

Computer Vision

Lecture 5 Line Detection

School of Computer Science and Technology

Ying Fu

Line Detection

 Why detect lines? Many objects characterized by presence of straight lines

 Wait, why aren't we done just by running edge detection?

Outline

- Hough transform
- RANSAC

Intro to Hough transform

- The Hough transform (HT) can be used to detect lines.
- It was introduced in 1962 (Hough 1962) and first used to find lines in images a decade later (Duda1972).
- Our goal with the Hough Transform is to find the location of lines in images.
- Hough transform can detect lines, circles and other structures ONLY if their parametric equation is known.
- It can give robust detection under noise and partial occlusion

Prior to Hough transform

- Assume that we have performed edge detection, for example, by thresholding the gradient magnitude image.
- Thus, we have some pixels that may partially describe the boundary of some objects.

Input Image

Image Gradients

Edge map(binary image)

Naïve Line Detection

- For every pair of edge pixels
 - Compute equation of line
 - Check if other pixels satisfy equation
- Complexity?
 - O(N²) for an image with N edge pixels
- We can do better with the Hough Transform!

Edge map (binary image)

- We wish to find sets of pixels that make up straight lines.
- First step is to transform edge points into a new space.
- Consider an edge point of known coordinates (x_i, y_i) :
 - -There are many potential lines passing through the point (x_i, y_i) .
- This family of lines have the form $y_i = a * x_i + b$.

- This family of lines have the form $y_i = \mathbf{a} * x_i + \mathbf{b}$.
- Note (x_i, y_i) are constants, while (a, b) can change. This gives rise to a new space where (a, b) are the variables.
- That means, a point (x_i, y_i) transforms into a line in the (a, b) space: $b = -x_i * a + y_i$.

- This family of lines have the form $y_i = a * x_i + b$.
- Note (x_i, y_i) are constants, while (a, b) can change. This gives rise to a new space where (a, b) are the variables.
- That means, a point (x_i, y_i) transforms into a line in the (a, b) space: $b = -x_i * a + y_i$.
- Another edge point (x_2, y_2) will give rise to another line in the (a, b) space.

- Colinear points in the (x, y) space transform into lines in the (a, b) space that intersect at a single point (a', b').
- We can detect lines by finding such intersection points (a',b') in the (a,b) space.
- Our resulting line equation in the original space is y = a' * x + b'.

- We efficiently find the intersection points in the (a, b) space by quantizing it into cells.
- Instead of transforming a point to an explicit line, we vote on the discrete cells that are 'activated' by the transformed line in (a, b).

- We efficiently find the intersection points in the (a, b) space by quantizing it into cells.
- Instead of transforming a point to an explicit line, we vote on the discrete cells that are 'activated' by the transformed line in (a, b).

- We efficiently find the intersection points in the (a, b) space by quantizing it into cells.
- Instead of transforming a point to an explicit line, we vote on the discrete cells that are 'activated' by the transformed line in (a, b).
- Cells that receive more than a certain number of votes are assumed to correspond to lines in (x, y) space.

Hough Transform Algorithm

- For each (x, y) edge point:
 - Vote on cells that satisfy the corresponding (a, b) line equation
- Find cells with more votes than threshold.
- Complexity?
 - Linear on number of edge points
 - Linear on number of accumulator cells

Output of Hough transform

Here are the top 20 most voted lines in the image

Other Hough transformations

- We can represent lines as polar coordinates instead of y = a * x + b
- Polar coordinate representation: $x * \cos \theta + y * \sin \theta = \rho$
- A vertical line will have $\theta = 90^{\circ}$ and ρ equal to the intercept with the x-axis.
- A horizontal line will have $\theta = 0^{\circ}$ and ρ equal to the intercept with the y-axis.
- Note that lines in (x, y) space are not lines in (ρ, θ) space, unlike (a, b) space

Problems with parameterization —

Euclidean coordinate

How big does the accumulator need to be for the parameterization (a,b) ?

The space of a is huge!

$$-\infty \le a \le \infty$$

The space of b is huge!

$$-\infty \le b \le \infty$$

Better Parameterization

Polar coordinate

$$x\cos\theta + y\sin\theta = \rho$$

Given points (x_i, y_i) find (ρ, θ)

Hough Space Sinusoid

$$0 \le \theta \le 2\pi$$

$$0 \le \rho \le \rho_{\text{max}}$$

(Finite Accumulator Array Size)

Example video

Demo

Remarks

Advantages:

- Conceptually simple.
- Easy implementation.
- Handles missing and occluded data very gracefully.
- Can be adapted to many types of forms, not just lines.

Disadvantages:

- Computationally complex for objects with many parameters.
- Looks for only one single type of object.
- Can be "fooled" by "apparent lines".
- The length and the position of a line segment cannot be determined.
- Co-linear line segments cannot be separated.

Outline

- Hough transform
- RANSAC

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC loop

Repeat for k iterations:

- ① Randomly select a seed group of points on which to perform a model estimate (e.g., a group of edge points)
- 2 Compute model parameters from seed group
- 3 Calculate distances and find inliers to this model
- 4 If the number of inliers is sufficiently large, recompute least-squares estimate of model on all of the inliers
- -Keep the model with the largest number of inliers

- Task: Estimate the best line
 - How many points do we need to estimate the line?

- Task: Estimate the best line
 - How many points do we need to estimate the line?

RANSAC algorithm

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

```
Determine:
    n — the smallest number of points required
    k — the number of iterations required
    t — the threshold used to identify a point that fits well
    d — the number of nearby points required
       to assert a model fits well
Until k iterations have occurred
    Draw a sample of n points from the data
       uniformly and at random
    Fit to that set of n points
    For each data point outside the sample
       Test the distance from the point to the line
         against t; if the distance from the point to the line
         is less than t, the point is close
    end
    If there are d or more points close to the line
       then there is a good fit. Refit the line using all
       these points.
end
Use the best fit from this collection, using the
  fitting error as a criterion
```

RANSAC: How many iterations " k****

- How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of n points is correct: w^n
- Prob. that a single sample of n points fails: $1 w^n$
- Prob. that all k samples fail is: $(1 w^n)^k$
- Prob. that at least one of the k samples is correct: $1 (1 w^n)^k$
- => Choose *k* high enough to keep this below desired failure rate.

RANSAC: Computed k(p=0.99)

Sample size	Proportion of outliers						
n	5 %	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Refining RANSAC estimate

- RANSAC computes its best estimate from a minimal sample of *n* points, and divides all data points into inliers and outliers using this estimate.
- We can improve this initial estimate by estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with reclassification as inlier/outlier.

RANSAC: Pros and Cons

Pros:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

Cons:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, the Hough transform, can handle high percentage of outliers

References

- Basic reading:
 - Szeliski textbook, Chapter 3.2, 4,1