Solutions to problem set #6

1. Accuracy of quantum subroutines. [15 points] Let $f : \{0,1\}^n \to \{0,1\}^m$ and let us consider the unitary operator $W = \widehat{f_{\oplus}}$ acting on n + m qubits:

$$\widehat{f_{\oplus}}: |x,y\rangle \mapsto |x,y \oplus f(x)\rangle,$$
 (1)

An approximate realization \widetilde{W} of $\widehat{f_{\oplus}}$ uses k ancillas and is organized as follows. We apply some unitary U to the input state $|x,0^k\rangle$ (or a superposition of such states), add each of the last m bits to the corresponding bit of y (modulo 2), and apply $U^{-1} = U^{\dagger}$:

$$\tilde{W} = \sum_{a} P_{a} \otimes R_{a}, \quad \text{where}
P_{a} = U^{\dagger} (I \otimes |a\rangle\langle a|) U,
R_{a} : |y\rangle \mapsto |y \oplus a\rangle.$$

$$|x\rangle
|0^{k}\rangle \text{ (ancillas)}
|y\rangle$$

If we were not interested in working with superpositions, we could use just use U once and measure the last m bits. Suppose that the error probability of this simpler procedure is small:

$$\forall x \sum_{a \neq f(x)} p(a|x) \leq \varepsilon, \quad where \quad p(a|x) = \langle x, 0^k | P_a | x, 0^k \rangle.$$
 (3)

Our goal is to estimate how well the operator \widetilde{W} approximates $\widehat{f_{\oplus}}$. Specifically, we want to obtain an upper bound for the norm of the "error operator"

$$E = \widetilde{W}V - V\widehat{f_{\oplus}},\tag{4}$$

where V augments the input qubits with ancillas: $V|x,y\rangle = |x,0^k,y\rangle$.

Questions:

a) Show that for each x and y, the corresponding error is bounded as follows: $||E|x,y\rangle|| \le \sqrt{2\varepsilon}$. Using this result, prove that $||E|| \le 2^{(n+m)/2}\sqrt{2\varepsilon}$. **Hint:** It is clear that

$$E|x,y\rangle = |\tilde{\psi}_{x,y}\rangle - |\psi_{x,y}\rangle, \quad where \quad |\psi_{x,y}\rangle = |x,0^k,y \oplus f(x)\rangle, \quad |\tilde{\psi}_{x,y}\rangle = \tilde{W}|x,0^k,y\rangle.$$
 (5)

Use the fact that if $|\psi\rangle$ and $|\tilde{\psi}\rangle$ are unit vectors, then $||\tilde{\psi}\rangle - |\psi\rangle||^2 = 2 - 2\operatorname{Re}\langle\psi|\tilde{\psi}\rangle$.

b) Show that

$$||E(|x\rangle \otimes |\xi\rangle)|| \le \sqrt{4\varepsilon} ||\xi\rangle|| \tag{6}$$

for any vector $|\xi\rangle$ and prove this bound: $||E|| \leq 2^{n/2}\sqrt{4\varepsilon}$. **Hint:** Write $E(|x\rangle \otimes |\xi\rangle)$ as $|\tilde{\psi}_{x,\xi}\rangle - |\psi_{x,\xi}\rangle$ and try to express $\langle \psi_{x,\xi}|\tilde{\psi}_{x,\xi}\rangle$ in terms of $1 - R_{a \oplus f(x)}$.

c) The factor $2^{n/2}$ is not so easy to dispense with because the errors from different values of x may interfere constructively. Modify the circuit (2) so as to exclude any such interference. The new implementation should satisfy the inequality $||E|| \leq O(\sqrt{\epsilon})$.

Answers:

a) Following the hint, we calculate the inner product between the vectors $|\psi_{x,y}\rangle$ and $|\tilde{\psi}_{x,y}\rangle$ defined by Eq. (5). In this calculation, we use the fact that $\tilde{W} = \sum_a P_a \otimes R_a$ (see Eq. (2)).

$$\langle \psi_{x,y} | \tilde{\psi}_{x,y} \rangle = \langle x, 0^k, y \oplus f(x) | \tilde{W} | x, 0^k, y \rangle = \sum_{a} \underbrace{\langle x, 0^k | P_a | x, 0^k \rangle}_{p(a|x)} \underbrace{\langle y \oplus f(x) | R_a | y \rangle}_{\delta_{a,f(x)}}$$
(7)
= $p(f(x)|x) > 1 - \varepsilon$.

