Supervised learning and Decision Theory

MATH-412 - Statistical Machine Learning

Setting:

Data come in pairs (x, y) of

- x some input data, often a vector of numerical features or descriptors (stimuli)
- y some output data, often called labels

Setting:

Data come in pairs (x, y) of

- x some input data, often a vector of numerical features or descriptors (stimuli)
- y some output data, often called labels

Goal:

In general, given some examples of existing pairs (x_i, y_i) , infer/learn some of the relations between x and y that are relevant to a task that needs to be performed later from x alone.

Setting:

Data come in pairs (x, y) of

- x some input data, often a vector of numerical features or descriptors (stimuli)
- y some output data, often called labels

Goal:

In general, given some examples of existing pairs (x_i, y_i) , infer/learn some of the relations between x and y that are relevant to a task that needs to be performed later from x alone.

ullet A prediction task consists in predicting the y' associated to a new x'.

Setting:

Data come in pairs (x, y) of

- x some input data, often a vector of numerical features or descriptors (stimuli)
- y some output data, often called labels

Goal:

In general, given some examples of existing pairs (x_i, y_i) , infer/learn some of the relations between x and y that are relevant to a task that needs to be performed later from x alone.

- ullet A prediction task consists in predicting the y' associated to a new x'.
- A more general task consists in making a decision that would be determined from (x', y') except it needs to be made from x' alone.

We will assume that we have some training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

We will assume that we have some training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

Learning scheme or learning "algorithm"

- is a functional A which
- ullet given some training data D_n
- produces a predictor or decision function \widehat{f} .

$$\mathscr{A}: D_n \mapsto \widehat{f}$$

We will assume that we have some training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

Learning scheme or learning "algorithm"

- is a functional A which
- ullet given some training data D_n
- produces a predictor or decision function \widehat{f} .

$$\mathscr{A}: D_n \mapsto \widehat{f}$$

We hope to get a "good" decision function

We will assume that we have some training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

Learning scheme or learning "algorithm"

- is a functional A which
- ullet given some training data D_n
- produces a predictor or decision function \widehat{f} .

$$\mathscr{A}: D_n \mapsto \widehat{f}$$

We hope to get a "good" decision function

→ Need to define what we expect from that decision function.

Decision theory

Decision theory

Abraham Wald (1939)

- ullet $\mathcal X$ input data space
- ullet ${\cal Y}$ output data space

- ullet ${\cal A}$ action space
- \bullet $f:\mathcal{X}\to\mathcal{A}$ decision function, predictor, hypothesis

- ullet $\mathcal X$ input data space
- ullet ${\cal Y}$ output data space

- ullet ${\cal A}$ action space
- ullet $f:\mathcal{X}
 ightarrow \mathcal{A}$ decision function, predictor, hypothesis

Goal of learning

Produce a decision function such that given a new input x the action f(x) is a "good" action when confronted to the unseen corresponding output y.

- ullet $\mathcal X$ input data space
- ullet ${\cal Y}$ output data space

- ullet ${\cal A}$ action space
- ullet $f:\mathcal{X}
 ightarrow \mathcal{A}$ decision function, predictor, hypothesis

Goal of learning

Produce a decision function such that given a new input x the action f(x) is a "good" action when confronted to the unseen corresponding output y. What is a "good" action?

- ullet $\mathcal X$ input data space
- ullet ${\cal Y}$ output data space

- ullet ${\cal A}$ action space
- ullet $f:\mathcal{X}
 ightarrow \mathcal{A}$ decision function, predictor, hypothesis

Goal of learning

Produce a decision function such that given a new input x the action f(x) is a "good" action when confronted to the unseen corresponding output y. What is a "good" action?

• f(x) is a good prediction of y, i.e. close to y in some sense.

- ullet $\mathcal X$ input data space
- ullet ${\cal Y}$ output data space

- ullet ${\cal A}$ action space
- ullet $f:\mathcal{X}
 ightarrow \mathcal{A}$ decision function, predictor, hypothesis

Goal of learning

Produce a decision function such that given a new input x the action f(x) is a "good" action when confronted to the unseen corresponding output y. What is a "good" action?

- f(x) is a good prediction of y, i.e. close to y in some sense.
- \bullet f(x) is the action that has the smallest possible cost when y occurs.

- ullet $\mathcal X$ input data space
- ullet ${\cal Y}$ output data space

- ullet ${\cal A}$ action space
- ullet $f:\mathcal{X}
 ightarrow \mathcal{A}$ decision function, predictor, hypothesis

Goal of learning

Produce a decision function such that given a new input x the action f(x) is a "good" action when confronted to the unseen corresponding output y. What is a "good" action?

- \bullet f(x) is a good prediction of y, i.e. close to y in some sense.
- ullet f(x) is the action that has the smallest possible cost when y occurs.

Loss function

$$\begin{array}{cccc} \ell: & \mathcal{A} \times \mathcal{Y} & \to & \mathbb{R} \\ & (a,y) & \mapsto & \ell(a,y) \end{array}$$

measures the cost incurred when action a is taken and y has occurred.

Eventually, we need to design a learning algorithm that produces a predictor or decision function \widehat{f} .

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{A}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}$$

Goal? Minimize worst future loss vs average future loss?

ullet Given x there might be some intrinsic uncertainty about y.

Eventually, we need to design a learning algorithm that produces a predictor or decision function $\widehat{f}.$

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{A}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}$$

Goal? Minimize worst future loss vs average future loss?

- ullet Given x there might be some intrinsic uncertainty about y.
- ullet To generalize to new pairs (x,y) they have to be similar to what has been encountered in the past.

