Lecture 2

Elshimaa Ahmed

October 22, 2021

1 Predicates

predicates are statements involving variables such that "x > 3". These statements are neither tru or false where the value of the variable is not specified. The statement "x is greater than 3" involving two parts. the variable part x and the predicate(property) it self "great than 3" .its denoted by P(x) once a value is assigned to x the P(x) become a preposition

For example:

let P(x) denote the statement "x > 3" what are truth values of P(4) and P(2)

Solution: we obtain P(4) by setting x=4 in the statement, Hence P(4) is the statement "3 > 4" which is True. P(2) is the statement "2 > 3" which is False

2 Quantifiers

Definition 2.1 (Universal Quantifier). the universal Quantifier of P(x) is the statement P(X) is True for all values of x in the domain". It is denoted by $\forall x P(x)$

Definition 2.2 (Esistential Quantifier). the existential quantifier of P(x) is the preposition "there exist an element x such that P(x) is True". It is denoted by $\exists x P(x)$

statement	when true	when false
$\forall x P(x)$	P(x) is $True$ for all values of x	there is an x for which $P(x)$ is $False$
$\exists x P(x)$	there is an x such that $P(x)$ is $True$	P(x) is $False$ for all x

English phrases with quatifiers:

- "no one is P(x)" $\longleftrightarrow \forall x \neg P(x)$ or $\neg(\exists x P(x))$
- "not every one is P(x)" $\longleftrightarrow \neg(\forall x P(x))$ or $\exists x \neg P(x)$
- "exactly one is P(x)" $\longleftrightarrow \exists x (P(x) \land \forall y (P(y) \to x = y))$
- "all Q(x) is P(x)" $\longleftrightarrow \forall x(Q(x) \to P(x))$
- "all Q(x) isnot P(x)" $\longleftrightarrow \forall x(Q(x) \to \neg P(x))$
- "some Q(x) are P(x)" $\longleftrightarrow \exists x(Q(x) \land P(x))$
- "some Q(x) are not P(x)" $\longleftrightarrow \exists x (Q(x) \land \neg P(x))$

Nested Quantifiers

statement	when true?	when false?
$\forall \forall y P(x,y)$	P(x,y) is true for all possible pairs	there is a pair (x,y) such that $P(x,y)$ is false
$\forall y \forall x P(x,y)$		
$\forall x \exists y P(x,y)$	for every x there is y (not necessary same for	there is an x such that $P(x,y)$ is false for every
	different values of x) such that $P(x,y)$ is true	у
$\exists y \forall x P(x,y)$	there is exist a specific (same) y that P(x,y) is	for every y there is at leasy one x that $P(x,y)$
	true for all x	fails
$\exists x \exists y P(x,y)$	therer is a pair (x,y) for which P(x,y) is true	for all pairs (x,y) P(x,y) is False
$\exists y \exists x P(x,y)$		