Hence,

$$||E|x,y\rangle|| = ||\tilde{\psi}_{x,y}\rangle - |\psi_{x,y}\rangle|| = \sqrt{2 - 2\operatorname{Re}\langle\psi_{x,y}|\tilde{\psi}_{x,y}\rangle} \le \sqrt{2\varepsilon}.$$
 (8)

Let us now apply the operator E to an arbitrary superposition of basis states, $|\psi\rangle = \sum_{x,y} c_{x,y} |x,y\rangle$:

$$E|\psi\rangle = \sum_{x,y} c_{x,y} (|\tilde{\psi}_{x,y}\rangle - |\psi_{x,y}\rangle), \tag{9}$$

$$||E|\psi\rangle|| \le \sum_{x,y} |c_{x,y}| ||\tilde{\psi}_{x,y}\rangle - |\psi_{x,y}\rangle|| \le \left(\sum_{x,y} |c_{x,y}|\right) \sqrt{2\epsilon}.$$
 (10)

Recall x and y have $N = 2^n$ and $M = 2^m$ possible values, respectively. If all the terms in the last sum are equal, $c_{x,y} = (NM)^{-1/2}$, then they add up to \sqrt{NM} . This is, actually, an upper bound, which follows from the Cauchy-Schwarz inequality:

$$\left(\sum_{x,y} |c_{x,y}|\right)^2 \le \left(\sum_{x,y} |c_{x,y}|^2\right) \left(\sum_{x,y} 1\right) = 1 \cdot NM = 2^{n+m}. \tag{11}$$

Thus, $||E|\psi\rangle|| \le 2^{(n+m)/2}\sqrt{2\epsilon}$ for all unit vectors $|\psi\rangle$, and hence $||E|| \le 2^{(n+m)/2}\sqrt{2\epsilon}$.

b) The solution to this part is a simple modification of the previous argument.¹ We first calculate the inner product between the vectors $|\psi_{x,\xi}\rangle = \widehat{f_{\oplus}}(|x,0^k\rangle \otimes |\xi\rangle)$ and $|\tilde{\psi}_{x,\xi}\rangle = \tilde{W}(|x,0^k\rangle \otimes |\xi\rangle)$:

$$\langle \psi_{x,\xi} | \tilde{\psi}_{x,\xi} \rangle = \left(\langle x, 0^k | \otimes \langle \xi | \right) \widehat{f_{\oplus}} \, \tilde{W} \left(| x, 0^k \rangle \otimes | \xi \rangle \right) = \sum_{a} \langle x, 0^k | P_a | x, 0^k \rangle \, \langle \xi | R_{f(x)} R_a | \xi \rangle$$

$$= \sum_{a} p(a|x) \langle \xi | R_{a \oplus f(x)} | \xi \rangle = p(f(x)|x) \langle \xi | \xi \rangle + \sum_{a \neq f(x)} p(a|x) \langle \xi | R_{a \oplus f(x)} | \xi \rangle$$

$$= \langle \xi | \xi \rangle - \sum_{a \neq f(x)} p(a|x) \, \langle \xi | (I - R_{a \oplus f(x)}) | \xi \rangle \geq (1 - 2\varepsilon) \langle \xi | \xi \rangle,$$

$$(12)$$

¹It doesn't look so simple if you start from scratch. When I first used quantum subroutines in some algorithms, I struggled to get rid of the exponential factor and had to compensate it by probability amplification. I tried to make the problem easier for you by structuring it and defining the operators P_a , R_a , and E. I hope that helped. -A.K.

where we have used the fact that $I - R_{a \oplus f(x)}$ is a Hermitian operator with norm less than or equal to 2. Since both $|\psi_{x,\xi}\rangle$ and $|\tilde{\psi}_{x,\xi}\rangle$ have the same norm as $|\xi\rangle$,

$$\||\tilde{\psi}_{x,\xi}\rangle - |\psi_{x,\xi}\rangle\| = \sqrt{2\langle\xi|\xi\rangle - 2\operatorname{Re}\langle\psi_{x,\xi}|\tilde{\psi}_{x,\xi}\rangle} \le \sqrt{(2 - 2(1 - 2\varepsilon))\langle\xi|\xi\rangle} = \sqrt{4\varepsilon} \||\xi\rangle\|.$$
(13)

