

SEQUENCE LISTING

<110> Protein Design Labs

<120> ANTIBODIES AGAINST GPR64 AND USES THEREOF

<130> 05882.0177.NPUS01

<160> 30

<170> PatentIn version 3.2

<210> 1

<211> 4665

<212> DNA

<213> Homo sapiens

<400> 1		
agccagcccg aggacgcgag cggcagggtgt gcacagaggt tctccacttt gtttctgaa		60
ctcgcggtca ggatggtttt ctctgtcagg cagtgtggcc atgttggcag aactgaagaa		120
gttttactga cgttcaagat attccttgc atcatttgc ttcatgtcgt tctggtaaca		180
tccctggaag aagatactga taattccagt ttgtcaccac cacctgctaa attatctgtt		240
gtcagtttg cccccctcctc caatgaggtt gaaacaacaa gcctcaatga tgttacttta		300
agcttactcc cttcaaacga aacagaaaaa actaaaatca ctatagtaaa aaccttcaat		360
gcttcaggcg tcaaacccca gagaaatatc tgcaatttgt catctatttgc aatgactca		420
gcattttta gaggtgagat catgttcaa tatgataaag aaagcactgt tccccagaat		480
caacatataa cgaatggcac cttaaactgga gtcctgtctc taagtgaatt aaaacgctca		540
gagctcaaca aaaccctgca aaccctaagt gagacttact ttataatgtg tgctacagca		600
gaggcccaa gcacattaaa ttgtacattc acaataaaac tgaataatac aatgaatgca		660
tgtgctgcaa tagccgctt ggaaagagta aagattcgac caatggaaca ctgctgctgt		720
tctgtcagga taccctgccc ttcctccca gaagagttgg gaaagcttca gtgtgacctg		780
caggatccca ttgtctgtct tgctgaccat ccacgtggcc caccatttc ttccagccaa		840
tccatcccag tgggcctcg ggccactgtg cttcccccagg tccccaaagc taccttttt		900
gctgagcctc cagattattc acctgtgacc cacaatgttc cctctccaat aggggagatt		960
caacccttt caccctcagcc ttcagctccc atagcttcca gccctgccat tgacatgccc		1020
ccacagtctg aaacgatctc ttcccctatg ccccaaaccc atgtctccgg caccctcacct		1080
cctgtgaaag cctcattttc ctctcccacc gtgtctgccc ctgcgaatgt caacactacc		1140
agcgcacctc ctgtccagac agacatggtc aacaccagca gtatttctga tcttggaaac		1200
caagtgttgc agatggagaa ggctctgtcc ttggggcagcc tggagcctaa cctcgcagga		1260
gaaatgatca accaagtcag cagactcctt cattccccgc ctgacatgct ggccctctg		1320
gctcaaagat tgctgaaagt agtggatgac attggcctac agctgaactt ttcaaacacg		1380

