



| Schletter, Inc. |                                         | 20° Tilt w/o Seismic Design |
|-----------------|-----------------------------------------|-----------------------------|
| HCV             | Standard PVMax Racking System           |                             |
|                 | Representative Calculations - ASCE 7-10 |                             |

#### 1. INTRODUCTION



#### 1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

#### 1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

|             | <u>Maximum</u> |             | <u>Minimum</u> |
|-------------|----------------|-------------|----------------|
| Height =    | 2000 mm        | Height =    | 1900 mm        |
| Width =     | 1050 mm        | Width =     | 970 mm         |
| Dead Load = | 3.00 psf       | Dead Load = | 1.75 psf       |

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

#### 1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005



Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

#### 2. LOAD ACTIONS

#### 2.1 Permanent Loads

| $g_{MAX} =$        | 3.00 psf |
|--------------------|----------|
| g <sub>MIN</sub> = | 1.75 psf |

Self-weight of the PV modules.

#### 2.2 Snow Loads

| Ground Snow Load, $P_g$ =               | 30.00 psf |                        |
|-----------------------------------------|-----------|------------------------|
| Sloped Roof Snow Load, P <sub>s</sub> = | 20.62 psf | (ASCE 7-10, Eq. 7.4-1) |
| I <sub>s</sub> =                        | 1.00      |                        |
| $C_s =$                                 | 0.91      |                        |
| $C_e =$                                 | 0.90      |                        |

 $C_t =$ 

1.20

#### 2.3 Wind Loads

| Design Wind Speed, V = | 130 mph | Exposure Category = C    |
|------------------------|---------|--------------------------|
| Heiaht <               | 15 ft   | Importance Category = II |

Peak Velocity Pressure,  $q_z = 26.53 \text{ psf}$  Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

#### **Pressure Coefficients**

| Ct+ <sub>TOP</sub>    | = | 1.050                            |                                                                                                                 |
|-----------------------|---|----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Cf+ BOTTOM            | = | 1.050<br>1.650 <i>(Pressure)</i> | Provided pressure coefficients are the result of wind tunnel                                                    |
| Cf- TOP, OUTER PURLIN | = | -2.400                           | testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are |
| Cf- TOP, INNER PURLIN | = | -1.840 (Suction)                 | applied away from the surface.                                                                                  |
| Cf- BOTTOM            | = | -1.000                           | applied away from the curiace.                                                                                  |

#### 2.4 Seismic Loads - N/A

| S <sub>S</sub> = | 0.00 | R = 1.25        | ASCE 7, Section 12.8.1.3: A maximum $S_s$ of 1.5         |
|------------------|------|-----------------|----------------------------------------------------------|
| $S_{DS} =$       | 0.00 | $C_S = 0$       | may be used to calculate the base shear, $C_s$ , of      |
| $S_1 =$          | 0.00 | $\rho = 1.3$    | structures under five stories and with a period, T,      |
| $S_{D1} =$       | 0.00 | $\Omega = 1.25$ | of 0.5 or less. Therefore, a $S_{ds}$ of 1.0 was used to |
| T <sub>a</sub> = | 0.00 | $C_{d} = 1.25$  | calculate C <sub>s</sub> .                               |



#### 2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

#### Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W <sup>M</sup> 1.54D + 1.3E + 0.2S <sup>R</sup> 0.56D + 1.3E <sup>R</sup> 1.54D + 1.25E + 0.2S <sup>O</sup> 0.56D + 1.25E O

#### Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

#### 3. STRUCTURAL ANALYSIS

#### 3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

#### 3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

| <u>Purlins</u> | Location        | <b>Diagonal Struts</b> | <b>Location</b> | Front Reactions Location |
|----------------|-----------------|------------------------|-----------------|--------------------------|
| M13            | Тор             | M3                     | Outer           | N7 Outer                 |
| M14            | Mid-Top         | M7                     | Inner           | N15 Inner                |
| M15            | Mid-Bottom      | M11                    | Outer           | N23 Outer                |
| M16            | Bottom          |                        |                 |                          |
|                |                 |                        |                 |                          |
| <u>Girders</u> | <u>Location</u> | Rear Struts            | <b>Location</b> | Rear Reactions Location  |
| M1             | Outer           | M2                     | Outer           | N8 Outer                 |
| M5             | Inner           | M6                     | Inner           | N16 Inner                |
| M9             | Outer           | M10                    | Outer           | N24 Outer                |
|                |                 |                        |                 |                          |
| Front Struts   | <u>Location</u> |                        |                 |                          |
| M4             | Outer           |                        |                 |                          |
| M8             | Inner           |                        |                 |                          |
| M12            | Outer           |                        |                 |                          |

<sup>&</sup>lt;sup>M</sup> Uses the minimum allowable module dead load.

<sup>&</sup>lt;sup>R</sup> Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

#### 4. MEMBER DESIGN CALCULATIONS



#### 4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).



#### 4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).





#### 4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).



#### 4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).





#### 4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).



#### 5. FOUNDATION DESIGN CALCULATIONS

#### 5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

| <u>Maximum</u>       | <u>Front</u>  | Rear           |   |
|----------------------|---------------|----------------|---|
| Tensile Load =       | <u>993.13</u> | <u>5529.35</u> | k |
| Compressive Load =   | 4299.45       | <u>4863.00</u> | k |
| Lateral Load =       | <u>14.06</u>  | 2478.87        | k |
| Moment (Weak Axis) = | 0.03          | 0.01           | k |



#### 5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).



Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check  $M_0 =$ 148199.9 in-lbs Resisting Force Required = 2072.73 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3454.54 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 571.84 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1429.60 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion 571.84 lbs Sliding Force = Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft<sup>2</sup> Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft

2500 psi

8 in

Bearing Pressure

f'c = Length =

> Ballast Width 35 in 38 in 36 in <u>37 in</u>  $P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) = \frac{7560 \text{ lbs}}{7776 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}}$

| ASD LC             |             | 1.0D        | + 1.0S      |             |             | 1.0D + 0.6W |             |             | 1.0D + 0.75L + 0.45W + 0.75S |             |             | 0.6D + 0.6W |             |             |             |             |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Width              | 35 in       | 36 in       | 37 in       | 38 in       | 35 in       | 36 in       | 37 in       | 38 in       | 35 in                        | 36 in       | 37 in       | 38 in       | 35 in       | 36 in       | 37 in       | 38 in       |
| FA                 | 1493 lbs    | 1493 lbs    | 1493 lbs    | 1493 lbs    | 1467 lbs    | 1467 lbs    | 1467 lbs    | 1467 lbs    | 2098 lbs                     | 2098 lbs    | 2098 lbs    | 2098 lbs    | -449 lbs    | -449 lbs    | -449 lbs    | -449 lbs    |
| F <sub>B</sub>     | 1604 lbs    | 1604 lbs    | 1604 lbs    | 1604 lbs    | 1793 lbs    | 1793 lbs    | 1793 lbs    | 1793 lbs    | 2417 lbs                     | 2417 lbs    | 2417 lbs    | 2417 lbs    | -2543 lbs   | -2543 lbs   | -2543 lbs   | -2543 lbs   |
| F <sub>V</sub>     | 156 lbs     | 156 lbs     | 156 lbs     | 156 lbs     | 1020 lbs    | 1020 lbs    | 1020 lbs    | 1020 lbs    | 871 lbs                      | 871 lbs     | 871 lbs     | 871 lbs     | -1144 lbs   | -1144 lbs   | -1144 lbs   | -1144 lbs   |
| P <sub>total</sub> | 10657 lbs   | 10873 lbs   | 11089 lbs   | 11305 lbs   | 10819 lbs   | 11035 lbs   | 11251 lbs   | 11467 lbs   | 12074 lbs                    | 12290 lbs   | 12506 lbs   | 12722 lbs   | 1544 lbs    | 1674 lbs    | 1803 lbs    | 1933 lbs    |
| M                  | 3396 lbs-ft | 3396 lbs-ft | 3396 lbs-ft | 3396 lbs-ft | 3992 lbs-ft | 3992 lbs-ft | 3992 lbs-ft | 3992 lbs-ft | 5261 lbs-ft                  | 5261 lbs-ft | 5261 lbs-ft | 5261 lbs-ft | 3444 lbs-ft | 3444 lbs-ft | 3444 lbs-ft | 3444 lbs-ft |
| е                  | 0.32 ft     | 0.31 ft     | 0.31 ft     | 0.30 ft     | 0.37 ft     | 0.36 ft     | 0.35 ft     | 0.35 ft     | 0.44 ft                      | 0.43 ft     | 0.42 ft     | 0.41 ft     | 2.23 ft     | 2.06 ft     | 1.91 ft     | 1.78 ft     |
| L/6                | 1.99 ft                      | 1.99 ft     | 1.99 ft     | 1.99 ft     | 1.99 ft     | 1.99 ft     | 1.99 ft     | 1.99 ft     |
| f <sub>min</sub>   | 257.4 psf   | 256.3 psf   | 255.3 psf   | 254.3 psf   | 253.5 psf   | 252.5 psf   | 251.5 psf   | 250.6 psf   | 271.2 psf                    | 269.7 psf   | 268.3 psf   | 266.9 psf   | 0.0 psf     | 0.0 psf     | 1.9 psf     | 5.3 psf     |
| f <sub>max</sub>   | 355.8 psf   | 352.0 psf   | 348.3 psf   | 344.9 psf   | 369.1 psf   | 364.9 psf   | 360.9 psf   | 357.1 psf   | 423.6 psf                    | 417.9 psf   | 412.5 psf   | 407.3 psf   | 94.7 psf    | 95.4 psf    | 96.3 psf    | 97.2 psf    |

Shear key is not required.

Maximum Bearing Pressure = 424 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.



#### Weak Side Design

#### Overturning Check

 $M_0 = 1271.6 \text{ ft-lbs}$ 

Resisting Force Required = 871.99 lbs S.F. = 1.67 Weight Required = 1453.31 lbs

Minimum Width = 35 in in Weight Provided = 7559.64 lbs

A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

#### Bearing Pressure

| ASD LC             | 1         | .238D + 0.875 | ΣE        | 1.1785D + 0.65625E + 0.75S |           |           | 0.362D + 0.875E |           |          |  |  |
|--------------------|-----------|---------------|-----------|----------------------------|-----------|-----------|-----------------|-----------|----------|--|--|
| Width              |           | 35 in         |           |                            | 35 in     |           |                 | 35 in     |          |  |  |
| Support            | Outer     | Inner         | Outer     | Outer                      | Inner     | Outer     | Outer           | Inner     | Outer    |  |  |
| F <sub>Y</sub>     | 247 lbs   | 628 lbs       | 247 lbs   | 884 lbs                    | 2540 lbs  | 884 lbs   | 72 lbs          | 184 lbs   | 72 lbs   |  |  |
| F <sub>V</sub>     | 1 lbs     | 0 lbs         | 1 lbs     | 5 lbs                      | 0 lbs     | 5 lbs     | 0 lbs           | 0 lbs     | 0 lbs    |  |  |
| P <sub>total</sub> | 9605 lbs  | 7560 lbs      | 9605 lbs  | 9793 lbs                   | 7560 lbs  | 9793 lbs  | 2809 lbs        | 7560 lbs  | 2809 lbs |  |  |
| M                  | 5 lbs-ft  | 0 lbs-ft      | 5 lbs-ft  | 18 lbs-ft                  | 0 lbs-ft  | 18 lbs-ft | 1 lbs-ft        | 0 lbs-ft  | 1 lbs-ft |  |  |
| е                  | 0.00 ft   | 0.00 ft       | 0.00 ft   | 0.00 ft                    | 0.00 ft   | 0.00 ft   | 0.00 ft         | 0.00 ft   | 0.00 ft  |  |  |
| L/6                | 0.49 ft   | 0.49 ft       | 0.49 ft   | 0.49 ft                    | 0.49 ft   | 0.49 ft   | 0.49 ft         | 0.49 ft   | 0.49 ft  |  |  |
| f <sub>min</sub>   | 276.1 psf | 217.5 psf     | 276.1 psf | 280.7 psf                  | 217.5 psf | 280.7 psf | 80.8 psf        | 217.5 psf | 80.8 psf |  |  |
| f <sub>max</sub>   | 276.6 psf | 217.5 psf     | 276.6 psf | 282.8 psf                  | 217.5 psf | 282.8 psf | 80.8 psf        | 217.5 psf | 80.8 psf |  |  |



Maximum Bearing Pressure = 283 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 28in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

#### 5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.





#### 6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.





#### **6.2 Strut Connections**

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

| Front Strut               |            | Rear Strut                                                   |
|---------------------------|------------|--------------------------------------------------------------|
| Maximum Axial Load =      | 3.307 k    | Maximum Axial Load = 3.804 k                                 |
| M12 Bolt Capacity =       | 12.808 k   | M12 Bolt Capacity = 12.808 k                                 |
| Strut Bearing Capacity =  | 7.421 k    | Strut Bearing Capacity = 7.421 k                             |
| Utilization =             | <u>45%</u> | Utilization = 51%                                            |
| Diagonal Strut            |            |                                                              |
| Maximum Axial Load =      | 1.901 k    |                                                              |
| M12 Bolt Shear Capacity = | 12.808 k   | Bolt and bearing capacities are accounting for double shear. |
| Strut Bearing Capacity =  | 7.421 k    | (ASCE 8-02, Eq. 5.3.4-1)                                     |
| Utilization =             | <u>26%</u> |                                                              |
|                           | A . a      |                                                              |

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

#### 7. SEISMIC DESIGN

#### 7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h<sub>sx</sub> = 51.89 in Allowable Story Drift for All Other Structures,  $\Delta$  = {  $0.020h_{sx}$ 1.038 in Max Drift,  $\Delta_{MAX}$  = 0.027 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.



#### **APPENDIX A**



#### A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5** 

#### Strong Axis:

### 3.4.14

$$L_{b} = 102 \text{ in}$$

$$J = 0.432$$

$$282.18$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ 

## Weak Axis:

#### 3.4.14

$$\begin{split} \mathsf{L_b} &= & 102 \\ \mathsf{J} &= & 0.432 \\ & 179.449 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 29.0 \end{split}$$

#### 3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.9 \text{ ksi}$ 

#### 3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

#### 3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

#### 3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$C_0 = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in<sup>4</sup>

41.015 mm

1.335 in<sup>3</sup>

2.788 k-ft

 $lx = 897074 \text{ mm}^4$ 

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$ 

0.599 in<sup>3</sup>

1.152 k-ft

 $M_{max}St =$ 

 $\varphi F_L St =$ 

y = Sx =



#### Compression

#### 3.4.9

b/t = 32.195  
S1 = 12.21 (See 3.4.16 above for formula)  
S2 = 32.70 (See 3.4.16 above for formula)  

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$
  
 $\phi F_L = 25.1 \text{ ksi}$   
b/t = 37.0588  
S1 = 12.21  
S2 = 32.70  
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$   
 $\phi F_L = 21.9 \text{ ksi}$ 

#### 3.4.10

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
  
S1 = 6.87  
S2 = 131.3  
 $\phi F_L = \phi y Fcy$   
 $\phi F_L = 33.25 \text{ ksi}$   
 $\phi F_L = 21.94 \text{ ksi}$   
 $\phi F_L = 1215.13 \text{ mm}^2$   
 $\phi F_L = 1.88 \text{ in}^2$   
 $\phi F_L = 21.94 \text{ ksi}$ 

#### A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

#### Girder = BF0

## Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$ 
 $179.85$ 

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
  
S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.0 \text{ ksi}$$

Weak Axis:

$$L_b = 104.56$$
 $J = 1.08$ 
 $190.335$ 

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

28.9

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

#### 3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$J = 104.56$$
 $J = 1.08$ 
 $190.335$ 

$$C1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_1 = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2)]$$

## 3.4.16

 $\phi F_1 =$ 

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F_C y$$
 $\phi F_L = 33.3 \text{ ksi}$ 



$$\begin{array}{ll} \textbf{3.4.16.1} & \underline{\textbf{Used}} \\ \textbf{Rb/t} = & \textbf{18.1} \\ S1 = \left( \frac{Bt - 1.17 \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dt} \right)^{2} \\ \textbf{S1} = & \textbf{1.1} \\ S2 = C_{t} \\ \textbf{S2} = & \textbf{141.0} \\ \textbf{\phiF}_{L} = & \textbf{\phib}[\textbf{Bt-Dt}^{*}\sqrt{(\textbf{Rb/t})}] \end{array}$$

31.1 ksi

 $\phi F_L =$ 

3.4.18

h/t =

S1 =

Bbr -

3.4.18  

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

2.366 in<sup>4</sup>

1.375 in<sup>3</sup>

3.323 k-ft

y = 43.717 mm

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 40 \\ C_0 = & 40 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 33.3 \text{ ksi} \\ y = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ \end{array}$$

 $M_{max}Wk =$ 

16.2

36.9

3.904 k-ft

 $\frac{\theta_y}{2}$  1.3Fcy

## Compression

 $M_{max}St =$ 

Sx =

#### 3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)  $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$  $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 =  $\phi F_L = \phi y F c y$  $\varphi F_L =$ 33.3 ksi

#### 3.4.10

Rb/t = 18.1  $S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$ S1 = 6.87 S2 = 131.3  $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$   $\phi F_L = 31.09 \text{ ksi}$   $\phi F_L = 31.09 \text{ ksi}$   $A = 1215.13 \text{ mm}^2$   $1.88 \text{ in}^2$ 

58.55 kips

 $P_{max} =$ 

#### A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition



Strut = **55x55** 

#### Strong Axis:

#### 3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
  
S2 = 1701.56

$$φF_L$$
=  $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$ 

$$\varphi F_L = 31.4 \text{ ksi}$$

#### Weak Axis:

#### 3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

## $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = 31.4$

#### '

#### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & 1.17 \phi \text{yFcy} \end{aligned}$$

 $\phi F_L = 38.9 \text{ ksi}$ 

#### 3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

#### 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$ 
 $0.672 \text{ in}^4$ 

$$y = 27.5 \text{ mm}$$
  
 $Sx = 0.621 \text{ in}^3$   
 $M_{max}St = 1.460 \text{ k-ft}$ 

## 3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

x =

27.5 mm

 $Sy = 0.621 \text{ in}^3$ 

 $M_{max}Wk = 1.460 \text{ k-ft}$ 

h/t = 24.5

# SCHLETTER

#### Compression

3.4.7 
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

#### 3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

#### 3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

## A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

## Strut = <u>55x55</u>

#### Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

# SCHLETTER

#### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

## 3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

#### 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

## Compression

#### 3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

#### 3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

#### 3.4.18

h/t = 24.5  

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$



#### 3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

#### 3.4.10

 $\varphi F_L =$ 

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87  
S2 = 131.3  
 $\phi F_L = \phi y Fcy$   
 $\phi F_L = 33.25 \text{ ksi}$   

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

#### A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

#### Strut = <u>55x55</u>

#### Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

#### 3.4.16

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$



3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$ 

# 3.4.16.1 N/A for Weak Direction

#### 3.4.18

h/t = 24.5  

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

3.4.18  

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

#### $\phi F_1 St = 28.2 \text{ ksi}$ $lx = 279836 \text{ mm}^4$ 0.672 in<sup>4</sup> 27.5 mm y = Sx = 0.621 in<sup>3</sup> $M_{max}St = 1.460 \text{ k-ft}$

$$\begin{aligned} & \text{ly} = & 279836 \text{ mm} \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & \text{M}_{\text{max}} \text{Wk} = & 1.460 \text{ k-ft} \end{aligned}$$

#### Compression

#### 3.4.7

$$\lambda = 1.41345$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.77788$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 13.6277 \text{ ksi}$$

#### 3.4.9

b/t = 24.5  
S1 = 12.21 (See 3.4.16 above for formula)  
S2 = 32.70 (See 3.4.16 above for formula)  

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$
  
 $\phi F_L = 28.2 \text{ ksi}$   
b/t = 24.5  
S1 = 12.21  
S2 = 32.70  
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$   
 $\phi F_L = 28.2 \text{ ksi}$ 



#### 3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left( \frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{$\phi$F}_L &= & \text{$\phi$F}_L \text{$\psi$F}_L \text{$\psi$F}$$

#### **APPENDIX B**

#### B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.



: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_

## **Basic Load Cases**

|   | BLC Description      | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut | .Area(Me. | .Surface( |
|---|----------------------|----------|-----------|-----------|-----------|-------|-------|-----------|-----------|-----------|
| 1 | Dead Load, Max       | DĽ       | •         | -1        |           |       |       | 4         | ,         | ,         |
| 2 | Dead Load, Min       | DL       |           | -1        |           |       |       | 4         |           |           |
| 3 | Snow Load            | SL       |           |           |           |       |       | 4         |           |           |
| 4 | Wind Load - Pressure | WL       |           |           |           |       |       | 4         |           |           |
| 5 | Wind Load - Suction  | WL       |           |           |           |       |       | 4         |           |           |
| 6 | Seismic - Lateral    | EL       |           |           |           |       |       |           |           |           |

## Member Distributed Loads (BLC 1 : Dead Load, Max)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -9.843                   | -9.843                 | 0                    | 0                  |
| 2 | M14          | Υ         | -9.843                   | -9.843                 | 0                    | 0                  |
| 3 | M15          | Υ         | -9.843                   | -9.843                 | 0                    | 0                  |
| 4 | M16          | Υ         | -9.843                   | -9.843                 | 0                    | 0                  |

## Member Distributed Loads (BLC 2 : Dead Load, Min)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -5.454                   | -5.454                 | 0                    | 0                  |
| 2 | M14          | Υ         | -5.454                   | -5.454                 | 0                    | 0                  |
| 3 | M15          | Υ         | -5.454                   | -5.454                 | 0                    | 0                  |
| 4 | M16          | Υ         | -5.454                   | -5.454                 | 0                    | 0                  |

## Member Distributed Loads (BLC 3 : Snow Load)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -63.565                  | -63.565                | 0                    | 0                  |
| 2 | M14          | Υ         | -63.565                  | -63.565                | 0                    | 0                  |
| 3 | M15          | Υ         | -63.565                  | -63.565                | 0                    | 0                  |
| 4 | M16          | Υ         | -63 565                  | -63 565                | 0                    | 0                  |

## Member Distributed Loads (BLC 4: Wind Load - Pressure)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | -91.409                  | -91.409                | 0                    | 0                  |
| 2 | M14          | ٧         | -91.409                  | -91.409                | 0                    | 0                  |
| 3 | M15          | V         | -143.642                 | -143.642               | 0                    | 0                  |
| 4 | M16          | V         | -143.642                 | -143.642               | 0                    | 0                  |

## Member Distributed Loads (BLC 5 : Wind Load - Suction)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | 208.934                  | 208.934                | 0                    | 0                  |
| 2 | M14          | V         | 160.183                  | 160.183                | 0                    | 0                  |
| 3 | M15          | V         | 87.056                   | 87.056                 | 0                    | 0                  |
| 4 | M16          | V         | 87 056                   | 87 056                 | 0                    | 0                  |

## **Load Combinations**

|   | Description                  | S    | P | S | В | Fa   | В | Fa  | В | Fa | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa |
|---|------------------------------|------|---|---|---|------|---|-----|---|----|---|------|---|----|---|----|---|----|---|----|---|----|---|----|
| 1 | LRFD 1.2D + 1.6S + 0.5W      | Yes  | Υ |   | 1 | 1.2  | 3 | 1.6 | 4 | .5 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 2 | LRFD 1.2D + 1.0W + 0.5S      | Yes  | Y |   | 1 | 1.2  | 3 | .5  | 4 | 1  |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 3 | LRFD 0.9D + 1.0W             | Yes  | Υ |   | 2 | .9   |   |     |   |    | 5 | 1    |   |    |   |    |   |    |   |    |   |    |   |    |
| 4 | LATERAL - LRFD 1.54D + 1.3E  | .Yes | Υ |   | 1 | 1.54 | 3 | .2  |   |    | 6 | 1.3  |   |    |   |    |   |    |   |    |   |    |   |    |
| 5 | LATERAL - LRFD 0.56D + 1.3E  | Yes  | Υ |   | 1 | .56  |   |     |   |    | 6 | 1.3  |   |    |   |    |   |    |   |    |   |    |   |    |
| 6 | LATERAL - LRFD 1.54D + 1.25  | Yes  | Y |   | 1 | 1.54 | 3 | .2  |   |    | 6 | 1.25 |   |    |   |    |   |    |   |    |   |    |   |    |
| 7 | LATERAL - LRFD 0.56D + 1.25E | Yes  | Υ |   | 1 | .56  |   |     |   |    | 6 | 1.25 |   |    |   |    |   |    |   |    |   |    |   |    |



Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

## **Load Combinations (Continued)**

|    | Description                   | S   | P | S | В | Fa   | В | Fa  | В | Fa  | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa |
|----|-------------------------------|-----|---|---|---|------|---|-----|---|-----|---|------|---|----|---|----|---|----|---|----|---|----|---|----|
| 8  |                               |     |   |   |   |      |   |     |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 9  | ASD 1.0D + 1.0S               | Yes | Υ |   | 1 | 1    | 3 | 1   |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 10 | ASD 1.0D + 0.6W               | Yes | Υ |   | 1 | 1    |   |     | 4 | .6  |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 11 | ASD 1.0D + 0.75L + 0.45W + 0  | Yes | Υ |   | 1 | 1    | 3 | .75 | 4 | .45 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 12 | ASD 0.6D + 0.6W               | Yes | Υ |   | 2 | .6   |   |     |   |     | 5 | .6   |   |    |   |    |   |    |   |    |   |    |   |    |
| 13 | LATERAL - ASD 1.238D + 0.875E | Yes | Υ |   | 1 | 1.2  |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |
| 14 | LATERAL - ASD 1.1785D + 0.65  | Yes | Υ |   | 1 | 1.1  | 3 | .75 |   |     | 6 | .656 |   |    |   |    |   |    |   |    |   |    |   |    |
| 15 | LATERAL - ASD 0.362D + 0.875E | Yes | Υ |   | 1 | .362 |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |

## **Envelope Joint Reactions**

|    | Joint   |     | X [lb]    | LC | Y [lb]    | LC | Z [lb]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|-----------|----|-----------|----|---------|----|-----------|----|-----------|----|-----------|----|
| 1  | N8      | max | 489.067   | 2  | 1165.741  | 1  | .832    | 1  | .004      | 1  | Ö         | 1  | Ó         | 1  |
| 2  |         | min | -625.503  | 3  | -1336.76  | 3  | .035    | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 3  | N7      | max | .029      | 9  | 1188.865  | 1  | 402     | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 4  |         | min | 174       | 2  | -220.442  | 3  | -10.819 | 1  | 022       | 1  | 0         | 1  | 0         | 1  |
| 5  | N15     | max | 0         | 15 | 3307.269  | 1  | 0       | 3  | 0         | 2  | 0         | 1  | 0         | 1  |
| 6  |         | min | -1.914    | 2  | -763.947  | 3  | 0       | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 7  | N16     | max | 1757.462  | 2  | 3740.769  | 1  | 0       | 2  | 0         | 1  | 0         | 1  | 0         | 1  |
| 8  |         | min | -1906.822 | 3  | -4253.348 | 3  | 0       | 3  | 0         | 3  | 0         | 1  | 0         | 1  |
| 9  | N23     | max | .029      | 9  | 1188.865  | 1  | 10.819  | 1  | .022      | 1  | 0         | 1  | 0         | 1  |
| 10 |         | min | 174       | 2  | -220.442  | 3  | .402    | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 11 | N24     | max | 489.067   | 2  | 1165.741  | 1  | 035     | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 12 |         | min | -625.503  | 3  | -1336.76  | 3  | 832     | 1  | 004       | 1  | 0         | 1  | 0         | 1  |
| 13 | Totals: | max | 2733.334  | 2  | 11757.25  | 1  | 0       | 2  |           |    |           |    |           |    |
| 14 |         | min | -3158.519 | 3  | -8131.699 | 3  | 0       | 1  |           |    |           |    |           |    |