Eventually, we need to design a learning algorithm that produces a predictor or decision function $\widehat{f}.$

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{A}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}$$

Goal? Minimize worst future loss vs average future loss?

- ullet Given x there might be some intrinsic uncertainty about y.
- ullet To generalize to new pairs (x,y) they have to be similar to what has been encountered in the past.
- The worst possible (x, y) might be too rare.

Eventually, we need to design a learning algorithm that produces a predictor or decision function \widehat{f} .

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{A}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}$$

Goal? Minimize worst future loss vs average future loss?

- ullet Given x there might be some intrinsic uncertainty about y.
- ullet To generalize to new pairs (x,y) they have to be similar to what has been encountered in the past.
- The worst possible (x, y) might be too rare.

Assume that the data is generated by

• by a stationary stochastic process,

Eventually, we need to design a learning algorithm that produces a predictor or decision function \widehat{f} .

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{A}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}$$

Goal? Minimize worst future loss vs average future loss?

- ullet Given x there might be some intrinsic uncertainty about y.
- ullet To generalize to new pairs (x,y) they have to be similar to what has been encountered in the past.
- The worst possible (x, y) might be too rare.

Assume that the data is generated by

- by a stationary stochastic process, or more simply, and in the rest of this course :
- ullet as independent and identically distributed random variables (X_i,Y_i)

Risk

$$\mathcal{R}(f) = \mathbb{E}[\ell(f(X), Y)]$$

Risk

$$\mathcal{R}(f) = \mathbb{E}[\ell(f(X), Y)]$$

Target function

If there exists a unique function f^* such that $\mathcal{R}(f^*) = \inf_{f \in \mathcal{A}^{\mathcal{X}}} \mathcal{R}(f)$, then f^* is called the target function, oracle function or Bayes predictor.

Risk

$$\mathcal{R}(f) = \mathbb{E}[\ell(f(X), Y)]$$

Target function

If there exists a unique function f^* such that $\mathcal{R}(f^*) = \inf_{f \in \mathcal{A}^{\mathcal{X}}} \mathcal{R}(f)$, then f^* is called the target function, oracle function or Bayes predictor.

Conditional risk

The conditional risk is the expected loss conditionally on the input data value, viewed as a function of the action taken.

$$\mathcal{R}(a \mid x) = \mathbb{E}[\ell(a, Y) \mid X = x] = \int \ell(a, y) \, dP_{Y|X}(y|x)$$

Risk

$$\mathcal{R}(f) = \mathbb{E}[\ell(f(X), Y)]$$

Target function

If there exists a unique function f^* such that $\mathcal{R}(f^*) = \inf_{f \in \mathcal{A}^{\mathcal{X}}} \mathcal{R}(f)$, then f^* is called the target function, oracle function or Bayes predictor.

Conditional risk

The conditional risk is the expected loss conditionally on the input data value, viewed as a function of the action taken.

$$\mathcal{R}(a \mid x) = \mathbb{E}[\ell(a, Y) \mid X = x] = \int \ell(a, y) \, dP_{Y|X}(y|x)$$

$$\mathcal{R}(f(x)|x) = \mathbb{E}[\ell(f(x), Y) \mid X = x] = \int \ell(f(x), y) \, dP_{Y|X}(y|x)$$

Risk

$$\mathcal{R}(f) = \mathbb{E}[\ell(f(X), Y)]$$

Target function

If there exists a unique function f^* such that $\mathcal{R}(f^*) = \inf_{f \in \mathcal{A}^{\mathcal{X}}} \mathcal{R}(f)$, then f^* is called the target function, oracle function or Bayes predictor.

Conditional risk

The conditional risk is the expected loss conditionally on the input data value, viewed as a function of the action taken.

$$\mathcal{R}(a \mid x) = \mathbb{E}[\ell(a, Y) \mid X = x] = \int \ell(a, y) \, dP_{Y|X}(y|x)$$

$$\mathcal{R}(f(x)|x) = \mathbb{E}[\ell(f(x), Y) \mid X = x] = \int \ell(f(x), y) \, dP_{Y|X}(y|x)$$

$$\mathbb{E}[\mathcal{R}(f(X)|X)] = \mathbb{E}[\mathbb{E}[\ell(f(X), Y)|X]] = \mathbb{E}[\ell(f(X), Y)] = \mathcal{R}(f)$$

Given that

$$\mathcal{R}(a \mid x) = \mathbb{E}[\ell(a, Y) \mid X = x]$$

$$\mathcal{R}(f) = \mathbb{E}[\mathcal{R}(f(X) \mid X)] = \mathbb{E}[\ell(f(X), Y)]$$

Given that

$$\mathcal{R}(a \mid x) = \mathbb{E}[\ell(a, Y) \mid X = x]$$

$$\mathcal{R}(f) = \mathbb{E}[\mathcal{R}(f(X) \mid X)] = \mathbb{E}[\ell(f(X), Y)]$$

if $\inf_{a \in \mathcal{A}} \mathcal{R}(a \mid x)$ is attained and unique for almost all x then we can define

$$f^*(x) = \arg\min_{a \in \mathcal{A}} \mathcal{R}(a \mid x)$$

Given that

$$\mathcal{R}(a \mid x) = \mathbb{E}[\ell(a, Y) \mid X = x]$$

$$\mathcal{R}(f) = \mathbb{E}[\mathcal{R}(f(X) \mid X)] = \mathbb{E}[\ell(f(X), Y)]$$

if $\inf_{a \in \mathcal{A}} \mathcal{R}(a \mid x)$ is attained and unique for almost all x then we can define

$$f^*(x) = \arg\min_{a \in \mathcal{A}} \mathcal{R}(a \mid x)$$

and it must be the target function.

