МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

П.А. Вельмисов, Ю.В. Покладова

Дифференциальное исчисление функций нескольких переменных

Учебное пособие

Ульяновск УлГТУ 2012 УДК 51 (075) ББК 22 я7 В 28

Рецензенты: кафедра прикладной математики УлГУ (зав. кафедрой д-р физ.-мат. наук, профессор А. А. Бутов); д-р физ.-мат. наук, профессор УлГУ А. С. Андреев.

Утверждено редакционно-издательским советом университета в качестве учебного пособия

Вельмисов, П. А.

В 28 Дифференциальное исчисление функций нескольких переменных : учебное пособие / П. А. Вельмисов, Ю. В. Покладова. – Ульяновск : УлГТУ, 2012.-52 с.

ISBN 978-5-9795-1044-6

Пособие предназначено для бакалавров всех специальностей, изучающих раздел «Дифференциальное исчисление функций нескольких переменных». Пособие содержит краткий теоретический материал, теоретические вопросы, индивидуальные задания, примеры решения задач и предназначено для обеспечения самостоятельной работы студентов по освоению раздела.

Работа выполнена на кафедре «Высшая математика» УлГТУ. Печатается в авторской редакции.

УДК 51 (075) ББК 22 я7

© Вельмисов П. А., Покладова Ю. В., 2012

© Оформление. УлГТУ, 2012

СОДЕРЖАНИЕ

Вве	едение	ŀ
Teo	ретические вопросы5	,
Teo	ретический материал и примеры решения задач 6	(
1.	Область определения функции нескольких переменных 6	(
	Пример решения задачи 1	(
2.	Частные производные.	(
	Пример решения задачи 2	3
3.	Производные сложной функции	3
	Пример решения задачи 3)
4.	Производные неявной функции	0
	Пример решения задачи 4	1
5.	Дифференциал 1	5
	Пример решения задачи 5	6
6.	Применение дифференциала в приближенных вычислениях	7
	значении функции	
_	Пример решения задачи 6	
7.	Формулы Тейлора и Маклорена	
0	Пример решения задачи 7	
8.	Касательная плоскость и нормаль к поверхности	
0	Пример решения задачи 8	
9.	Градиент и производная по направлению	
	Пример решения задачи 9	
10.	Экстремум функции нескольких переменных	
	Пример решения задачи 10	
	Пример решения задачи 11	
11.	Условный экстремум функции нескольких переменных	
	Пример решения задачи 12	7
12.	Наименьшее и наибольшее значение функции двух переменных в области	9
	Пример решения задачи 13	9
13.	Метод наименьших квадратов. 3	1
	Пример решения задачи 14	4
	Пример решения задачи 15	5
	Пример решения задачи 16	8
Pac	четные задания	9
Спі	исок литературы 5	6

ВВЕДЕНИЕ

Активная самостоятельная работа студентов является важным фактором усвоения математики и овладения ее методами. Система типовых расчетов активизирует самостоятельную работу студентов и способствует более глубокому изучению курса высшей математики.

Настоящее пособие предназначено для бакалавров всех специальностей, изучающих раздел «Дифференциальное исчисление функций нескольких переменных». Оно направлено на выработку у студентов навыков решения типовых задач. Пособие содержит краткий теоретический материал, теоретические вопросы, индивидуальные задания, примеры решения задач и предназначено для обеспечения самостоятельной работы студентов по освоению раздела. Теоретические вопросы являются общими для всех студентов; каждая из задач, входящих в данное пособие, представлена 28 вариантами. По каждой теме кратко изложены основные теоретические сведения, приведены решения типовых примеров. В решениях приведены основные формулы, правила, ссылки на теорию.

Теоретические вопросы

- 1. Определение функции двух переменных, ее области определения. Геометрическое истолкование этих понятий. Понятие функции трех переменных.
- 2. Понятие предела функций двух и трех переменных в точке. Понятие непрерывной функции нескольких переменных.
- 3. Частные производные функций двух и трех переменных.
- 4. Определение функции, дифференцируемой в точке. Дифференциал первого порядка функций двух и трех переменных.
- 5. Уравнения касательной плоскости и нормали к поверхности.
- 6. Частные производные сложной функции нескольких независимых переменных. Полная производная.
- 7. Дифференцирование неявных функций одной и нескольких независимых переменных.
- 8. Определение частных производных высших порядков. Дифференциал второго порядка функций двух и трех переменных.
- 9. Формула Тейлора и формула Маклорена для функции двух переменных.
- 10. Градиент и производная по направлению.
- 11. Понятие точки экстремума функций двух и трех переменных.
- 12. Необходимые и достаточные условия экстремума функции двух переменных.
- 13. Необходимые и достаточные условия экстремума функции трех переменных.
- 14. Понятие точки условного экстремума функции двух переменных.
- 15. Необходимые и достаточные условия условного экстремума функции двух переменных. Метод множителей Лагранжа.
- 16. Нахождение наибольшего и наименьшего значений функции двух переменных в замкнутой ограниченной области.
- 17. Метод наименьших квадратов.

Теоретический материал и примеры решения задач 1.Область определения функции нескольких переменных.

Пусть D - множество пар (x,y) значений независимых переменных x и y. Определение. Если каждой паре $(x,y) \in D$ поставлено в соответствие некоторое значение переменной величины z, то говорят, что z - функция двух независимых переменных x и y, определенная на множестве D (обозначается: z = f(x,y)). Множество D, для элементов которого существуют значения z, называется областью определения функции z = f(x,y).

Определение. Если каждой совокупности $(x_1, x_2, ..., x_n)$ значений независимых переменных $x_1, x_2, ..., x_n$ из некоторого множества $D \subset \mathbb{R}^n$ соответствует определенное значение переменной u, то говорят, что u функция n переменных, определенная на множестве D ($u = f(x_1, x_2, ..., x_n)$).

Пример решения задачи 1.

Найти и изобразить область определения функции $z = \frac{\ln{(4-y-x^2)}}{xy}$.

Решение: Логарифмическая функция определена только при положительном значении аргумента, поэтому $4-y-x^2>0$, или $y<4-x^2$. Значит, границей области будет парабола $y=4-x^2$. Кроме того, знаменатель не должен быть равен нулю, поэтому $xy\neq 0$, или $x\neq 0, y\neq 0$.

Таким образом, область определения функции состоит из точек, расположенных ниже (внутри) параболы $y=4-x^2$, за исключением прямых x=0, y=0.

2. Частные производные.

Определение. Частным приращением функции $u = f(x_1, x_2,..., x_n)$ по переменной x_k в точке $M(x_1, x_2,..., x_n)$ называется разность

$$\Delta_{x_k} u = f(x_1, ..., x_{k-1}, x_k + \Delta x_k, x_{k+1}, ..., x_n) - f(x_1, ..., x_{k-1}, x_k, x_{k+1}, ..., x_n).$$

Определение. Частной производной функции $u = f(x_1, x_2, ..., x_n)$ по переменной x_k (k = 1, ..., n) в точке $M(x_1, x_2, ..., x_n)$ называется предел (если он существует)

$$\lim_{\Delta x_k \to 0} \frac{\Delta_{x_k} u}{\Delta x_k} = \lim_{\Delta x_k \to 0} \frac{f(x_1, ..., x_{k-1}, x_k + \Delta x_k, x_{k+1}, ..., x_n) - f(x_1, ..., x_{k-1}, x_k, x_{k+1}, ..., x_n)}{\Delta x_k}.$$

Обозначается $\frac{\partial u}{\partial x_k}$, $\frac{\partial f}{\partial x_k}$ или u'_{x_k} , f'_{x_k} . В случае необходимости указываются переменные, от которых зависит функция, например, $f'_{x_k}(x_1, x_2, ..., x_n)$

Для функции z = f(x, y) двух переменных по определению имеем

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} = z'_x = f'_x = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} - \text{частная производная по } x \,,$$

$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} = z'_y = f'_y = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} - \text{частная производная по } y \,.$$

Применяются также обозначения, в которых штрих сверху не ставится, например, f_{x_k}, f_x, f_y .

Замечание. В соответствии с определением частная производная по переменной x_k (k=1,..,n) вычисляется по обычным правилам и формулам дифференцирования, справедливым для функции одной переменной (при этом все переменные, кроме x_k , рассматриваются как постоянные). Например, при вычислении частной производной по переменной x от функции z = f(x, y) переменная y считается постоянной, и наоборот.

Определение. Частными производными 2-го порядка функции $u = f(x_1, x_2, ..., x_n)$ называются частные производные от ее частных производных первого порядка.

Согласно определению, производные второго порядка обозначаются и находятся следующим образом:

$$\frac{\partial^2 u}{\partial x_k^2} = u_{x_k x_k}'' = \frac{\partial}{\partial x_k} \left(\frac{\partial u}{\partial x_k} \right)$$
- производная второго порядка по переменной x_k ,

$$\frac{\partial^2 u}{\partial x_k \partial x_i} = u_{x_k x_i}'' = \frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_k} \right)$$
 - смешанная производная второго порядка по

переменным x_k и x_i .

В частности, для функций двух переменных z = f(x, y):

$$\frac{\partial^2 z}{\partial x^2} = z_{xx}'' = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right), \qquad \frac{\partial^2 z}{\partial y^2} = z_{yy}'' = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right),$$

$$\frac{\partial^2 z}{\partial x \partial y} = z_{xy}'' = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right), \quad \frac{\partial^2 z}{\partial y \partial x} = z_{yx}'' = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right).$$
 Штрихи сверху можно опустить.

Аналогично определяются и обозначаются частные производные порядка выше второго.

Замечание. Результат многократного дифференцирования функции по различным переменным не зависит от очередности дифференцирования при условии, что возникающие при этом смешанные частные производные непрерывны.

Пример решения задачи 2.

Дана функция $z = \sin \frac{y}{x}$. Показать, что $x^2 z''_{xx} + 2xyz''_{xy} + y^2 z''_{yy} = 0$.

Решение. Найдем частные производные

$$z'_{x} = \cos \frac{y}{x} \cdot \left(-\frac{y}{x^{2}}\right); \quad z'_{y} = \cos \frac{y}{x} \cdot \frac{1}{x};$$

$$z''_{xx} = \left(-\frac{y}{x^{2}} \cos \frac{y}{x}\right)'_{x} = \frac{2y}{x^{3}} \cos \frac{y}{x} - \left(\frac{y}{x^{2}}\right)^{2} \sin \frac{y}{x};$$

$$z''_{yy} = \left(\frac{1}{x} \cos \frac{y}{x}\right)'_{y} = -\frac{1}{x^{2}} \sin \frac{y}{x};$$

$$z''_{xy} = \left(-\frac{y}{x^{2}} \cos \frac{y}{x}\right)'_{y} = -\frac{1}{x^{2}} \cos \frac{y}{x} + \frac{y}{x^{3}} \sin \frac{y}{x}.$$

Подставляя найденные частные производные в левую часть данного уравнения, получим тождество

$$\frac{2y}{x}\cos\frac{y}{x} - \left(\frac{y}{x}\right)^2\sin\frac{y}{x} - \frac{2y}{x}\cos\frac{y}{x} + 2\left(\frac{y}{x}\right)^2\sin\frac{y}{x} - \left(\frac{y}{x}\right)^2\sin\frac{y}{x} \equiv 0,$$

что и требовалось доказать.

3. Производные сложной функции

Пусть $u=f(x_1,x_2,...,x_n)$ - дифференцируемая функция переменных $x_1,x_2,...,x_n$, которые сами являются дифференцируемыми функциями независимой переменной t: $x_1=x_1(t), \quad x_2=x_2(t), \dots, \quad x_n=x_n(t)$. Тогда производная сложной функции $u=f(x_1(t),x_2(t),...,x_n(t))$ по переменной t вычисляется по формуле:

$$\frac{du}{dt} = \frac{\partial u}{\partial x_1} \cdot \frac{dx_1}{dt} + \frac{\partial u}{\partial x_2} \cdot \frac{dx_2}{dt} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{dx_n}{dt}.$$
 (3.1)

Если $u = f(t, x_1, x_2, ..., x_n)$, где $x_1 = x_1(t)$, $x_2 = x_2(t)$, ..., $x_n = x_n(t)$, то производная функции u по t (она называется полной производной) равна

$$\frac{du}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x_1} \cdot \frac{dx_1}{dt} + \frac{\partial u}{\partial x_2} \cdot \frac{dx_2}{dt} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{dx_n}{dt}.$$
 (3.2)

Пусть $u=f(x_1,x_2,...,x_n)$, где $x_1=x_1(t_1,t_2,...,t_m)$, $x_2=x_2(t_1,t_2,...,t_m)$, ..., $x_n=x_n(t_1,t_2,...,t_m)$, при этом $t_1,t_2,...,t_m$ - независимые переменные. Частные производные функции u по переменным $t_1,t_2,...,t_m$ выражаются следующим образом:

$$\frac{\partial u}{\partial t_1} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_1} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_1},$$

$$\frac{\partial u}{\partial t_2} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_2} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_2} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_2},$$
(3.3)

.....

$$\frac{\partial u}{\partial t_m} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_m} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_m} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_m}.$$

Если $u=f(t_1,...,t_m,x_1,...,x_n)$, где $x_i=x_i(t_1,t_2,...,t_m)$, i=1,...,n, то $\frac{\partial u}{\partial t_k}=\frac{\partial f}{\partial t_k}+\sum_{l=1}^n\frac{\partial f}{\partial x_l}\cdot\frac{\partial x_l}{\partial t_k},\quad k=1,...,m.$

Пример решения задачи 3.

3.1. Найти производную $\frac{du}{dt}$ сложной функции $u=xy^2z^3$, $x=\sqrt{t+1},\ y=t^2, z=\cos t.$

Решение. Так как функция u является функцией одной независимой переменной t, то необходимо вычислить обыкновенную производную $\frac{du}{dt}$.

Воспользуемся формулой (3.1): $\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial u}{\partial z} \cdot \frac{dz}{dt}.$

Находим входящие в эту формулу производные:

$$\frac{\partial u}{\partial x} = y^2 z^3$$
, $\frac{\partial u}{\partial y} = 2xyz^3$, $\frac{\partial u}{\partial z} = 3xy^2 z^2$,

$$\frac{dx}{dt} = \frac{1}{2\sqrt{t+1}}, \ \frac{dy}{dt} = 2t, \ \frac{dz}{dt} = -\sin t.$$

Подставим их в формулу (3.1)

$$\frac{du}{dt} = y^{2}z^{3} \cdot \frac{1}{2\sqrt{t+1}} + 2xyz^{3} \cdot 2t + 3xy^{2}z^{2} \cdot (-\sin t).$$

Выразим переменные x, y, z через t

$$\frac{du}{dt} = t^4 \cos^3 t \cdot \frac{1}{2\sqrt{t+1}} + 2\sqrt{t+1}t^2 \cos^3 t \cdot 2t - 3\sqrt{t+1}t^4 \cos^2 t \cdot \sin t =$$

$$= \frac{t^3 \cos^2 t}{2\sqrt{t+1}} \cdot \left(t \cos t + 8(t+1)\cos t - 6(t+1)t \sin t\right).$$

3.2. Найти частные производные
$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$$
 сложной функции $u = \cos v + \ln(v^3 + w^3), \quad w = y e^x, v = x e^y$

Решение. Функция u является функцией двух переменных v и w. Переменные v и w в свою очередь являются функциями двух независимых переменных x и y.

Найдем частные производные:

$$\frac{\partial w}{\partial x} = ye^x, \quad \frac{\partial w}{\partial y} = e^x, \quad \frac{\partial v}{\partial x} = e^y, \quad \frac{\partial v}{\partial y} = xe^y, \quad \frac{\partial u}{\partial y} = -\sin v + \frac{3v^2}{v^3 + w^3}, \quad \frac{\partial u}{\partial w} = \frac{3w^2}{v^3 + w^3}.$$

Производные $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ найдем по формулам (3.3):

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{\partial u}{\partial w} \cdot \frac{\partial w}{\partial x} = \left(-\sin v + \frac{3v^2}{v^3 + w^3}\right) e^v + \frac{3w^2}{v^3 + w^3} y e^x =$$

$$= \left(-\sin(xe^y) + \frac{3(xe^y)^2}{(xe^y)^3 + (ye^x)^3}\right) e^v + \frac{3(ye^x)^2}{(xe^y)^3 + (ye^x)^3} y e^x;$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial u}{\partial w} \cdot \frac{\partial w}{\partial y} = \left(-\sin v + \frac{3v^2}{v^3 + w^3}\right) x e^v + \frac{3w^2}{v^3 + w^3} e^x =$$

$$= \left(-\sin(xe^y) + \frac{3(xe^y)^2}{(xe^y)^3 + (ye^x)^3}\right) x e^v + \frac{3(ye^x)^2}{(xe^y)^3 + (ye^x)^3} e^x.$$

4. Производные неявной функции

Частные производные неявной функции $u = f(x_1, x_2, ..., x_n)$, заданной с помощью уравнения $F(x_1, x_2, ..., x_n, u) = 0$, вычисляются по формулам

$$\frac{\partial u}{\partial x_k} = -\frac{F'_{x_k}(x_1, ..., x_n, u)}{F'_u(x_1, ..., x_n, u)} \qquad (k = 1, ..., n),$$
(4.1)

при условии, что $F'_u(x_1,...,x_n,u) \neq 0$

В частности, производная неявной функции y(x), заданной с помощью уравнения F(x,y) = 0, может быть вычислена по формуле:

$$\frac{dy}{dx} = -\frac{F_x'}{F_y'} \,, \tag{4.2}$$

при условии, что $F'_y \neq 0$; частные производные неявной функции z(x,y), заданной уравнением F(x,y,z) = 0, находятся следующим образом:

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}, \quad \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'},\tag{4.3}$$

при условии, что $F'_z \neq 0$.

