

Based on Arm® Cortex®-M7 dual

General description

CYT4BF is a family of TRAVEO™ T2G microcontrollers targeted at automotive systems such as high-end body-control units. CYT4BF has two Arm® Cortex®-M7 CPUs for primary processing, and an Arm® Cortex®-M0+ CPU for peripheral and security processing. These devices contain embedded peripherals supporting Controller Area Network with Flexible Data rate (CAN FD), Local Interconnect Network (LIN), Gigabit Ethernet, and FlexRay. TRAVEO™ T2G devices are manufactured on an advanced 40-nm process. CYT4BF incorporates a low-power flash memory, multiple high-performance analog and digital peripherals, and enables the creation of a secure computing platform.

Features

CPU subsystem

- Two 350-MHz 32-bit Arm® Cortex®-M7 CPUs, each with
 - Single-cycle multiply
 - Single/double-precision floating point unit (FPU)
 - 16-KB data cache, 16-KB instruction cache
 - Memory protection unit (MPU)
 - 16-KB instruction and 16-KB data tightly-coupled memories (TCM)
- 100-MHz 32-bit Arm® Cortex® M0+ CPU with
 - Single-cycle multiply
 - Memory protection unit (MPU)
- Inter-processor communication in hardware
- Three DMA controllers
 - Peripheral DMA controller #0 (P-DMA0) with 143 channels
 - Peripheral DMA controller #1 (P-DMA1) with 65 channels
 - Memory DMA controller (M-DMA0) with 8 channels

· Integrated memories

- 8384 KB of code-flash with an additional 256 KB of work-flash
 - Read-While-Write (RWW) allows updating the code-flash/work-flash while executing from it
 - Single- and dual-bank modes (specifically for Firmware update Over The Air [FOTA])
 - Flash programming through SWD/JTAG interface
- 1024-KB of SRAM with selectable retention granularity

Cryptography engine

- Supports Enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM)
- Secure boot and authentication
 - Using digital signature verification
 - Using fast secure boot
- AES: 128-bit blocks, 128-/192-/256-bit keys
- 3DES: 64-bit blocks, 64-bit key
- Vector unit supporting asymmetric key cryptography such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve (ECC)
- SHA-1/2/3: SHA-512, SHA-256, SHA-160 with variable length input data
- CRC: supports CCITT CRC16 and IEEE-802.3 CRC32
- True random number generator (TRNG) and pseudo random number generator (PRNG)
- Galois/Counter Mode (GCM)

Based on Arm® Cortex®-M7 dual

Features

· Functional safety for ASIL-B

- Memory protection unit (MPU)
- Shared memory protection unit (SMPU)
- Peripheral protection unit (PPU)
- Watchdog timer (WDT)
- Multi-counter watchdog timer (MCWDT)
- Low-voltage detector (LVD)
- Brown-out detection (BOD)
- Over-voltage detection (OVD)
- Clock supervisor (CSV)
- Hardware error correction (SECDED ECC) on all safety-critical memories (SRAM, flash, TCM)

• Low-Power 2.7-V to 5.5-V operation

- Low-power Active, Sleep, Low-power Sleep, DeepSleep, and Hibernate modes for fine-grained power management
- Configurable options for robust BOD
 - \bullet Two threshold levels (2.7 V and 3.0 V) for BOD on V_{DDD} and V_{DDA}
 - One threshold level (1.1 V) for BOD on V_{CCD}

Wakeup

- Up to two pins to wake from Hibernate mode
- Up to 240 GPIO pins to wake from Sleep modes
- Event Generator, SCB, watchdog timer, RTC alarms to wake from DeepSleep modes

Clocks

- Internal main oscillator (IMO)
- Internal low-speed oscillator (ILO)
- External crystal oscillator (ECO)
- Watch crystal oscillator (WCO)
- Phase-locked loop (PLL)
- Frequency-locked loop (FLL)

· Communication interfaces

- Up to 10 CAN FD channels
 - Increased data rate (up to 8 Mbps) compared to classic CAN, limited by physical layer topology and transceivers
 - Compliant to ISO 11898-1:2015
 - Supports all the requirements of Bosch CAN FD Specification V1.0 for non-ISO CAN FD
 - ISO 16845:2015 certificate available
- Up to 11 runtime-reconfigurable SCB (serial communication block) channels, each configurable as I²C, SPI, or UART
- Up to 20 independent LIN channels
 - LIN protocol compliant with ISO 17987
- Up to two 10/100/1000 Mbps Ethernet MAC interfaces conforming to IEEE-802.3az
 - Supports the following PHY interfaces:

Media-independent interface (MII)

Reduced media-independent interface (RMII)

Gigabit media-independent interface (GMII)

Reduced gigabit media-independent interface (RGMII)

- Compliant with IEEE-802.1BA Audio Video Bridging (AVB)
- Compliant with IEEE-1588 Precision Time Protocol (PTP)
- FlexRay interface (V2.1) configurable for single or dual data-channels for fault tolerance, supporting data rates up to 10 Mbps

Based on Arm® Cortex®-M7 dual

Features

· External memory interface

- One SPI (single, dual, quad, or octal) or HYPERBUS™ interface
- On-the-fly encryption and decryption
- Execute-In-Place (XIP) from external memory

SDHC interface

- One Secure Digital High Capacity (SDHC) interface supporting embedded MultiMediaCard (eMMC), Secure Digital (SD), or SDIO (Secure Digital Input Output)
 - Compliant to eMMC 5.1, SD 6.0, and SDIO 4.10 specifications
- Data rates up to SD High Speed 50 MHz, or eMMC 52 MHz DDR

Audio interface

- Three Inter-IC Sound (I²S) Interfaces for connecting digital audio devices
- 1²S, left justified, or time division multiplexed (TDM) audio formats
- Independent transmit or receive operation, each in master or slave mode

Timers

- Up to 102 16-bit and 16 32-bit timer/counter pulse-width modulator (TCPWM) blocks
 - Up to 15 16-bit counters for motor control
 - Up to 87 16-bit counters and 16 32-bit counters for regular operations
 - Supports timer, capture, quadrature decoding, pulse-width modulation (PWM), PWM with dead time (PWM_DT), pseudo-random PWM (PWM_PR), and shift-register (SR) modes
- Up to 16 Event Generation (EVTGEN) timers supporting cyclic wakeup from DeepSleep
 - Events trigger a specific device operation (such as execution of an interrupt handler, a SAR ADC conversion, and so on)

Real time clock (RTC)

- Year/Month/Date, Day-of-week, Hour:Minute:Second fields
- 12- and 24-hour formats
- Automatic leap-year correction

· I/O

- Up to 240 programmable I/Os
- Three I/O types
 - GPIO Standard (GPIO_STD)
 - GPIO Enhanced (GPIO_ENH)
 - High-Speed I/O Standard (HSIO_STD)

Regulators

- Generates a 1.1-V nominal core supply from a 2.7-V to 5.5-V input supply
- Three regulators:
 - DeepSleep
 - Core internal
 - Core external

· Programmable analog

- Three SAR A/D converters with up to 99 external channels (96 I/Os + 3 I/Os for motor control)
 - Each ADC supports 32 logical channels, with 32 + 1 physical connections. Any external channel can be connected to any logical channel in the respective SAR.
- Each ADC supports 12-bit resolution and sampling rates of up to 1 Msps
- Each ADC also supports six internal analog inputs like
 - Bandgap reference to establish absolute voltage levels
 - Calibrated diode for junction temperature calculations
 - Two AMUXBUS inputs and two direct connections to monitor supply levels

Based on Arm® Cortex®-M7 dual

infineon

Features

- Each ADC supports addressing of external multiplexers
- Each ADC has a sequencer supporting autonomous scanning of configured channels
- Synchronized sampling of all ADCs for motor-sense applications

Smart I/O

- Up to five Smart I/O blocks, which can perform Boolean operations on signals going to and from I/Os
- Up to 36 I/Os (GPIO_STD) supported

Debug interface

- JTAG controller and interface compliant to IEEE-1149.1-2001
- Arm® SWD (serial wire debug) port
- Supports Arm® Embedded Trace Macrocell (ETM) Trace
 - Data trace using SWD
 - · Instruction and data trace using JTAG

· Compatible with industry-standard tools

- GHS MULTI or IAR EWARM for code development and debugging

Packages

- 176-TEQFP, 24 × 24 × 1.7 mm (max), 0.5-mm lead pitch
- 272-BGA, 16 × 16 × 1.7 mm (max), 0.8-mm ball pitch
- 320-BGA, 17 × 17 × 1.7 mm (max), 0.8-mm ball pitch

Certification

- Qualified for automotive application according to AEC-Q100

Based on Arm® Cortex®-M7 dual

Table of contents

General description	
Features	
Table of contents	
1 Features list	
1.1 Communication peripheral instance list	
2 Blocks and functionality	
Architecture block diagram	
3 Functional description	
3.1 CPU subsystem	
3.1.1 CPU	
3.1.2 DMA controllers	
3.1.3 Flash	
3.1.4 SRAM	
3.1.5 ROM	
3.1.6 Cryptography accelerator for security	
3.2 System resources	
3.2.1 Power system	
3.2.2 Regulators	
3.2.3 Clock system	
3.2.4 Reset	
3.2.5 Watchdog timer	
3.2.6 Power modes	
3.3 Peripherals	
3.3.1 Peripheral clock dividers	
3.3.2 Peripheral protection unit	
3.3.3 12-bit SAR ADC	
3.3.4 Timer/counter/PWM (TCPWM) block	
3.3.5 Serial communication blocks (SCB)	
3.3.6 CAN FD	
3.3.7 Local interconnect network (LIN)	
3.3.8 FlexRay interface	
3.3.9 Ethernet MAC	
3.3.10 External memory interface	
3.3.11 SDHC interface	
3.3.12 Audio interface	
3.3.13 One-time-programmable (OTP) eFuse	
3.3.14 Event generator	
3.3.15 Trigger multiplexer	
3.4 1/Os	
3.4.1 Port nomenclature	
3.4.2 GPIO Standard (GPIO_STD)	
3.4.3 GPIO Enhanced (GPIO_ENH)	
3.4.4 HSIO Standard (HSIO_STD)	
4 CYT4BF address map	
5 Flash base address map	
6 Peripheral I/O map	
7 CYTABE CRU start up soquence	
8 CYT4BF CPU start-up sequence	
9 Pin assignment	
10 High-speed I/O matrix connections	

Based on Arm® Cortex®-M7 dual

11 Package pin list and alternate functions	
12 Power pin assignments	40
13 Alternate function pin assignments	41
14 Pin mux descriptions	
15 Interrupts and wake-up assignments	
16 Core interrupt types	
17 Trigger multiplexer	67
18 Triggers group inputs	
19 Triggers group outputs	
20 Triggers one-to-one	
21 Peripheral clocks	
22 Faults	
23 Peripheral protection unit fixed structure pairs	
24 Bus masters	
25 Miscellaneous configuration	
26 Development support	
26.1 Documentation	
26.1.1 Software User Guide	
26.1.2 Technical Reference Manual	
26.2 Tools	
27 Electrical specifications	
27.1 Absolute maximum ratings	
27.2 Device-level specifications	
27.3 DC specifications	
27.4 Reset specifications	
27.5 I/O	
27.6 Analog peripherals	
27.6.1 SAR ADC	
27.6.2 Calculating the impact of neighboring pins	
27.6.3 Temperature sensor	
27.6.4 Voltage divider accuracy	
27.7 AC specifications	
27.8 Digital peripherals	
27.9 Memory	
27.10 System resources	
27.10.1 SWD interface	
27.11 Clock specifications	
27.12 Clock timing diagrams	
27.13 Ethernet specifications	
27.13.1 Minimum bus frequency requirements	
27.14 SDHC specifications	
27.15 FlexRay specifications	
27.16 Audio subsystem specifications	
27.17 Serial memory interface specifications	
28 Ordering information	
29 Packaging	
• •	
30.1 Bootloading or end-of-line programming	
30.2 External IP revisions	
32 Errata	
32 Ellala	

Based on Arm® Cortex®-M7 dual

Table of contents

Revision history	215
Revision history change log	217

Based on Arm® Cortex®-M7 dual

Features list

Features list 1

Table 1-1 **CYT4BF** feature list for all packages

Footures	Packages			
Features	176-TEQFP 272-BGA 320-BGA			
CPU			•	
Core	Two 32-bit Arm® Cortex®	B-M7 CPUs and a 32-bit	Arm® Cortex® M0+ CPU	
Functional safety		ASIL-B		
Operating voltage		2.7 V to 5.5 V		
Operating voltage for HSIO_STD	Not supported	2.7 V t	to 3.6 V	
Core voltage		1.05 V to 1.15 V		
Operating frequency	Arm [®] Cortex [®] -M7 350 M	IHz (max for each) and a MHz (max)	Arm [®] Cortex [®] -M0+ 100	
MPU, PPU		Supported		
FPU	Supports both sing	gle (32-bit) and double	(64-bit) precision	
DSP-MUL/DIV/MAC	Suppor	ted by Arm® Cortex®-M	7 CPUs	
TCM	16-KB instruction a	and 16-KB data for each	n Cortex®-M7 CPU	
Memory				
Code-flash	8384 KB (8128 KB + 256 KB)			
Work-flash	256 KB (192 KB + 64 KB)			
SRAM (configurable for retention)	1024 KB			
ROM	64 KB			
Communication interfaces				
CANO (CAN-FD: Up to 8 Mbps)	5 ch			
CAN1 (CAN-FD: Up to 8 Mbps)		5 ch		
CAN RAM	40 KB pe	oer instance (5 ch), 80 KB in total		
Serial communication block (SCB/UART)	10 ch	11	. ch	
Serial communication block (SCB/I ² C)	10 ch	11	. ch	
Serial communication block (SCB/SPI)	10 ch	11	. ch	
LIN	17 ch	20	ch ch	
	1 ch × 10/100	2 ch (option)	× 10/100/1000	
Ethernet MAC	ETH0: MII/RMII on	GPIC ETH0: MII/RMII on ETH:	ETH0: MII/RMII on GPIO_STD, ETH1: MII/RMII/GMII/ RGMII on HSIO_STD	
	GPIO_STD	ETH1: RGMII on HSIO_STD	ETH0: RGMII on HSIO_STD, ETH1: RGMII on HSIO_STD	
FlexRay	1 interface of Fle	xRay supporting ch A a	nd ch B (option)	
Memory interfaces				
eMMC/SD	1 ch (GPIO_STD at 26 MHz)	1 ch (HSIO_STD at 50 MHz, GPIO_STD at 26 MHz)		
Single SPI/Dual SPI/Quad SPI/Octal SPI /HYPERBUS™	1 ch (GPIO_STD at 32 MHz)	1 ch (HSIO_STD at 100 MHz, GPIO_STD at 32 MHz)		

Based on Arm® Cortex®-M7 dual

Features list

Table 1-1 CYT4BF feature list for all packages (continued)

Footures	Packages			
Features	176-TEQFP	272-BGA	320-BGA	
Timers				
RTC		1 ch		
TCPWM (16-bit) (Motor control)	15 ch	(TCPWM0/3, TCPWM1/	(12)	
TCPWM (16-bit)	87 ch	(TCPWM0/3, TCPWM1/	(84)	
TCPWM (32-bit)	16 ch	(TCPWM0/3, TCPWM1/	(13)	
External interrupts	148	220	240	
Analog				
	3 Units (SAR0/32	2, SAR1/32, SAR2/32 log	gical channels)	
12-bit, 1 Msps SAR ADC	81 external channels (SAR0/24 ch, SAR1/32 ch, SAR2/25 ch)	96 externa (each SAR su		
	18 ch (6 per ADC) Internal sampling			
Motor Control Input	3 ch (synchronous sampling of one channel on each of the 3 ADCs)			
Security				
Flash security (program/work read protection)	Supported			
Flash chip erase enable	Configurable			
eSHE / HSM	By separate firmware ^[1]			
Audio				
I ² S/TDM	Tx 3 ch, Rx 3 ch			
System				
DMA controller	P-DMA0 with 143 channels (16 general purpose), P-DMA1 with 65 channels (8 general purpose), and M-DMA0 with 8 channels			
Internal Main Oscillator		8 MHz		
Internal Low speed Oscillator		32.768 kHz (nominal)		
PLL	Input: 3.988 to 3	3.34 MHz, PLL output:	up to 350 MHz	
FLL	Input: 0.25 to	80 MHz, FLL output: up	to 100 MHz	
Watchdog Timer and Multi-counter Watchdog Timer	Supported (WDT + 3× MCWDT) MCWDT#0 tied to CM0+, MCWDT#1 to CM7_0, MCWDT#2 to CM7_1			
Clock Supervisor	Supported			
Cyclic wakeup from DeepSleep	Supported			
GPIO_STD	144	187	191	
GPIO_ENH	,	4		
HSIO_STD	Not supported	29	45	
Smart I/O (Blocks)	5 blocks, mapped through 36 I/Os			
Low-voltage detect	Two, 26 selectable levels			
Maximum ambient temperature	105 °C for S-grade, 125 °C for E-grade			

Note

^{1.} Enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM) support are enabled by third-party firmware.

Based on Arm® Cortex®-M7 dual

Features list

Table 1-1 CYT4BF feature list for all packages (continued)

Features		Packages		
reatures	176-TEQFP	272-BGA	320-BGA	
Debug interface		SWD/JTAG		
Debug trace	Arm® Cortex®-M7 ETB	Arm® Cortex®-M7 ETB size of 8 KB, Arm® Cortex® M0+ MTB size of 4 KB		

1.1 Communication peripheral instance list

The following table lists the instances supported under each package for communication peripherals, based on the minimum pins needed for the functionality.

Table 1-2 Communication peripheral instance list

Module	176-TEQFP	272-BGA	320-BGA	Minimum pin functions
CAN0	0/1/2/3/4	0/1/2/3/4	0/1/2/3/4	TX, RX
CAN1	0/1/2/3/4	0/1/2/3/4	0/1/2/3/4	TX, RX
LIN0	0 to 16	0 to 19	0 to 19	TX, RX
SCB/UART	0 to 9	0 to 10	0 to 10	TX, RX
SCB/I2C	0 to 9	0 to 10	0 to 10	SCL, SDA
SCB/SPI	0 to 9	0 to 10	0 to 10	MISO, MOSI, SCK, SELECTO

Based on Arm® Cortex®-M7 dual

Blocks and functionality

Blocks and functionality 2

Architecture block diagram

The Architecture block diagram shows the CYT4BF architecture, giving a simplified view of the interconnection between subsystems and blocks. CYT4BF has four major subsystems: CPU, system resources, peripherals, and $I/O^{[2,3,4]}$. The color-coding shows the lowest power mode where the particular block is still functional.

CYT4BF provides extensive support for programming, testing, debugging, and tracing of both hardware and firmware.

Debug-on-chip functionality enables in-system debugging using the production device. It does not require special interfaces, debugging pods, simulators, or emulators.

The JTAG interface is fully compatible with industry-standard third-party probes such as I-jet, J-Link, and GHS.

The debug circuits are enabled by default.

CYT4BF provides a high level of security with robust flash protection and the ability to disable features such as debug.

Additionally, each device interface can be permanently disabled for applications concerned with phishing attacks from a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled.

GPIO_STD supports 2.7 V to 5.5 V V_{DDIO} range.
 GPIO_ENH supports 2.7 V to 5.5 V V_{DDIO} range with higher currents at lower voltages.

4. HSIO_STD supports 2.7 V to 3.6 V V_{DDIO} range with high-speed signalling and programmable drive strength.

Based on Arm® Cortex®-M7 dual

Functional description

3 Functional description

3.1 CPU subsystem

3.1.1 CPU

The CYT4BF CPU subsystem contains a 32-bit Arm® Cortex®-M0+ CPU with MPU, and two 32-bit Arm® Cortex®-M7 CPUs, each with MPU, single/double-precision FPU, and 16-KB data and instruction caches. This subsystem also includes P-/M-DMA controllers, a cryptographic accelerator, 8384 KB of code-flash, 256 KB of work-flash, 1024 KB of SRAM, and 64 KB of ROM.

The Cortex-M0+ CPU provides a secure, un-interruptible boot function. This guarantees that, following completion of the boot function, system integrity is valid and privileges are enforced. Shared resources (flash, SRAM, peripherals, and so on) can be accessed through bus arbitration, and exclusive accesses are supported by an inter-processor communication (IPC) mechanism using hardware semaphores.

Each Cortex-M7 CPU has 16 KB of instruction and 16 KB of data TCM with programmable read wait states. Each TCM is clocked by the associated Cortex-M7 CPU clock.

3.1.2 DMA controllers

CYT4BF has three DMA controllers: P-DMA0 with 16 general purpose and 127 dedicated channels, P-DMA1 with 8 general purpose and 57 dedicated channels, and M-DMA0 with eight channels. P-DMA is used for peripheral-to-memory and memory-to-peripheral data transfers and provides low latency for a large number of channels. Each P-DMA controller uses a single data-transfer engine that is shared by the associated channels. General purpose channels have a rich interconnect matrix including P-DMA cross triggering which enables demanding data-transfer scenarios. Dedicated channels have a single triggering input (such as an ADC channel) to handle common transfer needs. M-DMA is used for memory-to-memory data transfers and provides high memory bandwidth for a small number of channels. M-DMA uses a dedicated data-transfer engine for each channel. They support independent accesses to peripherals using the AHB multi-layer bus.

3.1.3 Flash

CYT4BF has 8384 KB (8128 KB with a 32-KB sector size, and 256 KB with an 8-KB sector size) of code-flash with an additional work-flash of 256 KB (192 KB with a 2-KB sector size, and 64 KB with a 128-B sector size). Work-flash is optimized for reprogramming many more times than code-flash. Code-flash supports Read-While-Write (RWW) operation allowing flash to be updated while the CPU is active. Both the code-flash and work-flash areas support dual-bank operation for over-the-air (OTA) programming.

3.1.4 SRAM

CYT4BF has 1024 KB of SRAM with three independent controllers. SRAM0 provides DeepSleep retention in 32-KB increments while SRAM1/2 are selectable between fully retained and not retained.

3.1.5 ROM

CYT4BF has 64 KB of ROM that contains boot and configuration routines. This ROM enables secure boot and authentication of user flash to guarantee a secure system.

3.1.6 Cryptography accelerator for security

The cryptography accelerator implements (3)DES block cipher, AES block cipher, SHA hash, cyclic redundancy check, pseudo random number generation, true random number generation, galois/counter mode, and a vector unit to support asymmetric key cryptography such as RSA and ECC.

Based on Arm® Cortex®-M7 dual

Functional description

3.2 System resources

3.2.1 Power system

The power system ensures that the supply voltage levels meet the requirements of each power mode, and provides a full-system reset when these levels are not valid. Internal power-on reset (POR) guarantees full-chip reset during the initial power ramp.

Three BOD circuits monitor the external supply voltages (V_{DDD} , V_{DDA} , V_{CCD}). The BOD on V_{DDD} and V_{CCD} is initially enabled and cannot be disabled. The BOD on V_{DDA} is initially disabled and can be enabled by the user. For the external supplies V_{DDD} and V_{DDA} , BOD circuits are software-configurable with two settings; a 2.7-V minimum voltage that is robust for all internal signaling, and a 3.0-V minimum voltage, which is also robust for all I/O specifications (which are guaranteed at 2.7 V). The BOD on V_{CCD} is provided as a safety measure and is not a robust detector.

Three over-voltage detection (OVD) circuits are provided for monitoring external supplies (V_{DDD} , V_{DDA} , V_{CCD}), and overcurrent detection circuits (OCD) for monitoring internal and external regulators. OVD thresholds on V_{DDD} and V_{DDA} are configurable with two settings; a 5.0-V and 5.5-V maximum voltage.

Two voltage detection circuits are provided to monitor the external supply voltage (V_{DDD}) for falling and rising levels, each configurable for one of the 26 selectable levels.

All BOD, OVD, and OCD circuits on V_{DDD} and V_{CCD} generate a reset, because these protect the CPUs and fault logic. The BOD and OVD circuits on V_{DDA} can be configured to generate either a reset, or a fault.

3.2.2 Regulators

CYT4BF contains three regulators that provide power to the low-voltage core transistors: DeepSleep, core internal, and core external. These regulators accept a 2.7-V to 5.5-V V_{DDD} supply and provide a low-noise 1.1-V supply to various parts of the device. These regulators are automatically enabled and disabled by hardware and firmware when switching between power modes. The core internal and core external regulators operate in Active mode, and provide power to the CPU subsystem and associated peripherals.

3.2.2.1 DeepSleep

The DeepSleep regulator is used to maintain power in a small number of blocks when in DeepSleep mode. These blocks include the ILO and WDT timers, BOD detector, SCB0, SRAM memories, Smart I/O, and other configuration memories. The DeepSleep regulator is enabled when in DeepSleep mode, and the core internal regulator is disabled. It is disabled when XRES_L is asserted (LOW) and when the core internal regulator is disabled.

3.2.2.2 Core internal

The core internal regulator supports load currents up to 300 mA, and is operational during device start-up (boot process), and in Active/Sleep modes.

3.2.2.3 Core external^[5]

To support worst-case loading, with both M7 CPUs and the M0+ CPU at their maximum clock frequency and all integrated peripherals operating, a core external regulator is required, capable of load currents up to 600 mA. While the control and monitor circuits for the core external regulator are internal to CYT4BF, the power regulating element (NPN pass transistor, PMIC, or LDO) is external. This reduces the overall power dissipation within the CYT4BF package, while maintaining a well-regulated core supply.

Note

^{5.} When CYT4BF is in Hibernate mode, the GPIO used to control the core external regulator are High-Z. This may require an external pull-up or pull-down resistor to disable the external regulator and configure it for minimum operating current.

infineon

Functional description

The core external regulator may be implemented with either an external NPN pass transistor, PMIC, or linear regulator (LDO). Each implementation requires different external components on the PCB, and different connections to CYT4BF for both regulation and control.

Figure 3-1 Sample core external regulator with NPN transistor

Figure 3-2 Sample core external regulator with PMIC/LDO

Both the core internal and core external regulators require an external bulk storage capacitor connected to the VCCD pin. This capacitor provides charge under the dynamic loads of the low-voltage core transistors.

Based on Arm® Cortex®-M7 dual

Functional description

3.2.3 Clock system

The CYT4BF clock system provides clocks to all subsystems that require them, and glitch-free switching between different clock sources. In addition, the clock system ensures that no metastable conditions occur.

The clock system for CYT4BF consists of the 8-MHz IMO, two ILOs, four watchdog timers, four PLLs, an FLL, five clock supervisors (CSV), a 8- to 33.34-MHz ECO, and a 32.768-kHz WCO.

The clock system supports three main clock domains: CLK_HF, CLK_SLOW, and CLK_LF.

- CLK_HFx are the Active mode clocks. Each can use any of the high frequency clock sources including IMO, EXT_CLK, ECO, FLL, or PLL
- CLK_SLOW provides a reference clock for the Cortex®-CM0+ CPU, Crypto, P-/M-DMA, and other slow infrastructure blocks of CPU subsystem
- CLK_LF is a DeepSleep domain clock and provides a reference clock for the MCWDT or RTC modules. The reference clock for the CLK_LF domain is either disabled or selectable from ILO0, ILO1, or WCO.

Table 3-1 CLK HF destinations

Name	Description		
CLK_HF0	CPUSS (Memories, CLK_SLOW, Peripherals)		
CLK_HF1	CPUSS (Cortex-M7 CPU 0, 1)		
CLK_HF2	CAN FD, FlexRay, LIN, TCPWM, SCB, SAR		
CLK_HF3	Event Generator		
CLK_HF4	Ethernet Internal Clock		
CLK_HF5	Audio Subsystem (I ² S), Ethernet TSU		
CLK_HF6	SDHC Interface, SMIF		

3.2.3.1 IMO clock source

The IMO is the frequency reference in CYT4BF when no external reference is available or enabled. The IMO operates at a frequency of around 8 MHz.

3.2.3.2 ILO clock source

An ILO is a low-power oscillator, nominally 32.768 kHz, which generates clocks for a watchdog timer when in DeepSleep mode. There are two ILOs to ensure clock supervisor (CSV) capability in DeepSleep mode. ILO-driven counters can be calibrated to the IMO, WCO, or ECO to improve their accuracy. ILO1 is also used for clock supervision.

3.2.3.3 PLL and FLL

A PLL (one of the two 200 MHz and two 400 MHz) or FLL may be used to generate high-speed clocks from the IMO, ECO, or an EXT_CLK. The FLL provides a much faster lock than the PLL (5 μ s instead of 45 μ s) in exchange for a small amount (±2%) of frequency error^[6]. The 400-MHz PLL supports spread spectrum clock generation (SSCG) with down spreading.

3.2.3.4 Clock supervisor

Each clock supervisor (CSV) allows one clock (reference) to supervise the behavior of another clock (monitored). Each CSV has counters for both the monitored and reference clocks. Parameters for each counter determine the frequency of the reference clock as well as the upper and lower frequency limits of the monitored clock. If the frequency range comparator detects a stopped clock or a clock outside the specified frequency range, an abnormal state is signaled and either a reset or an interrupt is generated.

Note

6. Operation of reference-timed peripherals (like a UART) with an FLL-based reference is not recommended due the allowed frequency error.

Based on Arm® Cortex®-M7 dual

Functional description

3.2.3.5 **EXT_CLK**

One of three GPIO_STD I/Os can be used to provide an external clock input of up to 80 MHz. This clock can be used as the source clock for either the PLL or FLL, or can be used directly by the CLK_HF domain.

3.2.3.6 ECO

The ECO provides high-frequency clocking using an external crystal connected to the ECO_IN and ECO_OUT pins. It supports fundamental mode (non-overtone) quartz crystals, in the range of 8 to 33.34 MHz. When used in conjunction with the PLL, it generates CPU and peripheral clocks up to device's maximum frequency. ECO accuracy depends on the selected crystal. If the ECO is disabled, the associated pins can be used for any of the available I/O functions.

3.2.3.7 WCO

The WCO is a low-power, watch-crystal oscillator intended for real-time-clock applications. It requires an external 32.768-kHz crystal connected to the WCO_IN and WCO_OUT pins. The WCO can also be configured as a clock reference for CLK_LF, which is the clock source for the MCWDT and RTC.

3.2.4 Reset

CYT4BF can be reset from a variety of sources, including software. Most reset events are asynchronous and guarantee reversion to a known state. The reset cause (POR, BOD, OVD, overcurrent, XRES_L, WDT, MCWDT, software reset, fault, CSV, Hibernate wakeup, debug) is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES_L pin is available for external reset.

3.2.5 Watchdog timer

CYT4BF has one watchdog timer (WDT) and three multi-counter watchdog timers (MCWDT).

The WDT is a free-running counter clocked only by ILO0, which allows it to be used as a wakeup source from Hibernate. Watchdog operation is possible during all power modes. To prevent a device reset from a WDT timeout, the WDT must be serviced during a configured window. A watchdog reset is recorded in the reset cause register.

An MCWDT is available for each of the CPU cores. These timers provide more capabilities than the WDT, and are only available in Active, Sleep, and DeepSleep modes. These timers have multiple counters that can be used separately or cascaded to trigger interrupts and/or resets. They are clocked from ILO0 or the WCO.

3.2.6 Power modes

CYT4BF has six power modes.

- Active all peripherals are available
- Low-Power Active (LPACTIVE) Low-power profile of Active mode where all peripherals and the CPUs are available, but with limited capability
- Sleep all peripherals except the CPUs are available
- Low-Power Sleep (LPSLEEP) Low-power profile of Sleep mode where all peripherals except the CPUs are available, but with limited capability
- DeepSleep only peripherals which work with CLK LF are available
- Hibernate the device and I/O states are frozen, the device resets on wakeup

Based on Arm® Cortex®-M7 dual

Functional description

3.3 Peripherals

3.3.1 Peripheral clock dividers

Integer and fractional clock dividers are provided for peripheral and timing purposes.

Table 3-2 Clock dividers - CPUSS Group (Nr. 0)

Divider type	Instances	Description	
div_8	4	Integer divider, 8 bits	
div_16	3	Integer divider, 16 bits	
div_24_5	1	Fractional divider, 24.5 bits (24 integer bits, 5 fractional bits)	

Table 3-3 Clock dividers - COMM Group (Nr. 1)

Divider type	Instances	Description	
div_8	19	Integer divider, 8 bits	
div_16	20	Integer divider, 16 bits	
div_24_5	21	Fractional divider, 24.5 bits (24 integer bits, 5 fractional bits)	

3.3.2 Peripheral protection unit

The Peripheral Protection Unit (PPU) controls and monitors unauthorized access from all masters (CPU, P-/M-DMA, CRYPTO, and any enabled debug interface) to the peripherals. It allows or restricts data transfers on the bus infrastructure. The access rules are enforced based on specific properties of a transfer, such as an address range for the transfer and access attributes (such as read/write, user/privilege, and secure/non-secure).

3.3.3 12-bit SAR ADC

CYT4BF contains three 1-Msps SAR ADCs. These ADCs can be clocked at up to 26.67 MHz and provide a 12-bit result in 26 clock cycles. The references for all three SAR ADCs come from a dedicated pair of inputs: VREFH and VREFL $^{[7]}$.

CYT4BF supports up to 117 logical ADC channels, and external inputs from up to 99 I/Os. Each ADC also supports six internal connections for diagnostic and monitoring purposes. The number of ADC channels (per ADC and package type) are listed in **Table 1-1**.

Each ADC has a sequencer, which autonomously cycles through the configured channels (sequencer scan) with zero-switching overhead (that is, the aggregate sampling bandwidth, when clocked at 26.67 MHz, is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is controlled through a state machine or firmware. The sequencer prioritizes trigger requests, enables the appropriate analog channel, controls ADC sampling, initiates ADC data conversion, manages results, and initiates subsequent conversions for repetitive or group conversions without CPU intervention.

Each SAR ADC has an analog multiplexer used to connect the signals to be measured to the ADC. It has 32 GPIO_STD inputs, one special GPIO_STD input for motor-sense, and six additional inputs to measure internal signals such as a band-gap reference, a temperature sensor, and power supplies. The device supports synchronous sampling of one motor-sense channel on each of the three ADCs.

CYT4BF has one temperature sensor that is shared by all three ADCs. The temperature sensor must only be sampled by one ADC at a time. Software post processing is required to convert the temperature sensor reading into kelvin or Celsius values.

To accommodate signals with varying source impedances and frequencies, you can have different sample times programmed for each channel. Each ADC also supports range comparison, which allows fast detection of out-of-range values without having to wait for a sequencer scan to complete and for the CPU firmware to evaluate the measurement for out-of-range values.

The ADCs are not usable in DeepSleep and Hibernate modes as they require a high-speed clock. The ADC input reference voltage VREFH range is 2.7 V to V_{DDA} and VREFL is V_{SSA}.

Note

^{7.} VREF_L prevents IR drops in the VSSIO and VSSA paths from impacting the measurements. VREF_L, when properly connected, reduces or removes the impact of IR drops in the VSSIO and VSSA paths from measurements.

Based on Arm® Cortex®-M7 dual

Functional description

3.3.4 Timer/counter/PWM (TCPWM) block

The TCPWM block consists of 16-bit (102 channels) and 32-bit (16 channels) counters with user-programmable period. Fifteen of the 16-bit counters are optimized for motor-control operations. Each TCPWM counter contains a capture register to record the count at the time of an event, a period register (used to either stop or auto-reload the counter when its count is equal to the period register), and compare registers to generate signals that are used as PWM duty-cycle outputs.

Each counter within the TCPWM block supports several functional modes such as timer, capture, quadrature, PWM, PWM with dead-time insertion (PWM_DT, 8-bit), pseudo-random PWM (PWM_PR), and shift-register.

In motor-control applications, the counter within the TCPWM block supports enhanced quadrature mode with features such as asymmetric PWM generation, dead-time insertion (16-bit), and association of different dead times for PWM output signals.

The TCPWM block also provides true and complement outputs, with programmable offset between them, to allow their use as deadband complementary PWM outputs. The TCPWM block also has a kill input (only for the PWM mode) to force outputs to a predetermined state; for example, this may be used in motor-drive systems when an overcurrent state is detected and the PWMs driving the FETs need to be shut off immediately (no time for software intervention).

3.3.5 Serial communication blocks (SCB)

CYT4BF contains 11 serial communication blocks, each configurable to support I²C, UART, or SPI.

3.3.5.1 I²C interface

An SCB can be configured to implement a full I^2C master (capable of multi-master arbitration) or slave interface. Each SCB configured for I^2C can operate at speeds of up to 1 Mbps (Fast-mode Plus) and has flexible buffering options to reduce the interrupt overhead and latency of the CPU. In addition, each SCB supports FIFO buffering for receive and transmit data, which, by increasing the time for the CPU to read the data, reduces the need for clock stretching. The I^2C interface is compatible with Standard, Fast-mode, and Fast-mode Plus devices as specified in the NXP I^2C -bus specification and user manual (UM10204). The I^2C -bus I/O is implemented with GPIO in open-drain modes I/O is

3.3.5.2 UART interface

When configured as a UART, each SCB provides a full-featured UART with maximum signalling rate determined by the configured peripheral-clock frequency and over-sampling rate. It supports infrared interface (IrDA) and SmartCard (ISO 7816) protocols, which are minor variants of the UART protocol. It also supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common Rx and Tx lines. Common UART functions such as parity, number of stop bits, break detect, and frame error are supported. FIFO buffering of transmit and receive data allows greater CPU service latencies to be tolerated.

The LIN protocol is supported by the UART. LIN is based on a single-master multi-slave topology. There is one master node and multiple slave nodes on the LIN bus. The SCB UART supports only LIN slave functionality. Compared to the dedicated LIN blocks, an SCB/UART used for LIN requires a higher level of software interaction and increased CPU load.

3.3.5.3 SPI interface

The SPI configuration supports full Motorola SPI, TI Synchronous Serial Protocol (SSP, essentially adds a start pulse that is used to synchronize SPI-based codecs), and National Microwire (a half-duplex form of SPI). The SPI interface can use the FIFO. The SPI interface operates with up to a 12.5-MHz SPI Clock. SCB also supports EZSPI^[9] mode.

Notes

8. This is not 100% compliant with the I²C-bus specification; I/Os are not overvoltage-tolerant, do not support the 20-mA sink requirement of Fast-mode Plus, and violate the leakage specification when no power is applied.

9. Only Port 0 with the slew rate control enabled meets the minimum fall time requirement.

^{10.}The Easy SPI (EZSPI) protocol is based on the Motorola SPI protocol operating in any mode (0, 1, 2, or 3). It allows communication between master and slave while reducing the need for CPU intervention.

Based on Arm® Cortex®-M7 dual

Functional description

SCB0 supports the following additional features:

- Operable as a slave in DeepSleep mode
- I²C slave EZ (EZI²C^[11]) mode with up to 256-B data buffer for multi-byte communication without CPU intervention
- I²C slave externally-clocked operations
- Command/response mode with a 512-B data buffer for multi-byte communication without CPU intervention

3.3.6 CAN FD

CYT4BF contains two CAN FD controller blocks, each supporting five CAN FD channels. All CAN FD controllers are compliant with the ISO 11898-1:2015 standard; an ISO 16845:2015 certificate is available. It also implements the time-triggered CAN (TTCAN) protocol specified in ISO 11898-4 (TTCAN protocol levels 1 and 2) completely in hardware. All functions concerning the handling of messages are implemented by the Rx and Tx handlers. The Rx handler manages message acceptance filtering, transfer of received messages from the CAN core to a message RAM, and provides receive-message status. The Tx handler is responsible for the transfer of transmit messages from the message RAM to the CAN core, and provides transmit-message status.

3.3.7 Local interconnect network (LIN)

CYT4BF contains up to 20 LIN blocks. Each block supports transmission/reception of data following the LIN protocol according to ISO standard 17987. Each LIN block connects to an external transceiver through a 3-pin interface (including an enable function) and supports master and slave functionality. Each block also supports classic and enhanced checksum, along with break detection during message reception and wake-up signaling. Break detection, sync field, checksum calculations, and error interrupts are handled in hardware.

3.3.8 FlexRay interface

CYT4BF supports one FlexRay interface with channel A and an optional channel B, conforming to FlexRay protocol specification 2.1, and supports up to a 10-Mbps data rate. Message buffers are configurable as Tx, Rx, or RXFIFO, and are filtered based on FrameID, cycle count, and message ID.

3.3.9 Ethernet MAC

CYT4BF supports two Ethernet channels with transfer rates of 10, 100, or 1000 Mbps^[12]. The input/output frames and flow control are complaint to the Ethernet/IEEE 802.3az standard and also IEEE-1588 precision-time protocol (PTP). CYT4BF supports half/full-duplex data transport using external PHY devices. The MAC supports glue-free connection to PHYs through IEEE standard MII, RMII, GMII, and RGMII interfaces. The device also supports Audio-Video Bridging (AVB). The MAC supports standard 6-byte programmable addresses. Module uses **AXI** interface for DMA access.

3.3.10 External memory interface

In addition to the internal flash memory, CYT4BF supports direct connection to as much as 128-MB of external flash or RAM memory. This connection is made through either a HYPERBUS™ or serial peripheral interface (SPI). HYPERBUS™ allows connection to HyperFlash and HyperRAM devices, while SPI (single, dual, quad, or octal SPI) can connect with serial flash memory. Code stored in memory connected through this interface allows execute-in-place (XIP) operation, which does not require the instructions to be first copied to internal memory, and on-the-fly encryption and decryption for environments requiring secure external data and code.

Notes

^{11.}The Easy I²C (EZI2C) protocol is a unique communication scheme built on top of the I²C protocol by Cypress. It uses a meta protocol around the standard I²C protocol to communicate to an I²C slave using indexed memory transfers. This reduces the need for CPU intervention.

^{12.}Only 10/100 Mbps is available in the 176-TEQFP packaged devices.

Based on Arm® Cortex®-M7 dual

Functional description

3.3.11 SDHC interface

CYT4BF supports one Secure Digital High Capacity (SDHC) interface, which conforms to Secure Digital (SD) 6.0, Secure Digital Input Output (SDIO) 4.10, and Embedded Multimedia Card (eMMC) 5.1 specifications, along with Host Control Interface (HCI) 4.2 specification. The interface supports System DMA (SDMA), Advance DMA (ADMA2, ADMA3), and command queuing (CQ) features. This interface supports data rates of SD DS (Default Speed, 4-bits at 25 MHz), SD HS (High Speed, 4-bits at 50 MHz, and eMMC 52-MHz DDR (8-bits at 52-MHz card clock).

3.3.12 Audio interface

CYT4BF supports three instances of Inter-IC Sound Bus (I²S) interface to connect to digital audio devices. Supports I²S Left Justified (LJ), and eight-channel Time Division Multiplexed (TDM) digital audio interface formats in both master and slave modes with independent operations in receive and transmit directions.

3.3.13 One-time-programmable (OTP) eFuse

CYT4BF contains a 1024-bit OTP eFuse memory that can be used to store and access a unique and unalterable identifier or serial number for each device. eFuses are also used to control the device life-cycle (manufacturing, programming, normal operation, end-of-life, and so on) and the security state. Of the 1024 bits, 192 are available for user purposes.

3.3.14 Event generator

The event generator supports generation of interrupts and triggers in Active mode and interrupts in DeepSleep mode. The event generators are used to trigger a specific device operation (execution of an interrupt handler, a SAR ADC conversion, and so on) and to provide a cyclic wakeup mechanism from DeepSleep mode. They provide CPU-free triggers for device functions, and reduce CPU involvement in triggering device functions, thus reducing overall power consumption and processing overhead.

3.3.15 Trigger multiplexer

CYT4BF supports connecting various peripherals using trigger signals. Triggers are used to inform a peripheral of the occurrence of an event or change of state. These triggers are used to affect or initiate some action in other peripherals. The trigger multiplexer is used to route triggers from a source peripheral to a destination. Triggers provide active logic functionality and are typically supported in Active mode.

3.4 I/Os

CYT4BF has up to 240 programmable I/Os.

The I/Os are organized as logical entities called ports, which are a maximum of 8 bits wide. During power-on, and reset, the I/Os are forced to the High-Z state. During the Hibernate mode, I/Os are frozen.

Every I/O can generate an interrupt (if enabled) and each port has an interrupt request (IRQ) and interrupt service routine (ISR) associated with it.

I/O port power source mapping is listed in **Table 3-4**. The associated supply determines the V_{OH} , V_{OL} , V_{IH} , and V_{IL} levels when configured for CMOS and Automotive thresholds.

Table 3-4 I/O port power source

Supply pins	Ports		
VDDD	P0, P1, P2, P3, P4, P5, P16, P17, P18, P19, P20, P21, P22, P23, P28, P29, P30, P31		
VDDIO_1	P6, P7, P8, P9, P32		
VDDIO_2	P10, P11, P12, P13, P14, P15		
VDDIO_3	P24, P25		
VDDIO_4	P26, P27, P33, P34		

Based on Arm® Cortex®-M7 dual

Functional description

3.4.1 Port nomenclature

Px.y describes a particular bit "y" available within an I/O port "x."

For example, P4.2 reads "port 4, bit 2".

Each I/O implements the following:

- Programmable drive mode
 - High impedance
 - Resistive pull-up
 - Resistive pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - Strong pull-up or pull-down
 - Weak pull-up or pull-down

CYT4BF has three types of programmable I/Os: GPIO Standard, GPIO Enhanced, and HSIO Standard.

3.4.2 **GPIO Standard (GPIO_STD)**

Supports standard automotive signaling across the 2.7-V to 5.5-V V_{DDIO} range. GPIO Standard I/Os have multiple configurable drive levels, drive modes, and selectable input levels.

3.4.3 GPIO Enhanced (GPIO_ENH)

Supports extended functionality automotive signaling across the 2.7-V to 5.5-V V_{DDIO} range with higher currents at lower voltages (full I²C timing support, slew-rate control).

Both GPIO_STD and GPIO_ENH implement the following:

- Configurable input threshold (CMOS, TTL, or Automotive)
- Hold mode for latching previous state (used for retaining the I/O state in DeepSleep mode)
- Analog input mode (input and output buffers disabled)

3.4.4 HSIO Standard (HSIO STD)

These I/Os are optimized exclusively for high-speed signaling and do not support slew-rate control, DeepSleep operation, POR mode control, analog connections, or non-CMOS signaling levels. HSIO_STD supports high-speed peripherals such as QSPI, HYPERBUS™, Ethernet, and SDHC controller. HSIO_STD also supports programmable drive strength. These I/Os are available only in Active mode and retain state in DeepSleep mode.

3.4.5 Smart I/O

Smart I/O allows Boolean operations on signals going to the I/O from the subsystems of the chip or on signals coming into the chip. CYT4BF has five Smart I/O blocks. Operation can be synchronous or asynchronous and the blocks operate in all device power modes except for Hibernate.

Based on Arm® Cortex®-M7 dual

CYT4BF address map

4 CYT4BF address map

The CYT4BF microcontroller supports the memory spaces shown in Figure 4-1.

- 8384 KB (8128 KB + 256 KB) of code-flash, used in the single- or dual-bank mode based on the associated bit in the flash control register
 - Single-bank mode: 8384 KB
 - Dual-bank mode: 4192 KB per bank
- 256 KB (192 KB + 64 KB) of work-flash, used in the single- or dual-bank mode based on the associated bit in the flash control register
 - Single-bank mode: 256 KB
 - Dual-bank mode: 128 KB per bank
- 64 KB of secure ROM
- 1024 KB of SRAM (First 2 KB is reserved for internal usage)
- 16 KB of Instruction TCM for each Cortex-M7 CPU
- 16 KB of Data TCM for each Cortex-M7 CPU
- 128 MB SMIF XIP

Based on Arm® Cortex®-M7 dual

CYT4BF address map

Figure 4-1 CYT4BF address map^[13, 14]

Notes

13. The size representation is not up to scale.

14. First 2KB of SRAM is reserved, not available for users. User must keep the power of first 32-KB block of SRAM0 in enabled or retained in all Active, LP Active, Sleep, LP Sleep, DeepSleep modes.

Based on Arm® Cortex®-M7 dual

Flash base address map

5 Flash base address map

Table 5-1 through **Table 5-6** give information about the sector mapping of the code- and work-flash regions along with their respective base addresses.

Table 5-1 Code-flash address mapping in single-bank mode

Code-flash Size (KB)	Large Sectors (LS)	Small Sectors (SS)	Large Sector Base Address	Small Sector Base Address
8384	32 KB × 254	8 KB × 32	0x1000 0000	0x107F 0000

Table 5-2 Work-flash address mapping in single-bank mode

Work-flash Size (KB)	Large Sectors	Small Sectors	Large Sector Base Address	Small Sector Base Address
256	2 KB × 96	128 B × 512	0x1400 0000	0x1403 0000

Table 5-3 Code-flash address mapping in dual-bank mode (Mapping A)

Code-flash Size (KB)	First Half LS	First Half SS	Second Half LS	Second Half SS	First Half LS Base Address	First Half SS Base Address	Second Half LS Base Address	Second Half SS Base Address
8384	32 KB × 127	8 KB × 16	32 KB × 127	8 KB × 16	0x1000 0000	0x103F 8000	0x1200 0000	0x123F 8000

Table 5-4 Code-flash address mapping in dual-bank mode (Mapping B)

Code-flash Size (KB)	First Half LS	First Half SS	Second Half LS	Second Half SS	First Half LS Base Address	First Half SS Base Address	Second Half LS Base Address	Second Half SS Base Address
8384	32 KB × 127	8 KB × 16	32 KB × 127	8 KB × 16	0x1200 0000	0x123F 8000	0x1000 0000	0x103F 8000

Table 5-5 Work-flash address mapping in dual-bank mode (Mapping A)

Work-flash Size (KB)	First Half LS	First Half SS	Second Half LS	Second Half SS	First Half LS Base Address	First Half SS Base Address	Second Half LS Base Address	Second Half SS Base Address
256	2 KB × 48	128 B × 256	2 KB × 48	128 B × 256	0x1400 0000	0x1401 8000	0x1500 0000	0x1501 8000

Table 5-6 Work-flash address mapping in dual-bank mode (Mapping B)

Work-flash Size (KB)	First Half LS	First Half SS	Second Half LS	Second Half SS	First Half LS Base Address	First Half SS Base Address	Second Half LS Base Address	Second Half SS Base Address
256	2 KB × 48	128 B × 256	2 KB × 48	128 B × 256	0x1500 0000	0x1501 8000	0x1400 0000	0x1401 8000

Based on Arm® Cortex®-M7 dual

Peripheral I/O map

6 Peripheral I/O map

Table 6-1 CYT4BF peripheral I/O map

Section	Description	Base Address	Instances	Instance Size	Group	Slave
	Peripheral interconnect	0x4000 0000				
PERI	Peripheral interconnect Peripheral group (0, 1, 2, 3, 4, 5, 6, 8, 9) Peripheral trigger group Peripheral 1:1 trigger group Peripheral interconnect, master interface Peripheral clock Groups Peripheral Clock Groups Repripheral Clock Groups Peripheral Clo	9	0x40	0	0	
PERI	Peripheral trigger group	0x4000 8000	13	0x400	7 "	U
	Peripheral 1:1 trigger group	0x4000 C000	14	0x400		
	Peripheral interconnect, master interface	0x4002 0000				
PERI_MS	PERI Programmable PPU	0x4002 0000	10 ^[15]	0x40	0	1
	PERI Fixed PPU	0x4002 0800	700	0x40		
PERI_PCLK	Peripheral Clock Groups	0x4004 0000	2	0x2000	0	2
CRYPTO	Cryptography component	0x4010 0000			1	0
CPUSS	CPU subsystem (CPUSS)	0x4020 0000			2	0
	Fault structure subsystem	0x4021 0000				
FAULT	Fault structures	0x4021 0000	4	0x100	2	1
	Inter process communication	0x4022 0000				
IPC	IPC structures	0x4022 0000	8	0x20	2	2
	IPC interrupt structures	0x4022 1000	8	0x20		
	Protection	0x4023 0000				
PROT	Shared memory protection unit structures	0x4023 2000	16	0x40	2	3
	Memory protection unit structures	0x4023 4000	16	0x400		
FLASHC	Flash controller	0x4024 0000			2	4
	System Resources Sub-System Core Registers	0x4026 0000				
	Clock Supervision High Frequency	0x4026 1400	8	0x10		
	Clock Supervision Reference Frequency	0x4026 1710	1			
		0x4026 1720	1		1	_
SRSS	Clock Supervision Internal Low Frequency	0x4026 1730	1		2	5
	Clock PLL 400 MHz	0x4026 1900	2	0x10		
	Multi Counter WDT	0x4026 8000	3	0x100		
	Free Running WDT	0x4026 C000	1			
D.4.01/(11)	SRSS Backup Domain/RTC	0x4027 0000				
BACKUP	Backup Register	0x4027 1000	4	0x04	2	6
	P-DMA0 Controller	0x4028 0000				
	P-DMA0 channel structures	0x4028 8000	143	0x40	2	7
P-DMA	P-DMA1 Controller	0x4029 0000				•
	P-DMA1 channel structures	0x4029 8000	65	0x40	2	8
	M-DMA0 Controller	0x402A 0000				
M-DMA	M-DMA0 channels	0x402A 1000	8	0x100	2	9
eFUSE	eFUSE Customer Data (192 bits)	0x402C 0868	6	0x04	2	10
HSIOM	High-Speed I/O Matrix (HSIOM)	0x4030 0000	35	0x10	3	0
GPIO	GPIO port control/configuration	0x4031 0000	35	0x80	3	1

Note

^{15.} These Programmable PPUs are configured by the Boot ROM and are available for the user based on the access rights. Refer to the device-specific TRM to know more about the configuration of these programmable PPUs.

Based on Arm® Cortex®-M7 dual

Table 6-1 **CYT4BF peripheral I/O map** (continued)

Section	Description	Base Address	Instances	Instance Size	Group	Slave
SMARTIO	Programmable I/O configuration	0x4032 0000			- 3	2
SWARTIO	SMARTIO port configuration	0x4032 0C00	5	0x100	3	Z
	Timer/Counter/PWM 0 (TCPWM0)	0x4038 0000				
TCPWM	TCPWM0 Group #0 (16-bit)	0x4038 0000	3	0x80	3	3
TCPVVIVI	TCPWM0 Group #1 (16-bit, Motor control)	0x4038 8000	3	0x80	3	3
	TCPWM0 Group #2 (32-bit)	0x4039 0000	3	0x80		
EVTGEN	Event generator 0 (EVTGEN0)	0x403F 0000			- 3	4
EVIGEN	Event generator 0 comparator structures	0x403F 0800	16	0x20	3	4
SMIF	Serial Memory Interface 0 (SMIF0)	0x4042 0000			4	0
SIVIIF	SMIF0 Devices	0x4042 0800	1	0x80	4	U
	Secure Digital High Capacity 0 (SDHC0)	0x4046 0000				
SDHC	SDHC0 Wrap	0x4046 0000			4	1
	SDHC0 Core	0x4046 1000				
ETH	Ethernet 0 (ETH0)	0x4048 0000	2	0x10000	4	2
LIN	Local Interconnect Network 0 (LIN0)	0x4050 0000			_	0
LIN	LIN0 Channels	0x4050 8000	20	0x100	- 5	0
	CAN0 controller	0x4052 0000	5	0x200	F	
TTCANED	Message RAM CAN0	0x4053 0000		0xA000	- 5	1
TTCANFD	CAN1 controller	0x4054 0000	5	0x200	_	2
	Message RAM CAN1	0x4055 0000		0xA000	- 5	2
FLEXRAY	FlexRay 0	0x4056 0000			5	3
	Timer/Counter/PWM 1 (TCPWM1)	0x4058 0000				
TCDWW	TCPWM1 Group #0 (16-bit)	0x4058 0000	84	0x80	-	4
TCPWM	TCPWM1 Group #1 (16-bit, Motor control)	0x4058 8000	12	0x80	- 5	4
	TCPWM1 Group #2 (32-bit)	0x4059 0000	13	0x80		
SCB	Serial Communications Block (SPI/UART/I ² C)	0x4060 0000	11	0x10000	6	0-10
I ² S	I ² S Audio Subsystem	0x4080 0000	3	0x1000	8	0-2
	Programmable Analog Subsystem (PASS0)	0x4090 0000				
	SAR0 channel controller	0x4090 0000				
	SAR1 channel controller	0x4090 1000				
SAR PASS	SAR2 channel controller	0x4090 2000			9	0
	SAR0 channel structures	0x4090 0800	32	0x40	1	
	SAR1 channel structures	0x4090 1800	32	0x40	1	
	SAR2 channel structures	0x4090 2800	32	0x40		

CYT4BF clock diagram

CYT4BF clock diagram 7

Figure 7-1 CYT4BF clock diagram

Based on Arm® Cortex®-M7 dual

CYT4BF CPU start-up sequence

8 CYT4BF CPU start-up sequence

The start-up sequence is described in the following steps:

- 1. System Reset (@0x0000 0000)
- 2. CM0+ executes ROM boot (@0x0000 0004)
 - i. Applies trims
 - ii. Applies Debug Access port (DAP) access restrictions and system protection from eFuse and supervisory flash
 - iii. Authenticates flash boot (only in SECURE life-cycle stage) and transfers control to it
- 3. CM0+ executes flash boot (from Supervisory flash @0x1700 2000)
 - i. Debug pins are configured based on the SWD/JTAG spec^[16]
 - ii. Sets CM0+ vector offset register (CM0_VTOR part of the Arm® system space) to the beginning of flash (@0x1000 0000)
 - iii.CM0+ branches to its Reset handler
- 4. CM0+ starts execution of application
 - i. Moves CM0+ vector table to SRAM (updates CM0+ vector table base)
 - ii. Sets clocks for CM7_0 (CLK_HF1) and CM7_1 (CLK_HF2)
 - iii.Sets CM7_0 (CM7_0_VECTOR_TABLE_BASE @0x4020 0200) and CM7_1 (CM7_1_VECTOR_TABLE_BASE @0x4020 0600) vector tables to the respective locations, also and mentioned in flash (specified in the linker definition file)
 - iv. Enables the power for both the CPU cores CM7_0 and CM7_1
 - v. Disables CPU_WAIT to allow accesses from the debugger
 - vi.Releases CM7_0 and/or CM7_1 from reset
 - vii.Continues execution of CM0+ user application
- 5. CM7_0 and/or CM7_1 executes directly from either code-flash or SRAM
 - i. CM7_0/CM7_1 branches to its Reset handler
 - ii. Continues execution of the user application

Note

16.Port configuration of SWD/JTAG pins will be changed from the default GPIO mode to support debugging after the boot process, refer to **Table 11-1** for pin assignments.

Pin assignment

Pin assignment 9

Note: Thermal pad needs to be connected to VSSD.

Figure 9-1 176-TEQFP pin assignment

Pin assignment

Figure 9-2 176-TEQFP pin assignment with alternate functions

Based on Arm® Cortex®-M7 dual

Pin assignment

272-BGA ball map Figure 9-3

Based on Arm® Cortex®-M7 dual

Pin assignment

Figure 9-4 320-BGA ball map

Based on Arm® Cortex®-M7 dual

High-speed I/O matrix connections

High-speed I/O matrix connections 10

HSIOM connections reference **Table 10-1**

Name	Number	Description
HSIOM_SEL_GPIO	0	GPIO controls 'out'
HSIOM_SEL_GPIO_DSI	1	
HSIOM_SEL_DSI_DSI	2	
HSIOM_SEL_DSI_GPIO	3	
HSIOM_SEL_AMUXA	4	Reserved
HSIOM_SEL_AMUXB	5	
HSIOM_SEL_AMUXA_DSI	6	
HSIOM_SEL_AMUXB_DSI	7	
HSIOM_SEL_ACT_0	8	Active functionality 0
HSIOM_SEL_ACT_1	9	Active functionality 1
HSIOM_SEL_ACT_2	10	Active functionality 2
HSIOM_SEL_ACT_3	11	Active functionality 3
HSIOM_SEL_DS_0	12	DeepSleep functionality 0
HSIOM_SEL_DS_1	13	DeepSleep functionality 1
HSIOM_SEL_DS_2	14	DeepSleep functionality 2
HSIOM_SEL_DS_3	15	DeepSleep functionality 3
HSIOM_SEL_ACT_4	16	Active functionality 4
HSIOM_SEL_ACT_5	17	Active functionality 5
HSIOM_SEL_ACT_6	18	Active functionality 6
HSIOM_SEL_ACT_7	19	Active functionality 7
HSIOM_SEL_ACT_8	20	Active functionality 8
HSIOM_SEL_ACT_9	21	Active functionality 9
HSIOM_SEL_ACT_10	22	Active functionality 10
HSIOM_SEL_ACT_11	23	Active functionality 11
HSIOM_SEL_ACT_12	24	Active functionality 12
HSIOM_SEL_ACT_13	25	Active functionality 13
HSIOM_SEL_ACT_14	26	Active functionality 14
HSIOM_SEL_ACT_15	27	Active functionality 15
HSIOM_SEL_DS_4	28	DeepSleep functionality 4
HSIOM_SEL_DS_5	29	DeepSleep functionality 5
HSIOM_SEL_DS_6	30	DeepSleep functionality 6
HSIOM_SEL_DS_7	31	DeepSleep functionality 7

Package pin list and alternate functions

11 Package pin list and alternate functions

Most pins have alternate functionality, as specified in **Table 11-1**.

Port 11 has the following additional features,

- Ability to pass full-level analog signals to the SAR without clipping to V_{DDIO} in cases where V_{DDIO} < V_{DDA}
- Ability to simultaneously capture all three ADC signals with highest priority (ADC[0:2]_M)
- Lower noise, for the most sensitive sensors

Table 11-1 Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O [20, 21]

		Package		I/O Type		DeepSleep Mapping			
Name	320-BGA	272-BGA	176-TEQFP	HCon#0 ^[17]	HCon#14	HCon#29	HCon#30	Analog	SMARTIO
	Pin	Pin	Pin		DS #0 ^[18, 19]	DS #1	DS #2		
P0.0	A18	B18	2	GPIO_ENH			SCB0_MISO (0)		
P0.1	B18	B17	3	GPIO_ENH			SCB0_MOSI (0)		
P0.2	B17	A17	4	GPIO_ENH	SCB0_SCL (0)		SCB0_CLK (0)		
P0.3	C17	B16	5	GPIO_ENH	SCB0_SDA (0)		SCB0_SEL0 (0)		
P1.0	A17	A16	6	GPIO_STD	SCB0_SCL (1)		SCB0_MISO (1)		
P1.1	A16	A15	7	GPIO_STD	SCB0_SDA (1)		SCB0_MOSI (1)		
P1.2	B16	B15	8	GPIO_STD			SCB0_CLK (1)		
P1.3	C16	C15	9	GPIO_STD			SCB0_SEL0 (1)		
P1.4	C15	D15	NA	GPIO_STD					
P1.5	E15	NA	NA	GPIO_STD					
P1.6	F14	NA	NA	GPIO_STD					
P2.0	A15	A14	10	GPIO_STD		SWJ_TRSTN	SCB0_SEL1 (0)		
P2.1	B15	B14	11	GPIO_STD			SCB0_SEL2 (0)		
P2.2	A14	C14	12	GPIO_STD			SCB0_SEL3 (0)		
P2.3	B14	D14	13	GPIO_STD					
P2.4	C14	B13	14	GPIO_STD					
P2.5	E14	C13	15	GPIO_STD					
P2.6	C13	D13	NA	GPIO_STD					
P2.7	E13	F12	NA	GPIO_STD					

Notes

- 17.HCon refers to High Speed I/O matrix connection reference as per **Table 10-1**.
- 18. DeepSleep ordering (DS #0, DS #1, DS #2) does not have any impact on choosing any alternate functions; the HSIOM module handles the individual alternate function assignment.
- 19. All port pin functions available in DeepSleep mode are also available in Active mode.
- 20. Refer to **Table 14-1** for more information on pin multiplexer abbreviations used.
- 21. For any function marked with an identifier (n), the AC timing is only guaranteed within the respective group "n".

Table 11-1 Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O (continued)[20, 21]

		Package	!	I/O Type	D	eepSleep Mapping			
Name	320-BGA	272-BGA	176-TEQFP	HCon#0 ^[17]	HCon#14	HCon#29	HCon#30	Analog	SMARTIO
	Pin	Pin	Pin		DS #0 ^[18, 19]	DS #1	DS #2		
P7.2	G1	F1	50	GPIO_STD				ADC[0]_18	
P7.3	G2	F2	51	GPIO_STD				ADC[0]_19	
P7.4	G3	F3	52	GPIO_STD				ADC[0]_20	
P7.5	G5	F4	53	GPIO_STD				ADC[0]_21	
P7.6	G6	G1	54	GPIO_STD				ADC[0]_22	
P7.7	H5	G2	55	GPIO_STD				ADC[0]_23	
P8.0	H1	G3	56	GPIO_STD					
P8.1	H2	G4	57	GPIO_STD				ADC[0]_24	
P8.2	Н3	G6	58	GPIO_STD				ADC[0]_25	
P8.3	J1	H3	59	GPIO_STD				ADC[0]_26	
P8.4	J2	H4	60	GPIO_STD				ADC[0]_27	
P9.0	K1	H1	61	GPIO_STD				ADC[0]_28	
P9.1	K2	H2	62	GPIO_STD				ADC[0]_29	
P9.2	J3	J1	63	GPIO_STD				ADC[0]_30	
P9.3	J5	J2	64	GPIO_STD				ADC[0]_31	
P10.0	K5	M1	65	GPIO_STD					
P10.1	L5	N1	66	GPIO_STD					
P10.2	M5	N2	67	GPIO_STD					
P10.3	N5	N3	68	GPIO_STD					
P10.4	R1	N4	69	GPIO_STD				ADC[1]_0	
P10.5	R2	P1	70	GPIO_STD				ADC[1]_1	
P10.6	R3	P2	71	GPIO_STD				ADC[1]_2	
P10.7	T1	P3	72	GPIO_STD				ADC[1]_3	
P11.0	P5	М6	73	GPIO_STD				ADC[0]_M	
P11.1	P6	P4	74	GPIO_STD				ADC[1]_M	
P11.2	R5	R4	75	GPIO_STD				ADC[2]_M	
P12.0	T2	R1	80	GPIO_STD				ADC[1]_4	SMARTIO12_0
P12.1	Т3	R2	81	GPIO_STD				ADC[1]_5	SMARTIO12_1
P12.2	U1	R3	82	GPIO_STD				ADC[1]_6	SMARTIO12_2
P12.3	U2	T1	83	GPIO_STD				ADC[1]_7	SMARTIO12_3
P12.4	U3	T2	84	GPIO_STD				ADC[1]_8	SMARTIO12_4

Package pin list and alternate functions

Based on Arm® Cortex®-M7 dual

TRAVEO™ T2G 32-bit Automotive MCU

 $Pin \ selector \ and \ alternate \ pin \ functions \ in \ DeepSleep \ (DS) \ mode, \ Analog, \ Smart \ I/O \ \textit{(continued)}^{[20,\ 21]}$ Table 11-1

		Package	!	I/O Type	D	eepSleep Mapping			
Name	320-BGA	272-BGA	176-TEQFP	HCon#0 ^[17]	HCon#14	HCon#29	HCon#30	Analog	SMARTIO
	Pin	Pin	Pin		DS #0 ^[18, 19]	DS #1	DS #2		
P12.5	V1	T3	85	GPIO_STD				ADC[1]_9	SMARTIO12_5
P12.6	V2	U1	86	GPIO_STD				ADC[1]_10	SMARTIO12_6
P12.7	W1	U2	87	GPIO_STD				ADC[1]_11	SMARTIO12_7
P13.0	Y2	V2	90	GPIO_STD				ADC[1]_12	SMARTIO13_0
P13.1	W2	V3	91	GPIO_STD				ADC[1]_13	SMARTIO13_1
P13.2	Y3	U3	92	GPIO_STD				ADC[1]_14	SMARTIO13_2
P13.3	W3	V4	93	GPIO_STD				ADC[1]_15	SMARTIO13_3
P13.4	Y4	U4	94	GPIO_STD				ADC[1]_16	SMARTIO13_4
P13.5	W4	T4	95	GPIO_STD				ADC[1]_17	SMARTIO13_5
P13.6	Y5	U5	96	GPIO_STD				ADC[1]_18	SMARTIO13_6
P13.7	W5	T5	97	GPIO_STD				ADC[1]_19	SMARTIO13_7
P14.0	V5	V5	98	GPIO_STD				ADC[1]_20	SMARTIO14_0
P14.1	T5	V6	99	GPIO_STD				ADC[1]_21	SMARTIO14_1
P14.2	Y6	U6	100	GPIO_STD				ADC[1]_22	SMARTIO14_2
P14.3	W6	T6	101	GPIO_STD				ADC[1]_23	SMARTIO14_3
P14.4	V6	R6	102	GPIO_STD				ADC[1]_24	SMARTIO14_4
P14.5	T6	N7	103	GPIO_STD				ADC[1]_25	SMARTIO14_5
P14.6	R7	T7	104	GPIO_STD				ADC[1]_26	SMARTIO14_6
P14.7	T7	R7	105	GPIO_STD				ADC[1]_27	SMARTIO14_7
P15.0	Y7	V7	106	GPIO_STD				ADC[1]_28	SMARTIO15_0
P15.1	W7	U7	107	GPIO_STD				ADC[1]_29	SMARTIO15_1
P15.2	V7	V8	108	GPIO_STD				ADC[1]_30	SMARTIO15_2
P15.3	Т8	U8	109	GPIO_STD				ADC[1]_31	SMARTIO15_3
P16.0	Т9	V12	NA	GPIO_STD				ADC[2]_0	
P16.1	T10	U12	NA	GPIO_STD				ADC[2]_1	
P16.2	T11	V13	NA	GPIO_STD				ADC[2]_2	
P16.3	T12	U13	115	GPIO_STD				ADC[2]_3	
P16.4	T13	T13	NA	GPIO_STD				ADC[2]_4	
P16.5	Y12	R13	NA	GPIO_STD				ADC[2]_5	
P16.6	Y13	T14	NA	GPIO_STD				ADC[2]_6	
P16.7	Y14	N12	NA	GPIO_STD				ADC[2]_7	

Package pin list and alternate functions

Based on Arm® Cortex®-M7 dual

 $Pin \ selector \ and \ alternate \ pin \ functions \ in \ Deep Sleep \ (DS) \ mode, Analog, Smart \ I/O \ \textit{(continued)}^{[20,\ 21]}$ Table 11-1

ŀ		Package		I/O Type	D	eepSleep Mapping			
Name	320-BGA	272-BGA	176-TEQFP	HCon#0 ^[17]	HCon#14	HCon#29	HCon#30	Analog	SMARTIO
	Pin	Pin	Pin		DS #0 ^[18, 19]	DS #1	DS #2		
P17.0	W14	V14	116	GPIO_STD				ADC[2]_8	SMARTIO17_0
P17.1	V14	U14	117	GPIO_STD				ADC[2]_9	SMARTIO17_1
P17.2	T14	V15	118	GPIO_STD				ADC[2]_10	SMARTIO17_2
P17.3	R14	U15	119	GPIO_STD				ADC[2]_11	SMARTIO17_3
P17.4	Y15	T15	120	GPIO_STD				ADC[2]_12	SMARTIO17_4
P17.5	W15	V16	121	GPIO_STD				ADC[2]_13	SMARTIO17_5
P17.6	Y16	U16	122	GPIO_STD				ADC[2]_14	SMARTIO17_6
P17.7	W16	V17	123	GPIO_STD				ADC[2]_15	SMARTIO17_7
P18.0	V16	U18	124	GPIO_STD				ADC[2]_16	
P18.1	Y17	U17	125	GPIO_STD				ADC[2]_17	
P18.2	W17	T18	126	GPIO_STD				ADC[2]_18	
P18.3	Y18	T17	127	GPIO_STD				ADC[2]_19	
P18.4	Y19	T16	128	GPIO_STD				ADC[2]_20	
P18.5	T15	R16	129	GPIO_STD				ADC[2]_21	
P18.6	T16	R15	130	GPIO_STD				ADC[2]_22	
P18.7	R16	P15	131	GPIO_STD				ADC[2]_23	
P19.0	P19	R18	134	GPIO_STD				ADC[2]_24	
P19.1	P18	R17	135	GPIO_STD				ADC[2]_25	
P19.2	P16	P17	136	GPIO_STD				ADC[2]_26	
P19.3	P15	P16	137	GPIO_STD				ADC[2]_27	
P19.4	N16	N15	138	GPIO_STD				ADC[2]_28	
P20.0	N18	N16	139	GPIO_STD				ADC[2]_29	
P20.1	M18	M16	140	GPIO_STD				ADC[2]_30	
P20.2	M16	M15	141	GPIO_STD				ADC[2]_31	
P20.3	L19	M13	142	GPIO_STD					
P20.4	L18	L16	143	GPIO_STD					
P20.5	L16	L15	144	GPIO_STD					
P20.6	K16	K16	145	GPIO_STD					
P20.7	J16	K15	146	GPIO_STD					
P21.0	N19	N17	147	GPIO_STD				WCO_IN ^[22]	
P21.1	N20	N18	148	GPIO_STD				WCO_OUT ^[22]	

Package pin list and alternate functions

Based on Arm® Cortex®-M7 dual

Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O (continued)[20, 21] **Table 11-1**

		Package	1	I/O Type		DeepSleep Mapping			
Name	320-BGA	272-BGA	176-TEQFP	HCon#0 ^[17]	HCon#14	HCon#29	HCon#30	Analog	SMARTIO
	Pin	Pin	Pin		DS #0 ^[18, 19]	DS #1	DS #2		
P21.2	M19	M17	149	GPIO_STD				ECO_IN ^[22]	
P21.3	M20	M18	150	GPIO_STD				ECO_OUT ^[22]	
P21.4 ^[23]	K19	L17	151	GPIO_STD				HIBERNATE_WAKEUP[0]	
P21.5	J19	K17	157	GPIO_STD					
P21.6	H19	J17	158	GPIO_STD					
P21.7	H18	J16	159	GPIO_STD		RTC_CAL			
P22.1	H20	H18	161	GPIO_STD				EXT_PS_CTL0	
P22.2	G20	G18	162	GPIO_STD				EXT_PS_CTL1	
P22.3	F20	F18	163	GPIO_STD				EXT_PS_CTL2	
P22.4	G19	H17	164	GPIO_STD					
P22.5	G18	H16	165	GPIO_STD					
P22.6	H16	H15	166	GPIO_STD					
P22.7	G16	G17	167	GPIO_STD					
P23.0	F19	G16	168	GPIO_STD					
P23.1	F18	G15	169	GPIO_STD					
P23.2	E20	G13	170	GPIO_STD					
P23.3	E19	F17	171	GPIO_STD					
P23.4	E18	F16	172	GPIO_STD		SWJ_SWO_TDO			
P23.5	D20	F15	173	GPIO_STD		SWJ_SWCLK_TCLK			
P23.6	F16	E18	174	GPIO_STD		SWJ_SWDIO_TMS			
P23.7	G15	E17	175	GPIO_STD		SWJ_SWDOE_TDI		HIBERNATE_WAKEUP[1]	
P24.0	K3	J3	NA	HSIO_STD					
P24.1	L1	J4	NA	HSIO_STD					
P24.2	L2	K1	NA	HSIO_STD					
P24.3	L3	K2	NA	HSIO_STD					
P24.4	M1	K3	NA	HSIO_STD					
P25.0	M2	K4	NA	HSIO_STD					

22.I/O pins that support an oscillator function (WCO or ECO) must be configured for high-impedance if the oscillator is enabled. 23.This I/O has increased leakage to ground when the V_{DDD} supply is below the POR threshold.

