

ഈ പ്രപഞ്ചത്തിലെ എല്ലാ പദാർത്ഥങ്ങളും മൂലകങ്ങൾ സംയോജിച്ചാണ് ഉണ്ടായിരിക്കുന്നത് എന്ന് നിങ്ങൾക്ക് അറിയാമല്ലോ. ഇതുവരെ 120 ഓളം മൂലകങ്ങൾ കണ്ടുപിടിക്കപ്പെട്ടിട്ടുണ്ട്. ഇതിൽ 90 മൂലകങ്ങൾ മാത്രമേ പ്രകൃതിയിൽ കണ്ടുവരുന്നുള്ളു. ബാക്കിയുള്ളവ കൃത്രിമ മൂലകങ്ങളാണ്. ഈ മൂലകങ്ങളെ ഉൾപ്പെടുത്തിയ ഒരു പട്ടിക ശാസ്ത്ര പാഠപുസ്തക ത്തിൽ നിങ്ങൾ കണ്ടിട്ടുണ്ടല്ലോ. ഇത് മൂലകവർഗ്ഗീകരണത്തിനുള്ള സമ ഗ്രമായ ഉപാധിയാണ്. ഇതിനെ പീരിയോഡിക് ടേബിൾ എന്ന് വിളിക്കുന്നു.

ഹെന്ററി മോസ്ലി തന്റെ പരീക്ഷണത്തിലൂടെ മൂലകങ്ങളുടെ ഗുണങ്ങൾ അവയുടെ അറ്റോമിക നമ്പറിനെ ആശ്രയിച്ചിരിക്കുന്നു എന്ന് കണ്ടെത്തി. ഇതിന്റെ അടിസ്ഥാനത്തിൽ അറ്റോമിക നമ്പർ കൂടിവരുന്ന ക്രമത്തിൽ മൂലകങ്ങളെ ടേബിളിൽ ഉൾപ്പെടുത്തി. 'മോഡേൺ പീരിയോഡിക് ടേബിൾ' എന്നും ഈ പട്ടിക അറിയപ്പെടുന്നു. ഇതിൽ നിന്നും മുൻപ് ഒരു പീരിയോഡിക് ടേബിൾ ഉണ്ടായിരുന്നു എന്നു വ്യക്തമാണല്ലോ? ഇത്തരത്തിലുള്ള മൂലകവർഗ്ഗീകരണത്തിലേക്ക് നയിച്ച ആദ്യകാല ശ്രമ

ചരിത്രത്തിലേക്ക്

മൂലകങ്ങളുടെ വർഗ്ഗീകരണത്തിന് തുടക്കം കുറിക്കുന്നത് ലവോസിയ ആണ്. 1789 ൽ അന്ന് അറിയപ്പെട്ടിരുന്ന 30 മൂലകങ്ങളെ ലോഹങ്ങൾ

എന്നും അലോഹങ്ങൾ എന്നും വർഗീകരിച്ചു. ലോഹങ്ങളുടേയും അലോ ഹങ്ങളുടേയും സ്വഭാവം കാണിക്കുന്ന ഉപലോഹങ്ങൾ കണ്ടെത്തിയ പ്പോൾ ഇവയെ ഇതിൽ ഉൾപ്പെടുത്താൻ കഴിഞ്ഞില്ല. എന്നതാണ് ഈ വർഗീകരണത്തിന്റെ ഒരു പരിമിതി.

ലവോസിയയ്ക്ക് ശേഷം വർഗീകരണത്തിൽ ശ്രദ്ധേയമായ പ്രവർത്തനം കാഴ്ചവച്ചത് ഡൊബെറൈനർ (Dobereiner) ആണ്. അദ്ദേഹം സമാനഗു ണങ്ങൾ പ്രകടിപ്പിക്കുന്ന 3 മൂലകങ്ങൾ ഉൾപ്പെടുന്ന ചെറുഗ്രൂപ്പുകൾ നിർമ്മിച്ചു. ഇവയെ ത്രികങ്ങൾ (Triads) എന്നുവിളിച്ചു.

Li 7 Ca 40 Cl 35.5	υ ^κ
N	
Na 23 Sr 87.6 Br 80	
K 39 Ba 137.3 I 127	

. പട്ടിക 4.1

ത്രികങ്ങളിൽ ഒന്നാമത്തെയും മൂന്നാമത്തേയും മൂലകങ്ങളുടെ അറ്റോമിക മാസ്സിന്റെ ഏകദേശ ശരാശരിയാണ് മധ്യഭാഗത്ത് വരുന്ന മൂലകത്തിന്റെ അറ്റോമികമാസ്. അറ്റോമിക മാസും മൂലകങ്ങളുടെ സ്വഭാവവും തമ്മിലു ളള ബന്ധം കണ്ടെത്തുന്നതിന് ഇത് സഹായിച്ചു. എല്ലാ മൂലകങ്ങളെയും ഉൾപ്പെടുത്തി ത്രികങ്ങൾ ഉണ്ടാക്കാൻ കഴിഞ്ഞില്ല എന്നത് ഒരു പരിമിതി യാണ്.

1866 ൽ ന്യൂലാൻഡ്സ് അന്നറിയപ്പെട്ടിരുന്ന 56 മൂലകങ്ങളെ ക്രമമായി എഴുതിയപ്പോൾ എട്ടാമത് വരുന്ന മൂലകം ആദ്യത്തേതിന്റെ ആവർത്തന മാണ് എന്ന് കണ്ടെത്തി. ഇതിനെ സംഗീതത്തിലെ സപ്തസ്വരങ്ങളു മായി അദ്ദേഹം താരതമ്യം ചെയ്തു.

സ, രി, ഗ, മ, പ, ധ, നി, സ... എട്ടാം സ്വരം ആദ്യത്തേതിന്റെ ആവർത്തനം എന്ന പോലെ.

ഈ നിയമം **അഷ്ടമ നിയമം** (Law of Octaves) എന്നറിയപ്പെടുന്നു. അറ്റോമികമാസ് കൂടിയ മൂലകങ്ങളിൽ ഇത് പാലിക്കപ്പെടുന്നില്ല എന്നത് ഇതിന്റെ പരിമിതിയായി രേഖപ്പെടുത്തപ്പെട്ടു.

ന്യൂലാൻഡ്സിന്റെ അഷ്ടകങ്ങൾ

മൂലകം	Li	Ве	В	С	N	0	F
അറ്റോമിക മാസ്	7	9	11	12	14	16	19
മൂലകം	Na	Mg	Al	Si	Р	S	CI
അറ്റോമിക മാസ്	23	24	27	29	31	32	35.5
മൂലകം	K	Ca					
അറ്റോമിക മാസ്	39	40					

പട്ടിക 4.2

വർഗീകരണം പട്ടികയിലൂടെ

മൂലകവർഗീകരണത്തിന് ആദ്യമായി ഒരു ടേബിൾ ഉണ്ടാക്കിയത് റഷ്യൻ ശാസ്ത്രജ്ഞനായ ദിമിത്രി ഇവാനോവിച്ച് മെൻഡലിയേഫ് ആണ്. പീരി യോഡിക് ടേബിളിന്റെ പിതാവ് എന്ന പേരിലാണ് മെൻഡലിയേഫ് പിൽക്കാലത്ത് അറിയപ്പെട്ടത്.

മൂലകവർഗീകരണത്തിന്റെ ചരിത്രവഴികളിൽ നാഴികക്കല്ലായി മാറിയ 'പീരിയോഡിക് ടേബിൾ' നിർമ്മിക്കുമ്പോൾ 63 മൂലകങ്ങളാണ് ഉണ്ടായിരുന്നത്. ഈ മൂലകങ്ങളെ മെൻഡലിയേഫ് അറ്റോമിക മാസ് കൂടിവ രുന്ന ക്രമത്തിൽ പട്ടികയിൽ വിന്യസിച്ചു. ഇങ്ങനെ വിന്യസിക്കുമ്പോൾ മൂലകങ്ങളുടെ ഭൗതിക-രാസഗുണങ്ങൾ ക്രമമായ ഇടവേളകളിൽ ആവർത്തിക്കുന്നതായി മെൻഡലിയേഫ് കണ്ടെത്തി. ഇതിന്റെ അടി സ്ഥാനത്തിൽ പിരിയോഡിക് നിയമം ആവിഷ്കരിച്ചു.

