Imaging Geometry Computer Vision

Modelling from 3D to 2D world

Taj Mahal

Cricket

Cameras, Multiple Views, and Motion

- Imaging Geometry
 - Image transforms like scaling, rotation etc
- Perspective Transformation
- Projective Transformation
 - Camera Model
 - Camera Calibration

Camera

Dimensionality Reduction Machine (3D to 2D)

How to recover knowledge about 3D from 2D...??

Common transformations

Original

Translation

Transformed

Rotation

Scaling

Affine

Perspective

Parametric (global) transformations

Transformation TVB a coordinate-changing machine:

$$p' = T(p) \qquad (\lambda'4') = T(x,4)$$

What does it mean that (T) is global?

- T is the same for any point p
- T can be described by just a few numbers (parameters)
- For linear transformations, we can represent T as a matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Common transformations

Original

Transformed

Translation

Rotation

Scaling

Affine

Perspective

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

• *Non-uniform scaling*: different scalars per component:

Scaling

(mx)m

Scaling operation:

x' = ax

$$y' = by$$

Or, in matrix form:

$$(217)$$

$$(212)$$

$$(212)$$

2-D Rotation

Polar coordinates...

$$x = r \cos(\phi)$$

$$y = r \sin(\phi)$$

$$x' = r \cos(\phi + \theta)$$

$$y' = r \sin(\phi + \theta)$$

$$x' = r \cos(\phi) \cos(\theta) + r \sin(\phi) \sin(\theta)$$

$$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$

$$y' = r \sin(\phi) - y \sin(\theta)$$

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- x' is a linear combination of x and y
- y' is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$ For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^T$

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

Basic 2D transformations

$$\begin{bmatrix} \underline{x'} \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \underline{x'} \\ \underline{y'} \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y' \end{bmatrix} = \begin{bmatrix} 1 & \alpha_x \\ \alpha_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Affine

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ Affine is any combination of translation, scale, rotation, and shear

Affine Transformations

- Affine transformations are combinations of
 - Linear transformations, and
 - Translations

Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
or
$$\begin{bmatrix} x' \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

	Transformation Name	Affine Matrix, A	Coordinate Equations	Example
basic	Identity	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	x' = x $y' = y$	y'
pasic	Scaling/Reflection (For reflection, set one scaling factor to -1 and the other to 0)	$\begin{bmatrix} c_x & 0 & 0 \\ 0 & c_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x' = c_x x$ $y' = c_y y$	x'
	Rotation (about the origin)	$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$	x'
	Translation	$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$	$x' = x + t_x$ $y' = y + t_y$	$\int_{x'} y'$
	Shear (vertical)	$egin{bmatrix} 1 & s_v & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$	$x' = x + s_v y$ $y' = y$	y'
	Shear (horizontal)	$\begin{bmatrix} 1 & 0 & 0 \\ s_h & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$x' = x$ $y' = s_h x + y$	y' y'

2D image transformations (reference table)

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2×3 matrices are extended with a third $[0^T \ 1]$ row to form a full 3×3 matrix for homogeneous coordinate transformations.

Szeliski 2.1

Projective Transformations

- - Projective warps

Projective transformations are combos of

Affine transformations, and
$$(s+k+t+sh)$$

Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
 - Models change of basis
- ✓ Projective matrix is defined up to a scale (8 DOF)

we use projective transforms to create a 360 panorama

 In order to figure this out, we need to learn what a camera is

The Geometry of Image Formation

Szeliski 2.1, parts of 2.2

To understand projective frank Mapping between image and world coordinates

- Pinhole camera model
- − Projective geometry ✓
 - Vanishing points and lines
- Projection matrix

Image Formation: Orthographic Projection

- Means of representing 3-dimensional objects in 2-Dimensions.
- It is a form of parallel projection, in which all the projection lines are orthogonal to

FIGURE 1.6: Orthographic projection. Unlike other geometric models of the image formation process, orthographic projection does not involve a reversal of image features.

Orthographic Projections

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

For each point $v = (v_x, v_y, v_z)$, the transformed point Pv would

Pe
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix}$$

$$Pv = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix} \qquad \begin{cases} v_x = \vee x + o + o \\ v_y = o + v_y + o \end{cases} \qquad \begin{cases} v_x = x \\ v_y = o + v_y + o \end{cases} \qquad \begin{cases} v_x = x \\ v_y = o + v_y \end{cases} = y$$

Often, it is more useful to use homogeneous coordinates. The transformation in homogeneous coordinates

$$(v_{\times}, v_{y}, v_{z}) \longrightarrow (v_{\times}, v_{y}, v_{z}, 1)$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ZD=(Vx47)

• For each homogeneous vector $v = (v_x, v_y, v_z, 1)$ the transformed vector Pv would be

$$\left(V_{x_1}^{1}V_{y_1}^{1},1\right)$$

$$Pv = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \\ 1 \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ 0 \\ 1 \end{bmatrix}$$

Pinhole camera model

f = Focal length

c = Optical center of the camera

Perspective Projection

Taj Mahal

Taj Mahal

Perspective Transforms

- Parallel lines in the world intersect in the projected image at a "vanishing point".
- Parallel lines on the same plane in the world converge to vanishing points on a "vanishing line".

Perspective Projection:

• (https://www.youtube.com/watch?v=17kqhGR
DHc8

Translation (3 unknowns) Rotation matrix (9 unknowns)

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0\\ \sin\Theta & \cos\Theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

About z axis

$$\text{Nomey} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

About x axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

About y axis:

$$\begin{bmatrix} x' \\ y' \\ \vdots \\ z' \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 1 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R = R_Z^{\alpha} R_Y^{\beta} R_X^{\gamma} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & \cos \gamma & -\sin \gamma \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{bmatrix}$$

$$R = R_{Z}^{\alpha} R_{Y}^{\beta} R_{X}^{\gamma} = \begin{bmatrix} \cos\alpha \cos\beta & \cos\alpha \sin\beta \sin\gamma - \sin\alpha \cos\gamma & \cos\alpha \sin\beta \cos\gamma + \sin\alpha \sin\gamma \\ \sin\alpha \cos\beta & \sin\alpha \sin\beta \sin\gamma + \cos\alpha \cos\gamma & \sin\alpha \sin\beta \cos\gamma - \cos\alpha \sin\gamma \\ -\sin\beta & \cos\beta \sin\gamma & \cos\beta \cos\gamma \end{bmatrix}$$

if angles are small
$$\cos\Theta \approx 1 \sin\Theta \approx \Theta$$

$$R = \begin{bmatrix} 1 & -\alpha & \beta \\ \alpha & 1 & -\gamma \\ -\beta & \gamma & 1 \end{bmatrix}$$

Important Definitions

- J. Opi
- Frame of reference: a measurements are made with respect to a particular coordinate system called the frame of reference.
- World Frame: a fixed coordinate system for representing objects (points, lines, surfaces, etc.) in the world.
- Camera Frame: coordinate system that uses the camera center as its origin (and the optic axis as the Z-axis)
- Image or retinal plane: plane on which the image is formed, note that the image plane is measured in camera frame coordinates (mm)
 - Image Frame: coordinate system that measures pixel locations in the image plane.
- Intrinsic Parameters: Camera parameters that are internal and fixed to a particular camera/digitization setup
 - Extrinsic Parameters: Camera parameters that are external to the camera and may change with respect to the world frame.