Criação de circuitos

Julio Cesar Goldner Vendramini

Por que construir circuitos?

- Como falado, circuitos lógicos correspondem (executam) expressões booleanas, as quais representam problemas no mundo real;
- Podemos então criar circuitos para controlar certas situações.
 Como; acender uma lampada com vários interruptores, exibir um valor em visores, fazer operações aritméticas, dentre muitas outras tarefas;

Como construir um circuito?

- Lembrem! Estamos trabalhando com álgebra de Boole. Usamos apenas 0 e 1 (base binária)
- Saber quantas entradas precisa;
- O circuito deve possuir apenas uma saída;
- Montamos uma tabela verdade;
- Escolhemos exatamente o que queremos como resultado da saída;

Situação	Α	В	С	S(saída)
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

Exemplo

• Um circuito que de 1 na saída quando a maioria das entradas for 1.

Situação	Α	В	С	S(saída)
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

MaxTermo e Mintermo

- Também conhecidas como formas normais:
 - Vocês aprenderão as formas normais com mais detalhes na disciplina de Lógica Matemática;
- Forma Normal Conjuntiva (FNC), Produto de Somas ou Produto de Maxtermos
- Forma Normal Disjuntiva (FND), Soma de Produtos ou Soma de Mintermos

MaxTermo e Mintermo

Α	В	С	Maxtermo	Mintermo
0	0	0	A+B+C	A'.B'.C'
0	0	1	A+B+C'	A'.B'.C
0	1	0	A+B'+C	A'.B.C'
0	1	1	A+B'+C'	A'.B.C
1	0	0	A'+B+C	A.B'.C'
1	0	1	A'+B+C'	A.B'.C
1	1	0	A'+B'+C	A.B.C'
1	1	1	A'+B'+C'	A.B.C

MaxTermo e Mintermo

- Maxtermo
 - Entrada com valor 0 é deixada intacta
 - Entrada com valor 1 é negada
 - Variáveis de uma mesma linha são conectadas por + (adição)
- Mintermo
 - Entrada com valor 1 é deixada intacta
 - Entrada com valor 0 é negada
- Variáveis de uma mesma linha são conectadas por . (multiplicação)

Maxtermo	Mintermo
A+B+C	A'.B'.C'
A+B+C'	A'.B'.C
A+B'+C	A'.B.C'
A+B'+C'	A'.B.C
A'+B+C	A.B'.C'
A'+B+C'	A.B'.C
A'+B'+C	A.B.C'
A'+B'+C'	A.B.C

MaxTermo

- Maxtermo
 - Pegamos as linhas onde a saída é igual a 0;
 - Assim a função Maxtermo ou Forma Normal Conjuntiva (FNC) será a multiplicação dessas somas;
- Ficará então:
- S = (A+B+C).(A+B+C').(A+B'+C).(A'+B+C)
- Essa função então representa nosso circuito

Α	В	С	S(saída)	Maxtermo
0	0	0	0	A+B+C
0	0	1	0	A+B+C'
0	1	0	0	A+B'+C
0	1	1	1	
1	0	0	0	A'+B+C
1	0	1	1	
1	1	0	1	
1	1	1	1	

MinTermo

- Mintermo
 - Pegamos as linhas onde a saída é igual a 0;
 - Assim a função Mintermo ou Forma Normal Disjuntiva (FND) será a soma dessas multiplicações;
- Ficará então:
- S = (A'.B.C)+(A.B'.C)+(A.B.C')+(A.B.C)
- Essa função então representa nosso circuito

Α	В	С	S(saída)	Mintermo
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	A'.B.C
1	0	0	0	
1	0	1	1	A.B'.C
1	1	0	1	A.B.C'
1	1	1	1	A.B.C

Exemplo

• Um circuito com o funcionamento de um "four-way" - Interruptor de lâmpada com 3 pontos diferentes

Α	В	С	S(saída)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Exemplo

• Um circuito com o funcionamento de um "four-way" - Interruptor de lâmpada com 3 pontos diferentes

Α	В	С	S(saída)	Maxtermo	Mintermo	
0	0	0	0	A+B+C		
0	0	1	1		A'.B'.C	
0	1	0	1		A'.B.C'	
0	1	1	0	A+B'+C'		
1	0	0	1		A.B'.C'	
1	0	1	0	A'+B+C'		
1	1	0	0	A'+B'+C		STITUTO FEI
1	1	1	1		A.B.C	iírito Santo

Atividade

- Faça um circuito que diga se a entrada é par ou impar;
- Utilize apenas 3 bits de entrada. Considere a definição de par como: qualquer número dividido por 2 cujo resto dá 0.

Educação pública, gratuita e de qualidade