ନବମ ଅଧାୟ

ଧ୍ୱନି (SOUND)

ପ୍ରତିଦିନ ସକାଳୁ ରାତିଯାଏ ଆୟେମାନେ ବିଭିନ୍ ପ୍ରକାରର ଧ୍ୱନି ଶୁଣୁଥାଉ । ସେ ଧ୍ୱନି ଘରେ ବିଭିନ୍ନ ବ୍ୟକ୍ତିଙ୍କ ମଧ୍ୟରେ କଥୋପକଥନ ହୋଇପାରେ କିୟା ଟେଲିଫୋନ୍, ରେଡ଼ିଓ, ଟେଲିଭିଜନ ଇତ୍ୟାଦିରୁ ସୃଷ୍ଟି ହୋଇପାରେ ବା ମନ୍ଦିରରେ ବାଜୁଥିବା ଘଣ୍ଟାର ଶବ୍ଦ ହୋଇପାରେ I ବିଦ୍ୟାଳୟରେ ଶିକ୍ଷକ ଓ ସାଙ୍ଗସାଥିମାନଙ୍କର ସ୍ୱର ସହ ତୂମେ ବେଶ୍ ପରିଚିତ । ରାଞାରେ ଗଲାବେଳେ ସ୍କୁଟର, ମୋଟର ସାଇକେଲ୍, ଟ୍ରକ, କାର, ବସ୍ ଇତ୍ୟାଦିରୁ ନିଃସୂତ ଶବ୍ଦ ମଧ୍ୟ ତୁମେ ଶୁଣିଛ । ଆକାଶରେ ପକ୍ଷୀର କାକଳି ତଥା ଉଡ଼ାଜାହାଜର ଧୁନି ସହ ମଧ୍ୟ ତୁମେ ପରିଚିତ । ଧୁନି ହେଉଛି ଶକ୍ତିର ଏକ ରୂପ l ଧ୍ୱନି ଶକ୍ତି କାନରେ ଶୁଣିବାର ଏକ ଇନ୍ଦ୍ରିୟାନୁଭୂତି ସୂଷ୍ଟି କରେ, ଫଳରେ ଆମେ ଧ୍ୱନିକୁ ଶୁଣିପାରୁ । ଧ୍ୱନିକୁ ଛାଡ଼ି ତୁମେ ଜାଣିଥିବା ଅନ୍ୟ ଶକ୍ତିଗୁଡ଼ିକ ହେଲା -ଯାନ୍ତିକ ଶକ୍ତି, ତାପ ଶକ୍ତି, ଆଲୋକ ଶକ୍ତି ଓ ବିଦ୍ୟୁତ୍ ଶକ୍ତି ଇତ୍ୟାଦି । ତୁମେ ଯାନ୍ତିକ ଶକ୍ତି ବିଷୟରେ ପୂର୍ବ ଅଧ୍ୟାୟରେ ପଢ଼ିଛ । ସେଠାରେ ତୁମକୁ ଶକ୍ତି ସଂରକ୍ଷଣ ନିୟମ ବିଷୟରେ କୁହାଯାଇଛି । ସେହି ନିୟମଟି ହେଲା- "ଆମେ **ଶକ୍ତିକୁ** ସୃଷ୍ଟି କରି ପାରିବା ନାହିଁ କି ବିନାଶ କରି ପାରିବା ନାହିଁ । ଏହା କେବଳ ଗୋଟିଏ ରୂପରୁ ଅନ୍ୟ ଏକ ରୂପକୁ ର୍ପାନ୍ତରିତ ହୋଇଥାଏ ।"

ତୂମେ ଯେତେବେଳେ ତାଳିମାରୁଛ ସେତେବେଳେ ତୁମେ ଧ୍ୱନି ସୃଷ୍ଟି କରୁଛ । ତୂମର ଶକ୍ତିକୁ ବିନିଯୋଗ ନକରି ତୁମେ ଧ୍ୱନି ସୃଷ୍ଟି କରି ପାରିବ କି ? ଏହି ଅଧ୍ୟାୟରେ ଆମେ ଧ୍ୱନି କିପରି ସୃଷ୍ଟି ହୁଏ ଏବଂ ଏହା କିପରି ଗୋଟିଏ ମାଧ୍ୟମରେ ସଞ୍ଚାରିତ ହୁଏ ଓ ଆମେ କାନଦ୍ୱାରା କିପରି ଏହାକୁ ଶୁଣୁ ଏ ବିଷୟରେ ଅଧିକ ଆଲୋଚନା କରିବା ।

9.1 ଧ୍ୱନିର ସୃଷ୍ଟି (Production of Sound)

ତୁମପାଇଁ କାମ : 9.1

ଗୋଟିଏ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କ ନିଅ । ଏହାର ଗୋଟିଏ ଶାଖାକୁ ରବର ପ୍ୟାଡ଼ରେ ଆଘାତ କରି କମ୍ପିତ କର ଓ ତୁମ କାନ ପାଖରେ ରଖ । ତୁମେ କୌଣସି ଧ୍ୱନି ଶୁଣି ପାରୁଛ କି ? କଂପିତ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଗୋଟିଏ ଶାଖାକୁ ତୁମ ଆଙ୍ଗୁଠି ଦ୍ୱାରା ୟର୍ଶ କର । କ'ଣ ସ୍ୱର୍ଶାନୁଭୂତି ହେଲା ? ତୁମର ଅନୁଭୂତିକୁ ସାଙ୍ଗମାନଙ୍କ ଗହଣରେ ଆଲୋଚନା କର ।

ଚିତ୍ର 9.1 ଝୁଲୁଥିବା ବଲ୍କୁ କମ୍ପିତ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଶାଖା ୟର୍ଶ କରୁଛି

ଚିତ୍ର 9.1ରେ ପ୍ରଦର୍ଶିତ ହେଲାଭଳି ଗୋଟିଏ ଟେବୁଲ ଟେନିସ ବା ଛୋଟ ପ୍ଲାଷ୍ଟିକ ବଲ୍କୁ ସୂତାରେ ସଂଯୁକ୍ତ କରି ଏକ ଦୃଢ଼ ଆଧାରରୁ ଶକ୍ତ ଭାବରେ ଝୁଲାଇ ରଖ । (ଗୋଟିଏ ବଡ଼ ଛୁଞ୍ ଏବଂ ଖଣ୍ଡେ ସୂତା ନିଅ । ଏହାର ଗୋଟିଏ ପ୍ରାନ୍ତରେ ଗୋଟିଏ ଗଣ୍ଠି ପକାଅ ଏବଂ ଛୁଞ୍ ସାହାଯ୍ୟରେ ସୂତାକୁ ବଲ୍ ମଧ୍ୟରେ ଭର୍ତ୍ତି କର ।) ଏକ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଗୋଟିଏ ଶାଖା (prong)କୁ ରବର ପ୍ୟାଡ଼ରେ ଆଘାତକରି କମ୍ପିତ କର । ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର କମ୍ପିତ ଶାଖାକୁ ପ୍ଲାଷ୍ଟିକ ବଲ୍ ରେ ସ୍ପର୍ଶ କରାଅ । କ'ଣ ଦେଖିଲ ? କ'ଣ ହେଉଛି ସାଙ୍ଗମାନଙ୍କୁ ଦେଖାଅ ଏବଂ ଆଲୋଚନା କର ।

ତୁମ ପାଇଁ କାମ : 9.2

ଗୋଟିଏ କାଚ ଗ୍ଲାସ ନେଇ ସତର୍କତା ସହ ଏହାର ମୁହଁ ପର୍ଯ୍ୟନ୍ତ ଜଳ ଭର୍ତ୍ତି କର । ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଗୋଟିଏ କମ୍ପିତ ଶାଖାକୁ ସାବଧାନତା ସହକାରେ ଜଳ ପୃଷ୍ଠରେ ୟର୍ଶ କରାଅ । ଚିତ୍ର 9.2 ।

ଚିତ୍ର 9.2 କମ୍ପିତ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଏକ ଶାଖା ଜଳ ପୃଷକୁ ୟର୍ଶ କରୁଛି

ତାହାପରେ କଂପିତ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଉଭୟ ଶାଖାକୁ ଚିତ୍ର 9.3ରେ ପ୍ରଦର୍ଶିତ ହେଲାଭଳି ଜଳ ମଧ୍ୟରେ ବୂଡ଼ାଅ । ଉଭୟ କ୍ଷେତ୍ରରେ କ'ଶ ହେଉଛି ଲକ୍ଷ୍ୟ କର ? ଏପରି କାହିଁକି ହେଉଛି, ସାଙ୍ଗମାନଙ୍କ ସହ ଆଲୋଚନା କର । ଏଥିରୁ ତୁମେ କେଉଁ ସିଦ୍ଧାନ୍ତରେ ପହଁଞ୍ଚଲ ? ଗୋଟିଏ କମ୍ପିତ ବୟୁ ବିନା ତୁମେ ଧ୍ୱନି ସୃଷ୍ଟି କରିପାରିବ କି ?

ଚିତ୍ର 9.3 ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଉଭୟ ଶାଖା ଜଳ ମଧ୍ୟରେ ବୁଡ଼ିଛି

ଏହି ପରୀକ୍ଷାଗୁଡ଼ିକରେ ତୁମେ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଏକ ଶାଖାକୁ ଆଘାତ କରି କମ୍ପନ ସୃଷ୍ଟି କରିଛ ଏବଂ ଏହି କମ୍ପନରୁ ଧ୍ୱନି ସୃଷ୍ଟି ହେଉଛି । ସେହିଭଳି କେତେକ ବାଦ୍ୟଯନ୍ତ ଯଥା : ସିତାର, ଗିଟାର ଇତ୍ୟାଦିରେ ତାରକୁ ଟାଣି କମ୍ପନ ସୃଷ୍ଟି କରି ଧ୍ୱନି ସୂଷ୍ଟି କରାଯାଏ । ତବଲା, ଡ୍ରମ ଇତ୍ୟାଦି ବାଦ୍ୟଯନ୍ତ୍ରର ଚମଡ଼ା ପଟ୍ଟଳକୁ ଘଷି କିୟା ହାତରେ ବାଡ଼େଇ କମ୍ପିତ କରି ସେଥିରୁ ଧ୍ୱନି ସୂଷ୍ଟି କରାଯାଏ । ବଂଶୀ, ସାହନାଇ, କାହାଳୀ ଇତ୍ୟାଦିରେ ବାୟୁକୁ ଫୁଙ୍କି କମ୍ପନ ସୃଷ୍ଟି କଲେ ସେଥିରୁ ଧୁନି ନିଃସୂତ ହୁଏ । ଏ ସମୟ କ୍ଷେତ୍ରରେ ବସ୍ତୁର କମ୍ପନ ହେତୁ ଧ୍ୱନି ସୃଷ୍ଟି ହେଉଛି । ଗୋଟିଏ ବସ୍ତୁ ଦ୍ରୁତଗଡିରେ ଏକ ମାଧ୍ୟ ଅବସ୍ଥାନର ଏକଡ଼-ସେକଡ଼ (to & fro) ହେବାକୁ କମ୍ପନ କୁହାଯାଏ । ମନୁଷ୍ୟମାନଙ୍କର ସ୍ପର ପେଟିକା (vocal cord)ରେ ଥିବା ବାୟୁର କମ୍ପନରୁ ଧ୍ୱନି ସୃଷ୍ଟି ହୁଏ । ଗୋଟିଏ ପକ୍ଷୀ ଡେଣା ହଲାଇ ଉଡ଼ିଗଲା ବେଳେ ତୁମେ କୌଣସି ଧୁନି ଶୁଣି ପାର କି ? ମହୁମାଛିଙ୍କର ଗୁଣୁଗୁଣୁ ଶବ୍ଦ ତୁମେ ଶୁଣିଥିବ । ଦୁଇ କଡ଼ ଟାଣି ହୋଇ ବନ୍ଧା ହୋଇଥିବା ରବର ବ୍ୟାଣ୍ଡକୁ ମଝିରୁ ଟାଣି ଛାଡ଼ିଦେଲେ ରବର ବ୍ୟାଣ୍ଡଟି କମ୍ପିତ ହୁଏ । ସେହି କମ୍ପନ ବାୟୁ ମାଧ୍ୟମରେ ସଞ୍ଚାରିତ ହୋଇ ବାୟୁରେ କମ୍ପନ ସୂଷ୍ଟି କରେ, ଯାହାଯୋଗୁ ଆମେ ଧୃନି ଶୁଣିଥାଉ । ଯଦି ଉପର ବର୍ତ୍ତିତ ରବର ବ୍ୟାଣ୍ଡ ପରୀକ୍ଷାଟି ତୂମେ କେବେ କରିନାହଁ, ତାହାହେଲେ ତାହା କରି ରବର ବ୍ୟାଣ୍ତର କମ୍ପନକୁ ନିରୀକ୍ଷଣ କର I

ତୁମ ପାଇଁ କାମ : 9.3

ତୁମେ କୌଣସି ବାଦ୍ୟଯନ୍ତ ବଳାଅ କି ? ବିଭିନ୍ନ ବାଦ୍ୟଯନ୍ତ ବିଷୟରେ ତୁମେ ପଢ଼ିସାରିଲଣି । ତୁମେ ଜାଣିଥିବା ବାଦ୍ୟଯନ୍ତ୍ରମାନଙ୍କର ନାମ ଲେଖ ଏବଂ ସେମାନଙ୍କର କେଉଁ ଅଂଶ କମ୍ପିତ ହୋଇ ଧ୍ୱନି ସୃଷ୍ଟିକରେ ତାହାକୁ ଲେଖ । ଏହାକୁ ସାଙ୍ଗମାନଙ୍କ ସହ ଆଲୋଚନା କର ।

9.2 ଧ୍ୱନିର ସଞ୍ଚାରଣ (Propagation of Sound)

ବଞ୍ଚର କମ୍ପନରୁ ଧ୍ୱନି ସୃଷ୍ଟି ହୁଏ । ଧ୍ୱନି ଯେଉଁ ପଦାର୍ଥ ବା ବଞ୍ଚୁ ମଧ୍ୟ ଦେଇ ସଞ୍ଚାରିତ ହୁଏ, ତାହାକୁ ମାଧ୍ୟମ (medium) କୂହାଯାଏ । ଏହି ମାଧ୍ୟମ କଠିନ, ତରଳ କିୟା ଗ୍ୟାସୀୟ ହୋଇପାରେ । ଯେତେବେଳେ କୌଣସି ବସ୍ତୁ ବାୟୁ ମାଧ୍ୟମରେ କମ୍ପିତ ହୁଏ, ସେତେବେଳେ କମ୍ପିତ ବସ୍ତୁର କମ୍ପନ ତାହାର ଚତ୍ରଃପାର୍ଶ୍ୱରେ ଥିବା ବାୟୁ ମାଧ୍ୟମକୁ ପ୍ରସାରିତ ହୋଇଥାଏ । ଏହି କମ୍ପନର ଶକ୍ତି (vibrational energy) ଯୋଗୁ ବାୟର କଣିକାମାନେ ଦୋଳାୟିତ ହୁଅନ୍ତି । ଏହି କଣିକାମାନଙ୍କ ଦୋଳନ ଶକ୍ତି ଧ୍ୱନି ତରଙ୍ଗ ରୂପରେ ବାୟୁ ମାଧ୍ୟମରେ ସଞ୍ଚାରିତ ହୁଏ । ଧୁନି ସଞ୍ଚାରଣ ବେଳେ ମାଧ୍ୟମର କଣିକାମାନେ ମାଧ୍ୟମର ଗୋଟିଏ ସ୍ଥାନରୁ ଆଉ ଗୋଟିଏ ସ୍ଥାନକ୍ ଗତି କରନ୍ତି ନାହିଁ । ସେମାନେ କେବଳ ନିଜ ସ୍ଥାନରେ ଦୋଳିତ ହୁଅନ୍ତି । ମାତ୍ର ଧ୍ୱନି ତରଙ୍ଗ, କମ୍ପିତ ବସ୍ତୁ ନିକଟରୁ ଶ୍ରୋତାର କାନ ପର୍ଯ୍ୟନ୍ତ ଗତି କରିଥାଏ । ଆସ ଏକ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କକୁ କମ୍ପିତ ବସ୍ତୁର ନମୁନା ଭାବରେ ନେଇ ମାଧ୍ୟମରେ କଣିକାମାନଙ୍କର ଦୋଳନକୁ ବୃଝିବା I

ଚିତ୍ର 9.4 ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର କମ୍ପନ

ଚିତ୍ର 9.4 ରେ ଗୋଟିଏ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କକୁ ଦେଖ । ଏହାର ଦୁଇଟି ଶାଖା ଅଛି । ଟ୍ୟୁନିଙ୍ଗ ଫର୍କଟି କମ୍ପିତ ହେଉନଥିବାବେଳେ ତାହାର ଏକ ଶାଖାର ଅବସ୍ଥାନ X ଦ୍ୱାରା ସୂଚିତ ହୋଇଛି । ଏହାକୁ ତାହାର ମାଧ୍ୟ ଅବସ୍ଥାନ (mean position) କହିବା । କମ୍ପିତ ହେଲେ, ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଶାଖା ମାଧ୍ୟ ଅବସ୍ଥାନ 'X'ର ଉଭୟ ଦିଗରେ Y ଓ Z ମଧ୍ୟରେ ଏପଟ ସେପଟ ହୋଇ ଗତି କରିବ । ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଶାଖାଟି କମ୍ପିତ ହେଉଥିବା ପର୍ଯ୍ୟନ୍ତ ଏହା ମାଧ୍ୟ ଅବସ୍ଥାନ 'X' ର ଉଭୟ ଦିଗରେ ଦୋଳିତ ହେଉଥାଏ ।

ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର ଅକମ୍ପିତ ଅବସ୍ଥାରେ ମାଧ୍ୟମ ମଧ୍ୟ ଅକମ୍ପିତ ଅବସ୍ଥାରେ ଥାଏ । ସେତେବେଳେ ମାଧ୍ୟମରେ ବାୟୁ କଣିକାମାନ ପରସ୍କରଠାରୁ ସମାନ ଦୂରତାରେ ସ୍ଥିର ହୋଇ ରହିଥାନ୍ତି । ମାଧ୍ୟମରେ ଟ୍ୟୁନିଙ୍ଗ ଫର୍କ କମ୍ପିତ ହେଲେ କମ୍ପିତ ଫର୍କ ନିକଟରେ ଥିବା କଣିକା ପ୍ରଥମେ ତା'ର ସ୍ଥିର ଅବସ୍ଥାରୁ ବିସ୍ଥାପିତ ହୁଏ ଏବଂ ତା' ନିକଟରେ ଥିବା କଣିକା ଉପରେ

ଏକ ବଳ ପ୍ରୟୋଗ କରେ, ଫଳରେ ଦ୍ୱିତୀୟ କଣିକାଟି ସ୍ଥିର ଅବସ୍ଥାରୁ ବିସ୍ଥାପିତ ହୁଏ । ପ୍ରଥମ କଣିକାଟି ତାହା ନିକଟସ୍ଥ ଦ୍ୱିତୀୟ କଣିକାକୁ ଧକ୍କା (collision) ମାରିଲା ପରେ ନିଜର ଗତିକୁ ବିପରୀତମୁଖୀ କରି ନିଜର ମାଧ୍ୟ ଅବସ୍ଥାନ ଆଡ଼କୁ ଫେରିଆସେ ।

ସେହିପରି ଦ୍ୱିତୀୟ କଣିକା ଦୋଳାୟିତ ହୋଇ ତା'ନିକଟସ୍ଥ ତୃତୀୟ କଣିକାକୁ ଧକ୍କା ମାରି ନିଜର ମାଧ ଅବସ୍ଥାନକୁ ଫେରିଆସେ । କଣିକା-କଣିକା ମଧ୍ୟରେ ସଂଘାତ (collision) ବେଳେ ସେମାନଙ୍କର ଦୋଳନ ଶକ୍ତି ଗୋଟିଏ କଣିକାରୁ ଅନ୍ୟ କଣିକାକୁ ସ୍ଥାନାନ୍ତରିତ ହୁଏ । ଧ୍ୱନି ଶକ୍ତି ଏହିପରି ଭାବରେ ମାଧ୍ୟମରେ ସଞାରିତ ହୋଇ ଶେଷରେ ଶ୍ରୋତାର କାନ ପାଖରେ ପହଞ୍ଚେ । ପ୍ରକୃତରେ ଧୁନି ହେଉଛି, ମାଧ୍ୟମରେ ସୃଷ୍ଟି ହେଉଥିବା ଏକ ବିଚଳନ (disturbance) ଯାହା ଗୋଟିଏ ବିନ୍ଦୁରୁ ଆରୟ ହୋଇ ଆଗକୁ ଆଗକୁ ଗତିକରେ । ମାଧ୍ୟମରେ ଏହି ବିଚଳନର ଗତିକୁ ତରଙ୍ଗ ଗତି (wave motion) କୁହାଯାଏ । ଗୋଟିଏ ମାଧ୍ୟମରେ ଧୁନି ଏହିପରି ଭାବରେ ତରଙ୍ଗ ରୂପରେ ସଞ୍ଚାରିତ ହୁଏ I

ବାୟୁ ମାଧ୍ୟମରେ କଣିକାମାନେ ଦୋଳାୟିତ ହେଉଥିଲାବେଳେ ବେଳେବେଳେ ସେମାନେ ପରୟର ଆଡ଼କୁ ଗତିକରି ନିକଟବର୍ତ୍ତୀ ହୋଇଥାଡି । ଏହା ଫଳରେ ମାଧ୍ୟମରେ ସମ୍ପୀଡ଼ନ (compression-C) ହୁଏ l ଯେତେବେଳେ କଣିକାମାନେ ପରସ୍କର ଠାରୁ ଦୂରେଇ ଯା'ନ୍ତି ସେତେବେଳେ ସେହି ଅଞ୍ଚଳରେ ବିରଳନ (rarefaction-

R) ସୂଷ୍ଟି ହୁଏ । ଚିତ୍ର 9.5 |

ଚିତ୍ର 9.5 ଟ୍ୟୁନିଙ୍ଗ ଫର୍କର କଂପନରୁ ସୃଷ୍ଟି ହେଉଥିବା ସଂପୀଡ଼ନ (C) ଓ ବିରଳନ (R)

ସମ୍ପୀଡନ ଓ ବିରଳନ ଗୋଟିଏ ଅଞ୍ଚଳରେ ଏକାନ୍ତର ଭାବରେ ସୃଷ୍ଟି ହୁଏ ।

ମାଧ୍ୟମର ସମ୍ପୀଡ଼ନ ଅଞ୍ଚଳରେ କଣିକାମାନେ ପର୍ସ୍ୱରଆଡ଼କୁ ଗତିକରି ନିକଟବର୍ତ୍ତୀ ହୁଅନ୍ତି । ଫଳରେ ସେହି ଅଞ୍ଚଳରେ ସାନ୍ଦ୍ରତା ଓ ଚାପ ବୃଦ୍ଧି ହୁଏ । ମାତ୍ର ବିରଳନ ଅଞ୍ଚଳରେ କଣିକାମାନେ ପରସ୍ତ୍ୱରଠାରୁ ଦୂରେଇ ଯାଆନ୍ତି । ତେଣୁ ସେହି ଅଞ୍ଚଳରେ ସାନ୍ଦ୍ରତା କମିଯାଏ ଏବଂ ଚାପ ମଧ୍ୟ ହ୍ରାସ ପାଏ । ତେଣୁ ଆମେ କହି ପାରିବା ଯେ ଗୋଟିଏ ମାଧ୍ୟମରେ ଧ୍ୱନି ତରଙ୍ଗ ଗତି କରୁଥିଲାବେଳେ ସେହି ମାଧ୍ୟମର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁରେ ମାଧ୍ୟମର ସାନ୍ଦ୍ରତା ଓ ଚାପ ପରିବର୍ତ୍ତିତ ହୋଇଥାଏ । ଏହାହିଁ ମାଧ୍ୟମ ମଧ୍ୟରେ ଧ୍ୱନି ସଞ୍ଚାରଣର ମୌଳିକ ତଥ୍ୟ ।

9.2.1 ଧ୍ୱନି ଗତି କରିବାପାଇଁ ଏକ ମାଧ୍ୟମ ଆବଶ୍ୟକ : (Sound needs a medium to travel)

ଧ୍ୱନି ଏକ ଯାନ୍ତିକ ତରଙ୍ଗ (mechanical wave) । ଏହା ସଞ୍ଚାରିତ ହେବାପାଇଁ ଏକ ଜଡ଼ୀୟ ମାଧ୍ୟମ ଯଥା : ଜଳ, ବାୟୁ, ଷ୍ଟିଲ ଇତ୍ୟାଦି ପରି ମାଧ୍ୟମ ଆବଶ୍ୟକ କରେ । ଧ୍ୱନି ଶୂନ୍ୟ (vacuum) ରେ ଗତି କରି ପାରେ ନାହିଁ । ଆସ ଏକ ପରୀକ୍ଷାରୁ ଏହା ଜାଣିବା ।

ଗୋଟିଏ ବିଦ୍ୟୁତ୍ ବେଲ୍ ଏବଂ ଗୋଟିଏ ବାୟୁରୁଦ୍ଧ (air tight) ବେଲ୍ଜାର ନିଅ । ଚିତ୍ର 9.6ରେ ପ୍ରଦର୍ଶିତ ହେଲାଭଳି ବିଦ୍ୟୁତ୍ ବେଲ୍କୁ ବେଲ୍ଜାର ମଧ୍ୟରେ ଝୁଲାଇ ରଖ । ବେଲ୍ର ଦୁଇ ଶେଷାଗ୍ରକୁ ବେଲ୍ଜାର ମୁହଁରେ ଥିବା କର୍କ ବାଟେ ବାହାରକୁ କାଢ଼ି ଏକ ବାହ୍ୟ ବିଦ୍ୟୁତ ପରିପଥ ସହ ସଂଯୁକ୍ତ କର । ବିଦ୍ୟୁତ୍ ପରିପଥକୁ ସ୍ପର୍ମ୍ଭର୍ଷ କଲେ ବିଦ୍ୟୁତ୍ ବେଲ୍ ବାଜିବ ଓ ତୁମେ ତାହାର ଧ୍ୱନି ଶୁଣି ପାରିବ । ଏହାର କାରଣ କ'ଣ, କହିଲ ଦେଖି । ବେଲ୍ଜାର ମଧ୍ୟରେ ବାୟ

ଥିବାରୁ ଏପରି ଧ୍ୱନି ତୁମେ ଶୁଣି ପାରିଲ । ବିଦ୍ୟୁତ୍ ବେଲ୍ରୁ ଧ୍ୱନି ନିସ୍ପତ ହେଉଥିଲାବେଳେ ବାୟୁ ନିଷ୍କାସନ ପମ୍ପ ସାହାଯ୍ୟରେ ବେଲ୍ଜାରରୁ ବାୟୁ ନିଷ୍କାସନ କର । ବେଲ୍ଜାରରୁ ବାୟୁ କମି ଆସୁଥିଲାବେଳେ ଧ୍ୱନିର ପ୍ରବଳତା (loudness) ମଧ୍ୟ କ୍ଷୀଣ ହୋଇ ଆସିବ । ଯେତେବେଳେ ବେଲ୍ଜାରଟି ସମ୍ପୂର୍ଣ୍ଣ ବାୟୁ ଶୂନ୍ୟ ହୋଇଯିବ, ସେତେବେଳେ ବିଦ୍ୟୁତ୍ ବେଲ୍ର ହାତୁଡ଼ି ତାର ଗିନା ଉପରେ ବାଡ଼େଇ ହେଉଥିଲେ ମଧ୍ୟ ଆଉ ଧ୍ୱନି ଶୁଣାଯିବ ନାହିଁ । ପୁନଶ୍ଚ ତାହା ମଧ୍ୟକୁ ଆସ୍ତେ ଆସ୍ତେ ବାୟୁ ପ୍ରବେଶ କରାଇଲେ କ'ଣ ହେବ କହିଲ ?

ପ୍ରଶ୍ର :

- ତୁମ ବିଦ୍ୟାଳୟରେ ୟୁଲଘଞ୍ଜାରୁ କିପରି ଧ୍ୱନି ସୃଷ୍ଟି ହୁଏ, ବୁଝାଅ ।
- ଧ୍ୱନି ତରଙ୍ଗକୁ କାହିଁକି ଯାନ୍ତ୍ରିକ ତରଙ୍ଗ କୁହାଯାଏ ?
- ମନେକର ତୁମେ ଏବଂ ତୁମର ସାଙ୍ଗ ଚନ୍ଦ୍ର ପୃଷ୍ଠରେ ଅଛ । ସେଠାରେ ତୁମ ସାଙ୍ଗ ତୁମକୁ କିଛି କଥା କହିଲେ ତୁମେ ତା'ର କଥାକୁ ଶୁଣି ପାରିବ କି ? ତୁମର ଉତ୍ତରକୁ ବୁଝାଅ ।

9.2.2 ଧ୍ୱନି ତରଙ୍ଗ ଅନୁଦୈର୍ଘ୍ୟ ତରଙ୍ଗ ଅଟେ : (Sound Wave is Longitudinal Wave)

ତୁମ ପାଇଁ କାମ : 9.4

ଖଣ୍ଡିଏ ସରୁ ଓ ଲୟା ସ୍ଥିଙ୍ଗ ନିଅ । ତାହାର ଗୋଟିଏ ପ୍ରାନ୍ତକୁ ତୁମ ସାଙ୍ଗକୁ ଧରିବାକୁ ଦିଅ ଏବଂ ତୁମେ ନିଜେ ଅନ୍ୟ ପ୍ରାନ୍ତଟିକୁ ଧର ।

ଚିତ୍ର 9.7 ସ୍ତ୍ରିଙ୍ଗରେ ଅନୁଦୈର୍ଘ୍ୟ ତରଙ୍ଗ

ଚିତ୍ର 9.7(a)ରେ ପ୍ରଦର୍ଶିତ ହେଲାଭଳି ସ୍ଥିଙ୍ଗଟିକୁ ଟାଣ । ଏହାପରେ ତୁମେ ଧରିଥିବା ସ୍ଥିଙ୍ଗର ପ୍ରାନ୍ତକୁ ତୁମ ସାଙ୍ଗ ଧରିଥିବା ପ୍ରାନ୍ତ ଆଡ଼କୁ ଜୋରରେ ଠେଲ । ତୁମେ କ'ଶ ଦେଖିଲ ? ବର୍ତ୍ତମାନ ତୂମେ ଏକାନ୍ତର ଭାବରେ ସ୍ଥିଙ୍ଗକୂ ଠେଲ ଏବଂ ଟାଣ, କ'ଶ ଲକ୍ଷ୍ୟ କରୁଛ ? ଯଦି ଏହି ସ୍ଥିଙ୍ଗ ଉପରେ ଏକ ଚିହ୍ନ ଦେବ, ତାହାହେଲେ ତୂମେ ଦେଖିବ ଯେ ତୂମେ ସ୍ଥିଙ୍ଗକୁ ଠେଲିବା ଓ ଟାଣିବା ବେଳେ ସେହି ଚିହ୍ନଟି ଏପଟ ସେପଟ ହୋଇ ଗତି କରୁଛି । ତା' ଗତିର ଦିଗ ସ୍ଥିଙ୍ଗରେ ସୃଷ୍ଟି ହୋଇଥିବା ବିଚଳନ (disturbance)ର ସଞ୍ଚାରଣ ଦିଗ ସହିତ ସମାନ୍ତର ହୋଇଥାଏ ।

ୟ୍ୱିଙ୍ଗର କୁଷ୍ତଳୀମାନେ ଯେଉଁ ଅଞ୍ଚଳରେ ପରସ୍କରର ନିକଟବର୍ତ୍ତୀ ହେବେ ତାହାକୁ ସମ୍ପୀଡ଼ନ (C) ଏବଂ ଯେଉଁ ଅଞ୍ଚଳରେ ସ୍ୱିଙ୍ଗର କୁଷ୍ତଳୀମାନେ ପରସ୍କରଠାରୁ ଦୂରେଇ ଯାଇ ଥିବେ, ତାହାକୁ ବିରଳନ (R) କୁହାଯାଏ । ଏକ ମାଧ୍ୟମରେ ଧ୍ୱନିର ସଞ୍ଚାରଣବେଳେ ସେହି ମାଧ୍ୟମରେ ଏକାଧିକ ସଂପୀଡ଼ନ ଓ ବିରଳନ ସୃଷ୍ଟି ହୁଏ । ବର୍ତ୍ତମାନ ଆମେ ସ୍ତ୍ରିଙ୍ଗରେ ବିଚଳନର ସଞ୍ଚାରଣକୁ ଏକ ମାଧ୍ୟମରେ ଧ୍ୱନିର ସଞ୍ଚାରଣ ସହ ତୁଳନା କରିପାରିବା ।

ତରଙ୍ଗ ଦୁଇପ୍ରକାରର ହୋଇପାରେ । ଅନୁଦୈର୍ଘ୍ୟ ତରଙ୍ଗ ଓ ଅନୁପ୍ରସ୍ଥ ତରଙ୍ଗ ।

ଅନୁଦୈର୍ଘ୍ୟ ତରଙ୍ଗରେ ମାଧ୍ୟମରେ ଥିବା ପ୍ରତ୍ୟେକ କଣିକା ବିଚଳନର ସଞ୍ଚାରଣ ଦିଗରେ ସମାନ୍ତର ଭାବରେ ଦୋଳିତ ହୁଅନ୍ତି, ମାତ୍ର ମାଧ୍ୟମର କଣିକାମାନେ ମାଧ୍ୟମର ଗୋଟିଏ ସ୍ଥାନରୁ ଅନ୍ୟ ସ୍ଥାନକୁ ସ୍ଥାନାନ୍ତରିତ ହୁଅନ୍ତି ନାହିଁ । ସେମାନେ କେବଳ ତାଙ୍କର ମାଧ୍ୟ ଅବସ୍ଥାନର ଉଭୟ ପଟେ ଏପଟ-ସେପଟ ହୋଇ ଦୋଳନ କରନ୍ତି । ଏହି ପ୍ରକାର ଭାବରେ ଧ୍ୱନି ତରଙ୍ଗ ମାଧ୍ୟମ ମଧ୍ୟରେ ଗତି କରେ । ଧ୍ୱନି ତରଙ୍ଗକୁ ଅନୁଦେର୍ଘ୍ୟ ତରଙ୍ଗ କୁହାଯାଏ । ମାଧ୍ୟମରେ ଯେଉଁ ତରଙ୍ଗ ଗତି କରୁଥିବାବେଳେ ମାଧ୍ୟମର କଣିକାମାନେ ତରଙ୍ଗର ଗତିର ଦିଗ ସହ ସମାନ୍ତର ଭାବେ ଦୋଳନ କରନ୍ତି ସେହି ତରଙ୍ଗକୁ ଅନୁଦେର୍ଘ୍ୟ ତରଙ୍ଗ କୁହାଯାଏ । ଆଉ ଏକ ପ୍ରକାର ତରଙ୍ଗ ମଧ୍ୟ ଅଛି । ଯାହାକୁ ଅନୁପ୍ରସ୍ଥ ତରଙ୍ଗ (transverse wave) କୁହାଯାଏ । ମାଧ୍ୟମରେ ଯେଉଁ ତରଙ୍ଗ ଗତି କରୁଥିବାବେଳେ ମାଧ୍ୟମର କଣିକାମାନେ ତରଙ୍ଗ ଗତିର ଦିଗ ସହ ଅଭିଲୟଭାବେ ଦୋଳନ କରନ୍ତି, ସେହି ତରଙ୍ଗକୁ ଅନୁପ୍ରସ୍ଥ ତରଙ୍ଗ କୁହାଯାଏ । ଆଲୋକ ତରଙ୍ଗ ଏହି ଶ୍ରେଣୀୟ ତରଙ୍ଗ ଅଟେ । ଏ ବିଷୟରେ ଅଧିକ ତୁମେ ଉପର ଶ୍ରେଣୀରେ ପଢ଼ିବ ।

