「離散数学・オートマトン」演習問題 05 (解答例)

2022/11/7

1 ブール代数

課題 1 x、y、x をブール変数とするとき、以下の各式の左辺から右辺を導出しなさい。

- $1. \ xz + x\bar{y}z = xz$
- $2. \ \overline{x(y+z)} + \bar{x}y = \bar{x} + \bar{y}\bar{z}$
- 3. $\overline{xy} + \bar{x}z$

解答例

1.

$$xz + x\bar{y}z = xz \underbrace{(1+\bar{y})}_{} = xz$$

x	y	z	$xz + x\bar{y}z$	xz
1	1	1	1	1
1	1	0	0	0
1	0	1	1	1
1	0	0	0	0
0	1	1	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	0	0

2.

$$\overline{x(y+z)} + \bar{x}y = \bar{x} + \overline{(y+z)} + \bar{x}y$$

$$= \bar{x} + \bar{y}\bar{z} + \bar{x}y$$

$$= \bar{x}(1+y) + \bar{y}\bar{z}$$

$$= \bar{x} + \bar{y}\bar{z}$$

x	y	z	$\overline{x(y+z)} + \bar{x}y$	$\bar{x} + \bar{y}\bar{z}$
1	1	1	0	0
1	1	0	0	0
1	0	1	0	0
1	0	0	1	1
0	1	1	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	1	1

3.

$$\overline{xy} + \bar{x}z = \bar{x} + \bar{y} + \bar{x}z = \overline{\bar{x}} + \bar{y} \qquad \qquad \chi + \overline{\chi} = \overline{$$

x	y	z	$\overline{xy} + \overline{x}z$	$\bar{x} + \bar{y}$
1	1	1	0	0
1	1	0	0	0
1	0	$\mid 1 \mid$	1	1
1	0	0	1	1
0	1	$\mid 1 \mid$	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	1	1

2 論理回路

課題 2 以下の論理回路に相当する論理式を求めよ。

解答例

 $w = xyz + \bar{x}yz + x\bar{y}$

課題 3 以下の論理回路に相当する論理式を求めよ。また、その論理式を簡素化しなさい。

x	y	z	$(xyz + \bar{x})(x + \bar{z})$	$xyz + \bar{x}\bar{z}$
1	1	1	1	1
1	1	0	0	0
1	0	1	0	0
1	0	0	0	0
0	1	1	0	0
0	1	0	1	1
0	0	1	0	0
0	0	0	1	1

課題 4 論理式 $w=(x+\bar{y})z+(\bar{x}+z)y+x\bar{y}\bar{z}$ に対応する論理回路を示しなさい。 解答例

課題 5 前問の論理式を基本積の和、つまりブール変数の積の和へと変形し、対応する論理回路を示しなさい。

解答例

$$w = (x + \bar{y}) z + (\bar{x} + z) y + x \bar{y} \bar{z}$$

$$= xz + \bar{y}z + \bar{x}y + yz + x \bar{y} \bar{z}$$

$$= xz + (y + \bar{y}) z + \bar{x}y + x \bar{y} \bar{z}$$

$$= xz + z + \bar{x}y + x \bar{y} \bar{z}$$

$$= z + \bar{x}y + x \bar{y} \bar{z}$$

x	y	z	$(x+\bar{y})z+(\bar{x}+z)y+x\bar{y}\bar{z}$	$z + \bar{x}y + x\bar{y}\bar{z}$
1	1	1	1	1
1	1	0	0	0
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	0	0

