Nama	
NPM	

CSCM603154 – Jaringan Komputer 2018/2019 Term 1 Kuis #3 - Kelas A 19 November 2018 Waktu: 50 Menit

Beri tanda silang pada kolom B untuk pernyataan benar, atau pada kolom S untuk pernyataan salah dari pernyataan-pernyataan berikut! Total nilai: 14

В	S	Pernyataan
	X	1. Pada algoritma routing link state setiap node hanya mengetahui informasi dari node
		tetangganya saja. Pada algoritma routing link state, setiap node mengetahui informasi
		jaringan secara keseluruhan (topologi dan link cost nya). Algoritma distance vector yang
		hanya mengandalkan informasi dari node tetangga.
	X	2. Jika link cost pada distance vector berubah menjadi lebih kecil, maka dapat menim-
		bulkan "count to infinity problem". Count to infinity problem ditimbulkan jika link cost
		pada routing distance vector menjadi (jauh) lebih besar.
X		3. Border router menggunakan eBGP session untuk melakukan advertisement informasi
		routing menuju sebuah subnet ke AS lain. Cukup jelas
	X	4. Komunikasi dengan <i>data plane</i> pada sebuah <i>SDN controller</i> dilakukan pada <i>interface</i>
		layer. Data plane (switch) pada SDN berkomunikasi dengan SDN controller melalui com-
		munication layer. Interface layer digunakan oleh SDN controller agar dapat digunakan
		oleh aplikasi jaringan (external).
X		5. Untuk melakukan konfigurasi switch-to-controller message pada SDN, tidak langsung
		pada switch yang bersangkutan, tapi melalui controller. Walaupun message yang dikirim
		dari switch ke controller, tapi konfigurasinya dilakukan via controller, tidak langsung di
		switch nya.
	X	6. Trap message pada SNMP memiliki interaksi 2 arah, antara Manager dengan Agent.
	37	Trap message pada SNMP hanya memiliki 1 arah, yaitu dari agent ke manager.
	X	7. Atribut Closest NEXT-HOP pada routing BGP berarti AS yang paling dekat dalam
		mencapai subnet yang dituju. Closest NEXT-HOP digunakan untuk menentukan gateway
		pada sebuah AS (jika sebuah AS memiliki lebih dari 1 GW router untuk mencapai subnet
		yang dituju) yang memiliki cost paling kecil dari sebuah node di dalam AS tersebut.

Jawablah pertanyaan dari setiap soal berikut!

1. (16 points) 4 buah router: R1, R2, R3, dan R4 terhubung dengan topologi seperti pada gambar berikut. notasi c(Rx,Ry) menunjukkan cost pada link antara router Rx dan Ry. Misal c(R1,R2)=1,c(R1,R3)=3,c(R2,R3)=5,c(R3,R4)=1,c(R1,R4)=1. Tuliskan proses pencarian rute dengan cost paling kecil dari R2 ke router lain yang ada pada topologi tersebut dengan menggunakan **Link State** routing algorithm! (Lengkapi informasi pada tabel di bawah!)

Hal: 1 dari 4

[Jawab]

Step	N'	D(R1),p(R1)	D(R3),p(R3)	D(R4),p(R4)
0	R2	1,R2	5,R2	∞
1	R2R1		4,R1	$_{2,R1}$
2	R2R1R4		3,R4	
3	R2R1R4R3			

2. (10 points) Sebuah data yang terdiri dari bit stream 1010001111 dikirimkan menggunakan \mathbf{CRC} error detection dengan generator $\mathbf{G}=10011$. Hitung reminder R yang dikirim bersama data tersebut!

Solution:	
$10100011110000 \div 10011 = 10111111$	lanjutan
<u>10011</u>	11100
1110	<u>10011</u>
<u>0000</u>	11110
11101	<u>10011</u>
<u>10011</u>	11010
11101	<u>10011</u>
<u>10011</u>	10010
11101	<u>10011</u>
<u>10011</u>	0001
11101	
<u>10011</u>	
Dari perhitungan di atas didapat $R=0001$	

3. Sebuah jaringan LAN seperti pada gambar memiliki IP private, sedangkan jaringan pada server memiliki IP public.

19 November 2018 Hal: 2 dari 4

Misal pada kondisi awal tabel ARP pada semua host dan router, serta tabel switch pada semua switch masih kosong. Lalu terjadi transmisi paket berturut-turut sebagai berikut: (1) **PC1** mengirim request ke **Printer1**, (2) **PC2** mengirim request ke **Printer1**, (3) **PC2** mengirim request ke **Server**.

