LAPORAN

TUGAS BESAR 1

IF2123 ALJABAR LINEAR DAN GEOMETRI SISTEM PERSAMAAN LINIER, DETERMINAN, DAN APLIKASINYA

Disusun oleh:

(13521066) Muhammad Fadhil Amri

(13521070) Akmal Mahardika Nurwahyu Pratama

(13521087) Razzan Daksana Yoni

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG BANDUNG

2022

Daftar Isi

BAB 1	Deskripsi Masalah	1
BAB I	I Teori Singkat	2
A.	Matriks Eselon Baris dan Matriks Eselon Baris Tereduksi	2
B.	Metode Eliminasi Gauss	2
C.	Metode Eliminasi Gauss-Jordan	3
D.	Determinan	3
E.	Matriks Balikan (Invers Matriks)	6
F.	Matriks Kofaktor	6
G.	Matriks Adjoin	6
H.	Kaidah Cramer	6
I.	Interpolasi Polinom	7
J.	Interpolasi Bicubic	7
K.	Regresi Linear Berganda	8
BAB I	II Implementasi Pustaka dan Program	9
BAB I	V Eksperimen	.23
BAB v	V Kesimpulan	.41

BAB 1 Deskripsi Masalah

Sistem persamaan linier (SPL) banyak ditemukan di dalam bidang sains dan rekayasa. Terdapat berbagai metode untuk menyelesaikan SPL, termasuk menghitung determinan matriks. Sembarang SPL dapat diselesaikan dengan beberapa metode, yaitu metode eliminasi Gauss, metode eliminasi Gauss-Jordan, metode matriks balikan (x = A -1b), dan kaidah Cramer (khusus untuk SPL dengan n peubah dan n persamaan). Solusi sebuah SPL mungkin tidak ada, banyak (tidak berhingga), atau hanya satu (unik/tunggal).

Di dalam Tugas Besar 1 ini, kami membuat satu beberapa library aljabar linier dalam Bahasa Java. Library tersebut berisi fungsi-fungsi seperti eliminasi Gauss, eliminasi Gauss-Jordan, menentukan balikan matriks, menghitung determinan, kaidah Cramer (kaidah Cramer khusus untuk SPL dengan n peubah dan n persamaan). Selanjutnya, library tersebut digunakan di dalam program Java untuk menyelesaikan berbagai persoalan yang dimodelkan dalam bentuk SPL, menyelesaikan persoalan interpolasi, dan persoalan regresi.

BAB II Teori Singkat

A. Matriks Eselon Baris dan Matriks Eselon Baris Tereduksi

- 1. Jika baris dalam matriks tidak terdiri seluruhnya dari nol, maka bilangan tak nol pertama dalam baris tersebut adalah 1. Kita menamakan ini sebagai 1 utama.
- 2. Jika terdapat baris yang seluruh entri atau elemennya terdiri dari nol, maka semua baris dengan elemen-elemennya yang berupa nol tersebut dikelompokkan bersama-sama di bawah matriks.
- 3. Untuk dua baris berurutan yang seluruhnya elemennya tidak terdiri dari nol, maka 1 utama dalam baris yang lebih rendah diletakkan lebih jauh ke kanan dari 1 utama dalam baris yang lebih tinggi.
- 4. Masing-masing kolom yang mengandung 1 utama mempunyai elemen nol di tempat lain.

Sebuah matriks yang mempunyai sifat 1, 2, dan 3, dikatakan berada dalam bentuk eselon baris (row-echelon form), sedangkan matriks yang mempunyai semua sifat 1, 2, 3, dan 4 dikatakan berada dalam bentuk eselon baris tereduksi (reduced row-echelon form).

B. Metode Eliminasi Gauss

Eliminasi gauss adalah metode yang dapat digunakan untuk mencari solusi sistem persamaan linear dengan merepresentasikan koefisien serta konstanta SPL ke dalam augmented matrix, matriks tersebut lalu dikenakan Operasi Baris Elementer membentuk matriks eselon baris. Kemudian, solusi untuk setiap variabel dapat dicari dengan metode penyulihan mundur.

Proses pembentukan matriks eselon baris

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} & b_3 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} & b_n \end{bmatrix} \longrightarrow \begin{bmatrix} c_{11} & c_{12} & c_{13} & \dots & c_{1n} & d_1 \\ 0 & c_{22} & c_{23} & \dots & c_{2n} & d_2 \\ 0 & 0 & c_{33} & \dots & c_{3n} & d_3 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & c_{nn} & d_n \end{bmatrix}$$

Teknik penyulihan mundur

$$\begin{split} x_n &= \frac{d_n}{c_m} \\ x_{n-1} &= \frac{1}{c_{n-1,n-1}} \left(-c_{n-1,n} x_n + d_{n-1} \right) \\ &\dots \\ x_2 &= \frac{1}{c_{22}} \left(d_2 - c_{23} x_3 - c_{24} x_4 - \dots - c_{2n} x_n \right) \\ x_1 &= \frac{1}{c_{11}} \left(d_1 - c_{12} x_2 - c_{13} x_3 - \dots - c_{1n} x_n \right) \end{split}$$

C. Metode Eliminasi Gauss-Jordan

Metode ini adalah pengembangan dari Metode Eliminasi Gauss. Jika Metode Eliminasi Gauss menghasilkan matriks eselon baris, Metode Eliminasi Gauss-Jordan menghasilkan matriks eselon baris tereduksi. Proses Operasi Baris Elementer yang dilakukan pada Metode Eliminasi Gauss hanya berupa forward phase, sedangkan proses Operasi Baris Elementer pada Metode Eliminasi Gauss-Jordan berupa forward phase dan backward phase.

Forward Phase

$$\begin{bmatrix} 2 & 3 & -1 & 5 \\ 4 & 4 & -3 & 3 \\ -2 & 3 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} \text{OBE} \\ \cdots \\ \end{bmatrix} \sim \begin{bmatrix} 1 & 3/2 & -1/2 & 5/2 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Backward Phase

$$\begin{bmatrix} 1 & 3/2 & -1/2 & 5/2 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{\mathsf{R1}} - (3/2)\mathsf{R2} \begin{bmatrix} 1 & 0 & -5/4 & -11/4 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{\mathsf{R1}} + (5/4)\mathsf{R3} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ \mathsf{R2}} - (1/2)\mathsf{R3} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Matriks eselon baris tereduksi

Hasil yang diperoleh dari metode Eliminasi Gauss-Jordan ini dapat secara langsung disubstitusikan ke setiap variabel tanpa harus melakukan operasi dengan variabel lain.

D. Determinan

Determinan adalah nilai yang dapat dihitung dari unsur suatu matriks persegi. Determinan matriks A dapat dituliskan sebagai $\det(A)$, $\det A$, atau |A|. Determinan dapat dianggap sebagai faktor penskalaan transformasi yang digambarkan oleh matriks. Selain untuk melambangkan faktor penskalaan transformasi yang digambarkan oleh matriks, determinan juga bisa digunakan untuk mencari invers(balikan) dari suatu matriks.

