

Curso avanzado de estadística

Sesión 2: Contrastes bivariados y algunas utilidades

Carlos Vergara Hernández

7 de julio de 2022

Servicio de estudios estadísticos, FISABIO

Contrastes bivariados

Ideas iniciales

- Este tipo de contrastes se dirigen a evaluar la asociación entre dos variables.
 - Siempre consideraremos una variable respuesta (dependiente) y una predictora (independiente).

Ideas iniciales

- Este tipo de contrastes se dirigen a evaluar la asociación entre dos variables.
 - Siempre consideraremos una variable respuesta (dependiente) y una predictora (independiente).
- La palicación directa de este tipo de pruebas se reserva a contextos con diseños experimentales clásicos y bien definidos (por ejemplo, al rey de los diseños: experimento controlado aleatorizado por bloques).
 - La aplicación indiscriminada de estas pruebas debe eliminarse como elemento de soporte en tablas descriptivas (o debe controlarse el error tipo I frente a comparaciones múltiples).

Ideas iniciales

- Este tipo de contrastes se dirigen a evaluar la asociación entre dos variables.
 - Siempre consideraremos una variable respuesta (dependiente) y una predictora (independiente).
- La palicación directa de este tipo de pruebas se reserva a contextos con diseños experimentales clásicos y bien definidos (por ejemplo, al rey de los diseños: experimento controlado aleatorizado por bloques).
 - La aplicación indiscriminada de estas pruebas debe eliminarse como elemento de soporte en tablas descriptivas (o debe controlarse el error tipo I frente a comparaciones múltiples).
- · Como ya se comentó, hay pruebas paramétricas y no paramétricas.
 - Desde mi perspectiva (no solo la mía), y dado que los requisitos de las paramétricas no se suelen cumplir en entornos reales, resulta apropiado realizar de base una prueba no paramétrica.

Esquema de pruebas habituales

Prueba	Tipo respuesta	Variable independiente	Tipo de test
Test t	Númerica independiente	2 categorías	Paramétrico
Test t pareado	Númerica pareada	2 categorías	Paramétrico
Mann-Whitney	Ordinal independiente	2 categorías	No paramétrico
Mann-Whitney pareado	Ordinal pareada	2 categorías	No paramétrico
ANOVA una vía	Númerica independiente	≥ 2 categorías	Paramétrico
ANOVA medidas repetidas	Númerica pareada	≥ 2 categorías	Paramétrico
Kruskal-Wallis	Ordinal independiente	≥ 2 categorías	No paramétrico
Friedman	Ordinal pareada	≥ 2 categorías	No paramétrico
Chi-cuadrado	Categórica independiente	≥ 2 categorías	Nominal
Test de Fisher	Categórica independiente	≥ 2 categorías	Nominal

Extensión: pruebas bivariadas como LM y GLM

Common statistical tests are linear models See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear Equivalent linear model in R Exact? The linear model in words Common name Built-in function in R Icon v is independent of x P: One-sample t-test One number (intercept, i.e., the mean) predicts v. t.test(v) N: Wilcoxon signed-rank wilcox.test(v) for N >14 - (Same, but it predicts the signed rank of v.) Im(signed rank(v) - 1) P: Paired-sample t-test t.test(y₁, y₂, paired=TRUE) One intercept predicts the pairwise v--v- differences. Im(y₂ - y₁ - 1) N: Wilcoxon matched pairs wilcox.test(v₁, v₂, paired=TRUE) for N > 14 - (Same, but it predicts the signed rank of v2-v1.) Im(signed rank(v2 - v1) - 1) v ~ continuous x P: Pearson correlation cor.test(x, v, method='Pearson') lm(y - 1 + x)One intercept plus x multiplied by a number (slope) predicts v. N: Spearman correlation cor.test(x, v, method='Spearman') lm(rank(v) - 1 + rank(x))for N >10 - (Same, but with ranked x and y) y ~ discrete x P: Two-sample t-test t.test(y1, y2, var.equal=TRUE) $lm(y - 1 + G_0)^4$ An intercept for group 1 (plus a difference if group 2) predicts y. P: Welch's t-test t.test(y1, y2, var.equal=FALSE) $gls(y - 1 + G_2, weights=...^n)^n$ (Same, but with one variance per group instead of one common.) N: Mann-Whitney U wilcox test(v. v.) Im(signed rank(y) - 1 + G₂)^a for N >11 - (Same, but it predicts the signed rank of y.) P: One-way ANOVA $lm(v - 1 + G_0 + G_0 + ... + G_N)^n$ An intercept for group 1 (plus a difference if group × 1) predicts v N: Kruskal-Wallis kruskal.test(y - group) $Im(rank(y) - 1 + G_2 + G_3 + ... + G_N)^n$ for N >11 - (Same, but it predicts the rank of y.) (Same but plus a slone on x.) P: One-way ANCOVA aov(y - group + x) $lm(y - 1 + G_2 + G_3 + ... + G_N + x)^n$ Note: this is discrete AND continuous, ANCOVAs are ANOVAs with a continuous x. P: Two-way ANOVA aov(y - group * sex) Im(y - 1 + G₂ + G₃ + ... + G_N + Interaction term: changing sex changes the y - group parameters. S. + S. + ... + S. + Note: Gran is an indicator (O or 1) for each non-intercept levels of the group variable Similarly for \$2=x for sex. The first line (with G) is main effect of group, the second (with Go*So + Go*So + ... + Go*So) Counts ~ discrete x Equivalent log-linear model Interaction term: (Same as Two-way ANOVA.) N: Chi-square test alm(v - 1 + G₁ + G₂ + ... + G₄ + Note: Run alm using the following arguments: a: chisq.test/groupXsex_table) S2 + S1+ ... + Sc + and β, are proportions. See more info in the accompanying notebook G.*S. + G.*S. + + G.*S. family= Y N: Goodness of fit glm(v - 1 + G₁ + G₁ + ...+ G₁, family=...)⁴ (Same as One-way ANOVA and see Chi-Square note.) chisq.test(v) 1W-ANOVA

