot, published some years since, in which he shows that the southwest monsoon of India can be traced backward across the equator north of Madagascar where it merges into the southeast trade wind of the south Indian Ocean, and that this southeast trade wind is turned northward as it crosses the torrid zone, partly by reason of the great indraught toward the center of Asia and partly also by the resistance of the southeast coast of Africa against which it impinges. That, in fact, the rain that falls among the mountains of the upper Nile region has been abstracted from this southeast trade wind, which then turns toward India where it again gives up its moisture as a southwest monsoon. It would, therefore, be natural to expect an intimate relation between the rains of these two regions. If the southeast trade is feeble or does not extend far enough westward, the Nile, especially the White Nile, will receive less water and, for the same reason, the southwest monsoon will be feeble and India will receive less rain.

In the absence of the article, from which the editor of Cotton has quoted, we have taken the liberty of reprinting, on page 246, an excellent article by Mr. E. Douglas Archibald which has just appeared in Symons' Monthly Meteorological Magazine, giving a summary of the present condition of our knowledge of this subject.

ANOTHER USE FOR THE KITE.

A few years since we had occasion to enumerate the various uses to which ingenious men have applied the kite. Among these was its application to the saving of life by carrying a line from a shipwrecked vessel over the breakers to the wreckers on the shore beyond. We now learn that two young men in Chicago have given an exhibition showing how those within a besieged town or other inaccessible place can use the kite line to carry a telephone, with its separate telephone wire, through the air, and let it drop from the kite upon a distant place while the kite still remains in the air. By using a very large box kite and attaching to the kite line a little way below the kite a pulley through which runs the telephone wire, the telephone may be dropped from the pulley while the insulated wire keeps up the connection with the man at the kite reel. Of course, at the present time, when kites have rarely been sent out with more than two miles of wire, which corresponds to a horizontal distance of much less than two miles, this method does not promise to put us into communication with persons at a great distance, but it may, of course, be very useful for short distances.

A NEW METEOROLOGICAL JOURNAL.

In accordance with the announcement of a year ago, the new meteorological journal, edited by A. J. Monnet and Chr. A. C. Nell, under the title of Nederlandsch Tijdschrift voor Meteorologie, began with the number for July 15, 1900, and

will appear on the 15th of each month hereafter. Subscriptions may be sent to the publisher, T. Noordhoff, at Groningen. Although but few Americans, even in New York, have kept up their knowledge of the Dutch language, yet those who are familiar with English and German will easily read the simple technical language of this journal, and we doubt not that it will find a wide circulation in Holland and her colonies, all of which have done so much for meteorology. The present number contains several leading articles, such as those by Groneman on the caps that form over the cumuli; the editorial review of meteorology in Mexico and of the climate of that country; the summary of Claxton's attempt to standardize the readings of the solar radiation thermometers; Monnet's article on the singing of telegraph and telephone wires as a prognostic of coming weather. These and a number of smaller articles fill up the sixteen pages, with the best of technical matter, presented in as popular a style as is practicable, in a way to thoroughly interest and instruct the reader.

WEATHER CABLEGRAMS FROM THE AZORES.

Paris, giving the forecasters at that place a concise synopsis great success has attended the efforts to protect the pineries of the barometric condition and the storms on this side of the from frost. The Weather Bureau warnings are indispensable Atlantic. Señor Francisco Chaves, Director of the Meteoro- to the success of this important crop.

logical Observatory at Ponta Delgado, on the Island of St. Michael in the Azores, is about to be put in direct connection with both Europe and America and has arranged that the daily cablegram for Paris shall be sent to him also by the Weather Bureau. This cablegram will include information from the Hydrographic Office about the derelicts, ice, and other matters that may interest him. In return for these he will send the Chief of the Weather Bureau such meteorological data as may be of interest to our forecasters and such other information, in regard to storms and vessels as may be desired, either by the Weather Bureau or the Hydrographic Office. These cablegrams will be sent by the Bureau to the Hydrographic office, so that both these institutions will profit by these international exchanges.

PINEAPPLE GROWING IN SOUTHERN FLORIDA.

In the June report of the Florida section Mr. A. J. Mitchell, Section Director, introduces two photogravures illustrating the growth of pineapples in that State. The bulk of the For a number of years past the Weather Bureau has sent a daily cablegram, in cipher, to the Meteorological Office in

THE WEATHER OF THE MONTH.

By ALFRED J. HENRY, Professor of Meteorology.

The chief characteristics of June weather were (1) an unusual persistence of areas of high pressure in the Lake region, giving northerly winds and cool weather; (2) heavy rains and excessively cloudy weather in the east Gulf States and average in New England, New York, eastern Pennsylvania, Tennessee, the western part of Virginia, and the District of Columbia; (3) high temperatures west of the one hundredth meridian; and (4) absence of severe local storms and tornadoes.

PRESSURE.

The distribution of monthly mean pressure is graphically shown on Chart IV, and the numerical values are given in Tables I and X.

Mean pressure was highest (30.04 inches) on the north Pacific coast and lowest (29.70) in the middle Plateau region. It was decidedly below the normal (from .05 to .10 inch) in the upper Missouri Valley, the northern Rocky Mountain region, and thence westward to the Pacific coast. Pressure was also below normal from the central Mississippi Valley northeastward to Newfoundland and the mouth of the St. Lawrence. The regions over which pressure was in excess of the normal were the immediate coast of the Carolinas, a portion of the eastern Rocky Mountain slope, the upper Lake region, and a portion of the California coast.

TEMPERATURE OF THE AIR.

The distribution of monthly mean surface temperature, as deduced from the records of about 1,000 stations, is shown on Chart VI.

Temperature was above the seasonal normal from about the ninety-fifth meridian westward to the Pacific. Over this large area temperature was from 1° to 7° above the normal throughout the month. Temperature was also above the seasonal and New Jersey. In the upper Lake region and thence southeastward to the Gulf and south Atlantic coasts temperature was below the seasonal average by amounts ranging from a fraction of a degree to nearly 3° in extreme cases.

Average temperatures and departures from the normal.

Districts.	Number of stations.	Average tempera- tures for the current month.	Departures for the current month.	Accumu- lated departures since January 1.	Average departures since January 1.
		0	0	0	0
New England	10	63 6	+ 0.8	+ 2.8	+ 0.4
Middle Atlantic	12	71.4	+ 0.6	+ 1.0	+ 0.2
South Atlantic	10	76.7	- 0.5	- 4.9	- 0.8
Florida Peninsula	7	77.9	+ 0.1	- 6.5	- 1.1
East Gulf	7 7 7	77.8	- 1.1	- 8.2	- 1.4
West Gulf		80.8	+ 1.2	+ 1.3	+ 0.2
Ohio Valley and Tennessee	12	78.5	- 0.5	- 3.4	- 0.6
Lower Lake	8	66.6	0.5	- 2.5	- 0.4
Upper Lake	9	61.6	- 0.7	+ 6.0	+ 1.0
North Dakota	. 8	67.2	+ 2.7	+29.0	+ 4.8
Upper Mississippi Valley	11	71.1	- 0.1	+ 5.5	+ 0.9
Missouri Valley	10	72.1 68.7	+ 1.5	+16.6	+ 2.8
Northern Slope	7	74.2	+ 5.9	+30.0 +12.8	+ 5.0
Middle Slope Southern Slope	6	76.8	1 0.9	12.5	+ 2.1 + 0.4
Southern Plateau	15	75.4	T 0.7	711.7	7 2.0
Middle Plateau	9	69.2	T 5.8	124.6	T 4.1
Northern Plateau	10	66.2	1 5.2	23.2	T 3.9
North Pacific	9	59.6	1.4	13.9	+ 2.3
Middle Pacific	5	62.7	10.9	18.2	+ 1.4
South Pacific.	4	68 2	+ 1.7	+11.2	+ 1.9

Maximum temperatures ranging from 100° to 109° were quite generally recorded from the Rio Grande Valley northward over the eastern slope of the Rocky Mountains to the British Possessions. A maximum temperature of 100° was not recorded at any Weather Bureau station in the Mississippi Valley or to the eastward thereof during the month.

In Canada.—Prof. R. F. Stupart says:

The mean temperature was equal to or above average over the whole Dominion, excepting in the upper Ottawa Valley, the districts of Algoma and Nipissing, and in some few localities in eastern Ontario. The greatest positive departures, about 4°, occurred in Manitoba and Assiniboia, and the largest negative departures reported were 2°, at both White River and Bisset, in Ontario. Extremes were pronounced, and especially so in Manitoba and the Territories, where from 6th to 8th and on the 13th a cold wave prevailed, and frost was recorded in many parts. This was followed, about the middle of the month, by intense heat, and June 21 to 23 the temperature rose above 100° in most localities.

PRECIPITATION.

The month was a dry one except in some districts, where the downpour was remarkable. The regions having a heavy fall were: Mississippi, Alabama, Georgia, Florida, the Carolinas, the District of Columbia, portions of Virginia, and the north Pacific coast. In the last-named region as much as 10 inches of rain fell in localities where the normal June rainfall is less than half as much. Taking the region as a whole the fall was 188 per cent of the normal. In the east Gulf States the fall was even more extraordinary, the average for the district being 13.02 inches, or 254 per cent of the normal. In some of the regions of heavy rainfall, as in the District of Columbia, the fall was local, places 30 to 40 miles distant receiving only a half or a third as much, but in both the east and west Gulf States and Tennessee the fall was uniformly heavy. Less than the usual amount of rain for June fell in the Lake region, the upper Ohio, the middle and upper Mississippi and the Missouri valleys, the eastern slope of the Rocky Mountains, and locally throughout New York, the Middle Atlantic States, and New England.

Average precipitation and departures from the normal,

Districts.	umber stations.	Current	Percent-		Accumu
	Z	month.	age of normal.	Current month.	lated since Jan. 1.
		Inches.		Inches.	Inches.
New England	10	2.19	65	-1.2	+ 0.5
Middle Atlantic	12	8.96	108	+0.8	- 2.8
South Atlantic	10	6.30	126	+1.8	+ 1.6
Florida Peninsula	7	9.26	146	+2.9	+ 9.7
East Gulf	7	13.02	254	+7.9	+11.1
West Gulf	7	3 98	108	+0.1	+ 0.6
Ohio Valley and Tennessee	12	4.97	119	+0.8	- 5.1
Lower Lake	8	2.68	75	-0.9	- 1.3
Upper Lake	9	2.06	55	-1.7	- 4.1
North Dakota	8	1.53	39	-2.4	- 5.1
Upper Mississippi Valley	11	2.84	61	-1.8	- 3.8
Missouri Valley	10	3.47	81	-0.8	- 8.8
Northern Slope	7	0.77	35	-1.6	- 1.4
Middle Slope	6	1.93	62	-1.2	- 0.1
Southern Slope	6	2.10	60	-1.4	+ 1.0
Southern Plateau	15	0.29	59	-0.2	- 1.1
Middle Plateau	9	0.29	49	-0.8	- 1.1
Northern Plateau	10	0.86	59	-0.6	- 1.5
North Pacific	9	4.27	188	+2.0	- 0.8
Middle Pacific	5	0.67	118	+0.1	- 4.5 - 4.5

In Canada.-Professor Stupart says:

The rainfall was in excess of the normal in British Columbia and Alberta; also in some few localities in the more eastern and central counties of Ontario, in the eastern townships and in New Brunswick, near the Bay of Fundy. In Manitoba and the larger portion of the territories, however, there was a pronounced drought, and a deficiency was also marked in Ontario near the shores of the Great Lakes. In Alberta the rainfall seems to have been ample. On June 8 there was an all-day snowstorm over the greater portion of Alberta; four inches lay on the ground in some localities. In Manitoba there was scarcely any rain until quite the end of the month, after great damage had been done by drought and intense heat. The only really good rain in southern Ontario occurred on the 1st, when over an inch fell.

HAIL

The following are the dates on which hail fell in the respective States:

Alabama, 5. Arizona, 28. Arkansas, 11. California, 10, 11, 13, 15. Colorado, 1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30. District of Columbia, 8. Florida, 18. Georgia, 16. Idaho, 3, 4, 8, 14, 15, 23, 24, 30. Illinois, 11, 28, 29. Indiana, 29. Indian Territory, 8. Iowa, 6, 9, 12, 16, 21, 30. Kansas, 1, 2, 4, 6, 7, 8, 9, 11, 12, 15, 16, 17, 20, 21, 27, 28, 29. Kentucky, 7, 8, 30. Louisiana, 8, 14. Maryland, 8. Michigan, 5, 7, 26, 27, 29. Mississippi, 4. Missouri, 6, 7, 8, 10, 12, 13, 16, 17, 21, 23, 29. Montana, 2, 8, 16, 18, 22, 23, 24, 25, 27. Nebraska, 1, 2, 3, 6, 9, 11, 12, 14, 15, 16, 17, 20, 27, 28, 29. Nevada, 10, 13. New Jersey, 27, 29. New Mexico, 2, 7, 8, 10, 11, 12, 16, 19, 20, 21, 23, 25, 26, 29. New York, 2, 3, 8, 19, 26, 27, 28. North Carolina, 8, 30. North Dakota, 2, 12, 26, 27. Ohio, 7, 8, 21, 27, 28. Oklahoma, 1, 8, 9, 11, 13, 18. Oregon, 13, 15, 23, 29. Pennsylvania, 2, 8, 11, 18, 19, 28. South Dakota, 12, 27. Tennessee, 30. Texas, 4, 10, 19. Utah, 9, 10. Virginia, 8, 11, 21, 26, 30. Washington, 24, 29, 30. Wyoming, 3, 9, 10, 14, 24.

WIND.

The maximum wind velocity at each Weather Bureau station for a period of five minutes is given in Table I, which also gives the altitude of Weather Bureau anemometers above ground.

Following are the velocities of 50 miles and over per hour registered during the month:

Maximum wind velocities.

Stations.	Date.	Velocity.	Direction.	Stations.	Date.	Velocity.	Direction.
Boise, Idaho	18	55 54	nw.	Mount Tamalpais, Cal. New York, N. Y	90 97	67 50	nw.
Denver, Colo El Paso, Tex Do	14 23 24	51 50 52	nw. ne. nw.	Oklahoma, Okla Pierre, S. Dak	28 18 27	54 50 52	nw. nw.
Lincoln, Nebr Mount Tamalpais, Cal	30 1 17	50 50 53	nw. nw.	Point Reyes Light, Cal. Sioux City, Iowa Springfield, Mo	30 16 17	72 50 63	nw. se. nw.
Do	18 19	60 59	nw. n.	Williston, N. Dak	7	50	DW.

SUNSHINE AND CLOUDINESS.

The distribution of sunshine is graphically shown on Chart VII, and the numerical values of average daylight cloudiness, both for individual stations and by geographical districts, appear in Table I.

Average cloudiness and departures from the normal.

Districts.	Average.	Departure from the normal.	Districts.	Атегаде.	Departure from the normal.
New England	4.7 5.5 5.8 5.5	-0.4 +0.5 +0.9 0.0	Missouri Valley	4.4 3.8 3.8 2.8	-0.4 -1.0 +0.1 -1.6
Kast Gulf	6.6 4.4 6.0 4.7 4.5	+1.8 -0.2 +1.0 -0.2 -0.7	Southern Plateau	2.8 3.3 4.1 6.0 4.4	+0.4 +0.8 -1.0 -0.1 +1.2
North Dakota Upper Mississippl.	3.7 4.7	-1.5 -0.3	South Pacific Coast	3.6	+0.8

HUMIDITY.

Average relative humidity and departures from the normal.

Districts.	Average.	Departure from the normal.	Districts.	Average.	Departure from the normal.
New England Middle Atlantic South Atlantic Florida Peninsula East Gulf West Gulf Ohio Valley and Tennessee. Lower Lake Upper Lake North Dakota Upper Mississippi	75 72 81 80 83 79 76 69 70 57	- 5 - 1 + 3 - 1 + 8 + 5 + 6 - 3 - 3 - 11 - 3	Missouri Valley Northern Slope Middle Slope Southern Slope Southern Plateau Middle Plateau Northern Plateau North Pacific Coast Middle Pacific Coast South Pacific Coast	\$63 53 61 58 27 28 48 76 67 66	- 6 + 2 - 3 - 4 - 4 + 2

respectively.

Thunderstorms.—Reports of 5,736 thunderstorms were received during the current month as against 5,253 in 1899 and 3,855 during the preceding month.

The dates on which the number of reports of thunderstorms for the whole country were most numerous were: 27th, 385; 28th, 374; 8th, 268.

Reports were most numerous from: Missouri, 522; Illinois, 283; Colorado, 275; Pennsylvania, 246.

Auroras.—The evenings on which bright moonlight must have interfered with observations of faint auroras are assumed to be the four preceding and following the date of full moon, viz, 8th to 16th.

In Canada.—Auroras were reported as follows: Father

Point, 2d; Minnedosa, 4th, 23d.

Thunderstorms were reported as follows: Halifax, 30th; Grand Manan, 27th, 28th, 29th, 30th; Yarmouth, 2d, 3d, 28th, 30th; Charlottetown, 21st, 30th; Father Point, 2d; Quebec, ATMOSPHERIC ELECTRICITY.

Numerical statistics relative to auroras and thunderstorms are given in Table VII, which shows the number of stations from which meteorological reports were received, and the number of such stations reporting thunderstorms (T) and auroras (A) in each State and on each day of the month, respectively. 5th, 14th, 17th, 22d, 23d, 26th.

DESCRIPTION OF TABLES AND CHARTS.

By Alpred J. Henry, Professor of Meteorology.

For description of tables and charts see page 214 of Review for May, 1900.

TABLE 1 .- Climatotogical data for Weather Bureau Stations, June, 1900.

			on of		sure, i	inches.	Te	mperat			he a		de	gree		eter.	Jo e	-pju		pitation	n, in		w	ind.				,	688,	
	above feet.	ters	er.	. 8	4	from .	+01	from .			um.			B.	aily	rmom	temperature	e hun		from	or,	ent,	direc-		aximu			days.	cloudiness,	9.
Stations.	Barometer al sea level, fe	Thermometer	Anemomete	Mean actual, 8	Mean reduced	Departure fi	Mean max. mean min. +	Departure fine	Maximum.	Date.	Mean maximum	Minimum.	Date.	Mean minimum	Greatest da	Mean wet thermometer	Mean tempe	Mean relative humid- ity, per cent.	Total.	Departure finder normal.	Days with .01, more.	Total movement, miles.	Prevailing di	Miles per	Direction.	Date.	Clear days.	Partly cloudy	Cloudy days. Average cl	tentus
New England. astportortland, Meorthfieldoston	12		89 65 181	29.7 29.0 29.7	8 29.8 0 29.9 9 29.9	806 102 203	63.6 56.6 64.8 62.4 68.6 61.6	+ 0.8 + 1.5 + 1.5 - 1.2 + 2.8 + 0.4	84 91 88 94 78	21 28 27 27 27	65 74 76 78 67	41 44 89 46 47	5 5 18 5 5	48 56 49 59 56	34 30 39 31 20	53 57 57 61 58	51 51 52 56 56	75 85 66 68 67 86	2.19 4.00 1.25 2.33 1.85 1.50	- 1.2 + 0.5 - 2.1 - 1.2 - 1.2 - 1.3	9 5 9 9 8	5, 871 5, 220 6, 018 8, 277 7, 817	sw. s. sw. sw.	30 26 36 87 33	sw. nw. se. w. ne.	30 29	14 7 18		4. 9 5. 6 4. 10 5. 7 4. 11 6.	4 5 4
oods Hole :	26	90 11	57 55 70	29.9	29.9		62.5	+ 0.5 + 0.3	81 88	25 25	68 74	48	5	57 56	91 27	58	56	84	1.24 0.75	- 1.3 - 1.8	8 6	11, 277	sw.	42	ne.	4	12 22	13	5 4.5	
w Havend. Atlan. States. bany	97	84	118	29.8			67.6 71.4 70.4	+ 0.8 + 0.6 + 1.4	90	27	77 81	46 58	5 8	58 60	27 31	61	55	72 72 61	1.79 3.96 3.54	+ 0.3 - 0.1	8	6, 358 5, 360	sw.	36	nw.	28	20 9	3 7 19	2 4.5	5
nghamton w York rrisburg iladelphia lantic City pe May itimore sshington	314 374 117 56 17 192 118	106 94 168 68 47 68 50	3 346 1 104 3 184 3 76 51 82 76 76 34	29.6 29.8 29.9 29.9 29.8 29.8	3 29.9 4 29.9 2 29 9 7 29.9 4 29.9 5 29.9	302 303 .00 .00 01 02	66.8 71.4 72.2 73.0 67.5 68.1 73.4 72.2 74.6	+ 0.5 + 2.4 + 1.7 + 1.3 + 0.7 - 0.1 - 0.1 - 1.0 + 1.5	89 91 92 93 90 89 93 96 96	****	78 79 81 82 74 74 83 82 82	45 56 54 55 51 51 55 54 54	10 5 20 17 5 5 5 6	55 64 63 64 61 63 65 68	87 22 82 89 25 21 81 29 31	62 64 63 63 66 66	58 59 61 62 62	70 66 82 79 74	1.54 3.36 2.88 2.82 2.33 2.38 4.34 10.94 2.59 8.31	- 1.8 + 0.2 - 1.4 - 0.3 - 0.9 - 1.1 + 0.3 + 6.9 - 1.4 + 4.8	12 11 12 12 8 8 11 11	4, 223 8, 447 4, 702 7, 010 7, 600 5, 424 3, 715 4, 250 8, 870	SW. SW. SW. SW. SW. SW. SW. SW. SW. SW.	30 54 30 28 28 22 19 32 35 25	w. nw. w. sw. nw. ne. n. ne.	29 27 30 17 30	4 10 8 11 10 7 11 7	10 8 14 16 13 10 16	10 6.1 10 5.0 12 6.0 11 5.1 6 4.0 7 5.0 10 5.1 9 5.1 7 5.4	60566924
rfolk hmond	91	109	111		29.9		72.9 74.7 74.6 76.7	- 1.3 - 0.4 - 0.5	92	29 29 27	82 83 84	56 56 56	20 6 20	64 67 66	27 29 28	68	64 66	77 77 81	2.52 3.08 6.30	+ 1.3 + 1.3	14 8 10	2, 497 7, 011 3, 685	sw.	38 30	nw. nw.	25 14	9	14 12 16	9 5 4	4
arlottetterastyhawkeigh	11	17 12 98 82	36 30 101 90	29. 1 29. 9 29. 6 29. 9 29. 9	29.90 30.00	01 + .01	74.8 75.0 74.6	$ \begin{array}{r} -1.0 \\ +1.0 \\ +0.4 \\ +0.3 \\ -1.3 \\ -0.7 \end{array} $	92 85 92 94 91 92	11 30 * 29 25 28	84 79 81 85 82 83	57 62 58 57 57 66	19 20 6 20 20 19	66 71 68 67 68 74	25 12 24 24 20 15	68 71 69 70 72	65 69 66 68 70	78 85 77 80 78	7.81 2.83 8.65	+ 2.7 - 1.7 - 1.0 + 4.5 - 1.1 + 0.6	16 9 8 16 15	4, 492 9, 146 10, 228 4, 394 5, 638 7, 875	SW. SW. SW. SW.	29 39 30 28 29	sw. n. sw. nw.		3 13 18 9 7	13 9 14	19 7.6 4 4.3 8 8.6 7 5.8 10 5.4 8 5.7	3 6 3 4
umbia gusta annah ksonville rida Peninsula.	180 65 43	5 89 79 69	108 89 84	29.77 29.90 29.90	29.96	00	77.6 77.9 78.4 79.6 80.2	- 0.5 - 1.6 - 0.9 - 0.5 - 0.3	95 98 94 94	29 30 30	87 86 86 87	59 61 66 67	20 20 20 30 3	68 69 71 73	25 21 19 22	71 73 78	69 72 72	80 86 83 80	6.80 8.25 6.31	+ 2.6 + 3.6 - 0.3 + 3.0 + 0.4	17 18 15 16	4, 237 5, 193 5, 701	sw. s. sw. se.	29 32 37	sw. sw. s.	24 17 7	1 3	14 15 19	14 6.8 14 7.1 8 5.2 13 7.0 5.5	1
Westapa. Westapa. set Gulf States.		60	50 67	29, 90 29, 90 29, 90	29.97	02	79.8 81.2 79.6 77.8	$ \begin{array}{r} + 0.8 \\ - 1.8 \\ - 0.4 \\ - 1.1 \end{array} $	87 88 93	30 26	84 85 87	70 79 67	8 13 1	75 77 72	15 12 22	75 75 74	78 72 72		7.88 13.02	- 8.8 + 4.7 + 0.3 + 7.9	16 11 20	6,840 5,192 4,455	se. se. e.	30 24 26	s. ne. se.	23	15	18 12 21	5 5.4 8 4.1 9 7.1 6.6	1
anta con sacola bile tgomery idian ksburg v Orleans	870 56 57 293 875 947 51	98 78 88 100 84	99 90 96 112 98 73	29. 86 29. 66 29. 66 29. 84	29.96 29.96	08 08	76.6 78.4 78.2 77.2 76.2 77.8 80.0	- 1.6 - 1.0 - 1.5 - 2.2 - 1.4 - 1.8 - 0.8	91 94 92 92 92 90 94 92	30 10 10 30 10 10	82 85 84 84 85 84 85 87	58 62 68 69 65 65 63 68	19 20 19 21 5 8 18	67 68 73 73 70 69 70	19 18 27 22 28	74 71 72 74	73 69 70 72	86 83	6,69 11,79 26,67 7,23 20,06 11,33	+ 5.0 + 6.4 +20.8 + 2.6 +15.2 + 7.0 - 1.5	19 19 17 22 19 25 17	5, 611 4, 123 8, 376 6, 208 4, 585 3, 966 4, 005 5, 283	se. sw. s. s. sw. sw.	32 29 42 38 37 27 35 34	w. s. nw. sw. n. nw. nw.	27 23 19 18 5 17 18	7 6 4 8 5	27 12 14 8 13 8	8.8 3.5.6 11.6.0 10.6.4 18.7.8 14.7.1 17.6.8 7.5.7	604315
st Gulf States. eveport t Smith le Rock ous Christi	949 457 857 18 670	77 74 98 42 106	50 114	29. 61 29. 36 29. 51 29. 86	29.87 29.86 29.88	00 06 07 08	80.9 80.3 80.3 78.0 76.6 82.2	+ 1.0 + 1.2 + 0.4 + 1.9 + 0.4 + 2.8	99 97 95 94 97	18 17 27 10 23	87	68 64 64 70 63	24 7 17	75 71 69 68 76 71	27 25 25 26 20	79 71 71 71 77	70 68 70 75	79 79 77 85 80	4.31 3.98 6.80 5.93 5.52 0.77	+ 0.1 + 3.0 + 1.6 + 1.2 - 1.9	11 10 18 4 3	3,955 3,960 4,213 8,349 7,202	sw. s. e. ne. se. s.	30 42 44 86 38	se. n. nw. ne. e.	1 7 17 4	18 11 7 2 22 17	2 ; 4 ; 15 ; 17 ; 7 ;	5 5.7 8 5 9 1 6.5 1 2.3 1 8.2	1000
stine	510 701	95	61 104	29.81 29.33 29.18	29.86	09	80.4 82.8	+ 0.2 + 1.2 + 2.1 - 0.5	91 95 100		86 90 94	68 66 67	19 14 3	77 71 71	17 27 29	77 78 72	76 70 68	83 77 69 76	2.55 0.78 4.97	+ 0.6 - 1.7 - 1.9 + 0.8	9 6	5, 357 4, 495 4, 184	s. s. se.	82 40 24	nw. nw. nw.		11 19	14 11	6 4.8 5 4.6 0 8.0 6.0	3
ttanooga xville aphis hville ngton sville	1,004 897 546 989	10 140 128 75	112 88 154 184 102 186	29. 17 28. 93 29. 48 29. 37 29. 87	29.90	05 06 04	74.6	- 0.6 + 1.0 - 2.4 - 1.4 - 1.8 - 0.8	90 92 93 92 89 98	10 10 10 29	81	61 59 65 61 53 54	99 19 14 28 4 3	67 66 69 68 64 66	27 24 30 28	69 68 71 69	67 67 69 66		2.19	1.8 2.3 6.8 6.0 2.1 1.0	28 18 16 19 14	8, 935 4, 298 5, 918 4, 422 5, 887 5, 680	se. sw. s. s. ne.	30 38 38 35 27 35	nw. s. w. se. s. nw.	6 1 17 5	11 0 8 4	11 12 10 10 19	4 7.0 8 5.0 8 7.8 7 7.4 7 5.7 0 5.8	3
nsville anapolis innati mbus sburg ersburg	484 822 628 834	79 154 159 87 116 77	82 164 157	29.08 29.29 29.00 29.06 29.31	29.98 29.95	04 09 04 04 09	74.5 71.0 73.3 71.9 72.4 72.6 67.0	- 1.5 - 0.5 + 0.6 + 0.8 - 0.1	91 90 92 92 94 91	29 28 29 10 24 29	84 82 80 81 82 82 82 82	55 51 58 50 54 52 44	3 3 4 4 20 19 20	67 62 65 62 63 64	24 25 27 36 32 34	64 66 64 63 65	60 62 59 59 62	71 71 69 67 75	11.44 4.42 1.01 2.45 3.25 8.64 5.93	- 0.2 - 3.4 - 1.1 - 0.2 - 0.5	16 11 9 15 11 20	5, 017 6, 663 5, 101 5, 457 4, 439 3, 324 2, 689	ne. ne. ne. sw. n.	28 87 26 27 26 33 23	w. se. nw. e. sw. n.	1 26 29 24 1 1 29 1	8 6 10 7	14 15 13 1 8 1 8 1 92 6 1	8 5.6 9 5.9 1 6.2 2 5.6 1 4.6 1 4.9 4 6.8	30000
er Lake Region. alo ego eland lusky do	767 835 533 713 762 629 628	76 81 92 190 62	906 87 90 102 901 70 128	29. 14 29. 57 29. 38 29. 20 29. 15 29. 28 29. 29	29.94 29.93 29.94 29.95 29.95 29.95 29.95	01 08 01 00 02 08	62.9 67.4 66.6 66.4 68.6	- 1.1 + 1.0 - 0.4 - 0.6 - 0.4	87 86 90	26 26 6 6 26	74 72 78 74 74 76 76	48 48 46 49 50 51 48	30 3 30 8 3 3	57 59 59 61	33 37 29 32 32	59 57 59 61 61 62 61	58 58 58 57 57 58 57	69 64 70 61 72 72 71 72 72 70	1.22 - 1.29 - 2.43 - 3.99 - 1.53 -	- 0.9 - 2.3 - 2.1 - 0.8 + 0.1 - 2.3 - 0.8	9	8,406 6,193 5,079 6,678 9,068 5,680 6,778	sw. sw. ne. ne. ne.	45 28 28 35 54 81	sw. w. sw. n. w. w.	80 1 27 1 29 1 7	12 16 10 9 5	9 13 18 14 1	4.7 6 5.6 6 4.2 5 3.7 7 5.0 3 4.4 1 6.2 8 3.9	
roit er Lake Region ina inaba di Haven quette Huron	730 ; 609 612 632 734 638	61 43 55 67	166 57 64 95 108	29. 17 29. 31 29. 30 29. 27 29. 17 29. 30	29.94 29.96 29.95 29.94 29.95 29.98	+ .02 + .03 + .00 + .01	66.6 61.6 60.5 60.2 63.2 59.8	- 1.8 - 0.7 + 0.2 - 0.8 - 1.2 + 0.8	94 85 84 94	24 26 24 25 26	76 70 69 72 89	48 41 40 44 40	9 9 9	57 51 51 54 51	27 39 28 28 39	61 55 55 58 54	50 50 54 49	68 70 69 69	3.99 - 2.06 - 2.41 - 1.45 - 1.43 - 2.26 -	+ 0.3 - 1.7 - 1.3 - 2.4 - 2.4 - 1.2 - 0.9	9 11 8 10	6,098 6,411 6,262 5,563 6,570	ne. nw. s. nw. nw.	29 36 32 24	nw. nw. nw. nw.	27 1 29 1 29 1 29 1 28 1	12 : 17 : 10 : 18 : 10 :	6 13 9	6 4.9 4.5 7 4.0 7 4.5 8 8.2 7 5.5 5 4.8	
t Ste. Marie ago vaukee on Bay th orth Dakota.	614 823 9 681 1 617 702	40 41 94 49	61 274 142 57	29, 28 29, 29 29, 25 29, 31 29, 19	29.98 29.96 29.97 29.96 29.94	+ .08 -00 + .02 + .02 + .01 + .02	64.0 - 63.2 - 64.5 - 59.2 -	- 2.3 - 2.7 - 0.1 - 2.2 - 1.4	98 90 92	26 27 26 26	72 88 70 72 76 18	42 36 48 46 42 42	12 8 3 9	48 58 55 53	34 92 95 81	58 56 58	51 52	68 77 65 66 71	3.16 -	- 0.9 - 0.1 - 1.8 - 2.2 - 1.0 - 3.5 - 1.9 - 1.8	10 10 8 10	5, 742 0, 459 6, 512 5, 807	ne. e.	38 44 30 82	n. nw. sw. ne. sw. nw.	29 1 10 1 22 1	16 11 12 11	6 15 9	8 4.3 4 4.5 9 4.6 5 5.4 8 4.5	
rhead	1.674	54 16 15	60 29 81	28.92 28.14 27.91	29, 91 29, 86 29, 83	+ .04 00 01	67.7 66.2 67.8 69.0	- 3.7 - 1.4 - 4.0 - 5.7	95	25 8	9 90 8	36 39 38	8 8	56	45 13 11	59	51	61 59	2.32 -	- 1.9 - 1.8 - 1.2 - 2.8	11 5 6	8,056	80. 80.	38	se. s. nw.	9 1 14 1 7 2	12 1	9	3.7 5 4.5 4 3.8 0 2.9	

TABLE I. - Climatological data for Weather Bureau Stations, June, 1900-Continued.

