An introduction to GAM(M)s

Stefano Coretta

12/07/2018

Time travel...

$$y = 3 + 2x$$

where $x = (2, 4, 5, 8, 10, 23, 36)$

- ightharpoonup In science, we have x and y...
- ▶ for example, vowel duration and VOT

- ▶ The formula: $y = \beta_0 + \beta_1 x$
 - $ightharpoonup \beta_0$ is the **intercept**
 - \triangleright β_1 is the **slope**
- ▶ We know x and y
 - we need to estimate β_0 , $\beta_1 = \hat{\beta}_0$, $\hat{\beta}_1$
- We can add more predictors
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$
- ▶ $lm(y \sim x, data)$ ('y as a function of x')

How to account for non-linearity in a linear model?

- ► Use higher-degree polynomials
 - quadratic: $y = \beta_0 + \beta_1 x + \beta_2 x^2$
 - cubic: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$
 - *n*th: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_n x^n$

Generalised additive models

- ► Genrealised Additive Models
- $ightharpoonup y = f(x) + \epsilon$
 - f(x) = 'some function of x' (or smooth function)

Smooth terms

- LMs have parametric terms
 - $\triangleright \beta_n x_n \text{ (x in R)}$
 - linear effects
- GAMs add (non-parametric) smooth terms (or simply smooths)
 - ightharpoonup f(x), s(x) in R
 - non-linear effects
- ▶ gam(y ~ s(x), data), 'y as some function of x'

Basis functions

- polynomials are a type of basis function
 - ▶ linear regression is the simplest polynomial (degree 1)
- **smoothing splines** are another type
 - there are several kinds of splines
 - each with their own basis functions