Determinan suatu matriks dapat dicari dengan beberapa teknik, di antaranya:

1. Metode Sarrus

Metode ini hanya bisa diterapkan pada matriks persegi berorde tiga. Sederhananya, pada metode ini kita melakukan penambahan dua kolom di sebelah kanan matriks yang akan dicari

determinannya. Setelah itu, determinan bisa dihitung dengan mencari selisih antara penjumlahan tiga buah perkalian tiga elemen secara diagonal.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} & a_{21} \\ a_{31} & a_{32} & a_{33} & a_{31} \\ a_{31} & a_{32} & a_{33} & a_{31} \\ a_{31} & a_{32} & a_{33} & a_{31} \\ a_{32} & a_{33} & a_{31} & a_{32} \\ a_{33} & a_{31} & a_{32} \\ a_{34} & a_{32} & a_{33} \\ a_{31} & a_{32} & a_{33} \\ a_{31} & a_{32} & a_{33} \\ a_{31} & a_{32} & a_{33} \\ a_{32} & a_{33} & a_{31} \\ a_{33} & a_{32} & a_{33} \\ a_{34} & a_{32} & a_{33} \\ a_{35} & a_{35} & a_{35} \\ a_{36} & a_{36} & a_{36} \\ a_{36} & a_{36} &$$

2. Determinan Matriks Segitiga

 $+ a_{12}a_{21}a_{33}$)

1. Matriks Segitiga Atas

2. Matriks Segitiga Bawah

$$A = \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \longrightarrow det(A) = a_{11}a_{22}a_{33}a_{44}$$

3. Metode Reduksi Baris

Determinan suatu matriks dapat dicari dengan melakukan Operasi Baris Elementer hingga menghasilkan matriks berbentuk matriks segitiga atas atau matriks segitiga bawah.

Saat melakukan Operasi Baris Elementer, terdapat beberapa aturan determinan.

- 1. Jika suatu baris pada matriks dikali dengan konstanta k, determinannya menjadi k kali determinan sebelumnya.
- 2. Jika terdapat penukaran dua baris pada suatu matriks, determinannya menjadi negatif dari determinan sebelumnya.
- 3. Jika terdapat operasi penjumlahan suatu baris matriks dengan kelipatan matriks baris lain, determinan matriks tersebut tidak berubah.

Proses pencarian determinan dengan metode reduksi baris

$$[A] \stackrel{\mathsf{OBE}}{\sim} [\mathsf{matriks} \ \mathsf{segitiga} \ \mathsf{bawah}]$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \overset{\mathsf{OBE}}{\sim} \begin{bmatrix} a'_{11} & a'_{12} & \dots & a'_{1n} \\ 0 & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \dots & a'_{3n} \\ 0 & 0 & 0 & a'_{nn} \end{bmatrix}$$

maka
$$det(A) = (-1)^p a'_{11}a'_{22} \dots a'_{nn}$$

p menyatakan banyaknya operasi pertukaran baris di dalam OBE

4. Metode Ekspansi Kofaktor

Pada sebuah matriks, kita dapat menuliskan M_{ij} sebagai lambang dari minor entri a_{ij} , yaitu submatriks yang elemen-elemennya tidak berada pada baris i dan kolom j dan $C_{ij} = (-1)^{i+j} M_{ij}$ adalah kofaktor entri a_{ij} . Kofaktor C_{ij} berkorespondensi dengan minor entri M_{ij} , tetapi Kofaktor C_{ij} dapat sama dengan minor entri M_{ij} atau negatif dari minor entri M_{ij} . Nilai C_{ij} ini memiliki pola seperti berikut.

Dengan metode ekspansi kofaktor, determinan matriks

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

dapat dihitung dengan salah satu persamaan berikut.

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n} \qquad \det(A) = a_{11}C_{11} + a_{21}C_{21} + \dots + a_{n1}C_{n1}$$

$$\det(A) = a_{21}C_{21} + a_{22}C_{22} + \dots + a_{2n}C_{2n} \qquad \det(A) = a_{12}C_{12} + a_{22}C_{22} + \dots + a_{n2}C_{n2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\det(A) = a_{n1}C_{n1} + a_{n2}C_{n2} + \dots + a_{nn}C_{nn} \qquad \det(A) = a_{1n}C_{1n} + a_{2n}C_{2n} + \dots + a_{nn}C_{nn}$$

$$Secara baris \qquad Secara kolom$$

Penghitungan determinan dengan kedua jenis persamaan tersebut menghasilkan hasil yang sama karena determinan dari transpose suatu matriks nilainya sama dengan determinan matriks tersebut.

E. Matriks Balikan (Invers Matriks)

Invers matriks dilambangkan dengan A^{-1} . Matriks invers adalah suatu matriks yang jika dikalikan dengan matriks asalnya akan menghasilkan matriks identitas. Suatu matriks memiliki invers jika determinan dari matriks tersebut tidak nol. Invers dari suatu matriks dapat dicari menggunakan metode eliminasi Gauss-Jordan dan menggunakan Adjoin dengan Adjoin adalah transpose dari matriks kofaktor.

Mencari Invers matriks menggunakan Adjoin

$$A^{-1} = \frac{1}{det(A)} adj(A), det(A) \neq 0$$

Mencari invers matriks menggunakan metode Gauss-Jordan dengan melakukan Operasi Baris Elementer membentuk matriks identitas pada sisi kiri sehingga terbentuk matriks invers di sisi kanan

$$[A|I] \sim [I|A^{-1}]$$

F. Matriks Kofaktor

Kofaktor adalah hasil perkalian minor dengan $(-1)^{+j}$ dengan I adalah indeks baris dan j adalah indeks kolom suatu matriks. Kofaktor suatu elemen baris ke-i dan kolom ke-j dari suatu matriks dapat dilambangkan dengan C_{ij} . Matriks kofaktor memiliki bentuk umum sebagai berikut.

$$\begin{bmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{bmatrix}$$

G. Matriks Adjoin

Matriks adjoin adalah hasil transpose dari matriks kofaktor. Jika A adalah suatu matriks, adjoin A dapat dilambangkan sebagai adj(A). Matriks adjoin dapat digunakan untung menghitung matriks baikan dengan rumus

$$adjoin A = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}^{T} = \begin{bmatrix} c_{11} & c_{21} & \cdots & c_{n1} \\ c_{12} & c_{22} & \cdots & c_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{bmatrix}$$

cii adalah kofaktor aii

H. Kaidah Cramer

Kaidah Cramer adalah kaidah yang digunakan untuk mencari solusi dari suatu sistem persamaan linear dan hanya berlaku jika sistem persamaan linear tersebut memiliki solusi yang unik. Kaidah ini mencari solusi dengan menggunakan determinan matriks koefisien untuk membagi determinan matriks lain yang diperoleh dengan mengganti salah satu kolom matriks koefisien dengan matriks hasil yang berada sebelah kanan persamaan.

$$x_1 = \frac{det(A_1)}{det(A)}, x_2 = \frac{det(A_2)}{det(A)}, \dots, x_n = \frac{det(A_n)}{det(A)}$$

I. Interpolasi Polinom

Interpolasi secara sederhana dapat diartikan sebagai metode yang digunakan untuk menentukan nilai fungsi yang sesuai dari titik-titik yang berikan. Secara umum, interpolasi adalah suatu metode atau proses menyusun suatu fungsi atau persamaan dengan menggunakan beberapa titik yang diketahui atau beberapa contoh titik untuk memprediksi atau estimasi nilai pada titik lain yang belum diketahui nilainya.

Interpolasi polynomial menggunakan beberapa titik misal (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , hinggga (x_n, y_n) . Titik-titik tersebut dibentuk suatu fungsi atau persamaan f(x) sehingga untuk nilai x yang lain dapat diprediksi nilai dari y. Karena bentuk fungsi ini di prediksi dari titik-titik yang ada sehingga x yang ingin diprediksi, idealnya, berada diantara [a,b] dengan a adalah nilai terkecil dari x_n dan b adalah nilai terbesar dari x_n .

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}$$

J. Interpolasi Bicubic

Interpolasi bicubic memiliki tujuan yang sama dengan interpolasi polinomial, yaitu memprediksi nilai. Nilai yang akan diprediksi merupakan nilai pada bidang 3 dimensi, f(x, y), dengan rumus :

$$f(x,y) = \sum_{j=0}^{3} \sum_{i=0}^{3} a_{ij} x^{i} y^{j}$$

Rumus tersebut akan membtuk grafik dengan visualisasi:

Bicubic

Peng-interpolasi-an membutuhkan nilai f(x,y) untuk setiap x,y pada jangkauan (x_0,y_0) , (x_1,y_0) , ..., (x_k,y_0) , (x_0,y_1) , (x_1,y_1) , ..., (x_k,y_k) . Nilai yang diinterpolasi harus berada dalam jangkauan [(x_1,y_1) , (x_{k-1},y_{k-1})]. Jika berada diluar range, nilai yang dicari disebut ekstrapolasi, tetapi pada bicubic nilai tersebut mungkin benar.

K. Regresi Linear Berganda

Analisis regresi linear berganda adalah regresi linear yang memiliki variabel bebas yang lebih dari satu. Regresi linear berganda ini bertujuan untuk mencari bagaimana hubungan antara banyak variabel bebas dengan suatu variabel terikat dan bisa menentukan bagaimana korelasi beberapa variabel bebas mempengaruhi variabel terikat tersebut.

Persamaan regresi linier berganda secara umum

$$Y' = a + b_1 X_1 + b_2 X_2 + ... + b_n X_n$$

BAB III Implementasi Pustaka dan Program

1. Class Matrix

• Attribute

Nama	Tipe	Deskripsi		
nRow	private int	Jumlah baris objek matriks		
nCol	private int	Jumlah kolom objek matriks		
content	private float[][]	Kontainer elemen-elemen di dalam matriks		

• Method

CONSTRUCTOR				
Nama	Tipe	Parameter	Deskripsi	
Matrix	public	int nRow int nCol	Membentuk objek Matrix berdasarkan input dimensi dan melakukan pengisian semua elemen	
Matrix	public	float[][] matrix int nRow int nCol	Membentuk objek Matrix dari input array of array of float dan dimensinya	
Matrix	public	Matrix matrix	Membentuk objek Matrix dari input sebuah objek Matrix (copy object)	

GETTER			
Nama	Tipe	Parameter	Deskripsi
getNRow	public int	-	Mengembalikan NRow suatu objek Matrix
getNCol	public int	-	Mengembalikan NCol suatu objek Matrix
getElmtContent	public float	int i int j	Mengembalikan elemen baris ke-i dan kolom ke-j suatu objek Matrix
getContent	public float[][]	-	Mengembalikan matriks of float dari suatu objek Matrix
SETTER			
Nama	Tipe	Parameter	Deskripsi
setElmtContent	public void	int i int j float x	Men-set nilai elemen baris ke-i, kolom ke-j dari suatu objek Matrix menjadi x
setContent	public void	float[][] newContent	Men-set content suatu objek Matrix menjadi newContent
OUTPUT	-	•	'
Nama	Tipe	Parameter	Deskripsi

displayMatrix	public void	-	Menampilkan elemen-elemen pada Matrix ke layar, kolom dipisahkan oleh blank space dan baris dipisahkan oleh newline
BASIC METHOD			
Nama	Tipe	Parameter	Deskripsi
multiplybyConstant	public void	float k	Mengalikan setiap elemen pada suatu objek matriks dengan konstanta k

• Static function/procedure

Nama	Tipe	Parameter	Deskripsi
multiplyMatrix	public static Matrix	Matrix m1 Matrix m2	Mengembalikan ebuah objek Matrix yang merupakan hasil perkalian Matrix m1 dengan Matrix m2
isInvertible	public static boolean	Matrix matrix	Mengembalikan true jika suatu Matrix invertible, mengembalikan false jika tidak
getIdentityMatrix	Public static Matrix	int order	Mengembalikan Matrix identitas yang berorde order
getUndefMatrix	public static Matrix	int order	Mengembalikan Matrix undefine (semua elemen bernilai mark, -9999)

getTransposeMatrix	Public static Matrix	Matrix matrix	Mengembalikan Matrix transpose dari Matrix
splitAugmented	Public static Matrix[]	Matrix augmented	Mengembalikan array of Matrix yang berisi matriks koefisien dan matriks result hasil dari split Matrix augmented
splitAugmentedMLR	public static Matrix[]	Matrix augmented	Mengembalikan array of Matrix yang berisi matriks koefisien dan matriks result hasil dari split Matrix augmented sebuah Multiple Linear Regression (MLR)
isEqualMatrix	public static boolean	Matrix m1, Matrix m2	Mengembalikan true jika dua buah Matrix sama, yaitu memiliki dimensi yang sama dan setiap elemen yang bersesuaian juga bernilai sama
saveHasil	Public static void	Matrix matrix String namaFile	Melakukan writing file sebuah Matrix pada file namaFile, format penulisan adalah setiap kolom dipisahkan oleh satu whitespace dan setiap baris dipisahkan oleh newline. Membuat file baru jika namaFile tidak ditemukan, overwrite jika namaFile ditemukan
saveHasil	Public static void	float[] array String namaFile	Melakukan writing file sebuah array of float pada file namaFile, format penulisan adalah setiap elemen dipisahkan oleh newline. Membuat file baru jika namaFile tidak

	ditemukan, overwrite jika namaFile ditemukan

2. Class Kofaktor

Nama	Tipe	Parameter	Deskripsi
detKofaktor	public star double	Matrix matrix	Mengembalikan nilai determinan dari suatu matriks dengan metode Ekspansi Kofaktor asumsi matriks yang diinputkan berbentuk persegi.
getMinor	public star Matrix	Matrix matrix Int col	Mengembalikan matriks minor dengan menerima nilai kolom mana yang akan di hilangkan.

