

- b) Die Filter mit den Übertragungsfunktionen $H_1(z)$ und $H_2(z)$ sollen nun durch ein einziges ideales Tiefpassfilter mit der Übertragungsfunktion $H_3(z)$ und der normierten Grenzfrequenz Ω'_{g3} ersetzt werden, sodass kein Aliasing auftritt. Geben Sie den Wert von Ω'_{g3} an. \Longrightarrow $\mathcal{Q}_{g3}^{\dagger} = \frac{\pi}{4}$
- c) Das Signal x(n) habe die Abtastfrequenz $f_s=18\,\mathrm{kHz}$. Geben Sie die Abtastfrequenzen f_s' sowie f_s'' an.

=>
$$f_5' = 18kH_2.4 = 72kH_2$$

 $f_5'' = 72kH_2.\frac{1}{3} = 24kH_2$

2 a) $\delta_{p} = 0.1$ $\delta_{st} = 0.075$ $\Omega_{p} = 0.5\pi$ $\Omega_{st} = 0.7\pi$ 6) Vgl. Skript c) Rp = 20.log(1+8p) - 20.log(1-8p) = 1.7430 dB dst= -20.log(Sst) = 22,4988 dB d) Boxcar erfüllt Sperrdampfung wielt, die anderen schon. => Hann, Hauning, Blackman e) Re= 0.6TE f) d= dst = 22.4988 dB B "Fall 2" => R= 0.805 g) No = 10.11 => No = 11

DSV-Klausur 2020

a)
$$z_{0,1} = 0$$
 $z_{0,1} = 1 \cdot 0_1 3$
 $z_{0,1} = 0_1 6$ $z_{0,2} = -1 \cdot 0_1 3$
 $z_{0,3} = 0_1 4$ $z_{0,3} = -0_1 2$

c)
$$Q(s) = \frac{X(5)}{A(5)} = \frac{(1+0.035_{-5})(1+0.55_{-1})}{(1-0.65_{-1})(1-0.65_{-1})}$$

Aufg.4

d)

- a) 1. Hockpes (40)
 - 2 ToPas (TP)
 - 3. Melpous (AP)
- b) 1. nicht minimalpand
 - 2. minimulphaning
 - 3. will minalplany
- c) 1. wellustize Improsadural
 - 2. cellusing Impulsarland.
 - 3. Somples winty Impulsardual.

Eigande Pd- und Vullstellen: