DIGITAL SMART BUSAN ACADEMY

AI 기반 소형 어선 내 쓰러짐 감지 및 알림 서비스

2팀 민근홍 정의찬 이재석 하유현

CONTENTS

1. 주제 선정 배경

3. 서비스

2. 프로젝트 수행

4. 기대효과

Part I 주제선정배경

^{*} 중앙해양안전심판원, 「해양사고 통계」, 2022, 선박용도별 해양사고 현황

1인조업기사

투R)위험한 나홀로 조업, 인명 사고 반복

이웅 기자, "위험한 나홀로 조업, 인명 사고 반복", MBC 강원영동, 2021.03.21

최근 5년 어선사고 인명피해 200명...'<u>1인 조업'</u> 사고 급증

"선원 노령화·외국인 선원 증가때문···안전대책 마련 시급" 승인 2017-07-20 18:17

김신호 기자, "최근 5년 어선사고 인명피해 200명...'1인 조업' 사고 급증", 경기일보, 2017.07.20

어업종사자의고령화에따른위험증가

^{*} 통계청, 「농림어업총조사」, 2020, 연령 및 성별 어업 종사 가구원

^{*} 국립중앙의료원, 응급의료현황통계」, 2021, (뇌졸중 환자 수,급성 심근경색 환자 수)

어촌고령화기사

농·어업인 2명 중 1명은 65세 이상...70세 이상 비중 35% 육박

입력: 2023.04.19 13:23 수정: 2023.04.19 16:25 이호준 기자

4) 公员

이호준 기자, "농·어업인 2명 중 1명은 65세 이상...70세 이상 비중 35% 육박", 경향신문, 2023.04.19

고성 어촌 고령화로 50% 이상 '나홀로 조업'

옷 이동명 │ ② 입력 2021.04.20 │ □ 16면 │ □ 댓글 0

이동명 기자, "고성 어촌 고령화로 50% 이상 '나홀로 조업'", 강원도민일보, 2021.04.20

기존시스템의한계

1인 조업 중 사고 시 신고 버튼을 직접 누르는 것이 불가능

목표정의

목표 1

쓰러짐을 감지 하는 모델

목표 2

긴급상황 발생시 자동신고및 알림서비스 목표 3

V-PASS의 불편함 해소

목표정의

사망률 ↓

쓰러짐 감지 모델을 통한 1인 조업 중 사고의 즉각적인 대처로 <mark>골든 타임 확보</mark>

Part 2 프로젝트수행

시스템환경및 사용툴

Roboflow에서 얻은 이미지와 직접 촬영한 이미지를 이용해 라벨링 및 데이터 셋 구축

VSCode에서 Python 환경으로 진행 Open CV 사용

YOLOv8, OpenPose, MediaPipePose

데이터수집

로보플로

8,730장

직접 촬영, 크롤링

3,590장

데이터확인

이미지

종류	이미지 수
YOLOv8- Bbox (박스 라벨링)	5,971장
YOLOv8- Segmetation (테두리 라벨링)	12,320장

클래스 분류

['Fall']

['Stand']

데이터라벨링

Bounding Box

상자 라벨링

라벨링 작업이 **쉽고 빠름** 많은 객체탐지 모델에 대한 호환성이 좋음

객체의 유형 및 위치에 따라 탐지 X 가려지거나 겹치는 경우 정확한 탐지 X

Segmentation

테두리 라벨링

정확한 객체 탐지 및 위치 추정 가려지거나 겹치는 경우에도 개별 탐지

라벨링 작업이 어렵고 오래걸림 각 픽셀에 레이블 지정 ⇒ 데이터 크기 ↑

YOLO선정모델

YOLOv8 Bbox

Model	size (pixels)	mAP ^{val} 50-95	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B)
YOLOv8n	640	37.3	80.4	0.99	3.2	8.7
YOLOv8s	640	44.9	128.4	1.20	11.2	28.6
YOLOv8m	640	50.2	234.7	1.83	25.9	78.9
YOLOv8I	640	52.9	375.2	2.39	43.7	165.2
YOLOv8x	640	53.9	479.1	3.53	68.2	257.8

