JEGYZŐKÖNYV

Operációs rendszerek BSc 2022. tavasz féléves feladat

Készítette: Tucsa Eszter Boglárka

Neptunkód: G2QWPO

1. Feladat Leírása:

4. Írjon C nyelvű programot, ami:

- Létrehoz két csővezetéket (két file deszkriptor párt), elforkol.
- A szülő elküldi a saját pidjét a gyermeknek az egyik csövön.
- A gyermek kiírja a képernyőre és visszaküldi, az övét a másik csövön.
- Megszűnnek a processek (a szülő megvárja a gyereket).
- Irjon C nyelvu programot, ami
 letrehoz ket csovezeteket (ket file deszkriptor part)
 elforkol
 a szulo elkuldi a sajat pidjet a gyerkmeknek az egyik csovon
 a gyermek kiirja a kepernyore es visszkuldi egy az ovet a masik csovon
 megszunnek a processzek (a szulo megvarja a gyereket)

Elkészítés lépései:

- Feladatértelmezés, fordítás magyarról-magyarra, majd magyarról körül-belüli kódra.
- Kód fejben megtervezése, nagyvonalakban, majd CodeBlocks megnyitása.
 - Megfelelő header állományok includálása, hogy a megfelelő

```
metódusokat
/műveleteket #include <stdio.h>
lehessen #include <stdlib.h>
használni #include <sys/wait.h>
finclude <sys/wait.h>
finclude <unistd.h>

(pl.:
getpid(), vagy a fork() az unistd.h -ban.)
```

- Feladat elemi részekre bontása, először is:
 - o 2 csővezeték kell, egy a szülőnek és egy a gyerek processnek.
 - Létrehozom a csővezetékeket és kezelem a sikertelen létrehozás kivételt:

```
int main()
{
    // 2 csovezetek:
    // - parent_fds: Amit a szulo hasznal hogy a gyereknek irjon
    // - child_fds: Amit a gyerek hasznal hogy a szulonek irjon
    int parent_fds[2], child_fds[2];

// olvasas:[0] - iras:[1]
    if (pipe(parent_fds) != 0 || pipe(child_fds) != 0)
    {
        printf("Csovek letrehozasa sikertelen!\n");
        return EXIT_FAILURE;
    }
}
```

 Ezt követően elforkolom a gyermek processt, itt is kezelem a sikertelen létrehozás kivételt:

```
// Gyerek processz forkolas
int child = fork();

if (child < 0)
{
    printf("Sikertelen forkolas!\n");
    return EXIT_FAILURE;
}</pre>
```

 Ha a fork sikeres volt, lezárom a csővezetékek megfelelő "végeit", majd kiolvastatom a gyermekkel a parent pid-jét, és kiíratom a képernyőre az eredményt, majd lezárom a szülő vezetéket olvasásra is.

```
else if (child == 0)
{
    close(child_fds[0]);
    close(parent_fds[1]);

    // Olvasas szulo csovezetekbol
    int parenttol;
    read(parent_fds[0], &parenttol, sizeof(parenttol));
    printf("GYEREK - PID = %d: Beolvastam a szulotol: %d\n", (int)getpid(), parenttol);
    close(parent_fds[0]);
```

 Lekérdezem a gyerek pidjét és beíratom a saját csővezetékébe, hogy a szülő kiolvashassa, majd a gyerek vezetékének az író részét lezárom:

```
// PID irasa a gyerek vezetékbe hogy a szulo kiolvassa
    int pid2=getpid();
write(child_fds[1], &pid2, sizeof(pid2));
close(child_fds[1]);
printf("GYEREK - PID = %d: Rairtam a PID-em a csovezetekre!\n\n", pid2);
```

• Egyéb esetben (ha a fork() pozitív értéket adott vissza) a szülő processhez ugrik, itt lezárom a csővezetékeket, lekérdezem és beíratom a szülő pidjét saját csővezetékébe, hogy azt majd a gyerek process ki tudja olvasni onnan, majd lezárom a csővezetékre írást:

 Ekkor fog majd a gyermek process színre lépni a 0 értékkel, és végrehajtja a neki kijelölt feladatokat.
 Ezt követően az irányítás ismét a szülő processhez kerül, ami most kiolvassa a gyerek csővezetékéből a gyerek pidjét, majd pedig kiíratom a képernyőre:

```
// Olvasas gyerek csovezetekbol
int childtol;
read(child_fds[0], &childtol, sizeof(childtol));

close(child_fds[0]);
printf("SZULO - PID = %d: Csovezetekrol olvasott: %d\n", (int)getpid(), childtol);
}
return 0;
```

 Lefuttatom, örülök, hogy működik, szépen lejegyzem a jegyzőkönyvbe, amit lekell, és beillesztem a futtatási eredményt.

A futtatás eredménye:

2. Feladat:

- 9. Adott az alábbi terhelés esetén a rendszer. határozza meg az indulás, befejezés, várakozás, átlag várakozás, körülfordulás, átlagos körülfordulás, illetve válaszidő és átlag válaszidő, valamint a CPU kihasználtság értékeit az RR:5ms ütemezési algoritmusok mellett! (cs: 0,1ms, sch: 0,1ms) (kiinduló táblázat a képen) Ábrázolja Gantt diagram segítségével az aktív/várakozó processek futásának menetét! Magyarázza a kapott eredményt!
 - 9. Adott az alábbi terhelés esetén a rendszer. Határozza meg az *indulás, befejezés,* várakozás/átl várakozás és körülfordulás/átlagos körülfordulás, válasz/átl. válaszidő és a CPU kihasználtság értékeket az RR:5 ms ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

	P1	P2	Р3	P4
Érkezés	0	8	12	20
CPU idő	15	7	26	10
Indulás				
Befejezés				
Várakozás				

Ábrázolja <u>Gantt</u> diagram segítségével az <u>aktív/várakozó processzek</u> futásának menetét. Magyarázza a kapott eredményeket!