Замечание 1. Частная производная по переменной x_k от функции $u=f\left(x_1,x_2,...,x_n\right)$, заданной уравнением $F\left(x_1,x_2,...,x_n,u\right)=0$, может быть

найдена также с помощью дифференцирования этого уравнения по x_k , при этом необходимо учесть зависимость u от x_k . В частности, производная неявной функции y(x), заданной с помощью уравнения F(x,y)=0, может быть найдена дифференцированием уравнения F(x,y)=0 по переменной x, при этом необходимо учесть зависимость y от x.

Замечание 2. Производные высших порядков вычисляются на основе формул (4.1), (4.2), (4.3) или с помощью дифференцирования уравнений $F(x_1, x_2, ..., x_n, u) = 0$, F(x, y, z) = 0, F(x, y) = 0 соответствующее число раз.

Пример решения задачи 4.

4.1. Найти производную первого порядка неявной функции y(x), заданной уравнением $\ln(x^2 + 2y^2) = \operatorname{tg}(xy)$.

Решение.

1 способ: Производная неявной функции y(x), заданной с помощью уравнения

$$F(x,y) = 0$$
 , может быть вычислена по формуле (4.2): $\frac{dy}{dx} = -\frac{F_x'}{F_y'}$.

В данном случае $F(x, y) = \ln(x^2 + 2y^2) - tg(xy)$,

$$F'_{x} = \frac{2x}{x^{2} + 2y^{2}} - \frac{y}{\cos^{2}(xy)}, \ F'_{y} = \frac{4y}{x^{2} + 2y^{2}} - \frac{x}{\cos^{2}(xy)}.$$

Находим производную неявной функции:

$$\frac{dy}{dx} = -\frac{F'_x}{F'_y} = -\frac{\frac{2x}{x^2 + 2y^2} - \frac{y}{\cos^2(xy)}}{\frac{4y}{x^2 + 2y^2} - \frac{x}{\cos^2(xy)}} = -\frac{2x\cos^2(xy) - y(x^2 + 2y^2)}{4y\cos^2(xy) - x(x^2 + 2y^2)}.$$

2 способ: Продифференцируем обе части уравнения $\ln(x^2 + 2y^2) = \operatorname{tg}(xy)$ по переменной x, считая y функцией от x:

$$\frac{\left[\ln(x^2 + 2y^2(x))\right]_x' = \left[tg(xy(x))\right]_x'}{\frac{2x + 2yy'}{x^2 + 2y^2}} = \frac{y + xy'}{\cos^2(xy)}.$$

Выражаем y':

$$y' = -\frac{2x\cos^2(xy) - y(x^2 + 2y^2)}{4y\cos^2(xy) - x(x^2 + 2y^2)}.$$

4.2. Найти частные производные первого порядка неявной функции z(x,y), заданной уравнением $5x^2y^3 + 2xz^3 - y^2z = 0$.

Решение.

1 способ: Производные неявной функции z(x,y), заданной с помощью уравнения F(x,y,z) = 0, могут быть вычислены по формуле (4.3): $\frac{\partial z}{\partial x} = -\frac{F_x'}{F'}$,

$$\frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'} .$$

В данном случае $F(x,y,z) = 5x^2y^3 + 2xz^3 - y^2z$, $F_x' = 10xy^3 + 2z^3$, $F_y' = 15x^2y^2 - 2yz$, $F_z' = 6xz^2 - y^2$.

Найдем частные производные неявной функции:

$$\frac{\partial z}{\partial x} = -\frac{F'_x}{F'_z} = -\frac{10xy^3 + 2z^3}{6xz^2 - y^2}, \qquad \frac{\partial z}{\partial y} = -\frac{F'_y}{F'_z} = -\frac{15x^2y^2 - 2yz}{6xz^2 - y^2}.$$

2 способ: Продифференцируем обе части уравнения $5x^2y^3 + 2xz^3 - y^2z = 0$ по переменной x, считая z функцией от x, y:

$$[5x^{2}y^{3} + 2xz^{3}(x,y) - y^{2}z(x,y)]'_{x} = 0,$$

$$10xy^{3} + 2z^{3} + 6xz^{2}z'_{x} - y^{2}z'_{x} = 0.$$

Выражаем
$$z'_x$$
: $z'_x = -\frac{10xy^3 + 2z^3}{6xz^2 - y^2}$.

Аналогично продифференцируем обе части уравнения $5x^2y^3 + 2xz^3 - y^2z = 0$ по переменной y, считая z функцией от x, y:

$$[5x^{2}y^{3} + 2xz^{3}(x,y) - y^{2}z(x,y)]_{y} = 0,$$

$$15x^{2}y^{2} + 6xz^{2}z'_{y} - 2yz - y^{2}z'_{y} = 0.$$

Выражаем z'_y : $z'_y = -\frac{15x^2y^2 - 2yz}{6xz^2 - y^2}$.

4.3. Найти производную второго порядка неявной функции y(x), заданной уравнением $x^2 + \ln y - 3x + y = 0$.

Решение.

 $1\ cnoco\delta$: Производная неявной функции y(x), заданной с помощью уравнения F(x,y)=0, может быть вычислена по формуле (4.2): $\frac{dy}{dx}=-\frac{F_x'}{F_y'}$.

В данном случае $F(x, y) = x^2 + \ln y - 3x + y$, $F'_x = 2x - 3$, $F'_y = \frac{1}{y} + 1$.

Находим производную $\frac{dy}{dx}$:

$$\frac{dy}{dx} = -\frac{F'_x}{F'_y} = -\frac{2x-3}{\frac{1}{v}+1} = \frac{(3-2x)y}{y+1}.$$

Вторую производную находим по правилу дифференцирования сложной функции, учитывая, что y зависит от x

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{(3-2x)y}{y+1} \right) = \frac{\left(3\frac{dy}{dx} - 2y - 2x\frac{dy}{dx} \right)(1+y) - \frac{dy}{dx}(3y - 2xy)}{(1+y)^2}.$$

Подставляя $\frac{dy}{dx} = \frac{(3-2x)y}{y+1}$ в полученное выражение, находим:

$$\frac{d^2y}{dx^2} = \frac{(3-2x)^2y - 2y(1+y)^2}{(1+y)^3}.$$

2 способ: Продифференцируем обе части уравнения $x^2 + \ln y - 3x + y = 0$ по переменной x, считая y функцией от x:

$$[x^{2} + \ln y(x) - 3x + y(x)]_{x} = 0;$$

$$2x + \frac{y'}{y} - 3 + y' = 0 \implies y' = \frac{(3 - 2x)y}{1 + y}.$$

Продифференцируем еще раз обе части уравнения $2x + \frac{y'}{y} - 3 + y' = 0$ по переменной x, считая y функцией от x:

$$\left[2x + \frac{y'}{y} - 3 + y'\right]'_{x} = 0 \implies 2 + \frac{y''y - (y')^{2}}{y^{2}} + y'' = 0$$

Выражаем $y'' = \frac{(y')^2 - 2y^2}{y(1+y)}$.

Подставим в полученное выражение y': $y'' = \frac{(3-2x)^2 y - 2y(1+y)^2}{(1+y)^3}$.

4.4. Найти частные производные второго порядка неявной функции z(x,y), заданной уравнением $3x^2 + y^3 + 2xz^3 = 0$.

Решение.

1 способ: Производные неявной функции z(x,y), заданной с помощью уравнения F(x,y,z)=0, могут быть вычислены по формуле (4.3): $\frac{\partial z}{\partial x}=-\frac{F_x'}{F_z'}$,

$$\frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'} \ .$$

В данном случае $F(x,y,z) = 3x^2 + y^3 + 2xz^3$, $F'_x = 6x + 2z^3$, $F'_y = 3y^2$, $F'_z = 6xz^2$.

Найдем частные производные неявной функции:

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'} = -\frac{6x + 2z^3}{6xz^2} = -\frac{1}{z^2} - \frac{z}{3x}, \quad \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'} = -\frac{3y^2}{6xz^2} = -\frac{y^2}{2xz^2}.$$

Вторую производную находим по правилу дифференцирования сложной функции, считая z функцией от x, y:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \left(-\frac{1}{z^2} - \frac{z}{3x} \right)_x' = \frac{2}{z^3} z_x' - \frac{z_x' x - z}{3x^2} = \left(\frac{2}{z^3} - \frac{1}{3x} \right) z_x' + \frac{z}{3x^2},$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \left(-\frac{y^2}{2xz^2} \right)_y' = -\frac{2y2xz^2 - 4xzz_y' y^2}{4x^2z^4} = -\frac{yz - z_y' y^2}{xz^3} = -\frac{y}{xz^2} + \frac{y^2}{xz^3} z_y',$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \left(-\frac{1}{z^2} - \frac{z}{3x} \right)_y' = \frac{2}{z^3} z_y' - \frac{z_y'}{3x} = \left(\frac{2}{z^3} - \frac{1}{3x} \right) z_y'.$$

Подставляя $\frac{\partial z}{\partial x} = -\frac{1}{z^2} - \frac{z}{3x}$ $\frac{\partial z}{\partial y} = -\frac{y^2}{2xz^2}$ в полученные выражения, находим:

$$\frac{\partial^2 z}{\partial x^2} = \left(\frac{2}{z^3} - \frac{1}{3x}\right) z_x' + \frac{z}{3x^2} = \left(\frac{2}{z^3} - \frac{1}{3x}\right) \left(-\frac{1}{z^2} - \frac{z}{3x}\right) + \frac{z}{3x^2} = -\frac{1}{3xz^2} + \frac{4z}{9x^2} - \frac{2}{z^5},$$

$$\frac{\partial^2 z}{\partial y^2} = -\frac{y}{xz^2} + \frac{y^2}{xz^3} z_y' = -\frac{y}{xz^2} + \frac{y^2}{xz^3} \left(-\frac{y^2}{2xz^2}\right) = -\frac{y}{xz^2} - \frac{y^4}{2x^2z^5},$$

$$\frac{\partial^2 z}{\partial x \partial y} = \left(\frac{2}{z^3} - \frac{1}{3x}\right) z_y' = -\left(\frac{2}{z^3} - \frac{1}{3x}\right) \frac{y^2}{2xz^2} = -\frac{y^2}{xz^5} + \frac{y^2}{6x^2z^2}.$$

2 способ: Продифференцируем обе части уравнения $3x^2 + y^3 + 2xz^3 = 0$ по переменной x, считая z функцией от x, y:

$$[3x^{2} + y^{3} + 2xz^{3}(x, y)]_{x}' = 0,$$

$$6x + 2z^{3} + 6xz^{2}z'_{x} = 0.$$

Выражаем
$$z'_x$$
: $z'_x = -\frac{6x + 2z^3}{6xz^2} = -\left(\frac{1}{z^2} + \frac{z}{3x}\right)$.

Продифференцируем еще раз обе части уравнения $6x + 2z^3 + 6xz^2z_x' = 0$ по переменной x, считая z функцией от x, y:

$$\begin{split} \left[6x+2z^3+6xz^2z_x'\right]_x' &= 0 \quad \Rightarrow \quad 6+6z^2z_x'+6z^2z_x'+12xz(z_x')^2+6xz^2z_{xx}''=0 \; . \\ \text{Выражаем } z_{xx}'' &= -\frac{6+6z^2z_x'+6z^2z_x'+12xz(z_x')^2}{6xz^2} = -\frac{1+z^2z_x'+z^2z_x'+2xz(z_x')^2}{xz^2} \; . \end{split}$$

Подставим в полученное выражение z_x' :

$$z_{xx}'' = -\frac{1 - 2z^2 \left(\frac{1}{z^2} + \frac{z}{3x}\right) + 2xz \left(\frac{1}{z^2} + \frac{z}{3x}\right)^2}{xz^2} = -\frac{1}{3xz^2} + \frac{4z}{9x^2} - \frac{2}{z^5}.$$

Аналогично находятся производные

$$\frac{\partial^2 z}{\partial y^2} = -\frac{y}{xz^2} - \frac{y^4}{2x^2z^5}, \quad \frac{\partial^2 z}{\partial x \partial y} = -\frac{y^2}{xz^5} + \frac{y^2}{6x^2z^2}.$$

Для нахождения $\frac{\partial^2 z}{\partial y^2}$ необходимо исходное уравнение $3x^2 + y^3 + 2xz^3 = 0$ продифференцировать дважды по y, считая z функцией от x, y.

Для нахождения смешанной производной $\frac{\partial^2 z}{\partial x \partial y}$ исходное уравнение $3x^2 + y^3 + 2xz^3 = 0$ дифференцируется сначала по x, а затем по y (или наоборот).

5. Дифференциал

Определение. Полным приращением функции $u = f(x_1, x_2, ..., x_n)$ в точке $M(x_1, x_2, ..., x_n)$, соответствующим приращениям аргументов $\Delta x_1, \Delta x_2, ..., \Delta x_n$, называется разность $\Delta u = f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n) - f(x_1, x_2, ..., x_n)$.

Определение. Функция $u = f(x_1, x_2, ..., x_n)$ называется дифференцируемой в точке $M(x_1, x_2, ..., x_n)$, если в некоторой окрестности этой точки полное приращение функции может быть представлено в виде

$$\Delta u = A_1 \Delta x_1 + A_2 \Delta x_2 + \dots + A_n \Delta x_n + o(\rho), \qquad (5.1)$$

где $\rho = \sqrt{\Delta x_1^2 + \Delta x_2^2 + ... + \Delta x_n^2}$, $A_1, A_2, ..., A_n$ - числа, не зависящие от $\Delta x_1, \Delta x_2, ..., \Delta x_n$.

Определение. Дифференциалом du первого порядка функции $u = f(x_1, x_2, ..., x_n)$ в точке $M(x_1, x_2, ..., x_n)$ называется главная часть полного приращения этой функции в рассматриваемой точке, линейная относительно $\Delta x_1, \Delta x_2, ..., \Delta x_n$:

$$du = A_1 \Delta x_1 + A_2 \Delta x_2 + \dots + A_n \Delta x_n.$$

Для дифференциала функции $u = f(x_1, x_2, ..., x_n)$ справедлива формула

$$du = \frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 + \dots + \frac{\partial u}{\partial x_n} dx_n, \qquad (5.2)$$

где $dx_1 = \Delta x_1$, $dx_2 = \Delta x_2$, ..., $dx_n = \Delta x_n$.

В частности, для функции z = f(x, y) двух переменных имеем

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy. ag{5.3}$$

Дифференциал k – го порядка функции $u = f(x_1, x_2, ..., x_n)$ выражается символической формулой

$$d^{k}u = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \frac{\partial}{\partial x_{2}}dx_{2} + \dots + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{k}u. \tag{5.4}$$

В частности, для du имеет место формула (5.2), а d^2u находится следующим образом

$$d^{2}u = \sum_{k,m=1}^{n} \frac{\partial^{2}u}{\partial x_{k} \partial x_{m}} dx_{k} dx_{m}.$$
 (5.5)

Например, в случае функции z = f(x, y) двух переменных для дифференциалов 2-го и 3-го порядков справедливы формулы

$$d^{2}z = \frac{\partial^{2}z}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}z}{\partial x\partial y}dxdy + \frac{\partial^{2}z}{\partial y^{2}}dy^{2}, \qquad (5.6)$$

$$d^{3}z = \frac{\partial^{3}z}{\partial x^{3}}dx^{3} + 3\frac{\partial^{3}z}{\partial x^{2}\partial y}dx^{2}dy + 3\frac{\partial^{3}z}{\partial x\partial y^{2}}dxdy^{2} + \frac{\partial^{3}z}{\partial y^{3}}dy^{3}.$$
 (5.7)

Пример решения задачи 5.

5.1. Найти дифференциал третьего порядка d^3u функции $u=e^y \ln x$.

