Twitter Sentiment Analysis

Kuo-Wei Ho¹, Hao-Chien Wang²

¹NTUEE

 $^2\mathsf{NTUPhys}$

Data Science Programing, July 2019

Instructor: 蔡芸琤

TA: 王冠人, 萬俊彥, 何承諭

Table of Contents

- Problem
- 2 Key tools
- Steps
- 4 Results
- 5 Difficulties encountered

Problem

Given a set of data containing 1,600,000 tweets and the sentiment of each tweets. Create a model that can analyze sentiment of new tweets.

Table: Data example

sentiment	Post ID	User ID	tweets
0	1467814192	Ljelli3166	blagh class at 8 tomorrow
0	1467821455	CiaraRenee	I need a hug
4	1677796507	FoodAllergyBuzz	Ootibml Thx for the tweet!
4	1677796519	lakido	SunshineI LOVE this weather!!!

0: Negative

4: Positive

Data: https://www.kaggle.com/kazanova/sentiment140

Github link: https://github.com/b07901135/2019dsp-summer-project

Key Tools

- Vectorizing text: GloVe (Global Vectors for Word Representation by Standford University.)
- Neural network: RNN (Recurrent Neural Network)

Steps: Overview

Note: The testing data are not in the text fed to GloVe.

Steps: Overview

- Olean the data: remove non-UTF8 symbols, numbers and URLs.
- Combine all tweets into one string and tokenize.
- Feed the tokens to GloVe to generate word vectors.
- Tokenize all tweets and search each words in the vectors to transform it into a list of matrices.
- Train the RNN model with the list of matrices.
- Test the result with testing data.

Steps: Data Cleaning and Vectorization

- Replace URLs as "url"
- Replace name tags (e.g. @allen1234) as "name"
- Remove other non-UTF8 characters (stri_enc_toutf8() doesn't help)
- Ombine tweets into a string, tokenize (and remove stopwords).
- Generate TCM, feed it to the neural network to fit the model.
- **o** Generate word vectors (Dim = 200).

Table: Word vectors

"peanuts"	-0.55638	0.04843	-0.14483	-0.47563	
"permission"	0.15835	0.06962	0.04398	-0.27275	
"beast"	-0.20607	0.16818	-0.17708	-0.26557	
"eva"	0.32598	0.04554	-0.72075	-0.04571	
"pounding"	0.67231	0.00862	-0.07067	-0.15407	

Steps: Tweets Vectorization

- Discard data other than sentiment and tweets text
- Tokenize tweets and lookup the tokens in the word vectors.
- Discard tweets containing more than **30 tokens** so that the matrices will not contain too much zeros.
- Due to the limitation of RAM size, we are only able to use 50,000 tweets data.

Table: Data manipulation

	sentiment	tweets			
	0	blagh class at 8 tomorrow			
	0	I need a hug		\Rightarrow	
	4	Ootibml Thx for the tweet!			
	4	Sunshine! I LOVE this weathe	r!!!		
sentiment		tweets		sentiment	tweets
sentiment 0	"blagh" "class"	tweets "at" "num" "tomorrow"	-	sentiment 0	tweets $\mathbf{A}_{30 \times 200}$
sentiment 0 0			_ ⇒	sentiment 0 0	
sentiment 0 0 4	"i" "ne	"at" "num" "tomorrow"	\Rightarrow	0	$A_{30 \times 200}$

Steps: RNN Training

LSTM(Long Short-Term Memory):
 A Type of RNN(Recurrent Neural Network) that has a memory cell and can change the value stored depends on the input vector.

Result

 \bullet The best accuracy we got from 5,000 testing data is 78.68%

Figure: Training process.

Result

- \bullet In fact, we got an accuracy of $60\sim80\%$ ourselves. (10 testing data)
- We found that the performance of the model is better when the embedding word vectors are computed only from testing datas.
- The performance is better with bigger amount of data.

Difficulties Encountered

- Hardware limitations (Ram size, CPU/GPU speed): Kill X session, gc()/rm()
- Package problems (Tensorflow)
- Oarelessness on manipulating data, leading to incorrect results.
- Large data size causing difficulties checking results and big waste of time.

Dark Magic

- save()/load()
- pbapply
- gc()
- rm()
- abind()