Adult Data Set Analysis

Kelompok 4

- Nuzha Musyafira	(05111640000014)
- Ferdinand Jason Gondowijoyo	(05111640000033)
- Nurlita Dhuha Fatmawati	(05111640000092)
- Jonathan Rehuel Lewerissa	(05111640000105)

Supervisor Dr. Chastine Fatichah, M.Kom.

Data Mining

DEPARTEMEN INFORMATIKA
INSTITUT TEKNOLOGI SEPULUH NOPEMBER

2019

Contents

1	Data	aset Analysis	2
	1.1	Introduction	2
	1.2	Preparation	2
	1.3	Data Insight	3
		1.3.1 Data Dictionary	
		1.3.2 Histogram Analysis	(
		1.3.3 Boxplot Analysis	٩
		1.3.4 Correlation Analysis	
	1.4	Data Preprocessing	2

Chapter 1

Dataset Analysis

This dataset analysis task is carried out by Kelompok 4

1.1 Introduction

On this dataset analysis task, we will analyze the Adult Data Set. The Adult Data Set (also known as the Census Dataset) is a dataset that aims to predict whether a person's income exceeds \$50000 per year based on their census data.

This data set can be downloaded from https://archive.ics.uci.edu/ml/datasets/adult.

1.2 Preparation

Let's first import some libraries that we are going to need for our analysis.

```
In [1]: import math
    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    import sklearn.preprocessing as preprocessing
    from sklearn.impute import SimpleImputer
    %matplotlib inline
```

Then, we need to read the adult dataset from data/adult.csv which contains comma separated columns and mark the values? as missing data points

```
Out [2]:
                        Workclass fnlwgt
                                            Education Education-Num
           Age
        0
            39
                                    77516
                                            Bachelors
                                                                   13
                        State-gov
                                                                   13
        1
            50
                Self-emp-not-inc
                                     83311
                                            Bachelors
        2
                                                                    9
            38
                          Private
                                   215646
                                              HS-grad
        3
                                                                    7
            53
                          Private
                                   234721
                                                 11th
        4
            28
                          Private 338409
                                            Bachelors
                                                                   13
               Martial Status
                                        Occupation
                                                     Relationship
                                                                     Race
                                                                               Sex \
        0
                 Never-married
                                      Adm-clerical
                                                    Not-in-family
                                                                    White
                                                                              Male
                                                           Husband
                                                                              Male
        1
           Married-civ-spouse
                                  Exec-managerial
                                                                    White
        2
                      Divorced
                                Handlers-cleaners
                                                    Not-in-family
                                                                    White
                                                                              Male
        3
           Married-civ-spouse
                                Handlers-cleaners
                                                           Husband
                                                                    Black
                                                                              Male
           Married-civ-spouse
                                   Prof-specialty
                                                              Wife
                                                                    Black Female
           Capital Gain Capital Loss
                                         Hours per week
                                                                Country Target
        0
                    2174
                                      0
                                                      40
                                                          United-States
                                                                          <=50K
        1
                       0
                                     0
                                                          United-States
                                                                          <=50K
                                                      13
        2
                       0
                                     0
                                                      40
                                                          United-States
                                                                          <=50K
        3
                       0
                                     0
                                                      40
                                                          United-States
                                                                          <=50K
        4
                       0
                                      0
                                                      40
                                                                   Cuba
                                                                         <=50K
```

