线性规划模型

王树佳 | 深圳大学经济学院 sjwang123@163.com 经济学中有两个基本原理,对这两个原理的掌握和理解程度能反映一个经济学者的水平。 其一,是约束条件下的极大化; 其二,是在一般情况下需求曲线斜率为负。

张五常 著名经济学家 香港大学经济金融学院院长

本章目的

- 1. 建立一般线性规划模型
- 2. 建立对应电子表格模型
- 3. 运用Excel求解(规划求解)

Contents

- 1. 问题与模型
- 2. 模型求解
- 3. 敏感性分析
- 4. 案例

问题

荔园公司提供三种口味的冰淇淋: 巧克力、香草和香蕉。由于天气酷热,需求猛增,公司已面临牛奶、糖、奶油原料短缺问题。在这种情况下,公司应如何科学安排每种口味的冰淇淋产量,在约束下达到利润最大化?

已知销售每加仑巧克力、香草和香蕉口味的冰淇淋可获得利润\$1、 \$0.90和\$0.95,目前公司库存还有 2000 加仑的牛奶,1500镑的糖和600加仑的奶油。

每生产1加仑巧克力冰淇淋需要0.45加仑牛奶,0.5磅糖和0.1加仑奶油;每生产1加仑香草冰淇淋需要0.5加仑牛奶,0.4磅糖和0.15加仑奶油;每生产1加仑香蕉冰淇淋需要0.4加仑牛奶,0.4磅糖和0.2加仑奶油。

因为巧克力冰淇淋是最好销的,公司希望保证最少500加仑巧克力冰淇淋,而香草冰淇淋则要求不超过2000加仑。

线性规划模型(Linear Programming)

决策变量:

X1=巧克力口味的冰淇淋数量

X2=香草口味的冰淇淋数量

X3=香蕉口味的冰淇淋数量

目标:

利润 Z=X1+0.90X2+0.95X3最大

约束条件:

0.45X1+0.5X2+0.4X3≤2000 牛奶

0.5 X1+0.4X2+0.4X3≤1500 糖

0.1X1+0.15X2+0.2X3≤600 奶油

X1≥500 巧克力冰淇淋

X2≤2000 香草冰淇淋

X1≥0, X2≥0, X2≥0 非负

Contents

- 1. 问题与模型
- 2. 模型求解
- 3. 敏感性分析
- 4. 案例

Excel求解(电子表格模型)

电子表格模型:

• 指定决策变量,目标函数和约束条件

模型求解:

• 规划求解(英文版: Solver), 首次使用需安装(加载宏)

结果输出:

• 运算结果报告;敏感性报告;极限值报告

设计:电子表格模型

	A	В	c	D	E	F	(
1	决策变量						
2	口味	巧克力	香草	香蕉			
3	数量	0	0	0			
4	利润	1	0.9	0.95			
5							
6	目标函数	Z =	=SUMPRODUCT(B3:D3, B4:D4)				
7							
8	约束						
9		巧克力	香草	香蕉	实际		约束值
10	牛奶	0.45	0.5	0.4	=SUMPRODUCT(B10:D10, \$B\$3:\$D\$3)	<=	2000
11	糖	0.5	0.4	0.4	=SUMPRODUCT(B11:D11, \$B\$3:\$D\$3)	<=	1500
12	奶油	0.1	0.15	0.2	=SUMPRODUCT(B12:D12, \$B\$3:\$D\$3)	<=	600
13	巧克力冰淇淋最小数量				=B3	>=	500
14	香草冰淇淋最大数量				=C3	<=	2000

Excel求解(电子表格模型)

操作:

数据=>规划求解

分别指定:

- 1. 目标单元格:目标函数
- 2. 可变单元格:决策变量
- 3. 约束条件:添加约束关系

求解结果

公司的最优生产计划是:

- 巧克力口味500加仑
- 香草口味1500加仑
- 香蕉口味1625加仑

最大利润:\$3393.75。

	A	В	C	D	E	F	G
1	决策变量						
2	口味	巧克力	香草	香蕉			
3	数量	500	1500	1625			
4	利润	1	0.9	0.95			
5							
6	目标函数	Ζ =	3393.75				
7							
8	约束						
9		巧克力	香草	香蕉	实际		约束值
10	牛奶	0.45	0.5	0.4	1625	<=	2000
11	糖	0.5	0.4	0.4	1500	<=	1500
12	奶油	0.1	0.15	0.2	600	<=	600
13	巧克力冰淇	淋最小数:	里		500	>=	500
14	香草冰淇淋	最大数量			1500	<=	2000

Contents

- 1. 问题与模型
- 2. 模型求解
- 3. 敏感性分析
- 4. 案例

线性规划模型的敏感性分析

由于外部环境的不确定性,模型的输入项会随时变化。

- 资源约束条件发生改变:牛奶库存量由2000增加到2500加仑。
 - ≥ 约束值改变
- 市场条件改变:市场受供求影响,导致单位产品的利润发生变化,如香草冰淇淋的单位利润从\$0.9增加到1.5元。
 - ₩ 目标函数系数改变

企业的最优生产组合是否要调整?

最大利润是否会发生改变?

一、资源约束的敏感性分析

紧约束: Binding Constraint

对于一个约束条件,若增加 (或减少)1个单位的资源, 将会导致目标值增加(或降低), 该约束的资源限制在最大化目 标下达到了边界值,称该约束 为紧约束(Binding),否则,称 为非紧约束。

	A	В	С	D	E	F	G
1	决策变量						
2	口味	巧克力	香草	香蕉			
3	数量	500	1500	1625			
4	利润	1	0.9	0.95			
5							
6	目标函数	Z =	3393.75				
7							
8	约束						
9		巧克力	香草	香蕉	实际值		约束值
10	牛奶	0.45	0.5	0.4	1625	<=	2000
11	糖	0.5	0.4	0.4	1500	<=	1500
12	奶油	0.1	0.15	0.2	600	<=	600
13	巧克力冰淇	淋最小数:	量		500	>=	500
14	香草冰淇淋	最大数量			1500	<=	2000

松弛量(Slack)和剩余量(Surplus)

松弛量(Slack):

在最优解下,牛奶实际消耗量为 1625,还差375加仑没有达到约 束值。则称牛奶约束的 松弛量(Slack)为375加仑。

剩余量(Surplus):

如果巧克力冰淇淋实际数量为550,超过最小约束值500,超 出部分(即50)称为剩余量(Surplus)。

4	A	В	С	D	E	F	G
1	决策变量						
2	口味	巧克力	香草	香蕉			
3	数量	500	1500	1625			
4	利润	1	0.9	0.95			
5							
6	目标函数	Z =	3393.75				
7							
8	约束						
9		巧克力	香草	香蕉	实际值		约束值
0.	牛奶	0.45	0.5	0.4	1625	<=	2000
.1	糖	0.5	0.4	0.4	1500	<=	1500
.2	奶油	0.1	0.15	0.2	600	<=	600
.3	巧克力冰淇	淋最小数:	單		500	>=	500
4	香草冰淇淋	最大数量			1500	<=	2000

影子价格与对偶价格

奶油是紧约束,约束值为600加仑。 如果在市场上可以用\$2/加仑的价 格搞到额外的奶油,是否要进货?

需考虑:奶油约束值每增加1加仑,目标函数值(最大利润)会增加多少?