	Elev			Press	ure, in i	nches.	Те	mperat		of t			deg	rees		eter.	o	-pju	Preci	pitation	n, in		W	ind.					000	688,
	above feet.	ometers ground.	1.	œ +	ž.	from .	+01	from .			.		T		ally	wetthermometer	temperature e dew-point.	ive humid-	1	from .	1, or	ent,	direc-		axim:			y days.	9.	louum 18.
Stations.	er,	Thermom above grou	Anemometer above ground.	Mean actual, m. +8p.m.	Mean reduced	Departure in normal.	Mean max mean min.	Departure f	Maximum.	Date.	Mean maximum	Minimum.	Date.	#	Greatest da		dend	elat.	Total.	Departure f	Days with .01, more.	Total movement, miles.	Prevailing d	Miles per	Direction.	Date.	Clear days.	Partly cloudy	oudy day	Average clo tenths.
pper Miss. Valley.		99	208		1		71.1 68.8	- 0.1	94	25	80	46	8	57	29			68	2.84	- 1.8		0 700		49		10	10	14		4.7
Paul Crosse	837 714	114		29.04	29.92	.00	69.0 68.8	$+\frac{1.8}{-0.1}$	95 94	25 26	80 80	47 49	8	58 57	30	58	51	56	2, 21 1, 98 2, 19	-1.6 -2.4 -2.3	6 7	8,788 5,611 4,347	8. 80. 8.	48 34 30	nw.	18 28 26	10 10 18	16 12		4.4
venports Moines	606		79 88	29.28 29.03	29,92 29,94	02 + .03 + .01	70.4	- 0.5 0.0	90 91	7 26	80 80	53 50	4	61	26 29	62 68	57 59	64 69	1.01	- 3.4 - 0.5	5 7	5, 389	ne.	25 44	sw.	27	11	14 16	5	4.5
buque	698	101 63	109 78	29, 21 29, 28	29,94 29,92	+ .01	69.7 71.9	$^{+\ 0.2}_{-\ 0.6}$	92	25 28	80 81	51 58	11	60	33 28	64	58 59	58 68	2.04	- 8.9 - 3.5	6 9	5, 012 4, 755	nw.	29	nw.	10	18 18	10	2	8.9
ro ingfield, Ill	356		98	29.53 29.25	29.91 29.92	04 03	74.5	- 0.9 - 0.3	90 92	29 28	82 82	61 51	3	67 62	28 28	70 63	68 59	87 68	10.07	+5.6 -3.0	18	4,784 5,652	ne.	45	nw.	10	1 8		15 '	7.5
nnibal Louis	534	75 111	110	29.31	29.90	04	72.8 74.4	- 0.4 - 0.8	92 93	28 10	82 82	54 55	3	64	27 25	67	64	78	1.75 2.62	- 2.6 - 2.5	12	5, 585 6,813	ne.	85 42	86. W.	24 13	8	12	10	5.0
issouri Valley. umbla	784		84		20.00		72.1 73.6	+1.5 -0.8	93	29	84	51	4	63	32	0.	04	63	3.47 5.02	- 0.8 + 0.5	13	4,686		38		6	3			4.4
sas City ingfield, Mo	963	78	95 103	28.91 28.53	29.91 29.89	01 05	73.8	+ 0.4	95 92	6 27	88 89	57 58	3	65	27 28	65 67	60 65	65 79	4.33	- 0.6	10	5,030	e. e.	42	nw.	27	8	14	8	5.1
eka		81	84	28.65		03	78.0 74.2	+ 1.0	101	27	85	54	28	63	35				2.54	+1.6 -3.0	12	5, 437	ne.	63	nw.	17	11 5	16 25	0	4.
ahaentine	1,105	115	121	28.75	29.88	02	72.2 72.8	+ 1.1	98 94	26	84 82	51	2	63	26 26	63	58	65	2.50 3.07	-1.9 -2.6	6	6, 991 5, 391	s. se.	50 34	nw. n.	1	16	12	8	3.1
1x City	1,135	96	164 164	27.23	29.86	04	70.6 69.8	- 0.5	102 96	26	84 82	48	2	58	45 89	60	51	56	1.24	-2.2 + 0.9	9	8,131	s. se.	50	s. se.		13 15	12	4 1	3.8
on	1,572 1,306	56	19 67	28.23 28.52	29.84 29.88	02 02	72.6 69.0	+ 2.8	102 95	21	85 82	46 35	2	56	42	59 60	50 58	50 62	3.39 4.00	+0.4	8	9,701 9,417	se.	52 44	nw. se.	9		8	1 1	3.1
ktonorthern Slope.		52	58			*****	71.4 68.7	+ 5.9	100	1	83	45	5		31	••••	• • • •	53	1.88 0.77	-2.4 -1.6	6	6,086	е.	36	nw.	27	14	10	6	3.1
s City	2,505 2,371	42	47 50	27.24 27.35	29.80 29.75	06 10	68.2 73.6	+ 6.6	108 106		88 88	37 40			46	55 63	46 57	51 61	0.62	-2.4 -2.7	6 5	8,301 5,382	w. nw.	40	w. e.		21 22	8		3.6
spell	4,110 2,965	88 45	93 51	25.75 26.85	29.83 29.87	08	66.1	+ 6.7	102 92	21	78 74	39	1	54 49	38 38	54 51	42 43	49 58	0.19 1.40	- 2.2	5 9	5,877 5,039	8W. 80.	44 34	sw. se.		12 17	11	7 4	4.5
id City	3,234 6,088	46 56	50 64	26.54	29.77	10 01	69.8	+ 5.6	102	30	88	45	10	57	46 40	58 51	48 38	51 43	2.13 1.01	-1.8 -0.5	8	4,311 6,839	80. 8.	24 88	se. w.	8	17	8	5 8	8.
h Platte	5,372 2,821	28 43	36 52	24.63 27.08	29.86 29.87	+ .01	65.8 72.2	+ 6.7	95 100	29	83 85		10	48	43	52 63	41 58	48	0.89	-0.8 -2.0	5	3, 236 6, 577	sw.	38 43	w.		11		1 4	4.
fiddle Slope.	5,291		151	24.74			74.2	+ 2.6	96		85				35	56	47	61	1.93	- 1.2	4	5, 906					20	9	1 3	3.
olo	4,685 1,398	80 42	86 47	25.28 28.45	29.86	+ .05	71.5	+ 3.2	100	27	86	47	11	57	40	56	45	48	0.67	-0.6	6	4,711	sw.	51 46	nw.	2	21	9	0 8	8.
(0	2,509	44	52	27.33	29, 89 29, 85	+ .01 + .02	74.6	+ 2.0	104	27	88 87	55	10	62	34	65 65	60	68	2.62	-2.2 - 0.7	8	4,775 6,715	8. 80.	85 45	sw. nw.	10	16	17 13	1 8	3.
homa	1,358 1,214	78 54		28.49 28.60	29.88 29.85	+ .02		+ 1.2	98		96 98	58 59		65	80 27		62 65	67 70	3.41 0.74	-1.8 -2.4	5	5, 098 5, 821	8e. 8.	39 50	n. nw.	18	15 12		8 4	3.
ene	1,788	45		28.07	29.83	06	81.2		105		93	63					61	58 56	0.30	- 2.2 - 3.0	2	5,777	80.	24	8.	16		13	0 8	3.
rillothern Plateau.		54		26.21		02	79.3	+ 0.1	98		84	58	1				56	61 27	1.84 0.35	- 1.4 + 0.1	8	8,004	8.	48	8-	9	21	8	1 2	2.
a Fe		47	50	26.09 23.31	29.77 29.86	01	82.2 67.8	+ 2.0 1 + 2.5	103 89		97	57 48	10				35 35	29 37	0.27	-0.1 + 0.5	8	7,464 4,986	e. se.	52 34	nw.			11		2. 7 3. 6
ix		12 47	57	23, 38 28, 63		02	61.2 86.1		90		90		15		19 .	57	30	16	0.72	- 0.1	8	3, 186	sw.	18	sw.	18		5	0 1	1.6
pendence		16 51		29.56 25.89	29.70 29.72	05	85.2 75.4		98	20 10			16	69 3	89	64	49 24	87 18	0.00	0.0	0	4,045 6,263	w. nw.	24 41	8. W.		26	2	2 1	1.3
ddle Plateau.		82		25.24	29.88	.00	70.8	+ 5.3	91		31						85	28	0.16	- 0.4	3	5, 057	w.	40	sw.			10	ā	
r City	4,844	59 36	70	25.60 24.25	29.85	01	67.8	+ 4.9	95 94	20 8	34	40	1	51	13	50	29 21	32 18	0.12	- 0.7	3	6, 357 5, 564	sw.	48 28	nw.	8		11	7 4	2.8
Lake City ad Junction	4,366 1	105	110	25.55 25.81	29.80	06	73.8		101	28 8	37	47	10	60 1	34	53	89	25	0.08	- 0.7	8	4,671	se.	30	sw. n.	9	28	2	0 1	1.5
thern Plateau.	3,471		58	26, 40				+ 5.4			19				_	-	32	26 48	0.58	- 0.3 - 0.7	3	4, 635	se.	31	е.	23			4	4 0
8 8	2,739	61	68	27.07 25.41	29.90 - 29.84 -	04	63.6	4.8 1	91	20 8	6 35	44	9	55 3	39	55	42	45	0.20	- 0.6	8	3,771	nw.	25 55	se. sw.		18	10	2 8	3. 1
ane	1,943		107	27.89	29,89	08		+ 3.6	97 98	20 7	8	42	9	54 3	19	58	42	36 48		-1.0 - 1.2	5	7,711 4,877	sw.	36 26	sw. w.		9	10 1	1 5	5.8
a Walla ac. Coast Reg.				28.85		04	59.6	- 1.4			122		9			59		56 76	4.27	- 0.7 + 2.0	5	4,057	8.	80	sw.	5	16	12	2 3	3. 7
Bay Crescent			20 .	29.93		04	54.6	- 0.9	79	12 (10	42 1 36		50 a	2 .	53	52	90	2.76	+ 6.6	16 14	4, 370 3, 370	w. w.	28 18	W. sw.	20 28		4 1		5. 6
ma	123 1 213 1		1 000	29.86		04	61.9	+ 2.5	86	12 7	0	45	3 1	54 8	3		51	78	2.51	+ 1.3	13	4,039	se. n.	20 24	se. n.	5	9	10 1	1 5	3.8
and, Oreg	20 154 2			30.02 29.82	30.04 - 29.98 -	01	57-8	+ 0.2	70	9 6	4 2	44	9 1	58 1	6	55 .		70	6.60	+ 3.5	14	4,859 5,612	sw. nw.	25 28	se. sw.	19		8 1	5 6	5. 9
Pac. C'st Reg.	518			29, 40		09	63.4			12 7	4	44	9	53 3	8			70 67		+ 0.3	8	2,707	nw.	19	n.	8	9		4 5	
ka		60 11		29,95 27,49		02		1.5	70 86	20 6 5 7	0			58 1 54 2	6		59	87 55	1.70	0.4	5	5, 291	nw.	86	nw.	5 20 2	8		3 6	. 1
Bluff		50	56	29.51 29.78	29.85 -	08	76.8	- 2.2 1	04 99	6 9	0	53 1	6 6	13 3	9 1	60	49	45 62		+ 0.4	4	3,727	w. se.	67 25 25	nw.	30 5	22	5	3 2	2.2
rancisco Reyes Light	155 1	61 1	67	29.79	29, 95	01		- 0.8	74	5 6	4	47	2 !	52 2	2 1	54	52	85	0.05	- 0.2 - 0.2	2 1	6, 849 10, 327	8W.	41	w.	19		11	4 3	
ic. Coast Reg.				29.48		- 01	68.2 -	- 1.7		22 5		1			- 1			66	0.02	- 0.1	1	14,795	nw.		nw.	80	7	1		. 6
Ingeles	338	74	82	29.54	29, 89 -	02	77.3 67.4	- 1.7	04 89	6 7	8	52 1	5 !	V7 3	6 (57	34 79	T.	- 0.1 - 0.1	0	5, 249 8, 396	nw.		nw. sw.		9	18	3 4	.7
Diego				29.80 29.78	29.90 - 29.95 -	02			87 98	7 6 19 7	6	56 1 45 8	5 6	00 2 51 4	1	59 55	57	80 69	0.08	- 0.1	2		sw. w.		nw. n.	19	17 15	7	6 4	1.5
est Indies.		41		29.98						14 8		71 2	7 7	76 1	5	75	78	76	2.71		17	7,656	e.	28	е.	16	8	17 1	0 6	.0
uegos	52	57 62	65 67	29,90	29.98 . 29.95 .		80.6		88 92	22 8 25 8	6	72 2 68	5 7	75 1	4	75 75 74	73	79 79	1.89	- 3.0	14	6,975	e. ne.	28	se. s.	18	6	10 1	4 6	
ston				29.91	29.97 .		79.8 .		91	24 8 26 8	6	68	1 7	75 1 72 2 78 1 72 2 78 1	6	75	71	85	3.43	- 3.7	11	6,359	e. ne.	32	ne. se.	1		13 1	0 5.	
of Spain to Principe	40	65	66 3	29,91	29.95		79.3		90	13 8 17 9	6	69 2	8 7	8 1	9 1	75 '	73		13.89	*****	24	3, 214	е.	16	0.	14	5	9 1	6 6.	. 5
au uan	25	37	47 3	29.96	29.98 .	**** *	80.8	!	90	27 8 14 8	7	73 3	0 7	75 1	6 1	78 1	70	73	5. 10 .	1.98	21	3,748	ne. e.	50	8.	10	2 1	18 1	5 6.	. 9
agode Cuba Domingo	82	26	33 :	29.85	29.98 .		82.0 .		93	15 9 25 8	0	67 69	1 7	4 2	2 '	74	72	81 76	3. 15	+ 2.6	10	2, 268	se.	19	se. ne.	1	3 5	100	3 5. 7 6.	.0
mstad	75	39				*****				12 8			8 7	78 1			74	87		*****			n. e.		80. e.		5 1		8 6. 7 5.	

Norg.—The data at stations having no departures are not used in computing the district averages. Letters of the alphabet denote number of days missing from the record. *Two or more dates. † Received too late to be considered in departures, etc. ‡ Station closed June 11, 1900. § Station closed June 18, 1900.

Table II .- Climatological record of voluntary and other cooperating observers, June, 1900.

		mpera threnl			dpita- on.			npera hreni			dpita- on.			mpera ahreni		Prec	ipit on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Alabama.	0	0 62	74.7	Ins. 11.98	Ins.	Arizona—Cont'd. Russellville	0	0	0	Ins. 0.00	Ins.	California—Cont'd. Crescent City L. H	0	0	0	Ins. 2.57	In
rmuda rmingham	97 95	64	77.6 77.5	14.28 12.09		San Carlos Sentinel • 1.	115	59 75	94.5	0.00		Cuyamaca * 5 Delano * 1 Delta * 1	. 82	61	66.8 74.7	0.10	
ewtonidgeport	*****	68	78.6	12.96 7.83		Silverking	117	58	83.8	0.00		Deweyville	. 105	53	74.0 78.7	1.56	
roneile	87	58	77.4	19.36		Snowflake	100	30 35	66.0	0.03		Dunnigan *1	100		71.3	0.16	
phnecatur		61	77.8	11.77		Supai Texas Hill *1	108 120	61 76	90.8	0.00		Durham * 1. East Brother L. H	103		75.7	0.61	
mopolis		89	76.7	10.79		Tonto	118	47 57	79.8 82.6	0.00		Edmanton *1 Elcajon	- 89		61.5	0.61	
faula o	94	61 66	78.6 77.6	8.87 10.84		Vail*1 Walnut Grove		76	83.6	0.00		Elmdale	. 104	42	72.9 71.8	0.12	
ergreen	90	65	76.0	10.75 13.92		Willeox *1Yarnell	102	70	86.6	0.00		Escondido	. 91	40	67.1	T. T.	
rence b	98	62 66	75.6 77.6	13.87 8.01		Arkansas.	93	64	76.0	10.09		Fallbrook Folsom City *1	102	27	74.0	T.	
lsden	96	60	76-6	9,09		Arkadelphia	96	62	78.5	3.05		Fort Ross	. 74	42	57.6	0.85	
ensboro	90	61 67	76.5 76.6	10.35 8.34		Arkansas City	95	61	76.9	6.70 5.24		Georgetown	. 94	40	69.8 65.6	0.13	
miltonaling Springs hland Home	98	68 66	75.2 77.4	14.08 8.95		Blanchard Springs	99	62	78.3	7.55 10.75		Grand Island **	. 104		74-8	0.00	
hland Homeingston g	90	65 67 63	76.4 77.6	6.36		Brinkley	94	64	77.0	8.20 7.72		Grass Valley	93	31	62.0	T. 0.38	
k No. 4dison Station	91 93	63 61	77.2 75.0	18.06 13.08		Canden b	97 94	62 59	77.6 76.7	7.85 5.74		Hanford Healdsburg	102	46	76.5 66.5	0.00	
olegrove	35 96	59 64	75-4 78-4	9.91		Corning	97	63 61	78.7 75.1	6.62		Hollister	89		64.1	0.08	
vbern	91 90	68	77.4	7.16		Dallas	95	63	77.8	5.29		Indio*1	109		88.6	0.00	
vton	90	60	75.6 73.8	10.86		Dardanelle				4.84 16.11		Irvine	92	62	68.6 78.8	0.10	
onta lika	90 93	60	74.2 75.0	11.48 9.80		Forrest City	94 94	64	73.5 77.8	3.94 10.33		Jackson			61.8	0.06	
nnaapple	89 97	62 64	75.4 78.2	10.86		Fulton	93	62	75.8	5.80 4.27		Kennedy Gold Mine King City *1	95		67.8 59.7	0.18	
tville	92 91	68 67	76.8 77.6	14.66		Helena &	94	65	77.0	10.50 9.48		Kono Tayee Lamesa	92		71.2	T.	
rtontsboro	91 91	60	74.8 75.2	9.96 7.14		Hot Springs b		62	79.1	5.10 8.08		Lankershim	106	51 41	76.4 58.6	T. 0.36	
A&	93	60	77.0	8.51		Keesees Ferry	97	61	76.2	4.10	-	Las Fuentes Ranch				0.00	
adega		60	****	8.72 6,48		Lacrosse	96 96	63	74.9 77.6	4.88 8.98		Legrand Lemoncove		43	75.0	T. 0.00	
masville	92	64 64	76.0 76.8	8.48 13.53		Luna LandingLutherville	94 91	65 59	77.7	8.29 6.61		Liek Observatory	83	59 42	85.6 68.8	0.00 T.	
cumbiakegee	93 95	61 63	76.6	15.61 7.05		Marianna	95 95	63 63	76.8	6.92 8.34		Lime Point L. H		45	71.0	0.08 T.	
on Springsontown	98 94	63 64	77.7	6.51 7.92	1	Mossville	95 91	60 54	77.8 78.5	8.42 11.04		Los Gatos b		42 62	66.2 89.7	T. 0.00	
rior	90	65	75.4	19.47 17.75		Mount Nebo New Gascony	90 96	58 65	72.6 78.6	6.32 5.36		Manzana		51	77.0	0.00	
umpka	96	64	78,6	6.96	1	Newport b	96	57	76.6	7.56 8.42		Merced b	105	40 48	74.4	T. 0.01	
al	76	36	53.9 48.8	2.21 0.55		Newport c Oregon	96	63 52	77.2 75.0	8.98 5.61		Modesto • 1	100	57 60	75.2 78.6	0.00	
8B00	70	33	50.4	4.30		Osceola	96	65	78.9	7.72		Mokelumne Hill *8		50	65.7	0.05	
	71	34	51.8	4.59 3.18		Ozark	97 98	64 65	77.9 78.6	4.78 5-81		Monterey * 5	76	48 55	68.1	0.00	
Arizona. ire Ranch				T.		Pocahontas	90 95	62 52	74.6	6.97		Morena				0.50	
ona Canal Co. Dam.	108	58 79	98.1	0.00		Prescott	98 96	66	79.4 79.1	4.68		Mutah Flat Napa b	94	45	66.8	0.00 T.	
on*1	106 98	78 56	90.0 78.0	0.00 T.		Russellville	95 94	62 57	76.9 73.6	7.70 5.35	1	Needles Nevada City	90	70 41	91.8 64.0	0.00	
eye	106	78	90.0	0.00		Spielerville	97 98	60 65	77.1 80.4	6,05 9,84	-	Newhall *1 North Bloomfield	104 91	60 43	72.7 66.8	0.00 T.	
grande **	105 110	58	98.4	0.00	- 1	Stuttgart Texarkana	95 99	64 55	77.6 79.8	4.58 5.01		North Ontario North San Juan *1	94 95	50 52	68.0	0.00 T.	
pie Camp	116	60	85.8	0.00	- 1	Warren	97	63	77.5	9-17		Oaklanda	83	50 80	63.8	0.08	
ress	105	62	84.2	0.00	1	Wiggs	95 94	62	77.9	5, 22		Ogilby • 5Oleta • 1	93	51	94.4 67.6	0.00	
eyville	93 110	50	80.2	0.00		Winslow. Witts Springs	99	43	71.8 74.6	4.96 5.15		Orland • 1 Palermo	106	60 46	79.0	0.81	
Apache	100	43 34	71.6 66.5	0.00		California.	96	45	68.1	0.10		Paso Robles b Peachland * b	99 86	43 51	65.4	T. 0.31	
Grant	100	58	79.8 78.4	T.	- 1	Angiola	105	48 50	76.0	0.00		Piedras Blancas L. H Pigeon Point L. H		*****	*****	0.00	
Mohave	117 112	60 75	88.2 92.8	0.00		Ballast Point L. H Bear Valley				0.08		Pilot Creek		50	64.7	T. 0.14	
rook	105	40	72.1 85.0	0.05		Berkeley Beverly	80	50	62.1	0.08 T.		Point Ano Nuevo L. H Point Arena L. H		*****		0.00	
meoopa.*1	96 110	50 79	78.6	0.00		Bishop	00	***		0.12		Point Bonita L. H				0.89	
***************	111	57	88.4	0.00		Bodie	88	21	56.1 53.2	2.67 0.82		Point Conception L. H				0.00	
t Huachuca	110	70	77.9 88.9	0.10 T.	1	Branseomb				2.39		Point George L. H Point Hueneme L. H				1.72 0.02	
ral Bridge	106		78.2	0.00 T.		Caliente *1	99	61 40	79.7 64.8	0.00		Point Lobos				0.00	
0	98		79.4	0.08		Cape Mendocino L. H	90		64.5	2.80 0.27		Point Montara L. H Point Pinos L. H				0. 12 0. 10	
no*1	100 117	70	81.1 87.4	0.00 T.	- 11	Clisco •1.	110	60	78.7 56.4	0.55		Point Sur L. H Pomona (near)			68.8	0.06	
A	114	85	85.9	0.00	14	Claremont	95	43	67.0	T.		Poway *8	94	60	64.6	0.05	
*******	111		83,6 79.3	0.00		Corning • 1	106		78.6 65.1	0.30		Ranch House			64.8	0.25	
Ranch	100	38	68.6	T.	- 11		67	41	56.0	2.43		Redding		51 49	75.8 72.2	0.00	

Table II.—Climatological record of voluntary and other cooperating observers—Continued.

