Lecture 28: Church Numerals Related Data Structures

MATH230

Te Kura Pāngarau | School of Mathematics and Statistics Te Whare Wānanga o Waitaha | University of Canterbury

Outline

- Church Numerals
- Church Arithmetic
- Pairs and Lists
- Arithmetic Functions and Predicates
- Summary

Church Numerals

All that is available to us is application and abstraction. However, that is enough to encode the behaviour of the natural numbers in the λ -calculus.

ZERO =
$$\lambda s$$
. λx . x
ONE = λs . λx . $s(x)$
TWO = λs . λx . $s(s(x))$
THREE = λs . λx . $s(s(s(x)))$
:
 $n = \lambda s$. λx . $s(s \dots (s(x)) \dots)$
:

The Church numeral representing the natural number M is a binary λ -expression that applies the first argument to the second M times.

Pattern

If n is a Church numeral and f, a are arbitrary function symbols, then we have the following patterns that occur often in computations with Church numerals.

The λ -expression nf is a function which applies f n times to its input. That is, f composed with itself n times.

So we can read

nfa

as "f" applied to "a" repeatedly "n" times.

If we follow this idea when f is also a Church numeral, then we get a λ -expression for exponentiation.

Observation

TWO ONE =
$$(\lambda u. \ \lambda v. \ u(u(v)))(\lambda s. \ \lambda x. \ s(x))$$

= $\lambda v. \ (\lambda s. \ \lambda x. \ s(x))((\lambda s. \ \lambda x. \ s(x))(v))$
= $\lambda v. \ (\lambda s. \ \lambda x. \ s(x))(\lambda x. \ v(x))$
= $\lambda v. \ (\lambda s. \ \lambda x. \ s(x))(\lambda w. \ v(w))$
= $\lambda v. \ (\lambda x. \ (\lambda w. \ v(w))(x))$
= $\lambda v. \ \lambda x. \ v(x)$
= ONE
ONE TWO = $(\lambda s. \ \lambda x. \ s(x))(\lambda u. \ \lambda v. \ u(u(v)))$
= $(\lambda x. \ (\lambda u. \ \lambda v. \ u(u(v)))(x))$
= $(\lambda x. \ \lambda v. \ x(x(v))))$

= TWO

Example: Exponential

We abstract over this idea to define a λ -expression to compute exponentiation.

$$\mathsf{EXP} = \lambda e.\ \lambda b.\ eb$$

Example

 β -reduce the following expression to normal form

EXP THREE TWO

Programming in λ -Calculus

When programming and running computations in this language we do not update named spaces in memory.

We can't think about updating a number stored in a named variable. There is no syntax for this updating in the λ -calculus.

Each time we calculate a new λ -expression (e.g. Church numeral) we must construct it, from scratch, using the input numerals.

Encoding Arithmetic Functions

We will now find λ -expressions for fundamental arithmetic functions and predicates on Church numerals.

Arithmetic Functions

SUCC

SUM

MULT

EXP

PRED

SUB

Arithmetic Predicates

ZERO?

GREATER?

EQUAL?

Encoding Arithmetic Functions

Programs in the λ -calculus need to **construct** the output.

Unary functions on Church numerals will always start

$$\lambda n. \ \lambda u. \ \lambda v. \ \langle \mathsf{BODY} \rangle$$

Binary functions on Church numerals will always start

$$\lambda m. \ \lambda n. \ \lambda u. \ \lambda v. \ \langle \mathsf{BODY} \rangle$$

The first abstractions are for the inputs to the function.

Second abstractions (u,v) are to construct the output numeral.

Successor

The successor is a unary function that returns a numeral with one more function application of the first argument to the second.

 $SUCC = \lambda n. \ \lambda u. \ \lambda v.$

SUCC ZERO

SUM

The sum of two Church numerals m, n is a binary function that returns a numeral with m+n applications of the first argument to the second. This is similar to string concatenation of successors.

 $SUM = \lambda m. \ \lambda n. \ \lambda u. \ \lambda v.$

SUM ONE ONE

MULT

If m, n are Church numerals, then the output of multiplication requires n applications m times of the first argument to the second.

 $MULT = \lambda m. \ \lambda n. \ \lambda u. \ \lambda v.$

MULT TWO TWO

ZERO?

Given Church numeral *m* how do we test if it is ZERO?

ZERO? = λm .

Predecessor

To one way of thinking, we need to *remove* one application of the function in the Church numeral.

However that way of thinking is "state based" - as if we have an object somewhere in some memory and we update its properties.

This is not the way programming is done in the λ -calculus.

Instead we need to think, given an input Church numeral n how do we construct the Church numeral representing n-1?

PAIR

We have been treating applications of the form *ab* as if they were pairs. Let us formalise this idea with a function to CONStruct a pair from two inputs.

$$PAIR = \lambda x. \lambda y. \lambda f. \ f \times y$$

Once a pair is constructed, we may use the following methods to retrieve either the first or second element respectively.

$$FST = \lambda u. \ \lambda v. \ u$$
 $SCD = \lambda u. \ \lambda v. \ v$

Example

PAIR ONE TWO FST $=_{\beta}$ ONE PAIR ONE TWO SCD $=_{\beta}$ TWO PAIR ONE (PAIR TWO THREE) SCD $=_{\beta}$ PAIR TWO THREE

PRED

We now have the data structure required to implement the algorithm for calculating the predecessor of a Church numeral.

First we write a function which takes in a pair p = (a, b) of Church numerals and outputs the pair consisting of the successor of the first (SUCC a) in the pair, together with the first a in the pair.

$$\Psi = \lambda p$$
. PAIR (SUCC (p FST)) (p FST)

Now we need to iterate this n times on the input pair ZERO ZERO and retrieve the second element.

PRED =
$$\lambda n$$
. ($n \Psi$ (PAIR ZERO ZERO)) SCD

PRED ONE

SUB

Given Church numerals m, n how do we construct the Church numeral representing m - n?

 $SUB = \lambda m. \ \lambda n. \ \lambda u. \ \lambda v.$

SUB TWO ONE

GREATER?

Given Church numerals m, n how do we test if one is larger than the other?

GREATER? = λm . λn .

GREATER? ONE ONE

EQUAL?

Given Church numerals m, n how do we test if they are equal?

EQUAL? = λm . λn .

EQUAL? ONE ZERO

Summary

Arithmetic Functions

SUCC =
$$\lambda n$$
. λu . λv . $u(nuv)$
SUM = λm . λn . λu . λv . $mu(nuv)$
MULT = λm . λn . λu . λv . $m(nu)v$
EXP = λe . λb . eb
PRED = λn . $(n \ \Psi \ (PAIR \ ZERO \ ZERO))$ SCD
SUB = λm . λn . λu . λv . $(n \ PRED \ m) \ u \ v$

Arithmetic Predicates

```
ZERO? = \lambda m. m (\lambda x. FALSE) TRUE

GREATER? = \lambda m. \lambda n. ZERO? (SUB n m)

LESS? = \lambda m. \lambda n. ZERO? (SUB m n)

EQUAL? = \lambda m. \lambda n. AND (GREATER? n m) (LESS? n m)
```

Further Reading

Here are some recommended reading to follow up on the lecture content. Some are freely available online.

Type Theory and Functional Programming, Simon Thompson

- Stanford Encyclopedia Articles:
 - 1 The Lambda Calculus
 - 2 Type Theory
 - 3 Church's Type Theory

Church's original papers are worth visiting, although more work than Turing's paper.

An Unsolvable Problem of Elementary Number Theory, *Alonso Church*

A Note on the Entscheidungsproblem, Alonso Church