1.3 Data Insight

First, we need to see the general statistical information of the dataset.

```
In [3]: def summarize_data(df):
            print('Continuous Data : ')
            print(df.describe())
            print('\n\n')
            print('Categorical Data : ')
            for column in df.columns:
                if df.dtypes[column] == np.object : # Categorical Data
                    print(column)
                    print(df[column].value_counts())
                print()
        summarize_data(original_data)
Continuous Data :
                            fnlwgt
                                    Education-Num
                                                    Capital Gain
                                                                   Capital Loss
                Age
count
       32561.000000
                      3.256100e+04
                                     32561.000000
                                                    32561.000000
                                                                   32561.000000
          38.581647
                      1.897784e+05
                                        10.080679
                                                     1077.648844
                                                                      87.303830
mean
                      1.055500e+05
                                                     7385.292085
                                                                     402.960219
std
          13.640433
                                          2.572720
          17.000000
                      1.228500e+04
                                          1.000000
                                                        0.000000
                                                                       0.000000
min
25%
          28.000000
                      1.178270e+05
                                         9.000000
                                                        0.000000
                                                                       0.000000
                                                                       0.000000
50%
          37.000000
                      1.783560e+05
                                        10.000000
                                                        0.000000
75%
          48.000000
                      2.370510e+05
                                        12.000000
                                                        0.000000
                                                                       0.000000
          90.000000
                     1.484705e+06
                                        16.000000
                                                    99999.000000
                                                                    4356.000000
max
       Hours per week
         32561.000000
count
            40.437456
mean
            12.347429
std
             1.000000
min
```

75%	45.000000		
max	99.000000		
		Craft-repair 4099	
		Exec-managerial 4066	
Categorical	Data :	Adm-clerical 3770	
		Sales 3650	
Workclass		Other-service 3295	
Private	22696	Machine-op-inspct 2002	
Self-emp-no	t-inc 2541	Transport-moving 1597	
Local-gov	2093	Handlers-cleaners 1370	
State-gov	1298	Farming-fishing 994	
Self-emp-in	c 1116	Tech-support 928	
Federal-gov	960	Protective-serv 649	
Without-pay	14	Priv-house-serv 149	
Never-worke	d 7	Armed-Forces 9	
Name: Workc	lass, dtype: int64	Name: Occupation, dtype: in	t64
		Relationship	
Education		Husband 13193	
HS-grad	10501	Not-in-family 8305	
Some-colleg	e 7291	Own-child 5068	
Bachelors	5355	Unmarried 3446	
Masters	1723	Wife 1568	
Assoc-voc	1382	Other-relative 981	
11th	1175	Name: Relationship, dtype:	int64
Assoc-acdm	1067	1,	
10th	933	Race	
7th-8th	646	White 27816	
Prof-school		Black 3124	
9th	514	Asian-Pac-Islander 1039	
12th	433	Amer-Indian-Eskimo 311	
Doctorate	413	Other 271	
5th-6th	333	Name: Race, dtype: int64	
1st-4th	168		
Preschool	51	Sex	
	tion, dtype: int64	Male 21790	
Name: Educa	eron, daype. Into	Female 10771	
		Name: Sex, dtype: int64	
Martial Sta	tus	1,,,	
Married-civ	-spouse 14976		
Never-marri	ed 10683		
Divorced	4443		
Separated	1025	Country	
Widowed	993	United-States	29170
Married-spo	use-absent 418	Mexico	643
Married-AF-		Philippines	198
	al Status, dtype: int64	Germany	137
	• ••	Canada	121
Occupation		Puerto-Rico	114
Prof-specia	lty 4140	El-Salvador	106
1	•		

25%

50%

75%

40.000000

40.000000

45.000000

India	100	Ecuador	28
Cuba	95	Ireland	24
England	90	Hong	20
Jamaica	81	Trinadad&Tobago	19
South	80	Cambodia	19
China	75	Thailand	18
Italy	73	Laos	18
Dominican-Republic	70	Yugoslavia	16
Vietnam	67	Outlying-US(Guam-USVI-etc)	14
Guatemala	64	Honduras	13
Japan	62	Hungary	13
Poland	60	Scotland	12
Columbia	59	Holand-Netherlands	1
Taiwan	51	Name: Country, dtype: int64	
Haiti	44		
Iran	43	Target	
Portugal	37	<=50K 24720	
Nicaragua	34	>50K 7841	
Peru	31	Name: Target, dtype: int64	
France	29		
Greece	29		

