Mathematics Course Descriptions

Algebra

A Linear Algebra I (Honors), Fall 2019.

Vector spaces, linear transformations, change of basis, eigenvalues, diagonalizability, inner product spaces, adjoint, spectral theorem, unitary operators.

Hoffman and Kunze: Linear Algebra (ch. 2-6, 8)

A Linear Algebra II, Winter 2020.

Infinite-dimensional vector spaces, dual spaces, quotient spaces, Caley–Hamilton theorem, singular value decomposition, generalized eigenspaces, Jordan canonical form.

Freidberg, Insel, and Spence: Linear Algebra (ch. 5-7)

Axler: Linear Algebra Done Right (ch. 3, 7-8) (supplemental self-study)

A Group Theory (Honors), Fall 2020.

Integers, groups, cosets, Lagrange's theorem, isomorphism theorems, group actions, Sylow theorems, Noetherian groups, finitely generated groups, universal properties.

Elman: Lectures on Abstract Algebra

Aluffi: Algebra: Chapter 0 (supplemental self-study)

A Ring and Module Theory (Honors), Winter 2021.

Rings, ideals, PIDs, Zorn's lemma, integral domains, UFDs, polynomial rings, Nullstellensatz, modules, Noetherian modules, Smith normal form, rational and Jordan canonical forms.

Elman: Lectures on Abstract Algebra

Aluffi: Algebra: Chapter 0 (supplemental self-study)

A- Field and Galois Theory, *Spring 2021*.

Field extensions, algebraic closure, separability, squaring the circle and related problems, fundamental theorem of Galois theory, Abel–Ruffini theorem.

Elman: Lectures on Abstract Algebra

directed Intro to Algebraic and Analytic Number Theory, Spring 2022.

reading Quadratic reciprocity, p-adics, Hilbert symbol, Hasse-Minkowski theorem, Lagrange four square theorem, Dirichlet theorem

Serre: A Course in Arithmetic (ch. 1-4, 6-7)

Analysis

B+ Multivariable Calculus and Analysis I (Honors), Fall 2019.

Continuity, compactness, linear algebra, big-O and little-o notation, total derivative, Hessian matrix, extreme values, inverse and implicit function theorems, Lagrange multipliers.

Shurman: Calculus and Analysis in Euclidean Space

A Multivariable Calculus and Analysis II (Honors), Winter 2020.

Riemann integrability, volume zero, gamma/beta integral, Feynman's trick, Fubini's theorem, connectedness, change of variable, differential forms, generalized Stokes' theorem.

Shurman: Calculus and Analysis in Euclidean Space

A Nonlinear Differential Equations, Winter 2020.

1- and 2-dimensional differential equations, fixed points and stability, bifurcations, phase plane, existence and uniqueness theorems, conservative and reversible systems, limit cycles.

Strogatz: Nonlinear Dynamics and Chaos (ch. 1-7)

A- Complex Analysis (Honors), Winter 2020.

Goursat's theorem, Cauchy's integral theorem, Cauchy's integral formula, residue formula, argument principle, logarithm, Möbius transformations, Riemann mapping theorem.

Stein and Shakarchi: Complex Analysis (ch. 1-3, 8)

A Real Analysis I (Honors), Winter 2020.

Peano axioms, equivalence relations, construction of reals, sequences and series, Riemann rearrangement theorem, cardinality, metric spaces, open and closed sets, completeness.

Rudin: Principles of Mathematical Analysis

A Real Analysis II (Honors), Spring 2020.

Continuity, compactness, connectedness, Arzelà–Ascoli theorem, differentiation, integration, uniform convergence, trigonometric functions, Fourier series, contraction mapping.

Rudin: Principles of Mathematical Analysis

B- Measure Theory and L^p Spaces (Graduate), Fall 2020.

Measures, measurable functions, Lebesgue integration, Fubini's theorem, absolute continuity, L^p spaces, convex functions, Riesz representation theorem.

Evans and Gariepy: Measure Theory and Fine Properties of Functions (ch. 1) Lieb and Loss: Analysis (ch. 2)

A Real Analysis III, Spring 2021.

Banach spaces, Stone-Weierstrass theorem, ODEs, Picard-Lindelöf theorem, review of Riemann integral, classical Stokes' theorem, measure and Lebesgue integration.

No textbook.

B Partial Differential Equations, Spring 2022.

The wave equation, the diffusion equation, reflections and sources, boundary problems, Fourier series

Strauss: Partial Differential Equations (ch. 1-5)

Combinatorics

A Graph Theory, Spring 2020.

Graph score, Eulerian graphs, 2-connectivity, triangle-free graphs, trees, planar graphs, Euler's formula, 5 color theorem, matrix-tree theorem, Ramsey theory.

Matoušek and Nešetřil: An Invitation to Discrete Mathematics (ch. 4-6, 8)

A Probabilistic Method (Graduate), Fall 2021.

