EHB 211E Basics of Electrical Circuits

Asst. Prof. Onur Kurt

Operational Amplifiers

Introduction: Operational Amplifiers

- What is an operational amplifier (op amp)?
 - □ Active element designed to performed mathematical operations: addition, subtraction, multiplication, division, differentiation, and integration.
 - □ Sum, amplify, integrate, or differentiate a signal.
 - □ Versatile circuit building block.
 - □ Electronic unit that behaves like a voltage-controlled voltage source (VCVS)
- Operational amplifiers (op amps) are popular in practical circuit design:
 - □ Versatile
 - □ Inexpensive
 - □ Easy to use
- Electronic device consisting of a complex arrangement of resistors, transistors, capacitors, and diodes.
- Only consider external characteristics of op amps in this course.

HNICAL UNIVERSITY

- Consist of two inputs and one output
- Connect to two power supplies, positive (V^+) and negative (V^-) .
- Minus(-): inverting input.
- Positive (+): noninverting input
- Inputs applied to noninverting terminal appears with same polarity at the output
- Input applied to inverting terminal appears inverted at the output.

Typical op amp package

Mark Dierker/McGraw-Hill Education

Top view of op amp

Circuit symbol of op amp

- The op amp is powered by a voltage supply.
- Apply KCL: $\sum i_{in} = \sum i_{out}$

$$i_0 = i_1 + i_2 + i_+ + i_-$$

- v_1 : inverting terminal
- v_2 : noninverting terminal
- R_i : Thevenin equivalent resistance seen at input
- R_0 : Thevenin equivalent resistance seen at output
- The differential input voltage v_d is given by

$$v_d = v_2 - v_1$$

The output of the operational amplifier is given by

$$v_0 = Av_d = A(v_2 - v_1)$$

where A: open loop voltage gain (no external feedback from output to input)

TABLE 5.1

Typical ranges for op amp parameters.

Parameter	Typical range	Ideal values
Open-loop gain, A	10 ⁵ to 10 ⁸	∞
Input resistance, R_i	$10^{5} \text{ to } 10^{13} \Omega$	$\infty\Omega$
Output resistance, R_o	10 to 100Ω	$\Omega \Omega$
Supply voltage, V_{CC}	5 to 24 V	

- The magnitude of v_0 cannot exceed power supply voltage.
- The output voltage is dependent on and is limited by the power supply.

$$-V_{CC} \le v_0 \le V_{CC}$$

- Op amp in three modes as follows:
 - \Box Positive saturation: $v_0 = V_{CC}$
 - □ Linear region: $-V_{CC} \le v_0 = AV_d \le V_{CC}$
 - \Box Negative saturation: $v_0 = -V_{CC}$

• Output voltage v_0 is also dependent on differential input v_d

A 741-op amp has an open-loop voltage gain of 2×10^5 , input resistance of $2\,M\Omega$, and output resistance of $50\,\Omega$. The op amp is used in the circuit shown below. Find the closed-loop gain $\frac{v_0}{v_s}$. Determine current i when $v_s=2\,V$.

Solution

NICON UNIVERSITY 1773

- Apply nodal analysis to equivalent circuit.
- Apply KCL to node 1: $\sum i_{in} = \sum i_{out}$

$$\frac{v_s - v_1}{10 \times 10^3} = \frac{v_1}{2000 \times 10^3} + \frac{v_1 - v_o}{20 \times 10^3}$$
$$200v_s = 301v_1 - 100v_o$$
$$2v_s \approx 3v_1 - v_o \implies v_1 = \frac{2v_s + v_o}{3}$$

• Apply KCL to node 0: $\frac{v_1 - v_o}{20 \times 10^3} = \frac{v_o - Av_d}{50}$

$$v_d = -v_1$$
 and $A = 200,000$

$$v_1 - v_o = 400(v_o + 200,000v_1)$$

$$0 \approx 26,667,067v_o + 53,333,333v_s \Rightarrow \frac{v_o}{v_s} = -1.9999699$$
When $v_s = 2$ V, $i = \frac{v_1 - v_o}{20 \times 10^3} = 0.19999$ mA

Equivalent circuit

• This is closed-loop gain because the $20~k\Omega$ feedback resistor closes the loop between the output and input terminals

Recall:

Current flows from higher potential (+) to lower potential (-)

Ideal Op Amp

- An ideal Op amp is ideal if it has the following characteristics:
 - □ Infinite open-loop gain, A≃ ∞
 - □ Infinite input resistance, $R_i \simeq \infty$
 - \square Zero output resistance, $R_0 \simeq 0$
- An ideal op amp is an amplifier with infinite open-loop gain, infinite input resistance, and zero output resistance.
- Two important characteristics of the ideal op amp are:
 - The currents into both input terminals are zero $i_1=0$, $i_2=0$
 - ➤ The voltage across the input terminals is equal to zero

$$v_d = v_2 - v_1 = 0 \Rightarrow v_1 = v_2$$

Determine the closed-loop gain and current i_0 when $v_s=1\,V$ in the circuit shown below. Assume the op amp is ideal.

