

Code7Crusaders

Software Development Team

Analisi dei Modelli di linguaggio

Membri del Team:

Enrico Cotti Cottini, Gabriele Di Pietro, Tommaso Diviesti Francesco Lapenna, Matthew Pan, Eddy Pinarello, Filippo Rizzolo

Data: 21 gennaio 2025

Indice

1	Obi	lettivo	3		
2	Car	Caratteristiche dei Modelli			
	2.1	BigScience Workshop (Huggingface)	3		
		2.1.1 Prestazioni	4		
	2.2	Considerazioni sull'hardware	4		
		2.2.1 Tabella dei Modelli	4		
	2.3	OpenAI	5		
		2.3.1 Prestazioni			
3	Costi e Limiti				
	3.1	Huggingface	6		
		3.1.1 Costi	6		
	3.2	OpenAI	7		
		3.2.1 Costi	7		
4	Utilizzo tramite LangChain				
	4.1	BigScience Workshop (Huggingface)	9		
	4.2	OpenAI	9		
5	Testing con OpenAI GPT-4omini e LangChain				
	5.1	Setup del Test	10		
	5.2	Esecuzione del Test	10		
	5.3	Conclusioni del Test	10		
6	Cor	nclusioni	11		

Elenco delle figure

1	Benchmark delle prestazioni di varie versioni di BLOOM	4
2	Benchmark delle prestazioni del modello gpt4o confrontato con altri modelli	5
3	Benchmark delle prestazioni del modello gpt4omini confrontato con altri modelli	6
4	Costi degli endpoint API di Huggingface per modelli di grandi dimensioni	7
5	Costi delle API di OpenAI per il modello gpt4o	8
6	Costi delle API di OpenAI per il modello gpt4omini	9
7	Scenario riassuntivo dei costi delle varie query su LangSmith	10

1 Obiettivo

Questo documento si pone l'obiettivo di confrontare i modelli di Huggingface, in particolare quelli sviluppati nell'ambito del BigScience Workshop (come BLOOM e le sue varianti), e i modelli di OpenAI (ad esempio GPT-40 e GPT-40mini). Entrambi i tipi di modelli possono essere integrati tramite l'interfaccia LangChain per lo sviluppo di applicazioni avanzate basate su modelli linguistici. Il confronto considera caratteristiche, vantaggi, svantaggi, costi e altri aspetti tecnici rilevanti.

2 Caratteristiche dei Modelli

2.1 BigScience Workshop (Huggingface)

I modelli di BigScience sono il risultato di un'iniziativa collaborativa open source che mira a democratizzare l'accesso alle tecnologie avanzate di NLP. Tra i modelli più noti figurano BLOOM e le sue versioni ottimizzate come BLOOMz.

Caratteristiche principali

- Open Source: Il codice sorgente è completamente accessibile, permettendo agli sviluppatori di personalizzare e adattare i modelli alle proprie esigenze.
- Supporto Multilingue: I modelli sono progettati per funzionare su una vasta gamma di lingue, incluse molte lingue meno comuni.
- **Dimensioni Variabili**: Sono disponibili modelli di diverse dimensioni, da versioni leggere (adatte a risorse hardware limitate) a modelli complessi che richiedono infrastrutture avanzate.
- Hosting su Huggingface: I modelli possono essere utilizzati tramite la piattaforma Huggingface, sia attraverso endpoint API che tramite infrastrutture cloud personalizzate.

Vantaggi

- Accessibilità: Non ci sono vincoli di licenza proprietaria, il che garantisce un utilizzo flessibile.
- Trasparenza: Maggiore chiarezza sui dati di addestramento e sull'architettura del modello.
- Personalizzazione: Possibilità di ottimizzare il modello per specifici casi d'uso.

Svantaggi

- **Prestazioni Inferiori**: Risultati meno ottimali rispetto ai modelli proprietari in applicazioni altamente specifiche.
- Requisiti Hardware Elevati: I modelli più grandi richiedono notevoli risorse computazionali per l'addestramento e l'inferenza.
- Costo per Grandi Modelli: L'utilizzo tramite endpoint API è limitato a modelli con dimensioni inferiori a 10GB; per modelli più grandi è necessaria una licenza a pagamento con costi variabili.

