1 - 6

Въпрос 6

Определен интеграл. Дефиниция и свойства. Интегруемост на напрекъснати функции. Теорема на Нютон-Лайбниц.

Определение на интеграл. Интегруемост.

Определение 1. Ще казваме, че е дадено едно разбиване на крайния интервал [a,b], ако са дадени точките x_0,x_1,\ldots,x_n , за които $a=x_0 < x_1 < \ldots < x_n = b$. Такова разбиване означаваме с $\{x_k\}$. Отсега нататък когато работим с интервала [a,b], ще имаме в предвид крайния интервал [a,b].

Определение 2. Нека с Δx_k означим разликата $x_k - x_{k-1}$. Числото $d = \max_{1 \le k \le n} \Delta x_k$ наричаме диаметър на разбиване.

Определение 3. Нека е даден интервалът [a,b], негово разбиване $\{x_k\}$ и функция f(x) дефинирана в [a,b]. Тогава числото

$$\sigma = \sigma(x_k, \xi_k) = \sum_{k=1}^n f(\xi_k) \Delta x_k$$
, където $\xi_k \in [x_{k-1}, x_k]$

наричаме Риманова сума(Интегрална сума).

Определение 4. Числото I се нарича граница на интегралните суми $\sigma(x_k, \xi_k)$, когато диаметърът d на делението $\{x_k\}$ клони към нула и ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, зависещо от ε , че при $d < \delta$ и всеки избор на точките ξ_k да е в сила неравенството $|I - \sigma| < \varepsilon$.

За означение на границата на интегралните суми се използва символът

$$I = \lim_{d \to 0} \sigma(x_k, \xi_k)$$

Определение 5. Функцията f(x) се нарича интегруема по Риман в интервала [a,b], ако за тази функция в този интервал съществува границата на интегралните й суми $\sigma(x_k,\xi_k)$, когато диаметърът d на делението $\{x_k\}$ клони към нула.

Числото I се нарича onpedeneh интеграл на Pиман на функцията f(x) в граници от a до b и се означава с:

$$\int_{a}^{b} f(x)dx$$

Неинтегруемост по Риман на неограничените в интервала [a,b] функции.

Нека f(x) е неограничена в интервала [a,b].Ще покажем, че за всяко разбиване $\{x_k\}$ интегралната сума $\sigma(x_k,\xi_k)$ може да стане по абсолютна стойност произволно голяма, в зависимост от избора на точките ξ_k .

И така, нека е дадено $\{x_k\}$ - разбиване на интервала [a,b] и функция f(x) - неограничена в [a,b]. Функцията f(x) ще бъде неограничена поне в един подинтервал на разбиването. Без да нарушаваме общноста, ще приемем, че този подинтервал е $[x_0,x_1]$. Точките ξ_2,ξ_3,\ldots,ξ_n избираме произволно в останалите интервали и ги фиксираме. Означаваме с $\sigma_1(x_k,\xi_k)$ величината:

$$\sigma_1(x_k, \xi_k) = f(\xi_2)\Delta x_2 + f(\xi_3)\Delta x_3 + \dots + f(\xi_n)\Delta x_n$$

Разглеждаме f(x) само в интервала $[x_0, x_1]$. Тъй като тук тя е неограничена за всяко отнапред избрано M можем да намерим ξ_1 от този интервал за което,

$$|f(\xi_1)| \ge \frac{(|\sigma_1| + M)}{\Delta x_1}$$

От тук получаваме, че $\left| f(\xi_1) \right| \Delta x_1 \ge \left(\left| \sigma_1 \right| + M \right)$ и затова:

$$\left|\sigma(x_k, \xi_k)\right| = \left|\sum_{k=1}^n f(\xi_k) \Delta x_k\right| = \left|f(\xi_1) \Delta x_1 + \sigma_1\right| \ge \left|f(\xi_1)\right| \Delta x_1 - \left|\sigma_1\right| \ge M$$

Нека сега си изберем редица от числа $\{M_n\}$ такива, че $\lim_{n\to\infty} M_n = +\infty$, а също и редица от разбивания за които $d\to 0$.По посоченият по-горе начин строим редицата от интегралните суми σ_n удоволетворяващи условието $|\sigma_n| \ge M_n$.Тази редица е разходяща.

