DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER

DENEYİN AMACI: Bu deneyde temel lojik kapılar incelenecek; çift kararlı ve tek kararlı ikili devrelerin çalışma prensipleri gözlemlenecektir.

ÖN HAZIRLIK

- ✓ Temel lojik kapı devrelerinden olan NOT, NOR, NAND, AND, OR kapılarının doğruluk tablolarının incelenerek herhangi bir kapı için iki giriş verildiğinde çıkışın ne olacağının kestirilebilmesi.
- ✓ Şekil 9'daki devrede kullanılan tranzistorun ve dirençlerin ne amaçla kullanıldığının öğrenilmesi.
- ✓ Şekil 13'de devre topolojisi değişmeden NAND elemanı ile devre kurulduğunda oluşan yeni devrenin doğruluk tablosunun çıkarılması ve bu tablo üzerinde hafizada tutma, yasak konum durumlarının araştırılması ve Şekil 16' daki devrenin nasıl çalışabileceği ile ilgili fikir yürütülmesi.

Not: Deney esnasında öğrencinin deneye hazırlanıp hazırlanmadığı sözlü olarak sınanacaktır.

GÖZDEN GEÇİRİLMESİ FAYDALI KONULAR

- ✓ Sayısal kapı devreleri ve doğruluk tabloları.
- ✓ CMOS evirici devresi ve giriş çıkış karakteristiğindeki çalışma bölgeleri, genel olarak nasıl çalıştığının bilinmesi.
- ✓ Tek kararlı ikili devre yapıları.

DENEYİN ÖĞRENCİYE KATACAĞI ŞEYLER

- ✓ Temel lojik kapıların doğruluk tablolarının öğrenilmiş olması ve devre analizi yaparken tabloya bakma ihtiyacı duymadan çıkış değerlerinin bulunabilmesi.
- ✓ Sayısal devrelerde 0 ve 1 kavramının ne manaya geldiğinin anlaşılmış olması.
- ✓ Flip- flop devresinin ne olduğunun ve devrelerde ne amaçla kullanılabilceğinin öğrenilmiş olması.
- ✓ Deneyde verilen tek kararlı ikili devre yapılarının analizinin deney föyündekine benzer şekilde aşama aşama analizinin yapılabilir olması.
- ✓ Devrelerde herhangi bir düğümdeki gerilimin nasıl ve hangi nedenle besleme kaynağı geriliminin üstüne çıkabileceğinin öğrenilmiş olması.
- ✓ Entegre girişlerinde kullanılan ESD diyotlarının ne sebeble kullanıldığının ve yapılan deneyde bu diyotların devreye ne gibi etkileri olduğunun öğrenilmiş olması.
- ✓ CADET üzerinde devre kurulabilmesi.

KULLANILACAK MALZEMELER

- ✓ 1 adet CADET elektronik laboratuarı deney cihazı,
- ✓ 1 adet CD4011 entegresi,
- ✓ 1 adet BC109 tranzistor.
- ✓ 1'er adet 10k ve 2.2k değerli dirençler,

- ✓ 1 adet 69k değerli ayarlanabilir direnç,
- ✓ 1'er adet 1.5n ve 2.2n değerli kondansatörler,
- ✓ Yeterli miktarda bağlantı kablosu.

1. İKİLİ SİSTEMLER

Bir ikili (binary) devrenin çıkışında iki seviye vardır. Şekil 1 gözönüne alındığında, çıkış 'A' anahtarı kapalı olduğunda '0' seviyesinde ($V_0 = 0V$), açık olduğunda ise '1' seviyesinde ($V_0 = 5V$) olur.

Şekil-6.1 Anahtarlı ikili devre

MOS elemanının anahtar olarak kullanılabilme özelliğinden yararlanılarak elde edilen ikili devreler hızlı, güvenilir ve çok geniş çapta tümleştirmeye uygundur. Temel lojik işlemlerin tekrarlanması ile bilgisayar, haberleşme ve kontrol düzenleri gibi sayısal elektronik sistemler elde edilebilir.

