Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

0.1	Структура линейного оператора	2
0.2	Алгебраическая и Геометрическая кратности	3

0.1 Структура линейного оператора

Определение 0.1. $\chi_A(\lambda) = \det(A - \lambda E)$ — характеристический многочлен линейного оператора A.

Утверждение 0.1 (О свойствах характеристического многочлена).

- 1. $\chi_A(\lambda) = 0, \lambda \in F$, тогда λ собственное значение оператора A.
- 2. $\chi_A(\lambda)$ не зависит от выбора базиса, в котором записывается A.

Доказательство.

- 1. $Ax = \lambda x \Leftrightarrow (A \lambda E)x = 0$ имеет нетривиальное решение $\Leftrightarrow \det(A \lambda E) = 0$
- 2. $\det(SAS^{-1} \lambda E) = \det(SAS^{-1} \lambda SES^{-1}) = \det S \det S^{-1} \det(A \lambda E) = \det(A \lambda E)$

Определение 0.2. Линейный оператор называется диагонализируемым, если существует базис, в котором его матрица является диагональной

Теорема 0.1 (Критерий диагонализируемости). Пусть $\varphi: V \to V$ — линейный оператор, $\lambda_1, \lambda_2 \dots \lambda_k$ — все попарно различные корни характеристического многочлена. Тогда следующие утверждения эквивалентны:

- 1. $\varphi \partial u$ агонализируема
- 2.~B~V~ суещствует бащис, состоящий из собственных векторов для arphi
- 3. $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$

Доказательство.

- $1\Rightarrow 2$ Рассмотрим базис, в котором матрица имеет диагоанльный вид \mathfrak{E} . Но тогда $\forall e\in\mathfrak{E}$: $Ae=\lambda_i e$ для некоторого i. Но тогда этот базис состоит из собственных векторов.
- $2\Rightarrow 3$ Рассмотрим отдельно базисы, отвечающие собственным значениям $\lambda_1,\lambda_2\dots\lambda_k$. Они образуют базисы пространств $V_{\lambda_1},V_{\lambda_2},\dots V_{\lambda_k}$. Но тогда $V=V_{\lambda_1}\oplus V_{\lambda_2}\oplus\dots\oplus V_{\lambda_k}$
- $3\Rightarrow 1$ Рассмотрим объединение базисов этих пространств. Т.к. каждый вектор полученного базиса будет собственным, в каждой строке и каждом столбце матрицы будет записано ровно одно число. Но тогда можно поменять местами векторы базиса так, чтобы матрица была диагональной

0.2 Алгебраическая и Геометрическая кратности

Определение 0.3. Алгебраической кратностью собственного значения λ_0 многочлена $\chi_A(\lambda)$ называется кратность его как корня данного многочлена.

Определение 0.4. Геометрической кратностью собственного значения λ_0 называется $\dim V_{\lambda_0}$

Утверждение 0.2. Пусть $\varphi: V \to V$ — линейный оператор, $U \leqslant V$, U инвариантно относительно $phi, \psi = \varphi|_U \in \mathcal{L}(U)$. Тогда $\chi_{\varphi}: \chi_{\psi}$

Доказательство.

$$\mathfrak{E} = (\underbrace{e_1, e_2, \dots e_k}_{\text{Базис } V}, e_{k+1}, \dots e_n)$$

Но тогда:

$$A_{\varphi} = \left(\begin{array}{c|c} A_{\psi} & B \\ \hline 0 & C \end{array}\right) \Rightarrow \chi_{\varphi}(\lambda) = |A_{\varphi} - \lambda E| = |A_{\psi} - \lambda E||C - \lambda E| = \chi_{\psi}(\lambda)\chi_{C}(\lambda)$$

Следствие. Пусть λ — собственное значение $\varphi: V \to V$. Тогда $geom(\lambda) \leqslant alg(\lambda)$

Доказательство. Рассмотрим $V_{\lambda}, \psi = \varphi|_{V_{\lambda}}$. Тогда

$$\psi = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda \end{pmatrix}$$

И тогда $\chi_{\psi}(t)=(\lambda-t)^k$, где $k=\dim V_{\lambda}$ По вышедоказанному утверждению, $\chi_{\varphi}:\chi_{\psi}\Rightarrow \chi_{\varphi}(t):(\lambda-t)^k\Rightarrow alg(\lambda)\geqslant geom(\lambda)$

Следствие. Если χ_{φ} — не линейно факторизуем, то φ — не диагонализируем

Теорема 0.2. Пусть $\varphi: V \to V$ — линейные оператор. Тогда он диагонализируем тогда и только тогда, когда

- 1. φ линейно факторизуем над F
- 2. $\forall i \ alg(\lambda_i) = geom(\lambda_i)$

Доказательство.

- \Rightarrow Т.к. $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$, то $\dim V = \dim V_{\lambda_1} + \dim V_{\lambda_2} + \cdots + \dim V_{\lambda_k}$. Но тогда 1 и 2 верны, т.к. $alg(\lambda_i) \geqslant geom(\lambda_i)$, и, при этом $\sum alg(\lambda_i) = \sum geom(\lambda_i)$.
- \Leftarrow В таком случае $\sum alg(\lambda_i) = \sum geom(\lambda_i)$. Но тогда $\dim V = \sum geom(\lambda_i)$. Но тогда $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$

Определение 0.5. Жорданова клетка порядка n, отвечающая собственному значению λ — это матрица:

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

Замечание. Линейной факторизуемости χ_{φ} недостаточно, чтобы утверждать диагонализируемость φ . Например, $J_n(\lambda)$ не диагонализируема, т.к. $J_n(\lambda) - \lambda E$ имеет размерность решений 2, но $\chi_{J_n(\lambda)}(t) = (\lambda - t)^n$.

Утверждение 0.3. $\varphi: V \to V, \varphi_{\lambda} = \varphi - \lambda E$. Тогда следующие утверждения эквивалентны:

- 1. Подпространство $U \leqslant V$ инвариантно относительно φ .
- 2. $\exists \lambda \in F : U$ инвариантно относительно φ_{λ} .
- 3. $\forall \lambda \in F : U$ инвариантно относительно φ_{λ} .

Доказательство.

 $1\Rightarrow 2$ очевидно, $\lambda=0$

$$2 \Rightarrow 3 \ (\varphi - \lambda E)x = \mu x \Rightarrow (\varphi - \lambda E - \lambda_1 E)x = (\mu - \lambda_1)x$$

 $3 \Rightarrow 1$ Тоже очевидно

Утверждение 0.4. Пусть $\varphi:V\to V$ — линейный оператор и $\chi_{\varphi}(t)$ линейно факторизуем. Тогда у φ найдется n-1 мерное подпространство.

Я СДАЮСЬ он победил