STA 6233: R Programming for Data Science – Spring 2022

Instructor: Matthew J. Martinez, Ph.D.

Office Hours: Monday 11:00am – 11:50am

Office Phone: 726.666.0385 (Text/Call) – This is the best way to reach me. Not e-mail.

Email: matthew.martinez@utsa.edu

Availability: I will make every effort to respond to texts within 24hours and e-mails as soon as I can. Admittedly you will receive a much faster response if you text me. I will not respond over the weekend. Do not text/call after 9:00pm CST on any day.

not respond over the weekend. Do not text/can after 9.00pm CS1

Website: https://www.linkedin.com/in/mattdemography/

Course Site: https://github.com/mattdemography/STA_6233_Spring2022

Github: https://github.com/mattdemography

Assistant: Matthew Angotti

E-Mail:

Office Hours: TBD
Assistant: Austin Pesina

E-Mail: apesina@gvec.org

Office Hours: TBD

Class Location/Meeting Times

Online Asynchronous

Description of Course

This course is designed to introduce students to the statistical program R for data analysis and manipulation. Topics include preprocessing/manipulating/combining datasets, summarizing and visualizing data techniques, writing functions, object oriented programming, data simulation and resampling methods, and interfacing R with other programming languages such as SQL, Python, C++, and Hadoop. Techniques for efficient programming will be stressed. The concept of high-performance computing (multi-core/parallel-processing) is also demonstrated.

This course is designed to move forward your utilization of R in a practical environment. Although you may find the applications discussed in this course beneficial for research purposes, the main aim of this course will be to equip you to use R as one would at a daily job in a Fortune 500 company. In this sense, the course materials and assignments will focus more on practical application than theoretical understanding.

By completing this course, you will have the opportunity to:

- 1. Develop high-end graphical representations of data
- 2. Find ways to simplify your code for readability and performance
- 3. Learn how to interface R with SQL, Python, and Github
- 4. Use web and document scraping for innovation and curation of data
- 5. Learn how to present your highly technical work to non-technical audiences in a clear, concise, and brief manner

Required Materials

All required readings will be available on Blackboard Learn. You will have to incur costs of printing posters, but this is minimal compared to textbooks. Additionally you will have to have access to a laptop to use during the course.

Course Policies

Projects and Presentations

Assignments are due on the day indicated in the syllabus before the start of class at 5:30PM via Learn. **No late work will be accepted.** Additionally, assignments *will not* be accepted via email. *We will discuss all assignments in much more detail in class.

Grades

This is a graduate level course. I assume you are in this course to gain valuable information. I also assume you will put forth maximum effort and work during and outside of class. Failure to complete projects and presentations may result in an incomplete or failing grade.

University Policies

Please visit http://www.utsa.edu/syllabus for University policies including those related to accommodations and academic dishonesty.

PROJECTS

This course will have two main projects and presentations of those projects along with an evaluation of your peers' work.

Document/Web-scrapping

This project focuses on the creation of a unique dataset using data that are mined from documents and/or web sources. You will be responsible for coming up with a research question that you desire to answer using data that are previously unavailable. This task is designed to sharpen your skills in creative problem solving and ability to distill copious information into usable products using R packages centered on text manipulation, data frame management, feature creation, and regular expressions.

You will create a poster style presentation that will be showcased in a course symposium open to the department and the public. You will also evaluate your peer's work providing constructive criticism and encouragement.

Interactive Project

For this project you will have to design an interactive presentation using data to answer a different research question. This interactive project will either be a web document utilizing graphs and interactives from ggplot, Plotly, Google Vis, or d3 or you will create and deploy a Shiny Application. This task will allow you to use R packages centered on graphical representations of data including learning how to write and compile R Markdown files. Additionally, this project sharpens your ability to distill complex data to everyday audiences in a manner they find engaging and understandable.

You will publish your results online via Github and will be responsible for providing feedback to two of your classmates on their slide deck, use of graphics and interactivity, and your own ability to understand the main takeaway from their project.

Summary of Assignments

Grading Scale

Poster Presentation Evaluation of Peer's Posters Interactive Project Evaluation of Peer's Interactive Projects

A+ = Successful Completion of All Projects Incomplete/No-Credit = Unsatisfactory Work

Tentative Class Schedule

Tentative Course Schedule of Assignments

Date(s)	Material to be Covered	Readings/Assignments/Exercises/Etc.
Week of January 17 th	 Introduction to Course and Pre- Course Material 	
Week of January 21st	Introduction to R and R Studio	
Week of January 31 st	 Data Manipulation: plyr, dplyr, Data Table 	
Week of February 7 th	 Data Readability and Performance: Functions, Loops, and Package Creation 	Idea for Document/Web Mining Due
Week of February 14 th	Document and Web Mining	
Week of February 21 st	 R Connections: Using and Learning Regular Expressions 	
Week of February 28 th	 Making Presentation Worthy Graphs: ggplot 	
Week of March 7 th	• Course Symposium (Online)	Document/Web Mining Project Due

Week of March 14 th	• Spring Break – No Class	
Week of March 21st	 Github R Markdown	Peer Evaluation of Document/Web Mining Projects Due Friday March 25 th @ 11:59pm
Week of March 28 th	 Making Interactive Presentations: Plotly and Google Vis 	
Week of April 4 th	• Shinny Apps Part 1	Idea for Interactive Project Due
Week of April 11 th	• Shinny Apps Part 2	
Week of April 18 th	 R Connections: SQL Coding Examples & Hadoop 	
Week of April 25 th	• Working Week – No Class	Interactive Project Due May 1 st @ 11:59pm
Week of May 2 nd	All Peer Evaluations Due Sunday, May 8 th 11:59pm	