Megoldás lépései:

- Először, is agyi fogaskerekek beindítása:
 - RR=Adott process csak a megadott időhosszúságig futhat. Ez itt 5ms, tehát egyszerre egy process maximum 5 ms-ig futhat, ennek leteltével a process a befejezés idejében úrja érkezik, a CPU időigénye viszont az 5mssel csökkenni fog (kivéve, ha az időigény kevesebb volt a max kiszabottnál, akkor már

nem fog ismét érkezni és nem marad semmi igénye, ő kész van, befejezte végleg a futást.). Utána megnézzük, hogy a befejezési ideig érkezett-e másik process, ha igen, akkor az fog maximum a max kiszabott ideig futni. És ez így megy tovább.

- o <u>Indulási idő</u>: 0, ha az első futó process, ellenkező esetben mindig az előző process befejezési ideje.
- <u>Várakozás</u>: Az érkezés és az indulás hányadosa, azt mutatja meg, mennyit kellet várnia a processnek a futásáig. Az <u>átlag várakozás</u> ezeknek az átlaga.
- Körülfordulás: Mennyi időbe telik, amég a process teljesen lefut. A várakozási idő és a process végrehajtásához szükséges idő összege. Ezek átlaga az átlag körülfordulás.
- <u>Válaszidő:</u> Egy process érkezéstől számított első reakciójáig eltelt idő. (Tulajdonképpen RR esetén mindenhol az első várakozási idők, FCFS SJF esetén megegyezik a várakozási időkkel.) Az <u>átlag válaszidő</u> ezeknek az átlaga.
- Schedule (sch): Processek (újra) rendezése. Ez történik minden olyan esetben, amikor az összes bent lévő process végigfutott (legalább 1x a max időkeretig). Jelen esetben ez a "rendező folyamat" 0,1ms-ig tart.
- Context Switch (cs): Process váltás esetén. Pl.:
 P1 befejezi futását, ekkor a futás joga egy tfh. P2
 processhez kerül, akkor egy context switch van köztük. Jelen esetben ez is 0,1ms.

- O CPU kihasználtság: Az összes [CPU idő+összes cs+összes sch] (tehát a teljes-teljes CPU idő)-[összes cs+összes sch] (, mivel azért mégse process fut ezidő alatt úgyhogy mégiscsak olyan kis haszontalan idő) / a teljes-teljes CPU idő (mert azért mégiscsak fontos a schedule meg a context switch is). Ez *100 és megvan százalékosan.
- Következő lépés: szépen átláthatóan kézzel megoldani (én papíron szeretem, Excelben hamarabb elnézem a sorokat-oszlopokat).
- Ezt követően (ha pl.: esetemben papíron csináltam)
 bemásolni Excel-be. Szépen formázni, hogy átlátható legyen.
- Segéd táblázat létrehozása csak és kizárólag azért, hogy egyáltalán lehessen róla Gantt diagramot csinálni.
- Képernyőkép, és a jegyzőkönyvbe szépen beilleszteni.

Az eredmények:

1				Félév	es Felada	t									
2	RR:5ms	P1	P2	P3	P4			RR: 5MS							
3	Érkezés	0,5,10	8, 15	12, 20, 37, 47, 52, 57	20, 25										
4	CPU idő	15, 10, 5	7, 2	26, 21, 16, 11, 6, 1	10, 5				■ Érkez	és 🔳 CPU idő	i Indulás	Befejez	és Várako	ozás	
5	Indulás	0, 5, 25	10, 30	15, 32, 42, 47, 52, 57	20, 37										
6	Befejezés	5, 10, 30	15, 32	20, 37, 47, 52, 57, 58	25, 42				37 16 42 58 5						
7	Várakozás	0, 0, 15	2, 15	3, 12, 5, 0, 0, 0	0, 12			P4-2KOR							
8	Körfordulási idő	30	24	46	22			P3-2KOR							
9	Válaszidő	0	2	3	0			P1-2KOR							
10								P4			25 (
11	CPU kihasználtság:	98%		sch:	0,1ms	3x		P3			20 3				
12	Átlag várakozási idő:	7,7		cs:	0,1ms	8x		P2							
13	Átlag körfordulási idő:	30,5						P1	15 010						
14	Átlag válaszidő:	1,25								•					
15															
16	RR:5ms	P1	P2	P3	P4	P1-2kor	P2-2kor	P3-2kor	P4-2kor	P3-tobbi	<- szép	diagram	n segéd		
17	Érkezés	0	8	12	20	10	15	20	25	37					
18	CPU idő	15	7	26	10	5	2	21	5	16					
19	Indulás	0	10	15	20	25	30	32	37	42					
20	Befejezés	10	15	20	25	30	32	37	42	58					
21	Várakozás	0	2	3	0	15	15	17	12	5					
22	Körf: sum(vár)+sum(cpu)														
23		30	24	46	22										
24															
25 26					Sorrend										
26				p1-p1-p2	p1-p1-p2-p3-p4-p1-p2-p3-p4-p3-p3										
27															