Now, let us represent an arbitrary initial state $|\psi\rangle$ as $\sum_{x}|x\rangle\otimes|\xi_{x}\rangle$ and slightly change our previous notation: $|\psi_{x}\rangle=\widehat{f_{\oplus}}\big(|x,0^{k}\rangle\otimes|\xi_{x}\rangle\big),\ |\tilde{\psi}_{x}\rangle=\tilde{W}\big(|x,0^{k}\rangle\otimes|\xi_{x}\rangle\big).$ We have the bound $\||\tilde{\psi}_{x}\rangle-|\psi_{x}\rangle\|\leq\sqrt{4\varepsilon}\,\||\xi\rangle_{x}\|$, therefore the error in the final state can be estimated as follows:

$$E|\psi\rangle = \sum_{x} (|\tilde{\psi}_x\rangle - |\psi_x\rangle), \tag{14}$$

$$||E|\psi\rangle|| \le \sum_{x} ||\tilde{\psi}_{x}\rangle - |\psi_{x}\rangle|| \le \sqrt{4\epsilon} \sum_{x} ||\xi_{x}\rangle||.$$
 (15)

But $\left(\sum_{x} |||\xi_{x}\rangle||\right)^{2} \leq N \sum_{x} |||\xi_{x}\rangle||^{2} = 2^{n}$ by Cauchy-Schwarz, hence $||E|\psi\rangle|| \leq 2^{n/2} \sqrt{4\varepsilon}$.

c) The last upper bound can be improved if the errors for different values of x are mutually orthogonal. Indeed, in this case,

$$||E|\psi\rangle||^2 = \sum_{x} ||\tilde{\psi}_x\rangle - |\psi_x\rangle||^2 \le 4\epsilon \sum_{x} ||\xi_x\rangle||^2 = 4\epsilon.$$
 (16)

The orthogonality condition holds in many concrete examples due to a special form of the operator U. To satisfy it without making any assumptions, we keep an extra copy of x that is not changed by U:

The modified versions of U and U^{\dagger} are shown by dotted boxes.

2. [10 points] Consider a generalized version of the Grover oracle:

$$U_{\xi} = I_n - 2|\xi\rangle\langle\xi|,\tag{18}$$

where I_n is the identity operator on n qubits, and $|\xi\rangle$ is an absolutely arbitrary quantum state. We will not attempt to find $|\xi\rangle$, but rather, to distinguish U_{ξ} from I_n . The standard Grover algorithm will work in most but not all cases: think what happens when $|\xi\rangle = |+\rangle = 2^{-n/2} \sum_{x} |x\rangle$. To remedy the situation, let us replace $|+\rangle$ with a maximally entangled state of 2n qubits:

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{r=0}^{N-1} |x, x\rangle, \qquad where \quad N = 2^n.$$
 (19)

The oracle will be applied to the first n qubits.

a) Implement the operators

$$Q = (I_{2n} - |\Psi\rangle\langle\Psi|) \otimes I_1 + |\Psi\rangle\langle\Psi| \otimes \sigma^x, \qquad V = I_{2n} - 2|\Psi\rangle\langle\Psi|.$$
 (20)

- b) Construct a circuit that uses $O(\sqrt{N})$ instances of an unknown operator U and outputs 0 if $U = I_n$ and 1 if $U = U_\xi$ for some $|\xi\rangle$. (Note that the circuit should not depend on $|\xi\rangle$ because it's not known.) A small error probability, vanishing in the limit of large N, is acceptable. **Hint:** A properly designed algorithm should be easy to analyze because the quantum state will remain in the linear span of $|\Psi\rangle$ and $(|\xi\rangle\langle\xi|\otimes I_n)|\Psi\rangle$ at all times. Please be careful about the final measurement: it is not as straightforward as for the usual Grover search.
- a) The operator Q flips the last qubit if and only if the first 2n qubits contain $|\Psi\rangle$. To implement this, we first apply some unitary W such that $W|\Psi\rangle = |0^{2n}\rangle$, check for the presence of 2n zeros, and apply W^{-1} . The operator W can be realized as the bitwise CNOT: $|x,y\rangle \mapsto |x,y\oplus x\rangle$ followed by the Hadamard gates applied to qubits $1,\ldots,n$. This is the complete circuit:

