E-Commerce Data Analysis using RFM(K-mean clustering)

performing analysis on the reatil store dataset!

(following is the actual read data of a UK retailer store)

In [14]:

```
# importing the libraries
import pandas as pd
```

In [9]:

```
# for visualisation
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [15]:

```
# to scale our data
from sklearn.preprocessing import scale
# to perform k-means clustering
from sklearn.cluster import KMeans
```

During this case study we will try to findout weather the customers could be segmented into different categories or not!

In [16]:

```
help(KMeans)
        Method for initialization:
        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.
        'random': choose `n_clusters` observations (rows) at random fr
om data
        for the initial centroids.
        If an array is passed, it should be of shape (n_clusters, n_fe
atures)
        and gives the initial centers.
        If a callable is passed, it should take arguments X, n_cluster
s and a
        random state and return an initialization.
    n_init : int, default=10
        Number of time the k-means algorithm will be run with differen
```

Reading the dataset

In [23]:

#reading the dataset retail = pd.read_excel("RetailPulseAssignmentData.xlsx")

Out[23]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Countr
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	Unite Kingdor
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	Unite Kingdor
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	Unite Kingdor
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	Unite Kingdor
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	Unite Kingdor
525456	538171	22271	FELTCRAFT DOLL ROSIE	2	2010-12-09 20:01:00	2.95	17530.0	Unite Kingdor
525457	538171	22750	FELTCRAFT PRINCESS LOLA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	Unite Kingdor
525458	538171	22751	FELTCRAFT PRINCESS OLIVIA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	Unite Kingdor
525459	538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	Unite Kingdor
525460	538171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	Unite Kingdor
525461	525461 rows × 8 columns							

In [33]:

retail.head(10)

Out[33]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	United Kingdom
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom
5	489434	22064	PINK DOUGHNUT TRINKET POT	24	2009-12-01 07:45:00	1.65	13085.0	United Kingdom
6	489434	21871	SAVE THE PLANET MUG	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom
7	489434	21523	FANCY FONT HOME SWEET HOME DOORMAT	10	2009-12-01 07:45:00	5.95	13085.0	United Kingdom
8	489435	22350	CAT BOWL	12	2009-12-01 07:46:00	2.55	13085.0	United Kingdom
9	489435	22349	DOG BOWL , CHASING BALL DESIGN	12	2009-12-01 07:46:00	3.75	13085.0	United Kingdom

In [26]:

retail.columns

Out[26]:

```
In [37]:
```

```
retail.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 525461 entries, 0 to 525460
Data columns (total 8 columns):
 #
    Column
                 Non-Null Count
                                  Dtype
    ----
                 -----
_ _ _
                                  _ _ _ _ _
0
    Invoice
                 525461 non-null object
    StockCode 525461 non-null object
 1
 2
    Description 522533 non-null object
 3
    Quantity
              525461 non-null int64
 4
    InvoiceDate 525461 non-null datetime64[ns]
                 525461 non-null float64
 5
    Price
 6
    Customer ID 417534 non-null float64
 7
                 525461 non-null object
dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
memory usage: 32.1+ MB
```

removing the missing values

```
In [38]:
retail_1 = retail.dropna()
```

In [39]:

```
retail_1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 417534 entries, 0 to 525460
Data columns (total 8 columns):
    Column
                 Non-Null Count
 #
                                  Dtype
    ____
_ _ _
                 -----
                                  ----
                 417534 non-null object
0
    Invoice
    StockCode
 1
                 417534 non-null object
 2
    Description 417534 non-null object
 3
    Quantity
                 417534 non-null int64
 4
    InvoiceDate 417534 non-null datetime64[ns]
 5
    Price
                 417534 non-null float64
 6
    Customer ID 417534 non-null float64
 7
                 417534 non-null object
    Country
dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
memory usage: 28.7+ MB
```

In [40]:

retail

Out[40]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Countr
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	Unite Kingdor
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	Unite Kingdor
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	Unite Kingdor
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	Unite Kingdor
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	Unite Kingdor
525456	538171	22271	FELTCRAFT DOLL ROSIE	2	2010-12-09 20:01:00	2.95	17530.0	Unite Kingdor
525457	538171	22750	FELTCRAFT PRINCESS LOLA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	Unite Kingdor
525458	538171	22751	FELTCRAFT PRINCESS OLIVIA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	Unite Kingdor
525459	538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	Unite Kingdor
525460	538171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	Unite Kingdor
525461	525461 rows × 8 columns							

In [43]:

