

DATASET .

Adj Close (BNB)	Adj Close (USDT)	Adj Close (ETH)
1.99077	1.00818	320.884003
1.79684	1.00601	299.252991
1.67047	1.00899	314.681000
1.51969	1.01247	307.907990
1.68662	1.00935	316.716003

299.03000	1.00000	1662.770000
296.45000	1.00000	1657.060000
301.58000	1.00010	1696.460000
279.60000	1.00000	1507.780000
277.30000	1.00000	1470.760000
	1.99077 1.79684 1.67047 1.51969 1.68662 299.03000 296.45000 301.58000 279.60000	1.99077 1.00818 1.79684 1.00601 1.67047 1.00899 1.51969 1.01247 1.68662 1.00935 299.03000 1.00000 296.45000 1.00000 301.58000 1.00010 279.60000 1.00000

Normalización del dataset y particiones de train y test

```
1 scaler = MinMaxScaler()
 2 X = scaler.fit transform(X)
 3 Y = scaler.fit transform(Y)
 1 x train, x test, y train, y test = train test split(X,Y, test size=0.3, random state = 20)
 1 print("x train shape: ", x train.shape)
 2 print("x test shape: ", x test.shape)
 3 print("y train shape: ", y train.shape)
 4 print("y test shape: ", y test.shape)
x train shape: (1227, 3)
x test shape: (526, 3)
y train shape: (1227, 1)
y test shape: (526, 1)
```

Random Forest utilizado y sus accuracy

```
1 #@title **Random Forest** { display-mode: "form" }
2 rndforest = RandomForestRegressor(n_estimators=300)
3 rndforest.fit(x_train, y_train.ravel())
4
5 Y_rndf = rndforest.predict(X)
6
7 print("TRAINING ACCURACY:", rndforest.score(x_train, y_train))
8 print("VALIDATION ACCURACY:", rndforest.score(x_test, y_test))
```

```
TRAINING ACCURACY: 0.9950808923364821 VALIDATION ACCURACY: 0.965203548089206
```

SVR con kernel rbf y su accuracy

```
1 #@title **SVR (rbf)** { display-mode: "form" }
2 est = SVR(kernel='rbf')
3 est.fit(x train,y train.ravel())
4
5 Y rbf = est.predict(X)
6
7 print("TRAINING ACCURACY:", est.score(x train, y train))
8 print("VALIDATION ACCURACY:", est.score(x test, y test))
```

```
TRAINING ACCURACY: 0.9170323811294818
VALIDATION ACCURACY: 0.9249098102981248
```

SVR con kernel Poly y sus accuracy

```
1 #@title **SVR (poly)** { display-mode: "form" }
2 est2 = SVR(kernel='poly')
3 est2.fit(x train,y train.ravel())
4
5 Y poly = est2.predict(X)
7 print("TRAINING ACCURACY:", est2.score(x train, y train))
8 print("VALIDATION ACCURACY:", est2.score(x test, y test))
```

TRAINING ACCURACY: 0.8895269208830948
VALIDATION ACCURACY: 0.8899125255848319

SVR con kernel linear y su accuracy

```
1 #@title **SVR (linear)** { display-mode: "form" }
2 est3 = SVR(kernel='linear')
3 est3.fit(x train,y train.ravel())
4
5 Y linear = est3.predict(X)
6
7 print("TRAINING ACCURACY:", est3.score(x train, y train))
8 print("VALIDATION ACCURACY:", est3.score(x test, y test))
```

TRAINING ACCURACY: 0.8487881995414908
VALIDATION ACCURACY: 0.866432604752901

Resultados obtenidos

RNN utilizada

```
X train, Y train = np.array(X train), np.array(Y train)
X train.shape
x tr, x te, y tr, y te = train test split(X train, Y train, test size=0.20, random sta
model = Sequential()
model.add(Bidirectional(GRU(units = 70, activation = 'relu', return sequences = True,
model.add(Dropout(0.3))
model.add(GRU(units = 80, activation = 'relu', return sequences = True))
model.add(Dropout(0.3))
model.add(GRU(units = 110, activation = 'relu'))
model.add(Dropout(0.3))
model.add(Dense(1))
early stop = EarlyStopping(monitor='val loss',mode='min', verbose=1, patience=50)
model.compile(optimizer='adam', loss='mse',metrics=['mse'])
history= model.fit(x tr, y tr,
                   epochs = 50,
                   batch size=256,
                   validation split=0.1)
```

Resultados obtenidos con la RNN

