

Кафедра Прикладной математики Института информационных технологий РТУ МИРЭА

Дисциплина «Вычислительная математика»

Лекция №3

2024-2025 уч.г.

Численное решение уравнений

Решение уравнений – одна из древнейших математических задач.

В Древней Греции умели решать линейные и квадратные алгебраические уравнения.

В эпоху Возрождения (XV век) Джироламо Кардано и его ученик Луиджи Феррари получили точные решения для алгебраических многочленов 3 и 4 степени

В 20-х годах XIX века было доказано, что решение алгебраического многочлена n-ой степени

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

при n ≥ 5 нельзя выразить через коэффициенты с помощью арифметических действий и операций извлечения корня.

$$y^{3} + py + q = 0:$$

$$y = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}}$$

$$a\tilde{x}^{4} + b\tilde{x}^{3} + c\tilde{x}^{2} + d\tilde{x} + h = 0$$

$$x^{4} + px^{2} + qx + r = 0$$

$$8y^{3} + 8y^{2}p + y(2p^{2} - 8r) - q^{2} = 0$$

$$y_{0} = ?$$

$$\left(x^{2} + \frac{p}{2} + y_{0}\right)^{2} = 2y_{0}\left(x - \frac{q}{4y_{0}}\right)^{2}$$

$$\left(x^{2} + \frac{p}{2} + y_{0}\right)^{2} = \left(\sqrt{2y_{0}}\left(x - \frac{q}{4y_{0}}\right)\right)^{2}$$

Численное решение уравнений

Теорема Гаусса.

Алгебраический многочлен n-ой степени имеет n корней, причём они могут быть вещественными и комплексными.

Трансцендентные уравнения

- Содержат алгебраические, тригонометрические, экспоненциальные функции от неизвестного х.
- Имеют неопределённое число корней.

ПОСТАНОВКА ЗАДАЧИ

Задана непрерывная функция f(x). Требуется найти корни уравнения f(x)=0.

Всякое значение $x^* \in (a,b)$, удовлетворяющее условию $f(x^*) = 0$, называется корнем уравнения,

а способ нахождения этого значения \mathbf{x}^* называется $\mathbf{peuvenuem}$ уравнения.

Этапы численного решения уравнений

1 этап. Отделение корней уравнения.

Ответние корней — это определение их наличия, количества и нахождение для каждого их них достаточно малого отрезка [a,b], которому он принадлежит.

2 этап. Уточнение корней уравнения

Уточнение корня— это вычисление интересующего корня с заданной точностью є.

Отделение корней уравнения

Аналитические методы

необходимо иметь критерий, позволяющий убедиться в том, что на рассматриваемом числовом множестве [a; b]:

- •имеется корень уравнения;
- •этот корень является единственным

Теорема. Если на отрезке [a;b] функция f(x)непрерывна и монотонна, а ее значения на концах отрезка имеют разные знаки, то на рассматриваемом числовом множестве существует один и только один корень уравнения.

f(x) монотонно возрастает, если f'(x) > 0 f(x) монотонно убывает, если f'(x) < 0

- ✓ найти все интервалы, на которых функция f(x) монотонна
- ✓ определить знаки функции на концах каждого такого интервала.

Пример Отделить корни уравнения $x^5 - 2x^3 + 1 = 0$.

Решение: Функция $f(x) = x^5 - 2x^3 + 1$ и ее производная $f'(x) = 5x^4 - 6x^2$ непрерывны на всей числовой оси.

Участки монотонности функции f(x):

$$f'(x)=0 \iff 5x^4-6x^2=0$$
, или $x^2(5x^2-6)=0$. $\iff x_1=0, x_2=\sqrt{6}/5$, $x_3=-\sqrt{6}/5$

Найдены следующие множества монотонности функции f(x):

$$\left(-\infty,-\sqrt{6/5}\right], \left[-\sqrt{6/5},0\right], \left[0,\sqrt{6/5}\right], \left[\sqrt{6/5},\infty\right).$$

Знаки функции f(x)на концах найденных интервалов:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^5 - 2x^3 + 1) = -\infty < 0;$$

$$f\left(-\sqrt{\frac{6}{5}}\right) = -\sqrt{\frac{7776}{3125}} + 2\sqrt{\frac{216}{125}} + 1 < 0;$$

$$f(0) = 1 > 0;$$

$$f\left(\sqrt{\frac{6}{5}}\right) = \sqrt{\frac{7776}{3125}} - 2\sqrt{\frac{216}{125}} + 1 > 0;$$
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (x^5 - 2x^3 + 1) = \infty > 0.$$

Ответ:

Уравнение имеет единственный действительный корень на интервале

$$\left[-\sqrt{6/5},0\right]$$

Отделение корней уравнения

Графический метод приближённой оценки вещественных корней

1.

- построить график функции y = f(x)
- определить координаты точек пересечения с осью абсцисс
- это приближенные значения корней уравнения.

2.

- преобразовать f(x)=0 к виду $\phi(x)=\psi(x)$, где $\phi(x)$ и $\psi(x)$ элементарные функции
- определить абсциссу пересечений графиков этих функций.
- – это приближенные значения корней уравнения.

На графике 3 корня. Первый корень

$$x^* \in [a,b]$$

На графике 2 корня. Первый корень $x_1^* \in [a,b]$

Пример. Графическим методом отделить корни уравнения

$$x^2 - \sin x = 0.$$

Решение. Строим отдельные графики:

$$\varphi_1(x) = x^2$$
 и $\varphi_2(x) = sinx$

Из графика один из корней определяется точно: $x_1 = 0$

Для второго — отрезок примерно $\left[\frac{\pi}{5}; \frac{\pi}{2}\right]$.

Метод половинного деления

Постановка задачи:

Дано нелинейное уравнение f(x) = 0.

Корень отделен, т.е. известно, что $x^* \in [a,b]$.

Требуется вычислить корень с заданной точностью є.

Метод реализует стратегию постепенного уменьшения отрезка существования корня, используя факт изменения знака функции в окрестности корня.

При любом выборе точки с на этом отрезке погрешность не превышает величины

$$\Delta c = |b - a|$$

$$c = \frac{a+b}{2}$$

если
$$f(a) \cdot f(c) > 0 => x^* \in [c,b] => a = c$$
, иначе $x^* \in [a,c] => b = c$

Условие точности вычисления:

$$\frac{|b_n - a_n|}{2^n} \le \varepsilon$$

Пример.

Для уравнения $2x^2 + 5x - 10 = 0$ найден отрезок [1; 2], в котором находится его корень. Методом половинного деления найти значение корня с точностью $\varepsilon = 0,1$.

Решение:

$$f(1,5) = 2 \cdot (1,5)^2 + 5 \cdot 1,5 - 10 = 2 > 0;$$

Выберем точку
$$c = \frac{a+b}{2} = \frac{1+2}{2} = 1,5.$$
 $f(1) = 2+5-10 = -3 < 0; f(2) = 8-10+10 = 8 > 0.$

Уточненный (суженный) отрезок: $[a_1, b_1] = [1; 1,5]$

$$\Delta c = |1,5-1| = 0,5 > 0,1$$
 продолжаем вычисления.

$$c = \frac{1+1.5}{2} = 1.25$$
. Where $f(1.25) = 2 \cdot (1.25)^2 + 5 \cdot 1.25 - 10 = -0.625 < 0$

Новый отрезок:
$$[a_2, b_2] = [1,25;1,5]$$
. $\Delta c = |1,5-1,25| = 0,25 > 0,1$ продолжаем вычисления.

Выбираем новую точку $c = \frac{1,25+1,5}{2} = 1,375$.

$$f(1,375) = 2 \cdot (1,375)^2 + 5 \cdot 1,375 - 10 = 3,781 + 6,875 - 10 = 0,656 > 0.$$

Новый отрезок:
$$[a_3, b_3] = [1,25; 1,375]$$
. $\Delta c = |1,375 - 1,25| = 0,125 > 0,1$ \longrightarrow $c = \frac{1,25+1,375}{2} = 1,312$.

$$f(1,312) = 2 \cdot (1,312)^2 + 5 \cdot 1,312 - 10 = 0,003 > 0.$$
 Уточненный отрезок: $[a_4,b_4] = [1,25;1,312].$

$$\Delta c = |1,312 - 1,25| = 0,062 < 0,1,$$
 прекращаем вычисления.

Ответ: $\hat{x} = 1,3$.

Метод простых итераций (метод последовательных приближений).

<u>Постановка задачи.</u> Дано нелинейное уравнение f(x)=0.

Корень отделен $x^* \in [a; b]$. Требуется уточнить корень с точностью ϵ .

Уравнение преобразуем к эквивалентному виду x=φ(x),

что можно сделать всегда и притом множеством способов.

Выберем начальное приближение x₀∈ [a; b].

Вычислим новые приближения:

Если
$$\lim_{i\to\infty} x_i = x^*$$
, то итерационный процесс сходящийся.

$$x_1=\varphi(x_0)$$

$$x_2 = \phi(x_1)$$

условие сходимости
$$|\varphi'_{(x)}| < 1 \forall x \in [a, b]$$

Условие завершения итерационного процесса

$$x_i = \phi(x_{i-1})_i = 1, 2, \dots$$
 где i – номер итерации.

$$\left|x^* - x_i\right| \leq \varepsilon$$

Метод простых итераций (метод последовательных приближений).

Рассмотрим *геометрическое представление* процесса. При отыскании решения уравнения $x = \varphi(x)$ на графике отыскивается точка пересечения прямой y = x и кривой $y = \varphi(x)$. Рассмотрим произвольную функцию $y = \varphi(x)$, производная которой удовлетворяет условию $0 < \varphi'(x) < 1$.

Зададим начальное приближение x_0 . Первое приближение будет равно $x_1 = \varphi(x_0)$. Графически найти х можно, проведя горизонтальную прямую через точку Aдо пересечения с прямой y = x в точке B. Для нахождения $x_2 = \varphi(x_1)$ необходимо провести вертикальную прямую через точку B до пересечения с кривой $y = \varphi(x)$. Проводя через точку C горизонтальную линию до пересечения с прямой y = x, получаем x_2 .

Метод простых итераций (метод последовательных приближений).

<u>Постановка задачи.</u> Дано нелинейное уравнение f(x)=0.

Корень отделен $x^* \in [a; b]$. Требуется уточнить корень с точностью ϵ .

Уравнение преобразуем к эквивалентному виду x=φ(x),

что можно сделать всегда и притом множеством способов.

Выберем начальное приближение x₀∈ [a; b].

Вычислим новые приближения:

Если $\lim_{i\to\infty} x_i = x^*$, то итерационный процесс сходящийся.

 $x_1=\varphi(x_0)$

условие сходимости $|\varphi_{(x)}| < 1 \forall x \in [a, b]$

 $x_2 = \varphi(x_1)$

Условие завершения итерационного процесса

.

 $x_i = \phi(x_{i-1})_{-i} = 1, 2, \dots$ где i – номер итерации.

$$\left|x^*-x_i\right|\leq \varepsilon$$

Возможные случаи взаимного расположения графиков функций и видов итерационного

МИРЭА Российский технологический университет

процесса

Итерационный процесс монотонно сходится из любой точки [a, b]

Рис. 1 Итерационный процесс для случая $0 < \varphi_x' < 1 \quad \forall x \in [a, b]$.

Итерационный процесс монотонно расходится для любого $x_0 \in [a, b]$

Рис. 4 Итерационный процесс для случая $\varphi_x^{'}>1 \quad \forall x \in [a,b].$

Итерационный процесс колебательно (около корня х*) сходится из любой точки [a, b]

Рис. 2 Итерационный процесс для случая -1< φ_x <1 $\forall x \in [a, b]$.

Рис. 5 Итерационный процесс для случая $\varphi_x \leq -1 \ \forall \ x \in [a, b].$

<u>Пример.</u> Нужно решить уравнение $x^2 - 3 = 0$ с точностью $\varepsilon = 0.001$

Решение: Рассмотрим уравнение общего вида и получим для него рекуррентную формулу.

$$x^{2} - a = 0 \iff a - x^{2} = 0 \iff a + x^{2} = 2x^{2} \iff x = \frac{1}{2} \left(x + \frac{a}{x} \right)$$

Будем использовать полученную рекуррентную формулу $x_i = \frac{1}{2} \left(x_{i-1} + \frac{a}{x_{i-1}} \right)$

до выполнения условия $|x_i - x_{i-1}| < \varepsilon$.

Зададимся $x_0 = a = 3$.

Первое приближение:
$$x_1 = \frac{1}{2} \left(x_0 + \frac{a}{x_0} \right) = \frac{1}{2} \left(3 + \frac{3}{3} \right) = 2$$
, точность: $|x_1 - x_0| = |2 - 3| = 1 > \varepsilon$.

Первое приближение:
$$x_1 = \frac{1}{2} \left(x_0 + \frac{a}{x_0} \right) = \frac{1}{2} \left(3 + \frac{3}{3} \right) = 2$$
, точность: $|x_1 - x_0| = |2 - 3| = 1 > \varepsilon$. Второе приближение: $x_2 = \frac{1}{2} \left(x_1 + \frac{a}{x_1} \right) = \frac{1}{2} \left(2 + \frac{3}{2} \right) = 1,75 = \frac{7}{4}$, точность: $|1,75 - 2| = 0,25 > \varepsilon$.

Третье приближение:
$$x_3 = \frac{1}{2} \left(x_2 + \frac{a}{x_2} \right) = \frac{1}{2} \left(\frac{7}{4} + \frac{12}{7} \right) = 1,7321$$
, точность: $|1,7321 - 1,75| = 0,0179 > \varepsilon$.

Четвертое приближение:
$$x_4 = \frac{1}{2} \left(x_3 + \frac{a}{x_3} \right) = \frac{1}{2} \left(1,7321 + \frac{3}{1,7321} \right) = 1,73205$$
, точность:

Ответ: x = 1,73205.

$$|1,73205 - 1,7321| = 0,0005 < \varepsilon$$
 — точность достигнута.

