Raccolta informazioni

1 Grandezze fisiche

1.1 Idrodinamica

		valori tipici	phantom	mcfost
$\overline{M_P}$	planet mass	$(10-10^2)M_{\oplus}$	in	
M_*	star mass	$\sim 1 { m M}_{\odot}$	in	
M_g	gas mass	$\sim (1 - 10) M_j$	$_{ m in}$	
M_d	dust mass	$\sim (10^{-3} - 1) M_j$	$_{ m in}$	
$\frac{H}{R}$ R_p	aspect ratio	(0.001)-0.1	out(?)	
$\overset{r}{R}_{p}$	planet orbital radius			
$R_{in} - R_{out}$	simulation boundaries			
$lpha_{SS}$	Shakura-Sunyaev viscosity	$10^{-4} - 10^{-2}$	out	
$lpha_{AV}$	artificial viscosity			
St	Stokes' number	$10^{-2} - 10^{-3}$	out(?)	
s	grain size			
$ ho_g$	grain density			
ϵ	dust-gas ratio			
R_{accr}^*	star acccretion radius			

1.2 Radiativo

		valori tipici	phantom	mcfost
T	temperature	(20 - 100)K		
κ	opacity			
au	optical depth			
β	spectral index			

1.3 Osservazioni

		valori tipici	phantom	mcsoft
d_b	beam dimension			

1.4 Grandezze fisiche approfondite

1.4.1 Planet mass

Per dischi con $St \ll 1$ la massa minima in grado di aprire un gap è 1

$$\frac{M_{min}}{M_*} = 0.3 \left(\frac{H}{R}\right)^3 \tag{1}$$

Per masse superiori alla massa termica $M_{th} = \left(\frac{H}{R_p}\right)^3 \cdot 3M_*$, massa per la quale il raggio di Hill è pari ad H, si possono presentare strutture più complesse: strutture a spirale, bordi del gap con vortici,...

1.4.2 Dust mass

Viene ricavata dalle osservazioni nel continuo di emissione termica della polvere utilizzando la relazione

$$I_{\nu} \propto \tau_{\nu} B_{\nu}(T) \propto \kappa_{\nu} \Sigma_s B_{\nu}(T)$$
 (2)

valida assumendo sia prevalente il limite otticamente sottile.

Misure ad una data lunghezza d'onda sono in pratica una misura della massa della componente solida di dimensioni comparabili con tale lunghezza d'onda.

Le misure a disposizione sono probabilmente valori sottostimati.

1.4.3 Aspect ratio

Definito come

$$h = H/R \tag{3}$$

Imponendo la condizione di equilibrio idrostatico per il gas lungo z (ad R fissato) si ottiene che la densità assume una distribuzione

$$\rho_g = \rho_0 \cdot \exp\left(-\frac{\Omega_k^2 z^2}{2c_c^2}\right) \tag{4}$$

che è una gaussiana con deviazione standard $H \equiv c_s/\Omega_k$

Sempre da questa relazione si ha anche $h = c_S/v_K$ Per un fluido perfetto $c_S = (\frac{k_B T}{\mu m_p})^{1/2}$, H è quindi legato alla temperatura del disco

Legato anche alla stabilità/instabilità gravitazionale. Dall'espressione del parametro di Toomre, con alcune approssimazioni si ottiene la condizione per la stabilità

$$\frac{M_{disk}}{M_*} \gtrsim h \tag{5}$$

Solitamente si assumono dischi sottili in cui $h \ll 1$, questa condizione impone anche una condizione sulle velocità: $c_s \ll v_{\phi}$.

Dalla componente radiale dell'equazione di Eulero si trova che la velocità angolare del gas presenta una correzione del secondo ordine in h rispetto a quella Kepleriana

$$v_{\phi,gas} = v_K (1 - qh^2)^{1/2} \tag{6}$$

Misure che rivelano l'andamento della temperatura in funzione di R permettono di ottenere anche la curva di h.

