Inner Product, Length, and Orthogonality

Section 6.1

Learning Objectives:

1. Compute inner products and distances between vectors from \mathbb{R}^n .

2. Determine whether two vectors are orthogonal and explain geometrically what it means.

3. Understand when a vector is in the orthogonal complement to a subspace.

4. Explain the orthogonality of the fundamental subspaces associated to a matrix A.

1 Inner Products

Definition: Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. The product $\mathbf{u}^T \mathbf{v}$ is a single number. This product is called the inner product or dot product:

$$\mathbf{u}^T \mathbf{v} = \sum_{i=1}^n u_i v_i.$$

We sometimes use the notation $\mathbf{u} \cdot \mathbf{v}$ or $\langle \mathbf{u}, \mathbf{v} \rangle$ to denote the inner product.

Theorem: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Then

1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$.

2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$.

3. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$.

4. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$.

2 Length of a Vector

Definition: The **norm** or **length** of $\mathbf{v} \in \mathbb{R}^n$ is the nonnegative scalar $\|\mathbf{v}\|$ defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

Theorem: Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then

1. $||u|| \ge 0$ and ||u|| = 0 if and only if u = 0.

2. $||c\mathbf{u}|| = |c|||\mathbf{u}||$.

3. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Definition: A vector whose length is 1 is called a **unit vector**. In general, we can **normalize** a vector \mathbf{v} by scaling it so that the resultant vector points in the same direction as \mathbf{v} but has length 1.

Example 1. Normalize the vector

$$\mathbf{u} = \begin{pmatrix} -2\\4\\-3 \end{pmatrix}.$$

3 Distance

Now that we can calculate lengths, we can also calculate distances!

Definition: For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, the distance between \mathbf{u} , and \mathbf{v} is

$$\mathrm{dist}(\mathbf{u},\mathbf{v}) =$$

Intuition: Many students wonder why we subtract and not add the vectors. If you draw a picture of vectors \mathbf{u} and \mathbf{v} then the vector $\mathbf{u} - \mathbf{v}$ is the vector going between the tips of \mathbf{u} and \mathbf{v} ! That is the quantity we care about to calculate distance between the vectors. Adding the vectors creates the 4th vertex of a parallelogram, which is not helpful when thinking about distance!

Example 2. Compute the distance between the vectors $\mathbf{u} = (7,1)$ and $\mathbf{v} = (3,2)$.

Theorem: For $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ we have

- 1. $dist(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$.
- 2. $\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \operatorname{dist}(\mathbf{v}, \mathbf{u})$.
- 3. $\operatorname{dist}(\mathbf{u}, \mathbf{w}) \leq \operatorname{dist}(\mathbf{u}, \mathbf{v}) + \operatorname{dist}(\mathbf{v}, \mathbf{w})$.

4 Orthogonality

Example 3. Let $\mathbf{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Find a vector that is perpendicular to \mathbf{u} . It may be helpful to think about the slope of the vector \mathbf{u} .

Definition: Two vectors \mathbf{u} and \mathbf{v} are **orthogonal** (perpendicular) if

Example 4. Use the properties of inner products to expand and simplify

$$\|\mathbf{u} + \mathbf{v}\|^2$$
.

Pythagorean Theorem: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

4.1 Orthogonal complements

Definition: Given a subspace W of \mathbb{R}^n we define

$$W^{\perp} =$$

That is, W^{\perp} (W perp) is the set of vectors which are perpendicular to all vectors of W.

Example 5. If $W \subseteq \mathbb{R}^3$ is the plane spanned by $\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ then $W^{\perp} = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$.

Theorem. (i). A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a spanning set of W.

(ii). W^{\perp} is always a subspace of \mathbb{R}^n .

Example 6. If A is an $m \times n$ matrix then suppose that

$$\mathbf{x} \in (\operatorname{Row} A)^{\perp}.$$

 $Compute\ A{\bf x}.$

Theorem: Let A be an $m \times n$ matrix. Then

$$(\operatorname{Row} A)^{\perp} = \qquad , \ (\operatorname{Col} A)^{\perp} =$$

Example 7. Let W be a subspace of \mathbb{R}^n . Prove that W^{\perp} is a subspace of \mathbb{R}^n .