SISTEM PENDUKUNG KEPUTUSAN PENENTUAN LOKASI PEMASANGAN ANTENA PADA TOWER BTS (Base Transceiver Station) BERSAMA MENGGUNAKAN METODE TOPSIS (STUDI KASUS KOTA MALANG)

Ilham Putra Sanur

Program Studi Teknik Informatika S1, Fakultas Teknologi Industri Institut Teknologi Nasional Malang, Jalan Raya Karanglo km 2 Malang, Indonesia Ilhamputrasanur20@gmail.com

ABSTRAK

Informasi di zaman modern ini sudah sangatlah mudah di akses, bahkan informasi mengenai negara yang berada di benua yang jauh disana dapat kita terima hanya dalam beberapa menit saja. Ini semua dapat kita nikmati tidak lepas dari peran sebuah perangkat yakni BTS (*Base Transceiver Station*) yang berfungsi menjembatani perangkat komunikasi pengguna dengan jaringan menuju jaringan lain. Namun pembangunan tower BTS serta pemasangan antena oleh operator juga biasanya hanya terfokus pada daerah terntu saja, sehingga masyarakat yang tinggal di pelosok masih belum merasakan kualitas jaringan yang memadai, sehingga tidak adanya pemerataan.

Mengembangkan dan menghasilkan web sistem pendukung keputusan penentuan lokasi tower BTS bersama di Kota Malang dengan menggunakan metode TOPSIS (*Technique for Order Performance of Similarity to Ideal Solution*) yang dapat menentukan lokasi ideal untuk melakukan pemasangan antena pada tower BTS bersama merupakan suatu langkah yang dilakukan agar pemerataan kualitas jaringan dapat terwujud.

Berdasarkan hasil pengujian aplikasi SPK lokasi tower BTS dapat dijalankan pada web browser *mozilla firefox*, *google chrome*, *intener explorer* serta pengujian perhitungan metode topsis dapat dilakukan dengan hasil yang benar, namun tampilan halaman masih sangat sederhana.

Kata kunci: Sistem Pendukung Keputusan, Web, TOPSIS, Tower BTS, Antena Operator, Malang.

1. PENDAHULUAN

1.1. Latar Belakang

Informasi berbabis elektronik di zaman modern ini sudah sangatlah mudah diakses, bahkan informasi mengenai negara yang berada di benua yang jauh di sana dapat kita terima hanya dalam beberapa menit saja. Hal tersebut dapat kita nikmati tidak lepas dari peran sebuah perangkat yakni BTS (Base Transceiver yang berfungsi menjembatani perangkat komunikasi pengguna dengan jaringan menuju jaringan lain. Namun tidak sedikit juga dari pengguna perangkat komunikasi yang mengeluh terkait jaringan yang biasanya tidak stabil disaat dibutuhkan, sehingga biasanya menghambat sistem kerja seseorang. Dan yang paling sering terjadi adalah bahwa jaringan di pelosok desa pasti kualitasnya jauh di bawah ketimbang di tengah kota, yang di mana berdampak lambannya informasi diterima para masyarakat di pelosok desa. Pemerataan informasi ini sangatlah penting demi menjunjung masyarakat Indonesia yang dapat mengetahui berita secara terkini, sehingga tidak tertinggal didalam kemajuan perkembangan di segala aspek bidang.

Dengan adanya pembangunan BTS di kota Malang, diharapkan agar masyarakat tidak lagi ketinggalan terkait informasi-informasi penting, atapun perkembangan-perkembangan di segala aspek bidang sehingga juga dapat bersaing. Namun pembangunan tower BTS serta pemasangan antena oleh operator juga biasanya hanya terfokus pada daerah terntu saja, sehingga masyarakat yang tinggal di pelosok masih belum merasakan kualitas jaringan yang memadai, sehingga tidak adanya pemerataan. Berdasarkan hasil observasi dan wawancara ke Dinas Komunkasi dan Informatika Kota Malang, diketahui bahwa provider belum memiliki alat bantu untuk memutuskan tempat terbaik untuk melakukan pemasangan antena pada tower BTS bersama dengan kriteria tertentu.