Решение. Найдем все частные производные до третьего порядка включительно:

$$u'_{x} = e^{y} \cdot \frac{1}{x}, \qquad u'_{y} = e^{y} \ln x,$$

$$u''_{xx} = e^{y} \left(-\frac{1}{x^{2}} \right), \quad u''_{yy} = e^{y} \ln x,$$

$$u'''_{xxx} = e^{y} \left(\frac{2}{x^{3}} \right), \quad u'''_{xxy} = e^{y} \left(-\frac{1}{x^{2}} \right), \quad u'''_{xyy} = e^{y} \cdot \frac{1}{x}, \quad u'''_{yyy} = e^{y} \ln x.$$

Найдем дифференциал третьего порядка функции u двух переменных по формулам (5.4), (5.7):

$$d^{3}u = \frac{\partial^{3}u}{\partial x^{3}}dx^{3} + 3\frac{\partial^{3}u}{\partial x^{2}\partial y}dx^{2}dy + 3\frac{\partial^{3}u}{\partial x\partial y^{2}}dxdy^{2} + \frac{\partial^{3}u}{\partial y^{3}}dy^{3} =$$

$$= e^{y}\left(\frac{2}{x^{3}}\right)dx^{3} + 3e^{y}\left(-\frac{1}{x^{2}}\right)dx^{2}dy + 3e^{y} \cdot \frac{1}{x}dxdy^{2} + e^{y}\ln xdy^{3}.$$

5.2. Найти дифференциал второго порядка d^2u функции $u = x^2 + y^3 + z^4 + xyz$. **Решение.** Для нахождения дифференциала второго порядка функции трех переменных воспользуемся формулами (5.4), (5.5):

$$d^{2}u = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy + \frac{\partial}{\partial z}dz\right)^{2}u =$$

$$= \frac{\partial^{2}u}{\partial x}dx^{2} + \frac{\partial^{2}u}{\partial y}dy^{2} + \frac{\partial^{2}u}{\partial z}dz^{2} + 2\left(\frac{\partial^{2}u}{\partial x\partial y}dxdy + \frac{\partial^{2}u}{\partial y\partial z}dydz + \frac{\partial^{2}u}{\partial x\partial z}dxdz\right).$$

Найдем все частные производные до второго порядка включительно:

$$u'_{x} = 2x + yz$$
, $u'_{y} = 3y^{2} + xz$, $u'_{z} = 4z^{3} + xy$,
 $u''_{xx} = 2$, $u''_{yy} = 6y$, $u''_{zz} = 12z^{2}$,
 $u''_{xy} = z$, $u''_{yz} = x$, $u''_{xz} = y$.

Найдем дифференциал второго порядка функции u трех переменных:

$$d^{2}u = 2dx^{2} + 6ydy^{2} + 12z^{2}dz^{2} + 2(zdxdy + xdydz + ydxdz).$$

6. Применение дифференциала в приближенных вычислениях значений функций

При достаточно малом $\rho = \sqrt{\Delta x_1^2 + \Delta x_2^2 + ... + \Delta x_n^2}$, согласно формуле (5.1), для дифференцируемой функции $u = f(x_1, x_2, ..., x_n)$ имеет место приближенное равенство $\Delta u \approx du$ или

 $f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n) \approx f(x_1, x_2, ..., x_n) + df(x_1, x_2, ..., x_n),$ где df определяется формулой (5.2).

В частности, для функции z=f(x,y) двух переменных при достаточно малых $\Delta x, \Delta y$ имеет место приближенное равенство $\Delta z \approx dz$, или

$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + f'_{x}(x, y)\Delta x + f'_{y}(x, y)\Delta y.$$
 (6.1)

Запишем формулу (6.1) в точке (x_0, y_0) :

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y$$
 (6.2)

Вводя $x = x_0 + \Delta x$, $y = y_0 + \Delta y$, формулу (6.2) перепишем в виде

$$f(x,y) \approx f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) . \tag{6.3}$$

Имея значения функции f и ее частных производных в точке (x_0, y_0) , по формуле (6.3) можно вычислить значение функции f в точке (x, y), расположенной достаточно близко от точки (x_0, y_0) .

Пример решения задачи 6.

Вычислить приближенное значение функции $z(x,y) = x^2 - 2xy + x + 3y$ в точке A(3,94; 2,01).

Решение. Приближенное значение функции z(x, y) в точке A вычислим, используя формулу (6.3):

$$z(x,y) \approx z(x_0,y_0) + z'_x(x_0,y_0)(x-x_0) + z'_y(x_0,y_0)(y-y_0)$$

Имеем $x=3,94,\ y=2,01;$ положим $x_0=4,\ y_0=2$. Вычислим значение функции в точке с координатами (x_0,y_0) : $z(x_0,y_0)=4^2-2\cdot 4\cdot 2+4+3\cdot 2=10$.

Так как $z_x'(x,y) = 2x - 2y + 1$, $z_y'(x,y) = -2x + 3$, то $z_x'(x_0,y_0) = 5$, $z_y'(x_0,y_0) = -5$. Подставим в формулу: $z(3.94; 2.01) \approx 10 + 5(3.94 - 4) - 5(2.01 - 2) = 9.65$.

7. Формулы Тейлора и Маклорена

Для функции z = f(x, y) двух переменных в точке (x_0, y_0) формула Тейлора имеет вид

$$f(x,y) = f(x_0, y_0) + \frac{df(x_0, y_0)}{1!} + \frac{d^2 f(x_0, y_0)}{2!} + \dots + \frac{d^n f(x_0, y_0)}{n!} + R_n, \qquad (7.1)$$

где
$$R_n = o(\rho^n)$$
 - остаточный член $\left(\rho = \sqrt{\Delta x^2 + \Delta y^2}\right)$.

В частности, с точностью до членов второго порядка относительно $(x-x_0)$, $(y-y_0)$ формулу Тейлора можно представить в виде

$$f(x,y) = f(x_0,y_0) + \frac{1}{1!} [f'_x(x_0,y_0)(x-x_0) + f'_y(x_0,y_0)(y-y_0)] +$$

$$+\frac{1}{2!} \left[f_{xx}''(x_0, y_0)(x - x_0)^2 + 2 f_{xy}''(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}''(x_0, y_0)(y - y_0)^2 \right] + R_2.$$

В частном случае, при $x_0 = y_0 = 0$, формула (7.1) называется формулой Маклорена.

Пример решения задачи 7.

Разложить функцию $z(x,y) = e^{2x-3y}$ в окрестности точки M(2,1), ограничиваясь членами второго порядка включительно

Решение. В данном случае формула Тейлора (7.1) принимает вид $f(x,y) = f(x_0,y_0) + \frac{df(x_0,y_0)}{1!} + \frac{d^2f(x_0,y_0)}{2!} + R_2, \text{ где } R_2 \text{ - остаточный член}$

формулы Тейлора.

Найдем значения всех частных производных функции до второго порядка включительно в точке М:

$$z'_{x}(x,y) = e^{2x-3y} \cdot 2, z'_{x}(2,1) = 2, z'_{y}(x,y) = e^{2x-3y} \cdot (-3), z'_{y}(2,1) = -3,$$

$$z''_{xx}(x,y) = e^{2x-3y} \cdot 4, z''_{xx}(2,1) = 4, z''_{yy}(x,y) = e^{2x-3y} \cdot 9, z''_{yy}(2,1) = 9,$$

$$z''_{xy}(x,y) = e^{2x-3y} \cdot (-6), z''_{xy}(2,2) = -6.$$

Составим дифференциалы функции до второго порядка включительно $dz(2,1)=z_x'(2,1)dx+z_y'(2,1)dy=2dx-3dy\,,$

 $d^2z(2,1)=z_{xx}''(2,1)dx^2+2z_{xy}''(2,1)dxdy+z_{yy}''(2,1)dy^2=4dx^2-12dxdy+9dy^2\,.$ Учитывая, что $x_0=2,\ y_0=1,\ dx=\Delta x=x-x_0=x-2,\ dy=\Delta y=y-y_0=y-1,$ получим:

$$e^{2x-3y} = 1 + 2(x-2) - 3(y-1) + \frac{4(x-2)^2 - 12(x-2)(y-1) + 9(y-1)^2}{2} + R_2.$$

8. Касательная плоскость и нормаль к поверхности

Определение. Касательной плоскостью к поверхности в ее точке $M_{\,_0}$ (точка касания) называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку.

Определение. Нормалью к поверхности в ее точке $M_{_0}$ называется прямая, перпендикулярная к касательной плоскости в этой точке и проходящая через точку касания $M_{_0}$.

Если уравнение поверхности задано в явной форме z = f(x, y), то уравнение касательной плоскости в точке $M_0(x_0, y_0, z_0)$ имеет вид

$$z - z_0 = f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0).$$
 (8.1)

Уравнения нормали

$$\frac{x - x_0}{f_x'(x_0, y_0)} = \frac{y - y_0}{f_y'(x_0, y_0)} = \frac{z - z_0}{-1}.$$
 (8.2)

Если уравнение поверхности задано в неявной форме F(x,y,z) = 0, то уравнение касательной плоскости в точке $M_0(x_0,y_0,z_0)$ имеет вид

$$F_x'(x_0, y_0, z_0)(x - x_0) + F_y'(x_0, y_0, z_0)(y - y_0) + F_z'(x_0, y_0, z_0)(z - z_0) = 0.$$
 (8.3)

Уравнения нормали

$$\frac{x - x_0}{F_x'(x_0, y_0, z_0)} = \frac{y - y_0}{F_y'(x_0, y_0, z_0)} = \frac{z - z_0}{F_z'(x_0, y_0, z_0)}.$$
 (8.4)

Пример решения задачи 8.

8.1. Составить уравнение касательной плоскости и уравнения нормали к поверхности $z = 2x^2 - 3xy + x + 5y$ в точке $M_0(1,2,7)$.

Решение. Если уравнение поверхности задано в явной форме z = f(x, y), то уравнение касательной плоскости в точке $M_0(x_0, y_0, z_0)$ имеет вид (8.1)

$$z-z_0 = f_x'(x_0, y_0)(x-x_0) + f_y'(x_0, y_0)(y-y_0),$$

а уравнения нормали – вид (8.2)

$$\frac{x-x_0}{f_x'(x_0,y_0)} = \frac{y-y_0}{f_y'(x_0,y_0)} = \frac{z-z_0}{-1}.$$

Найдем значения частных производных f'_x , f'_y в точке M:

$$f'_{x} = 4x - 3y + 1$$
, $f'_{y} = -3x + 5$, $f'_{y}(1,2) = -1$, $f'_{y}(1,2) = 2$.

Подставляя найденные значения в уравнения касательной плоскости и нормали, получим: z = 7 - (x - 1) + 2(y - 2) или x - 2y + z - 4 = 0 - уравнение касательной

плоскости;
$$\frac{x-1}{-1} = \frac{y-2}{2} = \frac{z-7}{-1}$$
 - уравнения нормали.

8.2. Составить уравнение касательной плоскости и уравнения нормали к поверхности $2x^2 - 3y^2 - xz^2 + 7 = 0$ в точке $M_0(1,0,3)$.

Решение. Если уравнение поверхности задано в неявной форме F(x, y, z) = 0, то уравнение касательной плоскости в точке $M_0(x_0, y_0, z_0)$ имеет вид (8.3)

$$F'_{x}(x_{0}, y_{0}, z_{0})(x - x_{0}) + F'_{y}(x_{0}, y_{0}, z_{0})(y - y_{0}) + F'_{z}(x_{0}, y_{0}, z_{0})(z - z_{0}) = 0.$$

Нормаль определяется уравнениями (8.4)

$$\frac{x-x_0}{F_x'(x_0,y_0,z_0)} = \frac{y-y_0}{F_y'(x_0,y_0,z_0)} = \frac{z-z_0}{F_z'(x_0,y_0,z_0)}.$$

Найдем значения частных производных F'_x , F'_y , F'_z в точке M_0 :

$$F'_x = 4x - z^2$$
, $F'_y = -6y$, $F'_z = -2xz$, $F'_x(1,0,3) = -5$, $F'_y(1,0,3) = 0$, $F'_z(1,0,3) = -6$.

Подставляя найденные значения в уравнения касательной плоскости и нормали, получим: -5(x-1)-6(z-3)=0 или 5x+6z-23=0 - уравнение касательной

плоскости;
$$\frac{x-1}{-5} = \frac{y}{0} = \frac{z-3}{-6}$$
 - уравнения нормали.

9. Градиент и производная по направлению

Пусть функция z = f(x, y) определена в окрестности точки и пусть \vec{a} - вектор, исходящий из этой точки. На векторе \vec{a} возьмем точку $M_1(x + \Delta x, y + \Delta y)$.

Определение. Производной функции z = f(x, y) по направлению \vec{a} в точке M(x, y) называется предел (если он существует)

$$\begin{split} \frac{\partial z}{\partial a}(M) &= \lim_{\rho \to 0} \frac{f(x + \Delta x, y + \Delta y) - f(x, y)}{\rho} = \lim_{M_1 \to M} \frac{f(M_1) - f(M)}{\left| \overline{MM}_1 \right|}, \\ \text{где } \rho &= \sqrt{\Delta x^2 + \Delta y^2} = \left| \overline{MM}_1 \right|. \end{split}$$

Понятие производной по направлению является обобщением понятия частных производных. Производная по направлению \vec{a} в точке M характеризует изменение функции в этой точке в направлении вектора \vec{a} .

Если функция z = f(x, y) дифференцируема в точке M(x, y), то в этой точке

$$\frac{\partial z}{\partial a} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial y} \cos \beta,$$

где $\cos \alpha, \cos \beta$ - направляющие косинусы вектора \vec{a} .

Определение. Градиентом функции z = f(x, y) в точке M(x, y) называется вектор, проекциями которого являются значения частных производных функции в этой точке, т.е.

$$grad z = z_X' \cdot \vec{i} + z_Y' \cdot \vec{j}. \tag{9.1}$$

Замечание. Аналогично определяются производная по направлению и градиент функции n переменных (n > 2).

Градиент и производная по направлению \vec{a} связаны между собой соотношением

$$\frac{\partial z}{\partial a} = (grad \ z, \vec{a}_0), \tag{9.2}$$

т.е. производная по направлению \vec{a} равна скалярному произведению градиента и единичного вектора $\vec{a}_0 = \frac{\vec{a}}{|\vec{a}|}$.

Пример решения задачи 9.

Даны: функция $z(x,y) = \arcsin \sqrt{x^2 + y^2}$, точка $A\left(\frac{1}{2},\frac{1}{2}\right)$ и вектор $\vec{a}\{-5,12\}$.

Найти: 1) grad z в точке A; 2) производную в точке A по направлению вектора \vec{a} .

Решение. Найдем grad z в точке A, для этого вычислим $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ в точке A.

Имеем:

$$\frac{\partial z}{\partial x} = \frac{1}{\sqrt{1 - x^2 - y^2}} \cdot \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial z}{\partial x}(A) = 1,$$

$$\frac{\partial z}{\partial y} = \frac{1}{\sqrt{1 - x^2 - y^2}} \cdot \frac{y}{\sqrt{x^2 + y^2}}, \quad \frac{\partial z}{\partial y}(A) = 1.$$

Таким образом, $grad z(A) = \vec{i} + \vec{j} = \{1, 1\}.$

Для нахождения производной функции z = f(x, y) в направлении вектора $\vec{a}\{-5,12\}$ воспользуемся формулой (9.2). Для этого найдем единичный вектор

$$\vec{a}_0 = \frac{\vec{a}}{|\vec{a}|} = \frac{\{-5,12\}}{\sqrt{25+144}} = \left\{\frac{-5}{13},\frac{12}{13}\right\}$$
, тогда

$$\frac{\partial z}{\partial a}(A) = \left(grad\ z(A), \overline{a}_0\right) = 1 \cdot \left(\frac{-5}{13}\right) + 1 \cdot \frac{12}{13} = \frac{7}{13}.$$

10. Экстремум функции нескольких переменных

Пусть функция $u = f(x_1, x_2, ..., x_n)$ определена в некоторой окрестности точки $M_0(x_1^0, x_2^0, ..., x_n^0)$.

Определение. Функция $u = f(x_1, x_2, ..., x_n)$ имеет максимум (минимум) в точке $M_0(x_1^0, x_2^0, ..., x_n^0)$, если существует такая окрестность точки M_0 , в которой для всех точек $M(x_1, x_2, ..., x_n)$ ($M \neq M_0$) выполняется неравенство $f(M_0) > f(M)$ (соответственно $f(M_0) < f(M)$).

Максимум или минимум функции называется ее экстремумом, а точки, в которых функция имеет экстремум, называются точками экстремума (максимума или минимума).

Необходимое условие экстремума. Если функция $u = f(x_1, x_2, ..., x_n)$ имеет экстремум в точке $M_0(x_1^0, x_2^0, ..., x_n^0)$, то в этой точке

$$\frac{\partial f(M_0)}{\partial x_i} = 0 \quad (i = 1, ..., n).$$

Точки, в которых выполняются эти условия, называются стационарными точками функции $u = f(x_1, x_2, ..., x_n)$.

Достаточное условие экстремума. Пусть $M_0 \left(x_1^0, x_2^0, ..., x_n^0 \right)$ - стационарная точка функции $u = f \left(x_1, x_2, ..., x_n \right)$, причем эта функция дважды дифференцируема в некоторой окрестности точки M_0 и все ее вторые частные производные непрерывны в точке M_0 . Тогда:

- если $d^2u(x_1^0,x_2^0,...,x_n^0)>0$ $(d^2u(x_1^0,x_2^0,...,x_n^0)<0)$ при любых значениях $\Delta x_1,\Delta x_2,...,\Delta x_n$, не равных одновременно нулю, то функция $u=f(x_1,x_2,...,x_n)$ имеет в точке M_0 минимум (максимум);
- имеет в точке M_0 минимум (максимум); • если $d^2u(x_1^0,x_2^0,...,x_n^0)$ принимает значения разных знаков в зависимости от $\Delta x_1, \Delta x_2,..., \Delta x_n$, то экстремума в точке M_0 нет;
- если $d^2u(x_1^0,x_2^0,...,x_n^0)=0$ для набора значений $\Delta x_1,\Delta x_2,...,\Delta x_n$, не равных нулю одновременно, то требуются дополнительные исследования.

