MP Home Assignment -2 CO-2

1. Discrete Optimization using Cutting Plane method Solve the integer programming problem Maximize: Z=3x1+x2+3x3 Subject to -x1+2x2+x3≤4 2x2-3/2 x3≤1 x1-3x2+2x3≤3 Where x1,x2,x3≥0 and integer. Get the optimal solution as an integer value using Gomory's cutting plane method.

Solution: Problem is

Max
$$Z = 3x_1 + x_2 + 3x_3$$

subject to
 $-x_1 + 2x_2 + x_3 \le 4$

$$-x_1 + 2x_2 + x_3 \le 4$$
$$2x_2 - \frac{3}{2}x_3 \le 1$$

$$x_1 - 3x_2 + 2x_3 \le 3$$

and $x_1, x_2, x_3 \ge 0$; x_1, x_2, x_3 non-negative integers

After introducing slack variables

Max
$$Z = 3x_1 + x_2 + 3x_3 + 0S_1 + 0S_2 + 0S_3$$

subject to

$$-x_1 + 2x_2 + x_3 + S_1 = 4$$
$$2x_2 - \frac{3}{2}x_3 + S_2 = 1$$

$$x_1 - 3x_2 + 2x_3 + S_3 = 3$$

and $x_1, x_2, x_3, S_1, S_2, S_3 \ge 0$

Iteration-1		C_{j}	3	1	3	0	0	0	
В	C_B	$X_{\mathcal{B}}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	S ₂	S_3	MinRatio $\frac{X_B}{x_1}$
S_1	0	4	- 1	2	1	1	0	0	
S_2	0	1	0	2	$-\frac{3}{2}$	0	1	0	
S ₃	0	3	(1)	-3	2	0	0	1	$\frac{3}{1} = 3 \rightarrow$
Z = 0		Z_{j}	0	0	0	0	0	0	
		C_j - Z_j	3 ↑	1	3	0	0	0	

∴ The pivot element is 1.

Entering = x_1 , Departing = S_3 , Key Element = 1

$-R_3(\text{new}) = R_3(\text{old})$

$R_3(old) =$	3	1	-3	2	0	0	1
$R_3(\text{new}) = R_3(\text{old})$	3	1	-3	2	0	0	1

$-R_1(\text{new}) = R_1(\text{old}) + R_3(\text{new})$

$R_1(\text{old}) =$	4	- 1	2	1	1	0	0
$R_3(\text{new}) =$	3	1	-3	2	0	0	1
$R_1(\text{new}) = R_1(\text{old}) + R_3(\text{new})$	7	0	- 1	3	1	0	1

$-R_2(\text{new}) = R_2(\text{old})$

$R_2(\text{old}) =$	1	0	2	$-\frac{3}{2}$	0	1	0
$R_2(\text{new}) = R_2(\text{old})$	1	0	2	$-\frac{3}{2}$	0	1	0

Iteration-2		C_{j}	3	1	3	0	0	0	
В	C_B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	S ₂	S_3	MinRatio $\frac{X_B}{x_2}$
S_1	0	7	0	-1	3	1	0	1	
S ₂	0	1	0	(2)	$-\frac{3}{2}$	0	1	0	$\frac{1}{2} = 0.5 \rightarrow$
<i>x</i> ₁	3	3	1	-3	2	0	0	1	
Z = 9		Z_{j}	3	-9	6	0	0	3	
		C_j - Z_j	0	10 ↑	-3	0	0	-3	

∴ The pivot element is 2.

Entering = x_2 , Departing = S_2 , Key Element = 2

$-R_2(\text{new}) = R_2(\text{old}) \div 2$

$R_2(\text{old}) =$	1	0	2	$-\frac{3}{2}$	0	1	0
$R_2(\text{new}) = R_2(\text{old}) \div 2$	$\frac{1}{2}$	0	1	$-\frac{3}{4}$	0	$\frac{1}{2}$	0

