CORSO DI LAUREA IN INGEGNERIA MECCATRONICA

SVILUPPO E VALIDAZIONE SPERIMENTALE DI ALGORITMI DI LOCALIZZAZIONE E CONTROLLO DI UN VEICOLO AUTONOMO

Relatore:

Prof. FRANCESCO BIRAL

Candidato:
JACOPO MOLINAROLI

Correlatore:

MATTEO RAGNI

Indice

- 1. Obiettivi
- 2. Il veicolo eRumby
- 3. Architettura software del veicolo
- 4. Ricostruzione dello stato del veicolo
- 5. Prove svolte
- 6. Sviluppi futuri

Obiettivi

Sviluppo di una piattaforma per testare algoritmi di controllo:

- realizzazione di un modello in scala di un veicolo reale;
- implementazione di sensori a basso costo.

Rielaborazione del veicolo elettrico radiocomandato INFERNO VE Race, modello in scala 1:8 di una dune buggy.

- pianale in alluminio;
- barra anti rollio;
- quattro sospensioni regolabili;
- trasmissione integrale con tre differenziali;
- ricevente radio Syncro KT-200;
- radiocomando Syncro KT-201 2.4GHz;
- motore servo per lo sterzo;
- Electronic Speed Control (ESC);
- motore brushless per la trazione.

Per rendere il veicolo autonomo, il prototipo eRumby è stato dotato di sensori e moduli hardware.

- Global Positioning System Indoor (GPS Indoor);
- Inertial Measurement Unit (IMU);
- Odometry Sensors (Encoder).

Per rendere il veicolo autonomo, il prototipo eRumby è stato dotato di sensori e moduli hardware.

- Global Positioning System Indoor (GPS Indoor);
- Inertial Measurement Unit (IMU);
- Odometry Sensors (Encoder).

Per rendere il veicolo autonomo, il prototipo eRumby è stato dotato di sensori e moduli hardware.

- Global Positioning System Indoor (GPS Indoor);
- Inertial Measurement Unit (IMU);
- Odometry Sensors (Encoder).

Per rendere il veicolo autonomo, il prototipo eRumby è stato dotato di sensori e moduli hardware.

- Global Positioning System Indoor (GPS Indoor);
- Inertial Measurement Unit (IMU);
- Odometry Sensors (Encoder).

Per rendere il veicolo autonomo, il prototipo eRumby è stato dotato di sensori e moduli hardware.

- Arduino Mega;
- BeagleBone Black;
- XBee.

Per rendere il veicolo autonomo, il prototipo eRumby è stato dotato di sensori e moduli hardware.

- Arduino Mega;
- BeagleBone Black;
- XBee.

Per rendere il veicolo autonomo, il prototipo eRumby è stato dotato di sensori e moduli hardware.

- Arduino Mega;
- BeagleBone Black;
- XBee.

Per rendere il veicolo autonomo, il prototipo eRumby è stato dotato di sensori e moduli hardware.

- Arduino Mega;
- BeagleBone Black;
- XBee.

Architettura software del veicolo

Arduino Mega:

- raccolta dati dai sensori;
- gestione dei segnali della ricevente;
- controllo dei motori.

BeagleBone Black:

- salvataggio dei dati;
- sensor fusion;
- controllo del veicolo.

Architettura software del veicolo

Struttura modulare sviluppata:

- lettura encoders;
- gestione dei motori;
- salvataggio e scambio dati;
- data fusion.

Del veicolo si vuole conoscere:

- posizione;
- velocità;
- accelerazione;
- angolo di imbardata;
- velocità di imbardata.

Sensor fusion:

- organizzazione in modo intelligente dei dati prodotti da diversi sensori;
- riduzione della incertezza sulle informazioni dello stato del sistema;
- stime più accurate e affidabili di quelle ottenibili dai sensori presi singolarmente.

Filtro di Kalman

Prediction equations:

• al tempo t viene fatta una stima del valore delle variabili di interesse al tempo $t+\Delta t$;

Update equations:

• vengono confrontati i dati predetti con quelli effettivamente misurati e viene effetuata una opportuna correzione.

Modello considerato:

• corpo rigido che si muove nel piano.

$$\begin{cases} \dot{v}_x = a_x + v_y \Omega \\ \dot{v}_y = a_y - v_x \Omega \\ X_G = \int v_x \cos(\psi) - v_y \sin(\psi) dt \\ Y_G = \int v_x \sin(\psi) + v_y \cos(\psi) dt \\ \psi = \int \Omega dt \end{cases}$$

Assunzioni sul modello:

- moti verticali trascurabili;
- beccheggio trascurabile;
- rollio trascurabile;
- deformabilità del telaio trascurabile.

Filtro di Kalman Esteso (EKF)

sistema non lineare.

