Supervised Learning - FIFA 23

April 29, 2023

Supervised Learning - FIFA 23

- 1. Project Introduction
- 1.1 Dataset Background:

I have been playing FIFA games since 2002, all the way up to FIFA23. Over the past decade, the level of detail in FIFA games has been continuously improving, and the accuracy and reasonableness of the data have also been continuously improved, approaching the level of another football management game called FM. I hope to explore the relationships behind the data more deeply through analysis of the FIFA23 player database during this project.

1.2 Project Goals:

Exploring the realationship between a player's market value and other variables in the FIFA23 database using various models of supervised learning methods.

»Regression project: Predicting a player's market value based of the characteristics of the player.

1.3 Data Saurces:

The dataset is from Kaggle:

https://www.kaggle.com/datasets/cashncarry/fifa-23-complete-player-dataset

- 2. Data Cleaning
- 2.1 Import Library

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import warnings
  warnings.filterwarnings('ignore')
```

2.2 Data Loading

```
[2]: df = pd.read_csv(r'players_fifa23.csv')
    print(df.shape)

(18539, 90)
```

[3]: df.describe

[3]:			IDFrame.desc]	ID		Name			
	FullNa	0	Height Wei	_	\			0.5	4.00	07		
	0	158023	L. Me		,	Lionel Me		35	169	67		
	1	165153	K. Benz			Karim Benz		34	185	81		
	2		R. Lewandow			t Lewandov		33	185	81		
	3	192985	K. De Bru	•		vin De Bru	•	31	181	70		
	4	231747	K. Mba	ppe	1	Kylian Mba	appe	23	182	73		
	 10504		 D. (1-11	•	ъ	 	••• •		171	60		
	18534	243725	D. Coll		D	arren Coll		21	174	68		
	18535	261933	Yang Deji	_		Dejiang N	_	17	175	60		
	18536	267823	L. Mul		D	Liam Mul		18	170	65 65		
	18537	267824	D. McCall		Dai	thí McCall		17	178	65		
	18538	261424	N. Ra	bna		Nabin Ra	abna	25	176	66		
								toUrl			nality	\
	0	_	cdn.sofifa.							_	entina	
	1	_	cdn.sofifa.								France	
	2	-	cdn.sofifa.		-						Poland	
	3	-	cdn.sofifa.		-						elgium	
	4	https://	cdn.sofifa.	net/	player:	s/231/747,	/23_60	0.png			France	
	•••						•	••		•••		
	18534	-	cdn.sofifa.		-				Republio			
	18535	-	cdn.sofifa.		-					Ch	ina PR	
	18536	_	cdn.sofifa.						North	nern I	reland	
	18537	https://	cdn.sofifa.	net/	player:	s/267/824,	/23_60	0.png	Republio	of I	reland	
	18538	https://	cdn.sofifa.	net/	player:	s/261/424,	/23_60	0.png			India	
		Overall	Potential		LMRati	ng CMRati	ing I	RMRati	ng LWBRat	ing '	\	
	0	91	91	•••	!	91	88		91	67		
	1	91	91	•••	;	89	84		89	67		
	2	91	91	•••	;	86	83		86	67		
	3	91	91	•••	!	91	91		91	82		
	4	91	95	•••	!	92	84		92	70		
	•••	•••	*** ***					•••				
	18534	47	56	•••		50	44		50	41		
	18535	47	57	•••	•	45	45		45	47		
	18536	47	67	•••		52	49		52	46		
	18537	47	61	•••	;	33	33		33	44		
	18538	47	50	•••	•	44	40		44	46		
		CDMRating	g RWBRating	LBR	Rating	CBRating	RBRa	ating	GKRating			
	0	66	67		62	53		62	22			
	1	67	67		63	58		63	21			
	2	69	67		64	63		64	22			
	3	82	82		78	72		78	24			
	4	66	70		66	57		66	21			

18534	38	41	40	36	40	15
18535	48	47	49	49	49	15
18536	44	46	46	42	46	17
18537	42	44	47	49	47	15
18538	43	46	47	47	47	19

[18539 rows x 90 columns]>

»Dataset Columns Include: 90 Attributes

»Dataset Rows Include: 18539 Players Attributes

2.3 Feature Description

Four different group of features as shown above:

- »1. Players Details(33): Describe who the player is.
- »2. General Attributes(7): Display the general rating of the player.
- »3. Special Attributes(29): Contribute to the general attributes.
- »4. Hidden Attributes(22): may impact the position and cannot be seen.
- 2.4 Missing Value Checking

```
[4]: missing_values = df.isna().sum()

plt.figure(figsize=(16, 5))
    sns.barplot(x=missing_values.index, y=missing_values.values)
    plt.xticks(rotation=90)
    plt.xlabel('Column', fontsize=16, color='brown')
    plt.ylabel('Missing Values', fontsize=16, color='brown')
    plt.title('Missing Values in Dataset', fontsize=24, color='brown')
    plt.show()
```



```
[5]: missing_contract = df[df['ContractUntil'].isnull()]
```

»There are missing values in five columns of the data: Club position, Club number, Contract until, and National position, National number.

»Because Club position, Club number, National position, and National number are all descriptive attributes of players and have no significant correlation with player value, position, or performance, we can remove them.

»They have null values in the ContractUntil column because their contracts have ended, so we can set them as 2022. This way, when calculating the remaining years of the contract in the future, it will be calculated as 0.

```
[6]: df1 = df.drop(['ClubPosition', 'ClubNumber', 'NationalPosition',

→'NationalNumber'], axis=1)

df1.loc[df1['ContractUntil'].isnull(), 'ContractUntil'] = 2022

print(df1.shape)
```

(18539, 86)

2.5 Duplicate Value Checking

```
[7]: duplicate_rows = df1[df1.duplicated()] duplicate_rows.shape
```

[7]: (119, 86)

»There are 119 duplicate rows, which we need to remove from the dataset.

```
[8]: df2 = df1.drop_duplicates()
print(df2.shape)
```

(18420, 86)

2.6 Unrelevant Feature Checking

»There are 22 hidden attributes that only relate to the player's position rating, which do not affect our analysis and can be removed.

»TotalStats, BaseStats, Growth, Potential, ClubJoin, NationalTeam, and PhotoUrl have no relationship with our analysis and can be removed.

```
[9]: df3 = df2.drop(['GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', □

□'GKReflexes',

"STRating', 'LWRating', 'LFRating', 'CFRating', 'RFRating', □

□'RWRating',

"CAMRating', 'LMRating', 'CMRating', 'RMRating', 'LWBRating', □

□'CDMRating',
```

```
'RWBRating', 'LBRating', 'CBRating', 'RBRating', 'GKRating'],

⇔axis=1)

df3 = df3.drop(['TotalStats', 'BaseStats', 'Growth', 'Potential', 'ClubJoined',

⇔'NationalTeam', 'PhotoUrl'], axis=1)

print(df3.shape)
```

(18420, 57)

- 2.7 Data Conversion
- »1. Change ContractUntil value to int64 as remaining years.
- 2. Change PreferredFoot as right = 0 and left = 1.
- »3. Change 2 WorkRate Columns as Dummy variables.

```
[10]: # Calculation
      cu_counts = df3['ContractUntil'].value_counts()
      pf_counts = df3['PreferredFoot'].value_counts()
      awr_counts = df3['AttackingWorkRate'].value_counts()
      dwr_counts = df3['DefensiveWorkRate'].value_counts()
      fig, axs = plt.subplots(2, 2, figsize=(16, 8))
      # ContractUntil
      sns.barplot(x=cu_counts.index, y=cu_counts.values, ax=axs[0, 0])
      axs[0, 0].set_xticklabels(cu_counts.index, rotation=90)
      axs[0, 0].set_title('ContractUntil')
      # PreferredFoot
      sns.barplot(x=pf_counts.index, y=pf_counts.values, ax=axs[0, 1])
      axs[0, 1].set_xticklabels(pf_counts.index, rotation=90)
      axs[0, 1].set_title('PreferredFoot')
      # AttackingWorkRate
      sns.barplot(x=awr_counts.index, y=awr_counts.values, ax=axs[1, 0])
      axs[1, 0].set_xticklabels(awr_counts.index, rotation=90)
      axs[1, 0].set_title('AttackingWorkRate')
      # DefensiveWorkRate
      sns.barplot(x=dwr_counts.index, y=dwr_counts.values, ax=axs[1, 1])
      axs[1, 1].set_xticklabels(dwr_counts.index, rotation=90)
      axs[1, 1].set_title('DefensiveWorkRate')
      # adjust
      plt.subplots_adjust(wspace=0.5, hspace=0.5)
      plt.show()
```



