Introduction	anto (Computer Science	ens «	i onio	Sheet# 0	Higher a	U or any
~~	~~~	~~~	977A	17/5	(7 A) =	9 × A	
0				<u> </u>		7 m 1	4
Problem 7.1		, ad	boo (b)	71 -	3000 01	3 4	n-bn orra
		$\frac{1}{1}$:sho (t		A-1 A
·Using n	ot-or(V) to prove	$-\Lambda$	(AND)			0/1
fm o	clasia	al AND (A) ando	Loos au	hol:		rio
10)	CONSIC	DIVIDE T					
A	18	ANB	Sin	ilarly 4	his can be	done as	the following
1	1	1		X J=	(AVA)	V(BVB))ind/
0	1	0		AT	A Ya	4	
1	0	0	(f		AVB		X
0	0	0		1 1	0	0	.00 ms
				0 1		0	0
	(1 ₀	-1./		1 / 1	1111	-1	X O
11	2010	21.tc 0			90 me		
Hence	a con	autputs a	- A	J W	(5-41	XIV(YA	x ///=
	we carr	AAA	3 = (AVA	V(BVB)) = 0	9010
			76 =	MAN	9.1 WD/	Hitada	Populary
using no	or (3	V) to prov		(OR)	2	V	111
for a class	ical (V) or gate	we see	that:	KLUX	INIXA	X //) =
A	B	AVB) 2 iu	nilary u	with not-o		N
11	17	111-	1		AVB)V(200	I V
0	1	1	A		AVB	AVB	1
1	0	1) 1	1	0	0	1
0	0	0	0	1	0	0	1
)1	0	0	1	
			10	0	1 1	1	

Using nat-	$-\infty(\bar{v})$ to	prove	7 (nat) 0	ate:	-1 0	:C.F. mik)
ror a classi	cal T(not) (gate:	Similary	, the nat-or	V) opti	e canbe wed!
H 7	<u>H</u>		(DIVA) XV=	$(H \lor H)$	V)45	100
	1	**************************************) 1	0 = 0		7
		:42	602 913 Arc	AVA	<u>classic</u>	0 701
	Nieron and a	. 11	$\frac{1}{2}$	0	1 0	1 0
	nce we can so			<u> </u>	1 0	111
rc	$\neg A =$	1) 1	7 N		_ N	
Х	Java lav		V FI	<u> </u>	Ô	1
1	101	0	N/N/	0	-	0
roblem 7.2	:101	1	2 10 1			
0		0.1	011			
	\ /.			-,1		
F(X	(,Y,Z) = (((XVX) V (X N ¬	Z)) V (Z N	170)	
F(x)	(Y,Z) = (((XNY) V (X N ¬	Z)) V (Z (170)) angsil
$F(X) = (((X + X)^{-1})^{-1})^{-1}$, Y, Z) = (((X NY) V(X N ≉	×ηΥ (Z))) V (X N ¬ 1	Z)) V (Z [170) 1100 s	21994
= (((Since	XΛY) V(XΛ *) 70 = 1	· ¬Z)) \	V(7A)	10) betrues	(70) disc	erg94
= (((Since Applying	X NY) V(X N 2) 70 = 1, g Identity law	i.e ?	V (7_ n - 2 2 n1 = 2	10) haltung	allow s	21994
= (((Since Applying	X NY) V(X N 2) 70 = 1, g Identity law	i.e ?	V (7_ n - 2 2 n1 = 2	10) betrues	allow s	21994
= (((Since Applying	XΛY) V(XΛ *) 70 = 1	i.e ?	V (7_ n - 2 2 n1 = 2	10) haltung	allow s	21994
= (((Since Applying	X NY) V(X N 2) 70 = 1, g Identity law	i.e ?	V (7_ n - 2 2 n1 = 2	10) haltung	allow s	21994
= (((Since Applying	X NY) V(X N 2) 70 = 1, g Identity law	i.e ?	V (7_ n - 2 2 n1 = 2	10) haltung	allow s	21994
= (((Since Applying	X NY) V(X N 2) 70 = 1, g Identity law	i.e ?	V (7_ n - 2 2 n1 = 2	10) haltung	allow s	21994
= (((Since Applying	X NY) V(X N 2) 70 = 1, g Identity law	i.e ?	V (7_ n - 2 2 n1 = 2	10) haltung	allow s	21994
= (((Since Applying	X NY) V(X N 2) 70 = 1, g Identity law	i.e ?	V (7_ n - 2 2 n1 = 2	10) haltung	allow s	21994