CSCI 5654, Spring 2020: Assignment #1 (75 points).

Assigned date: Friday 1/17/2020,

Due date: Tuesday, 01/28/2020 (before class)

Instructions: Please upload your HW as a PDF file along with code that you wrote for running the LP pro-

P1. (5 points) Convert the following problem to the standard form:

$$\begin{array}{ccccc} \textbf{minimize} & 3x_1 - 5x_2 \\ \textbf{s.t.} & 4x_1 + x_2 & \geq & -4 \\ & 2x_1 - x_2 & \geq & -8 \\ & x_1 + 2x_2 & \leq & 4 \\ & x_1 & \geq & 0 \end{array}$$

- **P2.** (10 points) (a) Add slack variables to the standard form that you obtained in (P1) above and write down the **initial dictionary**. (b) Perform one step of simplex on the initial dictionary. (c) Write down clearly which variable is entering and which variable is leaving. (d) Show the resulting dictionary after pivoting.
- **P3.**(20 points) An investment adviser wishes to recommend an ideal investment for her client. After lots of market research, she has compiled a table of investment as expressed in the spreadsheet that has been distributed with this assignment. The total investment is \$10,000.

The data in Fig. 1 shows the investment options and categorizes them based on risk A-D, market segment and whether the investment is in an eco-friendly business. The client has specified minimum and maximum investment limits for each category. This data is also given as a CSV file investmentData.csv for your convenience.

Setup and solve a linear program that maximizes the expected profit while respecting the maximum and minimum investment percentages for each category.

Is the problem feasible? Is it bounded? What is the optimal solution? **Note:** Upload the code you used to solve the LP either as a GLPK model, matlab files or Python code. Also turn in the outputs that the solver gave you as a problem3.txt file.

P4 (10 points) A set S is *convex* if any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$, the point $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in S$ for all $\lambda \in [0, 1]$.

Consider the linear program:

$$\max \mathbf{c}^t \mathbf{x} \text{ s.t. } A\mathbf{x} < \mathbf{b}$$
.

- (A) Prove that the set of feasible solutions $F : \{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \}$ is a convex set. **Note:** The proof is just 5 lines at most.
- (B) Let $\mathbf{x}_1 \neq \mathbf{x}_2$ be two distinct optimal solutions for the problem both achieving the optimal objective value $z^* = \mathbf{c}^t \mathbf{x}_1 = \mathbf{c}^t \mathbf{x}_2$. Show that there are infinitely many optimal solutions for the linear program. **Note:** The proof requires 3-5 sentences at most.
- **P5** (15 points) This problem explores how to formulate constraints in linear programming. Let $\mathbf{x}:(x_1,\ldots,x_n)$ be n decision variables such that $x_1,\ldots,x_n\geq 0$. We wish to formulate the following constraints. Which of them can be expressed as constraints in a linear programming problem? If

yes, explain how you would formulate them. If no, give a short proof. Note that linear programming problems allow constraints of the form $\sum a_j x_j \le b$ for real numbers a_j , for $j = 1, \ldots, n$ and b.

- (a) (2 points) x_5 must be between x_1 and x_3 .
- (b) (3 points) x_1 must be between 40% and 60% of the sum of all x_1, \ldots, x_n .
- (c) (10 points) At least one of the variables x_1, \ldots, x_n must be 0. (**Hint:** Is this a "convex" constraint?).

P6 (15 points, HARDER) Let x_1, x_2 be two real-valued variables which satisfy the constraints $0 \le x_1 \le 10$ and $0 \le x_2 \le 15$. Using indicator variables $w_1, w_2 \in \{0, 1\}$ write down a system of linear inequalities involving (x_1, x_2, w_1, w_2) that express the nonlinear constraint $x_1x_2 = 0$. (Hint: Suppose we want to make sure that $w_1 = 1$ indicates that $x_1 = 0$ but $w_1 = 0$ places no constraints on x_1 . How do we achieve this? Just write down the constraints involving x_1, x_2, w_1, w_2 with at most 4 lines of explanations).

ID	Expected Profit/ Unit	Price / Unit	Risk Category	Investment Market	Eco Friendly?
1	1.451	2.563	A	Tech	Y
2	2.683	4.307	В	Finance	Y
3	5.898	6.422	С	Finance	Y
4	2.102	3.488	A	PetroChem	N
5	5.709	6.581	В	Finance	N
6	4.519	8.993	D	Finance	Y
7	7.176	11.481	С	Finance	Y
8	6.075	11.730	В	Tech	Y
9	5.718	9.270	В	PetroChem	Y
10	7.442	10.160	A	Automobile	Y
11	1.234	1.961	С	Tech	Y
12	4.680	9.300	D	Automobile	N
13	7.229	11.672	A	PetroChem	Y
14	9.589	10.877	В	Automobile	N
15	6.497	12.137	С	Finance	N

Risk Categories	Min	Max
A	1500	3500
В	4500	6500
C	1000	3000
D	500	2500

Investment Market	Min	Max
Tech	0	3000
Finance	0	4000
PetroChem	0	5000
Automobile	0	7000

EcoFriendly	Min	Max
Y	2000	10000

Figure 1: Investment Data.