

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2023

Problem F Interesting Couple

You are hosting a party with N guests (numbered from 1 to N) in a large room. The party room can be represented as a 2-dimensional Cartesian space where guest i stands at (X_i, Y_i) . Since you have a unique personality, you require each guest to only move horizontally or vertically within this room.

The **distance** between two guests i and j, denoted as d(i,j), is the total distance they need to travel in both horizontal and vertical directions to reach each other, i.e., $d(i,j) = |X_i - X_j| + |Y_i - Y_j|$.

The **privacy value** of two guests i and j, denoted as p(i, j), is determined by their distances to the closest other guest. Formally, p(i, j) is the smallest $\min(d(i, k), d(j, k))$ over all k where $k \neq i$ and $k \neq j$.

A pair of guest i and j is an **interesting couple** if and only if their privacy value is greater or equal to the distance between them. In other words, it is a pair (i, j) such that $p(i, j) \ge d(i, j)$.

Your task in this problem is to find the minimum value of p(i, j) among all such interesting couples.

Input

The first line consists of an integer N ($3 \le N \le 100\,000$).

Each of the next N lines consists of two integers X_i Y_i ($0 \le X_i$, $Y_i \le 10^9$). There are no two guests stand at the same location. Formally, $(X_i, Y_i) \ne (X_i, Y_i)$ for $1 \le i < j \le N$.

Under the given constraints, it can be shown that an interesting couple always exists.

Output

Output an integer representing the minimum value of p(i, j) among all interesting couples.

Sample Input #1

3 2	4			
0 2	3 2 6 4 3 4 4 7			
6 4	6 4			
3 4	3 4			
4 7	4 7			

Sample Output #1

3

Explanation for the sample input/output #1

The only interesting couple is $\langle 1, 3 \rangle$, with guest 2 being the closest guest to this couple. Their privacy value is $\min(d(1,2),d(3,2))=\min(5,3)=3$.

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2023

Samp	le I	npu	t #2
------	------	-----	------

3			
4 6 8 6 6 4			
8 6			
6 4			

Sample Output #2

4

Explanation for the sample input/output #2

There are 3 possible guest pairs, and all of them are interesting couples, each with a privacy value of 4.

Sample Input #3

5		
1 5		
2 5		
11 5		
12 5		
20 5		

Sample Output #3

8

Explanation for the sample input/output #3

There are two interesting couples, $\langle 1, 2 \rangle$ and $\langle 3, 4 \rangle$, with privacy values of 9 and 8, respectively.

Sample Input #4

5			
4 4			
4 3			
4 5			
3 4			
5 4			

Sample Output #4

1