0.1 Indices in Contact Homology

Why indices: we want a homology theory so we need (want) a grading to get differentials.

For Lagendrians in $\mathbb{C}^n \times \mathbb{R}$

Definition 0.1.1. The Maslev index: comes for a loop in LGr_n which is the moduli space of Lagrandian n-planes in \mathbb{C}^n .

Remark. $LGr_n = Sp(2n)/U(n)$ and $H_1(LGr_n) = \mathbb{Z}$ with a canonical generator. To get this generator we can equally define the index of a loop.

Definition 0.1.2. $\mu(\Gamma)$ for Γ a loop in LGr_n is given by weighted count of intersection points with Σ the Maslov cycle where choosing some Lagranian $\Lambda \in LGr_n$ then,

$$\Sigma = \{ P \in LGr_n \mid P \not \uparrow \Lambda \}$$