Problemi sul secondo principio della termodinamica (3)

- 1. Un recipiente a pareti rigide termicamente isolate è diviso in due parti, A e B, da una parete rigida nella quale è praticato un foro chiuso da una valvola che sopporta la pressione massima $p_1=1.8\cdot 10^5$ Pa. Nella porzione A del recipiente, di volume $V_A=0.02$ m³, c'è una mole di gas perfetto monoatomico alla temperatura $T_0=300$ K; la porzione B, limitata superiormente da un pistone adiabatico inizialmente bloccato, è vuota. Si toglie l'isolamento nella parte inferiore del recipiente A e lo si pone in contatto termico con un serbatoio di calore alla temperatura $T_S=600$ K fino al raggiungimento della pressione alla quale si apre la valvola che collega A con B. Il gas quindi si espande liberamente per portarsi infine all'equilibrio. Determinare:
 - a) la temperatura T_2 del gas in A+B;
 - b) il volume V_B sapendo che la variazione di entropia del gas tra lo stato iniziale e quello in cui occupa le due porzioni del recipiente è $\Delta S_{02}=15$ J/K;
 - c) il calore Q_{ASS} assorbito dal gas.

Successivamente, sbloccato il pistone, il gas viene riportato nella porzione A del recipiente mediante una trasformazione reversibile; infine viene riportato nello stato iniziale cedendo calore ad una miscela di acqua e ghiaccio. Determinare:

- d) la temperatura T_3 del gas al termine della trasformazione reversibile;
- e) la massa m_g di ghiaccio sciolto durante l'ultima trasformazione;
- f) la variazione di entropia dell'universo, del gas e dell'ambiente nel ciclo.

2. Una mole di aria ($c_V = 20$ J/Kmol) compie il ciclo ABCDA costituito dalle seguenti trasformazioni:

AB: isocora reversibile ($V_A = V_B = V_1 = 0.5 \text{ m}^3$; $T_A = 500 \text{ K}$; $T_B = 300 \text{ K}$);

BC: isoterma reversibile ($V_C = V_2 = 0.3 \text{ m}^3$);

CD: isocora reversibile;

DE: espansione libera ($V_E = V_3 = 0.35 \text{ m}^3$);

EA: isoterma reversibile.

Determinare:

- a) il rendimento η del ciclo;
- b) la variazione $\Delta S_{gas,DE}$ di entropia dell'aria nella trasformazione DE;
- c) la variazione $\Delta S_{U.ciclo}$ di entropia dell'universo nel ciclo.

3. Un cilindro adiabatico è chiuso da un pistone mobile, anch'esso adiabatico, di sezione $S=0.01~\rm m^2$. Un filo inestensibile e di massa trascurabile collega il pistone ad un peso di massa $m=50~\rm kg$, come in figura. Il cilindro contiene una mole di gas perfetto monoatomico.

Inizialmente il peso è sostenuto da un fermo e il filo non è in tensione; in queste condizioni il gas è all'equilibrio nello stato A alla temperatura ambiente, $T_A = T_{amb} = 300~{\rm K}$ e alla pressione ambiente $p_A = p_{amb} = 10^5~{\rm Pa}$. Improvvisamente si libera il peso e si lascia che il gas raggiunga lo stato di equilibrio B. Determinare:

- a) il volume V_B del gas nello stato B;
- b) la temperatura T_B del gas nello stato B.

Applicando al peso una forza regolarmente crescente, si porta in modo reversibile il gas nello stato C in cui $p_C = p_A$. Poi, si toglie l'isolamento termico al cilindro e si lascia che il gas si porti alla temperatura ambiente rimanendo alla pressione p_C . Determinare:

- c) la temperatura T_C del gas nello stato C;
- d) la variazione $\Delta S_{U,ciclo}$ di entropia dell'universo nel ciclo.
- 4. Una macchina termica irreversibile lavora tra due serbatoi alle temperature $T_2=600~{\rm K}$ e $T_1=290~{\rm K}$; dal serbatoio caldo, la macchina assorbe in un ciclo il calore $Q_2=6.5\cdot 10^4~{\rm J}$. Il lavoro fornito dalla macchina in un ciclo viene utilizzato per comprimere in modo adiabatico reversibile 4 moli di un gas ideale monoatomico dallo stato A ($T_A=300~{\rm K}$, $V_A=0.1~{\rm m}^3$) allo stato B ($V_B=0.025~{\rm m}^3$). Determinare:
 - a) il rendimento η della macchina;
 - d) l'energia resa inutilizzabile E_{IN} in un ciclo.