Relations and Functions

(MOST EXPECTED QUESTIONS)

(Only for the Academic year 2020 - 21)

One Mark - 1; Two Marks - 1; Three Marks - 1; Five Marks - 1; Total Marks - 11.

ONE MARK QUESTIONS: (QUESTION No. 1):

1. Define Reflexive relation on a set.

Ans: A relation R on a set A is called reflexive, if $(a,a) \in R$, for every $a \in A$.

2. Define Symmetric relation on a set.

Ans: A relation R on a set A is called symmetric, if $\forall (a,b) \in R \Rightarrow (b,a) \in R$, $\forall a,b \in A$.

3. Define Transitive relation on a set.

Ans: A relation R on a set A is called transitive if $(a,b) \in R \ \& \ (b,c) \in R \ \Rightarrow (a,c) \in R$, $\forall a,b,c \in A$

4. Give an example of a relation which is symmetric only.

(MQP 2)

Ans: On set $A = \{1, 2, 3\}$ a relation $R = \{(1, 2), (2, 1)\}$ is symmetric only.

5. Give an example of a relation which is reflexive and symmetric but not transitive.

(MQP 5)

Ans: On set $A = \{1,2,3\}$ a relation $R = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1)\}$ is reflexive and symmetric but not transitive.

6. A relation R on $A = \{1,2,3\}$ defined by $R = \{(1,1),(1,2),(3,3)\}$ is not symmetric. Why?

(S 20)(M 14)

Ans: R is not symmetric because $(1,2) \in R \Rightarrow (2,1) \notin R$.

LG_Maths Page 1

7. The relation R in the set $\{1,2,3\}$ given by $R = \{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is not transitive. Why?

Ans: R is not transitive because $(1,2) \in R$ and $(2,3) \in R$ but $(1,3) \notin R$.

8. Define one-one function.

Ans: A function $f: X \to Y$ is said to be one-one (injective), if the images of distinct elements of X under f are distinct.

9. Define onto function.

Ans: A function $f: X \to Y$ is said to be onto (surjective), if every element of Y is the images of some element of X under f.

10. Define bijective function.

(M 18)

Ans: A function $f: X \to Y$ is said to be one-one and onto (bijective), if f is both one-one and onto.

11. Define Binary operation.

(M 19)

Ans: A binary operation * on a set A is a function *: $A \times A \rightarrow A$. We denote *(a, b) by a * b.

An operation * on a set A is said to be a binary operation on A, if $\forall a,b \in A \Rightarrow a*b \in A$.

12. Operation * is defined by a*b=a. Is * a binary operation on Z^+ ? (MQP 1)

Ans: $\forall a,b \in Z^+ \Rightarrow a*b = a \in Z^+$

∴ * is a binary operation.

13. Let * be a binary operation on N given by a*b = LCM of a and b, find 20*16.

(MQP 3) (M 17)

Ans: Given, a*b = LCM of a and b, $\forall a, b \in N$. 20*16 = LCM of 20 and 16 = 80.

14. Let * be a binary operation defined on set of rational numbers, by $a*b = \frac{ab}{4}$. Find the identity element. (M 15)(J 17)

Ans: Given, $a*b = \frac{ab}{4}$, $\forall a, b \in Q$.

 $\forall a \in Q, \exists e \in Q \text{ such that }$

$$a*e=a$$

and

$$e^*a = a$$

$$\frac{ae}{\Lambda} = a$$

$$\frac{e \, a}{\Delta} = a$$

$$e=4$$

$$e = 4$$

: identity element is 4.

