

#### Protein Structure and Deep Learning

**PYDATA CYPRUS** 

Konstantinos Charalampous

Feb 2019

#### Contents

- Biology Background
- Protein Secondary Structure Prediction (PSSP)
- Artificial Neural Networks
- Bidirectional RNN
- Data
- PSSP Evaluation Metrics
- Ensembles & Filtering
- Mini-batching
- Results & Discussion
- Final comments

# Biology Background

## The importance of Proteins

- Integral part of every living organism
- Responsible for a vast array of functions inside the human body
  - DNA Replicating
  - Defense against infections
  - o etc.
- Studying proteins enable us to
  - Manufacture food supplements, drugs and antibiotics
  - Treat diseases
  - Evolve the general quality of life

#### Protein Structure

- Primary Structure
  - The sequence of amino acids the order in which amino acids appear in the unfolded protein
  - o e.g., LIGGLGDIE
- Secondary Structure
  - The way local segments of a protein are oriented in space
  - **Important**: The way an amino acid will unfold in the 3-dimensional space heavily depends on its neighboring amino acids (will explain why later)
- Tertiary Structure
  - The 3 dimensional shape of a folded protein
  - Determines its actual function
- Quaternary Structure
  - The interfolding of multiple tertiary structures

# Protein Secondary Structure Prediction (PSSP)

- Millions of primary structures documented
  - Not enough information for protein function determination
- Small fraction for secondary / tertiary structures
  - They determine the actual function of a protein
  - Experimental determinant methods and instruments incredibly costly
- Emergence of Computational methods and algorithms
  - Machine Learning Algorithms e.g. Artificial Neural Networks (ANN)
  - Predict the secondary structure from the primary
  - Extremely cheap and powerful

#### **Artificial Neural Networks**

- Feedforward Neural Networks
  - Signals travel one-way: from input to output with no feedback loops
  - Ideal for classification and regression problems.
  - e.g. Multi-Layer Perceptron (MLP)



#### Recurrent Neural Networks

- Signals travel in both directions.
- Computations from earlier inputs are fed back to the network
- This enables some sort of memory
- Ideal for time series and sequential problems.
- e.g. Vanilla RNN, Gated Recurrent Unit (GRU), Long-Short Term Memory (LSTM)



Basic architectures of RNN, GRU and LSTM cells



#### **Bidirectional RNN**

- Basically, 2 independent RNN put together
  - Input sequence is fed in normal time order for one and in reverse for the other.
- Able to look ahead:
  - "He said, Teddy bears are on sale"
  - "He said, Teddy Roosevelt was a great President"
- Applications include :
  - Speech Recognition
  - Translation
  - Handwritten Recognition
  - Part-of-speech tagging
  - Dependency Parsing
  - Entity Extraction
  - etc.



Could use any unit: conventional RNN (BiRNN), GRU (BiGRU) or LSTM (BiLSTM)

#### Data



#### Metrics

 Q3 accuracy: Measures the number of correctly classified individual amino acids, divided by the number of total amino acids

o 
$$Q_3=100\frac{1}{n}\sum_{i=0}^n m_i$$
 where n is the number of amino acid residues and m<sub>i</sub> takes the value of 1 if the predicted value of the i<sup>th</sup> amino acid residue is correct and 0 otherwise

O Segment Overlap (SOV): Measures the quality of the general structure of the predicted protein as a whole  $Sov(i) = 100 \times \left[ \frac{1}{N} \sum_{s \in IHEC} \sum_{S(i)} \frac{\min v(s_1, s_2) + \delta(s_1, s_2)}{\max v(s_1, s_2)} \times len(s_1) \right]$ 

where the normalization value N is a sum of N(i) over all three conformational states:

$$N = \sum_{i \in \{H,E,C\}} N(i)$$

 $\delta(s_1, s_2) = \min \left\{ (\max(s_1, s_2) - \min(s_1, s_2)) ; \min(s_1, s_2); \inf(\ln(s_1)/2); \inf(\ln(s_2)/2) \right\},$ 

## **Cross Validation**



## **Ensembles and Filtering**

- Averaging Ensembles
  - Train multiple models
  - Average the outputs of the models
  - Use 'the winner takes all' method to assign the final class
- Errors in some models are averaged out, which results in ultimately better predictions
- Generic Filtering:
  - Use learning algorithms on the predictions (e.g., SVM)
  - Improve Q3 Score
- PSSP Specific Filtering:
  - Empirical Rules
  - Improve SOV score
- 1. Single 'H' or 'E' are replaced with 'C'
- 2. Sequence 'HEEH' is replaced with 'HHHH'
- 3. Sequence 'HEH' is replaced with 'HHH'
- 4. Sequence '!HH!' is replaced with '!CC!'



