SPACE SYSTEMS ENGINEERING Gravitational Perturbations

The spherical coordinate system:

Rotationally symmetric perturbation $\Phi(r,\phi)$ is given by:

$$\Phi(r,\phi) = \frac{\mu}{r} \sum_{k=2}^{\infty} J_k \left(\frac{R}{r}\right)^k P_k(\cos\phi)$$

where J_k are the zonal harmonics of the planet, R is the equatorial radius (R/r < 1) and P_k are Legendre polynomials of order k. For the earth, the six zonal harmonics are:

$$J_2 = 0.00108263$$
 $J_3 = -2.33936 \times 10^{-3} J_2$ $J_4 = -1.49601 \times 10^{-3} J_2$ $J_5 = -0.20995 \times 10^{-3} J_2$ Earth zonal harmonics $J_6 = 0.49941 \times 10^{-3} J_2$ $J_7 = 0.32547 \times 10^{-3} J_2$

The perturbing acceleration ap is given by $\mathbf{a}_{P} = -\nabla \Phi$

The gravitational acceleration perturbation due to J₂:

$$\mathbf{a}_{P} = \frac{3J_{2}\mu R^{2}}{2r^{4}} \left[\frac{x}{r} \left(5\frac{z^{2}}{r^{2}} - 1 \right) \hat{\mathbf{i}} + \frac{y}{r} \left(5\frac{z^{2}}{r^{2}} - 1 \right) \hat{\mathbf{j}} + \frac{z}{r} \left(5\frac{z^{2}}{r^{2}} - 3 \right) \hat{\mathbf{k}} \right]$$

The gravitational acceleration perturbation due to J₃:

$$\mathbf{a}_{P} = \frac{1}{2} \frac{J_{3} \mu R^{3}}{r^{5}} \left[5 \frac{x}{r} \left(7 \frac{z^{3}}{r^{3}} - 3 \frac{z}{r} \right) \hat{\mathbf{i}} + 5 \frac{y}{r} \left(7 \frac{z^{3}}{r^{3}} - 3 \frac{z}{r} \right) \hat{\mathbf{j}} + \left(35 \frac{z^{4}}{r^{4}} - 30 \frac{z^{2}}{r^{2}} + 3 \right) \hat{\mathbf{k}} \right]$$

Solution of the equation of motion yields the new, perturbed orbit: $\mathbf{r} = -\mu/r^3 \mathbf{r} + \mathbf{a}_P$