Практическое задание к уроку 2

Введение в математический анализ

Question

1. Как соотносятся понятия "множество" и "последовательность"? (в ответе использовать слова типа: часть, целое, общее, частное, родитель, дочерний субъект и т.д.)

Сначала давайте ознакомимся с терминологией понятий "множества" и "последовательности".

S Important

Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли — так описал понятие "множество" **Георг Кантор**, основатель теории множеств.

(i) Info

Множество — совокупность элементов, обладающих определенными свойствами.

Правило, по которому элементы множества $\mathbb X$ связаны с элементами множества $\mathbb Y$, называется функцией X от Y. X обычно называется областью определений, или доменом, а Y — областью значений, или кодоменом.

Предположим, что x_i — это элемент множества $\mathbb X$. Элемент из множества $\mathbb Y$, соответствующий x_i благодаря функции f называется образом x_i , отображенным через f во множестве $\mathbb Y$.

(i) Info

Последовательность — функция, областью определения которой является множество натуральных чисел \mathbb{N} , а областью значений — множество действительных чисел \mathbb{R} (или другое множество, в зависимости от контекста).

Таким образом, понятие "множество" и "последовательность" соотносятся как **общее** и **частное**.

Множество — это абстрактное понятие, обозначающее совокупность элементов, без учета их порядка и повторений.

Последовательность — это частный случай множества, который характеризуется **упорядоченностью** элементов и **возможностью повторений**.

Другими словами, **последовательность** — это **упорядоченная совокупность элементов**, где каждый элемент имеет свой номер (индекс), определяющий его положение в последовательности.

Примеры:

- **Множество:** {1, 2, 3} это множество, состоящее из трех элементов: 1, 2 и 3. Порядок элементов не важен, и множество {1, 2, 3} эквивалентно множеству {3, 2, 1}.
- Последовательность: (1, 2, 3) это последовательность, состоящая из трех элементов: 1, 2 и 3. Порядок элементов важен, и последовательность (1, 2, 3) не эквивалентна последовательности (3, 2, 1).

Важно отметить:

- В последовательности могут быть повторяющиеся элементы, например, (1, 2, 2, 3).
- В множестве повторяющиеся элементы не учитываются, например, множество {1, 2, 2, 3} эквивалентно множеству {1, 2, 3}.

Таким образом, **последовательность** — это более **конкретное** и **ограниченное** понятие, чем **множество**, так как она накладывает дополнительные условия на порядок и повторяемость элементов.

Question

Прочитать высказывания математической логики, построить их отрицания и установить истинность.

$$egin{aligned} &orall y \in [0;1]: sgn(y) = 1 \ &orall n \in \mathbb{N} > 2: \exists x,y,z \in \mathbb{N}: x^n = y^n + z^n \ &orall x \in \mathbb{R} \exists X \in \mathbb{R}: X > x \ &orall x \in \mathbb{C} \exists y \in \mathbb{C}: x > y || x < y \end{aligned} \ &orall x \in [0; rac{\pi}{2}] \exists arepsilon > 0: \sin y < \sin(y + arepsilon) \ &orall y \in [0; \pi) \exists arepsilon > 0: \cos y > \cos(y + arepsilon) \ &\exists x: x
otin \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\} \end{aligned}$$

Note

$$orall y \in [0;1]: ext{sgn}(y) = 1$$

Решение:

- 1. **Чтение высказывания:** Для любого y из отрезка [0;1] верно, что $\mathrm{sgn}(y)=1.$
- 2. Определение функции сигнум:

$$\mathrm{sgn}(y) = egin{cases} 1 & & \mathrm{если} \ y > 0, \ 0 & & \mathrm{если} \ y = 0, \ -1 & & \mathrm{если} \ y < 0. \end{cases}$$

3. Анализ истинности высказывания:

Высказывание $\forall y \in [0;1]: \mathrm{sgn}(y) = 1$ является **ложным**, так как для y = 0 значение

sgn(0) = 0, что не равно 1.

4. Построение отрицания:

Отрицание кванторного высказывания строится путем замены квантора всеобщности (∀) на квантор существования (∃) и отрицания предиката:

$$\overline{orall y \in [0;1]: \operatorname{sgn}(y) = 1} \Rightarrow \exists y \in [0;1]: \operatorname{sgn}(y)
eq 1$$

5. Чтение отрицания:

Существует y из отрезка [0;1], такое что $\mathrm{sgn}(y) \neq 1$.

6. Анализ истинности отрицания:

Отрицание является **истинным**, так как существует y=0, для которого $\mathrm{sgn}(0)=0 \neq 1$

Ответ:

- Исходное высказывание $\forall y \in [0;1] : \mathrm{sgn}(y) = 1$ ложно.
- Отрицание $\exists y \in [0;1] : \mathrm{sgn}(y) \neq 1$ истинно.

Note

 $orall n \in \mathbb{N} > 2: \exists x,y,z \in \mathbb{N}: x^n = y^n + z^n$

Решение:

1. Чтение высказывания:

Для любого натурального числа n больше 2 существуют натуральные числа $x,\,y$ и z такие, что $x^n=y^n+z^n.$

2. Анализ истинности высказывания:

Это высказывание является **ложным**, так как оно противоречит Великой теореме Ферма, которая утверждает, что не существует натуральных чисел x, y и z, удовлетворяющих уравнению $x^n = y^n + z^n$ для любого натурального n > 2.

3. Построение отрицания:

Отрицание кванторного высказывания строится путем замены квантора всеобщности (∀) на квантор существования (∃) и отрицания предиката:

$$\overline{\forall n \in \mathbb{N} > 2: \exists x, y, z \in \mathbb{N}: x^n = y^n + z^n} \Rightarrow \exists n \in \mathbb{N} > 2: \forall x, y, z \in \mathbb{N}: x^n \neq y^n + z^n$$

4. Чтение отрицания:

Существует натуральное число n больше 2, такое что для всех натуральных чисел x,

y и z верно, что $x^n \neq y^n + z^n$.

5. Анализ истинности отрицания:

Отрицание является **истинным**, так как согласно Великой теореме Ферма, для любого n>2 не существует натуральных чисел $x,\,y$ и $z,\,$ удовлетворяющих уравнению $x^n=y^n+z^n.$

Ответ:

- Исходное высказывание $\forall n \in \mathbb{N} > 2: \exists x,y,z \in \mathbb{N}: x^n = y^n + z^n$ ложно.
- Отрицание $\exists n \in \mathbb{N} > 2: \forall x,y,z \in \mathbb{N}: x^n \neq y^n + z^n$ истинно.

Note

 $\forall x \in \mathbb{R} \exists X \in \mathbb{R} : X > x$

Решение:

1. Чтение высказывания:

Для любого действительного числа x существует действительное число X, такое что X>x.

2. Анализ истинности высказывания:

Это высказывание является **истинным**, так как для любого действительного числа x всегда можно найти другое действительное число X, которое будет больше x. Например, можно выбрать X=x+1.

3. Построение отрицания:

Отрицание кванторного высказывания строится путем замены квантора всеобщности (∀) на квантор существования (∃) и отрицания предиката:

$$\overline{\forall x \in \mathbb{R} \exists X \in \mathbb{R} : X > x} \Rightarrow \exists x \in \mathbb{R} \forall X \in \mathbb{R} : X < x$$

4. Чтение отрицания:

Существует действительное число x, такое что для всех действительных чисел X верно, что $X \leq x$.

5. Анализ истинности отрицания:

Отрицание является **ложным**, так как не существует действительного числа x, которое было бы больше или равно всех других действительных чисел. Действительные числа не ограничены сверху.

Ответ:

- Исходное высказывание $\forall x \in \mathbb{R} \exists X \in \mathbb{R} : X > x$ истинно.
- Отрицание $\exists x \in \mathbb{R} \forall X \in \mathbb{R} : X \leq x$ ложно.

 $orall x \in \mathbb{C} \exists y \in \mathbb{C} : x > y \| x < y$

Решение:

- 1. **Чтение высказывания:** Для любого комплексного числа x существует комплексное число y, такое что либо x > y, либо x < y.
- 2. **Анализ истинности высказывания:** Это высказывание **ложно** по следующим причинам. Комплексные числа $\mathbb C$ не образуют упорядоченное поле, то есть невозможно установить строгий порядок > или < между любыми двумя комплексными числами. Понятия "больше" и "меньше" не определены для комплексных чисел, поскольку их множество не обладает отношением порядка, удовлетворяющим аксиомам строгого порядка. Поэтому запись > или < в контексте комплексных чисел математически некорректна, и данное высказывание не имеет смысла.
- 3. Построение отрицания:

Отрицание кванторного высказывания строится путем замены квантора всеобщности (∀) на квантор существования (∃) и отрицания предиката:

$$\overline{\forall x \in \mathbb{C} \exists y \in \mathbb{C} : x > y \vee x < y} \Rightarrow \exists x \in \mathbb{C} \forall y \in \mathbb{C} : \neg(x > y \vee x < y)$$

4. Чтение отрицания:

Существует комплексное число x, такое что для всех комплексных чисел y неверно, что либо x>y, либо x< y. Иными словами, существует $x\in \mathbb{C}$, для которого невозможно сравнить его с любым $y\in \mathbb{C}$ по отношению x>y или x< y.

5. Анализ истинности отрицания:

Отрицание оказывается **истинным**. В частности, для любого комплексного числа x (например, x=0), не существует определения, при котором x>y или x< y для любого другого комплексного числа y. Следовательно, в множестве комплексных чисел отсутствует возможность определить строгий порядок, что делает невозможным выполнение исходного высказывания.

Ответ:

• Исходное высказывание $\forall x \in \mathbb{C} \exists y \in \mathbb{C} : x > y \lor x < y$ ложно.

• Отрицание $\exists x \in \mathbb{C} \forall y \in \mathbb{C} : \neg (x > y \lor x < y)$ истинно

Note

$$orall y \in [0; rac{\pi}{2}] \exists arepsilon > 0: \sin y < \sin(y + arepsilon)$$

Решение:

- 1. **Чтение высказывания:** Для любого y из отрезка $[0,\frac{\pi}{2}]$ существует положительное число ε , такое что $\sin y < \sin(y+\varepsilon)$.
- 2. **Анализ истинности высказывания:** Вспомним знаки тригонометрических функций. Синус возрастающая функция на отрезке $[0,\frac{\pi}{2}]$. Следовательно, для любого $y\in[0,\frac{\pi}{2}]$ существует положительное число $\varepsilon,\sin(y+\varepsilon)>\sin y$. Следовательно, исходное высказывание **истинно**.

3. **Графический анализ:** Преобразуем функцию разности синусов в произведение: $\sin y - \sin(y+\varepsilon) = -2\sin\left(\frac{\epsilon}{2}\right)\cos\left(y+\frac{\epsilon}{2}\right)$. При у=0 и небольшом ϵ в 1 четверти на окружности синус и косинус положительны. На графике синуса на отрезке $[0,\frac{\pi}{2}]$ видно, что функция возрастает.

4. Построение отрицания:

Отрицание кванторного высказывания строится путем замены квантора всеобщности (∀) на квантор существования (∃) и отрицания предиката:

$$\overline{\forall y \in [0; \frac{\pi}{2}] \exists \varepsilon > 0 : \sin y < \sin(y + \varepsilon)} \Rightarrow \exists y \in [0; \frac{\pi}{2}] \forall \varepsilon > 0 : \sin y \geq \sin(y + \varepsilon)$$

- 5. **Чтение отрицания:** Существует y из отрезка $[0,\frac{\pi}{2}]$, такое что для всех положительных ε верно, что $\sin y \ge \sin(y+\varepsilon)$.
- 6. Анализ истинности отрицания:

Так как синус возрастает на отрезке $[0,\frac{\pi}{2}]$, не существует y на этом отрезке, для которого $\sin y \geq \sin(y+\varepsilon)$ для всех $\varepsilon>0$. Следовательно, отрицание **ложно**.