```
# no of unique customers
retail_1.Country.unique()
```

Out[43]:

In [51]:

```
import warnings
warnings.filterwarnings("ignore")
```

In [52]:

```
sns.countplot(retail_1.Country)
```

Out[52]:

<AxesSubplot:xlabel='Country', ylabel='count'>

mainly we have the data of uk let's consider dropping out the other contries

In [55]:

```
retail_2 = retail_1[retail_1.Country == 'United Kingdom']
retail_2.head()
```

Out[55]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	United Kingdom
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom

In [57]:

retail_2.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 379423 entries, 0 to 525460
```

Data columns (total 8 columns):

memory usage: 26.1+ MB

Ducu	columns (cocal o columns):					
#	Column	Non-Null Count	Dtype			
0	Invoice	379423 non-null	object			
1	StockCode	379423 non-null	object			
2	Description	379423 non-null	object			
3	Quantity	379423 non-null	int64			
4	InvoiceDate	379423 non-null	<pre>datetime64[ns]</pre>			
5	Price	379423 non-null	float64			
6	Customer ID	379423 non-null	float64			
7	Country	379423 non-null	object			
<pre>dtypes: datetime64[ns](1), float64(2), int64(1), object(4)</pre>						

In [58]:

```
retail_2.describe()
```

Out[58]:

	Quantity	Price	Customer ID
count	379423.000000	379423.000000	379423.000000
mean	11.451517	3.653249	15559.935694
std	68.943709	68.743746	1593.744626
min	-9360.000000	0.000000	12346.000000
25%	2.000000	1.250000	14210.000000
50%	4.000000	1.950000	15581.000000
75%	12.000000	3.750000	16938.000000
max	10000.000000	25111.090000	18287.000000

RFM

Recency: since how long the customer has'nt appeared.

Frequency: how offen does the customer appear.

Monitory: how much customer invested

Recency:

```
In [162]:
```

```
retail_2.InvoiceDate.max() - retail_2.InvoiceDate.min()
```

Out[162]:

Timedelta('373 days 12:16:00')

In [163]:

```
# let's create a recency feature
min_date = retail_2.InvoiceDate.min()
retail_2['recency'] = retail_2.InvoiceDate - min_date
```

In [164]:

```
RECENCY = retail_2.groupby('Customer ID')['recency'].max().reset_index()
RECENCY.head()
```

Out[164]:

	Customer ID	recency
0	12346.0	307 days 08:48:00
1	12608.0	334 days 03:04:00
2	12745.0	252 days 02:29:00
3	12746.0	211 days 00:34:00
4	12747.0	369 days 07:53:00

Frequency:

In [165]:

retail_2.head()

Out[165]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country	rec
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom	0
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom	0
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom	0
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	United Kingdom	0
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom	0
4									•

In [166]:

```
frequency = retail_2.groupby('Customer ID')['Invoice'].nunique().reset_index()
frequency.head()
```

Out[166]:

	Customer ID	Invoice
0	12346.0	15
1	12608.0	1
2	12745.0	2
3	12746.0	3
4	12747.0	22

Monitory:

In [167]:

retail_2.head()

Out[167]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country	rec
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom	0
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom	0
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom	0
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	United Kingdom	0
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom	0
4									•

In [168]:

```
retail_2['amount'] = retail_2['Quantity']*retail_2['Price']
retail_2.head()
```

Out[168]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country	rec
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom	0
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom	0
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom	0
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	United Kingdom	0
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom	0
4									•

In [169]:

```
monitory = retail_2.groupby('Customer ID').amount.sum().reset_index()
```

In [170]:

monitory.head()

Out[170]:

	Customer ID	amount
0	12346.0	-64.68
1	12608.0	415.79
2	12745.0	723.85
3	12746.0	230.85
4	12747.0	4968.58

In [171]:

```
rfm = RECENCY.merge(frequency, on='Customer ID', how = "left")
```

In [172]:

```
# correcting the invoice column name as frequency
rfm.rename(columns={'Invoice': 'frequency'}, inplace = True)
rfm
```

Out[172]:

	Customer ID	recency	frequency
0	12346.0	307 days 08:48:00	15
1	12608.0	334 days 03:04:00	1
2	12745.0	252 days 02:29:00	2
3	12746.0	211 days 00:34:00	3
4	12747.0	369 days 07:53:00	22
4030	18283.0	356 days 07:45:00	6
4031	18284.0	309 days 04:46:00	2
4032	18285.0	78 days 02:39:00	1
4033	18286.0	262 days 04:12:00	3
4034	18287.0	356 days 04:06:00	5

4035 rows × 3 columns

```
In [173]:
rfm.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4035 entries, 0 to 4034
Data columns (total 3 columns):
                Non-Null Count Dtype
    Column
                 -----
0
    Customer ID 4035 non-null float64
                4035 non-null timedelta64[ns]
1
    recency
    frequency
                4035 non-null
                                int64
dtypes: float64(1), int64(1), timedelta64[ns](1)
memory usage: 126.1 KB
In [174]:
# let's make a monitory column too
rfm = rfm.merge(monitory, on='Customer ID', how = "left")
```

In [175]:

rfm

Out[175]:

	Customer ID	recency	frequency	amount
0	12346.0	307 days 08:48:00	15	-64.68
1	12608.0	334 days 03:04:00	1	415.79
2	12745.0	252 days 02:29:00	2	723.85
3	12746.0	211 days 00:34:00	3	230.85
4	12747.0	369 days 07:53:00	22	4968.58
	•••			
4030	18283.0	356 days 07:45:00	6	641.77
4031	18284.0	309 days 04:46:00	2	436.68
4032	18285.0	78 days 02:39:00	1	427.00
4033	18286.0	262 days 04:12:00	3	1188.43
4034	18287.0	356 days 04:06:00	5	2340.61

4035 rows × 4 columns

In [176]:

```
# Let's takeout the days from recency
rfm['recency'] = rfm['recency'].dt.days
rfm
```

Out[176]:

	Customer ID	recency	frequency	amount
0	12346.0	307	15	-64.68
1	12608.0	334	1	415.79
2	12745.0	252	2	723.85
3	12746.0	211	3	230.85
4	12747.0	369	22	4968.58
4030	18283.0	356	6	641.77
4031	18284.0	309	2	436.68
4032	18285.0	78	1	427.00
4033	18286.0	262	3	1188.43
4034	18287.0	356	5	2340.61

4035 rows × 4 columns

In [180]:

```
rfm.head()
```

Out[180]:

	Customer ID	recency	frequency	amount
0	12346.0	307	15	-64.68
1	12608.0	334	1	415.79
2	12745.0	252	2	723.85
3	12746.0	211	3	230.85
4	12747.0	369	22	4968.58

In [181]:

rfm.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4035 entries, 0 to 4034
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Customer ID	4035 non-null	float64
1	recency	4035 non-null	int64
2	frequency	4035 non-null	int64
3	amount	4035 non-null	float64

dtypes: float64(2), int64(2)
memory usage: 126.2 KB

In [202]:

```
sns.boxplot(rfm['recency'])
```

Out[202]:

<AxesSubplot:xlabel='recency'>

In [204]:

sns.boxplot(rfm['frequency']) # outliers need to be removed

Out[204]:

<AxesSubplot:xlabel='frequency'>

In [206]:

sns.boxplot(rfm['amount']) # outliers need to be taken care off

Out[206]:

<AxesSubplot:xlabel='amount'>

Outliers Treatment

In [224]:

```
import numpy as np
recency_25 = np.percentile(rfm['recency'], 25)
recency_75 = np.percentile(rfm['recency'], 75)
IQR = recency_75 - recency_25
print(recency_25, recency_75, IQR)
```

