ON CALIBRATION OF MODERN NEURAL NETWORKS

Chuan Guo et al., ICML, 2017 VISION STUDY | 김강열 | 2020/08/18

Short summary of the paper

• Why this paper?

• Basic paper for uncertainty related research (citation: 768 as of Aug. 2020)

Problem statement

- Uncalibrated classification outputs of modern neural networks
- Calibration? Probabilistic output of classifier should give probabilistic interpretation
- e.g., score 0.8 for cat \rightarrow the classifier made this decision with a confidence of 0.8

What makes the neural networks yield uncalibrated outputs?

- Depth
- Batch normalization
- Removing weight decay

Empirical experiment on post-hoc calibration methods

- Temperature scaling (jjang-jjang-maen)
- Matrix / Vector scaling

Motivation

- Why does calibration matter?

- Good confidence estimates provide a valuable extra bit of information to establish trustworthiness with the user
- e.g., Medical diagnosis; we want to accept strongly supported prediction results. For this, there are several statistical methods to validate the results such as significance test

- Does a softmax score tell us about the confidence of model?

- In fact, no especially in the modern NN

Measuring calibration of predictions

- What is well-calibrated predictions?

- Ideally, perfect calibration can be defined as

$$\mathbb{P}\left(\hat{Y} = Y \mid \hat{P} = p\right) = p, \quad \forall p \in [0, 1]$$

- where Y, p is label and confidence (i.e., softmax output) of the model respectively
- e.g., when there are 100 samples with \hat{P} = 0.8, above formula indicates 80 out of 100 samples are predicted correctly ($\hat{Y} = Y$).
- Naturally, p is a continuous random variable

Measuring calibration of predictions

- Measuring the degree of calibration $\mathbb{P}\left(\hat{Y}=Y\mid\hat{P}=p\right)=p, \quad \forall p\in[0,1]$
- Reliability Diagrams
 - Goal: want to see the number of $(\widehat{Y} = Y)$ under $(\widehat{P} = P)$
 - Let's binning continuous distribution of p with M intervals bins
 - Accuracy

$$acc(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \mathbf{1}(\hat{y}_i = y_i),$$

- Confidence

$$\operatorname{conf}(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{p}_i,$$

- Where B_m is the number of samples of the interval
- A perfectly calibrated model will have **acc = conf**

Measuring calibration of predictions

- Measuring the degree of calibration $\mathbb{P}\left(\hat{Y}=Y\mid\hat{P}=p\right)=p, \quad \forall p\in[0,1]$
- Expected Calibration Error (ECE)
 - Goal: want to see the scalar summary statistics of calibration
 - Let's compute the weighted error of 'Reliability Diagrams'

$$ECE = \sum_{m=1}^{M} \frac{|B_m|}{n} \left| \operatorname{acc}(B_m) - \operatorname{conf}(B_m) \right|,$$

- Maximum Calibration Error (MCE)
 - Goal: minimize the worst-case deviation between confidence and accuracy

$$MCE = \max_{m \in \{1,...,M\}} |acc(B_m) - conf(B_m)|.$$

The effect of modern NN's properties

- What makes the neural networks yield uncalibrated outputs?
 - (I) Model capacity

Why? (my idea): Excessive parameters amplify the extracted feature...?

The effect of modern NN's properties

- What makes the neural networks yield uncalibrated outputs?
 - (2,3) Batch normalization / Discarding weight decay

- Why? (my idea):
 - Batch Normalization: ??? (저자도 정확히는 모르겠대용)
 - Weight Decay: removing the trivial filters which cause the output to be close to 1...???

The effect of modern NN's properties

- What makes the neural networks yield uncalibrated outputs?
 - (4) Negative Log Likelihood (NLL) loss = Cross entropy

Calibration Method

- How to calibrate the prediction outputs then?
 - Histogram binning
 - Isotonic regression
 - Bayesian Binning into Quantiles (BBQ)
 - Platt Scaling
 - Matrix and vector scaling
 - Temperature scaling (KING GOD)

Calibration Method

- How to calibrate the prediction outputs then?
 - Goal: Obtaining calibrated probability q from p
 - Importantly, temperature scaling does not affect the model's accuracy

Given the logit vector \mathbf{z}_i , the new confidence prediction is

$$\hat{q}_i = \max_k \, \sigma_{\text{SM}}(\mathbf{z}_i/T)^{(k)}. \tag{9}$$

Calibration Method

How to train temperature T

```
# First: collect all the logits and labels for the validation set
                                                                 def eval():
logits_list = []
                                                                      loss = nll_criterion(self.temperature_scale(logits), labels)
labels_list = []
                                                                      loss.backward()
with torch.no_grad():
                                                                      return loss
    for input, label in valid_loader:
                                                                 optimizer.step(eval)
       input = input.cuda()
       logits = self.model(input)
       logits_list.append(logits)
       labels_list.append(label)
    logits = torch.cat(logits_list).cuda()
    labels = torch.cat(labels_list).cuda()
```

Experiments

• ECE on various datasets and models

Dataset	Model	Uncalibrated	Hist. Binning	Isotonic	BBQ	Temp. Scaling	Vector Scaling	Matrix Scaling
Birds	ResNet 50	9.19%	4.34%	5.22%	4.12%	1.85%	3.0%	21.13%
Cars	ResNet 50	4.3%	1.74%	4.29%	1.84%	2.35%	2.37%	10.5%
CIFAR-10	ResNet 110	4.6%	0.58%	0.81%	0.54%	0.83%	0.88%	1.0%
CIFAR-10	ResNet 110 (SD)	4.12%	0.67%	1.11%	0.9%	0.6%	0.64%	0.72%
CIFAR-10	Wide ResNet 32	4.52%	0.72%	1.08%	0.74%	0.54%	0.6%	0.72%
CIFAR-10	DenseNet 40	3.28%	0.44%	0.61%	0.81%	0.33%	0.41%	0.41%
CIFAR-10	LeNet 5	3.02%	1.56%	1.85%	1.59%	0.93%	1.15%	1.16%
CIFAR-100	ResNet 110	16.53%	2.66%	4.99%	5.46%	1.26%	1.32%	25.49%
CIFAR-100	ResNet 110 (SD)	12.67%	2.46%	4.16%	3.58%	0.96%	0.9%	20.09%
CIFAR-100	Wide ResNet 32	15.0%	3.01%	5.85%	5.77%	2.32%	2.57%	24.44%
CIFAR-100	DenseNet 40	10.37%	2.68%	4.51%	3.59%	1.18%	1.09%	21.87%
CIFAR-100	LeNet 5	4.85%	6.48%	2.35%	3.77%	2.02%	2.09%	13.24%
ImageNet	DenseNet 161	6.28%	4.52%	5.18%	3.51%	1.99%	2.24%	-
ImageNet	ResNet 152	5.48%	4.36%	4.77%	3.56%	1.86%	2.23%	-
SVHN	ResNet 152 (SD)	0.44%	0.14%	0.28%	0.22%	0.17%	0.27%	0.17%
20 News	DAN 3	8.02%	3.6%	5.52%	4.98%	4.11%	4.61%	9.1%
Reuters	DAN 3	0.85%	1.75%	1.15%	0.97%	0.91%	0.66%	1.58%
SST Binary	TreeLSTM	6.63%	1.93%	1.65%	2.27%	1.84%	1.84%	1.84%
SST Fine Grained	TreeLSTM	6.71%	2.09%	1.65%	2.61%	2.56%	2.98%	2.39%

Table 1. ECE (%) (with M=15 bins) on standard vision and NLP datasets before calibration and with various calibration methods. The number following a model's name denotes the network depth.

Experiments

Reliability diagrams