1.4.4 Stokes' number

Il gas esercita sulle particelle di polvere una forza di diversa natura a seconda della dimensione della particella s

$$s \lesssim \frac{9}{4}\lambda$$
, regime di Epstein $\mathbf{F}_{\mathbf{D}} = -\frac{4\pi}{3}\rho s^2 v_{th} \mathbf{v}$

$$s\gtrsim \frac{9}{4}\lambda,$$
regime di Stokes $\mathbf{F_D}=-\frac{C_D}{2}\pi s^2\rho v\mathbf{v}$

Il numero di Stokes è definito come

$$St = t_{stop}\Omega_K \tag{7}$$

dove t_{stop} è il tempo caratteristico di frenamento dovuto al drag viscoso in uno dei due regimi.

Per particelle $\lesssim 10$ m prevale il regime di epstein, nel quale

$$St = \frac{\pi}{2} \frac{s\rho_g}{\Sigma_a} \tag{8}$$

dove ρ_g è la densità del materiale che costituisce la componente solida del disco

Il suo valore può variare con la posizione e anche con l'evoluzione del disco. Può essere fissato nelle simulazioni per non fissare la dimensione delle particelle solide. O viceversa può essere fissata la dimensione della polvere.

1.4.5 Shakura-Sunyaev viscosity

Parametrizza la viscosità cinematica $\nu = \mu/\rho$

$$\nu = \alpha \cdot H \cdot c_s \tag{9}$$

La viscosità influenza l'evoluzione radiale della densità superficiale Σ_g

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} [r^{1/2} \frac{\partial}{\partial r} (\nu \Sigma r^{1/2})] \tag{10}$$

da cui si ottiene una scala temporale legata alla viscosità

$$t_{\nu} \sim R^2/\nu \tag{11}$$

Misure o stime:

viene stimato richiedendo quale deve essere il suo valore per riprodurre le scale di tempo tipiche dell'evoluzione del disco, come? analisi di indicatori di accrescimento:

- eccesso ultravioletto
- emissione $H\alpha$ dalla fotosfera della stella
- osservazioni nel (sub-)mm risolte spazialmente

Viene solitamente considerato costante in tutto il disco, potrebbe non esserlo ma l'utilità del modello risiede nel considerarlo costante

Si riescono ad ottenere prevalentemente limiti superiori, l'evoluzione radiale potrebbe infatti essere dovuta anche ad altri meccanismi

1.4.6 Artificial Viscosity²

Utilizzata per modellizzare la viscosità nelle simulazioni SPH. Legata alla α_{SS} dalla relazione

$$\alpha_{SS} \simeq \frac{\alpha_{AV}}{10} \frac{\langle h_s \rangle}{H}$$
 (12)

dove $\langle h_s \rangle$ è il valor medio azimutale (ad R fissato) della smoothing length delle particelle. Per ottenere α_{SS} costante è necesario risolvere H(R).

 α_{AV} viene assunto costante in tutto il disco.

Vantaggi:

- forza a considerare se H è risolto o meno
- è utile conoscere α_{AV} perchè $\alpha_{AV} \simeq 0.1$ rappresenta il limite inferiore sotto il quale la viscosità non è risolta dal metodo SPH.

Svantaggi:

- si ottengono alte viscosità di bulk $\frac{1}{6}\alpha_{AV}c_sh$, tuttavia questo coefficiente è applicato a $\nabla \cdot v$ che per le simulazioni di dischi assume generalmente valori bassi.

1.4.7 Temperature

La temperatura del disco è determinata dal bilancio di calore proveniente principalmente da due sorgenti

- disco passivo: radiazione emessa dalla stella che viene intercettata dal disco $(P=fL_*,\ f\sim 1/4)$
- disco attivo: dissipazione dell'energia potenziale gravitazionale $(P \sim G \frac{M_* \dot{M}}{R_*})$

La scelta del limite in cui trascurare una delle due sorgenti dipende principalmente dal rate di accrescimento \dot{M} della stella. Dai valori ottenuti con le osservazioni sì può concludere che entrambi i processi possono essere rilevanti a seconda della situazione.

Fortemente legata alla forma del disco.

Per un disco piatto sottile (passivo): $T \propto R^{-3/4} \implies h \propto R^{1/8}$

Per un disco "flared" (passivo): $T \propto R^{-1/2} \implies h \propto R^{1/4}$

T(z) cresce con |z|

Temperature tipiche vanno da 10K, che è circa la temperatura del mezzo interstellare, a qualche 50/100K. Valori tipici sono 20/30K.

Per determinare la distribuzione di temperatura:

- simulare la distribuzione spettrale nell'infrarosso proponendo densità ed opacità del disco. Problema: degenerazioni del modello
- osservazioni in regime otticamente spesso

2 Workflow simulazioni

2.1 Phantom

Programma realizzato in fortran per simulazioni idrodinamiche mediante il metodo SPH (Smoothed-particle hydrodynamics). Per le simulazioni di dischi costituiti da gas e polvere i passaggi da seguire sono i seguenti:

Si utilizza lo script fornito con phantom per la generazione del makefile specificando il valore della variabile SETUP, da porre uguale a dustydisc per simulare dischi costituiti da gas e polvere solida

```
1 \sim/sim_dir $ \sim/phantom/scripts/writemake.sh dustydisc > Makefile
```

Si utilizza il makefile così creato per generare phantom e phantomsetup specificando con il valore della variabile SYSTEM il compilatore fortran da utilizzare

```
1 ~/sim_dir $ make SYSTEM=gfortran setup
```

```
2 ~/sim_dir $ make SYSTEM=gfortran
```

Si può quindi utilizzare phantomsetup per generare il file *.setup tramite l'interfaccia a riga di comando con cui vengono richieste informazioni sul sistema che si vuole simulare.

```
1 ~/sim_dir $ ./phantomsetup sim_name
```

Il file *.setup deve poi essere modificato manualmente per settare i parametri coi quali eseguire la simulazione. Infine si deve utilizzare nuovamente phantomsetup per generare il file *.in che viene utilizzato come input per la simulazione.

```
1 ~/sim_dir $ ./phantomsetup sim_name.setup
```

A questo punto si può eseguire la simulazione

```
1 ~/sim_dir $ ./phantom sim_name.in
```

Vengono prodotti i seguenti file:

- *.ev, file ascii contenenti informazioni globali sul disco in funzione del tempo
- *.discparams, file ascii contenente i valori delle principali grandezze fisiche del disco con le quali è stata eseguita la simulazione. Vengono generati due file di questo tipo: uno per la componente solida ed uno per la componente gassosa.
- file dump con nomi nel formato *_00001, *_00002, Solo alcuni di questi (a seconda di quanto specificato in *.in sono "full dumps" ovvero contengono tutte le informazioni ottenute dalla simulazione e necessarie per, ipoteticamente, farla ripartire da quello stato. Gli altri file dump contengono solo la posizione delle particelle e le smoothing lengths.

2.2 MCFOST

Codice che simula il rasferimento radiativo permettendo di ottenere una immagine della radiazione emessa dal disco. Può essere utilizzato per generare l'emessione nel continuo, l'emissione di linee spettrali specifiche, e l'emissione di radiazione scatterata.

MCFOST è in grado di leggere direttamente i file dump di phantom. L'itruzione per eseguire una simulazione è la seguente

```
1 ~/sim_dir $ mcfost *.para -phantom <dump_file>
```

Il file *.para può essere ottenuto tramite mcfost -get_para. Costituisce il file di configurazione in cui mdificare i parametri prima di eseguire la simulazione. Se si utilizzano i file prodotti da PHANTOM alcuni parametri (es. parametri riguardanti caratteristiche del disco) vengono ignorati in quanto già presenti nel file dump.

3 Formati

FITS

4 Da valutare

- architettura (o almeno tipologia) rete neurale: convolutional neural network (?)
- dimensione minima necessaria per il database
- come considerare il tempo?
- cosa usare per implementare il database?
 pandas
 MLDB

5 Fonti

5.1 Paper

```
1https://doi.org/10.1093/mnras/stz913
2http://dx.doi.org/10.1017/pasa.2018.25
```

5.2 Phantom docs

https://phantomsph.readthedocs.io/en/latest/index.html

5.3 MCFOST docs

https://ipag.osug.fr/~pintec/mcfost/docs/html/index.html