236.0 357.0 121.0

In [225]:

```
rfm_filtered = rfm[(rfm['recency'] < (recency_75 + 1.5 * IQR)) & (rfm['recency'] > (recensions.boxplot(rfm_filtered['recency'])
```

Out[225]:

<AxesSubplot:xlabel='recency'>

In [226]:

```
rfm = rfm_filtered
```

In [227]:

```
frequency_25 = np.percentile(rfm['frequency'], 25)
frequency_75 = np.percentile(rfm['frequency'], 75)

IQR = frequency_75 - frequency_25
print(frequency_25, frequency_75, IQR)
rfm_filtered = rfm[(rfm['frequency'] < (frequency_75 + 1.5 * IQR)) & (rfm['frequency'] > sns.boxplot(rfm_filtered['frequency'])
```

1.0 6.0 5.0

Out[227]:

<AxesSubplot:xlabel='frequency'>

In [228]:

```
rfm = rfm_filtered
```

In [229]:

```
amount_25 = np.percentile(rfm['amount'], 25)
amount_75 = np.percentile(rfm['amount'], 75)

IQR = amount_75 - amount_25
print(amount_25, amount_75, IQR)

rfm_filtered = rfm[(rfm['amount'] < (amount_75 + 1.5 * IQR)) & (rfm['amount'] > (amount_sns.boxplot(rfm_filtered['amount'])
```

274.47 1318.655 1044.185

Out[229]:

<AxesSubplot:xlabel='amount'>

In [230]:

```
rfm = rfm_filtered
```

In [237]:

now let's normalise the data

In [242]:

```
sns.distplot(rfm["frequency"])
```

Out[242]:

<AxesSubplot:xlabel='frequency', ylabel='Density'>

In [243]:

```
sns.distplot(rfm["recency"])
```

Out[243]:

<AxesSubplot:xlabel='recency', ylabel='Density'>

In [244]:

```
sns.distplot(rfm["amount"])
```

Out[244]:

<AxesSubplot:xlabel='amount', ylabel='Density'>

In [249]:

```
# Let's standerize the data!
columns = rfm.columns
```

In [251]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_data = scaler.fit_transform(rfm)
scaled_df = pd.DataFrame(scaled_data, columns=columns)
```

In [253]:

```
scaled_df.head()
```

Out[253]:

	Customer ID	recency	frequency	amount
0	-1.889664	0.567612	-0.878228	-0.526372
1	-1.802732	-0.380857	-0.502233	-0.072674
2	-1.802097	-0.855092	-0.126238	-0.798744
3	-1.800194	0.787379	1.753736	2.484685
4	-1.782426	-0.045423	-0.878228	-0.373706

In []:

```
In [ ]:
```

```
In [254]:
help(KMeans)
Help on class KMeans in module sklearn.cluster._kmeans:
class KMeans(sklearn.base.TransformerMixin, sklearn.base.ClusterMixin,
sklearn.base.BaseEstimator)
   KMeans(n_clusters=8, *, init='k-means++', n_init=10, max_iter=300,
tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='aut
0')
    K-Means clustering.
    Read more in the :ref:`User Guide <k_means>`.
    Parameters
    -----
    n_clusters : int, default=8
        The number of clusters to form as well as the number of
        centroids to generate.
    init . (Uk maana..) | Imamdamil) | callable on amous like of shane
In [264]:
obj=KMeans(n_clusters=3)
obj.fit(rfm)
Out[264]:
KMeans(n_clusters=3)
```

In [265]:

```
labels=obj.labels_
centers = obj.cluster_centers_
```

In [266]:

```
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# ax.scatter(rfm['Customer ID'], rfm['frequency'], rfm['recency'], c=labels, cmap='viria
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], marker='X', color='red', s=200)
ax.set_xlabel('Customer ID')
ax.set_ylabel('frequency')
ax.set_zlabel('recency')
ax.set_title('K-means Clustering')
plt.show()
```

K-means Clustering

Silhouette Analysis

In [268]:

```
from sklearn.metrics import silhouette_score
from sklearn.cluster import KMeans

sse = []
for k in range(2, 15):
    kmeans = KMeans(n_clusters=k).fit(rfm)
    sse.append([k, silhouette_score(rfm, kmeans.labels_)])
```

In [270]:

```
plt.plot(pd.DataFrame(sse)[0], pd.DataFrame(sse)[1])
```

Out[270]:

[<matplotlib.lines.Line2D at 0x22f76ee4430>]

sum of squared distance

In [271]:

```
ssd = []
for num_clusters in list(range(1, 21)):
    model_clus = KMeans(n_clusters = num_clusters, max_iter = 50)
    model_clus.fit(rfm)
    ssd.append(model_clus.inertia_)

plt.plot(ssd)
```

Out[271]:

[<matplotlib.lines.Line2D at 0x22f75aa6430>]


```
In [324]:
```

```
model_clus5 = KMeans(n_clusters = 5)
model_clus5.fit(rfm)
```

Out[324]:

KMeans(n_clusters=5)

In [325]:

```
# analysis of the clusters formed
```

In [326]:

```
rfm.index = pd.RangeIndex(len(rfm.index))
rfm_km = pd.concat([rfm, pd.Series(model_clus5.labels_)], axis = 1)
```

In [327]:

```
rfm_km.head()
```

Out[327]:

	Customer ID	recency	trequency	amount	U
0	12608.0	334	1	415.79	3
1	12745.0	252	2	723.85	3
2	12746.0	211	3	230.85	3
3	12749.0	353	8	2460.29	0
4	12777.0	281	1	519.45	3

In [328]:

```
rfm_km.columns
```

Out[328]:

```
Index(['Customer ID', 'recency', 'frequency', 'amount', 0], dtype='objec
t')
```

In [329]:

```
# 0 is here the cluster id
rfm_km.cluster_amount = pd.DataFrame(rfm_km.groupby([0])['amount'].mean())
rfm_km.cluster_frequency = pd.DataFrame(rfm_km.groupby([0])['frequency'].mean())
rfm_km.cluster_recency = pd.DataFrame(rfm_km.groupby([0])['recency'].mean())
print(rfm_km.cluster_amount, rfm_km.cluster_frequency, rfm_km.cluster_recency)
```

```
amount
0
   1763.190503
0
    473.534867
1
2
    491.955970
3
   445.650365
4
  1839.480784
                   frequency
0
0
   6.309896
1
    2.501114
2
    2.493072
3
    2.375000
4
    6.324324
                    recency
0
0
  324.932292
1
  275.230512
  271.198614
2
   271.721250
3
  327.627027
```

In [330]:

```
final_mean = pd.concat([pd.Series([0,1,2,3,4]), rfm_km.cluster_amount, rfm_km.cluster_fr
```

In [331]:

```
final_mean.columns = ["cluster_id", "amount_mean", "frequency_mean", "recency_mean"]
final_mean
```

Out[331]:

	cluster_id	amount_mean	frequency_mean	recency_mean
0	0	1763.190503	6.309896	324.932292
1	1	473.534867	2.501114	275.230512
2	2	491.955970	2.493072	271.198614
3	3	445.650365	2.375000	271.721250
4	4	1839.480784	6.324324	327.627027

In [332]:

sns.barplot(x=final_mean.cluster_id, y=final_mean.amount_mean)

Out[332]:

<AxesSubplot:xlabel='cluster_id', ylabel='amount_mean'>

In [333]:

sns.barplot(x=final_mean.cluster_id, y=final_mean.frequency_mean)

Out[333]:

<AxesSubplot:xlabel='cluster_id', ylabel='frequency_mean'>

In [334]:

sns.barplot(x=final_mean.cluster_id, y=final_mean.recency_mean)

Out[334]:

<AxesSubplot:xlabel='cluster_id', ylabel='recency_mean'>

inference: as per the above analysis we could segment the customers in the categories...as we can see some peoples tend to spend little so we could provide some gift cards, or some extra offers to retain them

while some sements of peoples also tend to apper less so we can provide extra bonuses on frequent shopping!

ans as per the third plot all segments tend to appear with almost the same recency

In []: