IE 440 - NONLINEAR MODELS IN OPERATIONS RESEARCH

Homework # 1 20.10.2023

Search Methods

TEAM OPTIMIZERS
Fatmanur Yaman - 2019402204
Ömercan Mısırlıoğlu - 2020402261
Hüseyin Emre Bacak - 2021402279

The Plot of The Function

$$f(x) = x^{3}\cos(x)\sin(x) + 3x^{2}\sin(x) - 3x$$

1. Bisection Method

• Parameters Used

There are 3 parameters that the Bisection Method takes initially: the left endpoint of the interval **a**, the right endpoint of the interval **b**, and the desired accuracy error **epsilon**.

(a = 5, b = 6, $\epsilon = 0.00001$), (a = 7.5, b = 10, $\epsilon = 0.00001$), (a = -9.5, b = -8, $\epsilon = 0.00001$) cases were tried to see whether the algorithm converges to a local minimum or not.

• Graph Of The Functions

Case 1: (a = -9.5, b = -8, $\epsilon = 0.00001$)

Case 2: (a = 5, b = 6, $\epsilon = 0.00001$)

Case 3: (a = 7.5, b = 10, $\epsilon = 0.00001$)

• Results of the Code

Case 1: (a = -9.5, b = -8, $\epsilon = 0.00001$)

	Iteration	a	b	x	f(x)	x(k+1) - x(k) / x(k) - x(k-1)	$-\log x(k+1) - x(k) + \log x(k) - x(k-1) $
0	0	-9.500000	-8.000000	-8.750000	-444.037885	None	None
1	1	-8.750000	-8.000000	-8.375000	-410.978954	0.5	0.30103
2	2	-8.750000	-8.375000	-8.562500	-451.508563	0.5	0.30103
3	3	-8.750000	-8.562500	-8.656250	-454.403848	0.5	0.30103
4	4	-8.656250	-8.562500	-8.609375	-454.548164	0.5	0.30103
5	5	-8.656250	-8.609375	-8.632812	-454.883120	0.5	0.30103
6	6	-8.632812	-8.609375	-8.621094	-454.816334	0.5	0.30103
7	7	-8.632812	-8.621094	-8.626953	-454.875039	0.5	0.30103
8	8	-8.632812	-8.626953	-8.629883	-454.885425	0.5	0.30103
9	9	-8.632812	-8.629883	-8.631348	-454.885861	0.5	0.30103
10	10	-8.631348	-8.629883	-8.630615	-454.886040	0.5	0.30103
11	11	-8.631348	-8.630615	-8.630981	-454.886049	0.5	0.30103
12	12	-8.630981	-8.630615	-8.630798	-454.886069	0.5	0.30103
13	13	-8.630981	-8.630798	-8.630890	-454.886066	0.5	0.30103
14	14	-8.630890	-8.630798	-8.630844	-454.886069	0.5	0.30103
15	15	-8.630844	-8.630798	-8.630821	-454.886070	0.5	0.30103
16	16	-8.630844	-8.630821	-8.630833	-454.886069	0.5	0.30103
17	17	-8.630833	-8.630821	-8.630827	-454.886070	0.5	0.30103

 $x^* = -8.630826950073242$ $f(x^*) = -454.8860695211224$

Case 2: (a = 5, b = 6, $\epsilon = 0.00001$)

	Iteration	а	b	x	f(x)	x(k+1) - x(k) / x(k) - x(k-1)	$-\log x(k+1) - x(k) + \log x(k) - x(k-1) $
0	0	5.000000	6.000000	5.500000	-163.714470	None	None
1	1	5.500000	6.000000	5.750000	-150.880764	0.5	0.30103
2	2	5.500000	5.750000	5.625000	-161.061541	0.5	0.30103
3	3	5.500000	5.625000	5.562500	-163.278208	0.5	0.30103
4	4	5.500000	5.562500	5.531250	-163.711375	0.5	0.30103
5	5	5.500000	5.531250	5.515625	-163.765677	0.5	0.30103
6	6	5.500000	5.515625	5.507812	-163.753133	0.5	0.30103
7	7	5.507812	5.515625	5.511719	-163.762686	0.5	0.30103
8	8	5.511719	5.515625	5.513672	-163.765004	0.5	0.30103
9	9	5.513672	5.515625	5.514648	-163.765546	0.5	0.30103
10	10	5.514648	5.515625	5.515137	-163.765663	0.5	0.30103
11	11	5.515137	5.515625	5.515381	-163.765683	0.5	0.30103
12	12	5.515381	5.515625	5.515503	-163.765683	0.5	0.30103
13	13	5.515381	5.515503	5.515442	-163.765684	0.5	0.30103
14	14	5.515381	5.515442	5.515411	-163.765684	0.5	0.30103
15	15	5.515411	5.515442	5.515427	-163.765684	0.5	0.30103
16	16	5.515427	5.515442	5.515434	-163.765684	0.5	0.30103

