term term pr distr and inference-multinomial-100

December 8, 2020

```
autoreload modules and utilities
```

```
[1]: %load_ext autoreload %autoreload 2
```

import all necessary libraries/packages

```
import numpy as np
import numpy as np
import pandas as pd

from tqdm.notebook import tqdm
import matplotlib.pyplot as plt

from scipy.stats import entropy as calculate_entropy

from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import StratifiedShuffleSplit

from sklearn.pipeline import Pipeline
from sklearn.pipeline import FeatureUnion
from sklearn.naive_bayes import MultinomialNB, GaussianNB
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

from sklearn.metrics import classification_report, accuracy_score
from sklearn.metrics import f1_score as calculate_f1_score
from sklearn.model_selection import train_test_split, StratifiedKFold
```

Utility functions

```
[3]: z = np.random.randint(20, size=(3, 5))
z
```

```
[3]: array([[ 7, 12, 19, 4, 2], [15, 16, 13, 3, 10], [18, 8, 5, 1, 11]])
```

```
[4]: np.array(map(lambda x: x, [1,2,3]))
```

[4]: array(<map object at 0x0000016386551880>, dtype=object)

```
[5]: ## utilities
     # from utils import clean_text
     import string
     from sklearn.base import TransformerMixin
     import nltk
     from nltk import word_tokenize
     from nltk.stem import WordNetLemmatizer
     nltk.download('stopwords')
     nltk.download('wordnet')
     def clean_text(text: str, lemmatizer = lambda x: x) -> str:
         # removes upper cases
         text = text.lower().strip()
         # removes punctuation
         for char in string.punctuation:
             text = text.replace(char, " ")
         #lematize the words and join back into string text
         text = " ".join([lemmatizer(word) for word in word_tokenize(text)])
         return text
     def calculate_sparsity(matrix):
         non_zero = np.count_nonzero(matrix)
         total_val = np.product(matrix.shape)
         sparsity = (total_val - non_zero) / total_val
         return sparsity
     def data_isvalid(text, analyser, min_character_size, max_character_size):
         return min_character_size <= len(analyser(text)) <= max_character_size</pre>
     def get_pipeline(vectorizer_type, classifier, use_t2pi, min_df=3,_
      →stop_words=None, lemmatizer = lambda x: x):
         vectorizer = CountVectorizer if vectorizer_type == "count" else_
      \hookrightarrowTfidfVectorizer
         models = \Gamma
             ('clean_text', CleanTextTransformer(lemmatizer)),
```

```
("vectorizers", FeatureUnion([
            ('count_binary', CountVectorizer(stop_words=stop_words,_
 →binary=True, min_df=min_df)),
            ("count", vectorizer(stop_words=stop_words, min_df=min_df))
       ])),
   ]
   if use_t2pi:
       models.append(('t2pi_transformer', T2PITransformer()))
   models.append(('classifier', classifier))
   return Pipeline(models)
class CleanTextTransformer(TransformerMixin):
   def __init__(self, lemmatizer):
        self._lemmatizer = lemmatizer
   def fit(self, X, y=None, **fit_params):
       return self
   def transform(self, X, y=None, **fit_params):
       return np.vectorize(lambda x: clean_text(x, self._lemmatizer))(X)
   def __str__(self):
       return "CleanTextTransformer()"
   def __repr__(self):
       return self.__str__()
class T2PITransformer(TransformerMixin):
   Ostaticmethod
   def _max_weight(x, pbar, word_word_pr_distr_prime):
       pbar.update(1)
       return word_word_pr_distr_prime.apply(lambda y: x*y, axis=0).max(1)
   Ostaticmethod
   def _sum_weight(x, pbar, word_word_pr_distr_prime):
       pbar.update(1)
       return word_word_pr_distr_prime.apply(lambda y: x*y, axis=0).sum(1)
   def fit(self, X, y=None, **fit_params):
        X = X[:, :int(X.shape[1]/2)].toarray()
```

```
print("creating term-term co-occurence pr matrix")
        terms = np.arange(X.shape[1])
        X = pd.DataFrame(X, columns=terms)
        self.word_word_pr_distr = pd.DataFrame(data=0.0, columns=terms,__
 →index=terms)
        for term in tqdm(terms):
            self.word_word_pr_distr[term] = X[X[term] > 0].sum(0) / X.sum(0)
        return self
    def transform(self, X, y=None, **fit_params):
        X = X[:, int(X.shape[1]/2):].toarray()
        X = pd.DataFrame(X, columns=self.word_word_pr_distr.columns)
        print("transforming ...")
        # new_sparsity after transform
        sparsity_before = calculate_sparsity(X)
        with tqdm(total=X.shape[0]) as pbar:
            X = X.apply(self._max_weight, axis=1, args=(pbar, self.
 →word_word_pr_distr))
        # new_sparsity after transform
        sparsity after = calculate sparsity(X)
        print("sparsity(X):")
        print(f"=> before {sparsity_before:.4f}")
        print(f"=> after {sparsity_after:.4f}")
        print()
        return X
    def __str__(self):
        return "T2PITransformer()"
    def __repr__(self):
        return self.__str__()
[nltk_data] Downloading package stopwords to
[nltk_data]
                C:\Users\christian\AppData\Roaming\nltk_data...
[nltk_data]
             Package stopwords is already up-to-date!
[nltk_data] Downloading package wordnet to
[nltk_data]
                C:\Users\christian\AppData\Roaming\nltk_data...
             Package wordnet is already up-to-date!
[nltk_data]
```

1 Load Data

```
[25]: print(all_docs.data[0])
```

I think that domestication will change behavior to a large degree. Domesticated animals exhibit behaviors not found in the wild. I don't think that they can be viewed as good representatives of the wild animal kingdom, since they have been bred for thousands of years to produce certain behaviors, etc.

1.0.1 Create Dataframe

```
[26]: text label

0 \n\nI think that domestication will change beh... 0

1 \nI don't like this comment about "Typical" th... 3

2 \n<apparently you're not a woman - my husband ... 1

3 While not exactly a service incident, I had a ... 1

4 \n\nI think I can. Largely as a result of effo... 2
```

1.0.2 Label Frequency

```
[27]: print(data["label"].value_counts())
print()

barlist = plt.bar(categories, data["label"].value_counts())
```

```
plt.title("Frequency of documents")
plt.xticks(categories, list(map(lambda x: x.split(".")[1], categories)))
plt.ylabel('Number of documents')
plt.xlabel('Sentiment expressed in Reviews')

barlist[0].set_color('red')
barlist[1].set_color('green')
barlist[2].set_color('blue')
barlist[3].set_color('grey')
plt.show()
```

1 594
2 593
3 564
0 480
Name: label, dtype: int64

The Dataset labels needs to be balanced

1.0.3 Parameters

```
[28]: min_df = 3
    stop_words = "english"

def get_classifier():
    # return GaussianNB()
    return MultinomialNB()

def get_lemmatizer():
    # return WordNetLemmatizer().lemmatize
    return lambda x: x
```

2 Select Valid Data

```
[29]: text label

O \n\nI think that domestication will change beh...  

19 \n\n\tI agree, we spend too much energy on the...  

30 \n[rest deleted...]\n\nYou were a liberal arts...  

36 \nWorse? Maybe not, but it is definately a vi...  

50 \n\n Could you explain what any of the above p...  

[30]: print(data.iloc[0]["text"])
```

I think that domestication will change behavior to a large degree. Domesticated animals exhibit behaviors not found in the wild. I don't think that they can be viewed as good representatives of the wild animal kingdom, since they have been bred for thousands of years to produce certain behaviors, etc.

```
[31]: print(data["label"].value_counts())
    print()

    barlist = plt.bar(categories, data["label"].value_counts())

    plt.title("Frequency of documents")
    plt.xticks(categories, list(map(lambda x: x.split(".")[1], categories)))
    plt.ylabel('Number of documents')
    plt.xlabel('Sentiment expressed in Reviews')

    barlist[0].set_color('red')
    barlist[1].set_color('green')
    barlist[2].set_color('blue')
    barlist[3].set_color('grey')
    plt.show()
```

- 3 100
- 2 100
- 1 100
- 0 100

Name: label, dtype: int64

2.0.1 initialize input and output

```
[32]: X = data["text"]
y = data['label']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, □
→random_state=42)
```

2.0.2 initialize recursive word infer model

```
('classifier', MultinomialNB())])
[34]: # fit model
      t2pi_model.fit(X_train, y_train)
     creating term-term co-occurence pr matrix
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=786.0),
      →HTML(value='')))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=300.0),
      →HTML(value='')))
     sparsity(X):
     => before 0.9620
     => after 0.9620
[34]: Pipeline(steps=[('clean_text', CleanTextTransformer()),
                      ('vectorizers',
                       FeatureUnion(transformer_list=[('count_binary',
                                                       CountVectorizer(binary=True,
                                                                       min_df=3)),
                                                       ('count',
                                                       CountVectorizer(min_df=3))])),
                      ('t2pi_transformer', T2PITransformer()),
                      ('classifier', MultinomialNB())])
[35]: y_pred = t2pi_model.predict(X_test) #predict testing data
      print(classification_report(y_test, y_pred))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0), HTML(value='')))
     sparsity(X):
     => before 0.9645
     => after 0.9645
```

support	f1-score	recall	precision	
31	0.61	0.58	0.64	0
21	0.60	0.67	0.54	1
25	0.61	0.60	0.62	2

3	0.50	0.48	0.49	23
accuracy			0.58	100
macro avg	0.58	0.58	0.58	100
weighted avg	0.58	0.58	0.58	100

2.0.3 Initialize models

```
[36]: # normal model
     count_model = get_pipeline("count", get_classifier(), use_t2pi=False,__
      min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
     count_sw_model = get_pipeline("count", get_classifier(), use_t2pi=False,__

_min_df=min_df, stop_words=stop_words, lemmatizer = get_lemmatizer())

     tfidf_model = get_pipeline("tfidf", get_classifier(), use_t2pi=False,__
      →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
     tfidf_sw_model = get_pipeline("tfidf", get_classifier(), use_t2pi=False,__
      min df=min df, stop words=stop words, lemmatizer = get_lemmatizer())
     # model
     t2pi_count_model = get_pipeline("count", get_classifier(), use_t2pi=True,_
      →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
     t2pi_count_sw_model = get_pipeline("count", get_classifier(), use_t2pi=True,_

_min_df=min_df, stop_words=stop_words, lemmatizer = get_lemmatizer())

     t2pi_tfidf_model = get_pipeline("tfidf", get_classifier(), use_t2pi=True,_u
      →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
     t2pi_tfidf sw_model = get_pipeline("tfidf", get_classifier(), use_t2pi=True,__
      models = {
         "count_model": count_model,
         "count sw model": count model,
         "tfidf_model": tfidf_model,
         "tfidf_sw_model": tfidf_sw_model,
         "t2pi_count_model": t2pi_count_model,
         "t2pi_count_sw_model": t2pi_count_sw_model,
         "t2pi_tfidf_model": t2pi_tfidf_model,
         "t2pi_tfidf_sw_model": t2pi_tfidf_sw_model
```

2.0.4 Running Cross validation on all Models

```
[37]: split size = 5
     skf = StratifiedKFold(n_splits=split_size, shuffle=True, random_state=100)
     macro_f1_scores, weighted_f1_scores, accuracies = [], [], []
     for train_index, test_index in skf.split(X, y):
        index += 1
        x_train_fold, x_test_fold = X.iloc[train_index], X.iloc[test_index]
        y_train_fold, y_test_fold = y.iloc[train_index], y.iloc[test_index]
        accuracies.append([])
        macro_f1_scores.append([])
        weighted_f1_scores.append([])
        for model_name, model in models.items():
            print(f' \rightarrow \{index\}. \{model\_name\} \n{"="*100}\n')
            model.fit(x_train_fold, y_train_fold)
            y_pred = model.predict(x_test_fold)
            accuracy = accuracy_score(y_test_fold, y_pred)
            weighted_f1_score = calculate_f1_score(y_test_fold, y_pred,__
      →average='weighted')
            macro_f1_score = calculate_f1_score(y_test_fold, y_pred,__
      →average='macro')
            weighted_f1_scores[-1].append(weighted_f1_score)
            macro_f1_scores[-1].append(macro_f1_score)
            accuracies[-1].append(accuracy)
    -> 1. count_model
    ______
    -> 1. count_sw_model
    ______
    =============
    -> 1. tfidf model
    -> 1. tfidf_sw_model
    ______
```

```
-> 1. t2pi_count_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=802.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9629
=> after 0.9629
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9642
=> after 0.9642
-> 1. t2pi_count_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=611.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9820
=> after 0.9820
transforming ...
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
 →HTML(value='')))
sparsity(X):
=> before 0.9852
=> after 0.9852
-> 1. t2pi_tfidf_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=802.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9629
=> after 0.9629
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9642
=> after 0.9642
-> 1. t2pi tfidf sw model
_____
_____
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=611.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
 →HTML(value='')))
```

```
sparsity(X):
=> before 0.9820
=> after 0.9820
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9852
=> after 0.9852
-> 2. count model
______
==============
-> 2. count_sw_model
______
-> 2. tfidf_model
_____
_____
-> 2. tfidf_sw_model
______
-> 2. t2pi_count_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=838.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9638
=> after 0.9638
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9671
=> after 0.9671
-> 2. t2pi_count_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=642.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9826
=> after 0.9826
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9853
=> after 0.9853
-> 2. t2pi_tfidf_model
_____
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=838.0),
→HTML(value='')))
transforming ...
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9638
=> after 0.9638
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9671
=> after 0.9671
-> 2. t2pi_tfidf_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=642.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9826
=> after 0.9826
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9853
=> after 0.9853
-> 3. count_model
______
===============
```

```
-> 3. count_sw_model
______
-> 3. tfidf model
_____
==============
-> 3. tfidf sw model
===============
-> 3. t2pi_count_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=834.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9634
=> after 0.9634
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9678
=> after 0.9678
-> 3. t2pi_count_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=634.0),
→HTML(value='')))
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0), u
 →HTML(value='')))
sparsity(X):
=> before 0.9819
=> after 0.9819
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9873
=> after 0.9873
-> 3. t2pi_tfidf_model
_____
=============
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=834.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
 →HTML(value='')))
sparsity(X):
=> before 0.9634
=> after 0.9634
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9678
=> after 0.9678
-> 3. t2pi_tfidf_sw_model
```

```
_____
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=634.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9819
=> after 0.9819
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9873
=> after 0.9873
-> 4. count_model
______
============
-> 4. count_sw_model
______
_____
-> 4. tfidf model
______
______
-> 4. tfidf_sw_model
______
-> 4. t2pi_count_model
______
_____
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=833.0),
 →HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9641
=> after 0.9641
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9649
=> after 0.9649
-> 4. t2pi_count_sw_model
______
_____
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=640.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9826
=> after 0.9826
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9852
=> after 0.9852
```

```
-> 4. t2pi_tfidf_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=833.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9641
=> after 0.9641
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9649
=> after 0.9649
-> 4. t2pi_tfidf_sw_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=640.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9826
=> after 0.9826
transforming ...
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9852
=> after 0.9852
-> 5. count_model
______
-> 5. count_sw_model
_____
-> 5. tfidf_model
-> 5. tfidf_sw_model
______
============
-> 5. t2pi_count_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=846.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9637
=> after 0.9637
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
```

```
=> before 0.9686
=> after 0.9686
-> 5. t2pi_count_sw_model
  ------
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=647.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0), U
→HTML(value='')))
sparsity(X):
=> before 0.9823
=> after 0.9823
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
→HTML(value='')))
sparsity(X):
=> before 0.9867
=> after 0.9867
-> 5. t2pi_tfidf_model
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=846.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0),
→HTML(value='')))
sparsity(X):
=> before 0.9637
=> after 0.9637
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
     →HTML(value='')))
    sparsity(X):
    => before 0.9686
    => after 0.9686
    -> 5. t2pi_tfidf_sw_model
    ______
    creating term-term co-occurence pr matrix
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=647.0),
     →HTML(value='')))
    transforming ...
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=320.0), u
     →HTML(value='')))
    sparsity(X):
    => before 0.9823
    => after 0.9823
    transforming ...
    HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=80.0),
     →HTML(value='')))
    sparsity(X):
    => before 0.9867
    => after 0.9867
[38]: model_names = list(models.keys())
     accuracy = pd.DataFrame(data=np.array(accuracies), columns=model_names)
     weighted_f1_score = pd.DataFrame(data=np.array(weighted_f1_scores),_
      macro_f1_score = pd.DataFrame(data=np.array(macro_f1_scores),__
      accuracy.loc["mean"] = accuracy.mean(0)
```

