Chapitre 16

Théorèmes des fonctions continues

- 1. Dans tout le chapitre, on fixe un intervalle non trivial I.
- 2. Pour une fonction f, on notera \mathcal{D}_f son domaine de définition.
- 3. On aura toujours $\mathcal{D}_f = I$ ou I privé d'un point.
- 4. Toutes les fonctions sont à valeurs réelles, sauf dans le paragraphe 7.

1 Continuité

On fixe une fonction f définie sur D_f . On rappelle les définition vues dans le chapitre sur les limites.

1.1 Coninuité en un point

Définition 1.1

Soit $a \in D_f$. La fonction f est continue en a si elle admet une limite en a.

Proposition 1.2

Si f est continue en $a \in D_f$, alors $\lim_a f = f(a)$.

Proposition 1.3

La fonction f est continue en $a \in D_f$ si et seulement si $f_{|D_f \setminus \{a\}}$ admet une limite finie en a et si celle-ci vaut f(a).

Remarque.

Cette proposition s'utilise souvent en écrivant : "Comme $f(x) \xrightarrow[x \to a]{} f(a)$, f est continue en a." C'est un abus d'écriture, puisqu'on devrait écrire "Comme $f_{|D\setminus\{a\}}(x) \xrightarrow[x \to a]{} f(a)$, f est continue en a."

1.2 Prolongement par continuité

Définition 1.4 (Prolongement par continuité)

Soit $a \in I$ et f une fonction définie sur $I \setminus \{a\}$. La fonction f est prolongeable par continuité en a si elle admet une limite finie en a. Le prolongement par continuité de f est la fonction

$$I \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} f(x) & \text{si } x \neq a, \\ \lim_{a} f & \text{sinon.} \end{cases}$$

Proposition 1.5

Le prolongement par continuité de f en a, s'il existe, est continu en a.

1.3 Continuité à gauche et à droite

Définition 1.6

Soit $a \in D_f$. La fonction f est continue à gauche (resp. à droite) en a si elle admet une limite à gauche (resp. à droite) en a et si cette limite vaut f(a).

Remarque.

On notera la différence fondementale avec la défintion de la continuité en a. Il ne suffit pas pour la continuité à gauche ou à droite d'avoir l'existence de la limite à gauche ou à droite : une fonction peut avoir une limite à gauche (resp. à droite), sans être continue à gauche (resp. à droite).

Proposition 1.7

Soit $a \in D_f$. La fonction f est continue en a si et seulement si elle est continue à gauche et à droite en a.

2 Propriétés des limites

Dans ce paragraphe, on rappelle les propriétés élémentaires de la continuité qui découle de la définition d'une limite finie en un point.

On considère une fonction f, et on notera D_f son domaine de définition. On aura nécessairement $D_f = I$ ou I privé d'un point.

2.1 Propriétés locales

Proposition 2.1 (Caractère local de la limite)

Soient f et g deux fonctions égales au voisinage d'un point a, avec $a \in D_f$ et $a \notin D_g$. Si f est continue en a, alors g admet une limite finie en a et celle-ci vaut f(a).

Proposition 2.2

Toute fonction continue en un point est bornée au voisinage de ce point.

Proposition 2.3

Si f est continue en a, alors

- 1. Si f(a) > 0, alors f est minorée au voisinage de ce point par un réel > 0.
- 2. Si $f(a) \neq 0$, alors |f| est minorée au voisinage de ce point par un réel > 0.

Proposition 2.4

Le produit d'une fonction continue en a par une fonction tendant vers 0 en a est une fonction tendant vers 0 en a.

2.2 Opérations algébriques sur les fonctions continues

Proposition 2.5 (Combinaisons linéaires de fonctions continues)

Soient f, g deux fonctions continue en $a \in \mathbb{R}$, et $\lambda, \mu \in \mathbb{R}$. Alors $\lambda f + \mu g$ est continue en a.

Proposition 2.6 (Produits de fonctions continues)

Soient f, g deux fonctions continues en $a \in \mathbb{R}$. La fonction fg est continue en a.

Proposition 2.7 (Limite d'un quotient)

Si f est continue en a et $f(a) \neq 0$, alors 1/f est définie au voisinage de a, et est continue en a.

2.3 Composition des limites

Théorème 2.8 (Caractérisation séquentielle de la continuité)

Soit f une fonction définie sur I, et $a \in I$. Les affirmations suivantes sont équivalentes :

- 1. La fonction f est continue en a.
- 2. Pour toute suite $(u_n)_{n\in\mathbb{N}}\subset I$ tendant vers a, la suite $(f(u_n))_{n\in\mathbb{N}}$ tend vers f(a).

Théorème 2.9 (Continuité d'une fonction composée)

Soient f et g deux fonctions telles que $f(\mathcal{D}_f) \subset \mathcal{D}_g$. Si f est continue en a, et g est continue en f(a), alors la fonction $g \circ f$ est continue en a.

3 Continuité sur un intervalle

Définition 3.1 (Continuité sur un intervalle)

Une fonction f est continue sur un intervalle I si elle est continue en chacun de ses points.

Définition 3.2

Soient I, J des intervalles de \mathbb{R} .

- 1. On note $C(I, \mathbb{R})$ l'ensemble des fonctions continues sur I à valeurs réelles. On le note également $C^0(I, \mathbb{R})$, ou plus simplement $C^0(I)$.
- 2. On note C(I, J), ou $C^0(I, J)$ l'ensemble des fonctions continues sur I, à valeurs dans J.

Proposition 3.3

Soit I un intervalle non trivial de \mathbb{R} , et $f, g \in \mathcal{C}^0(I)$. Alors

- 1. Pour tous $\lambda, \mu \in \mathbb{R}, \lambda f + \mu g \in \mathcal{C}^0(I)$.
- 2. $fg \in \mathcal{C}^0(I)$.
- 3. Si f ne s'annule pas, $g/f \in \mathcal{C}^0(I)$.

Proposition 3.4

Soient I, J deux intervalles de \mathbb{R} non triviaux. Soit $f \in \mathcal{C}^0(I, J)$ et $g \in \mathcal{C}^0(J, \mathbb{R})$. Alors $g \circ f \in \mathcal{C}^0(I)$.

Remarque.

Il faut savoir énoncer ces propositions avec des phrases : les combinaisons linéaires et produits de fonctions continues sur I sont continues sur I. Les quotients de fonctions continues dont le dénominateur ne s'annule pas sont continues sur I. enfin, les composées bien définies de fonctions continues sont continues.

Proposition 3.5

La restriction d'une fonction continue est une fonction continue.

Méthode 3.6

Toutes les fonctions usuelles que nous avons étudiées sont continues sur leur ensemble de définition (ln, exp, fonctions trigonométriques et leurs réciproques, fonctions polynomiales, la valeur absolue, les fonctions puissances, fonctions hyperboliques). Souvent, pour montrer qu'une fonction est continue, on montrera q'elle l'est par produits, combinaisons linéaires, composées de fonctions continues, en ayant eu soin de d'abord déterminer le domaine de définition.

4 Théorème des valeurs intermédiaires

Théorème 4.1 (Théorème des valeurs intermédiaires, cas particulier)

Soit f une fonction continue sur un intervalle [a,b] telle que

$$f(a)f(b) \leqslant 0.$$

Alors f s'annule sur [a, b].

Remarque.

Remarquez qu'on utilise le procédé de dichotomie pour démontrez l'existence d'un zéro de f.

Théorème 4.2 (Théorème des valeurs intermédiaires)

Soit f une fonction continue sur un intervalle [a, b]. Alors toute valeur comprise entre f(a) et f(b) est atteinte par f. Autrement dit,

$$\forall d \in [f(a), f(b)], \exists x \in [a, b], d = f(x),$$

ou encore

$$[f(a), f(b)] \subset f([a, b]).$$

Méthode 4.3

On peut se servire de ce théorème pour montrer l'existence d'une solution sur un intervalle I à une équation du type f(x) = 0, où f est une fonction continue sur I, ou à l'équation f(x) = g(x) (f, g) continues sur I) en se ramenant à f(x) - g(x) = 0.

Corollaire 4.4

Soit I un intervalle de \mathbb{R} et $f \in \mathcal{C}^0(I)$ une fonction ne s'annulant pas. Alors f est de signe constant.

Corollaire 4.5

Soit I un intervalle de \mathbb{R} et $f \in \mathcal{C}^0(I)$. Soient $a = \inf(I)$ et $b = \sup(I)$. Si f admet des limites dans $\overline{\mathbb{R}}$ en a et b, et que $(\lim_a f)(\lim_b f) < 0$, alors f s'annule sur I.