3. Class ReduksiBaris

Nama	Tipe	Parameter	Deskripsi
detReduksi	public static double	Matrix matrix	Mengembalikan nilai determinan dari suatu matriks dengan metode Reduksi Baris asumsi matriks yang diinputkan berbentuk persegi.
IsSegitiga	public static boolean	Matrix matrix	Mengembalikan true jika semua elemen di bawah diagonal utama bernilai 0

4. Class Determinan

Nama	Tipe	Parameter	Deskripsi

menuDeterminan	public void	static	Int menu	Melakukan sekumpulan prosedur sebagai eksekusi dari pilihan menu Determinan pada Main
----------------	----------------	--------	----------	---

5. Class Gauss

Nama	Tipe	Parameter	Deskripsi
TukarBaris	public static void	Matrix matrixkoef Matrix matrixres int row	Menukar baris apabila elemen matriks ii tidak ada.
IsSegitigaBawahZero	public static boolean	Matrix matrixkoef	Mengembalikan true jika semua elemen di bawah diagonal utama bernilai 0
isDiagonalOne	public static boolean	Matrix matrixkoef	Mengembalikan true jika semua elemen diagonal utama bernilai 1.
splbyGauss	public static String[]	Matrix matrixkoef Matrix matrixres	Mengembalikan solusi SPL dalam bentuk array of string dengan metode eliminasi Gauss. Jika tidak mempunyai solusi akan mengembalikan array of string undef, yaitu semua elemen bernilai "-9999"

6. Class GaussJordan

Static function/procedure

Nama	Tipe		Parameter	Deskripsi
inListInt	public s boolean	static	int[] li int x int length	Mengembalikan true jika elemen x terdapat pada li, mengembalikan false jika tidak
getIndexOf	public s int	static	int[] li int x int length	Mengembalikan indeks pertama elemen pada li yang bernilai x
getlistUndef	public s float[]	static	int panjang	Mengembalikan sebuah array of float undef, yaitu semua elemen bernilai - 9999
splbyGaussJordan	public s String[]	static	Matrix matrixkoef Matrix matrixres Boolean bicubic	Mengembalikan solusi SPL dalam bentuk array of string dengan metode eliminasi Gauss-Jordan. Jika tidak mempunyai solusi akan mengembalikan array of string undef, yaitu semua elemen bernilai "-9999"

7. Class Cramer

Nama	Tipe	Parameter	Deskripsi
splbyCramer	public static String[]	Matrix matrixkoef Matrix matrixres	Mengembalikan solusi SPL dalam bentuk array of string dengan menggunakan metode Cramer. Jika tidak ada determinannya, maka akan mengembalikan array of string kosong. Jika tidak mempunyai

	solusi mengembalikan a string undef, yaitu	semua
	elemen bernilai "-	

8. Class MatrixBalikan

• Static function/procedure

Nama	Tipe	Parameter	Deskripsi
splbyMatrixBalikan	public static String[]	Matrix matrixkoef Matrix matrixres	Mengembalikan solusi SPL dalam bentuk array of string dengan menggunakan matriks balikan. Jika tidak ada matriks balikan, maka akan mengembalikan array of string kosong. Jika tidak mempunyai solusi akan mengembalikan array of string undef, yaitu semua elemen bernilai "-9999"

9. Class Spl

• Static function/procedure

Nama	Tipe	Parameter	Deskripsi
isEmpty	public static boolean	String[] solusi	Mengembalikan true jika solusi adalah array of String dengan panjang 0, mengembalikan false jika tidak
isUndef	public static boolean	String[] solusi	Mengembalikan true jika solusi adalah array of String dengan seluruh elemennya adalah "-

				9999", mengembalikan false jika tidak
isParametric	public boolean	static	float[] solusi	Mengembalikan true jika solusi adalah array of float jika ada elemennya yang bernilai 9999, mengembalikan false jika tidak
menuSPL	public void	static	int menu	Melakukan sekumpulan prosedur sebagai eksekusi dari pilihan menu Sistem Persamaan Linear pada Main

10. Class Inverse

• Static function/procedure

Nama	Tipe		Parameter	Deskripsi
getInversebyOBE	public Matrix	static	Matrix matrix	Mengembalikan sebuah Matrix yang merupakan matriks balikan dari matrix dengan metode eliminasi Gauss-Jordan
getInversebyAdj	public Matrix	static	Matrix matrix	Mengembalikan sebuah Matrix yang merupakan matriks balikan dari matrix dengan metode adjoin
menuInverse	public void	static	int menu	Melakukan sekumpulan prosedur sebagai eksekusi dari pilihan menu Matriks Balikan pada Main

11. Class PolinomialInterpolation

Static function/procedure

Nama	Tipe		Parameter	Deskripsi
setofTitikToMatrix	public Matrix	static	float[][] setOfTitik int nRow	Mengembalikan sebuah matrix yang merupakan matrix Sistem Persamaan Linear yang merupakan hasil substitusi dari titik- titik pada setOfTitik
getPolinomialCoef	public float[]	static	Matrix matrix	Mengembalikan array of float yang berisi koefisien-koefisien pada polinomial interpolasi yang merupakan hasil dari penyelesaian SPL matrix
estimateY	public float	static	float[] koefisien int length float X	Mengembalikan hasil taksiran nilai X terhadap polynomial interpolasi
displayPolinom	public void	static	float[] koefisien int length	Menampilkan polinomial interpolasi yang terbentuk dari array of float yang berisi kumpulan koefisien polinomial
menuPolinomialInterpolation	public void	static	-	Melakukan sekumpulan prosedur sebagai eksekusi dari pilihan menu Interpolasi Polinom pada Main

12. Class Inverse

• Static function/procedure

Nama	Tipe	Parameter	Deskripsi
getInversebyOBE	public static Matrix	Matrix matrix	Mengembalikan sebuah Matrix yang merupakan matriks balikan dari matrix dengan metode eliminasi Gauss-Jordan
getInversebyAdj	public static Matrix	Matrix matrix	Mengembalikan sebuah Matrix yang merupakan matriks balikan dari matrix dengan metode adjoin
menuInverse	public static void	int menu	Melakukan sekumpulan prosedur sebagai eksekusi dari pilihan menu Matriks Balikan pada Main

13. Class BicubicInterpolation

• Static function/procedure

Nama	Tipe		Parameter	Deskripsi
squareMatxToColMatx	public Matrix	static	Matrix matx	Mengembalikan matrix kolom dengan jumlah dan nilai elemen yang sama dari matx; diiterasi baris lalu kolom
createModelBicubicMatrix	public Matrix	static	-	Mengembalikan koefisien dari model matrix sesuai fungsi (koefisien Matrix 16x16 a _{ij})
createMatrixofAij	public Matrix	static	Matrix fxy	Mengembalikan nilai a_{ij} untuk i, $j = 03$ dengan menyelesaikan sistem persamaan $fxy = A.a_{ij}$, fx adalah nilai $f(x,y)$ untuk

				setiap x,y dengan x,y = - 1, 0, 1, 2 dan A adalah model Matrix
interpolasiBicub	public float	static	Matrix fxy, float x, float y	-
menuBicubicInterpolation	Public void	static	-	Melakukan sekumpulan prosedur sebagai eksekusi dari pilihan menu Bicubic Interpolation pada Main

14. Class MLR

Nama	Tipe	Parameter	Deskripsi
arrOfColumn	Public static double	Matrix matrix Int j	Mengembalikan array of double pada kolom ke – j dari matrix
sumOf	public static double	Double[] arr	Mengembalikan penjumlahan dari elemen array untuk satu parameter
sumOfTwoColumn	public static double	Double[] arr1 Double[] arr2	Mengembalikan penjumlahan dari dua array dengan indeks yang sama

MinorMatKoef	public Matrix	static	Matrix matrixkoef Int col	Mengembalikan matrix yang sudah dihilangkan pada kolom ke col, fungsi ini dipanggil ketika tidak ada balikan dari matrix yaitu dengan mengurangi kolom ke j untuk menghapus satu parameter x
MLR	public double[]	static	Matrix matrixkoef Matrix matrixres	Mengembalikan array of double yang berisi koefisien-koefisien pada regresi linear berganda yang merupakan hasil dari penyelesaian SPL matrix
menuMLR	Public void	static	-	Melakukan sekumpulan prosedur sebagai eksekusi dari pilihan menu Regresi Linear Berganda pada Main

