

汇编语言与接口技术

北京科技大学

第7章 串并行接口技术

微机系统中多采用接口芯片作为接口电路;实现微机与外设间的数据传送本节主要介绍并行通信接口8255A

并行与串行通信

串行通信:把一个字 符的n个数位,用1条 F的n个数位,用

- 2卅年11/六70 卍

绉特别提示:

"并行"指的是接口与I/O设备一侧的数据线是并行的

"串行"指的是接口与I/O设备一侧的数据线是串行的

接口与总线一侧的连接总是并行的

接口芯片应支持无条件、查询、中断三种传送方式

CPU

接口 电路 芯片

I/O 外设

8255A的基本性能

- 可编程通用并行输入/输出接口电路
- 通用性强,使用灵活,通过它CPU可直接与外设相连,可实现数据的无条件、查询、中断等I/O传送方式
 - 具有40个引脚
 - 具有三个相互独立的输入/输出数据端口
 - A端口、B端口、C端口
 - 三个端口可单独使用,也可组合使用;可传送数据信号,也可传送状态信号和控制信号
 - 三个端口各有多种工作方式,可编程选择

读/写控制逻辑电路中的引脚信号

8255A的片内地址信号 A_1 、 A_0 和 \overline{CS} 以及控制信号 \overline{RD} 、 \overline{WR} 、RESET的逻辑组合,形成相应的操作命令,发送到 A_1 、 B_1 、 B_2 、 B_3 、 B_4 、 B_4 、 B_4 、 B_5 、 B_4 、 B_4 、 B_5 、 B_5 、 B_6 、 B_6

所有

写选通信号,有效时,CPU 可以把数据或控制字写到 8255A 端口片内地址信号;用于寻址

8255A的三个数据端口和一个控

825 制字寄存器(也称为控制口):

A口地址为00(也称8255的基

地址); B口地址为01; C口地址

为10;控制口地址为11

\overline{CS}	\overline{RD}	WR	\mathbf{A}_{0}	$\mathbf{A_1}$	操作	数据传送方向
0	0	1	0	0	读A口	A口→数据总线
0	0	1	0	1	读B口	B口→数据总线
0	0	1	1	0	读C口	C口→数据总线
0	0	1	1	1	无操作	D₀~D ₇ 为三态
0	1	0	0	0	写A口	数据总线→A口
0	1	0	0	1	写B口	数据总线→B口
0	1	0	1	0	写C口	数据总线→C口
0	1	0	1	1	写控制口	数据总线→控制口
0	1	1	×	X	无操作	D₀~D¬为三态
1	×	×	×	×	禁止	D₀~D ₇ 为三态

8255A的外部引脚

8255A是40根引脚,双列直插式引脚可分成:

(1) 与外设连接的引脚

PA₀~PA₇: A口数据线

PB₀~PB₇: B口数据线

PC₀~PC₇: C口数据线

(2) 与CPU连接的引脚

 $D_7 \sim D_0 \cdot A_0 \cdot A_1 \cdot \overline{CS} \cdot \overline{RD} \cdot$

WR, RESET

如8255A数据线与8086相连,则要求必须与8086CPU低8位数据线相 连; CPU则需使用偶地址访问

此时,则需要将8255A的 A_0 和 A_1 分别与CPU的 A_1 和 A_2 相连,即CPU需要使用连续的四个偶数地址寻址8255四个端口

IORC IOWC	A ₁₅ ₹ JA ₃	A_2	A_1	A_0	CPU
A1 A2 RESET	8255A片选	A_1	A_0		8255A 端口
	•••	0	0	0	А□
UI	•••	0	0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•••	0	1	0	В□
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•••	0	1	1	
$A6 \xrightarrow{6} G1$ Y4 k		1	0	0	СП
$A0 \stackrel{5}{\longrightarrow} G2B \qquad Y6$	•••	1	0	1	
Y7 k		1	1	0	控制寄存器
74ALS138		1	1	1	

8255A的编程与控制字

8255A可通过控制字编程;控制字分为两类:

均写入控制口($A_0=1$ 、 $A_1=1$)

- 一类是各数据端口的工作方式选择控制字 特征位D₇=1;放在程序的开始部分
- 一类是C口的位控(置位/复位)控制字

特征位 $D_7=0$;放在初始化程序以后的任何地方

工作方式及其端口约定

- 8255A有三种基本的工作方式,即:
 - 方式0 基本的输入/输出方式----A口、B口和C口
 - 方式1 选通的输入/输出方式----A口和B口
 - 方式2 双向传输方式-----只能是A口
- 在方式1或2时,C口通常配合A口或B口工作,为A口、B口的数据传输提供对外设的控制信号和外设的状态信号;而剩余的位仍可以在方式0下工作

工作方式选择控制字

▲方式选择控制字用于设置各数据端口的工作方式

D ₇ =1	\mathbf{D}_{6}	D_5	\mathbf{D}_4	\mathbf{D}_3	$\mathbf{D_2}$	\mathbf{D}_1	\mathbf{D}_0
方式标 志位	A口方 00=方: 01=方: 1×=7	式1	A口I/O 0=輸出 1=輸入	C口高4 位I/O 0=輸出 1=輸入	B口方式 选择 0=方式0 1=方式1	B口I/O 0=输出 1=输入	C口低4 位I/O 0=輸出 1=輸入

工作方式选择控制字的使用例

▲例,一个8088系统通过一个8255A芯片与外设交换信息;经片选后8255的基地址为 234H,即四个端口地址分别为:

AП——234H ВП——235H

C口——236H 控制字寄存器——237H

▲如果设定8255A的各端口处于如下工作方式:

A口 方式0,输入

B口 方式1, 输出

PC₇-PC₄ 输出,PC₃-PC₀ 输入

工作方式控制字应为: 10010001B=95H

\mathbf{D}_7	\mathbf{D}_6	\mathbf{D}_{5}	\mathbf{D}_4	\mathbf{D}_3	$\mathbf{D_2}$	$\mathbf{D_1}$	\mathbf{D}_0
1	0	0	1	0	1	0	1

8255A初始化问题

▲8255A的初始化过程就是使用输出指令,将初始 化控制字写入控制字寄存器的过程

具体到本例,采用如下几条典型指令实现:

MOV AL, 95H

MOV DX, 237H

OUT DX, AL

方式控制字确定后,就可以通过编程用指令把这个控制字写入8255A的控制字寄存器中,实现8255A的初始化,然后才可进行数据传送的具体操作

C口位置位/复位控制字

- ▲ C口作为数据口时,可以用输入、输出指令实现数据的传送
- ▲ 但更多的情况下,C口通常用作A口和B口输入输出的控制信息位或状态信息位
- ▲ 此时,需要对"位"进行置位1或复位0操作,以表示不同的状态信息或控制信号
- ▲任何一位的置位或复位,并不影响其它位的状态

C口位控控制字的格式

 \triangle 位控控制字同方式选择控制字一样,也将被送往控制字寄存器,区别在于标志位 D_7 的不同

C口位控控制字的例

例;如要使C口的PC5置位,那么控制字应为多少?

C口位控控制字的例

▲ 假设8255A的控制端口地址为0F3H,要对PC₅进行置位,需要进行如下操作:

MOV AL,0BH

0000 1011B=0BH

OUT 0F3H,AL

▲ 同样,若要对PC₂进行复位,需要进行如下操作:

MOV AL,04H

 $0000\ 0100B=04H$

OUT 0F3H,AL

▲ 复位PC₂时,并不影响前面已经置位的PC₅和其他各位

8255A的工作方式

- △ 8255A共有三种工作方式;每种工作方式都有其自身的功能和工作特点
- △ 可通过编程,确定8255A的工作方式

工作方式0

- ▲ 方式0-----基本输入输出方式
- ▲ 特点:参加数据传输的有A和B两个8位端口和C的两个4位端口;均可独立地由方式选择控制字规定为输入口或输出口
- ▲ 均不需要固定的联络信号,传输的数据只需要通过 选定的端口,直接地写入或读取即可

A口的地址称为芯片的基地址

方式0的典型举例

- A口接8个发光二极管,PC₇连接一个开关
 - 开关接通高电平时,8管全亮(点亮时为1)
 - 开关接通低电平时, 8管循环点亮
 - 假设端口地址为 60H—63H
- 问题分析
 - 二极管和开关属简单外设,永远就绪,无需关心其状态如何
 - A口可选择工作方式0,设置为输出口
 - C口的上半部为输入口(用于输入开关的高或低电平数据)
 - B口和C口的下半部不用 (方式字位均可取0)
 - 方式字为: 1000 1000=88H

方式0的典型应用举例程序代码

MAIN: MOV AL, 88H ; 8255初始化

OUT 63H, AL ; 方式字写入控制字寄存器

NEXT: IN AL, 62H ; 读C口

TEST AL, 80H ; 测PC₇

JNZ LIGHT ; PC,=1, 转全亮

MOV BL,01 ; $PC_7=0$,设置循环点亮的起始位

CONT: MOV AL, BL

OUT 60H, AL ; 写A口, 点亮第一个管

CALL DIS ; 延时子程序

SHL BL, 1 ; 左移一位,准备点亮下一个管

JNZ CONT ; BL不为0时,转去点亮下一个管

JMP NEXT ; BL=0,循环亮结束

LIGHT: MOV AL, OFFH; 设置全亮数据位

OUT 60H,AL ;写A口,点亮全部管

JMP NEXT

方式0典型示例

方式0的应用特点

- 方式0的典型特点是:不提供也不需要提供专门的状态信息 和控制信息的端口数据线,各端口均可独立使用
- 方式0的典型应用是:无条件传送方式下的数据传送;直接 执行IN指令或OUT指令
- 也适用于查询传送方式下的数据传送
 - 首先查询外设是否"就绪"
 - 可选择C口的某些位,作为外设的状态信息位和对外设的 选通控制位(但不确定专用位,可任意选择)
 - 当检测"就绪"后,再执行IN指令或OUT指令

方式0用于查询方式传送的图示

工作方式字为:

首先从C口读取<mark>状</mark> ◆<mark>态信息字,测试</mark> PC₇或PC₆

"<mark>就绪</mark>"后,用 PC₁或PC₀选通外 设,发送<mark>控制字</mark>

从A口输出;从B口输入

方式0用于查询方式传送的例

按	n7 87 - - -	LOOP:	MOV DX,C-PORT	;PC端口地址
J.X.	A-PO]		IN AL, DX	PC1 =0 ? (ACK / BUSY =0 ?)
(1)	B-PO l		AND AL,02H	
表			JNZ LOOP	
12	C-PO]		MOV DX,A-PORT	;PA口地址
(2)	CTRL		MOV AL,[SI]	;取数据
			OUT DX,AL	;数据送PA口
	MOV		MOV DX, CTRL-PORT	,
(3)	MOV		MOV AL,00001100B	;PC6 置低(STB =0)
	OUT		OUT DX,AL	-1
BU		NOP	; 延时约1微	
	MOV	NOP		SY =1,打印机读数据
(4)	OUT	NOP		POEST =0信号
示			MOV AL,0001101B	;PC6 置高(STB =1)
7.5	MOV		OUT DX,AL	1:b 1:1 4= 4
	MOV		INC SI	;地址加1
			DEC CX	;字符个数减1

JNZ LOOP

;未传送完,继续

综合练习题

8255A与打印机的连接如图示

假设当A15-A2的取值为0010 0100 1100 01时,选中该8255A

综合练习题

- MOV DX,---
- LOOP IN AL,DX
- TEST AL,01
- JNZ LOOP
- MOV AL, 0FH
- MOV DX,---
- OUT DX,AL
- MOV DX,---
- MOV AL,BUF
- OUT DX,AL

工作方式1

- ▲ 方式1也称为选通输入/输出方式
 - ▲ A口和B口可以工作在方式1
 - ▲ A口和B口都可以分别作为数据端口传送数据
 - ▲ A口和B口都可以作为输入口或输出口
 - ▲方式1工作的端口可以是两个,也可以只设一
- 个; 其余的输入输出端口, 还可以工作在其它方式下

工作方式1

- 方式1的典型特点是:
 - 固定了接口与外设的联络信号线; A、B两端口分别被固定了C口的 3位联络线
 - AB两端口接口组态是固定的,用户不能更改
- 方式1的典型应用是:中断方式的数据传送,也适用于查询方式下的数据传送

INTR_A是8255A送往CPU的中断请求信号,高电平有效。当端口数据就绪后,如果中断允许,8255A将把INTR_A送出请求CPU的中断服务;A口的中断请求从PC₃送出

INTE A

STB是外设数据输入选通信号,低电平有效;由外设送给8255A;STB与PC4相连;有效时,外设"通知"端口并开始送入数据到数据缓冲器

INTE_A是对中断请求屏蔽或允许的内部控制信号;只能通过对PC₄的置位/复位实现控制

★PC4置位为1,A口处于中断允许状态,又当IBF=1时,INTR便有效,向CPU提交申请中断 ★PC4复位为0,则A口被置于中断屏蔽状态

初始时, STB=1(未开始传), IBF=0(已空), RD=1(未选通 读), INTR=0(无请求)

将IBF

2,可进 及时序

工作在方式1时输入B端口的信号

注意与A口的异同

基本信号交換和工作原理相似 C口各联络位不同

B口的STB信号与PC₂相连 B口的IBF信号由PC₁输出 B口的中断请求由PC₀送出 对PC₂的置位/复位指令,实 现对中断屏蔽或允许的控制

方式1下的控制字设置例

要求:将A口设置为方式1输入; PC_7 和 PC_6 作为输出;

B口设置为方式1输出;A口不允许中断,B口允许

MOV DX, 0263H ; 控制字寄存器端口号为0263H

MOV AL, 0B4H ; 方式控制字

OUT DX, AL

MOV AL, 08H ; 设置A口不允许中断

OUT DX, AL

MOV AL, 05H ; 设置B口允许中断

OUT DX, AL

方式1下数据的中断传送方式

- 方式1的最典型应用是用于中断传送方式
 - 通过A口的 PC_6 和B口的 PC_2 的置位/复位控制字 使相应的 INTE=1,即允许内部中断
 - 通常由PC₃和PC₀送出的INTR信号接到8259A的 某个IRi引脚

- 实验操作过程 (将STB引脚接一个开关)
 - 初始时, STB =1; IBF=0
 - 使STB=0,开关闭合的状态数据将进入端口(使IBF=1)
- 再使STB=1,恢复初始状态
 - IBF=1后, 8255A将向8259A发送中断请求INTR
 - 8259A判优后,将送CPU; CPU响应后读取并输出数据;之后IBF=0,恢复初始状态
 - CPU无操作时,处于暂停状态(HLT)

A1: STI
HLT
JMP A1

PA₇-PA₀

(如灯)

PB₇-PB₈

输入设备
(如开关)

高

低

3工

3,

TR

き端

1H

综合练习题

综合练习题

- 通过8255A的B口接收外设数据;数据就绪即通过8259A向8086申请中断;CPU响应后,执行中断服务程序,由中断服务程序读取数据;进行左移一位处理后,通过A口输出到输出设备
- 假设A口工作在方式0,输出;B口工作在方式1,输入; 允许中断;送出的中断请求信号连接到8259A的IR6引脚
- 假设8259A为单片使用,上升沿触发,非缓冲连接,非自动中断结束,采用普通嵌套;同时假设中断服务程序的中断向量地址指针为00198H

综合练习题

EQU

- B-PORT EQU
- C-PORT EQU
- CTRL-PORT EOU
- PORT_0 E(A1:
- PORT_1 E(
- INTR_IVADD EQU

中断服务序段

IRQ6: MOV DX, B-PORT

IN AL, DX

STI L, 1

HLT DX, A-PORT

JMP A1 DX, AL

MOV DX, PORT_0

MOV AL, 20H

OUT DX, AL

IRET

方式1下数据的查询传送方式

- 方式1, 也可以用于查询传送方式
 - 8255A提供一个供CPU查询的方式1状态字
 - CPU通过C口读取该状态字,检测判断相应的状态标志位
 - 确认就绪后,启动数据传送
 - 输入时,首先查询 IBF, 1为就绪(端口数据区满)
 - 输出时,首先查询OBF,1为端口数据区"空",空闲