- 4	A	В	С	D	E	F	G
1	决策变量						
2	口味	巧克力	香草	香蕉			
3	数量	500	1500	1625			
4	利润	1	0.9	0.95			
5							
6	目标函数	Z =	3393.75				
7							
8	约束						
9		巧克力	香草	香蕉	实际值		约束值
10	牛奶	0.45	0.5	0.4	1625	<=	2000
11	糖	0.5	0.4	0.4	1500	<=	1500
12	奶油	0.1	0.15	0.2	600	<=	600
13	巧克力冰淇		量		500	>=	500
14	香草冰淇淋	最大数量			1500	<=	2000

影子价格与对偶价格

影子价格(Shadow Price):

资源约束(约束右边数值)增加1个单位所引起的**目标函** 数值的改变量。

对偶价格(Dual Price):

资源约束(约束右边数值)增加1个单位所引起的**目标函** 数值的<mark>改进量</mark>。

对最大化问题: 两者相同

对最小化问题: 影子价格等于对偶价格的负数。

影子价格与对偶价格

_4		С	D	E	F	G	Н
1		t Excel 15.0 敏感性报告					
2		[lp.xls]ice-cream (3)					
3	报告的建立	Z: 2016/3/8 13:56:46					
4							
5	可变单元格	•					
6			终	递减	目标式	允许的	允许的
7	单元格	名称	值	成本	系数	増量	减量
8	\$B\$3	数量 巧克力	500	0	1	0.0375	1E+30
9	\$C\$3	数量 香草	1500	0	0.9	0.05	0.0125
10	\$D\$3	数量 香蕉	1625	0	0.95	0.021428571	0.05
11							
12	约束						
13			终	阴影	约束	允许的	
14	单元格	名称	值	/	限制值	增量	减量
15	\$E\$11	糖 实际值	1500	1.875	1500	50	150
16	\$E\$10	牛奶 实际值	1625	0	2000	1E+30	375
17	\$E\$12	奶油 实际值	600	1	600	75	25
18	\$E\$13	巧克力冰淇淋最小数量 实际值	500	-0.0375	500	500	166.666667
19	\$E\$14	香草冰淇淋最大数量 实际值	1500	0/	2000	1E+30	500

资源约束的变化范围

为什么要研究资源约束的变化范围?

作为经理,你奶油的影子价格为\$1,如果购买奶油的成本是\$0.5,意味着每购买1加仑可以多赚0.5美元。那么你会尽可能购买更多的奶油(称为放松约束)。

- 多购买1加仑,利润增加0.5美元;
- 多购买2加仑,利润增加2×0.5美元;
- 多购买100000加仑?

所谓**资源约束的允许变化范围**,是指:

资源约束在什么变化范围内变化时,影子价格是不变的?

资源约束的变化范围

资源约束允许的变化范围:

糖:(1500-150, 1500+50)

牛奶: (2000-375, +∞)

问题:

- 在允许范围内,最优解是否改变?
- 在允许范围内,最优目标函数值是否改变?
- 什么不变?

敏感性分析:操作

二、目标函数系数的变化范围

目标函数系数的变化范围

为什么要研究目标函数系数的变化范围?

公司的最优生产计划是:巧克力口味500加仑,香草口味1500加仑,香蕉口味1625加仑。最大利润:\$3393.75。

假如市场环境改变了,市面上巧克力口味冰淇淋大减价,单位利润由原来的\$1下跌到\$0.5,可能还要继续下跌。作为企业老板,你的生产计划是否需要调整?

目标函数系数的变化范围

为什么要研究目标函数系数的变化范围?

公司的最优生产计划是:巧克力口味500加仑,香草口味1500加仑,香蕉口味1625加仑。最大利润:\$3393.75。

换个角度问:

巧克力口味冰淇淋的单位利润(价格)在什么范围内变化时,企业的生产计划不需要调整?(超出这个范围才需要调整)

目标函数系数的允许变化范围是指:

目标函数系数在什么范围内变化时,线性规划的最优解保持不变?

