

SpectruMS: A Multi-modal Foundation Model for Better Generalizability on Tandem MS2 Data

Aya Abdelbaky ICCS 2025

Outline

- Motivation
- SpectruMS base model
- Specialized models
- Results
- Learnings and Outlook

Our Workflow | PangeAl™ enables us to explore the natural world and nominate potential health products for development, at scale

PangeAl[™] Discovery Workflow **SELECT & GENERATE UNCOVER PREDICT VALIDATE** LC-MS/MS1 DATA **SOURCE SPECIES CHEMISTRY EXPERIMENTALLY BIOACTIVITY Scalable product** pipeline New bioactive Dereplicate known and compounds and extracts predict potential novel for further development structures found within a species via our proprietary computational MS platform

LC-MS/MS¹ Problem | Most found metabolites cannot be annotated

LLMs¹ Approach | Not limited by spectral reference libraries

Step 1
Language Learning
Pre-training with unlabeled data

Step 2
Task Specific
Fine-tuning with labeled data

Multi-modal SpectruMS Pre-training | Learning spectra and chemistry languages

Token Masking | Representations are learnt from unlabelled data

Datasets | Pre-processing pipeline for both labeled and unlabeled data

Multi-modal SpectruMS Fine-tuning | Task specialization

Task 1 De novo structure generation from spectra

HO OH OH

Epigallocatechin (EGC)

New

Epicatechin

Epicatechin gallate (ECG)

Epicatechin

C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC(=C(C=C3)O)O)O

Task 2 | Molecular features prediction from spectra

Molecular Features

Epicatechin

Molecular Feature Model

C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC(=C(C=C3)O)O)O

Optimized Ranking | Re-ranking the generated list of candidates

Results | SpectruMS outperforms state-of-the-art in generating the correct structure in the top-k candidates

¹Exact Match = Correct prediction having tanimoto coefficient of 1.0 with label

² Butler T, Frandsen A, Lightheart R, Bargh B, Taylor J, Bollerman T, et al. MS2Mot A transformer model for illuminating dark chemical space from mass spectra. ChemRxiv. 2023; doi:10.26434/chemrxiv-2023-vsmpx-v3 This content is a preprint and has not been peer-reviewed.

³ Fiehn, O. (2022). CASM 2022: Critical Assessment of Small Molecule Identification. Fiehn Lab, UC Davis.

⁴ Bohde, M, Manjrekar, M, Wang, R, Ji, S., & Coley, C. W. (2025). DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra. arXiv preprint arXiv:250209571.

5 Bushulev, R., Bushulev, A., de Jonge, N., Young, A., Kretschmer, F., Samusevich, R., .. & Pluskal, T. (2024). MassSpecGym: A benchmark for the discovery and identification of molecules. Advances in Neural Information Processing Systems, 37, 110010-110027.

bio

Results | Knowledge of the molecular features improves predicting the correct structure in the *top-k* candidates

¹Exact Match = Correct prediction having tanimoto coefficient of 1.0 with label

² Optimized = Weighted ranking based on predicted molecular features

³ Default = Ranking of predictions by the generative model

⁴ Fiehn, O. (2022). ČASM 2022: Critical Assessment of Small Molecule Identification. Fiehn Lab, UC Davis.

Bushulev, R., Bushulev, A., de Jonge, N., Young A., Kretschmer, F., Samusevich, R., ... & Plintakd, T. (2020). MassSpecGym: A benchmark for the discovery and identification of molecules. Advances in Neural Information Processing Systems, 37, 110010–110027.

Results | Knowledge of the molecular features improves candidates ranking

Task 3 | Chemical class prediction from spectra

Results | Chemical class prediction from spectra has F1-score > 75%

¹FI-score = harmonic mean of precision and recall

² Optimized = Weighted ranking based on predicted molecular features

³ Default = Ranking of predictions by the generative model ⁴ Fiehn, O. (2022). CASM 2022: Critical Assessment of Small Molecule Identification. Fiehn Lab, UC Davis.

⁵ Bushuiev, R., Bushuiev, A., de Jonge, N., Young, A., Kretschmer, F., Samusevich, R., .. & Pluskal, T. (2024). MassSpecGym: A benchmark for the discovery and identification of molecules. Advances in Neural Information Processing Systems, 37, 110010-110027.

Conclusion | SpectruMS pushes the boundaries of known MS2 chemistry

Some learnings:

- Model generalizability is as good as its understanding of the language represented as unlabeled data
- Specialized models performance is highly dependent on the base model and pre-training data sizes
- Knowledge of applicability domain of a model is more important than model performance

Potential Avenues for Improvement:

- Train a larger base model with an extended MS2 data corpus including spectra with lower quality
- Incorporate molecular fragment-based and physics-informed training
- Build a comparable model such as Graph Transformers

Thank you!

- Daniel Crusius
- Tornike Onoprishvili
- Kamen Petrov
- Klaudia Caba
- Jui-Hung Yuan
- Sona Chandra
- Andreas Bender
- Yoann Gloaguen