Given that

$$\mathcal{R}(a \mid x) = \mathbb{E}[\ell(a, Y) \mid X = x]$$

$$\mathcal{R}(f) = \mathbb{E}[\mathcal{R}(f(X)|X)] = \mathbb{E}[\ell(f(X), Y)]$$

if $\inf_{a \in \mathcal{A}} \mathcal{R}(a \mid x)$ is attained and unique for almost all x then we can define

$$f^*(x) = \arg\min_{a \in \mathcal{A}} \mathcal{R}(a \mid x)$$

and it must be the target function.

Excess risk

$$\mathcal{E}(f) = \mathcal{R}(f) - \mathcal{R}(f^*) = \mathbb{E}\left[\ell(f(X), Y) - \ell(f^*(X), Y)\right]$$

Examples of the decision theoretic framework of Wald

Case where $A = \mathcal{Y} = \mathbb{R}$.

Case where $\mathcal{A} = \mathcal{Y} = \mathbb{R}$.

• square loss : $\ell(a,y) = (a-y)^2$

Case where $A = \mathcal{Y} = \mathbb{R}$.

- square loss : $\ell(a,y) = (a-y)^2$
- ullet mean square risk : $\mathcal{R}(f) = \mathbb{E} ig[(f(X) Y)^2 ig]$

Case where $\mathcal{A} = \mathcal{Y} = \mathbb{R}$.

- square loss : $\ell(a,y) = (a-y)^2$
- ullet mean square risk : $\mathcal{R}(f) = \mathbb{E} ig[(f(X) Y)^2 ig]$

What could be the target function?

Case where $\mathcal{A} = \mathcal{Y} = \mathbb{R}$.

- square loss : $\ell(a,y) = (a-y)^2$
- ullet mean square risk : $\mathcal{R}(f) = \mathbb{E} ig[(f(X) Y)^2 ig]$

Let
$$\tilde{f}(X) = \mathbb{E}[Y \mid X]$$
.

Case where $\mathcal{A} = \mathcal{Y} = \mathbb{R}$.

- square loss : $\ell(a,y) = (a-y)^2$
- ullet mean square risk : $\mathcal{R}(f) = \mathbb{E} ig[(f(X) Y)^2 ig]$

Let
$$\tilde{f}(X) = \mathbb{E}[Y \mid X]$$
.

$$\mathcal{R}(f(X)|X) = \mathbb{E}\left[(Y - f(X))^2 \mid X \right] = \mathbb{E}\left[\left(Y - \tilde{f}(X) + \tilde{f}(X) - f(X) \right)^2 \mid X \right]$$

Case where $A = \mathcal{Y} = \mathbb{R}$.

- square loss : $\ell(a,y) = (a-y)^2$
- mean square risk : $\mathcal{R}(f) = \mathbb{E}[(f(X) Y)^2]$

Let
$$\tilde{f}(X) = \mathbb{E}[Y \mid X]$$
.
$$\mathcal{P}(f(Y) \mid Y) = \mathbb{E}[(Y \mid X)]$$

$$\mathcal{R}(f(X)|X) = \mathbb{E}\left[(Y - f(X))^2 \mid X \right] = \mathbb{E}\left[\left(Y - \tilde{f}(X) + \tilde{f}(X) - f(X) \right)^2 \mid X \right]$$
$$= \mathbb{E}\left[(Y - \tilde{f}(X))^2 \mid X \right] + \mathbb{E}\left[\left(\tilde{f}(X) - f(X) \right)^2 \mid X \right]$$
$$+ 2 \mathbb{E}\left[\left(Y - \mathbb{E}[Y|X] \right) \left(\tilde{f}(X) - f(X) \right) \mid X \right]$$

Case where $A = \mathcal{Y} = \mathbb{R}$.

- square loss : $\ell(a,y) = (a-y)^2$
- mean square risk : $\mathcal{R}(f) = \mathbb{E}[(f(X) Y)^2]$

Let
$$\tilde{f}(X) = \mathbb{E}[Y \mid X]$$
.

$$\mathcal{R}(f(X)|X) = \mathbb{E}\left[(Y - f(X))^2 \mid X\right] = \mathbb{E}\left[\left(Y - \tilde{f}(X) + \tilde{f}(X) - f(X)\right)^2 \mid X\right]$$

$$= \mathbb{E}\left[(Y - \tilde{f}(X))^2 \mid X\right] + \mathbb{E}\left[\left(\tilde{f}(X) - f(X)\right)^2 \mid X\right]$$

$$+ 2\mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)\left(\tilde{f}(X) - f(X)\right) \mid X\right]$$

Case where $A = \mathcal{Y} = \mathbb{R}$.

- square loss : $\ell(a,y) = (a-y)^2$
- mean square risk : $\mathcal{R}(f) = \mathbb{E}[(f(X) Y)^2]$

Let
$$\tilde{f}(X) = \mathbb{E}[Y \mid X]$$
.

$$\mathcal{R}(f(X)|X) = \mathbb{E}\left[(Y - f(X))^2 \mid X\right] = \mathbb{E}\left[\left(Y - \tilde{f}(X) + \tilde{f}(X) - f(X)\right)^2 \mid X\right]$$

$$= \mathbb{E}\left[(Y - \tilde{f}(X))^2 \mid X\right] + \mathbb{E}\left[\left(\tilde{f}(X) - f(X)\right)^2 \mid X\right]$$

$$+ 2\mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)\left(\tilde{f}(X) - f(X)\right) \mid X\right]$$

$$= 0$$

$$\mathcal{R}(f(X)|X) = \mathcal{R}(\tilde{f}(X)|X) + (\tilde{f}(X) - f(X))^2 \quad \text{with} \quad \mathcal{R}(\tilde{f}(X)|X) = \text{Var}(Y|X)$$

Case where $\mathcal{A} = \mathcal{Y} = \mathbb{R}$.

