Лабораторна робота №3

з дисципліни "Математичне моделювання систем та процесів" тема: "Математичні моделі, що описуються системами диференціальних рівнянь"

Мета роботи — опанувати комп'ютерні засоби для розв'язання та аналізу систем диференціальних рівнянь та набути навичок побудови найпростіших математичних моделей, що описуються системами диференціальних рівнянь.

Завдання для виконання

- 1. Побудувати поле напрямків та типові фазові траєкторії системи диференціальних рівнянь, заданої за варіантом (*табл.* 3.1).
- 2. Знайти розв'язки системи диференціальних рівнянь з початковими умовами, заданої за варіантом (*табл.* 3.1), в аналітичному вигляді за допомогою будь-якого математичного пакета, використовуючи спеціальні функції, що наявні в ньому.
- 3. Розв'язати систему диференціальних рівнянь (сітку обрати самостійно) з початковими умовами, задану за варіантом (*табл.* 3.1), будь-яким чисельним методом (вибір методу обгрунтувати) змінюючи точність обчислень, що задана за замовчуванням для обраного метода.
- 4. Вивести рівняння руху механічної системи зображеної на рис. 3.1. Знайти загальний розв'язок отриманої системи при заданих масах матеріальних точок та жорсткостях пружини (*табл.* 3.2). Знайти

власні частоти механічної системи та описати власні моди коливань. Побудувати графік двох (два тіла рухаються в однаковому напрямку та у протилежних напрямках) власних мод.

Рис. 3.1. Механічна система

- 5. Обчислити $e^{\mathbf{A}t}$ і використовуючи отриману матрицю розв'язати, задану за варіантом, систему диференціальних рівнянь (maбл. 3.3). Примітка: в кожному математичному пакеті наявна спеціальна функція для обчислення $e^{\mathbf{A}t}$. Наприклад, в MatLab такою функцією є ехрт (A*t).
- 6. Розв'язати задану за варіантом задачу Коші (табл. 3.4)

$$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{f}(t), \quad \mathbf{x}(a) = \mathbf{x}_a.$$

методом варіації параметрів, попередньо обчисливши $e^{\mathbf{A}t}$. При необхідності дозволяється використати спеціалізований математичний пакет, але при цьому задача Коші має бути розв'язана заданим методом.

7. Знайти розв'язок системи диференціальних рівнянь, що задана за варіантом (*табл.* 3.5). Побудувати фазовий портрет та поле напрямків даної системи. Визначити тип та стійкість кожної рівноважної точки.

Примітка: якщо за варіантом задано диференціальне рівняння вищого порядку, то його необхідно перетворити в еквіваленту систему диференціальних рівнянь першого порядку.

- 8. Аналітично знайти всі точки рівноваги системи диференціальних рівнянь, що задана за варіантом (*табл.* 3.6). Побудувати фазовий портрет для даної системи. За фазовим портретом перевірити коректність висновків отриманих аналітично.
- 9. Розв'язати задачу, задану за варіантом (табл. 3.7).
- 10. Для системи, заданої за варіантом (maбл. 3.8), описати тип популяцій x(t) та y(t) та характер їх взаємодії. Знайти всі точки рівноваги даної системи і визначити їх тип та стійкість. Визначити при яких відмінних від нуля x та y можуть співіснувати ці популяції. Побудувати фазовий портрет та за фазовим портретом описати поведінку цих двох популяцій в залежності від початкових чисельностей x(0) та y(0).

11. Номер варіанту визначається таблицею:

№ за списком викладача	Варіант №
1	3
2	9
3	1
4	6
5	7
6	10

№ за списком викладача	Варіант №
7	8
8	2
9	11
10	5
11	5

Вимоги до оформлення звіту

Звіт має містити:

- 1. Оформлений за зразком титульний аркуш.
- 2. На кожній сторінці, окрім титульної, в правому верхньому куті прізвище, ініціали студента та номер групи.
- 3. Наскрізну нумерацію, окрім титульної, в правому нижньому куті.
- 4. Постановку задачі за варіантом.
- 5. Математичне підгрунття для виконання даної лабораторної роботи.
- 6. Поле напрямків та типові фазові траєкторії системи диференціальних рівнянь з п.1 завдання.
- 7. Розв'язок системи диференціальних рівнянь з п.2 завдання та код програми, яка її розв'язує.
- 8. Чисельні розв'язки системи диференціальних рівнянь з п.3 завдання:

Спеціалізований математичний пакет (вказати назву)		
Метод (вказати назву)		
x	у	

- 9. Процес розв'язку задачі з п.4 завдання.
- 10. Процес розв'язку задачі з п.5 завдання.
- 11. Процес розв'язку задачі з п.6 завдання.
- 12. Процес розв'язку задачі з п.7 завдання.
- 13. Процес розв'язку задачі з п.8 завдання.
- 14. Процес розв'язку задачі з п.9 завдання.
- 15. Процес розв'язку задачі з п.10 завдання.
- 16. Висновки.
- 17. Основний текст звіту має бути набраний з дотриманням таких вимог: шрифт Times New Roman 14 пт, відступ першого рядка 12.5 мм з міжрядковим інтервалом 1.5 з вирівнюванням по ширині та

надрукований на одному боці аркуша паперу формату А4 з полями таких розмірів:

- верхнє та нижнє поле: до тексту 20 мм, до колонтитула 12.5 мм;
- ліве поле 30 мм;
- праве поле 15 мм.
- 18. Текст в таблицях має бути набраний з дотриманням таких вимог: шрифт Times New Roman 12 пт (при необхідності дозволяється змінити шрифт на Courier New 8 пт), міжрядковий інтервал 1.0, інтервал перед 6 пт, інтервал після 6 пт.
- 19. Текст програм має бути набраний з дотриманням таких вимог: шрифт Courier New 8 пт з міжрядковим інтервалом 1.0.
- 20. Звіт подається на перевірку в роздрукованому та електронному вигляді в форматі *.doc або *.docx, або *.rtf, або *.pdf.

Таблиця 3.1. Варіанти завдань

Варіант №	Система рівнянь	Початкова умова
	$\int x' = y$;	x(0) = 1.00;
1	$\begin{cases} x' = y; \\ y' = -x. \end{cases}$	y(0) = 11.00
	$\int x' = -2y;$	x(1) = 5.00;
2	$\begin{cases} x' = -2y; \\ y' = 2x. \end{cases}$	y(1) = 3.00
	$\begin{cases} x' = \frac{1}{2} y; \end{cases}$	x(5) = 7.00;
3	$\int y' = -8x.$	y(5) = 11.00
4	$\int x' = y \; ;$	x(7) = 1.50;
4	$\begin{cases} x' = y; \\ y' = 6x - y. \end{cases}$	y(7) = 13.59
	$\int x' = -y;$	x(1) = 11.30;
5	$\begin{cases} x' = -y; \\ y' = 13x + 4y. \end{cases}$	y(1) = 5.90
	$\int x' = y \; ;$	x(5) = 7.00;
6	$\begin{cases} x' = y; \\ y' = -9x + 6y. \end{cases}$	y(5) = 9.00
7	$\int x' = y ;$	x(8) = 13.00;
/	$\begin{cases} x' = y; \\ y' = x. \end{cases}$	y(8) = 7.00
	$\int x' = 10y;$	x(9) = 7.00;
8	$\begin{cases} y' = -10x . \end{cases}$	y(9) = 13.00
	$\int x' = 8y;$	x(2) = 1.00;
9	$\begin{cases} x' = 8y; \\ y' = -2x. \end{cases}$	y(2) = 9.00
10	$\int x' = -y;$	x(0) = 17.00;
10	$\begin{cases} x' = -y; \\ y' = 10x - 7y. \end{cases}$	y(0) = 13.00
11	$\int x' = 5y + 1;$	x(0) = 7.00;
11	$\begin{cases} x' = 5y + 1; \\ y' = -10x. \end{cases}$	y(0) = 8.00

Таблиця 3.2. Варіанти завдань

				Ι	/1
Варіант №	m_1	m_2	k_1	k_2	k_3
1	4	2	8	4	0
2	1	1	1	4	1
3	1	1	1	2	1
4	1	2	2	4	4
5	2	1	100	50	0
6	1	2	1	2	2
7	1	1	2	1	2
8	1	1	4	6	4
9	5	1	7	1	50
10	9	5	3	2	30
11	7	4	1	5	7

