2. Let V be an inner product space. Prove that for all
$$x, y \in V$$
,
$$||x|| - ||y||| \le ||x - y||.$$

Taking the squares, we get $||x||^2 + ||y||^2 - 2||x|| \cdot ||y|| \le ||x - y||^2$. Let's prove this!

$$\begin{split} &\|\chi\|^2 + \|y\|^2 - 2 \|\chi\| \cdot \|y\| \\ &= \langle \chi, \chi \rangle + \langle y, y \rangle - 2 \|\chi\| \cdot \|y\| \\ &\leq \langle \chi, \chi \rangle + \langle y, y \rangle - 2 |\chi \rangle + \langle \chi, y \rangle - 2 |\chi \rangle + \langle \chi, y \rangle - 2 |\chi \rangle + \langle \chi, y \rangle - \langle \chi, \chi \rangle + \langle \chi, y \rangle - \langle \chi, \chi \rangle + \langle \chi, y \rangle - \langle \chi, \chi \rangle + \langle \chi, y \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi, \chi \rangle + \langle \chi, \chi \rangle - \langle \chi, \chi \rangle + \langle \chi \rangle + \langle \chi, \chi \rangle + \langle \chi, \chi \rangle$$

3. Prove the following inequalities. a) $a\cos\theta + b\sin\theta \le (a^2 + b^2)^{1/2}$, for $a, b, \theta \in \mathbb{R}$.

 $\int G d^2 d + \sin^2 \theta = 1.$

: acosotbsino

≤ Ja3+62

a-asotbsino Ja2462

a)
$$a\cos\theta + b\sin\theta \le (a^2 + b^2)^{1/2}$$
, for $a, b, \theta \in \mathbb{R}$.
Consider \mathbb{R}^2 with the standard inner product, namely dot product.

Then, by CS inequality, we got $\langle v, w \rangle \leq ||v|| \cdot ||w||$

Let v = (a,b) and w = (ase, sine),

 $\langle f,g\rangle=\int_0^1\!tf(t)g(t)\,dt.$ a) Find an orthonormal basis for $W=P_2(\mathbb{R})\subseteq V.$

an inner product $\langle \cdot, \cdot \rangle$ on V by

a) Find an orthonormal basis for
$$W = P_2(\mathbb{R}) \subseteq V$$
. We take for granted that Γ such $\langle f,g \rangle$ gives an inner prod.

1. Let V = C([0,1]) be the real vector space of real-valued continuous functions on [0,1]. Define

a) We will apply Gram-Schmidt Orthogonalization Process to a basis /1,t,t29 4 W.

The first are variations the source.
$$K_1=V_1$$

The second will be modified as $t-\frac{\langle 1,t\rangle}{\langle 1,1\rangle}|=t-\frac{\int_0^1 t^2 dt}{\int_0^1 t dt}|=t-\frac{\frac{1}{3}}{\frac{1}{2}}=t-\frac{2}{3}$.

Now, the third are: $t^2-\frac{\langle t-\frac{2}{3},t^2\rangle}{\langle t-\frac{2}{3},t-\frac{2}{3}\rangle}(t-\frac{2}{3})-\frac{\langle 1,t^2\rangle}{\langle 1,1\rangle}|$

What NOT BY $(t,t^2)=\frac{1}{4}$

$$|WSTNDTRE| \frac{(t+t)}{(t+t)}t$$

$$= (t+t) + (t+t$$

• (
$$\rightarrow \frac{1}{\sqrt{\frac{1}{2}}}$$
 (= $\sqrt{2}$)
• A detain: $\|f^2\| - \|(f - \frac{3}{3}) - part\| - \|f - part\|$
• $f - \frac{2}{3} \rightarrow \frac{1}{6}(f - \frac{2}{3}) = 6(f - \frac{2}{3}) = 6f - 4$

