

BASARA SARASWATHI BHAVAN_MDP N-120

Sec: Sr. DEFINITE INTEGRATION SYNAPSIS Date:12-06-2020

DEFINITE INTEGRALS: SYNOPSIS

1. Newton - Leibnitz formula:

Let
$$\frac{d}{dx}(F(x)) = f(x) \forall x \in (a,b)$$
. Then $\int_a^b f(x) dx = \lim_{x \to b^-} F(x) - \lim_{x \to a^+} F(x)$

Note

a) If a > b, then
$$\int_{a}^{b} f(x) dx = \lim_{x \to b^{+}} F(x) - \lim_{x \to a^{-}} F(x)$$
.

b. If F(x) is continuous at a and b, then $\int_a^b f(x)dx = F(b) - F(a)$.

c. Leibnitz Theorem: If
$$F(x) = \int_{g(x)}^{h(x)} f(t)dt$$
, then $\frac{dF(x)}{dx} = h'(x)f(h(x)) - g'(x)f(g(x))$

d. If a function f(x) is integrable on a closed interval [a,b] then the function $g(x) = \int_a^x f(t)dt$ is at least continuous at every point "x" in the interval [a,b]

e. If a function f(x) is continuous on [a,b] then, the function g(x) defined by $g(x) = \int_a^x f(t)dt$ is continuous on [a,b] and differentiable on (a,b) and $g^1(x) = f(x)$

2. Properties of Definite Integral:

 $1.\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$ i.e. definite integral is independent of variable of integration.

$$2.\int_{a}^{b} f(x) dx = -\int_{a}^{a} f(x) dx$$

3. $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ where c may lie inside or outside the interval [a, b].

$$4. \int_{-a}^{a} f(x) dx = \int_{0}^{a} f(x) + f(-x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & \text{if } f(-x) = f(x) \text{ i.e. } f(x) \text{ is even} \\ 0, & \text{if } f(-x) = -f(x) \text{ i.e. } f(x) \text{ isodd} \end{cases}.$$

5.
$$\int_{\frac{a}{k}}^{\frac{b}{k}} f(kx)dx = \int_{a}^{b} f(x)dx$$
 (Expansion and contraction property)

6. If
$$f(x) \ge 0$$
 for all $a \le x \le b$ then $\int_a^b f(x) dx \ge 0$

$$7.\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$
, (Shift property)

7a.
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

7c.
$$\int_{a}^{b} f(x)dx = (b-a)\int_{0}^{1} f(a+(b-a)x)dx$$

[example: i)
$$\int_{-4}^{-5} e^{(x+5)^2} dx + 3 \int_{\frac{1}{3}}^{\frac{2}{3}} e^{9\left(x-\frac{2}{3}\right)^2} dx = 0$$
 ii) $\int_{-4}^{-5} \sin^2(x^2-3) dx + \int_{-2}^{-1} \sin^2(x^2+12x+33) dx = 0$]

7d. If
$$f(a - x) = f(x)$$
 then $\int_0^a x f(x) dx = \frac{a}{2} \int_0^a f(x) dx$

7e. If
$$f(a + b - x) = f(x)$$
 then $\int_a^b x f(x) dx = \frac{a+b}{2} \int_a^b f(x) dx$

8.
$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} (f(x) + f(2a - x)) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & \text{if } f(2a - x) = f(x) \\ 0, & \text{if } f(2a - x) = -f(x) \end{cases}$$

$$\int_0^{16} f(t)dt = 4\left(\Gamma^3 f(\Gamma^4) + S^3 f(S^4)\right) = \int_0^a \left(f(a+x) + f(a-x)\right)dx = \int_0^a \left(f(x) + f(a+x)\right)dx$$

8. If f(x) is a periodic function with period T, then

a.
$$\int_{0}^{nT} f(x) dx = n \int_{0}^{T} f(x) dx, n \in \mathbb{Z}$$

b.
$$\int_{0}^{a+nT} f(x) dx = n \int_{0}^{T} f(x) dx, n \in \mathbb{Z}, a \in \mathbb{R}$$

c.
$$\int_{mT}^{nT} f(x) dx = (n-m) \int_{0}^{T} f(x) dx, m, n \in Z$$

d.
$$\int_{nT}^{a+nT} f(x) dx = \int_{0}^{a} f(x) dx, n \in \mathbb{Z}, a \in \mathbb{R}$$

e.
$$\int_{a+nT}^{b+nT} f(x) dx = \int_{a}^{b} f(x) dx, n \in \mathbb{Z}, a, b \in \mathbb{R}$$

