SLIM Curve

Generated by Doxygen 1.8.6

Thu Mar 13 2014 16:50:07

Contents

1	SLII	M-curve	package 1	for exponential curve fitting of spectral lifetime data.	1
2	File	Index			5
	2.1	File Lis	st		5
3	File	Docum	entation		7
	3.1	Ecf.h F	File Refere	nce	7
		3.1.1	Detailed	Description	9
		3.1.2	Enumera	tion Type Documentation	9
			3.1.2.1	fit_type	9
			3.1.2.2	noise_type	9
			3.1.2.3	restrain_type	9
		3.1.3	Function	Documentation	10
			3.1.3.1	ECF_ExportParams_start	10
			3.1.3.2	ECF_ExportParams_stop	10
			3.1.3.3	GCI_ecf_free_matrix	10
			3.1.3.4	GCI_ecf_matrix	10
			3.1.3.5	GCI_marquardt_fitting_engine	10
			3.1.3.6	GCI_marquardt_global_exps_instr	11
			3.1.3.7	GCI_marquardt_global_generic_instr	12
			3.1.3.8	GCI_multiexp_lambda	13
			3.1.3.9	GCI_multiexp_tau	13
			3.1.3.10	GCI_set_restrain_limits	14
			3.1.3.11	GCI_SPA_1D_marquardt	14
			3.1.3.12	GCI_SPA_1D_marquardt_global_exps_instr	15
			3.1.3.13	GCI_SPA_1D_marquardt_global_generic_instr	16
			3.1.3.14	GCI_SPA_1D_marquardt_instr	17
			3.1.3.15	GCI_SPA_2D_marquardt	18
			3.1.3.16	GCI_SPA_2D_marquardt_global_exps_instr	19
			3.1.3.17	GCI_SPA_2D_marquardt_global_generic_instr	21
			3.1.3.18	GCI_SPA_2D_marquardt_instr	22
			3.1.3.19	GCI_stretchedexp	23

iv CONTENTS

		3.1.3.20	GCI_triple_i	ntegral_fitt	ing_e	ngine	 	 	 	 	 	23
3.2	GCI_L	sqnonneg.	h File Refere	nce			 	 	 	 	 	24
	3.2.1	Detailed	Description				 	 	 	 	 	24
	3.2.2	Function	Documentati	on			 	 	 	 	 	24
		3.2.2.1	GCI_lsqnon	neg			 	 	 	 	 	24
3.3	GCI_P	hasor.h Fil	e Reference				 	 	 	 	 	25
	3.3.1	Detailed	Description				 	 	 	 	 	25
	3.3.2	Function	Documentati	on			 	 	 	 	 	25
		3.3.2.1	GCI_Phaso	r			 	 	 	 	 	25
		3.3.2.2	GCI_Phaso	r_getPerio	d		 	 	 	 	 	25
Index												27

Chapter 1

SLIM-curve package for exponential curve fitting of spectral lifetime data.

SLIM Curve is an exponential curve fitting library used for Fluorescent Lifetime Imaging or FLIM and Spectral Lifetime Imaging or SLIM. It is based on code developed by Paul Barber and his group at the Gray Institute for Radiation Oncology & Biology and used for FLIM functionality in his TRI2 (Time Resolved Imaging) software. It is also used in the LOCI SLIM Plugin project.

There are two algorithms used for curve fitting within SLIM Curve: The first is a triple integral method that does a very fast estimate of a single exponential lifetime component. The second is a Levenberg-Marquardt algorithm or LMA that uses an iterative, least-squares-minimization approach to generate a fit. This works with single, double and triple exponential models, as well as stretched exponential.

The code is written in C89 compatible C and is thread safe for fitting multiple pixels concurrently. Several files are provided as wrappers to call this library from Java code: EcfWrapper.c and .h provide a subset of function calls used by SLIM Plugin, these may be invoked directly from Java using JNA. In addition there is a Java CurveFitter project that provides a wrapper to the SLIM Curve code. This invokes the C code using JNI, with loci_curvefitter_SLIM-CurveFitter.c and .h.

For further details, see: http://loci.wisc.edu/software/slim-curve

If you are familiar with the program TRI2, that uses SLIM Curve, this screenshot may help you to understand the meaning of the parameters.

Figure 1.1: How some SLIM-Curve paramters are used in TRI2.

Library Contents:

Directory	Contents
src	source files
src/main/c	The source files for the SLIM Curve library
src/slim-curve-cmd/c	The source files for the stand alone executable
	wrapper for the library
test_files	dat and ini settings file for testing
src/main/c/doc	API documentation (Doxygen output)

To Build the Stand Alone Program using CMake and gcc under Linux:

Create a build folder, and cd to it

mkdir build
cd build

Run CMake

cmake ../CMakeLists.txt

Run make

make

To Run the Stand Alone Executable

Copy the executable to the test_files folder for convenience

```
cp slim-curve-cmd ../test_files
```

Run the program with the test files

```
cd ../test_files
./slim-curve-cmd test.ini transient.dat
```

Author

Paul Barber

Copyright

Creative Commons BY-SA 2014

4	SLIM-curve package for exponential curve fitting of spectral lifetime data.

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

Ecf.h	
SLIM Curve - Exponential Curve Fitting Header	7
GCI_Lsqnonneg.h	
SLIM Curve - Non-negative Least Squares Header	24
GCI_Phasor.h	
SLIM Curve - Phasor analysis Header	25

6 File Index

Chapter 3

File Documentation

3.1 Ecf.h File Reference

SLIM Curve - Exponential Curve Fitting Header.

Enumerations

enum noise_type {
 NOISE_CONST, NOISE_GIVEN, NOISE_POISSON_DATA, NOISE_POISSON_FIT,
 NOISE_GAUSSIAN_FIT, NOISE_MLE }

Noise Type.

enum fit_type { FIT_GLOBAL_MULTIEXP, FIT_GLOBAL_STRETCHEDEXP }

Fit Type for optimised exponential global analysis.

enum restrain_type { ECF_RESTRAIN_DEFAULT, ECF_RESTRAIN_USER }
 Restrain Type.

Functions

- int GCI_triple_integral_fitting_engine (float xincr, float y[], int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float *Z, float *A, float *tau, float *fitted, float *residuals, float *chisq, float chisq_target)

 The main entry point for Triple Integral or Rapid Lifetime Determination (RLD).
- int GCI_marquardt_fitting_engine (float xincr, float *trans, int ndata, int fit_start, int fit_end, float prompt[], int nprompt, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, void(*fitfunc)(float, float[], float *, float[], int), float *fitted, float *residuals, float *chisq, float **covar, float **alpha, float **erraxes, float chisq target, float chisq delta, int chisq percent)

The main entry point for LM and MLE fitting.