9.2.3 ଧ୍ୱନି ତରଙ୍ଗର ଲକ୍ଷଣ :

(Characteristics of a Sound Wave)

ଅନ୍ୟ ତରଙ୍ଗମାନଙ୍କପରି ଧ୍ୱନି ତରଙ୍ଗର ମଧ୍ୟ କେତେକ ଲକ୍ଷଣ ଅଛି । ସେ ଲକ୍ଷଣଗୁଡ଼ିକ ହେଲା-

- ଆବୃତ୍ତି (frequency)
- ଆୟାମ (amplitude)
- ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ (wave length)
- ତରଙ୍ଗ ବେଗ (speed of wave)

ଚିତ୍ର 9.8 ଧ୍ୱନି ସଞ୍ଚାରଣବେଳେ ମାଧ୍ୟମରେ ସାନ୍ଦ୍ରତା ଏବଂ ଚାପର ପରିବର୍ତ୍ତନ [ଚିତ୍ର (a), (b)], ସାନ୍ଦ୍ରତା ଓ ଚାପ ପରିବର୍ତ୍ତନର ଗ୍ରାଫ୍ [ଚିତ୍ର (c)]

ଚିତ୍ର 9.8(c) ରେ ଧ୍ୱନି ତରଙ୍ଗର ଗ୍ରାଫ୍ ଅଙ୍କନ କରାଯାଇଛି । ଧ୍ୱନି ତରଙ୍ଗ ଏକ ମାଧ୍ୟମରେ ଗତି କଲାବେଳେ ସେହି ମାଧ୍ୟମର ସାନ୍ଦ୍ରତା ଓ ୟପ କିପରି ପରିବର୍ତ୍ତିତ ହୁଏ, ତାହା ଚିତ୍ର 9.8 (a) ଓ (b)ରେ ପ୍ରଦର୍ଶିତ ହୋଇଛି । ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ସମୟରେ ମାଧ୍ୟମର ଭିନ୍ନ ଭିନ୍ନ ଅଞ୍ଚଳରେ ସାନ୍ଦ୍ରତା ଓ ଚାପ ଏକ ମୂଳବିନ୍ଦୁଠାରୁ ସେହି ଅଞ୍ଚଳର ଦୂରତା ସହ ପରିବର୍ତ୍ତିତ ହୁଏ । ଚିତ୍ର 9.8 (c) ।

ସଂପୀଡ଼ନ ଅଞ୍ଚଳରେ କଣିକାମାନେ ପରସ୍କରର ନିକଟବର୍ତ୍ତୀ ହୋଇଥାଆଡି ଏବଂ ଏହାକୁ ଗ୍ରାଫ୍ର ଉପର ଅଂଶରେ ପାହାଡ଼ (hill) ସଦୃଶ ଦର୍ଶାଯାଇଛି । ଚିତ୍ର 9.8(c) । ଏହି ଉପର ଅଂଶର ଶୀର୍ଷ ବିନ୍ଦୁ ସର୍ବାଧିକ ସଂପୀଡ଼ନର ସୂଚନା ଦିଏ । ଏହି ସଂପୀଡ଼ନ ଅଞ୍ଚଳରେ ସାନ୍ଦ୍ରତା ଏବଂ ଚାପ ଅଧିକ ହୋଇଥାଏ । ବିରଳନ ଅଞ୍ଚଳରେ ଚାପ କମ ଥାଏ ଏବଂ କଣିକାଗୁଡ଼ିକ ପରସ୍କରଠାରୁ ଦୂରେଇ ରହିଥାଡି । ଏହାକୁ ଗ୍ରାଫ୍ର ଡଳ ଅଂଶରେ ଉପତ୍ୟକା (valley) ସଦୃଶ ଦର୍ଶାଯାଇଛି । ଚିତ୍ର 9.8(c)। ଗ୍ରାଫ୍ର ଉପର ଅର୍ଦ୍ଧାଂଶକୁ ଶିଖର (crest) ଏବଂ ନିମ୍ବ ଅର୍ଦ୍ଧାଂଶକୁ ଗହର (trough) କହନ୍ତି ।

ଦୁଇଟି କ୍ରମିକ ସଂପୀଡ଼ନ (C) ବା ଦୁଇଟି କ୍ରମିକ ବିରଳନ (R)ର ମଧ୍ୟବିନ୍ଦୁ ମଧ୍ୟରେ ଥିବା ଦୂରତାକୁ ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ (wave length) କୁହାଯାଏ । ଏହାକୁ ଗ୍ରୀକ୍ ଅକ୍ଷର ଲାୟଡ଼ା (λ) ଦ୍ୱାରା ସୂଚିତ କରାଯାଏ । S.I. ଏକକ ପଦ୍ଧତିରେ ତରଙ୍ଗ ଦୈର୍ଘ୍ୟର ଏକକ ହେଉଛି ମିଟର (m) ।

ମନେକର ତୂମେ ଗୋଟିଏ ଡ୍ରମକୁ ଆଘାତ କରୁଛ । ଏକ ସେକେଷରେ ତୂମେ ଯେତେଥର ଡ୍ରମକୁ ଆଘାତ କରୁଛ, ତାହାକୁ ଡ୍ରମକୁ ଆଘାତ କରିବାର ଆବୃତ୍ତି (frequency) କହନ୍ତି । ଧ୍ୱନି ଏକ ମାଧ୍ୟମରେ ଗତି କଲାବେଳେ, ମାଧ୍ୟମର ସାନ୍ଦ୍ରତା ଏକ ସର୍ବୋଚ୍ଚ ମୂଲ୍ୟ ଏବଂ ସର୍ବନିମ୍ନ ମୂଲ୍ୟ ମଧ୍ୟରେ ଦୋଳିତ ହୁଏ । ମାଧ୍ୟମର ଏକ ସ୍ଥାନରେ ସାନ୍ଦ୍ରତା ସର୍ବୋଚ୍ଚ ମୂଲ୍ୟ ପର୍ଯ୍ୟନ୍ତ ଫେରି ଆସିବାକୁ ଏକ ସଂପୂର୍ଣ୍ଣ ଦୋଳନ କହନ୍ତି । ଏକକ ସମୟରେ ମାଧ୍ୟମରେ ଏ ପ୍ରକାରର ଦୋଳନର ସଂଖ୍ୟାକୁ ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତି କହନ୍ତି । ଏହାକୁ ଗ୍ରୀକ୍ ଅକ୍ଷର ନିଉ (v) ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ । ମାତ୍ର ଏଠାରେ ଆବୃତ୍ତିକୁ ଇଂରାଜୀ ଛୋଟ ଅକ୍ଷର f ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଇଛି । S.I ଏକକ ପଦ୍ଧତିରେ ଆବୃତ୍ତିର ଏକକ ହେଉଛି ହର୍ହି (hertz) । ଏହାର ସଙ୍କେତ H, ଅଟେ ।

ଦୁଇଟି କ୍ରମିକ ସଂପୀଡ଼ନ ବା ବିରଳନ ମାଧ୍ୟମର ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବିନ୍ଦୁକୁ ଅତିକ୍ରମ କରିବାର ସମୟକୁ ତରଙ୍ଗର ଆବର୍ତ୍ତନାଳ (time period) କୁହାଯାଏ । ଅନ୍ୟ ପ୍ରକାରରେ କହିଲେ ମାଧ୍ୟମର ପ୍ରତ୍ୟେକ କଣିକାମାନେ ଥରେ ପୂର୍ତ୍ତହୋଳନ କରିବାକୁ ଯେତିକି ସମୟ ନିଅନ୍ତି ତାହାକୁ ଧ୍ୱନି ତରଙ୍ଗର ଆବର୍ତ୍ତକାଳ କୁହାଯାଏ । ଆବର୍ତ୍ତକାଳର ସଂକେତ ସାଧାରଣତଃ T ନିଆଯାଏ । S.I. ଏକକ ପଦ୍ଧତିରେ ଏହାର ଏକକ ହେଉଛି ସେକେଣ (s) ।

ଜାଣିଛ କି ?

H.R.Hertz

ହେନରିଚ୍ ରୁଡ଼ଲଫ୍ ହର୍ସ ଜର୍ମାନ ଦେଶର ହାମବର୍ଗ ସହରରେ 1857 ମସିହା ଫେବୃୟାରୀ ମାସ 22 ତାରିଖ ଦିନ ଜନ୍ମ ଗ୍ରହଣ କରିଥିଲେ । ସେ ବର୍ଲିନ ବିଶ୍ୱବିଦ୍ୟାଳୟରୁ ଶିକ୍ଷାଲାଭ କରିଥିଲେ । ଏକ ପରୀକ୍ଷାଦ୍ୱାରା

କେ.ସି.ମାକ୍ୱ୍ୱେଲ୍ଙ୍କ ବିଦ୍ୟୁତ ଚୁୟକୀୟ ତତ୍ତ୍ୱକୁ ସେ ପ୍ରମାଣିତ କରିଥିଲେ । ସେ ଯେଉଁ ମୂଳଦୂଆ ପକାଇଥିଲେ ତାହା ଯୋଗୁ ବର୍ତ୍ତମାନର ରେଡ଼ିଓ, ଟେଲିଫୋନ, ଟେଲିଗ୍ରାଫ୍ ଏବଂ ଟେଲିଭିଜନ ଏତେ ସଫଳତା ହାସଲ କରିପାରିଛି । ସେ ମଧ୍ୟ ଆଲୋକ-ବିଦ୍ୟୁତ୍ ପ୍ରଭାବ (Photoelectric Effect)ର ଆବିଷ୍କାରକ । ଏହି ତତ୍ତ୍ୱକୁ ପରବର୍ତ୍ତୀ ସମୟରେ ଆଲବର୍ଟ ଆଇନ୍ଷାଇନ୍ ଭଲଭାବରେ ବୁଝାଇ ଥିଲେ । ତାଙ୍କର ନାମାନୁସାରେ S.I. ଏକକ ପଦ୍ଧତିରେ ଆବୃତ୍ତିର ଏକକର ନାମ ହର୍ସ୍ତି (hertz) ରଖାଯାଇଛି ।

ଆବର୍ତ୍ତକାଳ (T) ଓ ଆବୃତ୍ତି (f) ପରୟର ସହିତ ସମ୍ପର୍କିତ । ସେହି ସମ୍ପର୍କକୁ ନିମୁମତେ ପ୍ରକାଶ କରିପାରିବା ।

$$f = \frac{1}{T}$$

ମନେକର ଅର୍କେଷ୍ଟ୍ରାରେ ଏକ ସମୟରେ ଗୋଟିଏ ବେହେଲା (violion) ଏବଂ ବଂଶୀ (flute) ବାଳୁଛି । ସେମାନଙ୍କ ଧ୍ୱନି ବାୟୁ ମାଧ୍ୟମରେ ସମାନ ବେଗରେ ଗତିକରି ଆମ କାନ ପାଖରେ ଏକା ସମୟରେ ପହଞ୍ଚଲେ ମଧ୍ୟ ଉଭୟର ଧ୍ୱନି ଆମକୁ ଭିନ୍ନ ଭିନ୍ନ ଲାଗେ । ଧ୍ୱନି ସହିତ ସଂପୃକ୍ତ ବିଭିନ୍ନ ଲକ୍ଷଣ ହେତୁ ଏହା ଆମକୁ ଏମିତି ଲାଗେ । ପିଚ୍ (pitch) ବା ତାରତ୍ୱ ଏହି ପ୍ରକାର ଲକ୍ଷଣମାନଙ୍କ ମଧ୍ୟରୁ ଗୋଟିଏ ଅଟେ ।

ଚିତ୍ର 9.9

ଆମର ମଞିଷ୍କ ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତିକୁ ଯେଉଁ ପ୍ରକାର ବ୍ୟାଖ୍ୟା (interpret) କରେ, ତାହାକୁ ପିଚ୍ କୁହାଯାଏ । ଉସର କମ୍ପନ କ୍ଷିପ୍ରତରହେଲେ ଧ୍ୱନିର ଆବୃତ୍ତି ଅଧିକ ହୁଏ ଏବଂ ପିଚ୍ ମଧ୍ୟ ଅଧିକ ହୁଏ । ଚିତ୍ର 9.9 । ଏକ ଅଧିକ ପିଚ୍ ବିଶିଷ୍ଟ ଧ୍ୱନିରେ ଅଧିକ ସଂଖ୍ୟକ ସଂପୀଡ଼ନ ଓ ବିରଳନ ଏକକ ସମୟରେ ମାଧ୍ୟମର ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବିନ୍ଦୁକୁ ଅତିକ୍ରମ କରିଥାନ୍ତି । ବିଭିନ୍ନ ଆକାରର ବସ୍ତୁ ଭିନ୍ନ ଭିନ୍ନ ଅବସ୍ଥାରେ ଭିନ୍ନ ଭିନ୍ନ ଆବୃତ୍ତିରେ କମ୍ପିତ ହୋଇ ଭିନ୍ନ ଭିନ୍ନ ପ୍ରକାର ପିଚ୍ର ଧ୍ୱନି ସୃଷ୍ଟି କରନ୍ତି ।

ଗୋଟିଏ ମାଧ୍ୟମରେ ଥିବା କଣିକାର ମାଧ୍ୟାବସ୍ଥାର ଉଭୟ ପଟେ ଦୋଳନରତ କଣିକାର ସର୍ବୋଚ୍ଚ ବିସ୍ଥାପନକୁ ତରଙ୍ଗର ଆୟାମ (amplitude) କୁହାଯାଏ । ଏହାକୁ ଇଂରାଜୀ 'A' ଅକ୍ଷର ଦ୍ୱାରା ସୂଚିତ କରାଯାଏ । ଚିତ୍ର 9.8 (c) । S.I ଏକକ ପଦ୍ଧତିରେ ଆୟାମର ଏକକ ମିଟର (m) ଅଟେ ।

ଧ୍ୱନିର ପ୍ରବଳତା ବା କୋମଳତା ଧ୍ୱନି ତରଙ୍ଗର ଆୟାମ ଉପରେ ନିର୍ଭର କରେ । ଧ୍ୱନି ସୃଷ୍ଟିକାରୀ ବୟୁ ଯେଉଁ ବଳଦ୍ୱାରା କମ୍ପିତ ହୁଏ, ତାହା ଉପରେ ଧ୍ୱନି ତରଙ୍ଗର ଆୟାମ ନିର୍ଭର କରେ । ମନେକର ତୂମେ ଏକ ଟେବୂଲକୂ ଆଞ୍ଜେକରି ଆଘାତ କଲ, ତାହାହେଲେ ତୂମେ ଏକ କୋମଳ ଧ୍ୱନି ଶୁଣିପାରିବ । କାରଣ ତୂମେ କମ୍ ଶକ୍ତି ଏବଂ କମ୍

ଆୟାମ ବିଶିଷ୍ଟ ଧ୍ୱନି ତରଙ୍ଗ ସୃଷ୍ଟି କଲ । ସେହିଭଳି ତୁମେ ଟେବୂଲକୁ ଅଧିକ ଜୋରରେ ଆଘାତ କଲେ, କ'ଣ ହେବ ? ତୁମେ ଅଧିକ ପ୍ରାବଲ୍ୟ ଅର୍ଥାତ୍ ଉଚ୍ଚ ଧ୍ୱନି ଶୁଣିପାରିବ । କ'ଣ ପାଇଁ ଏପରି ହେଉଛି ? ଉଚ୍ଚ ସ୍ୱରର ଧ୍ୱନି ଏକ ମାଧ୍ୟମରେ ଅଧିକ ଦୂରତା ପର୍ଯ୍ୟନ୍ତ ଗତି କରିବ, କାରଣ ଏହା ଅଧିକ ଶକ୍ତି ସଂପନ୍ନ । ଏହାର ଆୟାମ ଅଧିକ । ଧ୍ୱନି ତରଙ୍ଗ ତାହାର ଉସ୍ସରୁ ବାହାରି ସବୁଦିଗକୁ ବ୍ୟାପିଯାଏ । ଏହି ତରଙ୍ଗ ତାହାର ଉସ୍ସରୁ ଦୂରକୁ ଗଲେ ତାହାର ଶକ୍ତି ଓ ଆୟାମ କମିଯାଏ । ଚିତ୍ର 9.10ରେ ଉଚ୍ଚ ଧ୍ୱନି ଓ କୋମଳ ଧ୍ୱନି ତରଙ୍ଗର ଆକୃତି (shape) ଦର୍ଶାଯାଇଛି ।