Solution:

- Input currents are zero
- Two inputs of op amp have the same voltages $v_2=v_{\rm S}$
- Since $v_1 = v_2$, $v_1 = v_2 = v_s$
- Since $i_1 = 0$ (no current flow into amp), 40Ω series with 5Ω .
- Using voltage division:

$$v_1 = \frac{5}{5+40}v_o = \frac{v_o}{9}$$
 $v_s = \frac{v_o}{9} \Rightarrow \frac{v_o}{v_s} = 9$

• Apply KCL to node O:

$$i_o = \frac{v_o}{40 + 5} + \frac{v_o}{20} \text{mA}$$

when
$$v_s = 1 \text{ V}$$
, $v_o = 9 \text{ V}$.
 $i_o = 0.2 + 0.45 = 0.65 \text{ mA}$

Inverting Amplifier

- Inverting amplifier reserves the polarity of the input signal while amplifying it.
- Input v_i is connected to the inverting terminal through R_1 , and feedback resistor R_f is connected between the inverting input and output.
- Noninverting input is grounded.
- Apply KCL at node 1: $i_1 = i_2$ (no current flows into amp)

$$i_1 = \frac{v_i - v_1}{R_1} \qquad i_2 = \frac{v_1 - v_0}{R_f}$$

$$\frac{v_i - v_1}{R_1} = \frac{v_1 - v_0}{R_f} \qquad v_1 = v_2 = 0$$

$$\frac{v_i}{R_1} = -\frac{v_0}{R_f} \Rightarrow v_0 = -\frac{R_f}{R_1} v_i \quad \begin{array}{l} \text{Provide negative} \\ \text{output voltage} \end{array}$$

$$A_v = \frac{v_0}{v_i} = -\frac{R_f}{R_1}$$
 A_v : voltage gain

Gain depends only on the external elements connected to op amp

Inverting Amplifier

For the op amp shown below, if $v_i=0.5~V$, calculate a-) the output voltage v_0 , and b-) the current in the $10~k\Omega$ resistor.

Solution:

$$v_0 = -\frac{R_f}{R_1} v_i$$

$$\frac{v_o}{v_i} = -\frac{R_f}{R_1} = -\frac{25}{10} = -2.5$$

$$v_o = -2.5v_i = -2.5(0.5) = -1.25 \text{ V}$$

b-)
$$i = \frac{v_i - 0}{R_1} = \frac{0.5 - 0}{10 \times 10^3} = 50 \,\mu\text{A}$$

Determine v_0 in the op amp circuit shown below

Solution:

Applying KCL at node a,

$$\frac{v_a - v_o}{40 \,\mathrm{k}\Omega} = \frac{6 - v_a}{20 \,\mathrm{k}\Omega}$$

$$v_a - v_o = 12 - 2v_a \implies v_o = 3v_a - 12$$

$$v_a = v_b = 2 \text{ V}$$

$$v_o = 6 - 12 = -6 \text{ V}$$

Notice that if $v_b = 0 = v_a$, then $v_o = -12$

Noninverting Amplifier

- Noninverting amplifier is an op amp circuit designed to provide a positive voltage gain.
- Input voltage v_i is directly applied at the noninverting terminal, and the resistor R_1 is connected between the ground and inverting terminal.
- Apply KCL at node 1:

 $i_1 = i_2$ (no current flows into amp)

$$i_1 = \frac{0 - v_1}{R_1} \qquad i_2 = \frac{v_1 - v_0}{R_f}$$

$$\frac{0 - v_1}{R_1} = \frac{v_1 - v_0}{R_f} \qquad v_1 = v_2 = v_i$$

$$-\frac{v_i}{R_1} = \frac{v_i - v_0}{R_f} \Rightarrow v_0 = \frac{v_i R_1 + v_i R_f}{R_1} \quad \Rightarrow \quad v_0 = \left(1 + \frac{R_f}{R_1}\right) v_i \quad \text{Provide positive output voltage}$$

$$A_v = \frac{v_0}{v_i} = 1 + \frac{R_f}{R_i}$$
 A_v : voltage gain

$$v_0 = \left(1 + rac{R_f}{R_1}
ight) v_i egin{array}{c} ext{Provide positive} \ ext{output voltage} \end{array}$$

Gain depends only on the external elements connected to op amp

Inverting Amplifier: Special Case

TO THE TOTAL TO TH

- If feedback resistor $R_f=0$ (short circuit) and $R_1=\infty$ (open circuit), we will have the following circuit.
- The gain becomes 1.
- It is called voltage follower (or unity gain amplifier) because output follows input.

 The voltage follower is used as an intermediate-stage (or buffer) amplifier to isolate one circuit from another. It minimizes the interaction between two stages and eliminates interstage loading.

For the op amp circuit shown below, calculate the output voltage v_0 .

Solution:

Method 1: Using superposition

let
$$v_o = v_{o1} + v_{o2}$$

where v_{o1} is due to the 6-V voltage source, and v_{o2} is due to the 4-V input. To get v_{o1} , we set the 4-V source equal to zero. Under this condition, the circuit becomes an inverter.

$$v_{o1} = -\frac{10}{4}(6) = -15 \text{ V}$$

To get v_{o2} , we set the 6-V source equal to zero. The circuit becomes a noninverting amplifier

$$v_{o2} = \left(1 + \frac{10}{4}\right)4 = 14 \text{ V}$$

$$v_o = v_{o1} + v_{o2} = -15 + 14 = -1 \text{ V}$$

Solution

Method 2: Using nodal analysis

Applying KCL at node a,

$$\frac{6 - v_a}{4} = \frac{v_a - v_o}{10}$$

$$v_a = v_b = 4$$

$$\frac{6-4}{4} = \frac{4-v_o}{10} \implies 5 = 4-v_o$$

$$v_{o} = -1 \text{ V}$$

Summing Amplifier

- Op amp can perform addition besides amplification.
- A summing amplifier (aka summer) is an op amp circuit that combines several inputs and produces an output that is the weighted sum of the inputs.
- Current entering each op amp input is zero.
- Apply KCL at node a:

$$i = i_1 + i_2 + i_3$$

$$i_1 = \frac{v_1 - v_a}{R_1} \qquad i_2 = \frac{v_2 - v_a}{R_2}$$

$$i_3 = \frac{v_3 - v_a}{R_3}$$
 $i = \frac{v_a - v_0}{R_f}$ $v_a = 0$

$$-\frac{v_0}{R_f} = \frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_3}{R_3} \quad \Longrightarrow \quad$$

$$-\frac{v_0}{R_f} = \frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_3}{R_3} \longrightarrow v_0 = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

• Calculate v_0 and i_0 in the op amp circuit shown below.

Solution:

This is a summer with two inputs.

$$v_o = -\left[\frac{10}{5}(2) + \frac{10}{2.5}(1)\right] = -(4+4) = -8 \text{ V}$$

The current i_o is the sum of the currents through the 10-k Ω and 2-k Ω resistors. Both of these resistors have voltage $v_o = -8$ V across them, since $v_a = v_b = 0$. Hence,

$$i_o = \frac{v_o - 0}{10} + \frac{v_o - 0}{2} \text{mA} = -0.8 - 4 = -4.8 \text{ mA}$$

Difference Amplifier

- Difference (aka differential) amplifiers are used in various applications where there is a need to amplify the difference between two input signals.
- A difference amplifier is a device that amplifies the difference between two inputs but rejects any signals common to the two inputs.
- Current entering each op amp input is zero.
- Apply KCL at node a:

$$\frac{v_1 - v_a}{R_1} = \frac{v_a - v_0}{R_2}$$

$$v_0 = \left(\frac{R_2}{R_1} + 1\right) v_a - \frac{R_2}{R_1} v_1 \longrightarrow \text{Eq 1}$$

Difference Amplifier

• Apply KCL at node b:

$$\frac{v_2 - v_b}{R_3} = \frac{v_b - 0}{R_4} \Rightarrow v_b = \frac{R_4}{R_3 + R_4} v_2$$

$$v_a = v_b$$

• Substitute v_h into 1st Eq

$$v_0 = \frac{R_2 \left(1 + \frac{R_1}{R_2}\right)}{R_1 \left(1 + \frac{R_3}{R_4}\right)} v_2 - \frac{R_2}{R_1} v_1$$

• If $R_1 = R_2$ and $R_3 = R_4$, the difference amplifier becomes a subtractor with output

$$v_0 = v_2 - v_1$$

• When
$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$
, $v_0 = \frac{R_2}{R_1}(v_2 - v_1)$

