ECE 469 Project 3 Part A Tamanna Ravi Rupani 665679988 Niranjani Venkatesan 675456032

Workload report: How many hours have you spent on this part? Which activity takes the most significant amount of time? This will not affect your grade (unless omitted).

Topic	No of hours
Understanding and studying the FSM and Control Word	1.5
Understanding Multi-Cycle MIPS	2
Execution of Controller in SystemVerilog and debugging errors	2
Execution of Datapath in SystemVerilog and debugging errors	2
Quartus Part	0.5
Report Writing	1.5
Total	9.5

Understanding the Multicycle MIPS, writing the code accordingly took longer time

A completed Main Decoder output table (Table 4).

							I						
State	PC	Me	IR	Reg	AL	Br	0	Me	Re	ALUS	PCS	ALU	FSM
(Nam	Wr	mW	Wr	Wri	USr	an	r	mto	gD	rcB[1:	rc[1:	Op[1	Control
e)	ite	rite	ite	te	cA	ch	D	Reg	st	0]	0]	:0]	Word
0	110	1110	110	te	C/ 1	CII		Reg	50	O J	O J	.0]	Word
(Fetc													
h)	1	0	1	0	0	0	0	0	0	01	00	00	0x5010
1	_		_							01	0.0	0.0	0.12 0 1 0
(Dec													
ode)	0	0	0	0	0	0	0	0	0	11	00	00	0x0030
2													
(Me													
mAdr													
)	0	0	0	0	1	0	0	0	0	10	00	00	0x0420
3													
(Me													
mRd)	0	0	0	0	0	0	1	0	0	00	00	00	0x0100
4													
(Me													
mWB													
)	0	0	0	1	0	0	0	1	0	00	00	00	0x0880
5													
(Me													
mWr)	0	1	0	0	0	0	1	0	0	00	00	00	0x2100
6													
(Rtyp													
eEx)	0	0	0	0	1	0	0	0	0	00	00	10	0x0402
7													
(Rtyp													
eWB)	0	0	0	1	0	0	0	0	1	00	00	00	0x0840
8													
(Beq	_	_		_					_				
Ex)	0	0	0	0	1	1	0	0	0	00	01	01	0x0605
9													
(Addi										1.0			
Ex)	0	0	0	0	1	0	0	0	0	10	00	00	0x0420
10													
(Addi				1						00	00	00	0.0000
WB)	0	0	0	1	0	0	0	0	0	00	00	00	0x0800
11	1						_			00	10	00	0.4000
(JEx)	1	0	0	0	0	0	0	0	0	00	10	00	0x4008

The SystemVerilog for your controller, maindec, and aludec modules

Controller:

```
| Comparison of the property o
```

MainDec:

```
| CiputeFCA | Native | Provided | Control | Co
```

```
| Carbon Control | 15 holds | 15
```

AluDec:

```
| CrimterPGA |tel17.1|modeism_see|mr32docm|FCL (controler.sv-Default | Lns | L
```

Your controllertest testbench.

Simulation waveforms of the controller module showing (in the given order): *CLK*, *Reset*, *OP*, *Funct*, *Zero*, the *state* (this is an internal registered signal), *ALUControl*, *PCEn*, and the entire control word (i.e. the 4-nibble word you entered in Table 4) demonstrating each instruction (including taken and non-taken branches). Display all signals in hexadecimal. Does it match your expectations?

Yes, it matches to our expectations and we have received expected outputs.

Complete Waveform

Zoomed in Waveform

A completed copy of Table 5 indicating the expected outcome of running the test program.

