ESERCIZI SU OPERAZIONI SUI LINGUAGGI, LINGUAGGI REGOLARI, AUTOMI A STATI FINITI E PUMPING LEMMA PER I LINGUAGGI REGOLARI

Dipartimento di Informatica

CdS Informatica

Esercizi

- Esercizi sui seguenti argomenti
 - Operazioni sui linguaggi
 - Linguaggi regolari
 - Automi a stati finiti
 - Pumping Lemma per i linguaggi regolari
 - Esercizio #6
 - Esercizio #7
 - Esercizio #9
 - Esercizio #10
 - Esercizio #11

Sia dato il seguente automa riconoscitore a stati finiti non deterministico

$$M = (Q, \delta, q_0, F)$$

con alfabeto di ingresso $X = \{1,2\}$ ove

$$Q = \{q_0, B, C, D\}$$

$$\delta(q_0, 1) = \{B, C\}$$
 $\delta(q_0, 2) = \{D\}$

$$\delta(B,1) = \{B,D\} \qquad \delta(B,2) = -$$

$$\delta(C,1) = \{D\} \qquad \qquad \delta(C,2) = -$$

$$\delta(D,1) = - \qquad \qquad \delta(D,2) = \{B\}$$

$$F = \{D\}$$

- Determinare una grammatica lineare destra che genera T(M)
- Costruire il diagramma di transizione di un automa a stati finiti deterministico equivalente a M

- Determinare una grammatica lineare destra che genera T(M)
 - G = (X, V, S, P) t.c. L(G) = T(M) si costruisce secondo il seguente algoritmo
 - $X = \{1,2\}$ coincide con l'alfabeto di ingresso di M
 - $\cdot S = q_0$
 - $\bullet V = Q = \{q_0, B, C, D\}$

 L'insieme P delle produzioni si costruisce secondo il seguente passo dell'algoritmo:

•
$$P = \{q \to xq' | q' \in \delta(q, x)\} \cup \cup \{q \to x \mid \delta(q, x) \in F\} \cup \{q_0 \to \lambda | q_0 \in F\}$$

Dunque si ha:

•
$$P = \{S \to 1B | 1C | 2D | 2, B \to 1B | 1D | 1, C \to 1D | 1, D \to 2B \}$$

• Costruire il diagramma di transizione di un automa a stati finiti deterministico equivalente a M. Da svolgere in autonomia applicando l'algoritmo di conversione

Sia dato il seguente linguaggio

$$L = \left\{ a^n b a^{2m} \middle| n, m > 0 \right\}$$

- Di che tipo è *L*?
 - Il più specifico nella gerarchia di Chomsky
- Giustificare formalmente la risposta

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$
 - $L_1 = \{a^n b | n > 0\}$
 - $L_1 \in \mathcal{L}_{FSL}$ in quanto $\exists M_1 FSA$ t.c. $M_1 = T(M_1)$

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L_1 = \{a^n b | n > 0\}$
 - $L_1 \in \mathcal{L}_{FSL}$ in quanto $\exists M_1 FSA$ t.c. $M_1 = T(M_1)$
 - $X = \{a, b\}$ alfabeto di ingresso
 - $Q = \{q_0, q_1, q_2\}$ alfabeto degli stati
 - $F = \{q_2\}$ insieme degli stati finali
 - $\delta: Q \times X \to Q$ funzione di transizione t.c.

δ	q_0	q_1	q_2
а	q_1	q_1	_
b	_	q_2	_

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$

- Per il teorema di Kleene, $\mathcal{L}_3 \equiv \mathcal{L}_{FSL} \equiv \mathcal{L}_{REG}$
- Quindi, $L_1 \in \mathcal{L}_3$

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$
 - $L_2 = \{a^{2m} | m > 0\}$
 - $L_2 \in \mathcal{L}_{FSL}$ in quanto $\exists M_2 FSA$ t.c. $M_2 = T(M_2)$

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L_2 = \{a^{2m} | m > 0\}$
 - $L_2 \in \mathcal{L}_{FSL}$ in quanto $\exists M_2 \ FSA$ t.c. $M_2 = T(M_2)$
 - $X = \{a, b\}$ alfabeto di ingresso
 - $Q = \{q_0, q_1, q_2\}$ alfabeto degli stati
 - $F = \{q_2\}$ insieme degli stati finali
 - $\delta: Q \times X \to Q$ funzione di transizione t.c.

