An example classification problem

- Given
 - Outlook ∈ {Sunny, Overcast, Rainy}
 - Temperature ∈ {Hot, Mild, Cool}
 - Humidity ∈ {High, Normal}
 - Wind ∈ {True, False}
- Answer
 - Play: Yes or No

ZeroR

• Just answer the majority class of train data all the time

• Play=No: 5/14 tuples

• Play=Yes: 9/14 tuples

Answer Play=Yes for every test data

Outlook	Temp	Humidity	Wind	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

OneR: One attribute does all the work

Outlook	Temp	Humidity	Wind	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Attribute	Rules	Errors	Total errors
Outlook	Sunny → No	2/5	4/14
	Overcast → Yes	0/4	
	Rainy → Yes	2/5	
Temp	Hot → No*	2/4	5/14
	$Mild \rightarrow Yes$	2/6	
	Cool → Yes	1/4	
Humidity	High → No	3/7	4/14
	Normal \rightarrow Yes	1/7	
Wind	$False \to Yes$	2/8	5/14
	True → No*	3/6	

^{*} indicates a tie

Naïve Bayes Classifier

Review of Probability Theory

- Random variables
 - $V_1, V_2, ..., V_k$
- Joint probability

•
$$P(V_1=v_1, V_2=v_2,..., V_k=v_k)$$

Conditional probability

$$P(V_i | V_j) = \frac{P(V_i, V_j)}{P(V_i)}$$

Review of Probability Theory

Chain rule

$$P(V_1, V_2, ..., V_k) = \prod_{i=1}^k P(V_i \mid V_{i-1}, ..., V_1)$$

- e.g., *P* (A=a, B=b, C=c)
 - P(abc) = P(a)P(b|a)P(c|ab)

Bayes theorem

$$P(V_i | V_j) = \frac{P(V_j | V_i)P(V_i)}{P(V_j)}$$

- e.g., *P*(A=a|B=b)
 - P(a|b) = P(b|a) P(a) / P(b)

Review of Probability Theory

Unconditional independence

$$P(V_1, V_2, ..., V_k) = \prod_{i=1}^k P(V_i \mid V_{i-1}, ..., V_1) = \prod_{i=1}^k P(V_i)$$

- e.g., *P*(A=a, B=b)
 - P(a,b)=P(ab)=P(a)P(b)

Conditional independence

$$P(V_1, V_2, ..., V_k \mid V) = \prod_{i=1}^k P(V_i \mid V_{i-1}, ..., V_1, V) = \prod_{i=1}^k P(V_i \mid V)$$

- e.g., P(A=a,B=b|C=c)
 - P(ab|c)=P(a|c)P(b|c)

"Naïve Bayes" method

- Opposite strategy: use all the attributes
 - OneR: One attribute does all the work
- Two assumptions: Attributes are
 - equally important a priori
 - statistically independent (given the class value)
 - i.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption is never correct!
- But ... often works well in practice

Probability of event H given evidence E

• Thomas Bayes, British mathematician, 1702 –1761

$$\Pr[H] = \frac{\Pr[E \mid H] \Pr[H]}{\Pr[E]}$$

- Pr[H] is a priori probability of H
 - Probability of event before evidence is seen
- Pr[H | E] is a posteriori probability of H
 - Probability of event after evidence is seen
- "Naïve" assumption:
 - Evidence splits into parts that are independent

$$\Pr[H \mid E] = \frac{\Pr[E_1 \mid H] \Pr[E_2 \mid H] ... \Pr[E_n \mid H] \Pr[H]}{\Pr[E]}$$
lan H. Witten's slide

Towards Naïve Bayesian Classifier

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (x_1, x_2, ..., x_n)$
- Suppose there are *m* classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i|X)
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only needs to be maximized

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

"Naïve Bayes" method

Outlook		Tempe	erature		Humidity		Wind			Play			
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

Outlook	Temp.	Humidity	Wind	Play	
Sunny	Cool	High	True	?	

$$\Pr[H \mid E] = \frac{\Pr[E_1 \mid H] \Pr[E_2 \mid H] ... \Pr[E_n \mid H] \Pr[H]}{\Pr[E]}$$

Likelihood of the two classes

For "yes" =
$$2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$$

For "no" =
$$3/5 \times 1/ \times 4/5 \times 3/5 \times 5/14 = 0.0206$$

Conversion into a probability by normalization:

"Naïve Bayes" method

Outlook	Temp.	Humidity	Wind	Play	4 Fuidance F
Sunny	Cool	High	True	?	← Evidence E

Bayesian Classification: Why?

- A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- Performance: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data