

Curso de Tecnologia em Redes de Computadores

Disciplina: Cabeamento Estruturado

03. Introdução a comunicação de dados

Prof. Ronaldo < ronaldo.maia@ifrn.edu.br>

- A transmissão da informação através de sistemas de comunicação pressupõe a passagem de sinais através dos meios físicos de comunicação que compõem as redes
- As propriedades físicas dos meios de transmissão e as características dos sinais transmitidos apresentam uma série de questões tecnológicas que influenciam na construção e no projeto de redes de computadores

Conceitos Básicos

Comunicação

Ato de transmitir informações, de forma que seu significado seja preservado

Informação:

 Está associada às idéias ou aos dados manipulados pelos agentes que as criam, manipulam e processam

Sinal:

- Representação específica da informação no momento da transmissão
- Ondas que se propagam através de algum meio físico
 - Exs: par de fios telefônicos, fibra óptica, cabo coaxial, o ar, o vácuo, etc.

Tipos de Sinal

- Analógico
 - Sinal varia continuamente no tempo

- Digital
 - Sinal que varia em um conjunto de valores discretos
 - Construído de uma seqüência de intervalos de tamanho fixo iguais a T segundos, chamada de *Intervalo de Sinalização* (T)

Tipos de Sinal

- Digital
 - Nº de níveis pode ser maior que dois
 - Ex: Codificação Dibit

Banda Passante

- Banda passante do sinal
 - Intervalo de frequências que compõem este sinal
 - Ex: a voz humana vai de 80Hz até 12KHz
- Largura da banda passante do sinal
 - É o tamanho da banda passante do sinal
 - Ou seja, a diferença entre a maior e a menor frequência
 - Ex: Largura de banda da voz humana?
 - 12.000Hz 80Hz = 11.920Hz

Banda Passante

- Banda passante do Meio Físico
 - Faixa de freqüência que é preservada pelo meio

Banda Passante

- Banda passante necessária para o sinal
 - Largura de banda mínima capaz de garantir que o receptor ainda recupere a informação digital transmitida originalmente

Fontes de distorção

- Atenuação
 - Dininuição da potência do sinal com a distância
 - Perda de energia por calor ou radiação
 - Quanto maiores as frequências, maiores as perdas
- Eco
 - Provocada por mudanças de impedância
- Ruído
 - Interferência de sinais indesejáveis
 - Um dos maiores limitantes do desempenho

Fontes de distorção

- Tipos de Ruídos
 - Térmico
 - Provocado pela agitação dos elétrons nos condutores
 - Intermodulação
 - Sobreposição de sinais de diferentes frequências
 - Crosstalk
 - Provocado pela proximidade entre os condutores
 - Na telefonia, este fenômeno é chamado "linha cruzada"
 - Impulsivo
 - Pulsos irregulares e com grandes amplitudes
 - Maior causa de erros em transmissão digital
 - Podem ser provocados por diversas fontes, incluindo distúrbios elétricos externos, falhas nos equipamentos, etc.

Modulação e Demodulação

- Modulação
 - Deslocamento do sinal de sua faixa de freqüência original para outra faixa
 - O deslocamento é determinado pela frequência de uma onda portadora
- Demodulação
 - Deslocamento do sinal de outra faixa de frequência para sua faixa original
- Modem = Modulator-Demodulator

Técnicas de Modulação

- Três técnicas básicas:
 - Modulação por amplitude (AM)
 - Modulação por frequência (FM)
 - Modulação por fase (PM)

Técnicas de Modulação

- Para a modulação de um sinal digital:
 - Modulação por Chaveamento da Amplitude (Amplitude Shift Keying - ASK)
 - Modificações na amplitude da onda transmitida
 - Freqüência da portadora é mantida
 - Modulação por Chaveamento da Frequência (Frequency Shift Keying - FSK)
 - Modificações na freqüência da onda transmitida
 - Amplitude da portadora é mantida
 - Modulação por Chaveamento da Fase (Phase Shift Keying - PSK)
 - Modificações na fase da onda transmitida
 - Amplitude e frequência da portadora são mantidas