$-R_1(\text{new}) = R_1(\text{old}) + R_2(\text{new})$

$R_1(old) =$	7	0	-1	3	1	0	1
$R_2(\text{new}) =$	$\frac{1}{2}$	0	1	$-\frac{3}{4}$	0	$\frac{1}{2}$	0
$R_1(\text{new}) = R_1(\text{old}) + R_2(\text{new})$	$\frac{15}{2}$	0	0	$\frac{9}{4}$	1	$\frac{1}{2}$	1

$-R_3(\text{new}) = R_3(\text{old}) + 3R_2(\text{new})$

$R_3(old) =$	3	1	-3	2	0	0	1
$R_2(\text{new}) =$	$\frac{1}{2}$	0	1	$-\frac{3}{4}$	0	$\frac{1}{2}$	0
$3 \times R_2(\text{new}) =$	$\frac{3}{2}$	0	3	$-\frac{9}{4}$	0	$\frac{3}{2}$	0
$R_3(\text{new}) = R_3(\text{old}) + 3R_2(\text{new})$	$\frac{9}{2}$	1	0	$-\frac{1}{4}$	0	$\frac{3}{2}$	1

Iteration-3		C_{j}	3	1	3	0	0	0	
В	C_B	$X_{\mathcal{B}}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	S_2	S_3	MinRatio $\frac{X_B}{x_3}$
s_1	0	$\frac{15}{2}$	0	0	$\left(\frac{9}{4}\right)$	1	$\frac{1}{2}$	1	$\frac{\frac{15}{2}}{\frac{9}{4}} = \frac{10}{3} = 3.3333 \to$
<i>x</i> ₂	1	$\frac{1}{2}$	0	1	$-\frac{3}{4}$	0	$\frac{1}{2}$	0	
<i>x</i> ₁	3	$\frac{9}{2}$	1	0	$-\frac{1}{4}$	0	$\frac{3}{2}$	1	
Z = 14		Z_{j}	3	1	$-\frac{3}{2}$	0	5	3	
		C_j - Z_j	0	0	$\frac{9}{2}$ ↑	0	-5	-3	

 \therefore The pivot element is $\frac{9}{4}$.

Entering = x_3 , Departing = S_1 , Key Element = $\frac{9}{4}$

		4
$-R_1(\text{new}) = R_1(\text{old})$	×	9

R ₁ (old) =	15 2	0	0	9 4	1	$\frac{1}{2}$	1
$R_1(\text{new}) = R_1(\text{old}) \times \frac{4}{9}$	10 3	0	0	1	4 9	2 9	4 9

$$-R_2(\text{new}) = R_2(\text{old}) + \frac{3}{4}R_1(\text{new})$$

$R_2(\text{old}) =$	$\frac{1}{2}$	0	1	$-\frac{3}{4}$	0	$\frac{1}{2}$	0
R ₁ (new) =	$\frac{10}{3}$	0	0	1	4 9	$\frac{2}{9}$	4 9
$\frac{3}{4} \times R_1(\text{new}) =$	$\frac{5}{2}$	0	0	3 4	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{3}$
$R_2(\text{new}) = R_2(\text{old}) + \frac{3}{4}R_1(\text{new})$	3	0	1	0	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$

$$-R_3(\text{new}) = R_3(\text{old}) + \frac{1}{4}R_1(\text{new})$$

$R_3(\text{old}) =$	$\frac{9}{2}$	1	0	$-\frac{1}{4}$	0	$\frac{3}{2}$	1
$R_1(\text{new}) =$	$\frac{10}{3}$	0	0	1	4 9	$\frac{2}{9}$	4 9
$\frac{1}{4} \times R_1(\text{new}) =$	5 6	0	0	$\frac{1}{4}$	$\frac{1}{9}$	1 18	1 9
$R_3(\text{new}) = R_3(\text{old}) + \frac{1}{4}R_1(\text{new})$	$\frac{16}{3}$	1	0	0	1 9	14 9	10 9

Iteration-4		C_{j}	3	1	3	0	0	0	
В	C_B	X _B	x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	S ₂	S ₃	MinRatio
<i>x</i> ₃	3	10 3	0	0	1	$\frac{4}{9}$	$\frac{2}{9}$	4 9	
x_2	1	3	0	1	0	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	
x_1	3	$\frac{16}{3}$	1	0	0	$\frac{1}{9}$	14 9	$\frac{10}{9}$	
Z = 29		Z_{j}	3	1	3	2	6	5	
		C_j - Z_j	0	0	0	-2	-6	-5	