## **Envelope Member Section Forces**

|    | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC  |          | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | _ LC |
|----|--------|-----|-----|-----------|----|-------------|-----|----------|----|--------------|----|----------|----|----------|------|
| 1  | M13    | 1   | max | 67.474    | 1_ | 481.002     | _1_ | -5.675   | 15 | 0            | 15 | .188     | 1  | 0        | 1    |
| 2  |        |     | min | 2.435     | 15 | -648.771    | 3   | -158.721 | 1  | 015          | 2  | .007     | 15 | 0        | 3    |
| 3  |        | 2   | max | 67.474    | 1  | 335.491     | 1   | -4.348   | 15 | 0            | 15 | .056     | 1  | .522     | 3    |
| 4  |        |     | min | 2.435     | 15 | -457.003    | 3   | -121.47  | 1  | 015          | 2  | .002     | 15 | 386      | 1    |
| 5  |        | 3   | max | 67.474    | 1  | 189.98      | 1   | -3.021   | 15 | 0            | 15 | .001     | 3  | .863     | 3    |
| 6  |        |     | min | 2.435     | 15 | -265.234    | 3   | -84.219  | 1  | 015          | 2  | 041      | 1  | 634      | 1    |
| 7  |        | 4   | max | 67.474    | 1  | 44.469      | 1   | -1.695   | 15 | 0            | 15 | 003      | 12 | 1.023    | 3    |
| 8  |        |     | min | 2.435     | 15 | -73.465     | 3   | -46.969  | 1  | 015          | 2  | 103      | 1  | 744      | 1    |
| 9  |        | 5   | max | 67.474    | 1  | 118.304     | 3   | 299      | 10 | 0            | 15 | 004      | 12 | 1.002    | 3    |
| 10 |        |     | min | 2.435     | 15 | -101.042    | 1   | -9.718   | 1  | 015          | 2  | 13       | 1  | 718      | 1    |
| 11 |        | 6   | max | 67.474    | 1  | 310.073     | 3   | 27.533   | 1  | 0            | 15 | 004      | 15 | .8       | 3    |
| 12 |        |     | min | 2.435     | 15 | -246.553    | 1   | 23       | 3  | 015          | 2  | 121      | 1  | 554      | 1    |
| 13 |        | 7   | max | 67.474    | 1  | 501.842     | 3   | 64.783   | 1  | 0            | 15 | 003      | 15 | .416     | 3    |
| 14 |        |     | min | 2.435     | 15 | -392.064    | 1   | 1.307    | 12 | 015          | 2  | 078      | 1  | 252      | 1    |
| 15 |        | 8   | max | 67.474    | 1  | 693.61      | 3   | 102.034  | 1  | 0            | 15 | .003     | 2  | .187     | 1    |
| 16 |        |     | min | 2.435     | 15 | -537.575    | 1   | 2.655    | 12 | 015          | 2  | 004      | 3  | 148      | 3    |
| 17 |        | 9   | max | 67.474    | 1  | 885.379     | 3   | 139.285  | 1  | 0            | 15 | .115     | 1  | .763     | 1    |
| 18 |        |     | min | 2.435     | 15 | -683.085    | 1   | 4.004    | 12 | 015          | 2  | 0        | 3  | 894      | 3    |
| 19 |        | 10  | max | 67.474    | 1  | 1077.148    | 3   | 176.536  | 1  | .003         | 3  | .264     | 1  | 1.477    | 1    |
| 20 |        |     | min | 2.435     | 15 | -828.596    | 1   | 5.353    | 12 | 015          | 2  | .005     | 12 | -1.821   | 3    |
| 21 |        | 11  | max | 67.474    | 1  | 683.085     | 1   | -4.004   | 12 | .015         | 2  | .115     | 1  | .763     | 1    |
| 22 |        |     | min | 2.435     | 15 | -885.379    | 3   | -139.285 | 1  | 0            | 15 | 0        | 3  | 894      | 3    |
| 23 |        | 12  | max | 67.474    | 1  | 537.575     | 1   | -2.655   | 12 | .015         | 2  | .003     | 2  | .187     | 1    |
| 24 |        |     | min | 2.435     | 15 | -693.61     | 3   | -102.034 | 1  | 0            | 15 | 004      | 3  | 148      | 3    |
| 25 |        | 13  | max | 67.474    | 1  | 392.064     | 1   | -1.307   | 12 | .015         | 2  | 003      | 15 | .416     | 3    |
| 26 |        |     | min | 2.435     | 15 | -501.842    | 3   | -64.783  | 1  | 0            | 15 | 078      | 1  | 252      | 1    |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|    | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome |   |
|----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|---|
| 27 |        | 14  | max | 67.474    | 1  | 246.553     | 1  | .23         | 3  | .015         | 2  | 004      | 15 | .8       | 3 |
| 28 |        |     | min | 2.435     | 15 |             | 3  | -27.533     | 1  | 0            | 15 | 121      | 1  | 554      | 1 |
| 29 |        | 15  | max | 67.474    | 1_ | 101.042     | 1  | 9.718       | 1  | .015         | 2  | 004      | 12 | 1.002    | 3 |
| 30 |        |     | min | 2.435     | 15 | -118.304    | 3  | .299        | 10 | 0            | 15 | 13       | 1  | 718      | 1 |
| 31 |        | 16  | max | 67.474    | 1  | 73.465      | 3  | 46.969      | 1  | .015         | 2  | 003      | 12 | 1.023    | 3 |
| 32 |        |     | min | 2.435     | 15 | -44.469     | 1  | 1.695       | 15 | 0            | 15 | 103      | 1  | 744      | 1 |
| 33 |        | 17  | max | 67.474    | 1_ | 265.234     | 3  | 84.219      | 1  | .015         | 2  | .001     | 3  | .863     | 3 |
| 34 |        |     | min | 2.435     | 15 | -189.98     | 1  | 3.021       | 15 | 0            | 15 | 041      | 1  | 634      | 1 |
| 35 |        | 18  | max | 67.474    | 1  | 457.003     | 3  | 121.47      | 1  | .015         | 2  | .056     | 1  | .522     | 3 |
| 36 |        |     | min | 2.435     | 15 | -335.491    | 1  | 4.348       | 15 | 0            | 15 | .002     | 15 | 386      | 1 |
| 37 |        | 19  | max | 67.474    | 1  | 648.771     | 3  | 158.721     | 1  | .015         | 2  | .188     | 1  | 0        | 1 |
| 38 |        |     | min | 2.435     | 15 | -481.002    | 1  | 5.675       | 15 | 0            | 15 | .007     | 15 | 0        | 3 |
| 39 | M14    | 1   | max | 40.58     | 1_ | 541.678     | 1  | -5.905      | 15 | .012         | 3  | .225     | 1  | 0        | 1 |
| 40 |        |     | min | 1.466     | 15 | -524.14     | 3  | -165.163    | 1  | 015          | 1  | .008     | 15 | 0        | 3 |
| 41 |        | 2   | max | 40.58     | 1  | 396.167     | 1  | -4.578      | 15 | .012         | 3  | .086     | 1  | .426     | 3 |
| 42 |        |     | min | 1.466     | 15 | -378.414    | 3  | -127.912    | 1  | 015          | 1  | .003     | 15 | 443      | 1 |
| 43 |        | 3   | max | 40.58     | 1_ | 250.657     | 1  | -3.252      | 15 | .012         | 3  | .003     | 3  | .715     | 3 |
| 44 |        |     | min | 1.466     | 15 | -232.688    | 3  | -90.661     | 1  | 015          | 1  | 017      | 1  | 748      | 1 |
| 45 |        | 4   | max | 40.58     | 1  | 105.146     | 1  | -1.925      | 15 | .012         | 3  | 002      | 12 | .866     | 3 |
| 46 |        |     | min | 1.466     | 15 | -86.961     | 3  | -53.411     | 1  | 015          | 1  | 085      | 1  | 916      | 1 |
| 47 |        | 5   | max | 40.58     | 1_ | 58.765      | 3  | 598         | 15 | .012         | 3  | 004      | 12 | .879     | 3 |
| 48 |        |     | min | 1.466     | 15 | -40.365     | 1  | -16.16      | 1  | 015          | 1  | 118      | 1  | 947      | 1 |
| 49 |        | 6   | max | 40.58     | 1_ | 204.491     | 3  | 21.091      | 1  | .012         | 3  | 004      | 15 | .755     | 3 |
| 50 |        |     | min | 1.466     | 15 | -185.876    | 1  | 601         | 3  | 015          | 1  | 116      | 1  | 84       | 1 |
| 51 |        | 7   | max | 40.58     | 1  | 350.217     | 3  | 58.342      | 1  | .012         | 3  | 003      | 15 | .493     | 3 |
| 52 |        |     | min | 1.466     | 15 | -331.387    | 1  | 1.061       | 12 | 015          | 1  | 078      | 1  | 596      | 1 |
| 53 |        | 8   | max | 40.58     | 1  | 495.943     | 3  | 95.592      | 1  | .012         | 3  | .001     | 10 | .093     | 3 |
| 54 |        |     | min | 1.466     | 15 | -476.898    | 1  | 2.409       | 12 | 015          | 1  | 005      | 1  | 214      | 1 |
| 55 |        | 9   | max | 40.58     | 1  | 641.67      | 3  | 132.843     | 1  | .012         | 3  | .103     | 1  | .305     | 1 |
| 56 |        |     | min | 1.466     | 15 | -622.409    | 1  | 3.758       | 12 | 015          | 1  | 0        | 3  | 444      | 3 |
| 57 |        | 10  | max | 40.58     | 1_ | 787.396     | 3  | 170.094     | 1  | .012         | 3  | .246     | 1  | .962     | 1 |
| 58 |        |     | min | 1.466     | 15 | -767.92     | 1  | 5.107       | 12 | 015          | 1  | .004     | 12 | -1.119   | 3 |
| 59 |        | 11  | max | 40.58     | 1_ | 622.409     | 1  | -3.758      | 12 | .015         | 1  | .103     | 1  | .305     | 1 |
| 60 |        |     | min | 1.466     | 15 | -641.67     | 3  | -132.843    | 1  | 012          | 3  | 0        | 3  | 444      | 3 |
| 61 |        | 12  | max | 40.58     | 1  | 476.898     | 1  | -2.409      | 12 | .015         | 1  | .001     | 10 | .093     | 3 |
| 62 |        |     | min | 1.466     | 15 | -495.943    | 3  | -95.592     | 1  | 012          | 3  | 005      | 1  | 214      | 1 |
| 63 |        | 13  | max | 40.58     | 1_ | 331.387     | 1  | -1.061      | 12 | .015         | 1  | 003      | 15 | .493     | 3 |
| 64 |        |     | min | 1.466     | 15 | -350.217    | 3  | -58.342     | 1  | 012          | 3  | 078      | 1  | 596      | 1 |
| 65 |        | 14  | max | 40.58     | 1  | 185.876     | 1  | .601        | 3  | .015         | 1  | 004      | 15 | .755     | 3 |
| 66 |        |     | min | 1.466     | 15 | -204.491    | 3  | -21.091     | 1  | 012          | 3  | 116      | 1  | 84       | 1 |
| 67 |        | 15  | max | 40.58     | 1  | 40.365      | 1  | 16.16       | 1  | .015         | 1  | 004      | 12 | .879     | 3 |
| 68 |        |     | min | 1.466     | 15 | -58.765     | 3  | .598        | 15 | 012          | 3  | 118      | 1  | 947      | 1 |
| 69 |        | 16  | max | 40.58     | 1_ | 86.961      | 3  | 53.411      | 1  | .015         | 1  | 002      | 12 | .866     | 3 |
| 70 |        |     | min | 1.466     | 15 | -105.146    | 1  | 1.925       | 15 | 012          | 3  | 085      | 1  | 916      | 1 |
| 71 |        | 17  | max | 40.58     | 1_ | 232.688     | 3  | 90.661      | 1  | .015         | 1  | .003     | 3  | .715     | 3 |
| 72 |        |     | min | 1.466     | 15 | -250.657    | 1  | 3.252       | 15 | 012          | 3  | 017      | 1  | 748      | 1 |
| 73 |        | 18  | max | 40.58     | 1  | 378.414     | 3  | 127.912     | 1  | .015         | 1  | .086     | 1  | .426     | 3 |
| 74 |        |     | min | 1.466     | 15 | -396.167    | 1  | 4.578       | 15 | 012          | 3  | .003     | 15 | 443      | 1 |
| 75 |        | 19  | max | 40.58     | 1  | 524.14      | 3  | 165.163     | 1  | .015         | 1  | .225     | 1  | 0        | 1 |
| 76 |        |     | min | 1.466     | 15 | -541.678    | 1  | 5.905       | 15 | 012          | 3  | .008     | 15 | 0        | 3 |
| 77 | M15    | 1   | max | -1.558    | 15 | 641.87      | 2  | -5.903      | 15 | .016         | 1  | .224     | 1  | 0        | 2 |
| 78 |        |     | min | -43.01    | 1  | -291.739    | 3  | -165.134    |    | 01           | 3  | .008     | 15 | 0        | 3 |
| 79 |        | 2   | max | -1.558    | 15 | 465.917     | 2  | -4.576      | 15 | .016         | 1  | .086     | 1_ | .239     | 3 |
| 80 |        |     | min | -43.01    | 1  | -215.077    | 3  | -127.883    | 1  | 01           | 3  | .003     | 15 | 523      | 2 |
| 81 |        | 3   | max | -1.558    | 15 | 289.964     | 2  | -3.249      | 15 | .016         | 1  | .003     | 3  | .406     | 3 |
| 82 |        |     | min | -43.01    | 1  | -138.415    | 3  | -90.633     | 1  | 01           | 3  | 017      | 1  | 88       | 2 |
| 83 |        | 4   | max | -1.558    | 15 | 114.371     | 1  | -1.922      | 15 | .016         | 1  | 002      | 12 | .501     | 3 |



Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb]                   | LC  | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome      | LC |
|-----|--------|-----|-----|-----------------------------|-----|-------------|----|-------------|----|--------------|----|----------|----|---------------|----|
| 84  |        |     | min | -43.01                      | 1   | -61.753     | 3  | -53.382     | 1  | 01           | 3  | 085      | 1  | -1.071        | 2  |
| 85  |        | 5   | max | -1.558                      | 15  | 14.909      | 3  | 595         | 15 | .016         | 1  | 004      | 12 | .523          | 3  |
| 86  |        |     | min | -43.01                      | 1   | -61.942     | 2  | -16.131     | 1  | 01           | 3  | 118      | 1  | -1.095        | 2  |
| 87  |        | 6   | max | -1.558                      | 15  | 91.57       | 3  | 21.12       | 1  | .016         | 1  | 004      | 15 | .473          | 3  |
| 88  |        |     | min | -43.01                      | 1   | -237.895    | 2  | 454         | 3  | 01           | 3  | 116      | 1  | 954           | 2  |
| 89  |        | 7   | max | -1.558                      | 15  | 168.232     | 3  | 58.37       | 1  | .016         | 1  | 003      | 15 | .35           | 3  |
| 90  |        |     | min | -43.01                      | 1   | -413.848    | 2  | 1.149       | 12 | 01           | 3  | 078      | 1  | 648           | 1  |
| 91  |        | 8   | max | -1.558                      | 15  | 244.894     | 3  | 95.621      | 1  | .016         | 1  | .001     | 10 | .155          | 3  |
| 92  |        |     | min | -43.01                      | 1   | -589.801    | 2  | 2.498       | 12 | 01           | 3  | 005      | 1  | 194           | 1  |
| 93  |        | 9   | max | -1.558                      | 15  | 321.556     | 3  | 132.872     | 1  | .016         | 1  | .103     | 1  | .468          | 2  |
| 94  |        |     | min | -43.01                      | 1   | -765.754    | 2  | 3.846       | 12 | 01           | 3  | 0        | 3  | 113           | 3  |
| 95  |        | 10  | max | -1.558                      | 15  | 398.218     | 3  | 170.123     | 1  | .016         | 1  | .246     | 1  | 1.274         | 2  |
| 96  |        |     | min | -43.01                      | 1   | -941.707    | 2  | 5.195       | 12 | 0            | 15 | .005     | 12 | 453           | 3  |
| 97  |        | 11  | max | -1.558                      | 15  | 765.754     | 2  | -3.846      | 12 | .01          | 3  | .103     | 1  | .468          | 2  |
| 98  |        |     | min | -43.01                      | 1   | -321.556    | 3  | -132.872    | 1  | 016          | 1  | 0        | 3  | 113           | 3  |
| 99  |        | 12  | max | -1.558                      | 15  | 589.801     | 2  | -2.498      | 12 | .01          | 3  | .001     | 10 | .155          | 3  |
| 100 |        |     | min | -43.01                      | 1   | -244.894    | 3  | -95.621     | 1  | 016          | 1  | 005      | 1  | 194           | 1  |
| 101 |        | 13  | max | -1.558                      | 15  | 413.848     | 2  | -1.149      | 12 | .01          | 3  | 003      | 15 | .35           | 3  |
| 102 |        |     | min | -43.01                      | 1   | -168.232    | 3  | -58.37      | 1  | 016          | 1  | 078      | 1  | 648           | 1  |
| 103 |        | 14  | max | -1.558                      | 15  | 237.895     | 2  | .454        | 3  | .01          | 3  | 004      | 15 | .473          | 3  |
| 104 |        |     | min | -43.01                      | 1   | -91.57      | 3  | -21.12      | 1  | 016          | 1  | 116      | 1  | 954           | 2  |
| 105 |        | 15  | max | -1.558                      | 15  | 61.942      | 2  | 16.131      | 1  | .01          | 3  | 004      | 12 | .523          | 3  |
| 106 |        | 10  | min | -43.01                      | 1   | -14.909     | 3  | .595        | 15 | 016          | 1  | 118      | 1  | -1.095        | 2  |
| 107 |        | 16  | max | -1.558                      | 15  | 61.753      | 3  | 53.382      | 1  | .01          | 3  | 002      | 12 | .501          | 3  |
| 108 |        | 10  | min | -43.01                      | 1   | -114.371    | 1  | 1.922       | 15 | 016          | 1  | 085      | 1  | -1.071        | 2  |
| 109 |        | 17  | max | -1.558                      | 15  | 138.415     | 3  | 90.633      | 1  | .01          | 3  | .003     | 3  | .406          | 3  |
| 110 |        | 17  | min | -43.01                      | 1   | -289.964    | 2  | 3.249       | 15 | 016          | 1  | 017      | 1  | 88            | 2  |
| 111 |        | 18  | max | -43.01<br>-1.558            | 15  | 215.077     | 3  | 127.883     | 1  | .01          | 3  | .086     | 1  | .239          | 3  |
| 112 |        | 10  | min | -43.01                      | 1   | -465.917    | 2  | 4.576       | 15 | 016          | 1  | .003     | 15 | 523           | 2  |
| 113 |        | 19  |     | -43.01<br>-1.558            | 15  | 291.739     | 3  | 165.134     | 1  | .01          | 3  | .224     | 1  |               |    |
| 114 |        | 19  | max | -43.01                      | 1   | -641.87     | 2  | 5.903       | 15 | 016          | 1  | .008     | 15 | <u>0</u><br>  | 3  |
| 115 | M16    | 1   | min | - <del>43.01</del><br>-2.71 | 15  | 586.223     | 2  | -5.688      | 15 | .012         | 1  | .191     | 1  | 0             | 2  |
| 116 | IVITO  |     | max |                             | 1   |             | 3  |             |    |              | 3  | .007     | 15 | 0             | 3  |
|     |        | 2   | min | <u>-75.03</u>               | _   | -250.321    |    | -159.211    | 1_ | 012          |    |          |    |               |    |
| 117 |        | 2   | max | <u>-2.71</u>                | 15  | 410.27      | 2  | -4.361      | 15 | .012         | 1  | .058     | 1  | .2            | 3  |
| 118 |        | 2   | min | <u>-75.03</u>               | 1_  | -173.659    | 3  | -121.961    | 1  | 012          | 3  | .002     | 15 | <u>471</u>    | 2  |
| 119 |        | 3   | max | <u>-2.71</u>                | 15  | 234.317     | 2  | -3.034      | 15 | .012         | 1  | 0        | 3  | .328          | 3  |
| 120 |        | 4   | min | <u>-75.03</u>               | 1_  | -96.997     | 3  | -84.71      | 1_ | 012          | 3  | 04       | 1  | 775           | 2  |
| 121 |        | 4   | max | -2.71                       | 15  | 58.364      | 2  | -1.708      | 15 | .012         | 1  | 003      | 12 | .383          | 3  |
| 122 |        | _   | min | <u>-75.03</u>               | 1_  | -20.335     | 3  | -47.459     | 1_ | 012          | 3  | 102      | 1  | <u>913</u>    | 2  |
| 123 |        | 5   | max | <u>-2.71</u>                | 15  | 56.327      | 3  | 381         | 15 | .012         | 1  | 004      | 12 | .366          | 3  |
| 124 |        |     | min | <u>-75.03</u>               | 1 - | -117.589    |    | -10.209     | 1  | 012          | 3  | 129      | 1  | 885           | 2  |
| 125 |        | 6   | max | <u>-2.71</u>                | 15  | 132.988     | 3  | 27.042      | 1  | .012         | 1  | 004      | 15 | .277          | 3  |
| 126 |        | -   | min | <u>-75.03</u>               | 1_  | -293.542    |    | .232        | 3  | 012          | 3  | 121      | 1  | <u>691</u>    | 2  |
| 127 |        | 7   | max | -2.71                       | 15  | 209.65      | 3  | 64.293      | 1  | .012         | 1  | 003      | 15 | .115          | 3  |
| 128 |        |     | min | <u>-75.03</u>               | 1_  | -469.495    | 2  | 1.583       | 12 | 012          | 3  | 078      | 1  | 331           | 2  |
| 129 |        | 8   | max | <u>-2.71</u>                | 15  | 286.312     | 3  | 101.544     | 1  | .012         | 1  | .002     | 2  | .201          | 1  |
| 130 |        | _   | min | <u>-75.03</u>               | 1_  | -645.448    | 2  | 2.931       | 12 | 012          | 3  | 003      | 3  | 119           | 3  |
| 131 |        | 9   | max | <u>-2.71</u>                | 15  | 362.974     | 3  | 138.794     | 1  | .012         | 1  | .114     | 1  | .888          | 2  |
| 132 |        |     | min | <u>-75.03</u>               | 1   | -821.401    | 2  | 4.28        | 12 | 012          | 3  | .001     | 12 | 426           | 3  |
| 133 |        | 10  | max | -2.71                       | 15  | 439.636     | 3  | 176.045     | 1  | .012         | 1  | .262     | 1  | <u> 1.747</u> | 2  |
| 134 |        |     | min | -75.03                      | 1   | -997.354    | 2  | 5.628       | 12 | 012          | 3  | .006     | 12 | 805           | 3  |
| 135 |        | 11  | max | -2.71                       | 15  | 821.401     | 2  | -4.28       | 12 | .012         | 3  | .114     | 1  | .888          | 2  |
| 136 |        |     | min | -75.03                      | 1   | -362.974    |    | -138.794    |    | 012          | 1  | .001     | 12 | 426           | 3  |
| 137 |        | 12  | max | -2.71                       | 15  | 645.448     | 2  | -2.931      | 12 | .012         | 3  | .002     | 2  | .201          | 1  |
| 138 |        |     | min | -75.03                      | 1   | -286.312    | 3  | -101.544    |    | 012          | 1  | 003      | 3  | 119           | 3  |
| 139 |        | 13  | max | -2.71                       | 15  | 469.495     | 2  | -1.583      | 12 | .012         | 3  | 003      | 15 | .115          | 3  |
| 140 |        |     | min | -75.03                      | 1   | -209.65     | 3  | -64.293     | 1  | 012          | 1  | 078      | 1  | 331           | 2  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

