non_restoring

Corso di ASE anno 18/19

Gruppo 14
PREVITERA GABRIELE
PENNONE MIRKO
PENNA SIMONE

Contents

1	Clas	s Index	1
	1.1	Class List	1
2	File I	Index	3
	2.1	File List	3
3	Clas	s Documentation	5
	3.1	Accumulator_Quotient Entity Reference	5
		3.1.1 Detailed Description	6
		3.1.2 Member Data Documentation	6
		3.1.2.1 IEEE	6
		3.1.2.2 STD_LOGIC_1164	6
	3.2	AnodeManager Entity Reference	6
	3.3	carrySelect_adder Entity Reference	7
	3.4	carrySelect_addSub Entity Reference	7
	3.5	carrySelect_cell Entity Reference	8
	3.6	CathodeCoder Entity Reference	9
	3.7	CathodeManager Entity Reference	9
		3.7.1 Detailed Description	9
	3.8	Control_Unit Entity Reference	10
	3.9	counter_mod_2n Entity Reference	10
	3.10	counter_UpMod2n_Re_Ar Entity Reference	11
		3.10.1 Detailed Description	12
		3.10.2 Member Data Documentation	12

ii CONTENTS

3.10.2.1 IEEE	12
3.10.2.2 STD_LOGIC_1164	12
3.11 counter_UpN_Re_Sr Entity Reference	12
3.12 demux1_2 Entity Reference	13
3.13 demux1_4 Entity Reference	14
3.14 DivisorOnBoard Entity Reference	14
3.15 edge_trigger_dn Entity Reference	15
3.16 flipflop_d_risingEdge_asyncReset Entity Reference	15
3.16.1 Detailed Description	16
3.16.2 Member Data Documentation	16
3.16.2.1 STD_LOGIC_1164	16
3.17 flipflopmux Entity Reference	16
3.17.1 Detailed Description	17
3.18 full_adder Entity Reference	17
3.19 half_adder Entity Reference	18
3.20 mux2_1 Entity Reference	18
3.20.1 Detailed Description	19
3.20.2 Member Data Documentation	19
3.20.2.1 IEEE	19
3.20.2.2 STD_LOGIC_1164	19
3.21 mux4_1 Entity Reference	19
3.22 muxn_1 Entity Reference	20
3.23 NibbleSelector Entity Reference	20
3.24 non_restoring_divider Entity Reference	21
3.25 non_restoring_divider_tb Entity Reference	21
3.26 overflow_checker Entity Reference	22
3.26.1 Detailed Description	22
3.26.2 Member Data Documentation	22
3.26.2.1 IEEE	23
3.26.2.2 STD_LOGIC_1164	23

CONTENTS

3.27	R_Division Entity Reference	23
3.28	reg_clock Entity Reference	24
3.29	register_d_Re_Ar Entity Reference	24
	3.29.1 Detailed Description	25
	3.29.2 Member Data Documentation	25
	3.29.2.1 IEEE	25
	3.29.2.2 STD_LOGIC_1164	25
3.30	restoring_divider Entity Reference	25
3.31	ripple_carry_adder Entity Reference	26
3.32	rippleCarry_adder Entity Reference	27
	3.32.1 Detailed Description	27
	3.32.2 Member Data Documentation	27
	3.32.2.1 c_in	28
	3.32.2.2 c_out	28
	3.32.2.3 IEEE	28
	3.32.2.4 S	28
	3.32.2.5 STD_LOGIC_1164	28
	3.32.2.6 width	28
	3.32.2.7 Y	28
3.33	scan_chain Entity Reference	29
	3.33.1 Detailed Description	29
3.34	Scan_chain Entity Reference	30
3.35	Scan_component Entity Reference	30
3.36	Seven_Segments_Display Entity Reference	31
	3.36.1 Detailed Description	32
3.37	tb_DivisorOnBoard Entity Reference	32
3.38	TSB_R_div Entity Reference	32
	3.38.1 Detailed Description	32

iv CONTENTS

4	File I	Documentation	33
	4.1	AnodeManager.vhd File Reference	33
		4.1.1 Detailed Description	33
	4.2	carrySelect_addSub.vhd File Reference	33
		4.2.1 Detailed Description	34
	4.3	carrySelect_cell.vhd File Reference	34
		4.3.1 Detailed Description	34
	4.4	CathodeCoder.vhd File Reference	35
		4.4.1 Detailed Description	35
	4.5	CathodeManager.vhd File Reference	35
		4.5.1 Detailed Description	35
	4.6	Counter_Hit2n.vhd File Reference	36
		4.6.1 Detailed Description	36
	4.7	counter_modn.vhd File Reference	36
		4.7.1 Detailed Description	36
	4.8	counter_UpN_Re_Sr.vhd File Reference	37
		4.8.1 Detailed Description	37
	4.9	demux1_2.vhd File Reference	37
		4.9.1 Detailed Description	37
	4.10	demux1_4.vhd File Reference	38
		4.10.1 Detailed Description	38
	4.11	DivisorOnBoard.vhd File Reference	38
		4.11.1 Detailed Description	38
	4.12	flipflopmux.vhd File Reference	39
		4.12.1 Detailed Description	39
	4.13	full_adder.vhd File Reference	39
		4.13.1 Detailed Description	39
	4.14	half_adder.vhd File Reference	40
		4.14.1 Detailed Description	40
	4.15	latch_d.vhd File Reference	40

