## Plastic Waste and Microplastics

Nadaa Moharram, Ishani Cheshire, Indri Adisoemarta DATASCI 203 Lab 2 December 9, 2024

## **Motivation**



# Research Question

Do countries that have higher plastic waste have higher ingestion of microplastics?

#### **Data Sources**

Microplastic data: NCEI Marine Microplastic Concentrations Map Portal

Plastic waste data by country: Our World in Data



## **Data Wrangling**

Microplastic data does not have associated country, just latitude, longitude, ocean region

Used the **rnaturalearth** library to identify the closest country by distance

Validated by visual inspection and mapping points with R

Does not take into account ocean current movements

| Latitude | Longitude | country | distance_to_country_km |
|----------|-----------|---------|------------------------|
| 34.816   | 26.13     | Greece  | 22.35889312            |
| 36.023   | 29.562    | Turkey  | 17.91744446            |
| 69.82389 | 50.555278 | Russia  | 58.6616098             |

#### **Data Issues**

2019 data **did not include India and China**, so we expanded dataset to
2019 - 2021

#### Other issues:

Very few microplastic points in Indian Ocean

Very few points around Asia, Southeast Asia, and South America

Possible temporal collinearity between samples taken in the same place on different years



## Microplastic Weighting

 To create a weighted measurement where each country has a single measurement based off on the proximity of the observation (how close the microplastic was to the country)

Weight =  $1/(distance + 0.001) \rightarrow (closer distance get higher weights)$ 

#### Aggregate by country:

weighted\_average\_measurement = sum(weight \* measurement) / sum(weight)

#### **Final Dataset**

Our final dataset has **38 data points** (from an original set of 1378 points), one for each country that has the needed weighted microplastic data and total plastic waste emitted

This means we will need to use the more stringent **CLM small sample assumptions** 

```
> summary(weighted df)
  country
                 weighted measurement WasteEmitted MetricTonsYear
Length:43
          Min.
                            0.00
                                    Min.
                                                0.0
Class :character
                1st Ou.: 0.05
                                    1st Ou.:
                                             35.0
Mode :character
                 Median :
                            0.26
                                    Median : 236.5
                 Mean : 1902.55 Mean
                                         : 18713.3
                            0.88
                 3rd Qu.:
                                    3rd Qu.: 3045.0
                        :45109.75
                 Max.
                                    Max.
                                           :356371.0
```

### **Model Structure**

Number Density of Microplastics =  $\beta_0$  +  $\beta_1$  Plastic Waste Emitted to the Ocean

## **Starting on Assumptions**

- 1. IID
- 2. Linear Conditional Expectation (requires finalized model)
- 3. No perfect Collinearity (requires finalized model)
- 4. Homoskedastic Errors (requires finalized model)
- Normal Errors (requires finalized model)

### IID

#### **Independent:**

Countries are never truly independent of each other, and sections of the ocean are not truly independent.

However, these measurements are as independent as can be reasonably expected of this kind of data set.



## IID (cont.)

#### **Identically Distributed:**

The data set combines different sampling methods. We cut all methods which don't measure in the dimension of number density (number of particles over volume).

Still, there appears to be some bias in measurements depending on the sampling method.



## IID (cont.)

However, this difference could be due to different sampling methods being favored in different parts of the world.



## Change our model?

Number Density of Microplastics =  $\beta_0$  +  $\beta_1$  Plastic Waste Emitted to the Ocean +  $\beta_2$  Ekman Dredge Method +  $\beta_3$  Remotely Operated Vehicle

But this would contradict with our current method of taking the weighted average of all plastic measurements... (Also, possible collinearity.)

## **Current Data:**





## **Current Model:**





#### **Current Problems**

- Only kind of independent
- Different sampling methods don't seem identically distributed
- residuals do not seem homoskedastic —> try logged version next
- after cleaning, low # of data points

Suggestions?