- square loss : $\ell(a,y) = (a-y)^2$
- mean square risk : $\mathcal{R}(f) = \mathbb{E}[(f(X) Y)^2]$

Let
$$\tilde{f}(X) = \mathbb{E}[Y \mid X]$$
.

$$\mathcal{R}(f(X)|X) = \mathbb{E}\left[(Y - f(X))^2 \mid X\right] = \mathbb{E}\left[\left(Y - \tilde{f}(X) + \tilde{f}(X) - f(X)\right)^2 \mid X\right]$$

$$= \mathbb{E}\left[(Y - \tilde{f}(X))^2 \mid X\right] + \mathbb{E}\left[\left(\tilde{f}(X) - f(X)\right)^2 \mid X\right]$$

$$+ 2\mathbb{E}\left[\left(Y - \mathbb{E}[Y|X]\right)\left(\tilde{f}(X) - f(X)\right) \mid X\right]$$

$$= 0$$

$$\mathcal{R}(f(X)|X) = \mathcal{R}(\tilde{f}(X)|X) + (\tilde{f}(X) - f(X))^2 \quad \text{with} \quad \mathcal{R}(\tilde{f}(X)|X) = \text{Var}(Y|X)$$

So
$$f^* = \hat{f}$$

Ordinary least squares regression: summary

Case where $A = \mathcal{Y} = \mathbb{R}$.

• square loss :

$$\ell(a,y) = (a-y)^2$$

mean square risk :

$$\begin{split} \mathcal{R}(f) &=& \mathbb{E}\big[(f(X)-Y)^2\big] \\ &=& \mathbb{E}\big[(f(X)-\mathbb{E}[Y|X])^2\big] + \mathbb{E}\big[(Y-\mathbb{E}[Y|X])^2\big] \\ &=& \mathbb{E}\big[(f(X)-f^*(X))^2\big] + \mathcal{R}(f^*) \end{split}$$
 with
$$\mathcal{R}(f^*) &=& \mathbb{E}\big[(Y-\mathbb{E}[Y|X])^2\big] = \mathbb{E}\big[\operatorname{Var}(Y|X)\big].$$

• target function :

$$f^*(X) = \mathbb{E}[Y|X]$$

Case where $\mathcal{A} = \mathcal{Y} = \{0, \dots, K-1\}$

Case where
$$\mathcal{A} = \mathcal{Y} = \{0, \dots, K-1\}$$
 \rightarrow 0-1 loss : $\ell(a, y) = 1_{\{a \neq y\}}$

Case where
$$\mathcal{A} = \mathcal{Y} = \{0,\dots,K-1\}$$
 \longrightarrow 0-1 loss : $\ell(a,y) = 1_{\{a \neq y\}}$

What is the risk ? $\mathbb{E} \big[\mathbb{1}_{\{f(X) \neq Y\}} \big] =$

Case where
$$\mathcal{A} = \mathcal{Y} = \{0,\dots,K-1\}$$
 \longrightarrow 0-1 loss : $\ell(a,y) = 1_{\{a \neq y\}}$

What is the risk?
$$\mathbb{E} \big[1_{\{f(X) \neq Y\}} \big] = \mathbb{P} \big(f(X) \neq Y \big).$$

Case where
$$\mathcal{A} = \mathcal{Y} = \{0,\dots,K-1\}$$
 \longrightarrow 0-1 loss : $\ell(a,y) = 1_{\{a \neq y\}}$

What is the risk?
$$\mathbb{E} \big[1_{\{f(X) \neq Y\}} \big] = \mathbb{P} \big(f(X) \neq Y \big).$$

Computing the target function

Case where
$$\mathcal{A} = \mathcal{Y} = \{0,\dots,K-1\}$$
 \rightarrow 0-1 loss : $\ell(a,y) = 1_{\{a \neq y\}}$

What is the risk ?
$$\mathbb{E}\big[1_{\{f(X)\neq Y\}}\big] = \mathbb{P}\big(f(X)\neq Y\big).$$

Computing the target function as a minimizer of $\mathcal{R}(a \mid X = x)$.

$$\mathcal{R}(a \mid X = x) =$$

Case where
$$\mathcal{A} = \mathcal{Y} = \{0,\dots,K-1\}$$
 \rightarrow 0-1 loss : $\ell(a,y) = 1_{\{a \neq y\}}$

What is the risk ?
$$\mathbb{E}\big[1_{\{f(X)\neq Y\}}\big] = \mathbb{P}\big(f(X)\neq Y\big).$$

Computing the target function as a minimizer of $\mathcal{R}(a \mid X = x)$.

$$\mathcal{R}(a \mid X = x) = \mathbb{P}(a \neq Y \mid X = x) =$$

Case where
$$\mathcal{A} = \mathcal{Y} = \{0,\dots,K-1\}$$
 \rightarrow 0-1 loss : $\ell(a,y) = 1_{\{a \neq y\}}$

What is the risk?
$$\mathbb{E} \big[\mathbb{1}_{\{f(X) \neq Y\}} \big] = \mathbb{P} \big(f(X) \neq Y \big).$$

