Algebra 1: Tutorial 7

When you answer these questions practise your proof writing.

Be clear, concise, and complete.

Question 1: Matrix Ring Example

Denote $M_n(\mathbb{Z})$ to be the ring of matrices with integer entries. Note that it is non-commutative when n > 1. Prove the matrices with *even* entries form an two-sided ideal. Identify the quotient of $M_n(\mathbb{Z})$ by this ideal. Is the quotient still a non-commutative ring in this case?

Question 2: Automorphisms of a Polynomial Ring

Determine the automorphisms of $\mathbb{Z}[x]$ [Hint: Recall that the integers are fixed by any such map (substitution principle), so such a morphism is determined by a single piece of information].

Question 3: Simplification of Presentations

Identify (simplify the presentation of) each of the following rings: $\mathbb{Q}[x,y]/\langle y-x^2\rangle$; $\mathbb{Q}[x,y]/\langle y-x^3,x-3\rangle$; $\mathbb{Q}[x,y]/\langle y-x^2,x^2+1\rangle$. Be specific about the isomorphism used at each stage of your simplification.

Question 4: Generators of Rings

Find a \mathbb{Z} -basis for the ring $\mathbb{Z}[x]/\langle f \rangle$, when f is: $f(x) = x^2 + 1$, $f(x) = x^2 - 2$, f(x) = x - 4, and $f(x) = x^4 - 1$.

Question 5: Adjoining Inverses of Zero Divisors

[Artin Exercise 11.5.3] Describe the ring obtained by adjoining an inverse of 2 to the ring $\mathbb{Z}/12\mathbb{Z}$ [Hint: $\langle 12, 2x - 1 \rangle = \langle 3, x + 1 \rangle$ in $\mathbb{Z}[x]$].

Question 6: Function Algebras

Let $I_a := \{ f \in \mathbb{C}[x] \mid f(a) = 0 \} = \langle x - a \rangle \subseteq \mathbb{C}[x]$. Determine the quotient $\mathbb{C}[x]/I_a$.