Рассмотрим случай функции двух переменных.

Определение. Функция z = f(x,y) имеет максимум (минимум) в точке $M_0(x_0,y_0)$, если существует такая окрестность точки M_0 , в которой для всех точек M(x,y), отличных от M_0 , выполняется неравенство $f(x,y) < f(x_0,y_0)$ $(f(x,y) > f(x_0,y_0))$.

Необходимое условие экстремума функции двух переменных. Если дифференцируемая функция z = f(x, y) достигает экстремума в точке

 $M_{_0}(x_{_0},y_{_0})$, то в этой точке частные производные первого порядка равны нулю, т.е.

$$f_x'(x_0, y_0) = 0, \quad f_y'(x_0, y_0) = 0.$$
 (10.1)

Достаточное условие экстремума функции двух переменных. Введем обозначения: $A = f_{xx}''(x_0, y_0)$, $B = f_{yy}''(x_0, y_0)$, $C = f_{xy}''(x_0, y_0)$, $D = AB - C^2$. Пусть $M_0(x_0, y_0)$ - стационарная точка функции z = f(x, y) и пусть в окрестности точки M_0 функция имеет непрерывные частные производные второго порядка. Тогда:

- если D > 0, то функция z = f(x, y) имеет в точке $M_0(x_0, y_0)$ экстремум, а именно максимум при A < 0 (B < 0) и минимум при A > 0 (B > 0);
 - •если D < 0, то экстремум в точке $M_0(x_0, y_0)$ отсутствует;
 - если D = 0, то требуются дополнительные исследования.

Рассмотрим случай функции u = f(x, y, z) трех переменных.

Критерий Сильвестра. 1) Для того, чтобы выполнялось неравенство $d^2u(x_0,y_0,z_0)>0$ при любых значениях dx,dy,dz, не равных нулю одновременно, необходимо и достаточно, чтобы:

$$\begin{vmatrix} u_{xx}'' > 0, & \begin{vmatrix} u_{xx}'' & u_{xy}'' \\ u_{xy}'' & u_{yy}'' \end{vmatrix} > 0, & \begin{vmatrix} u_{xx}'' & u_{xy}'' & u_{xz}'' \\ u_{xy}'' & u_{yy}'' & u_{yz}'' \\ u_{xz}'' & u_{yz}'' & u_{zz}'' \end{vmatrix} > 0.$$

2) Для того, чтобы выполнялось неравенство $d^2u(x_0,y_0,z_0)<0$ при любых значениях dx,dy,dz, не равных нулю одновременно, необходимо и достаточно, чтобы:

$$u_{xx}'' < 0,$$
 $\begin{vmatrix} u_{xx}'' & u_{xy}'' \\ u_{xy}'' & u_{yy}'' \end{vmatrix} > 0,$ $\begin{vmatrix} u_{xx}'' & u_{xy}'' & u_{xz}'' \\ u_{xy}'' & u_{yy}'' & u_{yz}'' \\ u_{xz}'' & u_{yz}'' & u_{zz}'' \end{vmatrix} < 0.$

Следует помнить, что все производные вычислены в точке $M_{_0}(x_{_0},y_{_0},z_{_0})$.

Пример решения задачи 10.

Найти экстремумы функции двух переменных $z(x, y) = 2x^3 + \frac{1}{3}y^2 + \frac{6}{x} - \frac{18}{y}$.

Решение.

Если дифференцируемая функция z=f(x,y) достигает экстремума в точке $M_0(x_0,y_0)$, то согласно необходимому условию экстремума, в этой точке частные производные первого порядка равны нулю.

Найдем стационарные точки функции $z(x,y) = 2x^3 + \frac{1}{3}y^2 + \frac{6}{x} - \frac{18}{y}$:

$$z'_{x} = 6x^{2} - \frac{6}{x^{2}} = 0$$
, $z'_{y} = \frac{2}{3}y + \frac{18}{y^{2}} = 0$.

Решая данную систему, получаем две стационарные точки $M_1(1,-3)$, $M_2(-1,-3)$.

Воспользуемся достаточным условием экстремума функции двух переменных. Найдем $A = f''_{xx}(x_0, y_0)$, $B = f''_{yy}(x_0, y_0)$, $C = f''_{xy}(x_0, y_0)$, $D = AB - C^2$.

Рассмотрим точку $M_1(1,-3)$: A=24, B=2, C=0. Так как D=48>0, то точка $M_1(1,-3)$ является точкой экстремума, а именно минимума, так как A>0. Найдем минимум функции: $z_{\min}=17$.

Рассмотрим точку M_2 (-1,-3): A=-24, B=2, C=0. Так как D=-48<0, то в точке M_2 (-1,-3) экстремума нет.

Пример решения задачи 11.

Найти экстремумы функции трех переменных $u = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z}$ (x > 0, y > 0, z > 0).

Решение. Найдем стационарные точки заданной функции u. Для этого составим систему уравнений:

$$\begin{cases} u'_{x} = 1 - \frac{y^{2}}{4x^{2}} = 0, \\ u'_{y} = \frac{2y}{4x} - \frac{z^{2}}{y^{2}} = 0, \\ u'_{z} = \frac{2z}{y} - \frac{2}{z^{2}} = 0, \end{cases}$$

решая которую, получим $x_0=0.5; \ y_0=1; \ z_0=1$. Найдем частные производные второго порядка: $u''_{xx}=\frac{y^2}{2x^3}, \quad u''_{yy}=\frac{1}{2x}+\frac{2z^2}{y^3}, \quad u''_{zz}=\frac{2}{y}+\frac{4}{z^3}, \quad u''_{xy}=-\frac{y}{2x^2}, \quad u''_{xz}=0,$ $u''_{yz}=-\frac{2z}{y^2}$. Вычислим их значения в стационарной точке M(0.5;1;1): $u''_{xx}=4$, $u''_{yy}=3, \quad u''_{zz}=6, \quad u''_{xy}=-2, \quad u''_{xz}=0, \quad u''_{yz}=-2$.

Найдем дифференциал второго порядка функции u в стационарной точке M(0,5;1;1):

$$d^2u = 4dx^2 + 3dy^2 + 6dz^2 - 4dxdy - 4dydz$$
.

Воспользуемся критерием Сильвестра. В данной задаче:

$$u_{xx}'' = 4 > 0$$
, $\begin{vmatrix} u_{xx}'' & u_{xy}'' \\ u_{xy}'' & u_{yy}'' \end{vmatrix} = 8 > 0$, $\begin{vmatrix} u_{xx}'' & u_{xy}'' & u_{xz}'' \\ u_{xy}'' & u_{yy}'' & u_{yz}'' \\ u_{xz}'' & u_{yz}'' & u_{zz}'' \end{vmatrix} = 32 > 0$.

Согласно критерию Сильвестра, $d^2u>0$. Значит, точка M(0,5;1;1) является точкой минимума функции $u=x+\frac{y^2}{4x}+\frac{z^2}{y}+\frac{2}{z}$ согласно достаточному условию экстремума. Значение функции в точке минимума $u_{\min}=4$.

11. Условный экстремум

Рассмотрим задачу о нахождении экстремума функции $u=f(x_1,x_2,...,x_n)$ при условии, что $x_1,x_2,...,x_n$ связаны уравнениями

$$\varphi_k(x_1, x_2, ..., x_n), \quad (k = 1, ..., m; m < n).$$
 (11.1)

Уравнения (11.1) называются уравнениями связи.

Определение. Функция $u = f(x_1, x_2, ..., x_n)$ имеет условный максимум (условный минимум) в точке $M_0(x_1^0, x_2^0, ..., x_n^0)$, если существует такая окрестность точки M_0 , в которой для всех точек $M(x_1, x_2, ..., x_n)$ ($M \neq M_0$), удовлетворяющих уравнениям связи, выполняется неравенство $f(M_0) > f(M)$ (соответственно $f(M_0) < f(M)$).

Задача нахождения условного экстремума сводится к исследованию на обычный экстремум функции Лагранжа

$$L(x_1,...,x_n,\lambda_1,...,\lambda_m) = f(x_1,x_2,...,x_n) + \sum_{k=1}^m \lambda_k \varphi_k(x_1,x_2,...,x_n),$$

где постоянные λ_k (k = 1,...,m) называются множителями Лагранжа.

Необходимое условие условного экстремума. Если функция $u=f\left(x_{1},x_{2},...,x_{n}\right)$ имеет условный экстремум в точке $M_{0}\left(x_{1}^{0},x_{2}^{0},...,x_{n}^{0}\right)$, то в этой точке

$$\frac{\partial L(M_0)}{\partial x_i} = 0 \quad (i = 1, ..., n), \quad \frac{\partial L(M_0)}{\partial \lambda_k} = 0 \quad (k = 1, ..., m).$$

Для нахождения точки, в которой возможен условный экстремум, будем иметь систему m+n уравнений:

$$\frac{\partial L}{\partial x_i} = 0 \quad (i = 1, ..., n),$$

$$\varphi_k(x_1, x_2, ..., x_n) = 0 \quad (k = 1, ..., m),$$

$$(11.2)$$

из которой находятся неизвестные $x_1^0, x_2^0, ..., x_n^0, \lambda_1^0, \lambda_2^0, ..., \lambda_m^0$

Достаточное условие условного экстремума. Пусть $x_1^0, x_2^0, ..., x_n^0, \lambda_1^0, \lambda_2^0, ..., \lambda_m^0$ решения системы (11.2). Функция $u = f(x_1, x_2, ..., x_n)$ имеет в точке $M_0(x_1^0, x_2^0, ..., x_n^0)$ условный максимум, если

$$d^{2}L(x_{1}^{0}, x_{2}^{0}, ..., x_{n}^{0}, \lambda_{1}^{0}, \lambda_{2}^{0}, ..., \lambda_{m}^{0}) < 0$$

и условный минимум, если

$$d^{2}L(x_{1}^{0}, x_{2}^{0}, ..., x_{n}^{0}, \lambda_{1}^{0}, \lambda_{2}^{0}, ..., \lambda_{m}^{0}) > 0$$

при любых значениях dx_1 , dx_2 ,..., dx_n , не равных нулю одновременно, и таких, что $\frac{\partial \varphi_k \left(x_1^0,...,x_n^0 \right)}{\partial x_1} dx_1 + ... + \frac{\partial \varphi_k \left(x_1^0,...,x_n^0 \right)}{\partial x_n} dx_n = 0 \quad \left(k = 1,...,m \right)$.

Условный экстремум функции двух переменных

В случае функции z = f(x, y) двух переменных при уравнении связи $\varphi(x, y) = 0$ функция Лагранжа примет вид

$$L(x, y) = f(x, y) + \lambda \varphi(x, y).$$

Система (11.2) запишется в виде

$$\begin{cases} L'_{x}(x,y,\lambda) = 0, \\ L'_{y}(x,y,\lambda) = 0, \\ \varphi(x,y) = 0. \end{cases} \Leftrightarrow \begin{cases} f'_{x}(x,y) + \lambda \varphi'_{x}(x,y) = 0, \\ f'_{y}(x,y) + \lambda \varphi'_{y}(x,y) = 0, \\ \varphi(x,y) = 0. \end{cases}$$

Пусть (x_0, y_0, λ_0) - решение этой системы и

$$\Delta = - \begin{vmatrix} 0 & \varphi'_{x}(x_{0}, y_{0}) & \varphi'_{y}(x_{0}, y_{0}) \\ \varphi'_{x}(x_{0}, y_{0}) & L''_{xx}(x_{0}, y_{0}, \lambda_{0}) & L''_{xy}(x_{0}, y_{0}, \lambda_{0}) \\ \varphi'_{y}(x_{0}, y_{0}) & L''_{xy}(x_{0}, y_{0}, \lambda_{0}) & L''_{yy}(x_{0}, y_{0}, \lambda_{0}) \end{vmatrix}.$$

Тогда, если $\Delta < 0$, то функция z = f(x, y) имеет в точке $M_0(x_0, y_0)$ условный максимум; если $\Delta > 0$ — условный минимум.

Можно также применить критерий Сильвестра для функции Лагранжа.

Критерий Сильвестра: $d^2L > 0$ (функция имеет условный минимум) тогда и только тогда, когда

$$\Delta_{1} = L''_{xx} > 0, \qquad \Delta_{2} = \begin{vmatrix} L''_{xx} & L''_{xy} \\ L''_{xy} & L''_{yy} \end{vmatrix} > 0$$

и $d^2L < 0$ (функция имеет условный максимум) тогда и только тогда, когда

$$\Delta_1 = L''_{xx} < 0, \qquad \Delta_2 = \begin{vmatrix} L''_{xx} & L''_{xy} \\ L''_{xy} & L''_{yy} \end{vmatrix} > 0,$$

для любых значений dx, dy, не равных нулю одновременно и таких, что $\varphi_x' dx + \varphi_y' dy = 0$

Пример решения задачи 12.1.

Найти условный экстремум функции двух переменных z = x + y - 1, если уравнение связи имеет вид $y^3 - 6xy + x^3 = 0$.

Решение. Составляем функцию Лагранжа:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x + y - 1 + \lambda (y^3 - 6xy + x^3), \quad \lambda = const.$$

Найдем точки, в которых возможен условный экстремум. Для этого составим систему уравнений (11.2):

$$\begin{cases} L'_x = 1 + \lambda \left(-6y + 3x^2 \right) = 0, \\ L'_y = 1 + \lambda \left(3y^2 - 6x \right) = 0, \\ y^3 - 6xy + x^3 = 0. \end{cases}$$

Из первого и второго уравнений системы находим λ и приравниваем полученные выражения:

$$\frac{1}{-6y+3x^2} = \frac{1}{3y^2 - 6x},$$

отсюда $-6y + 3x^2 = 3y^2 - 6x$ или 2(x - y) = (y - x)(y + x).

Рассмотрим два случая:

- 1) x-y=0, тогда x=y. Подставляем в уравнение связи: $2x^3-6x^2=0$; находим два корня $x_1=0,\,x_2=3$, тогда $y_1=0,\,y_2=3$. Значения $x_1=0,\,y_1=0$ не являются решениями системы, значения $x_2=3,\,y_2=3$ ее решения при $\lambda=-\frac{1}{9}$
- 2) x+y=-2, тогда y=-2-x. Подставляем в уравнение связи: $-(2+x)^3+6x(2+x)+x^3=0$ или, -8=0, что неверно. Решений нет.

Значит, система имеет единственное решение x = y = 3, $\lambda = -\frac{1}{9}$.

Способ I. Воспользуемся достаточным условием условного экстремума. Найдем частные производные: $L''_{xx}=6x\lambda$, $L''_{xy}=-6\lambda$, $L''_{yy}=6y\lambda$, $\varphi'_x=-6y+3x^2$, $\varphi'_y=3y^2-6x$ и составим определитель:

$$\Delta = - \begin{vmatrix} 0 & \varphi'_{x}(x_{0}, y_{0}) & \varphi'_{y}(x_{0}, y_{0}) \\ \varphi'_{x}(x_{0}, y_{0}) & L''_{xx}(x_{0}, y_{0}, \lambda_{0}) & L''_{xy}(x_{0}, y_{0}, \lambda_{0}) \\ \varphi'_{y}(x_{0}, y_{0}) & L''_{xy}(x_{0}, y_{0}, \lambda_{0}) & L''_{yy}(x_{0}, y_{0}, \lambda_{0}) \end{vmatrix} = - \begin{vmatrix} 0 & 9 & 9 \\ 9 & -2 & \frac{2}{3} \\ 9 & \frac{2}{3} & -2 \end{vmatrix} = -432 < 0.$$

Вывод: функция z=x+y-1 имеет в точке M(3,3) условный максимум. Значение функции в точке условного максимума $z_{\rm max}=5$.

 $Cnocoб\ 2$: $L''_{xx}=6x\lambda$, $L''_{xy}=-6\lambda$, $L''_{yy}=6y\lambda$. Найдем дифференциал второго порядка функции L в точке M(3,3) при $\lambda=-\frac{1}{9}$:

$$d^{2}L(3,3) = L_{xx}''(3,3)dx^{2} + 2L_{xy}''(3,3)dxdy + L_{yy}''(3,3)dy^{2} = -2dx^{2} + \frac{4}{3}dxdy - 2dy^{2}.$$

Воспользуемся критерием Сильвестра:

$$\Delta_1 = -2 < 0$$
, $\Delta_2 = \begin{vmatrix} -2 & 2/3 \\ 2/3 & -2 \end{vmatrix} = \frac{32}{9} > 0$.

Значит, $d^2L < 0$ для любых значений dx, dy, не равных нулю одновременно. Таким образом, функция z = x + y - 1 имеет в точке M(3,3) условный максимум. Значение функции в точке условного максимума есть $z_{\rm max} = 5$.

Пример решения задачи 12.2.

Найти условный экстремум функции $z = \frac{1}{x^2} - \frac{1}{8y^2}$ при уравнении связи x - y = 2.

Решение.