Computing the target function as a minimizer of $\mathcal{R}(a \mid X = x)$.

$$\mathcal{R}(a \mid X = x) = \mathbb{P}(a \neq Y \mid X = x) = 1 - \mathbb{P}(a = Y \mid X = x).$$

Case where
$$\mathcal{A} = \mathcal{Y} = \{0, \dots, K-1\}$$
 \rightarrow 0-1 loss : $\ell(a,y) = 1_{\{a \neq y\}}$

What is the risk? $\mathbb{E}\left[1_{\{f(X)\neq Y\}}\right] = \mathbb{P}(f(X)\neq Y).$

Computing the target function as a minimizer of $\mathcal{R}(a \mid X = x)$.

$$\mathcal{R}(a \mid X = x) = \mathbb{P}(a \neq Y \mid X = x) = 1 - \mathbb{P}(a = Y \mid X = x).$$

So $\min_a \mathcal{R}(a \mid X = x)$ is equivalent to

$$\max_{a \in \mathcal{A}} \, \mathbb{P}(a = Y \mid X = x) \, = \, \max_{a \in \mathcal{A}} \, \mathbb{P}(Y = a \mid X = x)$$

Case where
$$\mathcal{A}=\mathcal{Y}=\{0,\dots,K-1\}$$
 \rightarrow 0-1 loss : $\ell(a,y)=1_{\{a\neq y\}}$

What is the risk?
$$\mathbb{E}\big[1_{\{f(X)\neq Y\}}\big] = \mathbb{P}\big(f(X)\neq Y\big).$$

Computing the target function as a minimizer of $\mathcal{R}(a \mid X = x)$.

$$\mathcal{R}(a \mid X = x) = \mathbb{P}(a \neq Y \mid X = x) = 1 - \mathbb{P}(a = Y \mid X = x).$$

So $\min_a \mathcal{R}(a \mid X = x)$ is equivalent to

$$\max_{a \in \mathcal{A}} \, \mathbb{P}(a = Y \mid X = x) \, = \, \max_{a \in \mathcal{A}} \, \mathbb{P}(Y = a \mid X = x)$$

$$f^*(x) = \arg \max_{1 \le k \le K} \mathbb{P}(Y = k \mid X = x)$$

 f^* simply predicts the most probable value of Y given X.

Classification: summary

Case where $A = \mathcal{Y} = \{0, \dots, K-1\}.$

• 0-1 loss :

$$\ell(a,y) = 1_{\{a \neq y\}}$$

• the risk is the misclassification error

$$\mathcal{R}(f) = \mathbb{P}(f(X) \neq Y)$$

• the target function is the assignment to the most likely class

$$f^*(X) = \operatorname{argmax}_{1 \leq k \leq K} \mathbb{P}(Y = k|X)$$

Assume that given a pair of random variables $(X, X') \in \mathcal{X}^2$, a preference variable $Y \in \{-1, 1\}$ is defined.

Assume that given a pair of random variables $(X,X')\in\mathcal{X}^2,$ a preference variable $Y\in\{-1,1\}$ is defined.

Assume that given a pair of random variables $(X,X')\in\mathcal{X}^2,$

a preference variable $Y \in \{-1,1\}$ is defined.

Learn a score function on the variable X which is higher for the preferred instances.

ullet input variables $(X,X')\in \mathcal{X}^2$ with same distribution

Assume that given a pair of random variables $(X, X') \in \mathcal{X}^2$,

a preference variable $Y \in \{-1,1\}$ is defined.

- ullet input variables $(X,X')\in \mathcal{X}^2$ with same distribution
- $\bullet \ \text{output variable} : Y \in \mathcal{Y} = \{-1, 1\}$

Assume that given a pair of random variables $(X, X') \in \mathcal{X}^2$,

a preference variable $Y \in \{-1,1\}$ is defined.

- ullet input variables $(X,X')\in \mathcal{X}^2$ with same distribution
- output variable : $Y \in \mathcal{Y} = \{-1, 1\}$
- ullet action space : $\mathbb{R} \times \mathbb{R}$

Assume that given a pair of random variables $(X, X') \in \mathcal{X}^2$,

a preference variable $Y \in \{-1,1\}$ is defined.

- ullet input variables $(X,X')\in \mathcal{X}^2$ with same distribution
- $\bullet \ \text{output variable} : Y \in \mathcal{Y} = \{-1,1\}$
- ullet action space : $\mathbb{R} \times \mathbb{R}$
- predictor $(X, X') \mapsto (f(X), f(X'))$

Assume that given a pair of random variables $(X, X') \in \mathcal{X}^2$,

a preference variable $Y \in \{-1,1\}$ is defined.

- ullet input variables $(X,X')\in \mathcal{X}^2$ with same distribution
- ullet output variable : $Y \in \mathcal{Y} = \{-1, 1\}$
- ullet action space : $\mathbb{R} \times \mathbb{R}$
- predictor $(X, X') \mapsto (f(X), f(X'))$
- loss:

$$\ell((a,b),y) = 1_{\{(a-b)\,y \ge 0\}}$$

Assume that given a pair of random variables $(X, X') \in \mathcal{X}^2$,

a preference variable $Y \in \{-1,1\}$ is defined.

Learn a score function on the variable X which is higher for the preferred instances.

