3D Volumetric Grayscale Image Slicing

Teng-Jui Lin

BIOEN 217

8 Dec 2020

Background

• 3D volumetric image data is widely used in science and

medicine

- Medical imaging (CT, MRI)
- Microscopy
- Volumetric data are layers of 2D images
 - Slices about coordinate plane easy
 - Slices about arbitrary plane need math!

Objective

- Explore 3D volumetric image data
- Develop oblique slicing function for 3D volumetric grayscale image
 - Start from 2D

obliqueslice2d(img, point1, point2)

https://imagej.nih.gov/ij /images/

obliqueslice2d()

obliqueslice3d(img, point, normal)

volshow()

sliceViewer()

imrotate3()

$$R = egin{bmatrix} ll(1-\cos heta) + \cos heta & ml(1-\cos heta) - n\sin heta & nl(1-\cos heta) + m\sin heta \ lm(1-\cos heta) + n\sin heta & mm(1-\cos heta) + \cos heta & nm(1-\cos heta) - l\sin heta \ ln(1-\cos heta) - m\sin heta & mn(1-\cos heta) + l\sin heta & nn(1-\cos heta) + \cos heta \end{bmatrix}$$

Transformation Matrix, Wikipedia

rotate point; get z coordinate


```
obliqueslice3d(

MRI,

[50, 50, 12],

[1; 1; 1]
```

Application: Microscopy Images

EPFA EM dataset 1024 x 768 x 165

Conclusion

- Packaged functions
 - obliqueslice2d(img, point1, point2)
 - obliqueslice3d(img, point, normal)
- Problem solving skills
 - Extract problem solving pattern from lower dimension
 - Reduce oblique slicing problem to slicing along axis by rotation
- Future directions
 - Inputs characterized by plane parameters make slicing difficult to visualize
 - GUI-guided slicing needed