ଚିତ୍ର 9.10

ଟିୟର ବା ସ୍ୱରବୈଶିଷ୍ୟ (timbre) ଏବଂ ଗୁଣାତ୍ନକ ବୈଶିଷ୍ୟ ବା ଗୁଣବରା (quality), ଧ୍ୱନିର ଆଉ ଦୁଇଟି ଲକ୍ଷଣ ଯାହାଦ୍ୱାରା ଦୁଇଟି ସମାନ ତାରତ୍ୱ ଓ ସମାନ ପ୍ରବଳତା ବିଶିଷ୍ଟ ଧ୍ୱନି ମଧ୍ୟରେ ଆମେ ପ୍ରଭେଦ ବାରିପାରୁ । ଯେଉଁ ଧ୍ୱନି କାନକୁ ପ୍ରୀତିକର (pleasant) ଲାଗେ ତାହାର ଗୁଣାତ୍ପକ ବୈଶିଷ୍ୟ ଉଚ୍ଚମାନର (rich) ହୋଇଥାଏ । ଗୋଟିଏ ଆବୃତ୍ତି ବିଶିଷ୍ଟ ଧ୍ୱନିକୁ ଟୋନ୍ (tone) କୁହାଯାଏ । ବିଭିନ୍ନ ଆବୃତ୍ତିର ମିଶ୍ରଣରେ ସୃଷ୍ଟି ହୋଇଥିବା ଧ୍ୱନିକୁ ନୋଟ୍ (note) କୁହାଯାଏ । ଏହା କାନ ପାଇଁ ପ୍ରୀତିକର ଓ ଶ୍ରୁତିମଧୁର ଅଟେ । କର୍କଶ ଶବ୍ଦ (noise) ଶ୍ରୁତିକଟୁ ଅଟେ । ସଙ୍ଗୀତ ଶ୍ରୁତିମଧୁର ଓ ଶୁଣିବାକୁ ପ୍ରୀତିକର ହୋଇଥାଏ ଯାହାର ଗୁଣାତ୍ନକ ବୈଶିଷ୍ୟ ଉଚ୍ଚମାନର ହୋଇଥାଏ ।

ପ୍ରଶ୍ନ :

- ଧ୍ୱନିର ତାରତ୍ୱ ଓ ପ୍ରବଳତା ଧ୍ୱନିର କେଉଁ ଗୁଣ ଦ୍ୱାରା ନିର୍ଦ୍ଧାରିତ ହୁଏ ?
- ଗୋଟିଏ କାରର ହର୍ତ୍ତର ଧ୍ୱନି ଓ ଗୀଟାରର ଧ୍ୱନି ମଧ୍ୟରୁ କାହାର ପିଚ୍ ଅଧିକ ଅନୁମାନ କର ।

ଏକକ ସମୟରେ ଧ୍ୱନି ତରଙ୍ଗ ଅତିକ୍ରାନ୍ତ କରୁଥିବା ଦୂରତାକୁ ତାହାର ବେଗ କୁହାଯାଏ । ଆମେ ଜାଣିଛେ ଯେ, ଧ୍ୱନି ତରଙ୍ଗ ଏକ ଆବର୍ତ୍ତକାଳ ମଧ୍ୟରେ ଯେତିକି ଦୂରତା ଅତିକ୍ରମ କରେ ତାହାକୁ ଧ୍ୱନି ତରଙ୍ଗର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ କୁହାଯାଏ ।

ଆମେ ପୁଣି ଜାଣିଛୁ, ବେଗ=
$$v=\frac{\overline{\phi}$$
୍ରତା ସମୟ ତେଣୁ $v=\frac{\lambda}{T}$

ଏଠାରେ λ ହେଉଛି ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ ଓ T ହେଉଛି ତରଙ୍ଗର ଆବର୍ତ୍ତକାଳ । (ଦୁଇଟି କ୍ରମିକ ସଂପୀଡ଼ନ ବା ବିରଳନର ମଧ୍ୟବିନ୍ଦୁ ମଧ୍ୟରେ ଥିବା ଦୂରତ୍ୱକୁ ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ କୁହାଯାଏ) ।

$$\therefore$$
 v = f λ

ଅର୍ଥାତ୍, ତରଙ୍ଗ ବେଗ = ତରଙ୍ଗ ଆବୃତ୍ତି × ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ

ସମାନ ଭୌତିକ ପରିସ୍ଥିତି ବା ଅବସ୍ଥାରେ ଗୋଟିଏ ମାଧ୍ୟମରେ ଧ୍ୱନିର ବେଗ, ସମୟ ତରଙ୍ଗ ଆବୃତ୍ତି ପାଇଁ ସମାନ ହେବେ ।

ଉଦାହରଣ 9.1

ଗୋଟିଏ ଉସରୁ ଏକ ସେକେଣରେ 30ଟି ଧ୍ୱନି ତରଙ୍ଗ ସୃଷ୍ଟି ହେଉଥିଲେ, ସେହି ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତି କେତେ ?

ଉଉର:

30ଟି ତରଙ୍ଗ ଏକ ସେକେଣ୍ଡରେ ସୃଷ୍ଟି ହେଉଥିବାରୁ ତରଙ୍ଗର ଆବୃତ୍ତି 30Hz ଅଟେ ।

ଉଦାହରଣ 9.2

ଗୋଟିଏ ଧ୍ୱନି ତରଙ୍ଗର ଆବର୍ତ୍ତକାଳ 0.05 ସେକେଣ ହେଲେ, ଏହାର ଆବୃତ୍ତି କେତେ ?

ଉଉର:

ଉଦାହରଣ 9.3

ଏକ ବେତାର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ 300 ମିଟର ହେଲେ, ଏହାର ଆବୃତ୍ତି ନିର୍ଣ୍ଣୟ କର ।

ଉଉର :

ଦତ୍ତ ଅଛି, ବେତାର ତରଙ୍ଗର ବେଗ = v = 3×10°m/s (ମନେରଖ)

ବେତାର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ = 300 m ଆମେ ଜାଣିଛେ,

v = f
$$\lambda$$

∴ $f = \frac{v}{\lambda} = \frac{3 \times 10^8 \, \text{m/s}}{300 \, \text{m}}$
= 10⁶ Hz
ବା 1 ମେଗାହର୍ହି

ଉଦାହରଣ 9.4

ଏକ ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତି 2kHz ଏବଂ ଏହାର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ 35cm ଅଟେ । 1.5 କିମି ଦୂରତା ଅତିକ୍ରମ କରିବାକୁ ଏହାକୁ କେତେ ସମୟ ଲାଗିବ ?

ଉତ୍ତର :

ଦତ୍ତ ଅଛି,
ତରଙ୍ଗର ଆବୃତ୍ତି = f = 2kHz = 2000Hz
ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ = λ = 35cm = 0.35m
ଅତିକ୍ରାନ୍ତ ଦୂରତା = d = 1.5km = 1500m
∴ v = f λ = 2000Hz × 0.35m = 700m/s
ମନେକର t = 1.5km ଦୂରତା ଅତିକ୍ରମ କରିବା

∴
$$t = \frac{d}{v} = \frac{1500m}{700m/s} = 2.14s \; (\text{QIQ})$$

ପ୍ରଶ୍ନ :

- ଧ୍ୱନି ତରଙ୍ଗର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ, ତରଙ୍ଗ ଆବୃତ୍ତି, ଆୟାମ ଓ ଆବର୍ତ୍ତକାଳ କାହାକୁ କୁହାଯାଏ ?
- ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ, ଆବୃତ୍ତି ଓ ବେଗ ମଧ୍ୟରେ ଥିବା ସଂପର୍କଟିକୁ ଲେଖ ।
- ଏକ ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତି 220Hz ଏବଂ ଏହାର ବେଗ ଏକ ମାଧ୍ୟମରେ 440m/s ହେଲେ, ତାହାର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ ନିର୍ବ୍ଧୟ କର ।
- 4. ଧ୍ୱନି ଉସଠାରୁ 450 ମିଟର ଦୂରରେ ଠିଆହୋଇ କଣେ ବ୍ୟକ୍ତି 500Hz ଆବୃତ୍ତିର ଧ୍ୱନି ତରଙ୍ଗକୁ ଶୁଣୁଛନ୍ତି । ତାହାହେଲେ ଦୁଇଟି କ୍ରମିକ ସଂପୀଡ଼ନର ସମୟ ବ୍ୟବଧାନ ତାଙ୍କ ନିକଟରେ କେତେ ହେବ ?

ଗୋଟିଏ ତରଙ୍ଗ ଏକ ମାଧ୍ୟମରେ ଗତି କର୍ଥବା ସମୟରେ ତାହା ମଧ୍ୟରେ ଥିବା ଶକ୍ତି ସେହି ମାଧ୍ୟମରେ ଗତି କରେ । ମାଧ୍ୟମର ଗୋଟିଏ ବିନ୍ଦୁ ଚାରିପଟେ ତରଙ୍ଗ ଗତିର ଅଭିଲୟ ଦିଗରେ ଏକକ କ୍ଷେତ୍ଫଳବିଶିଷ୍ଟ କ୍ଷେତ୍ ମଧ୍ୟଦେଇ ପତି ସେକେଣ୍ଡରେ ଯେତିକି ଧୁନି ଶକ୍ତି ଅତିକ୍ମ କରେ ତାହାର ପରିମାଣକୁ ସେହି ବିନ୍ଦୁରେ ଧ୍ୱନିର ତୀବ୍ରତା (intensity) କୁହାଯାଏ । ଆୟେମାନେ ସମୟେ ସମୟେ ଧୁନି ପୁବଳତା (loudness) ଏବଂ ଧୁନିର ତୀବୁତାକୁ (intensity)କୁ ଅଦଳବଦଳ କରି ବ୍ୟବହାର କରୁ । ମାତ୍ର ସେମାନେ ସମାନ ନୃହନ୍ତି । ଧୁନି ପ୍ରବଳତା କାନ ଉପରେ ପଡ଼ୁଥିବା ଧ୍ୱନିର ପ୍ରଭାବର ଏକ ମାପକ ଭାବରେ ଗୁହଣ କରାଯାଇଥାଏ । ଗୋଟିଏ ଧ୍ୱନିର ପ୍ରବଳତା ଭିନ୍ନ ଭିନ୍ନ ଶ୍ରୋତାଙ୍କ କାନ ପାଇଁ ଅଲଗା ଅଲଗା ହୋଇପାରେ । ଦୁଇଟି ଧ୍ୟନିର ତୀବ୍ରତା ସମାନ ହୋଇଥିଲେ ମଧ୍ୟ ଆମର କାନ ଗୋଟିଏ ଧ୍ୱନିକୁ ଅନ୍ୟଠାରୁ ଅଧିକ ପ୍ରବଳ (louder) ଭାବରେ ଶୁଣିପାରେ T

ପ୍ରଶ୍ନ :

ଧ୍ୱନିର ପ୍ରବଳତା ଓ ଧ୍ୱନିର ତୀବ୍ରତା ମଧ୍ୟରେ ପାର୍ଥକ୍ୟ ଦର୍ଶାଅ ।

9.2.4 ବିଭିନ୍ନ ମାଧ୍ୟମରେ ଧ୍ୱନିର ବେଗ : (Speed of Sound in different Media)

ଧ୍ୱନି ଗୋଟିଏ ମାଧ୍ୟମରେ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବେଗରେ ସଞ୍ଚାରିତ ହୁଏ । ତୁମେ ଜାଣିଛ ଯେ ବର୍ଷାଦିନେ ଆକାଶରେ ବିଳୁଳି ଓ ଘଡ଼ଘଡ଼ି ଏକ ସମୟରେ ସୃଷ୍ଟି ହେଉଥିଲେ ମଧ୍ୟ ପ୍ରଥମେ ତୁମେ ଆକାଶରେ ବିଳୁଳିର ଝଲକ ଦେଖ ଓ କିଛି ସମୟ ପରେ ଘଡ଼ଘଡ଼ିର ଶବ୍ଦ ଶୁଣ । ଏଥିରୁ ଡୁମେ ଜାଣିଲ ଯେ ଧ୍ୱନି ଆଲୋକଠାରୁ ବହୁତ କମ୍ ବେଗରେ ଗତି କରେ । ଏକ ମାଧ୍ୟମରେ ଧ୍ୱନିର ଗତିର ବେଗ, ସେହି ମାଧ୍ୟମର ଧର୍ମ ଉପରେ ନିର୍ଭର କରେ । ଧ୍ୱନିର ବେଗ ମଧ୍ୟ ମାଧ୍ୟମର ତାପମାତ୍ରା ଉପରେ ନିର୍ଭରଶୀଳ । ମାଧ୍ୟମର ତାପମାତ୍ରା ବଢ଼ିଲେ ଧ୍ୱନିର ବେଗ ବଢ଼େ । ଉଦାହରଣ ସ୍ୱରୂପ ବାୟୁରେ ଧ୍ୱନିର ବେଗ 0°C ତାପମାତ୍ରାରେ 331m/s ହେଲାବେଳେ 22°C ତାପମାତ୍ରାରେ ଏହା ପ୍ରାୟ 344m/s ହୋଇଥାଏ । ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ (25°C) ତାପମାତ୍ରାରେ ଧ୍ୱନିର ବେଗ ଭିନ୍ନ ଭିନ୍ନ ମାଧ୍ୟମରେ କେତେ ତାହା ସାରଣୀ- 9.1ରେ ଦର୍ଶାଯାଇଛି । (ଏହାକୁ ମୁଖସ୍ଥ କରିବା ଦରକାର ନାହିଁ) ।

ସାରଣୀ 9.1 ବିଭିନ୍ନ ମାଧ୍ୟମରେ 25°C ତାପମାତାରେ ଧୁନିର ବେଗ

ମାଧ୍ୟମର	ମାଧ୍ୟମର	ଧ୍ୱନିର
ଅବସ୍ଥା	ନାମ	ବେଗ(m/s)
ଗ୍ୟାସ	ହାଇତ୍ରୋଜେନ	1284
	ହିଲିୟମ	965
	ବାୟୁ	346
	ଅକ୍ସିଜେନ୍	316
	ସଲ୍ଫର ଡାଇଅକ୍ସାଇଡ଼	213
ତରଳ	ସମୁଦ୍ର ଜଳ	1531
	ପାତିତ ଜଳ	1498
	ଇଥାନଲ୍	1207
	ମିଥାନଲ୍	1103
କଠିନ	ଏଲୁମିନିୟମ୍	6420
	ନିକେଲ	6040
	ଷ୍ଟିଲ୍	5960
	ଲୁହା	5950
	ପିଉଳ (brass)	4700
	କାଚ (ଫ୍ଲିଷ୍ଟ୍ କାଚ)	3980

ପ୍ରଶ୍ନ :

ସାରଣୀଟିକୁ ଅନୁଧାନ କରି କୁହ, ବାୟୁ, ଜଳ ଓ ଲୌହ ମାଧ୍ୟମ ମଧ୍ୟରୁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ତାପମାତ୍ରାରେ କେଉଁ ମାଧ୍ୟମରେ ଧ୍ୱନି ଅଧିକ ବେଗରେ ଏବଂ କେଉଁଥିରେ ସବୁଠାରୁ କମ୍ ବେଗରେ ଗତିକରେ ?

କାଶିଛ କି ? ସୋନିକ୍ ବୁମ୍ (Sonic boom) :

କୌଣସି ବୟୁର ଗତିର ବେଗ ଧ୍ୱନିର ବେଗଠାରୁ ଅଧିକ ହେଲେ, ବୟୁର ସେହି ବେଗକୁ ସୁପରସୋନିକ୍ ବେଗ କୁହାଯାଏ । ଜେଟ୍ ବିମାନ, ବନ୍ଧୁକର ଗୁଳି ଇତ୍ୟାଦି ଅନେକ ସମୟରେ ସୁପର ସୋନିକ୍ ବେଗରେ ଗତି କରିଥାନ୍ତି । କୌଣସି ଧ୍ୱନି ସୃଷ୍ଟିକାରୀ ଉସ୍ଥ ଧ୍ୱନିର ବେଗଠାରୁ ଅଧିକ ବେଗରେ ଗତିକଲେ ଏହା ବାୟୁରେ ସକ୍ ତରଙ୍ଗ (shock wave) ସୃଷ୍ଟି କରେ । ଏହି ସକ୍ ତରଙ୍ଗ ସମୂହରେ ପ୍ରଚୁର ଶକ୍ତି ରହିଥାଏ । ଏହି ତରଙ୍ଗ ସହିତ ଜଡ଼ିତ ବାୟୁ ଚାପର ପରିବର୍ତ୍ତନ ଅନୁସାରେ ଏହି ସକ୍ ତରଙ୍ଗ ଏକ ପ୍ରକାର ତୀବ୍ର ଏବଂ ଉଚ୍ଚ ଶବ୍ଦ ସୃଷ୍ଟି କରେ, ଯାହାକୁ ସୋନିକ୍ ବୁମ୍ କୁହାଯାଏ । ସୁପର ସୋନିକ୍ ଜେଟ୍ ବିମାନରୁ ସୃଷ୍ଟି ହେଉଥିବା ଏହି ସକ୍ ତରଙ୍ଗରେ ଯଥେଷ୍ଟ ଶକ୍ତି ଅଛି ଯାହା କାଚକୁ ଭାଙ୍ଗି ଖଣ୍ଡ ଖଣ୍ଡ କରି ଦେଇପାରେ ବା କୋଠାବାଡ଼ିର କ୍ଷୟକ୍ଷତି ମଧ୍ୟ କରିପାରେ ।

9.3 ଧ୍ୱନିର ପ୍ରତିଫଳନ (Reflection of Sound)

ଗୋଟିଏ ରବର ପେଣ୍ଡୁ ଗୋଟିଏ କାନ୍ତରେ ଧକ୍କା ଖାଇ ଯେପରି ଫେରିଆସେ, ସେହିପରି ଧ୍ୱନି କଠିନ ବା ତରଳ ପୃଷରେ ବାଧାପାଇ ଫେରିଆସେ । ଆଲୋକ ପରି ଧ୍ୱନି ମଧ୍ୟ କଠିନ ଓ ତରଳ ପୃଷରୁ ପ୍ରତିଫଳିତ ହୁଏ ଏବଂ ତୁମେ ପୂର୍ବରୁ ପଢ଼ିଥିବା ଆଲୋକର ପ୍ରତିଫଳନ ନିୟମକୁ ମାନିଥାଏ । ଧ୍ୱନିର ପ୍ରତିଫଳନ ସମୟରେ,

- ଆପତନ କୋଶ ଓ ପ୍ରତିଫଳିତ କୋଶ ପରସ୍କର ସହିତ ସମାନ ।
- ଆପତତ ଧ୍ୱନି, ପ୍ରତିଫଳିତ ଧ୍ୱନି ଓ ଆପତନ ବିନ୍ଦୁରେ ଅଙ୍କିତ ଅଭିଲୟ ଏକ ସମତଳରେ ଅବସ୍ଥାନ କରନ୍ତି ।

ଧ୍ୱନି ତରଙ୍ଗର ପ୍ରତିଫଳନ ପାଇଁ ପ୍ରତିଫଳକ ବନ୍ଧୁର ବା ମସ୍ବଣ ହୋଇପାରେ ମାତ୍ର ତାହାର ଆକାର ବଡ଼ ହେବ। ଆବଶ୍ୟକ ।

ତୁମ ପାଇଁ କାମ : 9.5

ଚିତ୍ର 9.11 ଧ୍ୱନିର ପ୍ରତିଫଳନ

ଚିତ୍ର 9.11ରେ ପ୍ରଦର୍ଶିତ ହେଲାଭଳି ଗୋଟିଏ ମୋଟା କାଗଜ ବ୍ୟବହାର କରି ଦୁଇଟି ପାଇପ୍ ପ୍ରସ୍ତୁତ କର । ଏହି ଦୁଇ ପାଇପର ଦୈର୍ଘ୍ୟ ଅଧିକ ଲୟା ହେବା ଆବଶ୍ୟକ T ଏକ କାନ୍ଲ ନିକଟରେ ଗୋଟିଏ ଟେବୂଲ ରଖି ଟେବୂଲ ଉପରେ ପାଇପ୍ ଦୁଇଟିକୁ ଚିତ୍ର ଅନୁସାରେ ରଖ । ଗୋଟିଏ ଟେବୁଲ ଘଣ୍ଟା ଗୋଟିଏ ପାଇପ୍ର ଖୋଲା ମୁହଁ ପାଖରେ ରଖ ଏବଂ ଅନ୍ୟ ପାଇପ୍ ମୁହଁ ପାଖରେ କାନରଖ ଘଣ୍ଟାର ଟିକ୍ ଟିକ୍ ଶବ୍ଦ ଶୁଣ । ଦ୍ୱିତୀୟ ପାଇପ୍ଟିକୁ ଟିକେ ଘୁଞ୍ଚାଘୁଞ୍ଚ କରି ଏପରି ଅବସ୍ଥା (ଦିଗ)ରେ ରଖ ଯେପରିକି ତ୍ରମେ ତାହାର ମୁହଁ ପାଖରେ ଘଣ୍ଟାର ଶବ୍ଦ ସମ୍ଭ ଭାବରେ ଶୁଣି ପାରିବ । ପ୍ରଥମ ପାଇପ୍ ବାଟେ ଧ୍ୱନି ଆପତିତ ହେଲା ଓ ଦ୍ୱିତୀୟ ପାଇପ୍ ବାଟେ ପ୍ରତିଫଳିତ ହେଲା । ବର୍ତ୍ତମାନ ଉଭୟ ପାଇପର ଅବସ୍ଥିତିର ଚିହ୍ନ ଦେଇ ଆପତନ କୋଶ ଓ ପ୍ରତିଫଳନ କୋଶ ମାପି ଦେଖ । ଏମାନଙ୍କ ମଧ୍ୟରେ କ'ଶ ସମ୍ପର୍କ ରହିଛି ? ଚିତ୍ରରେ ଡାହାଣପଟକୁ ଥିବା ପାଇପକୁ ଭୂଲୟ ଦିଗରେ ସାମାନ୍ୟ ଉପରକୁ ଉଠାଅ ଏବଂ କ'ଣ ହେଲା ଲକ୍ଷ୍ୟ କର ।

9.3.1 ପ୍ରତିଧ୍ୱନି : (Echo)

ପାହାଡ଼ ପାଖରେ ବା ଉଚ୍ଚ ଅଟ୍ଟାଳିକା ପାଖରେ ବା ଅନ୍ୟ କୌଣସି ପ୍ରତିଫଳକ ନିକଟରେ ଉପଯୁକ୍ତ ସ୍ଥାନରେ ଠିଆ ହୋଇ ତୁମେ ତାଳି ମାରିଲେ କିୟା କୋର୍ରେ ଚିକାର କଲେ, ତୁମେ ସେହି ଧ୍ୱନିକୁ ପୁଣି କିଛି ସମୟ ପରେ ଶୁଣି ପାରିବ, ଯାହାକୁ ପ୍ରତିଧ୍ୱନି କୁହାଯାଏ । ଧ୍ୱନି ଶୁଣିବାର ଇନ୍ଦ୍ରିୟାନୁଭୂତି (sensation) ଆମ ମୟିଷରେ 0.1ସେକେଣ୍ଡ ପର୍ଯ୍ୟନ୍ତ ରହେ । ସେହି ସମୟ ମଧ୍ୟରେ ଯଦି ପ୍ରତିଫଳିତ ଧ୍ୱନି ଆମ କାନରେ ପହଁଞ୍ଚ, ତେବେ ମୂଳ ଧ୍ୱନିରୁ ପ୍ରତିଧ୍ୱନିକୁ

ଅଲଗା କରି ଜାଣି ହେବ ନାହିଁ । ସେଥିପାଇଁ ମୂଳ ଧ୍ୱନିର ଅତି କମ୍ବର 0.1 ସେକେଣ୍ଡ ପରେ ଯଦି ପ୍ରତିଧ୍ୱନି ଆମ କାନ ପାଖରେ ପହଁଞ୍ଚବ ତାହାହେଲେ ଯାଇ ମୂଳ ଧୁନି ଓ ତା'ର ପ୍ରତିଧ୍ୱନିକୁ ଆମେ ପୃଥକ୍ ପୃଥକ୍ ଭାବେ ସଷ ଶୁଣିପାରିବା । ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ତାପମାତ୍ରା 22ºCରେ ଧ୍ୱନିର ବେଗ ବାୟରେ 344m/s ହେଲେ, ଏହା 0.1 ସେକେଶ୍ତରେ ପ୍ରାୟ 34.4 ମିଟର ଦୂରତା ଅତିକ୍ରମ କରିବ । ଧୃନି ସୃଷ୍ଟି ହେବା ସ୍ଥାନରୁ ପ୍ରତିଫଳକ ପୃଷ ପର୍ଯ୍ୟନ୍ତ ଯାଇ ପୁନଣ୍ଟ ସୃଷ୍ଟି ହୋଇଥିବା ସ୍ଥାନକୁ ଫେରିଆସିବା ଦୂରତା 34.4 ମିଟର ହେଲେ, ପ୍ରତିଫଳକ ପୃଷର ଦୂରତା ଏହାର ଅଧା ଅର୍ଥାତ୍ 17.2m ହେବ । ପ୍ରତିଧ୍ୱନିକୁ ସଷ ଭାବେ ଶୁଣିବା ପାଇଁ ପ୍ରତିଫଳକର ତୁମଠାରୁ ସର୍ବନିମ୍ନ ଦୂରତା 17.2m ହେବା ଦରକାର । ଏହି ଦୂରତା ବାୟୁ ମାଧ୍ୟମର ତାପମାତ୍ରା ଉପରେ ମଧ୍ୟ ନିର୍ଭର କରେ । ବହୁ ପ୍ରତିଫଳନ ଯୋଗୁଁ ଏକାଧିକ ପୁଡିଧୁନି ମଧ୍ୟ ଶୁଣାଯାଏ । ବେଳେ ବେଳେ ଘଡ଼ଘଡ଼ି ଶବ୍ଦ ଥରେ ଆରୟ ହେଲେ ଅନେକ ସମୟ ପର୍ଯ୍ୟନ୍ତ ବାରୟାର ଶୁଣାଯାଏ । ଏହା ବାଦଲ ଓ ପୃଥିବୀ ପୃଷ ମଧ୍ୟରେ ଘଡ଼ଘଡ଼ି ଧୁନିର (ଏକାଧିକ) ବହୁ ପ୍ରତିଫଳନ ଯୋଗୁ ହୋଇଥାଏ ।

9.3.2 ପ୍ରତିନାଦ : (Reverberation)

କୌଣସି ବଡ଼ ହଲ୍ରେ ଧ୍ୱନି ସୃଷ୍ଟିହେଲେ ଏହା ବାରୟାର ପ୍ରତିଫଳିତ ହୋଇ କ୍ଷୀଣ ନହେଲା ପର୍ଯ୍ୟନ୍ତ କିଛି ସମୟ ଧରି ବାରୟାର ସେହି ହଲ୍ରେ ଶୁଭେ । ହଲ୍ର କାନ୍ତୁରୁ ପ୍ରତିଫଳନର ପୁନରାବୃତ୍ତି ଯୋଗୁ ଯେଉଁ ପୁନଃପୁନଃ ପ୍ରତିଧ୍ୱନି ସୃଷ୍ଟି ହୁଏ, ତାହାକୁ ପ୍ରତିନାଦ କୁହାଯାଏ । ଅଡ଼ିଟୋରିୟମ୍ ବା ବିରାଟ ହଲ୍ରେ ଅତ୍ୟଧ୍କ ପ୍ରତିନାଦ କେହି ଚାହାନ୍ତି ନାହିଁ, କାରଣ ଏହାଦ୍ୱାରା ଧ୍ୱନି ଷଷ୍ଟ ଭାବରେ ଶୁଣାଯାଏ ନାହିଁ । ପ୍ରତିନାଦକୁ କମ୍ କରିବାପାଇଁ ଅଡ଼ିଟୋରିୟମ୍ ବା ବଡ଼ ହଲ୍ର ଛାତ ଏବଂ ଭିତର କାନ୍ତୁକୁ ଧ୍ୱନି ଶୋଷଣ କରିପାରୁଥିବା ପଦାର୍ଥ ଯଥା : ସଙ୍କୁଚିତ ଫାଇବର, ବନ୍ଧୁର ପ୍ଲାଷ୍ଟର କିୟା କନାର ବୟୁ ଦ୍ୱାରା ଆଛାଦିତ କରାଯାଇଥାଏ । ଏହି ହଲ୍ ବା ଅଡ଼ିଟୋରିୟମ୍ର ଚୌକିଗୁଡ଼ିକ ମଧ୍ୟ ଧ୍ୱନି ଶୋଷଣକାରୀ ପଦାର୍ଥଦ୍ୱାରା ପ୍ରୟୁତ କରାଯାଇଥାଏ ।

ଉଦାହରଣ: 9.5

ଜଣେ ବ୍ୟକ୍ତି ଗୋଟିଏ ଉଚ୍ଚ ପାହାଡ଼ ଶୃଙ୍ଗ ସାମନାରେ ଠିଆ ହୋଇ ତାଳି ମାରିଲେ ଏବଂ 5ସେକେଶ୍ତ ପରେ ଏହାର ପ୍ରତିଧ୍ୱନି ଶୁଣିଲେ । ଧ୍ୱନିର ବେଗ 346m/s ହେଲେ ପାହାଡ଼ ଓ ବ୍ୟକ୍ତି ମଧ୍ୟରେ ଥିବା ଦୂରତା କେତେ ?

ଉତ୍ତର :

ଦତ ଅଛି, ଧ୍ୱନିର ବେଗ = v = 346m/s ସମୟ = t = 5s ଧ୍ୱନିଦ୍ୱାରା ଅତିକ୍ରାନ୍ତ ଦୂରତା = d = v × t = 346m/s × 5s = 1730m ପାହାଡ଼ ଓ ବ୍ୟକ୍ତି ମଧ୍ୟରେ ଥିବା ଦୂରତା = s = $\frac{d}{2}$ =1730m ÷ 2= 865m

9.3.3 ଧ୍ୱନିର ବହୁ ପ୍ରତିଫଳନର ବ୍ୟବହାର : (Uses of Multiple Reflection of Sound)

 ସଭାରେ ବ୍ୟବହୃତ ହେଉଥିବା ଲାଉଡ଼ିୟିକର ମେଗାଫୋନ, କାହାଳୀ (horn) ଓ କେତେକ ବାଦ୍ୟଯନ୍ତ ଯଥା : ସାହାନାଇ, ଟ୍ରମ୍ଫେଟ ଇତ୍ୟାଦି ଏ ପ୍ରକାର ଗଢ଼ା ହୋଇଥାଏ ଯେ ସେମାନଙ୍କ ମଧ୍ୟରୁ ନିସ୍ପୃତ ଧ୍ୱନି ବିଛୁରିତ ନହୋଇ କେବଳ ଗୋଟିଏ ଦିଗରେ ଗତି କରେ । ଏହିସବୁ ବାଦ୍ୟଯନ୍ତ୍ରମାନଙ୍କରେ ଶଙ୍ଖ (conicat) ସଦୃଶ ମୁହଁ ଥାଏ । ଏହା ମଧ୍ୟଦେଇ ଧ୍ୱନି ବାରୟାର ପ୍ରତିଫଳିତ ହୋଇ ଆଗକୁ ଅଗ୍ରସର ହୋଇ ଶ୍ରୋତାମାନଙ୍କ ପାଖରେ ପହଁଞ୍ଚଥାଏ । ଚିତ୍ର 9.12 ।

ଚିତ୍ର 9.12

2. ଡାକ୍ତରମାନେ ଆମ ଶରୀର ଭିତରେ ଥିବା ହୃତ୍ପିଷ୍ଟର ସ୍ମନ୍ଦନ ବା ଫୁସ୍ଫୁସ୍ର କ୍ଷୀଣ ଧ୍ୱନିକୁ ସ୍ମଷ୍ଟ ଜାଣିବାପାଇଁ ଷ୍ଟେଥୋସ୍କୋପ୍ (stethoscope) ବ୍ୟବହାର କରନ୍ତି । ଏହି ଷ୍ଟେଥୋସ୍କୋପ୍ ନଳୀ ଭିତରେ ଏକାଧିକ ପ୍ରତିଫଳନ ଯୋଗୁଁ କ୍ଷୀଣ ଧ୍ୱନି ସ୍ମଷ୍ଟ ଭାବରେ ଡାକ୍ତରଙ୍କ କାନରେ ଶୁଭେ । ଚିତ୍ର 9.13 ।

ଚିତ୍ର 9.13 ଷ୍ଟେଥୋସ୍କୋପ

 ସାଧାରଣତଃ ବକ୍ତୃତା କକ୍ଷ, କନଫରେନ୍ସ ହଲ୍ ଏବଂ ସିନେମାହଲ୍ର ଛାତକୁ ବକ୍ର (curved) ଆକୃତିର କରାଯାଇଥାଏ । ଚିତ୍ର 9.14 ।

ଚିତ୍ର 9.14 ବଲ୍ଲତା କକ୍ଷର ଅବତଳ ଛାତ

ଏହା ଯୋଗୁ ଧ୍ୱନି ପ୍ରତିଫଳିତ ହୋଇ ହଲ୍ର ସବୁ ସ୍ଥାନରେ ପହଞ୍ଚପାରେ । ଅନେକ ସମୟରେ ବକ୍ତୃତା କକ୍ଷରେ ବକ୍ତାର ପଛପଟେ ଅବତଳ ଆକାରର ବକ୍ର ଧ୍ୱନି ପ୍ରତିଫଳକ ରଖାଯାଇଥାଏ । ଅବତଳ ପୃଷର ଫୋକ୍ସରେ ବକ୍ତା ଛିଡ଼ା ହୋଇ କହିଲେ ତାଙ୍କ ଧ୍ୱନିର ଉପଯୁକ୍ତ ପ୍ରତିଫଳନ ଯୋଗୁଁ ଧ୍ୱନି ତରଙ୍ଗ ବିଭିନ୍ନ ଦିଗରେ ବିକ୍ଷିପ୍ତ ନହୋଇ ଶ୍ରୋତାଙ୍କ ଦିଗରେ ସଞ୍ଚାରିତ ହୋଇଥାଏ । ଚିତ୍ର 9.15 ।

ପ୍ରଶ୍ନ: ବଲ୍ଡତାକକ୍ଷର ଛାତକୁ କାହିଁକି ବକ୍ରତଳ କରାଯାଇଥାଏ ?

