JUNE 20

Lecture Notes

Author

Tom Jeong

Contents

1	Power series Fourier series	3
2	smoothness of functions 7.4	3

1 Power series Fourier series

Definition 1.1. A power series is a series of the form

$$\sum_{n=0}^{\infty} a_n x^n \tag{1}$$

where a_n are constants and x is a variable.

Definition 1.2. Define R $in\mathbb{R} \cup \{\pm \infty\}$ the radious of convergence of $S(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k$ if S(x) convergent abs for $|x-x_0| < R$ and divergence $|x-x_0| > R$

How to find R?

1.
$$R = \frac{1}{\limsup_{k \to \infty} |a_k|^{1/k}}$$

 $|\sum_{k=0}^{\infty} a_k (x - x_0)^k| \le \sum_{k=0}^{\infty} R^k \le \sum_{k=0}^{\infty} |a_k (x - x_0)^k| \le \sum_{k=0}^{\infty} |a_k| R^k$ this is how we get the equation for R

2. if $R = \lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|}$ exists. then R is the radious of convergence of S(x)

Infomrations we get from the radious of convergence :

1. if S(x) has radious of Convergence R > 0 what do we know about S(x) on $B_R(x_0)$?

2 smoothness of functions 7.4

continuous functions on \mathbb{R} are labeled as $C^0(\mathbb{R})$ functions. (0 means no deriavtive)

- $C^1(\mathbb{R})$ functions have continuous and the derivative is continuous
- $C^2(\mathbb{R})$ functions have continuous and the first and second derivative is continuous
- $C^{\infty}(\mathbb{R})$ all derivative are conttinuous

When does the taylor series converge? What means to be analytic C^{μ} - analytic: taylor series convergence and ROC is ∞

example: Consider
$$f(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

f ix C^{∞} but not analytic on any interval containing 0. Proof: look up but also can take c infinity outside of 0. maybe induction

Proof. we want to check if f continuous at 0.

$$\lim_{x \to 0} e^{-\frac{1}{x^2}} = 0$$

 $\forall \epsilon \exists N \text{ such that } e^{-N} < \epsilon$ take x << 1

out iside of x = 0:

$$f'(x) = \frac{2}{x^3}e^{-\frac{1}{x^2}}$$

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

lhosptial?

Lemma 2.1. $\lim_{h\to 0} \frac{e^{-1/h^2}}{P_n(h)} = 0$ ($P_n(h) =$ polynomial of degree N)

$$lim_{Nto\infty} \frac{1}{P_n(1/N)e^{N^2}} = 0$$

want to show $\lim_{N\to\infty} e^{N^2} P_n(1/N) = \infty$

$$e^{N^2} P_n(1/N) = e^{N^2} \sum_{k=0}^n a_k \frac{1}{N^k}$$

Theorem 2.2. taylor w/ remainder

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

$$f(x) = P_n(x) + R_n(x)$$
 where $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$ for some $c \in (0, x)$

Definition 2.1 (Trig series). A trig. series is a series like

$$T(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$$

$$T_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx)$$