1 Grundlagen

T 1.1.2 \mathbb{R} ist ein kommutativer, angeordneter Körper, der ordnungsvollständig ist

1.1 Infimum und Supremum

D 1.1.12 Sei $A \subset \mathbb{R}$ eine Teilmenge.

- 1) $c \in \mathbb{R}$ ist **obere Schranke** if $\forall a \in A : a \leq c$
- 2) $c \in \mathbb{R}$ ist untere Schranke if $\forall a \in A : c \leq a$
- 3) $m \in \mathbb{R}$ heisst ein **Maximum** von A if $m \in A$ und m eine obere Schranke von A ist.
- 4) $m \in \mathbb{R}$ heisst ein **Minimum** von A if $m \in A$ und m eine untere Schranke von A ist.

T 1.1.15 . Sei $A \subset \mathbb{R}, A \neq \emptyset$ und beschränkt

- 1) Kleinste obere Schranke: sup A (**Supremum**)
- 2) Grösste untere Schranke: inf A (**Infimum**)

Eigenschaften von Supremum und Infimum

- $\sup(A \cup B) = \max(\sup A, \sup B)$
- $\sup(A+B) = \sup A + \sup B$
- $\inf(A \cup B) = \min(\inf A, \inf B)$
- $\inf(A+B) = \inf A + \inf B$

2 Folgen und Reihen

D 2.1.1 Eine Folge a_n in \mathbb{R} ist eine Abbildung

$$a: \mathbb{N} \longrightarrow \mathbb{R}$$

2.1 Konvergenz von Folgen

D 2.1.4 Eine Folge a_n heisst **konvergent**, falls es $a \in \mathbb{R}$ gibt, so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbb{N} : a_n \notin] | a - \epsilon, a + \epsilon[\}$ endlich ist. **L 2.1.3** Dieses a ist **eindeutig**.

L 2.1.5 Jede konvergente Folge ist beschränkt. Achtung: a_n beschränkt $\implies a_n$ konvergent!

L 2.1.6 Eine Folge a_n konvergiert gegen $a = \lim_{n \to \infty} a_n$, falls $\forall \epsilon > 0 \; \exists N \ge 0 \text{ so dass } \forall n \ge N$

$$|a_n - a| < \epsilon$$
.

T 2.1.8 Seien a_n und b_n konvergente Folgen mit $a = \lim_{n \to \infty} a_n$ und $b = \lim_{n \to \infty} b_n$

- 1) Dann ist $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 2) Dann ist $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- 3) Dann ist $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b} \left(b_n \neq 0 \ \forall n \geq 0\right)$
- 4) $\exists K \ge 0 \ \forall n \ge K \ a_n \le b_n \implies a \le b$

T Sandwich Satz Sei $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \alpha$

$$a_n \le c_n \le b_n \ \forall n \ge K \implies \lim_{n \to \infty} c_n = \alpha$$

Die Folge a_n ist divergent, falls sie nicht konvergiert.

2.2 Weierstrass und Anwendungen

D 2.2.1 Falls a_n ist

- 1) monoton wachsend falls $a_n \leq a_{n+1} \ \forall n \geq 0$
- 2) monoton fallend falls $a_n \ge a_{n+1} \ \forall n \ge 0$

T 2.2.2 (Weierstrass) Genau dann, wenn a_n

1) monoton wachsend und nach oben beschränkt ist, dann konvergiert a_n mit Grenzwert

$$\lim_{n \to \infty} a_n = \sup\{a_n \ n \ge 0\}$$

2) monoton fallend und nach unten beschränkt ist, dann **konvergiert** a_n mit Grenzwert

$$\lim_{n\to\infty} a_n = \inf\{a_n \ n \ge 0\}$$

B 2.2.3 $\lim_{n\to\infty} n^a q^n = 0, \ 0 \le q < 1, \ a \in \mathbb{Z}$

B 2.2.5 $\lim_{n \to \infty} \sqrt[n]{n} = 1$

L 2.2.7 (Bernoulli Ungleichung)

$$(1+x)^{n+1} \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1$$

2.3 Limes superior und inferior

D 2.3.0

 $\liminf_{n \to \infty} a_n = \lim_{n \to \infty} b_n, \quad (b_n = \inf\{a_k : k \ge n\})$

$$\lim \sup_{n \to \infty} a_n = \lim_{n \to \infty} c_n, \quad (c_n = \sup\{a_k : k \ge n\})$$