15. Class Read

Nama	Tipe	Parameter	Deskripsi
BacaFile	Public static Matrix	String namaFile	Mengembalikan matrix dari file txt yang telah terdefinisi

16. Class Write

Nama	Tipe	Parameter	Deskripsi

saveHasil	Public void	static	Matrix matrix String namaFile	Melakukan sekumpulan prosedur sebagai eksekusi untuk menyimpan hasil
saveHasil	Public void	static	String[] array String namaFile	Melakukan sekumpulan prosedur sebagai eksekusi untuk menyimpan hasil
saveHasil	Public void	static	Double[] arrayf String namaFile	Melakukan sekumpulan prosedur sebagai eksekusi untuk menyimpan hasil
saveHasilDet	Public void	static	Matrix matrix String namaFile	Melakukan sekumpulan prosedur sebagai eksekusi untuk menyimpan hasil

BAB IV Eksperimen

1. SPL

- a. Gauss
- 1) Solusi Tak Hingga (Parametrik)

```
test > input > 🗋 kasus1a.txt
      1 -1 0 0 1 3
      110-306
      -1 2 0 -2 -1 -1
      2 -1 0 1 -1 5
```

```
MENU
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
3. Metode Matriks Balikan
4. Kaidah Cramer
Masukkan Pilihan Anda: 1
Menyelesaikan SPL dengan Metode Eliminasi Gauss
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus1a.txt
x[0]: 3.0 + 1.0 a4
x[1]: 0 + 2.0 a4
x[2]: a2
x[3]: -1.0 + 1.0 a4
x[4]: a4
Apakah Anda ingin menyimpan solusi [y/n]?
```

2) Tak mempunyai solusi

```
MENU
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
3. Metode Matriks Balikan
4. Kaidah Cramer
Masukkan Pilihan Anda: 1
Menyelesaikan SPL dengan Metode Eliminasi Gauss
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus1b.txt
SPL tidak mempunyai solusi yang memenuhi
```

3) Solusi Unik

```
MENU
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
3. Metode Matriks Balikan
4. Kaidah Cramer
Masukkan Pilihan Anda: 1
Menyelesaikan SPL dengan Metode Eliminasi Gauss
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus2a.txt
x[0]: 1.1428571428571428
x[1]: 0.0
x[2]: 0.42857142857142855
```

b. Gauss-Jordan

1) Solusi Tak Hingga (Parametrik)

```
test > input > [] kasus1a.txt
      1 -1 0 0 1 3
       1 1 0 -3 0 6
       -1 2 0 -2 -1 -1
```

```
MENU
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
3. Metode Matriks Balikan
4. Kaidah Cramer
Masukkan Pilihan Anda: 2
Menyelesaikan SPL dengan Metode Eliminasi Gauss-Jordan
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus1a.txt
x[0]: 3.0 - -1.0 a4
x[1]: 0.0 - -2.0 a4
x[2]: a2
x[3]: -1.0 - -1.0 a4
x[4]: a4
```

Tak mempunyai solusi

```
sukkan Pilihan Anda: 1
Metode Eliminasi Gauss
Metode Eliminasi Gauss-Jordan
Metode Matriks Balikan
Kaidah Cramer
Masukkan Pilihan Anda: 2
Menyelesaikan SPL dengan Metode Eliminasi Gauss-Jordan
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 1
Matriks Augmented
Masukkan Banyak Baris: 4
 Masukkan Banyak Kolom: 6
Matrixkoef:

Matrixkoef:
Masukkan elemen baris ke-0 kolom ke-0:
Masukkan elemen baris ke-0 kolom ke-1:
Masukkan elemen baris ke-2 kolom ke-1:
Masukkan elemen baris ke-2 kolom ke-2:
Masukkan elemen baris ke-2 kolom ke-3:
Masukkan elemen baris ke-3 kolom ke-0:
Masukkan elemen baris ke-3 kolom ke-0:
Masukkan elemen baris ke-3 kolom ke-1:
Masukkan elemen baris ke-3 kolom ke-2:
Masukkan elemen baris ke-3 kolom ke-2:
Masukkan elemen baris ke-3 kolom ke-2:
Masukkan elemen baris ke-3 kolom ke-4:
Matrixres:
 Masukkan elemen baris ke-3 kolom ke-4:
Matrixres:
Masukkan elemen baris ke-0 kolom ke-0:
Masukkan elemen baris ke-1 kolom ke-0:
Masukkan elemen baris ke-2 kolom ke-0:
Masukkan elemen baris ke-3 kolom ke-0:
Matrixkoef:
1.00 -1.00 0.00 0.00 1.00
1.00 1.00 0.00 -3.00 0.00
-1.00 2.00 0.00 -2.00 -1.00
2.00 -1.00 0.00 1.00
Matrixres:
3.00
6.00
5.00
-1.00
            olusi:
L tidak
                                                       mempunyai solusi yang memenuhi
```

3) Solusi Unik

```
test > input > 🗋 kasus2a.txt
      1 1 2 2
       3 1 -1 3
```

```
MENU
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
3. Metode Matriks Balikan
4. Kaidah Cramer
Masukkan Pilihan Anda: 2
Menyelesaikan SPL dengan Metode Eliminasi Gauss-Jordan
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus2a.txt
x[0]: 1.1428571
x[1]: 0.0
x[2]: 0.42857146
```

c. Cramer

Jika Matriks Determinannya sama dengan 0

MENU

- 1. Sistem Persamaan Linier
- 2. Determinan
- 3. Matriks Balikan
- 4. Interpolasi Polinom
- 5. Interpolasi Bicubic
- 6. Regresi Linier Berganda
- 7. Keluar

Masukkan Pilihan Anda: 1

- 1. Metode Eliminasi Gauss
- 2. Metode Eliminasi Gauss-Jordan
- 3. Metode Matriks Balikan
- 4. Kaidah Cramer

Masukkan Pilihan Anda: 4

Menyelesaikan SPL dengan Kaidah Cramer

Tipe input

- Input Keyboard
- 2. Input File

Masukkan tipe input: 2

Masukkan nama file: kasus1b.txt

Determinan Matriks = 0

Jika Matriks Koefisien Determinannya bukan 0

```
1. Sistem Persamaan Linier
1. Sistem Persamaan Linier

2. Determinan

3. Matriks Balikan

4. Interpolasi Polinom

5. Interpolasi Bicubic

6. Regresi Linier Berganda

7. Keluar
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
 3. Metode Matriks Balikan
 4. Kaidah Cramer
 Masukkan Pilihan Anda: 4
 Menyelesaikan SPL dengan Kaidah Cramer
 Tipe input

    Input Keyboard
    Input File
    Masukkan tipe input: 1

 Matriks Augmented
 Masukkan Banyak Baris: 2
 Masukkan Banyak Kolom: 3
 Matrixkoef:
 Masukkan elemen baris ke-0 kolom ke-0: 1
Masukkan elemen baris ke-0 kolom ke-1: 3
Masukkan elemen baris ke-1 kolom ke-0: 3
Masukkan elemen baris ke-1 kolom ke-1: -2
Masukkan elemen baris ke-0 kolom ke-0: -1
Masukkan elemen baris ke-1 kolom ke-0: 8
 Matrixkoef:
 Matrixres:
 -1.00
solusi:
x[0]: 2.0
x[1]: -1.0
```