И така показахме, че *всички интегруеми по Риман функции са ограничени*. Обратното, обаче, не е вярно, т.е. не всички ограничени функции са интегруеми по Риман. Например функцията на Дирихле, стойностите на която в рационалните точки са равни на нула, а в ирационалните - на единица, не е интегруема по Риман.

Голяма и малка сума на Дарбу и техните свойства.

Нека f(x) е ограничена функция в интервала [a,b], и е дадено негово разбиване $\{x_k\}$. Понеже f(x) е ограничена в интервала [a,b], то тя е ограничена във всеки подинтервал на [a,b]. Тя ще има точна долна граница m_k и точна горна граница M_k в интервала $[x_{k-1},x_k]$ т.е.

$$m_{k} = \inf \{ f(x) : x \in [x_{k-1}, x_{k}] \}$$

$$M_{k} = \sup \{ f(x) : x \in [x_{k-1}, x_{k}] \}$$

Определение 6. Сумите

$$S = M_1 \Delta x_1 + M_2 \Delta x_2 + \dots + M_n \Delta x_n = \sum_{k=1}^n M_k \Delta x_k$$
$$S = m_1 \Delta x_1 + m_2 \Delta x_2 + \dots + m_n \Delta x_n = \sum_{k=1}^n m_k \Delta x_k$$

се наричат съответно голяма и малка сума на Дарбу на f(x) за дадено разбиване $\{x_k\}$ на интервала [a,b].

Основни свойства на големите и малките суми.

Лема 1. При раздробяване на интервала (т.е. при добавяне на нови точки в разбиването на интервала) големите суми на Дарбу не нарастват, а малките — не намаляват.

Доказателсво. Нека $\{x_k\}$ е дадено разбиване, а разбиването $\{x_k'\}$ се получава от него с добавяне на само една нова точка \overline{x} . Да предположим, че $\overline{x} \in [x_{k-1}, x_k]$. Тогава в S събираемото $M_k \Delta x_k$ се заменя със $M_k'(\overline{x} - x_{k-1}) + M_k''(x_k - \overline{x})$, където

$$M'_{k} = \sup \left\{ f(x) : x \in \left[x_{k-1}, \overline{x} \right] \right\}$$

$$M_k'' = \sup \{ f(x) : x \in [\overline{x}, x_k] \}$$

Понеже, $M_{k}' \leq M_{k}, M_{k}'' \leq M_{k}$ получаваме

$$M'_{k}(\overline{x}-x_{k-1})+M''_{k}(x_{k}-\overline{x}) \leq M_{k}((\overline{x}-x_{k-1})+(x_{k}-\overline{x})) = M_{k}\Delta x_{k}$$

Тъй като всички други събираеми в израза за голямата сума са същите, то доказахме, че при добавяне на една нова точка голямата сума може само да намалява или да остане същата, но не и да нараства. Случаят когато точките са повече от една се свежда до разглежданият.

Аналогични изводи се правят и за малките суми на Дарбу.

Лема 2. Нека $\sigma(x_k,\xi_k)$ е интегралната сума, отговаряща на разбиването $\{x_k\}$. Тогава при всеки избор на точките ξ_k е в сила

$$s \le \sigma(x_k, \xi_k) \le S$$
,

където s и S са съответно малката и голямата сума за това разбиване.

- **Лема 3.** Нека $\{x_k\}$ е произволно фиксирано разбиване на [a,b], а ε е произволно фиксирано положително число. Тогава може да се изберат точки
 - ξ_k такива, че $0 \le S \sigma(x_k, \xi_k) < \varepsilon$.
 - η_k такива, че $0 \le \sigma(x_k, \eta_k) s < \varepsilon$.

Определение 7. Горен интеграл на Дарбу от функцията f(x) се нарича точната долна граница I^* на множеството от големите суми на Дарбу $\{S\}$ за функцията f(x) и за всевъзможните разбивания на интервала [a,b].

Определение 8. Долен интеграл на Дарбу от функцията f(x) се нарича точната горна граница I_* на множеството от малките суми на Дарбу $\{s\}$ за функцията f(x) и за всевъзможните разбивания на интервала [a,b].

Горните определения са законни, тъй като множеството на големите суми е ограничено отдолу, а множеството на малките суми – отгоре, за всяко разбиване на [a,b] и за всяка ограничена функция f(x).

Основна лема на Дарбу. Горният интеграл на Дарбу I^* е равен на границата на големите суми S, когато диаметърът на разбиванията клони към нула, т.е. $\lim_{t\to 0} S = I^*$. Аналогично $\lim_{t\to 0} s = I_*$.

Теореми за необходими и достатъчни условия за интегруемост на функции.

Помощна теорема. Ограничената функция f(x) в интервала [a,b] е интегруема по Риман в този интервал, тогава и само тогава, когато е изпълнено равенството $I^* = I_*$.

Доказателство. Необходимост. Нека f(x) е интегруема по Риман в интервала [a,b]. Тогава от определението за интегруемост по Риман следва, че за всяко $\varepsilon>0$ съществува такова число $\delta>0$, че при $d<\delta$ и всеки избор на точките ξ_k е изпълнено неравенството

$$|I-\sigma(x_k,\xi_k)|<\frac{\varepsilon}{4}.$$

Според лема 3 може да изберем точки ξ'_k и ξ''_k , такива, че

$$S - \sigma(x_k, \xi_k') \leq \frac{\varepsilon}{4}, \sigma(x_k, \xi_k'') - s \leq \frac{\varepsilon}{4}.$$

За даденото деление, обаче, са изпълнени и неравенствата

$$|I - \sigma(x_k, \xi_k')| < \frac{\varepsilon}{4}, |I - \sigma(x_k, \xi_k'')| < \frac{\varepsilon}{4}$$

Остава да отбележим, че

$$S - s = \left(S - \sigma(x_k, \xi_k')\right) + \left(\sigma(x_k, \xi_k') - I\right) + \left(I - \sigma(x_k, \xi_k'')\right) + \left(\sigma(x_k, \xi_k'') - s\right)$$

Понеже, модулът на сума не надминава сумата от модулите на събираемите, то получаваме, че $S-s<\varepsilon$. Тъй като за всяко разбиване е изпълнено неравенството $s\leq I_*\leq I^*\leq S$ и понеже ε е произволно избрано, следва, че $I^*=I_*$.

Достатъчност. Нека $I^* = I_* = A$. Според основната лема на Дарбу $\lim_{d \to 0} S = I^*$, $\lim_{d \to 0} s = I_*$. Затова, за всяко $\varepsilon > 0$ може да се намери такова число $\delta > 0$, че при всяко деление с диаметър $d < \delta$ да са изпълнени неравенствата

$$I_* - s = A - s < \varepsilon$$

$$S - I^* = S - A < \varepsilon$$

От лема 2 имаме, че $s \le \sigma(x_{\iota}, \xi_{\iota}) \le S$, следователно

$$A - \varepsilon < s \le \sigma(x_k, \xi_k) \le S < A + \varepsilon$$

От тук получаваме, че $\left|A-\sigma(x_k,\xi_k)\right|<\varepsilon$ (за всяко разбиване с диаметър $d<\delta$). Следователно $A=\lim_{d\to 0}\sigma(x_k,\xi_k)$ т.е. f(x) е интегруема.

Основна Теорема. Ограничената функция f(x) в интервала [a,b] е интегруема по Риман в този интервал, тогава и само тогава, когато за всяко $\varepsilon > 0$ съществува разбиване $\{x_k\}$ за което $S - s < \varepsilon$.

Доказателство. Необходимост. Нека f(x) е интегруема по Риман в интервала [a,b]. При доказателството на необходимоста в помощната теорема показахме, че за всяко $\varepsilon > 0$ съществува такова число $\delta > 0$, че за всяко разбиване на интервала [a,b] с диаметър $d < \delta$ е изпълнено неравенството $S - s < \varepsilon$. Необходимоста е доказана.

Достатьчност. Дадено е, че за всяко $\varepsilon > 0$ съществува разбиване $\{x_k\}$ на интервала [a,b] , при което за големите и малки суми е изпълнено $S-s<\varepsilon$. Тогава, тъй като

$$s \leq I_* \leq I^* \leq S$$
,

то $I^*-I_*<\varepsilon$.От това неравенсво и произволният избор на ε заключаваме, че $I^*=I_*$, а от помощната теорема получаваме, че f(x) е интегруема.

Теоремата е доказана.

Теорема. Всяка непрекъсната в интервала [a,b] функция f(x) е интегруема по Риман в този интервал.

