3 - Interference and Standing Waves

#phys31-2 #waves #standingwave

Boundary Conditions

A wave on a string reflects depending on the state of the end of the string:

- If it is a fixed end, inverted reflection occurs.
- If it is a free end, a non-inverted reflection occurs.

Wave Interference and Superposition

When waves overlap, the resulting final displacement is the algebraic sum of each individual pulse.

Principle of Superposition

If we have two waves of position y_1 and y_2 , then our final displacement is

$$y(x,t) = y_1(x,t) + y_2(x,t)$$

Standing Waves on a String

Consider when a sinusoidal wave is reflected on a fixed end.

The resulting wave is called a **standing wave**. This is because the wave "appears" to be non-moving (aka "standing" in place). There are two parts of a standing wave:

- Nodes: points on a wave where the displacement is always 0
- Antinodes: points on a wave where displacement reaches its maximum

For a standing wave to manifest, the length of the string L and the wavelength λ should have the following relationship:

$$L=rac{n}{2}\lambda_n$$

where n is any integer, corresponding to the number of antinodes present in the standing wave.

Wave Function of a Standing Wave

Given two wave positions y_1 and y_2 ,

$$y_1(x,t) = -A\cos(kx + \omega t)y_2(x,t) = A\cos(kx + \omega t)$$

then the final displacement position is

$$egin{aligned} y(x,t) &= y_1(x,t) + y_2(x,t) \ &= A(-\cos(kx+\omega t) + A\cos(kx+\omega t)) \ &= (2A\sin kx)(\sin(\omega t)) \end{aligned} \qquad ext{(using trig addition)} \ &= (A_{\mathrm{sw}}\sin kx)(\sin(\omega t)) \end{aligned} \qquad ext{(alternatively)}$$

To then find the position of the nodes, we can take advantage of the fact that y(x,t)=0 at these points. Because $A_{\rm sw}>0$, then $\sin(kx)=0$. From these we can get the following values:

$$kx=0,\pi,2\pi,3\pi,\dots \ x=0,rac{\pi}{k},rac{2\pi}{k},rac{3\pi}{k},\dots$$

Normal Modes of a String

Since we have the relationship

$$L=n\frac{\lambda}{2}$$

then we can have a possible standing wave frequency related to its corresponding wavelength according to:

$$f_n = rac{v}{\lambda_n} = nrac{v}{2L}$$

where f_1 is the fundamental frequency.

Integer multiples of f_1 correspond to 2f, 3f, 4f, etc. These are known as harmonics or overtones.