UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

VICERRECTORADO ACADÉMICO

FACULTAD DE CIENCIAS NATURALES Y FORMALES DEPARTAMENTO ACADÉMICO DE MATEMATICAS

SÍLABO 2025 - B ASIGNATURA: MATEMATICA APLICADA A LA COMPUTACION

1. INFORMACIÓN ACADÉMICA

Periodo académico:	2025 - B		
Escuela Profesional:	CIENCIA DE LA COMPUTACIÓN		
Código de la asignatura:	1703241		
Nombre de la asignatura:	MATEMATICA APLICADA A LA COMPUTACION		
Semestre:	VI (sexto)		
Duración:	17 semanas		
Número de horas (Semestral)	Teóricas:	2.00	
	Prácticas:	2.00	
	Seminarios:	0.00	
	Laboratorio:	2.00	
	Teórico-prácticas:	0.00	
Número de créditos:	: 4		
Prerrequisitos:	ECUACIONES DIFERENCIALES (1703135)		

2. INFORMACIÓN DEL DOCENTE, INSTRUCTOR, COORDINADOR

DOCENTE	GRADO ACADÉMICO	DPTO. ACADÉMICO	HORAS	HORARIO
HANCCO ANCORL PICARDO IAVIER	NCCO ANCORI, RICARDO JAVIER Magister MATEMATICAS	MATEMATICAS	2	Lun: 07:00-08:40
HANCCO ANCONI, NICARDO JAVIEN			Mar: 09:40-11:30	
MODALES MOVA ADHA	MORALES MOYA, ADHA Magister MATEMATICAS	MATEMATICAS	0	Lun: 07:00-08:40
MORALES MOTA, ADITA		0	Mar: 09:40-11:30	
CANO MAMANI, ADELA LUISA	Magister	MATEMATICAS	4	Jue: 15:50-17:30
CANO IVIAIVIANI, ADELA LOISA	iviagistei	WATEWATIOAS		Vie: 14:00-15:40
MORALES MOYA, ADHA	Magister MATEMATICAS 0	0	Jue: 15:50-17:30	
MORALES MOTA, ADHA		MATEMATICAS		Vie: 14:00-15:40

3. INFORMACIÓN ESPECIFICA DEL CURSO (FUNDAMENTACIÓN, JUSTIFICACIÓN)

Gracias a la matemática y a la cada vez más accesible capacidad de procesamiento y almacenamiento

computacional se han desarrollado campos como robótica, computación gráfica, visión computacional, big data, inteligencia artificial, etc. En gran medida, las aplicaciones prácticas de la matemática a la vida real se efectúan vía entidades y herramientas del álgebra lineal, esta rama de la matemática, por su naturaleza lineal y finito dimensional, facilita el abordaje computacional de problemas matemáticos provenientes de diversos campos de la vida real. Por ejemplo: procesamiento de imágenes, simulación numérica, optimización, aprendizaje máquina, entre muchos otros.

4. COMPETENCIAS/OBJETIVOS DE LA ASIGNATURA

- a) Aplica conocimientos de computación y herramientas matemáticas para diversos problemas de Ciencia de la Computación.
- b) Utiliza técnicas y herramientas actuales necesarias para la práctica de la computación.
- c) Aplica tecnologías matemáticas, principios de algoritmos numéricos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión.

5. CONTENIDO TEMATICO

PRIMERA UNIDAD

Capítulo I: Espacios Lineales

Tema 01: Clase Inaugural.- Lineamientos del curso

Tema 02: Espacios vectoriales

Tema 03: Subespacios vectoriales

Tema 04: Independencia, base y dimension

Tema 05: Espacios con producto interno

Tema 06: Bases ortonormales y proyecciones

Tema 07: Aproximaciones por mínimos cuadrados

Tema 08: Primer examen

SEGUNDA UNIDAD

Capítulo II: Transformaciones Lineales

Tema 09: Concepto de transformación lineal

Tema 10: Imagen y núcleo

Tema 11: Matriz de una transformación lineal

Tema 12: Isomorfismos

Tema 13: Cambio de base

Capítulo III: Autovalores y Autovectores

Tema 14: Autovalores y autovectores

Tema 15: Matrices semejantes y diagonalización

Tema 16: Matrices simétricas y diagonalización ortogonal

Tema 17: La descomposición de valor singular

Tema 18: Segundo examen

TERCERA UNIDAD

Capítulo IV: Sistemas de Ecuaciones Diferenciales

Tema 19: Exponencial de una matriz

Tema 20: Existencia y unicidad de soluciones para sistemas lineales homogéneas con coeficientes constantes

Tema 21: Sistemas lineales no homogéneas con coeficientes constantes

Tema 22: Flujo de una ecuación diferencial

Capítulo V: Estabilidad y equilibrio

Tema 23: Estabilidad

Tema 24: Examen sustitutorio
Tema 25: Funciones de Liapunov
Tema 26: Sistemas Gradiente

Tema 27: Tercer exámen

6. ESTRATEGIAS DE ENSEÑANZA APRENDIZAJE

6.1. Métodos

1. Método basado en problemas.

2. Método expositivo.

3. Método del aula invertida.

6.2. Medios

Pizarra física

Pizarra digital

Computadora

Internet

6.3. Formas de organización

Clases teóricas: Presentación de conceptos y propiedades de forma analítica.

