

Data- and intelligence-driven enterprises win*

Veri Madenciliği 2023-2024 Güz Ders 2

Desenleri Tanımlamak Basit Örnekler

Dersin Kitabı

Data Mining: Practical Machine Learning Tools and Techniques, 4th Ed., by Ian Witten, Eibe Frank, Mark Hall, and Christopher Pal (Morgan Kaufmann Publishers, 2017. ISBN: 978-0-12-804291-5)

Veriye karşı Bilgi

Toplum çok büyük miktarda veri üretir Kaynaklar: işletme, bilim, tıp, ekonomi, coğrafya, çevre, spor, ...
Potansiyel olarak değerli kaynak Ham veriler işe yaramaz: ondan otomatik olarak bilgi çıkarmak için tekniklere ihtiyaç Vardır

- o Veri: kaydedilen Doğrular
- o Bilgi: verilerin altında yatan kalıplar

Rastgele gürültüden desen oluşturmamaya dikkat edin: https://xkcd.com/2101/

Dog. Dr. Ali YILMAZ

Veriye karşı Bilgi

Bilgi Gok Önemlidir

Örnek 1: suni dölleme

- o Verilen: 60 özellik ile tanımlanan embriyolar
- o Sorun: hayatta kalacak embriyoları seçin
- e Veriler: embriyoların ve sonuçların tarihsel kayıtları

Örnek 2: inek itlaf

- o Verilen: 700 özellik ile tanımlanan inekler
- o Sorun: itlaf edilecek inekleri segin
- Veriler: tarihsel kayıtlar ve giftgilerin kararları

Veri madenciliği

Ayıklama

- o örtük,
- o önceden bilinmeyen,
- o potansiyel olarak yararlı verilerden bilgi

Gerekli: verilerdeki kalıpları ve düzenlilikleri algılayan programlar

Güçlü kalıplar ==> iyi tahminler

- o Sorun 1: goğu desen ilging değil
- Sorun 2: desenler tam olmayabilir (veya sahte olabilir)
- · Sorun 3: veriler bozuk veya eksik olabilir

Dog. Dr. ALI YILMAZ

Kara Kutu ve Yapısal Tanımlamalar

Makine öğrenimi farklı türde modeller üretebilir:

Kara Kutu tanımlaması:

- Yeni durumda sonucu tahmin etmek igin kullanılabilir
- o Tahminin nasıl yapıldığı konusu anlaşılmaz
- Nasıl tahminde bulunduklarını incelemek için kullanışlı değildir.

Veri Girişi ____

Kara Kutu

— Gikti Örn: Sınıflandırma

Kara Kutu ve Yapısal Tanımlamalar

Yapısal Tanımlamalar:

- Kalıpları açıkça temsil edin (örneğin, bir dizi kural veya bir karar ağacı ile).
- Yeni durumda sonucu tahmin etmek için kullanılabilir
- Tahminin nasıl elde edildiğini anlamak ve açıklamak için kullanılabilir (dana da önemli olabilir)

Yöntemler yapay zekadan, istatistiklerden ve veri tabanlarındaki araştırmalardan kaynaklanır.

Dog. Dr. Ali YILMAZ

Yapısal Tanımlamalar

Örnek: if-then kuralları (kontakt lens verilerinden)

If gözyaşı üretim hızı = azalmış
then öneri =Yok
Aksi takdirde, if yaş = genç and astigmat =Yok
then öneri =Yumuşak

Yaş	Gözlük reçetesi	Astigmat	Gözyaşı üretim hızı	Önerilen lensler
Genç	Miyop	Yok	Azalmış	Yok
Genç	Hipermetrop	Yok	Normal	Yumuşak
Presbiyopik (40 -	Hipermetrop	Yok	Azalmış	Yok
Presbiyopik (40 – 60 arası)	Miyop	Var	Normal	Sert

Hava Durumu Problemi: Basit bir Örnek Belirli bir oyunu oynamak için koşullar

Görünüm	Sıcaklık	Nem	Rüzgarlı	Oyun
Günesli	Sıcak	Yüksek	Yanlış	Hayır
Güneşli	Sıcak	Yüksek	Doğru	Hayır
Bulutlu	Sıcak	Yüksek	Yanlış	Evet
Yağmurlu	Hafif	Normal	Yanlış	Evet

If Görünüm = güneşli and nem = yüksek

If Görünüm = yağmurlu and rüzgarlı = Doğru

If Görünüm = bulutlu

If Nem = normal

If YukarıdakilerinHiçbiri değilse

then oyun = hayır then oyun = hayır then oyun = evet then oyun = evet then oyun = evet

Bu kurallar sırayla kontrol edilmelidir, aksi takdirde yanlış sınıflandırılacaktır.