| 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | Member    | Sec |     | Axial[lb] |     |          | LC |         | LC | Torque[k-ft] | LC |      |    | z-z Mome | LC_ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|-----|-----|-----------|-----|----------|----|---------|----|--------------|----|------|----|----------|-----|
| 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 14  |     |           |     |          |    |         |    |              |    |      |    |          | 3   |
| 1444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |           |     | min |           | 1_  |          |    |         |    |              |    |      |    |          | 2   |
| 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 15  |     |           | 15  |          |    |         | _  |              |    |      | 12 |          | 3   |
| 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           |     | min | -75.03    | 1   |          |    |         | 15 |              |    | 129  | 1  |          | 2   |
| 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 145 |           | 16  | max | -2.71     | 15  | 20.335   | 3  | 47.459  | 1  | .012         | 3  | 003  | 12 | .383     | 3   |
| 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 146 |           |     | min | -75.03    | 1   | -58.364  | 2  | 1.708   | 15 | 012          | 1  | 102  | 1  | 913      | 2   |
| 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147 |           | 17  | max | -2.71     | 15  | 96.997   | 3  | 84.71   | 1  | .012         | 3  | 0    | 3  | .328     | 3   |
| 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148 |           |     | min | -75.03    | 1   | -234.317 | 2  | 3.034   | 15 | 012          | 1  | 04   | 1  | 775      | 2   |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 149 |           | 18  | max |           | 15  | 173.659  | 3  | 121.961 | 1  | .012         | 3  | .058 | 1  | .2       | 3   |
| 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           |     | min |           |     |          |    |         | 15 | 012          |    |      | 15 | 471      | 2   |
| 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 19  |     |           | 15  |          |    |         |    |              | 3  |      |    | _        | 2   |
| 153   M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |           |     |     |           |     |          |    |         | _  |              |    |      | 15 |          | 3   |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | M2        | 1   |     |           |     |          |    |         |    |              |    |      |    |          | 1   |
| 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 1412      |     |     |           |     |          |    |         |    |              |    |      |    |          | 1   |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 2   |     |           |     |          |    |         |    |              |    |      |    |          | 15  |
| 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           |     |     |           |     |          |    |         |    |              |    |      |    |          | 4   |
| 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 2   |     |           |     |          |    |         |    |              | _  |      |    |          | 15  |
| 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 3   |     |           |     |          |    |         |    |              |    |      |    |          | 4   |
| 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 4   |     |           | _   |          |    |         |    |              |    | _    |    |          |     |
| 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 4   |     |           |     |          | _  |         |    |              |    |      |    |          | 15  |
| 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | _   |     |           | _   |          |    |         |    |              | _  |      |    |          | 4   |
| 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 5   | 1   |           |     |          |    |         |    |              |    |      |    |          | 15  |
| 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | _   |     |           |     |          |    |         |    |              |    | _    |    |          | 4   |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 6   |     |           |     |          |    |         |    |              |    |      |    | _        | 15  |
| 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           |     |     |           |     |          |    |         |    |              | _  | _    |    |          | 4   |
| 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 7   | max |           | _1_ |          |    |         |    | 0            | 3_ | .001 |    |          | 15  |
| 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           |     | min | -1194.26  | 3   |          | 15 |         | 15 | 0            | _  | _    | 15 | 004      | 4   |
| 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 167 |           | 8   | max |           | 1   | 2.096    |    | .796    | 1  | 0            | 3  | .002 | 1  | 0        | 15  |
| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 168 |           |     | min | -1193.948 | 3   | .493     | 15 | .029    | 15 | 0            | 1  | 0    | 15 | 004      | 4   |
| 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 169 |           | 9   | max | 1122.456  | 1   | 2.087    | 4  | .796    | 1  | 0            | 3  | .002 | 1  | 001      | 15  |
| 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170 |           |     | min | -1193.637 | 3   | .491     | 15 | .029    | 15 | 0            | 1  | 0    | 15 | 005      | 4   |
| 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 171 |           | 10  | max | 1122.872  | 1   | 2.078    | 4  | .796    | 1  | 0            | 3  | .002 | 1  | 001      | 15  |
| 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 172 |           |     |     |           | 3   | .489     | 15 |         | 15 | 0            | 1  |      | 15 | 005      | 4   |
| 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 11  |     |           |     |          |    |         |    |              | 3  | .002 |    |          | 15  |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           |     |     |           |     |          |    |         | _  |              |    |      |    |          | 4   |
| 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 12  |     |           |     |          |    |         |    |              | 3  | _    |    |          | 15  |
| 177       13 max       1124.12       1       2.052       4       .796       1       0       3       .003       1      002       1         178       min       -1192.389       3       .482       15       .029       15       0       1       0       15      007       2         179       14 max       1124.536       1       2.043       4       .796       1       0       3       .003       1      002       1         180       min       -1192.077       3       .48       15       .029       15       0       1       0       15      002       1         181       15 max       1124.952       1       2.035       4       .796       1       0       3       .003       1      002       1         182       min       -1191.765       3       .478       15       .029       15       0       1       0       15      008         183       16 max       1125.367       1       2.026       4       .796       1       0       3       .003       1      002       1         184       min       -1191.453<                                                                                                                                                                                                                                                                 |     |           |     |     |           |     |          |    |         |    |              |    |      |    |          | 4   |
| 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           | 13  |     |           |     |          |    |         |    |              | _  |      |    |          | 15  |
| 179       14       max       1124.536       1       2.043       4       .796       1       0       3       .003       1      002       1         180       min       -1192.077       3       .48       15       .029       15       0       1       0       15      008       .         181       15       max       1124.952       1       2.035       4       .796       1       0       3       .003       1      002       1         182       min       -1191.765       3       .478       15       .029       15       0       1       0       15      008       1         183       16       max       1125.367       1       2.026       4       .796       1       0       3       .003       1      002       1         184       min       -1191.453       3       .476       15       .029       15       0       1       0       15      002       1         185       17       max       1125.783       1       2.017       4       .796       1       0       3       .004       1      002       1                                                                                                                                                                                                                                                                       |     |           | 10  |     |           |     |          |    |         |    |              |    |      |    |          | 4   |
| 180         min         -1192.077         3         .48         15         .029         15         0         1         0         15        008         4           181         15         max         1124.952         1         2.035         4         .796         1         0         3         .003         1        002         1           182         min         -1191.765         3         .478         15         .029         15         0         1         0         15        008         4           183         16         max         1125.367         1         2.026         4         .796         1         0         3         .003         1        002         1           184         min         -1191.453         3         .476         15         .029         15         0         1         0         15        009         4           185         17         max         1125.783         1         2.017         4         .796         1         0         3         .004         1        002         1           186         min         -1191.141         3         .474                                                                                                                                                                         |     |           | 1/  |     |           |     |          |    |         |    |              |    | _    |    |          | 15  |
| 181       15       max       1124.952       1       2.035       4       .796       1       0       3       .003       1      002       1         182       min       -1191.765       3       .478       15       .029       15       0       1       0       15      008       4         183       16       max       1125.367       1       2.026       4       .796       1       0       3       .003       1      002       1         184       min       -1191.453       3       .476       15       .029       15       0       1       0       15      002       1         185       17       max       1125.783       1       2.017       4       .796       1       0       3       .004       1      002       1         186       min       -1191.141       3       .474       15       .029       15       0       1       0       15      009       1         187       18       max       1126.199       1       2.008       4       .796       1       0       3       .004       1      002       1 <td></td> <td></td> <td>14</td> <td></td> <td>4</td>                                                                                                   |     |           | 14  |     |           |     |          |    |         |    |              |    |      |    |          | 4   |
| 182         min         -1191.765         3         .478         15         .029         15         0         1         0         15        008         4           183         16         max         1125.367         1         2.026         4         .796         1         0         3         .003         1        002         1           184         min         -1191.453         3         .476         15         .029         15         0         1         0         15        009         1           185         17         max         1125.783         1         2.017         4         .796         1         0         3         .004         1        002         1           186         min         -1191.141         3         .474         15         .029         15         0         1         0         15        002         1           187         18         max         1126.199         1         2.008         4         .796         1         0         3         .004         1        002         1           188         min         -1190.829         3         .472                                                                                                                                                                        |     |           | 15  |     |           | 1   |          |    |         |    | _            |    | _    |    |          |     |
| 183       16       max       1125.367       1       2.026       4       .796       1       0       3       .003       1      002       1         184       min       -1191.453       3       .476       15       .029       15       0       1       0       15      009       4         185       17       max       1125.783       1       2.017       4       .796       1       0       3       .004       1      002       1         186       min       -1191.141       3       .474       15       .029       15       0       1       0       15      002       1         187       18       max       1126.199       1       2.008       4       .796       1       0       3       .004       1      002       1         188       min       -1190.829       3       .472       15       .029       15       0       1       0       15      01       4         189       19       max       1126.615       1       2       4       .796       1       0       3       .004       1      002       1                                                                                                                                                                                                                                                                           |     |           | 13  |     |           | 2   |          |    |         | _  |              |    |      |    |          | 15  |
| 184         min         -1191.453         3         .476         15         .029         15         0         1         0         15        009         4           185         17         max         1125.783         1         2.017         4         .796         1         0         3         .004         1        002         1           186         min         -1191.141         3         .474         15         .029         15         0         1         0         15        009         4           187         18         max         1126.199         1         2.008         4         .796         1         0         3         .004         1        002         1           188         min         -1190.829         3         .472         15         .029         15         0         1         0         15        01         4           189         19         max         1126.615         1         2         4         .796         1         0         3         .004         1        002         1           190         min         -1190.517         3         .47 <td< td=""><td></td><td></td><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td></td<>        |     |           | 16  |     |           |     |          |    |         |    |              |    |      |    |          | 15  |
| 185       17       max       1125.783       1       2.017       4       .796       1       0       3       .004       1      002       1         186       min       -1191.141       3       .474       15       .029       15       0       1       0       15      009       6         187       18       max       1126.199       1       2.008       4       .796       1       0       3       .004       1      002       1         188       min       -1190.829       3       .472       15       .029       15       0       1       0       15      01       4         189       19       max       1126.615       1       2       4       .796       1       0       3       .004       1      002       1         190       min       -1190.517       3       .47       15       .029       15       0       1       0       15      01       4         191       M3       1       max       487.197       2       9.101       4       .188       1       0       3       0       1       .01       0                                                                                                                                                                                                                                                                        |     |           | 10  |     |           |     |          |    |         |    |              |    |      |    |          |     |
| 186         min         -1191.141         3         .474         15         .029         15         0         1         0         15        009         4           187         18         max         1126.199         1         2.008         4         .796         1         0         3         .004         1        002         1           188         min         -1190.829         3         .472         15         .029         15         0         1         0         15        01        01        002         1           189         19         max         1126.615         1         2         4         .796         1         0         3         .004         1        002         1           190         min         -1190.517         3         .47         15         .029         15         0         1         0         15        01         4           191         M3         1         max         487.197         2         9.101         4         .188         1         0         3         0         1         .01         4           192         min         -624.065 </td <td></td> <td></td> <td>47</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td>4</td> |     |           | 47  |     |           |     |          |    |         |    |              | _  | _    |    |          | 4   |
| 187     18 max     1126.199     1     2.008     4     .796     1     0     3     .004     1    002     1       188     min     -1190.829     3     .472     15     .029     15     0     1     0     15    01     4       189     19 max     1126.615     1     2     4     .796     1     0     3     .004     1    002     1       190     min     -1190.517     3     .47     15     .029     15     0     1     0     15    01     4       191     M3     1     max     487.197     2     9.101     4     .188     1     0     3     0     1     .01     4       192     min     -624.065     3     2.139     15     .007     15     0     1     0     15     .002     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |           | 17  |     |           |     |          |    |         |    |              |    |      |    |          | 15  |
| 188     min     -1190.829     3     .472     15     .029     15     0     1     0     15    01     6       189     19     max     1126.615     1     2     4     .796     1     0     3     .004     1    002     1       190     min     -1190.517     3     .47     15     .029     15     0     1     0     15    01     6       191     M3     1     max     487.197     2     9.101     4     .188     1     0     3     0     1     .01     6       192     min     -624.065     3     2.139     15     .007     15     0     1     0     15     .002     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |           | 40  |     |           |     |          |    |         |    |              |    |      |    |          | 4   |
| 189     19     max     1126.615     1     2     4     .796     1     0     3     .004     1    002     1       190     min     -1190.517     3     .47     15     .029     15     0     1     0     15    01     4       191     M3     1     max     487.197     2     9.101     4     .188     1     0     3     0     1     .01     4       192     min     -624.065     3     2.139     15     .007     15     0     1     0     15     .002     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |           | 18  |     |           |     |          |    |         |    |              |    |      |    |          | 15  |
| 190     min     -1190.517     3     .47     15     .029     15     0     1     0     15    01     4       191     M3     1     max     487.197     2     9.101     4     .188     1     0     3     0     1     .01     4       192     min     -624.065     3     2.139     15     .007     15     0     1     0     15     .002     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |           |     |     |           |     |          |    |         |    | _            |    |      |    |          | 4   |
| 191     M3     1     max     487.197     2     9.101     4     .188     1     0     3     0     1     .01     4       192     min     -624.065     3     2.139     15     .007     15     0     1     0     15     .002     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |           | 19  |     |           |     |          |    |         |    |              |    |      |    |          | 15  |
| 192 min -624.065 3 2.139 15 .007 15 0 1 0 15 .002 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |           |     |     |           |     |          |    |         |    |              | _  |      |    |          | 4   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | <u>M3</u> | 1_  | max |           | 2   |          |    |         | _  |              |    |      |    |          | 4   |
| 193     2   max   487.026   2   8.226   4   .188   1   0   3   0   1   .006   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |           |     |     |           | 3   |          |    |         | 15 | 0            |    | 0    | 15 |          | 15  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 193 |           | 2   | max |           | 2   | 8.226    |    | .188    |    | 0            |    | 0    |    |          | 4   |
| 194 min -624.193 3 1.934 15 .007 15 0 1 0 15 .001 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 194 |           |     | min | -624.193  | 3   | 1.934    | 15 | .007    | 15 | 0            | 1  | 0    | 15 | .001     | 12  |
| 195 3 max 486.856 2 7.352 4 .188 1 0 3 0 1 .003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 195 |           | 3   | max | 486.856   | 2   | 7.352    | 4  | .188    | 1  | 0            | 3  | 0    | 1  | .003     | 2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |           |     |     |           | 3   |          | 15 |         | 15 |              |    |      | 15 |          | 3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |           | 4   | max |           | 2   |          | 4  | .188    |    | 0            | 3  | 0    |    |          | 2   |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC_ |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|-----|
| 198 |        |     | min | -624.449  | 3  | 1.523       | 15 | .007        | 15 | 0            | 1  | 0        | 15 | 002      | 3   |
| 199 |        | 5   | max | 486.515   | 2  | 5.603       | 4  | .188        | 1  | 0            | 3  | 0        | 1  | 0        | 15  |
| 200 |        |     | min | -624.576  | 3  | 1.317       | 15 | .007        | 15 | 0            | 1  | 0        | 15 | 003      | 4   |
| 201 |        | 6   | max | 486.345   | 2  | 4.728       | 4  | .188        | 1  | 0            | 3  | 0        | 1  | 001      | 15  |
| 202 |        |     | min | -624.704  | 3  | 1.112       | 15 | .007        | 15 | 0            | 1  | 0        | 15 | 006      | 4   |
| 203 |        | 7   | max | 486.174   | 2  | 3.854       | 4  | .188        | 1  | 0            | 3  | 0        | 1  | 002      | 15  |
| 204 |        |     | min | -624.832  | 3  | .906        | 15 | .007        | 15 | 0            | 1  | 0        | 15 | 008      | 4   |
| 205 |        | 8   | max | 486.004   | 2  | 2.98        | 4  | .188        | 1  | 0            | 3  | 0        | 1  | 002      | 15  |
| 206 |        |     | min | -624.96   | 3  | .7          | 15 | .007        | 15 | 0            | 1  | 0        | 15 | 01       | 4   |
| 207 |        | 9   | max | 485.834   | 2  | 2.105       | 4  | .188        | 1  | 0            | 3  | 0        | 1  | 003      | 15  |
| 208 |        |     | min | -625.087  | 3  | .495        | 15 | .007        | 15 | 0            | 1  | 0        | 15 | 011      | 4   |
| 209 |        | 10  | max | 485.663   | 2  | 1.231       | 4  | .188        | 1  | 0            | 3  | 0        | 1  | 003      | 15  |
| 210 |        |     | min | -625.215  | 3  | .289        | 15 | .007        | 15 | 0            | 1  | 0        | 15 | 012      | 4   |
| 211 |        | 11  | max | 485.493   | 2  | .426        | 2  | .188        | 1  | 0            | 3  | 0        | 1  | 003      | 15  |
| 212 |        |     | min | -625.343  | 3  | .003        | 3  | .007        | 15 | 0            | 1  | 0        | 15 | 012      | 4   |
| 213 |        | 12  | max | 485.323   | 2  | 122         | 15 | .188        | 1  | 0            | 3  | .001     | 1  | 003      | 15  |
| 214 |        |     | min | -625.471  | 3  | 518         | 4  | .007        | 15 | 0            | 1  | 0        | 15 | 012      | 4   |
| 215 |        | 13  | max | 485.152   | 2  | 327         | 15 | .188        | 1  | 0            | 3  | .001     | 1  | 003      | 15  |
| 216 |        |     | min | -625.599  | 3  | -1.393      | 4  | .007        | 15 | 0            | 1  | 0        | 15 | 011      | 4   |
| 217 |        | 14  | max | 484.982   | 2  | 533         | 15 | .188        | 1  | 0            | 3  | .001     | 1  | 002      | 15  |
| 218 |        |     | min | -625.726  | 3  | -2.267      | 4  | .007        | 15 | 0            | 1  | 0        | 15 | 011      | 4   |
| 219 |        | 15  | max | 484.812   | 2  | 738         | 15 | .188        | 1  | 0            | 3  | .001     | 1  | 002      | 15  |
| 220 |        |     | min | -625.854  | 3  | -3.142      | 4  | .007        | 15 | 0            | 1  | 0        | 15 | 009      | 4   |
| 221 |        | 16  | max | 484.641   | 2  | 944         | 15 | .188        | 1  | 0            | 3  | .001     | 1  | 002      | 15  |
| 222 |        |     | min | -625.982  | 3  | -4.016      | 4  | .007        | 15 | 0            | 1  | 0        | 15 | 008      | 4   |
| 223 |        | 17  | max | 484.471   | 2  | -1.15       | 15 | .188        | 1  | 0            | 3  | .001     | 1  | 001      | 15  |
| 224 |        |     | min | -626.11   | 3  | -4.89       | 4  | .007        | 15 | 0            | 1  | 0        | 15 | 005      | 4   |
| 225 |        | 18  | max | 484.301   | 2  | -1.355      | 15 | .188        | 1  | 0            | 3  | .002     | 1  | 0        | 15  |
| 226 |        |     | min | -626.237  | 3  | -5.765      | 4  | .007        | 15 | 0            | 1  | 0        | 15 | 003      | 4   |
| 227 |        | 19  | max | 484.13    | 2  | -1.561      | 15 | .188        | 1  | 0            | 3  | .002     | 1  | 0        | 1   |
| 228 |        |     | min | -626.365  | 3  | -6.639      | 4  | .007        | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 229 | M4     | 1   | max | 1185.799  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 1  | 0        | 1   |
| 230 |        |     | min | -222.742  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 0        | 15 | 0        | 1   |
| 231 |        | 2   | max | 1185.969  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 12 | 0        | 1   |
| 232 |        |     | min | -222.614  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 0        | 1  | 0        | 1   |
| 233 |        | 3   | max | 1186.139  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 234 |        |     | min | -222.486  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 002      | 1  | 0        | 1   |
| 235 |        | 4   | max | 1186.31   | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 236 |        |     | min | -222.358  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 003      | 1  | 0        | 1   |
| 237 |        | 5   | max | 1186.48   | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 238 |        |     | min | -222.231  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 004      | 1  | 0        | 1   |
| 239 |        | 6   | max | 1186.65   | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 240 |        |     | min | -222.103  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 005      | 1  | 0        | 1   |
| 241 |        | 7   |     | 1186.821  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 242 |        |     |     |           | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 007      | 1  | 0        | 1   |
| 243 |        | 8   |     | 1186.991  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 244 |        |     |     | -221.847  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 008      | 1  | 0        | 1   |
| 245 |        | 9   | max | 1187.161  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 246 |        |     |     | -221.72   | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 009      | 1  | 0        | 1   |
| 247 |        | 10  |     | 1187.332  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 248 |        |     |     | -221.592  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 011      | 1  | 0        | 1   |
| 249 |        | 11  |     | 1187.502  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 250 |        |     | min | -221.464  | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 012      | 1  | 0        | 1   |
| 251 |        | 12  | max | 1187.672  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 252 |        |     | min |           | 3  | 0           | 1  | -11.212     | 1  | 0            | 1  | 013      | 1  | 0        | 1   |
| 253 |        | 13  |     | 1187.843  | 1  | 0           | 1  | 402         | 15 | 0            | 1  | 0        | 15 | 0        | 1   |
| 254 |        |     |     | -221.209  |    | 0           | 1  | -11.212     | 1  | 0            | 1  | 014      | 1  | 0        | 1   |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

| 055        | Member | Sec |     | Axial[lb]             |               |               |                |                |                |   |               | y-y Mome |         |             |   |
|------------|--------|-----|-----|-----------------------|---------------|---------------|----------------|----------------|----------------|---|---------------|----------|---------|-------------|---|
| 255        |        | 14  |     | 1188.013              | 1             | 0             | 1              | 402            | <u>15</u>      | 0 | 1             | 0        | 15      | 0           | 1 |
| 256<br>257 |        | 15  |     | -221.081<br>1188.183  | <u>3</u><br>1 | 0             | 1              | -11.212<br>402 | <u>1</u><br>15 | 0 | <u>1</u><br>1 | 016<br>0 | 1<br>15 | 0           | 1 |
| 258        |        | 15  |     | -220.953              | 3             | 0             | 1              | -11.212        | 1              | 0 | 1             | 017      | 1       | 0           | 1 |
| 259        |        | 16  | _   | 1188.354              | <u> </u>      | 0             | 1              | 402            | 15             | 0 | 1             | 0        | 15      | 0           | 1 |
| 260        |        | 10  |     | -220.825              | 3             | 0             | 1              | -11.212        | 1              | 0 | 1             | 018      | 1       | 0           | 1 |
| 261        |        | 17  |     | 1188.524              | 1             | 0             | 1              | 402            | 15             | 0 | 1             | 0        | 15      | 0           | 1 |
| 262        |        |     |     | -220.698              | 3             | 0             | 1              | -11.212        | 1              | 0 | 1             | 02       | 1       | 0           | 1 |
| 263        |        | 18  |     | 1188.695              | 1             | 0             | 1              | 402            | 15             | 0 | 1             | 0        | 15      | 0           | 1 |
| 264        |        |     | min | -220.57               | 3             | 0             | 1              | -11.212        | 1              | 0 | 1             | 021      | 1       | 0           | 1 |
| 265        |        | 19  | max | 1188.865              | 1             | 0             | 1              | 402            | 15             | 0 | 1             | 0        | 15      | 0           | 1 |
| 266        |        |     | min | -220.442              | 3             | 0             | 1              | -11.212        | 1              | 0 | 1             | 022      | 1       | 0           | 1 |
| 267        | M6     | 1   |     | 3472.558              | 1             | 2.552         | 2              | 0              | 1              | 0 | 1             | 0        | 1       | 0           | 1 |
| 268        |        |     |     | -3803.676             | 3             | .192          | 3              | 0              | 1              | 0 | 1             | 0        | 1       | 0           | 1 |
| 269        |        | 2   | max | 3472.974              | 1_            | 2.545         | 2              | 0              | 1_             | 0 | 1             | 0        | 1       | 0           | 3 |
| 270        |        |     | min |                       | 3             | .187          | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 0           | 2 |
| 271        |        | 3   | max |                       | _1_           | 2.539         | 2              | 0              | _1_            | 0 | _1_           | 0        | 1       | 0           | 3 |
| 272        |        |     | min | -3803.053             | 3             | .182          | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 001         | 2 |
| 273        |        | 4   |     | 3473.806              | 1_            | 2.532         | 2              | 0              | _1_            | 0 | 1             | 0        | 1       | 0           | 3 |
| 274        |        | _   | min | -3802.741             | 3             | .177          | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 002         | 2 |
| 275        |        | 5   |     | 3474.222              | 1_            | 2.525         | 2              | 0              | _1_            | 0 | 1             | 0        | 1       | 0           | 3 |
| 276        |        |     | min | -3802.429             | 3             | .172          | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 003         | 2 |
| 277        |        | 6   |     | 3474.638              | 1             | 2.518         | 2              | 0              | 1_             | 0 | 1             | 0        | 1       | 0           | 3 |
| 278        |        | -   |     | -3802.117             | 3             | .167          | 3              | 0              | 1_             | 0 | 1_            | 0        | 1       | 004         | 2 |
| 279        |        | 7   |     | 3475.054<br>-3801.805 | 1             | 2.511         | 2              | 0              | <u>1</u><br>1  | 0 | <u>1</u><br>1 | 0        | 1       | 0           | 2 |
| 280        |        | 0   | min | 3475.469              | 3             | .162          | 3              | 0              | 1              | 0 | 1             | 0        | 1       | 004<br>0    |   |
| 281        |        | 8   |     | -3801.493             | <u>1</u><br>3 | 2.505<br>.157 | 3              | 0              | 1              | 0 | 1             | 0        | 1       | 005         | 2 |
| 283        |        | 9   |     | 3475.885              | <u> </u>      | 2.498         | 2              | 0              | 1              | 0 | 1             | 0        | 1       | 005<br>0    | 3 |
| 284        |        | 9   | min | -3801.181             | 3             | .151          | 3              | 0              | 1              | 0 | 1             | 0        | 1       | 006         | 2 |
| 285        |        | 10  |     | 3476.301              | 1             | 2.491         | 2              | 0              | 1              | 0 | 1             | 0        | 1       | 000<br>0    | 3 |
| 286        |        | 10  | min | -3800.869             | 3             | .146          | 3              | 0              | 1              | 0 | 1             | 0        | 1       | 006         | 2 |
| 287        |        | 11  |     | 3476.717              | 1             | 2.484         | 2              | 0              | 1              | 0 | 1             | 0        | 1       | 0           | 3 |
| 288        |        |     |     | -3800.557             | 3             | .141          | 3              | 0              | 1              | 0 | 1             | 0        | 1       | 007         | 2 |
| 289        |        | 12  |     | 3477.133              | 1             | 2.477         | 2              | 0              | 1              | 0 | 1             | 0        | 1       | 0           | 3 |
| 290        |        | ·-  | min |                       | 3             | .136          | 3              | 0              | 1              | Ö | 1             | Ö        | 1       | 008         | 2 |
| 291        |        | 13  |     | 3477.549              | 1             | 2.471         | 2              | 0              | 1              | 0 | 1             | 0        | 1       | 0           | 3 |
| 292        |        |     |     | -3799.934             | 3             | .131          | 3              | 0              | 1              | 0 | 1             | 0        | 1       | 008         | 2 |
| 293        |        | 14  |     | 3477.965              | 1             | 2.464         | 2              | 0              | 1              | 0 | 1             | 0        | 1       | 0           | 3 |
| 294        |        |     | min | -3799.622             | 3             | .126          | 3              | 0              | 1              | 0 | 1             | 0        | 1       | 009         | 2 |
| 295        |        | 15  | max | 3478.381              | 1             | 2.457         | 2              | 0              | 1_             | 0 | 1             | 0        | 1       | 0           | 3 |
| 296        |        |     |     | -3799.31              | 3             | .121          | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 01          | 2 |
| 297        |        | 16  |     | 3478.796              | _1_           | 2.45          | 2              | 0              | _1_            | 0 | 1             | 0        | 1       | 0           | 3 |
| 298        |        |     |     | -3798.998             | 3             | .116          | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 011         | 2 |
| 299        |        | 17  |     | 3479.212              | 1_            | 2.443         | 2              | 0              | 1_             | 0 | 1             | 0        | 1       | 0           | 3 |
| 300        |        |     |     | -3798.686             | 3_            | .111          | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 011         | 2 |
| 301        |        | 18  |     | 3479.628              | _1_           | 2.437         | 2              | 0              | _1_            | 0 | 1             | 0        | 1       | 0           | 3 |
| 302        |        | 4.0 |     | -3798.374             | 3_            | .106          | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 012         | 2 |
| 303        |        | 19  |     | 3480.044              | 1_            | 2.43          | 2              | 0              | 1_             | 0 | 1             | 0        | 1       | 0           | 3 |
| 304        | N 47   | 4   |     | -3798.062             | 3             | .1            | 3              | 0              | 1_             | 0 | 1             | 0        | 1       | 013         | 2 |
| 305        | M7     | 1   |     | 1759.943              | 2             | 9.139         | 4<br>1E        | 0              | 1              | 0 | 1             | 0        | 1       | .013        | 2 |
| 306        |        | 2   | min | -1898.363             | 3             | 2.144         | <u>15</u>      | 0              | 1              | 0 | 1             | 0        | 1       | 0           | 3 |
| 307        |        | 2   |     | 1759.773<br>-1898.491 | 2             | 8.264         | 4              | 0              | <u>1</u><br>1  | 0 | 1             | 0        | 1       | .009        | 2 |
| 308        |        | 3   |     | 1759.603              | 3             | 1.939         | 15             |                | <u>1</u><br>1  | 0 | <u>1</u><br>1 | 0        | 1       | 001         | 3 |
| 309        |        | 3   |     | -1898.618             | 3             | 7.39<br>1.733 | <u>4</u><br>15 | 0              | 1              | 0 | 1             | 0        | 1       | .006<br>003 | 3 |
| 311        |        | 4   |     | 1759.432              | 2             | 6.515         | 4              | 0              | 1              | 0 | 1             | 0        | 1       | .003        | 2 |
|            |        |     | max | 1100.402              |               | 0.010         |                | U              |                |   |               |          |         | .000        |   |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member    | Sec      |     | Axial[lb]       | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC  | y-y Mome | LC | z-z Mome | LC          |
|-----|-----------|----------|-----|-----------------|----|-------------|----|-------------|----|--------------|-----|----------|----|----------|-------------|
| 312 |           |          | min | -1898.746       | 3  | 1.528       | 15 | 0           | 1  | 0            | 1   | 0        | 1  | 005      | 3           |
| 313 |           | 5        | max | 1759.262        | 2  | 5.641       | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 2           |
| 314 |           |          | min | -1898.874       | 3  | 1.322       | 15 | 0           | 1  | 0            | 1   | 0        | 1  | 006      | 3           |
| 315 |           | 6        | max | 1759.092        | 2  | 4.766       | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 001      | 15          |
| 316 |           |          | min | -1899.002       | 3  | 1.117       | 15 | 0           | 1  | 0            | 1   | 0        | 1  | 007      | 3           |
| 317 |           | 7        | max |                 | 2  | 3.892       | 4  | 0           | 1  | 0            | _1_ | 0        | 1  | 002      | 15          |
| 318 |           |          | min | -1899.129       | 3  | .911        | 15 | 0           | 1  | 0            | 1   | 0        | 1  | 008      | 3           |
| 319 |           | 8        |     | 1758.751        | 2  | 3.017       | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 002      | 15          |
| 320 |           |          | min | -1899.257       | 3  | .706        | 15 | 0           | 1  | 0            | 1   | 0        | 1  | 009      | 4           |
| 321 |           | 9        |     | 1758.581        | 2  | 2.157       | 2  | 0           | 1  | 0            | _1_ | 0        | 1  | 002      | 15          |
| 322 |           |          | min | -1899.385       | 3  | .441        | 12 | 0           | 1  | 0            | 1   | 0        | 1  | 011      | 4           |
| 323 |           | 10       | max |                 | 2  | 1.475       | 2  | 0           | 1  | 0            | 1   | 0        | 1  | 003      | 15          |
| 324 |           |          | min | -1899.513       | 3  | .087        | 3  | 0           | 1  | 0            | 1   | 0        | 1  | 011      | 4           |
| 325 |           | 11       | max |                 | 2  | .794        | 2  | 0           | 1  | 0            | 1   | 0        | 1  | 003      | 15          |
| 326 |           |          | min | -1899.64        | 3  | 424         | 3  | 0           | 1  | 0            | 1   | 0        | 1  | 012      | 4           |
| 327 |           | 12       | max | 1758.07         | 2  | .112        | 2  | 0           | 1  | 0            | 1   | 0        | 1  | 003      | 15          |
| 328 |           |          | min | -1899.768       | 3  | 935         | 3  | 0           | 1  | 0            | 1   | 0        | 1  | 012      | 4           |
| 329 |           | 13       |     | 1757.899        | 2  | 322         | 15 | 0           | 1  | 0            | 1   | 0        | 1  | 003      | 15          |
| 330 |           |          | min | -1899.896       | 3  | -1.446      | 3  | 0           | 1  | 0            | 1   | 0        | 1  | 011      | 4           |
| 331 |           | 14       |     | 1757.729        | 2  | 528         | 15 | 0           | 1  | 0            | _1_ | 0        | 1_ | 002      | 15          |
| 332 |           |          | min | -1900.024       | 3  | -2.229      | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 01       | 4           |
| 333 |           | 15       |     | 1757.559        | 2  | 733         | 15 | 0           | 1  | 0            | 1   | 0        | 1_ | 002      | 15          |
| 334 |           |          | min | -1900.151       | 3  | -3.104      | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 009      | 4           |
| 335 |           | 16       |     | 1757.388        | 2  | 939         | 15 | 0           | 1  | 0            | 1   | 0        | 1_ | 002      | 15          |
| 336 |           |          | min | -1900.279       | 3  | -3.978      | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 008      | 4           |
| 337 |           | 17       | max |                 | 2  | -1.144      | 15 | 0           | 1  | 0            | 1   | 0        | 1_ | 001      | 15          |
| 338 |           |          | min | -1900.407       | 3  | -4.853      | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 005      | 4           |
| 339 |           | 18       |     | 1757.048        | 2  | -1.35       | 15 | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 15          |
| 340 |           |          | min | -1900.535       | 3  | -5.727      | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 003      | 4           |
| 341 |           | 19       |     | 1756.877        | 2  | -1.555      | 15 | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 342 |           |          | min | -1900.662       | 3  | -6.601      | 4  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 343 | <u>M8</u> | 1        |     | 3304.203        | 1  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 344 |           |          | min | -766.246        | 3  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 345 |           | 2        |     | 3304.374        | 1_ | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 346 |           |          | min | <u>-766.119</u> | 3  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1_ | 0        | 1           |
| 347 |           | 3        |     | 3304.544        | 1_ | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 348 |           |          | min | -765.991        | 3  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 349 |           | 4        | max |                 | 1  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 350 |           | <b>-</b> | min | -765.863        | 3_ | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 351 |           | 5        |     | 3304.885        | 1_ | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 352 |           |          |     | -765.735        |    | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 353 |           | 6        |     | 3305.055        | 1_ | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 354 |           | 7        | min |                 | 3_ | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 355 |           |          |     | 3305.225        | 1  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 356 |           | 0        | min |                 | 3  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 357 |           | 8        |     | 3305.396        | 1  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 358 |           | 9        |     | -765.352        | 3_ | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 359 |           | 9        |     | 3305.566        | 1  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 360 |           | 10       |     | -765.224        | 3  | 0           | •  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | <del></del> |
| 361 |           | 10       |     | 3305.736        | 1  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 362 |           | 11       |     | -765.096        | 3  | 0           | _  | 0           |    | 0            |     | 0        |    | 0        | <del></del> |
| 363 |           | 11       |     | 3305.907        | 1  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 364 |           | 10       | min |                 | 3  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        |             |
| 365 |           | 12       |     | 3306.077        | 1  | 0           |    | 0           | -  | 0            |     | 0        |    | 0        | 1           |
| 366 |           | 12       |     | -764.841        | 3  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 367 |           | 13       |     | 3306.247        | 1  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |
| 368 |           |          | min | -764.713        | 3  | 0           | 1  | 0           | 1  | 0            | 1   | 0        | 1  | 0        | 1           |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|            | Member | Sec |     | Axial[lb]             | LC            | y Shear[lb]   | LC         | z Shear[lb] | LC        | Torque[k-ft] | LC            | y-y Mome | LC        | z-z Mome   | LC |
|------------|--------|-----|-----|-----------------------|---------------|---------------|------------|-------------|-----------|--------------|---------------|----------|-----------|------------|----|
| 369        |        | 14  | max | 3306.418              | 1_            | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 370        |        |     |     | -764.585              | 3             | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 371        |        | 15  |     | 3306.588              | _1_           | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 372        |        |     |     | -764.458              | 3             | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 373        |        | 16  |     | 3306.758              | _1_           | 0             | 1_         | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 374        |        |     | min | -764.33               | 3             | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 375        |        | 17  |     | 3306.929              | _1_           | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 376        |        |     |     | -764.202              | 3             | 0             | 1          | 0           | 1         | 0            | <u>1</u>      | 0        | 1         | 0          | 1  |
| 377        |        | 18  |     | 3307.099              | _1_           | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 378        |        | 40  |     | -764.074              | 3             | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 379        |        | 19  |     | 3307.269              | 1             | 0             | 1          | 0           | 1         | 0            | 1             | 0        | 1         | 0          | 1  |
| 380        | MAO    | 4   |     | -763.947              | 3             | 0             | 1          | 0           | 1_        | 0            | 1_            | 0        | 1         | 0          | 1  |
| 381<br>382 | M10    | 11  |     | 1119.129<br>-1196.132 | <u>1</u><br>3 | 2.157<br>.507 | 4<br>15    | 029<br>796  | <u>15</u> | 0            | <u>1</u><br>3 | 0        | 3         | 0          | 1  |
| 383        |        | 2   | _   | 1119.545              | <u>ა</u><br>1 | 2.148         | 4          | 029         | 15        | 0            | <u>ა</u><br>1 | 0        | 15        | 0          | 15 |
| 384        |        |     |     | -1195.82              | 3             | .505          | 15         | 796         | 1         | 0            | 3             | 0        | 1         | 0          | 4  |
| 385        |        | 3   |     | 1119.961              | 1             | 2.139         | 4          | 029         | 15        | 0            | 1             | 0        | 15        | 0          | 15 |
| 386        |        |     |     | -1195.508             | 3             | .503          | 15         | 796         | 1         | 0            | 3             | 0        | 1         | 001        | 4  |
| 387        |        | 4   |     | 1120.377              | 1             | 2.13          | 4          | 029         | 15        | 0            | 1             | 0        | 15        | 0          | 15 |
| 388        |        |     |     | -1195.196             | 3             | .501          | 15         | 796         | 1         | 0            | 3             | 0        | 1         | 002        | 4  |
| 389        |        | 5   | max | 1120.793              | 1             | 2.122         | 4          | 029         | 15        | 0            | 1             | 0        | 15        | 0          | 15 |
| 390        |        |     | min | -1194.884             | 3             | .499          | 15         | 796         | 1         | 0            | 3             | 0        | 1         | 002        | 4  |
| 391        |        | 6   | max | 1121.209              | 1_            | 2.113         | 4          | 029         | 15        | 0            | 1_            | 0        | 15        | 0          | 15 |
| 392        |        |     | min | -1194.572             | 3             | .497          | 15         | 796         | 1         | 0            | 3             | 001      | 1         | 003        | 4  |
| 393        |        | 7   |     | 1121.625              | _1_           | 2.104         | 4          | 029         | 15        | 0            | 1_            | 0        | 15        | 0          | 15 |
| 394        |        |     |     | -1194.26              | 3             | .495          | 15         | 796         | 1         | 0            | 3             | 001      | 1         | 004        | 4  |
| 395        |        | 8   |     | 1122.04               | _1_           | 2.096         | 4          | 029         | 15        | 0            | 1_            | 0        | 15        | 0          | 15 |
| 396        |        |     | min | -1193.948             | 3             | .493          | 15         | 796         | 1_        | 0            | 3             | 002      | 1_        | 004        | 4  |
| 397        |        | 9   |     | 1122.456              | 1_            | 2.087         | 4          | 029         | 15        | 0            | 1_            | 0        | 15        | 001        | 15 |
| 398        |        | 40  |     | -1193.637             | 3             | .491          | 15         | 796         | 1_        | 0            | 3             | 002      | 1         | 005        | 4  |
| 399        |        | 10  |     | 1122.872              | <u>1</u><br>3 | 2.078         | 4<br>15    | 029         | <u>15</u> | 0            | 1             | 0        | 15        | 001        | 15 |
| 400        |        | 11  | min | 1123.288              | <u>ა</u><br>1 | .489<br>2.069 | 4          | 796<br>029  | 15        | 0            | <u>3</u><br>1 | 002<br>0 | 1<br>15   | 005<br>001 | 15 |
| 402        |        | 11  | min | -1193.013             | 3             | .487          | 15         | 796         | 1         | 0            | 3             | 002      | 1         | 006        | 4  |
| 403        |        | 12  |     | 1123.704              | <del></del>   | 2.061         | 4          | 029         | 15        | 0            | 1             | 0        | 15        | 002        | 15 |
| 404        |        | 12  |     | -1192.701             | 3             | .485          | 15         | 796         | 1         | 0            | 3             | 002      | 1         | 007        | 4  |
| 405        |        | 13  |     | 1124.12               | 1             | 2.052         | 4          | 029         | 15        | Ö            | 1             | 0        | 15        | 002        | 15 |
| 406        |        |     | min | -1192.389             | 3             | .482          | 15         | 796         | 1         | 0            | 3             | 003      | 1         | 007        | 4  |
| 407        |        | 14  | max | 1124.536              | 1             | 2.043         | 4          | 029         | 15        | 0            | 1             | 0        | 15        | 002        | 15 |
| 408        |        |     | min | -1192.077             | 3             | .48           | 15         | 796         | 1         | 0            | 3             | 003      | 1         | 008        | 4  |
| 409        |        | 15  |     | 1124.952              | 1             | 2.035         | 4          | 029         | 15        | 0            | 1             | 0        | 15        | 002        | 15 |
| 410        |        |     |     | -1191.765             | 3             | .478          | 15         | 796         | 1         | 0            | 3             | 003      | 1         | 008        | 4  |
| 411        |        | 16  |     | 1125.367              | _1_           | 2.026         | 4          | 029         | 15        | 0            | 1             | 0        | 15        | 002        | 15 |
| 412        |        |     |     | -1191.453             | 3             | .476          | 15         | 796         | 1         | 0            | 3             | 003      | 1         | 009        | 4  |
| 413        |        | 17  |     | 1125.783              | 1_            | 2.017         | 4          | 029         | 15        | 0            | 1             | 0        | 15        | 002        | 15 |
| 414        |        | 40  |     | -1191.141             | 3             | .474          | 15         | 796         | 1_        | 0            | 3             | 004      | 1         | 009        | 4  |
| 415        |        | 18  |     | 1126.199              | 1             | 2.008         | 4<br>1E    | 029         | 15        | 0            | 1             | 0        | 15        | 002        | 15 |
| 416        |        | 10  |     | -1190.829<br>1126.615 | 3             | .472          | 1 <u>5</u> | 796         | 1_        | 0            | 3             | 004      | 1         | 01         | 4  |
| 417<br>418 |        | 19  |     | -1190.517             | <u>1</u><br>3 | .47           | 15         | 029<br>796  | <u>15</u> | 0            | 3             | 004      | <u>15</u> | 002<br>01  | 15 |
| 419        | M11    | 1   |     | 487.197               | 2             | 9.101         | 4          | 796<br>007  | 15        | 0            | <u>ა</u><br>1 | 004<br>0 | 15        | .01        | 4  |
| 420        | IVIII  |     |     | -624.065              | 3             | 2.139         | 15         | 188         | 1         | 0            | 3             | 0        | 1         | .002       | 15 |
| 421        |        | 2   | max |                       | 2             | 8.226         | 4          | 007         | 15        | 0            | 1             | 0        | 15        | .002       | 4  |
| 422        |        | _   |     | -624.193              | 3             | 1.934         | 15         | 188         | 1         | 0            | 3             | 0        | 1         | .001       | 12 |
| 423        |        | 3   | max |                       | 2             | 7.352         | 4          | 007         | 15        | 0            | 1             | 0        | 15        | .003       | 2  |
| 424        |        |     |     | -624.321              | 3             | 1.728         | 15         | 188         | 1         | 0            | 3             | 0        | 1         | 0          | 3  |
| 425        |        | 4   |     | 486.685               | 2             | 6.477         | 4          | 007         | 15        | 0            | 1             | 0        | 15        | 0          | 2  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member | Sec |      | Axial[lb] | LC       | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC         | z-z Mome | LC |
|-----|--------|-----|------|-----------|----------|-------------|----|-------------|----|--------------|----|----------|------------|----------|----|
| 426 |        |     | min  | -624.449  | 3        | 1.523       | 15 | 188         | 1  | 0            | 3  | 0        | 1          | 002      | 3  |
| 427 |        | 5   | max  | 486.515   | 2        | 5.603       | 4  | 007         | 15 | 0            | 1  | 0        | 15         | 0        | 15 |
| 428 |        |     | min  | -624.576  | 3        | 1.317       | 15 | 188         | 1  | 0            | 3  | 0        | 1          | 003      | 4  |
| 429 |        | 6   | max  | 486.345   | 2        | 4.728       | 4  | 007         | 15 | 0            | 1  | 0        | 15         | 001      | 15 |
| 430 |        |     | min  | -624.704  | 3        | 1.112       | 15 | 188         | 1  | 0            | 3  | 0        | 1          | 006      | 4  |
| 431 |        | 7   | max  | 486.174   | 2        | 3.854       | 4  | 007         | 15 | 0            | 1  | 0        | 15         | 002      | 15 |
| 432 |        |     | min  | -624.832  | 3        | .906        | 15 | 188         | 1  | 0            | 3  | 0        | 1          | 008      | 4  |
| 433 |        | 8   | max  | 486.004   | 2        | 2.98        | 4  | 007         | 15 | 0            | 1  | 0        | 15         | 002      | 15 |
| 434 |        |     | min  | -624.96   | 3        | .7          | 15 | 188         | 1  | 0            | 3  | 0        | 1          | 01       | 4  |
| 435 |        | 9   | max  | 485.834   | 2        | 2.105       | 4  | 007         | 15 | 0            | 1  | 0        | 15         | 003      | 15 |
| 436 |        |     | min  | -625.087  | 3        | .495        | 15 | 188         | 1  | 0            | 3  | 0        | 1          | 011      | 4  |
| 437 |        | 10  | max  | 485.663   | 2        | 1.231       | 4  | 007         | 15 | 0            | 1  | 0        | 15         | 003      | 15 |
| 438 |        | 10  | min  | -625.215  | 3        | .289        | 15 | 188         | 1  | 0            | 3  | 0        | 1          | 012      | 4  |
| 439 |        | 11  | max  | 485.493   | 2        | .426        | 2  | 007         | 15 | 0            | 1  | 0        | 15         | 003      | 15 |
| 440 |        |     | min  | -625.343  | 3        | .003        | 3  | 188         | 1  | 0            | 3  | 0        | 1          | 012      | 4  |
| 441 |        | 12  | max  | 485.323   | 2        | 122         | 15 | 007         | 15 | 0            | 1  | 0        | 15         | 003      | 15 |
| 442 |        | 12  | min  | -625.471  | 3        | 518         | 4  | 188         | 1  | 0            | 3  | 001      | 1          | 012      | 4  |
|     |        | 13  |      |           |          |             | 15 | 007         | 15 |              | 1  | 0        | 15         | 003      | 15 |
| 443 |        | 13  | max  | 485.152   | 2        | 327         |    |             |    | 0            |    |          |            |          |    |
| 444 |        | 4.4 | min  | -625.599  | 3        | -1.393      | 4  | 188         | 1  | 0            | 3  | 001      | 1_         | 011      | 4  |
| 445 |        | 14  | max  | 484.982   | 2        | 533         | 15 | 007         | 15 | 0            | 1  | 0        | 15         | 002      | 15 |
| 446 |        | 4.5 | min  | -625.726  | 3        | -2.267      | 4  | 188         | 1_ | 0            | 3  | 001      | 1_         | 011      | 4  |
| 447 |        | 15  | max  | 484.812   | 2        | 738         | 15 | 007         | 15 | 0            | 1  | 0        | 15         | 002      | 15 |
| 448 |        |     | min  | -625.854  | 3        | -3.142      | 4  | 188         | 1  | 0            | 3  | 001      | 1_         | 009      | 4  |
| 449 |        | 16  | max  | 484.641   | 2        | 944         | 15 | 007         | 15 | 0            | 1  | 0        | 15         | 002      | 15 |
| 450 |        |     | min  | -625.982  | 3        | -4.016      | 4  | 188         | 1  | 0            | 3  | 001      | 1_         | 008      | 4  |
| 451 |        | 17  | max  | 484.471   | 2        | -1.15       | 15 | 007         | 15 | 0            | 1  | 0        | 15         | 001      | 15 |
| 452 |        |     | min  | -626.11   | 3        | -4.89       | 4  | 188         | 1  | 0            | 3  | 001      | 1          | 005      | 4  |
| 453 |        | 18  | max  | 484.301   | 2        | -1.355      | 15 | 007         | 15 | 0            | 1  | 0        | 15         | 0        | 15 |
| 454 |        |     | min  | -626.237  | 3        | -5.765      | 4  | 188         | 1  | 0            | 3  | 002      | 1          | 003      | 4  |
| 455 |        | 19  | max  | 484.13    | 2        | -1.561      | 15 | 007         | 15 | 0            | 1  | 0        | 15         | 0        | 1  |
| 456 |        |     | min  | -626.365  | 3        | -6.639      | 4  | 188         | 1  | 0            | 3  | 002      | 1          | 0        | 1  |
| 457 | M12    | 1   | max  |           | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | 0        | 15         | 0        | 1  |
| 458 |        |     | min  | -222.742  | 3        | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 1          | 0        | 1  |
| 459 |        | 2   |      | 1185.969  | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | 0        | 1          | 0        | 1  |
| 460 |        |     | min  | -222.614  | 3        | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 12         | 0        | 1  |
| 461 |        | 3   | max  |           | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .002     | 1          | 0        | 1  |
| 462 |        |     | min  | -222.486  | 3        | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 15         | 0        | 1  |
| 463 |        | 4   | max  | 1186.31   | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .003     | 1          | 0        | 1  |
| 464 |        |     | min  | -222.358  | 3        | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 15         | 0        | 1  |
| 465 |        | 5   | max  |           | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .004     | 1          | 0        | 1  |
| 466 |        | -   |      | -222.231  |          | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 15         | 0        | 1  |
| 467 |        | 6   |      | 1186.65   | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .005     | 1          | 0        | 1  |
| 468 |        |     | min  |           | 3        | 0           | 1  | .402        | 15 | 0            | 1  | .005     | 15         | 0        | 1  |
| 469 |        | 7   |      | 1186.821  | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .007     | 1          | 0        | 1  |
| 470 |        |     | min  |           | 3        | 0           | 1  | .402        | 15 | 0            | 1  | .007     | 15         | 0        | 1  |
| 471 |        | 8   |      | 1186.991  | <u> </u> |             | 1  | 11.212      | 1  |              | 1  | .008     | 1 <u>1</u> |          | 1  |
| 471 |        | 0   |      |           |          | 0           | 1  |             | 15 | 0            | 1  | .008     | 15         | 0        | 1  |
|     |        | 0   |      |           | 3        | 0           |    | .402        |    | 0            |    | _        |            | 0        | _  |
| 473 |        | 9   | miax | 1187.161  | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .009     | 1          | 0        | 1  |
| 474 |        | 40  |      | -221.72   | 3        | 0           |    | .402        | 15 | 0            |    | 0        | 15         | 0        | 1  |
| 475 |        | 10  |      | 1187.332  | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .011     | 1_         | 0        | 1  |
| 476 |        |     |      | -221.592  | 3        | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 15         | 0        | 1  |
| 477 |        | 11  |      | 1187.502  | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .012     | 1_         | 0        | 1  |
| 478 |        |     | min  |           | 3        | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 15         | 0        | 1  |
| 479 |        | 12  |      | 1187.672  | 1        | 0           | 1  | 11.212      | 1  | 0            | 1  | .013     | 1          | 0        | 1  |
| 480 |        |     | min  |           | 3        | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 15         | 0        | 1  |
| 481 |        | 13  |      | 1187.843  |          | 0           | 1  | 11.212      | 1  | 0            | 1  | .014     | 1_         | 0        | 1  |
| 482 |        |     | min  | -221.209  | 3        | 0           | 1  | .402        | 15 | 0            | 1  | 0        | 15         | 0        | 1  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member    | Sec      |     | Axial[lb]                  | LC            | y Shear[lb] | LC | z Shear[lb]       | LC | Torque[k-ft] | LC | y-y Mome | LC   | z-z Mome | LC |
|-----|-----------|----------|-----|----------------------------|---------------|-------------|----|-------------------|----|--------------|----|----------|------|----------|----|
| 483 |           | 14       | max | 1188.013                   | 1             | 0           | 1  | 11.212            | 1  | 0            | 1  | .016     | 1    | 0        | 1  |
| 484 |           |          | min | -221.081                   | 3             | 0           | 1  | .402              | 15 | 0            | 1  | 0        | 15   | 0        | 1  |
| 485 |           | 15       | max | 1188.183                   | 1             | 0           | 1  | 11.212            | 1  | 0            | 1  | .017     | 1    | 0        | 1  |
| 486 |           |          | min | -220.953                   | 3             | 0           | 1  | .402              | 15 | 0            | 1  | 0        | 15   | 0        | 1  |
| 487 |           | 16       | max | 1188.354                   | 1             | 0           | 1  | 11.212            | 1  | 0            | 1  | .018     | 1    | 0        | 1  |
| 488 |           |          | min | -220.825                   | 3             | 0           | 1  | .402              | 15 | 0            | 1  | 0        | 15   | 0        | 1  |
| 489 |           | 17       | max | 1188.524                   | 1             | 0           | 1  | 11.212            | 1  | 0            | 1  | .02      | 1    | 0        | 1  |
| 490 |           |          | min | -220.698                   | 3             | 0           | 1  | .402              | 15 | 0            | 1  | 0        | 15   | 0        | 1  |
| 491 |           | 18       | max | 1188.695                   | 1             | 0           | 1  | 11.212            | 1  | 0            | 1  | .021     | 1    | 0        | 1  |
| 492 |           |          | min | -220.57                    | 3             | 0           | 1  | .402              | 15 | 0            | 1  | 0        | 15   | 0        | 1  |
| 493 |           | 19       | max | 1188.865                   | 1             | 0           | 1  | 11.212            | 1  | 0            | 1  | .022     | 1    | 0        | 1  |
| 494 |           |          | min | -220.442                   | 3             | 0           | 1  | .402              | 15 | 0            | 1  | 0        | 15   | 0        | 1  |
| 495 | M1        | 1        | max | 158.726                    | 1             | 648.729     | 3  | -2.435            | 15 | 0            | 1  | .188     | 1    | 0        | 15 |
| 496 |           |          | min | 5.675                      | 15            | -478.854    | 1  | -67.373           | 1  | 0            | 3  | .007     | 15   | 015      | 2  |
| 497 |           | 2        | max | 159.302                    | 1             | 647.542     | 3  | -2.435            | 15 | 0            | 1  | .147     | 1    | .283     | 1  |
| 498 |           |          | min | 5.849                      | 15            | -480.437    | 1  | -67.373           | 1  | 0            | 3  | .005     | 15   | 405      | 3  |
| 499 |           | 3        | max |                            | 3             | 570.986     | 1  | -2.407            | 15 | 0            | 3  | .105     | 1    | .57      | 1  |
| 500 |           |          | min | -262.698                   | 2             | -487.301    | 3  | -66.795           | 1  | 0            | 1  | .004     | 15   | 794      | 3  |
| 501 |           | 4        | max | 402.996                    | 3             | 569.403     | 1  | -2.407            | 15 | 0            | 3  | .063     | 1    | .217     | 1  |
| 502 |           |          | min | -262.122                   | 2             | -488.489    | 3  | -66.795           | 1  | 0            | 1  | .002     | 15   | 491      | 3  |
| 503 |           | 5        | max | 403.429                    | 3             | 567.82      | 1  | -2.407            | 15 | 0            | 3  | .022     | 1    | 005      | 15 |
| 504 |           | <u> </u> | min | -261.546                   | 2             | -489.676    | 3  | -66.795           | 1  | 0            | 1  | 0        | 15   | 188      | 3  |
| 505 |           | 6        | max | 403.861                    | 3             | 566.236     | 1  | -2.407            | 15 | 0            | 3  | 0        | 15   | .117     | 3  |
| 506 |           |          | min | -260.969                   | 2             | -490.863    | 3  | -66.795           | 1  | 0            | 1  | 02       | 1    | 488      | 1  |
| 507 |           | 7        | max | 404.293                    | 3             | 564.653     | 1  | -2.407            | 15 | 0            | 3  | 002      | 15   | .422     | 3  |
| 508 |           |          | min | -260.393                   | 2             | -492.051    | 3  | -66.795           | 1  | 0            | 1  | 061      | 1    | 839      | 1  |
| 509 |           | 8        |     |                            | 3             | 563.07      | 1  | -2.407            | 15 |              | 3  | 004      | 15   | .727     | 3  |
| 510 |           | 0        | max |                            |               | -493.238    | 3  |                   | 1  | 0            | 1  | 103      | 1    | -1.189   | 1  |
| 511 |           | 9        | min | <u>-259.817</u><br>415.872 | <u>2</u><br>3 | 42.094      | 2  | -66.795<br>-3.873 | 15 | 0            | 9  | .066     | 1    | .849     | 3  |
| 512 |           | 9        | max |                            |               | .482        | 15 | -3.673            | 1  |              | 3  |          | 15   | -1.353   | 1  |
| 512 |           | 10       | min | -195.22<br>416.304         | 3             | 40.511      | 2  | -3.873            | 15 | 0            |    | .002     | 15   | .829     | 3  |
|     |           | 10       | max |                            |               | .004        | 15 |                   | 1  | 0            | 9  | 0        | 1    |          |    |
| 514 |           | 11       | min | -194.643                   | 2             |             |    | -107.421          |    | 0            | 3  | 001      | 15   | -1.367   | 3  |
| 515 |           |          | max |                            | 3             | 38.928      | 2  | -3.873            | 15 | 0            | 9  | 002      |      | .81      |    |
| 516 |           | 40       | min | -194.067                   | 2             | -1.93       |    | -107.421          |    | 0            | 3  | 068      | 1    | -1.38    | 1  |
| 517 |           | 12       | max |                            | 3             | 325.076     | 3  | -2.315            | 15 | 0            | 2  | .101     | 1    | .708     | 3  |
| 518 |           | 40       | min | -129.422                   | 2             | -608.819    | 1  | -64.438           | 1  | 0            | 3  | .004     | 15   | -1.22    | 1  |
| 519 |           | 13       | max |                            | 3_            | 323.889     | 3  | -2.315            | 15 | 0            | 2  | .061     | 1    | .507     | 3  |
| 520 |           | 4.4      | min | -128.846                   | 2             | -610.403    | 1  | -64.438           | 1_ | 0            | 3  | .002     | 15   | 842      | 1  |
| 521 |           | 14       | max | 428.601                    | 3             | 322.701     | 3  | -2.315            | 15 | 0            | 2  | .021     | 1    | .306     | 3  |
| 522 |           | 4.5      | min | -128.269                   | 2             | -611.986    | 1  | -64.438           | 1_ | 0            | 3  | 0        | 15   | 463      | 1  |
| 523 |           | 15       |     | 429.033                    | 3             | 321.514     |    | -2.315            | 15 | 0            | 2  | 0        | 15   | .106     | 3  |
| 524 |           | 40       |     | -127.693                   | 2             | -613.569    |    | -64.438           | 1_ | 0            | 3  | 019      | 1    | 082      | 1  |
| 525 |           | 16       |     | 429.466                    | 3_            | 320.326     | 3  | -2.315            | 15 | 0            | 2  | 002      | 15   | .329     | 2  |
| 526 |           | 4-       | min |                            | 2             | -615.152    | 1  | -64.438           | 1  | 0            | 3  | 059      | 1_45 | 093      | 3  |
| 527 |           | 17       |     | 429.898                    | 3_            | 319.139     | 3  | -2.315            | 15 | 0            | 2  | 004      | 15   | .708     | 2  |
| 528 |           | 10       | min |                            | 2             | -616.735    | 1  | -64.438           | 1_ | 0            | 3  | 099      | 1_   | 291      | 3  |
| 529 |           | 18       | max |                            | <u>15</u>     | 588.533     | 2  | -2.71             | 15 | 0            | 3  | 005      | 15   | .355     | 2  |
| 530 |           |          |     | -159.784                   | _1_           | -249.214    | 3  | -75.125           | 1  | 0            | 2  | 144      | 1    | 143      | 3  |
| 531 |           | 19       | max |                            | <u> 15</u>    | 586.95      | 2  | -2.71             | 15 | 0            | 3  | 007      | 15   | .012     | 3  |
| 532 |           |          | min | -159.207                   | 1_            | -250.402    | 3  | -75.125           | 1  | 0            | 2  | 191      | 1    | 012      | 1  |
| 533 | <u>M5</u> | 1        | max |                            | 1_            | 2154.237    | 3  | 0                 | 1  | 0            | 1  | 0        | 1    | .03      | 2  |
| 534 |           |          | min |                            | 12            | -1647.525   | 1  | 0                 | 1  | 0            | 1  | 0        | 1    | 0        | 15 |
| 535 |           | 2        | max |                            | _1_           | 2153.049    | 3  | 0                 | 1  | 0            | 1  | 0        | 1_   | 1.052    | 1  |
| 536 |           |          | min | 10.994                     | 12            | -1649.108   | 1  | 0                 | 1  | 0            | 1  | 0        | 1    | -1.331   | 3  |
| 537 |           | 3        |     | 1257.208                   | 3_            | 1595.244    | 1  | 0                 | 1  | 0            | 1  | 0        | 1    | 2.04     | 1  |
| 538 |           |          | min | -868.356                   | 2             | -1469.942   | 3  | 0                 | 1  | 0            | 1  | 0        | 1    | -2.628   | 3  |
| 539 |           | 4        | max | 1257.641                   | 3             | 1593.661    | 1  | 0                 | 1  | 0            | 1  | 0        | 1    | 1.051    | 1  |



Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC       | y-y Mome | LC | z-z Mome     | . LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----------|----------|----|--------------|------|
| 540 |        |     | min | -867.78   | 2  | -1471.13    | 3  | 0           | 1  | 0            | 1        | 0        | 1  | -1.715       | 3    |
| 541 |        | 5   | max | 1258.073  | 3  | 1592.078    | 1  | 0           | 1  | 0            | 1        | 0        | 1  | .062         | 1    |
| 542 |        |     | min | -867.204  | 2  | -1472.317   | 3  | 0           | 1  | 0            | 1        | 0        | 1  | 802          | 3    |
| 543 |        | 6   | max | 1258.505  | 3  | 1590.495    | 1  | 0           | 1  | 0            | 1        | 0        | 1  | .113         | 3    |
| 544 |        |     | min | -866.628  | 2  | -1473.505   | 3  | 0           | 1  | 0            | 1        | 0        | 1  | 925          | 1    |
| 545 |        | 7   | max | 1258.937  | 3  | 1588.912    | 1  | 0           | 1  | 0            | 1        | 0        | 1  | 1.027        | 3    |
| 546 |        |     | min | -866.051  | 2  | -1474.692   | 3  | 0           | 1  | 0            | 1        | 0        | 1  | -1.912       | 1    |
| 547 |        | 8   | max | 1259.369  | 3  | 1587.329    | 1  | 0           | 1  | 0            | 1        | 0        | 1  | 1.943        | 3    |
| 548 |        |     | min | -865.475  | 2  | -1475.879   | 3  | 0           | 1  | 0            | 1        | 0        | 1  | -2.898       | 1    |
| 549 |        | 9   | max | 1274.784  | 3  | 141.51      | 2  | 0           | 1  | 0            | 1        | 0        | 1  | 2.241        | 3    |
| 550 |        |     | min | -728.975  | 2  | .479        | 15 | 0           | 1  | 0            | 1        | 0        | 1  | -3.29        | 1    |
| 551 |        | 10  | max | 1275.216  | 3  | 139.927     | 2  | 0           | 1  | 0            | 1        | 0        | 1  | 2.165        | 3    |
| 552 |        |     | min | -728.399  | 2  | .001        | 15 | 0           | 1  | 0            | 1        | 0        | 1  | -3.337       | 1    |
| 553 |        | 11  | max | 1275.648  | 3  | 138.344     | 2  | 0           | 1  | 0            | 1        | 0        | 1  | 2.09         | 3    |
| 554 |        |     | min | -727.823  | 2  | -1.766      | 4  | 0           | 1  | 0            | 1        | 0        | 1  | -3.383       | 1    |
| 555 |        | 12  | max | 1291.354  | 3  | 945.14      | 3  | 0           | 1  | 0            | 1        | 0        | 1  | 1.83         | 3    |
| 556 |        |     | min | -591.419  | 2  | -1737.764   | 1  | 0           | 1  | 0            | 1        | 0        | 1  | -3.01        | 1    |
| 557 |        | 13  | max | 1291.787  | 3  | 943.953     | 3  | 0           | 1  | 0            | 1        | 0        | 1  | 1.244        | 3    |
| 558 |        |     | min | -590.843  | 2  | -1739.347   | 1  | 0           | 1  | 0            | 1        | 0        | 1  | -1.931       | 1    |
| 559 |        | 14  | max | 1292.219  | 3  | 942.766     | 3  | 0           | 1  | 0            | 1        | 0        | 1  | .658         | 3    |
| 560 |        |     | min | -590.267  | 2  | -1740.93    | 1  | 0           | 1  | 0            | 1        | 0        | 1  | 851          | 1    |
| 561 |        | 15  |     | 1292.651  | 3  | 941.578     | 3  | 0           | 1  | 0            | 1        | 0        | 1  | .309         | 2    |
| 562 |        |     | min | -589.691  | 2  | -1742.513   | 1  | 0           | 1  | 0            | 1        | 0        | 1  | 0            | 15   |
| 563 |        | 16  |     | 1293.083  | 3  | 940.391     | 3  | 0           | 1  | 0            | 1        | 0        | 1  | 1.384        | 2    |
| 564 |        |     | min | -589.114  | 2  | -1744.097   | 1  | 0           | 1  | 0            | 1        | 0        | 1  | 511          | 3    |
| 565 |        | 17  |     | 1293.515  | 3  | 939.204     | 3  | 0           | 1  | 0            | 1        | 0        | 1  | 2.46         | 2    |
| 566 |        |     | min | -588.538  | 2  | -1745.68    | 1  | 0           | 1  | 0            | 1        | 0        | 1  | -1.094       | 3    |
| 567 |        | 18  | max | -11.545   | 12 | 1999.379    | 2  | 0           | 1  | 0            | 1        | 0        | 1  | 1.26         | 2    |
| 568 |        | -10 | min | -352.675  | 1  | -878.416    | 3  | 0           | 1  | 0            | 1        | 0        | 1  | 569          | 3    |
| 569 |        | 19  | max | -11.256   | 12 | 1997.795    | 2  | 0           | 1  | 0            | 1        | 0        | 1  | .024         | 1    |
| 570 |        | 10  | min | -352.099  | 1  | -879.603    | 3  | 0           | 1  | 0            | 1        | 0        | 1  | 023          | 3    |
| 571 | M9     | 1   | max | 158.726   | 1  | 648.729     | 3  | 67.373      | 1  | 0            | 3        | 007      | 15 | 0            | 15   |
| 572 | IVIO   | •   | min | 5.675     | 15 | -478.854    | 1  | 2.435       | 15 | 0            | 1        | 188      | 1  | 015          | 2    |
| 573 |        | 2   | max | 159.302   | 1  | 647.542     | 3  | 67.373      | 1  | 0            | 3        | 005      | 15 | .283         | 1    |
| 574 |        |     | min | 5.849     | 15 | -480.437    | 1  | 2.435       | 15 | 0            | 1        | 147      | 1  | 405          | 3    |
| 575 |        | 3   | max | 402.564   | 3  | 570.986     | 1  | 66.795      | 1  | 0            | 1        | 004      | 15 | .57          | 1    |
| 576 |        |     | min | -262.698  | 2  | -487.301    | 3  | 2.407       | 15 | 0            | 3        | 105      | 1  | 794          | 3    |
| 577 |        | 4   | max | 402.996   | 3  | 569.403     | 1  | 66.795      | 1  | 0            | 1        | 002      | 15 | .217         | 1    |
| 578 |        |     | min | -262.122  | 2  | -488.489    | 3  | 2.407       | 15 | 0            | 3        | 063      | 1  | 491          | 3    |
| 579 |        | 5   | max |           | 3  | 567.82      | 1  | 66.795      | 1  | 0            | 1        | 0        | 15 | 005          | 15   |
| 580 |        |     | min |           | 2  | -489.676    |    | 2.407       | 15 | 0            | 3        | 022      | 1  | 188          | 3    |
| 581 |        | 6   | max |           | 3  | 566.236     | 1  | 66.795      | 1  | 0            | 1        | .022     | 1  | .117         | 3    |
| 582 |        |     | min |           | 2  | -490.863    |    | 2.407       | 15 | 0            | 3        | 0        | 15 | 488          | 1    |
| 583 |        | 7   | max |           | 3  | 564.653     | 1  | 66.795      | 1  | 0            | <u> </u> | .061     | 1  | .422         | 3    |
| 584 |        |     | min | -260.393  | 2  | -492.051    | 3  | 2.407       | 15 | 0            | 3        | .002     | 15 | 839          | 1    |
| 585 |        | 8   | max |           | 3  | 563.07      | 1  | 66.795      | 1  | 0            | <u> </u> | .103     | 1  | .727         | 3    |
| 586 |        |     | min |           | 2  | -493.238    | 3  | 2.407       | 15 | 0            | 3        | .004     | 15 | -1.189       | 1    |
| 587 |        | 9   | max |           | 3  | 42.094      | 2  | 107.421     | 1  | 0            | 3        | 002      | 15 | .849         | 3    |
| 588 |        | 3   | min | -195.22   | 2  | .482        | 15 | 3.873       | 15 | 0            | 9        | 066      | 1  | -1.353       | 1    |
| 589 |        | 10  |     | 416.304   | 3  | 40.511      | 2  | 107.421     | 1  | 0            | 3        | .001     | 1  | .829         | 3    |
| 590 |        | 10  | min | -194.643  | 2  | .004        | 15 | 3.873       | 15 | 0            | 9        | 0        | 15 | -1.367       | 1    |
| 591 |        | 11  |     | 416.736   | 3  | 38.928      | 2  | 107.421     |    |              | 3        | .068     |    | .81          | 3    |
|     |        | 11  |     |           |    |             | 4  | 3.873       | 15 | 0            | 9        | .002     | 15 | -1.38        | 1    |
| 592 |        | 10  |     | -194.067  | 2  | -1.93       |    |             |    |              |          |          |    |              | _    |
| 593 |        | 12  |     | 427.737   | 3  | 325.076     | 3  | 64.438      | 1  | 0            | 3        | 004      | 15 | .708         | 3    |
| 594 |        | 12  | min |           | 2  | -608.819    | 1  | 2.315       | 15 | 0            | 2        | 101      | 15 | -1.22<br>507 | _    |
| 595 |        | 13  |     | 428.169   | 3  | 323.889     | 3  | 64.438      | 1  | 0            | 3        | 002      | 15 | .507         | 3    |
| 596 |        |     | min | -128.846  | 2  | -610.403    | 1  | 2.315       | 15 | 0            | 2        | 061      | 1  | 842          | 1    |



Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

## **Envelope Member Section Forces (Continued)**

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 597 |        | 14  | max | 428.601   | 3  | 322.701     | 3  | 64.438      | 1  | 0            | 3  | 0        | 15 | .306     | 3  |
| 598 |        |     | min | -128.269  | 2  | -611.986    | 1  | 2.315       | 15 | 0            | 2  | 021      | 1  | 463      | 1  |
| 599 |        | 15  | max | 429.033   | 3  | 321.514     | 3  | 64.438      | 1  | 0            | 3  | .019     | 1  | .106     | 3  |
| 600 |        |     | min | -127.693  | 2  | -613.569    | 1  | 2.315       | 15 | 0            | 2  | 0        | 15 | 082      | 1  |
| 601 |        | 16  | max | 429.466   | 3  | 320.326     | 3  | 64.438      | 1  | 0            | 3  | .059     | 1  | .329     | 2  |
| 602 |        |     | min | -127.117  | 2  | -615.152    | 1  | 2.315       | 15 | 0            | 2  | .002     | 15 | 093      | 3  |
| 603 |        | 17  | max | 429.898   | 3  | 319.139     | 3  | 64.438      | 1  | 0            | 3  | .099     | 1  | .708     | 2  |
| 604 |        |     | min | -126.541  | 2  | -616.735    | 1  | 2.315       | 15 | 0            | 2  | .004     | 15 | 291      | 3  |
| 605 |        | 18  | max | -5.862    | 15 | 588.533     | 2  | 75.125      | 1  | 0            | 2  | .144     | 1  | .355     | 2  |
| 606 |        |     | min | -159.784  | 1  | -249.214    | 3  | 2.71        | 15 | 0            | 3  | .005     | 15 | 143      | 3  |
| 607 |        | 19  | max | -5.688    | 15 | 586.95      | 2  | 75.125      | 1  | 0            | 2  | .191     | 1  | .012     | 3  |
| 608 |        |     | min | -159.207  | 1  | -250.402    | 3  | 2.71        | 15 | 0            | 3  | .007     | 15 | 012      | 1  |

## **Envelope Member Section Deflections**

|    | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC x Rotate [r | LC | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|----|--------|-----|-----|--------|----|--------|----|--------|----------------|----|---------------|----|---------------|----|
| 1  | M13    | 1   | max | 0      | 1  | .202   | 1  | .008   | 3 1.358e-2     | 1  | NC            | 1_ | NC            | 1  |
| 2  |        |     | min | 0      | 15 | 046    | 3  | 004    | 2 -2.875e-3    | 3  | NC            | 1  | NC            | 1  |
| 3  |        | 2   | max | 0      | 1  | .146   | 3  | .025   | 1 1.477e-2     | 1  | NC            | 5  | NC            | 2  |
| 4  |        |     | min | 0      | 15 | .003   | 15 | 0      | 10 -2.657e-3   | 3  | 1064.22       | 3  | 8333.689      | 1  |
| 5  |        | 3   | max | 0      | 1  | .302   | 3  | .058   | 1 1.597e-2     | 1  | NC            | 5  | NC            | 3  |
| 6  |        |     | min | 0      | 15 | 01     | 9  | .002   | 10 -2.44e-3    | 3  | 587.071       | 3  | 3557.639      | 1  |
| 7  |        | 4   | max | 0      | 1  | .398   | 3  | .085   | 1 1.717e-2     | 1  | NC            | 5  | NC            | 3  |
| 8  |        |     | min | 0      | 15 | 046    | 1  | .003   | 15 -2.222e-3   | 3  | 460.233       | 3  | 2406.43       | 1  |
| 9  |        | 5   | max | 0      | 1  | .422   | 3  | .098   | 1 1.837e-2     | 1  | NC            | 5  | NC            | 3  |
| 10 |        |     | min | 0      | 15 | 038    | 1  | .004   | 15 -2.005e-3   | 3  | 436.209       | 3  | 2082.429      | 1  |
| 11 |        | 6   | max | 0      | 1  | .377   | 3  | .093   | 1 1.956e-2     | 1  | NC            | 5  | NC            | 3  |
| 12 |        |     | min | 0      | 15 | 004    | 9  | .002   | 10 -1.787e-3   | 3  | 483.158       | 3  | 2191.116      | 1  |
| 13 |        | 7   | max | 0      | 1  | .276   | 3  | .072   | 1 2.076e-2     | 1  | NC            | 4  | NC            | 3  |
| 14 |        |     | min | 0      | 15 | .003   | 15 | 0      | 10 -1.57e-3    | 3  | 635.032       | 3  | 2857.488      | 1  |
| 15 |        | 8   | max | 0      | 1  | .241   | 2  | .039   | 1 2.197e-2     | 2  | NC            | 4  | NC            | 2  |
| 16 |        |     | min | 0      | 15 | .006   | 15 | 005    | 10 -1.352e-3   | 3  | 1063.238      | 3  | 5227.129      | 1  |
| 17 |        | 9   | max | 0      | 1  | .328   | 2  | .024   | 3 2.32e-2      | 2  | NC            | 4  | NC            | 1  |
| 18 |        |     | min | 0      | 15 | .009   | 15 | 01     | 2 -1.135e-3    | 3  | 1560.766      | 2  | NC            | 1  |
| 19 |        | 10  | max | 0      | 1  | .37    | 1  | .024   | 3 2.443e-2     | 2  | NC            | 5  | NC            | 1  |
| 20 |        |     | min | 0      | 1  | 025    | 3  | 017    | 2 -9.173e-4    | 3  | 1204.962      | 2  | NC            | 1  |
| 21 |        | 11  | max | 0      | 15 | .328   | 2  | .024   | 3 2.32e-2      | 2  | NC            | 4  | NC            | 1  |
| 22 |        |     | min | 0      | 1  | .009   | 15 | 01     | 2 -1.135e-3    | 3  | 1560.766      | 2  | NC            | 1  |
| 23 |        | 12  | max | 0      | 15 | .241   | 2  | .039   | 1 2.197e-2     | 2  | NC            | 4  | NC            | 2  |
| 24 |        |     | min | 0      | 1  | .006   | 15 | 005    | 10 -1.352e-3   | 3  | 1063.238      | 3  | 5227.129      | 1  |
| 25 |        | 13  | max | 0      | 15 | .276   | 3  | .072   | 1 2.076e-2     | 1  | NC            | 4  | NC            | 3  |
| 26 |        |     | min | 0      | 1  | .003   | 15 | 0      | 10 -1.57e-3    | 3  | 635.032       | 3  | 2857.488      | 1  |
| 27 |        | 14  | max | 0      | 15 | .377   | 3  | .093   | 1 1.956e-2     | 1  | NC            | 5  | NC            | 3  |
| 28 |        |     | min | 0      | 1  | 004    | 9  | .002   | 10 -1.787e-3   | 3  | 483.158       | 3  | 2191.116      |    |
| 29 |        | 15  | max | 0      | 15 | .422   | 3  | .098   | 1 1.837e-2     | 1  | NC            | 5  | NC            | 3  |
| 30 |        |     | min | 0      | 1  | 038    | 1  | .004   | 15 -2.005e-3   | 3  | 436.209       | 3  | 2082.429      | 1  |
| 31 |        | 16  | max | 0      | 15 | .398   | 3  | .085   | 1 1.717e-2     | 1  | NC            | 5  | NC            | 3  |
| 32 |        |     | min | 0      | 1  | 046    | 1  | .003   | 15 -2.222e-3   | 3  | 460.233       | 3  | 2406.43       | 1  |
| 33 |        | 17  | max | 0      | 15 | .302   | 3  | .058   | 1 1.597e-2     | 1  | NC            | 5  | NC            | 3  |
| 34 |        |     | min | 0      | 1  | 01     | 9  | .002   | 10 -2.44e-3    | 3  | 587.071       | 3  | 3557.639      | 1  |
| 35 |        | 18  | max | 0      | 15 | .146   | 3  | .025   | 1 1.477e-2     | 1  | NC            | 5  | NC            | 2  |
| 36 |        |     | min | 0      | 1  | .003   | 15 | 0      | 10 -2.657e-3   | 3  | 1064.22       | 3  | 8333.689      | 1  |
| 37 |        | 19  | max | 0      | 15 | .202   | 1  | .008   | 3 1.358e-2     | 1  | NC            | 1  | NC            | 1  |
| 38 |        |     | min | 0      | 1  | 046    | 3  | 004    | 2 -2.875e-3    | 3  | NC            | 1  | NC            | 1  |
| 39 | M14    | 1   | max | 0      | 1  | .35    | 3  | .007   | 3 8.029e-3     | 1  | NC            | 1  | NC            | 1  |
| 40 |        |     | min | 0      | 15 | 617    | 1  | 004    | 2 -5.351e-3    | 3  | NC            | 1  | NC            | 1  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|    | Member | Sec |     | x [in] | LC | y [in]        | LC | z [in] | LC x Rotate [r | LC  |               |                |                |   |
|----|--------|-----|-----|--------|----|---------------|----|--------|----------------|-----|---------------|----------------|----------------|---|
| 41 |        | 2   | max | 0      | 1  | .58           | 3  | .016   | 1 9.311e-3     | _1_ | NC            | 5_             | NC             | 1 |
| 42 |        |     | min | 0      | 15 | 895           | 1  | 001    | 10 -6.313e-3   | 3   | 731.781       | 1              | NC             | 1 |
| 43 |        | 3   | max | 0      | 1  | .78           | 3  | .044   | 1 1.059e-2     | _1_ | NC            | 5              | NC             | 2 |
| 44 |        |     | min | 0      | 15 | -1.144        | 1  | 0      | 10 -7.275e-3   | 3   | 387.091       | 1              | 4678.196       | 1 |
| 45 |        | 4   | max | 0      | 1  | .93           | 3  | .07    | 1 1.187e-2     | 1_  |               | 15             | NC             | 3 |
| 46 |        |     | min | 0      | 15 | -1.34         | 1  | .003   | 10 -8.237e-3   | 3   | 282.124       | 1              | 2924.29        | 1 |
| 47 |        | 5   | max | 0      | 1  | 1.021         | 3  | .085   | 1 1.316e-2     | 1_  |               | <u>15</u>      | NC             | 3 |
| 48 |        |     | min | 0      | 15 | -1.472        | 1  | .003   | 10 -9.199e-3   | 3   | 238.564       | 1_             | 2421.492       | 1 |
| 49 |        | 6   | max | 0      | 1  | 1.049         | 3  | .083   | 1 1.444e-2     | 1   |               | 15             | NC             | 3 |
| 50 |        |     | min | 0      | 15 | -1.537        | 1  | .002   | 10 -1.016e-2   | 3   | 221.515       | 1              | 2476.05        | 1 |
| 51 |        | 7   | max | 0      | 1  | 1.025         | 3  | .065   | 1 1.572e-2     | 1   |               | 15             | NC             | 2 |
| 52 |        |     | min | 0      | 15 | -1.545        | 1  | 0      | 10 -1.112e-2   | 3   | 219.806       | 1              | 3161.673       | 1 |
| 53 |        | 8   | max | 0      | 1  | .967          | 3  | .037   | 1 1.7e-2       | 1   |               | 15             | NC             | 2 |
| 54 |        |     | min | 0      | 15 | -1.51         | 1  | 004    | 10 -1.209e-2   | 3   | 228.216       | 1              | 5669.664       | 1 |
| 55 |        | 9   | max | 0      | 1  | .904          | 3  | .022   | 3 1.828e-2     | 1   |               | 15             | NC             | 1 |
| 56 |        |     | min | 0      | 15 | -1.462        | 1  | 009    | 2 -1.305e-2    | 3   | 241.323       | 1              | NC             | 1 |
| 57 |        | 10  | max | 0      | 1  | .872          | 3  | .021   | 3 1.956e-2     | 1   |               | 15             | NC             | 1 |
| 58 |        |     | min | 0      | 1  | -1.436        | 1  | 015    | 2 -1.401e-2    | 3   | 249.026       | 1              | NC             | 1 |
| 59 |        | 11  | max | 0      | 15 | .904          | 3  | .022   | 3 1.828e-2     | 1   |               | 15             | NC             | 1 |
| 60 |        |     | min | 0      | 1  | -1.462        | 1  | 009    | 2 -1.305e-2    | 3   | 241.323       | 1              | NC             | 1 |
| 61 |        | 12  | max | 0      | 15 | .967          | 3  | .037   | 1 1.7e-2       | 1   |               | 15             | NC             | 2 |
| 62 |        | 12  | min | 0      | 1  | -1.51         | 1  | 004    | 10 -1.209e-2   | 3   | 228.216       | 1              | 5669.664       | 1 |
| 63 |        | 13  | max | 0      | 15 | 1.025         | 3  | .065   | 1 1.572e-2     | 1   |               | 15             | NC             | 2 |
| 64 |        | 13  | min | 0      | 1  | -1.545        | 1  | 0      | 10 -1.112e-2   | 3   | 219.806       | 1              | 3161.673       | 1 |
| 65 |        | 14  | max | 0      | 15 | 1.049         | 3  | .083   | 1 1.444e-2     | 1   |               | 15             | NC             | 3 |
| 66 |        | 14  | min | 0      | 1  | -1.537        | 1  | .002   | 10 -1.016e-2   | 3   | 221.515       | 1              | 2476.05        | 1 |
| 67 |        | 15  | max | 0      | 15 | 1.021         | 3  | .085   | 1 1.316e-2     | 1   |               | 15             | NC             | 3 |
| 68 |        | 13  | min | 0      | 1  | -1.472        | 1  | .003   | 10 -9.199e-3   | 3   | 238.564       | 1              | 2421.492       | 1 |
| 69 |        | 16  |     | 0      | 15 | .93           | 3  | .003   | 1 1.187e-2     | 1   |               | <u>1</u><br>15 | NC             | 3 |
| 70 |        | 10  | max | 0      | 1  | -1.34         | 1  | .003   | 10 -8.237e-3   | 3   | 282.124       | 1              | 2924.29        | 1 |
| 71 |        | 17  |     | 0      | 15 |               | 3  | .044   | 1 1.059e-2     | 1   | NC            | 5              | NC             | 2 |
| 72 |        | 17  | max |        | 1  | <u>.78</u>    | 1  | .044   |                |     | 387.091       | 1              |                | 1 |
|    |        | 10  | min | 0      | 15 | <u>-1.144</u> | _  |        | 10 -7.275e-3   | 3   | NC            |                | 4678.196       |   |
| 73 |        | 18  | max | 0      | 15 | .58           | 3  | .016   | 1 9.311e-3     | 1   |               | 5              | NC<br>NC       | 1 |
| 74 |        | 40  | min | 0      |    | 895           | 1  | 001    | 10 -6.313e-3   | 3   | 731.781       | 1_             | NC<br>NC       |   |
| 75 |        | 19  | max | 0      | 15 | .35           | 3  | .007   | 3 8.029e-3     | 1   | NC<br>NC      | 1              | NC<br>NC       | 1 |
| 76 | N445   | 4   | min | 0      | 1  | 617           | 1  | 004    | 2 -5.351e-3    | 3   | NC<br>NC      | _              | NC<br>NC       | • |
| 77 | M15    | 1   | max | 0      | 15 | .359          | 3  | .007   | 3 4.493e-3     | 3   | NC<br>NC      | 1_             | NC<br>NC       | 1 |
| 78 |        |     | min | 0      | 1  | <u>616</u>    | 1  | 004    | 2 -8.189e-3    | 1_  | NC<br>NC      | 1_             | NC<br>NC       | 1 |
| 79 |        | 2   | max | 0      | 15 | .523          | 3  | .016   | 1 5.292e-3     | 3_  | NC<br>070.050 | 5              | NC<br>NC       | 1 |
| 80 |        |     | min | 0      | 1  | 919           | 1  | 001    | 10 -9.505e-3   | 1_  | 673.659       | 1_             | NC<br>NC       | 1 |
| 81 |        | 3   | max | 0      | 15 | .67           | 3  | .045   | 1 6.092e-3     | 3   | NC<br>057.575 | 5              | NC<br>4050 004 | 2 |
| 82 |        |     | min | 0      | 1  | <u>-1.186</u> | 1  | .001   | 10 -1.082e-2   | 1_  | 357.575       | 1_             | 4650.381       | 1 |
| 83 |        | 4   | max | 0      | 15 | .789          | 3  | .071   | 1 6.891e-3     | 3_  |               | <u>15</u>      | NC             | 3 |
| 84 |        | -   | min | 0      | 1  | <u>-1.394</u> | 1  | .003   | 15 -1.214e-2   | 1_  |               | 1_             | 2909.791       | 1 |
| 85 |        | 5   | max | 0      | 15 | .873          | 3  | .085   | 1 7.691e-3     | 3_  |               | <u>15</u>      | NC             | 3 |
| 86 |        |     | min | 0      | 1  | -1.529        | 1  | .003   | 15 -1.345e-2   | 1_  | 223.439       |                | 2409.751       | 1 |
| 87 |        | 6   | max | 0      | 15 | .921          | 3  | .084   | 1 8.491e-3     | 3   |               | <u>15</u>      | NC             | 3 |
| 88 |        |     | min | 0      | 1  | <u>-1.588</u> | 1  | .002   | 10 -1.477e-2   | 1_  |               | 1_             | 2462.503       |   |
| 89 |        | 7   | max | 0      | 15 | .936          | 3  | .066   | 1 9.29e-3      | 3   |               | <u>15</u>      | NC             | 2 |
| 90 |        |     | min | 0      | 1  | -1.582        | 1  | 0      | 10 -1.608e-2   | 1_  | 211.112       | 1_             | 3138.337       | 1 |
| 91 |        | 8   | max | 0      | 15 | .926          | 3  | .037   | 1 1.009e-2     | 3   |               | <u>15</u>      | NC             | 2 |
| 92 |        |     | min | 0      | 1  | -1.531        | 1  | 004    | 10 -1.74e-2    | 1_  | 222.907       | 1              | 5592.888       |   |
| 93 |        | 9   | max | 0      | 15 | .905          | 3  | .02    | 3 1.089e-2     | 3   |               | 15             | NC             | 1 |
| 94 |        |     | min | 0      | 1  | -1.467        | 1  | 008    | 2 -1.872e-2    | 1   | 239.636       | 1              | NC             | 1 |
| 95 |        | 10  | max | 0      | 1  | .894          | 3  | .02    | 3 1.169e-2     | 3   |               | 15             | NC             | 1 |
| 96 |        |     | min | 0      | 1  | -1.434        | 1  | 014    | 2 -2.003e-2    | 1_  | 249.328       | 1              | NC             | 1 |
| 97 |        | 11  | max | 0      | 1  | .905          | 3  | .02    | 3 1.089e-2     | 3   | NC            | 15             | NC             | 1 |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member  | Sec                                              |            | x [in] | LC | y [in]              | LC | z [in]      | LC x Rotate [r | LC       |               | LC       |                | LC |
|-----|---------|--------------------------------------------------|------------|--------|----|---------------------|----|-------------|----------------|----------|---------------|----------|----------------|----|
| 98  |         |                                                  | min        | 0      | 15 | -1.467              | 1  | 008         | 2 -1.872e-2    | 1        | 239.636       | 1_       | NC             | 1  |
| 99  |         | 12                                               | max        | 0      | 1  | .926                | 3  | .037        | 1 1.009e-2     | 3        | 9618.129      | 15       | NC             | 2  |
| 100 |         |                                                  | min        | 0      | 15 | -1.531              | 1  | 004         | 10 -1.74e-2    | 1        | 222.907       | 1        | 5592.888       | 1  |
| 101 |         | 13                                               | max        | 0      | 1  | .936                | 3  | .066        | 1 9.29e-3      | 3        | 9202.42       | 15       | NC             | 2  |
| 102 |         |                                                  | min        | 0      | 15 | -1.582              | 1  | 0           | 10 -1.608e-2   | 1        | 211.112       | 1        | 3138.337       | 1  |
| 103 |         | 14                                               | max        | 0      | 1  | .921                | 3  | .084        | 1 8.491e-3     | 3        | 9221.875      | 15       | NC             | 3  |
| 104 |         |                                                  | min        | 0      | 15 | -1.588              | 1  | .002        | 10 -1.477e-2   | 1        | 209.765       | 1        | 2462.503       | 1  |
| 105 |         | 15                                               | max        | 0      | 1  | .873                | 3  | .085        | 1 7.691e-3     | 3        | 9887.908      | 15       | NC             | 3  |
| 106 |         |                                                  | min        | 0      | 15 | -1.529              | 1  | .003        | 15 -1.345e-2   | 1        | 223.439       | 1        | 2409.751       | 1  |
| 107 |         | 16                                               | max        | 0      | 1  | .789                | 3  | .071        | 1 6.891e-3     | 3        | NC            | 15       | NC             | 3  |
| 108 |         |                                                  | min        | 0      | 15 | -1.394              | 1  | .003        | 15 -1.214e-2   | 1        | 262.094       | 1        | 2909.791       | 1  |
| 109 |         | 17                                               | max        | 0      | 1  | .67                 | 3  | .045        | 1 6.092e-3     | 3        | NC            | 5        | NC             | 2  |
| 110 |         |                                                  | min        | 0      | 15 | -1.186              | 1  | .001        | 10 -1.082e-2   | 1        | 357.575       | 1        | 4650.381       | 1  |
| 111 |         | 18                                               | max        | 0      | 1  | .523                | 3  | .016        | 1 5.292e-3     | 3        | NC            | 5        | NC             | 1  |
| 112 |         | 10                                               | min        | 0      | 15 | 919                 | 1  | 001         | 10 -9.505e-3   | 1        | 673.659       | 1        | NC             | 1  |
| 113 |         | 19                                               | max        | 0      | 1  | .359                | 3  | .007        | 3 4.493e-3     | 3        | NC            | 1        | NC             | 1  |
| 114 |         | 13                                               | min        | 0      | 15 | 616                 | 1  | 004         | 2 -8.189e-3    | 1        | NC            | 1        | NC             | 1  |
| 115 | M16     | 1                                                | max        | 0      | 15 | .194                | 1  | .006        | 3 8.381e-3     | 3        | NC            | 1        | NC             | 1  |
| 116 | IVI I U |                                                  | min        | 0      | 1  | 126                 | 3  | 003         | 2 -1.262e-2    | 1        | NC<br>NC      | 1        | NC<br>NC       | 1  |
| 117 |         | 2                                                |            | 0      | 15 | .053                | 1  | .025        | 1 9.356e-3     | 3        | NC            | 5        | NC             | 2  |
| 118 |         | <del>                                     </del> | max<br>min | 0      | 1  | 053<br>073          | 3  | <u>.025</u> | 10 -1.36e-2    | 1        | 1346.722      | 2        | 8417.309       | 1  |
| 119 |         | 3                                                |            | 0      | 15 | .004                | 13 | .058        | 1 1.033e-2     | 3        | NC            | 5        | NC             | 3  |
| 120 |         | 3                                                | max        | 0      | 1  | 094                 | 2  | .002        | 15 -1.459e-2   | 1        | 753.795       | 2        | 3570.768       |    |
| 121 |         | 4                                                | min        |        | 15 | <del>094</del><br>0 | 15 | .002        | 1 1.131e-2     |          | NC            | 5        | NC             | 3  |
| 122 |         | 4                                                | max        | 0      | 1  | -                   | 2  | .003        | 15 -1.557e-2   | <u>3</u> | 607.306       | 2        | 2405.546       | 1  |
|     |         | -                                                | min        | 0      | 15 | 1 <u>59</u>         | 13 |             |                | •        |               |          |                | •  |
| 123 |         | 5                                                | max        | 0      |    | 0                   |    | .099        | 1 1.228e-2     | 3        | NC<br>COA 204 | 5        | NC<br>2072 COE | 3  |
| 124 |         | _                                                | min        | 0      | 1  | 161                 | 2  | .004        | 15 -1.655e-2   | 1        | 604.384       | 2        | 2073.605       | 1  |
| 125 |         | 6                                                | max        | 0      | 15 | .006                | 4  | .094        | 1 1.326e-2     | 3        | NC<br>705 400 | 5_       | NC<br>0470.50  | 3  |
| 126 |         | -                                                | min        | 0      | 1  | 101                 | 2  | .004        | 15 -1.753e-2   | 1        | 735.183       | 2        | 2170.59        | 1  |
| 127 |         | 7                                                | max        | 0      | 15 | .055                | 1  | .073        | 1 1.423e-2     | 3        | NC            | 3        | NC             | 3  |
| 128 |         |                                                  | min        | 0      | 1  | 122                 | 3  | .001        | 10 -1.851e-2   | 1        | 1203.566      | 2        | 2804.226       |    |
| 129 |         | 8                                                | max        | 0      | 15 | .183                | 1  | .041        | 1 1.521e-2     | 3        | NC            | 1_       | NC<br>1000 101 | 2  |
| 130 |         | -                                                | min        | 0      | 1  | 186                 | 3  | 003         | 10 -1.949e-2   | 1        | 3392.938      | 3_       | 4999.424       | 1  |
| 131 |         | 9                                                | max        | 0      | 15 | .296                | 1  | .018        | 3 1.618e-2     | 3        | NC            | 5        | NC             | 1  |
| 132 |         | 4.0                                              | min        | 0      | 1  | 24                  | 3  | 006         | 2 -2.047e-2    | 1        | 1778.665      | 3        | NC             | 1  |
| 133 |         | 10                                               | max        | 0      | 1  | .347                | 1  | .017        | 3 1.716e-2     | 3        | NC            | 5        | NC<br>NC       | 1  |
| 134 |         |                                                  | min        | 0      | 1  | 264                 | 3  | 013         | 2 -2.145e-2    | 1_       | 1338.07       | <u>1</u> | NC             | 1  |
| 135 |         | 11                                               | max        | 0      | 1  | .296                | 1  | .018        | 3 1.618e-2     | 3        | NC            | _5_      | NC             | 1  |
| 136 |         |                                                  | min        | 0      | 15 | 24                  | 3  | 006         | 2 -2.047e-2    | 1        | 1778.665      | 3        | NC             | 1  |
| 137 |         | 12                                               | max        | 0      | 1  | .183                | 1  | .041        | 1 1.521e-2     | 3        | NC            | 1_       | NC             | 2  |
| 138 |         |                                                  | min        |        | 15 | 186                 | 3  | 003         | 10 -1.949e-2   | 1        | 3392.938      |          | 4999.424       |    |
| 139 |         | 13                                               | max        | 0      | 1  | .055                | 1  | .073        | 1 1.423e-2     | 3        | NC            | 3        | NC             | 3  |
| 140 |         |                                                  | min        | 0      | 15 | 122                 | 3  | .001        | 10 -1.851e-2   | 1        | 1203.566      | 2        | 2804.226       |    |
| 141 |         | 14                                               | max        | 0      | 1  | .006                | 4  | .094        | 1 1.326e-2     | 3        | NC            | 5        | NC             | 3  |
| 142 |         |                                                  | min        | 0      | 15 | 101                 | 2  | .004        | 15 -1.753e-2   | 1        | 735.183       | 2        | 2170.59        | 1  |
| 143 |         | 15                                               | max        | 0      | 1  | 0                   | 13 | .099        | 1 1.228e-2     | 3        | NC            | 5        | NC             | 3  |
| 144 |         |                                                  | min        | 0      | 15 | 161                 | 2  | .004        | 15 -1.655e-2   | 1        | 604.384       | 2        | 2073.605       |    |
| 145 |         | 16                                               | max        | 0      | 1  | 0                   | 15 | .085        | 1 1.131e-2     | 3        | NC            | 5        | NC             | 3  |
| 146 |         |                                                  | min        | 0      | 15 | 159                 | 2  | .003        | 15 -1.557e-2   | 1        | 607.306       | 2        | 2405.546       |    |
| 147 |         | 17                                               | max        | 0      | 1  | .004                | 13 | .058        | 1 1.033e-2     | 3        | NC            | 5        | NC             | 3  |
| 148 |         |                                                  | min        | 0      | 15 | 094                 | 2  | .002        | 15 -1.459e-2   | 1        | 753.795       | 2        | 3570.768       | 1  |
| 149 |         | 18                                               | max        | 0      | 1  | .053                | 1  | .025        | 1 9.356e-3     | 3        | NC            | 5        | NC             | 2  |
| 150 |         |                                                  | min        | 0      | 15 | 073                 | 3  | 0           | 10 -1.36e-2    | 1        | 1346.722      | 2        | 8417.309       | 1  |
| 151 |         | 19                                               | max        | 0      | 1  | .194                | 1  | .006        | 3 8.381e-3     | 3        | NC            | 1_       | NC             | 1  |
| 152 |         |                                                  | min        | 0      | 15 | 126                 | 3  | 003         | 2 -1.262e-2    | 1        | NC            | 1        | NC             | 1  |
| 153 | M2      | 1                                                | max        | .007   | 1  | .007                | 2  | .009        | 1 -7.038e-6    | 15       | NC            | 1_       | NC             | 2  |
| 154 |         |                                                  | min        | 007    | 3  | 011                 | 3  | 0           | 15 -1.954e-4   | 1        | 9173.939      | 2        | 6908.31        | 1  |



Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member | Sec      |     | x [in] | LC  | y [in]     | LC  | z [in]      | LC |           | LC        | (n) L/y Ratio | LC  | · ,      |   |
|-----|--------|----------|-----|--------|-----|------------|-----|-------------|----|-----------|-----------|---------------|-----|----------|---|
| 155 |        | 2        | max | .006   | 1   | .006       | 2   | .008        | 1  | -6.593e-6 | <u>15</u> | NC            | _1_ | NC       | 2 |
| 156 |        |          | min | 007    | 3   | 01         | 3   | 0           | 15 | -1.83e-4  | 1         | NC            | 1   | 7532.369 | 1 |
| 157 |        | 3        | max | .006   | 1   | .005       | 2   | .007        | 1  | -6.149e-6 | 15        | NC            | 1   | NC       | 2 |
| 158 |        |          | min | 006    | 3   | 01         | 3   | 0           | 15 | -1.707e-4 | 1         | NC            | 1   | 8275.554 | 1 |
| 159 |        | 4        | max | .005   | 1   | .004       | 2   | .007        |    | -5.705e-6 | 15        | NC            | 1_  | NC       | 2 |
| 160 |        |          | min | 006    | 3   | 01         | 3   | 0           | 15 | -1.583e-4 | 1_        | NC            | 1   | 9169.297 | 1 |
| 161 |        | 5        | max | .005   | 1   | .003       | 2   | .006        | 1  | -5.261e-6 | 15        | NC            | 1   | NC       | 1 |
| 162 |        |          | min | 005    | 3   | 009        | 3   | 0           | 15 | -1.46e-4  | 1         | NC            | 1   | NC       | 1 |
| 163 |        | 6        | max | .005   | 1   | .002       | 2   | .005        | 1  | -4.817e-6 | 15        | NC            | 1   | NC       | 1 |
| 164 |        |          | min | 005    | 3   | 009        | 3   | 0           |    | -1.336e-4 | 1         | NC            | 1   | NC       | 1 |
| 165 |        | 7        | max | .004   | 1   | .001       | 2   | .005        | 1  | -4.372e-6 | 15        | NC            | 1   | NC       | 1 |
| 166 |        |          | min | 005    | 3   | 009        | 3   | 0           | 15 | -1.213e-4 | 1         | NC            | 1   | NC       | 1 |
| 167 |        | 8        | max | .004   | 1   | 0          | 2   | .004        | 1  | -3.928e-6 | 15        | NC            | 1   | NC       | 1 |
| 168 |        |          | min | 004    | 3   | 008        | 3   | 0           | 15 | -1.089e-4 | 1         | NC            | 1   | NC       | 1 |
| 169 |        | 9        | max | .004   | 1   | 0          | 2   | .003        | 1  | -3.484e-6 | 15        | NC            | 1   | NC       | 1 |
| 170 |        |          | min | 004    | 3   | 008        | 3   | 0           | 15 | -9.654e-5 | 1         | NC            | 1   | NC       | 1 |
| 171 |        | 10       | max | .003   | 1   | 0          | 2   | .003        | 1  | -3.04e-6  | 15        | NC            | 1   | NC       | 1 |
| 172 |        |          | min | 003    | 3   | 007        | 3   | 0           | 15 | -8.419e-5 | 1         | NC            | 1   | NC       | 1 |
| 173 |        | 11       | max | .003   | 1   | 001        | 2   | .002        | 1  | -2.595e-6 | 15        | NC            | 1   | NC       | 1 |
| 174 |        |          | min | 003    | 3   | 007        | 3   | 0           | 15 | -7.183e-5 | 1         | NC            | 1   | NC       | 1 |
| 175 |        | 12       | max | .003   | 1   | 001        | 15  | .002        | 1  | -2.151e-6 | 15        | NC            | 1   | NC       | 1 |
| 176 |        |          | min | 003    | 3   | 006        | 3   | 0           | 15 | -5.948e-5 | 1         | NC            | 1   | NC       | 1 |
| 177 |        | 13       | max | .002   | 1   | 001        | 15  | .001        |    | -1.707e-6 | 15        | NC            | 1   | NC       | 1 |
| 178 |        |          | min | 002    | 3   | 005        | 3   | 0           |    | -4.712e-5 | 1         | NC            | 1   | NC       | 1 |
| 179 |        | 14       | max | .002   | 1   | 0          | 15  | 0           |    | -1.263e-6 | 15        | NC            | 1   | NC       | 1 |
| 180 |        |          | min | 002    | 3   | 005        | 3   | 0           |    | -3.477e-5 | 1         | NC            | 1   | NC       | 1 |
| 181 |        | 15       | max | .001   | 1   | 0          | 15  | 0           |    | -8.186e-7 | 15        | NC            | 1   | NC       | 1 |
| 182 |        |          | min | 002    | 3   | 004        | 3   | 0           |    | -2.241e-5 | 1         | NC            | 1   | NC       | 1 |
| 183 |        | 16       | max | .001   | 1   | 0          | 15  | 0           | 1  | -3.744e-7 | 15        | NC            | 1   | NC       | 1 |
| 184 |        |          | min | 001    | 3   | 003        | 3   | 0           | 15 | -1.006e-5 | 1         | NC            | 1   | NC       | 1 |
| 185 |        | 17       | max | 0      | 1   | 0          | 15  | 0           | 1  | 2.296e-6  | 1         | NC            | 1   | NC       | 1 |
| 186 |        |          | min | 0      | 3   | 002        | 4   | 0           | 15 | -5.402e-7 | 3         | NC            | 1   | NC       | 1 |
| 187 |        | 18       | max | 0      | 1   | 0          | 15  | 0           | 1  | 1.465e-5  | 1         | NC            | 1   | NC       | 1 |
| 188 |        |          | min | 0      | 3   | 001        | 4   | 0           | 15 | 4.181e-7  | 12        | NC            | 1   | NC       | 1 |
| 189 |        | 19       | max | 0      | 1   | 0          | 1   | 0           | 1  | 2.701e-5  | 1         | NC            | 1   | NC       | 1 |
| 190 |        |          | min | 0      | 1   | 0          | 1   | 0           | 1  | 9.583e-7  | 15        | NC            | 1   | NC       | 1 |
| 191 | M3     | 1        | max | 0      | 1   | 0          | 1   | 0           | 1  | -2.946e-7 | 15        | NC            | 1   | NC       | 1 |
| 192 | 1710   |          | min | 0      | 1   | 0          | 1   | 0           | 1  | -8.276e-6 | 1         | NC            | 1   | NC       | 1 |
| 193 |        | 2        | max | 0      | 3   | 0          | 15  | 0           | 1  | 1.691e-5  | 1         | NC            | 1   | NC       | 1 |
| 194 |        | _        | min | 0      | 2   | 002        | 4   | 0           |    | 6.083e-7  | 15        | NC            | 1   | NC       | 1 |
| 195 |        | 3        | max | 0      | 3   | 001        | 15  | 0           | 1  | 4.21e-5   | 1         | NC            | 1   | NC       | 1 |
| 196 |        |          | min | 0      | 2   | 005        | 4   | 0           |    | 1.511e-6  | 15        | NC            | 1   | NC       | 1 |
| 197 |        | 4        | max | .001   | 3   | 002        | 15  | 0           | 1  | 6.73e-5   | 1         | NC            | 1   | NC       | 1 |
| 198 |        |          | min | 0      | 2   | 008        | 4   | 0           | 15 | 2.414e-6  | 15        | NC            | 1   | NC       | 1 |
| 199 |        | 5        | max | .001   | 3   | 003        | 15  | 0           | 1  | 9.249e-5  | 1         | NC            | 1   | NC       | 1 |
| 200 |        |          | min | 001    | 2   | 011        | 4   | 0           |    | 3.317e-6  |           | 9254.207      | 4   | NC       | 1 |
| 201 |        | 6        | max | .002   | 3   | 003        | 15  | 0           | 1  | 1.177e-4  | 1         | NC            | 1   | NC       | 1 |
| 202 |        |          | min | 001    | 2   | 014        | 4   | 0           | 15 | 4.22e-6   |           | 7429.027      | 4   | NC       | 1 |
| 203 |        | 7        | max | .002   | 3   | 004        | 15  | .001        | 1  | 1.429e-4  | 1         | NC            | 5   | NC       | 1 |
| 204 |        |          | min | 002    | 2   | 016        | 4   | 0           |    | 5.123e-6  |           | 6333.795      | 4   | NC       | 1 |
| 205 |        | 8        | max | .002   | 3   | 004        | 15  | .001        | 1  | 1.681e-4  | 1         | NC            | 5   | NC       | 1 |
| 206 |        |          | min | 002    | 2   | 018        | 4   | 0           |    | 6.026e-6  |           | 5657.705      | 4   | NC       | 1 |
| 207 |        | 9        | max | .002   | 3   | 005        | 15  | .002        | 1  | 1.932e-4  | 1         | NC            | 5   | NC       | 1 |
| 208 |        | 9        | min | 002    | 2   | 003        | 4   | 0           |    | 6.929e-6  |           | 5254.798      | 4   | NC       | 1 |
| 209 |        | 10       | max | .002   | 3   | 02<br>005  | 15  | .002        | 1  | 2.184e-4  | 1         | NC            | 5   | NC       | 1 |
| 210 |        | 10       | min | 002    | 2   | 005<br>021 | 4   | <u>.002</u> | 15 | 7.832e-6  |           | 5053.925      | 4   | NC       | 1 |
| 211 |        | 11       |     | .002   | 3   | 021<br>005 | 15  | .003        | 1  | 2.436e-4  | 1         | NC            | 5   | NC       | 1 |
| 411 |        | <u> </u> | max | .003   | ∟ິວ | 005        | LIU | .003        |    | Z.430C-4  |           | INC           | IJ  | INC      |   |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member    | Sec |     | x [in] | LC | y [in]          | LC | z [in]             |    |          |           | (n) L/y Ratio |     |                |   |
|-----|-----------|-----|-----|--------|----|-----------------|----|--------------------|----|----------|-----------|---------------|-----|----------------|---|
| 212 |           |     | min | 003    | 2  | 021             | 4  | 0                  | 15 | 8.735e-6 | 15        | 5025.143      | 4   | NC             | 1 |
| 213 |           | 12  | max | .004   | 3  | 005             | 15 | .003               | 1  | 2.688e-4 | _1_       | NC            | 5   | NC             | 1 |
| 214 |           |     | min | 003    | 2  | 02              | 4  | 0                  | 15 | 9.638e-6 | 15        | 5168.175      | 4   | NC             | 1 |
| 215 |           | 13  | max | .004   | 3  | 004             | 15 | .003               | 1  | 2.94e-4  | 1         | NC            | 5   | NC             | 1 |
| 216 |           |     | min | 003    | 2  | 019             | 4  | 0                  | 15 | 1.054e-5 | 15        | 5513.736      | 4   | NC             | 1 |
| 217 |           | 14  | max | .004   | 3  | 004             | 15 | .004               | 1  | 3.192e-4 | 1         | NC            | 5   | NC             | 1 |
| 218 |           |     | min | 003    | 2  | 017             | 4  | 0                  | 15 | 1.144e-5 | 15        | 6139.772      | 4   | NC             | 1 |
| 219 |           | 15  | max | .005   | 3  | 003             | 15 | .005               | 1  | 3.444e-4 | 1         | NC            | 2   | NC             | 1 |
| 220 |           |     | min | 004    | 2  | 015             | 4  | 0                  | 15 | 1.235e-5 | 15        | 7220.29       | 4   | NC             | 1 |
| 221 |           | 16  | max | .005   | 3  | 003             | 15 | .005               | 1  | 3.696e-4 | 1         | NC            | 1   | NC             | 1 |
| 222 |           |     | min | 004    | 2  | 012             | 4  | 0                  | 15 | 1.325e-5 | 15        | 9177.667      | 4   | NC             | 1 |
| 223 |           | 17  | max | .005   | 3  | 002             | 15 | .006               | 1  | 3.948e-4 | 1         | NC            | 1   | NC             | 1 |
| 224 |           |     | min | 004    | 2  | 008             | 4  | 0                  | 15 | 1.415e-5 | 15        | NC            | 1   | NC             | 1 |
| 225 |           | 18  | max | .006   | 3  | 001             | 15 | .007               | 1  | 4.2e-4   | 1         | NC            | 1   | NC             | 1 |
| 226 |           | 1.0 | min | 005    | 2  | 005             | 1  | 0                  | 15 | 1.506e-5 | 15        | NC            | 1   | NC             | 1 |
| 227 |           | 19  | max | .006   | 3  | 0               | 15 | .008               | 1  | 4.452e-4 | 1         | NC            | 1   | NC             | 1 |
| 228 |           | 10  | min | 005    | 2  | 003             | 1  | 0                  | 15 | 1.596e-5 | 15        | NC            | 1   | NC             | 1 |
| 229 | M4        | 1   | max | .003   | 1  | .004            | 2  | 0                  | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 3 |
| 230 | IVIT      |     | min | .003   | 3  | 006             | 3  | 008                | 1  | 2.529e-6 | 15        | NC            | 1   | 3021.623       | 1 |
| 231 |           | 2   |     | .003   | 1  | .004            | 2  | _ <del>008</del> _ | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 3 |
| 232 |           | +-  | max | .003   | 3  | 004<br>006      | 3  | 008                | 1  | 2.529e-6 | 15        | NC<br>NC      | 1   | 3286.363       | 1 |
|     |           | 2   |     |        |    |                 | 2  | 008<br>0           |    | 6.991e-5 |           | NC<br>NC      | _   | NC             |   |
| 233 |           | 3   | max | .003   | 3  | .004            |    |                    | 15 |          | 1_        |               | 1   |                | 3 |
| 234 |           | 4   | min | 0      |    | 006             | 3  | 007                | 1  | 2.529e-6 | <u>15</u> | NC<br>NC      |     | 3601.411       | 1 |
| 235 |           | 4   | max | .002   | 1  | .004            | 2  | 0                  | 15 | 6.991e-5 | 1_        | NC            | 1   | NC<br>0070.040 | 2 |
| 236 |           | + - | min | 0      | 3  | 005             | 3  | 006                | 1_ | 2.529e-6 | 15        | NC            | 1_  | 3979.843       |   |
| 237 |           | 5   | max | .002   | 1  | .003            | 2  | 0                  | 15 | 6.991e-5 | _1_       | NC            | 1   | NC             | 2 |
| 238 |           | _   | min | 0      | 3  | <u>005</u>      | 3  | 006                | 1  | 2.529e-6 | <u>15</u> | NC            | _1_ | 4439.427       | 1 |
| 239 |           | 6   | max | .002   | 1  | .003            | 2  | 0                  | 15 | 6.991e-5 | _1_       | NC            | _1_ | NC             | 2 |
| 240 |           |     | min | 0      | 3  | 004             | 3  | 005                | 1  | 2.529e-6 | 15        | NC            | 1_  | 5004.803       |   |
| 241 |           | 7   | max | .002   | 1  | .003            | 2  | 0                  | 15 | 6.991e-5 | 1_        | NC            | 1   | NC             | 2 |
| 242 |           |     | min | 0      | 3  | 004             | 3  | 004                | 1  | 2.529e-6 | 15        | NC            | 1   | 5710.949       | 1 |
| 243 |           | 8   | max | .002   | 1  | .003            | 2  | 0                  | 15 | 6.991e-5 | _1_       | NC            | _1_ | NC             | 2 |
| 244 |           |     | min | 0      | 3  | 004             | 3  | 004                | 1  | 2.529e-6 | 15        | NC            | 1_  | 6608.879       | 1 |
| 245 |           | 9   | max | .002   | 1  | .002            | 2  | 0                  | 15 | 6.991e-5 | _1_       | NC            | 1_  | NC             | 2 |
| 246 |           |     | min | 0      | 3  | 003             | 3  | 003                | 1  | 2.529e-6 | 15        | NC            | 1_  | 7775.391       | 1 |
| 247 |           | 10  | max | .001   | 1  | .002            | 2  | 0                  | 15 | 6.991e-5 | <u>1</u>  | NC            | _1_ | NC             | 2 |
| 248 |           |     | min | 0      | 3  | 003             | 3  | 003                | 1  | 2.529e-6 | 15        | NC            | 1   | 9330.542       | 1 |
| 249 |           | 11  | max | .001   | 1  | .002            | 2  | 0                  | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 1 |
| 250 |           |     | min | 0      | 3  | 003             | 3  | 002                | 1  | 2.529e-6 | 15        | NC            | 1   | NC             | 1 |
| 251 |           | 12  | max | .001   | 1  | .002            | 2  | 0                  | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 1 |
| 252 |           |     | min | 0      | 3  | 002             | 3  | 002                | 1  | 2.529e-6 | 15        | NC            | 1   | NC             | 1 |
| 253 |           | 13  | max | 0      | 1  | .001            | 2  | 0                  | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 1 |
| 254 |           |     | min | 0      | 3  | 002             | 3  | 001                | 1  | 2.529e-6 | 15        | NC            | 1   | NC             | 1 |
| 255 |           | 14  | max | 0      | 1  | .001            | 2  | 0                  | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 1 |
| 256 |           |     | min | 0      | 3  | 002             | 3  | 0                  | 1  | 2.529e-6 | 15        | NC            | 1   | NC             | 1 |
| 257 |           | 15  | max | 0      | 1  | 0               | 2  | 0                  | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 1 |
| 258 |           | 10  | min | 0      | 3  | 001             | 3  | 0                  | 1  | 2.529e-6 | 15        | NC            | 1   | NC             | 1 |
| 259 |           | 16  | max | 0      | 1  | 0               | 2  | 0                  | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 1 |
| 260 |           | 10  | min | 0      | 3  | 001             | 3  | 0                  | 1  | 2.529e-6 | 15        | NC            | 1   | NC             | 1 |
| 261 |           | 17  | max | 0      | 1  | <u>001</u><br>0 | 2  | 0                  | 15 | 6.991e-5 | 1         | NC            | 1   | NC             | 1 |
| 262 |           | 17  | min | 0      | 3  | 0               | 3  | 0                  | 1  | 2.529e-6 | 15        | NC<br>NC      | 1   | NC<br>NC       | 1 |
|     |           | 10  |     | _      |    |                 |    |                    |    | 6.991e-5 |           | NC<br>NC      | _   |                |   |
| 263 |           | 18  | max | 0      | 3  | 0               | 2  | 0                  | 15 |          | 1_        |               | 1   | NC<br>NC       | 1 |
| 264 |           | 40  | min | 0      |    | 0               | 3  | 0                  | 1  | 2.529e-6 | <u>15</u> | NC<br>NC      | 1_  | NC<br>NC       | 1 |
| 265 |           | 19  | max | 0      | 1  | 0               | 1  | 0                  | 1  | 6.991e-5 | 1_        | NC<br>NC      | 1   | NC<br>NC       | 1 |
| 266 | MO        | 4   | min | 0      | 1  | 0               | 1  | 0                  | 1  | 2.529e-6 | <u>15</u> | NC<br>NC      | 1   | NC<br>NC       | 1 |
| 267 | <u>M6</u> | 1_  | max | .02    | 1  | .024            | 2  | 0                  | 1  | 0        | 1_        | NC            | 3   | NC<br>NC       | 1 |
| 268 |           |     | min | 022    | 3  | 033             | 3  | 0                  | 1  | 0        | 1_        | 2532.789      | 2   | NC             | 1 |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member    | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC | 1 |          | (n) L/y Ratio I |          |          | 1 |
|-----|-----------|-----|-----|--------|----|--------|----|--------|----|---|----------|-----------------|----------|----------|---|
| 269 |           | 2   | max | .019   | 1  | .022   | 2  | 0      | 1  | 0 | 1        |                 | 3_       | NC       | 1 |
| 270 |           |     | min | 021    | 3  | 031    | 3  | 0      | 1  | 0 | <u>1</u> |                 | 2        | NC       | 1 |
| 271 |           | 3   | max | .018   | 1  | .02    | 2  | 0      | 1  | 0 | _1_      |                 | 3        | NC       | 1 |
| 272 |           |     | min | 02     | 3  | 03     | 3  | 0      | 1  | 0 | 1_       |                 | 2        | NC       | 1 |
| 273 |           | 4   | max | .017   | 1  | .018   | 2  | 0      | 1  | 0 | _1_      |                 | 3_       | NC       | 1 |
| 274 |           | _   | min | 018    | 3  | 028    | 3  | 0      | 1  | 0 | 1_       |                 | 2        | NC       | 1 |
| 275 |           | 5   | max | .016   | 1  | .016   | 2  | 0      | 1  | 0 | 1        |                 | 3_       | NC       | 1 |
| 276 |           |     | min | 017    | 3  | 026    | 3  | 0      | 1  | 0 | 1_       |                 | 2        | NC       | 1 |
| 277 |           | 6   | max | .015   | 1  | .014   | 2  | 0      | 1  | 0 | 1        |                 | 3        | NC       | 1 |
| 278 |           | _   | min | 016    | 3  | 024    | 3  | 0      | 1  | 0 | 1_       |                 | 2        | NC       | 1 |
| 279 |           | 7   | max | .014   | 1  | .012   | 2  | 0      | 1  | 0 | <u>1</u> |                 | 3        | NC       | 1 |
| 280 |           |     | min | 015    | 3  | 022    | 3  | 0      | 1  | 0 | <u>1</u> |                 | 2        | NC       | 1 |
| 281 |           | 8   | max | .012   | 1  | .01    | 2  | 0      | 1  | 0 | _1_      |                 | 1_       | NC       | 1 |
| 282 |           |     | min | 014    | 3  | 021    | 3  | 0      | 1  | 0 | 1_       |                 | 2        | NC       | 1 |
| 283 |           | 9   | max | .011   | 1  | .008   | 2  | 0      | 1  | 0 | _1_      |                 | 1_       | NC       | 1 |
| 284 |           |     | min | 012    | 3  | 019    | 3  | 0      | 1  | 0 | 1_       |                 | 2        | NC       | 1 |
| 285 |           | 10  | max | .01    | 1  | .007   | 2  | 0      | 1  | 0 | 1        |                 | 1_       | NC<br>NC | 1 |
| 286 |           |     | min | 011    | 3  | 017    | 3  | 0      | 1  | 0 | 1        |                 | 2        | NC       | 1 |
| 287 |           | 11  | max | .009   | 1  | .005   | 2  | 0      | 1  | 0 | 1        |                 | 1_       | NC       | 1 |
| 288 |           | 4.0 | min | 01     | 3  | 015    | 3  | 0      | 1  | 0 | 1        |                 | 1_       | NC       | 1 |
| 289 |           | 12  | max | .008   | 1  | .004   | 2  | 0      | 1  | 0 | 1        |                 | 1_       | NC NC    | 1 |
| 290 |           |     | min | 009    | 3  | 013    | 3  | 0      | 1  | 0 | <u>1</u> |                 | 1_       | NC       | 1 |
| 291 |           | 13  | max | .007   | 1  | .003   | 2  | 0      | 1  | 0 | 1        |                 | 1_       | NC       | 1 |
| 292 |           |     | min | 007    | 3  | 011    | 3  | 0      | 1  | 0 | 1_       |                 | 1_       | NC       | 1 |
| 293 |           | 14  | max | .006   | 1  | .002   | 2  | 0      | 1  | 0 | _1_      | .,,             | 1_       | NC       | 1 |
| 294 |           |     | min | 006    | 3  | 01     | 3  | 0      | 1  | 0 | 1_       | 110             | 1_       | NC       | 1 |
| 295 |           | 15  | max | .005   | 1  | .001   | 2  | 00     | 1  | 0 | _1_      |                 | <u>1</u> | NC       | 1 |
| 296 |           |     | min | 005    | 3  | 008    | 3  | 0      | 1  | 0 | 1_       |                 | 1_       | NC       | 1 |
| 297 |           | 16  | max | .003   | 1  | 0      | 2  | 0      | 1  | 0 | _1_      |                 | 1_       | NC       | 1 |
| 298 |           |     | min | 004    | 3  | 006    | 3  | 0      | 1  | 0 | 1_       |                 | 1_       | NC       | 1 |
| 299 |           | 17  | max | .002   | 1  | 0      | 2  | 0      | 1  | 0 | 1        |                 | 1_       | NC       | 1 |
| 300 |           |     | min | 002    | 3  | 004    | 3  | 0      | 1  | 0 | 1_       |                 | 1        | NC       | 1 |
| 301 |           | 18  | max | .001   | 1  | 0      | 2  | 0      | 1  | 0 | _1_      |                 | 1_       | NC       | 1 |
| 302 |           |     | min | 001    | 3  | 002    | 3  | 0      | 1  | 0 | 1        |                 | 1_       | NC       | 1 |
| 303 |           | 19  | max | 0      | 1  | 0      | 1  | 0      | 1  | 0 | _1_      |                 | 1_       | NC       | 1 |
| 304 |           |     | min | 0      | 1  | 0      | 1  | 0      | 1  | 0 | 1_       | 110             | 1_       | NC       | 1 |
| 305 | <u>M7</u> | 1_  | max | 00     | 1  | 0      | 1  | 00     | 1  | 0 | _1_      |                 | <u>1</u> | NC       | 1 |
| 306 |           |     | min | 0      | 1  | 0      | 1  | 0      | 1  | 0 | 1_       |                 | 1_       | NC       | 1 |
| 307 |           | 2   | max | .001   | 3  | 0      | 15 | 0      | 1  | 0 | _1_      |                 | 1_       | NC       | 1 |
| 308 |           |     | min | 0      | 2  | 003    | 3  | 0      | 1  | 0 | 1_       |                 | 1_       | NC       | 1 |
| 309 |           | 3   | max | .002   | 3  | 001    | 15 | 0      | 1  | 0 | _1_      | NC              | 1_       | NC NC    | 1 |
| 310 |           |     | min | 002    | 2  | 006    | 3  | 0      | 1  | 0 | <u>1</u> |                 | 1_       | NC       | 1 |
| 311 |           | 4   | max | .003   | 3  | 002    | 15 | 0      | 1  | 0 | 1_       |                 | 1_       | NC       | 1 |
| 312 |           |     | min | 003    | 2  | 009    | 3  | 0      | 1  | 0 | 1_       |                 | 1_       | NC       | 1 |
| 313 |           | 5   | max | .004   | 3  | 003    | 15 | 0      | 1  | 0 | 1        |                 | 1        | NC       | 1 |
| 314 |           |     | min | 004    | 2  | 012    | 3  | 0      | 1  | 0 | 1_       |                 | 3        | NC       | 1 |
| 315 |           | 6   | max | .005   | 3  | 003    | 15 | 0      | 1  | 0 | _1_      |                 | 1_       | NC       | 1 |
| 316 |           |     | min | 005    | 2  | 015    | 3  | 0      | 1  | 0 | <u>1</u> |                 | 3        | NC       | 1 |
| 317 |           | 7   | max | .006   | 3  | 004    | 15 | 0      | 1  | 0 | _1_      |                 | 1_       | NC       | 1 |
| 318 |           |     | min | 006    | 2  | 017    | 3  | 0      | 1  | 0 | 1_       |                 | 4        | NC       | 1 |
| 319 |           | 8   | max | .007   | 3  | 004    | 15 | 0      | 1  | 0 | 1        |                 | 2        | NC       | 1 |
| 320 |           |     | min | 007    | 2  | 018    | 4  | 0      | 1  | 0 | 1_       |                 | 4        | NC       | 1 |
| 321 |           | 9   | max | .008   | 3  | 005    | 15 | 0      | 1  | 0 | 1        |                 | 2        | NC       | 1 |
| 322 |           |     | min | 008    | 2  | 02     | 4  | 0      | 1  | 0 | 1        |                 | 4        | NC       | 1 |
| 323 |           | 10  | max | .009   | 3  | 005    | 15 | 0      | 1  | 0 | _1_      |                 | 5        | NC       | 1 |
| 324 |           |     | min | 009    | 2  | 021    | 4  | 0      | 1  | 0 | 1_       |                 | 4        | NC       | 1 |
| 325 |           | 11  | max | .01    | 3  | 005    | 15 | 0      | 1  | 0 | 1_       | NC              | 5        | NC       | 1 |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|            | Member | Sec |            | x [in]   | LC | y [in]          | LC | z [in] | LC | x Rotate [r | LC | (n) L/y Ratio | LC |          | LC |
|------------|--------|-----|------------|----------|----|-----------------|----|--------|----|-------------|----|---------------|----|----------|----|
| 326        |        |     | min        | 01       | 2  | 021             | 4  | 0      | 1  | 0           | 1  | 5114.485      | 4  | NC       | 1  |
| 327        |        | 12  | max        | .011     | 3  | 005             | 15 | 0      | 1  | 0           | 1_ | NC            | 5  | NC       | 1  |
| 328        |        |     | min        | 011      | 2  | 02              | 4  | 0      | 1  | 0           | 1  | 5255.558      | 4  | NC       | 1  |
| 329        |        | 13  | max        | .012     | 3  | 004             | 15 | 0      | 1  | 0           | 1  | NC            | 5  | NC       | 1  |
| 330        |        |     | min        | 012      | 2  | 019             | 4  | 0      | 1  | 0           | 1  | 5602.953      | 4  | NC       | 1  |
| 331        |        | 14  | max        | .013     | 3  | 004             | 15 | 0      | 1  | 0           | 1_ | NC            | 2  | NC       | 1  |
| 332        |        |     | min        | 012      | 2  | 017             | 4  | 0      | 1  | 0           | 1  | 6235.426      | 4  | NC       | 1  |
| 333        |        | 15  | max        | .015     | 3  | 003             | 15 | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 334        |        |     | min        | 013      | 2  | 015             | 4  | 0      | 1  | 0           | 1  | 7329.25       | 4  | NC       | 1  |
| 335        |        | 16  | max        | .016     | 3  | 003             | 15 | 0      | 1  | 0           | 1_ | NC            | 1_ | NC       | 1  |
| 336        |        |     | min        | 014      | 2  | 012             | 4  | 0      | 1  | 0           | 1  | 9312.65       | 4  | NC       | 1  |
| 337        |        | 17  | max        | .017     | 3  | 002             | 15 | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 338        |        |     | min        | 015      | 2  | 01              | 1  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 339        |        | 18  | max        | .018     | 3  | 001             | 15 | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 340        |        |     | min        | 016      | 2  | 008             | 1  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 341        |        | 19  | max        | .019     | 3  | 0               | 15 | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 342        |        |     | min        | 017      | 2  | 006             | 1  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 343        | M8     | 1   | max        | .008     | 1  | .016            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 344        |        |     | min        | 002      | 3  | 019             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 345        |        | 2   | max        | .007     | 1  | .015            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 346        |        |     | min        | 002      | 3  | 018             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 347        |        | 3   | max        | .007     | 1  | .014            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 348        |        |     | min        | 002      | 3  | 017             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 349        |        | 4   | max        | .007     | 1  | .013            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 350        |        |     | min        | 002      | 3  | 016             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 351        |        | 5   | max        | .006     | 1  | .013            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 352        |        |     | min        | 001      | 3  | 015             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 353        |        | 6   | max        | .006     | 1  | .012            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 354        |        |     | min        | 001      | 3  | 014             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 355        |        | 7   | max        | .005     | 1  | .011            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 356        |        | ,   | min        | 001      | 3  | 013             | 3  | 0      | 1  | Ö           | 1  | NC            | 1  | NC       | 1  |
| 357        |        | 8   | max        | .005     | 1  | .01             | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 358        |        |     | min        | 001      | 3  | 011             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 359        |        | 9   | max        | .004     | 1  | .009            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 360        |        | ľ   | min        | 001      | 3  | 01              | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 361        |        | 10  | max        | .004     | 1  | .008            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 362        |        | '   | min        | 0        | 3  | 009             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 363        |        | 11  | max        | .004     | 1  | .007            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 364        |        |     | min        | 0        | 3  | 008             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 365        |        | 12  | max        | .003     | 1  | .006            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 366        |        | 12  | min        | 0        | 3  | 007             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 367        |        | 13  | max        | .003     | 1  | .005            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 368        |        | '   | min        | 0        | 3  | 006             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 369        |        | 14  | max        | .002     | 1  | .004            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 370        |        | 17  | min        | 0        | 3  | 005             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 371        |        | 15  | max        | .002     | 1  | .004            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 372        |        | 10  | min        | 0        | 3  | 004             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 373        |        | 16  | max        | .001     | 1  | .003            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 374        |        | 10  | min        | 0        | 3  | 003             | 3  | 0      | 1  | 0           | 1  | NC            | 1  | NC<br>NC | 1  |
| 375        |        | 17  | max        | 0        | 1  | .002            | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC<br>NC | 1  |
| 376        |        | 17  | min        | 0        | 3  | 002             | 3  | 0      | 1  | 0           | 1  | NC<br>NC      | 1  | NC<br>NC | 1  |
| 377        |        | 18  |            | 0        | 1  | <u>002</u><br>0 | 2  | 0      | 1  | 0           | 1  | NC            | 1  | NC       | 1  |
| 378        |        | 10  | max<br>min | 0        | 3  | 001             | 3  | 0      | 1  | 0           | 1  | NC<br>NC      | 1  | NC<br>NC | 1  |
| 379        |        | 19  |            | <u> </u> | 1  | <u>001</u><br>0 | 1  | 0      | 1  | 0           | 1  | NC<br>NC      | 1  | NC<br>NC | 1  |
|            |        | 19  | max        | 0        | 1  | 0               | 1  | 0      | 1  | 0           | 1  | NC<br>NC      | 1  | NC<br>NC | 1  |
| 380<br>381 | M10    | 1   | min        | .007     | 1  | .007            | 2  | 0      | 15 | 1.954e-4    | 1  | NC<br>NC      | 1  | NC<br>NC | 2  |
|            | IVITU  |     | max        |          | 3  |                 | 3  |        |    |             |    |               |    |          |    |
| 382        |        |     | min        | 007      | 3  | 011             | 3  | 009    | 1  | 7.038e-6    | 10 | 9173.939      | 2  | 6908.31  | 1  |