To implement V, we use the $|-\rangle$ ancilla in place of $|z\rangle$.

b) Like in the usual Grover search, we begin with $|\Psi\rangle$ and apply the operator $R = -V(U \otimes I_n)$ a certain number of times. If $U = I_n$, the initial state will not change. If $U = I_n - 2|\xi\rangle\langle\xi|$, the state will evolve, and we need to understand how. Since both U and V preserve the linear span of $|\Psi\rangle$ and $(|\xi\rangle\langle\xi|\otimes I_n)|\Psi\rangle$, the problem is two-dimensional. If $|\xi\rangle = \sum_x c_x |x\rangle$, then

$$(|\xi\rangle\langle\xi|\otimes I_n)|\Psi\rangle = \left(\sum_{x,x'} c_x c_{x'}^* |x\rangle\langle x'|\otimes I_n\right) \left(\frac{1}{\sqrt{N}} \sum_{y} |y,y\rangle\right) = \frac{1}{\sqrt{N}} |\eta\rangle, \qquad (22)$$

where
$$|\eta\rangle = \sum_{x,x'} c_x c_{x'}^* |x,x'\rangle = |\xi\rangle \otimes |\overline{\xi}\rangle, \qquad |\overline{\xi}\rangle = \sum_x c_x^* |x\rangle.$$
 (23)

Note that the vector $|\eta\rangle$ has unit norm. The purpose of doubling the number of qubits in the algorithm was to make the angle between $|\Phi\rangle$ and $|\eta\rangle$ independent of the unknown vector $|\xi\rangle$. Let us write this angle as $\frac{\pi}{2} - \theta$ and find θ :

$$\sin \theta = \cos \left(\frac{\pi}{2} - \theta\right) = \langle \Psi | \eta \rangle = \frac{1}{\sqrt{N}} \sum_{x} c_x c_x^* = \frac{1}{\sqrt{N}}.$$
 (24)

The analysis of the algorithm is analogous to that of Grover's with multiple solutions. Let us repeat it for completeness. We first show that the operator $|\xi\rangle\langle\xi|\otimes I_n$ acts in the two-dimensional subspace exactly as $|\eta\rangle\langle\eta|$:

$$(|\xi\rangle\langle\xi|\otimes I_n)|\Psi\rangle = \frac{1}{\sqrt{N}}|\eta\rangle = (|\eta\rangle\langle\eta|)|\Psi\rangle,$$

$$(|\xi\rangle\langle\xi|\otimes I_n)|\eta\rangle = (|\xi\rangle\langle\xi|\otimes I_n)(\sqrt{N}(|\xi\rangle\langle\xi|\otimes I_n)|\Psi\rangle) = |\eta\rangle = (|\eta\rangle\langle\eta|)|\eta\rangle.$$
(25)

Thus, we may replace the operator $U \otimes I_n$ with $I - 2|\eta\rangle\langle\eta|$. The latter is the reflection about the line that is perpendicular to vector $|\eta\rangle$. Similarly, $-V = -I + 2|\Psi\rangle\langle\Psi|$ is the reflection about $|\Psi\rangle$.

$$|\Psi\rangle \qquad (26)$$

The operator $R \equiv -V(I-2|\eta\rangle\langle\eta|)$ rotates counterclockwise by angle 2θ . After

$$k \approx \frac{\pi}{4\theta} \le O\left(\sqrt{N}\right) \tag{27}$$

iterations, the state will become (almost) orthogonal to $|\Psi\rangle$, and we can do the final measurement. Instead of checking that we have found a solution, we check the orthogonality to $|\Psi\rangle$ using the previously implemented operator Q:

$$Q \qquad R^{k} \qquad \Big\} |\Psi\rangle \qquad (28)$$
0 or 1 \leftarrow \emptyset{0}