Álgebra Linear Aula 9

Josefran de Oliveira Bastos

Universidade Federal do Ceará

Problema

Encontre critérios para a inversão de uma matriz 3×3 .

Submatriz Menor $T_{i,j}$

Dado uma matriz quadrada A de tamanho $n \times n$ definimos a submatriz $T_{i,j}$ como sendo a matriz quadrada de tamanho $(n-1) \times (n-1)$ obtida a partir de A após "deletarmos" a linha i e a coluna j.

Submatriz Menor $T_{i,j}$

Dado uma matriz quadrada A de tamanho $n \times n$ definimos a submatriz $T_{i,j}$ como sendo a matriz quadrada de tamanho $(n-1) \times (n-1)$ obtida a partir de A após "deletarmos" a linha i e a coluna j.

Determinante

O determinante $\det(A)$ de uma matriz quadrada A é definido como

$$\det(A) = \begin{cases} (A)_{1,1}, & \text{se } n = 1; \\ \sum_{j=1}^{n} (-1)^{1+j} (A)_{1,j} \det(T_{1,j}), & \text{c.c.} \end{cases}$$

Seja A uma matriz quadrada de tamanho $n \times n$, com $n \ge 2$. As seguintes afirmações são verdadeiras:

Seja A uma matriz quadrada de tamanho $n \times n$, com $n \ge 2$. As seguintes afirmações são verdadeiras:

1. Para todo $1 \le i_1 < i_2 \le n$ temos

$$\sum_{j=1}^{n} (-1)^{i_1+j} (A)_{i_1,j} \det(T_{i_1,j}) = \sum_{j=1}^{n} (-1)^{i_2+j} (A)_{i_2,j} \det(T_{i_2,j}).$$

Seja A uma matriz quadrada de tamanho $n \times n$, com $n \ge 2$. As seguintes afirmações são verdadeiras:

1. Para todo $1 \le i_1 < i_2 \le n$ temos

$$\sum_{j=1}^{n} (-1)^{i_1+j} (A)_{i_1,j} \det(T_{i_1,j}) = \sum_{j=1}^{n} (-1)^{i_2+j} (A)_{i_2,j} \det(T_{i_2,j}).$$

2. Para todo $1 \le i \le n$ e $1 \le k \le n$ temos

$$\sum_{j=1}^{n} (-1)^{i+j} (A)_{i,j} \det(T_{i,j}) = \sum_{j=1}^{n} (-1)^{j+k} (A)_{j,k} \det(T_{j,k}).$$

Teorema

Seja A uma matriz quadrada, temos que $det(A) = det(A^T)$.

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Cofator da entrada $(A)_{i,j}$

Para i e j fixos denotamos por $C_{i,j} = (-1)^{i+j} M_{i,j}$.

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Cofator da entrada $(A)_{i,j}$

Para i e j fixos denotamos por $C_{i,j} = (-1)^{i+j} M_{i,j}$.

Expansão em cofatores

Dado uma matriz quadrada A de tamanho $n \times n$ denominamos por

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Cofator da entrada $(A)_{i,j}$

Para i e j fixos denotamos por $C_{i,j} = (-1)^{i+j} M_{i,j}$.

Expansão em cofatores

Dado uma matriz quadrada A de tamanho $n \times n$ denominamos por

ullet Expansão em cofatores ao longo da linha i

$$\det(A) = (A)_{i,1}C_{i,1} + \dots + (A)_{i,n}C_{i,n}.$$

Detonamos por $M_{ij}(A) = \det(T_{i,j})$.

Cofator da entrada $(A)_{i,j}$

Para i e j fixos denotamos por $C_{i,j} = (-1)^{i+j} M_{i,j}$.

Expansão em cofatores

Dado uma matriz quadrada A de tamanho $n \times n$ denominamos por

ullet Expansão em cofatores ao longo da linha i

$$\det(A) = (A)_{i,1}C_{i,1} + \dots + (A)_{i,n}C_{i,n}.$$

ullet Expansão em cofatores ao longo da coluna j

$$\det(A) = (A)_{1,j}C_{1,j} + \dots + (A)_{n,j}C_{n,j}.$$

Calcule

$$\left[\begin{array}{ccc}
3 & 1 & -4 \\
3 & 2 & 1 \\
5 & 3 & 2
\end{array}\right]$$

Calcule

 $\left|\begin{array}{ccc} 3 & 0 & 0 \\ 3 & 2 & 1 \\ 5 & 3 & 0 \end{array}\right|$

Calcule

$$\begin{array}{c|cccc}
3 & 0 & 0 \\
3 & 2 & 0 \\
5 & 3 & 1
\end{array}$$

Calcule

 $\left| \begin{array}{ccc|c}
3 & 2 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array} \right|$

Calcule

$$\left| \begin{array}{cccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array} \right|$$

Se A é uma matriz triangular de tamanho $n \times n$ então $\det(A) = \prod_{i=1}^n (A)_{i,i}$.

Calcule

$$\left| \begin{array}{ccc|c}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 3 & 1
\end{array} \right|$$

Calcule

$$\left|\begin{array}{ccc|c} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 3 & 1 \end{array}\right|$$

Teorema

Se A é uma matriz quadrada com uma linha ou coluna nula então $\det(A)=0.$