План лекции № 7

Решение двумерных дифференциальных уравнений параболического типа

- 1. Примеры двумерных дифференциальных уравнений параболического типа
- 2. Разностная сетка для двумерных задач
- 3. Аппроксимация дифференциальных операторов
- 4. Явная разностная схема
 - 4.1. Исследование устойчивости
 - 4.2. Метод решения
 - 4.3. Алгоритм решения
- 5. Характеристика неявной разностной схемы
- 6. Схема расщепления
 - 6.1. Характеристика первой подсхемы
 - 6.2. Характеристика второй подсхемы
 - 6.3. Алгоритм решения
- 7. Схема переменных направлений
- 8. Схема со стабилизирующей поправкой
- 9. Схема предиктор-корректор
 - 9.1. Методика записи уравнений схемы
 - 9.2. Характеристика подсхем
 - 9.3. Алгоритм решения
- 10. Сравнительная характеристика изученных разностных схем
- 11. Задания для самоконтроля

1. Примеры двумерных дифференциальных уравнений параболического типа

В разделе "Примеры математических моделей, содержащих дифференциальные уравнения в частных производных" мы рассматривали математическую модель трубчатого реактора с продольным и поперечным перемешиванием, в котором протекает простая необратимая реакция. Баланс по концентрации исходного реагента для нестационарного режима имеет вид:

$$\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} = D_L \frac{\partial^2 c}{\partial x^2} + D_R \frac{\partial^2 c}{\partial r^2} + \frac{D_R}{r} \frac{\partial c}{\partial r} - k c,$$

где k — константа скорости химической реакции; c — концентрация исходного реагента; v — линейная скорость потока; x — координата по длине реактора; r — координата по радиусу реактора; D_L , D_R — коэффициенты диффузии в продольном и поперечном направлениях.

Данное уравнение является двумерным дифференциальным уравнением параболического типа. Его двухмерность обусловлена тем, что концентрация компонента X — функция трёх переменных, две из которых являются пространственными координатами:

$$c = c(t, x, r)$$
.

Другим примером двумерного дифференциального уравнения параболического типа является уравнение теплопроводности для нестационарного двумерного температурного поля:

$$\rho C_T \frac{\partial T}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + q,$$

где T — температура; C_T , ρ , λ — теплоёмкость, плотность и теплопроводность материала; x, y — пространственные координаты; q — внутренний источник (сток) теплоты.

Уравнение вихря скорости, являющееся преобразованием уравнения Навье-Стокса, — ещё один пример двумерного дифференциального уравнения параболического типа:

$$\frac{\partial \xi}{\partial t} + v^x \frac{\partial \xi}{\partial x} + v^y \frac{\partial \xi}{\partial y} = \gamma \left(\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} \right).$$

Очевидно, в математических моделях физико-химических и химико-технологических процессов встречаются не только одномерные, но и двумерные дифференциальные уравнения, для численного решения которых требуется особый подход. В настоящей главе рассмотрим двумерные дифференциальные уравнения параболического типа, не содержащие производных по координатам первого порядка. Следующая глава будет посвящена двумерным дифференциальным уравнениям в частных производных 1-го порядка и двумерным дифференциальным уравнениям параболического типа, содержащим первые производные по координатам.

2. Разностная сетка для двумерных задач

Запишем двумерное дифференциальное уравнение параболического типа, не содержащее первых производных по координатам x и y, в следующем общем виде:

$$\frac{\partial u}{\partial t} = \sigma \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - k u + f(t, x, y); \qquad k \ge 0, \quad \sigma > 0.$$
 (7.1)

Уравнение (7.1) должно быть дополнено начальным и двумя граничными условиями по каждой из пространственных координат (для определённости будем рассматривать граничные условия 1-го рода):

$$u(t = 0, x, y) = \xi(x, y); \qquad \begin{cases} u(t, x = a, y) = \varphi_1(t, y), \\ u(t, x = b, y) = \varphi_2(t, y); \end{cases} \qquad \begin{cases} u(t, x, y = c) = \psi_1(t, x), \\ u(t, x, y = d) = \psi_2(t, x). \end{cases}$$

Пусть для независимых переменных заданы следующие интервалы их изменения:

$$t \in [0, t_k], \quad x \in [a, b], \quad y \in [c, d].$$

Разбивая каждый из этих интервалов на некоторое количество равных частей (по аналогии с тем, как это было сделано в случае двух независимых переменных), получим разностную сетку, которая в данном случае будет трёхмерной (см. рисунок). Введём следующие обозначения:

j – порядковый номер точки деления по оси x;

k – порядковый номер точки деления по оси у;

 $t^{n+1} - t^n = \Delta t -$ величина интервала между точками по оси t;

$$x_{i+1} - x_i = \Delta x = h_x$$
 — величина интервала между точками по оси x ;

$$y_{k+1} - y_k = \Delta \, y = h_y$$
 — величина интервала между точками по оси y ;

$$u(t^n, x_j, y_k) = u_{j,k}^n$$
 – значение функции u , соответствующее точкам t^n, x_j, y_k ;

$$f(t^n, x_j, y_k) = f_{j,k}^n$$
 – значение функции f , соответствующее точкам t^n, x_j, y_k .

Введём нумерацию точек разностной сетки по каждой из осей следующим образом:

по оси
$$t$$
 - $n = 0, 1, 2, ..., M$;

по оси
$$x$$
 - $j = 1, 2, 3, ..., N_x$;

по оси y -
$$k = 1, 2, 3, ..., N_y$$
.

Тогда значения переменных t, x и y в точках разностной сетки будут определяться согласно следующему правилу:

$$t^{0} = 0,$$
 $t^{1} = \Delta t,$ $t^{2} = 2\Delta t,$..., $t^{n} = n \cdot \Delta t;$ $x_{1} = a,$ $x_{2} = a + h_{x},$ $x_{3} = a + 2h_{x},$..., $x_{j} = a + (j-1)h_{x};$ $y_{1} = c,$ $y_{2} = c + h_{y},$ $y_{3} = c + 2h_{y},$..., $y_{k} = c + (k-1)h_{y}.$

3. Аппроксимация дифференциальных операторов

Используя введённые обозначения, запишем аппроксимацию дифференциальных операторов, составляющих уравнение (7.1), в точке (t^n, x_j, y_k) . Для аппроксимации производной функции u по времени обычно используется правая конечная разность (со стабилизацией значения независимой переменной x в точке с порядковым номером j, а значения независимой переменной y в точке с порядковым номером k):

$$\left. \frac{\partial u}{\partial t} \right|_{t^n, x_j, y_k} \longrightarrow \frac{u_{j,k}^{n+1} - u_{j,k}^n}{\Delta t}.$$

