# **EESTEC Hackathon Radar Based Vital Sensing**



Team 4
Abhishek Ganesh
Akashdeep Roy
Sanjeev Kumar

### Infineon's BGT60TR13C Radar Chip

XENSIV<sup>™</sup> 60GHz radar sensor for advanced sensing







**Presence detection/segmentation** 

**Touchless interaction** 

**Vital sensing** 

### **Target Scenario**

A single person sitting in front of the radar (facing towards the chest) ~1m





## Algorithm



## Data Collection for Machine Learning

Support Vector Machines (Movement v/s Quasi-Static Classification)

Artificial Neural Network (Resting v/s Anxious State Classification)

### **Data Specifications:**

Data: Range\_FFT Data

Classes: 2 (Movement, Quasi-Static)

No. of Training Samples: 120 per class

## Data Specifications:

Data: Phase Data

Classes: 2 (Resting, Anxious)

No. of Training Samples: 180 per class

## Moving and Quasi-Static State Classification



Velocity Deviation (Quasi-Static)

**Velocity Deviation (Moving)** 

Resting and Anxious State Classification





## Hardware Implementation (Embedded Perspective)



# Hardware Implementation (Embedded Perspective)

#### **Load Reduction**

Principal Component Selection Quantization

#### Conversion of skLearn models into C header files

micromlgen — SVM, SVC, PCA (github project)
Microsoft ELL — Neural Network (github project)
Tensorflow Lite
TinyML

#### Language

C/C++ Rust MicroPython

#### **Embedded Learning**

Inference code generation
FLASH programming
Digital Filters Implementation

**Memory Management and Segmentation** 

**Interrupt handling** 

### Future Scope and Possible Approaches