		npera hrenh			ipita- on.			npera hrenh			ipita- on.			nperat hrenh		Preci	ipita on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
California—Cont'd. Represa Riovista Riverside. Roe Island L. H	99	50 50 50	72.0 69.8 71.4	Ins. T. 0.10 0.00 0.00	Ins.	Colorado—Cont'd. Mancos	92 102 103	33 34 49	62.0 66.8 74.0	Ins. 1.15 0.61 0.49 1.49	Ins.	Florida—Cont'd. St. Francis Sebastian Stephensville*1 Sumner	98 89 95 93	58 70 68 63	77.9 79.4 79.4 78.8	Ins. 11.21 9.29 8.01 12.28	In
Rosewood	99 78 121	45 48 49 79	74.5 71.6 63.3 99.4	0.70 T. 0.00 0.00	10.	Mitchell	87 97	35 82	58.6 63.1	0.90 0.43 0.91 0.70		Switzerland	91 91 89 98	68° 67 64 65	77.1 78.1 77.9 79.6	9, 04 16, 47 13, 47 5, 78	
San Bernardino San Jacinto San Jose San Leandro San Luis L. H	108 91 80	44 46 45 55	71.4 73.6 67.8 64.8	0.00 0.01 0.00 0.00		Parachute Perrypark Rangely Hockyford Rogers Mesa	102 105 101	33 48	68.1 72.0	0.44 0.70 0.67 1.47 0.04		Georgia. Adairsville	88 97 92 95	61 65 61 60	74.6 80.8 77.6 79.0	10,76 8,24 7,57 6,96	
San Mateo * 1	97	57 52 41	66, 9 70. 8	0.00 0.00 0.00 0.05 T.		Ruby	9.5	36 34 34 38	62.2 63.4 61.0 62.1	4.30 0.84 1.54 0.44 2.98		Americus Athens b Bainbridge Beilville Camak	95 89 95	62 61 66	78.8 75.0 78.8 77.5	4.87 11.89 8.34 7.28 7.39	
Santa Cruz L. H Santa Monica * 1 Santa Paula Santa Rosa * 1	74 92 94	59 52 52	63.7 69.8 66.3	0,02 0,00 0,00 0,16		Sapinero	96	40	68.7	0.40 1.10 3.06 0.11		Carlton Cedartown Clayton Columbus	92 90 93	61 54 66	75.4 72.6 79.0	18 88 5.85 13 51 6,35	
shasta derra Madre sonoma S. E. Farallone L. H stanford University	91	51 50 47	76.0 68.5	1.85 0.10 0.18 0.00 T.		Springfield. Strickler Tunnel. Sugarloaf Trinidad. Troutvale.	89 97 85	34 44 23	59.9 68.3 51.8	2.55 1.90 0.95 2.46 0.91	2.3	Covington	95 87 88	60 53 55	73.8 67.4 71.6	14.78 13.01 15.36 9.28 4.12	
Stockton Susanville Tehama* Tejon Ranch Templeton* Templeton*	87	50 39 63 57 63	69.8 64.2 83.0 77.4 83.0	0.00 0.40 0.53 0.02 0.53		T. S. Ranch	95 85 92	45 21 81	70.6 51.8 58.9	0.67 T. 2.27 0.15 0.29		Elberton	92 91 99 97 95	60 60 58 59 63	76.4 74.5 79.0 77.2 78.6	10.72 12.02 3.39 7.18 8.79	
hermalito rinidad L. H ruckee * 1 ulare b ulare c	88	50 40 50	74.9 55.7 78.7	0.26 1.88 1.01 0.00 0.00		Wallet	85 98	32 49	58.0 §72.4	5, 62 3, 66 2, 35 0, 72		Franklin	89 85 92 91 92	57 58 563 61 604	74.4 71.8 73.6° 74.2 75.4°	18.90 12.09 8.82 11.21 15.88	
kiah pperlake pper Mattole*1 acavillea*1 entura	102 100 88 102	48 45 40 54	70.2 69.3 56.8 71.4	0.36 0.35 1.84 T. T.		Canton	92 88 89	44 39 38	69.0 65.3 66.4	9, 10 3, 81 1, 80 4, 45 4, 27		Harrison	98 94 90	59 61 59	77.0	7.87 4.59 8.60 5.60	
Isalia b Yolcano Springs *1 Valnutcreek Vestpoint	75 103 190 102	52 42 78 55	63.4 76.0 94.5 73.1	0.00 0.00 0.00 0.07		Hartford b Hawleyville Middletown New London North Grosvenor Dale	90 94 98 91	53 43 38 52 37	66.8 67.8 69.5 66.8	4.31 2.08 1.90 3.66		Lost Mountain Louisville f Lumpkin Marshallville Millen	94 94 96 95	63 64 65 62	78.7 78.6 78.0 78.8 78.8	11.91 7.50 2.95 4.88 4.85	
Vest Saticoy	102 105 82 98	48 60 57 55	72.8 80.5 66.8 74.9	0.00 T. 0.05 T.		Norwalk Southington Storrs Voluntown Wallingford	94 88 89 91	43 41 40 37	69.4 67.2 66.0 65.7	2.03 3.13 4.32 2.23 1.61		Morgan Naylor Newnan Oakdale Point Peter	92 96 88	62 60 61	75.4 77.0 75.0	4.96 10.09 13.44 7.84 12.71	-
erba Buena L. H reka uba City * 5 Colorado. rkins	93 104	42 56	66.4 76.8	0.00 1.36 0.16		West Cornwall West Simsbury Winsted Delaware	98 86 88	41 47 52	68.8 65.4 68.6	3.02 4.42 2.79		Poulan	94 95 97 88	59 61 60 60	77.7 77.6 79.0 72.9	4.19 6.01 9.28 9.94 10.22	
oulder oxelder reckenridge uenavista	75	44 27	69.6 49.6	0,49 0,54 1,12 1,12		Milford	95 90 95	45 50 52	71.8 71.2 73.6	5.08 4.00 5.20 8.88		RomeStatesboroTalbottonTallapoosa	90 97 94 92	59 59 57	75.2 78.8 77.6 72.3	10.60 5.91 9.92	
astlerock edaredge heyenne Wells	98 92 98 98 78	44 40 41 49 80	70.0 64.4 68.4 70.8 53.6	0.88 1.80 0.40 2.47 8.05		Distributing Reservoir*5 Receiving Reservoir*5 West Washington	90 90 97	60 60 51	78.6 78.2 72.7	7.91 8.20 11.45		Thomasville	98 88 96 89 97	65 61 62 62 61	79 0 75.4 78.6 75.9 78.7	11.84 11.86 9.68 11.46 7.05	
ollbranolorado Springsope	92 100 103 106	44 50 46 41	65.4 71.4 73.6 71.2	0.28 1.03 2.08 1.67 0.09		Archer	97 96 96 93 99	64 67 66 62	79.8 80.8 80.4 79.6 82.1	14.60 10.30 9.55 8.88 10.02		Waynesboro Westpoint. Whiteoak Idaho. Albion	91 92 91	56 62 62	74 6 77.6 77.1 64.6	5.74 14.05 6.55 0.13	
umont	94 86 94 99	84 83 41 45	64.8 59.1 67.0 70.8	2.38 0.13 1.02 0.82 0.94		Dalkeith De Funiak Springs Deland Earnestville Eustis	96 93 97 98 97	66 65 62 67 65	80.3 78.2 80.4 81.6 81.2	17.06 12.04 14.18 8.78		American Falls	108 90 108 97 95	36 27 35 36 25	68, 2 58, 2 69, 6 65, 0 59, 6	0.00 0.87 0.25 0.72 0.74	
ox	88 88 97	31 43 41	59.1 64.8 69.0	2.65 0.13 0.94 0.86 0.31		Fort Meade	94 95 90 92 94	66 62 70 64 64	79.6 78.3 79.9 78.6 78.8	17.94 12.17 3.47 5.86 5.50		Downey	99 97 94 108 108	29 26 33 42 39	64.8 61.8 62.2 74.2 74.4	T. 1.00 0.08 0.00 0.48	
nnison	90 94 97	28 45 43	59.8 65.1 67.4	0.75 0.78 2.20 1.99		Lake ButlerLake City	96 95* 95 98	65° 62 60 60	80.4 78.2° 77.7 79.2	8.18 8.60 6.96 5.32		Hailey	109 95 ^d 89 88	34 324 44 30	69.5 63.8 ^d 65.4 57.2	0.07 0.70 0.75 0.35	
olly ollyoke (near) lgo sted ke Moraine	102 90h 76	45 40 ^h 31	72.0 61.8 ^h 52.1	2.60 1.64 4.50 2.29h 2.09		Manatee Marianna Merritt Island Middleburg Myers	98 92 89 95 91	62 59 72 61 66	78.8 77.6 80.8 77.8 79.4	9.23 6.59 6.10 7.49 7.12		Lakeview	91 97 88 89 100	24 35 33 36	64.1 60.2 63.6 60.8 67.8	1.92 0,24 0.29 3.92 0.20	
amar .portes Animas	106 103 101 82	54 52 31 82	78.6 78.4 65.3 51.7	2,54 0,59 0,40 1,89 0,62		Néw Smyrna	91 99 100 94	61 66 63	78.8 81.4 80.4	9.89 5.08 14.31 12.95 7.69		Ola	100 97 108 104 87	40 36 39 40 85	66.8 62.6 72.0 67.9 63.0	0.81 0.80 0.14 0.88 1.04	
ongs Peak	99 81	45	70.0 54.6	0.78	T.	Plant City	96 92	64	80.2 78-9	10.24 14.76		Salubria Soldier	101	31	67.8 62.7	0.13	

TABLE II .- Climatological record of voluntary and other cooperating observers-Continued

		mpera shreni			dpita- on.				ature. heit.)		eipita- on.			npera		Precip	pita- on.
Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Idaho-Cont'd. Weston	95	37	66.8	Ins. 0.29	Ins.	Indiana—Cont'd. Cambridge City Columbus	92	0 41 48			Ins.	lowa—Cont'd. Corning	o 95 98	o 43 50	70.0 73.1	Ins. 1.23 2.32	In
AlbionAlexanderAshtonAstoria	91 88 92	53 48 44 47 48	72.4 66.4 71.4	7.81 3.00 1.43 1.80		Crawfordsville Delphi Edwardsville*1	91 93 93 89	45 45 50	71.1 72.4 70.2 75.0	2.74 4.79 7.28 3.57		Crawfordsville Cresco	98	47	67.0	2.74 3.84 1.89 1.78	
Aurora 4. Beardstown. Bloomington Bushneli Cambridge Carlinville Carlyle	91 94 89 94	47 51 49 48	72.0 73.5 70.2 72.5	2.94 1.71 2.49 1.58 0.98 4.88 8,70		Fairmount Farmland Fort Wayne Franklin* Greencastle Greensburg Hammond	92 86 90 90 88 90 88	44 45 46 56 48 48	68.4 69.5 72.1 70.7 70.6	5.08 6.05 4.38 8.48 4.19		Decorah Delaware Denison Desoto Dows Ridon	94 93 95 96 93 93 98	40 42 46 49 44 48 45	68.0 67.4 69.1 70.4 66.8 71.6 •69.6	2.76 2.70 2.45 4.79 4.57 5.98 2.58	
Centralia Charleston Chemung Chester	93 91 90	58 48 39	74.2 71.8 65.7	7.86 4.10 2.11 7.62		Hector Huntington Jeffersonville Knightstown	89 89 93 91	45 47 55 48	69.6 69.0 74.6 71.0	4.82 7.91 3.28 3.76		Emerson Emmetsburg Estherville Fairfield	94 90	41 49	66.6	8.70 6.73 3.96 8.03	
Clane Coatsburg Cobden Danville Decatur	94 91 93	50 50 47 47	79.9 71.8 73.6 70.8 71.7	9,07 1,45 9,52 1,17 4,18		KokomoLafayetteLaporteLogansportMadisona	87 89 99 90 93	48 47 45 42 52	70.0 71.2	7.88 1.82 3.34 3.54		Forest City	95 94 94 92	41 43 47 44	67.6 68.3 67.3 68.3	3.14 11.90 4.89 5.34 2.88	
Dixon Dwight Effingham Elgin Egquality Plora Friendgrove* 3alva	91 92 98 91 92 91 94 91	46 44 50 43 54 52 56 46	68.8 68.8 72.2 67.0 74.4 72.6 76.2 69.7	1.82 2.99 9.48 2.72 9.98 8.28 8.42 0.51		Madison b Marengo Marlon Markle Mauzy Mount Vernon Northfield Paoll	92 89 86 89 93 89	50 46 46 47 45 46 50	70.2	3.06 6.25 8.20 9.10 3.95 7.49 3.38 9.33	of the state of th	Galva. Gilman	97 94 99 97 88 90 95	43 46 46 47 49 47 41	70.6 69.5 72.2 69.2 67.9 68.5	2.88 7.35 4.48 5.49 3.56 7.80 11.44 4.26	
Glenwood Grafton Grayville Greenville Griggsville	90° 92 93 94	57 51 49	75.4 73.9 71.9	1.98 2.54 7.55 8.89 2.40		Prairie Creek	94 95 92 87 80	48 52 46 46 58	73.8 74.9 69.0 68.8 73.6	7.10 8.38 4.40 5.64		Hamburg	96 95	49 44 48	69.3 69.6 70.5	3.81 5.72 1.89 3.81 6.21	
laifway ialiiday lavana lenry iilisboro	92 98 90 90 91	55 46 47 50 45	74.0 74.4 70.1 71.8 68.0	8, 65 7, 23 3, 48 2, 52 6, 10 1, 80		Rockville	90 93 92 91 92 91	47 48 51 52 51 43	70.0 73.3 74.1 72.8 72.7 69.0	6.96 6.24 3.80 3.46 3.72 2.66		Humboldt	95 91 93 95 94	45 46 46 47 45	68.8 68.0 70.4 70.4 68.9	6.40 4.71 3.83 8.93 2.18 5.92	
Cishwaukee Knoxville	90 91 94 94	43 46 47 42	66.9 69.1 71.6 68.1	2.58 0.42 0.58 1.91 3.73		Syracuse Terre Haute Topeka Valparaiso Veedersburg	90 93 84 88 93	44 49 45 46 46	68 6 71.8 66.3 70.6 71.7	8.70 7.92 8.06 3.00 9.06		Keosauqua Knoxville Lacona Lansing. Larchwood.	92 95 97 96	52 49 42 89	72.1 71.0 69.2 69.4	8.30 6.24 4.55 2.03 2.83	
cLeansboro	90 91 94 90 92	53 44 58 52 45	74.2 71.6 69.1 78.0 71.8	6. 13 5. 07 2. 33 5. 17 5. 43		Vevay Vincennes Washington Winamac Worthington	90 94 96 89 92	58 53 58 48 52	74.2 74.4 73.8 69.0 72.6	2.75 14.81 7.74 3.75 9.14		Larrabee Leclaire Lemars Lenox Logan	98 96 90 160	38 43 48 43	69.4 69.9 70.6	6, 93 0, 67 8, 42 2, 42 1, 27	
Ionmouth	95 93 95 91 94 93 98	45 46 48 53 55 51 48	70.7 69.9 72.6 72.4 74.2 73.8 71.1	1.40 0.82 3.82 7.91 3.96 8.35 9.08 6.29 1.98		Indian Territory. Claremore	97 99 99 105 103 97 101 104	61 58 58 55 59 53 52 62	77.2 75.8 80.8 80.3 80.6 75.4 78.7 81.4	3.65 4.41 4.32 T. 1.51 5.85 T. 0.57	The second secon	Maple Valley Maquoketa Marshalltown Mason City*. Monticello Mooar Mooar Mountayr Mount Pleasant Mount Vernon 6.	89 93 91 94 90 94 92 95	48 49 45	67.6 69.8 65.8 67.0 71.6 71.1 68.6 69.7	5, 20 2, 20 7, 79 12, 35 1, 26 1, 21 1, 85 3, 19 8, 09	
alestine	95 90 92 94 91 91	47 49 48 51 47 58	74.5 69.8 71.4 78.2 60.9 72.8	6.77 6.17 6.37 1.60 1.44 4.55 5.27		Ryan South McAlester Tablequah Tulsa. Wagoner Webbers Falls Jova. Afton	95 100 98 98	59 58 64 47	76.4 78.6 80.2 70.9	2.41 7.05 1.97 8.58 4.22 2.02		Murray New Hampton Newton Northwood Odebolt Ogden Onawa	91 92 91 102 95	47 49 47 43 44	65.4 69.4 68.2 71.6 68.9 71.0	2,65 4,47 6,35 4,88 3,20 6,30 2,97	
antoul	91 90 91 91 91	47 58 43 50 45 42°	70.0 75.6 67.4 72.4 70.0 67.6	7.31 10.14 2.48 6.98 2.78 1.61		Albia Algona *1. Alta a Amana Ames b Ames (near)	98 94 94 92 96	47 49 41 48 47	69.5 70.2 68.0 69.5 69.4	2.59 4.87 6.23 3.75 6.48 8.15		Osage	92 92 91 90 90 93	42 48 44 56 47	66.2 69.6 69.4 73.4 69.6 70.1	4.13 4.62 3.63 8.66 4.64 4.95	
ales Mound	91 92 93° 88 90 91	51 43 49° 42 52	67.0 73.2 68.9 71.4° 66.6 72.2 69.8	1.80 9.03 1.63 4.67 2.22 6.66 1.52		Atlantic Audubon Bancroft Batavia Batavia Baxter Bedford Belknap	99 97 94 94 99° 89	40 41 44 47 45° 50	69.1 68.2 67.1 69.4 72.8° 69.4	2.09 2.94 5.28 3.40 4.13 2.10 3.15		Pella Plover Primghar Redoak Ridgeway Rockwell City	96° 96 98 97 92 94 95	42 48 48 40 44	74.5° 69.4 69.5 72.9 70.0 68.6	8.83 4.67 2.40 3.82 4.14 8.86	
scola	93 98 88 93 89	47 46 50 51 42 42	70.9 70.4 70.4 72.4 66.8 65.2	9.23 3.08 2.84 4.25 2.67 2.14		Belleplaine Bonaparte Britt Buckingham Bussey Carroli	92 91 94	48 51 44 45	70.6 70.0 67.6	7.30 2.73 5.25 6.04 3.79 3.88		Ruthven Sac City Scranton Sheldon Sibley Sigourney Sigoux Center	94 98 94 96 98 100	44 47 41 40 47	67.8 68.0 70.0 67.7 67.8 71.5 70.8	6. 67 6. 49 4. 59 8. 63 2. 99 2. 68 4. 42	
Indiana. Iderson gola burn dford	98 88 86 95 96	45 47 45 44 55	69.1 70.2 67.2 69.8 73.4	1.15 4.15 4.60 5.61 5.02		Carson Cedar Rapids Centerville Chariton Charles City Clarinda	94 91 92 94 98	51 50 46 40 46	71.0 70.8 69.2 67.8 71.8	1.57 4.22 3.43 2.63 5.58 8.15	,	Stuart Thurman Toledo Villisca Vinton* Wapello	96 96 96 98 92 97	48 45 40 45 57	69.8 72.2 69.2 72.4 70.0 71.9	3.60 10.55 6.74 3.32 3.87 0.84	
oomington	91 90 95 91	46 52 1	69.4 72.6	5.78 5.01 6.50 3.28		Cleariake	97 94 97 95	45 45 48 48	68.8 70.0 71.9 69.2	6,60 1.70 2.34 4.5		Washington	92 92 91	48	69.0 69.4	1.52 8.20 5.47 5.48	

Table II.—Climatological record of voluntary and other cooperating observers—Continued.

	Ter (Fr	mpera	ture. heit.)		cipita- on.			mpera hrenh			ipita- on.		Ten (Fa	nperat hrenh	eit.)	Prec	ipit on.
Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Iowa—Cont'd. Webster City Westbend	96 94	0 52 44		2.97	Ins.	Kentucky—Cont'd. Jackstown Leitchfield Loretto	92 89 98°	50 57 51	78.6 72.8 71.8	Ins. 2.75 3.79 5.11	Ins.	Maryland—Cont'd. Coleman Collegepark	91 97 91	52 59	74.2 76.4	Ins. 4.65 7.15 4.05	In
West Union	93 92 93	46 45 47	69.0	1.68		Marrowbone Maysville Middlesboro Mount Hermon Mount Sterling Owensboro	92 94 90 89 91 91	55 49 54 56 55 58	74.4 74.7 73.4 72.1 74.4 74.0	5.41 2.20 5.20° 8.89 2.87 7.85		Cumberland b Darlington Deerpark Easton Ellicott City Fallston	92 87 ⁴ 91 90 91	51 89 ⁴ 49 42 49	71.9 64.0d 72.6 67.8 71.0	3.98 4.59 4.62 4.29 4.79 4.53	
Achilles	102	43 57 	76.6	6.15 1.22 4.86		Owenton	98 98 98 93	51° 61 58 57	71.84 76.8 75.6 74.4	2.75 9.39 8.99 4-58 11-46		Frederick Frostburg Grantsville Greatfalls	94 90 88 93	50 43 41 52 51	78.0 67.8 65.4 72.8	3.39 4.55 4.09 2.79	
Beloit Burlington Campbell Colby Columbus		51 50 53 48 58	77.4 74.1 75.1 72.8	0.92 7.05 1.21 3.15		Richmond	90 88 91 91 94	54 56 50 54 53	78.6 72.8 72.2 73.2	3.37 4.46 2.94 4.56		Greenspring Furnace Hagerstown Haneock Harney Jewell	95 96 100	50 48 53	72.5 73.3 73.2 72.3	3.08 4.32 4.18 4.55 5.47	
Coolidge	107 102 108 102 107	48 54 50 50 54	72.8 74.8 75.3	3.88 1.75 0.55 2.14 2.58		Vanceburg Warfield Williamsburg Louisiana.	98 92 95	40 54 59 70	75 7 71.6 73.7 76.4 79.4	3.66 2.45 2.69 8.20 8.97		Johns Hopkins Hospital Laurel	98 98 90 92 92 93	50 49 51 48 50 50	71.8 71.6 70.7 69.4 71.6 74.2	4.34 8.28 5.04 3.81 4.10 2.81	
Eureka Eureka Ranch Fanning Fort Scott Frankfort	104 96 99 101 107	58 46 55 48 54	74 9 72.3 75.0 73.8	2.82 4.70 4.67 5.67 8.15 2.79		Alexandria Amite Baton Rouge Burnside Calhoun	95 95 93 96	65 67 67 67 64	80.5 79.8 80.2 79.5 78.2	10.42 8.00 7 54 9.71 8.03		Princess Anne	92 93 91 92 92	45 50 48 47 43	71.6 78.0 72.3 72.1 71.7	4.08 5.12 4.66 4.66 2.94	
irenola lays lorton loxie lutchinson ndependence	102 107 98 106 105 99	56 51 52 53 53 58	76.4 75.6 73.8 78.2 75.3 74.6 77.2	4.41 3.37 6.81 1.26 3.46 5,25		Cheneyville Clinton Como Covington Donaldsonville Farmerville Franklin	96 93 98 97 93 96 96	67 65 64 68 66 62 70	80.0 78 2 75.0 80.0 77.9 82.4 80.8	10.93 7.73 6.11 14.18 9.43		Smithsburg a	93 94 91 90 89 91	45 51 55 51 36 50	70.9 71.6 75.0 70.4 64.7 71.0	3.46 4.57 3.31 1.48 6.81 7.26	-
akinawrenceebanonebolttle River	103 96 104 104	51 54 52 54	74.4 73.4 74.8 74.2	2,20 6,08 2,05 5,84 5,44		Grand Coteau Hammond Houma Jeanerette Jennings	96 96 93 97 95	67 67 70 64 66	79.9 80.0 80.2 80.3 79.4	8.10 4.50 9 27 11.16 12.90 11.20		Taneytown f Van Bibber Westernport Westminster Woodstock Massachusetts.	95 91 91 93 ¹ 98	49 51 43 42 51	78.4 71.4 68.0 70.6 72.6	2.86 3.80 4.71 8.39 8.89	
acksville cPherson adison anhattan b anhattan c arion	101 106 103 106 107 108	59 54 49 53 50 54	73.4 74.0 74.4 76.0 76.2 77.0	3.65 6.20 2.74 1.19 0.96 2.85		Lafayette Lake Charles Lake Providence L'Argent Lawrence Libertyhill	96 95 95 92 98 101	67 66 61 66 69 63	80.0 80.4 78.2 77.7 81.2 80.4	8 59 10.10 12.99 6.27 7.02 8.39		Amherst Attleboro Bedford Bluehill (summit) Cambridge Chestnuthill	91 89 90 95 96	39 43 41 38	66.6 66.6 68.6 68.3	3, 39 3, 16 2, 12 4, 23 2, 47 2, 90	
eadeedicine Lodgeoranoranounthope*1oss City	104 108 97 103 97	56 48 54 61 57	76.7 74.3 73.2 76.6 74.6	3.42 2.56 1.98 4.30 3.09 5.20		Mansfield Melville Minden Monroe Montgomery New Iberia	97 95 100 96 92 94	63 63 62 60 68 67 69	79.0 78.8 79.8 79.0 78.2 79.6	4.30 6.72 4.58 4.58 6.10 9.90		Cohasset Concord East Templeton *1 Fallriver Fiskdale Fitchburg a *1	93 88 87	36 48 43	66.0 66.6 67.0	8.20 2.49 2.83 1.47 4.22 2.84	
ewton or wich athe swego	106 104 99 103 99	53 55* 53 58 50	76.1 75.5° 74.5 78.0 73.1	6, 19 0.98 1.73 5.18 8.76 10.30		Oakridge. Opelousas	97 96 97 97 98 97	63 65 61 ¹ 68 62 68	78.4 79.7 79.0* 81.2 78.6 80.9	8.78 5.89 6.23 10.14 3.81 12.48		Fitchburg 5 Framingham Groton Hyannis * 1 Jefferson	91 93 90 87	40 87 87 49	68, 0 69, 2 66, 0 63, 2	2.88 2.91 8.99 1.12 3.98	
att	104 105 105 110 106	52 52 52 50 52	75.0 75.2 76.4 76.6 74.7	4-30 1.46 1.54 3.86 2 72		Rayne	99 95 96 98 92	67 64 67 68	78.0 80.6 80.4	9.21 8.55 6.67 17.61 9.09		Lowell b	92 91 90 92	39 40 39	68.0 66.8 68.7 67.5	2.52 2.27 2.85 0.84 2.71	
ott dan	108 99 98 103 102 110° 99	48 57 47 54 51 53° 53°	73.4 74.8 73.3 75.2 72.9 76.4°	2.49 4.92 4.17 3.16 1.39 5.33		Southern University Sugar Ex. Station Sugartown Venice Wallace White Sulphur Springs	99 98 94 92 95		77.8 80.3 79.4 79.8 80.2	7.71 7.74 13.27 8.61 4.81 6.93		Ludlow Center	88 89 90 87 87 90 ³	39 40 43 44	62. 6 64. 8 66. 2 64. 8 66. 6 66. 4	4.50 1.99 5.18 1.12 3.62 2.27	
roqua	109 108 104	59 53	78.8 75.5 75.8 77.7	3.59 1.46 7.55 3.92 1.95 3.52		Maine. Bar Harbor Belfast **. Calais Carmel Cornish*1.	87 84 89 86 90	87 47	65.7 62.8 62.6 67.8	3.52 4.34 4.30 3.62 2.45		Princeton Salem Somerset* South Clinton Springfield Armory Sterling	94		69.5	8.28 1.67 1.92 8.25 2.84 3.84	
Kentucky. oha *8 rdstown undville wling Green	93 91 95	63 56 59 60	78.2 75.0 74.9 74.8	6,50 8,82 4,88 9,28 5,67		Pairfield Farmington Fiagstaff Gardiner Kineo Lewiston	84 89 84 95 85	87 85 47 47 42	63.0 64.6 59.7 66.5 65.3 67.4	4.08 5.51 3.43 1.84 3.94 1.69		Taunton c Webster Westboro Weston Williamstown *1 Winchendon	98 91 84	40 88 55	65. 0 68. 6 66. 8 66. 6	2.67 4.91 3.50 2.67 4.94 3.26	
rnside tton llettsburg llington monton	90 92 93 98 98	60 56 50 54 52	73.7 76.0 72.6 75.4 73.6	6.65 11.83 2.58 4.55 8.76 7.14		Mayfield North Bridgton Orono Rumford Falls Winslow Maryland	86 86 88 88	38 38 42	62.6 66.6 63.4 64.9 65.5	3.81 1.64 3.83 3.35 4.09		Worcester b Michigan. Adrian. Agricultural College Allegan	90 89 89	47 41	66,8 67,2 65,2 65,1	8, 98 8, 15 2, 57 2, 22 1, 25	
bank	100 93 92 92	58 58 56 54	72.0 76.2 74.6 78.9 74.9	4.06 2.25 9.26 1.85 9.94 11.01		Annapolis Bachmans Valley Boettcherville Boonsboro a Charlotte Hall f Chase	95 91 99 95 95 96	46 47 47 50	74.0 70.0 72.8 72.0 72.0 68.8	6 41 6.29 3.86 2.71 5.18 4.18		Ann Arbor	90 89 94 94 87 91	45 40 43 84 42	66. 4 65. 2 85. 5 84. 4 85. 0	2.30 8.48 3.20 4.03 3.37 4.12	

TABLE II .- Climatological record of voluntary and other cooperating observers .- Continued.

