SENSOR AND ALARM SYSTEM

ZION JOSEPH DE GOES, CORI DEBEATHAM, COLIN DECHAMBEAU

GOAL

Design and build a circuit that senses change in light (through the use of a photoresistor in a Wheatstone bridge), amplifies that output (Schmitt Trigger/Comparator), sends 'high' or 'low' signal (Schmitt Trigger/Comparator), and sends an alarm (LED).

DIAGRAM USING COMPARATOR

DIAGRAM USING SCHMITT TRIGGER

MATHEMATICAL ANALYSIS (COMPARATOR)

With a low resistance....

Finding VA and VB

$$Rp = 1k \mid R1 = R2 = R3 = 1.2k$$

 $VA = 5 - VRp = 5 - \left(\frac{5*1k}{1.2k+1k}\right) = 2.727V$
 $VB = 5 - VR2 = 5 - \left(\frac{5*1.2k}{1.2k+1.2k}\right) = 2.5V$

Inserting into Comparator

$$Vout = \begin{cases} V_{s+} \ when \ (VA - VB) > 0 \\ V_{s-} \ when \ (VA - VB) < 0 \end{cases}$$
 $VA - VB = 0.228 > 0$, thus $Vout = 5V$
 $Von = 5V$
 $Von \ is \ Vout \ when \ the \ light \ is \ on!$

With a high resistance....

Finding VA and VB

$$Rp = 2k \mid R1 = R2 = R3 = 1.2k$$

 $VA = 5 - VRp = 5 - \left(\frac{5*2k}{1.2k+2k}\right) = 1.875V$
 $VB = 5 - VR2 = 5 - \left(\frac{5*1.2k}{1.2k+1.2k}\right) = 2.5V$

Inserting into Comparator

$$Vout = \begin{cases} V_{s+} \ when \ (VA - VB) > 0 \\ V_{s-} \ when \ (VA - VB) < 0 \end{cases}$$
 $VA - VB = -0.625 < 0, thus \ Vout = -5V$
 $Voff = -5V$
 $Voff \text{ is } Vout \text{ when } the \text{ light is off!}$

MATHEMATICAL ANALYSIS (SCHMITT TRIGGER)

With a low resistance....

Finding VA and VB

$$Rp = 1k \mid R1 = R2 = R3 = 1.2kVA = 5 - VRp = 5 - \left(\frac{5*1k}{1.2k+1k}\right) = 2.727V$$

 $VB = 5 - VR2 = 5 - \left(\frac{5*1.2k}{1.2k+1.2k}\right) = 2.5V$

Inserting into Comparator

$$Vout = \begin{cases} V_{s+} & when \frac{(VA - VB)}{2} > 0 \\ V_{s-} & when \frac{(VA - VB)}{2} < 0 \end{cases}$$

$$VA - VB = 0.228 > 0$$
, thus $Vout = 2.5V$

$$Von = 2.5V$$

Von is Vout when the light is on!

With a high resistance....

Finding VA and VB

$$Rp = 2k \mid R1 = R2 = R3 = 1.2kVA = 5 - VRp = 5 - \left(\frac{5 * 2k}{1.2k + 2k}\right) = 1.875V$$

$$VB = 5 - VR2 = 5 - \left(\frac{5 * 1.2k}{1.2k + 1.2k}\right) = 2.5V$$
 Inserting into Comparator

$$Vout = \begin{cases} V_{s+} & when \frac{(VA-VB)}{2} > 0 \\ V_{s-} & when \frac{(VA-VB)}{2} < 0 \end{cases}$$

$$VA - VB = -0.625 < 0$$
, thus $Vout = -2.5V$

$$Vof f = -2.5V$$

Voff is Vout when the light is off!

CIRCUIT SCHEMATIC/SIMULATION- COMPARATOR

USING THE GRAPH WE SEE: RP=2K, VOUT=-5VRP=1K, VOUT=5V

THIS MATCHES OUR MATH ANALYSIS!

EXPERIMENTAL MEASUREMENT-COMPARATOR

EXPERIMENTAL MEASUREMENT VIDEO-COMPARATOR

CIRCUIT SCHEMATIC/SIMULATION-SCHMITT TRIGGER

USING THE GRAPH WE SEE: RP=2K, VOUT = -2.5V RP = 1K, VOUT = 2.5V

THIS MATCHES OUR MATH ANALYSIS!

EXPERIMENTAL MEASUREMENT- SCHMITT TRIGGER

EXPERIMENTAL MEASUREMENT VIDEO- SCHMITT TRIGGER

COMPARATOR MEASUREMENTS

Although not exactly the same as our simulation, the vast difference between Von (Left) and Voff (Right) shows the function of the Comparator. Internal tolerances affect Vout.

SCHMITT TRIGGER MEASUREMENTS

Although not exactly the same as our simulation, the vast difference between Von (Left) and Voff (Right) shows the function of the Schmitt Trigger. Internal tolerances affect Vout

DESIGN CHOICES

Decision Making Stage	Pros	Cons
Photoresistor	- High sensitivity to light changes, allows for a less dramatic change in light to warrant a response	 Slow response time Hard to keep resistance constant like you can with LED
Comparator	Pairs well with photoresistorPart offered in class	- Doesn't manage hysteresis
Schmitt Trigger	 Good for converting sensor inputs into digital outputs Manages hysteresis 	 Unfamiliar with it More complex than basic comparators (requires more components)
LED	 Provides clear signal when 'high' is outputted Doesn't draw as much current as buzzer 	 Need for current limiting resistor Sensitivity to heat Output of LED could affect input of photoresistor

UNFAMILIAR TERRITORY

Wheatstone bridge

- It took time to have a better understanding of how the Wheatstone bridge works and which resistor values work best with our design
- Application of Wheatstone bridges are a part of circuit design we would not have initially considered but is very clever. We can learn more techniques in ECSE 2010 Electric Circuits

Schmitt Trigger

• Schmitt triggers add on to our current understanding of Op-Amps. The concept of a threshold using feedback resistors was very interesting to work with. Decision making circuits like the Schmitt trigger are covered in more detail in ECSE 4040 - Digital Electronics.

REAL WORLD APPLICATIONS

Security System:

Light sensors can be used to stop intruders by detecting a change in light and sounding an alarm. (Example: light is let into a dark room when a window or door is opened/broken into).

Low-light technology:

In low light settings our phones and other handheld devices are able to detect when a change in lighting occurs, updating the brightness of our screens to adapt to the environment.

Commercial:

Lighting in retail stores is adjusted based on the natural lighting let in. When the sun goes down, the lighting let in ed on.

QUESTION

Aside from ease of use, what would change if we used a transistor instead of a comparator/Schmitt trigger?