Técnicas básicas de modulação

Portadora

Mod. Amplitude

Mod. Frequência

Mod. Fase

Multiplexação

- Técnica que pemite a transmissão de mais de um sinal em um mesmo meio físico
- Tipos básicos de Multiplexação
 - Multiplexação na Freqüência (FDM)
 - Transmissão simultânea de diversos sinais em diferentes freqüências em um mesmo meio físico
 - Multiplexação no Tempo (TDM)
 - Transmissão intercalada de porções de diversos sinais em um mesmo meio físico

Multiplexação na Freqüência

- Cada sinal ocupa uma banda distinta com tamanho necessário para sua transmissão
 - Deslocar a faixa de freqüência de cada sinal
 - Filtrar cada sinal preservando somente a faixa relativa a banda necessária

Multiplexação na Freqüência

Exemplo

Base Band × Broad Band

- Base Band (Digital)
 - Sinal transmitido no meio sem qualquer técnica de modulação
 - Utiliza toda a banda passante do meio
 - Possibilitam a transmissão em alta velocidade
- Broad Band (Analógica)
 - Sinal transmitido no meio utilizando modulação
 - Banda passante do meio é dividida entre os vários canais

Sinalização em *Broad Band*

- Broad Band FDM
 - Banda passante do meio é dividida em vários canais
 - Muito usado pelas empresas de TV a cabo (CATV)
 - Tráfegos multiplexados na frequência
- Broad Band de único canal
 - Utiliza apenas um canal
 - Usado em CFTVs

Sinalização em *Broad Band*

- Tipos de canais
 - Dedicados
 - Previamente alocado à comunicação dos dispositivos
 - Permanece alocado por todo o tempo
 - Chaveados
 - Não são pré-estabelecidos
 - Requisitado sob demanda ao controlador
 - Permanece alocado até que um dos dispositivos cancele o canal

Multiplexação no Tempo (TDM)

- Transmissão de vários sinais em diferentes porções de tempo
- Pode ser:
 - Síncrona
 - Divide o tempo em intervalos de tamanhos fixos
 - Intervalos alocados de forma exclusiva
 - Pode gerar desperdício da capacidade
 - Assíncrona
 - Intervalos de tempo alocados dinamicamente de acordo com a demanda.

Multiplexação no Tempo (TDM)

- TDM Síncrono
 - Tempo é dividido em intervalos de tamanhos fixos (T): FRAME
 - Cada frame é dividido em subintervalos: slots ou segmentos
 - Canal: conjunto de slots em determinada posição do frame
 - Dedicado
 - Chaveado

TDM Síncrono

Single-Slot TDM

Multi-Slot TDM

TDM Síncrono

- Multi-window TDM
 - Frame é dividido em janelas de mesmo tamanho
 - Divisão da janela pode ser diferente

TDM Assincrono

- Intervalos de tempo alocados dinamicamente de acordo com a demanda
- Requer cabeçalho de controle
 - Endereços de origem e destino
- Elimina o desperdício de capacidade
 - Tempo não utilizado está sempre disponível

A1

B1

B2

42

C1

FDM x TDM

Bibliografia

- SOARES, Luiz Fernando; COLCHER, Sérgio e SOUZA, Guido Lemos. Redes de Computadores: Das LANs, MANs e WANs às redes ATM. Campus, 5^a Ed.
- TANENBAUM, Andrew S. Redes de Computadores.
 Campus, 4^a Ed.
- KUROSE, James F.; ROSS, Keith W. Redes de Computadores e a Internet - Uma abordagem top-down.
 3ª Ed. São Paulo: Pearson Addison Wesley, 2006.

Questões

- Explique a diferença entre modulação e multiplexação. Cite as técnicas básicas de ambas e dê exemplos reais onde estas são usadas.
- 2. O que sinal? Qual a diferença entre os sinais analógicos e digitais?
- 3. Qual a diferença entre banda passante e largura de banda do sinal?
- 4. Compare o TDM síncrono com assíncrono, apresentando suas vantagens e desvantagens.
- 5. Qual o intervalo de sinalização (T), se a taxa de transmissão é de 20 bps, e utiliza-se 4 níveis de amplitude?
- 6. Para um sinal digital, qual a taxa de transmissão (em bps), se o intervalo de sinalização (T) é de 0,02 segundos, e utiliza-se 16 níveis de amplitude?