- ullet input variables $(X,X')\in \mathcal{X}^2$ with same distribution
- $\bullet \ \text{output variable} : Y \in \mathcal{Y} = \{-1,1\}$
- ullet action space : $\mathbb{R} \times \mathbb{R}$
- predictor $(X, X') \mapsto (f(X), f(X'))$
- loss :

$$\ell((a,b),y) = 1_{\{(a-b)\,y \ge 0\}}$$

• risk :

Assume that given a pair of random variables $(X,X')\in\mathcal{X}^2,$

a preference variable $Y \in \{-1,1\}$ is defined.

Learn a score function on the variable X which is higher for the preferred instances.

- ullet input variables $(X,X')\in \mathcal{X}^2$ with same distribution
- ullet output variable : $Y \in \mathcal{Y} = \{-1, 1\}$
- ullet action space : $\mathbb{R} \times \mathbb{R}$
- predictor $(X, X') \mapsto (f(X), f(X'))$
- loss :

$$\ell((a,b),y) = 1_{\{(a-b)\,y \ge 0\}}$$

• risk :

$$\mathbb{P}\big(Y\big[f(X) - f(X')\big] \ge 0\big).$$

Assume that given a pair of random variables $(X, X') \in \mathcal{X}^2$,

a preference variable $Y \in \{-1,1\}$ is defined.

Learn a score function on the variable X which is higher for the preferred instances.

- ullet input variables $(X,X')\in \mathcal{X}^2$ with same distribution
- ullet output variable : $Y \in \mathcal{Y} = \{-1, 1\}$
- ullet action space : $\mathbb{R} \times \mathbb{R}$
- predictor $(X, X') \mapsto (f(X), f(X'))$
- loss :

$$\ell((a,b),y) = 1_{\{(a-b)\,y \ge 0\}}$$

• risk :

$$\mathbb{P}\big(Y\big[f(X) - f(X')\big] \ge 0\big).$$

• No unique target function. No simple expression.

Given $X = (X_1, \dots, X_m) \in \mathcal{X}$ predict $Y = (Y_1, \dots, Y_m)$.

- ullet input space $\mathcal{X} = \left(\mathbb{R}^p
 ight)^m$ and output space $\mathcal{Y} = \mathcal{A} = \mathcal{S}^m$
- ullet predictors $f=(f_1,\ldots,f_m)$ with $f_i:\mathcal{X} o\mathcal{S}$

Given
$$X = (X_1, \dots, X_m) \in \mathcal{X}$$
 predict $Y = (Y_1, \dots, Y_m)$.

- ullet input space $\mathcal{X} = \left(\mathbb{R}^p\right)^m$ and output space $\mathcal{Y} = \mathcal{A} = \mathcal{S}^m$
- predictors $f = (f_1, \ldots, f_m)$ with $f_i : \mathcal{X} \to \mathcal{S}$
- Hamming loss

$$\ell_H(y, a) = \sum_{j=1}^{m} 1_{\{a_j \neq y_j\}}$$

Given
$$X = (X_1, \dots, X_m) \in \mathcal{X}$$
 predict $Y = (Y_1, \dots, Y_m)$.

- ullet input space $\mathcal{X} = \left(\mathbb{R}^p\right)^m$ and output space $\mathcal{Y} = \mathcal{A} = \mathcal{S}^m$
- predictors $f = (f_1, \ldots, f_m)$ with $f_i : \mathcal{X} \to \mathcal{S}$
- Hamming loss

$$\ell_H(y, a) = \sum_{j=1}^{m} 1_{\{a_j \neq y_j\}}$$

Combined loss using a bigram natural language model

$$\ell(a, y) = c_H \ell_H(y, a) - \sum_{j=1}^m \log p_{\mathsf{L}}(a_j | a_{j-1})$$

Given $X = (X_1, \dots, X_m) \in \mathcal{X}$ predict $Y = (Y_1, \dots, Y_m)$.

- ullet input space $\mathcal{X} = \left(\mathbb{R}^p
 ight)^m$ and output space $\mathcal{Y} = \mathcal{A} = \mathcal{S}^m$
- predictors $f = (f_1, \ldots, f_m)$ with $f_i : \mathcal{X} \to \mathcal{S}$
- Hamming loss

$$\ell_H(y, a) = \sum_{j=1}^{m} 1_{\{a_j \neq y_j\}}$$

Combined loss using a bigram natural language model

$$\ell(a, y) = c_H \ell_H(y, a) - \sum_{j=1}^m \log p_{\mathsf{L}}(a_j | a_{j-1})$$

Risk=Error rate+perplexity term

$$c_H \sum_{j=1}^{m} \mathbb{P}(Y_i \neq f_i(X)) + \sum_{j=1}^{m} \mathbb{E}[-\log p_{\mathsf{L}}(Y_j|Y_{j-1})]$$

Given $X = (X_1, \dots, X_m) \in \mathcal{X}$ predict $Y = (Y_1, \dots, Y_m)$.

- ullet input space $\mathcal{X} = \left(\mathbb{R}^p
 ight)^m$ and output space $\mathcal{Y} = \mathcal{A} = \mathcal{S}^m$
- predictors $f = (f_1, \ldots, f_m)$ with $f_i : \mathcal{X} \to \mathcal{S}$
- Hamming loss

$$\ell_H(y, a) = \sum_{j=1}^{m} 1_{\{a_j \neq y_j\}}$$

Combined loss using a bigram natural language model

$$\ell(a, y) = c_H \ell_H(y, a) - \sum_{j=1}^m \log p_{\mathsf{L}}(a_j | a_{j-1})$$

Risk=Error rate+perplexity term

$$c_H \sum_{j=1}^{m} \mathbb{P}(Y_i \neq f_i(X)) + \sum_{j=1}^{m} \mathbb{E}[-\log p_{\mathsf{L}}(Y_j|Y_{j-1})]$$

How do we quantify that the machine learns?