## Minibatching

- The training set is split into smaller batches (subsets) which are used to calculate model error and weight updates. Essential for Big Data
- Larger minibatch size
  - More accurate convergence
  - Significantly slower
  - Requires much more memory
- Smaller minibatch size
  - Faster convergence
  - Less accurate
- oFor PSSP:
  - The minibatch size was chosen to be the length of the largest protein
  - All information regarding the structure of a signle protein is considered before the weight updates
  - For smaller proteins, a padding of 0s is added to even out the batches

## Results & Discussion

## **Cross Validation**



| Fold0 76.81 79.11 69.72 79.37 70.0   Fold1 74.91 71.02 68.12 80.1 71.0   Fold2 76.32 74.02 69.01 78.2 71.5   Fold3 76.02 78.01 68.12 76.52 71.0   Fold4 75.72 76.52 70.02 77.01 73.5 |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Fold2 76.32 74.02 69.01 78.2 71.5   Fold3 76.02 78.01 68.12 76.52 71.0                                                                                                               | 1  |
| Fold3 76.02 78.01 68.12 76.52 71.0                                                                                                                                                   | 2  |
|                                                                                                                                                                                      | 8  |
| Fold4 75.72 76.52 70.02 77.01 73.5                                                                                                                                                   | 2  |
|                                                                                                                                                                                      | 4  |
| Fold5 75.01 78.52 68.51 75.12 70.9                                                                                                                                                   | 2  |
| Fold6 <b>77.01 79.11</b> 68.12 78.78 72.4                                                                                                                                            | .1 |
| Fold7 75.95 77.91 <b>71.74</b> 75.03 <b>73.6</b>                                                                                                                                     | 8  |
| Fold8 74.75 76.42 67.25 77.12 70.3                                                                                                                                                   | 6  |
| Fold9 75.52 77.14 71.12 74.15 73.2                                                                                                                                                   | 2  |
| Average   75.8   76.74   69.17   77.14   71.7                                                                                                                                        | 8  |

## After SVM filtering

|         | Q3 (%) | QH (%) | QE (%) | QC (%) | SOV   |
|---------|--------|--------|--------|--------|-------|
| Fold0   | 77.26  | 79.52  | 69.92  | 79.12  | 69.82 |
| Fold1   | 76.12  | 74.02  | 68.01  | 79.02  | 70.76 |
| Fold2   | 76.91  | 75.02  | 69.51  | 78.11  | 71.42 |
| Fold3   | 77.01  | 79.23  | 69.12  | 76.72  | 71.31 |
| Fold4   | 76.12  | 76.82  | 69.92  | 77.13  | 73.14 |
| Fold5   | 75.94  | 78.91  | 68.11  | 75.92  | 70.75 |
| Fold6   | 77.41  | 79.33  | 68.54  | 78.81  | 72.31 |
| Fold7   | 76.22  | 77.61  | 71.94  | 76.03  | 73.81 |
| Fold8   | 75.35  | 76.51  | 68.25  | 77.11  | 70.61 |
| Fold9   | 76.82  | 79.14  | 70.12  | 75.15  | 72.12 |
| Average | 76.52  | 77.61  | 69.34  | 77.31  | 71.61 |

Improved Q3 accuracy by ~0.7% and slight decrease in SOV -~0.2

### After External Rules

|         | Q3 (%) | QH (%) | QE (%) | QC (%) | SOV   |
|---------|--------|--------|--------|--------|-------|
| Fold0   | 76.91  | 79.81  | 69.52  | 79.40  | 70.51 |
| Fold1   | 75.91  | 74.12  | 67.84  | 79.14  | 71.32 |
| Fold2   | 76.42  | 75.32  | 69.47  | 78.33  | 71.99 |
| Fold3   | 76.57  | 79.31  | 68.52  | 76.81  | 71.83 |
| Fold4   | 76.01  | 76.89  | 69.81  | 77.17  | 73.51 |
| Fold5   | 75.59  | 78.99  | 67.97  | 76.01  | 71.42 |
| Fold6   | 76.94  | 79.41  | 68.01  | 78.91  | 72.83 |
| Fold7   | 76.11  | 77.71  | 71.21  | 76.52  | 74.01 |
| Fold8   | 75.22  | 76.71  | 67.58  | 77.23  | 71.04 |
| Fold9   | 76.51  | 79.22  | 70.01  | 75.27  | 72.57 |
| Average | 76.22  | 77.75  | 68.99  | 77.48  | 72.1  |

Improved SOV accuracy by 0.5 and slight decrease in Q3 -~0.3%

## Ensembles on a single fold





Q3 Accuracy of SVM + Ensembles on a single fold (fold0) :  $78.15 + ^21\%$  accuracy

SOV after of External Rules + Ensembles on a single fold (fold0) :  $70.76 + ^{\circ}0.25$ 

## Accuracy Per Protein Length



#### Final comments

- Domain knowledge is very important when building your predictive model
- Very important to chose the right network architecture based on the problem
  - FFN for classification & regression
  - RNN for time series / sequence problems
  - BiRNN for problems when you need information from the past and future
- Ensembles are good but require a lot of training time
  - Find the balance!

## THANK YOU