

POWER ENGINEERING

#02 SINGLE-PHASE AC POWER SYSTEMS

Semester 1 - 2021/2022

- **□** RLC Components
- AC Voltage/Current Source
 - Instantaneous Voltage/Current
 - Average and RMS Voltage/Current
- **□** AC Power
 - Instantaneous Power
 - Average Power
- Power Factor
- Voltage/Current Phasors and Phasor Diagram
- □ Component Impedance
- Power Triangle
 - Apparent Power
 - Real Power
 - Reactive Power
- Power Efficiency

A SIMPLE ELECTRICAL POWER SYSTEM

Electrical Generator

- ☐ Each component can be represented by an equivalent circuit made up of a combination of simple electrical components: voltage source, resistance, inductance and capacitance
- With the equivalent circuit we can determine component voltages and currents, and then from this determine POWER related properties such as Real Power, Apparent Power, System Efficiency and Power Factor

BASIC PASSIVE ELEMENTS LCR

resistance (R) / conductance (G) unit: ohm (Ω) / siemens (S) Energy Dissipation Element !!!

inductance (L)
unit: henry (H)
Energy Storage Element

capacitance (C)
unit: farad (F)
Energy Storage Element

Voltage-Current Relationship in Time Domain				
	DC	AC		
Resistor Ohm's Law	V = RI	v(t) = Ri(t)		
Inductor		$v(t) = L \frac{di(t)}{dt}$		
Capacitor		$v(t) = \frac{1}{C} \int i(t)dt$		

Behaviors of LCR in time domain

STEADY-STATE AC CIRCUIT

- Circuit in Steady State;
- Excitation Source V_s or I is a sinusoidal function with constant amplitude and constant frequency.
- DC Circuit is a special case of steadystate AC Circuit in the case of frequency
 ω=0

Instantaneous voltage

$$v(\theta) = V_{PK} \sin(\theta - \frac{\pi}{4})$$
$$v(t) = V_{PK} \sin(\omega t - \frac{\pi}{4})$$

Ideal Voltage Source

AVERAGE VALUE

A general periodic function y(t), with period T, has an average or mean value Y_{av} given by:

$$Y_{av} = \frac{1}{T} \int_{0}^{T} y(t) dt$$

The mean value of a sine or cosine function is 0.

$$V_{av} = rac{1}{2\pi} \int_{0}^{2\pi} V_{pk} \sin \theta d\theta$$

$$V_{av} = rac{V_{pk}}{2\pi} \left[-\cos heta
ight]_0^{2\pi}$$
 $V_{av} = rac{V_{pk}}{2\pi} \left[-1 + 1
ight]$

$$V_{av} = \frac{V_{pk}}{2\pi} \left[-1 + 1 \right]$$

$$V_{av} = 0$$

EFFECTIVE OR RMS VALUE

The Root Mean Square (RMS) or Effective value of a general periodic function y(t), with period T, has an effective value:

$$Y_{rms} = \sqrt{\frac{1}{T}} \int_{0}^{T} y(t)^{2} dt$$

$$\downarrow^{I_{de}}$$
identical light bulbs

The mean value of sine/cosine is 0, can not be used to measure the power of an AC circuit. The RMS value is also referred to as the "heating" value since a current passing through a pure resistor results in power being dissipated. RMS value of the AC current I_{ac} is **equivalent** to the DC current I_{dc} passing through a resistor, to produce same heat !!!

