Fonctions numériques (TS2)

Exercice 1

Soit la fonction f définie par : $f(x) = x^3 - 3x^2 + 4$

On note \mathcal{C}_f sa courbe dans un repère orthonormé.

- 1. Étudier le sens de variations de f puis établir son tableau de variations.
- 2. Justifier que l'équation f(x) = 2 admet au moins une solution dans \mathbb{R} .
- 3. Montrer que f admet sur $[2, +\infty[$ une bijection réciproque f^{-1} dont on précisera l'ensemble de définition.
- 4. Montre que le point (1,2) est un point d'inflexion de \mathscr{C}_f .
- 5. Tracer \mathscr{C}_f et $\mathscr{C}_{f^{-1}}$.

Exercice 2

Soit la fonction f définie par : $f(x) = \frac{x^3 + x^2 - 4}{x^2 - 4}$

On note par \mathcal{C}_f sa courbe dans un repère orthonormé.

- 1. (a) Déterminer les asymptotes à la courbe \mathscr{C}_f .
 - (b) Soit l'asymptote oblique Δ de \mathscr{C}_f . Étudier la position relative de \mathscr{C}_f par rapport à Δ .
- 2. Étudier le sens de variations de f puis établir son tableau de variations.
- 3. Soit I le point d'intersection de Δ et \mathscr{C}_f . Montrer que I est un centre de symétrie de \mathscr{C}_f .
- 4. Tracer \mathscr{C}_f (unité 1cm).

Exercice 3

On considère la fonction f définie par : $f(x) = \frac{2x - \sqrt{x}}{2 + \sqrt{x}}$.

- 1. Déterminer Df puis calculer $\lim_{x \to +\infty} f(x)$.
- 2. (a) Montrer que sa dérivée est définie par : $f'(x) = \frac{x + 4\sqrt{x} 1}{\sqrt{x}(2 + \sqrt{x})^2}$.
 - (b) Résoudre l'équation : $X^2 + 4X 1 = 0$ puis en déduire le signe de f'(x) ainsi que les variations de f sur Df.
 - (c) Dresser alors le tableau de variations de la fonction f sur Df. On veillera notamment à calculer la valeur exacte de l'extremum de f.
- 3. Déterminer la branche infinie de la courbe de f puis construire cette courbe (unité 8cm).

Exercice 4

Soit la fonction f définie par : $f(x) = (1-x)\sqrt{|1-x^2|}$ \mathscr{C}_f sa courbe dans un repère orthonormé d'unité 2cm.

- 1. Déterminer l'ensemble de définition de f.
- 2. Etudier la dérivabilité de f en 1 et -1.
- 3. Calculer f'(x) et étudier son signe. Dresser le tableau de variations de f.
- 4. Déterminer les branches infinies de la courbe de f.
- 5. Tracer \mathcal{C}_f dans le repère.

Exercice 5

Partie A

Soit la fonction *P* définie par $P(x) = 4x^3 - 3x - 8$.

- 1. Etablir le tableau de variations de *P*.
- 2. Montrer que l'équation P(x) = 0 admet une unique solution α dans \mathbb{R} . Vérifier que $\alpha \in [1,45; 1,46]$.
- 3. En déduire le signe de P(x) sur \mathbb{R} .

Partie B

Soit la fonction f définie sur $[0, +\infty[$ par : $f(x) = \frac{x^3 + 1}{4x^2 - 1}$. \mathscr{C}_f sa courbe représentative.

- 1. Etudier les limites de f aux bornes de Df.
- 2. Calculer f'(x) en fonction de P(x).
- 3. En déduire le signe de f'(x) puis dresser le tableau de variations de f.
- 4. Montrer que $f(\alpha) = \frac{3}{8}\alpha$.
- 5. Montrer que la droite d'équation $\mathcal{D}: y = \frac{x}{4}$ est une asymptote à \mathcal{C}_f .
- 6. Étudier les positions relatives de \mathscr{C}_f et \mathscr{D} .
- 7. Tracer \mathcal{C}_f dans un repère orthonormé.

Exercice 6

Partie A

Soit la fonction g définie par : $g(x) = -x\sqrt{1+x^2} - 1$.

- 1. Etudier les variations de g.
- 2. Montrer que l'équation g(x) = 0 admet une unique solution α dans \mathbb{R} .
- 3. Déterminer la valeur exacte de α .
- 4. En déduire que : si $\alpha < 0$ alors g(x) > 0 et si $\alpha \ge 0$ alors $g(x) \le 0$

Partie B

Soit la fonction f définie par :

$$f(x) = -\frac{x^3}{3} - \sqrt{1 + x^2}.$$

- 1. Calculer les limites aux bornes de Df.
- 2. Déterminer la nature des branches infinies de \mathscr{C} .
- 3. Calculer f'(x) en fonction de g(x).
- 4. Montrer que $f(\alpha) = \frac{3 \alpha^4}{3\alpha}$.
- 5. Dresser le tableau de variations de f.
- 6. Déterminer l'équation de la tangente (T) à \mathscr{C}_f au point d'abscisse 0.
- 7. Étudier la position relative de \mathscr{C} par rapport à (T).
- 8. Tracer \mathcal{C}_f dans un repère orthonormé d'unité 2cm.

Exercice 7

On considère la fonction f définie par :

$$f(x) = \begin{cases} -x + 2 - \frac{2x}{x^2 + 1} & \text{si } x \le 1\\ x - 1 - 3\sqrt{x^2 - 1} & \text{si } x > 1 \end{cases}$$

- 1. Calculer les limites aux bornes de D_f .
- 2. Etudier la continuité de f en 1.
- 3. Etudier la dérivabilité de f en 1. Interpréter graphiquement le résultat.
- 4. (a) Déterminer les asymptotes de \mathscr{C}_f .
 - (b) Etudier la position de \mathscr{C}_f par rapport à ses asymptotes.
- 5. Calculer f'(x) sur les intervalles où f est dérivable en justifiant la dérivabilité de f sur chacun de ces intervalles puis dresser son tableau de variations.
- 6. Construire la courbe \mathscr{C}_f .
- 7. (a) Soit g la restriction de f à l'intervalle $I =]-\infty$, 1]. Montrer que g réalise une bijection de I vers un intervalle J à préciser.
 - (b) Tracer $\mathscr{C}_{g^{-1}}$ dans le repère.

Exercice 8

Soit $f(x) = \cos 4x + 2\sin 2x$.

- 1. Déterminer D_f puis justifier le choix de $I = [0, \pi]$ comme intervalle d'étude de f.
- 2. Montrer que : $f'(x) = 4(1 2\sin 2x)\cos 2x$, $x \in I$.
- 3. Résoudre dans *I* l'équation f'(x) = 0.

- 4. En déduire le tableau de variations de f.
- 5. Construire \mathcal{C}_f sur $[0, \pi]$.

Exercice 9

Soit
$$f(x) = \frac{\cos^2 x}{\sin x}$$
.

- 1. Déterminer l'ensemble de définition de f.
- 2. Démontrer que f est une fonction impaire et periodique de période 2π .
- 3. Démontrer que \mathscr{C}_f admet la droite $x = \frac{\pi}{2}$ comme axe de symétrie.
- 4. Dresser le tableau de variations de f sur $\left[0, \frac{\pi}{2}\right]$.
- 5. Construire \mathscr{C}_f sur $[-\pi, \pi]$.