Since all C_j - $Z_j \leq 0$

Hence, non-integer optimal solution is arrived with value of variables as :

$$x_1 = \frac{16}{3}, x_2 = 3, x_3 = \frac{10}{3}$$

Max Z = 29

To obtain the integer valued solution, we proceed to construct Gomory's fractional cut, with the help of x_3 -row as follows:

$$\frac{10}{3} = 1x_3 + \frac{4}{9}S_1 + \frac{2}{9}S_2 + \frac{4}{9}S_3$$

$$\left(3 + \frac{1}{3}\right) = (1+0)x_3 + \left(0 + \frac{4}{9}\right)S_1 + \left(0 + \frac{2}{9}\right)S_2 + \left(0 + \frac{4}{9}\right)S_3$$

The fractional cut will become
$$-\frac{1}{3} = Sg1 - \frac{4}{9}S_1 - \frac{2}{9}S_2 - \frac{4}{9}S_3 \rightarrow \text{ (Cut-1)}$$

Iteration-1		C_{j}	3	1	3	0	0	0	0
В	$C_{\mathcal{B}}$	$X_{\mathcal{B}}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S ₂	S ₃	Sg1
x_3	3	$\frac{10}{3}$	0	0	1	$\frac{4}{9}$	$\frac{2}{9}$	4 9	0
<i>x</i> ₂	1	3	0	1	0	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0
<i>x</i> ₁	3	16 3	1	0	0	$\frac{1}{9}$	14 9	10 9	0
Sg1	0	- \frac{1}{3}	0	0	0	$\left(-\frac{4}{9}\right)$	$-\frac{2}{9}$	- 4 9	1
Z = 29		Z_{j}	3	1	3	2	6	5	0
		C_j - Z_j	0	0	0	-2	-6	-5	0
		Ratio = $\frac{C_j - Z_j}{Sg1, j}$ and $Sg1, j < 0$				4.5 ↑	27	11.25	

 \therefore The pivot element is $-\frac{4}{9}$.

Entering = S_1 , Departing = S_2 1, Key Element = $-\frac{4}{9}$

$$-R_4(\text{new}) = R_4(\text{old}) \times \left(-\frac{9}{4}\right)$$

$R_4(\text{old}) =$	$-\frac{1}{3}$	0	0	0	$-\frac{4}{9}$	$-\frac{2}{9}$	$-\frac{4}{9}$	1
$R_4(\text{new}) = R_4(\text{old}) \times \left(-\frac{9}{4}\right)$	$\frac{3}{4}$	0	0	0	1	$\frac{1}{2}$	1	- 9 - 4

$$-R_1(\text{new}) = R_1(\text{old}) - \frac{4}{9}R_4(\text{new})$$

$R_1(\text{old}) =$	$\frac{10}{3}$	0	0	1	4 9	<u>2</u> 9	4 9	0
$R_4(\text{new}) =$	$\frac{3}{4}$	0	0	0	1	$\frac{1}{2}$	1	$-\frac{9}{4}$
$\frac{4}{9} \times R_4(\text{new}) =$	$\frac{1}{3}$	0	0	0	4 - 9	2 9	4 9	-1
$R_1(\text{new}) = R_1(\text{old}) - \frac{4}{9}R_4(\text{new})$	3	0	0	1	0	0	0	1

$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{3}R_4(\text{new})$

$R_2(\text{old}) =$	3	0	1	0	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0
$R_4(\text{new}) =$	$\frac{3}{4}$	0	0	0	1	$\frac{1}{2}$	1	- 9 - 4
$\frac{1}{3} \times R_4(\text{new}) =$	$\frac{1}{4}$	0	0	0	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{3}$	$-\frac{3}{4}$
$R_2(\text{new}) = R_2(\text{old}) - \frac{1}{3}R_4(\text{new})$	11 4	0	1	0	0	$\frac{1}{2}$	0	3 4