```
[11]: # Create a copy
     df4 = df3.copy()
     # Change ContractUntil value to int64 as remaining years
     df4['ContractUntil']=df4['ContractUntil']-2022
     # Change PreferredFoot as right = 0 and left = 1
     df4['PreferredFoot'] = df4['PreferredFoot'].apply(lambda x: 0 if x=='Right'u
      ⇔else 1)
     # Change 2 WorkRate Columns as Dummy variables
     awr_dummy = pd.get_dummies(df4['AttackingWorkRate'], prefix='AWR')
     awr_dummy.columns = ['AWR_High', 'AWR_Low', 'AWR_Medium']
     df4 = pd.concat([df4, awr_dummy], axis=1)
     dwr_dummy = pd.get_dummies(df4['DefensiveWorkRate'], prefix='DWR')
     dwr_dummy.columns = ['DWR_High', 'DWR_Low', 'DWR_Medium']
     df4 = pd.concat([df4, dwr dummy], axis=1)
     df4[['AWR_High', 'AWR_Low', 'AWR_Medium']] = df4[['AWR_High', 'AWR_Low', __
      df4[['DWR_High', 'DWR_Low', 'DWR_Medium']] = df4[['DWR_High', 'DWR_Low', _
      # Remove Extra columns and change to int64
     df4 = df4.drop(['AttackingWorkRate', 'DefensiveWorkRate', 'AWR_Low', _
      df4['OnLoad'] = df4['OnLoad'].fillna(0).astype('int64')
     df4['ContractUntil'] = df4['ContractUntil'].fillna(0).astype('int64')
     print(df4.shape)
```

(18420, 59)

2.8 Subset Selection

Because the requirements for goalkeepers' attributes are different from those for other positions, it is not suitable to analyze them together. Therefore, goalkeepers are removed from the observations.

```
[12]: # Remove Goalkeeper
df5 = df4[df4['BestPosition'] != 'GK']
print(df5.shape)
```

(16367, 59)

- 2.9 Data Cleaning Summary
- »1. After data cleaning, our dataset now has 52 integer features and 5 object features and 16367 players.
- »2. We filled in missing values, removed duplicate values and irrelevant variables, and converted formats.
- »3. Next, we will conduct EDA to further explore the data, which may require further cleaning.
- 3. Exploratory Data Analysis
- 3.1 Features Distribution

- »1. The distribution of most of the feature values satisfies normal distribution.
- »2. WageEUR and ReleaseClause are greatly influenced by Value and are not suitable for use.
- »3. ValueEUR, as the core variable of this analysis, requires further observation.

```
[14]: df6 = df5.drop(['WageEUR', 'ReleaseClause'], axis=1)
print(df6.shape)
```

(16367, 57)

»Remove outliers: only keep between 100,000 and 100,000,000.

```
[15]: df7 = df6.loc[(df6['ValueEUR'] >= 10000) & (df6['ValueEUR'] < 100000000)] print(df7.shape)
```

(16271, 57)

```
fig, axs = plt.subplots(1, 2, figsize=(16, 4))
sns.histplot(data=df7['ValueEUR'], bins=20, edgecolor='black', ax=axs[0])
axs[0].set_title('Distribution of ValueEUR')
axs[0].set_xlabel('ValueEUR')
axs[0].set_ylabel('Frequency')

df7['ValueEUR_log'] = np.log1p(df7['ValueEUR'])
sns.histplot(data=df7['ValueEUR_log'], bins=20, edgecolor='black', ax=axs[1])
axs[1].set_title('Distribution of ValueEUR_log')
axs[1].set_xlabel('ValueEUR_log')
axs[1].set_ylabel('Frequency')
```

[16]: Text(0, 0.5, 'Frequency')

- »1. The distribution of Value is left-skewed, which may impact regression performance.
- »2. By transforming with logarithm, the distribution of ValueEUR approaches a normal distribution.

3.2 Features Correlation

```
# Heatmap
fig, ax = plt.subplots(figsize=(16, 6))
sns.heatmap(corr_table, cmap='coolwarm', annot=True, fmt='.2f')
plt.title('Correlation between Overall and attributes')
plt.show()
```


- »1. General Attributes (7) are all strongly correlated with some of Specific Attributes (29).
- »2. Using both General Attributes and Specific Attributes could lead to multi-collinearity.
- »3. Since General Attributes are calculated based on Specific Attributes, we will keep Specific Attributes.

(16271, 52)

- 3.3 EDA Summary
- »1. Most features are close to normally distributed besides ValueEUR.
- »2. General Attributes and Specific Attributes cannot be both in this analysis.
- »3. Next, we will try different combinations to apply regression to predict the market value of football players.
- 4. Regression

```
»X: all numerical variables besides ID, ValueEUR, and Overall
     »y: ValueEUR
     »Split trainset and testset
[19]: from sklearn.model_selection import train_test_split
      from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
      df9 = df8[df8['Club'] != 'AC Milan']
      X = df9.select_dtypes(include=['int']).drop(['ID', 'ValueEUR', 'Overall'],
       ⇒axis=1)
      v = df9['ValueEUR']
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,_
       →random_state=26)
      print(X train.shape)
      print(X_test.shape)
     (11370, 42)
     (4874, 42)
[20]: # Select Milan Players
      milan = df8[df8['Club'] == 'AC Milan']
      players = ['T. Hernández', 'F. Tomori', 'S. Kjær', 'D. Calabria', 'S. Tonali', u
       ⇔'R. Krunić'.
                  'Rafael Leão', 'I. Bennacer', 'Brahim', 'O. Giroud']
      milan players = milan.loc[milan['Name'].isin(players)].reset index(drop=True)
      X_milan = milan_players.select_dtypes(include=['int']).drop(['ID', 'ValueEUR',_
      ⇔'Overall'], axis=1)
      y_milan = milan_players['ValueEUR']
      print(X_milan.shape)
     (10, 42)
     4.1 Linear Regression
[21]: # Library
      from sklearn.linear_model import LinearRegression, RidgeCV, Ridge, LassoCV, U
      from sklearn.preprocessing import PolynomialFeatures, StandardScaler
      from sklearn.pipeline import make_pipeline
      from sklearn.neighbors import KNeighborsRegressor
      from sklearn.model_selection import GridSearchCV
      from sklearn.tree import DecisionTreeRegressor
      from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,
       \hookrightarrowAdaBoostRegressor
      from sklearn.svm import SVR
      from sklearn.metrics import r2 score, mean_absolute_error, mean_squared_error
      import time
```

```
[22]: start_time = time.time()
     # Linear Regression
     LinearR_Model = LinearRegression()
     LinearR_Model.fit(X_train, y_train)
     y_pred = LinearR_Model.predict(X_test)
     r2 = round(r2_score(y_test, y_pred),4)
     mae = round(mean_absolute_error(y_test, y_pred),0)
     mse = round(mean_squared_error(y_test, y_pred),0)
     print('R2 Score:', r2)
     print('MAE:', mae)
     print('MSE:', mse)
     end time = time.time()
     print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
     # Update Scatter
     fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
     fig.subplots_adjust(bottom=0)
     fig.suptitle('Linear Regression', fontsize=20)
     fig.subplots_adjust(hspace=0.3)
     ax1.scatter(y_test, y_pred)
     ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
     ax1.set_xlabel("True Values")
     ax1.set_ylabel("Predictions")
     ax1.set title('True vs Predicted Values')
     # Update Table non-log
     milan pred = LinearR Model.predict(X milan)
     milan_players['Pred_Value'] = np.round((milan_pred), 0).astype(int)
     milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_
       →milan_players['ValueEUR'])-1),2)
     milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
       milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
       9, 1, 4, 8, 5])
     table data = [list(milan_players_selected.columns)] + milan_players_selected.
       ⇔values.tolist()
     table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
       →loc='center')
     table.auto_set_font_size(False)
     table.set_fontsize(12)
     table.scale(1, 2)
     plt.axis('off')
     plt.show()
```

R2 Score: 0.5013 MAE: 2430090.0

MSE: 21612327480836.0

Calculation Time: 0.05 seconds

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy
T. Hernández	LWB	85	76000000	32798303	-0.57
F. Tomori	СВ	84	60500000	22464866	-0.63
S. Kjær	CB	82	14500000	25443228	0.75
D. Calabria	RB	80	25500000	18701362	-0.27
S. Tonali	CDM	84	62500000	13500544	-0.78
R. Krunić	CM	77	10500000	7993384	-0.24
Rafael Leão	LW	84	66500000	11533389	-0.83
I. Bennacer	CM	82	40000000	20479297	-0.49
Brahim	CAM	78	31500000	6306288	-0.8
: -					