Model Name

Schletter, Inc. HCV

псу

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] |    |           | LC       | (n) L/y Ratio | LC  |          |    |
|-----|--------|-----|-----|--------|----|--------|----|--------|----|-----------|----------|---------------|-----|----------|----|
| 383 |        | 2   | max | .006   | 1  | .006   | 2  | 0      | 15 | 1.83e-4   | _1_      | NC            | _1_ | NC       | 2  |
| 384 |        |     | min | 007    | 3  | 01     | 3  | 008    | 1  | 6.593e-6  | 15       | NC            | 1_  | 7532.369 | 1  |
| 385 |        | 3   | max | .006   | 1  | .005   | 2  | 0      | 15 | 1.707e-4  | <u>1</u> | NC            | _1_ | NC       | 2  |
| 386 |        |     | min | 006    | 3  | 01     | 3  | 007    | 1  | 6.149e-6  | 15       | NC            | 1_  | 8275.554 | 1  |
| 387 |        | 4   | max | .005   | 1  | .004   | 2  | 0      | 15 | 1.583e-4  | 1_       | NC            | 1_  | NC       | 2  |
| 388 |        |     | min | 006    | 3  | 01     | 3  | 007    | 1  | 5.705e-6  | 15       | NC            | 1   | 9169.297 | 1  |
| 389 |        | 5   | max | .005   | 1  | .003   | 2  | 0      | 15 | 1.46e-4   | _1_      | NC            | 1_  | NC       | 1  |
| 390 |        |     | min | 005    | 3  | 009    | 3  | 006    | 1  | 5.261e-6  | 15       | NC            | 1_  | NC       | 1  |
| 391 |        | 6   | max | .005   | 1  | .002   | 2  | 0      | 15 | 1.336e-4  | 1_       | NC            | 1_  | NC       | 1  |
| 392 |        |     | min | 005    | 3  | 009    | 3  | 005    | 1  | 4.817e-6  | 15       | NC            | 1   | NC       | 1  |
| 393 |        | 7   | max | .004   | 1  | .001   | 2  | 0      | 15 | 1.213e-4  | _1_      | NC            | _1_ | NC       | 1_ |
| 394 |        |     | min | 005    | 3  | 009    | 3  | 005    | 1  | 4.372e-6  | 15       | NC            | 1_  | NC       | 1  |
| 395 |        | 8   | max | .004   | 1  | 0      | 2  | 0      | 15 | 1.089e-4  | <u>1</u> | NC            | _1_ | NC       | 1_ |
| 396 |        |     | min | 004    | 3  | 008    | 3  | 004    | 1  | 3.928e-6  | 15       | NC            | 1   | NC       | 1  |
| 397 |        | 9   | max | .004   | 1  | 0      | 2  | 0      | 15 | 9.654e-5  | 1_       | NC            | 1_  | NC       | 1_ |
| 398 |        |     | min | 004    | 3  | 008    | 3  | 003    | 1  | 3.484e-6  | 15       | NC            | 1   | NC       | 1  |
| 399 |        | 10  | max | .003   | 1  | 0      | 2  | 0      | 15 | 8.419e-5  | _1_      | NC            | _1_ | NC       | 1  |
| 400 |        |     | min | 003    | 3  | 007    | 3  | 003    | 1  | 3.04e-6   | 15       | NC            | 1   | NC       | 1  |
| 401 |        | 11  | max | .003   | 1  | 001    | 2  | 0      | 15 | 7.183e-5  | 1        | NC            | 1   | NC       | 1  |
| 402 |        |     | min | 003    | 3  | 007    | 3  | 002    | 1  | 2.595e-6  | 15       | NC            | 1   | NC       | 1  |
| 403 |        | 12  | max | .003   | 1  | 001    | 15 | 0      | 15 | 5.948e-5  | 1        | NC            | 1   | NC       | 1  |
| 404 |        |     | min | 003    | 3  | 006    | 3  | 002    | 1  | 2.151e-6  | 15       | NC            | 1   | NC       | 1  |
| 405 |        | 13  | max | .002   | 1  | 001    | 15 | 0      | 15 | 4.712e-5  | 1        | NC            | 1   | NC       | 1  |
| 406 |        |     | min | 002    | 3  | 005    | 3  | 001    | 1  | 1.707e-6  | 15       | NC            | 1   | NC       | 1  |
| 407 |        | 14  | max | .002   | 1  | 0      | 15 | 0      | 15 | 3.477e-5  | 1        | NC            | 1   | NC       | 1  |
| 408 |        |     | min | 002    | 3  | 005    | 3  | 0      | 1  | 1.263e-6  | 15       | NC            | 1   | NC       | 1  |
| 409 |        | 15  | max | .001   | 1  | 0      | 15 | 0      | 15 | 2.241e-5  | 1        | NC            | 1   | NC       | 1  |
| 410 |        |     | min | 002    | 3  | 004    | 3  | 0      | 1  | 8.186e-7  | 15       | NC            | 1   | NC       | 1  |
| 411 |        | 16  | max | .001   | 1  | 0      | 15 | 0      | 15 | 1.006e-5  | 1        | NC            | 1   | NC       | 1  |
| 412 |        |     | min | 001    | 3  | 003    | 3  | 0      | 1  | 3.744e-7  | 15       | NC            | 1   | NC       | 1  |
| 413 |        | 17  | max | 0      | 1  | 0      | 15 | 0      | 15 | 5.402e-7  | 3        | NC            | 1   | NC       | 1  |
| 414 |        |     | min | 0      | 3  | 002    | 4  | 0      | 1  | -2.296e-6 | 1        | NC            | 1   | NC       | 1  |
| 415 |        | 18  | max | 0      | 1  | 0      | 15 | 0      | 15 | -4.181e-7 | 12       | NC            | 1   | NC       | 1  |
| 416 |        |     | min | 0      | 3  | 001    | 4  | 0      | 1  | -1.465e-5 | 1        | NC            | 1   | NC       | 1  |
| 417 |        | 19  | max | 0      | 1  | 0      | 1  | 0      | 1  | -9.583e-7 | 15       | NC            | 1   | NC       | 1  |
| 418 |        |     | min | 0      | 1  | 0      | 1  | 0      | 1  | -2.701e-5 | 1        | NC            | 1   | NC       | 1  |
| 419 | M11    | 1   | max | 0      | 1  | 0      | 1  | 0      | 1  | 8.276e-6  | 1        | NC            | 1   | NC       | 1  |
| 420 |        |     | min | 0      | 1  | 0      | 1  | 0      | 1  | 2.946e-7  | 15       | NC            | 1   | NC       | 1  |
| 421 |        | 2   | max | 0      | 3  | 0      | 15 | 0      | 15 | -6.083e-7 | 15       | NC            | 1   | NC       | 1  |
| 422 |        |     | min | 0      | 2  | 002    | 4  | 0      | 1  | -1.691e-5 | 1        | NC            | 1   | NC       | 1  |
| 423 |        | 3   | max | 0      | 3  | 001    | 15 | 0      | 15 | -1.511e-6 | 15       | NC            | 1   | NC       | 1  |
| 424 |        |     | min | 0      | 2  | 005    | 4  | 0      | 1  | -4.21e-5  | 1        | NC            | 1   | NC       | 1  |
| 425 |        | 4   | max | .001   | 3  | 002    | 15 | 0      | 15 |           | 15       | NC            | 1   | NC       | 1  |
| 426 |        |     | min | 0      | 2  | 008    | 4  | 0      | 1  | -6.73e-5  | 1        | NC            | 1   | NC       | 1  |
| 427 |        | 5   | max | .001   | 3  | 003    | 15 | 0      | 15 | -3.317e-6 | 15       | NC            | 1   | NC       | 1  |
| 428 |        |     | min | 001    | 2  | 011    | 4  | 0      | 1  | -9.249e-5 | 1        | 9254.207      | 4   | NC       | 1  |
| 429 |        | 6   | max | .002   | 3  | 003    | 15 | 0      | 15 | -4.22e-6  | 15       | NC            | 1   | NC       | 1_ |
| 430 |        |     | min | 001    | 2  | 014    | 4  | 0      | 1  | -1.177e-4 | 1        | 7429.027      | 4   | NC       | 1  |
| 431 |        | 7   | max | .002   | 3  | 004    | 15 | 0      | 15 |           | 15       | NC            | 5   | NC       | 1  |
| 432 |        |     | min | 002    | 2  | 016    | 4  | 001    | 1  | -1.429e-4 | 1        | 6333.795      | 4   | NC       | 1  |
| 433 |        | 8   | max | .002   | 3  | 004    | 15 | 0      | 15 | -6.026e-6 | 15       | NC            | 5   | NC       | 1  |
| 434 |        |     | min | 002    | 2  | 018    | 4  | 001    | 1  | -1.681e-4 | 1        | 5657.705      | 4   | NC       | 1  |
| 435 |        | 9   | max | .003   | 3  | 005    | 15 | 0      | 15 |           | 15       | NC            | 5   | NC       | 1  |
| 436 |        |     | min | 002    | 2  | 02     | 4  | 002    | 1  | -1.932e-4 | 1        | 5254.798      | 4   | NC       | 1  |
| 437 |        | 10  | max | .003   | 3  | 005    | 15 | 0      | 15 | -7.832e-6 | 15       | NC            | 5   | NC       | 1  |
| 438 |        |     | min | 002    | 2  | 021    | 4  | 002    | 1  | -2.184e-4 | 1        | 5053.925      | 4   | NC       | 1  |
| 439 |        | 11  | max | .003   | 3  | 005    | 15 | 0      | 15 | -8.735e-6 | 15       | NC            | 5   | NC       | 1  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|            | Member | Sec |            | x [in]      | LC | y [in]          | LC | z [in]          | LC         | x Rotate [r            | LC             | (n) L/y Ratio  | LC            |          | LC |
|------------|--------|-----|------------|-------------|----|-----------------|----|-----------------|------------|------------------------|----------------|----------------|---------------|----------|----|
| 440        |        |     | min        | 003         | 2  | 021             | 4  | 003             | 1          | -2.436e-4              | 1              | 5025.143       | 4             | NC       | 1  |
| 441        |        | 12  | max        | .004        | 3  | 005             | 15 | 0               | 15         |                        | 15             | NC             | 5             | NC       | 1  |
| 442        |        |     | min        | 003         | 2  | 02              | 4  | 003             | 1          | -2.688e-4              | 1_             | 5168.175       | 4             | NC       | 1  |
| 443        |        | 13  | max        | .004        | 3  | 004             | 15 | 0               | 15         |                        | 15             | NC             | _5_           | NC       | 1  |
| 444        |        |     | min        | 003         | 2  | <u>019</u>      | 4  | 003             | 1_         | -2.94e-4               | 1_             | 5513.736       | <u>4</u>      | NC       | 1  |
| 445        |        | 14  | max        | .004        | 3  | 004             | 15 | 0               | 15         |                        | <u>15</u>      | NC             | 5_            | NC<br>NC | 1  |
| 446        |        | 45  | min        | 003         | 2  | 017             | 4  | 004             | 1          | -3.192e-4              | 1_             | 6139.772       | 4_            | NC<br>NC | 1  |
| 447        |        | 15  | max        | .005        | 3  | 003             | 15 | 0               | 15         |                        | <u>15</u>      | NC<br>7000.00  | 2             | NC       | 1  |
| 448        |        | 4.0 | min        | 004         | 2  | 015             | 4  | 005             | 1          | -3.444e-4              | 1_             | 7220.29        | 4             | NC<br>NC | 1  |
| 449        |        | 16  | max        | .005        | 3  | 003<br>012      | 15 | 0<br>005        | 15         | -1.325e-5<br>-3.696e-4 | <u>15</u><br>1 | NC             | 1_1           | NC<br>NC | 1  |
| 450<br>451 |        | 17  | min        | 004<br>.005 | 3  | 012             | 15 | 005<br>0        | 15         |                        | _              | 9177.667<br>NC | <u>4</u><br>1 | NC<br>NC | 1  |
| 451        |        | 17  | max        | 004         | 2  | 002<br>008      | 4  | 006             | 1          | -3.948e-4              | <u>15</u>      | NC<br>NC       | 1             | NC<br>NC | 1  |
| 452        |        | 18  | max        | .006        | 3  | 006<br>001      | 15 | <u>006</u><br>0 | 15         |                        | <u>1</u><br>15 | NC<br>NC       | 1             | NC<br>NC | 1  |
| 454        |        | 10  | min        | 005         | 2  | 005             | 1  | 007             | 1          | -4.2e-4                | 1              | NC             | 1             | NC       | 1  |
| 455        |        | 19  | max        | .006        | 3  | 005<br>0        | 15 | <u>007</u><br>0 | 15         |                        | 15             | NC             | 1             | NC       | 1  |
| 456        |        | 13  | min        | 005         | 2  | 003             | 1  | 008             | 1          | -4.452e-4              | 1              | NC             | 1             | NC       | 1  |
| 457        | M12    | 1   | max        | .003        | 1  | .003            | 2  | .008            | 1          | -2.529e-6              |                | NC             | 1             | NC       | 3  |
| 458        | IVITZ  |     | min        | 0           | 3  | 006             | 3  | 0               | 15         |                        | 1              | NC             | 1             | 3021.623 | 1  |
| 459        |        | 2   | max        | .003        | 1  | .004            | 2  | .008            | 1          | -2.529e-6              | 15             | NC             | 1             | NC       | 3  |
| 460        |        |     | min        | 0           | 3  | 006             | 3  | 0               | 15         | -6.991e-5              | 1              | NC             | 1             | 3286.363 | 1  |
| 461        |        | 3   | max        | .003        | 1  | .004            | 2  | .007            | 1          | -2.529e-6              | 15             | NC             | 1             | NC       | 3  |
| 462        |        |     | min        | 0           | 3  | 006             | 3  | 0               | 15         | -6.991e-5              | 1              | NC             | 1             | 3601.411 | 1  |
| 463        |        | 4   | max        | .002        | 1  | .004            | 2  | .006            | 1          | -2.529e-6              | 15             | NC             | 1             | NC       | 2  |
| 464        |        |     | min        | 0           | 3  | 005             | 3  | 0               | 15         | -6.991e-5              | 1              | NC             | 1             | 3979.843 | 1  |
| 465        |        | 5   | max        | .002        | 1  | .003            | 2  | .006            | 1          | -2.529e-6              | 15             | NC             | 1             | NC       | 2  |
| 466        |        |     | min        | 0           | 3  | 005             | 3  | 0               | 15         | -6.991e-5              | 1              | NC             | 1             | 4439.427 | 1  |
| 467        |        | 6   | max        | .002        | 1  | .003            | 2  | .005            | 1          | -2.529e-6              | 15             | NC             | 1             | NC       | 2  |
| 468        |        |     | min        | 0           | 3  | 004             | 3  | 0               | 15         | -6.991e-5              | 1              | NC             | 1             | 5004.803 | 1  |
| 469        |        | 7   | max        | .002        | 1  | .003            | 2  | .004            | 1          | -2.529e-6              | <u>15</u>      | NC             | 1_            | NC       | 2  |
| 470        |        |     | min        | 0           | 3  | 004             | 3  | 0               | 15         | -6.991e-5              | 1_             | NC             | 1             | 5710.949 | 1  |
| 471        |        | 8   | max        | .002        | 1  | .003            | 2  | .004            | 1          | -2.529e-6              | 15             | NC             | _1_           | NC       | 2  |
| 472        |        |     | min        | 0           | 3  | 004             | 3  | 0               | 15         | -6.991e-5              | 1_             | NC             | 1_            | 6608.879 | 1  |
| 473        |        | 9   | max        | .002        | 1  | .002            | 2  | .003            | 1          | -2.529e-6              | <u>15</u>      | NC             | _1_           | NC       | 2  |
| 474        |        |     | min        | 0           | 3  | 003             | 3  | 0               | 15         | -6.991e-5              | _1_            | NC             | _1_           | 7775.391 | 1  |
| 475        |        | 10  | max        | .001        | 1  | .002            | 2  | .003            | 1          | -2.529e-6              | <u>15</u>      | NC             | _1_           | NC       | 2  |
| 476        |        |     | min        | 0           | 3  | 003             | 3  | 0               | 15         | -6.991e-5              | _1_            | NC             | 1_            | 9330.542 | 1  |
| 477        |        | 11  | max        | .001        | 1  | .002            | 2  | .002            | 1          | -2.529e-6              | <u>15</u>      | NC             | 1_            | NC<br>NC | 1  |
| 478        |        | 40  | min        | 0           | 3  | 003             | 3  | 0               | 15         |                        | 1_             | NC             | _1_           | NC<br>NC | 1  |
| 479        |        | 12  | max        | .001        | 1  | .002            | 2  | .002            | 1          | -2.529e-6              | <u>15</u>      | NC             | 1_            | NC<br>NC | 1  |
| 480        |        | 40  | min        |             | 3  | 002             | 3  | 0               |            | -6.991e-5              |                | NC<br>NC       | 1             | NC<br>NC | 1  |
| 481        |        | 13  | max        | 0           | 3  | .001            | 2  | .001            | 1          | -2.529e-6              |                | NC<br>NC       | 1             | NC<br>NC | 1  |
| 482        |        | 1.1 | min        | 0           | 1  | 002             | 2  | 0               |            | -6.991e-5              | 1_             | NC<br>NC       | <u>1</u><br>1 | NC<br>NC | 1  |
| 483        |        | 14  | max        | 0           | 3  | .001            | 3  | 0<br>0          | 1 1 5      | -2.529e-6              |                | NC<br>NC       | 1             | NC<br>NC | 1  |
| 484<br>485 |        | 15  | min<br>max | 0           | 1  | 002<br>0        | 2  | 0               | 1 <u>5</u> | -6.991e-5<br>-2.529e-6 | 1_             | NC<br>NC       | 1             | NC<br>NC | 1  |
| 486        |        | 15  | min        | 0           | 3  | 001             | 3  | 0               |            | -6.991e-5              | 1              | NC             | 1             | NC       | 1  |
| 487        |        | 16  | max        | 0           | 1  | <u>001</u><br>0 | 2  | 0               | 1          | -2.529e-6              |                | NC             | 1             | NC       | 1  |
| 488        |        | 10  | min        | 0           | 3  | 001             | 3  | 0               |            | -6.991e-5              | 1              | NC             | 1             | NC       | 1  |
| 489        |        | 17  |            | 0           | 1  | <u>001</u><br>0 | 2  | 0               | 1          | -2.529e-6              | •              | NC             | 1             | NC<br>NC | 1  |
| 490        |        | 17  | max<br>min | 0           | 3  | 0               | 3  | 0               | 15         |                        | 1              | NC<br>NC       | 1             | NC<br>NC | 1  |
| 491        |        | 18  | max        | 0           | 1  | 0               | 2  | 0               | 1          | -2.529e-6              |                | NC             | 1             | NC       | 1  |
| 492        |        | 10  | min        | 0           | 3  | 0               | 3  | 0               | 15         |                        | 1              | NC             | 1             | NC       | 1  |
| 493        |        | 19  | max        | 0           | 1  | 0               | 1  | 0               | 1          | -2.529e-6              | •              | NC             | 1             | NC       | 1  |
| 494        |        | 13  | min        | 0           | 1  | 0               | 1  | 0               | 1          | -6.991e-5              | 1              | NC             | 1             | NC       | 1  |
| 495        | M1     | 1   | max        | .008        | 3  | .202            | 1  | 0               | 1          | 1.062e-2               | 1              | NC             | 1             | NC       | 1  |
| 496        |        |     | min        | 004         | 2  | 046             | 3  | 0               |            | -1.755e-2              | 3              | NC             | 1             | NC       | 1  |
|            |        |     |            |             | _  | .0.10           |    |                 |            | 111 JUJ Z              |                |                | _             |          |    |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

| 497 |      |     |     | x [in] | LC_ | y [in] | <u>LC</u> | z [in] |    |           | LU  | (n) L/y Ratio LC |          | <u>, LO</u> |
|-----|------|-----|-----|--------|-----|--------|-----------|--------|----|-----------|-----|------------------|----------|-------------|
|     |      | 2   | max | .008   | 3   | .101   | 1         | 0      | 15 | 5.129e-3  | _1_ | NC 5             | NC       | 1           |
| 498 |      |     | min | 004    | 2   | 023    | 3         | 006    | 1  | -8.71e-3  | 3   | 1323.041 1       | NC       | 1           |
| 499 |      | 3   | max | .008   | 3   | .011   | 3         | 0      | 15 | 1.497e-5  | 10  | NC 5             | NC       | 1           |
| 500 |      |     | min | 004    | 2   | 01     | 2         | 009    | 1  | -1.853e-4 | 1   | 636.84 1         | NC       | 1           |
| 501 |      | 4   | max | .008   | 3   | .065   | 3         | 0      | 15 | 4.5e-3    | 1_  | NC 15            | NC       | 1           |
| 502 |      |     | min | 004    | 2   | 133    | 1         | 008    | 1  | -3.922e-3 | 3   | 401.782 1        | NC       | 1           |
| 503 |      | 5   | max | .008   | 3   | .132   | 3         | 0      | 15 | 9.185e-3  | 1   | 9816.902 15      | NC       | 1           |
| 504 |      |     | min | 004    | 2   | 262    | 1         | 006    | 1  | -7.751e-3 | 3   | 289.667 1        | NC       | 1           |
| 505 |      | 6   | max | .007   | 3   | .205   | 3         | 0      | 15 | 1.387e-2  | 1   | 7771.344 15      | NC       | 1           |
| 506 |      |     | min | 004    | 2   | 388    | 1         | 003    | 1  | -1.158e-2 | 3   | 227.921 1        | NC       | 1           |
| 507 |      | 7   | max | .007   | 3   | .274   | 3         | 0      | 1  | 1.855e-2  | 1   | 6562.284 15      | NC       | 1           |
| 508 |      |     | min | 004    | 2   | 5      | 1         | 0      | 3  | -1.541e-2 | 3   | 191.494 1        | NC       | 1           |
| 509 |      | 8   | max | .007   | 3   | .332   | 3         | 0      | 1  | 2.324e-2  | 1   | 5846.242 15      | NC       | 1           |
| 510 |      |     | min | 004    | 2   | 589    | 1         | 0      | 15 | -1.924e-2 | 3   | 169.96 1         | NC       | 1           |
| 511 |      | 9   | max | .007   | 3   | .369   | 3         | 0      | 15 | 2.553e-2  | 1   | 5471.367 15      | NC       | 1           |
| 512 |      |     | min | 004    | 2   | 646    | 1         | 0      | 1  | -1.965e-2 | 3   | 158.736 1        | NC       | 1           |
| 513 |      | 10  | max | .007   | 3   | .384   | 3         | 0      | 1  | 2.622e-2  | 1   | 5356.735 15      | NC       | 1           |
| 514 |      |     | min | 004    | 2   | 664    | 1         | 0      | 15 | -1.776e-2 | 3   | 155.373 1        | NC       | 1           |
| 515 |      | 11  | max | .007   | 3   | .375   | 3         | 0      | 1  | 2.691e-2  | 1   | 5471.147 15      | NC       | 1           |
| 516 |      |     | min | 004    | 2   | 645    | 1         | 0      | 15 | -1.588e-2 | 3   | 158.967 1        | NC       | 1           |
| 517 |      | 12  | max | .006   | 3   | .343   | 3         | 0      | 15 | 2.534e-2  | 1   | 5845.772 15      | NC       | 1           |
| 518 |      |     | min | 004    | 2   | 588    | 1         | 0      | 1  | -1.366e-2 | 3   | 170.656 1        | NC       | 1           |
| 519 |      | 13  | max | .006   | 3   | .292   | 3         | 0      | 15 | 2.038e-2  | 1   | 6561.458 15      | NC       | 1           |
| 520 |      | -10 | min | 003    | 2   | 497    | 1         | 0      | 1  | -1.093e-2 | 3   | 193.169 1        | NC       | 1           |
| 521 |      | 14  | max | .006   | 3   | .227   | 3         | .002   | 1  | 1.542e-2  | 1   | 7769.943 15      | NC       | 1           |
| 522 |      | 17  | min | 003    | 2   | 383    | 1         | 0      | 15 | -8.199e-3 | 3   | 231.46 1         | NC       | 1           |
| 523 |      | 15  | max | .006   | 3   | .154   | 3         | .005   | 1  | 1.047e-2  | 1   | 9814.484 15      | NC       | 1           |
| 524 |      | 10  | min | 003    | 2   | 255    | 1         | 0      | 15 | -5.47e-3  | 3   | 296.858 1        | NC       | 1           |
| 525 |      | 16  | max | .006   | 3   | .078   | 3         | .008   | 1  | 5.514e-3  | 1   | NC 15            | NC       | 1           |
| 526 |      | 10  | min | 003    | 2   | 126    | 1         | 0      | 15 | -2.74e-3  | 3   | 416.685 1        | NC       | 1           |
| 527 |      | 17  | max | .006   | 3   | .004   | 3         | .008   | 1  | 5.588e-4  | 1   | NC 5             | NC       | 1           |
| 528 |      | 17  | min | 003    | 2   | 004    | 2         | 0      | 15 | -1.103e-5 | 3   | 669.861 1        | NC       | 1           |
| 529 |      | 18  |     | .006   | 3   | .099   | 1         | .006   | 1  | 6.999e-3  |     | NC 5             | NC       | 1           |
| 530 |      | 10  | max | 003    | 2   | 063    | 3         | 0      | 15 | -2.389e-3 | 3   | 1406.082 1       | NC<br>NC | 1           |
|     |      | 40  | min |        |     |        |           | •      |    |           |     |                  |          | 1           |
| 531 |      | 19  | max | .006   | 3   | .194   | 1         | 0      | 15 | 1.394e-2  | 2   |                  | NC<br>NC | 1           |
| 532 | NAC. | 4   | min | 003    | 2   | 126    | 3         | 0      | 1  | -4.858e-3 | 3   | 110              | NC<br>NC | •           |
| 533 | M5   | 1   | max | .024   | 3   | .37    | 1         | 0      | 1  | 0         | 1   | NC 1             | NC       | 1           |
| 534 |      |     | min | 017    | 2   | 025    | 3         | 0      | 1  | 0         | 1_  | NC 1             | NC<br>NC | 1           |
| 535 |      | 2   | max | .024   | 3   | .186   | 1         | 0      | 1  | 0         | 1   | NC 5             | NC       | 1           |
| 536 |      | _   | min | 017    | 2   | 014    | 3         | 0      | 1  | 0         | 1_  | 730.741 1        | NC<br>NC | 1           |
| 537 |      | 3   | max | .024   | 3   | .033   | 3         | 0      | 1  | 0         | 1   | NC 15            | NC       | 1           |
| 538 |      |     | min | 017    | 2   | 029    | 2         | 0      | 1  | 0         | 1_  | 338.486 1        | NC       | 1           |
| 539 |      | 4   | max | .024   | 3   | .147   | 3         | 0      | 1  | 0         | 1   | 7697.116 15      | NC       | 1           |
| 540 |      |     | min | 016    | 2   | 293    | 1         | 0      | 1  | 0         | 1_  | 203.266 1        | NC       | 1           |
| 541 |      | 5   | max | .023   | 3   | .309   | 3         | 0      | 1  | 0         | 1_  | 5353.745 15      | NC       | 1           |
| 542 |      |     | min | 016    | 2   | 587    | 1         | 0      | 1  | 0         | 1   | 140.812 1        | NC       | 1           |
| 543 |      | 6   | max | .023   | 3   | .492   | 3         | 0      | 1  | 0         | _1_ | 4103.22 15       | NC       | 1           |
| 544 |      |     | min | 016    | 2   | 882    | 1         | 0      | 1  | 0         | 1   | 107.568 1        | NC       | 1           |
| 545 |      | 7   | max | .022   | 3   | .673   | 3         | 0      | 1  | 0         | 1_  | 3384.316 15      | NC       | 1           |
| 546 |      |     | min | 015    | 2   | -1.152 | 1         | 0      | 1  | 0         | 1   | 88.492 1         | NC       | 1           |
| 547 |      | 8   | max | .022   | 3   | .825   | 3         | 0      | 1  | 0         | 1   | 2967.87 15       | NC       | 1           |
| 548 |      |     | min | 015    | 2   | -1.37  | 1         | 0      | 1  | 0         | 1   | 77.457 1         | NC       | 1           |
| 549 |      | 9   | max | .021   | 3   | .923   | 3         | 0      | 1  | 0         | 1   | 2754.634 15      | NC       | 1           |
| 550 |      |     | min | 015    | 2   | -1.507 | 1         | 0      | 1  | 0         | 1   | 71.816 1         | NC       | 1           |
| 551 |      | 10  | max | .021   | 3   | .959   | 3         | 0      | 1  | 0         | 1   | 2690.377 15      | NC       | 1           |
| 552 |      |     | min | 014    | 2   | -1.553 | 1         | 0      | 1  | 0         | 1   | 70.142 1         | NC       | 1           |
| 553 |      | 11  | max | .02    | 3   | .936   | 3         | 0      | 1  | 0         | 1   | 2754.746 15      | NC       | 1           |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:\_\_\_\_