Таблиця 3.3. Варіанти завдань

	1	л 3.3. Баріанти завдань
Варіант №	Система рівнянь	Початкова умова
	$\int x_1' = 5x_1 - 4x_2$;	$x_1(5) = 17.00;$
1	$\begin{cases} x_1' = 5x_1 - 4x_2; \\ x_2' = 2x_1 - x_2. \end{cases}$	$x_2(5) = 19.00$
	$\int x_1' = 5x_1 - 3x_2$;	$x_1(7) = 7.00;$
2	$\begin{cases} x_1' = 5x_1 - 3x_2 ; \\ x_2' = 2x_1 . \end{cases}$	$x_2(7) = 5.00$
	$\int x_1' = 9x_1 - 8x_2$;	$x_1(4) = 9.00;$
3	$\begin{cases} x_1' = 9x_1 - 8x_2; \\ x_2' = 6x_1 - 5x_2. \end{cases}$	$x_2(4) = 11.00$
	$\int x_1' = 6x_1 - 10x_2$;	$x_1(3) = 14.00;$
4	$\begin{cases} x_1' = 6x_1 - 10x_2; \\ x_2' = 2x_1 - 3x_2. \end{cases}$	$x_2(3) = 15.00$
	$\int x_1' = 3x_1 + x_2$;	$x_1(1) = 11.00;$
5	$\begin{cases} x_1' = 3x_1 + x_2; \\ x_2' = x_1 + 3x_2. \end{cases}$	$x_2(1) = 13.00$
	$\int x_1' = 9x_1 + 2x_2$;	$x_1(0) = 3.00;$
6	$\begin{cases} x_1' = 9x_1 + 2x_2; \\ x_2' = 2x_1 + 6x_2. \end{cases}$	$x_2(0) = 4.00$
	$\int x_1' = 5x_1 - 4x_2 \; ;$	$x_1(7) = 3.00;$
7	$\begin{cases} x_1' = 5x_1 - 4x_2; \\ x_2' = 3x_1 - 2x_2. \end{cases}$	$x_2(7) = 1.00$
0	$\int x_1' = 10x_1 - 6x_2$;	$x_1(4) = 3.00;$
8	$\int x_2' = 12x_1 - 7x_2.$	$x_2(4) = 5.00$
	$\int x_1' = 11x_1 - 15x_2$;	$x_1(1) = 3.00$;
9	$\begin{cases} x_1' = 11x_1 - 15x_2; \\ x_2' = 6x_1 - 8x_2. \end{cases}$	$x_2(1) = 4.00$
10	$\int x_1' = 4x_1 + 2x_2 \; ;$	$x_1(13) = 7.00;$
10	$\begin{cases} x_1' = 4x_1 + 2x_2; \\ x_2' = 2x_1 + 4x_2. \end{cases}$	$x_2(13) = 3.00$
1.1	$\int x_1' = 13x_1 + 4x_2 \; ;$	$x_1(17) = 11.00;$
11	$\begin{cases} x_1' = 13x_1 + 4x_2; \\ x_2' = 4x_1 + 7x_2. \end{cases}$	$x_2(17) = 5.00$