How do we quantify that the machine learns?

Assume now that the predictor is generated from training data \mathcal{D}_n according via the scheme :

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{Y}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}_n$$

How do we quantify that the machine learns?

Assume now that the predictor is generated from training data \mathcal{D}_n according via the scheme :

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{Y}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}_n$$

Note that $\mathcal{E}(\widehat{f}_n) = \mathcal{R}(\widehat{f}_n) - \mathcal{R}(f^*)$ is a random variable.

Assume now that the predictor is generated from training data \mathcal{D}_n according via the scheme :

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{Y}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}_n$$

Note that $\mathcal{E}(\widehat{f}_n) = \mathcal{R}(\widehat{f}_n) - \mathcal{R}(f^*)$ is a random variable. We can consider the

Expected Excess Risk

$$\mathbb{E}[\mathcal{E}(\widehat{f}_n)] = \mathbb{E}[\mathcal{R}(\widehat{f}_n)] - \mathcal{R}(f^*),$$

Assume now that the predictor is generated from training data \mathcal{D}_n according via the scheme :

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{Y}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}_n$$

Note that $\mathcal{E}(\widehat{f}_n) = \mathcal{R}(\widehat{f}_n) - \mathcal{R}(f^*)$ is a random variable. We can consider the

Expected Excess Risk

$$\mathbb{E}[\mathcal{E}(\widehat{f_n})] = \mathbb{E}\left[\mathcal{R}(\widehat{f_n})\right] - \mathcal{R}(f^*), \qquad \quad \dots \text{ and require that } \mathbb{E}[\mathcal{E}(\widehat{f_n})] \underset{n \to \infty}{\to} 0.$$

Assume now that the predictor is generated from training data \mathcal{D}_n according via the scheme :

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{Y}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}_n$$

Note that $\mathcal{E}(\widehat{f}_n) = \mathcal{R}(\widehat{f}_n) - \mathcal{R}(f^*)$ is a random variable. We can consider the

Expected Excess Risk

$$\mathbb{E}[\mathcal{E}(\widehat{f_n})] = \mathbb{E}\left[\mathcal{R}(\widehat{f_n})\right] - \mathcal{R}(f^*), \qquad \quad \dots \text{ and require that } \mathbb{E}[\mathcal{E}(\widehat{f_n})] \underset{n \to \infty}{\to} 0.$$

Probably Approximately Correct Learning

We hope to do approximately as well as the target function with very high probability

$$\mathbb{P}\Big(\mathcal{R}(\widehat{f}_n) - \mathcal{R}(f^*) \le \epsilon\Big) \ge 1 - \delta$$

Assume now that the predictor is generated from training data \mathcal{D}_n according via the scheme :

$$\mathscr{A}: \bigcup_{n \in \mathcal{N}} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{Y}^{\mathcal{X}}$$

$$D_n \mapsto \widehat{f}_n$$

Note that $\mathcal{E}(\widehat{f}_n) = \mathcal{R}(\widehat{f}_n) - \mathcal{R}(f^*)$ is a random variable. We can consider the

Expected Excess Risk

$$\mathbb{E}[\mathcal{E}(\widehat{f_n})] = \mathbb{E}\left[\mathcal{R}(\widehat{f_n})\right] - \mathcal{R}(f^*), \qquad \qquad \dots \text{ and require that } \mathbb{E}[\mathcal{E}(\widehat{f_n})] \underset{n \to \infty}{\to} 0.$$

Probably Approximately Correct Learning

We hope to do approximately as well as the target function with very high probability

$$\mathbb{P}\Big(\mathcal{R}(\widehat{f}_n) - \mathcal{R}(f^*) \le \epsilon\Big) \ge 1 - \delta$$

 \rightarrow i.e. control the convergence in probability of the excess risk.

We have training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

We have training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

and wish to minimize

$$\mathcal{R}(f) = \int \ell(f(\mathbf{x}), y) \ \underline{dP_{X,Y}(\mathbf{x}, y)}$$

We have training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

and wish to minimize

$$\mathcal{R}(f) = \int \ell(f(\mathbf{x}), y) \underbrace{dP_{X,Y}(\mathbf{x}, y)}_{?}$$

• Can we estimate/learn $P_{X,Y}$ from the training data?

We have training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

and wish to minimize

$$\mathcal{R}(f) = \int \ell(f(\mathbf{x}), y) \ \underbrace{dP_{X,Y}(\mathbf{x}, y)}_{?}$$

- Can we estimate/learn $P_{X,Y}$ from the training data?
- Learning $P_{X,Y}$ is in general more complicated than learning f!

We have training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

and wish to minimize

$$\mathcal{R}(f) = \int \ell(f(\mathbf{x}), y) \, \underbrace{dP_{X,Y}(\mathbf{x}, y)}_{?}$$

- Can we estimate/learn $P_{X,Y}$ from the training data?
- Learning $P_{X,Y}$ is in general more complicated than learning f!
- Answer is no because of the

Curse of dimensionality

Density estimation requires an amount of data which grows exponentially with the number of dimensions

We have training data

$$D_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

and wish to minimize

$$\mathcal{R}(f) = \int \ell(f(\mathbf{x}), y) \, \underbrace{dP_{X,Y}(\mathbf{x}, y)}_{?}$$

- Can we estimate/learn $P_{X,Y}$ from the training data?
- Learning $P_{X,Y}$ is in general more complicated than learning f!
- Answer is no because of the