$$-R_3(\text{new}) = R_3(\text{old}) - \frac{1}{9}R_4(\text{new})$$

$R_3(\text{old}) =$	$\frac{16}{3}$	1	0	0	$\frac{1}{9}$	14 9	$\frac{10}{9}$	0
$R_4(\text{new}) =$	$\frac{3}{4}$	0	0	0	1	$\frac{1}{2}$	1	$-\frac{9}{4}$
$\frac{1}{9} \times R_4(\text{new}) =$	$\frac{1}{12}$	0	0	0	1 9	1 18	1 9	$-\frac{1}{4}$
$R_3(\text{new}) = R_3(\text{old}) - \frac{1}{9}R_4(\text{new})$	<u>21</u> 4	1	0	0	0	$\frac{3}{2}$	1	$\frac{1}{4}$

Iteration-2		C_{j}	3	1	3	0	0	0	0
В	C _B	X_B	x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>S</i> ₂	<i>S</i> ₃	Sg1
x_3	3	3	0	0	1	0	0	0	1
x_2	1	11 4	0	1	0	0	$\frac{1}{2}$	0	$\frac{3}{4}$
<i>x</i> ₁	3	<u>21</u> 4	1	0	0	0	$\frac{3}{2}$	1	$\frac{1}{4}$
S_1	0	$\frac{3}{4}$	0	0	0	1	$\frac{1}{2}$	1	$-\frac{9}{4}$
$Z=\frac{55}{2}$		Z_{j}	3	1	3	0	5	3	9 2
		C_j - Z_j	0	0	0	0	-5	-3	$-\frac{9}{2}$
		Ratio							

Since all C_j - $Z_j \le 0$

Hence, non-integer optimal solution is arrived with value of variables as : $x_1=\frac{21}{4}, x_2=\frac{11}{4}, x_3=3$

$$x_1 = \frac{21}{4}, x_2 = \frac{11}{4}, x_3 = 3$$

$$\operatorname{Max} Z = \frac{55}{2}$$

To obtain the integer valued solution, we proceed to construct Gomory's fractional cut, with the help of x_2 -row as follows:

$$\frac{11}{4} = 1x_2 + \frac{1}{2}S_2 + \frac{3}{4}Sg1$$

$$\left(2 + \frac{3}{4}\right) = (1+0)x_2 + \left(0 + \frac{1}{2}\right)S_2 + \left(0 + \frac{3}{4}\right)Sg1$$

The fractional cut will become
$$-\frac{3}{4} = Sg2 - \frac{1}{2}S_2 - \frac{3}{4}Sg1 \rightarrow \text{ (Cut-2)}$$

Iteration-1		C_{j}	3	1	3	0	0	0	0	0
В	C_B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	S ₂	S ₃	Sg1	Sg2
<i>x</i> ₃	3	3	0	0	1	0	0	0	1	0
<i>x</i> ₂	1	11 4	0	1	0	0	$\frac{1}{2}$	0	$\frac{3}{4}$	0
<i>x</i> ₁	3	2 <u>1</u>	1	0	0	0	$\frac{3}{2}$	1	$\frac{1}{4}$	0
S_1	0	$\frac{3}{4}$	0	0	0	1	$\frac{1}{2}$	1	$-\frac{9}{4}$	0
Sg2	0	$-\frac{3}{4}$	0	0	0	0	$-\frac{1}{2}$	0	$\left(-\frac{3}{4}\right)$	1
$Z=\frac{55}{2}$		Z_{j}	3	1	3	0	5	3	$\frac{9}{2}$	0
		C_j - Z_j	0	0	0	0	-5	-3	$-\frac{9}{2}$	0
		Ratio = $\frac{C_j - Z_j}{Sg2, j}$ and $Sg2, j < 0$					10		6 ↑	

$$\therefore$$
 The pivot element is $-\frac{3}{4}$.

