# Section 2.7b: Solving Linear Inequalities

Caleb Bibb

"I can solve inequalities."

September 9, 2018

### Recall...

### Addition Property of Equality

If 
$$a = b$$
  
Then  $a + c = b + c$ 

### Subtraction Property of Equality

If 
$$a = b$$
  
Then  $a - c = b - c$ 

### Likewise...

### Addition Property of Inequality

If 
$$a < b$$
 If  $a > b$   
Then  $a + c < b + c$  Then  $a + c > b + c$ 

#### Subtraction Property of Inequality

If 
$$a < b$$
 If  $a > b$   
Then  $a - c < b - c$  Then  $a - c > b - c$ 

## We Try 1:

#### Example

Solve the inequality, and write the solution in interval notation.

$$x + 5 > 9$$

## You Try 1:

#### You Try 1

Solve the inequality, and write the solution in interval notation.

$$p-\frac{3}{4}>\frac{1}{6}$$

## We Try 2:

#### Example

Solve the inequality, graph the solution on the number line and write the solution in interval notation.

$$n-\frac{1}{2}\leq \frac{5}{8}$$



# You Try 2:

#### You Try 2

Solve the inequality, graph the solution on the number line and write the solution in interval notation.

$$n-\frac{1}{2}\leq \frac{7}{8}$$



#### Recall...

## Multiplication Property of Equality

lf

a = b

Then

ac = bc

### Division Property of Equality

lf

a = b

Then

 $\frac{a}{c} = bc$ 

### Positive c



Division

10 < 15

Multiplication

10 < 15

## Negative c

Let 
$$c = -5$$

Division

10 < 15

Multiplication

10 < 15

## The Takeaway

#### Remember

When we divide or multiply an inequality by a:

- positive number, the inequality stays the same.
- negative number, the inequality reverses.

## We Try 3

#### Example

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.



# You Try 3

#### You Try 3

Solve the inequality, graph the solution on the number line, and write the solution in interval notation.

$$-7r < -70$$