Remarque.

Voici des cas particuliers importants : $\lim_{a} f = -\infty$ et f(b) > 0 etc..

Théorème 4.6 (Image d'un intervalle par une fonction continue)

L'image d'un intervalle par une fonction continue est un intervalle.

5 Fonction continue sur un segment

Théorème 5.1

Une fonction continue sur un segment admet un minimum et un maximum, i.e. si f est continue sur un segment I, il existe $a, b \in I$ tels que

$$\forall x \in I, \ f(a) \leqslant f(x) \leqslant f(b),$$

et par définition $f(a) = \min_{I} f = \inf_{I} f$ et $f(b) = \max_{I} f = \sup_{I} f$.

Remarque.

On dit aussi qu'une fonction continue sur un segment est bornée et atteint ses bornes".

Proposition 5.2 (Image d'une fonction continue sur un segment)

Soit f une fonction continue sur un segment [a, b]. Alors $f([a, b]) = [\min_{[a, b]} f, \max_{[a, b]} f]$.

6 Réciproque d'une fonction bijective continue

Proposition 6.1

Soit f une fonction monotone sur un intervalle I telle que f(I) est un intervalle. Alors f est continue.

Proposition 6.2

Soit f une fonction continue sur un intervalle I. Alors f est injective si et seulement si elle est strictement monotone.

Remarque.

Il faut savoir expliquer graphiquement ces résultats.

Théorème 6.3

Soit f une fonction continue bijective d'un intervalle I sur l'intervalle J = f(I). Alors sa fonction réciproque f^{-1} est continue sur J.

Théorème 6.4 (Théorème de la bijection)

Soient I = [a, b] (a < b) un intervalle de \mathbb{R} et f une fonction continue et strictement monotone sur I. Alors

- 1. La fonction f réalise une bijection de [a, b] sur [f(a), f(b)] (si f est croissante, [f(b), f(a)] sinon).
- 2. Sa fonction réciproque $f^{-1}: J \longrightarrow I$ est continue, strictement monotone, de même sens de variations que f.

Remarque.

On peut remplacer [a, b] par]a, b] ou [a, b[ou]a, b[, en ouvrant les mêmes crochets dans [f(a), f(b)], et en remplaçant le cas échéant f(a) par $\lim_a f$ ou f(b) par $\lim_b f$. On peut alors aussi avoir $a = -\infty$ ou $b = +\infty$.

7 Fonctions à valeurs complexes

Dans ce paragraphe, on considère des fonctions définies sur I, mais à valeurs complexes. Si $f:I\longrightarrow \mathbb{C}$, on définit alors deux fonctions à valeurs réelles par

$$\forall x \in I, \operatorname{Re}(f)(x) = \operatorname{Re}(f(x)), \operatorname{Im}(f)(x) = \operatorname{Im}(f(x)).$$

Définition 7.1

Soit $f: I \longrightarrow \mathbb{C}$. Alors

- 1. La fonction f est continue en $a \in I$ si elle est définie en a et si elle admet une limite finie en a.
- 2. La fonction f est continue sur I si elle est continue en tout point de I.

Proposition 7.2

Soit $f: I \longrightarrow \mathbb{C}$, et $a \in I$. Alors

- 1. La fonction f est continue en a si et seulement si Re(f) et Im(f) sont continues en a.
- 2. La fonction f est continue sur I si et seulement si Re(f) et Im(f) sont continues sur I.

Proposition 7.3

Soit $f: I \longrightarrow \mathbb{C}$.

Si f est continue en a, alors \overline{f} est continue en a.

Si f est continue sur I, alors \overline{f} est continue sur I.

Remarque.

Comme pour les fonctions à valeurs réelles, les sommes, produits, quotient (dont le dénominateur ne s'annule pas), composées de fonctions continues sont continues.

Voici quelques particularités :

- Le théorème des valeurs intermédiaires n'a aucun sens pour les fonctions à valeurs complexes, mais *cf.* le cours de spé.
- On peut parler du module de f, qui définit une fonction continue : on peut alors parler de continuité sur un segment par exemple.

8 Compétences

1. Être très précis quand on utilise les théorèmes de ce chapitre.