Data Visualization and Pre-processing

▼ Import libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```



```
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive

data = pd.read_csv('drive/My Drive/Churn_Modelling.csv')
data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1596
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

Column	Non-Null Count	Dtype
RowNumber	10000 non-null	int64
CustomerId	10000 non-null	int64
Surname	10000 non-null	object
CreditScore	10000 non-null	int64
Geography	10000 non-null	object
Gender	10000 non-null	object
	RowNumber CustomerId Surname CreditScore Geography	RowNumber 10000 non-null CustomerId 10000 non-null Surname 10000 non-null CreditScore 10000 non-null Geography 10000 non-null

```
10000 non-null
                                    int64
    Age
                     10000 non-null int64
 7
    Tenure
 8
    Balance
                     10000 non-null float64
 9
    NumOfProducts
                     10000 non-null int64
 10 HasCrCard
                     10000 non-null int64
    IsActiveMember
                     10000 non-null int64
12 EstimatedSalary 10000 non-null float64
                     10000 non-null int64
13 Exited
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

Visualisations

1. Univariate Analysis

```
data['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64

# Plotting the features of the dataset to see the correlation between them

plt.hist(x = data.Gender, bins = 3, color = 'pink')
plt.title('comparison of male and female')
plt.xlabel('Gender')
plt.ylabel('population')
plt.show()
```



```
data['Age'].value_counts()

37     478
38     477
35     474
36     456
```

```
34 447 ....
92 2
82 1
88 1
85 1
83 1
Name: Age, Length: 70, dtype: int64
```

comparison of age in the dataset

```
plt.hist(x = data.Age, bins = 10, color = 'orange')
plt.title('comparison of Age')
plt.xlabel('Age')
plt.ylabel('population')
plt.show()
```


data['Geography'].value_counts()

```
France 5014
Germany 2509
Spain 2477
```

Name: Geography, dtype: int64

comparison of geography

```
plt.hist(x = data.Geography, bins = 5, color = 'green')
plt.title('comparison of Geography')
plt.xlabel('Geography')
plt.ylabel('population')
plt.show()
```


data['HasCrCard'].value_counts()

7055
 2945

Name: HasCrCard, dtype: int64

comparision of how many customers hold the credit card

```
plt.hist(x = data.HasCrCard, bins = 3, color = 'red')
plt.title('how many people have or not have the credit card')
plt.xlabel('customers holding credit card')
plt.ylabel('population')
plt.show()
```



```
data['IsActiveMember'].value_counts()
```

5151
 4849

Name: IsActiveMember, dtype: int64

```
# How many active member does the bank have ?
plt.hist(x = data.IsActiveMember, bins = 3, color = 'brown')
plt.title('Active Members')
plt.xlabel('Customers')
plt.ylabel('population')
plt.show()
```


2. Bi - Variate Analysis

comparison between Geography and Gender

```
Gender = pd.crosstab(data['Gender'],data['Geography'])
Gender.div(Gender.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True, figsize=(6,
```


comparison between geography and card holders

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a93ced590>

comparison of active member in differnt geographies

comparing ages in different geographies

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a93bfea10>


```
# calculating total balance in france, germany and spain

total_france = data.Balance[data.Geography == 'France'].sum()
total_germany = data.Balance[data.Geography == 'Germany'].sum()
total_spain = data.Balance[data.Geography == 'Spain'].sum()

print("Total Balance in France :",total_france)
```

```
print("Total Balance in Germany :",total_germany)
print("Total Balance in Spain :",total_spain)

    Total Balance in France : 311332479.49
    Total Balance in Germany : 300402861.38
    Total Balance in Spain : 153123552.01

# plotting a pie chart

labels = 'France', 'Germany', 'Spain'
colors = ['cyan', 'magenta', 'orange']
sizes = [311, 300, 153]
explode = [ 0.01, 0.01, 0.01]

plt.pie(sizes, colors = colors, labels = labels, explode = explode, shadow = True)

plt.axis('equal')
plt.show()
```


3. Multi - Variate Analysis

sns.pairplot(data=data, hue='Exited')

Descriptive statistics

#Statistical analysis
data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Bala
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000
25%	2500 75000	1 562853e+07	584 000000	32 000000	3 000000	0 000

Handle the Missing values

#Missing Values
data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtvpe: int64	

No missing values are found.

Find the outliers and replace the outliers

```
sns.boxplot(data = data, x = 'CreditScore')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a8ecfe7d0>

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a8e9a3f50>

sns.boxplot(data = data, x = 'Balance')

<matplotlib.axes._subplots.AxesSubplot at 0x7f6a8d0e0e90>

sns.boxplot(data = data, x = 'EstimatedSalary')

```
<matplotlib.axes. subplots.AxesSubplot at 0x7f6a8d0e0c50>
for i in data:
    if data[i].dtype=='int64' or data[i].dtypes=='float64':
        q1=data[i].quantile(0.25)
        q3=data[i].quantile(0.75)
        igr=q3-q1
        upper=q3+1.5*iqr
        lower=q1-1.5*iqr
        data[i]=np.where(data[i] >upper, upper, data[i])
        data[i]=np.where(data[i] <lower, lower, data[i])</pre>
```

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Bala
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000
mean	5000.50000	1.569094e+07	650.561300	38.660800	5.012800	76485.889
std	2886.89568	7.193619e+04	96.558702	9.746704	2.892174	62397.405
min	1.00000	1.556570e+07	383.000000	18.000000	0.000000	0.000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240
max	10000.00000	1.581569e+07	850.000000	62.000000	10.000000	250898.090

Preprocessing

```
# Removing the unnecassary features from the dataset
data = data.drop(['CustomerId', 'Surname', 'RowNumber'], axis = 1)
print(data.columns)
     Index(['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance',
            'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary',
            'Exited'],
           dtype='object')
data.shape
     (10000, 11)
```

Split the data into dependent and independent variables

Check for Categorical columns and perform encoding

```
# Encoding Categorical variables into numerical variables
# One Hot Encoding

x = pd.get_dummies(x)

x.head()
```

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	E٤
0	619.0	42.0	2.0	0.00	1.0	1.0	1.0	
1	608.0	41.0	1.0	83807.86	1.0	0.0	1.0	
2	502.0	42.0	8.0	159660.80	3.0	1.0	0.0	
3	699.0	39.0	1.0	0.00	2.0	0.0	0.0	
4	850.0	43.0	2.0	125510.82	1.0	1.0	1.0	

Split the data into training and testing

```
# splitting the data into training and testing set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state =
```

Scale the independent variables

```
# Feature Scaling
# Only on Independent Variable to convert them into values ranging from -1 to +1
from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)

x_train = pd.DataFrame(x_train)
x_train.head()
```

	0	1	2	3	4	5	6	7
0	-0.736828	0.042283	0.008860	0.673160	2.583231	-1.553624	-1.034460	-1.640810
1	1.025257	-0.674496	0.008860	-1.207724	0.822578	0.643657	-1.034460	-0.079272
2	0.808861	-0.469702	1.393293	-0.356937	0.822578	0.643657	0.966688	-0.996840
3	0.396677	-0.060114	0.008860	-0.009356	-0.938076	0.643657	0.966688	-1.591746
4	-0.468908	1.373444	0.701077	-1.207724	0.822578	0.643657	0.966688	1.283302

Colab paid products - Cancel contracts here