Clases prácticas: Resolución de ejercicios prácticos.

Clases de laboratorio: Resolución de ejercicios prácticos con apoyo de software de matemática simbólica.

6.4. Programación de actividades de investigación formativa y responsabilidad social

Investigación formativa: Matemáticas del Deep Learning.

Responsabilidad social: A coordinar con la Dirección de Escuela.

7. CRONOGRAMA ACADÉMICO

SEMANA	TEMA	DOCENTE	%	ACUM.
1	Clase Inaugural Lineamientos del curso	R. Hancco	4	4.00
1	Espacios vectoriales	R. Hancco	4	8.00
2	Subespacios vectoriales	R. Hancco	5	13.00
3	Independencia, base y dimension	R. Hancco	5	18.00
4	Espacios con producto interno	R. Hancco	4	22.00
4	Bases ortonormales y proyecciones	R. Hancco	4	26.00
5	Aproximaciones por mínimos cuadrados	R. Hancco	4	30.00
6	Primer examen	R. Hancco	3	33.00

7	Concepto de transformación lineal	R. Hancco	4	37.00
7	Imagen y núcleo	R. Hancco	4	41.00
8	Matriz de una transformación lineal	R. Hancco	4	45.00
8	Isomorfismos	R. Hancco	4	49.00
9	Cambio de base	R. Hancco		53.00
9	Autovalores y autovectores	R. Hancco	4	57.00
10	Matrices semejantes y diagonalización	R. Hancco	4	61.00
10	Matrices simétricas y diagonalización ortogonal	R. Hancco	4	65.00
10	La descomposición de valor singular	R. Hancco	4	69.00
11	Segundo examen	R. Hancco	3	72.00
12	Exponencial de una matriz	R. Hancco	4	76.00
13	Existencia y unicidad de soluciones para sistemas lineales homogéneas con coeficientes constantes	R. Hancco	3	79.00
13	Sistemas lineales no homogéneas con coeficientes constantes	R. Hancco	4	83.00
14	Flujo de una ecuación diferencial	R. Hancco	3	86.00
14	Estabilidad	R. Hancco	3	89.00
15	Examen sustitutorio	R. Hancco	2	91.00
15	Funciones de Liapunov	R. Hancco	4	95.00
16	Sistemas Gradiente	R. Hancco	3	98.00
17	Tercer exámen	R. Hancco	2	100.00

8. ESTRATEGIAS DE EVALUACIÓN

8.1. Evaluación del aprendizaje

- Prácticas calificadas
- Exámenes escritos
- Presentación de trabajos
- Participación en clase

8.2. Cronograma de evaluación

EVALUACIÓN	FECHA DE EVALUACIÓN	EXAMEN TEORÍA	EVAL. CONTINUA	TOTAL (%)
Primera Evaluación Parcial	24-09-2025	15%	15%	30%
Segunda Evaluación Parcial	29-10-2025	15%	15%	30%
Tercera Evaluación Parcial	10-12-2025	20%	20%	40%
			TOTAL	100%

9. REQUISITOS DE APROBACIÓN DE LA ASIGNATURA

- a) El estudiante que no tenga nota en alguna de sus evaluaciones (evaluación continua o examen parcial), quedará en situación de ABANDONO.
- b) La presentación y sustentación del trabajo de investigación formativa es fundamental para la nota de evaluación continua.
- c) El estudiante queda en situación de abandono si su porcentaje de asistencia es menor al 80%.
- d) Los pesos de las notas de evaluación continua y de exámenes parciales fueron establecidos por la Dirección de Escuela y el cálculo del promedio final es efectuado por el sistema informático de la universidad.

e) El estudiante tiene derecho a rendir un examen de sustitutorio que permite sustituir únicamente alguno de los dos primeros exámenes parciales, dicho examen se efectuará a solicitud explícita del estudiante interesado dentro del periodo establecido por la universidad.

10. BIBLIOGRAFIA: AUTOR, TÍTULO, AÑO, EDITORIAL

10.1. Bibliografía básica obligatoria

- Stanley, G. S., & Flores Godoy, J. J. (2012). Algebra lineal. McGrawHill.
- Meyer, C. D. (2000). Matrix analysis and applied linear algebra (Vol. 71). Siam.
- Zill, D. G., Cullen, M. R., Hernández, A. E. G., & López, E. F. (2002). Ecuaciones diferenciales con problemas de valores en la frontera. Thomson.
- Hirsch, M. W., Devaney, R. L., & Smale, S. (1974). Differential equations, dynamical systems, and linear algebra (Vol. 60). Academic press.

10.2. Bibliografía de consulta

- Datta, B. N. (2010). Numerical linear algebra and applications (Vol. 116). Siam.

Arequipa, 21 de Setiembre del 2025

HANCCO ANCORI, RICARDO JAVIER

MORALES MOYA, ADHA

CANO MAMANI, ADELA LUISA