```
[23]: start time = time.time()
     # Linear Regression
     y_train_log1p = np.log1p(y_train)
     LinearR_log_Model = LinearRegression()
     LinearR_log_Model.fit(X_train, y_train_log1p)
     y_pred_log1p = LinearR_log_Model.predict(X_test)
     y_pred = np.expm1(y_pred_log1p)
     # Evaluate R2 MAE and MSE
     r2 = round(r2_score(y_test, y_pred),4)
     mae = round(mean_absolute_error(y_test, y_pred),0)
     mse = round(mean_squared_error(y_test, y_pred),0)
     print('R2 Score:', r2)
     print('MAE:', mae)
     print('MSE:', mse)
     end time = time.time()
     print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
     # Update Scatter
     fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
     fig.subplots_adjust(bottom=0)
     fig.suptitle('Linear Regression - Log transformation', fontsize=20)
     ax1.scatter(v test, v pred)
     ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
     ax1.set_xlabel("True Values")
     ax1.set_ylabel("Predictions")
     ax1.set_title('True vs Predicted Values')
     # Update Table log
     milan_pred = LinearR_log_Model.predict(X_milan)
     milan_players['Pred_Value'] = np.round(np.expm1(milan_pred), 0).astype(int)
     milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],__
```

R2 Score: 0.7453 MAE: 988093.0

MSE: 11036989963568.0

Calculation Time: 0.0419 seconds

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy
T. Hernández	LWB	85	76000000	90406258	0.19
F. Tomori	СВ	84	60500000	35233327	-0.42
S. Kjær	CB	82	14500000	12259422	-0.15
D. Calabria	RB	80	25500000	14870996	-0.42
S. Tonali	CDM	84	62500000	35001600	-0.44
R. Krunić	CM	77	10500000	6839238	-0.35
Rafael Leão	LW	84	66500000	27636803	-0.58
I. Bennacer	CM	82	40000000	35504782	-0.11
Brahim	CAM	78	31500000	5183491	-0.84
O. Giroud	ST	82	13000000	11229980	-0.14

4.2 Ridge Regression

alpha = ridgeCV_Model.alpha_

```
[24]:

from sklearn.linear_model import RidgeCV

from sklearn.linear_model import Ridge

# Best Hyper

ridgeCV_Model = RidgeCV(alphas=[0.001, 0.01, 0.1, 1, 10, 100], cv=5)

ridgeCV_Model.fit(X_train, y_train)

alpha = ridgeCV_Model.alpha_

print('Best Alpha:', alpha)

''''
```

[24]: "\nfrom sklearn.linear_model import RidgeCV\nfrom sklearn.linear_model import
 Ridge\n# Best Hyper\nridgeCV_Model = RidgeCV(alphas=[0.001, 0.01, 0.1, 1, 10,
 100], cv=5)\nridgeCV_Model.fit(X_train, y_train)\nalpha =

```
[25]: start time = time.time()
      #Ridge Regression
      RidgeR Model = Ridge()
      RidgeR_Model.fit(X_train, y_train)
      y pred = RidgeR Model.predict(X test)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots adjust(bottom=0)
      fig.suptitle('Ridge Regression', fontsize=20)
      ax1.scatter(y_test, y_pred)
      ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
      ax1.set_xlabel("True Values")
      ax1.set_ylabel("Predictions")
      ax1.set_title('True vs Predicted Values')
      # Update Table non-log
      milan_pred = RidgeR_Model.predict(X_milan)
      milan_players['Pred_Value'] = np.round((milan_pred), 0).astype(int)
      milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_
       →milan_players['ValueEUR'])-1),2)
      milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
       ⇔'ValueEUR', 'Pred_Value', 'Accuracy']]
      milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
       9, 1, 4, 8, 5])
      table_data = [list(milan_players_selected.columns)] + milan_players_selected.
       ⇔values.tolist()
      table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
       ⇔loc='center')
      table.auto_set_font_size(False)
      table.set fontsize(12)
      table.scale(1, 2)
      plt.axis('off')
      plt.show()
```

R2 Score: 0.5014

MAE: 2430157.0

MSE: 21608282867071.0

Calculation Time: 0.0324 seconds

BestPosition ValueEUR Pred Value T. Hernández LWB 76000000 32783903 -0.57 F. Tomori 84 60500000 22459229 -0.63 СВ 82 14500000 25428086 0.75 S. Kjær D. Calabria 25500000 18695547 -0.27 CDM -0.78 S. Tonali 84 62500000 13504899 R. Krunić СМ 10500000 7997178 -0.24 Rafael Leão 11537590 -0.83 66500000 CM 20474267 -0.49 82 40000000 Brahim СДМ 31500000 6308723 -0.8 O. Giroud 13000000 23219247

```
[26]: start_time = time.time()
      y_train_log1p = np.log1p(y_train)
      #Ridge Regression
      RidgeR_log_Model = Ridge()
      RidgeR_log_Model.fit(X_train, y_train_log1p)
      y_pred_log1p = RidgeR_log_Model.predict(X_test)
      y_pred = np.expm1(y_pred_log1p)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots adjust(bottom=0)
      fig.suptitle('Ridge Regression - Log transformation', fontsize=20)
      ax1.scatter(y_test, y_pred)
      ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
      ax1.set_xlabel("True Values")
      ax1.set_ylabel("Predictions")
      ax1.set_title('True vs Predicted Values')
      # Update Table log
      milan_pred = RidgeR_log_Model.predict(X_milan)
      milan_players['Pred_Value'] = np.round(np.expm1(milan_pred), 0).astype(int)
```

R2 Score: 0.7455 MAE: 988040.0

MSE: 11028654905058.0

Calculation Time: 0.0199 seconds

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy
T. Hernández	LWB	85	76000000	90347193	0.19
F. Tomori	CB	84	60500000	35229287	-0.42
S. Kjær	CB	82	14500000	12246499	-0.16
D. Calabria	RB	80	25500000	14869734	-0.42
S. Tonali	CDM	84	62500000	35007519	-0.44
R. Krunić	CM	77	10500000	6841195	-0.35
Rafael Leão	LW	84	66500000	27634360	-0.58
I. Bennacer	CM	82	40000000	35497482	-0.11
Brahim	CAM	78	31500000	5183609	-0.84
O. Giroud	ST	82	13000000	11226096	-0.14

```
[27]: print(RidgeR_Model.get_params()) print(RidgeR_log_Model.get_params())
```

```
{'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': None,
'normalize': 'deprecated', 'positive': False, 'random_state': None, 'solver':
'auto', 'tol': 0.001}
{'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': None,
'normalize': 'deprecated', 'positive': False, 'random_state': None, 'solver':
'auto', 'tol': 0.001}
4.3 Lasso Regression
alpha = LassoCV_Model.alpha_
```

```
[28]: '''
     # Best Hyper
      lassoCV_Model = LassoCV(alphas=[0.001, 0.01, 0.1, 1, 10, 100], cv=5)
      lassoCV_Model.fit(X_train, y_train)
      alpha = lassoCV_Model.alpha_
     print('Best Alpha:', alpha)
[28]: "\n# Best Hyper\nlassoCV Model = LassoCV(alphas=[0.001, 0.01, 0.1, 1, 10, 100],
     cv=5)\nlassoCV_Model.fit(X_train, y_train)\nalpha =
     lassoCV_Model.alpha_\nprint('Best Alpha:', alpha)\n"
[29]: start_time = time.time()
     # Lasso Regression
     LassoR_Model = Lasso()
     LassoR_Model.fit(X_train, y_train)
     y_pred = LassoR_Model.predict(X_test)
     # Evaluate R2 MAE and MSE
     r2 = round(r2_score(y_test, y_pred), 4)
     mae = round(mean_absolute_error(y_test, y_pred), 0)
     mse = round(mean_squared_error(y_test, y_pred), 0)
     print('R2 Score:', r2)
     print('MAE:', mae)
     print('MSE:', mse)
     end_time = time.time()
     print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
     # Update Scatter
     fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
     fig.subplots_adjust(bottom=0)
     fig.suptitle('Lasso Regression', fontsize=20)
     ax1.scatter(y_test, y_pred)
     ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
     ax1.set_xlabel("True Values")
     ax1.set_ylabel("Predictions")
     ax1.set_title('True vs Predicted Values')
     # Update Table non-log
     milan_pred = LassoR_Model.predict(X_milan)
     milan_players['Pred_Value'] = np.round((milan_pred), 0).astype(int)
     milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_

→milan players['ValueEUR'])-1),2)
     milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
       milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
```

9, 1, 4, 8, 5])

R2 Score: 0.5013 MAE: 2430089.0

MSE: 21612323298719.0

Calculation Time: 0.3467 seconds

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy
T. Hernández	LWB	85	76000000	32798281	-0.57
F. Tomori	CB	84	60500000	22464863	-0.63

F. Tomori	CB	84	60500000	22464863	-0.63
S. Kjær	CB	82	14500000	25443177	0.75
D. Calabria	RB	80	25500000	18701359	-0.27
S. Tonali	CDM	84	62500000	13500541	-0.78
R. Krunić	CM	77	10500000	7993388	-0.24
Rafael Leão	LW	84	66500000	11533382	-0.83
I. Bennacer	CM	82	40000000	20479287	-0.49
Brahim	CAM	78	31500000	6306307	-0.8
: .					

