

Final Project

VLAN-based Segment Routing

Deadline: 2022/01/12 (WED) 23:59

Outline

- Review of Labs
- Segment Routing
 - -IP Routing
 - Workflow of Segment Routing
 - Node Segment
- Final Project
 - -Overview
 - Workflow
 - Requirements

Outline

- Review of Labs
- Segment Routing
 - -IP Routing
 - Workflow of Segment Routing
 - Node Segment
- Final Project
 - Overview
 - Workflow
 - Requirements

Review of Labs

- Lab 4 Unicast DHCP Application
 - Installing flow rules
 - Routing packets with global view of network
 - Configuring controller
- Lab 5 Proxy ARP
 - Constructing packets and sending directly to switches

Note: All of these labs would be used in final project

Outline

- Review of Labs
- Segment Routing
 - -IP Routing
 - Workflow of Segment Routing
 - Node Segment
- Final Project
 - Overview
 - Workflow
 - Requirements

IP Routing

- Network devices route packets with IP address
 - Maintain routing information on each device
 - Look up IP table when packets arrive
- Determine paths while forwarding packets

Segment Routing (SR)

- Use label (segment) switching instead of IP address
- Sender (or ingress node) of packets specifies routes of packets
- Features:
 - Sender
 - Choose a path
 - Encode it in the packet header as an ordered list of segments
 - The rest of network devices
 - Execute the encoded instructions (labels)
 - i.e., forwarding

Segment Routing – Workflow (1/9)

Host A sends packet to Host B

Segment Routing – Workflow (2/9)

• The edge switch S1 pushes the label of destination device S6

Segment Routing – Workflow (3/9)

The edge switch S1 forwards packet with label

Segment Routing – Workflow (4/9)

Switch S3 receives packet with label and lookups flow table

Segment Routing – Workflow (5/9)

Switch S3 forwards packet with label

Segment Routing – Workflow (6/9)

Switch S5 receives packet with label and lookups flow table

Segment Routing – Workflow (7/9)

Switch S5 forwards packet with label

Segment Routing – Workflow (8/9)

Switch S6 receives packet with label and pops label

Segment Routing – Workflow (9/9)

Switch S6 forwards the original packet to Host B

Node Segment

- Node segment ID is globally unique within a SR domain
- Typically multi-hop
 - Shortest-path first (SPF) route to designated node

VLAN

- Segment routing uses labels to route packets
- We will use VID field in VLAN (802.1Q) header as label

TPID: Tag protocol identifier (0x8100)

CFI: Canonical Format Indicator

VID: VLAN Identifier

Outline

- Review of Labs
- Segment Routing
 - -IP Routing
 - Workflow of Segment Routing
 - Node Segment
- Final Project
 - -Overview
 - Workflow
 - Requirements

Overview

- You need to implement an VLAN-based segment routing app
 - Configure network
 - DHCP server location,
 - segment ID for each switch, and
 - subnet attached to edge switches
 - Compute path to each edge switches
 - Install flow rules to forward packets

Configure Network – in Mininet

- Mininet topology
 - Hosts are configured under the same subnet

Configure Network – for Controller

- Controller view
 - Hosts are configured under the different subnet

Configure Network – Upload Configuration

- Upload configuration to controller
 - DHCP server location
 - Segment ID for switch (node segment)
 - IP subnet on edge switch
 - Other configuration as you wish

• E.g., indication of edge switch (to make implementation easier)

Compute Path and Install Flow Rules

- Compute a path for each pair of edge nodes
- Install flow rules for all paths

Workflow (1/6) – Integration with Unicast DHCP

- New host could request IP address from DHCP server
 - This is what you done in lab 4

Workflow (2/6) – Host to Host Communication

- Assume new host sends packet to Host D
- Edge Switch S2:
 - Match subnet of destination address
 - Push VLAN tag to packet according to destination edge node

Workflow (3/6) – Label Lookup

- S1 receives VLAN tagged packet
 - Match VLAN tag and forward tagged packet via port 2

Workflow (4/6) – Label Popping

- When destination edge switch S3 receives tagged packet
 - Pop VLAN tag
 - Forward original (untagged) packet to Host D (next slide)

Workflow (5/6) – IP/MAC Forwarding

 After label popping, S3 forwards original packet by matching Layer 2 or L3 address

Workflow (6/6) – Intra-device Forwarding

 Intra-device packet could be forwarded by matching Layer 2 or L3 address directly

Requirements

- The following three applications should be activated
 - DHCP Unicast (lab 4)
 - Proxy ARP (lab 5)
 - VLAN-based Segment Routing (this project)
- You should not activate any other application except OpenFlow-related applications on ONOS
- Install all flow rules when controller receives configuration
- Flow rules for forwarding packets must match VLAN tag
 - Except for intra-subnet forwarding

Issues

- Controller may not be able to install correct flow rules when receiving configuration
 - Since controller does not know hosts at the beginning
- First solution
 - Send packets to let controller know host information before uploading configuration
- Second solution
 - Add host information in configuration
- You can figure out other solutions on your own

Naming Requirement

 You should follow the Maven project naming format below, or your project will not be scored

```
- <groupId>: nctu.winlab
```

- <artifactId>: vlanbasedsr

- <Package>: nctu.winlab.vlanbasedsr

NYCU CS 3.

Scoring Criteria

- Report: Previous Labs Parts
 - DHCP Unicast and Proxy ARP (5%)
- Report: Final Project Part
 - Activated applications (10%)
 - Only activate DHCP unicast, Proxy ARP, vlanbasedsr, and OpenFlow-related applications
 - Flow rules (25%)
 - Must use VLAN tag to forward packets
 - Connectivity (10%)
 - Hosts under different subnets can send labeled packets to each other
- Demo (50%)
 - TA will produce a different topology to test your app

Submission

• Files:

- All files in Vlan-based Segment Routing app
- No need to submit DHCP Unicast and Proxy ARP app
- Submit:
 - Upload a ".zip" file to e3
 - Named: final_<studentID>.zip
 - Incorrect naming convention or format will not be scored