Linear Algebra

Arthur J. Redfern

axr180074@utdallas.edu

Aug 22, 2018

Aug 27, 2018

Outline

- Motivation
- Vector spaces
- Linear feature extraction and prediction
- Linear pre processing
- References

Motivation

Pre Processing

- Pre processing methods simplify feature extraction and prediction
- Understanding linear transformations is a key to understanding many popular pre processing methods
- Example pre processing methods
 - Discrete Fourier transform
 - Principal component analysis

Feature Extraction And Prediction

CNNs are compositions of nonlinear functions (layers)

$$\mathbf{y} = \mathbf{f}_{D-1}(...(\mathbf{f}_2(\mathbf{f}_1(\mathbf{f}_0(\mathbf{x}, \mathbf{h}_0), \mathbf{h}_1), \mathbf{h}_2), ...), \mathbf{h}_{D-1})$$

- Layers transform from data space to feature space to information space
- Examples layers
 - Fully connected layers with single and multiple inputs
 - CNN style 2D convolution layers

Feature Extraction And Prediction

- A key part of these 2 layers are linear transformations
- Understanding linear transformations is a key to the design and implementation of xNNs

Vector Spaces

Preliminaries

- Notation
 - Scalars are not bold
 - Vectors are bold lower case
 - Matrices are bold upper case
 - Indices start at 0 and go from 0, ..., size 1

Set

• A collection of distinct objects

Field

A set with well defined addition and multiplication operations

• Associativity: a + (b + c) = (a + b) + c and a (b c) = (a b) c

• Commutativity: a + b = b + a and ab = b a

• Additive identity: a + 0 = a

• Additive inverse: a + (-a) = 0

• Multiplicative identity: 1 a = a

• Multiplicative inverse: $a a^{-1} = 1$

• Distributivity: a(b + c) = (ab) + (ac)

- Elements of fields are generally referred to as scalars
- Examples: R (real scalars), C (complex scalars)

Vector

To do: add an example of a vector

- K tuple of scalars, always columns
- F^K
- Examples: R^K and C^K

Matrix

To do: add an example of a matrix

- M x K tuple of scalars
- Collection of K vectors of size M x 1 arranged in columns
 - Leads to column space and right null space
 - What can matrix vector multiplication reach and what can it not
 - Visualize using outer product of matrix vector multiplication
- Collection of M vectors of size K x 1 transposed and arranged as rows
 - Leads to row space and left null space
 - What can vector matrix multiplication reach and what can it not
 - Visualize using outer product of vector matrix multiplication

Tensor

- $K_0 \times ... \times K_{D-1}$ array of scalars
- Ordering
 - Last dimension is contiguous in memory
 - Working from right to left goes from closest to farthest spacing in memory
 - Feature maps: batch x channel x row x column
 - Filter coefficients: output channel x input channel x row x col

Function

- Mapping f: $X \rightarrow Y$ from domain to co domain
 - Injective: one to one; each y produced by at most one x
 - Surjective: onto; each y produced by at least one x
 - Bijective: one to one and onto
 - Bijective functions are invertible

- An infinite set is
 - Countably infinite if there's a bijection between the natural numbers and elements of the set
 - Un countably infinite if there's not

Vector Space

- Set of vectors and linear combinations of those vectors
- Satisfy

• Associativity:
$$x + (y + z) = (x + y) + z$$

• Commutativity:
$$x + y = y + x$$

• Additive identity:
$$x + 0 = x$$

• Additive inverse:
$$x + (-x) = 0$$

• Distributivity:
$$(a + b)(x + y) = a x + a y + b x + b y$$

• Examples: R^K, C^K, R^{K_0 x ... x K_D-1}

Normed Vector Space

- A vector space with a notion of distance
- A norm maps an element of the vector space to a scalar
- Satisfies

```
    Non negativity: ||x|| ≥ 0 and ||x|| = 0 iff x = 0
    Absolute scalability: ||a x|| = |a| ||x||
    Triangle inequality: ||x + y|| ≤ ||x|| + ||y||
```