 $x^* = 5.515434265136719$ f(x*) = -163.76568400972977

Case 3: (a = 7.5, b = 10, $\epsilon = 0.00001$)

	Iteration	а	b	x	f(x)	x(k+1) - x(k) / x(k) - x(k-1)	-log x(k+1) - x(k) + log x(k) - x(k-1)			
0	0	7.500000	10.000000	8.750000	-209.555318	None	None			
1	1	8.750000	10.000000	9.375000	-55.953427	0.5	0.30103			
2	2	8.750000	9.375000	9.062500	-186.526634	0.5	0.30103			
3	3	8.750000	9.062500	8.906250	-212.880585	0.5	0.30103			
4	4	8.750000	8.906250	8.828125	-214.905766	0.5	0.30103			
5	5	8.828125	8.906250	8.867188	-214.826393	0.5	0.30103			
6	6	8.828125	8.867188	8.847656	-215.098491	0.5	0.30103			
7	7	8.828125	8.847656	8.837891	-215.060074	0.5	0.30103			
8	8	8.837891	8.847656	8.842773	-215.093791	0.5	0.30103			
9	9	8.842773	8.847656	8.845215	-215.099770	0.5	0.30103			
10	10	8.845215	8.847656	8.846436	-215.100038	0.5	0.30103			
11	11	8.845215	8.846436	8.845825	-215.100131	0.5	0.30103			
12	12	8.845825	8.846436	8.846130	-215.100142	0.5	0.30103			
13	13	8.845825	8.846130	8.845978	-215.100151	0.5	0.30103			
14	14	8.845978	8.846130	8.846054	-215.100150	0.5	0.30103			
15	15	8.845978	8.846054	8.846016	-215.100151	0.5	0.30103			
16	16	8.845978	8.846016	8.845997	-215.100151	0.5	0.30103			
17	17	8.845997	8.846016	8.846006	-215.100151	0.5	0.30103			
	x* = 8.846006393432617									
	$f(x^*) = -215.1001511009524$									

• The Source Code

The bisection function takes three parameters. First, it takes the middle point of two endpoints as x value. It compares the value of the given function at this middle point f(x) with the value of the function at $f(x + \varepsilon)$. If f(x) is bigger than $f(x + \varepsilon)$ it updates a as the new x. Otherwise it updates b as the new a. At each iteration function checks the difference between updated values of a. If the difference is smaller than or equal to the a value, it returns the local minimum value. If not, it repeats the same procedure.

2. Golden Section Method

Parameters Used

There are 3 parameters that the Golden Section Method takes initially: *the left* endpoint of the interval **a**, the right endpoint of the interval **b**, and the desired accuracy error **epsilon**.

(a = 5, b = 6, $\epsilon = 0.00001$), (a = -9.8, b = -7.2, $\epsilon = 0.00001$), (a = 4, b = 7.1, $\epsilon = 0.00001$) cases were tried to see whether the algorithm converges to a local minimum or not.

• Graph Of The Functions

Case 1: $(a = 5, b = 6, \epsilon = 0.00001)$

Case 2: (a = -9.8, b = -7.2, $\epsilon = 0.00001$)

Case 3: (a = 4, b = 7.1, $\epsilon = 0.00001$)

• Results of the Code

Case 1: (a = 5, b = 6, $\epsilon = 0.00001$)

