2 MAE 701 - Electromagnetism applied to avionics

Angélique Rissons 2021-2022 Part VII

Electromagnetism reminds Maxwell Equations in matter

- Electrical Field \vec{E}
- Magnetic Field $ec{B}$
- Electric Displacement $\overrightarrow{D} = \varepsilon \overrightarrow{E}$
- Magnetic Intensity $\vec{H} = \frac{\vec{B}}{\mu}$

In Vacuum $\varepsilon = \varepsilon_0$, $\mu = \mu_0$ In matter ε (permittivity), μ (permeability) $\varepsilon \mathbb{R}$ or \mathbb{C} $\varepsilon = \varepsilon_0 \varepsilon_r$ & $\mu = \mu_0 \mu_r$ Refractive index $n = \sqrt{\varepsilon_r}$

$$div \vec{D} = \rho$$

Local Gauss Law (electric flux density)

$$div \vec{B} = 0$$

General Magnetism Law

$$\overrightarrow{rot}\overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

Faraday Law

$$\overrightarrow{rot}\overrightarrow{H} = \left(\overrightarrow{j} + \frac{\partial \overrightarrow{D}}{\partial t}\right)$$

Ampere law

From the Ohm local Law : $\vec{j} = \gamma \vec{E}$ where γ is the conductivity

Transversal Wave

$$\vec{\kappa} \cdot \vec{E} = 0$$
 and $\vec{\kappa} \cdot \vec{B} = 0$
Since $\vec{\kappa} \neq 0 \Rightarrow \vec{E} \& \vec{B} \perp \vec{\kappa}$

Since \vec{B} proportional to $\vec{\kappa} \times \vec{E} \Rightarrow \vec{B} \perp \vec{E}$ $\Rightarrow \vec{\kappa}, \vec{E} \& \vec{B}$ form a right-handed orthogonal set

The relative magnitude of $B = \frac{\kappa}{\omega} E$

Remind from Maxwell:

$$\vec{\kappa} \times \vec{B} \Rightarrow \vec{\kappa} \times (\vec{\kappa} \times \vec{E}) = \omega \vec{\kappa} \times \vec{B} = -\left(\frac{n\omega}{c}\right)^2 \vec{E}$$

n, is the refractive index, $\vec{\kappa}$ is the wave vector, c is the celerity of the light.

Vector identity

$$\vec{\kappa} \times (\vec{\kappa} \times \vec{E}) = (\vec{\kappa} \cdot \vec{E})\vec{\kappa} - (\vec{\kappa})^2 \vec{E}$$

$$\vec{\kappa} \cdot \vec{E} = 0$$

$$-\left(\frac{n\omega}{c}\right)^2\vec{E} = -\kappa^2\vec{E}$$

Transverse Relation of DISPERSION

$$\kappa = \frac{n\omega}{c}$$

Relation between the Wave vector (κ) and the Refractive index (n), The pulsation (ω) or Frequency ($\omega=2\pi f$), the celerity of the light (c)

Monochromatic transverse wave propagated in $+\overrightarrow{u}$ direction

$$\overrightarrow{E(\vec{r},t)} = \overrightarrow{E_0} e^{-i(\omega t - \vec{\kappa} \cdot \vec{r})}$$

$$\overrightarrow{B(\overrightarrow{r},t)} = \overrightarrow{B_0}e^{-i(\omega t - \overrightarrow{\kappa}\cdot\overrightarrow{r})}$$

$$\vec{\kappa} = \kappa \vec{u}$$

$$\vec{\kappa}//\vec{u}$$

$$\vec{E} \perp \vec{u}$$

$$\vec{u} \cdot \vec{E} = 0$$

As
$$\kappa = \frac{n\omega}{c}$$

$$\vec{B} = \frac{n}{c}\vec{u} \times \vec{E}$$

In Vacuum n=1 , $c\vec{B}=\vec{E}$ and the phase velocity is $\frac{c}{n}$

If κ is not Real

$$\vec{\kappa} = \vec{\kappa_r} + i\vec{\kappa_i}$$
$$|\vec{\kappa}|^2 = \vec{\kappa_r} \cdot \vec{\kappa_r} - \vec{\kappa_i} \cdot \vec{\kappa_i} + 2i\vec{\kappa_r} \cdot \vec{\kappa_i} = \left(\frac{n\omega}{c}\right)^2 = \varepsilon_r \left(\frac{\omega}{c}\right)^2$$

Imaginary part vanish in our case, if $\overrightarrow{\kappa_r} \cdot \overrightarrow{\kappa_r} \gg \overrightarrow{\kappa_i} \cdot \overrightarrow{\kappa_i}$ or $\overrightarrow{\kappa_r} \perp \overrightarrow{\kappa_i}$.

The wave in which the planes of constant phase $(\vec{k}\cdot\vec{r}-\omega t)$ are perpendicular to the planes of constant amplitude.

(exception - metamaterials)

The plane Wave is a restricted class of solution of the Maxwell equations, but the a linear combination of theses wave cover a wide class of solutions.

Sum of plan Wave

$$\overrightarrow{E(\overrightarrow{r},t)} = \sum_{i} \overrightarrow{E}(\overrightarrow{\kappa_i},\omega_i) e^{-i(\omega_i t - \overrightarrow{\kappa_i} \cdot \overrightarrow{r})}$$

 \vec{E} depends on $(\vec{\kappa_i}, \omega_i)$

The superposition of the plane waves forms a **complex FOURIER SERIE** and can represent any solution that was periodic (not necessary sinusoidal)

Each term of the Fourier series satisfy

$$\varepsilon_r \vec{\kappa} \cdot \vec{E} = 0$$

$$\vec{\kappa} \cdot \vec{B} = 0$$

$$\vec{\kappa} \times \vec{E} = \omega \vec{B}$$

$$\vec{\kappa} \times \vec{B} = -\omega \left(\frac{n}{c}\right)^2 \vec{E}$$

For a solution of the wave equation, the sum can be converted into a Fourier Integral.

$$\overrightarrow{E}(\overrightarrow{\kappa},\omega)$$
 is the Fourier transform of $\overrightarrow{E(\overrightarrow{r},t)}$

 \Rightarrow n depends on κ and ω DISPERSION EFFECT

We denote

Simple case, the boundary conditions involve the frequency conservation thus:

$$\overrightarrow{E'_1} = E'_{10} e^{-i(\omega t - \overrightarrow{\kappa v_1} \cdot \overrightarrow{r})}$$

 $\overrightarrow{E_2} = E_{20}e^{-i(\omega t - \overrightarrow{\kappa \prime_2} \cdot \overrightarrow{r})}$

In P plane, the space dependence of the field is $e^{(i\overrightarrow{\kappa_i}\cdot \overrightarrow{r})}$.

To obtain the tangential component we have to do the projection of $\vec{\kappa}$ on P Plane and denote κ this projection.

The normal components are eliminated, \vec{r} is in the P plan.

 n_1 P plane n_2 χ $\overline{E_2}$ $\overline{K_2}$ $\overline{R_1}$ θ_1 θ_2 $\overline{B_2}$ $\overline{R_2}$ $\overline{R_2}$ $\overline{R_1}$

The continuity at the interface gives:

$$\kappa_1 = \kappa'_1 = \kappa_2$$

- First Descartes Law, κ_1 and κ'_1 , κ_1 and κ_2 , are coplanar. The incidence Plan contain the normal of the discontinuity plan and the vectors κ_1 , κ'_1 , κ_2
- Second Descartes Law, The reflection angle θ'_1 is equal to the incidence angle θ_1 . κ_1 and κ'_1 are the wave vector of a propagation with the same pulsation and in the same medium
- Third Descartes Law , The refraction angle θ_2 and the incidence angle θ_1 verify the second Descartes Law, such as:

$$\sin \theta_1 = \frac{v_1}{v_2} \sin \theta_2$$

Where v_1 and v_2 are the Phase velocity of the incident and refracted wave respectively.