```
[30]: start_time = time.time()
      y_train_log1p = np.log1p(y_train)
      # Lasso Regression
      LassoR_log_Model = Lasso(alpha=0.005)
      LassoR_log_Model.fit(X_train, y_train_log1p)
      y_pred_log1p = LassoR_log_Model.predict(X_test)
      y_pred = np.expm1(y_pred_log1p)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots_adjust(bottom=0)
```

```
fig.suptitle('Lasso Regression - Log transformation', fontsize=20)
ax1.scatter(y_test, y_pred)
ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
ax1.set_xlabel("True Values")
ax1.set_ylabel("Predictions")
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_pred = LassoR_log_Model.predict(X_milan)
milan_players['Pred_Value'] = np.round(np.expm1(milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],__
 →milan_players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __

¬'ValueEUR', 'Pred_Value', 'Accuracy']]
9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 ⇔values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
 →loc='center')
table.auto_set_font_size(False)
table.set_fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.7632 MAE: 985644.0

MSE: 10262798943037.0

Calculation Time: 0.3176 seconds

ansformation									
Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy				
T. Hernández	LWB	85	76000000	80676120	0.06				
F. Tomori	CB	84	60500000	35084292	-0.42				
S. Kjær	CB	82	14500000	10167717	-0.3				
D. Calabria	RB	80	25500000	15018728	-0.41				
S. Tonali	CDM	84	62500000	35939508	-0.42				
R. Krunić	CM	77	10500000	7229295	-0.31				
Rafael Leão	LW	84	66500000	26750446	-0.6				
I. Bennacer	CM	82	40000000	34065247	-0.15				
Brahim	CAM	78	31500000	5058760	-0.84				
O. Giroud	ST	82	13000000	10868574	-0.16				

```
[31]: print(LassoR_Model.get_params()) print(LassoR_log_Model.get_params())
```

{'alpha': 1.0, 'copy_X': True, 'fit_intercept': True, 'max_iter': 1000,
'normalize': 'deprecated', 'positive': False, 'precompute': False,

```
'random_state': None, 'selection': 'cyclic', 'tol': 0.0001, 'warm_start': False}
{'alpha': 0.005, 'copy_X': True, 'fit_intercept': True, 'max_iter': 1000,
'normalize': 'deprecated', 'positive': False, 'precompute': False,
'random_state': None, 'selection': 'cyclic', 'tol': 0.0001, 'warm_start': False}
4.3 Multi-nominal Regression
Create poly_features.fit_transform
```

```
[32]: start time = time.time()
     # Multi-nominal
     poly features = PolynomialFeatures(degree=2)
     X_train_poly = poly_features.fit_transform(X_train)
     X test poly = poly features.transform(X test)
     # Multi-nominal Regression
     MNR_Model = LinearRegression()
     MNR_Model.fit(X_train_poly, y_train)
     y_pred = MNR_Model.predict(X_test_poly)
     # Evaluate R2 MAE and MSE
     r2 = round(r2_score(y_test, y_pred),4)
     mae = round(mean_absolute_error(y_test, y_pred),0)
     mse = round(mean_squared_error(y_test, y_pred),0)
     print('R2 Score:', r2)
     print('MAE:', mae)
     print('MSE:', mse)
     end_time = time.time()
     print('Calculation Time:', round(end time - start time, 4), 'seconds')
     # Update Scatter
     fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
     fig.subplots_adjust(bottom=0)
     fig.suptitle('Multi-nominal Regression', fontsize=20)
     ax1.scatter(y_test, y_pred)
     ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
     ax1.set_xlabel("True Values")
     ax1.set_ylabel("Predictions")
     ax1.set_title('True vs Predicted Values')
     # Update Table non-log
     milan_poly = poly_features.fit_transform(X_milan)
     milan_pred = MNR_Model.predict(milan_poly)
     milan players['Pred Value'] = np.round((milan pred), 0).astype(int)
     milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_
       →milan_players['ValueEUR'])-1),2)
     milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
      milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
       9, 1, 4, 8, 5
```

R2 Score: 0.7785 MAE: 1663694.0 MSE: 9601522135004.0

Calculation Time: 2.204 seconds

Name T. Hemán F. Tomo S. Kyige D. Calab S. Tonal R. Kruni Rafael Le I. Bennac Brahim O. Girou

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy
T. Hernández	LWB	85	76000000	58743909	-0.23
F. Tomori	CB	84	60500000	44969386	-0.26
S. Kjær	CB	82	14500000	23378888	0.61
D. Calabria	RB	80	25500000	23555256	-0.08
S. Tonali	CDM	84	62500000	27822052	-0.55
R. Krunić	CM	77	10500000	11520291	0.1
Rafael Leão	LW	84	66500000	26959942	-0.59
I. Bennacer	CM	82	40000000	36305158	-0.09
Brahim	CAM	78	31500000	15287227	-0.51
O. Giroud	ST	82	13000000	19093691	0.47

```
[33]: start_time = time.time()
      y_train_log1p = np.log1p(y_train)
      # Multi-nominal
      poly_features = PolynomialFeatures(degree=2)
      X_train_poly = poly_features.fit_transform(X_train)
      X_test_poly = poly_features.transform(X_test)
      # Multi-nominal Regression
      MNR_log_Model = LinearRegression()
      MNR log Model fit(X train poly, y train log1p)
      y_pred_log1p = MNR_log_Model.predict(X_test_poly)
      y_pred = np.expm1(y_pred_log1p)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred),4)
      mae = round(mean_absolute_error(y_test, y_pred),0)
      mse = round(mean_squared_error(y_test, y_pred),0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
```

```
# Update Scatter
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
fig.subplots_adjust(bottom=0)
fig.suptitle('Multi-nominal Regression - Log transformation', fontsize=20)
ax1.scatter(y_test, y_pred)
ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
ax1.set_xlabel("True Values")
ax1.set ylabel("Predictions")
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_poly = poly_features.fit_transform(X_milan)
milan_pred = MNR_log_Model.predict(milan_poly)
milan_players['Pred_Value'] = np.round(np.expm1(milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_

→milan_players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
 ⇔'ValueEUR', 'Pred_Value', 'Accuracy']]
milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
 9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 ⇔values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
 ⇔loc='center')
table.auto_set_font_size(False)
table.set fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.8763 MAE: 629980.0

MSE: 5359653235589.0

Calculation Time: 2.0877 seconds

g transformation								
Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy			
T. Hernández	LWB	85	76000000	85850671	0.13			
F. Tomori	CB	84	60500000	71796361	0.19			
S. Kjær	CB	82	14500000	10413846	-0.28			
D. Calabria	RB	80	25500000	18096195	-0.29			
S. Tonali	CDM	84	62500000	48456526	-0.22			
R. Krunić	CM	77	10500000	8529566	-0.19			
Rafael Leão	LW	84	66500000	54273957	-0.18			
I. Bennacer	CM	82	40000000	50930576	0.27			
Brahim	CAM	78	31500000	31173055	-0.01			
O. Giroud	ST	82	13000000	12546486	-0.03			

```
[34]: print(MNR_Model.get_params())
      print(MNR_Model.get_params())
     {'copy_X': True, 'fit_intercept': True, 'n_jobs': None, 'normalize':
     'deprecated', 'positive': False}
     {'copy_X': True, 'fit_intercept': True, 'n_jobs': None, 'normalize':
     'deprecated', 'positive': False}
     4.5 KNN Regression
     best k = knn Model.best params ['n neighbors']
[35]: 777
      # Best Hyper
      param_grid = {'n_neighbors': range(1, 11)}
      knn_Model = GridSearchCV(KNeighborsRegressor(), param_grid, cv=5)
      knn_Model.fit(X_train, y_train)
      best_k = knn_Model.best_params_['n_neighbors']
      print('Best K:', best_k)
[35]: "\n# Best Hyper\nparam grid = {'n neighbors': range(1, 11)}\nknn Model =
      GridSearchCV(KNeighborsRegressor(), param_grid, cv=5)\nknn_Model.fit(X_train,
      y_train)\nbest_k = knn_Model.best_params_['n_neighbors']\nprint('Best K:',
      best_k)\n
[36]: start time = time.time()
      # KNN Regression
      KNN_Model = KNeighborsRegressor()
      KNN_Model.fit(X_train, y_train)
      y_pred = KNN_Model.predict(X_test)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots adjust(bottom=0)
      fig.suptitle('KNN Regression', fontsize=20)
      ax1.scatter(y test, y pred)
      ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
      ax1.set_xlabel("True Values")
      ax1.set_ylabel("Predictions")
```

```
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_pred = KNN_Model.predict(X_milan)
milan_players['Pred_Value'] = np.round((milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],__
 →milan_players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
 milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
 9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 ⇔values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center',__
 ⇔loc='center')
table.auto_set_font_size(False)
table.set_fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.7428 MAE: 1094924.0

