Electronics Club Handout # 2 Logic simplification with Karnaugh maps

Rules of Boolean Algebra

- 1. A + 0 = A
- 7. $A \cdot A = A$
- 2. A + 1 = 1
- 8. $A \cdot \overline{A} = 0$
- 3. $A \cdot 0 = 0$
- 9. $\overline{\overline{A}} = A$
- **4.** $A \cdot 1 = A$
- 10. A + AB = A
- 5. A + A = A
- 11. $A + \overline{AB} = A + B$
- **6.** $A + \overline{A} = 1$
- 12. (A + B)(A + C) = A + BC

A, B, or C can represent a single variable or a combination of variables.

Karnaugh maps

- Graphical method for simplification of boolean expression.
- It is a graphical chart which contain boxes.
- K-maps can be written for 2,3,4.... Upto 6 variables.
 Beyond that the technique becomes very cumbersome.

Karnaugh Map

How does simplification takes place?

- Once we plot the logic function or truth table on a k-map, we have to use the grouping technique for simplifying the logic function.
- Grouping means combining the terms in the adjacent boxes.

Way of grouping

- The grouping follows the binary rule i.e. we can group 1,2,,4,8,16,32... number of 1's or 0's. We cannot group 3,5,7,9.... Number of 1's or 0's.
- Pairs: A group of adjacent 1's or 0's is called a pair.
- **Quad**: A group of four adjacent 1's or 0's is called a quad.

Grouping of two adjacent I's (pair)

Conclusion: - By pairing two adjacent 1's we can eliminate one variable.

1 1

4 Variable K MAP

For eg:-

- ullet The two variables which are same in all minterms are C and D' .
- The variables which are not same in all variables are A and B.
- A and B will be eliminated and the output will be :

$$Y = C D'$$

Simplification:-

$$Y = A'B'CD' + A'BCD' + ABCD' + AB'CD' = CD' (A'B' + A'B + AB + AB')$$

$$= CD' [A'(B'+B) + A(B+B')]$$

$$= CD'[A+A'] = CD' \qquadProved.$$

Conclusion:-

Two variables are eliminated

Top and bottom 1's forming a quad

C DAI	B A'B'	A'B	АВ	AB'
C'D'	0	1	1	0
C'D	0	0	0	0
CD	0	0	0	0
CD'	0	1	1	0
	•			V – BD'

A and C are changing so they are eliminated

Four adjacent 1's forming a square.

Y = A'D
B and C are changing so they are eliminated

Determining Standard Expressions from Truth Table

A	INPUTS B	С	OUTPUT X	
0)	0	0	
0)	1	0	
0	1	0	0	
0	1	1	1	
1)	0	1	
1)	1	0	
1	1	0	1	
1	1	1	1	

There are four 1s in the output column and the corresponding binary values are 011, 100, 110, and 111. These binary values are converted to product terms as follows:

$$011 \longrightarrow \overline{ABC}$$

$$100 \longrightarrow A\overline{BC}$$

$$110 \longrightarrow AB\overline{C}$$

$$111 \longrightarrow ABC$$
SOP = Sum of Product

The resulting standard SOP expression for the output X is

$$X = \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

Karnaugh Map SOP Minimization

Mapping Directly from Truth Table

 $X = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$

In	nputs		Output	AB	0	
A	В	C	X	00	(1)	
0	0	0	1 -			_
0	0	1	0	01		
0	1	0	0			
0	1	1	0	11		(1
1	0	0	1 -			
1	0	1	0	10		
1	1	0	1 -	 10		
1	1	1	1 -			

Consider a situation in which you have 3
user inputs (A, B & C) and you have to
detect either 2 or 3 user inputs are ON (X)

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Without Simplification

Using K-Map

$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ Factoring BC out of 1st and 4th terms $BC(\overline{A} + A) + A\overline{B}C + AB\overline{C}$ Applying identity $A + \overline{A} = 1$ $BC(1) + \overline{ABC} + \overline{ABC}$ Applying identity 1A = A $BC + A\overline{B}C + AB\overline{C}$ Factoring B out of 1st and 3rd terms $B(C + \overline{AC}) + \overline{AB}C$ Applying rule $A + \overline{A}B = A + B$ to the C + AC term $B(C + \overline{A}) + \overline{ABC}$ Distributing terms $BC + AB + A\overline{B}C$ Factoring A out of 2nd and 3rd terms $BC + A(B + \overline{B}C)$ Applying rule $\mathbf{A} + \overline{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B}$ to the B + BC term BC + A(B + C) Distributing terms BC + AB + AC or Simplified result

Simplification Boolean Algebra

Observe the Power of K-MAP as number of variables increases

AB + BC + AC

Example-

Use a Karnaugh map to minimize the following standard SOP expression:

$$A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$$

The binary values of the expression are

$$\overline{AC} + \overline{B}$$

Related Problem Use a Karnaugh map to simplify the following standard SOP expression:

$$X\overline{Y}Z + XY\overline{Z} + \overline{X}YZ + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XYZ$$

"Don't Care" Conditions

Example of the use of "don't care" conditions to simplify an expression.

Digital System Application

Seven-segment display format showing arrangement of segments

Display of decimal digits with a 7-segment device.

Arrangements of 7-segment LED displays.

Minimum SOP expression: $D + B + CA + \overline{CA}$

X

11

10

Karnaugh map minimization of the **segment-***a* logic expression

The minimum logic implementation for **segment** *a* of the 7-segment display.

Now you can think about these problems

- Can you make a counter which count from 3 to 8?
- Repeat the 7 segment BCD display example if we don't care about the output values for illegal input from 10 to 15. (Note that in that example we took X=0 for illegal input.
- How does MUX work? Can you make it with using some simple logic?
- Can you make 1 bit comparator ? (solution is given , so verify it and try for more bit)
- Truth table of 1 bit comparator

Logical Implementation

Inputs		Outputs			
В	Α	A > B	A = B	A < B	
0	0	0	1	0	
0	1	1	0	0	
1	0	0	0	1	
1	1	0	1	0	

Reference

MUX

BCD Decoder Truth table

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_{j}
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

Logic and Computer Design Fundamentals by M. Morris Mano, Charle Kime (easily available in reserve section or from your seniors) (Chapter 2 and Chapter 3 in 2^{nd} edition)