Diszkrét matematika 1.

5. gyakorlat

1. Oldja meg az alábbi egyenleteket a komplex számok halmazán! Ábrázolja a megoldásokat a komplex számsíkon!

(a) $x^2 + 4 = 0$,

(c) $x^2 - x + 1 = 0$.

(b) $x^2 + 2x + 2 = 0$,

(d) $x^3 - 6x^2 + 13x = 0$.

2. Írja fel az alábbi komplex számok algebrai alakját!

(a) (3+i)(2+3i), (-2+3i)(5-2i), i(1+2i), (-1+i)(1-2i)(1+2i),

(b) $\overline{5-2i}$, $\overline{(3+4i)}(2+i)$,

(c) $(2-i)^3$, $i^6 + 3i^5 - 2i^3 + i^2 - 1$, i^{2008} , i^{103} ,

(d) $\frac{5+3i}{i}$, $\frac{1-i}{2+i}$, $\frac{1-2i}{1-3i}$, $\frac{2-i}{(3-2i)(2+5i)}$.

3. Oldja meg az alábbi egyenleteket a komplex számok halmazán!

(a) $\overline{z} + 2z = 9 + 2i$,

(d) $z^2 + |z|^2 = 2 - 6i$,

(b) $\overline{z} + |z|^2 = 31 - i$,

(e) $\overline{z} \cdot z^2 = 8i$,

(c) $i^3 \cdot \overline{z} = -3 - 2i$.

(f) $z^2 = i$.

4. Ábrázolja a komplex számsíkon az alábbi halmazokat!

(a) $A = \{ z \in \mathbb{C} : \text{Im}(z) = 0 \},$ (d) $D = \{ z \in \mathbb{C} : \text{Re}(z) \ge 2 \},$

(b) $B = \{z \in \mathbb{C} : \text{Re}(z) = 0\},$ (e) $E = \{z \in \mathbb{C} : |z| \le 1\},$

(c) $C = \{z \in \mathbb{C} : \text{Im}(z) \le 0\},$ (f) $F = \{z \in \mathbb{C} : \text{Re}(z) = \text{Im}(z)\}.$

5. Adja meg az alábbi komplex számok trigonometrikus alakját!

(a) 3,

(d) -4i,

(g) $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$, (j) $\frac{5}{8} + \frac{5}{8}\sqrt{3}i$,

(b) -2, (e) 2+2i,

(h) $-1 + \sqrt{3}i$,

(c) i,

(f) 1 - i,

(i) $-3 - 3\sqrt{3}i$. (k) $\sqrt{3} - i$.

- **6.** Legyen $x=3\left(\cos\frac{\pi}{9}+i\sin\frac{\pi}{9}\right)$ és $y=2\left(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\right)$. Határozza meg az alábbi kifejezések értékét!
 - (a) $x \cdot y$, (b) $\frac{x}{y}$, (c) x^3 , (d) y^5 , (e) $\frac{1}{x}$, (f) x^2y .
- **7.** Trigonometrikus alak segítségével határozza meg az alábbi kifejezések értékét!
 - (a) \sqrt{i} , (c) $(2+2i)^{2008}$
 - (b) $\sqrt[3]{i}$, (d) $(1+\sqrt{3}i)^{301}$.
- 8. Számítsa ki a $z=81\left(\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\right)$ komplex szám második, harmadik, negyedik gyökeit! Ábrázolja a gyököket a komplex számsíkon!
- 9. Írja fel és ábrázolja a komplex számsíkon a harmadik, negyedik, ötödik és hatodik egységgyököket!
- 10. Az alábbi komplex számok közül melyek egységgyökök?

$$\begin{aligned} 1+i, & \frac{1}{4}+\frac{3}{4}i, & \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i, & 2\left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right), & \cos\frac{\pi}{2}+i\sin\frac{\pi}{2}, \\ \cos\frac{5\pi}{8}+i\sin\frac{5\pi}{8}, & \frac{1}{2}+\frac{\sqrt{3}}{2}i, & -\frac{1}{2}+\frac{\sqrt{3}}{2}i, & -1, & i. \end{aligned}$$

- **11.** Legyen $\varepsilon = \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}$. Mutassa meg, hogy $k = 1, \dots, 8$ esetén ε^k előállítja az összes nyolcadik egységgyököt!
- 12. Sorolja fel a primitív tizedik egységgyököket!
- 13. Oldja meg az alábbi egyenleteket a komplex számok halmazán!
 - (a) $z^2 3iz + 4 = 0$, (d) $z^2 + (2+4i)z 3 + 3i = 0$,
- (b) $z^3 + z^2 + z = 0$,
- (c) $z^5 z = 0$, (e) $2iz^2 + (4+5i)z + 5 = 0$.