## 数学笔记

BeBop

August 26, 2024

## Contents

| Ι  | 知识  | 只整理                                         | 5  |
|----|-----|---------------------------------------------|----|
| 1  | 微分  | 流形                                          | 7  |
|    | 1.1 | 向量丛结构群的约化                                   | 7  |
|    |     | 1.1.1 流形可定向与结构群可约化至 GL <sup>+</sup> (k, ℝ)  | 8  |
|    |     | 1.1.2 黎曼度量与结构群可约化至正交群 $O(k)$                | 8  |
|    |     | 1.1.3 复向量丛与近复结构,与结构群可约化至 $GL(k,\mathbb{C})$ | 8  |
|    | 1.2 | 向量丛分类定理                                     | 9  |
|    |     | 1.2.1 同伦的映射拉回同构的向量丛 (纤维丛)                   | 9  |
|    | 1.3 | Kunnëth 公式与 Leray-Hirsch 定理                 | 10 |
| II | 杂   | <b>题集萃</b>                                  | 13 |
| II | I § | <b>3</b> 错知识                                | 15 |

4 CONTENTS

# Part I 知识整理

### Chapter 1

### 微分流形

#### 1.1 向量丛结构群的约化

**定义 1.1.1** (向量丛的定义). 设 E, M 为微分流形,  $\pi: E \to M$  为光滑满射, 且有 M 的开覆盖  $\{U_{\alpha}\}$  及微分同胚  $\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ , 满足:

- 1.  $\psi(\pi^{-1}(p)) = \{p\} \times \mathbb{R}^k, \ \forall p \in U_\alpha,$
- 2. 当  $U_{\alpha} \cap U_{\beta} \neq \emptyset$  时,存在光滑映射  $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{R})$ ,使得  $\psi_{\beta} \circ \psi_{\alpha}^{-1}(p,v) = (p,g_{\beta\alpha}(p)v)$ .

则称:

- $E \neq M$  上的光滑向量丛, k 为向量丛的秩,  $\pi$  为丛投影;
- $\{(U_{\alpha}, \psi_{\alpha})\}$  为局部平凡化,  $g_{\beta\alpha}$  为连接函数,  $GL(k, \mathbb{R})$  为结构群;
- $E_n := \pi^{-1}(p)$  为点 p 上的纤维.

对每个  $E_p$ , 由条件I可知  $E_p$  上可自然定义一个线性空间结构, 这看似依赖于局部平凡化  $\psi_{\alpha}$  的选取, 不过由条件2可知线性结构并不依赖局部平凡化的选取.

若存在  $\mathrm{GL}(k,\mathbb{R})$  的闭 Lie 子群 H, 使得  $g_{\beta\alpha}(p)\in H$ ,  $\forall p\in U_{\alpha}\cap U_{\beta}$ , 则称结 构群**可约化到子群** H.

连接函数  $g_{\beta\alpha}$  在向量丛的定义中占据很重要的地位, 容易证明它满足性质:

$$g_{\alpha\alpha} = 1, \ \forall U_{\alpha}, \qquad g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1, \ \forall U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset.$$

反之,若有一族光滑函数  $\{g_{\alpha\beta}\}$  满足以上性质,定义商空间  $E:=\sqcup_{\alpha}(U_{\alpha}\times\mathbb{R}^{k})/\sim$ ,其中等价关系定义为:  $(p,v_{\alpha})\in U_{\alpha}\times\mathbb{R}^{k}$ , $(q,v_{\beta})\in U_{\beta}\times\mathbb{R}^{k}$ 

$$(p, v_{\alpha}) \sim (q, v_{\beta}) \Leftrightarrow p = q, \ v_{\beta} = g_{\beta\alpha}(p)v_{\alpha}.$$

E 的拓扑由商拓扑给出, 记 [p,v] 为 (p,v) 的等价类, 定义  $\pi: E \to M, \pi([p,v]) = p$ . 则 E 在投影映射  $\pi$  下成为 M 上的秩 k 的向量丛.

#### 1.1.1 流形可定向与结构群可约化至 GL<sup>+</sup>(k, ℝ)

略

#### $oldsymbol{1.1.2}$ 黎曼度量与结构群可约化至正交群 O(k)

流形 M 上的黎曼度量是指光滑 (0,2)-张量场 g, g 在每个点的切空间处都是内积. 下面就来说明 n 维流形 M 上存在黎曼结构与切丛 TM 的结构群可约化至正交群 O(n) 是等价的.

 $1^{\circ}$ . 设 (M,g) 为一个黎曼流形, 取 M 的一个局部坐标覆盖  $\{(U_{\alpha}; x_{\alpha}^{1}, \ldots, x_{\alpha}^{n})\}$ , 于是  $\frac{\partial}{\partial x_{\alpha}^{1}}, \ldots, \frac{\partial}{\partial x_{\alpha}^{n}}$  成为  $U_{\alpha}$  上的一组标架, 因为  $U_{\alpha}$  上有度量结构, 我们可对标 架做 Gram-Schmidt 正交化得到单位正交标架  $e_{1\alpha}, \ldots, e_{n\alpha}$ , 令局部平凡化映射 为

$$\psi_{\alpha}: TU_{\alpha} \to U_{\alpha} \times \mathbb{R}^{n}$$
$$(p, a^{i}e_{i\alpha}|_{p}) \mapsto (p, a^{i}e_{i})$$

其中  $e_1, \ldots, e_n$  表示  $\mathbb{R}^n$  上的自然基底. 当  $U_\alpha \cap U_\beta \neq \emptyset$  时, 对每个点  $p \in U_\alpha \cap U_\beta$ , 因为  $\{e_{i\alpha}|_p\}$  和  $\{e_{i\beta}|_p\}$  都是  $T_pM$  的一组标准正交基, 所以转移函数  $g_{\beta\alpha}(p)$  是正交矩阵, 因此结构群可被约化至 O(n).

 $2^{\circ}$ . 假设 TM 的结构群可约化至正交群, 设  $\{(U_{\alpha}, \psi_{\alpha})\}$  是对应的平凡化, 即  $\psi_{\alpha}$  是从  $TU_{\alpha}$  到  $U_{\alpha} \times \mathbb{R}^{n}$  的微分同胚, 令  $e_{i\alpha} = \psi^{-1}(U_{\alpha} \times \{e_{i}\})$ , 其中  $\{e_{i}\}$  为  $\mathbb{R}^{n}$  的自然基底. 我们得到了  $TU_{\alpha}$  上处处线性无关的一组向量场  $\{e_{i\alpha}\}$ , 命这组向量场构成  $TU_{\alpha}$  的一个单位正交标架场, 这能唯一确定  $TU_{\alpha}$  上的黎曼度量. 若  $U_{\alpha} \cap U_{\beta} \neq \emptyset$ , 对  $\forall p \in U_{\alpha} \cap U_{\beta}$ ,

$$\langle e_{i\alpha}, e_{j\alpha} \rangle_p = \langle \psi_{\alpha}(e_{i\alpha}|_p), \psi_{\alpha}(e_{j\alpha}|_p) \rangle$$

$$= \langle g_{\alpha\beta}(p)\psi_{\beta}(e_{i\beta}|_p), g_{\alpha\beta}(p)\psi_{\beta}(e_{j\beta}|_p) \rangle$$

$$= \langle \psi_{\beta}(e_{i\beta}|_p), \psi_{\beta}(e_{j\beta}|_p) \rangle$$

$$= \langle e_{i\beta}, e_{j\beta} \rangle_p$$

所以不同平凡化定义的黎曼结构是相容的,因此能定义一个整体的黎曼度量 g. 注意到我们能用单位分解在任意微分流形上构造黎曼度量,这表明任意微分流形切丛的结构群都能约化到正交群.

#### 1.1.3 复向量丛与近复结构,与结构群可约化至 $GL(k,\mathbb{C})$

设 M 是 m 维流形, M 上的复向量丛 E 在定义上仅需要把纤维  $\mathbb{R}^k$  改为  $\mathbb{C}^k$ 、结构群改为  $\mathrm{GL}(k,\mathbb{C})$ .

但如果把  $\mathbb{C}^k$  视为  $\mathbb{R}^{2k}$ , 则结构群可约化至  $\mathrm{GL}(2k,\mathbb{R})$  的子群

$$\left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \mid |A|^2 + |B|^2 > 0 \right\}$$

我们仍把这个子群记为  $GL(k,\mathbb{C})$ . 可以证明实的秩为 2k 的向量丛 E 为复的秩为 k 的向量丛当且仅当结构群可约化至  $GL(k,\mathbb{C})$ .

我们也可以从近复结构的视角理解复向量丛, 若实的秩为 2k 的向量丛 E 上存在自同构 J (即  $\pi \circ J = \pi$ ), 使得  $J^2 = -\mathrm{id}$ , 则称 J 为 M 的近复结构. 可以证明 M 为复向量丛当且仅当 M 上存在近复结构.

一方面若 M 为复向量丛,则可以逐点定义  $J_p(p,v)=(p,\sqrt{-1}v)$ ,因为转移映射是复线性变换,所以  $J_p$  良定,且  $J_p^2=-\mathrm{id}$ ;另一方面我们可以适当修改平凡化  $\psi_\alpha$  使得 J 可局部表示为

$$J_{\alpha}(p, v_{\alpha}) = \left(p, \begin{pmatrix} & -I_{k} \\ I_{k} & \end{pmatrix} v_{\alpha}\right)$$

因为  $g_{\alpha\beta} \cdot J_{\beta} = J_{\alpha} \cdot g_{\alpha\beta}$ , 所以

$$\begin{pmatrix} & -I_k \\ I_k & \end{pmatrix} \cdot g_{\alpha\beta}(p) = g_{\alpha\beta}(p) \cdot \begin{pmatrix} & -I_k \\ I_k & \end{pmatrix} \Rightarrow g_{\alpha\beta}(p) = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$$

从而结构群可约化至  $GL(k,\mathbb{C})$ .

#### 1.2 向量丛分类定理

#### 1.2.1 同伦的映射拉回同构的向量从(纤维从)

**定义 1.2.1** (拉回丛的定义). 设  $f: X \to Y$ , 且有向量丛  $p: E \to Y$ , 则可以定义 X 上的拉回丛  $p': f^*E \to X$ , 其中

$$f^*E := \{(x, e) \in X \times E \mid f(x) = p(e)\}$$

为  $X \times E$  的子集,且赋予子拓扑结构. 丛投影为映射到第一个分量的投影映射. 每根纤维的线性结构由 E 上每根纤维的线性结构给出. (有模糊的地方)

**命题 1.2.2** (同伦的映射拉回同构的向量丛). 现有向量丛  $p: E \to Y$ , 设  $f \simeq g: X \to Y$  为同伦的光滑映射, 则拉回丛  $f^*E$  与  $g^*E$  丛同构.

在证明之前, 我们先分析一下命题. 设  $H: X \times [0,1] \to Y$  是从 f 到 g 的光滑伦移, 即  $H|_{X \times \{0\}} = f$ ,  $H|_{X \times \{1\}} = g$ . 则有  $X \times [0,1]$  上的拉回丛  $H^*E$ , 且  $H^*E|_{X \times \{0\}} = f^*E$ ,  $H^*E|_{X \times \{1\}} = g^*E$ . 因此为了证明  $f^*E \cong g^*E$ , 只需证明:

**命题 1.2.3** (向量丛在柱空间的上下底的限制是同构的). 当 X 仿紧时, 对任意  $X \times [0,1]$  上的向量丛  $E, E|_{X \times \{0\}} \cong E|_{X \times \{1\}}$ .

证明. 我们需要两个关于向量丛的事实:

(1): 若  $p: E \to X \times [a,b]$  在  $X \times [a,c]$  和  $X \times [c,b]$  上分别是平凡的,则 E 在整个  $X \times [a,b]$  上平凡.

只需分别写出在  $X \times [a,c]$  和  $X \times [c,b]$  上的平凡化  $h_1$  和  $h_2$ , 并修改  $h_2$  使得它们在  $p^{-1}(X \times \{c\})$  上匹配,则  $h_1$  和修改后的  $h_2$  合并成整个  $X \times [a,b]$  上的平凡化.

(2): 对于向量丛  $p: E \to X \times [0,1]$ , 存在 X 的开覆盖  $\{U_{\alpha}\}$  使得 E 在每个  $U_{\alpha} \times [0,1]$  上都是平凡的.

对任意  $x \in X$ , 存在  $U_{x,1}, \ldots, U_{x,k}$  以及  $0 = t_0 < t_1 < \cdots < t_k = 1$  使得 E 在  $U_{x,i} \times [t_{i-1}, t_i]$  上平凡,令  $U_x = U_{x,1} \cap \cdots \cap U_{x,k}$ ,则由(1)知 E 在  $U_x \times [0,1]$  上平凡.

下面我们来证明该命题,由(2)我们可以取 X 的开覆盖  $\{U_{\alpha}\}$  使得 E 在每个  $U_{\alpha} \times [0,1]$  上平凡. 因为 X 是第二可数空间,不妨设  $\{U_{\alpha}\} = \{U_n\}_{n=1}^{\infty}$ ,也即开覆盖为可数开覆盖. 取从属于  $\{U_n\}$  的单位分解  $\{\rho_n\}$  (这里为使下标一致我们牺牲了  $\sup \rho_n$  的紧性). 记

$$\varphi_n = \rho_1 + \rho_2 + \dots + \rho_n,$$

特别地令  $\varphi_0 \equiv 0$ ,  $\varphi_\infty \equiv 1$ . 则每个  $\varphi_i$  都能定义图流形

$$X_i := \{(x, \varphi_i(x)) \mid x \in X\} \subset X \times [0, 1]$$

每个含人  $\iota_i: X_i \hookrightarrow X \times [0,1]$  都定义了一个拉回丛  $E_i:=\iota_i^*E=E|_{X_i}$ . 特别地  $X_0=X\times\{0\},\,X_\infty=X\times\{1\},\,\iota_0^*E=E|_{X\times\{0\}},\,\iota_\infty^*E=E|_{X\times\{1\}}$ . 因为  $X_{j-1}$  到  $X_j$  仅改变了  $U_j$  所对应的图像 (supp  $\rho_j\subset U_j$ ). 而 E 在  $U_j\times[0,1]$  上是平凡的, 所以

$$E_{j-1}|_{X_{j-1}\cap(U_j\times[0,1])} \cong (X_{j-1}\cap(U_j\times[0,1]))\times\mathbb{R}^n$$
  
$$\cong (X_j\cap(U_j\times[0,1]))\times\mathbb{R}^n$$
  
$$\cong E_j|_{X_j\cap(U_j\times[0,1])}$$

且能取同构映射  $\psi_j$  使得在  $\operatorname{supp} \rho_j$  之外为恒等 (此处用空间 X 中的集合指代图流形对应的集合), 因此  $\psi_j$  能用恒同映射光滑延拓至整个向量丛, 于是

$$\psi_i: E_{i-1} \cong E_i$$
.

定义从  $E|_{X\times\{0\}}$  到  $E|_{X\times\{1\}}$  的映射:

$$\psi := \cdots \circ \psi_2 \circ \psi_1^{-1}$$

因为对每个  $x \in X$  存在 x 的开领域 V 使得仅有有限个  $\rho_n$  在 V 上非零, 因此在 V 上  $\psi_1, \psi_2, \cdots$  仅有有限项不是恒同映射, 从而良定义, 而这给出了从  $E|_{X \times \{0\}}$  到  $E|_{X \times \{1\}}$  的同构.

#### 1.3 Kunnëth 公式与 Leray-Hirsch 定理

**定理 1.3.1** (Kunnëth 公式). 设流形 M 有有限好覆盖, F 是任意流形, 则

$$H^*(M \times F) \cong H^*(M) \otimes H^*(F)$$

证明概要. 设  $\pi: M \times F \to M$ ,  $\rho: M \times F \to F$  为乘积流形到两个分量的投影,则可以定义

$$\psi: H^*(M) \otimes H^*(F) \to H^*(M \times F)$$

<sup>&</sup>lt;sup>1</sup>终于知道为什么 Hatcher 上是递减定义的了.

$$\omega \otimes \tau \mapsto \pi^* \omega \wedge \rho^* \tau$$

由 M-V 论证, 可以得到如下交换图:



前两个圈的交换性显然, 第三个圈的交换性需要用到 d\* 的表达式. 由五引理能得到归纳递推, 归纳奠基是平凡的. □

定理 1.3.2 (Leray-Hirsch 定理). 设  $\pi: E \to M$  为纤维丛, 纤维为 F, 若存在 E 上的微分形式  $\{e_1,\ldots,e_n\}$  满足将它们限制在每个纤维  $F_x$  上都能得到  $H^*(F_x)$  的一组基, 则

$$H^*(E) \cong H^*(M) \otimes \{e_1, \dots, e_n\} \cong H^*(M) \otimes H^*(F).$$

证明概要. 这里的关键在于不存在 E 到 F 的整体投影  $\rho$ , 也就无法通过这个方式定义  $\rho^*: H^*(F) \to H^*(E)$  了. 但是借助  $\{e_1, \ldots, e_n\}$  我们可以构造合适的映射  $\tilde{\rho^*}$ , 做法如下: 固定某个点  $x \in M$ , 也即固定某个纤维  $F_x$ , 取  $H^*(F_x)$  的一组基  $\{f_1, \ldots, f_n\}$ , 定义:

$$\tilde{\rho^*}: H^*(F) \to H^*(E)$$
$$\sum_i a_i f_i \mapsto \sum_i a_i e_i.$$

于是可以定义:

$$\tilde{\psi}: H^*(M) \otimes H^*(F) \to H^*(E)$$

$$\omega \otimes \tau \mapsto \pi^* \omega \wedge \tilde{\rho^*} \tau$$

归纳递推仍由 M-V 论证给出;



因为 good cover 中的每个开集都同伦于单点,而同伦映射诱导同构的拉回丛 (注意这里是纤维丛的版本),因此 good cover 同时也是 locally trivialization. 故  $\pi^{-1}(U_{\alpha}) \cong U_{\alpha} \times F$ ,从而  $H^{*}(\pi^{-1}(U_{\alpha})) \cong H^{*}(U_{\alpha}) \otimes H^{*}(F)$ ,这给出了归纳奠基.

**注.** 实际上当底空间 M 连通时, 定理的条件可弱化为  $\{e_1, \ldots, e_n\}$  限制在某个纤维  $F_x$  上得到  $H^*(F_x)$  的一组基. 因为对不同的两点 x,y, 有道路  $\gamma: [0,1] \to M$  将他们相连,于是嵌入映射  $\iota_x: F_x \hookrightarrow E$  和  $\iota_y: F_y \hookrightarrow E$  同伦. 因此拉回映射  $\iota_x^*: H^*(E) \to H^*(F_x)$  与  $\iota_y^*: H^*(E) \to H^*(F_y)$  相等.

注. 这里的同构  $H^*(E)\cong H^*(M)\otimes H^*(F)$  并不保持环结构 (例如?) 因此只能说  $H^*(E)$  可看成  $H^*(M)$ -模.

注. 存在不满足 Leray-Hirsch 定理条件的纤维丛, 比如 Hopf 纤维化:

$$S^1 \longrightarrow S^3$$

$$\downarrow$$

$$S^2$$

其中

$$H^*(S^3) \neq H^*(S^1) \otimes H^*(S^2)$$

# Part II

杂题集萃

Part III

易错知识