Ответ:

- Исходное высказывание $orall y \in [0; rac{\pi}{2}] \exists arepsilon > 0 : \sin y < \sin(y + arepsilon)$ истинно.
- Отрицание $\exists y \in [0; rac{\pi}{2}] orall arepsilon > 0 : \sin y \geq \sin(y + arepsilon)$ ложно

Note

$$orall y \in [0;\pi) \exists arepsilon > 0 : \cos y > \cos(y+arepsilon)$$

1. **Чтение высказывания:** Для любого y из отрезка $[0,\pi]$ существует положительное число ε , такое что $\cos y > \cos(y+\varepsilon)$.

2. **Анализ истинности высказывания:** Вспомним знаки тригонометрических функций. Косинус — убывающая функция на отрезке $[0,\pi]$. Следовательно, для любого $y\in [0,\pi]$ существует положительное число $\varepsilon,\cos y>\cos(y+\varepsilon)$. Следовательно, исходное высказывание **истинно**.

3. Построение отрицания:

Отрицание кванторного высказывания строится путем замены квантора всеобщности (∀) на квантор существования (∃) и отрицания предиката:

$$\overline{orall y \in [0;\pi) \exists arepsilon > 0: \cos y > \cos(y+arepsilon)} \Rightarrow \exists y \in [0;\pi] orall arepsilon > 0: \cos y \leq \cos(y+arepsilon)$$

- 4. **Чтение отрицания:** Существует y из отрезка $[0,\pi]$, такое что для всех положительных ε верно, что $\cos y \leq \cos(y+\varepsilon)$.
- 5. Анализ истинности отрицания:

Так как косинус убывающая функция на отрезке $[0,\pi]$, не существует y на этом отрезке, для которого $\cos y \leq \cos(y+\varepsilon)$ для всех $\varepsilon>0$. Следовательно, отрицание **ложно**.

Ответ:

- Исходное высказывание $\forall y \in [0;\pi) \exists \varepsilon > 0 : \cos y > \cos(y+\varepsilon)$ истинно.
- Отрицание $\exists y \in [0;\pi] orall arepsilon > 0: \cos y \leq \cos(y+arepsilon)$ ложно

Note

 $\exists x: x \not\in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$

Решение:

Определения множеств

- 1. \mathbb{N} (натуральные числа): Это множество включает все положительные целые числа, начиная с 1 (в некоторых определениях также включается 0). Примеры: $0, 1, 2, 3, \ldots$
- 2. \mathbb{Z} (целые числа): Это множество включает все натуральные числа, их отрицательные значения и ноль. Примеры: . . . , -3, -2, -1, 0, 1, 2, 3,
- 3. $\mathbb Q$ (рациональные числа): Это множество включает все числа, которые могут быть представлены в виде дроби $\frac{a}{b}$, где a и b целые числа, а $b \neq 0$. Примеры: $-1,0,\frac{1}{2},3.5$.
- 4. \mathbb{R} (действительные числа): Это множество включает все рациональные числа и иррациональные числа (числа, которые не могут быть представлены в виде дроби). Примеры: $\sqrt{2}, \pi, e$.
- 5. \mathbb{C} (комплексные числа): Это множество включает все действительные числа и комплексные числа вида a+bi, где a и b действительные числа, а i мнимая единица ($i^2=-1$). Примеры: 3+4i,-2-i.

Чтение высказывания: Существует хотя бы один x, который не принадлежит множествам $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}.$

Анализ истинности высказывания: Поскольку все числа, используемые в математике, принадлежат хотя бы одному из данных множеств, трудно найти элемент x, который не принадлежит \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , или \mathbb{C} . Таким образом, исходное высказывание **ложно**.

Построение отрицания:

$$\overline{\exists x: x \not\in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}} = \forall x: x \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$$

Чтение отрицания: Любое число x принадлежит какому-либо множеству $\{\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}\}.$

Анализ истинности отрицания: Если не существует элемента вне указанных множеств, значит, все элементы принадлежат какому-либо из множеств. Это высказывание истинно.

Ответ:

- Исходное высказывание $\exists x: x \notin \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ ложно: невозможно найти x вне $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}.$
- Отрицание $\forall x: x \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ истинно: любое число принадлежит какому-либо из данных множеств

Множество

Question

Даны три множества a,b и c. Необходимо выполнить все изученные виды бинарных операций над всеми комбинациями множеств.

