Secondo Appello Estivo del corso di Fisica del 17.07.2023

Corso di Laurea in Informatica

A.A. 2022-2023

(Prof. Paolo Camarri, Prof. Vincenzo Caracciolo)

Cognome:				
Nome:				
Matric	ola:			
Anno d	di immat	tricolazione:		
	Proble	ma n.1		
	Una cassa avente massa $m=10~{\rm kg}$ si muove di moto rettilineo su un piano orizzontale, in seguit all'applicazione di una forza \vec{F} la cui direzione forma un angolo $\theta=30^{\circ}$ con la retta orizzontale lungo cui muove la cassa, nel piano verticale contenente questa retta (FIGURA 1). Il coefficiente di attrito dinamico ti la cassa e il piano orizzontale è $\mu_d=0$,15 .			
	a)	Si calcoli il massimo vi dal piano orizzontale	alore F_M che può assumere il modulo della forza $ec F$ affinché la cassa non si sollevi	
		$F_M =$	=	
	b)	Si calcoli il modulo F_1 piano orizzontale.	della forza $ec{F}$ nel caso in cui la cassa si muova di moto rettilineo uniforme sul	
		$F_1 =$	=	
	c)		lore ottenuto nel punto b) del problema), si calcoli per quale valore $ heta_M$ nassima l'accelerazione della cassa nel suo moto rettilineo sul piano orizzontale.	
		$\theta_M =$	=	

Problema n.2

Un'asta rigida sottile e omogenea, avente massa $M=1~{\rm kg}$ e lunghezza $L=1~{\rm m}$, è imperniata a un suo estremo P, libera di ruotare su un piano verticale attorno a un asse orizzontale passante per l'estremo P. L'asta viene posizionata verticalmente, con il suo centro di massa al di sopra del perno, e viene lasciata libera da ferma (FIGURA 2a).

a)	Si calcoli la velocità angolare di rotazione ω_1 dell'asta nell'istante in cui essa passa per la posizione
	verticale, con il suo centro di massa al di sotto del perno (FIGURA 2b).

 $\omega_1 =$

b) Nell'istante considerato al punto a), l'asta urta con il suo estremo inferiore un punto materiale avente massa $m=0.1~{\rm kg}$, inizialmente fermo su un piano orizzontale. Nell'urto il punto materiale rimane attaccato all'asta (FIGURA 2b). Si calcoli il valore ω_2 della velocità angolare di rotazione del sistema asta + punto materiale subito dopo l'urto.

 $\omega_2 =$

c) Successivamente, il sistema asta + punto materiale continua a ruotare. Si calcoli il valore θ_M dell'angolo massimo formato dall'asta con la direzione verticale dopo l'urto (FIGURA 2c).

 $\theta_M =$

Problema n.3

Una sbarretta metallica orizzontale di massa $m=0.1~{\rm kg}$, lunghezza $l=1~{\rm m}$ e resistenza $R=1~{\rm \Omega}$ può scorrere senza attrito lungo una guida metallica disposta verticalmente, di resistenza trascurabile e a forma di U. Il sistema è immerso in un campo magnetico orizzontale uniforme e costante, di modulo $B=1~{\rm T}$, diretto perpendicolarmente al piano su cui sono disposte la sbarretta e la guida metallica (FIGURA 3). La sbarretta, lasciata cadere, si porta rapidamente a una velocità costante (velocità limite).

a) Si determini il valore v_L della velocità limite della sbarretta.

 $v_L = =$

b) Si calcoli il valore i_L della corrente che, a regime, scorre nel circuito costituito dalla sbarretta e dalla guida metallica. In quale senso (orario o antiorario) scorre la corrente nella FIGURA 3 ?

 $i_L =$

Senso di scorrimento della corrente in FIGURA 3:

c) Si calcoli, a regime, il valore P_L della potenza assorbita dalla sbarretta.

 $P_L =$ =

FIGURA 1

N.B.: in questa figura è tracciato esplicitamente solo il vettore \vec{F} ; per la risoluzione del problema occorre ovviamente rappresentare graficamente anche i vettori delle altre forze agenti sulla cassa

FIGURA 2 \vec{g} \vec{g}

FIGURA 3

L'esonero scritto prevede la risoluzione in TRE ore, a partire dall'ora comunicata dal docente all'inizio dello svolgimento della prova, dei tre esercizi sopra riportati, potendo consultare solo un formulario personale composto al massimo da 4 facciate di foglio protocollo. I fogli su cui svolgere i calcoli per la risoluzione dei problemi sono forniti dal docente.

Si richiede in ogni caso la consegna di tutti i fogli manoscritti su cui sono stati svolti i calcoli.

Un libro di testo è a disposizione sulla cattedra, portato dal docente.

Lo studente, oltre al foglio di carta, alla penna e a eventuali strumenti per disegno (matite, riga, squadra, compasso), può tenere sul tavolo solo una calcolatrice tascabile non programmabile.