15. Let * be a binary operation on the set of natural numbers given by a*b = LCM of a and b, find 5*7. (J 15)(J 19)(M 20)

Ans: Given, a*b = LCM of a and b, $\forall a,b \in N$.

$$5*7 = LCM \text{ of 5 and 7 = 35.}$$

16. An operation * on Z^+ (the set of all non negative integers) is defined as a*b=a-b, $\forall a,b \in Z^+$. Is * a binary operation on Z^+ ? (M 16)

Ans:
$$\forall a,b \in Z^+ \Rightarrow a*b = a-b \notin Z^+$$

$$\left[\because 1, 2 \in Z^{+} \implies 1 * 2 = 1 - 2 = -1 \notin Z^{+}\right]$$

- ∴ * is not a binary operation.
- 17. An operation * on Z^+ (the set of all non negative integers) is defined as a*b=|a-b|, $\forall a,b \in \mathbb{Z}^+$. Is * a binary operation on \mathbb{Z}^+ ? (J 16)

Ans:
$$\forall a,b \in Z^+ \Rightarrow a*b = |a-b| \in Z^+$$

- ∴ * is a binary operation.
- 18. Verify whether * defined on Z^+ , by $a*b=ab^2$, $\forall a,b\in Z^+$ is the binary operation or not.

Ans:
$$\forall a,b \in Z^+ \Rightarrow a*b = ab^2 \in Z^+$$

 \therefore * is a binary operation.

TWO MARK QUESTIONS: (QUESTION No. 11):

- Show that the relation R in the set of integers given by $R = \{(a,b): 5 \text{ divides } (a-b)\}$ is 1. symmetric and transitive. (MQP 3)
- Check whether the relation **R** defined in the set $\{1,2,3,4,5,6\}$ as $R = \{(a,b): b = a+1\}$ is reflexive or symmetric. (J-17)

LG_Maths

- 3. Define binary operation on a set. Verify whether the operation * defined on Z by a*b=ab+1 is binary or not. (MQP 2) (J 18)
- 4. Is * defined on the set $\{1,2,3,4,5\}$ by a * b = L.C.M. of a and b a binary operation? Justify your answer.
- 5. Verify whether the operation * defined on Q, define a*b=ab+1 is commutative or not.(**J 14**)
- 6. Verify whether the operation * defined on Q by $a*b = \frac{ab}{2}$ is commutative or not.
- 7. Verify whether the operation * defined on Q by a*b=a+ab is commutative or not.
- 8. Verify whether the operation * defined on Q by $a*b=ab^2$ is commutative or not.
- 9. A binary operation \wedge on the set $\{1, 2, 3, 4, 5\}$ defined by $a \wedge b = min\{a, b\}$, write the operation table for operation \wedge .
- 10. Let * be a binary operation on the set $\{1, 2, 3, 4, 5\}$ defined by a*b = HCF of a and b. Write the composition table.
- 11. Verify whether the operation * defined on Q by $a*b = \frac{ab}{4}$ is associative or not. **(MQP 5)**
- 12. Verify whether the operation * defined on Q by $a*b = \frac{ab}{2}$ is associative or not.

(M 14) (M 18)(S 20)

13. Let * be a binary operation defined on the set Q of rationals by $a*b = \frac{ab}{4}$. Find identity element if it exist.

THREE MARK QUESTIONS: (QUESTION No. 25):

- 1. Show that the relation R in the set of all integers Z defined by $R = \{(a,b): 2 \text{ divides } a-b\}$ is an equivalence relation. (MQP 2) (J 14)
- 2. Verify whether the function $f: R-\{3\} \to R-\{1\}$, defined by $f(x) = \frac{x-2}{x-3}$ is one-one and onto or not. Give reason. (MQP 3)
- 3. Show that the relation R in the set $S = \{x : x \in Z \text{ and } 0 \le x \le 12\}$ given by $R = \{(a, b) : |a b| \text{ is multiple of } 4\}$. Is an equivalence relation? (MQP 4) (M 16)
- 4. Determine whether the relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(x, y): y \text{ is divisible by } x\}$ is reflexive, symmetric and transitive. (MQP 5)

- 5. Determine whether the relation R in the set $A = \{1, 2, 3, \dots, 13, 14\}$ defined as $R = \{(x, y): 3x y = 0\}$, is reflexive, symmetric and transitive. (M 15)(J 19)
- 6. Prove that the relation R in the set of integer Z defined by $R = \{(x, y): x y \text{ is an integer }\}$ is an equivalence relation. (J 15)(S 20)
- 7. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a,b): |a-b| \text{ is even } \}$ is an equivalence relation.
- 8. Show that the relation R in **R** (set of real numbers) is defined as $R = \{(a,b): a \le b\}$ is reflexive and transitive but not symmetric. (M 17)
- 9. Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as $R = \{(a,b): b = a+1\}$ is reflexive or symmetric. (J 17)
- 10. Show that the relation \mathbf{R} defined in the set A of all triangles as $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2\}$ is an equivalence relation.
- 11. Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T_1, T_2): T_1 \text{ is congruent to } T_2\}$. Show that R is an equivalence relation.
- 12. Let 'L' be the set of all lines in XY plane and R be the relation in L defines as $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation.
- 13. Show that the relation R in the set of real numbers R defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive. (MQP 1)
- 14. Check whether the relation R in **R** defined by $R = \{(a,b): a \le b^3\}$ is reflexive, symmetric or transitive. (M 19)
- 15. Verify whether the operation * defined on Q by $a*b=a^2+b^2$ is commutative or associative or not.
- 16. Verify whether the operation * defined on Q by a*b=a+ab is commutative or associative or not.

Five Mark Questions: (Question No. 39):

- 1. Check the injectivity and surjectivity of the function $f: R \to R$ defined by f(x) = 3 4x. Is it a bijective function?
- 2. Verify whether the function $f: N \to N$ defined by $f(x) = x^2$ is one-one, onto and bijective.

LG_Maths Page 5

- 3. Show that the function $f: R_* \to R_*$ defined $f(x) = \frac{1}{x}$ is one-one and onto, where R_* is the set of all non-zero real numbers.
- 4. Show that the Modulus function $f: R \to R$ given by f(x) = |x|, is neither one-one nor onto.
- 5. Prove that the Greatest integer function $f: R \to R$ given by f(x) = [x] is neither one-one nor onto.
- 6. Show that the signum function $f: R \to R$, given by $f(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \text{ is neither one-} \\ 1 & \text{if } x > 0 \end{cases}$ one nor onto.
- 7. Check the injectivity and surjectivity of the function $f: R \to R$ defined by $f(x) = 1 + x^2$. Is it a bijective function?
- 8. Verify whether the function $f: R-\{3\} \to R-\{1\}$, defined by $f(x) = \frac{x-2}{x-3}$ is one-one and onto or not. Justify your answer.
- 9. Show that $f: N \to N$, given by f(1) = f(2) = 1 and f(x) = x 1, for every x > 2, is onto but not one-one.
- 10. Verify whether the function $f: Z \to Z$ defined by $f(x) = x^2$ is one-one, onto and bijective.
- 11. Verify whether the function $f: R \to R$ defined by $f(x) = x^2$ is one-one, onto and bijective.
- 12. Verify whether the function $f: N \to N$ defined by $f(x) = x^3$ is one-one, onto and bijective.
- 13. Verify whether the function $f: Z \to Z$ defined by $f(x) = x^3$ is one-one, onto and bijective.
- 14. Verify whether the function $f: R \to R$ defined by $f(x) = x^3$ is one-one, onto and bijective.
- 15. Verify whether the function $f: R \to R$ given by f(x) = 2x, is one-one, onto and bijective.
- 16. Verify whether the function $f: N \to N$ given by f(x) = 2x, is one-one, onto and bijective.

Prepared by:

Linge Gowda A P
Department of Mathematics
(Mob: 99160 23722)

NOTE:

Those who need assistance in I PUC & II PUC mathematics for board examination and KCET/JEE join my *Telegram channel: LG_Maths*.