actataagtc taacctcccc ttctttggct ctggctgtga tcagagtcaa tgccagtagt	1440
ttcaacacaa ctacccttgt ggcccaagac cctgcaaatac ttcagggttc tctggaaacc	1500
caagctcctg agaacagtat tggcacaatt actcttcctt catcgctgat gaataattta	1560
ccagctcatg acatggagct agcttccagg gttcagttca attttttga aacacctgct	1620
ttgtttcagg atccttcctt ggagaacctc tctctgatca gctacgtcat atcatcgagt	1680
gttgcaaacc tgaccgtcag gaacttgaca agaaacgtga cagtcacatt aaagcacatc	1740
aacccgagcc aggatgagtt aacagtgaga tgtgtatTTT gggacttggg cagaaatgg	1800
ggcagaggag gctggcaga caatggctgc tctgtcaaag acaggagatt gaatgaaacc	1860
atctgtacct gtagccatct aacaagcttc ggcgttctgc tggacctatc taggacatct	1920
gtgctgcctg ctcaaATGAT ggctctgacg ttCATTACAT atattggTTG tgggCTTCA	1980
tcaattttc tgtcagtgac tcttgtaacc tacatAGCTT ttgaaaAGAT ccggaggGGAT	2040
taccCTTCCA aaATCCTCAT ccagCTGTGT gctgtctgc ttctgctgaa CCTGGTCTTC	2100
ctcCTGGACT cgtggattgc tctgtataag atgcaaggCC tctgcATCTC agtggctgta	2160
tttCTTCATT atTTCTCTT ggtctcattc acatggatgg gcctagaAGC attccatATG	2220
tacCTGGCCC ttgtcaaAGT atttaataCT tacatCCGAA aatacatCCT taaattCTGC	2280
attgtcggtt ggggggtacc agctgtggTT gtgaccatca tcctgactat atccccAGAT	2340
aactatGGGC ttggatCCTA tggaaATTC cccaatggTT caccggatGA cttctgctgg	2400
atcaacaACA atgcagtatt ctacattacG gtggTgggat atttctgtGT gatattttG	2460
ctgaacgtca gcatgttcat tgtggcctg gttcagctct gtcgaattaa aaagaagaAG	2520
caactgggag cccagcgAAA aaccagtatt caagacctca ggagtatcgc tggcTTaca	2580
tttttactgg gaataacttg gggcttgc ttctttgcct ggggaccAGT taacgtgacc	2640
ttcatgtatc tgTTTGCAT CTTAATAACC ttacaaggat tttcatatt catTTTAC	2700
tgtgtggcca aagaaaATGT caggaAGCAA tggaggcGGT atctttgttG tgAAAGTTA	2760
cggctggctg aaaattctGA ctggagtaaa actgctacta atggTTAAA gaagcagact	2820
gtaaaaccaAG gagtgTCCAG ctcttcaaAT tccttacAGT caagcagtaa ctccactAAC	2880
tccaccacAC tgcttagtGAA taatgattGC tcagtacacG caAGCgggAA tggAAATGCT	2940
tctacAGAGA ggaatgggt ctctttAGT gttcagaatG gagatgtgtG cttcacGAT	3000
ttcactggAA aacagcacat gtttaacGAG aagGAAGATT CCTGCAATGG gaaaggCCGT	3060
atggctctCA gaaggactTC aaAGCgggGA agcttacACT ttattgagCA aatgtgattC	3120
ctttcttcta aaatcaaAGC atgatgCTTG acagtgtGAA atgtccaATT ttacTTTA	3180
cacaatgtGA gatgtatGAA aatcaactCA ttttattCTC ggcaacatCT ggagaAGCAT	3240
aagctaatta agggcgatGA ttatttattAC aagaAGAAAC caagacATTA caccatggTT	3300

ttagacatt	tctgatttg	tttcttatct	ttcattttat	aagaaggttg	gttttaaaca	3360
atacactaag	aatgactcct	ataaaagaaaa	caaaaaaagg	tagtgaactt	tcagctacct	3420
tttaaagagg	ctaagttatc	tttgataaca	tcatataaag	caactgttga	cttcagcctg	3480
ttggtgagtt	tagttgtca	tgccttgtt	gtatataagc	taaattctag	tgacccatgt	3540
gtcaaaaatc	ttacttctac	attttttgt	atttattttc	tactgtgtaa	atgtattcct	3600
ttgtagaatc	atggttgttt	tgtctcacgt	gataattcag	aaaatcctg	ctcggtccgc	3660
aaatcctaaa	gctcctttg	gagatgatat	aggatgtgaa	atacagaaac	ctcagtgaaa	3720
tcaagaaaata	atgatcccag	ccagactgag	aaaatgtaaag	cagacagtgc	cacagttagc	3780
tcatacagt	ccttgagca	agtttagaaaa	agatgcccc	actgggcaga	cacagcccta	3840
tgggtcatgg	tttgacaaac	agagtgagag	accatatttt	agccccactc	accctttgg	3900
gtgcacgacc	tgtacagcca	aacacagcat	ccaatatgaa	tacccatccc	ctgaccgcat	3960
ccccagtagt	cagattata	aatctgcacc	aagatgttta	gctttatacc	ttggccacag	4020
agagggatga	actgtcatcc	agaccatgtg	tcagggaaat	tgtgaacgta	gatgaggtac	4080
atacactgcc	gcttctcaaa	tccccagagc	ctttaggaac	aggagagtag	actaggattc	4140
cttctcttaa	aaaggtacat	atatatggaa	aaaaatcata	ttgccgttct	ttaaaaggca	4200
actgcattgt	acattgttga	ttgttatgac	tggtagactc	tggccagcc	agagctataa	4260
ttgtttttaa	aatgtgtctt	gaagaatgca	cagtgacaag	gggagtagct	attgggaaca	4320
gggaactgtc	ctacactgct	attgttgcta	catgtatcga	gccttgattg	ctccctagtta	4380
tatacagggt	ctatcttgct	tcctacctac	atctgcttga	gcagtgcctc	aagtacatcc	4440
ttatttaggaa	cattcaaacc	cccttttagt	taagtcttcc	actaaggttc	tcttgcatat	4500
atttcaagtg	aatgttggat	ctcagactaa	ccatagtaat	aatacacatt	tctgtgagtg	4560
ctgacttg	tttgcaatat	ttctttctg	atttatttaa	ttttcttgc	tttatatgtt	4620
aaaatcaaaa	atgttaaaat	caatgaaata	aatttgcagt	taaga		4665