		npera			pita- n.			perat hrenh			ipita- on.			perat hrenh		Prec	ipit on.
Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Michigan—Cont'd.	93	0	66.9	Ins.	Ina.	Minnesota. Ada	96 94	83 46	65.4 68.2	Ins. 0.76 1.82	Ins.	Mississippi—Cont'd. Natchez Okolona	o 96	67	79.4	Ins. 5.50 12.84	In
errien Springs g Point Sable*10, g Rapids soon lumet harlevoix	78 92 87 84 89	41 44 36 35 32 39	59.0 63.7 60.4 59.4 61.2	2.80 8.61 8.54 3.20		Alexandria	93 91 ^h 94 94 96	36 36 ^h 30 32 38	66.1 65.6 ^b 65.0 65.8 68.0	0.49 1.16 1.15 1.08 1.84 1.95		Palo Alte	92 90 97 90 89 90	65 56 66 61 64 68	77.0 74.6 78.2 74.8 77.6 77.0	15.28 18.51 12.01 9.54 6.23	
neboygan inton old water undee agle Harbor ast Tawas	89 94 89 87 84 89	85 45 42 45 85 40	61.0 68.0 66.8 66.4 57.2 62.8	4.08 2.56 4.76 3.20 2.92 2.15		Blooming Prairie	98 94 93 92 90	43 46 28 42 35	67.8 66.4 68.6 68.0 66.4	4.36 1.64 0.52 1.07 0.65		Thornton	99°	67	77.2°	11.65 15.51 10.70 11.88 17.28	
oise wen irview tehburg	90 87 88	46 45 39	67.0 67.2 64.9	2,90 1,70 2,49 3,24		Paribault	94 97 97 94	30 41 41 36	64.3 68.4 67.4 66.4	1.35 1.34 0.86 1.54 2.39		Woodville Yazoo City Missouri Appleton City Ariington	100	67 65 f 55	79.1 77.5° 74.4	8.68 12.11 3.28 5.40	
intankfortiylordadwinadwinand Rapids	88 78 93 94	39 40 38 44	64.5 60.5 64.6 68.0	4.72 1.51 4.02 1.95 2.38		Grand Marais Grand Meadow Granite Falls Hallock Lake Jennie	96 95 102 98	43 37 31 37	68.8 67.2 66.0 68.0	1.24 1.10 1.87 1.11		Arthur *3	94	62 50	74.4 72.0	7.79 2.84 7.18 1.14	
apeaylingaylingaylover arbor Beach	89 90 89 92 91	44 35 41 42 34	67.2 63.8 66.0 69.1 63.4	3.42 8.54 2.52 2.22 1.74		Lakeside	94 92 94	38 38 46 33	68.2 64.2 65.6	1.23 1.58 0.50 4.61 0.92		Birchtree	91 98 93	54 54 54 50	73.2 72.0 73.8 72.3	4.96 7.61 2.78 2.95 8.54	
errisvillestingsyesyesyesyesyesyhland Station	96 90 92 90	87 38 39 38	61.2 64.2 65.8 63.2	0.53 1.46 2.69 1.58 2.70		Luverne Lynd Mapleplain Milaca Milan	91 94 97 98 94	42 34 89 85 84	69.4 65.4 69.2 65.2 67.6	2,25 1,48 0,70 7,52 1,73		Cook Station Cowgill *6 Darksville Downing East Lynne *8	95 92 89	50 56 53	72.5 75.0 71.2 69.8	6.05 2.95 3.47 5.56 5.77	
ledalewellmboldt	97 80	41 49 24	65.9 64.3	2.24 2.29		Minneapolis 6	96 96* 98 98 98	43 41 50 34 37	69.4 69.4 72.0 66.9 68.4	2.41 2.60 2 20 2.54 0.32		Edgehill *6 Edwards Eldon Elmira Fairport	94 98 92 94	58 50 47 46	74.8 74.2 72.6 72.2	7.46 4.58 5.26	
n River	92 90 91 70 89	38 28 30 22 32	65.8 58.6 59.8 46.8 62.0	2.65 2.88 2.43 2.14 3.21		Morris	95 96 96 95	33 30 38 82	63.2 64.3 66.5 68.6	0.60 1.94 0.84		Fayette Fulton Galena Gallatin *1	92 90 94	55 48 52 60	78.6 72.1 73.9 78.9	8.64 6.18 4.09 2.17 9.07	
kson	93 91 92 90 88	45 40 87 87 43	68.7 62.6 66.8 63.0 65.9	2.19 2.55 8.09 4.65 2.19		New Ulm	95 94 94 90 90	48 32 89 38 42	70.4 64.6 65.1 68.4 66.4	2.78 0.79 1.17 2.08 2.44		Gayoso Glasgow Gorin Halfway Harrisonville	92 95 94	58 54 52	72.8 73.2 74.8	2 40 4.96 5.75 5.52	
eerhrop	90 92 90 83 79	42 28 38 42 86	66.8 58.8 63.1 61.0 60.0	2.69 1.82 0.49 1.55 8.15		Pokegama Falls Red wing		49 43	62.2 65.8 67.2	0.58 1.57 1.98 4.44 1.74		Hazlehurst	93	54	72.1	2.92 5.34 5.79 4.81 3.10	
kinawiison	90 93	36 47 83	59,2 68,4 63,5	4.41 2.73 8.76 1.75 3.88		St. Cloud	95 92 98 96	41 41 85 42	69. 2 68. 8 68. 9 69. 8	2,05 1.05 0.54 0.50 1.06		Jackson ** Jefferson City Kidder Lamar	93 91 99 93 100	58 60 45 51 57	72.5 72.2 75.5 72.0 75.6	6, 99 6, 79 6, 05 2, 93 4, 31	
nistiquedomineedle Island * 10land tville	89 88 87	35° 41 47 45 42	57.8° 60.2 66.4 65.8	1.75 1.60 8.04		Tower Two Harbors Wabasha*1 Willmar Willow River		42 50 38 32	59.5 69.5 66.6 65.0	2.50 1.27 1.86 0.48 0.87		Lamonte		56 53 48 50	78.8 74.2 71.9 73.8	4.56 6.23 4.62 3.20 2.56	
int Clemens int Pleasant int Pleasant kegon berry th Marshall	93 90 86 85 89	41 29 42 30 40	66.7 63.6 65.6 57.6 64.4	3.11 1.63 2.49 2.50 3.50		Winnebago City Worthington Zumbrota *1 Mississippi.	95 91 95*	44 40 41 65	68.4 66.8 68.9	1.94 2.29		McCune * 1	61 91 92 92 99	57 52 51 51 50	71.7 72.5 73.7 71.6 71.9	3, 23 6, 45 7, 65 4, 41 3, 07	
hport	804 94 88	39 x 38 43	61.8s 63.0 66.2	8.21 2.73 8.18 1.60 1.92		Aberdeen Agricultural College Americus Austin Batesville	96 98 92 94	65 59 64 63	78.6 78.2 76.0 75.8	14.89 23.30 14.72 10.85		Mexico	94 92 94 91 96	51 60 52 49 58	73.2 76.2 70.7 72.0 73.6	5, 42 2, 96 2, 36 7, 56 5, 16	
aso	90 91 903	40 40 36i	65.8 66.4 61.4 62.6	2.49 2.12 5.10 1.69 1.67		Bay St. Louis	95 94 90 99 98	67 63 61 66	79.4 80.2 74.8 76.4 77.8	20.21 16.98 12.27 7.58 11.08		Mount Vernon Neoaho Nevada New Haven New Madrid	95 95 91	55 63	72.9 74.6 76.8	6.04 5.42 6.24 8.76	
d City	92 88 98 86 90	46 44 41 82 42	65, 8 65, 8 66, 3 57, 2 66, 2	4.23 7.73 2.57 8.72 2.26		Columbus a Columbus b Corinth Crystalsprings Edwards	92 91 98 95	61 60 65 67 66	76.9 73.5 78.7 79.8	16.06 16.59 8.40 7.41 12.31		New Palestine Oakfield Oiden Oregon 6 Oregon b	92 92 90 94 97 90	51 53 50 58 55 54	72.0 73.2 69.6 78.6 74.6 78.9	5.11 4.33 3.83 3.68 3.57 2.72	-
Josepherset	88 94 88° 88 98	41 97 41° 48 40	65.6 60.7 65.5° 66.2 66.1	1.25 2.46 1.79		Fayette (near)*1 Greenville d Greenville b Hattlesburg	92 96 94 98 95	66 66 68 62	77.1 80.2 78.8 78.0 78.8	9.51 9.29 18.48		Palmyra * 6 Phillipsburg * 1 Pickering * 8 Pine Hill Poplarbluff	95	62 46 58	72.6 67.0 76.6	3.82 4.67 8.97 8.27	
ravilledalia	88 85 89 90 87	41 45 43 88 43	66.1 61.7 67.6 66.2 66.0	4.57 1.38 2.00 2.29 3.58		Hazlehurst	96 91 94 97 93	62 64 63 58 66	78.8 76.1 75.0 74.8 77.9	7. 19 10. 91 14. 04 9. 35 10. 10		Potosi Princeton Richmond Rockport Rolla		46 50 54	70.8 73.8 72.4	7.66 1.80 8.67 4.10 5.67	
t Brancht Brancht Brancht	98 91 94 87	38 26 37 35 39	62.6 57.6 65.8 58.5 68.7	2.41 2.00 2.10 8.51 1.98		Lake Leakesville Louisville Macon	98 96 96 92 94	63 64 68 47 62	76.0 78.2 79.7 75.5 77.5	16.62 15.58 15.85 14.05 18.92		St. Charles St. Joseph Sarcoxie ** Sedalia Seymour	108 984	62 51 ^d 55	78.4 78.7 74.0 ^d 71.8	5.91 4.09 2.84 3.31 3.54	

Table II.—Climatological record of voluntary and other cooperating observers—Continued.

		npera hrenh			ipita- on.			npera			ipita- on.			npera		Prec	on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Mînîmum.	Mean.	Rain and melted snow.	Total danch of
Missouri-Cont'd.	o 93	o 57	74.6	Ins. 6.66	Ins.	Nebraska-Cont'd.	0 104	0 37	o 71.2	Ins. 1,05	Ins.	Nebraska—Cont'd. Wilsonville*1	0 100	o 58	0 74.4	Ins. 1.70	1
effenville	89 96	51 50	71.2 71.8	4.53 5.08		Franklin		47	78.5 71.0	1.84						2.84 3.00	
enton	92	53	72.5	2.87		Geneva	100	47	73.7	1.48		Wymore *1	94	52	70.2	1.51	
ionville	99 91	50 54	74.0	3.56 6.97		Gering		47	71.8 72.2	0.55		York		*****	*****		
rrensburg	94 94	51 52	78.5 72.8	6.47		Gosper				2.00		AustinBelmont	90	37 41	66.0	0.63	
eatland	99			3.78		Gothenburg		46	72.6	1.54 3.44		Beowawe	102	40	70.0	0.00	1
llowspringsndsor	92	50 54	74.6 73.3	7.86 4.08		Grand Island a Grand Island b		42	73.8	4.18		Carlin + 1	98	49	70.8	T.	1
lietonia	98 95	55 56	74.8 75.6	7.27 5.08		Greeley				3, 26 3, 23		Carson City	94	89	65.2	0.59	1
Montana.						Hartington	99	43	69.0	1.90		Cranes Ranch				0.28	ı
lder °	97 96	25 32	58-2 63-7	0.51		Harvard	100	49 59	72.4 75.4	1.23 3.88		Duck Valley Elko *1	93 106	33 50	62.6 67.8	0.37	l
te	95 94	34 38	63.8 63.8	0.39		Hayes Center Hay Springs	*****	41	70.4	1.32 3.82		Elko (near)	97	85	66.0	0.01	1
yon Ferry	103	40	70.0	0.10		Hebron	98	51	78.0	2,65		Empire Ranch	105	48	76.0	0.06	
nook	109 92	38	69.2 60.8	0.35 2,93		Hickman				6.90 1.94		Fenelon	******	******	*****	0.00	-
vallisw Agency	96 101	36 40	64.3	1.45		Hooper *1 Imperial	95 103	52 45	72.0 73.0	3.50 2.43		Halleck *1	102	50	69.5	0.00	1
rborn Canyon	97	81	61.3	1.50		Johnstown		*** **		0.25		Hawthorne	100	42	78.4	0.00	
on	96 94	31 35	62.8 64.6	0.15		Kennedy	106	42	71.2	1.70 2.25		Hot Springs				0.04	
uyer	104	33	65.0	5.01		Kimball	98 96°	41 51	69.8	0.40 3.35		Los Vegas	111 88	52 38	80.4	0.30	1
Benton	100 108	85 48	71.0 70.0	0.60		Kirkwood • 1	99	48	70.4	8.78		Martins			64-6	0.40	
Logan	97 109	30 40	60.3 70.3	0.67		Lexington Lodgepole		46 44	71.6 69.9	1.80		Monitor Mill	95	31	65.6	0.13	
dive	107	40	72.5	0.95		Loup				4.14		Palmetto	95	28	68.6	1.00	ı
woodtfalls	101	31 40	63.3 68.6	0.23		Lynch Lyons	98	38	69.8	1.18 2.12		Reno State University Tecoma	93	39	66.0	1.08	
	91	29	59.4	1.84		McCook			**** *	2.55 1.79		Toano	99	40	69.7	0.00 T.	
ngston	105 98	30 40	64.6 66.4	0.00		Madison	98	45	69.6	3.72		Verdi			09.7	0.75	
hattan	99 104	32 26	65.6	0.64 T.	- 1	Madrid *5		50	77.2	8.75 4.11		Wadsworth				0.05	
oula	94	38	64.6	2.78		Merriman				1.35	- 1	New Hampshire.				8.82	1
ot	92	26 37	57.6 67.2	1.97 0.05		Minden a	99	47	71.8	1.84		Alstead	90	33	62.8	3.92	
ns	90 105	32 37	64.8	2.20		Monroe Nebraska City b				2.98 3.98		Brookline *1	88 96	40 34	68.8	1.78 2.09	
lodge	110	31	64.0	0.00		Nebraska City c	97	49	70.9	8.88	- 1	Claremont	95	42	67.5	2.77	
elawn	103 104	36 37	69.2 70.6	1.88		Nemaha *1	103 102	58 45	75.4 70.4	6.86 3.41		Concord Durham	94 94	34 34	66.8	1.79 1.87	ı
auls	102	34 34	67.2 61.8	0.83 3.99		Norfolk	103	44	71.3	2.47		Grafton	91 92	35 41	63.0	8.05 2.48	
Bridges	96	32	62.4			Oakdale	100	44	70.6	2.05		Keene	94 85	38 42	65.4	2,61 1.36	
aux	108 102	33 36	64.9 68.2	1.70		Odell	104	42	69.8	2.15 1.78		Nashua	95	37	64.6 68.0	1.90	
Nebraska.	102	81	66,0	0.26		Ord Osceola				6.56 1.65	1	Newton North Conway	93 95	32 38	65.6	0.82 2.80	
0	*****	*****		1.59		Ough	*****			0.65 3.78		Peterboro	91 94	34 38	64.6	2.51	
nce	94	45	69.9	3.57 0.45	- 1	Palmer *5 Palmyra *1	110		80.6 70.1	6.78		Plymouth Sanbornton	91	88	64.5	1.74	
By	108	49	74.8	0.88		Plattsmouth b				6.70		Stratford Warner	90	35	63.2	3.11 3.54	
aho •1	102	59	80.5	1.89		Pleasanthill				1.68		New Jersey. Asbury Park	95	50	69.8	4.91	
rville *1gton	100	56	73.4	3.10 1.66	1	Ravenna b	102		72.0	2.40		Bayonne	96	51	71.1	2.45	
and &	98	48	72.8	3.15 2.95		Redeloud b *1 Republican *1	100		76.8	0.61		Belvidere Bergen Point	98	49 50	70.9	3.70 2.72	
on				4.51	- 11	Rulo				5.80		BeverlyBillingsport *1	97 93	48 57	72.6 78.0	2.28 8.12	
ey	98	58	75.7	1.58 2.82	- 1	St. Libory St. Paul	101		71.8	4.38		Bridgeton	95	50	78.5	3.84	
er	100	49 46	73.0 75.0	2.37	- 1	Salem * 1	94		77.1	6.62		Camden	90 94	51 47	71.3	2.69 3.00	
vue	****			5.27	1	Sargent		*****		4.42 2.36		Charlotteburg	90 86	39 45	66.2	3.87 3.17	
1	*****	*****	*****	1.67 4.88		Schuyler Seneca *1	94		68.3	0.55	- 1	Clayton	93	45	71.1	3.18	
hill	96	47	70.6	2.04	- 1	Seward Smithfield				3.18 0.91		College Farm Deckertown	94 89	48	71.8	2.64	
shaw		*****	****	3.51		Spragg				2.12		Dover	92 95	44 45	69.8	2.16	
enbow • 1hard	96	58	73.0	1.29 4.85	- 1	Stanton *1	97 98	54	70.4 69.5	2.37		Egg Harbor City	95	48	70.4	3.67	
way	105	44	69.0	5.85 0.95	.	State Farm	99		72.1	3.55		Flemington	98 94	47	70.8	4.18 3.00	
Clarke	103	43	70.8	1.56		Stratton		*****		4.34		Friesburg	92	47	71.4	8.12	
ter				3.71 1.71		Superior * 5	102	54	75.8	8.75 5.89		Hammonton	91	47	70.2	3.81 2.28	
	97			1.50	1.71 1.50 2.34 2.13 1.72	Tablerock	98	53	74.9	5.80 6.88		Hightstown	94 98	49	71.1	2.51	
mbus	96		70.8	2.13						6.12		Lambertville	95	49	72.4	3.69	
ertson	101	*****	77.2	1.72 2.47		Tekamah	97		70.2	4.40 2.50		Layton Lebanon	90	41	68.2	4.66 8.03	
d City	99	49	71.8	1.50	.50 .46 .23 .54	Turlington	96	49	71.4	5.09 3.74		Trenton	91 94		71.6	2.51	
son	100		74.0	5.46 6.23		Wakefield Wallace	98		69.2	2.24		Mount Pleasant				3.75	
r a	101	57	78.4	2.54		***	93		67.8	3.04 7.58		Newark New Brunswick	95 95		70.4	2.96	
Ig	*****	*****		1.22		Wellfleet				0.72		Newton	92	42	69.2	2.87	
ury	101	50	71.4	3.06	- 11	Westpoint	99	45	74.2	4.72		Ocean City	92		66.8	3.52 2.94	

TABLE II. - Climatological record of voluntary and other cooperating observers-Continued.

			heit.)		cipita- on.				ture. heit.)		dpita- on.			npera hreni		Prec	elpi on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Menn.	Rair and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total done of
New Jersey-Cont'd.	96	50		Ins. 4.11	Ins.	New York—Cont'd.	0	C	0	Ins. 2.61	Ins.	North Carolina-Cont'd	o 78	o 45	64.5	Ins. 7.07	
ainfield		41		2.72 3.20		Hemlock	89 91	46		1.07 3.15		Littleton Louisburg	95	54	74.8 76.8	6.01	
vervale	95	41	69.0	3.15		Honnedaga Lake		*****		3.94 8,10		Lumberton	93	56 55	76.8 72.8	3.17	
seland	94 94	44 51	68.4	1.55		Humphrey		41	64.1	2.53		Marshall	91	53	72.0	8.33	
merville	96	46	71.4	2.85		Indian Lake.	91	36 44	67.0	3.11 1 98		Moncure	93	54 49	76.2	5.57	
ms River	92 95	48	70.4	2.88 4.77		Jamestown	88 91	45 89		2.70		Morganton Mountairy	92 88	55 51	78.8	5.97 8.56	
ekerton	94 97	45		3.75 8.46		Keene Valley	98	37		2.25		Mount Pleasant	94	55	75.6	4.87	
odbine	91	46		8.10		King Station			*****	1.59 2.41		Murphy Newbern	94	5:2	76.4	8.87 5.82	
New Mexico.		47	78.9	1.88		Liberty	86 86	48		3.55		Patterson * 1	94 84	51 53	74.1 68.0	4.69 10.55	
ouquerque	101 98	53 42		0.06 T.		Lockport	88 91	48 39	68.2	1.07		Pittsboro	93 96	51 58	75.6	5.98	
teo	98	41	69.5	0.58		Lyndonville				0.96		Roxboro	94	54	77.1 75.6	8.88	
nalillo	100	46	74.4	1.38 0.14		Lyons	954	51	67.9	2 74		Salem	93 98	52 56	74.9	3.88 4.81	
nbray	102	34	68.8	0,65		Middletown	88 86	51 39	68-8	4.12 1.94		Saxon	94	52	74.4	7.81 2.25	
t Lasvegas	89	41 50	66.0 76.0	3.59		Moira				4.41		Settle	94	52	74.6	5.57	
anola	102	43	67.7	0.68		Mount Hope Newark Valley	96	45	69.6	8.81 2.88		Soapstone Mount	98 92	50 48	74.7 74.0	5. 29 4. 97	
t Bayard	100	42	65.7 73.1	2.14 0.01		New Lisbon North Germantown	86	88	62.8	2.98		Southern Pines a Southport	89	57	76.2	5.02 6.26	
t Stantont Union	97 92	38 43	67.9 65.1	1.68 4.67		North Hammond	84	48	66.8	2.51		Springhope *1	92	58	75.3	4.58	
t Wingate	99	40	69.3	0.50		North Lake Number Four	88	41	61.7	2.59 3.26		Washington	99 96	51 52	77.7 78.3	8.54 4.58	
steo	101	46	70.2	0.27		Nunda Ogdensburg	93 88	48	67.5	0.75 5.91		Waynesville	86 98	50	68.5 75.3	7.64	
linas Springsboro	102 100	51 50	74.6 75.8	1.07 T.		Old Chatham				8.14		Weldon b				2.53	
se Springs	97	89	68.2	2.00		Oxford	90 89	41	68.4	3.41 3.77		North Dakota.	99	32	66.9	1.68	
Vegas Hotsprings	90	43	65.0	2.95 0.00		Palermo Penn Yan	93 96	41	65.6	1.80		Ashley	101	35 29	67.0 64.8	0.96	
Lunas	100 98	42 50	78-3 75-2	T. 2.60		Perry City	98	40	66-8	1.51		Buxton	98	88	65.3	0.61	
ns Ranch	111	44	76.4	T.		Plattsburg Barracks	94	84	65.8	2.07 4.21		Churchs Ferry	100 98	27 37	64.8 67.5	0.53 3.04	
illa Park	108	47	78.4	0.16 T.		Port Byron	92	45	68.5	1.57 4.99		Devils Lake Dickinson	101	33 36	68.0 69.2	2.06 0.83	
on	94 108	40	67.9 75.4	0.00		Red Hook	87	45	65.5	1.84 2.87		Donnybrook Dunseith	102	32	65, 2	0,65 0,48	
well	108	51	75.8 79.7	2.13		Ridgeway	91	47	66,6	1.40		Ellendale	100	36	68.5	0.36	
nger	96	38	66,3	0.19		Rome	89 94	44	65.4 68.8	8.27 0.93		Falconer	98 98	35 31	68.6	2.74	
teoaks	94	48	72.0	0.13	j	Rose St. Johnsville	91	43	67.4	2.14		Forman	97 101	32 36 f	$67.2 \\ 68.24$	0.59	
sors Ranch	100	28 48	57.4 73.8	2.79 0.50	- 1	Salisbury Mills Saranac Lake	87	36	62.5	3.93 2.46		FullertonGaliatin	100	82	67.5	0.66	
New York.	200	***	10.0			Saratoga Springs	91	48	66.7	2.16		Gienullin	100	31 38	68.8	1.84	
ms	98	44	68.0	2.95	- 1	Schenectady	92	49	68.9	5.85		Hamilton	106	32	65.7	1.06	
on	89	87	64.6	1.27 3.13		Scottsville	92		67.8	1.95		Jamestown Langdon	101	35	66.6 63.8	1.65 2.08	
eton	90	87 45	65.5	2.56 1.16		Shortsville	92	46	67.2	1-18		Larimore	105	83	66.1	0.90	
de	89	41	64.3	2.12		South Canisteo	86	41	64.6	5.11		McKinney	101	33	66.6 66.2	1.07	
nta	92	40	65.8	2.17		Southeast Reservoir Straits Corners	94	85	66,6	2.08		Mayville	105		69.3 78.2	0.27	
B	951 86	34	68, 11	1.23		TiconderogaVolusia	96 91	49	67.6 63.4	4.85	1	Melville	98 99	84	67.6	2.92	
winaville	93 92	46 43	68-4	1.47		Walton	94	40	68.9	1.46 3.64	- 1	Minnewaukon	102	82	66.8	1.35	
08	88	38	68.3	2.17		Wappingers Falls Warwick	98	50	70.3	2.89 8.27		Minto	109		67.0 67.0	1.58	
andy • 10	86	47	63.6	4.90		Watertown Waverly	98	42	66.0	1.62 2.75		Napoleon New England	95 103	32	66.6	3.45	
Mountain Lake	00	33	68.3	2.50 2.98	11	Wedgwood	91	44	67.2	1.91		Oakdale	980	41"	68.20	To	
kville	86	48	65.0	2.21		West Berne	94 89	40	68.2 64.8	2.77		Pembina	103 102		65 9 64.9	0,90	
kport	93	45	67.4	2.63	- 1	Westfield a	90	46 47	66.8	2.03		Power	101		64.0 64.2	2.39 0.66	
well	80 80	45	66.1	3.16 4.52		Westfield c Williamson	89	46	66, 4	1.44	- 1	Steele	99	35	68.4	1.10	
on	88	39	64.2	5.65		Windham North Carolina.	87	38	63.4	0.86 3.59	- 1	Towner University	98 98	35	64.9 65.9	2, 20 0, 88	
ers Falls	90	48	70.4 65.6	2.60 4.65		Abshers	91	52	78.9	9.28		Wahpeton	97 98		67.6 64.8	3.09 0.51	
rhill	95	50 48	69.6	1.61		Asheville	90			8.11		Ohio.	98		67.7		
lotte*10ango Forks	94	49	66.8 .			Bryson City			68.2	7.91 6.31		Akron	96	39	68.4	2.83	
erstown	86	46	65.2	2.54 3.08	1	Chapelhill	98		77.6	4.45 6.39	11	Ashtabula	89	47	65.9	0.81 3.48	
andhogue	92		69.8	2.40	11 4	Currituek	94		76.8	1.02	- 11	Bangorville Bellefontaine	90 88		69.5	2.45 5.65	
lb Junction		*****	****	2.88	[]	Experimental Farm	****		****	4.54	- 11	Bement			69.8	3.09	
***************	91		67.7	1.02	11.1	Fairbluff	92		75.5	8.19 6.47	ii.	Benton Ridge Bethany	98 94		68-6	2.54 4.94	
ing	91			1.82	11 (Goldsboro	98 92	54	76.5 74.3	2 69 5 65	- 11	Bigprairie	88		88.5	3.21	
klinville	86		63.8	2.56	11	lenderson	92	54	75.3	4.81	- 11	Bladensburg	90		58.0	1.48	
iels	84		61.8	1.48	1 1	lendersonville	86 91	57	70,2 74.6	8.79 6.99		Bloomingburg Bowling Green	91 88		71.0	1.18 8.80	
Falls	93			3.95	1	lighlands	78			9.29		Bucyrus	90		39.6	4.64	

 ${\bf Table~II.} - {\it Climatological~record~of~voluntary~and~other~cooperating~observers} - {\bf Continued.}$

TABLE II. - Climatological record of voluntary and other cooperating observers-Continued.

	Ter (F	mper: ahren	ture. heit.)		oipita- on.			nperat hrenh			oipita- on.			npera hrenh		Prec	dpit
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum	Mean.	Rain and meited snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total denth of
Couth Carolina—Cont'd.	94	o 58	77.5	Ins. 4.87	Ine.	Tennessee-Cont'd.	0	0	0	Ins. 8.77	Ins.	Texas—Cont'd Hewitt	o	0	0	Ins. 3.70	
affneyeorgetown	98	59		8.40		Clarksville	88	60	73.6	10.77		Hondo	95 96	65	81.0	0.34 3.75	1
lllisonville	96 86 92 89 90	55 58 61 57	77.8 71.8 76.4 78.1	6.10 9.75 8-01 15.43		Covington Decatur Dyersburg Elizabethton Elk Valley	98 92 93 93	65 59 64 50	76.8 74.9 76.5 74.2	10, 95 7, 35 11, 19 4, 41 5, 90		Hulen . Huntsville Ira. Jacksonville Jasper	101 ^d 99 107 93 95	68 68 59 65 63	81.8 81.8 79.4 79.2 80.8	7.81 8.22 1.12 6.55 5.18	
berty ttle Mountain	93	60 60		12.88		Florence	88	60	74.3 74.1	8.78 10.88 11.94		Kaufman Kent	100	65	84.2	1.23	1
ongshore	94	58	76.4	8.69		Grace	*****	50	*** **	11.84		Lampasas Langtry	102	61	82 2	2.31	
. George	94 94	57 60	76.4	7-64		Harriman Hohenwald	88 91	58 55	71.8	7.70		LaparaLaureles Ranch	******			1.08 2.21	
Stephens		55		. 8.62		Iron City	92	57 65	78.8 74.5 76.0	17.93 13.06		Llano * 5 Longview	103	66	81.2 82.4	0.30 3.27	
aws Fork		54		. 6.51		Jackson	98 87	56 50	74.0 72.8	13, 90 12, 16		Luling	101 98	66 63	83.6 80.0	0.79	
cletyhill	94	58 56	77.8	7.02		Kingston				3.30 7.29		Mount Blanco Nacogdoches	100	64	75.6 83.8	3.10 6.59	-
atesburg	92 91	60	77.5	5.03		Lafayette *	98	60	78.3 74.7	10, 19 13, 46		New Braunfels	100	66	82.6	T. 4.50	
mperance	95	57 54	75.4	5-51		Lynnville	90 91	61	74.6	11.91 17.83		Paris a Point Isabel *1	101 96	63 80	80.7 85.4	1.15	
enton	91 90	68 58	77.8	10.05		McMinnville	90 95	58	73.2 75-3	8.14 12.60		Rhineland	106 96	62 67	81.4 81.4	1.16	
lhalla nnsboro	88 89	56	71.8	4.86		Maryville *6'	93 92	58 61	74.6 75.0	6.89 16.38		Runge	104 100	64 68	84.8 84.2	1.86 10.26	ı
nthrop College	93° 97	56 64	74.0 80.7	5.46		Newport Nunnelly	90 89	56 55	74.4 78.4	6.77		Saginaw * 1	103 105	68 67	81.6 86.6	2.50	l
South Dakota.	95	59	77.5			Oakhill	91 93	55 62	78.8 74.6	12.22 13.97		San Marcos Sherman	101	65 64	83.2 81.7	0.00	ı
demy	100	36 40	69.4 72.6			Peryear*5	90	60 54	76.6 73.8	10.75 13.55		Sugarland	97 96	65 64	81.7	4.26	
xandria	99	85 85	71.0	2.48		Rogersville	88	53 58	72.2	5.86		Sulphur Springs Temple a	100	66	80.1 82.8	0.00	
vdle	107 96	36	69.8	1.05		Savannah	94	60	71.7	7.80 13.49		Temple b	102	58 65	79.2 80.9	0.08 4.76	
okings	92	34	66.1	1.81		Sewanee	87 87	54 49	70.6 68.2	11.24 5.57		Tulia Turnersville	101 98	54 64	73.8 80.8	3.25 1.54	
terville	95	89	69.8	2.02		Springfield	90	56	74-1	8.60 7.95		Tyler Valentine	101	62 58	84.8 78.2	5.82	
mberlain	92	45 31	72.5 66.2	2.25		Tellico Plains	91 87	55	74.2	7.70		Victoria	102	61	84.2	3.79 2.62	
metand	90 96	33 29	67.0	3,04 3,03		Trenton	91 87	59	75.0 72.6	12.05 12.30		Waxahachie Weatherford	105 104	61 62	82.0 81.8	1.30 0.12	
pointmingdale	99	41	70.8	1.78 2.75		Union City Wildersville	90 87	62	74.1 73.9	5.60 15.85		Wichita Falls				0.48	
ndreau	96	34 35	68-6 67-6	1.65 2.98		Yukon	90	60	74-1	10.79		Alpine				T.	
estburg	98 105	30 45	68.4 74.2	2,66 1.50		Allee	103	70 55	85.8	0.10		Castledale	98 104	44 39	69.6	0.25	
t Meade nvalley	95 96	45 39	69.3	8,00		Alvin		60		3.22		Corinne Deseret	106	44	72.8 72.6	0.20	
nd River School	99	84 43	70.9	0.77		Anson			80.0	2.12 T.		Farmington	105	40	72.5	0.25	
tman *	96	87	73, 4 66. 6	0, 67 8, 02		Arthur	103		83.4	8.50 0.60		Fish Springs Fort Duchesne	104	48	77.9 69.0	0.07	
cheoek			****	2.69		Austin b * b	105	64	81.9	0.07		FriscoGiles	99 110	50 45	75.0	0.04	
eh City	102	40	71.0	2.51		Beaumont	102		81.7	12.70		Grover	95 95	42 34	67.3 63.3	0.33	
rior	109	35 41	66 6 72.2	3.66 4.50		Big Springs	100	60	80.4	1.71 T.		Henefer	101	30 59	62.9 83.0	0.20	
ball	100	29 43*	67.8	0.11 2.40	- 1	Bianco Boerne *1 Bowle	99 104	67	80.4 80.2	1.08		Holyoke Huntsville	105 .			1.00	
10	97 105	34 35	67.6 70.0	0,96 2,55		Brazoria Brenham	94	69	81.4	4.02		Kelton *1	102	60	78.2	0.00	
etteno	99 100	33 37	68.0	0 78 2.28		Brighton Brownwood	99	69	83.7	0.66		Loa	98 94	42 35	62.9	0.04	
bank	95 96	36 34	67.0	1,54		Burnet *1	108 96	64	84.3 79.7	T. 2.78		Manti Marysvale *1	95 103	35	70.4 68.2	0, 19	
1chs	106	41	69.4 78.4	2.70 1.50		Camp Eagle Pass	105 104	62	83.0 79.2	8, 20 0-50		Marysvale *1	88	32	50.7	0.00	
kinton	95	39 35	68.6 70.9	2,74 2,58		Colorado	95 108 .	67	81.0	0.23		Minersville	101		72.1 73.8	0.18	
feld	95 96	32 26	67.7	3.08 2.42	- 11	Corsicana	93		80.8	3. 15 1. 46		Mount Pleasant	99 101	41	68.0 75.1	0.00	
awrence	100	43 28	79 9 70.6	2, 85 2, 43		Cuero Dallas	100 103	64	84.0	5.62 1.72		Park City	91 97	36	63.5 67.9	T. 0.13	
x Falls	104	45 35	72.4 66.8	2.17 3.45		Danevang Dublin	100 103	66	83-8 80.4	3.38 0.66		Pinto	95 98	32	63.0	0.25	
oton Agency	94	36 42	66.8	1.08		Duval	98	66	81.8	0.20		Richfield	107	46	69.2 76.0	T. 0.20	
fallertown	101 .		69.0	0.76	8 D 0 E 6 E 7 F 6 F 3 F 8 F	Estelle	95 104	62	79.8 82.6	4.17 0.57		Scipto	101 96		68.2 67.4	0.10	
DAY	98	31 33	66.8	2.17 0.56		Forestburg Fort Brown	102	71	6.4	0.10		Soldier Summit Thistle	81 108		67.4	0.00 0.10	
tworth	94	35	66.8	2.70 5.43		Fort Clark	102 106	66	84.0	1.10		Tooele	97 97	46	72.8 64.5	0.12 0.27	
Tennessee.	92	40	72.2	3.18		Fort Ringgold Fort Stockton.	107		87.4	T. 1.75		Vernal. Wellington	99	43	70.4 66.8	0.14	
ngtonvood	93	62 58	74.9 74.6	13.42 11.67		Fredericksburg *1 Grapevine	98°		90.8°	0.38		Woodruff	93		59.8	T.	
on	91	63	74.5	10.32	- 11	Greenville	99	65	92.6° 90.9	0,26 8 59		Vermont. Bennington	89		67.8	2.68	
VAP	91	61	74-8	4.02 18.05		Hallettsville	98 100		6.0	3.19 0.76		Chelsea	86 85		69. 2 62. 8	1.96 2.01	
wnsville	91	62	74.9	2,26 10,81		Haskell				0.70		Cornwall	92		66.7	2.83	