- int **GCI_triple_integral** (float xincr, float y[], int fit_start, int fit_end, noise_type noise, float sig[], float *Z, float *A, float *tau, float *fitted, float *residuals, float *chisq, int division)
- int **GCI_triple_integral_instr** (float xincr, float y[], int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float *Z, float *A, float *tau, float *fitted, float *residuals, float *chisq, int division)
- int **GCI_marquardt** (float x[], float y[], int ndata, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, void(*fitfunc)(float, float[], float *, float[], int), float *fitted, float *residuals, float **covar, float **alpha, float *chisq_delta, float chisq_percent, float **erraxes)
- int GCI_marquardt_instr (float xincr, float y[], int ndata, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, void(*fitfunc)(float, float[], float *, float[], int), float *fitted, float *residuals, float **covar, float **alpha, float *chisq, float chisq_delta, float chisq_percent, float **erraxes)
- void GCI_marquardt_cleanup (void)

int GCI_marquardt_global_exps_instr (float xincr, float **trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], int ftype, float **param, int paramfree[], int nparam, restrain_type restrain, float chisq_delta, float **fitted, float **residuals, float chisq_trans[], float *chisq_global, int *df, int drop_bad_transients)

Global analysis analysis function for exponential functions.

• int GCI_marquardt_global_generic_instr (float xincr, float **trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float **param, int paramfree[], int nparam, int gparam[], restrain_type restrain, float chisq_delta, void(*fitfunc)(float, float[], float *, float[], int), float **fitted, float **residuals, float chisq_trans[], float *chisq_global, int *df)

Global analysis analysis function for generic functions.

• int GCI_SPA_1D_marquardt (float x[], float y[], int ndata, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, float chisq_delta, void(*fitfunc)(float, float[], float *, float[], int), int spa_param, int spa_nvalues, float spa_low, float spa_high, float chisq[], void(*progressfunc)(float))

Support plane analysis.

• int GCI_SPA_2D_marquardt (float x[], float y[], int ndata, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, float chisq_delta, void(*fitfunc)(float, float[], float *, float[], int), int spa_param1, int spa_nvalues1, float spa_low1, float spa_high1, int spa_param2, int spa_nvalues2, float spa_low2, float spa_high2, float **chisq, void(*progressfunc)(float))

Support plane analysis for 2 parameters.

• int GCI_SPA_1D_marquardt_instr (float xincr, float y[], int ndata, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, float chisq_delta, void(*fitfunc)(float, float[], float *, float[], int), int spa_param, int spa_nvalues, float spa_low, float spa_high, float chisq[], float chisq_target, void(*progressfunc)(float))

Support plane analysis with instrument response (prompt or IRF).

• int GCI_SPA_2D_marquardt_instr (float xincr, float y[], int ndata, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, float chisq_delta, void(*fitfunc)(float, float[], float *, float[], int), int spa_param1, int spa_nvalues1, float spa_low1, float spa_high1, int spa_param2, int spa_nvalues2, float spa_low2, float spa_high2, float **chisq, float chisq_target, void(*progressfunc)(float))

Support plane analysis for 2 parameters with instrument response (prompt or IRF).

• int GCI_SPA_1D_marquardt_global_exps_instr (float xincr, float **trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], int ftype, float **param, int paramfree[], int nparam, restrain_type restrain, float chisq_delta, int drop_bad_transients, int spa_param, int spa_nvalues, float spa_low, float spa_high, float chisq_global[], int df[], void(*progressfunc)(float))

Support plane analysis for exponential global analysis with instrument response (prompt or IRF).

• int GCI_SPA_2D_marquardt_global_exps_instr (float xincr, float **trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], int ftype, float **param, int paramfree[], int nparam, restrain_type restrain, float chisq_delta, int drop_bad_transients, int spa_param1, int spa_nvalues1, float spa_low1, float spa_high1, int spa_param2, int spa_nvalues2, float spa_low2, float spa_high2, float **chisq_global, int **df, void(*progressfunc)(float))

Support plane analysis for exponential global with 2 parameters with instrument response (prompt or IRF).

int GCI_SPA_1D_marquardt_global_generic_instr (float xincr, float **trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float **param, int paramfree[], int nparam, int gparam[], restrain_type restrain, float chisq_delta, void(*fitfunc)(float, float[], float *, float[], int), int spa_param, int spa_nvalues, float spa_low, float spa_high, float chisq_global[], int df[], void(*progressfunc)(float))

Support plane analysis for generic global analysis with instrument response (prompt or IRF).

• int GCI_SPA_2D_marquardt_global_generic_instr (float xincr, float **trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float **param, int paramfree[], int nparam, int gparam[], restrain_type restrain, float chisq_delta, void(*fitfunc)(float, float[], float *, float[], int), int spa_param1, int spa_nvalues1, float spa_low1, float spa_high1, int spa_param2, int spa_nvalues2, float spa_low2, float spa_high2, float **chisq_global, int **df, void(*progressfunc)(float))

Support plane analysis for generic global with 2 parameters with instrument response (prompt or IRF).

int GCl_set_restrain_limits (int nparam, int restrain[], float minval[], float maxval[])

Setting restraints.

• void GCI_multiexp_lambda (float x, float param[], float *y, float dy_dparam[], int nparam)

multi-exp predefined fitting model based on decay rates (lambdas).

• void GCI_multiexp_tau (float x, float param[], float *y, float dy_dparam[], int nparam)

multi-exp predefined fitting model based on lifetimes (taus).

• void GCI_stretchedexp (float x, float param[], float *y, float dy_dparam[], int nparam) stretched-exp predefined fitting model.

float ** GCI_ecf_matrix (long nrows, long ncols)

Allocate a 2d matrix for ecf fitting.

void GCI ecf free matrix (float **m)

Free a 2d matrix.

void ECF_ExportParams_start (char path[])

Start exporting fit details to a file for each fit.

void ECF ExportParams stop (void)

Stop exporting fit details to a file for each fit.

3.1.1 Detailed Description

SLIM Curve - Exponential Curve Fitting Header.

Definition in file Ecf.h.

3.1.2 Enumeration Type Documentation

3.1.2.1 enum fit type

Fit Type for optimised exponential global analysis.

Chooses between a multi-exponential fit (FIT_GLOBAL_MULTIEXP) and the special 'stretched' exponential (FIT_GLOBAL_STRETCHEDEXP).

Definition at line 51 of file Ecf.h.

3.1.2.2 enum noise_type

Noise Type.

'NOISE CONST' - every data point is assumed to have the same supplied variance.

'NOISE_GIVEN' - every data point can have an individual variance, given via a data array.

'NOISE_GAUSSIAN_FIT' - Variance for Gaussian distribution is used at all data points Variants based on the data or the fit.

'NOISE_POISSON_DATA and NOISE_POISSON_FIT' - Variance for Gaussian distribution is used with a lower limit of 15, this being the point where the Gaussian approximation begins to break down with Poissonian data. Variants based on the data or the fit.

'NOISE_MLE' - Maximum Likelihood Estimation through the use of the Poisson equation (Laurence and Chromy 2010).

Definition at line 45 of file Ecf.h.

3.1.2.3 enum restrain_type

Restrain Type.

Chooses the restrain type, either the default with very wide sensible limits (ECF_RESTRAIN_DEFAULT) or 'user' defined limits (ECF_RESTRAIN_USER). See GCI_set_restrain_limits.