Entering = Sg1, Departing = Sg2, Key Element = $-\frac{3}{4}$

$$-R_5(\text{new}) = R_5(\text{old}) \times \left(-\frac{4}{3}\right)$$

$R_5(\text{old}) =$	$-\frac{3}{4}$	0	0	0	0	$-\frac{1}{2}$	0	$-\frac{3}{4}$	1
$R_5(\text{new}) = R_5(\text{old}) \times \left(-\frac{4}{3}\right)$	1	0	0	0	0	$\frac{2}{3}$	0	1	$-\frac{4}{3}$

$-R_1(\text{new}) = R_1(\text{old}) - R_5(\text{new})$

$R_1(\text{old}) =$	3	0	0	1	0	0	0	1	0
$R_5(\text{new}) =$	1	0	0	0	0	$\frac{2}{3}$	0	1	$-\frac{4}{3}$
$R_1(\text{new}) = R_1(\text{old}) - R_5(\text{new})$	2	0	0	1	0	$-\frac{2}{3}$	0	0	$\frac{4}{3}$

$-R_4(\text{new}) = R_4(\text{old}) + \frac{9}{4}R_5(\text{new})$

$R_4(\text{old}) =$	$\frac{3}{4}$	0	0	0	1	$\frac{1}{2}$	1	$-\frac{9}{4}$	0
R ₅ (new) =	1	0	0	0	0	2/3	0	1	$-\frac{4}{3}$
$\frac{9}{4} \times R_5(\text{new}) =$	9 4	0	0	0	0	$\frac{3}{2}$	0	9 4	-3
$R_4(\text{new}) = R_4(\text{old}) + \frac{9}{4}R_5(\text{new})$	3	0	0	0	1	2	1	0	-3

$-R_2(\text{new}) = R_2(\text{old}) - \frac{3}{4}R_5(\text{new})$

$R_2(\text{old}) =$	11 4	0	1	0	0	$\frac{1}{2}$	0	$\frac{3}{4}$	0
$R_5(\text{new}) =$	1	0	0	0	0	2 3	0	1	$-\frac{4}{3}$
$\frac{3}{4} \times R_5(\text{new}) =$	$\frac{3}{4}$	0	0	0	0	$\frac{1}{2}$	0	3 4	-1
$R_2(\text{new}) = R_2(\text{old}) - \frac{3}{4}R_5(\text{new})$	2	0	1	0	0	0	0	0	1

$$-R_3(\text{new}) = R_3(\text{old}) - \frac{1}{4}R_5(\text{new})$$

$R_3(old) =$	$\frac{21}{4}$	1	0	0	0	$\frac{3}{2}$	1	$\frac{1}{4}$	0
$R_5(\text{new}) =$	1	0	0	0	0	$\frac{2}{3}$	0	1	$-\frac{4}{3}$
$\frac{1}{4} \times R_5(\text{new}) =$	$\frac{1}{4}$	0	0	0	0	$\frac{1}{6}$	0	$\frac{1}{4}$	$-\frac{1}{3}$
$R_3(\text{new}) = R_3(\text{old}) - \frac{1}{4}R_5(\text{new})$	5	1	0	0	0	4 - 3	1	0	$\frac{1}{3}$

Iteration-2		C_{j}	3	1	3	0	0	0	0	0
В	$C_{\mathcal{B}}$	X_{B}	x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	S ₂	S_3	Sg1	Sg2
<i>x</i> ₃	3	2	0	0	1	0	$-\frac{2}{3}$	0	0	4 3
<i>x</i> ₂	1	2	0	1	0	0	0	0	0	1
<i>x</i> ₁	3	5	1	0	0	0	$\frac{4}{3}$	1	0	$\frac{1}{3}$
S_1	0	3	0	0	0	1	2	1	0	-3
Sg1	0	1	0	0	0	0	$\frac{2}{3}$	0	1	$-\frac{4}{3}$
Z = 23		Z_{j}	3	1	3	0	2	3	0	6
		C_j - Z_j	0	0	0	0	-2	-3	0	-6
		Ratio								

Since all C_j - $Z_j \leq 0$

Hence, integer optimal solution is arrived with value of variables as : x_1 = 5, x_2 = 2, x_3 = 2

Max Z = 23

The integer optimal solution found after 2-cuts.

2. given Value, weight 10 5 40 4 30 6 50 3; W=10 Solve the above 0/1 knapsack problem is solved using dynamic programming

Profit	Weight
10	5
40	4
30	6
50	3

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90

Resultant Profit

90

Resultant Solution

0101