<210> 2
 <211> 1014
 <212> PRT
 <213> Homo Sapiens
 <400> 2

Met Val Phe Ser Val Arg Gln Cys Gly His Val Gly Arg Thr Glu Glu
 1 5 10 15

Val Leu Leu Thr Phe Lys Ile Phe Leu Val Ile Ile Cys Leu His Val
 20 25 30

Val Leu Val Thr Ser Leu Glu Glu Asp Thr Asp Asn Ser Ser Leu Ser
 35 40 45

Pro Pro Pro Ala Lys Leu Ser Val Val Ser Phe Ala Pro Ser Ser Asn
50 55 60

Glu Val Glu Thr Thr Ser Leu Asn Asp Val Thr Leu Ser Leu Leu Pro
65 70 75 80

Ser Asn Glu Thr Glu Lys Thr Lys Ile Thr Ile Val Lys Thr Phe Asn
85 90 95

Ala Ser Gly Val Lys Pro Gln Arg Asn Ile Cys Asn Leu Ser Ser Ile
100 105 110

Cys Asn Asp Ser Ala Phe Phe Arg Gly Glu Ile Met Phe Gln Tyr Asp
115 120 125

Lys Glu Ser Thr Val Pro Gln Asn Gln His Ile Thr Asn Gly Thr Leu
130 135 140

Thr Gly Val Leu Ser Leu Ser Glu Leu Lys Arg Ser Glu Leu Asn Lys
145 150 155 160

Thr Leu Gln Thr Leu Ser Glu Thr Tyr Phe Ile Met Cys Ala Thr Ala
165 170 175

Glu Ala Gln Ser Thr Leu Asn Cys Thr Phe Thr Ile Lys Leu Asn Asn
180 185 190

Thr Met Asn Ala Cys Ala Ala Ile Ala Ala Leu Glu Arg Val Lys Ile
195 200 205

Arg Pro Met Glu His Cys Cys Cys Ser Val Arg Ile Pro Cys Pro Ser
210 215 220

Ser Pro Glu Glu Leu Gly Lys Leu Gln Cys Asp Leu Gln Asp Pro Ile
225 230 235 240

Val Cys Leu Ala Asp His Pro Arg Gly Pro Pro Phe Ser Ser Ser Gln
245 250 255

Ser Ile Pro Val Val Pro Arg Ala Thr Val Leu Ser Gln Val Pro Lys
260 265 270

Ala Thr Ser Phe Ala Glu Pro Pro Asp Tyr Ser Pro Val Thr His Asn
275 280 285

Val Pro Ser Pro Ile Gly Glu Ile Gln Pro Leu Ser Pro Gln Pro Ser
290 295 300

Ala Pro Ile Ala Ser Ser Pro Ala Ile Asp Met Pro Pro Gln Ser Glu
305 310 315 320

Thr Ile Ser Ser Pro Met Pro Gln Thr His Val Ser Gly Thr Pro Pro
325 330 335

Pro Val Lys Ala Ser Phe Ser Ser Pro Thr Val Ser Ala Pro Ala Asn
340 345 350

Val Asn Thr Thr Ser Ala Pro Pro Val Gln Thr Asp Ile Val Asn Thr
355 360 365

Ser Ser Ile Ser Asp Leu Glu Asn Gln Val Leu Gln Met Glu Lys Ala
370 375 380

Leu Ser Leu Gly Ser Leu Glu Pro Asn Leu Ala Gly Glu Met Ile Asn
385 390 395 400

Gln Val Ser Arg Leu Leu His Ser Pro Pro Asp Met Leu Ala Pro Leu
405 410 415

Ala Gln Arg Leu Leu Lys Val Val Asp Asp Ile Gly Leu Gln Leu Asn
420 425 430

Phe Ser Asn Thr Thr Ile Ser Leu Thr Ser Pro Ser Leu Ala Leu Ala
435 440 445

Val Ile Arg Val Asn Ala Ser Ser Phe Asn Thr Thr Thr Phe Val Ala
450 455 460

Gln Asp Pro Ala Asn Leu Gln Val Ser Leu Glu Thr Gln Ala Pro Glu
465 470 475 480

Asn Ser Ile Gly Thr Ile Thr Leu Pro Ser Ser Leu Met Asn Asn Leu
485 490 495

Pro Ala His Asp Met Glu Leu Ala Ser Arg Val Gln Phe Asn Phe Phe