Definition at line 56 of file Ecf.h.

3.1.3 Function Documentation

3.1.3.1 void ECF_ExportParams_start (char path[])

Start exporting fit details to a file for each fit.

Parameters

in	path	The path of the file to use to save fit details.

3.1.3.2 void ECF_ExportParams_stop (void)

Stop exporting fit details to a file for each fit.

3.1.3.3 void GCl_ecf_free_matrix (float ** m)

Free a 2d matrix.

3.1.3.4 float** GCI_ecf_matrix (long *nrows*, long *ncols*)

Allocate a 2d matrix for ecf fitting.

3.1.3.5 int GCI_marquardt_fitting_engine (float xincr, float * trans, int ndata, int fit_start, int fit_end, float prompt[], int nprompt, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, void(*)(float, float[], float *, float[], int) fitfunc, float * fitted, float * residuals, float * chisq, float ** covar, float ** alpha, float ** erraxes, float chisq_target, float chisq_delta, int chisq_percent)

The main entry point for LM and MLE fitting.

Uses GCI_marquardt_instr() to fit repeatedly until chisq_target is met or a maximum number of iterations are used. This can be used to fit any function through the 'fitfunc', but is primarily used for single, multi and stretched exponential fits. Predefined fitting models GCI_multiexp_tau and GCI_stretchedexp are provided elsewhere in the library.

in	xincr	The time increment in between the values in the y array.
in	trans	The transient (time resolved) signal to be analysed, the 'data'.
in	ndata	The number of data points.
in	fit_start	The index into the y array marking the start to the data to be used in the fit.
		Some data before this start index is required for convolution with the prompt.
in	fit_end	The index into the y array marking the end of the data to be used in the fit.
in	prompt	The instrument response (IRF) or prompt signal to be used (optional, can pass
		NULL).
in	nprompt	The number of data points in the prompt (ignored if prompt = NULL).
in	noise	The noise_type to be used.
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is
		used (optional, can pass NULL).
in,out	param	An array of parameters, the order of which must match fitfunc. Provide param-
		eter estimates, these are overridden with the fitted values.

in	paramfree	An array indicating which parameters are free (1), fixed (0)
in	nparam	The number of parameters.
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set
		restrain_limits.
in	fitfunc	Encodes the function to fit to the data, e.g. GCI_multiexp_tau.
out	fitted	An array containing values fitted to the data, the 'fit'. Fit points are coincident
		in time with the data points.
out	residuals	An array containing the difference between the data and the fit.
out	chisq	The resulting raw chi squared value of the fit. To get the reduced chisq, divide
		by the degrees of freedom (fit_start - fit_end - nparam)
out	covar	The covariance matrix. Allocate with a square matrix with GCI_ecf_matrix
		(nparam, nparam).
out	alpha	The alpha matrix. Allocate with a square matrix with GCI_ecf_matrix (nparam,
		nparam).
out	erraxes	The dimensions of the confidence ellipsoid of the chisq. See chisq_percent
		below. Allocate with a square matrix with GCI_ecf_matrix (nparam, nparam).
in	chisq_target	A raw chi squared value to aim for. If this value is reached fitting will stop. If
		you want to aim for a reduced chisq (say 1.1 or 1.0) you must multiply by the
		degree of freedom. (TRI2: "Try refits")
in	chisq_delta	An individual fit will continue if the chisq value changes by more then this
		amount. Try 1E-5. (TRI2: "Stopping Criterion")
in	chisq_percent	Defines the confidence interval when calculating the error axes, e.g. 95 %.
	.—.	, ,

Returns

An error code, 0 = success.

3.1.3.6 int GCI_marquardt_global_exps_instr (float xincr, float ** trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], int ftype, float ** param, int paramfree[], int nparam, restrain_type restrain, float chisq_delta, float ** fitted, float ** residuals, float chisq_trans[], float * chisq_global, int * df, int drop_bad_transients)

Global analysis analysis function for exponential functions.

The main entry point for Global analysis with exponential functions. This assumes global exponential params (lifetimes) and local amplitudes.

in	xincr	The time increment inbetween the values in the y array.
in	trans	A pointer to a matrix of transient (time resolved) signals to be analysed, the
		'data'. Allocate with GCI_ecf_matrix.
in	ndata	The number of data points in each transient.
in	ntrans	The number of transient signals (pixels in a time resolved image).
in	fit_start	The index into the y array marking the start to the data to be used in the fit.
		Some data before this start index is required for convolution with the prompt.
in	fit_end	The index into the y array marking the end of the data to be used in the fit.
in	instr	The instrument reponse (IRF) or prompt signal to be used (optional, can pass
		NULL).
in	ninstr	The number of data points in the prompt (ignored if prompt = NULL).
in	noise	The noise_type to be used.

in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is
		used (optional, can pass NULL).
in	ftype	The type of function to fit can be multi-exponential (FIT_GLOBAL_MULTIEXP)
		or stretched exponential (FIT_GLOBAL_STRETCHEDEXP). For other fitting
		functions use the global generic function.
in,out	param	A pointer to an array of parameter arrays, the order of which must match fitfunc.
in	paramfree	An array indicating which parameters are free (1), fixed (0).
in	nparam	The number of parameters per fit.
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set
		restrain_limits.
in	chisq_delta	An individual fit will continue if the chisq value changes by more then this
		amount. Try 1E-5. (TRI2: "Stopping Criterion")
out	fitted	A pointer to a matrix containing values fitted to the data, the 'fit'. Fit points are
		coincident in time with the data points. Only the first row is used. Allocate with
		GCI_ecf_matrix with nrows=1.
out	residuals	A matrix containing the difference between the data and the fit. Only the first
		row is used. Allocate with GCI_ecf_matrix with nrows=1.
out	chisq_trans	An array of the resulting raw chi squared values of the fits. To get the reduced
		chisq, divide by the degrees of freedom (fit_start - fit_end - nparam).
out	chisq_global	The resulting raw chi squared value of the total global fit. To get the reduced
		chisq, divide by the degrees of freedom df.
out	df	The degrees of freedom.
in	drop_bad	Remove individual transients from the fit that have a -ve return value from GC-
	transients	I_marquardt_global_exps_do_fit_single (default = 1)

Returns

An error code, 0 = success.

See Also

GCI_marquardt_global_generic_instr

3.1.3.7 int GCI_marquardt_global_generic_instr (float *xincr*, float ** *trans*, int *ndata*, int *ntrans*, int *fit_start*, int *fit_end*, float *instr*[], int *ninstr*, noise_type *noise*, float *sig*[], float ** *param*, int *paramfree*[], int *nparam*, int *gparam*[], restrain_type *restrain*, float *chisq_delta*, void(*)(float, float[], float *, float[], int) *fitfunc*, float ** *fitted*, float ** *residuals*, float *chisq_trans*[], float * *chisq_global*, int * *df*)

Global analysis analysis function for generic functions.

