Tecnologia de Segurança

João Marco Silva joaomarco@di.uminho.pt

Concepts

What is information security?

The protection of information/data and its critical elements, including the systems and hardware used to process, store, and transmit the information*.

The C.I.A. triangle

^{*} Source: The Committee on National Security Systems (CNSS)

Concepts

Confidentiality

 ensures that only users/systems with the rights and privileges to access information are able to do so

Integrity

- ensures the consistency of information
 - involves maintaining accuracy, completeness, and trustworthiness of data over its entire life cycle

Availability

ensures authorized users/systems to access information without interference or obstruction

Concepts

Authenticity

 ensures that data is genuine, verifiable, and trusted

Concepts Additional key concepts

- Asset: system resources being protected
 - Hardware
 - Software
 - Data
 - Communication lines & Networks

- Attack: intentional or unintentional act that can damage or otherwise compromise information and the systems that support it
- Exploit: a technique used to compromise a system
- Exposure: a condition or state of being exposed. It exists when a vulnerability is known to an attacker

- Risk: the probability of an unwanted occurrence
- Threat: a category of objects, people, or other entities that represents a danger to an asset
- Vulnerability: a weakness or fault in a system or protection mechanism that opens it to attack or damage

Concepts Additional key concepts

Assets and Example of threats

	Availability	Confidentiality	Integrity
Hardware	Equipment is stolen or disabled, thus denying service	An unencrypted USB drive is stolen	
Software	Programs are deleted, denying access to users	An unauthorized copy of software is produced	A working program is modified, either to cause it to fail during execution or to cause it to do some unintended task
Data	Files are deleted, denying access to users	An unauthorized read of data is performed. An analysis of statistical data reveals underlying data	Existing files are modified or new files are fabicated
Communication lines and Networks	Messages are destroyed or deleted. Communication lines or networks are rendered unavailable	Messages are read. The traffic pattern of messages is observed	Messages are modified, delayed, reordered, or duplicated. False messages are fabricated

Attack surfaces

Reachability and exploitability of system's vulnerabilities

- Network attack surface
- Software attack surface
- Human attack surface

Do you know all the vulnerabilities your personal system is exposed to, right now?

Kernel components

The most severe vulnerability in this section could enable a local malicious application to execute arbitrary code within the context of a privileged process.

CVE	References	Туре	Severity	Component
CVE-2018-20669	A-135368228*	EoP	High	i915 driver
CVE-2019-2181	A-130571081 Upstream kernel	EoP	High	Binder driver

Android's security update summary

- CVE Common Vulnerabilities and Exposures
 - a list of standardized names for vulnerabilities and other information related to publicly known security exposures
 - CVE is maintained by MITRE Corporation which is also responsible for moderating the Editorial Board
 - cve.mitre.org

A closer look - CVE-2017-18249

基CVE-2017-18249 Detail

MODIFIED

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to the information provided.

Current Description

The add_free_nid function in fs/f2fs/node.c in the Linux kernel before 4.12 does not properly track an allocated nid, which allows local users to cause a denial of service (race condition) or possibly have unspecified other impact via concurrent threads.

Source: MITRE

Description Last Modified: 03/26/2018

QUICK INFO

CVE Dictionary Entry:

CVE-2017-18249

NVD Published Date:

03/26/2018

NVD Last Modified:

08/08/2018

A closer look - CVE-2017-18249

Impact

CVSS v3.0 Severity and Metrics:

Base Score: 7.0 HIGH

Vector: AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H (V3

legend)

Impact Score: 5.9

Exploitability Score: 1.0

Attack Vector (AV): Local

Attack Complexity (AC): High

Privileges Required (PR): Low

User Interaction (UI): None

Scope (S): Unchanged

Confidentiality (C): High

Integrity (I): High

Availability (A): High

CVSS v2.0 Severity and Metrics:

Base Score: 4.4 MEDIUM

Vector: (AV:L/AC:M/Au:N/C:P/I:P/A:P) (V2 legend)

Impact Subscore: 6.4

Exploitability Subscore: 3.4

Access Vector (AV): Local

Access Complexity (AC): Medium

Authentication (AU): None

Confidentiality (C): Partial

Integrity (I): Partial

Availability (A): Partial

Additional Information:

Allows unauthorized disclosure of information

Allows unauthorized modification

Allows disruption of service

CVSS - Common Vulnerability Scoring System

CVSS v3.1 Base Metric Group

See also Temporal Metrics & Environmental Metrics

CVSS v3.1: Qualitative severity rating scale

Rating	CVSS Score	
None	0.0	
Low	0.1 - 3.9	
Medium	4.0 - 6.9	
High	7.0 - 8.9	
Critical	9.0 - 10.0	

- Vulnerabilities databases
 - National Vulnerability Database NVD
 - National Institute of Standards and Technology
 - <u>nvd.nist.gov</u>
 - MITRE
 - cve.mitre.org
 - CVE details
 - www.cvedetails.com
 - Rapid7
 - www.rapid7.com/db/vulnerabilities

Weaknesses

- CWE Common Weakness Enumeration
 - Community-developed list of software an hardware weakness types
 - Category system
 - A baseline for weakness identification, mitigation and prevention
 - CWE List v4.2 https://cwe.mitre.org/data/

Weaknesses

- CWE Common Weakness Enumeration
 - CWSS Common Weakness Scoring System

Source: cwe.mitre.org/cwss/cwss-v1.0.1.html

Exploits

★CVE-2016-2107 Detail

MODIFIED

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to the information provided.

Description

The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which allows remote attackers to obtain sensitive cleartext information via a padding-oracle attack against an AES CBC session. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-0169.

Source: MITRE

Description Last Modified: 04/03/2017

OpenSSL vulnerability
Intel Advanced Encryption - New Instructions (AES-NI)

QUICK INFO

CVE Dictionary Entry:

CVE-2016-2107

NVD Published Date:

05/04/2016

NVD Last Modified:

07/18/2018

Exploits

- Exploit Database Exploit-DB
 - www.exploit-db.com

Home Exploits Shellcode Papers Google Hacking Database Submit Search

Search the Exploit Database

Search the Database for Exploits, Papers, and Shellcode. You can even search by CVE and OSVDB identifiers.

Exploits

OpenSSL - Padding Oracle in AES-NI CBC MAC Check

EDB-ID : 39768	Author: Juraj Somorovsky	Published : 2016-05-04
CVE : CVE-2016-2107	Type: Dos	Platform: Multiple
Aliases: N/A	Advisory/Source: Link	Tags: N/A
E-DB Verified: 🎺	Exploit: Download / View Raw	Vulnerable App: N/A

« Previous Exploit

Next Exploit »

```
Source: http://web-in-security.blogspot.ca/2016/05/curious-padding-oracle-in-openssl-cve.html

TLS-Attacker:
https://github.com/RUB-NDS/TLS-Attacker
https://github.com/offensive-security/exploit-database-bin-sploits/raw/master/bin-sploits/39768.zip

You can use TLS-Attacker to build a proof of concept and test your implementation. You just start TLS-Attacker as follows:
java -jar TLS-Attacker-1.0.jar client -workflow_input rsa-overflow.xml -connect $host:$port

The xml configuration file (rsa-overflow.xml) looks then as follows:
```

Hands-on

• Assignment 1