UNIVERSITY OF CAPE TOWN

DEPARTMENT OF OCEANOGRAPHY

JUNE 2011 EXAMINATION

SEA2004F - PRINCIPLES OF OCEANOGRAPHY

INSTRUCTIONS:

ATTEMPT ALL QUESTIONS IN ALL 5 SECTIONS.

TIME : 3 HOURS

(TOTAL: 150 MARKS)

(The Final Exam counts 60% towards your final mark for the course).

SECTION A:

Question 1 a) What are the six major dissolved constituents of seawater? Why do they occur in alm ratios despite variations in the salinity of ocean waters?	ost fixed [6]
b) What is meant by the terms "thermocline", "halocline" and "pycnocline"	[3]
c) With the aid of diagrams explain the seasonal effect on the structure of the thermocline	[6]
Question 2 a) Give a sketch of an ARGO profiling float and describe how it operates.	[7]
b) Discuss in detail the advantages and limitations of this form of measurement compared mooring device.	d to a [8]
SECTION B:	
Question 1 a) List three ways in which excess heat absorbed in the tropics is re-distributed to higher latitudes	[6]
b) Draw a simple diagram in the vertical-longitude plane that shows the annual mean circulation in the atmosphere	[9]
Question 2 Draw a diagram of a section across the equatorial Pacific that depicts the structure of the w and the circulation and thermocline in the upper ocean. In a second diagram, illustrate how these features change during an El Nino event	
Question 3 a) List the different fluxes that make up the energy balance at the ocean surface	[8]
b) What are the units of these fluxes?	[2]
c) On the annual average, would you expect the latent heat flux or the sensible heat flux at surface to be greater for the Gulf Stream? Briefly explain why.	the [5]
SECTION C	
Question 1 a) Briefly discuss what three factors are necessary for waves of any type to be present.	[3]
b) Discuss the nature of "deep" and "shallow water" waves. Give the speed of a shallow wave in terms of the depth. Calculate the speed of a tsunami in 4000 m deep water.	water [6]
c) Discuss the nature of the tides around southern Africa. Where are the strongest tidal curlikely to be found in South Africa.	rents [6]

SECTION D

Question	1
Question	_

In a stratified productive marine water column, dissolved oxygen concentrations are high at the surface and low in deeper waters. Explain. [5]

Question 2

How is an inertial current formed? What would the period and sense of rotation of it be at 30°S latitude? NB Ti (inertial period) = $12 / \sin \Theta$ (Use Θ in degrees, and give the units of the Ti). [5]

Question 3

The Baltic and Mediterranean are restricted exchange systems. Sketch the surface and deep water flows and label their relative salinities. Designate them as estuarine or anti-estuarine. [5]

Question 4

Why is the ocean salty and why has the ocean's salinity not changed over long time scales? [15]

SECTION E

Question 1

How does ocean acidification occur and how does this affect marine calcifying organisms? [15]

Question 2

- a) When particulate organic nitrogen sinks through the water column, how is this remineralised to ammonium and to nitrate
- b) What is the significance of the f-ratio? [5]

[5]

c) Briefly explain the importance of dissolved Fe for phytoplankton photosynthesis and nitrogen uptake in the Southern Ocean [5]