The main entry point for Global analysis with generic functions.

in	xincr	The time increment inbetween the values in the y array.
in	trans	A pointer to a matrix of transient (time resolved) signals to be analysed, the
		'data'. Allocate with GCI_ecf_matrix.
in	ndata	The number of data points in each transient.
in	ntrans	The number of transient signals (pixels in a time resolved image).
in	fit_start	The index into the y array marking the start to the data to be used in the fit.
		Some data before this start index is required for convolution with the prompt.

in	fit_end	The index into the y array marking the end of the data to be used in the fit.
in	instr	The instrument reponse (IRF) or prompt signal to be used (optional, can pass
		NULL).
in	ninstr	The number of data points in the prompt (ignored if prompt = NULL).
in	noise	The noise_type to be used.
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is
		used (optional, can pass NULL).
in,out	param	A pointer to an array of parameter arrays, the order of which must match fitfunc.
		Allocate with GCI_ecf_matrix (ntrans, nparam). The global params will be the
		same for every transient.
in	paramfree	An array indicating which parameters are free (1), fixed (0).
in	nparam	The number of parameters per fit.
in	gparam	An array marking which parameters are to be globally determined.
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set
		restrain_limits.
in	chisq_delta	An individual fit will continue if the chisq value changes by more then this
		amount. Try 1E-5. (TRI2: "Stopping Criterion")
in	fitfunc	Encodes the function to fit to the data, e.g. GCI_multiexp_tau.
out	fitted	A pointer to a matrix containing values fitted to the data, the 'fit'. Fit points are
		coincident in time with the data points. Only the first row is used. Allocate with
		GCI_ecf_matrix with nrows=1.
out	residuals	A matrix containing the difference between the data and the fit. Only the first
		row is used. Allocate with GCI_ecf_matrix with nrows=1.
out	chisq_trans	An array of the resulting raw chi squared values of the fits. To get the reduced
		chisq, divide by the degrees of freedom (fit_start - fit_end - nparam).
out	chisq_global	The resulting raw chi squared value of the total global fit. To get the reduced
		chisq, divide by the degrees of freedom df.
out	df	The degrees of freedom.

Returns

An error code, 0 = success.

See Also

 $GCl_marquardt_global_exps_instr$

3.1.3.8 void GCI_multiexp_lambda (float x, float param[], float y, fl

multi-exp predefined fitting model based on decay rates (lambdas).

Parameters

in	X	The x value to evaluate the function at.
in	param[]	Array containing the parameters to use in the evaluation.
out	у	The value of the function at the x value.
out	dy_dparam	Array of dy/dparam values at this point
in	nparam	The number of parameters (may not be used if model has a fixed parameter
		number)

3.1.3.9 void GCl_multiexp_tau (float x, float param[], float * y, float dy_dparam[], int nparam)

multi-exp predefined fitting model based on lifetimes (taus).

Parameters

in	X	The x value to evaluate the function at.
in	param[]	Array containing the parameters to use in the evaluation.
out	у	The value of the function at the x value.
out	dy_dparam	Array of dy/dparam values at this point
in	nparam	The number of parameters (may not be used if model has a fixed parameter
		number)

3.1.3.10 int GCl_set_restrain_limits (int nparam, int restrain[], float minval[], float maxval[])

Setting restraints.

Parameters

in	nparam	The number of parameters.
in	restrain	Array indicating which parameters to restrain (set non-zero to restrain).
in	minval	Array of minimum values for each parameter (only those for the restrained
		parameters set by the restrain array are used).
in	maxval	Array of maximum values for each parameter (only those for the restrained
		parameters set by the restrain array are used).

Returns

An error code, 0 = success.

3.1.3.11 int GCI_SPA_1D_marquardt (float x[], float y[], int ndata, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, float chisq_delta, void(*)(float, float[], float *, float[], int) fitfunc, int spa_param, int spa_nvalues, float spa_low, float spa_high, float chisq[], void(*)(float) progressfunc)

Support plane analysis.

This function will perform a number of fits with one fixed parameter that varies between the spa_low and spa_high values. The array of chisq values is returned that forms the 'support plane'.

in	X	The x or time values at which the y data points are provided.
in	У	The transient (time resolved) signal to be analysed, the 'data'.
in	ndata	The number of data points.
in	noise	The noise_type to be used.
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is
		used (optional, can pass NULL).
in,out	param	An array of parameters, the order of which must match fitfunc. Provide param-
		eter estimates, these are overridden with the fitted values.
in	paramfree	An array indicating which parameters are free (1), fixed (0).
in	nparam	The number of parameters.
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set
		restrain_limits.

in	chisq_delta	An individual fit will continue if the chisq value changes by more then this
		amount. Try 1E-5. (TRI2: "Stopping Criterion")
in	fitfunc	Encodes the function to fit to the data, e.g. GCI_multiexp_tau.
in	spa_param	The index to the param we are analysing with spa.
in	spa_nvalues	The number of values of the parameter we are to calculate the chisq value for.
in	spa_low	The lowest parameter value to use.
in	spa_high	The highest parameter value to use.
out	chisq	An array of resulting raw chi squared values. To get the reduced chisq, divide
		by the degrees of freedom (fit_start - fit_end - nparam)
in	progressfunc	A pointer to a function that may provide some feedback to the user on
		progress. A number between 0 and 1 is sent to this function after each it-
		eration. (optional: may by NULL)

Returns

An error code, 0 = success.

See Also

GCI_SPA_2D_marquardt GCI_SPA_1D_marquardt_instr GCI_SPA_2D_marquardt_instr

3.1.3.12 int GCI_SPA_1D_marquardt_global_exps_instr (float xincr, float ** trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], int ftype, float ** param, int paramfree[], int nparam, restrain_type restrain, float chisq_delta, int drop_bad_transients, int spa_param, int spa_nvalues, float spa_low, float spa_high, float chisq_global[], int df[], void(*)(float) progressfunc)

Support plane analysis for exponential global analysis with instrument response (prompt or IRF).

This fucntion will perform a number of fits with one fixed parameter that varies between the spa_low and spa_high values. The array of chisq values is returned that forms the 'support plane'.

in	xincr	The time increment in between the values in the y array.
in	trans	A pointer to a matrix of transient (time resolved) signals to be analysed, the
		'data'. Allocate with GCI_ecf_matrix.
in	ndata	The number of data points.
in	ntrans	The number of transient signals (pixels in a time resolved image).
in	fit_start	The index into the y array marking the start to the data to be used in the fit.
		Some data before this start index is required for convolution with the prompt.
in	fit_end	The index into the y array marking the end of the data to be used in the fit.
in	instr	The instrument response (IRF) or prompt signal to be used (optional, can pass
		NULL).
in	ninstr	The number of data points in the prompt (ignored if prompt = NULL).
in	noise	The noise_type to be used.
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is
		used (optional, can pass NULL).
in	ftype	The type of function to fit can be multi-exponential (FIT_GLOBAL_MULTIEXP)
		or stretched exponential (FIT_GLOBAL_STRETCHEDEXP). For other fitting
		functions use the global generic function.

in,out	param	A pointer to an array of parameter arrays, the order of which must match fitfunc.
in	paramfree	An array indicating which parameters are free (1), fixed (0).
in	nparam	The number of parameters.
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set
		restrain_limits.
in	chisq_delta	An individual fit will continue if the chisq value changes by more then this
		amount. Try 1E-5. (TRI2: "Stopping Criterion")
in	drop_bad	Remove individual transients from the fit that have a -ve return value from GC-
	transients	I_marquardt_global_exps_do_fit_single (default = 1)
in	spa_param	The index to the param we are analysing with spa.
in	spa_nvalues	The number of values of the parameter we are to calculate the chisq value for.
in	spa_low	The lowest parameter value to use.
in	spa_high	The highest parameter value to use.
out	chisq_global	The resulting array of raw chi squared values of the total global fit. To get the
		reduced chisq, divide by the degrees of freedom df.
out	df	The degrees of freedom.
in	progressfunc	A pointer to a function that may provide some feedback to the user on
		progress. A number between 0 and 1 is sent to this function after each it-
		eration. (optional: may by NULL)

Returns

An error code, 0 = success.