Oleh karena itu untuk terciptanya pemerataan jaringan maka perlu dirancang sebuah sistem pendukung keputusan penentuan lokasi penggunaan menara BTS bersama dengan metode TOPSIS sebagai langkah awal sebelum operator menentukan lokasi penggunaan sebuah menara BTS. Sehingga dapat terciptanya pemertataan di masyarakat dalam mengakses informasi.

1.2. Tujuan

Mengembangkan dan menghasilkan web sistem pendukung keputusan penentuan lokasi tower BTS bersama di Kota Malang yang dapat menentukan lokasi ideal untuk melakukan pemasangan antena pada tower BTS bersama.

2. TINJAUAN PUSTAKA

2.1. Penelitian Terdahulu

Seperti pada penelitian yang dilakukan oleh Muhammad Mahrus Ghazali (2016) yang berjudul Sistem Pendukung Keputusan Pemilihan Gedung Serbaguna dengan Menggunakan Metode TOPSIS (Studi Kasus: Kota Banjarmasin). Pada penelitian ini di bahas tentang pesatnya pertumbuhan dan pembangunan kota Banjarmasin sebagai ibukota provinsi dari Kalimantan Selatan akan banyak kegiatan yang dilakukan oleh masyarakat. Kebutuhan masyarakat akan gedung serbaguna akan semakin meningkat seiring dengan beragamnya jenis acara yang akan diselenggarakan. Berbagai macam kegiatan dapat digelar di gedung serbaguna baik itu kegiatan pribadi maupun kegiatan organisasi, mulai dari pesta pernikahan, seminar, workshop, diskusi dan lain-lain. Dengan beragamnya jenis acara yang diselenggarakan tentunya membutuhkan gedung serbaguna yang cocok untuk digunakan sebagai tempat acara tersebut. Untuk mendapatkan informasi gedung serbaguna yang diperlukan, masyarakat bisa mencari dengan mendatangi langsung atau melihat website yang disediakan. Namun, untuk mendapatkan informasi yang cepat dan sesuai dengan kebutuhan sangat sulit. Beberapa tempat penyewaan gedung yang tidak memiliki website dan tidak tersedia informasi yang lengkap mengenai gedung serbaguna tersebut di website lain sehingga masyarakat terpaksa mendatangi langsung gedung tersebut intuk mendapatkan informasi yang lebih detail. Dengan menggunakan sistem ini masyarakat dapat lebih mudah untuk mendapatkan informasi gedung yang diinginkan. Selama ini, sangat sedikit website yang memberikan informasi tata letak yang memadai. Dengan sistem yang berbasis WebGis permasalahan tersebut dapat diatasi dan karena berbasis web maka sistem ini dapat diakses kapanpun dan di manapun.

Seperti pada penelitian yang dilakukan oleh Mohammad Adiwisanghagni yang berjudul Penggunaan Metode TOPSIS dalam Rancangan Sistem Penunjang Keputusan Untuk Menentukan Lokasi Usaha Baru (Studi Kasus: Kota Yogyakarta). Pada penelitian ini dibahas tentang perluasan pemasaran yang tidaklah bisa memberikan efek positif bagi perusahaan jika tidak memperhatikan faktor faktor penting dalam pemilihan lokasi perluasan pemasaran. Tentunya

faktor faktor yang akan dibahas adalah faktor yang dapat berkesinambungan dengan proses bisnis Arena Disc itu sendiri. Metode TOPSIS dipilih karena metode ini menentukan nilai bobot

untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif terbaik dari sejumlah alternatif, dalam hal ini alternatif yang dimaksud

adalah alternative lokasi usaha baru berdasarkan lima kriteria yang telah ditentukan sebelumnya.

Dengan metode perangkingan tersebut, diharapkan penilaian akan lebih tepat karena didasarkan pada nilai kriteria dan bobot yang sudah ditentukan sehingga akan mendapatkan hasil yang lebih akurat dalam menentukan lokasi usaha yang baru. [2].

