# Statistical Inference for Estimation

# UC Boulder Foundation for Data Science Specialization

# October 27, 2024

# Contents

| 1 | Introduction to Inference     |                            |                                            | 2 |
|---|-------------------------------|----------------------------|--------------------------------------------|---|
|   | 1.1                           | Popula                     | ation Mean $\mu$ and Sample Mean $\bar{X}$ | 2 |
| 2 | Rev                           | Review of Random Variables |                                            |   |
|   | 2.1 Discrete Random Variables |                            | te Random Variables                        | 3 |
|   |                               | 2.1.1                      | Bernoulli Distribution                     | 4 |
|   |                               | 2.1.2                      | Indicator function                         | 5 |
|   |                               | 2.1.3                      | Geometric Distribution                     | 5 |
|   | 2.2                           | Contir                     | nuous Random Variables                     | 6 |

## 1 Introduction to Inference

A *Poll* is when a person goes out and randomly select people from a large population to form a sample, and study that sample to figure out what the larger population wants.

#### Statistical Inference

Drawing conclusions about a larger population based on a relatively small sample.

**Point Estimation**: Estimating a quantity of interest in the larger population.

### What is the average height of all adult males in France?

In order to estimate the average height of all adult males in France, we first took a sample of 10 adult males and measured their heights. Below is a histogram of the heights of 10 adult males in France. The x axis is the height in cm in bins and the y axis is the density. Density is a number such that the total area of each bar is going to represent the proportion of the people in our sample that we saw in the corresponding bin.



**Density**: It is a number such that the total area of each bar is going to represent the proportion of the people in our sample that we saw in the corresponding bin.

For 1 million samples, the Histogram is going to take the shape of a bell curve. **This represents perfect information** i.e. the sample is representative of the population or a model for the idealized population.

# 1.1 Population Mean $\mu$ and Sample Mean $\bar{X}$

 $\mu$  is the average in an ideal population. It is no the sample average.



Because of the symmetry of the Bell curve, the true average height  $\mu$  is going to be the peak of the histogram.

If i take many samples of size 100 and compute the sample mean  $\bar{X}$ , they are going to pile up and make a **sampling distribution**. We use the sampling distribution to estimate the true mean  $\mu$ .

# 2 Review of Random Variables

### 2.1 Discrete Random Variables

Let X be a random variable. Before a coin is flipped, the value of X is unknown. It's waiting on the results of the experiment involving randomness.

### Random Variables

A random variable is a mapping from the set of outcomes of an experiment involving probability to the set of real numbers.

It is convention to use capital letters when talking about random variables.

$$X = \begin{cases} 1, & \text{if Heads} \\ 0, & \text{if Tails} \end{cases} \tag{1}$$

Since random variables talk about probability, we can say that:

$$X = \begin{cases} 1 & \text{with probability } \frac{1}{2} \\ 0 & \text{with probability } \frac{1}{2} \end{cases}$$
 (2)

And a better way to write this would be as a function:

$$f(x) = P(X = x) = \begin{cases} \frac{1}{2}, & \text{if } x = 0\\ \frac{1}{2}, & \text{if } x = 1\\ 0, & \text{otherwise} \end{cases}$$
 (3)

This is known as a probability mass function (pmf) and is denoted by f(x). When we have multiple random variables, we use subscripts to distinguish them for e.g.  $f_X(x)$ ,  $f_Y(y)$ .

The pmf tells us how the probabilities of different outcomes of a random variable are distributed. The below image shows the pmf of a fair coin. Since we are plotting density, the total area of each bar is the probability of that outcome.



### 2.1.1 Bernoulli Distribution

We can generalize that if the probability of getting heads is p and the probability of getting tails is q = 1 - p, the pmf becomes:

$$f(x) = P(X = x) = \begin{cases} 1 - p, & \text{if } x = 0\\ p, & \text{if } x = 1\\ 0, & \text{otherwise} \end{cases}$$
 (4)

This model depends on the parameter p. This random variable is so common, it gets a name i.e. Bernoulli Random Variable or Distribution with parameter p.

We can write any distribution in short hand as follows:

$$X \sim \text{Bernoulli}(p)$$
 (5)

#### 2.1.2 Indicator function

Let A be a set of real numbers. The Indicator function indicates if a number is in the set or not.

$$I_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{otherwise} \end{cases}$$
 (6)

with this Indicator function, we can say that X is a random variable that takes on only two values, 0 and 1. With this Indicator function we can write the Bernoulli probability mass function (pmf) as:

$$P(X = x) = p^{x} (1 - p)^{1 - x} \cdot I_{\{0,1\}}(x)$$
(7)

We re-wrote the pmf as equation 7 because it is more concise as compared to equation 4. If x is not in set  $\{0,1\}$ , the pmf is 0. Indicator function are also helpful in proving proofs.

#### 2.1.3 Geometric Distribution

The geometric distribution models the number of trials needed to get the first success in a sequence of independent Bernoulli trials with a success probability p. In other words, if X represents the number of trials until the first success, then X follows a geometric distribution with parameter p.

$$X \sim \text{Geometric}(p)$$
 (8)

Conditions:

• Repeated independent Bernoulli trials

• Only 2 outcomes: 0 and 1

## Derivation of the Probability Mass Function (PMF)

Considering P(X = 4). For this, we need our first success to be on the 4th trial. We need  $\mathbf{F}$ ,  $\mathbf{F}$ ,  $\mathbf{F}$ , and then  $\mathbf{S}$ .

$$P(X = 4) = (1 - p) \cdot (1 - p) \cdot (1 - p) \cdot p = (1 - p)^{3}p$$

### General Formula of the Geometric Distribution

In general, we can say that the first success is on the  $X^{th}$  trial, meaning we will have X-1 failures. So we can write the general formula of the geometric distribution as:

$$P(X = x) = (1 - p)^{x-1}p$$
 for  $x = 1, 2, 3, ...$   
$$P(X = x) = 0$$
 for other values of  $x$ 

We can use the Indicator function to write as a single general formula"

$$P(X = x) = (1 - p)^{x-1} p \cdot I_{\{1,2,3,\dots\}}(x)$$
(9)

#### Plot of the Geometric Distribution

The minimum value of X is 1 and there is no maximum value. The mode is always 1. As we move towards the right, the probabilities decrease.

Important: incomplete: exponential, binomial etc. graphs

## 2.2 Continuous Random Variables

 $\operatorname{sd}$