Crypto-système RSA

Génération de clés

- On génère p, q de grands nombres premiers
- On calcule n = pq, et $\varphi(n) = (p-1)(q-1)$
- On choisi $e,d\in\mathbb{Z}_{\varphi(n)}^{\times}$ tels que $ed\equiv 1\pmod{\varphi(n)}$
 - Algorithme d'Euclide étendu trouve d tel que $1 = ed + k\varphi(n)$
- (n,e) est la clé de chiffrement et (n,d) la clé de déchiffrement

Crypto-système RSA

Chiffrement et déchiffrement

• On note un message $m \in \mathbb{Z}_n$ et un cryptogramme $c \in \mathbb{Z}_n$

$$Enc(m) = m^e \mod n$$

$$Dec(c) = c^d \mod n$$

$$Dec(Enc(m)) = m^{ed} = m^{1+k\varphi(n)} = m \mod n$$