MSE: 11145900528328.0

Calculation Time: 2.9687 seconds

KNN Regression

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy
T. Hernández	LWB	85	76000000	32500000	-0.57
F. Tomori	CB	84	60500000	33800000	-0.44
S. Kjær	CB	82	14500000	24500000	0.69
D. Calabria	RB	80	25500000	12900000	-0.49
S. Tonali	CDM	84	62500000	39700000	-0.36
R. Krunić	CM	77	10500000	6060000	-0.42
Rafael Leão	LW	84	66500000	31500000	-0.53
I. Bennacer	CM	82	40000000	32800000	-0.18
Brahim	CAM	78	31500000	10360000	-0.67
O. Giroud	ST	82	13000000	8875000	-0.32

```
[37]: start_time = time.time()
    y_train_log1p = np.log1p(y_train)
    # KNN Regression
    KNN_log_Model = KNeighborsRegressor()
    KNN_log_Model.fit(X_train, y_train_log1p)
    y_pred_log1p = KNN_log_Model.predict(X_test)
    y_pred = np.expm1(y_pred_log1p)
    # Evaluate R2 MAE and MSE
    r2 = round(r2_score(y_test, y_pred), 4)
```

```
mae = round(mean_absolute_error(y_test, y_pred), 0)
mse = round(mean_squared_error(y_test, y_pred), 0)
print('R2 Score:', r2)
print('MAE:', mae)
print('MSE:', mse)
end_time = time.time()
print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
# Update Scatter
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
fig.subplots adjust(bottom=0)
fig.suptitle('KNN Regression - Log transformation', fontsize=20)
ax1.scatter(y_test, y_pred)
ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
ax1.set_xlabel("True Values")
ax1.set_ylabel("Predictions")
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_pred = KNN_log_Model.predict(X_milan)
milan_players['Pred_Value'] = np.round(np.expm1(milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_
 →milan_players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', u
 milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
 9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 ⇔values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
 →loc='center')
table.auto_set_font_size(False)
table.set fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.6932 MAE: 1122900.0

MSE: 13296664187068.0

Calculation Time: 2.7817 seconds

[38]: print(KNN_Model.get_params())

[40]: start_time = time.time()

Decision Tree Regression

Evaluate R2 MAE and MSE

DT_Model.fit(X_train, y_train)
y_pred = DT_Model.predict(X_test)

DT_Model = DecisionTreeRegressor(random_state=26)

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy
T. Hernández	LWB	85	76000000	28210426	-0.63
F. Tomori	CB	84	60500000	31379146	-0.48
S. Kjær	СВ	82	14500000	18175163	0.25
D. Calabria	RB	80	25500000	12441990	-0.51
S. Tonali	CDM	84	62500000	34170311	-0.45
R. Krunić	CM	77	10500000	5096906	-0.51
Rafael Leão	LW	84	66500000	28920604	-0.57
I. Bennacer	CM	82	40000000	29612781	-0.26
Brahim	CAM	78	31500000	8924959	-0.72
O. Giroud	ST	82	13000000	5778875	-0.56

```
print(KNN_log_Model.get_params())
     {'algorithm': 'auto', 'leaf_size': 30, 'metric': 'minkowski', 'metric_params':
     None, 'n_jobs': None, 'n_neighbors': 5, 'p': 2, 'weights': 'uniform'}
     {'algorithm': 'auto', 'leaf_size': 30, 'metric': 'minkowski', 'metric_params':
     None, 'n_jobs': None, 'n_neighbors': 5, 'p': 2, 'weights': 'uniform'}
     4.6 Decision Tree Regression
[39]: '''
      # Best Hyper
      param_qrid = {
          'max_depth': [5, 10, 15],
          'min_samples_split': [15, 30, 45],
          'min_samples_leaf': [5, 10, 15],
          'max_leaf_nodes': [15, 30, 45]}
      dt_Model = GridSearchCV(DecisionTreeRegressor(), param_grid, cv=5)
      dt Model.fit(X train, y train)
      best_params = dt_Model.best_params_
      print('Best Parameters:', best_params)
[39]: "\n# Best Hyper\nparam_grid = {\n
                                           'max_depth': [5, 10, 15],\n
      'min_samples_split': [15, 30, 45],\n
                                              'min_samples_leaf': [5, 10, 15],\n
      'max_leaf_nodes': [15, 30, 45]}\ndt_Model =
      GridSearchCV(DecisionTreeRegressor(), param_grid, cv=5)\ndt_Model.fit(X_train,
      y_train)\nbest_params = dt_Model.best_params_\nprint('Best Parameters:',
      best_params)\n"
```

```
r2 = round(r2_score(y_test, y_pred), 4)
mae = round(mean_absolute_error(y_test, y_pred), 0)
mse = round(mean_squared_error(y_test, y_pred), 0)
print('R2 Score:', r2)
print('MAE:', mae)
print('MSE:', mse)
end time = time.time()
print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
# Update Scatter
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
fig.subplots_adjust(bottom=0)
fig.suptitle('Decision Tree Regression', fontsize=20)
ax1.scatter(y_test, y_pred)
ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
ax1.set_xlabel("True Values")
ax1.set_ylabel("Predictions")
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_pred = DT_Model.predict(X_milan)
milan_players['Pred_Value'] = np.round((milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],__

→milan players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __

¬'ValueEUR', 'Pred_Value', 'Accuracy']]
milan players selected = milan players selected.reindex(index=[0, 3, 6, 7, 2, 1]
 9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 ⇔values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
 →loc='center')
table.auto set font size(False)
table.set_fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.7162 MAE: 1082433.0

MSE: 12298368109027.0

Calculation Time: 0.9766 seconds

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy
T. Hernández	LWB	85	76000000	72000000	-0.05
F. Tomori	CB	84	60500000	68500000	0.13
S. Kjær	СВ	82	14500000	24000000	0.66
D. Calabria	RB	80	25500000	36000000	0.41
S. Tonali	CDM	84	62500000	35000000	-0.44
R. Krunić	CM	77	10500000	14000000	0.33
Rafael Leão	LW	84	66500000	49000000	-0.26
I. Bennacer	CM	82	40000000	38000000	-0.05
Brahim	CAM	78	31500000	23500000	-0.25
O. Giroud	ST	82	13000000	55500000	3.27

```
[41]: from sklearn.tree import DecisionTreeRegressor
      from sklearn.model_selection import GridSearchCV
      start time = time.time()
      y train log1p = np.log1p(y train)
      # Decision Tree Regression
      DT_log_Model = DecisionTreeRegressor(random_state=26)
      DT_log_Model.fit(X_train, y_train_log1p)
      y_pred_log1p = DT_log_Model.predict(X_test)
      y_pred = np.expm1(y_pred_log1p)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots_adjust(bottom=0)
      fig.suptitle('Decision Tree Regression - Log transformation', fontsize=20)
      ax1.scatter(y_test, y_pred)
      ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
      ax1.set_xlabel("True Values")
      ax1.set_ylabel("Predictions")
      ax1.set_title('True vs Predicted Values')
      # Update Table log
      milan_pred = DT_log_Model.predict(X_milan)
      milan players['Pred Value'] = np.round(np.expm1(milan pred), 0).astype(int)
      milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_

→milan players['ValueEUR'])-1),2)
```

R2 Score: 0.705 MAE: 1097749.0

MSE: 12784446504883.0

Calculation Time: 0.9305 seconds

'n_estimators': [50, 100],

g transformation							
Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy		
T. Hernández	LWB	85	76000000	37500000	-0.51		
F. Tomori	CB	84	60500000	46000000	-0.24		
S. Kjær	CB	82	14500000	5500000	-0.62		
D. Calabria	RB	80	25500000	35500000	0.39		
S. Tonali	CDM	84	62500000	20000000	-0.68		
R. Krunić	CM	77	10500000	18500000	0.76		
Rafael Leão	LW	84	66500000	61500000	-0.08		
I. Bennacer	CM	82	40000000	23000000	-0.43		
Brahim	CAM	78	31500000	38000000	0.21		
O. Giroud	ST	82	13000000	77500000	4.96		

```
'max_depth': [10],
    'min_samples_split': [45],
    'min_samples_leaf': [15],
    'max_leaf_nodes': [45]}

rf_Model = GridSearchCV(RandomForestRegressor(), param_grid, cv=5)

rf_Model.fit(X_train, y_train)
    best_params = rf_Model.best_params_
    print('Best Parameters:', best_params)
    '''
[43]: "# Best Hyper\nparam_grid = {\n 'n_estimators': [50, 100],\n 'max_depth':
```

```
[43]: "# Best Hyper\nparam_grid = {\n 'n_estimators': [50, 100],\n 'max_depth':
        [10],\n 'min_samples_split': [45],\n 'min_samples_leaf': [15],\n
        'max_leaf_nodes': [45]}\nrf_Model = GridSearchCV(RandomForestRegressor(),
        param_grid, cv=5)\nrf_Model.fit(X_train, y_train)\nbest_params =
        rf_Model.best_params_\nprint('Best Parameters:', best_params)\n"
```

```
[44]: start_time = time.time()
      # Random Forest Regression
      RF_Model = RandomForestRegressor(random_state=26)
      RF_Model.fit(X_train, y_train)
      y_pred = RF_Model.predict(X_test)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots_adjust(bottom=0)
      fig.suptitle('Random Forest Regression', fontsize=20)
      ax1.scatter(y_test, y_pred)
      ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
      ax1.set_xlabel("True Values")
      ax1.set_ylabel("Predictions")
      ax1.set_title('True vs Predicted Values')
      # Update Table log
      milan_pred = RF_Model.predict(X_milan)
      milan players['Pred Value'] = np.round((milan pred), 0).astype(int)
      milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_

→milan_players['ValueEUR'])-1),2)
```

