handsOn03_convex-optimization-probability

September 21, 2016

1 INSTRUCTIONS:

- Take a tag, look at seating chart
- Go to the seat you were assigned
- Place the tag on your desk we are checking!

2 EECS 445: Introduction to Machine Learning

2.1 Hands-On Lecture 3: Convex Optimization and Probability

Monday, September 19, 2016

2.2 Outline

This hands-on lecture corresponds to material from Lecture 03: Convex Optimization & Probability.

Hands-on Exercises * Problem 1: Convex Functions * Problem 2: Lagrange Duality * Problem 3: Conditional Probability * Problem 4: Expectations * Problem 5: Variances * Problem 6: Maximize Likelihood

2.2.1 Problem 1: Convex Functions

- (a) Prove $\forall a, b \in \mathbb{R}$, f(x) = ax + b is convex.
- (b) Prove $\forall a \geq 0, \forall b, c \in \mathbb{R}$, $f(x) = ax^2 + bx + c$ is convex.

Hint: Use convex definition: * We say that a function f is *convex* if, for any distinct pair of points x_1, x_2 we have

$$f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2) \quad \forall t \in [0,1]$$

2.2.2 Problem 1: Convex Functions

(c) Prove the following function is convex

$$f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 = \mathbf{x}^T \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \mathbf{x}, \forall x_1, x_2 \in \mathbb{R}$$

Hint: Use convex definition: * If f is differentiable, then f is convex iff $f(x+y) \ge f(x) + f(x)$ $\nabla_x f(x) \cdot y \quad \forall x, y$

• If f is twice-differentiable, then f is convex iff its hessian is always positive semi-definite!

Solution 1: Convex Functions

(c)
$$f(\mathbf{x} + \mathbf{y}) - f(\mathbf{x}) - \nabla_x f(\mathbf{x})^T \cdot \mathbf{y}$$

$$= (x_1 + y_1)^2 + (x_2 + y_2)^2 + (x_1 + y_1)(x_2 + y_2) - (x_1^2 + x_2^2 + x_1 x_2) - ((2x_1 + x_2)y_1 + (x_1 + 2x_2)y_2)$$

$$= y_1^2 + y_2^2 \ge 0$$

The Hessian is
$$\mathbf{H} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
, $\forall \mathbf{x} \in \mathbb{R}^2$, $\mathbf{x}^T H \mathbf{x} = 2x_1^2 + 2x_2^2 + 2x_1x_2 = x_1^2 + x_2^2 + (x_1 + x_2)^2 \ge 0$

2.2.4 Problem 2: Convex Optimization

maximize
$$f(x) = x_1 + x_2$$

subject to $4x_1 - x_2 \le 8$
 $2x_1 + x_2 \le 10$
 $5x_1 - x_2 \ge -2$

(a) Convert the above linear programming problem into the standard form.

Hint: Standard form of primal problem: objective function should be minimize, constraints only contain " \leq " and "=", **i.e.**

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \leq 0, \quad i=1,...,m$
 $h_j(x)=0, \quad j=1,...,n$

Solution 2: Convex Optimization

$$\begin{array}{ll} \text{minimize} & f(x) = -x_1 - x_2 \\ \text{subject to} & 4x_1 - x_2 - 8 & \leq 0 \\ & 2x_1 + x_2 - 10 & \leq 0 \\ & -5x_1 + x_2 - 2 & \leq 0 \end{array}$$

Problem 2: Convex Optimization

(b) Derive the dual problem.

Hint: * Its Lagrangian is
$$L(x, \lambda, \nu) := f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^n \nu_j h_j(x)$$

• The Langragian dual function is $L_D(\lambda, \nu) \triangleq \min_x L(x, \lambda, \nu)$ = $\min_x \left[f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^n \nu_j h_j(x) \right]$

$$= \min_{x} \left[f(x) + \sum_{i=1}^{m} \lambda_{i} g_{i}(x) + \sum_{j=1}^{n} \nu_{j} h_{j}(x) \right]$$

2.2.7 Solution 2: Convex Optimization

(b)

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{n} \nu_j h_j(x)$$

$$= -x_1 - x_2 + \lambda_1 (4x_1 - x_2 - 8) + \lambda_2 (2x_1 + x_2 - 10) + \lambda_3 (-5x_1 + x_2 - 2)$$

$$= x_1 (4\lambda_1 + 2\lambda_2 - 5\lambda_3 - 1) + x_2 (-2\lambda_1 + \lambda_2 + \lambda_3 - 1) + (-8\lambda_1 - 10\lambda_2 - 2\lambda_3)$$

Dual problem is

$$\begin{array}{ll} \text{maximize} & L_D(\boldsymbol{\lambda}) & = \min_x L(x, \boldsymbol{\lambda}) \\ \text{subject to} & \lambda_i & \geq 0 \end{array}$$

To get feasible solution, we must have the coefficients of x_1 and x_2 to be zero, otherwise $\min_x L(x, \lambda)$ would get negetive infinity:

$$4\lambda_1 + 2\lambda_2 - 5\lambda_3 - 1 = 0$$

-2\lambda_1 + \lambda_2 + \lambda_3 - 1 = 0

then $L_D(\lambda)$ becomes $-8\lambda_1 - 10\lambda_2 - 2\lambda_3$.

2.2.8 Review: Axioms of Probability

- $0 \le P(A) \le 1$
- $P(\Omega) = 1$
- If A_1, A_2, \dots, A_k are disjoint events, then $P(\bigcup_{i=1}^k A_i) = \sum_{i=1}^k P(A_i)$.