RMS VALUE & POWER DISSIPATION

Power Dissipation in resistors

$$p_{dc} = \frac{V_{dc}^2}{R} = I_{dc}^2 R$$

$$p_{av} = \frac{1}{T} \int_0^T v(t)i(t)dt = \frac{1}{T} \int_0^T \frac{v(t)^2}{R} dt$$

$$= \frac{1}{R} \left(\sqrt{\frac{1}{T}} \int_0^T v(t)^2 dt \right)^2 = \frac{v_{rms}^2}{R}$$
 RMS voltage

$$= R \left(\sqrt{\frac{1}{T}} \int_0^T i(t)^2 dt \right)^2 = i_{rms}^2 R$$
RMS
Current

RMS

Instantaneous Power

$$p(t) = v(t)i(t)$$

Average Power

$$p_{av} = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{1}{T} \int_{0}^{T} v(t)i(t)dt$$

$$v_{rms} = \sqrt{\frac{1}{T} \int_0^T v(t)^2 dt}$$

$$i_{rms} = \sqrt{\frac{1}{T} \int_0^T i(t)^2 dt}$$

RMS VALUE OF A SINUSOIDAL WAVEFORM

$$V_{rms} = \sqrt{\left[\frac{1}{\tau} \int_{0}^{\tau} v^{2}(\theta) d\theta\right]} = \sqrt{\left[\frac{1}{2\pi} \int_{0}^{2\pi} V_{pk}^{2} Sin^{2} \theta . d\theta\right]}$$
$$= \sqrt{\left[\frac{V_{pk}^{2}}{2\pi} \int_{0}^{2\pi} \left[\frac{1}{2} (1 - Cos 2\theta)\right] d\theta\right]}$$

$$V_{rms} = \sqrt{\frac{V_{pk}^{2}}{2\pi} \left[\frac{1}{2} \left(\theta - \frac{1}{2} \sin 2\theta \right) \right]_{0}^{2\pi}} = \sqrt{\left[\frac{V_{pk}^{2}}{2\pi} \left[\frac{2\pi}{2} - 0 - 0 + 0 \right] \right]} = \frac{|V_{pk}|}{\sqrt{2}}$$

$$V_{rms} = \frac{|V_{pk}|}{\sqrt{2}}$$

Resistance (Power Dissipation > 0)

Instantaneous Power: $p(t) = v(t) \times i(t)$

Voltage Current

Power

Inductance (Power Dissipation = 0)

$$P_{av}=0$$

The power simply oscillates between the inductor and the supply at twice the supply frequency

Capacitance (Power Dissipation = 0)

$$P_{av}=0$$

The power simply oscillates between the capacitor and the supply at twice the supply frequency

Complex Load (combination of R, L and C)

A general expression for average power where the currents lags (or leads) the voltage by angle ϕ

Complex Load (combination of R, L and C)

$$P_{av} = \frac{1}{\pi} \int_{0}^{\pi} \left(V_{pk} \cdot \sin \theta \right) \cdot \left(I_{pk} \cdot \sin \left(\theta - \phi \right) \right) d\theta$$

$$= \frac{V_{pk} \cdot I_{pk}}{\pi} \left[\int_{0}^{\pi} \left(\sin^{2} \theta \cdot \cos \phi - \sin \theta \cdot \cos \theta \cdot \sin \phi \right) d\theta \right]$$

$$= \left[\frac{V_{pk} \cdot I_{pk} \cdot \cos \phi}{\pi} \int_{0}^{\pi} \sin^{2} \theta d\theta \right] - \left[\frac{V_{pk} \cdot I_{pk} \cdot \sin \phi}{\pi} \int_{0}^{\pi} (\sin \theta \cdot \cos \theta) d\theta \right]$$

$$= V_{rms} \cdot I_{rms} \cdot \cos \phi$$

$$= V_{rms} \cdot I_{rms} \cdot \cos \phi$$

Power Dissipation

$$P_{av} = V_{rms} \cdot I_{rms} \cdot \cos \phi$$

Power Factor

The average power dissipated by an AC load is dependent on the cosine of the angle of the impedance, the term $\cos \Phi$ is referred to as the power factor (**pf**).:

$$\mathbf{pf} = \cos \phi$$

Note: The **power factor** is equal to **0** for a purely inductive or capacitive load; and is equal to **1** for a purely resistive load; in every other case,

$$0 < \mathbf{pf} < 1$$

Power factor is dimensionless, a measure of how effectively the load draws the real power.

An Example

$$\begin{cases} \begin{cases} \uparrow \\ \downarrow \\ \downarrow \end{cases} & I_{S} = \frac{V_{S}}{(30 + j20)\Omega} = \frac{1000 \angle 0^{\circ}}{36.1 \angle 33.7^{\circ}} \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ P_{av} = 27.78 \angle -33.7^{\circ} \\ P_{av} = V_{rms} \cdot I_{rms} \cdot \cos \phi = I_{rms}^{2} R \\ P_{av} = 1000 \times 27.78 \times \cos(33.7^{\circ}) \\ P_{av} = 23112W \\ pf = \cos(33.7^{\circ}) \approx 0.832 \end{cases}$$

COMPLEX OHM'S LAW

Phasor and Impedance are introduced to simplify AC circuit analysis, without complicated calculus (differential equations) of trigonometric function.

PHASOR

Phasor is only used to express **sinusoidal voltage** or **current** variables with complex number for mathematical convenience. **No Real Physical Significance.**

Any sinusoidal signal may be represented in one of two ways:

☐ Instantaneous form in the time domain:

$$v(t) = V_m \cos(\omega t + \varphi_1); \quad i(t) = I_m \cos(\omega t + \varphi_2)$$

☐ Phasor form:

RMS value

$$\mathbf{V}(j\omega) = \frac{V_m}{\sqrt{2}} e^{j\varphi_1} = \frac{V_m}{\sqrt{2}} \angle \varphi_1; \quad \mathbf{I}(j\omega) = \frac{I_m}{\sqrt{2}} e^{j\varphi_2} = \frac{I_m}{\sqrt{2}} \angle \varphi_2$$

Note: $j\omega$ in the notation $V(j\omega)$, indicating $e^{j\omega t}$ dependence of the phasor.

PHASOR DIAGRAM

MPEDANCE

$$\mathbf{Z}(j\omega) = \frac{\mathbf{V}(j\omega)}{\mathbf{I}(j\omega)} = \frac{V_{rms}}{I_{rms}} \angle \phi = R + jX = |Z|(\cos\phi + j\sin\phi)$$

MPEDANCE

Component	Voltage/Current Phase Relationship	Complex Impedance (Cartesian)	Complex Impedance (Polar)
Resistance	Voltage and Current are in phase	$Z_R = R + j0$	$Z_R = R \angle 0^\circ$
Inductance	Current lags the Voltage by 90°	$Z_L = 0 + j\omega L$	$Z_L = \omega L \angle 90^\circ$
Capacitance	Current leads the Voltage by 90°	$Z_{\rm C} = 0 - j/(\omega C)$	$Z_C = \frac{1}{\omega C} \angle -90^{\circ}$

Note: The REACTANCE of an Inductance $X_L = \omega L$ The REACTANCE of a capacitance $X_C = 1/(\omega C)$

An Example of AC CIRCUIT ANALYSIS

2. Impedance

$$Z_{R1} = 50\Omega$$

$$Z_{R2} = 200\Omega$$

$$Z_C = \frac{1}{j\omega C} = -j100\Omega$$
 4. Instantaneous value

3. Ohm's Law

$$\mathbf{I}_{S} = \frac{\mathbf{V}_{S}}{Z_{R1} + Z_{R2} \square Z_{C}} = \frac{\mathbf{V}_{S}}{R_{1} + \frac{R_{2}}{1 + j\omega CR_{2}}}$$

$$= \left(0.083 / \sqrt{2}\right) \angle 0.727 \mathbf{A}$$

$$i_s(t) = 0.083 \cos(100t + 0.727) \text{ A}$$

A PRACTICE QUESTION

Determine the values of V_R and V_L

Note: 1000V is RMS voltage!

Power Triangle

$$\mathbf{S} = \mathbf{\tilde{V}}\mathbf{\tilde{I}}^*$$
 Complex Power *Conjugate
 $\mathbf{S} = V_{rms}I_{rms}\cos\phi + jV_{rms}I_{rms}\sin\phi$
 $= P + jQ$

Apparent power:

$$S = \sqrt{P^2 + Q^2} = V_{rms}I_{rms}$$

Real (average) power:

$$P = P_{av} = V_{rms}I_{rms}\cos\phi = S\cos\phi$$

Reactive power:

$$Q = V_{rms}I_{rms}\sin\phi = S\sin\phi$$

NDUCTIVE LOAD

If the Current **LAGs** the voltage by angle φ (indicating that the load is inductive + resistive) then Reactive Power (Q) is deemed to be Positive and is termed **ABSORBING VAr's**

CAPACITIVE LOAD

If the Current **LEADs** the voltage by angle φ (indicating that the load is capacitive + resistive) then Reactive Power (Q) is deemed to be Negative and is termed **GENERATING VAr's**

Power Efficiency in EPS

Efficiency =
$$\frac{\text{Output Power (W)}}{\text{Input Power (W)}} \times 100\%$$
$$= \frac{\text{Output Power (W)}}{\text{Output Power (W)} + \text{Losses (W)}} \times 100\%$$

Note that Input & Output Power are REAL Powers (W)

AN EXAMPLE

The heating system for a remote monitoring station consists of a diesel generator which outputs 120V/50Hz connected to a Heater:

- 1. The total circuit impedance Z_T
- 2. The supply current **I**_s
- 3. A phasor diagram indicating V_s and I_s
- 4. Apparent Power, Real Power, Reactive Power and Power Factor at the power supply
- 5. The Heater output power
- **6. Power Efficiency** of the heating system

Consider:

$$V = V_{rms} \angle \theta_V$$

Where θ_{V} is the phase angle of the voltage, and

$$I = I_{rms} \angle \theta_I$$

Where θ_i is the phase angle of the current.

We could say that:

$$S = VI = V_{rms} \angle \theta_{V} \times I_{rms} \angle \theta_{I} = V_{rms} I_{rms} \angle (\theta_{V} + \theta_{I})$$

Let's now do the same calculation with the complex conjugate of I (I*)

$$S = VI^* = V_{rms} \angle \theta_V \times I_{rms} \angle - \theta_I = V_{rms} I_{rms} \angle (\theta_V - \theta_I)$$

Which is correct?

P is the real part of S, which is S.cos(θ), where θ is the difference in phase angle between V and I (θ_V - θ_I).

- 1. S=VI* will give the correct real part.
- 2. S=VI will give the wrong real part.
 - Therefore to calculate the correct Real Power we must use S=VI*. [You could use the complex conjugate of V but it is convention to use I*]

Hence, when we calculate Q we use I* and the angle in the power triangle will be positive for a load which has inductive reactance. (The opposite to the power factor angle)

SOLUTION TO EXAMPLE QUESTION

1.
$$Z_T = (0.5 + j4 + 7 + j1)\Omega = 7.5\Omega + j5\Omega = 9.01\angle 33.69^\circ$$

2.
$$I_S = V_S / Z_T = 120 \angle 0^{\circ} / 9.01 \angle 33.69^{\circ} = 13.32 \angle -33.69^{\circ}$$

4.
$$S = V_{Srms} \times I_{Srms}^* = 120 \times 13.32 \approx 1598 \text{VA}$$

 $P = S \cos(33.69^\circ) = I_S^2 \times 0.832 = 1329.6 \text{ W}$
 $Q = S \sin(33.69^\circ) = I_S^2 \times 0.555 = 98.42 \text{ Var}$

5.
$$P_{out} = I_S^2 \times 7 \approx 1242 \text{ W}$$

6.
$$\eta = P_{out} / P = 93.4\%$$

#02 Single-Phase AC Power Systems