Ejercicios de Ampliación de Probabilidad

Paco Mora Caselles

18 de febrero de 2022

CAPÍTULO 1

Relación 1

Ejercicio 1.

$$C = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < 1, y < (1 - x)^2\}$$

Dejamos por ahora f en función de k, más tarde calculamos su valor:

$$f(x,y) = \left\{ \begin{array}{ll} k & (x,y) \in C \\ 0 & (x,y) \not\in C \end{array} \right.$$

Para $x \in (0,1)$:

$$f_1(x) = \int f(x,y)dy = \int_0^{(1-x)^2} kdy = k(1-x)^2$$

 $Entonces\ tenemos:$

$$f_1(x) = \begin{cases} k(1-x)^2 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Pasamos ahora a $f_2(y)$, cuando $y \in (0,1)$:

$$f_2(y) = \int f(x,y)dx = \int_0^{1-y^{1/2}} = k(1-y)^{1/2}$$

$$f_2(y) = \begin{cases} k(1 - \sqrt{y}) & y \in (0, 1) \\ 0 & y \notin (0, 1) \end{cases}$$

Calculamos ahora $E(X^n(1-X)^m)$ usamos $f_1(x)$:

$$E(X^{n}(1-X)^{m}) = \int x^{n}(1-x)^{m}f_{1}(x)dx = \int_{0}^{1} x^{n}(1-x)^{m}k(1-x)^{2}dx = k \int_{0}^{1} x^{n}(1-x)^{m+2} =$$

$$= kB(n+1, m+3) = k \frac{\Gamma(n+1)\Gamma(m+3)}{\Gamma(n+m+4)} = k \frac{n!(m+2)!}{(n+m+3)!}$$

Los momentos de orden n respecto del origen, la esperanza y la varianza de X las podemos calcular con esta expresión. Para los primeros casos tomamos m=0 y para la varianza podemos usar que $Var(X)=E(X^2)-E(X)^2$

$$k = 3$$
 $E(X) = \frac{1}{4}$ $E(X^2) = \frac{1}{10}$ $Var(X) = \frac{3}{80}$

Calculamos $f_{2|1}(y|x)$, si $x \in (0,1)$:

$$f_{2|1}(y|x) = \frac{f(x,y)}{f_1(x)} = \begin{cases} \frac{3}{3(1-x)^2} = \frac{1}{(1-x)^2} & y \in (0, (1-x)^2) \\ 0 & y \notin (0, (1-x)^2) \end{cases}$$

Podemos calcular ahora $f_{2|1}(y|x=1/2)$:

$$f_{2|1}(y|1/2) = \begin{cases} 4 & y \in (0, \frac{1}{4}) \\ 0 & y \notin (0, \frac{1}{4}) \end{cases}$$

Para calcular $F\left(\frac{1}{4}, \frac{9}{16}\right)$ nos apoyamos en la figura para saber que basta con calcular el área del rectángulo y multiplicar por k:

$$F\left(\frac{1}{4}, \frac{9}{16}\right) = 3\frac{1}{4} \cdot \frac{9}{16} = \frac{3^3}{2^6}$$

Para $F\left(\frac{1}{2}, \frac{9}{16}\right) = F\left(\frac{1}{4}, \frac{9}{16}\right) + 3 \cdot Area\ T$, siendo T la intersección con C. Sabemos entonces que:

$$\int_{1/4}^{1/2} (1-x)^2 dx = \int_{1/4}^{1/2} (x^2 - 2x + 1) dx = \frac{x^3}{3} - x^2 + x \Big|_{1/4}^{1/2} = \frac{19}{2^6 3}$$
$$F\left(\frac{1}{2}, \frac{9}{16}\right) = \frac{3^3}{2^6} + 3\frac{19}{2^6 3} = \frac{23}{32}$$

