# An introduction to convex methods for life science Basics on convexity

Math et Sciences du Vivant - Université Paris-Saclay / Paris-Sud

Autumn semester 2017

http://julien.cremeriefamily.info





# Outline

Convex set

Convex functions

Convex problems

#### Affine set

**line** through  $x_1$ ,  $x_2$ : all points



affine set: contains the line through any two distinct points in the set

**example**: solution set of linear equations  $\{x \mid Ax = b\}$ 

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex sets 2–2

#### Convex set

**line segment** between  $x_1$  and  $x_2$ : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with  $0 < \theta < 1$ 

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 < \theta < 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)







### Convex combination and convex hull

**convex combination** of  $x_1, \ldots, x_k$ : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with 
$$\theta_1 + \cdots + \theta_k = 1$$
,  $\theta_i \ge 0$ 

convex hull  $\operatorname{\mathbf{conv}} S$ : set of all convex combinations of points in S





#### Convex cone

conic (nonnegative) combination of  $x_1$  and  $x_2$ : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with  $\theta_1 \geq 0$ ,  $\theta_2 \geq 0$ 



convex cone: set that contains all conic combinations of points in the set

## Hyperplanes and halfspaces

**hyperplane**: set of the form  $\{x \mid a^T x = b\}$   $(a \neq 0)$ 



**halfspace:** set of the form  $\{x \mid a^T x \leq b\}$   $(a \neq 0)$ 



- ullet a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

## **Euclidean balls and ellipsoids**

(Euclidean) ball with center  $x_c$  and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with  $P \in \mathbf{S}_{++}^n$  (i.e., P symmetric positive definite)



other representation:  $\{x_c + Au \mid ||u||_2 \le 1\}$  with A square and nonsingular

#### Norm balls and norm cones

**norm:** a function  $\|\cdot\|$  that satisfies

- $||x|| \ge 0$ ; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for  $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation:  $\|\cdot\|$  is general (unspecified) norm;  $\|\cdot\|_{\text{symb}}$  is particular norm norm ball with center  $x_c$  and radius r:  $\{x\mid \|x-x_c\|\leq r\}$ 

norm cone:  $\{(x,t) \mid ||x|| \le t\}$ 

Euclidean norm cone is called secondorder cone



norm balls and cones are convex

Convex sets 2–8

## **Polyhedra**

solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
,  $Cx = d$ 

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{is componentwise inequality})$ 



polyhedron is intersection of finite number of halfspaces and hyperplanes

Convex sets 2–9

#### Positive semidefinite cone

#### notation:

- $S^n$  is set of symmetric  $n \times n$  matrices
- $\mathbf{S}^n_+ = \{X \in \mathbf{S}^n \mid X \succeq 0\}$ : positive semidefinite  $n \times n$  matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 $\mathbf{S}^n_+$  is a convex cone

•  $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$ : positive definite  $n \times n$  matrices

example:  $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2}$ 



## Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls,  $\dots$ ) by operations that preserve convexity
  - intersection
  - affine functions
  - perspective function
  - linear-fractional functions

## Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists  $a \neq 0$ , b such that

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$



the hyperplane  $\{x \mid a^T x = b\}$  separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Convex sets 2–19

## Supporting hyperplane theorem

**supporting hyperplane** to set C at boundary point  $x_0$ :

$$\{x \mid a^T x = a^T x_0\}$$

where  $a \neq 0$  and  $a^T x \leq a^T x_0$  for all  $x \in C$ 



supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Convex sets 2–20

# Outline

Convex set

Convex functions

Convex problems

#### **Definition**

 $f: \mathbf{R}^n \to \mathbf{R}$  is convex if  $\operatorname{\mathbf{dom}} f$  is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all  $x, y \in \operatorname{\mathbf{dom}} f$ ,  $0 \le \theta \le 1$ 



- f is concave if -f is convex
- f is strictly convex if  $\operatorname{dom} f$  is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for  $x, y \in \operatorname{dom} f$ ,  $x \neq y$ ,  $0 < \theta < 1$ 