Таблиця 3.4. Варіанти завдань

	T	,	тен виринти завдинь
Варіант №	A	$\mathbf{f}(t)$	$\mathbf{x}(a) = \mathbf{x}_a$
1	$\begin{bmatrix} 6 & -7 \\ 1 & -2 \end{bmatrix}$	$\begin{bmatrix} 100t \\ -50t \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
2	$\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$	$\begin{bmatrix} 180t \\ 90t \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
3	$\begin{bmatrix} 4 & -1 \\ 5 & -2 \end{bmatrix}$	$\begin{bmatrix} 18e^{2t} \\ 30e^{2t} \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
4	$\begin{bmatrix} 4 & -1 \\ 5 & -2 \end{bmatrix}$	$\begin{bmatrix} 28e^{-t} \\ 20e^{3t} \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
5	$\begin{bmatrix} 3 & -1 \\ 9 & -3 \end{bmatrix}$	$\begin{bmatrix} 0 \\ t^{-2} \end{bmatrix}$	$\mathbf{x}(1) = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$
6	$\begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$	$\begin{bmatrix} 4 \cdot \cos t \\ 6 \cdot \sin t \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
7	$\begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}$	$\begin{bmatrix} 4 \cdot \ln t \\ t^{-1} \end{bmatrix}$	$\mathbf{x}(1) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
8	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} \sec t \\ 0 \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
9	$\begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$	$\begin{bmatrix} t \cdot \cos 2t \\ t \cdot \sin 2t \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
10	$\begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$	$\begin{bmatrix} 4t \\ 1 \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
11	$\begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}$	$\begin{bmatrix} 36t^2 \\ 6t \end{bmatrix}$	$\mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Таблиця 3.5. Варіанти завдань

Варіант №	Рівняння або система рівнянь
1	$x'' + 4x - x^3 = 0$
2	$x'' + 3x' + 4\sin x = 0$
3	$x'' + 2x' + x + 4x^3 = 0$
4	$x'' + (x^2 - 1)x' + x = 0$
5	$\begin{cases} \frac{dx}{dt} = -2x; \\ \frac{dy}{dt} = -2y. \end{cases}$
6	$\begin{cases} \frac{dx}{dt} = 2x; \\ \frac{dy}{dt} = -2y. \end{cases}$
7	$\begin{cases} \frac{dx}{dt} = -2x; \\ \frac{dy}{dt} = -y. \end{cases}$
8	$\begin{cases} \frac{dx}{dt} = x; \\ \frac{dy}{dt} = 3y. \end{cases}$
9	$\begin{cases} \frac{dx}{dt} = y; \\ \frac{dy}{dt} = -5x - 4y. \end{cases}$
10	$\begin{cases} \frac{dx}{dt} = -y; \\ \frac{dy}{dt} = 4x. \end{cases}$

Таблиця 3.5. Варіанти завдань

Варіант №	Рівняння або система рівнянь
11	$\begin{cases} \frac{dx}{dt} = y; \\ \frac{dy}{dt} = -x. \end{cases}$

Таблиця 3.6. Варіанти завдань

	таолиця э.о. Барланти завдань
Варіант №	Система рівнянь
1	$\begin{cases} \frac{dx}{dt} = x - 3y + 2xy; \\ \frac{dy}{dt} = 4x - 6y - xy. \end{cases}$
2	$\begin{cases} \frac{dx}{dt} = x + 2y + x^2 + y^2; \\ \frac{dy}{dt} = 2x - 2y - 3xy. \end{cases}$
3	$\begin{cases} \frac{dx}{dt} = 2x - 5y + x^3; \\ \frac{dy}{dt} = 4x - 6y + y^4. \end{cases}$
4	$\begin{cases} \frac{dx}{dt} = x - 2y + 3xy; \\ \frac{dy}{dt} = 3x - 3y - x^2 - y^2. \end{cases}$
5	$\begin{cases} \frac{dx}{dt} = x - y + x^4 - y^2; \\ \frac{dy}{dt} = 2x - y + y^4 - x^2. \end{cases}$
6	$\begin{cases} \frac{dx}{dt} = x - y; \\ \frac{dy}{dt} = x^2 - y. \end{cases}$
7	$\begin{cases} \frac{dx}{dt} = y^2 - 1; \\ \frac{dy}{dt} = x^3 - y. \end{cases}$
8	$\begin{cases} \frac{dx}{dt} = 6x - 5y + x^2; \\ \frac{dy}{dt} = 2x - y + y^2. \end{cases}$

Таблиця 3.6. Варіанти завдань

Варіант №	Система рівнянь
9	$\begin{cases} \frac{dx}{dt} = x + 4y - xy^2; \\ \frac{dy}{dt} = 2x - y + x^2y. \end{cases}$
10	$ \begin{cases} \frac{dx}{dt} = 5x - 3y + y(x^2 + y^2); \\ \frac{dy}{dt} = 5x + y(x^2 + y^2). \end{cases} $
11	$\begin{cases} \frac{dx}{dt} = 3x - 2y - x^2 - y^2; \\ \frac{dy}{dt} = 2x - y - 3xy. \end{cases}$

