Math 225A Differential Topology: Homework 3

October 17th, 2018

Professor Peter Petersen

Anish Chedalavada

Exercise 1. Show that if $f: X \to Y$ is a submersion then f maps open sets to open sets.

Proof. By the local submersion theorem, we have that f is locally equivalent to the canonical submersion for $x \in X, y \in Y$ s.t. f(x) = y is a submersion. Let $U \subset X$ be an open set containing $x \in X$. Without loss of generality, we may select a neighborhood $x \in N(x)$ with local coordinates for N(x), f(N(x)) fulfilling the local submersion theorem, and shrink N(x) s.t. $N(x) \subset U$. The product topology on R^n for N(x) diffeomorphic to $V \subset R^n$ yields that the projection of any open set onto any subspace yields an open set, i.e. that the projection map is an open map. As f is equivalent to the canonical submersion for N(x), we have that the image of f on N(x) must be an open set in Y. Thus, for any arbitrary $x \in f(U)$ we have a neighborhood $f(x) \in f(N(x)) \subset f(U)$ as constructed above, yielding the claim.

Exercise 2. Show that every submersion of a compact space into a connected space is surjective. In particular, show that there exist no submersions of compact manifolds into Euclidean spaces.

Proof. From the previous exercise, we have that the image of an open set under a submersion is an open set. Thus, for $f: X \to Y$ with X compact, Y connected, we have that the image f(X) must be open as $X \subset X$ open. However, X is compact, f is continuous, and thus f(X) must be closed. As Y is connected, this implies the only clopen set is Y itself, and thus f(X) = Y. In particular, we have that as Euclidean space is connected and not compact, there are no continuous surjections from a compact space to all of Euclidean space and therefore no submersions.