2. CMOS YAPILAR

Günümüzde MOS tranzistorları çok küçük boyutlarda ve yüksek yoğunlukta gerçeklemek mümkündür. (INTEL tarafından son olarak üretilen 153-Mbit SRAM devresinde 45nm teknolojisi kullanılmış ve devre bir trilyondan daha fazla tranzistor içermektedir.) Boyutların küçülmesi ve tekniklerinin iyileştirilmesi ile MOS devrelerin hızlarıda yükselmektedir.

Sekil-6.2 CMOS evirici

CMOS evirici, bir NMOS ve bir PMOS'un Şekil 2'de görüldüğü gibi bağlanması ile elde edilir. Bu yapının çalışma prensibini inceleyelim. Giriş Lojik-1

seviyesinde olduğunda NMOS iletimde, PMOS kesimdedir. NMOS tranzistorun iletken bir kanalı olmasına rağmen akımı PMOS'un kaçak akımı kadardır. Çıkış ise NMOS'un kanalı sayesinde Lojik-0 seviyesindedir ve 0V'a çok yakın bir değerdedir (Şekil 3). Giriş '0' seviyesine indiğinde bu kez PMOS iletimde, NMOS kesimdedir. PMOS sadece NMOS'un kaçak akımını akıtmakta, ancak PMOS'un mevcut yüksek iletkenlikteki kanalı sayesinde çıkış Lojik-1 seviyesinde ve yaklaşık olarak $V_{\rm DD}$ değerindedir (Şekil 3).

Şekil-6.3 Evirici çıkış karakteristriği

Yukarıda belirtildiği gibi her lojik konumda V_{DD} ile toprak arasında seri tranzistorlardan biri kesimdedir. Yapının sadece konum değiştirme sırasında akım akmaktadır (Şekil 4). Statik akım ve bu nedenle statik güç harcaması ise çok küçüktür. Bu durum, sistem tasarımı açısından büyük bir avantaj sağlar.

Şekil -6.4 Evirici akımı

Ancak CMOS yapılar genellikle benzer yapıları, yani kapasitif yükleri sürerler. Konum değiştirme sırasında bu kapasitif yükün doldurulup boşaltılması gerekir.

3. TEMEL LOJİK İŞLEMLER VE BU İŞLEMLERİ GERÇEKLEŞTİREN KAPILAR

NOT (DEĞİL)

Tek girişli, tek çıkışlı bir kapıdır. Girişteki işaretin evriği çıkışa yansır. Şekil 5' te NOT kapısının simgesel gösterimi ve durum tablosu verilmiştir.

6-3

Şekil-6.5 Evirici kapısı ve doğruluk tablosu

NOT kapısının CMOS gerçeklenmesi ise, daha önce incelenen CMOS evirici ile verilmişti (Şekil 2).

AND (VE)-NAND (VE DEĞİL)

Bir AND kapısı, iki veya daha çok girişe sahiptir ve aşağıdaki tanıma uygun olarak davranır.

"Çıkış <u>sadece tüm girişler</u> 1 seviyesinde olduğu zaman 1 konumunda olur."

AND kapısının simgesel gösterimi, iki girişli halde durum tablosu ve dalga şekilleri Şekil 6'da verilmiştir.

Şekil-6.6 AND kapısı, doğruluk tablosu ve çıkış gerilimi

NAND fonksiyonu, AND'in evriğidir; lojik sembolü, durum tablosu ve dalga şekilleri Şekil 7'de verilmiştir.

Şekil-6.7 NAND kapısı, doğruluk tablosu ve çıkış gerilimi

NAND kapısının CMOS gerçeklemesi Şekil 8'de görüldüğü gibidir. Yapının statik analizi CMOS evirici benzeridir. 0 veya 1 durumunda V_{DD} ve toprak arasındaki yol üzerinde mutlaka kesimde bir tranzistor bulunmaktadır.

Şekil-6.8 CMOS NAND kapısının gerçeklenmesi

Deney-6.1: NAND kapısının lojik davranışını incelemek üzere 4011 CMOS tümdevresinden yararlanarak Şekil 9'daki devreyi tranzistor direnç ve harici LED elemanı olmaksızın kurun. Yani lojik kapı çıkışını doğrudan CADET üzerindeki LED'lere verin.