Table II.— Climatological record of voluntary and other cooperating observers—Continued.

		nperat hrenh		Preci				nperat hrenh			ipita- on.			perat hrenh		Prec	ipita
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of
Vermont—Cont'd. Hartland Jacksonville Manchester Norwich St. Johnsbury	90 92 93 87	0 40 37 43 39 89	62.8 62.3 64.4 64.0 64.1	Ins. 2.88 2.27 2.02 2.65 1.62	Ins.	Washington—Cont'd. Rosalla Sedro Shoalwater Bay*10 Snohomish Southbend	92 85 77 83 92	31 34 40 40 40	61.2 59.2 58.2 60.8 58.9	Ins. 0.26 4.27 3.89 7.78	Ins.	Wisconsin—Cont'd. Pepin Pine River Portage. Port Washington Prairie du Chien a	98 93 93 93 92 97	0 41 89 42 87 47	69.2 65.0 67.5 61.5 70.8	Ins. 2.31 2.64 2.15 1.85 1.62 1.70	In
Vernon*6	88	57 46 40 54	70.8 66.5 64.0 74.4	3.84 3.44 3.60 6.60		Sprague Sunnyside Union Vancouver Vashon	95 83 89 79	44 37 48 44	68.8 60.0 62.2 60.0	0.02 0.21 6.70 2.66 3.06		Prairie du Chien b Prentice Racine	102 90 90 ^b 94	35 44 38 ^h 36	64.6 64.2 66.2 64.6	3.08 2.21 1.84 2.85	
Ashland	92 86 92	54 58 50	72.8 69.0 72.2	5. 25 5. 63 4. 67 5. 18		Waterville	94 90 86 89	39 39 38 34	65.2 64.5 60.2 62.7	1.08 0.36 2.14 0.20		Sheboygan	89 100 94 89	44 85 82 43	60.4 69.0 65.4 59.5	1.75 0.57 0.51	
Birdsnest *1 Blacksburg Bon Air Burkes Garden Ballaville Christiansburg Blarksville Bifftonfoge	88 92 82 92	58 47 55 48 48	74.4 67.8 78.7 66.6 78.6	0,65 4.48 3.57 4.50 1.48 8.87 2.36 4.23		West Virginia. Beckley Beverly. Bluefield Buckhannon b Burlington Calro Central	89 92 85 92 95 96 91	47 44 48 45 47 42 45	68.6 68.6 70.1 70.2 71.1 70.5 70.6	3, 25 6, 45 5, 48 4, 30 3, 63 5, 15 4, 60	-	Two Rivers * 10 Valley Junction Viroqua Watertown Waukesha Wausaukee Westfield	94 94 92 92 91 94 98	48 81 44 39 42 86 34 40	62.2 65.0 66.6 65.5 65.2 67.6 62.3 66.8	1.82 1.58 1.61 1.21 1.81 2.95 1.50	
Columbia Dale Enterprise Danville	92	44	68-6	8-20 8-01 2.70		Chapel	91	52 45	75.0 69.2	15.62 7.13 4.65		Whitehall	95	39 36	67.8	2.79 T.	
Farmville Fontella Fredericksburg Freeling Fampton Lot Springs Lexington	85 91 87	54 52 54 48 57 45 55	75.4 78.4 73.4 70.2 75.2 67.1 71.1	8.19 6.53 7.09 5.22 1.16 4.46 7.49		Eastbank Elkhorn Fairmont Glenville Grafton Green Sulphur Springs Harpers Ferry	91 90 92 90 90	56 50 49 45 50	72.4 70.9 71.1 70.4 78.0	4.98 4.08 5.47 4.98 5.40 5.86 8.58		Basin Bedford Bitter Creek Buffalo Burlington Carbon Centennial	110 93 116 102 102 99 82	35 24 30 35 38 38 38	72.2 59.9 69.0 69.4 70.8 66.6 57.0	0. 29 T. T. 0. 19 T. 0. 12 0. 57	
lanassas larion leadowdale etersburg adford ockymount	92 88 88 96	58 48 42 58	72.6 71.2 67.2 75.8	5.92 4.55 5.13 6.49 5.48 7.51		Hinton a	93 91 87 93 93	51 48 46 50 47	78.6 70.2 68.6 71.6 72.0	6.22 4.49 2.96 5.32 3.63 5.39		Cody Daniel Embar Evanston Fort Laramie Fort Washakie	102 86 103 88 101 95	34 23 36 31 41 33	70.0 54.7 68.9 59.0 72.0 65.5	0.27 0.99 0.90 0.30 1.31 1.00	
nlem peers Ferry cottsville anardsville aunton ephens City	95 92 94 94	52 47 51 50 50	72.2 74.8 70.1 72.2 71.6	4.20 5.11 8.30 5.87 5.66 4.51		New Martinsville Nuttaliburg Oceana Oldfields Parsons Philippi a	93 87 94 98 88 90	49 49 52 50 46 41	72.2 70.4 73.0 71.4 68.8 61.5	3.88 6.53 8.69 4.77 5.90 4.98		Fort Yellowstone Fourbear	92 86 100 92 91 105 90	30 28 32 36 34 33 37	62.0 59.1 68.2 65.2 61.5 70.4 67.4	1.17 1.20 0.02 1.08 0.35 0.17 1.15	
inbeam baccoville arrenton arsaw oodstock ytheville Washington.	98 98 95	49 49 51 53 50 48	71.9 74.2 71.6 70.0	4. 12 4. 05 4. 20 3. 50 4. 23 3. 88		Point Pleasant Powellton Princeton Romney Rowlesburg South Side Spencer	98 86 97 90 98	51 50 48 55 48	74.2 70.2 71.4 74.0 72.5	5.81. 5.07 9.00 4.84 6.96 2.49 4.46		Lusk Parkman Pinebluff Rawlins Saratoga Sheridan Southpass City	99 99 98 95 98 91	33 36 34 31	67.0 64.1 64.4 66.9 61.9	0.45 0.27 0.11 0.50 0.18 0.44	
perdeenshford		39 41	57.6 61.0	7.77 1.86 4.15 4.37		Terra Alta	84 94 88	50 45 50	68.6 70.1 69.1	7.78 4.17 4.65 6.21		Thayne	92 103 100	22 37 41	58.8 70.0 78.6	0.17 0.13 0.43	
idgeportinnondar Lakedonia	100	35		0, 20 4-67 7.12 0, 39		Weston b	98	49	72.8	3.46 3.20		Aguacate	96 94 93 96	61 64 61 67	79.4 80.6 79.0 82.7	6.90 2.80 7.44 5.89	
ntervilleehaliseneyearwater	88 90 84	87 42 89	62.8 64.2 58-6	0.74 2.67 T. 13.92		Wisconsin. Amherst Antigo Ashland	94 95°	35 35°	64.6 64.2	1.18 2.31 1.37		Caibarien	98 96	65 69	78.2 82.0 79.7	6.39 12.19 5.94 5.58 2.89	
e Elum	92 97 92 89	31 34 31 38	59. 2 65. 0 63. 0 64. 2	0.71 0.27 0.35 0.26 0.11 0.82		Barron Bayfield	96 92 92 93 91 95	28 41 41 30 36 47	65.0 62.6 68.6 61.6 62.6 68.8	2, 20 3, 60 2, 66 1, 16 3, 41 1, 40		Gibara. Guabairo Guanajay Guantanamo Guines. Holguin	94 90 96 95 92	66 66 65 68	81.4 81.4 82.7 78.6	6.07 9.60 3.76 7.88 4.72	
upeville		41 35 42 42 89	58-4 64-0 66-8 66-5 61-6	1.46 0.17 0.15 0.08 3.85		Delavan Dodgeville Easton Eau Claire Florence Fond du Lac	984 92 94 97 92 93	494 42 37 44 30 40	67.84 66.2 62.0 68.2 62.3 66.2	2.05 2.81 1.52 1.86 3.58 1.25		Limonar Manzanillo Matanzas Moron Trocha Nuevitas Pinar del Rio	95 94 95 95 93	75 63 66 72 69	84.9 79.8 81.1 83.2 80.6	10.07 5.95 8.25 8.37 1.77 3.85	
ooper	98 98 98 101 94	87 44 47 40 48	68.2 62.4 69.6 69.6 69.0	5, 96 0, 22 8, 24 2, 68 0, 65 0, 29		Grand River Locks Grantsburg Hartford Hartland Harvey	97 94 95 94 95	34 37 39 43 34	64.7 66.1 66.0 67.2 65.8	2.40 1.35 1.24 1.38 1.30 2.10		Sagua la Grande	96 95 98 88 93 92	60 71 64 72 61 71	79.9 82.2 80.4 80.0 79.4 81.8	13.49 7.66 7.61 5.26 6.18	
yfield nteoristo tttinger Ranch ount Pleasant. xee Valley w Whatcom. rthport	92 84 102 88 95 77 98	36 38 49 46 37 39 33	60.6 59.6 71.8 62.8 66.3 58.0 63.9	3.99 10.92 0.17 2.12 0.35 3.97 1.02		Heafford Hillsboro Knapp Koepenick * 1 Lancaster Madison Manitowoe	94 93 94 90 92 87 89	85 89° 85 42 46 46 40	64.0 65.2° 64.7 64.0 67.1 67.7 60.9	2.04 8.56 2.46 8.70 1.53 8.20 2.43		Porto Rico. Adjuntas	91 89 90 97 92 98	57 66 68 65 66 73	75.0 80.7 78.0 79.0 78.8 80.4	18, 92 10, 50 7, 48 7, 92 13, 76 10, 85	
ga ympia nehili meroy rt Townsend illman	76 90 96 91 81 90 94	42 39 39 48 44 87 31	57.4 61.8 67.4 69.2 58.4 62.8 62.8	2.47 8.75 0.75 0.61 1.46 0.48 1.43		Meadow Valley	98 103 93 90 96 98	36 38 36 38 36 38	65.6 65.0 66.0 64.4 65.8 63.8	0.95 1.35 1.58 2.41 3.10 1.47 1.81		Cidra Coamo Coamo Corozal Fajardo Hacienda Coloso Hacienda Perla Humacao	93 93 93 89 95 91	63 66 60 68 66 67 67	75.6 79.2 78.1 79.4 79.8 78.8 79.8	12.89 12.82 7.26 14.85 13.74 18.14 22.83	

observers-Continued.

		mpera ahrenl			ipita- on.			mpera hreni			ipita- on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of show.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Porto Rico—Cont'd, Juana Diaz. La Isolina Lajas. Manati. Maunabo Mayaguez. Ponce Port America Puerta de Tierra San German. San Lorenzo. Utuado Vieques. Yanco. Mexico. Ciudad P. Diaz. Coatzacoalcos Leon de Aldamas. Puebla*i Tampico. Tampico. Ness Brunswick. St. John. Nicaragua. Rivas.	93 90 95 95 95 97 92 91 91 93 92 94 104 102 92 98 98 98 98	67 65 67 66 73 68 66 72 68 63 63 65 65 66 56 58 71 43	80.0 76.2 80.0 79.5 80.8 79.5 80.8 81.0 74.6 78.6 81.2 76.4 80.3 85.1 82.6 74.5 69.4 86.2 82.9 83.5	Ins. 13.48 10.74 16.80 6.95 15.08 14.08 16.68 12.16 7.90 15.74 21.41 8.84 4.07 1.49 4.38 1.66 1.69 1.69 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	Ine.	California—Cont'd. Mutah Flat San Miguel Island Snedden West Saticoy. Calorado. Minneapolis. Rangely T. S. Ranch Walden Hilinois. Monmouth Kansas. Eureka Ranch Massachusetis. Amberst Michigan. Badaxe. Minnesota. Le Roy Mississippi. Batesville Corinth Hernando Pontotoc Nebraska. Crete.	93 90 964 83 89 90 90 84 89 89 89 88 88 88	40 30	54.6 59.2 60.1 47.8 63.2 64.5 55.1 57.2 69.1 70.0 70.3 69.7 64.4	0.81 1.89 T. 0.90 0.92 2.93 4.19 4.01 2.54 2.44 3.70 5.22 4.18 5.21	Ins
Late reports	for	May	, 1900).		New Jersey. Vineland	97	35	63.0	T. 2.97	
Alaska. Coal Harbor	57 60	24 21	40.6 42.8	2.94 0.87	0.8 T.	Selma Ohio. Warsaw Texas.	96	28	59.8	2.11 5.10	
Killisnoo Orca	60 64 65	34 28 30	46.1 43.7 47.8	2.20 13.70 0.12	1.0	College Station	89	57 33	72.6 55.8	12.28	
Wood Island Arizona. Cochise*! Russellville Walnutgrove		50	70.8	6.62 0.00 0.00 0.01	1.0	Washington. Vashon	73 89 92	89 64 69d	54.6 76.2 80.8	4.27 12.10 4.96	
California. AgnewsCraftonville	89 91 98	42 40 45	63.2 65.5 68.7	0.51 1.97 0.23		Mexico, Guanajuato Nicaragua, Rivas	98 95	51 75	71.2 84.0	1.51	

EXPLANATION OF SIGNS.

- Extremes of temperature from observed readings of dry thermometer.
- A numeral following the name of a station indicates the hours of observation from which the mean temperature was obtained, thus:
- ³ Mean of 7 a. m. +2 p. m. +9 p. m. +9 p. m. +4.

 ³ Mean of 8 a. m. +8 p. m. +2.

 ⁵ Mean of 7 a. m. +7 p. m. +2.

 ⁶ Mean of 6 a. m. +6 p. m. +2.

 ⁶ Mean of 7 a. m. +2 p. m. +2.

- Mean of readings at various hours reduced to true daily mean by special tables.
- Mean from hourly readings of thermograph.
 Mean of sunrise and noon.
- 10 Mean of sunrise, noon, sunset, and midnight.

The absence of a numeral indicates that the mean temperature has been obtained from daily readings of the maximum and minimum thermometers.

An italic letter following the name of a station, as "Livingston a," "Livingston b," indicates that two or more observers, as the case may be, are reporting from the same station. A small roman letter following the name of a station, or in figure columns, indicates the number of days missing from the record; for instance "a" denotes 14 days missing.

No note is made of breaks in the continuity of temperature records when the same do not exceed two days. All known breaks, of whatever duration, in the precipitation record receive appropriate notice.

CORRECTIONS.

May, 1900, Iowa, Fayette, make total precipitation 2 06 instead of 1.95 Oklahoma, Beaver, make total precipitation 0.80 instead of 1.00.

Note.—The following change has been made in the

names of stations: Ohio, Vanceburg changed to Green. In this Review, page 244, column 3, table, for Novem

ber, upper subbasin, for 0.39 read 0.89. For May, Gamboa, for 0.58 read 0.55. For June, Bohio, insert 0.32; for Gamboa, insert 0.35; for upper subbasin, insert 0.41; for intermediate subbasin, insert 0.22; for lower subbasin insert 0.27.

Table III .- Mean temperature for each hour of seventy-fifth meridian time, June, 1900.

Stations.	1 a. m.	2 a. m.	3 a. m.	4 a. m.	5 a. m.	6 a. m.	7 a. m.	8 a. m.	9 a. m.	10 a. m.	11 a. m.	Noon.	1 p. m.	8 p. H.	8 p.m.	4 p. m.	5 p. m.	6 p. m.	7 p. m.	8 p. m.	9 p. m.	10 р. ш.	11 р. ш.	Midn't.	Mean.
Bismarck, N Dak	62.9	61.2	59.7	58.9	57.4	56.2	57.0	59.8	63.2	66.2	69.6	72.0	78.7	75.1	76.2	77.7	78.5	78.6	78.2	77.2	74.3	70.4	66.9	64.2	
Boston, Mass Buffalo, N. Y	63.3	62.3	61.7	61.0	60.4	61.2	68.6	67.2	69.7	71.6	72.8	73.2	74.8	73.9	74.9	74.4	73.8	72.6	70.6	68.7	67.3	66.2	65, 2	64.2	
Cedar City, Utah	62.5	61.8	61.3	60,3	60,0	60.7	62.4	64.5	66.3	67.6	68.8	69, 9	71.0	71.5	72.0	72.0	72.2	71.5	70.5	69.1	67.1	65.9	64.5	68.1	
Chicago, Ill	62,6	62.4	64.7	61.4	60.9	60.6	61.5	61.0	63.6	69.2	73.0 64.5	75.9 64.8	77.6	79.4	79.9	81.1	81.4	80.9	80.5	79.7	76.8	72.1	70.4	68.3	
Cincinnati, Ohio	69.6	68.8	68.0	67.3	66.6	66.2	66.8	68.1	70.1	64.0 72.3	74.4	76.8	65.6 77.6	66, 2 78, 6	80.0	65,6	65.1	64.8	78.4	68.4	62.8	62.5	62.5	62.6	
Cleveland, Ohio	63.8	63.2	62.4	61.5	61.3	61.5	62.8	64.8	66.3	67.6	68.4	68.6	69.1	69.5	69.8	70.0	79.4	79.2	69.7	68.6	67.2	78.2 66.2	71.8	70.6	
Detroit, Mich	61.7	61.0	60.4	59.9	59.5	59.7	61.8	64.2	66.0	68.3	70.0	71.8	72.2	72.7	73.4	73.9	72.9	72.4	71.7	69.8	67.8	65.5	65.1	64.5	
Dodge, Kans	69. 2	68.3	66.5	65.8	65.0	63.8	63.2	65.2	69, 1	72.3	76.0	78.8	81.3	82.6	84.2	85.1	85.6	84.8	83.8	81.6	78.3	74.2	71.8	70.1	74.
Eastport, Me	50.5	50.2	49.8	49.7	50.3	51.8	53.3	56.1	57.4	58.8	60.6	61.0	61.1	62.0	61.5	61.0	59.5	58.4	57.2	55.8	53.9	52.8	51.8	51.5	
Galveston, Tex	80.0	80.0	79.8	79.2	78.9	78.6	78.6	79.9	81.0	82.5	83. 2	83.5	83.8	83.9	84.1	84.5	84.2	83.9	83.2	82.7	81.4	81.0	80.6	80.4	81.
Havre, Mont	63.8	61.9	60.0	58.4	57.8	56.2	55.9	57.5	62.3	65.6	69.7	72.8	74.0	75.9	77.5	79.4	79.5	79.7	78.9	77.9	76.1	72.8	68.1	65.5	
Independence, Cal	75.6	72.7	71.0	69.6	68.4	67.1	65.3	65.0	64.9	67.3	71.8	75.9	79.1	82 0	84.5	85.7	86.5	86.8	86.5	86.2	84.4	81.6	78.8	77.6	
Kalispell, Mont	58-1	56.4	54.7	58.5	51.7	50.7	49.5	50.3	53.1	56.5	60.3	63.8	66.6	68.0	69.7	71.0	71.6	71.7	71.9	70.9	70.4	67.9	64.1	60.1	63.
Kansas City, Mo	70.3	69.4	68.5	68.0	67.4	66.4	66.0	67.7	69.6	72.2	74.6	76.6	78.4	79.5	80.5	81.3	81.7	81.6	80.7	79.3	76.3	74.4	72.9	71.4	73.
Key West, Fla	79.0	79.0	78.8	78.9	78.5	78.6	79.7	80.9	82.4	82.5	83.3	83.8	83.4	83.8	84.8	83.1	82.8	82.1	81.2	80.4	80.0	79.9	79.8	79.4	81.
Marquette, Mich	56,0	55.9	55.8	55,2	54.5	54.5	55.4	57.7	58.9	59.8	61.2	62, 1	62.5	63.3	63.5	68.8	F3.9	63.9	62.8	61.6	59.8	58.3	57.2	56.5	
Memphis, Tenn "	71.8	71.4	70.7	70.2	69 8	69.6	69.9	71.7	73.2	74.6	75.8	77.7	79 2	80.4	81.0	81.6	81.8	80.6	79.5	77.8	75.8	74.9	74.1	78.8	75.
Mt. Tamalpais, Cal	59.6	59.8	59.5	58.9	58.9	58.9	58, 4	57.9	58.0	58.7	58.9	58.8	60,3	61-7	63.8	65, 3	66.1	66.5	65.7	64.6	63.9	62.5	61.0	60.3	61
New Orleans, La	76.2	75.6	75.3	75.8	75.2	75.8	76.0	77.3	80.1	81.3	82.4	83.3	83.8	83, 2	83.2	82.6	82.4	82.0	81.2	80.4	78.7	78.0	77.2	76.8	79.
New York, N. Y	66.8	66.1	65.9	65.2	64.9	64.8	65.5	67.1	68.9	72.0	74.1	75.6	76.3	77.8	77.0	77.2	76.8	74.9	72.4	70.5	69.2	68.6	67.6	67.0	
Philadelphia, Pa	67.0	66.4	65.9	65, 6	65.2	65,5	67.1	69.4	71.8	74.8	76.2	78.2	79.8	80,5	80,8	80.3	78.8	77.3	75.8	78.6	70.9	69.8	68.8	67.8	74.
Pittsburg, Pa	67.7	66.8	65.7	65. 2	64.6	64.2	65.3	67.6	70.4	72.5	74.9	76.7	78.8	78.2	80.0	80.1	79.4	78-1	75.0	74.2	72.9	71.5	69.8	68.2	72.
Portland, Oreg	62.9	61.8	60.4	58.9	57.8	57.0	55.9	55.4	55.3	56.9	58.5	60.2	62.5	64.1	66.2	67.6	69, 2	70.1	70.8	70.5	70.0	68 4	66,4	64.2	
St. Louis, Mo	71.5	70.5	69.6	68.8	68.2	67.4	67.3	69.0	70.6	72.9	75.1	77.2	78.7	79.7	80.4	80.8	81.0	80.5	79.8	77.5	76.0	74.5	73.4	72.4	74.
St. Paul, Minn	65-5	64.4	62.8	61.7	60,6	59.8	58.8	60.9	63.9	67.3	70.4	72.7	74.8	76.2	77.4	77.7	78.3	77.9	77.5	76.8	74.8	72.1	69.7	68.0	69.
Salt Lake City, Utah. San Diego, Cal	62.9	69.6	67.5	66.3	65.9	64.4	62.6	64.4	66.5	70.8	74.8	77.5	80, 2	81.5	84.0	84.7	85.1	84.0	84.2	83.6	82.1	77.6	75.2	78.2	
San Francisco, Cal	54.4	53.6	58.1	52.7	52.4	52.1	61. 9 52. 0	58.1	52.5	54.0	62.6 55.8	64.0 56.8	65, 7 58, 9	66.4	67.8	67.2	67.1	66.9	66,6	65.8 59.6	65.4	64.6	63.8	68.3	63.
Santa Fe, N. Mex	63.8	62.0	60, 6	59.1	58.8	58.0	56.9	59.9	64.1	66.8	69.6	71.7	73.7	74.7	62.1 75.6	62.2 77.1	62.0 76.6	61.5 75.7	60.2 74.7	73.4	58.8 71.0	57.0 67.8	55.8	55.1	56.
Savannah, Ga	78.4	73.1	72.7	72.6	72.4	72.4	78.9	76.1	78.1	79.9	81.7	82.6	83.6	83.7	82.9	82.4	80.7	79.1	77.8	76.6	75.6	75.8	65.8	64.6	67.
Washington, D. C	67.4	67.0	65.8	64.9	64.3	64.9	67.0	69.5	71.6	73.5	75.4	77.2	78.5	79.6	79.2	78.9	78.2	76.7	75.0	73.2	71.5	70.2	74.8 69.0	74.3 68.3	72.
West Indies.		01.0	00.0	01.0	01.0	04.0	01.0	00.0	11.0	19.0	10.4	11.4	10.0	10.0	10.4	10,0	10.4	10.1	10.0	10.4	11.0	10. 2	09.0	10.0	14.
Basseterre, St. Kitts.	78.9	78.9	78.6	78.7	78.5	79.4	80.7	81.9	82.8	83.4	83.4	83 9	83.2	82.7	82.4	82.1	81.1	80.4	80.1	80.0	79.7	79.4	79.8	79.0	80.
Bridgetown, Bar	77.2	77.2	77.1	76.9	77.0	79.1	80.9	82.0	88.9	83.6	84.2	84.4	83.9	88.5	82.8	81.9	80.5	79.2	78.9	78.5	78.1	77.8	77.5	77.3	80.
Cienfuegos, Cuba	74.8	78 8	73.2	73.1	72.8	72.7	75.6	79.5	81.9	83.8	85.6	87.0	87.2	86.8	85,4	84.3	83.4	82.1	80.5	79.5	78.2	77.4	76.2	75.7	79.
Havana, Cuba	76.0	75 2	74.8	74.5	74.1	74.0	75.3	78.1	80.7	82.4	83.7	84.1	88.6	88.4	83.5	82.9	81.5	81.2	80.0	78.9	78.2	77.7	77.1	76.4	79.
Kingston, Jamaica	74.2	73.9	73.8	73.7	78.5	72.9	75.1	80.0	83.1	85.2	85.9	86.4	85.4	84.8	83.5	88.0	82.1	81.3	79.9	78.4	77.2	76.2	75.6	74.9	79.
Port of Spain, Trin	74.6	74.2	74.2	71.7	78.8	74.7	77.5	80, 2	82.6	81.7	82.3	81.5	81.5	80, 9	81.1	81.1	80.6	79.1	78.2	77.4	76 7	76.4	75.7	75.8	78.
P. Principe, Cuba	72.8	72.2	71.8	71-4	71.0	70.8	72 2	77.4	79.2	81.7	84.0	86.3	87.7	88.7	87.8	85.4	83.1	81.2	78.5	76.2	75.0	74.5	74.0	73.3	78.
Roseau, Dominica	76.9	76.5	76.2	75.8	76.1	77.8	80,4	82,0	83.0	83.9	84.8	85 1	84.9	84.6	83.6	82.9	81.5	79.8	78.8	78.4	78.0	77.7	77.1	77.8	80.
an Juan, P. R.	76.0	75.9	75.6	75.4	75.2	76.0	78, 0	80.5	81.8	82.3	83.0	83.8	83.2	82.9	82.1	80.9	80.1	79.4	78.8	78.4	77.6	77.1	76.8	76.7	79.
antiago de Cuba	76.1	75.6	75.2	74.7	74-4	74.9	78.2	80.7	84.5	86.4	87.7	88.3	88.9	87.9	86.2	85.0	83.5	82.0	80.7	79.8	79.0	78.5	77.5	77.1	81.
anto Domingo, S. D.	74.6	74.2	78.8	73.6	73.5	73.4	75.8	78.0	79.9	81.4	81.9	82.6	82.6	82.5	82.3	81.8	81.2	80.2	79.4	78.4	77.8	76 4	75.8	75.1	78.
Willemstad, Curação	79.6	79.4	79.3	79.0	79.0	79.5	81.8	82.8	83.7	84.3	85, 0	85.5	86.5	86.6	86.0	85.0	83.4	82.1	81.1	81.0	80.7	80.3	80.2	80.0	82.

• Record for 25 days.

Table IV.—Mean pressure for each hour of seventy-fifth meridian time, June, 1900.

