

CIRCUITOS DIGITAIS EXERCÍCIOS DE FIXAÇÃO – UNIDADE 5 PROF. VICTOR MIRANDA

1 -

Use o mapa de Karnaugh para encontrar a forma mínima de soma-de-produtos para cada expressão:

(a)
$$\overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} C$$
 (b) $AC(\overline{B} + C)$

(c)
$$\overline{A}(BC + B\overline{C}) + A(BC + B\overline{C})$$
 (d) $\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C}$

2 –

a) Minimize as equações abaixo. / b) Desenhe os circuitos lógicos minimizados:

(a)
$$X = A(B \oplus C)$$

(b)
$$X = (\overline{A+B})(C \oplus (A+\overline{D}))$$

(c)
$$X = B\overline{C}A + \overline{(\overline{C} \oplus D)}$$

(d)
$$X = ((A + \overline{B} \oplus \overline{D}) \cdot (\overline{C} + A) + B) \cdot \overline{A + B}$$

(e)
$$X = A \oplus B + \overline{C}B + \overline{A}$$

3 –

Reduza a função lógica especificada na tabela verdade abaixo à sua forma mínima de soma-de-produtos usando um mapa de Karnaugh:

entradas	saída
ABCD	X
0 0 0 0	0
$0\ 0\ 0\ 1$	0
$0\ 0\ 1\ 0$	1
0 0 1 1	0
$0\ 1\ 0\ 0$	1
0 1 0 1	1
0 1 1 0	0
0 1 1 1	1
$1 \ 0 \ 0 \ 0$	0
$1 \ 0 \ 0 \ 1$	0
1 0 1 0	0
1 0 1 1	1
$1 \ 1 \ 0 \ 0$	1
1 1 0 1	0
1 1 1 0	0
1 1 1 1	1

4 –

Reduza a função lógica especificada na tabela verdade abaixo à sua forma mínima de soma-de-produtos usando um mapa de Karnaugh:

en	trad	saída	
A	B	C	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

5 –

Simplifique os mapas de Karnaugh abaixo e determine a expressão lógica como soma de produtos após a simplificação.

(a)	yz	00	01	11	11 10 0 1 1 1		
	0	1	0	0	1		
	1	1	0	1	1		

	$\begin{array}{c} zw \\ xy \end{array}$	00	01	11	10
	00	1	1	0	1
o)	01	1	0	0	1
	11	1	0	0	1
•	10	1	1	0	1

	cd ab	00	01	11	10
(c)	00	1	0	0	1
	01	0	0	1	0
	11	0	1	0	0
	10	1	0	0	1

Š	gh	00	01	11	10
	00	0	1	1	0
(d)	01	1	0	0	1
,	11	1	0	0	1
	10	0	1	1	0

	gh	00	01	11	10
	00	0	1	1	0
(e)	01	1	1	1	1
	11	1	1	1	1
	10	0	1	1	0

Dica: quem quiser, confira as respostas dos mapas na apresentação disponibilizada em anexo no portal, nomeada KMap Simulator.ppt (para conferência da solução neste, lembrem-se: "Grade A" – 100% correto = atingiu expressão mínima)

6 –

[Tarnoff] Identifique os problemas associados com os três retângulos assinalados no mapa de Karnaugh abaixo:

7 –

[Roth 5.8] Ache a mínima soma de produtos e produtos da soma para cada função abaixo:

- a. $f(a,b,c,d) = \prod M(0,1,6,8,11,12) \bullet \prod D(3,7,14,15)$
- b. $f(a,b,c,d) = \sum m(1,3,4,11) + \sum d(2,7,8,12,14,15)$

Dica: D ou d = don't care

8 –

[Roth 5.4] Trace a seguinte função em um mapa de Karnaugh. (Não expanda à forma de mintermos antes de plotar o mapa.)

$$F(A,B,C,D) = BD' + B'CD + ABC + ABC'D + B'D'$$

- a. Ache a mínima soma de produtos.
- b. Ache o mínimo produto de somas.

9 _

[Brown] Para os diagramas de pulsos abaixo, determine a função f(x1, x2, x3) mínima em termos de soma de produtos.

a)

b)

10 -

Considere os seguintes circuitos lógicos:

3

Determine a expressão algébrica e a tabela de verdade das funções tal como se apresentam.

Simplifique as funções usando Mapas de Karnaugh e desenhe os novos diagramas lógicos. Comente as diferenças.

11 – Derive as expresses mínimas de cada saída:

A	В	C	D	S ₁	S_2	S ₃	S ₄
0	0	0	0	1	X	0	X
0	0	0	1	X	X	0	0
0	0	1	0	X	1	0	X
0	0	1	1	X	0	1	1
0	1	0	0	1	X	X	1
0	1	0	1	0	1	X	X
0	1	1	0	X	0	1	0
0	1	1	1	X	1	0	1
1	0	0	0	X	1	X	0
1	0	0	1	1	0	1	1
1	0	1	0	X	X	0	0
1	0	1	1	1	1	0	X
1	1	0	0	X	0	1	1
1	1	0	1	X	1	0	1
1	1	1	0	1	1	X	1
1	1	1	1	0	X	1	X

12 – Desenhe um circuito lógico para a função F=(A+B)(B+C)(A+C) usando apenas portas NOR.