Package pin list and alternate functions

Based on Arm® Cortex®-M7 dual

 $\textbf{Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O~\textit{(continued)}^{\textbf{[20,21]}}$ Table 11-1

		Package	!	I/O Type	D	eepSleep Mapping			
Name	320-BGA	272-BGA	176-TEQFP	HCon#0 ^[17]	HCon#14	HCon#29	HCon#30	Analog	SMARTIO
	Pin	Pin	Pin		DS #0 ^[18, 19]	DS #1	DS #2		
P25.1	М3	L1	NA	HSIO_STD					
P25.2	N1	L2	NA	HSIO_STD					
P25.3	N2	L3	NA	HSIO_STD					
P25.4	N3	L4	NA	HSIO_STD					
P25.5	P1	M2	NA	HSIO_STD					
P25.6	P2	М3	NA	HSIO_STD					
P25.7	P3	M4	NA	HSIO_STD					
P26.0	Y8	T8	NA	HSIO_STD					
P26.1	W8	R8	NA	HSIO_STD					
P26.2	V8	V9	NA	HSIO_STD					
P26.3	Y9	U9	NA	HSIO_STD					
P26.4	W9	T9	NA	HSIO_STD					
P26.5	V9	R9	NA	HSIO_STD					
P26.6	Y10	V10	NA	HSIO_STD					
P26.7	W10	U10	NA	HSIO_STD					
P27.0	V10	T10	NA	HSIO_STD					
P27.1	Y11	R10	NA	HSIO_STD					
P27.2	W11	V11	NA	HSIO_STD					
P27.3	V11	U11	NA	HSIO_STD					
P27.4	W12	T11	NA	HSIO_STD					
P27.5	V12	R11	NA	HSIO_STD					
P27.6	W13	T12	NA	HSIO_STD					
P27.7	V13	R12	NA	HSIO_STD					
P28.0	E16	E16	NA	GPIO_STD					
P28.1	D19	E15	NA	GPIO_STD					
P28.2	D18	D18	NA	GPIO_STD					
P28.3	C20	D17	NA	GPIO_STD					
P28.4	C19	D16	NA	GPIO_STD					
P28.5	B20	C18	NA	GPIO_STD					
P28.6	B19	C17	NA	GPIO_STD					
P28.7	A19	C16	NA	GPIO_STD					

Package pin list and alternate functions

Based on Arm® Cortex®-M7 dual

Table 11-1 Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O (continued)[20, 21]

		Package		I/O Type	D	eepSleep Mapping			
Name	320-BGA	272-BGA	176-TEQFP	HCon#0 ^[17]	HCon#14	HCon#29	HCon#30	Analog	SMARTIO
	Pin	Pin	Pin		DS #0 ^[18, 19]	DS #1	DS #2	1	
P29.0	A11	A11	NA	GPIO_STD					
P29.1	B11	A10	NA	GPIO_STD					
P29.2	A10	B10	NA	GPIO_STD					
P29.3	B10	C10	NA	GPIO_STD					
P29.4	E10	D10	NA	GPIO_STD					
P29.5	B9	A9	NA	GPIO_STD					
P29.6	C9	В9	NA	GPIO_STD					
P29.7	E9	C 9	NA	GPIO_STD					
P30.0	C7	В7	NA	GPIO_STD					
P30.1	A6	C7	NA	GPIO_STD					
P30.2	В6	D7	NA	GPIO_STD					
P30.3	C6	F7	NA	GPIO_STD					
P31.0	E7	A5	NA	GPIO_STD					
P31.1	F7	B5	NA	GPIO_STD					
P31.2	E6	A4	NA	GPIO_STD					
P32.0	D2	C1	NA	GPIO_STD				ADC[0]_8	
P32.1	D3	C2	NA	GPIO_STD				ADC[0]_9	
P32.2	E5	D1	NA	GPIO_STD				ADC[0]_10	
P32.3	E1	D2	NA	GPIO_STD				ADC[0]_11	
P32.4	E2	D3	NA	GPIO_STD				ADC[0]_12	
P32.5	E3	D4	NA	GPIO_STD				ADC[0]_13	
P32.6	F3	E3	NA	GPIO_STD				ADC[0]_14	
P32.7	F5	E4	NA	GPIO_STD				ADC[0]_15	
P33.0	W18	NA	NA	HSIO_STD					
P33.1	V17	NA	NA	HSIO_STD					
P33.2	W19	NA	NA	HSIO_STD					
P33.3	V18	NA	NA	HSIO_STD					
P33.4	W20	NA	NA	HSIO_STD					
P33.5	V20	NA	NA	HSIO_STD					
P33.6	V19	NA	NA	HSIO_STD					
P33.7	U20	NA	NA	HSIO_STD					

Package pin list and alternate functions

Based on Arm® Cortex®-M7 dual

TRAVEO™ T2G 32-bit Automotive MCU Based on Arm® Cortex®-M7 dual

Package pin list and alternate functions

Table 11-1 Pin selector and alternate pin functions in DeepSleep (DS) mode, Analog, Smart I/O (continued)[20, 21]

		Package		I/O Type		DeepSleep Mapping			
Name	320-BGA	272-BGA	176-TEQFP	HCon#0 ^[17]	HCon#14	HCon#29	HCon#30	Analog	SMARTIO
	Pin	Pin	Pin		DS #0 ^[18, 19]	DS #1	DS #2		
P34.0	U19	NA	NA	HSIO_STD					
P34.1	U18	NA	NA	HSIO_STD					
P34.2	T20	NA	NA	HSIO_STD					
P34.3	T19	NA	NA	HSIO_STD					
P34.4	T18	NA	NA	HSIO_STD					
P34.5	R20	NA	NA	HSIO_STD					
P34.6	R19	NA	NA	HSIO_STD					
P34.7	R18	NA	NA	HSIO_STD					
XRES_L	K20	K18	152						
DRV_VOUT	J20	J18	160						

002-21617 Rev. *L 2023-07-12

Based on Arm® Cortex®-M7 dual TRAVEO™ T2G 32-bit Automotive MCU

Power pin assignments

Power pin assignments 12

Table 12-1 Power pin assignments

Pin Name		Package		Remarks
Pin Name	320-BGA	272-BGA	176-TEQFP	кетагкз
VDDD	F8, F9, H15, J15, K15, L15, M15, N15, R12, R13	F8, H13, J13, K13, L13, N11	176, 153, 132, 110, 43, 22	Main digital supply
VSSD	A1, A20, C3, C10, C18, H9, H10, H11, H12, H13, J9, J10, J11, J12, J13, J18, K9, K10, K11, K12, K13, K18, L9, L10, L11, L12, L13, M9, M10, M11, M12, M13, N12, V3, V4, V15, Y1, Y20	A1, A18, D9, G7, G12, H9, H10, H11, J9, J10, J11, J15, K9, K10, K11, M7, M12, R5, R14, V1, V18	155, 154, 133, 114, 89, 45, 23, 1	Main digital ground
VSSD_1	N13	L11	NA	Digital Ground
VSSD_2	L20, P20	L18, P18	NA	Noise guard for ECO inputs
VDDIO_1	F10, F11, F12, F13	F9, F10, F11	44	I/O supply (except analog I/Os on V _{DDA})
VDDIO_2	R8	N8	88	I/O supply (except analog I/Os on V _{DDA})
VDDIO_3	H6, J6, K6, L6	H6, J6	NA	I/O supply for high speed domain#0 (HSIO_STD), P24, P25
VDDIO_4	R9, R10, R11	N9, N10	NA	I/O supply for high speed domain#1 (HSIO_STD), P26, P27, P33, P34
VSSIO_3	H8, J8, K8, L8	H8, J8	NA	HSIO ground
VSSIO_4	N9, N10, N11	L9, L10	NA	HSIO ground
VCCD ^[24]	F6, F15, R6, R15	F6, F13, N6, N13	46, 47, 111, 112, 113, 156	Main regulated supply. Driven by LDO regulator (either internal LDO or external LDO/PMIC)
VREFH	M6	K6	79	High reference voltage for SAR ADCs
VREFL	M8	K8	76	Low reference voltage for SAR ADCs
VDDA	N6	L6	78	Main analog supply for SAR ADCs
VSSA	N8	L8	77	Main analog ground

002-21617 Rev. *L 2023-07-12

24. The V_{CCD} pins must be connected together to ensure a low-impedance connection. (see the requirement in **Figure 27-2**)

Alternate function pin assignments 13

Alternate pin functions in Active mode [19, 27, 28] **Table 13-1**

								Active Map	ping							
Pin	HCon#8 ^[25]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT #0 ^[26]	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P0.0	PWM1_18	PWM1_22_N	TC1_18_TR0	TC1_22_TR1		SCB0_RX (0)	SCB7_SDA (2)		LIN1_RX		PWM0_H_0					
P0.1	PWM1_17	PWM1_18_N	TC1_17_TR0	TC1_18_TR1		SCB0_TX (0)	SCB7_SCL (2)		LIN1_TX		PWM0_H_0_N					
P0.2	PWM1_14	PWM1_17_N	TC1_14_TR0	TC1_17_TR1		SCB0_RTS (0)		SCB4_MISO (2)	LIN1_EN	CAN0_1_TX	TC0_H_0_TR0					
P0.3	PWM1_13	PWM1_14_N	TC1_13_TR0	TC1_14_TR1		SCB0_CTS (0)		SCB4_MOSI (2)		CAN0_1_RX	TC0_H_0_TR1					
P1.0	PWM1_12	PWM1_13_N	TC1_12_TR0	TC1_13_TR1	PWM1_H_4			SCB4_CLK (2)								
P1.1	PWM1_11	PWM1_12_N	TC1_11_TR0	TC1_12_TR1	PWM1_H_5			SCB4_SEL0 (2)								
P1.2	PWM1_10	PWM1_11_N	TC1_10_TR0	TC1_11_TR1	PWM1_H_6				LIN0_RX						TRIG_IN[0]	
P1.3	PWM1_8	PWM1_10_N	TC1_8_TR0	TC1_10_TR1	PWM1_H_7				LIN0_TX						TRIG_IN[1]	
P1.4	PWM1_71	PWM1_70_N	TC1_71_TR0	TC1_70_TR1		SCB8_RX (1)		SCB8_MISO (1)			LIN8_RX					
P1.5						SCB8_TX (1)	SCB8_SDA (1)	SCB8_MOSI (1)			LIN8_TX					
P1.6						SCB8_RTS (1)	SCB8_SCL (1)	SCB8_CLK (1)			LIN8_EN					
P2.0	PWM1_7	PWM1_8_N	TC1_7_TR0	TC1_8_TR1	TC1_H_4_TR0	SCB7_RX (0)		SCB7_MISO (0)	LIN0_RX	CAN0_0_TX					TRIG_IN[2]	
P2.1	PWM1_6	PWM1_7_N	TC1_6_TR0	TC1_7_TR1	TC1_H_5_TR0	SCB7_TX (0)	SCB7_SDA (0)	SCB7_MOSI (0)	LIN0_TX	CAN0_0_RX					TRIG_IN[3]	
P2.2	PWM1_5	PWM1_6_N	TC1_5_TR0	TC1_6_TR1	TC1_H_6_TR0	SCB7_RTS (0)	SCB7_SCL (0)	SCB7_CLK (0)	LIN0_EN				ETH0_RX_ER (0)		TRIG_IN[4]	
P2.3	PWM1_4	PWM1_5_N	TC1_4_TR0	TC1_5_TR1	TC1_H_7_TR0	SCB7_CTS (0)		SCB7_SEL0 (0)	LIN5_RX				ETH0_ETH_TSU TIMER_CMP_VAL (0)		TRIG_IN[5]	
P2.4	PWM1_3	PWM1_4_N	TC1_3_TR0	TC1_4_TR1	PWM1_H_4_N			SCB7_SEL1 (0)	LIN5_TX						TRIG_IN[6]	
P2.5	PWM1_2	PWM1_3_N	TC1_2_TR0	TC1_3_TR1	PWM1_H_5_N			SCB7_SEL2 (0)	LIN5_EN						TRIG_IN[7]	
P2.6	PWM1_72	PWM1_71_N	TC1_72_TR0	TC1_71_TR1		SCB8_CTS (1)		SCB8_SEL0 (1)								
P2.7	PWM1_73	PWM1_72_N	TC1_73_TR0	TC1_72_TR1				SCB8_SEL1 (1)	LIN11_RX							
P3.0	PWM1_1	PWM1_2_N	TC1_1_TR0	TC1_2_TR1	PWM1_H_6_N	SCB6_RX (0)		SCB6_MISO (0)		CAN0_3_TX			ETH0_MDIO (0)			TRIG_DBG [0]
P3.1	PWM1_0	PWM1_1_N	TC1_0_TR0	TC1_1_TR1	PWM1_H_7_N	SCB6_TX (0)	SCB6_SDA (0)	SCB6_MOSI (0)		CAN0_3_RX			ETH0_MDC (0)			TRIG_DBG [1]
P3.2	PWM1_M_3	PWM1_0_N	TC1_M_3_TR0	TC1_0_TR1	TC1_H_4_TR1	SCB6_RTS (0)	SCB6_SCL (0)	SCB6_CLK (0)								
P3.3	PWM1_M_2	PWM1_M_3_N	TC1_M_2_TR0	TC1_M_3_TR1	TC1_H_5_TR1	SCB6_CTS (0)		SCB6_SEL0 (0)								
P3.4	PWM1_M_1	PWM1_M_2_N	TC1_M_1_TR0	TC1_M_2_TR1	TC1_H_6_TR1			SCB6_SEL1 (0)	LIN1_RX							

Notes

25. High Speed I/O matrix connection (HCon) reference as per **Table 10-1**.
26. Active Mode ordering (ACT #0, ACT #1, and so on) does not have any impact on configuring alternate functions; the HSIOM module handles the alternate function assignments.
27. Refer to **Table 14-1** for more information on pin multiplexer abbreviations used.
28. For any function marked with an identifier (n), the AC timing is only guaranteed within the respective group "n".

Table 13-1 Alternate pin functions in Active mode (continued)[19, 27, 28]

								Active Map	ping							
Pin	HCon#8 ^[25]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT #0 ^[26]	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P3.5	PWM1_M_0	PWM1_M_1_N	TC1_M_0_TR0	TC1_M_1_TR1	TC1_H_7_TR1			SCB6_SEL2 (0)	LIN1_TX							
P3.6	PWM1_74	PWM1_73_N	TC1_74_TR0	TC1_73_TR1				SCB8_SEL2 (0)	LIN11_TX	CAN1_2_TX						
P3.7	PWM1_75	PWM1_74_N	TC1_75_TR0	TC1_74_TR1					LIN11_EN	CAN1_2_RX						
P4.0	PWM1_4	PWM1_M_0_N	TC1_4_TR0	TC1_M_0_TR1	EXT_MUX[0]_0	SCB5_RX (0)		SCB5_MISO (0)	LIN1_RX						TRIG_IN[10]	
P4.1	PWM1_5	PWM1_4_N	TC1_5_TR0	TC1_4_TR1	EXT_MUX[0]_1	SCB5_TX (0)	SCB5_SDA (0)	SCB5_MOSI (0)	LIN1_TX						TRIG_IN[11]	
P4.2	PWM1_6	PWM1_5_N	TC1_6_TR0	TC1_5_TR1	EXT_MUX[0]_2	SCB5_RTS (0)	SCB5_SCL (0)	SCB5_CLK (0)	LIN1_EN						TRIG_IN[12]	
P4.3	PWM1_7	PWM1_6_N	TC1_7_TR0	TC1_6_TR1	EXT_MUX[0]_EN	SCB5_CTS (0)		SCB5_SEL0 (0)		CANO_1_TX					TRIG_IN[13]	
P4.4	PWM1_8	PWM1_7_N	TC1_8_TR0	TC1_7_TR1			LIN15_RX	SCB5_SEL1 (0)		CANO_1_RX						
P4.5						SCB9_RX (1)		SCB9_MISO (1)							TRIG_IN[32]	
P4.6						SCB9_TX (1)	SCB9_SDA (1)	SCB9_MOSI (1)							TRIG_IN[33]	
P5.0	PWM1_9	PWM1_8_N	TC1_9_TR0	TC1_8_TR1	PWM1_H_10		LIN15_TX	SCB5_SEL2 (0)	LIN7_RX		PWM0_M_0				TRIG_IN[38]	
P5.1	PWM1_10	PWM1_9_N	TC1_10_TR0	TC1_9_TR1	PWM1_H_10_N			SCB9_SEL3 (1)	LIN7_TX		PWM0_M_0_N				TRIG_IN[39]	
P5.2	PWM1_11	PWM1_10_N	TC1_11_TR0	TC1_10_TR1	TC1_H_10_TR0		LIN10_RX		LIN7_EN		TC0_M_0_TR0					
P5.3	PWM1_12	PWM1_11_N	TC1_12_TR0	TC1_11_TR1	TC1_H_10_TR1		LIN10_TX		LIN2_RX		TC0_M_0_TR1					
P5.4	PWM1_13	PWM1_12_N	TC1_13_TR0	TC1_12_TR1	PWM1_H_11				LIN2_TX			LIN9_RX				
P5.5	PWM1_14	PWM1_13_N	TC1_14_TR0	TC1_13_TR1	PWM1_H_11_N				LIN2_EN			LIN9_TX				
P6.0	PWM1_M_0	PWM1_14_N	TC1_M_0_TR0	TC1_14_TR1	TC1_H_11_TR0	SCB4_RX (0)		SCB4_MISO (0)	LIN3_RX		PWM0_0	LIN9_EN				
P6.1	PWM1_0	PWM1_M_0_N	TC1_0_TR0	TC1_M_0_TR1	TC1_H_11_TR1	SCB4_TX (0)	SCB4_SDA (0)	SCB4_MOSI (0)	LIN3_TX							
P6.2	PWM1_M_1	PWM1_0_N	TC1_M_1_TR0	TC1_0_TR1	PWM1_H_12	SCB4_RTS (0)	SCB4_SCL (0)	SCB4_CLK (0)	LIN3_EN	CAN0_2_TX	PWM0_0_N			SDHC_CARD MECH_WRITE_PROT (0)		
P6.3	PWM1_1	PWM1_M_1_N	TC1_1_TR0	TC1_M_1_TR1	PWM1_H_12_N	SCB4_CTS (0)		SCB4_SEL0 (0)	LIN4_RX	CAN0_2_RX		SPIHB_CL K (0)		SDHC_CARD_CMD (0)		CAL_SUP_ NZ
P6.4	PWM1_M_2	PWM1_1_N	TC1_M_2_TR0	TC1_1_TR1	TC1_H_12_TR0			SCB4_SEL1 (0)	LIN4_TX		TC0_0_TR0	SPIHB_R WDS (0)		SDHC_CLK_CARD (0)		
P6.5	PWM1_2	PWM1_M_2_N	TC1_2_TR0	TC1_M_2_TR1	TC1_H_12_TR1			SCB4_SEL2 (0)	LIN4_EN		TC0_0_TR1	SPIHB_SE L0 (0)		SDHC_CARD_DE- TECT_N (0)		
P6.6	PWM1_M_3	PWM1_2_N	TC1_M_3_TR0	TC1_2_TR1				SCB4_SEL3 (0)							TRIG_IN[8]	
P6.7	PWM1_3	PWM1_M_3_N	TC1_3_TR0	TC1_M_3_TR1											TRIG_IN[9]	
P7.0	PWM1_M_4	PWM1_3_N	TC1_M_4_TR0	TC1_3_TR1		SCB5_RX (1)		SCB5_MISO (1)	LIN4_RX		PWM0_1	SPIHB_SE L1 (0)		SDHC_CARD_IF_P- WR_EN (0)		
P7.1	PWM1_15	PWM1_M_4_N	TC1_15_TR0	TC1_M_4_TR1		SCB5_TX (1)	SCB5_SDA (1)	SCB5_MOSI (1)	LIN4_TX			SPIHB DATA0 (0)		SDHC_CARD_DAT_3- TO0_0 (0)		
P7.2	PWM1_M_5	PWM1_15_N	TC1_M_5_TR0	TC1_15_TR1		SCB5_RTS (1)	SCB5_SCL (1)	SCB5_CLK (1)	LIN4_EN		PWM0_1_N	SPIHB DATA1 (0)		SDHC_CARD_DAT_3- TO0_1 (0)		
P7.3	PWM1_16	PWM1_M_5_N	TC1_16_TR0	TC1_M_5_TR1		SCB5_CTS (1)		SCB5_SEL0 (1)		CAN0_4_TX	TC0_1_TR0	SPIHB DATA2 (0)		SDHC_CARD_DAT_3- TO0_2 (0)		

Based on Arm® Cortex®-M7 dual

Table 13-1 Alternate pin functions in Active mode (continued)^[19, 27, 28]

Pin								Active Map	ping							
PIN	HCon#8 ^[25]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT #0 ^[26]	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P7.4	PWM1_M_6	PWM1_16_N	TC1_M_6_TR0	TC1_16_TR1				SCB5_SEL1 (1)		CAN0_4_RX	TC0_1_TR1	SPIHB DATA3 (0)		SDHC_CARD_DAT_3- TO0_3 (0)		
P7.5	PWM1_17	PWM1_M_6_N	TC1_17_TR0	TC1_M_6_TR1			LIN10_RX	SCB5_SEL2 (1)			PWM0_H_2	SPIHB DATA4 (0)		SDHC_CARD_DAT_7- TO4_0 (0)		
P7.6	PWM1_M_7	PWM1_17_N	TC1_M_7_TR0	TC1_17_TR1			LIN10_TX								TRIG_IN[16]	
P7.7	PWM1_18	PWM1_M_7_N	TC1_18_TR0	TC1_M_7_TR1			LIN10_EN								TRIG_IN[17]	
P8.0	PWM1_19	PWM1_18_N	TC1_19_TR0	TC1_18_TR1	PWM1_H_8				LIN2_RX	CAN0_0_TX	PWM0_H_2_N	SPIHB DATA5 (0)		SDHC_CARD_DAT_7- TO4_1 (0)		
P8.1	PWM1_20	PWM1_19_N	TC1_20_TR0	TC1_19_TR1	PWM1_H_8_N				LIN2_TX	CAN0_0_RX	TC0_H_2_TR0	SPIHB DATA6 (0)		SDHC_CARD_DAT_7- TO4_2 (0)	TRIG_IN[14]	
P8.2	PWM1_21	PWM1_20_N	TC1_21_TR0	TC1_20_TR1	TC1_H_8_TR0				LIN2_EN		TC0_H_2_TR1	SPIHB DATA7 (0)		SDHC_CARD_DAT_7- TO4_3 (0)	TRIG_IN[15]	
P8.3	PWM1_22	PWM1_21_N	TC1_22_TR0	TC1_21_TR1	TC1_H_8_TR1				LIN16_RX							TRIG_DBG [0]
P8.4	PWM1_23	PWM1_22_N	TC1_23_TR0	TC1_22_TR1					LIN16_TX							TRIG_DBG [1]
P9.0	PWM1_24	PWM1_23_N	TC1_24_TR0	TC1_23_TR1	PWM1_H_9				LIN16_EN							
P9.1	PWM1_25	PWM1_24_N	TC1_25_TR0	TC1_24_TR1	PWM1_H_9_N					LIN12_RX						
P9.2	PWM1_26	PWM1_25_N	TC1_26_TR0	TC1_25_TR1	TC1_H_9_TR0					LIN12_TX						
P9.3	PWM1_27	PWM1_26_N	TC1_27_TR0	TC1_26_TR1	TC1_H_9_TR1					LIN12_EN						
P10.0	PWM1_28	PWM1_27_N	TC1_28_TR0	TC1_27_TR1	PWM1_H_10	SCB4_RX (1)		SCB4_MISO (1)	LIN7_RX						TRIG_IN[18]	
P10.1	PWM1_29	PWM1_28_N	TC1_29_TR0	TC1_28_TR1	PWM1_H_10_N	SCB4_TX (1)	SCB4_SDA (1)	SCB4_MOSI (1)	LIN7_TX						TRIG_IN[19]	
P10.2	PWM1_30	PWM1_29_N	TC1_30_TR0	TC1_29_TR1	TC1_H_10_TR0	SCB4_RTS (1)	SCB4_SCL (1)	SCB4_CLK (1)			LIN8_RX				FLEXRAY_R XDA	
P10.3	PWM1_31	PWM1_30_N	TC1_31_TR0	TC1_30_TR1	TC1_H_10_TR1	SCB4_CTS (1)		SCB4_SEL0 (1)			LIN8_TX				FLEXRAY_T XDA	
P10.4	PWM1_32	PWM1_31_N	TC1_32_TR0	TC1_31_TR1	PWM1_H_11			SCB4_SEL1 (1)			LIN8_EN				FLEXRAY_T XENA_N	
P10.5	PWM1_33	PWM1_32_N	TC1_33_TR0	TC1_32_TR1	PWM1_H_11_N			SCB4_SEL2 (1)		LIN13_RX					FLEXRAY_R XDB	
P10.6		PWM1_33_N		TC1_33_TR1	TC1_H_11_TR0			TC1_34_TR0		LIN13_TX	PWM1_34				FLEXRAY_T XDB	
P10.7	PWM1_35	PWM1_34_N	TC1_35_TR0	TC1_34_TR1	TC1_H_11_TR1					LIN13_EN					FLEXRAY_T XENB_N	
P11.0	PWM1_61	PWM1_62_N	TC1_61_TR0	TC1_62_TR1										AUDIOSS0_MCLK		
P11.1	PWM1_60	PWM1_61_N	TC1_60_TR0	TC1_61_TR1										AUDIOSS0_TX_SCK		
P11.2	PWM1_59	PWM1_60_N	TC1_59_TR0	TC1_60_TR1										AUDIOSS0_TX_WS		
P12.0	PWM1_36		TC1_36_TR0			SCB8_RX (0)	TC1_35_TR1	SCB8_MISO (0)		CAN0_2_TX	PWM0_H_1	PWM1_35 _N		AUDIOSS0_TX_SDO	TRIG_IN[20]	
P12.1	PWM1_37	PWM1_36_N	TC1_37_TR0	TC1_36_TR1		SCB8_TX (0)	SCB8_SDA (0)	SCB8_MOSI (0)	LIN6_EN	CAN0_2_RX	PWM0_H_1_N			AUDIOSSO CLK_I2S_IF	TRIG_IN[21]	
P12.2	PWM1_38	PWM1_37_N	TC1_38_TR0	TC1_37_TR1	EXT_MUX[1]_EN	SCB8_RTS (0)	SCB8_SCL (0)	SCB8_CLK (0)	LIN6_RX		TC0_H_1_TR0			AUDIOSS0_RX_SCK		

Based on Arm® Cortex®-M7 dual

Table 13-1 Alternate pin functions in Active mode (continued)[19, 27, 28]

								Active Map	ping							
Pin	HCon#8 ^[25]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT #0 ^[26]	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P12.3	PWM1_39	PWM1_38_N	TC1_39_TR0	TC1_38_TR1	EXT_MUX[1]_0	SCB8_CTS (0)		SCB8_SEL0 (0)	LIN6_TX		TC0_H_1_TR1			AUDIOSS0_RX_WS		
P12.4	PWM1_40	PWM1_39_N	TC1_40_TR0	TC1_39_TR1	EXT_MUX[1]_1			SCB8_SEL1 (0)		CAN1_1_TX	TC0_2_TR1			AUDIOSS0_RX_SDI		
P12.5	PWM1_41	PWM1_40_N	TC1_41_TR0	TC1_40_TR1	EXT_MUX[1]_2					CAN1_1_RX						
P12.6	PWM1_42	PWM1_41_N	TC1_42_TR0	TC1_41_TR1												
P12.7	PWM1_43	PWM1_42_N	TC1_43_TR0	TC1_42_TR1												
P13.0	PWM1_M_8	PWM1_43_N	TC1_M_8_TR0	TC1_43_TR1	EXT_MUX[2]_0	SCB3_RX (0)			LIN3_RX	SCB3_MISO (0)	TC0_2_TR0			AUDIOSS1_MCLK		
P13.1	PWM1_44	PWM1_M_8_N	TC1_44_TR0	TC1_M_8_TR1	EXT_MUX[2]_1	SCB3_TX (0)	SCB3_SDA (0)		LIN3_TX	SCB3_MOSI (0)	PWM0_2_N			AUDIOSS1_TX_SCK		
P13.2	PWM1_M_9	PWM1_44_N	TC1_M_9_TR0	TC1_44_TR1	EXT_MUX[2]_2	SCB3_RTS (0)	SCB3_SCL (0)		LIN3_EN	SCB3_CLK (0)	PWM0_2			AUDIOSS1_TX_WS		
P13.3	PWM1_45	PWM1_M_9_N	TC1_45_TR0	TC1_M_9_TR1	EXT_MUX[2]_EN	SCB3_CTS (0)			LIN2_RX	SCB3_SEL0 (0)				AUDIOSS1_TX_SDO		
P13.4	PWM1_M_1 0	PWM1_45_N	TC1_M_10_TR0	TC1_45_TR1	PWM1_H_4				LIN2_TX	SCB3_SEL1 (0)	LIN8_RX			AUDIOSS1 CLK_I2S_IF		
P13.5	PWM1_46	PWM1_M_10_ N	TC1_46_TR0	TC1_M_10_TR	PWM1_H_4_N					SCB3_SEL2 (0)	LIN8_TX			AUDIOSS1_RX_SCK		
P13.6	PWM1_M_1 1	PWM1_46_N	TC1_M_11_TR0	TC1_46_TR1	PWM1_H_5					SCB3_SEL3 (0)	LIN8_EN			AUDIOSS1_RX_WS	TRIG_IN[22]	
P13.7	PWM1_47	PWM1_M_11_ N	TC1_47_TR0	TC1_M_11_TR	PWM1_H_5_N									AUDIOSS1_RX_SDI	TRIG_IN[23]	
P14.0	PWM1_48	PWM1_47_N	TC1_48_TR0	TC1_47_TR1	PWM1_H_6	SCB2_MISO (0)		SCB2_RX (0)		CAN1_0_TX	PWM0_M_1			AUDIOSS2_MCLK		
P14.1	PWM1_49	PWM1_48_N	TC1_49_TR0	TC1_48_TR1	PWM1_H_6_N	SCB2_MOSI (0)	SCB2_SDA (0)	SCB2_TX (0)		CAN1_0_RX	PWM0_M_1_N			AUDIOSS2_TX_SCK		
P14.2	PWM1_50	PWM1_49_N	TC1_50_TR0	TC1_49_TR1	PWM1_H_7	SCB2_CLK (0)	SCB2_SCL (0)	SCB2_RTS (0)	LIN6_RX		TC0_M_1_TR0					
P14.3	PWM1_51	PWM1_50_N	TC1_51_TR0	TC1_50_TR1	PWM1_H_7_N	SCB2_SEL0 (0)		SCB2_CTS (0)	LIN6_TX		TC0_M_1_TR1					
P14.4	PWM1_52	PWM1_51_N	TC1_52_TR0	TC1_51_TR1	TC1_H_4_TR0	SCB2_SEL1 (0)			LIN6_EN					AUDIOSS2_TX_WS		
P14.5	PWM1_53	PWM1_52_N	TC1_53_TR0	TC1_52_TR1	TC1_H_4_TR1	SCB2_SEL2 (0)	LIN14_RX							AUDIOSS2_TX_SDO		
P14.6	PWM1_54	PWM1_53_N	TC1_54_TR0	TC1_53_TR1	TC1_H_5_TR0		LIN14_TX								TRIG_IN[24]	
P14.7	PWM1_55	PWM1_54_N	TC1_55_TR0	TC1_54_TR1	TC1_H_5_TR1		LIN14_EN								TRIG_IN[25]	
P15.0	PWM1_56	PWM1_55_N	TC1_56_TR0	TC1_55_TR1	TC1_H_6_TR0	SCB9_RX (0)		SCB9_MISO (0)		CAN1_3_TX				AUDIOSS2 CLK_I2S_IF		
P15.1	PWM1_57	PWM1_56_N	TC1_57_TR0	TC1_56_TR1	TC1_H_6_TR1	SCB9_TX (0)	SCB9_SDA (0)	SCB9_MOSI (0)		CAN1_3_RX				AUDIOSS2_RX_SCK		
P15.2	PWM1_58	PWM1_57_N	TC1_58_TR0	TC1_57_TR1	TC1_H_7_TR0	SCB9_RTS (0)	SCB9_SCL (0)	SCB9_CLK (0)						AUDIOSS2_RX_WS		
P15.3	PWM1_59	PWM1_58_N	TC1_59_TR0	TC1_58_TR1	TC1_H_7_TR1	SCB9_CTS (0)		SCB9_SEL0 (0)						AUDIOSS2_RX_SDI		
P16.0	PWM1_60	PWM1_59_N	TC1_60_TR0	TC1_59_TR1	PWM1_H_0			SCB9_SEL1 (0)	LIN11_RX							
P16.1	PWM1_61	PWM1_60_N	TC1_61_TR0	TC1_60_TR1	PWM1_H_0_N			SCB9_SEL2 (0)	LIN11_TX							
P16.2	PWM1_62	PWM1_61_N	TC1_62_TR0	TC1_61_TR1	PWM1_H_1			SCB9_SEL3 (0)	LIN11_EN							
P16.3	PWM1_62	PWM1_62_N	TC1_62_TR0	TC1_62_TR1	PWM1_H_1_N											

Based on Arm® Cortex®-M7 dual

Table 13-1 Alternate pin functions in Active mode (continued)^[19, 27, 28]

-								Active Map	oing							
Pin	HCon#8 ^[25]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT #0 ^[26]	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P16.4	PWM1_68	PWM1_69_N	TC1_68_TR0	TC1_69_TR1												
P16.5	PWM1_67	PWM1_68_N	TC1_67_TR0	TC1_68_TR1												
P16.6	PWM1_66	PWM1_67_N	TC1_66_TR0	TC1_67_TR1												
P16.7	PWM1_65	PWM1_66_N	TC1_65_TR0	TC1_66_TR1												
P17.0	PWM1_61	PWM1_62_N	TC1_61_TR0	TC1_62_TR1					LIN11_RX	CAN1_1_TX						
P17.1	PWM1_60	PWM1_61_N	TC1_60_TR0	TC1_61_TR1		SCB3_RX (1)			LIN11_TX	CAN1_1_RX						
P17.2	PWM1_59	PWM1_60_N	TC1_59_TR0	TC1_60_TR1		SCB3_TX (1)	SCB3_SDA (1)		LIN11_EN							
P17.3	PWM1_58	PWM1_59_N	TC1_58_TR0	TC1_59_TR1	PWM1_H_3	SCB3_RTS (1)	SCB3_SCL (1)			SCB3_CLK (1)					TRIG_IN[26]	
P17.4	PWM1_57	PWM1_58_N	TC1_57_TR0	TC1_58_TR1	PWM1_H_3_N	SCB3_CTS (1)				SCB3_SEL0 (1)					TRIG_IN[27]	
P17.5	PWM1_56	PWM1_57_N	TC1_56_TR0	TC1_57_TR1	PWM1_H_2		LIN15_RX			SCB3_SEL1 (1)						<u> </u>
P17.6	PWM1_M_4	PWM1_56_N	TC1_M_4_TR0	TC1_56_TR1	PWM1_H_2_N		LIN15_TX			SCB3_SEL2 (1)						<u> </u>
P17.7	PWM1_M_5	PWM1_M_4_N	TC1_M_5_TR0	TC1_M_4_TR1			LIN15_EN			LIN12_RX						
P18.0	PWM1_M_6	PWM1_M_5_N	TC1_M_6_TR0	TC1_M_5_TR1	PWM1_H_0	SCB1_RX (0)		SCB1_MISO (0)		LIN12_TX			ETH0_REF_CLK (0)			FAULT_O UT_0
P18.1	PWM1_M_7	PWM1_M_6_N	TC1_M_7_TR0	TC1_M_6_TR1	PWM1_H_0_N	SCB1_TX (0)	SCB1_SDA (0)	SCB1_MOSI (0)		SCB3_MISO(1)			ETH0_TX_CTL (0)			FAULT_O UT_1
P18.2	PWM1_55	PWM1_M_7_N	TC1_55_TR0	TC1_M_7_TR1	PWM1_H_1	SCB1_RTS (0)	SCB1_SCL (0)	SCB1_CLK (0)		SCB3_MOSI (1)			ETH0_TX_ER (0)			
P18.3	PWM1_54	PWM1_55_N	TC1_54_TR0	TC1_55_TR1	PWM1_H_1_N	SCB1_CTS (0)		SCB1_SEL0 (0)		SCB3_CLK (2)			ETH0_TX_CLK (0)			TRACE CLOCK (0)
P18.4	PWM1_53	PWM1_54_N	TC1_53_TR0	TC1_54_TR1	PWM1_H_2			SCB1_SEL1 (0)		SCB3_SEL0 (2)	PWM0_M_2		ETH0_TXD_0 (0)			TRACE DATA_0 (0)
P18.5	PWM1_52	PWM1_53_N	TC1_52_TR0	TC1_53_TR1	PWM1_H_2_N			SCB1_SEL2 (0)			PWM0_M_2_N		ETH0_TXD_1 (0)			TRACE DATA_1 (0)
P18.6	PWM1_51	PWM1_52_N	TC1_51_TR0	TC1_52_TR1	PWM1_H_3			SCB1_SEL3 (0)		CAN1_2_TX	TC0_M_2_TR0		ETH0_TXD_2 (0)			TRACE DATA_2 (0)
P18.7	PWM1_50	PWM1_51_N	TC1_50_TR0	TC1_51_TR1	PWM1_H_3_N					CAN1_2_RX	TC0_M_2_TR1		ETH0_TXD_3 (0)			TRACE DATA_3 (0)
P19.0	PWM1_M_3	PWM1_50_N	TC1_M_3_TR0	TC1_50_TR1	TC1_H_0_TR0	SCB2_MISO (1)		SCB2_RX (1)		CAN1_3_TX			ETH0_RXD_0 (0)			FAULT_O UT_2
P19.1	PWM1_26	PWM1_M_3_N	TC1_26_TR0	TC1_M_3_TR1	TC1_H_0_TR1	SCB2_MOSI (1)	SCB2_SDA (1)	SCB2_TX (1)		CAN1_3_RX			ETH0_RXD_1 (0)			FAULT_O UT_3
P19.2	PWM1_27	PWM1_26_N	TC1_27_TR0	TC1_26_TR1	TC1_H_1_TR0	SCB2_CLK (1)	SCB2_SCL (1)	SCB2_RTS (1)					ETH0_RXD_2 (0)		TRIG_IN[28]	
P19.3	PWM1_28	PWM1_27_N	TC1_28_TR0	TC1_27_TR1	TC1_H_1_TR1	SCB2_SEL0 (1)		SCB2_CTS (1)					ETH0_RXD_3 (0)		TRIG_IN[29]	
P19.4	PWM1_29	PWM1_28_N	TC1_29_TR0	TC1_28_TR1	TC1_H_2_TR0	SCB2_SEL1 (1)										
P20.0	PWM1_30	PWM1_29_N	TC1_30_TR0	TC1_29_TR1	TC1_H_2_TR1	SCB2_SEL2 (1)			LIN5_RX							
P20.1	PWM1_49	PWM1_30_N	TC1_49_TR0	TC1_30_TR1	TC1_H_3_TR0				LIN5_TX							
P20.2	PWM1_48	PWM1_49_N	TC1_48_TR0	TC1_49_TR1	TC1_H_3_TR1				LIN5_EN							

Based on Arm® Cortex®-M7 dual
Alternate function pin assignments

Based on Arm® Cortex®-M7 dual

Name ACT #C P20.3 PWM1_ P20.4 PWM1_ P20.5 PWM1_ P20.6 PWM1_	#0 ^[26] ACT #1 _47 PWM1_48_N _46 PWM1_47_N _45 PWM1_46_N _44 PWM1_45_N	HCon#10 ACT #2 TC1_47_TR0 TC1_46_TR0 TC1_45_TR0	HCon#11 ACT #3 TC1_48_TR1 TC1_47_TR1	HCon#16 ACT #4	HCon#17 ACT #5	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	
P20.3 PWM1_ P20.4 PWM1_ P20.5 PWM1_	_47 PWM1_48_N _46 PWM1_47_N _45 PWM1_46_N _44 PWM1_45_N	TC1_47_TR0 TC1_46_TR0	TC1_48_TR1	ACT #4	ACT #5										HCon#27
P20.4 PWM1_ P20.5 PWM1_	_46 PWM1_47_N _45 PWM1_46_N _44 PWM1_45_N	TC1_46_TR0				ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P20.5 PWM1_	_45 PWM1_46_N _44 PWM1_45_N		TC1_47_TR1		SCB1_RX (1)		SCB1_MISO (1)		CAN1_2_TX						
	_44 PWM1_45_N	TC1_45_TR0			SCB1_TX (1)	SCB1_SDA (1)	SCB1_MOSI (1)		CAN1_2_RX						
P20.6 PWM1_			TC1_46_TR1		SCB1_RTS (1)	SCB1_SCL (1)	SCB1_CLK (1)								
	_43 PWM1_44_N	TC1_44_TR0	TC1_45_TR1		SCB1_CTS (1)		SCB1_SEL0 (1)		CAN1_4_TX						
P20.7 PWM1_		TC1_43_TR0	TC1_44_TR1				SCB1_SEL1 (1)		CAN1_4_RX						
P21.0 PWM1_	_42 PWM1_43_N	TC1_42_TR0	TC1_43_TR1				SCB1_SEL2 (1)								
P21.1 PWM1_	_41 PWM1_42_N	TC1_41_TR0	TC1_42_TR1												
P21.2 PWM1_	_40 PWM1_41_N	TC1_40_TR0	TC1_41_TR1							EXT_CLK					TRIG_DBG [1]
P21.3 PWM1_	_39 PWM1_40_N	TC1_39_TR0	TC1_40_TR1												
P21.4 PWM1_	_38 PWM1_39_N	TC1_38_TR0	TC1_39_TR1												
P21.5 PWM1_	_37 PWM1_38_N	TC1_37_TR0	TC1_38_TR1			TC1_35_TR1	TC1_34_TR0	LIN0_RX	CAN1_1_TX	PWM1_34	PWM1_35 _N	ETH0_RX_CTL (0)			TRACE DATA_0 (1)
P21.6 PWM1_	_36 PWM1_37_N	TC1_36_TR0	TC1_37_TR1					LIN0_TX	LIN13_RX						
P21.7 PWM1_	_35 PWM1_36_N	TC1_35_TR0	TC1_36_TR1		SCB6_RX (1)		SCB6_MISO (1)	LIN0_EN	LIN13_TX						CAL_SUP_ NZ
P22.1 PWM1_	_33 PWM1_34_N	TC1_33_TR0	TC1_34_TR1		SCB6_TX (1)	SCB6_SDA (1)	SCB6_MOSI (1)		CAN1_1_RX						TRACE DATA_1 (1)
P22.2 PWM1_	_32 PWM1_33_N	TC1_32_TR0	TC1_33_TR1		SCB6_RTS (1)	SCB6_SCL (1)	SCB6_CLK (1)								TRACE DATA_2 (1)
P22.3 PWM1_	_31 PWM1_32_N	TC1_31_TR0	TC1_32_TR1		SCB6_CTS (1)		SCB6_SEL0 (1)								TRACE DATA_3 (1)
P22.4 PWM1_	_30 PWM1_31_N	TC1_30_TR0	TC1_31_TR1				SCB6_SEL1 (1)								TRACE CLOCK (1)
P22.5 PWM1_	_29 PWM1_30_N	TC1_29_TR0	TC1_30_TR1	PWM1_H_8			SCB6_SEL2 (1)	LIN7_RX							
P22.6 PWM1_	_28 PWM1_29_N	TC1_28_TR0	TC1_29_TR1	PWM1_H_8_N				LIN7_TX							
P22.7 PWM1_	_27 PWM1_28_N	TC1_27_TR0	TC1_28_TR1	TC1_H_8_TR0		LIN14_RX		LIN7_EN							
P23.0 PWM1_	_M_8 PWM1_27_N	TC1_M_8_TR0	TC1_27_TR1	TC1_H_8_TR1	SCB7_RX (1)	LIN14_TX	SCB7_MISO (1)		CAN1_0_TX						FAULT_O UT_0
P23.1 PWM1_	_M_9 PWM1_M_8_I	TC1_M_9_TR0	TC1_M_8_TR1		SCB7_TX (1)	SCB7_SDA (1)	SCB7_MOSI (1)		CAN1_0_RX						FAULT_O UT_1
P23.2 PWM1_	_M_1 PWM1_M_9_I	TC1_M_10_TR0	TC1_M_9_TR1		SCB7_RTS (1)	SCB7_SCL (1)	SCB7_CLK (1)	LIN6_RX							FAULT_O UT_2
P23.3 PWM1_	_M_1 PWM1_M_10_	TC1_M_11_TR0	TC1_M_10_TR		SCB7_CTS (1)		SCB7_SEL0 (1)	LIN6_TX				ETH0_RX_CLK (0)		TRIG_IN[30]	FAULT_O UT_3
P23.4 PWM1_	_25 PWM1_M_11_	TC1_25_TR0	TC1_M_11_TR	PWM1_H_9	SCB2_MISO (2)		SCB7_SEL1 (1)							TRIG_IN[31]	TRIG_DBG [0]
P23.5 PWM1_	_24 PWM1_25_N	TC1_24_TR0	TC1_25_TR1	PWM1_H_9_N	SCB2_MOSI (2)		SCB7_SEL2 (1)				LIN9_RX				
P23.6 PWM1_	_23 PWM1_24_N	TC1_23_TR0	TC1_24_TR1	TC1_H_9_TR0	SCB2_CLK (2)						LIN9_TX				

Table 13-1 Alternate pin functions in Active mode (continued)[19, 27, 28]

Pin								Active Map	pping							
PIN	HCon#8 ^[25]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT #0 ^[26]	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P23.7	PWM1_22	PWM1_23_N	TC1_22_TR0	TC1_23_TR1	TC1_H_9_TR1	SCB2_SEL0 (2)					EXT_CLK	LIN9_EN				CAL_SUP_ NZ
P24.0									LIN16_RX		EXT_CLK			SDHC_CARD_DE- TECT_N (1)		
P24.1												SPIHB_CL K (1)		SDHC_CARD MECH_WRITE_PROT (1)		
P24.2												SPIHB_R WDS (1)		SDHC_CLK_CARD (1)		
P24.3									LIN16_TX			SPIHB_SE L0 (1)		SDHC_CARD_CMD (1)		
P24.4									LIN16_EN			SPIHB_SE L1 (1)		SDHC_CARD_IF_P- WR_EN (1)		
P25.0												SPIHB DATA0 (1)		SDHC_CARD_DAT_3- TO0_0 (1)		
P25.1												SPIHB DATA1 (1)		SDHC_CARD_DAT_3- TO0_1 (1)		
P25.2												SPIHB DATA2 (1)		SDHC_CARD_DAT_3- TO0_2 (1)		
P25.3												SPIHB DATA3 (1)		SDHC_CARD_DAT_3- TO0_3 (1)		
P25.4												SPIHB DATA4 (1)		SDHC_CARD_DAT_7- TO4_0 (1)		
P25.5												SPIHB DATA5 (1)		SDHC_CARD_DAT_7- TO4_1 (1)		
P25.6												SPIHB DATA6 (1)		SDHC_CARD_DAT_7- TO4_2 (1)		
P25.7												SPIHB DATA7 (1)		SDHC_CARD_DAT_7- TO4_3 (1)		
P26.0																ETH1_REF _CLK (0)
P26.1																ETH1_TX_ CTL (0)
P26.2																ETH1_TX_ CLK (0)
P26.3																ETH1_TXD _0 (0)
P26.4																ETH1_TXD _1 (0)
P26.5																ETH1_TXD _2 (0)
P26.6																ETH1_TXD _3 (0)
P26.7																ETH1_RXD _0 (0)
P27.0																ETH1_RXD _1 (0)
P27.1																ETH1_RXD _2 (0)

Based on Arm[®] Cortex[®]-M7 dual

Alternate pin functions in Active mode $(\textit{continued})^{[19,\,27,\,28]}$ **Table 13-1**

Din								Active Map	ping							
Pin	HCon#8 ^[25]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT #0 ^[26]	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P27.2																ETH1_RXD _3 (0)
P27.3																ETH1_RX_ CTL (0)
P27.4																ETH1_RX_ CLK (0)
P27.5																ETH1_MDI O (0)
P27.6																ETH1_MD C (0)
P27.7																ETH1_ETH _TSU TIMER_C- MP_VAL (0)
P28.0	PWM1_63	PWM1_65_N	TC1_63_TR0	TC1_65_TR1	PWM1_H_12	SCB10_RX (0)		SCB10_MISO (0)								
P28.1	PWM1_64	PWM1_63_N	TC1_64_TR0	TC1_63_TR1	PWM1_H_12_N	SCB10_TX (0)	SCB10_SDA (0)	SCB10_MOSI (0)	LIN17_RX							
P28.2	PWM1_65	PWM1_64_N	TC1_65_TR0	TC1_64_TR1	TC1_H_12_TR0	SCB10_RTS (0)	SCB10_SCL (0)	SCB10_CLK (0)	LIN17_TX							
P28.3	PWM1_66	PWM1_65_N	TC1_66_TR0	TC1_65_TR1	TC1_H_12_TR1	SCB10_CTS (0)		SCB10_SEL0 (0)	LIN17_EN							
P28.4	PWM1_67	PWM1_66_N	TC1_67_TR0	TC1_66_TR1				SCB10_SEL1 (0)	LIN18_RX							
P28.5	PWM1_68	PWM1_67_N	TC1_68_TR0	TC1_67_TR1				SCB10_SEL2 (0)	LIN18_TX							
P28.6	PWM1_69	PWM1_68_N	TC1_69_TR0	TC1_68_TR1				SCB10_SEL3 (0)	LIN18_EN							
P28.7	PWM1_70	PWM1_69_N	TC1_70_TR0	TC1_69_TR1					LIN19_RX							
P29.0	PWM1_76	PWM1_75_N	TC1_76_TR0	TC1_75_TR1					LIN19_TX							
P29.1	PWM1_77	PWM1_76_N	TC1_77_TR0	TC1_76_TR1					LIN19_EN							
P29.2	PWM1_78	PWM1_77_N	TC1_78_TR0	TC1_77_TR1												
P29.3	PWM1_79	PWM1_78_N	TC1_79_TR0	TC1_78_TR1												
P29.4	PWM1_80	PWM1_79_N	TC1_80_TR0	TC1_79_TR1												
P29.5	PWM1_81	PWM1_80_N	TC1_81_TR0	TC1_80_TR1												
P29.6	PWM1_82	PWM1_81_N	TC1_82_TR0	TC1_81_TR1												
P29.7	PWM1_83	PWM1_82_N	TC1_83_TR0	TC1_82_TR1												
P30.0	PWM1_83	PWM1_83_N	TC1_83_TR0	TC1_83_TR1		SCB9_RTS (1)	SCB9_SCL (1)	SCB9_CLK (1)							TRIG_IN[34]	
P30.1	PWM1_82	PWM1_83_N	TC1_82_TR0	TC1_83_TR1		SCB9_CTS (1)		SCB9_SEL0 (1)	LIN16_RX						TRIG_IN[35]	
P30.2	PWM1_81	PWM1_82_N	TC1_81_TR0	TC1_82_TR1				SCB9_SEL1 (1)	LIN16_TX	CAN1_3_TX					TRIG_IN[36]	
P30.3	PWM1_80	PWM1_81_N	TC1_80_TR0	TC1_81_TR1				SCB9_SEL2 (1)	LIN16_EN	CAN1_3_RX					TRIG_IN[37]	
P31.0	PWM1_79	PWM1_80_N	TC1_79_TR0	TC1_80_TR1					LIN17_RX							
P31.1	PWM1_78	PWM1_79_N	TC1_78_TR0	TC1_79_TR1					LIN17_TX							

Based on Arm® Cortex®-M7 dual

Table 13-1 Alternate pin functions in Active mode (continued)^[19, 27, 28]

Pin								Active Map	ping							
PIN	HCon#8 ^[25]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#19	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT #0 ^[26]	ACT #1	ACT #2	ACT #3	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #11	ACT #12	ACT #13	ACT #14	ACT #15
P31.2	PWM1_77	PWM1_78_N	TC1_77_TR0	TC1_78_TR1					LIN17_EN							
P32.0	PWM1_76	PWM1_77_N	TC1_76_TR0	TC1_77_TR1		SCB10_RX (1)		SCB10_MISO (1)							TRIG_IN[40]	
P32.1	PWM1_75	PWM1_76_N	TC1_75_TR0	TC1_76_TR1		SCB10_TX (1)	SCB10_SDA (1)	SCB10_MOSI (1)							TRIG_IN[41]	
P32.2	PWM1_74	PWM1_75_N	TC1_74_TR0	TC1_75_TR1		SCB10_RTS (1)	SCB10_SCL (1)	SCB10_CLK (1)	LIN18_RX						TRIG_IN[42]	
P32.3	PWM1_73	PWM1_74_N	TC1_73_TR0	TC1_74_TR1		SCB10_CTS (1)		SCB10_SEL0 (1)	LIN18_TX						TRIG_IN[43]	
P32.4	PWM1_72	PWM1_73_N	TC1_72_TR0	TC1_73_TR1			LIN10_RX	SCB10_SEL1 (1)	LIN18_EN						TRIG_IN[44]	
P32.5	PWM1_71	PWM1_72_N	TC1_71_TR0	TC1_72_TR1			LIN10_TX	SCB10_SEL2 (1)	LIN19_RX						TRIG_IN[45]	
P32.6	PWM1_70	PWM1_71_N	TC1_70_TR0	TC1_71_TR1			LIN10_EN	SCB10_SEL3 (1)	LIN19_TX	CAN1_4_TX					TRIG_IN[46]	
P32.7	PWM1_69	PWM1_70_N	TC1_69_TR0	TC1_70_TR1					LIN19_EN	CAN1_4_RX					TRIG_IN[47]	
P33.0													ETH0_REF_CLK (1)			
P33.1													ETH0_TX_CTL (1)			ETH1_TX_ ER (0)
P33.2													ETH0_TX_CLK (1)			
P33.3													ETH0_TXD_0 (1)			ETH1_TXD _4 (0)
P33.4													ETH0_TXD_1 (1)			ETH1_TXD _5 (0)
P33.5													ETH0_TXD_2 (1)			ETH1_TXD _6 (0)
P33.6													ETH0_TXD_3 (1)			ETH1_TXD _7 (0)
P33.7													ETH0_RXD_0 (1)			ETH1_RXD _4 (0)
P34.0													ETH0_RXD_1 (1)			ETH1_RXD _5 (0)
P34.1													ETH0_RXD_2 (1)			ETH1_RXD _6 (0)
P34.2													ETH0_RXD_3 (1)			ETH1_RXD _7 (0)
P34.3													ETH0_RX_CTL (1)			ETH1_RX_ ER (0)
P34.4													ETHO_RX_CLK (1)			
P34.5													ETH0_MDIO (1)			
P34.6													ETH0_MDC (1)			
P34.7													ETHO_ETH_TSU TIMER_CMP_VAL (1)			

Based on Arm® Cortex®-M7 dual

Based on Arm® Cortex®-M7 dual

Pin mux descriptions

Pin mux descriptions 14

Pin mux descriptions Table 14-1

Sl. No.	Pin	Module	Description
1	PWMx_y	TCPWM	TCPWM 16-bit PWM (no motor control), PWM_DT and PWM_PR line out, x-TCPWM block, y-counter number
2	PWMx_y_N	TCPWM	TCPWM 16-bit PWM (no motor control), PWM_DT and PWM_PR complementary line out (N), x-TCPWM block, y-counter number
3	PWMx_M_y	TCPWM	TCPWM 16-bit PWM with motor control line out, x-TCPWM block, y-counter number
4	PWMx_M_y_N	TCPWM	TCPWM 16-bit PWM with motor control complementary line out (N), x-TCPWM block, y-counter number
5	PWMx_H_y	TCPWM	TCPWM 32-bit PWM, PWM_DT and PWM_PR line out, x-TCPWM block, y-counter number
6	PWMx_H_y_N	TCPWM	TCPWM 32-bit PWM, PWM_DT and PWM_PR complementary line out (N), x-TCPWM block, y-counter number
7	TCx_y_TRz	TCPWM	TCPWM 16-bit dedicated counter input triggers, x-TCPWM block, y-counter number, z-trigger number
8	TCx_M_y_TRz	TCPWM	TCPWM 16-bit dedicated counter input triggers with motor control, x-TCPWM block, y-counter number, z-trigger number
9	TCx_H_y_TRz	TCPWM	TCPWM 32-bit dedicated counter input triggers, x-TCPWM block, y-counter number, z-trigger number
10	SCBx_RX	SCB	UART Receive, x-SCB block
11	SCBx_TX	SCB	UART Transmit, x-SCB block
12	SCBx_RTS	SCB	UART Request to Send (Handshake), x-SCB block
13	SCBx_CTS	SCB	UART Clear to Send (Handshake), x-SCB block
14	SCBx_SDA	SCB	I ² C Data line, x-SCB block
15	SCBx_SCL	SCB	I ² C Clock line, x-SCB block
16	SCBx_MISO	SCB	SPI Master Input Slave Output, x-SCB block
17	SCBx_MOSI	SCB	SPI Master Output Slave Input, x-SCB block
18	SCBx_CLK	SCB	SPI Serial Clock, x-SCB block
19	SCBx_SELy	SCB	SPI Slave Select, x-SCB block, y-select line
20	LINx_RX	LIN	LIN Receive line, x-LIN block
21	LINx_TX	LIN	LIN Transmit line, x-LIN block
22	LINx_EN	LIN	LIN Enable line, x-LIN block
23	CANx_y_TX	CANFD	CAN Transmit line, x-CAN block, y-channel number
24	CANx_y_RX	CANFD	CAN Receive line, x-CAN block, y-channel number
25	SPIHB_CLK	SMIF	SMIF interface clock
26	SPIHB_RWDS	SMIF	SMIF (SPI/HYPERBUS™) read-write-data-strobe line
27	SPIHB_SELx	SMIF	SMIF (SPI/HYPERBUS™) memory select line, x-select line number
28	SPIHB_DATAx	SMIF	SMIF (SPI/HYPERBUS™) memory data read and write line, x-0 to 7 data lines
29	ETHx_RX_ER	Ethernet	Ethernet receive error indication line, x-ETH module number
30	ETHX_ETH_TSU_TIMER_ CMP_VAL	Ethernet	Ethernet time stamp unit timer compare indication line, x-ETH module number
31	ETHx_MDIO	Ethernet	Ethernet management data input/output (MDIO) interface to PHY, x-ETH module number
32	ETHx_MDC	Ethernet	Ethernet management data clock (MDC) line, x-ETH module number
33	ETHx_REF_CLK	Ethernet	Ethernet reference clock line, x-ETH module number
34	ETHx_TX_CTL	Ethernet	Ethernet transmit control line, x-ETH module number
35	ETHx_TX_ER	Ethernet	Ethernet transmit error indication line, x-ETH module number
36	ETHx_TX_CLK	Ethernet	Ethernet transmit clock line, x-ETH module number
37	ETHx_TXD_y	Ethernet	Ethernet transmit data line, x-ETH module number, y-transmit channel number
38	ETHx_RXD_y	Ethernet	Ethernet receive data line, x-ETH module number, y-receive channel number
39	ETHx_RX_CTL	Ethernet	Ethernet receive control line, x-ETH module number
40	ETHx_RX_CLK	Ethernet	Ethernet receive clock line, x-ETH module number

Based on Arm® Cortex®-M7 dual

Pin mux descriptions

Table 14-1 Pin mux descriptions (continued)

Sl. No.	Pin	Module	Description
41	SDHC_CARD MECH_WRITE_PROT	SDHC	SDHC mechanical write protect
42	SDHC_CARD_CMD	SDHC	SDHC command line
43	SDHC_CLK_CARD	SDHC	SDHC clock line
44	SDHC_CARD_DETECT_N	SDHC	SDHC interface insertion or removal detection line
45	SDHC_CARD_IF_PWR_EN	SDHC	SDHC interface power cycle line
46	SDHC_CARD_DAT_3TO0_x	SDHC	SDHC lower 4-bits of the data
47	SDHC_CARD_DAT_7TO4_x	SDHC	SDHC upper 4-bits of the data in 8-bit mode
48	AUDIOSSx_MCLK	AUDIOSS	AudioSS master clock out, x-AudioSS block
49	AUDIOSSx_TX_SCK	AUDIOSS	I ² S serial clock for transmitter, x-AudioSS block
50	AUDIOSSx_TX_WS	AUDIOSS	I ² S word select for transmitter, x-AudioSS block
51	AUDIOSSx_TX_SDO	AUDIOSS	I ² S serial data output for transmitter, x-AudioSS block
52	AUDIOSSx_CLK_I2S_IF	AUDIOSS	I ² S clock supplied from external I2S bus host, x-AudioSS block
53	AUDIOSSx_RX_SCK	AUDIOSS	I ² S serial clock for receiver, x-AudioSS block
54	AUDIOSSx_RX_WS	AUDIOSS	I ² S word select for receiver, x-AudioSS block
55	AUDIOSSx_RX_SDI	AUDIOSS	I ² S serial data input for receiver, x-AudioSS block
56	FLEXRAY_RXDx	FlexRay	FlexRay data receive line, x-module channel reference A or B
57	FLEXRAY_TXDx	FlexRay	FlexRay data transmit line, x-module channel reference A or B
58	FLEXRAY_TXENx_N	FlexRay	FlexRay transmit enable line, x-module channel reference A or B
59	CAL_SUP_NZ	System	ETAS Calibration support line
60	FAULT_OUT_x	SRSS	Fault output line x-0 to 3
61	TRACE_DATA_x	SRSS	Trace dataout line x-0 to 3
62	TRACE_CLOCK	SRSS	Trace clock line
63	RTC_CAL	SRSS RTC	RTC calibration clock input
64	SWJ_TRSTN	SRSS	JTAG Test reset line (Active low)
65	SWJ_SWO_TDO	SRSS	JTAG Test data output/SWO (Serial Wire Output)
66	SWJ_SWCLK_TCLK	SRSS	JTAG Test clock/SWD clock (Serial Wire Clock)
67	SWJ_SWDIO_TMS	SRSS	JTAG Test mode select/SWD data (Serial Wire Data Input/Output)
68	SWJ_SWDOE_TDI	SRSS	JTAG Test data input
69	HIBERNATE_WAKEUP[x]	SRSS	Hibernate wakeup line x-0 to 1
70	EXT_CLK	SRSS	External clock input or output
71	EXT_PS_CTL0	SRSS REGHC	REGHC control line, Transistor mode/Positive terminal of the current sense resistor, PMIC mode/Power good input from PMIC
72	EXT_PS_CTL1	SRSS REGHC	REGHC control line, Transistor mode/Negative terminal of the current sense resistor, PMIC mode/Enable output for PMIC
73	EXT_PS_CTL2	SRSS REGHC	REGHC control line, Transistor mode/unused, PMIC mode/Reset threshold adjustment for some PMICs
74	ADC[x]_y	PASS SAR	SAR, channel, x-SAR number, y-channel number
75	ADC[x]_M	PASS SAR	SAR motor control input, x-SAR number
76	EXT_MUX[x]_y	PASS SAR	External SAR MUX inputs, x-MUX number, y-MUX input 0 to 2
77	EXT_MUX[x]_EN	PASS SAR	External SAR MUX enable line
78	TRIG_IN[x]	HSIOM	HSIOM_IO_INPUT[x] of trigger inputs, x-0 to 47
79	TRIG_DBG[x]	HSIOM	HSIOM_IO_OUTPUT[x] of trigger outputs, x-0 to 1
80	WCO_IN	SRSS	Watch crystal oscillator input
81	WCO_OUT	SRSS	Watch crystal oscillator output
82	ECO_IN	SRSS	External crystal oscillator input
83	ECO_OUT	SRSS	External crystal oscillator output

Interrupts and wake-up assignments

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources **Table 15-1**

In	terrupt	Source	Power Mode	Description
	0	cpuss_interrupts_ipc_0_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #0
	1	cpuss_interrupts_ipc_1_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #1
	2	cpuss_interrupts_ipc_2_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #2
-	3	cpuss_interrupts_ipc_3_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #3
_	4	cpuss_interrupts_ipc_4_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #4
_	5	cpuss_interrupts_ipc_5_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #5
	6	cpuss_interrupts_ipc_6_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #6
	7	cpuss_interrupts_ipc_7_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #7
	8	cpuss_interrupts_fault_0_IRQn	DeepSleep	CPUSS Fault Structure #0 Interrupt
	9	cpuss_interrupts_fault_1_IRQn	DeepSleep	CPUSS Fault Structure #1 Interrupt
	10	cpuss_interrupts_fault_2_IRQn	DeepSleep	CPUSS Fault Structure #2 Interrupt
	11	cpuss_interrupts_fault_3_IRQn	DeepSleep	CPUSS Fault Structure #3 Interrupt
	12	srss_interrupt_backup_IRQn	DeepSleep	BACKUP domain Interrupt
	13	srss_interrupt_mcwdt_0_IRQn	DeepSleep	Multi Counter Watchdog Timer #0 interrupt
	14	srss_interrupt_mcwdt_1_IRQn	DeepSleep	Multi Counter Watchdog Timer #1 interrupt
	15	srss_interrupt_mcwdt_2_IRQn	DeepSleep	Multi Counter Watchdog Timer #2 interrupt
	16	srss_interrupt_wdt_IRQn	DeepSleep	Hardware Watchdog Timer interrupt
SIC	<u>17</u>	srss_interrupt_IRQn	DeepSleep	Other combined Interrupts for SRSS (LVD, CLKCAL)
	18	scb_0_interrupt_IRQn	DeepSleep	SCB0 interrupt (DeepSleep capable)
	19	evtgen_0_interrupt_dpslp_IRQn	DeepSleep	Event gen DeepSleep domain interrupt
	20	ioss_interrupt_vdd_IRQn	DeepSleep	I/O Supply (V _{DDIO} , V _{DDA} , V _{DDD}) state change Interrupt
	21	ioss_interrupt_gpio_dpslp_IRQn	DeepSleep	Consolidated Interrupt for GPIO_STD and GPIO_ENH, all ports
	22	ioss_interrupts_gpio_dpslp_0_IRQn	DeepSleep	GPIO_ENH Port #0 Interrupt
	23	ioss_interrupts_gpio_dpslp_1_IRQn	DeepSleep	GPIO_STD Port #1 Interrupt
	24	ioss_interrupts_gpio_dpslp_2_IRQn	DeepSleep	GPIO_STD Port #2 Interrupt
	25	ioss_interrupts_gpio_dpslp_3_IRQn	DeepSleep	GPIO_STD Port #3 Interrupt
	26	ioss_interrupts_gpio_dpslp_4_IRQn	DeepSleep	GPIO_STD Port #4 Interrupt
	27	ioss_interrupts_gpio_dpslp_5_IRQn	DeepSleep	GPIO_STD Port #5 Interrupt
	28	ioss_interrupts_gpio_dpslp_6_IRQn	DeepSleep	GPIO_STD Port #6 Interrupt
_	29	ioss_interrupts_gpio_dpslp_7_IRQn	DeepSleep	GPIO_STD Port #7 Interrupt
	30	ioss_interrupts_gpio_dpslp_8_IRQn	DeepSleep	GPIO_STD Port #8 Interrupt
_	31	ioss_interrupts_gpio_dpslp_9_IRQn	DeepSleep	GPIO_STD Port #9 Interrupt
	32	ioss_interrupts_gpio_dpslp_10_IRQn	DeepSleep	GPIO_STD Port #10 Interrupt
_	33	ioss_interrupts_gpio_dpslp_11_IRQn	DeepSleep	GPIO_STD Port #11 Interrupt
	34	ioss_interrupts_gpio_dpslp_12_IRQn	DeepSleep	GPIO_STD Port #12 Interrupt
_	35	ioss_interrupts_gpio_dpslp_13_IRQn	DeepSleep	GPIO_STD Port #13 Interrupt
	36	ioss_interrupts_gpio_dpslp_14_IRQn	DeepSleep	GPIO_STD Port #14 Interrupt
	37	ioss_interrupts_gpio_dpslp_15_IRQn	DeepSleep	GPIO_STD Port #15 Interrupt
	38	ioss_interrupts_gpio_dpslp_16_IRQn	DeepSleep	GPIO_STD Port #16 Interrupt
-	39	ioss_interrupts_gpio_dpslp_17_IRQn	DeepSleep	GPIO_STD Port #17 Interrupt
-	40	ioss_interrupts_gpio_dpslp_18_IRQn	DeepSleep	GPIO_STD Port #18 Interrupt
-	41	ioss_interrupts_gpio_dpslp_19_IRQn	DeepSleep	GPIO_STD Port #19 Interrupt
	42	ioss_interrupts_gpio_dpslp_20_IRQn	DeepSleep	GPIO_STD Port #20 Interrupt

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
43	ioss_interrupts_gpio_dpslp_21_IRQn	DeepSleep	GPIO_STD Port #21 Interrupt
44	ioss_interrupts_gpio_dpslp_22_IRQn	DeepSleep	GPIO_STD Port #22 Interrupt
45	ioss_interrupts_gpio_dpslp_23_IRQn	DeepSleep	GPIO_STD Port #23 Interrupt
46	ioss_interrupts_gpio_dpslp_28_IRQn	DeepSleep	GPIO_STD Port #28 Interrupt
47	ioss_interrupts_gpio_dpslp_29_IRQn	DeepSleep	GPIO_STD Port #29 Interrupt
48	ioss_interrupts_gpio_dpslp_30_IRQn	DeepSleep	GPIO_STD Port #30 Interrupt
49	ioss_interrupts_gpio_dpslp_31_IRQn	DeepSleep	GPIO_STD Port #31 Interrupt
50	ioss_interrupts_gpio_dpslp_32_IRQn	DeepSleep	GPIO_STD Port #32 Interrupt
51	ioss_interrupts_gpio_act_IRQn	Active	Consolidated Interrupt for HSIO_STD, All Ports
52	ioss_interrupts_gpio_act_24_IRQn	Active	HSIO_STD Port #24 Interrupt
53	ioss_interrupts_gpio_act_25_IRQn	Active	HSIO_STD Port #25 Interrupt
54	ioss_interrupts_gpio_act_26_IRQn	Active	HSIO_STD Port #26 Interrupt
55	ioss_interrupts_gpio_act_27_IRQn	Active	HSIO_STD Port #27 Interrupt
56	ioss_interrupts_gpio_act_33_IRQn	Active	HSIO_STD Port #33 Interrupt
57	ioss_interrupts_gpio_act_34_IRQn	Active	HSIO_STD Port #34 Interrupt
58	cpuss_interrupt_crypto_IRQn	Active	CRYPTO Accelerator Interrupt
59	cpuss_interrupt_fm_IRQn	Active	Flash Macro Interrupt
60	cpuss_interrupts_cm7_0_fp_IRQn	Active	CM7_0 Floating Point operation fault
61	cpuss_interrupts_cm7_1_fp_IRQn	Active	CM7_1 Floating Point operation fault
62	cpuss_interrupts_cm0_cti_0_lRQn	Active	CM0+ CTI (Cross Trigger Interface) #0
63	cpuss_interrupts_cm0_cti_1_IRQn	Active	CM0+ CTI #1
64	cpuss_interrupts_cm7_0_cti_0_IRQn	Active	CM7_0 CTI #0
65	cpuss_interrupts_cm7_0_cti_1_IRQn	Active	CM7_0 CTI #1
66	cpuss_interrupts_cm7_1_cti_0_IRQn	Active	CM7_1 CTI #0
67	cpuss_interrupts_cm7_1_cti_1_IRQn	Active	CM7_1 CTI #1
68	evtgen_0_interrupt_IRQn	Active	Event gen Active domain Interrupt
69	canfd_0_interrupt0_IRQn	Active	CAN0, Consolidated Interrupt #0 for all five channels
70	canfd_0_interrupt1_IRQn	Active	CANO, Consolidated Interrupt #1 for all five channels
71	canfd_1_interrupt0_IRQn	Active	CAN1, Consolidated Interrupt #0 for all five channels
72	canfd_1_interrupt1_IRQn	Active	CAN1, Consolidated Interrupt #1 for all five channels
73	canfd_0_interrupts0_0_IRQn	Active	CANO, Interrupt #0, Channel #0
74	canfd_0_interrupts0_1_IRQn	Active	CAN0, Interrupt #0, Channel #1
75	canfd_0_interrupts0_2_IRQn	Active	CAN0, Interrupt #0, Channel #2
76	canfd_0_interrupts0_3_IRQn	Active	CAN0, Interrupt #0, Channel #3
77	canfd_0_interrupts0_4_IRQn	Active	CANO, Interrupt #0, Channel #4
78	canfd_0_interrupts1_0_IRQn	Active	CAN0, Interrupt #1, Channel #0
79	canfd_0_interrupts1_1_IRQn	Active	CAN0, Interrupt #1, Channel #1
80	canfd_0_interrupts1_2_IRQn	Active	CAN0, Interrupt #1, Channel #2
81	canfd_0_interrupts1_3_IRQn	Active	CANO, Interrupt #1, Channel #3
82	canfd_0_interrupts1_4_IRQn	Active	CAN0, Interrupt #1, Channel #4
83	canfd_1_interrupts0_0_IRQn	Active	CAN1, Interrupt #0, Channel #0
84	canfd_1_interrupts0_1_IRQn	Active	CAN1, Interrupt #0, Channel #1
85	canfd_1_interrupts0_2_IRQn	Active	CAN1, Interrupt #0, Channel #2
86	canfd_1_interrupts0_3_IRQn	Active	CAN1, Interrupt #0, Channel #3
87	canfd_1_interrupts0_4_IRQn	Active	CAN1, Interrupt #0, Channel #4

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
88	canfd_1_interrupts1_0_IRQn	Active	CAN1, Interrupt #1, Channel #0
89	canfd_1_interrupts1_1_IRQn	Active	CAN1, Interrupt #1, Channel #1
90	canfd_1_interrupts1_2_IRQn	Active	CAN1, Interrupt #1, Channel #2
91	canfd_1_interrupts1_3_IRQn	Active	CAN1, Interrupt #1, Channel #3
92	canfd_1_interrupts1_4_IRQn	Active	CAN1, Interrupt #1, Channel #4
93	lin_0_interrupts_0_IRQn	Active	LINO, Channel #0 Interrupt
94	lin_0_interrupts_1_IRQn	Active	LINO, Channel #1 Interrupt
95	lin_0_interrupts_2_IRQn	Active	LINO, Channel #2 Interrupt
96	lin_0_interrupts_3_IRQn	Active	LINO, Channel #3 Interrupt
97	lin_0_interrupts_4_IRQn	Active	LINO, Channel #4 Interrupt
98	lin_0_interrupts_5_IRQn	Active	LINO, Channel #5 Interrupt
99	lin_0_interrupts_6_IRQn	Active	LINO, Channel #6 Interrupt
100	lin_0_interrupts_7_IRQn	Active	LINO, Channel #7 Interrupt
101	lin_0_interrupts_8_IRQn	Active	LINO, Channel #8 Interrupt
102	lin_0_interrupts_9_IRQn	Active	LINO, Channel #9 Interrupt
103	lin_0_interrupts_10_IRQn	Active	LINO, Channel #10 Interrupt
104	lin_0_interrupts_11_IRQn	Active	LINO, Channel #11 Interrupt
105	lin_0_interrupts_12_IRQn	Active	LINO, Channel #12 Interrupt
106	lin_0_interrupts_13_IRQn	Active	LINO, Channel #13 Interrupt
107	lin_0_interrupts_14_IRQn	Active	LINO, Channel #14 Interrupt
108	lin_0_interrupts_15_IRQn	Active	LINO, Channel #15 Interrupt
109	lin_0_interrupts_16_IRQn	Active	LINO, Channel #16 Interrupt
110	lin_0_interrupts_17_IRQn	Active	LINO, Channel #17 Interrupt
111	lin_0_interrupts_18_IRQn	Active	LINO, Channel #18 Interrupt
112	lin_0_interrupts_19_IRQn	Active	LINO, Channel #19 Interrupt
113	scb_1_interrupt_IRQn	Active	SCB1 Interrupt
114	scb_2_interrupt_IRQn	Active	SCB2 Interrupt
115	scb_3_interrupt_IRQn	Active	SCB3 Interrupt
116	scb_4_interrupt_IRQn	Active	SCB4 Interrupt
117	scb_5_interrupt_IRQn	Active	SCB5 Interrupt
118	scb_6_interrupt_IRQn	Active	SCB6 Interrupt
119	scb_7_interrupt_IRQn	Active	SCB7 Interrupt
120	scb_8_interrupt_IRQn	Active	SCB8 Interrupt
121	scb_9_interrupt_IRQn	Active	SCB9 Interrupt
122	scb_10_interrupt_IRQn	Active	SCB10 Interrupt
123	pass_0_interrupts_sar_0_IRQn	Active	SAR0, Logical Channel #0 Interrupt
124	pass_0_interrupts_sar_1_IRQn	Active	SAR0, Logical Channel #1 Interrupt
125	pass_0_interrupts_sar_2_IRQn	Active	SARO, Logical Channel #2 Interrupt
126	pass_0_interrupts_sar_3_IRQn	Active	SARO, Logical Channel #3 Interrupt
127	pass_0_interrupts_sar_4_IRQn	Active	SAR0, Logical Channel #4 Interrupt
128	pass_0_interrupts_sar_5_IRQn	Active	SAR0, Logical Channel #5 Interrupt
129	pass_0_interrupts_sar_6_IRQn	Active	SAR0, Logical Channel #6 Interrupt
130	pass_0_interrupts_sar_7_IRQn	Active	SARO, Logical Channel #7 Interrupt
131	pass_0_interrupts_sar_8_IRQn	Active	SAR0, Logical Channel #8 Interrupt
132	pass_0_interrupts_sar_9_IRQn	Active	SAR0, Logical Channel #9 Interrupt
	<u> </u>	l	

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
133	pass_0_interrupts_sar_10_IRQn	Active	SAR0, Logical Channel #10 Interrupt
134	pass_0_interrupts_sar_11_IRQn	Active	SAR0, Logical Channel #11 Interrupt
135	pass_0_interrupts_sar_12_IRQn	Active	SAR0, Logical Channel #12 Interrupt
136	pass_0_interrupts_sar_13_IRQn	Active	SARO, Logical Channel #13 Interrupt
137	pass_0_interrupts_sar_14_IRQn	Active	SAR0, Logical Channel #14 Interrupt
138	pass_0_interrupts_sar_15_IRQn	Active	SARO, Logical Channel #15 Interrupt
139	pass_0_interrupts_sar_16_IRQn	Active	SARO, Logical Channel #16 Interrupt
140	pass_0_interrupts_sar_17_IRQn	Active	SARO, Logical Channel #17 Interrupt
141	pass_0_interrupts_sar_18_IRQn	Active	SARO, Logical Channel #18 Interrupt
142	pass_0_interrupts_sar_19_IRQn	Active	SARO, Logical Channel #19 Interrupt
143	pass_0_interrupts_sar_20_IRQn	Active	SARO, Logical Channel #20 Interrupt
144	pass_0_interrupts_sar_21_IRQn	Active	SARO, Logical Channel #21 Interrupt
145	pass_0_interrupts_sar_22_IRQn	Active	SARO, Logical Channel #22 Interrupt
146	pass_0_interrupts_sar_23_IRQn	Active	SARO, Logical Channel #23 Interrupt
147	pass_0_interrupts_sar_24_IRQn	Active	SAR0, Logical Channel #24 Interrupt
148	pass_0_interrupts_sar_25_IRQn	Active	SARO, Logical Channel #25 Interrupt
149	pass_0_interrupts_sar_26_IRQn	Active	SARO, Logical Channel #26 Interrupt
150	pass_0_interrupts_sar_27_IRQn	Active	SAR0, Logical Channel #27 Interrupt
151	pass_0_interrupts_sar_28_IRQn	Active	SAR0, Logical Channel #28 Interrupt
152	pass_0_interrupts_sar_29_IRQn	Active	SAR0, Logical Channel #29 Interrupt
153	pass_0_interrupts_sar_30_IRQn	Active	SAR0, Logical Channel #30 Interrupt
154	pass_0_interrupts_sar_31_IRQn	Active	SAR0, Logical Channel #31 Interrupt
155	pass_0_interrupts_sar_32_IRQn	Active	SAR1, Logical Channel #0 Interrupt
156	pass_0_interrupts_sar_33_IRQn	Active	SAR1, Logical Channel #1 Interrupt
157	pass_0_interrupts_sar_34_IRQn	Active	SAR1, Logical Channel #2 Interrupt
158	pass_0_interrupts_sar_35_IRQn	Active	SAR1, Logical Channel #3 Interrupt
159	pass_0_interrupts_sar_36_IRQn	Active	SAR1, Logical Channel #4 Interrupt
160	pass_0_interrupts_sar_37_IRQn	Active	SAR1, Logical Channel #5 Interrupt
161	pass_0_interrupts_sar_38_IRQn	Active	SAR1, Logical Channel #6 Interrupt
162	pass_0_interrupts_sar_39_IRQn	Active	SAR1, Logical Channel #7 Interrupt
163	pass 0 interrupts sar 40 IROn	Active	SAR1, Logical Channel #8 Interrupt
164	pass_0_interrupts_sar_41_IRQn	Active	SAR1, Logical Channel #9 Interrupt
165	pass_0_interrupts_sar_42_IRQn	Active	SAR1, Logical Channel #10 Interrupt
166	pass_0_interrupts_sar_43_IRQn	Active	SAR1, Logical Channel #11 Interrupt
167	pass_0_interrupts_sar_44_IRQn	Active	SAR1, Logical Channel #12 Interrupt
168	pass_0_interrupts_sar_45_IRQn	Active	SAR1, Logical Channel #13 Interrupt
169	pass_0_interrupts_sar_46_IRQn	Active	SAR1, Logical Channel #14 Interrupt
170	pass_0_interrupts_sar_47_IRQn	Active	SAR1, Logical Channel #15 Interrupt
171	pass_0_interrupts_sar_48_IRQn	Active	SAR1, Logical Channel #16 Interrupt
172	pass_0_interrupts_sar_49_IRQn	Active	SAR1, Logical Channel #17 Interrupt
173	pass_0_interrupts_sar_50_IRQn	Active	SAR1, Logical Channel #18 Interrupt
174	pass_0_interrupts_sar_51_IRQn	Active	SAR1, Logical Channel #19 Interrupt
175	pass_0_interrupts_sar_52_IRQn	Active	SAR1, Logical Channel #20 Interrupt
176	pass_0_interrupts_sar_53_IRQn	Active	SAR1, Logical Channel #21 Interrupt
177	pass_0_interrupts_sar_54_IRQn	Active	SAR1, Logical Channel #22 Interrupt
-	<u> </u>	l .	

