

Essentials of Deploying AI in the Data Center

Al Use Cases

Al Concepts (ML, DL, Inferencing)

How GPUs revolutionized AI

Nvidia Al Architecture

Infrastructure Planning

Data Center Facilities Planning

Infrastructure Provisioning and Management

AI to Revolutionize Future Data Centers

Artificial Intelligence

Using computers to do that requires human level Intelligence

1950s – 1980s

Machine Learning

Approach to AI that uses statistical learning algorithms to build Model from observed data

Understanding and extracting insights from big data

Challenge:

1980s – 2010s

Most of Deep learning methods use Neural Network models (DNNs)

Deep Learning

Machine learning technique that is inspired by how human brain learns

2010s - Today and the future

DNNs can achieve human level intelligence for many tasks but requires high computational power to train

Data scientists uses DL to extract meaningful **data** from large datasets

Line of business owners use DL to optimize their business, reduce costs, Improve functionality and accuracy

Al in healthcare

Early Detection of diseases

DNA, Expression Microarrays, a regression problem facilitating the breakthrough study in biotechnology

Operational Efficiency

Predictive analytics, to identify patterns, and predict patient outcomes, enabling personalized and proactive treatment plans.

Precision Medicine

Descriptive analytics that facilitate the development of precise personalized medicines

Drug Discovery

Researchers can bring new drugs to Market quicker and make sure that these drugs are monitored more efficiently

AI in healthcare

AI in healthcare

Al in Autonomous vehicles

Potential for Every Vehicle to be autonomous

- · 1.5B vehicles in world today → 2B vehicles by 2035
- Mobility Services (Buses, Taxis, robotaxis, shuttles)
- · 4M AV shipments by 2025 (New autonomous vehicles Earthmovers, Forklifts, Delivery Bots, Tractors, Firetrucks etc)

Reduced fatalities, Injuries, and parking footprint

Shared autonomous vehicles can substantially reduce parking space requirements

Mitigates shortage of delivery services and drivers

This shortage can be resolved with delivery bots and autonomous trucks

There is global shortage of 60000 truck drivers, this deficit is expected to triple by 2026

Nvidia Drive

E2E AV Solution to Enable Rapid, Large Scale AI Development & Testing

Nvidia Drive

Self Driving

Roborace

E2E AV Solution to Enable Rapid, Large Scale AI Development & Testing

DGX A100

Nvidia Drive

Constellation

Nvidia Drive

E2E AV Solution to Enable Rapid, Large Scale AI Development & Testing

AV Workflow – Challenges and Pain Points

Accelerating Digital Transformation in Finance

AI / ML Optimizes Performance and Outocmes

Banking

Capital Markets

Insurance

Payments

Fintech

Fraud Detection

Using a range of AI
techniques to better verify
identity for Anti-Money
Laundering (AML) and know
your Customer (KYC)
requirements

Risk Simulations

Using HPC to run Monte Carlo risk simulations and derivatives pricing

Underwriting

Enables lenders to integrate more sophisticated modelling techniques and alternative data into lending decisions or insurance pricing

Algorithmic Trading

Create competitive advantages across a range of investment types

Al Platform for Al Driven Finance

Enterprise Executives

fear missing their growth objectives if they don't scale AI

76% cited their struggle with how to scale AI across their business

BUSINESS DRIVERS

Fraud Detection

Virtual Assistants

Cross-Sell

Next Best Action

Credit Default Prediction

Compliance Automation

AI INFRASTRUCTURE CHALLENGES

Al Infrastructure Complexity

Scalability & Productivity

Total Cost of Ownership

AI PLATFORMS FOR FINANCE

Al Financial **Applications**

Date Science

Nvidia Certified GPU

Compute, Networking & Storage

Al Adopting Path

Build your own

Strategic partnership

System Admin/DevOps

All End Users

Data Scientists/

Researchers

Dev Ops

Centers of excellence

Lines of Business

Marketing, Finance etc. **OUTOCMES**

Time to insight

Productivity at scale

Return on investment

Where is the Industry Going? Your AI Transformative Strategy is incomplete without NVidia

Al-Based underwriting – Risk Prediction

Al-enabled chatbots - Superior Customer Service

Al for fraud detection – Greater Security

Industry Overview From the cloud to the Edge

Al required huge amount of compute power

Deep Learning Approach

Deep Learning Approach

Labelled Trained Data

Deep Neural Network «Model»

Object class Predictions

error ~ [label - prediction]

Prediction

Back propagate errors for parameter update

Machine/Deep Learning Frameworks

Essential Tools for Data Scientists, Researchers, and Engineers

Computer Vision

Natural Language Processing

Speech and audio Processing

Robot Learning

more...

Machine/Deep Learning Frameworks

Essential Tools for Data Scientists, Researchers, and Engineers

MXNet is a modern open-source deep learning framework used to train and deploy deep neural networks. It is scalable, allowing for fast model training, and supports a flexible programming model and multiple languages. The MXNet Library is portable and can scale to multiple GPUs and multiple machines

TensorFlow is a popular open-source software library for **dataflow** programming across a range of tasks. It is a symbolic math library and is commonly used for deep learning applications.

Scikit-learn is a free software machine learning library for the python programming language. It features various classification, regression and clustering algorithms, and is designed to interoperate with the Python numerical and scientific libraries: NumPy and SciPy

Nvidia Deep Learning Software Stack

Host OS and Nvidia Driver – Enables the deep learning framework to use the GPU Functions

NGC Containers – Publicly available containers optimized to run on Nvidia GPUs

DL Frameworks – Popular deep learning frameworks available inside the containers

CUDA – Nvidia's ground breaking parallel programming model.

Provides essential optimizations for deep learning, machine learning, and high performance computing [HPC] leveraging Nvidia GPUs

CONTAINERIZED APPLICATION

Nvidia GPU software stack

Machine Learning Software Stack

Nvidia CUDA – X AI Ecosystem

Nvidia CUDA – X AI Libraries

	nv JPEG	https://developer.nvidia.com/nvjpeg
Data Processing Deep Learning Training	DALI	https://github.com/NVIDIA/DALI
	cu DF	https://github.com/rapidsai/cudf
	OpticalFlow	https://developer.nvidia.com/opticalflow-sdf
	NPP	https://developer.nvidia.com/npp
	AMP	https://developer.nvidia.com/automatic-mixed-precision
	Apex	https://github.com/NVIDIA/apex
	cu BLAS	https://developer/nvidia.com/cublas
Al Specific Acceleration Libraries	cu DNN	https://developer.nvidia.com/cuDNN
	cu xFilter	https://github.com/rapidsai/cuxfilter
	c uML	https://github.com/rapidsai/cuml
	cu GRAPH	https://github.com/rapidsai/cudgraph
	cu Tensor	https://developer.nvidia.com/cuTensor
	NCCL	https://developer/nvidia/com/nccl
Deployment	TensorRT	https://developer.nvidia.com/tensorrt
	Inference Server https://github.com/NVIDIA/tensorrt-inference-server	
High Level Constructs	Transfer Learning Tool	https://developer.nvidia.com/transfer-learning-toolkit
	Rapids	https://github.com/rapidsai
	DeepStream	https://developer.nvidia.com/deepstream-sdk

Key Technologies for Deployment

Containers

DOCKER

Package app

- Libraries
- Compilers
- Network Drivers
- Other Components

Simplifies Deployments

Eliminates complex, time-consuming builds and installs

Quick Start

Simply download and run the app

Portable

Deploy across various environments, from test to production, with minimal changes

Kubernetes

Orchestration tool to easily deploy containers on various nodes

Automates Deployments

Launch apps on appropriate nodes

Scaling

Automatically spins up nodes to meet demand

Monitoring

Automatically restarts if application crashes

Slurm

Job scheduler to manage allocation of resources and launching jobs on a cluster

Restore Allocation

Automatically allocates resources for job

Large Clusters

Supports running on small to vary large clusters

Distributed Jobs

Allows multi-nodes jo to be launched for faster distributed training

NGC Catalog – GPU Optimized Hub for AI & HPC software Simplify and Accelerate End-to-End Workflows

Software stacks vary End-to-End Workflow

HPC Simulation apps

Genomics Stack

Visualization app

NGC Catalog – GPU Optimized Hub for Ai & HPC Software

Simplify and Accelerate End-to-End Workflows

Fast Track AI with Pre-Trained Models from NGC

Production Quality

- Trained and Continuously updated by experts
- Model resumes to find the right fit

Wide Range of Use Cases

- People Detection, Vehicle Detection, Gaze Estimation
- Instant Classification, Question-Answering, Speech recognition, and Text-to-speech

Adapt & Integrate

- Adapt to your domain with your custom data
- Integrate easily into industry SDKs

Benefits of GPU Virtualization

Nvidia in Virtualization Environments – Industry Leading Innovations

Nvidia End-to-End Al software

Optimized for Nvidia-Certified Servers

Al Workflow

Open Source, End-to-end GPU-acclerated Workflow

GPU Accelerated compute in-memory data preparation. Simplified implementation using similar data science tools

The Machine Learning Project Lifecycle

The requirements surrounding ML Infrastructure

[D. Sculley et. al NIPS 2015: Hidden Technical Debt in Machine Learning Systems]

The ML Project Lifecycle

