1

Assignment 16

Rubeena Aafreen

Download the latex-tikz codes from

https://github.com/rubeenaafreen20/EE5609/tree/master/Assignment16

1 Problem

True or False? If a diagonalizable operator has only the characteristic values 0 and 1, it is a projection.

2 **Definitions**

Diagonalizable Operator	For a linear operator $T \colon V \longrightarrow V$, T is a diagonalizable operator if \exists some basis for V such that the matrix representing T is a diagonal matrix i.e. $T(X) = AX,$ $\Longrightarrow A$ is a diagonalizable matrix
Properties of Projection	If $n \times n$ matrix A is projection matrix, then $\mathbf{A}^2 = \mathbf{A}$

TABLE 1: Definitions

3 Solution

Diagonalizability	Let A be $n \times n$ matrix. Given that A is diagonalizable, it can be expressed as, $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ $\implies \mathbf{A} \mathbf{P} = \mathbf{P} \mathbf{\Lambda} \qquad \dots (1)$	
	where, $\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$	
Eigen values	Given that A has eigen values 0 and 1 \implies A has diagonal entries of 0s and 1s only	
	$\implies \lambda_i = 0 \text{ or } 1, \qquad i = 0, 1, \dots, n$ $\implies \lambda_i^2 = 0 \text{ or } 1$ $\implies \lambda_i^2 = \lambda_i$	
	$\Rightarrow \mathbf{\Lambda}^2 = \mathbf{\Lambda}\mathbf{\Lambda} = \begin{pmatrix} \lambda_1^2 & 0 & \dots & 0 \\ 0 & \lambda_2^2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n^2 \end{pmatrix} = \mathbf{\Lambda} \qquad \dots (2)$	
Projection	$\mathbf{A} = \mathbf{P}\Lambda\mathbf{P}^{-1}$ $\Rightarrow \mathbf{A}\mathbf{A} = \mathbf{A}\mathbf{P}\Lambda\mathbf{P}^{-1}$ $\Rightarrow \mathbf{A}^{2} = (\mathbf{A}\mathbf{P})\Lambda\mathbf{P}^{-1}$	
	From (1), $\Rightarrow \mathbf{A}^{2} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ $= \mathbf{P} \mathbf{\Lambda}^{2} \mathbf{P}^{-1}$ From (2), $\Rightarrow \mathbf{A}^{2} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ $= \mathbf{A}$	
	Therefore, $\mathbf{A}^2 = \mathbf{A}$	
	Hence, A is a projection matrix	
Example	Consider a 2 × 2 matrix	
	$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$	

	Characteristic polynomial, $p(x) = x\mathbf{I} - \mathbf{A} $ $= \begin{vmatrix} x & -1 \\ 0 & x - 1 \end{vmatrix}$ $= x(x - 1)$
	$\implies \lambda_1 = 0, \lambda_2 = 1$
	Also, A is diagonalizable, $\mathbf{A} = \mathbf{PJP}^{-1}$
	where $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \mathbf{J} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
	Now we check if A is projection matrix.
	$\mathbf{A}^{2} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ $= \mathbf{A}$ Therefore,
	$\mathbf{A}^2 = \mathbf{A}$
	Hence, if A is diagonalizable and has eigen values 0 and 1, then A is a projection matrix.
Conclusion	Given statement is True

TABLE 2: Checking for projection matrix