മെൻഡലിയേഫിന്റെ പീരിയോഡിക് നിയമം

മൂലകങ്ങളുടെ രാസഗുണങ്ങളും ഭൗതികഗുണങ്ങളും അവയുടെ അറ്റോമിക മാസിന്റെ ആവർത്തനഫലങ്ങളാണ്.

Group	1	II	III	IV	V	VI	VII	VIII
Oxide Hydride	R ₂ O RH	RO RH ₂	R_2O_3 RH_3	RO ₂ RH ₄	R_2O_5 RH_3	RO ₃ RH ₂	R ₂ O ₇ RH	$RO_{\scriptscriptstyle{4}}$
Periods	АВ	АВ	А В	АВ	АВ	АВ	АВ	Transition series
1	H 1.008							
2	Li 6.939	Be 9.012	B 10.81	C 12.011	N 14.007	O 15.999	F 18.998	
3	Na 22.99	Mg 24.31	Al 29.98	Si 28.09	P 30.974	S 32.06	CI 35.453	
4 First series Second series	K 39.102 Cu 63.54	Ca 40.08 Zn 65.37		Ti 47.90 	V 50.94 As 74.92			Fe Co Ni 55.85 58.93 58.71
5 First series Second series		Sr 87.62 Cd 112.04			92.91 Sb	Mo 95.94 Te 127.60	99 I	Ru Rh Pd 101.07 102.91 106.4
6 First series Second series	Cs 132.90 Au 196.97	Hg	La 138.91 Ti 204.37	Hf 178.49 Pb 207.19	Ta 180.95 Bi 208.98	W 183.85		Os Ir Pt 190.2 192.2 195.09

മെൻഡലിയേഫ് പീരിയോഡിക് ടേബിളിന്റെ മേന്മകൾ.

- സമാന ഗുണമുള്ള മൂലകങ്ങളെ ഒരേ ഗ്രൂപ്പിൽ ഉൾപ്പെടുത്തി മൂലക ങ്ങളെ വർഗീകരിച്ചു. ഇത് രസതന്ത്രപഠനം എളുപ്പമാക്കി.
- ചില മൂലകങ്ങൾ അറ്റോമിക മാസ്സുകളുടെ ആരോഹണക്രമം കൃതൃ മായി പാലിച്ചില്ല. ഇതിനു കാരണം അറ്റോമിക മാസ് നിർണ്ണയത്തിലെ അപാകതയാണ് എന്ന് അദ്ദേഹം സൂചിപ്പിച്ചു. പിന്നീട് അറ്റോമിക മാസ് പുനർനിർണയിക്കുന്നതിന് ഇത് കാരണമാവുകയും ചെയ്തു.
 (ഉദാഹരണം ബെറീലിയത്തിന്റെ അറ്റോമിക മാസ് 14 ൽ നിന്ന് 9 ആയി പുനർനിർണയിച്ചു).
- കണ്ടെത്തപ്പെടാനുള്ള ഏതാനും മൂലകങ്ങൾക്ക് സ്ഥാനം ഒഴിച്ചിടു കയും അവയുടെ ഗുണങ്ങൾ പ്രവചിക്കുകയും ചെയ്തു.

മെൻഡലീയേഫ് പീരിയോഡിക് ടേബിളിന്റെ പരിമിതികൾ

- ഗുണങ്ങളിൽ വളരെയധികം വൃതൃാസമുള്ള മൂലകങ്ങളെ ഒരേ ഗ്രൂപ്പിൽ ഉൾപ്പെടുത്തി. ഉദാ: സോഡിയം (Na), പൊട്ടാസ്യം (K) മുതലായ മൃദുലോഹങ്ങളോടൊപ്പം കോപ്പർ (Cu), സിൽവർ (Ag) മുതലായ കാഠിനൃം കൂടിയ ലോഹങ്ങളെയും ഉൾപ്പെടുത്തി.
- ഹൈഡ്രജൻ (H) എന്ന മൂലകത്തിന് കൃത്യമായ സ്ഥാനം നൽകാൻ കഴിഞ്ഞില്ല. ലിതിയം (Li), സോഡിയം (Na), പൊട്ടാസ്യം (K) മുതലായ ലോഹങ്ങളോടൊപ്പം അലോഹമായ ഹൈഡ്രജന് സ്ഥാനം നൽകി.
- അറ്റോമിക മാസിന്റെ ആരോഹണക്രമം എല്ലായിടത്തും കൃത്യമായി പാലിക്കാൻ കഴിഞ്ഞില്ല.
 ഉദാ. കൊബാൾട്ട് (Co)& നിക്കൽ (Ni) , ടെലൂറിയം (Te) & അയ ഡിൻ (I)

ആധുനിക പീരിയോഡിക് നിയമം

1869 ൽ മെന്റഡലിയേഫ് പീരിയോഡിക് ടേബിൾ തയ്യാറാക്കുമ്പോൾ ആറ്റം ഘടനയെക്കുറിച്ചോ ആറ്റത്തിലെ മൗലിക കണങ്ങളെക്കുറിച്ചോ വ്യക്തമായ ധാരണ രൂപപ്പെട്ടിരുന്നില്ല.

മോസ്ലി തന്റെ X-ray ഡിഫ്രാക്ഷൻ പരീക്ഷണത്തിലൂടെ മൂലകങ്ങൾക്ക് ക്രമ നമ്പർ നൽകി. ഇതിനെ അറ്റോമിക നമ്പർ എന്നു വിളിച്ചു. ഇതിന്റെ അടിസ്ഥാനത്തിൽ പിരിയോഡിക് നിയമം പരിഷ്കരിച്ചു.

മൂലകങ്ങളുടെ രാസഗുണങ്ങളും ഭൗതിക ഗുണങ്ങളും അവയുടെ അറ്റോമിക നമ്പറിന്റെ ആവർത്തനഫലങ്ങളാണ്.

ഗ്രൂഷും പീരിയഡും

പീരിയോഡിക് ടേബിളിൽ കുത്തനെയുളള കോളങ്ങളെ ഗ്രൂഷുകൾ എന്നു വിളി ക്കുന്നു. ഗ്രൂഷുകളിലെ മൂല കങ്ങൾ രാസ-ഭൗതിക സ്വഭാവ ങ്ങളിൽ സമാനതപ്രകടിഷി

വിലങ്ങനെ യുളള കോള ങ്ങളെ പീരിയഡുകൾ എന്നു വിളിക്കുന്നു.