• In this case, the difference amplifier rejects a signal common to the two inputs, i.e., $v_0 = 0$ when $v_1 = v_2$

Design an op amp circuit with inputs v_1 and v_2 such that $v_0 = -5v_1 + 3v_2$

Solution:

- This circuit can be designed in two ways.
- Design 1: design it using only one op amp.
- Two inputs since $v_0 = 3v_2 5v_1$

$$v_{0} = \frac{R_{2} \left(1 + \frac{R_{1}}{R_{2}}\right)}{R_{1} \left(1 + \frac{R_{3}}{R_{4}}\right)} v_{2} - \frac{R_{2}}{R_{1}} v_{1}$$

$$5$$

$$\frac{R_2}{R_1} = 5 \Rightarrow R_2 = 5R_1$$

We may choose:
$$\begin{cases} R_1 = 10 \ k\Omega & R_3 = 20 \ k\Omega \\ R_2 = 50 \ k\Omega & R_4 = 20 \ k\Omega \end{cases}$$

Solution

- Design 2: design it using two op amps.
- In this case, cascade an inverting amp and two input inverting summer amp as shown in the figure.
- For the summer:

$$v_0 = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

$$v_0 = -\left(\frac{5R_1}{5R_1}v_a + \frac{5R_1}{R_1}v_1\right) \Rightarrow v_0 = -v_a - 5v_1$$

For the inverter amp:

$$v_0 = -\frac{R_f}{R_1} v_i$$

$$v_a = -\frac{3R_3}{R_3} v_2 \Rightarrow v_a = -3v_2$$

$$v_0 = 3v_2 - 5v_1$$

We may choose: $R_1 = R_3 = 10 \ k\Omega$

NICAL UNIVERSITY 1773

An instrumental amplifier shown below is an amplifier of low-level signals used in process control or measurement applications and commercially available in single-package units. Show that

$$v_0 = \frac{R_2}{R_1} \left(1 + \frac{2R_3}{R_4} \right) (v_2 - v_1)$$

Solution

• Amplifier A₃ is a difference amplifier.

$$v_o = \frac{R_2}{R_1}(v_{o2} - v_{o1}) \longrightarrow \text{Eq 1}$$

Since the op amps A_1 and A_2 draw no current, current i flows through the three resistors as though they were in series. Hence,

$$v_{o1} - v_{o2} = i(R_3 + R_4 + R_3) = i(2R_3 + R_4) \longrightarrow \text{Eq 2}$$

$$i = \frac{v_a - v_b}{R_4}$$

$$v_a = v_1, v_b = v_2$$

$$i = \frac{v_1 - v_2}{R_4} \longrightarrow \text{Eq 3}$$

Substitute Eq 3 into Eq 2 and then substitute into Eq 1

$$v_o = \frac{R_2}{R_1} \left(1 + \frac{2R_3}{R_4} \right) (v_2 - v_1)$$

Instrumentation Amplifiers

- One of the most useful and versatile op amp circuit which can be used for precision measurement and process control.
- Typical applications of IAs: isolation amplifiers, data acquisition system, etc.
- Extension of the difference amplifier. It amplifies the difference between its input signal.
- Typically consists of three op amps and several resistors.
- R_G: external gain-setting resistor.

$$v_0 = \frac{R_2}{R_1} \left(1 + \frac{2R_3}{R_4} \right) (v_2 - v_1)$$

$$A_v \longrightarrow \text{Voltage gain}$$

$$A_v = 1 + \frac{2R}{R_G}$$
 $v_0 = A_v(v_2 - v_1)$

Instrumentation Amplifiers

- The instrumentation amplifier has three major characteristic as follows:
 - \Box The voltage gain is adjusted by one external resistor R_G .
 - □ The input impedance of both inputs is very high and does not vary as the gain is adjusted.
 - \Box The output v_0 depends on the difference between the inputs v_1 and v_2 , not the voltage common to them (common-mode voltage).
- For IA, very small changes or differences in the input will result in very large output. How big the output signal also depends on how big its gain is.

$$v_0 = A_v(v_2 - v_1)$$

Small differential signals riding on larger common-mode signals

Schematic symbol of IA

Instrumentation amplifier

Amplified differential signal, no common-mode signal

Cascaded Op Amp Circuit

- To obtain a large overall gain, connect op amp circuits in cascaded way.
- Cascaded connection: head-to-tail arrangement of two or more op amp circuits such that the output of one is the input of the next
- Cascaded connection is connecting block in a head-to-tail way.
- In cascaded connection, each circuit in the string is called a "stage".
- Input signal increased by the gain of the individual stage.