CONTENTS

	4.15.1 Detailed Description	40
4.16	mux4_1.vhd File Reference	41
	4.16.1 Detailed Description	41
4.17	Nibble_Selector.vhd File Reference	41
	4.17.1 Detailed Description	41
4.18	non_restoring_divider_control_unit.vhd File Reference	42
	4.18.1 Detailed Description	42
4.19	NR_Division.vhd File Reference	42
	4.19.1 Detailed Description	42
4.20	reg_clock.vhd File Reference	43
	4.20.1 Detailed Description	43
4.21	ripple_carry_adder.vhd File Reference	43
	4.21.1 Detailed Description	43
4.22	Scan_chain.vhd File Reference	44
	4.22.1 Detailed Description	44
4.23	scan_chain.vhd File Reference	44
	4.23.1 Detailed Description	44
4.24	Scan_component.vhd File Reference	45
	4.24.1 Detailed Description	45
4.25	Seven_Segment_Display.vhd File Reference	45
	4.25.1 Detailed Description	45
Index		47

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

entity Accumulator_Quotient
Uncomment the following library declaration if instantiating any Xilinx primitives in this code 5
entity AnodeManager
entity carrySelect_adder
entity carrySelect_addSub
entity carrySelect_cell
entity CathodeCoder
entity CathodeManager
Uncomment the following library declaration if instantiating any Xilinx primitives in this code 9
entity Control_Unit
entity counter_mod_2n
entity counter_UpMod2n_Re_Ar
entity counter_UpN_Re_Sr
entity demux1_2 13
entity demux1_4
entity DivisorOnBoard
entity edge_trigger_dn
entity flipflop_d_risingEdge_asyncReset
Flipflop_d_risingEdge_asyncReset implementa un flipflop di tipo d che commuta sul fronte di
salita, con segnale di enable e reset asincrono
entity flipflopmux
entity full_adder
entity half_adder
entity mux2_1
Definisco il componente e la sua interfaccia
entity mux4_1
entity muxn_1
entity NibbleSelector
entity non_restoring_divider
entity non_restoring_divider_tb
entity overflow_checker
entity R_Division
entity reg_clock
entity register_d_Re_Ar
Registro di diensione "width" che prende in ingresso un dato D e lo memorizza

2 Class Index

entity restoring_divider	25
entity ripple_carry_adder	26
entity rippleCarry_adder	27
entity scan_chain	29
entity Scan_chain	30
entity Scan_component	30
entity Seven_Segments_Display	
Uncomment the following library declaration if instantiating any Xilinx primitives in this code	31
entity tb_DivisorOnBoard	32
entity TSR_R_div	32

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

AnodeManager.vhd	
Componente per gestire gli anodi di un display a 7 segmenti	33
carrySelect_addSub.vhd	
Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione	33
carrySelect_cell.vhd	
Singolo blocco di un sommatore carry Select	34
CathodeCoder.vhd	
Componente che codifica i catodi di un display a 7 segmenti	35
CathodeManager.vhd	
Componente che permette di gestire i catodi di un display a 7 segmenti	35
Counter_Hit2n.vhd	
Contatore modulo 2 alla N	36
counter_modn.vhd	
Contatore modulo 2 alla N	36
counter_UpN_Re_Sr.vhd	
Contatore modulo N	37
demux1_2.vhd	
Demultiplexer 1 ingresso 2 uscite	37
demux1_4.vhd	
Demultiplexer 1 ingresso 4 uscite	38
DivisorOnBoard.vhd	
Componente di alto livello per implementare il divisore restoring su board	38
flipflopmux.vhd	
Flip flop D con multiplexer	39
full_adder.vhd	
Sommatore Full-Adder 3 ingressi 2 uscite	39
half_adder.vhd	
Sommatore half_adder 2 ingressi 2 uscite	40
latch_d.vhd	
Latch D	40
mux4_1.vhd	
Multiplexer con 4 ingressi e 1 uscita	41
Nibble_Selector.vhd	
Componente che seleziona il nibble corretto	41
non_restoring_divider_control_unit.vhd	
Unità di controllo del divisore non restoring	42

File Index

NR_Division.vhd	
Componente di alto livello per effettuare una divisione non restoring	42
reg_clock.vhd	
Registro clockato	43
ripple_carry_adder.vhd	
Sommatore ripple carry adder	43
scan_chain.vhd	
Registro di n flip flop D multiplexati	44
Scan_chain.vhd	
Registro di n flip flop D multiplexati	44
Scan_component.vhd	
Implementazione di una scan chain	45
Seven_Segment_Display.vhd	
Display a 7 segmenti	45

Chapter 3

Class Documentation

3.1 Accumulator_Quotient Entity Reference

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

- N integer:= 8
- M integer:= 8

Ports

• High_Reg in STD_LOGIC_VECTOR(N- 1 downto 0)

ha dimensione n+1 perch l'algoritmo di divisione nel primo passo richiede uno shift per fare spazio al quoziente in posizione Q(0)

- shift in std_logic
- Low_Reg in STD_LOGIC_VECTOR(m-1 downto 0)
- H read out STD_LOGIC_VECTOR(N-1 downto 0)
- L_read out STD_LOGIC_VECTOR(m-1 downto 0)
- clk in std_logic
- · en_a in std_logic
- · en_q in std_logic
- · reset_a_n in std_logic
- reset_q_n in std_logic
- Sign_A out std_logic
- Q_0 in STD_LOGIC

3.1.1 Detailed Description

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Uncomment the following library declaration if using arithmetic functions with Signed or Unsigned values

3.1.2 Member Data Documentation

3.1.2.1 IEEE

```
IEEE [Library]
```

Company: Engineer:

Create Date: 10:34:23 01/23/2018 Design Name: Module Name: Accumulator_Quotient - Behavioral Project

Name: Target Devices: Tool versions: Description:

```
3.1.2.2 STD_LOGIC_1164
```

```
STD_LOGIC_1164 [Package]
```

Revision: Revision 0.01 - File Created Additional Comments:

The documentation for this class was generated from the following file:

· Accumulator_Quotient.vhd

3.2 AnodeManager Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Ports

- counter in STD_LOGIC_VECTOR(1 downto 0)
- enable in STD_LOGIC_VECTOR(3 downto 0)
- anodes out STD_LOGIC_VECTOR(3 downto 0)

The documentation for this class was generated from the following file:

AnodeManager.vhd

3.3 carrySelect_adder Entity Reference

Libraries

IEEE

Use Clauses

STD_LOGIC_1164

Generics

M NATURAL:= 4

M parallelismo dei ripplecarry adder.

P NATURAL:= 2

P parallelismo delle celle dell carry select Come metto M e P, marco e co fanno la stima dei tempi e mettono solo (M*P) da cui ricavano poi M e P io direi di fare una versione con M e P espliciti e una versione come l'hanno fatta loro, ma su quella.

Ports

```
    A in STD_LOGIC_VECTOR(((M *P) - 1) downto 0)
```

input addendo

• B in STD_LOGIC_VECTOR(((M *P)- 1)downto 0)

input addendo

· c in in STD_LOGIC

input carry in ingresso

• S out STD_LOGIC_VECTOR(((M *P)-1)downto 0)

output somma

c_out out STD_LOGIC

output carry in uscita

The documentation for this class was generated from the following file:

· carrySelect_adder.vhd

3.4 carrySelect_addSub Entity Reference

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- · math_real
- numeric_std

Generics

```
M NATURAL:= 4P NATURAL:= 2
```

P parallelismo delle celle dell carry select.

Ports

```
    A in STD_LOGIC_VECTOR(((M*P)-1)downto 0)
        input addendo
    B in STD_LOGIC_VECTOR(((M*P)-1)downto 0)
        input addendo
    subtract in STD_LOGIC
    S out STD_LOGIC_VECTOR(((M*P)-1)downto 0)
        output somma
    overflow out STD_LOGIC
    c_out out STD_LOGIC
        output carry in uscita
```

The documentation for this class was generated from the following file:

· carrySelect_addSub.vhd

3.5 carrySelect_cell Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 4

Ports

```
    A in STD_LOGIC_VECTOR((width-1)downto 0)
    B in STD_LOGIC_VECTOR((width-1)downto 0)
    c_in in STD_LOGIC
    S out STD_LOGIC_VECTOR((width-1)downto 0)
    c_out out STD_LOGIC
```

The documentation for this class was generated from the following file:

carrySelect_cell.vhd

3.6 CathodeCoder Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

nibble in STD_LOGIC_VECTOR(3 downto 0)
 cathodes out STD_LOGIC_VECTOR(6 downto 0)

The documentation for this class was generated from the following file:

· CathodeCoder.vhd

3.7 CathodeManager Entity Reference

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Ports

- counter in STD LOGIC VECTOR(1 downto 0)
- nibbles in STD_LOGIC_VECTOR(15 downto 0)
- dots in STD_LOGIC_VECTOR(3 downto 0)
- cathodes out STD_LOGIC_VECTOR(7 downto 0)

3.7.1 Detailed Description

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Uncomment the following library declaration if using arithmetic functions with Signed or Unsigned values

The documentation for this class was generated from the following file:

CathodeManager.vhd

3.8 Control_Unit Entity Reference

Libraries

IEEE

Use Clauses

• STD LOGIC 1164

Ports

· counter_hit in STD_LOGIC

valore del contatore

sel_q0 out std_logic

segnale di selezione del multiplexer: se 0, Q[0] = X(0), se 1, Q[0] = not A(N)

- count_in out STD_LOGIC
- S in STD_LOGIC

Risultato confronto/sottrazione (0 => 2R > V , 1 => 2R < V) "segno di A".

subtract out STD_LOGIC

decide se l'addizionatore deve effettuare somma o sottrazione

- · reset n in STD LOGIC
- en_a out STD_LOGIC
- en_q out STD_LOGIC
- en_q0 out std_logic
- · reset_a_n out std_logic
- shift out std_logic
- start_division in STD_LOGIC

segnale di start della divisione

• stop_division out STD_LOGIC

segnale di stop della divisione

- clock in STD_LOGIC
- reset_counter_n out STD_LOGIC

The documentation for this class was generated from the following files:

- · Control_Unit.vhd
- non_restoring_divider_control_unit.vhd

3.9 counter_mod_2n Entity Reference

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- NUMERIC_STD

Generics

N natural:= 2

Ports

- reset_n in STD_LOGIC
- · en in STD LOGIC
- clk in STD_LOGIC
- count out STD_LOGIC_VECTOR(N- 1 downto 0)
- count_hit out STD_LOGIC

The documentation for this class was generated from the following file:

· counter_modn.vhd

3.10 counter_UpMod2n_Re_Ar Entity Reference

Libraries

• IEEE

Use Clauses

- STD_LOGIC_1164
- numeric_std
- math_real

Generics

n NATURAL:= 1

usato per definire il valore massimo (2**n)-1 di fine conteggio.

