

Positive Fixed 12V Voltage Regulator in bare die form

Rev 1.1 3/11/17

Description

The LM2940-12 positive voltage regulator features the ability to source 1A of output current with a dropout voltage of typically 0.5V & a maximum of 1V over the entire temperature range. A quiescent current reduction circuit has been included which reduces the ground current when the differential between the input voltage & the output voltage exceeds approximately 3V. The quiescent current with 1A of output current & an input-output differential of 5V is therefore only 30 mA. Higher quiescent currents only exist when the regulator is in the dropout mode (V_{IN} - $V_{\text{OUT}} \le 3V$).

Ordering Information

The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection
 + MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification

Supply Formats:

- Default Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape By specific request
- Unsawn Wafer By specific request
- Tape & Reel By specific request
- TO-3 hermetic package By specific request

Features:

- Dropout voltage typically 0.5V @ I_O = 1A
- Output current in excess of 1A
- Reverse battery protection
- Internal short circuit current limit
- Full Military Temperature Range.

Die Dimensions in µm (mils)

Mechanical Specification

Die Size (Unsawn)	1740 x 1980 69 x 78	µm mils	
Minimum Bond Pad Size	116 x 134 4.57 x 5.28	μm mils	
Die Thickness	280 (±10) 11 (±0.4)	μm mils	
Top Metal Composition	Al 1%Si 1.1μm		
Back Metal Composition	Ti/Ni/Ag 3 μm		

Rev 1.1 3/11/17

Pad Layout and Functions

PAD	FUNCTION	COORDINATES (µm)		
		X	Y	
1	GND	-667	-94	
2	VCC	-738.5	-352	
3	VCC	-738.5	-584	
4	OUT	675.5	-776	
5	OUT	675.5	-559	
6	OUT	739.5	201.5	
7	GND	775	877	
CONNECT CHIP BACK TO GND				

Typical Application

Rev 1.1 3/11/17

Absolute Maximum Ratings

PARAMETER	SYMBOL	VALUE	UNIT	
Input Voltage	V _{IN}	26	V	
Power Dissipation	P _D	Internally Limited		
Operating Temperature Range	-	-55 to 125	°C	
Maximum Junction Temperature	T _J	150 °C		
Storage Temperature	T _{STG}	-65 to 150	°C	

DC Electrical Characteristics T_J = 25°C, V_{IN} = V_{OUT} +5V, I_{OUT} = 1A, C_O = 22µF unless otherwise specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage	V _{OUT}	$16.75V \le V_{IN} \le 26V,5mA \le I_{OUT} \le 1A$	11.64	12	12.36	V
		T _J = 125°C	11.40	-	12.60	
Line Regulation	ΔV _{OUT}	V_{OUT} +2V $\leq V_{IN} \leq 26V$, I_{OUT} =5mA	-	20	120	mV
		T _J = 125°C	-	-	120	
Load Regulation	ΔV _{OUT}	50mA ≤ I _{OUT} ≤ 1A	-	55	120	
		T _J = 125°C	-	-	190	
Output Impedance	R _{OUT}	100mA DC and 20mA _{RMS} , f _O =120Hz	-	80	-	mΩ
		T _J = 125°C	-	-	1000	
Quiescent Current		V_{OUT} +2V \leq V_{IN} \leq 26V, I_{OUT} = 5mA	-	10	15	mA
	IQ	T _J = 125°C	-	-	20	
Quiescent Current		$V_{IN} = V_{OUT} + 5V$, $I_{OUT} = 1A$	-	30	45	mA
		T _J = 125°C	-	-	60	
Output Noise Voltage	e _N	10Hz-100KHz, I _{OUT} = 5mA	-	360	-	μV_{RMS}
		T _A = 125°C	-	-	1000	
Ripple Rejection	RR	$f_{O} = 120$ Hz, $1V_{RMS}$, $I_{OUT} = 100$ mA	54	66	-	dB
		T _J = 125°C	48	-	-	
Long Term Stability			-	48	-	mV/1000hr
	V _D	I _{OUT} = 1A	-	0.5	8.0	V
Dropout Voltage		T _J = 125°C	-	-	1.0	
Dropout voltage		I _{OUT} = 100mA	-	0.13	0.15	
		T _J = 125°C	-	-	0.20	
Short Circuit Current	I _{SC}	Note 1	-	2.5	-	А
Maximum Line Transient	T _{IN}	R _{OUT} = 100Ω, T ≤ 100ms	60	75	-	V
		T_J = 125°C, R_{OUT} = 100Ω, $T \le 20$ ms	40	-	-	
Reverse Polarity DC Input Voltage	V_{RIN}	$R_{OUT} = 100\Omega$, $T_{J} = 25^{\circ}C$ to $125^{\circ}C$	-15	-30	-	V
Reverse Polarity Transient Input Voltage	V _{TRRI}	R _{OUT} = 100Ω, T ≤ 100ms	-50	-75	-	V
		T_J = 125°C, R_{OUT} = 100Ω, $T \le 20$ ms	-45	-	-	

Notes: 1. Output current will decrease with temperature increase but will not drop below 1A at the maximum specified temperature.

Typical Performance Characteristics

FIGURE 1. Dropout Voltage versus
Output Current

FIGURE 3. Output Voltage versus
Temperature

FIGURE 5. Quiescent Current versus Input Voltage

Rev 1.1 3/11/17

FIGURE 2. Dropout Voltage versus Temperature

FIGURE 4. Quiescent Current versus Temperature

FIGURE 6. Quiescent Current versus Load Current

Typical Performance Characteristics (Continued)

Rev 1.1 3/11/17

FIGURE 7. Line Transient Response

FIGURE 9. Ripple Rejection versus Frequency

FIGURE 11. Output at Voltage extreme

FIGURE 8. Load Transient Response

FIGURE 10. Low Voltage Behaviour

FIGURE 12. Output Capacitor ESR

Rev 1.1 3/11/17

Typical Performance Characteristics (Continued)

FIGURE 21. Peak Output Current

FIGURE 22. Output Impedance

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