Sınıflandırmaya Karşı Birliktelik Kuralları

Siniflandirma kurali:

belirli bir özelliğin değerini tahmin eder (bir örneğin sınıflandırması)

```
If Görünüm = güneşli <mark>and</mark> nem = yüksek
then oyun = hayır
```

Birliktelik kuralı:

keyfi özelliğin (veya kombinasyonun) değerini tahmin eder

```
If Sıcaklık = serin
If Nem = normal
and rüzgarlı = yanlış
then oyun = evet
If Görünüm = güneşli and oyun = hayır
then nem = yüksek
If Rüzgarlı = yanlış
and oyun = hayır
then görünüm = güneşli
and nem = yüksek
```

Karışık Özelliklere Sahip Hava Durumu Verileri

Bazı niteliklerin sayısal değerleri Vardır

Görünüm	Sicaklik	Nem	Rüzgarlı	Oyun
Güneşli	85	85	Yanlış	Hayır
Güneşli	80	90	Doğru	Hayır
Bulutlu	83	86	Yanlış	Evet
Yağmurlu	75	80	Yanlış	Evet

```
If Görünüm = güneşli and nem > 83
then oyun = hayır
If Görünüm = yağmurlu and rüzgarlı = doğru
then oyun = hayır
If Görünüm = bulutlu
```

If Nem < 85

then oyun = evet

then oyun = evet

If YukarıdakilerdenHiçbiriYoksa then oyun = evet

Kontakt Lens Verileri

Yaş	Gözlük reçetesi	Astigmat	Gözyaşı üretim hızı	Önerilen lensler
Genç	miyop	Yok	Azalmış	Hiçbiri
Genç	miyop	Yok	Normal	Yumuşak
Genç	miyop	Var	Azalmış	Hiçbiri
Genç	miyop	Var	Normal	Sert
Genç	hipermetrop	Yok	Azalmış	Hiçbiri
Genç	hipermetrop	Yok	Normal	Yumuşak
Genç	hipermetrop	Var	Azalmış	Hiçbiri
Genç	hipermetrop	Var	Normal	Sert
Presbiyopik öncesi	miyop	Yok	Azalmış	Hiçbiri
Presbiyopik öncesi	miyop	Yok	Normal	Yumuşak
Presbiyopik öncesi	miyop	Var	Azalmış	Hiçbiri
Presbiyopik öncesi	miyop	Var	Normal	Sert
Presbiyopik öncesi	hipermetrop	Yok	Azalmış	Hiçbiri
Presbiyopik öncesi	hipermetrop	Yok	Normal	Yumuşak
Presbiyopik öncesi	hipermetrop	Var	Azalmış	Hiçbiri
Presbiyopik öncesi	hipermetrop	Var	Normal	Hiçbiri
presbiyopik	miyop	Yok	Azalmış	Hiçbiri
presbiyopik	miyop	Yok	Normal	Hiçbiri
presbiyopik	miyop	Var	Azalmış	Hiçbiri
presbiyopik	miyop	Var	Normal	Sert
presbiyopik	hipermetrop	Yok	Azalmış	Hiçbiri
presbiyopik	hipermetrop	Yok	Normal	Yumuşak
presbiyopik	hipermetrop	Var	Azalmış	Hiçbiri
presbiyopik	hipermetrop	Var	Normal	Hiçbiri

Kontakt Lens Verileri Tamamlandı

Özellikler:

- o Yas: genç, presbiyopik öncesi, presbiyopik
- o Regete: Miyop, Hipermetrop
- o Astigmatizm: Evet veya Hayır
- özellik değerlerinin tüm olası kombinasyonları temsil edilir.

