Replication study of MAML in Reinforcement Learning

Paper: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks by Chelsea Finn et. al

By André Henkel
Sommerterm 2020
University of Ulm
Institut für Neuroinformatik
Due Date: 18.08.2020

Scope of study

- Replication study of MAML in Reinforcement Learning
- Using 2D Navigation task
- Replicating the results of the paper
- Testing different setups
- Discuss found results and differences

Why Meta-learning?

- Adapt to a new task quickly
- Few experience and updates
- For 2D Navigation:
 - Target perception through negative distance as reward
 - Observation includes the current position

MAML

- Model-agnostic meta-learning
- Train the model towards an initialization which adapts quickly to new tasks

MAML

- Initialization
- Inner-update
- Meta-update
- Loss of multiple tasks
- The paper askes three questions:
 - Quick adaptation
 - Multiple updates
 - Many domains

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using f_{θ} in \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta'_i}$ in \mathcal{T}_i
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
- 11: end while

Implementation

- Python, Pytorch
- Using TRPO for the meta-optimization
- Using most of the parameters as the authors
- Difference in step-sizes, policy variance and Neural Network output

Testing and evaluation

- Display and test script
- Task distribution
- Setup for equal evaluation
- Tested setups:
 - Hidden layer sizes
 - Variance(exploration)
 - Learning rate
 - Meta-updates
 - Normal training
 - Out of meta range adaptation

Adaptation comparison

maml learning

- 100 units per HL
- 20 Tasks
- Errorbar(min/max)
- MAML paper comparison

step sizes: [[0.01. 0.002. 0.002. 0.0021. [0.1. 0.02. 0.02. 0.021]

16 Units

- 16 Units per HL
- MAML still good
- Pretrained slightly worse

maml learning

Number of update steps step sizes: [[0.01, 0.002, 0.002, 0.002], [0.1, 0.01, 0.01, 0.01]]

Effect of Meta-Updates

- 280 meta-updates in light orange performs best
- Same tasks comparison
- Just 80 updates has big min/max span and performs worse
- Empirically no more learning after
 ~380 updates

maml learning

Number of update steps step sizes: [[0.01, 0.002, 0.002, 0.002], [0.01, 0.002, 0.002], [0.01, 0.002, 0.002], [0.01, 0.002, 0.002]

Out of range task performance

- Showing how a MAML pretrained model performs on tasks out of the meta-learned range
- Goal position |1|-|2| each direction. Usually 0.5

Variance

- In official Github repo a variance with 1.0 and a FC output is taken
- In the replication study a sigma value of 0.1 and an tanh for the NN output is used.

Discussion

- Replicated results
- Initial paper questions could be answered
- Notable differences in implementation
- Other aspects and performances were tested