Şekil-6.9 AND kapısını inceleme devresi

Deney-6.2: 'A1' ve 'A2' anahtarları yardımıyla A ve B girişlerini uygun konumlara getirerek LED'in davranışına göre Y çıkışını inceleyin ve NAND elemanına ait doğruluk tablosunu çıkarın.

Deney-6.3: Sadece NAND kapıları kullanarak NOT ve NAND işlemleri nasıl gerçekleştirilebilir, inceleyin.

OR (VEYA)- NOR (VEYA DEĞİL)

İki veya daha çok girişe sahip olabilen bir OR kapısının davranışı:

"Girişlerinden herhangi birisi 1 seviyesinde olduğu zaman çıkış 1 olur." şeklinde verilebilir.

OR kapısının simgesel gösterimi, iki girişli hat için durum tablosu ve dalga şekilleri Şekil 10'da verilmiştir.

Şekil-6.10 OR kapısı, doğruluk tablosu ve çıkış gerilim şekli

NOR fonksiyonu OR'un evriğidir (Şekil 11) ve Şekil 12'de görüldüğü gibi CMOS olarak gerçeklenebilir.

Şekil-6.11 NOR kapısı, doğruluk tablosu ve çıkış gerilim şekli

Sadece NOR kapılarından faydalanarak NOT, AND, OR işlemlerini nasıl gerçekleyebileceğinizi düşünün.

Şekil-6.12 NOR kapısının gerçeklenmesi

4. İKİLİ DEVRELER

4.1 Çift Kararlı İkili Devreler (Bistable multivibrator, flip-flop)

Daha önce incelenen NAND ve NOR kapılarının yardımı ile girişlerdeki değerlere göre çıkışı iki seviyede değer alabilen ve her iki seviyede kararlı olabilen devreler gerçeklenebilir. Bu devrelerin iki çıkışı vardır ve bir çıkış diğer çıkıştaki işaretin evriğidir.

Şekil 13'de NOR kapıları ile gerçekleştirilen çift kararlı ikili devre ve durum tablosu görülmektedir.

Şekil-6.13 SR-çift kararlı ikili devresi ve durum tablosu

Devrenin S(SET-yazma) girişi 1 R(RESET-silme) girişi 0 yapıldığı zaman çıkışlar Q=1, Q'=0 değerlerini alır. Bundan sonra S=0 yapılırsa durum değişmez. R=1, S=0 yapıldığında ise Q=0, Q'=1 durumu oluşur. S=1,R=1 durumu istenmeyen (yasak) konumdur (Neden?).

Deney-6.4: Şekil 13'deki devreye benzer şekilde NAND kapıları kullanarak çift kararlı ikili devre elde edin.

Deney-6.5: Bu devrenin lojik davranışını daha önce yaptığınız ölçümlere benzer şekilde inceleyin. Yeni durumda oluşan durum tablosunu çıkararak elde ettiğiniz durum tablosunu yorumlayın.

Yukarıda incelediğimiz ikili devreler, en basit temel ikili yapılardır ve SR flipflop olarak adlandırılırlar. Elektronik sistemlerde, hafıza elemanı olarak, ayrıca sayma ve frekans bölme işlemlerini gerçeklemek üzere kullanılırlar.

4.2 Tek Kararlı İkili Devreler (Monostable multivibrator)

Sekil-6.14 Tek kararlı ikili devre

Dışarıdan bir etki gelmediği sürece bir kararlı konumda bulunan bu devreler, girişe uygulanacak bir darbe ile durum değiştirirler. Devredeki elemanların belirlediği bir süre boyunca bu yarı kararlı durumda kalan devrenin çıkışı, bu sürenin sonunda tekrar kararlı seviye değerini alır. Bu tür devrelerden darbe şekilllendirici, geciktirici olarak ve zaman düzenlerinde yararlanılabilir.

Şekil 14' de direnç, kapasite ve NOR kapılarından yararlanılarak gerçekleştirilmiş bir tek kararlı ikili devre görülmektedir.

