

Mathematik

BGW16

Anwendung zur Exponentialrechnung

ANR

Aufgabe 3 (Kondensator, 6 BE)

Der Aufladestrom I(t) (in Ampere) eines Kondensators über einen Ohmschen Widerstand wird beschrieben über die Funktion $I(t) = I_0 \cdot e^{-\frac{1}{R \cdot C} \cdot t}$, wobei R die Größe des Widerstands in Ω , C die Kapazität des Kondensators in F und t die Zeit in ms angibt.

- (a) Geben Sie I(0) an.
- (b) Seien $R = 10k\Omega$ und $C = 50\mu F$. Bestimmen Sie I_0 so, dass nach 100 ms ein Reststrom von 10mA anliegt.
- (c) Weisen Sie rechnerisch nach, dass $Q(t) = Q_0 \cdot (1 e^{-\frac{t}{R \cdot C}})$ eine Stammfunktion von I(t) ist. Hinweis: Für die Kapazität gilt $C = \frac{Q_0}{U}$. Verwenden Sie auch das Ohmsche Gesetz.