## **CLAIMS**

A compound of the formula

wherein n is O, 1, or 2; X is hydrogen, chlorine, bromine, or iodine;  $R_1$  is hydrogen;  $R_2$  is selected from hydrogen, halogen, cyano,  $-OR_4$ ,  $-(CH_2)_m-(C=O)NR_5R_6$ ,  $-(CH_2)_m-SO_2NR_5R_6$ ,  $-(CH_2)_m-NR_7(C=O)R_8$ ,  $-(CH_2)_m-NR_7SO_2R_8$ ,

-(CH<sub>2</sub>)<sub>m</sub>-S(O)<sub>x</sub>R<sub>8</sub>, -(CH<sub>2</sub>)<sub>m</sub>-NR<sub>7</sub>(C=O)NR<sub>5</sub>R<sub>6</sub>, -(CH<sub>2</sub>)<sub>m</sub>-NR<sub>7</sub>(C=O)OR<sub>9</sub>,

and -CH=CH(CH<sub>2</sub>)<sub>y</sub>R<sub>10</sub>; R<sub>3</sub> is selected from hydrogen and C<sub>1</sub> to
C<sub>6</sub> linear or branched alkyl; R<sub>4</sub> is selected from hydrogen,
C<sub>1</sub> to C<sub>6</sub> alkyl, and aryl; R<sub>5</sub> and R<sub>6</sub> are independently
selected from hydrogen, C<sub>1</sub> to C<sub>6</sub> alkyl, aryl, and C<sub>1</sub> to C<sub>3</sub>
alkyl-aryl or R<sub>5</sub> and R<sub>6</sub> taken together to form a 4, 5, or

membered ring; R<sub>7</sub> and R<sub>8</sub> are independently selected from
hydrogen, C<sub>1</sub> to C<sub>6</sub> alkyl, aryl, and C<sub>1</sub> to C<sub>3</sub> alkyl-aryl; R<sub>9</sub>
is selected from hydrogen, C<sub>1</sub> to C<sub>6</sub> alkyl, aryl, and C<sub>1</sub> to

C<sub>3</sub> alkyl-aryl; R<sub>10</sub> is selected from -(C=O)NR<sub>5</sub>R<sub>6</sub> and -SO<sub>2</sub>NR<sub>5</sub>R<sub>6</sub>, wherein R<sub>5</sub> and R<sub>6</sub> are defined as above, and -NR<sub>7</sub>(C=O)R<sub>8</sub>, -NR<sub>7</sub>SO<sub>2</sub>R<sub>8</sub>, -NR<sub>7</sub>(C=O)NR<sub>5</sub>R<sub>6</sub>, -S(O)<sub>x</sub>R<sub>8</sub> and -NR<sub>7</sub>(C=O)OR<sub>9</sub>, wherein R<sub>7</sub>, R<sub>8</sub>, and R<sub>9</sub> are as defined above; y is 0, 1, or 2; x is 1 or 2; m is 0, 1, 2, or 3; and the above aryl groups and the aryl moieties of the above alkylaryl groups are independently selected from phenyl and substituted phenyl, wherein said substituted phenyl may be substituted with one to three groups selected from C<sub>1</sub> to C<sub>4</sub> alkyl, halogen, hydroxy, cyano, carboxamido,

nitro, and C1 to C4 alkoxy, with the proviso that when R2

is hydrogen or  $-OR_4$  and  $R_4$  is hydrogen, n is 0 or 1, and the pharmaceutically acceptable salts thereof.