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
178	pass_0_interrupts_sar_55_IRQn	Active	SAR1, Logical Channel #23 Interrupt
179	pass_0_interrupts_sar_56_IRQn	Active	SAR1, Logical Channel #24 Interrupt
180	pass_0_interrupts_sar_57_IRQn	Active	SAR1, Logical Channel #25 Interrupt
181	pass_0_interrupts_sar_58_IRQn	Active	SAR1, Logical Channel #26 Interrupt
182	pass_0_interrupts_sar_59_IRQn	Active	SAR1, Logical Channel #27 Interrupt
183	pass_0_interrupts_sar_60_IRQn	Active	SAR1, Logical Channel #28 Interrupt
184	pass_0_interrupts_sar_61_IRQn	Active	SAR1, Logical Channel #29 Interrupt
185	pass_0_interrupts_sar_62_IRQn	Active	SAR1, Logical Channel #30 Interrupt
186	pass_0_interrupts_sar_63_IRQn	Active	SAR1, Logical Channel #31 Interrupt
187	pass_0_interrupts_sar_64_IRQn	Active	SAR2, Logical Channel #0 Interrupt
188	pass_0_interrupts_sar_65_IRQn	Active	SAR2, Logical Channel #1 Interrupt
189	pass_0_interrupts_sar_66_IRQn	Active	SAR2, Logical Channel #2 Interrupt
190	pass_0_interrupts_sar_67_IRQn	Active	SAR2, Logical Channel #3 Interrupt
191	pass_0_interrupts_sar_68_IRQn	Active	SAR2, Logical Channel #4 Interrupt
192	pass_0_interrupts_sar_69_IRQn	Active	SAR2, Logical Channel #5 Interrupt
193	pass_0_interrupts_sar_70_IRQn	Active	SAR2, Logical Channel #6 Interrupt
194	pass_0_interrupts_sar_71_IRQn	Active	SAR2, Logical Channel #7 Interrupt
195	pass_0_interrupts_sar_72_IRQn	Active	SAR2, Logical Channel #8 Interrupt
196	pass_0_interrupts_sar_73_IRQn	Active	SAR2, Logical Channel #9 Interrupt
197	pass_0_interrupts_sar_74_IRQn	Active	SAR2, Logical Channel #10 Interrupt
198	pass_0_interrupts_sar_75_IRQn	Active	SAR2, Logical Channel #11 Interrupt
199	pass_0_interrupts_sar_76_IRQn	Active	SAR2, Logical Channel #12 Interrupt
200	pass_0_interrupts_sar_77_IRQn	Active	SAR2, Logical Channel #13 Interrupt
201	pass_0_interrupts_sar_78_IRQn	Active	SAR2, Logical Channel #14 Interrupt
202	pass_0_interrupts_sar_79_IRQn	Active	SAR2, Logical Channel #15 Interrupt
203	pass_0_interrupts_sar_80_IRQn	Active	SAR2, Logical Channel #16 Interrupt
204	pass_0_interrupts_sar_81_IRQn	Active	SAR2, Logical Channel #17 Interrupt
205	pass_0_interrupts_sar_82_IRQn	Active	SAR2, Logical Channel #18 Interrupt
206	pass_0_interrupts_sar_83_IRQn	Active	SAR2, Logical Channel #19 Interrupt
207	pass_0_interrupts_sar_84_IRQn	Active	SAR2, Logical Channel #20 Interrupt
208	pass 0 interrupts sar 85 IROn	Active	SAR2, Logical Channel #20 Interrupt
209	pass_0_interrupts_sar_86_IRQn	Active	SAR2, Logical Channel #22 Interrupt
210	pass_0_interrupts_sar_87_IRQn	Active	SAR2, Logical Channel #23 Interrupt
211	pass_0_interrupts_sar_88_IRQn	Active	SAR2, Logical Channel #24 Interrupt
212	pass_0_interrupts_sar_89_IRQn	Active	SAR2, Logical Channel #25 Interrupt
213	pass_0_interrupts_sar_90_IRQn	Active	SAR2, Logical Channel #25 Interrupt
213	pass_0_interrupts_sar_91_IRQn	Active	SAR2, Logical Channel #20 Interrupt
215	pass_0_interrupts_sar_92_IRQn	Active	SAR2, Logical Channel #28 Interrupt
			SAR2, Logical Channel #29 Interrupt
216	pass_0_interrupts_sar_93_IRQn	Active	SAR2, Logical Channel #29 Interrupt SAR2, Logical Channel #30 Interrupt
217	pass_0_interrupts_sar_94_IRQn pass_0_interrupts_sar_95_IRQn	Active Active	SAR2, Logical Channel #30 Interrupt
218	cpuss_interrupts_dmac_0_IRQn	Active	CPUSS M-DMA0, Channel #0 Interrupt
			CPUSS M-DMAO, Channel #0 Interrupt CPUSS M-DMAO, Channel #1 Interrupt
220	cpuss_interrupts_dmac_1_IRQn cpuss_interrupts_dmac_2_IRQn	Active	CPUSS M-DMAO, Channel #1 Interrupt CPUSS M-DMAO, Channel #2 Interrupt
221	cpuss_interrupts_dmac_2_iRQn	Active	
222	chass_iiireiiahrs_aiiiac_s_ikAii	Active	CPUSS M-DMA0, Channel #3 Interrupt

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
223	cpuss_interrupts_dmac_4_IRQn	Active	CPUSS M-DMA0, Channel #4 Interrupt
224	cpuss_interrupts_dmac_5_IRQn	Active	CPUSS M-DMA0, Channel #5 Interrupt
225	cpuss_interrupts_dmac_6_IRQn	Active	CPUSS M-DMAO, Channel #6 Interrupt
226	cpuss_interrupts_dmac_7_IRQn	Active	CPUSS M-DMA0, Channel #7 Interrupt
227	cpuss_interrupts_dw0_0_IRQn	Active	CPUSS P-DMA0, Channel #0 Interrupt
228	cpuss_interrupts_dw0_1_IRQn	Active	CPUSS P-DMA0, Channel #1 Interrupt
229	cpuss_interrupts_dw0_2_IRQn	Active	CPUSS P-DMA0, Channel #2 Interrupt
230	cpuss_interrupts_dw0_3_IRQn	Active	CPUSS P-DMA0, Channel #3 Interrupt
231	cpuss_interrupts_dw0_4_IRQn	Active	CPUSS P-DMA0, Channel #4 Interrupt
232	cpuss_interrupts_dw0_5_IRQn	Active	CPUSS P-DMA0, Channel #5 Interrupt
233	cpuss_interrupts_dw0_6_IRQn	Active	CPUSS P-DMA0, Channel #6 Interrupt
234	cpuss_interrupts_dw0_7_IRQn	Active	CPUSS P-DMA0, Channel #7 Interrupt
235	cpuss_interrupts_dw0_8_IRQn	Active	CPUSS P-DMA0, Channel #8 Interrupt
236	cpuss_interrupts_dw0_9_IRQn	Active	CPUSS P-DMA0, Channel #9 Interrupt
237	cpuss_interrupts_dw0_10_IRQn	Active	CPUSS P-DMA0, Channel #10 Interrupt
238	cpuss_interrupts_dw0_11_IRQn	Active	CPUSS P-DMAO, Channel #11 Interrupt
239	cpuss_interrupts_dw0_12_IRQn	Active	CPUSS P-DMAO, Channel #12 Interrupt
240	cpuss_interrupts_dw0_13_IRQn	Active	CPUSS P-DMAO, Channel #13 Interrupt
241	cpuss_interrupts_dw0_14_IRQn	Active	CPUSS P-DMAO, Channel #14 Interrupt
242	cpuss_interrupts_dw0_15_IRQn	Active	CPUSS P-DMAO, Channel #15 Interrupt
243	cpuss_interrupts_dw0_16_IRQn	Active	CPUSS P-DMAO, Channel #16 Interrupt
243	cpuss_interrupts_dw0_16_iRQn	Active	CPUSS P-DMAO, Channel #17 Interrupt
245	cpuss_interrupts_dw0_18_IRQn	Active	CPUSS P-DMAO, Channel #18 Interrupt
			CPUSS P-DMA0, Channel #19 Interrupt
246	cpuss_interrupts_dw0_19_IRQn cpuss_interrupts_dw0_20_IRQn	Active Active	CPUSS P-DMAO, Channel #20 Interrupt
	cpuss_interrupts_dw0_21_IRQn		
248		Active	CPUSS P-DMA0, Channel #21 Interrupt
249	cpuss_interrupts_dw0_22_IRQn	Active	CPUSS P-DMA0, Channel #22 Interrupt
250	cpuss_interrupts_dw0_23_IRQn	Active	CPUSS P-DMA0, Channel #23 Interrupt CPUSS P-DMA0, Channel #24 Interrupt
251	cpuss_interrupts_dw0_24_IRQn	Active	•
252	cpuss_interrupts_dw0_25_IRQn	Active	CPUSS P-DMA0, Channel #25 Interrupt
253	cpuss_interrupts_dw0_26_IRQn	Active	CPUSS P-DMA0, Channel #26 Interrupt
254	cpuss_interrupts_dw0_27_IRQn	Active	CPUSS P-DMA0, Channel #27 Interrupt
255	cpuss_interrupts_dw0_28_IRQn	Active	CPUSS P-DMA0, Channel #28 Interrupt
256	cpuss_interrupts_dw0_29_IRQn	Active	CPUSS P-DMA0, Channel #29 Interrupt
257	cpuss_interrupts_dw0_30_IRQn	Active	CPUSS P-DMA0, Channel #30 Interrupt
258	cpuss_interrupts_dw0_31_IRQn	Active	CPUSS P-DMA0, Channel #31 Interrupt
259	cpuss_interrupts_dw0_32_IRQn	Active	CPUSS P-DMA0, Channel #32 Interrupt
260	cpuss_interrupts_dw0_33_IRQn	Active	CPUSS P-DMA0, Channel #33 Interrupt
261	cpuss_interrupts_dw0_34_IRQn	Active	CPUSS P-DMA0, Channel #34 Interrupt
262	cpuss_interrupts_dw0_35_IRQn	Active	CPUSS P-DMA0, Channel #35 Interrupt
263	cpuss_interrupts_dw0_36_IRQn	Active	CPUSS P-DMA0, Channel #36 Interrupt
264	cpuss_interrupts_dw0_37_IRQn	Active	CPUSS P-DMA0, Channel #37 Interrupt
265	cpuss_interrupts_dw0_38_IRQn	Active	CPUSS P-DMA0, Channel #38 Interrupt
266	cpuss_interrupts_dw0_39_IRQn	Active	CPUSS P-DMA0, Channel #39 Interrupt
267	cpuss_interrupts_dw0_40_IRQn	Active	CPUSS P-DMA0, Channel #40 Interrupt

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
268	cpuss_interrupts_dw0_41_IRQn	Active	CPUSS P-DMA0, Channel #41 Interrupt
269	cpuss_interrupts_dw0_42_IRQn	Active	CPUSS P-DMA0, Channel #42 Interrupt
270	cpuss_interrupts_dw0_43_IRQn	Active	CPUSS P-DMA0, Channel #43 Interrupt
271	cpuss_interrupts_dw0_44_IRQn	Active	CPUSS P-DMA0, Channel #44 Interrupt
272	cpuss_interrupts_dw0_45_IRQn	Active	CPUSS P-DMA0, Channel #45 Interrupt
273	cpuss_interrupts_dw0_46_IRQn	Active	CPUSS P-DMA0, Channel #46 Interrupt
274	cpuss_interrupts_dw0_47_IRQn	Active	CPUSS P-DMA0, Channel #47 Interrupt
275	cpuss_interrupts_dw0_48_IRQn	Active	CPUSS P-DMA0, Channel #48 Interrupt
276	cpuss_interrupts_dw0_49_IRQn	Active	CPUSS P-DMA0, Channel #49 Interrupt
277	cpuss_interrupts_dw0_50_IRQn	Active	CPUSS P-DMA0, Channel #50 Interrupt
278	cpuss_interrupts_dw0_51_IRQn	Active	CPUSS P-DMA0, Channel #51 Interrupt
279	cpuss_interrupts_dw0_52_IRQn	Active	CPUSS P-DMA0, Channel #52 Interrupt
280	cpuss_interrupts_dw0_53_IRQn	Active	CPUSS P-DMA0, Channel #53 Interrupt
281	cpuss_interrupts_dw0_54_IRQn	Active	CPUSS P-DMA0, Channel #54 Interrupt
282	cpuss_interrupts_dw0_55_IRQn	Active	CPUSS P-DMA0, Channel #55 Interrupt
283	cpuss_interrupts_dw0_56_IRQn	Active	CPUSS P-DMA0, Channel #56 Interrupt
284	cpuss_interrupts_dw0_57_IRQn	Active	CPUSS P-DMA0, Channel #57 Interrupt
285	cpuss_interrupts_dw0_58_IRQn	Active	CPUSS P-DMA0, Channel #58 Interrupt
286	cpuss_interrupts_dw0_59_IRQn	Active	CPUSS P-DMA0, Channel #59 Interrupt
287	cpuss_interrupts_dw0_60_IRQn	Active	CPUSS P-DMA0, Channel #60 Interrupt
288	cpuss_interrupts_dw0_61_IRQn	Active	CPUSS P-DMA0, Channel #61 Interrupt
289	cpuss_interrupts_dw0_62_IRQn	Active	CPUSS P-DMA0, Channel #62 Interrupt
290	cpuss_interrupts_dw0_63_IRQn	Active	CPUSS P-DMA0, Channel #63 Interrupt
291	cpuss_interrupts_dw0_64_IRQn	Active	CPUSS P-DMA0, Channel #64 Interrupt
292	cpuss_interrupts_dw0_65_IRQn	Active	CPUSS P-DMA0, Channel #65 Interrupt
293	cpuss_interrupts_dw0_66_IRQn	Active	CPUSS P-DMA0, Channel #66 Interrupt
294	cpuss_interrupts_dw0_67_IRQn	Active	CPUSS P-DMA0, Channel #67 Interrupt
295	cpuss_interrupts_dw0_68_IRQn	Active	CPUSS P-DMA0, Channel #68 Interrupt
296	cpuss_interrupts_dw0_69_IRQn	Active	CPUSS P-DMA0, Channel #69 Interrupt
297	cpuss_interrupts_dw0_70_IRQn	Active	CPUSS P-DMA0, Channel #70 Interrupt
298	cpuss interrupts dw0 71 IROn	Active	CPUSS P-DMA0, Channel #71 Interrupt
299	cpuss_interrupts_dw0_72_IRQn	Active	CPUSS P-DMA0, Channel #72 Interrupt
300	cpuss_interrupts_dw0_73_IRQn	Active	CPUSS P-DMA0, Channel #73 Interrupt
301	cpuss_interrupts_dw0_74_IRQn	Active	CPUSS P-DMA0, Channel #74 Interrupt
302	cpuss_interrupts_dw0_75_IRQn	Active	CPUSS P-DMA0, Channel #75 Interrupt
303	cpuss_interrupts_dw0_76_IRQn	Active	CPUSS P-DMA0, Channel #76 Interrupt
304	cpuss_interrupts_dw0_77_IRQn	Active	CPUSS P-DMA0, Channel #77 Interrupt
305	cpuss_interrupts_dw0_78_IRQn	Active	CPUSS P-DMA0, Channel #78 Interrupt
306	cpuss_interrupts_dw0_79_IRQn	Active	CPUSS P-DMA0, Channel #79 Interrupt
307	cpuss_interrupts_dw0_80_IRQn	Active	CPUSS P-DMA0, Channel #80 Interrupt
308	cpuss_interrupts_dw0_81_IRQn	Active	CPUSS P-DMA0, Channel #81 Interrupt
309	cpuss_interrupts_dw0_82_IRQn	Active	CPUSS P-DMA0, Channel #82 Interrupt
310	cpuss_interrupts_dw0_83_IRQn	Active	CPUSS P-DMA0, Channel #83 Interrupt
311	cpuss_interrupts_dw0_84_IRQn	Active	CPUSS P-DMA0, Channel #84 Interrupt
312	cpuss_interrupts_dw0_85_IRQn	Active	CPUSS P-DMA0, Channel #85 Interrupt
-	1	l .	' '

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
313	cpuss_interrupts_dw0_86_IRQn	Active	CPUSS P-DMA0, Channel #86 Interrupt
314	cpuss_interrupts_dw0_87_IRQn	Active	CPUSS P-DMA0, Channel #87 Interrupt
315	cpuss_interrupts_dw0_88_IRQn	Active	CPUSS P-DMA0, Channel #88 Interrupt
316	cpuss_interrupts_dw0_89_IRQn	Active	CPUSS P-DMA0, Channel #89 Interrupt
317	cpuss_interrupts_dw0_90_IRQn	Active	CPUSS P-DMA0, Channel #90 Interrupt
318	cpuss_interrupts_dw0_91_IRQn	Active	CPUSS P-DMAO, Channel #91 Interrupt
319	cpuss_interrupts_dw0_92_IRQn	Active	CPUSS P-DMA0, Channel #92 Interrupt
320	cpuss_interrupts_dw0_93_IRQn	Active	CPUSS P-DMAO, Channel #93 Interrupt
321	cpuss_interrupts_dw0_94_IRQn	Active	CPUSS P-DMA0, Channel #94 Interrupt
322	cpuss_interrupts_dw0_95_IRQn	Active	CPUSS P-DMA0, Channel #95 Interrupt
323	cpuss_interrupts_dw0_96_IRQn	Active	CPUSS P-DMA0, Channel #96 Interrupt
324	cpuss_interrupts_dw0_97_IRQn	Active	CPUSS P-DMA0, Channel #97 Interrupt
325	cpuss_interrupts_dw0_98_IRQn	Active	CPUSS P-DMA0, Channel #98 Interrupt
326	cpuss_interrupts_dw0_99_IRQn	Active	CPUSS P-DMA0, Channel #99 Interrupt
327	cpuss_interrupts_dw0_100_IRQn	Active	CPUSS P-DMA0, Channel #100 Interrupt
328	cpuss_interrupts_dw0_101_IRQn	Active	CPUSS P-DMA0, Channel #101 Interrupt
329	cpuss_interrupts_dw0_102_IRQn	Active	CPUSS P-DMA0, Channel #102 Interrupt
330	cpuss_interrupts_dw0_103_IRQn	Active	CPUSS P-DMA0, Channel #103 Interrupt
331	cpuss_interrupts_dw0_104_IRQn	Active	CPUSS P-DMA0, Channel #104 Interrupt
332	cpuss_interrupts_dw0_105_IRQn	Active	CPUSS P-DMA0, Channel #105 Interrupt
333	cpuss_interrupts_dw0_106_IRQn	Active	CPUSS P-DMA0, Channel #106 Interrupt
334	cpuss_interrupts_dw0_107_IRQn	Active	CPUSS P-DMA0, Channel #107 Interrupt
335	cpuss_interrupts_dw0_108_IRQn	Active	CPUSS P-DMA0, Channel #108 Interrupt
336	cpuss_interrupts_dw0_109_IRQn	Active	CPUSS P-DMA0, Channel #109 Interrupt
337	cpuss_interrupts_dw0_110_IRQn	Active	CPUSS P-DMA0, Channel #110 Interrupt
338	cpuss_interrupts_dw0_111_IRQn	Active	CPUSS P-DMA0, Channel #111 Interrupt
339	cpuss_interrupts_dw0_112_IRQn	Active	CPUSS P-DMA0, Channel #112 Interrupt
340	cpuss_interrupts_dw0_113_IRQn	Active	CPUSS P-DMA0, Channel #113 Interrupt
341	cpuss_interrupts_dw0_114_IRQn	Active	CPUSS P-DMA0, Channel #114 Interrupt
342	cpuss_interrupts_dw0_115_IRQn	Active	CPUSS P-DMA0, Channel #115 Interrupt
343	cpuss interrupts dw0 116 IROn	Active	CPUSS P-DMA0, Channel #116 Interrupt
344	cpuss_interrupts_dw0_117_IRQn	Active	CPUSS P-DMA0, Channel #117 Interrupt
345	cpuss_interrupts_dw0_118_IRQn	Active	CPUSS P-DMA0, Channel #118 Interrupt
346	cpuss_interrupts_dw0_119_IRQn	Active	CPUSS P-DMA0, Channel #119 Interrupt
347	cpuss_interrupts_dw0_120_IRQn	Active	CPUSS P-DMA0, Channel #120 Interrupt
348	cpuss_interrupts_dw0_121_IRQn	Active	CPUSS P-DMA0, Channel #121 Interrupt
349	cpuss_interrupts_dw0_122_IRQn	Active	CPUSS P-DMA0, Channel #122 Interrupt
350	cpuss_interrupts_dw0_123_IRQn	Active	CPUSS P-DMA0, Channel #123 Interrupt
351	cpuss_interrupts_dw0_124_IRQn	Active	CPUSS P-DMA0, Channel #124 Interrupt
352	cpuss_interrupts_dw0_125_IRQn	Active	CPUSS P-DMA0, Channel #125 Interrupt
353	cpuss_interrupts_dw0_126_IRQn	Active	CPUSS P-DMA0, Channel #126 Interrupt
354	cpuss_interrupts_dw0_127_IRQn	Active	CPUSS P-DMA0, Channel #127 Interrupt
355	cpuss_interrupts_dw0_128_IRQn	Active	CPUSS P-DMA0, Channel #128 Interrupt
356	cpuss_interrupts_dw0_129_IRQn	Active	CPUSS P-DMA0, Channel #129 Interrupt
357	cpuss_interrupts_dw0_130_IRQn	Active	CPUSS P-DMA0, Channel #130 Interrupt
	1 - 1 11 11 11 11 11 11	1	.,

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
358	cpuss_interrupts_dw0_131_IRQn	Active	CPUSS P-DMA0, Channel #131 Interrupt
359	cpuss_interrupts_dw0_132_IRQn	Active	CPUSS P-DMA0, Channel #132 Interrupt
360	cpuss_interrupts_dw0_133_IRQn	Active	CPUSS P-DMA0, Channel #133 Interrupt
361	cpuss_interrupts_dw0_134_IRQn	Active	CPUSS P-DMA0, Channel #134 Interrupt
362	cpuss_interrupts_dw0_135_IRQn	Active	CPUSS P-DMA0, Channel #135 Interrupt
363	cpuss_interrupts_dw0_136_IRQn	Active	CPUSS P-DMA0, Channel #136 Interrupt
364	cpuss_interrupts_dw0_137_IRQn	Active	CPUSS P-DMA0, Channel #137 Interrupt
365	cpuss_interrupts_dw0_138_IRQn	Active	CPUSS P-DMA0, Channel #138 Interrupt
366	cpuss_interrupts_dw0_139_IRQn	Active	CPUSS P-DMA0, Channel #139 Interrupt
367	cpuss_interrupts_dw0_140_IRQn	Active	CPUSS P-DMA0, Channel #140 Interrupt
368	cpuss_interrupts_dw0_141_IRQn	Active	CPUSS P-DMA0, Channel #141 Interrupt
369	cpuss_interrupts_dw0_142_IRQn	Active	CPUSS P-DMA0, Channel #142 Interrupt
370	cpuss_interrupts_dw1_0_IRQn	Active	CPUSS P-DMA1, Channel #0 Interrupt
371	cpuss_interrupts_dw1_1_IRQn	Active	CPUSS P-DMA1, Channel #1 Interrupt
372	cpuss_interrupts_dw1_2_IRQn	Active	CPUSS P-DMA1, Channel #2 Interrupt
373	cpuss_interrupts_dw1_3_IRQn	Active	CPUSS P-DMA1, Channel #3 Interrupt
374	cpuss_interrupts_dw1_4_IRQn	Active	CPUSS P-DMA1, Channel #4 Interrupt
375	cpuss_interrupts_dw1_5_IRQn	Active	CPUSS P-DMA1, Channel #5 Interrupt
376	cpuss_interrupts_dw1_6_IRQn	Active	CPUSS P-DMA1, Channel #6 Interrupt
377	cpuss_interrupts_dw1_7_IRQn	Active	CPUSS P-DMA1, Channel #7 Interrupt
378	cpuss_interrupts_dw1_8_IRQn	Active	CPUSS P-DMA1, Channel #8 Interrupt
379	cpuss_interrupts_dw1_9_IRQn	Active	CPUSS P-DMA1, Channel #9 Interrupt
380	cpuss_interrupts_dw1_10_IRQn	Active	CPUSS P-DMA1, Channel #10 Interrupt
381	cpuss_interrupts_dw1_11_IRQn	Active	CPUSS P-DMA1, Channel #11 Interrupt
382	cpuss_interrupts_dw1_12_IRQn	Active	CPUSS P-DMA1, Channel #12 Interrupt
383	cpuss_interrupts_dw1_13_IRQn	Active	CPUSS P-DMA1, Channel #13 Interrupt
384	cpuss_interrupts_dw1_14_IRQn	Active	CPUSS P-DMA1, Channel #14 Interrupt
385	cpuss_interrupts_dw1_14_iRQn	Active	CPUSS P-DMA1, Channel #15 Interrupt
386	cpuss_interrupts_dw1_16_IRQn	Active	CPUSS P-DMA1, Channel #16 Interrupt
387	cpuss_interrupts_dw1_17_IRQn		CPUSS P-DMA1, Channel #17 Interrupt
388	cpuss_interrupts_dw1_17_iRQn	Active Active	CPUSS P-DMA1, Channel #17 Interrupt CPUSS P-DMA1, Channel #18 Interrupt
	1 - 1		CPUSS P-DMA1, Channel #19 Interrupt
389	cpuss_interrupts_dw1_19_IRQn	Active	
390	cpuss_interrupts_dw1_20_IRQn cpuss_interrupts_dw1_21_IRQn	Active	CPUSS P-DMA1, Channel #20 Interrupt
391	, - ,	Active	CPUSS P-DMA1, Channel #21 Interrupt
392	cpuss_interrupts_dw1_22_IRQn	Active	CPUSS P-DMA1, Channel #22 Interrupt
393	cpuss_interrupts_dw1_23_IRQn cpuss_interrupts_dw1_24_IRQn	Active	CPUSS P-DMA1, Channel #23 Interrupt CPUSS P-DMA1, Channel #24 Interrupt
394	· · · · · · · · · · · · · · · · · · ·	Active	
395	cpuss_interrupts_dw1_25_IRQn	Active	CPUSS P-DMA1, Channel #25 Interrupt
396	cpuss_interrupts_dw1_26_IRQn	Active	CPUSS P-DMA1, Channel #26 Interrupt
397	cpuss_interrupts_dw1_27_IRQn	Active	CPUSS P-DMA1, Channel #27 Interrupt
398	cpuss_interrupts_dw1_28_IRQn	Active	CPUSS P-DMA1, Channel #28 Interrupt
399	cpuss_interrupts_dw1_29_IRQn	Active	CPUSS P-DMA1, Channel #29 Interrupt
400	cpuss_interrupts_dw1_30_IRQn	Active	CPUSS P-DMA1, Channel #30 Interrupt
401	cpuss_interrupts_dw1_31_IRQn	Active	CPUSS P-DMA1, Channel #31 Interrupt
402	cpuss_interrupts_dw1_32_IRQn	Active	CPUSS P-DMA1, Channel #32 Interrupt

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
403	cpuss_interrupts_dw1_33_IRQn	Active	CPUSS P-DMA1, Channel #33 Interrupt
404	cpuss_interrupts_dw1_34_IRQn	Active	CPUSS P-DMA1, Channel #34 Interrupt
405	cpuss_interrupts_dw1_35_IRQn	Active	CPUSS P-DMA1, Channel #35 Interrupt
406	cpuss_interrupts_dw1_36_IRQn	Active	CPUSS P-DMA1, Channel #36 Interrupt
407	cpuss_interrupts_dw1_37_IRQn	Active	CPUSS P-DMA1, Channel #37 Interrupt
408	cpuss_interrupts_dw1_38_IRQn	Active	CPUSS P-DMA1, Channel #38 Interrupt
409	cpuss_interrupts_dw1_39_IRQn	Active	CPUSS P-DMA1, Channel #39 Interrupt
410	cpuss_interrupts_dw1_40_IRQn	Active	CPUSS P-DMA1, Channel #40 Interrupt
411	cpuss_interrupts_dw1_41_IRQn	Active	CPUSS P-DMA1, Channel #41 Interrupt
412	cpuss_interrupts_dw1_42_IRQn	Active	CPUSS P-DMA1, Channel #42 Interrupt
413	cpuss_interrupts_dw1_43_IRQn	Active	CPUSS P-DMA1, Channel #43 Interrupt
414	cpuss_interrupts_dw1_44_IRQn	Active	CPUSS P-DMA1, Channel #44 Interrupt
415	cpuss_interrupts_dw1_45_IRQn	Active	CPUSS P-DMA1, Channel #45 Interrupt
416	cpuss_interrupts_dw1_46_IRQn	Active	CPUSS P-DMA1, Channel #46 Interrupt
417	cpuss_interrupts_dw1_47_IRQn	Active	CPUSS P-DMA1, Channel #47 Interrupt
418	cpuss_interrupts_dw1_48_IRQn	Active	CPUSS P-DMA1, Channel #48 Interrupt
419	cpuss_interrupts_dw1_49_IRQn	Active	CPUSS P-DMA1, Channel #49 Interrupt
420	cpuss_interrupts_dw1_50_IRQn	Active	CPUSS P-DMA1, Channel #50 Interrupt
421	cpuss_interrupts_dw1_51_IRQn	Active	CPUSS P-DMA1, Channel #51 Interrupt
422	cpuss_interrupts_dw1_52_IRQn	Active	CPUSS P-DMA1, Channel #52 Interrupt
423	cpuss_interrupts_dw1_53_IRQn	Active	CPUSS P-DMA1, Channel #53 Interrupt
424	cpuss_interrupts_dw1_54_IRQn	Active	CPUSS P-DMA1, Channel #54 Interrupt
425	cpuss_interrupts_dw1_55_IRQn	Active	CPUSS P-DMA1, Channel #55 Interrupt
426	cpuss_interrupts_dw1_56_IRQn	Active	CPUSS P-DMA1, Channel #56 Interrupt
427	cpuss_interrupts_dw1_57_IRQn	Active	CPUSS P-DMA1, Channel #57 Interrupt
428	cpuss_interrupts_dw1_58_IRQn	Active	CPUSS P-DMA1, Channel #58 Interrupt
429	cpuss_interrupts_dw1_59_IRQn	Active	CPUSS P-DMA1, Channel #59 Interrupt
430	cpuss_interrupts_dw1_60_IRQn	Active	CPUSS P-DMA1, Channel #60 Interrupt
431	cpuss_interrupts_dw1_61_IRQn	Active	CPUSS P-DMA1, Channel #61 Interrupt
432	cpuss_interrupts_dw1_62_IRQn	Active	CPUSS P-DMA1, Channel #62 Interrupt
433	cpuss_interrupts_dw1_63_IRQn	Active	CPUSS P-DMA1, Channel #63 Interrupt
434	cpuss_interrupts_dw1_64_IRQn	Active	CPUSS P-DMA1, Channel #64 Interrupt
435	tcpwm_1_interrupts_0_IRQn	Active	TCPWM1 Group #0, Counter #0 Interrupt
436	tcpwm_1_interrupts_1_IRQn	Active	TCPWM1 Group #0, Counter #1 Interrupt
437	tcpwm_1_interrupts_2_IRQn	Active	TCPWM1 Group #0, Counter #2 Interrupt
438	tcpwm_1_interrupts_3_IRQn	Active	TCPWM1 Group #0, Counter #3 Interrupt
439	tcpwm_1_interrupts_4_IRQn	Active	TCPWM1 Group #0, Counter #4 Interrupt
440	tcpwm_1_interrupts_5_IRQn	Active	TCPWM1 Group #0, Counter #5 Interrupt
441	tcpwm_1_interrupts_6_IRQn	Active	TCPWM1 Group #0, Counter #6 Interrupt
442	tcpwm_1_interrupts_7_IRQn	Active	TCPWM1 Group #0, Counter #7 Interrupt
443	tcpwm_1_interrupts_8_IRQn	Active	TCPWM1 Group #0, Counter #8 Interrupt
444	tcpwm_1_interrupts_9_IRQn	Active	TCPWM1 Group #0, Counter #9 Interrupt
445	tcpwm_1_interrupts_10_IRQn	Active	TCPWM1 Group #0, Counter #10 Interrupt
446	tcpwm_1_interrupts_11_IRQn	Active	TCPWM1 Group #0, Counter #11 Interrupt
447	tcpwm_1_interrupts_12_IRQn	Active	TCPWM1 Group #0, Counter #12 Interrupt
-	1	1	<u> </u>

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
448	tcpwm_1_interrupts_13_IRQn	Active	TCPWM1 Group #0, Counter #13 Interrupt
449	tcpwm_1_interrupts_14_IRQn	Active	TCPWM1 Group #0, Counter #14 Interrupt
450	tcpwm_1_interrupts_15_IRQn	Active	TCPWM1 Group #0, Counter #15 Interrupt
451	tcpwm_1_interrupts_16_IRQn	Active	TCPWM1 Group #0, Counter #16 Interrupt
452	tcpwm_1_interrupts_17_IRQn	Active	TCPWM1 Group #0, Counter #17 Interrupt
453	tcpwm_1_interrupts_18_IRQn	Active	TCPWM1 Group #0, Counter #18 Interrupt
454	tcpwm_1_interrupts_19_IRQn	Active	TCPWM1 Group #0, Counter #19 Interrupt
455	tcpwm_1_interrupts_20_IRQn	Active	TCPWM1 Group #0, Counter #20 Interrupt
456	tcpwm_1_interrupts_21_IRQn	Active	TCPWM1 Group #0, Counter #21 Interrupt
457	tcpwm_1_interrupts_22_IRQn	Active	TCPWM1 Group #0, Counter #22 Interrupt
458	tcpwm_1_interrupts_23_IRQn	Active	TCPWM1 Group #0, Counter #23 Interrupt
459	tcpwm_1_interrupts_24_IRQn	Active	TCPWM1 Group #0, Counter #24 Interrupt
460	tcpwm_1_interrupts_25_IRQn	Active	TCPWM1 Group #0, Counter #25 Interrupt
461	tcpwm_1_interrupts_26_IRQn	Active	TCPWM1 Group #0, Counter #26 Interrupt
462	tcpwm_1_interrupts_27_IRQn	Active	TCPWM1 Group #0, Counter #27 Interrupt
463	tcpwm_1_interrupts_28_IRQn	Active	TCPWM1 Group #0, Counter #28 Interrupt
464	tcpwm_1_interrupts_29_IRQn	Active	TCPWM1 Group #0, Counter #29 Interrupt
465	tcpwm_1_interrupts_30_IRQn	Active	TCPWM1 Group #0, Counter #30 Interrupt
466	tcpwm_1_interrupts_31_IRQn	Active	TCPWM1 Group #0, Counter #31 Interrupt
467	tcpwm_1_interrupts_32_IRQn	Active	TCPWM1 Group #0, Counter #32 Interrupt
468	tcpwm_1_interrupts_33_IRQn	Active	TCPWM1 Group #0, Counter #33 Interrupt
469	tcpwm_1_interrupts_34_IRQn	Active	TCPWM1 Group #0, Counter #34 Interrupt
470	tcpwm_1_interrupts_35_IRQn	Active	TCPWM1 Group #0, Counter #35 Interrupt
471	tcpwm_1_interrupts_36_IRQn	Active	TCPWM1 Group #0, Counter #36 Interrupt
472	tcpwm_1_interrupts_37_IRQn	Active	TCPWM1 Group #0, Counter #37 Interrupt
473	tcpwm_1_interrupts_38_IRQn	Active	TCPWM1 Group #0, Counter #38 Interrupt
474	tcpwm_1_interrupts_39_IRQn	Active	TCPWM1 Group #0, Counter #39 Interrupt
475	tcpwm_1_interrupts_40_IRQn	Active	TCPWM1 Group #0, Counter #40 Interrupt
476	tcpwm_1_interrupts_41_IRQn	Active	TCPWM1 Group #0, Counter #41 Interrupt
477	tcpwm_1_interrupts_42_IRQn	Active	TCPWM1 Group #0, Counter #42 Interrupt
478	tcpwm_1_interrupts_43_IRQn	Active	TCPWM1 Group #0, Counter #43 Interrupt
479	tcpwm_1_interrupts_44_IRQn	Active	TCPWM1 Group #0, Counter #44 Interrupt
480	tcpwm_1_interrupts_45_IRQn	Active	TCPWM1 Group #0, Counter #45 Interrupt
481	tcpwm_1_interrupts_46_IRQn	Active	TCPWM1 Group #0, Counter #46 Interrupt
482	tcpwm_1_interrupts_47_IRQn	Active	TCPWM1 Group #0, Counter #47 Interrupt
483	tcpwm_1_interrupts_48_IRQn	Active	TCPWM1 Group #0, Counter #48 Interrupt
484	tcpwm_1_interrupts_49_IRQn	Active	TCPWM1 Group #0, Counter #49 Interrupt
485	tcpwm_1_interrupts_50_IRQn	Active	TCPWM1 Group #0, Counter #50 Interrupt
486	tcpwm_1_interrupts_51_IRQn	Active	TCPWM1 Group #0, Counter #51 Interrupt
487	tcpwm_1_interrupts_52_IRQn	Active	TCPWM1 Group #0, Counter #52 Interrupt
488	tcpwm_1_interrupts_53_IRQn	Active	TCPWM1 Group #0, Counter #53 Interrupt
489	tcpwm_1_interrupts_54_IRQn	Active	TCPWM1 Group #0, Counter #54 Interrupt
490	tcpwm_1_interrupts_55_IRQn	Active	TCPWM1 Group #0, Counter #55 Interrupt
491	tcpwm_1_interrupts_56_IRQn	Active	TCPWM1 Group #0, Counter #56 Interrupt
492	tcpwm_1_interrupts_57_IRQn	Active	TCPWM1 Group #0, Counter #57 Interrupt

Based on Arm® Cortex®-M7 dual

Peripheral interrupt assignments and wake-up sources (continued) **Table 15-1**

Interrupt	Source	Power Mode	Description
493	tcpwm_1_interrupts_58_IRQn	Active	TCPWM1 Group #0, Counter #58 Interrupt
494	tcpwm_1_interrupts_59_IRQn	Active	TCPWM1 Group #0, Counter #59 Interrupt
495	tcpwm_1_interrupts_60_IRQn	Active	TCPWM1 Group #0, Counter #60 Interrupt
496	tcpwm_1_interrupts_61_IRQn	Active	TCPWM1 Group #0, Counter #61 Interrupt
497	tcpwm_1_interrupts_62_IRQn	Active	TCPWM1 Group #0, Counter #62 Interrupt
498	tcpwm_1_interrupts_63_IRQn	Active	TCPWM1 Group #0, Counter #63 Interrupt
499	tcpwm_1_interrupts_64_IRQn	Active	TCPWM1 Group #0, Counter #64 Interrupt
500	tcpwm_1_interrupts_65_IRQn	Active	TCPWM1 Group #0, Counter #65 Interrupt
501	tcpwm_1_interrupts_66_IRQn	Active	TCPWM1 Group #0, Counter #66 Interrupt
502	tcpwm_1_interrupts_67_IRQn	Active	TCPWM1 Group #0, Counter #67 Interrupt
503	tcpwm_1_interrupts_68_IRQn	Active	TCPWM1 Group #0, Counter #68 Interrupt
504	tcpwm_1_interrupts_69_IRQn	Active	TCPWM1 Group #0, Counter #69 Interrupt
505	tcpwm_1_interrupts_70_IRQn	Active	TCPWM1 Group #0, Counter #70 Interrupt
506	tcpwm_1_interrupts_71_IRQn	Active	TCPWM1 Group #0, Counter #71 Interrupt
507	tcpwm_1_interrupts_72_IRQn	Active	TCPWM1 Group #0, Counter #72 Interrupt
508	tcpwm_1_interrupts_73_IRQn	Active	TCPWM1 Group #0, Counter #73 Interrupt
509	tcpwm_1_interrupts_74_IRQn	Active	TCPWM1 Group #0, Counter #74 Interrupt
510	tcpwm_1_interrupts_75_IRQn	Active	TCPWM1 Group #0, Counter #75 Interrupt
511	tcpwm_1_interrupts_76_IRQn	Active	TCPWM1 Group #0, Counter #76 Interrupt
512	tcpwm_1_interrupts_77_IRQn	Active	TCPWM1 Group #0, Counter #77 Interrupt
513	tcpwm_1_interrupts_78_IRQn	Active	TCPWM1 Group #0, Counter #78 Interrupt
514	tcpwm_1_interrupts_79_IRQn	Active	TCPWM1 Group #0, Counter #79 Interrupt
515	tcpwm_1_interrupts_80_IRQn	Active	TCPWM1 Group #0, Counter #80 Interrupt
516	tcpwm_1_interrupts_81_IRQn	Active	TCPWM1 Group #0, Counter #81 Interrupt
517	tcpwm_1_interrupts_82_IRQn	Active	TCPWM1 Group #0, Counter #82 Interrupt
518	tcpwm_1_interrupts_83_IRQn	Active	TCPWM1 Group #0, Counter #83 Interrupt
519	tcpwm_0_interrupts_0_IRQn	Active	TCPWM0 Group #0, Counter #0 Interrupt
520	tcpwm_0_interrupts_1_IRQn	Active	TCPWM0 Group #0, Counter #1 Interrupt
521	tcpwm_0_interrupts_2_IRQn	Active	TCPWM0 Group #0, Counter #2 Interrupt
522	tcpwm_1_interrupts_256_IRQn	Active	TCPWM1 Group #1, Counter #0 Interrupt
523	tcpwm_1_interrupts_257_IRQn	Active	TCPWM1 Group #1, Counter #1 Interrupt
524	tcpwm_1_interrupts_258_IRQn	Active	TCPWM1 Group #1, Counter #2 Interrupt
525	tcpwm_1_interrupts_259_IRQn	Active	TCPWM1 Group #1, Counter #3 Interrupt
526	tcpwm_1_interrupts_260_IRQn	Active	TCPWM1 Group #1, Counter #4 Interrupt
527	tcpwm_1_interrupts_261_IRQn	Active	TCPWM1 Group #1, Counter #5 Interrupt
528	tcpwm_1_interrupts_262_IRQn	Active	TCPWM1 Group #1, Counter #6 Interrupt
529	tcpwm_1_interrupts_263_IRQn	Active	TCPWM1 Group #1, Counter #7 Interrupt
530	tcpwm_1_interrupts_264_IRQn	Active	TCPWM1 Group #1, Counter #7 Interrupt
531	tcpwm_1_interrupts_265_IRQn	Active	TCPWM1 Group #1, Counter #9 Interrupt
532	tcpwm_1_interrupts_266_IRQn	Active	TCPWM1 Group #1, Counter #10 Interrupt
533	tcpwm_1_interrupts_267_IRQn	Active	TCPWM1 Group #1, Counter #11 Interrupt
534	tcpwm_0_interrupts_256_IRQn	Active	TCPWM0 Group #1, Counter #0 Interrupt
535	tcpwm_0_interrupts_257_IRQn	Active	TCPWM0 Group #1, Counter #1 Interrupt
536	tcpwm_0_interrupts_257_inQn	Active	TCPWM0 Group #1, Counter #2 Interrupt
537	tcpwm_1_interrupts_512_IRQn	Active	TCPWM1 Group #2, Counter #0 Interrupt
JJ1	cep.viii_1_ii.ceiiupto_o12_ii.Qii	Active	1.5. That Group #2, Counter #0 interrupt

Based on Arm® Cortex®-M7 dual

Table 15-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power Mode	Description
538	tcpwm_1_interrupts_513_IRQn	Active	TCPWM1 Group #2, Counter #1 Interrupt
539	tcpwm_1_interrupts_514_IRQn	Active	TCPWM1 Group #2, Counter #2 Interrupt
540	tcpwm_1_interrupts_515_IRQn	Active	TCPWM1 Group #2, Counter #3 Interrupt
541	tcpwm_1_interrupts_516_IRQn	Active	TCPWM1 Group #2, Counter #4 Interrupt
542	tcpwm_1_interrupts_517_IRQn	Active	TCPWM1 Group #2, Counter #5 Interrupt
543	tcpwm_1_interrupts_518_IRQn	Active	TCPWM1 Group #2, Counter #6 Interrupt
544	tcpwm_1_interrupts_519_IRQn	Active	TCPWM1 Group #2, Counter #7 Interrupt
545	tcpwm_1_interrupts_520_IRQn	Active	TCPWM1 Group #2, Counter #8 Interrupt
546	tcpwm_1_interrupts_521_IRQn	Active	TCPWM1 Group #2, Counter #9 Interrupt
547	tcpwm_1_interrupts_522_IRQn	Active	TCPWM1 Group #2, Counter #10 Interrupt
548	tcpwm_1_interrupts_523_IRQn	Active	TCPWM1 Group #2, Counter #11 Interrupt
549	tcpwm_1_interrupts_524_IRQn	Active	TCPWM1 Group #2, Counter #12 Interrupt
550	tcpwm_0_interrupts_512_IRQn	Active	TCPWM0 Group #2, Counter #0 Interrupt
551	tcpwm_0_interrupts_513_IRQn	Active	TCPWM0 Group #2, Counter #1 Interrupt
552	tcpwm_0_interrupts_514_IRQn	Active	TCPWM0 Group #2, Counter #2 Interrupt
553	flexray_0_interrupt0_IRQn	Active	FlexRay0 interrupt #0
554	flexray_0_interrupt1_IRQn	Active	FlexRay0 interrupt #1
555	smif_0_interrupt_IRQn	Active	SMIF0 (QSPI) interrupt
556	eth_0_interrupt_eth_IRQn	Active	Ethernet0 interrupt
557	eth_0_interrupt_eth_q2_IRQn	Active	Ethernet0 interrupt for dma_priority_queue2
558	eth_0_interrupt_eth_q1_IRQn	Active	Ethernet0 interrupt for dma_priority_queue1
559	eth_1_interrupt_eth_IRQn	Active	Ethernet1 interrupt
560	eth_1_interrupt_eth_q2_IRQn	Active	Ethernet1 interrupt for dma_priority_queue2
561	eth_1_interrupt_eth_q1_IRQn	Active	Ethernet1 interrupt for dma_priority_queue1
562	sdhc_0_interrupt_general_IRQn	Active	SDHC0 general interrupt
563	sdhc_0_interrupt_wakeup_IRQn	Active	SDHC0 wakeup interrupt
564	audioss_0_interrupt_i2s_IRQn	Active	AUDIOSS I ² S0 interrupt
565	audioss_1_interrupt_i2s_IRQn	Active	AUDIOSS I ² S1 interrupt
566	audioss_2_interrupt_i2s_IRQn	Active	AUDIOSS I ² S2 interrupt

Based on Arm® Cortex®-M7 dual

Core interrupt types

Core interrupt types 16

Core interrupt types Table 16-1

Interrupt	Source	Power Mode	Description
0	CPUIntIdx0_IRQn ^[29]	DeepSleep	CPU User Interrupt #0
1	CPUIntIdx1_IRQn ^[29]	DeepSleep	CPU User Interrupt #1
2	CPUIntIdx2_IRQn	DeepSleep	CPU User Interrupt #2
3	CPUIntIdx3_IRQn	DeepSleep	CPU User Interrupt #3
4	CPUIntIdx4_IRQn	DeepSleep	CPU User Interrupt #4
5	CPUIntIdx5_IRQn	DeepSleep	CPU User Interrupt #5
6	CPUIntIdx6_IRQn	DeepSleep	CPU User Interrupt #6
7	CPUIntIdx7_IRQn	DeepSleep	CPU User Interrupt #7
8	Internal0_IRQn	Active	Internal Software Interrupt #0
9	Internal1_IRQn	Active	Internal Software Interrupt #1
10	Internal2_IRQn	Active	Internal Software Interrupt #2
11	Internal3_IRQn	Active	Internal Software Interrupt #3
12	Internal4_IRQn	Active	Internal Software Interrupt #4
13	Internal5_IRQn	Active	Internal Software Interrupt #5
14	Internal6_IRQn	Active	Internal Software Interrupt #6
15	Internal7_IRQn	Active	Internal Software Interrupt #7

Note29.User interrupt cannot be used for CM0+ application, as it is used internally by system calls. Note, this does not impact CM7 application.

Trigger multiplexer

17 Trigger multiplexer

Figure 17-1 Trigger multiplexer group [30]

Note

30.The diagram shows only the TRIG_LABEL; the final trigger formation is based on the formula TRIG_{PREFIX(IN/OUT)}_{MUX_x}_{TRIG_LABEL} and the information provided in **Table 18-1**, and **Table 19-1**.

Based on Arm® Cortex®-M7 dual

Triggers group inputs

Triggers group inputs 18

Trigger inputs Table 18-1

Input	Trigger	Description
-	0 : P-DMA0 trigger multiplexer	
1:32 ^[31]	PDMA0_TR_OUT[0:31]	Allow P-DMA0 to chain to itself. Channels 0 - 31 are dedicated for chaining
33:48	PDMA1_TR_OUT[0:15]	Cross connections from P-DMA1 to P-DMA0, Channels 0-15 are used
49:56	MDMA_TR_OUT[0:7]	Cross connections from M-DMA0 to P-DMA0
57:61	CAN0_TT_TR_OUT[0:4]	CAN0 Time Trigger Sync Outputs
62:66	CAN1_TT_TR_OUT[0:4]	CAN1 Time Trigger Sync Outputs
67	FLEXRAY_TT_TR_OUT	FlexRay0 timer trigger
68:91	HSIOM_IO_INPUT[0:23]	I/O Inputs
92:95	FAULT_TR_OUT[0:3]	Fault events
MUX Group	1 : TCPWM to P-DMA0 trigger mu	tiplexer
1:3	TCPWM0_16_TR_OUT0[0:2]	16-bit TCPWM0 counters
4:6	TCPWM0_16M_TR_OUT0[0:2]	16-bit Motor enhanced TCPWM0 counters
7:9	TCPWM0_32_TR_OUT0[0:2]	32-bit TCPWM0 counters
10:39	TCPWM1_16_TR_OUT0[0:29]	16-bit TCPWM1 counters
40:51	TCPWM1_16M_TR_OUT0[0:11]	16-bit Motor enhanced TCPWM1 counters
52:64	TCPWM1_32_TR_OUT0[0:12]	32-bit TCPWM1 counters
65:70	PASS_GEN_TR_OUT[0:5]	PASS SAR events
71:72	CTI_TR_OUT[0:1]	Trace events
73:76	EVTGEN_TR_OUT[0:3]	Event generator triggers
MUX Group	2 : P-DMA1 trigger multiplexer	
1:16	PDMA1_TR_OUT[0:15]	Allow P-DMA1 to chain to itself. Channels 0–15 are dedicated for chaining
17:48	PDMA0_TR_OUT[0:31]	Cross connections from P-DMA0 to P-DMA1, channels 0–31 are used.
49:102	TCPWM1_16_TR_OUT0[30:83]	16-bit TCPWM1 counters
103:126	HSIOM_IO_INPUT[24:47]	I/O Inputs
MUX Group	3 : M-DMA0 trigger multiplexer	
1:3	TCPWM0_16_TR_OUT0[0:2]	16-bit TCPWM0 counters
4:6	TCPWM0_16M_TR_OUT0[0:2]	16-bit Motor enhanced TCPWM0 counters
MUX Group	oup 4 : TCPWM0 Loop back trigger multiplexer	
1:32	PDMA0_TR_OUT[0:31]	General-purpose P-DMA0 triggers
33:48	PDMA1_TR_OUT[0:15]	General-purpose P-DMA1 triggers
49:56	MDMA_TR_OUT[0:7]	M-DMA0 triggers
57:59	TCPWM0_16_TR_OUT0[0:2]	16-bit TCPWM0 counters
60:62	TCPWM0_16M_TR_OUT0[0:2]	16-bit motor enhanced TCPWM0 counters
63:65	TCPWM0_32_TR_OUT0[0:2]	32-bit TCPWM0 counters
	•	•

Note 31."x:y" depicts a range starting from 'x' through 'y'.

Based on Arm® Cortex®-M7 dual

Triggers group inputs

Table 18-1 Trigger inputs (continued)

Table 18-1	Trigger inputs (continued)		
Input	Trigger	Description	
66:81	TCPWM1_16_TR_OUT0[0:15]	16-bit TCPWM1 counters	
82:87	TCPWM1_16M_TR_OUT0[0:5]	16-bit motor enhanced TCPWM1 counters	
88:94	TCPWM1_32_TR_OUT0[0:6]	32-bit TCPWM1 counters	
95	SMIF_TX_TR_OUT	SMIF0 TX trigger	
96	SMIF_RX_TR_OUT	SMIF0 RX trigger	
97	I2S0_TX_TR_OUT	I ² S0 TX trigger	
98	I2S0_RX_TR_OUT	I ² S0 RX trigger	
99	I2S1_TX_TR_OUT	I ² S1 TX trigger	
100	I2S1_RX_TR_OUT	I ² S1 RX trigger	
101	I2S2_TX_TR_OUT	I ² S2 TX trigger	
102	I2S2_RX_TR_OUT	I ² S2 RX trigger	
MUX Group	5 : TCPWM1 Loop back trigger mu	ultiplexer	
1:3	TCPWM0_16_TR_OUT0[0:2]	16-bit TCPWM0 counters	
4:6	TCPWM0_16M_TR_OUT0[0:2]	16-bit motor enhanced TCPWM0 counters	
7:9	TCPWM0_32_TR_OUT0[0:2]	32-bit TCPWM0 counters	
10:93	TCPWM1_16_TR_OUT0[0:83]	16-bit TCPWM1 counters	
94:105	TCPWM1_16M_TR_OUT0[0:11]	16-bit Motor enhanced TCPWM1 counters	
106:118	TCPWM1_32_TR_OUT0[0:12]	32-bit TCPWM1 counters	
119:123	CAN0_DBG_TR_OUT[0:4]	CAN0 M-DMA0 events	
124:128	CAN0_FIFO0_TR_OUT[0:4]	CAN0 FIFO0 events	
129:133	CAN0_FIFO1_TR_OUT[0:4]	CAN0 FIFO1 events	
134:138	CAN1_DBG_TR_OUT[0:4]	CAN1 M-DMA0 events	
139:143	CAN1_FIFO0_TR_OUT[0:4]	CAN1 FIFO0 events	
144:148	CAN1_FIFO1_TR_OUT[0:4]	CAN1 FIFO1 events	
149:153	CAN0_TT_TR_OUT[0:4]	CAN0 TT sync outputs	
154:158	CAN1_TT_TR_OUT[0:4]	CAN1 TT sync outputs	
159	FLEXRAY_TT_TR_OUT	FlexRay0 timer trigger	
160:167	EVTGEN_TR_OUT[4:11]	Event generator triggers	
MUX Group	6 : TCPWM1 trigger Multiplexer		
1:16	TCPWM1_16_TR_OUT1[0:15]	16-bit TCPWM1 counters	
17	SCB_TX_TR_OUT[0]	SCB0 TX trigger	
18	SCB_RX_TR_OUT[0]	SCB0 RX trigger	
19	SCB_I2C_SCL_TR_OUT[0]	SCB0 I ² C trigger	
20	SCB_TX_TR_OUT[1]	SCB1 TX trigger	
21	SCB_RX_TR_OUT[1]	SCB1 RX trigger	
22	SCB_I2C_SCL_TR_OUT[1]	SCB1 I ² C trigger	
23	SCB_TX_TR_OUT[2]	SCB2 TX trigger	
24	SCB_RX_TR_OUT[2]	SCB2 RX trigger	
25	SCB_I2C_SCL_TR_OUT[2]	SCB2 I ² C trigger	
26	SCB_TX_TR_OUT[3]	SCB3 TX trigger	
27	SCB_RX_TR_OUT[3]	SCB3 RX trigger	

Based on Arm® Cortex®-M7 dual

Triggers group inputs

Table 18-1 **Trigger inputs** (continued)

Innut	Trigger	Description
Input	Trigger	Description CCD2 /2C twinner
28	SCB_I2C_SCL_TR_OUT[3]	SCB3 I ² C trigger
29	SCB_TX_TR_OUT[4]	SCB4 TX trigger
30	SCB_RX_TR_OUT[4]	SCB4 RX trigger
31	SCB_I2C_SCL_TR_OUT[4]	SCB4 I ² C trigger
32	SCB_TX_TR_OUT[5]	SCB5 TX trigger
33	SCB_RX_TR_OUT[5]	SCB5 RX trigger
34	SCB_I2C_SCL_TR_OUT[5]	SCB5 I ² C trigger
35	SCB_TX_TR_OUT[6]	SCB6 TX trigger
36	SCB_RX_TR_OUT[6]	SCB6 RX trigger
37	SCB_I2C_SCL_TR_OUT[6]	SCB6 I ² C trigger
38	SCB_TX_TR_OUT[7]	SCB7 TX trigger
39	SCB_RX_TR_OUT[7]	SCB7 RX trigger
40	SCB_I2C_SCL_TR_OUT[7]	SCB7 I ² C trigger
41	SCB_TX_TR_OUT[8]	SCB8 TX trigger
42	SCB_RX_TR_OUT[8]	SCB8 RX trigger
43	SCB_I2C_SCL_TR_OUT[8]	SCB8 I ² C trigger
44	SCB_TX_TR_OUT[9]	SCB9 TX trigger
45	SCB_RX_TR_OUT[9]	SCB9 RX trigger
46	SCB_I2C_SCL_TR_OUT[9]	SCB9 I ² C trigger
47	SCB_TX_TR_OUT[10]	SCB10 TX trigger
48	SCB_RX_TR_OUT[10]	SCB10 RX trigger
49	SCB_I2C_SCL_TR_OUT[10]	SCB10 I ² C trigger
50	FLEXRAY_IBUF_TR_OUT	FlexRay IBUF trigger
51	FLEXRAY_OBUF_TR_OUT	FlexRay OBUF trigger
52:57	PASS_GEN_TR_OUT[0:5]	PASS SAR ADC events
58:105	HSIOM_IO_INPUT[0:47]	I/O Inputs
106:107	CTI_TR_IN[0:1]	CPUSS CTI Trace events
108:111	FAULT_TR_OUT[0:3]	Fault events
MUX Group	7: PASS trigger multiplexer	
1:31	PDMA0_TR_OUT[0:31]	General purpose P-DMA0 triggers
32:44	TCPWM1_16M_TR_OUT0[0:11]	16-bit Motor enhanced TCPWM1 counters
45:57	TCPWM1_32_TR_OUT0[0:12]	32-bit TCPWM1 counters
58:65	HSIOM_IO_INPUT[0:7]	I/O Inputs
66:68	EVTGEN_TR_OUT[12:14]	Event generator triggers
MUX Group	8: CAN and FLEXRAY TT Sync	
1:5	CAN0_TT_TR_OUT[0:4]	CAN0 TT sync outputs
6:10	CAN1_TT_TR_OUT[0:4]	CAN1 TT sync outputs
11	FLEXRAY_TT_TR_OUT	FlexRay timer trigger
MUX Group	9: Debug multiplexer	
1:5	TR_GROUP10_OUTPUT[0:4]	Output from debug reduction multiplexer #1
6:10	TR_GROUP11_OUTPUT[0:4]	Output from debug reduction multiplexer #2
	1	<u> </u>

Based on Arm® Cortex®-M7 dual

Triggers group inputs

Table 18-1 **Trigger inputs** (continued)

	Tibbe inputs (continued)				
Input	Trigger	Description			
11:15	TR_GROUP12_OUTPUT[0:4]	Output from debug reduction multiplexer #3			
MUX Group	MUX Group 10: Debug Reduction #1				
1:143	PDMA0_TR_OUT[0:142]	General purpose P-DMA0 triggers			
144:154	SCB_TX_TR_OUT[0:10]	SCB TX triggers			
155:165	SCB_RX_TR_OUT[0:10]	SCB RX triggers			
166:176	SCB_I2C_SCL_TR_OUT[0:10]	SCB I ² C triggers			
177:181	CAN0_DBG_TR_OUT[0:4]	CANO M-DMAO			
182:186	CAN0_FIFO0_TR_OUT[0:4]	CAN0 FIFO0			
187:191	CAN0_FIFO1_TR_OUT[0:4]	CAN0 FIFO1			
192:196	CAN0_TT_TR_OUT[0:4]	CAN0 TT sync outputs			
197:201	CAN1_DBG_TR_OUT[0:4]	CAN1 M-DMA0			
202:206	CAN1_FIFO0_TR_OUT[0:4]	CAN1 FIFO0			
207:211	CAN1_FIFO1_TR_OUT[0:4]	CAN1 FIFO1			
212:216	CAN1_TT_TR_OUT[0:4]	CAN1 TT sync outputs			
217:218	CTI_TR_OUT[0:1]	CPUSS CTI trace events			
219:222	FAULT_TR_OU[0:3]	Fault events			
223:238	EVTGEN_TR_OUT[0:15]	EVTGEN triggers			
MUX Group	11: Debug Reduction #2				
1:13	TCPWM1_32_TR_OUT0[0:12]	32-bit TCPWM1 counters			
14:16	TCPWM0_32_TR_OUT0[0:2]	32-bit TCPWM0 counters			
17:28	TCPWM1_16M_TR_OUT0[0:11]	16-bit Motor enhanced TCPWM1 counters			
29:31	TCPWM0_16M_TR_OUT0[0:2]	16-bit Motor enhanced TCPWM0 counters			
32:115	TCPWM1_16_TR_OUT0[0:83]	16-bit TCPWM1 counters			
116:118	TCPWM0_16_TR_OUT0[0:2]	16-bit TCPWM0 counters			
119	SMIF_TX_TR_OUT	SMIF TX trigger			
120	SMIF_RX_TR_OUT	SMIF RX trigger			
121	FLEXRAY_TT_TR_OUT	FlexRay time trigger output			
122	FLEXRAY_IBUF_TR_OUT	FlexRay M-DMA0 trans request			
123	FLEXRAY_OBUF_TR_OUT	FlexRay M-DMA0 trans request			
124	I2S0_TX_TR_OUT	l ² S0 TX trigger			
125	I2S0_RX_TR_OUT	l ² S0 RX trigger			
126	I2S1_TX_TR_OUT	l ² S1 TX trigger			
127	I2S1_RX_TR_OUT	I ² S1 RX trigger			
128	I2S2_TX_TR_OUT	l ² S2 TX trigger			
129	I2S2_RX_TR_OUT	I ² S2 RX trigger			
130:177	HSIOM_IO_INPUT[0:47]	I/O inputs			
MUX Group	12: Debug Reduction #3				
1:65	PDMA1_TR_OUT[0:64]	General purpose P-DMA1 triggers			
66:73	MDMA_TR_OUT[0:7]	M-DMA0 triggers			
74:76	TCPWM0_16_TR_OUT1[0:2]	16-bit TCPWM0 counters			
77:79	TCPWM0_16M_TR_OUT1[0:2]	16-bit Motor enhanced TCPWM0 counters			

Based on Arm® Cortex®-M7 dual

Triggers group inputs

Table 18-1 Trigger inputs (continued)

Input	Trigger	Description
80:82	TCPWM0_32_TR_OUT1[0:2]	32-bit TCPWM0 counters
83:166	TCPWM1_16_TR_OUT1[0:83]	16-bit TCPWM1 counters
167:178	TCPWM1_16M_TR_OUT1[0:11]	16-bit Motor enhanced TCPWM1 counters
179:191	TCPWM1_32_TR_OUT1[0:12]	32-bit TCPWM1 counters
192:197	PASS_GEN_TR_OUT[0:5]	PASS SAR ADC events

Based on Arm® Cortex®-M7 dual

Triggers group outputs 19

Trigger outputs Table 19-1

Triggers group outputs

Output	Trigger	Description
MUX Group 0: P-DMA	trigger multiplexer	
0:15	PDMA0_TR_IN[0:15]	Triggers to P-DMA0[0:15]
MUX Group 1: TCPWM	l to P-DMA0 trigger multiplexer	
0:15	PDMA0_TR_IN[16:31]	Triggers to P-DMA0[16:31]
MUX Group 2: P-DMA1	trigger multiplexer	
0:15	PDMA1_TR_IN[0:15]	Triggers to P-DMA1
MUX Group 3: M-DMA	0 trigger multiplexer	
0:7	M-DMA_TR_IN[0:7]	Triggers to M-DMA0
MUX Group 4: TCPWM	0 Loop back trigger multiplexer	
0:11	TCPWM0_ALL_CNT_TR_IN[0:11]	Triggers to TCPWM0
MUX Group 5: TCPWM	1 Loop back trigger multiplexer	
0:11	TCPWM1_ALL_CNT_TR_IN[0:11]	Triggers to TCPWM1
MUX Group 6: TCPWM	1 trigger Multiplexer	
0:28	TCPWM1_ALL_CNT_TR_IN[12:40]	Triggers to TCPWM1
MUX Group 7: PASS tr	igger multiplexer	<u> </u>
0:11	PASS_GEN_TR_IN[0:11]	Triggers to PASS SAR ADCs
MUX Group 8: CAN an	d FLEXRAY TT Sync	
0:4	CAN0_TT_TR_IN[0:4]	CAN0 TT Sync Inputs
5:9	CAN1_TT_TR_IN[0:4]	CAN1 TT Sync Inputs
10	FLEXRAY_TT_TR_IN	FlexRay TT Inputs
MUX Group 9: Debug	multiplexer	
0	HSIOM_IO_OUTPUT[0]	To HSIOM as an output
1	HSIOM_IO_OUTPUT[1]	To HSIOM as an output
2:3	CTI_TR_IN[0:1]	To the Cross Trigger system
4	PERI_DEBUG_FREEZE_TR_IN	Signal to Freeze PERI operation
5	PASS_DEBUG_FREEZE_TR_IN	Signal to Freeze SAR ADC operation
6	SRSS_WDT_DEBUG_FREEZE_TR_IN	Signal to Freeze WDT operation
7	SRSS_MCWDT_DEBUG FREEZE_TR_IN[2]	Signal to Freeze MCWDT2 operation
8	SRSS_MCWDT_DEBUG FREEZE_TR_IN[1]	Signal to Freeze MCWDT1 operation
9	SRSS_MCWDT_DEBUG FREEZE_TR_IN[0]	Signal to Freeze MCWDT0 operation
10	TCPWM0_DEBUG_FREEZE_TR_IN	Signal to Freeze TCPWM0 operation
11	TCPWM1_DEBUG_FREEZE_TR_IN	Signal to Freeze TCPWM1 operation
MUX Group 10։ Debu <u>ք</u>	Reduction #1	·
0:4	TR_GROUP9_INPUT[1:5]	To main debug multiplexer
MUX Group 11։ Debuչ	g Reduction #2	
0:4	TR_GROUP9_INPUT[6:10]	To main debug multiplexer
MUX Group 12։ Debuչ	g Reduction #3	
0:4	TR_GROUP9_INPUT[11:15]	To main debug multiplexer

Triggers one-to-one

20 Triggers one-to-one

Figure 20-1 Triggers one-to-one^[32]

Note

^{32.} The diagram shows only the TRIG_LABEL; the final trigger formation is based on the formula TRIG_{PREFIX(IN_1TO1/OUT_1-TO1)}_{x}_{TRIG_LABEL} and the information provided in **Table 20-1 on page 77**.

Triggers one-to-one

Table 20-1 Triggers 1:1

Input	Trigger In	Trigger Out	Description
/UX Group	0: CANO to P-DMAO Triggers	l	
0	CAN0_DBG_TR_OUT[0]	PDMA0_TR_IN[32]	CAN0, Channel #0 P-DMA0 trigger
1	CAN0_FIFO0_TR_OUT[0]	PDMA0_TR_IN[33]	CAN0, Channel #0 FIFO0 trigger
2	CAN0_FIFO1_TR_OUT[0]	PDMA0_TR_IN[34]	CAN0, Channel #0 FIFO1 trigger
3	CAN0_DBG_TR_OUT[1]	PDMA0_TR_IN[35]	CAN0, Channel #1 P-DMA0 trigger
4	CAN0_FIFO0_TR_OUT[1]	PDMA0_TR_IN[36]	CAN0, Channel #1 FIFO0 trigger
5	CAN0_FIFO1_TR_OUT[1]	PDMA0_TR_IN[37]	CAN0, Channel #1 FIFO1 trigger
6	CAN0_DBG_TR_OUT[2]	PDMA0_TR_IN[38]	CAN0, Channel #2 P-DMA0 trigger
7	CAN0_FIFO0_TR_OUT[2]	PDMA0_TR_IN[39]	CAN0, Channel #2 FIFO0 trigger
8	CAN0_FIFO1_TR_OUT[2]	PDMA0_TR_IN[40]	CAN0, Channel #2 FIFO1 trigger
9	CAN0_DBG_TR_OUT[3]	PDMA0_TR_IN[41]	CAN0, Channel #3 P-DMA0 trigger
10	CAN0_FIFO0_TR_OUT[3]	PDMA0_TR_IN[42]	CAN0, Channel #3 FIFO0 trigger
11	CAN0_FIFO1_TR_OUT[3]	PDMA0_TR_IN[43]	CAN0, Channel #3 FIFO1 trigger
12	CAN0_DBG_TR_OUT[4]	PDMA0_TR_IN[44]	CAN0, Channel #4 P-DMA0 trigger
13	CAN0_FIFO0_TR_OUT[4]	PDMA0_TR_IN[45]	CAN0, Channel #4 FIFO0 trigger
14	CAN0_FIFO1_TR_OUT[4]	PDMA0_TR_IN[46]	CAN0, Channel #4 FIFO1 trigger
/UX Group	1: PASS SARx to P-DMA0 direct connect		
0:31	PASSO_CH_DONE_TR_OUT[0:31]	PDMA0_TR_IN[47:78]	PASS SAR0 [0:31] to P-DMA0 direct connect
32:63	PASSO_CH_DONE_TR_OUT[32:63]	PDMA0_TR_IN[79:110]	PASS SAR1 [0:31] to P-DMA0 direct connect
64:95	PASSO_CH_DONE_TR_OUT[64:95]	PDMA0_TR_IN[111:142]	PASS SAR2 [0:31] to P-DMA0 direct connect
/UX Group	2: SCBx to P-DMA1 Triggers	-	
0	SCB0_TX_TR_OUT	PDMA1_TR_IN[16]	SCB0 to P-DMA1 Trigger
1	SCB0_RX_TR_OUT	PDMA1_TR_IN[17]	SCB0 to P-DMA1 Trigger
2	SCB1_TX_TR_OUT	PDMA1_TR_IN[18]	SCB1 to P-DMA1 Trigger
3	SCB1_RX_TR_OUT	PDMA1_TR_IN[19]	SCB1 to P-DMA1 Trigger
4	SCB2_TX_TR_OUT	PDMA1_TR_IN[20]	SCB2 to P-DMA1 Trigger
5	SCB2_RX_TR_OUT	PDMA1_TR_IN[21]	SCB2 to P-DMA1 Trigger
6	SCB3_TX_TR_OUT	PDMA1_TR_IN[22]	SCB3 to P-DMA1 Trigger
7	SCB3_RX_TR_OUT	PDMA1_TR_IN[23]	SCB3 to P-DMA1 Trigger
8	SCB4_TX_TR_OUT	PDMA1_TR_IN[24]	SCB4 to P-DMA1 Trigger
9	SCB4_RX_TR_OUT	PDMA1_TR_IN[25]	SCB4 to P-DMA1 Trigger
10	SCB5_TX_TR_OUT	PDMA1_TR_IN[26]	SCB5 to P-DMA1 Trigger
11	SCB5_RX_TR_OUT	PDMA1_TR_IN[27]	SCB5 to P-DMA1 Trigger
12	SCB6_TX_TR_OUT	PDMA1_TR_IN[28]	SCB6 to P-DMA1 Trigger
13	SCB6_RX_TR_OUT	PDMA1_TR_IN[29]	SCB6 to P-DMA1 Trigger
14	SCB7_TX_TR_OUT	PDMA1_TR_IN[30]	SCB7 to P-DMA1 Trigger
15	SCB7_RX_TR_OUT	PDMA1_TR_IN[31]	SCB7 to P-DMA1 Trigger
16	SCB8_TX_TR_OUT	PDMA1_TR_IN[32]	SCB8 to P-DMA1 Trigger
17	SCB8_RX_TR_OUT	PDMA1_TR_IN[33]	SCB8 to P-DMA1 Trigger
18	SCB9_TX_TR_OUT	PDMA1_TR_IN[34]	SCB9 to P-DMA1 Trigger
19	SCB9_RX_TR_OUT	PDMA1_TR_IN[35]	SCB9 to P-DMA1 Trigger
20	SCB10_TX_TR_OUT	PDMA1_TR_IN[36]	SCB10 to P-DMA1 Trigger
	1	i	1

Based on Arm® Cortex®-M7 dual

Table 20-1 Triggers 1:1 (continued)

Input	Trigger In	Trigger Out	Description
MUX Group	3: SMIF0 to P-DMA1 Triggers	<u> </u>	
0	SMIF_TX_TR_OUT	PDMA1_TR_IN[53]	SMIF0 to P-DMA1 Trigger
1	SMIF_RX_TR_OUT	PDMA1_TR_IN[54]	SMIF0 to P-DMA1 Trigger
MUX Group	4: CAN1 to P-DMA1 triggers		
0	CAN1_DBG_TR_OUT[0]	PDMA1_TR_IN[38]	CAN1 Channel #0 P-DMA1 trigger
1	CAN1_FIFO0_TR_OUT[0]	PDMA1_TR_IN[39]	CAN1 Channel #0 FIFO0 trigger
2	CAN1_FIFO1_TR_OUT[0]	PDMA1_TR_IN[40]	CAN1 Channel #0 FIFO1 trigger
3	CAN1_DBG_TR_OUT[1]	PDMA1_TR_IN[41]	CAN1 Channel #1 P-DMA1 trigger
4	CAN1_FIFO0_TR_OUT[1]	PDMA1_TR_IN[42]	CAN1 Channel #1 FIFO0 trigger
5	CAN1_FIFO1_TR_OUT[1]	PDMA1_TR_IN[43]	CAN1 Channel #1 FIFO1 trigger
6	CAN1_DBG_TR_OUT[2]	PDMA1_TR_IN[44]	CAN1 Channel #2 P-DMA1 trigger
7	CAN1_FIFO0_TR_OUT[2]	PDMA1_TR_IN[45]	CAN1 Channel #2 FIFO0 trigger
8	CAN1_FIFO1_TR_OUT[2]	PDMA1_TR_IN[46]	CAN1 Channel #2 FIFO1 trigger
9	CAN1_DBG_TR_OUT[3]	PDMA1_TR_IN[47]	CAN1 Channel #3 P-DMA1 trigger
10	CAN1_FIFO0_TR_OUT[3]	PDMA1_TR_IN[48]	CAN1 Channel #3 FIFO0 trigger
11	CAN1_FIFO1_TR_OUT[3]	PDMA1_TR_IN[49]	CAN1 Channel #3 FIFO1 trigger
12	CAN1_DBG_TR_OUT[4]	PDMA1_TR_IN[50]	CAN1 Channel #4 P-DMA1 trigger
13	CAN1_FIFO0_TR_OUT[4]	PDMA1_TR_IN[51]	CAN1 Channel #4 FIFO0 trigger
14	CAN1_FIFO1_TR_OUT[4]	PDMA1_TR_IN[52]	CAN1 Channel #4 FIFO1 trigger
MUX Group	• 5: I ² Sx to P-DMA1 Triggers		
0	AUDIO0_TX_TR_OUT	PDMA1_TR_IN[55]	I ² S0 TX to P-DMA1 trigger
1	AUDIO0_RX_TR_OUT	PDMA1_TR_IN[56]	I ² S0 RX to P-DMA1 trigger
2	AUDIO1_TX_TR_OUT	PDMA1_TR_IN[57]	I ² S1 TX to P-DMA1 trigger
3	AUDIO1_RX_TR_OUT	PDMA1_TR_IN[58]	I ² S1 RX to P-DMA1 trigger
4	AUDIO2_TX_TR_OUT	PDMA1_TR_IN[59]	I ² S2 TX to P-DMA1 trigger
5	AUDIO2_RX_TR_OUT	PDMA1_TR_IN[60]	I ² S2 RX to P-DMA1 trigger
MUX Group	6: PASS SARx to TCPWM1 direct connect		
0	PASSO_CH_RANGEVIO_TR_OUT[0]	TCPWM1_16M_ONE_CNT_TR_IN[0]	SAR0 ch#0 ^[33] , range violation to TCPWM1 Group #1 Counter #00 trig = 2
1	PASSO_CH_RANGEVIO_TR_OUT[1]	TCPWM1_16M_ONE_CNT_TR_IN[3]	SAR0 ch#1, range violation to TCPWM1 Group #1 Counter #03 trig = 2
2	PASSO_CH_RANGEVIO_TR_OUT[2]	TCPWM1_16M_ONE_CNT_TR_IN[6]	SAR0 ch#2, range violation to TCPWM1 Group #1 Counter #06 trig = 2
3	PASSO_CH_RANGEVIO_TR_OUT[3]	TCPWM1_16M_ONE_CNT_TR_IN[9]	SAR0 ch#3, range violation to TCPWM1 Group #1 Counter #09 trig = 2
4	PASSO_CH_RANGEVIO_TR_OUT[4]	TCPWM1_16_ONE_CNT_TR_IN[0]	SAR0 ch#4, range violation to TCPWM1 Group #0 Counter #00 trig = 2
5	PASSO_CH_RANGEVIO_TR_OUT[5]	TCPWM1_16_ONE_CNT_TR_IN[1]	SAR0 ch#5, range violation to TCPWM1 Group #0 Counter #01 trig = 2
6	PASSO_CH_RANGEVIO_TR_OUT[6]	TCPWM1_16_ONE_CNT_TR_IN[2]	SAR0 ch#6, range violation to TCPWM1 Group #0 Counter #02 trig = 2
7	PASSO_CH_RANGEVIO_TR_OUT[7]	TCPWM1_16_ONE_CNT_TR_IN[3]	SAR0 ch#7, range violation to TCPWM1 Group #0 Counter #03 trig = 2
8	PASSO_CH_RANGEVIO_TR_OUT[8]	TCPWM1_16_ONE_CNT_TR_IN[4]	SAR0 ch#8, range violation to TCPWM1 Group #0 Counter #04 trig = 2
9	PASS0_CH_RANGEVIO_TR_OUT[9]	TCPWM1_16_ONE_CNT_TR_IN[5]	SAR0 ch#9, range violation to TCPWM1 Group #0 Counter #05 trig = 2
10	PASS0_CH_RANGEVIO_TR_OUT[10]	TCPWM1_16_ONE_CNT_TR_IN[6]	SAR0 ch#10, range violation to TCPWM1 Group #0 Counter #06 trig = 2
11	PASSO_CH_RANGEVIO_TR_OUT[11]	TCPWM1_16_ONE_CNT_TR_IN[7]	SAR0 ch#11, range violation to TCPWM1 Group #0 Counter #07 trig = 2
12	PASSO_CH_RANGEVIO_TR_OUT[12]	TCPWM1_16_ONE_CNT_TR_IN[8]	SAR0 ch#12, range violation to TCPWM1 Group #0 Counter #08 trig = 2
13	PASS0_CH_RANGEVIO_TR_OUT[13]	TCPWM1_16_ONE_CNT_TR_IN[9]	SAR0 ch#13, range violation to TCPWM1 Group #0 Counter #09 trig = 2
14	PASS0_CH_RANGEVIO_TR_OUT[14]	TCPWM1_16_ONE_CNT_TR_IN[10]	SAR0 ch#14, range violation to TCPWM1 Group #0 Counter #10 trig = 2

Note33.Each logical channel of SAR ADC[x] can be connected to any of the SAR ADC[x]_y external pin. (x = 0, or 1, or, 2 and y=0 to max 31)

Based on Arm® Cortex®-M7 dual

Triggers one-to-one

Table 20-1 Triggers 1:1 (continued)

Input	Trigger In	Trigger Out	Description
15	PASSO_CH_RANGEVIO_TR_OUT[15]	TCPWM1_16_ONE_CNT_TR_IN[11]	SAR0 ch#15, range violation to TCPWM1 Group #0 Counter #11 trig = 2
16	PASSO_CH_RANGEVIO_TR_OUT[16]	TCPWM1_16_ONE_CNT_TR_IN[12]	SAR0 ch#16, range violation to TCPWM1 Group #0 Counter #12 trig = 2
17	PASSO_CH_RANGEVIO_TR_OUT[17]	TCPWM1_16_ONE_CNT_TR_IN[13]	SAR0 ch#17, range violation to TCPWM1 Group #0 Counter #13 trig = 2
18	PASS0_CH_RANGEVIO_TR_OUT[18]	TCPWM1_16_ONE_CNT_TR_IN[14]	SAR0 ch#18, range violation to TCPWM1 Group #0 Counter #14 trig = 2
19	PASSO_CH_RANGEVIO_TR_OUT[19]	TCPWM1_16_ONE_CNT_TR_IN[15]	SAR0 ch#19, range violation to TCPWM1 Group #0 Counter #15 trig = 2
20	PASS0_CH_RANGEVIO_TR_OUT[20]	TCPWM1_16_ONE_CNT_TR_IN[16]	SAR0 ch#20, range violation to TCPWM1 Group #0 Counter #16 trig = 2
21	PASS0_CH_RANGEVIO_TR_OUT[21]	TCPWM1_16_ONE_CNT_TR_IN[17]	SAR0 ch#21, range violation to TCPWM1 Group #0 Counter #17 trig = 2
22	PASS0_CH_RANGEVIO_TR_OUT[22]	TCPWM1_16_ONE_CNT_TR_IN[18]	SAR0 ch#22, range violation to TCPWM1 Group #0 Counter #18 trig = 2
23	PASSO_CH_RANGEVIO_TR_OUT[23]	TCPWM1_16_ONE_CNT_TR_IN[19]	SAR0 ch#23, range violation to TCPWM1 Group #0 Counter #19 trig = 2
24	PASS0_CH_RANGEVIO_TR_OUT[24]	TCPWM1_16_ONE_CNT_TR_IN[20]	SAR0 ch#24, range violation to TCPWM1 Group #0 Counter #20 trig = 2
25	PASS0_CH_RANGEVIO_TR_OUT[25]	TCPWM1_16_ONE_CNT_TR_IN[21]	SAR0 ch#25, range violation to TCPWM1 Group #0 Counter #21 trig = 2
26	PASSO_CH_RANGEVIO_TR_OUT[26]	TCPWM1_16_ONE_CNT_TR_IN[22]	SAR0 ch#26, range violation to TCPWM1 Group #0 Counter #22 trig = 2
27	PASS0_CH_RANGEVIO_TR_OUT[27]	TCPWM1_16_ONE_CNT_TR_IN[23]	SAR0 ch#27, range violation to TCPWM1 Group #0 Counter #23 trig = 2
28	PASSO_CH_RANGEVIO_TR_OUT[28]	TCPWM1_16_ONE_CNT_TR_IN[24]	SAR0 ch#28, range violation to TCPWM1 Group #0 Counter #24 trig = 2
29	PASSO_CH_RANGEVIO_TR_OUT[29]	TCPWM1_16_ONE_CNT_TR_IN[25]	SAR0 ch#29, range violation to TCPWM1 Group #0 Counter #25 trig = 2
30	PASSO_CH_RANGEVIO_TR_OUT[30]	TCPWM1_16_ONE_CNT_TR_IN[26]	SAR0 ch#30, range violation to TCPWM1 Group #0 Counter #26 trig = 2
31	PASSO_CH_RANGEVIO_TR_OUT[31]	TCPWM1_16_ONE_CNT_TR_IN[27]	SAR0 ch#31, range violation to TCPWM1 Group #0 Counter #27 trig = 2
32	PASS0_CH_RANGEVIO_TR_OUT[32]	TCPWM1_16M_ONE_CNT_TR_IN[1]	SAR1 ch#0, range violation to TCPWM1 Group #1 Counter #01 trig = 2
33	PASSO_CH_RANGEVIO_TR_OUT[33]	TCPWM1_16M_ONE_CNT_TR_IN[4]	SAR1 ch#1, range violation to TCPWM1 Group #1 Counter #04 trig = 2
34	PASS0_CH_RANGEVIO_TR_OUT[34]	TCPWM1_16M_ONE_CNT_TR_IN[7]	SAR1 ch#2, range violation to TCPWM1 Group #1 Counter #07 trig = 2
35	PASS0_CH_RANGEVIO_TR_OUT[35]	TCPWM1_16M_ONE_CNT_TR_IN[10]	SAR1 ch#3, range violation to TCPWM1 Group #1 Counter #10 trig = 2
36	PASS0_CH_RANGEVIO_TR_OUT[36]	TCPWM1_16_ONE_CNT_TR_IN[28]	SAR1 ch#4, range violation to TCPWM1 Group #0 Counter #28 trig = 2
37	PASSO_CH_RANGEVIO_TR_OUT[37]	TCPWM1_16_ONE_CNT_TR_IN[29]	SAR1 ch#5, range violation to TCPWM1 Group #0 Counter #29 trig = 2
38	PASS0_CH_RANGEVIO_TR_OUT[38]	TCPWM1_16_ONE_CNT_TR_IN[30]	SAR1 ch#6, range violation to TCPWM1 Group #0 Counter #30 trig = 2
39	PASS0_CH_RANGEVIO_TR_OUT[39]	TCPWM1_16_ONE_CNT_TR_IN[31]	SAR1 ch#7, range violation to TCPWM1 Group #0 Counter #31 trig = 2
40	PASS0_CH_RANGEVIO_TR_OUT[40]	TCPWM1_16_ONE_CNT_TR_IN[32]	SAR1 ch#8, range violation to TCPWM1 Group #0 Counter #32 trig = 2
41	PASSO_CH_RANGEVIO_TR_OUT[41]	TCPWM1_16_ONE_CNT_TR_IN[33]	SAR1 ch#9, range violation to TCPWM1 Group #0 Counter #33 trig = 2
42	PASSO_CH_RANGEVIO_TR_OUT[42]	TCPWM1_16_ONE_CNT_TR_IN[34]	SAR1 ch#10, range violation to TCPWM1 Group #0 Counter #34 trig = 2
43	PASS0_CH_RANGEVIO_TR_OUT[43]	TCPWM1_16_ONE_CNT_TR_IN[35]	SAR1 ch#11, range violation to TCPWM1 Group #0 Counter #35 trig = 2
44	PASSO_CH_RANGEVIO_TR_OUT[44]	TCPWM1_16_ONE_CNT_TR_IN[36]	SAR1 ch#12, range violation to TCPWM1 Group #0 Counter #36 trig = 2
45	PASSO_CH_RANGEVIO_TR_OUT[45]	TCPWM1_16_ONE_CNT_TR_IN[37]	SAR1 ch#13, range violation to TCPWM1 Group #0 Counter #37 trig = 2
46	PASSO_CH_RANGEVIO_TR_OUT[46]	TCPWM1_16_ONE_CNT_TR_IN[38]	SAR1 ch#14, range violation to TCPWM1 Group #0 Counter #38 trig = 2
47	PASSO_CH_RANGEVIO_TR_OUT[47]	TCPWM1_16_ONE_CNT_TR_IN[39]	SAR1 ch#15, range violation to TCPWM1 Group #0 Counter #39 trig = 2
48	PASSO_CH_RANGEVIO_TR_OUT[48]	TCPWM1_16_ONE_CNT_TR_IN[40]	SAR1 ch#16, range violation to TCPWM1 Group #0 Counter #40 trig = 2
49	PASSO_CH_RANGEVIO_TR_OUT[49]	TCPWM1_16_ONE_CNT_TR_IN[41]	SAR1 ch#17, range violation to TCPWM1 Group #0 Counter #41 trig = 2
50	PASSO_CH_RANGEVIO_TR_OUT[50]	TCPWM1_16_ONE_CNT_TR_IN[42]	SAR1 ch#18, range violation to TCPWM1 Group #0 Counter #42 trig = 2
51	PASSO_CH_RANGEVIO_TR_OUT[51]	TCPWM1_16_ONE_CNT_TR_IN[43]	SAR1 ch#19, range violation to TCPWM1 Group #0 Counter #43 trig = 2
52	PASSO_CH_RANGEVIO_TR_OUT[52]	TCPWM1_16_ONE_CNT_TR_IN[44]	SAR1 ch#20, range violation to TCPWM1 Group #0 Counter #44 trig = 2
53	PASSO_CH_RANGEVIO_TR_OUT[53]	TCPWM1_16_ONE_CNT_TR_IN[45]	SAR1 ch#21, range violation to TCPWM1 Group #0 Counter #45 trig = 2
54	PASSO_CH_RANGEVIO_TR_OUT[54]	TCPWM1_16_ONE_CNT_TR_IN[46]	SAR1 ch#22, range violation to TCPWM1 Group #0 Counter #46 trig = 2
55	PASSO_CH_RANGEVIO_TR_OUT[55]	TCPWM1_16_ONE_CNT_TR_IN[47]	SAR1 ch#23, range violation to TCPWM1 Group #0 Counter #47 trig = 2
56	PASSO_CH_RANGEVIO_TR_OUT[56]	TCPWM1_16_ONE_CNT_TR_IN[48]	SAR1 ch#24, range violation to TCPWM1 Group #0 Counter #48 trig = 2
57	PASSO_CH_RANGEVIO_TR_OUT[57]	TCPWM1_16_ONE_CNT_TR_IN[49]	SAR1 ch#25, range violation to TCPWM1 Group #0 Counter #49 trig = 2
58	PASSO_CH_RANGEVIO_TR_OUT[58]	TCPWM1_16_ONE_CNT_TR_IN[50]	SAR1 ch#26, range violation to TCPWM1 Group #0 Counter #50 trig = 2
59	PASS0_CH_RANGEVIO_TR_OUT[59]	TCPWM1_16_ONE_CNT_TR_IN[51]	SAR1 ch#27, range violation to TCPWM1 Group #0 Counter #51 trig = 2

Based on Arm® Cortex®-M7 dual

Triggers one-to-one

Table 20-1 Triggers 1:1 (continued)

Input	Trigger In	Trigger Out	Description
60	PASSO_CH_RANGEVIO_TR_OUT[60]	TCPWM1_16_ONE_CNT_TR_IN[52]	SAR1 ch#28, range violation to TCPWM1 Group #0 Counter #52 trig = 2
61	PASSO_CH_RANGEVIO_TR_OUT[61]	TCPWM1_16_ONE_CNT_TR_IN[53]	SAR1 ch#29, range violation to TCPWM1 Group #0 Counter #53 trig = 2
62	PASSO_CH_RANGEVIO_TR_OUT[62]	TCPWM1_16_ONE_CNT_TR_IN[54]	SAR1 ch#30, range violation to TCPWM1 Group #0 Counter #54 trig = 2
63	PASSO_CH_RANGEVIO_TR_OUT[63]	TCPWM1_16_ONE_CNT_TR_IN[55]	SAR1 ch#31, range violation to TCPWM1 Group #0 Counter #55 trig = 2
64	PASSO_CH_RANGEVIO_TR_OUT[64]	TCPWM1_16M_ONE_CNT_TR_IN[2]	SAR2 ch#0, range violation to TCPWM1 Group #1 Counter #02 trig = 2
65	PASSO_CH_RANGEVIO_TR_OUT[65]	TCPWM1_16M_ONE_CNT_TR_IN[5]	SAR2 ch#1, range violation to TCPWM1 Group #1 Counter #05 trig = 2
66	PASSO_CH_RANGEVIO_TR_OUT[66]	TCPWM1_16M_ONE_CNT_TR_IN[8]	SAR2 ch#2, range violation to TCPWM1 Group #1 Counter #08 trig = 2
67	PASSO_CH_RANGEVIO_TR_OUT[67]	TCPWM1_16M_ONE_CNT_TR_IN[11]	SAR2 ch#3, range violation to TCPWM1 Group #1 Counter #11 trig = 2
68	PASSO_CH_RANGEVIO_TR_OUT[68]	TCPWM1_16_ONE_CNT_TR_IN[56]	SAR2 ch#4, range violation to TCPWM1 Group #0 Counter #56 trig = 2
69	PASSO_CH_RANGEVIO_TR_OUT[69]	TCPWM1_16_ONE_CNT_TR_IN[57]	SAR2 ch#5, range violation to TCPWM1 Group #0 Counter #57 trig = 2
70	PASSO_CH_RANGEVIO_TR_OUT[70]	TCPWM1_16_ONE_CNT_TR_IN[58]	SAR2 ch#6, range violation to TCPWM1 Group #0 Counter #58 trig = 2
71	PASSO_CH_RANGEVIO_TR_OUT[71]	TCPWM1_16_ONE_CNT_TR_IN[59]	SAR2 ch#7, range violation to TCPWM1 Group #0 Counter #59 trig = 2
72	PASSO_CH_RANGEVIO_TR_OUT[72]	TCPWM1_16_ONE_CNT_TR_IN[60]	SAR2 ch#8, range violation to TCPWM1 Group #0 Counter #60 trig = 2
73	PASSO_CH_RANGEVIO_TR_OUT[73]	TCPWM1_16_ONE_CNT_TR_IN[61]	SAR2 ch#9, range violation to TCPWM1 Group #0 Counter #61 trig = 2
74	PASS0_CH_RANGEVIO_TR_OUT[74]	TCPWM1_16_ONE_CNT_TR_IN[62]	SAR2 ch#10, range violation to TCPWM1 Group #0 Counter #62 trig = 2
75	PASS0_CH_RANGEVIO_TR_OUT[75]	TCPWM1_16_ONE_CNT_TR_IN[63]	SAR2 ch#11, range violation to TCPWM1 Group #0 Counter #63 trig = 2
76	PASSO_CH_RANGEVIO_TR_OUT[76]	TCPWM1_16_ONE_CNT_TR_IN[64]	SAR2 ch#12, range violation to TCPWM1 Group #0 Counter #64 trig = 2
77	PASSO_CH_RANGEVIO_TR_OUT[77]	TCPWM1_16_ONE_CNT_TR_IN[65]	SAR2 ch#13, range violation to TCPWM1 Group #0 Counter #65 trig = 2
78	PASSO_CH_RANGEVIO_TR_OUT[78]	TCPWM1_16_ONE_CNT_TR_IN[66]	SAR2 ch#14, range violation to TCPWM1 Group #0 Counter #66 trig = 2
79	PASSO_CH_RANGEVIO_TR_OUT[79]	TCPWM1_16_ONE_CNT_TR_IN[67]	SAR2 ch#15, range violation to TCPWM1 Group #0 Counter #67 trig = 2
80	PASSO_CH_RANGEVIO_TR_OUT[80]	TCPWM1_16_ONE_CNT_TR_IN[68]	SAR2 ch#16, range violation to TCPWM1 Group #0 Counter #68 trig = 2
81	PASSO_CH_RANGEVIO_TR_OUT[81]	TCPWM1_16_ONE_CNT_TR_IN[69]	SAR2 ch#17, range violation to TCPWM1 Group #0 Counter #69 trig = 2
82	PASSO_CH_RANGEVIO_TR_OUT[82]	TCPWM1_16_ONE_CNT_TR_IN[70]	SAR2 ch#18, range violation to TCPWM1 Group #0 Counter #70 trig = 2
83	PASS0_CH_RANGEVIO_TR_OUT[83]	TCPWM1_16_ONE_CNT_TR_IN[71]	SAR2 ch#19, range violation to TCPWM1 Group #0 Counter #71 trig = 2
84	PASSO_CH_RANGEVIO_TR_OUT[84]	TCPWM1_16_ONE_CNT_TR_IN[72]	SAR2 ch#20, range violation to TCPWM1 Group #0 Counter #72 trig = 2
85	PASS0_CH_RANGEVIO_TR_OUT[85]	TCPWM1_16_ONE_CNT_TR_IN[73]	SAR2 ch#21, range violation to TCPWM1 Group #0 Counter #73 trig = 2
86	PASSO_CH_RANGEVIO_TR_OUT[86]	TCPWM1_16_ONE_CNT_TR_IN[74]	SAR2 ch#22, range violation to TCPWM1 Group #0 Counter #74 trig = 2
87	PASSO_CH_RANGEVIO_TR_OUT[87]	TCPWM1_16_ONE_CNT_TR_IN[75]	SAR2 ch#23, range violation to TCPWM1 Group #0 Counter #75 trig = 2
88	PASSO_CH_RANGEVIO_TR_OUT[88]	TCPWM1_16_ONE_CNT_TR_IN[76]	SAR2 ch#24, range violation to TCPWM1 Group #0 Counter #76 trig = 2
89	PASS0_CH_RANGEVIO_TR_OUT[89]	TCPWM1_16_ONE_CNT_TR_IN[77]	SAR2 ch#25, range violation to TCPWM1 Group #0 Counter #77 trig = 2
90	PASSO_CH_RANGEVIO_TR_OUT[90]	TCPWM1_16_ONE_CNT_TR_IN[78]	SAR2 ch#26, range violation to TCPWM1 Group #0 Counter #78 trig = 2
91	PASSO_CH_RANGEVIO_TR_OUT[91]	TCPWM1_16_ONE_CNT_TR_IN[79]	SAR2 ch#27, range violation to TCPWM1 Group #0 Counter #79 trig = 2
92	PASSO_CH_RANGEVIO_TR_OUT[92]	TCPWM1_16_ONE_CNT_TR_IN[80]	SAR2 ch#28, range violation to TCPWM1 Group #0 Counter #80 trig = 2
93	PASSO_CH_RANGEVIO_TR_OUT[93]	TCPWM1_16_ONE_CNT_TR_IN[81]	SAR2 ch#29, range violation to TCPWM1 Group #0 Counter #81 trig = 2
94	PASSO_CH_RANGEVIO_TR_OUT[94]	TCPWM1_16_ONE_CNT_TR_IN[82]	SAR2 ch#30, range violation to TCPWM1 Group #0 Counter #82 trig = 2
95	PASSO_CH_RANGEVIO_TR_OUT[95]	TCPWM1_16_ONE_CNT_TR_IN[83]	SAR2 ch#31, range violation to TCPWM1 Group #0 Counter #83 trig = 2
UX Group	7: TCPWM1 to PASS SARx		
0	TCPWM1_16M_TR_OUT1[0]	PASS0_CH_TR_IN[0]	TCPWM1 Group #1 Counter #00 (PWM1_M_0) to SAR0 ch#0
1	TCPWM1_16M_TR_OUT1[3]	PASS0_CH_TR_IN[1]	TCPWM1 Group #1 Counter #03 (PWM1_M_3) to SAR0 ch#1
2	TCPWM1_16M_TR_OUT1[6]	PASS0_CH_TR_IN[2]	TCPWM1 Group #1 Counter #06 (PWM1_M_6) to SAR0 ch#2
3	TCPWM1_16M_TR_OUT1[9]	PASS0_CH_TR_IN[3]	TCPWM1 Group #1 Counter #09 (PWM1_M_9) to SAR0 ch#3
4:31	TCPWM1_16_TR_OUT1[0:27]	PASS0_CH_TR_IN[4:31]	TCPWM1 Group #0 Counter #00 through 27 (PWM1_0 to PWM1_27) to SA ch#4 through SAR0 ch#31
32	TCPWM1_16M_TR_OUT1[1]	PASS0_CH_TR_IN[32]	TCPWM1 Group #1 Counter #01 (PWM1_M_1) to SAR1 ch#0
33	TCPWM1_16M_TR_OUT1[4]	PASS0_CH_TR_IN[33]	TCPWM1 Group #1 Counter #04 (PWM1_M_4) to SAR1 ch#1
34	TCPWM1_16M_TR_OUT1[7]	PASS0_CH_TR_IN[34]	TCPWM1 Group #1 Counter #07 (PWM1_M_7) to SAR1 ch#2

Based on Arm® Cortex®-M7 dual

Triggers one-to-one

Table 20-1 Triggers 1:1 (continued)

Input	Trigger In	Trigger Out	Description
35	TCPWM1_16M_TR_OUT1[10]	PASS0_CH_TR_IN[35]	TCPWM1 Group #1 Counter #10 (PWM1_M_10) to SAR1 ch#3
36:63	TCPWM1_16_TR_OUT1[28:55]	PASS0_CH_TR_IN[36:63]	TCPWM1 Group #0 Counter #28 through 55 (PWM1_28 to PWM1_55) to SAR1 ch#4 through SAR1 ch#31
64	TCPWM1_16M_TR_OUT1[2]	PASS0_CH_TR_IN[64]	TCPWM1 Group #1 Counter #02 (PWM1_M_2) to SAR2 ch#0
65	TCPWM1_16M_TR_OUT1[5]	PASS0_CH_TR_IN[65]	TCPWM1 Group #1 Counter #05 (PWM1_M_5) to SAR2 ch#1
66	TCPWM1_16M_TR_OUT1[8]	PASS0_CH_TR_IN[66]	TCPWM1 Group #1 Counter #08 (PWM1_M_8) to SAR2 ch#2
67	TCPWM1_16M_TR_OUT1[11]	PASS0_CH_TR_IN[67]	TCPWM1 Group #1 Counter #11 (PWM1_M_11) to SAR2 ch#3
68:95	TCPWM1_16_TR_OUT1[56:83]	PASS0_CH_TR_IN[68:95]	TCPWM1 Group #0 Counter #56 through 83 (PWM1_56 to PWM1_83) to SAR2 ch#4 through SAR2 ch#31
MUX Group	8: Acknowledge triggers from P-DMA1 to C	AN1	
0	PDMA1_TR_OUT[38]	CAN1_DBG_TR_ACK[0]	CAN1 Channel#0 P-DMA1 acknowledge
1	PDMA1_TR_OUT[41]	CAN1_DBG_TR_ACK[1]	CAN1 Channel#1 P-DMA1 acknowledge
2	PDMA1_TR_OUT[44]	CAN1_DBG_TR_ACK[2]	CAN1 Channel#2 P-DMA1 acknowledge
3	PDMA1_TR_OUT[47]	CAN1_DBG_TR_ACK[3]	CAN1 Channel#3 P-DMA1 acknowledge
4	PDMA1_TR_OUT[50]	CAN1_DBG_TR_ACK[4]	CAN1 Channel#4 P-DMA1 acknowledge
MUX Group	9: Acknowledge triggers from P-DMA0 to C	ANO	
0	PDMA0_TR_OUT[32]	CAN0_DBG_TR_ACK[0]	CAN0 Channel#0 P-DMA0 acknowledge
1	PDMA0_TR_OUT[35]	CAN0_DBG_TR_ACK[1]	CAN0 Channel#1 P-DMA0 acknowledge
2	PDMA0_TR_OUT[38]	CAN0_DBG_TR_ACK[2]	CAN0 Channel#2 P-DMA0 acknowledge
3	PDMA0_TR_OUT[41]	CAN0_DBG_TR_ACK[3]	CAN0 Channel#3 P-DMA0 acknowledge
4	PDMA0_TR_OUT[44]	CAN0_DBG_TR_ACK[4]	CAN0 Channel#4 P-DMA0 acknowledge
MUX Group	10: TCPWM1 to LIN0 triggers		
0:19	TCPWM1_16_TR_OUT0[0:19]	LINO_CMD_TR_IN[0:19]	TCPWM1 (Group #0 Counter #00 to #19) to LIN0
MUX Group	11: FLEXRAY to P-DMA1 triggers	· !	
0	FLEXRAY_IBF_TR_OUT	PDMA1_TR_IN[61]	FlexRay to P-DMA1
1	FLEXRAY_OBF_TR_OUT	PDMA1_TR_IN[62]	FlexRay to P-DMA1
MUX Group	12: P-DMA1 TO P-DMA1 triggers		
0	PDMA1_TR_OUT[61]	PDMA1_TR_IN[63]	P-DMA1 to P-DMA1
1	PDMA1_TR_OUT[62]	PDMA1_TR_IN[64]	P-DMA1 to P-DMA1
MUX Group	13: P-DMA1 TO FLEXRAY triggers		1
0	PDMA1_TR_OUT[63]	FLEXRAY_IBF_TR_IN	P-DMA1 to FlexRay
1	PDMA1_TR_OUT[64]	FLEXRAY_OBF_TR_IN	P-DMA1 to FlexRay

Based on Arm® Cortex®-M7 dual

Peripheral clocks

Peripheral clock assignments Table 21-1

Output	Destination	Description
CPUSS roo	ot clocks (Group 0)	1
0	PCLK_CPUSS_CLOCK_TRACE_IN	Trace clock
1	PCLK_SMARTIO12_CLOCK	Smart I/O #12
2	PCLK_SMARTIO13_CLOCK	Smart I/O #13
3	PCLK_SMARTIO14_CLOCK	Smart I/O #14
4	PCLK_SMARTIO15_CLOCK	Smart I/O #15
5	PCLK_SMARTIO17_CLOCK	Smart I/O #17
6	PCLK_TCPWM0_CLOCKS0	TCPWM0 Group #0, Counter #0
7	PCLK_TCPWM0_CLOCKS1	TCPWM0 Group #0, Counter #1
8	PCLK_TCPWM0_CLOCKS2	TCPWM0 Group #0, Counter #2
9	PCLK_TCPWM0_CLOCKS256	TCPWM0 Group #1, Counter #0
10	PCLK_TCPWM0_CLOCKS257	TCPWM0 Group #1, Counter #1
11	PCLK_TCPWM0_CLOCKS258	TCPWM0 Group #1, Counter #2
12	PCLK_TCPWM0_CLOCKS512	TCPWM0 Group #2, Counter #0
13	PCLK_TCPWM0_CLOCKS513	TCPWM0 Group #2, Counter #1
14	PCLK_TCPWM0_CLOCKS514	TCPWM0 Group #2, Counter #2
COMM roo	t clocks (Group 1)	<u>'</u>
0	PCLK_CANFD0_CLOCK_CAN0	CANO, Channel #0
1	PCLK_CANFD0_CLOCK_CAN1	CANO, Channel #1
2	PCLK_CANFD0_CLOCK_CAN2	CANO, Channel #2
3	PCLK_CANFD0_CLOCK_CAN3	CANO, Channel #3
4	PCLK_CANFD0_CLOCK_CAN4	CANO, Channel #4
5	PCLK_CANFD1_CLOCK_CAN0	CAN1, Channel #0
6	PCLK_CANFD1_CLOCK_CAN1	CAN1, Channel #1
7	PCLK_CANFD1_CLOCK_CAN2	CAN1, Channel #2
8	PCLK_CANFD1_CLOCK_CAN3	CAN1, Channel #3
9	PCLK_CANFD1_CLOCK_CAN4	CAN1, Channel #4
10	PCLK_LIN0_CLOCK_CH_EN0	LIN0, Channel #0
11	PCLK_LIN0_CLOCK_CH_EN1	LIN0, Channel #1
12	PCLK_LIN0_CLOCK_CH_EN2	LIN0, Channel #2
13	PCLK_LIN0_CLOCK_CH_EN3	LIN0, Channel #3
14	PCLK_LIN0_CLOCK_CH_EN4	LIN0, Channel #4
15	PCLK_LIN0_CLOCK_CH_EN5	LIN0, Channel #5
16	PCLK_LIN0_CLOCK_CH_EN6	LIN0, Channel #6
17	PCLK_LIN0_CLOCK_CH_EN7	LIN0, Channel #7
18	PCLK_LIN0_CLOCK_CH_EN8	LIN0, Channel #8
19	PCLK_LIN0_CLOCK_CH_EN9	LIN0, Channel #9
20	PCLK_LIN0_CLOCK_CH_EN10	LIN0, Channel #10
21	PCLK_LIN0_CLOCK_CH_EN11	LIN0, Channel #11

Based on Arm® Cortex®-M7 dual

Table 21-1 Peripheral clock assignments (continued)

Output	Destination	Description
22	PCLK_LIN0_CLOCK_CH_EN12	LINO, Channel #12
23	PCLK_LIN0_CLOCK_CH_EN13	LINO, Channel #13
24	PCLK_LIN0_CLOCK_CH_EN14	LINO, Channel #14
25	PCLK_LIN0_CLOCK_CH_EN15	LINO, Channel #15
26	PCLK_LIN0_CLOCK_CH_EN16	LINO, Channel #16
27	PCLK_LINO_CLOCK_CH_EN17	LINO, Channel #17
28	PCLK_LINO_CLOCK_CH_EN18	LINO, Channel #18
29	PCLK_LIN0_CLOCK_CH_EN19	LINO, Channel #19
30	PCLK_SCB0_CLOCK	SCB0
31	PCLK_SCB1_CLOCK	SCB1
32	PCLK_SCB2_CLOCK	SCB2
33	PCLK_SCB3_CLOCK	SCB3
34	PCLK_SCB4_CLOCK	SCB4
35	PCLK_SCB5_CLOCK	SCB5
36	PCLK_SCB6_CLOCK	SCB6
37	PCLK_SCB7_CLOCK	SCB7
38	PCLK_SCB8_CLOCK	SCB8
39	PCLK_SCB9_CLOCK	SCB9
40	PCLK_SCB10_CLOCK	SCB10
41	PCLK_FLEXRAY0_CLK_FLEXRAY	FlexRay0 clock
42	PCLK_PASS0_CLOCK_SAR0	SAR0
43	PCLK_PASS0_CLOCK_SAR1	SAR1
44	PCLK_PASS0_CLOCK_SAR2	SAR2
45	PCLK_TCPWM1_CLOCKS0	TCPWM1 Group #0, Counter #0
46	PCLK_TCPWM1_CLOCKS1	TCPWM1 Group #0, Counter #1
47	PCLK_TCPWM1_CLOCKS2	TCPWM1 Group #0, Counter #2
48	PCLK_TCPWM1_CLOCKS3	TCPWM1 Group #0, Counter #3
49	PCLK_TCPWM1_CLOCKS4	TCPWM1 Group #0, Counter #4
50	PCLK_TCPWM1_CLOCKS5	TCPWM1 Group #0, Counter #5
51	PCLK_TCPWM1_CLOCKS6	TCPWM1 Group #0, Counter #6
52	PCLK_TCPWM1_CLOCKS7	TCPWM1 Group #0, Counter #7
53	PCLK_TCPWM1_CLOCKS8	TCPWM1 Group #0, Counter #8
54	PCLK_TCPWM1_CLOCKS9	TCPWM1 Group #0, Counter #9
55	PCLK_TCPWM1_CLOCKS10	TCPWM1 Group #0, Counter #10
56	PCLK_TCPWM1_CLOCKS11	TCPWM1 Group #0, Counter #11
57	PCLK_TCPWM1_CLOCKS12	TCPWM1 Group #0, Counter #12
58	PCLK_TCPWM1_CLOCKS13	TCPWM1 Group #0, Counter #13
59	PCLK_TCPWM1_CLOCKS14	TCPWM1 Group #0, Counter #14
60	PCLK_TCPWM1_CLOCKS15	TCPWM1 Group #0, Counter #15
61	PCLK_TCPWM1_CLOCKS16	TCPWM1 Group #0, Counter #16
62	PCLK_TCPWM1_CLOCKS17	TCPWM1 Group #0, Counter #17

Based on Arm® Cortex®-M7 dual

Table 21-1 Peripheral clock assignments (continued)

Output	Destination	Description
63	PCLK_TCPWM1_CLOCKS18	TCPWM1 Group #0, Counter #18
64	PCLK_TCPWM1_CLOCKS19	TCPWM1 Group #0, Counter #19
65	PCLK_TCPWM1_CLOCKS20	TCPWM1 Group #0, Counter #20
66	PCLK_TCPWM1_CLOCKS21	TCPWM1 Group #0, Counter #21
67	PCLK_TCPWM1_CLOCKS22	TCPWM1 Group #0, Counter #22
68	PCLK_TCPWM1_CLOCKS23	TCPWM1 Group #0, Counter #23
69	PCLK_TCPWM1_CLOCKS24	TCPWM1 Group #0, Counter #24
70	PCLK_TCPWM1_CLOCKS25	TCPWM1 Group #0, Counter #25
71	PCLK_TCPWM1_CLOCKS26	TCPWM1 Group #0, Counter #26
72	PCLK_TCPWM1_CLOCKS27	TCPWM1 Group #0, Counter #27
73	PCLK_TCPWM1_CLOCKS28	TCPWM1 Group #0, Counter #28
74	PCLK_TCPWM1_CLOCKS29	TCPWM1 Group #0, Counter #29
75	PCLK_TCPWM1_CLOCKS30	TCPWM1 Group #0, Counter #30
76	PCLK_TCPWM1_CLOCKS31	TCPWM1 Group #0, Counter #31
77	PCLK_TCPWM1_CLOCKS32	TCPWM1 Group #0, Counter #32
78	PCLK_TCPWM1_CLOCKS33	TCPWM1 Group #0, Counter #33
79	PCLK_TCPWM1_CLOCKS34	TCPWM1 Group #0, Counter #34
80	PCLK_TCPWM1_CLOCKS35	TCPWM1 Group #0, Counter #35
81	PCLK_TCPWM1_CLOCKS36	TCPWM1 Group #0, Counter #36
82	PCLK_TCPWM1_CLOCKS37	TCPWM1 Group #0, Counter #37
83	PCLK_TCPWM1_CLOCKS38	TCPWM1 Group #0, Counter #38
84	PCLK_TCPWM1_CLOCKS39	TCPWM1 Group #0, Counter #39
85	PCLK_TCPWM1_CLOCKS40	TCPWM1 Group #0, Counter #40
86	PCLK_TCPWM1_CLOCKS41	TCPWM1 Group #0, Counter #41
87	PCLK_TCPWM1_CLOCKS42	TCPWM1 Group #0, Counter #42
88	PCLK_TCPWM1_CLOCKS43	TCPWM1 Group #0, Counter #43
89	PCLK_TCPWM1_CLOCKS44	TCPWM1 Group #0, Counter #44
90	PCLK_TCPWM1_CLOCKS45	TCPWM1 Group #0, Counter #45
91	PCLK_TCPWM1_CLOCKS46	TCPWM1 Group #0, Counter #46
92	PCLK_TCPWM1_CLOCKS47	TCPWM1 Group #0, Counter #47
93	PCLK_TCPWM1_CLOCKS48	TCPWM1 Group #0, Counter #48
94	PCLK_TCPWM1_CLOCKS49	TCPWM1 Group #0, Counter #49
95	PCLK_TCPWM1_CLOCKS50	TCPWM1 Group #0, Counter #50
96	PCLK_TCPWM1_CLOCKS51	TCPWM1 Group #0, Counter #51
97	PCLK_TCPWM1_CLOCKS52	TCPWM1 Group #0, Counter #52
98	PCLK_TCPWM1_CLOCKS53	TCPWM1 Group #0, Counter #53
99	PCLK_TCPWM1_CLOCKS54	TCPWM1 Group #0, Counter #54
100	PCLK_TCPWM1_CLOCKS55	TCPWM1 Group #0, Counter #55
101	PCLK_TCPWM1_CLOCKS56	TCPWM1 Group #0, Counter #56
102	PCLK_TCPWM1_CLOCKS57	TCPWM1 Group #0, Counter #57
103	PCLK_TCPWM1_CLOCKS58	TCPWM1 Group #0, Counter #58

Based on Arm® Cortex®-M7 dual

Table 21-1 Peripheral clock assignments (continued)

Output	Destination	Description
104	PCLK_TCPWM1_CLOCKS59	TCPWM1 Group #0, Counter #59
105	PCLK_TCPWM1_CLOCKS60	TCPWM1 Group #0, Counter #60
106	PCLK_TCPWM1_CLOCKS61	TCPWM1 Group #0, Counter #61
107	PCLK_TCPWM1_CLOCKS62	TCPWM1 Group #0, Counter #62
108	PCLK_TCPWM1_CLOCKS63	TCPWM1 Group #0, Counter #62
109	PCLK_TCPWM1_CLOCKS64	TCPWM1 Group #0, Counter #64
110	PCLK_TCPWM1_CLOCKS65	TCPWM1 Group #0, Counter #65
111	PCLK_TCPWM1_CLOCKS66	TCPWM1 Group #0, Counter #66
112	PCLK_TCPWM1_CLOCKS67	TCPWM1 Group #0, Counter #67
113	PCLK_TCPWM1_CLOCKS68	TCPWM1 Group #0, Counter #68
114	PCLK_TCPWM1_CLOCKS69	TCPWM1 Group #0, Counter #69
115	PCLK_TCPWM1_CLOCKS70	TCPWM1 Group #0, Counter #70
116	PCLK_TCPWM1_CLOCKS71	TCPWM1 Group #0, Counter #71
117	PCLK_TCPWM1_CLOCKS72	TCPWM1 Group #0, Counter #72
118	PCLK_TCPWM1_CLOCKS73	TCPWM1 Group #0, Counter #72
119	PCLK_TCPWM1_CLOCKS74	TCPWM1 Group #0, Counter #74
120	PCLK_TCPWM1_CLOCKS75	TCPWM1 Group #0, Counter #75
121	PCLK_TCPWM1_CLOCKS76	TCPWM1 Group #0, Counter #76
122	PCLK_TCPWM1_CLOCKS77	TCPWM1 Group #0, Counter #77
123	PCLK_TCPWM1_CLOCKS78	TCPWM1 Group #0, Counter #77
124	PCLK_TCPWM1_CLOCKS79	TCPWM1 Group #0, Counter #79
125	PCLK_TCPWM1_CLOCKS80	TCPWM1 Group #0, Counter #80
126	PCLK_TCPWM1_CLOCKS81	TCPWM1 Group #0, Counter #81
127	PCLK_TCPWM1_CLOCKS82	TCPWM1 Group #0, Counter #82
128	PCLK_TCPWM1_CLOCKS83	TCPWM1 Group #0, Counter #83
129	PCLK_TCPWM1_CLOCKS256	TCPWM1 Group #1, Counter #0
130	PCLK_TCPWM1_CLOCKS257	TCPWM1 Group #1, Counter #1
131	PCLK_TCPWM1_CLOCKS258	TCPWM1 Group #1, Counter #2
132	PCLK_TCPWM1_CLOCKS259	TCPWM1 Group #1, Counter #3
133	PCLK_TCPWM1_CLOCKS260	TCPWM1 Group #1, Counter #4
134	PCLK_TCPWM1_CLOCKS261	TCPWM1 Group #1, Counter #5
135	PCLK_TCPWM1_CLOCKS262	TCPWM1 Group #1, Counter #6
136	PCLK_TCPWM1_CLOCKS263	TCPWM1 Group #1, Counter #7
137	PCLK_TCPWM1_CLOCKS264	TCPWM1 Group #1, Counter #8
138	PCLK_TCPWM1_CLOCKS265	TCPWM1 Group #1, Counter #9
139	PCLK_TCPWM1_CLOCKS266	TCPWM1 Group #1, Counter #10
140	PCLK_TCPWM1_CLOCKS267	TCPWM1 Group #1, Counter #11
141	PCLK_TCPWM1_CLOCKS512	TCPWM1 Group #2, Counter #0
142	PCLK_TCPWM1_CLOCKS513	TCPWM1 Group #2, Counter #1
143	PCLK_TCPWM1_CLOCKS514	TCPWM1 Group #2, Counter #2
144	PCLK_TCPWM1_CLOCKS515	TCPWM1 Group #2, Counter #3

Based on Arm® Cortex®-M7 dual

Table 21-1 Peripheral clock assignments (continued)

Output	Destination	Description
145	PCLK_TCPWM1_CLOCKS516	TCPWM1 Group #2, Counter #4
146	PCLK_TCPWM1_CLOCKS517	TCPWM1 Group #2, Counter #5
147	PCLK_TCPWM1_CLOCKS518	TCPWM1 Group #2, Counter #6
148	PCLK_TCPWM1_CLOCKS519	TCPWM1 Group #2, Counter #7
149	PCLK_TCPWM1_CLOCKS520	TCPWM1 Group #2, Counter #8
150	PCLK_TCPWM1_CLOCKS521	TCPWM1 Group #2, Counter #9
151	PCLK_TCPWM1_CLOCKS522	TCPWM1 Group #2, Counter #10
152	PCLK_TCPWM1_CLOCKS523	TCPWM1 Group #2, Counter #11
153	PCLK_TCPWM1_CLOCKS524	TCPWM1 Group #2, Counter #12

Based on Arm® Cortex®-M7 dual

Faults

22 **Faults**

Fault assignments Table 22-1

Fault	Source	Description
0	CPUSS_MPU_VIO_0	CM0+ SMPU violation DATA0[31:0]: Violating address. DATA1[0]: User read. DATA1[1]: User write. DATA1[2]: User execute. DATA1[3]: Privileged read. DATA1[4]: Privileged write. DATA1[5]: Privileged write. DATA1[5]: Non-secure. DATA1[6]: Non-secure. DATA1[11:8]: Master identifier. DATA1[15:12]: Protection context identifier. DATA1[31]: '0' MPU violation; '1': SMPU violation.
1	CPUSS_MPU_VIO_1	CRYPTO SMPU violation. See CPUSS_MPU_VIO_0 description.
2	CPUSS_MPU_VIO_2	P-DMA0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
3	CPUSS_MPU_VIO_3	P-DMA1 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
4	CPUSS_MPU_VIO_4	M-DMA0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
5	CPUSS_MPU_VIO_5	SDHC MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
9	CPUSS_MPU_VIO_9	Ethernet0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
10	CPUSS_MPU_VIO_10	Ethernet1 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
13	CPUSS_MPU_VIO_13	CM7_1 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
14	CPUSS_MPU_VIO_14	CM7_0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
15	CPUSS_MPU_VIO_15	Test Controller MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
16	CPUSS_CM7_1_TCM_C_ECC	Correctable ECC error in CM7_1 TCM memory DATA0[23:2]: Violating address. DATA1[7:0]: Syndrome of code word (at address offset 0x0). DATA1[31:30]: 0= ITCM, 2=D0TCM, 3=D1TCM
17	CPUSS_CM7_1_TCM_NC_ECC	Non Correctable ECC error in CM7_1 TCM memory. See CPUSS_CM7_1_TCM_C_ECC description.
18	CPUSS_CM7_0_CACHE_C_ECC	Correctable ECC error in CM7_0 Cache memories DATA0[16:2]: location information: Tag/Data SRAM, Way, Index and line Offset, see CM7 UGRM IEBR0/DEBR0 description for details. DATA0[31]: 0=Instruction cache, 1= Data cache
19	CPUSS_CM7_0_CACHE_NC_ECC	Non Correctable ECC error in CM7_0 Cache memories. See CPUSS_CM7_0_CACHE_C_ECC description.
20	CPUSS_CM7_1_CACHE_C_ECC	Correctable ECC error in CM7_1 Cache memories. See CPUSS_CM7_0_CACHE_C_ECC description.
21	CPUSS_CM7_1_CACHE_NC_ECC	Non Correctable ECC error in CM7_1 Cache memories. See CPUSS_CM7_0_CACHE_C_ECC description.
25	PERI_MS_VIO_4	P-DMA1 Peripheral Master Interface PPU violation. See PERI_MS_VIO_0 description.
26	PERI_PERI_C_ECC	Peripheral protection SRAM correctable ECC violation DATAO[10:0]: Violating address. DATA1[7:0]: Syndrome of SRAM word.
27	PERI_PERI_NC_ECC	Peripheral protection SRAM non-correctable ECC violation
28	PERI_MS_VIO_0	CM0+ Peripheral Master Interface PPU violation DATA0[31:0]: Violating address. DATA1[0]: User read. DATA1[1]: User write. DATA1[2]: User execute. DATA1[3]: Privileged read. DATA1[4]: Privileged write. DATA1[5]: Privileged write. DATA1[5]: Non-secure. DATA1[6]: Non-secure. DATA1[11:8]: Master identifier. DATA1[15:12]: Protection context identifier. DATA1[31:28]: "0": master interface, PPU violation, "1': timeout detected, "2": bus error, other: undefined.
29	PERI_MS_VIO_1	CM7_0 Peripheral Master Interface PPU violation. See PERI_MS_VIO_0 description.
30	PERI_MS_VIO_2	CM7_1 Peripheral Master Interface PPU violation. See PERI_MS_VIO_0 description.

Based on Arm® Cortex®-M7 dual

Faults

Table 22-1 Fault assignments (continued)

Fault	Source	Description		
31	PERI_MS_VIO_3	P-DMA0 Peripheral Master Interface PPU_3 violation. See PERI_MS_VIO_0 description.		
32	PERI_GROUP_VIO_0	Peripheral Group #0 violation. DATA0[31:0]: Violating address. DATA1[0]: User read. DATA1[1]: User write. DATA1[1]: User execute. DATA1[3]: Privileged read. DATA1[4]: Privileged write. DATA1[5]: Privileged write. DATA1[6]: Non-secure. DATA1[6]: Non-secure. DATA1[11:8]: Master identifier. DATA1[15:12]: Protection context identifier. DATA1[31:23]: "0": decoder or peripheral bus error, other: undefined.		
33	PERI_GROUP_VIO_1	Peripheral Group #1 violation. See PERI_GROUP_VIO_0 description.		
34	PERI_GROUP_VIO_2	Peripheral Group #2 violation. See PERI_GROUP_VIO_0 description.		
35	PERI_GROUP_VIO_3	Peripheral Group #3 violation. See PERI_GROUP_VIO_0 description.		
36	PERI_GROUP_VIO_4	Peripheral Group #4 violation. See PERI_GROUP_VIO_0 description.		
37	PERI_GROUP_VIO_5	Peripheral Group #5 violation. See PERI_GROUP_VIO_0 description.		
38	PERI_GROUP_VIO_6	Peripheral Group #6 violation. See PERI_GROUP_VIO_0 description.		
40	PERI_GROUP_VIO_8	Peripheral Group #8 violation. See PERI_GROUP_VIO_0 description.		
41	PERI_GROUP_VIO_9	Peripheral Group #9 violation. See PERI_GROUP_VIO_0 description.		
48	CPUSS_FLASHC_MAIN_BUS_ERR	Flash controller main flash bus error FAULT_DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit system address. FAULT_DATA1[11:8]: Master identifier.		
49	CPUSS_FLASHC_MAIN_C_ECC	Flash controller main flash correctable ECC violation DATA[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit system address. DATA1[7:0]: Syndrome of 64-bit word (at address offset 0x00). DATA1[15:8]: Syndrome of 64-bit word (at address offset 0x08). DATA1[23:16]: Syndrome of 64-bit word (at address offset 0x10). DATA1[31:24]: Syndrome of 64-bit word (at address offset 0x18).		
50	CPUSS_FLASHC_MAIN_NC_ECC	Flash controller main flash non-correctable ECC violation. See CPUSS_FLASHC_MAIN_C_ECC description.		
51	CPUSS_FLASHC_WORK_BUS_ERR	Flash controller work-flash bus error. See CPUSS_FLASHC_MAIN_BUS_ERR description.		
52	CPUSS_FLASHC_WORK_C_ECC	Flash controller work flash correctable ECC violation. DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit system address. DATA1[6:0]: Syndrome of 32-bit word.		
53	CPUSS_FLASHC_WORK_NC_ECC	Flash controller work-flash non-correctable ECC violation. See CPUSS_FLASHC_WORK_C_ECC description.		
54	CPUSS_FLASHC_CM0_CA_C_ECC	Flash controller CM0+ cache correctable ECC violation. DATA0[26:0]: Violating address. DATA1[6:0]: Syndrome of 32-bit SRAM word (at address offset 0x0). DATA1[14:8]: Syndrome of 32-bit SRAM word (at address offset 0x4). DATA1[22:16]: Syndrome of 32-bit SRAM word (at address offset 0x8). DATA1[30:24]: Syndrome of 32-bit SRAM word (at address offset 0xc).		
55	CPUSS_FLASHC_CM0_CA_NC_ECC	Flash controller CM0+ cache non-correctable ECC violation. See CPUSS_FLASHC_CM0_CA_C_ECC description.		
56	CPUSS_CM7_0_TCM_C_ECC	CPU CM7_0 TCM memory correctable ECC violation. See CPUSS_CM7_1_TCM_C_ECC description.		
57	CPUSS_CM7_0_TCM_NC_ECC	CPU CM7_0 TCM memory non-correctable ECC violation. See CPUSS_CM7_1_TCM_C_ECC description.		
58	CPUSS_RAMCO_C_ECC	System memory controller 0 correctable ECC violation: DATA0[31:0]: Violating address. DATA1[6:0]: Syndrome of 32-bit SRAM code word.		
59	CPUSS_RAMCO_NC_ECC	System memory controller 0 non-correctable ECC violation. See CPUSS_RAMCO_C_ECC description.		
60	CPUSS_RAMC1_C_ECC	System memory controller 1 correctable ECC violation. See CPUSS_RAMCO_C_ECC description.		
61	CPUSS_RAMC1_NC_ECC	System memory controller 1 non-correctable ECC violation. See CPUSS_RAMCO_C_ECC description.		

Based on Arm® Cortex®-M7 dual

Faults

Table 22-1 Fault assignments (continued)

Fault	Source	Description
62	CPUSS_RAMC2_C_ECC	System memory controller 2 correctable ECC violation. See CPUSS_RAMCO_C_ECC description.
63	CPUSS_RAMC2_NC_ECC	System memory controller 2 non-correctable ECC violation. See CPUSS_RAMCO_C_ECC description.
64	CPUSS_CRYPTO_C_ECC	Crypto memory correctable ECC violation. DATA0[31:0]: Violating address. DATA1[6:0]: Syndrome of Least Significant 32-bit SRAM. DATA1[14:8]: Syndrome of Most Significant 32-bit SRAM.
65	CPUSS_CRYPTO_NC_ECC	CRYPTO memory non-correctable ECC violation. See CPUSS_CRYPTO_C_ECC description.
70	CPUSS_DW0_C_ECC	P-DMA0 memory correctable ECC violation: DATA0[11:0]: Violating DW SRAM address (word address, assuming byte addressable). DATA1[6:0]: Syndrome of 32-bit SRAM code word.
71	CPUSS_DW0_NC_ECC	P-DMA0 memory non-correctable ECC violation. See CPUSS_DW0_C_ECC description.
72	CPUSS_DW1_C_ECC	P-DMA1 memory correctable ECC violation. See CPUSS_DW0_C_ECC description.
73	CPUSS_DW1_NC_ECC	P-DMA1 memory non-correctable ECC violation. See CPUSS_DW0_C_ECC description.
74	CPUSS_FM_SRAM_C_ECC	Flash code storage SRAM memory correctable ECC violation: DATA0[15:0]: Address location in the eCT Flash SRAM. DATA1[6:0]: Syndrome of 32-bit SRAM word.
75	CPUSS_FM_SRAM_NC_ECC	Flash code storage SRAM memory non-correctable ECC violation: See CPUSS_FM_SRAMC_C_ECC description.
80	CANFD_0_CAN_C_ECC	CANO message buffer correctable ECC violation: DATA0[15:0]: Violating address. DATA0[22:16]: ECC violating data[38:32] from MRAM. DATA0[27:24]: Master ID: 0-7 = CAN channel ID within mxttcanfd cluster, 8 = AHB I/F DATA1[31:0]: ECC violating data[31:0] from MRAM.
81	CANFD_0_CAN_NC_ECC	CANO message buffer non-correctable ECC violation: DATA0[15:0]: Violating address. DATA0[22:16]: ECC violating data[38:32] from MRAM (not for Address Error). DATA0[27:24]: Master ID: 0-7 = CAN channel ID within mxttcanfd cluster, 8 = AHB I/F DATA0[30]: Write access, only possible for Address Error DATA0[31]: Address Error: a CAN channel did an MRAM access above MRAM_SIZE DATA1[31:0]: ECC violating data[31:0] from MRAM (not for Address Error).
82	CANFD_1_CAN_C_ECC	CAN1 message buffer correctable ECC violation. See CANFD_0_CAN_C_ECC description.
83	CANFD_1_CAN_NC_ECC	CAN1 message buffer non-correctable ECC violation. See CANFD_0_CAN_NC_ECC description.
90	SRSS_FAULT_CSV	Consolidated fault output for clock supervisors. Multiple CSV can detect a violation at the same time. DATA0[15:0]: CLK_HF* root CSV violation flags. DATA0[24]: CLK_REF CSV violation flag (reference clock for CLK_HF CSVs) DATA0[25]: CLK_LF CSV violation flag DATA0[26]: CLK_HVILO CSV violation flag
91	SRSS_FAULT_SSV	Consolidated fault output for supply supervisors. Multiple CSV can detect a violation at the same time. DATA0[0]: BOD on VDDA DATA[1]: OVD on VDDA DATA[16]: LVD/HVD #1 DATA0[17]: LVD/HVD #2
92	SRSS_FAULT_MCWDT0	Fault output for MCWDT0 (all sub-counters) Multiple counters can detect a violation at the same time. DATA0[0]: MCWDT sub counter 0 LOWER_LIMIT DATA0[1]: MCWDT sub counter 0 UPPER_LIMIT DATA0[2]: MCWDT sub counter 1 LOWER_LIMIT DATA0[3]: MCWDT sub counter 1 UPPER_LIMIT
93	SRSS_FAULT_MCWDT1	Fault output for MCWDT1 (all sub-counters). See SRSS_FAULT_MCWDT0 description.
94	SRSS_FAULT_MCWDT2	Fault output for MCWDT2 (all sub-counters). See SRSS_FAULT_MCWDT0 description.

Peripheral protection unit fixed structure pairs 23

Protection pair is a pair PPU structures, a master, and a slave structure. The master structure protects the slave structure, and the slave structure protects resources such as peripheral registers, or the peripheral itself.

Table 23-1 PPU fixed structure pairs

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
0	PERI_MS_PPU_FX_PERI_MAIN	0x40000200	0x00000040	Peripheral Interconnect main
1	PERI_MS_PPU_FX_PERI_SECURE	0x40002000	0x00000004	Peripheral interconnect secure
2	PERI_MS_PPU_FX_PERI_GR0_GROUP	0x40004010	0x00000004	Peripheral Group #0 main
3	PERI_MS_PPU_FX_PERI_GR1_GROUP	0x40004050	0x00000004	Peripheral Group #1 main
4	PERI_MS_PPU_FX_PERI_GR2_GROUP	0x40004090	0x00000004	Peripheral Group #2 main
5	PERI_MS_PPU_FX_PERI_GR3_GROUP	0x400040C0	0x00000020	Peripheral Group #3 main
6	PERI_MS_PPU_FX_PERI_GR4_GROUP	0x40004100	0x00000020	Peripheral Group #4 main
7	PERI_MS_PPU_FX_PERI_GR5_GROUP	0x40004140	0x00000020	Peripheral Group #5 main
8	PERI_MS_PPU_FX_PERI_GR6_GROUP	0x40004180	0x00000020	Peripheral Group #6 main
9	PERI_MS_PPU_FX_PERI_GR8_GROUP	0x40004200	0x00000020	Peripheral Group #8 main
10	PERI_MS_PPU_FX_PERI_GR9_GROUP	0x40004240	0x00000020	Peripheral Group #9 main
11	PERI_MS_PPU_FX_PERI_GR0_BOOT	0x40004020	0x00000004	Peripheral Group #0 boot
12	PERI_MS_PPU_FX_PERI_GR1_BOOT	0x40004060	0x00000004	Peripheral Group #1 boot
13	PERI_MS_PPU_FX_PERI_GR2_BOOT	0x400040A0	0x00000004	Peripheral Group #2 boot
14	PERI_MS_PPU_FX_PERI_GR3_BOOT	0x400040E0	0x00000004	Peripheral Group #3 boot
15	PERI_MS_PPU_FX_PERI_GR4_BOOT	0x40004120	0x00000004	Peripheral Group #4 boot
16	PERI_MS_PPU_FX_PERI_GR5_BOOT	0x40004160	0x00000004	Peripheral Group #5 boot
17	PERI_MS_PPU_FX_PERI_GR6_BOOT	0x400041A0	0x00000004	Peripheral Group #6 boot
18	PERI_MS_PPU_FX_PERI_GR8_BOOT	0x40004220	0x00000004	Peripheral Group #8 boot
19	PERI_MS_PPU_FX_PERI_GR9_BOOT	0x40004260	0x00000004	Peripheral Group #9 boot
20	PERI_MS_PPU_FX_PERI_TR	0x40008000	0x00008000	Peripheral trigger multiplexer
21	PERI_MS_PPU_FX_PERI_MS_BOOT	0x40030000	0x00001000	Peripheral master slave boot
22	PERI_MS_PPU_FX_PERI_PCLK_MAIN	0x40040000	0x00004000	Peripheral clock main
23	PERI_MS_PPU_FX_CRYPTO_MAIN	0x40100000	0x00000400	Crypto main
24	PERI_MS_PPU_FX_CRYPTO_CRYPTO	0x40101000	0x00000800	Crypto MMIO (Memory Mapped I/O)
25	PERI_MS_PPU_FX_CRYPTO_BOOT	0x40102000	0x00000100	Crypto boot
26	PERI_MS_PPU_FX_CRYPTO_KEY0	0x40102100	0x00000004	Crypto Key #0
27	PERI_MS_PPU_FX_CRYPTO_KEY1	0x40102120	0x00000004	Crypto Key #1
28	PERI_MS_PPU_FX_CRYPTO_BUF	0x40108000	0x00002000	Crypto buffer
29	PERI_MS_PPU_FX_CPUSS_CM7_0	0x40200000	0x00000400	CM7_0 CPU core
30	PERI_MS_PPU_FX_CPUSS_CM7_1	0x40200400	0x00000400	CM7_1 CPU core
31	PERI_MS_PPU_FX_CPUSS_CM0	0x40201000	0x00001000	CM0+ CPU core
32	PERI_MS_PPU_FX_CPUSS_BOOT ^[34]	0x40202000	0x00000200	CPUSS boot
33	PERI_MS_PPU_FX_CPUSS_CM0_INT	0x40208000	0x00001000	CPUSS CM0+ interrupts
34	PERI_MS_PPU_FX_CPUSS_CM7_0_INT	0x4020A000	0x00001000	CPUSS CM7_0 interrupts
35	PERI_MS_PPU_FX_CPUSS_CM7_1_INT	0x4020C000	0x00001000	CPUSS CM7_1 interrupts
36	PERI_MS_PPU_FX_FAULT_STRUCTO_MAIN	0x40210000	0x00000100	CPUSS Fault Structure #0 main
37	PERI_MS_PPU_FX_FAULT_STRUCT1_MAIN	0x40210100	0x00000100	CPUSS Fault Structure #1 main
38	PERI_MS_PPU_FX_FAULT_STRUCT2_MAIN	0x40210200	0x00000100	CPUSS Fault Structure #2 main
39	PERI_MS_PPU_FX_FAULT_STRUCT3_MAIN	0x40210300	0x00000100	CPUSS Fault Structure #3 main
40	PERI_MS_PPU_FX_IPC_STRUCT0_IPC	0x40220000	0x00000020	CPUSS IPC Structure #0

Based on Arm® Cortex®-M7 dual

Peripheral protection unit fixed structure pairs

 Table 23-1
 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
41	PERI_MS_PPU_FX_IPC_STRUCT1_IPC	0x40220020	0x00000020	CPUSS IPC Structure #1
42	PERI_MS_PPU_FX_IPC_STRUCT2_IPC	0x40220040	0x00000020	CPUSS IPC Structure #2
43	PERI_MS_PPU_FX_IPC_STRUCT3_IPC	0x40220060	0x00000020	CPUSS IPC Structure #3
44	PERI_MS_PPU_FX_IPC_STRUCT4_IPC	0x40220080	0x00000020	CPUSS IPC Structure #4
45	PERI_MS_PPU_FX_IPC_STRUCT5_IPC	0x402200A0	0x00000020	CPUSS IPC Structure #5
46	PERI_MS_PPU_FX_IPC_STRUCT6_IPC	0x402200C0	0x00000020	CPUSS IPC Structure #6
47	PERI_MS_PPU_FX_IPC_STRUCT7_IPC	0x402200E0	0x00000020	CPUSS IPC Structure #7
48	PERI_MS_PPU_FX_IPC_INTR_STRUCT0_INTR	0x40221000	0x00000010	CPUSS IPC Interrupt Structure #0
49	PERI_MS_PPU_FX_IPC_INTR_STRUCT1_INTR	0x40221020	0x00000010	CPUSS IPC Interrupt Structure #1
50	PERI_MS_PPU_FX_IPC_INTR_STRUCT2_INTR	0x40221040	0x00000010	CPUSS IPC Interrupt Structure #2
51	PERI_MS_PPU_FX_IPC_INTR_STRUCT3_INTR	0x40221060	0x00000010	CPUSS IPC Interrupt Structure #3
52	PERI_MS_PPU_FX_IPC_INTR_STRUCT4_INTR	0x40221080	0x00000010	CPUSS IPC Interrupt Structure #4
53	PERI_MS_PPU_FX_IPC_INTR_STRUCT5_INTR	0x402210A0	0x00000010	CPUSS IPC Interrupt Structure #5
54	PERI_MS_PPU_FX_IPC_INTR_STRUCT6_INTR	0x402210C0	0x00000010	CPUSS IPC Interrupt Structure #6
55	PERI_MS_PPU_FX_IPC_INTR_STRUCT7_INTR	0x402210E0	0x00000010	CPUSS IPC Interrupt Structure #7
56	PERI_MS_PPU_FX_PROT_SMPU_MAIN	0x40230000	0x00000040	Peripheral protection SMPU main
57	PERI_MS_PPU_FX_PROT_MPU0_MAIN	0x40234000	0x00000004	Peripheral protection MPU #0 main
58	PERI_MS_PPU_FX_PROT_MPU5_MAIN	0x40235400	0x00000400	Peripheral protection MPU #5 main
59	PERI_MS_PPU_FX_PROT_MPU9_MAIN	0x40236400	0x00000400	Peripheral protection MPU #9 main
60	PERI_MS_PPU_FX_PROT_MPU10_MAIN	0x40236800	0x00000400	Peripheral protection MPU #10 main
61	PERI_MS_PPU_FX_PROT_MPU13_MAIN	0x40237400	0x00000004	Peripheral protection MPU #13 main
62	PERI_MS_PPU_FX_PROT_MPU14_MAIN	0x40237800	0x00000004	Peripheral protection MPU #14 main
63	PERI_MS_PPU_FX_PROT_MPU15_MAIN	0x40237C00	0x00000400	Peripheral protection MPU #15 main
64	PERI_MS_PPU_FX_FLASHC_MAIN	0x40240000	0x00000008	Flash controller main
65	PERI_MS_PPU_FX_FLASHC_CMD	0x40240008	0x00000004	Flash controller command
66	PERI_MS_PPU_FX_FLASHC_DFT	0x40240200	0x00000100	Flash controller tests
67	PERI_MS_PPU_FX_FLASHC_CM0	0x40240400	0x00000080	Flash controller CM0+
68	PERI_MS_PPU_FX_FLASHC_CM7_0	0x402404E0	0x00000004	Flash controller CM7_0
69	PERI_MS_PPU_FX_FLASHC_CM7_1	0x40240560	0x00000004	Flash controller CM7_1
70	PERI_MS_PPU_FX_FLASHC_CRYPTO	0x40240580	0x00000004	Flash controller Crypto
71	PERI_MS_PPU_FX_FLASHC_DW0	0x40240600	0x00000004	Flash controller P-DMA0
72	PERI_MS_PPU_FX_FLASHC_DW1	0x40240680	0x00000004	Flash controller P-DMA1
73	PERI_MS_PPU_FX_FLASHC_DMAC	0x40240700	0x00000004	Flash controller M-DMA0
74	PERI_MS_PPU_FX_FLASHC_SLOW0	0x40240780	0x00000004	Flash External AHB-Lite Master 0
75	PERI_MS_PPU_FX_FLASHC_FlashMgmt ^[34]	0x4024F000	0x00000080	Flash management
76	PERI_MS_PPU_FX_FLASHC_MainSafety	0x4024F400	0x00000008	Flash controller code-flash safety
77	PERI_MS_PPU_FX_FLASHC_WorkSafety	0x4024F500	0x00000004	Flash controller work-flash safety
78	PERI_MS_PPU_FX_SRSS_GENERAL	0x40260000	0x00000400	SRSS General
79	PERI_MS_PPU_FX_SRSS_MAIN	0x40261000	0x00001000	SRSS main
80	PERI_MS_PPU_FX_SRSS_SECURE	0x40262000	0x00002000	SRSS secure
81	PERI_MS_PPU_FX_MCWDT0_CONFIG	0x40268000	0x00000080	MCWDT #0 configuration
82	PERI_MS_PPU_FX_MCWDT1_CONFIG	0x40268100	0x00000080	MCWDT #1 configuration

Note

34. Fixed PPU is configured inside the Boot and user is not allowed to change the attributes of this PPU.

Based on Arm® Cortex®-M7 dual

Infineon

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
83	PERI_MS_PPU_FX_MCWDT2_CONFIG	0x40268200	0x00000080	MCWDT #2 configuration
84	PERI_MS_PPU_FX_MCWDT0_MAIN	0x40268080	0x00000040	MCWDT #0 main
85	PERI_MS_PPU_FX_MCWDT1_MAIN	0x40268180	0x00000040	MCWDT #1 main
86	PERI_MS_PPU_FX_MCWDT2_MAIN	0x40268280	0x00000040	MCWDT #2 main
87	PERI_MS_PPU_FX_WDT_CONFIG	0x4026C000	0x00000020	System WDT configuration
88	PERI_MS_PPU_FX_WDT_MAIN	0x4026C040	0x00000020	System WDT main
89	PERI_MS_PPU_FX_BACKUP_BACKUP	0x40270000	0x00010000	SRSS backup
90	PERI_MS_PPU_FX_DW0_DW	0x40280000	0x00000100	P-DMA0 main
91	PERI_MS_PPU_FX_DW1_DW	0x40290000	0x00000100	P-DMA1 main
92	PERI_MS_PPU_FX_DW0_DW_CRC	0x40280100	0x00000080	P-DMA0 CRC
93	PERI_MS_PPU_FX_DW1_DW_CRC	0x40290100	0x00000080	P-DMA1 CRC
94	PERI_MS_PPU_FX_DW0_CH_STRUCT0_CH	0x40288000	0x00000040	P-DMA0 Channel #0
95	PERI_MS_PPU_FX_DW0_CH_STRUCT1_CH	0x40288040	0x00000040	P-DMA0 Channel #1
96	PERI_MS_PPU_FX_DW0_CH_STRUCT2_CH	0x40288080	0x00000040	P-DMA0 Channel #2
97	PERI_MS_PPU_FX_DW0_CH_STRUCT3_CH	0x402880C0	0x00000040	P-DMA0 Channel #3
98	PERI_MS_PPU_FX_DW0_CH_STRUCT4_CH	0x40288100	0x00000040	P-DMA0 Channel #4
99	PERI_MS_PPU_FX_DW0_CH_STRUCT5_CH	0x40288140	0x00000040	P-DMA0 Channel #5
100	PERI_MS_PPU_FX_DW0_CH_STRUCT6_CH	0x40288180	0x00000040	P-DMA0 Channel #6
101	PERI_MS_PPU_FX_DW0_CH_STRUCT7_CH	0x402881C0	0x00000040	P-DMA0 Channel #7
102	PERI_MS_PPU_FX_DW0_CH_STRUCT8_CH	0x40288200	0x00000040	P-DMA0 Channel #8
103	PERI_MS_PPU_FX_DW0_CH_STRUCT9_CH	0x40288240	0x00000040	P-DMA0 Channel #9
104	PERI_MS_PPU_FX_DW0_CH_STRUCT10_CH	0x40288280	0x00000040	P-DMA0 Channel #10
105	PERI_MS_PPU_FX_DW0_CH_STRUCT11_CH	0x402882C0	0x00000040	P-DMA0 Channel #11
106	PERI_MS_PPU_FX_DW0_CH_STRUCT12_CH	0x40288300	0x00000040	P-DMA0 Channel #12
107	PERI_MS_PPU_FX_DW0_CH_STRUCT13_CH	0x40288340	0x00000040	P-DMA0 Channel #13
108	PERI_MS_PPU_FX_DW0_CH_STRUCT14_CH	0x40288380	0x00000040	P-DMA0 Channel #14
109	PERI_MS_PPU_FX_DW0_CH_STRUCT15_CH	0x402883C0	0x00000040	P-DMA0 Channel #15
110	PERI_MS_PPU_FX_DW0_CH_STRUCT16_CH	0x40288400	0x00000040	P-DMA0 Channel #16
111	PERI_MS_PPU_FX_DW0_CH_STRUCT17_CH	0x40288440	0x00000040	P-DMA0 Channel #17
112	PERI_MS_PPU_FX_DW0_CH_STRUCT18_CH	0x40288480	0x00000040	P-DMA0 Channel #18
113	PERI_MS_PPU_FX_DW0_CH_STRUCT19_CH	0x402884C0	0x00000040	P-DMA0 Channel #19
114	PERI_MS_PPU_FX_DW0_CH_STRUCT20_CH	0x40288500	0x00000040	P-DMA0 Channel #20
115	PERI_MS_PPU_FX_DW0_CH_STRUCT21_CH	0x40288540	0x00000040	P-DMA0 Channel #21
116	PERI_MS_PPU_FX_DW0_CH_STRUCT22_CH	0x40288580	0x00000040	P-DMA0 Channel #22
117	PERI_MS_PPU_FX_DW0_CH_STRUCT23_CH	0x402885C0	0x00000040	P-DMA0 Channel #23
118	PERI_MS_PPU_FX_DW0_CH_STRUCT24_CH	0x40288600	0x00000040	P-DMA0 Channel #24
119	PERI_MS_PPU_FX_DW0_CH_STRUCT25_CH	0x40288640	0x00000040	P-DMA0 Channel #25
120	PERI_MS_PPU_FX_DW0_CH_STRUCT26_CH	0x40288680	0x00000040	P-DMA0 Channel #26
121	PERI_MS_PPU_FX_DW0_CH_STRUCT27_CH	0x402886C0	0x00000040	P-DMA0 Channel #27
122	PERI_MS_PPU_FX_DW0_CH_STRUCT28_CH	0x40288700	0x00000040	P-DMA0 Channel #28
123	PERI_MS_PPU_FX_DW0_CH_STRUCT29_CH	0x40288740	0x00000040	P-DMA0 Channel #29
124	PERI_MS_PPU_FX_DW0_CH_STRUCT30_CH	0x40288780	0x00000040	P-DMA0 Channel #30
125	PERI_MS_PPU_FX_DW0_CH_STRUCT31_CH	0x402887C0	0x00000040	P-DMA0 Channel #31
126	PERI_MS_PPU_FX_DW0_CH_STRUCT32_CH	0x40288800	0x00000040	P-DMA0 Channel #32
127	PERI_MS_PPU_FX_DW0_CH_STRUCT33_CH	0x40288840	0x00000040	P-DMA0 Channel #33

