

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR PHYSIK IM WISE 2023/24

QUANTUM INFORMATION

DOZENT: DR. CHRISTIAN SCHILLING

ÜBUNGEN: J. LIEBERT

Problem Set 2: Quantum States

Handout: Fri, October 20, 2023; Due: 23:59 CET, Fri, October 27, 2023; (20 points)

Notes: Problems 6b) and 7 are optional challenge problem.

Problem 1 (1+1+1=3 points)

Let A be a linear normal operator on a finite complex Hilbert space \mathcal{H} with eigenvalues a_j . Prove the following implications:

- (a) A hermitian $\Rightarrow \forall j : a_j \in \mathbb{R}$
- (b) A unitary $\Rightarrow \forall j : a_j = e^{i\varphi_j}$ for some $\varphi_j \in [0, 2\pi)$
- (c) A orthogonal projector $\Rightarrow \forall j : a_i \in \{0,1\}$

Problem 2 (3 points)

Let A be a linear operator on the Hilbert space $\mathcal{H} \cong \mathbb{C}^d$ equipped with some inner product (\cdot,\cdot) . Recall the properties of an inner product. Then, prove that $(\cdot,\cdot)_A$ defined as $(v,w)_A:=(v,Aw)$ for all $v,w\in\mathcal{H}$ defines another inner product if and only if A>0. Hint: You can use that $A\geq 0$ implies $A=A^\dagger$.

Problem 3 (1+1+2=4 points)

In this problem, you will explicitly calculate some useful properties of the Pauli matrices, which are a set of 2×2 matrices that are ubiquitous in quantum information theory. The Pauli-matrices, 1, X, Y and Z (also often denoted by $\sigma_0, \sigma_x, \sigma_y$ and σ_z) are given by

$$\mathbb{1} = \sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{1}$$

- (a) Verify the commutation relations [X,Y]=2iZ, [Y,Z]=2iX, [Z,X]=2iY.
- (b) Verify the anticommutation relations $\{P,Q\}=2\delta_{P,Q}$ for $P,Q\in\{X,Y,Z\}.$
- (c) Calculate the eigenvalues of the Pauli matrices and show that they all lie within the unit circle.

Problem 4 (2 points)

Consider a 2×2 matrix A:

$$A = \begin{pmatrix} (1+\alpha)/2 & \beta \\ \beta^* & (1-\alpha)/2 \end{pmatrix}, \tag{2}$$

where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{C}$. Verify that A is Hermitian with $\operatorname{Tr}(A) = 1$ and that any Hermitian 2×2 matrix with unit trace can be expressed in this form. Show that A can be uniquely expressed as a linear combination of the Pauli matrices.

Problem 5 (2+1+2=5 points)

Consider a 2×2 Hermitian matrix ρ with unit trace given by

$$\rho = \frac{1}{2} (1 + n_x \sigma_x + n_y \sigma_y + n_z \sigma_z).$$

where $n_x, n_y, n_z \in \mathbb{R}$. This expression is commonly abbreviated as $\rho = (\mathbb{1} + \vec{n} \cdot \vec{\sigma})/2$, where $\vec{n} := (n_x, n_y, n_z)$ is a 3D vector, and $\vec{\sigma} := (\sigma_x, \sigma_y, \sigma_z)$ a vector of matrices. In problem 2, you showed that any Hermitian matrix with unit trace can be written in this form.

- (a) Calculate the eigenvalues of ρ express your answer in terms of n_x, n_y and n_z .
- (b) Show that $\rho \geq 0$ if and only if $|\vec{n}| := \sqrt{n_x^2 + n_y^2 + n_z^2} \leq 1$.
- (c) Show that if $|\vec{n}| = 1$, then for some $v_0, v_1 \in \mathbb{C}$

$$\rho = \begin{pmatrix} v_0 \\ v_1 \end{pmatrix} \begin{pmatrix} v_0^* & v_1^* \end{pmatrix}.$$

Explicitly write down an expression for v_0 and v_1 — is your answer unique? (*Hint*: Write \vec{n} in spherical coordinates.)

Problem 6 (3 points)

Let $\mathcal{H} \cong \mathbb{C}^d$ be a Hilbert space and $\mathcal{D}(\mathcal{H})$ shall denote the set of density operators on \mathcal{H} . The set $\mathcal{D}(\mathcal{H})$ denotes the set of all hermitian operators $\rho = \rho^{\dagger}$ on \mathcal{H} which are positive semi-definite and trace normalized to one, i.e. $\mathrm{Tr}[\rho] = 1$.

- (a) Prove that $\mathcal{D}(\mathcal{H})$ is convex and bounded (e.g. with respect to $\|\cdot\|_2$) as a subset of $\mathcal{M}_{d\times d}(\mathbb{C})$. Recall that we defined positive-semidefinitness as $\rho \geq 0 :\Leftrightarrow \langle \chi | \rho | \chi \rangle \geq 0, \forall | \chi \rangle \in \mathcal{H}$.
- (b) (optional) Prove that $\mathcal{D}(\mathcal{H})$ is closed, i.e., it contains all its limit points.

Problem 7 (optional)

For this problem, $U(2) = \{U \in \mathbb{C}^{2 \times 2} | U^\dagger U = U U^\dagger = I \}$, $SU(2) = \{U \in U(2) \mid \det(U) = 1 \}$, $O(3) = \{R \in \mathbb{R}^{3 \times 3} | R^\mathsf{T} R = R R^\mathsf{T} = I \}$ and $SO(3) = \{R \in O(3) \mid \det(R) = 1 \}$.

- (a) Show that $\forall U \in SU(2), \exists R \in SO(3)$ such that $\forall \vec{n} \in \mathbb{R}^3, U^{\dagger}(\vec{n} \cdot \vec{\sigma})U = (R\vec{n}) \cdot \vec{\sigma}$.
- (b) Show that $\forall R \in SO(3)$, there are two unitaries $U \in SU(2)$ such that $\forall \vec{n} \in \mathbb{R}^3, (R\vec{n}) \cdot \vec{\sigma} = U^{\dagger}(\vec{n} \cdot \vec{\sigma})U$.
- (c) Suppose $R = \operatorname{diag}(-1, -1, -1) \in O(3)$, then show that there is no $U \in \mathsf{U}(2)$ such that $\forall \vec{n} \in \mathbb{R}^3, (R\vec{n}) \cdot \vec{\sigma} = U^\dagger(\vec{n} \cdot \vec{\sigma})U$.