目标函数系数的变化范围

目标函数系数的变化范围

巧克力味: (-∞, 1.0375)

香草味:

(0.9-0.0125, 0.9+0.05)

香蕉味:

(0.95-0.05, 0.95+0.214)

解释:如果巧克力味冰淇淋的单位利润不超过\$1.0375(其它口味冰淇淋价格不变),则企业最优生产组合不变。

多个目标函数系数同时变化

百分之百法则:

若多个目标函数系数同时变化,计算每一个系数的变化量占单独考虑时允许变动量(增加和减少的)的百分比,然后相加。

如果所得之和不超过100%,则最优解不变;否则,不能确定。

前提:其它条件假设不变

多个资源约束值同时变化

百分之百法则:

若多个约束右边数值同时变化,计算每一个常数值的变化量占单独 考虑时允许变动量(增加和减少的)的百分比,然后相加。

如果所得之和不超过100%,则约束资源的影子价格不变;否则,不能确定。

前提:其它条件假设不变

百分之百法则注意事项

- 1.若约束常数值与目标函数系数同时变化,则不能应用百分之百法则
- 2.百分之百法则是判断最优解或影子价格是否变化的充分 条件,不是必要条件。
 - 即:不超过100%,最优解或影子价格不变;超过100%,不能确定。
- 3.当允许增加(减少)量为无穷大时,允许增加(减少) 百分比为0.

课堂讨论

公司老板认为,因为巧克力口味冰淇淋的单位利润最大,其最低产量应由500加仑提高到800加仑。

- 1. 你认为老板的意见是否正确?为什么?
- 2. 假如按老板的意见实施生产,最大利润会改变为多少?

Contents

- 1. 问题与模型
- 2. 模型求解
- 3. 敏感性分析
- 4. 案例

案例1:广告策略

某俱乐部推广一项从中西部城市到巴哈马赌场的博彩。俱乐部每周用于地方广告的预算为8000美元。广告预算将分配给四种促销媒体:电视短片、报纸广告和两种电台广告。该俱乐部的目标是通过各种媒体覆盖到更多的高购买潜力的受众。

媒体	每条 广告受众	每条广告的 成本(美元)	每周最大 广告量
电视短片(1分钟)	5000	800	12
日报(整页广告)	8500	925	5
电台广告片段(30秒,黄金时间)	2400	290	25
电台广告片段(1分钟,下午)	2800	380	20

该俱乐部的合同安排要求每周至少播放5条电台广告片段。为了扩大促销竞争的影响范围,管理层还决定每周最多在电台广告方面投资1800美元。

决策变量:

- X1=每周1分钟短片的投放数量
- X2=每周整页日报广告的投放数量
- X3=每周30秒黄金时间电台广告的投放数量
- X4=每周下午时段1分钟电台广告的投放数量

目标:最大化广告覆盖范围=5000 X1 +8500 X2 +2400 X3+2800 X4

约束条件:

- X1 ≤12 (每周电视短片数量上限)
- X2 ≤5(每周报纸广告数量上限)
- X3 ≤25 (每周30秒电台广告数量上限)
- X4 ≤20 (每周1分钟电台广告数量上限)
- X3+X4 ≥5(合同规定最低电台广告数量)
- 290X3+380X4 ≤1800 (电台广告预算上限)
- X1 , X2 , X3 , X4 ≥0

案例2:人力资源分配

百佳华商场对售货员的需求经过统计分析如下表。为了保证售货员充分休息,售货员每周工作5天,休息两天,并要求休息的两天是连续的。问应该如何安排售货员的工作时间,既满足工作需要,又使人力资本最节约?

时间	所需售货员人数
星期日	28
星期一	15
星期二	24
星期三	25
星期四	19
星期五	31
星期六	28

决策变量:设 x_i ($i = 1 \sim 7$)表示星期一至日开始休息的人数

目标函数: Minimize $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

约束条件:

s.t.
$$X_1 + X_2 + X_3 + X_4 + X_5 \ge 28$$

 $X_2 + X_3 + X_4 + X_5 + X_6 \ge 15$
 $X_3 + X_4 + X_5 + X_6 + X_7 \ge 24$
 $X_4 + X_5 + X_6 + X_7 + X_1 \ge 25$
 $X_5 + X_6 + X_7 + X_1 + X_2 \ge 19$
 $X_6 + X_7 + X_1 + X_2 + X_3 \ge 31$
 $X_7 + X_1 + X_2 + X_3 + X_4 \ge 28$
 $X_{1,1}X_{2,1}X_{3,1}X_{4,1}X_{5,1}X_{6,1}X_7$ 为非负整数

