		8/14
$K \equiv \frac{1}{2} m V^2$	$ec{ au} \equiv ec{ extbf{r}} imes ec{ extbf{F}}$	$I \propto (\text{Amplitude})^2$
$K = \frac{1}{2}I\omega^2$	$ au \equiv r_{\perp} F$	$f_{\text{BEAT}} = f_{\text{HIGH}} - f_{\text{LOW}}$
U = mgy	$I = mr^2$	$f' = \frac{V \pm V_{\rm R}}{V \mp V_{\rm S}} f$
$U = \frac{1}{2}kx^2$	$I = I_{\rm cm} + m d^2$	$v = v \mp v_{\rm S}$
$U = -\frac{Gm_1m_2}{r}$	$W = F_{\parallel} \Delta r$	$ \varrho = \frac{m}{V} $
I	$W = \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\Delta \mathbf{r}}$	-
$\vec{\mathbf{p}} \equiv m \vec{\mathbf{v}}$	$W = \tau \Delta \theta$	$P = \frac{F}{A}$
$\vec{\mathbf{L}} = \mathbf{I}\vec{\boldsymbol{\omega}}$	$W = -\Delta U$	$P = P_o + \rho g h$
$\vec{\mathbf{L}} \equiv \vec{\mathbf{r}} \times \vec{\mathbf{p}}$	$F_x = -\frac{dU}{dx}$	$P_{G} = P - P_{O}$
$L = r_{\perp} p$	dx	·
$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$W = \Delta K$	$\dot{m} = \rho A V$
0 0 2	$P \equiv \frac{dE}{dt}$	$\dot{m}_1 = \dot{m}_2$ $A_1 V_1 = A_2 V_2$
$x = x_0 + \frac{V_0 + V}{2}t$	$T = \frac{1}{dt}$	$P + \frac{1}{2} \rho v^2 + \rho g h = \text{constant}$
$V = V_0 + at$	$P = \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\boldsymbol{v}}$	
$v^2 = v_0^2 + 2a\Delta x$	$\vec{\mathbf{J}} \equiv \vec{\mathbf{F}} \Delta t$	$Q = mc \Delta T$
2	$\overrightarrow{\mathbf{J}} = \overrightarrow{\Delta \mathbf{p}}$	Q = ml
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \propto t^2$	_	$\Delta U = Q - \mathcal{W}$
$\theta = \theta_{\rm o} + \frac{\omega_{\rm o} + \omega}{2} t$	$\frac{d^2x}{dt^2} = -(2\pi f)^2 x$	Trigonometric Identities
$\omega = \omega_0 + \alpha t$	$x = x_{\text{max}} \cos(2\pi f t)$	$(\sin\theta)^2 + (\cos\theta)^2 = 1$
$\omega^2 = \omega_0^2 + 2 \propto \Delta \theta$	$x - x_{\text{max}} \cos(2\pi T t)$ $V = -V_{\text{max}} \sin(2\pi f t)$	$2\sin\theta\cos\theta = \sin(2\theta)$
$\omega = \omega_0 + 2\alpha \Delta \theta$		Constants
$V = r \omega$	$a = -a_{\max} \cos(2\pi f t)$	$g = 9.80 \frac{N}{kg}$ (near earth)
$a_{\rm t} = r \propto$	$V_{\rm max} = (2\pi f)x_{\rm max}$	kg
$a_{\rm c} = \frac{V^2}{r}$	$a_{\text{max}} = (2\pi f)^2 x_{\text{max}}$	$a_{g} = 9.80 \frac{\text{m}}{\text{s}^{2}}$
$a_c = r\omega^2$	$T = 2\pi \sqrt{\frac{L}{g}}$	5
	$I = 2n\sqrt{g}$	$G = 6.67 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{k}\sigma^2}$
$\vec{a} = \frac{1}{m} \sum \vec{\mathbf{F}}$	$T = 2\pi \sqrt{\frac{m}{k}}$	$m_{\rm E} = 5.97 \times 10^{24} \mathrm{kg}$
$F_{g} = mg$	•	$r_{\rm E} = 6.38 \times 10^6 \rm m$
$F_{\rm S} = k x $	$f = \frac{1}{T}$	
$g = \frac{Gm}{r^2}$	$\frac{\partial^2 y}{\partial x^2} = \frac{1}{V^2} \frac{\partial^2 y}{\partial t^2}$	$I_{\rm o} = 1.00 \times 10^{-12} \frac{\rm W}{\rm m^2}$
$\vec{\mathbf{F}} = m\vec{\mathbf{g}}$		$V_{\text{sound}} = 343 \frac{\text{m}}{\text{s}}$
~	$y = y_{\text{max}} \cos\left(\frac{2\pi}{\lambda} x - \frac{2\pi}{T} t\right)$	$1.000 \text{ atm} = 1.013 \times 10^5 \text{ Pa}$
$F = \frac{Gm_1m_2}{r^2}$	$v = \frac{\lambda}{T} = \lambda f$	1
$f_{\kappa} = \mu_{\kappa} F_{\rm N}$	\overline{F}	$\rho_{\text{water}} = 1.00 \times 10^3 \frac{\text{Kg}}{\text{m}^3}$
$f_{\rm s}^{\rm max \; possible} = \mu_{\rm s} \; F_{\rm N}$	$ u = \sqrt{\frac{F_{\mathrm{T}}}{\mu}} $	1.000 cal = 4.186 J
	$\mu = \frac{m}{I}$	c = 4186
$\vec{\boldsymbol{\kappa}} = \frac{1}{\mathbf{I}} \sum \bar{\boldsymbol{\tau}}$	$\mu - \frac{L}{L}$	$c_{\text{water}} = 4186 \frac{J}{\text{kg} \cdot \text{C}^{\circ}}$