STRICTEMENT CONFIDENTIEL

RÉSERVÉ EXCLUSIVEMENT AUX COMMERÇANTS CHARGÉS DU SERVICE PHILIPS

COPYRIGHT 1932

Ned. Ver. v. Historie v/d Radio

POSTE RECEPTEUR A TROIS LAMPES POUR COURANT ALTERNATIF

TYPE 2514

GENERALITES:

C'est le premier récepteur avec appareil d'alimentation incorporé qui ait été lancé par Philips sur le marché. Le transformateur d'alimentation ne convient, dans la plus grande partie des appareils fournis, que pour une seule tension primaire. Le transformateur de sortie possède un enroulement secundaire pour un haut-parleur à forte impédance. L'appareil est construit pour être utilisé avec une antenne extérieure.

MONTAGE:

L'antenne est couplée capacitivement au moyen de C7, C8 ou C9 au premier circuit accordé; dans celui-ci on emploie des bobines toroïdales avec lesquelles on prévient l'induction magnétique réciproque des circuits primaires et secondaires. La grille de la lampe à grille-écran H.F. est raccordée, à travers une résistance de 500 ohms (R4), au circuit primaire. Cette résistance prévient que des perturbations de fréquence très élevée ne pénètrent dans l'appareil. Le deuxième circuit accordé est incorporé dans le circuit plaque de la lampe H.F. auquel est couplée directement la détectrice. Il convient de remarquer que le circuit secondaire n'a que deux portées de longueurs d'ondes: 200—600 m et 1000—2000 m., tandis que dans le circuit primaire la gamme des ondes courtes est

encore sub-divisée en deux parties. On a procédé de la sorte, parce que lors de l'emploi du plus grand condensateur de couplage d'antenne (C9), il est connecté en parallèle avec le circuit primaire une si grande capacité — 280 $\mu\mu$ F en série avec la capacité d'antenne — que pour les longueurs d'ondes de 200—400 m une self-induction moindre, est nécessaire.

La détectrice est à réaction, elle est suivie par un étage amplification basse fréquence dans lequel la penthode B 443 est employée comme lampe finale. L'enroulement secondaire du transfo de sortie est mis à la terre.

La dériviation médiane sur l'enroulement de chauffage S4 du transfo d'alimentation est obtenue au moyen d'un petit potentiomètre R8-R9; ce point n'est pas, comme dans les nouveaux appareils, relié directement au châssis et à la terre, mais par moyen d'un condensateur de $0,1~\mu F$.

DEMONTAGE:

Pour le contrôle des lampes et le mesurage de tensions et de courants pendant le fonctionnement, il suffit généralement d'enlever la glissière de la partie postérieure de l'appareil et de court-circuiter de nouveau le contact de sûreté à l'aide d'un morceau de métal isolé d'un côté (numéro codique 09.99.030).

Afin de pouvoir atteindre la partie intérieure de l'appareil, il faut enlever le capot qui est fixé au moyen de 10 vis. Pour quelques réparations il est indispensable d'enlever les boutons. On les détache en enlevant la cire noire des trous de vis en question et en dévissant ensuite les vis pointeau.

REMPLACEMENT D'ACCESSOIRES:

Condensateur primaire d'accord.

Dessouder les connexions du condensateur et enlever le bouton de commande. Après quoi, on dévisse les deux vis fixant le condensateur sur la plaque médiane (22 fig. 6) et on enlève ensuite la rondelle ou la goupille contre laquelle appuie le spiral de l'axe d'entraînement. Ce dernier peut alors être enlevé tout entier et alors le condensateur peut être retiré de l'appareil. Sans pincettes spéciales, il sera parfois très difficile de refermer complètement cette petite rondelle à savoir quand il s'agit d'axes entraîneurs où le spiral n'appuie pas contre une goupille, mais contre une rondelle. C'est pourquoi on peut aussi, au lieu d'une rondelle utiliser une pièce d'arrêt (No. de code 25.090.42) sur l'axe et la fixer à la place voulue.

Disque d'entraînement primaire.

Les appareils type 2514 peuvent, tout aussi bien, être pourvus d'un disque d'entraînement en "Philite" que d'un disque en laiton. Dans ce dernier cas il sera mieux de retirer tout le condensateur d'accord de l'appareil après quoi l'échelle en laiton peut être dévissée et dessoudée de l'axe. Pour remplacer une échelle en "Philite" il n'est pas nécessaire d'enlever le condensateur d'accord, on peut se contenter de retirer l'axe entraîneur. Après avoir dévissé la vis fixant le disque à l'axe du condensateur, il peut glisser sur ce dernier. Si cela était nécessaire, on ferait glisser un peu de côté la self d'uniformisation S15-16 et la boîte de condensateur C13-C14 fixées chacune au moyen de deux vis.

Condensateur d'accord secondaire.

Enlever la goupille ou la cheville de l'axe de la réaction (Procéder avec prudence!, retenir l'extrémité de l'axe!) et retirer de l'appareil l'axe par le bouton. Dévisser l'étrier d'écartement (17 fig. 6) et l'enlever. Après quoi l'on peut procéder de la même façon que pour enlever le condensateur primaire.

Disque entraîneur secondaire.

On pourra remplacer, le plus simplement, tant le disque entraîneur de "Philite" que celui de laiton, en retirant de l'appareil le condensateur secondaire tout entier, comme il a été déjà dit plus haut.

Commutateur de longueurs d'ondes, système de bobines primaire ou secondaire.

Pour remplacer l'un de ces accessoires, il vaudra mieux retirer de l'appareil la paroi intermédiaire tout entière (15 fig. 6) à laquelle ils sont fixés; à cet effet, dévisser le long étrier d'écartement (17 fig. 6) du côté droit, ainsi que les 3 vis fixant la paroi intermédiaire et une plaque d'écranage sur la grande plaque médiane (22 fig. 6). Lorsqu'on aura ensuite fait glisser l'axe hors de la bobine de réaction, on pourra enlever de l'appareil la paroi intermédiaire; après quoi les différents accessoires pourront facilement être remplacés séparément. Lorsque le commutateur de longueurs d'ondes produit de mauvais contact il suffira, le plus souvent, de frotter les surfaces de contact avec de la toile à émeri fine et d'y mettre un peu de vaseline pure. Les ressorts du commutateur de longueurs d'ondes peuvent, si cela résulte nécessaire, être légèrement recourbés sans que l'on ait à démonter un accessoire quelconque.

Bobine de réaction.

Dessouder les ressorts en spirale, enlever la goupille ou la cheville de l'axe de réaction, et retirer cet axe par le bouton. La bobine de réaction pourra alors être remplacée. Avoir soin de replacer la nouvelle bobine exactement de la même façon que l'était la précédente et cela pour éviter que la bobine ne ,,contre-couple" c'est à dire que lors du maniement de la réaction elle n'affaiblisse le son au lieu de l'amplifier. Les ressorts en spirale doivent être soudés à une longueur telle que la tension des deux soit égale et opposée de sorte que la bobine reste immobile dans n'importe quelle position.

R2, R6 et régulateur de l'intensité sonore (R3).

Pour remplacer ces accessoires, il faut enlever, de l'appareil, le bloc H.F. (37 fig. 7) auquel est aussi fixé le cordon pour le raccordement au réseau. A cet effet, dévisser le bouton du régulateur du volume sonore. Enlever le chapeau protecteur du transformateur d'alimentation et dévisser les vis fixant le transformateur au châssis. Il faut alors pousser prudemment le transformateur vers le haut de la sorte le bloc H.F. se trouve entièrement dégagé. Toutes ces opérations devront se faire très prudemment, car pendant ces manipulations, les fils cassent très facilement. Ensuite, dessouder les deux écrous noyés au moyen desquels le bloc H.F. est fixé au paroi gauche; dessouder deux connexions dont l'une va du bloc H.F. vers R4 et l'autre vers le châssis. Pendant qu'on pousse le cordon vers l'intérieur, le bloc peut glisser latéralement. On pourra remplacer l'axe du régulateur de volume sonore en détachant l'écrou noyé dans le bloc. On

Condensateur d'antenne.

la bande de résistance R3.

Le tube contenant les petits condensateurs d'antenne C7-C8-C9 qui se trouve au-dessus du condensateur d'accord primaire, n'est pas fixé de la même manière dans tous les appareils. Dans quelques récepteurs cette fixation a été réalisée au moyen d'un étrier; dans quelques autres, avec un prisonnier vissé à la paroi gauche. Dans ce dernier cas, après avoir dessoudé les connexions, on peut le dévisser avec les doigts.

peut retirer simplement du sillon dans le "Philite"

Fig. 2

PHILIPS RADIO COPYRIGHT 1932

Résistances R1 et R10-R11.

Ces résistances tubulaires sont fixées par un long boulon sur des pièces d'angles. Après avoir dévissé et enlevé ce boulon, les connexions peuvent être dessoudées et la résistance défectueuse remplacée.

Condensateur de grille C6.

Ce petit condensateur sé trouve au-dessous d'une plaque d'écranage qui peut être recourbée vers le haut ou dévissée après avoir dessoudé quelques connexions.

Transformateurs B.F. et de sortie.

Ces transformateurs sont construits ensemble dans un bloc et ne sont pas livrés séparément. Après avoir dessoudé les 4 connexions, on dévisse les 4 écrous des coins du bloc (voir fig. 2); ce dernier peut alors être enlevé.

Dans le cas où seul le transfo de sortie serait défectueux, l'appareil pourrait très bien être employé sans celui-ci. Le bloc des transformateurs reste alors à sa place et après avoir dessoudé les 4 connexions (S-13, S-14) on n'a donc qu'à relier, au lieu de S-13, les douilles de haut-parleur, c'est à dire entre la plaque de L3 et la tension anodique.

Paroi latérale en "Philite" (droite).

Dévisser les supports des lampes (ceux de L4 et L2, L3,) qui sont fixés avec un boulon à la plaque médiane. Pousser ces supports de lampe un peu vers la gauche et dévisser les 3 vis noyées qui relient la paroi latérale à la plaque médiane. Après avoir enlevé les deux boutons et dévissé l'étrier d'écartement (17 fig. 6) et dessoudé une connexion à cette paroi, ce côté pourra être enlevé.

Paroi latérale (gauche).

Enlever les boutons du régulaateur de volume et du condensateur d'accord primaire, dévisser le transformateur d'alimentation, le tube avec condensateurs d'antenne et le bloc haute fréquence (voir cidessus). En poussant ce dernier un peu par côté on a à portée de sa main 3 vis noyées fixant la paroi latérale à la plaque médiane et on peut alors les dévisser. La paroi peut alors être remplacée.

TRANSFORMATEUR D'ALIMENTATION.

a. Fusible

Le transformateur est pourvu d'un fusible à bande, soudé avec du métal rose dont le point de fusion est de 96° C. Lorsqu'un fusible à bande a sauté, ce qui peut être causé soit par un défaut dans l'appareil ou par une mauvaise soudure de la bande, il faut, après réparation, faire fonctionner l'appareil quelque temps, afin d'être sûr que la cause de la perturbation a été supprimée.

b. Commutation pour une autre tension de réseau.

Les appareils qui conviennent pour plusieurs tensions de réseau ont sur le transformateur une petite plaque de commutation qui se trouve à portée lorsqu'on a enlevé le chapeau protecteur (38 fig. 7). Les barrettes doivent être commutées pour les différentes tensions comme il a été indiqué à la fig. 3.

-8-15 8mmsmms 8mms smms co-

-5-5 bwwwwwww.moswows 6-5-5-

c. Remplacement du transformateur.

Le transformateur d'alimentation peut être dévissé sans plus. Les connexions pour les trois types de transformateurs sont indiquées dans la fig. 4.

L'enroulement S2 de tous les transfos est relié aux plaques du tube redresseur L4; l'enroulement S3 au filament de L4, et l'enroulement S4 aux filaments des lampes réceptrices.

PERTURBATIONS ET MESURES ELECTRIQUES.

Pour la recherche des perturbations on suit, en général, les indications de notre manuel de Service. Lorsqu'un appareil ne fonctionne pas, vérifier, lors du contrôle préalable, si l'interrupteur de sûreté à l'arrière de l'appareil fait un bon contact. Il arrive quelquefois, avec cet appareil, que de la résine à souder se trouve dans les douilles des supports de lampes, de sorte qu'une ou plusieurs broches ne produisent pas de contact. Les douilles en question devront être bien nettoyées.

En raccordant la terre à la borne cathode de L1 ou de L2 on se rendra immédiatement compte si le condensateur de terre C15 est ou non défectueux.

Lors d'une interruption éventuelle, le condensateur de terre peut être, sans aucun danger, court-circuité. Le défaut de tension anodique chez toutes les lampes, peut parfois être produit par le court-circuit de l'axe de la réaction ou de l'axe entraîneur du condensateur secondaire avec la couche métallique de la paroi droite de l'appareil.

Entre ce côté et le condensateur d'accord il doit toujours s'y trouver un morceau de presspan.

On trouvera les tensions et les courants les plus importants, mesurés aux supports des lampes, dans le tableau ci-dessous; les tensions pour les lampes réceptrices sont valables pour des mesures contre la cathode. Pour la lampe finale, on choisit comme cathode la borne cathode de l'une des deux autres lampes.

TABLEAU DES TENSIONS ET COURANTS

AVEC LIMITES TOLERABLES.

Lampe	Fonction	Tension anodique	Courant anodique	Tension de grille écran ou-auxiliaire	Tension de chauffage
L1: E442 L2: E415 L3: B443 L4: 506	H.F. Détectrice B.F. Redresseur	150-185 V. 60-110 V. 140-180 V. 2×175 V~ env	0.6-2 mA 3-6 mA 10-15 mA	65-85 V. — 150-185 V. —	3.8-4 V. 3.8-4 V. 3.8-4 V. 3.6-3.9 V.

CONDENSATEURS					
	Valeur	No. de Code	Prix		
C 1 C 2 C 3 C 4 C12	1 μF. 1 " 1 " 2 "	25.110.22			
C 5 C 6	1100 μμF. 170 ,,	25.110.02 25.110.01	12.00		
C 7 C 8 C 9	17 ") 65 " (280 ")	25.110.23	6.00		
C10 C11 C12	830 ,, 830 ,, voir sous	25.127.12 25.127.11	91.25 91.25		
	C1-2-3-4				
C13 C14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.110.21	75:00		
C15	0.1 "	25.110.13	12.00		

RESISTANCES						
	Valeur	No. de Code	Prix			
R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9	15000 Ohms 60 240 , 500 , 0.1 meg. 0.1 , 1 , 120 , 120 , 33500 , }	25.715.08 25.715.91 25.715.11 25.715.24 25.722.71 25.722.71 25.722.73 25.716.93	12.00 6.00 12.00 12.00 6.00			

