Devoir maison 5.

À rendre le jeudi 24 novembre 2022

Exercice 1

On pose, pour tout $n \in \mathbb{N}$:

$$I_n = \int_0^{\frac{\pi}{4}} \frac{1}{\cos^n x} \, \mathrm{d}x.$$

- **1°)** Justifier que I_n existe pour tout $n \in \mathbb{N}$.
- 2°) Calculer I_0 et I_2 .
- 3°) En effectuant le changement de variables $u = \sin(x)$, calculer et simplifier I_1 .
- **4°**) À l'aide d'une intégration par parties, montrer que, pour tout $n \in \mathbb{N}$:

$$I_{n+2} = \frac{(\sqrt{2})^n}{n+1} + \frac{n}{n+1}I_n.$$

Exercice 2

On pose, pour tout $n \in \mathbb{N}$:

$$u_n = \int_0^{\frac{\pi}{4}} \tan^n t \, \mathrm{d}t.$$

- 1°) Simplifier, pour tout $n \in \mathbb{N}$, $u_n + u_{n+2}$.
- **2°)** Justifier que pour tout $n \in \mathbb{N}$, $0 \le u_n \le u_n + u_{n+2}$. En déduire la convergence et la limite de la suite (u_n) .
- **3°)** En effectuant un changement de variables, montrer que pour tout $n \in \mathbb{N}$,

$$u_n = \int_0^1 \frac{x^n}{1+x^2} \, \mathrm{d}x.$$

 $\mathbf{4}^{\circ}$) En déduire, à l'aide de la propriété de croissance de l'intégrale, que pour tout $n \in \mathbb{N}$:

$$\frac{1}{2(n+1)} \le u_n.$$