Radijske pristupne mreže

Jelena Božek, dipl. ing.

Norme za WLAN

Normizacija u svijetu

- IEEE 802 je skupina IEEE normi koja propisuje tehnologije mreža kako slijedi:
 - IEEE 802.11 WLAN (Wireless Local Area Network)
 - IEEE 802.15 WPAN (Wireless Personal Area Network)
 - IEEE 802.16 WMAN (Wireless Metropolitan Area Network)
 - IEEE 802.18 RR TAG (Radio Regulatory Technical Advisory Group)
 - IEEE 802.20 MBWA (Mobile Broadband Wireless Access)
 - IEEE 802.21 Media Independent Handoff Working Group
 - IEEE 802.22 WRAN (Wireless Regional Area Network)
- BRAN (Broadband Radio Access Networks) je radna grupa ETSI
 (European Telecommunication Standards Institute). Norme za mreže:
 - HiperLAN2
 - HiperACCESS
 - HiperMAN
 - HiperLINK

IEEE 802.11

- 1997. godine IEEE norma 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
 - Brzine prijenosa do 2 Mbit/s i rad u ISM frekvencijskom području od 2,4 GHz uz uporabu tehnologije proširenog spektra
- 1999. godine dva dodatka IEEE normi 802.11-1999:
 - IEEE 802.11a: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Amendment 1: High-speed Physical Layer in the 5 GHz Band
 - IEEE 802.11b: Supplement to 802.11-1999, Wireless LAN MAC and PHY Specifications: Higher Speed Physical Layer (PHY) Extension in the 2.4 GHz Band
- 2003. godine IEEE norma 802.11g:
 - Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications – Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band

IEEE 802.11 (nastavak)

- U IEEE normi 802.11 mogu se rabiti četiri različita fizička sloja (PHY, Physical Layer):
 - PHY koji se temelji na tehnici proširenog spektra uz primjenu skakanja frekvencija (FHSS)
 - PHY koji se temelji na tehnici proširenog spektra uz primjenu izravnog slijeda (DSSS)
 - PHY koji se temelji na OFDM tehnici
 - PHY koji se temelji na prijenosu u infracrvenom području (IR, Infrared)

IEEE 802.11 FHSS

- IEEE 802.11 FHSS radi u području 2,4 GHz i na fizičkom sloju koristi Gaussovu diskretnu modulaciju frekvencije (GFSK):
 - 2-GFSK, h_2 =0,34; za prijenos podataka brzinama 1 Mbit/s
 - 4-GFSK, h_4 =0,45; h_2 =0,15; za prijenos podataka brzinama 2 Mbit/s
 - Brzina signaliziranja je onda u oba slučaja jednaka i iznosi $R_{\rm S}$ = 1 MBd
 - Signali podataka u formatu NRZ (*Non Return to Zero*) filtriraju se u niskopropusnom Gaussovom filtru normirane širine pojasa $B \cdot T_0 = 0.5$
 - Kako je T_0 = 1/ R_S = 1 μs, slijedi da upotrijebljeni Gaussov filtar mora imati 3-dB širinu pojasa propuštanja od 500 kHz

IEEE 802.11 FHSS (nastavak)

- Sheme skakanja frekvencije obilježava:
 - skakanje na temelju računalom generiranog pseudoslučajnog koda u kojem se nalazi do 79 frekvencija
 - najmanji razmak frekvencija između kojih se skače je 6 kanala
 - 79 shema skakanja podijeljena su u tri skupa s 26 u svakom skupu
- Europske norme ETS EN 300-328 i ETS EN 300-339 određuju parametre FHSS sustava. Navodimo samo neke od njih:
 - frekvencijsko područje: 2400 2483,5 MHz
 - najmanje 20 frekvencija skakanja
 - najviše 100 mW EIRP

IEEE 802.11 DSSS

- Podaci o fizičkom sloju IEEE 802.11 DSSS:
 - brzina prijenosa podataka: 1 ili 2 Mbit/s (modulacija: DBPSK za 1 Mbit/s, a DQPSK za 2 Mbit/s)
 - brzina signaliziranja: 1 MBd
 - frekvencija podimpulsa: 11 Mchip/s (Barkerov kod od 11 podimpulsa)
 - 13 kanala u pojasu 2,4 do 2,4835 GHz