• Overall gain: $A = A_1 A_2 A_3$

For the circuit shown below, find v_0 and i_0 .

Solution:

This circuit consists of two noninverting amplifiers cascaded. At the output of the first op amp,

$$v_a = \left(1 + \frac{12}{3}\right)(20) = 100 \text{ mV}$$

At the output of the second op amp,

$$v_o = \left(1 + \frac{10}{4}\right)v_a = (1 + 2.5)100 = 350 \text{ mV}$$

The required current i_o is the current through the 10-k Ω resistor.

$$i_o = \frac{v_o - v_b}{10} \,\mathrm{mA}$$

$$i_o = \frac{(350 - 100) \times 10^{-3}}{10 \times 10^3} = 25 \,\mu\mathrm{A}$$

$$v_b = v_a = 100 \,\mathrm{mV}.$$

If $v_1 = 1 V$ and $v_2 = 2 V$, find v_0 in the op amp circuit shown below.

Solution:

- The op amp circuit is composed of three circuits
- Two inverting amps and one summing (summer) amp
- A and B: inverting amp
- C: Summing amp

$$v_0 = -\frac{R_f}{R_1} v_i \longrightarrow v_a = -\frac{6}{2} 1 = -3 V$$

$$v_b = -\frac{8}{4} 2 = -4 V$$

$$v_0 = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right) \longrightarrow v_0 = -\left(\frac{10}{5}(-3) + \frac{10}{15}(-4)\right) \Rightarrow v_0 = 8.667 V$$

Digital-to-Analog Converter

NICAL UNIVERSITY UNIVERSITY

- Digital-to-analog converter (A/D or DAC): convert digital signal into analog signal.
- The four-bit DAC can be implemented in many ways. A simple implementation is the binary weighted ladder as shown in the figure.

$$-v_0 = \frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3 + \frac{R_f}{R_4}v_4$$

where v_1 : Most Significant Bit (MSB) v_2 : Least Significant Bit (LSB)

• Each of the binary inputs v_1 , v_2 , v_3 , v_4 can have only two voltage value: 0 or 1 V

In the op amp circuit shown below, let $R_f = 10 \ k\Omega$, $R_1 = 10 \ k\Omega$, $R_2 = 20 \ k\Omega$, $R_3 = 40 \ k\Omega$, and $R_4 = 80 \ k\Omega$. Obtain the analog output for the binary input [0000], [0001], [0010],...,[1111].

Solution:

DAC provides single output related to inputs

$$-v_0 = \frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3 + \frac{R_f}{R_4}v_4$$

$$-v_0 = \frac{10}{10}v_1 + \frac{10}{20}v_2 + \frac{10}{40}v_3 + \frac{10}{80}v_4$$

$$-v_0 = v_1 + 0.5v_2 + 0.25v_3 + 0.125v_4$$

1st digital input: $[v_1 \ v_2 \ v_3 \ v_4] = [0000] \longrightarrow v_0 = 0$

2nd digital input: $[v_1 \ v_2 \ v_3 \ v_4]$ =[0001] $\longrightarrow -v_0 = 0.125 \ V$ 3rd digital input: $[v_1 \ v_2 \ v_3 \ v_4]$ =[0010] $\longrightarrow -v_0 = 0.25 \ V$

TABLE 5.2

Input and output values of the four-bit DAC.

Binary input $[V_1V_2V_3V_4]$	Decimal value	Output $-V_o$
1,1,7,2,3,41	Decimal value	, 0
0000	0	0
0001	1,	0.125
0010	2	0.25
0011	3	0.375
0100	4	0.5
0101	5	0.625
0110	6	0.75
0111	7	0.875
1000	8	1.0
1001	9	1.125
1010	10	1.25
1011	11	1.375
1100	12	1.5
1101	13	1.625
1110	14	1.75
1111	15	1.875

Table summarizes the result of the digital-to-analog conversion

Summary:

TABLE 5.3

Summary of basic op amp circuits.

Op amp circuit

Name/output-input relationship

Inverting amplifier

$$v_o = -\frac{R_2}{R_1} v_i$$

Noninverting amplifier

$$v_o = \left(1 + \frac{R_2}{R_1}\right) v_o$$

Voltage follower

$$v_o = v_i$$

Summer

$$v_o = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

Difference amplifier

$$v_o = \frac{R_2}{R_1} (v_2 - v_1)$$