See Also

GCI_SPA_2D_marquardt_global_exps_instr GCI_SPA_1D_marquardt_global_generic_instr GCI_SPA_2D_marquardt_global_generic_instr

3.1.3.13 int GCI_SPA_1D_marquardt_global_generic_instr(float xincr, float ** trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float ** param, int paramfree[], int nparam, int gparam[], restrain_type restrain, float chisq_delta, void(*)(float, float[], float *, float[], int) fitfunc, int spa_param, int spa_nvalues, float spa_low, float spa_high, float chisq_global[], int df[], void(*)(float) progressfunc)

Support plane analysis for generic global analysis with instrument response (prompt or IRF).

This fucntion will perform a number of fits with one fixed parameter that varies between the spa_low and spa_high values. The array of chisq values is returned that forms the 'support plane'.

in	xincr	The time increment in between the values in the y array.
in	trans	A pointer to a matrix of transient (time resolved) signals to be analysed, the
		'data'. Allocate with GCI_ecf_matrix.
in	ndata	The number of data points.
in	ntrans	The number of transient signals (pixels in a time resolved image).
in	fit_start	The index into the y array marking the start to the data to be used in the fit.
		Some data before this start index is required for convolution with the prompt.
in	fit_end	The index into the y array marking the end of the data to be used in the fit.
in	instr	The instrument response (IRF) or prompt signal to be used (optional, can pass
		NULL).

ninstr	The number of data points in the prompt (ignored if prompt = NULL).
noise	The noise_type to be used.
sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is
	used (optional, can pass NULL).
param	A pointer to an array of parameter arrays, the order of which must match fitfunc.
paramfree	An array indicating which parameters are free (1), fixed (0).
nparam	The number of parameters.
gparam	An array marking which parameters are to be globally determined.
restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-
	F_RESTRAIN_USER if restraining parameters has been setup via GCI_set
	restrain_limits.
chisq_delta	An individual fit will continue if the chisq value changes by more then this
	amount. Try 1E-5. (TRI2: "Stopping Criterion")
fitfunc	Encodes the function to fit to the data, e.g. GCI_multiexp_tau.
spa_param	The index to the param we are analysing with spa.
spa_nvalues	The number of values of the parameter we are to calculate the chisq value for.
spa_low	The lowest parameter value to use.
spa_high	The highest parameter value to use.
chisq_global	The resulting array of raw chi squared values of the total global fit. To get the
	reduced chisq, divide by the degrees of freedom df.
df	The degrees of freedom.
progressfunc	A pointer to a function that may provide some feedback to the user on
	progress. A number between 0 and 1 is sent to this function after each it-
	eration. (optional: may by NULL)
	param paramfree nparam gparam restrain chisq_delta fitfunc spa_param spa_nvalues spa_low spa_high chisq_global

Returns

An error code, 0 = success.

See Also

GCI_SPA_1D_marquardt_global_exps_instr GCI_SPA_2D_marquardt_global_exps_instr GCI_SPA_2D_marquardt_global_generic_instr

3.1.3.14 int GCI_SPA_1D_marquardt_instr (float xincr, float y[], int ndata, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, float chisq_delta, void(*)(float, float[], float *, float[], int) fitfunc, int spa_param, int spa_nvalues, float spa_low, float spa_high, float chisq[], float chisq_target, void(*)(float) progressfunc)

Support plane analysis with instrument response (prompt or IRF).

This fucntion will perform a number of fits with one fixed parameter that varies between the spa_low and spa_high values. The array of chisq values is returned that forms the 'support plane'.

in	xincr	The time increment in between the values in the y array.
in	у	The transient (time resolved) signal to be analysed, the 'data'.
in	ndata	The number of data points.
in	fit_start	The index into the y array marking the start to the data to be used in the fit.
		Some data before this start index is required for convolution with the prompt.

in	fit_end	The index into the y array marking the end of the data to be used in the fit.
in	instr	The instrument response (IRF) or prompt signal to be used (optional, can pass
		NULL).
in	ninstr	The number of data points in the prompt (ignored if prompt = NULL).
in	noise	The noise_type to be used.
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is
		used (optional, can pass NULL).
in,out	param	An array of parameters, the order of which must match fitfunc. Provide param-
		eter estimates, these are overridden with the fitted values.
in	paramfree	An array indicating which parameters are free (1), fixed (0).
in	nparam	The number of parameters.
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set
		restrain_limits.
in	chisq_delta	An individual fit will continue if the chisq value changes by more then this
		amount. Try 1E-5. (TRI2: "Stopping Criterion")
in	fitfunc	Encodes the function to fit to the data, e.g. GCI_multiexp_tau.
in	spa_param	The index to the param we are analysing with spa.
in	spa_nvalues	The number of values of the parameter we are to calculate the chisq value for.
in	spa_low	The lowest parameter value to use.
in	spa_high	The highest parameter value to use.
out	chisq	An array of resulting raw chi squared values. To get the reduced chisq, divide
		by the degrees of freedom (fit_start - fit_end - nparam)
in	chisq_target	A raw chi squared value to aim for. If this value is reached fitting will stop. If
		you want to aim for a reduced chisq (say 1.1 or 1.0) you must multiply by the
		degree of freedom. (TRI2: "Try refits")
in	progressfunc	A pointer to a function that may provide some feedback to the user on
		progress. A number between 0 and 1 is sent to this function after each it-
		eration. (optional: may by NULL)

Returns

An error code, 0 = success.

See Also

GCI_SPA_1D_marquardt GCI_SPA_2D_marquardt GCI_SPA_2D_marquardt_instr

3.1.3.15 int GCI_SPA_2D_marquardt (float x[], float y[], int ndata, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, float chisq_delta, void(*)(float, float[], float *, float[], int) fitfunc, int spa_param1, int spa_nvalues1, float spa_low1, float spa_high1, int spa_param2, int spa_nvalues2, float spa_low2, float spa_high2, float ** chisq, void(*)(float) progressfunc)

Support plane analysis for 2 parameters.