Seperti pada penelitian yang dilakukan oleh Budi Muntaha Khafi yang berjudul Sistem Penunjang Keputusan Pemilihan SSB (Sekolah Sepak Bola) Menggunakan Metode Topsis Berbasis Web di Kota Malang). Penentuan sekolah sepak bola yang tepat. Pemilihan sekolah sepakbola yang tepat sangat erat kaitannya dengan faktor-faktor penting yang dipertimbangkan dalam pemilihan sekolah sepakbola berdasarkan preferensi (keinginan) dari masingmasing pengguna atau calon siswa. Bagi seorang pengguna mungkin faktor terpenting adalah tingkat aksesbilitas atau kemudahan dalam mencapai tempat latihan dengan tempat mereka tinggal atau pada titiktitik di kota malang seperti pusat kota. Beberapa pengguna lainnya mungkin mempertimbangkan faktor biaya dimana biaya yang harus dikeluarkan untuk pendaftaran dan biaya iuran tiap bulan harus ditekan sedimikian rupa. Jadi, alasan utama terjadinya perbedaan dalam pemilihan sekolah sepakbola adalah perbedaan kebutuhan adanya masing-masing pengguna. Karena sekolah sepakbola yang baik adalah persoalan individual tetapi secara umum menginginkan kebanyakan pengguna sepakbola yang dapat memberikan manfaat sebesar mungkin dikemudian hari. [3].

2.2. Metode TOPSIS (Technique for Order Performance of Similarity to Ideal Solution)

TOPSIS adalah salah satu metode pengambilan keputusan multikriteria yang pertama kali diperkenalkan oleh Yoon dan Hwang (1981). TOPSIS menggunakan prinsip bahwa alternatif yang terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan terjauh dari solusi ideal negatif dari sudut pandang geometris dengan menggunakan jarak Euclidean untuk menentukan kedekatan relatif dari suatu alternatif dengan solusi optimal. Solusi ideal positif didefinisikan sebagai jumlah dari seluruh nilai terbaik yang dapat dicapai untuk setiap atribut, sedangkan solusi negatif-ideal terdiri dari seluruh nilai terburuk yang dicapai untuk setiap atribut.

Topsis merupakan suatu metode yang membantu proses pengambil keputusan yang optimal, untuk menyelesaikan masalah keputusan secara praktis. Konsep yang diterapkan juga sangat mudah dipahami dan sederhana.

Dalam penelitian Fitriana, Harliana, dan Handaru yang berjudul "Sistem Pendukung Keputusan untuk Menentukan Prestasi Akademik Siswa dengan Metode TOPSIS" menentukan prosedur Topsis yakni sebagai berikut:

- 1. Menentukan matriks keputusan yang ternomalisasi
- 2. Menghitungkan matriks keputusan ternomalisasi yang terbobot

- Menghitung matriks solusi ideal positif dan matriks solusi ideal negatif
- 4. Menghitung jarak antara nilai setiap alternatif dengan matriks solusi ideal positif dan matriks solusi ideal negatif.
- 5. Menghitung nilai preferensi untuk setiap alternatif

Sebelum menghitung matrik keputusan normalisasi terbobot, tentukan terlebih dahulu bobot dari masingmasing kriteria. Tingkat kepentingan tiap kriteria dapat dinilai dari range 1 sampai 5, yaitu:

- 1: tidak penting
- 2: tidak terlalu penting
- 3 : cukup penting
- 4 : penting
- 5: sangat penting

Adapun langkah-langah dalam metode TOPSIS adalah sebagai berikut:

 Membangun normalized decision matrix Elemen rij hasil dari normalisasi decision matrix R dengan metode Euclidean length of a vector adalah :

$$r_{ij=\frac{X_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}} (1)$$

Dimana:

rij = hasil dari normalisasi matriks keputusan R

i = 1,2,3,...,m;

j = 1,2,3,...,n;

2. Membangun weighted normalized decision matrix.

Dengan bobot W = (w1,w2,...,wn), maka normalisasi bobot matriks V adalah:

$$V = \begin{bmatrix} w_{11}r_{11} & \cdots & w_{1n}r_{1n} \\ \vdots & \ddots & \vdots \\ w_{m1}r_{m1} & \cdots & w_{nm}r_{nm} \end{bmatrix} (2)$$

