Cinématique

- **Exercice 1** Soit $t\mapsto M(t)$ un mouvement tel que $t\mapsto \left\|\overrightarrow{OM}(t)\right\|$ est constante. Montrer que \overrightarrow{OM} et \overrightarrow{v} sont orthogonaux.
- Exercice 2 Montrer que les mouvements rectilignes uniformes sont ceux d'accélération nulle.
- Exercice 3 Le mouvement d'un point M(t) est circulaire de centre O et à accélération de centre O. Montrer que ce mouvement est uniforme.
- **Exercice 4** On suppose que le mouvement d'un point M(t) est tel que $\vec{a}(t)$ soit colinéaire à $\overrightarrow{OM}(t)$ (on dit qu'il s'agit d'un mouvement à accélération de centre O).
 - a) Montrer que l'application $t \mapsto \operatorname{Det}(\overrightarrow{OM(t)}, \vec{v}(t))$ est constante.
 - b) Montrer que si de plus le mouvement est circulaire, il est uniforme.

Courbes en coordonnées cartésiennes

- **Exercice 5** Etudier la courbe paramétrée définie par : $\begin{cases} x = \cos 3t \\ y = \sin 2t \end{cases}$
- **Exercice 6** Etudier la courbe paramétrée définie par : $\begin{cases} x(t) = 2\cos 2t \\ y(t) = \sin 3t \end{cases}.$
- **Exercice 7** Etudier la courbe paramétrée définie par : $\begin{cases} x = (1-t^2)/(1+t^2) \\ y = t^3/(1+t^2) \end{cases}.$
- **Exercice 8** Etudier la courbe paramétrée définie par : $\begin{cases} x = 1/t \\ y = (t^3 + 2)/t \end{cases}.$
- **Exercice 9** Etudier la courbe paramétrée définie par : $\begin{cases} x = \mathbf{e}^t \\ y = t^2 \end{cases}.$

On déterminera le point d'inflexion ainsi que l'équation de la tangente en ce point.

Courbes cartésiennes classiques

Exercice 10 Astroïde:

- a) Etudier la courbe paramétrée définie par : $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}.$
- b) On note A et B les points d'intersection des axes (Ox) et (Oy) avec tangente au point de paramètre $t \neq 0$ $\left[\pi/2\right]$ de la courbe précédente. Calculer la distance A(t)B(t).

Exercice 11 Lemniscate de Bernoulli (1654-1705):

a) Etudier la courbe paramétrée définie par : $\begin{cases} x = \frac{\sin t}{1 + \cos^2 t} \\ y = \frac{\sin t \cos t}{1 + \cos^2 t} \end{cases}$

b) On introduit les points $F\left|\sqrt[4]{\sqrt{2}}\right|$ et $F'\left|\sqrt[4]{2}\right|$.

Montrer que pour tout point M de la courbe ci-dessus : $MF \times MF' = 1/2$.

Exercice 12 Tractrice:

- a) Etudier la courbe définie par : $\begin{cases} x = t \operatorname{th} t \\ y = 1/\operatorname{ch} t \end{cases}.$
- b) On note A le point d'intersection de l'axe (Ox) avec la tangente au point M de paramètre t de la courbe ci-dessus. Préciser la nature du mouvement du point A ainsi que la valeur de la distance AM.

Exercice 13 Cardioïde

Etudier la courbe définie par :
$$\begin{cases} x(t) = 2\cos t + \cos 2t \\ y(t) = 2\sin t + \sin 2t \end{cases}.$$

Exercice 14 Deltoïde

Etudier la courbe définie par :
$$\begin{cases} x(t) = 2\cos t + \cos 2t \\ y(t) = 2\sin t - \sin 2t \end{cases}.$$

Problèmes relatifs aux tangentes

- **Exercice 15** a) Etudier la courbe $\begin{cases} x(t) = 3t^2 \\ y(t) = 2t^3 \end{cases}$.
 - b) Déterminer les droites qui sont à la fois tangente et normale à cette courbe.
- **Exercice 16** Etudier et représenter la courbe définie par $\begin{cases} x(t) = 4t^3 \\ y(t) = 3t^4 \end{cases}$.

Former une équation de la tangente au point de paramètre $\,t\in\mathbb{R}\,.$

Déterminer un paramétrage du lieu des points d'où l'on peut mener deux tangentes à la courbe précédente orthogonales et étudier cette courbe.

Exercice 17 Soit $t \mapsto M(t)$ un arc régulier tel que en tout point M(t) la tangente est $D_t : (t^3 + 3t)x - 2y = t^3$. Réaliser un paramétrage en coordonnées cartésiennes de l'arc étudié et le représenter.

Courbes en coordonnées polaires

- **Exercice 18** Etudier la courbe d'équation polaire $\rho = \cos^2 \theta$.
- *Exercice 19* Etudier la courbe d'équation polaire $\rho = \cos 3\theta$.
- *Exercice 20* Etudier la courbe : $\rho = \cos 3\theta 1$.
- *Exercice 21* Etudier la courbe d'équation polaire $\rho = \tan \theta$.
- **Exercice 22** Etudier la courbe : $\rho = 1 + 2\cos 2\theta$.
- **Exercice 23** Etudier la courbe $\rho = \frac{\cos \theta}{1 \cos \theta}$.

Exercice 24 Tracer la courbe d'équation polaire $\rho = \frac{\sin \theta}{\theta}$.

Montrer que les pieds des normales à cette courbes issues de $\mathcal O$ sont situées sur un même cercle.

Courbes polaires classiques

Exercice 25 On considère la cardioïde Γ d'équation polaire $\rho = 1 + \cos \theta$ de point courant $M(\theta)$.

- a) Etudier et représenter la courbe Γ .
- b) Montrer que le milieu $I(\theta)$ du segment d'extrémités $M(\theta)$ et $M(\theta + \pi)$ appartient au cercle
- $\mathcal C$ de centre $\Omega \Big|_0^{1/2}$ et passant par O . Calculer la longueur $I(\theta)M(\theta)$.
- c) On note $J(\theta)$ le point du cercle $\mathcal C$ diamétralement opposé au point $I(\theta)$.

Exprimer $\overline{OJ(\theta)}$ en fonction de θ et du vecteur \vec{v}_{θ} de la base polaire.

- d) A quelle(s) condition(s) a-t-on $J(\theta) = M(\theta)$? On suppose désormais ce cas exclu.
- e) Montrer que la droite joignant les points $J(\theta)$ et $M(\theta)$ est orthogonale à la tangente à Γ en $M(\theta)$
- f) Des informations précédentes, déterminer un procédé permettant, à l'aide du cercle $\,\mathcal{C}\,$, de construire les points $M(\theta)$ et les tangentes à Γ en ces points.

Exercice 26 Cissoïde droite:

- a) Etudier la courbe d'équation polaire $\rho = \frac{\sin^2 \theta}{\cos \theta}$.
- b) Soit M un point de cette courbe autre que O. On note P l'intersection de la droite (OM) avec la droite d'équation x=1 et Q le point de l'axe (Oy) de même ordonnée que P. Montrer que le triangle (MPQ) est rectangle en M.
- c) En déduire un procédé permettant de construire la courbe étudiée.

Exercice 27 Strophoïde droite:

- a) Etudier la courbe d'équation polaire $\rho = \frac{\cos 2\theta}{\sin \theta}$.
- b) On note $F \begin{vmatrix} 0 \\ -1 \end{vmatrix}$ et on considère P un point de l'axe (Ox) autre que O.

Montrer que les points M intersection de la droite (FP) et de la courbe sont tels que PM = PO.

c) En déduire un procédé permettant de construire la courbe étudiée.

Exercice 28 Trisectrice de Mac Laurin (1698-1746):

a) Etudier la courbe d'équation polaire
$$\rho = \frac{1}{\cos(\theta/3)}$$
 pour $\theta \in]-3\pi/2, 3\pi/2[$.

$$\cos(\theta/3)$$
On précisera notamment la tangente en $\theta = \pi$.

b) Etablir, pour tout $\theta \in]-3\pi/2, 3\pi/2[$ la formule : $\frac{\sin \theta}{\cos \theta + 2\cos(\theta/3)} = \frac{\sin(\theta/3)}{\cos(\theta/3)}$.

c) On note Ω le point double de la courbe et M un point de cette courbe autre que Ω .

La droite (ΩM) coupe la médiatrice du segment $[\Omega, O]$ en un point P.

Montrer que OP = OM et que l'angle $(\vec{i}, \overrightarrow{\Omega P})$ est le tiers de l'angle $(\vec{i}, \overrightarrow{OM})$.

d) Donner un procédé permettant de construire la courbe étudiée.

Exercice 29 Lemniscate de Bernoulli

Soit
$$F(1,0)$$
 et $F'(-1,0)$.

Former une équation polaire du lieu Γ des points M tels que MF.MF' = 1. Etudier et représenter la courbe correspondante.

Longueur d'une courbe

- **Exercice 30** Pour a > 0, calculer la longueur de l'astroïde de paramétrage $\begin{cases} x(t) = a \cos^3 t \\ y(t) = a \sin^3 t \end{cases}$ pour $t \in [0, 2\pi]$.
- *Exercice 31* Pour a > 0, calculer la longueur de la cardioïde d'équation polaire $\rho = a(1 + \cos \theta)$ pour $\theta \in [-\pi, \pi]$.

