TD 14 : Polynômes - version longue

I Opérations sur les polynômes

Exercice 1. On pose $P = X^2 + 3X$, $Q = X^2 + X + 1$, $S = X^2 - 1$.

- 1. Calculer P^2 , P-Q et P^2-Q^2 .
- 2. Calculer P(X+1).
- 3. Calculer $S \circ f$ avec $f : t \mapsto \cos(t)$.

Exercice 2. Développer le polynôme suivant : $Q = (X^3 + X^2 + X + 1) \sum_{k=0}^{2n} (-1)^k X^k$.

Exercice 3. Simplifier le polynôme $R = \sum_{k=0}^{n} \binom{n}{k} 3^k (1-X)^{3n-2k} X^k$.

Exercice 4. Calculer P(Q) et Q(P) avec $P = X^2 - 3X + 1$ et $Q = X^2 - 3X + 2$.

II Degré et coefficients

Exercice 5. Dans les deux cas suivants, déterminer tous les polynômes P vérifiant les conditions indiquées

1.
$$deg(P) = 3$$
 et $P(1) = 4$, $P(-1) = 0$, $P(-2) = -5$, $P(2) = 15$.

2.
$$deg(P) \le 2$$
 et $P^2 = X^4 + 2X^3 - 3X^2 - 4X + 4$.

Exercice 6. Déterminer le degré et le coefficient dominant des polynômes suivants où n désigne un entier strictement positif et P un polynôme de degré n et de coefficient dominant $a_n \neq 0$.

1.
$$(X^4+1)^3$$

2.
$$(X+1)^n - (X-1)^n$$

3.
$$P^2 - P + 1$$

4.
$$Q = P(X+1) - P$$

5.
$$\sum_{k=0}^{n} P^{(k)}$$
.

Exercice 7. Soient les polynômes $P = X^2 - X + 1$ et $Q = X^3 - X$. Pour tout entier $n \ge 1$, on définit par récurrence les polynômes P_n par

$$\left\{ \begin{array}{l} P_1 = P \\ \\ P_{n+1} = XP_n(Q) + 2QP_n. \end{array} \right.$$

- 1. Calculer P_2 .
- 2. Calculer les degrés de P_2 et de P_3 .
- 3. Déterminer pour tout entier $n \in \mathbb{N}$ le degré de P_n .
- 4. Déterminer le coefficient dominant de P_n .

Exercice 8. On définit une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ par : $\begin{cases} P_0 = 1, \ P_1 = X \\ \forall n \in \mathbb{N}, \ P_{n+2} = XP_{n+1} + \left(1 - \frac{X^2}{4}\right)P_n. \end{cases}$

- 1. Calculer P_2 et P_3 .
- 2. Démontrer que, pour tout $n \in \mathbb{N}$, P_n est de degré inférieur ou égal à n.
- 3. Pour tout $n \in \mathbb{N}$, on note a_n le coefficient d'indice n de P_n .

- (a) Donner les valeurs de a_0 , a_1 , a_2 et a_3 .
- (b) Montrer que : $\forall n \in \mathbb{N}, \ a_{n+2} = a_{n+1} \frac{a_n}{4}$. En déduire une expression de a_n en fonction de n pour tout $n \in \mathbb{N}$ puis le degré du polynôme P_n .

Exercice 9. Soit $n \in \mathbb{N}^*$.

- 1. Exprimer de deux façons différentes le coefficient de X^n dans le polynôme : $P = (1+X)^n(1+X)^n$.
- 2. En déduire l'expression de $\sum_{k=0}^{n} \binom{n}{k}^2$.

Exercice 10. Montrer que la dérivée n-ième de la fonction tan est de la forme $P_n \circ \tan$ où P_n est un polynôme de degré n+1 dont on déterminera le coefficient dominant.

Exercice 11. Montrer que la dérivée n-ième de la fonction $x \mapsto \frac{1}{1+x^2}$ est de la forme

$$x \mapsto \frac{P_n(x)}{(1+x^2)^{n+1}}$$

où P_n esst un polynôme de degré n dont on déterminera le coefficient dominant.

Exercice 12. Soit la fonction f définie sur $]-\frac{\pi}{2}, \frac{\pi}{2}[$ par $: f(x) = \frac{1}{\cos x}.$

- 1. Calculer f' et f''.
- 2. Montrer par récurrence l'existence, pour tout $n \in \mathbb{N}$, d'un polynôme P_n tel que, pour tout $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$:

$$f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}}.$$

Trouver une relation entre P_{n+1} , P_n et P'_n .

3. Déterminer le monôme de plus haut degré de P_n .

Exercice 13. Soit la fonction $f:]-1, 1[\to \mathbb{R}$ définie pour tout x réel par

$$f(x) = \frac{1}{\sqrt{1 - x^2}}.$$

- 1. Calculer f' et f''.
- 2. Montrer par récurrence que la dérivée n-ième est de la forme

$$f^{(n)}(x) = \frac{P_n(x)}{(1 - x^2)^n \sqrt{1 - x^2}}$$

où P_n est un polynôme.

Donner une relation (R) entre P_{n+1} , P_n et P'_n .

- 3. Montrer que P_n est une fonction paire si n est un entier pair et une fonction impaire si n est un entier impaire.
- 4. Montrer par récurrence en utilisant la relation (R) que

$$P_n' = n^2 P_{n-1}.$$

5. En déduire que les polynômes P_n vérifient pour tout entier $n \ge 1$ la relation de récurrence suivante

$$P_{n+1} = (2n+1)XP_n + n^2(1-X^2)P_{n-1}.$$

Exercice 14. Soit $n \in \mathbb{N}^*$. Calculer la dérivée n-ième du polynôme suivant :

$$P = X^2 (1 + X)^n.$$

Exercice 15. Soit n un entier non nul. On note alors P le polynôme : $P = X^n(1-X)^n$.

- 1. Calculer $P^{(n)}$.
- 2. En déduire que : $\sum_{k=0}^{n} (-1)^{n-k} {n \choose k}^2 = \frac{2^n}{n!} P^{(n)} \left(\frac{1}{2}\right)$.
- 3. Montrer que : $P = \left(\frac{1}{4} \left(X \frac{1}{2}\right)^2\right)^n$.
- 4. En déduire une expression de P comme combinaison linéaire des polynômes

$$1, \left(X - \frac{1}{2}\right), \left(X - \frac{1}{2}\right)^2, \left(X - \frac{1}{2}\right)^3, \dots, \left(X - \frac{1}{2}\right)^{2n}.$$

5. En déduire la valeur de : $\sum_{k=0}^{n} (-1)^{n-k} {n \choose k}^2$.

Exercice 16. Soit le polynôme $P = X^5 - X^4 + 3X^2 + X - 5$.

Déterminer les coefficients du polynôme P(X+1) avec un minimum de calcul.

III Racines d'un polynôme

Exercice 17. Trouver toutes les racines de $P = X^4 - 5X^3 + 7X^2 - 5X + 6$ dans \mathbb{C} .

Exercice 18. Soit $n \in \mathbb{N}^*$. On considère les polynômes $A = (X+1)^n - (X-1)^n$ et $B = \left(\sum_{k=0}^n X^k\right)^2$.

- 1. Calculer le degré de ces deux polynômes.
- 2. Déterminer les racines de ces deux polynômes.

Exercice 19. Soit n un entier non nul. Montrer que a donné est racine du polynôme et déterminer l'ordre de multiplicité de cette racine

1.
$$a = 2$$
 et $P = X^5 - 5X^4 + 7X^3 - 2X^2 + 4X - 8$

2.
$$a = 1$$
 et $P = X^{2n} - nX^{n+1} + nX^{n-1} - 1$

Exercice 20. Déterminer le nombre a de manière à ce que le polynôme $P = X^5 - aX^2 - aX + 1$ ait -1 comme racine au moins double.

Exercice 21. Soient $n \in \mathbb{N}^*$ et les polynômes

$$P = 1 + X + \frac{X(X+1)}{2!} + \dots + \frac{X(X+1)\dots(X+n-1)}{n!} \text{ et } Q = \frac{(X+n)(X+n-1)(X+n-2)\dots(X+1)}{n!}.$$

- 1. Calculer les degrés de P et de Q ainsi que P(0) et Q(0).
- 2. Montrer que, pour tout $i \in [1, n]$, on a : $Q(i) = \binom{n+i}{i}$.
- 3. Montrer que, pour tout $i \in [1, n]$, on a : $P(i) = \sum_{k=0}^{n} {i+k-1 \choose k}$.
- 4. En déduire que pour tout $i \in [0, n]$, on a : Q(i) = P(i)
- 5. En déduire que P = Q.

${ m IV}$ Factorisation dans ${\mathbb R}$ et dans ${\mathbb C}$ et conséquences

Exercice 22. Montrer dans chacun des cas suivants que B divise A:

- 1. $A = X^9 1$ et $B = X^3 1$.
- 2. $A = 2X^4 3X^3 X^2 15X + 6$ et $B = X^2 3X + 1$.
- 3. $A = X^3 iX^2 X + i + 5$ et B = X 1 + i.

Exercice 23. À quelle condition sur $(a, b, c) \in \mathbb{R}^3$ le polynôme $B = X^2 + X + 1$ divise-t-il le polynôme $A = X^4 + aX^2 + bX + c$?

Exercice 24. On considère le polynôme $P = X^5 + 3X^4 + 5X^3 + 5X^2 + 3X + 1$.

- 1. Trouver une racine évidente de P. Montrer que j est racine de P.
- 2. En déduire la factorisation de P dans \mathbb{C} et dans \mathbb{R} .

Exercice 25. Soit $n \in \mathbb{N}^*$. Factoriser dans \mathbb{C} et dans \mathbb{R} lorsque cela a un sens les polynômes suivants :

1.
$$P = X^3 + 1$$

6.
$$P = X^n - 1$$

2.
$$P = (X+i)^n - (X-i)^n$$

7.
$$P = X^4 + 4$$

3.
$$P = X^6 - 1$$

8.
$$P = X^5 + 32$$

4.
$$P = X^8 + X^4 + 1$$

9.
$$P = (2X - 1)^n - (-2X + 3)^n$$

5.
$$P = X^4 - 2X^2 - 8$$

10.
$$P = X^4 + 3X^3 - 14X^2 + 22X - 12$$
 sachant que $i+1$ est racine dans $\mathbb C$

Exercice 26. Soient $(a,b) \in \mathbb{R}^2$ et le polynôme $P = X^4 + aX^2 + bX + 1$.

- 1. Trouver a et b de telle sorte que 1 i soit racine de P.
- 2. Dans ce cas, trouver toutes les autres racines complexes de P.
- 3. En déduire la factorisation de P dans \mathbb{C} et dans \mathbb{R} .

Exercice 27. Soient trois scalaires $(a, b, c) \in \mathbb{K}^3$ et le polynôme $P = X^3 + aX^2 + bX + c$. On suppose que u, v, w sont les trois racines complexes de P. Montrer que

$$u + v + w = -a$$
 $uv + vw + uw = b$ et $uvw = -c$

Exercice 28. Polynômes de Tchebychev de deuxième espèce : on considère la suite de polynômes

$$\begin{cases} P_1 = 1, \ P_2 = 2X \\ \forall n \ge 1, \ P_{n+2} = 2XP_{n+1} - P_n. \end{cases}$$

- 1. Calculer P_3 et P_4 .
- 2. Soit $\theta \in]0, \pi[$ et $n \geq 1$.
 - (a) Montrer que $\sin(n\theta) = P_n(\cos(\theta))\sin(\theta)$.
 - (b) Déterminer les solutions de l'équation $\sin(nx) = 0 \sin[0, \pi[$.
 - (c) En déduire les racines de P_n sur]-1,1[. Justifier que les n-1 racines trouvées sont 2 à 2 distinctes.
- 3. Déterminer pour tout $n \geq 1$ le degré et le coefficient dominant de P_n .
- 4. (a) Pour tout $n \geq 1$, donner la décomposition du polynôme P_n dans $\mathbb{R}[X]$.
 - (b) En déduire que pour tout $\theta \in]0, \pi[$,

$$\frac{\sin(n\theta)}{\sin(\theta)} = 2^{n-1} \prod_{k=1}^{n-1} \left(\cos(\theta) - \cos\left(\frac{k\pi}{n}\right)\right).$$

5. Soit $n \ge 1$. Dériver deux fois par rapport à θ la relation obtenue au 2a et en déduire que

$$(1 - X^2)P_n'' - 3XP_n' + (n^2 - 1)P_n = 0.$$

Exercice 29. Soit $n \ge 2$, on pose $P = (X+1)^n - 1$.

- 1. Déterminer toutes les racines de P dans $\mathbb C$ et en déduire la factorisation de P dans $\mathbb C$.
- 2. On note Q le polynôme de \mathbb{C} tel que : P = XQ. À l'aide des racines de Q, déterminer la valeur de :

$$A = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right).$$

V Résolutions d'équations avec des polynômes

Exercice 30. Expression de sommes.

1. Trouver un polynôme P de degré 3 tel que : $P - P(X + 1) = X^3$.

En déduire la valeur de : $\sum_{k=0}^{n} k^3$ pour tout $n \in \mathbb{N}$.

2. Montrer qu'il existe un polynôme P de degré 4 tel que : P(X+1) - P = X(X-1)(X-2)En déduire pour tout $n \ge 1$ une expression simple de $S = \sum_{k=1}^{n} k(k-1)(k-2)$.

Exercice 31. Pour tout polynôme $P \in \mathbb{R}$, on pose

$$\varphi(P) = (3X + 1)P - X(X - 1)P'.$$

- 1. Vérifier que φ définit bien une application de \mathbb{R} dans \mathbb{R} .
- 2. (a) Pour quelles valeurs de n a-t-on $\varphi(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$?
 - (b) Pour ces valeurs de n, déterminer les polynômes de $\mathbb{R}_n[X]$ tels que $\varphi(P) = 0$.
- 3. Résoudre dans \mathbb{R} l'équation $\varphi(P) = X^2$.

Exercice 32. On cherche ici à déterminer tous les polynômes $P \in \mathbb{R}$ tels que $P(X^2) = (X^2 + 1)P$.

- 1. Soit $P \in \mathbb{R}$ vérifiant $P(X^2) = (X^2 + 1)P$. Quel est son degré?
- 2. Déterminer P à l'aide d'une identification des coefficients.
- 3. Retrouver l'expression de P en déterminant ses racines.

Exercice 33.

- 1. Déterminer tous les polynômes P de \mathbb{R} tels que : P = XP'.
- 2. Déterminer tous les polynômes P de \mathbb{R} tels que : $(2X^2 3)P'' 6P = 0$.
- 3. Déterminer tous les polynômes $P \in \mathbb{R}$ tels que : $\forall n \in \mathbb{N}, P(n) = 0$.
- 4. Déterminer tous les polynômes $P \in \mathbb{R}$ tels que : P(X+1) = -P.

Exercice 34. Polynômes de Tchebychev de première espèce :

On définit une suite de polynômes $(P_n)_{n>0}$ par

$$\begin{cases} P_0 = 1 & P_1 = X \\ \forall n \in \mathbb{N}, P_{n+2} = 2XP_{n+1} - P_n. \end{cases}$$

1. Calculer P_2 , P_3 et P_4 . Déterminer également les racines de ces trois polynômes.

- 2. Déterminer pour tout $n \geq 0$ le degré ainsi que le coefficient dominant de P_n .
- 3. Pour tout $n \in \mathbb{N}$, calculer $P_n(1)$.
- 4. Soit $n \geq 0$.
 - (a) Montrer que:

$$\forall t \in \mathbb{R}, \quad P_n(\cos t) = \cos(nt).$$

(b) Réciproquement, montrer que si Q_n est un polynôme tel que

$$\forall t \in \mathbb{R}, \quad Q_n(\cos t) = \cos(nt)$$

alors
$$P_n = Q_n$$
.

- 5. Etudier la parité de P_n . On pourra s'intéresser au polynôme $Q = P_n(-X) (-1)^n P_n$.
- 6. Soit $n \geq 0$.
 - (a) Déterminer les racines de P_n sur [-1, 1].
 - (b) En déduire toutes les racines de P_n .

Exercice 35. Soit a un réel, n un entier naturel non nul et

$$Z = \prod_{k=0}^{n-1} \left(e^{\frac{4ki\pi}{n}} - 2\cos(a)e^{\frac{2ki\pi}{n}} + 1 \right).$$

- 1. Factoriser dans $\mathbb{C}: P(X) = X^2 2\cos(a)X + 1$.
- 2. En déduire une factorisation de Z.
- 3. Simplifier Z.