							-		-								,	,							
Stations.	1 а. ш.	2 a. m.	3 a. m.	4 a. m.	5 a. m.	6 a. m.	7 a. m.	8 a. m.	9 a. m.	10 a. m.	11 a. m.	Noon.	1 p. m.	2 p. m.	3 p. m.	4 p. m.	5 p. m.	6 p. m.	7 p. m.	8 p. m.	9 p. m.	10 p. m.	11 р. ш.	Midn't.	Mean.
Bismarck, N. Dak	28. 151	- 150	.151	. 155	- 165	.174	.178	. 182	. 186	.184	-178	-174	. 166	. 153	.142	. 133	.119	- 109	. 101	.100	.103	.116	. 125	. 133	.14
Boston, Mass	29.784	.780	780	.782	.793	-807	.811	.813	.810	.807	.801	.791	.779	.772	.766	.760	.760	.762	.767	.768	. 781	.783	.783	.783	.78
Buffalo, N. Y	29.127	. 125	126	. 128	. 135	.144	. 152	. 161	. 157	. 154	.154	.148	. 137	.128	.119	-111	. 105	. 105	. 108	.111	.124	. 126	. 128	. 131	.13
Cedar City, Utah	24.266	. 265	. 262	. 262	.259	. 262	. 268	. 276	. 288	. 296	. 299	. 295	.293	, 283	.271	. 258	. 250	. 238	. 227	.223	. 227	. 235	.247	. 257	.26
Chicago, Ill.	29.080	.080	.079	.090	085	.091	.098	. 107	-111	.113	.115	.116	.111	. 103	.093	.087	.080	.076	.074	.078	.076	.092	- 088	.090	.09
Cincinnati, Ohio	29.285	285	285	. 286	. 296	. 805	. 815	.818	.320	.318	.813	. 308	. 299	. 285	.270	. 262	. 258	. 250	. 255	.260	. 280	. 286	. 288	.289	. 28
Cleveland, Ohlo	29.144	- 142	. 143	. 150	. 157	. 163	. 169	. 174	.178	. 171	- 169	. 168	. 154	.143	. 133	- 127	. 128	. 125	- 131	. 133	. 143	.148	. 150	. 149	.14
Detroit, Mich	29, 174	- 178	168	-171	177	. 183	. 189	. 194	. 193	.194	. 194	. 193	. 184	. 171	. 165	- 154	. 152	. 149	.149	. 154	. 168	. 175	-178	.178	. 17
Dodge, Kans	27.347	-347	.350	.348	. 351	. 355	. 363	. 367	.374	.378	.374	.370	. 362	. 350	. 334	. 819	.306	. 295	.291	.801	.810	.328	.343	.347	- 34
Eastport, Me	29.818	. 813	.811	.813	.817	- 820	. 827	. 832	.827	.824	.820	.814	. 803	. 795	.788	.782	.783	.786	.793	.803	.811	.818	.816	.812	.80
Salveston, Tex	29.813	.808	.804	.805	. 808	.814	.822	. 830	-843	.846	.848	.847	.837	,829	.819	.807	.795	.788	.781	.784	.793	.805	.815	.817	.81
Havre, Mont	27.255	. 257	258	. 258	. 261	.268	.272	.279	. 282	.283	.277	.272	. 263	.251	. 236	.223	.217	. 210	. 205	. 201	.211	. 215	.232	. 243	. 24
ndependence, Cal	25,902	.906	.910	-911	.912	.914	.918	.926	. 939	. 952	. 953	. 950	.948	.936	.919	. 905	.888	878	- 862	.851	.818	. 852	.869	.886	, 90
Kalispell, Mont	26.860	.862	.861	.862	.866	.869	.876	.884	.895	- 894	.891	.883	.8-4	. 863	.851	.840	.831	.822	.815	.811	.811	.818	. 834	.851	. 85
Cansas City, Mo	28.920	.920	. 913	.911	.917	. 925	. 936	. 943	. 952	. 937	.955	. 953	. 943	. 936	. 923	.911	.900	.890	. 883	. 886	,896	.901	.916	.914	.92
ley West, Fla	29.959	. 950	.943	.940	.941	. 945	.954	.967	. 976	.977	.978	. 975	. 966	.956	.944	. 933	.922	.917	. 920	.941	. 945	.954	. 959	.959	. 95
larquette, Mich	29.162	. 164	- 161	.165	. 169	.172	. 182	. 188	. 193	.190	. 190	. 193	185	. 182	.171	. 164	.161	. 154	. 156	- 155	. 160	. 163	. 163	.165	. 17
lemphis, Tenn	29, 481	- 481	479	. 479	.488	.488	. 495	. 502	.510	.514	.516	.515	507	. 494	- 487	.476	. 465	.459	. 458	.461	. 463	.472	.479	.484	.48
it. Tamalpais, Cal .	27.505	.503	. 497	. 493	.487	.483	.483	-485	. 495	.505	.517	. 5:24	.528	.584	.536	. 533	. 525	.517	.508	.501	. 492	. 492	. 498	.508	.50
lew Orleans, La	29,841	.838	.832	. 828	.837	.843	. 855	.866	.875	-875	.877	.873	.864	.856	.847	.834	.828	.819	.822	.823	. 829	. 885	.844	.847	.84
lew York, N. Y	29,622	-619	.619	. 642	. 631	. 638	.647	- 654	.654	.652	.646	. 637	. 625	.615	. 605	.598	.592	.594	. 598	.604	.617	.631	. 625	. 625	.62
hiladelphia, Pa	29.840	.838	.837	.836	.845	.853	.861	.867	.866	- 865	.861	. 853	.841	.848	.818	.812	. 809	.810	.817	.824	. 837	.842	.843	-841	.88
ittsburg, Pa	29.061	.059	. 059	.060	.067	.077	. 086	.090	. 087	.086	.077	.070	. 055	.043	.031	.023	.019	.022	. 0:27	.034	.046	. 058	.063	.064	. 05
ortland, Oreg	29.821	- 826	.830	-834	.838	.840	.840	.845	.851	. 853	.857	.856	.851	.845	. 835	- 829	.820	.812	.804	.799	. 795	.77	.806	-816	.82
t. Louis, Mo	29, 304	. 302	. 296	. 297	. 302	.311	. 820	.328	. 335	. 334	. 335	.390	.822	.811	. 302	. 293	. 282	.272	. 281	. 285	. 291	. 301	. 307	. 309	.30
t. Paul, Minn	29.042	.042	.046	.047	. 051	.000	.068	.078	.078	.076	.070	.068	.056	.046	.035	. 027	.019	.009	.001	, 999	.004	.017	.030	.038	.04
alt Lake City, Utah.	25.549	.543	.544	.548	- 5/51	. 537	. 565	.575	-586	.591	.596	. 595	. 593	.585	.574	. 559	.545	. 534	. 524	.518	.517	.520	.527	.537	, 555
an Diego, Cal	29.817	.816	.807	.799	.792	.790	.788	.797	. 804	.813	.821	.823	. 825	,825	. 821	.814	.809	.803	.796	.793	.793	-798	.803	.812	.80
an Francisco, Cal	20 025	*****	*****		*****	*****	*****	*****			*****	*****	*****	*****							****			*****	
	23.325	-328	.325	. 324	. 322	. 325	. 332	. 337	. 846	. 352	. 350	.346	. 337	.325	-308	.295	. 282	. 278	. 273	.278	.284	, 298	.313	. 321	. 81
avannah. Ga	29.922	. 915	.911	.911	. 916	.946	.937	.947	.955	. 955	. 951	.943	. 930	.915	.900	. 896	.893	\$68.	.900	. 907	.913	.922	.927	.925	. 92
	29.847	.845	.846	.846	.852	.863	.872	.830	.881	.881	.877	.868	- 858	.847	. 835	.828	.821	.822	.825	.827	.838	.844	.848	.849	. 850
West Indies.	00.000	040	044	048	074	000	077	000	0.00	000	004	000	000	040			0.00	000	000						
asseterre, St. Kitts.	29, 957	.948	.944	.945	. 951	.960	. 975	.983	.987	.986	.981	.969	. 957	.946	.937	.933	. 940	.950	. 963	.977	. 985	- 988	.981	.970	.96
ridgetown, Bar	29.930	. 934	.936	.926	. 934	.944	.954	.961	- 963	. 959	.951	. 939	. 935	.912	905	.906	.912	. 923	. 936	.949	. 957	. 961	. 956	. 942	.93
ienfuegos, Cuba	29.889	.877	- 869	.870	.874	.884	. 899	.907	.909	.908	.905	.891	.882	,868	854	.849	.850	. 857	.875	.889	.900	. 905	.904	.899	88
avana, Cuba	29.901	.891	.885	.879	- 884	.891	.905	.916	.919	. 923	.922	.914	.903	.890	.876	. 869	. 866	.871	.881	.896	.905	.911	.916	.911	.89
ingston, Jamaica	29.634	-618	.610	. 606	.607	-614	. 630	. 638	.640	. 637	. 629	.617	.601	.590	. 577	.570	.570	.576	.596	.614	. 630	.641	.651	- 648	.61
ort of Spain, Trin.	29,893	.886	.884	-889	.897	- 909	.921	.927	.928	. 943	.914	.897	.880	.864	.851	.850	.858	.868	.885	. 902	.914	.933	.919	.907	. 89
. Principe, Cuba	29.608			.588	.592	.603	,615	.691	. 625	- 624	. 623	.612	.600	.583	.572	.566	.572	.589	. 606	.615	.622	. 629	.626	.611	. 60
oseau, Dominica	29,935	. 930	. 930	.932	- 940	. 950	.956	.965		.963	.954	.944	.932	.920	.912	. 911	.917	. 930	.942	.957	. 963	,965	.961	.948	. 943
	29.893	. 886	.885	. 887	893	- 903	.910	.914	.914	.912	.908	.893	.896	.875	.867	.868	.873	.885	.898	.909	.916	. 9-22	.918	.906	.897
antiago de Cuba	29-844	-834	.834	- 826	829	. 839	.850	.851	. 855	. 853	.844	-837	.839	-806	.799	.797	.799	.811	-827	-845	. 857	.865	.864	.855	.885
anto Domingo, S. D. Villemstad, Curação	29.1624	.915	- 908	. 905	. 911	. 923	. 937	.945	. 952	. 951	.944	.934	. 9:22	.910	.900	.887	.891	.902	. 916	.931	.941	-951	.948	.938	. 924
CHIPPING CHOICEO	201.012	.804	.799	. 800	. 806	. 821	.830	. 835	. 836	-831	-816	.798	- 768	.746	.747	.724	.733	.754	- 783	.805	.834	. 836	.836	. 827	. 798

					411		HLY				erent	w-fifth	meri	dian	time,	June,	1900.		1	1	- 1	1		
		TABLE	v	-Averag	e wind	moven	nent fo	r eac	h hou	r of 8	1	0 00	1	1	1	-			.	ä	ë	ight.	ė	}
	1	1	1		1			.		.	ė	e e	E	Ė	8	8	p. m	p. H.	p. m.	10 p. n	11 p. 1	Midnight	Mean	
		i	ä	g 8	i	i i	B. B.	B B	1 a. m	Noon	1 p. n	2 p. 1	8 p.	4 p.	20	9 b	-	90		7.5	7.2	7.1	8.0	
Stations.	2 a. m.	3 p. II	4 8.1	d 1	d d	œ œ	0	10	=	9.7	10.1	10.2	9.9	9.7 9.5	9.6	9.6 8.8	9.6 8.0 9.6	9.6 7.5 8.1	8.2 6.6 6.9	7.0 6.4	6.8 6.2 12.7	6.3 6.4 13.2	7.4 8.9 11.1	
		6.1	5.2	5.3	5.5 5.6 5.7 6.	4 7.7	8.2	9.2 8.5 9.8	9.1 9.0 11.1	9.8	9.8 13.1 11.0	9.4 13.1 10.5	9.7 18.1 11.1	12 9 10.5	12.4 11.0 9.0	11.1 11.7 8.3	11.3	11.5 6.9	10.9 7.5	7.7	8.4	7.7	7.8	
dene, Tex eany, N. Y	5.1 5. 6.1 6.	5 6.6	11.5	6.8	5.9 6. 1.1 9. 7.2 7.	7 9.4	9.1	10.8		8.5	8.9	9.6	9.8	9.5	11.6	11.1	9.9	9.9 5.2	5.4	5 4	4.9	9.1 4.6 3.5	5.9 5.2	
pena, Mich. narillo, Tex lanta, Ga	13.3 13.	0 6.8	6.9	9.6	9.1 9.	3 10.	9 11.4 5.5	11.8	7.1	7.0	8.2	8.7	8.6 5.9		7.0	7.6	5.5	7.9 4.8 13.3	4.0	4.2	3.8		5.2	
lantic City, N.J	8.8 4	7 8.	3.7	4.1	4.5 5	.5 5. .0 5.	3 4.8 0 5.8	6.8	6.0	6.9	7.2	9 15.3	15.4	15.2	15.7	15.1	15.6	15.5	14.	8 14.5	4.8	3.4	4.4	1
igusta, Ga. iker City, Oreg itimore, Md ismarck, N. Dak	3.1 8 7.5 7	4 3.	5 6.9	7.0	7.4 7	.7 8. 5.5 15.	4 15.6	16.5	2 16.3	6 4-7	7 5.	9 6.3	6.0	13.	7.6	6.8	11.4	10.	5 10. 7 11.	6 10.	9 11.	8 11.0	11.7	
1 - A R I	10.0	1.6 13. 1.7 3. 1.7 10.	2 3.2	9.8	9.7	2.4 2		6 11.	9 12. 0 12.	7 13. 8 13.	9 14.	1 14.	1 13.5	8 13.	7 8.	0 7.7	7 7.8	0.	2 10.	6 10.	5 11.		8 7.0	
oston, Mass	10.7	9. 10.		9 10.4	5.7	6.0 6	.5 6.	7 6. 8 13.	2 13.	0 13.	7 13.	6 6.	5 8.	1 8.	4 10.	9 8.	0 12.3 6 8.3	3 13.	2 13 5 7	7 10	4 5.	1 7. 9 10.	2 7.7 0 10.9	
Wile, In.	11.8 1	1.5 11	.9 4.	1 3.8	8.9	3.6 9.7	3.5 2. 3.7 8.	7 2.	8 3	.1 11.	9 6	.0 14	0 8.	0 14		9 13.	1 12.	5 5	.3 5	.2 5	.7 6	.8 4	1 5.5	
arson City	8.8	9.5 9.1	1.1 9. 0.0 8.		7.6	8.6	0.0	9 6	.9 7	.4	.2 8	8.1 8	.3 8	1 7	.0 11	.9 7. 12	.5 12.	7 11	.8 16	1.8	.9 9 1.5 15	.0 14	.5 9.5 .6 14.5 .1 7.1	
charlotte, N. C	9.0	8.5	3.8 8	.8 3.4		6.3	6.4 7	.6 9	0.0 10	0.6 11 4.2 18	1.1 16	0.9 11 4.8 15 9.3 8	3.0 14 3.9 9	1.9 15	3.5 15 3.5 9	0.5 9	.8 15. .4 9 .1 13	.0	.6	6.5	1.5 1	1.8 11	.3 12.6 5.9 6.5	
Chattanooga, Ten Cheyenne, Wyo Chicago, Ill.	14.2	8.0 14.8 5.5	4.5 13 5.6 3	1.7 13.7 5.1 5.9	14.1	5 1	6.4 7	1.1	7 0 7	3.3 1	4.4 1	4.6 1	7.4	8.2	8.3	7.9	7.4 6	.2	8.3	7.6	7.5	6.7	6.2 7.6 5.9 6.6	
Cincinnati, Ohio Cleveland, Ohio	11.4	11.6	1.2 1	6.4 5.5	6.1	5.8	6.0	7.4	8.2	8.8	8.8	9.6 1 8.5	0.0 8.5	9.9	8.5	8.7 6.2 1	8.8 8 6.3 19	8.8 1	7.4 6.2 6.9		4.5 1	29 1	1.4 11.6 6.2 7.5	
Columbia, Mo	5.7	5.8 5.5 5.7	5.6	5.5 5.3 5.1 4.	6 7.2	3.7 7.5	6.8	6.2 8.2 8.1		9.5 1	8.9	9.6	9.9	9.6	9.5	8.9	11.1 1	0.8		11.4	9.9 5.4	5.1	7.2 8.2 5.8 7.7 6.9 8.5	
Columbus, Ohio Concordia, Kans Corpus Christi, T Davenport, Iowa	ox 10.6	9.6 6.7	6.2	6.0 6.	0 5.5	7.1	6.8	6.7	6.0	47.0			10.5	11.6	10.5	9.9	9.6		8.0 10.5	6.9 8.1 6.0	7.3 8.7 5.1	7.1 8.8 4.8	7.5 9.8 5.0 7.0	
Denver, Colo	7.7	7.1	7.8 5.0 7.2		1 5.8 7 6.7	6.3	6.7 7.4 6.7	7.8 8.0 8.4	8.5 10.1	9.4		11.7		9.7	9.9	9.4	9.5	8.5	7.8	6.9	6.4	6.5	6.5 8.1 6.9 8.2	
Des Moines, Ton.	8.4	7.0 8.0 4.6	7.6	71 0	7 6.0	5.1	6.2	7.5	8.6	9.8	10.0	11.0	11.3	10.9	10.2 11.6 6.3	9.7 9.9 6.3	9.3 8.0 5.6	7.4	6.8 3.4 13.5	6.4 2.8 12.7	6.7 2.5 10.9	2.2 11.7	1.9 8.7 12.0 10.4 7.7 9.3	
Dubuque, 1044	5.5	6.1	7.1 6.3	6.1	.3 6.8 3.2 6.8 3.0 2.1	7.2	8.4	8.8 8.8 7.4	9.6 4.3 8.4	9.9 5.3 8.3	5.8	6.0 8.9 10.3	6.1 9.3 10.4	6.2 9.0 10.5	8.7	9.6	9.7	13.7	8.4	8.3	7.6	7.8	6.8 8.7	
Elkins, W. Va.	1.9	1.8	1.9 10.8 9.0	11.7 1	1.3 10. 9.2 8.	8 9.4	9.8	9.9	10.2	9.2	10.7	10.9	12.0	10.9	10.8	10.6	10.7 11.4 7.9	9.4 10.9 7.5	8.5 10.0 6.6	9.7 6.5	8.8 5.9	8.1 7.1 4.6	6.5 7.0 3.7 5.5	5
Erie Partie	6.1	6.8	7.7	7.8	6.7 6. 4.8 4.	8 4.7	7.5	8.8 4.3 7.2	7.1	7.4	6.4 7.6 6.1	6.8	7.7 6.9	8.1 6.6 11.1		8.4 7.1 11.8	7.1 11.8	7.2 12.0	1	10.6	9.9	9.7	9.5 10.0	3
Escanaba, Mic Eureka, Cal Evansville, Inc.	1 5.	8 5.8	5.9	6.1	6.0 6.	8 6. 6 5. 8 7.	5.0	5.2	5.8	11.6	11.4	11.4	5.2	5.5	5.3	5.8	5.8 8.0	6.5 8.1	7.3	6.7	6.3	5.8	6.4 7. 5.9 7.	7
Fort Worth, Te	x 9.	8 9.5	9.3	9.5	8.5 7	4 7.	3 6.7	8.1	8.7	9.4	9.8	8 7.9 8 10.8	8.8	10.7	10.0	9.8	7.4	9.0	8.	5 6.4	5.6	6.8	6.5 7.	.4
Fresno, Cal Galveston, Te	Mich. 6	9 6. 5 6.	9 6.9 9 6.6	7.1	7.0 6	1.7 7. 3.8 5.		6.7	8.4	4 8.5	5 7.1	9 8.1	9.4	9.3		9.8	8.9	7.	7 6. 8 13.	1 13	0 12.	4 11.	11.2 12 7.6 11	.7
Galveston, Te Grand Haven. Grand Junetic Green Bay, W	n Colo. 5	.3 5.	2 6.5	5.6	4.3	4.5 5	0 5.6	6.	3 7. 3 12.	8 13.	2 13.	6 13.	8 14.	4 14. 7 15.	7 14. 4 15.	8 15.0 0 15.4 8 10.	6 10.3	14. 5 10.	8 14. 8 10.	9 14.	1 8.	3 8.	4 8.6 8	1.2
Harrisburg, P	8	1.5 4.	6 4. 7 11. 4 7.	6 11.8	10.9 1	8.7 9	.0 8. .6 6.	7 9. 0 4.	8 12. 6 5.	1 13.	0 7.	8. 5 15.	3 8.	8 16.	9 16.	7 16.	7 16.	2 13.	8 13	.5 11	9 10	5 9.	8 7.5	8.7 9.8 7.9
Hatteras, N. Havre, Mont. Helena, Mont Huron, S. Da		9 8	8 8.	5 9.7	9.4	9.9	5.7 5.	7 5	6 5	.4 6.	6 6		6 11	4 11	8 11	9 11.	2 10. 7 10.	8 9	3 7	.7	.0 7	0 6	7 5.9	9.5 7.0
Huron, S. Da	o Cal	9.5	1.0 5.	9 6.0 5 8.0 7 6.8	6.0 7.6 6.9	7.8	7.9 9. 6.3 7	.0 10	9 7	.7 8 0.9 11	3 8	8.8 9 1.3 11	6 12	0 12	2 12	.5 10	.5 10.	4 9	.8	9.6	85 6	5.2 7	.0 6.8	7.0 6.6
Jacksonville	Fla	6.4	8.9 8	7.6	7.9	7.5 5.8	6.0 5	.2	5.8	6.8	7.7	8.2	8.4	8.9	7.9	7.9 8	0 7	.7	7.2	6.2	5.6	6.4 6	3.7 6.8 3.6 13.4	7.2 14.2 6.0
Kalispeil, m	Mo	5.9	5.7	5.8 5.8 5.5 6.0	6.1	5.5	5.7	8.8	6.4	7.4	7.9 8.1 4.2	8.5	8.8	8.4 4.7 1	6.4 1	6.4 16	8 8 16	1.4 1	5.9 1	6.0	5.5	5.0	5.6 4.9	6.6
Keokuk, 10	Ma	6.7	6.7	8.7 6.8 8.8 12.9	12.3	6.1 12.2 4.8	12.7 1	3.9 1	5,2	5.6	6.0	6.4	7.9	7.9	7.5	7.7		7.9	6.5 7.5 7.4	6.6 7.2 6.5	5.7 5.9 6.9	7.8	4.7 4.4 7.9 8.0	4. 8. 5.
Knozville,	renn	5.6	5.1	4.6 4.	2 4.0	4.5	2.2	2.2	5.9 2.2 9.5		6.9 3.1 9.2	2.9 8.9	9.7	4.8 9.2 8.3	9.7	9.1	9.6	8.4 7.3 9.1	6.3	6.1	7.7	6.3	4.7 3.8	4.
La Crosse, Lander, W.	Www	4.9 4.4 7.7	7.9	3.7 3. 7.4 7. 4.1 4.	2 7.8 4 4.9	7.5	7.5 5.1 2.4	8.4 6.1 2.4	5.6	6.6	6.5	7.2 3.8	4.1	9.7	9.9	9.8	10.1	9.8	9.1	7.6	6.6	6.9 2.3 4.5	6.1 6.5 1.7 1.8 5.8 4.3	5
Lander, W. Lexington, Little Rock Los Angele	Ark	3.7	2.4	2.7 2.	4 2.5	6.8	6.9	7.5 3.5	7.9	7.9	8.6	9.5 5.7 7.5	9.7 5.7 8.8	5.6	5.6 9.2	5.5 8.1 9.8	5.1 7.4 9.6	4.6 7.4 9.8	9.5	4.9 8.4 8.4	4.6 6.9 7.6	7.2 6.9	8.2 8.8 7.7 7.5	9 8
Louisville	Ky		6.7 2.0 3.8	1.9 2	0 2.0	1.6	2.1 3.7 8.4	5.3	5.9 9.1 8.7	6.6 9.6 8.5	7.8 9.9 8.4	10.1	10.6	10.1	9.5	9.8	9.5	8.8	9.8	8.9	8.2 7.5	8.3	8.7 8.7 6.9 6.6	9
Macon, Ga	Mich	9.1	9.4	9.5	.4 7.4	7.7	7.8	7.9	8.2	8.5	9.6 8.7	9.7 9.6	10.0	10.7 12.2	11.7 12.1 9.3	11.2 12.1 8.5	11.2 8.4	10.8	10.0 7.4 14.5	8.2 5.5 13.4	5.1	9.3	4.5 4.4 8.0 7.6 92.7 23.0	1
Memphis,	wis	. 8.7	8.9	7.1	7.7 7.8 4.4 4.4	7 4.9	6.7	6.4 6.2 9.5	7.8 7.1 11.6	8.5 7.5 13.0	7.9	13.8	8.3 14.3 11.6	8.8 14.8 10.0	15.2		15.1	15.2 12.4	13.8	15.2	9.1	19.4	9.4 9.4	1
Mobile, A	100	4.8	4.3	8.4	8.0 1.7 21.	5 8.4	19.8	19.4	18.2	16.5	15.5	13.1	12.6	12.8	12.4	9.1	8.7	10.9 8.3 8.9	9.2	7.1	5.7 8.9	8.7	7.0 5.4 6.7 6.0	
	i, Minn imalpais,Ci	. 9.0	9.0	9.9	9.7 9. 4.0 3. 4.3 4.	8 4.1	4.0	12.1 5.0 3.7	6.1	6.6	7.1	5.2	6.2	12.8	6.9	12.9	11.4	10.1	8.4	7.6				
27	et, Mass	4.2	4.4					8.8	9.2				9.0											

