Correction preuve

Alexandre Guillemot

26 septembre 2022

Définition 0.1. (Ordre monomial) Un ordre monomial sur $k[x_1, \dots, x_n]$ est une relation d'ordre \leq sur l'ensemble des $\{x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid \alpha \in \mathbb{N}^n\}$ tq

- 1. \leq est un ordre total (pour tout $x^{\alpha}, x^{\beta} \in k[x_1, \dots, x_n], (x^{\alpha} \leq x^{\beta}) \vee (x^{\beta} \leq x^{\alpha})$).
- 2. $x^{\alpha} \leq x^{\beta} \Rightarrow \forall \gamma \in \mathbb{N}^n, x^{\alpha+\gamma} \leq x^{\beta+\gamma}$
- 3. $1 \le x^{\alpha}$ pour tout $\alpha \in \mathbb{N}^n$.

Notation. On écrira $\alpha \leq \beta$ au lieu de $x^{\alpha} \leq x^{\beta}$.

Proposition 0.1. Soit \leq un ordre sur \mathbb{N}^n satisfaisant les propriétés 1 et 2 de la def 0.1. Alors tfae

- 3. $0_{\mathbb{N}^n} < \alpha, \forall \alpha \in \mathbb{N}^n$
- $4. \leq est \ un \ bon \ ordre: \forall E \subseteq \mathbb{N}^n \ non \ vide, \ E \ contient \ un \ élément \ minimal \ pour <.$

Démonstration. (Preuve originale) (3) \Rightarrow (4) : On raisonne par contraposée : soit $F \neq \emptyset$ une partie de \mathbb{N}^n . Supposons que F n'a pas d'élément minimal. Posons

- 1. $m_1 = \min\{\alpha_1 \in \mathbb{N} \mid \alpha \in F\}$, il existe $\alpha^{(1)} \in F$ tel que $\alpha_1^{(1)} = m_1$ et finalement on pose $F_1 = \{\beta \in F \mid \beta \leq \alpha^{(1)}\}$.
- 2. $m_2 = \min\{\alpha_2 \in \mathbb{N} \mid \alpha \in F_1\}$, il existe $\alpha^{(2)} \in F_1$ tel que $\alpha_1^{(2)} = m_1$, $\alpha_2^{(2)} = m_2$. Enfin on pose $F_2 = \{\beta \in F_1 \mid \beta \leq \alpha^{(2)}\}$.
- 3 :
- 4. $m_n = \min\{\alpha_n \in \mathbb{N} \mid \alpha \in F_{n-1}, \alpha_1 = m_1, \cdots, \alpha_{n-1} = m_{n-1}\}$. Il existe $\alpha^{(n)}$ tel que $\alpha_i^{(n)} = m_i$ pour $i \in [1, n]$. Finalement, on pose $F_n = \{\beta \in F_{n-1} \mid \beta \leq \alpha^{(n)}\}$.

 F_n est infini, et on a $F_n \subseteq F_{n-1} \subseteq \cdots \subseteq F_1 \subseteq F$. Alors soit $\beta \in F_n$ tq $\beta \leq \alpha^{(n)}$, alors $\beta_i \geq \alpha_i^{(n)}$ pour $i \in [1, n]$. En particulier, $\beta - \alpha^{(n)} \in \mathbb{N}^n \setminus \{0\}$. Mais $\beta - \alpha^{(n)} \leq 0$ car sinon $\beta > \alpha^{(n)}$.

Rq 0.1. $n = 2, \leq \geq_{lex} ((a, b) \leq (a', b') \iff (a, b) \geq_{lex} (a', b'))$

- 1. Le il existe du point 2 (en rouge) pose problème. Par exemple, considérer l'ensemble $\mathbb{N}^2\setminus\{0\}$, alors $m_1=0$, et $F_1=\mathbb{N}^2\setminus\{0\}$, et donc $m_2=0$ et il n'existe aucun $(a,b)\in\mathbb{N}^2\setminus\{0\}$ tel que a=0 et b=0.
- 2. Si on rectifie en écrivant $m_2 = \min\{\alpha_2 \in \mathbb{N} \mid \alpha \in F_1, \alpha_1 = m_1\}$, alors le problème survient après : si on prend $\beta \in F_n$, alors $\beta \in F_1$ mais le minimum n'est pas pris sur F_1 mais sur les éléments de F_1 de première coordonnée m_1 donc on ne peut pas comparer facilement β_1 et m_1 . Par exemple, considérons encore $\mathbb{N}^2 \setminus \{0\}$, alors $m_1 = 0$, prenons $\alpha^{(1)} = (0,1)$, $F_1 = \mathbb{N}^2 \setminus \{0\}$. ensuite $m_2 = 1$, $\alpha^{(2)} = (0,1)$ forcément, et $F_2 = \mathbb{N}^2 \setminus \{0\}$. Mais alors $\beta = (1,0) \in F_2$ et n'est pas égal à $\alpha^{(2)}$, et pour autant $\beta \alpha^{(2)} \notin \mathbb{N}^2 \setminus \{0\}$. Il existe bien pourtant des éléments $\beta \in F_2 = \mathbb{N}^2 \setminus \{0\}$ (quoiqu'on doit même pouvoir modifier F pour qu'il n'existe aucun β qui convient, il doit falloir être plus subtil sur le choix des $\alpha^{(i)}$ et peut être même faire attention à l'ordre que l'on choisit pour minimiser les coordonnées)