PHY114: QUANTUM PHYSICS (2024-25, 2nd Semester) Homework-08

Q.1: Use the bra-ket algebra to prove that:

- (a) For any operator A, $\sum_{i,j} |\langle u_i | A | u_j \rangle|^2 = \text{Tr}(AA^{\dagger})$.
- **(b)** Tr(AB) = Tr(BA).
- (c) the trace of an operator A (i.e. sum of diagonal elements of A) is same in two different orthonormal bases, i.e., the trace of a matrix operator is invariant under a change of basis.

Q.2: Given that A and B are two Hermitian operators, find if the following operators are Hermitian or not.

- (a) *AB*
- **(b)** A^n (*n* is a positive integer)
- (c) AB + BA
- $(\mathbf{d}) i[A, B]$

Q.3: Prove that

- (a) If A is Hermitian, e^{iA} is unitary.
- **(b)** $[A, B]^{\dagger} = [B^{\dagger}, A^{\dagger}]$
- (c) [A, BC] = [A, B]C + B[A, C]
- (d) Product of two unitary operators is unitary.
- (e) x and p_x operators are Hermitian over the vector space of valid wave functions, i.e. the functions that are normalizable and thus vanish at infinity.

Q.4: Π is the parity operator, i.e., $\Pi \psi(x) = \langle x | \Pi | \psi \rangle = \langle -x | \psi \rangle = \psi(-x)$. Prove that

- (a) Π^2 is identity operator.
- (**b**) Π is Hermitian
- (c) Π is Unitary
- (d) What can you say about the eigen-values and eigen functions of Π ?

Q.5: Given a Hermitian matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- (a) Find its eigen values and eigen vectors.
- (b) Find the unitary transformation matrix S such that SAS^{\dagger} is diagonal and verify this explicitly.

Q.6: In the basis set $\{|u_i\rangle\}$ of a 3D Hilbert space, two state-vectors are given as $|\phi\rangle = 3|u_1\rangle + i|u_2\rangle - |u_3\rangle$ and $|\psi\rangle = -i|u_1\rangle + |u_2\rangle + 2i|u_3\rangle$ and three operators are: $A = |\phi\rangle\langle\phi|$, $B = |\psi\rangle\langle\psi|$ and $C = |\phi\rangle\langle\psi|$.

- (a) Write $|\phi\rangle$ and $|\psi\rangle$ and their Hermitian conjugates, i.e. $|\phi\rangle$ and $|\psi\rangle$ in matrix form.
- (b) Find A, B and C is matrix form by multiplying appropriate matrices.
- (c) Find if A, B and C are Hermitian. Do this by using both matrix form and their symbolic bra-ket form.
- (d) Do A, B and C commute with each other?
- (e) Show that $|\phi\rangle$ is an eigen-vector of A. What is the corresponding eigen value?
- (f) Find the other two eigen-values and eigen vectors of A.
- (g) Find the unitary matrix to transform to eigen-basis of A and find A, B and C in this eigen-basis.

Q.7: For a 3-dimensional vector space (Hilbert space) an orthonormal set of basis states is given by $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$. Three operators, A_1 , A_2 and A_3 , when operating on these basis states satisfy $A_j|u_k\rangle =$

- $i \sum_{l} \epsilon_{ikl} |u_l\rangle$. Here ϵ_{ijk} is ± 1 for ijk as even, odd permutations of 123, respectively, and zero otherwise.
- (a) Find the three operators in matrix form. Are these operators Hermitian?
- **(b)** Do these operators commute?
- (c) Find the eigen values and eigen vectors of operator $B = A_1 + A_2 + A_3$. What is the operator B in its eigen basis?

Q.8: Consider an operator
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- (a) Prove that it is unitary.
- (b) Find its eigen values and eigen vectors.
- (c) Unitarity implies that it can be written as $A = e^{iB}$ with B as Hermitian. Find such an operator B. Is this B unique? [Hint: look at the operator in its eigen basis]
- **Q.9:** T_a is the translation-by-a operator in 1-D, i.e. $T_a\psi(x)=\psi(x+a)$, and H is a Hamiltonian with a periodic 1-D potential with periodicity a, i.e. $H = \frac{p_x^2}{2m} + V(x)$ with V(x + a) = V(x).
- (a) Prove that H commutes with T_a .
- (b) Is T_a Hermitian? [Hint: analyze a general matrix element T_a]
- (c) Show that T_a is unitary, i.e. $T_a T_a^{\dagger} = 1$.
- (d) What are the possible eigen values of T_a ?
- **Q.10:** Consider the TDSE, $H|\psi\rangle=i\hbar\frac{\partial}{\partial t}|\psi\rangle$ for a time independent Hamiltonian H. By solving the eigen value equation one finds the eigen energies as $\{E_n\}$ with eigen states $\{|u_n\rangle\}$ without any degeneracy. (a) Show that $|\psi(t)\rangle=S|\psi(0)\rangle$, where $S=e^{-\frac{iHt}{\hbar}}$ is a unitary operator.
- (b) If one defines a time dependent expectation value of an operator A as $\langle A(t) \rangle = \langle \psi(t) | A | \psi(t) \rangle$, show that $\langle A(t) \rangle = \langle \psi(0) | S^{\dagger} A S | \psi(0) \rangle.$
- (c) Finally, prove the Heisenberg equation of motion, i.e. $\frac{\partial}{\partial t}\langle A(t)\rangle = -\frac{i}{\hbar}\langle [A,H]\rangle$.
- **Q.11:** The Hamiltonian of a system in an orthonormal basis $|u_{1,2}\rangle$ is, $H = \frac{\hbar\omega}{2}(i|u_1\rangle\langle u_2|-i|u_2\rangle\langle u_1|)$.
- (a) Write H in the matrix form in basis $|u_{1,2}\rangle$ and verify that H is Hermitian.
- (b) Show that $\frac{1}{\sqrt{2}}(|u_1\rangle \pm i|u_2\rangle)$ are two normalized eigen-states of this H. What are the corresponding Eigen energies?
- (c) What is the unitary matrix S such that SHS^{\dagger} is diagonal.
- (d) Given that the state of the system at t=0 is, $|\psi(t=0)\rangle = |u_1\rangle$; find the state $|\psi(t)\rangle$ at later time t in $|u_{1,2}\rangle$ basis.
- (e) What is the probability of finding the system in the state $|u_2\rangle$ at a later time t. What is the average energy, i.e. $\langle H \rangle_{\psi}$, of this state?
- (f) Given operators $B = (|u_1\rangle\langle u_2| + |u_2\rangle\langle u_1|)$ and $C = (|u_1\rangle\langle u_1| |u_2\rangle\langle u_2|)$, find $\langle B(t)\rangle_{\psi} =$ $\langle \psi(t)|B|\psi(t)\rangle$ and $\langle C(t)\rangle_{\psi}$ for the above state $|\psi(t)\rangle$.