	1		1	1	1	1	ABLE	v	Aver	ige wi	ind m	ovem	ent, et	c.—C	ontir	ued.									2
Stations.	1 a. m.	2 a. m.	3 a. m.	4 a. m.	5 a. m.	8. Ti.	E	ë ë	a. m.	B. II.	a. m.		ii ii	B.	ë.	ë	i		.			1.		ندا	1
New York, N. Y Norfolk, Va Northfield, Vt North Platte, Nebr	8.2 6.2	10.4 7.9 5.9	10.0 7.8 7.2	9.7 7.7 6.0	9.2	9.5 8.2	10.4	9.5 1	0.6		11.6	12.7	14.5	00 00	3 p.	4 p.	5 p. n	6 p. m	7 p. m	8 p. m.	9 p. m.	10 p. m.	11 p. m.	Midnight	Mean
Omaha, Nebr	5.3	8.4 5.6 6.0	7.7 6.3 5.6	7.9 6.6 5.9	5.6 6.4 7.1 5.5	4.5 5.4 6 6	5.7 5.1 6.5	7.6 5.1	9.0 6.9	9.4 1	9,9		11.0 11.0 11.1	11.2 11.6 11.5	14. 1 11. 8 12. 1 12. 3	18.9 11.7 12.2 12.1	12.6 11.8 11.5	0.3	9.8	14.0 8.9 6.0	11.8 8.6 6.6	11.7 8.4 6.7	11.1 8.8 7.2	11.1 8.7 6.9	11 9
Parkersburg, W. Va Pensacola, Fla	5, 2 3, 6	7.7 5.5 3.2 10.6	7.9 6.0 2.6 10.5	8.5 5.3 2.7	8.3 5.0 2.9	3.2	8.1 4.8 3.4 4	1.9 6 1.4 5	0 4	9.6 6.5	9.5 7.4	9.3 9.9 6.9	9.6	10.0	0.1 9.7 8.3	9.8	9.8 9.3	9.8	9.1	10.8 7.9 8.2 7.7	9.3 6.1 6.9	9.4 5.8 6.1	9.5 6.3 5.4	8.9 6.3	9 8
	7.3	0.4	3.4 7.4 9.9	2.7 7.9 8.7	3.1 7.9 8.5	8.1 7.7	3.5 3	.6 10 .7 3. .9 10.	.4 1 .5 4 4 10	1.4 12 1.1 4 0.5 11	1.0	2.5 1	6.6 3.2 1	6.9 4.0 1	6.9 3.8	8.3 6.4 18.4 5.6	6.8	3.2 3.2 1.6	6. 9 1. 6 2. 6	6.0 4.5 0.7	7.4 4.5 3.4 9.9	7.6 4.9 3.0 10.3	7.7 5.8 3.2 10.9	7.5 5.1 8.8 11.2	8. 6. 4.
Point Reyes Lt., Cal	10.3 1 24.0 2 3.3	1.5 1: 3.0 21 3.3 3	2.0 1	2.1 1	0.8 19	1.2 4 1.2 10 1.7 19	.9 4. .5 10.	9 5 10.	7 6	.3 14 .7 7 .7 11.	.2 13 .3 7 .2 9	.1 1	6.1 17 8.2 8	-7 17	.7 1 .9 1	2.8 8.4 8.8	12.7 11 18.5 16	0 10 4 16 4 7	.4 8 .8 17 .4 5	1.2 1	5.7		4.5 8.0 13.5 5.6	4.0 7.5 12.1	4. 9. 13,
Portland, Oreg	5.1 5 7.8 7	8 7	2 5	3.2 7 5.7 5	.6 5	.8 2. .3 7. .5 5. .4 6.	7 2. 9 8. 8 6.	8 2.6 7 9.8 9 7.5	11. 7.	5 3. 2 11. 8 8.	6 4 2 11. 8 9.	8 5 9 12 1 9	.7 17 .8 6 .5 12 .8 10	7 7	0 7	.4 1:	9 2 19. 7.2 6. 2.3 11.	3 20. 6 6. 1 10.	1 21	7 25	2.5 2	8.8 3.4 5.7	8.2 4.9	5,4 9,2 4,5 3,9	20.5
Rapid City, S. Dak Red Bluff, Cal Richmond, Va	5.1 4.		8 4. 7 5. 9 4.	.6 4. 6 4.	5 4.	1 5.	6.6	7.1 6.6	5.1 7.1 7.2	1 5.5 1 7.2 7.7	5 5.	4 5.	1 7.	3 8. 0 7. 7 7.	8 8	8 8	9.8 8. 9.8 9. 9.0 9.1 9.7	1 8.1	9 6. 9.	5 6	.7	8.8	7.4 5.2 3.7	8. 1 5. 2 3. 5	4.7 9.7 7.2 7.8
Sacramento, Cal 9.	.8 5. 7 2. 8 9.	6 5.4 2 2.5 1 9.5	5. 2. 9.	5 5.	5 6.6	0 4.8 0 6.4 2.3	7.5		8.2 2.2	8.5	5.8 6.2 9.8	5. 6. 9.8	6 6.8	6.7	6.	2 6 0 6. 5 6.	7 7.1 8 6.5 4 5.9	6.6	6.4	4 5. 5 5. 1 6.	1 5	.6 4 .2 5	.5 8	.9	6.5 6.1 6.0 5.2
Salt Lake City, Utah. 5.	4 5.6 5 5.2	4.8	4.6	8.3 4.4 3.8	7.8	8.8	8.6 6.2	7.2 8.4 7.7	7.6 9.0 8.5	7.8	3.0 7.8 10.0 9.9	7.9	3.6 8.0 10.3	4.8	9. 4. 8 9. 3 9. 9 10. 6	5. 10. 9.	2 5.8 0 11.0 7 9.7	6.5 6.7 11.5 9.8	5 3 6.6 12.4 8.8	7.1	5 6. 4 12.	2 5. 7 5. 8 11.	4 5. 1 3. 8 11.	2 3	5. 1 7. 1 3. 8 9. 5
Sandusky, Ohio	8 4 6.8 6.8 12.7	2.9	3.3 3.0 7.0 10.7	3.8 3.0 7.1	8.3	3.2 3.6 7.1 8.5	4.1 8.5 8.0 6.9 7.9	3.4 4.7 3.4 7.1	2 8 6.4 3.5 7.8	4.2 7.0 4.1 8.2	6.5 7.0 4.9 8.5	7.9 7.1 7.2 8.8	8.2 7.2 8.2	8.3 7.3 9.8	9.0 7.2 10.2	9.6	10.2	9.9 10.5 8.2	9.3 9.1 7.5	7.6	7.	8 6.	7 5.	8 8 7	.8
Sault Ste. Marie, Mich Savannah, Ga	5.9 5.2 5.2	2.7 5.7 5.1 5.0	2.9 5.3 5.7 4.9	2.5 5.4 5.8 4.8	2.7 5.0 6.0	3.1 4.8 6.0	3.6 4.7 7.0		7.1 3.8 4.5 8.6	7.7 4.5 5.2	8.8 4.4 6.8	10.7 4.8 7.6	8.7 12.9 6.5 8.4	8.9 16.2 7.3 9.8	9.4 18.9 8.5	10.0 22.7 8.5	10.0	9.6 8.9 23.6 8.4	8.9 8.2 22.7	7.5 8.0 22.8	6.6	5.8	7.0	5.	
hreveport, La 5.3 loux City, Iowa 9.1	4.1 4.8 10.4 5.6	4.4 4.5 11.1	4.8 4.0 9.5	4.0 4.0 8.8	4.8 4.2 4.0 9.0	4.8 4.1 4.0 8.9	4.1	7.8 4.2 5.3	7.9 4.7 5.6	7.9 5.1	10.6 8.6 5.1 5.6	9.1 6.2	12.8 9.7 6.3	12.0	9.7 12.2 10.0 6.6	10.0 11.6 10.3 7.1	9 2 10.7 9.8 7.5	9.7 9.2 8.4 8.0	8.3 9.9 7.8 7.4 8.1	7.2 8.7 6.6 6.4 7.6	5.8 7.3 5.7 5.9	6.7 5.5 5.8	3.6 6.5 4.9 5.8		9
pringfield, Mo 6.5 7.2 acoma, Wash	6.4	4.7 6.7 6.8	5.0 6.5 7.1	4.8 6.6 7.0	4.3 6.7 7.1	4 3 7.3	7.8	5.2	3.8	13 2 1 7.0 9.2	12 8 7.3 9.0	6.0 18.0 7.5 9.0 9.5	8.4	8.9	7.3 4.4 9.3 8.9	7.5 14.6 9.8 9.0	9.4	9.1	5,2 3.0 9,2	4.8 11.7 8.5	7.2 5.2 11.7 7.6	5.1 11.9	5.1 10.5	5.5	3
alentine, Nebr 7.4 8.5 lcksburg, Miss 4.9	4.4 7.7 8.4 4.9	8.1	4.4 7.9 7.7 4.9	8.1	7.8	7.5	6.6 7 8.2 9 8.6 10	.5 10.	.0 16	7.5 7	7.7	7.7	8.0	8.3		7.9	7.8	7.9	7.6	6.8	7.8	6.1 7.2 6.8	5.8 7.1 6.5	6.8 7.8 7.6	
chita Kana 4.3	3.8	4.7	1.4	4.7	4.7	1.6 4	1.8 5	5 4.	0 6	6	.6	1.8 1	4.6 1	1.5 13	.9 1		11.6 16 14.2 14	.6 8	.0 1		5.1 7.5 11.5 4.8	5.0 7.4 10.4 5.8	4.4 7.5 8.8 5.5	6.9 9.4 11.8 5.6	
mington, N. C. 6.7 nnemucca, Nev 8.4	6.8 6	.4 4	.8 5	6.0	6.0 7.8 7.8 7.8 7.8	1 6.	.7 6. .0 6. .8 10. .5 8.	7 7.4 3 12.4	0 7. 6 7. 1 14.	.8 7. 8 7. 0 14.	8 8	4 9	6.6 8	.6 9	4	0.4		2 5.	2 5	6	4.5	4.6	5.6	5, 6 5. 9	
West Indies. 6.7 6	3.1 6 3.3 9.	6 6.	0 5		0 5	6 6.	5 6.4	6.5	8.	1 7.5	9 8.	4 8.	2 9.	2 10.	9 11	.9 10	0.1 9. 1.5 11.	4 7	4 7	0 6	1.8	9.6 6.8	5, 9 8, 8 8, 7 8, 4	7.1 11.9 7.8 8.8	
ana, Cuba 5.2 5.1 ston, Jamaica 8.8 4.	.7 6. .1 4. .0 5. .2 4.	5 4.	9 6. 4 4 9 4.	6 7. 8 4. 9 4.	2 10. 5 4. 8 4.	4 12.6 5.1 5.6	18.7 5.3 7.7	14.0 6.3 9.1		14.2 8.1 11.2	13.	12. 13. 10.	3 11. 7 12.1 6 10.1	1 11.6	10.	8 8	0 9.3 8 6.7 6 7.2	9.8	9.3	3 9.	3 9	.6 10	.1	8.5	
au, Dominica 4.2 uan, Puerto Rico 8.0 7.1 ago de Cuba	2 3.7 3 4.0 6 7.4	4.0 3.8 6.8	3.5	3.4	3.6 3.7 4.1	5.6 6.9 5.6	6.5 9.0 6.1	6.6 9.1 7.4	7.7 6.4 8.4	10.3 6.7 7.7	12.4 6.9 7.8		6.2	9.7 6.0	14. 8. 5.7	8 14. 5 6.	2 11.5 8 4.4 6 8.7		5.8 8.2 3.6	5. 6. 3.	7 6 6 3.	.3 6. .9 6. .8 4.	1	9.7 6.7 8.8 3.1	
Domingo, S. D. 3.4 3.6 mstad, Curação. 11.6 11.8	4.1	1.8		1.6	1.7	2.4	18.5 3.4 4.7	15.0 3.9 5.3	8.2 16.4 4.5 6.1	8.1 17.4 5.2 6.4	7.2 16.7 5.8	7.8 15.4 6.1	6.5	8.8 5.6 14.1 5.8	10,8 5,1 12,8 4.6	9. 4. 11.	4 8.5 4 4.4 8 10.8	6.0 4.4 9.5 2.5	2.6 5.1 4.0 9.8 2.3	4.5	8 4.	7 4. 1 4. 5 7.	6 6	.4	
37—5	-	,	1	_	1	14.4	15.4	15.3	15.1	15.2	6.5 15.2	7.4 15.5	7.9 15.4	8.1 16.0	7.2 16.0	6.8		4.9	4.0	8.7	1 -	-	3	.2	

Table VI.—Resultant winds from observations at 8 a.m. and 8 p.m., daily, during the month of June, 1900.

44-44	Compo	onent di	rection	from-	Result	ant.	94-41	Comp	onent di	rection	from-	Result	tant.
Stations.	N.	8.	B.	w.	Direction from-	Dura- tion.	Stations.	N.	S.	R.	w.	Direction from—	Dura-
New England.	Hours.	Hours.	Hours.	Hours.	0	Hours.	Upper Mississippi Valley.	Hours.	Hours.	Hours.	Hours.	0	Hour
astport, Meortland, Me	14	22 23	10	25	s. 62 w.	17	St. Paul, Minn	17	23 16	30	19	8. 61 e	
ortland, Meorthfield, Vt	14 28	28	10	25 11	s. 59 w. s. 54 w.	18	La Crosse, Wis. †	22	10	28	13	s. 18 w. n. 51 e.	
ston, Mass		20	11	29	s. 66 w.	20	Des Moines, Iowa	17	92	30	8	8. 77 e.	1 1
ntucket. Mass	14	24	11	31	s. 63 w.	22	Dubuque, Iowa	18	15	24	14	n. 78 e.	1
sods Hole Mass t			*******		***********		Keokuk, Iowa	24	17	20	14	n. 41 e.	
ock Island, R. I	19	25 24	11	30 20	s. 56 w. s. 50 w.	23	Cairo, Ill	25 15	19 15	21 31	10	n. 61 e. e.	
W Haven Conn Middle Atlantic States.	10		14	40	5. OF W.	0	Hannibal Mot	11	6	14	6	n. 58 e.	1
bany, N. Y	16	26	9	17	s. 39 w.	13	Hannibai, Mo †	29	14	21	11	n. 34 e.	
bany, N. Ynghamton, N. Y.†	19	8	3	18	n. 68 w.	11	Missouri Valley.	9		40			
w York, N. Y	10	27 9	16 9	90 11	s. 17 w. n. 63 w.	14	Columbia, Mo.*	23	14	18	3 5	n. 72 e. n. 73 e.	
Indelphia Da	15	21	17	20	s. 27 w.	7	Springfield, Mo	21	19	17	5	n. 85 e.	
antic City, N. J	19	19	17	27	s. 55 w.	12	Lincoln, Nebr	16	27	22	4	s. 59 e.	1
pe May, N. J	15	25	16	17	s. 6 w.	10	Omaha, Nebr	21	16	30	6	n 78 e.	
timore, Md	15 20	25 28	18	19	g. 6 W.	10	Valentine, Nebr	19	25 14	16 12	15	s. 9 e. s. 63 e.	
shington, D. C	19	22	14 24	15 15	s. 7 w. s. 72 e.	10	Sioux City, Iowa† Pierre, S. Dak	14	25	28	11	s. 63 e. s. 57 e.	
nchburg, Varfolk, Va	10	33	18	15	8, 70.	23	Hippon & Hak	11	24	31	11	s. 57 e.	
hmond. Va	15	27	11	19	s. 34 w.	14	Yankton, S. Dak t	8	10	14	3	s. 80 e.	
South Atlantic States.		0.4		***	-	-	Northern Slope.		40				
arlotte, N. C	9	34	17	19	s. 5 w.	25	Havre, Mont	14	15	14	30	8. 87 W.	
tteras, N. Ctyhawk, N. C.	9 5	33 14	11	27 8	s. 89 w. s. 18 e.	31 10	Miles City, Mont	19 8	16 20	21	18 40	n. 45 e. s. 72 w.	
elgh, N. C	9	36	12	22	s. 20 w.	29	Y7 - 11 11 36 4	12	21	11	33	s. 68 w.	
mington, N. C	10	31	18	18	s. 13 w.	22	Rapid City, S. Dak Cheyenne, Wyo	16	22	23	16	s. 49 e.	
rleston, S. C	8	41	14	12	s. 3 e.	38	Cheyenne, Wyo	19	21	13	24	s. 80 w.	
rusta, Ga	9	35 36	14	14 22	s. 22 w.	26 82	Lanuer, wyo	19	25 26	15 94	93	s. 49 w.	
annah, Gaksonville, Fla	5	35	10 26	12	s. 22 w. s. 25 o.	38	North Platte, Nebr	18	200	24	9	s. 49 e.	
Florida Peninsula.			-	2.0	S. 40 0.	00	Denver, Colo	13	29	13	20	s. 24 w.	
dter. Fla	4	86	29	10	s. 31 e.	37	Pueblo, Colo	25	12	18	19	n. 4 w.	
West, Fla	6	97	34	9	в. 50 е.	33	Concordia, Kans	12	29	26	4	s. 52 e.	1
mpa, Fla	8	20	30	14	в. 53 е.	20	Dodge, Kans	13	25	30	7	s. 63 e.	1
Eastern Gulf States.	6	32	23	12	s. 23 e.	28	Wichita, KansOklahoma, Okla	18 19	25 25	30	2 5	s. 67 e. s. 71 e.	1
on, Gat	3	19	11	4	s. 24 e.	18	Southern Slope.	10	-	**	.,	8. 11 0.	
sacola, Fla.†	7	16	4	10	s. 34 w.	11	Abilene, Tex	17	28	23	10	s. 50 e.	1
hile Ala	12	28	15	15	8.	16	Amarillo, Tex	12	31	16	13	s. 9 e.	1
ntgomery, Aladian, Miss.†	5 9	81 17	25	9	s. 32 e.	30	Southern Plateau.	10	6	90	00		
ksburg, Miss.	14	24	5 22	11 10	s. 22 w. s. 50 e.	16 16	El Paso, Tex	16 13	25	30	20 10	n. 45 e. s. 62 e.	1 2
w Orleans, La	10	83	10	18	s. 19 w.	24	Flagstaff, Ariz	18	21	1	34	s. 85 w.	5
Western Gulf States.							Phenix, Ariz	14	4	19	34	n. 56 w.	1
eveport, La	16	30	18	10	s. 12 e.	14	Yuma, Ariz	9	18	10	35	s, 68 w.	2
rt Smith, Ark	17	15 15	30	6	n. 85 e.	24	Independence, Cal	15	21	14	25	s. 61 w.	1
tle Rock, Arkpus Christi, Tex	25	42	17 27	17	n. s. 27 e.	10 46	Middle Plateau. Carson City, Nev	16	18	1	36	s. 87 w.	9
t Worth, Text	8	14	4	8	s. 34 w.	7	Winnemucca, Nev	14	22	9	28	s. 67 w.	9
veston, Tex	8	38	7	21	s. 25 w.	83	Cedar City, Utah	3	38	24	17	s. 11 e.	3
estine, Tex	15	34	12	11	s. 3 e.	19	Salt Lake City, Utah	20	20	21	13	е.	
Antonio, Tex	13	27	30	3	s. 63 e.	30	Grand Junction, Colo	14	15	32	14	s. 87 e.	1
Ohio Valley and Tennessee.	16	97	23	10	s. 50 e.	17	Northern Plateau.	22	25	6	16	s. 73 w.	1
oxville, Tenn	15	22	15	27	s. 60 w.	14	Baker City, Oreg Boise, Idaho	20	13	11	30	n. 70 w.	9
mphis, Tenn	16	27	18	11	s. 32 e.	13	Pocatello, Idaho	7	35	5	21	s. 32 w.	8
shville, Tenn	18	29	22	7	s. 43 w.	22	Spokane, Wash	6	81	9	28	s. 37 w.	8
ington, Ky t	6	13	13	7	s. 41 e.	9	Walla Walla, Wash	14	27	11	16	s. 21 w.	1
ulsville, Ky	22	26 12	13	9	s. 45 e.	10	North Pacific Coast Region.	10	. 15	0	35	s. 79 w.	5
ianapolis, Ind	25	16	23	12	s. 72 e. n. 48 e.	14	Neah Bay, Wash	5	4	4	22	n. 87 w.	
cinnati, Ohio	94	18	20	15	n. 40 e.	8	Seattle, Wash	12	28	17	18	s. 3 w.	1
umbus, Ohio	92	20	22	13	n. 77 e.	9	Tacoma, Wash	23	21	8	23	n. 84 w.	
sburg, Pa	20	20	15	19	W.	4	Astoria, Oreg	16	22	4	38	s. 80 w.	1
kersburg, W. Vains, W. Va	20	21 17	17	14	s. 72 e.	3	Portland, Oreg	21	20	11	22	n. 85 w. n. 5 w.	
Lower Lake Region.		4.0	1.0	18	n. 41 w.	9	Middle Pacific Coast Region.	87		16	19	n. 5 w.	,
alo, N. Y	20	23	11	92	s. 75 w.	11	Eureka, Cal	29	11	6	29	n. 52 w.	1
falo, N. Yvego, N. Y	13	93 93 17 19 18 19	11	29	s. 61 W.	21	Mount Tamalpais, Cal	16	8 23	1	47	n 80 w.	
hester, N. Y	21	17	11	26	n. 75 w.	16	Red Bluff, Cal	19	23	21	11	s. 68 e.	1
0, Pa	17	19	17	19	s. 45 w.	3	Sacramento, Cal	8	45	7	23	s. 21 w.	4
reland, Ohio	25 17	19	94	11	n. 62 e. s. 81 e.	15 12	San Francisco, Cal South Pacific Coast Region.	0	21	0	50	s. 67 w.	
dusky, Ohio	18	18	25 26	17	n. 61 e.	10	Fresno, Cal	37	2	3	40	n. 47 w.	
rolt, Mich	22	17	23	14	n. 61 e.	10	Los Angeles, Cal	6	24	9	32	8. 52 W.	- 1
Upper Lake Region.						11	San Diego, Cal	18	18	6	34	W.	
ona, Mich	21	15	19	20	n. 9 w.	6	San Luis Obispo, Cal	20	14	3	29	n. 77 w.	1
anaba, Michnd Haven, Mich	23	23 13	14	13	8. n. 97 ser	10	West Indies.	0	19	80		0 70 0	
quette, Mich	27	18	17	28 21	n. 87 w. n. 45 w.	10	Basseterre, St. Kitts Island Bridgetown, Barbados	6	18 18	50 53	0	s. 78 e. s. 82 e.	
t Huron, Mich	31	18	13	13	n. 45 W.	13	Clenfuegos, Cuba	24	11	89	2	n. 71 e.	1
t Huron, Mich it Ste. Marie, Mich	11	18 12	19	29	s. 84 w.	*0	Cienfuegos, Cuba		7	53	1	в. 89 е.	1
39.60. []	25	12	31	7	n. 62 e.	27	Kingston, Jamaica	43	4 2 8	21	3	n. 32 e.	1
waukee, Wis.	23	12	29	11	n. 59 e.	21	Port of Spain, Trinidad	3	2	55	2 5	n. 89 e.	
waukee, Wis, en Bay, Wis uth, Minn	17	19	23 28	10	s. 81 e.	13	Puerto Principe, Cuba	15	15	44	5	n. 80 e.	4 8
North Dakota.	30	6	45	15	n. 28 e.	27	Havana, Cuba Kingston, Jamaica Port of Spain, Trinidad Puerto Principe, Cuba Roseau, Dominica, W. I. San Juan, Porto Rico	18	27	40 40	6 2	n. 85 e. s. 56 e.	- 1
orhead, Minn	15	97	29	9	s. 59 e.	23	Santiago de Cuba, Cuba	27	19	24	5	n. 67 e.	5
marck, N. Dak	19	21	26	11	s. 82 e. s. 34 w.	15	Santo Domingo, S. Domingo, W. I.	27 32	12	23	7	n. 39 e.	2
lliston, N. Dak	20	26	11	15	a. 34 w.	7	Willemstad, Curação	1	10	55	0	s. 81 e.	

^{*} From observations at 8 p. m. only.

[†] Prom observations at 8 a. m. only.

TABLE VII.—Thunderstorms and auroras, June, 1900.

States.	or		1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	92	23	24	25 2	26	27	98	20	30	31	Tota
States.	No. of stations.			-						•	9		20	**	2.00	20	di.	20	40	41	40	10	30	~.			-			41	40	40	30		No.
bama	58		1	8	3	3	2	2	6	6	8	1	1	2	8	4	4	3	8	4	4	2	2	2	2	6	4	1	4	6	5	1	2 .		97
izona	56		1	***		** **			***	2	3	3	***		****	****				****	••••	****	****	***	2 .		*** **	** **	* *	2	3	2	2		20
kansas	57	T.	8	11			2	7	2	15	7	8	13	2	11	****				13	12	1	1	1	8	4	5	8	7	7	8	4	9	1	0
lifornia	167	T.		i						***	3	3	1	2	3	18	1	7		1		****			1 .				** **			***	*** **		41
lorado	81	T.	18	10	1	8 1	13	3	1	1	11	11	15	15	14	11	18	***	1	9	11	4	8	9	9	9	8 1	5	1	4 1	1	11	14	9	75
nnecticut	. 21		****	1							5			6					***	1		****			8	1			1	1 1	2	2 .			47
laware	. 5	7.0	***	1	1	1		1 .	*** *		5 .			8	1	***	2		***						*** *		** **			i		i .	*** **	**	16
st- of Columbia	a 4	T.	****	1							1 .				1	1	1		***			****		1 .					i ·	1	i			**	9
rida	. 47	T.	****		. 1	1	5	6	6	8	8	7	7	7	8	5	6	4	5	6	6	4	2	1	8	5	6	9 4	1 "	6	4	3	4	1	51 8
orgia	. 55	T.		1	4	1	3	7	5	14	12	8	8	6	6	4	8	5	12	9	9	***	1	2	7 1	0 1	2	8 11	1	3	8	6	8		05 8
ho	. 34	T.	3	***	. 1	1	2				2 .					7	4	8	1			1	1		5	5	4				1		1	4	0 12 1
nois	. 92	T.	14				1	0	18	13	4		35	4	1	24	1	4	2	9		***	2 8	3	12 1	2 1	6 1	8 8		7	8 2	4 1	5	2	88 2
llana	. 58	A. T.	7	****				1	ii	18	4 .	1	9	4	4	8	4	2 .		1		1 .	• • • • • •	6	5	7 1	1	9		5	2 1	6	3	. 1	4 15 g
ian Territory	. 11	T.	3	1	1					1	1 -			8		1 .					2									3	5	1	5	5	0 1
ra	. 149	T.	18	2				. 1	4	4		10 1	14		4	4			9	7	1		4 1	5	1	i		. 5	2	9		4		14	
nsas	77	A. T.	9	****	1		5	1	9 1	16	10	7 1	4	10	00	7	1	2	4	14	8	1	1	5	7		1 5		. 10	1:	2	4	8	. 17	
ntneky	41	A. T.	5	4	1	1	1 (6	7	8	9	1	00 00	4	8	3	4	6	2	1					1	1	1 4	6	7	1 8		6	6	. 10	
islana	. 46	T.	6	8	6	1 2	7	9	6	3	1	4	6	3	4	8	2	8	4	3 1	10	11	8	9	4 1	1	5 8	11		10		7	7	. 18	
ne	. 19	A. T.	****	1	***		* * * * *	** *					** **	** **					** **			***			1				. 7	8		3	1000	. 1	5
yland	48	A. T.	4	13	1				3	2 2	1	1		2	- 1		6	1	2		8	7		3		1	2 2	13	14	9	1	3		. 14	
sachusetts	48	A. T.		1	1								. 1			1				1				1 1	5 1				17	28	1	2		7	0 6
higan	106	A. T.		• • • •	1				8 1	4	i .	. 1	8		. 1	4							8	3	1	. 1	3	ii	20	3				. 10	
nesota	67	A. T.	1	1	3	7			5	1	3	23	1			6	i	1	2			1	3	3			. 4	4	5			. 7		. 9	
sissippi	41	A. T.	6	7	6	7		7	5	4	5	i	3	9	5	2	1	3	3	8	8	10	5		6 8	1	5	7	7	7	1	1		. 15	
sourl	95	A. T.	25	2	***	i	10	30	5 4	0	5	7 4	2 2	0 2	8	** **		4 1		9	4		1 30	1	8 18	33	19	6	82	25	24	34		. 52	
tana	40	A. T.	3	1		***					1				1	9	8	3	9	3	** **	** **	. 1		1 7	9	8	1	1	2		1	* ***	. 7	
raska	142	A. T.	13	1	5	5	5		3	i	i	3 13	3	3 1	7	i	s i	2 2	8 1	9	1	2	22 8				. 3	3	21	7	6			. 22	
ada	40	A. :		1	1			. 1	1	1	5	1	2	4	5	6 :	5	i										****	***						3 19
Hampshire.	19	A. T.	3	6	5				. 1	i .	1			5							i				7			1	7	7	2	1	* ***	4	18
Jersey	51	A. T.	3 .	15	****				. 1	2	1	i	. 13	7	3	. 1					i		. 1					5	18	20	4	2	* ***	. 12	15
Mexico	31	A. T.	4	5	3	1	1	***		2 3	8 1	1 1			3 3	2		** **		i	* **	4	3 8	1	3	3	3	4	2	6	4	4		61	25
York	99	A	5	12	3	***		1		2	3 3		. 16	3							1	3						14	20	50	3			178	16
th Carolina	56	A. T.	1	2	6	3	***	. 1	7	1 8	3 (1	1	2 "	B 4	1 5		2 1	1	6	5		. 2		13	10	16	5	15	14	8	19			27
th Dakota	48	A. T.	1	4		8	1			. 1	1 1		. 1	2	1	. 1		1		2 8	3	i	. 1					2	8		2	5		36	18
	128	A. T.	5	4	***				24			. 2			. 2						3						12			22				922	19
homa		A. T.	-	4	****			2		. 7		1			1 4					10	·						1		****	1				. 58	15
on	74	A. ·	8 .									. 1	1		10	10	1	5						. 3	9	4			****					58	12
asylvania	91	A	15				****								7			· · · ·	1	1 10	1	8 1	3	4		5	4	10	20	28	14			246	26
de Island	7	-																											3				****	6	8
h Carolina	46		***		10	10	4	3			2		4			2		11		4	1		i	9	12	11	10	6	10	5	10		****	185	27
h Dakota			1	2	5	2	3	***																						3				63	18
108800		Δ		7	7																								8	ii			• • • • •	158	19
is		A			7	10	4	****	1	9	1		11	3	6	7	2			. 9	1	3 7	2		. 1		1	4		4				110	25
		A	1																				. 2											62	18
ont		A											***																	2	****		****	14	8
nia		A	** *	** *																			. i						7		3			108	21
ington		A																1		2 .xx					7			****			5		****	16	12
Virginia		A																									****	5						113	25
onsin		A																										4	5	3	1			72	17
ming		A					****	****																							****			9	0
																																		0	

Table VIII.—Average hourly sunshine (in percentages), June, 1900.

[•] Record incomplete.

Table IX.—Accumulated amounts of precipitation for each 5 minutes, for storms in which the rate of fall equaled or exceeded 0.25 in any 5 minutes, or 0.75 in 1 hour during June, 1900, at all stations furnished with self-registering gages.