Способ 1. Составим функцию Лагранжа:

$$L(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y) = \frac{1}{x^2} - \frac{1}{8v^2} + \lambda (x-y-2), \quad (\lambda = const).$$

Найдем точки, в которых возможен условный экстремум. Для этого составляем систему уравнений:

$$\begin{cases} L'_{x} = -\frac{2}{x^{3}} + \lambda = 0, \\ L'_{y} = \frac{1}{4y^{3}} - \lambda = 0, \\ x - y - 2 = 0 \end{cases}$$

и решаем ее. Из первого уравнения выражаем $\lambda = \frac{2}{x^3}$, из второго уравнения выражаем $\lambda = \frac{1}{4y^3}$. Приравнивая $\frac{2}{x^3} = \frac{1}{4y^3}$, получаем x = 2y. Подставим в третье уравнение $2y - y - 2 = 0 \Rightarrow y = 2$. Таким образом, система имеет единственное решение x = 4, y = 2, $\lambda = \frac{1}{32}$.

Находим $d^2L(4,2) = L''_{xx}(4,2)dx^2 + 2L''_{xy}(4,2)dxdy + L''_{yy}(4,2)dy^2 = \frac{3}{128}dx^2 - \frac{3}{64}dy^2$. Дифференцируя уравнение связи, получаем dx - dy = 0, откуда dx = dy. Подставляя dy в выражение для d^2L , получаем:

 $d^2L=rac{3}{128}dx^2-rac{3}{64}dx^2=-rac{3}{128}dx^2<0.$ Значит, функция $z=rac{1}{x^2}-rac{1}{8y^2}$ имеет условный максимум при $x=4,\,y=2$. Значение функции в точке условного максимума есть $z_{
m max}=rac{1}{32}$.

Способ 2. В данном случае переменная x легко выражается через y из уравнения связи: x=2+y. Подставляя x=2+y в уравнение функции $z=\frac{1}{x^2}-\frac{1}{8y^2}$, мы получаем функцию одной переменной y: $z=\frac{1}{(2+y)^2}-\frac{1}{8y^2}$.

Исследуя функцию $z=\frac{1}{(2+y)^2}-\frac{1}{8y^2}$ одной переменной на экстремум, получаем: y=2 - точка локального максимума, $z=\frac{1}{32}$ - максимальное значение функции в этой точке.

12. Наибольшее и наименьшее значения функции двух переменных в области

Если функция z = f(x, y) дифференцируема в ограниченной замкнутой области D, то она достигает своего наибольшего (наименьшего) значения или в стационарной, или в граничной точке области D.

Для того, чтобы найти наибольшее и наименьшее значения функции, дифференцируемой в ограниченной замкнутой области, нужно:

1) найти стационарные точки, расположенные в данной области, и вычислить значения функции в этих точках;

2)найти наибольшее и наименьшее значения функции на линиях, образующих границу области;

3)из всех найденных значений выбрать наибольшее и наименьшее.

Пример решения задачи 13.1.

Найти наименьшее и наибольшее значения функции $z = x^2 + 2xy - 3y^2 + y$ в ограниченной замкнутой области D, заданной системой неравенств $x + y \le 1$, $y \ge 0$, $x \ge 0$.

Решение.

Область D представляет собой треугольник, ограниченный координатными осями и прямой x+y=1.

1) Найдем стационарные точки функции внутри области D . В этих точках частные производные равны нулю:

$$\begin{cases} x + y = 0, \\ 2x - 6y + 1 = 0. \end{cases}$$

Решая данную систему, получим точку $K\left(-\frac{1}{8},\frac{1}{8}\right)$. Эта точка не принадлежит области D , следовательно, в области D стационарных точек нет.

- 2) Исследуем функцию на границе области. Поскольку граница состоит из трех участков, описываемых тремя различными уравнениями, то будем исследовать функцию на каждом участке отдельно:
- y=0. На этом участке $z=x^2$ $(0 \le x \le 1)$. Так как $z=x^2$ возрастающая функция переменной x при $x \ge 0$, то на отрезке [0,1] наименьшее значение функции z будет в точке (0,0): z(0,0)=0, а наибольшее в точке (1,0): z(1,0)=1.
- x=0. На этом участке $z=-3y^2+y$ $(0 \le y \le 1)$. Найдем производную z'=-6y+1. Из уравнения -6y+1=0 получаем $y=\frac{1}{6}$. Таким образом, наибольшее и наименьшее значения функции z на границе x=0 находятся среди ее значений в точках (0,0), (0,1), $(0,\frac{1}{6})$. Найдем эти значения: z(0,1)=-2, $z(0,\frac{1}{6})=\frac{1}{12}$.
- x+y=1 или y=1-x, $(0 \le x \le 1)$. На этом участке $z=-4x^2+7x-2$. Решая уравнение z'=-8x+7=0, получим $x=\frac{7}{8}$, следовательно, $y=1-\frac{7}{8}=\frac{1}{8}$. Значение функции в этой точке равно $z(\frac{7}{8},\frac{1}{8})=1\frac{1}{16}$, а на концах отрезка [0,1] значения функции найдены выше.
- 3) Сравнивая полученные значения z(0,0)=0, z(1,0)=1, z(0,1)=-2, $z(0,\frac{1}{6})=\frac{1}{12}$, $z(\frac{7}{8},\frac{1}{8})=1\frac{1}{16}$, заключаем, что наибольшее и наименьшее значения функции в замкнутой области D равны соответственно $z_{\text{наи}}=z(\frac{7}{8},\frac{1}{8})=1\frac{1}{16}$ и $z_{\text{наим}}=z(0,1)=-2$.

Пример решения задачи 13.2.

Найти наименьшее и наибольшее значения функции z = x + 2y - 3 в замкнутой области D, заданной неравенством $x^2 + y^2 \le 1$.

30

Решение.

Область D представляет собой круг радиуса 1 с центром в начале координат.

1) Найдем стационарные точки функции внутри области D . В этих точках частные производные равны нулю:

$$\begin{cases} z_x' = 1 \neq 0, \\ z_y' = 2 \neq 0. \end{cases}$$

Следовательно, стационарных точек нет.

2) Исследуем функцию на границе области. Составляем функцию Лагранжа $L(x,y,\lambda) = x + 2y - 3 + \lambda (x^2 + y^2 - 1)$. Используя необходимые условия существования экстремума, получим систему уравнений

$$\begin{cases} L'_x = 1 + 2x\lambda = 0, \\ L'_y = 2 + 2y\lambda = 0, \\ x^2 + y^2 = 1. \end{cases}$$

Решим полученную систему. Из первого уравнения выражаем $\lambda=-\frac{1}{2x}$, из второго уравнения выражаем $\lambda=-\frac{1}{y}$. Приравнивая $-\frac{1}{2x}=-\frac{1}{y}$, получаем y=2x. Подставим в третье уравнение $x^2+4x^2=1 \Rightarrow x=\pm \frac{1}{\sqrt{5}}$. Таким образом, имеем две точки $M_1\bigg(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\bigg)$, $M_2\bigg(-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\bigg)$. Найдем значения функции в полученных точках: $z(M_1)=\sqrt{5}-3$, $z(M_2)=-\sqrt{5}-3$. Таким образом, наибольшее значение функции равно $z_{\text{наиб}}(M_1)=\sqrt{5}-3$; наименьшее значение функции равно $z_{\text{наим}}(M_2)=-\sqrt{5}-3$.

13. Метод наименьших квадратов

В различных исследованиях на основании эксперимента требуется установить аналитическую зависимость y = f(x) между двумя переменными величинами x и y. Широко распространенным методом решения этой задачи является метод наименьших квадратов.

Пусть в результате эксперимента получено n значений функции y при соответствующих значениях аргумента x. Результаты сведены в таблицу

x	x_1	x_2		X_n
y	${\cal Y}_1$	<i>y</i> ₂	•••	<i>y</i> _n

Вначале устанавливается вид аппроксимирующей функции $y = \varphi(x, a, b, c, ...)$, или из теоретических соображений, или на основании характера расположения на плоскости Оху точек, соответствующих экспериментальным значениям. Далее, при выбранном виде функции, необходимо подобрать входящие в нее параметры a, b, c, ... так, чтобы она наилучшим образом отражала рассматриваемую зависимость.

Метод наименьших квадратов заключается в следующем. Рассмотрим сумму квадратов разностей значений y_i , полученных в результате эксперимента, а также найденных в результате вычисления значений функции $\varphi(x,a,b,c,...)$ в соответствующих точках x_i :

$$S(a,b,c,...) = \sum_{i=1}^{n} [y_i - \varphi(x_i,a,b,c,...)]^2.$$
 (13.1)

Подберем параметры a,b,c,... так, чтобы эта сумма имела наименьшее значение. Таким образом, задача свелась к исследованию функции S(a,b,c,...) на экстремум.

Из необходимого условия экстремума функции нескольких переменных следует, что эти значения a,b,c,... удовлетворяют системе уравнений

$$\frac{\partial S}{\partial a} = 0$$
, $\frac{\partial S}{\partial b} = 0$, $\frac{\partial S}{\partial c} = 0$,...

или, в развернутом виде,

$$\begin{cases}
\sum_{i=1}^{n} \left[y_i - \varphi(x_i, a, b, c, \ldots) \right] \frac{\partial \varphi(x_i, a, b, c, \ldots)}{\partial a} = 0, \\
\sum_{i=1}^{n} \left[y_i - \varphi(x_i, a, b, c, \ldots) \right] \frac{\partial \varphi(x_i, a, b, c, \ldots)}{\partial b} = 0, \\
\sum_{i=1}^{n} \left[y_i - \varphi(x_i, a, b, c, \ldots) \right] \frac{\partial \varphi(x_i, a, b, c, \ldots)}{\partial c} = 0, \\
\vdots \\
\sum_{i=1}^{n} \left[y_i - \varphi(x_i, a, b, c, \ldots) \right] \frac{\partial \varphi(x_i, a, b, c, \ldots)}{\partial c} = 0,
\end{cases}$$
(13.2)

В случае линейной аппроксимации вида y = ax + b функция S(a,b) принимает вид

$$S(a,b) = \sum_{i=1}^{n} [y_i - (ax_i + b)]^2.$$

Это функция с двумя переменными a и b. Исследуем ее на экстремум. Запишем необходимые условия экстремума:

$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{n} [y_i - (ax_i + b)]x_i = 0,$$

$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{n} [y_i - (ax_i + b)] = 0.$$

Отсюда получаем следующую систему уравнений относительно неизвестных a и b

$$a\left(\sum_{i=1}^{n} x_i^2\right) + b\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} x_i y_i,$$

$$a\left(\sum_{i=1}^{n} x_i\right) + b \cdot n = \sum_{i=1}^{n} y_i.$$
(13.3)

Можно показать, что система (13.3) имеет единственное решение, и при найденных значениях a и b функция S(a,b) имеет минимум.

В случае квадратичной аппроксимации вида $y = ax^2 + bx + c$ функция (13.1) имеет вид

$$S(a,b,c) = \sum_{i=1}^{n} \left[y_i - (ax_i^2 + bx_i + c) \right]^2.$$

Система уравнений (13.2) принимает вид

$$\begin{cases} \sum_{i=1}^{n} \left[y_i - (ax_i^2 + bx_i + c) \right] x_i^2 = 0, \\ \sum_{i=1}^{n} \left[y_i - (ax_i^2 + bx_i + c) \right] x_i = 0, \\ \sum_{i=1}^{n} \left[y_i - (ax_i^2 + bx_i + c) \right] = 0 \end{cases}$$

или, в развернутой форме

$$\begin{cases}
\sum_{i=1}^{n} y_{i} x_{i}^{2} - a \sum_{i=1}^{n} x_{i}^{4} - b \sum_{i=1}^{n} x_{i}^{3} - c \sum_{i=1}^{n} x_{i}^{2} = 0, \\
\sum_{i=1}^{n} y_{i} x_{i} - a \sum_{i=1}^{n} x_{i}^{3} - b \sum_{i=1}^{n} x_{i}^{2} - c \sum_{i=1}^{n} x_{i} = 0, \\
\sum_{i=1}^{n} y_{i} - a \sum_{i=1}^{n} x_{i}^{2} - b \sum_{i=1}^{n} x_{i} - c \cdot n = 0.
\end{cases} (13.4)$$

Получили систему трех линейных уравнений для определения трех неизвестных a,b,c.

Если требуется найти функцию вида $y = \frac{a}{x^2} + \frac{b}{x} + c$, то функция (13.1) запишется в виде

$$S(a,b,c) = \sum_{i=1}^{n} \left[y_i - \left(\frac{a}{x_i^2} + \frac{b}{x_i} + c \right) \right]^2.$$

Система уравнений (13.2) для определения неизвестных параметров a,b,c принимает вид

$$\begin{cases} \sum_{i=1}^{n} \left[y_i - \left(\frac{a}{x_i^2} + \frac{b}{x_i} + c \right) \right] \frac{1}{x_i^3} = 0, \\ \sum_{i=1}^{n} \left[y_i - \left(\frac{a}{x_i^2} + \frac{b}{x_i} + c \right) \right] \frac{1}{x_i^2} = 0, \\ \sum_{i=1}^{n} \left[y_i - \left(\frac{a}{x_i^2} + \frac{b}{x_i} + c \right) \right] = 0 \end{cases}$$

или, в развернутой форме

$$\begin{cases}
\sum_{i=1}^{n} \frac{y_{i}}{x_{i}^{3}} - a \sum_{i=1}^{n} \frac{1}{x_{i}^{5}} - b \sum_{i=1}^{n} \frac{1}{x_{i}^{4}} - c \sum_{i=1}^{n} \frac{1}{x_{i}^{3}} = 0, \\
\sum_{i=1}^{n} \frac{y_{i}}{x_{i}^{2}} - a \sum_{i=1}^{n} \frac{1}{x_{i}^{4}} - b \sum_{i=1}^{n} \frac{1}{x_{i}^{3}} - c \sum_{i=1}^{n} \frac{1}{x_{i}^{2}} = 0, \\
\sum_{i=1}^{n} y_{i} - a \sum_{i=1}^{n} \frac{1}{x_{i}^{2}} - b \sum_{i=1}^{n} \frac{1}{x_{i}} - c \cdot n = 0.
\end{cases} (13.5)$$

Пример решения задачи 14.

Экспериментально получены пять значений функции y = f(x) при пяти значениях аргумента, которые записаны в таблице.

x	1	2	3	4	5
y	3	4	2,5	1,5	0,5

Методом наименьших квадратов найти функцию вида y = ax + b, выражающую приближенно функцию y = f(x). Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции y = ax + b.

Решение.

Будем искать функцию y = f(x) в виде линейной функции y = ax + b. Система (13.3) принимает вид:

$$a\left(\sum_{i=1}^{5} x_i^2\right) + b\left(\sum_{i=1}^{5} x_i\right) = \sum_{i=1}^{5} x_i y_i,$$

$$a\left(\sum_{i=1}^{5} x_i\right) + 5b = \sum_{i=1}^{5} y_i.$$

Учитывая, что

$$\sum_{i=1}^{5} x_i = 1 + 2 + 3 + 4 + 5 = 15, \qquad \sum_{i=1}^{5} x_i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55,$$

$$\sum_{i=1}^{5} y_i = 3 + 4 + 2,5 + 1,5 + 0,5 = 11,5, \quad \sum_{i=1}^{5} x_i y_i = 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 2,5 + 4 \cdot 1,5 + 5 \cdot 0,5 = 27,$$

будем иметь

$$\begin{cases} 55a + 15b = 27, \\ 15a + 5b = 11, 5. \end{cases}$$

Решая эту систему, находим: a = -0.75, b = 4.55.

Уравнение искомой прямой имеет вид: y = -0.75x + 4.55.

Строим график

Пример решения задачи 15.

15.1. Экспериментально получены шесть значений функции y = f(x) при шести значениях аргумента, которые записаны в таблице.

х	0	1	2	3	4	5
y	0,7	0,5	1,5	2,0	2,5	4,3

Методом наименьших квадратов найти функцию вида $y = ax^2 + bx + c$, выражающую приближенно функцию y = f(x). Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции $y = ax^2 + bx + c$.

Решение.

Будем искать функцию y = f(x) в виде квадратичной функции $y = ax^2 + bx + c$. Система (13.4) принимает вид:

$$\begin{cases} \sum_{i=1}^{6} y_i x_i^2 - a \sum_{i=1}^{6} x_i^4 - b \sum_{i=1}^{6} x_i^3 - c \sum_{i=1}^{6} x_i^2 = 0, \\ \sum_{i=1}^{6} y_i x_i - a \sum_{i=1}^{6} x_i^3 - b \sum_{i=1}^{6} x_i^2 - c \sum_{i=1}^{6} x_i = 0, \\ \sum_{i=1}^{6} y_i - a \sum_{i=1}^{6} x_i^2 - b \sum_{i=1}^{6} x_i - 6c = 0. \end{cases}$$

Учитывая, что

$$\sum_{i=1}^{6} x_i^i = 0 + 1 + 2 + 3 + 4 + 5 = 15,$$

$$\sum_{i=1}^{6} x_i^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55,$$

$$\sum_{i=1}^{6} x_i^3 = 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 225,$$

$$\sum_{i=1}^{6} x_i^4 = 0^4 + 1^4 + 2^4 + 3^4 + 4^4 + 5^4 = 979,$$

$$\sum_{i=1}^{6} y_i = 0,7 + 0,5 + 1,5 + 2,0 + 2,5 + 4,3 = 11,5,$$

$$\sum_{i=1}^{6} y_i x_i = 0 \cdot 0,7 + 1 \cdot 0,5 + 2 \cdot 1,5 + 3 \cdot 2,0 + 4 \cdot 2,5 + 5 \cdot 4,3 = 41,$$

$$\sum_{i=1}^{6} y_i x_i^2 = 0 \cdot 0,7 + 1 \cdot 0,5 + 4 \cdot 1,5 + 9 \cdot 2,0 + 16 \cdot 2,5 + 25 \cdot 4,3 = 172,$$
будем иметь
$$\begin{cases} 172 - 979a - 225b - 55c = 0,\\ 41 - 225a - 55b - 15c = 0,\\ 11,5 - 55a - 15b - 6c = 0. \end{cases}$$

Решая эту систему, находим: $a=0,14,\ b=-0,01,\ c=0,64$. Уравнение искомой функции имеет вид: $y=0,14x^2-0,01x+0,64$. Строим график

15.2. Экспериментально получены пять значений функции y = f(x) при пяти значениях аргумента, которые записаны в таблице.

x	1	2	3	4	5
y	0,8	-0,1	-1,2	-1,3	-1,4

Методом наименьших квадратов найти функцию вида $y = \frac{a}{x^2} + \frac{b}{x} + c$, выражающую приближенно функцию y = f(x). Сделать чертеж, на котором

в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции $y = \frac{a}{x^2} + \frac{b}{x} + c$.