This fucntion will perform a number of fits with two fixed parameters that vary between the spa_low and spa_high values. The array of chisq values is returned that forms the 'support plane'.

in	X	The x or time values at which the y data points are provided.
----	---	---

in	у	The transient (time resolved) signal to be analysed, the 'data'.	
in	ndata	The number of data points.	
in	noise	The noise_type to be used.	
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is	
		used (optional, can pass NULL).	
in,out	param	An array of parameters, the order of which must match fitfunc. Provide param-	
		eter estimates, these are overridden with the fitted values.	
in	paramfree	An array indicating which parameters are free (1), fixed (0).	
in	nparam	The number of parameters.	
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-	
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set	
		restrain_limits.	
in	chisq_delta	An individual fit will continue if the chisq value changes by more then this	
		amount. Try 1E-5. (TRI2: "Stopping Criterion")	
in	fitfunc	Encodes the function to fit to the data, e.g. GCI_multiexp_tau.	
in	spa_param1	The index to first param we are analysing with spa.	
in	spa_nvalues1	The number of values of first parameter we are to calculate the chisq value for.	
in	spa_low1	The lowest first parameter value to use.	
in	spa_high1	The highest first parameter value to use.	
in	spa_param2	The index to second param we are analysing with spa.	
in	spa_nvalues2	The number of values of second parameter we are to calculate the chisq value	
		for.	
in	spa_low2	The lowest second parameter value to use.	
in	spa_high2	The highest second parameter value to use.	
out	chisq	An matrix of resulting raw chi squared values. To get the reduced chisq, divide	
		by the degrees of freedom (fit_start - fit_end - nparam), Allocate with chisq =	
		(float **)malloc	
in	progressfunc	A pointer to a function that may provide some feedback to the user on	
		progress. A number between 0 and 1 is sent to this function after each it-	
		eration. (optional: may by NULL)	

Returns

An error code, 0 = success.

See Also

GCI_SPA_1D_marquardt GCI_SPA_1D_marquardt_instr GCI_SPA_2D_marquardt_instr

3.1.3.16 int GCI_SPA_2D_marquardt_global_exps_instr (float xincr, float ** trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], int ftype, float ** param, int paramfree[], int nparam, restrain_type restrain, float chisq_delta, int drop_bad_transients, int spa_param1, int spa_nvalues1, float spa_low1, float spa_high1, int spa_param2, int spa_nvalues2, float spa_low2, float spa_high2, float ** chisq_global, int ** df, void(*)(float) progressfunc)

Support plane analysis for exponential global with 2 parameters with instrument response (prompt or IRF).

This fucntion will perform a number of fits with two fixed parameters that vary between the spa_low and spa_high values. The array of chisq values is returned that forms the 'support plane'.

Parameters

in	xincr	The time increment in between the values in the y array.	
		A pointer to a matrix of transient (time resolved) signals to be analysed, the	
		'data'. Allocate with GCI_ecf_matrix.	
in	ndata	The number of data points.	
in	ntrans	The number of transient signals (pixels in a time resolved image).	
in	fit_start	The index into the y array marking the start to the data to be used in the fit.	
		Some data before this start index is required for convolution with the prompt.	
in	fit_end	The index into the y array marking the end of the data to be used in the fit.	
in	instr	The instrument response (IRF) or prompt signal to be used (optional, can pass	
		NULL).	
in	ninstr	The number of data points in the prompt (ignored if prompt = NULL).	
in	noise	The noise_type to be used.	
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is	
		used (optional, can pass NULL).	
in	ftype	The type of function to fit can be multi-exponential (FIT_GLOBAL_MULTIEXP)	
		or stretched exponential (FIT_GLOBAL_STRETCHEDEXP). For other fitting	
		functions use the global generic function.	
in,out	param	A pointer to an array of parameter arrays, the order of which must match fitfunc.	
in	paramfree	An array indicating which parameters are free (1), fixed (0).	
in	nparam	The number of parameters.	
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-	
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set	
		restrain_limits.	
in	chisq_delta	An individual fit will continue if the chisq value changes by more then this	
		amount. Try 1E-5. (TRI2: "Stopping Criterion")	
in	drop_bad	Remove individual transients from the fit that have a -ve return value from GC-	
	transients	I_marquardt_global_exps_do_fit_single (default = 1)	
in	spa_param1	The index to first param we are analysing with spa.	
in	spa_nvalues1	The number of values of first parameter we are to calculate the chisq value for.	
in	spa_low1	The lowest first parameter value to use.	
in	spa_high1	The highest first parameter value to use.	
in	spa_param2	The index to second param we are analysing with spa.	
in	spa_nvalues2	The number of values of second parameter we are to calculate the chisq value	
		for.	
in	spa_low2	The lowest second parameter value to use.	
in	spa_high2	The highest second parameter value to use.	
out	chisq_global	The resulting array of raw chi squared values of the total global fit. To get the	
		reduced chisq, divide by the degrees of freedom df.	
out	df	The degrees of freedom.	
in	progressfunc	A pointer to a function that may provide some feedback to the user on	
		progress. A number between 0 and 1 is sent to this function after each it-	
		eration. (optional: may by NULL)	
1			

Returns

An error code, 0 = success.

See Also

GCI_SPA_1D_marquardt_global_exps_instr GCI_SPA_1D_marquardt_global_generic_instr GCI_SPA_2D_marquardt_global_generic_instr

3.1.3.17 int GCI_SPA_2D_marquardt_global_generic_instr (float xincr, float ** trans, int ndata, int ntrans, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float ** param, int paramfree[], int nparam, int gparam[], restrain_type restrain, float chisq_delta, void(*)(float, float[], float *, float[], int) fitfunc, int spa_param1, int spa_nvalues1, float spa_low1, float spa_high1, int spa_param2, int spa_nvalues2, float spa_low2, float spa_high2, float ** chisq_global, int ** df, void(*)(float) progressfunc)

Support plane analysis for generic global with 2 parameters with instrument response (prompt or IRF).

This fucntion will perform a number of fits with two fixed parameters that vary between the spa_low and spa_high values. The array of chisq values is returned that forms the 'support plane'.

Parameters

in	xincr	The time increment in between the values in the y array.	
		A pointer to a matrix of transient (time resolved) signals to be analysed, the	
		'data'. Allocate with GCI_ecf_matrix.	
in	ndata	The number of data points.	
in	ntrans	The number of transient signals (pixels in a time resolved image).	
in	fit_start	The index into the y array marking the start to the data to be used in the fit.	
		Some data before this start index is required for convolution with the prompt.	
in	fit_end	The index into the y array marking the end of the data to be used in the fit.	
in	instr	The instrument response (IRF) or prompt signal to be used (optional, can pass	
		NULL).	
in	ninstr	The number of data points in the prompt (ignored if prompt = NULL).	
in	noise	The noise_type to be used.	
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is	
		used (optional, can pass NULL).	
in,out	param	A pointer to an array of parameter arrays, the order of which must match fitfunc.	
in	paramfree	An array indicating which parameters are free (1), fixed (0).	
in	nparam	The number of parameters.	
in	gparam	An array marking which parameters are to be globally determined.	
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-	
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set	
		restrain_limits.	
		An individual fit will continue if the chisq value changes by more then this	
		amount. Try 1E-5. (TRI2: "Stopping Criterion")	
in	fitfunc	Encodes the function to fit to the data, e.g. GCI_multiexp_tau.	
in	spa_param1	The index to first param we are analysing with spa.	
in	spa_nvalues1	The number of values of first parameter we are to calculate the chisq value for.	
in	spa_low1	The lowest first parameter value to use.	
in	spa_high1	The highest first parameter value to use.	
in	spa_param2	The index to second param we are analysing with spa.	
in	spa_nvalues2	The number of values of second parameter we are to calculate the chisq value	
		for.	
in	spa_low2	The lowest second parameter value to use.	
in	spa_high2	The highest second parameter value to use.	
out	chisq_global	The resulting array of raw chi squared values of the total global fit. To get the	
		reduced chisq, divide by the degrees of freedom df.	
out	df	The degrees of freedom.	
in	progressfunc	A pointer to a function that may provide some feedback to the user on	
		progress. A number between 0 and 1 is sent to this function after each it-	
		eration. (optional: may by NULL)	

Returns

An error code, 0 = success.

See Also

GCI_SPA_1D_marquardt_global_exps_instr GCI_SPA_2D_marquardt_global_exps_instr GCI_SPA_1D_marquardt_global_generic_instr

3.1.3.18 int GCI_SPA_2D_marquardt_instr (float xincr, float y[], int ndata, int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float param[], int paramfree[], int nparam, restrain_type restrain, float chisq_delta, void(*)(float, float[], float *, float[], int) fitfunc, int spa_param1, int spa_nvalues1, float spa_low1, float spa_high1, int spa_param2, int spa_nvalues2, float spa_low2, float spa_high2, float ** chisq, float chisq_target, void(*)(float) progressfunc)

Support plane analysis for 2 parameters with instrument response (prompt or IRF).

This function will perform a number of fits with two fixed parameters that vary between the spa_low and spa_high values. The array of chisq values is returned that forms the 'support plane'.

in	xincr	The time increment in between the values in the y array.	
in	V	The transient (time resolved) signal to be analysed, the 'data'.	
in	ndata	The number of data points.	
in	fit_start	The index into the y array marking the start to the data to be used in the fit.	
	_	Some data before this start index is required for convolution with the prompt.	
in	fit_end	The index into the y array marking the end of the data to be used in the fit.	
in	instr	The instrument response (IRF) or prompt signal to be used (optional, can pass	
		NULL).	
in	ninstr	The number of data points in the prompt (ignored if prompt = NULL).	
in	noise	The noise_type to be used.	
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is	
		used (optional, can pass NULL).	
in,out	param	An array of parameters, the order of which must match fitfunc. Provide param-	
		eter estimates, these are overridden with the fitted values.	
in	paramfree	An array indicating which parameters are free (1), fixed (0).	
in	nparam	The number of parameters.	
in	restrain	Parameter restrain_type. Normally use ECF_RESTRAIN_DEFAULT. Use EC-	
		F_RESTRAIN_USER if restraining parameters has been setup via GCI_set	
		restrain_limits.	
in	chisq_delta	An individual fit will continue if the chisq value changes by more then this	
		amount. Try 1E-5. (TRI2: "Stopping Criterion")	
in	fitfunc	Encodes the function to fit to the data, e.g. GCI_multiexp_tau.	
in	spa_param1	The index to first param we are analysing with spa.	
in	spa_nvalues1	The number of values of first parameter we are to calculate the chisq value for.	
in	spa_low1	The lowest first parameter value to use.	
in	spa_high1	The highest first parameter value to use.	
in	spa_param2	The index to second param we are analysing with spa.	
in	spa_nvalues2	The number of values of second parameter we are to calculate the chisq value	
		for.	
in	spa_low2	The lowest second parameter value to use.	
in	spa_high2	The highest second parameter value to use.	
out	chisq	An matrix of resulting raw chi squared values. To get the reduced chisq, divide	
		by the degrees of freedom (fit_start - fit_end - nparam), Allocate with chisq	
		= (float **)malloc	
in	chisq_target	A raw chi squared value to aim for. If this value is reached fitting will stop. If	
		you want to aim for a reduced chisq (say 1.1 or 1.0) you must multiply by the	
		degree of freedom. (TRI2: "Try refits")	
in	progressfunc	A pointer to a function that may provide some feedback to the user on	
		progress. A number between 0 and 1 is sent to this function after each it-	
		eration. (optional: may by NULL)	

Returns

An error code, 0 = success.

See Also

GCI_SPA_1D_marquardt GCI_SPA_2D_marquardt GCI_SPA_1D_marquardt_instr

3.1.3.19 void GCl_stretchedexp (float x, float param[], float y, float y, float y, float y, float y, float y

stretched-exp predefined fitting model.

Parameters

in	X	The x value to evaluate the function at.	
in	param[]	Array containing the parameters to use in the evaluation.	
out	У	The value of the function at the x value.	
out	dy_dparam	Array of dy/dparam values at this point	
in	nparam	The number of parameters (may not be used if model has a fixed parameter	
		number)	

3.1.3.20 int GCl_triple_integral_fitting_engine (float xincr, float y[], int fit_start, int fit_end, float instr[], int ninstr, noise_type noise, float sig[], float * Z, float * A, float * tau, float * fitted, float * residuals, float * chisq, float chisq_target)

The main entry point for Triple Integral or Rapid Lifetime Determination (RLD).

Uses GCI_triple_integral_*() to fit repeatedly with different integration periods until chisq_target is met or a maximum number of iterations are used.

in	xincr	The time increment inbetween the values in the y array.	
in	У	The transient (time resolved) signal to be analysed, the 'data'.	
in	fit_start	The index into the y array marking the start to the data to be used in the fit.	
in	fit_end	The index into the y array marking the end of the data to be used in the fit.	
in	instr	The instrument reponse (IRF) or prompt signal to be used (optional, can pass	
		NULL).	
in	ninstr	The number of data points in the prompt (ignored if prompt = NULL).	
in	noise	The noise_type to be used.	
in	sig	The standard deviation at each data point in y if noise_type NOISE_GIVEN is	
		used (optional, can pass NULL).	
out	Z	The returned background value from the fit.	
out	Α	The returned amplitude value from the fit.	
out	tau	The returned lifetime value from the fit.	
out	fitted	An array containing values fitted to the data, the 'fit'. Fit points are coincident	
		in time with the data points.	
out	residuals	An array containing the difference between the data and the fit.	
out	chisq	The resulting raw chi squared value of the fit. To get the reduced chisq, divide	
		by the degrees of freedom (fit_start - fit_end - nparam)	

in	chisq_target	A raw chi squared value to aim for. If this value is reached fitting will stop. If
		you want to aim for a reduced chisq (say 1.1 or 1.0) you must multiply by the
		degree of freedom. (TRI2: "Try refits")

Returns

An error code, 0 = success.