Soru: Bu kaç örnektir?

Not: Gerçek girdi kümeleri genellikle tamamlanmaz. Eksik değerlere sahip olabilirler veya tüm kombinasyonlar mevcut olmayabilir.

Dog. Dr. ALI YILMAZ

Eksiksiz ve Doğru Bir Kural Kümesi

```
Gözyaşı üretim hızı = azalmış then öneri =Yok
If Yaş = genç and astigmat = hayır
 and gözyaşı üretim hızı = normal then öneri =Yumuşak
If Yaş = presbiyopik öncesi ve astigmat = hayır
 and gözyaşı üretim hızı = normal then öneri =Yumuşak
If Yaş = presbiyop and gözlük reçetesi = miyop
 and astigmat = hayır then öneri =Yok
If Gözlük reçetesi = hipermetrop and astigmat = hayır
 and gözyaşı üretim hızı = normal then öneri =Yumuşak
If Gözlük reçetesi = miyop and astigmat = evet
 and gözyaşı üretim hızı = normal then öneri = Sert
If Yaş genç and astigmat = evet
 and gözyaşı üretim hızı = normal then öneri = Sert
If Yaş = presbiyop öncesi
 and gözlük reçetesi = hipermetrop
 and astigmat = evet then öneri =Yok
If Yaş = presbiyopik ve gözlük reçetesi = hipermetrop
 and astigmat = evet then öneri =Yok
```

Gergek hayatta, sınıflandırıcı her zaman doğru sınıfı üretmeyebilir. Bu büyük bir kurallar dizisidir. Daha küçük bir set daha mı iyi olur?

Dog. Dr. Ali YILMAZ

Aynı Problem İçin Bir Karar Ağacı

16

Yaş	Recete	Astigmat	Gözyaşı Hizi	Tavsiye
8 Genç	Hipermetrop	Var	Normal	Sert
18 Presbiyopik	Miyop	Yok	Normal	Yok

Burada hem nitelikler hem de sonuç nominaldir

17

İris Çiçeklerinin Sınıflandırılması

Bu ünlü veri setinin kuralları hantaldır ve sınıflandırmanın daha iyi bir yolu olabilir. Burada sayısal nitelikler olduğunu,

ancak sonucun bir kategori olduğunu unutmayın.

			The second secon	100	The second secon
	Çanak yaprağı uzunluğu	Çanak yaprağı -genişlik	Taç yaprağı uzunluğu	Taç yaprağı genişliği	Tip
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	Iris virginica

versicolor

If Taç yaprağı uzunluğu < 2,45 then İris-setosa

If Çanak yaprağı genişliği < 2.10 then İris-versicolor

If Çanak yaprağı genişliği < 2,45 <mark>and</mark> Taç yaprağı uzunluğu < 4,55 then Iris-versicolor

virginica

....

CPU Performansını Tahmin Etme

Örnek: 209 farklı bilgisayar konfigürasyonunun örneğidir.

	Döngü süresi (ns)	Ana bellek (Kb)		Önbellek (Kb)	Kanallar		Performans
	MYCT	MMIN	MMAX	CACH	CHMIN	СНМАХ	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
208	480	512	8000	32	0	0	67
209	480	1000	4000	0	0	0	45

Bu durumda hem nitelikler hem de sonuç sayısaldır. Lineer regresyon fonksiyonu

PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX

Dog. Dr. Ali YILMAZ

İş Görüşmelerinden elde edilen veriler

Burada özellikler normal sütunlar yerine satırlardadır. Bu durumda örnekler sütunlardadır.