Infineon **TRAVEO™ T2G 32-bit Automotive MCU** Based on Arm® Cortex®-M7 dual Peripheral protection unit fixed structure pairs

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
128	PERI_MS_PPU_FX_DW0_CH_STRUCT34_CH	0x40288880	0x00000040	P-DMA0 Channel #34
129	PERI_MS_PPU_FX_DW0_CH_STRUCT35_CH	0x402888C0	0x00000040	P-DMA0 Channel #35
130	PERI_MS_PPU_FX_DW0_CH_STRUCT36_CH	0x40288900	0x00000040	P-DMA0 Channel #36
131	PERI_MS_PPU_FX_DW0_CH_STRUCT37_CH	0x40288940	0x00000040	P-DMA0 Channel #37
132	PERI_MS_PPU_FX_DW0_CH_STRUCT38_CH	0x40288980	0x00000040	P-DMA0 Channel #38
133	PERI_MS_PPU_FX_DW0_CH_STRUCT39_CH	0x402889C0	0x00000040	P-DMA0 Channel #39
134	PERI_MS_PPU_FX_DW0_CH_STRUCT40_CH	0x40288A00	0x00000040	P-DMA0 Channel #40
135	PERI_MS_PPU_FX_DW0_CH_STRUCT41_CH	0x40288A40	0x00000040	P-DMA0 Channel #41
136	PERI_MS_PPU_FX_DW0_CH_STRUCT42_CH	0x40288A80	0x00000040	P-DMA0 Channel #42
137	PERI_MS_PPU_FX_DW0_CH_STRUCT43_CH	0x40288AC0	0x00000040	P-DMA0 Channel #43
138	PERI_MS_PPU_FX_DW0_CH_STRUCT44_CH	0x40288B00	0x00000040	P-DMA0 Channel #44
139	PERI_MS_PPU_FX_DW0_CH_STRUCT45_CH	0x40288B40	0x00000040	P-DMA0 Channel #45
140	PERI_MS_PPU_FX_DW0_CH_STRUCT46_CH	0x40288B80	0x00000040	P-DMA0 Channel #46
141	PERI_MS_PPU_FX_DW0_CH_STRUCT47_CH	0x40288BC0	0x00000040	P-DMA0 Channel #47
142	PERI_MS_PPU_FX_DW0_CH_STRUCT48_CH	0x40288C00	0x00000040	P-DMA0 Channel #48
143	PERI_MS_PPU_FX_DW0_CH_STRUCT49_CH	0x40288C40	0x00000040	P-DMA0 Channel #49
144	PERI_MS_PPU_FX_DW0_CH_STRUCT50_CH	0x40288C80	0x00000040	P-DMA0 Channel #50
145	PERI_MS_PPU_FX_DW0_CH_STRUCT51_CH	0x40288CC0	0x00000040	P-DMA0 Channel #51
146	PERI_MS_PPU_FX_DW0_CH_STRUCT52_CH	0x40288D00	0x00000040	P-DMA0 Channel #52
147	PERI_MS_PPU_FX_DW0_CH_STRUCT53_CH	0x40288D40	0x00000040	P-DMA0 Channel #53
148	PERI_MS_PPU_FX_DW0_CH_STRUCT54_CH	0x40288D80	0x00000040	P-DMA0 Channel #54
149	PERI_MS_PPU_FX_DW0_CH_STRUCT55_CH	0x40288DC0	0x00000040	P-DMA0 Channel #55
150	PERI_MS_PPU_FX_DW0_CH_STRUCT56_CH	0x40288E00	0x00000040	P-DMA0 Channel #56
151	PERI_MS_PPU_FX_DW0_CH_STRUCT57_CH	0x40288E40	0x00000040	P-DMA0 Channel #57
152	PERI_MS_PPU_FX_DW0_CH_STRUCT58_CH	0x40288E80	0x00000040	P-DMA0 Channel #58
153	PERI_MS_PPU_FX_DW0_CH_STRUCT59_CH	0x40288EC0	0x00000040	P-DMA0 Channel #59
154	PERI_MS_PPU_FX_DW0_CH_STRUCT60_CH	0x40288F00	0x00000040	P-DMA0 Channel #60
155	PERI_MS_PPU_FX_DW0_CH_STRUCT61_CH	0x40288F40	0x00000040	P-DMA0 Channel #61
156	PERI_MS_PPU_FX_DW0_CH_STRUCT62_CH	0x40288F80	0x00000040	P-DMA0 Channel #62
157	PERI_MS_PPU_FX_DW0_CH_STRUCT63_CH	0x40288FC0	0x00000040	P-DMA0 Channel #63
158	PERI_MS_PPU_FX_DW0_CH_STRUCT64_CH	0x40289000	0x00000040	P-DMA0 Channel #64
159	PERI_MS_PPU_FX_DW0_CH_STRUCT65_CH	0x40289040	0x00000040	P-DMA0 Channel #65
160	PERI_MS_PPU_FX_DW0_CH_STRUCT66_CH	0x40289080	0x00000040	P-DMA0 Channel #66
161	PERI_MS_PPU_FX_DW0_CH_STRUCT67_CH	0x402890C0	0x00000040	P-DMA0 Channel #67
162	PERI_MS_PPU_FX_DW0_CH_STRUCT68_CH	0x40289100	0x00000040	P-DMA0 Channel #68
163	PERI_MS_PPU_FX_DW0_CH_STRUCT69_CH	0x40289140	0x00000040	P-DMA0 Channel #69
164	PERI_MS_PPU_FX_DW0_CH_STRUCT70_CH	0x40289180	0x00000040	P-DMA0 Channel #70
165	PERI_MS_PPU_FX_DW0_CH_STRUCT71_CH	0x402891C0	0x00000040	P-DMA0 Channel #71
166	PERI_MS_PPU_FX_DW0_CH_STRUCT72_CH	0x40289200	0x00000040	P-DMA0 Channel #72
167	PERI_MS_PPU_FX_DW0_CH_STRUCT73_CH	0x40289240	0x00000040	P-DMA0 Channel #73
168	PERI_MS_PPU_FX_DW0_CH_STRUCT74_CH	0x40289280	0x00000040	P-DMA0 Channel #74
169	PERI_MS_PPU_FX_DW0_CH_STRUCT75_CH	0x402892C0	0x00000040	P-DMA0 Channel #75
170	PERI_MS_PPU_FX_DW0_CH_STRUCT76_CH	0x40289300	0x00000040	P-DMA0 Channel #76
171	PERI_MS_PPU_FX_DW0_CH_STRUCT77_CH	0x40289340	0x00000040	P-DMA0 Channel #77
172	PERI_MS_PPU_FX_DW0_CH_STRUCT78_CH	0x40289380	0x00000040	P-DMA0 Channel #78

Based on Arm® Cortex®-M7 dual

infineon

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
173	PERI_MS_PPU_FX_DW0_CH_STRUCT79_CH	0x402893C0	0x00000040	P-DMA0 Channel #79
174	PERI_MS_PPU_FX_DW0_CH_STRUCT80_CH	0x40289400	0x00000040	P-DMA0 Channel #80
175	PERI_MS_PPU_FX_DW0_CH_STRUCT81_CH	0x40289440	0x00000040	P-DMA0 Channel #81
176	PERI_MS_PPU_FX_DW0_CH_STRUCT82_CH	0x40289480	0x00000040	P-DMA0 Channel #82
177	PERI_MS_PPU_FX_DW0_CH_STRUCT83_CH	0x402894C0	0x00000040	P-DMA0 Channel #83
178	PERI_MS_PPU_FX_DW0_CH_STRUCT84_CH	0x40289500	0x00000040	P-DMA0 Channel #84
179	PERI_MS_PPU_FX_DW0_CH_STRUCT85_CH	0x40289540	0x00000040	P-DMA0 Channel #85
180	PERI_MS_PPU_FX_DW0_CH_STRUCT86_CH	0x40289580	0x00000040	P-DMA0 Channel #86
181	PERI_MS_PPU_FX_DW0_CH_STRUCT87_CH	0x402895C0	0x00000040	P-DMA0 Channel #87
182	PERI_MS_PPU_FX_DW0_CH_STRUCT88_CH	0x40289600	0x00000040	P-DMA0 Channel #88
183	PERI_MS_PPU_FX_DW0_CH_STRUCT89_CH	0x40289640	0x00000040	P-DMA0 Channel #89
184	PERI_MS_PPU_FX_DW0_CH_STRUCT90_CH	0x40289680	0x00000040	P-DMA0 Channel #90
185	PERI_MS_PPU_FX_DW0_CH_STRUCT91_CH	0x402896C0	0x00000040	P-DMA0 Channel #91
186	PERI_MS_PPU_FX_DW0_CH_STRUCT92_CH	0x40289700	0x00000040	P-DMA0 Channel #92
187	PERI_MS_PPU_FX_DW0_CH_STRUCT93_CH	0x40289740	0x00000040	P-DMA0 Channel #93
188	PERI_MS_PPU_FX_DW0_CH_STRUCT94_CH	0x40289780	0x00000040	P-DMA0 Channel #94
189	PERI_MS_PPU_FX_DW0_CH_STRUCT95_CH	0x402897C0	0x00000040	P-DMA0 Channel #95
190	PERI_MS_PPU_FX_DW0_CH_STRUCT96_CH	0x40289800	0x00000040	P-DMA0 Channel #96
191	PERI_MS_PPU_FX_DW0_CH_STRUCT97_CH	0x40289840	0x00000040	P-DMA0 Channel #97
192	PERI_MS_PPU_FX_DW0_CH_STRUCT98_CH	0x40289880	0x00000040	P-DMA0 Channel #98
193	PERI_MS_PPU_FX_DW0_CH_STRUCT99_CH	0x402898C0	0x00000040	P-DMA0 Channel #99
194	PERI_MS_PPU_FX_DW0_CH_STRUCT100_CH	0x40289900	0x00000040	P-DMA0 Channel #100
195	PERI_MS_PPU_FX_DW0_CH_STRUCT101_CH	0x40289940	0x00000040	P-DMA0 Channel #101
196	PERI_MS_PPU_FX_DW0_CH_STRUCT102_CH	0x40289980	0x00000040	P-DMA0 Channel #102
197	PERI_MS_PPU_FX_DW0_CH_STRUCT103_CH	0x402899C0	0x00000040	P-DMA0 Channel #103
198	PERI_MS_PPU_FX_DW0_CH_STRUCT104_CH	0x40289A00	0x00000040	P-DMA0 Channel #104
199	PERI_MS_PPU_FX_DW0_CH_STRUCT105_CH	0x40289A40	0x00000040	P-DMA0 Channel #105
200	PERI_MS_PPU_FX_DW0_CH_STRUCT106_CH	0x40289A80	0x00000040	P-DMA0 Channel #106
201	PERI_MS_PPU_FX_DW0_CH_STRUCT107_CH	0x40289AC0	0x00000040	P-DMA0 Channel #107
202	PERI_MS_PPU_FX_DW0_CH_STRUCT108_CH	0x40289B00	0x00000040	P-DMA0 Channel #108
203	PERI_MS_PPU_FX_DW0_CH_STRUCT109_CH	0x40289B40	0x00000040	P-DMA0 Channel #109
204	PERI_MS_PPU_FX_DW0_CH_STRUCT110_CH	0x40289B80	0x00000040	P-DMA0 Channel #110
205	PERI_MS_PPU_FX_DW0_CH_STRUCT111_CH	0x40289BC0	0x00000040	P-DMA0 Channel #111
206	PERI_MS_PPU_FX_DW0_CH_STRUCT112_CH	0x40289C00	0x00000040	P-DMA0 Channel #112
207	PERI_MS_PPU_FX_DW0_CH_STRUCT113_CH	0x40289C40	0x00000040	P-DMA0 Channel #113
208	PERI_MS_PPU_FX_DW0_CH_STRUCT114_CH	0x40289C80	0x00000040	P-DMA0 Channel #114
209	PERI_MS_PPU_FX_DW0_CH_STRUCT115_CH	0x40289CC0	0x00000040	P-DMA0 Channel #115
210	PERI_MS_PPU_FX_DW0_CH_STRUCT116_CH	0x40289D00	0x00000040	P-DMA0 Channel #116
211	PERI_MS_PPU_FX_DW0_CH_STRUCT117_CH	0x40289D40	0x00000040	P-DMA0 Channel #117
212	PERI_MS_PPU_FX_DW0_CH_STRUCT118_CH	0x40289D80	0x00000040	P-DMA0 Channel #118
213	PERI_MS_PPU_FX_DW0_CH_STRUCT119_CH	0x40289DC0	0x00000040	P-DMA0 Channel #119
214	PERI_MS_PPU_FX_DW0_CH_STRUCT120_CH	0x40289E00	0x00000040	P-DMA0 Channel #120
215	PERI_MS_PPU_FX_DW0_CH_STRUCT121_CH	0x40289E40	0x00000040	P-DMA0 Channel #121
216	PERI_MS_PPU_FX_DW0_CH_STRUCT122_CH	0x40289E80	0x00000040	P-DMA0 Channel #122
217	PERI_MS_PPU_FX_DW0_CH_STRUCT123_CH	0x40289EC0	0x00000040	P-DMA0 Channel #123

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
218	PERI_MS_PPU_FX_DW0_CH_STRUCT124_CH	0x40289F00	0x00000040	P-DMA0 Channel #124
219	PERI_MS_PPU_FX_DW0_CH_STRUCT125_CH	0x40289F40	0x00000040	P-DMA0 Channel #125
220	PERI_MS_PPU_FX_DW0_CH_STRUCT126_CH	0x40289F80	0x00000040	P-DMA0 Channel #126
221	PERI_MS_PPU_FX_DW0_CH_STRUCT127_CH	0x40289FC0	0x00000040	P-DMA0 Channel #127
222	PERI_MS_PPU_FX_DW0_CH_STRUCT128_CH	0x4028A000	0x00000040	P-DMA0 Channel #128
223	PERI_MS_PPU_FX_DW0_CH_STRUCT129_CH	0x4028A040	0x00000040	P-DMA0 Channel #129
224	PERI_MS_PPU_FX_DW0_CH_STRUCT130_CH	0x4028A080	0x00000040	P-DMA0 Channel #130
225	PERI_MS_PPU_FX_DW0_CH_STRUCT131_CH	0x4028A0C0	0x00000040	P-DMA0 Channel #131
226	PERI_MS_PPU_FX_DW0_CH_STRUCT132_CH	0x4028A100	0x00000040	P-DMA0 Channel #132
227	PERI_MS_PPU_FX_DW0_CH_STRUCT133_CH	0x4028A140	0x00000040	P-DMA0 Channel #133
228	PERI_MS_PPU_FX_DW0_CH_STRUCT134_CH	0x4028A180	0x00000040	P-DMA0 Channel #134
229	PERI_MS_PPU_FX_DW0_CH_STRUCT135_CH	0x4028A1C0	0x00000040	P-DMA0 Channel #135
230	PERI_MS_PPU_FX_DW0_CH_STRUCT136_CH	0x4028A200	0x00000040	P-DMA0 Channel #136
231	PERI_MS_PPU_FX_DW0_CH_STRUCT137_CH	0x4028A240	0x00000040	P-DMA0 Channel #137
232	PERI_MS_PPU_FX_DW0_CH_STRUCT138_CH	0x4028A280	0x00000040	P-DMA0 Channel #138
233	PERI_MS_PPU_FX_DW0_CH_STRUCT139_CH	0x4028A2C0	0x00000040	P-DMA0 Channel #139
234	PERI_MS_PPU_FX_DW0_CH_STRUCT140_CH	0x4028A300	0x00000040	P-DMA0 Channel #140
235	PERI_MS_PPU_FX_DW0_CH_STRUCT141_CH	0x4028A340	0x00000040	P-DMA0 Channel #141
236	PERI_MS_PPU_FX_DW0_CH_STRUCT142_CH	0x4028A380	0x00000040	P-DMA0 Channel #142
237	PERI_MS_PPU_FX_DW1_CH_STRUCT0_CH	0x40298000	0x00000040	P-DMA1 Channel #0
238	PERI_MS_PPU_FX_DW1_CH_STRUCT1_CH	0x40298040	0x00000040	P-DMA1 Channel #1
239	PERI_MS_PPU_FX_DW1_CH_STRUCT2_CH	0x40298080	0x00000040	P-DMA1 Channel #2
240	PERI_MS_PPU_FX_DW1_CH_STRUCT3_CH	0x402980C0	0x00000040	P-DMA1 Channel #3
241	PERI_MS_PPU_FX_DW1_CH_STRUCT4_CH	0x40298100	0x00000040	P-DMA1 Channel #4
242	PERI_MS_PPU_FX_DW1_CH_STRUCT5_CH	0x40298140	0x00000040	P-DMA1 Channel #5
243	PERI_MS_PPU_FX_DW1_CH_STRUCT6_CH	0x40298180	0x00000040	P-DMA1 Channel #6
244	PERI_MS_PPU_FX_DW1_CH_STRUCT7_CH	0x402981C0	0x00000040	P-DMA1 Channel #7
245	PERI_MS_PPU_FX_DW1_CH_STRUCT8_CH	0x40298200	0x00000040	P-DMA1 Channel #8
246	PERI_MS_PPU_FX_DW1_CH_STRUCT9_CH	0x40298240	0x00000040	P-DMA1 Channel #9
247	PERI_MS_PPU_FX_DW1_CH_STRUCT10_CH	0x40298280	0x00000040	P-DMA1 Channel #10
248	PERI_MS_PPU_FX_DW1_CH_STRUCT11_CH	0x402982C0	0x00000040	P-DMA1 Channel #11
249	PERI_MS_PPU_FX_DW1_CH_STRUCT12_CH	0x40298300	0x00000040	P-DMA1 Channel #12
250	PERI_MS_PPU_FX_DW1_CH_STRUCT13_CH	0x40298340	0x00000040	P-DMA1 Channel #13
251	PERI_MS_PPU_FX_DW1_CH_STRUCT14_CH	0x40298380	0x00000040	P-DMA1 Channel #14
252	PERI_MS_PPU_FX_DW1_CH_STRUCT15_CH	0x402983C0	0x00000040	P-DMA1 Channel #15
253	PERI_MS_PPU_FX_DW1_CH_STRUCT16_CH	0x40298400	0x00000040	P-DMA1 Channel #16
254	PERI_MS_PPU_FX_DW1_CH_STRUCT17_CH	0x40298440	0x00000040	P-DMA1 Channel #17
255	PERI_MS_PPU_FX_DW1_CH_STRUCT18_CH	0x40298480	0x00000040	P-DMA1 Channel #18
256	PERI_MS_PPU_FX_DW1_CH_STRUCT19_CH	0x402984C0	0x00000040	P-DMA1 Channel #19
257	PERI_MS_PPU_FX_DW1_CH_STRUCT20_CH	0x40298500	0x00000040	P-DMA1 Channel #20
258	PERI_MS_PPU_FX_DW1_CH_STRUCT21_CH	0x40298540	0x00000040	P-DMA1 Channel #21
259	PERI_MS_PPU_FX_DW1_CH_STRUCT22_CH	0x40298580	0x00000040	P-DMA1 Channel #22
260	PERI_MS_PPU_FX_DW1_CH_STRUCT23_CH	0x402985C0	0x00000040	P-DMA1 Channel #23
261	PERI_MS_PPU_FX_DW1_CH_STRUCT24_CH	0x40298600	0x00000040	P-DMA1 Channel #24
262	PERI_MS_PPU_FX_DW1_CH_STRUCT25_CH	0x40298640	0x00000040	P-DMA1 Channel #25

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
263	PERI_MS_PPU_FX_DW1_CH_STRUCT26_CH	0x40298680	0x00000040	P-DMA1 Channel #26
264	PERI_MS_PPU_FX_DW1_CH_STRUCT27_CH	0x402986C0	0x00000040	P-DMA1 Channel #27
265	PERI_MS_PPU_FX_DW1_CH_STRUCT28_CH	0x40298700	0x00000040	P-DMA1 Channel #28
266	PERI_MS_PPU_FX_DW1_CH_STRUCT29_CH	0x40298740	0x00000040	P-DMA1 Channel #29
267	PERI_MS_PPU_FX_DW1_CH_STRUCT30_CH	0x40298780	0x00000040	P-DMA1 Channel #30
268	PERI_MS_PPU_FX_DW1_CH_STRUCT31_CH	0x402987C0	0x00000040	P-DMA1 Channel #31
269	PERI_MS_PPU_FX_DW1_CH_STRUCT32_CH	0x40298800	0x00000040	P-DMA1 Channel #32
270	PERI_MS_PPU_FX_DW1_CH_STRUCT33_CH	0x40298840	0x00000040	P-DMA1 Channel #33
271	PERI_MS_PPU_FX_DW1_CH_STRUCT34_CH	0x40298880	0x00000040	P-DMA1 Channel #34
272	PERI_MS_PPU_FX_DW1_CH_STRUCT35_CH	0x402988C0	0x00000040	P-DMA1 Channel #35
273	PERI_MS_PPU_FX_DW1_CH_STRUCT36_CH	0x40298900	0x00000040	P-DMA1 Channel #36
274	PERI_MS_PPU_FX_DW1_CH_STRUCT37_CH	0x40298940	0x00000040	P-DMA1 Channel #37
275	PERI_MS_PPU_FX_DW1_CH_STRUCT38_CH	0x40298980	0x00000040	P-DMA1 Channel #38
276	PERI_MS_PPU_FX_DW1_CH_STRUCT39_CH	0x402989C0	0x00000040	P-DMA1 Channel #39
277	PERI_MS_PPU_FX_DW1_CH_STRUCT40_CH	0x40298A00	0x00000040	P-DMA1 Channel #40
278	PERI_MS_PPU_FX_DW1_CH_STRUCT41_CH	0x40298A40	0x00000040	P-DMA1 Channel #41
279	PERI_MS_PPU_FX_DW1_CH_STRUCT42_CH	0x40298A80	0x00000040	P-DMA1 Channel #42
280	PERI_MS_PPU_FX_DW1_CH_STRUCT43_CH	0x40298AC0	0x00000040	P-DMA1 Channel #43
281	PERI_MS_PPU_FX_DW1_CH_STRUCT44_CH	0x40298B00	0x00000040	P-DMA1 Channel #44
282	PERI_MS_PPU_FX_DW1_CH_STRUCT45_CH	0x40298B40	0x00000040	P-DMA1 Channel #45
283	PERI_MS_PPU_FX_DW1_CH_STRUCT46_CH	0x40298B80	0x00000040	P-DMA1 Channel #46
284	PERI_MS_PPU_FX_DW1_CH_STRUCT47_CH	0x40298BC0	0x00000040	P-DMA1 Channel #47
285	PERI_MS_PPU_FX_DW1_CH_STRUCT48_CH	0x40298C00	0x00000040	P-DMA1 Channel #48
286	PERI_MS_PPU_FX_DW1_CH_STRUCT49_CH	0x40298C40	0x00000040	P-DMA1 Channel #49
287	PERI_MS_PPU_FX_DW1_CH_STRUCT50_CH	0x40298C80	0x00000040	P-DMA1 Channel #50
288	PERI_MS_PPU_FX_DW1_CH_STRUCT51_CH	0x40298CC0	0x00000040	P-DMA1 Channel #51
289	PERI_MS_PPU_FX_DW1_CH_STRUCT52_CH	0x40298D00	0x00000040	P-DMA1 Channel #52
290	PERI_MS_PPU_FX_DW1_CH_STRUCT53_CH	0x40298D40	0x00000040	P-DMA1 Channel #53
291	PERI_MS_PPU_FX_DW1_CH_STRUCT54_CH	0x40298D80	0x00000040	P-DMA1 Channel #54
292	PERI_MS_PPU_FX_DW1_CH_STRUCT55_CH	0x40298DC0	0x00000040	P-DMA1 Channel #55
293	PERI_MS_PPU_FX_DW1_CH_STRUCT56_CH	0x40298E00	0x00000040	P-DMA1 Channel #56
294	PERI_MS_PPU_FX_DW1_CH_STRUCT57_CH	0x40298E40	0x00000040	P-DMA1 Channel #57
295	PERI_MS_PPU_FX_DW1_CH_STRUCT58_CH	0x40298E80	0x00000040	P-DMA1 Channel #58
296	PERI_MS_PPU_FX_DW1_CH_STRUCT59_CH	0x40298EC0	0x00000040	P-DMA1 Channel #59
297	PERI_MS_PPU_FX_DW1_CH_STRUCT60_CH	0x40298F00	0x00000040	P-DMA1 Channel #60
298	PERI_MS_PPU_FX_DW1_CH_STRUCT61_CH	0x40298F40	0x00000040	P-DMA1 Channel #61
299	PERI_MS_PPU_FX_DW1_CH_STRUCT62_CH	0x40298F80	0x00000040	P-DMA1 Channel #62
300	PERI_MS_PPU_FX_DW1_CH_STRUCT63_CH	0x40298FC0	0x00000040	P-DMA1 Channel #63
301	PERI_MS_PPU_FX_DW1_CH_STRUCT64_CH	0x40299000	0x00000040	P-DMA1 Channel #64
302	PERI_MS_PPU_FX_DMAC_TOP	0x402A0000	0x00000010	M-DMA0 main
303	PERI_MS_PPU_FX_DMAC_CH0_CH	0x402A1000	0x00000100	M-DMA0 Channel #0
304	PERI_MS_PPU_FX_DMAC_CH1_CH	0x402A1100	0x00000100	M-DMA0 Channel #1
305	PERI_MS_PPU_FX_DMAC_CH2_CH	0x402A1200	0x00000100	M-DMA0 Channel #2
306	PERI_MS_PPU_FX_DMAC_CH3_CH	0x402A1300	0x00000100	M-DMA0 Channel #3
307	PERI_MS_PPU_FX_DMAC_CH4_CH	0x402A1400	0x00000100	M-DMA0 Channel #4

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
308	PERI_MS_PPU_FX_DMAC_CH5_CH	0x402A1500	0x00000100	M-DMA0 Channel #5
309	PERI_MS_PPU_FX_DMAC_CH6_CH	0x402A1600	0x00000100	M-DMA0 Channel #6
310	PERI_MS_PPU_FX_DMAC_CH7_CH	0x402A1700	0x00000100	M-DMA0 Channel #7
311	PERI_MS_PPU_FX_EFUSE_CTL	0x402C0000	0x00000200	EFUSE control
312	PERI_MS_PPU_FX_EFUSE_DATA	0x402C0800	0x00000200	EFUSE data
313	PERI_MS_PPU_FX_BIST	0x402F0000	0x00001000	Built-in self test
314	PERI_MS_PPU_FX_HSIOM_PRT0_PRT	0x40300000	0x00000008	HSIOm Port #0
315	PERI_MS_PPU_FX_HSIOM_PRT1_PRT	0x40300010	0x00000008	HSIOm Port #1
316	PERI_MS_PPU_FX_HSIOM_PRT2_PRT	0x40300020	0x00000008	HSIOm Port #2
317	PERI_MS_PPU_FX_HSIOM_PRT3_PRT	0x40300030	0x00000008	HSIOm Port #3
318	PERI_MS_PPU_FX_HSIOM_PRT4_PRT	0x40300040	0x00000008	HSIOm Port #4
319	PERI_MS_PPU_FX_HSIOM_PRT5_PRT	0x40300050	0x00000008	HSIOm Port #5
320	PERI_MS_PPU_FX_HSIOM_PRT6_PRT	0x40300060	0x00000008	HSIOm Port #6
321	PERI_MS_PPU_FX_HSIOM_PRT7_PRT	0x40300070	0x00000008	HSIOm Port #7
322	PERI_MS_PPU_FX_HSIOM_PRT8_PRT	0x40300080	0x00000008	HSIOm Port #8
323	PERI_MS_PPU_FX_HSIOM_PRT9_PRT	0x40300090	0x00000008	HSIOm Port #9
324	PERI_MS_PPU_FX_HSIOM_PRT10_PRT	0x403000A0	0x00000008	HSIOm Port #10
325	PERI_MS_PPU_FX_HSIOM_PRT11_PRT	0x403000B0	0x00000008	HSIOm Port #11
326	PERI_MS_PPU_FX_HSIOM_PRT12_PRT	0x403000C0	0x00000008	HSIOm Port #12
327	PERI_MS_PPU_FX_HSIOM_PRT13_PRT	0x403000D0	0x00000008	HSIOm Port #13
328	PERI_MS_PPU_FX_HSIOM_PRT14_PRT	0x403000E0	0x00000008	HSIOm Port #14
329	PERI_MS_PPU_FX_HSIOM_PRT15_PRT	0x403000F0	0x00000008	HSIOm Port #15
330	PERI_MS_PPU_FX_HSIOM_PRT16_PRT	0x40300100	0x00000008	HSIOm Port #16
331	PERI_MS_PPU_FX_HSIOM_PRT17_PRT	0x40300110	0x00000008	HSIOm Port #17
332	PERI_MS_PPU_FX_HSIOM_PRT18_PRT	0x40300120	0x00000008	HSIOm Port #18
333	PERI_MS_PPU_FX_HSIOM_PRT19_PRT	0x40300130	0x00000008	HSIOm Port #19
334	PERI_MS_PPU_FX_HSIOM_PRT20_PRT	0x40300140	0x00000008	HSIOm Port #20
335	PERI_MS_PPU_FX_HSIOM_PRT21_PRT	0x40300150	0x00000008	HSIOm Port #21
336	PERI_MS_PPU_FX_HSIOM_PRT22_PRT	0x40300160	0x00000008	HSIOm Port #22
337	PERI_MS_PPU_FX_HSIOM_PRT23_PRT	0x40300170	0x00000008	HSIOm Port #23
338	PERI_MS_PPU_FX_HSIOM_PRT24_PRT	0x40300180	0x00000008	HSIOm Port #24
339	PERI_MS_PPU_FX_HSIOM_PRT25_PRT	0x40300190	0x00000008	HSIOm Port #25
340	PERI_MS_PPU_FX_HSIOM_PRT26_PRT	0x403001A0	0x00000008	HSIOm Port #26
341	PERI_MS_PPU_FX_HSIOM_PRT27_PRT	0x403001B0	0x00000008	HSIOm Port #27
342	PERI_MS_PPU_FX_HSIOM_PRT28_PRT	0x403001C0	0x00000008	HSIOm Port #28
343	PERI MS PPU FX HSIOM PRT29 PRT	0x403001D0	0x00000008	HSIOm Port #29
344	PERI_MS_PPU_FX_HSIOM_PRT30_PRT	0x403001E0	0x00000008	HSIOm Port #30
345	PERI_MS_PPU_FX_HSIOM_PRT31_PRT	0x403001F0	0x00000008	HSIOm Port #31
346	PERI_MS_PPU_FX_HSIOM_PRT32_PRT	0x40300210	0x00000008	HSIOm Port #32
347	PERI_MS_PPU_FX_HSIOM_PRT33_PRT	0x40300210	0x00000008	HSIOm Port #33
348	PERI_MS_PPU_FX_HSIOM_PRT34_PRT	0x40300210	0x00000008	HSIOm Port #34
349	PERI_MS_PPU_FX_HSIOM_AMUX	0x40302200	0x00000000	HSIOm Analog multiplexer
350	PERI_MS_PPU_FX_HSIOM_MON	0x40302200	0x0000010	HSIOm monitor
351	PERI_MS_PPU_FX_HSIOM_ALTJTAG	0x40302240	0x00000010	HSIOm Alternate JTAG
352	PERI_MS_PPU_FX_GPIO_PRT0_PRT	0x40310000	0x00000040	GPIO_ENH Port #0

infineon **TRAVEO™ T2G 32-bit Automotive MCU** Based on Arm® Cortex®-M7 dual Peripheral protection unit fixed structure pairs

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
353	PERI_MS_PPU_FX_GPIO_PRT1_PRT	0x40310080	0x00000040	GPIO_STD Port #1
354	PERI_MS_PPU_FX_GPIO_PRT2_PRT	0x40310100	0x00000040	GPIO_STD Port #2
355	PERI_MS_PPU_FX_GPIO_PRT3_PRT	0x40310180	0x00000040	GPIO_STD Port #3
356	PERI_MS_PPU_FX_GPIO_PRT4_PRT	0x40310200	0x00000040	GPIO_STD Port #4
357	PERI_MS_PPU_FX_GPIO_PRT5_PRT	0x40310280	0x00000040	GPIO_STD Port #5
358	PERI_MS_PPU_FX_GPIO_PRT6_PRT	0x40310300	0x00000040	GPIO_STD Port #6
359	PERI_MS_PPU_FX_GPIO_PRT7_PRT	0x40310380	0x00000040	GPIO_STD Port #7
360	PERI_MS_PPU_FX_GPIO_PRT8_PRT	0x40310400	0x00000040	GPIO_STD Port #8
361	PERI_MS_PPU_FX_GPIO_PRT9_PRT	0x40310480	0x00000040	GPIO_STD Port #9
362	PERI_MS_PPU_FX_GPIO_PRT10_PRT	0x40310500	0x00000040	GPIO_STD Port #10
363	PERI_MS_PPU_FX_GPIO_PRT11_PRT	0x40310580	0x00000040	GPIO_STD Port #11
364	PERI_MS_PPU_FX_GPIO_PRT12_PRT	0x40310600	0x00000040	GPIO_STD Port #12
365	PERI_MS_PPU_FX_GPIO_PRT13_PRT	0x40310680	0x00000040	GPIO_STD Port #13
366	PERI_MS_PPU_FX_GPIO_PRT14_PRT	0x40310700	0x00000040	GPIO_STD Port #14
367	PERI_MS_PPU_FX_GPIO_PRT15_PRT	0x40310780	0x00000040	GPIO_STD Port #15
368	PERI_MS_PPU_FX_GPIO_PRT16_PRT	0x40310800	0x00000040	GPIO_STD Port #16
369	PERI_MS_PPU_FX_GPIO_PRT17_PRT	0x40310880	0x00000040	GPIO_STD Port #17
370	PERI_MS_PPU_FX_GPIO_PRT18_PRT	0x40310900	0x00000040	GPIO_STD Port #18
371	PERI_MS_PPU_FX_GPIO_PRT19_PRT	0x40310980	0x00000040	GPIO_STD Port #19
372	PERI_MS_PPU_FX_GPIO_PRT20_PRT	0x40310A00	0x00000040	GPIO_STD Port #20
373	PERI_MS_PPU_FX_GPIO_PRT21_PRT	0x40310A80	0x00000040	GPIO_STD Port #21
374	PERI_MS_PPU_FX_GPIO_PRT22_PRT	0x40310B00	0x00000040	GPIO_STD Port #22
375	PERI_MS_PPU_FX_GPIO_PRT23_PRT	0x40310B80	0x00000040	GPIO_STD Port #23
376	PERI_MS_PPU_FX_GPIO_PRT24_PRT	0x40310C00	0x00000040	HSIO_STD Port #24
377	PERI_MS_PPU_FX_GPIO_PRT25_PRT	0x40310C80	0x00000040	HSIO_STD Port #25
378	PERI_MS_PPU_FX_GPIO_PRT26_PRT	0x40310D00	0x00000040	HSIO_STD Port #26
379	PERI_MS_PPU_FX_GPIO_PRT27_PRT	0x40310D80	0x00000040	HSIO_STD Port #27
380	PERI_MS_PPU_FX_GPIO_PRT28_PRT	0x40310E00	0x00000040	GPIO_STD Port #28
381	PERI_MS_PPU_FX_GPIO_PRT29_PRT	0x40310E80	0x00000040	GPIO_STD Port #29
382	PERI_MS_PPU_FX_GPIO_PRT30_PRT	0x40310F00	0x00000040	GPIO_STD Port #30
383	PERI_MS_PPU_FX_GPIO_PRT31_PRT	0x40310F80	0x00000040	GPIO_STD Port #31
384	PERI_MS_PPU_FX_GPIO_PRT32_PRT	0x40311000	0x00000040	GPIO_STD Port #32
385	PERI_MS_PPU_FX_GPIO_PRT33_PRT	0x40311080	0x00000040	HSIO_STD Port #33
386	PERI_MS_PPU_FX_GPIO_PRT34_PRT	0x40311100	0x00000040	HSIO_STD Port #34
387	PERI_MS_PPU_FX_GPIO_PRT0_CFG	0x40310040	0x00000020	GPIO_ENH Port #0 configuration
388	PERI_MS_PPU_FX_GPIO_PRT1_CFG	0x403100C0	0x00000020	GPIO_STD Port #1 configuration
389	PERI_MS_PPU_FX_GPIO_PRT2_CFG	0x40310140	0x00000020	GPIO_STD Port #2 configuration
390	PERI_MS_PPU_FX_GPIO_PRT3_CFG	0x403101C0	0x00000020	GPIO_STD Port #3 configuration
391	PERI_MS_PPU_FX_GPIO_PRT4_CFG	0x40310240	0x00000020	GPIO_STD Port #4 configuration
392	PERI_MS_PPU_FX_GPIO_PRT5_CFG	0x403102C0	0x00000020	GPIO_STD Port #5 configuration
393	PERI_MS_PPU_FX_GPIO_PRT6_CFG	0x40310340	0x00000020	GPIO_STD Port #6 configuration
394	PERI_MS_PPU_FX_GPIO_PRT7_CFG	0x403103C0	0x00000020	GPIO_STD Port #7 configuration
395	PERI_MS_PPU_FX_GPIO_PRT8_CFG	0x40310440	0x00000020	GPIO_STD Port #8 configuration
396	PERI_MS_PPU_FX_GPIO_PRT9_CFG	0x403104C0	0x00000020	GPIO_STD Port #9 configuration
397	PERI_MS_PPU_FX_GPIO_PRT10_CFG	0x40310540	0x00000020	GPIO_STD Port #10 configuration
-				

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
398	PERI_MS_PPU_FX_GPIO_PRT11_CFG	0x403105C0	0x00000020	GPIO_STD Port #11 configuration
399	PERI_MS_PPU_FX_GPIO_PRT12_CFG	0x40310640	0x00000020	GPIO_STD Port #12 configuration
400	PERI_MS_PPU_FX_GPIO_PRT13_CFG	0x403106C0	0x00000020	GPIO_STD Port #13 configuration
401	PERI_MS_PPU_FX_GPIO_PRT14_CFG	0x40310740	0x00000020	GPIO_STD Port #14 configuration
402	PERI_MS_PPU_FX_GPIO_PRT15_CFG	0x403107C0	0x00000020	GPIO_STD Port #15 configuration
403	PERI_MS_PPU_FX_GPIO_PRT16_CFG	0x40310840	0x00000020	GPIO_STD Port #16 configuration
404	PERI_MS_PPU_FX_GPIO_PRT17_CFG	0x403108C0	0x00000020	GPIO_STD Port #17 configuration
405	PERI_MS_PPU_FX_GPIO_PRT18_CFG	0x40310940	0x00000020	GPIO_STD Port #18 configuration
406	PERI_MS_PPU_FX_GPIO_PRT19_CFG	0x403109C0	0x00000020	GPIO_STD Port #19 configuration
407	PERI_MS_PPU_FX_GPIO_PRT20_CFG	0x40310A40	0x00000020	GPIO_STD Port #20 configuration
408	PERI_MS_PPU_FX_GPIO_PRT21_CFG	0x40310AC0	0x00000020	GPIO_STD Port #21 configuration
409	PERI_MS_PPU_FX_GPIO_PRT22_CFG	0x40310B40	0x00000020	GPIO_STD Port #22 configuration
410	PERI_MS_PPU_FX_GPIO_PRT23_CFG	0x40310BC0	0x00000020	GPIO_STD Port #23 configuration
411	PERI_MS_PPU_FX_GPIO_PRT24_CFG	0x40310C40	0x00000020	HSIO_STD Port #24 configuration
412	PERI_MS_PPU_FX_GPIO_PRT25_CFG	0x40310CC0	0x00000020	HSIO_STD Port #25 configuration
413	PERI_MS_PPU_FX_GPIO_PRT26_CFG	0x40310D40	0x00000020	HSIO_STD Port #26 configuration
414	PERI_MS_PPU_FX_GPIO_PRT27_CFG	0x40310DC0	0x00000020	HSIO_STD Port #27 configuration
415	PERI_MS_PPU_FX_GPIO_PRT28_CFG	0x40310E40	0x00000020	GPIO_STD Port #28 configuration
416	PERI_MS_PPU_FX_GPIO_PRT29_CFG	0x40310EC0	0x00000020	GPIO_STD Port #29 configuration
417	PERI_MS_PPU_FX_GPIO_PRT30_CFG	0x40310F40	0x00000020	GPIO_STD Port #30 configuration
418	PERI_MS_PPU_FX_GPIO_PRT31_CFG	0x40310FC0	0x00000020	GPIO_STD Port #31 configuration
419	PERI_MS_PPU_FX_GPIO_PRT32_CFG	0x40311040	0x00000020	GPIO_STD Port #32 configuration
420	PERI_MS_PPU_FX_GPIO_PRT33_CFG	0x403110C0	0x00000020	HSIO_STD Port #33 configuration
421	PERI_MS_PPU_FX_GPIO_PRT34_CFG	0x40311140	0x00000020	HSIO_STD Port #34 configuration
422	PERI_MS_PPU_FX_GPIO_GPIO	0x40314000	0x00000040	GPIO main
423	PERI_MS_PPU_FX_GPIO_TEST	0x40315000	0x00000008	GPIO test
424	PERI_MS_PPU_FX_SMARTIO_PRT12_PRT	0x40320C00	0x00000100	SMART I/O #12
425	PERI_MS_PPU_FX_SMARTIO_PRT13_PRT	0x40320D00	0x00000100	SMART I/O #13
426	PERI_MS_PPU_FX_SMARTIO_PRT14_PRT	0x40320E00	0x00000100	SMART I/O #14
427	PERI_MS_PPU_FX_SMARTIO_PRT15_PRT	0x40320F00	0x00000100	SMART I/O #15
428	PERI_MS_PPU_FX_SMARTIO_PRT17_PRT	0x40321100	0x00000100	SMART I/O #17
429	PERI_MS_PPU_FX_TCPWM0_GRP0_CNT0_CNT	0x40380000	0x00000080	TCPWM0 Group #0, Counter #0
430	PERI_MS_PPU_FX_TCPWM0_GRP0_CNT1_CNT	0x40380080	0x00000080	TCPWM0 Group #0, Counter #1
431	PERI_MS_PPU_FX_TCPWM0_GRP0_CNT2_CNT	0x40380100	0x00000080	TCPWM0 Group #0, Counter #2
432	PERI_MS_PPU_FX_TCPWM0_GRP1_CNT0_CNT	0x40388000	0x00000080	TCPWM0 Group #1, Counter #0
433	PERI_MS_PPU_FX_TCPWM0_GRP1_CNT1_CNT	0x40388080	0x00000080	TCPWM0 Group #1, Counter #1
434	PERI_MS_PPU_FX_TCPWM0_GRP1_CNT2_CNT	0x40388100	0x00000080	TCPWM0 Group #1, Counter #2
435	PERI_MS_PPU_FX_TCPWM0_GRP2_CNT0_CNT	0x40390000	0x00000080	TCPWM0 Group #2, Counter #0
436	PERI_MS_PPU_FX_TCPWM0_GRP2_CNT1_CNT	0x40390080	0x00000080	TCPWM0 Group #2, Counter #1
437	PERI_MS_PPU_FX_TCPWM0_GRP2_CNT2_CNT	0x40390100	0x00000080	TCPWM0 Group #2, Counter #2
438	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT0_CNT	0x40580000	0x00000080	TCPWM1 Group #0, Counter #0
439	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT1_CNT	0x40580080	0x00000080	TCPWM1 Group #0, Counter #1
440	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT2_CNT	0x40580100	0x00000080	TCPWM1 Group #0, Counter #2
441	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT3_CNT	0x40580180	0x00000080	TCPWM1 Group #0, Counter #3
442	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT4_CNT	0x40580200	0x00000080	TCPWM1 Group #0, Counter #4

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
443	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT5_CNT	0x40580280	0x00000080	TCPWM1 Group #0, Counter #5
444	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT6_CNT	0x40580300	0x00000080	TCPWM1 Group #0, Counter #6
445	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT7_CNT	0x40580380	0x00000080	TCPWM1 Group #0, Counter #7
446	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT8_CNT	0x40580400	0x00000080	TCPWM1 Group #0, Counter #8
447	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT9_CNT	0x40580480	0x00000080	TCPWM1 Group #0, Counter #9
448	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT10_CNT	0x40580500	0x00000080	TCPWM1 Group #0, Counter #10
449	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT11_CNT	0x40580580	0x00000080	TCPWM1 Group #0, Counter #11
450	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT12_CNT	0x40580600	0x00000080	TCPWM1 Group #0, Counter #12
451	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT13_CNT	0x40580680	0x00000080	TCPWM1 Group #0, Counter #13
452	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT14_CNT	0x40580700	0x00000080	TCPWM1 Group #0, Counter #14
453	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT15_CNT	0x40580780	0x00000080	TCPWM1 Group #0, Counter #15
454	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT16_CNT	0x40580800	0x00000080	TCPWM1 Group #0, Counter #16
455	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT17_CNT	0x40580880	0x00000080	TCPWM1 Group #0, Counter #17
456	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT18_CNT	0x40580900	0x00000080	TCPWM1 Group #0, Counter #18
457	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT19_CNT	0x40580980	0x00000080	TCPWM1 Group #0, Counter #19
458	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT20_CNT	0x40580A00	0x00000080	TCPWM1 Group #0, Counter #20
459	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT21_CNT	0x40580A80	0x00000080	TCPWM1 Group #0, Counter #21
460	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT22_CNT	0x40580B00	0x00000080	TCPWM1 Group #0, Counter #22
461	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT23_CNT	0x40580B80	0x00000080	TCPWM1 Group #0, Counter #23
462	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT24_CNT	0x40580C00	0x00000080	TCPWM1 Group #0, Counter #24
463	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT25_CNT	0x40580C80	0x00000080	TCPWM1 Group #0, Counter #25
464	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT26_CNT	0x40580D00	0x00000080	TCPWM1 Group #0, Counter #26
465	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT27_CNT	0x40580D80	0x00000080	TCPWM1 Group #0, Counter #27
466	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT28_CNT	0x40580E00	0x00000080	TCPWM1 Group #0, Counter #28
467	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT29_CNT	0x40580E80	0x00000080	TCPWM1 Group #0, Counter #29
468	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT30_CNT	0x40580F00	0x00000080	TCPWM1 Group #0, Counter #30
469	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT31_CNT	0x40580F80	0x00000080	TCPWM1 Group #0, Counter #31
470	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT32_CNT	0x40581000	0x00000080	TCPWM1 Group #0, Counter #32
471	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT33_CNT	0x40581080	0x00000080	TCPWM1 Group #0, Counter #33
472	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT34_CNT	0x40581100	0x00000080	TCPWM1 Group #0, Counter #34
473	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT35_CNT	0x40581180	0x00000080	TCPWM1 Group #0, Counter #35
474	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT36_CNT	0x40581200	0x00000080	TCPWM1 Group #0, Counter #36
475	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT37_CNT	0x40581280	0x00000080	TCPWM1 Group #0, Counter #37
476	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT38_CNT	0x40581300	0x00000080	TCPWM1 Group #0, Counter #38
477	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT39_CNT	0x40581380	0x00000080	TCPWM1 Group #0, Counter #39
478	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT40_CNT	0x40581400	0x00000080	TCPWM1 Group #0, Counter #40
479	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT41_CNT	0x40581480	0x00000080	TCPWM1 Group #0, Counter #41
480	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT42_CNT	0x40581500	0x00000080	TCPWM1 Group #0, Counter #42
481	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT43_CNT	0x40581580	0x00000080	TCPWM1 Group #0, Counter #43
482	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT44_CNT	0x40581600	0x00000080	TCPWM1 Group #0, Counter #44
483	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT45_CNT	0x40581680	0x00000080	TCPWM1 Group #0, Counter #45
484	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT46_CNT	0x40581700	0x00000080	TCPWM1 Group #0, Counter #46
485	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT47_CNT	0x40581780	0x00000080	TCPWM1 Group #0, Counter #47
486	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT48_CNT	0x40581800	0x00000080	TCPWM1 Group #0, Counter #48
487	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT49_CNT	0x40581880	0x00000080	TCPWM1 Group #0, Counter #49

infineon

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
488	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT50_CNT	0x40581900	0x00000080	TCPWM1 Group #0, Counter #50
489	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT51_CNT	0x40581980	0x00000080	TCPWM1 Group #0, Counter #51
490	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT52_CNT	0x40581A00	0x00000080	TCPWM1 Group #0, Counter #52
491	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT53_CNT	0x40581A80	0x00000080	TCPWM1 Group #0, Counter #53
492	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT54_CNT	0x40581B00	0x00000080	TCPWM1 Group #0, Counter #54
493	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT55_CNT	0x40581B80	0x00000080	TCPWM1 Group #0, Counter #55
494	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT56_CNT	0x40581C00	0x00000080	TCPWM1 Group #0, Counter #56
495	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT57_CNT	0x40581C80	0x00000080	TCPWM1 Group #0, Counter #57
496	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT58_CNT	0x40581D00	0x00000080	TCPWM1 Group #0, Counter #58
497	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT59_CNT	0x40581D80	0x00000080	TCPWM1 Group #0, Counter #59
498	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT60_CNT	0x40581E00	0x00000080	TCPWM1 Group #0, Counter #60
499	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT61_CNT	0x40581E80	0x00000080	TCPWM1 Group #0, Counter #61
500	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT62_CNT	0x40581F00	0x00000080	TCPWM1 Group #0, Counter #62
501	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT63_CNT	0x40581F80	0x00000080	TCPWM1 Group #0, Counter #63
502	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT64_CNT	0x40582000	0x00000080	TCPWM1 Group #0, Counter #64
503	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT65_CNT	0x40582080	0x00000080	TCPWM1 Group #0, Counter #65
504	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT66_CNT	0x40582100	0x00000080	TCPWM1 Group #0, Counter #66
505	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT67_CNT	0x40582180	0x00000080	TCPWM1 Group #0, Counter #67
506	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT68_CNT	0x40582200	0x00000080	TCPWM1 Group #0, Counter #68
507	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT69_CNT	0x40582280	0x00000080	TCPWM1 Group #0, Counter #69
508	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT70_CNT	0x40582300	0x00000080	TCPWM1 Group #0, Counter #70
509	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT71_CNT	0x40582380	0x00000080	TCPWM1 Group #0, Counter #71
510	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT72_CNT	0x40582400	0x00000080	TCPWM1 Group #0, Counter #72
511	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT73_CNT	0x40582480	0x00000080	TCPWM1 Group #0, Counter #73
512	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT74_CNT	0x40582500	0x00000080	TCPWM1 Group #0, Counter #74
513	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT75_CNT	0x40582580	0x00000080	TCPWM1 Group #0, Counter #75
514	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT76_CNT	0x40582600	0x00000080	TCPWM1 Group #0, Counter #76
515	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT77_CNT	0x40582680	0x00000080	TCPWM1 Group #0, Counter #77
516	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT78_CNT	0x40582700	0x00000080	TCPWM1 Group #0, Counter #78
517	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT79_CNT	0x40582780	0x00000080	TCPWM1 Group #0, Counter #79
518	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT80_CNT	0x40582800	0x00000080	TCPWM1 Group #0, Counter #80
519	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT81_CNT	0x40582880	0x00000080	TCPWM1 Group #0, Counter #81
520	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT82_CNT	0x40582900	0x00000080	TCPWM1 Group #0, Counter #82
521	PERI_MS_PPU_FX_TCPWM1_GRP0_CNT83_CNT	0x40582980	0x00000080	TCPWM1 Group #0, Counter #83
522	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT0_CNT	0x40588000	0x00000080	TCPWM1 Group #1, Counter #0
523	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT1_CNT	0x40588080	0x00000080	TCPWM1 Group #1, Counter #1
524	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT2_CNT	0x40588100	0x00000080	TCPWM1 Group #1, Counter #2
525	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT3_CNT	0x40588180	0x00000080	TCPWM1 Group #1, Counter #3
526	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT4_CNT	0x40588200	0x00000080	TCPWM1 Group #1, Counter #4
527	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT5_CNT	0x40588280	0x00000080	TCPWM1 Group #1, Counter #5
528	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT6_CNT	0x40588300	0x00000080	TCPWM1 Group #1, Counter #6
529	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT7_CNT	0x40588380	0x00000080	TCPWM1 Group #1, Counter #7
530	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT8_CNT	0x40588400	0x00000080	TCPWM1 Group #1, Counter #8
531	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT9_CNT	0x40588480	0x00000080	TCPWM1 Group #1, Counter #9
532	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT10_CNT	0x40588500	0x00000080	TCPWM1 Group #1, Counter #10

Based on Arm® Cortex®-M7 dual

infineon

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
533	PERI_MS_PPU_FX_TCPWM1_GRP1_CNT11_CNT	0x40588580	0x00000080	TCPWM1 Group #1, Counter #11
534	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT0_CNT	0x40590000	0x00000080	TCPWM1 Group #2, Counter #0
535	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT1_CNT	0x40590080	0x00000080	TCPWM1 Group #2, Counter #1
536	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT2_CNT	0x40590100	0x00000080	TCPWM1 Group #2, Counter #2
537	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT3_CNT	0x40590180	0x00000080	TCPWM1 Group #2, Counter #3
538	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT4_CNT	0x40590200	0x00000080	TCPWM1 Group #2, Counter #4
539	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT5_CNT	0x40590280	0x00000080	TCPWM1 Group #2, Counter #5
540	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT6_CNT	0x40590300	0x00000080	TCPWM1 Group #2, Counter #6
541	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT7_CNT	0x40590380	0x00000080	TCPWM1 Group #2, Counter #7
542	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT8_CNT	0x40590400	0x00000080	TCPWM1 Group #2, Counter #8
543	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT9_CNT	0x40590480	0x00000080	TCPWM1 Group #2, Counter #9
544	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT10_CNT	0x40590500	0x00000080	TCPWM1 Group #2, Counter #10
545	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT11_CNT	0x40590580	0x00000080	TCPWM1 Group #2, Counter #11
546	PERI_MS_PPU_FX_TCPWM1_GRP2_CNT12_CNT	0x40590600	0x00000080	TCPWM1 Group #2, Counter #12
547	PERI_MS_PPU_FX_EVTGEN0	0x403F0000	0x00001000	Event generator #0
548	PERI_MS_PPU_FX_SMIF0	0x40420000	0x00010000	Serial Memory Interface #0
549	PERI_MS_PPU_FX_SDHC0	0x40460000	0x00010000	Secure Digital High Capacity #0
550	PERI_MS_PPU_FX_ETH0	0x40480000	0x00010000	Ethernet0
551	PERI_MS_PPU_FX_ETH1	0x40490000	0x00010000	Ethernet1
552	PERI_MS_PPU_FX_LIN0_MAIN	0x40500000	0x00000008	LIN0, main
553	PERI_MS_PPU_FX_LIN0_CH0_CH	0x40508000	0x00000100	LIN0, Channel #0
554	PERI_MS_PPU_FX_LIN0_CH1_CH	0x40508100	0x00000100	LIN0, Channel #1
555	PERI_MS_PPU_FX_LIN0_CH2_CH	0x40508200	0x00000100	LIN0, Channel #2
556	PERI_MS_PPU_FX_LIN0_CH3_CH	0x40508300	0x00000100	LINO, Channel #3
557	PERI_MS_PPU_FX_LIN0_CH4_CH	0x40508400	0x00000100	LINO, Channel #4
558	PERI_MS_PPU_FX_LIN0_CH5_CH	0x40508500	0x00000100	LIN0, Channel #5
559	PERI_MS_PPU_FX_LIN0_CH6_CH	0x40508600	0x00000100	LINO, Channel #6
560	PERI_MS_PPU_FX_LIN0_CH7_CH	0x40508700	0x00000100	LINO, Channel #7
561	PERI_MS_PPU_FX_LIN0_CH8_CH	0x40508800	0x00000100	LINO, Channel #8
562	PERI_MS_PPU_FX_LIN0_CH9_CH	0x40508900	0x00000100	LIN0, Channel #9
563	PERI_MS_PPU_FX_LIN0_CH10_CH	0x40508A00	0x00000100	LIN0, Channel #10
564	PERI_MS_PPU_FX_LIN0_CH11_CH	0x40508B00	0x00000100	LINO, Channel #11
565	PERI_MS_PPU_FX_LIN0_CH12_CH	0x40508C00	0x00000100	LINO, Channel #12
566	PERI_MS_PPU_FX_LIN0_CH13_CH	0x40508D00	0x00000100	LINO, Channel #13
567	PERI_MS_PPU_FX_LIN0_CH14_CH	0x40508E00	0x00000100	LINO, Channel #14
568	PERI_MS_PPU_FX_LIN0_CH15_CH	0x40508F00	0x00000100	LINO, Channel #15
569	PERI_MS_PPU_FX_LIN0_CH16_CH	0x40509000	0x00000100	LINO, Channel #16
570	PERI_MS_PPU_FX_LIN0_CH17_CH	0x40509100	0x00000100	LINO, Channel #17
571	PERI_MS_PPU_FX_LIN0_CH18_CH	0x40509200	0x00000100	LINO, Channel #18
572	PERI_MS_PPU_FX_LIN0_CH19_CH	0x40509300	0x00000100	LINO, Channel #19
573	PERI_MS_PPU_FX_CANFD0_CH0_CH	0x40520000	0x00000200	CAN0, Channel #0
574	PERI_MS_PPU_FX_CANFD0_CH1_CH	0x40520200	0x00000200	CAN0, Channel #1
575	PERI_MS_PPU_FX_CANFD0_CH2_CH	0x40520400	0x00000200	CANO, Channel #2
576	PERI_MS_PPU_FX_CANFDO_CH3_CH	0x40520600	0x00000200	CANO, Channel #3
577	PERI_MS_PPU_FX_CANFD0_CH4_CH	0x40520800	0x00000200	CANO, Channel #4

Based on Arm® Cortex®-M7 dual

Infineon

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
578	PERI_MS_PPU_FX_CANFD1_CH0_CH	0x40540000	0x00000200	CAN1, Channel #0
579	PERI_MS_PPU_FX_CANFD1_CH1_CH	0x40540200	0x00000200	CAN1, Channel #1
580	PERI_MS_PPU_FX_CANFD1_CH2_CH	0x40540400	0x00000200	CAN1, Channel #2
581	PERI_MS_PPU_FX_CANFD1_CH3_CH	0x40540600	0x00000200	CAN1, Channel #3
582	PERI_MS_PPU_FX_CANFD1_CH4_CH	0x40540800	0x00000200	CAN1, Channel #4
583	PERI_MS_PPU_FX_CANFD0_MAIN	0x40521000	0x00000100	CAN0 main
584	PERI_MS_PPU_FX_CANFD1_MAIN	0x40541000	0x00000100	CAN1 main
585	PERI_MS_PPU_FX_CANFD0_BUF	0x40530000	0x00010000	CAN0 buffer
586	PERI_MS_PPU_FX_CANFD1_BUF	0x40550000	0x00010000	CAN1 buffer
587	PERI_MS_PPU_FX_FLEXRAY0	0x40560000	0x00001000	FlexRay Interface #0
588	PERI_MS_PPU_FX_SCB0	0x40600000	0x00010000	SCB0
589	PERI_MS_PPU_FX_SCB1	0x40610000	0x00010000	SCB1
590	PERI_MS_PPU_FX_SCB2	0x40620000	0x00010000	SCB2
591	PERI_MS_PPU_FX_SCB3	0x40630000	0x00010000	SCB3
592	PERI_MS_PPU_FX_SCB4	0x40640000	0x00010000	SCB4
593	PERI_MS_PPU_FX_SCB5	0x40650000	0x00010000	SCB5
594	PERI_MS_PPU_FX_SCB6	0x40660000	0x00010000	SCB6
595	PERI_MS_PPU_FX_SCB7	0x40670000	0x00010000	SCB7
596	PERI_MS_PPU_FX_SCB8	0x40680000	0x00010000	SCB8
597	PERI_MS_PPU_FX_SCB9	0x40690000	0x00010000	SCB9
598	PERI_MS_PPU_FX_SCB10	0x406A0000	0x00010000	SCB10
599	PERI_MS_PPU_FX_I2S0	0x40800000	0x00001000	AUDIOSS 12S0
600	PERI_MS_PPU_FX_I2S1	0x40801000	0x00001000	AUDIOSS I2S1
601	PERI_MS_PPU_FX_I2S2	0x40802000	0x00001000	AUDIOSS 12S2
602	PERI_MS_PPU_FX_PASS0_SAR0_SAR	0x40900000	0x00000400	PASS SAR0
603	PERI_MS_PPU_FX_PASS0_SAR1_SAR	0x40901000	0x00000400	PASS SAR1
604	PERI_MS_PPU_FX_PASS0_SAR2_SAR	0x40902000	0x00000400	PASS SAR2
605	PERI_MS_PPU_FX_PASS0_SAR0_CH0_CH	0x40900800	0x00000040	SAR0, Channel #0
606	PERI_MS_PPU_FX_PASS0_SAR0_CH1_CH	0x40900840	0x00000040	SAR0, Channel #1
607	PERI_MS_PPU_FX_PASS0_SAR0_CH2_CH	0x40900880	0x00000040	SAR0, Channel #2
608	PERI_MS_PPU_FX_PASS0_SAR0_CH3_CH	0x409008C0	0x00000040	SAR0, Channel #3
609	PERI_MS_PPU_FX_PASS0_SAR0_CH4_CH	0x40900900	0x00000040	SAR0, Channel #4
610	PERI_MS_PPU_FX_PASS0_SAR0_CH5_CH	0x40900940	0x00000040	SAR0, Channel #5
611	PERI_MS_PPU_FX_PASS0_SAR0_CH6_CH	0x40900980	0x00000040	SAR0, Channel #6
612	PERI_MS_PPU_FX_PASS0_SAR0_CH7_CH	0x409009C0	0x00000040	SAR0, Channel #7
613	PERI_MS_PPU_FX_PASS0_SAR0_CH8_CH	0x40900A00	0x00000040	SAR0, Channel #8
614	PERI_MS_PPU_FX_PASS0_SAR0_CH9_CH	0x40900A40	0x00000040	SAR0, Channel #9
615	PERI_MS_PPU_FX_PASS0_SAR0_CH10_CH	0x40900A80	0x00000040	SAR0, Channel #10
616	PERI_MS_PPU_FX_PASS0_SAR0_CH11_CH	0x40900AC0	0x00000040	SAR0, Channel #11
617	PERI_MS_PPU_FX_PASS0_SAR0_CH12_CH	0x40900B00	0x00000040	SAR0, Channel #12
618	PERI_MS_PPU_FX_PASS0_SAR0_CH13_CH	0x40900B40	0x00000040	SAR0, Channel #13
619	PERI_MS_PPU_FX_PASS0_SAR0_CH14_CH	0x40900B80	0x00000040	SAR0, Channel #14
620	PERI_MS_PPU_FX_PASS0_SAR0_CH15_CH	0x40900BC0	0x00000040	SAR0, Channel #15
621	PERI_MS_PPU_FX_PASS0_SAR0_CH16_CH	0x40900C00	0x00000040	SAR0, Channel #16
622	PERI_MS_PPU_FX_PASS0_SAR0_CH17_CH	0x40900C40	0x00000040	SAR0, Channel #17

Based on Arm® Cortex®-M7 dual

İnfineon

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
623	PERI_MS_PPU_FX_PASS0_SAR0_CH18_CH	0x40900C80	0x00000040	SAR0, Channel #18
624	PERI_MS_PPU_FX_PASS0_SAR0_CH19_CH	0x40900CC0	0x00000040	SAR0, Channel #19
625	PERI_MS_PPU_FX_PASS0_SAR0_CH20_CH	0x40900D00	0x00000040	SAR0, Channel #20
626	PERI_MS_PPU_FX_PASS0_SAR0_CH21_CH	0x40900D40	0x00000040	SAR0, Channel #21
627	PERI_MS_PPU_FX_PASS0_SAR0_CH22_CH	0x40900D80	0x00000040	SAR0, Channel #22
628	PERI_MS_PPU_FX_PASS0_SAR0_CH23_CH	0x40900DC0	0x00000040	SAR0, Channel #23
629	PERI_MS_PPU_FX_PASS0_SAR0_CH24_CH	0x40900E00	0x00000040	SAR0, Channel #24
630	PERI_MS_PPU_FX_PASS0_SAR0_CH25_CH	0x40900E40	0x00000040	SAR0, Channel #25
631	PERI_MS_PPU_FX_PASS0_SAR0_CH26_CH	0x40900E80	0x00000040	SAR0, Channel #26
632	PERI_MS_PPU_FX_PASS0_SAR0_CH27_CH	0x40900EC0	0x00000040	SAR0, Channel #27
633	PERI_MS_PPU_FX_PASS0_SAR0_CH28_CH	0x40900F00	0x00000040	SAR0, Channel #28
634	PERI_MS_PPU_FX_PASS0_SAR0_CH29_CH	0x40900F40	0x00000040	SAR0, Channel #29
635	PERI_MS_PPU_FX_PASS0_SAR0_CH30_CH	0x40900F80	0x00000040	SAR0, Channel #30
636	PERI_MS_PPU_FX_PASS0_SAR0_CH31_CH	0x40900FC0	0x00000040	SAR0, Channel #31
637	PERI_MS_PPU_FX_PASS0_SAR1_CH0_CH	0x40901800	0x00000040	SAR1, Channel #0
638	PERI_MS_PPU_FX_PASS0_SAR1_CH1_CH	0x40901840	0x00000040	SAR1, Channel #1
639	PERI_MS_PPU_FX_PASS0_SAR1_CH2_CH	0x40901880	0x00000040	SAR1, Channel #2
640	PERI_MS_PPU_FX_PASS0_SAR1_CH3_CH	0x409018C0	0x00000040	SAR1, Channel #3
641	PERI_MS_PPU_FX_PASS0_SAR1_CH4_CH	0x40901900	0x00000040	SAR1, Channel #4
642	PERI_MS_PPU_FX_PASS0_SAR1_CH5_CH	0x40901940	0x00000040	SAR1, Channel #5
643	PERI_MS_PPU_FX_PASS0_SAR1_CH6_CH	0x40901980	0x00000040	SAR1, Channel #6
644	PERI_MS_PPU_FX_PASS0_SAR1_CH7_CH	0x409019C0	0x00000040	SAR1, Channel #7
645	PERI_MS_PPU_FX_PASS0_SAR1_CH8_CH	0x40901A00	0x00000040	SAR1, Channel #8
646	PERI_MS_PPU_FX_PASS0_SAR1_CH9_CH	0x40901A40	0x00000040	SAR1, Channel #9
647	PERI_MS_PPU_FX_PASS0_SAR1_CH10_CH	0x40901A80	0x00000040	SAR1, Channel #10
648	PERI_MS_PPU_FX_PASS0_SAR1_CH11_CH	0x40901AC0	0x00000040	SAR1, Channel #11
649	PERI_MS_PPU_FX_PASS0_SAR1_CH12_CH	0x40901B00	0x00000040	SAR1, Channel #12
650	PERI_MS_PPU_FX_PASS0_SAR1_CH13_CH	0x40901B40	0x00000040	SAR1, Channel #13
651	PERI_MS_PPU_FX_PASS0_SAR1_CH14_CH	0x40901B80	0x00000040	SAR1, Channel #14
652	PERI_MS_PPU_FX_PASS0_SAR1_CH15_CH	0x40901BC0	0x00000040	SAR1, Channel #15
653	PERI_MS_PPU_FX_PASS0_SAR1_CH16_CH	0x40901C00	0x00000040	SAR1, Channel #16
654	PERI_MS_PPU_FX_PASS0_SAR1_CH17_CH	0x40901C40	0x00000040	SAR1, Channel #17
655	PERI_MS_PPU_FX_PASS0_SAR1_CH18_CH	0x40901C80	0x00000040	SAR1, Channel #18
656	PERI_MS_PPU_FX_PASS0_SAR1_CH19_CH	0x40901CC0	0x00000040	SAR1, Channel #19
657	PERI_MS_PPU_FX_PASS0_SAR1_CH20_CH	0x40901D00	0x00000040	SAR1, Channel #20
658	PERI_MS_PPU_FX_PASS0_SAR1_CH21_CH	0x40901D40	0x00000040	SAR1, Channel #21
659	PERI_MS_PPU_FX_PASS0_SAR1_CH22_CH	0x40901D80	0x00000040	SAR1, Channel #22
660	PERI_MS_PPU_FX_PASS0_SAR1_CH23_CH	0x40901DC0	0x00000040	SAR1, Channel #23
661	PERI_MS_PPU_FX_PASS0_SAR1_CH24_CH	0x40901E00	0x00000040	SAR1, Channel #24
662	PERI_MS_PPU_FX_PASS0_SAR1_CH25_CH	0x40901E40	0x00000040	SAR1, Channel #25
663	PERI_MS_PPU_FX_PASS0_SAR1_CH26_CH	0x40901E80	0x00000040	SAR1, Channel #26
664	PERI_MS_PPU_FX_PASS0_SAR1_CH27_CH	0x40901EC0	0x00000040	SAR1, Channel #27
665	PERI_MS_PPU_FX_PASS0_SAR1_CH28_CH	0x40901F00	0x00000040	SAR1, Channel #28
666	PERI_MS_PPU_FX_PASS0_SAR1_CH29_CH	0x40901F40	0x00000040	SAR1, Channel #29
667	PERI_MS_PPU_FX_PASS0_SAR1_CH30_CH	0x40901F80	0x00000040	SAR1, Channel #30

Based on Arm® Cortex®-M7 dual

infineon

Table 23-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
668	PERI_MS_PPU_FX_PASS0_SAR1_CH31_CH	0x40901FC0	0x00000040	SAR1, Channel #31
669	PERI_MS_PPU_FX_PASS0_SAR2_CH0_CH	0x40902800	0x00000040	SAR2, Channel #0
670	PERI_MS_PPU_FX_PASS0_SAR2_CH1_CH	0x40902840	0x00000040	SAR2, Channel #1
671	PERI_MS_PPU_FX_PASS0_SAR2_CH2_CH	0x40902880	0x00000040	SAR2, Channel #2
672	PERI_MS_PPU_FX_PASS0_SAR2_CH3_CH	0x409028C0	0x00000040	SAR2, Channel #3
673	PERI_MS_PPU_FX_PASS0_SAR2_CH4_CH	0x40902900	0x00000040	SAR2, Channel #4
674	PERI_MS_PPU_FX_PASS0_SAR2_CH5_CH	0x40902940	0x00000040	SAR2, Channel #5
675	PERI_MS_PPU_FX_PASS0_SAR2_CH6_CH	0x40902980	0x00000040	SAR2, Channel #6
676	PERI_MS_PPU_FX_PASS0_SAR2_CH7_CH	0x409029C0	0x00000040	SAR2, Channel #7
677	PERI_MS_PPU_FX_PASS0_SAR2_CH8_CH	0x40902A00	0x00000040	SAR2, Channel #8
678	PERI_MS_PPU_FX_PASS0_SAR2_CH9_CH	0x40902A40	0x00000040	SAR2, Channel #9
679	PERI_MS_PPU_FX_PASS0_SAR2_CH10_CH	0x40902A80	0x00000040	SAR2, Channel #10
680	PERI_MS_PPU_FX_PASS0_SAR2_CH11_CH	0x40902AC0	0x00000040	SAR2, Channel #11
681	PERI_MS_PPU_FX_PASS0_SAR2_CH12_CH	0x40902B00	0x00000040	SAR2, Channel #12
682	PERI_MS_PPU_FX_PASS0_SAR2_CH13_CH	0x40902B40	0x00000040	SAR2, Channel #13
683	PERI_MS_PPU_FX_PASS0_SAR2_CH14_CH	0x40902B80	0x00000040	SAR2, Channel #14
684	PERI_MS_PPU_FX_PASS0_SAR2_CH15_CH	0x40902BC0	0x00000040	SAR2, Channel #15
685	PERI_MS_PPU_FX_PASS0_SAR2_CH16_CH	0x40902C00	0x00000040	SAR2, Channel #16
686	PERI_MS_PPU_FX_PASS0_SAR2_CH17_CH	0x40902C40	0x00000040	SAR2, Channel #17
687	PERI_MS_PPU_FX_PASS0_SAR2_CH18_CH	0x40902C80	0x00000040	SAR2, Channel #18
688	PERI_MS_PPU_FX_PASS0_SAR2_CH19_CH	0x40902CC0	0x00000040	SAR2, Channel #19
689	PERI_MS_PPU_FX_PASS0_SAR2_CH20_CH	0x40902D00	0x00000040	SAR2, Channel #20
690	PERI_MS_PPU_FX_PASS0_SAR2_CH21_CH	0x40902D40	0x00000040	SAR2, Channel #21
691	PERI_MS_PPU_FX_PASS0_SAR2_CH22_CH	0x40902D80	0x00000040	SAR2, Channel #22
692	PERI_MS_PPU_FX_PASS0_SAR2_CH23_CH	0x40902DC0	0x00000040	SAR2, Channel #23
693	PERI_MS_PPU_FX_PASS0_SAR2_CH24_CH	0x40902E00	0x00000040	SAR2, Channel #24
694	PERI_MS_PPU_FX_PASS0_SAR2_CH25_CH	0x40902E40	0x00000040	SAR2, Channel #25
695	PERI_MS_PPU_FX_PASS0_SAR2_CH26_CH	0x40902E80	0x00000040	SAR2, Channel #26
696	PERI_MS_PPU_FX_PASS0_SAR2_CH27_CH	0x40902EC0	0x00000040	SAR2, Channel #27
697	PERI_MS_PPU_FX_PASS0_SAR2_CH28_CH	0x40902F00	0x00000040	SAR2, Channel #28
698	PERI_MS_PPU_FX_PASS0_SAR2_CH29_CH	0x40902F40	0x00000040	SAR2, Channel #29
699	PERI_MS_PPU_FX_PASS0_SAR2_CH30_CH	0x40902F80	0x00000040	SAR2, Channel #30
700	PERI_MS_PPU_FX_PASS0_SAR2_CH31_CH	0x40902FC0	0x00000040	SAR2, Channel #31
701	PERI_MS_PPU_FX_PASS0_TOP	0x409F0000	0x00001000	PASS0 SAR main

Based on Arm® Cortex®-M7 dual

Bus masters

24 Bus masters

The Arbiter (part of flash controller) performs priority-based arbitration based on the master identifier. Each bus master has a dedicated 4-bit master identifier. This master identifier is used for bus arbitration and IPC functionality.