Таблиця 3.7. Варіанти завдань

Варіант №	Задача
1	Побудвати фазовий портрет системи хижак-жертва: $\begin{cases} \frac{dx}{dt} = 200x - 4xy \; ; \\ \frac{dy}{dt} = -150y + 2xy \; . \end{cases}$
	Визначити аналітично тип популяцій $(x(t))$ та $y(t)$ і тип та стійкість точок рівноваги. Отримати лінеаризацію даної системи в двох точках: $(0;0)$ та $(75;50)$. Побудувати фазовий портрет для цих двох лінеаризацій. Порівняти фазові портрети при лінеаризації з фазовим портретом початкової системи.
2	Побудвати фазовий портрет системи конкуренції: $\begin{cases} \frac{dx}{dt} = 60x - 4x^2 - 3xy ; \\ \frac{dy}{dt} = 42y - 2y^2 - 3xy . \end{cases}$
2	Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці $(0;0)$. Побудувати фазовий портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.
	Побудвати фазовий портрет системи конкуренції: $\begin{cases} \frac{dx}{dt} = 60x - 4x^2 - 3xy ; \\ \frac{dy}{dt} = 42y - 2y^2 - 3xy . \end{cases}$
3	Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці $(0;21)$. Побудувати фазовий портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.

Таблиця 3.7. Варіанти завдань

Варіант №	Задача
4	Побудвати фазовий портрет системи конкуренції:
	$\begin{cases} \frac{dx}{dt} = 60x - 4x^2 - 3xy; \\ \frac{dy}{dt} = 42y - 2y^2 - 3xy. \end{cases}$
	Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції
	чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці (15;0). Побудувати фазовий портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової
	системи.
	Побудвати фазовий портрет системи конкуренції:
5	$\begin{cases} \frac{dx}{dt} = 60x - 4x^2 - 3xy; \\ \frac{dy}{dt} = 42y - 2y^2 - 3xy. \end{cases}$
	Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці $(6;12)$. Побудувати
	фазовий портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.

Таблиця 3.7. Варіанти завдань

Варіант №	Задача
6	Побудвати фазовий портрет системи конкуренції:
	$\begin{cases} \frac{dx}{dt} = 60x - 3x^2 - 4xy; \\ \frac{dy}{dt} = 42y - 3y^2 - 2xy. \end{cases}$
	Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції
	чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці (0;14). Побудувати
	фазовий портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.
	Побудвати фазовий портрет системи конкуренції:
7	$\begin{cases} \frac{dx}{dt} = 60x - 3x^2 - 4xy; \\ \frac{dy}{dt} = 42y - 3y^2 - 2xy. \end{cases}$
	Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці $(20;0)$. Побудувати
	фазовий портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.

Таблиця 3.7. Варіанти завдань

Варіант №	Задача
8	Побудвати фазовий портрет системи конкуренції:
	$\begin{cases} \frac{dx}{dt} = 60x - 3x^2 - 4xy; \\ \frac{dy}{dt} = 42y - 3y^2 - 2xy. \end{cases}$
	Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці $(12;6)$. Побудувати фазовий портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.
9	Побудвати фазовий портрет системи хижак-жертва: $\begin{cases} \frac{dx}{dt} = 5x - x^2 - xy ; \\ \frac{dy}{dt} = -2y + xy . \end{cases}$ Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці $(0;0)$. Побудувати фазовий портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.

