21-51-04

Q: (a) K mean

(b) PCA (c) Bayes

@Iferate |

Assign every data point to its closest cluster conter, according to Euclidean distance

		5	7	10	12
3	Cı	2	4	7	9
13	Cı	8	6	3	1
A ssign		Cı	Cı	CZ	CZ

Update the cluster center.

$$C_2: \frac{(0+12)}{2} = []$$

3 Iteration 2

		5	7	10	12
6	Cı	١	1	4	6
[[Cı	6	4	١	1
A ssign		Cı	Cı	CZ	CZ

@ Stopping: no points' assignments change

- (-1, -1) (0, 0) (1,1)
- 3 (ovariance matricx

$$\sigma_{11}^{2} = \frac{1}{3} \times \left[(-1)^{2} + 0^{2} + 1^{2} \right] = \frac{2}{3}$$

$$\sigma_{22}^{2} = \frac{2}{3}$$

$$\sigma_{12}^{2} = \frac{2}{3} = \sigma_{21}^{2}$$

$$\sigma_{12}^{2} = \frac{2}{3} = \frac{2}{3}$$

@ Eigen - de com position

$$\lambda^2 - \frac{4}{3}\lambda + \frac{4}{9} = \frac{4}{9}$$

$$\lambda(\lambda - \frac{4}{3}) = 0$$

$$\lambda_1 = \frac{4}{3}$$
 $\lambda_2 = 0$

when
$$\lambda_1 = \frac{4}{3}$$

$$(\frac{4}{3} \mathbf{1} - \mathbf{\Sigma}) \propto = \begin{bmatrix} \frac{4}{3} - \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{4}{3} - \frac{2}{3} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$$

$$= 0$$

$$\begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{bmatrix}) - 1 \longrightarrow \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ 0 & 0 \end{bmatrix}^{\frac{2}{3}} \xrightarrow{} \begin{bmatrix} \frac{2}{3} \\ 0 & 6 \end{bmatrix}$$

[et
$$\chi_2 = k$$

 $\chi_1 - \chi_2 = 0 => \chi_1 = \chi_2 = k$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} k \\ k \end{bmatrix} = k \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

So eigenvector
$$V_1 = k \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

unit
$$\sim V_1 = \left[\frac{1}{J_{1+1}} \right] = \left[\frac{\bar{E}}{2} \right]$$

(ii) variance ofter 1-D projection
$$\lambda_1 = \frac{4}{3} = 1.3333$$

(c) (i)
$$p(E) = \frac{4}{6x6}$$

$$= \frac{1}{9}$$
14
23
32
41

(ii)
$$3J - 11 = 24$$

 $17 + 14 - 24 = 7$
 $P(both) = \frac{7}{35} = 0.2$

p(could | positive | could) xp(could) +p(positive | 200010) p(70000)

$$= \frac{[\times 0.00]}{[\times 0.001 + 0.005 \times 0.999]}$$

$$= 0.67$$