Table 24-1 Bus masters for access and protection control

ID No.	Master ID	Description
0	CPUSS_MS_ID_CM0	Master ID for CM0+
1	CPUSS_MS_ID_CRYPTO	Master ID for Crypto
2	CPUSS_MS_ID_DW0	Master ID for P-DMA0
3	CPUSS_MS_ID_DW1	Master ID for P-DMA1
4	CPUSS_MS_ID_DMAC	Master ID for M-DMA0
5	CPUSS_MS_ID_SLOW0	Master ID for External AHB-Lite Master 0 (SDHC)
9	CPUSS_MS_ID_FAST0	Master ID for External AXI Master 0 (ETH0)
10	CPUSS_MS_ID_FAST1	Master ID for External AXI Master 1 (ETH1)
13	CPUSS_MS_ID_CM7_1	Master ID for CM7_1
14	CPUSS_MS_ID_CM7_0	Master ID for CM7_0
15	CPUSS_MS_ID_TC	Master ID for DAP Tap Controller

Based on Arm® Cortex®-M7 dual

Miscellaneous configuration

25 Miscellaneous configuration

Table 25-1 Miscellaneous configuration for CYT4BF devices

Sl. No.	Configuration	Number/Instances	Description
0	SRSS_NUM_CLKPATH	7	Number of clock paths. One for each of FLL, PLL, Direct and CSV
1	SRSS_NUM_HFROOT	8	Number of CLK_HFs present
2	PERI_PC_NR	8	Number of protection contexts
3	PERI_PERI_PCLK_PCLK_GROUP_NR	2	Number of asynchronous PCLK groups
4	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_DIV_8_VECT	4	Group 0, Number of divide-by-8 clock dividers
5	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_DIV_16_VECT	3	Group 0, Number of divide-by-16 clock dividers
6	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_DIV_24_5_VECT	1	Group 0, Number of divide-by-24.5 clock dividers
7	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_CLOCK_VECT	15	Group 0, Number of programmable clocks [1, 256]
8	PERI_PERI_PCLK_PCLK_GROUP_NR1_GR_DIV_8_VECT	19	Group 1, Number of divide-by-8 clock dividers
9	PERI_PERI_PCLK_PCLK_GROUP_NR1_GR_DIV_16_VECT	20	Group 1, Number of divide-by-16 clock dividers
10	PERI_PERI_PCLK_PCLK_GROUP_NR1_GR_DIV_24_5_VECT	21	Group 1, Number of divide-by-24.5 clock dividers
11	PERI_PERI_PCLK_PCLK_GROUP_NR1_GR_CLOCK_VECT	154	Group 1, Number of programmable clocks [1, 256]
12	CPUSS_CM0P_MPU_NR	8	Number of MPU regions in CM0+
13	CPUSS_CM7_0_FPU_LVL	2	CM7_0 Floating point unit configuration. 0 - No FPU 1 - Single precision FPU 2 - Single and Double precision FPU
14	CPUSS_CM7_0_MPU_NR	16	Number of MPU regions in CM7_0
15	CPUSS_CM7_0_ICACHE_SIZE	16	CM7_0 Instruction cache (ICACHE) size in KB
16	CPUSS_CM7_0_DCACHE_SIZE	16	CM7_0 Data cache size (DCACHE) in KB
17	CPUSS_CM7_0_ITCM_SIZE	16	CM7_0 Instruction TCM (ITCM) size in KB
18	CPUSS_CM7_0_DTCM_SIZE	16	CM7_0 Data TCM (DTCM) size in KB
19	CPUSS_CM7_1_FPU_LVL	2	CM7_1 Floating point unit configuration. 0 - No FPU 1 - Single precision FPU 2 - Single and Double precision FPU
20	CPUSS_CM7_1_MPU_NR	16	Number of MPU regions in CM7_1
21	CPUSS_CM7_1_ICACHE_SIZE	16	CM7_1 Instruction cache (ICACHE) size in KB
22	CPUSS_CM7_1_DCACHE_SIZE	16	CM7_1 Data cache size (DCACHE) in KB
23	CPUSS_CM7_1_ITCM_SIZE	16	CM7_1 Instruction TCM (ITCM) size in KB
24	CPUSS_CM7_1_DTCM_SIZE	16	CM7_1 Data TCM (DTCM) size in KB
25	CPUSS_DW0_CH_NR	143	Number of P-DMA0 channels
26	CPUSS_DW1_CH_NR	65	Number of P-DMA1 channels
27	CPUSS_DMAC_CH_NR	8	Number of M-DMA0 controller channels
28	CPUSS_CRYPTO_BUFF_SIZE	2048	Number of 32-bit words in the IP internal memory buffer (to allow for a 256-B, 512-B, 1-KB, 2-KB, 4-KB, 8-KB, 16-KB, and 32-KB memory buffer)
29	CPUSS_FAULT_FAULT_NR	4	Number of fault structures
30	CPUSS_IPC_IPC_NR	8	Number of IPC structures 0 - Reserved for CM0+ access 1 - Reserved for CM7_0 access 2 - Reserved for CM7_1 access 3 - Reserved for DAP access Remaining for user purposes
31	CPUSS_PROT_SMPU_STRUCT_NR	16	Number of SMPU protection structures
32	SCBx_EZ_DATA_NR	256	Number of EZ memory bytes. This memory is used in EZ mode, CMD_RESP mode and FIFO mode. Note: Only SCB0 supports CMD_RESP mode
33	TCPWM0_TR_ONE_CNT_NR	3	Number of input triggers per counter, routed to one counter
34	TCPWM0_TR_ALL_CNT_NR	12	Number of input triggers routed to all counters, based on the pin package
35	TCPWM0_GRP_NR	3	Number of TCPWM0 counter groups

Miscellaneous configuration

Miscellaneous configuration for CYT4BF devices (continued) **Table 25-1**

Sl. No.	Configuration	Number/Instances	Description
36	TCPWM0_GRP_NR0_GRP_GRP_CNT_NR	3	Number of counters per TCPWM0 Group #0
37	TCPWM0_GRP_NR0_CNT_GRP_CNT_WIDTH	16	Counter width in number of bits per TCPWM0 Group #0
38	TCPWM0_GRP_NR1_GRP_GRP_CNT_NR	3	Number of counters per TCPWM0 Group #1
39	TCPWM0_GRP_NR1_CNT_GRP_CNT_WIDTH	16	Counter width in number of bits per TCPWM0 Group #1
40	TCPWM0_GRP_NR2_GRP_GRP_CNT_NR	3	Number of counters per TCPWM0 Group #2
41	TCPWM0_GRP_NR2_CNT_GRP_CNT_WIDTH	32	Counter width in number of bits per TCPWM0 Group #2
42	TCPWM1_GRP_NR	3	Number of TCPWM1 counter groups
43	TCPWM1_GRP_NR0_GRP_GRP_CNT_NR	84	Number of counters per TCPWM1 Group #0
44	TCPWM1_GRP_NR0_CNT_GRP_CNT_WIDTH	16	Counter width in number of bits per TCPWM1 Group #0
45	TCPWM1_GRP_NR1_GRP_GRP_CNT_NR	12	Number of counters per TCPWM1 Group #1
46	TCPWM1_GRP_NR1_CNT_GRP_CNT_WIDTH	16	Counter width in number of bits per TCPWM1 Group #1
47	TCPWM1_GRP_NR2_GRP_GRP_CNT_NR	13	Number of counters per TCPWM1 Group #2
48	TCPWM1_GRP_NR2_CNT_GRP_CNT_WIDTH	32	Counter width in number of bits per TCPWM1 Group #2
49	CANFD0_MRAM_SIZE / CANFD1_MRAM_SIZE	40	Message RAM size in KB shared by all the channels
50	EVTGEN_COMP_STRUCT_NR	16	Number of Event Generator comparator structures

Based on Arm® Cortex®-M7 dual

Development support

26 Development support

CYT4BF has a rich set of documentation, programming tools, and online resources to assist during the development process. Visit **www.infineon.com** to find out more.

26.1 Documentation

A suite of documentation supports CYT4BF to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

26.1.1 Software User Guide

A step-by-step guide for using the sample driver library along with third-party IDEs such as IAR EWARM and GHS Multi.

26.1.2 Technical Reference Manual

The Technical Reference Manual (TRM) contains all the technical detail needed to use a CYT4BF device, including a complete description of all registers. The TRM is available in the documentation section at **www.infineon.com**.

26.2 Tools

CYT4BF is supported on third-party development tool ecosystems such as IAR and GHS. CYT4BF is also supported by Cypress programming utilities for programming, erasing, or reading using Cypress' MiniProg4 or Segger J-link. More details are available in the documentation section at www.infineon.com.

Based on Arm® Cortex®-M7 dual

Electrical specifications

27 Electrical specifications

27.1 Absolute maximum ratings

Use of this device under conditions outside the Min and Max limits listed in **Table 27-1** may cause permanent damage to the device. Exposure to conditions within the limits of **Table 27-1** but beyond those of normal operation for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When operated under conditions within the limits of **Table 27-1** but beyond those of normal operation, the device may not operate to specification.

Power considerations

The average chip-junction temperature, T₁, in °C, may be calculated using Equation 1:

$$T_J = T_A + (P_D \times \theta_{JA})$$
 Equation. 1

Where:

T_A is the ambient temperature in °C.

 θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and P_{IO} ($P_D = P_{INT} + P_{IO}$).

 P_{INT} is the chip internal power. $(P_{INT} = V_{DDD} \times I_{DD} + V_{DDA} \times I_{A})$

P_{IO} represents the power dissipation on input and output pins; user determined.

For most applications, P_{IO} < P_{INT} and may be neglected.

On the other hand, P_{IO} may be significant if the device is configured to continuously drive external modules and/or memories.

WARNING:

- The recommended operating conditions are required to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are guaranteed when the device is operated under these conditions.
- Operation under any conditions other than those mentioned in the respective "Details/Conditions" may adversely affect reliability of the device and can result in device failure.
- No guarantee is made with respect to any use, operating conditions, or combinations not represented in this datasheet. If you want to operate the device under any condition other than those listed herein, contact the sales representatives.

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-1 Absolute maximum ratings

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID10	V _{DDD_ABS}	V _{DDD} power supply voltage ^[35]	V _{SSD} - 0.3	-	V _{SSD} + 6.0	V	For ports 0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31
SID10B	V _{DDIO_1_ABS}	V _{DDIO_1} power supply voltage ^[35]	V _{SSD} - 0.3	_	V _{SSD} + 6.0	V	For ports 6, 7, 8, 9, 32
SID10C	V _{DDIO_2_ABS}	V _{DDIO_2} power supply voltage ^[35]	V _{SSD} - 0.3	-	V _{SSD} + 6.0	V	For ports 10, 11, 12, 13, 14, 15
SID10D	V _{DDIO_3_ABS}	V _{DDIO_3} power supply voltage ^[35]	V _{SSIO_3} - 0.3	-	V _{SSIO_3} + 4.0	V	For ports 24, 25
SID10E	V _{DDIO_4_ABS}	V _{DDIO_4} power supply voltage ^[35]	V _{SSIO_4} - 0.3	-	V _{SSIO_4} + 4.0	V	For ports 26, 27, 33, 34
SID11	V _{DDA_ABS}	V _{DDA} analog power supply voltage ^[35]	V _{SSA} – 0.3	_	V _{SSA} + 6.0	V	$V_{DDIO_2} = V_{DDA}$
SID12	V _{REFH_ABS}	Analog reference voltage, HIGH ^[35]	V _{SSA} - 0.3	-	V _{SSA} + 6.0	V	$V_{REFH} \le (V_{DDA} + 0.3 V)$
SID12A	V _{REFL_ABS}	Analog reference voltage, LOW ^[35]	V _{SSA} - 0.3	_	V _{SSA} + 0.3	V	
SID13	V _{CCD_ABS}	V _{CCD} Power supply voltage ^[35]	V _{SSD} - 0.3	-	V _{SSD} + 1.21	V	
SID15A	V _{I0_ABS}	Input voltage ^[35]	V _{SSD} – 0.5	-	V _{DDD} + 0.5	V	For ports 0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31
SID15B	V _{I1_ABS}	Input voltage ^[35]	V _{SSD} - 0.5	-	$V_{DDIO_{1}} + 0.5$	V	For ports 6, 7, 8, 9, 32
SID15C	V _{I2_ABS}	Input voltage ^[35]	V _{SSD} – 0.5	-	V _{DDIO_2} + 0.5	V	For ports 10, 11, 12, 13, 14, 15
SID15D	V _{I3_ABS}	Input voltage ^[35]	V _{SSIO_3} - 0.5	_	$V_{DDIO_3} + 0.5$	V	For ports 24, 25
SID15E	V _{I4_ABS}	Input voltage ^[35]	V _{SSIO_4} - 0.5	_	V _{DDIO_4} + 0.5	V	For ports 26, 27, 33, 34
SID15F	V _{I5_ABS}	Input voltage ^[35]	V _{SSD} - 0.5	-	V _{DDD} + 0.5	V	For EXT_PS_CTL0 in external PMIC/transistor mode, EXT_PS_CTL1 in external transistor mode.
SID16	V _{IA_ABS}	Analog input voltage ^[35]	V _{SSA} - 0.3	-	V _{DDA} + 0.3	V	
SID17A	V _{O0_ABS}	Output voltage ^[35]	V _{SSD} - 0.3	-	V _{DDD} + 0.3	V	For ports 0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31
SID17B	V _{O1_ABS}	Output voltage ^[35]	V _{SSD} - 0.3	_	V _{DDIO_1} + 0.3	V	For ports 6, 7, 8, 9, 32
SID17C	V _{O2_ABS}	Output voltage ^[35]	V _{SSD} - 0.3	_	V _{DDIO_2} + 0.3	V	For ports 10, 11, 12, 13, 14, 15
SID17D	V _{O3_ABS}	Output voltage ^[35]	V _{SSIO_3} - 0.3	_	V _{DDIO_3} + 0.3	V	For ports 24, 25
SID17E	V _{O5_ABS}	Output voltage ^[35]	V _{SSIO_4} - 0.3	-	V _{DDIO_4} + 0.3	V	For ports 26, 27, 33, 34
SID17F	V _{O4_ABS}	Output voltage ^[35]	V _{SSD} - 0.3	-	V _{DDD} + 0.3	V	For EXT_PS_CTL1/2 in external PMIC mode, DRV_VOUT in external transistor mode
SID18	I _{CLAMP_ABS}	Maximum clamp current ^[36, 37, 38]	-5	-	5	mA	
SID18A	I _{CLAMP_SUP} - PLY_POS_ABS	Maximum positive clamp current per I/O supply pin. Limit applies to I/O supply pin closest to the B+ injected current ^[40]	-	-	10	mA	+B injected DC current is not allowed for Ports 11 and 21.
SID18B	I _{CLAMP_SUP} - PLY_NEG_ABS	Maximum negative clamp current per I/O ground pin. Limit applies to I/O supply pin closest to the B+ injected current. [40]	-	-	10	mA	+B injected DC current is not allowed for Ports 11 and 21.
SID18C	I _{CLAMP_TO-} TAL_POS_ABS	Maximum positive clamp current per I/O supply, if not limited by the per supply pin (based on SID18A).	-	-	50	mA	

Notes

^{35.} These parameters are based on the condition that V_{SSD} = V_{SSA} = V_{SSIO_3} = V_{SSIO_4} = 0.0 V.

36. A current-limiting resistor must be provided such that the current at the I/O pin does not exceed rated values at any time, including during power transients. Refer to Figure 27-1 for more information on the recommended circuit.

37. Upplo must be sufficiently loaded or protected to prevent them from being pulled out of the recommended operating range

by the clamp current.

^{38.} When the conditions of [36], [37] and SID18A/B/C/D are met, |I_{CLAMP_ABS}| supersedes V_{IA_ABS} and V_{I_ABS}.
39. The definition of "closer" depends on the package. In TEQFP packaging, "closest" is determined by counting pins. For example, in a 176-TEQFP package, P17.4 (pin 120) is closer to the V_{DDD} on pin 110 than on pin 132. Ports 11 and 21 should not be used for injection currents. The impact of injection currents is only defined for GPIO_STD/GPIO_ENH type I/Os. In BGA packaging, the following IO port groups are treated as having separate supply pins: Ports 0, 1, 2, 22, 23, and 28; Ports 3, 4, 5, 29, 30, and 31; Ports 6, 7, 8, 9, and 32; Ports 10, 12, 13, 14, 15, 26, and 27; Ports 16 and 17; Ports 18, 19, and 20.

Based on Arm® Cortex®-M7 dual

Table 27-1 Absolute maximum ratings (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID18D	I _{CLAMP_TO} - TAL_NEG_ABS	Maximum negative clamp current per I/O ground, if not limited by the per supply pin (based on SID18B).	-	-	50	mA	
SID20A	I _{OL1A_ABS}	LOW-level maximum output current ^[40]	-	-	6	mA	GPIO_STD, configured for drive_sel<1:0>= 0b0X
SID20B	I _{OL1B_ABS}	LOW-level maximum output current ^[40]	-	-	2	mA	GPIO_STD, configured for drive_sel<1:0>= 0b10
SID20C	I _{OL1C_ABS}	LOW-level maximum output current ^[40]	-	-	1	mA	GPIO_STD, configured for drive_sel<1:0>= 0b11
SID21A	I _{OL2A_ABS}	LOW-level maximum output current ^[40]	-	-	6	mA	GPIO_ENH, configured for drive_sel<1:0>= 0b0X
SID21B	I _{OL2B_ABS}	LOW-level maximum output current ^[40]	-	-	2	mA	GPIO_ENH, configured for drive_sel<1:0>= 0b10
SID21C	I _{OL2C_ABS}	LOW-level maximum output current ^[40]	-	-	1	mA	GPIO_ENH, configured for drive_sel<1:0>= 0b11
SID22A	I _{OL3A_ABS}	LOW-level maximum output current ^[40]	-	-	10	mA	HSIO, configured for drive_sel<1:0>= 0b00
SID22B	I _{OL3B_ABS}	LOW-level maximum output current ^[40]	-	-	2	mA	HSIO, configured for drive_sel<1:0>= 0b01
SID22C	I _{OL3C_ABS}	LOW-level maximum output current ^[40]	-	-	1	mA	HSIO, configured for drive_sel<1:0>= 0b10
SID22D	I _{OL3D_ABS}	LOW-level maximum output current ^[40]	-	-	0.5	mA	HSIO, configured for drive_sel<1:0>= 0b11
SID23A	I _{OL4A_ABS}	Sink maximum current ^[40]	-	-	4	mA	For pin EXT_PS_CTL1 in external PMIC mode and internal regulator mode and pin EXT_PS_CTL2 in external PMIC mode
SID23B	I _{OL4B_ABS}	Sink average current ^[41]	-	-	1	mA	For pin EXT_PS_CTL1 in external PMIC mode and internal regulator mode and pin EXT_PS_CTL2 in external PMIC mode
SID23C	I _{OL4C_ABS}	Sink maximum current ^[40]	-	-	25	mA	For pin DRV_VOUT in external transistor mode
SID26A	ΣI _{OL_ABS_GPIO}	LOW-level total output current ^[44]	-	- 1	50	mA	
SID26B	ΣI _{OL_ABS_HSIO}	LOW-level total output current ^[43]	-	-	85	mA	
SID27A	I _{OH1A_ABS}	HIGH-level maximum output current ^[40]	-	-	-5	mA	GPIO_STD, configured for drive_sel<1:0>= 0b0X
SID27B	I _{OH1B_ABS}	HIGH-level maximum output current ^[40]	-	-	-2	mA	GPIO_STD, configured for drive_sel<1:0>= 0b10
SID27C	I _{OH1C_ABS}	HIGH-level maximum output current ^[40]	-	-	-1	mA	GPIO_STD, configured for drive_sel<1:0>= 0b11
SID28A	I _{OH2A_ABS}	HIGH-level maximum output current ^[40]	-	-	-5	mA	GPIO_ENH, configured for drive_sel<1:0>= 0b0X
SID28B	I _{OH2B_ABS}	HIGH-level maximum output current ^[40]	-	-	-2	mA	GPIO_ENH, configured for drive_sel<1:0>= 0b10
SID28C	I _{OH2C_ABS}	HIGH-level maximum output current ^[40]	-	-	-1	mA	GPIO_ENH, configured for drive_sel<1:0>= 0b11
SID29A	I _{OH3A_ABS}	HIGH-level maximum output current ^[40]	-	-	-10	mA	HSIO, configured for drive_sel<1:0>= 0b00
SID29B	I _{OH3B_ABS}	HIGH-level maximum output current ^[40]	-	-	-2	mA	HSIO, configured for drive_sel<1:0>= 0b01
SID29C	I _{OH3C_ABS}	HIGH-level maximum output current ^[40]	-	-	-1	mA	HSIO, configured for drive_sel<1:0>= 0b10
SID29D	I _{OH3D_ABS}	HIGH-level maximum output current ^[40]	-	-	-0.5	mA	HSIO, configured for drive_sel<1:0>= 0b11

Notes

40. The maximum output current is the peak current flowing through any one I/O.

41. The average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 10 ms period. The average value is the operation current × the operation ratio. The operation current period over the average current spec should be less than 100 ns.

42. The total output current is the maximum current flowing through all GPIO_STD and GPIO_ENH I/Os.

43. The total output current is the maximum current flowing through all HSIO_STD I/Os.

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-1 Absolute maximum ratings (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID30A	I _{OH4A_ABS}	Source maximum current ^[40]	-	-	-4	mA	For pin EXT_PS_CTL1 in external PMIC mode and internal regulator mode and pin EXT_PS_CTL2 in external PMIC mode.
SID30B	I _{OH4B_ABS}	Source maximum current ^[40]	-	_	-25	mA	For pin DRV_VOUT in external transistor mode.
SID30C	I _{OH4C_ABS}	Source average current ^[41]	-	-	-1	mA	For pin EXT_PS_CTL1 in external PMIC mode and internal regulator mode and pin EXT_PS_CTL2 in external PMIC mode.
SID30D	I _{OH4D_ABS}	Source average current ^[41]	-	-	-12	mA	For pin DRV_VOUT in external transistor mode.
SID33A	ΣI _{OH_ABS_GPIO}	HIGH-level total output current ^[44]	-	_	-50	mA	
SID33B	ΣI _{OH_ABS_HSIO}	HIGH-level total output current ^[43]	-	_	-85	mA	
SID33D	PIO	Total output power dissipation ^[44]	-	_	307	mW	
SID34	P _D	Power dissipation for external PMIC/transistor mode	_	-	1000	mW	T _J should not exceed 150 °C
SID34A	P _D	Power dissipation for internal regulator mode	-	_	2000	mW	T _J should not exceed 150 °C
SID35	T _A	Ambient temperature	-40	-	105	°C	For S-grade devices
SID36	T _A	Ambient temperature	-40	-	125	°C	For E-grade devices
SID37	T _{STG}	Storage temperature	-55	-	150	°C	
SID38	T _J	Operating Junction temperature	-40	-	150	°C	
SID39A	V _{ESD_HBM}	Electrostatic discharge human body model	2000	-	-	V	
SID39B1	V _{ESD_CDM1}	Electrostatic discharge charged device model for corner pins	750	_	-	V	
SID39B2	V _{ESD_CDM2}	Electrostatic discharge charged device model for all other pins	500	_	-	V	
SID39C	I _{LU}	The maximum pin current the device can tolerate before triggering a latch-up	-100	_	100	mA	

Example of a recommended circuit $^{[45]}$ Figure 27-1

WARNING:

Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current, or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

Notes

44. The total output power dissipation is the maximum power dissipation flowing through all I/Os. PIO = (V_{DDD}, V_{DDIO_1}, V_{DDIO_2}) × (|Σ|_{OH_ABS_GPIO}| + |Σ|_{OL_ABS_GPIO}|) + (V_{DDIO_3}, V_{DDIO_4}) × (|Σ|_{OH_ABS_HSIO}| + |Σ|_{OL_ABS_HSIO}|) 45. +B is the positive battery voltage around 45 V.

Electrical specifications

27.2 Device-level specifications

Table 27-2 Recommended operating conditions

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID40	$V_{\mathrm{DDD}}, V_{\mathrm{DDA}}, V_{\mathrm{DDIO}_{1}}, V_{\mathrm{DDIO}_{2}},$	Power supply voltage ^[46]	2.7 ^[47]	-	5.5 ^[48]	V	
SID40A	V _{DDIO_1_EFP}	Power supply voltage for eFuse programming ^[49]	3	_	5.5	V	
SID40B	V _{DDIO_3} , V _{DDIO_4}	Power supply voltage	2.7	1	3.6	٧	
SID40C	V _{CCD}	External V _{CCD} power supply	1.10	1.15	1.20	٧	External V _{CCD} power supply range when externally supplying V _{CCD}
SID41	C _{S1}	Smoothing capacitor ^[50, 51]	6.79	_	22	μF	

Figure 27-2 Smoothing capacitor

Smoothing capacitor should be placed as close as possible to the VCCD pin.

Notes

 $46. V_{DDD}, V_{DDIO_1}, V_{DDIO_2}, V_{DDIO_3}, V_{DDIO_3}, V_{DDIO_4}, and V_{DDA} \ do \ not \ have \ any sequencing \ limitation \ and \ can establish in \ any \ order. These \ supplies (except V_{DDA} \ and V_{DDIO}\ _2) \ are independent in \ voltage \ level. See 12-Bit SAR ADC DC Specifications when using ADC units.$

47.3.0 V ±10% is supported with a lower BOD setting option for V_{DDD} and V_{DDA}. This setting provides robust protection for internal timing but BOD reset occurs at a voltage below the specified operating conditions. A higher BOD setting option is available (consistent with down to 3.0 V) and guarantees that all operating conditions are met.

48.5.0 V) and guarantees that all operating conditions are met.

48.5.0 V ±10% is supported with a higher OVD setting option for V_{DDD} and V_{DDA}. This setting provides robust protection for internal and interface timing, but OVD reset occurs at a voltage above the specified operating conditions. A lower OVD setting option is available (consistent with up to 5.0 V) and guarantees that all operating conditions are met. Voltage overshoot to a higher OVD setting range for V_{DDD} and V_{DDA} is permissible, provided the duration is less than 2 hours cumulated. Note that during overshoot voltage condition electrical parameters are not guaranteed.

49. eFuse programming must be executed with the part in a "quiet" state, with minimal activity (preferably only JTAG or a single LIN/CAN channel on V_{DDD} domain, no activity on V_{DDIO_1}).

50. Smoothing capacitor, C_{S1} is required per chip (not per V_{CCD} pin). The V_{CCD} pins must be connected together to ensure a low-impedance connection (see the requirement in Figure 27-2).

51. Capacitors used for power supply decoupling or filtering are operated under a continuous DC-bias. Many capacitors used with DC power across them provide less than their target capacitance, and their capacitance is not constant across their working voltage range. When selecting capacitors for use with this device, ensure that the selected components provide the required capacitance under the specific operating conditions of temperature and voltage used in your design. While the temperature coefficient is normally found within a part's catalog (such as, X7R, C0G, Y5V), the matching voltage coefficient may only be available on the component datasheet or direct from the manufacturer. Use of components that do not provide the required capacitance under the actual operating conditions may cause the device to operate to less than datasheet specifications.

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.3 **DC** specifications

Table 27-3 DC specifications, CPU current, and transition time specifications

All specifications are valid for –40 $^{\circ}C$ \leq T_{A} \leq 125 $^{\circ}C$ and for 2.7 V to 5.5 V except where noted.

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Active/Sle	ep mode						
SID49C1	I _{DD_VDDD_} CM0 7_8_1	V _{DDD} current in internal regulator mode, LPACTIVE mode (CM0+ and CM7_0 at 8 MHz, all peripherals are disabled)	-	10	17	mA	CM0+ and CM7_0 clocked at 8 MHz with IMO. CM7_1 powered off. All peripherals are disabled. No IO toggling. CPUs CM7_0 and CM0+ executing Dhrystone from flash with cache enabled. Typ: $T_A = 25$ °C, $V_{DDD} = 5.0$ V, process typ (TT) Max: $T_A = 25$ °C, $V_{DDD} = 5.5$ V, process worst (FF)
SID49C	I _{DD_VDDD_} CM0 7_8	V _{DDD} current in internal regulator mode, LPACTIVE mode (CM0+ and CM7_0 at 8 MHz, all peripherals are enabled)	-	12	226	mA	CM0+ and CM7_0 clocked at 8 MHz with IMO. CM7_1 powered off. All peripherals are enabled. No IO toggling. M-DMA transferring data from code + work flash, P-DMA chains with maximum trigger activity. CPUs CM7_0 and CM0+ executing Dhrystone from flash with cache enabled. Typ: T _A = 25 °C, V _{DDD} = 5.0 V, process typ (TT) Max: T _A = 105 °C, V _{DDD} = 5.5 V, process worst (FF)
SID49E1	I _{DD1_VC} - CD_CM7_350	V _{CCD} current in external PMIC/transistor mode, Active mode (CM7_0 at 350 MHz, CM0+ at 100 MHz, all peripherals are enabled)	-	155	431	mA	PLL enabled at 350 MHz with ECO reference. All peripherals are enabled. No IO toggling. CM7_1 powered off. M-DMA transferring data from code + work flash, P-DMA chains with maximum trigger activity. CPUs CM7_0 and CM0+ executing Dhrystone from flash with cache enabled. Typ: T _A = 25 °C, V _{CCD} = 1.15 V, process typ (TT) Max: T _A = 125 °C, V _{CCD} = 1.20 V, process worst (FF)

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-3 DC specifications, CPU current, and transition time specifications (continued)

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID49E2	I _{DD1_} - VDDD_CM7_350	V _{DDD} current in external PMIC/transistor mode, Active mode (CM7_0 at 350 MHz, CM0+ at 100 MHz, all peripherals are enabled)	-1	7	9	mA	PLL enabled at 350 MHz with ECO reference. All peripherals are enabled. No IO toggling. CM7_1 powered off. M-DMA transferring data from code + work flash, P-DMA chains with maximum trigger activity. CPUs CM7_0 and CM0+ executing Dhrystone from flash with cache enabled. Typ: T _A = 25 °C, V _{DDD} = 5.0 V, process typ (TT) Max: T _A = 125 °C, V _{DDD} = 5.5 V, process worst (FF)
SID50A1	I _{DD1_VCCD_F}	V _{CCD} current in external PMIC/transistor mode, Active mode (CM7 CPUs at 350 MHz, CM0+ at 100 MHz, all peripherals are enabled)	-	209	543	mA	PLL enabled at 350 MHz with ECO reference. All peripherals are enabled. No IO toggling. M-DMA transferring data from code + work flash, P-DMA chains with maximum trigger activity. CM7 CPUs and CM0+ executing Dhrystone from flash with cache enabled. Typ: $T_A = 25$ °C, $V_{CCD} = 1.15$ V, process typ (TT) Max: $T_A = 125$ °C, $V_{CCD} = 1.20$ V, process worst (FF)
SID50A2	I _{DD1_VDDD_F}	V _{DDD} current in external PMIC/transistor mode, Active mode (CM7 CPUs at 350 MHz, CM0+ at 100 MHz, all peripherals are enabled)	_	7	9.3	mA	PLL enabled at 350 MHz with ECO reference. All peripherals are enabled. No IO toggling. M-DMA transferring data from code + work flash, P-DMA chains with maximum trigger activity. CM7 CPUs and CM0+ executing Dhrystone from flash with cache enabled. Typ: $T_A = 25$ °C, $V_{DDD} = 5.0$ V, process typ (TT) Max: $T_A = 125$ °C, $V_{DDD} = 5.5$ V, process worst (FF)
SID53A	I _{DD2_8_VDDD}	V _{DDD} current in internal regulator mode. CM7_1=OFF, Other CPUs in Sleep.	-	7	218	mA	IMO clocked at 8 MHz. All peripherals, PLL, FLL, peripheral clocks, interrupts, CSV, DMA are disabled. No IO toggling. Typ: T _A = 25 °C, V _{DDD} = 5.0 V, process typ (TT) Max: T _A = 105 °C, V _{DDD} = 5.5 V, process worst (FF)

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-3 DC specifications, CPU current, and transition time specifications (continued)

All specifications are valid for $-40\,^{\circ}\text{C} \le T_{A} \le 125\,^{\circ}\text{C}$ and for 2.7 V to 5.5 V except where noted.

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID58A	I _{DD_CWU2}	Average current for cyclic wake-up operation. This is the average current for the specified LPACTIVE mode and DeepSleep mode (RTC, WDT, and Event Generator operating).	I	60	198	μА	T _A = 25 °C, 64-KB SRAM retention, Event generator operates with ILO0 in DeepSleep and LP Active, Smart I/O operates with ILO0, CM0+, CM7_0: Retained, CM7_1: OFF. Typ: V _{DDD} = 5.0 V, process typ (TT) Max: V _{DDD} = 5.5 V, process worst (FF) This average current is achieved under the following conditions. 1. MCU repetitively goes from DeepSleep to LP Active with a period of 32 ms. 2. One of the I/Os is toggled using Smart I/O to activate an external sensor connected to an analog input of A/D in DeepSleep 3. After 200 μs delay, the CM7_0 wakes up by Event generator trigger to LP Active mode with IMO and A/D conversion is triggered by software. 4. Group A/D conversion is performed on 5 channels with the sampling time of 1 μs each. 5. Once the group A/D conversion is finished, and the results fit in the window of the range comparator, the I/O is toggled back by software to de-activate the sensor and the CM7_0 goes back to DeepSleep.
DeepSlee	p mode	,				1	
SID64A	I _{DD_DS64A}	64-KB SRAM retention, ILO0 operation	-	50	176	μА	DeepSleep Mode (RTC, WDT, and event generator operating, all other peripherals are off except for retention registers), CM0+, CM7_0: Retained T _A = 25 °C Typ: V _{DDD} = 5.0 V, process typ (TT) Max: V _{DDD} = 5.5 V, process worst (FF)
SID64C	I _{DD_DS64C}	64 KB SRAM retention, ILO0 operation	_	1.4	5.5	mA	DeepSleep Mode steady state at T _A = 125 °C (RTC, WDT, and event generator operating, all other peripherals are off except for retention registers), CM0+, CM7_0: Retained Typ: V _{DDD} = 5.0 V, process worst (TT) Max: V _{DDD} = 5.5 V, process worst (FF)

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-3 DC specifications, CPU current, and transition time specifications (continued)

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Hibernate	mode	•	•	•		•	
SID66	I _{DD_HIB1}	Hibernate Mode	-	8	-	μА	ILOO/WDT operating. All other peripherals, and all CPUs are off. T _A = 25 °C, V _{DDD} = 5.0 V, Process typ (TT)
SID66A	I _{DD_HIB2}	Hibernate Mode	-	_	180	μА	ILOO/WDT operating. All other peripherals, and all CPUs are off. T _A = 125 °C, V _{DDD} = 5.5 V, Process worst (FF)
Power mo	de transition	times					
SID69	t _{ACT_DS}	Power down time from Active to DeepSleep	-	_	2.5	μs	When the IMO is already running and all HFCLK roots are at least 8 MHz. HFCLK roots that are slower than this will require additional time to turn off.
SID67	t _{DS_ACT}	DeepSleep to Active transition time (IMO clock)	_	1	10 ^[52]	μs	When using the 8-MHz IMO. Measured from wakeup interrupt during DeepSleep until wakeup.
SID67C	t _{DS_ACT1}	DeepSleep to Active transition time (IMO clock, flash execution)	-	_	26 ^[52]	μs	When using the 8-MHz IMO. Measured from wakeup interrupt during DeepSleep until flash execution.
SID67A	t _{DS_ACT_FLL}	DeepSleep to Active transition time (FLL clock)	-	-	15 ^[52]	μs	When using the FLL to generate 96 MHz from the 8-MHz IMO. Measured from wakeup interrupt during DeepSleep until the FLL locks.
SID67D	t _{DS_ACT_FLL1}	DeepSleep to Active transition time (FLL clock, flash execution)	-	_	26 ^[52]	μs	When using the FLL to generate 96 MHz from the 8-MHz IMO. Measured from wakeup interrupt during DeepSleep until flash execution.
SID67B	t _{DS_ACT_PLL}	DeepSleep to Active transition time (PLL clock)	-	_	60 ^[52]	μs	When using the PLL to generate 96 MHz from the 8-MHz IMO. Measured from wakeup interrupt during DeepSleep until the PLL locks.
SID68	t _{HVR_ACT}	Release time from HV reset (POR, BOD, OVD, OCD, WDT, Hibernate wakeup, or XRES_L) release until CM0+ begins executing ROM boot	-	_	265	μs	Without boot runtime, guaranteed by design
SID68A	t _{LVR_ACT}	Release time from LV reset (Fault, Internal system reset, MCWDT, or CSV) during Active/Sleep until CM0+ begins executing ROM boot	-	-	10	μs	Without boot runtime. Guaranteed by design
SID68B	t _{LVR_DS}	Release time from LV reset (Fault, or MCWDT) during DeepSleep until CM0+ begins executing ROM boot	_	-	15	μs	Without boot runtime. Guaranteed by design

Note

^{52.}At cold temperature –5 °C to –40 °C, the DeepSleep to Active transition time can be higher than the max time indicated by as much as 20 μs.

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-3 DC specifications, CPU current, and transition time specifications (continued)

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID80A	t _{RB_N}	ROM boot startup time or wakeup time from hibernate in NORMAL protection state	-	-	1640	μs	Guaranteed by Design, CM0+ clocked at 100 MHz (Flash boot version 3.1.0.554 and later)
SID80B	t _{RB_S}	ROM boot startup time or wakeup time from hibernate in SECURE protection state	-	-	2330	μs	Guaranteed by Design, CM0+ clocked at 100 MHz (Flash boot version 3.1.0.554 and later)
SID81A	t _{FB}	Flash boot startup time or wakeup time from hibernate in NORMAL/SECURE protection state	1	-	80	μs	Guaranteed by Design, TOC2_FLAGS=0x2CF, CM0+ clocked at 100 MHz (Flash boot version 3.1.0.554 and later), Listen window = 0 ms
SID81B	t _{FB_A}	Flash boot with app authentication time in NORMAL/SECURE protection state	-	-	5000	μs	Guaranteed by Design, TOC2_FLAGS=0x24F, CM0+ clocked at 100 MHz (Flash boot version 3.1.0.554 and later), Listen window = 0 ms, Public key exponent e = 0x010001, App size is 64 KB with the last 256 bytes being a digital signature in RSASSA-PKCS1-v1.5 Valid for RSA-2048.
SID80A_2	t _{RB_N_2}	ROM boot startup time or wakeup time from hibernate in NORMAL protection state	-	-	2640	μs	Guaranteed by design, CM0+ clocked at 50 MHz (Flash boot version earlier than 3.1.0.554)
SID80B_2	t _{RB_S_2}	ROM boot startup time or wakeup time from hibernate in SECURE protection state	ı	-	3890	μs	Guaranteed by design, CM0+ clocked at 50 MHz (Flash boot version earlier than 3.1.0.554)
SID81A_2	t _{FB_2}	Flash boot startup time or wakeup time from hibernate in NORMAL/SECURE protection state	-	_	200	μs	Guaranteed by design, TOC2_FLAGS=0x2CF, CM0+ clocked at 50 MHz (Flash boot version earlier than 3.1.0.554), Listen window = 0 ms
SID81B_2	t _{FB_A_2}	Flash boot with app authentication time in NORMAL/SECURE protection state	-	-	10000	μs	Guaranteed by design, TOC2_FLAGS=0x24F, CM0+ clocked at 50 MHz (Flash boot version earlier than 3.1.0.554), Listen window = 0 ms, Public key exponent e = 0x010001, App size is 64 KB with the last 256 bytes being a digital signature in RSASSA-PKCS1-v1.5 Valid for RSA-2048.
	specifications	_		I			
SID600	V _{CCD}	Core supply voltage (transient range)	1.05	1.1	1.15	V	
SID600A	V _{CCD_S}	Core supply voltage (static range, no load)	1.075	1.1	1.125	V	Guaranteed by design
SID601	I _{DDD_ACT}	Regulator operating current in Active/Sleep mode	-	900	1500	μΑ	Guaranteed by design
SID602	I _{DDD_DPSLP}	Regulator operating current in DeepSleep mode	-	1.5	20	μΑ	Guaranteed by design
SID603	I _{RUSH}	In-rush current	_	-	850	mA	Average V _{DDD} current until C _{s1} (connected to V _{CCD} pin) is charged after Active regulator is turned on
SID604	I _{ILDOUT}	Internal regulator output current for operation	-	-	300	mA	

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-3 DC specifications, CPU current, and transition time specifications (continued)

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID605	I _{HCROUT}	High current regulator output current for operation	-	-	600	mA	Using an external pass transistor
SID606	V _{OL_HCR}	Output voltage LOW level for external PMIC enable output (EXT_PS_CTL1)	-	-	0.5	V	I _{OL} = 1 mA
SID606A	V _{OH_HCR}	Output voltage HIGH level for external PMIC enable output (EXT_PS_CTL1)	V _{DDD} - 0.5	-	-	V	I _{OH} = -1 mA
SID607	V _{IH_HCR}	Input voltage HIGH threshold for external PMIC power OK input (EXT_PS_CTL0)	0.7 × V _{DDD}	-	-	V	
SID607A	V _{IL_HCR}	Input voltage LOW threshold for external PMIC power OK input (EXT_PS_CTL0)	-	-	0.3 × V _{DDD}	V	
SID607B	V _{HYS_HCR}	Hysteresis for external PMIC power OK input (EXT_PS_CTL0)	0.05 × V _{DDD}	-	-	V	
SID608	I _{DRV_VOUT}	DRV_VOUT pin output current to external NPN base current	-	-	9	mA	See Architecture TRM for external NPN transistor selection

Reset specifications 27.4

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Table 27-4 XRES_L reset

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions				
XRES_L	XRES_L DC specifications										
SID73	I _{IDD_XRES}	I _{DD} when XRES_L asserted	_	-	2.5	mA	MAX: $T_A = 125$ °C, $V_{DDD} = 5.5$ V, $V_{CCD} = 1.15$ V, process worst (FF)				
SID74	V _{IH}	Input voltage HIGH threshold	$0.7 \times V_{DDD}$	-	-	V	CMOS Input				
SID75	V _{IL}	Input voltage LOW threshold	-	-	$0.3 \times V_{DDD}$	V	CMOS Input				
SID76	R _{PULLUP}	Pull-up resistor	7	-	20	kΩ					
SID77	C _{IN}	Input capacitance	-	-	5	pF					
SID78	V _{HYSXRES}	Input voltage hysteresis	$0.05 \times V_{DDD}$	-	-	V					
XRES_L A	C specificat	ions				•					
SID70	t _{XRES_ACT}	XRES_L deasserted to Active transition time	-	-	265	μs	Without boot runtime, guaranteed by design				
SID71	t _{XRES_PW}	XRES_L pulse width	5	-	-	μs					
SID72	t _{XRES_FT}	Pulse suppression width	100	-	-	ns					

Based on Arm® Cortex®-M7 dual

Figure 27-3 **Reset sequence**

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.5 I/O

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

I/O specifications **Table 27-5**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
GPIO_STD	Specifications for por	ts P1 through P23, P28 to P32				1	
SID650	V _{OL1_GPIO_STD}	Output voltage LOW level	-	_	0.6	V	$I_{OL} = 6 \text{ mA}$ drive_sel<1:0> = 0b0X, $4.5 \text{ V} \le \text{V}_{DDD} \text{ or V}_{DDIO_1} \text{ or V}_{DDIO_2} \le 5.5 \text{ V}$
SID650C	V _{OL1C_GPIO_STD}	Output voltage LOW level	-	-	0.4	V	$I_{OL} = 5 \text{ mA}$ drive_sel<1:0> = 0b0X, $4.5 \text{ V} \le \text{V}_{DDD} \text{ or V}_{DDIO_1} \text{ or V}_{DDIO_2} \le 5.5 \text{ V}$
SID651	V _{OL2_GPIO_STD}	Output voltage LOW level	ı	-	0.4	V	I_{OL} = 2 mA drive_sel<1:0> = 0b0X, 2.7 V \leq V _{DDD} or V _{DDIO_1} or V _{DDIO_2} < 4.5 V
SID652	V _{OL3_GPIO_STD}	Output voltage LOW level	ı	_	0.4	V	$I_{OL} = 1 \text{ mA}$ drive_sel<1:0> = 0b10, 2.7 V \leq V _{DDD} or V _{DDIO_1} or V _{DDIO_2} < 4.5 V
SID652C	V _{OL3C_GPIO_STD}	Output voltage LOW level	-	-	0.4	V	$I_{OL} = 2 \text{ mA}$ drive_sel<1:0> = 0b10, $4.5 \text{ V} \le V_{DDD} \text{ or } V_{DDIO_1} \text{ or } V_{DDIO_2} \le 5.5 \text{ V}$
SID653	V _{OL4_GPIO_STD}	Output voltage LOW level	-	_	0.4	V	$I_{OL} = 0.5 \text{ mA}$ drive_sel<1:0> = 0b11, 2.7 V \le V_{DDD} \text{ or } V_{DDIO_1} \text{ or } V_{DDIO_2} < 4.5 \text{ V}
SID653C	V _{OL4C_GPIO_STD}	Output voltage LOW level	ı	_	0.4	V	$I_{OL} = 1 \text{ mA}$ drive_sel<1:0> = 0b11, $4.5 \text{ V} \le V_{DDD} \text{ or } V_{DDIO_1} \text{ or } V_{DDIO_2} \le 5.5 \text{ V}$
SID654	V _{OH1_GPIO_STD}	Output voltage HIGH level	$(V_{\rm DDD}, V_{\rm DDIO_1}, {\rm or} V_{\rm DDIO_2}) - 0.5$	-	ı	V	I _{OH} = -2 mA drive_sel<1:0> = 0b0X, 2.7 V ≤ V _{DDD} or V _{DDIO_1} or V _{DDIO_2} < 4.5 V
SID655	V _{OH2_GPIO_STD}	Output voltage HIGH level	$(V_{\rm DDD}, V_{\rm DDIO_1}, {\rm or} V_{\rm DDIO_2}) - 0.5$	_	I	V	I_{OH} = -5 mA drive_sel<1:0> = 0b0X, 4.5 V \leq V _{DDD} or V _{DDIO_1} or V _{DDIO_2} \leq 5.5 V
SID656	V _{OH3_GPIO_STD}	Output voltage HIGH level	(V _{DDD} , V _{DDIO_1} , or V _{DDIO_2}) – 0.5	-	-	V	$I_{OH} = -1 \text{ mA}$ drive_sel<1:0> = 0b10, 2.7 V \le (V_{DDD}, V_{DDIO_1}, or V_{DDIO_2}) < 4.5 V
SID656C	V _{OH3C_GPIO_STD}	Output voltage HIGH level	$(V_{\rm DDD}, V_{\rm DDIO_1}, {\rm or} V_{\rm DDIO_2}) - 0.5$	-	-	V	$I_{OH} = -2 \text{ mA}$ drive_sel<1:0> = 0b10, $4.5 \text{ V} \le (V_{DDD}, V_{DDIO_1}, \text{ or}$ $V_{DDIO_2}) \le 5.5 \text{ V}$
SID657	V _{OH4_GPIO_STD}	Output voltage HIGH level	$(V_{\rm DDD}, V_{\rm DDIO_1}, {\rm or} V_{\rm DDIO_2}) - 0.5$	-	-	V	I_{OH} = -0.5 mA drive_sel<1:0> = 0b11, 2.7 V \leq (V _{DDD} , V _{DDIO_1} , or V _{DDIO_2}) < 4.5 V
SID657C	V _{OH4C_GPIO_STD}	Output voltage HIGH level	$(V_{\rm DDD}, V_{\rm DDIO_1}, {\rm or} V_{\rm DDIO_2}) - 0.5$	-	-	V	$I_{OH} = -1 \text{ mA}$ drive_sel<1:0> = 0b11, $4.5 \text{ V} \le (V_{DDD}, V_{DDIO_1}, \text{ or}$ $V_{DDIO_2}) \le 5.5 \text{ V}$
SID658	R _{PD_GPIO_STD}	Pull-down resistance	25	50	100	kΩ	
SID659	R _{PU_GPIO_STD}	Pull-up resistance	25	50	100	kΩ	
SID660	V _{IH_CMOS_GPIO_STD}	Input voltage HIGH threshold in CMOS mode	$\begin{array}{c} 0.7 \times (V_{DDD}, \\ V_{DDIO_1}, or \\ V_{DDIO_2}) \end{array}$	-	-	V	
SID661	V _{IH_TTL_GPIO_STD}	Input voltage HIGH threshold in TTL mode	2.0	-	-	V	
SID662	V _{IH_AUTO_GPIO_STD}	Input voltage HIGH threshold in AUTO mode	$\begin{array}{c} 0.8 \times (V_{DDD}, \\ V_{DDIO_1}, \text{ or } \\ V_{DDIO_2}) \end{array}$	_	-	V	

Based on Arm® Cortex®-M7 dual

I/O specifications (continued) **Table 27-5**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID663	V _{IL_CMOS_GPIO_STD}	Input voltage LOW threshold in CMOS mode	-	-	$\begin{array}{c} 0.3 \times \\ (V_{DDD}, \\ V_{DDIO_1}, \text{or} \\ V_{DDIO_2}) \end{array}$	٧	
SID664	V _{IL_TTL_GPIO_STD}	Input voltage LOW threshold in TTL mode	-	-	0.8	V	
SID665	V _{IL_AUTO_GPIO_STD}	Input voltage LOW threshold in AUTO mode	-	ı	0.5 × (V _{DDD} , V _{DDIO_1} , or V _{DDIO_2})	٧	
SID666	V _{HYST_CMOS_GPIO_STD}	Hysteresis in CMOS mode	$\begin{matrix} 0.05 \times (V_{DDD}, \\ V_{DDIO_1}, or \\ V_{DDIO_2}) \end{matrix}$	ı	_	٧	
SID668	V _{HYST_AUTO_GPIO_STD}	Hysteresis in AUTO mode	$\begin{matrix} 0.05 \times (V_{DDD}, \\ V_{DDIO_1}, or \\ V_{DDIO_2}) \end{matrix}$	ı	-	٧	
SID669	C _{in_GPIO_STD}	Input pin capacitance	_	-	5	pF	For 10 MHz and 100 MHz
SID670	I _{IL_GPIO_STD}	Input leakage current	-250	0.02	250	nA	For GPIO_STD except P21.0, P21.1, P21.2, P21.3, P21.4, P22.1, P22.2, P22.3, P23.3, P23.4. $V_{DDIO_1} = V_{DDIO_2} = V_{DDD} = V_{DDA} = 5.5 \text{ V,} \\ V_{SSD} < V_I < V_{DDD}, V_{DDIO_1}, V_{DDIO_2} -40 \text{ °C} \le T_A \le 125 \text{ °C} \\ Typ: T_A = 25 \text{ °C}, V_{DDIO_1} = V_{DDIO_2} = V_{DDD} = V_{DDA} = 5.0 \text{ V}$
SID670C	I _{IL_GPIO_STD_B}	Input leakage current	-700	0.02	700	nA	Only for P21.0, P21.1, P21.2, P21.3, P21.4, P22.1, P22.2, P22.3, P23.3, P23.4. $V_{DDIO_1} = V_{DDIO_2} = V_{DDD} = V_{DDA} = 5.5 \text{ V}, \\ V_{SSD} < V_I < V_{DDD}, V_{DDIO_1}, V_{DDIO_2} -40 \text{ °C} \le T_A \le 125 \text{ °C} \\ Typ: T_A = 25 \text{ °C}, V_{DDIO_1} = V_{DDIO_2} = V_{DDD} = V_{DDA} = 5.0 \text{ V}$
SID671	$t_R \text{ or } t_F \text{ (fast)}_{20_0_GPI}$ O_STD	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	10	ns	20-pF load, drive_sel<1:0> = 0b00
SID672	t _R or t _F (fast)_50_0_GPI- 0_STD	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	20	ns	50-pF load, drive_sel<1:0> = 0b00
SID673	t _R or t _F (fast) _{_20_1_GPI} - 0_STD	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	20	ns	20-pF load, drive_sel<1:0> = 0b01
SID674	t _R or t _F (fast) _{_10_2_GPI-} o_STD	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	20	ns	10-pF load, drive_sel<1:0> = 0b10
SID675	t_R or t_F (fast) _{_6_3_GPI-} o_STD	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	20	ns	6-pF load, drive_sel<1:0> = 0b11
SID676	t _F (fast)_ _{100_GPIO_STD}	Fall time (30% to 70% of V _{DDIO})	0.35	-	250	ns	10-pF to 400-pF load, R _{PU} = 767 Ω, drive_sel<1:0>= 0b00, Freq = 100 kHz
SID677	t _F (fast)_ _{400_GPIO_STD}	Fall time (30% to 70% of V _{DDIO})	0.35	_	250	ns	10-pF to 400-pF load, R _{PU} = 350 Ω, drive_sel<1:0>= 0b00, Freq = 400 kHz
SID678	f _{IN_GPIO_STD}	Input frequency	-	ı	100	MHz	
SID679	fout_GPIO_STD0H	Output frequency	-	-	50	MHz	20-pF load, drive_sel<1:0>= 00, $4.5 \text{ V} \le \text{V}_{\text{DDD}} \text{ or V}_{\text{DDIO}_1} \text{ or V}_{\text{DDIO}_2}$ $\le 5.5 \text{ V}$
SID680	fOUT_GPIO_STD0L	Output frequency	-	-	32	MHz	20-pF load, drive_sel<1:0>= 00, $2.7 \text{ V} \leq \text{V}_{\text{DDD}} \text{ or V}_{\text{DDIO}_1} \text{ or V}_{\text{DDIO}_2}$ < 4.5 V

Based on Arm® Cortex®-M7 dual

I/O specifications (continued) **Table 27-5**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID681	f _{OUT_GPIO_STD1H}	Output frequency	-	-	25	MHz	20-pF load, drive_sel<1:0>= 01, 4.5 V ≤ V _{DDD} or V _{DDIO_1} or V _{DDIO_2} ≤ 5.5 V
SID682	f _{OUT_GPIO_STD1L}	Output frequency	-	-	15	MHz	20-pF load, drive_sel<1:0>= 01, 2.7 V \le V_DDD or V_DDIO_1 or V_DDIO_2 < 4.5 V
SID683	fout_gpio_std2H	Output frequency	-	-	25	MHz	10-pF load, drive_sel<1:0>= 10, $4.5 \text{ V} \leq \text{V}_{\text{DDI}} \text{ or V}_{\text{DDIO}_1} \text{ or V}_{\text{DDIO}_2}$ $\leq 5.5 \text{ V}$
SID684	fout_gpio_std2L	Output frequency	-	_	15	MHz	10-pF load, drive_sel<1:0>= 10, 2.7 V ≤ V _{DDD} or V _{DDIO_1} or V _{DDIO_2} < 4.5 V
SID685	fout_gpio_std3H	Output frequency	-	_	15	MHz	6-pF load, drive_sel<1:0>= 11, 4.5 V ≤ V _{DDD} or V _{DDIO_1} or V _{DDIO_2} ≤ 5.5 V
SID686	f _{OUT_GPIO_STD3L}	Output frequency	-	-	10	MHz	6-pF load, drive_sel<1:0>= 11, 2.7 V ≤ V _{DDD} or V _{DDIO_1} or V _{DDIO_2} < 4.5 V
GPIO_ENH	Specifications for P0	•	•	•		•	•
SID650A	V _{OL1_GPIO_ENH}	Output voltage LOW level	_	-	0.6	V	I _{OL} = 6 mA drive_sel<1:0> = 0b0X, 2.7 V ≤ V _{DDD} ≤ 5.5 V
SID650D	V _{OL1D_GPIO_ENH}	Output voltage LOW level	-	_	0.4	V	$I_{OL} = 5 \text{ mA}$ $drive_sel<1:0> = 0b0X,$ $4.5 \text{ V} \le V_{DDD} \le 5.5 \text{ V}$
SID651A	V _{OL2_GPIO_ENH}	Output voltage LOW level	-	-	0.4	V	$I_{OL} = 2 \text{ mA}$ drive_sel<1:0> = 0b0X, 2.7 V \leq V _{DDD} < 4.5 V
SID652A	V _{OL3_GPIO_ENH}	Output voltage LOW level	-	-	0.4	V	$I_{OL} = 1 \text{ mA}$ drive_sel<1:0> = 0b10, 2.7 V \leq V _{DDD} < 4.5 V
SID652D	V _{OL3D_GPIO_ENH}	Output voltage LOW level	-	-	0.4	V	$I_{OL} = 2 \text{ mA}$ drive_sel<1:0> = 0b10, $4.5 \text{ V} \le V_{DDD} \le 5.5 \text{ V}$
SID653A	V _{OL4_GPIO_ENH}	Output voltage LOW level	-	ı	0.4	V	$I_{OL} = 0.5 \text{ mA}$ drive_sel<1:0> = 0b11, 2.7 V \leq V _{DDD} < 4.5 V
SID653D	V _{OL4D_GPIO_ENH}	Output voltage LOW level	-	ı	0.4	V	$I_{OL} = 1 \text{ mA}$ drive_sel<1:0> = 0b11, $4.5 \text{ V} \le V_{DDD} \le 5.5 \text{ V}$
SID654A	V _{OH1_GPIO_ENH}	Output voltage HIGH level	V _{DDD} - 0.5	-	-	V	$I_{OH} = -2 \text{ mA}$ drive_sel<1:0> = 0b0X, 2.7 V \leq V _{DDD} < 4.5 V
SID655A	V _{OH2_GPIO_ENH}	Output voltage HIGH level	V _{DDD} - 0.5	-	-	V	$I_{OH} = -5 \text{ mA}$ drive_sel<1:0> = 0b0X, $4.5 \text{ V} \le V_{DDD} \le 5.5 \text{ V}$
SID656A	V _{OH3_GPIO_ENH}	Output voltage HIGH level	V _{DDD} - 0.5	-	-	V	I _{OH} = -1 mA drive_sel<1:0> = 0b10, 2.7 V ≤ V _{DDD} < 4.5 V
SID656D	V _{OH3D_GPIO_ENH}	Output voltage HIGH level	V _{DDD} - 0.5	-	-	V	$I_{OH} = -2 \text{ mA}$ drive_sel<1:0> = 0b10, $4.5 \text{ V} \le V_{DDD} \le 5.5 \text{ V}$
SID657A	V _{OH4_GPIO_ENH}	Output voltage HIGH level	V _{DDD} - 0.5	_	-	V	I _{OH} = -0.5 mA drive_sel<1:0> = 0b11, 2.7 V ≤ V _{DDD} < 4.5 V

Based on Arm® Cortex®-M7 dual

I/O specifications (continued) **Table 27-5**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID657D	V _{OH4D_GPIO_ENH}	Output voltage HIGH level	V _{DDD} - 0.5	-	-	V	$I_{OH} = -1 \text{ mA}$ drive_sel<1:0> = 0b11, 4.5 V \le V_{DDD} \le 5.5 V
SID658A	R _{PD_GPIO_ENH}	Pull-down resistance	25	50	100	kΩ	
SID659A	R _{PU_GPIO_ENH}	Pull-up resistance	25	50	100	kΩ	
SID660A	V _{IH_CMOS_GPIO_ENH}	Input voltage HIGH threshold in CMOS mode	$0.7 \times V_{DDD}$	-	_	V	
SID661A	V _{IH_TTL_GPIO_ENH}	Input voltage HIGH threshold in TTL mode	2.0	-	-	V	
SID662A	V _{IH_AUTO_GPIO_ENH}	Input voltage HIGH threshold in AUTO mode	$0.8 \times V_{DDD}$	-	-	V	
SID663A	V _{IL_CMOS_GPIO_ENH}	Input voltage LOW threshold in CMOS mode	1	-	0.3 × V _{DDD}	٧	
SID664A	V _{IL_TTL_GPIO_ENH}	Input voltage LOW threshold in TTL mode	ı	-	0.8	٧	
SID665A	V _{IL_AUTO_GPIO_ENH}	Input voltage LOW threshold in AUTO mode	-	-	0.5 × V _{DDD}	V	
SID666A	V _{HYST_CMOS_GPIO_ENH}	Hysteresis in CMOS mode	0.05 × V _{DDD}	-	-	V	
SID668A	V _{HYST_AUTO_GPIO_ENH}	Hysteresis in AUTO mode	$0.05 \times V_{DDD}$	-	-	V	
SID669A	C _{in_GPIO_ENH}	Input pin capacitance	-	-	5	pF	For 10 MHz and 100 MHz
SID670A	I _{IL_GPIO_ENH}	Input leakage current	-350	0.055	350	nA	$V_{DDD} = V_{DDA} = 5.5 \text{ V},$ $V_{SSD} < V_1 < V_{DDD}$ $-40 \text{ °C} \le T_A \le 125 \text{ °C}$ $Typ: T_A = 25 \text{ °C},$ $V_{DDD} = V_{DDA} = 5.0 \text{ V}$
SID671A	t_R or t_F (fast)_20_0_GPI- 0_ENH	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	10	ns	20-pF load, drive_sel<1:0>=0b00, slow = 0
SID672A	t_R or t_F (fast)_ $_{50_0_GPI-}$	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	20	ns	50-pF load, drive_sel<1:0>=0b00, slow = 0
SID673A	t_R or t_F (fast)_20_1_GPI- 0_ENH	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	20	ns	20-pFload, drive_sel<1:0>=0b01, slow = 0
SID674A	t_R or t_F (fast)_10_2_GPI- 0_ENH	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	20	ns	10-pF load, drive_sel<1:0>=0b10, slow = 0
SID675A	t_R or t_F (fast) _{_6_3_GPI-} O_ENH	Rise time or fall time (10% to 90% of V _{DDIO})	1	-	20	ns	6-pF load, drive_sel<1:0> = 0b11, slow = 0
SID676A	t _{F_I2C} (slow)_ _{GPIO_ENH}	Fall time (30% to 70% of V _{DDIO})	20 × (V _{DDD} / 5.5)	-	250	ns	10-pF to 400-pF load, drive_sel<1:0> = 0b00, slow = 1, minimum R_{PU} = 400 Ω
SID677A	t _R or t _F (slow) _{20_GPI-} O_ENH	Rise time or fall time (10% to 90% of V _{DDIO})	20 × (V _{DDD} / 5.5)	_	160	ns	20-pFload, drive_sel<1:0>=0b00, slow = 1, output frequency = 1 MHz
SID678A	t _R or t _F (slow) _{_400_GPI-} O_ENH	Rise time or fall time (10% to 90% of V _{DDIO})	20 × (V _{DDD} / 5.5)	-	250	ns	400-pF load, drive_sel<1:0> = 0b00, slow = 1, output frequency = 400 kHz
SID679A	f _{IN_GPIO_ENH}	Input frequency	-	-	100	MHz	
SID680A	f _{OUT_GPIO_ENHOH}	Output frequency	-	-	50	MHz	20-pF load, drive_sel<1:0>= 0b00, 4.5 V ≤ V _{DDD} ≤ 5.5 V
SID681A	f _{OUT_GPIO_ENHOL}	Output frequency	-	-	32	MHz	20-pF load, drive_sel<1:0>= 0b00, 2.7 V ≤ V _{DDD} < 4.5 V
SID682A	f _{OUT_GPIO_ENH1} H	Output frequency	-	-	25	MHz	20-pF load, drive_sel<1:0>= 0b01, 4.5 V ≤ V _{DDD} ≤ 5.5 V
SID683A	f _{OUT_GPIO_ENH1} L	Output frequency	-	-	15	MHz	20-pF load, drive_sel<1:0>= 0b01, 2.7 V ≤ V _{DDD} < 4.5 V

Based on Arm® Cortex®-M7 dual

Table 27-5 I/O specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID684A	f _{OUT_GPIO_ENH2} H	Output frequency	-	_	25	MHz	10-pF load, drive_sel<1:0>= 0b10, 4.5 V ≤ V _{DDD} ≤ 5.5 V
SID685A	f _{OUT_GPIO_ENH2L}	Output frequency	-	-	15	MHz	10-pF load, drive_sel<1:0>= 0b10, 2.7 V ≤ V _{DDD} < 4.5 V
SID686A	f _{OUT_GPIO_ENH3H}	Output frequency	-	-	15	MHz	6-pF load, drive_sel<1:0>= 0b11, 4.5 V ≤ V _{DDD} ≤ 5.5 V
SID687A	f _{OUT_GPIO_ENH3L}	Output frequency	-	-	10	MHz	6-pF load, drive_sel<1:0>= 0b11, 2.7 V ≤ V _{DDD} < 4.5 V
HSIO Spec	ifications for ports P2	24 through P27, P33, P34			•		
SID650B	V _{OL_GMII}	Output LOW voltage	-		0.6	V	I _{OL} = 4 mA, drive_sel<1:0> = 0b00
SID651B	V _{OL_HB_HSSPI}	Output LOW voltage	-	-	0.2	V	I _{OL} = 0.1 mA, drive_sel<1:0> = 0b00
SID652B	V _{OL_eMMC}	Output LOW voltage	-	-	0.125 × V _{DDIO_3/4}	V	I _{OL} = 0.1 mA, drive_sel<1:0> = 0b00
SID653B	V _{OL_SD}	Output LOW voltage	-	-	0.125 × V _{DDIO_3/4}	V	I _{OL} = 2 mA, drive_sel<1:0> = 0b00
SID654B	V _{OL1}	Output LOW voltage	-	-	0.4	V	I _{OL} = 10 mA, drive_sel<1:0> = 0b00, V _{DDIO_3/4} = 2.7 V
SID655B	V _{OL2}	Output LOW voltage	-	-	0.4	V	$I_{OL} = 2 \text{ mA},$ drive_sel<1:0> = 0b01, $V_{DDIO_3/4} = 2.7 \text{ V}$
SID656B	V _{OL3}	Output LOW voltage	-	-	0.4	V	I _{OL} = 1 mA, drive_sel<1:0> = 0b10, V _{DDIO_3/4} = 2.7 V
SID656E	V _{OL4}	Output LOW voltage	-	-	0.4	V	I _{OL} = 0.5 mA, drive_sel<1:0> = 0b11, V _{DDIO_3/4} = 2.7 V
SID657B	V _{OH_GMII}	Output HIGH voltage	V _{DDIO_3/4} - 0.6	_	-	V	I _{OH} = -4 mA drive_sel<1:0> = 0b00
SID658B	V _{OH_HB_HSSPI}	Output HIGH voltage	V _{DDIO_3/4} - 0.2	_	_	V	I _{OH} = -0.1 mA drive_sel<1:0> = 0b00
SID659B	V _{ОН_еммс}	Output HIGH voltage	V _{DDIO_3/4} - (0.25 × V _{DDIO_3/4})	-	_	V	I _{OH} = -0.1 mA drive_sel<1:0> = 0b00
SID660B	V _{OH_SD}	Output HIGH voltage	V _{DDIO_3/4} - (0.25 × V _{DDIO_3/4})	-	_	V	I _{OH} = -2 mA drive_sel<1:0> = 0b00
SID661B	V _{OH1}	Output HIGH voltage	V _{DDIO_3/4} - 0.5	_	-	V	I _{OH} = -10 mA drive_sel<1:0> = 0b00, V _{DDIO_3/4} = 2.7 V
SID662B	V _{OH2}	Output HIGH voltage	V _{DDIO_3/4} - 0.5		-	V	I _{OH} = -2 mA drive_sel<1:0> = 0b01, V _{DDIO_3/4} = 2.7 V
SID663B	V _{OH3}	Output HIGH voltage	V _{DDIO_3/4} - 0.5	-	-	V	I _{OH} = -1 mA drive_sel<1:0> = 0b10, V _{DDIO_3/4} = 2.7 V
SID663E	V _{OH3}	Output HIGH voltage	V _{DDIO_3/4} - 0.5	_	_	V	$I_{OH} = -0.5 \text{ mA}$ drive_sel<1:0> = 0b11, $V_{DDIO_3/4} = 2.7 \text{ V}$
SID664B	R _{PD}	Pull-down resistance	25	50	100	kΩ	
SID665B	R _{PU}	Pull-up resistance	25	50	100	kΩ	

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-5 I/O specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID666B	V _{IH_CMOS}	Input HIGH voltage for HyperBus and HSSPI in CMOS mode	0.7 × V _{DDIO_3/4}	-	-	V	vtrip_sel<1:0> = 0b00
SID667B	V _{IH_RGMII}	Input HIGH voltage for RGMII in CMOS mode	0.8 × V _{DDIO_3/4}	-	-	V	vtrip_sel<1:0> = 0b00
SID668E	V _{IH_TTL}	Input Voltage HIGH threshold for TTL mode	2	_	_	V	vtrip_sel<1:0> = 0b01
SID668B	V _{IH_GMII}	Input HIGH voltage for GMII mode	1.7	-	-	V	vtrip_sel<1:0> = 0b11
SID669B	V _{IH_SD_eMMC}	Input HIGH voltage for SD and eMMC in CMOS mode	0.625 × V _{DDIO_3/4}	-	ı	V	vtrip_sel<1:0> = 0b00
SID669E	V _{IH_AUTO}	Input Voltage HIGH threshold in AUTO mode	0.8 × V _{DDIO_3/4}	-	-	V	vtrip_sel<1:0> = 0b10
SID670B	V _{IL_CMOS}	Input LOW voltage for HYPERBUS™ and HSSPI in CMOS mode	ı	-	0.3 × V _{DDIO_3/4}	V	vtrip_sel<1:0> = 0b00
SID671B	V _{IL_RGMII}	Input LOW voltage for RGMII in CMOS mode	-	_	0.2 × V _{DDIO_3/4}	V	vtrip_sel<1:0> = 0b00
SID672E	V _{IL_TTL}	Input Voltage LOW threshold for TTL mode	-	-	0.8	V	vtrip_sel<1:0> = 0b01
SID672B	V _{IL_GMII}	Input LOW voltage for GMII mode	-	-	0.9	V	vtrip_sel<1:0> = 0b11
SID673B	V _{IL_SD_eMMC}	Input LOW voltage for SD and eMMC in CMOS mode	_	-	0.25 × V _{DDIO_3/4}	V	vtrip_sel<1:0> = 0b00
SID673E	V _{IL_AUTO}	Input Voltage LOW threshold in AUTO mode	-	-	0.5 × V _{DDIO_3/4}	V	vtrip_sel<1:0> = 0b10
SID674B	V _{HYST_CMOS}	Hysteresis in CMOS mode	0.05 × V _{DDIO_3/4}	-	_	V	vtrip_sel<1:0> = 0b00
SID674F	V _{HYST_AUTO}	Hysteresis in AUTO mode	0.05 × V _{DDIO_3}	-	-	V	vtrip_sel<1:0> = 0b10
SID675B	C _{IN}	Input pin capacitance	_	-	5	pF	For 10 MHz and 100 MHz
SID676B	IIL	Input leakage current	-450	1.02	450	nA	$\begin{split} &V_{DDIO_3/4} = 3.6 \text{ V,} \\ &V_{SSIO_3/4} < V_I < V_{DDIO_3/4} \\ &-40 \text{ °C} \le T_A \le 125 \text{ °C} \\ &Typ: T_A = 25 \text{ °C,} \\ &V_{DDIO_3/4} = 3.3 \text{ V} \end{split}$
SID677B	f _{IN_GMII}	Input frequency	-	-	125	MHz	
SID678B	f _{IN_RGMII}	Input frequency	-	-	125	MHz	
SID679B	f _{IN_HB_HSSPI}	Input frequency	_	_	100	MHz	
SID680B	f _{IN_eMMC}	Input frequency	-	-	52	MHz	
SID681B	f _{IN_SD}	Input frequency	-	-	50	MHz	
SID682B	f _{OUT_GMII_RGMII}	Output frequency	-	-	125	MHz	
SID683B	f _{OUT_HB_HSSPI}	Output frequency	-	_	100	MHz	
SID684B	f _{OUT_eMMC}	Output frequency	-	_	52	MHz	
SID685B	f _{OUT_SD}	Output frequency	-	-	50	MHz	
GPIO Input	Specifications						
SID98	t _{FT}	Analog glitch filter (pulse suppression width)	-	-	50 ^[53]	ns	One filter per port
SID99	t _{INT}	Minimum pulse width for GPIO interrupt	160	-	t-	ns	
		· · · · · · · · · · · · · · · · · · ·			·	·	·

Note

53.If a longer pulse suppression width is necessary, use Smart I/O.

Electrical specifications

Analog peripherals 27.6

All specifications are valid for –40 °C \leq T_A \leq 125 °C and for 2.7 V to 5.5 V except where noted.

27.6.1 **SAR ADC**

ADC characteristics and error descriptions Figure 27-4

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-6 12-Bit SAR ADC DC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID100	A_RES	SAR ADC resolution	-	-	12	bits	
SID101	A_V _{INS}	Input voltage range	V _{REFL}	-	V _{REFH}	V	
SID102A	A_V _{DDA} ^[54]	V _{DDA} voltage range	2.7	1	5.5	V	
SID102	A_V _{REFH}	V _{REFH} voltage range	2.7	1	V _{DDA}	V	ADC performance degrades when high reference is higher than supply (V _{DDA})
SID103	A_V _{REFL}	V _{REFL} voltage range	V_{SSA}	ı	V _{SSA}	V	ADC performance degrades when low reference is lower than ground
SID103A	V _{band_gap}	Internal band gap reference voltage	0.882	0.9	0.918	V	
SID19A	CLAMP_COUPLING_RA-TIO_POS	Ratio of current collected on a pin to the positive current injected into a neighboring pin	-	1	0.1	%	
SID19B	CLAMP_COUPLING_RA-TIO_NEG	Ratio of current collected on a pin to the negative current injected into a neighboring pin	-	-	1.2	%	
SID19C	R _{CLAMP_INTERNAL}	Internal pin resistance to current collection point	-	_	50	Ω	

27.6.2 Calculating the impact of neighboring pins

The three ADC specifications based on SID19A, SID19B, and SID19C, can be used to calculate the pin leakage and resulting ADC offset caused by injection current using the below formula:

 $I_{LEAK} = I_{INJECTED} \times CLAMP_COUPLING_RATIO$ $V_{ERROR} = I_{LEAK} \times (R_{CLAMP_INTERNAL} + R_{SOURCE})$

Code Error = $V_{ERROR} \times 2^{12} / V_{REF}$

Where:

 $I_{\mbox{\scriptsize INJECTED}}$ is the injected current in mA.

I_{LEAK} is the calculated leakage current in mA.

 $V_{\mbox{\footnotesize ERROR}}$ is the voltage error calculated due to leakage currents in V.

V_{RFF} is the ADC reference voltage in V.