500 505 510

Glu Thr Pro Ala Leu Phe Gln Asp Pro Ser Leu Glu Asn Leu Ser Leu
515 520 525

Ile Ser Tyr Val Ile Ser Ser Ser Val Ala Asn Leu Thr Val Arg Asn
530 535 540

Leu Thr Arg Asn Val Thr Val Thr Leu Lys His Ile Asn Pro Ser Gln
545 550 555 560

Asp Glu Leu Thr Val Arg Cys Val Phe Trp Asp Leu Gly Arg Asn Gly
565 570 575

Gly Arg Gly Gly Trp Ser Asp Asn Gly Cys Ser Val Lys Asp Arg Arg
580 585 590

Leu Asn Glu Thr Ile Cys Thr Cys Ser His Leu Thr Ser Phe Gly Val
595 600 605

Leu Leu Asp Leu Ser Arg Thr Ser Val Leu Pro Ala Gln Met Met Ala
610 615 620

Leu Thr Phe Ile Thr Tyr Ile Gly Cys Gly Leu Ser Ser Ile Phe Leu
625 630 635 640

Ser Val Thr Leu Val Thr Tyr Ile Ala Phe Glu Lys Ile Arg Arg Asp
645 650 655

Tyr Pro Ser Lys Ile Leu Ile Gln Leu Cys Ala Ala Leu Leu Leu Leu
660 665 670

Asn Leu Val Phe Leu Leu Asp Ser Trp Ile Ala Leu Tyr Lys Met Gln
675 680 685

Gly Leu Cys Ile Ser Val Ala Val Phe Leu His Tyr Phe Leu Leu Val
690 695 700

Ser Phe Thr Trp Met Gly Leu Glu Ala Phe His Met Tyr Leu Ala Leu
705 710 715 720

Val Lys Val Phe Asn Thr Tyr Ile Arg Lys Tyr Ile Leu Lys Phe Cys
725 730 735

Ile Val Gly Trp Gly Val Pro Ala Val Val Val Thr Ile Ile Leu Thr
740 745 750

Ile Ser Pro Asp Asn Tyr Gly Leu Gly Ser Tyr Gly Lys Phe Pro Asn
755 760 765

Gly Ser Pro Asp Asp Phe Cys Trp Ile Asn Asn Asn Ala Val Phe Tyr
770 775 780

Ile Thr Val Val Gly Tyr Phe Cys Val Ile Phe Leu Leu Asn Val Ser
785 790 795 800

Met Phe Ile Val Val Leu Val Gln Leu Cys Arg Ile Lys Lys Lys Lys
805 810 815

Gln Leu Gly Ala Gln Arg Lys Thr Ser Ile Gln Asp Leu Arg Ser Ile
820 825 830

Ala Gly Leu Thr Phe Leu Leu Gly Ile Thr Trp Gly Phe Ala Phe Phe
835 840 845

Ala Trp Gly Pro Val Asn Val Thr Phe Met Tyr Leu Phe Ala Ile Phe
850 855 860

Asn Thr Leu Gln Gly Phe Phe Ile Phe Ile Phe Tyr Cys Val Ala Lys
865 870 875 880

Glu Asn Val Arg Lys Gln Trp Arg Arg Tyr Leu Cys Cys Gly Lys Leu
885 890 895

Arg Leu Ala Glu Asn Ser Asp Trp Ser Lys Thr Ala Thr Asn Gly Leu
900 905 910

Lys Lys Gln Thr Val Asn Gln Gly Val Ser Ser Ser Ser Asn Ser Leu
915 920 925

Gln Ser Ser Ser Asn Ser Thr Asn Ser Thr Thr Leu Leu Val Asn Asn
930 935 940

Asp Cys Ser Val His Ala Ser Gly Asn Gly Asn Ala Ser Thr Glu Arg
945 950 955 960

Asn Gly Val Ser Phe Ser Val Gln Asn Gly Asp Val Cys Leu His Asp
965 970 975

Phe Thr Gly Lys Gln His Met Phe Asn Glu Lys Glu Asp Ser Cys Asn
980 985 990

Gly Lys Gly Arg Met Ala Leu Arg Arg Thr Ser Lys Arg Gly Ser Leu
995 1000 1005

His Phe Ile Glu Gln Met
1010

<210> 3
<211> 339
<212> DNA
<213> Mus sp.