	Iteration	a	b	x	.,	#(v)	5 (14)	v/k+4\ v/k\/v/k\ v/k\ v/k 4\	-log x(k+1) - x(k) + log x(k) - x(k-1)
0						-160.143476			
-	-							None	None
1						-161.399685		0.617801	0.20915
2	_	5.381953				-163.732264		1.0	0.0
3	-	5.381953				-163.367784		0.38183	0.41813
4	4	5.472130	5.618047	5.527852	5.562313	-163.732264	-163.282100	0.618644	0.20856
5	5	5.472130	5.562313	5.506576	5.527852	-163.748746	-163.732264	1.0	0.0
6	6	5.472130	5.527852	5.493413	5.506576	-163.661773	-163.748746	0.617082	0.20966
7	7	5.493413	5.527852	5.506576	5.514698	-163.748746	-163.765563	0.381631	0.41836
8	8	5.506576	5.527852	5.514698	5.519726	-163.765563	-163.761721	1.0	0.0
9	9	5.506576	5.519726	5.511598	5.514698	-163.762490	-163.765563	0.381061	0.419
10	10	5.511598	5.519726	5.514698	5.516621	-163.765563	-163.765386	1.0	0.0
11	11	5.511598	5.516621	5.513517	5.514698	-163.764880	-163.765563	0.624372	0.20456
12	12	5.513517	5.516621	5.514698	5.515436	-163.765563	-163.765684	0.384391	0.41523
13	13	5.514698	5.516621	5.515436	5.515887	-163.765684	-163.765642	1.0	0.0
14	14	5.514698	5.515887	5.515152	5.515436	-163.765665	-163.765684	0.388249	0.41089
15	15	5.515152	5.515887	5.515436	5.515606	-163.765684	-163.765679	1.0	0.0
16	16	5.515152	5.515606	5.515326	5.515436	-163.765681	-163.765684	0.398125	0.39998
17	17	5.515326	5.515606	5.515436	5.515499	-163.765684	-163.765683	1.0	0.0
18	18	5.515326	5.515499	5.515392	5.515436	-163.765683	-163.765684	0.422529	0.37414
19	19	5.515392	5.515499	5.515436	5.515458	-163.765684	-163.765684	1.0	0.0
20	20	5.515392	5.515458	5.515417	5.515436	-163.765684	-163.765684	0.366807	0.43556
21	21	5.515417	5.515458	5.515436	5.515442	-163.765684	-163.765684	1.04129	-0.01757
22	22	5.515436	5.515458	5.515442	5.515449	-163.765684	-163.765684	0.477944	0.32062
23	23	5.515442	5.515458	5.515449	5.515452	-163.765684	-163.765684	0.293137	0.53293

 $x^* = 5.51544949623405$ $f(x^*) = -163.7656840411375$

Case 2: (a = -9.8, b = -7.2, $\epsilon = 0.00001$)

	Iteration	a	b	x	у	f(x)	f(y)	x(k+1) - x(k) / x(k) - x(k-1)	-log x(k+1) - x(k) + log x(k) - x(k-1)
0	0	-9.800000	-7.200000	-8.806922	-8.193078	-430.916457	-337.855692	None	None
1	1	-9.800000	-8.193078	-9.186231	-8.806922	-210.245717	-430.916457	0.618246	0.20884
2	2	-9.186231	-8.193078	-8.806922	-8.572416	-430.916457	-452.409466	0.382076	0.41785
3	3	-8.806922	-8.193078	-8.572416	-8.427538	-452.409466	-426.505627	0.617602	0.20929
4	4	-8.806922	-8.427538	-8.662015	-8.572416	-454.159266	-452.409466	1.0	0.0
5	5	-8.806922	-8.572416	-8.717352	-8.662015	-449.211530	-454.159266	0.618767	0.20847
6	6	-8.717352	-8.572416	-8.662015	-8.627775	-454.159266	-454.879229	0.382275	0.41762
7	7	-8.662015	-8.572416	-8.627775	-8.606639	-454.879229	-454.456782	1.0	0.0
8	8	-8.662015	-8.606639	-8.640864	-8.627775	-454.811152	-454.879229	0.382748	0.41709
9	9	-8.640864	-8.606639	-8.627775	-8.619711	-454.879229	-454.795127	0.614764	0.21129
10	10	-8.640864	-8.619711	-8.632784	-8.627775	-454.883202	-454.879229	1.0	0.0
11	11	-8.640864	-8.627775	-8.635864	-8.632784	-454.867188	-454.883202	0.623387	0.20524
12	12	-8.635864	-8.627775	-8.632784	-8.630864	-454.883202	-454.886068	0.384022	0.41564
13	13	-8.632784	-8.627775	-8.630864	-8.629688	-454.886068	-454.885128	1.0	0.0
14	14	-8.632784	-8.629688	-8.631602	-8.630864	-454.885613	-454.886068	0.387294	0.41196
15	15	-8.631602	-8.629688	-8.630864	-8.630419	-454.886068	-454.885953	1.0	0.0
16	16	-8.631602	-8.630419	-8.631150	-8.630864	-454.885987	-454.886068	0.395698	0.40264
17	17	-8.631150	-8.630419	-8.630864	-8.630698	-454.886068	-454.886059	1.0	0.0
18	18	-8.631150	-8.630698	-8.630977	-8.630864	-454.886050	-454.886068	0.527298	0.27794
19	19	-8.630977	-8.630698	-8.630864	-8.630805	-454.886068	-454.886070	0.341376	0.46677
20	20	-8.630864	-8.630698	-8.630805	-8.630762	-454.886070	-454.886067	0.810459	0.09127
21	21	-8.630864	-8.630762	-8.630825	-8.630805	-454.886070	-454.886070	1.0	0.0
22	22	-8.630864	-8.630805	-8.630842	-8.630825	-454.886069	-454.886070	0.380636	0.41949
23	23	-8.630842	-8.630805	-8.630825	-8.630819	-454.886070	-454.886070	0.234772	0.62935
24	24	-8.630825	-8.630805	-8.630819	-8.630813	-454.886070	-454.886070	1.0	0.0
25	25	-8.630825	-8.630813	-8.630820	-8.630819	-454.886070	-454.886070	2.259698	-0.35405

