- 3 多項式の列 $P_0(x)=0$, $P_1(x)=1$, $P_2(x)=1+x$, \cdots , $P_n(x)=\sum_{k=0}^{n-1}x^k$, \cdots を考える .
- (1) 正の整数 n , m に対して , $P_n(x)$ を $P_m(x)$ で割った余りは $P_0(x)$, $P_1(x)$, \cdots , $P_{m-1}(x)$ のいずれかであることを証明せよ .
- (2) 等式 $P_l(x)P_m(x^2)P_n(x^4)=P_{100}(x)$ が成立するような正の整数の組 (l,m,n) をすべて求めよ .