2.1.1 Prestazioni

Benchmark e valutazione dei modelli di BigScience Workshop dimostrano prestazioni notevoli.

Figure 4: Zero-shot multilingual task generalization with English prompts. BLOOM models have 176 billion parameters. Scores are the language average for each task. Appendix §B breaks down performance by language.

Figura 1: Benchmark delle prestazioni di varie versioni di BLOOM

2.2 Considerazioni sull'hardware

Nel caso si volessere utilizzare modelli di grandi dimensioni, come BLOOM, è necessario considerare l'hardware richiesto per l'inferenza. Questi modelli richiedono risorse significative, come GPU ad alte prestazioni e memoria RAM dedicata, per garantire prestazioni ottimali. Nel nostro caso utilizziamo API endpoint che ci permettono di fare affidamento a risorse cloud per l'inferenza, riducendo la necessità di hardware locale, nel caso dei modelli di Huggingface però, gli API endpoint sono gratuiti solo fino a modelli inferiori ai 10GB, per modelli più grandi è necessario sottoscrivere un piano a pagamento.

2.2.1 Tabella dei Modelli

Di seguito è riportata una tabella che elenca i modelli di Huggingface e OpenAI con le loro caratteristiche principali:

Modello	Parametri	Dimensione (GB)	Hardware Necessario
BLOOM-176B	176 miliardi	350 GB (FP32)	8x NVIDIA A100 80GB o equivalenti
BLOOM-7.1B	7,1 miliardi	14 GB (FP32)	1x NVIDIA A100 40GB o equivalenti
BLOOM-3B	3 miliardi	6 GB (FP32)	1x NVIDIA RTX 3090 (24GB) o equivalenti
BLOOM-1.1B	1,1 miliardi	2,2 GB (FP32)	1x NVIDIA RTX 2080 Ti (11GB) o equivalenti
BLOOM-560M	560 milioni	1,1 GB (FP32)	1x NVIDIA GTX 1660 (6GB) o equivalenti
BLOOM-350M	350 milioni	0,7 GB (FP32)	1x GPU integrata con almeno 4GB di memoria
BLOOMZ-176B	176 miliardi	350 GB (FP32)	8x NVIDIA A100 80GB o equivalenti
GPT-4o	70-100 miliardi	140-200 GB (FP32)	4-8x NVIDIA A100 80GB o equivalenti
GPT-4omini	3-10 miliardi	6-20 GB (FP32)	1x NVIDIA RTX 3090 (24GB) o equivalenti

Tabella 1: Caratteristiche dei modelli di Huggingface e OpenAI

Bisogna anche considerare il fatto che la dimensione dei modelli non è l'unico fattore determinante per le risorse necessarie, ma anche gli eventuali modelli di embedding e i dataset utilizzati influiscono. È quindi necessario prevedere un margine maggiore per l'hardware utilizzato. I modelli piccoli come BLOOM-3B o inferiori sono poco efficaci.

2.3 OpenAI

I modelli di OpenAI includono varianti all'avanguardia come GPT-4 e GPT-4omini, sviluppate per fornire elevate prestazioni in una vasta gamma di applicazioni NLP.

Caratteristiche principali

- Proprietari: I modelli sono accessibili esclusivamente tramite API commerciali.
- Prestazioni Elevate: OpenAI è leader nei benchmark NLP, garantendo risultati ottimali per applicazioni generative e analitiche.
- Ottimizzazione per Prodotti Commerciali: I modelli sono ottimizzati per applicazioni pratiche come chatbot, generazione di codice, automazione aziendale e analisi dei dati.

Vantaggi

- Inferenza Scalabile: Le API cloud di OpenAI permettono una scalabilità elevata senza la necessità di gestione locale delle risorse.
- Supporto Tecnico: Documentazione esaustiva e supporto continuo per l'integrazione.
- Aggiornamenti Regolari: Miglioramenti costanti ai modelli e alle API.

Svantaggi

- Costi Basati sui Token: I costi dipendono dal numero di token elaborati, il che può risultare oneroso in alcuni scenari ad alto volume.
- Mancanza di Trasparenza: Non è possibile accedere ai dati di addestramento o all'architettura interna del modello.
- Dipendenza dall'Infrastruttura Cloud: Non è possibile eseguire i modelli localmente, il che può rappresentare un problema per progetti con restrizioni di privacy.

2.3.1 Prestazioni

Benchmark e valutazione dei modelli di OpenAI: GPT-40 e GPT-40mini, dimostrano prestazioni superiori rispetto ad altri modelli di riferimento.

Figura 2: Benchmark delle prestazioni del modello gpt4o confrontato con altri modelli

Figura 3: Benchmark delle prestazioni del modello gpt4omini confrontato con altri modelli

3 Costi e Limiti

Una differenza chiave tra le due piattaforme riguarda i costi e le limitazioni di utilizzo:

3.1 Huggingface

- Gli endpoint API di Huggingface supportano modelli fino a 10GB gratuitamente.
- Per modelli più grandi è necessario sottoscrivere un piano a pagamento, con costi variabili in base alla dimensione e all'utilizzo orario.
- L'utilizzo locale richiede risorse hardware significative, con costi indiretti per l'acquisto o il noleggio di infrastrutture adeguate.

3.1.1 Costi

Nel nostro caso, data la necessità di utilizzare modelli di grandi dimensioni come BLOOM (a causa dell'inefficienza di quelli piccoli), i costi di Huggingface potrebbero risultare proibitivi, quindi di seguito mostriamo una tabella che elenca i costi di un API endpoint:

Figura 4: Costi degli endpoint API di Huggingface per modelli di grandi dimensioni

3.2 OpenAI

- I costi sono calcolati in base al numero di token utilizzati durante l'elaborazione, rendendo il modello economicamente flessibile per casi d'uso specifici.
- Non ci sono costi orari fissi, e l'utilizzo è facilmente scalabile in funzione delle esigenze del progetto.

Questa differenza rende OpenAI una scelta più conveniente per progetti con utilizzo intermittente o moderato, mentre Huggingface è più adatto a sviluppatori con infrastrutture locali preesistenti o budget elevati per l'acquisto di risorse.

3.2.1 Costi

Di seguiti i costi di OpenAI per l'utilizzo delle API per gpt4o e gpt4omini, che a diferrenza di Huggingface non richiedono costi fissi orari ma sono basati sul numero di token utilizzati:

Model	Pricing	Pricing with Batch API*	
gpt-4o	\$2.50 / 1M input tokens	\$1.25 / 1M input tokens	
	\$1.25 / 1M cached** input tokens		
	\$10.00 / 1M output tokens	\$5.00 / 1M output tokens	
gpt-4o-2024-11-20	\$2.50 / 1M input tokens	\$1.25 / 1M input tokens	
	\$1.25 / 1M cached** input tokens		
	\$10.00 / 1M output tokens	\$5.00 / 1M output tokens	
gpt-4o-2024-08-06	\$2.50 / 1M input tokens	\$1.25 / 1M input tokens	
	\$1.25 / 1M cached** input tokens		
	\$10.00 / 1M output tokens	\$5.00 / 1M output tokens	
gpt-4o-audio-preview	Text		
	\$2.50 / 1M input tokens		
	\$10.00 / 1M output tokens		
	Audio***		
	\$100.00 / 1M input tokens		
	\$200.00 / 1M output tokens		
gpt-4o-audio-preview-2024-10-01	Text		
	\$2.50 / 1M input tokens		
	\$10.00 / 1M output tokens		
	Audio***		
	\$100.00 / 1M input tokens		
	\$200.00 / 1M output tokens		
gpt-4o-2024-05-13	\$5.00 / 1M input tokens	\$2.50 / 1M input tokens	
	\$15.00 / 1M output tokens	\$7.50 / 1M output tokens	

Figura 5: Costi delle API di OpenAI per il modello gpt4o

Figura 6: Costi delle API di OpenAI per il modello gpt4omini

4 Utilizzo tramite LangChain

LangChain è una libreria versatile che consente di combinare modelli linguistici avanzati con strumenti di ricerca, database e altre tecnologie. Entrambe le piattaforme possono essere integrate facilmente tramite LangChain.

4.1 BigScience Workshop (Huggingface)

LangChain supporta l'integrazione con i modelli Huggingface tramite connettori diretti, permettendo un elevato grado di personalizzazione.

Punti di forza

- Possibilità di controllare in dettaglio le modalità di esecuzione del modello.
- Personalizzazione avanzata per applicazioni specifiche.

Limiti

- Requisiti tecnici e computazionali elevati per ottimizzare le prestazioni.
- Gestione complessa per l'utilizzo di modelli di grandi dimensioni.

4.2 OpenAI

LangChain offre un'integrazione nativa con le API di OpenAI, semplificando l'implementazione e l'uso dei modelli.

Punti di forza

- Configurazione immediata e intuitiva.
- Alta scalabilità e tempi di risposta rapidi grazie all'infrastruttura cloud.

Limiti

- Dipendenza dalle API proprietarie.
- Costi ricorrenti legati al consumo di token.

5 Testing con OpenAI GPT-4omini e LangChain

Per valutare l'efficacia dell'integrazione di OpenAI GPT-40mini tramite LangChain, abbiamo condotto una serie di test. Abbiamo utilizzato LangSmith per monitorare le prestazioni e raccogliere dati dettagliati sull'elaborazione.

5.1 Setup del Test

Abbiamo configurato un ambiente di test utilizzando LangChain per interfacciarci con le API di OpenAI. Il setup includeva:

- Un'istanza di LangChain configurata per utilizzare GPT-40mini.
- Monitoraggio delle richieste e delle risposte tramite LangSmith.
- Un istanza RAG (Retrieval-Augmented Generation), realizzata tramite un database vettoriale FAISS e come embedding model BERT(di Huggingface) runnato in locale(2GB VRAM circa compresi dati file esterni vettorializzati) che ci ha permesso di testare llm su contesti ricevuti da file esterni.

5.2 Esecuzione del Test

Abbiamo eseguito diversi scenari di test per valutare soprattutto il costo in token dell'utilizzo di GPT-40mini:

Figura 7: Scenario riassuntivo dei costi delle varie query su LangSmith

5.3 Conclusioni del Test

I test hanno dimostrato che l'integrazione di GPT-40mini tramite LangChain è efficace e offre prestazioni soddisfacenti per le nostre esigenze. Il monitoraggio tramite LangSmith ha fornito dati utili per ottimizzare l'uso del modello e gestire i costi associati all'utilizzo dei token.

In conclusione, l'uso di OpenAI GPT-40mini con LangChain rappresenta una soluzione valida per il nostro progetto, garantendo un equilibrio tra prestazioni elevate e costi gestibili.

6 Conclusioni

La scelta tra Huggingface e OpenAI dipende dalle esigenze specifiche del progetto e dalle risorse disponibili.

Huggingface è ideale per sviluppatori che richiedono trasparenza, controllo e la possibilità di eseguire modelli su infrastrutture locali. Tuttavia, i costi associati a modelli di grandi dimensioni e le elevate richieste hardware possono rappresentare uno svantaggio.

OpenAI è la soluzione preferibile per applicazioni commerciali o progetti che richiedono elevate prestazioni con un'infrastruttura cloud scalabile e tempi di implementazione rapidi. I costi basati sui token offrono maggiore flessibilità economica rispetto ai costi fissi di Huggingface.

Grazie a LangChain, entrambe le opzioni possono essere integrate efficacemente, permettendo di sfruttare appieno le potenzialità dei modelli linguistici per applicazioni avanzate.

Tuttavia, per il nostro progetto **Capitolato 7 Ergon**, l'opzione con OpenAI sembra essere la più adatta all'implementazione pratica, considerati i nostri mezzi e possibilità.

Data:			
Firma:			