The R enantiomer of a compound according to claim A compound according to claim 1 wherein R<sub>1</sub> is  $R_2$ -(CH<sub>2</sub>)<sub>m</sub>-SO<sub>2</sub>NHR<sub>5</sub> -(CH<sub>2</sub>)<sub>m</sub>-NHSO<sub>2</sub>R<sub>8</sub>, $-(CH_2)_m - SO_2R_8$ ,  $-(CH_2)_m - (C=0)_NHR_5$ , or  $-(CH_2)_m - NH(C=0)_R_8$ ;  $R_3$  is hydrogen or methyl; and m,  $R_5$  and  $R_8$  are as defined in A compound according to claim 1, said compound being selected from: (R)-5-methoxy-3-(N-methylpyrrol/idin-2-ylmethyl)-1Hindole; (R) -5-bromo-3-(N-methylpyrrollidin-2-ylmethyl) -1Hindole; (R) -5-(2-ethylsulfonylethyl) -3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole; (R) -5-(2-methylaminosulfonylethyl) -3-(Nmethylpyrrolidin-2-ylmethyl)/1H-indole; (R) -5-(methylaminosulfonylmethyl) -3-(pyrrolidin-2ylmethyl)-1H-indole; (R)-5-(methylami/nosulfonylmethyl)-3-(Nmethylpyrrolidin-2-ylmethyl)-1H-indole; (R)-5-carboxamido-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole; (R)-5-(2-methylsulfonylethyl)-3-(N-methylpyrrolidin-2-yl-methyl)-1H-indolé; (R) - 5 - (2 - methylsulfonamidoethyl) - 3 - (N methylpyrrolidin-2-ylmethyl)-1H-indole; (R) - 5 - (2 - aminosulphonylethenyl) - 3 - (N methylpyrrolidin-2-ylmethyl)-1H-indole; (R) -5-(2-aminosulphonylethyl) -3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole; (R) -5-(2-N, N-dimethylaminosulphonylethyl) -3-(Nmethylpyrrolidin-2-ylmethyl)-1H-indole;

(R) - 5 - (2 - phenylsulphonylethyl) - 3 - (N -

methylpyrrolidin-2-ylmethyl)-1H-indole hemisuccinate;

Surar 10

15

20

25

30

- (R)-5-(2-ethylsulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole hemisuccinate;
- (R) -5 (2 phenylsulphonylethyl) -3 (N methylpyrrolidin-2-ylmethyl) -1H-indole;
- (R)-5-(3-benzenecarbonylaminoprop-1-enyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;
- (R)-5-(2-(4-methylphenylsulphonyl)ethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;
- (R)-5-(3-methylsulphonylaminoprop-1-enyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole;
- (R)-5-(2-ethylsulphonylethyl)-3-(N-2-propylpyrrolidin-2-ylmethyl)-1H-indole;
- (R)-5-(2-ethýlsulphonylethyl)-3-(pyrrolidin-2-ylmethyl)-1H-indóle; and
- (R) -7-Bromo-5-(methylaminosulfonylmethyl) -3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole.
- A pharmaceutical composition for treating a selected from hypertension, condition depression, anxiety, eating disorders, obesity, drug abuse, cluster and chronic paroxysmal headache, migraine, pain, headache associated with hemicrania and disorders comprising an amount of a compound according to claim 1 effective in treating such condition and a pharmaceutically acceptable carrier.
- 6. A pharmaceutical composition for treating disorders arising from deficient serotonergic neurotransmission comprising an amount of a compound according to claim 1 effective in treating such a disorder and a pharmaceutically acceptable carrier.
- 7. A method for treating a condition selected from hypertension, depression, anxiety, eating disorders, obesity, drug abuse, cluster headache, migraine, pain and chronic paroxysmal hemicrania and headache associated with vascular disorders comprising administering to a mammal requiring such treatment an amount of a compound

10

15

according to claim 1 effective in treating such condition.

- 8. A method for treating disorders arising from deficient serotonergic neurotransmission comprising administering to a mammal requiring such treatment an amount of a compound according to claim 1 effective in treating such a disorder.
- 9. The compound 5-(2-phenylsulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole or a pharmaceutically acceptable salt thereof.
- 10. A compound according to claim 9, wherein the compound is (R)-5-(2-phenylsulphonylethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole.
- 11. The compound 5-(methylaminosulfonylmethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole or a pharmaceutically acceptable salt thereof.
- 12. A compound according to claim 11, wherein the compound is (R)-5-(methylaminosulfonylmethyl)-3-(N-methylpyrrolidin-2-ylmethyl)-1H-indole.
- A pharmaceutical composition for treating a condition selected from hypertension, depression, anxiety, eating disorders, obesity, drug abuse, cluster pain, and chronic paroxysmal headache, migraine, hemicrania headache associated with vascular and disorders comprising an amount of a compound according to claim 12 ranging from  $0.1\mu g$  to 200mg effective in treating such condition and a pharmaceutically acceptable carriér.
- 14. A pharmaceutical composition for treating disorders arising from deficient serotonergic neurotransmission comprising an amount of a compound according to claim 12-ranging from  $0.1\mu g$  to 200mg effective in treating such a disorder and a pharmaceutically acceptable carrier.
  - 15. A method for treating a condition selected from hypertension, depression, anxiety, eating disorders,

Su(2)

10

15

25

30

35

•

obesity, drug abuse, cluster headache, migraine, pain and chronic paroxysmal hemicrania and headache associated with vascular disorders comprising administering to a mammal requiring such treatment an amount of a compound according to claim 12 ranging from  $0.1\mu g$  to 200mg effective in treating such condition.

5

10

15

20

25

30

- 16. A method for treating disorders arising from deficient serotonergic neurotransmission comprising administering to a mammal requiring such treatment an amount of a compound according to claim 12 ranging from 0.1µg to 200mg effective in treating such a disorder.
  - 17. The compound 5-(methylaminosulfonylmethyl)-3-(pyrrolidin-2-ylmethyl)-1H-indole or a pharmaceutically acceptable salt thereof.
  - 18. A compound according to claim 17, wherein the compound is (R)-5-(methylaminosulfonylmethyl)-3-(pyrrolidin-2-ylmethyl)-1H-indole.
  - A pharmaceutical /composition for treating a condition selected from / hypertension, depression, anxiety, eating disorders, obesity, drug abuse, cluster headache, migraine, pain, and chronic paroxysmal headache / associated with hemicrania and disorders comprising an amount of a compound according to claim 18 ranging from (0.01 pg to 200 mg effective in treating such condition and a pharmaceutically acceptable carrier.
  - 20. A pharmaceutical composition for treating disorders arising from deficient serotonergic neurotransmission comprising an amount of a compound according to claim 18 ranging from  $0.01\mu g$  to 200mg effective in treating such a disorder and a pharmaceutically acceptable carrier.
  - 21. A method for treating a condition selected from hypertension, depression, anxiety, eating disorders, obesity, drug abuse, cluster headache, migraine, pain and chronic paroxysmal hemicrania and headache associated

with vascular disorders comprising administering to a mammal requiring such treatment an amount of a compound according to claim 18 ranging from  $0.01\mu g$  to 200mg effective in treating such condition.

22. A method for treating disorders arising from deficient serotonergic neurotransmission comprising administering to a mammal requiring such treatment an amount of a compound according to claim 18 ranging from  $0.01\mu g$  to 200mg effective in treating such a disorder.

23. A process for preparing a compound of the formula

$$R_{15}$$
 $(XVI)$ 

20

25

5

10

15

wherein X is chlorine, bromine, or iodine;  $R_{11}$  is a first suitable nitrogen protecting group;  $R_{15}$  is hydrogen, halogen, cyano,  $-OR_{16}$ ,  $-(CH_2)_m-(C=O)NR_{17}R_{18}$ ,  $-(CH_2)_m-SO_2NR_{17}R_{18}$ ,  $-(CH_2)_m-NR_{19}(C=O)R_{20}$ ,  $-(CH_2)_m-NR_{19}SO_2R_{20}$ ,  $-(CH_2)_m-S(O)_xR_{20}$ ,  $-(CH_2)_m-NR_{19}(C=O)NR_{17}R_{18}$ ,  $-(CH_2)_m-NR_{19}(C=O)OR_{21}$ ,  $-CH=CH(CH_2)_yR_{22}$ ,  $-(CH_2)_m-T$ , and a substituent of the formula

10

15

B represents a direct bond, C<sub>1</sub>-C<sub>4</sub> alkyl, or C<sub>1</sub>-C<sub>4</sub> alkenyl; D, E, G, and J are each independently oxygen, sulfur, nitrogen or carbon, provided that at least one of D, E, G, and J is nitrogen;  $R_{28}$ ,  $R_{29}$ ,  $R_{30}$ , and  $R_{31}$  are each independently hydrogen,  $C_1-C_6$  alkyl, aryl,  $C_1-C_3$  alkylaryl, C1-C3 alkylheteroaryl, halogen, cyano, trifluoromethyl,  $-NR_{32}R_{33}$ ,  $-(CH_2)_mOR_{32}$ ,  $-SR_{32}$ ,  $-OR_{32}$ ,  $-NR_{32}SO_2R_{33}$ ,  $-NR_{32}CO_2R_{33}$ ,  $-CONR_{32}R_{33}$ , or  $-CO_2R_{32}$ ; one of  $R_{28}$  and  $R_{29}$ ,  $R_{29}$  and  $R_{30}$ , or  $R_{30}$  and  $R_{31}$  may be taken together to form a five- to seven-membered alkyl ring, a six-membered aryl ring, a five- to seven-membered heteroalkyl ring having 1 heteroatom of N, O, or S, or a five- to six-membered heteroaryl ring having 1 or 2 heteroatoms of N, O, or S;  $R_{32}$  and  $R_{33}$  are each independently hydrogen,  $C_1$  to  $C_6$  alkyl, -(CH<sub>2</sub>)<sub>q</sub>R<sub>34</sub>, C<sub>1</sub> to C<sub>3</sub> alkylaryl, or aryl; R<sub>32</sub> and R<sub>33</sub> may be taken together to form a C<sub>4</sub>-C<sub>7</sub> alkyl ring; R<sub>34</sub> is cyano, trifluoromethyl,  $\phi r / C_1 - C_4$  alkoxy;  $R_{16}$  is selected from hydrogen,  $C_1$  to  $C_6$  alkyl, and aryl; T is