Courbure

- Exercice 32 Obtenir une détermination angulaire sur les courbes paramétrées en coordonnées cartésiennes suivantes et en déduire la courbure en tout point régulier :
 - a) la portion d'astroïde de paramétrage : $\begin{cases} x(t) = \cos^3 t \\ y(t) = \sin^3 t \end{cases}$ obtenue pour $t \in [0, \pi/2]$.
 - b) l'arche de cycloïde de paramétrage $\begin{cases} x(t) = t \sin t \\ y(t) = 1 \cos t \end{cases} \text{ obtenue pour } t \in \left[0, 2\pi\right]$ c) la courbe de représentation paramétrique : $\begin{cases} x(t) = 3\cos t + 3\cos 2t + \cos 3t \\ y(t) = 3\sin t + 3\sin 2t + \sin 3t \end{cases}.$
- Exercice 33 Obtenir une détermination angulaire sur les courbes paramétrées en coordonnées polaires suivantes et en déduire la courbure en tout point régulier :
 - a) la cardioïde d'équation polaire : $\rho = \cos \theta + 1$
 - b) la lemniscate d'équation polaire $\rho = \sqrt{\cos 2\theta}$ avec $\theta \in [-\pi/4, \pi/4]$
- Exercice 34 Calculer la courbure en tout point des courbes suivantes :
 - a) la parabole d'équation $y^2 = 2px$ avec p > 0
 - b) la chaînette d'équation cartésienne $y = \operatorname{ch} x$.
 - c) l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ avec a, b > 0.
 - d) la courbe d'équation cartésienne $2e^{x+y} = (1+e^x)(1+e^y)$.
- **Exercice 35** Soit $f: \mathbb{R}^* \to \mathbb{R}$ définie par $f(x) = \frac{e^x 1}{x}$.
 - a) Montrer que f peut être prolongée en 0 en une fonction de classe C^2 .
 - b) Déterminer le rayon de courbure au graphe de f au point d'abscisse 0.
- *Exercice 36* Déterminer quels sont les arcs réguliers de classe C^2 de courbure constante.
- Exercice 37 En tout point d'une courbe donnée par une équation polaire, on note V une mesure de l'angle entre $\vec{u}_{\scriptscriptstyle{\theta}}$ et le vecteur tangent \vec{T} au point considéré.
 - a) Tracer la courbe d'équation polaire $\rho = \cos^3 \frac{\theta}{2}$.
 - b) Montrer que pour $\theta \in [-3\pi/2, 3\pi/2]$ on a $4\sin V = 3\gamma\rho$.
 - c) Soit une courbe d'équation polaire $\rho = \rho(\theta)$ avec ρ une fonction de classe \mathcal{C}^2 ne s'annulant

On suppose qu'elle vérifie la relation : $4 \sin V = 3 \gamma \rho$.

Déterminer une équation différentielle vérifiée par ρ .

- d) Résoudre cette dernière en réalisant le changement de fonction inconnue $z=\frac{\rho'}{\rho}$.
- e) Quelle lien existe-t-il entre cette courbe et celle initialement étudiée ?

Forme différentielles

Exercice 38 Les formes différentielles ω suivantes sont-elles exactes ? Si oui, déterminer les primitives de ω :

a)
$$\omega = x \, \mathrm{d}y + y \, \mathrm{d}x$$

b)
$$\omega = \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{(x - y)^2}$$

c)
$$\omega = \frac{x \, \mathrm{d}x + y \, \mathrm{d}y}{x^2 + y^2} - y \, \mathrm{d}y$$
.

Exercice 39 Calculer:

a)
$$I = \int x \, \mathrm{d}y + y \, \mathrm{d}x$$
 où γ paramètre l'arc de parabole $y = x^2$ allant de O à $A(2,4)$.

b)
$$I = \int x^2 dy + y^2 dx$$
 où γ est un paramétrage direct du triangle (OIJ) avec $I(1,0)$ et $J(0,1)$.

c)
$$I=\int_{\gamma}x^2\,\mathrm{d}y+y^2\,\mathrm{d}x$$
 où γ est un paramétrage direct du cercle de centre $\Omega(a,b)$ et de rayon $R>0$.

Exercice 40 Calculer l'aire de la portion bornée du plan délimitée par :

a) l'ellipse paramétrée par
$$\begin{cases} x(t) = a\cos t \\ y(t) = b\sin t \end{cases}.$$

b) l'astroïde paramétrée par
$$\begin{cases} x(t) = a\cos^3 t \\ y(t) = a\sin^3 t \end{cases}.$$

c) l'arche de la cycloïde
$$\begin{cases} x(t) = t - \sin t \\ y(t) = 1 - \cos t \end{cases}$$
 obtenue pour $t \in [0, 2\pi]$ et l'axe des abscisses.

Exercice 41 Calculer l'aire de la portion bornée du plan délimitée par :

- a) la cardioïde d'équation polaire $\rho = 1 + \cos \theta$.
- b) la boucle de la lemniscate $\rho = \sqrt{\cos 2\theta}$ obtenue pour $\theta \in [-\pi/4, \pi/4]$.

c) la boucle de la strophoïde droite d'équation polaire
$$\rho = \frac{\cos 2\theta}{\cos \theta}$$
 obtenue pour $\theta \in [-\pi/4, \pi/4]$.

david Delaunay http://mpsiddl.free.fr