L 2.4.1 Die Folge a_n konvergiert genau dann, falls

- 1. a_n beschränkt ist
- $2. \lim \sup_{n \to \infty} a_n = \lim \inf_{n \to \infty} a_n$

2.4 Cauchy Kriterium

T 2.4.2 (Cauchy Kriterium) Die Folge a_n ist genau dann konvergent und heisst Cauchy-Folge

$$\forall \epsilon > 0 \ \exists N \ge 0 \text{ so dass } |a_n - a_m| \ \forall n, m \ge N$$

2.5 Bolzano-Weierstrass

D 2.5.1 Ein abgeschlossenes Intervall $I \subset \mathbb{R}$

- 1) $[a,b], a \leq b, a,b \in \mathbb{R}$
- 2) $[a, +\infty[, a \in \mathbb{R}$
- 3) $]-\infty, a], a \in \mathbb{R}$
- 4) $]-\infty, +\infty] = \mathbb{R}$

Die Länge eines $\mathcal{L}(I)$ ist definiert als:

- $\mathcal{L}(I) = b a$ im ersten Fall
- $\mathcal{L}(I) = \infty$ in (2), (3), (4)

T 2.5.5 (Cauchy-Cantor)

Sei $I_1 \subseteq I_2 \subseteq \cdots I_n \subseteq \cdots$ eine Folge abgeschlossener Intervall mit $\mathcal{L}(I_1) < +\infty$. Dann gilt

$$\bigcap_{n>1} I_n \neq \emptyset$$

$$\lim_{n \to \infty} \mathcal{L}(I_n) = 0 \implies \left| \bigcap_{n > 1} I_n \right| = 1$$

T 2.5.6 \mathbb{R} ist nicht abzählbar.

D 2.5.7 b_n ist eine Teilfoge von a_n , falls $b_n = a_{l(n)}, \quad l: \mathbb{N} \to \mathbb{N} \text{ und } l(n) > l(n+1)$

T 2.5.9 (Bolzano-Weierstrass) Für jede beschränkte Folge existiert eine konvergente Teilfolge.

2.6 Folgen in \mathbb{R}^d und \mathbb{C}

D 2.6.1 Eine Folge a_n in $\mathbf{R}^{\mathbf{d}}$ ist eine Abbildung

$$a: \mathbb{N} \longrightarrow \mathbf{R}^{\mathbf{d}}$$

D 2.6.2 Eine Folge a_n in $\mathbf{R}^{\mathbf{d}}$ konvergiert gegen $a = \lim_{n \to \infty} a_n$, falls $\forall \epsilon > 0 \ \exists N \ge 0$ so dass $\forall n \ge N$

$$||a_n - a|| < \epsilon.$$

2.7 Reihen

D 2.7.0 Eine Reihe ist eine unendliche Summe

$$S_n := a_1 + a_n \dots = \sum_{k=0}^n a_k$$

D 2.7.1 Die Reihe $\sum_{k=1}^{n} a_k$ ist konvergent, falls die Folge der Partialsummen konvergiert.

$$\sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} S_n$$

B 2.7.2 (Geometrische Reihe) Sei |q| < 1

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

T 2.7.4 Seien $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ konvergent

- (1) $\sum_{k=0}^{\infty} (a_k + b_k) = \sum_{k=0}^{\infty} a_k + \sum_{k=0}^{\infty} a_k$
- (2) $\sum_{k=0}^{\infty} \alpha \cdot a_k = \alpha \cdot \sum_{k=0}^{\infty} a_k$

T 2.7.5 (Cauchy Kriterium) $\sum_{k=0}^{\infty} a_k$ ist ge-

nau dann konvergent, falls

$$\forall \epsilon > 0 \ \exists n \geq 0 \ \text{mit} \ \left| \sum_{k=n}^{m} a_k \right| < \epsilon \quad \forall m \geq n \geq N$$