പീരിയോഡിക് ടേബിൾ ആവർത്തനപ്പട്ടിക

									- O.		00
Helium 2	- <mark>Š</mark>	Neon 2,8	Argon 2,8,8	챃	Krypton 2,8,18,8	×	Xenon 2,8,18,18,8	*Æ	Radon 2,8,18,32,18,	⁸ O	Oganesson 28.18.32.32.18.
	∘∟	Fluorine 2.7	Chlorine	ē	Bromine 2,8,18,7	S-	lodine 2,8,18,18,7	¥	Astatine 2,8,18,32,18,7	T _Z	Tennessine 2.8.18.32.32.18.7
	×O,	Oxygen 2,6	Sulphur 2,8,6	Se	Selenium 2,8,18,6	[∞] 9	Tellurium 2,8,18,18,6	[₹] 0	Polonium 2,8,18,32,18,6	دَّ	Livermonium Tennessine Oganesson 28183232186 28.18.32,32,18,7 28.18.32,32,18,8
	-2	Nitrogen 2,5	Phosphorus 2,8,5	As	Arsenic 2,8,18,5	Sb	Antimorry (Stibium) 2,8,18,18,5	≅ ⊡	Bismuth 2,8,18,32,18,5	⊒ Z	Moscovium 28.18.32.32.18.5
	့ပ	Carbon 2,4		Ğ.	Germanium 2,8,18,4		(Stanum) 2,8,18,18,4	္အရ	(Plumbum) 2,8,18,32,18,4	証	Flerovium 28.18.32.32.18.4
	~©	Boron 2,3	13 Aluminium 2,8,3	≟g	Galfium 2,8,18,3	5 -E	Indium 2,8,18,18,3	≅ F	Thallium 2,8,18,32,18,3	SE S	Nihonium 28.18.32.32.18.3
				۶	Zinc 2,8,18,2	္ခဋ	Cadmium 2,8,18,18,2	[∞] Σ	天8.	⊒ర్	Copernicium 28.18.72.32.18.2
В			్టై	Copper (Cuprum) 2,8,18,1	Ą	(Argentum) 2,8,18,18,1	Au	Gold (Aurum) 2,8,18,32,18,1	₽g	Z8.	
ആവർത്തനപ്പട്ടിക	നമ്പർ	ലെ പേര് ചിന്യാസം	% Z	Nickel 2,8,16,2	₽g	Palladium 2,8,18,18	్ఙా	Platinum 2,8,18,32,17,1	₽S	Darmstadtium 28.183232.16.1	
		അറ്റോമിക നമ്പർ പ്രതീകം പേര് ഇംഗ്ലീഷ് ഭാഷയിലെ പേര് ഇലക്ട്രോൺ വിന്യാസം	္ပင္ပ	Cobalt 2,8,15,2	≗돈	Rhodium 2,8,18,16,1		Iridium 2,8,18,32,15,2	š.	Meitnerium 28.18.32.32.152	
			99		Iron (Ferrum) 2,8,14,2	₽₽₽	Ruthenium 2,8,18,15,1	ုလ	Osmium Iridium Platinum 2,8,18,32,14,2 2,8,18,32,17,	⁸⁰ ±	Hassium 28.18.32.32.142
				Z ^S	Manganese 2,8,13,2	္မည	Technetium 2,8,18,14,1	₽e	(Wolfram) Osr (2 2,8,18,32,12,2 2,8,18	_⊵ B	Bohrium 28.18.32.32.13.2
				₹ర్	Chromium 2,8,13,1	¥₂	Molybdenum 2,8,18,13,1	74 Tunxten	(Wolfram) 2,8,18,32,12,2	Sg.	Seaborgium 28.18.72.32.12.2
	_	န	3 കങ്ങൾ	53	Vanadium 2,8,11,2	₽₽		⊒ 2	Tantalum 2,8,18,32,11,2	<u></u>	Dubnium 28.183232.11.2
സൂചനകൻ		ചനകവ	്ട്ട വാതകങ്ങൾ ദ്രാവകങ്ങൾ കൃത്രിമ മൂലകങ്ങൾ	=	Titanium 2,8,10,2	Ş ζ	Zirconium 2,8,18,10,2		Hafnium 2,8,18,32,10,2	<u>₹</u>	Actinium Rutherfordium Dubnium 2,8,18,32,18,92 2,8,18,32,31,12
	w			လွှ	Scandium 2,8,9,2	%	Yttrium 2,8,18,9,93	57-71 La- Lu	Barium Lanthanum 2,8,18,18,8,2 2,8,18,18,9,2	Ac-Lr	Actinium 2,8,18,32,18,9,2
	₽	Beryllium 2,2	Mg Magnesium 2,8,2	္မီဇ	Calcium 2,8,8,2	[‱] ည်	Strontium 2,8,18,8,2	» Ba	Barium 2,8,18,18,2	‰a a	Radium 2,8,18,32,18,8,2
Hydrogen	E.3	Lithium 2,1	Name	∞∡	Potassium (Kalium) 2,8,8,1	ξg	Rubidium 2,8,18,8,1	ွှင	Caesium 2,8,18,18,8,1	死	Francium Radium 2,8,18,32,18,8,2

71 Lutetium 8,18,32,9,2	103 Lr awrencium 8.18.32.32.92
Yterbium *8,18,32,8,2 2,	Nobelium L 18.18.32.32.82 2:
Tm Thulium 1,8,18,31,8,2	Md Mendelevium ,8,18,32,31,8,2
68 Er Erbium 2,8,18,30,8,2	Fm Fermium 28,18,32,30,8,2,2
Holmium 2,8,18,29,8,2	Einsteinium 28,18,32,29,8,2
Dy Dysprosium 2,8,18,28,8,2	Californium 2,8,18,32,28,8,2
Tb Terbium 2,8,18,27,8,2	BK Berkelium 2,8,18,32,27,8,2
Gd Gadolinium 2,8,18,25,9,2	Curium 28,18,32,25,92
Europium 2,8,18,25,8,2	Am Americium 2,8,18,32,25,8,2
Sm Samarium 2,8,18,24,8,2	Pu Plutonium 2,8,18,32,24,8,2
Pm Promethium 2,8,18,23,8,2	Neptunium 2,8,18,32,22,92
Neodymium 2,8,18,22,8,2	92 Uranium 2,8,18,32,21,9,2
Pr Praseodymium 2,8,18,21,8,2	Protactinium 2,8,18,32,20,92
Ce Cerium 2,8,18,19,9,2	7b Thorium 2,8,18,32,18,10,2
57 La 2,8,18,18,9,2	89 Ac 2,8,18,32,18,9,2

പട്ടിക 4.4

ആധുനിക പീരിയോഡിക് ടേബിൾ പരിശോധിച്ചു താഴെ തന്നിരിക്കു ന്നവ പൂർത്തിയാക്കുക

- ആകെ പീരിയഡുകളുടെ എണ്ണം _ _ _ _ _ _ _ _ _
- ഏറ്റവും ചെറിയ പീരിയഡ് _ _ _ _ _ _ _
- 3-ാം പീരിയഡിലുള്ള മൂലകങ്ങളുടെ എണ്ണം _ _ _ _ _ _ _
- ആകെ ഗ്രൂപ്പുകളുടെ എണ്ണം _ _ _ _ _ _ _ _ _ _

പീരിയോഡിക് ടേബിളിൽ സമാനഗുണങ്ങളുള്ള മൂലകങ്ങൾ ഒരേ ഗ്രൂപ്പിലാണ് ഉൾപ്പെട്ടിട്ടുള്ളതെന്നറിയാമല്ലോ.

ഇലക്ട്രോൺ വിന്യാസവും പീരിയോഡിക് ടേബിളിലെ സ്ഥാനവും

ഒരു മൂലകത്തെക്കുറിച്ചു എന്തെല്ലാം വസ്തുതകൾ പീരിയോഡിക് ടേബിളിൽനിന്നു മനസ്സിലാക്കാൻ കഴിയും?

കാർബൺ എന്ന മൂലകവുമായി ബന്ധപ്പെട്ടു പീരിയോഡിക് ടേബിളിൽ (പട്ടിക 4.4) നൽകിയിട്ടുള്ള വിവരങ്ങൾ കണ്ടെത്തി എഴുതുക.

- പേര്
- പ്രതീകം
- ---------
- ---------

പീരിയോഡിക് ടേബിളിലെ ഒന്നാമത്തെ ഗ്രൂപ്പിലെ മൂലകങ്ങളുടെ ഇലക്ട്രോൺ വിന്യാസം നൽകിയിരിക്കുന്നതു (പട്ടിക 4.5) നോക്കൂ.

മൂലകം	അറ്റോമിക നമ്പർ	ഇലക്ട്രോൺ വിനൃാസം
Н	1	1
Li	3	2, 1
Na	11	2, 8, 1
K	19	2, 8, 8, 1
Rb	37	2, 8, 18, 8, 1
Cs	55	2, 8, 18, 18, 8, 1
Fr	87	2, 8, 18, 32, 18, 8, 1

പട്ടിക 4.5

ഈ മൂലകങ്ങളുടെ ബാഹ്യതമഷെല്ലിലെ ഇലക്ട്രോൺ വിന്യാസത്തിൽ എന്തു പ്രത്യേകതയാണ് കാണുന്നത്?

ഈ മൂലകങ്ങൾ ഏത് രീതിയിലാണ് രാസബന്ധനത്തിൽ ഏർപ്പെടുന്നത്?

ഒന്നാം ഗ്രൂപ്പിൽപ്പെട്ട മൂലകങ്ങൾ പൊതുവെ ഒരേ രാസഗുണം പ്രകടിപ്പി ക്കുന്നതിനുള്ള കാരണം വ്യക്തമായല്ലോ

ഇതുപോലെ രണ്ടാം ഗ്രൂപ്പുകളിലെ ഏതാനും മൂലകങ്ങളുടെ ഇലക്ട്രോൺ വിന്യാസം എഴുതി പരിശോധിക്കൂ. സമാനമായ പ്രത്യേകത കാണുന്നുണ്ടോ? ഇവ ആൽക്കലൈൻ എർത്ത് ലോഹങ്ങൾ എന്നറിയ പെടുന്നു.

മൂലകങ്ങളുടെ രാസഗുണങ്ങൾക്കടിസ്ഥാനം അവയുടെ ബാഹൃതമ ഷെല്ലിലെ ഇലക്ട്രോണുകളുടെ എണ്ണമാണ്.

അതിനാൽ ഒരേ ഗ്രൂപ്പിൽ ഉൾപ്പെടുന്ന മൂലകങ്ങൾ രാസഗുണങ്ങളിൽ സാദൃശ്യം കാണിക്കുന്നു.

പട്ടിക 4.5 ൽ നൽകിയിട്ടുള്ള മൂലകങ്ങളുടെ ഗ്രൂപ്പും പീരിയഡും പീരി യോഡിക് ടേബിൾ (ചിത്രം 4.4) വിശകലനം ചെയ്ത് കണ്ടെത്തൂ. ഗ്രൂപ്പു നമ്പറും ബാഹ്യതമഷെല്ലിലെ ഇലക്ട്രോണുകളുടെ എണ്ണവും തമ്മിൽ ബന്ധമുണ്ടോ? എന്താണത്?

രണ്ടാം ഗ്രൂപ്പിലെ മൂലകങ്ങളുടെ ഇലക്ട്രോൺ വിന്യാസമെഴുതിയത് പരിശോധിക്കൂ. ഗ്രൂപ്പ് നമ്പറുമായി ബന്ധപ്പെട്ട് എന്തു പ്രത്യേകതയാണ് കാണുന്നത്?

1, 2 ഗ്രൂപ്പുകളിലെ മൂലകങ്ങളിലെ ബാഹ്യതമഷെല്ലിലെ ഇലക്ട്രോണു കളുടെ എണ്ണമാണ് അവയുടെ ഗ്രൂപ്പ് നമ്പർ.

13 മുതൽ 18 വരെ ഗ്രൂപ്പിലെ രണ്ടാം പീരിയഡിലെ മൂലകങ്ങളുടെ ഇല ക്ട്രോൺ വിന്യാസം നൽകിയിരിക്കുന്നത് നോക്കൂ.

ഗ്രൂപ്പ് നമ്പറും ബാഹൃതമഷെല്ലിലെ ഇലക്ട്രോണിന്റെ എണ്ണവും തമ്മി ലുള്ള വൃത്യാസം എത്രയാണ്? _______

ഇവയുടെ ബാഹ്യതമഷെല്ലിലെ ഇലക്ട്രോണിന്റെ എണ്ണത്തോടൊപ്പം 10 കൂട്ടിയാൽ ഗ്രൂപ്പ് നമ്പർ കിട്ടുമല്ലോ.

പട്ടിക 4.5 ൽ ഒന്നാം ഗ്രൂപ്പ് മൂലകങ്ങളുടെ പീരിയഡ് നമ്പർ പീരിയോ ഡിക് ടേബിൾ വിശകലനം ചെയ്ത് കണ്ടെത്തുക. ഷെല്ലുകളുടെ എണ്ണവും പീരിയഡ് നമ്പറും തമ്മിൽ ബന്ധമുണ്ടോ?

പട്ടിക 4.7 പരിശോധിച്ച് ഇലക്ട്രോൺ വിന്യാസവും പീരിയഡ് നമ്പറും തമ്മിലുള്ള ബന്ധം കണ്ടെത്തുക.

	Na	Ca	Ga	I
ഇലക്ട്രോൺ വിന്വാസം	2, 8, 1	2,8,8,2	2,8,18,3	2,8,18,18,7
ഷെല്ലുകളുടെ എണ്ണം	-	4	-	5
പീരിയഡ് നമ്പർ	3	-	-	5

പട്ടിക 4.7

ഒരു മൂലകത്തിലെ ഷെല്ലുകളുടെ എണ്ണവും പീരിയഡ് നമ്പറും തുല്യ മാണ്.

ഓരോ ഗ്രൂപ്പിലെയും മൂലകങ്ങളുടെ പൊതുവായ സവിശേഷതകൾ അനു സരിച്ച് അവയെ വിവിധ മൂലക കുടുംബങ്ങളായി പരിഗണിക്കാറുണ്ട്. ചുവടെ നൽകിയിട്ടുള്ള പട്ടിക 4.8 നോക്കൂ.

പീരിയോഡിക് ടേബിളിൽ ഹൈഡ്രജന്റെ സ്ഥാനം

പീരിയോഡിക് ടേബിളിലെ ഹൈഡ്ര ജന്റെ സ്ഥാനം ഇപ്പോഴും ചർച്ചക്ക് വിഷയമാണ്. മിക്ക പീരിയോഡിക് ടേബിളിലും ഹൈഡ്രജന് ആൽ ക്കലി ലോഹങ്ങൾക്ക് മുകളിലാ യാണ് സ്ഥാനം നൽകിയിട്ടുള്ളത് എന്നാൽ ഹൈഡ്രജൻ ഒരു അലോ ഹമാണ്. ആൽക്കലി ലോഹങ്ങൾ ഏകാറ്റോമികമായിരിക്കു മ്പോൾ ഹൈഡ്രജൻ ദ്വയാറ്റോമികമാണ്. ആൽക്കലി ലോഹങ്ങളെപ്പോലെ രാസപ്രവർത്തനങ്ങളിൽ ഹൈഡ്രജന് ഒരു ഇലക്ട്രോൺ നഷ്ടപ്പെടുന്നു. അതേസമയം ചില രാസപ്രവർത്തനങ്ങളിൽ ഹാലൊജ നുകളെപ്പോലെ ഒരു ഇലക്ട്രോൺ നേടുന്നു. ആൽക്കലി ലോഹങ്ങ ളെല്ലാം ഖരാവസ്ഥയിലായിരിക്കു മ്പോൾ ഹൈഡ്രജൻ വാതകാവസ്ഥ യിലാണ്. ആൽക്കലി ലോഹങ്ങൾക്ക് പൊതുവെ അയോണീകരണ ഊർജം കുറവായിരിക്കുമ്പോൾ ഹൈഡ്രജന്റെ അയോണീകരണ ഊർജം ഹാലൊജനുകളെപ്പോലെ ഉയർന്നതാണ്.ഏറ്റവും കുറഞ്ഞ അളവിൽ കണ്ടുവരുന്ന വാതകം റഡോൺ ആണ്.

മൂലക കുടുംബം		
ആൽക്കലി ലോഹങ്ങൾ		
ആൽക്കലൈൻ എർത്ത് ലോഹങ്ങൾ		
സംക്രമണ ലോഹങ്ങൾ		
ബോറോൺ കുടുംബം		
കാർബൺ കുടുംബം		
നൈട്രജൻ കുടുംബം		
ഓക്സിജൻ കുടുംബം		
ഹാലൊജനുകൾ		
ഉൽകൃഷ്ടവാതകങ്ങൾ		

പട്ടിക 4.8

പ്രാതിനിധ്യമൂലകങ്ങൾ (Representative elements)

പീരിയോഡിക് ടേബിളിലെ 1, 2, ഗ്രൂപ്പുകളിലെയും 13 മുതൽ 18 വരെയുമുള്ള ഗ്രൂപ്പുകളിലെയും മൂലകങ്ങൾ പരിശോധിക്കൂ.

- ഇവയിൽ നിങ്ങൾക്കു പരിചയമുള്ളവയുണ്ടോ?
- ഇവയിൽ ലോഹങ്ങൾ ഉൾപ്പെടുന്നുണ്ടോ?
- ഇവയിൽ അലോഹങ്ങൾ ഉൾപ്പെടുന്നുണ്ടോ?
- ലോഹങ്ങളുടെയും അലോഹങ്ങളുടെയും സ്വഭാവം പ്രദർശിപ്പിക്കുന്ന ഉപലോഹങ്ങൾ ഉൾപ്പെട്ടിട്ടുണ്ടോ?
 ഉദാഹരണങ്ങൾ കണ്ടെത്തി പട്ടികയാക്കൂ.
- ഖരം, ദ്രാവകം, വാതകം എന്നീ വിവിധ അവസ്ഥകളിലുള്ള മൂലകങ്ങൾ ഉണ്ടോ? ഉദാഹരണങ്ങൾ കണ്ടെത്തു.

•	ഖരാവസ്ഥയിലുള്ളവ
•	ദ്രാവകാവസ്ഥയിലുള്ളവ
•	വാതകാവസ്ഥയിലുള്ളവ

ഈ ഗ്രൂപ്പുകളിലെ മൂലകങ്ങൾ ആറ്റങ്ങളിലെ ഇലക്ട്രോൺ പൂരണത്തിൽ ക്രമാവർത്തനപ്രവണത കാണിക്കുന്നവയാണ്. ബാഹ്യതമഷെല്ലിൽ 1 മുതൽ 8 വരെ ഇലക്ട്രോണുകൾ അടങ്ങിയവയാണ് ഇവ. ഈ ഗ്രൂപ്പുകളിലെ മൂലകങ്ങളെ പ്രാതിനിധ്യ മൂലകങ്ങൾ (Representative elements) എന്ന് വിളിക്കുന്നു.

ഉൽകൃഷ്ട വാതകങ്ങൾ

പീരിയോഡിക് ടേബിളിലെ 18-ാം ഗ്രൂപ്പിലെ മൂലകങ്ങളായ ഹീലിയം, നിയോൺ, ആർഗോൺ, ക്രിപ്റ്റോ ൺ, സീനോൺ, റഡോൺ എന്നിവ യാണ് ഉൽകൃഷ്ട വാതകങ്ങൾ. ഇവ ഏകാറ്റോമിക തന്മാത്രകളായാണ് കാണപ്പെടുന്നത്. സാധാരണയായി മറ്റുള്ളവയുമായി സംയോജിക്കാത്ത തിനാൽ ഇവയെ അലസവാതക ങ്ങൾ (Inert gases) എന്നും വളരെ കുറഞ്ഞ അളവിൽ മാത്രം കണ്ടുവ രുന്നതിനാൽ അപൂർവവാതകങ്ങൾ (Rare gases)എന്നും വിളിക്കുന്നു. ഹീലിയം സാന്ദ്രത വളരെ കുറഞ്ഞ വാതകമായതിനാൽ കാലാവ സ്ഥാബലൂണുകളിൽ നിറയ്ക്കുന്നു. നിയോൺ വാതകം ഓറഞ്ച് നിറം ലഭിക്കുന്നതിനായി ഡിസ്ചാർജ് ലാമ്പുകളിൽ ഉപയോഗിക്കുന്നു. വൈദ്യുത ബൾബുകളിലെ ഫില മെന്റ് ബാഷ്പീകരിക്കാതിരിക്കാ നായി അവയിൽ ആർഗോൺ വാതകം നിറയ്ക്കാറുണ്ട്. റഡോൺ റേഡിയോ ആക്ടീവിറ്റി ഉള്ളതാണ്. ഏറ്റവും കുറഞ്ഞ അളവിൽ കണ്ടു വരുന്ന വാതകം റഡോൺ ആണ്.

111111111111111111 ഉൽകൃഷ്ട വാതകങ്ങൾ (Noble gases)

- 18-ാം ഗ്രൂപ്പിൽപ്പെട്ട മൂലകങ്ങളെ പട്ടികപ്പെടുത്തൂ.
- അവയുടെ ഇലക്ട്രോൺ വിന്യാസം എഴുതി നോക്കൂ.
- ബാഹൃതമഷെല്ലിൽ എത്ര ഇലക്ട്രോണുകൾ വീതമാ ണുള്ളത്?

ഇവ രാസപ്രവർത്തനത്തിൽ പങ്കെടുക്കുമോ? 18-ാം ഗ്രൂപ്പ് മൂലകങ്ങൾ ഉൽകൃഷ്ട വാതകങ്ങൾ എന്നറിയ പ്പെടുന്നു.

സംക്രമണമൂലകങ്ങൾ (Transition Elements)

പീരിയോഡിക് ടേബിളിൽ 3 മുതൽ 12 വരെയുള്ള ഗ്രൂപ്പുകളിൽ ഉൾപ്പെടുന്ന മൂലകങ്ങളാണ് സംക്രമണമൂലകങ്ങൾ.

- സംക്രമണമൂലകങ്ങൾ ലോഹങ്ങളാണ്.
- ഇവ നിറമുള്ള സംയുക്തങ്ങൾ ഉണ്ടാക്കുന്നു.
- ഗ്രൂപ്പുകളിലും പീരിയഡുകളിലും ഇവ രാസഗുണങ്ങളിൽ സാദൃശ്യം കാണിക്കുന്നു.

ലാൻഥനോയ്ഡുകളും ആക്റ്റിനോയ്ഡുകളും (Lanthanoides and Actinoides)

പീരിയോഡിക് ടേബിളിലെ ആറാം പീരിയഡിൽ 57 മുതൽ 71 വരെ അറ്റോമിക നമ്പറുകളുള്ള മൂലകങ്ങൾക്ക്

എവിടെയാണ് സ്ഥാനം നൽകിയിരിക്കുന്നത് എന്നു കണ്ടെത്തൂ.

ഇതുപോലെ 7-ാം പീരിയഡിൽ 89 മുതൽ 103 വരെ അറ്റോമിക

2,1

2,8,18,8,1

ചിത്രം 4.1

നമ്പറുകളുള്ള മൂലകങ്ങൾക്കും പീരിയോഡിക് ടേബിളിന് ചുവടെ പ്രത്യേകമായല്ലേ സ്ഥാനം നൽകിയിട്ടുള്ളത്?

ഈ മൂലകങ്ങൾ **അന്തസ്സാക്രമണ മൂലകങ്ങൾ** (Inner transition elements) എന്നറിയപ്പെടുന്നു.

6-ാം പീരിയഡിൽ ഉൾപ്പെടുന്ന ലാൻഥാനം (La) മുതൽ ലുട്ടേഷ്യം (Lu) വരെയുള്ള അന്തസ്സംക്രമണമൂലകങ്ങളെ **ലാൻഥനോയ്ഡുകൾ** എന്നു വിളിക്കുന്നു.

7-ാം പീരിയഡിൽ ഉൾപ്പെടുന്ന ആക്റ്റിനിയം (Ac) മുതൽ ലോറൻഷ്യം (Lr) വരെയുള്ള അന്തസ്സംക്രമണമൂലകങ്ങളെ **ആക്ടിനോയിഡുകൾ** എന്ന് വിളിക്കുന്നു.