9.4 ଶ୍ରବଶର ଆବୃତ୍ତି ପରାସ (ପରିସର ସୀମା) (Frequency Range of Hearing)

ମନୁଷ୍ୟ 20Hz ରୁ 20kHz ଆବୃତ୍ତିର ସୀମା ମଧ୍ୟରେ ଥିବା ଧ୍ୱନି ତରଙ୍ଗକୁ କେବଳ ଶୁଣିପାରେ । ଏହି ଆବୃତ୍ତି ସୀମା ମଧ୍ୟରେ କୌଣସି କମ୍ପନ ଯୋଗୁଁ ସୃଷ୍ଟ ତରଙ୍ଗକୁ ଶ୍ରାବ୍ୟ ଧ୍ୱନି ତରଙ୍ଗ (audible sound wave) କୁହାଯାଏ । 20kHzରୁ ଅଧିକ ବା 20Hzରୁ କମ୍ ଆବୃତ୍ତିର ଧ୍ୱନି ତରଙ୍ଗ ସାଧାରଣ ମନୁଷ୍ୟ କାନକୁ ଶୁଣାଯାଏ ନାହିଁ । (1kHz = 1,000Hz) । ପାଞ୍ଚ ବର୍ଷରୁ କମ୍ ପିଲାମାନେ ଏବଂ କେତେକ ପଶୁ ଯଥା : କୁକୁର ଇତ୍ୟାଦି 25kHz ପର୍ଯ୍ୟନ୍ତ ଆବୃତ୍ତିର ଧ୍ୱନି ତରଙ୍ଗକୁ ଶୁଣିପାରନ୍ତି । ବୟସ ଅଧିକ ହେଲେ ଶ୍ରାବ୍ୟ ଆବୃତ୍ତିର ଉଚ୍ଚ ସୀମା 20kHzରୁ ତଳକୁ କମି ଆସେ ।

ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତି 20Hzରୁ କମ୍ ହେଲେ, ତାହାକୁ ଇନ୍ଫ୍ରାସୋନିକ୍ (infrasonic) ଧ୍ୱନି କୁହାଯାଏ । ହାତୀ, ଗଣ୍ଡା ଓ ତିମି ଭଳି କେତେକ ପ୍ରାଣୀମାନେ 20Hzରୁ କମ୍ ଅର୍ଥାତ୍ ଇନ୍ଫ୍ରାସୋନିକ ଆବୃତ୍ତିର ଧ୍ୱନି ତରଙ୍ଗ ସୃଷ୍ଟି କରନ୍ତି । ଏହି ଧ୍ୱନିକୁ ଆମେ କିନ୍ତୁ ଶୁଣି ପାରିବା ନାହିଁ । ତୁମେ ଶୁଣିଥିବ ଯେ, ଭୂମିକମ୍ପ ହେବା ପୂର୍ବରୁ କେତେ ପଶୁ ଏହାକୁ ଜାଣିପାରି ବିଚଳିତ ହୋଇପଡ଼ିତ୍ତ । ଭୂମିକମ୍ପ ଆରୟବେଳେ କମ୍

ଆବୃତ୍ତିର ଇନ୍ଫ୍ରାସୋନିକ ଧ୍ୱନି ସଞ୍ଚାରିତ ହୁଏ, ଯାହାକୂ କେତେକ ପଶୁମାନେ ହିଁ କେବଳ ଜାଶିପାରନ୍ତି । ତେଣୁ ସେମାନେ ଇତୟତଃ ହୋଇ ଇଆଡ଼େ ସିଆଡ଼େ ଦୌଡ଼ନ୍ତି ।

ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତି 20kHzରୁ ଅଧିକ ହେଲେ ତାହାକୁ ଅଲ୍ଟ୍ରାସୋନିକ୍ (ultrasonic) [ସରଳଭାବରେ ଅଲଟ୍ରାସାଉଷ୍ତ] ବା ପାରସ୍ୱନିକ ଧ୍ୱନି କୁହାଯାଏ । ଏହି ଧ୍ୱନିକୁ ମଧ୍ୟ ଆମେ ଶୁଣିପାରିବା ନାହିଁ । କାରଣ ଏହାର ଆବୃତ୍ତି 20kHzରୁ ବେଶି । ଡଲ୍ଫିନ୍, ପରପଏମ୍ (ଡଲଫିନ୍ ପରିବାରର) କେତେକ ପକ୍ଷୀ ଓ କୀଟପତଙ୍ଗ ଏହି ଉଚ୍ଚ ଆବୃତ୍ତିର ଅଲଟ୍ରାସାଉଷ ତରଙ୍ଗ ସୃଷ୍ଟି କରିପାରନ୍ତି । କେତେକ ରାତ୍ରିକାଳିନ କୀଟ (moth), ବାଦୁଡ଼ିମାନେ ସୃଷ୍ଟି କରୁଥିବା ଉଚ୍ଚ ଆବୃତ୍ତିର ଶବ୍ଦକୁ (squeaks) ଶୁଣିପାରନ୍ତି ଓ ବାଦୁଡ଼ିମାନଙ୍କର ଆକ୍ରମଣରୁ ନିଜକୁ ରକ୍ଷା କରିପାରନ୍ତି । ମୂଷାମାନେ ମଧ୍ୟ ଅଲ୍ଟ୍ରାସାଉଷ ଧ୍ୱନି ଉତ୍ପନ୍ନ କରି ପରସ୍କର ସହିତ ଖେଳନ୍ତି ।

ତୁମେ ଜାଣିଛ କି ?

ଶ୍ରବଣ ଶକ୍ତି ହରାଇଥିବା ବ୍ୟକ୍ତିମାନେ ଶ୍ରବଣ ସହାୟକ ଯନ୍ତ୍ର (hearing aid) ବ୍ୟବହାର କରନ୍ତି । ଏହା ବ୍ୟାଟେରୀ ଚାଳିତ ଗୋଟିଏ ଇଲେକ୍ଟ୍ରୋନିକ ଯନ୍ତ୍ର । ଶ୍ରବଣ ସହାୟକ ଯନ୍ତ୍ର ଏକ କ୍ଷୁଦ୍ର ମାଇକ୍ରୋଫୋନ୍ ସାହାଯ୍ୟରେ ଧ୍ୱନି ଗ୍ରହଣ କରେ । ମାଇକ୍ରୋଫୋନ୍ ଧ୍ୱନି ତରଙ୍ଗକୁ ବୈଦ୍ୟୁତିକ ସିଗନାଲ୍ରେ ରୂପାନ୍ତରିତ କରେ । ଏହି ବୈଦ୍ୟୁତିକ ସିଗନାଲ୍କ୍ ଆମ୍ଲିଫାୟାର ସାହାଯ୍ୟରେ ବହୁଗୁଣିତ କରାଯାଏ ଓ ଏହି ବର୍ଦ୍ଧିତ ସିଗ୍ନାଲକୁ ଶ୍ରବଣ ସହାୟକ ଯନ୍ତ୍ରର ସ୍ଥିକର ନିକଟକୁ ପ୍ରେରଣ କରାଯାଏ । ସ୍ଥିକର ବିଦ୍ୟୁତ ସିଗନାଲ୍କୁ ପୁଣି ଧ୍ୱନିରେ ପରିଣତ କରେ ଯାହା ବ୍ୟକ୍ତି ସଷ୍ଟ ଭାବରେ ଶୁଣିପାରେ ।

ଭୂମିକମ୍ପ ବା ଆଗ୍ନେୟଗିରି ଉଦ୍ଗୀରଣ ଭଳି ପ୍ରାକୃତିକ ଘଟଣା ପୂର୍ବରୁ କେତେକ ପଶୁପକ୍ଷୀ ଭିନ୍ନ ଭିନ୍ନ ପ୍ରତିକ୍ରିୟା ପ୍ରଦର୍ଶନ କରନ୍ତି ।

ପ୍ରଶ୍ନ :

- ସାଧାରଣ ମନୁଷ୍ୟର ଶ୍ରାବ୍ୟ ଆବୃତ୍ତିର ପରିସର କେତେ ?
- ଇନ୍ଫ୍ରାସାଉଷ ଓ ଅଲଟ୍ରାସାଉଷର ଆବୃତ୍ତିର ପରିସର କେତେ ?

9.5 ଅଲ୍ଟ୍ରାସାଉଣ୍ଡର ପ୍ରୟୋଗ (Applications of Ultrasound)

ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ଏକ ଉଚ୍ଚ ଆବୃତ୍ତି ବିଶିଷ୍ଟ ତରଙ୍ଗ । ଏହାର ଗତିପଥରେ କୌଣସି ପ୍ରତିବନ୍ଧକ ଥିଲେ ମଧ୍ୟ ଏହା ନିର୍ଦ୍ଧାରିତ ପଥରେ ଗତି କରିପାରେ । ଅଲଟ୍ରାସାଉଣ୍ଡକୁ ଚିକିତ୍ସା ବିଜ୍ଞାନ ଓ ଉଦ୍ୟୋଗ କ୍ଷେତ୍ରରେ ବହୁଳ ଭାବେ ପ୍ରୟୋଗ କରଯାଏ ।

- ଭିତରକୁ ହାତ ପଶି ନ ପାରୁଥିବା କେତେକ ଇଲେକ୍ଟ୍ରୋନିକ ସାମଗ୍ରୀ ଯଥା: ଜ୍ଞାଇରାଲ କୁଞ୍ଜମୀ ଇତ୍ୟାଦିକୁ ସହକରେ ସଫା କରି ହୁଏନା । ସେସବୁ ସାମଗ୍ରୀକୁ ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ସାହାଯ୍ୟରେ ସଫା କରାଯାଏ । ଯେଉଁ ବୟୁକୁ ସଫା କରିବାର ଥିବ, ତାହାକୁ ସଫା କରାଯାଉଥିବା ଦ୍ରବଣ ମଧ୍ୟରେ ରଖାଯାଏ ଏବଂ ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ତରଙ୍ଗ ତାହା ମଧ୍ୟକୁ ପ୍ରବେଶ କରାଯାଏ । ଏହାର ଉଚ୍ଚ ଆବୃଭିହେତୁ ଗ୍ରୀଜ, ଧୂଳିକଣା କିୟା ମଇଳା ଇତ୍ୟାଦି ବୟୁ ମଧ୍ୟରୁ ବାହାରି ଆସି ଦ୍ରବଣ ମଧ୍ୟରେ ମିଶିଯାଏ । ଏହାଯୋଗୁ ସାମଗ୍ରୀଗୁଡ଼ିକ ଭଲଭାବରେ ସଫା ହୋଇଯାଏ ।
- ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ପ୍ରୟୋଗ କରି ବଡ଼ ବଡ଼ ଧାତବ ବୃକ୍ 2. ମଧ୍ୟରେ ଥିବା ଫାଟ ଚିହୁଟ କରାଯାଏ । ଏହି ଫାଟ ବାହାରୁ ଦେଖିହୁଏ ନାହିଁ । ଏହା ଯଦି ଠିକ୍ ଭାବରେ ଚିହ୍ନଟ କରାନଯାଏ, ତାହାହେଲେ ତ୍ରଟିପୂର୍ଣ୍ଣ ଧାତବ ବୁକ୍ ଦ୍ୱାରା ନିର୍ମିତ ବଡ଼ କୋଠାବାଡ଼ି, ପୋଲ (bridge) ଓ କଳକାରଖାନା ପ୍ରତି ବିପଦ ରହିବ । ଧାତବ ବୃକ୍ ଠିକ୍ ଭାବରେ ନିର୍ମିତ ହୋଇଛି କି ନା ଜାଣିବା ପାଇଁ ପ୍ରଥମେ ଅଲ୍ଟ୍ରାସାଉଣ୍ଡକୁ ଧାତବ ଖଣ ମଧ୍ୟକୁ ପ୍ରବେଶ କରାଯାଏ ଏବଂ ଡିଟେକ୍ଟର ସାହାଯ୍ୟରେ ତ୍ରଟିଟି ଜଣାପଡ଼େ । ସାମାନ୍ୟ ଫାଟ ବା ତ୍ରଟି ଥିଲେ ମଧ୍ୟ ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ତରଙ୍ଗ ସେହି ସ୍ଥାନରୁ ପ୍ରତଫଳିତ ହୋଇ ଫେରିଆସେ ଯାହା ସେହି ଫାଟର ସ୍ତନା ଦିଏ । ଚିତ୍ର 9.16 । ମାତ୍ର ସାଧାରଣ ଅଧିକ ତରଙ୍ଗ ଦୈର୍ଘ୍ୟର ଧ୍ୱନି ତରଙ୍ଗକୁ ଏଥିପାଇଁ ବ୍ୟବହାର କରାଯାଏ ନାହିଁ, କାରଣ ଏହାର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ ଅଧିକ ହୋଇଥିବାରୁ ଏହା ଫାଟ ବା ଫାଙ୍କା ସ୍ଥାନରୁ

ଚିତ 9.16

ବଙ୍କାଇଯାଇ ଡିଟେକ୍ଟର ପାଖରେ ପହଞ୍ଚଯାଏ । ଫଳରେ ଫାଟ ଚିହ୍ନିତ ହୋଇପାରେନା ।

- ହୃତ୍ପିଷ୍ଟର ବିଭିନ୍ନ ଅଂଶରୁ ଅଲ୍ଟ୍ରାସୋନିକ୍ ଡରଙ୍ଗର ପ୍ରତିଫଳନ କରାଇ ସେହି ଅଂଶମାନଙ୍କର ପ୍ରତିବିୟ ତିଆରି କରାଯାଏ । ଏହି ଫଟୋ ଦେଖି ଡାକ୍ତରମାନେ ଚିକିହା କରନ୍ତି । ଏହି ପ୍ରକାର ପଦ୍ଧତିକୁ ଚିକିହା ବଜ୍ଞାନରେ "ଇକୋକାର୍ଡ଼ିଓଗ୍ରାଫି" (echocardiography) କୃହାଯାଏ ।
- 4. ଅଲଟ୍ରାସାଉଣ୍ଡ ସ୍କାନର ଏକ ଯନ୍ତ ଯାହା ସାହାଯ୍ୟରେ ଆମ ଶରୀରର ଆଭ୍ୟନ୍ତର ଅଙ୍ଗ ପ୍ରତ୍ୟଙ୍ଗକୁ ଯାଞ୍ଚ କରି (scanning) ସୋମନଙ୍କର ଫଟୋ ଉଭୋଳନ କରାଯାଇପାରେ । ଏଥିରେ ଅଲ୍ଟ୍ରାସୋନିକ୍ ତରଙ୍ଗ ବ୍ୟବହୃତ ହୁଏ । ରୋଗୀର ଲିଭର, ଗଲ୍ବ୍ଲାଡ଼ର, ଇଉଟେର୍ସ ଏବଂ କିଡ଼ିନ ଇତ୍ୟାଦିର ତ୍ରି-ବିୟୀୟ ଛବି କ୍ୟୁୟଟରର ମନିଟରରେ ଦେଖିହୁଏ । ଏହି ଛବି ଦେଖି ଡାକ୍ତରମାନେ ରୋଗ ନିର୍ଣ୍ଣୟ କରନ୍ତି ଓ ସେହି ଅନୁସାରେ ରୋଗୀର ଚିକିତ୍ସା କରନ୍ତି । ଏହି ଚିକିତ୍ସା ପଦ୍ଧତିକୁ ଅଲ୍ଟ୍ରାସୋନୋଗ୍ରାଫି (ultrasonography) କୃହାଯାଏ ।
- 5. ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ତରଙ୍ଗ ସାହାଯ୍ୟରେ କିଡ଼ନିରେ ସୃଷ୍ଟି ହୋଇଥିବା ଛୋଟ ଛୋଟ ପଥରକୁ ଛୋଟ ଛୋଟ ଦାନାରେ ଭାଙ୍ଗି ଦିଆଯାଏ । ଏହି ଦାନାଗୁଡ଼ିକ ପରେ ମୂତ୍ରରେ ମିଶି ପଦାକୁ ବାହାରିଆସେ । ରୋଗୀ କିଡ଼ନି ପଥର ସମସ୍ୟାରୁ ମୁକ୍ତି ପାଏ ।

9.5.1 ସୋନାର (SONAR) :

SONAR ର ପୂରା ଇଂରାକୀ ନାମ ହେଉଛି Sound Navigation And Ranging । ସୋନାର ଏକ ଯନ୍ତ୍ର ଯାହା ସାହାଯ୍ୟରେ ଜଳ ମଧ୍ୟରେ ଥିବା ବୟୁର ଉପସ୍ଥିତି, ଦୂରତ୍ୟ, ଦିଗ ଓ ବେଗ ଜାଣିହୁଏ । ଏହାର କାର୍ଯ୍ୟକାରିତା ଧ୍ୱନି ପ୍ରତିଫଳନର ମୌଳିକ ନିୟମ ଉପରେ ପର୍ଯ୍ୟବେସିତ । ସୋନାରରେ ଅଲ୍ଟ୍ରାସୋନିକ୍ ତରଙ୍ଗ ବ୍ୟବହୃତ ହୁଏ ।