Доказателство. Нека f(x) е непрекъсната в интервала [a,b].Избираме произволно $\varepsilon>0$.Понеже функцията е непрекъсната в крайния и затворен интервал [a,b], то според теоремата на Кантор, тя е равномерно непрекъсната. Затова, за избраното $\varepsilon>0$ съществува такова число $\delta>0$, че ако ξ',ξ'' са произволни точки от интервала [a,b], за които $|\xi'-\xi''|<\delta$, то $|f(\xi')-f(\xi'')|<\varepsilon(b-a)$. Оттук следва, че разликата между точните горна и долна граници на f(x) в произволен подинтервал с дължина по-малка от δ , е по-малка от числото $\varepsilon(b-a)$. Избираме разбиването $\{x_k\}$ на интервала [a,b] с диаметър $d<\delta$. Нека

$$M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}, m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$$

Съгласно дефиницията за голяма и малка сума

$$S - s = \sum_{k=1}^{n} \left(M_k - m_k \right) \Delta x_k$$

Като използваме в това съотношение установеното неравенсво $\left(M_k - m_k\right) < \varepsilon(b-a)$, ще получим за избраното деление

$$S - s < \frac{\varepsilon}{b - a} \sum_{k=1}^{n} \Delta x_k = \varepsilon$$

От основната теорема заключаваме, че функцията f(x) е интегруема в интервала [a,b].

Теоремата е доказана.

Свойства на определения интеграл. Оценки за интегралите.

1. Свойства на интеграла.

А) Нека f(x) и g(x) са интегруеми в интервала [a,b]. Тогава функцията $f(x)\pm g(x)$ е също интегруема в [a,b] и

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

Б) Ако f(x) е интегруема в интервала [a,b], то функцията Cf(x), C=const е също интегруема и

$$\int_{a}^{b} Cf(x)dx = C \int_{a}^{b} g(x)dx$$

(Следствие: линейна комбинация на интегруеми функции е интегруема функция.)

- В) Нека f(x) и g(x) са интегруеми в интервала [a,b]. Тогава функцията f(x)g(x) е също интегруема в [a,b].
- Γ) Нека f(x) е интегруема в интервала [a,b]. Тогава функцията f(x) е интегруема във всеки затворен подинтервал на [a,b].
- Д) Ако f(x) е интегруема в интервала [a,c] и [c,b], то f(x) е интегруема в [a,b] и

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

2. Оценки за интегралите.

- А) Ако функцията f(x) е интегруема в [a,b] и $f(x) \ge 0$ за всички точки от интервала, то интегралът от функцията f(x) в този интервал е неотрицателен.
- Б) Интегриране на неравенства. Ако f(x) и g(x) са интегруеми в интервала [a,b], и $f(x) \le g(x)$ за всяко $x \in [a,b]$ то $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

Теорема за средните стойности. Теорема на Нютон-Лайбниц.

Теорема за средните стойности. Ако функцията f(x) е непрекъсната в крайния и затворен интервал [a,b], то съществува точка ξ за която е изпълнено равенството

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

Доказателство. Тъй като всяка непрекъсната функция в *краен и затворен* интервал е ограничена, то нека да означим с m и M съответно точната долна и точната горна граница на f(x) в интервала $\begin{bmatrix} a,b \end{bmatrix}$. Тогава от неравенствата

$$m \le f(x) \le M$$

и от свойството за интегриране на неравенства следва, че

$$\int_{a}^{b} m dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} M dx$$

Ще покажем, че $\int_{a}^{b} Cdx = C(b-a), C = const.$ При всяко разбиване $\{x_k\}$ и при всеки

избор на точките ξ_k , имаме $f(\xi_k) = C$.Следователно

$$\sigma(x_{k}, \xi_{k}) = \sum_{k=1}^{n} f(\xi_{k}) \Delta x_{k} = \sum_{k=1}^{n} C \Delta x_{k} = C \sum_{k=1}^{n} \Delta x_{k} = C(b-a)$$

Затова

$$I = \int_{a}^{b} C dx = \lim_{d \to 0} \sigma(x_k, \xi_k) = \lim_{d \to 0} C(b - a) = C(b - a)$$

Тогава неравенството приема вида

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a) \Longrightarrow$$

$$m \le \frac{\int\limits_{a}^{b} f(x)dx}{b-a} \le M$$

Поради непрекъснатостта на f(x) , то от теоремата на Вайершрас $f(x_1) = m$, $f(x_2) = M$. Ако за точките $f(x_1) = m$, $f(x_2) = M$. Ако за точките $f(x_1) = m$, $f(x_2) = M$. Следователно функцията е константа в интервала и тогава теоремата е очевидна.

