- 1. Consider the region bounded by $y = x^2$, $y = -x^3$ and x = 1, revolved around the vertical axis x = -2. (Ignore the region bounded only by $y = x^2$ and $y = -x^3$ between x = 0 and x = -1.)
 - (a) Sketch the region, including intersection points and the axis of revolution.
 - (b) Set up (but do not evaluate) the integral(s) for the volume of revolution using the washer method.
 - (c) Set up (but do not evaluate) the integral(s) for the volume of revolution using the shell method.

Solution. Here is the sketch:

We found the intersection points by observing that $y = x^2$ and $y = -x^3$ both pass through (0,0) and that when x = 1, then $y = x^2$ has y = 1 and $y = -x^3$ has y = -1.

For part (b), we are using horizontal slices with y ranging from -1 to 1. Notice that for y between -1 and 0, the bounding curves are $y = -x^3$ and x = 1, while for y between 0 and 1, the bounding curves are $y = x^2$ and x = 1. Thus, we need two different slices and two different integrals.

Since we are using horizontal slices, we need solve for x in $y = x^2$, giving $x = \sqrt{y}$, and in $y = -x^3$, giving $x = -y^{1/3}$ (we used $(-y)^{1/3} = -y^{1/3}$ in solving for x).

For y from -1 to 0, the left endpoint is $(-y^{1/3}, y)$ and the right endpoint is (1, y). Thus, the inside radius, the distance from $(-y^{1/3}, y)$ to (-2, y) is $-y^{1/3} - (-2) = -y^{1/3} + 2$, and the outside radius, the distance from (1, y) to (-2, y), is 3. Thus, the integral for this part of the volume is

$$\int_{-1}^{0} \pi (9 - (2 - y^{1/3})^2) \, dy.$$

For y from 0 to 1, the left endpoint is (\sqrt{y}, y) and the right endpoint is (1, y). Thus, the inside radius, the distance from (\sqrt{y}, y) to (-2, y)

is $\sqrt{y} - (-2) = \sqrt{y} + 2$, and the outside radius, the distance from (1, y) to (-2, y), is 3. Thus, the integral for this part of the volume is

$$\int_0^1 \pi (9 - (\sqrt{y} + 2)^2) \, dy.$$

Thus, the total volume, using the washer method is

$$\int_{-1}^{0} \pi (9 - (2 - y^{1/3})^2) \, dy + \int_{0}^{1} \pi (9 - (\sqrt{y} + 2)^2) \, dy.$$

For (c), we use a vertical slice with x ranging from 0 to 1. Since the bounding curves for the slice are always $y = x^2$ and $y = -x^3$, we only need once slice and one integral.

The upper endpoint is (x, x^2) and lower endpoint is $(x, -x^3)$. So, the height of the shell is $x^2 - (-x^3) = x^2 + x^3$ and radius of the shell is distance from the axis to the slice, x - (-2) = x + 2. Thus, the total volume, using the shell method, is

$$\int_0^1 2\pi (x+2)(x^2+x^3) \, dx.$$