BAT - Bolt Analysis Tool

User Manual

Author: Michael Sams

Issue: 0.1

Date: xx.xx.2021

Contents

1	Introduction	1
2	References	2

Symbols and Abbreviations

Symbols

0 zero vector

 ∇^2 Laplacian or Laplace operator

 α damping parameter for Levenberg-Marquardt algorithm

 $\Gamma(\cdot)$ Gamma function δ_{nm} Kronecker delta

 δ_{per} small perturbation for J evaluation

 Δ_{dLM} right-hand side of deterministic LM algorithm

 Δ right-hand side of VB LM algorithm

 ε numerical error for LM algorithm termination

 ζ i.i.d. Gaussian random variable

 η correlation length of stochastic process

 Θ, θ (model) parameters

 $\Theta^{(i)}$ drawn samples for MCMC

 \varkappa offset parameter

 κ regularization parameter (Tikhonov)

 λ_n eigenvalues of spectral decomposed stochastic process

 λ_1, λ_2 model parameters for biexponential example

 $egin{array}{lll} oldsymbol{\Lambda}_0 & ext{precision matrix of parameters } oldsymbol{ heta} \\ oldsymbol{\Lambda}_{0} & ext{prior precision matrix of parameters } oldsymbol{ heta} \\ oldsymbol{\Lambda}_{dLM} & ext{gradient for deterministic LM algorithm} \end{array}$

 $\xi_n(\omega)$ orthogonal, random variables

 σ standard deviation

 σ_V^2 variance of stochastic process

 $egin{array}{ccc} \underline{\sigma} & & ext{stress tensor} \\ \Sigma & & ext{covariance matrix} \end{array}$

 ϕ precision of added Gaussian noise

 $\psi(\cdot)$ di-gamma function

 $oldsymbol{\psi}$ linearization of nonlinear model $oldsymbol{\psi} = oldsymbol{y} - oldsymbol{g}(oldsymbol{m})$

 ω stochastic outcome

 Ω domain

 $\partial\Omega$ boundary of domain

 A_i, B_i probabilistic events

A matrix for FDM in Poisson problemb, b right-hand side of Poisson equation

 $\hat{\boldsymbol{b}}$ body loads

c shape parameter of Gamma distribution for model noise prior shape parameter of Gamma distribution for model noise

 $C(\boldsymbol{x}, \boldsymbol{x}'), C_Y$ covariance function

 $egin{array}{ll} D & & {
m dimension} \\ \mathcal{D} & & {
m space \ domain} \end{array}$

 $m{e}$ additive Gaussian noise vector $m{e}_{m{\psi}}$ error norm for result comparison

 $\mathbb{E}[\cdot]$ expectation or mean

 \mathcal{F} set of events

 $F(\cdot)$ cumulative distribution function

 $f(\cdot)$ arbitrary function

 f_n eigenfunctions of spectral decomposed stochastic process

 $g(\cdot)$ nonlinear forward model

 $\mathcal{GP}(m(\boldsymbol{x}), C(\boldsymbol{x}, \boldsymbol{x}'))$ Gaussian process

h mesh size

 $\begin{array}{ll} \pmb{h} & \text{search direction for optimization} \\ \mathbb{H}[\cdot] = \mathbb{H}[p,p] & \text{differential or relative entropy} \\ \end{array}$

 $\mathbb{H}[p,q]$ cross entropy

 i_{max} maximum number of iterations for algorithms

 $egin{array}{ll} I & & ext{identity matrix} \ \mathcal{J} & & ext{dimension of } oldsymbol{y} \end{array}$

 $J(\cdot)$ Jacobi matrix, Jacobian k(x) material parameter

 $\mathrm{KL}(\cdot||\cdot)$ Kullback-Leibler divergence

 l_i length for geometrical pipe transformation

L length/dimension of domain

 $\mathcal{L}(\cdot)$ lower bound $m(\boldsymbol{x})$ mean function

m, m mean (vector), optimization vector in algorithms

 m_0 prior mean vector of parameters $\boldsymbol{\theta}$

 $m{m}_{new}$ new mean/optimization vector for parameters $m{ heta}$ in iteration $m{m}_{old}$ old mean/optimization vector for parameters $m{ heta}$ in iteration

