Introdução à Programação - 1.o semestre de 2021

Segundo Exercício Programa

Cálculo da Raiz Quadrada

Neste EP2, você deve escrever um programa que leia \mathbf{n} e $\boldsymbol{\epsilon}$ (valores do tipo double, sendo $\mathbf{n} >= \mathbf{1}$ e $\boldsymbol{\epsilon} > \mathbf{0}$), e calcule a raiz quadrada de \mathbf{n} com precisão $\boldsymbol{\epsilon}$. Para este EP não podem ser usadas funções prontas para realizar o cálculo da raiz (como a função *sqrt* declarada em *math.h*). Sendo \mathbf{x} a raiz de \mathbf{n} , idealmente gostaríamos de determinar \mathbf{x} de modo que:

$$x^2 - n = 0$$

Entretanto, na prática, iremos nos contentar em determinar um **x** tal que:

$$|x^2 - n| < \epsilon$$

Ou seja, se $\mathbf{x^2}$ é *aproximadamente* igual a \mathbf{n} , então \mathbf{x} é uma aproximação razoável de \sqrt{n} .

Para realizar o cálculo da raiz, você deve implementar o método da bissecção (ou dicotomia). Este método consiste em determinar uma solução candidata inicial e, iterativamente, refinar tal solução. A cada iteração, a solução candidata fica mais próxima da solução esperada, e após uma certa quantidade de iterações, a solução candidata estará próxima o suficiente do resultado desejado.

Inicialmente tomamos $\mathbf{x} = \mathbf{n} / \mathbf{2}$ como solução candidata. Por que $\mathbf{n} / \mathbf{2}$? Por que temos certeza que a raiz quadrada de \mathbf{n} é um valor entre $\mathbf{0}$ e \mathbf{n} (observe que isto não é válido para $\mathbf{n} < \mathbf{1}$). Logo nosso primeiro "chute" de solução é um valor que está exatamente no meio deste intervalo. A partir deste "chute inicial" podemos ter 3 situações:

- 1) se x^2 n ~ 0 (ou seja, $|x^2$ n | < ϵ), então tomamos x como aproximação boa o suficiente da raiz de n.
- 2) se $x^2 n > 0$ (ou seja $x^2 > n$), isto significa que nosso chute está alto demais. Logo o valor real da raiz deve ser menor que x. Mais especificamente, a raiz certamente estará entre $0 \in x$.
- 3) se $x^2 n < 0$ (ou seja $x^2 < n$), isto significa que nosso chute está baixo demais. Logo o valor real da raiz deve ser maior que x. Mais especificamente, a raiz certamente estará entre x e n.

Este processo ilustra a primeira iteração do método. Perceba que ao final desta primeira iteração, mesmo que a raiz de **n** não tenha sido encontrada, conseguimos reduzir pela metade nosso espaço de busca (isto é, o intervalo onde a raiz deve se encontrar). Desta forma, na iteração seguinte, o valor candidato a ser avaliado estará em um dos intervalos: **[0, n / 2]** ou **[n / 2, n]**.

Aplicando o processo repetidas vezes (ou seja, realizando várias iterações dos passos descritos, considerando sempre o novo intervalo de procura para determinar o próximo valor candidato), o intervalo onde certamente se encontra a raiz de **n** é reduzido cada vez mais. Após uma certa quantidade de iterações, ficará pequeno o suficiente de modo que o valor médio do intervalo resultante seja uma boa aproximação da raiz.

Para ilustrar o funcionamento completo do método, considere $\mathbf{n}=15$, e $\boldsymbol{\epsilon}=0.1$. Os intervalos considerados e os valores candidatos da raiz, calculados a cada iteração, serão:

```
000: intervalo = [ 0.00000000, 15.00000000] x = 7.50000000 001: intervalo = [ 0.00000000, 7.50000000] x = 3.75000000 002: intervalo = [ 3.75000000, 7.50000000] x = 5.62500000 003: intervalo = [ 3.75000000, 5.62500000] x = 4.68750000 004: intervalo = [ 3.75000000, 4.68750000] x = 4.21875000 005: intervalo = [ 3.75000000, 4.21875000] x = 3.98437500 006: intervalo = [ 3.75000000, 3.98437500] x = 3.86718750
```

Na iteração número 6 (ou seja, na 7.a iteração, uma vez que a primeira é a iteração zero), para $\mathbf{x} = 3.86718750$ temos que $|\mathbf{x}^2 - \mathbf{n}| = 0.0448608398$, ou seja, a diferença absoluta é menor do que ϵ . Portanto, tomamos este valor como a raiz quadrada aproximada de 15, dentro da margem de erro escolhida.

O programa desenvolvido por você deve gerar a seguinte saída, ao final da execução (linhas geradas antes destas três linhas finais serão ignoradas na validação da saída. Note também que não devem ser usados caracteres acentuados):

```
Numero de iteracoes: 7
Diferenca absoluta: 0.0448608398
Raiz quadrada: 3.8671875000
```

Entrega

A entrega deste EP deve ser composta apenas pelo arquivo fonte (.c) do programa desenvolvido. A entrega deverá ser feita até o dia 17/07 às 23:59 pelo eDisciplinas. Não se esqueça de indicar (através de um comentário) seu nome e número USP no início do arquivo. Fique livre para adicionar outros comentários que julgar relevantes para o bom entendimento do código. Este EP deve ser feito de forma individual.

Bônus

Tente escrever seu programa de modo que ele também consiga calcular corretamente a raiz para valores menores que 1. Ou seja, faça seu programa funcionar para $0 \le n \le 1$.

Boa diversão!;)