Modelado

M. Santos, UCM

PARTE I

- SISTEMAS Y MODELOS
- TIPOS DE MODELOS
- EJEMPLOS DE MODELOS

CONTENIDO

- PARTE I
 - SISTEMAS Y MODELOS
 - TIPOS DE MODELOS
 - EJEMPLOS DE MODELOS
- PARTE II
 - REPRESENTACIÓN DE MODELOS
 - TRANSFORMADA DE LAPLACE
 - LINEALIZACIÓN
- PARTE III
 - OBTENCIÓN DE MODELOS
- PARTE IV
 - BOND GRAPHS
 - VALIDACIÓN DEL MODELO

M. Santos, UCM

INTRODUCCIÓN

VIDA REAL: SISTEMAS, PROCESOS ...

- PLANTA QUÍMICA, REFINERÍA, AZUCARERA
- TRENES, BARCOS, AVIONES
- ECONÓMICOS: LA BOLSA, DEMANDA
- BIOLÓGICOS: BOSQUE
- FISIOLÓGICOS: AGUA, GAS
- SISTEMA SOLAR
- DISTRIBUIDORA
- CULTIVO DE BACTERIAS
- CIRCUITO ELÉCTRICO O MAGNÉTICO,
- MÁQUINA DE EMPAQUETAR, DE PAPEL, ..
- EL HOMBRE

M. Santos, UCM

2

M. Santos, UCM

4

SISTEMAS Y MODELOS

SISTEMA

OBJETO O CONJUNTO DE OBJETOS CUYAS PROPIEDADES O FUNCIONAMIENTO SE QUIEREN ANALIZAR Y ESTUDIAR

MODELO

Su representación es una abstracción de algunas propiedades o características

M. Santos, UCM

CARACTERÍSTICAS DE UN SISTEMA

- ✓ Es posible decir lo que pertenece y lo que no pertenece al sistema (entorno/el resto del universo)
- ✓ Se puede especificar cómo interacciona el sistema con su entorno o unas partes con otras
- ✓ Admite un principio de ordenación jerárquica

M. Santos, UCM

MODELO

El modelo de un sistema es cualquier tipo de descripción abstracta que refleja convenientemente sus características relevantes

Para los mismos estímulos del sistema real, que tengan valores o reacciones similares a los que podríamos observar en dicho sistema real

CARACTERÍSTICAS DEL MODELO

- PARCIAL: DESCRIBE UN PUNTO DE VISTA DE UNA REALIDAD
- SUFICIENTEMENTE SENCILLO PARA RESULTAR MANEJABLE

■ REFLEJAR ASPECTOS SIGNIFICATIVOS: LAS CARACTERÍSTICAS DEL SISTEMA QUE SON DE NUESTRO INTERÉS

M. Santos, UCM

M. Santos, UCM

NECESIDAD DEL MODELADO

- LA EXPERIMENTACIÓN REAL ES MUY CARA
- PUEDE SER PELIGROSA O DAÑINA
- PUEDE NO SER POSIBLE
- EL SISTEMA NO EXISTE ACTUALMENTE

Es una forma de responder a preguntas sobre los sistemas sin recurrir a la experimentación

M. Santos, UCM

TIPOS DE MODELOS

modelos matemáticos:

conjunto de relaciones matemáticas entre las variables del sistema ■ otros modelos:

otras representaciones del sistema, según el tipo de información del que se disponga

UTILIDADES DEL MODELO

- Aumentar o mejorar el conocimiento del sistema en sí mismo
- Predecir el comportamiento futuro del sistema
- Optimizar aspectos de su diseño y construcción
- Realizar cálculos para diseño de control
- Entrenamiento

M. Santos, UCM

TIPOS DE MODELOS

- MODELO MENTAL
 - Basados en la intuición y experiencia
- MODELO VERBAL
 - Descrito por palabras (lingüístico)
- MODELO FÍSICO
 - Magueta o prototipo
 - Símil electrónico
- MODELO MATEMÁTICO
 - Relaciones entre cantidades matemáticas

M. Santos, UCM

11

M. Santos, UCM

12

10

TIPOS DE MODELOS MATEMÁTICOS

- DETERMINÍSTICOS
- ESTOCÁSTICOS
- SIN **INCERTIDUMBRES**
- RELACIONES **EXACTAS**

- CON **INCERTIDUMBRE**
- CONCEPTO DE **PROBABILIDAD**
- VARIABLES O **PROCESOS ESTOCÁSTICOS**

13

15

TIPOS DE MODELOS MATEMÁTICOS

■ DINÁMICOS

- Las variables dependen de las señales aplicadas anteriormente (evolucionan con el tiempo)
- Descritos por ec. Diferenciales o en diferencias
- Estudio de transitorios, predicción, sistemas de control

Condensador

■ ESTÁTICOS

- Relación directa entre variables: no evolucionan con el tiempo (sin memoria)
- Ec. Algebraicas
- La salida, los parámetros y la entrada del sistema son escalares
- Optimización, dimensionamiento, diseño de unidades, cálculo de balances

Resistencia

14 M. Santos, UCM M. Santos, UCM

S. ESTÁTICOS Y DINÁMICOS

Según la relación entre las señales de entrada y salida

TIPOS DE MODELOS MATEMÁTICOS

- LINEALES
 - **■** ECUACIONES LINEALES (PRINCIPIO DE SUPERPOSICIÓN)
 - SIMPLIFICACIÓN
 - LINEALES A **TRAMOS**

- NO LINEALES
 - EC. NO LINEALES
 - LOS PROCESOS **REALES**
 - SE LINEALIZAN EN PUNTOS DE **OPERACIÓN**

Muelle

16 M. Santos, UCM

TIPOS DE MODELOS MATEMÁTICOS

■ CONTINUOS

- DEPENDE DE UNA VARIABLE CONTÍNUA (Tiempo)
- *EJEMPLO*: LA TEMPERATURA DE UNA HABITACIÓN A LO LARGO DEL DÍA

■ DISCRETOS

- TOMA VALORES EN INSTANTES DETERMINADOS
 - Discretos por naturaleza
 - Muestreados
- *EJEMPLO*: UNA ESTACIÓN DE PEAJE EN UNA AUTOPISTA

Según sean los procesos

TIPOS DE MODELOS MATEMÁTICOS

- PARÁMETROS CONCENTRADOS (LUMPED)
 - DESCRITOS POR UN NÚMERO FINITO DE VARIABLES
 - ECUACIONES EN DIFERENCIAS ORDINARIAS (EDO)
 - EJ.: cdg, carga puntual

- PARÁMETROS DISTRIBUIDOS
 - LOS SUCESOS ESTÁN DISPERSOS EN EL ESPACIO DE VARIABLES
 - ECUACIONES EN DERIVADAS PARCIALES
 - EJ.: elementos infinitésimos en los que se divide un segmento

M. Santos, UCM

EJERCICIO

Clasificar cada uno de los siguientes procesos

- a. Pulsar el interruptor de una lámpara
- b. Viajar de Madrid a Murcia
- c. Empaquetamiento de galletas por una máquina
- d. Cultivar una nueva especie de tulipán
- e. Tirar un dado

A B C D E

19

estático dinámico

determinista estocástico

discreto continuo

M. Santos, UCM

18

M. Santos, UCM