Фадеев Статистика ДЗ 2

1 Задача

Пусть X1, X2 — выборка значений случайной величины ${\bf X}$ с математическим ожиданием m и дисперсией σ^2 . Рассматривается оценка дисперсии σ^2 вида $\widehat{\sigma}^2 = c(X1-X2)^2$. Найдите такое значение константы с, при котором $\widehat{\sigma}^2$ является несмещенной оценкой σ^2 .

Несмещенность означает, что математическое ожидание оценки равно истинному значению параметра: $E(\widehat{\sigma}^2) = \sigma^2$. Найдем математическое ожидание оценки:

$$E(\widehat{\sigma}^2) = E(c(X_1 - X_2)^2) = cE(X_1^2 - 2X_1X_2 + X_2^2) = c(E(X_1^2) - 2E(X_1X_2) + E(X_2^2))$$

Используем свойства математического ожидания:

$$E(X_1) = E(X_2) = m,$$

 $E(X_1^2) = E(X_2^2) = \sigma^2 + m^2,$
 $E(X_1X_2) = E(X_1)E(X_2) = m^2.$

$$E(\hat{\sigma}^2) = E(c(X_1 - X_2)^2) = c(\sigma^2 + m^2 - 2m^2 + \sigma^2 + m^2) = 2c\sigma^2$$

Чтобы оценка была несмещенной, необходимо, чтобы $E(\widehat{\sigma}^2) = \sigma^2$, то есть

$$2c\sigma^2 = \sigma^2$$

Отсюда находим c:

$$c = \frac{1}{2}$$

2 Задача

Выборочные значения случайной величины Х представлены в следующей таблице:

x_i	-3	-2	0	1	4
n_i	7	10	9	4	10

Найдите несмещенную оценку для дисперсии генеральной совокупности при условии:

- а) математическое ожидание генеральной совокупности известно и равно 0;
- б) математическое ожидание генеральной совокупности неизвестно.

а) Несмещенная оценка для дисперсии генеральной совокупности при известном математическом ожидании равна:

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^k n_i (x_i - m)^2$$

Вычислим оценку дисперсии:

$$\widehat{\sigma}^2 = \frac{1}{39} \left[7 \cdot (-3 - 0)^2 + 10 \cdot (-2 - 0)^2 + 9 \cdot (0)^2 + 4 \cdot (1 - 0)^2 + 10 \cdot (4 - 0)^2 \right] = 6.675.$$

б) Несмещенная оценка для дисперсии генеральной совокупности при неизвестном математическом ожидании равна:

$$\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^k n_i (x_i - \overline{x})^2$$

Вычислим выборочное среднее значение:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} n_i x_i = \frac{1}{40} (7 \cdot (-3) + 10 \cdot (-2) + 9 \cdot 0 + 4 \cdot 1 + 10 \cdot 4) = \frac{3}{40}.$$

Вычислим оценку дисперсии:

$$\widehat{\sigma}^2 = \frac{1}{39} \left[7 \cdot (-3 - \frac{3}{40})^2 + 10 \cdot (-2 - \frac{3}{40})^2 + 9 \cdot (\frac{3}{40})^2 + 4 \cdot (1 - \frac{3}{40})^2 + 10 \cdot (4 - \frac{3}{40})^2 \right] \approx 6.84.$$

3 Задача

Имеются два наблюдения X1, X2 случайной величины X. Рассмотрим две оценки математического ожидания $\mathbf m$ этой случайной величины:

1)
$$\overline{X} = \frac{1}{2}X_1 + \frac{1}{2}X_2$$

$$2) \ \widehat{X} = \frac{1}{3}X_1 + \frac{2}{3}X_2$$

- а) Являются ли оценки несмещенными?
- б) Какая из оценок более эффективна?

a)

$$E(\overline{X}) = E\left(\frac{1}{2}X_1 + \frac{1}{2}X_2\right) = \frac{1}{2} \cdot 2E(X) = E(X)$$
$$E(\widehat{X}) = E\left(\frac{1}{3}X_1 + \frac{2}{3}X_2\right) = \frac{1}{3} \cdot (E(X) + 2E(X)) = E(X)$$

Обе оценки являются несмещенными

б)

$$Var(\overline{X} = Var\left(\frac{1}{2}X_1 + \frac{1}{2}X_2\right) = \frac{1}{2}Var(X)$$

$$Var(\widehat{X} = Var\left(\frac{1}{3}X_1 + \frac{2}{3}X_2\right) = \frac{5}{9}Var(X)$$

Первая оценка (\overline{X}) будет более эффективной