List of common parametric (P) reconsparametric (N) lests and equivalent finant models. The notation y = 1 + x is it shows not or y = 1 + x + x is think most of a which most of a lease of a such color and sold in similar color as a religion y institute. In the religion of the product of the

^{*} See the note to the two-way ANOVA for explanation of the notation.

[&]quot;Same model but with one variance per group: cis(value - 1 + G., weights = varident(form = -1(group), method="NL").

Extensión: pruebas bivariadas como LM y GLM

Common statistical tests are linear models See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear Equivalent linear model in R Exact? The linear model in words Common name Built-in function in R Icon v is independent of x P: One-sample t-test t.test(v) One number (intercept, i.e., the mean) predicts y. N: Wilcoxon signed-rank wilcox.test(v) for N >14 - (Same, but it predicts the signed rank of v.) Im(signed rank(v) - 1) P: Paired-sample t-test t.test(y₁, y₂, paired=TRUE) One intercept predicts the pairwise y2-y1 differences. Im(y₂ - y₁ - 1) N: Wilcoxon matched pairs wilcox.test(v₁, v₂, paired=TRUE) for N > 14 - (Same, but it predicts the signed rank of v2-v1.) Im(signed rank(v2 - v1) - 1) v ~ continuous x P: Pearson correlation cor.test(x, v, method='Pearson') lm(y - 1 + x)One intercept plus x multiplied by a number (slope) predicts v. N: Spearman correlation cor.test(x, v, method='Spearman') lm(rank(v) - 1 + rank(x))for N >10 - (Same, but with ranked x and y) y ~ discrete x P: Two-sample t-test t.test(y1, y2, var.equal=TRUE) $lm(y - 1 + G_0)^4$ An intercept for group 1 (plus a difference if group 2) predicts y. P: Welch's t-test t.test(y1, y2, var.equal=FALSE) $gls(y - 1 + G_2, weights=...^n)^n$ (Same, but with one variance per group instead of one common.) N: Mann-Whitney II wilcox test(v. v.) Im(signed rank(y) - 1 + G₂)^a for N >11 - (Same, but it predicts the signed rank of y.) P: One-way ANOVA $lm(v - 1 + G_0 + G_0 + ... + G_N)^n$ An intercept for group 1 (plus a difference if group × 1) predicts v N: Kruskal-Wallis kruskal.test(y - group) $Im(rank(y) - 1 + G_2 + G_3 + ... + G_N)^n$ for N >11 - (Same, but it predicts the rank of y.) (Same but plus a slone on x) P: One-way ANCOVA aov(y - group + x) $lm(y - 1 + G_2 + G_3 + ... + G_N + x)^n$ Note: this is discrete AND continuous, ANCOVAs are ANOVAs with a continuous x. P: Two-way ANOVA aov(y - group * sex) m(y - 1 + G₂ + G₃ +...+ G_N + Interaction term: changing sex changes the y - group parameters S. + S. + ... + S. + Note: Gran is an indicator (O or 1) for each non-intercept levels of the group variable Similarly for \$2=x for sex. The first line (with G) is main effect of group, the second (with Go*So + Go*So + ... + Go*So) Counts ~ discrete x Interaction term: (Same as Two-way ANOVA.) Equivalent log-linear model

List of common parametric (F) conceptamente (R) less that dequalent linear modes. The notation y = 1 + 3 is it shows not yet a section of the section of the

Note: Run alm using the following arguments: a

and B, are proportions. See more into in the accompanying notebook

(Same as One-way ANOVA and see Chi-Square note.)

alm(v - 1 + G₁ + G₁ + ... + G_n +

G2*S2 + G3*S2 + ... + GN*S6, family= ...)

dlm(v = 1 + G₁ + G₂ + ... + G₃, family=...)⁴

S2 + S1+ ... + Sc +

chisq.test/groupXsex_table)

chisq.test(v)

1W-ANOVA

Pero...

N: Chi-square test

N: Goodness of fit

En este apartado nos limitaremos a ver las pruebas bivariadas y, llegado el momento, comprobaremos la equivalencia con LM y GLM.

A See the note to the two-way ANOVA for explanation of the notation.

Same model, but with one variance per group: gla(value ~ 1 + 6, weights = varIdent(form = ~1(group), method="ML").

Datos que usaremos

La base de datos viene como elemento de soporte al paquete de R compareGroups, y hace referencia al estudio **PREDIMED** (Estruch et al., 2018).

- Ensayo clínico aleatorizado, evaluando el efecto de suplementos de aceite de oliva o frutos secos en la salud cardiovascular.
- Los datos que acompañan al paquete no tienen pinta de ser reales, pero quiero pensar que puede tratarse de una simulación en base a los reales.

5

Datos que usaremos

La base de datos viene como elemento de soporte al paquete de R compareGroups, y hace referencia al estudio **PREDIMED** (Estruch et al., 2018).

- Ensayo clínico aleatorizado, evaluando el efecto de suplementos de aceite de oliva o frutos secos en la salud cardiovascular.
- Los datos que acompañan al paquete no tienen pinta de ser reales, pero quiero pensar que puede tratarse de una simulación en base a los reales.

Para cargar los datos y echar un vistazo a las primeras observaciones de las primeras columnas:

```
library(compareGroups)
data(predimed)
predimed[1:6, 1:6]
```

```
sex age
                              smoke
                                     bmi waist
           group
          Control Male 58 Former 33 53
# 2
          Control
                  Male 77 Current 31 05
                                          119
    MedDiet + V00 Female 72 Former 30.86
                                          106
   MedDiet + Nuts Male 71 Former 27.68
                                          118
    MedDiet + VOO Female 79 Never 35.94
                                          129
# 8
                   Male 63 Former 41.66
          Control
                                          143
```

1. Importar datos (en bruto: NUNCA SE MODIFICAN).

- 1. Importar datos (en bruto: NUNCA SE MODIFICAN).
- Decidir si se reservarán datos para validación posterior y, si así fuera, reservarlos ya mismo.

- 1. Importar datos (en bruto: NUNCA SE MODIFICAN).
- Decidir si se reservarán datos para validación posterior y, si así fuera, reservarlos ya mismo.
- 3. Limpiar base de datos y guardar los procesados.

- 1. Importar datos (en bruto: NUNCA SE MODIFICAN).
- Decidir si se reservarán datos para validación posterior y, si así fuera, reservarlos ya mismo.
- 3. Limpiar base de datos y guardar los procesados.
- Descriptiva de los datos (tabla 1), incluyendo visualizaciones estándar (¿pruebas bivariadas?).

- 1. Importar datos (en bruto: NUNCA SE MODIFICAN).
- Decidir si se reservarán datos para validación posterior y, si así fuera, reservarlos ya mismo.
- 3. Limpiar base de datos y guardar los procesados.
- Descriptiva de los datos (tabla 1), incluyendo visualizaciones estándar (¿pruebas bivariadas?).
- 5. Confección del análisis: modelo apropiado.

- 1. Importar datos (en bruto: NUNCA SE MODIFICAN).
- Decidir si se reservarán datos para validación posterior y, si así fuera, reservarlos ya mismo.
- 3. Limpiar base de datos y guardar los procesados.
- Descriptiva de los datos (tabla 1), incluyendo visualizaciones estándar (¿pruebas bivariadas?).
- 5. Confección del análisis: modelo apropiado.
- 6. Ejecución del modelo, extrayendo medidas resumen del modelo (tabla 2).

- 1. Importar datos (en bruto: NUNCA SE MODIFICAN).
- Decidir si se reservarán datos para validación posterior y, si así fuera, reservarlos ya mismo.
- 3. Limpiar base de datos y guardar los procesados.
- Descriptiva de los datos (tabla 1), incluyendo visualizaciones estándar (¿pruebas bivariadas?).
- 5. Confección del análisis: modelo apropiado.
- 6. Ejecución del modelo, extrayendo medidas resumen del modelo (tabla 2).
- Presentación de resultados de manera dinámica (paquetes rmarkdown (Xie et al., 2020) o shiny (Wickham, 2021)).

¿Por qué incluir visualizaciones?

El mejor ejemplo que justifica esta práctica lo supone el cuarteto de Anscombe.

A continuación...

Lo que resta del día trabajaremos directamente con R.

 Concretamente, con el script 01_bivariado_utilidades.R que está en el repositorio de Github.

Gracias por la atención

Referencias bibliográficas i

- Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M.-I., Corella, D., Arós, F., Gómez-Gracia, E., Ruiz-Gutiérrez, V., Fiol, M., Lapetra, J., Lamuela-Raventos, R. M., Serra-Majem, L., Pintó, X., Basora, J., Muñoz, M. A., Sorlí, J. V., Martínez, J. A., Fitó, M., Gea, A., ... Martínez-González, M. A. (2018). Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. New England Journal of Medicine, 378, e34. https://doi.org/10.1056/NEJMOA1800389
- Wickham, H. (2021). Mastering Shiny: build interactive apps, reports, and dashboards powered by R. O'Reilly. https://mastering-shiny.org/
- Xie, Y., Dervieux, C., & Riederer, E. (2020). R Markdown Cookbook. Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook