Théorèmes de base et modélisation des réseaux lineaires

Table des matières

1	Réseau à une maille : Loi de Pouillet
2	Réseau quelconque : Lois de kirchhoff
3	Potentiel de noeud-théorème de Millman 3.1 Loi des noeuds en termes de potentiels
4	Modélisation des réseaux lineaires : théorèmes de bases 4.1 superposition des états-théorème d'Helmoltz
	4.2 Théorème de Thevenin
	4.3 Théorème de Norton
	4.4 Application : pont de Wheatston
	4.4.1 Modélisation du pont par le générateur de Thevenin (e_{eq}, R_{eq}) .
	4.4.2 Modélisation de Norton

Un réseau électrique est un système de dipôles électrocinétiques, reliées entre eux par des fils conducteurs de résistance négligeable . Ce réseau est dit lineaire lorsqu'il ne fait intervenir que des dipôles actifs (source de tension ou de courant) et passifs (résistances...) lineaires .

1 Réseau à une maille : Loi de Pouillet

Considérons la maille suivante :

Loi des mailles : $u + u_1 + u_2 - e_1 + e_2 = 0 \Rightarrow Ri + r_1i + r_2i - e_1 + e_2 = 0$

$$i = \frac{e_1 - e_2}{R + r_1 + r_2}$$

• Généralisation : Loi de Pouillet

Pour une maille comportant $D_k(e_k, r_k)$ générateurs et d'autres resistors R la loi de Pouillet s'écrit sous la forme :

$$i = \frac{\sum_{k} \varepsilon_{k} e_{k}}{R + \sum_{k} r_{k}}$$

 $\varepsilon_k = +1$ pour e_k suivant le sens de i

 $\varepsilon_k = -1$ pour le cas contraire

2 Réseau quelconque : Lois de kirchhoff

Pour déterminer i_k dans un réseau quelconque on utilise les lois de kirchhoff

▶ Loi des Noeuds : $\sum_{k} \varepsilon_k i_k = 0$

▶ Loi des mailles : $\sum_{k} \varepsilon_k u_k = 0$

• Application : Circuit comportant un transistor

•Exprimer la tension u_c en fonction de e, β, R_c, R_E et r_B

La loi des Noeuds au point E : $i_E=\beta i_B+i_B=(\beta+1)i_B$ La maille ABEMA : $e=r_Bi_B+R_Ei_E=[r_B+(\beta+1)R_E]i_B$ $u_c=-\beta i_BR_c$

$$u_c = -\frac{\beta R_c}{r_B + (\beta + 1)R_E}e$$

3 Potentiel de noeud-théorème de Millman

3.1 Loi des noeuds en termes de potentiels

Considérons le montage suivant :

 (e_1, r_1) générateur de tension

 (η_2, r_2) générateur de courant

 v_N le potentiel au noeud N (commune entre les 3 branches)

 v_k le potentiel au noeud A_k

on a
$$v_1 - v_N = r_1 i_1 - e_1$$

$$i_1 = g_1(e_1 + v_1 - v_N)$$

$$i_2 = \eta_2 + g_2(v_2 - v_N)$$

$$i_3 = g_3(v_3 - v_N)$$

la loi des noeuds au pt $N: i_1 + i_2 + i_3 = 0$

$$\Rightarrow g_1(v_1 - v_N) + g_2(v_2 - v_N) + g_3(v_3 - v_N) + g_1e_1 + \eta_2 = 0$$

Généralisation

Pour n branches (d'indice k) parvenant en N et comportant éventuellement des sources de tension ou de courant la relation se généralise

$$\sum_{k} g_{k}[(V_{k} - V_{N}) + \varepsilon_{k}e_{k}] + \sum_{k} \varepsilon_{k}\eta_{k} = 0$$

 $\varepsilon_k = +1$ si e_k ou η_k orienté vers N .

3.2 Théorème de Millman

Il s'agit d'une variante de la loi de des noeuds en terme de potentiel

$$(\sum_{k} g_{k})V_{N} = \sum_{k} g_{k}(V_{k} + \varepsilon_{k}e_{k}) + \sum_{k} \varepsilon_{k}\eta_{k}$$

$$V_N = \frac{\sum_k g_k(V_k + \varepsilon_k e_k) + \sum_k \varepsilon_k \eta_k}{\sum_k g_k}$$

 $\varepsilon_k = 1$ si e_k ou η_k orientés vers N

En pratique les points A_k sont reliés à la masse $V_k=0$ donc le théorème de Millman devient :

$$V_N = V_N - V_{masse} = \frac{\sum_k g_k \varepsilon_k e_k + \sum_k \varepsilon_k \eta_k}{\sum_k g_k}$$

Application

Exprimer l'intensité i traversant la résistance de charge R en fonction des composantes du réseau

Théorème de Millman
$$u=V_N-V_M=\dfrac{\dfrac{e_1}{2R_1}-\dfrac{e_2}{R_2}+\eta}{\dfrac{1}{2R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+\dfrac{1}{R}}=Ri$$

$$i = \frac{1}{R} \frac{\frac{e_1}{2R_1} - \frac{e_2}{R_2} + \eta}{\frac{1}{2R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R}}$$

4 Modélisation des réseaux lineaires : théorèmes de bases

4.1 superposition des états-théorème d'Helmoltz

L'état éléctrique d'un réseau lineaire comportant une distribution quelconque de sources (tension ou courant) est obtenu en superposant les états associés à chaque source supposée seule dans le réseau .

- ▶ l'intensité du courant circulant dans une branche est la somme des intensités produites par chaque source supposée seule (on éteint les autres sources) .
- ▶ la tension aux bornes d'un dipôle est la somme des tensions produites par chaque source supposée seule .
- Remarque : En pratique on éteint une source indépendante (libre) de manière suivante :
 - ▶ source de tension est remplacée par un court circuit (fil conducteur)
 - ▶ source de courant est remplacée par un circuit ouvert(coupe-circuit)

Application

Exprimer l'intensité i du courant circulant dans la résistance R en superposant deux états éléctriques du réseau .

- ► Etat 1 ($e_1 = 0, \eta_2$) correspond au courant i_1
- ▶ Etat 2 $(e_1, \eta_2 = 0)$ correspond au courant i_2

$$i = i_1 + i_2$$

 \bullet si on éteint la source e_1 on obtient un diviseur de courant

 \bullet pour l'état 2 on utilise le modèle de Norton

Donc

$$i = i_1 + i_2 = \frac{\frac{1}{R}}{\frac{1}{R} + \frac{1}{r_1} + \frac{1}{r_2}} (\frac{e_1}{r_1} + \eta_2)$$

4.2 Théorème de Thevenin

Un réseau dipôlaire lineaire, entre deux bornes A et B, peut être modélisé par une source de tension ou générateur de Thevenin .

- \blacktriangleright de f.e.m e_{eq} égale à la tension en circuit ouvert entre A et B : $e_{eq}=(u_{AB})_0$
- \blacktriangleright de résistance interne égale à la résistance équivalente R_{eq} du réseau dipôlaire passif (aprés extinction des sources) entre A et B.

4.3 Théorème de Norton

Un réseau dipôlaire lineaire, entre A et B, peut être modélisé par une source de courant ou générateur de Norton :

- \blacktriangleright de C.e.m η_{eq} égale au courant de court-circuit, entrant en B dans le réseau, A et B étant reliées par un fil conducteur.
- \blacktriangleright de conductance $G_{eq} = \frac{1}{R_{eq}} (R_{eq} \text{ en parallèle avec la source libre}).$

4.4 Application : pont de Wheatston

Le pont de Wheatston est dit équilibré lorsque le courant i qui circule dans le galvanomètre de résistance r est nul .

4.4.1 Modélisation du pont par le générateur de Thevenin (e_{eq}, R_{eq})

► Calcul de e_{eq} $e_{eq} = (u_{AC})_0$ le circuit est ouvert entre A et C (en enlève la branche AC) $i_2 = i_4$ et $i_1 = i_3$ $e = (P+X)i_1 = (Q+R)i_2$ $e_{eq} = -Pi_1 + Qi_2 = e(\frac{Q}{Q+R} - \frac{P}{P+X}) = e\frac{XQ-RP}{(Q+R)(P+X)}$ c'est la f.e.m de

Thevenin ightharpoonup Calcul de R_{eq}

$$R_{eq} = (P//X) + (Q//R) \Rightarrow R_{eq} = \frac{PX}{P+X} + \frac{RQ}{R+Q}$$

Le courant $i = \frac{e_{eq}}{R_{eq} + r}$ loi de Pouillet

l'équilibre du pont exige $i=0 \Rightarrow R_{eq}=0$ donc

$$XQ = PR$$

 \bullet Utilité du pont : le pont permet de déterminer la valeur de la résistance X inconue

4.4.2 Modélisation de Norton

$$\begin{split} i &= \frac{e_{eq}}{R_{eq} + r} \\ i &= 0 \Rightarrow XQ = PR \end{split}$$