summarize across scenarios

wei zou

2021-05-02 17:52:28

Patient level association metrics are correlated

Table 1: simulations without full expected results

dynamics	beta1	alpha	pd.var	ibs	ibs.scaled	beta	n	sim
0.001	-0.6	6	0.001	-0.8636898	0.8807898	0.5540749	140	kg1

Scale for 'y' is already present. Adding another scale for 'y', which will ## replace the existing scale.

Between C index and other patient level metrics, under unique parameter settings

We first estimated spearman correlations between C index and other patient level association metrics (indicated in the column head) from 300 trials simulated from the same parameters. Each box summarizes 15 correlation estimates (from 3 values of beta_1 and 5 values of Ks/Kg parameter in the active arm)

Between C index and other patient level metrics when alpha varies

We first estimated spearman correlations between C index and other patient level association metrics (indicated in the column head) from 1500 studies simulated from the same parameters except that alpha make take 1 of the 5 values in every 300 studies. Each box summarizes 15 correlation estimates (from 3 values of beta_1 and 5 values of Ks/Kg parameter in the active arm)

patient level association increases with alpha

C index distribution by alpha and beta_1

Each box summarizes the 1st quartile, median and 3rd quartile of the C index values from 1500 studies: there are 300 trials simulated with one of 5 different values of Ks/Kg parameter for the active arm and one value of alpha (indicated on the x axis) and one value of beta_1 (indicated by color).

IBS distribution by alpha and beta_1

Scaled IBS distribution by alpha and beta_1

Igo(HR) distribution by alpha and beta_1

trial level association

- ## [1] "finding 6 input files when looking for s_3 "
- ## [1] "modification interval: 48.3 min"
- ## [1] "will add file name to the returned data"
- ## [1] "finding 6 input files when looking for s_1"
- ## [1] "modification interval: 48.3 min"
- ## [1] "will add file name to the returned data"
- ## [1] "finding 6 input files when looking for s_b "

```
## [1] "modification interval: 48.3 min"
```

Grouped by unique values of alpha and beta1

sampling 3 replicates per Ks/Kg parameter

R2 by alpha and beta_1 from 15 studies

Each box summarizes R2 from 100 simulated set. Each set includes 15 studies. There are 3 duplicates for each of the 5 values of Ks/Kg parameter in the active arm.

^{## [1] &}quot;will add file name to the returned data"

Between patient level and trial level association (dup 3)

sampling 1 study per Ks/Kg parameter

R2 by alpha and beta_1 from 5 studies

Each box summarizes R2 from 100 simulated set. Each set includes 5 studies. There are 1 duplicates for each of the 5 values of Ks/Kg parameter in the active arm.

Between patient level and trial level association (dup 1)

Grouped by alpha

R2 by alpha from 15 studies

Each box summarizes R2 from 100 simulated set. Each set includes 15 studies. There are 1 duplicates for each of 3 beta $_1$ values and the each of 5 values of Ks/Kg parameter in the active arm.

Between patient level and trial level association

