Modern Multiple Imputation With Functional Data

Aniruddha Rajendra Rao and Matthew Reimherr

Pennsylvania State University

June 05 Symposium on Data Science and Statistics 2020

- Introduction
 - Overview of Functional Data
 - Motivational Example
- Methods
 - PACE
 - Non-Linear Multivariate Imputation
- Results
 - Simulation
 - EHR
- 4 Conclusion and Future Work

Functional Data

- Functional Data Analysis (FDA) is a branch of statistics that analyzes samples consisting of functions or smooth curves.
- The data is usually of the form:

$$x_i\left(t_{j,i}\right) \in \mathbb{R}, \quad t_{j,i} \in \left[T_1, T_2\right], \quad i = 1, 2, \cdots, n, \quad j = 1, 2, \cdots, J_i$$

Figure: Child growth curves of boys, where height of each child was observed multiple times between ages 1 and 18 (Berkeley Growth Study).

Functional Models

General form of Linear scalar-on-function regression model is as follows:

$$Y_i = \int \beta(t)X_i(t) + \epsilon_i$$
 $i = 1, 2, ..., n$

Linear case be solved with the help of:

- Basis Expansion $\beta(t) \approx \sum_{k=1}^{K} b_k e_k(t) \Longrightarrow \int \beta(t) X_i(t) \approx \sum_{k=1}^{J} b_k x_{ik}$
- Functional PCA $X_i(t) \approx \hat{\mu}(t) + \sum_{j=1}^{p} \hat{\xi}_{ij} \hat{v}_j(t)$ $Y_i = \alpha + \int \beta(t) \left(\hat{\mu}(t) + \sum_{j=1}^{p} \hat{\xi}_{ij} \hat{v}_j(t) \right) dt + \epsilon_n$

For Non Linear case, $Y_i = \int f(X_i(t), t) dt + \epsilon_i$ i = 1, 2, ..., n

Sparse Functional Data

Sparse in Functional Data means that the curves are observed only at a small number of timepoints.

Approach:

- Sparse FDA
 Modifying the existing methods to incorporate the sparse structure (like Sparse FPCA).
- Imputation
 Imputation is a process of filling in the missing values in a reasonable manner.

Motivational Example

EHR Data:

- The Electronic Health Record Data is from Penn State Health Milton S. Hershey Medical Center, consists of n (122) patients (smokers) measured over m (18) months.
- We want to model if a patient will relapse (Y/N) at the end of 18 months as a function of Blood Pressure (BP).
- For each patient, the number of clinical visits they had between first month through the next 18 months is recorded -varies greatly across subjects.
- On an Average we have 4 out 18 timepoints observed for a patient.

PACE

PACE¹ uses Functional PCA and mean imputation. The PACE algorithm uses the Karhunen-Loéve expansion:

$$X_i(t) = \mu_X(t) + \sum_{j=1}^{\infty} \xi_{ij} v_j(t)$$

where,

- $\bullet \xi_{ii} = \int (X_i(t) \mu_X(t)) v_i(t) dt$, $E[\xi_{ii}] = 0$, $Cov(\xi_{ii}, \xi_{ik}) = \lambda_i \mathbb{1}_{\{i=k\}}$
- ullet $\{\lambda_j, v_j(t)\}_{j=1}^\infty$ are the eigenvalues, eigenfunctions of \mathcal{C}_X
- • $C_X(s,t) = \sum_{i=1}^{n} \lambda_i v_i(s) v_i(t)$ by Mercer's Theorem

The BLUP for the scores given $\Sigma_{X}^{-1} = c_X(t,s) + \sigma^2 I_{M_i}$ is then

$$\hat{\xi}_{ik} = \hat{E}\left[\xi_{ik}|\mathbf{x}_i\right] = \lambda_j \mathbf{v}_{ij}^T \mathbf{\Sigma}_{x_i}^{-1} \left(\mathbf{x}_i - \boldsymbol{\mu}_i\right)$$

Aniruddha Rajendra Rao (PSU)

¹Fang Yao, Hans-Georg M uller, and Jane-Ling Wang, 2005. Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association.

Non-Linear Multivariate Imputation

Non-Linear Multivariate Imputation methods have been proven to work well for dealing with missing data. We check the performance of the following methods under Functional Data setting:

- MICE
- MissForest
- Local Linear Forest

MICE

MICE² is a series of models where for each variable with missing data, it is modeled conditional upon the observed variables in the data.

Models:

- Predictive mean matching
- Regression
- MCMC
- Bootstrap
- GLM
- Random Forest

Key Feature: Multiple Imputation and Mixed Data Types.

²Stef van Buuren, 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research → ⟨ ≥ →

MissForest

Missforest³ is a multiple imputation method, which proceeds by training a Random Forest (RF) on the observed parts of the data.

Consider matrix $X_{n \times m}$. For an arbitrary variable t in X including missing values at entries $\mathbf{i}^{(t)}$ mis $\subseteq \{1, \dots, n\}$, we can separate the dataset into four parts: $Y_{mis}^t, Y_{obs}^t, X_{mis}^t, X_{obs}^t$.

Pseudo Algorithm:

- Initialize using mean Imputation.
- We sort the variables of X in ascending order of sparsity.
- Update missing values for all t: Fit a RF $Y^t_{obs} \sim X^t_{obs}$ and then predict $Y^t_{mis} \sim X^t_{mis}$.
- Repeat till convergence.

