DATABASE DESIGN Inventory Management Project

Varun Jain - 2014170 Siddharth Singh - 2014105

ER Diagram

Functional Dependencies

- 1. Table Name : id Functional Dependencies
 - · usr->password
 - · usr->type
- 2. Table : items

Functional Dependencies

- · item_code->item_name
- · item_code->price
- 3. Table: orders

Functional Dependencies

- · order_number->usr
- order_number->item_code

4. Table: tax

No Functional Dependencies

5. Table: attendance

No Functional Dependencies

Checking Table 'id' for 2NF and 3NF violation

Key -> usr

2NF satisfying condition: There must not be any non-key attribute in the relation that is functionally determined by only a subset of a key

1. FD: usr->password

The non-key attribute 'password' is not functionally determined by any subset of the key, hence it doesn't violates 2NF.

2. FD: usr->type

The non-key attribute 'type' is not functionally determined by any subset of the key, hence it doesn't violates 2NF.

3NF satisfying condition:

In relation R, one of the following must be true for a functional dependency $X \rightarrow B$:

- *X* is a superkey
- B is a key attribute
- 1. FD: usr->password

usr is a super key and password is not a key attribute, hence it is in 3NF.

2. FD: usr->type

usr is a super key and type is not a key attribute, hence it is in 3NF.

Hence table 'id' is in 3NF

· Checking Table 'items' for 2NF and 3NF violation

Key -> item_code

2NF satisfying condition: There must not be any non-key attribute in the relation that is functionally determined by only a subset of a key

1. FD : item_code->item_name

The non-key attribute 'item_name' is not functionally determined by any subset of the key, hence it doesn't violates 2NF.

2. FD: item code->price

The non-key attribute 'price' is not functionally determined by any subset of the key, hence it doesn't violates 2NF.

3NF satisfying condition:

In relation R, one of the following must be true for a functional dependency $X \rightarrow B$:

- X is a superkey
- B is a key attribute
- 1. FD: item_code->item_name

item_code is a super key and item_name is not a key attribute, hence it is in 3NF.

2. FD: item_code->price

item_code is a super key and price is not a key attribute, hence it is in 3NF.

Hence table 'items' is in 3NF

• Checking Table 'orders' for 2NF and 3NF violation

Key -> order_number

2NF satisfying condition: There must not be any non-key attribute in the relation that is functionally determined by only a subset of a key

1. FD : order_number->usr

The non-key attribute 'usr' is not functionally determined by any subset of the key, hence it doesn't violates 2NF.

2. FD: order_number->item_code

The non-key attribute 'item_code' is not functionally determined by any subset of the key, hence it doesn't violates 2NF.

3NF satisfying condition:

In relation R, one of the following must be true for a functional dependency $X \rightarrow B$:

- X is a superkey
- B is a key attribute
- 1. FD: order number->usr

order_number is a super key and usr is not a key attribute, hence it is in 3NF.

2. FD: order_number->item_code

order_number is a super key and item_code is not a key attribute, hence it is in 3NF.

Hence table 'items' is in 3NF.

Minimal Relational Schema Design

Functional Dependencies:

H={usr->password, usr->type, item_code->item_name, item_code->price, order_number->usr, order_number->item_code}

usr+ = (password, type)

item_code+ = (item_name, price)

order_number+ = (usr, password, type, item_code, item_name, price)

Checking for minimal FDs

- 1. usr->password : can't be removed, because for J = H {usr->password}, usr+ = (type)
- 2. usr->type : can't be removed, because for $J = H \{usr->type\}$, $usr^+ = \{password\}$
- 3. item_code->item_name : can't be removed, because for J = H {item_code->item_name), item_code+ = (price)
- 4. item_code->price : can't be removed, because for J = H {item_code->price}, item_code+ = (item_name)
- 5. order_number->usr : can't be removed, because for J = H {order_number->usr), order_number+ = (item_code, item_name, price)
- 6. order_number->item_code : can't be removed, because for J = H {order_number->item_code), order_number+ = (usr, password, type)

Hence our functional dependencies are minimal.