Для аппроксимации второй производной функции u по координате x будем использовать разностный оператор (2.12) (со стабилизацией значения независимой переменной y в точке с порядковым номером k, а значения независимой переменной t в точке с порядковым номером n):

$$\left. \frac{\partial^2 u}{\partial x^2} \right|_{t^n, x_i, y_k} \longrightarrow \lambda_{xx} u_{j,k}^n = \frac{u_{j+1,k}^n - 2u_{j,k}^n + u_{j-1,k}^n}{h_x^2}.$$

Для аппроксимации второй производной функции u по координате y также будем использовать разностный оператор (2.12) (со стабилизацией значения независимой переменной x в точке с порядковым номером j, а значения независимой переменной t в точке с порядковым номером n):

$$\left. \frac{\partial^2 u}{\partial y^2} \right|_{t^n, x_j, y_k} \longrightarrow \lambda_{yy} u_{j,k}^n = \frac{u_{j,k+1}^n - 2u_{j,k}^n + u_{j,k-1}^n}{h_y^2}.$$

Подставляя записанные разностные операторы в дифференциальное уравнение (7.1), получаем явную разностную схему, аппроксимирующую уравнение (7.1) в точке (t^n, x_i, y_k) :

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = \sigma \left(\frac{u_{j+1,k}^{n} - 2u_{j,k}^{n} + u_{j-1,k}^{n}}{h_{x}^{2}} + \frac{u_{j,k+1}^{n} - 2u_{j,k}^{n} + u_{j,k-1}^{n}}{h_{y}^{2}} \right) - k u_{j,k}^{n} + f_{j,k}^{n}. \quad (7.2)$$

Рассматривая аппроксимацию обеих производных второго порядка на (n+1)-ом шаге по времени, получаем неявную разностную схему:

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = \sigma \left(\frac{u_{j+1,k}^{n+1} - 2u_{j,k}^{n+1} + u_{j-1,k}^{n+1}}{h_x^2} + \frac{u_{j,k+1}^{n+1} - 2u_{j,k}^{n+1} + u_{j,k-1}^{n+1}}{h_y^2} \right) - k u_{j,k}^{n+1} + f_{j,k}^{n}. \quad (7.3)$$

Учитывая порядок аппроксимации разностных операторов, использованных при составлении разностных схем (7.2), (7.3), легко видеть, что они имеют первый порядок аппроксимации по времени и второй – по каждой из координат:

$$O(\Delta t, h_x^2, h_y^2).$$

4. Явная разностная схема

4.1. Исследование устойчивости

Исследуем устойчивость явной разностной схемы (7.2), аппроксимирующей дифференциальное уравнение (7.1), с помощью спектрального метода. Для этого отбрасываем член $f_{j,k}^n$, наличие которого, как известно, не оказывает влияния на устойчивость разностной схемы, и представляем решение в виде гармоники:

$$\begin{split} u_{j,k}^n &= \lambda^n e^{i\alpha j} e^{i\beta k}, \qquad \alpha \in [0,2\pi], \quad \beta \in [0,2\pi]; \\ \frac{\lambda^{n+1} e^{i\alpha j} e^{i\beta k} - \lambda^n e^{i\alpha j} e^{i\beta k}}{\Delta t} &= \sigma \frac{\lambda^n e^{i\alpha (j+1)} e^{i\beta k} - 2\lambda^n e^{i\alpha j} e^{i\beta k} + \lambda^n e^{i\alpha (j-1)} e^{i\beta k}}{h_x^2} + \\ &+ \sigma \frac{\lambda^n e^{i\alpha j} e^{i\beta (k+1)} - 2\lambda^n e^{i\alpha j} e^{i\beta k} + \lambda^n e^{i\alpha j} e^{i\beta (k-1)}}{h_y^2} - k \lambda^n e^{i\alpha j} e^{i\beta k}. \end{split}$$

Далее, упрощаем полученное выражение, деля левую и правую его части на $\lambda^n e^{i\alpha j} e^{i\beta k}$:

$$\frac{\lambda - 1}{\Delta t} = \sigma \left(\frac{e^{i\alpha} - 2 + e^{-i\alpha}}{h_x^2} + \frac{e^{i\beta} - 2 + e^{-i\beta}}{h_y^2} \right) - k.$$

Используя зависимости (3.9), (3.10), получаем формулу

$$\frac{\lambda - 1}{\Delta t} = -\frac{\sigma}{h_x^2} 4 \sin^2 \frac{\alpha}{2} - \frac{\sigma}{h_y^2} 4 \sin^2 \frac{\beta}{2} - k,$$

из которой выражаем λ:

$$\lambda = 1 - 4\sigma \frac{\Delta t}{h_x^2} \sin^2 \frac{\alpha}{2} - 4\sigma \frac{\Delta t}{h_y^2} \sin^2 \frac{\beta}{2} - k \Delta t.$$

С учётом необходимого условия устойчивости разностных схем (3.8) имеем:

$$\left|\lambda\right| \le 1$$
 \Rightarrow $-1 \le 1 - 4\sigma \frac{\Delta t}{h_{x}^{2}} \sin^{2} \frac{\alpha}{2} - 4\sigma \frac{\Delta t}{h_{y}^{2}} \sin^{2} \frac{\beta}{2} - k \Delta t \le 1.$

В полученном двойном неравенстве правое условие выполняется автоматически. Поэтому рассмотрим более подробно левое условие:

$$1 - 4\sigma \frac{\Delta t}{h_x^2} \sin^2 \frac{\alpha}{2} - 4\sigma \frac{\Delta t}{h_y^2} \sin^2 \frac{\beta}{2} - k\Delta t \ge -1 \qquad \Rightarrow \qquad \frac{\Delta t}{h_x^2} \sin^2 \frac{\alpha}{2} + \frac{\Delta t}{h_y^2} \sin^2 \frac{\beta}{2} + \frac{k\Delta t}{4\sigma} \le \frac{1}{2\sigma}.$$

Данное выражение содержит две переменные величины - α и β . Чтобы гарантировать устойчивость разностной схемы (7.2) независимо от значений этих величин, следует перейти к более строгому условию, задавая для $\sin^2\frac{\alpha}{2}$, $\sin^2\frac{\beta}{2}$ максимально возможное значение, равное

1:

$$\frac{\Delta t}{h_x^2} + \frac{\Delta t}{h_y^2} + \frac{k \Delta t}{4\sigma} \le \frac{1}{2\sigma} \qquad \Rightarrow \qquad \Delta t \le \frac{1}{\frac{2\sigma}{h_x^2} + \frac{2\sigma}{h_y^2} + \frac{k}{2}}.$$
 (7.4)

Выражение (7.4) является условием устойчивости явной разностной схемы (7.2), аппроксимирующей дифференциальное уравнение (7.1). В случае отсутствия в уравнении (7.1) свободного члена (т.е. при k=0), а также если интервалы между точками по осям x и y на разностной сетке задать равными

$$h_{x}=h_{y}=h,$$

выражение (7.4) примет более простой вид:

$$\frac{\Delta t}{h^2} \le \frac{1}{4\sigma}$$
.

Сравнивая данное выражение с соотношением (3.12) (являющимся условием устойчивости явной разностной схемы (3.4), аппроксимирующей одномерное дифференциальное уравнение параболического типа) можно сделать вывод, что увеличение размерности системы на порядок приводит к уменьшению в два раза максимально возможного значения Δt , при котором явная разностная схема будет устойчива.

4. Явная разностная схема

4.2. Метод решения

Разностный шаблон (см. рисунок), характеризующий явную разностную схему (7.2), свидетельствует о том, что она содержит одну неизвестную величину — значение функции u на (n+1)-ом шаге по времени. Выражая эту величину из разностной схемы, получаем рекуррентное соотношение

$$u_{j,k}^{n+1} = u_{j,k}^{n} + \sigma \frac{\Delta t}{h_{x}^{2}} (u_{j+1,k}^{n} - 2u_{j,k}^{n} + u_{j-1,k}^{n}) + \sigma \frac{\Delta t}{h_{y}^{2}} (u_{j,k+1}^{n} - 2u_{j,k}^{n} + u_{j,k-1}^{n}) - -k \Delta t u_{j,k}^{n} + \Delta t f_{j,k}^{n},$$

$$(7.5)$$

позволяющее рассчитать все значения функции u на (n+1)-ом шаге по времени (при известных значениях функции u на n-ом шаге), кроме значений $u_{1,k}^{n+1}$, $u_{N_x,k}^{n+1}$, $u_{j,1}^{n+1}$, u_{j,N_y}^{n+1} , определяемых с помощью граничных условий. Если заданы граничные условия 1-го рода, то эти значения определяются непосредственно из разностной аппроксимации граничных условий:

$$\begin{cases} u_{1,k}^{n+1} = \varphi_1(t^{n+1}, y_k) \\ u_{N_x,k}^{n+1} = \varphi_2(t^{n+1}, y_k) \end{cases} \begin{cases} u_{j,1}^{n+1} = \psi_1(t^{n+1}, x_j) \\ u_{j,N_y}^{n+1} = \psi_2(t^{n+1}, x_j) \end{cases}$$

Если заданы граничные условия 2-го или 3-го рода, то значения $u_{1,k}^{n+1}, u_{N_x,k}^{n+1}, u_{j,1}^{n+1}, u_{j,N_y}^{n+1}$ можно определить, выразив их из разностной аппроксимации граничных условий.

Используя обозначение, принятое для разностного оператора (2.12)

$$\lambda_{xx} u_{j,k}^{n} = \frac{u_{j+1,k}^{n} - 2u_{j,k}^{n} + u_{j-1,k}^{n}}{h_{x}^{2}}, \qquad \lambda_{yy} u_{j,k}^{n} = \frac{u_{j,k+1}^{n} - 2u_{j,k}^{n} + u_{j,k-1}^{n}}{h_{y}^{2}},$$
(7.6)

запишем рекуррентное соотношение (7.5) в более компактном виде:

$$u_{j,k}^{n+1} = u_{j,k}^{n} + \sigma \Delta t \lambda_{xx} u_{j,k}^{n} + \sigma \Delta t \lambda_{yy} u_{j,k}^{n} - k \Delta t u_{j,k}^{n} + \Delta t f_{j,k}^{n}.$$

4. Явная разностная схема

4.3. Алгоритм решения

Мы описали метод решения явной разностной схемы (7.2), аппроксимирующей двумерное дифференциальное уравнение параболического типа (7.1). Ниже приводится алгоритм решения, представленный для наглядности в виде блок-схемы.

5. Характеристика неявной разностной схемы

Исследуем устойчивость неявной разностной схемы (7.3), аппроксимирующей дифференциальное уравнение (7.1), с помощью спектрального метода. Для этого отбрасываем член $f_{j,k}^n$, наличие которого, как известно, не оказывает влияния на устойчивость разностной схемы, и представляем решение в виде гармоники:

$$\begin{split} u_{j,k}^n &= \lambda^n e^{i\alpha j} e^{i\beta k}, \qquad \alpha \in [0,2\pi], \quad \beta \in [0,2\pi]; \\ \frac{\lambda^{n+1} e^{i\alpha j} e^{i\beta k} - \lambda^n e^{i\alpha j} e^{i\beta k}}{\Delta t} &= \sigma \frac{\lambda^{n+1} e^{i\alpha (j+1)} e^{i\beta k} - 2\lambda^{n+1} e^{i\alpha j} e^{i\beta k} + \lambda^{n+1} e^{i\alpha (j-1)} e^{i\beta k}}{h_x^2} + \\ &+ \sigma \frac{\lambda^{n+1} e^{i\alpha j} e^{i\beta (k+1)} - 2\lambda^{n+1} e^{i\alpha j} e^{i\beta k} + \lambda^{n+1} e^{i\alpha j} e^{i\beta (k-1)}}{h_y^2} - k \lambda^{n+1} e^{i\alpha j} e^{i\beta k}. \end{split}$$

Далее, упрощаем полученное выражение, деля левую и правую его части на $\lambda^n e^{i\alpha j} e^{i\beta k}$:

$$\frac{\lambda - 1}{\Delta t} = \sigma \lambda \left(\frac{e^{i\alpha} - 2 + e^{-i\alpha}}{h_x^2} + \frac{e^{i\beta} - 2 + e^{-i\beta}}{h_y^2} \right) - k \lambda.$$

Используя зависимости (3.9), (3.10), получаем формулу

$$\frac{\lambda - 1}{\Delta t} = -\lambda \frac{\sigma}{h_x^2} 4 \sin^2 \frac{\alpha}{2} - \lambda \frac{\sigma}{h_y^2} 4 \sin^2 \frac{\beta}{2} - k \lambda,$$

из которой выражаем λ:

$$\lambda = \frac{1}{1 + 4\sigma \frac{\Delta t}{h_x^2} \sin^2 \frac{\alpha}{2} + 4\sigma \frac{\Delta t}{h_y^2} \sin^2 \frac{\beta}{2} + k \Delta t}.$$

Видно, что собственные числа оператора перехода удовлетворяют необходимому условию устойчивости разностных схем (3.8) при любых значениях Δt , h_x , h_y ; следовательно, неявная разностная схема (7.3) является абсолютно устойчивой.

Разностный шаблон (*см. рисунок*), характеризующий неявную разностную схему (7.3), свидетельствует о том, что она содержит пять неизвестных величин — значений функции u на (n+1)-ом шаге по времени. Это означает, что разностная схема (7.3) без дополнительных преобразований неразрешима.

Рассмотрим метод разрешения неявной разностной схемы (7.3), называемый **методом** дробных шагов. Данный метод позволяет представить неявную разностную схему (7.3) в виде двух подсхем, каждая из которых может быть решена с помощью метода прогонки.

Разобьём пополам интервал Δt между точками t^n и t^{n+1} на разностной сетке и обозначим полученную промежуточную точку, как $t^{n+1/2}$ (*см. рисунок*).

Запишем на первом полушаге интервала Δt неявную разностную схему, которая будет учитывать только производную второго порядка по координате x (назовём её **первой подсхемой**):

$$\frac{u_{j,k}^{n+1/2} - u_{j,k}^{n}}{\Delta t} = \sigma \frac{u_{j+1,k}^{n+1/2} - 2u_{j,k}^{n+1/2} + u_{j-1,k}^{n+1/2}}{h_{r}^{2}} - k u_{j,k}^{n+1/2} + f_{j,k}^{n}.$$
(7.7)

Запишем на втором полушаге интервала Δt неявную разностную схему, которая будет учитывать только производную второго порядка по координате y (назовём её **второй подсхемой**):

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n+1/2}}{\Delta t} = \sigma \frac{u_{j,k+1}^{n+1} - 2u_{j,k}^{n+1} + u_{j,k-1}^{n+1}}{h_{\nu}^{2}}.$$
(7.8)

Складывая подсхемы (7.7) и (7.8), получаем соотношение, отличающееся от неявной разностной схемы (7.3) только тем, что вторая производная по координате x аппроксимируется в нём не на (n+1)-ом шаге по времени, а на шаге (n+1/2):

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = \sigma \frac{u_{j+1,k}^{n+1/2} - 2u_{j,k}^{n+1/2} + u_{j-1,k}^{n+1/2}}{h_{x}^{2}} + \sigma \frac{u_{j,k+1}^{n+1} - 2u_{j,k}^{n+1} + u_{j,k-1}^{n+1}}{h_{y}^{2}} - ku_{j,k}^{n+1/2} + f_{j,k}^{n}.$$

Таким образом, дифференциальное уравнение (7.1) может быть аппроксимировано с помощью последовательного разрешения двух подсхем (7.7), (7.8), называемых в совокупности **схемой расщепления**. Соотношение, являющееся суммой подсхем (7.7), (7.8), показывает, что схема расщепления имеет такой же порядок аппроксимации, как и неявная разностная схема (7.3):

$$O(\Delta t, h_x^2, h_y^2).$$

Отметим, что свободный член уравнения (7.1) может быть учтён не в первой подсхеме схемы расщепления (7.7), (7.8), а во второй; однако в этом случае он будет иметь вид:

$$... - k u_{j,k}^{n+1} + f_{j,k}^{n+1/2}$$
.

6.1. Характеристика первой подсхемы

Первая подсхема (7.7) схемы расщепления, являясь аналогом неявной разностной схемы для одномерного дифференциального уравнения параболического типа, обладает всеми свойствами последней: она абсолютно устойчива, решается с помощью метода прогонки, имеет порядок аппроксимации:

$$O(\Delta t, h_r^2)$$
.

Приведём подсхему (7.7) к виду (4.10), удобному для использования метода прогонки:

$$-\sigma \frac{\Delta t}{h_x^2} u_{j+1,k}^{n+1/2} + \left(1 + 2\sigma \frac{\Delta t}{h_x^2} + k \Delta t\right) u_{j,k}^{n+1/2} - \sigma \frac{\Delta t}{h_x^2} u_{j-1,k}^{n+1/2} = u_{j,k}^n + \Delta t f_{j,k}^n.$$

Следовательно, коэффициенты, соответствующие уравнению (4.10), имеют вид:

$$a_{j} = c_{j} = -\sigma \frac{\Delta t}{h_{x}^{2}},$$
 $b_{j} = 1 + 2\sigma \frac{\Delta t}{h_{x}^{2}} + k \Delta t,$ $\xi_{j,k}^{n} = u_{j,k}^{n} + \Delta t f_{j,k}^{n}.$

Легко видеть, что для первой подсхемы (7.7) схемы расщепления достаточное условие сходимости прогонки (4.16) выполняется:

$$\left| a_{j} \right| + \left| c_{j} \right| = 2\sigma \frac{\Delta t}{h_{x}^{2}} < 1 + 2\sigma \frac{\Delta t}{h_{x}^{2}} + k \Delta t = \left| b_{j} \right|.$$

Рекуррентное прогоночное соотношение для первой подсхемы (7.7) имеет вид:

$$u_{j,k}^{n+1/2} = \alpha_j u_{j+1,k}^{n+1/2} + \beta_j. \tag{7.9}$$

Прогоночные коэффициенты определяются согласно соотношениям (4.13):

$$\alpha_{j} = -\frac{a_{j}}{b_{j} + c_{j} \alpha_{j-1}}, \qquad \beta_{j} = \frac{\xi_{j,k}^{n} - c_{j} \beta_{j-1}}{b_{j} + c_{j} \alpha_{j-1}}.$$
 (7.10)

Для определения значений прогоночных коэффициентов на 1-м шаге, т.е. α_1 , β_1 , и решения на правой границе используются граничные условия по координате x. Методики определения, а также алгоритм решения аналогичны описанным ранее. Отличие состоит лишь в том, что соотношения (7.9) и (7.10) включают переменную k, поэтому необходимо задать внешний цикл по этой переменной:

$$k = 2, ..., N_v - 1;$$

следовательно, при решении первой подсхемы (7.7) (т.е. на первом полушаге интервала Δt) метод прогонки будет использован $N_{_{\rm V}}-2\,$ раза.

Результатом решения первой подсхемы (7.7) схемы расщепления являются значения функции u на шаге по времени (n+1/2), необходимые для решения второй подсхемы (7.8). Однако следует отметить, что поскольку каждая из подсхем (7.7), (7.8) по отдельности не аппроксимирует исходное дифференциальное уравнение (7.1) (аппроксимация достигается только в результате последовательного решения обеих подсхем), оценка погрешности значений функции u на шаге по времени (n+1/2) не представляется возможной. Близость к истинным значениям может быть гарантирована только для значений функции u на (n+1)-ом шаге по времени.

6.2. Характеристика второй подсхемы

Вторая подсхема (7.8) схемы расщепления, являясь аналогом неявной разностной схемы для одномерного дифференциального уравнения параболического типа, обладает всеми свойствами последней: она абсолютно устойчива, решается с помощью метода прогонки, имеет порядок аппроксимации:

$$O(\Delta t, h_v^2)$$
.