d. Matriks Balikan

Jika Matriks Koefisien Memiliki Balikan

```
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
3. Metode Matriks Balikan
4. Kaidah Cramer
Masukkan Pilihan Anda: 3
Menyelesaikan SPL dengan Metode Matriks Balikan
Tipe input

    Input Keyboard
    Input File

Masukkan tipe input: 1
Matriks Augmented
Masukkan Banyak Baris: 2
Masukkan Banyak Kolom: 3
Matrixkoef:
Masukkan elemen baris ke-0 kolom ke-0: 1
Masukkan elemen baris ke-0 kolom ke-1: 3
Masukkan elemen baris ke-1 kolom ke-0: 3
Masukkan elemen baris ke-1 kolom ke-1: -2
Matrixres:
Masukkan elemen baris ke-0 kolom ke-0: -1
Masukkan elemen baris ke-1 kolom ke-0: 8
Matrixkoef:
1.00 3.00
3.00 -2.00
Matrixres:
-1.00
8.00
solusi:
x[0]: 2.0
x[1]: -1.0
```

1) Jika Matriks Koefisien tidak Memiliki Matriks Balikan

```
test > input > 🗋 kasus1b.txt
    1 1 -1 -1 1
      2 5 -7 -5 -2
      2 -1 1 3 4
      5 2 -4 2 6
```

```
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
3. Metode Matriks Balikan
4. Kaidah Cramer
Masukkan Pilihan Anda: 3
Menyelesaikan SPL dengan Metode Matriks Balikan
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus1b.txt
Matriks tidak punya balikan!
```

2. Inverse

Metode Reduksi Baris

```
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 3
1. Metode Reduksi Baris
2. Metode Adjoin
Masukkan Pilihan Anda: 1
Mencari Matriks Balikan dengan Metode Reduksi Baris
Tipe input
1. Input Keyboard
Input File
Masukkan tipe input: 1
Masukkan N:
Masukkan elemen baris ke-0 kolom ke-0: 1
Masukkan elemen baris ke-0 kolom ke-1:
Masukkan elemen baris ke-0 kolom ke-2:
Masukkan elemen baris ke-1 kolom ke-0:
Masukkan elemen baris ke-1 kolom ke-1:
Masukkan elemen baris ke-1 kolom ke-2:
Masukkan elemen baris ke-2 kolom ke-0: 1
Masukkan elemen baris ke-2 kolom ke-1:
Masukkan elemen baris ke-2 kolom ke-2: 3
Matriks Invers:
3.50 -3.00 0.50
-0.50 0.00 0.50
-0.50 1.00 -0.50
```

```
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 3
1. Metode Reduksi Baris
2. Metode Adjoin
Masukkan Pilihan Anda: 1
Mencari Matriks Balikan dengan Metode Reduksi Baris
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 1
Masukkan N:
Masukkan elemen baris ke-0 kolom ke-0: 1
Masukkan elemen baris ke-0 kolom ke-1:
Masukkan elemen baris ke-0 kolom ke-2:
Masukkan elemen baris ke-1 kolom ke-0:
Masukkan elemen baris ke-1 kolom ke-1:
Masukkan elemen baris ke-1 kolom ke-2:
Masukkan elemen baris ke-2 kolom ke-0:
Masukkan elemen baris ke-2 kolom ke-1:
Masukkan elemen baris ke-2 kolom ke-2: 1
Matriks Invers:
Matriks tidak mempunyai balikan
```

b. Metode Adjoin

```
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 3
1. Metode Reduksi Baris
2. Metode Adjoin
Masukkan Pilihan Anda: 2
Mencari Matriks Balikan dengan Metode Ekspansi Kofaktor
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 1
Masukkan N:
Masukkan elemen baris ke-0 kolom ke-0: 1
Masukkan elemen baris ke-0 kolom ke-1: -2
Masukkan elemen baris ke-0 kolom ke-2: 1
Masukkan elemen baris ke-1 kolom ke-0: 1
Masukkan elemen baris ke-1 kolom ke-1: 3
Masukkan elemen baris ke-1 kolom ke-2: 2
Masukkan elemen baris ke-2 kolom ke-0: 0
Masukkan elemen baris ke-2 kolom ke-1: -3
Masukkan elemen baris ke-2 kolom ke-2: -1
Matriks Invers:
-1.50 2.50 3.50
-0.50 0.50 0.50
1.50 -1.50 -2.50
```

```
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 3
1. Metode Reduksi Baris
2. Metode Adjoin
Masukkan Pilihan Anda: 2
Mencari Matriks Balikan dengan Metode Ekspansi Kofaktor
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 1
Masukkan N:
Masukkan elemen baris ke-0 kolom ke-0: 1
Masukkan elemen baris ke-0 kolom ke-1: 2
Masukkan elemen baris ke-0 kolom ke-2: 3
Masukkan elemen baris ke-1 kolom ke-0: 4
Masukkan elemen baris ke-1 kolom ke-1: 5
Masukkan elemen baris ke-1 kolom ke-2: 6
Masukkan elemen baris ke-2 kolom ke-0: 7
Masukkan elemen baris ke-2 kolom ke-1: 8
Masukkan elemen baris ke-2 kolom ke-2: 9
Matriks Invers:
Matriks tidak mempunyai balikan
```

3. Interpolasi Polinom

a.

x	0.1	0.3	0.5	0.7	0.9	1.1	1.3
f(x)	0.003	0.067	0. 148	0.248	0.370	0.518	0.697

Lakukan pengujian pada nilai-nilai default berikut:

```
x = 0.2
               f(x) = ?
               f(x) = ?
x = 0.55
x = 0.85
               f(x) = ?
               f(x) = ?
x = 1.28
```

```
test > input > 🗋 kasus3a.txt
      0.1 0.003
      0.3 0.067
      0.5 0.148
      0.7 0.248
      0.9 0.370
       1.1 0.518
       1.3 0.697
```

```
    Determinan
    Matriks Balikan

 4. Interpolasi Polinom
5. Interpolasi Bicubic
  6. Regresi Linier Berganda
  7. Keluar
  Masukkan Pilihan Anda: 4
  Melakukan Interpolasi Polinom
  Tipe input
  1. Input Keyboard
  2. Input File
  Masukkan tipe input: 2
 Masukkan nama file: kasus3a.txt
Masukkan X: 0.2
  Polinomial Interpolasi
  P(x) = -0.022976381704211235 + 0.23999670147895813x + 0.19741584360599518x^2 + -5.5657728808000684E-5x^3 + 0.026119530200958252x^4 + -5.2874962420901284E-5x^5 + 1.3804943591821939E-5x^6
    Polinomial Interpolasi
   \begin{array}{l} \text{Forming formula} \\ \text{Forming formula} \\ \text{Formula} \\ \text{Formu
Polinomial Interpolasi
P(x) = -0.022976381704211235 + 0.23999670147895813x + 0.19741584360599518x^2 + -5.5657728808000684E-5x^3 + 0.026119530200958252x^4 + -5.2874962420901284E-5x^5 + 1.3804943591821939E-5x^6
P(0.8500) = 0.3372
  Masukkan X: 1.28
Polinomial Interpolasi
  -5.2874962420901284E-5x^5 + 1.3804943591821939E-5x^6
```

P(1.2800) = 0.6775

b.

$$f(x) = \frac{x^2 + \sqrt{x}}{e^x + x}$$

dengan polinom interpolasi derajat n di dalam selang [0, 2]. Sebagai contoh, jika n =5, maka titik-titik x yang diambil di dalam selang [0, 2] berjarak h = (2-0)/5 = 0.4.

```
test > input > [] kasus3c.txt
       0 0
      0.4 0.418884
       0.8 0.507158
       1.2 0.560925
       1.6 0.583686
       2 0.576652
```

```
MENU
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 4
Melakukan Interpolasi Polinom
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus3c.txt
Masukkan X: 1.1
Polinomial Interpolasi
P(x) = 0.0 + 2.0352563858032227x + -3.552678346633911x^2 + 3.2371106147766113x^3 + -1.42126
4886856079x^4 + 0.23625648021697998x^5
P(1.1000) = 0.5483
```

c.

