General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-147769) SCNIC BOOM RESULTS FOR A NOMINAL MISSION 3B. SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT, ENGINEERING SYSTEMS ANALYSIS (McDonnell-Douglas Technical Services) 16 p G3/07

n76-26200 НС \$3.50

Unclas 43671 NASA CR

147769

MCDONNELL DOUGLAS TECHNICAL SERVICES CO. HOUSTON ASTRONAUTICS DIVISION

SPACE SHUTTLE ENGINEERING AND OPERATIONS SUPPORT

DESIGN NOTE NO. 1.2-DN-B0205-08
SONIC BOOM RESULTS FOR A NOMINAL MISSION 3B

ENGINEERING SYSTEMS ANALYSIS

10 JUNE 1975

This Design Note is submitted to NASA Under Task Order B0205, Subtask (Integrated Entry Systems) in fulfillment of Contract NAS 9-13970

PREPARED BY:

P. A. McDonough Subtask Manager 488-5660, X227 APPROVED BY:

R. K. Hamilton Task Manager 488-5660, X227

APPROVED BY:

J. C. Weitekamp Technical Manager 488-5660, X232 APPROVED BY:

R. R. Stephens
Project Manager

Engineering Systems Analysis

488-5660, X204

JUN 1976
RECEIVED
NASA STI FACILITY
INPUT BRANCH
STATE OF THE PROPERTY OF THE

1.0 SUMMARY

This design note documents the results obtained in the analysis of the effects of sonic boom overpressures at ground level for a nominal Mission 3B with the current baseline guidance. These results are in the form of ground level overpressures generated along the groundtrack out to lateral cutoff from Mach 3.0-1.10 at 0.10 (tenth) Mach intervals.

Some of the predicted overpressures are in excess of the Environment Impact Statement (Ref. A, p. 18) which states "Return trajectories will be controlled to avoid increases or focusing above this level (2.0 psf) over land." Preliminary trajectory constraints which will reduce excess sonic boom overpressures to approximately 2.0 PSF are included.

This analysis work was conducted under Contract Number NAS 9-13970 Task Order B0205.

2.0 INTRODUCTION

The sonic boom analysis is oriented toward determining the groundlevel overpressures generated by nominal and off-nominal baseline missions, aborts, and OFT's. These studies are being coordinated with the NASA-wide Sonic Boom Working Panel and will be presented in detail in a report published by them this year. The analysis employs an expanded version (Ref. B) of the Thomas Waveform Parameter Method computer program (Ref. C) to generate sonic boom overpressures along the groundtrack and out

to the lateral cutoff. This program was selected by the panel as the most accurate for evaluating sonic boom overpressures. The input data which the program needs are obtained from ENTRY and TAEM trajectory simulations.

3.0 DISCUSSION

The sonic boom overpressures are generated by the Thomas program which uses the waveform parameter method. This method extrapolates nearfield pressure signatures to the far-field (ground). The sonic boom overpressure signature data base is a collection of the results from wind tunnel tests in which near-field pressure signatures are measured for specific combinations of Mach, angle of attack and bank angle. The program interpolates as required for conditions not included in the data base. The extent of the current data base is presented in Figure 1. The flight conditions for Mission 3B are shown in Figure 2. It is observed that in the TAEM region the flight angle of attack profile is lower than that of the wind tunnel signature data base. This will result in conservative estimates of the overpressure level in these cases. Similar data base-flight condition compatibility problems exist in ENTRY but the differences are expected to be insignificant The data base will be enlarged later this year to include a more complete angle of attack, bank angle, and Mach number matrix.

The trajectory data used to generate the results for this analysis were taken from two different flight simulation programs.

The flight conditions for the ENTRY portion (Mach 3.0-1.6) were

SONIC BOOM DATA BASE ORBITER 040A

ANGLE OF ATTACK		MACH NUMBER									
DEG.	1.3	1.64	2.21	2.51	3.02						
10											
25											

NOMINAL ROLL ANGLE SCHEDULE: DEGREES -0, 30, 60, 90, 120, 150, 180

40/30 NOMINAL 3B MISSION FLIGHT CONDITIONS FOR SONIC BOOM ANALYSIS ...

ENTRY

I.C.'s	#1	#2	#3	#4	#5	
Title	No. 1 2.99	No. 2 2.89	No. 3 2.79	No. 4 2.69	No. 5 2.59	
MACH	2.99238	2.8946	2.7948	2.6934	2.5913	
Altitude	91226.5	89554.3	87922.8	86357.3	84864.1	
.M.dot	01612	01648	01681	01698	01704	
Azimuth dot	39444	40592	41430	42978	45288	
Gamma dot	02587	00982	.00438	.00838	.00154	
Gamma	-5.2771	-5.3901	-5.4014	-5.3583	-5.3245	
Longitude	-120.66	-120.65	-120.64 -120.619		-120.601	
Latitude	35.5778	35.5317	35.4877	35.4458	35.406	
Azimuth	168.112	165.701	163.245	160.7147	158.0675	
Bank	-34.520	-33.703	-32.584	-32.321	-32.828	
A1pha	14.5562	14.2518	13.9419	13.6276	13,3113	

ENTRY

I.C.'s	#6		#	#7		. #8		#9		#10	
Title	No. 6	2.49	No. 7	2.39	No. 8	2.29	No. 9	2.19	No. 10	2.10	
MACH	;	2.4896	2	2.3885		2.2877		2.1901		2.0988	
Altitude	8343	3.1	82096	82096.1		80955.3		79871.1		78627.1	
M dot		01687		01685	01667		01578		01467		
Azimuth dot		44542	.	08092		.38099		.62538		.62568	
Gamma dot		.00789		.11839		.01671		17488		19470	
Gamma	_	5.3350		1.9207	-4.3849		-4.9652		-	6.0809	
Longitude	-12	0.58	-120	0.56	-120.54		-120.52		-120.51		
Latitude	3	5.3687	3!	5.3336	35.3000		35.3000 35.2673		3	5.2352	
Azimuth.	15	5.307	15:	3.561	154.473		157.718		161.473		
Bank	-3	1.185	-:	-5.6853		24.3147		42.8679		2.1171	
Alpha	1	2.9960	1:	2.6839	12.3737		12.0701		11.7888		

40/30 NOMINAL 3B MISSION FLIGHT CONDITIONS FOR SONIC BOOM ANALYSIS

ENTRY

I.C.'S	#11	#12	#13	#14	#15	
Title	No. 11 2.01	No. 12 1.90	No. 13 1.80	No. 14 1.70	No. 15 1,61	
MACH	2.0136	1.9059	1.8000 '	1.6938	1.6112	
Altitude	77192.1	74997.1	72581.1	70160.9	68519.7	
M dot	01376	01323	01314	01362	01374	
Azimuth dot	.62824	.64393	.62899	02987	~.63458	
Gamma dot	20527	17395	10803	.10179	06943	
Gamma	-7.2829	-8.8447	-10.006	-9.8448	-9.6117	
Longitude	-120.49	-120.48	-120.48	-120.48	-120.47	
Latitude	35.2038	35.1634	35.1248	35.0882	35.0623	
Azimuth	165.232	170.3419	175.481	178.2856	176.2086	
Bank	41.055	38.803	38.803 33.907		-30.266	
Alpha	11.5160	11.1807	10.8547	10.5289	10.2775	

TAEM

No. 16 1.50	11 7 7 40		#19	#20	
	No. 17 1.40	No. 18 1.30	No. 19 1.20	No. 20 1.10	
1.49421	1.40343	1.29765	1.19492	1.10132	
65784.8	61432.4	56462.3	52568.2	48984.2	
00803	00782	00983	01029	00857	
09347	16794	17097	08488	04699	
51425	24305	00437	01636	.033113	
-11.675	-17.272	-18.713	-18.611	-18.623	
-120.47	-120.46	-120.45	-120.44	-120.43	
34.8422	34.7984	34.7585	34.7281	34.7002	
171.140 168.992		167.006	165.804	165.101	
-13.220	-10.276	-6.043	-3.4774	-1.9310	
4.92926	5.82151	6. 36659	5.76146	5.77432	
	00803 09347 51425 -11.675 -120.47 34.8422 171.140 -13.220	0080300782 0934716794 5142524305 -11.675 -17.272 -120.47 -120.46 34.8422 34.7984 171.140 168.992 -13.220 -10.276	008030078200983093471679417097514252430500437 -11.675 -17.272 -18.713 -120.47 -120.46 -120.45 34.8422 34.7984 34.7585 171.140 168.992 167.006 -13.220 -10.276 -6.043	00803 00782 00983 01029 09347 16794 17097 08488 51425 24305 00437 01636 -11.675 -17.272 -18.713 -18.611 -120.47 -120.46 -120.45 -120.44 34.8422 34.7984 34.7585 34.7281 171.140 168.992 167.006 165.804 -13.220 -10.276 -6.043 -3.4774	

obtained from a SVDS (Space Vehicle Dynamic Simulator) nominal Mission 3B entry trajectory supplied by J. Harpold (NASA-FM) using the Dec. '74 ADC guidance with the baseline 40/30 α-profile. The data for the TAEM region analyzed (Mach 1.5-1.10) were generated by D. Cooke (NASA-EX) using the SSFS (Space Shuttle Functional Simulator) program with ACS 15, Aero 22 and the quidance from the Nov. '74 RI FSSR.

The Thomas program specifies eight major parameters in the calculation and location of ground level overpressures. A list of these parameters (i.e. Mach, altitude, gamma, longitude, latitude, azimuth, bank, alpha, and the time derivatives of Mach, azimuth, and gamma) is presented in Figure 2, along with the corresponding values for the nominal Mission 3B. The overpressures are calculated in increments specified by the user for each set of conditions. The increment is measured in degrees as the ray angle (phi), the lateral angle in degrees corresponding to the input pressure signature and aircraft bank angle as shown in Figure 3.

The output at each phi angle for a specific set of flight conditions gives the angle of the ray, the initial waveform and the waveform at the ground, the wave arrival time, the longitude and latitude of the ray's intersection with the ground and that position relative to the distance from the groundtrack in nautical miles. The maximum overpressure at ground level for a specific ray is given in PSF (lbs./sq.ft.). These parameters

SHUTTLE IN LEFT TURN AS SEEN FROM BEHIND

PHI is measured from the vertical plane passing through the aircraft velocity vector. Positive values of PHI correspond to rays that start out to the left of vertical, as seen from behind the aircraft.

are output for each flight condition out to lateral cutoff (the point at which somic rays no longer reach ground level).

4.0 RESULTS

Figure 4 shows the ground track for the nominal Mission 3B in the Mach 3.0 to 1.10 region. A 2 PSF isobar has been identified enclosing the region effected by overpressure levels of 2 PSF or greater. The sonic boom ground level overpressure results for each Mach number analyzed are presented in Figure 5. There is a sharp increase in groundtrack overpressures in the TAEM region. The rise in overpressure level is due to the discontinuity at the TAEM interface depicted in Figure 6. The discontinuity results from a change in the guidance schemes from ENTRY to TAEM. The ENTRY region flies a reference drag profile while the TAEM guidance flies a reference dynamic pressure level which is higher at the interface than that resulting from the ENTRY guidance. This change commands a large pitch down maneuver which results in a large negative gamma dot that significantly increases groundtrack overpressure levels.

There are flight conditions which also produce rising overpressures near lateral cutoff in both ENTRY and TAEM. This phenomenon occurs when large azimuth rates are induced in response to bank angle guidance commands (Figure 6). The sonic boom rays are compressed together on the inside of the turn increasing the

NOMINAL MISSION 3B GROUND LEVEL OVERPRESSURES

MACH NUMBER	ONE DEGREE FROM CUTOFF(-)	Δφ -60°	Δφ -40°	Δφ -20°	GROUND- TRACK Δφ = 0°	- Δφ 20°	Δφ 40°	Δφ 60°	ONE DEGREE
ENTRY 3.00	-62° .783	.865	1.259	1.445	1.429	1.189	.954	.746	-CUTOFF(+)- 620.729
2.90	-61° -839	.874	1.287	1.490	1.487	1.251	1.003	.782	61° .773
2.80	-61° -61°	.881	1.315	1.538	1.548	1.318	1.056	.818	61°
2.70	.835 -61°	.887	1.347	1.584	1.605	1.381	1.111	.859	61°
2.60	-61° -60°	.887	1.378	1.627	1.652	1.434	1,163	.907	61°
2.50	.870	.870	1.389	1.656	1.686	1.464	1.183	.916	.916
2.40	.792 -59°	.792	1.337	1.665	1.782	1.602	1.228	.741	60°.741
2.30	.967	-	1.256	1.556	1.733	1.675	1.314	-	59° .750
2.20	2.233 -59.55°	-	1.406	1.529	1.665	1.634	1.365		.794 59°
2.10	3.110	<u> </u>	1.475	1.590	1.720	1.676	1.390_		.810 60°
2.00	-60°+ RTA->0	5.594	1.549	1.658	1.785	1.719	1.42]	.734	.734 60°
1.90	5.519	3.671	1.613	1.733	1.857	1.762	1.439	.761	.761
1.80	2.013 -59°	1.905	1.622	1.802	1.931	1.805	1.436	.753	.753 59°
1.70	.817	-	1.441	1.833	2.001	1.800	1.384	-	.770 58°
1.60 TAEM	-58° 793	_	1.424	1.818	1.956	1.814	1.557		7,342 58°
1.50	1.380 -62°	-	2.399	3.209	3.404	3.030	2.299	-	1.382 62°
1.40	1.066 -63°	1.216	2.101	2.819	3,038	2.683	2.117	1.280	1.134 63°
1.30	.923 -62°	1.106	1.831	2.477	2.763	2.361	1.855	1.131	.938
1.20	.947 -58°	1.099	1.887	2.545	2.921	2.450	1.864	1.071	.913 58°
1.10	.926	-	1.730	2.339	2.730	2.281	1.704	=	.900

Δφ = 20 DEG. (INCREMENT SPECIFIED)

OVERPRESSURES ARE IN PSF (LBS/SQ. FT'.)

*RTA→O RAY TUBE AREA GOES TO ZERO. FOCUSING OCCURS

OF POOR QUALITY

overpressure level. This occurs nominally in ENTRY and is especially evident in the TAEM region when S-turns are required to dissipate excess range.

Flight boundaries have been generated to aid in the evaluation of flight techniques to reduce overpressures levels so that they are more nearly compatible with the Environmental Impact Statement. Figures 7 and 8 present the preliminary results of this activity. The orbiter must remain above the h-v boundary or below the h- \bar{q} boundary. The additional constraints on gamma do: (> -0.30 deg/sec) and azimuth dot (absolute value < 0.55 deg/sec) are also required.

5.0 CONCLUSIONS

The results of the current nominal Mission 3B (RI 14474) show that there are overpressures in excess of the Environmental Impact Statement (i.e. 2.0 PSF). Further analysis will be conducted to determine the effects of crossrange, temperature inversions, off-nominal missions, aborts, and updated trajectories as they become baselined. It should be emphasized that the boundaries presented are preliminary and may be altered as additional data become available. They have been established to serve only as a guideline for reducing the excess sonic boom overpressure levels to around 2.0 PSF. New wind tunnel signature data scheduled to be obtained this summer to enlarge the data base are required before a detailed evaluation of overpressure level versus performance penalty can be conducted.

6.0 REFERENCES

- A. <u>Environmental Statement for the Space Shuttle Program, Final Statement, July 1972, NASA, Washington, D.C.</u>
- B. Expanded Versions of the Ames Research Center Sonic Boom Extrapolation Program, Boeing Co. Memo 5-2581-HOU-086, June 9, 1972.
- C. Extrapolation of Sonic Boom Pressure Signatures by the Waveform Parameter Nethod, by Charles Thomas, Ames Research Center, NASA TN D-6832.