② Question

*Выполнить задание 1 на языке Python

```
a = {1, 2, 3, 4, 5, "ten", "twenty"}
b = {4, 5, 6, 7, 8, "ten", "thirty"}
c = {7, 8, 9, 10, 4, "ten", "forty"}

if __name__ == "__main__":
    print(a | b | c)
    print(a.union(b).union(c))
    print("*" * 20)

    print(a & b & c)
    print(a.intersection(b).intersection(c))
```

```
print("*" * 20)

print((b | c) - a)
print(b.union(c).difference(a))
print("*" * 20)

print(b ^ c ^ a.symmetric_difference(a & b & c))
print(
    b.symmetric_difference(c)
    .symmetric_difference(a)
    .symmetric_difference(a.intersection(b).intersection(c))
)
print(
    b.symmetric_difference(c)
    .symmetric_difference(c)
    .symmetric_difference(a)
    .symmetric_difference(a)
    .symmetric_difference(a & b & c)
)
```

Последовательность

② Question

Даны 4 последовательности. Необходимо:

- исследовать их на монотонность;
- исследовать на ограниченность;
- найти пятый по счету член.

$$\{a_n\}_{n=1}^{\infty}=2^n-n$$

$$\{b_n\}_{n=2}^{\infty} = \frac{1}{1-n}$$

$$\{c_n\}_{n=1}^{\infty} = -1^n + \sqrt{2n}$$

$$\{d_n\}_{n=1}^{\infty}=(-1)^{2n}+rac{1}{n^2}$$

Последовательность α_n называется монотонной, если для любой пары чисел m и k таких, что m < k, выполняется одно из неравенств:

 $a_m < a_k$ монотонно возрастающая последовательность,

 $a_m \leq a_k$ неубывающая последовательность,

 $a_m \geq a_k$ невозрастающая последовательность.

 $a_m > a_k$ монотонно убывающая последовательность.

✓ Check

$$\{a_n\}_{n=1}^\infty=2^n-n$$

Решение:

Последовательность $\{a_n\}_{n=1}^{\infty}=2^n-n$ монотонно возрастающая. Убедимся в этом. Сравним два соседних члена a_n и a_{n+1} :

$$a_n=2^n-n;\, a_{n+1}=2^{n+1}-(n+1);\, a_{n+1}-a_n;\, a_{n+1}-a_n=2^{n+1}-(n+1)-2^n=2^n-(n+1)$$

Следовательно, $a_{n+1} > a_n$, что означает, что последовательность $\{a_n\}$ монотонно возрастает.

График последовательности $a_n = 2^n - n$

Для исследования ограниченности последовательности $\{a_n\}$ необходимо определить, существуют ли такие числа M и m, что для всех $n\geq 1$ выполняется $m\leq a_n\leq M$.

Рассмотрим члены последовательности $a_n=2^n-n$

При
$$n
ightarrow 1$$
: $a_1 = 2^1 - 1 = 1$

При
$$n o \infty$$
: $a_n o \infty$

Таким образом, последовательность $\{a_n\}$ ограничена снизу числом 1.

Нахождение пятого по счету члена

Пятый по счету член последовательности $\{a_n\}$: $a_5=2^5-5=27$

Ответ:

- 1. Последовательность $\{a_n\}$ монотонно возрастает.
- 2. Последовательность $\{a_n\}$ ограничена снизу числом 1.
- 3. Пятый по счету член последовательности равен 27.

$$\{b_n\}_{n=2}^\infty = rac{1}{1-n}$$

Решение:

Для исследования монотонности последовательности $\{b_n\}$ необходимо сравнить два соседних члена b_n и b_{n+1} :

$$b_n=rac{1}{1-n};\, b_{n+1}=rac{1}{1-(n+1)}=rac{1}{-n};\, b_{n+1}-b_n;\, b_{n+1}-b_n=rac{1}{-n}-rac{1}{1-n}$$

Приведем к общему знаменателю: $b_{n+1}-b_n=rac{1}{-n}-rac{1}{1-n}=rac{1-n-(-n)}{-n(1-n)}=rac{1-n+n}{-n(1-n)}=rac{1}{-n(1-n)}$

Так как $n\geq 2$, то -n(1-n)>0, следовательно, $\frac{1}{-n(1-n)}>0$, $b_{n+1}>b_n$, что означает, что последовательность $\{b_n\}$ монотонно возрастает.

