Group 3:
Wanshan Mao,
Muhetaer Mayila,
Yankun Song,
Yu Xiao,
Yue Wang,
Duygu Torun

WHITEWINE QUALITY PREDICTION

Data Mining for Business (BYGB-7967-V01)

Instructor: Professor Lin Hao

TABLEOFCONTENTS

- I. Introduction
- II. DIDA Framework
- III. Challenges / Insights
- IV. Python Implementation Of Prediction Model:
 - i. Logistic Regression
 - ii. Classification Tree& English Rules
 - iii. Neural Network
 - iv. k-NN
- V. Prediction Model Comparison and Result
- VI. The "Perfect Wine"- Scenario
- VII. Conclusion and Limitations

INTRODUCTION

Isit wineo'dock yet?

Goal: Examine expectation of wine quality to decide market launch

Wine quality can vary from 1to 10

Segmentation for good wine starts with a score above 6

Target high-end white wine market

Physicochemical variables: alcohol, sulfates, volatile acidity, density, etc.

Dataset source: Kaggle

DIDA FRAMEWORK

Data	 Dataset contains chemical attributes of white wines Each row represents a specific wine → individual-level and historical data 5predictors & 4899 observations → ensuring portrait-shape DV: "Quality" (1: good or 0: not good → binary) 	
nsights	• Probability : How likely wine will be perceived as good on the market?	
Decision	 Whether to launch the white wine to the high-end market or not If probability > 50%, wine is considered "good" (score > 6.0) → company launches wine to high-end market 	-
A dvantage	 Cost-cutting → no need for sample preparation or send-out to wine experts/customers for rating purposes Increase of high-end wine market share & presence Profit maximization & brand awareness reinforcement as high-end wine producer 	

CHALLENGES/INSIGHTS

Accuracy or AUC?

Highly unbalanced problem, a very skewed sample distribution we care the "one"

	Num	%
0	3838	78.4%
1	1060	21.6%

LOGISTIC REGRESSION

Characters	Coefficients
Fixed Acidity	0.469865
V olatile A cidity	-0.390498
Citric A cid	-0.095696
Residual Sugar	1.525274
Chlorides	-0.339358
Free Sulfur Dioxide	0.150111
Total Sulfur Dioxide	0.007699
Density	-1.979349
PH	0.501027
Sulphates	0.231539
Alcohol	0.160923
Intercept	-1.717265

Top 5 predictors:

- 1. Density
- 2. Residual Sugar
- 3. PH
- 4. Fixed Acidity
- 5 Volatile Acidity

A ccuracy	AUC
0.7887	0.8007

CLASSIFICATION TREE

The order of the predictors appear from the root:

- 1. Alcohol
- 2. Volatile Acidity
- 3. Density
- 4. PH
- 5. Free Sulfur Dioxide

Accuracy	AUC
0.8285	0.8249

ENGLISH RULES

```
Leaf node ID = 44

Path = ['alcohol <= 10.625', 'volatile_acidity <= 0.20250000059604645', 'density > 0.9978799819946289', 'citric_acid <= 0.3050000071525574', 'alcohol <= 9.150000095367432', 'fixed_acidity > 6.450000047683716']

sample = 45

value = [0, 45]

class = 1
```

• The predicted probability given by a leaf node: 100%

• IF alcohol <= 9.15 and volatile acidity <= 0.2025 and density > 0.998 and citric acid <= 0.305 and fixed acidity > 6.45, THEN it is high quality wine.

NEURAL NETWORK

- drop the quality column
- set the testpart size to 0.2
- set alpha level to 0.1, the hidden levels to 3
- get the weight for 11 predictors and 3 levels for each predictor

Accuracy	AUC
0.8204	0.8421

K-NN

- measure the similarity between the new data and sample data
- measure the distance between each data with the "euclidean" function
- set the n_neighbors = 5 as pre-specify k to get the AUC score

Accuracy	AUC
0.8500	0.8379

PREDICTION MODEL COMPARISONS

Techniques	A ccuracy	AUC
Logistic Regression	0.7887	0.8007
Classification Tree	0.8285	0.8249
kNN	0.8500	0.8379
Neural Network	0.8204	0.8421

THE "PERFECT WINE"-SCENARIO

fixed_acidity(+)	volatile <u>a</u> cidity(-)	citric <u>a</u> cid(-)	residual <u>s</u> ugar(+)
9.1	0.24	0.29	10.6
chlorides(-)	free <u>s</u> ulfur <u>d</u> ioxide (+)	total_ <u>s</u> ulfur_dioxide (+)	density(-)
0.018	57	139	0.98965
pH(+)	sulphates(+)	alcohol(+)	
3.41	0.61	12.9	

CONCLUSION AND LIMITATIONS

Summaries:

- Developed 4 prediction models
- Each achieves a good performance around 80%
- offers company reliable results, lessen costs & time, grow profits & business

Limitations:

- A ccuracy vs. Interpretability
- Need: both high accuracy & high interpretability
- Actual: kNN & Neutral Network, high AUC, low interpretability