• enable_level std_logic:=' 1 '

definisce il livello enable

Ports

```
• enable in STD_LOGIC
```

counter_UpMod2n_Re_Ar input: segnale enable

reset_n in STD_LOGIC

counter_UpMod2n_Re_Ar input: segnale reset

clock in STD_LOGIC

counter_UpMod2n_Re_Ar input: segnale di clock per sincronizzare

count_hit out STD_LOGIC

counter_UpMod2n_Re_Ar output: segnale di fine conteggio

• COUNTS out STD_LOGIC_VECTOR((n - 1)downto 0)

counter_UpMod2n_Re_Ar output: conteggio in uscita

3.10.1 Detailed Description

Conta il numero di impulsi che sono stati applicati in ingresso (sul fronte di salita del clock). Una volta raggiunto il valore massimo (2**n)-1, il conteggio riparte da 0.

3.10.2 Member Data Documentation

```
3.10.2.1 IEEE
```

```
IEEE [Library]
```

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -

3.10.2.2 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018><15/10/2018><log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

• counter_UpMod2n_Re_Ar.vhd

3.11 counter_UpN_Re_Sr Entity Reference

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- NUMERIC_STD
- STD_LOGIC_UNSIGNED
- numeric_std
- · math real

Generics

- n integer:= 4
- enable_level STD_LOGIC:=' 1 '

Ports

• enable in STD_LOGIC

enable input

• reset_n in STD_LOGIC

reset input

clock in STD_LOGIC

clock input

count_hit out STD_LOGIC

count_hit output

• COUNTS out STD_LOGIC_VECTOR(n- 1 downto 0)

COUNT output.

The documentation for this class was generated from the following files:

- Counter_Hit2n.vhd
- counter_UpN_Re_Sr.vhd

3.12 demux1_2 Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

- SEL in STD_LOGIC
- A in STD_LOGIC
- X out STD_LOGIC_VECTOR(1 downto 0)

The documentation for this class was generated from the following file:

demux1_2.vhd

3.13 demux1_4 Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Ports

- SEL in STD_LOGIC_VECTOR(1 downto 0)
- A in STD_LOGIC
- X out STD_LOGIC_VECTOR(3 downto 0)

The documentation for this class was generated from the following file:

• demux1 4.vhd

3.14 DivisorOnBoard Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Ports

- clk in STD_LOGIC
- reset in STD_LOGIC
- load_divisor in STD_LOGIC
- load_dividend in STD_LOGIC
- start_division in STD_LOGIC
- in_byte in STD_LOGIC_VECTOR(7 downto 0)
- anodes out STD_LOGIC_VECTOR(3 downto 0)
- cathodes out STD_LOGIC_VECTOR(7 downto 0)

The documentation for this class was generated from the following file:

• DivisorOnBoard.vhd

3.15 edge_trigger_dn Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

· width integer

Ports

- d in STD_LOGIC_vector(width- 1 downto 0)
- en in STD_LOGIC
- reset_n in STD_LOGIC
- clk in STD_LOGIC
- q out STD_LOGIC_vector(width- 1 downto 0)

The documentation for this class was generated from the following file:

latch_d.vhd

3.16 flipflop_d_risingEdge_asyncReset Entity Reference

flipflop_d_risingEdge_asyncReset implementa un flipflop di tipo d che commuta sul fronte di salita, con segnale di enable e reset asincrono.

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

init_value STD_LOGIC:=' 0 '

definisce il livello iniziale del flipflop

reset_level STD_LOGIC:=' 0 '

definisce il livello reset

• enable_level STD_LOGIC:=' 1 '

definisce il livello enable

Ports

· clock in STD_LOGIC

flipflop_d_risingEdge_asyncReset input : segnale di clock per sincronizzare

• enable in STD_LOGIC

flipflop_d_risingEdge_asyncReset input : segnale enable

reset in STD_LOGIC

flipflop_d_risingEdge_asyncReset input : segnale reset

• d in STD_LOGIC

flipflop_d_risingEdge_asyncReset input : input data

• q out STD_LOGIC

flipflop_d_risingEdge_asyncReset output : output data

3.16.1 Detailed Description

flipflop_d_risingEdge_asyncReset implementa un flipflop di tipo d che commuta sul fronte di salita, con segnale di enable e reset asincrono.

3.16.2 Member Data Documentation

```
3.16.2.1 STD_LOGIC_1164
```

```
STD_LOGIC_1164 [Package]
```

last changes: <14/11/2018> <13/11/2018> <log> create

The documentation for this class was generated from the following file:

· flipflop d risingEdge asyncReset.vhd

3.17 flipflopmux Entity Reference

Libraries

IEEE

architecture behavioural end

Use Clauses

• STD_LOGIC_1164

Ports

clock in STD_LOGIC

clock

• en in STD LOGIC

enable

• reset_n in STD_LOGIC

reset

scan_en in STD_LOGIC

segnale di selezione del multiplexer per modalità (0 = normale, 1 = controllo)

• d in STD_LOGIC

ingresso del flipflop in modalità normale

• scan_in in STD_LOGIC

ingresso del flipflop in modalità controllo

q out STD_LOGIC

uscita del flipflop

3.17.1 Detailed Description

flipflopmux è un flip flop D con multiplexer: scan_en è il segnale di controllo del multiplexer, se scan_en = 0 l'ingresso è d, se scan_en = 1 l'ingresso è scan_in.