Curse of dimensionality

Density estimation requires an amount of data which grows exponentially with the number of dimensions

Exponential grow of "volume" with dimensions

Example: Histograms

Construct a histogram for $X \in [0,1]$ with 10 bins

Exponential grow of "volume" with dimensions

Example: Histograms

Construct a histogram for $X \in [0,1]$ with 10 bins

 \rightarrow possible with 100 observations

Exponential grow of "volume" with dimensions

Example: Histograms

Construct a histogram for $X \in [0,1]$ with 10 bins

 \rightarrow possible with 100 observations

Construct a histogram for $X \in [0, 1]^{10}$

Exponential grow of "volume" with dimensions

Example: Histograms

Construct a histogram for $X \in [0,1]$ with 10 bins

 \rightarrow possible with 100 observations

Construct a histogram for $X \in [0,1]^{10}$

 \rightarrow size et number of bin?

Exponential grow of "volume" with dimensions

Example: Histograms

Construct a histogram for $X \in [0,1]$ with 10 bins

 \rightarrow possible with 100 observations

Construct a histogram for $X \in [0,1]^{10}$

- \rightarrow size et number of bin?
- \rightarrow a priori impossible with 100 or even with 10^6 observations!

Exponential grow of "volume" with dimensions

Example: Histograms

Construct a histogram for $X \in [0,1]$ with 10 bins

 \rightarrow possible with 100 observations

Construct a histogram for $X \in [0,1]^{10}$

- \rightarrow size et number of bin?
- \rightarrow a priori impossible with 100 or even with 10^6 observations!

Idea: Replace the population distribution of the data by the empirical distribution of the training data.

Idea: Replace the population distribution of the data by the empirical distribution of the training data. Given a training set $\{(x_1,y_1),\ldots,(x_n,y_n)\}$, we define the

Idea: Replace the population distribution of the data by the empirical distribution of the training data. Given a training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$, we define the

Empirical Risk

$$\widehat{\mathcal{R}}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

Idea: Replace the population distribution of the data by the empirical distribution of the training data. Given a training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$, we define the

Empirical Risk

$$\widehat{\mathcal{R}}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) = \int \ell(f(x), y) dP_n(x, y) \qquad \text{with} \qquad P_n = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$$

Idea: Replace the population distribution of the data by the empirical distribution of the training data. Given a training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$, we define the

Empirical Risk

$$\widehat{\mathcal{R}}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) = \int \ell(f(x), y) dP_n(x, y) \qquad \text{with} \qquad P_n = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$$

Empirical Risk Minimization principle

• consists in minimizing the empirical risk.

Idea: Replace the population distribution of the data by the empirical distribution of the training data. Given a training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$, we define the

Empirical Risk

$$\widehat{\mathcal{R}}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) = \int \ell(f(x), y) dP_n(x, y) \qquad \text{with} \qquad P_n = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$$

Empirical Risk Minimization principle

• consists in minimizing the empirical risk.

Problem : The target function for the empirical risk is only defined at the training points.

Idea: Replace the population distribution of the data by the empirical distribution of the training data. Given a training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$, we define the

Empirical Risk

$$\widehat{\mathcal{R}}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) = \int \ell(f(x), y) dP_n(x, y) \qquad \text{with} \qquad P_n = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$$

Empirical Risk Minimization principle

• consists in minimizing the empirical risk.

Problem : The target function for the empirical risk is only defined at the training points.

Idea: Replace the population distribution of the data by the empirical distribution of the training data. Given a training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$, we define the

Empirical Risk

$$\widehat{\mathcal{R}}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) = \int \ell(f(x), y) dP_n(x, y) \qquad \text{with} \qquad P_n = \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$$

Empirical Risk Minimization principle

• consists in minimizing the empirical risk.

Problem : The target function for the empirical risk is only defined at the training points.

g Hadaman)

A problem is well-posed in the sense of Hadamard if

- It admits a solution
- This solution is *unique*

A problem is well-posed in the sense of Hadamard if

- It admits a solution
- This solution is *unique*
- The solution depends continuously on the numerical values defining the problem, for an appropriate topology.

A problem is well-posed in the sense of Hadamard if

- It admits a solution
- This solution is *unique*
- The solution depends continuously on the numerical values defining the problem, for an appropriate topology.

Learning as formulated is

- underconstrained
- with by essence incomplete information

and thus ill-posed.

A problem is well-posed in the sense of Hadamard if

- It admits a solution
- This solution is *unique*
- The solution depends continuously on the numerical values defining the problem, for an appropriate topology.

Learning as formulated is

- underconstrained
- with by essence incomplete information

and thus ill-posed.

It is necessary to add an *inductive bias* by restricting the **hypothesis** space, using regularization or using a Bayesian prior.

Hypothesis space

For both computational and statistical reasons, it is necessary to to restrict the set of predictors or the set of hypotheses considered.

Given a hypothesis space $S\subset\mathcal{Y}^\mathcal{X}$ considered, the constrained ERM problem is of the form :

$$\min_{f \in S} \widehat{\mathcal{R}}_n(f)$$

Hypothesis space

For both computational and statistical reasons, it is necessary to to restrict the set of predictors or the set of hypotheses considered. Given a hypothesis space $S \subset \mathcal{Y}^{\mathcal{X}}$ considered, the constrained ERM problem is of the form :

$$\min_{f \in S} \widehat{\mathcal{R}}_n(f)$$

- linear functions
- polynomial functions
- spline functions
- multiresolution approximation spaces (wavelet)
- functions defined by Mercer kernels
- neural network with a given architecture