(iv)
$$Two - point form: \frac{y-y_1}{x-x_1} = \frac{y_1-y_2}{x_1-x_2}$$

(v) Intercept form:
$$\frac{x}{a} + \frac{y}{b} = 1$$

(vi) Symmetrical form:
$$\frac{y-y_1}{\sin \theta} = \frac{x-x_1}{\cos \theta} = r$$

(vii) Normal form: $x \cos \alpha + y \sin \alpha = p$, (p > 0)

where, m = slope

c = y - intercept

a = x - intercept

b = y - intercept

 θ = inclination of the straight line

 $r = distance\ between\ (x, y) \&\ (x_1, y_1)$

 $\alpha =$ the inclination of the straight line with the \perp from origin in the direction of positive X-axis.

 $p = \bot$ distance of the straight line from origin

- (5) The equation of the straight line passes through the intersecting point of $a_1x + b_1y + c_1 = 0 \& a_2x + b_2y + c_2 = 0$ is $a_1x + b_1y + c_1 + k(a_2x + b_2y + c_2) = 0$ [where, $k \neq 0$, ∞].
- (6) Three lines will be concurrent if one of these three lines passes through the intersecting point of other two lines.
- (7) The angle between two straight lines $y = m_1x + c_1 \& y = m_2x + c_2$ is φ .

Then,
$$\tan \varphi = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

- (8) If two straight lines $y = m_1 x + c_1 \& y = m_2 x + c_2$ are $\| \cdot \|$, then $m_1 = m_2$
- (9) The equation of $\|$ line of the straight line ax + by + c = 0 is ax + by + k = 0 [where, k = constant].
- (10) If two straight lines $y = m_1 x + c_1 \& y = m_2 x + c_2$ are \bot , then $m_1 m_2 = -1$
- (11) The equation of \perp on the straight line ax + by + c = 0 is bx ay + k = 0 [where, k = constant].

(12)

The two points $P(x_1, y_1)$ & $Q(x_2, y_2)$ will be situated in the same side of the straight line ax + by + c = 0 if the expressions $(ax_1 + by_1 + c)$ & $(ax_2 + by_2 + c)$ have same sign. Otherwise, P & Q will be situated in the opposite side of the line ax + by + c = 0.

(13) If $c \& (ax_1 + by_1 + c)$ have same sign, then

 $P(x_1, y_1)$ will be situated in the side of the line ax + by + c = 0 in which the origin (0,0) exists.