[example: i) $f(x) = \sin x + \cos x$ is aperiodic function with period f, and $\int_0^{2f} [\cos x + \sin x] dx = -f \text{ and hence } \int_0^{2nf} [\cos x + \sin x] dx = -nf \text{ where [.] denotes G.I.F}$

3. Definite Integral as a limit of sum: Lt
$$\sum_{n\to\infty}^{pn} \frac{1}{n} f\left(\frac{r}{n}\right) = \int_{0}^{p} f(x) dx$$

4. Reduction formula:

1.
$$I_{m,n} = \int_{0}^{1} x^{m} (1-x)^{n} dx = \frac{m! n!}{(m+n+1)!}$$

2.
$$I_n = \int_{0}^{\frac{\pi}{2}} \sin^n x dx = \int_{0}^{\frac{\pi}{2}} \cos^n x dx$$

According as n is even or odd. $I_o = \frac{\pi}{2}, I_1 = 1$

$$\label{eq:Hence Incomplete} \text{Hence I}_n = \begin{cases} \left(\frac{n-1}{n}\right)\!\!\left(\frac{n-3}{n-2}\right)\!\!\left(\frac{n-5}{n-4}\right)\!\!.....\!\!\left(\frac{1}{2}\right)\!\!.\frac{\pi}{2}, & \text{if n is even} \\ \left(\frac{n-1}{n}\right)\!\!\left(\frac{n-3}{n-2}\right)\!\!\left(\frac{n-5}{n-4}\right)\!\!.....\!\!\left(\frac{2}{3}\right)\!\!.1, & \text{if n is odd} \end{cases}$$

3. If
$$I_{m,n} = \int_{0}^{\frac{\pi}{2}} \sin^{m} x \cdot \cos^{n} x \, dx$$
,

$$= \frac{(m-1)(m-3)(m-5)....(n-1)(n-3)(n-5)....}{(m+n)(m+n-2)(m+n-4).....} \frac{f}{2}$$
 when both m,n are even.

$$= \frac{(m-1)(m-3)(m-5)....(n-1)(n-3)(n-5)....}{(m+n)(m+n-2)(m+n-4)....}, \text{ otherwise}$$

[Examples:
$$\int_{0}^{\frac{f}{2}} \sin^6 x \cos^8 x dx = \frac{5.3.1.7.5.3.1}{14.12.10.8.6.4.2} \frac{f}{2}$$
]

- 4. Reduction formula some examples:
- 1. $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin nx}{\sin x} dx = \frac{\pi}{2}$, for all positive odd positive integers n.
- 2. $I_n = \int_0^{\pi} \frac{\sin(2n+1)x}{\sin x} dx = \pi$, for all natural number n.
- 3. $I_n = \int_0^{\pi} \frac{\sin^2 x}{\sin x} dx = n\pi$, for all natural numbers n
- 4. $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x} dx = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$ for all natural numbers n
- 5. If $I_n = \int \tan^n x dx$, then $I_n + I_{n-2} = \frac{\tan^{n-1} x}{n-1}$, $n \ge 2$

$$I_0 + I_1 + 2(I_2 + \dots + I_8) + I_9 + I_{10}$$
, is equal to $\sum_{n=1}^{9} \frac{\tan^n x}{n}$

- 6. If $I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$ then
- i) $I_n + I_{n-2} = \frac{1}{n+1}$, for all n = 2,3,4,...
- ii) $\frac{1}{I_2 + I_4}$, $\frac{1}{I_3 + I_5}$, $\frac{1}{I_4 + I_6}$, are in A.P
- iii) $I_{n+1} + I_{n-1} = \frac{1}{n}$
- iv) $\frac{1}{n+1} < 2I_n < \frac{1}{n-1}$ for all natural numbers greater than one.

5. Maximum and Minimum Inequality:

1. If $m \le f(x) \le M$ for $a \le x \le b$, then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$, where m and M are absolute minimum and maximum values of the function f(x) in [a,b] Further if f(x) is monotonically decreasing in (a, b), then f(b) $(b-a) < \int_a^b f(x) dx < f(a)(b-a)$

and if f(x) is monotonically increasing in (a,b), then f(a) $(b-a) < \int_a^b f(x) dx < f(b)(b-a)$

[examples:
$$\frac{f}{}$$

i)
$$1 < \int_{0}^{\frac{1}{2}} \frac{\sin x}{x} dx < \frac{f}{2}$$
 {because f(x) decreases and $f\left(\frac{f}{2}\right) = \frac{2}{f} & f\left(0^{+}\right) = 1$ }

ii)
$$\frac{\sqrt{3}}{8} < \int_{\frac{f}{4}}^{\frac{f}{3}} \frac{\sin x}{x} dx < \frac{\sqrt{2}}{6}$$
 {because f(x) decreases and $f\left(\frac{f}{3}\right) = \frac{3\sqrt{3}}{2f} & f\left(\frac{f}{4}\right) = \frac{2\sqrt{2}}{f}$ }

iii) $1 < \int_{0}^{2} \left(\frac{5-x}{9-x^2}\right) dx < \frac{6}{5}$ { absolute maximum and minimum values of f(x) in [0,2] are f(2) and

6. Schwartz inequality:

For any two integrable functions f(x) and g(x) on the interval (a,b), then

$$\left| \int_a^b f(x)g(x)dx \right| \le \sqrt{\int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx}$$

[example: The maximum value of $\int_0^1 \sqrt{(1+x)(1+x^3)} dx$ is $\sqrt{\frac{15}{8}}$

7. Other inequalities:

1. If the function f(x) increases and has a concave up graph in the interval [a,b] then

$$(b-a)f(a) < \int_{a}^{b} f(x)dx < (b-a)\left(\frac{f(a)+f(b)}{2}\right)$$

1a. If the function f(x) increases and has a concave down graph in the interval [a,b] then

$$(b-a)\left(\frac{f(a)+f(b)}{2}\right) < \int_{a}^{b} f(x)dx < (b-a)f(b)$$

[example: $1 < \int_0^1 e^{x^2} dx < \frac{e+1}{2}$

2. If
$$\psi(x) \le f(x) \le \phi(x)$$
 for $a \le x \le b$, then $\int_a^b \psi(x) dx \le \int_a^b f(x) dx \le \int_a^b \phi(x) dx$

[example:

i)
$$\frac{f}{3\sqrt{3}} \le \int_0^1 \frac{dx}{1+x^2+2x^5} \le \frac{f}{4}$$

$$[1+x^2+2x^5<1+x^2+2x^2=1+3x^2]$$
 which implies $\int_0^1 \frac{1}{1+3x^2} dx < \int_0^1 \frac{1}{1+x^2+2x^5} dx < \int_0^1 \frac{1}{1+x^2} dx$

3. If
$$f(x) \le g(x)$$
 for all $a \le x \le b$ then $\int_a^b f(x) dx \le \int_a^b g(x) dx$

$$8. \left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} \left| f(x) \right| dx$$

9. Integral of an inverse function:

If f(x) is invertible function and f(x) is continuous then a definite integral of can be expressed in terms of f(x) i.e. $\int_a^b f(x)dx = bf(b) - af(a) - \int_{f(a)}^{f(b)} f^{-1}(y)dy$ or

$$\int_{a}^{b} f(x)dx + \int_{c}^{d} f^{-1}(y)dy = bd - ac$$

Examples: i)
$$\int_0^1 e^{\sqrt{e^x}} dx + 2 \int_e^{e^{\sqrt{e}}} \ln(\ln(x)) dx = e^{\sqrt{e}}$$

ii) If the value of $\int_1^2 e^{x^2} dx$ is k, then the value of $\int_e^{e^4} \sqrt{\ln x} dx$ is $2e^4 - e - k$

10. Some standard results:

1. If
$$f(x) \ge 0$$
 on [a, b], then $\int_{a}^{b} f(x) dx \ge 0$.

- 2. If $\int_{a}^{b} f(x) dx = 0$ and f(x) is continuous on [a, b], then the equation f(x) = 0 has at least one root in the interval [a, b]
- 3. If $f(x) \ge 0$ and continuous on [a, b], and $\int_a^b (ax^2 + bx + c)f(x)dx = 0$, then $ax^2 + bx + c = 0$ has one root in the interval [a, b]

Example: Let $\int_0^1 f(x)dx = 1$, $\int_0^1 xf(x)dx = 2$ & $\int_0^1 x^2f(x)dx = 4$ then no such function f(x), exists for all real x in [0, 1] such that f(x) > 0 and continuous for all x in [0, 1]

$$4. \int_{0}^{\frac{\pi}{2}} \log(\sin x) dx = \int_{0}^{\frac{\pi}{2}} \log(\cos x) dx = \int_{0}^{\frac{\pi}{2}} \log(\sin 2x) dx = \int_{0}^{\frac{\pi}{2}} \log(\cos 2x) dx = -\frac{\pi}{2} \log 2$$

4a.
$$\int_{0}^{\frac{\pi}{2}} \log(\cos x + \sin x) dx = -\frac{\pi}{4} \log 2$$

5.
$$\int_0^1 \cot^{-1}(1-x+x^2)dx = 2\int_0^1 \tan^{-1}xdx$$

6.
$$\int_0^{\sin^2 x} \sin^{-1} \left(\sqrt{t} \right) dt + \int_0^{\cos^2 x} \cos^{-1} \left(\sqrt{t} \right) dt = \frac{f}{4}$$
 (a constant)

7.
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \int_0^{\frac{f}{4}} \ln(1+\tan x) dx = \frac{f}{8} \ln 2$$

8. For
$$n > 1$$
, $0 < \int_0^{\frac{f}{2}} \sin^{n+1} x dx < \int_0^{\frac{f}{2}} \sin^n x dx$ and For $n > 1$, $0 < \int_0^{\frac{f}{4}} \tan^{n+1} x dx < \int_0^{\frac{f}{4}} \tan^n x dx$

9. Suppose f(x) is a real differentiable function such that $f(x) + f^{1}(x) \le 1$ for all x and f(0) = 1

0 then the maximum value of f(1) is equal to
$$\frac{e-1}{e}[f(x)+f^1(x) \le 1 \Rightarrow \int_0^1 \frac{d}{dx}(e^x f(x)) \le \int_0^1 e^x dx \Rightarrow$$

$$f(1) \le \frac{e-1}{e}$$

10. Let f(x) be a continuous function with continuous first derivative on (a,b) and let $\lim_{x\to a^+} f(x) = \infty$,

 $\lim_{x \to 0} f(x) = -\infty$ and $f^2(x) + f^1(x) \ge -1$ for all x in (a, b) then the minimum value of b – a is f

$$[1 \ge \frac{-f^1(x)}{1+f^2(x)} \Rightarrow \int_a^b dx \ge -\int_a^b \frac{f^1(x)}{1+f^2(x)} dx \Rightarrow b-a \ge f]$$

11. Let f(x) be a positive differentiable function on [0,a] such that

$$f(0) = 1$$
 and $f(a) = 3^{1/4}$ If $f^1(x) \ge (f(x))^3 + (f(x))^{-1}$, then, maximum value of a is $\frac{\pi}{24}$

12. If a function $f(x): [0,16] \rightarrow R$, is differentiable. If 0 < r < 1 and 1 < s < 2 then

$$\int_0^{16} f(t)dt = 4\left(\Gamma^3 f(\Gamma^4) + S^3 f(S^4)\right)$$
 [Apply LMVT for the function $g(x) = \int_0^{x^4} f(t)dt$, in the interval [0,1] and [1,2] and add to get the result]

11. Mean value theorem: If f(x) is continuous on the interval [a,b] then there exists at least one number c between a and b such that $\int_a^b f(x)dx = f(c)(a-b)$

[If $m \le f(x) \le M$ for $a \le x \le b$, then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$, where m and M are absolute minimum and maximum values of the function f(x) in [a,b] and f(x) is continue on the interval [a,b], the number $\frac{1}{b-a} \int_a^b f(x) dx$ lies between m and M .By Intermediate

value theorem there exists c between a and b such that $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

[example:

i) Suppose f(x) and g(x) are two continuous functions defined on [a,b] such that $\int_{a}^{b} f(x) - g(x) = 0$, then the equation f(x) = g(x) is true for at least one value of x in [a,b].

ii) If f(x) is continuous function such that $\int_{0}^{x} f(t)dt \to \infty$ as $x \to \infty$, then every line y = mx
intersects the curve $y^2 + \int_0^x f(t)dt = a$ where a is a positive real number.
(g(x) = is a continuous function as f(x) is continuous and g(0) = 0 and g(x) $\to \infty$ as $x \to \infty$. Thus by intermediate value theorem there must be some $x \in (0,\infty)$ such that g(x) = a)]