Cycle	Reset	PC	Instr	(FSM) State	SrcA	Src B	AluResult	Zero	FSM Control Word
1	1	00	0	0	0	04	04	0	5010
2	0	04	addi 20020005	1	04	X	X	0	0030
3	0	04	addi 20020005	9	00	05	05	0	0420
4	0	04	addi 20020005	10	X	X	X	0	0800
5	0	04	addi 20020005	0	04	04	08	0	5010
6	0	08	addi 2003000c	1	08	X	X	0	0030
7	0	08	addi 2003000c	9	00	0C	0C	0	0420
8	0	08	addi 2003000c	10	X	X	X	0	0800
9	0	08	addi 2003000c	0	08	04	0C	0	5010
10	0	0C	addi 2067fff7	1	0C	X	X	0	0030
11	0	0C	addi 2067fff7	9	0C	fff7	03	0	0420
12	0	0C	addi 2067fff7	10	X	X	X	0	0800
13	0	0C	addi 2067fff7	0	0C	04	10	0	5010
14	0	10	or 00e22025	1	10	X	X	0	0030
15	0	10	or 00e22025	6	03	05	07	0	0402
16	0	10	or 00e22025	7	X	X	X	0	0840
17	0	10	or 00e22025	0	10	04	14	0	5010
18	0	14	and 00642824	1	14	X	X	0	0030
19	0	14	and 00642824	6	0C	07	04	0	0402
20	0	14	and 00642824	7	X	X	X	0	0840
21	0	14	and 00642824	0	14	04	18	0	5010
22	0	18	add 00a42820	1	18	X	X	0	0030
23	0	18	add 00a42820	6	04	07	0B	0	0402
24	0	18	add 00a42820	7	X	X	X	0	0840
25	0	18	add 00a42820	0	18	04	1C	0	5010
26	0	1C	beq 10a7000a	1	1C	X	X	0	0030
27	0	1C	beq 10a7000a	8	0B	03	08	0	0605
28	0	1C	beq 10a7000a	0	1C	04	20	0	5010
29	0	20	slt 0064202a	1	20	X	X	0	0030
30	0	20	slt 0064202a	6	1C	07	0	1	0402
31	0	20	slt 0064202a	7	X	X	X	0	0840
32	0	20	slt 0064202a	0	20	04	24	0	5010
33	0	24	beq 10800001	1	24	X	X	0	0030
34	0	24	beq 10800001	8	00	00	00	1	0605
35	0	24	beq 10800001	0	24	08	2C	0	5010
36	0	2C	slt 00e2202a	1	2C	X	X	0	0030
37	0	2C	slt 00e2202a	6	03	05	01	0	0402
38	0	2C	slt 00e2202a	7	X	X	X	0	0840

20	0	20	al4 00 a 2202 a	0	20	0.4	20	0	5010
39		2C	slt 00e2202a	0	28	04	30		5010
40	0	30	add 00853820	1	30	X	X	0	0030
41	0	30	add 00853820	6	01	0B	0C	0	0402
42	0	30	add 00853820	7	X	X	X	0	0840
43	0	30	add 00853820	0	30	04	34	0	5010
44	0	34	sub 00e23822	1	34	X	X	0	0030
45	0	34	sub 00e23823	6	0C	05	07	0	0402
46	0	34	sub 00e23824	7	X	X	X	0	0840
47	0	34	sub 00e23825	0	34	04	38	0	5010
48	0	38	sw ac670044	1	38	X	X	0	0030
49	0	38	sw ac670044	2	0C	44	50	0	0420
50	0	38	sw ac670044	5	X	X	X	0	2100
51	0	38	sw ac670044	0	38	04	3C	0	5010
52	0	3C	lw 8c020050	1	3C	X	X	X	0030
53	0	3C	lw 8c020050	2	00	50	50	0	0420
54	0	3C	lw 8c020050	3	X	X	X	0	0100
55	0	3C	lw 8c020050	4	X	X	X	0	0880
56	0	3C	lw 8c020050	0	3C	04	40	0	5010
57	0	40	j 08000011	1	40	X	X	X	0030
58	0	40	j 08000011	11	40	X	X	X	4008
59	0	40	j 08000011	0	44	04	48	0	5010
60	0	48	sw ac020054	1	48	X	X	X	0030
61	0	48	sw ac020054	2	00	54	54	0	0420
62	0	48	sw ac020054	5	X	X	X	0	2100

