

Trabájo Práctico 3

PageRank

10 de noviembre de 2013

Métodos Numéricos

Integrante	LU	Correo electrónico
Escalante, José	822/06	joe.escalante@gmail.com
Osinski, Andrés	405/07	andres.osinski@gmail.com
Raskovsky, Iván Alejandro	57/07	iraskovsky@dc.uba.ar

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Problema 1	2
	1.1. Lema: $P^t\vec{x}$ preserva la Norma 1 de \vec{x}	2

1. Abstract

Palabras clave:

- .
- •

2. Introducción Teórica

Veamos primero cómo utilizando el algoritmo de Kamvar podemos optimizar el espacio requerido en memoria para el almacenamiento de la matriz P_2 y el tiempo de ejecución requerido para hacer la multiplicación entre matrices y vectores.

Queremos ver que el algoritmo propuesto por [?, Algoritmo 1] es equivalente a la operación $\vec{y} = A\vec{x}$, para $A = (cP' + (1-c)E)^t$, donde P' es la matriz estocástica por filas de transiciones de links ajustada para considerar saltos aleatorios en páginas sin outlinks, y E es la matriz uniforme de teletransportación con valor $\frac{1}{n}$ en cada celda.

Para ello, expandimos las ecuaciones de ambos y veremos que las mismas producen el mismo cálculo.

Primero, la matrix P^t se desarrolla como

$$(cP + (1-c)E)^t \vec{x}$$

Y la matrix de [?, Algoritmo 1] como

$$cP^t\vec{x} + (\|\vec{x}\|_1 - \|\vec{y}\|_2)\vec{v}$$

donde \vec{y} es el vector resultante de $cP^t\vec{x}$ y \vec{v} es el vector de probabilidad uniforme de valor $\frac{1}{n}$ en cada elemento. Luego planteamos la equivalencia

$$(cP + (1 - c)E)^{t}\vec{x}v = cP^{t}\vec{x} + (\|\vec{x}\|_{1} - \|\vec{y}\|_{2})\vec{v}$$

$$cP^{t}\vec{x} + (1 - c)E^{t}\vec{x} = cP^{t}\vec{x} + (\|\vec{x}\|_{1} - \|\vec{y}\|_{2})\vec{v}$$

$$(1 - c)E^{t}\vec{x} = (\|\vec{x}\|_{1} - \|\vec{y}\|_{2})\vec{v}$$

2.1. Lema: $P^t\vec{x}$ preserva la Norma 1 de \vec{x}

Sea P^t una matriz estocástica por columnas, luego los elementos de cada columna suman 1. Luego P^t describe una transformación lineal de \vec{x} donde la suma de los valores de cada x_i se reparte en los y_i resultantes (por ser cada y_i una combinación lineal de los x_i .) Como cada columna de P suma 1, y cada elemento de x se termina multiplicando por los elementos de una columna, y además los valores de P y x son positivos, entonces la ecuación

$$\sum_{i=1}^{n} |x_i|$$

es equivalente a

$$\sum_{i=1}^{n} |y_i|$$

Luego P^t preserva norma 1.

Volviendo al problema, si observamos que la norma 1 de y es

$$\|\vec{y}\|_1 = \|cP^t\vec{x}\|_1$$
$$= c \|\vec{x}\|_1$$

entonces podemos ver que

$$\begin{split} \|\vec{x}\|_1 - \|\vec{y}\|_1 &= \|\vec{x}\|_1 - c \, \|\vec{x}\|_1 \\ &= (1-c) \, \|\vec{x}\|_1 \\ &= (1-c) \, \|\vec{x}\|_1 \end{split}$$

por ende

$$(\|\vec{x}\|_1 - \|\vec{y}\|_1)\vec{v} = (1 - c)\|\vec{x}\|_1 \vec{v}$$

entonces el método de algortimo 1 tiene la forma

$$cP^t\vec{x} + (1-c) \|\vec{x}\|_1 \vec{v}$$

Si observamos la segunda mitad de la definición de P^t , es decir, $(1-c)E^t$, veremos que el producto a la izquierda por \vec{x} resulta en una matrix con la forma

$$E^{t}\vec{x} = \begin{bmatrix} \frac{1-c}{n} \sum_{i=1}^{n} |x_{i}| \\ & \ddots & \\ & \ddots & \\ & & & \ddots & \\ & & \ddots & \\ & & \ddots & \\ & & & \ddots & \\ & & \ddots & \\ & & \ddots & \\ & & & \ddots & \\ & & \ddots$$

Con ello concluimos que los dos términos del algoritmo de Kamvar son equivalentes a la matriz A de transiciones. \blacksquare

3. Desarrollo

4. Resultados

5. Discusión y Conclusiones

A. Referencias

Wikipedia Burden