Stations.		Total d	luration.	tal am't precipi- tion.	Excess	ve rate.	Amount be- fore exces- sive began.	Depths of precipitation (in inches) during periods of time indicated.													
	Date.	From-	То-	Total of pi tati	Began-	Ended-	Amou fore sive	5 min.	10 min.	15 min.	20 min.	25 min.	30 min.	35 min.	40 min.	45 min.	50 min.	60 min.	80 min.	100 min.	120 min
Albany, N. Y		2.50 p.m. 4.27 p.m.	3 4.15 p.m. 5.20 p.m.		8.02 p.m. 4.33 p.m.	8.27 p.m. 4.46 p m.		0.21	0.26 0.51	0.38 0.63	0.63 0.65	0.86 0.66	0.89	0.91	0.98						
Atlanta, Ga		3.43 p. m.	5.20 p.m.	0.55	8.55 p. m.	4.05 p.m.	0.02	0.32	0.49										****	*****	*****
Atlantic City, N.J	16-17	1 37 p.m.		1.76	1.43 p.m.	2.00 p.m.	Т.			0.82		A #0						0.25		1	
Baltimore, Md Binghamton, N. Y	. 8	4. 10 p. m.		0.84	4.20 p.m.	4.40 p.m.	Т.	0.04	0.10	0.36	0.52	0.58	*****							*****	100000
Bismarck, N. Dak Boise, Idaho	. 13			0.08				*****				*****	*****	*****	****			0.08			
Boston, Mass Buffalo, N. Y				0.98		**** ******									*****			0.21	****	*****	*****
Cairo, Ill	7 28	7.14 a.m. 7.05 a m.	9.35 a.m. 8.50 a.m.	1.56	7.27 a.m. 7.06 a.m.	8.17 a m. 7.36 a m.	T.	0.07	0.15	0.30	0.50	0.66	0.87	1.13	1.86	1.43	1.50				1
Charleston, S. C Chicago, Ill		5.55 a.m.	9.42 a.m.	2.77 0.63	8.25 a m.	9.22 a.m.	0.36	0.08	0.16	0.85	0.58	0.91	1.19	1.38	1.55	1.84	2.17	2.41 0.32			
Cincinnati, Ohio Cieveland, Ohio	25 7		** *******	0.22		*********			*****					*****				0.21	*****		
Columbia, Mo	12	9.87 p m.	D N.	1.13	9.40 p.m.	10.05 p.m.	Т.	0.21	0 54	0.74	0.84	0.87	0.89	0.93	0,99		*****				
Columbus, Ohio	23	7.29 p.m.	***** ****	0.96	7.29 p.m.	7.49 p.m.	0.00	0.31	0.52	0.71	0.92			*****				0.59		*****	*****
Denver, Colo Des Moines, Iowa	27	5,02 p.m- 3 55 a.m	5.45 p.m. 7.50 a.m.	0.89	5.15 p m. 6.30 a.m.	5.45 p.m. 7.00 a.m.	T. 0.03	0.25	0.50	0.75	1.00	1.15	1.16	1.17				*****			
Detroit, Mich	13	4.25 p.m. 4.45 p.m.	6.45 p.m. 5.15 p.m.	0.84	4.35 p.m. 4.50 p.m.	5 10 p.m. 5, 10 p.m.	0.01	0.07	0.25	0.30	0.45	0.63	1.02	1.32	1.37	1.40	*****		*****	*****	
Dodge, Kans Duluth, Minn	12			0.63	***********		*****		*****								****	0.40			
Eastport, Me Elkins, W. Va	29 12	6 46 a m.	9.18 a·m.	0.80	6.46 a.m.	7.01 a.m.	0.00	0.17	0.35	0.50	0.55										
Erle, Pa	27	3, 14 p. m. 7, 23 p. m.	4.30 p.m. 8.25 p.m.	1.76	8.82 p.m. 7.23 p.m	4.00 p.m. 7.57 p.m.	0.00	0.28	0.42	0.65	0.55	1.05	1.54	1.68					*****	*****	
Escanaba, Mich Evansville, Ind		7. 15 p.m.	1.30 p m.	4.69	9.00 a.m	9.20 a.m.	3.27	0.12	0.28	0.44	0.56	0.59	0.62	0.64	0.68	0 71	0.74	0.88	1.15	1 31	1.36
Fort Worth, Tex	29	10,40 p.m.	D. N.	1.65	10,40 p.m.	11.85 p.m.	0.00	0.17	0.37	0 60	0 89	1.00	1.05	1.14	1.23	1.39	1.49	0.54			*****
Fresno, Cal	19	11.81 a.m.	8.01 p.m.	T. 2.33	6.30 p.m.	7.10 p.m.	1.07	0.08	0.12	0.20	0.33	0.49	0.82	1.05	1.10	1.11					
Do	20 21	D. N.	D. N.	1.47	4.40 a.m.	5.40 a.m.	0.03	0.01	0.07	0.12	0.39	0.62	0.81	0.91	0.93	1.01	1.15	1.30	1.33	1.44	*****
Harrisburg, Pa Hatteras, N. C	11	6.56 p.m.	7.45 p.m.	0.02	7.10 p.m.	7.85 p.m.	0.04	0.16	0.80	0.39	0.47	0.51	******								
luron, S. Dak	24 12	11.35 a. m. 3.13 p. m.	1.10 p.m. 5.10 p.m.	1.04	11.36 a.m. 4.15 p.m.	1.05 p.m. 4.85 p.m.	T.	0.13	0.39	0.54	0.55	0.57	0.58	0.59	0.60	0.61	0.61	0.69	0.97	1.04	****
Indianapolis, Ind Jacksonville, Fla	26 5	3.05 p.m. 12.10 a.m.	8.50 p.m. 4.15 p.m.		8.25 p.m. 12.49 p.m.	3.40 p.m. 1.10 p.m.	0.01	0.09	0.37	0.74	0.75	0.76	1.15	1.19	1.21	1.22	1.23				
Do	21	11.20 a.m.	12. 10 p. m.	1.17	11.39 a. m.	12.03 p. m.	0.15	0.20	0.45	0.65	0.96	1.02						0.71			*****
Kalispell, Mont	16-17 21			0.67			0.04	0.91	0.53	0.64	0.68							0.18			
Kansas City, Mo Key West, Fla	13	10. 12 p. m. 12. 15 p. m.	4.25 p.m.	3.30	11. 10 p. m 12. 17 p. m	11.25 p.m. 1.30 p.m.	0.04 T.	0.21	0.17	0.64	0.46	0.80	1.04	1.89	1.81	1.99	2.24	2.68	2.83		
Knoxville, Tenn Lexington, Ky	27 27	12.20 p.m.		0 20	1.50 p.m.	2. 10 p. m	0.48	0.08	0.88	0.70	0.86	0.98	1.05	1.11	1.18	1.33	1.38		******	*****	*****
Lincoln, Nebr Little Rock, Ark	16-17 17	10.42 p.m. 5.02 p.m.	D. N. 6.45 p.m.	0.91	4.04 a.m. 5.07 p.m.	5.03 a.m. 5.32 p.m.	0. 14 T.	0.15	0.18	0.19	0.20	0.83	0.48	0.47	0.48	0.50	0.68	0.77			
Los Angeles, Cal	26 8	D. N.	D. N.	0.65 T.	2.48 a.m.	3.08 a m.	T.	0.05	0.18	0.83	0.65						• • • • • •				****
ouisville, Ky Macon, Ga	29 15	8.58 p.m. 6.03 p.m.		0.52 0.68	9.03 p.m. 6.05 p.m.	9.23 p m. 6.13 p.m.	T. T.	0.08	0.30	0.45 0.68	0.50										
Do	17	10.25 p.m.	6. 18 p m. 11. 14 p. m	0.78	10.89 p.m.	11.11 p.m.	T.	0.12	0.17	0.35	0.51	0.63	0.69	0.73		0.40					
Memphis, Tenn	18-14	9.85 p.m.	1.10 p.m.	5.03	6.30 a.m. 7.20 a.m.	7. 20 a. m. 8. 10 a. m.	1.52	0.66	0.09	0.13	0.17	0.22	0.30 1.03	1.08	0.45 1.12	1.16	0,56 1.20			*****	*****
acimpian, remark		or do primi	at to primi	5.00	8. 10 a. m. 9. 00 a. m.	9.00 a.m.	*****	1.26 2.30	1.85 2.87	2.45	1.58 2.50	1.69 2.56	1.85 2.67	1.96 2.78	2.06 2.87	2.12 2.95	2.20	8.08	3.10	8.16	8.2
Meridian, Miss Do	8	6.38 p m. 7.45 a.m.	8, 20 p. m. 9, 56 a. m.	2.76	6.40 p.m. 8.07 a.m.	7.27 p.m. 9.17 a.m.	0.01	0.21	0.44	0.70	0.93	1.28 0.97	1.61	1.88	2.10 1.42	2.59	2.69 1.70	2.72 1.94	2.73 2.37	2.74	*****
Do	20-21	8.15 p.m. 5.81 p.m.	8.35 a.m. 7.30 p.m.	3.06	3.45 p.m. 5.44 p.m.	5.45 p.m. 6.31 p.m.		0.02	0.06	0.10 0.63	0.16	0.21 1.29	0.24	0.26	0.29	0.36 1.98	0.45	0.58	0.87		1.66
Do Milwaukee, Wis	28 21	8.35 p.m.	5.15 p m-	1.54	8.85 p.m. 4.41 p.m.	4. 15 p. m.	0.00	0.12	0.29	0.57	0.89	1.09	1.26	1.45	1.52						*****
dontgomery, Ala Vantucket, Mass	5	4.25 p. m. 6.20 p. m.	6.25 p.m 6.52 p.m.	1.02	6.25 p.m.	4. 49 p. m. 6. 42 p. m.	0.02 T.	0.27	0.77	0.96	1.01	1.02	0.51								
Sashville, Tenn	14	1.52 p.m.	3.50 p.m.	1.36	2.17 p.m.	2.45 p.m.	T.	0.18	0.59	0.83	1.08	1.19	1.23	1.24	1.30	1.30					
New Orleans, La	28 20	7.35 p.m. 4.25 p.m.	11.55 p.m. 7.25 p.m.	1.78	7.55 p.m. 4.37 p.m.	8.22 p. m 5.10 p. m.	0.18 T.	0.19	0.24 0.23	0.74	1.04 0.38	1.26 0.80	1.81	1.32	1.16	1.17	1.20	1.21			
lew York, N. Y lorfolk, Va	8 25	12.21 p.m. 4.22 p.m.	7.57 p.m. 5.30 p.m.	1.72 0.82	5.52 p.m 4.23 p.m.	6.42 p.m. 4.38 p.m.		0.16 0.27	0.37	0.61	0.71	0.81	0.86	0.96	1.09	1.33	1.52	1.55		1.61	1.68
Northfield, Vt	1 18	2.25 p.m.	3.35 p.m.	0.81	2.39 p. m.	3.07 p.m.	0.05	0.10	0.15	0.28	0.40	0.58	0.63		0.68	0.70	0.75	0.76			*****
maha, Nebr	16	10. 10 a. m.	3.30 p.m.	2.22	1.25 p.m.	3.20 p.m.		0.12	0.80	0.45	0.73	0.88	0.95	0.96	0.97	0.98	0.99	0.99	1.84	1.47	2. 19
Parkersburg, W. Va Philadelphia, Pa	16-17	9,00 p.m.	11.30 p.m.	1.13 .		10.40 p.m.	0.02	0.18	0.49	0.53		******			*****	*****		0.18			
ocatello, Idaho	14	1.20 a.m.	5.45 a.m.	0.94	2.33 a.m.		0.23	0.11	0.13	0.23	0.36	0.57	0.58	0.69	0.71						
ortland, Me ortland, Oreg																*****		0.82			*****
neblo, Colo		1.40 p.m.				2.20 p.m.		0.23	0.41	0.20		0.76				*****					
Do	17	3.40 p.m.	D. N.	1.90	3.44 p.m.	4.04 p. m.	T.	0.32	0.69	0.80	0.89	0.90									*****
Do	28 24	3.45 a.m. 8.25 a.m.	12.15 p.m.	1.04	7.12 a.m. 9.45 a.m.				0.60			0.95	0.58	0.75	1.18 0.86	1.18		1.42			
cochester, N. Y	17 28	3.30 p.m.		1.19	3.36 p. m.	3.53 p.m.	T.	0.17†	0.31+	0.461	0.561							0.52			
t. Louis, Mo t. Paul, Minn	13	1. 23 a· m. 8- 12 a. m.	2.30 a.m.	1.28	1.29 a.m. 1.02 p.m.	1.59 a.m.	T.	0.60	0.90		1.09	1.20	1.28								
	12-13	10.50 p.m.	D. N.	0.84	11.12 p.m.	11.22 p.m.	0.01		0.39		0.49	0.50									
an Diego, Cal	12 .		*********	0.05		*********				0.45					0.05						
Do	18	5. 45 p. m. 2. 16 p. m.	6.45 p.m. 5.15 p.m.	1 005	5.46 p.m. 2.16 p.m.		0.00	0.12	0.24	0.48											
an Francisco, Cal		2. 16 p. m.		1.00	4.50 p.m.	5.05 p.m.	0.19		0.25							*****		0.08	*****		

TABLE IX.—Accumulated amounts of precipitation for each 5 minutes, etc.—Continued.

Stations.		Total d	Total duration.		Excess	Amount be- fore exces- sive began.		Depths of precipitation (in inches) during periods of time as indicated.													
	Date.	Prom-	То-	Total am't of precipi- tation.	Began-	Ended-	fore	5 min.	10 min.	nin.	20 min.	25 min.	30 min.	35 min.	40 min.	45 min.	50 min.	60 min.	80 min.	100 min.	120 mir
	1	2	3	4	5	6	7														
Spokane, Wash	25			0.22		0.00							******			*****	*****		*****	*****	
Tampa, Fla	19	2.57 p.m.	7.05 p.m.		3.00 p.m.	3,25 p.m.		0.50	1.50	1.90	2.15	2.35	2.40	2,45	*****	*****	*****	0 40	****	*****	****
Toledo, Ohio Topeka, Kans	27 -28	11.24 p.m.	12.35 a.m.		11.55 p.m.	12.05 a.m.	0.48	0.15	0.41	0.43		*****	*****	*****	*****	*****	*****	0.46	*****	** ***	***
Vicksburg, Miss	4 .00	D. N	10.40 a. m		7.46 a. m.	8, 16 a. m.		0.13	0.45	0.45	0.74	1.01	1.14	1.18	1.24	1.27	1.32	1.43	1 00	4 (99	****
Do	23	2.25 a.m.	5, 45 a. m.		4.44 a. m.	5, 44 a. m.		0.10	0.25	0.34	0.50	0.72	0.90	1.14	1.28	1.42	1.56	1.67	1.60	1.63	1.0
	-				2.49 p.m.	3.39 p.m.		0.35	0.51	0.66	0.91	1.15	1.18	1.51	1.66	1.90	2.40	1.04	****	*****	****
Washington, D. C	2	2.25 p.m.	6.30 p.m.	3.48	3.39 p.m.	4.00 p.m.		2.45	2.65	3.00	3.03	8.04	3.05	3.06	3.08	3.11		3.17	3.24	3, 33	9 9
		4 00	0.00		1.49 p.m.	2.89 p.m.		0.15	0.28	0.53	0.79	1.21	1.50	1.55	1.64	1.92	2.16	0.11			0.0
Do	8	1.35 p.m.	2.58 p.m.	2.83	2, 39 p. m.	2.56 p.m.		2,45	2.65	2.83	*****		*****					*****	*****	****	****
Wilmington, N. C	17	8,40 a.m.	9.55 a.m.	0.61	9. 18 a. m	9.33 a.m.		0.16	0.26	0.34	0.44	0.44	0.55								
Do	18	12.15 a.m.	1.35 a.m.	0.93	12.52 a.m.	1.27 a.m.	0.10	0.09	0.12	0.25	0.48	0,60	0.68	0.75	0.79						
Yankton, S. Dak	16	*********	******	0.71	***** *****		*****					*****					*****	0.36	*****	*** *	***
Basseterre, St. Kitts	27			0.88														0.80			
Bridgetown, Barbados	27		****	0.31			*****	*****										A 1990	*****		
Cienfuegos, Cuba	20	1, 20 p. m.	2.20 p.m.		1,40 p.m.	2.00 p.m.	0.09	0.18	0.43	0.63	0.72										
Do	200	1.40 p.m.	6.15 p.m.	1.68	2.02 p. m.	2.37 p.m.	T.	0.14	0.42	0.72	0.95	1.15									
Havana, Cuba	14	1.94 p. m.	4, 45 p. m.		1.85 p.m.	1,55 p.m.		0 12	0.32	0.38	0.50	0.51			*****						
Kingston, Jamaica	8			0.54	**********	***********					0.00				*****				* ***		****
Port of Spain, Trin	1	8.20 a.m.	12, 15 p. m.	1.62	8, 22 a. m.	8.47 a.m.	T.	0,26	0.58	0.83	0.96	1.10	1.11							*****	
Do	8	12, 50 p. m.	2.20 p.m.	1.98	1.31 p.m.	1.56 p.m	0.04	0.37	0.72	1.16	1.53	1.64	1.70	1.74		1.84					
Do	19	2.45 a.m.	4.13 a.m.	1.00	8. 10 a. m.	3. 35 a. m.	0.10	0.17	0.44	0.60	0.65	0.74	0.79								
Puerto Principe, Cuba	9	4.20 p.m.	5.00 p.m.	0.61	4.36 p.m.	4.51 p.m.	0.01	0, 14	0.34	0.58	0.60				** ***						
Do	17	5.46 p.m.	7.50 p.m.	0.85	5.50 p m.	6, 20 p. m.	T.	0.19	0.29	0.34	0,43	0.66	0.71	0.74	*****						
Do	18	8.20 p.m.	9.15 p.m.	0.68	8 27 p.m.	8.40 p.m.	T.	0.24	0.55	0.65	0.66										
Do	19	5 80 p.m.	10.15 p.m.	1.31	6.34 p. m.	6.54 p. m.		0.35	0.64	0.88	0.91	1.01	1.03		*****	*****	*****		*****		
Do	23	5.41 p.m.	6. 15 p. m.	1.02	5.48 p-m-	6.06 p.m.		0.10	0.51	0.88	0.99			*****	*****	**** *				*****	
Roseau, Dominica	14	8.38 p.m.	D. N.	0.55	8.51 p.m.	9,01 p.m.		0.27		0.47	*****									*****	
San Juan, Porto Rico.	2	11.33 a.m.	3,45 p.m.	1.30	11.37 a.m.	12.12 p.m.	T.	0.18	0.48	0.78	0.99		1.15		*****						
Do	16	9.45 a.m.	2.20 p.m.	1.15	10.35 a.m.	10.45 a.m.		0.15	0.30	0.36	0.37				**** *						
lantiago de Cuba	9	1.80 p.m.		1.82	11.15 a.m.	11.30 a.m.		0.12	0.87	0.53			1 50	4 70	*****						
antiago de Cuba	9	7.25 p.m.		1.88	1.32 p. m. 8.00 p. m.	8 42 p. m.		0, 32	1.08	0.58	1.67				1 05				****		
Willemstad, Curação	-	1.20 p.m.		0.00									0.95			1.12					
villometau, Curação -		*********		0.00	* ********	******* ***		*****					*****				* * * * *	U. U.S.			

^{*} Self-register not working.

[†] Partly estimated.

Table X.—Data furnished by the Canadian Meteorological Service, June, 1900.

	P	Pressure.			Temperature.				elpitat	ion.		P	ressure	Э.	Temperature.				Precipitation.		
Stations.	Mean not reduced.	Mean reduced.	Departure from normal.	Mean.	Departure from normal.	Mean maxi- mum.	Mean mini- mum.	Total.	Departure from normal.	Depth of snow.	Stations.	Mean not re-	Mean reduced.	Departure from normal.	Меап.	Departure from normal.	Mean maxi- mum.	Mean mini- mum.	Total.	Departure from 1.0 Peparture 1	Depth of snow.
farmouth, N. S., harlottet'n, P. E. I., harlottet'n, Que, lontreal, Que, lissett, Ont. lingston, Ont. loronto, Ont. voronto, Ont. vort Stanley, Ont.	29.86 29.81 29.86 29.86 29.86 29.86 29.55 29.68 29.33 29.55 29.61 29.57	29. 90 29. 92 29. 91 29. 86 29. 86 29. 87 29. 88 29. 99 29. 99 29. 94 29. 96	+.01 06 05 04 02 02 +0.3 04 02 02 02 00 +.02	57.5 56.3 59.7 60.3 53.1 62.1 65.7 60.8 66.6 64.0 65.6 56.1	+ 0.4	00.3 66.7 69.9 66.0 64.5 69.3 71.5 63.3 72.7 74.9 77.8 72.7 76.5 71.5 75.5 70.5	0 42.6 45.0 48.8 49.0 48.1 50.1 49.2 43.0 55.5 44.7 55.5 55.2 54.6 41.0 53.1 50.4	2.65 3.57 3.01 2.25 3.35 2.32 3.97 4.87 3.21 2.08 2.08 1.99 2.17	Ins0.19 -1.25 -1.25 -1.25 +1.27 +0.87 -0.50 -0.94 -0.37 +0.70 +1.18 +0.58 -0.29 +0.02 -0.85 -0.85 -1.04	Ins.		29. 23 29. 08 28. 11 27. 69 27. 56 27. 31 26. 32 25. 30 27. 51 28. 28 28. 09 28. 66 29. 88	Ins. 29. 93 29. 91 29. 88 29. 86 29. 80 29. 75 29. 84 29. 75 29. 78 29. 79 29. 91 29. 97 29. 82	Ins	57.9 66.3 63.3 63.1 67.0 65.8 57.6 55.2 59.4 60.0 60.9 63.8 57.9	+1.5 -4.1 $+3.7$ $+3.2$	0 74.4 69.6 81.4 78.5 76.7 81.5 79.4 71.4 68.8 70.7 71.8 71.9 73.5 64.6 66.6	51.0 46.3 51.2 48.1 49.5 52.5 52.2 43.8 41.6 48.0 48.3 49.9 54.0 51.3 39.3	1.73 3.21 1.63 1.61	-0.14 -0.33 -1.99 -3.09	In

Table XI.—Heights of rivers referred to zeros of gages, June, 1900.

Stations.	Distance to mouth of river.	ger line	Higher	st water.	Low	est water.	1 4	onthly range.	Stations.	the of	Danger line on gage.	Highes	t water.	Lowes	t water.	3.	onthly range.
	Dista	Den	Height.	Date.	Heigh	t. Date. We uo N	Mon		Distance mouth river.	Dang	Height.	Date.	Height.	Date.	Mean	Mon	
Mississippi Ricer. St. Paul, Minn	Miles. 1, 954	Feet.	Feet.	1	Feet 0.8		Feet.	Feet.	Tennessee River-Con'd. Bridgeport, Aia	Miles.	Feet.	Feet. 6,9	20, 21	Feet.		Feet.	
Reeds Landing, Minn La Crosse, Wis		12	1.7 3.2	1-3, 10-12	1.5			1.5	Florence, Ala	2:30	16 25	13.4 23.4	28 28	2.4	1	6,4	11.
Prairie du Chien Dubuque, Iowa	1,759	18 15	3.0 3.2	1	1.8	29	2.1	1.7	Johnsonville, Tenn	94	21	29.5	30	4.5	1,2	9.5 12 2	20, 25.
Leclaire, lowa	1,609	10	2.2	1, 2	0.7	30	1.3	1.8	Gumberland River. Burnside, Ky	434	50	11.0	29	1.7	1-6	4.8	9.
Davenport, Iowa Muscatine, Iowa		15 16	3.2 4.3	1	1.4			1 8 2.4	Carthage, Tenn Nashville, Tenn	257 175	40	15.5 23.6	29, 30	1.7	1	6.0	13.
Balland, Iowa	1,472	8 15	2.0 3.2	i	0,9	30	1.0	1.1	Arkansas River.				80	2.4	1	1	21.
Keokuk, Iowa Hannibal, Mo	1, 402	18	4.6	i	1.1 2.4	30	3.2	5 5	Wichita, Kans Webbers Falls, Ind. T	726 413	10 23	7.2 9.9	8	3.9	29 28-30		3.
Brafton, Ill St. Louis, Mo	1,306	23 30	7.0 14.7	24	10.5			2.1 4.2	Fort Smith, Ark Dardanelle, Ark	351 256	22	10 6 10.8	2,8	4.8	29	6.9	5.
Chester, Ill	1, 189 843	36 33	11.8 21.4	25 30	8, 2	18	9.8	3 6	Little Rock, Ark	176	23	11.7	5	6.0	30		6.
Memphis, Tenn Helena, Ark	767	42	28.7	30	8 8 15,7	1,2	22,8	12 6	White River. Newport, Ark	150	26	8.2	19	5.2	23	6.4	3.
Arkansas City, Ark Breenville, Miss	635 595	412 412	28,9 23.7	23, 24, 30	18.6 14.8		24,6	10.3	Yazoo River. Yazoo City, Miss	80	25	- 21.0	30	8.0			
Vicksburg, Miss New Orleans, La	474 108	45 16	28.1	25	17.5	8-5	55 8	10.6	Red River.				au		1	15.6	13,
Missouri River.			9.8	29, 30	6.5		8-1	3.3	Fulton, Ark	688 565	27	17.4 19.7	1 4	9.0	30 30	9.9	10.
Bismarck, N. Dak Pierre, S. Dak	1,300	14	8.5	8 5	6.8	1, 26, 27	7.5	1.7	Shreveport, La Alexandria, La	449 139	29 33	13.5 18.0	5,6	7.7	80	10,4	5.1
Sioux City, Iowa	784 669	19	12.0	17	9.9	2-6	10.8	2.1	Ouachita River.					7.1	22	9.9	5.
Omaha, Nebr	641	17	9.1	19 18	9.5 6.7	30	10.6	2.1	Monroe, La	340 100	39 40	20.5	30	7.2	1 8	14.4 16.1	18 :
St. Joseph, Mo	481 388	10	8.2 17.8	19	5, 5 13, 4	7 9	6.4	2.7 4.4	Atchafalaya River.	100							
Boonville, Mo	199	20 24	14.1	22	11.3	5, 11	12.3	2.8	Melville, La		31	26,6	29, 30	21.7	6	23.9	4.5
Kansas City, Mo Boonville, Mo Hermann, Mo Des Moines River.	103		14.1	222	16,5	11, 12	11.9	3.6	Wilkesbarre, Pa Harrisburg, Pa	178 70	14 17	2.6	14, 15	- 1.0 1.2	1-5, 8, 9	0.1	3.0
Des Moines, Iowa	150	19	3.8	20	. 2.7	8, 9, 17, 18	3.1	1.1	W. Br. of Susquehanna.								1.4
eoria, Ill	135	14	8.9	. 5	6.8	94	7 9	2.1	Williamsport, Pa Juniata River.	35	20	3.5	4,5	0.8	29,30	1.9	2.7
Beardstown, Ill	70	12	8.0	1-8	7.1	25-30	7.6	0.9	Huntingdon, Pa Potomac River.	80	24	3.9	3	2.9	27-30	3.1	1 0
Gasconade River.	70	28	4.6	21, 22	2.1	9,10	29	2.5	Harpers Ferry, W. Va	170	16	8.5	19	1.7	13-15	2.6	6.8
rlington, Mo	58	16	1.8	14	-0.6	4-7, 10, 11	0,1	2.4	Lynchburg, Va	257	18	5.8	19	0.4	12	1.8	5.4
Youghiogheny River.	59	10	5.8	17	1.0	1,2	2.1	4.8	Richmond, Va	110	12	6.5	18	-1.8	12	0.0	7.8
Vest Newton, Pa Allegheny River.	15	23	4.9	18	0.6	7	1.5	4.8	Weldon, N. C	90	40	16.9	19	8.0	13	9.8	8.9
Varren, Pa	177	14	1.0	3,4	0.3	29, 30	0.7	0.7	Fayetteville, N. C	100	38	17.4	25	2.5	15	5.7	14.9
arker, Pa	73	20	2.2	4,5	0.5	25, 26 26, 27	1.0	1.9	Lumber River. Fairbluff, N. C	10	6	2.9	30	0.3	9, 10	1.7	2.6
Monongahela River. Veston, W. Va	161	18	5.2	30	-1.0	7	0.0	6.2	Edisto River.	75	6	5.8	27,28	2.6			
alrmont, W. Va	119	25 18	7.4	17	0.8	14, 27, 28	1.8	6.6	Pedes River.				- 1		5	3,9	2.7
ock No. 4, Pa	40	28	16.0	18 18	6.6	1, 12, 18 27, 28	8.1	6.0 9.4	Cheraw, S. C	145	27	15.9	25	1.8	4	5.0	14.1
Conemaugh River.	64	7	2.9	15	1.5	12, 13	2.2	1.4	Kingstree, S. C	60	12	8.0	29	2.2	4,5	4.0	5.8
Red Bank Creek.	35	8	1.4	1-9		16-30		1	Effingham, S. C	85	12	8.0	25	3.3	2,3	5,0	4.7
Beaver River.					0.4		0.8	1.0	St. Stephens, S.C	50	12	8.6	29, 30	4.1	5	6.8	4.5
liwood Junction, Pa Great Kanawha River.	10	14	3.7	3	2.0	10-13,26-30	2.3	1.7	Columbia, S.C	87	15	12.2	94		3		
harleston, W. Va	61	30	10,0	17	4.1	24	7.0	5.9	Wateree River.					0.5		2.8	11.7
New River. inton, W. Va	95	14	5.5	18	1.6	10,11	2.6	3.9	Camden, S. C	45	24	22.5	25	4.7	3, 14	9.9	17.8
Cheat River. owlesburg, W. Va	36	14	10.0	17	2.0	11-13	3.5	8.0	Conway, S.C	40	7	4.4	25	1.4	9-11	2.5	3.0
Ohio River.	966	22	8.0	18	3.0	22	5.9		Calhoun Falls, S. C	347		12.7	24	2.7	2	4.7	10.0
avis Island Dam, Pa	960	25	8.4	19	8.1	26	4.6	5.0	Augusta, Ga Broad River.	208	32	29.4	25	7.4	3,4	13.9	22.0
avis Island Dam, Pa heeling, W. Va arkersburg, W. Va	875 785	25 36 36 39 50	9.5	19 21	3.3	27, 28 29	5 3 6,4	6.2	Carlton, Ga Flint River,	30		13.0	24	2.5	2	4.6	10.5
oint Pleasant, W. Va	708 660	39	11.7 15.8	19 19	3.6	27	6.0	8.1	Albany, Ga	80	90	12.5	30	1.1	1	3.4	11.4
tiel burg, Ky	651	50	16.0	19	4.4	4	9.4 8.1	8.8	Chattahoochee River. Westpoint, Ga	239	20	17.8	25	3.3	2,3	6.8	14.5
ncinnati, Ohio	612 499	50 50 46	16.8 16.8	20 21	6,8 8.4	16-18	9.2	9.5 8.4	Ocmulgee River. Macon, Ga	125	20	20.6	26	2.9	1, 2	8.2	17.7
adison, Ind	413 367	46	14 3 8, 1	21 22 23 17	8.0	17-19	10.3	6.3	Ocones River.			20.8			-		
vansville, ind	184	28 35	14.2	17	8.9	14	6.2	3 1 5.8	Dublin, Ga Coosa River.	60	30		30	1.2	4	7.3	19.6
	1,073	40	25.5 31.0	30 30	7.6 16.8	1	16 1 23.1	17.9 14.2	Rome, Ga	225 144	30 18	18.2 19.6	25 28	1.9	1	7.7	15.8 17.7
Muskingum River.	70	20	7.9	16	5.9	24, 25		2.0	Alabama River.								
Sciolo River.						1, 2, 21-7	6.4	4.0	Montgomery, Ala Selma, Ala Tombigbee River.	265	35 35	33. 2 35. 0	30	3.5 4.2	1, 2 4, 8	12.1 12.9	$29.7 \\ 30.8$
Miami River.	110	17	2.9	6-17	2.0	23, 25-30	2.5	0.9	Tombigbee River. Columbus, Miss	308	33	25.5	9	1.0	1	18.8	24.5
Wabash River.	69	18	3.5	3	1.0	19-23	1.7	2.5	Demopolis, Ala	155	35	52.3	30	8.0		38.3	44.3
ount Carmel, Ill	50	15	14.0	7,8	4.4	1	10.1	9.6	Tuscaloosa, Ala	129	43	58.3	25	4.2	1	28.8	54.1
Licking River. Imouth, Ky	30	25	3.0	1	0.7	23	1.6	- 11	Umatilla, Oreg	270	25	16.7	29, 30	15 0		15.8	1.7
Clinch River.	156	20	4.6	18	-0.2	11	0.8	4.8	The Dalles, Oreg Willamette River.	166	40	27.0	29, 30	23.8		25.4	8.2
inton, Tenn	46	25	11.0	20	3.0	11,12	5.0	8.0	Albany, Oreg	99	20	3.3	1	2.0	80	2.6	1.3
oxville, Tenn	614	29	7.8	18	1.1	2-4	3.1	6.7	Portland, Oreg	10	15	15.3	1	12.8	18	13.8	2.5
ngston, Tenn attanooga, Tenn	534 430	25 33	9.3	20	1.6	1-3 1,2	3.4 6.0	4.4	Red Bluff, Cal Sacramento, Cal	241	23 29	1.2 16.1	1-3	-0.8 11.0	25-30 30	0.8	1.5

Chart III. Total Precipitation. June 1900.

Chart V. Hydrographs for Seven Principal Rivers of the United States. June, 1900.

-30.05

Chart VIII. West Indian Monthly Isobars, Isotherms, and Resultant Winds. June, 1900.