Приведём подсхему (7.8) к виду (4.10), удобному для использования метода прогонки:

$$-\sigma \frac{\Delta t}{h_y^2} u_{j,k+1}^{n+1} + \left(1 + 2\sigma \frac{\Delta t}{h_y^2}\right) u_{j,k}^{n+1} - \sigma \frac{\Delta t}{h_y^2} u_{j,k-1}^{n+1} = u_{j,k}^{n+1/2}.$$

Следовательно, коэффициенты, соответствующие уравнению (4.10), имеют вид:

$$\widetilde{a}_k = \widetilde{c}_k = -\sigma \frac{\Delta t}{h_v^2}, \qquad \widetilde{b}_k = 1 + 2\sigma \frac{\Delta t}{h_v^2}, \qquad \widetilde{\xi}_{j,k}^{n+1/2} = u_{j,k}^{n+1/2}.$$

Легко видеть, что для второй подсхемы (7.8) схемы расщепления достаточное условие сходимости прогонки (4.16) выполняется:

$$\left| \tilde{a}_k \right| + \left| \tilde{c}_k \right| = 2\sigma \frac{\Delta t}{h_y^2} < 1 + 2\sigma \frac{\Delta t}{h_y^2} = \left| \tilde{b}_k \right|.$$

Рекуррентное прогоночное соотношение для второй подсхемы (7.8) имеет вид:

$$u_{i,k}^{n+1} = \widetilde{\alpha}_k u_{i,k+1}^{n+1} + \widetilde{\beta}_k. \tag{7.11}$$

Прогоночные коэффициенты определяются согласно соотношениям (4.13):

$$\widetilde{\alpha}_{k} = -\frac{\widetilde{a}_{k}}{\widetilde{b}_{k} + \widetilde{c}_{k} \, \widetilde{\alpha}_{k-1}}, \qquad \widetilde{\beta}_{k} = \frac{\widetilde{\xi}_{j,k}^{n+1/2} - \widetilde{c}_{k} \, \widetilde{\beta}_{k-1}}{\widetilde{b}_{k} + \widetilde{c}_{k} \, \widetilde{\alpha}_{k-1}}. \tag{7.12}$$

Для определения значений прогоночных коэффициентов на 1-м шаге, т.е. $\tilde{\alpha}_1$, $\tilde{\beta}_1$, и решения на правой границе используются граничные условия по координате y. Методики определения, а также алгоритм решения аналогичны описанным ранее. Отличие состоит лишь в том, что соотношения (7.11) и (7.12) включают переменную j, поэтому необходимо задать внешний цикл по этой переменной:

$$j = 2, ..., N_r - 1;$$

следовательно, при решении второй подсхемы (7.8) (т.е. на втором полушаге интервала Δt) метод прогонки будет использован N_x — 2 раза.

Результатом решения второй подсхемы (7.8) схемы расщепления являются значения функции u на (n+1)-ом шаге по времени.

6.3. Алгоритм решения

Приведём алгоритм решения (в виде блок-схемы) схемы расщепления (7.7), (7.8), являющейся наиболее простым способом интерпретации неявной разностной схемы (7.3), аппроксимирующей двумерное дифференциальное уравнение параболического типа (7.1).

Задание начальных условий:

цикл по
$$j = 1, ..., N_x$$
; цикл по $k = 1, ..., N_y$:

$$u_{j,k}^0 = \xi(x_j, y_k)$$

Цикл по $k = 2, ..., N_y - 1$:

Определение α_1, β_1 из левого граничного условия по x

Цикл по $j = 2, ..., N_x - 1$:

расчёт
$$a_j, b_j, c_j, \xi_{j,k}^n$$
; $\alpha_j = -\frac{a_j}{b_j + c_j \alpha_{j-1}}$, $\beta_j = \frac{\xi_{j,k}^n - c_j \beta_{j-1}}{b_j + c_j \alpha_{j-1}}$

Определение $u_{N_x,k}^{n+1/2}$ из правого граничного условия по x

Цикл по
$$j = N_x - 1, ..., 1$$
: $u_{j,k}^{n+1/2} = \alpha_j u_{j+1,k}^{n+1/2} + \beta_j$

Цикл по $j = 2, ..., N_x - 1$:

Определение $\widetilde{\alpha}_1,\widetilde{\beta}_1$ из левого граничного условия по у

Цикл по $k = 2, ..., N_y - 1$:

расчёт
$$\widetilde{a}_k$$
, \widetilde{b}_k , \widetilde{c}_k , $\widetilde{\xi}_{j,k}^{n+1/2}$; $\widetilde{\alpha}_k = -\frac{\widetilde{a}_k}{\widetilde{b}_k + \widetilde{c}_k \ \widetilde{\alpha}_{k-1}}$, $\widetilde{\beta}_k = \frac{\widetilde{\xi}_{j,k}^{n+1/2} - \widetilde{c}_k \ \widetilde{\beta}_{k-1}}{\widetilde{b}_k + \widetilde{c}_k \ \widetilde{\alpha}_{k-1}}$

Определение $u_{j,N_{\mathcal{V}}}^{n+1}$ из правого граничного условия по у

Цикл по
$$k = N_y - 1, ..., 1$$
: $u_{j,k}^{n+1} = \tilde{\alpha}_k u_{j,k+1}^{n+1} + \tilde{\beta}_k$

7. Схема переменных направлений

Рассмотрим способ интерпретации неявной разностной схемы (7.3), позволяющий добиться повышения порядка аппроксимации по времени, — **схему переменных направлений**:

$$\frac{u_{j,k}^{n+1/2} - u_{j,k}^n}{\Delta t} = \frac{\sigma}{2} \frac{u_{j+1,k}^{n+1/2} - 2u_{j,k}^{n+1/2} + u_{j-1,k}^{n+1/2}}{h_x^2} + \frac{\sigma}{2} \frac{u_{j,k+1}^n - 2u_{j,k}^n + u_{j,k-1}^n}{h_y^2},$$
(7.13)

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n+1/2}}{\Delta t} = \frac{\sigma}{2} \frac{u_{j+1,k}^{n+1/2} - 2u_{j,k}^{n+1/2} + u_{j-1,k}^{n+1/2}}{h_x^2} + \frac{\sigma}{2} \frac{u_{j,k+1}^{n+1} - 2u_{j,k}^{n+1} + u_{j,k-1}^{n+1}}{h_v^2} - k u_{j,k}^{n+1/2} + f_{j,k}^{n+1/2}.$$

Первая подсхема в схеме переменных направлений (7.13) аппроксимируется на первом полушаге интервала Δt и является неявной по координате x и явной по координате y. Вторая подсхема аппроксимируется на втором полушаге интервала Δt и является неявной по координате y и явной по координате x. Каждая из подсхем (как и в случае схемы расщепления (7.7), (7.8)) является абсолютно устойчивой и решается с помощью метода прогонки.

Обратим внимание на две особенности, которые необходимо учитывать при записи схемы переменных направлений (7.13): 1) коэффициенты перед разностными операторами, аппроксимирующими производные $\frac{\partial^2 u}{\partial x^2}$ и $\frac{\partial^2 u}{\partial y^2}$, должны быть поделены пополам; 2)

свободный член записывается во второй подсхеме и аппроксимируется на шаге (n + 1/2).