δ	q_0	q_1	q_2
а	q_1	q_2	q_1

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$

- Per il teorema di Kleene, $\mathcal{L}_3 \equiv \mathcal{L}_{FSL} \equiv \mathcal{L}_{REG}$
- Quindi, $L_2 \in \mathcal{L}_3$

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - Osserviamo che

$$L = \{a^n | n > 0\} \{b\} \{a^{2m} | m > 0\}$$

- Per il teorema di chiusura, $L \in \mathcal{L}_3$ in quanto concatenazione di 3 linguaggi lineari destri (dimostrazione per esercizio).
- Un'espressione regolare che denota L (ossia t.c.
 S(R) = L) è:

$$R = aa^* b aa(aa)^*$$

Progettare, commentando opportunamente, un automa a stati finiti che riconosce il seguente linguaggio:

$$L = \{ w \in X^* | \#(1, w) = 3k, k > 0 \}$$

dove

$$X = \{0,1,2\}$$

(x, w) indica il numero delle volte che il simbolo $x \in X$ compare nella stringa w

- $L \in \mathcal{L}_{FSL}$ dato che $\exists M = (Q, \delta, q_0, F) \ FSA$ t.c. L = T(M)
 - $X = \{0,1,2\}$ alfabeto di ingresso
 - $Q = \{q_0, q_1, q_2, q_3\}$ alfabeto degli stati
 - $F = \{q_3\}$ insieme degli stati finali

• $L \in \mathcal{L}_{FSL}$ dato che $\exists M = (Q, \delta, q_0, F) \ FSA$ t.c. L = T(M)

• $\delta: Q \times Q \to Q$ funzione di transizione t.c.

δ	q_0	q_1	q_2	q_3
0	q_0	q_1	q_2	q_3
1	q_1	q_2	q_3	q_1
2	q_0	q_1	q_2	q_3

Si considerino le seguenti espressioni regolari:

$$R_1 = (01)^* + 1 + 0$$
$$R_2 = 0^*1^*$$

- Determinare $L = S(R_1) \cap S(R_2)$
- Calcolare L²

- $R_1 = (01)^* + 1 + 0$
 - Troviamo ora $S(R_1)$, ossia il linguaggio regolare corrispondente all'espressione regolare R_1

$$S((01)^* + 1 + 0) = S((01)^*) \cup S(1) \cup S(0) =$$

= $(S(01))^* \cup S(1) \cup S(0) = \{01\}^* \cup \{1\} \cup \{0\}$

• $S(R_1) = {\lambda, 0, 1, 01, 0101, 010101, 01010101, \dots}$

- $R_2 = 0^*1^*$
 - Troviamo ora $S(R_1)$, ossia il linguaggio regolare corrispondente all'espressione regolare R_1

$$S(0^*1^*) = S(0^*) \cdot S(1^*) = (S(0))^* \cdot (S(1))^* = \{0\}^* \cdot \{1\}^*$$

• $S(R_2) = {\lambda, 0, 1, 00, 01, 11, 000, 001, 011, 111, 0000, ...}$

- Determinare $L = S(R_1) \cap S(R_2)$
 - $S(R_1) = {\lambda, 0, 1, 01, 0101, 010101, 01010101, ...}$
 - $S(R_2) = {\lambda, 0, 1, 00, 01, 11, 000, 001, 011, 111, 0000, ...}$

$$L = S(R_1) \cap S(R_2) = \{\lambda, 0, 1, 01\}$$

- Calcolare L²
 - $L^2 = \{\lambda, 0, 1, 01, 00, 001, 10, 11, 101, 010, 011, 0101\}$

Siano dati l'alfabeto $X = \{a, b\}$ ed il linguaggio

$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L = L_1 \cdot L_2 \cdot L_3$$

•
$$L_1 = \{w_1 | w_1 \in \{a, b\}^*\}$$

•
$$L_2 = bb$$

•
$$L_3 = \{a^{2n} | n \ge 0\}$$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L_1 = \{w_1 | w_1 \in \{a, b\}^*\}$$

•
$$R_1 = (a + b)^*$$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L_2 = bb$$

•
$$R_2 = bb$$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L_3 = \{a^{2n} | n \ge 0\}$$

•
$$R_3 = (aa)^*$$

•
$$L = \{ w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0 \}$$

•
$$L_1 = \{w_1 | w_1 \in \{a, b\}^*\}, L_2 = bb, L_3 = \{a^{2n} | n \ge 0\}$$

•
$$R_1 = (a + b)^*, R_2 = bb, R_3 = (aa)^*$$

$$R = (a+b)^*bb(aa)^*$$

Credits

• Si ringrazia il Tutor 2018-2019: Francesco Paolo Caforio