Université Mohamed khider Biskra

Faculté des sciences exactes et sciences de la nature et de vie Département de mathématiques

Module: Théorie des martingales. Année:2020/2021

TD2. Martingale à temps discret

Exercice1:(Changement de tribus) Soit $(X_n)_{n\geq 1}$ une martingale pour la filtration $(\mathcal{F}_n)_{n\geq 1}$. Montrer que $(X_n)_{n>1}$ est aussi une martingale pour la filtration canonique $(\sigma(X_1, X_2, ..., X_n))_{n>1}$.

Exercice 2: Soit $(Z_n)_{n\geq 1}$ une suite de v.a.r. indépendantes de même loi donnée par : $P(Z_n=1)=p,\ P(Z_n=-1)=1-p.$ On pose $\mathcal{F}_0=\{\emptyset,\Omega\}$ et $B_n=\sigma(Z_1,...,Z_n)$ pour $n\geq 1.$ Soit $(b_n)_{n\geq 1}$ une suite de v.a. positives bornées, telles que b_n soit \mathcal{F}_{n-1} -mesurable pour tout $n\geq 1$, on définit un jeu en décidant que si $Z_n=1$, on gagne b_n , et si $Z_n=-1$, on pert b_n . Soit S_0 la fortune initiale, S_n la fortune après le n-iéme coup. Montrer que $(S_n)_{n\geq 1}$ est une martingale si $p=\frac{1}{2}$, une sous-martingale si $p>\frac{1}{2}$, une surmartingale si $p<\frac{1}{2}$.

Exercice 3: Soit $(X_n)_{n\geq 0}$ une sur-martingale pour la filtration $(\mathcal{F}_n)_{n\geq 0}$. Soit $(\varepsilon_n)_{n\geq 0}$ une suite de v.a.positives et bornées, ε_n étant \mathcal{F}_{n-1} -mesurable pour $n\geq 1$ et ε_0 constante. On pose $Z_0=X_0$, et pour $n\geq 1$, $Z_n=X_n-X_{n-1}$. Montrer que la suite $Y_n=\varepsilon_0Z_0+\ldots+\varepsilon_nZ_n$ est une sur-martingale.

Exercice 4: Soient $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$ deux martingales. Montrere que $(X_n \wedge Y_n)_{n\geq 1}$ est une sur-martingale et que et $(X_n \vee Y_n)_{n\geq 1}$ est une sous-martingale.

Exercice 5: (Martingale équidistribuée) Soit $(X_n)_{n\geq 1}$ une sMG telle que toutes les v.a.r. X_n aient même loi.

- 1-Montrer que $(X_n)_{n>1}$ est une MG.
- 2-Montrer que, pour tout réel a, $(X_n \wedge a)_{n\geq 1}$ et $(X_n \vee a)_{n\geq 1}$ sont MG. (On note \wedge et \vee pour inf et sup.)
- 3-En déduire que, si n > m pour tout réel a, sur l'ensemble $\{X_m \ge a\}$ X_n est p.s supérieur ou égale à a.
- 4- En déduire que $X_1 = ... = X_n = ...$ P-p.s.