 $x^* = -8.630820396259566$ $f(x^*) = -454.88606959122137$

Case 3: (a = 4, b = 7.1, $\epsilon = 0.00001$)

-log x(k+1) - x(k) + log x(k) - x(k-1)	x(k+1) - x(k) / x(k) - x(k-1)	f(y)	f(x)	у	x	b	a	Iteration	
None	None	-124.827495	-143.762801	5.915946	5.184054	7.100000	4.000000	0	0
0.20884	0.618246	-143.762801	-83.408686	5.184054	4.731801	5.915946	4.000000	1	1
0.41785	0.382076	-163.199067	-143.762801	5.463658	5.184054	5.915946	4.731801	2	2
0.0	1.0	-160.456603	-163.199067	5.636398	5.463658	5.915946	5.184054	3	3
0.20943	0.617403	-163.199067	-158.716081	5.463658	5.356828	5.636398	5.184054	4	4
0.41822	0.381754	-163.722059	-163.199067	5.529615	5.463658	5.636398	5.356828	5	5
0.20833	0.618967	-163.098279	-163.722059	5.570419	5.529615	5.636398	5.463658	6	6
0.0	1.0	-163.722059	-163.739612	5.529615	5.504436	5.570419	5.463658	7	7
0.21002	0.616561	-163.739612	-163.614580	5.504436	5.488851	5.529615	5.463658	8	8
0.41858	0.381431	-163.765260	-163.739612	5.514045	5.504436	5.529615	5.488851	9	9
0.0	1.0	-163.761200	-163.765260	5.519998	5.514045	5.529615	5.504436	10	10
0.20633	0.621829	-163.765260	-163.760149	5.514045	5.510380	5.519998	5.504436	11	11
0.41631	0.383436	-163.765518	-163.765260	5.516324	5.514045	5.519998	5.510380	12	12
0.21334	0.611866	-163.764562	-163.765518	5.517724	5.516324	5.519998	5.514045	13	13
0.0	1.0	-163.765518	-163.765684	5.516324	5.515450	5.517724	5.514045	14	14
0.42237	0.378124	-163.765684	-163.765623	5.515450	5.514916	5.516324	5.514045	15	15
0.0	1.0	-163.765659	-163.765684	5.515786	5.515450	5.516324	5.514916	16	16
0.42972	0.371779	-163.765684	-163.765676	5.515450	5.515248	5.515786	5.514916	17	17
0.0	1.0	-163.765680	-163.765684	5.515581	5.515450	5.515786	5.515248	18	18
0.45034	0.354537	-163.765684	-163.765683	5.515450	5.515375	5.515581	5.515248	19	19
0.0	1.0	-163.765683	-163.765684	5.515502	5.515450	5.515581	5.515375	20	20
0.51631	0.304571	-163.765684	-163.765684	5.515450	5.515424	5.515502	5.515375	21	21
0.0	1.0	-163.765684	-163.765684	5.515472	5.515450	5.515502	5.515424	22	22
0.8934	0.127819	-163.765684	-163.765684	5.515450	5.515442	5.515472	5.515424	23	23
-0.5838	3.835317	-163.765684	-163.765684	5.515461	5.515450	5.515472	5.515442	24	24
1.00179	0.099588	-163.765684	-163.765684	5.515450	5.515449	5.515461	5.515442	25	25

 $x^* = 5.515449247975413$ f(x*) = -163.76568404142915

The Source Code

Golden section method takes 3 parameters. The parameters a and b denote the initial interval's first and last points respectively. The procedure in golden section method as follows;

First, we need to gather initial search points, say x & y, using a and b and golden ratio.

$$x = b - (1/\varphi)*(b-a)$$

 $y = a + (1/\varphi)*(b-a)$

After that, we evaluate the function values of these points. While the difference between a and b values is tolerable (ϵ), we search for improvements in the evaluations.

If f(x) is greater than f(y), we conclude that the local minimum lies in a smaller portion of the current interval. Also we know that the interval [x,y) is not important for us because of the unimodality assumption. So, we chop away the unnecessary parts of the interval. In order to do that, we assign the x value to the variable a (first point of an interval). After this assignment, we update the value of variable x as y's value. The new calculation for new y is;

$$y = a + (1/\varphi)*(b-a)$$

After calculation, we evaluate the function for our brand new x and y. If f(x) is smaller than f(y), a similar process happens as described above.

```
def next_value(fx, fy, y0, a, b, g):
    if fx > fy:
        return y0
    else:
        return y0 - (1/g)*(y0-a)
```

```
if fx > fy:
         a = x0
         x0 = y0
         y0 = a + (1/g)*(b-a)
          fy = y0**3* math.cos(y0) * math.sin(y0) + 3 * y0**2* math.sin(y0) - 3*y0
         b = y0
         y0 = x0
         x0 = b - (1/g)*(b-a)
         fx = x0**3 * math.cos(x0) * math.sin(x0) + 3 * x0**2 * math.sin(x0) - 3*x0
    next_v = next_value(fx, fy, y0, a, b, g)
    if count == 0:
         \label{eq:continuity} output["|x(k+1) - x(k) / x(k) - x(k-1)|"].append("None")
         \label{eq:continuity} output["-log|x(k+1) - x(k)| + log|x(k) - x(k-1)|"].append("None")
         output["|x(k+1) - x(k) / x(k) - x(k-1)|"].append(abs((next_v - x0)/(x0 - temp))) output["-\log|x(k+1) - x(k)| + \log|x(k) - x(k-1)|"].append(round(-math.log(abs(next_v - x0), 10) +
                                                                                        math.log(abs(x0 - temp), 10), 5))
    count += 1
return output
```

3. Newton's Method

Algorithm Explanation

$$x = x^{(k)} - \frac{f(x^{(k)})}{f(x^{(k)})}$$

Input: f, $x^{(0)}$, ε

Output: x^* , $f(x^*) = 0$

• Parameters Used

There are 2 parameters that Newton's Method takes initially: *initial point* x_0 *and the error* ε .

 $(x_0 = 4, \ \epsilon = 0.000000001), (x_0 = 6, \ \epsilon = 0.000000001), (x_0 = 8, \ \epsilon = 0.0000000001), (x_0 = 9, \ \epsilon = 0.0005)$ cases were tried to see whether the algorithm converges to a local minimum or not.

• Graph Of The Functions

Case 1: $(x_0 = 4, \epsilon = 0.000000001)$

Case 2: ($x_0 = 6$, $\epsilon = 0.000000001$)

Case 3: ($x_0 = 8$, $\epsilon = 0.000000001$)

Case 4: ($x_0 = 9$, $\epsilon = 0.0005$)

• Results of the Code

Case 1: ($x_0 = 4$, $\epsilon = 0.000000001$)

	Iteration	x_k	f_k(x_k)	f_k'(x_k)	f_k"(x_k)	Convergence
0	0	4.000000	-16.667056	-38.105558	-128.322749	1.596286
1	1	3.703049	-10.126752	-9.121672	-64.802888	1.596286
2	2	3.562289	-9.382562	-2.161488	-34.621175	3.151018
3	3	3.499856	-9.307078	-0.382301	-22.544431	4.350550
4	4	3.482899	-9.303687	-0.026363	-19.449254	4.713625
5	5	3.481543	-9.303669	-0.000165	-19.205521	4.683111

 $x^* = 3.4815431431137758$ $f(x^*) = -9.30366946726433$

Case 2: $(x_0 = 6, \epsilon = 0.000000001)$

	Iteration	x_k	f_k(x_k)	f_k'(x_k)	f_k"(x_k)	Convergence
0	0	6.000000	-106.126749	243.936951	502.046285	0.005647
1	1	5.514115	-163.765301	-0.575085	431.374099	0.005647
2	2	5.515448	-163.765684	0.000481	432.095359	0.626332