<400> 3
gatgtgcagc ttcaggagtc gggacctggc ctggtaaaac cttctcagtc tctgtccctc 60
acctgcactg tcactggcta ctcaatcacc agtgattatg cctggaactg gatccggcag 120

tttccagggaa acaaactgga gtggctggc tacataagct tcaatgataa cactaactac 180
aacccatctc tcaaaaagtgc aatctctatc actcgagaca catccaagaa ccagttctc 240
ctgcagttga attctgtgac tactgaggac acagccacat attactgtac aaggagggtg 300
gactactggg gtcaaggaac ctcagtcacc gtctcctca 339

<210> 4
<211> 336
<212> DNA
<213> Mus sp.

<400> 4
gatgttgtga tgacccaaac tccactctcc ctgcctgtca gtcttgaga tcaagcctcc 60
atctcttgca gatctagtca gagccttgta cacagtaatg gaaacaacta tttacattgg 120
tatttgcaga agccaggcca gtctccaaag ctccgtatct acaaagttc caaccgattt 180
tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagattcac actcaagatc 240
agcagagtgg aggctgagga tctggagtt tatttctgct ctcaaagtac acatgttccg 300
tggacgttcg gtggaggcac caagctggaa atcaaa 336

<210> 5
<211> 360
<212> DNA
<213> Mus sp.

<400> 5
caggttactc tgaaagagtc tggccctggg atattgcagc cctcccagac cctcagtctg 60
acttggttctt tctctgggtt ttcactgagc acttctggtg tgggtgtgag ctggattcgt 120
cagccttcag gaaagggtct ggagtggctg gcacacattt actggatga tgataagcgc 180
tataaccat ccctgaagag ccggctcaca atctccaagg atacctccag aaaccaggta 240
ttcctaaga tcaccagtgt ggacactgca gatactgccatactactg tgctcgaaga 300
gtattcatta ttacggcctt tgactactgg ggccaaggca ccactctcac agtctcctca 360

<210> 6
<211> 321
<212> DNA
<213> Mus sp.

<400> 6
gatatccaga tgacacagac tacatcctcc ctgtctgcct ctctggaga cagagtcacc 60
atcagttgca gggcaagtca ggacattagc aattacttaa actggatca gcagaaacca 120
gatggaaactg ttaaactcct gatctactac acatcaaact tacactcagg agtcccata 180
aggttcagtg gcagtgggtc tggagcagat tattctctca ccattggcaa cctggagcaa 240
gaagatattg ccacttactt ttgccaacag ggtaatacgc ttccttggac gttcgggtgaa 300
ggcaccaagc tggaaatcaa a 321

<210>	7					
<211>	366					
<212>	DNA					
<213>	Mus sp.					
<400>	7					
caggtttctc	tgaaagagtc	tggccctggg	atattgcagc	cctcccaagac	cctcagtctg	60
acttgttctt	tctctgggtt	ttcactgagc	acttctggta	tgggtgtgag	ctggattcgt	120
cagccttcag	gaaagggtct	ggagtggctg	gcacacattt	actgggatga	tgacaagcgc	180
tataaccat	ccctgaagag	ccggctcaca	atctccaagg	atacctccag	caacctggta	240
ttcctaaga	tcaccagtgt	ggacactgca	gatactgcc	catactactg	tgctcgaagg	300
gaagtacgac	gtgattacta	tgctatggac	tactgggtc	aaggAACCTC	agtccaccgtc	360
tcctca						366
<210>	8					
<211>	324					
<212>	DNA					
<213>	Mus sp.					
<400>	8					
agtattgtga	tgacccagac	tcccaaattc	ctgcttgtct	cagcaggaga	caggattacc	60
atagcctgca	ggccagtca	gagtgtgagt	aatgatgtag	cttggtagca	acagaagcca	120
ggcgagtctc	ctaaactgct	gataaactat	acatccaatc	gctacactgg	agtccctgat	180
cgcttcactg	gcagtggata	tgggacggat	ttcactttca	ccatcagcac	tgtgcaggct	240
gaagacctgg	cagtttattt	ctgtcagcag	gcttatagct	ctccgtggac	gttcggtgga	300
ggcaccaagc	tggaaatcaa	acgg				324
<210>	9					
<211>	339					
<212>	DNA					
<213>	Mus sp.					
<400>	9					
gatgtgcagc	ttcaggagtc	gggacctggc	ctggtaaac	cttctcagtc	tctgtccctc	60
acctgcactg	tcactggcta	ctcaatcacc	agtgattatg	cctggactg	gatccggcag	120
tttccagggaa	acaaaactgga	gtggatggc	tacataagct	acagtgatta	cactagctac	180
aacccatctc	tcaaaagtgc	aatctctatc	actcgagaca	catccaagaa	ccagttcttc	240
ctgcagttga	attctgtgac	tactgaggac	acagccacat	attactgtgc	aagaagggtg	300
gactactggg	gtcaaggaac	ctcagtcacc	gtctcctca			339
<210>	10					
<211>	336					
<212>	DNA					