- 상대적으로 가벼운 모델인 YOLOv8s 선정

YOLOv8 Segmentation

Model	size (pixels)	mAP ^{box} 50-95	mAP ^{mask} 50-95	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B)
YOLOv8n-seg	640	36.7	30.5	96.1	1.21	3.4	12.6
YOLOv8s-seg	640	44.6	36.8	155.7	1.47	11.8	42.6
YOLOv8m-seg	640	49.9	40.8	317.0	2.18	27.3	110.2
YOLOv8l-seg	640	52.3	42.6	572.4	2.79	46.0	220.5
YOLOv8x-seg	640	53.4	43.4	712.1	4.02	71.8	344.1

- bbox와 비교를 위해 S-seg 선정

YOLOv8 Bounding Box

Epochs: 500 Batch-size: 8

Class	mAP50 (Box)	mAP50-95 (Box)
Fall	0.971	0.75
Stand	0.567	0.282
ALL	0.769	0.516

- mAP 그래프 우상향 하지만 튀는 모습 보임
- 모델 성능의 <mark>안정성 떨어짐</mark>

YOLOv8 seg 모델별비교

Weight: YOLOv8s-seg Epochs: 500 Batch-size: 32

Weight: YOLOv8x-seg Epochs: 500 Batch-size: 32

mAP가 비슷했지만 안정적인 학습 그래프 결과를 보인 YOLOv8x-seg 버전을 최종 선정

	mAP50-95 (Box)	mAP50-95 (Mask)
yolov8s	0.903	0.843
yolov8x	0.912	0.856

Pose

Open Pose

MediaPipe Pose

특징

이미지에서 관절을 찾고 <mark>상관관계를 분석</mark> 후 자세를 추정 33개의 랜드마크를 연결하는 선의 <mark>경사각</mark>을 통해 포즈를 추정하는 모델

Pose결과

Open Pose

MediaPipe Pose

설정 조건

머리와 목의 y 좌표의 차이가 임계값 이하이면 쓰러졌다 판단

결과

키포인트가 많이 흔들림

코와 엉덩이의 y좌표 차이가 임계값보다 작으면 쓰러졌다 판단

키포인트가 비교적 안정적임

최종모델선정

Open Pose

안정적으로 신체를 탐지 X 키포인트가 심**각하**게 흔들 림 다인 탐지 X

YOLOv8 Bbox

객체를 잘 탐지 하지 못함

MediaPipe Pose

안정적으로 신체를 탐지 제일 가까운 사람이 잡힘 다인 탐지 X

YOLOv8 Seg

객체가 전체적으로 안정적으 로 잡힘

최종모델선정

YOLOv8 Segmentation

최종모델고려사항

모델 적용 시 고려사항 선박과 같은 복잡한 환경에도 잘 탐지가 될까?

최종모델고려사항

선박과 같은 복잡한 환경에도 잘 탐지가 될까?

최종모델고려사항

선박과 같은 복잡한 환경에도 잘 탐지가 될까?

Part 3 서비스제공방법

카메라구상도

서비스구현예시

기대효과

골든타임

✓ 자동신고를통한생존율 ↑

주변선박알림

✓ V-Pass와연동하여 SOS 요청

확장성

✓ 육상에도 사용 가능

IoT 기반 실족 감지

✓ IoT 기기를 사용한 생체 데이터 수집

개선사항

Data Set

- ✓ 데이터 셋 품질 좋지 않음
- ✓ 데이터를 추가 하였으나 사물을 인식

Skeleton Pose

✓ 포즈 추정을 위한 키포인트 라벨링 데이터셋 구축 실패

Pose

- ✓ 조건 설정이 까다로움
- ✓ 하나의 객체만을 탐지

알림 서비스

- ✓ 실시간으로 웹캠 불러오기 실패
- ✓ 119 신고 서비스 실패

팀원구성및역할

GMA