PC ₇	PC ₆	PC ₅	PC ₄	PC ₃	PC ₂	PC ₁	PC ₀
I/O	I/O	IBF_A	INTEA	INTRA	INTE _B	IBF _B	INTR _B
$\overline{\mathbf{OBF_A}}$	INTEA	I/O	I/O	INTRA	INTEB	$\overline{\text{OBF}}_{\text{B}}$	INTR _B

方式1下的查询传送

8255 لا PA لا PB MOV DX,202H

L1: IN AL,DX

TEST AL, 0010 0000B

JZ L1

MOV DX,200H

IN AL,DX

MOV DX,202H

L1: IN AL,DX

TEST AL, 00000010B

JZ L1

MOV AL, BUF

MOV DX,201H

OUT DX,AL

;读取PC端口内容

;读取PC端口内容

;判断PC5是否为1

;判断PC1是否为1

工作方式2

- ▲方式2也称双向传输方式,该方式只适用于A口
- ▲ 双向方式下,外设可以利用A口的8位数据线和CPU 进行双向传送,既能发送数据,又能接收数据
- ▲ 与方式1相似,端口C也自动地为方式2提供相应的控制信号;即C口的5个数据位将自动配合A口作与外设之间的控制信号和状态信号
- ▲方式2相当于方式1下A口输入和输出的组合

方式2的控制信号及状态控制字

方式2与其它方式的组合说明

- ◆ 当A口工作在方式2时,B口可以工作在方式0或方式
- 1,可以作为输入端口也可以作为输出端口
- ◆ C口由于其PC₇-PC₃为方式2服务,作为A口的联络控制信号,余下的只有PC₂~PC₀可另作它用
- ◆ 如B口工作于方式0下, $PC_2\sim PC_0$ 也工作于方式0,作为输入位或输出位
- ◆ 如B口工作在方式1下, $PC_2\sim PC_0$ 恰好作为B口的联络信号,具体的规定与方式1相似

8255A芯片的基地址为200H, PA端口用于方式2, PB端口用于方式1输入

MOV DX,203H
MOV AL,11000110B
OUT DX,AL

工作方式初始化综合示例

(3) 将 A口设置成方式2; B口为方式0, 输出; PC0~PC2 为输入;允许A口中断 MOV AL, 11000001B OUT 63H, AL MOV AL, 00001001B OUT 63H, AL MOV AL, 00001101B OUT 63H, AL

■ 串行通信

特点:每个字符的所有位是按位传送。

字符的每一位放在传输线上和采样传输线的状态,随着系统的不同而不同。

通常,一个接收端在一个很短的时间采样一个传输线的状态,观察它是 1还是0,如果在从1到0的变化期间采样传输线,就可能得到不正确的结果。 采样一位的理想地方是位的中间。

实际上,如果在发送端和接收端每边都采用一个时钟,时钟速率就可能稍有不同,尽管这种差异很小,但随着时间的持续,它们最终要失去同步,因此必须周期性地对它们进行同步。

1) 位同步

要解决的问题:

- (1)接收端何时询问传输线,并把到达的数据位取离传输线;
- (2) 发送端应当每隔多少时间把要传送的数据位放在传输线上。
- 2) 字符同步

要解决的问题:

- (1) 一个字符由几位组成;
- (2) 哪一位是字符的第一位。

因而在串行通信中分为二种传送方式:

- I 异步传送方式
- II 同步传送方式

I异步传送方式

- 1 特点:
 - 1)每次传送一个字符;
 - 2) 在二个要传送的字符间不必有固定的时间关系;
- 3)接收端为每个字符重复建立同步信号;
- 4)每个字符的前面要有一个脉冲,用于告诉接收端一个字符的开始;
- 5)每个字符结束时传送一个停止脉冲使接收端在另一个字符传来之前 稳定下来。

奇校验: 使数据中1的个数为奇数。

如: 0 1110011

偶校验: 使数据中1的个数为偶数。

如: 1 1110011

□ 同步传送方式 每次传送全部数据块;

1 面向字符的同步传送方式 特点:

> 把若干个字符组成一个信息块-------幀,一起传送 为了区分幀的头部和尾部,使用ASCII码中的某些位来加以控制。

SYNSYNSOH标题STX数据块ETB/ETX块校验

SYN同步字符ASCII码16HSOH标题开始ASCII码01HSTX正文开始ASCII码02HETB一组数据结束ASCII码17HETX全部数据结束ASCII码03H块校验采用CRC校验

- - 2 面向比特的同步传送方式

特点:

- 1)每-幀中所传送的数据可以含有任意数量的比特位;
- 2)为了区分幀的头部和尾部,用特定的比特模式来定义幀的开始和 结束(而不是使用ASCII码特定字符)

01111110 地址 控制 数据 校验 01111110

地址: 指出接收端的地址

控制:用于通信双方交换命令和状态

校验: 用于错误校验

串行通信的传输率

串行异步通信中,每秒传输的位数称波特率。

如: 1200, 2400, 4800, 9600, 19200

大多数接口的接收波特率和发送波特率可以分别设置,可通过编程制定

#行通信的接口标准

RS-232串行接口

该接口有两种连接器,一种DB-25; 另一种DB-9

数据线采用负逻辑规定逻辑电平:

+5V--- +15V规定为"0", --5V---- --15V规定为"1"。

●信号间的作用如下:

TxD: 发送数据

RxD:接收数据

RTS: 请求发送,数据终端设备发出,通知数据通信设备准备接收数据。

CTS: 清除发送,数据通信设备准备好接收,允许发送。

DTR: 数据终端设备准备就绪,准备接收。

DSR: 数据通信设备准备就绪。

● RS-232连接

- 1 使用Modem连接
 - 一般只需要9个常用信号

● RS-232连接

2 直接连接

● RS-232连接

3 三线连接法

第編程串行通信接口8251A

- 1) 可工作在全双工方式的串行通信;
- 2) 可用于同步和异步传送;
- 3) 同步传送: 5---8个比特代表字符,内部或外部字符同步,可自动插入一个或二个同步字符;
 - 4) 异步传送: 5---8个比特代表字符, 波特率为时钟的1/1、1/16或1/64;
 - 5) 具有奇偶、溢出和帧错误等检测电路;
 - 6) 可产生1、1.5或2个停止位,可检测假启动位,自动检测和处理停止位。

2内部结构

- 1) 总线缓冲器 用于同CPU交换数据:
- 2) 读/写控制逻辑:
- 3)调制解调器控制;
- 4)接收器,把R_xD来的串行数据变成并行数据;
- 5) 发送器,把并行数据变成串行数据从TxD发出。

8251的管脚结构

8251A的读写操作表

CS	C/D	RD	WR	功能
0	0	0	1	CPU从8251A读数据
0	1	0	1	CPU从8251A读状态
0	0	1	0	CPU写数据到8251A
0	1	1	0	CPU写命令到8251A
0	X	1	1	8251A数据总线缓冲器为高阻状态
1	X	X	X	本片未被选中

8251A引脚图

D₂

10) CTS

允许发送。MODEM用于通知8251 MODEM已准备接收数据;

$\mathbf{D_0}$ 28 \mathbf{D}_3 $\mathbf{D_1}$ 27 **RxD** Vcc **26 GND** 25 **RxC** $\mathbf{D_4}$ 24 **DTR** D_5 23 RTS $\mathbf{D_6}$ 22 **DSR** 8251A \mathbf{D}_7 8 21 Reset $\overline{\mathbf{TxC}}$ 9 **20 CLK** WR 10 19 **TxD** 11 18 **CS TxE** 17 12 C/\overline{D} CTS 13 **16** RD SYNDET/BD **15** 14 **RxRDY TxRDY**