Tenemos que calcular ahora la recta de regresión de Y respecto de X:

$$y - \mu_y = \frac{\sigma_{xy}}{\sigma_x^2}(x - \mu_x)$$

$$\mu_y = E(Y) = \int_0^1 y 3(1 - y^{1/2}) dy = 3 \int_0^1 (y - y^{3/2}) = \frac{3}{10}$$

$$E(XY) = \int_0^1 \int_0^{(1-x)^2} 3xy dy dx = 3 \int_0^1 x \left[\frac{y^2}{2}\right]_0^{(1-x)^2} d = \frac{3}{2} \int_0^1 x (1 - x)^4 dx =$$

$$= B(2, 5) = \frac{3}{2} \frac{\Gamma(2)\Gamma(5)}{\Gamma(7)} = \frac{3}{2} \frac{1!4!}{6!} = \frac{1}{20}$$

Recordemos que $\mu_X = E(X) = \frac{1}{4}$, entonces:

$$\sigma_{XY}Cov(X,Y) = \frac{1}{2^2 \cdot 5} - \frac{1}{2^2} \cdot \frac{3}{2 \cdot 5} = \frac{2-3}{2^3 \cdot 5} = -\frac{1}{2^3 \cdot 5}$$

Podemos expresar ya la recta de regresión (recordando que $\sigma_X = \frac{3}{80}$):

$$y - \frac{3}{10} = \frac{-1/(5 \cdot 2^3)}{3/(2^4 \cdot 5)} (x - \frac{1}{4})$$
$$y = -\frac{2}{3}x + \frac{7}{15}$$

Calculamos ahora $E(Y|X=x)=m_{2|1}(x)$:

$$E(Y|X=x) = \int y f_{2|1}(y|x) dy = \int_{0}^{(1-x)^{2}} y \frac{1}{(1-x)^{2}} dy =$$

$$= \frac{1}{(1-x)^{2}} \frac{y^{2}}{2} \Big|_{0}^{(1-x)^{2}} = \frac{1}{(1-x)^{2}} \frac{(1-x)^{4}}{2} = \frac{(1-x)^{2}}{2}$$

Ejercicio 2.

$$E(X) = 2$$
, $Var(X) = 3$ X $sim\'etrica$

$$\alpha_3 = E(X^3) = E((X - 2 + 2)^3) = E((X - 2)^3 + 3(X - 2)^2 2 + 3(X - 2)^2 2 + 2^3) =$$

$$= E((X - 2)^3) + 6E((X - 2)^2) + 12E(X - 2) + E(2^3) = 0 + 6Var(X) + 0 + 2^3 = 6 \cdot 3 + 8 = 26$$

Ejercicio 3.

El número de de posibilidades totales es claramente $\binom{N}{n}$, la distribución de probabilidad es entonces:

$$P(X_1 = r_1, X_2 = r_2, X_3 = r_3) = \frac{\binom{n_1}{r_1} \binom{n_2}{r_2} \binom{n_3}{r_3}}{\binom{N}{n}}$$

Claramente necesitamos $n \le N$, $r_1 + r_2 + r_3 = n$

Calculamos ahora $\alpha_{(3)}$:

$$E(X_1^{(3)}) = E(X_1(X_1 - 1)(X_1 - 2)) = \sum_{\substack{r_1 + r_2 + r_3 = r}} r_1(r_1 - 1)(r_1 - 2) \frac{\binom{n_1}{r_1} \binom{n_2}{r_2} \binom{n_3}{r_3}}{\binom{n_1}{n_2}}$$

Nos fijamos que:

$$r_1(r_1-1)(r_1-2)\binom{N_1}{r_1} = r_1(r_1-1)(r_1-2)\frac{N_1^{(r_1)}}{r_1(r_1-1)(r_1-2)\cdots 2\cdot 1} = \frac{N_1^{(r_1)}}{(r_1-3)!} = N_1(N_1-1)(N_1-2)\frac{(N_1-3)^{(r_1-3)}}{(r_1-3)!} = N_1(N_1-1)(N_1-2)\binom{N_1-3}{r_1-3}$$

Entonces volviendo a la igualdad anterior:

$$P(X_1 = r_1) = \sum_{r_1 + r_2 + r_3 = n} N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{r_1 - 3} \binom{N_2}{r_2} \binom{N_3}{r_3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \sum_{r_1 + r_2 + r_3 = n} \frac{\binom{N_1 - 3}{r_1 - 3} \binom{N_2}{r_2} \binom{N_3}{r_3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{n - 3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{n - 3}}{\binom{N}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{n - 3}}{\binom{N_1}{n}} = N_1(N_1 - 1)(N_1 - 2) \frac{\binom{N_1 - 3}{n - 3}}{\binom{N_1 - 3}{n - 3}} = \frac{N_1(3)}{N(3)} n^{(3)}$$

Ejercicio 4.

Aparado b)

Para calcular las vvaa marginales solo tenemos que sumar los elementos de la misma fila o columna. Por ejemplo:

$$P(X = 0) = \frac{1}{3} + \frac{1}{6} + \frac{1}{9} = \frac{11}{18}$$

Obtenemos así:

$$P(X = 0) = \frac{11}{18}$$
 $P(X = 1) = \frac{5}{18}$ $P(X = 2) = \frac{2}{18}$
 $P(Y = 0) = \frac{11}{18}$ $P(Y = 1) = \frac{5}{18}$ $P(Y = 2) = \frac{2}{18}$

 $Tambi\'en\ podemos\ obtener\ E(X)=E(Y)=\frac{1}{2},\ Var(X), Var(Y)=\frac{17}{36}\ y\ Cov(X,Y)=-\frac{5}{36}.$

Entonces la recta de regresión de X sobre Y es:

$$Y - \mu_Y = \frac{\sigma_{XY}}{\sigma_X^2} (x - \mu_X)$$
$$y - \frac{1}{2} = \frac{-\frac{5}{36}}{\frac{17}{36}} \left(x - \frac{1}{2} \right)$$
$$y = -\frac{5}{17} x + \frac{11}{17}$$

Como las esperanzas y las varianzas son iguales, obtenemos que el cálculo de la recta de regresión de Y sobre X es igual:

$$x = -\frac{5}{17}y + \frac{11}{17}$$

Calcularemos ahora $Var(Y - X^*)$:

$$Var(Y-X^*) = \sigma_Y^2(1-\rho^2) = \frac{17}{36}\left(1 - \frac{25/36^2}{17^2/36}\right) = \frac{17}{36}\left(\frac{17^2 - 25}{17^2} = \frac{11}{3 \cdot 17}\right)$$

 $Para\ la\ varianza\ residual\ de\ X\ sobre\ Y,\ vemos\ que\ es\ igual\ porque\ coinciden\ sus\ esperanzas\ y\ sus\ varianzas.$

Relación 2

Ejercicio 1.

Vemos en primer lugar cómo es el recinto del ejercicio:

$$\alpha_{n,m} = E(X^n Y^m) = \int x^n y^m \cdot \frac{1}{y} = \int_0^1 \int_0^y = x^n x^{m-1} dx dy =$$

$$= \int_0^1 y^{m-1} \left(\frac{x^{n+1}}{n+1} \right) \Big|_0^y dy = \frac{1}{n+1} \int_0^1 y^{m-1} y^{n+1} dy = \frac{1}{n+1} \frac{1}{m+n+1}$$

Con este resultado podemos obtener los valores:

$$E(Y) = \frac{1}{2}$$
 $E(Y^3) = \frac{1}{3}$ $E(XY) = \frac{1}{6}$ $E(X) = \frac{1}{4}$

Entonces tenemos que $Var(Y) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \ y \ Cov(X,Y) = \frac{1}{6} - \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{24}$

Para calcular la recta de regresión obtenemos primero:

$$\beta_{X/Y} = \frac{\sigma_{XY}}{\sigma_Y^2} = \frac{1/24}{1/12} = \frac{1}{2}$$

Y la recta de regresión que nos piden queda:

$$x - \frac{1}{4} = \frac{1}{2} \left(y - \frac{1}{2} \right)$$
$$x = \frac{1}{2} y$$

