Vaja 40, Wheatstonov most

Jure Kos

20.4.2022

Uvod

Zvezo med pritisnjeno napetostjo U in električnim tokom I, ki teče skozi prevodnik, opisuje Ohmov zakon. Faktor, ki povezuje napetost in tok se imenuje upor R in ima enoto Ω (Ohm).

$$R = \frac{U}{I} \tag{1}$$

Upor je odvisen od dolžine l in preseka S prevodnika ter od specifičnega upora ζ . Za upornike s konstantnim presekom velja enačba (2).

$$R = \frac{\zeta l}{S},\tag{2}$$

Upor lahko zelo natančno merimo z Wheatstonovim mostom, na katerem primerjamo napetosti v dveh tokovnih vejah električnega kroga. Slika 1 prikazuje shemo Wheatstonovega mostu uporabljenega pri tej vaji.

Veja AB je narejena iz enakomerno debele uporovne žice, s prilagajanjem dolžine a pa lahko določimo položaj, ko v veji CD ni toka. V tem položaju velja enakost iz enačbe (3), pri čemer je R znan upor, l pa dolžina uporovne žice.

Iz enačbe $R_1/R_2=R_3/R_4$ lahko izračunamo enega od uporov, če so drugi trije znani.

$$R_x = R_0 \frac{a}{l-a} \tag{3}$$

Naloga

Izmeriti upora danega upornika in žice. Izračunati specifični upor žice.

Potrebščine

- 1. Ravnilo z merilno žico in drsnikom,
- 2. usmernik 2 V,
- 3. uporovna dekada,
- 4. ampermeter,
- 5. 8 žic z bananami,
- 6. merjenca: upornik in žica.

Meritve

Dimenzije žice:

dolžina [cm] $100 \pm 0, 1$ premer [mm] $0,05 \pm 0,05$

Meritve neznanega upornika

morrow mezmanega apomma		
a [cm]	L-a [cm]	
83,3	17,1	
70,7	29,8	
61,0	38,9	
55,0	46,3	
49,1	51,8	
43,6	55,6	
40,6	59,9	
36,4	62,8	
34,0	65,5	
	83,3 70,7 61,0 55,0 49,1 43,6 40,6 36,4	

Meritve upora žice

$R [\Omega]$	a [cm]	L-a [cm]
1	85,9	14,9
2	74,4	25,6
3	66,5	33,6
4	59,3	40,5
5	53,8	46,0
6	49,3	50,6
7	45,4	54,1
8	42,1	57,6
9	39,4	60,3

Obdelava meritev

Z uporabo enačbe

$$R_x = R_0 \frac{a}{l - a}$$

lahko izračunamo vrednost upora R_x za vsako meritev iz tabele 2. Iz meritev lahko izračunamo povprečje in ocenimo napako meritve. Dobljena vrednost neznanega upora je

$$R_x = 4750\Omega \pm 0, 1\Omega$$

Enak postopek izvedemo še za meritve upora žice. Iz izračunanega povprečja in ocenjene napake je upor žice enak

$$R_x = 5,9 \pm 0,1\Omega$$

Iz dobljenega rezultata lahko izračunamo še specifični upor žice, ki je enak

$$\zeta = 4, 6 \cdot 10^{-2} \frac{\Omega \ mm^2}{m} \pm 0, 1 \frac{\Omega \ mm^2}{m}$$