Для исследования ограниченности последовательности $\{b_n\}$ необходимо определить, существуют ли такие числа M и m, что для всех $n\geq 2$ выполняется $m\leq b_n\leq M$.

Рассмотрим члены последовательности $b_n=rac{1}{1-n}$

При
$$n o 2$$
: $b_2 = rac{1}{1-2} = -1$

При
$$n \to \infty$$
: $b_n \to 0$

Таким образом, последовательность $\{b_n\}$ ограничена снизу числом -1 и сверху числом 0.

Нахождение пятого по счету члена

Пятый по счету член последовательности $\{b_n\}$ соответствует n=6 (так как последовательность начинается с n=2): $b_6=\frac{1}{1-6}=\frac{1}{-5}=-\frac{1}{5}$

Ответ:

- 1. Последовательность $\{b_n\}$ монотонно возрастает.
- 2. Последовательность $\{b_n\}$ ограничена снизу числом -1 и сверху числом 0.
- 3. Пятый по счету член последовательности равен $-\frac{1}{5}$.

✓ Check

$$\{c_n\}_{n=1}^{\infty} = -1^n + \sqrt{2n}$$

Для исследования монотонности последовательности $\{c_n\}$ необходимо сравнить два соседних члена c_n и c_{n+1} :

$$c_n = -1^n + \sqrt{2n}$$
; $c_{n+1} = -1^{n+1} + \sqrt{2n+1}$; $c_{n+1} - c_n$: $c_{n+1} - c_n = \sqrt{2} \left(\sqrt{n+1} - \sqrt{n}
ight)$

Следовательно, $c_{n+1}-c_n=\sqrt{2}\left(\sqrt{n+1}-\sqrt{n}\right)$, $c_{n+1}>c_n$, что означает, что последовательность $\{c_n\}$ монотонно возрастает.

Последовательность ограничена снизу числом $\sqrt{2}-1$.

Нахождение пятого по счету члена

Пятый по счету член последовательности $\{c_n\}$ соответствует n=5: $c_5=\sqrt{10}-1$

Ответ:

- 1. Последовательность $\{c_n\}$ монотонно возрастает.
- 2. Последовательность $\{c_n\}$ ограничена снизу числом $\sqrt{2}-1$.
- 3. Пятый по счету член последовательности равен $\sqrt{10}-1$.

✓ Check

$$\{d_n\}_{n=1}^{\infty}=(-1)^{2n}+rac{1}{n^2}$$

Последовательность d_n монотонно убывает.

Последовательность ограничена сверху числом 2, сверху 1

Нахождение пятого по счету члена

Пятый по счету член последовательности $\{d_n\}$ соответствует n=5: $d_5=rac{26}{25}$

Ответ:

- 1. Последовательность $\{d_n\}$ монотонно убывает.
- 2. Последовательность $\{d_n\}$ ограничена сверху числом 2, снизу 1.
- 3. Пятый по счету член последовательности равен $\frac{26}{25}$.

Question

Найти 12-й член заданной неявно последовательности:

$$a_1 = 128; a_{n+1} - a_n = 6$$

Решение:

$$a_{12} = a_1 + (n-1) \cdot 6 = 128 + (12-1) \cdot 6 = 194$$

Ответ: 12-й член заданной неявно последовательности $a_{n+1}-a_n=6$ равен **194**.

Question

*На языке Python предложить алгоритм вычисляющий численно предел с точностью $\epsilon=10^{-7}$

$$\lim_{n o\infty}rac{n}{(n!)^{1/n}}$$

```
import math
def calculate_limit(epsilon=1e-6, max_iterations=100):
    n = 1
    prev_a_n = 0
    for i in range(max_iterations):
        # Вычисляем n!
        n_factorial = math.factorial(n)
        # Вычисляем (sqrt(n!))^(1/n)
        sqrt_n_factorial = math.sqrt(n_factorial)
        sqrt_n_factorial_pow_1_n = sqrt_n_factorial ** (1 / n)
        # Вычисляем a_n
        a_n = n / sqrt_n_factorial_pow_1_n
        # Проверяем условие сходимости
        if abs(a_n - prev_a_n) < epsilon:</pre>
            print(f"Предел найден: a_n = {a_n} при n = {n}")
            return a_n
        # Обновляем предыдущее значение a_n
        prev_a_n = a_n
        # Увеличиваем п
        n += 1
    print(f"Предел не найден за {max_iterations} итераций. Последнее значение
a_n = \{a_n\} \text{ при } n = \{n\}"\}
    return a_n
```

Вызываем функцию для вычисления предела calculate_limit()

Attention

Предел не найден за 100 итераций. Последнее значение $a_n=16.22370279204587$ при n=101

При n=1000 программа возвращает ошибку <0verflowError: int too large to convert to float>

Question

*Предложить оптимизацию алгоритма, полученного в задании 3, ускоряющую его сходимость.

Давайте использовать приближенную формулу Стирлинга для факториала:

$$n!pprox\sqrt{2\pi n}ig(rac{n}{e}ig)^n$$

Чтобы избежать переполнения при больших n, воспользуемся логарифмом этой формулы. Применяя логарифм к обеим сторонам, получаем:

$$\ln(n!) pprox \ln\left(\sqrt{2\pi n} ig(rac{n}{e}ig)^nig)$$

Используем свойства логарифмов:

- 1. Логарифм произведения равен сумме логарифмов: $\ln(ab) = \ln a + \ln b$.
- 2. Логарифм степени: $\ln\left(a^{b}\right) = b \ln a$.

Тогда:
$$\ln(n!) pprox \ln\left(\sqrt{2\pi n}
ight) + \ln\left(\left(rac{n}{e}
ight)^n
ight)$$

Рассмотрим каждое слагаемое отдельно.

Для первого слагаемого: $\ln\left(\sqrt{2\pi n}\right)=rac{1}{2}\ln(2\pi n)$

Для второго слагаемого: $\ln\left(\left(\frac{n}{e}\right)^n\right) = n\ln\left(\frac{n}{e}\right)$

Используем свойство логарифмов: $\ln\left(\frac{n}{e}\right)=\ln(n)-\ln(e)$. Поскольку $\ln(e)=1$, получаем: $n\ln\left(\frac{n}{e}\right)=n(\ln(n)-1)$

Теперь подставим все обратно: $\ln(n!) pprox rac{1}{2}\ln(2\pi n) + n(\ln(n)-1)$

Полученное выражение для $\ln(n!)$ в коде выглядит как:

```
log_stirling_factorial = 0.5 * math.log(2 * math.pi * n) + n * (math.log(n) -
1)
```

Это приближение позволяет вычислять факториал для больших n без переполнения, работая с логарифмами.

```
def calculate_limit_stirling(epsilon=1e-6, max_iterations=5000):
    prev_a_n = 0
    for i in range(max_iterations):
        # Вычисляем log(n!)
        log_stirling_factorial = 0.5 * math.log(2 * math.pi * n) + n *
(math.log(n) - 1)
        # Переход к выражению n / (n!)^(1/n) в логарифмической форме
        a_n = math.exp(math.log(n) - log_stirling_factorial / n)
        # Проверка условия сходимости
        if abs(a_n - prev_a_n) < epsilon:</pre>
            print(f"Предел найден: a_n = {a_n} при n = {n}")
            return a_n
        # Обновляем предыдущее значение a_n
        prev_a_n = a_n
        # Увеличиваем п
        n += 1
    print(
        f"Предел не найден за {max_iterations} итераций. Последнее значение
a_n = \{a_n\} \pi p u n = \{n\}"
    return a_n
# Вызываем функцию для вычисления предела
calculate_limit_stirling()
```

Предел найден: $a_n=2.7143969719151477$ при n=3495