Решение.

Будем искать функцию y = f(x) в виде функции $y = \frac{a}{x^2} + \frac{b}{x} + c$. Система (13.5) принимает вид:

$$\begin{cases} \sum_{i=1}^{5} \frac{y_i}{x_i^3} - a \sum_{i=1}^{5} \frac{1}{x_i^5} - b \sum_{i=1}^{5} \frac{1}{x_i^4} - c \sum_{i=1}^{5} \frac{1}{x_i^3} = 0, \\ \sum_{i=1}^{5} \frac{y_i}{x_i^2} - a \sum_{i=1}^{5} \frac{1}{x_i^4} - b \sum_{i=1}^{5} \frac{1}{x_i^3} - c \sum_{i=1}^{5} \frac{1}{x_i^2} = 0, \\ \sum_{i=1}^{5} y_i - a \sum_{i=1}^{5} \frac{1}{x_i^2} - b \sum_{i=1}^{5} \frac{1}{x_i} - 5c = 0. \end{cases}$$

Учитывая, что

$$\sum_{i=1}^{5} \frac{1}{x_i} = 2,283, \quad \sum_{i=1}^{5} \frac{1}{x_i^2} = 1,464, \quad \sum_{i=1}^{5} \frac{1}{x_i^3} = 1,186, \quad \sum_{i=1}^{5} \frac{1}{x_i^4} = 1,08, \quad \sum_{i=1}^{5} \frac{1}{x_i^5} = 1,037,$$

$$\sum_{i=1}^{5} y_i = 2,283, \quad \sum_{i=1}^{5} y_i = 0.329, \quad \sum_{i=1}^{5} y_i = 0.624$$

$$\sum_{i=1}^{5} y_i = -3.9, \quad \sum_{i=1}^{5} \frac{y_i}{x_i^2} = 0.329, \quad \sum_{i=1}^{5} \frac{y_i}{x_i^3} = 0.624.$$

будем иметь

$$\begin{cases} 0,624 - 1,037a - 1,08b - 1,186c = 0, \\ 0,329 - 1,08a - 1,186b - 1,464c = 0, \\ -3,9 - 1,464a - 2,283b - 5c = 0. \end{cases}$$

Решая эту систему, находим: a = 1,57, b = 0,87, c = -1,64.

Уравнение искомой функции имеет вид: $y = \frac{1,57}{x^2} + \frac{0,87}{x} - 1,64$.

Строим график

Пример решения задачи 16.

Из прямоугольного листа жести шириной а изготовить желоб призматической формы, чтобы его поперечное сечение имело наибольшую площадь.

Решение. Пусть ABCD — лист жести, a = AD. Обозначим x = AE, тогда FD = x, EF = a - 2x (рис.1). Из листа жести изготовили желоб с поперечным сечением ADFE (рис.2), тогда нижнее основание желоба равно EF = a - 2x, боковая сторона равна FD = x.

Рис.1. Лист жести

Рис.2. Поперечное сечение желоба

Сечение желоба представляет собой равнобокую трапецию, следует найти ее верхнее основание и высоту. Обозначим через α величину угла: $\alpha = \angle ADF$. Из точки F опускаем перпендикуляр FG на сторону AD, из треугольника GDF находим $GD = x \cos \alpha$, и высоту трапеции $GF = x \sin \alpha$, отсюда $AD = EF + 2GD = a - 2x + 2x \cos \alpha$ - верхнее основание трапеции. Обозначим через z площадь трапеции ADFE.

Тогда $z=ax\sin\alpha-2x^2\sin\alpha+x^2\sin\alpha\cos\alpha$. Имеем функцию двух переменных x,α . Требуется найти наибольшее значение функции z в области

$$0 < \alpha < \frac{\pi}{2}, \ 0 < x < \frac{a}{2}.$$

Составим систему для нахождения стационарных точек функции:

$$\begin{cases} z'_x = a\sin\alpha - 4x\sin\alpha + 2x\sin\alpha\cos\alpha = 0, \\ z'_\alpha = ax\cos\alpha - 2x^2\cos\alpha + x^2\cos2\alpha = 0. \end{cases}$$

По условию задачи $x \neq 0$, $\sin \alpha \neq 0$, поэтому система уравнений принимает вид

$$\begin{cases} a - 4x + 2x\cos\alpha = 0, \\ a\cos\alpha - 2x\cos\alpha + x\cos2\alpha = 0. \end{cases}$$

Решая систему, находим: $\cos \alpha = \frac{1}{2}$, $x = \frac{a}{3}$. По условию данной задачи максимум функции z существует, следовательно, максимальное значение функции будет при $\alpha = 60^{\circ}$, $x = \frac{a}{3}$.

Расчетные задания

Задача 1. Найти и изобразить области определения следующих функций:

No	z(x,y)	№	z(x,y)
1	$z = \frac{\sqrt{y^2 - 2x + 4}}{2y}$	15	$z = \ln(x^2 + y^2 - 3) + \sqrt{\ln y}$
2	$z = \ln(9 - y^2 - x^2) + \sqrt{\ln x}$	16	$z = \frac{\ln(y)}{\sqrt{2 - x^2 - y^2}}$ 1 1
3	$z = \frac{1}{\sqrt{x+y}} + \sqrt{x-y}$	17	$z = \frac{1}{\sqrt{x^2 + y^2 - 6}} + \frac{1}{\sqrt{x}}$
4	$z = \frac{1}{\sqrt{x+y}} + \sqrt{x-y}$ $z = \frac{e^{\sqrt{x^2+y^2-1}}}{\sqrt{x+y}}$	18	$z = \arccos\left(x + y\right)$
5	$z = \ln(y) + \ln(\sin x)$	19	$z = \sqrt{4 - x^2 + y}$
6	$z = \arcsin\left(x - y\right)$	20	$z = \sqrt{\ln(x^2 + y^2)}$
7	$z = \sqrt{y^2 - x^2}$	21	$z = \sqrt{xy} + \sqrt{x - y}$
8	$z = \ln(x) + \ln(\cos y)$	22	$z = \frac{\ln(y-1)}{\sqrt{x^2 + y^2 - 4}}$
9	$z = \frac{\ln\left(x\right)}{\sqrt{x^2 + y^2 - 6}}$	23	$z = e^{\sqrt{x^2 - y^2}}$
10	$z = \ln(x^2 - 2y + 4) + \sqrt{x}$	24	$z = \ln(4 - y^2 - x^2) + \sqrt{x}$
11	$z = \sqrt{9 - y^2 - x^2} + \sqrt{xy}$	25	$z = \frac{\ln\left(2x^2 - y + 6\right)}{\sqrt{x}}$
12	$z = \arccos\left(x + 2y\right)$	26	$z = \sqrt{2x^2 - y^2}$
13	$z = \frac{\ln{(2x)}}{\sqrt{x^2 + y^2 - 25}}$	27	$z = \arcsin\left(2x - y\right)$
14	$z = \ln\left(y^2 - 3x + 6\right)$	28	$z = \ln(x) + \ln(\sin y)$

Задача 2. Проверить, удовлетворяет ли функция z = f(x, y) данному уравнению

№	z = f(x, y)	уравнение
1.	$z = \ln\left(x^2 + xy + y^2\right)$	$(z'_x)^2 - (z'_y)^2 = z''_{yy} - z''_{xx}$
2.	$z = e^{xy}$	$x^2 z''_{xx} - y^2 z''_{yy} = 0$

N₂	z = f(x, y)	уравнение
3.	$z = x^{y^2}$	$z''_{yy} - \frac{1}{y}z'_{y} = \frac{(z'_{y})^2}{z}$
4.	$z = \sqrt{\frac{y}{x}}$	$yz''_{yy} - xz''_{xy} = 0$
5.	$z = \sin\left(x - 3y\right)$	$z_{yy}'' - 9z_{xx}'' = 0$
6.	$z = \frac{x}{x^2 + y^2}$	$z_{xx}'' + z_{yy}'' = 0$
1	$z = \ln\left(x + e^{-y}\right)$	$z_x'z_{xy}'' - z_y'z_{xx}'' = 0$
8.	$z = \sqrt{x^2 + y^2}$	$z_y' \cdot z_x' + z \cdot z_{xy}'' = 0$
9.	$z = e^{x^2 + xy + y^2}$	$\frac{z_x' \cdot z_y'}{z} + z = z_{xy}''$
10.	$z = \cos\left(x + y^2\right)$	$z''_{yy} - 2z'_x = 2y z''_{xy}$
11.	$z = \sin^2(y - 3x)$	$9z_{yy}'' = z_{xx}''$
12.	$z = arctg\left(\frac{x}{y}\right)$	$z_{xx}'' + z_{yy}'' = 0$
13.	$z = (y - x)\sin y + \cos x$	$(x-y)z_{xy}''-z_y'=0$
14.	$z = \frac{y}{x}$	$x^2 z_{xx}'' + 2xy z_{xy}'' + y^2 z_{yy}'' = 0$
15.	$z = y\sqrt{\frac{y}{x}}$	$x^2 z''_{xx} - y^2 z''_{yy} = 0$
16.	$z = \frac{y}{\left(x^2 - y^2\right)^5}$	$\frac{1}{x}z'_{x} + \frac{1}{y}z'_{y} - \frac{z}{y^{2}} = 0$
17.	$z = e^{xy}$	$x^{2}z''_{xx} - 2xyz''_{xy} + y^{2}z''_{yy} + 2xyz = 0$
18.	$z = \arcsin(xy)$	$z''_{xx} + z''_{yy} = xy(x^2 + y^2)z''_{xy}$
	$z = tg\left(\frac{x}{y}\right)$	$z_{xy}'' + \frac{x}{y}z_{xx}'' = 0$
20.	$z = \sin\left(x + 7y\right)$	$z''_{yy} - 49z''_{xx} = 0$
21.	$z = \ln\left(e^{x} + e^{y}\right)$	$z_{xx}'' + 2z_{xy}'' + z_{yy}'' = 0$
22.	$z = x\sin y + y\cos x$	$z_{xx}'' + z_{yy}'' + z = 0$
23.	$z = xe^{xy}$	$x^2 z_{xx}'' + 2xy z_{xy}'' + y^2 z_{yy}'' = 0$

№	z = f(x, y)	уравнение
24.	$z = y^x$	$x \cdot z_X' + z = y \cdot z_{XY}''$
25.	$z = \ln\left(x^2 + y^2 + 2x + 1\right)$	$z_{xx}'' + z_{yy}'' = 0$
26.	$z = \frac{\sin x}{\cos y}$	$z_x' \cdot z_y' = z \cdot z_{xy}''$
27.	$z = \frac{x}{y}$	$xz_{xy}'' - z_y' = 0$
28.	$z = \arccos\sqrt{\frac{x}{y}}$	$z_{xy}'' = z_{yx}''$

Задача 3. Найти производные сложной функции.

№	u(x,y)	производные
1	$u = \ln(x^2 + xy + y^2), y = \frac{1}{3}x^3 + x$	$\frac{\partial u}{\partial x}$, $\frac{du}{dx}$ -?
2	$u = \arcsin\left(\frac{x}{y}\right), x = \sin t, \ y = \cos t$	$\frac{du}{dt}$ -?
3	$u = x^{y} + y^{x}, x = v^{2} + w^{2}, y = w^{2} - v^{2}$	$\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v} - ?$
4	$u = x^2z + y^3 + yz^3$, $x = t^2 + 1$, $y = t^3$, $z = 4 - t^4$	$\frac{du}{dt}$ - ?
5	$u = \frac{v}{w} + \frac{w}{v}, w = y \sin x, v = x \cos y$	$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} - ?$
6	$u = arc tg\left(\frac{x+1}{y}\right), x = e^{2t}, \ y = \ln(2t+1)$	$\frac{du}{dt}$ -?
7	$u = e^{x} \ln(x^{2} + y^{2}), y = \frac{1}{2}x^{2} + x$	$\frac{\partial u}{\partial x}$, $\frac{du}{dx}$ -?
8	$u = \sqrt{v - w} + \ln(v^2 + w), w = y e^x, v = x e^y$	$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} - ?$
9	$u = xz^{3} + x^{2}y^{2} + y^{3}z, x = t^{-2}, y = t^{3}, z = t^{-4}$	$\frac{du}{dt}$ -?
10	$u = \frac{e^{xy}}{\sqrt{x+y}}, x = v \cos w, \ y = w \sin v$	$\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v} - ?$
11	$u = \frac{x^2 + xy}{1 + y}, y = x \cos x$	$\frac{\partial u}{\partial x}$, $\frac{du}{dx}$ -?

№	u(x,y)	производные
12	$u = y^2 tg(x), x = e^t \sin t, \ y = e^t \cos t$	$\frac{du}{dt}$ – ?
13	$u = \frac{v}{w^2} + 2w, w = \sqrt{y} x, v = y \cos x$	$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} - ?$
	$u = \frac{e^x + e^y}{x^2}, y = x \ln x$	$\frac{\partial u}{\partial x}, \frac{du}{dx} - ?$
15	$u = x \operatorname{arc} tg(xy), x = e^t + 1, \ y = t^3$	$\frac{du}{dt}$ -?
16	$u = \frac{e^{xy}}{\sqrt{x+y}}, x = v \cos w, \ y = w \sin v$	$\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v} - ?$
17	$u = \frac{x^2 + y^2}{\sqrt{xy}}, y = x tgx$	$\frac{\partial u}{\partial x}$, $\frac{du}{dx}$ -?
18		$\frac{du}{dt}$ – ?
19	$u = \frac{\arcsin v}{w^2}, w = \frac{1}{5}x^5 + \frac{1}{7}y^7, v = \ln(xy)$	$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} - ?$
20	$u = e^{xy} \sqrt{y}, x = \ln(w), y = w \sin v$	$\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v} - ?$
21	$u = \frac{xy - 2y^2}{\sqrt{1+y}}, y = xe^x$	$\frac{\partial u}{\partial x}$, $\frac{du}{dx}$ -?
22	$u = \arccos\left(\frac{2x}{y}\right), x = \sin t, \ y = \cos t$	$\frac{du}{dt}$ -?
23	$u = tg(xy), x = \ln(w^2 + v^2), \ y = \frac{w^2}{v^2}$	$\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v} - ?$
24	$u = \frac{v + 2w}{w^3}$, $w = x^5 + y^7 - 2$, $v = \cos(xy)$	$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} - ?$
	$u = \ln(e^x + e^{-y}), y = \frac{1}{3}x^3 + x$	$\frac{\partial u}{\partial x}, \frac{du}{dx} - ?$
26	$u = arctg\left(\frac{x}{y}\right), x = \cos t, \ y = \sin t$	$\frac{du}{dt}$ – ?
27	$u = arc tg(xy), x = \ln(w^2 - v^2), y = wv^2$	$\frac{\partial u}{\partial w}, \frac{\partial u}{\partial v} - ?$
28	$u = x^2 y^3 z^4$, $x = \ln(t+1)$, $y = t^2 + 1$, $z = t^3$	$\frac{du}{dt}$ - ?

Задача 4. Найти первую производную неявной функции.

№	функция	№	функция
1.	$\sin\left(x^3y + y^3\right) + 2x = 5.$	15.	$z = x + y^2 tg z$
2.	$x^2 - y^2 - z^2 = \cos z.$	16.	$5z - \ln\left(x^2 + y^2\right) = 2$
3.	$e^{xz} + 2yz = x^2 + y^2$	17.	$xe^{2y} - y \ln x = 7$
4.	$x^2y^3 + xz^3 + y^2 = 0$	18.	$\cos^2 x + \cos^2 y + \cos^2 z = 1$
5.	$\ln(x^2 + y^2) = arctg(xy)$	19.	$x^2y^3 - 2x^2 - 3y + 5xy^5 = 0$
6.	$3x^2z + z^3 = 2xy$	20.	$xz^5 + y^3z - x^3 = 0$
7.	$xe^y + ye^x = 2$	21.	$x^y = y^x$
8.	$x^2 + y^2 + z^2 + 2x + 3z = 1$	22.	$x^2 + y^2 + z^2 = \sin z$
9.	$x^4y^2 + 2x^2y^2 + 3x^2y^4 = 2$	23.	$tg(x+y) - 2x^2y^3 = 1$
10.	$2(x+y+z)=e^{x+y+z}-1$	24.	$xyz + z^3 = 7x$
11.	$\cos\left(\frac{x}{y}\right) = xy$	25.	$arctg(xy) = \frac{x}{y}$
12.	$xyz + 5z^2 = 2x$	26.	x + y + z + arctg z = 0
13.	$x^2y - y^2z + xe^z = 0$	27.	$\cos\left(x^2y + y^2\right) + 2x = 2$
14.	$x^2 \ln y - y^2 \ln x = 0$	28.	$2x^2y^3 + xz^3 + y^2z = 0$

Задача 5. Найти дифференциалы n -го порядка $(d^n u)$ следующих функций (x, y, z - независимые переменные).

1.	$u = e^{y} \cos x, n = 3.$	7.	$u = x^3 y^5 + 3 \ln x + 5 \ln y$, $n = 3$.
2.	$u = x^3 + y^3 + z^3 + 2xyz$, $n = 2$.	8.	$u=e^{xyz}, n=2.$
3.	$u=\frac{x}{y}+\frac{y}{x}, n=3.$	9.	$u = x^{\frac{3}{5}} + \sin^2 y$, $n = 3$.
4.	$u = e^{x-2y+3z}, n = 2.$	10.	$u = x^2y + y^2z + z^2x$, $n = 2$.
5.	$u = \sin(2x)\cos(3y), n = 3.$	11.	$u = \ln \cos \frac{x}{y}, n = 3.$
6.	$u = \ln(x + y + z), n = 2.$	12.	$u = e^{-2x+3y-4z}$, $n = 2$.

13.
$$u = y^2 - 3\cos^2 x$$
, $n = 3$.

14. $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, $n = 2$.

22. $u = \frac{z}{y} + \frac{y}{z} + \frac{x}{y}$, $n = 2$.

15. $u = xy^{1/5} + \frac{1}{x}$, $n = 3$.

26. $u = \ln(3x + 2y + z)$, $n = 3$.

17. $u = \ln\sin\frac{y}{x}$, $n = 3$.

28. $u = \sqrt{3x + 2y}$, $n = 3$.

29. $u = \ln(2x \cdot \ln 3y)$, $n = 3$.

21. $u = \frac{x}{y^2} + y \sin x$, $n = 3$.

22. $u = \frac{z}{y} + \frac{y}{z} + \frac{x}{y}$, $n = 2$.

23. $u = \sqrt{2x + 3y}$, $n = 3$.

24. $u = \ln(3x + 2y + z)$, $n = 2$.

25. $u = e^x \sin y$, $n = 3$.

26. $u = \cos(xyz)$, $n = 2$.

27. $u = \sqrt{3x + 2y}$, $n = 3$.

28. $u = x^{1/2}y^{2/3} + y^{3/4}z^{4/5}$, $n = 2$.

Задача 6. Вычислить приближенное значение функции z(x, y) в точке A.

№	z(x,y)	координаты точки А	№	z(x,y)	координаты точки А
1	$\sqrt[3]{2x^2 - 3xy}$	(3,94; 2,01)	15	$3x^2 + 2y^2 - xy$	(-0,98; 2,97)
2	$5 + 2xy - x^2$	(1,98; 3,92)	16	$x^2 + y^2 + 2x + y - 1$	(1,98; 3,91)
3	$\ln(2x^2 + 2y^2)$	(0,48; 0,54)	17	2y + arctg(xy)	(0,01; 2,95)
4	$3x^2 - xy + x + y$	(1,06; 2,92)	18	$2x^2 + \cos(xy) + 5y$	(1,99; 0,02)
5	$\sqrt{x+7y}$	(1,94; 1,03)	19	$x^2 + xy + y^2$	(1,02; 1,96)
6	$e^{4x^2-y^2}$	(0,98; 2,03)	20	$\sqrt[3]{2x^2 + 6y}$	(0,97; 0,98)
7	$x^2 + 2y\sin(xy)$	(0,05; 1,96)	21	$x^2 - y^2 + 5x + 4y$	(3,05; 1,98)
8	$\ln(3x^2 - 2xy)$	(1,03; 0,98)	22	$e^{2x^2+y^2-3xy}$	(0,98; 2,03)
9	$x^2 + 3xy - 6y$	(3,96; 1,03)	23	$x^2 + 2xy + 3y^2$	(1,96; 1,04)
10	$\arcsin(xy^2) + 10x^2$	(3,99; 0,01)	24	$2y + \sin\left(\frac{x}{y}\right)$	(0,05; 4,98)
11	e^{x^2-2xy}	(0,05; 2,97)	25	$2xy + 3y^2 - 5x$	(3,04; 3,95)
12	$x^2 - y^2 + 6x + 3y$	(2,02; 2,97)	26	$x^2 + y^2 + 2\sin(xy)$	(0,04; 2,97)
13	$\sqrt{x^3 + y^2 + xy}$	(2,06; 1,96)	27	$e^{y} \ln(x+2y)$	(0,98; 0,03)
14	$2 + \arcsin\left(\frac{x}{y}\right)$	(0,04; 3,96)	28	$xy + 2y^2 - 2x$	(0,97; 2,03)

Задача 7. Разложить функцию z(x,y) по формуле Тейлора в точке M, ограничиваясь членами второго порядка включительно

№	z(x,y)	M	№	z(x,y)	M
1.	$\sin x \cos y$	$\left(\frac{\pi}{4},\frac{\pi}{4}\right)$	6.	e^{xy}	(0, 1)
2.	e^{x+2y}	(4, -2)	7.	$\sin x \sin y$	$\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$
3.	x^y	(1, 1)	8.	ln(2x-y)	(2, 3)
4.	$\ln\left(x^3+y^2\right)$	(1, 0)	9.	$\sqrt{3x-2y}$	(2, 1)
5.	$\sqrt{2x+y}$	(4, 1)	10.	$\frac{\sin x}{\sin y}$	$\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$

Разложить функцию z(x,y) по формуле Маклорена в точке M, ограничиваясь членами третьего порядка включительно

№	z(x,y)	№	z(x,y)	№	z(x,y)
11.	$e^x \cos y$	14.	$\sin x \ln(1-y)$	17.	$e^x \ln(y+1)$
12.	$\cos x \sin y$	15.	$e^y \sin x$	18.	$\cos y \ln(1+x)$
13.	$e^y \ln(2x+1)$	16.	$\cos x \cos y$	19.	$e^y \cos x$

Разложить функцию z(x,y) по формуле Тейлора в точке М

№	z(x,y)	M	№	z(x,y)	M
20.	$-xy^2 + 5x + 4y$	(-1, 2)	25.	$3x^2 - xy + x + y$	(-1, 3)
21.	$x^2 + y^2 + 2x + y - 1$	(3, -2)	26.	$x^2 - y^2 + 6x + 3y$	(1, -2)
22.	$x^2 - y^2 + 5x + 4y$	(1, 1)	27.	$x^2y + 6x + 3y$	(2, 3)
23.	$x^2 + 2xy + 3y^2$	(1, -1)	28.	$3x^2 + 2y^2 - xy$	(2, 1)
24.	$xy + 2y^2 - 2x$	(4, 1)			

Задача 8. Составить уравнения касательной плоскости и нормали к указанной поверхности в точке A.

№	поверхность	A
1	$xy^2 + z^3 = 12$	(1; 2; 2)
2	$z = 3x^2 - xy + x + y$	(1; 3; 4)
3	$3xyz - z^3 = 8$	(0; 2; -2)
4	$z = x^2 + 3xy - 6y$	(4; 1; 22)
5	$z = \ln\left(x^2 - 2y^2\right)$	(3; 2; 0)
6	$x^2 + y^2 - z^2 = -1$	(2; 2; 3)
7	$z = x^2 - y^2 + 6x + 3y$	(2; 3; 16)
8	$x^2y + 2x + z^3 = 5$	(1; 2; 1)
9	$2x^2 + 2y^2 + z^2 + 8xz - z = -8$	(-2; 0; 1)
10	$z = x^2 - y^2 + 5x + 4y$	(3; 2; 28)
11	$x^2 - xy - 8x + z^3 = 2$	(2; -3; 2)
12	$z = x^2 + 2xy + 3y^2$	(2; 1; 11)
13	$3x^2 - 4xy + 12xz - 3yz + z^2 + 15 = 0$	(-1; -1; 2)
14	$z = \ln\left(x^2 + y^2\right)$	(1; 0; 0)
15	$x^4 + y^4 + z^4 = 3$	(1; 1; 1)
16	$z = 3x^2 + 2y^2 - xy$	(-1; 3; 24)
17	$6xy - 2x^2 - xy^2 - z^2 = -3$	(1; 2; 3)
18	$x^3 + y^3 - 3z^3 = 13$	(2; 2; 1)
19	$z = x^2 + y^2 + 2x + y - 1$	(2; 3; 19)
20	$xy + e^{xz} = 0$	(5; -1/5; 0)
21	$z = \ln(5x^2 - y^2)$	(1; 2; 0)
22	$z = xy + 2y^2 - 2x$	(1; 2; 8)
23	$x^3 + y^3 + z^3 + xyz = 6$	(1; 2; -1)
24	$x^4 + 2y^3 + 3z^3 = 20$	(1; 2; 1)
25	$z = x^2 + xy + y^2$	(1; 2; 7)

No	поверхность	A
26	$x^2 - xy + xz + 3yz + 2z^2 + 2 = 0$	(1; 1; 1)
27	$z = \ln\left(8x^2 - y^2\right)$	(-1/2; 1; 0)
28	$z = 2xy + 3y^2 - 5x$	(3; 4; 57)

Задача 9. Дана функция z(x,y), точка $A(x_0,y_0)$ и вектор $\vec{a}(x_1,y_1)$. Найти: 1) $\operatorname{grad} z$ в точке A;

2) производную в точке A по направлению вектора \vec{a} .

№	z(x,y)	A	$\frac{-}{a}$
1	arctg(2xy)	(-1, 2)	(-3, 4)
2	$5x^2 + y^2 - 3xy$	(3, 2)	(2, 3)
3	$\ln\left(4x^2+2y^2\right)$	(2, 2)	(1, -1)
4	$3x^4 + 2x^2y^3$	(-1, 2)	(4, -3)
5	$\sqrt{x^2 + y^2 - xy}$	(2, 2)	(-4, 3)
6	$\ln(5x^2 + 4y^2)$	(1, 1)	(2, -1)
7	$3x^2y^2 + 5xy^2$	(1, 1)	(2, 1)
8	$e^{x^2y-y^2}$	(2, 4)	(3, 1)
9	$2x^2 + 3xy + y^2$	(2, 1)	(3, -4)
10	$arctg(x^3y)$	(-1, 3)	(-1, -4)
11	$\sqrt[3]{2x^2 - xy^2 + 2}$	(3, 2)	(-5, 1)
12	$\left(x^2 + \frac{1}{y}\right)^2$	(2, -1)	(1, 4)
13	$\arcsin\left(\frac{y^2}{x}\right)$	(2, 1)	(-1, 1)
14	$\sin(x^3y - xy^2)$	(2, 4)	(-1, 3)
15	$\left(1+\frac{x}{y}\right)^3$	(2, -1)	(-2, 1)
16	$x^2 + y^2 + xy$	(1, 1)	(2, -1)

№	z(x,y)	A	\overline{a}
17	e^{y^4-2xy}	(4, 2)	(6, 8)
18	$\ln(5x^2 + 3y^2)$	(1, 1)	(3, 2)
19	$\sqrt[3]{3x^2 - xy - y^2}$	(3, 4)	(1, 1)
20	$5x^2 + 6xy$	(2, 1)	(1, 2)
21	$arctg(xy^2)$	(2, 3)	(4, -3)
22	$\arcsin\left(\frac{x^2}{y}\right)$	(1, 2)	(5,-12)
23	$\ln\!\left(3x^2+4y^2\right)$	(1, 3)	(2, -1)
24	$7x^2 + y^2 - 2xy$	(3, 1)	(-2, 3)
25	$\sqrt{x^4 - 5xy^2 + 4}$	(3, 2)	(5, 1)
26	e^{x^2-4y}	(2, 1)	(-3, 1)
27	$\ln\left(3x^2y^2+y^3\right)$	(-2, 3)	(2, 3)
28	$\sin\!\left(x^2y + xy^2\right)$	(-2, 2)	(1, -1)

Задача 10. Найти экстремумы функции двух переменных z(x,y).

№	z(x, y)	№	z(x,y)
1	$x^3 + 8y^2 + \frac{3}{x} - \frac{2}{y}$	8	$\ln(x+y)-2x^4-2y^4$
2	$-3x^4 - 3y^4 + 12x + 12y$	9	$x^2y^2 - xy + \frac{1}{x} + \frac{1}{y}$
3	$3x^2 + y - 6\ln x - 8\ln y$	10	$3xy + \frac{4}{x} + \frac{5}{y}$
4	$3x^3 + 3y^3 + x^2y + xy^2 - 3x - 3y$	11	$\ln(x^2y) - x^2 - 9y^3$, $(x>0)$
	$5xy + \frac{6}{x} + \frac{5}{y}$	12	$4 + xy + \frac{4}{x^2} - \frac{2}{y}$
6	$1 + \frac{1}{x} + \frac{1}{2y^2} + xy$	13	$4x^4 + y^3 - \ln x - 3\ln y$
7	$x^3 + y^3 + x^2y + xy^2 - 24x - 24y$	14	$2x^3 + 2y^3 + x^2y + xy^2 - 9x - 9y$

№	z(x, y)	№	z(x,y)
15	$x^3 + y^3 + x^2y + xy^2 - 6x - 6y$	22	$xy + \frac{1}{x} + \frac{7}{y}$
16	$x^2y + \frac{2}{x} + \frac{1}{y}$	23	$x^3 + y^3 + 2x^2y + 2xy^2 - 9x - 9y$
17	$x^2 + y^3 - 32\ln x - 24\ln y$	24	$x^2 + y^3 - 8 \ln x - 81 \ln y$
18	$2x^4 + 2y^4 - 64x - 64y$	25	$3xy + \frac{7}{x} + \frac{9}{y}$
19	$4xy + \frac{5}{x} + \frac{6}{y}$	26	$2x^3 + 2y^3 + 3x^2y + 3xy^2 - 5x - 5y$
20	$9x^3 + 2y^2 - \ln(xy)$	27	$x^3 + y^2 - 3\ln x - 54\ln y$
21	$5x + 6y - \ln x - 12\ln y$	28	$xy + \frac{8}{x} + \frac{9}{y}$

Задача 11. Найти экстремумы функции трех переменных u(x,y,z).

№	u(x,y,z)	№	u(x,y,z)
1	$x^2 + 2y^2 + 2z^2 + 2xy + 2y - 4z$	10	$x^2 + y^2 + 4z^2 + xy - 8z + 3y$
2	$x^4 + y^4 + z^4 + 2x^3 + x^2 + 4y + 4z$	11	$\sqrt[6]{xyz} - \frac{x+y+z}{6}, (x>0, y>0, z>0)$
3	$\sqrt[4]{xyz} - \frac{x+y+z}{4}$, $(x > 0, y > 0, z > 0)$	12	$x^{2} + 4y^{2} + \frac{z^{2}}{9} - 2xy - 6y - \frac{2z}{9}$
4	$x^2 + y^2 + z^2 + xz + zy - 3x - 3y - 4z$	13	$x^4 + y^4 + z^4 + 2x^3 - 2x^2 - \frac{y}{2} + 4z$
5	$x^2 + 4y^2 + 9z^2 - 162\ln x - 288\ln y - 72\ln z$	14	$\sqrt[3]{xyz} - \frac{x+y+z}{3}$, $(x>0, y>0, z>0)$
6	$x^{2} + y^{2} + z^{2} - xy - zy + xz - 3x + y - 4z$	15	$\frac{1}{xyz} + \frac{x+y+z}{16}$
7	$\sqrt[5]{xyz} - \frac{x+y+z}{5}$, $(x > 0, y > 0, z > 0)$	16	$x + \frac{y^2}{x} + \frac{2z^2}{y} + \frac{1}{z}, (z > 0)$
8	$x^{2} + y^{2} + z^{2} + \frac{xy}{2} - \frac{zy}{3} - xz - 4x - 12y - 2z$	17	$\frac{1}{x} + \frac{x}{y} + \frac{y}{z} + z$
9	$x^4 + y^4 + z^4 - 2x^3 + x^2 + 4y - 4z$	18	$\frac{1}{x^3 y^3 z^3} + 3(x + y + z)$

No	u(x,y,z)	№	u(x,y,z)
19	$x + \frac{y^2}{x} + \frac{8z^2}{y} + \frac{2}{z}, (z > 0)$	24	$\frac{2x^2}{z} + \frac{16z^2}{y} - \frac{2}{x} + y, (x > 0)$
	4 4 2 2 7	25	$\frac{5x}{z} + \frac{y}{x} + \frac{1}{y} + \frac{z}{5}$
21	$\frac{x}{y} + \frac{y}{z} + \frac{16}{x} + z$	26	$\left \frac{8}{x} + \frac{2x^2}{y} + \frac{16y^2}{z} + z, (x > 0) \right $
22	$\frac{2x}{z} + \frac{y}{x} + \frac{z}{2} + \frac{1}{y}, \ (y > 0)$	27	$\frac{1}{x^4 y^4 z^4} + 4(x+y+z)$
23	$\frac{1}{x^2y^2z^2} + 2(x+y+z)$	28	$y + \frac{x^2}{y} + \frac{2z^2}{x} - \frac{4}{z}, (z > 0)$

Задача 12. Найти условный экстремум функции z(x,y) при указанном уравнении связи.

№	z(x,y)	уравнение связи
1	6-5x-4y	$x^2 + y^2 = 9$
	$\frac{2}{\sqrt{x}} + \frac{4}{\sqrt{y}}$	2x + 4y = 1
3	$\frac{\sqrt[3]{y}}{x^2} - 2\ln x + \frac{\ln y}{3}$	$\frac{6x}{5} - \frac{y}{5} = 1$
4	$1 + \frac{1}{x} + \frac{1}{y}$	$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{8}$
5	$12x^2 + 12xy + 3y^2 + 4$	$4x^2 + y^2 = 25, \ (x > 0)$
6	xy	$x^2 + y^2 = 1, (x > 0)$
7	5-3x-4y	$x^2 + y^2 = 25$
8	$\frac{1}{\sqrt[3]{x}} + \frac{4}{\sqrt[3]{y}}$	8x + 32y = 1
9	$\frac{xy}{5} + \frac{x}{6} - \frac{y}{6}$	$x^2 + y^2 = 1 (x < 0, y > 0)$
10	$2x^2 + 12xy + y^2$	$x^2 + 4y^2 = 25, (x > 0)$
11	$\frac{1}{x} + \frac{1}{2y^2}$	x - y = 2

№	z(x,y)	уравнение связи
12	$2\sqrt{x} + 3\sqrt{y}$	4x + 6y = 1
13	$x^2 - 2xy + 2y^2 - 4y$	x + 2y = 8
14	$1 + \frac{2}{x} + \frac{3}{y}$	$\frac{4}{x^2} + \frac{6}{y^2} = \frac{1}{10}$
15	x + 8y + 10	$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{5}$
16	$x^2 + xy + y^2$	$x^2 + y^2 = 1$, $(x > 0)$
I .	V 2	$\frac{7x}{5} - \frac{2y}{5} = 1$
18	$4 + \frac{4}{x^2} - \frac{1}{2y^2}$	x + y = 3
19	$\frac{5xy}{2} - 3x - 3y$	$x^2 + y^2 = 1 (x < 0, y < 0)$
20	x + y	$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{2}$
21	$x^3y^7 + 3\ln x + 7\ln y$	$\frac{3x}{10} + \frac{7y}{10} = 1$
22	1 - 4x - 8y	$x^2 - 8y^2 = 8$
23	$2\sqrt{x}-3\sqrt{y}$	4x - 6y = -1
24	5-2x-2y	$x^2 - 4y^2 = 12$
25	$-\frac{xy}{3} + \frac{x}{7} - \frac{y}{7}$	$x^2 + y^2 = 1 (x > 0, y < 0)$
26	$x^2y + 4x$	x + 2y = 1
27	$\frac{x}{3} + \frac{y}{4}$	$x^2 + y^2 = 1$
28	$\frac{22}{7}x^7 + y^{11}$	$x^3 + \frac{1}{2}y^3 = \frac{3}{2} (x > 0, y > 0)$

Задача 13. Найти наименьшее и наибольшее значение функции z(x,y) в замкнутой области D, заданной системой неравенств.

№	z(x,y)	область D
1	$x^2 + 2xy - y^2 - 4x$	$y \le x + 1, y \ge 0, x \le 3$
2	xy	$x^2 + y^2 \le 1$
3	$x^2 - 2xy - y^2 + 4x + 1$	$x + y + 1 \le 0$, $y \ge 0$, $x \ge -3$
4	$x^3 + y^3 + 2xy$	$-1 \le x \le 1, 0 \le y \le 2$
5	$5x^2 - 3xy + y^2 + 4$	$x + y \le 1, y \ge -1, x \ge -1$
6	$4x^2 + 9y^2 - 4x - 6y + 3$	$x + y \le 1, y \ge 0, x \ge 0$
7	$x^2 + y^2 - 9xy + 27$	$0 \le x \le 3, 0 \le y \le 3$
8	xy^2	$x^2 + y^2 \le 1$
9	$x^2 + y^2 - xy - x - y$	$x + y \le 3, y \ge 0, x \ge 0$
10	$x^2 + 2xy - y^2 - 2x + 2y$	$y \le x + 2, y \ge 0, x \le 2$
11	$x^2 + 2y^2 + 1$	$x + y \le 3, y \ge 0, x \ge 0$
12	$4x + 2y + 4x^2 + y^2 + 6$	$x + y + 2 \ge 0, y \le 0, x \le 0$
13	$x^2 + 3y^2 + x - y$	$x + y \le 1, y \ge -1, x \ge 1$
14	$x^2 + 2xy + 2y^2$	$-1 \le x \le 1, 0 \le y \le 2$
15	$10 + 2xy - x^2$	$0 \le y \le 4 - x^2$
16	$x^3 + y^3 - 6xy$	$0 \le x \le 2, -1 \le y \le 2$
17	$x^2 + xy - 2$	$4x^2 - 4 \le y \le 0$
18	$x^2 + xy$	$-1 \le x \le 1, 0 \le y \le 3$
19	$x^2 - 2xy + 2y^2 - 4y$	$x + 2y \le 8, y \ge 1, x \ge 1$
20	$x^3 + y^3 - 3xy$	$0 \le x \le 2, 0 \le y \le 2$
21	$3-2x^2-xy-y^2$	$y \le x$, $y \ge 0$, $x \le 1$
22	$x^3 + 8y^3 - 6xy + 1$	$0 \le x \le 2, -1 \le y \le 1$
23	$x^2y(5-2x-3y)$	$x + y \le 1, y \ge 0, x \ge 0$
24	$x^2 + 2xy - y^2 + 4x$	$x + y + 2 \ge 0$, $y \le 0$, $x \le 0$

№	z(x,y)	область D
25	$x^2y(4-x-y)$	$x + y \le 6, y \ge 0, x \ge 0$
26	$x^2 + y^2 + xy - x - y$	$x + y \le 3, y \ge 0, x \ge 0$
27	$x^2 + 3y^2 - x + 18y - 4$	$0 \le x \le 1, 0 \le y \le 1$
28	$\frac{xy}{3} - \frac{x^2y}{5} - xy^2$	$\frac{x}{2} + \frac{y}{8} \le 1, y \ge 0, x \ge 0$

Задача 14. Экспериментально получены пять значений функции y = f(x) при пяти значениях аргумента x, которые записаны в таблице. Методом наименьших квадратов найти функцию вида Y = aX + b, выражающую приближенно (аппроксимирующую) функцию y = f(x). Сделать чертеж, на котором в декартовой прямоугольной системе координат изобразить экспериментальные точки и график аппроксимирующей функции Y = aX + b.

X_i $N_{\underline{0}}$	1	2	3	4	5
1	6,1	6,7	5,9	2,7	4,1
2	4,4	5,4	3,7	2,3	1,7
3	4,4 5,7 4,2 5,9	5,4 6,7	3,7 5,6	3,9	1,7 3,6 1,9
4	4,2	4,6 6,9	3,6 5,4	1,2	1,9
5	5,9	6,9	5,4	3,4	3,9
6	3,7	4,9	3,6	1,3	2,0
7	3,7 5,4 4,5 5,0	4,9 6,4 5,4	3,6 5,3 4,3 4,5	2,3 3,9 1,2 3,4 1,3 3,1 1,7 2,7	2,0 3,3
8	4,5	5,4	4,3	1,7	2,6 3,2
9	5,0	6,1	4,5	2,7	3,2
10	3,8	4,8	3,5	2,9	1,5
11	5,6	6,2	5,2	3,1	3,4
12	3,7	4,9	3,6	1,3	2,0
13	5,3	6,4	5,2	3,2	3,4
14	4,5	5,2	3,8	1,8	2,2
15	6,0	6,3	5,4	3,3	3,5
16	3,8 5,6 3,7 5,3 4,5 6,0 4,3 3,9	4,8 6,2 4,9 6,4 5,2 6,3 5,3 4,9	3,8	1,8	2,3
17	3,9	4,9	3,4	1,4	1,9
18		6,6 6,1	3,5 5,2 3,6 5,2 3,8 5,4 3,8 3,4 5,9 4,6 4,2 6,4 4,7	2,9 3,1 1,3 3,2 1,8 3,3 1,8 1,4 2,9 2,6 2,2 4,4 2,7	1,5 3,4 2,0 3,4 2,2 3,5 2,3 1,9 4,1 3,1 2,7 4,9
19	6,0 5,1 4,7 6,9	6,1	4,6	2,6	3,1
20	4,7	5,7	4,2	2,2	2,7
21	6,9	7,9	6,4	4,4	4,9
22	5,2	5,7 7,9 6,2	4,7	2,7	3,2

X_i $N_{\underline{0}}$	1	2	3	4	5
23	5,7	6,7	5,2	3,2	3,7
24	4,5	5,5	4,0	2,0	2,5
25	4,9	5,9	4,4	2,4	2,9
26	3,9	4,9	3,4	1,4	1,9
27	5,5	6,5	5,0	3,0	3,5
28	4,7	5,9	4,6	2,3	3,0

Задача 15. Экспериментально получены значения функции y = f(x), которые записаны в таблице. Методом наименьших квадратов найти функцию вида $Y = aX^2 + bX + c$ (для нечетных вариантов) и $Y = \frac{a}{X^2} + \frac{b}{X} + c$ (для четных вариантов), аппроксимирующую функцию y = f(x). Сделать чертеж, на котором в декартовой прямоугольной системе координат изобразить экспериментальные точки и график аппроксимирующей функции.

x_i	0	1	2	3	4	5	x_i	1	2	3	4	5
1	5,2	5,7	5,3	4,9	3,6	1,8	2	2,5	0,8	0,4	0,3	0,0
3	-0,3	-0,9	-0,1	0,6	2,2	5,0	4	2,7	0,8	0,5	0,4	0,3
5	1,2	1,7	1,2	0,4	-0,7	-2,8	6	1,1	-1,1	-1,2	-1,5	-1,6
7	-0,5	-0,7	-0,4	0,4	2,3	4,2	8	2,3	0,6	0,5	0,2	0,2
9	1,2	1,6	1,5	0,6	-1,2	-3,2	10	4,1	1,7	1,3	1,2	0,7
11	-0,1	-1,3	-1,2	-0,2	1,4	3,9	12	0,6	-1,2	-1,6	-1,7	-1,7
13	1,0	1,6	1,5	0,4	-1,3	-3,7	14	2,5	0,8	0,4	0,4	0,3
15	-0,2	-1,2	-1,5	-1,4	0,3	2,0	16	1,4	-0,3	-0,8	-0,7	-1,0
17	-1,6	-0,2	0,0	-0,7	-2,5	-5,5	18	4,0	1,8	1,4	1,2	0,9
19	-1,5	-2,8	-2,6	-1,6	0,4	3,1	20	3,8	1,8	1,3	1,1	1,0
21	-0,3	-2,4	-2,8	-1,8	-0,3	2,6	22	2,2	-0,2	-0,5	-0,7	-0,8
23	-0,5	-1,5	-1,8	-0,8	1,6	4,5	24	2,5	0,8	0,4	0,2	0,1
25	-0,3	0,6	1,3	2,0	1,7	1,2	26	2,0	-0,4	-0,5	-0,6	-0,8
27	-0,8	0,4	0,3	-0,5	-2,0	-4,9	28	3,3	1,5	1,0	0,7	0,6

Задача 16. Решить прикладные задачи на наибольшее и наименьшее значения.

- **1.** Найти размеры цилиндра наибольшего объема, изготовленного из заготовки в форме шара радиуса R.
- **2.** Крыша дома имеет поперечное сечение в форме равнобедренного треугольника. Каковы должны быть размеры поперечного сечения помещения прямоугольной формы, встроенного на чердаке, чтобы объем помещения был наибольшим.
- **3.** Найти размеры заготовки наибольшего периметра в форме прямоугольного треугольника, гипотенуза которого задана.
- **4.** Изготовить из жести прямоугольную коробку (без крышки) данной емкости V с наименьшими затратами материала.
- **5.** В шар диаметра d вписать прямоугольный параллелепипед наибольшего объема.
- **6.** Найти размеры цилиндрического сосуда наибольшей вместимости с поверхностью S .
- 7. Имеется прямоугольный лист железа заданных размеров. Вырезать в его углах одинаковые квадраты такого размера, чтобы объем получившейся при загибании краев емкости был наибольшим.
- **8.** Поверхность прямоугольного параллелепипеда равна Q. Найти размеры параллелепипеда наибольшего объема.
- **9.** Сумма ребер прямоугольного параллелепипеда равна a. Найти размеры параллелепипеда наибольшего объема.
- **10.** Найти прямоугольный параллелепипед наибольшего объема при условии, что длина его диагонали равна d.
- **11.** Найти конус вращения объема V с наименьшей полной поверхностью.
- **12.** В шар диаметра d вписать цилиндр с наименьшей полной поверхностью.
- **13.** Из всех прямоугольных параллелепипедов с полной поверхностью S найти тот, который имеет наибольший объем.
- **14.** Определить размеры конуса наибольшего объема, при условии, что его боковая поверхность равна S.
- **15.** Из всех прямоугольных треугольников площадью S найти такой, гипотенуза которого имеет наименьшее значение.
- **16.** Из всех треугольников, вписанных в круг, найти тот, площадь которого наибольшая.
- **17.** Из всех треугольников, имеющих периметр p, найти наибольший по площади.
- **18.** Из всех прямоугольников с заданной площадью S найти такой, периметр которого имеет наименьшее значение.
- **19.** Из всех прямоугольных параллелепипедов объемом V найти тот, полная поверхность которого наименьшая.
- **20.** Представить число a > 0 в виде произведения четырех положительных сомножителей так, чтобы их сумма была наименьшей.

- **21.** Найти треугольник данного периметра 2p, который при вращении около одной из своих сторон образует тело наибольшего объема.
- **22.** Определить наружные размеры открытого прямоугольного ящика с заданной толщиной стенок d и емкостью V так, чтобы на его изготовление было затрачено наименьшее количество материала.
- 23. Из всех треугольников с одинаковым основанием и одним и тем же углом при вершине найти наибольший по площади.
- **24.** В шар радиуса *R* вписать прямоугольный параллелепипед наибольшего объема.
- 25. В данный прямой круговой конус вписать прямоугольный параллелепипед наибольшего объема.
- **26.** При каких размерах открытого прямоугольного ящика с заданным объемом V его поверхность будет наименьшей?
- 27. Требуется вырезать из круга сектор таким образом, чтобы из него можно было сделать конусообразный фильтр с максимальным объемом.
- **28.** Задан объем открытой цилиндрической емкости. Каковы должны быть ее размеры, чтобы длина сварных швов была минимальной? (Заготовки: лист в форме круга основание, прямоугольный лист боковая поверхность).

СПИСОК ЛИТЕРАТУРЫ

- 1. Высшая математика. Методические указания и контрольные задания (с программой) / Под ред. Ю.С. Арутюнова. М.: Высшая школа, 1985.
- 2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 1,2. М. Высшая школа, 1980.
- 3. Дифференциальное исчисление функций нескольких переменных: Методические указания к выполнению контрольной работы / Сост.: Н.Я. Горячева, Ю.А. Решетников. Ульяновск, 1999. 20 с.
- 4. Дифференциальное исчисление функций нескольких переменных: типовой расчет по высшей математике / Сост.: А.В. Анкилов, Н.Я. Горячева, Т.Б. Распутько. Ульяновск: УлГТУ, 2004. 32 с.
- 5. Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.1. М.: Интеграл-Пресс, 2004. 415 с.
- 6. Письменный Д.Т. Конспект лекций по высшей математике: в 2 ч. Ч.1. М.: Айрис-пресс, 2010.-288 с.
- 7. Сборник задач по математике Ч.2.: Учеб. пособие для втузов. / под общ. ред. А. В. Ефимова, А. С. Поспелова. М.: ФИЗМАТЛИТ, 2003. 432с.
- 8. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. T.1.-M.: ФИЗМАТЛИТ, 2003.-680 с.

Учебное электронное издание

ВЕЛЬМИСОВ Петр Александрович ПОКЛАДОВА Юлия Валерьевна

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Учебное пособие

Усл. печ. л. 3,26. Объем данных 1,03 Мб. ЭИ № 25.

Печатное издание
ЛР №020640 от 22.10.97
Подписано в печать 16.11.2012. Формат 60×84/16.
Усл. печ. л. 3,26. Тираж 140 экз. Заказ 1130 .
Типография УлГТУ, 432027, г. Ульяновск, ул. Сев. Венец, д. 32.

Ульяновский государственный технический университет 432027, г. Ульяновск, ул. Сев. Венец, 32.

Тел.: (8422) 778-113. E-mail: venec@ulstu.ru