 $x^* = 5.515447766160452$ f(x*) = -163.76568404261627

Case 3: ($x_0 = 8$, $\epsilon = 0.000000001$)

	Iteration	x_k	f_k(x_k)	f_k'(x_k)	f_k"(x_k)	Convergence
0	0	8.000000	92.253534	-501.407183	-277.826561	0.261513
1	1	6.195251	-49.499203	332.474156	390.329450	0.261513
2	2	5.343473	-157.870676	-65.494650	325.560959	0.277281
3	3	5.544648	-163.579255	12.843106	447.375077	0.709335
4	4	5.515940	-163.765631	0.213179	432.361086	0.598275
5	5	5.515447	-163.765684	0.000066	432.094839	0.624746

 $x^* = 5.515446804868879$ $f(x^*) = -163.76568404287903$

	Iteration	x_k	f_k(x_k)	f_k'(x_k)	f_k''(x_k)	Convergence				
0	0	9.000000	-200.590060	187.975674	1199.502521	0.110669				
1	1	8.843289	-215.095657	-3.308234	1217.217457	0.110669				
2	2	8.846007	-215.100151	0.001270	1218.145077	0.141151				
	$x^* = 8.8460065034334$ $f(x^*) = -215.10015110082009$									

• The Source Code

The function called newtons_method takes two arguments as inputs: x and epsilon. Then, it gives a dataframe of results in each iteration. In the main function, there is another function called derivatives. The function simply takes the function and converts it to its first and second derivatives. By using these, the new points on the x-axis are being calculated according to Newton's algorithm that is mentioned earlier. The stopping conditions check the function also. The results in each iteration are being collected in a list so that it can be converted to a dataframe.

```
def newtons_method(x, epsilon):
    df_list = [] #An empyt list for the results dataframe
    def derivatives(x_value):#A function that calculates the given function, first derivative, and the second derivative.
          \#Taking the derivative of the function wrt X.
          x = symbols("x")
          f = (x**3)*cos(x)*sin(x)+3*x**2*sin(x)-3*x
         f_first = diff(f,x)
f_second = diff(f_first,x)
         "Converting function to numerical type.

numerical_f = lambdify(x, f, "math")

numerical_f_first = lambdify(x, f_first, "math")

numerical_f_second = lambdify(x, f_second, "math")
          \#Calculating the functions with the given value. f_x = numerical_f(x\_value)
          f_first_x = numerical_f_first(x_value)
          f_second_x = numerical_f_second(x_value)
          return [x_value, f_x, f_first_x, f_second_x] #Returning a list of x, f(x), f'(x), and f''(x).
    #Initial starting point of the algorithm.
    x_curr = x - (derivatives(x)[2]/derivatives(x)[3])
    x_{fut} = x_{curr} - (derivatives(x_{curr})[2]/derivatives(x_{curr})[3])
    convergence = abs(x_fut-x_curr)/(abs(x_curr-x)**2)
    row = [k, derivatives(x)[0], derivatives(x)[1],derivatives(x)[2],derivatives(x)[3],convergence]
    df_list.append(row)
    x_prev = x
    #As the stopping criteria is not being satisfied, the algorithms should work. while (abs(x_fut - x_curr)>epsilon and abs(derivatives(x_fut)[1] - derivatives(x_curr)[1])>epsilon
              and abs(derivatives(x_curr)[2])>epsilon):
          #The Newton's Method Algorithm
         x_curr = x_prev - (derivatives(x_prev)[2]/derivatives(x_prev)[3])
x_fut = x_curr - (derivatives(x_curr)[2]/derivatives(x_curr)[3])
convergence = abs(x_fut-x_curr)/(abs(x_curr-x_prev)**2)
          x prev = x curr
          #Collecting the results.
          \label{eq:row} \textbf{row = [k, derivatives}(x\_curr)[0], derivatives(x\_curr)[1], derivatives(x\_curr)[2], \\
                       derivatives(x_curr)[3], convergence]
          df_list.append(row)
     return df_list #Returning dataframe of the results.
```