The documentation for this class was generated from the following file:

· flipflopmux.vhd

3.18 full_adder Entity Reference

Libraries

• ieee

Use Clauses

• std logic 1164

Ports

- x in std_logic
- y in std_logic
- · cin in std_logic
- · cout out std_logic
- sum out std_logic

The documentation for this class was generated from the following file:

full_adder.vhd

3.19 half_adder Entity Reference

Libraries

ieee

Use Clauses

• std_logic_1164

Ports

- x in std_logic
- y in std_logic
- s out std_logic
- c out std_logic

The documentation for this class was generated from the following file:

• half_adder.vhd

3.20 mux2_1 Entity Reference

definisco il componente e la sua interfaccia

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Ports

• SEL in STD_LOGIC

mux2_1 input: selezione

A in STD_LOGIC

mux2_1 input: A

• B in STD_LOGIC

mux2_1 input: B

X out STD_LOGIC

mux2_1 output: X

3.20.1 Detailed Description

definisco il componente e la sua interfaccia

Descrizione Quando l'ingresso SEL è basso, l'uscita assume il valore del segnale A, altrimenti quando il segnale SEL è alto l'uscita assume il valore del segnale B.

3.20.2 Member Data Documentation

```
3.20.2.1 IEEE

IEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 –

3.20.2.2 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <14/11/2018> <13/11/2018> <log> create
```

The documentation for this class was generated from the following file:

mux2_1.vhd

3.21 mux4_1 Entity Reference

Libraries

IEEE

architecture dataflow of mux2_1 end

Use Clauses

• STD_LOGIC_1164

Ports

- SEL in STD_LOGIC_VECTOR(1 downto 0)
- A in STD_LOGIC_VECTOR(3 downto 0)
- X out STD_LOGIC

The documentation for this class was generated from the following file:

mux4_1.vhd

3.22 muxn_1 Entity Reference

Libraries

• ieee

Use Clauses

- std_logic_1164
- STD_LOGIC_UNSIGNED

 $ieee=synopsys\ (lanciarla\ con\ questa\ opzione:\ ghdl\ -a\ ieee=synopsys\ mux1_n.vhd\ //\ ghdl\ -r\ -ieee=synopsys\ mux1\leftarrow _n_tsb\ -vcd=mux1_n.vcd$

Generics

· width natural

Ports

- inputs in std_logic_vector(2 **width- 1 downto 0)
- selectors in std_logic_vector(width- 1 downto 0)
- output out std_logic

The documentation for this class was generated from the following file:

• mux1_n.vhd

3.23 NibbleSelector Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

- nibbles in STD_LOGIC_VECTOR(15 downto 0)
- counter in STD_LOGIC_VECTOR(1 downto 0)
- nibbleSelected out STD_LOGIC_VECTOR(3 downto 0)

The documentation for this class was generated from the following file:

Nibble_Selector.vhd

3.24 non_restoring_divider Entity Reference

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- math_real

Generics

• n integer:= 128

Ports

• X in STD_LOGIC_VECTOR(n- 1 downto 0)

dividendo della divisione

Y in STD_LOGIC_VECTOR(n- 1 downto 0)

divisore della divisione

• Q out STD_LOGIC_VECTOR(ndownto 0)

quoziente della divisione

R out STD_LOGIC_VECTOR(n-1 downto 0)

resto della divisione

- Reset_n in STD_LOGIC
- clock in std_logic
- start in STD_LOGIC

alto quando inizia la moltiplicazione

stop out STD_LOGIC

alto quando il risultato è pronto

The documentation for this class was generated from the following file:

· non_restoring_divider.vhd

3.25 non_restoring_divider_tb Entity Reference

Libraries

ieee

architecture behavioral of register_d_Re_Ar end

Use Clauses

• std_logic_1164

Generics

n integer:= 8

The documentation for this class was generated from the following file:

· restoring_divider_tb.vhd

3.26 overflow_checker Entity Reference

Libraries

IEEE

Use Clauses

• STD LOGIC 1164

Ports

· a in STD_LOGIC

bit più significativo (segno) di A

b in STD_LOGIC

bit più significativo (segno) di B

subtract in STD_LOGIC

bit di operazione: 1 se sottrazione, 0 se addizione

• s in STD_LOGIC

bit più significativo (segno) di S

overflow out STD_LOGIC

bit alto se ho una condizione di overflow

3.26.1 Detailed Description

Descrizione La macchina controlla se vi è overflow nel risultato confrontando le cifre più significative (segno) dei due operandi e del risultato con subtract. Ho overflow in caso di:

- · somma di due positivi con risultato negativo
- · somma di due negativi con risultato positivo
- · differenza di positivo e negativo con risultato negativo
- differenza di negativo e positivo con risultato positivo

3.26.2 Member Data Documentation

```
3.26.2.1 IEEE

IEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 –

3.26.2.2 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen
```

The documentation for this class was generated from the following file:

overflow_checker.vhd

3.27 R_Division Entity Reference

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- · math_real

Generics

n integer:= 4

Ports

- Dividend in STD_LOGIC_VECTOR(2 *n- 1 downto 0)
- Divisor in STD_LOGIC_VECTOR(2 *n- 1 downto 0)
- Quotient out STD_LOGIC_VECTOR(2 *n- 1 downto 0)
- Remainder out STD_LOGIC_VECTOR(2 *n- 1 downto 0)
- Reset_n in STD_LOGIC
- clock in std_logic
- start in STD_LOGIC

The documentation for this class was generated from the following file:

• NR_Division.vhd

3.28 reg_clock Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width integer:= 8

Ports

```
    value in STD_LOGIC_VECTOR(width- 1 downto 0)
```

- clock in STD_LOGIC
- enable in STD_LOGIC
- reset_n in STD_LOGIC
- output out STD_LOGIC_VECTOR(width- 1 downto 0)

The documentation for this class was generated from the following file:

· reg_clock.vhd

3.29 register_d_Re_Ar Entity Reference

Registro di diensione "width" che prende in ingresso un dato D e lo memorizza.