<213> Mus sp.

<400> 10
gatgttgtga tgacccaaac tccactctcc ctgcctgtca gtcttgaga tcaagcctcc 60
atctcttgca gatctagtca gagccttgcata cacagtaatg gaaacaccta tttacattgg 120
tacctgcaga agccaggcca gtctccaaag ctccctgatct acaaagttc caaccgattt 180
tctggggtcc cagacagggtt cagtggcagt ggatcaggga cagatttcac actcaagatc 240
agcagagtg 300
aggctgagga tctggaggtt tatttctgct ctcaaagtac acatgttccg
tggacgttgc 336
gtggaggcac cacgctggaa atcaaa

<210> 11
<211> 339
<212> DNA
<213> Mus sp.

<400> 11
gatgtgcagc ttcaggagtc gggacctggc ctggtggaaac cttctcagtc tctgtccctc 60
acctgcactg tcactggcta ctcaatcacc agtgattatg cctggaactg gatccggcag 120
tttccaggaa acaaactgga gtggatgggc tacataagct tcagtgtatag cactagctac 180
aacccatctc tcaaaagtgc aatctctatc actcgagaca catccaagaa ccagttcttc 240
ctgcagttga attctgtgac tactgaggac acagccacat attactgtgc aagaaggggg 300
gactactggg gtcaaggaac ctcagtcacc gtctcctca 339

<210> 12
<211> 336
<212> DNA
<213> Mus sp.

<400> 12
gatgttgtga tgacccaaac tccactctcc ctgcctgtca gtcttgaga tcaagcctcc 60
atctcttgca gatctagtca gagccttgcata cacagtaatg gaaacaccta tttacattgg 120
tacctgcaga agccaggcca gtctccaaag ctccctgatct acaaagttc caaccgattt 180
tctggggtcc cagacagggtt cagtggcagt ggatcaggga cagatttcac actcaagatc 240
agcagagtg 300
aggctgagga tctggaggtt tatttctgct ctcaaagtac acatgttccg
tggacgttgc 336
gtggaggcac caagctggaa atcaaa

<210> 13
<211> 113
<212> PRT
<213> Mus sp.

<400> 13

Asp Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
1 5 10 15

Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser Ile Thr Ser Asp
20 25 30

Tyr Ala Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp
35 40 45

Leu Gly Tyr Ile Ser Phe Asn Asp Asn Thr Asn Tyr Asn Pro Ser Leu
50 55 60

Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe Phe
65 70 75 80

Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys
85 90 95

Thr Arg Arg Val Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser
100 105 110

Ser

<210> 14
<211> 112
<212> PRT
<213> Mus sp.

<400> 14

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
1 5 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
20 25 30

Asn Gly Asn Asn Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser
85 90 95

Thr His Val Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> 15
<211> 120
<212> PRT
<213> Mus sp.

<400> 15

Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln
1 5 10 15

Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30

Gly Val Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu
35 40 45

Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser
50 55 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Arg Asn Gln Val
65 70 75 80

Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr
85 90 95

Cys Ala Arg Arg Val Phe Ile Ile Thr Ala Phe Asp Tyr Trp Gly Gln
100 105 110

Gly Thr Thr Leu Thr Val Ser Ser
115 120

<210> 16
<211> 107
<212> PRT
<213> Mus sp.