ସୋନାର କିପରି କାମ କରେ ଆସ ଏ ବିଷୟରେ ଜାଣିବା । ସୋନାରରେ ଗୋଟିଏ ଟ୍ରାନ୍ସମିଟର (transmitter) ଏବଂ ଗୋଟିଏ ଡିଟେକ୍ଟର (ditector) ଥାଏ । ଏହା ବଡ଼ ବଡ଼ ଶକ୍ତିଚାଳିତ ଡଙ୍ଗା (power boat) ସର୍ମାରିନ୍ ବା ଜାହାଜରେ ଖଞା ହୋଇଥାଏ ।

ଚିତ୍ର 9.17 ଅଲ୍ଟାସାଉଣ୍ଡର ଜଳରେ ପ୍ରତିଫଳନ

ଟ୍ରାନସମିଟରରୁ ଶକ୍ତିଶାଳୀ ଅଲ୍ଟାସୋନିକ୍ ତରଙ୍ଗ ପଲ୍ସ (pulse) ପାଣି ଭିତରକୁ ପଠାଯାଏ । ସେହି ପଲ୍ସ ସମୁଦ୍ର ଶଯ୍ୟାରେ କିୟା ସମୁଦ୍ର କଳରେ ବୃଡ଼ି ରହିଥିବା ଜାହାଜ, ପାହାଡ଼ ବା ଅନ୍ୟ ବୟୁମାନଙ୍କ ଦ୍ୱାରା ବାଧାପ୍ରାପ୍ତ ହେଲେ ପ୍ରତିଫଳିତ ହୋଇ ଫେରିଆସେ । ଏହି ପ୍ରତିଫଳିତ ଅଲ୍ଟାସୋନିକ୍ ପ୍ରତିଧ୍ୱନି ଡିଟେକ୍ଟର ସାହାଯ୍ୟରେ ଗୃହୀତ ହୁଏ । ଡିଟେକ୍ଟର ଅଲ୍ଟାସୋନିକ୍ ତରଙ୍ଗକୁ ବିଦ୍ୟୁତ୍ ସଙ୍କେତ (signal) ରେ ପରିଣତ କରେ ଯାହାର ବିଶ୍ଳେଷଣ କରାଯାଏ । ଧ୍ୱନିର ପ୍ରେରଣ ଓ ପ୍ରତିଧ୍ୱନିର ଗ୍ରହଣ ମଧ୍ୟରେ ଥିବା ସମୟ ବ୍ୟବଧାନ 't', ସମୁଦ୍ର ଜଳରେ ଅଲ୍ଟାସୋନିକ୍ ତରଙ୍ଗର ବେଗ 'v' ଓ ଜାହାଜଠାରୁ ପ୍ରତିବନ୍ଧକର ଦୂରତା 'd' ହେଲେ, ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ତରଙ୍ଗ ମୋଟ 2d ଦୂରତା ଅତିକ୍ରମ କରିଥାଏ ।

$$\therefore$$
 2d = v × t

କିମ୍ବା
$$d = \frac{v \times t}{2}$$

ଏହି ସୂତ୍ର ବ୍ୟବହାର କରି ଜଳ ମଧ୍ୟରେ ବୁଡ଼ି ରହିଥିବା ଅଦୃଶ୍ୟ ବୟୁମାନଙ୍କର ଜଳପୃଷଠାରୁ ଦୂରତା ଗଣନା କରା ଯାଇଥାଏ । ଏହି ପଦ୍ଧତିକୁ ଇକୋ ରେଞ୍ଜିଂ (echo ranging) ପଦ୍ଧତି କୁହଯାଏ । ଏହି ପଦ୍ଧତିଦ୍ୱାରା ସମୁଦ୍ର କଳ ମଧ୍ୟରେ ବୁଡ଼ି ରହିଥିବା କାହାକ, ପାହାଡ଼, ବଡ଼ ବଡ଼ ଶିଳାଖଣ୍ଡ, ବରଫ ସ୍ଥୂପ ଇତ୍ୟାଦି ବସ୍ତୁମାନଙ୍କ ଉପସ୍ଥିତି ଓ କଳପୃଷ୍ଠ ତଳେ ସେମାନଙ୍କ ଦୂରତା ନିର୍ଣ୍ଣୟ କରିହୁଏ । ଏହି ପଦ୍ଧତିରେ ସମୁଦ୍ର ଜଳର ଗଭୀରତା ମଧ୍ୟ ନିର୍ଣ୍ଣୟ କରିହୁଏ ।

ଉଦାହରଣ: 9.6

ଗୋଟିଏ କାହାକରୁ ସମୁଦ୍ରର ଶଯ୍ୟା ଆଡ଼କୁ ଅଲ୍ଟାସାଉଷ ତରଙ୍ଗ ପଠାଗଲା । ପଠାଇବାର 3 ସେକେଷ ପରେ ତାହାର ପ୍ରତିଧ୍ୱନି ଡିଟେକ୍ଟର ଦ୍ୱାରା ଗୃହୀତ ହେଲା । ସମୁଦ୍ର ଜଳରେ ଅଲ୍ଟ୍ରାସାଉଷର ବେଗ 1530m/s ହେଲେ, ସମୁଦ୍ର ଜଳର ଗଭୀରତା କେତେ ନିର୍ଣ୍ଣୟ କର ।

ଉଉର:

ଦଉ ଅଛି.

ପ୍ରତିଧ୍ୱନି ପହଞ୍ଚବାର ସମୟ = t = 3 ସେକେଣ୍ଡ ଅଲ୍ଟ୍ରାସାଉଣ୍ଡର ବେଗ = v = 1530 m/s ଅତିକ୍ରାନ୍ତ ଦୂରତା = 2 × ସମୁଦ୍ର ଜଳର ଗଭୀରତା (d)

∴ $2d = v \times t = 1530 \text{m/s} \times 3s = 4590 \text{m}$

$$\Rightarrow$$
 d = $\frac{4590 \text{ m}}{2}$ = 2295m = 2.295km.

ପଶ୍ର :

ଏକ ବୂଡ଼ାଜାହାଜରେ ଥିବା ସୋନାରରୁ ସମୁଦ୍ରଜଳ ମଧ୍ୟରେ ବୂଡ଼ିରହିଥିବା ପାହାଡ଼ ଆଡ଼କୁ ଅଲ୍ଟ୍ରାସୋନିକ୍ ତରଙ୍ଗ ପଲ୍ସ ପଠାଇଲେ ତାହା ପାହାଡ଼ରେ ଧକ୍କା ଖାଇ 1.6 ସେକେଣ୍ଡ ପରେ ସୋନାରର ଡିଟେକ୍ଟର ପାଖକୁ ଫେରିଆସେ । ସମୁଦ୍ରର ଗଭୀରତା 1120m ହେଲେ, ସମୁଦ୍ର ଜଳରେ ଅଲ୍ଟ୍ରାସୋନିକ୍ ଧ୍ୱନିର ବେଗ କେତେ ?

ବାଦୁଡ଼ି (bat) ରାତିର ଅନ୍ଧକାରରେ ଗତି କରିପାରେ ଏବଂ ତାହାର ଖାଦ୍ୟ ସଂଗ୍ରହ କରେ । ଏହା ସେ କିପରି କରିପାରେ ! ବାଦୁଡ଼ି ରାତିରେ ଉଡ଼ିଲାବେଳେ ଅବିରତ ଭାବରେ ଅଲ୍ଟ୍ରାସୋନିକ୍ ତରଙ୍ଗ ନିର୍ଗତ କରେ ଓ ତାହାର ପ୍ରତିଧ୍ୱନିକୁ ଗ୍ରହଣ କରି ତାର ଚତ୍ୟୁପାର୍ଶ୍ୱରେ ଥିବା ବୟୁମାନଙ୍କୁ ଜାଣିପାରେ । ଚିତ୍ର 9.18 । ବାଦୁଡ଼ି ଉଚ୍ଚ ତାରତ୍ୱ (high pitch) ଅଲ୍ଟ୍ରାସୋନିକ୍ ପଲ୍ସମାନଙ୍କୁ ନିର୍ଗତ କରି ପ୍ରେରଣ କରେ ଯାହା ପ୍ରତିବନ୍ଧକ ଦ୍ୱାରା ପ୍ରତିଫଳିତ ହୋଇ ବାଦୁଡ଼ି

ଚିତ୍ର 9.18 ବାଦୁଡ଼ିର ଅଲ୍ଟ୍ରାସାଉଣ ପ୍ରେରଣ ଓ ଗ୍ରହଣ

କାନ ପାଖକୁ ଫେରିଆସେ । ପ୍ରତିଫଳିତ ଅଲ୍ଟ୍ରାସୋନିକ୍ ତରଙ୍ଗର ଲକ୍ଷଣରୁ ବାଦୁଡ଼ି ପ୍ରତିବନ୍ଧକ ବା ପ୍ରତିଫଳକର ଉପସ୍ଥିତି, ଆକୃତି ଓ ପ୍ରକୃତି ଜାଣିପାରେ । ତେଣୁ ନିଜ ଖାଦ୍ୟ ପାଖରେ ସେ ଅନ୍ଧାର ରାତିରେ ବିନା ବାଧାରେ ପହଞ୍ଚଯାଏ । ପ୍ରାକୃତିକ ଉପାୟରେ ବାଦୁଡ଼ି ପ୍ରୟୋଗ କରୁଥିବା ଏହି କୌଶଳ ହିଁ ସୋନାରରେ ପ୍ରୟୋଗ ହୋଇଛି ।

9.6 ମାନବ କର୍ଷର ଗଠନ (Structure of Human Ear)

ଆମେ କିପରି ଶୁଣୁ ? କର୍ଷ ସାହାଯ୍ୟରେ ଆମେ ଶୁଣୁ । ଆସ, ଏହି କର୍ଷର ଗଠନ ଓ କାର୍ଯ୍ୟ ବିଷୟରେ ଏଠାରେ କିଛି ଜାଣିବା । ବାହ୍ୟ କର୍ଷକୁ ପିନା (pinna) କୁହାଯାଏ । ଏହା ଚତୁଃପାର୍ଶ୍ୱର ଧ୍ୱନିକୁ ଗ୍ରହଣ କରେ ଯାହା କାନର ଶୁତିନାଳୀ (auditory canal) ବାଟଦେଇ ଭିତରକୁ ଯାଏ । କର୍ଷ ଭିତରେ ଏକ କ୍ଷୁଦ୍ର ଓ ପତଳା ଝିଲ୍ଲୀ ଥାଏ, ତାହାକୁ କର୍ଷପଟହ (ear drum) ବା ଟିମ୍ପାନିକ୍ ଝିଲ୍ଲୀ କୁହାଯାଏ ।

ଚିତ୍ର 9.19 ମାନବ କର୍ଣ୍ଣ

ବାୟୁ ମାଧ୍ୟମର ସଂପୀଡ଼ନ କର୍ଣ୍ଣପଟହରେ ପହଞ୍ଚଲେ ତାହା କର୍ଣ୍ଣପଟହକୁ ଅଧିକ ଚାପ ପ୍ରଦାନ କରେ ଓ ତାହାକୁ ଭିତରକୁ ଠେଲିଦିଏ । ସେହିଭଳି ଯେତେବେଳେ ବିଚଳନ କର୍ଣ୍ଣପଟହ ନିକଟରେ ପହଞ୍ଚେ ସେତେବେଳେ କର୍ଣ୍ଣପଟହ ଉପରେ ପ୍ରଦଭ ଚାପ ହ୍ରାସ ପାଏ, ତେଣୁ କର୍ଣ୍ଣପଟହ ବିପରୀତ ଦିଗରେ ଟିକେ ବାହାରକୁ ଚାଲିଆସେ । ଏହାଦ୍ୱାରା କର୍ଣ୍ଣପଟହ ବାରୟାର ଆଗପଛ ହୋଇ କମ୍ପତ ହୁଏ । ଏହି କମ୍ପନ ମଧ୍ୟ କର୍ଣ୍ଣରେ ଥିବା ତିନୋଟି ହାଡ଼ ଯଥା : ହାମର, ଆନ୍ଭିଲ ଓ ଷ୍ଟିରପ୍ ଦ୍ୱାରା ବହୁଗୁଣିତ ହୋଇଥାଏ । ମଧ୍ୟ କର୍ଣ୍ଣ ଏହି ଚାପର ପରିବର୍ତ୍ତନକୁ ଅନ୍ତଃକର୍ଣ୍ଣ (inner ear)କୁ ପଠାଏ । ସେଠାରେ କର୍ଣ୍ଣକୟୁକ (cochlea) ଥାଏ, ଯାହା ଚାପର ପରିବର୍ତ୍ତନକୁ ବୈଦ୍ୟୁତିକ ସିଗନାଲସ୍ରେ ପରିଣତ କରେ । ଏହି ବୈଦ୍ୟୁତିକ ସିଗନାଲସ୍ରେ ପରିଶତ କରେ । ଏହି ବୈଦ୍ୟୁତିକ ସିଗନାଲସ୍ରେ ପରିଶତ କରେ । ଏହି ବୈଦ୍ୟୁତିକ ସିଗନାଲସ୍ର ଶ୍ରୁତି ସ୍ନାୟୁ (auditory nerve) ବାଟଦେଇ ମୟିଷ୍କକୁ ଯାଏ ଏବଂ ମୟିଷ୍କ ଏହାକୁ ବାଖ୍ୟାକରି ଧ୍ୱନି ଭାବରେ ବୃଝିପାରେ ।

ଆମେ କ'ଣ ଶିଖିଲେ ?

- ବିଭିନ୍ନ ବୟୁର କମ୍ପନହେତୁ ଧ୍ୱନି ସୃଷ୍ଟି ହୁଏ ।
- ଧ୍ୱନି ଏକ ଜଡ଼ୀୟ ମାଧ୍ୟମରେ ଅନୁଦୈର୍ଘ୍ୟ ତରଙ୍ଗ ଭାବରେ ଗତିକରେ ।
- ଏକ ମାଧ୍ୟମରେ ଧ୍ୱନି କ୍ରମାନ୍ୟରେ ସଂପୀଡ଼ନ ଓ ବିରଳନ ସୂଷ୍ଟିକରି ଗଡିକରେ ।
- ଧ୍ୱନି ସଞ୍ଚାରଣ ବେଳେ ମାଧ୍ୟମର କଣିକାମାନେ କେବଳ ନିଜ ସ୍ଥାନରେ ବୋଳିତ ହୁଅନ୍ତି ମାତ୍ର ସ୍ଥାନାନ୍ତରିତ ହୁଅନ୍ତି ନାହିଁ । କେବଳ ଧ୍ୱନି ଶକ୍ତି ସ୍ଥାନାନ୍ତରିତ ହୁଏ ଓ ତାହା ମାଧ୍ୟମରେ ଗତି କରେ ।
- ଧ୍ୱନି ଶୂନ୍ୟ ମାଧ୍ୟମରେ ଗତିକରି ପାରେ ନାହିଁ ।
- ଦୁଇଟି କ୍ରମିକ ସଂପୀଡ଼ନ ବା ଦୁଇଟି କ୍ରମିକ ବିରଳନର ମଧ୍ୟ ବିନ୍ଦୁ ଦ୍ୱୟ ମଧ୍ୟରେ ଥିବା ଦୂରତାକୁ ଡରଙ୍ଗ ଦୈର୍ଘ୍ୟ (λ) କୁହାଯାଏ ।
- ମାଧ୍ୟମରେ ତରଙ୍ଗ ଗତି କରୁଥିବା ସମୟରେ ମାଧ୍ୟମର ଏକକ କଣିକା ଗୋଟିଏ ଥର ପୂର୍ଷ ଦୋଳନ କରିବାକୁ ଯେତିକି ସମୟ ନିଏ, ତାହାକୁ ତରଙ୍ଗର ଆବର୍ତ୍ତକାଳ (T) କୁହାଯାଏ ।

- ଧ୍ୱନି ଗତି କରୁଥିବା ମାଧ୍ୟମରେ ଗୋଟିଏ କଣିକା ଏକକ ସମୟରେ ସେତେଥର ଦୋଳିତ ହୁଏ ତାହାକୁ ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତି (f) କୁହାଯାଏ । $\left(f=\frac{1}{T}\right)$
- ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ, ଆବୃତ୍ତି ଓ ବେଗ ମଧ୍ୟରେ ଥିବା ସଂପର୍କ ହେଲା − $v=f\;\lambda$

