11 класс

Задача 1. Растяжение пружины

Тонкую невесомую пружину, растянутую на некоторую величину Δl_1 , закрепили на гладком горизонтальном столе в точках A и B. Отношение периодов малых поперечных (рис. 7) и продольных (рис. 8) колебаний небольшого грузика, расположенного посередине пружины, равно $n_1=4$. После того как деформацию пружины увеличили на $\Delta x=3.5$ см, отношение периодов стало равно $n_2=3$. Найдите длину нерастянутой пружины l_0 , а также значение деформации Δl_1 в первом и деформации Δl_2 во втором случаях. Считайте, что пружина в условиях опыта подчиняется закону Гука.

$$A \longrightarrow B$$
Puc. 7
Puc. 8

Задача 2. Наноплавление

Температура плавления массивного образца олова $t_0=232\,^{\circ}\mathrm{C}$. Температура плавления мельчайших оловянных шариков диаметром d=20 нм оказывается на 25 градусов ниже и равна $t_d=207\,^{\circ}\mathrm{C}$. Это так называемый размерный эффект, причём экспериментально установлено, что температура плавления зависит не только от размеров, но и от формы образца. При какой температуре будет плавиться оловянная фольга толщиной h=d?

Считайте, что атомы олова в приповерхностном слое толщиной в 2–3 межатомных расстояния обладают некоторой избыточной энергией по сравнению с энергией атомов в объёме, а теплота плавления λ в пересчёте на один атом пропорциональна средней энергии связи U атомов в веществе и абсолютной температуре T фазового перехода (плавления): $\lambda \sim U \sim T$.

Молярная масса олова $\mu = 119 \Gamma / \text{моль}$. Плотность олова $\rho = 7.31 \Gamma / \text{см}^3$.

Задача 3. Восьмёрка лорда Кельвина

В архиве лорда Кельвина нашли график циклического процесса, произведённого над неизвестным количеством ν азота. В координатах (C,T), где C — теплоёмкость газа, а T — температура, график цикла представляет собой четыре отрезка abefcbeda (рис. 9). К сожалению, положение начала координат оказалось утраченным. Пояснительные записи указывали, что $C_d=1,000~\rm{Дж/K},~C_a=0,715~\rm{Дж/K},~a$ также что

$$T_c - T_b = 2(T_b - T_a) = 200 \text{ K}, \qquad$$
и $\frac{p_c}{p_a} = \frac{V_c}{V_a}.$

- 1. Найдите работу газа A за цикл и КПД цикла η .
- 2. Определите значения температуры T_a , T_b и T_c .
- 3. Нарисуйте график цикла в координатах (p,V) и определите количество вещества ν .

 ${\it Примечание}.$ Процесс с постоянной теплоёмкостью C называется политропным и для него справедливо соотношение:

$$pV^n = \text{const.}$$

где n — постоянная, показатель политропы.

Задача 4. Электроудар

К горизонтальному непроводящему потолку на тонких металлических проволоках длиной l=1 м на расстоянии d=10 см друг от друга подвешены два одинаковых стальных шарика радиусом r=5 мм и массой m=4 г (рис. 10). В начальный момент шарики не заряжены и покоятся. Ускорение свободного падения g=9.8 м/с 2 . Электрическая постоянная $\varepsilon_0=8.85\cdot 10^{-12}$ Ф/м.

1. Определите период T малых свободных колебаний шариков.

Рис. 10 2. К точкам крепления проволок подключают источник напряжения U с большим внутренним сопротивлением $R=10^{15}$ Ом. При каком значении $U=U_{\min}$ шарики столкнутся через некоторое время?

3. Найдите время t_0 , через которое разность потенциалов между шариками достигнет значения U_{\min} если $U=U_0=1,0\cdot 10^6$ В.

Задача 5. В архиве Снеллиуса

В архиве Снеллиуса нашли чертёж оптической схемы, на которой была изображена линза, положение точечного источника света S_0 и его изображения S_1 . От времени чернила выцвели, и на схеме осталось видно только положение оптической оси линзы, источника S_0 , изображения S_1 и одного из фокусов F (рис. 11). Построением циркулем и линейкой без делений восстановите возможные положения линзы.

Рис. 11