As $v_i = \frac{c}{n_i}$, the Third Descartes Law becomes:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Relationship between incident, refracted and reflected E-Field becomes:

$$n_1 \vec{n} \times \left(\overrightarrow{u_1} \times \overrightarrow{E_1} + \overrightarrow{u'_1} \times \overrightarrow{E'_1}\right) = n_2 \vec{n} \times \left(\overrightarrow{u_2} \times \overrightarrow{E_2}\right)$$

• For the s-component $\vec{n} \cdot \overrightarrow{E_{1s}} = 0$ (perpendicular to the plane of incidence)

$$\vec{n} \times (\overrightarrow{u_1} \times \overrightarrow{E_{1s}}) = -\cos(\theta_1) \overrightarrow{E_{1s}}$$

Since
$$\overrightarrow{n} \cdot \overrightarrow{u_1} = \cos(\theta_1)$$

$$n_1 \left(\cos(\theta_1) \overrightarrow{E_{1s}} - \cos(\theta'_1) \overrightarrow{E'_{1s}} \right) = n_2 \cos(\theta_2) \overrightarrow{E_{2s}}$$

SNELL-DESCARTES LAW
$$\theta_1 = {\theta'}_1$$

$$n_1 \cos(\theta_1) \left(\overrightarrow{E_{1s}} - \overrightarrow{E'_{1s}} \right) = n_2 \cos(\theta_2) \overrightarrow{E_{2s}}$$

From the cross product
$$\left(\overrightarrow{E_{1s}} + \overrightarrow{E'_{1s}}\right) = \overrightarrow{E_{2s}}$$

For S- polarization, the FRESNEL coefficient are given by:

$$\overrightarrow{E'_{1s}} = r_{12s} \overrightarrow{E_{1s}}$$

$$\overrightarrow{E_{2s}} = t_{12s} \overrightarrow{E_{1s}}$$

and

Reflection

$$r_{12s} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

$$t_{12s} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

P-Polarization: The trace of B-Field is the same than E rotated 90°
counterclockwise, that is to say the s-polarization of B-Field correspond to the p-polarization of E-Field.

Since
$$\vec{n} \cdot \overrightarrow{B_{1s}} = 0 = \vec{n} \cdot \overrightarrow{B_{2s}} = \vec{n} \cdot \overrightarrow{E'_{1s}}$$

$$\frac{1}{n_1}\cos(\theta_1)\left(\overrightarrow{B_{1s}} - \overrightarrow{B'_{1s}}\right) = \frac{1}{n_2}\cos(\theta_2)\overrightarrow{B_{2s}}$$

$$\left(\overrightarrow{B_{1s}} + \overrightarrow{B'_{1s}}\right) = \overrightarrow{B_{2s}}$$

As

$$\cos(\theta_2) = \sqrt{1 - \left(\frac{n_1}{n_2}\right)^2 \sin^2(\theta_1)}$$

The REFLECTANCE

For S-polarisation

$$R_{s} = \frac{\vec{n} \cdot \overrightarrow{S'_{1s}}}{\vec{n} \cdot \overrightarrow{S_{1s}}} = r^{2}_{12s}$$

For P-polarisation

$$R_p = \frac{\vec{n} \cdot \overrightarrow{S'_{1p}}}{\vec{n} \cdot \overrightarrow{S_{1p}}} = r^2_{12p}$$

The TRANSMITTANCE

For S-polarisation

$$T_{S} = \frac{\overrightarrow{n} \cdot \overrightarrow{S_{2S}}}{\overrightarrow{n} \cdot \overrightarrow{S_{1S}}} = \frac{n_{2} \cos(\theta_{2})}{n_{1} \cos(\theta_{1})} t^{2}_{12S}$$

