07/10/2021

## FOURIER SERIES

| Drichlet | Condition: | 13 | 20000 | ani en |
|----------|------------|----|-------|--------|
|----------|------------|----|-------|--------|

(i) f(x) is single valued:

discontinuity or no infinite discontinuity

48 It 
$$f(x) = f(x_0)$$

. f(x) is continuous at a = a.

$$\text{It } f(\alpha) \neq f(\alpha_0)$$

f(x) is not continuous at  $x = x_0$ .

and minimum. I de number of maximum

$$f(\alpha) = \frac{a_0}{2} + \underbrace{\sum_{n=1}^{\infty} (a_n \cos n\alpha + b_n \sin n\alpha)}_{n=1}$$

fourier co-efficient

|         | 40                             |                                         |                  | N                                                                     |
|---------|--------------------------------|-----------------------------------------|------------------|-----------------------------------------------------------------------|
|         | Interval.                      | ( and 3 (0); (                          | an an            | (b) bn                                                                |
|         | (O,27)                         | $\frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$ | T J(x) cosnda    | $x = \int_{0}^{\pi} \int_{0}^{\pi} f(x) \sin nx$                      |
| 3       | (0,21)                         | Af(x) dx                                | Af(x) CES (nTX)  | $\int_{1}^{2} \int_{0}^{2} f(z) \sin \left( \frac{n\pi z}{l} \right)$ |
| ancher, | (-TT, TT) neither odd nor even | $\frac{1}{\pi} \int f(x) dx$            | I f(x) cos nx dz | $\int_{-\pi}^{\pi} \int f(z) \sin nz$                                 |
| Canl &  | not even                       | BY WAY OUR                              | (m)2/= K         |                                                                       |
| 4 CB176 | rven                           | $\frac{2}{\pi}\int_{0}^{\pi}f(x)dx$     | 2 Tf(z) ws nada  | 0                                                                     |
| L       | +099                           | 0                                       | 0                | A If(x) sin nx dx                                                     |

271936 9319007 Convergence of Fourier Series.  $f(\alpha) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\alpha + b_n \sin n\alpha)$ (i) f(x) is continuous at x = x0 where a is middle in between the given interval, then sum & F(s) = f(x0) (ii) If f(a) is discontinuous at is = 20. where ao is in between the given interval, then the sum & F(s) = 1 [LHL + RHC] . . = 10 to avouriling overage of LHL and RHC (iii) If f(a) is discontinuous, at end points of the given interval, then the summing have f(s) = average of F(s) at the end points. (i.e) 1 [f(o) + f (aπ)] (o, aπ). Find the fourier expansion for  $f(x) = x^2$  in  $(-\pi, \pi)$ ; (i)  $\underset{n=1}{\overset{\infty}{\ge}} \frac{1}{2} \frac{1}{2} = \frac{(-1)^{n+1}}{2}$  $f(\alpha) = (-\alpha)^2 = \alpha^2$   $f(\alpha) = (-\alpha)^2 = \alpha^2$ f(x);  $a_0 + \sum_{n=1}^{\infty} a_n \cos nx$  (1.0)  $q_0 = \frac{2}{\pi} \int f(x) dx$   $q_0 = \frac{2}{\pi} \int f(x) dx$   $q_0 = \frac{2}{\pi} \int f(x) \cos nx dx$   $q_0 = \frac{2}{\pi} \int f(x) \cos nx dx$ 

Even \$ (10) de \$ (10) as not de

$$a_0 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 dx = \frac{2}{\pi} \left( \frac{x^3}{x^3} \right)_0^{\pi}$$

$$a_0 = \frac{2}{3\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_2 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_2 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_2 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_2 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_2 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_2 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_2 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

$$a_2 = \frac{2}{\pi} \int_0^{\pi} \alpha^2 \cos n\alpha d\alpha$$

(i) 
$$\frac{2}{2}$$
  $\frac{1}{n^2}$   $\frac{$ 

$$\frac{\pi^{2}}{5} + \frac{\pi^{2}}{12} = 2\left[\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \cdots\right]$$

