- 1. Все алгоритмы должны быть реализованы с использованием системы MatLAB;
- реализованные алгоритмы должны работать для любого набора допустимых входных данных, в том числе и для выборок различного объема;
- приступая к защите лабораторной работы, студент должен иметь при себе распечатанный (или написанный от руки) отчет, содержание которого определяется заданием на конкретную лабораторную работу.

ЛАБОРАТОРНАЯ РАБОТА № 1

Гистограмма и эмпирическая функция распределения

Цель работы: построение гистограммы и эмпирической функции распределения.

Содержание работы

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - а) вычисление максимального значения M_{max} и минимального значения M_{min} ;
 - δ) размаха R выборки;
 - в) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
 - г) группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
 - д) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - е) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2. Провести вычисления и построить графики для выборки из индивидуального варианта.

Содержание отчета

- 1. формулы для вычисления величин M_{max} , M_{min} , R, $\hat{\mu}$, S^2 ;
- 2. определение эмпирической плотности и гистограммы;
- 3. определение эмпирической функции распределения;
- 4. текст программы;
- 5. результаты расчетов для выборки¹ из индивидуального варианта.

ЛАБОРАТОРНАЯ РАБОТА № 2

Интервальные оценки

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

Содержание работы

- 1. Для выборки объема n из нормальной генеральной совокупности X реализовать в виде программы на ЭВМ
 - а) вычисление точечных оценок $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ математического ожидания МX и дисперсии DX соответственно:
 - б) вычисление нижней и верхней границ $\underline{\mu}(\vec{x}_n)$, $\overline{\mu}(\vec{x}_n)$ для γ -доверительного интервала для математического ожидания MX:
 - $^{-1}$ Указанная выборка содержится в файле $^{''}$ Выборки (ИУ7, 6-й сем., ЛР по МатСтат).txt $^{''}$.

- в) вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{x}_n), \, \overline{\sigma}^2(\vec{x}_n)$ для γ -доверительного интервала для дисперсии DX;
- 2. вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта;
- $3.\,$ для заданного пользователем уровня доверия γ и N объема выборки из индивидуального варианта:
 - а) на координатной плоскости Oyn построить прямую $y=\hat{\mu}(\vec{x}_N)$, также графики функций $y=\hat{\mu}(\vec{x}_n), \ y=\underline{\mu}(\vec{x}_n)$ и $y=\overline{\mu}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N:
 - б) на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x}_N)$, также графики функций $z=S^2(\vec{x}_n),\ z=\underline{\sigma}^2(\vec{x}_n)$ и $z=\overline{\sigma}^2(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.

Содержание отчета

- 1. определение γ -доверительного интервала для значения параметра распределения случайной величины;
- формулы для вычисления границ γ-доверительного интервала для математического ожидания и дисперсии нормальной случайной величины;
- 3. текст программы;
- 4. результаты расчетов и графики для выборки из индивидуального варианта (при построении графиков принять $\gamma=0.9$).

ЛАБОРАТОРНАЯ РАБОТА № 3

Метод наименьших квадратов

Цель работы: аппрокисмация неизвестной зависимости параболой.

Содержание работы

- 1. Для выборки (y_i, t_i) , $i = \overline{1; n}$, реализовать в виде программы на ЭВМ:
 - а) вычисление МНК-оценки вектора $\theta = (\theta_0, \theta_1, \theta_2)$ параметров модели $y = \theta_0 + \theta_1 t + \theta_2 t^2$;
 - б) вычисление среднеквадратичного отклонения $\Delta = \sqrt{\sum_{i=1}^{n} (y_i y(t_i))^2}$ полученной модели от результатов наблюдений:
 - в) построение на одном графике системы точек $(y_i,t_i),\,i=\overline{1;n},$ и графика функции y=y(t), $t\in[t_{(1)};\,t_{(n)}]$ (для полученой оценки вектора θ).
- 2. провести необходимые вычисления и построить соответствующие графики для выборки из индивидуального варианта.

Содержание отчета

- 1. постановка задачи аппрокисмации неизвестной зависимости по результатам наблюдений;
- 2. понятие МНК-оценки параметров линейной модели;
- 3. формулы для вычисления МНК-оценки параметров модели;
- 4. текст программы;
- 5. результаты расчетов и графики для выборки¹ из индивидуального варианта.