 $^{^1}$ Теорема на Вайерщрас. Ако функцията f(x) е непрекъсната в краен и затворен интервал, то тя притежава една най-голяма и една най-малка стойност.

Ще разгледаме случая, когато $x_1 \neq x_2$. Точките x_1, x_2 определят един интервал. По отнощение на този интервал ще приложим към функцията f(x) теоремата на Болцано². И така, имаме, че

$$f(x_1) < \eta < f(x_2), \text{ където } \eta = \frac{\int\limits_a^b f(x) dx}{b-a}, f(x_1) \neq f(x_2)$$

Тогава съществува ξ от интервала (x_1, x_2) , за което $f(\xi) = \eta$,т.е.

$$f(\xi) = \frac{\int_{a}^{b} f(x)dx}{b-a} \Rightarrow \int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

И така, стигнахме до любимото ми изречение в процеса на доказателството на теореми, а именно: С това теоремата е доказана[©].

Теорема на Нютон-Лайбниц. Ако функцията е непрекъсната в интервала [a,b], то функцията

$$F(x) = \int_{a}^{x} f(t)dt$$

е диференцуема в този интервал и за всяко $x_0 \in [a,b]$ е изпълнено равенството $F'(x_0) = f(x_0)$

m.e. F(x) е примитивна на f(x) в интервала [a,b].

Доказателсво. Нека x_0 е произволна точка от интервала [a,b]. Ако x_0+h е друга точка от този интервал, то ще имаме

$$\frac{F(x_0 + h) - F(x_0)}{h} = \frac{1}{h} \left[\int_{a}^{x_0 + h} f(t) dt - \int_{a}^{x_0} f(t) dt \right] =$$

$$= \frac{1}{h} \left[\int_{a}^{x_0} f(t) dt + \int_{x_0}^{x_0 + h} f(t) dt - \int_{a}^{x_0} f(t) dt \right] = \frac{1}{h} \int_{x_0}^{x_0 + h} f(t) dt$$

За последният интеграл прилагаме теоремата за средните стойности,т.е. съществува точка $\xi \in [x_0, x_0 + h]$ такава, че

$$\int_{x_0}^{x_0+h} f(t)dt = hf(\xi) \Rightarrow f(\xi) = \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt$$

Следователно

$$\frac{F(x_0 + h) - F(x_0)}{h} = f(\xi)$$

Ако оставим h да клони към нула, то точката ξ ще клони към x_0 . Като вземем предвид и непрекъснатостта на f(x) в точката x_0 , ще получим

² Теорема на Болцано. Ако функцията f(x) е непрекъсната в краен и затворен интервал [a,b], и $f(a) \neq f(b)$, а λ е число намиращо се между f(a) и f(b), то съществува поне една точка α в интервала (a,b), за която $f(\alpha) = \lambda$

$$F'(x_0) = \lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = \lim_{h \to 0} f(\xi) = f(x_0)$$

Понеже x_0 беше произволна точка от интервала [a,b], то теоремата е доказана.

Теоремата на Нютон-Лайбниц ни дава един прост начин за пресмятане на определени интеграли от непрекъснати функции. От равенството

$$F(x) = \int_{a}^{x} f(t)dt$$

получаваме, че $F(b) = \int_a^b f(t)dt$. Сега остава да пресметнем $F(b) \cdot F(x)$, както

видяхме, е една примитивна на f(x). Но f(x) има безброй много примитивни, всяка от които се различава от F(x) с константа. Нека $\Phi(x)$ е примитивна на f(x). Тогава

$$F(x) - \Phi(x) = C$$

Нека вземем x=a . Тогава $F(a)-\Phi(a)=C$, но понеже

$$F(a) = \int_{a}^{a} f(t)dt = 0,$$

получичаваме, че $C = -\Phi(a)$. Следователно

$$F(x) = \Phi(x) - \Phi(a)$$

Сега при x = b стигаме до

$$F(b) = \Phi(b) - \Phi(a)$$

или окончателно

$$\int_{a}^{b} f(t)dt = \Phi(b) - \Phi(a)$$

Ще формулираме тази формула във вид на теорема.

Основна теорема на интегралното смятане. За да се пресметне определеният интеграл от непрекъснатата функция f(x) в интервала [a,b], трябва да се пресметнат стойностите на произволна нейна примитивна в точката b и в точката a и от първата да се извади втората.