|     | Member | Sec      |     | x [in] | LC | y [in]       | LC | z [in]      | LC | x Rotate [r | LC  | (n) L/y Ratio L0 | C (n) L/z Rat | io LC |
|-----|--------|----------|-----|--------|----|--------------|----|-------------|----|-------------|-----|------------------|---------------|-------|
| 554 |        |          | min | 014    | 2  | -1.506       | 1  | 0           | 1  | 0           | 1   | 71.935 1         | NC            | 1     |
| 555 |        | 12       | max | .02    | 3  | .854         | 3  | 0           | 1  | 0           | 1   | 2968.135 1       | 5 NC          | 1     |
| 556 |        |          | min | 014    | 2  | -1.366       | 1  | 0           | 1  | 0           | 1   | 77.852 1         |               | 1     |
| 557 |        | 13       | max | .019   | 3  | .722         | 3  | 0           | 1  | 0           | 1   | 3384.85 1        | 5 NC          | 1     |
| 558 |        |          | min | 014    | 2  | -1.143       | 1  | 0           | 1  | 0           | 1   | 89.532 1         |               | 1     |
| 559 |        | 14       | max | .019   | 3  | .555         | 3  | 0           | 1  | 0           | 1   | 4104.252 1       |               | 1     |
| 560 |        |          | min | 013    | 2  | 866          | 1  | 0           | 1  | 0           | 1   | 109.944 1        |               | 1     |
| 561 |        | 15       | max | .018   | 3  | .37          | 3  | 0           | 1  | 0           | 1   | 5355.774 1       |               | 1     |
| 562 |        |          | min | 013    | 2  | 566          | 1  | 0           | 1  | 0           | 1   | 146.059 1        |               | 1     |
| 563 |        | 16       | max | .018   | 3  | .184         | 3  | 0           | 1  | 0           | 1   | 7701.36          |               | 1     |
| 564 |        |          | min | 013    | 2  | 272          | 1  | 0           | 1  | 0           | 1   | 215.285 1        |               | 1     |
| 565 |        | 17       | max | .017   | 3  | .011         | 3  | 0           | 1  | 0           | 1   | NC 1:            |               | 1     |
| 566 |        |          | min | 013    | 2  | 016          | 2  | 0           | 1  | 0           | 1   | 368.457 1        |               | 1     |
| 567 |        | 18       | max | .017   | 3  | .183         | 1  | 0           | 1  | 0           | 1   | NC 5             |               | 1     |
| 568 |        | 10       | min | 013    | 2  | 135          | 3  | 0           | 1  | 0           | 1   | 812.999 1        | NC            | 1     |
| 569 |        | 19       | max | .017   | 3  | .347         | 1  | 0           | 1  | 0           | 1   | NC 1             | NC            | 1     |
| 570 |        | 13       | min | 013    | 2  | 264          | 3  | 0           | 1  | 0           | 1   | NC 1             | NC<br>NC      | 1     |
| 571 | M9     | 1        |     | .008   | 3  | .202         | 1  | 0           | 15 | 1.755e-2    | 3   | NC 1             |               | 1     |
| 572 | IVIƏ   |          | max | 004    | 2  | 046          | 3  | 0           | 1  | -1.062e-2   | 1   | NC 1             | NC<br>NC      | 1     |
| 573 |        | 2        | max | .008   | 3  | 046<br>.101  | 1  | .006        | 1  | 8.71e-3     | 3   | NC 5             |               | 1     |
| 574 |        |          | min | 004    | 2  | 023          | 3  | <u>.006</u> | 15 | -5.129e-3   | 1   | 1323.041 1       | NC NC         | 1     |
| 575 |        | 3        |     | .008   | 3  | .023<br>.011 | 3  | .009        | 1  | 1.853e-4    | 1   | NC 5             |               | 1     |
|     |        | 3        | max |        | 2  | 01           | 2  |             | 15 | -1.497e-5   |     |                  |               | 1     |
| 576 |        | 1        | min | 004    |    |              |    | 0           |    |             | 10  |                  |               |       |
| 577 |        | 4        | max | .008   | 3  | .065         | 3  | .008        | 1  | 3.922e-3    | 3   | NC 1:            |               | 1     |
| 578 |        | <b>-</b> | min | 004    | 2  | 133          | 1  | 0           | 15 | -4.5e-3     | 1_  | 401.782 1        |               | 1     |
| 579 |        | 5        | max | .008   | 3  | .132         | 3  | .006        | 1  | 7.751e-3    | 3   | 9816.902 1       |               | 1     |
| 580 |        |          | min | 004    | 2  | 262          | 1  | 0           | 15 | -9.185e-3   | 1_  | 289.667 1        |               | 1     |
| 581 |        | 6        | max | .007   | 3  | .205         | 3  | .003        | 1  | 1.158e-2    | 3_  | 7771.344 1       |               | 1     |
| 582 |        |          | min | 004    | 2  | 388          | 1  | 0           | 15 | -1.387e-2   | 1   | 227.921 1        |               | 1     |
| 583 |        | 7        | max | .007   | 3  | .274         | 3  | 0           | 3  | 1.541e-2    | 3   | 6562.284 1       |               | 1     |
| 584 |        |          | min | 004    | 2  | <u>5</u>     | 1  | 0           | 1  | -1.855e-2   | 1   | 191.494 1        |               | 1     |
| 585 |        | 8        | max | .007   | 3  | .332         | 3  | 0           | 15 | 1.924e-2    | 3   | 5846.242 1       |               | 1     |
| 586 |        |          | min | 004    | 2  | 589          | 1  | 0           | 1  | -2.324e-2   | 1_  | 169.96 1         |               | 1     |
| 587 |        | 9        | max | .007   | 3  | .369         | 3  | 0           | 1  | 1.965e-2    | 3   | 5471.367 1       |               | 1     |
| 588 |        |          | min | 004    | 2  | 646          | 1  | 0           | 15 | -2.553e-2   | 1_  | 158.736 1        |               | 1     |
| 589 |        | 10       | max | .007   | 3  | .384         | 3  | 0           | 15 | 1.776e-2    | 3   | 5356.735 1       |               | 1     |
| 590 |        |          | min | 004    | 2  | 664          | 1  | 0           | 1  | -2.622e-2   | _1_ | 155.373 1        |               | 1     |
| 591 |        | 11       | max | .007   | 3  | .375         | 3  | 0           | 15 | 1.588e-2    | 3   | 5471.147 1       |               | 1     |
| 592 |        |          | min | 004    | 2  | 645          | 1  | 0           | 1  | -2.691e-2   | 1   | 158.967 1        |               | 1     |
| 593 |        | 12       | max | .006   | 3  | .343         | 3  | 0           | 1  | 1.366e-2    | 3   | 5845.772 1       |               | 1     |
| 594 |        |          | min | 004    | 2  | 588          | 1  | 0           |    | -2.534e-2   | 1_  | 170.656 1        | NC            | 1     |
| 595 |        | 13       | max | .006   | 3  | .292         | 3  | 00          | 1  | 1.093e-2    | 3   | 6561.458 1       |               | 1     |
| 596 |        |          | min | 003    | 2  | 497          | 1  | 0           | 15 | -2.038e-2   | 1_  | 193.169 1        |               | 1     |
| 597 |        | 14       | max | .006   | 3  | .227         | 3  | 0           | 15 |             | 3   | 7769.943 1       |               | 1     |
| 598 |        |          | min | 003    | 2  | 383          | 1  | 002         | 1  | -1.542e-2   | 1   | 231.46 1         |               | 1     |
| 599 |        | 15       | max | .006   | 3  | .154         | 3  | 0           | 15 | 5.47e-3     | 3   | 9814.484 1       |               | 1     |
| 600 |        |          | min | 003    | 2  | 255          | 1  | 005         | 1  | -1.047e-2   | 1   | 296.858 1        |               | 1     |
| 601 |        | 16       | max | .006   | 3  | .078         | 3  | 0           | 15 | 2.74e-3     | 3   | NC 1             |               | 1     |
| 602 |        |          | min | 003    | 2  | 126          | 1  | 008         | 1  | -5.514e-3   | 1   | 416.685 1        |               | 1     |
| 603 |        | 17       | max | .006   | 3  | .004         | 3  | 0           | 15 | 1.103e-5    | 3   | NC 5             | NC            | 1     |
| 604 |        |          | min | 003    | 2  | 006          | 2  | 008         | 1  | -5.588e-4   | 1   | 669.861 1        | NC            | 1     |
| 605 |        | 18       | max | .006   | 3  | .099         | 1  | 0           | 15 | 2.389e-3    | 3   | NC 5             | NC            | 1     |
| 606 |        |          | min | 003    | 2  | 063          | 3  | 006         | 1  | -6.999e-3   | 2   | 1406.082 1       |               | 1     |
| 607 |        | 19       | max | .006   | 3  | .194         | 1  | 0           | 1  | 4.858e-3    | 3   | NC 1             | NC            | 1     |
| 608 |        |          | min | 003    | 2  | 126          | 3  | 0           | 15 | -1.394e-2   | 2   | NC 1             |               | 1     |
|     |        |          |     |        |    |              |    |             |    |             |     |                  |               |       |



| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 1/5      |
| Project:  | Standard PVMax - Worst Case, 14- | -40 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          |          |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method: ACI 318-05 Units: Imperial units

### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c<sub>ac</sub> (inch): 9.67 C<sub>min</sub> (inch): 1.75 Smin (inch): 3.00

# **Load and Geometry**

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$ : 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28





| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 2/5      |
| Project:  | Standard PVMax - Worst Case, 14- | -40 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          | •        |

<Figure 2>



# Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 3/5      |
| Project:  | Standard PVMax - Worst Case, 14- | -40 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          |          |

### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |  |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|--|
| 1      | 1020.0                                | 27.0                                   | 565.0                                  | 565.6                                                      |  |
| Sum    | 1020.0                                | 27.0                                   | 565.0                                  | 565 6                                                      |  |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis,  $e'_{Vy}$  (inch): 0.00

<Figure 3>



#### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |  |
|----------------------|--------|--------------------|--|
| 8095                 | 0.75   | 6071               |  |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$  (Eq. D-7)

| Kc                          | λ                                           | f'c (psi)                      | h <sub>ef</sub> (in) | $N_b$ (lb)    |            |        |                    |
|-----------------------------|---------------------------------------------|--------------------------------|----------------------|---------------|------------|--------|--------------------|
| 17.0                        | 1.00                                        | 2500                           | 5.247                | 10215         |            |        |                    |
| $\phi N_{cb} = \phi (A_t)$  | Nc / $A_{Nco}$ ) $\Psi_{ed,N}$ $\Psi_{c,N}$ | $_{N}\Psi_{cp,N}N_{b}$ (Sec. I | D.4.1 & Eq. D-4)     | )             |            |        |                    |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )                | $\Psi_{ed,N}$                  | $\Psi_{c,N}$         | $\Psi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cb}$ (lb) |
| 220.36                      | 247.75                                      | 0.967                          | 1.00                 | 1.000         | 10215      | 0.65   | 5710               |

# 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| rt-term K <sub>sat</sub> τ <sub>k,cr</sub> (psi)                              |
|-------------------------------------------------------------------------------|
| 0 1.00 1035                                                                   |
| . D-16f)                                                                      |
| (in) $h_{ef}$ (in) $N_{a0}$ (lb)                                              |
| 0 6.000 9755                                                                  |
| Ψ <sub>ed,Na</sub> Ψ <sub>p,Na</sub> N <sub>a0</sub> (Sec. D.4.1 & Eq. D-16a) |
| $\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$                                            |
|                                                                               |



| Company:  | Schletter, Inc.                  | Date:   | 8/1/2016 |
|-----------|----------------------------------|---------|----------|
| Engineer: | HCV                              | Page:   | 4/5      |
| Project:  | Standard PVMax - Worst Case, 14- | 40 Inch | Width    |
| Address:  |                                  |         |          |
| Phone:    |                                  |         |          |
| E-mail:   |                                  |         |          |

## 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

### 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

#### Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| l <sub>e</sub> (in)         | d <sub>a</sub> (in)                                         | λ                                 | $f'_c$ (psi)    | c <sub>a1</sub> (in) | $V_{by}$ (lb) |        |                     |  |
|-----------------------------|-------------------------------------------------------------|-----------------------------------|-----------------|----------------------|---------------|--------|---------------------|--|
| 4.00                        | 0.50                                                        | 1.00                              | 2500            | 7.00                 | 6947          |        |                     |  |
| $\phi V_{cby} = \phi (A_V)$ | /c / A vco) \( \mathcal{P}_{ed, V} \( \mathcal{P}_{c, V} \) | $ \sqrt{\Psi_{h,V}V_{by}} $ (Sec. | D.4.1 & Eq. D-2 | 1)                   |               |        |                     |  |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )                                | $arPsi_{\sf ed,V}$                | $arPsi_{c,V}$   | $\Psi_{h,V}$         | $V_{by}$ (lb) | $\phi$ | $\phi V_{cby}$ (lb) |  |
| 192.89                      | 220.50                                                      | 0.925                             | 1.000           | 1.000                | 6947          | 0.70   | 3934                |  |

 $V_{bx}$  (lb)

8282

#### Shear perpendicular to edge in x-direction:

| $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24) |         |      |           |          |  |  |  |  |  |
|-----------------------------------------------------------------------------------|---------|------|-----------|----------|--|--|--|--|--|
| le (in)                                                                           | da (in) | λ    | f'c (psi) | Ca1 (in) |  |  |  |  |  |
| 4.00                                                                              | 0.50    | 1.00 | 2500      | 7.87     |  |  |  |  |  |

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$  (Sec. D.4.1 & Eq. D-21)

| Avc (in <sup>2</sup> ) | Avco (in <sup>2</sup> ) | $\Psi_{\sf ed,V}$ | $\Psi_{c,V}$ | $\Psi_{h,V}$ | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
|------------------------|-------------------------|-------------------|--------------|--------------|---------------|--------|---------------------|
| 165.27                 | 278.72                  | 0.878             | 1.000        | 1.000        | 8282          | 0.70   | 3018                |

# Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$   $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$   $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$ 

| $\varphi \mathbf{v} \cos \varphi \left( \frac{2}{3} \right) (11)$ | /c/ / ( v co ) 1 eu, v 1 c, i | V 1 11, V V by (OCO. D | .+. 1, D.O.Z. 1(0) | α Lq. D Z 1) |                      |        |                     |
|-------------------------------------------------------------------|-------------------------------|------------------------|--------------------|--------------|----------------------|--------|---------------------|
| Avc (in <sup>2</sup> )                                            | $Av\infty$ (in <sup>2</sup> ) | $\varPsi_{\sf ed,V}$   | $\Psi_{c,V}$       | $\Psi_{h,V}$ | V <sub>by</sub> (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 192.89                                                            | 220.50                        | 1.000                  | 1.000              | 1.000        | 6947                 | 0.70   | 8508                |

### Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| l <sub>e</sub> (in)         | d <sub>a</sub> (in)           | λ                                | $f'_c$ (psi)      | <i>c</i> <sub>a1</sub> (in) | $V_{bx}$ (lb) |        |                     |
|-----------------------------|-------------------------------|----------------------------------|-------------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                          | 1.00                             | 2500              | 7.87                        | 8282          |        |                     |
| $\phi V_{cby} = \phi (2)$   | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$ | $\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21)             |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )  | $\Psi_{\sf ed,V}$                | $arPsi_{c,V}$     | $\Psi_{h,V}$                | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cby}$ (lb) |
| 165.27                      | 278.72                        | 1.000                            | 1.000             | 1.000                       | 8282          | 0.70   | 6875                |

### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$ 

| Kcp       | $A_{Na}$ (in <sup>2</sup> ) | $A_{Na0}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $arPsi_{p,Na}$ | N <sub>a0</sub> (lb) | N <sub>a</sub> (lb) |        |                      |
|-----------|-----------------------------|------------------------------|--------------------|----------------|----------------------|---------------------|--------|----------------------|
| 2.0       | 109.66                      | 109.66                       | 1.000              | 1.000          | 9755                 | 9755                |        |                      |
| Anc (in²) | Ανω (in²)                   | $\Psi_{ed,N}$                | $\Psi_{c,N}$       | $arPsi_{cp,N}$ | N <sub>b</sub> (lb)  | Ncb (lb)            | $\phi$ | $\phi V_{c ho}$ (lb) |
| 220.36    | 247.75                      | 0.967                        | 1.000              | 1.000          | 10215                | 8785                | 0.70   | 12298                |



| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 5/5      |
| Project:  | Standard PVMax - Worst Case, 14- | -40 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          | _        |

### 11. Results

# Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                     | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio          | Status         |
|-----------------------------|-------------------------------------|---------------------------|----------------|----------------|
| Steel                       | 1020                                | 6071                      | 0.17           | Pass           |
| Concrete breakout           | 1020                                | 5710                      | 0.18           | Pass           |
| Adhesive                    | 1020                                | 5365                      | 0.19           | Pass (Governs) |
| Shear                       | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio          | Status         |
| Steel                       | 566                                 | 3156                      | 0.18           | Pass (Governs) |
| T Concrete breakout y+      | 565                                 | 3934                      | 0.14           | Pass           |
| T Concrete breakout x+      | 27                                  | 3018                      | 0.01           | Pass           |
| Concrete breakout y+        | 27                                  | 8508                      | 0.00           | Pass           |
| Concrete breakout x+        | 565                                 | 6875                      | 0.08           | Pass           |
| Concrete breakout, combined | -                                   | -                         | 0.14           | Pass           |
| Pryout                      | 566                                 | 12298                     | 0.05           | Pass           |
| Interaction check Nua       | $/\phi N_n$ $V_{ua}/\phi V_n$       | Combined Rat              | io Permissible | Status         |
| Sec. D.7.1 0.1              | 9 0.00                              | 19.0 %                    | 1.0            | Pass           |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

## 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.



| Company:  | Schletter, Inc.                  | Date:    | 8/1/2016 |
|-----------|----------------------------------|----------|----------|
| Engineer: | HCV                              | Page:    | 1/5      |
| Project:  | Standard PVMax - Worst Case, 21- | -31 Inch | Width    |
| Address:  |                                  |          |          |
| Phone:    |                                  |          |          |
| E-mail:   |                                  |          |          |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h<sub>min</sub> (inch): 8.50 c<sub>ac</sub> (inch): 9.67 C<sub>min</sub> (inch): 1.75 S<sub>min</sub> (inch): 3.00

### **Load and Geometry**

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

**Base Material** 

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ<sub>c,V</sub>: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28





| Company:  | Schletter, Inc.                 | Date:    | 8/1/2016 |
|-----------|---------------------------------|----------|----------|
| Engineer: | HCV                             | Page:    | 2/5      |
| Project:  | Standard PVMax - Worst Case, 21 | -31 Inch | Width    |
| Address:  |                                 |          |          |
| Phone:    |                                 |          |          |
| E-mail:   |                                 |          |          |

<Figure 2>



# **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                 | Date:    | 8/1/2016 |
|-----------|---------------------------------|----------|----------|
| Engineer: | HCV                             | Page:    | 3/5      |
| Project:  | Standard PVMax - Worst Case, 21 | -31 Inch | Width    |
| Address:  |                                 |          |          |
| Phone:    |                                 |          |          |
| E-mail:   |                                 |          |          |

#### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|
| 1      | 2495.5                                | 1558.5                                 | 0.0                                    | 1558.5                                                     |
| 2      | 2495.5                                | 1558.5                                 | 0.0                                    | 1558.5                                                     |
| Sum    | 4991.0                                | 3117.0                                 | 0.0                                    | 3117.0                                                     |

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'<sub>Nx</sub> (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'<sub>Ny</sub> (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'<sub>Vx</sub> (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'<sub>Vy</sub> (inch): 0.00

<Figure 3>



#### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------------------|--------|--------------------|
| 8095                 | 0.75   | 6071               |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$  (Eq. D-7)

| <b>k</b> c                  | λ                                          | $f'_c$ (psi)                                       | h <sub>ef</sub> (in) | $N_b$ (lb)   |               |            |        |                     |
|-----------------------------|--------------------------------------------|----------------------------------------------------|----------------------|--------------|---------------|------------|--------|---------------------|
| 17.0                        | 1.00                                       | 2500                                               | 6.000                | 12492        |               |            |        |                     |
| $\phi N_{cbg} = \phi (A_i)$ | Nc / $A_{Nco}$ ) $\Psi_{ec,N}$ $\Psi_{ec}$ | $_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S | Sec. D.4.1 & Eq      | . D-5)       |               |            |        |                     |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )               | $\Psi_{ec,N}$                                      | $\Psi_{ed,N}$        | $\Psi_{c,N}$ | $\Psi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cbg}$ (Ib) |
| 378.00                      | 324.00                                     | 1.000                                              | 0.972                | 1.00         | 1.000         | 12492      | 0.65   | 9208                |

# 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| τ <sub>k,cr</sub> (psi)          | <b>f</b> short-term | $K_{sat}$            | $\tau_{k,cr}$ (psi)  |  |
|----------------------------------|---------------------|----------------------|----------------------|--|
| 1035                             | 1.00                | 1.00                 | 1035                 |  |
| $N_{a0} = \tau_{k,cr} \pi d_{a}$ | hef (Eq. D-16f)     |                      |                      |  |
| $\tau_{k,cr}$ (psi)              | d <sub>a</sub> (in) | h <sub>ef</sub> (in) | N <sub>a0</sub> (lb) |  |
| 1035                             | 0.50                | 6.000                | 9755                 |  |

 $\phi N_{ag} = \phi \left( A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$ 

| $A_{Na}$ (in <sup>2</sup> ) | $A_{Na0}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $arPsi_{g,Na}$ | $arPsi_{ec,Na}$ | $arPsi_{ ho, Na}$ | $N_{a0}(lb)$ | $\phi$ | $\phi N_{ag}$ (lb) |
|-----------------------------|------------------------------|--------------------|----------------|-----------------|-------------------|--------------|--------|--------------------|
| 158.66                      | 109.66                       | 1.000              | 1.043          | 1.000           | 1.000             | 9755         | 0.55   | 8093               |



| Company:  | Schletter, Inc.                               | Date: | 8/1/2016 |  |  |  |
|-----------|-----------------------------------------------|-------|----------|--|--|--|
| Engineer: | HCV                                           | Page: | 4/5      |  |  |  |
| Project:  | Standard PVMax - Worst Case, 21-31 Inch Width |       |          |  |  |  |
| Address:  |                                               |       |          |  |  |  |
| Phone:    |                                               |       |          |  |  |  |
| E-mail:   |                                               |       |          |  |  |  |

## 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	extit{sa}}$ (lb) |  |
|---------------|------------------------|--------|-------------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                            |  |

### 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

#### Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| l <sub>e</sub> (in)       | d <sub>a</sub> (in)            | λ                                            | $f'_c$ (psi)         | <i>c</i> <sub>a1</sub> (in)   | $V_{bx}$ (lb) |               |        |                      |
|---------------------------|--------------------------------|----------------------------------------------|----------------------|-------------------------------|---------------|---------------|--------|----------------------|
| 4.00                      | 0.50                           | 1.00                                         | 2500                 | 12.00                         | 15593         |               |        |                      |
| $\phi V_{cbgx} = \phi (A$ | Avc / Avco) Yec, v Ye          | $_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$ | (Sec. D.4.1 & Ed     | ą. D-22)                      |               |               |        |                      |
| Avc (in <sup>2</sup> )    | $Av \infty$ (in <sup>2</sup> ) | $\Psi_{ec,V}$                                | $\varPsi_{\sf ed,V}$ | $arPsi_{	extsf{c},	extsf{V}}$ | $\Psi_{h,V}$  | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbgx}$ (Ib) |
| 378.00                    | 648.00                         | 1.000                                        | 0.836                | 1.000                         | 1.000         | 15593         | 0.70   | 5323                 |

#### Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| le (in)                     | da (in)                       | λ                                | f'c (psi)         | <i>c</i> <sub>a1</sub> (in) | $V_{by}$ (lb) |        |                     |
|-----------------------------|-------------------------------|----------------------------------|-------------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                          | 1.00                             | 2500              | 8.16                        | 8744          |        |                     |
| $\phi V_{cbx} = \phi (2)$   | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$ | $\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21)             |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )  | $\Psi_{ed,V}$                    | $\Psi_{c,V}$      | $\Psi_{h,V}$                | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (Ib) |
| 299.64                      | 299.64                        | 1.000                            | 1.000             | 1.000                       | 8744          | 0.70   | 12241               |

# 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$ 

| ,                           |                                     |                              | ( ,                | -, 3,,         | μ, ,μ (        | ,                   | ,,,                  | (-1)    |
|-----------------------------|-------------------------------------|------------------------------|--------------------|----------------|----------------|---------------------|----------------------|---------|
| <i>k</i> <sub>cp</sub>      | $A_{Na}$ (in <sup>2</sup> )         | $A_{Na0}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,Na}$ | $arPsi_{g,Na}$ | $\Psi_{ec,Na}$ | $\Psi_{ m p,Na}$    | N <sub>a0</sub> (lb) | Na (lb) |
| 2.0                         | 158.66                              | 109.66                       | 1.000              | 1.043          | 1.000          | 1.000               | 9755                 | 14715   |
| $A_{Nc}$ (in <sup>2</sup> ) | A <sub>Nco</sub> (in <sup>2</sup> ) | $\Psi_{ec,N}$                | $\Psi_{ed,N}$      | $\Psi_{c,N}$   | $\Psi_{cp,N}$  | N <sub>b</sub> (lb) | N <sub>cb</sub> (lb) | $\phi$  |
| 378.00                      | 324.00                              | 1.000                        | 0.972              | 1.000          | 1.000          | 12492               | 14166                | 0.70    |

φV<sub>cpg</sub> (lb) 19833

### 11. Results

## Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                | Factored Load, Nua (lb) | Design Strength, øNn (lb) | Ratio | Status         |
|------------------------|-------------------------|---------------------------|-------|----------------|
| Steel                  | 2496                    | 6071                      | 0.41  | Pass           |
| Concrete breakout      | 4991                    | 9208                      | 0.54  | Pass           |
| Adhesive               | 4991                    | 8093                      | 0.62  | Pass (Governs) |
| Shear                  | Factored Load, Vua (lb) | Design Strength, øVn (lb) | Ratio | Status         |
| Steel                  | 1559                    | 3156                      | 0.49  | Pass           |
| T Concrete breakout x+ | 3117                    | 5323                      | 0.59  | Pass (Governs) |



| Company:  | Schletter, Inc.                               | Date: | 8/1/2016 |  |  |
|-----------|-----------------------------------------------|-------|----------|--|--|
| Engineer: | HCV                                           | Page: | 5/5      |  |  |
| Project:  | Standard PVMax - Worst Case, 21-31 Inch Width |       |          |  |  |
| Address:  |                                               |       |          |  |  |
| Phone:    |                                               |       |          |  |  |
| E-mail:   |                                               |       |          |  |  |

| Concrete break    | out y- 1559 | 12241          | 0.             | 13          | Pass (Governs) |  |
|-------------------|-------------|----------------|----------------|-------------|----------------|--|
| Pryout            | 3117        | 19833          | 0.             | 16          | Pass           |  |
| Interaction check | Nua/φNn     | Vua/ $\phi$ Vn | Combined Ratio | Permissible | Status         |  |
| Sec. D.7.3        | 0.62        | 0.59           | 120.2 %        | 1.2         | Pass           |  |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

## 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.