R2 Score: 0.8933 MAE: 697402.0

MSE: 4623413076250.0

Calculation Time: 51.14 seconds

16331011							
Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy		
T. Hernández	LWB	85	76000000	50520000	-0.34		
F. Tomori	СВ	84	60500000	50435000	-0.17		
S. Kjær	CB	82	14500000	13396000	-0.08		
D. Calabria	RB	80	25500000	35290000	0.38		
S. Tonali	CDM	84	62500000	43585000	-0.3		
R. Krunić	CM	77	10500000	14270000	0.36		
Rafael Leão	LW	84	66500000	47930000	-0.28		
I. Bennacer	CM	82	40000000	40185000	0.0		
Brahim	CAM	78	31500000	18438000	-0.41		
O. Giroud	ST	82	13000000	24874000	0.91		

```
[45]: start_time = time.time()
      y_train_log1p = np.log1p(y_train)
      # Random Forest Regression
      RF log Model = RandomForestRegressor(random state=26)
      RF_log_Model.fit(X_train, y_train_log1p)
      y_pred_log1p = RF_log_Model.predict(X_test)
      y_pred = np.expm1(y_pred_log1p)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
```

```
# Update Scatter
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
fig.subplots_adjust(bottom=0)
fig.suptitle('Random Forest Regression - Log transformation', fontsize=20)
ax1.scatter(y_test, y_pred)
ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
ax1.set_xlabel("True Values")
ax1.set ylabel("Predictions")
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_pred = RF_log_Model.predict(X_milan)
milan_players['Pred_Value'] = np.round(np.expm1(milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_

→milan_players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
 ⇔'ValueEUR', 'Pred_Value', 'Accuracy']]
milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
 9, 1, 4, 8, 5
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 ⇔values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', u
 →loc='center')
table.auto_set_font_size(False)
table.set fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.8769 MAE: 679591.0

MSE: 5334894705692.0

Calculation Time: 41.3601 seconds

_	- g							
	Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy		
	T. Hernández	LWB	85	76000000	35643163	-0.53		
	F. Tomori	CB	84	60500000	40566843	-0.33		
	S. Kjær	CB	82	14500000	10747536	-0.26		
	D. Calabria	RB	80	25500000	22864615	-0.1		
	S. Tonali	CDM	84	62500000	39461508	-0.37		
	R. Krunić	CM	77	10500000	14718839	0.4		
	Rafael Leão	LW	84	66500000	46122708	-0.31		
	I. Bennacer	CM	82	40000000	42309847	0.06		
	Brahim	CAM	78	31500000	14553277	-0.54		
	O. Giroud	ST	82	13000000	17153776	0.32		

```
[46]: print(RF_Model.get_params())
      print(RF_log_Model.get_params())
     {'bootstrap': True, 'ccp alpha': 0.0, 'criterion': 'squared error', 'max depth':
     None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None,
     'min impurity decrease': 0.0, 'min samples leaf': 1, 'min samples split': 2,
     'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None,
     'oob_score': False, 'random_state': 26, 'verbose': 0, 'warm_start': False}
     {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'squared_error', 'max_depth':
     None, 'max features': 'auto', 'max_leaf nodes': None, 'max_samples': None,
     'min impurity decrease': 0.0, 'min samples leaf': 1, 'min_samples_split': 2,
     'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None,
     'oob_score': False, 'random_state': 26, 'verbose': 0, 'warm_start': False}
     4.8 Gradient Boosting Regression
[47]: '''# Best Hyper
      param_grid = {
          'n_estimators': [50],
          'learning_rate': [0.1, 0.5],
          'max_depth': [5, 10],
          'min samples split': [2, 5],
          'min samples leaf': [1, 3],
          'max_features': ['auto', 'sqrt', 'log2']}
      qb_Model = GridSearchCV(GradientBoostingRegressor(), param_grid, cv=5)
      gb_Model.fit(X_train, y_train)
      best_params = gb_Model.best_params_
      print('Best Parameters:', best_params)
[47]: "# Best Hyper\nparam_grid = {\n
                                         'n_estimators': [50],\n
                                                                     'learning_rate':
                       'max depth': [5, 10],\n
      [0.1, 0.5], n
                                                  'min samples split': [2, 5],\n
      'min samples leaf': [1, 3],\n
                                      'max features': ['auto', 'sqrt',
      'log2']}\ngb_Model = GridSearchCV(GradientBoostingRegressor(), param_grid,
      cv=5)\ngb_Model.fit(X_train, y_train)\nbest_params =
      gb_Model.best_params_\nprint('Best Parameters:', best_params)\n"
[48]: start_time = time.time()
      # Gradient Boosting Regression
      GB_Model = GradientBoostingRegressor(random_state=26)
      GB_Model.fit(X_train, y_train)
      y_pred = GB_Model.predict(X_test)
      # Evaluate R2 MAE and MSE
      r2 = round(r2 score(y test, y pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
```

```
print('MSE:', mse)
end_time = time.time()
print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
# Update Scatter
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
fig.subplots_adjust(bottom=0)
fig.suptitle('Gradient Boosting Regression', fontsize=20)
ax1.scatter(y test, y pred)
ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
ax1.set_xlabel("True Values")
ax1.set_ylabel("Predictions")
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_pred = GB_Model.predict(X_milan)
milan_players['Pred_Value'] = np.round((milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],__
 →milan_players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
 ⇔'ValueEUR', 'Pred_Value', 'Accuracy']]
milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
 9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 ⇔values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
 →loc='center')
table.auto_set_font_size(False)
table.set_fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.9147 MAE: 741671.0

MSE: 3694760751632.0

Calculation Time: 13.4689 seconds

gression							
Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy		
T. Hernández	LWB	85	76000000	55908096	-0.26		
F. Tomori	СВ	84	60500000	61268103	0.01		
S. Kjær	CB	82	14500000	15196081	0.05		
D. Calabria	RB	80	25500000	27881194	0.09		
S. Tonali	CDM	84	62500000	48487332	-0.22		
R. Krunić	CM	77	10500000	12329032	0.17		
Rafael Leão	LW	84	66500000	53672626	-0.19		
I. Bennacer	CM	82	40000000	46750962	0.17		
Brahim	CAM	78	31500000	15086508	-0.52		
O. Giroud	ST	82	13000000	30277181	1.33		

```
[49]: start_time = time.time()
      y_train_log1p = np.log1p(y_train)
      # Gradient Boosting Regression
      GB_log_Model = GradientBoostingRegressor(random_state=26)
      GB_log_Model.fit(X_train, y_train_log1p)
      y pred log1p = GB log Model.predict(X test)
      y_pred = np.expm1(y_pred_log1p)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean absolute error(y test, y pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots_adjust(bottom=0)
      fig.suptitle('Gradient Boosting Regression - Log transformation', fontsize=20)
      ax1.scatter(y_test, y_pred)
      ax1.plot([0, max(y test)], [0, max(y test)], color='red', linestyle='--')
      ax1.set_xlabel("True Values")
      ax1.set_ylabel("Predictions")
      ax1.set_title('True vs Predicted Values')
      # Update Table log
      milan_pred = GB_log_Model.predict(X_milan)
      milan_players['Pred_Value'] = np.round(np.expm1(milan_pred), 0).astype(int)
      milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],__

→milan_players['ValueEUR'])-1),2)
      milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
       ⇔'ValueEUR', 'Pred_Value', 'Accuracy']]
      milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
       \rightarrow 9, 1, 4, 8, 5])
      table data = [list(milan players selected.columns)] + milan players selected.
       ⇔values.tolist()
      table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
       →loc='center')
      table.auto_set_font_size(False)
      table.set_fontsize(12)
      table.scale(1, 2)
      plt.axis('off')
```

plt.show()

