Examination, December 2017

Advance Mathematics and Numerical Analysis

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions out of eight.

- ii) All questions carry equal marks.
- Find the solution of the parabolic equation $u_{xx} = 2ut$, when u(0,t) = u(4,t) = 0 and u(x,0) = x(4-x), taking h = 1 Find the values upto t = 5.
- RGPVonline.com Evaluate the pirotal values of the equation $u_{tt} = 16u_{xx}$ taking Dx=1 upto t=1.25. The boundary conditions are u(0,t) = u(5,t) = 0, $u_t(x,0) = 0$ and $u(x,0) = x^2(5-x)$.
 - Find the Hankel transform of $\frac{e^{-ax}}{x}$ taking $x J_0(px)$ as the Kernel of the transform.
 - Find Mellin transform of sinx.

RGPVonline.com

[2]

RGPVonline.com

- 4. a) Find Fourier sine transform of $f(n) = \frac{1}{n}$.
 - Find Fourier cosine transform of $f(x) = e^{-x}$.
- Show that the function $y = xe^x$ is a solution of the volterra integral equation

$$y(x) = \sin x + 2 \int_0^x \cos(x - t) y(t) dt$$

Form an integral equation corresponding to the differential equation y'' + xy' + y = 0 with the initial condition y(0) = 1; y'(0) = 1.

$$I[y(x)] = \int_0^{\pi/2} (y'^2 - y^2) dx$$
; $y(0) = 0$; $y(\pi/2) = 1$

- RGPVonline.com Test for the extremum of the functional $I[y(x)] = \int_0^{\pi/2} (y'^2 - y^2) dx \; ; \; y(0) = 0 \; ; \; y(\pi/2) = 1$ Solve the boundary value problem $y'' - y + x = 0, \; (0 \le x \le 1), \; y(0) = 0, \; y(1) = 0 \text{ by Rayleigh-Ritz method}$ 7. Solve the boundary value problem Ritz method.
 - Write a short note on the followings:
 - Green's function
 - Integro differential equation
 - Finite element method
 - Functional

RGPVonline.com MVSE-101