## Examples on R

#### convex:

• affine: ax + b on **R**, for any  $a, b \in \mathbf{R}$ 

• exponential:  $e^{ax}$ , for any  $a \in \mathbf{R}$ 

ullet powers:  $x^{\alpha}$  on  $\mathbf{R}_{++}$ , for  $\alpha \geq 1$  or  $\alpha \leq 0$ 

• powers of absolute value:  $|x|^p$  on **R**, for  $p \ge 1$ 

• negative entropy:  $x \log x$  on  $\mathbf{R}_{++}$ 

#### concave:

• affine: ax + b on **R**, for any  $a, b \in \mathbf{R}$ 

 $\bullet$  powers:  $x^{\alpha}$  on  $\mathbf{R}_{++}\text{, for }0\leq\alpha\leq1$ 

• logarithm:  $\log x$  on  $\mathbf{R}_{++}$ 

## Examples on $R^n$ and $R^{m \times n}$

affine functions are convex and concave; all norms are convex examples on  $\mathbf{R}^n$ 

- affine function  $f(x) = a^T x + b$
- $\bullet$  norms:  $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$  for  $p \geq 1$ ;  $\|x\|_\infty = \max_k |x_k|$

## examples on $\mathbb{R}^{m \times n}$ ( $m \times n$ matrices)

affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

#### Restriction of a convex function to a line

 $f: \mathbf{R}^n \to \mathbf{R}$  is convex if and only if the function  $g: \mathbf{R} \to \mathbf{R}$ ,

$$g(t) = f(x+tv),$$
  $\operatorname{dom} g = \{t \mid x+tv \in \operatorname{dom} f\}$ 

is convex (in t) for any  $x \in \operatorname{\mathbf{dom}} f$ ,  $v \in \mathbf{R}^n$ 

can check convexity of  $\boldsymbol{f}$  by checking convexity of functions of one variable

example. 
$$f: \mathbf{S}^n \to \mathbf{R}$$
 with  $f(X) = \log \det X$ ,  $\operatorname{dom} f = \mathbf{S}^n_{++}$ 

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$
  
=  $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$ 

where  $\lambda_i$  are the eigenvalues of  $X^{-1/2}VX^{-1/2}$ 

g is concave in t (for any choice of  $X \succ 0$ , V); hence f is concave

#### **Extended-value extension**

extended-value extension  $\tilde{f}$  of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \notin \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in  $\mathbf{R} \cup \{\infty\}$ ), means the same as the two conditions

- $\operatorname{dom} f$  is convex
- for  $x, y \in \operatorname{dom} f$ ,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

#### First-order condition

f is **differentiable** if  $\operatorname{dom} f$  is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each  $x \in \operatorname{\mathbf{dom}} f$ 

**1st-order condition:** differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all  $x, y \in \operatorname{dom} f$ 



first-order approximation of  $\boldsymbol{f}$  is global underestimator

#### Second-order conditions

f is **twice differentiable** if  $\operatorname{\mathbf{dom}} f$  is open and the Hessian  $\nabla^2 f(x) \in \mathbf{S}^n$ ,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each  $x \in \operatorname{\mathbf{dom}} f$ 

**2nd-order conditions:** for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all  $x \in \operatorname{dom} f$ 

• if  $\nabla^2 f(x) \succ 0$  for all  $x \in \operatorname{\mathbf{dom}} f$ , then f is strictly convex

## **Examples**

quadratic function: 
$$f(x) = (1/2)x^T P x + q^T x + r$$
 (with  $P \in \mathbf{S}^n$ )

