Logica, Kritisch denken en Informatica

Module Logica

DOELSTELLINGEN

- zelfstandig kunnen studeren (e-learning)
- Engelse taal gewoon worden
- Het leren denken als IT'er 'computer denken'
- Verschillende onderdelen in Logica:
 - -Basis van formele logica: nodig voor het 'programmeer-denken'
 - -Cateroriek denken & VENN diagrammen: Object geöriënteerd ontwerp en programmatie
 - -Kritisch denken: Software testen en selectief opzoeken van informatie

Module Logica

EVALUATIE

- Examen:
 - -30-tal multiple choice vragen (vragen uit elke online-multiple choice test)
- Opdracht Logica: in te dienen ten laatste op 13/10/2020

Twee onderdelen:

- 1. 30-tal vragen: antwoorden indienen (via Moodle)
- 2. 2. Eind-test online:

https://courses.edx.org/courses/course-v1:Microsoft+DEV262x+1T2018a/course/print screen maken van resultaat (beeldformaat) en uploaden via Moodle

- 1: Deductie en Inductie
 - a. Inductieve vs deductieve redeneringen
 - b.Deductie en deductieve syllogismen
 - i. Geldig en ongeldig
 - ii. Vorm van logische redenering
 - iii. Deductieve redeneringen en computer code
 - iv. Waarheidstabel opstellen
 - c. Categorieke logica
 - d. Venn diagrammen
- 3: Inductief redeneren en Software Testen: Hoe kritisch denken?
 - a. De logica van wetenschap
 - b. Zoeken naar de oorzaak (methoden van Mill)
 - c. Kritisch denken en modern wetenschap
 - d. Toepassen van kritisch denken op software testen

Inhoud Online Module Logica

1. Inleiding Logica

Wat is Logica?

Proposities en statements

Waarheidstabellen opstellen

2. Deductie en Inductie

Inductieve vs deductieve redeneringen

Deductie en deductieve syllogismen

Geldig en ongeldig

Vorm van logische redenering

Deductieve redeneringen en computer code

3. Categorieke logica (denken in categorieën)

Venn diagrammen

4. Inductief redeneren en Software Testen: Hoe kritisch denken?

De logica van wetenschap

Zoeken naar de oorzaak (methoden van Mill)

Kritisch denken en modern wetenschap

1 Inleiding: Wat is Logica?

- De studie van regels (syllogismen) die beschrijven hoe men correcte verbanden legt tussen (logische) uitspraken.
- Logica gaat over <u>waarheid/onwaarheid</u> van uitspraken
- uitspraak = bewering, kan waar of onwaar zijn in <u>bep. Context</u>

Sinaasappels zijn oranje Het regent Morgen gaat het sneeuwen

-> uitspraken zijn ofwel waar, ofwel onwaar, maar nooit allebei

Propositie (uitspraak die waar/vals is)

propositie of een logische uitspraak=

Een uitspraak met waar/onwaar eigenschap:

Bv Alle katten zijn zoogdieren Sommige honden hebben vlooien Geen enkele leeuw is geschikt als huisdier

Logische uitspraken (Statements)

Een *samengestelde logische uitspraak* zijn twee of meer enkelvoudige logische uitspraken die samengebracht worden door een *operator*.

- Jan is thuis EN Piet is thuis
- Er zit een gat in de vloer OF lk begin dingen te zien
- Je krijgt een boete (true/false)

```
- Je rijdt onder Invloed (true/false)
```

EN

-Je moet in het zakje blazen(true/false)

Oefening:

Geef nog een OF voorbeeld.... Je krijgt een boete (true/false):

OF

-...

Deductie en Inductie

Deductieve redenering

De logica waarbij men vanuit een algemene uitspraak vertrekt om een conclusie te vormen voor een specifiek geval

Inductieve redenering

Men vertrekt vanuit een reeks van speficieke gevallen om tot een algmene uitspraak te komen.

De <u>conclusie</u> van een inductieve bewering is <u>nooit gegarandeerd</u>

Deductief redeneren

Voorbeeld

Alle mensen zijn sterfelijk (premisse) Socrates is een mens (premisse)

Dus, Socrates is sterfelijk(conclusie)

Dit is een <u>deductief syllogism</u>

Syllogisme: een logische redenering die uit 2 beweringen (premissen) bestaat, gevolgd door een daaruit logisch afgeleide conclusie

Zwakke of Sterke Inductieve redenering

Zwakke redenering

- 1. Deze mand bevat 100 appels
- 2. 3 willekeurig geselecteerde appels uit de mand zijn rijp
- 3. Dus, waarschijnlijk zijn alle appels in de mand rijp

Sterke redenering

- 1. Deze mand bevat 100 appels
- 2. 80 willekeurig geselecteerde appels uit de mand zijn rijp
- 3. Dus, waarschijnlijk zijn alle appels in de mand rijp

Waneer deductieve redenering

- Een deductieve redenering garandeert dat wanneer alle premissen waar zijn, de dat de conclusie steeds waar is.
- Indien voor alle premissen de conclusie gegarandeerd is, dan is de redenering geldig
- Indien de conclusie in een redenering niet gegarandeerd is, dan is de redenering <u>ongeldig</u>
- (on)Geldigheid is niet hetzelfde als (on)waarheid

Geldigheid

 Bij een geldige deductie is het onmogelijk dat uit ware premissen een valse conclusie volgt

Bij inductie is geldigheid niet van toepassing!

Geldigheid is enkel van toepassing bij deductieve redeneringen!

Voorbeelden deductieve redenering

- Alle studenten eten pizza
- Sabine is een student
- => Dus, Sabine eet pizza

- Alle atleten gaan naar de fitness
- Benny is een atleet
- => Dus, Benny gaat naar de fitness

Voorbeeld 3: deductieve geldigheid

Geldige deductieve redenering

- Alle nachtvlinders zijn nachtdieren
- 2. Alle nachtvlinders zijn insekten
- 3. Dus, sommige insekten zijn nachtdieren

In symbolen uitgedrukt:

Let V=nachtvlinder, N=nachtdier, and I=insecten

- 1. Alle V zijn N
- 2. Alle V zijn I
- Dus, sommige I zijn N

Deductieve Syllogismen

Modus Ponens

Vorm van de redenering

If p then q p
q

Als Jan thuis is, is An thuis
Jan is thuis
----Dus, An is thuis

Deductive Syllogismen

- Modus Tollens
- Vorm van de redenering:

If p then q	p -> q	
Not q	∼q	
Therefore Not p	~p	

Als je slecht geslapen hebt, ben je moe Je bent niet moe

Dus, je hebt niet slecht geslapen

Opgelet: foutieve redenering

modus nonsens

If p then q q -----Therefore p

p -> q -----

p

Als je slecht geslapen hebt, ben je moe Je bent moe

Dus, je hebt slecht geslapen

Deductieve Syllogismsen

Reductio ad Adsurdum: bewijs uit het ongerijmde

Vorm van de redenering:

Om p te bewijzen

Veronderstel ~p (niet p)

Vanuit de veronderstelling, besluit q

Bewijs dat q niet mogelijk is, want is absurd

Conclusie: p moet waar zijn

Voorbeeld reductio ad absurdum

- Stel: de aarde plat is
- · dan kan men er af vallen.
- Maar niemand kan van de aarde af vallen,
- dus de aarde is niet plat.

Deductieve Syllogismen

Disjunctie

p or q
Not p
-1 c

Therefore q

Ofwel treden de Beatles op vanavond *ofwel* treden de Rolling Stones op Vanavond treden de Beatles **niet** op

.....

Dus de Rolling Stones treden vanavond op

https://learning.edx.org/course/course-v1:Microsoft+DEV262x+1T2018a/block-

v1:Microsoft+DEV262x+1T2018a+type@sequential+block@b8f34124-9792-ad2d-ffd3-84b79faaa59a/block-

v1:Microsoft+DEV262x+1T2018a+type@vertical+block@7e4c63d7-a12c-7909-2709-3fcbc2f10aa9

Deductieve Syllogisme

Hypothetische syllogisme

p-> q q->r	Als Jos gaat zwemmen, dan gaat Els zwemmen
4-/1	Als Els gaat zwemmen, dan gaat Koen zwemmen
p->r	Dus, Als jos gaat zwemmen, dan gaat Koen zwemmen
	p->r

Samenvatting Evaluatie van redeneringen

Deductieve redenering

- ➤ Geldig
- ➤ Ongeldig

- ➤ Het deugt (Sound)
- ➤ Deugt niet (unsound)
- ➤ Deugt niet (Unsound)

Inductieve redenering

- >Sterk
- **≻**Zwak

- ➤ Overtuigend (Cogent)
- ➤ Niet Overtuigend (uncogent)
- ➤ Niet Overtuigend (uncogent)

Herkennen van Deductief/Inductief

➤ <u>Deductieve Redenering</u>: redenering waarbij de conclusie *noodzakelijkerwijze* volgt uit de premissen

➤ Inductieve Redenering: redenering waarbij de conclusive waarschijnlijk volgt uit de premissen

Indicatoren Deductie/Inductie

Decuctieve Redenering

- > zeker
- > absoluut
- noodzakelijkerwijze

Inductieve redenering

- > waarschijnlijk
- > mogelijkerwijze

Oefening Deductief of Inductief?