3. Menentukan solusi ideal positif dan solusi ideal negatif.

Solusi ideal positif dinotasikan dengan A+ dan solusi ideal negatif dinotasikan dengan A-, sebagai berikut :

Menentukan solusi ideal (+) dan (-)

$$A^{+} = \{ (\max v_{ij} \mid j \in J), (\min v_{ij} \mid j \in J), i = 1,2,3,...,m \} = \{ v_{1}^{+}, v_{2}^{+},..., v_{n}^{+} \}$$
 (3)
$$A^{-} = \{ (\min v_{ij} \mid j \in J), (\max v_{ij} \mid j \in J), i = 1,2,3,...,m \} = \{ v_{1}^{-}, v_{2}^{-},..., v_{n}^{-} \}$$

Dimana:

v = ij

elemen matriks V baris ke-i dan kolom ke j

 $J = \{j{=}1,\!2,\!3,\!...,\!n \text{ dan } j \text{ berhubungan dengan benefit criteria}\}$

 $J' = \{j=1,2,3,...,n \text{ dan } j \text{ berhubungan dengan cost criteria}\}$

4. Menghitung separasi

Separation measure ini merupakan pengukuran jarak dari suatu alternatif ke solusi ideal positif dan solusi ideal negatif. Perhitungan matematisnya adalah sebagai berikut:

Separation measure untuk solusi ideal positif

$$S_{i}^{+} = \sqrt{\sum_{j=1}^{n} (v_{ij} - v_{j}^{+})}$$
, dengan $i = 1,2,3,...,m$ (4)

Dimana

 $J = \{j=1,2,3,...,n \text{ dan } j \text{ merupakan } benefit \text{ criteria} \}$ $J' = \{j=1,2,3,...,n \text{ dan } j \text{ merupakan } cost \text{ criteria} \}$

Separation measure untuk solusi ideal negatif

$$S_{i}^{-} = \sqrt{\sum_{j=1}^{n} (v_{ij} - v_{j}^{-})}$$
, dengan $i = 1,2,3,...,m$ (5)

Dimana:

 $J = \{j=1,2,3,...,n \text{ dan } j \text{ merupakan } benefit \text{ criteria} \}$ $J' = \{j=1,2,3,...,n \text{ dan } j \text{ merupakan } cost \text{ criteria} \}$

 Menghitung kedekatan relatif terhadap solusi ideal Kedekatan relatif dari alternatif A+ dengan solusi ideal A- direpresentasikan dengan :

$$C_i = \frac{S_i^-}{S_i^- + S_i^+}, dengan \ 0 < C_i^+ < 1 \ dan \ i = 1,2,3,..., m \ (6)$$

6. Merangking alternatif

Alternatif dapat diranking berdasarkan urutan Ci*. Maka dari itu, alternatif terbaik adalah salah satu yang berjarak terpendek terhadap solusi ideal dan berjarak terjauh dengan solusi ideal negatif.

3. ANALISIS DAN PERANCANGAN SISTEM

3.1. Analisis Kebutuhan Fungsional

Kebutuhan fungsional adalah pernyataan layanan sistem yang harus disediakan, bagaiamana sistem beraksi pada input tertentu dan bagaimana perilaku sistem pada situasi tertentu. Sedangkan kebutuhan fungsional user merupakan pernyataan level tinggi dari apa yang seharusnya dilakukan sistem, tetapi kebutuhan fungsional sistem menggambarkan layanan sistem secara detail.

Sistem yang akan di bangun harus mampu melakukan input lokasi:

- Admin memasukkan lokasi alternatif serta bobot penilaian di setiap data kriteria
- 2. Sistem yang dapat melakukan proses perhitungan matematis TOPSIS untuk memilih lokasi alternatif yang paling optimal
- 3. User dapat memilih 5 lokasi alternatif untuk di proses, sehingga akan menghasilkan lokasi alternatif paling optimal untuk pembangunan tower BTS

3.2. Analisis Kebutuhan NonFungsional

Kebutuhan nonfungsional adalah batasan layanan atau fungsi yang ditawarkan sistem seperti batasan waktu, batasan pengembangan proses, standarisasi, dll. Kebutuhan nonfungsional lebih kritis dari pada kebutuhan fungsional. Jika tidak dapat bertemu, sistem menjadi tidak berguna.