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if  $P \succeq 0$ 

least-squares objective:  $f(x) = ||Ax - b||_2^2$ 

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear:  $f(x,y) = x^2/y$ 

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[ \begin{array}{c} y \\ -x \end{array} \right] \left[ \begin{array}{c} y \\ -x \end{array} \right]^T \succeq 0$$

convex for y > 0



**log-sum-exp**:  $f(x) = \log \sum_{k=1}^{n} \exp x_k$  is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{\mathbf{diag}}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show  $\nabla^2 f(x) \succeq 0$ , we must verify that  $v^T \nabla^2 f(x) v \geq 0$  for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{(\sum_{k} z_{k} v_{k}^{2})(\sum_{k} z_{k}) - (\sum_{k} v_{k} z_{k})^{2}}{(\sum_{k} z_{k})^{2}} \ge 0$$

since  $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$  (from Cauchy-Schwarz inequality)

**geometric mean**:  $f(x)=(\prod_{k=1}^n x_k)^{1/n}$  on  $\mathbf{R}_{++}^n$  is concave (similar proof as for log-sum-exp)

## Epigraph and sublevel set

 $\alpha$ -sublevel set of  $f: \mathbb{R}^n \to \mathbb{R}$ :

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

epigraph of 
$$f: \mathbb{R}^n \to \mathbb{R}$$
:

$$\operatorname{\mathbf{epi}} f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{\mathbf{dom}} f, \ f(x) \leq t\}$$



f is convex if and only if  $\operatorname{\mathbf{epi}} f$  is a convex set

## Jensen's inequality

**basic inequality:** if f is convex, then for  $0 \le \theta \le 1$ ,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

**extension:** if f is convex, then

$$f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

## Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show  $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
  - nonnegative weighted sum
  - composition with affine function
  - pointwise maximum and supremum
  - composition
  - minimization
  - perspective

## Positive weighted sum & composition with affine function

nonnegative multiple:  $\alpha f$  is convex if f is convex,  $\alpha \geq 0$  sum:  $f_1+f_2$  convex if  $f_1,f_2$  convex (extends to infinite sums, integrals) composition with affine function: f(Ax+b) is convex if f is convex

#### examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x),$$
  $\mathbf{dom} f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$ 

• (any) norm of affine function: f(x) = ||Ax + b||

#### Pointwise maximum

if  $f_1, \ldots, f_m$  are convex, then  $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$  is convex

#### examples

- piecewise-linear function:  $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$  is convex
- sum of r largest components of  $x \in \mathbf{R}^n$ :

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex  $(x_{[i]}$  is ith largest component of x) proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

## Pointwise supremum

if f(x,y) is convex in x for each  $y \in \mathcal{A}$ , then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

#### examples

- support function of a set C:  $S_C(x) = \sup_{y \in C} y^T x$  is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||x - y||$$

ullet maximum eigenvalue of symmetric matrix: for  $X \in \mathbf{S}^n$ ,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

## Composition with scalar functions

composition of  $g: \mathbf{R}^n \to \mathbf{R}$  and  $h: \mathbf{R} \to \mathbf{R}$ :

$$f(x) = h(g(x))$$

 $\begin{array}{ll} f \text{ is convex if} & g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ & g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}$ 

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$

ullet note: monotonicity must hold for extended-value extension  $\tilde{h}$ 

#### examples

- $\exp g(x)$  is convex if g is convex
- 1/g(x) is convex if g is concave and positive

# Outline

Convex set

Convex functions

Convex problems

## Optimization problem in standard form

minimize 
$$f_0(x)$$
 subject to  $f_i(x) \leq 0, \quad i=1,\ldots,m$   $h_i(x)=0, \quad i=1,\ldots,p$ 

- $x \in \mathbf{R}^n$  is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$  is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i=1,\ldots,m$ , are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$  are the equality constraint functions

#### optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^* = \infty$  if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$  if problem is unbounded below

## Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- ullet we call  ${\mathcal D}$  the **domain** of the problem
- the constraints  $f_i(x) \leq 0$ ,  $h_i(x) = 0$  are the explicit constraints
- ullet a problem is **unconstrained** if it has no explicit constraints (m=p=0)

#### example:

minimize 
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints  $a_i^T x < b_i$ 

