Proof Sketch. The idea is to construct a "universal" algorithm that simulates all possible algorithms in parallel, allocating more and more time to each algorithm as the computation progresses.

Let $\{M_i\}$ be an enumeration of all algorithms (e.g., all Turing machines). We construct an algorithm U that works as follows:

For t = 1, 2, 3, ...: For i = 1, 2, ..., t: Run M_i on input x for $2^{i-t}t$ steps If M_i outputs a y such that A(x, y) is true, return y

If there exists an algorithm that solves A(x,y) in time T(n), then U will find a solution in time O(T(n)). The multiplicative constant comes from the overhead of simulating multiple machines, and the additive term comparable to the length of x comes from the initial steps where t is small.

This algorithm is optimal up to a constant factor because if there were a significantly faster algorithm, it would contradict the assumption that T(n) was the time of the fastest algorithm.

Acknowledgements

The author expresses sincere gratitude to A. N. Kolmogorov, B. A. Trakhtenbrot, Ya. M. Barzdin, Yu. I. Albryton, and M. I. Degtyar for valuable discussion.

References

- [1] Yablonsky S. V. On algorithmic difficulties of synthesis of minimal contact circuits. Collection "Problems of Cybernetics", 2. Moscow, Fizmatgiz, 1959, 75-121.
- [2] Zhuravlev Yu. I. Set-theoretic methods in Boolean algebra. Collection "Problems of Cybernetics", 8. Moscow, Fizmatgiz, 1962, 5-44.
- [3] Trakhtenbrot B. A. Optimal computations and Yablonsky's frequency phenomenon. Seminar. Novosibirsk, "Nauka", Siberian Branch, 1965, 4, 5, 79-93.
- [4] Degtyar M. I. On the impossibility of eliminating complete enumeration when calculating functions relative to their graphs. Reports of the USSR Academy of Sciences, 1969, 189, 4, 748-751.