In addition to this, there are some codes to visualize the results.

```
column_names = ["Iteration", "x_k", "f_k(x_k)", "f_k'(x_k)", "f_k''(x_k)", "Convergence"]
df = pd.DataFrame(newtons_method(4, 0.000000001), columns=column_names)
df

print("x* = " + str(df.iloc[-1]["x_k"]))
print("f(x*) = " + str(df.iloc[-1]["f_k(x_k)"]))
```

```
bef f(x):
    return x**3 * np.cos(x) * np.sin(x) + 3 * x**2 * np.sin(x) - 3 * x

x = np.linspace(-10, 10)
y = f(x)
plt.plot(x, y)
x1, y1 = df.iloc[0]["x_k"], df.iloc[0]["f_k(x_k)"]
x2, y2 = df.iloc[-1]["x_k"], df.iloc[-1]["f_k(x_k)"]
plt.scatter([x1, x2], [y1, y2], color='blue', label='Marked Points')
plt.scatter([x1], [y1], color='green', label='Marked Points')
plt.scatter([x2], [y2], color='red', label='Marked Points')
plt.text(x1, y1, 'Starting Point', fontsize=12, ha='right', va='bottom', color="green")
plt.text(x2, y2, 'Optimal Point Found By Algorithm', fontsize=12, ha='left', color="red")
```

4. Secant Method

Algorithm Explanation

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f(x^{(k)}) - f(x^{(k-1)})} \times (x^{(k)} - x^{(k-1)})$$

Input: f, $x^{(0)}$, $x^{(1)}$, ϵ

Output: x^* , $f(x^*) = 0$

• Parameters Used

There are 3 parameters that Secant Method takes initially: *initial points* x_0 *and* x_1 & *the error* ε .

 $(x_0 = 5, x_1 = 7, \varepsilon = 0.0001), (x_0 = 4, x_1 = 6, \varepsilon = 0.0001), (x_0 = 8, x_1 = 10, \varepsilon = 0.0001), (x_0 = -6, x_1 = -5, \varepsilon = 0.00005)$ cases were tried to see whether the algorithm converges to a local minimum or not.

• Graph Of The Functions

Case 1: $(x_0 = 5, x_1 = 7, \epsilon = 0.0001)$

Case 2: $(x_0 = 4, x_1 = 6, \epsilon = 0.0001)$

Case 3: $(x_0 = 8, x_1 = 10, \epsilon = 0.0001)$

Case 4:
$$(x_0 = -6, x_1 = -5, \epsilon = 0.00005)$$

• Results of the Code

Case 1:
$$(x_0 = 5, x_1 = 7, \epsilon = 0.0001)$$

	Iteration	x_k	f_k(x_k)	f_k'(x_k)	Convergence
0	0	5.000000	-120.920640	-135.777797	0.425255
1	1	5.694684	-156.360415	84.892431	0.422968
2	2	5.043752	-126.770398	-131.414774	0.792152
3	3	5.439217	-162.551655	-31.290219	0.554440
4	4	5.562806	-163.271797	21.048703	1.464060
5	5	5.513103	-163.764499	-1.011102	0.292976
6	6	5.515381	-163.765683	-0.028237	1.234074

$$x^* = 5.515381301919676$$

 $f(x^*) = -163.76568312022212$

Case 2: $(x_0 = 4, x_1 = 6, \epsilon = 0.0001)$

	Iteration	x_k	f_k(x_k)	f_k'(x_k)	Convergence
0	0	4.000000	-16.667056	-38.105558	0.563542
1	1	4.270211	-32.138477	-77.759043	0.172276
2	2	4.688329	-77.508712	-134.054477	4.081745
3	3	3.692680	-10.035607	-8.461711	0.067556
4	4	3.625598	-9.597451	-4.766080	6.849106
5	5	3.539087	-9.341314	-1.411911	1.910343
6	6	3.502671	-9.308244	-0.446490	3.582739
7	7	3.485829	-9.303849	-0.084133	2.896791
8	8	3.481919	-9.303671	-0.007391	2.962701
9	9	3.481542	-9.303669	-0.000145	2.621147

Case 3: $(x_0 = 8, x_1 = 10, \epsilon = 0.0001)$

	Iteration	x_k	f_k(x_k)	f_k'(x_k)	Convergence
0	0	8.000000	92.253534	-501.407183	0.221173
1	1	9.321112	-84.344578	509.213410	2.571700
2	2	10.695374	-14.302448	-1078.325335	0.558083
3	3	9.761916	166.542990	523.760385	0.341136
4	4	10.067086	277.048952	151.214063	0.845211
5	5	10.190952	282.194185	-73.551931	1.189647
6	6	10.150419	283.603833	3.496262	0.329011
7	7	10.152258	283.607111	0.066746	0.954180

 $x^* = 10.15225783700372$ $f(x^*) = 283.60711089335655$

Case 4: $(x_0 = -6, x_1 = -5, \epsilon = 0.00005)$

	Iteration	x_k	f_k(x_k)	f_k'(x_k)	Convergence
0	0	-6.000000	-9.773001	-62.658084	0.646897
1	1	-5.646897	-12.273999	46.622547	0.895184
2	2	-6.089325	-2.985381	-88.885801	1.085763
3	3	-5.799117	-15.983351	1.116938	0.026657
4	4	-5.802719	-15.985326	-0.020650	0.587520
5	5	-5.802653	-15.985327	0.000015	0.288899

 $x^* = -5.802653396473716$ $f(x^*) = -15.985326836442777$

• The Source Code

The function called secant_method takes three arguments as inputs: x0, x1, and epsilon. Then, it gives a dataframe of results in each iteration. In the main function, there is another function called derivatives like in newtons_method. The function simply takes the function and converts it to its first derivatives since the Secant Method was designed to compute only the first derivative instead of the second derivative also. By using these, the new points on the x-axis are being calculated according to Secant's algorithm that is mentioned earlier. The stopping conditions check the function also. The results in each iteration are being collected in a list so that it can be converted to a dataframe.

```
def secant method(x0, x1, epsilon):
          df_list = [] #An empyt list for the results dataframe
          \begin{tabular}{ll} \beg
                     x = symbols("x")

f = (x**3)*cos(x)*sin(x)+3*x**2*sin(x)-3*x
                     f_first = diff(f,x)
                     #Converting function to numerical type.
                    numerical_f = lambdify(x, f, "math")
numerical_f_first = lambdify(x, f_first, "math")
#Calculating the functions with the given value.
f_x = numerical_f(x_value)
                     f_first_x = numerical_f_first(x_value)
                     return [x_value, f_x, f_first_x] #Returning a list of x, f(x), and f'(x).
          k = 0
          x prev = derivatives(x0)[0]
          x_curr = derivatives(x1)[0]
          x_fut = x_curr - (((derivatives(x_curr)[2]*(x_curr-x_prev))/(derivatives(x_curr)[2]-derivatives(x_prev)[2])))
          \label{eq:convergence} \mbox{convergence = abs(x_fut-x_curr)/(abs(x_curr-x_prev)**1.618)}
          row = [k, derivatives(x_prev)[0], derivatives(x_prev)[1],derivatives(x_prev)[2],convergence]
          x prev = x1
         df_list.append(row)
          #As the stopping criteria is not being satisfied, the algorithms should work.
          while (abs(x_fut - x_curr)>epsilon):
    #The Secent Method Algorithm
                     x_curr = x_fut
                     x_fut = x_curr - ((derivatives(x_curr)[2]*(x_curr-x_prev))/(derivatives(x_curr)[2]-derivatives(x_prev)[2]))
                     convergence = abs(x_fut-x_curr)/(abs(x_curr-x_prev)**1.618)
                     k = k+1
                     #Collecting the results.
                     row = [k, derivatives(x_prev)[0], derivatives(x_prev)[1],derivatives(x_prev)[2],convergence]
                     df_list.append(row)
          return df_list #Returning dataframe of the results.
```

In addition to this, there are some codes to visualize the results.

```
print("x* = " + str(df.iloc[-1]["x_k"]))
print("f(x*) = " + str(df.iloc[-1]["f_k(x_k)"]))
```

```
if fx > fy:
    a = x0
    x0 = y0
    y0 = a + (1/g)*(b-a)
    fx = fy
    fy = y0**3 * math.cos(y0) * math.sin(y0) + 3 * y0**2 * math.sin(y0) - 3*y0

else:
    b = y0
    y0 = x0
    x0 = b - (1/g)*(b-a)
    fy = fx
    fx = x0**3 * math.cos(x0) * math.sin(x0) + 3 * x0**2 * math.sin(x0) - 3*x0

next_v = next_value(fx, fy, y0, a, b, g)

if count == 0:
    output["|x(k+1) - x(k) / x(k) - x(k-1)|"].append("None")
    output["|log|x(k+1) - x(k) / x(k) - x(k-1)|"].append(abs((next_v - x0)/(x0 - temp)))
    output["-log|x(k+1) - x(k) / + log|x(k) - x(k-1)|"].append(round(-math.log(abs(next_v - x0), 10) + math.log(abs(x0 - temp), 10), 5))

count += 1
return output
```