Auto-encoders y variational auto-encoders

Auto-encoders y variational auto-encoders

Introducción

Aprendizaje no supervisado

Hasta ahora hemos estado hablando siempre de **aprendizaje profundo supervisado**, pero también podemos resolver problemas **no supervisados**.

Objetivo:

• Extraer patrones directamente de los datos "sin etiquetar", solo tenemos x y no y.

Tareas comunes:

- Modelos generativos: Entender la distribución de x y generar nuevas muestras.
- Autoencoders: "Comprimir" x proyectándolo en un espacio de menor dimensión.

Aprendizaje no supervisado

The brain has about 10^{14} synapses and we only live for about 10^9 seconds. So we have a lot more parameters than data. This motivates the idea that we must do a lot of **unsupervised** learning since the perceptual input (including proprioception) is the only place we can get 10^5 dimensions of constraint per second.

Geoffrey Hinton, 2014

Aprendizaje no supervisado

We need tremendous amount of information to build machines that have common sense and generalize.

Yann LeCun, 2016

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- ► The machine predicts a category or a few numbers for each input
- ▶ Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- ▶ Predicts future frames in videos
- Millions of bits per sample
- (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Modelos generativos

Un **modelo generativo** es un modelo probabilístico p que puede ser utilizado como un "simulador de datos".

Su propósito es generar datos sintéticos pero realistas de alta dimensión

$$\mathbf{x} \sim p_{\theta}(\mathbf{x}),$$

que se asemejen lo más posible a la distribución desconocida de datos $p(\mathbf{x})$.

Modelos generativos

Ley de Moore de los modelos generativos de imágenes

Modelos generativos

Algunas aplicaciones:

Los modelos generativos tienen un rol muy importante en muchos problemas actuales

Auto-encoders y variational auto-encoders

Auto-encoders

Un auto-encoder es una función compuesta a partir de:

- Un **encoder** f que proyecta del espacio original \mathcal{X} al espacio latente \mathcal{Z} .
- Un **decoder** g que proyecta de vuelta al espacio original.

El objetivo es que $g \circ f$, es decir, que la composición de funciones se aproxime lo máximo posible a los datos originales o función identidad.

Siendo p(x) la distribución de los datos en \mathcal{X} , un buen auto-encoder puede caracterizarse con la reconstruction loss:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[||\mathbf{x} - g \circ f(\mathbf{x})||^2 \right] \approx 0.$$

Esta función de pérdida mide como de bien el auto-encoder puede reconstruir los datos originales.

Dadas dos funciones de proyección con parámetros $f(\cdot; \theta_f)$ and $g(\cdot; \theta_g)$, el entrenamiento consiste aprender los parámetros que minimicen dicha loss:

$$\theta_f, \theta_g = \arg\min_{\theta_f, \theta_g} \frac{1}{N} \sum_{i=1}^N ||\mathbf{x}_i - g(f(\mathbf{x}_i, \theta_f), \theta_g)||^2.$$

Ejemplo

Imaginemos, por ejemplo, un auto-encoder lineal con

$$f: \mathbf{z} = \mathbf{U}^T \mathbf{x}$$

$$g:\hat{\mathbf{x}}=\mathbf{U}\mathbf{z},$$

con $\mathbf{U} \in \mathbb{R}^{p \times d}$, el *reconstruction loss* se reduce a

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[||\mathbf{x} - \mathbf{U}\mathbf{U}^T\mathbf{x}||^2 \right].$$

Auto-encoders y variational auto-encoders

Deep Auto-encoders

Mayor profundidad

Para obtener mejores resultados, en vez de proyecciones lineales se suelen utilizar redes neuronales profundas en f y g.

Algunos ejemplos:

- Combinando un MLP encoder $f: \mathbb{R}^p \to \mathbb{R}^d$ con un MLP decoder $g: \mathbb{R}^d \to \mathbb{R}^p$.
- Combinando un convolutional network encoder $f: \mathbb{R}^{w \times h \times c} \to \mathbb{R}^d$ con un decoder decoder $g: \mathbb{R}^d \to \mathbb{R}^{w \times h \times c}$ compuesto de capas convolucionales reciprocas.

Ejemplo MNIST

Datos originales \mathbf{x} con d = 784.

Resultado de auto-encoder $g \circ f$ creado a partir de CNN con d = 2.

Resultado de auto-encoder $g \circ f$ creado a partir de PCA con d = 2.

Ejemplo MNIST

Datos originales \mathbf{x} con d = 784.

Resultado de auto-encoder $g \circ f$ creado a partir de CNN con d = 4.

Resultado de auto-encoder $g \circ f$ creado a partir de PCA con d = 4.

Ejemplo MNIST

Datos originales \mathbf{x} con d = 784.

Resultado de auto-encoder $g \circ f$ creado a partir de CNN con d = 8.

Resultado de auto-encoder $g \circ f$ creado a partir de PCA con d = 8.

Ejemplo MNIST

Datos originales \mathbf{x} con d = 784.

Resultado de auto-encoder $g \circ f$ creado a partir de CNN con d = 16.

Resultado de auto-encoder $g \circ f$ creado a partir de PCA con d = 16.

Ejemplo MNIST

Datos originales \mathbf{x} con d = 784.

Resultado de auto-encoder $g \circ f$ creado a partir de CNN con d = 32.

Resultado de auto-encoder $g \circ f$ creado a partir de PCA con d = 32.

Interpolación

Espacio latente

Interpolación

Espacio latente

Interpolación

Espacio latente

Interpolación

Espacio latente

Auto-encoders y variational auto-encoders

Referencias

Referencias

- 1 Lecture 11: Auto-encoders and variational auto-encoders
- 2 Deep Learning Course