Kebutuhan nonfungsional yang akan dibangun meliputi :

- 1. Sistem berbasis web
- 2. Kompatibel hanya pada web browser PC
- 3. Sistem akan menampilkan hasil perhitungan lokasi terbaik untuk pemasangan antena, setelah bobot setiap kriteria diinputkan.

3.3. Blok Diagram User dan Admin

Gambar 3.1 Blok Diagram User

Untuk alur dari proses web sistem pendukung keputusan penentuan lokasi tower BTS bersama di Kota Malang dengan metode TOPSIS dapat dilihat pada gambar 3.1 Dimana web yang diakses sebagai media komunikasi dan media informasi oleh user untuk mengetahui lokasi ideal untuk memasang antena pada tower BTS bersama. Blok diagram user dapat dilihat pada gambar 3.1

Gambar 3.2 Blok Diagram Admin

Untuk alur dari proses web sistem pendukung keputusan penentuan lokasi tower BTS bersama di Kota Malang dengan metode TOPSIS pada admin dapat dilihat pada gambar 3.2 Dimana web yang diakses sebagai media komunikasi dan media informasi oleh admin untuk menginput data kriteria seta lokasi tower BTS bersama. Blok diagram admin dapat dilihat pada gambar 3.2

3.4. Struktur Menu User dan Admin

Dari aplikasi yang akan dikembangkan, terdapat beberapa menu yang akan ditampilkan untuk menunjang kebutuhan pengguna. Berikut merupakan struktur menu dari user.

Dari aplikasi yang akan dikembangkan, terdapat beberapa menu yang akan ditampilkan untuk menunjang kebutuhan pengguna. Berikut merupakan struktur menu dari admin.

Gambar 3.4 Struktur Menu Admin

3.5. Flowchart User dan Admin

Gambar 3.5 Flowchart User

Gambar 3.5 menjelaskan tentang alur dari sistem user. Tampilan menu ada beberapa tampilan seperti Home, Data Kriteria, Data Alternatif, Hasil, Help. Jika tidak ada yang akan di lakukan maka proses selesai, tetapi jika dari setiap proses di atas di pilih maka akan dijalankan prosesnya lalu menuju proses simpan. Jika telah tidak ada yang akan dilakukan maka selesai, jika masih ingin melakukan proses maka akan kembali ke beranda.

Gambar 3.6 Flowchart Admin

Gambar 3.6 menjelaskan tentang alur dari system admin. Tampilan menu ada beberapa tampilan seperti Home, Data Kriteria, Data Alternatif, Hasil, Admin. Jika tidak ada yang akan di lakukan maka proses selesai, tetapi jika dari setiap proses di atas di pilih maka akan dijalankan prosesnya lalu menuju proses simpan. Jika telah tidak ada yang akan dilakukan maka selesai, jika masih ingin melakukan proses maka akan kembali ke beranda.

3.6. DFD level 0 dan level 1

Gambar 3.7 DFD Level 0

Gambar 3.7 menjelaskan tentang data flow diagram level 0. Dimana proses pemilihan lokasi tower terdapat dua entitas yaitu admin dan user, admin menginputkan data kriteria dan data alternatif, sementara user menginputkan bobot di setiap kriteria ke sistem, setelah itu sistem akan mengirimkan hasil perhitungan ke user.

Gambar 3.8 DFD Level 1

Gambar 3.8 menjelaskan tentang data flow diagram level 1. Dimana proses pemilihan lokasi tower terdapat dua entitas yaitu admin dan user dan tiga proses yaitu input data kriteria dan data alternatif, input bobot dan perhitungan SPK. Admin menginputkan data kriteria dan data alternatif yang tersimpan di tabel kriteria dan tabel alternatif, setelah itu data kriteria dan data alternatif dikirim ke proses perhitungan SPK, sementara user menginputkan bobot di setiap kriteria ke sistem, setelah itu sistem akan mengirimkan hasil perhitungan ke user.