Calcularemos ahora la curva de regresión de X sobre Y:

$$x = m_{1|2}(y)$$
 $m_{1|2}(y) = E(X|Y = y) = \int x f_{1|2}(x|y) dx$

Entonces, para los valores de y para los que $f_2(y) > 0$ tendremos:

$$f_{1|2}(x|y) = \frac{f(x,y)}{f_2(y)}$$

Calcularemos ahora $f_2(y)$:

Si
$$y \in (0,1)$$
: $f_2(y) = \int f(x,y)dx = \int_0^y \frac{1}{y}dx = \frac{1}{y}x \Big|_0^1 = 1$

$$f_2(y) = I_{(0,1)}(y)$$

Volvemos ahora al cálculo de $f_{1|2}(x|y)$. Dado $y \in (0,1)$:

$$f_{1|2}(x|y) = \frac{1/y}{1} = \frac{1}{y}$$
 $x \in (0, y)$

$$f_{1|2}(x|y) = 0 \qquad x \not\in (0,y)$$

Podemos calcular ahora $m_{1|2}(y)$:

$$E(X|Y=y) = \int_{0}^{y} x \frac{1}{y} dx = \frac{1}{y} \frac{x^{2}}{2} \Big|_{0}^{y} = \frac{y}{2}$$

Entonces la curva de regresión es $x = \frac{y}{2}$. Notemos que es una recta, en este caso **necesariamente** coincidirá con la recta de regresión. Entonces, si hubiéramos calculado primero la curva de regresión, no tendríamos que calcular la recta porque sabemos que coincidiría.

Ejercicio 2.

$$f(t_1, t_2, t_3, t_4) = \frac{1}{4}(t_1 + t_2 + t_3 + t_1 t_2 t_3) = E(t_1^{X_1} t_2^{X_2} t_3^{X_3}) = \sum_{i_1, i_2, i_3} t_1^{i_1} t_2^{i_2} t_3^{i_3}$$

De este último término, en cada sumando, $p_{i_1i_2i_3}$ representa $P(X_1 = i_1, X_2 = i_2, X_3 = i_3)$

Viendo el valor de f, sabemos que la vvaa (X_1, X_2, X_3) toma los valores (1,0,0), (0,1,0), (0,0,1), (1,1,1) con probabilidad de $\frac{1}{4}$ en cada una de ellas.

Vamos a comprobar si X_1, X_2 son independientes. Para ello, vemos si $f_{12}(t_1, t_2) = f_1(t_1) \cdot f_2(t_2)$. Estas funciones no las conocemos, pero como sabemos que f se puede representar como $E(t_1^{X_1}t_2^{X_2}t_3^{X_3})$, si hacemos $t_3 = 1$:

$$f_{12}(t_1, t_2) = E(t_1^{X_1}, t_2^{X_2}) = E(t_1^{X_1} t_2^{X_2} 1^{X_3}) = \frac{1}{4}(t_1 + t_2 + 1 + t_1 t_2)$$

De igual forma podemos hacer:

$$f_2(t_1) = E(t_1^{X_1}) = E(t_1^{X_1} 1^{X_2} 1^{X_3}) = \frac{1}{4}(t_1 + 1 + 1 + t_1) = \frac{1 + t_1}{2}$$

$$f_2(t_2) = \frac{1 + t_2}{2}$$

Para comprobar la independencia solo tenemos que ver si $f_{12} = f_1 f_2$:

$$f_1 f_2 = \frac{1}{2} (1 + t_1) \cdot \frac{1}{2} (1 + t_2) = \frac{1}{4} (t_1 + t_2 + 1 + t_1 t_2) = f_{12}$$

Luego X_1, X_2 son independientes y de forma análoga: X_2, X_3 son independientes y X_2, X_3 son independientes. Es decir, son independientes dos a dos.

Para comprobar que son independientes, tendremos que ver si $f(t_1, t_2, t_3) = f_1(t_1) \cdot f_2(t_2) \cdot f_3(t_3)$:

$$f_1 f_2 f_3 = \frac{1}{2^3} (1 + t_1)(1 + t_2)(1 + t_3) = \frac{1}{2^3} (1 + t_1 + t_2 + t_1 t_2)(1 + t_3) =$$

$$= \frac{1}{2^3} (1 + t_1 + t_2 + t_1 t_2 + t_3 + t_1 t_3 + t_2 t_3 + t_1 t_2 t_3) \neq f(t_1, t_2, t_3)$$

Por tanto, las vvaa no son independientes.

Para calcular el apartado c), haremos las parciales:

$$\frac{\partial f}{\partial t_1} = \frac{1}{4}(t_1 + t_2 t_3)$$

$$\frac{\partial f}{\partial t_1}(1,1,1) = E(X_1) = \frac{1}{2}$$

Por la simetría de f, $E(X_2) = E(X_3) = \frac{1}{2}$. Vamos ahora con las varianzas, que de nuevo bastará con calcular la de X_1 :

$$\frac{\partial^2 f}{\partial t_1^2} = E(X_1^{(2)}) = E(X_1^2 - X_1) = 0 = E(X_1^2) - E(X_1) \implies E(X_1^2) = \frac{1}{2}$$

$$Var(X_2) = Var(X_3) = Var(X_1) = E(X_1^2) - E(X_1)^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

El cálculo de la covarianza es rápido, como X_1, X_2, X_3 son independientes **por parejas**, tenemos que:

$$Cov(X_1, X_2) = Cov(X_1, X_3) = Cov(X_2, X_3) = 0$$

En el caso general, es decir, si no fueran independientes:

$$\frac{\partial f}{\partial t_1 \partial t_2} = \frac{1}{4} t_3$$

$$\frac{\partial f}{\partial t_1 \partial t_2} (1, 1) = E(X_1 X_2) = \frac{1}{4}$$

$$Cov(X_1, X_2) = E(X_1 X_2) - E(X_1) E(X_2) = \frac{1}{4} - \frac{1}{4} = 0$$

Anotación importante)

Es importante notar las diferencias entre X + Y + Z y (X, Y, Z):

Sean X_1, X_2, X_3 independientes con funciones:

$$f_1(t) = \frac{1}{2}(1+t)$$

$$f_2(t) = \frac{1}{3}(1+t+t^2)$$

$$f_3(t) = \frac{1}{2}(1+t)$$

Entonces la vvaa $Z = X_1 + X_2 + X_3$ unidimensional, entonces $f_Z(t) = \frac{1}{2}(1+t)\frac{1}{3}(1+t+t^2)\frac{1}{2}(1+t)$ con un solo parámetro.

Si definimos ahora la vvaa $X = (X_1, X_2, X_3)$ de tres dimensiones con

$$f_X(t_1, t_2, t_3) = dfrac12(1 + t_1)\frac{1}{3}(1 + t_2 + t_2^2)\frac{1}{2}(1 + t_3)$$

Ejercicio 3.

Sabemos que, para X, Y, Z tenemos:

$$f(x) = \begin{cases} 1 & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$$

Entonces E(X) = E(Y) = E(Z) es:

$$\int_{0}^{1} x dx = \frac{x^{2}}{2} \bigg|_{0}^{1} = \frac{1}{2}$$

$$E(X^{2}) = E(Y^{2}) = E(Z^{2}) = \int_{0}^{1} x^{2} = \frac{s^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$$
$$Var(X) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

Entonces:

$$E(U) = a\frac{1}{2} + b\frac{1}{2} + c\frac{1}{2} = \frac{a+b+c}{2}$$

Como las variables son independientes:

$$Var(U) = Var(aX) + Var(bY) + Var(cZ) = (a^2 + b^2 + c^2) = \frac{1}{12}$$

Nos piden también los momentos de orden 3 y 4 respecto de la media. Utilizamos el subapartado de **Momentos de sumas**. Siguiendo un procedimiento como el de este subapartado llegamos a que solo necesitamos expresiones como $\mu_3(aX) = E\left(aX - \frac{a}{2}\right) = 0$ ya que estas vvaa son simétricas respecto de su media. En definitiva:

$$E((U - E(U))^3) = \mu_3(aX) + \mu_3(bY) + \mu_3(cZ) = a\mu_3(X) + b\mu_3(Y) + c\mu_3(Z) = 0$$

$$\mu_4(U) = \mu_4(aX) + \mu_4(bY) + \mu_4(cZ) + 6(\mu_2(aX)\mu_2(bY) + \mu_2(aX)\mu_2(cZ) + \mu_2(bY)\mu_2(cZ))$$

Vamos a hacer el cálculo para un n general de:

$$\mu_n(X) = E\left(\left(X - \frac{1}{2}\right)^2\right) = \int_0^1 \left(x - \frac{1}{2}\right)^n dx = \frac{(x - 1/2)^{n+1}}{n+1} \Big|_0^1 = \frac{(1/2)^{n+1}}{n+1} - \frac{(-1/2)^{n+1}}{n+1} = \frac{1}{(n+1)2^{n+1}} (1 + (-1)^n)$$

Luego:

$$\mu_4(X) = \frac{1}{5 \cdot 2^4}$$

$$\mu_2(X) = \frac{1}{12}$$
 (como ya habíamos calculado antes)

Volviendo ahora a $\mu_4(U)$:

$$\mu_4(U) = (a^4 + b^4 + c^4) \frac{1}{5 \cdot 2^4} + 6(a^2b^2 + a^2c^2 + b^2c^2) \frac{1}{3^22^4}$$

Calculamos ahora la función generatriz de momentos (recordemos que la función generatriz no está definida porque X,Y,Z toman valores no enteros). Usaremos la independencia de las vvaa:

$$E(e^{tU}) = E(e^{atX})E(e^{btY})E(e^{ctZ})$$

Tendremos que calcular la función generatriz de momentos de cada vvaa (son todas iguales):

$$E(e^{tX}) = \int_{0}^{1} e^{tx} dx = \frac{e^{tx}}{t} \Big|_{0}^{1} = \frac{e^{t} - 1}{t}$$

En el caso de aX (análogamente para bY, cZ):

$$g_{aX}(t) = E(e^{taX}) = \frac{e^{at} - 1}{at}$$

Entonces volviendo a la vvaa U:

$$g_U(t) = \frac{e^{at} - 1}{at} \cdot \frac{e^{bt} - 1}{bt} \cdot \frac{e^{ct} - 1}{ct}$$

La función característica de U será entonces:

$$\varphi_U(t) = \frac{(e^{iat} - 1)(e^{ibt} - 1)(e^{ict} - 1)}{i \cdot a \cdot b \cdot ct^3} = \frac{-i(e^{iat} - 1)(e^{ibt} - 1)(e^{ict} - 1)}{a \cdot b \cdot c \cdot t^3}$$

Nos piden comprobar si es simétrica:

$$E(e^{itU}) = E(e^{it(aX+bY+cZ)}) = E(e^{iatX})E(e^{ibtX})E(e^{ictX}) = \frac{e^{iat}-1}{iat} \cdot \frac{e^{ibt}-1}{ibt} \cdot \frac{e^{ict}-1}{ict} = e^{iat/2}e^{ibt/2}e^{ict/2}2^3$$

Ejercicio 4.

Para calcular A:

$$1 = \sum_{r=0}^{+\infty} \frac{A}{(2r)!} = A \sum_{r=0}^{+\infty} \frac{1}{(2r)!} = A \frac{1}{2} \left(\sum_{k=0}^{+\infty} \frac{(1)^k}{k!} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} \right) = A \frac{1}{2} (e + e^{-1}) \implies A = \frac{2}{e + e^{-1}}$$

B se saca de forma análoga:

$$1 = \sum_{k=0}^{+\infty} \frac{B}{(2r+1)!} = B\frac{1}{2} \left(\sum_{k=0}^{+\infty} \frac{1^k}{k!} - \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} \right) = B\frac{1}{2} (e - e^{-1}) \implies B = \frac{2}{e - e^{-1}}$$

Calculamos ahora las funciones generatrices:

$$f_X(t) = \sum_{r=0}^{+\infty} \frac{A}{(2r)!} t^{2r} = \frac{2}{e+e^{-1}} \sum_{r=0}^{+\infty} \frac{t^{2r}}{(2r)!} = \frac{2}{e+e^{-1}} \cdot \frac{e^t + e^{-t}}{e+e^{-1}}$$

Igualmente:

$$f_Y(t) = \frac{e^t - e^{-t}}{e - e^{-1}}$$

 $Como\ X, Y\ son\ independientes:$

$$f_Z(t) = f_X(t) \cdot f_Y(t) = \frac{e^t + e^{-t}}{e + e^{-1}} \cdot \frac{e^t - e^{-t}}{e - e^{-1}} = \frac{e^{2t} - e^{-2t}}{e^2 - e^{-2}} =$$

$$= \frac{1}{e^2 - e^{-2}} \left(\sum_{k=0}^{+\infty} \frac{(2t)^k}{k!} - \sum_{k=0}^{+\infty} \frac{(-2t)^k}{k!} \right) = \frac{1}{e^2 - e^{-2}} \sum_{r=0}^{+\infty} \frac{2(2t)^{2r+1}}{(2r+1)!} = \frac{1}{e^2 e^{-2}} \sum_{r=0}^{+\infty} \frac{2 \cdot 2^{r+1}}{(2r+1)!} t^{2r+1}$$

Luego tenemos que, para r = 0, 1, 2, ...:

$$P(Z = 2r + 1) = \frac{1}{e^2 - e^{-2}} \frac{2 \cdot 2^{2r+1}}{(2r+1)!}$$

El último apartado lo haremos derivando la expresión sin desarrollar las exponenciales:

$$E(Z) = 2\frac{e^2 + e^{-2}}{e^2 - e^{e-2}}$$

$$E(Z(Z-1)) = f_Z''(1) = 4$$

$$Var(Z) = 2\frac{e^4 - 8 - e^{-4}}{(e^2 - e^{-2})^2}$$

Ejercicio 5.

Apartado a)

$$\alpha(t) = \frac{1 + \cos(t) + \cos(2t)}{3}$$

Comprobemos que es función característica. Si conseguimos expresar α de la forma $\sum p_n e^{itx_n}$ ($\sum p_n = 1$), tendríamos que α es función característica de una vvaa discreta.

Usaremos que:

$$\cos(t) = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$
$$\cos(2t) = \frac{1}{2} \left(e^{ixt} + e^{-ixt} \right)$$

Entonces nos queda:

$$\alpha(t) = \frac{1}{3}e^{0} + \frac{1}{3}\frac{1}{2}(e^{it} + e^{-it}) + \frac{1}{3}\frac{1}{2}(e^{2it} + e^{-2it}) =$$

$$= \frac{1}{3}e^{0} + \frac{1}{6}e^{it} + \frac{1}{6}e^{-it} + \frac{1}{6}e^{2it} + \frac{1}{6}e^{-2it}$$

Entonces todas las constantes que multiplican a exponenciales son no negativas y suman 1. Entonces α es la función característica de la vvaa que toma valores $\{0,1,-1,2,-2\}$ con probabilidades:

$$P(X = 0) = \frac{1}{3}$$
 $P(X = 1) = P(X = -1) = P(X = 2) = P(X = -2) = \frac{1}{6}$

Apartado b)

$$\alpha(t) = \frac{1}{1 + t^3}$$

Esta función no esta acotada en -1 por lo que no puede ser función característica.

Apartado c)

$$\alpha(t) = \frac{1}{1 + t^4}$$

Recordemos la relación entre la existencia de los momentos de orden n y la existencia de la derivada de orden n en el origen.

$$\alpha'(t) = -(1+t^4)^{-2}4t^3$$
 $\alpha'(0) = 0$
 $\alpha''(t) = \dots$ $\alpha''(0) = 0$

Entonces si existe X, E(X) = 0 $E(X^2) = i^2\alpha''(0) = 0$, entonces la varianza sería nula y la función sería constante, pero la función característica de una distribución uniforme no es α