M and Q are each independently oxygen or sulfur; Z is -O-, -S-, -NH, or  $-CH_2$ ;  $R_{35}$  and  $R_{36}$  are each independently

hydrogen,  $C_1$  to  $C_6$  alkyl, aryl,  $C_1$  to  $C_3$  alkylaryl, or  $C_1$ to C<sub>3</sub> alkylheteroaryl; R<sub>22</sub> is selected from -(C=O)NR<sub>23</sub>R<sub>24</sub>,  $-SO_2NR_{23}R_{24}$ -NR<sub>25</sub>SO<sub>2</sub>R<sub>26</sub> $-NR_{25}$  (C=O)  $R_{26}$ ,  $-NR_{25}$  (C=O)  $NR_{23}R_{24}$ ,  $-S(0)_xR_{26}$  and  $-NR_7(C=0)OR_{27}$ ;  $R_{17}$ ,  $R_{18}$ ,  $R_{23}$ , and  $R_{24}$  are independently selected from hýdrogen, C1 to C6 alkyl, aryl, and  $C_1$  to  $C_3$  alkyl-aryl, for  $R_{17}$  and  $R_{18}$  or  $R_{23}$  and  $R_{24}$ maybe taken together to form a 4, 5, or 6 membered ring;  $R_{19}$ ,  $R_{20}$ ,  $R_{21}$ ,  $R_{25}$ ,  $R_{26}$ , and  $R_{27}$  are independently selected from hydrogen,  $C_1$  to  $C_6$  alkyl, aryl, and  $C_1$  to  $C_3$  alkylaryl; y is 0, 1, or 2; x is 1 or 2; m is 0, 1, 2, or 3; n is 0, 1 or 2; q is 1, 2, or 3; a first chiral carbon designated by \*; a second chiral carbon designated by #; and the above aryl groups and the aryl moieties of the above alkylaryl groups are independently selected from phenyl and substituted phenyl, wherein said substituted phenyl may be substituted with one to three groups selected from C<sub>1</sub> to C<sub>4</sub>/alky/1, halogen, hydroxy, cyano, carboxamido, nitro, and  $C_1$  to  $C_4$  alkoxy,

comprising, performing a transition metal catalyzed cyclization on a compound of the formula

30

35

5

10

15

20

25

wherein  $R_{11}$  and  $R_{15}$  are as defined above and V is a second suitable nitrogen protecting group.

