Nonlinear Regression Analysis

Given the model:

$$\mu = b_0 e^{b_1/T}$$

with initial guesses $b_0 = 1.5$ and $b_1 = -500$, we calculate the predicted viscosities and residuals for the temperatures converted from Celsius to Kelvin.

Data Conversion

Temperatures in Celsius: [26.67, 93.33, 148.89, 315.56] are converted to Kelvin:

$$T(K) = T(^{\circ}C) + 273.15$$

Resulting in: [299.82 K, 366.48 K, 422.04 K, 588.71 K].

Calculations

For T = 299.82 K

$$\mu_{pred} = 1.5 \times e^{-500/299.82} \approx 1.5 \times e^{-1.67} \approx 1.5 \times 0.188 \approx 0.282$$

Residual:

$$1.35 - 0.282 = 1.068$$

Squared Residual:

$$(1.068)^2 = 1.141024$$

For T = 366.48 K

$$\mu_{pred} = 1.5 \times e^{-500/366.48} \approx 1.5 \times e^{-1.364} \approx 1.5 \times 0.255 \approx 0.383$$

Residual:

$$0.085 - 0.383 = -0.298$$

Squared Residual:

$$(-0.298)^2 = 0.088804$$

For T = 422.04 K

$$\mu_{pred} = 1.5 \times e^{-500/422.04} \approx 1.5 \times e^{-1.184} \approx 1.5 \times 0.306 \approx 0.459$$

Residual:

$$0.012 - 0.459 = -0.447$$

Squared Residual:

$$(-0.447)^2 = 0.199809$$

For T = 588.71 K

$$\mu_{vred} = 1.5 \times e^{-500/588.71} \approx 1.5 \times e^{-0.849} \approx 1.5 \times 0.428 \approx 0.642$$

Residual:

$$0.00075 - 0.642 = -0.64125$$

Squared Residual:

$$(-0.64125)^2 = 0.411202$$

Sum of Squared Residuals (RSS)

$$RSS = 1.141024 + 0.088804 + 0.199809 + 0.411202 = 1.840839$$

Analysis of Parameter Estimates and Uncertainty

- 1. Estimated Parameters:
 - b_0 (Scale Factor): 3.10454×10^{-7}
 - b_1 (Exponential Decay Constant): 4582.8555
- 2. Standard Errors:
 - Standard Error of b_0 : 5.97475×10^{-8}
 - Standard Error of b_1 : 57.7395
- 3. Coefficient of Determination (R^2) :
 - R^2 : 0.999986

Detailed Comments on Uncertainty

Parameter b_0 :

- The value of b_0 is extremely small (3.10454 × 10⁻⁷), which suggests that the scale of viscosity change with temperature according to this model is minute. This might indicate that the viscosity at a hypothetical infinitely high temperature (as $T \to \infty$, $e^{b_1/T} \to 1$, making $\mu \to b_0$) is near zero.
- The relative standard error of b_0 , calculated as $\frac{\text{Standard Error of }b_0}{b_0} \times 100\%$, is approximately 19.25%. This relatively high percentage (considering the magnitude of the parameter) reflects substantial uncertainty in the estimate of b_0 , pointing out that small variations in the data or model could lead to significantly different estimates of b_0 .

Parameter b_1 :

• b_1 shows a high sensitivity to temperature changes, as indicated by its large positive value. A larger b_1 makes the decay of the exponential term $e^{b_1/T}$ much steeper as temperature increases.

• The standard error of b_1 is relatively small compared to its value, indicating a lower percentage of uncertainty compared to b_0 . The relative standard error is $\frac{57.7395}{4582.8555} \times 100\% \approx 1.26\%$. This smaller relative error suggests that b_1 is estimated with higher precision and confidence.

Goodness of Fit (R^2) :

• An R^2 value of 0.999986 is extremely close to 1, which suggests that the model explains virtually all the variability in the viscosity data relative to the mean. This high R^2 indicates an excellent fit of the model to the data.

Implications and Considerations:

- Model Sensitivity: The large value of b_1 compared to the very small b_0 can make the model highly sensitive to changes in temperature, especially at higher temperatures.
- Data Range and Impact: The effective temperature range and how it influences the viscosity are critical in interpreting these results. The temperature range from 299.82 K to 588.71 K covers significant physical properties changes, especially near critical temperatures where the behavior of fluids can dramatically change.
- Practical Implications: Given the nature of b_0 and its uncertainty, special attention should be given when using this model for predictive purposes at temperatures not covered by the data, as extrapolations might be unreliable.

Visual Analysis from Plots:

- **Fit Plot:** The model appears to fit the data points very well, as the curve closely follows the data points across the entire temperature range.
- Residuals Plot: The residuals are very small and appear randomly distributed around zero, which supports the high R^2 value and indicates a good fit without obvious patterns of model misspecification.

Therefore, while the model fits the data well, the uncertainty in b_0 requires careful handling, particularly in practical applications or extrapolations beyond the range of data provided.