R2 Score: 0.8883 MAE: 650905.0

MSE: 4839335412423.0

Calculation Time: 13.1533 seconds

٠ ١	Log transformation							
	Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy		
	T. Hernández	LWB	85	76000000	62187288	-0.18		
	F. Tomori	CB	84	60500000	37877854	-0.37		
	S. Kjær	CB	82	14500000	9881741	-0.32		
	D. Calabria	RB	80	25500000	21225838	-0.17		
	S. Tonali	CDM	84	62500000	61059199	-0.02		
	R. Krunić	CM	77	10500000	14740135	0.4		
	Rafael Leão	LW	84	66500000	53888861	-0.19		
	I. Bennacer	CM	82	40000000	44239651	0.11		
	Brahim	CAM	78	31500000	12442301	-0.61		
	O. Giroud	ST	82	13000000	8889471	-0.32		

```
[50]: print(GB_Model.get_params())
print(GB_log_Model.get_params())
```

```
{'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion': 'friedman_mse', 'init': None,
  'learning_rate': 0.1, 'loss': 'squared_error', 'max_depth': 3, 'max_features':
  None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf':
  1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100,
  'n_iter_no_change': None, 'random_state': 26, 'subsample': 1.0, 'tol': 0.0001,
  'validation_fraction': 0.1, 'verbose': 0, 'warm_start': False}
  {'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion': 'friedman_mse', 'init': None,
  'learning_rate': 0.1, 'loss': 'squared_error', 'max_depth': 3, 'max_features':
  None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf':
  1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100,
  'n_iter_no_change': None, 'random_state': 26, 'subsample': 1.0, 'tol': 0.0001,
  'validation_fraction': 0.1, 'verbose': 0, 'warm_start': False}
```

4.9 Adaboost Regression

```
[51]: \[ \begin{align*} \begin{align
```

```
[51]: "# Best Hyper\nparam grid = {\n
                                         'n estimators': [50],\n
                                                                    'learning rate':
      [0.1, 0.5], n
                       'base_estimator': [DecisionTreeRegressor(max_depth=5),
      DecisionTreeRegressor(max depth=10)],\n
                                                 'loss': ['linear', 'square',
      'exponential']}\nab_Model = GridSearchCV(AdaBoostRegressor(), param_grid,
      cv=5)\nab Model.fit(X train, y train)\nbest params =
      ab Model.best_params_\nprint('Best Parameters:', best_params)\n"
[52]: start_time = time.time()
      # Adaboosting Regression
      AB_Model = AdaBoostRegressor(random_state=26, learning_rate=0.1,_
       AB_Model.fit(X_train, y_train)
      y_pred = AB_Model.predict(X_test)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots_adjust(bottom=0)
      fig.suptitle('AdaBoost Regression', fontsize=20)
      ax1.scatter(y_test, y_pred)
      ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
      ax1.set_xlabel("True Values")
      ax1.set_ylabel("Predictions")
      ax1.set_title('True vs Predicted Values')
      # Update Table log
      milan_pred = AB_Model.predict(X_milan)
      milan_players['Pred_Value'] = np.round((milan_pred), 0).astype(int)
      milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_
       →milan_players['ValueEUR'])-1),2)
      milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __

¬'ValueEUR', 'Pred_Value', 'Accuracy']]
      milan players selected = milan players selected.reindex(index=[0, 3, 6, 7, 2, 1]
       9, 1, 4, 8, 5])
      table_data = [list(milan_players_selected.columns)] + milan_players_selected.
       →values.tolist()
```

111

O. Giroud

R2 Score: 0.7859 MAE: 1571494.0 MSE: 9279481735867.0

Calculation Time: 17.2452 seconds

AdaBoost Regression Na T. Herr F. To S. N. D. C:a S. T. R. K. Rafae L. Ben Bra O. G

BestPosition ValueEUR Pred_Value T. Hernández LWB 85 76000000 51857650 -0.32 CB 84 60500000 50327391 -0.17 СВ 82 14500000 17750000 0.22 D. Calabria 19703064 25500000 -0.23 S. Tonali CDM 62500000 39408911 -0.37 СМ 10500000 16380311 0.56 Rafael Leão 66500000 51857650 -0.22 I. Bennacer CM 82 40000000 55468127 0.39 CAM 31500000 -0.62

13000000

32379545

```
[53]: start_time = time.time()
      y_train_log1p = np.log1p(y_train)
      # Adaboosting Regression
      AB_log_Model = AdaBoostRegressor(random_state=26, learning_rate=1,_
       →n_estimators=100)
      AB_log_Model.fit(X_train, y_train_log1p)
      y_pred_log1p = AB_log_Model.predict(X_test)
      y_pred = np.expm1(y_pred_log1p)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots_adjust(bottom=0)
      fig.suptitle('Adaboost Regression - Log transformation', fontsize=20)
```

```
ax1.scatter(y_test, y_pred)
ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
ax1.set_xlabel("True Values")
ax1.set_ylabel("Predictions")
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_pred = AB_log_Model.predict(X_milan)
milan players['Pred Value'] = np.round(np.expm1(milan pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_
 →milan_players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
 ⇔'ValueEUR', 'Pred_Value', 'Accuracy']]
milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
 9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 →values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
 →loc='center')
table.auto_set_font_size(False)
table.set_fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.7171 MAE: 1009320.0

MSE: 12259157098032.0

Calculation Time: 16.2221 seconds

Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy		
T. Hernández	LWB	85	76000000	31231143	-0.59		
F. Tomori	CB	84	60500000	19141124	-0.68		
S. Kjær	CB	82	14500000	6745907	-0.53		
D. Calabria	RB	80	25500000	11187801	-0.56		
S. Tonali	CDM	84	62500000	25864989	-0.59		
R. Krunić	CM	77	10500000	14310380	0.36		
Rafael Leão	LW	84	66500000	24620630	-0.63		
I. Bennacer	CM	82	40000000	25807299	-0.35		
Brahim	CAM	78	31500000	8599779	-0.73		
O. Giroud	ST	82	13000000	4490831	-0.65		

```
[54]: print(AB_Model.get_params())
    print(AB_log_Model.get_params())

{'base_estimator': None, 'learning_rate': 0.1, 'loss': 'linear', 'n_estimators':
    100, 'random_state': 26}
{'base_estimator': None, 'learning_rate': 1, 'loss': 'linear', 'n_estimators':
```

```
100, 'random_state': 26}
     4.10 Support Vector Regression
[55]:
      # Best Hyper
      param_qrid = {
          'kernel': ['linear', 'poly', 'rbf'],
          'C': [0.1, 1, 10],
          'gamma':[0.1, 1 ,10]
          'epsilon': [0.1, 0.5, 1]}
      svm_Model = GridSearchCV(SVR(), param_grid, cv=5)
      svm_Model.fit(X_train, y_train)
      best_params = sum_Model.best_params_
      print('Best Parameters:', best_params)
[55]: "\n# Best Hyper\nparam_grid = {\n
                                          'kernel': ['linear', 'poly', 'rbf'],\n
                              'gamma':[0.1, 1 ,10]\n
      'C': [0.1, 1, 10],\n
                                                        'epsilon': [0.1, 0.5,
      1]}\nsvm_Model = GridSearchCV(SVR(), param_grid, cv=5)\nsvm_Model.fit(X_train,
      y_train)\nbest_params = svm_Model.best_params_\nprint('Best Parameters:',
     best_params)\n"
[56]: start_time = time.time()
      # Support Vector Regression
      SVM_Model = SVR(kernel='linear',C=10, gamma=10)
      SVM_Model.fit(X_train, y_train)
      y_pred = SVM_Model.predict(X_test)
      # Evaluate R2 MAE and MSE
      r2 = round(r2_score(y_test, y_pred), 4)
      mae = round(mean_absolute_error(y_test, y_pred), 0)
      mse = round(mean_squared_error(y_test, y_pred), 0)
      print('R2 Score:', r2)
      print('MAE:', mae)
      print('MSE:', mse)
      end_time = time.time()
      print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
      # Update Scatter
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
      fig.subplots_adjust(bottom=0)
      fig.suptitle('Support Vector Regression', fontsize=20)
      ax1.scatter(y_test, y_pred)
      ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
      ax1.set xlabel("True Values")
      ax1.set_ylabel("Predictions")
      ax1.set title('True vs Predicted Values')
```

Update Table log

```
milan_pred = SVM_Model.predict(X_milan)
milan_players['Pred_Value'] = np.round((milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],_
 →milan_players['ValueEUR'])-1),2)
milan players selected = milan players[['Name', 'BestPosition', 'Overall', |

¬'ValueEUR', 'Pred_Value', 'Accuracy']]
milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
 9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 →values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
 ⇔loc='center')
table.auto_set_font_size(False)
table.set_fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.1109 MAE: 1798853.0

MSE: 38534497655933.0

Calculation Time: 32.242 seconds

11	ression							
	Name	BestPosition	Overall	ValueEUR	Pred_Value	Accuracy		
	T. Hernández	LWB	85	76000000	4736240	-0.94		
	F. Tomori	CB	84	60500000	4225045	-0.93		
	S. Kjær	CB	82	14500000	2896976	-0.8		
	D. Calabria	RB	80	25500000	3458996	-0.86		
	S. Tonali	CDM	84	62500000	4444666	-0.93		
	R. Krunić	CM	77	10500000	3190694	-0.7		
	Rafael Leão	LW	84	66500000	4249835	-0.94		
	I. Bennacer	CM	82	40000000	4144423	-0.9		
	Brahim	CAM	78	31500000	2574281	-0.92		
	O. Giroud	ST	82	13000000	3062481	-0.76		

```
[57]: start_time = time.time()
    y_train_log1p = np.log1p(y_train)
    # Support Vector Regression
    SVM_log_Model = SVR()
    SVM_log_Model.fit(X_train, y_train_log1p)
    y_pred_log1p = SVM_log_Model.predict(X_test)
    y_pred = np.expm1(y_pred_log1p)
    # Evaluate R2 MAE and MSE
    r2 = round(r2_score(y_test, y_pred), 4)
    mae = round(mean_absolute_error(y_test, y_pred), 0)
    mse = round(mean_squared_error(y_test, y_pred), 0)
```

```
print('R2 Score:', r2)
print('MAE:', mae)
print('MSE:', mse)
end_time = time.time()
print('Calculation Time:', round(end_time - start_time, 4), 'seconds')
# Update Scatter
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 4))
fig.subplots adjust(bottom=0)
fig.suptitle('Support Vector Regression - Log transformation', fontsize=20)
ax1.scatter(y_test, y_pred)
ax1.plot([0, max(y_test)], [0, max(y_test)], color='red', linestyle='--')
ax1.set_xlabel("True Values")
ax1.set_ylabel("Predictions")
ax1.set_title('True vs Predicted Values')
# Update Table log
milan_pred = SVM_log_Model.predict(X_milan)
milan_players['Pred_Value'] = np.round(np.expm1(milan_pred), 0).astype(int)
milan_players['Accuracy'] = np.round((np.divide(milan_players['Pred_Value'],__
 →milan_players['ValueEUR'])-1),2)
milan_players_selected = milan_players[['Name', 'BestPosition', 'Overall', __
 ⇔'ValueEUR', 'Pred_Value', 'Accuracy']]
milan_players_selected = milan_players_selected.reindex(index=[0, 3, 6, 7, 2, __
 9, 1, 4, 8, 5])
table_data = [list(milan_players_selected.columns)] + milan_players_selected.
 ⇔values.tolist()
table = ax2.table(cellText=table_data, colLabels=None, cellLoc='center', __
 ⇔loc='center')
table.auto_set_font_size(False)
table.set fontsize(12)
table.scale(1, 2)
plt.axis('off')
plt.show()
```

R2 Score: 0.8662 MAE: 643371.0

MSE: 5796886799482.0

Calculation Time: 35.816 seconds

g cransionnation							
BestPosition	Overall	ValueEUR	Pred_Value	Accuracy			
LWB	85	76000000	58175942	-0.23			
CB	84	60500000	43172952	-0.29			
CB	82	14500000	8134915	-0.44			
RB	80	25500000	13117539	-0.49			
CDM	84	62500000	54184809	-0.13			
CM	77	10500000	9555092	-0.09			
LW	84	66500000	56171556	-0.16			
CM	82	40000000	42067200	0.05			
CAM	78	31500000	17029543	-0.46			
ST	82	13000000	8788990	-0.32			
	BestPosition LWB CB CB RB CDM LWB CM LW CM LW CAM	BestPosition Overall LWB 85 CB 84 CB 82 RB 80 CDM 84 CM 77 LW 84 CM 82 CAM 78	BestPosition Overall ValueEUR LWB 85 76000000 CB 84 60500000 CB 82 14500000 RB 80 25500000 CDM 84 62500000 CM 77 10500000 LW 84 66500000 CM 82 40000000 CAM 78 31500000	BestPosition Overall ValueEUR Pred_Value LWB 85 76000000 58175942 CB 84 60500000 43172952 CB 82 14500000 8134915 RB 80 25500000 13117539 CDM 84 62500000 54184809 CM 77 10500000 9555092 LW 84 66500000 56171556 CM 82 40000000 42067200 CAM 78 31500000 17029543			

```
[58]: print(SVM_Model.get_params())
      print(SVM_log_Model.get_params())
     {'C': 10, 'cache_size': 200, 'coef0': 0.0, 'degree': 3, 'epsilon': 0.1, 'gamma':
     10, 'kernel': 'linear', 'max_iter': -1, 'shrinking': True, 'tol': 0.001,
     'verbose': False}
     {'C': 1.0, 'cache size': 200, 'coef0': 0.0, 'degree': 3, 'epsilon': 0.1,
     'gamma': 'scale', 'kernel': 'rbf', 'max_iter': -1, 'shrinking': True, 'tol':
     0.001, 'verbose': False}
     5. Model Comparision
[59]: # Score data
      regS_models = ['Linear', 'Ridge', 'Lasso', 'MN', 'KNN', 'DT', 'RF', 'GB', 'AB', \_

¬'SVM'

      regS_scores = [0.5013, 0.5014, 0.5013, 0.7785, 0.7428, 0.7162, 0.8933, 0.9147, ___
       \rightarrow 0.7859, 0.1109
      regS = pd.DataFrame({'Regular Model': regS_models, 'Score': regS_scores})
      logS_models = ['Linear', 'Ridge', 'Lasso', 'MN', 'KNN', 'DT', 'RF', 'GB', 'AB', |

¬'SVM']
      logS_scores = [0.7453, 0.7455, 0.7632, 0.8763, 0.6932, 0.705, 0.8769, 0.8883, 0.
       →7171, 0.8662]
      logS = pd.DataFrame({'Log Transformed Model': logS_models, 'Score':
       →logS scores})
      regM_models = ['Linear', 'Ridge', 'Lasso', 'MN', 'KNN', 'DT', 'RF', 'GB', 'AB', _

¬'SVM']
      regM_mae = [2430090, 2430157, 2430089, 1663694, 1094924, 1082433, 697402, ____
       →741671, 1571494, 1798853]
      regM = pd.DataFrame({'Regular Model': regM_models, 'MAE': regM_mae})
      logM_models = ['Linear', 'Ridge', 'Lasso', 'MN', 'KNN', 'DT', 'RF', 'GB', 'AB', __

¬'SVM']
```

```
logM_mae = [988093, 988040, 985644, 629980, 1122900, 1097749, 679591, 650905, __
 →1009320, 643371]
logM = pd.DataFrame({'Log Transformed Model': logM_models, 'MAE': logM_mae})
# Chart Frame
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(16, 8))
regS sorted = regS.sort values(by='Score', ascending=False)
ax1.bar(regS_sorted['Regular Model'], regS_sorted['Score'], __
 ⇔color=['C0']*10+['C3']*0+['C0']*0+['C3']*0)
ax1.set_ylim(0, 1)
ax1.set xlabel('Model')
ax1.set_ylabel('Score')
ax1.set_title('Regular Data Model Scores')
# Log Transformed
logS_sorted = logS.sort_values(by='Score', ascending=False)
ax2.bar(logS_sorted['Log Transformed Model'], logS_sorted['Score'],u
⇔color=['C0']*10+['C3']*10+['C0']*0)
ax2.set_ylim(0, 1)
ax2.set_xlabel('Model')
ax2.set_ylabel('Score')
ax2.set_title('Log Transformed Data Model Scores')
# Regular
regM_sorted = regM.sort_values(by='MAE', ascending=True)
ax3.bar(regM_sorted['Regular Model'], regM_sorted['MAE'],__
 ax3.set_ylim(0,2600000)
ax3.set_xlabel('Model')
ax3.set_ylabel('MAE')
ax3.set_title('Regular Data Model MAE')
# Log Transformed
logM_sorted = logM.sort_values(by='MAE', ascending=True)
ax4.bar(logM_sorted['Log Transformed Model'], logM_sorted['MAE'],

color=['C0']*10+['C3']*10+['C0']*0)
ax4.set_ylim(0,2600000)
ax4.set_xlabel('Model')
ax4.set_ylabel('MAE')
ax4.set_title('Log Transformed Data Model MAE')
fig.tight_layout()
plt.show()
```


Based on the Score and MAE of 10 regression models, we can make the following conclusion:

- »1. Gradient Boosting and Random Forest regression models achieve scores of around 90% and low MAE values on both the original and log-transformed targets.
- »2. The Multi-nominal and SVM regression models have the lowest MAE on log transformation, but they perform poorly on the original dataset.
- »3. Linear regression model fits poorly on this dataset, and neither Ridge nor Lasso provide a significant improvement.
- »4. Decision Tree and KNN regression perform better on the original dataset than on the log-transformed dataset, which means that log transformation still loses some of the original data information..
- »5. Overall, the MAE of the models after log transformation is much lower, indicating that log transformation should be considered for variables with severe skewness when performing regression prediction.

6. Conclusion

Through this analysis, we successfully predicted the market prices of FIFA23 players using their attributes with an accuracy of over 90%. From our analysis, we can also draw the following conclusions:

- »No free lunch theorem: in the field of machine learning, no algorithm is superior to others, and we can only find the most suitable method through continuous experimentation.
- »Ensemble methods have a wider range of applicability and are more likely to produce better results. Compared to traditional SVM algorithms, Ensemble methods do not require spending a lot of time searching for optimal hyperparameters.
- »Feature engineering is more important than model selection. Choosing the right features directly affects the success of the final model.

Next Step:

 \gg I will combine unsupervised learning methods and classification learning methods to explore the relationship between player skills and their position on the field.