$$\frac{2\pi^{2} + \pi^{2}}{12} = 2\left[\frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \cdots\right]$$

$$\frac{\pi^{2}}{8} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} +$$

2. Find fourier sources for the function f(x): x (21-x) in the interval (0, 21). Find the value of the Soiles 1/2 + 1/2 + 1 + ... 40 - 1/2  $f(x) = \frac{a_0}{2} + \frac{8}{2} a_n \cos\left(\frac{n\pi x}{\lambda}\right) + \frac{8}{2} b_n \sin\left(\frac{n\pi x}{\lambda}\right)$ a = 1 f(x) dx  $a_n = \frac{1}{2} \operatorname{d} \left( \frac{\pi}{2} \right) \operatorname{d} \left( \frac{n\pi \alpha}{2} \right) \operatorname{d} \alpha$  $b_n = \frac{1}{\lambda} f(x) \sin \left( \frac{n\pi x}{\lambda} \right) dx$  $a_0 = \frac{1}{1} \int \left(2 \ln x - x^2\right) dx$  $\frac{2}{l} \left\{ \frac{dl}{2} + \frac{2^{3}}{3} \right\}^{2l}$ = 1 { 423 - 823/84  $=\frac{1}{9}$   $\left\{ \frac{12l^3-8l^3}{2} \right\}$ = 1 ( 4 l3 ) ( 3 ) 00 = 412

$$a_{n} = \frac{1}{2} \left[ \frac{2 \ln x - \alpha^{2}}{2} \right] \cos \left( \frac{n\pi \alpha}{2} \right) d\alpha$$

$$u' = 2 \ln x \qquad v' = \sin \left( \frac{n\pi \alpha}{2} \right)$$

$$u'' = -2 \sin \left( \frac{n\pi \alpha}{2} \right)$$

$$\frac{n\pi}{2}$$

 $b_n = \frac{1}{2} \int (al \alpha - \alpha^2) \sin \frac{(n\pi \alpha)}{2} d\alpha$ = -2 1 -4 1 - 1 - 2 - 3 (nT/2) 1 - 4 1 - 2 - 3 (nT/2)  $(21 \times -2^2)$   $(21 \times -2^2)$   $(n\pi \times 1)$   $(n\pi \times 1)$ XII = (30) + (NT/2) -2 cos (nπx/1) TIM) NO 2 + (STIM) EN NO (27/2) = (S) } bn= 1 (0-2 1 (nT/2)3) - (0-2 10 (nT/2)3)  $f(z) = \frac{4l^2/3}{2\pi b} + \frac{2}{n+1} - 4l^2 \cos(\frac{n\pi z}{l})$ put æ= l in continuous point

$$f(1) = \frac{2}{3} + \frac{2}{n^2} - \frac{4}{1} \frac{1^2}{n^2 \pi^2}$$

$$f(1) = \frac{2}{3} + \frac{2}{n^2} - \frac{4}{1} \frac{1^2}{n^2 \pi^2}$$

$$\frac{1^2 - 2 \cdot 1^2}{3} = \frac{2}{3} - \frac{4}{1} \frac{1^2}{n^2 \pi^2}$$

$$\frac{1^2 \times -\pi^2}{3} = \frac{1}{3} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

$$\frac{1^{2}}{3} \times \frac{-77^{2}}{41^{2}} = \begin{bmatrix} -1 & +\frac{1}{2} & +-\frac{1}{2} & +\cdots & \infty \\ 1^{2} & 2^{2} & 3^{2} & & \end{bmatrix}$$

$$\frac{1}{3} \times \frac{1}{40} = + \left[ \frac{1}{12} - \frac{1}{2} + \frac{1}{3^2} - \frac{1}{3^2} \right]$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots + \infty$$