T 2.7.6 Sei $\sum_{k=0}^{\infty} a_k$ mit $a_k \ge 0 \ \forall k \in \mathbb{N}$. Dann konvergiert $\sum_{k=0}^{\infty} a_k$ genau dann, falls die Folge $S_n = \sum_{k=0}^{n} a_k$ nach oben beschränkt ist

K 2.7.7 (Vergleichssatz) Seien $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ Reihen mit: $0 \le a_k \le b_k$ $\forall k \ge 0$.

$$\sum_{k=0}^{\infty} b_k \text{ konvergent } \Longrightarrow \sum_{k=0}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=0}^{\infty} a_k \text{ divergent } \Longrightarrow \sum_{k=0}^{\infty} b_k \text{ divergent}$$

T 2.7.9 $\sum_{k=0}^{\infty} a_k$ heisst absolut konvergent,

falls
$$\sum_{k=0}^{\infty} |a_k|$$
 konvergiert

T 2.7.10 Eine absolut konvergente Reihe $\sum_{k=0}^{\infty} a_k$ ist auch konvergent und es gilt:

$$\left| \sum_{k=0}^{\infty} a_k \right| \le \sum_{k=0}^{\infty} |a_k|$$

T 2.7.12 Leibniz Sei a_n monoton fallend mit $a_n \ge 0 \ \forall n \ge 0$, $\lim_{n \to \infty} a_n = 0$. Dann konvergiert

$$S := \sum_{k=0}^{\infty} (-1)^{k+1} a_k \text{ und } a_1 - 1_2 \le S \le a_1$$

D 2.7.14 Eine Reihe $\sum_{k=0}^{\infty} a'_n$ ist eine Umordung der Reihe $\sum_{k=0}^{\infty} a_n$, falls es eine bijektive Abbildung $\phi: \mathbb{N}^* \to \mathbb{N}^*$ mit $a'_n = a_{\phi(n)}$

T 2.7.16 Dirichlet Falls $\sum_{k=0}^{\infty} a_n$ absolut konvergiert, dann konvergiert jede Umordnung der Riehe und hat denselben Grenzwert.

T Riemann Sei $\sum_{k=0}^{\infty} a_n$ eine konvergente, aber nicht absolut konvergente Riehe, dann gibt es zu jedem $A \in \mathbb{R} \cup \{\pm \infty\}$ eine Umordnung der Reihe, die gegen A konvergiert.

T Quotientenkriterium Sei $a_n \neq 0 \ \forall n \geq 0$

$$\limsup_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}<1\implies\sum_{n=0}^\infty a_n \text{ konvergiert absolut}$$

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1 \implies \sum_{n=0}^{\infty} a_n \text{ divergiert}$$

T Wurzelkriterium

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=0}^{\infty} a_n \text{ konvergient absolut}$$

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1 \implies \sum_{n=0}^{\infty} a_n \text{ divergient}$$

K 2.7.21 Die Potenzreihe $\sum_{k=0}^{\infty} c_k$ konvergiert für alle $|z| < \rho$ und divergiert für alle $|z| > \rho$

$$\rho = \left\{ \begin{aligned} +\infty & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0 \\ \frac{1}{\limsup_{c \to \infty} \sqrt[k]{|c_k|}} & \text{falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{aligned} \right.$$

Bem: Der Konvergenzbereich ist $\{z \in \mathbb{C} | |z| < \rho\}$

D 2.7.22 $\sum_{k=0}^{\infty} b_k$ ist eine lineare Anordnung der Doppelreihe $\sum_{i,j\geq 0} a_{ij}$, falls es eine Bijektion $\sigma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ gibt mit $b_k = a_{\epsilon(k)}$.

T 2.7.23 Falls $\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \leq B, \quad \forall m \geq 0$

dann konvergiert
$$S_i := \sum_{j=0}^{\infty} a_{ij} \quad \forall i \geq 0$$

dann konvergiert
$$U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geq 0$$

und es gilt
$$\sum_{i=0}^{m} S_i = \sum_{j=0}^{m} U_j$$

T 2.7.24 Das **Cauchy Produkt** der Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ ist die Reihe

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \cdots$$

T 2.7.26 Falls die Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ absolut konvergieren, so knovergiert ihr Cauchy Produkt und es gilt:

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_{j} \right) = \left(\sum_{i=0}^{\infty} a_{i} \right) \left(\sum_{j=0}^{\infty} b_{j} \right)$$

T 2.7.28 Sei $f_n : \mathbb{N} \to \mathbb{R}$ eine Folge, für die gilt:

- (1) $f(j) := \lim_{n \to \infty} \text{ existient } \forall j \in \mathbb{N}$
- (2) Es gibt eine Funktion $g: \mathbb{N} \to [0, \infty[$, so dass
 - $(2.1) |f_n(j)| \le g(j) \quad \forall j \ge 0, \ \forall n \ge 0$
 - (2.2) $\sum_{j=0}^{\infty} g(j)$ konvergiert

Dann folgt $\sum_{j=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j)$

K 2.7.29 Für jedes $z \in \mathbb{C}$ gilt

$$\lim_{n\to\infty}\sum_{j=0}^{\infty}\left(1+\frac{z}{n}\right)^n=\exp(z)$$

3 Stetige Funktionen

3.1 Reelwertige Funktionen

D 3.1.1 Sei $f \in \mathbb{R}^D$

- (1) f ist nach oben beschränkt, falls $f(D) \subset \mathbb{R}$ nach oben beschränkt ist.
- (2) f ist nach unten beschränkt, falls $f(D) \subset \mathbb{R}$ nach unten ebschränkt ist.
- (3) f ist **beschränkt**, falls $f(D) \subset \mathbb{R}$ beschränkt ist.

D 3.1.2 Eine Funktion $f:D\longrightarrow \mathbb{R}$, wobei $D\subset \mathbb{R}$, ist

(1) monoton wachsend, falls $\forall x, y \in D$

$$x \leqslant y \Longrightarrow f(x) \leqslant f(y)$$

(2) streng monoton wachsend, falls $\forall x,y \in D$

$$x < y \Longrightarrow f(x) < f(y)$$

(3) monoton fallend, falls $\forall x, y \in D$

$$x \leqslant y \Longrightarrow f(x) \geqslant f(y)$$

(4) streng monoton fallend, falls $\forall x, y \in D$

$$x < y \Longrightarrow f(x) > f(y)$$

- (5) **monoton**, falls f monoton wachsend oder monoton fallend
- (6) **streng monoton**, falls f streng monoton wachsend oder streng monoton fallend ist.

3.2 Stetigkeit an einem Punkt

D 3.2.1 Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ gilt:

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

D Die Funktion $f: D \longrightarrow \mathbb{R}$ ist stetig falls sie in jedem Punkt von D stetig ist.

4 Stetigkeit an einem Punkt

D Epsilon Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ gilt:

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

T Sequence Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion

 $f:D\longrightarrow \mathbb{R}$ ist genau dann in x_0 stetig, falls für jede Folge $(a_n)_{n\geqslant 1}$ in D

$$\lim_{n \to \infty} a_n = x_0 \Longrightarrow \lim_{n \to \infty} f(a_n) = f(x_0)$$

gilt.

T Sidewise Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls

$$f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$

gilt.

5 Beweise

5.1 Grundlagen

Beweis: $\sup(A+B) \le \sup A + \sup B$ Es gilt $a+b \le \sup A + b \le \sup A + \sup B$ $\implies \sup(A+B) \le \sup A + \sup B$

Beweis: $\sup A + \sup B \le \sup(A+B)$ Es gilt $\forall \epsilon > 0$ $\sup A \le a - \frac{\epsilon}{2}$ und $\sup B \le b - \frac{\epsilon}{2}$ $\implies \sup A + \sup B + \epsilon \le a + b \le \sup(A+B)$

5.2 Folgen und Reihen

T Sandwich Satz Wir nehmen an, dass

- 1. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \alpha$
- $2. \ a_n < c_n < b_n \ \forall n > K$

Es gilt $|a_n - \alpha| < \epsilon \implies -\epsilon < a_n - \alpha$ Es gilt $|b_n - \alpha| < \epsilon \implies +\epsilon > b_n - \alpha$ $\implies -\epsilon < a_n - \alpha \le c_n - \alpha \le b_n - \alpha < \epsilon$ $\implies |c_n - \alpha| < \epsilon \implies \lim_{n \to \infty} c_n = \alpha$