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 8

definisce il parallelismo del registro

reset_level STD_LOGIC:=' 0 '

definisce il livello reset

enable_level STD_LOGIC:=' 1 '

definisce il livello enable

Ports

```
    clock in STD_LOGIC
        register_d_Re_Ar input : segnale di clock per sincronizzare
    enable in STD_LOGIC
        register_d_Re_Ar input : segnale enable
    reset in STD_LOGIC
        register_d_Re_Ar input : segnale reset
    d in STD_LOGIC_VECTOR(width - 1 downto 0)
        register_d_Re_Ar input : inpput data
    q out STD_LOGIC_VECTOR(width - 1 downto 0)
        register_d_Re_Ar input : output data
```

3.29.1 Detailed Description

Registro di diensione "width" che prende in ingresso un dato D e lo memorizza.

3.29.2 Member Data Documentation

```
3.29.2.1 IEEE

IEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 –

3.29.2.2 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <16/11/2018> <16/11/2018> <log> create
```

The documentation for this class was generated from the following file:

• register_d_Re_Ar.vhd

3.30 restoring_divider Entity Reference

Libraries

• IEEE

architecture behavioural of overflow_checker end

Use Clauses

- STD_LOGIC_1164
- · math real

Generics

• n integer:= 8

Ports

```
• X in STD_LOGIC_VECTOR(n- 1 downto 0)
```

dividendo della divisione

• Y in STD_LOGIC_VECTOR(n- 1 downto 0)

divisore della divisione

• Q out STD_LOGIC_VECTOR(ndownto 0)

quoziente della divisione

• R out STD_LOGIC_VECTOR(n-1 downto 0)

resto della divisione

- Reset_n in STD_LOGIC
- clock in std_logic
- start in STD_LOGIC

alto quando inizia la moltiplicazione

stop out STD_LOGIC

alto quando il risultato è pronto

The documentation for this class was generated from the following file:

· R_Division.vhd

3.31 ripple_carry_adder Entity Reference

Libraries

• ieee

Use Clauses

• std_logic_1164

Generics

· width natural

Ports

```
    X in std_logic_vector(width-1 downto 0)
    Y in std_logic_vector(width-1 downto 0)
    cin in std_logic
    cout out std_logic
    sum out std_logic_vector(width-1 downto 0)
```

The documentation for this class was generated from the following file:

• ripple_carry_adder.vhd

3.32 rippleCarry_adder Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 8

Ports

```
    X in STD_LOGIC_VECTOR(width - 1 downto 0)
    Y in STD_LOGIC_VECTOR(width - 1 downto 0)
    c_in in STD_LOGIC
    S out STD_LOGIC_VECTOR(width - 1 downto 0)
    c_out out STD_LOGIC
    rippleCarry_adder output: carry
```

3.32.1 Detailed Description

Descrizione Somma le 2 stringe di bit in ingresso (2 addendi) e 1 bit (carry in ingresso). Caratterizzato da una serie di full_adder in cascata che propagano il riporto.

In uscita abbiamo il risultato della somma sul bit S e il riporto sul bit C.

3.32.2 Member Data Documentation

```
3.32.2.1 c_in
c_in in STD_LOGIC [Port]
rippleCarry_adder input: addendo
3.32.2.2 c_out
c_out out STD_LOGIC [Port]
rippleCarry_adder output: carry
rippleCarry_adder output: somma
3.32.2.3 IEEE
IEEE [Library]
FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 -
3.32.2.4 S
S out STD_LOGIC_VECTOR(width - 1 downto 0 ) [Port]
rippleCarry_adder input : carry in ingresso
3.32.2.5 STD_LOGIC_1164
STD_LOGIC_1164 [Package]
last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen
3.32.2.6 width
width NATURAL:= 8
                       [Generic]
usato per definire il parallelismo del rippleCarry_adder
3.32.2.7 Y
Y in STD_LOGIC_VECTOR(width - 1 downto 0 ) [Port]
rippleCarry_adder input: addendo
The documentation for this class was generated from the following file:
```

· rippleCarry_adder.vhd

3.33 scan_chain Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

```
    width integer:= 8
        dimensione del registro

    shift_direction std_logic:=' 1 '
        shift a sinistra
```

Ports

clock in STD_LOGIC

segnale clock di tempificazione

en in STD_LOGIC

segnale di abilitazione 1-attivo

reset_n in STD_LOGIC

segnale di reset 0-attivo

· scan_en in STD_LOGIC

segnale di selezione modalità (0 = normale, 1 = controllo)

scan_in in STD_LOGIC

primo valore scan-in

d_reg in STD_LOGIC_VECTOR(width - 1 downto 0)

valore in ingresso nel registro

· scan out out STD LOGIC

ultimo valore scan-out

q_reg out STD_LOGIC_VECTOR(width - 1 downto 0)

valore in uscita del registro

3.33.1 Detailed Description

Scan chain è un registro di width flipflop D multiplexati. Quando scan_en = 0, il componente si comporta come un normale registro. Quando scan_en = 1, diventa uno shift register che shifta ad ogni colpo di clock. La direzione dello shift è regolata dal generic shift_direction (0 = right, 1 = left)

The documentation for this class was generated from the following file:

· scan_chain.vhd

30 Class Documentation

3.34 Scan_chain Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Generics

```
• scan_lenght natural:= 4
```

```
• left_shift_n std_logic:=' 1 '
```

Ports

- Din in STD_LOGIC_VECTOR(scan_lenght- 1 downto 0)
- Scan_in in STD_LOGIC
- en in std_logic
- · clock in std_logic
- Scan_en in STD_LOGIC
- Scan_out out std_logic
- reset_n in std_logic
- Dout out STD_LOGIC_VECTOR(scan_lenght- 1 downto 0)

The documentation for this class was generated from the following file:

• Scan_chain.vhd

3.35 Scan_component Entity Reference

Libraries

• IEEE

Use Clauses

• STD_LOGIC_1164

Ports

- Din in STD LOGIC
- Scan_in in STD_LOGIC
- en in std_logic
- · clock in std_logic
- Scan_en in STD_LOGIC
- reset_n in std_logic
- Dout out STD_LOGIC

The documentation for this class was generated from the following file:

· Scan_component.vhd

3.36 Seven_Segments_Display Entity Reference

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Libraries

• IEEE

Use Clauses

- STD_LOGIC_1164
- math_real

Generics

- clock_frequency_in natural:= 50000000
- clock_frequency_out natural:= 250

Ports

- clk in STD_LOGIC
- reset_n in STD_LOGIC
- values in STD_LOGIC_VECTOR(15 downto 0)
- dots in STD_LOGIC_VECTOR(3 downto 0)
- enable in STD_LOGIC_VECTOR(3 downto 0)
- anodes out STD_LOGIC_VECTOR(3 downto 0)
- cathodes out STD_LOGIC_VECTOR(7 downto 0)

32 Class Documentation

3.36.1 Detailed Description

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

Uncomment the following library declaration if using arithmetic functions with Signed or Unsigned values

The documentation for this class was generated from the following file:

• Seven_Segment_Display.vhd

3.37 tb_DivisorOnBoard Entity Reference

Libraries

· ieee

Use Clauses

• std_logic_1164

The documentation for this class was generated from the following file:

• tb_DivisorOnBoard.vhd

3.38 TSB_R_div Entity Reference

Libraries

• ieee

Use Clauses

• std_logic_1164

3.38.1 Detailed Description

Uncomment the following library declaration if using arithmetic functions with Signed or Unsigned values

The documentation for this class was generated from the following file:

· TSB_R_div.vhd

Chapter 4

File Documentation

4.1 AnodeManager.vhd File Reference

Componente per gestire gli anodi di un display a 7 segmenti.

Entities

AnodeManager entity

4.1.1 Detailed Description

Componente per gestire gli anodi di un display a 7 segmenti.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.2 carrySelect_addSub.vhd File Reference

Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione.

Entities

· carrySelect_addSub entity

4.2.1 Detailed Description

Sommatore Carry Select in grado di effettuare anche l'operazione di sottrazione.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.3 carrySelect_cell.vhd File Reference

Singolo blocco di un sommatore carry Select.

Entities

carrySelect_cell entity

4.3.1 Detailed Description

Singolo blocco di un sommatore carry Select.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.4 CathodeCoder.vhd File Reference

Componente che codifica i catodi di un display a 7 segmenti.

Entities

· CathodeCoder entity

4.4.1 Detailed Description

Componente che codifica i catodi di un display a 7 segmenti.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.5 CathodeManager.vhd File Reference

Componente che permette di gestire i catodi di un display a 7 segmenti.

Entities

· CathodeManager entity

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

4.5.1 Detailed Description

Componente che permette di gestire i catodi di un display a 7 segmenti.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.6 Counter_Hit2n.vhd File Reference

Contatore modulo 2 alla N.

Entities

• counter_UpN_Re_Sr entity

4.6.1 Detailed Description

Contatore modulo 2 alla N.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.7 counter_modn.vhd File Reference

Contatore modulo 2 alla N.

Entities

• counter_mod_2n entity

4.7.1 Detailed Description

Contatore modulo 2 alla N.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.8 counter_UpN_Re_Sr.vhd File Reference

Contatore modulo N.

Entities

• counter_UpN_Re_Sr entity

4.8.1 Detailed Description

Contatore modulo N.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.9 demux1_2.vhd File Reference

Demultiplexer 1 ingresso 2 uscite.

Entities

• demux1_2 entity

4.9.1 Detailed Description

Demultiplexer 1 ingresso 2 uscite.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.10 demux1_4.vhd File Reference

Demultiplexer 1 ingresso 4 uscite.

Entities

demux1_4 entity

4.10.1 Detailed Description

Demultiplexer 1 ingresso 4 uscite.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.11 DivisorOnBoard.vhd File Reference

Componente di alto livello per implementare il divisore restoring su board.

Entities

· DivisorOnBoard entity

4.11.1 Detailed Description

Componente di alto livello per implementare il divisore restoring su board.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.12 flipflopmux.vhd File Reference

flip flop D con multiplexer

Entities

· flipflopmux entity

4.12.1 Detailed Description

flip flop D con multiplexer

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.13 full_adder.vhd File Reference

Sommatore Full-Adder 3 ingressi 2 uscite.

Entities

• full_adder entity

4.13.1 Detailed Description

Sommatore Full-Adder 3 ingressi 2 uscite.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.14 half_adder.vhd File Reference

Sommatore half_adder 2 ingressi 2 uscite.