transforming ...

```
weighted_f1_score.loc["mean"] = weighted_f1_score.mean(0)
      macro_f1_score.loc["mean"] = macro_f1_score.mean(0)
[39]: accuracy.head(split_size+1)
[39]:
            count_model
                          count_sw_model
                                           tfidf_model
                                                         tfidf_sw_model
      0
                  0.6375
                                   0.6375
                                                 0.5875
                                                                  0.7375
      1
                  0.6375
                                   0.6375
                                                 0.6250
                                                                  0.6375
      2
                                                 0.6625
                  0.6625
                                   0.6625
                                                                  0.6875
      3
                  0.6875
                                   0.6875
                                                 0.7000
                                                                  0.7375
      4
                  0.5375
                                   0.5375
                                                 0.5125
                                                                  0.5750
                  0.6325
                                   0.6325
                                                 0.6175
                                                                  0.6750
      mean
            t2pi_count_model
                                t2pi_count_sw_model
                                                      t2pi_tfidf_model
      0
                       0.6500
                                              0.7250
                                                                 0.6875
      1
                       0.6625
                                              0.6250
                                                                 0.6500
      2
                       0.6500
                                              0.6750
                                                                 0.6500
      3
                       0.7000
                                              0.7875
                                                                 0.6875
      4
                                                                 0.5500
                       0.5375
                                              0.5875
                       0.6400
                                              0.6800
                                                                 0.6450
      mean
            t2pi_tfidf_sw_model
      0
                          0.7375
      1
                          0.6250
      2
                          0.7125
      3
                          0.7750
                          0.6000
      4
                          0.6900
      mean
     weighted_f1_score.head(split_size+1)
[40]:
[40]:
            count_model
                          count_sw_model
                                            tfidf_model
                                                         tfidf_sw_model
      0
                0.634565
                                 0.634565
                                               0.585685
                                                                0.733217
      1
                0.639268
                                 0.639268
                                               0.624410
                                                                0.633373
      2
                0.658217
                                 0.658217
                                               0.657095
                                                                0.685195
      3
                0.691322
                                 0.691322
                                               0.706019
                                                                0.743601
                                 0.535197
                                                                0.572718
                0.535197
                                               0.511022
                0.631714
                                 0.631714
                                               0.616846
                                                                0.673621
      mean
                                                      t2pi_tfidf_model
            t2pi_count_model
                                t2pi_count_sw_model
      0
                     0.642970
                                            0.721312
                                                               0.685958
      1
                     0.660150
                                                               0.648253
                                            0.621789
      2
                     0.644049
                                            0.668560
                                                               0.646957
      3
                     0.706099
                                            0.789868
                                                               0.694723
                     0.533737
                                            0.586582
                                                               0.552751
                     0.637401
                                            0.677623
                                                               0.645728
      mean
```

```
t2pi_tfidf_sw_model
      0
                        0.734565
      1
                        0.618175
      2
                        0.709398
      3
                        0.778321
      4
                        0.597289
                        0.687550
      mean
[41]:
     macro_f1_score.head(split_size+1)
[41]:
            count_model
                          count_sw_model
                                                         tfidf_sw_model
                                           tfidf_model
      0
               0.634565
                                 0.634565
                                              0.585685
                                                                0.733217
      1
               0.639268
                                 0.639268
                                                                0.633373
                                              0.624410
      2
               0.658217
                                 0.658217
                                              0.657095
                                                                0.685195
      3
               0.691322
                                 0.691322
                                              0.706019
                                                                0.743601
      4
               0.535197
                                 0.535197
                                              0.511022
                                                                0.572718
               0.631714
                                 0.631714
                                              0.616846
                                                                0.673621
      mean
            t2pi_count_model
                               t2pi_count_sw_model
                                                     t2pi_tfidf_model
      0
                     0.642970
                                           0.721312
                                                               0.685958
      1
                     0.660150
                                           0.621789
                                                               0.648253
      2
                     0.644049
                                           0.668560
                                                               0.646957
      3
                     0.706099
                                           0.789868
                                                               0.694723
      4
                     0.533737
                                           0.586582
                                                               0.552751
                     0.637401
                                           0.677623
                                                               0.645728
      mean
            t2pi_tfidf_sw_model
      0
                        0.734565
      1
                        0.618175
      2
                        0.709398
      3
                        0.778321
      4
                        0.597289
                        0.687550
      mean
 []:
 []:
```