24. The process of claim 23, wherein X is bromine.

25. The process of claim 23, wherein A is benzyloxycarbonyl.

26. The process of claim 23, wherein V is trifluoroacetyl.

27. A compound of the formula

wherein X is hydrogen, bromine, chlorine, or iodine; W is

10

5

 $-CO_2R_{11}$  or  $R_3$ ; Q is  $CH_2$  or C=0; n is 0, 1 or 2;  $R_1$  is hydrogen; R2 is selected from halogen, cyano,  $-OR_4$ ,  $-(CH_2)_m - (C=O) NR_5 R_6$ ,  $\frac{N}{2} (CH_2)_m - SO_2 NR_5 R_6$ ,  $-(CH_2)_m - NR_7 (C=O) R_8$ ,  $-/(CH_2)_{m}^{\prime}-S(O)_{x}R_8$ ,  $-(CH_2)_{m}-NR_7(C=O)NR_5R_6$ , -(CH<sub>2</sub>)<sub>m</sub>-NR<sub>7</sub>SO<sub>2</sub>R<sub>8</sub>,15  $-(CH_2)_m - NR_7(C=0) OR_9 / and - CH = CH(CH_2)_r R_{10};$  x is 1 or 2; m is 0, 1, 2, or 3; R is selected from hydrogen and C to C6 linear or branched alkyl; R4 is selected from hydrogen, C<sub>1</sub> to C<sub>6</sub> alkyl, and aryl, R<sub>5</sub> and R<sub>6</sub> are independently 20 selected from hydrogen, C1 to C6 alkyl, aryl, and C1 to C3 alkyl-aryl or R, and R, taken together to form a 4, 5, or 6 membered ring; R7 and R8 are independently selected from hydrogen, C<sub>1</sub> to C<sub>6</sub> alkyl, aryl, and C<sub>1</sub> to C<sub>3</sub> alkyl-aryl; R<sub>9</sub> is selected from hydrogen,  $C_1$  to  $C_6$  alkyl, aryl, and  $C_1$  to 25  $C_3$  alkyl-aryl;  $R_{10}$  is selected from -(C=0) NR<sub>5</sub>R<sub>6</sub>  $-SO_2NR_5R_6$ , wherein  $R_5$  and  $R_6$  are defined as above,  $-NR_7$  (C=O)  $R_8$ ,  $-NR_7SO_2R_8$ ,  $-NR_7$  (C=O)  $NR_5R_6$ , -S(O),R<sub>8</sub> and -NR<sub>7</sub>(C=0)OR<sub>9</sub>, wherein R<sub>7</sub>, R<sub>8</sub>, R<sub>9</sub> and x are defined as above; y is 0, 1, or 2; R11 is selected from C1 to C6 alkyl, benzyl and aryl; and the above aryl groups and the 30 aryl moieties of the above alkyl-aryl groups are independently selected from phenyl and substituted said substituted phenyl, wherein phenyl substituted with one to three groups selected from C1 to C4 alkyl, halogen, hydroxy, cyano, carboxamido, nitro, 35

and  $C_1$  to  $C_4$  alkoxy, with the proviso that when W is  $R_3$ , Q is C=O, and with the proviso that when X is bromine, chlorine, or iodine, W is  $-CO_2R_{11}$  and Q is  $CH_2$ .

- 28. The R enantiomer of a compound according to claim 27.
- 29. A compound according to claim 27, said compound being a compound of the formula

wherein n,  $R_1$ ,  $R_2$  and  $R_{11}$  are as defined in claim 29.

- 30. The R enantiomer of a compound according to claim 29.
- 31. A compound according to claim 29 wherein R<sub>1</sub> is hydrogen; R<sub>2</sub> is -(CH<sub>2</sub>)<sub>m</sub>-SO<sub>2</sub>NHR<sub>5</sub>, -(CH<sub>2</sub>)<sub>m</sub>-NHSO<sub>2</sub>R<sub>8</sub>, -(CH<sub>2</sub>)<sub>m</sub>-(C=O)NHR<sub>5</sub> or -(CH<sub>2</sub>)<sub>m</sub>-NH(C=O)R<sub>8</sub>; m is 0, 1, 2, or 3; R<sub>5</sub> is hydrogen, C<sub>1</sub> to C<sub>6</sub> alkyl, aryl, or C<sub>1</sub> to C<sub>3</sub> alkyl-aryl; R<sub>11</sub> is selected from C<sub>1</sub> to C<sub>6</sub> alkyl, benzyl and aryl; and the above aryl groups and the aryl moieties of the above alkylaryl groups are independently selected from phenyl and substituted phenyl, wherein said substituted phenyl may be substituted with one to three groups selected from C<sub>1</sub> to C<sub>4</sub> alkyl, halogen, hydroxy, cyano, carboxamido, nitro, and C<sub>1</sub> to C<sub>4</sub> alkoxy.

3731. A compound according to claim 27, said compound being a compound of the formula

5



wherein n,  $R_1$ ,  $R_3$  and  $R_{10}$  are as defined in claim 27. The R enantiomer of a compound according to 10 Claim 31.

34/33. A compound according to claim 31 wherein  $R_i$  is hydrogen;  $R_3$  is hydrogen or methyl; and  $R_{10}$  is  $-SO_2NHR_5$ ,  $NHSO_2R_8$ ,  $-SO_2R_8$ ,  $-(C=O)NHR_5$  or  $-NH(C=O)R_8$ , wherein  $R_5$  and  $R_8$ are as defined in claim 27.