Elke les filosofie die ik tot nu toe heb gevolgd was leuk Dus, de volgende les zal *waarschijnlijk* leuk zijn.

Als het een les filosofie is, dan is het zeker dat de les altijd leuk is.

De volgende les is een les filosofie

Dus, de volgende les is leuk

Evaluatie Deductieve redeneringen

➤ Geldigheid (valid)

- >Zegt enkel iets over de **structuur** van de redenering
- ➤ Zegt enkel dat *indien de premissen waar* zijn, dan moet de conclusie *noodzakelijk* waar is

Deugdelijkheid (sound)

- ➤ Gaat over **structuur én waarheid** van redenering
- De redenering is **geldig en alle premissen zijn waar**

Evaluatie van Inductieve redeneringen

> Sterkte

- >Zegt iets over de structuur van de redenering
- ➤ Betekent dat indien de premissen waar zijn, de conclusive waarschijnlijk waar is

> Overtuigend

- ➤ Zegt iets over de structuur én waarheid van de redenering
- ➤ De redenering is <u>sterk en</u> de premissen zijn allemaal waar

Verkeerde redenering type 1

p --> q q Dus p

Als Jan thuis is, is An thuis An is thuis Dus, Jan is thuis

Verkeerde redenering type 2

Als de hond honger heeft, dan blaft hij De hond heeft geen honger Dus de hond blaft niet

Vorm van redenering (argument forms) en Computer Programma's

Scratch

https://scratch.mit.edu/

Tutorial

https://www.youtube.com/watch?v=VlpmkeqJhmQ

Karel/Karen de Robot

https://www.kareltherobot.ch/karel.html

Operatoren

Operatoren

NIET

EN

OF

ALS...DAN

XOR (exclusive OR)

(Logische) Operatoren

Monadische en Dyadische (unaire en binaire) operatoren

monadische operator werken op een enkelvoudige logische uitspraak (statement).

dyadische operatoren werken op 2 enkelvoudige statements.

Negatie – Enkelvoudige operator

Symbool

~ NOT

Voorbeeld

A Jan is niet thuis (het is niet het geval dat Jan thuis is)

Symbool in javascript, C, C#:

Voorbeeld:

!a

Conjunctie (EN)— dyadische operator

Symbool

&& of ^

Twee delen in een conjunctie zijn de conjuncten

Voorbeeld

A && B

Jan is thuis **EN** Piet is thuis

Symbool in javascript, C, C#:

&&

Voorbeeld:

a && b

Conjunctie (OF)— dyadische operator

```
Symbool
|| of v
Twee delen in een conjunctie zijn de conjuncten
```

Voorbeeld

A v B Jan is thuis **OF** Piet is thuis

Symbool in javascript, C, C#:

Voorbeeld:

a || b

ALS...DAN Conditie - implicatie - Operator

```
Symbool
```

⊃ of ->

2 delen in de conditie:

De antecedent

De consequent

Voorbeeld:

- **J-> P** (J=antecedent en P is consequent)
- Als Jan thuis is dan is Piet thuis

Symbool in javascript, C, C#:

```
if (...) {...}
```

Voorbeeld:

```
if (J) {
F
```


Waarheidtabel

- Zal alle waar en vals- combinaties van statements en tabelvorm zetten en het resultaat van de operator
- 1 is Waar (true)
- 0 is Valse (false)
- Voorbeeld: monadische operator NIET(!)

Vb Waarheidstabel van statement

(A)n is **NIET** thuis

Α	!A
1(true)	O(false)
O(false)	1(true)

Waarheidstabel EN operator

Voorbeeld: Dyadische operator EN(&&)

- Bv waarheidstabel van
- (A)n is thuis EN (B)ert is op café

Α	В	A && B
1(true)	1(true)	1(true)
1(true)	O(false)	O(false)
O(false)	1(true)	O(false)
O(false)	O(false)	O(false)

Waarheidstabel OF operator

Voorbeeld: Dyadische operator OF(||)

- Bv waarheidstabel van
- (A)n is thuis OF (B)ert is op café

Α	В	A B
1(true)	1(true)	1(true)
1(true)	O(false)	1(true)
O(false)	1(true)	1(true)
O(false)	O(false)	O(false)

Waarheidstabel ALS..DAN.. operator

Voorbeeld: Dyadische operator IF..THEN..(⊃)

- Bv waarheidstabel van
- Als A DAN B is hetzelfde als !A || B

A	В	A⊃B
1(true)	1(true)	1(true)
1(true)	O(false)	O(false)
O(false)	1(true)	1(true)
O(false)	O(false)	1(true)

Waarheidstabel NAND operator

Voorbeeld: Dyadische operator NAND $\overline{\mathbf{A.B}}$

- Bv waarheidstabel van
- Als A en B beiden true zijn is A NAND B false, anders true

A	В	A NAND B
1(true)	1(true)	O(false)
1(true)	O(false)	1(true)
O(false)	1(true)	1(true)
O(false)	O(false)	1(true)

Waarheidstabel XOR operator

Voorbeeld: Dyadische operator XOR A XOR B IS ENKEL TRUE WANNEER A verschillend is van B

- By waarheidstabel van
- (A) **XOR** (B)

Α	В	A XOR B
1(true)	1(true)	O(false)
1(true)	O(false)	1(true)
O(false)	1(true)	1(true)
O(false)	O(false)	O(false)

Waarheidstabel voorbeelden

•	D	W	$D \in W$	\boldsymbol{A}	B	ofwel A ofwel B	\underline{A}	\boldsymbol{B}	$\neg (A \land B)$	$\neg A \lor \neg B$
	0	0	0	0	0	0	0	0	1	1
	0	W	O	0	1	$\frac{1}{1}$	0	1	1	1
	W	0	0] 1	1		1	0	$\frac{1}{2}$	$\frac{1}{2}$
	W	W	W	1	1	l O	1	1	O	0

Α	В	C	(A V B)) v C
0	0	0	0	0
0	0	1 1	0	1
0	1	0	0	0
0	1 0	1	0	1
1		0	0	0
1 1 1	0	1	0	1
	1	0	1	1
1	1	1	1	1

Α	В	C	(A ^ B)	٧	(A ^ C)
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0 1	0	0	0
1	0	1	0	1	1
1	.1	0 1	1	1	0
1 1 1	1	1 1	1	1	1

Opdracht: een waarheidstabel opstellen

р	q	r	S	t		(q	&&	[(r	11	s)	&&	t])
Т	F	F	Т	Т		F		F		Т		Т

Categoriek redeneren- Inhoud

- Wat is een categorieke redenering
- Sommige, Alle, geen
- Voorbeelden
- Venn diagrammen

Categorieke redenering

Een categorieke redenering (argument) is een deductieve redenering die beweringen maakt over categorieën

Categoriek redeneren

- ➤ Alle S zijn P
 - ➤ Alle katten zijn zoogdieren.
- ➤ Geen S zijn P
 - ▶Geen katten zijn honden
- ➤ Sommige S zijn P
 - ➤ Sommige zoogdieren zijn katten
- ➤ Sommige S zijn geen P
 - ➤ Sommige zoogdieren zijn geen katten

Categorisch denken: Sommige, Alle, geen

Voorbeelden:

- Alle katten zijn zoogdieren
- Sommige katten zijn huisdieren
- Geen enkele leeuw is een huisdier

Categorische syllogismen

Categorische syllogismen

Bestaan enkel uit categorische uitspraken

Voorbeeld:

Alle walvissen zwemmen Alle walvissen zijn zoogdieren Dus, sommige zoogdieren zwemmen

Alle huisdieren zijn dieren Sommige slangen zijn huisdieren Dus, sommige slangen zijn dieren

Categoriek denken - Venndiagram

Venndiagram is hulpmiddel(tool) bij het categoriek denken

Bv A=langharige dieren B=dieren met staart

Gebied 1 zijn A(langharige dieren), maar **niet** B(zonder staart)

Gebied 2 zijn A EN B (langharige dieren en dieren met staart)

Gebied 3 zijn dieren met staart (B), maar niet langharig (A).

Gebied 4 gebied buiten de 2 cirkels: alles dat **niet** langharig dier(A) **en niet** dier met staart is (B)

Vraag: In welk gebied zit Samson (Sint Bernard hond) ?

Venn diagrammen

A: Alle blonde mensen

B: Alle roodharige mensen

Betekenis: Geen A zijn B

Venn diagrammen

C: langharige dieren

D: dieren met staart

Sommige D zijn B (of ten minste 1 C is ook C)

Venn diagrammen

F: de dieren

E: de honden

Alle E zijn F

Oefening Venndiagram

Alle katten(E) zijn zoogdieren(F)

Oefening Venndiagram

Sommige langharige(A) dieren hebben een staart(M)

Oefening: Maak venndiagram

Sommige katten(C) zijn geen huisdieren(P)

Opdracht Logisch redeneren /20 punten

- 1. Geef een voorbeeld van Deductieve redenering
- 2. Geef een voorbeeld van Inductieve redenering
- 3. Geef een voorbeeld van geldige deductieve redenering
- 4. Geef een voorbeeld van een zwakke inductieve redenering
- Geef een voorbeeld van een geldige deductieve redenering die niet deugt
- 6. Geef een voorbeeld van een foutieve redenering van het type 1 & 2
- Geef een voorbeeld van de modus tollens, modus ponens en de disjunctie
- 8. Geef 2 dyadische operatoren en hun symbolen in Javascript
- 9. Stel de waarheidstabel op van !(A && B)
- 10. Stel de waarheidstabel op van !A || !B
- 11. Stel de waarheidstabel op van (q&&[(r || s) &&t])
- 12. Stel het venndiagram op voor «Geen katten zijn honden »
- 13. Stel het venndiagram op voor «Sommige katten zijn straatkatten»
- 14. Stel het venndiagram op voor « Sommige katten zijn geen straatkatten »
- 15. Stel het venndiagram op voor « Alle auto's zijn voertuigen»

Kritisch denken

Wat is kritisch denken?

Verband tussen Logica en kritisch denken

Logica

- zorgt ervoor dat we dieper gaan nadenken over een probleem
- Verleent de vaardigheid van het redeneren met goede argumenten
- Onderzoekt ideeën en test deze op waarheid

Kritisch denken: Methode van Socrates

2 belangrijke vragen:

- Wat bedoel je precies ermee?
- Welke bewijzen heb er hiervoor?

Kritisch denken in Software Design

Vraag

Voor wie is de software?

Voor wie is het niet

Waarom maken we deze software?

Wat moet de software doen?

Wat moet ze niet doen?

Bestaat er al software dat dit doet?

Wat is het eenvoudigste ontwerp van de software die de doelstellingen bereikt?

Kritisch denken in Software Testing

Een tester moet **kritisch denken** en veronderstellen dat er fouten in de software zijn ("bugs") en hij moet ze proberen te vinden

Logica in de wetenschap

Hypothetico-Deductieve Methode:

- 1. Vorm hypothese
- 2. Maak voorspellingen op basis van deze hypothese
- 3. Test de hypothese
- -> Confirmatie en Disconfirmatie

Confirmatie of disconfirmatie

Confirmatie

- Als hypethese juist is, dan zou P zich voor moeten doen
- P doet zich voor
- Dus, de hypothese is waarschijnlijk juist

Disconfirmatie

- Als hypothese juist is, dan zou P zich voor moeten doen
- P doet zich niet voor
- Dus, de hypothese is waarschijnlijk niet juist

Methode van Mill – logisch systeem

Filosoof John Stuart Mill (1806–1873): logisch system gepubliceerd

Oorzaak en effect: by ziek worden van studenten na lunch

Methode van overeenkomst

	Fries	Salad	Fish Sticks	Burger	Soup
Student 1	Χ	Χ			Χ
Student 2		Χ	X		
Student 3	X	Χ			X
Student 4		X	X	Χ	

Methode van Mill

Methode van de verschillen

Student	Salad	Burrito	Fried Rice	Burger	Sick after Lunch
Jan	X	X	X	X	X
Pat	X	X	X		

Methode van Mill

Methode van residu

- = methode van gezond verstand
- A, B, en C geven effecten X, Y and Z.
- A is de oorzaak van X.
- B is de oorzaak van Y.
- Dus, C is waarschijnlijk de oorzaak van Z

Online cursus logica

HTTPS://COURSES.EDX.ORG/COURSES/COURSE-V1:MICROSOFT+DEV262X+1T2018A/COURSE/