Точное значение до 8 значащих цифр: $\sqrt{3} = 1,7320508$

$$\sqrt{3} = 1,7320508$$

Метод Ньютона (касательных)

Из рисунка следует, что

$$x_1 = x_0 - CB$$

Из
$$\triangle ABC$$
: $CD = \frac{AB}{tg \angle ACB}$. Ho $tg \angle ACB = f'(x_0)$, $AB = f(x_0)$.

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Формула итерационного процесса метода Ньютона:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}, i = 1, 2, \dots,$$
где $x_0 \in [a; b].$

Условие окончания расчета: $|\mathcal{S}| \leq \varepsilon$,

где
$$\delta = x_{i-1} - x_i = \frac{f(x_{i-1})}{f'(x_{i-1})}$$
 –корректирующее приращение или поправка

$$f(x_0) \cdot f''(x_0) > 0, x_0 \in [a; b].$$

Метод хорд

Как и ранее, полагаем, что нам известен отрезок [a,b] содержащий один корень уравнения (1).

По методу хорд в качестве уточненного значения корня c выбирают точку пересечения хорды, соединяющей точки A=(a, f(a)) и B=(b, f(b)) графика функции f(x) с осью Ox.

Этот метод называют также методом секущих.

$$\frac{y-f(a)}{f(b)-f(a)} = \frac{x-a}{b-a}. \qquad -\frac{f(a)}{f(b)-f(a)} = \frac{c-a}{b-a}.$$

$$-\frac{f(a)}{f(b)-f(a)} = \frac{c-a}{b-a}.$$

$$c = a - \frac{b - a}{f(b) - f(a)} \cdot f(a).$$

$$x_{n+1} = x_n - \frac{b - x_n}{f(b) - f(x_n)} \cdot f(x_n)$$
(1)
$$f'(x) \cdot f''(x) > \mathbf{0}$$

Условие остановки:

$$|x_n - x_{n-1}| \le \varepsilon$$

$$x_{n+1} = a - \frac{x_n - a}{f(x_n) - f(a)} \cdot f(a)$$

$$f'(x) \cdot f''(x) < \mathbf{0}$$
(2)

Метод хорд

Пример. Отделить корни уравнения $tg(0,55x+0,1) = x^2$

графически и уточнить один из них методом хорд с точностью до 0,001.

Решение.

Построим графики функций

$$y_1 = tg(0,55x+0,1)$$
 и

$$y_2 = x^2$$

x	0	0,2	0,4	0,6	0,8	1
$y_2 = x^2$	0	0,04	0,16	0,36	0,64	1
0,55x	0	0,11	0,22	0,33	0,44	0,55
y_1	0,1	0,21	0,33	0,46	0,60	0,76

корень уравнения заключен в промежутке [0,6; 0,8].

Знаки функции
$$f(x) = tg(0.55x + 0.1) - x^2$$
 $f(0.6) = tg(0.43 - 0.36) = 0.4586 - 0.36 = 0.0986;$

$$f(0,6) = tg 0,43 - 0,36 = 0,4586 - 0,36 = 0,0986;$$

$$f(0,8) = tg 0,54 - 0,64 = 0,5994 - 0,64 = -0,0406;$$

$$f'(x) = \frac{0.55}{\cos^2(0.55x + 0.1)} - 2x$$

ЗНАК ВТОРОЙ ПРОИЗВОДНОЙ
$$f'(x) = \frac{0.55}{\cos^2(0.55x + 0.1)} - 2x;$$
 $f''(x) = 0.55 \cdot 2\cos^3(0.55x + 0.1)\sin(0.55x + 0.1)0.55 - 2 = \frac{0.605\sin(0.55x + 0.1)}{\cos^3(0.55x + 0.1)} - 2 > 0$ при $x \in [0.6; 0.8]$.

$$x_n - \frac{f(x_n)}{f(b) - f(x_n)} \cdot (b - x_n)$$

$$b = 0.8; \ x_0 = 0.6.$$

п	x_n	$0.8 - x_n$	$0.55x_n + 0.1$	$tg(0.55x_n + 0.1)$
0	0,6	0,2	0,43	0,4586
1	0,742	0,058	0,5081	0,5570
2	0,750	0,50	0,5125	0,5627
3	0,7502	0,0498	0,5126	0,5628

Для вычислений применяем формулу
$$x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(x_n)} \cdot (b - x_n), \quad \Gamma Де \qquad b = 0,8; \quad x_0 = 0,6.$$

Ответ: $x \approx 0,750$.

СПАСИБО ЗА ВНИМАНИЕ