Linearity of expectation, method of alterations, second moment method, Lovasz local lemma, Szemerédi regularity lemma, various problems from recent research.

Alon and Spencer: The Probabilistic Method

A+ Geometric Combinatorics (Graduate), Fall 2021.

Polytopes, root systems, triangulations, zonotopes, hyperplane arrangements, matroids, Tutte polynomial, oriented matroids.

Ziegler: Lectures on Polytopes

Stanley: An Introduction to Hyperplane Arrangements

A Enumerative Combinatorics (Graduate), Winter 2022.

Partition identities, random partitions, partition bijections, (\mathbb{N} -)rational functions, algebraic functions, Lagrange inversion, symmetric functions.

Stanley: Enumerative Combinatorics

A Incidence Combinatorics (Graduate), Winter 2022.

Finite field Kakeya problem, Bezout's theorem, Szemerédi–Trotter theorem, Zarankiewicz problem, Erdős distinct distance problem, polynomial partitioning, multilinear Kakeya.

No textbook.

in progress Tiling Problems (Graduate), Fall 2022.

Domino tilings, Conway tiling group, coloring methods, partitions and rim hooks, matrix methods, undecidable, NP-complete, and #P-complete tilings.

No textbook.

Computer Science

A **Optimization**, Winter 2020.

Newton's method, gradient methods and convergence, conjugate direction methods, linear programming, simplex algorithm, duality, Lagrange condition, KKT condition.

Chong and Zak: An Introduction to Optimization (ch. 6-11, 15-17, 20-21)

A Parameterized Algorithms (Graduate), Spring 2020.

FPT, kernelization, crown decomposition, bounded search trees, iterative compression, randomized methods, treewidth.

Cygan, et al.: Parameterized Algorithms

A Computability and Complexity (Graduate), Fall 2020.

Turing machines, NP, uncomputability, oracle computation, space bounds, polynomial hierarchy, randomized complexity, circuit complexity, interactive proofs, PCP Theorem.

Arora and Barak: Computational Complexity (ch. 1-8, 11)

A Communication Complexity (Graduate), Winter 2021.

Determinism, nondeterminism, randomness, lower bound methods, polynomial hierarchy, Yao's min-max principle, multiparty communication, quantum communication.

Kushilevitz and Nisan: Communication Complexity (ch. 1-3, 6)

A Greatest Theory Hits of the 21st Century (Graduate), Winter 2021.

SL = L, graph sparsification, interlacing polynomials, extender formulations, sensitivity conjecture, sunflower conjecture, log-concave polynomials, mixing-in matroids.

No textbook.

P Algorithmic Machine Learning (Graduate), Spring 2021.

Analysis of gradient descent and variants, SVD, online learning, graphical models, GLMs, GANs, streaming algorithms, frequency estimation.

No textbook.

B Cryptography (Graduate), Fall 2021.

One-way functions, hard-core bits, pseudorandom generators, semantic security, encryption, digital signatures, interactive/zero-knowledge proofs, hash functions, commitment protocols. No textbook.

in progress Automated Reasoning (Graduate), Fall 2022.

SAT solving, DPLL algorithm, tractable circuits, BDDs/SDDs, applications to machine learning and explainable AI

No textbook.

Geometry

A Topology, Winter 2021.

Metric spaces, point-set topology, separation axioms, continuity, compactness, connectedness, product spaces, Tychonoff's theorem, homotopic paths, fundamental group, covering spaces.

Gamelin and Greene: Introduction to Topology (ch. 1-3)

A- Differential Geometry, Spring 2021.

Curves and surfaces in 3-space, Frenet formulas, Gaussian curvature, congruence of curves and surfaces, intrinsic geometry of surfaces, isometries, geodesics, Gauss–Bonnet theorem.

Shifrin: Differential Geometry (ch. 1-3)

directed Computational Algebraic Geometry, Winter 2022.

reading Groebner bases, elimination of variables, ideal-variety correspondence, Nullstellensatz, automated geometric theorem proving.

Cox, Little, O'Shea: Ideals, Varieties, and Algorithms (ch. 1-4, 6)

Logic

A- Mathematical Logic, Spring 2020.

Propositional logic, first order logic, Tarski conditions, expressibility, soundness, completeness, compactness, Tarski's theorem, Gödel's first incompleteness theorem.

No textbook.

A+ Introduction to Set Theory, Winter 2021.

ZFC axioms, construction of the reals, cardinality, ordinals, transfinite induction, axiom of choice, independence proofs.

No textbook.

in progress First Order Logic and Model Theory (Graduate), Fall 2022.

First order logic, Gödel's completeness theorem, compactness, diagram method, quantifier elimination.

Hils and Loeser: A First Journey Through logic

Other

P Advanced Problem Solving, Fall 2019 and Fall 2020.

 $\label{lem:various} \mbox{Various problems from across undergraduate mathematics for Putnam preparation.}$

Andreescu and Gelca: Putnam and Beyond