Tanggal	Tanggal (desimal)	Jumlah Kasus Baru
17/06/2021	6,567	12.624
30/06/2021	7	21.807
08/07/2021	7,258	38.391
14/07/2021	7,451	54.517
17/07/2021	7,548	51.952
26/07/2021	7,839	28.228
05/08/2021	8,161	35.764
15/08/2021	8,484	20.813
22/08/2021	8,709	12.408
31/08/2021	9	10.534

Tanggal (desimal) adalah tanggal yang sudah diolah ke dalam bentuk desimal 3 angka di belakang koma dengan memanfaatkan perhitungan sebagai berikut:

```
tanggal(desimal) = bulan + (tanggal / jumlah hari pada bulan tersebut)
```

Gunakanlah data di atas dengan memanfaatkan polinom interpolasi untuk melakukan prediksi jumlah kasus baru Covid-19 pada tanggal-tanggal berikut:

- a. 16/07/2021
- b. 10/08/2021
- c. 05/09/2021

```
test > input > 🗋 kasus3b.txt
       6.567 12624
       7 21807
       7.258 38391
       7.451 54517
        7.548 51952
        7.839 28228
        8.161 35764
        8.484 20813
        8.709 12408
 10 + 9 10534
```

```
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 4
Melakukan Interpolasi Polinom
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus3b.txt
Masukkan X: 7.516
Polinomial Interpolasi
P(x) = 7.189658216474314E12 + -9.350004058994416E12x + 5.335755560850249E12x^2 +
 -1.7572765632606992E12x^3 + 3.686407609710412E11x^4 + -5.114342929271106E10x^5
+ 4.69679421432005E9x^6 + -2.755287811378997E8x^7 + 9374584.419448344x^8 + -1410
18.35272207734x^9
P(7.5160) = 53537.7910
Masukkan X: 8.323
```

```
Polinomial Interpolasi
-1.7572765632606992E12x^3 + 3.686407609710412E11x^4 + -5.114342929271106E10x^5
+ 4.69679421432005E9x^6 + -2.755287811378997E8x^7 + 9374584.419448344x^8 + -1410
18.35272207734x^9
P(8.3230) = 36294.1367
```

```
Masukkan X: 9.167
Polinomial Interpolasi
-1.7572765632606992E12x^3 + 3.686407609710412E11x^4 + -5.114342929271106E10x^5
+ 4.69679421432005E9x^6 + -2.755287811378997E8x^7 + 9374584.419448344x^8 + -1410
18.35272207734x^9
P(9.1670) = -667729.3906
```

4. Studi Kasus Interpolasi Bicubic

Figure 1 Matrix input (soal)

```
Melakukan Interpolasi Bicubic
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 1
Masukkan nilai f(-1,-1), f(0,-1),..., f(2,2).
f(-1,-1) = 153
f(0,-1) = 59
f(1,-1) = 210
f(2,-1) = 96

f(-1,0) = 125
f(0,0) = 161
f(1,0) = 72
f(2,0) = 81
f(-1,1) = 98
f(0,1) = 101
f(1,1) = 42
f(2,1) = 12
f(-1,2) = 21
f(0,2) = 51
f(1,2) = 0
f(2,2) = 16
```

Figure 2 Input keyboard

```
Masukkan nilai a dan b untuk f(a,b)
yang ingin di interpolasi.
Syarat a dan b dalam rentang 0..1
a = 0
b = 0
f(0.000000,0.000000) = 161.000000
```

Figure 3 Interpolasi dengan input keyboard

```
Melakukan Interpolasi Bicubic
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasusbicub.txt
f(0.500000, 0.500000) = 97.726563
```

Figure 4 Interpolasi dengan input file

```
f(0.250000, 0.750000) = 105.514771
f(0.100000, 0.900000) = 104.229119
```

Figure 5 Hasil lainnya

Figure 6 File input interpolasi bicubic

5. Studi Kasus Regresi Linier Berganda

Table 12.1: Data for Example 12.1

Nitrous Oxide, y	Humidity,	Temp., x_2	Pressure,	Nitrous Oxide, y	Humidity,	Temp., x_2	Pressure x ₃
0.90	72.4	76.3	29.18	1.07	23.2	76.8	29.38
0.91	41.6	70.3	29.35	0.94	47.4	86.6	29.35
0.96	34.3	77.1	29.24	1.10	31.5	76.9	29.63
0.89	35.1	68.0	29.27	1.10	10.6	86.3	29.56
1.00	10.7	79.0	29.78	1.10	11.2	86.0	29.48
1.10	12.9	67.4	29.39	0.91	73.3	76.3	29.40
1.15	8.3	66.8	29.69	0.87	75.4	77.9	29.28
1.03	20.1	76.9	29.48	0.78	96.6	78.7	29.29
0.77	72.2	77.7	29.09	0.82	107.4	86.8	29.03
1.07	24.0	67.7	29.60	0.95	54.9	70.9	29.37

Source: Charles T. Hare, "Light-Duty Diesel Emission Correction Factors for Ambient Conditions," EPA-600/2-77-116. U.S. Environmental Protection Agency.

Gunakan Normal Estimation Equation for Multiple Linear Regression untuk mendapatkan regresi linear berganda dari data pada tabel di atas, kemudian

13

estimasi nilai Nitrous Oxide apabila Humidity bernilai 50%, temperatur 76°F, dan tekanan udara sebesar 29.30.

