Docket No. 18036-20

FIG. 2 shows a system 10 for charging the load capacitance by several steps and thereby reducing power dissipation. Here, a bank of supply voltages V_1 to V_N is [are] used to charge the load 12. The voltages of the supplies are evenly distributed between ground and V_N so that the voltage difference between any two adjacent supplies is the same. Each of the voltages is selectively applied to the load 12 by N switches including the first switch 14 and N-1 additional switches. Between charge cycles, switch 0 is closed. To charge the load, switch 0 is opened and the supplies V_1 through V_N are connected to the load in succession by selectively closing the switches, that is, by momentarily closing switch 1, opening switch 1, momentarily closing switch 2 etc. To discharge the load, the supplies V_{N-1} through V_1 are switched in [in] reverse order. Then switch 0 is closed connecting the output to ground.

In Column 4, please amend paragraph 5 as follows:

On the trailing edge of input pulse, a discharge cycle is initiated [by] when the switches are momentarily closed in reverse order. Thus, switch N is opened and switch N-1 is closed. Then switch N-1 is opened and switch N-2 is closed and etc. On the closure of switch N-1, the associated tank capacitor will receive most of the charge on the load capacitance. Each capacitor down the line will receive a lower charge than the immediately preceding capacitor. After switch 1 opens, switch 0 closes to complete the cycle dumping the remaining charge on the load C_L to ground. Thus, over several cycles the tank capacitors will approach their steady state voltages, for example[,]; the (N-1) th through 1st tank capacitors may have charges of say 5, 4, 3, 2 and 1 volts respectively. Then, at the beginning of the next cycle, on the closure of the first switch, the voltage on the first tank capacitor is applied to the load, then the voltage on the

Docket No. 18036-20

G CAN

second capacitor is applied to the load and so on. Thus, in the example, first 1 volt is applied to the load, then 2 volts, then three volts and etc. As a result, the voltage on the load will gradually increase as shown in FIG. 5(i).

In Column 5, please amend paragraph 3 as follows:

Even if the tank capacitor voltages differ from the "correct" values, the circuit will work logically correctly, since each charging (discharging) cycle ends by connecting the load to [he] the supply rail (ground). Voltage deviations simply bring higher dissipation. This happens during start-up, before the tank voltages have had time to converge to the even distribution between the supply voltage and ground.

In Column 6, please amend paragraph 7 as follows:

It remains to select the value for m. If it is chosen too small, there will still be a significant voltage across a switch when the next switch is to close. Hence, there is an increase in the average voltage across each switch and therefore a dissipation increase (the first term in equation [10] is changed slightly). If on the other hand, m is chosen unnecessarily large, time is wasted that could have been used to increase the number of steps. Thus, in general, optimization methods for the value of m vary according to the \(\frac{1}{2}\) \(\frac{1}{2}\) application. However[, however], one skilled in the art will be able to select a suitable value for m using conventional teachings (e.g., a simulation program).

REMARKS

The Examiner is thanked for the telephone call to Applicant's attorney on May 24, 2001. During that interview, the examiner advised that he had received applicant's Supplemental Amendment After Final Rejection (mailed March 28, 2001), that he was ready to issue a Notice of Allowance, but that applicant needed to put certain final