5.8.6: Let b_0, b_1, b_2, \ldots be the sequence defined by the explicit formula

$$b_n = C \cdot 3^n + D(-2)^n$$
 for all integers $k \ge 2$

where C and D are real numbers. Show that for any choice of C and D,

$$b_k = b_{k-1} + 6b_{k-2}$$
 for all integers $k \ge 2$

Proof. TO-DO

5.8.10: Suppose a sequence of the form $1.t.t^2.t^3...t^n...$ where $t \neq 0$, satisfies the given recurrence relation (but not necessarily the initial conditions), and find all possible values of t. Suppose a sequence satisfies the given initial conditions as well as the recurrence relation, and find an explicit formula for the sequence.

$$c_k = c_{k-1} + 6c_{k-2}$$

for all integers $k \geq 2$

$$c_0 = 0 \quad c_1 = 3$$

5.8.15: Suppose a sequence satisfies the given recurrence relation and initial conditions. Find an explicit formula for the sequence.

$$t_k = 6t_{k-1} - 9t_{k-2}$$

for all integers $k \geq 2$

$$t_0 = 1 \quad t_1 = 3$$

5.8.24: The numbers $\frac{1+\sqrt{5}}{2}$ and $\frac{1-\sqrt{5}}{2}$ that appear in the explicit formula for the Fibonacci sequence are related to a quantity called the *golden ration* in Greek mathematics. Consider a rectangle of length ϕ units and height 1, where $\phi > 1$.

Divide the rectangle into a rectangle and a square as shown in the preceding diagram. The square

is 1 unit on each side, and the rectangle has sides of length 1 and $\phi - 1$.

Capstone: Discrete Math Due: December 14, 2023

5.9.4b: The set of arithmetic expressions over the real numbers can be defined recursively as follows:

- I. BASE: Each real number r is an arithmetic expression.
- II. RECURSION: If u and v are arithmetic expressions, then the following are also arithmetic expressions:
 - a. (+u)
 - b. (-u)
 - c. (u+v)
 - d. (u-v)
 - e. $(u \cdot v)$
 - f. $\left(\frac{u}{v}\right)$
- III. RESTRICTION: There are no arithmetic expressions over the real numbers other than those obtained from I and II.

(Note that the expression $\left(\frac{u}{v}\right)$ is legal even though the value of v may be 0.) Give derivations showing that each of the following is an arithmetic expression.

$$\left(\frac{(9\cdot(6.1+2))}{((4-7)\cdot6)}\right)$$

- **5.9.6**: Define a set S recursively as follows:
 - I. BASE: $a \in S$
 - II. RECURSION: If $s \in S$, then
 - a. $sa \in S$
 - b. $sb \in S$
- III. RESTRICTION: Nothing is in S other than objects defined in I and II above. Use structural induction to prove that every string in S begins with an a.
- **5.9.11**: Define a set S recursively as follows:
 - I. BASE: $0 \in S$
 - II. RECURSION: If $s \in S$, then
 - a. $s+3 \in S$
 - b. $s 3 \in S$
 - III. RESTRICTION: Nothing is in S other than objects defined in I and II above.

Capstone: Discrete Math Due: December 14, 2023

Use structural induction to prove that every integer in S is divisible by 3.

5.9.16: Give a recursive definition for the set of all strings of 0's and 1's for which all the 0's precede all the 1's.

5.9.18: Give a recursive definition for the set of all strings of a's and b's that contain exactly one a.

6.1.6: Let $A = \{x \in \mathbf{Z} \mid x = 5a + 2 \text{ for some integer } a\}$, $B = \{y \in \mathbf{Z} \mid y = 10b - 3 \text{ for some integer } b\}$, and $C = \{z \in \mathbf{Z} \mid z = 10c + 7 \text{ for some integer } c\}$. Prove or disprove each of the following statements.

- a. $A \subseteq B$
- b. $B \subseteq A$
- c. B = C

6.1.20: Let $B_i = \{x \in \mathbf{R} \mid 0 \le x \le i\}$ for all integers i = 1, 2, 3, 4.

- a. $B_1 \cup B_2 \cup B_3 \cup B_4 = ?$
- b. $B_1 \cap B_2 \cap B_3 \cap B_4 = ?$

c. Are B_1, B_2, B_3 , and B_4 mutually disjoint? Explain.

6.1.23: Let $V_i = \left\{ x \in \mathbf{R} \mid -\frac{1}{i} \le x \le \frac{1}{i} \right\} = \left[-\frac{1}{i}, \frac{1}{i} \right]$ for all positive integers i.

- a. $\bigcup_{i=1}^{4} V_i = ?$
- b. $\bigcap_{i=1}^{4} V_i = ?$
- c. Are V_1, V_2, V_3, \ldots mutually disjoint? Explain.
- d. $\bigcup_{i=1}^{n} V_i = ?$
- e. $\bigcap_{i=1}^{n} V_i = ?$
- f. $\bigcup_{i=1}^{\infty} V_i = ?$
- g. $\bigcap_{i=1}^{\infty} V_i = ?$

Capstone: Discrete Math Due: December 14, 2023

- a. Find $\mathscr{P}(\emptyset)$.
- b. Find $\mathscr{P}(\mathscr{P}(\emptyset))$.
- c. Find $\mathscr{P}(\mathscr{P}(\mathscr{P}(\emptyset)))$.
- **6.2.10**: Use an element argument to prove the statement. Assume that all sets are subsets of a universal set U. For all sets A, B, and C,

$$(A - B) \cap (C - B) = (A \cap C) - B.$$

- **6.2.14**: Use an element argument to prove the statement. Assume that all sets are subsets of a universal set U. For all sets A, B, and C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$.
- **6.2.32**: Use the element method for proving a set equals the empty set to prove the statement. Assume that all sets are subsets of a universal set U. For all sets A, B, and C, if $A \subseteq B$ and $B \cap C = \emptyset$ then $A \cap C = \emptyset$.
- **6.2.39**: Prove the statement. For all integers $n \ge 1$, if A_1, A_2, A_3, \ldots and B are any sets, then

$$\bigcap_{i=1}^{n} (A_i - B) = \left(\bigcap_{i=1}^{n} A_i\right) - B.$$