Note

 $54. V_{DDD} \ must \ be \ greater \ than \ 0.8 \times V_{DDA} \ when \ ADC[2] \ is \ enabled. \ V_{DDIO_1} \ must \ be \ greater \ than \ 0.8 \times V_{DDA} \ when \ ADC[0] \ is \ enabled.$

Integral and differential linearity errors Figure 27-5

ADC equivalent circuit for analog input Figure 27-6

Based on Arm® Cortex®-M7 dual

SAR ADC AC specifications Table 27-7

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID104	V _{ZT}	Zero transition voltage	-20	-	20	mV	V_{DDA} = 2.7 V to 5.5 V, -40 °C ≤ T_A ≤ 125 °C before offset adjustment
SID105	V _{FST}	Full-scale transition voltage	-20	-	20	mV	V_{DDA} = 2.7 V to 5.5 V, -40 °C ≤ T_A ≤ 125 °C before offset adjustment
SID114	f _{ADC_4P5}	ADC operating frequency	2	_	26.67	MHz	$4.5 \text{ V} \leq \text{V}_{\text{DDA}} \leq 5.5 \text{ V}$
SID114A	f _{ADC_2P7}	ADC operating frequency	2	_	13.34	MHz	$2.7 \text{ V} \leq \text{V}_{DDA} \leq 4.5 \text{ V}$
SID113	t _{S_4P5}	Analog input sample time for channels of own SARMUX (4.5 V ≤ V _{DDA})	412	-	-	ns	4.5 V ≤ V _{DDA} ≤ 5.5 V, guaranteed by design
SID113A	t _{S_2P7}	Analog input sample time for channels of own SARMUX (2.7 V ≤ V _{DDA})	600	-	-	ns	2.7 V ≤ V _{DDA} ≤ 4.5 V, guaranteed by design
SID113B	t _{S_DR_4P5}	Analog input sample time when input is from diagnostic reference (4.5 V ≤ V _{DDA})	2	-	-	μs	4.5 V ≤ V _{DDA} ≤ 5.5 V, guaranteed by design
SID113C	t _{S_DR_2P7}	Analog input sample time when input is from diagnostic reference (2.7 V ≤ V _{DDA})	2.5	-	-	μs	2.7 V ≤ V _{DDA} ≤ 4.5 V, guaranteed by design
SID113D	t _{S_TS}	Analog input sample time for temperature sensor	7	-	-	μs	$2.7 \text{ V} \le \text{V}_{\text{DDA}} \le 5.5 \text{ V}$ Guaranteed by design
SID113E	t _{S_4P5_A}	Analog input sample time for channels of another SARMUXn (n=1,2)	824	-	-	ns	4.5 V ≤ V _{DDA} ≤ 5.5 V When ADC0 borrows the SARMUX of another ADC, guaranteed by design
SID113F	t _{S_2P7_A}	Analog input sample time for channels of another SARMUXn (n=1,2)	1648	-	_	ns	2.7V ≤ V _{DDA} < 4.5 V When ADC0 borrows the SARMUX of another ADC, guaranteed by design
SID106	t _{ST_4P5}	ADC max throughput (samples per second) when using the SARMUX of own ADC	-	_	1	Msps	4.5 V ≤ V _{DDA} ≤ 5.5 V, 80 MHz / 3 = 26.67 MHz, 11 sampling cycles, 15 conversion cycles
SID106A	t _{ST_2P7}	ADC max throughput (samples per second) when using the SARMUX of own ADC	-	-	0.5	Msps	2.7 V ≤ V _{DDA} < 4.5 V 80 MHz / 6 = 13.3 MHz, 11 sampling cycles, 15 conversion cycles
SID106B	t _{ST_4P5_A}	ADC0 max throughput (samples per second) when borrowing the SARMUXn of another ADC (n=1,2)	-	-	0.5	Msps	4.5 V ≤ V _{DDA} ≤ 5.5 V, 80 MHz/6 = 13.3 MHz, 11 sampling cycles, 15 conversion cycles

Based on Arm® Cortex®-M7 dual

SAR ADC AC specifications (continued) **Table 27-7**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID106C	t _{ST_2P7_A}	ADC0 max throughput (samples per second) when borrowing the SARMUXn of another ADC (n=1,2)	-	-	0.25	Msps	2.7V ≤ V _{DDA} < 4.5 V, 80 MHz / 12 = 6.67 MHz, 11 sampling cycles, 15 conversion cycles
SID107	C _{VIN}	ADC input sampling capacitance	-	-	4.8	pF	Guaranteed by design
SID108	R _{VIN1}	Input path ON resistance (4.5 V to 5.5 V)	-	_	9.4	kΩ	Guaranteed by design
SID108A	R _{VIN2}	Input path ON resistance (2.7 V to 4.5 V)	-	_	13.9	kΩ	Guaranteed by design
SID108B	R _{DREF1}	Diagnostic path ON resistance (4.5 V to 5.5 V)	-	_	40	kΩ	Guaranteed by design
SID108C	R _{DREF2}	Diagnostic path ON resistance (2.7 V to 4.5 V)	-	_	50	kΩ	Guaranteed by design
SID119	ACC_RLAD	Diagnostic reference resistor ladder accuracy	-4	_	4	%	
SID109	A_TE	Total error	-5	-	5	LSb	$V_{DDA} = V_{REFH} = 2.7 \text{ V to}$ 5.5 V, $V_{REFL} = V_{SSA}$ $-40 \text{ °C} \le T_{A} \le 125 \text{ °C}$ Total Error after offset and gain adjustment at 12-bit resolution mode
SID109A	A_TEB	Total error	-12	ı	12	LSb	$V_{DDA} = V_{REFH} = 2.7 \text{ V to}$ 5.5 V, $V_{REFL} = V_{SSA}$ $-40 \text{ °C} \le T_A \le 125 \text{ °C}$ Total error before offset and gain adjustment at 12 bit resolution mode
SID110	A_INL	Integral nonlinearity	-2.5	-	2.5	LSb	$V_{DDA} = 2.7 \text{ V to } 5.5 \text{ V},$ -40 °C \le T_A \le 125 °C
SID111	A_DNL	Differential nonlinearity	-0.99	-	1.9	LSb	$V_{DDA} = 2.7 \text{ V to } 5.5 \text{ V},$ -40 °C \le T_A \le 125 °C
SID112	A_CE	Channel to channel variation (for channels connected to same ADC)	-1	-	1	LSb	$V_{DDA} = 2.7 \text{ V to } 5.5 \text{ V},$ -40 °C \le T _A \le 125 °C
SID115	I _{AIC}	Analog input leakage current	-350	70	350	nA	When input pad is selected for conversion
SID116	I _{DIAGREF}	Diagnostic reference current	-	_	70	μΑ	
SID117	I _{VDDA}	Analog power supply current while ADC is operating	-	360	550	μА	Per enabled ADC
SID117A	I _{VDDA_DS}	Analog power supply current while ADC is not operating	-	1	21	μА	Per enabled ADC
SID118	I _{VREF}	Analog reference voltage current while ADC is operating	_	360	550	μА	Per enabled ADC
SID118A	I _{VREF_LEAK}	Analog reference voltage current while ADC is not operating	_	1.8	5	μА	Per enabled ADC

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.6.3 **Temperature sensor**

Table 27-8 Temperature sensor specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID201	T _{SENSACC2}	Temperature sensor accuracy 2	-5	-	5	°C	$-40 ^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq 150 ^{\circ}\text{C}$ This spec is valid when using ADC[0] (V _{DDIO_1}), ADC[1] (V _{DDIO_2}) or ADC[2] (V _{DDD}) with the following conditions: a. $3.0 \text{V} \leq \text{V}_{\text{DDD}}, \text{V}_{\text{DDIO_1}} \text{ or }$ $\text{V}_{\text{DDIO_2}} = \text{V}_{\text{DDA}} = \text{V}_{\text{REFH}} \leq 3.6 \text{V}$ or b. $4.5 \text{V} \leq \text{V}_{\text{DDD}}, \text{V}_{\text{DDIO_1}} \text{ or }$ $\text{V}_{\text{DDIO_2}} = \text{V}_{\text{DDA}} = \text{V}_{\text{REFH}} \leq 5.5 \text{V}$
SID201A	T _{SENSACC3}	Temperature sensor accuracy 3	-10	1	10	°C	-40 °C ≤ T _J ≤ 150 °C This spec is valid when using ADC[0] (V _{DDO} ₁) or ADC[2] (V _{DDD}) with the following condition: 2.7 V ≤ V _{DDD} or V _{DDIO} ₁ ≤ 5.5 V and 2.7 V ≤ V _{DDA} = V _{REFH} ≤ 5.5 V and $0.8 \times V_{DDA} < V_{DDD}$ or V _{DDIO} ₁

Voltage divider accuracy 27.6.4

Table 27-9 Voltage divider accuracy

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID202	V _{MONDIV}	Uncorrected monitor voltage divider accuracy (measured by ADC), compared to ideal supply/2	-20	2	20		Any HV supply pad within 2.7 V–5.5 V operating range

Electrical specifications

AC specifications 27.7

Unless otherwise noted, the timings are defined with the guidelines mentioned in the Figure 27-7.

Figure 27-7 **AC timings specifications**

Electrical specifications

27.8 Digital peripherals

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Table 27-10 Timer/counter/PWM (TCPWM) specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit s	Details/Conditions
SID120	f _C	TCPWM operating frequency	-	-	100	MHz	f _C = peripheral clock
SID121	t _{PWMENEXT}	Input trigger pulse width for all trigger events	2 / f _C	1		ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID122	t _{PWMEXT}	Output trigger pulse widths	2 / f _C	-	-	ns	Minimum possible width of Overflow, Underflow, and Counter = Compare (CC) value trigger outputs
SID123	t _{CRES}	Resolution of counter	1 / f _C	-	-	ns	Minimum time between successive counts
SID124	t _{PWMRES}	PWM resolution	1 / f _C	1	-	ns	Minimum pulse width of PWM output
SID125	t _{QRES}	Quadrature inputs resolution	2 / f _C	_	_	ns	Minimum pulse width between Quadrature phase inputs.

Figure 27-8 TCPWM timing diagrams

Based on Arm® Cortex®-M7 dual

Serial communication block (SCB) specifications **Table 27-11**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID129	f _{SCB}	SCB operating frequency	_	_	100	MHz	
I ² C inter	face-Standar	d-mode				_1	
SID130	f_{SCL}	SCL clock frequency	-	-	100	kHz	
SID131	t _{HD;STA}	Hold time, START condition	4000	-	_	ns	
SID132	t _{LOW}	Low period of SCL	4700	_	_	ns	
SID133	t _{HIGH}	High period of SCL	4000	_	_	ns	
SID134	t _{SU;STA}	Setup time for a repeated START	4700	_	-	ns	
SID135	t _{HD;DAT}	Data hold time, for receiver	0	-	_	ns	
SID136	t _{SU;DAT}	Data setup time	250	-	_	ns	
SID138	t _F	Fall time of SCL and SDA	-	-	300	ns	Input and output
SID139	t _{SU;STO}	Setup time for STOP	4000	-	_	ns	
SID140	t _{BUF}	Bus-free time between START and STOP	4700	_	_	ns	
SID141	C _B	Capacitive load for each bus line	-	-	400	pF	
SID142	t _{VD;DAT}	Time for data signal from SCL LOW to SDA output	-	_	3450	ns	
SID143	t _{VD;ACK}	Data valid acknowledge time	_	-	3450	ns	
SID144	V _{OL}	LOW level output voltage	0	_	0.4	V	Open-drain at 3 mA sink current
SID145	I _{OL}	LOW level output current	3	-	_	mA	V _{OL} = 0.4 V
I ² C inter	face-Fast-mo	de					
SID150	f _{SCL_F}	SCL clock frequency	-	-	400	kHz	
SID151	t _{HD;STA_F}	Hold time, START condition	600	-	-	ns	
SID152	t _{LOW_F}	Low period of SCL	1300	-	_	ns	
SID153	t _{HIGH_F}	High period of SCL	600	-	_	ns	
SID154	t _{SU;STA_F}	Setup time for a repeated START	600	-	_	ns	
SID155	t _{HD;DAT_F}	Data hold time, for receiver	0	-	_	ns	
SID156	t _{SU;DAT_F}	Data setup time	100	-	-	ns	
SID158	t _{F_F}	Fall time of SCL and SDA	20 × (V _{DDD} / 5.5)	_	300	ns	Input and output, GPIO_ENH: slow mode, 400 pF load
SID158A	t _{FA_F}	Fall time of SCL and SDA	0.35	-	300	ns	Input and output GPIO_STD: drive_sel<1:0>= 0b00 MIN: 10 pF load, R_{PU} = 35.41 k Ω Max: 400 pF load, R_{PU} = 350 Ω
SID159	t _{SU;STO_F}	Setup time for STOP	600	-	ı	ns	Input and output
SID160	t _{BUF_F}	Bus free time between START and STOP	1300	_	_	ns	

Based on Arm® Cortex®-M7 dual

Serial communication block (SCB) specifications (continued) **Table 27-11**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID161	C _{B_F}	Capacitive load for each bus line	-	-	400	pF	
SID162	t _{VD;DAT_F}	Time for data signal from SCL LOW to SDA output	-	-	900	ns	
SID163	t _{VD;ACK_F}	Data valid acknowledge time	-	-	900	ns	
SID164	t _{SP_F}	Pulse width of spikes that must be suppressed by the input filter	-	-	50	ns	
SID165	V _{OL_F}	LOW level output voltage	0	-	0.4	V	Open-drain at 3 mA sink current
SID166	I _{OL_F}	LOW level output current	3	-	-	mA	V _{OL} = 0.4 V
SID167	I _{OL2_F}	LOW level output current	6	-	-	mA	$V_{OL} = 0.6 V^{[55]}$
I ² C inter	face-Fast-Plu	s mode		•		•	
SID170	f _{SCL_FP}	SCL clock frequency	_	-	1	MHz	
SID171	t _{HD;STA_FP}	Hold time, START condition	260	_	-	ns	
SID172	t _{LOW_FP}	Low period of SCL	500	-	-	ns	
SID173	t _{HIGH_FP}	High period of SCL	260	_	-	ns	
SID174	t _{SU;STA_FP}	Setup time for a repeated START	260	_	_	ns	
SID175	t _{HD;DAT_FP}	Data hold time, for receiver	0	-	-	ns	
SID176	t _{SU;DAT_FP}	Data setup time	50	-	-	ns	
SID178	t _{F_FP}	Fall time of SCL and SDA	20 × (V _{DDD} / 5.5)	-	160	ns	Input and output 20-pF load GPIO_ENH: slow mode
SID179	t _{SU;STO_FP}	Setup time for STOP	260	-	-	ns	Input and output
SID180	t _{BUF_FP}	Bus free time between START and STOP	500	_	-	ns	
SID181	C _{B_FP}	Capacitive load for each bus line	-	-	20	pF	
SID182	t _{VD;DAT_FP}	Time for data signal from SCL LOW to SDA output	-	_	450	ns	
SID183	t _{VD;ACK_FP}	Data valid acknowledge time	-	_	450	ns	
SID184	t _{SP_FP}	Pulse width of spikes that must be suppressed by the input filter	-	_	50	ns	
SID186	V _{OL_FP}	LOW level output voltage	0	-	0.4	V	Open-drain at 3 mA sink current
SID187	I _{OL_FP}	LOW level output current	3 ^[56]	-	_	mA	$V_{OL} = 0.4 V^{[56]}$
SPI Interface Master (Full-clock mode: LATE_MISO_SAMPLE = 1) [Conditions: drive_sel<1:0>= 0x]							
SID190	f _{SPI}	SPI operating frequency	-	-	12.5	MHz	Do not use half-clock mode: LATE_MISO_SAMPLE = 0

^{55.}In order to drive full bus load at 400 kHz, 6 mA I_{OL} is required at 0.6 V V_{OL}.
56.In order to drive full bus load at 1 MHz, 20 mA I_{OL} is required at 0.4 V V_{OL}. However, this device does not support it.

Based on Arm® Cortex®-M7 dual

Serial communication block (SCB) specifications (continued) **Table 27-11**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID191	t _{DMO}	SPI Master: MOSI valid after SCLK driving edge	-	-	15	ns	
SID192	t _{DSI}	SPI Master: MISO valid before SCLK capturing edge	40	-	_	ns	
SID193	t _{HMO}	SPI Master: Previous MOSI data hold time	0	-	-	ns	
SID193A	t _{HMOA}	SPI Master: Previous MOSI data hold time	-3.5	_	-	ns	Only for SCB4_MOSI/P0.3 and SCB4_CLK/P1.0
SID194	t _{W_SCLK_H_L}	SPI SCLK pulse width HIGH or LOW	ı	0.4 × (1 / f _{SPI})	-	ns	
SID196	t _{DHI}	SPI Master: MISO hold time after SCLK capturing edge	0	-	_	ns	
SID198	t _{EN_SETUP}	SSEL valid, before the first SCK capturing edge	0.5 × (1/f _{SPI})	-	-	ns	Min is half clock period
SID199	t _{EN_SHOLD}	SSEL hold, after the last SCK capturing edge	0.5 × (1/f _{SPI})	_	-	ns	Min is half clock period
SID195	C _{SPIM_MS}	SPI capacitive load	-	-	10	pF	
SPI inter	face slave (in	ternally clocked) [Conditions: o	drive_sel<	1:0>= (Ox]		
SID205	f _{SPI_INT}	SPI operating frequency	-	-	10	MHz	
SID206	t _{DMI_INT}	SPI Slave: MOSI Valid before Sclock capturing edge	5	-	-	ns	
SID207	t _{DSO_INT}	SPI Slave: MISO Valid after Sclock driving edge, in the internal-clocked mode	I	-	62	ns	
SID208	t _{HSP}	SPI Slave: Previous MISO data hold time	3	_	_	ns	
SID209	t _{EN_SET} - UP_INT	SPI Slave: SSEL valid to first SCK valid edge	33	_	_	ns	
SID210	t _{EN_HOLD_INT}	SPI Slave Select active (LOW) from last SCLK hold	33	_	-	ns	
SID211	t _{EN_SET} - UP_PRE	SPI Slave: from SSEL valid, to SCK falling edge before the first data bit	20	-	-	ns	
SID212	t _{EN_HOLD_PRE}	SPI Slave: from SCK falling edge before the first data bit, to SSEL invalid	20	-	_	ns	
SID213	t _{EN_SETUP_CO}	SPI Slave: from SSEL valid, to SCK falling edge in the first data bit	20	-	_	ns	
SID214	t _{EN_HOLD_CO}	SPI Slave: from SCK falling edge in the first data bit, to SSEL invalid	20	-	_	ns	
SID215	t _{W_DIS_INT}	SPI Slave Select inactive time	40	-	-	ns	
SID216	t _{W_SCLKH_INT}	SPI SCLK pulse width HIGH	20	_	-	ns	
SID217	t _{W_SCLKL_INT}	SPI SCLK pulse width LOW	20	-	-	ns	

Based on Arm® Cortex®-M7 dual

 Table 27-11
 Serial communication block (SCB) specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID218	t _{SIH_INT}	SPI MOSI hold from SCLK	12	-	_	ns		
SID219	C _{SPIS_INT}	SPI Capacitive Load	-	-	10	pF		
SPI interface slave (externally clocked) [Conditions: drive_sel<1:0>= 0x]								
SID220	f _{SPI_EXT}	SPI operating frequency	-	-	12.5	MHz		
SID221	t _{DMI_EXT}	SPI Slave: MOSI Valid before Sclock capturing edge	5	-	-	ns		
SID222	t _{DSO_EXT}	SPI Slave: MISO Valid after Sclock driving edge, in the external-clocked mode	-	_	32	ns		
SID223	t _{HSO_EXT}	SPI Slave: Previous MISO data hold time	3	-	-	ns		
SID224	t _{EN_SET} - UP_EXT	SPI Slave: SSEL valid to first SCK valid edge	40	-	-	ns		
SID225	t _{EN_HOLD_EXT}	SPI Slave Select active (LOW) from last SCLK hold	40	-	-	ns		
SID226	t _{W_DIS_EXT}	SPI Slave Select inactive time	80	-	_	ns		
SID227	t _{W_SCLKH_EXT}	SPI SCLK pulse width HIGH	34	-	_	ns		
SID228	t _{W_SCLKL_EXT}	SPI SCLK pulse width LOW	34	-	-	ns		
SID229	t _{SIH_EXT}	SPI MOSI hold from SCLK	20	-	-	ns		
SID230	C _{SPIS_EXT}	SPI Capacitive Load	-	-	10	pF		
SID231	t _{VSS_EXT}	SPI Slave: MISO valid after SSEL falling edge (CPHA = 0)	-	-	33	ns		
UART interface								
SID240	f_{BPS}	Data rate	-	_	10	Mbps		

Based on Arm® Cortex®-M7 dual

I²C timing diagrams Figure 27-9

Based on Arm® Cortex®-M7 dual

Figure 27-10 SPI master timing diagrams with LOW clock phase

Based on Arm® Cortex®-M7 dual

Figure 27-11 SPI master timing diagrams with HIGH clock phase

Based on Arm® Cortex®-M7 dual

(infineon

Figure 27-12 SPI slave timing diagrams with LOW clock phase

Based on Arm® Cortex®-M7 dual

infineon

Figure 27-13 SPI slave timing diagrams with HIGH clock phase

Electrical specifications

Table 27-12 CAN FD specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID630	f _{HCLK}	System clock frequency	-	_	100	MHz	f _{CCLK} ≤ f _{HCLK} , guaranteed by design
SID631	f _{CCLK}	CAN clock frequency	_	-	100	MHz	f _{CCLK} ≤ f _{HCLK} , guaranteed by design

Table 27-13 LIN specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID249	f _{LIN}	Internal clock frequency to the LIN block	-	-	100	MHz	
SID250	BR_NOM	Bit rate on the LIN bus	1	-	20	kbps	Guaranteed by design
SID250A	BR_REF	Bit rate on the LIN bus (not in standard LIN specification) for re-flashing in LIN slave mode	1	_	115.2	kbps	Guaranteed by design

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.9 Memory

All specifications are valid for –40 °C \leq T_A \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Table 27-14 Flash DC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID260A	V_{PE}	Erase and program voltage	2.7	-	5.5	V	

Table 27-15 Flash AC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID257	f _{FO}	Maximum flash memory operation frequency	ı	_	100	MHz	Zero wait access to code-flash memory up to 100 MHz Zero wait access with cache hit up to 350 MHz
SID254	t _{ERS_SUS}	Maximum time from erase suspend command till erase is indeed suspend	-	-	37.5	μs	
SID255	t _{ERS_RES_SUS}	Minimum time allowed from erase resume to erase suspend	250	_	-	μs	Guaranteed by design
SID258	t _{BC_WF}	Blank check time for N-bytes of work-flash	-	_	10 + 0.3 × N	μs	At 100 MHz, N ≥ 4 and multiple of 4, excludes system overhead time
SID259	t _{SECTORE} - RASE1	Sector erase time (code-flash: 32 KB)	1	45	90	ms	Includes internal preprogramming time
SID260	t _{SECTORE} - RASE2	Sector erase time (code-flash: 8 KB)	-	15	30	ms	Includes internal preprogramming time
SID261	t _{SECTORE} - RASE3	Sector erase time (work-flash, 2 KB)	_	80	160	ms	Includes internal preprogramming time
SID262	t _{SECTORE} - RASE4	Sector erase time (work-flash, 128 B)	-	5	15	ms	Includes internal preprogramming time
SID263	t _{WRITE1}	64-bit write time (code-flash)	_	30	60	μs	Excludes system overhead time
SID264	t _{WRITE2}	256-bit write time (code-flash)	-	40	70	μs	Excludes system overhead time
SID265	t _{WRITE3}	4096-bit write time (code-flash) ^[57]	-	320	1200	μs	Excludes system overhead time
SID266	t _{WRITE4}	32-bit write time (work-flash)	-	30	60	μs	Excludes system overhead time
SID267	t _{FRET1}	Code-flash retention. 1000 program/erase cycles	20	-	-	years	T _A (power on and off) ≤ 85 °C average
SID268	t _{FRET3}	Work-flash retention. 125,000 program/erase cycles	20	_	-	years	T _A (power on and off) ≤ 85 °C average
SID269	t _{FRET4}	Work-flash retention. 250,000 program/erase cycles	10	-	-	years	T _A (power on and off) ≤ 85 °C average

Note

^{57.} The code-flash includes a 'Write Buffer' of 4096-bit. If the application software writes this buffer multiple times, to get the overall write time multiply one sector write time with the corresponding factor (say for factor 64, example, 64 x 512 B = 32 KB [one sector]).

Based on Arm® Cortex®-M7 dual

Flash AC specifications (continued) **Table 27-15**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID612	I _{CC_ACT2}	Program operating V _{CCD} current (code or work-flash)	-	7	58	mA	Typ: $T_A = 25 ^{\circ}\text{C}$, $V_{DDD} = 5.0 \text{V}$, $V_{CCD} = 1.15 \text{V}$, process typ (TT) Max: $T_A = 125 ^{\circ}\text{C}$, $V_{DDD} = 5.5 \text{V}$, $V_{CCD} = 1.2 \text{V}$, process worst (FF) Guaranteed by design
SID613	I _{CC_ACT3}	Erase operating V _{CCD} current (code- or work-flash)	-	7	52	mA	Typ: $T_A = 25 ^{\circ}\text{C}$, $V_{DDD} = 5.0 \text{V}$, $V_{CCD} = 1.15 \text{V}$, process typ (TT) Max: $T_A = 125 ^{\circ}\text{C}$, $V_{DDD} = 5.5 \text{V}$, $V_{CCD} = 1.2 \text{V}$, process worst (FF) Guaranteed by design
SID612A	I _{CC_ACT2A}	Program operating V _{DDD} current (code or work-flash)	-	8	10	mA	Typ: $T_A = 25 ^{\circ}\text{C}$, $V_{DDD} = 5.0 \text{V}$, $V_{CCD} = 1.15 \text{V}$, process typ (TT) Max: $T_A = 125 ^{\circ}\text{C}$, $V_{DDD} = 5.5 \text{V}$, $V_{CCD} = 1.2 \text{V}$, process worst (FF) Guaranteed by design
SID613A	I _{CC_ACT3A}	Erase operating V _{DDD} current (code- or work-flash)	-	8	16	mA	Typ: $T_A = 25 ^{\circ}\text{C}$, $V_{DDD} = 5.0 \text{V}$, $V_{CCD} = 1.15 \text{V}$, process typ (TT) Max: $T_A = 125 ^{\circ}\text{C}$, $V_{DDD} = 5.5 \text{V}$, $V_{CCD} = 1.2 \text{V}$, process worst (FF) Guaranteed by design

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.10 **System resources**

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Table 27-16 System resources

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
Power-o	n reset specifica	tions					
SID270	V _{POR_D}	V _{DDD} rising voltage to de assert POR	1.5	-	2.35	V	Guaranteed by design
SID276	V _{POR_A}	V _{DDD} falling voltage to assert POR	1.45	_	2.1	V	
SID271	V _{POR_H}	Level detection hysteresis	20	-	300	mV	
SID272	t _{DLY_POR}	Delay between V _{DDD} rising through 2.3 V and internal deassertion of POR	-	_	3	μs	Guaranteed by design
SID273	t _{POFF}	V _{DDD} Power off time	100	_	-	μs	V _{DDD} < 1.45 V
SID274	POR_RR1	V _{DDD} power ramp rate with robust BOD (BOD operation is guaranteed)	-	-	100	mV/μs	This ramp supports robust BOD
SID275	POR_RR2	V _{DDD} power ramp rate without robust BOD	1	-	1000	mV/μs	This ramp does not support robust BOD t _{POFF} must be satisfied.
High-vol	tage BOD (HV BO	OD) specifications					
SID500	V _{TR_2P7_R}	HV BOD 2.7 V rising detection point for V _{DDD} and V _{DDA} (default)	2.474	2.55	2.627	V	
SID501	V _{TR_2P7_F}	HV BOD 2.7 V falling detection point for V _{DDD} and V _{DDA} (default)	2.449	2.525	2.601	V	
SID502	V _{TR_3P0_R}	HV BOD 3.0 V rising detection point for V _{DDD} and V _{DDA}	2.765	2.85	2.936	V	
SID503	V _{TR_3P0_F}	HV BOD 3.0 V falling detection point for V _{DDD} and V _{DDA}	2.74	2.825	2.91	V	
SID505	HVBOD_RR_A	Power ramp rate: V _{DDD} and V _{DDA} (Active)	_	_	100	mV/μs	
SID506	HVBOD_RR_DS	Power ramp rate: V _{DDD} and V _{DDA} (DeepSleep)	ı	_	10	mV/μs	
SID507	t _{DLY_ACT_HVBOD}	Active mode delay between V _{DDD} falling/rising through V _{TR_2P7_F/R} or V _{TR_3P0_F/R} and an internal HV BOD signal transitioning	1	-	0.5	μs	Guaranteed by design
SID507A	t _{DLY_ACT_HVBOD}	Active mode delay between V _{DDA} falling/rising through V _{TR_2P7_F/R} or V _{TR_3P0_F/R} and internal HV BOD signal transitioning	-	-	1	μs	Guaranteed by design

Based on Arm® Cortex®-M7 dual

Table 27-16 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID507B	t _{DLY_DS_HVBOD}	DeepSleep mode delay between V _{DDD} /V _{DDA} falling/rising through V _{TR_2P7_F/R} or V _{TR_3P0_F/R} and an internal HV BOD signal transitioning	-	-	4	μs	Guaranteed by design
SID508	t _{RES_HVBOD}	Response time of HV BOD, V _{DDD} /V _{DDA} supply. (For falling-then-rising supply at max ramp rate; threshold is V _{TR_2P7_F} or V _{TR_3P0_F})	100	-	1	ns	Guaranteed by design
Low-vol	tage BOD (LV BO	D) specifications					
SID510	V _{TR_R_LVBOD}	LV BOD rising detection point for V _{CCD}	0.917	0.945	0.973	V	
SID511	V _{TR_F_LVBOD}	LV BOD falling detection point for V _{CCD}	0.892	0.920	0.948	V	
SID515	t _{DLY_ACT_LVBOD}	Active delay between V _{CCD} falling/rising through V _{TR_R/F_LVBOD} and an internal LV BOD signal transitioning	-	-	1	μs	Guaranteed by design
SID515A	t _{DLY_DS_LVBOD}	DeepSleep mode delay between V _{CCD} falling/rising through V _{TR_R/F_LVBOD} and an internal LV BOD signal transi- tioning	-	-	12	μs	Guaranteed by design
SID516	t _{RES_LVBOD}	Response time of LV BOD (for falling-then-rising supply at max ramp rate; threshold is $V_{TR_F_LVBOD}$)	100	-	-	ns	Guaranteed by design
Low-vol	tage detector (L'	VD) DC specifications				l .	
SID520	V _{TR_2P8_F}	LVD 2.8 V falling detection point for V _{DDD}	Typ – 4%	2800	Typ + 4%	mV	
SID521	V _{TR_2P9_F}	LVD 2.9 V falling detection point for V _{DDD}	Typ – 4%	2900	Typ + 4%	mV	
SID522	V _{TR_3P0_F}	LVD 3.0 V falling detection point for V _{DDD}	Typ – 4%	3000	Typ + 4%	mV	
SID523	V _{TR_3P1_F}	LVD 3.1 V falling detection point for V _{DDD}	Typ – 4%	3100	Typ + 4%	mV	
SID524	V _{TR_3P2_F}	LVD 3.2 V falling detection point for V _{DDD}	Typ – 4%	3200	Typ + 4%	mV	
SID525	V _{TR_3P3_F}	LVD 3.3 V falling detection point for V _{DDD}	Typ – 4%	3300	Typ + 4%	mV	
SID526	V _{TR_3P4_F}	LVD 3.4 V falling detection point for V _{DDD}	Typ – 4%	3400	Typ + 4%	mV	
SID527	V _{TR_3P5_F}	LVD 3.5 V falling detection point for V _{DDD}	Typ – 4%	3500	Typ + 4%	mV	
SID528	V _{TR_3P6_F}	LVD 3.6 V falling detection point for V _{DDD}	Typ – 4%	3600	Typ + 4%	mV	
SID529	V _{TR_3P7_F}	LVD 3.7 V falling detection point for V _{DDD}	Typ – 4%	3700	Typ + 4%	mV	

Based on Arm® Cortex®-M7 dual

Table 27-16 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID530	V _{TR_3P8_F}	LVD 3.8 V falling detection point for V _{DDD}	Typ – 4%	3800	Typ + 4%	mV	
SID531	V _{TR_3P9_F}	LVD 3.9 V falling detection point for V _{DDD}	Typ – 4%	3900	Typ + 4%	mV	
SID532	V _{TR_4P0_F}	LVD 4.0 V falling detection point for V _{DDD}	Typ – 4%	4000	Typ + 4%	mV	
SID533	V _{TR_4P1_F}	LVD 4.1 V falling detection point for V _{DDD}	Typ – 4%	4100	Typ + 4%	mV	
SID534	V _{TR_4P2_F}	LVD 4.2 V falling detection point for V _{DDD}	Typ – 4%	4200	Typ + 4%	mV	
SID535	V _{TR_4P3_F}	LVD 4.3 V falling detection point for V _{DDD}	Typ – 4%	4300	Typ + 4%	mV	
SID536	V _{TR_4P4_F}	LVD 4.4 V falling detection point for V _{DDD}	Typ – 4%	4400	Typ + 4%	mV	
SID537	V _{TR_4P5_F}	LVD 4.5 V falling detection point for V _{DDD}	Typ – 4%	4500	Typ + 4%	mV	
SID538	V _{TR_4P6_F}	LVD 4.6 V falling detection point for V _{DDD}	Typ – 4%	4600	Typ + 4%	mV	
SID539	V _{TR_4P7_F}	LVD 4.7 V falling detection point for V _{DDD}	Typ – 4%	4700	Typ + 4%	mV	
SID540	V _{TR_4P8_F}	LVD 4.8 V falling detection point for V _{DDD}	Typ – 4%	4800	Typ + 4%	mV	
SID541	V _{TR_4P9_F}	LVD 4.9 V falling detection point for V _{DDD}	Typ – 4%	4900	Typ + 4%	mV	
SID542	V _{TR_5P0_F}	LVD 5.0 V falling detection point for V _{DDD}	Typ – 4%	5000	Typ + 4%	mV	
SID543	V _{TR_5P1_F}	LVD 5.1 V falling detection point for V _{DDD}	Typ – 4%	5100	Typ + 4%	mV	
SID544	V _{TR_5P2_F}	LVD 5.2 V falling detection point for V _{DDD}	Typ – 4%	5200	Typ + 4%	mV	
SID545	V _{TR_5P3_F}	LVD 5.3 V falling detection point for V _{DDD}	Typ – 4%	5300	Typ + 4%	mV	
SID546	V _{TR_2P8_R}	LVD 2.8 V rising detection point for V _{DDD}	Typ – 4%	2825	Typ + 4%	mV	Same as V _{TR_2P8_F} + 25 mV
SID547	V _{TR_2P9_R}	LVD 2.9 V rising detection point for V _{DDD}	Typ – 4%	2925	Typ + 4%	mV	Same as V _{TR_2P9_F} + 25 mV
SID548	V _{TR_3P0_R}	LVD 3.0 V rising detection point for V _{DDD}	Typ – 4%	3025	Typ + 4%	mV	Same as V _{TR_3P0_F} + 25 mV
SID549	V _{TR_3P1_R}	LVD 3.1 V rising detection point for V _{DDD}	Typ – 4%	3125	Typ + 4%	mV	Same as V _{TR_3P1_F} + 25 mV
SID550	V _{TR_3P2_R}	LVD 3.2 V rising detection point for V _{DDD}	Typ – 4%	3225	Typ + 4%	mV	Same as V _{TR_3P2_F} + 25 mV
SID551	V _{TR_3P3_R}	LVD 3.3 V rising detection point for V _{DDD}	Typ – 4%	3325	Typ + 4%	mV	Same as V _{TR_3P3_F} + 25 mV
SID552	V _{TR_3P4_R}	LVD 3.4 V rising detection point for V _{DDD}	Typ – 4%	3425	Typ + 4%	mV	Same as V _{TR_3P4_F} + 25 mV
SID553	V _{TR_3P5_R}	LVD 3.5 V rising detection point for V _{DDD}	Typ – 4%	3525	Typ + 4%	mV	Same as V _{TR_3P5_F} + 25 mV

Based on Arm® Cortex®-M7 dual

Table 27-16 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID554	V _{TR_3P6_R}	LVD 3.6 V rising detection point for V _{DDD}	Typ – 4%	3625	Typ + 4%	mV	Same as V _{TR_3P6_F} + 25 mV
SID555	V _{TR_3P7_R}	LVD 3.7 V rising detection point for V _{DDD}	Typ – 4%	3725	Typ + 4%	mV	Same as V _{TR_3P7_F} + 25 mV
SID556	V _{TR_3P8_R}	LVD 3.8 V rising detection point for V _{DDD}	Typ – 4%	3825	Typ + 4%	mV	Same as V _{TR_3P8_F} + 25 mV
SID557	V _{TR_3P9_R}	LVD 3.9 V rising detection point for V _{DDD}	Typ – 4%	3925	Typ + 4%	mV	Same as V _{TR_3P9_F} + 25 mV
SID558	V _{TR_4P0_R}	LVD 4.0 V rising detection point for V _{DDD}	Typ – 4%	4025	Typ + 4%	mV	Same as V _{TR_4P0_F} + 25 mV
SID559	V _{TR_4P1_R}	LVD 4.1 V rising detection point for V _{DDD}	Typ – 4%	4125	Typ + 4%	mV	Same as V _{TR_4P1_F} + 25 mV
SID560	V _{TR_4P2_R}	LVD 4.2 V rising detection point for V _{DDD}	Typ – 4%	4225	Typ + 4%	mV	Same as V _{TR_4P2_F} + 25 mV
SID561	V _{TR_4P3_R}	LVD 4.3 V rising detection point for V _{DDD}	Typ – 4%	4325	Typ + 4%	mV	Same as V _{TR_4P3_F} + 25 mV
SID562	V _{TR_4P4_R}	LVD 4.4 V rising detection point for V _{DDD}	Typ – 4%	4425	Typ + 4%	mV	Same as V _{TR_4P4_F} + 25 mV
SID563	V _{TR_4P5_R}	LVD 4.5 V rising detection point for V _{DDD}	Typ – 4%	4525	Typ + 4%	mV	Same as V _{TR_4P5_F} + 25 mV
SID564	V _{TR_4P6_R}	LVD 4.6 V rising detection point for V _{DDD}	Typ – 4%	4625	Typ + 4%	mV	Same as V _{TR_4P6_F} + 25 mV
SID565	V _{TR_4P7_R}	LVD 4.7 V rising detection point for V _{DDD}	Typ – 4%	4725	Typ + 4%	m۷	Same as V _{TR_4P7_F} + 25 mV
SID566	V _{TR_4P8_R}	LVD 4.8 V rising detection point for V _{DDD}	Typ – 4%	4825	Typ + 4%	mV	Same as V _{TR_4P8_F} + 25 mV
SID567	V _{TR_4P9_R}	LVD 4.9 V rising detection point for V _{DDD}	Typ – 4%	4925	Typ + 4%	mV	Same as V _{TR_4P9_F} + 25 mV
SID568	V _{TR_5P0_R}	LVD 5.0 V rising detection point for V _{DDD}	Typ – 4%	5025	Typ + 4%	mV	Same as V _{TR_5P0_F} + 25 mV
SID569	V _{TR_5P1_R}	LVD 5.1 V rising detection point for V _{DDD}	Typ – 4%	5125	Typ + 4%	mV	Same as V _{TR_5P1_F} + 25 mV
SID570	V _{TR_5P2_R}	LVD 5.2 V rising detection point for V _{DDD}	Typ – 4%	5225	Typ + 4%	mV	Same as V _{TR_5P2_F} + 25 mV
SID571	V _{TR_5P3_R}	LVD 5.3 V rising detection point for V _{DDD}	Typ – 4%	5325	Typ + 4%	mV	Same as V _{TR_5P3_F} + 25 mV
SID573	LVD_RR_A	Power ramp rate: V _{DDD} (Active)	_	-	100	mV/μs	
SID574	LVD_RR_DS	Power ramp rate: V _{DDD} (DeepSleep)	_	-	10	mV/μs	
SID575	t _{DLY_ACT_LVD}	Active mode delay between V _{DDD} falling/rising through LVD rising/falling point and an internal LVD signal transitioning	-	-	1	μs	Guaranteed by design

Based on Arm® Cortex®-M7 dual

Table 27-16 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID575A	t _{DLY_DS_LVD}	DeepSleep mode delay between V _{DDD} falling/rising through LVD rising/falling point and an internal LVD signal transitioning	-	-	4	μs	Guaranteed by design
SID576	t _{RES_LVD}	Response time of LVD, V _{DDD} supply. (For falling-then-rising supply at max ramp rate; threshold is LVD falling point)	100	_	_	ns	Guaranteed by design
High-vol	tage OVD specif	ications					
SID580	V _{TR_5P0_R}	HV OVD 5.0-V rising detection point for V _{DDD} and V _{DDA}	5.049	5.205	5.361	V	
SID581	V _{TR_5P0_F}	HV OVD 5.0-V falling detection point for V _{DDD} and V _{DDA}	5.025	5.18	5.335	V	
SID582	V _{TR_5P5_R}	HV OVD 5.5-V rising detection point for V _{DDD} and V _{DDA} (default)	5.548	5.72	5.892	V	
SID583	V _{TR_5P5_F}	HV OVD 5.5-V falling detection point for V _{DDD} and V _{DDA} (default)	5.524	5.695	5.866	V	
SID585	HVOVD_RR_A	Power ramp rate: V _{DDD} and V _{DDA} (Active)	-	-	100	mV/μs	
SID586	HVOVD_RR_DS	Power ramp rate: V _{DDD} and V _{DDA} (DeepSleep)	-	-	10	mV/μs	
SID587	t _{DLY_ACT_HVOVD}	Active mode delay between V _{DDD} falling/rising through V _{TR_5P0_F/R} or V _{TR_5P5_F/R} and an internal HV OVD signal transitioning	-	1	1	μs	Guaranteed by design
SID587A	t _{DLY_ACT_H} - VOVD_A	Active mode delay between V _{DDA} falling/rising through V _{TR_5P0_F/R} or V _{TR_5P5_F/R} and an internal HV OVD signal transitioning	-	1	1.5	μs	Guaranteed by design
SID587B	t _{DLY_DS_HVOVD}	DeepSleep mode delay between V _{DDD} /V _{DDA} falling/rising through V _{TR_5P0_F/R} or V _{TR_5P5_F/R} and an internal HV OVD signal transitioning	-	-	4	μs	Guaranteed by design
SID588	t _{RES_HVOVD}	Response time of HV OVD (for rising-then-falling supply at max ramp rate; threshold is	100	-	-	ns	Guaranteed by design
Low-vol	 tage OVD specifi	$V_{TR_5P0_R}$ or $V_{TR_5P5_R}$)					
SID590	V _{TR_R_LVOVD}	LV OVD rising detection point for V _{CCD}	1.261	1.3	1.339	V	
SID591	V _{TR_F_LVOVD}	LV OVD falling detection point for V _{CCD}	1.237	1.275	1.313	V	

Based on Arm® Cortex®-M7 dual

Table 27-16 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID595	t _{DLY_ACT_LVOVD}	Active mode delay between V _{CCD} falling/rising through v _{TR_F/R_LVOVD} and an internal LV OVD signal transitioning	-	-	1	μs	Guaranteed by design
SID595A	t _{DLY_DS_LVOVD}	DeepSleep mode delay between V _{CCD} falling/rising through v _{TR_F/R_LVOVD} and an internal LV OVD signal transi- tioning	-	-	12	μs	Guaranteed by design
SID596	t _{RES_LVOVD}	Response time of LV OVD. (For rising-then-falling supply at max ramp rate; threshold is V_{TR_RLVOVD})	100	I	_	ns	Guaranteed by design
Over-cui	rent detection ((OCD) specifications					
SID598A	I _{OCD_LDO}	Over current detection range for internal Active regulator	312	-	630	mA	Guaranteed by design
SID598B	I _{OCD_EXT}	Over current detection range for external transistor mode	675	-	825	mA	
SID599	I _{OCD_DPSLP}	Over current detection range for internal DeepSleep regulator	18	-	72	mA	

Figure 27-14 Device operations supply range

Based on Arm® Cortex®-M7 dual

Figure 27-15 POR specifications

Figure 27-16 High-voltage BOD specifications

Based on Arm® Cortex®-M7 dual

Figure 27-17 Low-voltage BOD specifications

Figure 27-18 High-voltage OVD specifications

Figure 27-19 Low-voltage OVD specifications

Figure 27-20 LVD specifications

27.10.1 SWD interface

Table 27-17 SWD interface specifications [Conditions: drive_sel<1:0>= 00]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID300	f _{SWDCLK}	SWD clock input frequency	-	-	10	MHz	$2.7 \text{ V} \le \text{V}_{\text{DDD}} \le 5.5 \text{ V}$
SID301	t _{SWDI_SETUP}	SWDI setup time	0.25 × T	-	_	ns	$T = 1 / f_{SWDCLK}$
SID302	t _{SWDI_HOLD}	SWDI hold time	0.25 × T	-	_	ns	$T = 1 / f_{SWDCLK}$
SID303	t _{SWDO_VALID}	SWDO valid time	-	_	0.5 × T	ns	T = 1 / f _{SWDCLK}
SID304	t _{SWDO_HOLD}	SWDO hold time	1	-	-	ns	T = 1 / f _{SWDCLK}

Table 27-18 JTAG AC specifications [Conditions: drive_sel<1:0>=00]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID620	t _{JCKH}	TCK HIGH time	30	-	_	ns	30-pF load
SID621	t _{JCKL}	TCK LOW time	30	-	_	ns	30-pF load
SID622	t _{JCP}	TCK clock period	66.7	_	_	ns	30-pF load
SID623	t_{JSU}	TDI/TMS setup time	12	_	_	ns	30-pF load
SID624	t _{JH}	TDI/TMS hold time	12	-	_	ns	30-pF load
SID625	t _{JZX}	TDO High-Z to active	_	_	30	ns	30-pF load
SID626	t _{JXZ}	TDO active to High-Z	_	-	30	ns	30-pF load
SID627	t _{JCO}	TDO clock to output	_	-	30	ns	30-pF load

Figure 27-21 JTAG specifications

Based on Arm® Cortex®-M7 dual

Trace specifications [Conditions: drive_sel<1:0>= 00] **Table 27-19**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID1412A	C _{TRACE}	Trace Capacitive Load	-	-	30	pF	
SID1412	t _{TRACE_CYC}	Trace clock period	40	-	-	ns	Trace clock cycle time for 25 MHz
SID1413	t _{TRACE_CLKL}	Trace clock LOW pulse width	2	-	-	ns	Clock low pulse width
SID1414	t _{TRACE_CLKH}	Trace clock HIGH pulse width	2	-	-	ns	Clock high pulse width
SID1415A	t _{TRACE_SETUP}	Trace data setup time	3	-	-	ns	Trace data setup time
SID1416A	t _{TRACE_HOLD}	Trace data hold time	2	-	-	ns	Trace data hold time

Datasheet

27.11 **Clock specifications**

All specifications are valid for $-40~^{\circ}\text{C} \le T_A \le 125~^{\circ}\text{C}$ and for 2.7 V to 5.5 V except where noted.

Root and intermediate clocks[58] Table 27-20

	Max permitted		Мах	imum per	mitted clock	frequenc	y setting (I	ИН z) ^[59]	
Clock	clock frequency (MHz) ^[59]	Source	PLL/FLL	Clock sou	rce: ECO ^[60]	PLL/FLL	. Clock sou	rce: IMO ^[61]	Description
	(MHZ) ¹³³		Integer	SSCG	Fractional	Integer	SSCG	Fractional	
	200	PLL200#0	200	NA	NA	190	NA	NA	
CLK HF0 -	200	FLL	100	NA	NA	96	NA	NA	Root clock for CPUSS, PERI
CLK_HFU -	100	PLL200#0	100	NA	NA	98	NA	NA	ROOL CLOCK TOT CF033, FERT
	100	FLL	100	NA	NA	96	NA	NA	
CLK HF1	350	PLL400#0	350	340	344	333	326	330	CM7 CPU Core#0, CM7 CPU Core#1 clock
CLK_HF1	330	FLL	100	NA	NA	96	NA	NA	CMIT CFO COIE#1 CLOCK
CLK_HF2	100	PLL200#1	100	NA	NA	98	NA	NA	Peripheral clock root other than CLK_PERI
CLK_III 2	100	FLL	100	NA	NA	96	NA	NA	rempherat clock foot other than CEN_rEN
CLK_HF3	100	PLL200#0	100	NA	NA	98	NA	NA	Event generator (CLK_REF), clock output on EXT_CLK pins (when used as output)
CLK_HF3	100	FLL	100	NA	NA	96	NA	NA	- Event generator (CER_REF), Clock output on Ext_CER pins (when used as output)
CLK_HF4	125	PLL400#1	125	122	122	119	117	117	Ethernet Channel#0, Ethernet Channel#1 internal clock
CLK_FIF4	123	FLL	100	NA	NA	96	NA	NA	ethernet Channetho, Ethernet Channeth Internal Clock
CLK_HF5	196.608	PLL400#1	196.608	193	196.608	189	185	187	I ² S channel#0, I ² S channel#1, I ² S channel#2 interface clock, Ethernet Channel#0 TSU,
CLK_III 3	190.000	FLL	100	NA	NA	96	NA	NA	Ethernet Channel#1 TSU
CLK HF6	200	PLL200#0	200	NA	NA	190	NA	NA	Root clock for SDHC. SMIF interface clock
CLK_FIFO	200	FLL	100	NA	NA	96	NA	NA	ROOL CLOCK TOL SUME IMEETIACE CLOCK
CLK_HF7	8	ILO	NA	NA	NA	NA	NA	NA	CSV
CLK FAST 0	350	PLL400#0	350	340	344	333	326	330	Generated by clock gating CLK_HF1, CM7 CPU Core#0, intermediate clock
CLN_FA31_0	330	FLL	100	NA	NA	96	NA	NA	Generated by Clock gating CLN_FIF1, CMT CFO Core#0, intermediate Clock
CLK_FAST_1	350	PLL400#0	350	340	344	333	326	330	Generated by clock gating CLK_HF1, CM7 CPU Core#1, intermediate clock
CLN_IA3I_I	330	FLL	100	NA	NA	96	NA	NA	Generated by Clock gating CEN_III 1, CMT CF O Core#1, Intermediate Clock

Notes

- 58. Intermediate clocks that are not listed have the same limitations as that of their parent clock.
 59. Maximum clock frequency after the corresponding clock source (PLL/FLL + dividers). All internal tolerances and affects are covered by these frequencies.
 60. For ECO: up to ±150 ppm uncertainty of the external clock source are tolerated by design.
 61. The IMO operation frequency tolerance is included. When DeepSleep mode isn't used, maximum permitted clock frequency setting of clock source IMO case is equal to clock source ECO case.
 62. CLOCK_SLOW and CLK_HF0 are related by integer frequency ratio (that is, 1:1, 1:2, 1:3, and so on).

	Max permitted		Max	imum per	mitted clock	frequenc	y setting (N	И Нz) ^[59]	
Clock	clock frequency (MHz) ^[59]	Source	PLL/FLL Clock source: ECO ^[60]			PLL/FLL	. Clock sou	rce: IMO ^[61]	Description
(МП2)***			Integer	SSCG	Fractional	Integer	SSCG	Fractional	
	200	PLL200#0	200	NA	NA	190	NA	NA	
CLK MEM	200	FLL	100	NA	NA	96	NA	NA	Generated by clock gating CLK_HF0, intermediate clock for SMIF, Flash, Ethernet
CLK_MEM	100	PLL200#0	100	NA	NA	98	NA	NA	Generated by Clock gating CEN_HPV, intermediate clock for SMIP, Plash, Ethernet
	100	FLL	100	NA	NA	96	NA	NA	
CLK SLOW	100	PLL200#0	100	NA	NA	98	NA	NA	Generated by clock gating CLK_MEM, intermediate clock for CM0+, P-DMA, M-DMA,
CLK_SLOW	100	FLL	100	NA	NA	96	NA	NA	Crypto, SMIF, SDHC
CLIV DEDI	0.17 2221		100	NA	NA	98	NA	NA	Generated by clock gating CLK_HF0, intermediate clock for IOSS, TCPWM0, CPU trace,
CLK_PERI 100		FLL	100	NA	NA	96	NA	NA	SMIF

Based on Arm® Cortex®-M7 dual

Electrical specifications

Relation between CLK_HF0 and CLK_SLOW (Example)^[62] **Table 27-21**

CLK_HF0 (MHz)	CLK_SLOW (MHz)
200	100
180	90
160	80
120	60
100	100
80	80

Table 27-22 PLL400 operation modes

PLL400 operation mode	Spread spectrum clock generation (SSCG)	Fractional
Integer	OFF	OFF
SSCG	ON	OFF
Fractional	OFF	ON

Table 27-23 IMO AC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID310	f _{IMOTOL}	IMO operating frequency	7.68	8	8.32	MHz	
SID311	t _{STARTIMO}	IMO start-up time	_	_	7.5	μs	Start-up time to 90% of final frequency
SID312	I _{IMO_ACT}	IMO current	-	13.5	22	μΑ	

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-24 ILO AC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID320	f _{ILOTRIM}	ILO operating frequency	30.47424	32.768	35.06176	kHz	
SID321	t _{STARTILO}	ILO start-up time	-	8	12	μs	Start-up time to 90% of final frequency
SID323	I _{ILO}	ILO current	-	500	2800	nA	

Table 27-25 ECO specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID330	f _{ECO}	Crystal frequency range	8	-	33.34	MHz	
SID332	R _{FDBK}	Feedback resistor value. Min: RTRIM = 3; Max: RTRIM = 0 with 100-kΩ step size on RTRIM	100	_	400	kΩ	Guaranteed by design
SID333	I _{ECO3}	ECO current at T _J = 150 °C	ı	-	2000	μΑ	Maximum operation current with a 33-MHz crystal, 18-pF load
SID334	t _{START_8M}	8-MHz ECO start-up time ^[63]	-	-	10	ms	Time from set CLK_ECO CONFIG.ECO_EN to 1 until CLK_ECO_STATUS.ECO _READY is set to 1 (See Clock Timing Diagrams)
SID335	t _{START_33M}	33-MHz ECO start-up time ^[63]	-	-	1	ms	Time from set CLK_ECO CONFIG.ECO_EN to 1 until CLK_ECO_STATUS.ECO _READY is set to 1 (See Clock Timing Diagrams)

Figure 27-22 ECO connection scheme^[64]

Notes

63. Mainly depends on the external crystal.

^{64.}Refer to the family-specific Architecture TRM for more information on crystal requirements (002-24401, TRAVEO™ T2G Automotive MCU body controller high architecture technical reference manual).

Based on Arm® Cortex®-M7 dual

PLL specifications Table 27-26

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
PLL (with	out SSCG and f	ractional divider) Specificat	ions for	200 MF	lz		
SID340	t _{PLL200_} LOCK	Time to achieve PLL lock	ı	ı	35	μs	Time from stable reference clock until PLL frequency is within 0.1% of final value and lock indicator is set
SID341	f _{PLL_OUT}	Output frequency from PLL block	11	ı	200	MHz	
SID342	PLL_LJIT1	Long term jitter	-0.25	1	0.25	ns	For 125 ns Guaranteed by design f _{PLL_VCO} : 320 MHz or 400 MHz f _{PLL_OUT} : 40 MHz to 200 MHz f _{PLL_PFD} : 8 MHz f _{PLL_IN} : ECO
SID343	PLL_LJIT2	Long term jitter	-0.5	1	0.5	ns	For 500 ns Guaranteed by design f _{PLL_VCO} : 320 MHz or 400 MHz f _{PLL_OUT} : 40 MHz to 200 MHz f _{PLL_PFD} : 8 MHz f _{PLL_IN} : ECO
SID344	PLL_LJIT3	Long term jitter	-0.5	-	0.5	ns	For 1000 ns Guaranteed by design f _{PLL_VCO} : 320 MHz or 400 MHz f _{PLL_OUT} : 40 MHz to 200 MHz f _{PLL_PFD} : 8 MHz f _{PLL_IN} : ECO
SID345A1	PLL_LJIT5	Long term jitter	-0.75	-	0.75	ns	For 10000 ns Guaranteed by design f _{PLL_VCO} : 320 MHz or 400 MHz f _{PLL_OUT} : 40 MHz to 200 MHz f _{PLL_PFD} : 8 MHz f _{PLL_IN} : ECO
SID346	f _{PLL_IN}	PLL input frequency	3.988	-	33.34	MHz	
SID347	I _{PLL_200M}	PLL operating current (f _{OUT} = 200 MHz)	-	0.87	1.85	mA	f _{OUT} = 200 MHz
SID348C	f _{PLL_VCO}	VCO frequency	170	1	400	MHz	
SID349C	f _{PLL_PFD}	PFD frequency	3.988	-	8	MHz	
PLL (with	SSCG and frac	tional divider) specification	s for 400	MHz			
SID340A	t _{PLL400_} LOCK	Time to achieve PLL lock	_	_	50	μs	Time from stable reference clock until PLL frequency is within 0.1% of final value and lock indicator is set
SID341A	f _{OUT}	Programmed output frequency from PLL Block	25	_	350	MHz	Integer mode
SID341B	f _{OUT}	Programmed output frequency from PLL Block	25	-	340	MHz	SSCG mode

Based on Arm® Cortex®-M7 dual

PLL specifications (continued) **Table 27-26**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID343A	SPREAD_D	Spread spectrum modulation depth	0.5	-	3	%	Downspread only, triangle modulation
SID343B	f _{SPREAD_MR}	Spread spectrum modulation rate	ı	I	32	kHz	Selected by modulation divider from f _{PFD}
SID342D1	PLL400_LJIT1	Long term jitter	-0.25	1	0.25	ns	For 125 ns Guaranteed by design f _{VCO} : 800 MHz or 700 MHz (Integer mode) f _{IN} : ECO f _{PFD} : 4 MHz f _{OUT} : 100 MHz to 350 MHz
SID343D1	PLL400_LJIT2	Long term jitter	-0.5	-	0.5	ns	For 500 ns Guaranteed by design f _{VCO} : 800 MHz or 700 MHz (Integer mode) f _{IN} : ECO f _{PFD} : 4 MHz f _{OUT} : 100 MHz to 350 MHz
SID344D1	PLL400_LJIT3	Long term jitter	-1	-	1	ns	For 1000 ns Guaranteed by design f _{VCO} : 800 MHz or 700 MHz (Integer mode) f _{IN} : ECO f _{PFD} : 4 MHz f _{OUT} : 100 MHz to 350 MHz
SID345E1	PLL400_LJIT5	Long term jitter	-1.5	-	1.5	ns	For 10000 ns Guaranteed by design f _{VCO} : 800 MHz or 700 MHz (Integer mode) f _{IN} : ECO f _{PFD} : 4 MHz f _{OUT} : 100 MHz to 350 MHz
SID345A	f _{VCO}	VCO frequency	400	1	800	MHz	
SID346A	f _{IN}	PLL input frequency	3.988	-	33.34	MHz	
SID347A	I _{PLL_400M}	PLL operating current (f _{OUT} = 400 MHz)	ı	1.4	2.2	mA	f _{OUT} = 400 MHz
SID348A	f _{PFD_S}	PFD Frequency (f _{IN} / Reference divider)	3.988	-	20	MHz	Integer/SSCG mode
SID349A	f _{PFD_F}	PFD Frequency (f _{IN} / Reference divider)	8	-	20	MHz	Fractional operation
SID341C	f _{OUT_400_8S1}	Output frequency from PLL Block (SSCG mode)	93	_	105	MHz	f _{PFD} = 8 MHz, f _{VCO} = 400 MHz, f _{OUT} = 100MHz, Modulation frequency: f _{PFD} / 512, Modulation depth: 3%
SID342C	t _{PLL_C-} JIT400_8S1	Cycle to cycle jitter (SSCG mode)	-710	-	710	ps	f _{PFD} = 8 MHz, f _{VCO} = 400 MHz, f _{OUT} = 100MHz, Modulation frequency: f _{PFD} / 512, Modulation depth: 3%

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-26 PLL specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID341D	f _{OUT_400_8S2}	Output frequency from PLL Block (SSCG mode)	93	-	105	MHz	f _{PFD} = 8 MHz, f _{VCO} = 400 MHz, f _{OUT} = 100MHz, Modulation frequency: f _{PFD} / 256, Modulation depth: 3%
SID342D	t _{PLL_C-} JIT400_8S2	Cycle to cycle jitter (SSCG mode)	-710	-	710	ps	f _{PFD} = 8 MHz, f _{VCO} = 400 MHz, f _{OUT} = 100MHz, Modulation frequency: f _{PFD} / 256, Modulation depth: 3%

Table 27-27 FLL specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID350	t _{FLL_WAKE}	FLL wake up time	-	-	5	μs	Wakeup with < 10 °C temperature change while in DeepSleep. f _{FLL_IN} = 8 MHz, f _{FLL_OUT} = 100 MHz, Time from stable reference clock until FLL frequency is within 5% of final value
SID351	f _{FLL_OUT}	Output frequency from FLL block	24	-	100	MHz	Output range of FLL divided-by-2 output
SID352	FLL_CJIT	FLL frequency accuracy	-1	-	1	%	This is added to the error of the source
SID353	f _{FLL_IN}	Input frequency	0.25	-	80	MHz	
SID354	I _{FLL}	FLL operating current	_	250	360	μА	Reference clock: IMO, CCO frequency: 200 MHz, FLL frequency: 100 MHz, guaranteed by design

Table 27-28 WCO specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID360	f _{WCO}	Crystal frequency	-	32.768	-	kHz	Maximum drive level: 0.5 μW
SID361	WCO_DC	WCO duty cycle	10	-	90	%	
SID362	t _{START_WCO}	WCO start up time ^[65]	-	-	1000	ms	For Grade-S devices Time from set CTL.WCO_EN to 1 until STATUS.WCO_OK is set to 1. (See Clock Timing Diagrams)
SID362E	t _{START_WCOE}	WCO start-up time ^[65]	-	-	1400	ms	For Grade-E devices Time from set CTL.WCO_EN to 1 until STATUS.WCO_OK is set to 1. (See Clock Timing Diagrams)
SID363	I _{wco}	WCO current	_	1.4	_	μΑ	

Figure 27-23 WCO connection scheme^[66]

Notes

^{65.} Mainly depends on the external crystal.

^{66.}Refer to the family-specific Architecture TRM for more information on crystal requirements (002-24401, TRAVEO™ T2G Automotive MCU body controller high architecture technical reference manual).

Based on Arm® Cortex®-M7 dual

Electrical specifications

Table 27-29 External clock input specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID366	f _{EXT}	External clock input frequency	0.25	-	80	MHz	For EXT_CLK pin (all input level settings: CMOS, TTL, Automotive)
SID367	EXT_DC	External clock duty cycle	45	-	55	%	

Table 27-30 MCWDT timeout specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID410	t _{MCWDT1}	Minimum MCWDT timeout	57	_	-	μs	When using the ILO (32.768 kHz + 7%) and 16-bit MCWDT counter Guaranteed by design
SID411	t _{MCWDT2}	Maximum MCWDT timeout	-	-	2.15	S	When using the ILO (32.768 kHz – 7%) and 16-bit MCWDT counter Guaranteed by design

Table 27-31 WDT timeout specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID412	t _{WDT1}	Minimum WDT timeout	57	-	-	μs	When using the ILO (32.768 kHz + 7%) and 32-bit WDT counter, guaranteed by design
SID413	t _{WDT2}	Maximum WDT timeout	_	-	39.15	h	When using the ILO (32.768 kHz – 7%) and 32-bit WDT counter, guaranteed by design
SID414	t _{WDT3}	Default WDT timeout	-	1000	-	ms	When using the ILO and 32-bit WDT counter at 0x8000 (default value), guaranteed by design

Based on Arm® Cortex®-M7 dual

Electrical specifications

Clock timing diagrams 27.12

Figure 27-24 ECO to PLL or FLL diagram

Based on Arm® Cortex®-M7 dual

Figure 27-25 WCO to FLL diagram

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.13 Ethernet specifications

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Table 27-32 Ethernet specifications [Conditions: drive_sel<1:0>= 00]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
Ethernet	general spec	ifications					<u>, </u>
SID368	f_{SYS}	System clock max frequency	-	-	100	MHz	Guaranteed by design
SID369	f _{AXI}	AXI clock max frequency	_	-	200	MHz	Guaranteed by design
SID370	V _{ETH}	Ethernet MAC IO supply voltage	3.0	_	3.6	V	For V _{DDD} or V _{DDIO_4}
SID364A	C _{L_MD}	Load capacitance	-	-	25	pF	For MDIO all signals between MAC and PHY using GPIO_STD/HSIO_STD
SID364A1	C _{L_MH}	Load capacitance	-	_	25	pF	For MII and RMII all signals between MAC and PHY using HSIO_STD
SID364A2	C _{L_MG}	Load capacitance	-	_	15	pF	For MII and RMII all signals between MAC and PHY using GPIO_STD
SID364B	C _{L_GH}	Load capacitance	1	-	10	pF	For GMII and RGMII all signals between MAC and PHY using HSIO_STD
SID365A	t _{RF}	Rise / fall time (For input pins)	1	-	2	ns	20% to 80%, For MII, RMII, and MDIO using GPIO_STD/HSIO_STD
SID365B	t _{RF_G}	Rise / fall time (For input and output pins)	1	ı	1	ns	20% to 80%, For GMII using HSIO_STD
SID365B1	t _{RF_GM}	Rise / fall time (For input and output pins)	1	1	0.75	ns	20% to 80%, For RGMII using HSIO_STD
Ethernet	MII specifica	tions for GPIO_STD/HSIO_STD					
SID375	f _{TXRX_CLK}	MII TX/RX_CLK clock frequency at 100 Mbps	- 100pp m	25	100pp m	MHz	
SID376	DUTY_TX- RX_CLK	TX/RX clock duty cycle	35	_	65	%	
SID372	t _{SKEWT}	MII Transmit data (TX_CTL, TXD, TX_ER) valid after TX_CLK	0.5	_	25	ns	
SID373	t _{SUR}	MII Receive data setup to RX_CLK rising edge	10	ı	-	ns	
SID374	t _{HOLDR}	MII Receive data hold to RX_CLK rising edge	10	1	_	ns	
Ethernet	RMII Specific	ations for GPIO_STD/HSIO_STD)				
SID375A	f _{REF_CLK}	RMII reference clock frequency (input)	- 50pp m	50	50pp m	MHz	External clock
SID376A	DUTY_REF_ CLK	Duty cycle of reference clock (input)	35	_	65	%	
SID377	t _{SU}	RX_CTL, RXD[1:0], RX_ER data setup to REF_CLK rising edge	4	_	_	ns	

Based on Arm® Cortex®-M7 dual

Ethernet specifications [Conditions: drive_sel<1:0>= 00] (continued) **Table 27-32**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID378	t _{HOLD}	RX_CTL, RXD[1:0], RX_ER, data hold from REF_CLK rising edge	2	-	-	ns		
SID393	t _{TXOUT}	TX_CTL, TXD[1:0], data output delay from REF_CLK rising edge	2	-	14.6	ns	For GPIO_STD	
SID393A	t _{TXOUT_A}	TX_CTL, TXD[1:0], data output delay from REF_CLK rising edge	2	-	14	ns	For HSIO_STD	
Ethernet	GMII Specific	cations for HSIO_STD						
SID379	f _{P_REFCLK}	REF_CLK clock frequency	-	125	-	MHz		
SID380	f _{P_RXCLK}	RX_CLK clock frequency	– 50pp m	125	50pp m	MHz		
SID380A	t _{P_RXCLK}	RX_CLK clock period	7.5	-	8.5	ns		
SID380B	t _{P_HL_RXCLK}	RX_CLK clock time HIGH/LOW	2.5	-	-	ns		
SID389	f _{P_TXCLK}	TX(GTX)_CLK frequency (External/Internal mode)	- 100pp m	125	100pp m	MHz		
SID389A	t _{P_TXCLK}	TX(GTX)_CLK clock period (External/Internal mode)	7.5	-	8.5	ns		
SID389B	t _{P_HL_TXCLK}	TX(GTX)_CLK clock time HIGH/LOW (External/Internal mode)	2.5	-	_	ns		
SID381	t _{SETUPT}	TX_CTL, TXD, TX_ER Setup to TX(GTX)_CLK rising edge	2.5	-	-	ns		
SID382	t _{HOLDT}	TX_CTL, TXD, TX_ER hold from TX(GTX)_CLK rising edge	0.5	-	_	ns		
SID383	t _{SETUPR}	RX_CTL, RXD, RX_ER setup to RX_CLK rising edge	2	-	_	ns		
SID384	t _{HOLDR}	RX_CTL, RXD, RX_ER hold from RX_CLK rising edge	0	-	_	ns		
Ethernet		ications for HSIO_STD						
SID385	f _{CYC}	REF_CLK clock frequency	-	125	-	MHz		
SID385_1		TX(TXC)_CLK (External mode) and RX(RXC)_CLK clock frequency	– 50pp m	125	50pp m	MHz		
SID385B	t _{P_TXCRXC}	TX(TXC)_CLK (External mode)/RX(RXC)_CLK clock period	7.2	8	8.8	ns		
SID386B	DUTY_TXC RXC	Duty for TX(TXC)_CLK (External mode)/RX(RXC)_CLK clock	45	-	55	%		
SID387	t _{SKEWT}	Data to clock output skew	-0.5	-	0.5	ns		
SID388	t _{SKEWR}	Data to clock input skew	1	-	2.6	ns		
Ethernet MDIO Specifications for GPIO_STD/HSIO_STD								
SID395	t _{MDCYC}	MDC clock cycle	400	-	-	ns		
SID395A	t _{HL_MDCYC}	The minimum HIGH and LOW times for MDC	160	_	-	ns		
SID396	t _{MDIS}	MDIO input setup time to MDC rising edge	100		-	ns		

Based on Arm® Cortex®-M7 dual

Table 27-32 Ethernet specifications [Conditions: drive_sel<1:0>= 00] (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID397	t _{MDIH}	MDIO input hold time to MDC rising edge	0	-	-	ns	
SID398	t _{MDIO}	MDIO output skew from MDC rising edge	10	-	390	ns	

Figure 27-26 MII timing diagram

Figure 27-27 MDIO timing diagram

Figure 27-28 RMII timing diagram

infineon

Figure 27-29 GMII timing diagram

Figure 27-30 RGMII Tx timing diagram

Figure 27-31 RGMII Rx timing diagram

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.13.1 Minimum bus frequency requirements

The following table details the required minimum operating frequencies for all possible Ethernet configurations and MAC speeds. Ethernet module uses **AXI** interface for DMA access.

Table 27-33 Minimum AXI frequency for MAC speeds

DMA bus width	MAC rate	Minimum AXI frequency
64	1 Gbps	65 MHz
64	100 Mbps	10 MHz
64	10 Mbps	10 MHz

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.14 **SDHC** specifications

All specifications are valid for –40 $^{\circ}C \leq T_{A} \leq$ 125 $^{\circ}C$ and for 2.7 V to 5.5 V except where noted.

SDHC specifications **Table 27-34**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SDHC and	eMMC specif	ications (the source clock must	be divid	ded by	2 or mo	re in DD	R modes)
SID801	V _{SDHC}	SDHC IO supply voltage	2.7	_	3.6	V	For V _{DDIO_1} or V _{DDIO_3}
SID802	I _{ODS}	I/O drive select	8	-	8	mA	drive_sel<1:0>= 0b00 for all modes
SID803	t _{IT}	Input transition time	0.7	-	3	ns	
SD: DS tin	ning specifica	tions for GPIO_STD/HSIO_STD					
SID810	f_{LP}	Interface clock period	-	_	25	MHz	40-ns period
SID812	C_D	I/O loading at DATA/CMD pins	40	-	40	pF	
SID813	C _C	I/O loading at CLK pins	40	-	40	pF	
SID814	t _{OS}	Output setup time of CMD/DAT prior to CLK	5.5	_	-	ns	
SID815	t _{OH}	Output hold time of CMD/DAT after CLK	5.5	_	1	ns	
SID816	t _{IS_LP}	Input setup time of CMD/DAT prior to CLK	24	_	ı	ns	Clock period - Output delay
SID818	t _{IH}	Input hold time of CMD/DAT after CLK	0	_	1	ns	
SD: HS tin	ning specifica	tions for HSIO_STD					
SID820	f _{LP_SD_HS}	Interface clock period	-	-	50	MHz	20-ns period
SID822	C _{D_SD_HS}	I/O loading at DATA/CMD pins	40	-	40	pF	
SID823	C _{C_SD_HS}	I/O loading at CLK pins	40	_	40	pF	
SID824	t _{OS_SD_HS}	Output setup time of CMD/DAT prior to CLK	6.5	_	-	ns	
SID825	t _{OH_SD_HS}	Output hold time of CMD/DAT after CLK	2.5	-	-	ns	
SID826	t _{IS_LP_SD_HS}	Input setup time of CMD/DAT prior to CLK	4	-	-	ns	Clock period less output delay
SID828	t _{IH_SD_HS}	Input hold time of CMD/DAT after CLK	2.5	_	ı	ns	
eMMC: BV	VC timing spe	cifications for GPIO_STD/HSIO_	STD				
SID870	f _{LP_eM-} MC_BWC	Interface clock period	-	_	26	MHz	38.4-ns period
SID872	C _{D_eM} - MC_BWC	I/O loading at DATA/CMD pins	30	-	30	pF	
SID873	C _{C_eM} - MC_BWC	I/O loading at CLK pins	30	_	30	pF	
SID874	t _{OS_eM} - MC_BWC	Output setup time of CMD/DAT prior to CLK	3.5	_	-	ns	
SID875	t _{OH_eM} - MC_BWC	Output hold time of CMD/DAT after CLK	3.5	-	-	ns	

SDHC specifications (continued) **Table 27-34**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID876	t _{IS_LP_eM} - MC_BWC	Input setup time of CMD/DAT prior to CLK	9.7	_	-	ns	Clock period less output delay
SID878	t _{IH_eM-} MC_BWC	Input hold time of CMD/DAT after CLK	8.3	-	-	ns	
eMMC: SD	R timing spe	cifications for HSIO_STD					
SID880	f _{LP_eM-} MC_SDR	Interface clock period	-	_	52	MHz	19.2-ns period
SID882	C _{D_eM} - MC_SDR	I/O loading at DATA/CMD pins	30	_	30	pF	
SID883	C _{C_eM} - MC_SDR	I/O loading at CLK pins	30	_	30	pF	
SID884	t _{OS_eM} - MC_SDR	Output setup time of CMD/DAT prior to CLK	3.5	_	-	ns	
SID885	t _{OH_eM} - MC_SDR	Output hold time of CMD/DAT after CLK	3.5	_	-	ns	
SID886	t _{IS_LP_eM-} MC_SDR	Input setup time of CMD/DAT prior to CLK	3.5	_	-	ns	Clock period less output delay
SID888	t _{IH_eM-} MC_SDR	Input hold time of CMD/DAT after CLK	2.5	_	-	ns	
eMMC: DE	OR timing spe	cifications for HSIO_STD				•	
SID890	f _{LP_eM-} MC_DDR	Interface clock period	_	_	52	MHz	19.2-ns period
SID892	DUTY CLK_ _{eM-} MC_DDR	Duty cycle of output CLK	45	1	55	%	
SID893	C _{D_eM} - MC_DDR	I/O loading at DATA/CMD pins	20	_	20	pF	
SID894	C _{C_eM} - MC_DDR	I/O loading at CLK pins	20	_	20	pF	
SID895	t _{OS_eM-} MC_DDR	Output setup time of CMD/DAT prior to CLK	2.6	1	-	ns	
SID896	t _{OH_eM-} MC_DDR	Output hold time of CMD/DAT after CLK	2.6	_	-	ns	
SID897	t _{IS_LP_eM} - MC_DDR	Input setup time of CMD/DAT prior to CLK	2.4	_	_	ns	Clock period less output delay
SID899	t _{IH_eM-} MC_DDR	Input hold time of CMD/DAT after CLK	1.5	-	_	ns	

SD default speed input timing Figure 27-1

Figure 27-2 SD default speed output timing

Figure 27-3 SD high-speed and eMMC BWC/SDR input timing

Figure 27-4 SD high-speed and eMMC BWC/SDR output timing

Based on Arm® Cortex®-M7 dual

Figure 27-5 **eMMC DDR input timing**

Figure 27-6 **eMMC DDR output timing**

Based on Arm® Cortex®-M7 dual

Electrical specifications

FlexRay specifications 27.15

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Table 27-35 FlexRay specification

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID465	f _{CLK_S}	System clock (clk_sys) frequency	-	-	80	MHz	Guaranteed by design, Reference clock: ECO
SID466	f _{CLK_P}	FlexRay clock (clk_peri) frequency	_	-	80	MHz	Guaranteed by design, Reference clock: ECO
SID470	V _{FR}	FlexRay I/O supply voltage (V _{DDIO_2})	3.0	-	5.5	V	drive_sel<1:0> = 0b00
TxEN outp	ut characteris	tics					
SID450	t _{CCTxENRISE25}	Rise time of TxEN signal at CC	_	9		ns	20% to 80%, 25-pF load
SID451	t _{CCTxENFALL25}	Fall time of TxEN signal at CC	-	_	9	ns	20% to 80%, 25-pF load
SID452	t _{CCTxEN01}	Sum of delay between TP1_FF and TP1_CC and delays derived from TP1_FFi, rising edge TxEN	_	-	25	ns	20% to 80%, 25-pF load, guaranteed by design
SID453	t _{CCTxEN10}	Sum of delay between TP1_FF and TP1_CC and delays derived from TP1_FFi, falling edge TxEN	_	-	25	ns	20% to 80%, 25-pF load, guaranteed by design
SID468	C _{TXEN}	I/O loading at TxEN pin	-	-	25	pF	
TxD outpu	t characteristi	cs					
SID454	t _{CCTxASYM}	Asymmetry of sending CC (= t _{CCDTxD} 50% – 100 ns)	-2.45	-	2.45	ns	25-pF load, guaranteed by design
SID455	t _{CCTxDRF25}	Sum of rise and fall time	-	_	9	ns	20% to 80%, 25-pF load
SID455A	t _{CCTxDR15}	Rise time of TxD signal	-	_	2.5	ns	30% to 70%, 15-pF load
SID455B	t _{CCTxDF15}	Fall time of TxD signal	-	-	2.5	ns	30% to 70%, 15-pF load
SID456	t _{CCTxD01}	Sum of delay between clock to Q of the last FF and the final output buffer, rising edge TxD	-	-	25	ns	20% to 80%, 25-pF load, guaranteed by design
SID457	t _{CCTxD10}	Sum of delay between clock to Q of the last FF and the final output buffer, falling edge TxD	-	-	25	ns	20% to 80%, 25-pF load, guaranteed by design
SID469	C _{TXD}	I/O loading at TxD pin	-	-	25	pF	
RxD input	characteristic	s					
SID458	C _{CCRxD}	Input capacitance on RxD pin	_	-	10	pF	
SID459	V _{CCLogic_1}	Threshold for detecting logical HIGH	0.35 × V _{DDIO_2}	-	0.70 × V _{DDIO_2}	V	
SID460	V _{CCLogic_0}	Threshold for detecting logical LOW	0.30 × V _{DDIO_2}	-	0.65 × V _{DDIO_2}	V	
SID461	t _{CCRxD01}	Sum of delay from actual input to the D input of the first FF, rising edge RxD	1	-	10	ns	Guaranteed by design
SID462	t _{CCRxD10}	Sum of delay from actual input to the D input of the first FF, falling edge RxD	_	-	10	ns	Guaranteed by design
Receiver a	symmetry		•		•		
SID463	t _{CCRx} ASYMAC15	Acceptance of asymmetry at receiving CC with 15-pF load	-31.5	-	44	ns	For all data rates including clock deviation of ±500 ppm
SID464	t _{CCRxASYMAC25}	Acceptance of asymmetry at receiving CC with 25-pF load	-30.5	_	43	ns	For all data rates including clock deviation of ±500 ppm

Based on Arm® Cortex®-M7 dual

Electrical specifications

Audio subsystem specifications 27.16

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Table 27-36 Audio subsystem specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID770	f _{AUDIO}	Audio subsystem frequency	_	_	200	MHz	Guaranteed by design
SID772	V _{AUDIO}	Audio subsystem I/O supply voltage	3.0	ı	3.6	V	For V _{DDIO_2}
SID773	V _{OL_A}	Output voltage LOW level	-	-	0.4	V	drive_sel<1:0>= 0b0X, Pull-up, pull-down: off
SID774	V _{OH_A}	Output voltage HIGH level	V _{DDIO_2} - 0.5	-	-	V	drive_sel<1:0>= 0b0X, Pull-up, pull-down: off
SID775	V _{IH_CMOS_A}	Input voltage HIGH threshold in CMOS mode	$0.7 \times V_{DDIO_2}$	_	_	V	
SID776	V _{IL_CMOS_A}	Input voltage LOW threshold in CMOS mode	_	-	0.3 × V _{DDIO_2}	V	
I ² S/TDM	word clock fr	equency					
SID796	f _{WS_I2S}	WS clock rate in I ² S mode		_	192	kHz	Guaranteed by design
SID797	f _{WS_TDM}	WS clock rate in TDM mode	-	_	96	kHz	Guaranteed by design
SID798	Word	Length of I ² S word	8	_	32	bit	Guaranteed by design
I ² S/TDM	Master mode						<u> </u>
SID740	t _{D_WS}	Delay Time of TX/RX_WS Output Transition from Falling Edge of TX/RX_SCK Output	-8	-	9	ns	Except TDM 96 kHz mode, TX/RX_WS output and TX/RX_SCK output with drive_sel<1:0>=0b 01, guaranteed by design
SID740A	^t D_WS_TDM96A	Delay Time of TX/RX_WS output Transition from Falling Edge of TX/RX_SCK output	-8	-	11	ns	TDM 96 kHz mode, TX/RX_WS output with drive_sel<1:0> = 0b01 and TX/RX_SCK output with drive_sel<1:0> = 0b00, guaranteed by design

Based on Arm® Cortex®-M7 dual

Audio subsystem specifications (continued) **Table 27-36**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID741	t _{D_SDO}	Delay Time of TX_SDO Transition from Falling Edge of TX_SCK Output	-8	-	8	ns	TX_SDO and TX_SCK output with drive_sel<1:0> = 0b01 for except TDM 96 kHz mode, guaranteed by design
SID741A	t _{D_SDO_TDM96}	Delay time of TX_SDO Transition from Falling Edge of TX_SCK Output	-8	-	8	ns	TX_SDO with drive_sel<1:0> = 0b01 and TX_SCK output with drive_sel<1:0> = 0b00 for TDM 96 kHz mode, guaranteed by design
SID742	t _{s_sdl}	RX_SDI setup time to the following rising edge of RX_SCK output (RX_CTL.B_CLOCK_INV = 0)	11	-	ı	ns	RX_SCK output with drive_sel<1:0> = 0b00, guaranteed by design
SID743	t _{H_SDI}	RX_SDI hold time to the rising edge of RX_SCK output (RX_CTL.B_CLOCK_INV = 0)	t _{MCLK_SOC} - 0.9	-	1	ns	RX_SCK output with drive_sel<1:0> = 0b00, guaranteed by design
SID744	t _{S_SDI1}	RX_SDI setup time to the following falling edge of RX_SCK output (RX_CTL.B_CLOCK_INV = 1)	11	-	-	ns	RX_SCK output with drive_sel<1:0> = 0b00, guaranteed by design
SID745	t _{H_SDI1}	RX_SDI hold time to the falling edge of RX_SCK output (RX_CTL.B_CLOCK_INV = 1)	t _{MCLK_} SOC - 0.9	-	ı	ns	RX_SCK output with drive_sel<1:0> = 0b00, guaranteed by design
SID746	t _{SCKCY}	TX/RX_SCK output bit clock duty cycle	45	-	55	%	Guaranteed by design
SID748	f _{MCLK_SOC}	MCLK input clock frequency	1.024	_	196.608	MHz	Internal Fractional PLL, guaranteed by design
SID748A	f _{MCLK_SOC_E}	MCLK input clock frequency	1.024	_	98.304	MHz	External clock
SID749	t _{MCLK_SOC}	MCLK input clock period	5.086	-	976.563	ns	Guaranteed by design
SID750	t _{JITTER}	MCLK Input clock jitter tolerance	-200	_	200	ps	Guaranteed by design

Based on Arm® Cortex®-M7 dual

Audio subsystem specifications (continued) **Table 27-36**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID748B	f _{MCLK}	MCLK output clock frequency	1.024	I	25	MHz	MCLK output with drive_sel<1:0> = 0b00, Guaranteed by design
SID748C	f _{MCLK1}	MCLK output clock frequency	1.024	ı	15	MHz	MCLK output with drive_sel<1:0> = 0b01, Guaranteed by design
SID749B	f _{MCLK_DT}	MCLK output clock duty	45	ı	55	%	Guaranteed by design
I ² S/TDM	Slave mode				•		
SID751	t _{S_WS}	TX/RX_WS input alignment clock setup time to the following rising edge of TX/RX_SCK input	5	ı	-	ns	Guaranteed by design
SID752	t _{H_WS}	TX/RX_WS input alignment clock hold time to the rising edge of TX/RX_SCK Input	t _{MCLK_SOC} + 5.0	-	-	ns	Guaranteed by design
SID753	t _{D_SDO}	Delay time of TX_SDO transition from falling edge of TX_SCK input (TX_CTL.B_CLOCK_INV = 0)	-t _{MCLK_SOC} + 5.0	_	t _{MCLK_SOC} +15	ns	TX_SDO with drive_sel<1:0>= 0b00, guaranteed by design
SID754	t _{D_SDO1}	Delay time of TX_SDO transition from rising edge of TX_SCK input (TX_CTL.B_CLOCK_INV = 1)	-t _{MCLK_SOC} + 5.0	1	t _{MCLK_SOC} +15	ns	TX_SDO with drive_sel<1:0>= 0b00, guaranteed by design
SID755	t _{S_SDI}	RX_SDI setup time to the following rising edge of RX_SCK input	5	-	-	ns	Guaranteed by design
SID756	t _{H_SDI}	RX_SDI hold time to the rising edge of RX_SCK input	t _{MCLK_SOC} + 5.0	-	_	ns	Guaranteed by design
SID757	t _{SCKCY}	TX/RX_SCK input bit clock duty cycle	45	-	55	%	Guaranteed by design

Figure 27-7 Master output delay

Figure 27-8 Master setup without clock inversion

Figure 27-9 Master setup with clock inversion

Figure 27-10 Slave output delay

Based on Arm® Cortex®-M7 dual

Figure 27-11 Slave setup

Based on Arm® Cortex®-M7 dual

Electrical specifications

27.17 Serial memory interface specifications

All specifications are valid for –40 °C \leq T $_{A}$ \leq 125 °C and for 2.7 V to 5.5 V except where noted.

