NATIONAL UNIVERSITY OF SINGAPORE

CS1231S DISCRETE STRUCTURES

(Semester 2: AY2019/2020)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. This assessment paper contains FOUR questions and comprises FOUR printed pages.
- 2. Answer ALL questions. The marks for each question are indicated in brackets.
- 3. Write your answers on your own paper.

EXAMINER'S USE ONLY			
Question	Marks	Score	
Q1	7		
Q2	8		
Q3	21		
Q4	14		
Total	50	_	

PAGE 2 CS1231S

1. For a set X, the identity function is $i_X: X \to X$ such that $i_X(x) = x$ for all $x \in X$.

- (i) Give an example of a function $f : \{a, b\} \to \{a, b\}$ such that $f \neq i_{\{a, b\}}$ and f is bijective. [1 mark]
- (ii) Give an example of a function $g:\{a,b,c\}\to\{a,b,c\}$ such that $g\neq i_{\{a,b,c\}}$ and $g\circ g$ is bijective. [2 marks]
- (iii) Suppose $h: X \to X$ is a function such that $h \circ h$ is 1-1 (injective). Prove that h is 1-1. [2 marks]
- (iv) Suppose $h: X \to X$ is a function such that $h \circ h$ is onto (surjective). Prove that h is onto.

2. Recall from the Assignment and Quiz2 the equivalence relation \approx on \mathbb{R} defined by

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x \approx y \leftrightarrow \lfloor x \rfloor = \lfloor y \rfloor.$$

The equivalence classes are $I_n = \{x \in \mathbb{R} \mid n \leq x < n+1\}$, where $n \in \mathbb{Z}$.

(i) Let $k \in \mathbb{Z}$. Explain why, if $k \in I_n$, then k = n.

[2 marks]

(ii) Let $\mathcal{I} = \{I_n \mid n \in \mathbb{Z}\}$. Prove that \mathcal{I} is countable.

- [3 marks]
- (iii) It is known that \mathbb{R} is uncountable. Prove that I_n is uncountable for every $n \in \mathbb{Z}$.

 [3 marks]

PAGE 3 CS1231S

3. Let G be an undirected graph, and G = (V, E). Recall that a subgraph of the form $(\{x_1, \ldots, x_p\}, \{\{x_1, x_2\}, \{x_2, x_3\}, \ldots, \{x_{p-1}, x_p\}\})$ is called a **path** between x_1 and x_p in G, and this path has **length** p-1.

Now, for integer $k \geq 1$, define

in Figure 1.

 $E_k = \{\{x,y\} \mid x \neq y \text{ and there is a path of length } k \text{ in } G \text{ between } x \text{ and } y\},$ and let $G_k = (V, E_k)$. Note that $E_1 = E$ and $G_1 = G$.

Thus, for the undirected graph in Figure 1, we have $\{e,b\} \in E_1$, $\{e,d\} \in E_2$, $\{e,d\} \in E_3$, etc.

Figure 1

(i)	List the elements of V and E for Figure 1.	[2 marks]
(ii)	What is the length of the longest path in Figure 1?	[1 mark]
(iii)	Draw all spanning trees for the graph in Figure 1.	[3 marks]
(iv)	Draw G_2 , G_3 , G_4 and G_5 for the graph in Figure 1.	[4 marks]
(v)	Identify all (if any) cyclic graphs in (iv).	[1 mark]
(vi)	Identify all (if any) connected graphs in (iv).	[1 mark]
(vii)	Among G_2 , G_3 , G_4 and G_5 , which (if any) are trees?	[1 mark]
(viii)	In (iv), how many connected components does G_4 have?	[1 mark]
(ix)	For this part, consider any G (not just the one in Figure 1). Prove that G is	s connected
	if and only if $\{x,y\} \in \bigcup_{k=1}^{\infty} E_k$ for every $x,y \in V$ such that $x \neq y$.	[2 marks]

(x) Determine the number of graphs (with the same V) that are isomorphic to the graph

[5 marks]

PAGE 4 CS1231S

4. Let T be a rooted binary tree of height h. For $h \ge 1$, we call T a **strand** if and only if the following holds:

- (I) there is exactly one leaf and one parent at every level ℓ , for $1 \le \ell \le h-1$ and
- (II) there are exactly two leaves at level h.

Figure 2 below illustrates three strands T_1 , T_2 and T_3 .

Figure 2

- (i) Is $T_1 = T_2$? Is $T_2 = T_3$? Justify your answers. [2 marks]
- (ii) Prove that, for any $h \ge 1$, a strand of height h has 2h + 1 nodes. [2 marks]

Let N(0) = 1 and, for $h \ge 1$, let N(h) be the number of different strands of height h, whose nodes are $\{v_1, v_2, \dots, v_{2h+1}\}$.

- (iii) Prove that N(h) = 2(2h+1)hN(h-1) for every positive integer h. [5 marks]
- (iv) Use induction to prove that $N(h) = \frac{(2h+1)!}{2}$ for every positive integer h. [5 marks]