28/10/2021 Half Range, Cosine and Sine Socies: Cosine Sovies: f(x) = ao + 3 an cos nx where, ao = 2 I f(x) dx  $a_n = \frac{2}{\pi} \int f(x) \cos nx \, dx$ Sine Series: 1 mm  $f(z) = \frac{2}{5}b_h$  Sin nx

function  $f(x) = \infty$  in (0, 1)f(x) = a0 + 2 an cos me where, a = 2 f(x) dx a.... + a = 12 | Sx dx  $a_0 = 2 \left[\frac{x^2}{2}\right]^{\frac{1}{2}}$  $\frac{1}{2}$   $\frac{1}$  $a_n = \frac{2}{\lambda} \int_0^1 f(x) \cos n \pi x dx$  $a_n = \frac{2}{\ell} \int_{\infty}^{\ell} \cos \frac{n \pi x}{\ell} dx$ 



$$u = \infty \qquad V = 8 \text{ in } \frac{n\pi x}{2}$$

$$u' = 1 \qquad V_1 = -\frac{\cos n\pi x}{2}$$

$$u'' = 0 \qquad v_2 = -\frac{\sin n\pi x}{2}$$

$$v_2 = -\frac{\sin n\pi x}{2}$$

$$n^2\pi^2/2$$

$$b_{n} = \frac{2}{l} \left[ x \left( \frac{\cos n\pi x/l}{n\pi/l} \right) + \frac{\sin n\pi x/l}{n^{2} \pi^{2}/l^{2}} \right]$$

$$= \frac{2}{l} \left[ -l \left( \frac{\cos n\pi l/l}{n\pi/l} \right) \right]$$

$$= +2l \left( -l \right)^{n}$$

$$b_{n} = \frac{2l}{l} \left( -l \right)^{n+1}$$

03/11/2021

January 14- 2 + 2 = (20) 7 1. Find the half range cosine series  $f(x) = x^2$  in (-T,T). Hence deduce the sum.

 $\frac{\pi^2}{12} = 10 \frac{1}{2^2} + \frac{1}{3^2} = 0$ 

f(a) = ao + 2 an cos na # (a) dx  $=\frac{2}{\pi}\left[\frac{x^3}{3^3}\right]^{\frac{1}{3}}=\frac{2}{\pi}\left[\frac{\pi^{32}}{3}\right]^{\frac{1}{3}}$ Q = 2712  $a_n = \frac{2}{V} \int f(x) \cos nx \, dx$ an= a Joe cos handx 3 1 + 00 =  $u = x^2$   $V = \cos nx$  u' = 2x  $V_1 = \frac{\sin nx}{n}$ Ve = - ces not  $\alpha_n = \frac{2}{\pi} \int \left[ x^2 \left( \frac{\sin nx}{n} \right) + 2x \left( \frac{\cos nx}{n^2} \right) \right] dx$  $= 2 \left[ 2\pi \left( \frac{\cos n\pi}{n^2} \right) \right] \approx 4 4 3$ 

$$f(\alpha) = \frac{1}{n^{2}} \left(-1\right)^{n}$$

$$f(\alpha) = \frac{1}{n^{2}} \left(-1\right)^{n} \cos nx$$

$$= \frac{1}{2} \left(-1\right)^{n} \cos nx$$

$$= \frac{1}{2} \left(-1\right)^{n} \cos nx$$

$$f(\alpha) = \frac{1}{3} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx$$

$$f(\alpha) = \frac{1}{3} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx$$

$$f(\alpha) = \frac{1}{3} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx$$

$$= \frac{1}{2} \int_{-1}^{\infty} \left[f(\alpha)\right]^{2} dx$$

$$= \frac{1}{2} \int_{-1}^{\infty} \left[\frac{1}{3}\right]^{2} dx$$

$$= \frac{1}{2} \int$$

$$\frac{1}{3} \frac{1}{5} \frac{1}{5} \frac{1}{9} = 8 \frac{2}{3} \frac{1}{10} \frac{1}{10}$$

$$\frac{1}{5} \frac{1}{9} \frac{1}{9} = 8 \frac{2}{3} \frac{1}{10} \frac{1}{10}$$

$$\frac{1}{5} \frac{1}{9} \frac{1}{9} = 8 \frac{2}{3} \frac{1}{10} \frac{1}{10}$$

$$\frac{1}{5} \frac{1}{9} \frac{1}{9} = 8 \frac{2}{3} \frac{1}{10} \frac{1}{10}$$

$$\frac{1}{4} \frac{1}{45} = 8 \frac{2}{3} \frac{1}{10} \frac{1}{10} \frac{1}{10}$$

$$\frac{1}{4} \frac{1}{45} = 8 \frac{2}{3} \frac{1}{10} \frac{1}{1$$

(ii)