## Feasibility problem

$$\begin{array}{ll} \text{find} & x \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

can be considered a special case of the general problem with  $f_0(x) = 0$ :

$$\begin{array}{ll} \text{minimize} & 0 \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $p^{\star} = 0$  if constraints are feasible; any feasible x is optimal
- ullet  $p^\star = \infty$  if constraints are infeasible

## Convex optimization problem

#### standard form convex optimization problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $a_i^T x = b_i, \quad i = 1, \dots, p$ 

- ullet  $f_0,\,f_1,\,\ldots$  ,  $f_m$  are convex; equality constraints are affine
- ullet problem is *quasiconvex* if  $f_0$  is quasiconvex (and  $f_1, \ldots, f_m$  convex)

often written as

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $Ax = b$ 

important property: feasible set of a convex optimization problem is convex

#### example

$$\begin{array}{ll} \text{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \text{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- $f_0$  is convex; feasible set  $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$  is convex
- ullet not a convex problem (according to our definition):  $f_1$  is not convex,  $h_1$  is not affine
- equivalent (but not identical) to the convex problem

minimize 
$$x_1^2 + x_2^2$$
  
subject to  $x_1 \le 0$   
 $x_1 + x_2 = 0$ 

## Local and global optima

$$z$$
 feasible,  $||z-x||_2 \le R \implies f_0(z) \ge f_0(x)$ 

consider 
$$z = \theta y + (1 - \theta)x$$
 with  $\theta = R/(2\|y - x\|_2)$ 

- $||y x||_2 > R$ , so  $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
- $||z x||_2 = R/2$  and

$$f_0(z) \le \theta f_0(x) + (1 - \theta) f_0(y) < f_0(x)$$

which contradicts our assumption that x is locally optimal

## Optimality criterion for differentiable $f_0$

 $\boldsymbol{x}$  is optimal if and only if it is feasible and

$$\nabla f_0(x)^T (y-x) \ge 0$$
 for all feasible  $y$ 



if nonzero,  $\nabla f_0(x)$  defines a supporting hyperplane to feasible set X at x

• unconstrained problem: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize 
$$f_0(x)$$
 subject to  $Ax = b$ 

x is optimal if and only if there exists a  $\nu$  such that

$$x \in \operatorname{dom} f_0$$
,  $Ax = b$ ,  $\nabla f_0(x) + A^T \nu = 0$ 

• minimization over nonnegative orthant

minimize 
$$f_0(x)$$
 subject to  $x \succeq 0$ 

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \geq 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

## Linear program (LP)

$$\begin{array}{ll} \text{minimize} & c^Tx+d\\ \text{subject to} & Gx \preceq h\\ & Ax=b \end{array}$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



## **Examples**

**diet problem:** choose quantities  $x_1, \ldots, x_n$  of n foods

- ullet one unit of food j costs  $c_j$ , contains amount  $a_{ij}$  of nutrient i
- healthy diet requires nutrient i in quantity at least  $b_i$

to find cheapest healthy diet,

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \succeq b, \quad x \succeq 0 \end{array}$$

#### piecewise-linear minimization

minimize 
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

equivalent to an LP

minimize 
$$t$$
 subject to  $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$ 

## Quadratic program (QP)

- $P \in \mathbf{S}_{+}^{n}$ , so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



## **Examples**

#### least-squares

minimize 
$$||Ax - b||_2^2$$

- analytical solution  $x^* = A^{\dagger}b$  ( $A^{\dagger}$  is pseudo-inverse)
- can add linear constraints, e.g.,  $l \leq x \leq u$

### linear program with random cost

minimize 
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} \, c^T x + \gamma \, \mathbf{var}(c^T x)$$
 subject to  $Gx \leq h$ ,  $Ax = b$ 

- ullet c is random vector with mean  $\bar{c}$  and covariance  $\Sigma$
- ullet hence,  $c^Tx$  is random variable with mean  $\bar{c}^Tx$  and variance  $x^T\Sigma x$
- $\gamma>0$  is risk aversion parameter; controls the trade-off between expected cost and variance (risk)