Table of Distributions and Estimators

The following table provides the notation, density, mean, variance, and moment generating function of the eight main distributions we have studied.

Distribution	Notation	$\mathrm{pmf}/\mathrm{pdf}$	Mean	Variance	MGF
Bernoulli	Bernoulli(p)	$p^x(1-p)^{1-x}$	p	p(1-p)	$(1 - p + pe^t)$
Binomial	Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(1 - p + pe^t)^n$
Geometric	Geom(p)	$(1-p)^{x-1}p$	1/p	$(1-p)/p^2$	$\frac{pe^t}{1 - (1 - p)e^t}$
Poisson	$Poisson(\lambda)$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^t-1)}$
Exponential	$Exp(\lambda)$	$\lambda e^{-\lambda x}$	λ^{-1}	λ^{-2}	$\frac{\lambda}{\lambda - t}$
Gamma	$\boxed{Gamma(\alpha,\beta)}$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot x^{\alpha-1} e^{-x/\beta}$	$\alpha\beta$	$\alpha \beta^2$	$(1-\beta t)^{-\alpha}$
Beta	$Beta(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot x^{\alpha-1} (1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Normal	$N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$	μ	σ^2	$\left \exp\{\mu t + \frac{1}{2}\sigma^2 t^2\} \right $

Below, are the MLE, MME and Bayesian estimators for several of these families of distributions. Some cases are missing when there is either no closed form solution or only a complex formula that we did not cover.

Distribution	MME	MLE	Prior	Posterior
Bernoulli	$\widehat{p} = \bar{X}$	$\widehat{p} = \bar{X}$	$p \sim Beta(\alpha,\beta)$	$p X \sim Beta(\alpha + \sum_{i} X_i, \beta + \sum_{i} (1 - X_i))$
Geometric	$\widehat{p} = \bar{X}^{-1}$	$\widehat{p} = \bar{X}^{-1}$	$p \sim Beta(\alpha,\beta)$	$p X \sim Beta(\alpha + n, \beta + \sum_{i} X_i)$
Poisson	$\hat{\lambda} = \bar{X}$	$\widehat{\lambda} = \bar{X}$	$\lambda \sim Gamma(\alpha,\beta)$	$\lambda X \sim Gamma(\alpha + \sum_{i} X_i, \beta / (n\beta + 1))$
Uniform	$\widehat{a} = \bar{X} - \sqrt{3}s$	$\widehat{a} = \min_i X_i$		
	$\widehat{b} = \bar{X} + \sqrt{3}s$	$\widehat{b} = \max_i X_i$		
Gamma	$\widehat{\alpha} = \bar{X}^2/s^2$			
	$\widehat{\beta} = s^2/\bar{X}$			
Normal	$\widehat{\mu} = \bar{X}$	$\widehat{\mu} = \bar{X}$		
	$\widehat{\sigma^2} = s^2$	$\widehat{\sigma^2} = \frac{1}{n} (X_i - \bar{X})^2$		