## Hasimonic Analysis:

Type 1: IT - form:

1. Find the first two harmonics of the forcier socies of P(x) given in the following table.

| x   | 0   | 17/3 | 21/3 | TT  | 47/3 | 57/3 | 211 |
|-----|-----|------|------|-----|------|------|-----|
| f(x | 1.0 | 1.4  | 1.9  | 1.7 | 1.5  | 1.2  | 1,0 |

The values of y = f(x) are spread over the interval  $0 \le x \le 2\pi$  and  $f(0) = f(2\pi)$ . Hence the function is periodic and so we omit the last value glassiances f(x) at  $x = 2\pi$ .

f(2) is given by,

$$f(x) = \frac{a_0}{2} + (a_1 \cos x + a_2 \cos 2x) + (b_1 \sin x + b_2 \sin 2x)$$

= 
$$\frac{a_0}{2}$$
 +  $(a_1 \cos x + b_1 \sin x)$  +  $(a_2 \cos 2x + b_2 \sin 2x)$ 

| 70  |          |       |                  |        |        |         |         |
|-----|----------|-------|------------------|--------|--------|---------|---------|
| x   | y = f(x) | cos x | ces 2 a          | sin a  | sin 2x | y 108 2 | y os da |
| 0   | 1.0      | × Men | (a) +1(a         | 0      | 2000)  | 293     |         |
| 60  | 1.4      | 0.5   | -0.5<br>2 PE 0.1 | 0.866  | 0.866  | 0.7     | -0.7    |
| 120 | 1.9      | -0.5  | -0.5             | 0.866  | -0.866 | -0.95   | -0.95   |
| 180 | 1.7      | -1    | 1                | 0      | 0      | -1.7    | 1.7     |
| 240 | 1.5      | -0.5  | -0.5             | -0.866 | 0.866  | -0.75   | -0.75   |
| 300 | 1.2      | 0.5   | -0.5             | -0.866 | -0.866 | 0.6     | -0.6    |
|     | 2= 8.7   |       |                  |        | E      | = -1.1  | £= -0:2 |

|      | y sin æ  | y sin doc   |  |  |  |  |
|------|----------|-------------|--|--|--|--|
| 0    | 0        | 0:19        |  |  |  |  |
| 60   | 1.2124   | 1. 2124     |  |  |  |  |
| 120  | 1.6454   | -1.6454     |  |  |  |  |
| 180  | 070      | 1 0 T/3     |  |  |  |  |
| 240  | 1.299    | 1.299       |  |  |  |  |
| 300  | -1.0392  | -1.0392     |  |  |  |  |
| FD ( | 2=3.1176 | 2=-0.1782   |  |  |  |  |
|      |          | 76 1 17 1 3 |  |  |  |  |

$$a_0 = 2 \left[ \frac{2y}{n} \right] = 2 \left[ \frac{8.7}{6} \right] = 2.9$$

$$a_1 = 2 \left[ \frac{2y \cos x}{n} \right] = 2 \left[ \frac{-1.1}{6} \right] = -0.37$$

$$b_1 = 2 \left[ \frac{2y \sin x}{n} \right] = 2 \left[ \frac{3.1176}{6} \right] = 1.0392$$

$$b_2 = 2 \left[ \frac{2y \sin x}{n} \right] = 2 \left[ \frac{-0.1732}{6} \right] = -0.0577$$
The first two haamonics is given by,
$$f(x) = \frac{a_0}{2} + (a_1 \cos x + b_1 \sin x) + (a_2 \cos 2x + b_2 \sin 2x)$$