• Example: l_p norm (common p = 1, 2 and ∞)

$$||\mathbf{x}||_{p} = (\sum_{n} (|\mathbf{x}(n)|^{p}))^{1/p}, p \ge 1$$

Inner Product Space

- A vector space with a notion of distance and angle
- An inner product maps 2 elements of a vector space to a scalar
- Satisfies
 - Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ iff $\mathbf{x} = \mathbf{0}$
 - Conjugate symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \text{conj}(\langle \mathbf{y}, \mathbf{x} \rangle)$
 - Linearity: $\langle a x, y \rangle = a \langle x, y \rangle$ and $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- Inner products induce norms on a vector space
 - But not all norms have associated inner products (e.g., l_∞)
- Example: dot product

$$\langle x, y \rangle = x \bullet y = x^H y = \sum_n (\operatorname{conj}(x(n)) y(n)) = ||x||_2 ||y||_2 \cos(\theta)$$

Linear Feature Extraction And Prediction

Specifically

- Linear transformations used within fully connected and CNN style 2D convolution layers for feature extraction and prediction
 - Matrix vector multiplication
 - Matrix matrix multiplication
 - CNN style 2D convolution

- Notation: M (output dimension), K (input dimension)
 - Setting up for BLAS notation

$$\begin{bmatrix} y(0) \\ \vdots \\ y(M-1) \end{bmatrix} = \begin{bmatrix} H(0,0) & \cdots & H(0,K-1) \\ \vdots & & \vdots \\ H(M-1,0) & \cdots & H(M-1,K-1) \end{bmatrix} \begin{bmatrix} x(0) \\ \vdots \\ x(K-1) \end{bmatrix}$$

- Mechanics
 - Inner product of matrix row and vector input to produce each output

- A traditional neural network is composed of repeated fully connected layers
 - Output vector of features = pointwise nonlinearity (feature extraction matrix * input vector of data + bias vector)
 - Repeat with output of current layer as input to next layer

$$y = ReLU(H x + b)$$

- Matrix vector multiplication is a linear transformation
 - Every linear map can be represented as a matrix
 - Every matrix represents a linear map
 - So matrix vector multiplication in a neural network is doing linear transformations
- Multiple linear transformations can be composed into a single linear transformation
 - A reason why nonlinearities are included in xNNs
 - Otherwise there would be no depth

$$y = H_{D-1} ... H_1 H_0 x = H x$$

- You design a network to accomplish a goal
 - Don't ever lose sight of this
 - Network design is not arbitrary
 - So it always makes sense to stop and think how the operations you're including help you accomplish that goal
 - Why do neural networks include these layers?
 - How do these layers map from data to features to predictions?
 - Pay attention to how the input features are combined to generate output features
- The purpose of the next few slides is to help build intuition on how matrix vector multiplication help layers map from data to features to classes

- Intuition of feature extraction and prediction for a fully connected layer
 - Note: sometimes linear classification is viewed as template matching where each row is a different template and the predicted class is the maximum output

- Inner product depends on magnitude and angle
 - y(m) = H(m, :) x
 - y(m) is the extracted feature or prediction
 - **H**(m, :) is the feature extractor or predictor
 - x is the input

- How strong or important is a feature extractor? || H(m, :) || 2
 - Note that the input mag contributes the same to each extracted feature $||\mathbf{x}||_2$
 - So here input magnitude only matters relative to bias
 - But input magnitude will also matter for network structures with branches that come together
 - Input magnitude will also matter when the same feature extractor is applied to different inputs

• How aligned is the feature extractor with the input? θ

• In same direction: positive feature

• Orthogonal: 0 feature

• In opposite direction: negative feature

- Intuition of bias
 - Affine transformation
 - Allows the dividing line to shift
 - Implementation of rank 1 outer product
 - Will use bias in a constructive variant of the universal approximation proof

- Intuition of ReLU
 - Removes negatively aligned features or predictions
 - Allows depth
 - Subsequent layers combine positively aligned extracted features

- Intuition of size of K and M
 - Small K to large M
 - Different combinations of a small number of features to predict a large number of classes
 - Large K to small M
 - 1 feature or a combination of features to predict a small number of classes is now possible
 - Example: ImageNet classification and final fully connected layer size

- In general, for the final classification layer, it's better to have K > M
 - Classification goal is to create matrix and bias that takes K features and makes the correct 1 of the M elements at the output much larger (closer to + ∞) than all the others
 - To get a feel for this consider 2 extreme cases
 - 2 features K linearly combined + bias then ReLU to predict 200 classes M
 - 200 features K linearly combined + bias then ReLU to predict 2 classes M
 - Create example features, matrices and biases for both cases
 - Look at sensitivity of the prediction to errors in the features for each
 - Can relate to matrix condition number
 - Show the condition number of K > M is always less than that of K < M
 - Now vary K and M and show diminishing returns after some point too
 - Generalize to considerations in a hierarchical head design
 - Start of a project idea

Arithmetic intensity

```
    Compute = MK (MACs = multiply accumulates)
    Data movement = K + MK + M (elements)
    Ratio = (MK)/(K + MK + M) (consider M and K large)
    ≈ 1 (memory wall)
```

- If you want to make matrix vector multiplication run fast, you need to build a fast memory subsystem
 - Typically not an efficient thing to do from an operation per power perspective

Matrix Matrix Multiplication

- Notation: M (output dimension), K (input dimension), N (number of inputs and outputs)
 - BLAS M, N, K notation for Y = H X
 - Will try and conform to this throughout
 - Matrix vector multiplication is a special case with N = 1

$$\begin{bmatrix} Y(0,0) & \cdots & Y(0,N-1) \\ \vdots & & \vdots \\ Y(M-1,0) & \cdots & Y(M-1,N-1) \end{bmatrix} = \begin{bmatrix} H(0,0) & \cdots & H(0,K-1) \\ \vdots & & \vdots \\ H(M-1,0) & \cdots & H(M-1,K-1) \end{bmatrix} \begin{bmatrix} X(0,0) & \cdots & X(0,N-1) \\ \vdots & & \vdots \\ X(K-1,0) & \cdots & X(K-1,N-1) \end{bmatrix}$$

Matrix Matrix Multiplication

- Application of same matrix transformation to multiple input vectors
 - Stack all the inputs next to each other
 - Get matrix matrix multiplication

- Lots of matrix operations and decompositions
 - Transpose is highlighted here because it will come up later
 - Transpose swaps matrix element indices
 - When applied to products of matrices remember socks then shoes, shoes then socks (or just remember the formula)

$$\mathbf{C}^{\mathsf{T}} = (\mathbf{A} \ \mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}} \ \mathbf{A}^{\mathsf{T}}$$

Matrix Matrix Multiplication

Arithmetic intensity

 Compute 	= MNK	(MACs)
 Data movement 	= KN + MK + MN	(elements)
• Ratio	= (MNK)/(KN + MK + MN)	(cube in num, squares in den)
	$= N^3/(3*N^2)$	(special case M = N = K)
	= N/3	(ratio maxed with sq matrix)

- If you want to make matrix matrix mult run fast, if it's possible choose a large matrix size such that you get multiple ops per element of data moved
- Why are bubbles spherical? Min surface area per volume enclosed
 - Think of surface area as data movement and volume as MACs

- Consider applying a standard neural network to an image
 - Dimensions / memory / arithmetic intensity make it unreasonable to apply normal neural network linear layer to large images
- Use CNN style 2D convolution layer instead
 - It's a less general transformations but if the input / problem has translational invariance then perhaps the loss of generality is ok (and for many applications it is)
 - Very high (but not unreasonable) memory and compute for modern hardware

- Input feature maps
 - 3D tensor
 - N_i inputs x L_r rows x L_c cols
- Filter coefficients
 - 4D tensor
 - N_o outputs x N_i inputs x F_r rows x F_c cols
- Output feature maps
 - 3D tensor
 - N_o outputs x M_r rows x M_c cols

- A brief comment on a complete CNN style 2D convolution layer before returning to the CNN style 2D convolution operation at it's core
- A traditional CNN is composed of multiple CNN style 2D convolution layers (plus some other layers that will be discussed layer)
 - * is used here to notate CNN style 2D convolution
 - The notation for the bias is meant to indicate that the same bias value V(no) is added to every Mr x Mc element of output feature map no
 - ReLU is applied pointwise

Filter coefficients

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

. . .

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

• • •

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

• • •

Input feature maps

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- Mathematically it's 6 loops (listed from common outer to inner)
 - Output feature map channel

- Filter row
- Filter col

$$n_0 = 0, ..., N_0 - 1$$

$$m_r = 0, ..., L_r - F_r = M_r - 1$$

$$m_c = 0, ..., L_c - F_c = M_c - 1$$

$$n_i = 0, ..., N_i - 1$$

$$f_r = 0, ..., F_r - 1$$

$$f_c = 0, ..., F_c - 1$$

For each n_o, m_r and m_c

$$Y(n_o, m_r, m_c) = \sum_{n_i} \sum_{f_r} \sum_{f_c} H(n_o, n_i, f_r, f_c) X(n_i, m_r + f_r, m_c + f_c)$$

• For each n_o, m_r and m_c

$$Y(n_0, m_r, m_c) = \sum_{n_i} \sum_{f_r} \sum_{f_c} H(n_0, n_i, f_r, f_c) X(n_i, m_r + f_r, m_c + f_c)$$

- Can be viewed as an inner product (by expanding the summations)
 - Of a vector formed from N_i F_r F_c filter coefficients
 - With a vector formed from F_r F_c elements of each N_i input feature maps
 - To produce a single output at the corresponding row col of an output feature map
- Repeated
 - For all row col values of the output feature map using the same filter coefficients
 - For all output feature map channels using different filter cxs for each output feature map channel
- Using 2D correlation instead of 2D convolution
 - Which is equivalent with a flip of the filter and indexing change

- High performance implementations of CNN style 2D convolution do not explicitly use 6 loops (but compute the same thing)
- Key realization is that CNN style 2D convolution is matrix multiplication: $\mathbf{Y}^{2D} = \mathbf{H}^{2D} \mathbf{X}^{2D}$
 - H^{2D} = reshape 4D filter coefficient tensor to 2D matrix
 - Trivial, nothing actually needs to be reshaped in practice
 - X^{2D} = form 3D input feature map tensor into 2D Toeplitz style filtering matrix
 - This is the key
 - Will generate blocks of this on the fly as each input is repeated ~ F_r F_c times
 - Y^{2D} = compute 2D matrix of output feature maps
 - Matrix matrix multiplication is efficient on hardware
 - Trivial to reshape to 3D output feature map tensor, nothing actually needs to be done in practice

- Starting point / reminder
- Input feature maps
 - 3D tensor
 - N_i inputs x L_r rows x L_c cols
- Filter coefficients
 - 4D tensor
 - N_o outputs x N_i inputs x F_r rows x F_c cols
- Output feature maps
 - 3D tensor
 - N_o outputs x M_r rows x M_c cols

- CNN style 2D convolution written as matrix matrix multiplication
 - Output feature maps (each box is 1 x M_c elements)
 - Filter coefficients (each box is 1 x F_c elements)
 - Input feature maps (ordering not shown)

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This figure illustrates memory addresses (specifically offsets to the initial pointer for each array)
- The next page shows where the memory addresses go in matrix matrix multiplication

Output feature map memory addresses (note vectorization)

Filter coefficient memory addresses (note vectorization)

- Main figure is matrix form
- Small figure is convolution form from previous page for reference

Input feature map memory addresses (note Toeplitz filtering matrix structure)

0	1	2	5	6	7	10	11	12
1	2	3	6	7	8	11	12	13
2	3	4	7	8	9	12	13	14
5	6	7	10	11	12	15	16	17
6	7	8	11	12	13	16	17	18
7	8	9	12	13	14	17	18	19
10	11	12	15	16	17	20	21	22
11	12	13	16	17	18	21	22	23
12	13	14	17	18	19	22	23	24
25	26	27	30	31	32	35	36	37
26	27	28	31	32	33	36	37	38
27	28	29	32	33	34	37	38	39
30	31	32	35	36	37	40	41	42
31	32	33	36	37	38	41	42	43
32	33	34	37	38	39	42	43	44
35	36	37	40	41	42	45	46	47
36	37	38	41	42	43	46	47	48
37	38	39	42	43	44	47	48	49

- Limiting cases illustrated via depth wise separable convolution
 - Depth wise separable convolution splits a CNN style 2D conv layer into 2 layers
 - Traditional 2D convolution
 - CNN style 2D convolution with 1 x 1 filters
 - Less generality of either vs original, but 1 extra level of depth
 - Traditional 2D convolution to mix across space $(N_i = N_o = 1)$
 - Can also get small values of N_i and N_o via grouping
 - Equivalent to vector matrix multiplication
 - Note that K dimension reduces from (N_i F_r F_c) to (F_r F_c)
 - CNN style 2D convolution with 1 x 1 filters to mix across channel
 - Equivalent to standard matrix matrix multiplication
 - Note that K dimension reduces from (N_i F_r F_c) to N_i

Output feature map memory addresses (note vectorization)

Filter coefficient memory addresses (note vectorization)

- Traditional convolution
- Equivalent to vector matrix multiplication

Input feature map memory addresses (note Toeplitz filtering matrix structure)

0	1	2	5	6	7	10	11	12
1	2	3	6	7	8	11	12	13
2	3	4	7	8	9	12	13	14
5	6	7	10	11	12	15	16	17
6	7	8	11	12	13	16	17	18
7	8	9	12	13	14	17	18	19
10	11	12	15	16	17	20	21	22
11	12	13	16	17	18	21	22	23
12	13	14	17	18	19	22	23	24
25	26	27	30	31	32	35	36	37
26	27	28	31	32	33	36	37	38
27	28	29	32	33	34	37	38	39
30	31	32	35	36	37	40	41	42
31	32	33	36	37	38	41	42	43
32	33	34	37	38	39	42	43	44
35	36	37	40	41	42	45	46	47
	07	38	41	42	43	46	47	48
36	37	30	71					

0 1 2 3 3 4 5 5

Output feature map memory addresses (note vectorization)

Filter coefficient memory addresses (note vectorization)

- CNN style convolution with 1x1 filters
- Equivalent to pure matrix matrix multiplication

This is important

- Intuition of feature extraction
 - CNN style 2D convolution is a linear transformation
 - Output feature maps matrix = filter coefficient matrix * input feature maps filtering matrix
 - Matrix vector multiplication as used in a fully connected layer of a neural network had the intuition of matching features to inputs over channel
 - For CNN style 2D convolution have the intuition of matching features to inputs over channel and space
 - How far can it see in space? For 1 layer? For repeated layers?
 - How many features does it work over?

- Intuition of bias
 - Add a constant to all elements in an output feature map
 - Can be a different constant for each output feature map
 - Affine transformation
 - Allows the dividing line to shift
 - Implementation using a rank 1 outer product
- Intuition of ReLU
 - Removes negatively aligned features or predictions
 - Allows depth
 - Subsequent layers combine positively aligned extracted features

- Memory
 - Formulas
 - Input feature maps: $N_i L_r L_c$
 - Output feature maps: N_o M_r M_c
 - Filter coefficients: $N_i N_o F_r F_c$
 - Early in the network feature map memory tends to dominate
 - Deeper in the network filter coefficient memory tends to dominate

- Compute
 - Formulas

```
• (N<sub>o</sub>) (M<sub>r</sub> M<sub>c</sub>) (N<sub>i</sub> F<sub>r</sub> F<sub>c</sub>) (MACs)
= (N<sub>o</sub> M<sub>r</sub> M<sub>c</sub>) (N<sub>i</sub> F<sub>r</sub> F<sub>c</sub>)
= (number of outputs) (number of input MACs per output)
```

- Tends to be highest in the beginning of the network
 - If (M_r M_c) is more aggressively reduced than (N_i N_o) is increased
- Scaling the input size by 1/2 in rows and cols ~ reduces compute by 1/4

- Arithmetic intensity
 - Compute
 - Data movement
 - Ratio

$$= N_i N_o F_r F_c M_r M_c$$

$$= N_i L_r L_c + N_o M_r M_c + N_i N_o F_r F_c$$

= compute / data movement

(MACs)

(elements)

- Variant: input feature map 0 padding
 - P_I left, P_r right, P_t top,
 P_b bottom
 - Typically $P_1 + P_r = F_c 1$ and $P_t + P_b = F_r - 1$
 - Used for same size input / output feature maps
 - Implementation key is efficient 0 insert

- Variants: input feature map up sampling
 - U_r rows, U_c cols
 - Typically called deconvolution
 - Used in decoder style head designs
 - Implementation key is input memory reuse
 - Alternatives are bilinear and nearest neighbor interpolation

- Variants: filter coefficient up sampling
 - D_r rows, D_c cols
 - Typically called dilated or Atrous convolution
 - Used to maintain spatial resolution with large receptive field
 - Implementation key is input feature map filtering matrix row removal

- Variants: output feature map down sampling
 - S_r rows, S_c cols
 - Typically called strided convolution
 - Used to reduce spatial resolution
 - Implementation key is input feature map filtering matrix column removal
 - Alternative is pooling

CNN Style 2D Convolution

pic showing this in graph format to connect to back propagation

To do: add a

- Alternate view of CNN style 2D convolution
 - Add together Fr x Fc CNN style 2D convolutions with 1x1 filter size
 - Reminder: CNN style convolution with 1x1 filters is pure matrix matrix multiplication
 - Input size is reduced to Mr x Mc for each with an appropriate shift / offset of the original input
 - Tradeoffs
 - Advantage of simpler input feature map matrix structure and associated data movement logic
 - Drawback of additional input feature map memory movement
 - Side benefit: useful for understanding back propagation through a CNN style 2D convolution layer

Linear Pre Processing

- A linear transformation from domain to 1/domain via a projection onto a complex exponential basis
 - Example: time to 1/time = frequency
 - Index ranges
 - k = 0, ..., K 1
 - n = 0, ..., K 1

$$y(k) = (1/sqrt(K)) \sum_{n} x(n) e^{-i(2\pi/K)nk}$$

- Can be written as a K x K DFT matrix F_K that transforms input vectors x to output vectors y
 - $y = F_K x$ where $F_K(a, b) = (1/sqrt(K)) e^{-i(2\pi/K)ab}$
 - \mathbf{F}_{K} is a unitary matrix so it's invertible (conj transpose = inverse, called the IDFT)
 - Output is typically circular complex Gaussian (will discuss implications later)
 - Fast implementations possible
 - O(K log K) for fast Fourier transform (FFT)
 - Vs O(K2) for DFT

- Data transformation
 - Sometimes it's easier to do feature extraction in the frequency domain vs time domain
 - Common example of this is speech to text
 - Unitary so invertible (no information lost (until you read the next slide))
 - Effectively lets the network decide what data to keep and what data to throw away

- Dimensionality reduction
 - The DFT frequently concentrates the majority of information in naturally occurring signals to L < K basis components
 - A common dimensionality reduction strategy is to keep the L main components and get rid of the rest
 - General comment: often want to keep at much information as possible while getting of as much data as possible
 - Difficulty: knowing that it's really ok to get rid of data

- Note
 - A little bit of this is dependent on probability for parts of the understanding

- Setup
 - M x K data matrix X
 - Each row is a different trial (ex: point in time)
 - Each column is a different measurement from that trial (ex: different stock)
 - Columns are normalized to 0 mean
 - Columns are potentially linearly correlated

- Goal
 - Linearly transform to a new M x K matrix Y via a K x K matrix Q

$$Y = X Q$$

- Where **Q** is chosen such that columns of **Y** are orthogonal and ordered from largest to smallest variance
- For dimensionality reduction keep first L < K columns

- Mechanics for finding Q
 - Note that X = U S V^T via SVD
 - **U** is a M x M orthogonal matrix of eigenvectors of **X X**^T
 - An eigenvector \mathbf{v} of matrix \mathbf{A} is a nonzero vector \mathbf{v} that satisfies $\mathbf{A} \mathbf{v} = \lambda \mathbf{v}$
 - Intuition of matrix scaling eigenvectors inputs by the eigenvalue λ
 - Side note: multicarrier modulation exploits this
 - **S** is a M x K diagonal matrix of singular values
 - V^T is a K x K orthogonal matrix of eigenvectors of X^T X
 - Select Q = V

$$Y = X Q = U S V^T V = U S$$

Example

- Statistical arbitrage (e.g., SPY, MDY and IJR)
- Stock 0 time series in col 0, stock 1 time series in col 1, ..., stock K 1 time series in col K 1
- 0 th principal component for trend trading (you would keep this for feature extract)
- K-1 th principal component for stat arb (throw away for feature extract)

- Project idea (while on the topic of finance)
 - Information extraction project
 - Prediction of the pmf of various stocks / ETFs at different times into the future
 - Show that it's possible testing out of sample and taking transaction friction into account to profit

References

List

- Convolutional neural networks: theory, implementation and application (chapter 3 linear algebra)
 - https://github.com/arthurredfern/UT-Dallas-CS-6301-CNNs/blob/master/References/ConvolutionalNeuralNetworks.pdf
- Linear algebra
 - https://www.math.ucdavis.edu/~linear/linear-guest.pdf
- A guide to convolution arithmetic for deep learning
 - https://arxiv.org/abs/1603.07285