Problem Set 7

Problems marked (T) are for discussions in Tutorial sessions.

- 1. Does there exist a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ satisfying T(1,1,1) = (1,2,3,0), T(1,2,-1) = (2,1,3,0) and T(1,5,-7) = (0,0,0,1)? Give reasons for your answer.
- 2. Can we ever find a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ which is onto?
- 3. Find out $[\mathbf{v}]_{\mathcal{B}}$, where \mathcal{B} is an ordered basis:

(a)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, \mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$
 (b) $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}, \mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$

4. Find out **v** given $[\mathbf{v}]_{\mathcal{B}}$, where \mathcal{B} is an ordered basis:

(a)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$
 (b) $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}, [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$

- 5. Give three linear transformations from \mathbb{R}^3 to $\mathbb{W} = \{ \mathbf{w} \in \mathbb{R}^5 : w_1 w_2 + w_3 w_4 + w_5 = 0 \}$. Give their coordinate matrix w.r.t the ordered bases $\mathcal{B}_1 = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$ on \mathbb{R}^3 and some ordered basis of \mathbb{W} .
- 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ as $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x y + z \\ x + 2z \end{bmatrix}$. Find
 - (a) a basis of Range (T),
 - (b) rank (T),
 - (c) a basis for $\mathcal{N}(T)$, and
 - (d) $\dim(\mathcal{N}(T))$.
- 7. (T) Find all linear transformations from $\mathbb{R}^n \longrightarrow \mathbb{R}$.
- 8. Let $\mathbf{v} \in \mathbb{R}^n$ and $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an ordered basis of \mathbb{R}^n . Form a matrix $B = [\mathbf{v}_1 \ \cdots \ \mathbf{v}_n]$. Is $B[\mathbf{e}_1]_{\mathcal{B}} = \mathbf{e}_1$? What is $B[[\mathbf{e}_1]_{\mathcal{B}}, \dots, [\mathbf{e}_n]_{\mathcal{B}}]$? Show that B is invertible and $[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v}$.
- 9. (T) Show that a linear transformation is one-one if and only if null-space of $\mathcal{N}(T)$ is $\{0\}$.
- 10. Describe all 2×2 orthogonal matrices. Prove that action of any orthogonal matrix on a vector $\mathbf{v} \in \mathbb{R}^2$, is either a rotation or a reflection about a line.
- 11. **(T)** Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $n \geq 2$, with $\|\mathbf{v}\| = \|\mathbf{w}\| = 1$. Prove that there exist an orthogonal matrix A such that $A(\mathbf{v}) = \mathbf{w}$. Prove also that A can be chosen such that $\det(A) = 1$. (This is why orthogonal matrices with determinant one are called rotations.))