For P-polarisation

$$T_p = \frac{\vec{n} \cdot \overrightarrow{S_{2p}}}{\vec{n} \cdot \overrightarrow{S_{1p}}} = \frac{n_2 \cos(\theta_2)}{n_1 \cos(\theta_1)} t^2_{12p}$$

Identities

$$R_s$$
+ $T_s = 1$ and $R_p + T_p = 1$

Reminder

- Normal incidence $\theta_1=0$, No polarization effect, R \nearrow While $\frac{n_2}{n_1}\neq 1$ \nearrow
- Grazing incidence $\theta_1=\frac{\pi}{2}$ \Rightarrow $\cos\theta_1=0$ \Rightarrow $R_S=|-1|^2=R_p$

Near Grazing incidence, the reflectance increase (Ex: a calm lake seems to a mirror)

- HOW TO OBTAIN ZERO REFLECTANCE?
 - $-\theta_1=\theta_2$ such as $\tan(\theta_1-\theta_2)=0=\sin(\theta_1-\theta_2)$, No reflected wave but SNELL-DESCARTES : $\theta_1=\theta_2 \Leftrightarrow n_1=n_2$ NO INTERFACE!!
 - $-\theta_1 + \theta_2 = \frac{\pi}{2}$ \Rightarrow $\tan(\theta_1 + \theta_2) \to \infty$ and a the light could be decomposed in 2 polarized light (s & p polarization along s & p axis), in this case the p polarized reflected light have a zero magnitude.

Brewster Angle

From 3d Snell-Descartes Law:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

By using
$$\theta_2 = \frac{\pi}{2} - \theta_1$$

denote $\theta_1 = \theta_B$ the Brewster Angle

$$n_1 \sin \theta_B = n_2 \sin \left(\frac{\pi}{2} - \theta_B\right) = n_2 \cos \theta_B$$

the Brewster Law:

$$\tan \theta_B = \frac{n_2}{n_1}$$

$$\theta_1 = \theta_B$$

Brewster Angle

Interface Air-Glass

Air: n_1 =1, Glass: n_2 =1,5 Compute $\theta_B = 56^{\circ}$

Application:

Polaroid Sunglass or Cockpit canopy, The reflectance minimale is for the p-polarized light

Critical Angle

• If $R_S = R_p = 1$, perfect reflection occurs for $\theta_2 = \frac{\pi}{2}$

The incident angle for $\theta_2 = \frac{\pi}{2}$ is called Critical Angle such as $\theta_1 = \theta_c$:

$$\sin\theta_c = \frac{\mathrm{n_2}}{\mathrm{n_1}} \ ,$$

 θ_c is Real if $n_2 < n_1$, $\tan \theta_B = \sin \theta_c$

If $\tan \theta_B > \sin \theta_C$, $\theta_B > \theta_C$

Numerical application: Interface Glass (n_1 =1,5) Air (n_2 =1)

$$\tan \theta_B = 0.667$$

$$\theta_B = 34^{\circ}$$
 $\theta_C = 42^{\circ}$

$$\theta_c = 42^\circ$$

Critical Angle

$$\sin \theta_c = \frac{n_2}{n_1} \implies \sin \theta_2 > 1$$

NO REAL ANGLE PROVIDE $\sin \theta_2 > 1$

The Result is If $R_S=R_p=1$, for all $\theta_1>\theta_c$

⇒ TOTAL INTERNAL REFLECTION

(for ex: PRISM, AQUARIUM)

Application: Wave Guide in optics and

Microwave

Applications: Atmospheric transmissions

Applications: Waveguide

Propagation of a wave in dielectric medium between 2//conducting surfaces.

Assuming:

• Metal with a conductivity ∞

Perfect reflection from conducting plane

$$\Rightarrow \hat{r}_{12s} = -1$$
 and $\hat{r}_{12p} = +1$

- Dielectric to be vacuum
- Wave Vector is in the plane yz and making an angle θ with the y axis in the plane of incidence

Reflection at y= b and y=0

27

Applications: Waveguide

E-Field and B-Field satisfied the wave equation in Free space, how to confined the EM wave in a guide?