Local Linear Forest

Local Linear Forest⁴ solves the problem of smoothness in the regression surface by using a RF to generate weights that are used as a kernel for local linear regression.

$$\min_{\mu,\beta} \sum_{i=1}^{n} (Y_i - \mu - (x - x_i)' \beta)^2 \alpha_i (\mathbf{x}_o)$$

The RF weights $\alpha_i(\mathbf{x}_o)$ are found with the help of the leaf $L_b(x_o)$ in each tree T_b in a forest of B trees as follows:

$$\alpha_{i}(\mathbf{x}_{o}) = \frac{1}{B} \sum_{b=1}^{B} \frac{1 \left\{ \mathbf{X}_{i} \in L_{b}(\mathbf{x}_{o}) \right\}}{|L_{b}(\mathbf{x}_{o})|}$$

⁴Rina Friedberg, Julie Tibshirani, Susan Athey, and Ste-fan Wager, 2018. Local linear forests.

Adapting to Functional Data

Problem: Functional Data can be very sparse giving a very rough

imputation

Solution: Use PACE to initialize and bin nearby observations.

Figure: Imputed curves for different methods showing the advantage of binning leading to smoother curves.

Simulation-Linear

For the Linear case, we simulate n iid random curves $\{X_1(t), \cdots, X_N(t)\}$ from a Gaussian process with mean 0 and covariance function as Matérn covariance function and $\beta(t) = 5 \times \sin(2\pi t)$.

Method	n=500, s=50%						
	m=32, b=17			m=52, b=27			
	Pred	β	lmp	Pred	β	Imp	
PACE	0.17	0.208	0.199	0.484	0.595	1.91	
MICE	3.611	3.612	0.09	0.237	0.253	0.089	
MF	0.136	0.155	0.108	0.227	0.241	0.077	
LLF	0.142	0.149	0.07	0.234	0.242	0.023	
MFP	0.122	0.144	0.105	0.228	0.250	0.13	
LLFP	0.132	0.153	0.144	0.232	0.246	0.10	
MF_B	0.122	0.136	0.079	0.173	0.180	0.052	
LLF_B	0.126	0.137	0.082	0.174	0.177	0.053	
MFP_B	0.122	0.138	0.053	0.176	0.182	0.023	
LLFP_B	0.128	0.143	0.059	0.179	0.178	0.023	

Table: RMSE of Prediction, β coefficients and Imputation of the curves for different methods under Linear case when sparsity (s) is 50%.

β coefficient plot

Figure: Estimated coefficient function for different methods under linear case with sample size (n)=500, time points (m)=52, sparsity (s)=50%.

Simulation- Non Linear

For the Non Linear case, we simulate n iid random curves $\{X_1(t), \dots, X_N(t)\}$ from a Gaussian process and $f(X_i(t), t) = 5 * sin(X(t)^2 * t^2)$.

Method	n=500, s=90%					
	m=32, b=7		m=52, b=7			
	Pred	lmp	Pred	Imp		
PACE	0.431	0.659	0.386	0.551		
MICE	0.652	0.892	0.644	1.02		
MF	0.303	0.428	0.355	0.381		
LLF	0.419	0.592	0.351	0.482		
MFP	0.334	0.379	0.351	0.324		
LLFP	0.427	0.357	0.342	0.259		
MF_B	0.293	0.257	0.318	0.275		
LLF_B	0.335	0.364	0.312	0.282		
MFP_B	0.290	0.257	0.311	0.251		
LLFP_B	0.328	0.385	0.329	0.308		

Table: RMSE of Prediction and Imputation of the curves for different methods under Non Linear case when sparsity (s) is 90%.

EHR

- The Electronic Health Record Data is from Penn State Health Milton S. Hershey Medical Center, consists of n (122) patients (smokers) measured over m (18) months.
- We want to model if a patient will relapse (Y/N) at the end of 18 months as a function of Blood Pressure (BP).
- On an Average we have 4 out 18 timepoints observed for a patient.

PACE	MICE	MF	LLF	MFP	LLFP	MF_B	LLF_B	MFP_B	LLFP_B
0.42	0.39	0.39	0.38	0.36	0.37	0.33	0.35	0.32	0.35

Table: Prediction error of different methods for the EHR data

EHR- β coefficient plot

Figure: Estimated coefficient function for different methods for EHR data with sample size (n)=122, timepoints (m)=18, bin=10.

Conclusion and Future Work

Conclusion:

- Our method uses information of the response along with performing Multiple Imputation.
- We outperform PACE and MICE wrt Imputation and Modelling irrespective of number of timepoints or sparsity.
- Binning helps to smooth results out leading to better performance.

Future Work:

- Perform under different binning schemes.
- Define relation between number of bins and timepoints.
- Differentiate when to use MF and LLF.

References

- Fang Yao, Hans-Georg M uller, and Jane-Ling Wang, 2005.
 Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association.
- Stef van Buuren, 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research.
- Justin Petrovich, Matthew Reimherr, and Carrie Daymont, 2018.
 Highly irregular functional generalizedlinear regression with electronic health records
- Daniel J. Stekhoven and Peter Buhlmann, 2011. Missforest-Non-parametric missing value imputation for mixed-type data, Bioinformatics.
- Rina Friedberg, Julie Tibshirani, Susan Athey, and Ste-fan Wager, 2018. Local linear forests.

Questions?

Thank you