11) T_XE

传送寄存器空。并行/串行寄存器都为空 ,在同步方式工作时若CPU来不及输出一个 新的字符,则将使TXE变为高电平,同时发 送器在输出线上自动插入同步字符,以填补 传送空隙;

12) T_xD

CPU送来的并行数据被转换成串行数据由 这个输出端输出。

13) CLK

系统时钟;

14) RESET

复位信号;

15) **DSR**

MODEM来的信号,表示MODEM已准备好;

8251A引脚图

D_2							
D ₃ RxD	$ \frac{1}{2}$ $\frac{1}{3}$		28 27 26	D ₀ D ₁ Vcc	16) RTS 8251 输出给MODEM,用于通知 MODEM8251准备传送数据;		
GND D ₄ D ₅ D	- 4 - 5 6	8251A	8251A	8251A	252423	— <u>RxC</u> — <u>DTR</u> — <u>RTS</u>	17) DTR 8251 输出给MODEM,用于通知 MODEM8251已准备好;
$\frac{D_6}{D_7}$,				22 21 20	— DSR — Reset — CLK	18)R _X C 接收时钟; 19)Vcc
$\frac{\overline{WR}}{\overline{CS}}$ C/\overline{D}	— 11 — 12			19 18 17	— TxD — TxE — CTS	电源; 20) GND 信号地。	
RD RxR	13 DY 14		16 15	SYNDET/BD TxRDY			

8251A引脚图

8251的工作流程

8251的端口地址

模式字寄存器、控制字寄存器和数据寄存器怎么区分?

端口地址数据输入端口和输出端口合用一个地址 状态端口和控制端口合用一个地址

• 用1位地址线区分

- ▶ 16位系统中,用A1区分,A1低电平选中偶端口; A1高电平选中 奇端口,正好连接C7D信号
- > 32位系统中,用A3区分

■ 8251的模式字

■ 8251的状态字

8251A与CPU的连接

8251A异步模式下的初始化程序

设8251A工作在异步模式,波特率系数(因子)为16,7个数据位/字符,偶校验,2个停止位,发送、接收允许,设端口地址为42H和44H。完成初始化程序。

程序段如下:

MOV AL, 0FAH

OUT 42H, AL

MOV AL. 37H

OUT 42H, AL

;设置模式字,异步模式,波特率因子16,7个数据位,偶校验,2个停止位 11111010

;设置控制字,使发送、接收允许,清出错标志 00110111

8251A同步模式下的初始化程序

设端口地址为42H,采用内同步方式,2个同步字符(设同步字符为16H),偶校验,7位数据位/字符。

MOV AL, 38H

OUT 42H, AL

MOV AL, 16H

OUT 42H, AL

OUT 42H, AL

MOV AL, 97H

OUT 42H, AL

;设置模式字,同步模式,用2个同步字符 7个数据位,偶校验 00111000

;送同步字符16H

; 设置控制字,使接收器启动

10010111

8251编程举例

1: 要求异步方式下,输入80个字符,波特率因子为16,7位数据,2位停止位, 偶校验。设数据端口地址为50H,控制端口地址为52H。

MOV AL, 0FAH

OUT 52H, AL : 写入模式选择字 11111010

MOV AL, 37H

OUT 52H, AL ; 控制字写入奇地址端口 00110111

MOV DI, 0 ; 变址寄存器置 "0"

MOV CX,80 ; 送入计数初值80个字符

BEGIN: IN AL, 52H

TEST AL, 02H ; 测试状态字第2位R_xRDY

JZ BEGIN

IN AL, 50H ; R_XRDY有效,从偶地址口输入数据

MOV BX, OFFSET Buffer

MOV [BX+DI], AL

INC DI

IN AL,52H ; 再读状态字

TEST AL, 38H ; 测试有无三种错误 00111000

JNZ ERROR

LOOP BEGIN ; 不够80个字符,转BEGIN

JMP EXIT ; 输入80个字符,则转结束

ERROR:

CALL ERR OUT

EXIT:

