Génomique des populations Démographie

Flora Jay flora.jay@lri.fr

29 septembre 2016

Pourquoi étudier la diversité génétique ?

2 objectifs

- (1) Décrire la diversité actuelle
 - patrons de diversité génétique
 - distance entre espèces, entre populations, ...
- (2) Comprendre les évolutions passées y menant
 - intérêt écologique/anthropologique : histoire des populations ...
 - évolution d'un segment ADN en particulier, sélection ...

Rappel: forces évolutives

Rappel: forces évolutives

Diversité génétique et démographie

Eg. colonisation de la planète

Diversité génétique et démographie

Diversité génétique et démographie

INFERENCE =
Identifier les événements,
les dater,
estimer leurs caractéristiques principales (eg : taux de migration)

Quelles questions démographiques ?

Quelles questions démographiques ?

Modèles démographiques Structuration, divergence, migration

Nature Reviews | Genetics

Modèles démographiques Tailles de population

Connaître la démographe, intéressant pour

Les amoureux d'histoire

 Les fans du médical ex : effet confondant de la structure de population

Balding

Copyright © 2006 Nature Publishing Group Nature Reviews | Genetics

 Les adeptes de la sélection/adaptation démo = référence neutre ex : adaptation à l'altitude des Tibétains
Yi et al 2010

ex : bottleneck et sélection durs à distinguer si on ne se concentre que sur un gène

ON OBSERVE

SNP = single nucleotide polymorphism

Modèles mathématiques

(Wright-Fisher) et le coalescent

- But : approximation du phénomène biologique de transmission du matériel génétique de génération en génération
 - → modèles expliquant les observations
- Construire des estimateurs de la taille de population, (ou d'autres paramètres démographiques)

Modèle Wright-Fisher

Hypothèses principales

- Générations non chevauchantes
- Panmixie (reproduction aleatoire)
- Taille constante

- Pas de sélection
- Pas de recombinaison

Modèle Wright-Fisher

Hypothèses principales

- Générations non chevauchantes
- Panmixie (reproduction aleatoire)
- Taille constante


```
X[t+1] = nb alleles jaunes

~ Binomial (N, p= fréquence à t)

~ Binomial (N, p= X[t]/N)
```

Exercice 1 (plus tard/chez vous)

(1) Implémenter une fonction genetic drift qui simule la dérive génétique pour g générations à une position polymorphique ayant 2 allèles a/A

Arguments:

- Ν taille de population
- fréquence initiale de A р
- nombre de generations q

Return:

vecteur de taille g+1 contenant la fréquence allélique de A à chaque pas de temps (le 1er élément étant la fréquence initiale)

Indice ?rbinom

- (2) a. Tracer plusieurs courbes montrant la dérive génétique pendant 500 générations avec pour fréquence initiale p=0.5 et comme taille de population n=10000
 - b. Idem pour n=100. Discuter la différence des résultats

```
R
```

```
my_f_name = function(x,y,..) {
        return(res)
plot(vec, type= "l", ylim=c(0,1))
lines(othervec)
```

?rbinom

Exercice 1

Quelles conséquences sur le polymorphisme génétique d'une population ?

What is this N? effective population size (N or Ne)

- # census population size
- ~ nb individuals contributing to gene pool

Factors impacting Ne:

- changes in census size
- unequal sex ratio ⇒ Ne ≠ Nmale + Nfemale
- ...

Comprendre les relations entres individus → généalogies ? ie tracer les ancêtres

Comprendre les relations entres individus → généalogies ? ie tracer les ancêtres

Kingman, Griffiths, Tajima, Hudson

Comprendre les relations entres individus → généalogies ? ie tracer les ancêtres

Modèle coalescent Exercice 2

Taille de population = 2N mêmes hypothèses que pour WF

Proba que 2 lignées (gènes, individus)
 coalescent à la génération précédente ?

- ne coalescent pas pendant les t générations précédentes ?
- Proba que 3 individus coalescent à la génération précédente ?
- Sur feuille ou ordi, si N=1000
 Pr(2 lignées coal. à t=10)?
 Pr(2 lignées coal. à t>10)?
- (Chez vous) Tracer la probabilité de coalescence après t en fonction de t Visuellement pour quelle valeur de t cette proba tombe en dessous de 0.5.
 Analytiquement ? (Pensez à la transformation log(a**b)=b log(a)

Taille de population = 2N

T₂= temps d'attente avant coalescence des 2 lignées

$$P(T_2=1) = \frac{1}{2N}$$

$$P(T_2=t) = (1 - \frac{1}{2N})^{t-1} \frac{1}{2N}$$

$$P(T_2>t) = (1 - \frac{1}{2N})^{t}$$

- Si N large, alors p=1/(2N) petit . Approximation $(1-p)^t \rightarrow e^{-pt}$ quand $p \rightarrow 0$
- $P(T_2 > t) = e^{\frac{-t}{2N}}$
- $E[T_2] = 1/p = 2N$ (cf loi exponentielle)
- $Var(T_2) = 1/p^2 = 4N^2$

Le temps est mesuré continu et la distribution géométrique remplacée par une distribution exponentielle

Le temps d'attente moyen pour que 2 lignées précises coalescent est 2N

Taille de population = 2N

T₂= temps d'attente avant coalescence des 2 lignées

$$Var(T_2) = 1/p^2 = 4N^2$$

Grande variance du processus

→ un même modèle démographique
peut produire des généalogies
très différentes

- Coalescent = modèle « backward in time » (présent vers passé)
- Avantage par rapport à une simulation « forward » (passé vers présent) de type WF : On n'a pas besoin de connaître la généalogie dans toute la pop seulement pour les n lignées

Nature Review Genetics

Ajout des mutations

= placer des événements sur les branches

Taux de mutation / gen = μ ie en moyenne ut mutations en t générations Nombre de mutations sur une branche ~ Poisson(µt) infinite-site model: Chaque mutation a lieu à un nouvelle position du gène

ctaa ctaa ctca ctct

Taille de population = 2N $E[T_2] = 2N$

Taux de mutation / gen = μ ie en moyenne μt mutations en t générations chaque mutation a lieu a un nouvelle position du gène (infinite-site model)

Exercice 3 – Estimateur de Tajima

- Quel est le nombre de mutations moyen sur l'arbre reliant s1 et s2 en fonction de N et de μ ? (*)
- Infinite-site model : chaque mutation touche un site différent (ie pas de mutation récurrente en un site, ie on ne voit pas A → C → G)
 - On note S le nombre de sites polymorphiques, on a donc E[S]= (*) Discuter l'influence de N sur S. Etait-ce intuitif pour vous ?
- Proposer une procédure pour estimer S à partir d'un échantillon de taille n. Si on connait μ on peut en déduire un estimateur de N.

Taille de population = 2N $E[T_2] = 2N$ Taux de mutation / gen = μ

Estimateur de Tajima

On note
$$\theta = 4N\mu$$

 $\theta = E[S]$

$$\hat{\theta}_{Taj} = \frac{\sum_{i < j} d_{ij}}{n(n-1)/2}$$

Parfois noté $\hat{\theta}_{\pi}$

Taille de pop 2N, nb lignées n

- n(n-1)/2 pairs possibles avec même proba de coalescer
- Pr(1 evt de coal à t=1) = n(n-1)/2 Pr(lignées (si, sj) coalescent à t=1)
- Taux de coalescence lorsqu'on a k lignées ?

 $T_k = Temps d'attente avant coalescence lorsque l'on a k lignées. <math>E[T_k]$?

Montrer T₂, T₃, T₄ sur cet arbre. En déduire la taille totale de l'arbre (somme des longueurs de branches)

$$E[T_k] = \frac{1}{coal.rate(k)} = \mathbf{i}$$

Total branch length = $\sum_{k=2}^{n} k E[T_k]$

Let's introduce mutations

Let's introduce mutations

 μ : mutation rate per generation for whole region (locus)

$$E[\underbrace{Nb \ segregating \ sites}_{S}] = Total \ branch \ length \times \mu$$

$$E[\underbrace{Nb \ segregating \ sites}_{s}] = Total \ branch \ length \times \mu = 4N \sum_{k=1}^{n-1} \frac{1}{k} \times \mu$$

⇒ Un deuxième estimateur de θ=4Nμ ou de N

Watterson's estimator

$$\hat{\theta}_{Wat} = \frac{S_{observed}}{\sum_{k=1}^{n-1} \frac{1}{k}} \qquad \hat{N}_{Wat} = \frac{S_{observed}}{4\sum_{k=1}^{n-1} \frac{1}{k} \mu}$$

$$S_{observed} = 4$$
 $L = 32$
 $\mu = \mu_{per.site} \times L$
 $n = 4$

segregating site

Exercice pour plus tard

(1)

Soit un échantillon de taille 2 (s1, s2)

Hétérozygotie attendue en fonction de theta?

Indice : considérer la mutation et la coalescence comme deux processus concurrents. Si s1 et s2 coalescent <u>avant</u> qu'une mutation que peut-on dire de s1 et s2 ?

(2) E[TMRCA de n lignées]

Motivation (pour écouter le cours ?)

Motivation (pour écouter le cours ?)

Ce coalescent est une extension du modèle à taille constante, les taux de coalescence varient en fonction du temps (et de la taille à ce temps t)

Motivation

Motivation

Le spectre de fréquences alléliques

Spectre/histogramme des fréquences

« AFS », « SFS »

Si n individuals : à une position dans le génome (un site) on peut voir entre 0 et n allèles dérivés

SFS = Histogramme des nb d'allèles dérivés aux sites polymorphiques

Counts histogram: 2 singletons, 1 doubleton, ...

SFS

f_i = proportions de sites ayant j allèles dérivés. Il a été montré que :

E[Nombre de singletons] = θ

E[Nombre total de mutation]= E[S] = $\theta \sum_{k=1}^{n-1} \frac{1}{k}$

$$E[f_1] = \frac{\theta}{\theta \sum_{k=1}^{n-1} \frac{1}{k}} = \frac{1}{\sum_{k=1}^{n-1} \frac{1}{k}}$$

Il a été montré que pour tout j=1,...n-1

$$E[f_j] = \frac{1/j}{\sum_{k=1}^{n-1} \frac{1}{k}}$$

Forme du SFS

Ne dépend ni du taux de mutation ni de N!

Le spectre de fréquences informe sur la démographie Entre autre...

Le spectre de fréquences informe sur la démographie Entre autre...

Pour aller plus loin...

Idée générale

- Dériver les formules du coalescent pour des modèles démographiques plus complexes (isolation-migration → dessin, modèle en îles, fluctuations des tailles de population, ...)
- → Proba(données | modèle)
 ex. choisir le modèle qui explique (fit) le mieux le spectre de
 fréquence observé

Limitations:

- Hypothèses du coalescent (panmixie, générations distinctes)
- La recombinaison complique les dérivations
 - il n'y a pas qu'une seule généalogie pour tout le génome !
 - trouver des régions « indépendantes » → plein de généalogies « indé »
 - tenir compte de la corrélation le long du génome -> généalogies liées

Limitations - recombinaison

- Recombinason le long du génome à chaque génération
 - → génome = mosaïque du matériel génétique de nos ancêtres
 - → multiples généalogies changeant le long de la séquence

Autres approches

(1) Reconstruire la généalogie exacte (plutôt que le SFS par ex)

(2) SFS = une manière de résumer les données Trouver d'autres statistiques résumées puis essayer d'identifier le modèle reproduisant au mieux cet ensemble de statistiques

. . .

Exemple : plus de statistiques résumées

Garder les histoires qui ont produit des stats proches des stats observées dans les vraies données

Boitard et al PloS Genet 2016

LD=Déséquilibre de liaison

LD = correlation entre SNPs

Application to cattle breeds

Boitard et al 2016

TΡ

Sur https://github.com/jayflora/GdP-material
Téléchargez
CG_54genomes_indiv.txt
chr22.CG_54genomes_shapeit_phased.haps.tgz (version compressée)
Et la fiche d'exercice
Tar -xzf fichier.tgz pour décompresser

Commencez par l'exercice sur l'heterozygo.