PREDICTION EQUATIONS

$$\overline{x}_k = f\left(\hat{x}_{k-1}\right)$$

$$\overline{P}_k = A_k P_{k-1} A_k^T + Q$$

UPDATE EQUATIONS

$$K_k = \overline{P}_k H^T (H \overline{P}_k H^T - R)^{-1}$$

$$\hat{x}_k = \overline{x}_k + K_k(z_k - H\overline{x}_k)$$

$$P_k = (I - K_k H) \overline{P}_k$$

Dove:

- \hat{x}_k vettore dello stato stimato;
- z_k vettore delle misure fornite dai sensori;
- Q matrice di covarianza del disturbo sullo stato stimato;
- *H* matrice delle uscite:
- R matrice di covarianza del rumore sulle misure;
- P_k matrice di varianza dell'errore sullo stato stimato;
- K_k matrice di correzione della stima;
- A_k matrice di stato:

$$A_k = \begin{bmatrix} 1 & \cos(\psi_k)\triangle t & 0 & 0 & -\sin(\psi_k)\triangle t & 0 & 0 & 0 \\ 0 & 1 & \triangle t & 0 & \Omega_k\triangle t & 0 & 0 & v_{y_k}\triangle t \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sin(\psi_k)\triangle t & 0 & 1 & \cos(\psi_k)\triangle t & 0 & 0 & 0 \\ 0 & -\Omega_k\triangle t & 0 & 0 & 1 & \triangle t & 0 & -v_{x_k}\triangle t \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \triangle t \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \Delta t \end{bmatrix}$$

Filtro di Kalman Esteso (EKF)

Stato del veicolo:

Misure dai sensori:

Prova di lane change

Prova di lane change

Prova su traiettoria circolare

Prova su traiettoria circolare

Prova su circuito

Sviluppi futuri

Implementazioni software e hardware:

- nuovi tipi di sensori;
- introduzione di un secondo controllore.

Sviluppo e sperimentazione di nuovi algoritmi:

- introduzione di un *Traction Control System* (TCS);
- sviluppo e test di algoritmi di Obstacle Avoidance;
- sviluppo e test di algoritmi di manovre particolari:
 - parcheggio;
 - lane change.

Fine

Fine

Obiettivo:

- realizzazione di un modello in scala di un veicolo reale;
- ricostruzione dello stato del veicolo.

Architettura Hardware:

- GPS indoor;
- IMU;
- Encoders;

- Arduino Mega;
- BeagleBone Black;
- XBee.

Architettura Software:

• struttura modulare.

Sensor Fusion:

• Filtro di Kalman Esteso.

Sviluppi futuri:

- nuovi tipi di sensori;
- introduzione di un secondo controllore;
- introduzione di un *Traction Control System* (TCS);
- sviluppo e test di algoritmi di *Obstacle Avoidance*.

Fine

Schema delle connessioni elettriche tra schede e sensori impiegati

Caratteristiche dei sensori

• GPS Indoor Marvelmind Robotics

Caratteristiche Precisione al cm con una incertezza pari a ± 1 cm Distanza massima tra i fari di 50 m Area di copertura del segnali di 100 m²

Frequenza i aggiornamento dei dati pari a 16 Hz

• Encoder E5 US-Digital

Caratteristiche

Temperatura di utilizzo da -40 a 100°C

Alimentazione 5 V

Output LOW $0.5\,\mathrm{V}$

Output HIGH 2 V

Output corrente per canale 8 mA

Massimo gioco assiale dell'albero $\pm 0.010~in$.

Accelerazione massima $250\,000\,\mathrm{rad\,s^{-2}}$

IMU Adafruit BNO055

Caratteristiche				
Accelerometro	Power Mode	NORMAL		
	Range	$\pm 4g$		
	Bandwidth	$62.5\mathrm{Hz}$		
	Resolution	14 bits		
Giroscopio	Power Mode	NORMAL		
	Range	$2000 {}^{\circ} \mathrm{s}^{-1}$		
	Bandwidth	$32\mathrm{Hz}$		
	Resolution	16 bits		
Magnetometro	Power Mode	FORCED		
	ODR	$20\mathrm{Hz}$		
	XY Repetition	15		
	Z Repetition	16		
	Resolution x/y/z	13/13/15 bits		

Caratteristiche dei moduli hardware

Arduino Mega 2560

Caratteristiche

Microcontrollore ATmega1280
Tensione di funzionamento 5 V

Tensione in ingresso (raccomandata) 712 V
Tensione in ingresso (limite) 620 V
Pin I/O digitali 54
Pin I/O analogici 16
Corrente DC per i pin I/O 40 mA
Corrente DC per i pin a 3.3 V a 40 mA
Flash memory 128KB
SRAM 8KB
EEPROM 4KB
Clock speed 16 MHz

BeagleBone Black

Caratteristiche

Processore AM335x 1GHz ARM® Cortex-A8
RAM 512MB DDR3
4GB 8-bit eMMC on-board f ash storage
Acceleratore graf co 3D
2x PRU 32-bit microcontrollers
Porta USB per alimentazione e comunicazione
Ingresso Ethernet
Ingresso HDMI
2x 46 pin headers

Tecniche di sensor fusion in letteratura

	RETE	LOGICA	FILTRO DI
	NEURALE	FUZZY	KALMAN
Conoscenza	Sistema come una	Non richiede un	Richiede un modello
del sistema	Black Box	modello dettagliato	dinamico del sistema
Tipologie	Adatto per sistemi	Adatto per diverse	Adatto per sistemi
di sistemi	non lineari	tipologie di sistemi	lineari
Sviluppo	Richiede ampi campioni	Non presenta	Settaggio
iniziale	per l'apprendimento	particolari problemi	sperimentale
Relazione tra	Sconosciuto	Facilmente	Comprensibile
input e output		comprensibile	

Prove sul filtro di Kalman variando Q, matrice di covarianza del disturbo sullo stato (traiettoria circolare)

CORSO DI LAUREA IN INGEGNERIA MECCATRONICA

SVILUPPO E VALIDAZIONE SPERIMENTALE DI ALGORITMI DI LOCALIZZAZIONE E CONTROLLO DI UN VEICOLO AUTONOMO

Relatore:

Prof. FRANCESCO BIRAL

Candidato:
JACOPO MOLINAROLI

Correlatore: MATTEO RAGNI