SystemVerilog code of the datapath

```
module datapath(input logic clk, reset,
input logic pcen, irwrite, regwrite,
input logic alusrca, iord, memtoreg, regdst,
input logic [1:0] alusreb, pesre,
input logic [2:0] alucontrol,
output logic [5:0] op, funct,
output logic zero,
output logic [31:0] adr, writedata,
input logic [31:0] readdata);
//Internal signals of the datapath module.
logic [4:0] writereg;
logic [31:0] pcnext, pc;
logic [31:0] instr, data, srca, srcb;
logic [31:0] a;
logic [31:0] aluresult, aluout;
logic [31:0] signimm; // the sign-extended immediate
logic [31:0] signimmsh; // the sign-extended immediate shifted left by 2
logic [31:0] wd3, rd1, rd2;
logic [31:0] jsignimm;
//op and funct fields to controller
assign op = instr[31:26];
assign funct = instr[5:0];
flopr #(32) pcreg(clk, reset,pcen, pcnext, pc);
mux2 #(32) adrchoose(pc, aluout, iord, adr);
```

```
flopr #(32) instrchoose(clk, reset, irwrite, readdata, instr);
flop #(32) datachoose(clk, reset, readdata, data);
mux2 #(5) wrmux(instr[20:16], instr[15:11], regdst, writereg);
mux2 #(32) resmux(aluout, data, memtoreg, wd3);
regfile rf(clk, regwrite, instr[25:21], instr[20:16], writereg, wd3, rd1,rd2);
flop2 #(32) srcreg(clk, reset, rd1, rd2, a, writedata);
mux2 #(32) srcachoice(pc, a, alusrca, srca);
signext se(instr[15:0], signimm);
sl2 immsh(signimm, signimmsh);
mux4 #(32) srcbchoice (writedata,32'b100,signimm,signimmsh,alusrcb,srcb);
aluproj alu(srca, srcb, alucontrol, aluresult, zero);
flop #(32) aluchoose(clk, reset, aluresult, aluout);
jsignim jsi(instr,jsignimm);
mux3 aluchoice(aluresult,aluout,jsignimm,pcsrc,pcnext);
endmodule
```

```
//-----Register File------
module regfile(input logic clk,
input logic we3,
input logic [4:0] ra1, ra2, wa3,
input logic [31:0] wd3,
output logic [31:0] rd1, rd2);
logic [31:0] rf[31:0];
always_ff @(posedge clk)
if (we3)
rf[wa3] \le wd3;
assign rd1=(ra1 !=0) ? rf[ra1] : 0;
assign rd2=(ra2 !=0) ? rf[ra2] : 0;
endmodule
//-----
//-----Alu------Alu------
module aluproj(input logic [31:0] a, b,
input logic [2:0] F,
output logic [31:0] Y,
output logic zero);
logic [31:0] S, B;
assign B = F[2]? \sim b:b;
assign S = a + B + F[2];
```

```
always_comb
case(F[1:0])
2'b00 : Y = a \& B;
2'b01 : Y = a \mid B;
2'b10 : Y = S;
2'b11 : Y = {31'b0,S[31]};
endcase
always_comb
if (Y === 32'b0)
zero = 1;
else zero =0;
endmodule
//-----
//-----To store values into register-----
module flop #(parameter WIDTH=8) (input logic clk, reset,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);
always_ff @(posedge clk, posedge reset)
if (reset) q \ll 0;
else q \ll d;
endmodule
//-----
//-----Register to save A and B values-----
module flop2 #(parameter WIDTH=8) (input logic clk, reset,
input logic [WIDTH-1:0] d1, d2,
```

```
output logic [WIDTH-1:0] q1,q2);
always_ff @(posedge clk, posedge reset)
if (reset)
begin
q1 <= 0;
q2 <= 0;
end
else
begin
q1 <= d1;
q2 \le d2;
end
endmodule
//-----
//----- To store pc value only when en is 1-----
module flopr #(parameter WIDTH=8) (input logic clk, reset, pcen,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);
always_ff @(posedge clk, posedge reset)
if (reset) q \ll 0;
else if (pcen) q \ll d;
endmodule
//-----
//----Sign extend for immediate values-----
module signext(input logic [15:0] a,
output logic [31:0] y);
```

```
assign y = \{\{16\{a[15]\}\}, a\};
endmodule
//-----
//-----Left shift for beq instruction-----
module sl2(input logic [31:0] a,
output logic [31:0] y);
assign y=\{a[29:0], 2'b00\};
endmodule
//-----
//-----Left shift for Jump instruction-----
module jsignim(input logic [31:0] a,
output logic [31:0] y);
assign y=\{a[31:28], \{a[25:0], 2b00\}\};
endmodule
//-----
//-----MUX for 2 choices-----
module mux2 #(parameter WIDTH=8) (input logic [WIDTH-1:0] d0, d1,
input logic s,
output logic [WIDTH-1:0] y);
assign y=s?d1:d0;
endmodule
//-----
```

```
//-----MUX for 3 choices-----
module mux3 #(parameter WIDTH = 8) (input logic [WIDTH-1:0] d0, d1, d2,
input logic [1:0] s,
output logic [WIDTH-1:0] y);
assign #1 y = s[1] ? d2 : (s[0] ? d1 : d0);
endmodule
//-----
//-----Mux for 4 choices-----
module mux4 #(parameter WIDTH = 8) (input logic [WIDTH-1:0] d0, d1, d2, d3,
input logic [1:0] s,
output logic [WIDTH-1:0] y);
always_comb
case(s)
2'b00: y = d0;
2'b01: y = d1;
2'b10: y = d2;
2'b11: y = d3;
endcase
endmodule
//-----
```

Simulation waveforms of the processor showing *CLK*, *Reset*, *state*, *PC*, *instr*, *and ALUResult* in this order while running the test program. As always, output the values in he (or decimal if that is more readable) and make sure they are readable. Do the results match your expectations? Does the program indicate Simulation Succeeded?

Note: pcreg/q = PC

Instrchoose/q = instruction

Aluchoice/y = aluout

Yes, it matches to our expectations and we have received expected outputs in the waveform as expected from the table 5.

% 1+	Msgs																			
/multi_testbench/dk	0																			$\overline{}$
/multi_testbench/reset /multi_testbench/dut/mips/c/md/state	0	_		2		3	=	4	-	0				b		0				12
- /multi_testbench/dut/mips/c/md/controls	5010	(0030		0420	_	0100	=	0880		5010		10030		4008		5010		10030		10420
/		0000003				***		****				0000004			_	0000004	4	000000	8	
/multi_testbench/dut/mips/dp/instrchoose/q	ac67	8c020050)									0800001	1					ac02005	4	
	3c			(50		(41				(40		(84		(44		(48		(98		(54
																				1 1
<i>*</i> -	1																			
9 1-	Msgs										_ !									
// /multi_testbench/clk	Msgs 1																			
/multi_testbench/reset	Msgs 1 0																			
/multi_testbench/reset /multi_testbench/dut/mips/c/md/state	1 0 2	0	1		b		Ĭ0		1		2		5		0		1			
/multi_testbench/reset	Msgs 1 0 2 0420	0 5010	1 0030		(b		0		1 0030		2 0420		5 2100		0 5010		1 0030			
/multi_testbench/reset /multi_testbench/dut/mips/c/md/state	1 0 2		1 0030 0000004	0				14	1 0030 0000004	8							1 10030 1000000)4c		
//mult_testbench/reset //mult_testbench/dut/mips/c/md/state //mult_testbench/dut/mips/c/md/controls	1 0 2 0420	0000					5010	4									_)4c		
/multi_testbench/reset //multi_testbench/dut/mips/c/md/state //multi_testbench/dut/mips/c/md/controls //multi_testbench/dut/mips/dp/pcreg/q	1 0 2 0420 000	0000	0000004				5010	14	0000004								_)4c		
/mults_testbench/reset	1 0 2 0420 000 ac02	0000 8c02	0000004		4008		5010 0000004	14	0000004 ac02005		10420		2100		5010		_	04c		
/mults_testbench/reset	1 0 2 0420 000 ac02	0000 8c02	0000004		4008		5010 0000004	44	0000004 ac02005		10420		2100		5010		_)4¢		

RTL view from Quartus' compilation result of your MIPS processor.

Controller

Maindec

Aludec

Datapath