2.2.9 Conditional Probability

For events $A, B \in \mathcal{F}$ with P(B) > 0, we may write the **conditional probability of A given B**:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

2.2.10 Problem 3

Suppose x, y are discrete variables and the probability distribution is as follows:

$$x = 0$$
 $x = 1$ $x = 2$
 $y = 0$ 0.1 0.2 0.3
 $y = 1$ 0.2 0.1 0.1

- (a) Compute p(x = 0), p(y = 1).
- (b) Compute p(x|y=1).
- (c) Prove the Bayes' Rule

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_j P(A|B_j)P(B_j)}$$

Where B_i is a partition of Ω (note the bottom is just the law of probability).

2.2.11 Problem 4

Given a 2D Gaussian distribution

$$p(x,y) = \frac{1}{\sqrt{2}\pi} \exp\{-\frac{1}{2}(x^2 + xy + 2y^2)\}\$$

- (a) Compute p(x = 4, y).
 - (b) Compute p(x = 4).
 - (c) Using Bayse' Rule, compute $p(y \mid x = 4)$.

2.2.12 Solution 4

(a) $p(x=4,y) = \frac{1}{\sqrt{2}\pi} \exp\{-\frac{1}{2}(16+4y+2y^2)\}$

(b)
$$p(x=4) = \int_{y} p(x=4,y)$$

$$= \int_{y} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(16+4y+2y^{2})\}$$

$$= \int_{y} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(14+2(y+1)^{2})\}$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-7) \int_{y} \frac{1}{\sqrt{\pi}} \exp\{-\frac{1}{2}(2(y+1)^{2})\}$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-7)$$

Notice that $\frac{1}{\sqrt{\pi}}\exp\{-\frac{1}{2}(2(y+1)^2)\} = \frac{1}{\sqrt{2\pi}\sigma}\exp\{-\frac{1}{2\sigma^2}(y-\mu)^2\}$ is Normal distribution with $\mu=-1$ and $\sigma^2=\frac{1}{2}$, so the integration is 1.

(c)
$$p(y|x=4) = \frac{p(x=4,y)}{p(x=4)} = \frac{1}{\sqrt{\pi}} \exp\{-\frac{1}{2}(2(y+1)^2)\}$$

2.2.13 Review: Property of Expectation

- E[a] = a for any constant $a \in \mathbb{R}$.
- E[af(X)] = aE[f(X)] for any constant $a \in \mathbb{R}$.
- E[f(X) + g(X)] = E[f(X)] + E[g(X)].
- For a discrete variable X, E[1X=k]=P(X=k).

2.2.14 Problem 5

- (a) We have variance of a distribution: $Var[X] = E[X E[X]]^2$, prove $Var[X] = E[X^2] E[X]^2$. Then prove $Var[af(X)] = a^2Var[f(X)]$ for any constant $a \in \mathbb{R}$.
- (b) We also have multiple random variables X and Y, then the covariance is defined as Cov[X,Y] = E[(X-EX)(Y-EY)], prove Cov[X,Y] = E[XY] E[X]E[Y].
- (c) Prove Var[X + Y] = Var[X] + Var[Y] + Cov[X, Y].

2.2.15 Review: Maximum Likelihood

Suppose we have a set of observed data D and we want to evaluate a parameter setting w:

$$p(w|D) = \frac{p(D|w)p(w)}{p(D)}$$

$$p(D) = \sum_{w} p(D|w)p(w)$$

We call p(D|w) as the likelihood function. Then we have $p(w|D) \propto p(D|w)p(w)$. Suppose p(w) is the same for all w, we can only choose w to maximize likelihood p(D|w), which is to maximize the log-likelihood $\log p(D|w)$.

2.2.16 Problem 6: Maximum Likelihood Estimation

We have observed data x_1, \dots, x_n drawn from Bernoulli distribution:

$$p(x) = \begin{cases} \theta & \text{if } x = 1\\ 1 - \theta & \text{if } x = 0 \end{cases}$$

- (a) What is the likelihood function based on θ ?
- (b) What is the log-likelihood function?
- (c) Compute estimated θ to maximize the log-likelihood function.

2.2.17 Solution 6: Maximum Likelihood Estimation

(a)

$$L(\theta) = p(D|\theta) = p(x_1, \dots, x_n|\theta)$$

$$= \prod_i p(x_i) = \theta^{\sum \mathcal{V}(x_i=1)} (1-\theta)^{\sum \mathcal{V}(x_i=0)}$$

$$= \theta^k (1-\theta)^{n-k}$$

where k is the number of 1s from the observed data.

(b)

$$\log L(\theta) = k \log(\theta) + (n - k) \log(1 - \theta)$$

2.2.18 Solution 6: Maximum Likelihood Estimation

(c) Set the derivative of $log(L(\theta))$ to zero we have

$$\frac{\mathrm{d}log(L(\theta))}{\mathrm{d}\theta} = \frac{k}{\theta} - \frac{n-k}{1-\theta} = 0 \\ \frac{k}{\theta} = \frac{n-k}{1-\theta}\theta = \frac{k}{n}$$

.

2.2.19 Extra Problem: Maximum Likelihood Estimation for Gaussian Distribution

We have observed data x_1, \dots, x_n drawn from Normal distribution:

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- (a) What is the likelihood function based on μ and σ^2 ?
- (b) What is the log-likelihood function?
- (c) Compute estimated parameters μ and σ^2 to maximize the log-likelihood function.