Таблиця 3.7. Варіанти завдань

Варіант №	Задача
10	Побудвати фазовий портрет системи хижак-жертва:
	$\begin{cases} \frac{dx}{dt} = 5x - x^2 - xy; \\ \frac{dy}{dt} = -2y + xy. \end{cases}$
	Визначити аналітично тип та стійкість точок рівноваги, тип
	популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції
	чи затримки популяцій) є домінуючим в цій системі. Отримати
	лінеаризацію даної системи в точці (5;0). Побудувати фазовий
	портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.
11	Побудвати фазовий портрет системи хижак-жертва:
	$\begin{cases} \frac{dx}{dt} = 5x - x^2 - xy; \\ \frac{dy}{dt} = -2y + xy. \end{cases}$
	Визначити аналітично тип та стійкість точок рівноваги, тип популяцій $(x(t))$ та $y(t)$, а також який з ефектів (конкуренції
	чи затримки популяцій) є домінуючим в цій системі. Отримати лінеаризацію даної системи в точці (2; 3). Побудувати фазовий
	портрет для цієї лінеаризації. Порівняти фазовий портрет при лінеаризації з фазовим портретом початкової системи.

Таблиця 3.8. Варіанти завдань

таолици олог Барганти завдань		
Варіант №	Система рівнянь	
1	$\begin{cases} \frac{dx}{dt} = 2x - xy; \\ \frac{dy}{dt} = 3y - xy. \end{cases}$	
2	$\begin{cases} \frac{dx}{dt} = 2xy - 16x; \\ \frac{dy}{dt} = 4y - xy. \end{cases}$	
3	$\begin{cases} \frac{dx}{dt} = 3x - x^2 + \frac{1}{2}xy; \\ \frac{dy}{dt} = \frac{1}{5}xy - y. \end{cases}$	
4	$\begin{cases} \frac{dx}{dt} = 30x - 3x^2 + xy; \\ \frac{dy}{dt} = 60y - 3y^2 + 4xy. \end{cases}$	
5	$\begin{cases} \frac{dx}{dt} = 30x - 2x^2 - xy; \\ \frac{dy}{dt} = 80y - 4y^2 + 2xy. \end{cases}$	
6	$\begin{cases} \frac{dx}{dt} = 30x - 2x^2 - xy; \\ \frac{dy}{dt} = 20y - 4y^2 + 2xy. \end{cases}$	
7	$\begin{cases} \frac{dx}{dt} = 2xy - 4x; \\ \frac{dy}{dt} = xy - 3y. \end{cases}$	
8	$\begin{cases} \frac{dx}{dt} = 3x - x^2 - \frac{1}{2}xy; \\ \frac{dy}{dt} = 4y - 2xy. \end{cases}$	

Таблиця 3.8. Варіанти завдань

Варіант №	Система рівнянь
9	$\begin{cases} \frac{dx}{dt} = 3x - x^2 - \frac{1}{4}xy; \\ \frac{dy}{dt} = xy - 2y. \end{cases}$
10	$\begin{cases} \frac{dx}{dt} = 5xy + 4x; \\ \frac{dy}{dt} = 7xy - 3y. \end{cases}$
11	$\begin{cases} \frac{dx}{dt} = 3x - 2x^2 - \frac{1}{5}xy; \\ \frac{dy}{dt} = 3xy - 2y. \end{cases}$

Контрольні питання

- 1. Яким чином можна перетворити диференціальне рівняння вищого порядку в систему диференціальних рівнянь першого порядку?
- 2. Правила диференціювання матричних функцій.
- 3. Записати систему лінійних диференціальних рівнянь у вигляді матрично-векторного рівняння.
- 4. Метод власних значень розв'язання однорідної системи диференціальних рівнянь
- 5. Що таке фундаментальна матриця лінійної однорідної системи диференціальних рівнянь
- 6. Яка матриця називається нільпотентною?
- 7. Метод варіації параметрів розв'язання системи неоднорідних диференціальних рівнянь.
- 8. Навести приклад задачі, що зводиться до розв'язання системи диференціальних рівнянь.
- 9. Яка система диференціальних рівнянь називається автономною?
- 10. Що таке траєкторія системи диференціальних рівнянь?
- 11. Що таке фазовий портрет системи диференціальних рівнянь?
- 12. Для якої системи диференціальних рівнянь можна побудувати поле напрямків?
- 13. Що таке рівноважний розв'язок системи диференціальних рівнянь?
- 14. Яким чином виконується лінеаризація нелінійної системи диференціальних рівнянь?
- 15. Як класифікують точки рівноваги системи диференціальних рівнянь?
- 16. Модель хижак-жертва.
- 17. Модель конкуренції.