模型设计

	A	В	С	D	E	F	G	Н	I	J	K
1	目标函数:									_	
2		Min	x1 + x2	+ x3 + x4	+ x5 + x	6 + x7					
3	约束条件:										
4	s.t.	x1 + x2	2 + x3 + x	4 + x5 ≥	28						
5		x2 + x3	3 + x4 + x	:5 + x6 ≥	15						
6			+ x5 + x								
7			5 + x6 + x								
8			5 + x7 + x								
9			' + x1 + x								
10			+ x2 + x								
11		x1, x	2, x3, x4, x	5, x6, x7	≥ 0						
12											
	决策变量	x1	x2	ж3	x4	х5	ж6	х7			
14		1	1	1	1	1	1	1			
15		_									
	目标函数:	7		── 输	入什么	公式?					
17	(5 + 5 /th						, \		→ n−		//b
	约束条件:								实际		约束
19	星期日	1	1	1	1	1	0	0	>> 5	>=	28
20	星期一	0	1	1	1	1	1	0	5	>=	15
21	星期二	0	0	1	1	1	1	1	5	>=	24
22	星期三	1	0	0	1	1	1	1	5	>=	25
23	星期四	1	1	0	0	1	1	1	5	>=	19
24	星期五	1	1	1	0	0	1	1	5	>=	31
25	星期六	1	1	1	1	0	0	1	5	>=	28

模型结果

	A	В	С	D	E	F	G	Н	I	J	K
1	目标函数:										
2		Min	x1 + x2	+ x3 + x4	+ x5 + x	6 + x7					
3	约束条件:										
4	s.t.			(4 + x5 ≥							
5				t5 + x6 ≥							
6				(6 + x7 ≥							
7				(7 + x1 ≥							
8				(1 + x2 ≥							
9				(2 + x3 ≥							
10				(3 + x4 ≥							
11		x1, x	(2, x3, x4, x	t5, x6, x7 ≥	≥ 0						
12) to 4/2 ->- 19		_	_	_	_	_	_			
	决策变量	х1	x2	ж3	x4	x5	ж6	х7			
14		12	0	11	5	0	8	0			
15	□ += ·△·*·	0.0									
	目标函数:	36									
17	约古冬件:								क्राष्ट		约束
18	约束条件:	1	1	1	1	1	0	^	实际	>=	28
19	星期日	1	1	1		1	-	0	28	>=	
20	星期一	0	1	1	1	1	1	0	24		15
21	星期二	0	0	1	1	1	1	1	24	>=	24
22	星期三	1	0	0	1	1	1	1	25	>=	25
23	星期四	1	1	0	0	1	1	1	20	>=	19
24	星期五	1	1	1	0	0	1	1	31	>=	31
25	星期六	1	1	1	1	0	0	1	28	>=	28

模型结果

应该安排休息人数:

星期一:12人

星期三:11人

星期四:5人

星期六:8人

该商场总共最少需要聘用36名售货员。

Recap

- 1. 问题与模型
- 2. 模型求解
- 3. 敏感性分析
- 4. 案例

课堂讨论

- 1. 怎样建立线性规划模型?
- 2. 影子价格和对偶价格的含义,如何计算?
- 3. 对线性规划模型进行敏感性分析,可从哪些方面着手?

实践问题:桌子椅子生产问题

一家具厂只生产桌子和椅子。已知生产一张桌子需要消耗4公斤木料,2小时的机器时间和1小时的油漆抛光时间;而生产一张椅子则需要消耗1公斤木料,1小时的机器时间和1小时的油漆抛光时间。

该家具厂每周最多只能提供90公斤木料,50小时的机器时间和40小时的抛光时间。已知市场上每售出一张桌子有40元的利润,售出一张椅子有30元的利润。

回答如下问题:

- (1)写出线性规划模型;
- (2) 求出模型的最优解;
- (3)进行敏感性分析。