3.2 GCI_Lsqnonneg.h File Reference

SLIM Curve - Non-negative Least Squares Header.

Functions

• int GCI_Isqnonneg (double **A, double *b, double *x, int m, int n, int preserve, double *rnorm, double *lambda)

This function solves the non-negative least squares problem.

3.2.1 Detailed Description

SLIM Curve - Non-negative Least Squares Header.

Definition in file GCI_Lsqnonneg.h.

3.2.2 Function Documentation

3.2.2.1 int GCl_Isqnonneg (double ** A, double ** b, double ** x, int m, int n, int preserve, double ** rnorm, double ** lambda)

This function solves the non-negative least squares problem.

Minimise |Ax-b| subject to $x \ge 0$ (where |v| is the 2-norm of the vector v). !!! NB: A and B will both be modified unless preserve is non-zero (see below).

Parameters

in	Α	An m x n matrix, in the form double A[n][m], so the columns of A are A[0], A[1],
		, A[n-1]
in	b	The m-vector
out	X	The solution
in	m	The size of the 'm' dimensions of A
in	n	The size of the 'n' dimensions of A
in	preserve	Copy A and b before solving the problem so they are not modified
out	rnorm	The value of Ax-b with the determined x if the function was successful or if
		the iteration count was exceeded. This can be NULL.
out	lambda	An n-vector which will contain the dual vector on completion (that is, the La-
		grange multipliers). This can be NULL.

Returns

The return value will be 0 on success, and negative if a problem occurred:

- -1: $m > MAX_EQNS$ or m <= 0
- -2: $n > MAX_VARS$ or $n \le 0$
- -3: iteration count exceeded: more than 3*n iterations performed
- · -4: memory allocation problems

3.3 GCI_Phasor.h File Reference

SLIM Curve - Phasor analysis Header.

Functions

int GCI_Phasor (float xincr, float y[], int fit_start, int fit_end, float *Z, float *u, float *v, float *taup, float *taum, float *fitted, float *residuals, float *chisq)

Take transient data and perform phasor analysis, returning u, v, and estimated lifetime.

• double GCI_Phasor_getPeriod ()

Get the phasor period that was calculated and used in the last call to GCI_Phasor.

3.3.1 Detailed Description

SLIM Curve - Phasor analysis Header. Classic Phasor or Polar approach to FLIM. See Clayton 2004 or Leray 2008. Definition in file GCI_Phasor.h.

3.3.2 Function Documentation

3.3.2.1 int GCl_Phasor (float xincr, float y[], int fit_start, int fit_end, float * Z, float * u, float * v, float * taup, float

Take transient data and perform phasor analysis, returning u, v, and estimated lifetime.

 $u = integral(data(t) * cos(wt)) \ dt \ / \ integral(data(t)) \ dt \ v = integral(data(t) * sin(wt)) \ dt \ / \ integral(data(t)) \ dt$ $tau \ phi = taup = 1/w * (v/u) \ tau \ mod = taum = 1/w * sqrt(1/(u^2 + v^2) - 1) \ tau \ average = tau = (taup + taum) \ / \ 2$ Parameters

xincr	The time increment inbetween the values in the y array.
У	The transient (time resolved) signal to be analysed, the 'data'.
fit_start	The index into the y array marking the start to the data to be used in the fit.
fit_end	The index into the y array marking the end of the data to be used in the fit.
Z	must have been estimated previously so that it can be subtracted from the data
	here.
и	The 'horizontal' phasor coordinate.
V	The 'vertical' phasor coordinate.
taup	The lifetime calculated from the phase change.
taum	The lifetime calculated from the amplitude change (the demodulation).
tau	The average of the other taus.
fitted	An array containing values fitted to the data, the 'fit'. Fit points are coincident
	in time with the data points.
residuals	An array containing the difference between the data and the fit.
chisq	The resulting reduced chi squared value of the fit.
	fit_start fit_end Z u v taup taum fitted residuals

Returns

An error code, 0 = success.

3.3.2.2 double GCI_Phasor_getPeriod ()

Get the phasor period that was calculated and used in the last call to GCI_Phasor.

_			
п	-4-	11410	-

The period in the time units of xinc.

Index

ECF_ExportParams_start	Ecf.h, 18
Ecf.h, 10	GCI_SPA_2D_marquardt_global_exps_instr
ECF_ExportParams_stop	Ecf.h, 19
Ecf.h, 10	GCI_SPA_2D_marquardt_global_generic_instr
Ecf.h, 7	Ecf.h, 20
ECF_ExportParams_start, 10	GCI_SPA_2D_marquardt_instr
ECF_ExportParams_stop, 10	Ecf.h, 22
fit_type, 9	GCI_ecf_free_matrix
GCI SPA 1D marquardt, 14	Ecf.h, 10
GCI_SPA_1D_marquardt_global_exps_instr, 15	GCI_ecf_matrix
GCI_SPA_1D_marquardt_global_generic_instr, 16	Ecf.h, 10
GCI_SPA_1D_marquardt_instr, 17	GCI_Isqnonneg
	GCI_Lsqnonneg.h, 24
GCI_SPA_2D_marquardt, 18	_ • •
GCI_SPA_2D_marquardt_global_exps_instr, 19	GCI_marquardt_fitting_engine
GCI_SPA_2D_marquardt_global_generic_instr, 20	Ecf.h, 10
GCI_SPA_2D_marquardt_instr, 22	GCI_marquardt_global_exps_instr
GCI_ecf_free_matrix, 10	Ecf.h, 11
GCI_ecf_matrix, 10	GCI_marquardt_global_generic_instr
GCI_marquardt_fitting_engine, 10	Ecf.h, 12
GCI_marquardt_global_exps_instr, 11	GCI_multiexp_lambda
GCI_marquardt_global_generic_instr, 12	Ecf.h, 13
GCI_multiexp_lambda, 13	GCI_multiexp_tau
GCI_multiexp_tau, 13	Ecf.h, 13
GCI_set_restrain_limits, 14	GCI_set_restrain_limits
GCI_stretchedexp, 23	Ecf.h, 14
GCI_triple_integral_fitting_engine, 23	GCI_stretchedexp
noise_type, 9	Ecf.h, 23
restrain_type, 9	GCI_triple_integral_fitting_engine
-7.	Ecf.h, 23
fit_type	
Ecf.h, 9	noise_type
	Ecf.h, 9
GCI_Lsqnonneg.h, 24	
GCI_lsqnonneg, 24	restrain_type
GCI Phasor	Ecf.h, 9
GCI Phasor.h, 25	
GCI_Phasor.h, 25	
GCI_Phasor, 25	
GCI Phasor getPeriod, 25	
GCI_Phasor_getPeriod	
GCI_Phasor.h, 25	
GCI_SPA_1D_marquardt	
Ecf.h, 14	
GCI_SPA_1D_marquardt_global_exps_instr Ecf.h, 15	
GCI_SPA_1D_marquardt_global_generic_instr	
Ecf.h, 16	
GCI_SPA_1D_marquardt_instr	
Ecf.h, 17	
GCI_SPA_2D_marquardt	