

Computational Astrophysics

5a. Micropohysics I: Non-equilibrium chemistry

Troels Haugbølle

Niels Bohr Institute
University of Copenhagen

Microphysics

☐ Basically it's everything happening inside a cell, on scales below the resolution

Microphysics

☐ Basically it's everything happening inside a cell, on scales below the resolution – today we will start with *astrochemistry*

Why do we need Astrochemistry?

- □ As an observational diagnostic:
 - \square H₂, CO, H₂O, O₂, CH are common molecules found in the ISM
 - Molecular rotational and vibrational bands can be observed at infrared to mm wavelengths
 - □ The molecular bands trace indirectly the density, temperature,
 etc *probing the physical state* of the gas in the clouds

Why do we need Astrochemistry?

- □ As an observational diagnostic:
 - \Box H₂, CO, H₂O, O₂, CH are common molecules found in the ISM
 - Molecular rotational and vibrational bands can be observed at infrared to mm wavelengths
 - □ The molecular bands trace indirectly the density, temperature, etc *probing the physical state* of the gas in the clouds
- □ For modelling thermal processes:
 - ☐ The **equation of state** depends on the chemical abundances
 - ☐ *Heating and cooling* is directly related to the chemistry
 - □ *Ionization and conductivity* depend on having a reservoir of free electrons and ions

Non-equilibrium chemistry

- Because of the very *low temperatures* and (by chemistry standards) also very low densities, *chemical reactions* in the interstellar medium (ISM) and proto-planetary disks (PPDs) are very slow
- □ Consequently, they *may not reach chemical equilibrium* (a balance which is computable from a knowledge of the Gibb's free energy of the compounds)
- ☐ To investigate and simulate the chemical reactions, we need to solve the ordinary differential equations (ODEs) that describe the evolution of the species (atoms, molecules, dust & ice grains) in the medium

$$A+B \xrightarrow{k(T)} C+D$$

$$A+B \xrightarrow{k(T)} C+D$$

Example CO-network (cf. the ERDA notebook)

Chemical reactions: some definitions

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}} \times n_{e^{-}}$$

$$\frac{dn_{C}}{dt} = R = k \times n_{CO^{+}}$$

Chemical reactions: Cauchy's problem:

$$\frac{\mathrm{d}n_{i}}{\mathrm{d}t} = \underbrace{\sum_{lm}^{formation} \underbrace{K_{lm}(T)n_{l}(t)n_{m}(t) - n_{i}(t)\sum_{j}^{} k_{ij}n_{j}(t)}_{lm} [\times N_{\mathrm{gas}}]$$

$$\frac{\mathrm{d}n_{i}}{\mathrm{d}t} = \sum_{i \in \mathrm{formation}} R_{i} - \sum_{j \in \mathrm{destruction}} R_{j} [\times N_{\mathrm{gas}}]$$

$$\frac{\mathrm{d}T}{\mathrm{d}t} \propto HEAT(T, \bar{n}) - COOL(T, \bar{n})$$

A simple chemical network

$$H^+ + e^- \xrightarrow{k_1} H + \gamma$$
 (1)

$$H + \gamma \xrightarrow{k_2} H^+ + e^-$$
 (2)

ODE and Jacobian (an excerpt)

$$\frac{\mathrm{d}n_{\rm H}}{\mathrm{d}t} = k_1 n_{\rm H^+} n_{\rm e^-} - k_2 n_{\rm H} \tag{3}$$

$$\frac{\partial^2 n_{\rm H}}{\partial t \partial n_{\rm H}} = k_2 \qquad \qquad \frac{\partial^2 n_{\rm H}}{\partial t \partial n_{\rm H^+}} = k_1 n_{\rm e} \tag{4}$$

	Н	H^+	H^-	e^{-}	γ	CR
Н						
H^+	X					
H^-	X	X				
e^-	X	X	X			
γ	X	X	X	X		
CR	X	X	X X X	X	X	

Chemical reactions "commute"

$$H^+ + e^- \rightarrow H + \gamma$$

 $e^- + H^+ \rightarrow H + \gamma$

	Н	H^+	H^-	e^-	γ	CR
Н						
H^+	Х	X			X	X
H^-	Х	Χ	X	X		
e^-	Х	Χ	Χ	X	X	Χ
γ	Х	Χ	Χ	Χ	X	X
CR	Х	Χ	X X X X	Χ	Χ	Χ

Some reactant pairs are impossible (e.g. H⁻ + H⁻ is repulsive)

	Н	H^+	H^-	e^-	γ	CR
Н	X	Χ				
H^+	Х	Χ	X		Χ	Χ
H^-	Х	Χ	Χ	Χ		
e^-	Х	Χ	Χ	Χ	Χ	Χ
γ	Х	Χ	Χ	Χ	Χ	Χ
CR	Х	Χ	X X X X	Χ	Χ	Χ

some reactions lead to species ∉ subset (e.g. H⁻ + H form H₂)

	Н	H^+	H^-	e^-	γ	CR
Н	Х	Χ	√	√ √	√	√
H^+	Х	Χ	X 🗸	\checkmark	Χ	Χ
H^-	Χ	Χ	Χ	Χ	\checkmark	\checkmark
e^-	Х	Χ	Χ	Χ	Χ	Χ
γ	Х	Χ	Χ	Χ	Χ	Χ
CR	Χ	Χ	Χ	✓ ✓ ✓ X X X	Χ	Χ

final set of reactions

Final network (4+2 species → 9 reactions)

Chemical reactions: public domain databases

https://kida.astrochem-tools.org

Buffering and stiff equations

Explicit integration: timestep controlled by fast rate, even in equilibrium!

[Nelson 99, Langer 76]

Chemical reactions: Jupyter notebook & tasks

In the **5 Chemistry** notebook we will study the formation of two important molecules:

- Water (H2O) is of central interest in proto-planetary disks, where the water-ice (beyond the "ice-line") may speed up the formation of solid bodies, by condensing onto dust to make fluffy aggregates – dirty "snowballs" perhaps ;-)
- Carbon monoxide (CO) is import both from the modeling and observational point of view. It is a very stable molecule and tends to "steal" all of the carbon and a corresponding amount of oxygen (generally about twice as abundant as carbon), and COmolecules are key observationally (in different isotopes!)

ERDA Jupyter Notebook!