Devrenin davranışını inceleyelim. Devreye tetiklemesi için Şekil 15a'da görülen işaret uygulansın. t<0'da R'den akım akmadığı durumda v_x=V_{DD} gerilimi vardır. Böylece kondansatörün uçlarındaki gerilim:

$$v_c = v_{o1} - v_x = V_{DD} - V_{DD} = 0$$

olarak bulunur.

t=0 anında tetikleme işareti uygulandığında, 1 nolu NOR kapısının çıkışı 0 değerine düşer; v_c hemen değişemediğinden ($v_c(0^+)$ =0), v_x noktası da 0 değerine iner. Bu durumda iki nolu NOR kapısının çıkışı ve bir nolu NOR kapısının bir girişi 1 değerine çıkar. C kapasitesi, R direnci üzerinden dolmaya, v_x gerilimi de yükselmeye başlar. V_x geriliminin değeri iki nolu NOR kapısının eşik gerilimine erişinceye kadar (v_{in} girişi 0'a inse bile) kapılar konum değiştirmezler. v_x geriliminin zamanla değişimi aşağıdaki gibi verilebilir:

$$v_x(t) = V_{DD}(1 - e^{-t/RC})$$

Genellikle tasarım, CMOS kapılarının eşik gerilimleri $V_{DD}/2$ olacak şekilde yapılır. $v_x=V_{DD}/2$ değerine ulaştığında (t=T1) 2 nolu NOR kapısının çıkışı konum değiştirir ($v_{o2}=0$) ve her iki girişinde de 0 değeri bulunan 1 nolu NOR kapısının çıkışı $v_{o1}=V_{DD}$ değerini alır. (Kapının eşik değerinin $V_{DD}/2$ olduğu durum için T_1 değerini R ve C'ye bağlı olarak bulun.) Kondansatörün uçlarındaki v_c gerilimi hemen değişemeyeceğinden v_x noktasının gerilimi $v_x(T_1^+)=V_{DD}+V_T$ ($V_T=V_{DD}/2$ için $v_x(T_1^+)=3/2$ V_{DD}) değerini alır. Kondansatörün aynı zaman sabiti ile boşalması ile devre tekrar t<0'daki duruma döner. Devrenin çeşitli noktalarının gerilimlerine ilişkin dalga şekilleri şekil 15'te verilmiştir.

 v_x geriliminin T_1 anında 3/2 V_{DD} değerine yükselmesinin NOR kapısındaki MOS elemanı açısından tehlikeli olacağı gözönüne alınarak (Neden?) bu duruma karşı nasıl bir önlem alınabileceğini tartışın.

Deney-6.6: Tek kararlı ikili devreleri incelemek amacıyla Şekil 16'daki devreyi kurun.

Deney-6.7: Devrede tranzistorun kolektör terminalindeki gerilimin zamana göre değişimini çizin.

Deney-6.8: Devrenin girişe uygulanan kare dalganın bir periyodu boyunca V_R çıkışının zamana göre değişimini çizin. Elde ettiğiniz grafiği Şekil 15'deki ile karşılaştırın.

Deney-6.9: Şekil 14'deki devreyle sizin kurduğunuz devre arasındaki farkları tartışın.

Şekil-6.15 Gerilim dalga şekilleri

Şekil-6.16 Ölçme devresi

Deneyi yaptıran Araş. Gör.:	
Oda No:	e-mail:

ÖLÇME SONUÇLARINI İŞLEME KISMI

Deneyi yapan öğrencinin Grup No: Adı Soyadı: No:

e-mail:

EK-A (DENEY-6.7)

EK-B (DENEY-6.8)

EK-BİLGİLER

PINNING

PIN	DESCRIPTION
1	emitter
2	base
3	collector, connected to the case

DENEY6- RAPORDA İSTENENLER

- ✓ Deney esnasında yapılan tüm çalışmalar özetlenecek, elde edilen sonuçların teorik olarak beklenen sonuçlarla uyuşup uyuşmadığı belirtilecektir. Varsa oluşan farklılıkların sebebi ifade edilmelidir.
- ✓ Raporda özellikle son kurulan devrenin nasıl çalıştığı deney esnasında elde edilen grafikler üzerinden yorumlanmalıdır.
- ✓ İçerik haricinde rapora gösterilen özen ve sarf edilen gayret değerlendirmeyi de etkileyecektir.