Lecture 5 Quiz Solution

May 2020

Q1:

Question 1

The Figure shows a transistor circuit with V_{CC} = 10 V, R_1 = 5K Ω , R_2 = $5K\Omega$, $R_E = 4.3K\Omega$, and $\beta = 100$.

Compute

a. I_{CQ}

 $b.\ V_{\text{CEQ}}$

 $c.\ I_{R2}.$

Ans

$$V_{th} = V_{CC} \frac{R_1}{R_1 + R_2} = 5 V$$

$$R_{th} = R_1 || R_2 = 2500 \,\Omega$$

$$I_{EQ} = \frac{V_{th} - V_{BE}}{R_E + \frac{R_{th}}{\beta + 1}} = 0.9943 \, mA$$

a)
$$I_{CQ} = \alpha I_{EQ} = \frac{100}{101} * 0.9943 = 0.9845 \, mA$$

a)
$$I_{CQ}=\alpha I_{EQ}=\frac{100}{101}*0.9943=0.9845~mA$$
 b) $V_{CEQ}=V_{CQ}-V_{EQ}=V_{CC}-I_{E}R_{E}=10-0.9943*4.3=5.725~V$

c)
$$V_B = V_{EQ} + 0.7 = I_{EQ}R_E + 0.7 = 4.97V$$

 $I_R = \frac{V_{CC} - V_B}{R_2} = 1mA$

Q2

Question 2

The transistor circuit shows resistance values and voltages in the Figure.

Compute

 $a.\ I_{R1}$

 $b.\ V_{\text{EQ}}$

c. V_{CEQ}

 $d.\ I_{\mathbb{R}3}$

ลา	n	S	
u		v	

a.
$$I_{R1} = \frac{5-4}{R1} = 0.5mA$$

b.
$$V_{EQ} = -5 + I_{R1}R_2 = -1V$$

c.
$$V_{CEQ} = V_{CQ} - V_{EQ} = 4 - (-1) = 5V$$

d.
$$I_{R3} = \frac{V_C - V_B}{R_3} = \frac{4 - (0.7 + V_{EQ})}{R_3} = 43 \mu A$$

Q3

Question 3

The circuit shown in the Figure consists of components and voltages as follows:

 V_{CC} = 10V, V_{EE} = 5V, R_{C} = 5K, R_{B} = 10K and I = 1mA. Given that all transistors are identical with β = 100 and V_{BE} = 0.7V.

a. What is the name of the circuit consisting of Q1 and Q2.

- b. Compute R.
- c. Compute V_{E3}.
- d. Compute V_{CE3}.

ans

a. Current source

b.
$$R = \frac{V_{CC} + V_{EE} - 0.7}{I_{ref}} = \frac{14.3}{1mA} = 14.3k\Omega$$

c.
$$I_{B3} = \frac{I}{\beta + 1} = 9.9 \mu A \rightarrow V_{B3} = -I_{B3} R_B \approx -0.1 V \rightarrow V_{E3} = V_{B3} - 0.7 \approx -0.8 V$$

d.
$$I_{C3} = \frac{\beta}{\beta+1}I \rightarrow V_{C3} = V_{CC} - I_{C3}R_C = 5.05V \rightarrow V_{CE3} = V_{C3} - V_{E3} = 5.85V$$