AG ÜBER DIE INTERNATIONALE ZUSAMMENAKBEIT AUF DEM GEBIET DES (12) NACH DEM VE PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 10. Juni 2004 (10.06.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/048769 A1

(51) Internationale Patentklassifikation7: F02M 47/02. 59/46

PCT/DE2003/001763

(22) Internationales Anmeldedatum:

(21) Internationales Aktenzeichen:

30. Mai 2003 (30.05.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 102 54 749.1 23. November 2002 (23.11.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BOECKING, Friedrich [DE/DE]; Kahlhieb 34, 70499 Stuttgart (DE).
- (74) Gemeinsamer Vertreter: ROBERT BOSCH GMBH: Postfach 30 02 20, 70442 Stuttgart (DE).
- (81) Bestimmungsstaaten (national): JP, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

[Fortsetzung auf der nächsten Seite]

(54) Title: FUEL INJECTION DEVICE WITH A 3-WAY CONTROL VALVE FOR CONFIGURING THE INJECTION PROCESS

(54) Bezeichnung: KRAFTSTOFFEINSPRITZVORRICHTUNG MIT EINEM 3/3-WEGE-STEUERVENTIL ZUR EINSPRITZ-VERLAUFSFORMUNG

(57) Abstract: The invention relates to a fuel injection device (1) for internal combustion engines, comprising a control valve (6) arranged between a high and a low pressure sides (5, 7), said control valve opening or blocking the connection of a control chamber (2) to the low pressure side (7). Said device also comprises a discharge throttle (8) arranged between the control valve (6) and the low pressure side (7). The control valve (6) has a first position in which the connection of the control chamber (2) to the low pressure side (7) is blocked, a second position in which the control chamber (2) is connected to the low pressure side (7) by means of a first discharge channel (14) and a third position in which the control chamber (2) is connected to the low pressure side (7) by means of a second discharge channel (16) having a discharge throttle

(57) Zusammenfassung: Bei einer Kraftstoffeinspritzvorrichtung (1) für Brennkraftmaschinen mit einem zwischen einer Hoch- und einer Niederdruckseite (5, 7) angeordneten Steuerventil (6), das die Verbindung eines Steuerraums (2) zur Niederdruckseite (7) öffnet oder sperrt, und mit einer zwischen Steuerventil (6) und Niederdruckseite (7) angeordneten Ablaufdrossel (8) weist das Steuerventil (6) eine erste Ventilposition, in der die Verbindung des Steuerraums (2) zur Niederdruckseite (7) gesperrt ist, eine zweite Ventilposition, in der der Steuerraum (2) mit der Niederdruckseite (7) über einen ersten Ablaufkanal (14) verbunden ist, und eine dritte Ventilposition, in

[Fortsetzung auf der nächsten Seite]

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

10

15

20

25

Kraftstoffeinspritzvorrichtung mit einem 3/3-Wege-Steuerventil zur Einspritzverlaufsformung

Stand der Technik

30

Die Erfindung geht aus von einer Kraftstoffeinspritzvorrichtung nach der Gattung des Patentanspruchs 1. Bei solch einer z.B. durch die DE 100 39 215 A1 bekannten Kraftstoffeinspritzvorrichtung wird die Düsennadel eines Kraftstoffeinspritzventils abhängig von dem in einem Steuerraum herrschenden Druck geöffnet oder

15

25

30

geschlossen. Der permanent an die Hochdruckseite angeschlossene Steuerraum kann mittels eines als Doppelsitzventil ausgebildeten 2/2-Wege-Steuerventils mit der Niederdruckseite verbunden und dadurch druckentlastet werden. Bei dieser Kraftstoffeinspritzvorrichtung ist eine Einspritzverlaufsformung allerdings nicht möglich.

Vorteile der Erfindung

Die erfindungsgemäße Kraftstoffeinspritzvorrichtung mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, dass der im Steuerraum herrschende Druck durch Aktivieren oder Deaktivieren der Ablaufdrossel unterschiedlich schnell abgebaut wird und daher eine Einspritzverlaufsformung durchgeführt werden kann.

Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.

20 Zeichnung

Zwei bevorzugte Ausführungsbeispiele der erfindungsgemäßen Kraftstoffeinspritzvorrichtung mit einem als Doppelsitzventil ausgestalteten 3/3-Wege-Steuerventil sind in der Zeichnung schematisch dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

- Fig. 1 die erfindungsgemäße Kraftstoffeinspritzvorrichtung mit einem den Druck in einem Steuerraum steuernden Doppelsitzventil in seiner oberen Ventilposition;
- Fig. 2 das Doppelsitzventil der Fig. 1 in seiner mittleren Ventilposition;
- Fig. 3 das Doppelsitzventil der Fig. 1 in seiner unteren Ventilposition;

Fig. 4 die Kraftstoffeinspritzvorrichtung der Fig. 1 mit einer zusätzlichen Zulaufdrossel.

5 Beschreibung der Ausführungsbeispiele

Die in **Fig. 1** gezeigte erfindungsgemäße Kraftstoffeinspritzvorrichtung 1 wird üblicherweise bei einer Brennkraftmaschine mit mehreren Zylindern verwendet, wobei jedem dieser Zylinder ein Kraftstoffeinspritzventil (Injektor) zugeordnet ist. Dieser Injektor weist in an sich bekannter Weise eine in einen Zylinderbrennraum der Brennkraftmaschine ragende, hier nicht näher dargestellte Einspritzdüse sowie eine die Einspritzdüse abhängig vom Druck in einem Steuerraum 2 öffnende und schließende, hier nur zu einem kleinen Teil angedeutete Düsennadel 3 auf.

Der Steuerraum 2 ist über eine Zulaufdrossel 4 dauerhaft an eine HochdruckZulaufleitung (Hochdruckseite) 5 angeschlossen. Zum Steuern des
Einspritzvorgangs ist ein 3/3-Wege-Steuerventil 6 in Form eines Doppelsitzventils
vorgesehen, das die Verbindung des Steuerraums 2 mit einer NiederdruckAblaufleitung (Niederdruckseite) 7 öffnet oder sperrt. Die Hochdruck-Zulaufleitung 5
kann mit einem nicht gezeigten Hochdruckspeicher (Common Rail) und die
Niederdruck-Ablaufleitung 7 mit Lecköl verbunden sein. In der NiederdruckAblaufleitung 7 ist eine Ablaufdrossel 8 angeordnet.

Das Steuerventil 6 hat einen als Ventilkugel ausgebildeten Ventilkörper 9, der in
einer Ventilkammer 10 zwischen zwei koaxialen ringförmigen Ventilsitzen 11, 12
mittels eines z.B. piezoelektrischen Stellantriebs 13 axial verstellbar ist. Der in Fig. 1
untere Ventilsitz 11 ist zwischen einem ersten Ablaufkanal 14 des Steuerraums 2
und der Ventilkammer 9 und der obere Ventilsitz 12 zwischen Ventilkammer 9 und
Niederdruck-Ablaufleitung 7 vorgesehen. Die Ventilkammer 9 ist über einen eine
Ablaufdrossel 15 aufweisenden zweiten Ablaufkanal 16 dauerhaft an den
Steuerraum 2 angeschlossen, wobei die hochdruckseitige Ablaufdrossel 15 einen höheren Drosselwiderstand, z.B. eine kleinere Drosselöffnung, als die
niederdruckseitige Ablaufdrossel 8 hat. Mittels des Stellantriebs 13 kann der
Ventilkörper 9 in eine obere, mittlere oder untere Ventilposition verschoben werden.

In der in Fig. 1 gezeigten oberen Ventilposition des Ventilkörpers 9 ist die Ventilöffnung des oberen Ventilsitzes 12 durch den Ventilkörper 9 verschlossen und die Ventilöffnung des unteren Ventilsitzes 11 geöffnet, so dass die Verbindung des Steuerraums 2 zur Niederdruckseite gesperrt ist. Der im Steuerraum 2 herrschende Hochdruck greift an einer in Schließrichtung der Düsennadel 3 wirkenden Steuerfläche 17 der Düsennadel 3 an, so dass die Düsennadel 3 bzw. das Kraftstoffeinspritzventil geschlossen sind.

- In der in Fig. 2 gezeigten mittleren Ventilposition befindet sich der Ventilkörper 9 zwischen beiden Ventilsitzen 11, 12, so dass die Ventilöffnungen der beiden Ventilsitze 11, 12 geöffnet sind. Der Steuerraums 2 ist über beide Ablaufkanäle 14, 16 mit der Niederdruck-Ablaufleitung 7 verbunden, so dass der im Steuerraum 2 herrschende Druck abgesenkt wird und die Düsennadel 3 bzw. das
- 15 Kraftstoffeinspritzventil öffnen. Wegen der Ablaufdrossel 15 erfolgt dabei der Druckabbau vom Steuerraum 2 in die Ventilkammer 10 hauptsächlich über den ersten Entlastungskanal 14, so dass die Druckabbaugeschwindigkeit primär durch die niederdruckseitige Ablaufdrossel 8 bestimmt ist.
- In seiner in **Fig. 3** gezeigten unteren Ventilposition verschließt der Ventilkörpers 9 die Ventilöffnung des unteren Ventilsitzes 11, wodurch der Druckabbau vom Steuerraum 2 in die Ventilkammer 10 allein über den zweiten Entlastungskanal 16 erfolgt. Die Druckabbaugeschwindigkeit ist wegen ihres höheren Drosselwiderstands primär durch die hochniederdruckseitige Ablaufdrossel 15 bestimmt.

25

5

Da der im Steuerraum 2 herrschende Druck in der mittleren und der unteren Ventilposition des Ventilkörpers 9 unterschiedlich schnell abgebaut wird, kann durch geeignete Kombination der beiden Ablaufdrosseln 8, 15 und der Zulaufdrossel 4 eine gewünschte Einspritzverlaufsformung mittels des Steuerventils 6 eingestellt werden.

30

Von der Kraftstoffeinspritzvorrichtung der Fig. 1 unterscheidet sich die in Fig. 4 gezeigte Variante dadurch, dass der erste Ablaufkanalkanal 14 über eine weitere Zulaufdrossel 18 direkt an die Zulaufleitung 5 angeschlossen ist. In der unteren und mittleren Ventilposition des Ventilkörpers 9 wirkt diese Zulaufdrossel 18 als Bypass.

In der unteren Ventilposition des Ventilkörpers 9 wirkt die Zulaufdrossel 18 in Reihe zur hochdruckseitigen Ablaufdrossel 15, die dadurch zu den beiden Zulaufdrosseln 4, 18 sehr fein abgestimmt werden kann. Beim Übergang des Ventilkörpers 9 in seine obere Ventilposition bewirkt die Zulaufdrossel 18, da der Druck im ersten Entlastungskanal 14 langsamer abgebaut wird, eine zusätzliche Schließkraft in Richtung auf die erste Ventilposition, so dass das Steuerventil 6 schneller schließt.

10

15

20

25

30

Patentansprüche

6

- Kraftstoffeinspritzvorrichtung (1) für Brennkraftmaschinen, mit einem zwischen einer Hoch- und einer Niederdruckseite (5, 7) angeordneten Steuerventil (6), das die Verbindung eines Steuerraums (2) zur Niederdruckseite (7) öffnet oder sperrt, und mit einer zwischen Steuerventil (6) und Niederdruckseite (7) angeordneten Ablaufdrossel (8), dadurch gekennzeichnet, dass das Steuerventil (6) eine erste Ventilposition, in der die Verbindung des Steuerraums (2) zur Niederdruckseite (7) gesperrt ist, eine zweite Ventilposition, in der der Steuerraum (2) mit der Niederdruckseite (7) über einen ersten Ablaufkanal (14) verbunden ist, und eine dritte Ventilposition, in der der Steuerraum (2) mit der Niederdruckseite (7) über einen eine Ablaufdrossel (15) aufweisenden zweiten Ablaufkanal (16) verbunden ist, aufweist.
 - Kraftstoffeinspritzvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Ablaufdrossel (15) des zweiten Ablaufkanals (16) einen höheren Drosselwiderstand als die niederdruckseitige Ablaufdrossel (8) hat.
 - Kraftstoffeinspritzvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in der zweiten Ventilposition der Steuerraum (2) mit der Niederdruckseite (7) auch über den zweiten Entlastungskanal (16) verbunden ist.
 - 4. Kraftstoffeinspritzvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Steuerventil (6) als Doppelsitzventil mit einem in einer Ventilkammer (10) zwischen zwei Ventilsitzen (11, 12) axial verstellbaren Ventilkörper (9) ausgebildet ist, wobei der eine Ventilsitz (11)

mit dem ersten Ablaufkanal (14), der andere Ventilsitz (12) mit der Niederdruckseite (7) und die Ventilkammer (10) mit dem zweiten Ablaufkanal (16) verbunden sind.

- 5. Kraftstoffeinspritzvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Steuerraum (2) über eine Zulaufdrossel (4), die einen kleineren Drosselwiderstand als die Ablaufdrossel (15) des zweiten Ablaufkanals (16) hat, an die Hochdruckseite (5) angeschlossen ist.
 - 6. Kraftstoffeinspritzvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Ablaufkanalkanal (14) über eine Zulaufdrossel (18) an die Hochdruckseite (5) angeschlossen ist.
- 7. Kraftstoffeinspritzvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilkörper (9) des Steuerventils (6) mittels eines piezoelektrischen Stellantriebs (13) verstellbar ist.

Fig. 1

Fig. 2

Fig. 3

Fig. 4