Складывая обе подсхемы и принимая во внимание обозначения (7.6), получаем:

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = \sigma \lambda_{xx} u_{j,k}^{n+1/2} + \frac{\sigma}{2} \left(\lambda_{yy} u_{j,k}^{n+1} + \lambda_{yy} u_{j,k}^{n} \right) - k u_{j,k}^{n+1/2} + f_{j,k}^{n+1/2}.$$

Видно, что правая часть данного соотношения аппроксимируется относительно точки $t^{n+1/2}$. Это означает, что разностный оператор в левой части является центральной конечной разностью, которая, как известно, имеет второй порядок аппроксимации. Таким образом, схема переменных направлений (7.13), имея порядок аппроксимации

$$O(\Delta t^2, h_r^2, h_v^2),$$

является более точной по сравнению со схемой расщепления (7.7), (7.8).

Алгоритм решения схемы переменных направлений (7.13) аналогичен алгоритму решения схемы расщепления (7.7), (7.8). Коэффициенты, соответствующие уравнению (4.10), имеют вид:

• для первой подсхемы

$$a_{j} = c_{j} = -\frac{\sigma}{2} \frac{\Delta t}{h_{x}^{2}}, \qquad b_{j} = 1 + \sigma \frac{\Delta t}{h_{x}^{2}}, \qquad \xi_{j,k}^{n} = u_{j,k}^{n} + \frac{\sigma}{2} \Delta t \, \lambda_{yy} \, u_{j,k}^{n};$$

• для второй подсхемы

$$\begin{split} \widetilde{a}_k &= \widetilde{c}_k = -\frac{\sigma}{2} \frac{\Delta t}{h_y^2}, \qquad \widetilde{b}_k = 1 + \sigma \frac{\Delta t}{h_y^2}, \\ \widetilde{\xi}_{j,k}^{n+1/2} &= u_{j,k}^{n+1/2} + \frac{\sigma}{2} \Delta t \, \lambda_{xx} \, u_{j,k}^{n+1/2} - k \, \Delta t \, u_{j,k}^{n+1/2} + \Delta t \, f_{j,k}^{n+1/2}. \end{split}$$

Легко видеть, что для обеих подсхем достаточное условие сходимости прогонки (4.16) выполняется.

8. Схема со стабилизирующей поправкой

Ещё одним способом интерпретации неявной разностной схемы (7.3), аппроксимирующей двумерное дифференциальное уравнение параболического типа (7.1), является **схема со стабилизирующей поправкой**, рекомендуемая для использования в случае, если существует особенность поведения (например, осцилляции) искомой функции u в одном из пространственных направлений (в данном случае по координате y):

$$\frac{u_{j,k}^{n+1/2} - u_{j,k}^{n}}{\Delta t} = \sigma \frac{u_{j+1,k}^{n+1/2} - 2u_{j,k}^{n+1/2} + u_{j-1,k}^{n+1/2}}{h_{x}^{2}} + \sigma \frac{u_{j,k+1}^{n} - 2u_{j,k}^{n} + u_{j,k-1}^{n}}{h_{y}^{2}} - k u_{j,k}^{n+1/2} + f_{j,k}^{n},$$

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n+1/2}}{\Delta t} = \sigma \frac{u_{j,k+1}^{n+1} - 2u_{j,k}^{n+1} + u_{j,k-1}^{n+1}}{h_{\nu}^{2}} - \sigma \frac{u_{j,k+1}^{n} - 2u_{j,k}^{n} + u_{j,k-1}^{n}}{h_{\nu}^{2}}.$$
 (7.14)

Первая подсхема в схеме со стабилизирующей поправкой (7.14) аппроксимируется на первом полушаге интервала Δt и является неявной по координате x и явной по координате y. Вторая подсхема аппроксимируется на втором полушаге интервала Δt , является неявной по координате y и учитывает поправку по этой координате. Каждая из подсхем (как и в случае схемы расщепления (7.7), (7.8)) является абсолютно устойчивой и решается с помощью метода прогонки.

Складывая обе подсхемы и принимая во внимание обозначения (7.6), получаем:

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = \sigma \lambda_{xx} u_{j,k}^{n+1/2} + \sigma \lambda_{yy} u_{j,k}^{n+1} - k u_{j,k}^{n+1/2} + f_{j,k}^{n}.$$

Данное соотношение показывает, что схема со стабилизирующей поправкой (7.14) имеет, как и неявная разностная схема (7.3), первый порядок аппроксимации по времени и второй – по каждой из координат:

$$O(\Delta t, h_x^2, h_y^2).$$

Алгоритм решения схемы со стабилизирующей поправкой (7.14) аналогичен алгоритму решения схемы расщепления (7.7), (7.8). Коэффициенты, соответствующие уравнению (4.10), имеют вид:

• для первой подсхемы

$$a_{j} = c_{j} = -\sigma \frac{\Delta t}{h_{x}^{2}}, \qquad b_{j} = 1 + 2\sigma \frac{\Delta t}{h_{x}^{2}} + k \Delta t, \qquad \xi_{j,k}^{n} = u_{j,k}^{n} + \sigma \Delta t \lambda_{yy} u_{j,k}^{n} + \Delta t f_{j,k}^{n};$$

• для второй подсхемы

$$\widetilde{a}_k = \widetilde{c}_k = -\sigma \frac{\Delta t}{h_v^2}, \qquad \widetilde{b}_k = 1 + 2\sigma \frac{\Delta t}{h_v^2}, \qquad \widetilde{\xi}_{j,k}^{n+1/2} = u_{j,k}^{n+1/2} - \sigma \Delta t \lambda_{yy} u_{j,k}^n.$$

Легко видеть, что для обеих подсхем достаточное условие сходимости прогонки (4.16) выполняется.

9. Схема предиктор-корректор

9.1. Методика записи уравнений схемы

Рассмотрим ещё одну интерпретацию неявной разностной схемы (7.3), позволяющую (как и в случае схемы переменных направлений) добиться повышения порядка аппроксимации по времени, – схему предиктор-корректор.

Данная схема требует особого способа расщепления интервала Δt (*см. рисунок*): интервал Δt между точками t^n и t^{n+1} на разностной сетке расщепляется пополам (полученная промежуточная точка обозначена, как $t^{n+1/2}$); интервал $\Delta t/2$ между точками t^n и $t^{n+1/2}$ снова расщепляется пополам (полученная промежуточная точка обозначена, как $t^{n+1/4}$).

На первом полушаге интервала $\Delta t/2$ записывается неявная разностная схема, в которой учитывается только производная второго порядка по координате x:

$$\frac{u_{j,k}^{n+1/4} - u_{j,k}^n}{\Delta t/2} = \sigma \frac{u_{j+1,k}^{n+1/4} - 2u_{j,k}^{n+1/4} + u_{j-1,k}^{n+1/4}}{h_r^2}.$$
(7.15)

На втором полушаге интервала $\Delta t/2$ записывается неявная разностная схема, в которой учитывается только производная второго порядка по координате y:

$$\frac{u_{j,k}^{n+1/2} - u_{j,k}^{n+1/4}}{\Delta t/2} = \sigma \frac{u_{j,k+1}^{n+1/2} - 2u_{j,k}^{n+1/2} + u_{j,k-1}^{n+1/2}}{h_{\nu}^{2}}.$$
(7.16)

Результатом последовательного решения подсхем (7.15), (7.16), называемых в совокупности **предиктором**, являются значения функции u на шаге по времени (n+1/2). Для завершения расчётов на всём интервале Δt используется поправочное разностное соотношение, называемое **корректором**:

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = \sigma \frac{u_{j+1,k}^{n+1/2} - 2u_{j,k}^{n+1/2} + u_{j-1,k}^{n+1/2}}{h_{x}^{2}} + \sigma \frac{u_{j,k+1}^{n+1/2} - 2u_{j,k}^{n+1/2} + u_{j,k-1}^{n+1/2}}{h_{y}^{2}} - \frac{-k u_{j,k}^{n+1/2} + f_{j,k}^{n+1/2}}{h_{y}^{2}}.$$
(7.17)

Таким образом, схема предиктор-корректор в случае двумерных задач состоит из трёх подсхем.

9. Схема предиктор-корректор

9.2. Характеристика подсхем

Каждая из подсхем, составляющих предиктор (7.15), (7.16), является абсолютно устойчивой и решается с помощью метода прогонки. Коэффициенты, соответствующие уравнению (4.10), имеют вид:

• для первой подсхемы предиктора (7.15)

$$a_{j} = c_{j} = -\frac{\sigma}{2} \frac{\Delta t}{h_{x}^{2}}, \qquad b_{j} = 1 + \sigma \frac{\Delta t}{h_{x}^{2}}, \qquad \xi_{j,k}^{n} = u_{j,k}^{n};$$

• для второй подсхемы предиктора (7.16)

$$\widetilde{a}_k = \widetilde{c}_k = -\frac{\sigma}{2} \frac{\Delta t}{h_v^2}, \qquad \widetilde{b}_k = 1 + \sigma \frac{\Delta t}{h_v^2}, \qquad \widetilde{\xi}_{j,k}^{n+1/4} = u_{j,k}^{n+1/4}.$$

Легко видеть, что для обеих подсхем достаточное условие сходимости прогонки (4.16) выполняется.

Правая часть корректора (7.17) аппроксимируется относительно точки $t^{n+1/2}$. Это означает, что разностный оператор в левой части является центральной конечной разностью, которая, как известно, имеет второй порядок аппроксимации. Следовательно, роль корректора (7.17) в схеме предиктор-корректор (7.15)-(7.17) заключается в повышении порядка аппроксимации схемы по времени:

$$O(\Delta t^2, h_x^2, h_y^2),$$

что делает её более точной по сравнению со схемой расщепления (7.7), (7.8).

Для решения корректора (7.17) используется рекуррентное соотношение, которое с учётом обозначений (7.6) имеет вид:

$$u_{j,k}^{n+1} = u_{j,k}^{n} + \sigma \Delta t \lambda_{xx} u_{j,k}^{n+1/2} + \sigma \Delta t \lambda_{yy} u_{j,k}^{n+1/2} - k \Delta t u_{j,k}^{n+1/2} + \Delta t f_{j,k}^{n+1/2}.$$
 (7.18)

Итак, роль предиктора (7.15), (7.16) в схеме предиктор-корректор (7.15)-(7.17) заключается в обеспечении абсолютной устойчивости всей схемы; роль корректора (7.17) – в повышении порядка аппроксимации схемы по времени.

9. Схема предиктор-корректор

9.3. Алгоритм решения

Приведём алгоритм решения (в виде блок-схемы) схемы предиктор-корректор (7.15)-(7.17), являющейся наиболее сложной интерпретацией неявной разностной схемы (7.3), аппроксимирующей двумерное дифференциальное уравнение параболического типа (7.1).

Задание начальных условий:

цикл по
$$j = 1, ..., N_x$$
; цикл по $k = 1, ..., N_y$:

$$u_{j,k}^0 = \xi(x_j, y_k)$$

Цикл по $k = 2, ..., N_y - 1$:

Определение α_1, β_1 из левого граничного условия по x

Цикл по $j = 2, ..., N_x - 1$: расчёт $a_j, b_j, c_j, \xi_{j,k}^n, \alpha_j, \beta_j$

Определение $u_{N_x,k}^{n+1/4}$ из правого граничного условия по x

Цикл по $j = N_x - 1, ..., 1$: $u_{j,k}^{n+1/4} = \alpha_j u_{j+1,k}^{n+1/4} + \beta_j$

Цикл по $j = 2, ..., N_x - 1$:

Определение $\widetilde{\alpha}_1,\widetilde{\beta}_1$ из левого граничного условия по у

Цикл по $k=2,...,N_y-1$: расчёт $\tilde{a}_k,\tilde{b}_k,\tilde{c}_k,\tilde{\xi}_{j,k}^{n+1/4},\tilde{\alpha}_k,\tilde{\beta}_k$

Определение $u_{j,N_{y}}^{n+1/2}$ из правого граничного условия по y

Цикл по $k = N_y - 1, ..., 1$: $u_{j,k}^{n+1/2} = \widetilde{\alpha}_k u_{j,k+1}^{n+1/2} + \widetilde{\beta}_k$

Цикл по $j=2,...,N_x-1$; цикл по $k=2,...,N_y-1$:

 $u_{j,k}^{n+1} = u_{j,k}^n + \sigma \Delta t \lambda_{xx} u_{j,k}^{n+1/2} + \sigma \Delta t \lambda_{yy} u_{j,k}^{n+1/2} - k \Delta t u_{j,k}^{n+1/2} + \Delta t f_{j,k}^{n+1/2};$

определение $u_{1,\,k}^{\,n+1},u_{N_{x}\,,\,k}^{\,n+1},u_{\,j,\,1}^{\,n+1},u_{\,j,\,N_{\,y}}^{\,n+1}$ из граничных условий.

10. Сравнительная характеристика изученных разностных схем

В заключение приведём сравнительную характеристику разностных схем, аппроксимирующих двумерное дифференциальное уравнение параболического типа, не содержащее первых производных по координатам x и y:

$$\frac{\partial u}{\partial t} = \sigma \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - k u + f(t, x, y); \qquad k \ge 0, \quad \sigma > 0.$$

При записи разностных схем использованы обозначения (7.6).

1. Явная разностная схема

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = \sigma \lambda_{xx} u_{j,k}^{n} + \sigma \lambda_{yy} u_{j,k}^{n} - k u_{j,k}^{n} + f_{j,k}^{n}.$$

- Имеет порядок аппроксимации $O(\Delta t, h_x^2, h_y^2)$.
- ullet Условно устойчива $\Delta t \leq \left(\frac{2\,\sigma}{h_x^2} + \frac{2\,\sigma}{h_y^2} + \frac{k}{2}\right)^{-1}.$
- Решается с помощью рекуррентного соотношения (7.5).
 - 2. Схема расщепления

$$\frac{u_{j,k}^{n+1/2} - u_{j,k}^{n}}{\Delta t} = \sigma \lambda_{xx} u_{j,k}^{n+1/2} - k u_{j,k}^{n+1/2} + f_{j,k}^{n}, \qquad \frac{u_{j,k}^{n+1} - u_{j,k}^{n+1/2}}{\Delta t} = \sigma \lambda_{yy} u_{j,k}^{n+1}.$$

- Имеет порядок аппроксимации $O(\Delta t, h_x^2, h_y^2)$.
- Абсолютно устойчива.
- Каждая подсхема решается с помощью метода прогонки.
 - 3. Схема переменных направлений

$$\frac{u_{j,k}^{n+1/2} - u_{j,k}^{n}}{\Delta t} = \frac{\sigma}{2} \lambda_{xx} u_{j,k}^{n+1/2} + \frac{\sigma}{2} \lambda_{yy} u_{j,k}^{n},$$

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n+1/2}}{\Delta t} = \frac{\sigma}{2} \lambda_{xx} u_{j,k}^{n+1/2} + \frac{\sigma}{2} \lambda_{yy} u_{j,k}^{n+1} - k u_{j,k}^{n+1/2} + f_{j,k}^{n+1/2}.$$

- ullet Имеет порядок аппроксимации $O(\Delta t^2, h_x^2, h_y^2)$.
- Абсолютно устойчива.
- Каждая подсхема решается с помощью метода прогонки.
 - 4. Схема со стабилизирующей поправкой

$$\frac{u_{j,k}^{n+1/2} - u_{j,k}^{n}}{\Delta t} = \sigma \lambda_{xx} u_{j,k}^{n+1/2} + \sigma \lambda_{yy} u_{j,k}^{n} - k u_{j,k}^{n+1/2} + f_{j,k}^{n},$$

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n+1/2}}{\Delta t} = \sigma \lambda_{yy} u_{j,k}^{n+1} - \sigma \lambda_{yy} u_{j,k}^{n}.$$

- Имеет порядок аппроксимации $O(\Delta t, h_x^2, h_y^2)$.
- Абсолютно устойчива.
- Каждая подсхема решается с помощью метода прогонки.
 - 5. Схема предиктор-корректор

$$\frac{u_{j,k}^{n+1/4} - u_{j,k}^{n}}{\Delta t/2} = \sigma \lambda_{xx} u_{j,k}^{n+1/4}, \qquad \frac{u_{j,k}^{n+1/2} - u_{j,k}^{n+1/4}}{\Delta t/2} = \sigma \lambda_{yy} u_{j,k}^{n+1/2};$$

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = \sigma \lambda_{xx} u_{j,k}^{n+1/2} + \sigma \lambda_{yy} u_{j,k}^{n+1/2} - k u_{j,k}^{n+1/2} + f_{j,k}^{n+1/2}.$$

- Имеет порядок аппроксимации $O(\Delta t^2, h_x^2, h_y^2)$.
- Абсолютно устойчива.
- Каждая из подсхем предиктора решается с помощью метода прогонки; корректор (третья подсхема) с помощью рекуррентного соотношения (7.18).

Задания для самоконтроля

1. Дифференциальное уравнение

$$\frac{\partial u}{\partial t} = 0.2 \frac{\partial^2 u}{\partial x^2} + 0.3 \frac{\partial^2 u}{\partial y^2} - 50u + 16xy, \qquad x \in [0, 1], \quad y \in [0, 1], \quad t \in [0, 1]$$

аппроксимируется явной разностной схемой

$$\frac{u_{j,k}^{n+1} - u_{j,k}^{n}}{\Delta t} = 0.2\lambda_{xx} u_{j,k}^{n} + 0.3\lambda_{yy} u_{j,k}^{n} - 50u_{j,k}^{n} + 16(j-1)(k-1)h_{x}h_{y}.$$

Определите, какое из представленных ниже условий обеспечит устойчивость данной разностной схеме, если $h_x = h_y = 0.1$.

<> A.	$\Delta t \le 0.1$	<>Д.	$\Delta t \le \frac{1}{60} \approx 0.017$
<> Б.	$\Delta t \le \frac{1}{40} = 0,025$	<> E.	$\Delta t \le \frac{1}{100} = 0.01$
<> B.	$\Delta t \le \frac{1}{50} = 0.02$	<>Ж.	$\Delta t \le \frac{1}{102,5} \approx 0,00976$
<> Γ.	$\Delta t \le \frac{1}{52,5} \approx 0,019$	<>3.	$\Delta t \le \frac{1}{105} \approx 0,0095$

2. Выберите из представленных ниже разностных соотношений те, которые составляют схему расщепления, аппроксимирующую дифференциальное уравнение:

$$\frac{\partial u}{\partial t} = 5 \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial y^2} - 9u.$$

3. Выберите из представленных ниже разностных соотношений те, которые составляют схему переменных направлений, аппроксимирующую дифференциальное уравнение:

$$\frac{\partial u}{\partial t} = 7 \frac{\partial^2 u}{\partial x^2} + 8 \frac{\partial^2 u}{\partial y^2} + 13t.$$

4. Выберите из представленных ниже разностных соотношений те, которые составляют схему со стабилизирующей поправкой, аппроксимирующую дифференциальное уравнение:

$$\frac{\partial u}{\partial t} = 7 \frac{\partial^2 u}{\partial x^2} + 8 \frac{\partial^2 u}{\partial y^2} + 13t.$$

5. Выберите из представленных ниже разностных соотношений те, которые составляют схему предиктор-корректор, аппроксимирующую дифференциальное уравнение:

$$\frac{\partial u}{\partial t} = 7 \frac{\partial^2 u}{\partial x^2} + 8 \frac{\partial^2 u}{\partial y^2} - 19 u t.$$

6. Отметьте разностные схемы, имеющие второй порядок аппроксимации по времени.

Явная разностная схема <>

Схема расщепления <>

Схема переменных направлений <>

Схема со стабилизирующей поправкой <>

Схема предиктор-корректор <>

7. Отметьте разностные схемы или их подсхемы, для решения которых не требуется использование метода прогонки.

Явная разностная схема <> Схема расщепления <> Схема переменных направлений <> Схема со стабилизирующей поправкой <> Предиктор (в схеме предиктор-корректор) <> Корректор (в схеме предиктор-корректор) <> 8. Отметьте подсхемы разностных схем, для которых рекуррентным соотношением является прогоночное соотношение, учитывая значение шага по времени, на котором оно должно быть записано.

Значение шага по времени:	n + 1/4	n + 1/2	n+1
Первая подсхема схемы расщепления	<>	<>	<>
Вторая подсхема схемы расщепления	<>	<>	<>
Первая подсхема схемы переменных направлений	<>	<>	<>
Вторая подсхема схемы переменных направлений	<>	<>	<>
Первая подсхема схемы предиктор-корректор	<>	<>	<>
Вторая подсхема схемы предиктор-корректор	<>	<>	<>
Третья подсхема схемы предиктор-корректор	<>	<>	<>