Entities

· half_adder entity

4.14.1 Detailed Description

Sommatore half_adder 2 ingressi 2 uscite.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.15 latch d.vhd File Reference

latch D

Entities

• edge_trigger_dn entity

4.15.1 Detailed Description

latch D

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.16 mux4_1.vhd File Reference

Multiplexer con 4 ingressi e 1 uscita.

Entities

• mux4_1 entity

4.16.1 Detailed Description

Multiplexer con 4 ingressi e 1 uscita.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.17 Nibble Selector.vhd File Reference

Componente che seleziona il nibble corretto.

Entities

· NibbleSelector entity

4.17.1 Detailed Description

Componente che seleziona il nibble corretto.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.18 non_restoring_divider_control_unit.vhd File Reference

Unità di controllo del divisore non restoring.

Entities

· Control_Unit entity

4.18.1 Detailed Description

Unità di controllo del divisore non restoring.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.19 NR_Division.vhd File Reference

Componente di alto livello per effettuare una divisione non restoring.

Entities

• R_Division entity

4.19.1 Detailed Description

Componente di alto livello per effettuare una divisione non restoring.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.20 reg_clock.vhd File Reference

Registro clockato.

Entities

• reg_clock entity

4.20.1 Detailed Description

Registro clockato.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.21 ripple_carry_adder.vhd File Reference

Sommatore ripple carry adder.

Entities

• ripple_carry_adder entity

4.21.1 Detailed Description

Sommatore ripple carry adder.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.22 Scan_chain.vhd File Reference

Registro di n flip flop D multiplexati.

Entities

· Scan_chain entity

4.22.1 Detailed Description

Registro di n flip flop D multiplexati.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.23 scan_chain.vhd File Reference

Registro di n flip flop D multiplexati.

Entities

• scan_chain entity

4.23.1 Detailed Description

Registro di n flip flop D multiplexati.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

4.24 Scan_component.vhd File Reference

Implementazione di una scan chain.

Entities

· Scan_component entity

4.24.1 Detailed Description

Implementazione di una scan chain.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.25 Seven_Segment_Display.vhd File Reference

Display a 7 segmenti.

Entities

• Seven_Segments_Display entity

Uncomment the following library declaration if instantiating any Xilinx primitives in this code.

4.25.1 Detailed Description

Display a 7 segmenti.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Index

Accumulator_Quotient, 5	mux2_1, 19
IEEE, 6	overflow_checker, 22
STD LOGIC 1164, 6	register_d_Re_Ar, 25
AnodeManager, 6	rippleCarry_adder, 28
AnodeManager.vhd, 33	
	latch_d.vhd, 40
c_in	
rippleCarry_adder, 27	mux2_1, 18
c_out	IEEE, 19
rippleCarry_adder, 28	STD_LOGIC_1164, 19
carrySelect_addSub, 7	mux4_1, 19
carrySelect_addSub.vhd, 33	mux4_1.vhd, 41
carrySelect_adder, 7	muxn_1, 20
carrySelect_cell, 8	NR_Division.vhd, 42
carrySelect_cell.vhd, 34	Nibble_Selector.vhd, 41
CathodeCoder, 9	NibbleSelector, 20
CathodeCoder.vhd, 35	non_restoring_divider, 21
CathodeManager, 9	non_restoring_divider_control_unit.vhd, 42
CathodeManager.vhd, 35	non_restoring_divider_tb, 21
Control_Unit, 10	non_restoring_divider_tb, 21
Counter_Hit2n.vhd, 36	overflow checker, 22
counter_UpMod2n_Re_Ar, 11	IEEE, 22
IEEE, 12	STD_LOGIC_1164, 23
STD_LOGIC_1164, 12	0.5_200.00.,20
counter_UpN_Re_Sr, 12	R_Division, 23
counter_UpN_Re_Sr.vhd, 37	reg_clock, 24
counter_mod_2n, 10	reg_clock.vhd, 43
counter_modn.vhd, 36	register_d_Re_Ar, 24
1 0 10	IEEE, 25
demux1_2, 13	STD_LOGIC_1164, 25
demux1_2.vhd, 37	restoring_divider, 25
demux1_4, 14	ripple_carry_adder, 26
demux1_4.vhd, 38	ripple_carry_adder.vhd, 43
DivisorOnBoard, 14	rippleCarry_adder, 27
DivisorOnBoard.vhd, 38	c_in, 27
edge trigger dn, 15	c_out, 28
cage_ingger_an, 10	IEEE, 28
flipflop_d_risingEdge_asyncReset, 15	S, 28
STD_LOGIC_1164, 16	STD_LOGIC_1164, 28
flipflopmux, 16	width, 28
flipflopmux.vhd, 39	Y, 28
full_adder, 17	
full_adder.vhd, 39	S
_ ,	rippleCarry_adder, 28
half_adder, 18	STD_LOGIC_1164
half_adder.vhd, 40	Accumulator_Quotient, 6
	counter_UpMod2n_Re_Ar, 12
IEEE	flipflop_d_risingEdge_asyncReset, 16
Accumulator_Quotient, 6	mux2_1, 19
counter UpMod2n Re Ar. 12	overflow checker, 23

48 INDEX

```
register_d_Re_Ar, 25
    rippleCarry_adder, 28
Scan_chain, 30
scan_chain, 29
Scan_chain.vhd, 44
scan chain.vhd, 44
Scan_component, 30
Scan_component.vhd, 45
Seven_Segment_Display.vhd, 45
Seven_Segments_Display, 31
TSB_R_div, 32
tb_DivisorOnBoard, 32
width
    rippleCarry_adder, 28
Υ
    rippleCarry_adder, 28
```