= $\int_0^1 f df - \frac{36}{25} \cdot (\frac{1}{6})^2 - \frac{1}{4} \cdot (\frac{1}{12})^2$
= $\int_0^1 f df - \frac{36}{25} \cdot (\frac{1}{6})^2 - \frac{1}{4} \cdot (\frac{1}{12})^2$
= $\int_0^1 f df - \frac{36}{25} \cdot (\frac{1}{6})^2 - \frac{1}{4} \cdot (\frac{1}{12})^2$
= $\int_0^1 f df - \frac{36}{25} \cdot (\frac{1}{6})^2 - \frac{1}{4} \cdot (\frac{1}{12})^2$
= $\int_0^1 f df - \frac{36}{25} \cdot (\frac{1}{6})^2 - \frac{1}{4} \cdot (\frac{1}{12})^2$
= $\int_0^1 f df - \frac{36}{25} \cdot (\frac{1}{6})^2 - \frac{1}{4} \cdot (\frac{1}{12})^2$
= $\int_0^1 f df - \frac{36}{25} \cdot (\frac{1}{6})^2 - \frac{1}{4} \cdot (\frac{1}{12})^2$
= $\int_0^1 f df - \frac{1}{25} \cdot (\frac{1}{25})^2 + \frac{1$

Lostly, normalization!

= $6 \cdot (87 - 32e) \cdot (10t^2 - (2t + 3))$

+(6e-(6)(66-4)+2

 $= \frac{1}{2} - \frac{6}{5} \left(\frac{1}{5} - \frac{2}{3} \right) - \frac{1}{2} = \frac{1}{2} - \frac{6}{5} + \frac{4}{5} - \frac{1}{2} = \frac{1}{2} - \frac{6}{5} + \frac{3}{10}$

· A detour: $||t^2||^2 - ||(t-\frac{2}{3}) - part||^2 - ||1 - part||^2$

 $\int_{1}^{4} f_{3} = (f_{3} - 3f_{5} + \theta f - \theta) G_{4}$

P* is the adjoint operator of P. It is DEFINED to be scatisfying (Pu, w)= (v.p*i) for all v.w. (>>) Suppose that ker P = (imP). Note that (I-P). v E ker P for any v $b/c \quad P \cdot (z-p) \cdot v = (P-P^2)v = 0.$ Hence, $\langle Pw, (I-P).v \rangle = 0$ for any v and w. $\Rightarrow \langle \nu, p*(J-p)\cdot \nu \rangle = 0$ \Rightarrow $p^*(1-p). v=0$ for any vTaking * once more, $P = P^*P \Rightarrow P^* = P$. (In tad, you can go in the venerse way. If $P^*=P$, then $P^*=P=P^*=P^*P \Rightarrow P^*(I-P)=0$. If we restrict u to be in kerp, : (w, p*(I-P)v)=0 for all v,w. if proves $\langle pw, v \rangle = 0$. .. < Pw, (I-P)v>=0 "

2. Let V be a finite-dimensional inner product space. Suppose $P \in \mathcal{L}(V, V)$ satisfies $P^2 = P$.

Prove that $\ker P = \operatorname{Im}(P)^{\perp}$ if and only if $P = P^*$.

invertible matrix in
$$V$$
, and let T_P be the linear operator on V defined by $T_P(A) = P^{-1}AP$. Find the adjoint of T_P .

$$\left\langle \mathsf{T}_P \mathsf{A}, \mathsf{B} \right\rangle = \left\langle \mathsf{P} \mathsf{A} \mathsf{P}, \mathsf{B} \right\rangle$$

2. Let $V = M_{n \times n}(\mathbb{C})$ be equipped with the inner product $\langle A, B \rangle = \operatorname{tr}(B^*A)$. Let P be a fixed

$$= \langle A, (PB^*p^-)^* \rangle \quad \text{blc} \quad \text{$*$k$ is the identity.}$$

$$(P^-)^*BP^*$$

$$\therefore T_P^*B = (P^-)^*BP^* = (P^*)^-BP^* = T_P^*B.$$
will be proved in class.

 $= tr(B^*P^-AP)$

 $= \langle (PB^*P^{-1}A)$

(b) T F Every orthonormal set of vectors in an inner product space is linearly independent.
(c) T F
$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt$$
 is an inner product on $C([-1,1])$ (the real vector space of

real-valued continuous functions on [-1,1]).

1. (True/False Jeopardy) Supply convincing reasoning for your answer.

(d) False
$$z=y$$
 nonzero vectozs
$$\Rightarrow ||2x||^2 \le ||x||^2 + ||x||^2$$

$$= ||x||^2 \le ||x||^2 + ||x||^2$$

$$= ||x||^2 = ||x||^2$$

$$= ||x$$

(c) Folse Livewity OR Symmetricity is not the thing. Strict positively? Look at the interval. $f(z) = \begin{cases} x & \text{on } [-1,0] \\ 0 & \text{on } [-1,0] \end{cases}$ (e) False $A = A^*$, $B = B^*$ Then, $(AB)^* = B^*A^* = BA$.