3.7. Database

Database dibutuhkan untuk menyimpan dan memanajemen data. Pada web ini basis data digunakan untuk menyimpan data-data lokasi tower BTS bersama di Kota Malang. Dimana pada database ini terdapat beberapa tabel antara lain:

A. Tabel tb_bobotkrit

Tabel 3.1 tb bobotkrit

Nama Field	Tipe Data	Size
Kode	Int	5
Nama_Kriteria	varchar	50
Bobot	Int	5
Keterangan	text	-

B. Tabel tb_alternatif

Tabel 3.2 tb_alternatif

Nama Field	Tipe Data	Size
Kode	Int	5
Keterangan	varchar	50
Lokasi_Tower	varchar	100

C. Tabel tb_bobotalt

Tabel 3.3 tb_bobotalt

1400101010_00001411			
Nama Field	Tipe Data	Size	
Kode	Int	5	
Lokasi_Tower	varchar	100	
Tinggi_Menara	varchar	30	
Struktur_Menara	varchar	30	
Tipe_Menara	varchar	30	
Jumlah_Shelter	varchar	30	

4. IMPLEMENTASI

Pada tahap ini merupakan proses perubahan analisa dan perancangan yang telah dibuat sebelumnya menjadi suatu aplikasi yang siap dijalankan. Sebelum menjalankan aplikasi, pengguna harus terkoneksi dengan *internet*.

4.1. Menu Home

Menu home merupakan tampilan awal ketika aplikasi dijalankan. Dimana pada tampilan tersebut berisi informasi mengenai berita seputar menara BTS bersama, seperti pada Gambar 4.1

Gambar 4.1 Menu Home User

4.2. Menu Data Kriteria

Menu Data Kriteria berisi informasi kriteriakriteria yang ada, pada menu data kriteria ini, user juga memberi bobot pada setiap kriteria, seperti pada Gambar 4.2

Gambar 4.2 Menu Data Kriteria

4.3. Menu Data Alternatif

Menu data alternatif berisi informasi lokasilokai menara BTS bersama di Kota Malang yang menjadi alternatif, user juga dapat mencari lokasi menara BTS pada bantuan cari, seperti pada Gambar 4.3

Gambar 4.3 Menu Data Alternatif

4.4. Menu Hasil

Menu hasil merupakan menu yang menampilkan hasil perhitungan dari bobot kriteria yang telah di masukkan user, seperti pada Gambar 4.4

Gambar 4.4 Menu Hasil

4.5. Implementasi Sistem (Admin)

4.6. Menu Data Kriteria

Menu data kriteria merupakan menu dimana admin dapat mengelola kriteria-kriteria, menambah, edit, atapun hapus kriteria, seperti pada Gambar 4.5

Gambar 4.7 Menu Bobot Alternatif

4.9. Menu Admin

Menu admin diperuntukkan bagi admin utama yang akan memberi akses login kepada admin baru, seperti pada Gambar 4.8

4.7. Menu Data Alternatif

Menu data alternatif merupakan menu dimana admin dapat mengelola data alternatif seperti, edit, tambah dan hapus data alternatif seperti pada Gambar 4.6

Gambar 4.6 Menu Data Alternatif

4.8. Menu Bobot Alternatif

Menu bobot alternatif untuk mengelola bobot pada setiap alternatif, seperti pada Gambar 4.7

Gambar 4.8 Menu Admin

4.10. Pengujian

Tabel 4.1 Hasil Pengujian Fungsional (User)

	Fungsi	Perangkat			
No		Mozilla Firefox	Google Chrome	Internet Explorer	
1.	Menampilkan data kriteria dan proses pemberian bobot kriteria.	V	√	V	
2.	Menampilkan data lokasi tower BTS bersama di Kota Malang	V	V	V	
3.	Menampilkan hasil perhitungan dari bobot kriteria yang telah dimasukkan user	V	V	V	

Dari hasil pengujian fungsional pada sistem (user) yang dilakukan sesuai Tabel 1 bahwa semua menu yang ada pada sistem (user) berhasil 100%, dimana semua fungsi tampilan pada web dapat di jalankan di web browser Mozilla firefox, Google Chrome, dan Internet Explorer.

Tabel 4.2 Hasil Pengujian Fungsional (Admin)

		Perangkat			
No	Fungsi	Mozilla Firefox	Google Chrome	Internet Explorer	
1.	Menampilkan data kriteria dan proses tambah, edit, dan hapus data kriteria.	V	V	V	
2.	Menampilkan data alternatif dan proses tambah, edit, dan hapus data alternatif.	V	V	√	
3.	Menampilkan bobot setiap alternatif dan proses edit bobot setiap alternatif	V	V	V	
4.	Menampilkan data admin dan proses pemberian hak akses	√	√	√	

Dari hasil pengujian fungsional pada sistem (admin) yang dilakukan sesuai Tabel 4.2 bahwa semua menu yang ada pada sistem (admin) berhasil 100%, dimana semua fungsi tampilan pada web dapat di jalankan di web browser Mozilla firefox, Google Chrome, dan Internet Explorer.

Keterangan:

 $\sqrt{}$ = Berhasil, X = Tidak Berhasil

Tabel 4.3 Hasil Pengujian Web Pada User

No	Pertanyaan	Sangat Baik	Baik	Cukup	Kurang
1.	Bagaimana tampilan web ?	3	7	3	1
2.	Semua menu berfungsi dengan baik ?	7	6	1	0
3.	Apakah web ini dapat membantu menentukan lokasi menara BTS bersama?	6	6	2	0
4.	Apakah web ini dapat memberi informasi lokasi menara BTS bersama?	5	7	2	0
5.	Apakah web ini dapat bermanfaat	6	7	1	0
Total 27 33			9	1	
	% 54 66 18 2				

Pada pengujian user, terlihat mayoritas user menilai bahwa web penentuan lokasi tower BTS bersama untuk pemasangan antena berjalan dengan baik

5. KESIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan hasil pengujian web sistem pendukung keputusan penentuan lokasi pemasangan antena pada tower BTS bersama dapat disimpulkan sebagai berikut:

- 1. Pengujian aplikasi fungsional pada web browser berhasil 100% dan pengujian perhitungan metode topsis dapat dilakukan dengan hasil yang benar.
- 2. Web SPK penentuan lokasi tower BTS bersama ini dapat dijalankan pada web browser seperti mozilla firefox, google chrome, dan internet explorer. hasil pengujian aplikasi fungsional pada web browser berhasil 100% dan pengujian perhitungan metode topsis dapat dilakukan dengan hasil yang benar.

5.2. Saran

Aplikasi SPK penentuan lokasi tower BTS bersama ini masih bisa dikembangkan lagi. Beberapa saran sebagai acuan terhadap penelitian atau pengembangan selanjutnya, diantaranya :

- 1. Dalam pengembangan sistem berikutnya agar tampilan web dapat lebih menarik lagi.
- 2. Dalam pengembangan berikutnya agar hasil yang didaptkan dapat di print out untuk keperluan user.

DAFTAR PUSTAKA

- [1] GHAZALI, Muhammad Mahrus. Sistem Penunjang Keputusan Pemilihan Gedung Serbaguna dengan Menggunakan Metode Topsis (Studi Kasus: Kota Banjarmasin). *J-INTECH*, 2017, 4.01: 107-114.
- [2] ADIWISANGHAGNI, Mohammad.
 Penggunaan Metode Topsis Dalam Rancangan
 Sistem Penunjang Keputusan Untuk
 Menentukan Lokasi Usaha Baru (Studi Kasus:
 ARENA DISC Yogyakarta).
 SEMNASTEKNOMEDIA ONLINE, 2015, 3.1: 2-2-187.
- [3] KHAFI, Budi Muntaha. Sistem Penunjang Keputusan Pemilihan SSB (Sekolah Sepak Bola) Menggunakan Metode Topsis Berbasis Web di Kota Malang. *J-Intech (Journal of Information and Technology)*, 2017, 4.01: 33-39.