Dari data-data tersebut, apabila diterapkan Normal Estimation Equation for Multiple Linear Regression, maka diperoleh sistem persamaan linear sebagai berikut.

```
20b_0 + 863.1b_1 + 1530.4b_2 + 587.84b_3 = 19.42
863.1b_0 + 54876.89b_1 + 67000.09b_2 + 25283.395b_3 = 779.477
1530.4b_0 + 67000.09b_1 + 117912.32b_2 + 44976.867b_3 = 1483.437
587.84b_0 + 25283.395b_1 + 44976.867b_2 + 17278.5086b_3 = 571.1219
```

```
test > input > 🖹 MLR.txt
       0.9 72.4 76.3 29.18
      0.91 41.6 70.3 29.35
      0.96 34.3 77.1 29.24
      0.89 35.1 68 29.27
      1 10.7 79 29.78
      1.1 12.9 67.4 29.39
       1.15 8.3 66.8 29.69
      1.03 20.1 76.9 29.48
      0.77 72.2 77.7 29.09
      1.07 24 67.7 29.6
      1.07 23.2 76.8 29.38
      0.94 47.4 86.6 29.35
      1.1 31.5 76.9 29.63
      1.1 10.6 86.3 29.56
      1.1 11.2 86 29.48
 16
      0.91 73.3 76.3 29.4
      0.87 75.4 77.9 29.28
      0.78 96.6 78.7 29.29
      0.82 107.4 86.8 29.03
      0.95 54.9 70.9 29.37
```

```
1. Sistem Persamaan Linier

    Determinan
    Matriks Balikan

4. Interpolasi Polinom
5. Interpolasi Bicubic

    Regresi Linier Berganda
    Keluar

Masukkan Pilihan Anda: 6
Melakukan Regresi Linier Berganda
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input:
Masukkan nama file:
Hasil Normal Estimation Equation for Multiple Linear Regression:
20.0 + 863.09999999999991 + 1530.4000000000003x2 + 587.839999999999x3 = 19.42
863.099999999999 + 54876.89x1 + 67000.09x2 + 25283.395x3 = 779.4769999999999
1530.400000000000 + 67000.09x1 + 117912.3200000002x2 + 44976.86699999994x3 = 1483.436999999997
587.83999999999 + 25283.395x1 + 44976.86699999984x2 + 17278.508600000005x3 = 571.1219000000001
Hasil Regresi Linear Berganda:
y = -3.507778140876326 + -0.0026249907458790744x1 + 7.989410472205027E-4x2 + 0.1541550301985808x3
Masukka nilai yang ingin ditaksir:
Masukkan nilai x1:
Masukkan nilai x3:
29.3
Hasil taksiran:
```

6. Membaca File

```
MENU
1. Sistem Persamaan Linier
2. Determinan
3. Matriks Balikan
4. Interpolasi Polinom
5. Interpolasi Bicubic
6. Regresi Linier Berganda
7. Keluar
Masukkan Pilihan Anda: 1
1. Metode Eliminasi Gauss
2. Metode Eliminasi Gauss-Jordan
3. Metode Matriks Balikan
4. Kaidah Cramer
Masukkan Pilihan Anda: 1
Menyelesaikan SPL dengan Metode Eliminasi Gauss
Tipe input
1. Input Keyboard
2. Input File
Masukkan tipe input: 2
Masukkan nama file: kasus1a.txt
x[0]: 3.0 + 1.0 a4
x[1]: 0 + 2.0 a4
x[2]: a2
x[3]: -1.0 + 1.0 a4
x[4]: a4
Apakah Anda ingin menyimpan solusi [y/n]?
```

7. Tulis File

Apakah Anda ingin menyimpan solusi [y/n]? Masukkan nama file: Hasil MLR.txt

BAB V Kesimpulan

Sistem Persamaan Linier dapat diselesaikan dengan berbagai metode. Menggunakan respresentasi matriks adalah salah satu metode tersebut. Menggunakan Sistem Persamaan Linear dalam bentuk matriks tersebut kita bisa membuat program computer untuk menyelesaikannya. Dengan kata lain, pemecahan Sistem Persamaan Linear menggunakan pendekatan matriks ini menjadikan problem tersebut computable. Untuk menyelesaikan SPL matriks tersebut, terdapat berbagai metode penyelesaian. Metode-metode tersebut di antaranya adalah eliminasi Gauss, eliminasi Gauss-Jordan, kaidah Cramer, dan matriks balikan. Masingmasing metode tersebut menggunakan pendekatan yang berbeda untuk mencari solusi SPL. Namun, metode pemecahan SPL menggunakan kaidah Cramer dan matriks balikan hanya bisa menangani untuk kasus solusi SPL unik. Sementara itu, metode pemecahan SPL menggunakan metode eliminasi Gauss dan Eliminasi Gauss-Jordan dapat menyelesaikan SPL untuk semua kasus.

Solusi SPL memiliki 3 jenis, yaitu solusi unik(tunggal), solusi tak hingga (parametrik), dan tidak ada solusi. Solusi unik (solusi tunggal) terjadi saat nilai masing-masing variabel yang dicari bernilai unik atau hanya satu. Solusi tak hingga(parametrik) terjadi saat nilai variabelnya tidak konstan, tetapi ada yang bergantung pada variabel lain sehingga menjadi berbentuk parametrik. Tidak ada solusi terjadi ketika tidak ada nilai variabel apapun yang memenuhi persamaan.

Interpolasi polinom sering dimanfaatkan untuk memprediksi suatu nilai berdasarkan datadata yang sudah ada. Misalnya, prediksi jumlah penduduk dengan variabelnya adalah waktu, sedangkan hasilnya adalah jumlah penduduk. Melalui interpolasi polinom ini, kita bisa memproyeksikan gambaran arah pertumbuhan penduduk dan jumlah penduduk di masa mendatang.

Regresi linear berganda dapat digunakan untuk mendapatkan suatu kesimpulan dari banyak data yang berupa suatu kumpulan dari variabel terikat dan variabel bebas kemudian kita dapat mengestimasi atau menaksir nilai suatu data yaitu berasal dari persamaan regresi linear berganda yang telah didapat. Seperti pada studi kasus untuk variabel-variabel bebas tersebut lalu didapatkan hasil 0.9384

Interpolasi bicubic sering digunakan untuk penskalaan gambar. Penskalaan gambar menggunaan interpolasi bicubic menghasilkan gambar yang lebih *soft edge*. Akan tetapi, kekurangan dari penskalaan ini adalah waktu eksekusi yang lebih lama.

Saran pengembangan dari kami adalah penjelasan spesifikasi tugas bisa lebih mendetail karena cukup banyak bagian yang bisa dimultitafsirkan, jika memang bebas dalam implementasinya, ada baiknya dicantumkan pada spesifikasi sehingga mahasiswa tidak ragu lagi dalam menyelesaikannya.

Setelah menyelesaikan tugas besar 1 ini, kami sadar bahwa jangan sekali-kali menggunakan main branch untuk riset fitur baru karena historynya bisa bolak balik jika kelupaan follow up. Selain itu, kami jadi belajar bagaimana bekerja sama dalam suatu tim,

manajemen waktu, dan bagaimana cara membuat source code yang mudah di maintenance. Hal terpenting yang bisa kami refleksikan dari tugas besar ini adalah pentingnya untuk selalu membuat SOP dan workflow dari suatu project, pentingnya untuk selalu mengomunikasikan saat ada perubahan pada program, dan pentingnya untuk melakukan progress report agar progress dari project bisa di-track dengan baik.

Referensi

https://edunex.itb.ac.id/courses/39735/preview

https://www.profematika.com/eliminasi-gauss-dan-contoh-penerapannya/

https://www.profematika.com/eliminasi-gauss-jordan-beserta-contoh-penerapannya/

https://towardsdatascience.com/polynomial-interpolation-3463ea4b63dd

https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dancontoh-soal

https://www.madematika.net/2017/08/pengertian-minor-kofaktor-matriks.html

https://www.gramedia.com/literasi/pengertian-invers-matriks/

https://www.statmat.net/regresi-linier-berganda/

https://www.geeksforgeeks.org/different-ways-reading-text-file-java/

Lampiran

https://github.com/fadhil-amree/Algeo01-21066