Art

Arthur J. Redfern <u>arthur.redfern@utdallas.edu</u> May 00, 2019

Placeholder

- Minimal (~0) content is currently present in the body of these slides
 - This is a placeholder for material that may be added at a later date
- References are provided at the end for a subset of key papers
 - Style transfer
 - Variational auto encoders
 - Generative adversarial networks
 - Predictive methods

Outline

- Motivation
- Style transfer
- Variational auto encoders
- Generative adversarial networks
- Predictive methods
- References

Motivation

Going The Other Direction

- The vision, speech and language slides used supervised learning to train networks to map from data to information
- The games slides used reinforcement learning to train networks to map from states to values and actions
- This lecture discusses uses ~ unsupervised learning to train networks to map from information to data
 - Generation is like creation and creation is like art
 - Hence the title

Richard Feynman: "What I cannot create, I do not understand."

Style Transfer

Variational Auto Encoders

Predictive Methods

References

General

- Introduction to generative models and GANs
 - https://zsc.github.io/megvii-pku-dl-course/slides/Lecture%2010 %20Introduction%20to%20Generative%20Models.pdf

Style Transfer

- A neural algorithm of artistic style
 - https://arxiv.org/abs/1508.06576
 - https://github.com/anishathalye/neural-style
 - Execution.ipynb
 - https://colab.research.google.com/github/tensorflow/lucid/blob/master/notebooks/differentiable-parameterizations/style transfer 2d.ipynb
- Texture networks: feed-forward synthesis of textures and stylized images
 - https://arxiv.org/abs/1603.03417
- Perceptual losses for real-time style transfer and super-resolution
 - https://arxiv.org/abs/1603.08155
- Instance normalization: the missing ingredient for fast stylization
 - https://arxiv.org/abs/1607.08022
 - https://github.com/DmitryUlyanov/texture nets
- A learned representation for artistic style
 - https://arxiv.org/abs/1610.07629
 - https://github.com/tensorflow/magenta/tree/master/magenta/models/image_stylization

Style Transfer

- Exploring the structure of a real-time, arbitrary neural artistic stylization network
 - https://arxiv.org/abs/1705.06830
 - https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary image stylization
- Photographic image synthesis with cascaded refinement networks
 - https://arxiv.org/abs/1707.09405
 - https://github.com/CQFIO/PhotographicImageSynthesis
- A closed-form solution to photorealistic image stylization
 - https://arxiv.org/abs/1802.06474
- Audio texture synthesis and style transfer
 - https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer/
 - https://github.com/DmitryUlyanov/neural-style-audio-tf
- Audio style transfer
 - https://arxiv.org/abs/1710.11385
- Time domain neural audio style transfer
 - https://arxiv.org/abs/1711.11160

Variational Auto Encoders

- Auto-encoding variational bayes
 - https://arxiv.org/abs/1312.6114
 - https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/r2/tutorials/generative/cvae.ipynb
- Tutorial on variational autoencoders
 - https://arxiv.org/abs/1606.05908
- Towards deeper understanding of variational autoencoding models
 - https://arxiv.org/abs/1702.08658
- Delta-encoder: an effective sample synthesis method for few-shot object recognition
 - https://arxiv.org/abs/1806.04734
- Deep generative models and variational auto-encoders
 - https://bcourses.berkeley.edu/courses/1453965/files/70020222/download?verifier=Rw55T5A2toQkPbpqSegliToAXjUvIhGZzpdgNRu7&wrap=1

- Adversarial nets papers
 - https://github.com/zhangqianhui/AdversarialNetsPapers
- GANs awesome applications
 - https://github.com/nashory/gans-awesome-applications
- NIPS 2016 tutorial: generative adversarial networks
 - https://arxiv.org/abs/1701.00160
 - https://media.nips.cc/Conferences/2016/Slides/6202-Slides.pdf
- CVPR 2018 tutorial on GANs
 - https://sites.google.com/view/cvpr2018tutorialongans/
- Ian Goodfellow presentations
 - http://www.iangoodfellow.com/slides/

- Generative adversarial networks
 - https://arxiv.org/abs/1406.2661
- Unsupervised representation learning with deep convolutional generative adversarial networks
 - https://arxiv.org/abs/1511.06434
 - https://github.com/tensorflow/tensorflow/blob/r1.11/tensorflow/contrib/eager/python/examples/generative examples/dcga n.ipynb
- Improved techniques for training GANs
 - https://arxiv.org/abs/1606.03498
- Image-to-image translation with conditional adversarial networks
 - https://arxiv.org/abs/1611.07004
 - https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/pix2pix/pix2pix eager.ipynb
- Unpaired image-to-image translation using cycle-consistent adversarial networks
 - https://arxiv.org/abs/1703.10593
 - https://colab.research.google.com/drive/1EncpKIP4Q3cimEBfcQv0B 6hUvjVL3o?sandboxMode=true#forceEdit=true&offline=true&sandboxMode=true

- Progressive growing of GANs for improved quality, stability, and variation
 - https://arxiv.org/abs/1710.10196
 - https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/tf hub generative image module.ipynb#scrollTo=v4XGxDrCkeip
 - https://github.com/tkarras/progressive growing of gans
 - https://www.youtube.com/watch?v=XOxxPcy5Gr4
- High-resolution image synthesis and semantic manipulation with conditional GANs
 - https://arxiv.org/abs/1711.11585
 - http://www.vision.ee.ethz.ch/ntire18/talks/Ming-YuLiu pix2pixHD NTIRE2018talk.pdf
 - https://github.com/NVIDIA/pix2pixHD
- Self-attention generative adversarial networks
 - https://arxiv.org/abs/1805.08318
- Large scale GAN training for high fidelity natural image synthesis
 - https://arxiv.org/abs/1809.11096
 - https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan generation with tf hub.ipynb

- Semantic image synthesis with spatially-adaptive normalization
 - https://arxiv.org/abs/1903.07291
 - https://github.com/NVlabs/SPADE
 - https://nvlabs.github.io/SPADE/

Predictive Methods

- Pixel recurrent neural networks
 - https://arxiv.org/abs/1601.06759
- Conditional image generation with PixelCNN decoders
 - https://arxiv.org/abs/1606.05328
- WaveNet: a generative model for raw audio
 - https://arxiv.org/abs/1609.03499
- Image transformer
 - https://arxiv.org/abs/1802.05751
- Glow: generative flow with invertible 1x1 convolutions
 - https://arxiv.org/abs/1807.03039
- · Generating high fidelity images with subscale pixel networks and multidimensional upscaling
 - https://arxiv.org/abs/1812.01608
- Text generation using a RNN
 - https://github.com/tensorflow/tensorflow/blob/r1.11/tensorflow/contrib/eager/python/examples/generative_examples/text_generation.ipynb

Predictive Methods

- Neural scene representation and rendering
 - https://deepmind.com/blog/neural-scene-representation-and-rendering/
 - https://deepmind.com/documents/211/Neural Scene Representation and Rendering preprint.pdf