କିମ୍ବା
$$f = \frac{v}{\lambda}$$

କିୟା
$$\lambda = \frac{v}{f}$$

- ଧ୍ୱନିର ବେଗ ତାହା ସଞ୍ଚାରିତ ହେଉଥିବା ମାଧ୍ୟମର ପ୍ରକୃତି ଓ ତାପମାତ୍ରା ଉପରେ ନିର୍ଭର କରେ । ଭିନ୍ନ ଭିନ୍ନ ମାଧ୍ୟମରେ ଧ୍ୱନିର ବେଗ ଅଲଗା ହୋଇଥାଏ ।
- ଧ୍ୱନି ପ୍ରତିଫଳନ ନିୟମଗୁଡ଼ିକ ହେଲା :
 - (i) ଧ୍ୱନିର ପ୍ରତିଫଳନ ସମୟରେ ଆପତନ କୋଣ ପ୍ରତିଫଳନ କୋଣ ସହିତ ସମାନ ହୋଇଥାଏ ।
 - (ii) ଆପତିତ ଧ୍ୱନି, ପ୍ରତିଫଳତ ଧ୍ୱନି ଏବଂ ଆପତନ ପୃଷ୍ଠରେ ଆପତନ ବିନ୍ଦୁରେ ଅଙ୍କିତ ଅଭିଲୟ ଏକ ସମତଳରେ ଅବସ୍ଥାନ କରନ୍ତି ।
- ମୂଳ ଧ୍ୱନି ଓ ପ୍ରତିଫଳିତ ଧ୍ୱନି ମଧ୍ୟରେ ସମୟ ବ୍ୟବଧାନ ଅତି କମ୍(ରେ 0.1s ହେଲେ ପ୍ରତିଧ୍ୱନି ସମ୍ପଷ୍ଟ ଶୁଣାଯାଏ ।
- ଧ୍ୱନିର ବିଶେଷ ଗୁଣଗୁଡ଼ିକ ହେଲା- ତାରତ୍ୱ, ପ୍ରବଳତା
 ଓ ଗୁଣାତ୍ପକ ବୈଶିଷ୍ଟ୍ୟ । ଏହା ଧ୍ୱନି ତରଙ୍ଗର ଧର୍ମ ଉପରେ ନିର୍ଭରଶୀଳ । ଏହି ଗୁଣମାନଙ୍କ ଦ୍ୱାରା ଗୋଟିଏ ଧ୍ୱନିକୁ ଆଉ ଗୋଟିଏ ଧ୍ୱନିରୁ ଅଲଗା ବୋଲି ବାରିହୁଏ ।
- ଧ୍ୱନି ସଞ୍ଚାଳନର ଅଭିଲୟ ଦିଗରେ ଏକକ କ୍ଷେତ୍ରଫଳ ମଧ୍ୟଦେଇ ପ୍ରତି ସେକେଣ୍ଡରେ ଅତିକ୍ରମ କରୁଥିବା ଧ୍ୱନି ଶକ୍ତିର ପରିମାଣକୁ ଧ୍ୱନିର ତୀବ୍ରତା କହନ୍ତି ।
- କଣେ ସାଧାରଣ ମାନବର ଧ୍ୱନି ଶ୍ରବଣ ଆବୃତ୍ତିର ପରିସର 20Hz ରୁ 20kHz ଅଟେ ।

- ଧ୍ୱନିର ପ୍ରବଳତା, କାନରେ ଧ୍ୱନି ଶ୍ରବଣର ତୀବ୍ରତାର ଏକ ଇନ୍ଦ୍ରିୟାନୁଭୃତି । ସମାନ ତୀବ୍ରତାର ଧୃନି ଭିନ୍ନ ଭିନ୍ନ ବ୍ୟକ୍ତିଙ୍କ କାନରେ ଅଲଗା ଅଲଗା ଧ୍ୱନି ପ୍ରବଳତା ସ୍ଷି କରିପାରେ ।
- ଧ୍ୱନି ତରଙ୍ଗର ଆବୃତ୍ତି 20Hzରୁ କମ୍ ହେଲେ ତାହାକୁ ଇନ୍ଫ୍ରାସୋନିକ ଏବଂ 20kHzରୁ ଅଧିକ ହେଲେ ତାହାକୁ ଅଲ୍ଟ୍ରାସୋନିକ ବା ଅଲ୍ଟ୍ରାସାଉଣ କୁହାଯାଏ ।
- ଅଲଟ୍ରାସାଉଣକୁ ଚିକିହା ବିଜ୍ଞାନ ଓ ଉଦ୍ୟୋଗରେ ବିଭିନ୍ନ କ୍ଷେତ୍ରରେ ପ୍ରୟୋଗ କରାଯାଏ ।
- ସୋନାର ପଦ୍ଧତି ବ୍ୟବହାର କରି ସମୁଦ୍ର ଗଢ଼ୀରତା ମପାଯାଇ ପାରେ ଏବଂ ସମୁଦ୍ର ଜଳରେ ବୃଡ଼ି ରହିଥିବା ପାହାଡ଼, ଉପତ୍ୟକା, ବଡ଼ ବରଫ ଖଣ ଓ ବୃଡ଼ାଜାହାଜର ଅବସ୍ଥିତି ନିର୍ତ୍ତୟ କରାଯାଇପାରେ ।

ପ୍ରଶ୍ନାବଳୀ

- ଧ୍ୟନି କାହାକୁ କୁହାଯାଏ ଏବଂ ଏହା କିପରି ସୃଷ୍ଟି ହୁଏ ? 1.
- ନିମ୍ବରେ ପ୍ରତ୍ୟେକ ପୁଶ୍ରରେ ଦିଆଯାଇଥିବା ଚାରିଗୋଟି ସମ୍ଭାବ୍ୟ ଉତ୍ତର ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତର ବାଛି ଲେଖ । 2.
 - ଧ୍ୱନି ନିମ୍ନୋକ୍ତ କେଉଁ ମାଧ୍ୟମରେ ଆଦୌ ଗତି କରିପାରିବ ନାହିଁ ?
 - (i) କଠିନ
- (ii) ତରଳ
- (iii) ଗ୍ୟାସ
- (iv) ଶ୍ୱନ୍ୟ

- ହର୍ସ ହେଉଛି-(b)
 - (i) ସେକେଣ
- (ii) ସେକେଶ୍⁻¹
- (iii) ମିଟର
- (iv) ମିଟର⁻¹
- ସମୁଦ୍ରର ଗଭୀରତା ନିର୍ତ୍ତୟ କରିବାକୁ କେଉଁ ଯନ୍ତ ବ୍ୟବହୃତ ହୁଏ ? (c)
 - (i) ସୋନାର
- (ii) ରେଡ଼ାର
- (iii) ମିଟର ୟେଲ (iv) ଏମାନଙ୍କ ମଧ୍ୟରୁ କେଉଁଟି ନୁହେଁ ।
- (d) କେଉଁ ମାଧ୍ୟମରେ ଧ୍ୱନିର ବେଗ ସର୍ବାଧିକ ?
 - (i) କଠିନ
- (ii) ତରଳ
- (iii) ଗ୍ୟାସ
- (iv) ଏମାନଙ୍କ ମଧ୍ୟରୁ କେଉଁଟି ନୁହେଁ ।
- ଧ୍ୱନିର ଏକ ଉତ୍ସ ନିକଟରେ ବାୟ ମାଧ୍ୟମରେ ସଂପୀଡ଼ନ ଓ ବିରଳନ କିପରି ସୃଷ୍ଟି ହୁଏ, ନାମାଙ୍କିତ ଚିତ୍ର ମାଧ୍ୟମରେ 3.
- ଧୁନି ସଞ୍ଚାରଣ ପାଇଁ ଏକ ମାଧ୍ୟମ ଆବଶ୍ୟକ ଏକ ସରଳ ପରୀକ୍ଷା ଦ୍ୱାରା ଏହାକୁ ବୁଝାଅ । 4.
- ଧ୍ୱନି ତରଙ୍ଗକୁ କାହିଁକି ଅନୁଦୈର୍ଘ୍ୟ ତରଙ୍ଗ କୁହାଯାଏ ? 5.
- ଏକ ଅନ୍ଧାର ଘରେ ବସିଥିବା ତୁମ ବନ୍ଧୁଙ୍କ ଆବାଜରୁ ବନ୍ଧୁଙ୍କ ଉପସ୍ଥିତି ତୁମେ ଧ୍ୱନିର କେଉଁ ଗୁଣଯୋଗୁ ଜାଣିପାର ? 6.
- ବିଜ୍ଞାନ ସମ୍ମତ କାରଣ ଦର୍ଶାଅ I 7.
 - (a) ଏକା ସମୟରେ ବିଜୁଳି ଓ ଘଡ଼ଘଡ଼ି ସୃଷ୍ଟି ହେଉଥିଲେ ମଧ୍ୟ ପ୍ରଥମେ ବିଜୁଳି ଦେଖାଯାଏ ଏବଂ ତାହାର କିଛି ସମୟପରେ ଘଡ଼ଘଡ଼ି ଶୁଣାଯାଏ I
 - (b) ବାଦୁଡ଼ି ଅନ୍ଧାର ରାତିରେ ତାହାର ଶିକାର ଧରିବାକୁ ସକ୍ଷମ ହୁଏ ?

- 8. ସାଧାରଣ ମଣିଷର ଧ୍ୱନି ପରିସର 20Hz ରୁ 20kHz । ଏହି ଦୁଇ ଆବୃତ୍ତିର ଧ୍ୱନି ତରଙ୍ଗର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ କେତେ ନିର୍ଦ୍ଧୟ କର । (v = 344m/s)
- 9. ତୁମର ଦୁଇ ସାଙ୍ଗ ଗୋଟିଏ ଏଲୁମିନିୟମ ଦଣ୍ତର ଉଭୟ ପାର୍ଶ୍ୱରେ ବସିଛନ୍ତି । ଜଣେ ସାଙ୍ଗ ଗୋଟିଏ ପଥର ଦ୍ୱାରା ଏଲୁମିନିୟମ୍ ଦଣ୍ଡକୁ ଆଘାତ କଲା । ଅନ୍ୟ ସାଙ୍ଗ ପାଖକୁ ଧ୍ୱନି ତରଙ୍ଗ ବାୟୁରେ ଏବଂ ଏଲୁମିନିୟମରେ ପହଞ୍ଚବା ସମୟର ଅନୁପାତ କେତେ ?
- 10. ଏକ ଧୁନି ଉସ୍କର ତରଙ୍ଗ ଆବୃତ୍ତି 100Hz ହେଲେ, ଏହା ଏକ ମିନିଟରେ କେତେ ଥର କମ୍ପିତ ହେବ ?
- 11. ଆଲୋକ ପ୍ରତିଫଳନ ନିୟମ, ଧ୍ୱନି ପ୍ରତିଫଳନ ପାଇଁ ପ୍ରଯୁଜ୍ୟ କି ? ଏହାକୁ ବୁଝାଅ ।
- 12. ଏକ ଦୂର ବସ୍ତୁରୁ ଧ୍ୱନି ଯେତେବେଳେ ପ୍ରତିଫଳିତ ହୁଏ, ପ୍ରତିଧ୍ୱନି ସୃଷ୍ଟି ହୁଏ । ଯଦି ପ୍ରତିଫଳନ ପୃଷ୍ଠ ଏବଂ ଧ୍ୱନି ସୃଷ୍ଟିର ଉସ ମଧ୍ୟରେ ଦୂରତା ସମାନ ରହେ, ତାହାହେଲେ ଏକ ଉଉପ୍ତ ଦିନରେ ତୁମେ ପ୍ରତିଧ୍ୱନି ଶୁଣିପାରିବ କି ?
- 13. ଧ୍ୱନି ପ୍ରତିଫଳନର ଦୁଇଟି ବ୍ୟବହାରିକ ପ୍ରୟୋଗ ଲେଖ ।
- 14. ଗୋଟିଏ ପୋଖରୀ କୂଳକୁ ଲାଗି 500m ଉଚ୍ଚର ଏକ ଟାଓ୍ୱାର ଅଛି । ଏହି ଟାଓ୍ୱାର ଶୀର୍ଷରୁ ଗୋଟିଏ ପଥର ପୋଖରୀର ପାଣିକୁ ଖସିପଡ଼ିଲା । ପଥରର ପାଣିରେ ପଡ଼ିବାର ଶବ୍ଦ କେତେ ସମୟ ପରେ ଶୁଣାଯିବ ? (g = 10m/s² ଏବଂ v = 340m/s)
- 15. ଏକ ଧ୍ୱନି ତରଙ୍ଗ 334m/s ବେଗରେ ଗତି କରେ । ଏହାର ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ 1.5cm ହେଲେ, ତରଙ୍ଗର ଆବୃତ୍ତି କେତେ ହେବ ? ଏହା ଶଣାଯିବ କି ନାହିଁ ।
- 16. ପ୍ରତିନାଦ କାହାକୁ କୁହାଯାଏ ? ଏହାକୁ କିପରି କମ୍ କରାଯାଇ ପାରିବ ?
- 17. ଧ୍ୱନିର ତୀବ୍ରତା କାହାକୁ କହନ୍ତି ? ଏହା କେଉଁ କେଉଁ କାରକ ଉପରେ ନିର୍ଭର କରେ ?
- 18. ଇଲେକ୍ଟ୍ରୋନିକ ଯନ୍ତପାତିକୁ ପରିଷ୍କାର କରିବାରେ ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ କିପରି ସହାୟକ ହୁଏ ?
- 19. ସୋନାରର କାର୍ଯ୍ୟପ୍ରଣାଳୀ ଏବଂ ପୟୋଗକୁ ବୁଝାଅ ।
- 20. ଏକ ବୁଡ଼ାଜାହାଜରେ ଥିବା ସୋନାରଦ୍ୱାରା ଏକ ସିଗ୍ନାଲ ପଠାଗଲା ଏବଂ ତାହାର ପ୍ରତିଧ୍ୱନି 5 ସେକେଣ୍ଡ ପରେ ପହଞ୍ଚଲା । ଯଦି ବୁଡ଼ାଜାହାଜଠାରୁ ବସ୍ତୁର ଦୂରତା 3625m ହୁଏ, ତାହାହେଲେ ଜଳରେ ଧ୍ୱନି ତରଙ୍ଗର ବେଗ ନିର୍କ୍ତିୟ କର ।
- 21. ଏକ ଧାତବ ବ୍ଲକରେ ଥିବା ବିଚ୍ୟୁତିକୁ କିପରି ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ପଦ୍ଧତିରେ ନିର୍ଣ୍ଣୟ କରାଯାଇପାରିବ ?
- 22. ମାନବ କର୍ଷର ଏକ ନାମାଙ୍କିତ ଚିତ୍ର ଅଙ୍କନ କର ।
- 23. ଆମେ କାନଦ୍ୱାରା କିପରି ଶୁଣୁ, ତାହାକୁ ବୁଝାଅ I
- 24. କାହାଜରେ ଥିବା ଏକ ସୋନାରରୁ ଅଲ୍ଟ୍ରାସାଉଣ୍ଡ ତରଙ୍ଗ ସମୁଦ୍ରର ନିମ୍ନଦେଶକୁ ପଠାଇ ପୁଣି ପ୍ରତିଫଳିତ ତରଙ୍ଗକୁ ଗ୍ରହଣ କରିବା ମଧ୍ୟରେ ଥିବା ସମୟର ବ୍ୟବଧାନ 2.1 ସେକେଣ୍ଡ । ସମୁଦ୍ରର ଗଭୀରତା 1400m ହେଲେ, ଧ୍ୱନି ତରଙ୍ଗର ବେଗ କେତେ ?

ତୁମର ଏହି ବହିରେ ବିଭିନ୍ନ ଅଧ୍ୟାୟରେ ବ୍ୟବହୃତ ନିମ୍ନଲିଖିତ ଓଡ଼ିଆ ଶବ୍ଦଗୁଡ଼ିକର ଇଂରାଜୀ ଶବ୍ଦ ଲେଖ l

ଓଡ଼ିଆ ଶଦ	ଇଂରାଜୀ ଶବ୍ଦ	ଓଡ଼ିଆ ଶବ	ଇଂରାଜୀ ଶବ୍ଦ	
ଊର୍ଦ୍ଧ୍ ପାତନ -	Sublimation	ଜଡ଼ତ୍ୱ –		
ବିନ୍ଦୁକ –		ସଂବେଗ –		
ପ୍ରତିଦୀପ୍ତ ନଳୀ –		ସଂଘାତ –		
ଗୁପ୍ତତାପ –		ପ୍ରତିକ୍ରିୟା ବଳ -		
ରଞ୍ଜକ –		ମହାକର୍ଷିଣ -		
ବର୍ତ୍ତିକଣା –		ମାଧ୍ୟାକର୍ଷଣ ଜନିତ ତ୍ୱରଣ	_	
ପଠନାଙ୍କ –		ପ୍ଲବତା –		
ମୌଳିକ –		ଶକ୍ତି –		
ଯୌଗିକ –		ଯାନ୍ତିକ ଶକ୍ତି –		
ଉପଧାତୁ –		ଗତିଜ ଶକ୍ତି –		
ଅଧାତୁ –		ସ୍ଥିତିଜ ଶକ୍ତି -		
ପାରମାଣବିକ ବସ୍ତୁତ୍ୱ –		ଶକ୍ତି ସଂରକ୍ଷଣ –		
ଆଣବିକ ବସ୍ତୁତ୍ୱ –		ସଞ୍ଚାରଣ –		
ଅଣି –		ଅନୁଦୈର୍ଘ୍ୟ ତରଙ୍ଗ –		
ପରମାଣୁ –		ଅନୁପ୍ରସ୍ଥ ତରଙ୍ଗ –		
ଯୋଜ୍ୟତା –		ବିଚଳନ –		
ପରମାଣୁ କ୍ରମାଙ୍କ –		ପ୍ରତିଧ୍ୱନି –		
ବୟୁତ୍ୱ ସଂଖ୍ୟା –		ପ୍ରତିନାଦ –		
ତ୍ୱରଣ –		ଆବୃତ୍ତି –		
ଆଲେଖ –		ତରଙ୍ଗ ଦୈର୍ଘ୍ୟ –		
ସମବୃତ୍ତୀୟ ଗତି -		ଆବର୍ତ୍ତିକାଳ –		