Visibility-based multiagent deployment in orthogonal environments

Francesco Bullo

Center for Control. Dynamical Systems & Computation

University of California at Santa Barbara http://motion.mee.ucsb.edu

American Control Conference, New York, July 12, 2007

Co-authors: Anurag Ganguli, Jorge Cortés

Outline

- 1 Robotic agents with visibility sensors
- 2 Deployment of multiple agents in orthogonal environments
- 3 Conclusions

Outline

- Robotic agents with visibility sensors
- 2 Deployment of multiple agents in orthogonal environments
- 3 Conclusions

Robotic agents with visibility sensors

- Orthogonal polygon
 Q: adjacent edges perpendicular to each other
- Visibility

Visibility polygon

$$\mathcal{V}(p,Q) = \{q \in Q \mid q \text{ is visible from } p\}$$

Robotic agent

First order dynamics: p(t+1) = p(t) + uPoint robot with omnidirectional visibility sensing Line of sight communication: visibility graph

Outline

- Robotic agents with visibility sensors
- 2 Deployment of multiple agents in orthogonal environments
- 3 Conclusions

Art Gallery Problem (Klee '73):

- Kahn et al '93
- \[\left[\frac{n}{4} \right] \] sufficient and occasionally necessary

- Pinciu '03
- $\frac{n}{2} 2$ sufficient and occasionally necessary

- Kahn et al '93
- \[\left[\frac{n}{4} \right] \] sufficient and occasionally necessary

- Pinciu '03
- $\frac{n}{2} 2$ sufficient and occasionally necessary

- Kahn et al '93
- $\lfloor \frac{n}{4} \rfloor$ sufficient and occasionally necessary

- Pinciu '03
- $\frac{n}{2} 2$ sufficient and occasionally necessary

- Kahn et al '93
- $\lfloor \frac{n}{4} \rfloor$ sufficient and occasionally necessary

- Pinciu '03:
- $\frac{n}{2} 2$ sufficient and occasionally necessary

Robotic network model

- Communicate within line-of-sight and within bounded distance
- Each agent has a unique identifier i
- p_i denotes position; $p_i(t + \Delta t) = p_i(t) + u_i$, $||u_i|| \le 1$
- \mathcal{M}_i denotes memory ("limited") contents

Deployment problems

Nonconvex deployment problem

Design a provably correct distributed algorithm:

- achieve complete visibility;
- 2 minimize the number of agents used

Nonconvex deployment problem with connectivity

Design a provably correct distributed algorithm:

- achieve complete visibility;
- 2 ensure that the visibility graph of final configuration is connected; and
- 3 minimize the number of agents used

Statement of results

Starting from a single location, $\lfloor \frac{n}{4} \rfloor$ agents are always sufficient and

occasionally necessary

Starting from a single location,

 $\frac{n}{2}-2$ are always sufficient and occasionally necessary

Connected deployment
Deployment without connectivity constraint
Main results

Connected deployment
Deployment without connectivity constraint

Vertex-induced tree

Incremental algorithm for connected deployment

Robustness properties

Robust to agent failures Changing environments

Sparse point set for deployment without connectivity

Every point in the kernel "owns" at least two quadrilaterals or four triangles Total number of triangles is n-2

Therefore, number of points in the kernel is n/4.

Depth-first deployment

Assume: (i) Each node is a star-shaped set; (ii) Sets corresponding to non-leaf nodes are composed of a union of quadrilaterals equal in number to the number of children

Depth-first deployment

Depth-first deployment in general simply connected environments

Local navigation and distributed information processing

- Straight line paths between adjacent nodes
- Required memory:
 M_i: {p_{parent}, p_{last}, g₁, g₂}
- After moving from k_{parent} to k_{child}, k_{parent} is added to the beginning of list p_{parent}, (v', v'') is added to list g₁, (v'', v'') is added to list g₂ and p_{last} := k_{parent}
- After moving from k_{child} to k_{parent}, the first elements of p_{parent}, g₁ and g₂ are deleted and p_{last} := k_{child}

Main results

Connected deployment

- 1 If # agents < cardinality of the sparse kernel point set, then in finite time each agent comes to rest at a unique kernel point else in finite time every kernel point contains an agent at rest
- 2 $\lfloor \frac{n}{4} \rfloor$ agents are always sufficient and occasionally necessary for the task

Deployment without connectivity

- If # agents < cardinality vertex-induced tree, then in finite time each agent comes to rest at a unique node else in finite time every node contains an agent at rest
- 2 $\frac{n-2}{2}$ agents are always sufficient and occasionally necessary for the task

Outline

- 1 Robotic agents with visibility sensors
- 2 Deployment of multiple agents in orthogonal environments
- 3 Conclusions

Conclusions

Summary

- distributed algorithms to achieve coverage in nonconvex orthogonal environments
- number of agents required is optimal in the worst case
- robustness to agent failures and changing environments

Future directions

- environments with holes
- 3D scenarios
- other notions of optimality: time taken, other complexity measures other than the number of vertices