Table 27-37 SMIF specifications [Conditions: drive_sel<1:0>= 00]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SMIF DC s	pecification					l	l
SID785	V _{SMIF}	SMIF I/O supply voltage	2.7	_	3.6	V	For V _{DDIO_1} or V _{DDIO_3}
SMIF HSS	PI(SDR) specifica	tion for HSIO_STD					
SID760	C _{L_SDR_HSIO}	Load capacitance	_	-	30	pF	
SID761	SR_ _{SDR_} HSIO	Input rise and fall slew rates	1.5	-	-	V/ns	Guaranteed by design
SID762	f _{CK_SDR_HSIO}	Clock frequency	-	-	100	MHz	
SID763	t _{CK_SDR_HSIO}	Clock period	1 / f _{CK_SDR_HSIO}	1	1	ns	
SID764	DCK_SDR_HSIO	Clock duty	45	ı	55	%	
SID765	CSR_ _{SDR_} HSIO	Clock rise and fall slew rates	1.5	-	-	V/ns	
SID766	t _{CS_SDR_HSIO}	Chip select HIGH time	10	-	-	ns	
SID767	t _{CSS_SDR_HSIO}	Chip select active setup time	3	-	-	ns	
SID768	t _{CSH_SDR_HSIO}	Chip select active hold time	5	-	-	ns	
SID769	t _{SU_SDR_HSIO}	Data setup time	1.5	-	-	ns	
SID780	t _{HD_SDR_HSIO}	Data hold time	2	-	-	ns	
SID781	t _{V_SDR_HSIO}	Clock LOW output valid	1.5	-	7.65	ns	
SID782	t _{HO_SDR_HSIO}	Input hold time	2	-	-	ns	
SID783	t _{DIS_SDR_HSIO}	Input disable time	0	_	7.5	ns	Guaranteed by design
SID784	t _{IO_SKEW_S} - DR_HSIO	Data skew (first data bit to last data bit)	_	_	0.6	ns	Guaranteed by design
SMIF HSS		ation for GPIO_STD					l
SID760A	C _{L_SDR_GPIO}	Load capacitance	_	-	30	pF	
SID761A	SR_ _{SDR_GPIO}	Input rise and fall slew rates	1	-	-	V/ns	Guaranteed by design
SID762A	f _{CK_SDR_GPIO}	Clock frequency	_	1	32	MHz	
SID763A	t _{CK_SDR_GPIO}	Clock period	$1/f_{CK_SDR_GPIO}$	-	-	ns	
SID764A	DCK_SDR_GPIO	Clock duty	45	-	55	%	
SID765A	CSR_ _{SDR_GPIO}	Clock rise and fall slew rates	1	-	-	V/ns	
SID766A	t _{CS_SDR_GPIO}	Chip select HIGH time	30	-	-	ns	
SID767A	t _{CSS_SDR_GPIO}	Chip select active setup time	9	-	-	ns	
SID768A	t _{CSH_SDR_GPIO}	Chip select active hold time	15	-	-	ns	
SID769A	t _{SU_SDR_GPIO}	Data setup time	4.5	-	_	ns	
SID780A	t _{HD_SDR_GPIO}	Data hold time	6	-	-	ns	
SID781A	t _{V_SDR_GPIO}	Clock LOW output valid	4.5	-	9	ns	
SID782A	t _{HO_SDR_GPIO}	Input hold time	2	-	_	ns	
SID783A	t _{DIS_SDR_GPIO}	Input disable time	0	-	22.5	ns	Guaranteed by design

Based on Arm® Cortex®-M7 dual

Table 27-37 SMIF specifications (continued)[Conditions: drive_sel<1:0>= 00]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID784A	t _{IO_SKEW_S} - DR_GPIO	Data skew (first data bit to last data bit)	-	-	1.8	ns	Guaranteed by design
SMIF HSS	PI(DDR) specifica	ation for HSIO_STD				•	
SID760B	C _{L_DDR_HSIO}	Load capacitance	_	-	15	pF	
SID761B	SR_ _{DDR_} HSIO	Input rise and fall slew rates	1.5	_	-	V/ns	Guaranteed by design
SID762B2	f _{CK_DDR_HSIO}	Clock frequency	-	-	90	MHz	
SID763B	t _{CK_DDR_HSIO}	Clock period	1 / f _{CK_DDR_HSIO}	-	-	ns	
SID764B	DCK_DDR_HSIO	Clock duty	45	-	55	%	
SID765B	CSR_DDR_HSIO	Clock rise and fall slew rates	1.5	ı	-	V/ns	
SID766B	t _{CS_DDR_HSIO}	Chip select HIGH time	10	-	-	ns	
SID767B	t _{CSS_DDR_HSIO}	Chip select active setup time	4	-	-	ns	
SID768B	t _{CSH_DDR_HSIO}	Chip select active hold time	4	-	-	ns	
SID769B	t _{SU_DDR_HSIO}	Data setup time	2	-	-	ns	
SID780B	t _{HD_DDR_HSIO}	Data hold time	1.2	-	-	ns	
SID781B	t _{V_DDR_HSIO}	Clock LOW output valid	0	-	6.5	ns	
SID782B	t _{HO_DDR_HSIO}	Input hold time	1	-	-	ns	
SID783B	t _{DIS_DDR_HSIO}	Input disable time	-	_	7.5	ns	Guaranteed by design
SID784B	t _{IO_SKEW_D} - DR_HSIO	Data skew (first data bit to last data bit)	-	-	0.6	ns	Guaranteed by design
SMIF HSS		ation for GPIO_STD				l	
SID760C	C _{L_DDR_GPIO}	Load capacitance	_	_	15	pF	
SID761C	SR_DDR_GPIO	Input rise and fall slew rates	1	_	-	V/ns	Guaranteed by design
SID762C	f _{CK_DDR_GPIO}	Clock frequency	_	1	32	MHz	
SID763C	t _{CK_DDR_GPIO}	Clock period	1 / f _{CK_DDR_GPIO}	1	-	ns	
SID764C	DCK_DDR_GPIO	Clock duty	45	-	55	%	
SID765C	CSR_DDR_GPIO	Clock rise and fall slew rates	1	-	-	V/ns	
SID766C	t _{CS_DDR_GPIO}	Chip select HIGH time	30	-	-	ns	
SID767C	t _{CSS_DDR_GPIO}	Chip select active setup time	5	-	-	ns	
SID768C	t _{CSH_DDR_GPIO}	Chip select active hold time	4	-	-	ns	
SID769C	t _{SU_DDR_GPIO}	Data setup time	5	1	_	ns	
SID780C	t _{HD_DDR_GPIO}	Data hold time	4.5	-	-	ns	
SID781C	t _{V_DDR_GPIO}	Clock LOW output valid	0	1	9	ns	
SID782C	t _{HO_DDR_GPIO}	Input hold time	3	-	_	ns	
SID783C	t _{DIS_DDR_GPIO}	Input disable time	-	_	22.5	ns	Guaranteed by design
SID784C	t _{IO_SKEW_D} - DR_GPIO	Data skew (first data bit to last data bit)	-	_	1.8	ns	Guaranteed by design
SMIF HYP		ation for HSIO_STD	<u> </u>	<u> </u>	<u>l</u>	1	
SID788	C _{L_HB_HSIO}	Load capacitance	-	_	20	pF	
	115_11510	<u>'</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

SMIF specifications (continued)[Conditions: drive_sel<1:0>= 00] **Table 27-37**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID786	SRI_HB_HSIO	Input rise and fall slew rates	1	-	-	V/ns	For all signals, guaranteed by design
SID787	SRO_HB_HSIO	Output rise and fall slew rates	1	-	-	V/ns	For all signals
Clock cha	racteristics			•		•	
SID700	f _{CK_HB_HSIO}	Clock frequency	-	-	100	MHz	
SID701	t _{CK_HB_HSIO}	Clock period	1 / f _{CK_H} - B_HSIO	-	-	ns	
SID702	DCK_HB_HSIO	Clock duty	45	-	55	%	
AC param	eters						l
SID706	t _{CSHI_HB_HSIO}	Chip select HIGH between transactions	10	_	-	ns	Guaranteed by design
SID708	t _{CSS_HB_HSIO}	Chip select setup to next CK rising edge	3	-	-	ns	
SID709	t _{DSV_HB_HSIO}	Data strobe valid	-	_	12	ns	
SID710	t _{OSU_HB_HSIO}	DQ output setup	1	_	-	ns	
SID711	t _{OH_HB_HSIO}	DQ output hold	1	-	-	ns	
SID715	t _{CKD_HB_HSIO}	CK transition to DQ valid	1	-	5.5	ns	
SID718	t _{CKDS_HB_HSIO}	CK transition to RWDS valid	1	-	5.5	ns	
SID719	t _{DSS_HB_HSIO}	RWDS transition to input DQ valid	-0.8	-	0.8	ns	
SID720	t _{DSH_HB_HSIO}	Input DQ invalid to RWDS transition	-0.8	-	0.8	ns	
SID721	t _{CSH_HB_HSIO}	Chip select hold after CK falling edge	0	_	1	ns	
SMIF HYP	ERBUS™ specific	ation for GPIO_STD					
SID785A	C _{L_HB_GPIO}	Load capacitance	-	_	20	pF	
SID786A	SRI_HB_GPIO	Input rise and fall slew rates	0.45	-	-	V/ns	For all signals, guaranteed by design
SID787A	SRO_HB_GPIO	Output rise and fall slew rates	0.45	-	-	V/ns	For all signals
Clock cha	racteristics						
SID700A	f _{CK_HB_GPIO}	Clock frequency	-	_	32	MHz	_
SID701A	t _{CK_HB_GPIO}	Clock period	1 / f _{CK_H} - B_GPIO	_	-	ns	
SID702A	DCK_HB_GPIO	Clock duty	45	-	55	%	
AC param	eters	•	-	•		•	-
SID706A	t _{CSHI_HB_GPIO}	Chip select HIGH between transactions	30	_	-	ns	Guaranteed by design
SID708A	t _{CSS_HB_GPIO}	Chip select setup to next CK rising edge	9	-	_	ns	

infineon

Table 27-37 SMIF specifications (continued)[Conditions: drive_sel<1:0>= 00]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID709A	t _{DSV_HB_GPIO}	Data strobe valid	-	-	36	ns	Guaranteed by design
SID710A	t _{OSU_HB_GPIO}	DQ output setup	3	-	-	ns	
SID711A	t _{OH_HB_GPIO}	DQ output hold	3	-	-	ns	
SID715A	t _{CKD_HB_GPIO}	CK transition to DQ valid	3	-	16.5	ns	
SID718A	t _{CKDS_HB_GPIO}	CK transition to RWDS valid	3	_	16.5	ns	
SID719A	t _{DSS_HB_GPIO}	RWDS transition to input DQ valid	-2.4	-	2.4	ns	
SID720A	t _{DSH_HB_GPIO}	Input DQ invalid to RWDS transition	-2.4	-	2.4	ns	
SID721A	t _{CSH_HB_GPIO}	Chip select hold after CK falling edge	0	-	-	ns	

Figure 27-12 SDR write timing reference level

Figure 27-13 SDR read timing reference level

infineon

Figure 27-14 DDR write timing reference level

Figure 27-15 DDR read timing reference level

Figure 27-16 SDR write and read timing diagram

Based on Arm® Cortex®-M7 dual

Figure 27-17 DDR write and read timing diagram

Figure 27-18 HYPERBUS™ timing reference level

Based on Arm® Cortex®-M7 dual

Figure 27-19 HYPERBUS™ timing diagram

Ordering information

Datasheet

Ordering information 28

The CYT4BF microcontroller part numbers and features are listed in **Table 28-1**. The Arm® TAP JTAG ID is 0x6BA0 0477.

Table 28-1 CYT4BF ordering information

Device Code	Ordering Code ^[67]	Package	CM7 Cores	Code-flash (KB)	Work-flash (KB)	RAM (KB)	ADC Channels	SCB Channels	LIN Channels	Ethernet Channels	FlexRay	SD/eMMC	Temperature Grade	JTAG ID Code
CYT4BF8CES	CYT4BF8CEDQ0AESGS	176-TEQFP	2	8384 ^[68]	256 ^[69]	1024	81	10	17	1	0	1	S ^[70]	0x2E5D3069 ^[74]
CYT4BF8CEE	CYT4BF8CEDQ0AEEGS	176-TEQFP	2	8384	256	1024	81	10	17	1	0	1	E ^[71]	0x2E5D3069
CYT4BF8CDS	CYT4BF8CDDQ0AESGS	176-TEQFP	2	8384	256	1024	81	10	17	1	1 ^[73]	1	S	0x2E5D7069
CYT4BF8CDE ^[72]	CYT4BF8CDDQ0AEEGS	176-TEQFP	2	8384	256	1024	81	10	17	1	1	1	E	0x2E5D7069
CYT4BFBCJS	CYT4BFBCJDQ0BZSGS	272-BGA	2	8384	256	1024	96	11	20	2	0	1	S	0x2E5EB069
CYT4BFBCJE	CYT4BFBCJDQ0BZEGS	272-BGA	2	8384	256	1024	96	11	20	2	0	1	E	0x2E5EB069
CYT4BFBCHS	CYT4BFBCHDQ0BZSGS	272-BGA	2	8384	256	1024	96	11	20	2	1	1	S	0x2E5EF069
CYT4BFBCHE ^[72]	CYT4BFBCHDQ0BZEGS	272-BGA	2	8384	256	1024	96	11	20	2	1	1	E	0x2E5EF069
CYT4BFCCJS	CYT4BFCCJDQ0BZSGS	320-BGA	2	8384	256	1024	96	11	20	2	0	1	S	0x2E5FB069
CYT4BFCCJE	CYT4BFCCJDQ0BZEGS	320-BGA	2	8384	256	1024	96	11	20	2	0	1	E	0x2E5FB069
CYT4BFCCHS	CYT4BFCCHDQ0BZSGS	320-BGA	2	8384	256	1024	96	11	20	2	1	1	S	0x2E5FF069
CYT4BFCCHE ^[72]	CYT4BFCCHDQ0BZEGS	320-BGA	2	8384	256	1024	96	11	20	2	1	1	E	0x2E5FF069

Notes

67. Supported shipment types are "Tray" (default) and "Tape and Reel". Add the character 'T' at the end to get the ordering code for "Tape and Reel" shipment type.
68. Code-flash size 8384 KB = 32 KB × 254 (Large Sectors) + 8 KB × 32 (Small Sectors)
69. Work-flash size 256 KB = 2 KB × 96 (Large Sectors) + 128 B × 512 (Small Sectors)
70. S-grade Temperature (-40 °C to 105 °C).
71. E-grade Temperature (-40 °C to 125 °C).
72. These parts are available as engineering samples.
73. One interface of FlexRay supports two channels (ch A and ch B).
74. JTAG ID CODE bits 12 through 27, represents the Silicon ID of the device.

Based on Arm® Cortex®-M7 dual

Ordering information

Part number nomenclature 28.1

Table 28-2 Device code nomenclature

Field	Description	Value	Meaning
CY	Cypress prefix	CY	
Т	Category	Т	TRAVEO™
2	Family name	4	TRAVEO™ T2G (Core M7 dual)
В	Application	В	Body
D	Code-flash/Work-flash/SRAM quantity	F	8384 KB / 256 KB / 1024 KB
		8	176-TEQFP
Р	Packages	В	272-BGA
		С	320-BGA
Н	Hardware option	С	eSHE – on, HSM – on, RSA-2048
		E	Ethernet - 1 ch, FlexRay - 0, eMMC - 1
	Marketing ention	D	Ethernet - 1 ch, FlexRay - 2, eMMC - 1
ı	Marketing option	J	Ethernet - 2 ch, FlexRay - 0, eMMC - 1
		Н	Ethernet - 2 ch, FlexRay - 2, eMMC - 1
С	Temperature grade	S	S-grade (–40 °C to 105 °C)
C	Temperature grade	Е	E-grade (–40 °C to 125 °C)

Based on Arm® Cortex®-M7 dual

Ordering information

Ordering code nomenclature **Table 28-3**

Field	Description	Value	Meaning
CY	Cypress prefix	CY	
T	Category	Т	TRAVEO™
2	Family name	4	TRAVEO™ T2G (Core M7 dual)
В	Application	В	Body
D	Code-flash/Work-flash/SRAM quantity	F	8384 KB / 256 KB / 1024 KB
		8	176-TEQFP
Р	Packages	В	272-BGA
		С	320-BGA
Н	Hardware option	С	eSHE – on, HSM – on, RSA-2048
		Е	Ethernet - 1 ch, FlexRay - 0, eMMC - 1
	Marketing ention	D	Ethernet - 1 ch, FlexRay - 2, eMMC - 1
I	Marketing option	J	Ethernet - 2 ch, FlexRay - 0, eMMC - 1
		Н	Ethernet - 2 ch, FlexRay - 2, eMMC - 1
		А	First revision
R	Revision	В	Second revision
К	REVISION	С	Third revision
		D	Fourth revision
F	Fab Location	Q	UMC (Fab 12i) Singapore
Χ	Reserved	0	Reserved
I/	Packaga sada	AE	TEQFP
K	Package code	BZ	BGA
С	Tomporaturo grado	S	S-grade (–40 °C to 105 °C)
C	Temperature grade	Е	E-grade (–40 °C to 125 °C)
0	Quality grade	ES	Engineering samples
Q	Quality grade	GS	Standard grade of automotive
c	Shipmont type	Blank	Tray shipment
S	Shipment type	Т	Tape and reel shipment

Based on Arm® Cortex®-M7 dual

Packaging

Packaging 29

CYT4BF microcontroller is offered in the packages listed in the Table 29-1.

Table 29-1 Package information

Package	Dimensions ^[75]	Contact/Lead pitch	Coefficient of thermal expansion ^[80]	I/O Pins
176-TEQFP	24 × 24 × 1.70 mm (max)	0.5-mm	a1 ^[76] = 8.4 ppm/°C, a2 ^[77] = 29.4 ppm/°C	148
272-BGA	16 × 16 × 1.70 mm (max)	0.8-mm	a1 ^[76] = 11.9 ppm/°C, a2 ^[77] = 34.3 ppm/°C	220
320-BGA	17 × 17 × 1.70 mm (max)	0.8-mm	a1 ^[76] = 11.9 ppm/°C, a2 ^[77] = 34.5 ppm/°C	240

Table 29-2 Package characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	S-grade	-40	_	105	°C
T _A	Operating ambient temperature	E-grade	-40	-	125	°C
TJ	Operating junction temperature	_	-	-	150	°C
		176-TEQFP	-	-	16.4	°C/W
$R_{ hetaJA}$	Package thermal resistance, junction to ambient $\theta_{JA}^{[78, 79]}$	272-BGA	_	_	22.4	°C/W
		320-BGA	-	-	21.8	°C/W
		176-TEQFP	_	-	11.96	°C/W
$R_{ hetaJB}$	Package thermal resistance, junction to board θ _{IB}	272-BGA	_	_	13.5	°C/W
	junction to board ojg	320-BGA	_	_	13.6	°C/W
		176-TEQFP	-	-	7.5	°C/W
$R_{ hetaJC}$	Package thermal resistance, junction to case θ _{IC}	272-BGA	_	-	8.9	°C/W
	janisaion to case oje	320-BGA	-	-	6.5	°C/W

Table 29-3 Solder reflow peak temperature, package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2

Package	Maximum peak temperature (°C)	Maximum time at peak temperature (seconds)	MSL
176-TEQFP	260	30	3
272-BGA	260	30	3
320-BGA	260	30	3

Notes

^{75.} The dimensions (column 2) are valid for room temperature.
76.a1 = CTE (Coefficient of Thermal Expansion) value below T_g (ppm/°C) (T_g is glass transition temperature which is 131°C).
77.a2 = CTE value above T_g (ppm/°C).
78. Maximum value °C/Watt shown is for T_A = 125 °C.
79. Board condition of JESD51-7(4 Layers).

^{80.} The numbers are estimated values based simulation only and are based on a single bill of material combination per package type.

Packaging

Figure 29-1 Package outline - 176-TEQFP

Packaging

002-24865 *A

Figure 29-2 Package outline - 272-BGA

Packaging

Figure 29-3 Package outline - 320-BGA

Appendix

30 Appendix

30.1 Bootloading or end-of-line programming

- Triggered at device startup, if a trigger condition is applied
- Either CAN or LIN communication may be used
- Bootloader polls for the communication on CAN or LIN at the separate time frames, until the overall 300-second timeout is reached
- If a bootloader command is received on either communication interface, the polling stops and bootloader starts using this interface

Figure 30-1 Bootloading sequence

Table 30-1 CAN interface details

Sl. No.	CAN interface	Configuration
1	CAN mode	Classic CAN
2	CAN instance	CAN0, Channel#1
3	CAN TX	P0.2 / CAN0_1_TX
4	CAN RX	P0.3 / CAN0_1_RX
5	CAN transceiver NSTB / EN (Low)	P23.3 (optional)
6	CAN transceiver EN / EN (High)	P2.1 (optional)
7	CAN RX Message ID	0x1A1
8	CAN TX Message ID	0x1B1
9	Baud	100 or 500 kbps alternating

Figure 30-2 MCU to CAN transceiver connections

Appendix

LIN interface details **Table 30-2**

Sl. No.	LIN interface	Configuration
1	LIN type	LINO, Channel#1
2	LIN mode	Slave
3	LIN checksum type	Classic
4	LIN TX	P0.1 / LIN1_TX
5	LIN RX	P0.0 / LIN1_RX
6	LIN EN / EN (High)	P2.1 (optional)
7	LIN EN (Low)	P23.3 (optional)
8	LIN TX PID	0x46
9	LIN RX PID	0x45
10	Baud	20 or 115.2 kbps
11	Break field length	11
12	Break delimiter length	1 bit

Figure 30-3 **MCU to LIN transceiver connections**

Based on Arm® Cortex®-M7 dual

Appendix

30.2 External IP revisions

Table 30-3 IP revisions

Module	IP	Revision	Vendor
FlexRay	mxflexray	Release - Revision 1.0.3, CREL - 103 9 02 06, E-Ray Spec - v1.2.7, Protocol Spec - v2.1	Bosch
SDHC	mxsdhc	version 1.70a	Synopsys
CANFD	mxttcanfd	M_TTCAN IP revision: Rev.3.2.3	Bosch
Arm® Cortex®-M0+	armcm0p	Cortex®-M0+-r0p1	Arm®
Arm [®] Cortex [®] -M7	armcm7	Cortex®-M7-r1p2	Arm®
Arm® Coresight	armcoresighttk	CoreSight-SoC-TM100-r3p2	Arm®
Ethernet	mxeth	GEM_GXL r1p09	Cadence

Based on Arm® Cortex®-M7 dual

Acronyms

Acronyms 31

Acronyms used in the document Table 31-1

Acronym	Description	Acronym	Description
A/D	Analog to Digital	PLL	Phase Locked Loop
ABS	Absolute	POR	Power-on reset
ADC	Analog to Digital converter	PPU	Peripheral protection unit
AES	Advanced encryption standard	PRNG	Pseudo-random number generator
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, Arm® data transfer bus	PSoC	Programmable system on chip
Arm [®]	Advanced RISC machine, a CPU architecture	PWM	Pulse-width modulation
ASIL	Automotive safety integrity level	MCU	Microcontroller Unit
BOD	Brown-out detection	MCWDT	Multi-counter watchdog timer
CAN FD	Controller Area Network with Flexible Data rate	M-DMA	Memory-Direct Memory Access
CMOS	Complementary metal-oxide-semiconductor	MISO	Master-in slave-out
CPU	Central Processing Unit	MMIO	Memory mapped I/O
CRC	Cyclic redundancy check, an error-checking protocol	MOSI	Master-out slave-in
CSV	Clock supervisor	MPU	Memory protection unit
CTI	Cross Trigger Interface	NVIC	Nested vectored interrupt controller
DES	Data encryption standard	RAM	Random access memory
ECC	Error correcting code	RISC	Reduced-instruction-set computing
ECO	External crystal oscillator	ROM	Read only memory
ETM	Embedded Trace Macrocell	RTC	Real-time clock
FLL	Frequency Locked Loop	SAR	Successive approximation register
FPU	Floating point unit	SCB	Serial communication block
GHS	Green hills tool chain with IDE	SCL	I ² C serial clock
GPIO	General purpose input/output	SDA	I ² C serial data
HSM	Hardware security module	SHA	Secure hash algorithm
I/O	Input/output	SHE	Secure hardware extension
I ² C	Inter-Integrated Circuit, a communications protocol	SMPU	Shared memory protection unit
I ² S	Inter-Integrated Circuit Sound	SPI	Serial peripheral interface, a communications protocol
ILO	Internal low-speed oscillator	SRAM	Static random access memory
IMO	Internal main oscillator	SWD	Single wire debug
IPC	Inter-processor communication	TCM	Tightly Coupled Memory
IrDA	Infrared interface	TCPWM	Timer/Counter Pulse-width modulator
IRQ	Interrupt request	TTL	Transistor-transistor logic
JTAG	Joint test action group	TRNG	True random number generator

Based on Arm® Cortex®-M7 dual

Acronyms

Table 31-1 Acronyms used in the document

Acronym	Description	Acronym	Description
LIN	Local Interconnect Network, a communications protocol	UART	Universal Asynchronous Trans- mitter Receiver, a communications protocol
LVD	Low voltage detection	WCO	Watch crystal oscillator
OTA	Over-the-air programming	WDT	Watchdog timer reset
ОТР	One-time programmable	XIP	eXecute In Place
OVD	Over voltage detection	XTAL	Crystal
PASS	Programmable Analog Subsystem		
P-DMA	Peripheral-Direct Memory Access		

Based on Arm® Cortex®-M7 dual

Architecture block diagram

32 Errata

This section describes the errata for the CYT4BF product family. Details include trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have further questions.

Part numbers affected

Part numbers	
All CYT4BF parts	

CYT4BF qualification status

Production samples

CYT4BF errata summary

The following table defines the errata applicability to available CYT4BF family devices.

Items	Errata ID	CYT4BF	Silicon Rev.	Fix status
[1] CAN FD RX FIFO top pointer feature does not function as expected	96			No silicon fix planned. Use workaround.
[2] CAN FD debug message handling state machine is not reset to Idle state when CANFD_CH_CCCR.INIT is set	97			No silicon fix planned. Use workaround.
[3] Limitation of the memory hole in SCB register space	124			No silicon fix planned. Use workaround.
[4] Limitation of the memory hole in Ethernet (ETH) register space	128			No silicon fix planned. Use workaround.
[5] CAN FD controller message order inversion when transmitting from dedicated Tx Buffers configured with same Message ID	147			No silicon fix planned. Use workaround.
[6] CAN FD incomplete description of Dedicated Tx Buffers and Tx Queue related to transmission from multiple buffers configured with the same Message ID	167			No silicon fix planned. Use workaround. TRM was updated.
[7] Misleading status is returned for Flash and eFuse system calls, if there are pending NC ECC faults in SRAM controller #0	175	CYT4BF8CEDQ0AESGS		No silicon fix planned. TRM was updated.
[8] WDT reset causes loss of SRAM retention	176	CYT4BF8CEDQOAEEGS CYT4BF8CDDQOAESGS	No silicon fix planned. TRM was updated.	
[9] RMII TX output maximum delay spec change for GPIO_STD	177	CYT4BF8CDDQ0AEEGS CYT4BFBCJDQ0BZSGS CYT4BFBCJDQ0BZEGS	BZSGS BZEGS BZSGS BZSGS BZEGS	No silicon fix planned.
[10] Crypto ECC errors may be set after boot with application authentication	185	CYT4BFBCHDQ0BZSGS CYT4BFBCHDQ0BZEGS CYT4BFCCJDQ0BZSGS		No silicon fix planned. TRM was updated.
[11]incomplete erase of Code Flash cells could happen Erase Suspend / Erase Resume is used along with Erase Sector operation in Non-Blocking mode	198	CYT4BFCCJDQ0BZEGS CYT4BFCCHDQ0BZSGS CYT4BFCCHDQ0BZEGS		Fixed to update the Flash settings from date code 312xxxxx.
[12]Limitation for keeping the port state from peripheral IP after wakeup from DeepSleep	199			No silicon fix planned. TRM was updated.
[13] A part of the PWR_CTL2.BGREF_LPMODE description is lacked in the existing register TRM	201			No silicon fix planned. TRM was updated.
[14]Limitation of clock configuration before entering DeepSleep mode	202			No silicon fix planned. TRM was updated.
[15] Several data retention information in the Register TRM are incorrect	203	TF No. TF		No silicon fix planned. TRM was updated.
[16] SCBx_INTR_TX.UNDERFLOW bit may be set unintentionally	204			No silicon fix planned. TRM was updated.
[17] Hardfault may occur when calling ReadSWPU or WriteSWPU while executing EraseSector or ProgramRow in non-blocking mode	206		No silicon fix planned. TRM was updated.	
[18] CAN FD sporadic data corruption (payload) in case acceptance filtering does not finish before reception of data R3 (DB7DB4) is complete	209			No silicon fix planned. Use workaround.

Based on Arm® Cortex®-M7 dual

Architecture block diagram

1. CAN FD RX FIFO top po	pinter feature does not function as expected
Problem Definition	RX FIFO top pointer function calculates the address for received messages in Message RAM by hardware. This address should restart from the start address after reading all messages of RX FIFO n size (n: 0 or 1). However, the address does not restart from the start address when RX FIFO n size is set to 1(CANFD_CH_RXFnC.FnS = 0x01). This results in CPU/DMA reading messages from the wrong address in Message RAM.
Parameters Affected	NA NA
Trigger Condition(s)	The RX FIFO top pointer function is used when RX FIFO n size is set to 1 element (CANFD_CH_RXFnC.FnS = 0x01).
Scope of Impact	Received message cannot be correctly read by using the RX FIFO top pointer function, when RX FIFO n size is set to 1 element.
Workaround	Any of the following can be used as a workaround: 1) Set RX FIFO n size to 2 or more when using the RX FIFO top pointer function. 2) Do not use the RX FIFO top pointer function when RX FIFO n size is set to 1 element. Instead of the RX FIFO top pointer, read received messages from the Message RAM directly.
Fix Status	No silicon fix planned. Use workaround.

2. CAN FD debug messag	e handling state machine is not reset to Idle state when CANFD_CH_CCCR.INIT is set
Problem Definition	If either of the CANFD_CH_CCCR.INIT bits is set by the Host or when the M_TTCAN module enters BusOff state, the debug message handling state machine stays in its current state instead of being reset to Idle state. Configuring the bit CANFD_CH_CCCR.CCE does not change CANFD_CH_RXF1S.DMS.
Parameters Affected	NA NA
Trigger Condition(s)	Either of the CANFD_CH_CCCR.INIT bits is set by the Host or when the M_TTCAN module enters BusOff state.
Scope of Impact	The errata is limited to the use case when the debug on CAN functionality is active. Normal operation of the CAN module is not affected, in which case the debug message handling state machine always remains in Idle state. In the described use case, the debug message handling state machine is stopped and remains in the current state signaled by the CANFD_CH_RXF1S.DMS bit. In case CANFD_CH_RXF1S.DMS is set to 0b11, the DMA request remains active. Bosch classifies this as a non-critical error with low severity, there is no fix for the IP. Bosch recommends the workaround listed here.
Workaround	In case the debug message handling state machine has stopped while CANFD_CH_RXF1S.DMS is 0b01 or 0b10, it can be reset to Idle state by hardware reset or by reception of debug messages after CANFD_CH_CCCR.INIT is reset to zero.
Fix Status	No silicon fix planned. Use workaround.

Problem Definition	The memory hole [offset address: 0x1000 to 0xFFFF] inside SCB register space is not aligned to the below defined spec. The offset address bits [15:12] are ignored and treated as 4'b0000, so write/read access to offset address [0x1000 to 0xFFFF], will actually happen to [0x0000 to 0x0FFF]. - Access to address gaps in memory mapped space: writes are ignored and any read returns a zero.	
Parameters Affected	NA NA	
Trigger Condition(s)	Access to the memory hole [offset address: 0x1000 to 0xFFFF] in SCB register space.	
Scope of Impact	The memory hole [offset address: 0x1000 to 0xFFFF] in SCB register space is not aligned to other IP registers.	
Workaround	Do not access to the memory hole [offset address: 0x1000 to 0xFFFF] in SCB register space.	
Fix Status	No silicon fix planned.	

Based on Arm® Cortex®-M7 dual

Architecture block diagram

4. Limitation of the mer	nory hole in Ethernet (ETH) register space
Problem Definition	The memory hole [offset address: 0x2000 to 0xFFFF] in ETH register space has the below mentioned original spec. However, when accessing address gaps within [0x1000 to 0x1FFF], the offset address bits [15:13] are ignored and treater as 3'b000, so write/read access to offset address [0x3000 to 0x3FFF, 0x5000 to 0x5FFF, 0x7000 to 0x7FFF, 0x9000 to 0x9FFF, 0xB000 to 0xBFFF, 0xD000 to 0xDFFF, 0xF000 to 0xFFFF], will actually happen to [0x1000 to 0x1FFF]. - Access to address gaps within [0x1000 to 0x1FFF]: returns AHB ERROR.
Parameters Affected	NA
Trigger Condition(s)	Access to the memory hole [offset address: 0x3000 to 0x3FFF, 0x5000 to 0x5FFF, 0x7000 to 0x7FFF, 0x9000 to 0x9FFF, 0xB000 to 0xBFFF, 0xD000 to 0xDFFF, 0xF000 to 0xFFFF] in ETH register space.
Scope of Impact	Write/read access to offset address [0x3000 to 0x3FFF, 0x5000 to 0x5FFF, 0x7000 to 0x7FFF, 0x9000 to 0x9FFF, 0xB000 to 0xBFFF, 0xD000 to 0xDFFF, 0xF000 to 0xFFFF], will actually happen to [0x1000 to 0x1FFF].
Workaround	Do not access the memory hole [offset address: 0x3000 to 0x3FFF, 0x5000 to 0x5FFF, 0x7000 to 0x7FFF, 0x9000 to 0x9FFF 0xB000 to 0xBFFF, 0xD000 to 0xDFFF, 0xF000 to 0xFFFF] in ETH register space.
Fix Status	No silicon fix planned.
5. CAN FD controller me	essage order inversion when transmitting from dedicated Tx Buffers configured with same Message ID
Problem Definition	Configuration: Several Tx buffers are configured with same Message ID. Transmission of these Tx buffers is requested sequentially with a delay between the individual Tx requests. Expected behavior: When multiple Tx buffers that are configured with the same Message ID have pending Tx requests, they shall be trans-

Problem Definition	Configuration: Several Tx buffers are configured with same Message ID. Transmission of these Tx buffers is requested sequentially with a delay between the individual Tx requests.
	Expected behavior: When multiple Tx buffers that are configured with the same Message ID have pending Tx requests, they shall be transmitted in ascending order of their Tx buffer numbers. The Tx buffer with lowest buffer number and pending Tx request is transmitted first.
	Observed behavior: It may happen, depending on the delay between the individual Tx requests, that if multiple Tx buffers are configured with the same Message ID, the Tx buffers are not transmitted in order of the Tx buffer number (lowest number first).
Parameters Affected	NA
Trigger Condition(s)	When multiple Tx buffers configured with the same Message ID have pending Tx requests.
Scope of Impact	In the case described, it is possible that Tx buffers configured with the same Message ID and pending Tx request are not transmitted with lowest Tx buffer number first (message order inversion).
Workaround	Any of the following: 1) First, write the group of Tx message with the same Message ID to the Message RAM and then afterwards request transmission of all these messages concurrently by a single write access to CANFDx_CHy_TXBAR. Before requesting a group of Tx messages with this Message ID ensure that no message with this Message ID has a pending Tx request. 2) Use the Tx FIFO instead of dedicated Tx buffers for the transmission of several messages with the same Message ID in a specific order.
	Applications not able to use workaround #1 or #2 can implement a counter within the data section of their messages sent with same ID in order to allow the recipients to determine the correct sending sequence.
Fix Status	No silicon fix planned. Use workaround.

Based on Arm® Cortex®-M7 dual

Errata

Fix Status

Problem Definition	The following are the updated description in Sections "Dedicated Tx Buffers" and "Tx Queue" of the Architecture TRM related to the transmission from multiple buffers configured with the same Message ID.
	Dedicated Tx buffers - TRM Statement: If multiple Tx buffers are configured with the same Message ID, the Tx buffer with the lowest buffer number is transmitted first Enhancement: These Tx buffers shall be requested in ascending order with lowest buffer number first. Alternatively all Tx buffers configured with the same Message ID can be requested simultaneously by a single write access to CANFDx_CHy_TXBAR.
	- Replacement: If multiple Tx queue buffers are configured with the same Message ID, the transmission order depends on numbers of the buffers where the messages were stored for transmission. As these buffer numbers depend on the then current states of the PUT Index, a prediction of the transmission order is not possible.
	- TRM statement: An Add Request cyclically increments the Put Index to the next free Tx Buffer Replacement: The PUT Index always points to that free buffer of the Tx Queue with the lowest number.
	Parameters Affected
Trigger Condition(s)	Using multiple dedicated Tx buffers or Tx queue buffers configured with the same Message ID.
Scope of Impact	If the dedicated Tx buffers with the same Message ID are not requested in ascending order or at the same time, or if there are multiple Tx queue buffers with the same Message ID, it cannot be guaranteed, that these messages are transmitted in ascending order with lowest buffer number first.
Workaround	In case a defined order of transmission is required the Tx FIFO shall be used for transmission of messages with the same Message ID. Alternatively dedicated Tx buffers with the same Message ID shall be requested in ascending order with lowest buffer number first or by a single write access to CANFDx_CHy_TXBAR. Alternatively a single Tx Buffer can be used to transmit those messages one after the other.

7. Misleading status is returned for Flash and eFuse system calls, if there are pending NC ECC faults in SRAM controller #0	
Problem Definition	Flash and eFuse system calls will return misleading status of 0xF0000005 ("Page is write protected") even for non-protected row, or 0xF0000002 ("Invalid eFuse address") for valid eFuse address in case of pending NC ECC faults in SRAM controller #0.
Parameters Affected	Return status of Flash and eFuse system calls.
Trigger Condition(s)	NC ECC fault(s) pending in SRAM controller #0 and SWPUs are populated in the design.
Scope of Impact	Flash and eFuse system calls will not work until the NC ECC fault(s) pending in SRAM controller #0 is/are properly handled.
Workaround	If the NC ECC fault(s) are not due to HW malfunction (i.e. if the faults are due to usage of non-initialized SRAM or improper SRAM initialization), then clearing of these pending faults will resolve the issue.
Fix Status	No silicon fix planned. TRM was updated.

No silicon fix planned. Use workaround. TRM was updated.

8. WDT reset causes loss of SRAM retention	
Problem Definition	Architecture TRM Table on "Reset Cause Distribution" shows that, the WDT reset can retain SRAM if there is an orderly shutdown of the SRAM only during a warning interrupt. However, this is wrong. WDT reset causes loss of SRAM retention.
Parameters Affected	NA NA
Trigger Condition(s)	WDT reset
Scope of Impact	WDT reset causes loss of SRAM retention.
Workaround	None
Fix Status	No silicon fix planned. TRM was updated.

Based on Arm® Cortex®-M7 dual

9. RMII TX output maximum delay spec change for GPIO_STD	
Problem Definition	RMII TX output maximum delay specification has been changed from 14 ns to 14.6 ns for GPIO_STD. The HSIO_STD spec of 14 ns is unchanged.
Parameters Affected	SID393
Trigger Condition(s)	Using GPIO_STD as RMII
Scope of Impact	This spec change will cause the PCB delay budget between MCU and PHY to be cut down to 1.4 ns from 2 ns. [PCB delay budget = REF_CLK period (e.g. 20 ns) – SID393 (14.6 ns) – PHY RXD setup (e.g. 4 ns)]
Workaround	None
Fix Status	No silicon fix planned.

10.Crypto ECC errors may be set after boot with application authentication	
Problem Definition	Due to the improper initialization of the Crypto memory buffer, Crypto ECC errors may be set after boot with application authentication.
Parameters Affected	N/A
Trigger Condition(s)	Boot device with application authentication.
Scope of Impact	Crypto ECC errors may be set after boot with application authentication.
Workaround	Clear or ignore Crypto ECC errors which generated during boot with application authentication.
Fix Status	No silicon fix planned. TRM was updated.

11. Incomplete erase of Code Flash cells could happen Erase Suspend / Erase Resume is used along with Erase Sector operation in Non-Blocking mode	
Problem Definition	Code Flash memory can be erased in "Non-Blocking" mode; a Non-Blocking mode supported option allows users to suspend an ongoing erase sector operation. When an ongoing erase operation is interrupted using "Erase Suspend" and "Erase Resume", Flash cells may not have been erased completely, even after the erase operation complete is indicated by FLASHC_STATUS register. Only Code Flash is impacted by this issue, Work Flash and Supervisory Flash (SFlash) are not impacted.
Parameters Affected	N/A
Trigger Condition(s)	Using EraseSector System Call in Non-Blocking mode for CM0+ to erase Code Flash and the ongoing erase operation is interrupted using EraseSuspend and EraseResume System calls.
Scope of Impact	When Code Flash sectors are erased in Non-Blocking mode and the ongoing erase operation is interrupted by Erase Suspend / Erase Resume, it cannot be guaranteed that the Code Flash cells are fully erased. Any read on the Code Flash area after the erase is complete or read on the programmed data after ProgramRow is complete can trigger ECC errors.
Workaround	Use any of the following: 1) Use Non-Blocking mode for EraseSector, but do not interrupt the erase operation using Erase Suspend / Erase Resume. 2) If a Code Flash sector erase operation is interrupted using Erase Suspend / Erase Resume, then erase the same sector again without Erase Suspend / Erase Resume before reading the sector or programming the sector.
Fix Status	Fixed to update the Flash settings from date code 312xxxxx.

Based on Arm® Cortex®-M7 dual

12.Limitation for keepin	12.Limitation for keeping the port state from peripheral IP after wakeup from DeepSleep	
Problem Definition	The port state is not retained when the port selects peripheral IP (except for LIN or CAN FD) and MCU wakes up from DeepSleep.	
Parameters Affected	N/A	
Trigger Condition(s)	The port selects peripherals (except for LIN or CAN-FD) and MCU wakes up from DeepSleep.	
Scope of Impact	Unexpected port output change might affect user system.	
Workaround	If the port selects peripherals (except for LIN or CAN FD), and the port output value need to be maintained after wakeup from DeepSleep, set HSIOM_PRTx_PORT_SEL.IOy_SEL = 0 (GPIO) before DeepSleep and set the required output value in GPIO configuration registers. After wakeup, change HSIOM_PRTx_PORT_SEL.IOy_SEL back to the peripheral module as needed.	
Fix Status	No silicon fix planned. TRM was updated.	

The following is missing from the PWR_CTL2.BGREF_LPMODE description in the existing register TRM. This register will not set unless CLK_ILO0_CONFIG.ILO0_ENABLE = 1. When changing back to continuous operation, keep ILO0 enabled for at least 5 ILO0 cycles after clearing this bit to allow for internal synchronization.
N/A
Using the PWR_CTL2.BGREF_LPMODE
PWR_CTL2.BGREF_LPMODE may not be set or cleared.
Use the PWR_CTL2.BGREF_LPMODE according to the following description. This register will not set unless CLK_ILO0CONFIG.ILO0_ENABLE==1. When changing back to continuous operation, keep ILO0 enabled for at least 5 ILO0 cycles after clearing this bit to allow for internal synchronization.
No silicon fix planned. TRM was updated.

14.Limitation of clock configuration before entering DeepSleep mode	
Problem Definition	DeepSleep should not be entered while any FLL/PLL is enabled and uses ECO as its reference clock. Since the unstable ECO clock after wakeup is outside the allowed reference clock limits for FLL/PLL, there is possibility of failing the DeepSleep wakeup.
Parameters Affected	N/A
Trigger Condition(s)	DeepSleep transition while any FLL/PLL is enabled and using ECO as its reference clock.
Scope of Impact	There is a possibility of DeepSleep wakeup failing.
Workaround	If any FLL/PLL is operating with the ECO as its reference clock, change the clock to either ECO direct or IMO with FLL/PLL before entering DeepSleep.
Fix Status	No silicon fix planned. TRM was updated.

Problem Definition	The following registers are described as 'Retained' in the Register TRM while it is not guaranteed that the value befor entering DeepSleep mode is still readable from the register:
	- SARADC: PASSX SARV CHz RESULT
	- SRSS: PWR_LVD_STATUS
	- SRSS: PWR_LVD_STATUS2
	- SRSS: CLK_CAL_CNT1
	- SRSS: CLK_CAL_CNT2
	- SRSS: CLK_FLL_STATUS
	- SRSS: WDT_INTR
	- SRSS: WDT_INTR_MASKED
	- SRSS: CLK_PLL400Mx_STATUS"
Parameters Affected	N/A

Based on Arm® Cortex®-M7 dual

Trigger Condition(s)	Use of the related function and wakeup from DeepSleep mode.					
Scope of Impact The values before entering DeepSleep are not retained.						
Workaround	For PASSx_SARy_CHz_RESULT, any of following can be used as a workaround: 1) Store the conversion values at another memory location before entering DeepSleep mode 2) Restart the conversion after wakeup from DeepSleep mode For the other registers: Rewrite the register value or read the status flags again after wakeup.					
Fix Status	No silicon fix planned. TRM was updated.					

16.SCBx_INTR_TX.UNDERFLOW bit may be set unintentionally						
Problem Definition	There is a possibility of setting the SCBx_INTR_TX.UNDERFLOW bit even if the FIFO is not empty.					
Parameters Affected	N/A					
Trigger Condition(s)	Using the TX FIFO for SCB when the AHB-Lite interface clock (CLK_GR6) frequency of the AHB bus is greater than 3x the SCB functionality clock (PCLK_SCBx_CLOCK).					
Scope of Impact	SCBx_INTR_TX.UNDERFLOW bit may be set unintentionally.					
Workaround	Ignore the SCBx_INTR_TX.UNDERFLOW bit if the FIFO is not empty.					
Fix Status	No silicon fix planned. TRM was updated.					

17.Hardfault may occur whe	n calling ReadSWPU or WriteSWPU while executing EraseSector or ProgramRow in non-blocking mode				
Problem Definition	ReadSWPU or WriteSWPU read data from bank#0 (or bank#1 if dual bank mode with mapping B is used) in SFlash. While doing that the check for active non-blocking erase or program of bank#0 (or bank#1 if dual bank mode with mapping B is used) is not performed. Therefore, reading bank#0 (or bank#1 if dual bank mode with mapping B is used) while there is an active erase/program operation will trigger a bus error, which can result in a hardfault occurrence based on FLASHC_FLASH_CTL register settings.				
Parameters Affected	N/A				
Trigger Condition(s)	Calling ReadSWPU or WriteSWPU while executing EraseSector or ProgramRow in non-blocking mode on bank#0 (or bank#1 if dual bank mode with mapping B is used).				
Scope of Impact	ReadSWPU or WriteSWPU cannot be used while executing EraseSector or ProgramRow in non-blocking mode on bank#0 (or bank#1 if dual bank mode with mapping B is used).				
Workaround	Do not use ReadSWPU or WriteSWPU while executing EraseSector or ProgramRow in non-blocking mode on bank#0 (or bank#1 if dual bank mode with mapping B is used).				
Fix Status	No silicon fix planned. TRM was updated.				
Impact on Infineon software	S-LLD, HSM-Perf-Lib: While executing EraseSector or ProgramRow in non-blocking mode on bank#0 (or bank#1 if dual bank mode with mapping B is used), users must not do any of following: a) call CySldProt_GetSwpuFlashStructCfg b) call CySldProt_VerifySecureDomainFlashWriteProtection if CySldProt_SwpuFlashStructGroupConfigurations is non-empty				

Based on Arm® Cortex®-M7 dual

Architecture block diagram

18.CAN FD sporadic data corruption (payload) in case acceptance filtering does not finish before reception of data R3 (DB7..DB4) is complete

Problem Definition

During frame reception the Rx Handler accesses the external Message RAM for acceptance filtering (read accesses) and for storing of the accepted messages (write accesses).

The time needed for acceptance filtering and for storing of a received message depends on

- · The Host clock frequency
- The worst-case latency of the read and write accesses to the external Message RAM
- The number of configured filter elements
- The workload of the transmit message (Tx) handler in parallel to the receive message (Rx) handler

Received data bytes (DB0..DBm) from the CAN Core are buffered in the cache of the Rx Handler before they are written to the Message RAM (in words of 4 byte). Data words inside the Message RAM are numbered from R2 to Rn ($n \le 17$).

Figure 1 Rx Buffer and FIFO Element

Under the following conditions, a received message has corrupted data while the received message is signaled as valid to the host.

- 1) The data length code (DLC) of the received Message is greater than 4 (DLC > 4)
- 2) The storage of Ri of a received message into the Message RAM (after acceptance filtering is done) has not completed before R(i+1) is transferred from the CAN Core into the cache of the Rx Handler (where $2 \le i \le 5$).
- 3) While condition 1) and 2) apply, a concurrent read of data word Ri from the cache and write of data word R(i+1) into the cache of the Rx handler happens.

The data will be corrupted in a way, that in the Message RAM R(i+1) has the same content as Ri.

Despite the corrupted data, the M_TTCAN signals the storage of a valid frame in the Message RAM:

- Rx FIFO: FIFO put index RXFnS.FnPI is updated.
- Dedicated Rx Buffer: New Data flag NDATn.NDxx is set.
- Interrupt flag IR.MRAF is not set.

The issue may occur in the FD Frame Format as well as in the Classic Frame Format.

Figure 2 shows how the available time for acceptance filtering and storage is reduced.

Figure 2 CAN Frame with DLC>4

Based on Arm® Cortex®-M7 dual

Architecture block diagram

18.CAN FD sporadic data corruption (payload) in case acceptance filtering does not finish before reception of data R3 (DB7..DB4) is complete

	Number of	Number of	Arbitration bit rate = 0.5 Mbps				Arbitration bit rate = 1 Mbps			
	configured active filter element 11-bit IDs / 29-bit IDs ^{1,2}	active CAN channels in an instance		Data bit rate = 1 Mbps	Data bit rate = 2 Mbps	Data bit rate = 4 Mbps	Data bit rate = 1 Mbps	Data bit rate = 2 Mbps	Data bit rate = 4 Mbps	Data bit rate = 5 Mbps
	32 / 16	2	3.9 MHz	7.1 MHz	13.1 MHz	22.8 MHz	7.7 MHz	14.1 MHz	26.1 MHz	31.5 MHz
		3	5.4 MHz	9.9 MHz	18.3 MHz	31.8 MHz	10.7 MHz	19.7 MHz	36.5 MHz	44.0 MHz
		4	6.9 MHz	12.7 MHz	23.5 MHz	40.8 MHz	13.8 MHz	25.3 MHz	46.9 MHz	56.5 MHz
		5	8.4 MHz	15.5 MHz	28.6 MHz	49.9 MHz	16.8 MHz	30.9 MHz	57.2 MHz	69.0 MHz
	64 / 32	2	7.4 MHz	13.5 MHz	24.9 MHz	43.4 MHz	14.7 MHz	26.9 MHz	49.8 MHz	60.0 MHz
		3	10.3 MHz	18.8 MHz	34.9 MHz	60.7 MHz	20.5 MHz	37.6 MHz	69.7 MHz	84.0 MHz
		4	13.2 MHz	24.2 MHz	44.8 MHz	78.0 MHz	26.3 MHz	48.4 MHz	89.5 MHz	107.9 MHz ³
		5	16.1 MHz	29.6 MHz	54.7 MHz	95.3 MHz	32.1 MHz	59.1 MHz	109.4 MHz ³	131.8 MHz ³
	96 / 48	2	10. 8 MHz	19.9 MHz	36.8 MHz	64.0 MHz	21.6 MHz	39.7 MHz	73.5 MHz	88.6 MHz
		3	15.1 MHz	27.8 MHz	51.5 MHz	89.6 MHz	30.2 MHz	55.6 MHz	102.9 MHz ³	124.0 MHz ³
		4	19.4 MHz	35.7 MHz	66.1 MHz	115.1 MHz ³	38.8 MHz	71.4 MHz	132.2 MHz ³	159.3 MHz ³
		5	23.7 MHz	43.6 MHz	80.8 MHz	140.7 MHz ³	47.4 MHz	87.2 MHz	161.5 MHz ³	194.7 MHz ³
	128 / 64	2	14.3 MHz	26.3 MHz	48.6 MHz	84.7 MHz	28.4 MHz	52.5 MHz	97.2 MHz	117.2 MHz ³
		3	20.0 MHz	36.8 MHz	68.0 MHz	118.5 MHz ³	40.0 MHz	73.5 MHz	136.0 MHz ³	164.0 MHz ³
		4	25.7 MHz 31.4 MHz	47.2 MHz 57.7 MHz	87.5 MHz 106.9 MHz ³	152.3 MHz ³	51.4 MHz 62.7 MHz	94.4 MHz 115.4 MHz ³	174.9 MHz ³ 213.7 MHz ³	210.8 MHz ³ 257.5 MHz ³
	message. Therefiltering process 2.Acceptance filt setting should b 11-bit filter elem 3.Frequency is n	tering search te considered.	for 11-bit Searchinย	IDs and 2 g for one	29-bit IDs fi 29-bit filte	lter elemer r element r	nt runs se equires a	parately; opproximat	only one corely double	nfigured fil cycles for o
rameters Affected	N/A									
igger Condition(s)	Under the follow valid to the host 1) The data leng 2) The storage of before R(i+1) is t 3) While condition into the cache o	: th code (DLC) Ri of a receive ransferred fro on 1) and 2) a	of the rec d message m the CAI oply, a co	eived me e into the N Core int ncurrent	ssage is gre Message Ra to the cach	eater than 4 AM (after ac e of the Rx	1 (DLC > 4 ceptance Handler () efiltering is where 2 ≤	done) has n i≤5).	ot complet
ope of Impact	The erratum is li	mited to the c	ase when	the Host	clock frequ	uency used	in the ac	tual device	e is below th	e limit sho

Based on Arm® Cortex®-M7 dual

Architecture block diagram

18.CAN FD sporadic of complete	lata corruption (payload) in case acceptance filtering does not finish before reception of data R3 (DB7DB4) is					
Workaround	Check whether the minimum Host clock frequency (shown in Table 1) is below the Host clock frequency used in the actual device. If yes, there is no problem with the selected configuration. If no, use one of the following two workarounds.					
	1) Try a different configuration by changing the following parameters until the actual Host clock frequency (CLK_GR5) is above the minimum host frequency shown in Table 1 :					
	Increase the CLK_GR5 frequency in the actual device					
	Reduce the CAN-FD data bit rate					
	Reduce the number of configured filter elements					
	Reduce the number of active CAN channels in an instance					
	Also, use DLC ≥ 8 instead of DLCs 5, 6, and 7 in the CAN environment/system, as they place higher demands on the minimum Host clock frequency (the worst case is DLC = 5) or restrict your CAN environment/system to DLC 4.					
	Note: While changing the actual host clock frequency, CLK_GR5 must always be equal to or higher than PCLKCANFD[x]_CLOCK_CAN[y] for all configurations.					
	2) Due to condition 3) listed in " Trigger Conditions ", the issue occurs only sporadically. Use an end-to-end (E2E) protection (for example, checksum or CRC covering the data field) and add it to all messages in the CAN system, to detect data corruption in the received frames.					
Fix Status	No silicon fix planned. Use workaround.					
Impact on Infineon software	Impact: Limitation Related modules: CAN, MCU Comment: The user must evaluate the impact of the erratum for each CAN instance separately. A CAN instance is the entirety of CanControllers with the same CanControllerInstance value. 1) For the number of active CAN nodes: Use the maximum number of CanController configurations of a CAN instance that can be active (Autosar controller state STARTED or SLEEP) at a time. 2) For the host clock frequency: In McuPeriGroupSettings, locate the setting with McuPeriGroup MCU_PERI_GROUP5_MMIO5 and take the value from McuPeriGroupClockFrequency. 4) For the number of configured active filter element 11-bit IDs / 29-bit IDs: Use the corresponding values from the "Message RAM () linking table" in the generated Can_PBcfg.h file. Note that each CanController has its separate table. Take the maximum values.					
	5) For the architection bit rests. Her the require use Confortable Pour Detay also of all the Confortable re-					

5) For the arbitration bit rate: Use the maximum CanControllerBaudRate value of all the CanControllers.
6) For the data bit rate: Use the maximum CanControllerFdBaudRate value of all the CanControllers if

configured. Otherwise use CanControllerBaudRate.

Datasheet 219 002-21617 Rev. *L

Based on Arm® Cortex®-M7 dual

Revision history

Revision history

Document Version Date of release		Description of changes				
**	2018-02-23	New datasheet				
*A	2018-05-04	Updated Features and Features list. Updated Blocks and functionality. Updated Functional description. Updated CYT4BF address map, Flash base address map, and Peripheral I/O map. Added CYT4BF clock diagram. Added Pin assignment Updated Electrical specifications. Added the following timing diagrams in Electrical specifications: Reset, TCPWM, SCB (I ² C, SPI), Crystal Connection Scheme, SAR ADC, System Resources, and JTAG. Added Interrupts and wake-up assignments, Peripheral clock assignments, Trigger multiplexer, Triggers group inputs, Triggers group outputs, Triggers one-to-one, and Faults. Added Peripheral I/O map Added Packaging.				
*B	2018-07-27	Updated Features and Features list. Updated Blocks and functionality. Updated Pin assignment. Updated Electrical specifications. Added Timing Diagrams for Ethernet, SMIF Updated SCB Diagrams Added Ordering information.				
*C	2018-09-28	Updated Features list and Peripheral I/O map. Updated Functional description. Updated Pin assignment and Package pin list and alternate functions. Updated Trigger multiplexer, Core interrupt types, and Peripheral clock assignments. Added General P-DMA descriptions and Clock Dividers. Updated CYT4BF clock diagram. Updated Electrical specifications. Updated Design Review.				
*D	2019-01-16	Updated Features list and Peripheral I/O map. Updated Functional description. Updated Pin assignment for 176-TEQFP package Updated Electrical specifications. Updated Design and Expert Reviews.				
*E	2019-06-06	Updated Features list, CYT4BF address map, Peripheral I/O map. Updated Pin assignment, Alternate function pin assignments. Updated Trigger Group tables. Updated Peripheral clocks and Peripheral protection unit fixed structure pairs. Updated Bus masters and Miscellaneous configuration. Updated Electrical specifications. Updated and SPI Diagrams. Updated Table 27-20. Updated Ordering information and Packaging. Updated Appendix.				
*F	2019-11-15	Updated TCPWM Channels and Programmable Analog in Features. Updated Ethernet MAC, TCPWM, SAR ADC, Audio 12S, and Debug Trace in Features list. Updated TCPWM channels in Architecture block diagram. Updated DeepSleep, PLL and FLL, TCPWM, and External Memory Interface sections in Functional description. Updated SRAM details in CYT4BF address map. Added eFUSE and updated PERI Programmable PPU in Peripheral I/O map. Added VSSD_2 in Power pin assignments. Updated PASS interrupts in Interrupts and wake-up assignments. Added Note 40 in Peripheral protection unit fixed structure pairs. Changed MiniProg3 to MiniProg4 in Development support. Updated, ADC Calculation of impact of neighboring pins, Clock Specifications, and SMIF Diagrams in Electrical specifications. Updated Ordering information and Packaging.				
*G	2020-05-04	Updated Functional description. Updated Power pin assignments. Updated Pin mux descriptions. Updated Fault assignments. Updated ECO spec from 3.988 MHz to 8 MHz. Updated Electrical specifications. Updated Ordering information. Added Errata.				

Based on Arm® Cortex®-M7 dual

Document version	Date of release	Description of changes
*н	2020-09-23	Updated Features. Updated Regulators. Updated Regulators. Updated Clock system. Updated Peripheral I/O map. Updated Power pin assignments. Updated Pin mux descriptions. Updated DC specifications. Updated Ethernet specifications. Updated Packaging. Updated Appendix. Updated Appendix. Updated Electrical specifications. Please refer to Revision history change logRev. *L electrical spec updates for the detailed list of changes for this revision.
*	2021-10-27	Removed Preliminary status. Updated Features. Updated Clock system. Updated Power modes. Updated Audio interface. Updated I/Os. Updated Pin assignment. Updated High-speed I/O matrix connections. Updated High-speed I/O matrix connections. Updated Interrupts and wake-up assignments. Updated Faults. Updated Faults. Updated Electrical specifications. Updated Part number nomenclature. Added Errata
		Please refer to Rev. *L electrical spec updatesRevision history change log for the detailed list of changes for this revision.
*J	2022-02-18	Updated System resources. Updated Serial memory interface specifications. Updated Errata.
*K	2022-10-10	Updated External memory interface. Updated Alternate function pin assignments. Updated Electrical specifications. Added note in Packaging. Updated Errata.
*L	2023-07-12	Updated Features list. Updated Blocks and functionality. Updated Peripherals, and Peripheral I/O map. Updated Package pin list and alternate functions and Power pin assignments. Updated Pin mux descriptions. Updated Electrical specifications. Added note in Packaging. Updated Errata.

Based on Arm® Cortex®-M7 dual

Revision history change log

Revision history change log

Rev. *L section updates

Section	Change Description	Current Spec (Rev. *K)	New Spec (Rev. *L)	Reason for change
Features	Certification	(none)	Certification - Qualified for automotive application according to AEC-Q100	Added
1 Features list	Table 1-1: Features Watchdog Timer and Multi-counter Watchdog Timer	Supported	Supported (WDT + 3× MCWDT) MCWDT#0 tied to CM0+, MCWDT#1 to CM7_0, MCWDT#2 to CM7_1	Improvement
2 Blocks and functionality	Architecture block diagram Clock Block	(none)	3x MCWDT	Improvement
3.3 Peripherals	3.3.9 Ethernet MAC	(none)	Module uses AXI interface for DMA access.	Improvement
6 Peripheral I/O map	Table 6-1 TTCANFD	Message RAM CAN0: Instance Size: 0x9FFF, Message RAM CAN1: Instance Size: 0x9FFF	Message RAM CAN0: Instance Size: 0xA000, Message RAM CAN1: Instance Size: 0xA000	Correction
7 CYT4BF clock diagram	Figure 7-1	Figure 7-1	Changed Figure 7-1	Correction
11. Package pin list and alternate functions	Table 11-1	(none)	XRES_L: K20: K18: 152 DRV_VOUT: J20: J18: 160	Improvement
12 Power pin assignments	Table 12-1	XRES_L: K20: K18: 152: Active LOW external reset input DRV_VOUT: J20: J18: 160: Dedicated external supply control pin	(none)	Improvement
14 Pin mux descriptions	Table 14-1 Sl. No.70	Description: External clock input	Description: External clock input or output	Improvement
14 Pin mux descriptions	Table 14-1 Sl. No.78 to 83	(none)	78 TRIG_IN[x] HSIOM HSIOM- _IO_INPUT[x] of trigger inputs, x-0 to 47, 79 TRIG_DBG[x] HSIOM HSIOM- _IO_OUTPUT[x] of trigger outputs, x-0 to 1, 80 WCO_IN SRSS Watch crystal oscillator input, 81 WCO_OUT SRSS Watch crystal oscil- lator output, 82 ECO_IN SRSS External crystal oscil- lator input, 83 ECO_OUT SRSS External crystal oscil- lator output	Improvement
25 Miscellaneous configuration	Table 25-1	SCB0_EZ_DATA_NR Note: Only SCB0 supports EZ mode	SCBx_EZ_DATA_NR Note: Only SCB0 supports CMD_RESP mode	Correction
27 Electrical specifications	Table 27-22	(none)	Added Table 27-22 PLL400 operation modes	Improvement
27 Electrical specifications	27.13.1 Minimum bus frequency requirements	(none)	Added Section 27.13.1 Minimum bus frequency requirements	Improvement
29 Packaging	Table 29-2	RθJB: Package θJB	RθJB: Package thermal resistance, junction to board θJB	Improvement
31. Errata	Errata [7], [8], [10] to [12] Fix status	[7]: No silicon fix planned. TRM will be updated. [8]: No silicon fix planned. TRM will be updated. [10]: No silicon fix planned. TRM will be updated. [11]: Will be fixed to update the Flash settings, via Manufacturing Test Program Update for Code Flash setting; this fix is transferred to TRAVEO™ T2G devices during Infineon Factory Test Flow. Fixed devices will be identified by Device Date Code, which is marked on every TRAVEO™ T2G device. [12]: No silicon fix planned. TRM will be updated.	updated. [11]: Fixed to update the Flash settings from date code 312xxxxx. [12]: No silicon fix planned. TRM was updated.	Updated description
31. Errata	Errata [13] to [18]	Errata [13] to [18]	Added errata [13] to [18]	Added errata

Based on Arm® Cortex®-M7 dual

Errata

Rev. *L electrical spec updates

Spec ID	Description	Changed Item	Current Spec (Rev. *K)	New Spec (Rev. *L)	Reason for Change
SID113	Analog input sample time for channels of own SARMUX (4.5 V ≤ VDDA)	Description	Description: Analog input sample time (4.5 V ≤ VDDA)	Description: Analog input sample time for channels of own SARMUX (4.5 V ≤ VDDA)	Updated description
SID113A	Analog input sample time for channels of own SARMUX (2.7 V ≤ VDDA)	Description	Description: Analog input sample time (2.7 V ≤ VDDA)	Description: Analog input sample time for channels of own SARMUX (2.7 V ≤ VDDA)	Updated description
SID113E	Analog input sample time for channels of another SARMUXn (n=1,2)	All	(none)	Parameter: 4P5_A Description: Analog input sample time for channels of another SARMUXn (n=1,2) Min: 824 ns Typ: - Max: - Details/Conditions: 4.5 V ≤ VDDA ≤ 5.5 V When ADC0 borrows the SARMUX of another ADC, guaranteed by design	Added spec
SID113F	Analog input sample time for channels of another SARMUXn (n=1,2)	All	(none)	Parameter: tS_2P7_A Description: Analog input sample time for channels of another SARMUXn (n=1,2) Min: 1648 ns Typ: - Max: - Details/Conditions: 2.7V ≤ VDDA < 4.5 V When ADC0 borrows the SARMUX of another ADC, guaranteed by design	Added spec
SID106	ADC max throughput (samples per second) when using the SARMUX of own ADC	Description	Description: Max Throughput (samples per second)	Description: ADC max throughput (samples per second) when using the SARMUX of own ADC	Updated description
SID106A	ADC max throughput (samples per second) when using the SARMUX of own ADC	Description	Description: Max Throughput (samples per second)	Description: ADC max throughput (samples per second) when using the SARMUX of own ADC	Updated description
SID106B	ADC0 max throughput (samples per second) when borrowing the SARMUXn of another ADC (n=1,2)	All	(none)	Parameter: tST_4P5_A Description: ADC0 max throughput (samples per second) when borrowing the SARMUXn of another ADC (n=1,2) Min: - Typ: - Max: 0.5 Msps Details/Conditions: 4.5 V ≤ VDDA ≤ 5.5 V, 80 MHz/6 = 13.3 MHz, 11 sampling cycles, 15 conversion cycles	Added spec
SID106C	ADC0 max throughput (samples per second) when borrowing the SARMUXn of another ADC (n=1,2)	All	(none)	Parameter: tST_2P7_A Description: ADC0 max throughput (samples per second) when borrowing the SARMUXn of another ADC (n=1,2) Min: - Typ: - Max: 0.25 Msps Details/Conditions: 2.7V ≤ VDDA < 4.5 V, 80 MHz / 12 = 6.67 MHz, 11 sampling cycles, 15 conversion cycles	Added spec
SID341A	Programmed output frequency from PLL Block	Description Details/ Conditions	Description: Programmed output frequency from PLL Block (spreading off) Details/Conditions: Spreading off	Description: Programmed output frequency from PLL Block Details/Conditions: Integer mode	Updated description
SID341B	Programmed output frequency from PLL Block	Description Details/ Conditions	Description: Programmed output frequency from PLL Block (spreading on) Details/Conditions: Spreading on	Description: Programmed output frequency from PLL Block Details/Conditions: SSCG mode	Updated description

Based on Arm® Cortex®-M7 dual

Spec ID	Description	Changed Item	Current Spec (Rev. *K)	New Spec (Rev. *L)	Reason for Change
SID342D1	Long term jitter	Details/ Conditions	Details/Conditions: For 125 ns Guaranteed by design fVCO: 800 MHz or 700 MHz (spreading is off) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 350 MHz	Details/Conditions: For 125 ns Guaranteed by design fVCO: 800 MHz or 700 MHz (Integer mode) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 350 MHz	Updated description
SID343D1	Long term jitter	Details/ Conditions	Details/Conditions: For 500 ns Guaranteed by design fVCO: 800 MHz or 700 MHz (spreading is off) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 350 MHz	Details/Conditions: For 500 ns Guaranteed by design fVCO: 800 MHz or 700 MHz (Integer mode) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 350 MHz	Updated description
SID344D1	Long term jitter	Details/ Conditions	Details/Conditions: For 1000 ns Guaranteed by design fVCO: 800 MHz or 700 MHz (spreading is off) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 350 MHz	Details/Conditions: For 1000 ns Guaranteed by design fVCO: 800 MHz or 700 MHz (Integer mode) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 350 MHz	Updated description
SID345E1	Long term jitter	Details/ Conditions	Details/Conditions: For 10000 ns Guaranteed by design fVCO: 800 MHz or 700 MHz (spreading is off) flN: ECO fPFD: 4 MHz fOUT: 100 MHz to 350 MHz	Details/Conditions: For 10000 ns Guaranteed by design fVCO: 800 MHz or 700 MHz (Integer mode) flN: ECO fPFD: 4 MHz fOUT: 100 MHz to 350 MHz	Updated description
SID348A	PFD Frequency (fIN / Reference divider)	Details/ Conditions	Details/Conditions: Spreading off/on	Details/Conditions: Integer/SSCG mode	Updated description
SID341C	Output frequency from PLL Block (SSCG mode)	Description	Description: Output frequency from PLL Block (spreading on)	Description: Output frequency from PLL Block (SSCG mode)	Updated description
SID342C	Cycle to cycle jitter (SSCG mode)	Description	Description: Cycle to cycle jitter (spreading on)	Description: Cycle to cycle jitter (SSCG mode)	Updated description
SID341D	Output frequency from PLL Block (SSCG mode)	Description	Description: Output frequency from PLL Block (spreading on)	Description: Output frequency from PLL Block (SSCG mode)	Updated description
SID342D	Cycle to cycle jitter (SSCG mode)	Description	Description: Cycle to cycle jitter (spreading on)	Description: Cycle to cycle jitter (SSCG mode)	Updated description

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-07-12 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Go to www.cypress.com/support

Document reference 002-21617 Rev. *L

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.