1.3.1 Data Dictionary

- 1. Categorial Attributes
 - workclass: (categorical) Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, Stategov, Without-pay, Never-worked.
 - Individual work category
 - education: (categorical) Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
 - Individual's highest education degree
 - marital-status: (categorical) Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
 - Individual marital status
 - occupation: (categorical) Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
 - Individual's occupation
 - relationship: (categorical) Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
 - Individual's relation in a family
 - race: (categorical) White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
 - Race of Individual
 - sex: (categorical) Female, Male.
 - native-country: (categorical) United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
 - Individual's native country

2. Continuous Attributes

- · age: continuous.
 - Age of an individual
- education-num: number of education year, continuous.
 - Individual's year of receiving education
- fnlwgt: final weight, continuous.
 - The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau.
- capital-gain: continuous.
- capital-loss: continuous.
- hours-per-week: continuous.
 - Individual's working hour per week

Check if there are any NaNs in the dataframe and count every columns

In [4]: original_data.isnull().sum()

Out[4]:	Age	0
	Workclass	1836
	fnlwgt	0
	Education	0
	Education-Num	0
	Martial Status	0
	Occupation	1843
	Relationship	0
	Race	0
	Sex	0
	Capital Gain	0
	Capital Loss	0
	Hours per week	0
	Country	583
	Target	0
	dtype: int64	

1.3.2 Histogram Analysis

A histogram is an accurate representation of the distribution of numerical data. It is an estimate of the probability distribution of a continuous variable (quantitative variable) and was first introduced by Karl Pearson. It differs from a bar graph, in the sense that a bar graph relates two variables, but a histogram relates only one. To construct a histogram, the first step is to "bin" (or "bucket") the range of values—that is, divide the entire range of values into a series of intervals—and then count how many values fall into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a variable. The bins (intervals) must be adjacent, and are often (but are not required to be) of equal size.

Histogram can be summarized roughly as an inventory of what "kinds of items" you have and "how many of each kind" you have. In computer vision, histogram appears a lot and many times helps to introduce some sort of robustness to your method. For example a bunch of techniques called local features/descriptors make use of the histogram of the image gradient in an image region. This summary representation helps you compare different images without being affected too much by variations in pixel values, shifts and tilts, etc. that change the individual pixel values significantly. So, histogram has the benefit of a summary data structure that is robust to certain changes that you want to ignore in the raw data.

```
In [5]: def make_histogram(df):
    fig = plt.figure(figsize=(20,35))
    COL = 3
    ROW = math.ceil(float(df.shape[1])/COL)

for i , column in enumerate(df.columns):
    ax = fig.add_subplot(ROW, COL, i+1)
    ax.set_title(column)
    if df.dtypes[column] == np.object:
        df[column].value_counts().plot(kind="bar", axes = ax)
    else:
        df[column].hist(axes = ax)
        plt.xticks(rotation="vertical")

plt.subplots_adjust(hspace=0.7, wspace=0.2)

make_histogram(original_data)
```

The histograms below shows that all of the data do not have a normal distribution, therefore requiring special methods to deal with the missing value.

The Country feature analysis is described below.

Indeed! 89% of the samples are for people from the US. Mexico comes next with less than 2%.

1.3.3 Boxplot Analysis

Capital Gain

Boxplot is a method for graphically depicting groups of numerical data through their quartiles. Box plots handle large data effortlessly, but they do not retain the exact values and the details of the results of the distribution. These graphs allow a clear summary of large amounts of data.

```
In [7]: def make_boxplot(df):
              fig = plt.figure(figsize=(20,35))
              ROW = math.ceil(float(df.shape[1])/COL)
              iterator = 1
              for column in df.columns:
                   if df.dtypes[column] != np.object:
                       ax = fig.add_subplot(ROW, COL, iterator)
                       ax.set_title(column)
                       pd.DataFrame(df[column], columns=[column]).boxplot()
                       iterator+=1
              plt.subplots_adjust(hspace=0.7, wspace=0.2)
             plt.show()
         make_boxplot(original_data)
                                                                                   Education-Num
                                     400000
                                     200000
                   Capital Gain
                                                   Capital Loss
                                                                                  Hours per week
     100000
      80000
                                      3000
      60000
                                      2000
      40000
                                      1000
      20000
```

The Boxplot shows that some of the data have many outlier values. This is still acceptable as the main data because these data are consisted of categorical data types.

Capital Loss

Hours per week

1.3.4 Correlation Analysis

We also need to do data correlation analysis to figure out the correlation between each feature inside the dataset. Below are the pairplot analysis of each features in the dataset.

```
In [8]: sns.set(style="ticks")
            sns.pairplot(original_data, hue='Target')
            plt.show()
          Age
         1500000
         1250000
         1000000
         750000
          500000
          250000
           15.0
          E 12.5
            7.5
          100000
          80000
          60000
          40000
          20000
           4000
         § 3000
            60
            40
```

Below are the data correlation analysis using heatmap analysis.

500000 10000001500000 fnlwgt

Calculate the correlation and plot it encoded_data, _ = number_encode_features(original_data) sns.heatmap(encoded_data.corr(), square=True) plt.show()

The heatplot above shows that there is a high correlation between Education and Education-Num.

In [10]: original_data[["Education", "Education-Num"]].head(15)

Out[10]:		Education	Education-Num
	0	Bachelors	13
	1	Bachelors	13
	2	HS-grad	9
	3	11th	7
	4	Bachelors	13
	5	Masters	14
	6	9th	5
	7	HS-grad	9
	8	Masters	14
	9	Bachelors	13
	10	Some-college	10
	11	Bachelors	13
	12	Bachelors	13

```
13 Assoc-acdm 12
14 Assoc-voc 11
```

Two columns Education and Education-Num actually represent the same features, but encoded as strings and as numbers. We don't need the string representation, so we can just delete this column. Note that it is a much better option to delete the Education column as the Education-Num has the important property that the values are ordered: the higher the number, the higher the education that person has. This is a vaulable information a machine learning algorithm can use.

1.4 Data Preprocessing

The preprocessing that will be carried out Imputation using Simpleimputer. To replace the missing values in the categorical data, we will use the mode or the most frequent value that appeared in each column. On the SimpleInputer method, this is carried out using the strategy='most_frequent' as the parameter.

```
In [11]: imputer_modus = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
         imputer_modus.fit(original_data)
         imputed_data = imputer_modus.transform(original_data)
         imputed_dataframe = pd.DataFrame(imputed_data,
             columns=["Age", "Workclass", "fnlwgt", "Education", "Education-Num", "Martial Status",
                 "Occupation", "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss",
                 "Hours per week", "Country", "Target"])
         imputed_dataframe.head()
Out[11]:
                       Workclass fnlwgt Education Education-Num
                                                                       Martial Status
           Age
         0
           39
                       State-gov
                                   77516 Bachelors
                                                                        Never-married
           50
         1
                Self-emp-not-inc
                                   83311
                                          Bachelors
                                                               13 Married-civ-spouse
         2
           38
                         Private 215646
                                            HS-grad
                                                                9
                                                                              Divorced
           53
         3
                         Private 234721
                                               11th
                                                                7 Married-civ-spouse
            28
                         Private 338409 Bachelors
                                                               13 Married-civ-spouse
                   Occupation
                                Relationship
                                               Race
                                                        Sex Capital Gain Capital Loss
         0
                 Adm-clerical
                              Not-in-family
                                              White
                                                       Male
                                                                     2174
              Exec-managerial
                                     Husband
                                              White
                                                       Male
                                                                       0
                                                                                     0
         1
         2
           Handlers-cleaners Not-in-family
                                                                       0
                                                                                     0
                                              White
                                                       Male
         3
           Handlers-cleaners
                                     Husband Black
                                                       Male
                                                                       0
                                                                                     0
         4
               Prof-specialty
                                        Wife Black Female
                                                                        0
                                 Country Target
           Hours per week
         0
                       40
                           United-States <=50K
                           United-States <=50K
         1
                       13
         2
                       40
                          United-States <=50K
                          United-States <=50K
         3
                       40
         4
                       40
                                    Cuba <=50K
```