Usporedba verzija s FHSS i DSSS

Tehnologija na PHY sloju	Frekvencijsko područje [MHz]	Modulacijski postupak	Brzina prijenosa [Mbit/s]	
DSSS		DBPSK	1	
	0400 0400 5	DQPSK	2	
FHSS	2400 – 2483,5	2-GFSK	1	
		4-GFSK	2	

- FHSS je manje osjetljiv na smetnje i višestazno prostiranje
- Kvaliteta FHSS se postepeno kvari, dok kod DSSS to nastupa naglo
- S FHSS može se imati 10 do 15 kanala, dok su kod DSSS moguća najviše 3 kanala
- S DSSS mogu se postići znatno veće brzine prijenosa od 2 Mbit/s, a to je maksimum za FHSS
- Kod DSSS, pravilo je da faktor proširenja bude jednak 11 kako bi se ispunio uvjet o potrebnom procesnom dobitku

IEEE 802.11b

- Sustavi po normi 802.11b na tržištu su postali poznati kao Wi-Fi (Wireless Fidelity)
 - U početku se oznaka Wi-Fi odnosila samo na IEEE normu 802.11b,
 ali kasnije se termin proširio na bilo koju vrstu IEEE mreže 802.11
- Proširena norma 802.11b u 2,4 GHz području omogućava brzine:
 - 1 Mbit/s i 2 Mbit/s kao i izvorna IEEE norma 802.11
 - 5,5 Mbit/s i 11 Mbit/s kao dodatne mogućnosti
- IEEE sustav 802.11b povratno je kompatibilan s ranijim proizvodima rađenim na temelju izvorne IEEE norme 802.11

CCK postupak u IEEE 802.11b

- IEEE norma 802.11b koristi CCK-tehniku (CCK, Complementary Code Keying) na fizičkom sloju za brzine od 5,5 i 11 Mbit/s
 - CCK je oblik tehnike proširenog spektra (DSSS tehnike) koja združuje DSSS postupak proširenja spektra i modulaciju
 - Radi postizanja brzina od 5,5 i 11 Mbit/s u istom rasteru kanala širine
 22 MHz treba smanjiti faktor proširenja s 11 na 8. Zbog toga se
 povećava brzina signaliziranja s 1 MBd na 1,375 MBd.
 - Za postizanje R_D = 5,5 Mbit/s uz R_S = 1,375 MBd potrebno je prenositi 5,5/1,375 = 4 bit/simbol. Za 11 Mbit/s potrebno je onda 8 bit/simbol
- Zašto CCK?
- Zato jer ga je lako integrirati s DSSS-om za brzine od 1 i 2 Mbit/s iz izvorne verzije IEEE 802.11. Osim toga CCK povećava propusnost mreže.

Što je CCK?

- CCK je napredna tehnika kodiranja
 - Za proširenje se umjesto binarnoga 11-chipnog Barkerovog koda koristi skup od 64 8-chipnih kodnih riječi
 - Elementi tih 8-chipnih kodnih riječi su kompleksni (kofazna I i kvadraturna Q arhitektura koristi se za prikaz kodnih riječi) nasuprot realnim vrijednostima elemenata Barkerovog koda (elementi koda su: +1 i -1)
 - Kodne riječi u skupu od njih 64 su ortogonalne. Na temelju tog svojstva one se međusobno mogu razlikovati i u uvjetima jake prisutnosti šuma odnosno izraženoga višestaznog prostiranja (refleksije od zidova)
 - Uz proširenje spektra kod obje se brzine prijenosa koristi modulacijski postupak QPSK. Zbog osobina samog postupka CCK modulacijski postupak ima obilježja diferencijalnog QPSK, odnosno DQPSK

Temeljna obilježja postupka CCK

CCK postupak za brzine 5,5 i 11 Mbit/s

- Za brzinu od 11 Mbit/s modulator koristi 6 bita iz svakog bajta za odabir jedne od 64 ortogonalne 8-chipne kodne riječi
- Preostala 2 bita iz bajta koristi se u QPSK postupku (I–Q-modulator) za dodatnu rotaciju cijele kodne riječi u kompleksnoj ravnini za 0°, 90°, 180° ili 270°
- Kod brzine od 5,5 Mbit/s moguć je odabir samo između četiri 8-chipnih kodnih riječi. Za to služe 2 bita, a preostala su 2 bita za QPSK rotaciju

Temeljna obilježja postupka CCK (nastavak)

- CCK-modulatoru se u oba slučaja privode podaci brzine 1,375 MBd
- Nakon odabira 8-chipne kompleksne riječi realni i imaginarni dio te riječi 11
 milijuna puta u sekundi privodi se kofaznom, ili I-ulazu, odnosno kvadraturnom, ili
 Q-ulazu QPSK modulatora (I–Q-modulator)
- U tom modulatoru množe se kompleksne kodne riječi za proširenje s odgovarajućim kompleksnim brojem koji odgovara stanju faze QPSK, a kojeg određuju preostala dva bita

Tehnologije na fizičkom sloju 802.11b

Pregled mogućih režima rada sustava IEEE 802.11b

Brzina prijenosa [Mbit/s]	Broj podimpulsa	Modulacijski postupak	Brzina signaliziranja [MBd]	Bit/simbol
1 Mbit/s	11 (Barker kod)	BPSK	1	1
2 Mbit/s	11 (Barker kod)	QPSK	1	2
5,5 Mbit/s	8 (CCK)	(D)QPSK	1,375	4
11 Mbit/s	8 (CCK)	(D)QPSK	1,375	8

Upotreba raspoloživih kanala za 802.11b

- Pri konačnoj brzini od 11 Mbit/s zauzima se pojas jednog kanala od 22 MHz
 - CCK može koegzistirati s izvornim 802.11 DSSS
 - CCK može raditi u postojećoj shemi kanala u području 2,4 GHz
 - 13 kanala u Europi (ETSI) od 2412 MHz do 2472 MHz na razmaku od po 5 MHz (U USA raspoloživo je samo prvih 11 kanala)
 - Postoje samo 3 4 nepreklapajuća kanala (USA: 1, 6 i 11; ETSI: 1, 5, 9 i 13)
 - U nekim europskim zemljama preporuča se koristiti samo 3 kanala (1, 7 i 13)
- U planiranju pokrivanja WLAN sustavima koriste se ćelije koje se preklapaju za razliku od uobičajenog ćelijskog sustava
 - Ako se pri normi 802.11b želi osigurati izolacija kanala, tada se mogu u jednoj topologiji istodobno koristiti samo tri frekvencije

Planiranje topologije mreže

Primjer frekvencijskog plana za 802.11b

- Preklapajuće ćelije nose sa sobom povećanu mogućnost interferencije i smanjenu propusnost na obje frekvencije
- Istodobno one osiguravaju vrlo fleksibilni razmještaj pristupnih točaka koji je najčešće uvjetovan okolinom (prostorije, hodnici)
- Sustavi po 802.11b trpe interferenciju i od drugih komunikacijskih i nekomunikacijskih sustava i uređaja s kojima dijele frekvencijski pojas
- Izvorna norma 802.11 potiskivanje susjednog kanala temelji na razmaku od 30 MHz. Kod "b" verzije norme, a kada se koristi 4 kanala, problem je još izraženiji s obzirom na razmak kanala od 20 MHz (u USA 25 MHz već kod 3 kanala).

IEEE 802.11a

- Sustavi po IEEE normi 802.11a rade u području 5 GHz
 - Središnja frekvencija $f_{\rm ch}$ i redni broj kanala $n_{\rm ch}$ za područje od 5 6 GHz povezani su izrazom:

$$f_{\rm ch} = 5000 + 5 n_{\rm ch} \, [{\rm MHz}], \quad n_{\rm ch} = 0, 1, ..., 200.$$

- Na fizičkom sloju koristi se OFDM-postupak uz sljedeće parametre prijenosa:
 - brzina prijenosa: 6, 9, 12, 18, 24, 36, 48 i 54 Mbit/s
 - modulacijski postupak: BPSK, QPSK, 16-QAM i 64-QAM
 - širina kanala: 20 MHz

IEEE 802.11a (nastavak)

Dopuštena izračena snaga odašiljača

Planiranje topologije mreže

Primjer frekvencijskog plana za 802.11a

 Moguće je koristiti 8 frekvencija u preklapajućoj topologiji (što je osjetno više od 3 kanala kod 802.11b) u pojasu od 5,150 do 5,350 GHz

Usporedba IEEE 802.11b i 802.11a

Domet i ostvarive brzine

- 802.11b dobro je koristiti ako je potrebno postići pokrivanje većeg područja tj. kad nije moguće gusto postaviti pristupne točke
- Gleda li se na trošak, "b" je jeftinija, jer ima manji broj pristupnih točaka na nekoj površini

- Smetnje u ISM području 2,4 GHz (Bluetooth ili drugih radijskih sustava, industrijski izvori) smanjuju propusnost
- Pri velikoj gustoći terminala, uz korištenje velikih brzina, jedino "a" mreža može dati zadovoljavajuću propusnost

IEEE 802.11g

- Norma je zadržala sva obilježja tehnologije iz 802.11a, a koristi frekvencijsko područje rada 802.11b (2,4 GHz)
- 802.11g potpuno je povratno kompatibilna s 802.11b,
 - za brzine od 1, 2, 5,5 i 11 Mbit/s koristi se DSSS tehnologija i CCK ili QPSK/BPSK modulacijska shema (potpuno jednako kao i kod 802.11b)
 - za brzine od 6, 9, 12, 18, 24, 36, 48 i 54 Mbit/s koristi se OFDM tehnologija i modulacijska shema ovisna o brzini
 - Omogućen je prijelaz iz mreže koja zahtijeva veliku širinu prijenosnog pojasa i visoku brzinu prijenosa u mrežu u kojoj se rabe niže brzine prijenosa, bez prekidanja usluge
 - Korisnici opremljeni 802.11b uređajima mogu se kretati i koristiti usluge pristupnih točaka "g" mreže (uz brzinu od 11 Mbit/s) kao da su u području s pristupnom "b" točkom

IEEE 802.11g (nastavak)

- Prednosti mreže po normi 802.11g:
 - zadržana brzina protoka jednakom onoj u 802.11a
 - moguć je neprimjetni prijelaz (roaming) između 802.11g i 802.11b
 - postojeći korisnici sustava po normi 802.11b mogu koristiti pristupne točke mreže 802.11g
 - korisnici 802.11g mreže mogu se vezati na pristupne točke 802.11b mreže (najviše uz brzinu od 11 Mbit/s)
 - bolje je pokrivanje nego kod 802.11a uz istu brzinu podataka
 - · koristi se u cijelom svijetu
- Nedostaci mreže po normi 802.11g:
 - isti su izvori smetnji kao i kod sustava po 802.11b (ISM pojas)
 - povećana je potrošnja snage
 - visoka su početna ulaganja

Usporedba verzija normi 802.11

Glavna obilježja normi iz IEEE 802.11 skupine

	802.11b	802.11a	802.11g	
Norma prihvaćena	07/1999	07/1999	06/2003	
Najveća brzina [Mbit/s]	11	54	54	
Postupak obrade signala	CCK	OFDM	OFDM i CCK	
Brzine prijenosa [Mbit/s]	1; 2; 5,5; 11	6; 9; 12; 18; 24; 36; 48; 54	CCK: 1; 2; 5,5; 11 OFDM: 6; 9; 12; 18; 24; 36; 48; 54	
Radna područja frekvencija [MHz]	2400 – 2483,5	5150 – 5350 5470 – 5725 5725 – 5875	2400 – 2483,5	
Približna propusnost [Mbit/s]	6	25	8 kad ima 802.11b korisnika u ćeliji	22 kad nema 802.11b korisnika u ćeliji

OSI referentni model

- Referentni model za povezivanje otvorenih sustava (OSI, *Open System Interconnection*) definira funkcije neophodne za povezivanje jednog ponajprije računalskog sustava s drugim bez obzira na njihovu različitost
- Model je 1977. godine razvila Međunarodna organizacija za normizaciju (ISO, International Organization for Standardization), a 1983. godine model je postao ISO norma 7498
- ISO model sastoji se od sedam slojeva:
 - Fizički sloj
 - osigurava prijenos bita komunikacijom preko medija ili kanala i definira električne, mehaničke i proceduralne specifikacije

OSI referentni model (nastavak)

Sloj veze

- osigurava upravljanje pogreškama i sinkronizacijom između sudionika povezivanja
- sastoji se od dva podsloja:

Podsloj za upravljanje pristupom prijenosnom mediju (MAC, Medium Access Control) uključuje funkcije autentikacije, roaminga, ponovnog prijenosa i višestrukog pristupa

Podsloj za upravljanje logičkom vezom (LLC, Logical Link Control) uključuje funkcije sigurnosti, upravljanja snagom itd.

Sloj mreže

- osigurava usmjeravanje (routing) paketa podataka od izvora do odredišta preko usmjerivača (router)
- protokoli, kao npr. IP, funkcioniraju na ovom sloju
- Povezivanje radijskih sustava obavlja se na razinama prva tri sloja, dok se kod WLAN-a koriste samo prva dva sloja

OSI referentni model (nastavak)

U povezivanju radijskih sustava sudjeluju funkcije prva tri sloja OSI modela

OSI referentni model (nastavak)

802.11 mreže u OSI modelu

WLAN u OSI modelu

- LLC podsloj je zajednički za sve LAN-ove obuhvaćene IEEE normama 802 i opisan je u IEEE normi 802.2
- MAC podsloj specifičan je za WLAN i normu 802.11
 - MAC podsloj mreže određuje pravila za pristupanje zajedničkom radijskom prijenosnom mediju uključujući prioritete i određivanje frekvencije kanala
 - Funkcije MAC protokola zajedničke su za sve vrste fizičkog sloja koje su predviđene normom IEEE 802.11 i neovisne su o brzinama prijenosa
 - Kao dio mehanizma izbjegavanja sudara, koji je dio IEEE 802.11 MAC-a, mrežni čvorovi odgađaju odašiljanje svojih podataka sve dok prijenosni medij ne postane slobodan
 - Različiti razmaci između okvira omogućuju uspostavljanje različitih razina prioriteta za različite vrste prometa

IEEE podnorme 802.11 grupe

- IEEE norma 802.11e definira uspostavu usluge zagarantirane kvalitete preko Wi-Fi mreža
- IEEE norma 802.11h unosi poboljšanja 802.11 MAC sloja i 802.11a fizičkog sloja za rad u licenciranom frekvencijskom području od 5 GHz u europskim zemljama
- **IEEE norma 802.11i** uvela je dodatna poboljšanja sigurnosnih karakteristika radijskih mreža korištenjem AES (*Advanced Encryption Standard*) sigurnosnog protokola
- IEEE norma 802.11n korištenjem MIMO (*Multiple-input multiple-output*) podržale bi se brzine prijenosa do 600 Mbit/s
- IEEE norma 802.11p Wireless Access for the Vehicular Environment (WAVE) bavi se poboljšanjima osnovne norme za potrebe Intelligent Transportation Systems (ITS)
- **IEEE norma 802.11r** ili *Fast BSS Transition* (FT) omogućuje brzo i sigurno prekapčanje između baznih postaja za sustave koja se kreću velikom brzinom
- IEEE norma 802.11s bavi se dodavanjem *mesh* funkcionalnosti osnovnoj normi
- IEEE 802.11T ili projekt Wireless Performance Prediction (WPP) i pripadajuća radna grupa bave se metodama testiranja i mjerenja sustava

Europska norma HiperLAN

- U Europi su razvijene HiperLAN/1 i HiperLAN/2 norme (High Performance Radio Local Area Network)
 - Koristi se frekvencijsko područje 5 GHz
 - Norme HiperLAN nisu kompatibilne s IEEE normom 802.11a
- HiperLAN/1 i HiperLAN/2 razvijene su unutar Europskog instituta za telekomunikacijske norme (ETSI, European Telecommunications Standards Institute) u okviru projekta BRAN (BRAN, Broadband Radio Access Network)

HiperLAN/1

- HiperLAN/1 prva je ETSI norma za WLAN:
 - podržava brzine prijenosa od 2 do 23 Mbit/s
 - radno područje frekvencija: 5150 5300 MHz
 - koristi uskopojasne modulacijske postupke
 - nije u komercijalnoj uporabi

Frekvencijsko područje	5150 – 5300 MHz	
Snaga	10 – 1000 mW	
Osjetljivost prijamnika	-50 do -70 dBm	
Broj kanala	5	
Širina pojasa	23,5294 MHz	
Maksimalna brzina korisnika	1,4 m/s (5 km/h)	
Modulacija	HBR – GMSK LBR – FSK	
Propusnost	HBR – 23,5294 Mbit/s LBR – 1,47060 Mbit/s	
Maksimalno trajanje vremenskog odsječka	1 ms	

HBR — High Bit Rate,

HiperLAN/2

- HiperLAN/2 služi za pristup ATM (Asynchronous Transfer Mode), IP (Internet Protocol) i UMTS-mrežama (Universal Mobile Telecommunications System)
 - HiperLAN/2 namijenjen je i za fleksibilnu aplikaciju unutar poslovnih prostora i mjesta stanovanja osiguravajući pri tome multimedijski prijenos do 54 Mbit/s

HiperLAN/2 (nastavak)

- Norme HiperLAN/2 i IEEE 802.11a su na fizičkom sloju gotovo jednake
 - obje koriste OFDM tehnologiju i jednake brzine prijenosa
 - razlika je u višim slojevima mreže koji su u IEEE normi 802.11a
 prilagođeni Ethernet mrežama, a u normi HiperLAN/2 ATM mrežama,
 UMTS-u i dr.
- Glavna obilježja HiperLAN/2 mreže:
 - podržava nezavisno pridjeljivanje kvalitete usluge (QoS, Quality of Service) svakoj vezi
 - automatsko pridjeljivanje radnih frekvencija
 - podržava protokole za siguran rad (provjera vjerodostojnosti i šifriranje)
 - podržava protokole za mobilnost
 - rad neovisan o mreži i aplikaciji (primjeni)
 - podržava način rada s uštedom snage (power save)

Načela dodjele frekvencija za HiperLAN

- HiperLAN mreža ima implementiran postupak dinamičkog odabira frekvencije (DFS, Dynamic Frequency Selection)
 - Pomoću DFS mreža dinamički prilagođava rad lokalnim uvjetima interferencije
 - svakoj pristupnoj točki dodjeljuje se dinamički određena frekvencija (kanal) u smislu optimizacije iskorištenja kanala i smanjenja smetnji
 - HiperLAN ima mogućnost raspršenja odašiljačke snage na raspoloživi broj frekvencijskih kanala. Time se smanjuje mogućnost koncentriranja snage na jednom određenom kanalu, koji bi u tom slučaju djelovao kao izražena smetnja radu drugih sustava.

Usporedba WLAN normi

Neki podaci iz norme za područje 5 GHz (I)

Frekvencija [MHz]	Broj kanala [nepreklapajućih]	RF snaga (EIRP) [mW]	Uporaba u prostoru			
	802.11a					
5150 – 5250	4 (U-NII 1)	50	unutarnji			
5250 – 5350	4 (U-NII 2)	250	unutarnji			
5725 – 5825	4 (U-NII 3)	1000	vanjski			
HiperLAN/2						
5150 – 5350	8	200	unutarnji			
5470 – 5725	11	1000 – 200	unutarnji / vanjski			

	WLAN norme				
	802.11	802.11b	802.11a	HiperLAN/1	HiperLAN/2
Područje frekvencija [GHz]	2,4	2,4	5	5	5
Razmak kanala [MHz]	22 za DSSS 1 za FHSS	22	20	23,5	20
Najveća brzina na PHY [Mbit/s]	2	11	54	23,5	54
Najveća propusnost [Mbit/s]		5	28		32
Vrsta nosioca	FHSS ili DSSS	DSSS	OFDM	jedan nosioc	OFDM
Postupak obrade signala	GFSK (FHSS), DBPSK ili DQPSK (DSSS)	CCK	BPSK i QPSK, 16-QAM ili 64-QAM	FSK ili GMSK	BPSK i QPSK, 16-QAM ili 64-QAM
Broj nosilaca po kanalu		1 (DSSS)	48 podaci i 4 pilot	1	48 data & 4 pilot
MAC		CSMA/CA	CSMA/CA		TDMA/TDD
Podrška za fiksnu mrežu		Ethernet	Ethernet		Ethernet, IP, ATM, UMTS, FireWire
Upravljanje kvalitetom radijske veze		Ne	Ne		Adaptacija veze
		Ne	Ne		Adaptacija veze

Raširenost WLAN-a

- Mreže WLAN brzo su se počele širiti po cijelom svijetu (u početku zračne luke, hoteli)
 - Povećana proizvodnja prijenosnih računala prirodno je pritiskala na razvoj 802.11b nudeći tim računalima cjelovitu mobilnost
 - Operatori mobilnih komunikacija su prepoznali u WLAN-u jeftin i jednostavan način rješavanja problema vrućih točaka u komunikaciji u područjima povećane koncentracije potencijalnih korisnika
 - Područje primjene brzo se preselilo iz područja velikih tvrtki u mala poduzeća i kućni sektor
- Ako veći segment svjetskog tržišta želi primijeniti WLAN tehnologiju, relativno uski pojas (80 MHz) u ISM području nije dovoljan

Budućnost WLAN-a (nastavak)

- Budućnost je u normi 802.11n
 - objavljivanje norme predviđeno za siječanj 2010. godine
 - brzine prijenosa do 600 Mbit/s
 - kompatibilnost s prethodnim verzijama
 - korištenje frekvencija u području 2,4 i/ili 5 GHz

