TD - 9 : Géométrie

Entraînements

Géométrie du plan

Exercice 1. Déterminer l'intersection de $\mathcal{D}: 2x + 5y - 10 = 0$ et de la droite \mathcal{D}' passant par A(-1,2) et dirigée par $\vec{u}(3,2)$.

Exercice 2. Déterminer une équation cartésienne de la droite D passant par A = (2,1) et B = (1,-2). Donner un vecteur directeur de D et une équation paramétrique de D.

Exercice 3. Déterminer une équation cartésienne de la droite D passant par A = (2,1) et dirigée par le vecteur $\vec{u} = (1,-1)$.

Déterminer le projeté orthogonal de B = (1, 1) sur D.

Exercice 4. Soit D la droite d'équation x + y - 1 = 0. Déterminer une équation paramétrique de D.

Donner une équation cartésienne de la droite D' parallèle à D et passant par le point de coordonnées A = (1, 1). Déterminer une équation cartésienne de la droite orthogonale à D et passant par A

Exercice 5. Le plan est rapporté au repère orthonormé (O, \vec{i}, \vec{j}) . Les points A et B ont pour coordonnées respectives (2,4) et (-1,3). Les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (2,-1) et (3,-2). Donner des équations de

- La droite (AB).
- La droite \mathcal{D} qui passe par A et de vecteur directeur \vec{u} .
- La droite \mathcal{D}' qui passe par B et qui est orthogonale à \vec{v} .

Exercice 6.

- 1. Déterminer l'équation du cercle C_1 de diamètre [AB] où A(3,1) et B(7,-1).
- 2. La partie C_2 du plan définie par l'équation cartésienne $x^2 + y^2 8x + y + 10 = 0$ est-elle un cercle? Si oui, donner son centre et son rayon.
- 3. Déterminer l'intersection de C_1 et C_2 .

Exercice 7. Soit A et B de coordonnées : A=(1,2) et B=(2,3). Soit C le cercle de centre $\Omega=(2,0)$ et de rayon 1. Pour tout point M du cercle on considère le triangle ABM.

Quel est le point du cercle qui minimise l'aire de ce triangle?

Géométrie de l'espace

Exercice 8. 1. Déterminer l'équation du plan P qui passe par les points A, B, C de coordonnées respectives : A = (1, 1, 1), B = (2, 2, 3) et C = (-1, 0, -2).

- 2. Donner deux vecteurs non colinéaires et paralléles à P
- 3. Soit D de coordonnées (1,2,3). Est ce que D appartient à P?
- 4. Donner H le projeté orthogonal de D sur H.

Exercice 9. On considère les plans $\mathcal{P}: x - y + z = 1$ et $\mathcal{P}': x + 2y + 3z = 6$.

Justifier que $\mathcal{P} \cap \mathcal{P}'$ est une droite, que l'on appellera \mathcal{D} . Déterminer un vecteur directeur de \mathcal{D} .

Exercice 10. L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient les points A(1,0,0), B(0,1,0) et C(0,0,2). Montrer que ces trois points détermine un plan. Donner un vecteur normal au plan puis donner une équation cartésienne du plan.

Exercice 11. L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient A(5, 2, 1), $\vec{u} = \vec{i} - 3\vec{j} + \vec{k}$ et $\vec{v} = \vec{i} + \vec{j}$.

- 1. Donner une équation du plan passant par A et de vecteurs directeurs les vecteurs \vec{u} et \vec{v} .
- 2. Donner une équation du plan normal à \vec{u} et passant par A.

Exercice 12. Déterminer un vecteur directeur de la droite \mathcal{D} contenant le point A=(2,1,3) parallèle au plan d'équation x+y+z=2 et rencontrant la droite \mathcal{D}' d'équations cartésiennes x=1 et y=z.

Produit scalaire

Exercice 13. Soient \vec{u} et \vec{v} deux vecteurs du plan.

- 1. Démontrer que \vec{u} et \vec{v} sont orthogonaux si et seulement si $||\vec{u} + \vec{v}|| = ||\vec{u} \vec{v}||$.
- 2. Déduire de la question précédente, une condition nécessaire et suffisante pour qu'un parallélogramme ABCD soit rectangle.

Exercice 14. Soit ABC un triangle non plat du plan.

- 1. Démontrer que, pour tout point M du plan, on a $\overrightarrow{MA}.\overrightarrow{BC}+\overrightarrow{MB}.\overrightarrow{CA}+\overrightarrow{MC}.\overrightarrow{AB}=0$.
- 2. Soit H le point d'intersection des hauteurs issues de B et C. Montrer que $\overrightarrow{HA}.\overrightarrow{BC}=0$ et en déduire que H appartient à la hauteur issue de A.

Exercice 15. Formule d'Al Kachi.

On considère un triangle ABC. On note \hat{A} , \hat{B} et \hat{C} les mesures respectives des angles non orientés \widehat{BAC} , \widehat{ABC} et \widehat{ACB} et l'on pose a=BC, b=AC et c=AB.

- 1. Démontrer que $a^2 = b^2 + c^2 2bc\cos(\hat{A})$ et énoncer deux autres formules similaires. Qu'obtient-on si $\hat{A} = \frac{\pi}{2}$?
- 2. Si $a=4,\,b=3$ et c=2, calculer une valeur approchée (à 10^{-2} degré près) de $\hat{A},\,\hat{B}$ et $\hat{C}.$
- 3. Si $\hat{A} = \frac{\pi}{6}$, a = 3 et c = 2, calculer b.

Géométrie et nombres complexes

Exercice 16. Déterminer géométriquement les complexes z vérifiant les relations suivantes. Vérifier votre résultat par un calcul.

- 1. |z-1-i| = |z+1+i|
- 2. (|z-i|-1)(|z+1|-2)=0
- 3. $\frac{z-1}{z-i} \in \mathbb{R}_+^{\star}$