(a) (10 points) Setelah 3 transmisi di atas terjadi, lengkapi isi tabel ARP pada semua perangkat yang terkait pada tabel di bawah. Isi kolom IP dan MAC dengan nama perangkat atau Perangkat-NoInterface (cth: R1-1).

PC1		Printer	1	PC2		Printer	2	Server	
IP	MAC	IP	MAC	IP	MAC	IP	MAC	IP	MAC
Printer1	Printer1	PC1	PC1	R1-2	R1-2	PC2	PC2	R2-2	R2-2
R1-1	R1-1	R1-1	R1-1						
R1-1		R1-2		R1-3		R2-1		R2-2	
IP	MAC	IP	MAC	IP	MAC	IP	MAC	IP	MAC
PC1	PC1	PC2	PC2	R2-1	R2-1	R1-3	R1-3	Server	Server
Printer1	Printer1								

(b) (10 points) Lalu setelah **3 transmisi** DAN **ARP query/response** di atas, lengkapi tabel switch di bawah. Isi kolom MAC dengan **nama perangkat** atau **Perangkat-NoInterface**, dan kolom port dengan **nomor interface**. **HINT:** pada ARP query/response message yang dikirim bukan hanya satu arah, jadi switch juga akan belajar dari response ARP yang dikirim.

Sw1		Sw2		Sw3		
MAC	Port	MAC	Port	MAC	Port	
PC1	2	PC2	2	R1-2	1	
Printer1	1	R1-2	3	Server	2	
R1-1	3					

(c) (20 points) Jika PC1 ingin mengakses server melewati Sw1, R1, R2, dan Sw3. Tuliskan IP Address source & destination, serta MAC Address source & destination untuk setiap link yang dilalui. Tuliskan pada tabel di bawah dengan format berikut: IP/MAC-Perangkat atau IP/MAC-Perangkat-NoInterface. Contoh: IP-PC1; MAC-Server; R1 memiliki nomor interface 1, 2, dan 3, dapat ditulis dengan MAC-R1-2.

HINT: pada soal disebutkan bahwa LAN menggunakan IP private, dan server memiliki IP public, maka jaringan LAN menggunakan NAT (pada R1) untuk mengakses server.

19 November 2018 Hal: 3 dari 4

Lokasi	IP Source	IP Destination	MAC Source	MAC Destination
$PC1 \rightarrow Sw1$	IP-PC1	IP-Server	MAC-PC1	MAC-R1-1
$Sw1 \rightarrow R1$	IP-PC1	IP-Server	MAC-PC1	MAC-R1-1
$R1 \rightarrow R2$	IP-R1-3	IP-Server	MAC-R1-3	MAC-R2-1
$R2 \rightarrow Sw3$	IP-R1-3	IP-Server	MAC-R2-2	MAC-Server
$Sw3 \rightarrow Server$	IP-R1-3	IP-Server	MAC-R2-2	MAC-Server

- 4. Sebuah jaringan Ethernet yang menggunakan CSMA/CD mengalami collision yang ke-10 kali.
 - (a) (5 points) Berapa probabilitas bahwa sebuah node pada jaringan tersebut memilih **K=10**?

Solution: Untuk jumlah collision n=10, K akan dipilih dari $\{0,1,\ldots,2^n-1\}$. Jadi probabilitas memilih sebuah $K=\frac{1}{2^n}=\frac{1}{2^{10}}=\frac{1}{1024}$

(b) (5 points) Berapa detik delay pada Ethernet 10 Mbps (Mega~bit~per~seconds) untuk $\mathbf{K=}\mathbf{10}$?

Solution: delay = $\frac{K*512}{10Mbps} = \frac{10*2^9}{10*2^{20}} = 2^{-11} \text{ sec} = \frac{1}{2048} \text{sec}$

19 November 2018 Hal: 4 dari 4