ലാൻഥനോയ്ഡുകൾ **റെയർ എർത്ത്സ്** (Rare Earths) എന്നും അറിയപ്പെടുന്നു. ആക്ടിനോയ്ഡുകളിൽ യുറേനിയ(U) ത്തിന് ശേഷമുള്ള മൂലകങ്ങൾ മനുഷ്യനിർമ്മിതമാണ്.

പിരീയോഡിക് ടേബിളിലെ ക്രമാവർത്തന പ്രവണതകൾ ആറ്റത്തിന്റെ വലുപ്പം (Size of an Atom) ഗ്രൂപ്പുകളിൽ

ആറ്റത്തിന്റെ ബോർ മാതൃക പരിചയപ്പെട്ടിട്ടുണ്ടല്ലോ. ഒന്നാം ഗ്രൂപ്പിലെ ഏതാനും മൂലകങ്ങളുടെ ബോർ ആറ്റം മാതൃക ചിത്രീകരിച്ചിരിക്കുന്നത് നോക്കൂ (ചിത്രം 4.1).

പീരിയോഡിക് ടേബിളിൽ ഒരു ഗ്രൂപ്പിൽ മുകളിൽ നിന്നും താഴോട്ടു പോകുന്തോറും ഷെല്ലുകളുടെ എണ്ണം വർധിക്കുന്നതിനാൽ മൂലകങ്ങളുടെ ആറ്റത്തിന്റെ വലുപ്പം വർധിച്ചു വരുന്നു.

ആറ്റത്തിന്റെ വലുപ്പം പീരിയഡിൽ

പീരിയോഡിക് ടേബിളിലെ രണ്ടാം പീരിയഡിലെ അറ്റോമിക നമ്പർ 3 മുതൽ 9 വരെയുള്ള മൂലകങ്ങളുടെ ബോർ മാതൃകകൾ ചിത്രീകരിച്ചിരി ക്കുന്നതു (ചിത്രം 4.2) നോക്കൂ.

ഇവിടെ അറ്റോമിക നമ്പർ കൂടുന്നതനുസരിച്ച് ഷെല്ലുകളുടെ എണ്ണം വ്യത്യാസപ്പെടുന്നില്ലല്ലോ?

അറ്റോമിക നമ്പർ കൂടുന്നതനുസരിച്ച് ന്യൂക്ലിയർ ചാർജിന് എന്താണ് സംഭവിക്കുന്നത്?______

പോസിറ്റീവ് ചാർജുള്ള ന്യൂക്ലിയസ് ഇലക്ട്രോണുകളെ ആകർഷിക്കുമല്ലോ. അതിനാൽ പീരിയഡിൽ ഇടത്തുനിന്നും വലത്തോട്ട് പോകുന്തോറും ന്യൂക്ലിയർ ചാർജ് കൂടുന്നു. അതനുസരിച്ച് ബാഹൃതമ ഇലക്ട്രോണുകളിൽ മേലുള്ള ആകർഷണബലം കൂടുന്നു. അതിനാൽ ആറ്റത്തിന്റെ വലുപ്പം പൊതുവെ കുറഞ്ഞുവരുന്നു.

ചിത്രം 4.2

അയോണീകരണ ഊർജം (Ionisation Energy)

സോഡിയം, ക്ലോറിൻ എന്നീ ആറ്റങ്ങൾ സംയോജിച്ചു സോഡിയം ക്ലോറൈഡ് തന്മാത്ര ഉണ്ടാകുന്ന വിധം മനസ്സിലാക്കിയിട്ടുണ്ടല്ലോ. ഇത് ഒരു അയോണിക സംയുക്തം ആണല്ലോ? സോഡിയത്തിന്റെയും ക്ലോറിന്റെയും ബോർ മാതൃകകൾ നൽകിയിരിക്കുന്നു (ചിത്രം 4.3).

NANANANANANA അറ്റോമിക ആരം (Atomic radius)

ആറ്റത്തിന്റെ വലുപ്പം പ്രസ്താവിക്കു ന്നതിനുള്ള ഒരു രീതിയാണ് അറ്റോമിക ആരം. ന്യൂക്ലിയസിന്റെ കേന്ദ്രബിന്ദു മുതൽ ഏറ്റവും പുറത്തെ ഷെല്ലിലേക്കുള്ള ദൂരമാണ് അറ്റോമിക ആരം. ആറ്റത്തിൽ ഷെല്ലുകളുടെ എണ്ണം വർധിക്കു മ്പോൾ അറ്റോമിക ആരം കൂടുന്നു.

ക്ലോറിൻ ആറ്റം

ചിത്രം 4.3

- ഇവയിൽ ഇലക്ട്രോൺ നഷ്ടപ്പെടുന്ന ആറ്റമേതാണ്? _ _ _ _ _ _

ചാർജുള്ള ആറ്റങ്ങളെ അയോണുകൾ (ions) എന്നു വിളിക്കുന്നു.

ഇവിടെ സോഡിയം അയോണും (Na+) ക്ലോറൈഡ് അയോണും (Cl-) ആണ് ഉണ്ടാകുന്നത്. ലോഹങ്ങൾ ഇത്തരം പ്രർത്തനങ്ങളിൽ ഇലക്ട്രോൺ നഷ്ടപ്പെട്ട് പോസിറ്റീവ് അയോണുകളാകുന്നു. ആറ്റത്തിൽ നിന്ന് ഇലക്ട്രോണുകളെ സ്വതന്ത്രമാക്കാൻ ആവശ്യമായ ഊർജമാണ് അയോണീകരണ ഊർജം.

വാതകാവസ്ഥയിലുള്ള ഒറ്റപ്പെട്ട ഒരാറ്റത്തിന്റെ ബാഹ്യതമഷെല്ലിലെ ഏറ്റവും ദുർബലമായി ബന്ധിച്ചിരിക്കുന്ന ഇലക്ട്രോണിനെ സ്വതന്ത്രമാക്കാൻ ആവശ്യമായ ഊർജമാണ് ആ മൂലകത്തിന്റെ അയോണീകരണഊർജം.

അയോണീകരണ ഊർജം ആശ്രയിച്ചിരിക്കുന്ന രണ്ടു പ്രധാന ഘടക ങ്ങളാണ്,

- ന്യൂക്ലിയർ ചാർജ്
- ആറ്റത്തിന്റെ വലുപ്പം

ആറ്റത്തിന്റെ വലുപ്പം കൂടുമ്പോൾ ന്യൂക്ലിയസിന് ബാഹ്യതമ ഇല ക്ട്രോണുകളിൻമേലുള്ള ആകർഷണബലം കൂടുമോ അതോ കുറയുമോ?

ഒരു ഗ്രൂപ്പിൽ മുകളിൽ നിന്നു താഴേക്ക് വരുന്തോറും അയോണീകരണ ഊർജം എങ്ങനെ വ്യത്യാസപ്പെടുന്നുവെന്ന് കണ്ടെത്താമോ?

ആറ്റത്തിന്റെ വലുപ്പം കുടുമ്പോൾ അയോണീകരണ ഊർജം കുറ യുന്നു.

ഒരു പീരിയഡിൽ ഇടത്തുനിന്ന് വലത്തേക്ക് നീങ്ങുമ്പോൾ അയോണീ കരണ ഊർജത്തിന് പൊതുവെ എന്തു മാറ്റമുണ്ടാകുന്നു?

ഒരു പീരിയഡിൽ ന്യൂക്ലിയർ ചാർജും ആറ്റത്തിന്റെ വലുപ്പവും തമ്മി ലുള്ള ബന്ധം നിങ്ങൾക്ക് അറിയാമല്ലോ.

ന്യൂക്ലിയർ ചാർജ് കൂടുന്നതിനനുസരിച്ച് അയോണീകരണ ഊർജം എങ്ങനെ വ്യത്യാസപ്പെടുന്നുവെന്നു കണ്ടെത്തൂ.

ലോഹസ്വഭാവവും ആറ്റത്തിന്റെ വലുപ്പവും തമ്മിലുള്ള ബന്ധമെന്ത്?

ഒരു ഗ്രൂപ്പിൽ മുകളിൽ നിന്ന് താഴേക്ക് വരുമ്പോൾ ആറ്റത്തിന്റെ വലുപ്പം കൂടുന്നതിനാൽ അയോ ണീകരണ ഊർജം കുറയുന്നു. അതിനനുസരിച്ച് പോസിറ്റീവ് അയോൺ ഉണ്ടാകാനുള്ള പ്രവ ണത കൂടുന്നു. ഒരു പീരിഡിൽ ഇടത് നിന്ന് വലത്തേക്ക് ആറ്റത്തി ന്റെ വലുപ്പം കുറയുന്നു. അതി നാൽ അയോണീകരണ ഊർജം കൂടുന്നു. പോസിറ്റീവ് അയോൺ ഉണ്ടാകാനുള്ള പ്രവണത കുറയുന്നു.

ലോഹസ്വഭാവം കൂടുമ്പോൾ അലോഹസ്വഭാവം കുറയുമല്ലോ. ഒന്നാം ഗ്രൂപ്പിലെ മൂലകങ്ങളുടെ ലോഹസ്വഭാവം ഗ്രൂപ്പിൽ മുകളിൽ നിന്ന് താഴേക്കു പോകുമ്പോൾ എങ്ങനെ വ്യത്യാസപ്പെടുമെന്ന് ബോർ മാതൃക (ചിത്രം 4.1) നിരീക്ഷിച്ച് കണ്ടെത്തു

• ഒരു പീരിയഡിൽ ഇടത്തുനിന്നും വലത്തോട്ടു പോകുമ്പോൾ ലോഹ സഭാവം, അലോഹസഭാവം എന്നിവ എങ്ങനെ വൃതൃാസപ്പെടും? ആറ്റത്തിന്റെ വലുപ്പം വിലയിരുത്തി നിഗമനത്തിലെത്തു.

എങ്കിൽ പീരിയോഡിക് ടേബിളിൽ ലോഹസ്വഭാവം കൂടിയ മൂലകങ്ങൾ അലോഹസ്വഭാവം കൂടിയ മൂലകങ്ങൾ എന്നിവയുടെ സ്ഥാനം പ്രവചിക്കുക.

അയോണ കരണ ഊശജവും ലോഹ-അലോഹ സ്വഭാവങ്ങളും തമ്മത്ര ബന്ധമുണ്ടാവില്ലെ?
അയോണീകരണ ഊർജം കൂടിയ മൂലകം ലോഹസ്വഭാവമുള്ളതോ
അലോഹസഭാവമുള്ളതോ?
അയോണീകരണ ഊർജം കുറഞ്ഞവയോ?
ഇലക്ട്രോനെഗറ്റിവിറ്റി
ഇലക്ട്രോനെഗറ്റിവിറ്റിയെക്കുറിച്ചു പോളിംഗ് സ്കെയിലിനെക്കുറിച്ചും മുൻ
അധ്യായത്തിൽ നിങ്ങൾ പഠിച്ചിട്ടുണ്ടല്ലോ?
ഗ്രൂപ്പിൽ മുകളിൽ നിന്ന് താഴേക്കുവരുമ്പോൾ ഇലക്ട്രോനെഗറ്റിവിറ്റി
എങ്ങനെ വ്യത്യാസപ്പെടുന്നു
പീരിയഡിൽ വലത്തോട്ടു പോകുമ്പോഴോ?
എങ്കിൽ പീരിയോഡിക് ടേബിളിൽ ഇലക്ട്രോനെഗറ്റിവിറ്റി കൂടിയ മൂല
കങ്ങളുടെ സ്ഥാനം എവിടെയായിരിക്കും.
ഇലക്ട്രോനെഗറ്റിവിറ്റി കുറഞ്ഞ മുലകങ്ങളുടെ സ്ഥാനമോ?
ഇലക്ട്രോനെഗറ്റിവിറ്റിയും ആറ്റത്തിന്റെ വലുപ്പവും തമ്മിലുളള ബന്ധം
എന്തായിരിക്കും?
ഇലക്ട്രോനെഗറ്റിവിറ്റിയും ലോഹ-അലോഹ സ്വഭാവങ്ങളും തമ്മിൽ
ബന്ധമുണ്ടാവില്ലേ? എന്താണെന്ന് വിശദീകരിക്കൂ.
ഇലക്ട്രോനെഗറ്റിവിറ്റി കൂടിയ മൂലകം ലോഹമോ അലോഹമോ?
ഇലക്ട്രോനെഗറ്റിവിറ്റി കുറഞ്ഞവയോ? കണ്ടെത്തൂ.
ഇലക്ട്രോണുകൾ വിട്ടുകൊടുത്ത് പോസിറ്റീവ് അയോണുകളായി മാറു
ന്നതിനാൽ ലോഹങ്ങളെ ഇലക്ട്രോപോസിറ്റീവ് (Electropositive) മൂലക
ങ്ങൾ എന്നു വിളിക്കുന്നു. രാസപ്രവർത്തനങ്ങളിൽ ഇലക്ട്രോണുകൾ
സ്വീകരിച്ച് നെഗറ്റീവ് അയോണുകളായി മാറുന്നതിനാൽ അലോഹങ്ങളെ
ഇലക്ട്രോനെഗറ്റീവ് (Electronegative) മൂലകങ്ങൾ എന്നു പറയുന്നു.

ഉപലോഹങ്ങൾ (Metalloids)

ലോഹങ്ങളുടെയും അലോഹങ്ങളുടെയും സ്വഭാവങ്ങൾ പ്രദർശിപ്പിക്കുന്ന മൂലകങ്ങളാണ് **ഉപലോഹങ്ങൾ**. സിലിക്കൺ (Si), ജർമേനിയം (Ge), ആഴ്സനിക് (As), ആന്റിമണി (Sb), ടെലൂറിയം (Te) എന്നിവ ഈ വിഭാഗ ത്തിൽ പെടുന്നവയാണ്.

പീരിയോഡിക് ടേബിളിലെ ചില ക്രമാവർത്തനപ്രവണതകൾ മനസ്സിലാക്കിയല്ലോ. ഇവയുടെ അടിസ്ഥാനത്തിൽ ചുവടെ നൽകിയിട്ടുള്ള പട്ടിക 4.9ൽ ശരിയായവ ടിക് (\checkmark) ചെയ്യൂ.

പ്രവണതകൾ	ഗ്രൂപ്പിൽ മുകളിൽനിന്നും താഴോട്ട്	പീരിയഡിൽ ഇടത്തു നിന്നും വലത്തോട്ട്
ആറ്റത്തിന്റെ വലുപ്പം	കുറയുന്നു/കൂടുന്നു	കുറയുന്നു/കൂടുന്നു
ലോഹസ്വഭാവം	കുറയുന്നു/കൂടുന്നു	കുറയുന്നു/കൂടുന്നു
അലോഹസ്വഭാവം	കുറയുന്നു/കൂടുന്നു	കുറയുന്നു/കൂടുന്നു
അയോണീകരണ ഊർജം	കുറയുന്നു/കൂടുന്നു	കുറയുന്നു/കൂടുന്നു
ഇലക്ട്രോനെഗറ്റിവിറ്റി	കുറയുന്നു/കൂടുന്നു	കുറയുന്നു/കൂടുന്നു

പട്ടിക 4.9

മൂലകവർഗീകരണത്തിന്റെ ചരിത്രവും പീരിയോഡിക് ടേബിളിന്റെ സവിശേഷതകളും മനസ്സിലാക്കിയല്ലോ. രസതന്ത്രപഠനം ലളിതമാകു ന്നതിന് പീരിയോഡിക് ടേബിളിനെ കുറിച്ചുള്ള വ്യക്തമായ ധാരണ അതൃന്താപേക്ഷിതമാണ്. പീരിയോഡിക് ടേബിളിലെ മൂലകങ്ങളെയും ക്രമാവർത്തനപ്രവണതകളെയും കുറിച്ചു കൂടുതൽ കാര്യങ്ങൾ ഉയർന്ന ക്ലാസുകളിൽ മനസ്സിലാക്കാം.

വിലയിരുത്താം

മൂലകങ്ങളുടെ വർഗീകരണത്തിൽ ആദ്യകാല ശ്രമങ്ങൾ നടത്തിയ ശാസ്ത്രജ്ഞരുടെ പേരുകളും അവരുടെ സംഭാവനകളും ഉൾപ്പെ ടുത്തിയ പട്ടികയാണ് ചുവടെ കൊടുത്തിരിക്കുന്നത്. വിട്ടുപോയ ഭാഗങ്ങൾ പൂരിപ്പിക്കുക.

സംഭാവന/കണ്ടെത്തൽ	ശാസ്ത്രജ്ഞന്റെ പേര്
ത്രികങ്ങൾ	
	ന്യൂലാൻഡ്സ്
ലോഹങ്ങൾ, അലോഹങ്ങൾ	
എന്ന രീതിയിൽ മൂലകവർഗീകരണം	
ആധുനിക പീരിയോഡിക് നിയമം	

2. പട്ടിക പൂർത്തീകരിക്കുക

മൂലകം	അറ്റോമിക	ഇലക്ട്രോൺ	ഗ്രൂപ്പ്	പീരിയഡ്		
	നമ്പർ	വിന്യാസം	നമ്പർ	നമ്പർ		
ലിതിയം		2,1	1	2		
ഓക്സിജൻ	8					
ആർഗോൺ	18					
കാൽസ്യം		2, 8, 8, 2				

- ചില മൂലകങ്ങളുടെ പ്രതീകം നൽകിയിരിക്കുന്നു. ഇവയുടെ ഇല 3. ക്ട്രോൺ വിന്യാസം എഴുതി അവ ഉൾപ്പെടുന്ന പീരിയഡ്, ഗ്രൂപ്പ് എന്നിവ കണ്ടെത്തുക.

- a) ${}^{12}_{6}$ C b) ${}^{24}_{12}$ Mg c) ${}^{35}_{17}$ Cl d) ${}^{27}_{13}$ Al e) ${}^{20}_{10}$ Ne
- X എന്ന മൂലകത്തിന്റെ ആറ്റത്തിൽ മൂന്ന് ഷെല്ലുകൾ ഉണ്ട്. ബാഹൃതമഷെല്ലിൽ 6 ഇലക്ട്രോണുകൾ അടങ്ങിയിരിക്കുന്നു.
 - a) മൂലകത്തിന്റെ ഇലക്ട്രോൺ വിന്യാസം എഴുതുക
 - b) അറ്റോമിക നമ്പർ എത്രയാണ്?
 - c) ഈ മൂലകം ഏതു പീരിയഡിൽ ഉൾപ്പെടുന്നു?
 - d) ഈ മൂലകം ഏത് ഗ്രൂപ്പിലാണ് ഉൾപ്പെടുന്നത്?
 - e) ഈ മൂലകത്തിന്റെ പേരും പ്രതീകവുമെഴുതുക.
 - f) ഈ മൂലകം ഏത് മൂലകകുടുംബത്തിൽ ഉൾപ്പെടുന്നു?
 - g) ഈ മൂലകത്തിന്റെ ബോർ ആറ്റം മാതൃക ചിത്രീകരിക്കുക.
- P, Q, R, S എന്നീ മൂലകങ്ങളുടെ ഇലക്ട്രോൺ വിന്യാസം താഴെ കൊടുക്കുന്നു (ഇവ യഥാർഥ പ്രതീകങ്ങളല്ല)

- 2, 2

- 2,8,2

R - 2,8,5

S - 2,8

- a) ഇവയിൽ ഒരേ പീരിയഡിൽ ഉൾപ്പെട്ട മൂലകങ്ങൾ ഏതെല്ലാമാണ്?
- b) ഒരേ ഗ്രൂപ്പിൽ ഉൾപ്പെട്ടവയോ?
- c) ഇവയിൽ ഉൽകൃഷ്ട മൂലകം ഏതാണ്?
- d) R എന്ന മൂലകം ഏതു ഗ്രൂപ്പിലും പീരിയഡിലും ഉൾപ്പെടുന്നു.
- 6. പീരിയോഡിക് ടേബിളിന്റെ അപൂർണമായ രൂപമാണ് ചുവടെ കൊടു ത്തിരിക്കുന്നത്. മൂലകങ്ങളുടെ ഇതിലെ സ്ഥാനവുമായി ബന്ധപ്പെ ടുത്തി ചോദ്യങ്ങൾക്ക് ഉത്തരമെഴുതുക. (പ്രതീകങ്ങൾ യഥാർഥമല്ല.)

	1																	18
1	Α	2											13	14	15	16	17	
2	В	Е											I		K	L	М	
3	С	F	3	4	5	6	7	8	9	10	11	12	J				N	
4	D					G		Н										

- a) 1-ാം ഗ്രൂപ്പിൽ ഏറ്റവും വലിയ ആറ്റം ഏത് മൂലകത്തിന്റേതാണ്?
- b) 1-ാം ഗ്രൂപ്പിൽ അയോണീകരണ ഊർജം ഏറ്റവും കുറവുള്ള മൂലകമേ താണ്?
- c) 2-ാം പീരിയഡിൽ ഏറ്റവും ചെറിയ ആറ്റം ഏത് മൂലകത്തിന്റേതാണ്?
- d) ഇവയിൽ സംക്രമണമൂലകങ്ങൾ ഏതൊക്കെയാണ്?
- e) L, M എന്നീ മൂലകങ്ങളിൽ ഇലക്ട്രോനെഗറ്റിവിറ്റി കുറഞ്ഞത് ഏതിനാണ്?
- f) B, l ഇവയിൽ ലോഹീയസ്വഭാവം കൂടുതൽ ഏതിനാണ്?
- g) ഇവയിൽ ഹാലൊജെൻ കുടുംബത്തിൽപ്പെട്ട മൂലകങ്ങൾ ഏതെല്ലമാണ്?
- h) E എന്ന മൂലകത്തിന്റെ ഗുണങ്ങളോട് ഏറ്റവും സാമ്യം പുലർത്തുന്ന മൂലകമേത്?

തുടർപ്രവർത്തനങ്ങൾ

- 'മൂലകവർഗീകരണത്തിനുള്ള ആദ്യകാല ശ്രമങ്ങൾ' എന്ന വിഷയത്തെ അടിസ്ഥാനമാക്കിയുള്ള സെമിനാറിൽ അവതരിപ്പിക്കാൻ ഒരു പ്രബന്ധം തയാറാക്കൂ.
- മൂലകവർഗീകരണവുമായി ബന്ധപ്പെട്ട ശാസ്ത്രജ്ഞന്മാരുടെ ജീവച രിത്രക്കുറിപ്പ് തയാറാക്കുക.
- ആധുനിക പീരിയോഡിക് ടേബിളിന്റെ മാതൃക വരച്ച് ക്ലാസിൽ പ്രദർശി പ്പിക്കൂ.
- നിങ്ങൾക്ക് പരിചിതമായ സംക്രമണമൂലകങ്ങളുടെ ഉപയോഗങ്ങൾ കണ്ടെത്തി കുറിപ്പ് തയാറാക്കി അവതരിപ്പിക്കുക.
- ട. റെയർ എർത്ത് വിഭാഗത്തിൽ പെടുന്ന മൂലകങ്ങളെകുറിച്ച് കൂടുതൽ വിവ രങ്ങൾ ശേഖരിച്ച് കുറിപ്പ് തയ്യാറാക്കി ക്ലാസിൽ അവതരിപ്പിക്കുക.