 M_1, M_2 model parameters for biexponential example N number of used terms in KL-expansion \mathcal{O} higher-order-terms in Taylor approximation

$p(\mathbf{\Theta})$	prior distribution
$p(oldsymbol{\Theta} oldsymbol{y})$	posterior distribution
$p(oldsymbol{y})$	normalization constant, model evidence,

marginal likelihood, Bayes factor

 $p(\boldsymbol{y}|\boldsymbol{\Theta})$ likelihood function

probability measure, probability distribution/density, $p(\cdot)$

> marginal probability conditional probability

 $p(\cdot, \cdot) = p(\cdot \cap \cdot)$ joint probability

 $p(\cdot|\cdot)$

Taylor polynomial of n-th order $p_n(x)$ defined distribution in VB derivation $\tilde{p}(\cdot,\cdot)$

 $q(\cdot)$ arbitrary or factorized probability distribution

 $q_j^{opt}(\mathbf{\Theta}_j)$ optimal solution for variational inference in VB derivation $q(\boldsymbol{\Theta}|\boldsymbol{y})$ approximate posterior distribution in VB derivation $q_{\boldsymbol{\theta}}(\boldsymbol{\theta}|\boldsymbol{y})$ factorized prior for model parameters in VB derivation $q_{\phi}(\phi|\boldsymbol{y})$ factorized prior for model noise in VB derivation

radius of pipe model r_P

scale parameter of Gamma distribution for model noise sprior scale parameter of Gamma distribution for model noise s_0

 \mathcal{S} sample space $(\mathcal{S},\mathcal{F},p)$ probability space

time

 \mathcal{T} time domain

solution (vector) of Poisson problem u, \boldsymbol{u}

 $var[\cdot]$ variance

positive roots of characteristic equation in KL-expansion w_n

 $X, X(\cdot)$ random variable \boldsymbol{X} random vector measurement Ystochastic process

Abbreviations

AWGN additive white Gaussian noise

BACI C++ research code

CDF cumulative distribution function (d)LM (deterministic) Levenberg-Marquardt

dTikLM deterministic, elementwise optimization with

Tikhonov regularization

 $\begin{array}{ll} {\rm FE}({\rm A}) & \qquad & {\rm finite\ element\ (analysis)} \\ {\rm Gam} & \qquad & {\rm Gamma\ distribution} \end{array}$

GN Gauss-Newton GP Gaussian process

i.i.d. independent, identically distributed

KL-divergence
KL-expansion
Karhunen-Loève-expansion
NLLS
MCMC
MVN
Kullback-Leibler-divergence
Karhunen-Loève-expansion
nonlinear least squares
Markov Chain Monte Carlo
multivariate normal distribution

SNR signal-to-noise ratio VB Variational Bayes **List of Figures**

List of Tables

List of Algorithms

1 Introduction

This document will include the BAT (Bolt Analysis Tool) User Manual [1] [2] [3].

$$p(\boldsymbol{\Theta}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{\Theta}) \ p(\boldsymbol{\Theta})}{p(\boldsymbol{y})} , \qquad (1.1)$$

2 References

- [1] Guidelines for threaded fasteners. ESA Guideline ESA PSS-03-208 Issue 1, Structures and Mechanism Division ESTEC, December 1989.
- [2] Space engineering threaded fasteners handbook. ECSS Handbook ECSS-E-HB-32-23A, ECSS European Cooperation for Space Standardization, 16 April 2010.
- [3] Systematic calculation of highly stressed bolted joints joints with one cylindrical bolt. VDI Guideline VDI2230 Part 1, VDI Verein Deutscher Ingenieure, November 2015.