

DreamFusion

Лебедюк Вероника

Постановка задачи

задача: генерация 3d сцены по текстовому запросу

проблема: мало размеченных 3d данных

решение: научиться использовать text2image диффузионную модель и NeRF для генерации 3d сцены

Задача: оптимизировать параметры 3d пространства по 2d сэмплам

Решение: differentiable image parameterization (DIP):

- θ 3d параметры
- g(θ) дифференцируемый генератор изображений (рендерер)

Score Distillation Sampling: оптимизация θ так, чтобы изображения $g(\theta)$ были похожи на результат 2d модели

Пробуем считать
$$heta^* = \arg\min_{ heta} \mathcal{L}_{\mathrm{Diff}}(\phi, \mathbf{x} = g(\theta))$$

$$\nabla_{\theta} \mathcal{L}_{\mathrm{Diff}}(\phi, \mathbf{x} = g(\theta)) = \mathbb{E}_{t,\epsilon} \bigg[w(t) \underbrace{(\hat{\epsilon}_{\phi}(\mathbf{z}_t; y, t) - \epsilon)}_{\mathrm{Noise Residual}} \underbrace{\frac{\partial \hat{\epsilon}_{\phi}(\mathbf{z}_t; y, t)}{\mathbf{z}_t}}_{\mathrm{U-Net Jacobian Generator Jacobian}} \underbrace{\frac{\partial \mathbf{x}}{\partial \theta}}_{\mathrm{CЛОЖНО}} \bigg]$$

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, \mathbf{x} = g(\theta)) \triangleq \mathbb{E}_{t, \epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon \right) \frac{\partial \mathbf{x}}{\partial \theta} \right]$$

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, \mathbf{x} = g(\theta)) = \nabla_{\theta} \mathbb{E}_{t} \left[\sigma_{t} / \alpha_{t} w(t) \text{KL}(q(\mathbf{z}_{t} | g(\theta); y, t) || p_{\phi}(\mathbf{z}_{t}; y, t)) \right]$$
weighted probability density distillation loss

```
params = generator.init()
opt_state = optimizer.init(params)
diffusion_model = diffusion.load_model()
for nstep in iterations:
 t = random.uniform(0., 1.)
 alpha_t, sigma_t = diffusion_model.get_coeffs(t)
 eps = random.normal(img_shape)
 x = generator(params, <other arguments>...) # Get an image observation.
 z_t = alpha_t * x + sigma_t * eps # Diffuse observation.
 epshat_t = diffusion_model.epshat(z_t, y, t) # Score function evaluation.
 g = grad(weight(t) * dot(stopgradient[epshat_t - eps], x), params)
 params, opt_state = optimizer.update(g, opt_state) # Update params with optimizer.
return params
```

Результат:

- получили способ обучать параметры 3d модели так, чтобы их рендеры с разных ракурсов выглядели как хорошие изображения
- просто в реализации
- не требуется модификация диффузионной модели

NeRF

используем модификацию mip-NeRF 360

обучается multilayer perceptron (MLP) $(au, oldsymbol{
ho}) = ext{MLP} \left(oldsymbol{\mu}; heta
ight)$

Особенности рендера:

- Обычный NeRF: MLP выдает цвет с тенями относительно лучей из точки обзора
- Модификация: MLP выдает **цвет материала**, а добавление теней происходит отдельно

$$\mathbf{c} = \boldsymbol{\rho} \circ (\boldsymbol{\ell}_{\rho} \circ \max(0, \boldsymbol{n} \cdot (\boldsymbol{\ell} - \boldsymbol{\mu}) / \|\boldsymbol{\ell} - \boldsymbol{\mu}\|) + \boldsymbol{\ell}_a)$$

 случайная замена цвета материала на белый во время обучения помогает избежать генерации плоской сцены

Алгоритм DreamFusion

DIP – NeRF, text2image diffusion model – Imagen

Для каждого запроса инициализируется и обучается свой NeRF

Алгоритм DreamFusion

- 1. случайно выбираем позицию камеры и освещения
- 2. рендеринг NeRF модели с тенями
- 3. считаем градиент SDS loss
 - a. view-dependent conditioning
- 4. обновляем параметры NeRF

Эксперименты

Эксперименты

Эксперименты

Сравнение с аналогами

	R-Precision ↑					
Method	CLIP	B/32	CLIP	B/16	CLIP	L/14
	Color	Geo	Color	Geo	Color	Geo
GT Images	77.1	_	79.1	_	-	-
Dream Fields	68.3	_	74.2	_	_	_
(reimpl.)	78.6	1.3	(99.9)	(0.8)	82.9	1.4
CLIP-Mesh	67.8	_	75.8	_	74.5^{\dagger}	_
DreamFusion	75.1	42.5	77.5	46.6	79.7	58.5

Figure 5: Qualitative comparison with baselines.

Итог

DreamFusion:

- предложили:
 - Score Distillation Sampling для оптимизации параметров NeRF
 - о новый способ рендеринга, чтобы уметь получать модель в разном освещении

- обучает 3d модель по текстовому запросу
- не нуждается в 3d данных для обучения
- не требуется модификация диффузионной модели

Источники

https://arxiv.org/pdf/2209.14988.pdf

https://dreamfusion3d.github.io