$$= \frac{2.9}{2} + (-0.37 \cos x + 1.0392 \sin x - 0.1 \cos 2x$$

$$f(x) = 1.45 - 0.37 \cos x + 1.0392 \sin x - 0.1 \cos 2x$$

1 838.0- 108.0-1 2.0-

Type - 2: l - form: 1. Obtain the constant term and coefficient of the first sine and cosine terms in the fourier representation of y as given in the following table. y 9 18 24 28 26 20 9 Soln: we know that, [ so ] we g 3 ] & = 1d OSXXL 052522 E (2) = 6 0 11 280 EE . 8 - Td. 14 = (0) } formula > 0 = Tx .8 - 118.05 = (x) }.  $\theta = \left| \begin{array}{c} y \\ \end{array} \right| \cos \left( \frac{\pi x}{3} \right) \left| \sin \left( \frac{\pi x}{3} \right) \right| \cos \left( \frac{\pi x}{3} \right) \left| \frac{x}{3} \sin \left( \frac{\pi x}{3} \right) \right|$ x First harmonies of as 2 t P sin a Tolo 0 15. 888 60 18 0.866 - 62 2 120 24 20.888 0 -28 0 3 180 28 -1 4 240 26 -0.5 -0.866 -13 -22.817 0 5 -0.860 20 0.8 300  $2y \left(\frac{48}{3}\right) = -25$ 2y=125

2y sin ( == 3) == 3.46

The first harmonics of 
$$f(z)$$
 is given by

$$f(z) = a_0 + a_1 \cos \pi x + b_1 \cos \pi x$$

$$a_0 = 2 \left[ \frac{2y}{n} \right] = 1.67$$

$$a_1 = 2 \left[ \frac{2y}{n} \right] = 1.67$$

$$a_2 = \frac{2}{3} \left[ \frac{2y}{n} \right] = 1.67$$

$$a_3 = \frac{2}{3} \left[ \frac{2y}{n} \right] = \frac{1.67}{3} = \frac{1.67}{3}$$

$$a_1 = \frac{2}{3} \left[ \frac{2y}{n} \right] = \frac{1.67}{3} = \frac{1.6}{3} = \frac{1.6}{3}$$

Type 3 - T- town: The following table gives the variation of a periodic current a over a period t. y = A(pemp) 1.98 1.30 1.05 1.30 -0.88 -0.88 y = A(amp 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98 Show that there is a constant part of 0.75 amp. Obtain amplitude of first harmonics. Soln: The first harmonics of f(2) is given by,  $f(x) = \frac{a_0}{2} + a_1 \approx 0 + b_1 \sin 0$ when x = 0,  $0 = \pi x$ 

when 
$$\alpha = \frac{\pi}{43}$$
,  $\Theta = \frac{\pi}{4}$  (F)
$$\frac{\pi}{3} \times R(T_2)$$
when  $\alpha = \frac{\pi}{3}$ ,  $\Theta = \frac{\pi}{3} \times \frac{\pi}{3}$ 

$$\frac{\pi}{3} \times \frac{\pi}{3}$$
when  $\alpha = \frac{\pi}{3}$ ,  $\Theta = \frac{\pi}{3} \times \frac{\pi}{3}$ 

$$\frac{\pi}{3} \times \frac{\pi}{3}$$

$$\frac{\pi}{3} \times \frac{\pi}{3}$$

$$\frac{\pi}{3} \times \frac{\pi}{3} \times \frac{\pi}{3}$$

$$\frac{\pi}{3} \times \frac{\pi}{3} \times \frac{\pi}{3}$$

$$\frac{\pi}{3} \times \frac{\pi}{3} \times \frac{\pi}{3} \times \frac{\pi}{3}$$

$$\frac{\pi}{3} \times \frac{\pi}{3} \times \frac{\pi}{3} \times \frac{\pi}{3} \times \frac{\pi}{3}$$

$$\frac{\pi}{3} \times \frac{\pi}{3} \times \frac{\pi}{3}$$

曼

$$a_0 = (given) = 0.75$$
 $a_1 = 1.09 = 0.37$ 
 $b_1 = 2.92 = 0.97 \approx 10$ 

THE STE

X