<400> 16

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile
35 40 45

Tyr Tyr Thr Ser Asn Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Ala Asp Tyr Ser Leu Thr Ile Gly Asn Leu Glu Gln
65 70 75 80

Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 17
<211> 122
<212> PRT
<213> Mus sp.

<400> 17

Gln Val Ser Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln
1 5 10 15

Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30

Gly Met Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu
35 40 45

Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser
50 55 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Ser Asn Leu Val
65 70 75 80

Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr
85 90 95

Cys Ala Arg Arg Glu Val Arg Arg Asp Tyr Tyr Ala Met Asp Tyr Trp
100 105 110

Gly Gln Gly Thr Ser Val Thr Val Ser Ser
115 120

<210> 18
<211> 107
<212> PRT
<213> Mus sp.

<400> 18

Ser Ile Val Met Thr Gln Thr Pro Lys Phe Leu Leu Val Ser Ala Gly
1 5 10 15

Asp Arg Ile Thr Ile Ala Cys Arg Ala Ser Gln Ser Val Ser Asn Asp
20 25 30

val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
35 40 45

Asn Tyr Thr Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

Ser Gly Tyr Gly Thr Asp Phe Thr Phe Thr Ile Ser Thr Val Gln Ala
65 70 75 80

Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln Ala Tyr Ser Ser Pro Trp
85 90 95

Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 19
<211> 113
<212> PRT
<213> Mus sp.

<400> 19

Asp Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
1 5 10 15

Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser Ile Thr Ser Asp
20 25 30

Tyr Ala Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp
35 40 45

Met Gly Tyr Ile Ser Tyr Ser Asp Tyr Thr Ser Tyr Asn Pro Ser Leu
50 55 60

Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe Phe
65 70 75 80

Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys
85 90 95

Ala Arg Arg Val Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser
100 105 110

Ser

<210> 20
<211> 112
<212> PRT
<213> Mus sp.

<400> 20

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
1 5 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
20 25 30

Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser
85 90 95

Thr His Val Pro Trp Thr Phe Gly Gly Thr Thr Leu Glu Ile Lys
100 105 110

<210> 21

<211> 113

<212> PRT

<213> Mus sp.

<400> 21

Asp Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
1 5 10 15

Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser Ile Thr Ser Asp
20 25 30

Tyr Ala Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp
35 40 45

Met Gly Tyr Ile Ser Phe Ser Asp Ser Thr Ser Tyr Asn Pro Ser Leu
50 55 60

Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe Phe
65 70 75 80

Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys
85 90 95

Ala Arg Arg Gly Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser
100 105 110

Ser

<210> 22
<211> 112
<212> PRT
<213> Mus sp.

<400> 22

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
1 5 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
20 25 30

Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser
85 90 95

Thr His Leu Pro Trp Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> 23
<211> 21
<212> RNA
<213> Artificial

<220>
<223> siRNA duplex with 3' dTdT overhang

<400> 23
cagacacggc cacgugugatt

21

<210> 24
<211> 21
<212> RNA
<213> Artificial

<220>
<223> siRNA duplex with 3' dTdT overhang

<400> 24
ucacacgugg ccgugucugtt

21

<210> 25	
<211> 21	
<212> RNA	
<213> Artificial	
<220>	
<223> siRNA duplex with 3' dTdT overhang	
<400> 25	
gcuagcgccc auucaauagtt	21
<210> 26	
<211> 21	
<212> RNA	
<213> Artificial	
<220>	
<223> siRNA duplex with 3' dTdT overhang	
<400> 26	
cuauugaaug ggcgcuagctt	21
<210> 27	
<211> 21	
<212> RNA	
<213> Artificial	
<220>	
<223> siRNA duplex with 3' dTdT overhang	
<400> 27	
gcuuuacuccc uucaaacgatt	21
<210> 28	
<211> 21	
<212> RNA	
<213> Artificial	
<220>	
<223> siRNA duplex with 3' dTdT overhang	
<400> 28	
ucguuugaag ggaguaagctt	21
<210> 29	
<211> 21	
<212> RNA	
<213> Artificial	
<220>	
<223> siRNA duplex with 3' dTdT overhang	
<400> 29	
ccccagagaa auaucugcatt	21
<210> 30	
<211> 21	
<212> RNA	
<213> Artificial	

<220>
<223> siRNA duplex with 3' dTdT overhang
<400> 30
ugcagauauu ucucuggggtt

21