Özellik	Tip	1	2	3	1000	40
Süre	(Yılların sayısı)	1	2	3		2
İlk yıl ücret artışı	Yüzde	%2	%4	%4.3	т.	4.5
İkinci yıl ücret artışı	Yüzde	?	%5	%4.4	921	4.0
Üçüncü yıl ücret artışı	Yüzde	?	?	?		?
Yaşam maliyeti ayarlaması	{yok, tcf, tc}	Yok	tcf	?		Yok
Haftalık çalışma saatleri	(Saat sayısı)	28	35	38	100	40
Emeklilik	{hiçbiri, izin verilen, işçi	Yok	?	?		?
bekleme ödemesi	Yüzde	?	%13	?		?
Vardiyalı çalışma eki	Yüzde	?	%5	%4		4
Eğitim ödeneği	{Evet Hayır}	Evet	?	?		?
resmi tatiller	(Gün sayısı)	11	15	12		12
Tatil	{ortalamanın	ortala	gen	gen		ortalama
Uzun süreli sakatlık yardımı	{Evet Hayır}	hayır	?	?		Evet
Diş planı katkısı	{hiçbiri, yarım, tam}	Yok	?	tam		tam
yas yardımı	{Evet Hayır}	hayır	?	?		Evet
Sağlık planı katkısı	{hiçbiri, yarım, tam}	Yok	?	tam		yarım
Sözleşmenin kabul	{İyi kötü}	kötü	iyi	iyi		iyi
sınıflar 🕽			0.00	2000		

İşgücü Verileri için Karar Ağaçları

basittir,

Ağaç sezgisel bir anlam ifade ediyor

İşgücü Verileri için Karar Ağaçları

İşgücü Verileri için Karar Ağaçları

Bu ağaç basit ve yaklaşıktır, tam olarak sınıflandırmaz.

İşgücü Verileri için Karar Ağaçları

kötü

Bu ağaç basit ve yaklaşıktır, tam olarak sınıflandırmaz.

Yukarıdaki basit ağaç, sağdakinin budanmış halidir. Bütün ağaç, eğitim verilerinde daha doğrudur, AMA gerçek hayatta aslında daha iyi çalışmayabilir. "overfitted" olabilir.

Soya'nın Sınıflandırması

Bir Makine Öğrenimi başarı öyküsü!

Özellik	Değer sayısı	Örnek değer	
Oluşma zamanı	7	Temmuz	
Yağış	3	Normalin üstü	
Durum	2	Normal	
Küf gelişimi	2	Mevcut değil	
Meyve kabuklarının durumu	4	Normal	
Meyve lekeleri	5	?	
Durum Yaprağı	2	Anormal	
nokta boyutu	3	?	
Durum	2	Anormal	
kök yeri	2	Var	
Durum	3	Normal	
	19	Diaporthe kök kanseri	
	Oluşma zamanı Yağış Durum Küf gelişimi Meyve kabuklarının durumu Meyve lekeleri Durum Yaprağı nokta boyutu Durum	Oluşma zamanı 7 Yağış 3 Durum 2 Küf gelişimi 2 Meyve kabuklarının durumu 4 Meyve lekeleri 5 Durum Yaprağı 2 nokta boyutu 3 Durum 2 kök yeri 2 Durum 3	

uzman, bilgisayar tarafından oluşturulan kurallar (%97.5 doğru) kadar iyi performans göstermeyen kurallar (%72 doğru) üretti.

Alan Bilgisinin Rolü

If Yaprak durumu normal and gövde durumu anormal and kök kanserleri toprak hattının altında and kanser lezyon rengi kahverengi then teşhis rhizoctonia kök çürüklüğüdür

If Yaprak malformasyonu (kusuru) yoksa and gövde durumu anormal and kök kanserleri toprak hattının altında and kanser lezyon rengi kahverengi then teşhis rhizoctonia kök çürüklüğüdür

Bu alanda,
"kusurluluk yok",
"yaprak durumu
normal"in özel bir
durumudur.
Sadece yaprak
durumu normal
olmadığında devreye
girer.

"Yaprak durumu normal" ile "yaprak kusuru yok" aynı şey midir?

Dog. Dr. Ali YILMAZ

Buraya kadar.... örnek problemler gocuk oyuncağıydı...

Küçük araştırma problemlerine örnekler. Algoritmaları ve teknikleri anlamayı kolaylaştırdığı için bunları çok kullanacağız.

Peki ya gerçek uygulamalar? Veri madenciliğini şu amaçlarla için kullanın:

- o Karar vermek
- · Bir işi bir uzmandan daha hızlı yapmak
- o Uzmanın planı daha iyi hale getirmesine izin vermek
- o vesaire.