Étude d'une lampe à incandescence

par François DURAND Lycée du Mont-Blanc-René Dayve - 74190 Passy

RÉSUMÉ

A partir des mesures de tension et d'intensité, on détermine les caractéristiques d'une lampe à filament de tungstène : température du filament, longueur d'onde d'émission maximale, dimensions du filament. On peut donc choisir la température du filament d'une lampe en ajustant la tension ou l'intensité.

On considère d'abord le filament lumineux comme un corps noir et on néglige les variations de dimensions dues aux différences de température. Le calcul du rendement énergétique amène à considérer ensuite le filament non plus comme un corps noir mais comme un corps gris.

Cette étude peut être une occasion d'utiliser l'ordinateur pour les calculs et la simulation.

Les mesures sont faites ici pour une lampe 220 V / 100 W, à la température ambiante T_A ($T_A = 20^{\circ}$ C au moment des mesures), mais on peut utiliser toute autre lampe.

1. RÉSISTIVITÉ DU TUNGSTÈNE EN FONCTION DE LA TEMPÉRATURE

Pour le tungstène, on trouve les données suivantes :

Ce qui correspond à la relation :

$$\rho = \rho_0 (1 + at + bt^2)$$
 t en degré Celsius

$$\rho_0 = 5 \cdot 10^{-8} \ \Omega \cdot m$$
 ; $a = 4.8 \cdot 10^{-3} \ C^{-1}$; $b = 5.1 \cdot 10^{-7} \ C^{-2}$

Figure 1 : Résistivité du tungstène.

2. TEMPÉRATURE DU FILAMENT

2.1. On fait varier U aux bornes de la lampe : tous les résultats des mesures et calculs sont rapportés dans le tableau 2. On trace la courbe R(I)(cf). figure 2), on distingue deux parties :

◆ Au dessus de 100 mA

La résistance augmente avec la température. On retrouve assez bien le tracé de la courbe en prenant une branche de parabole :

$$I = pR^2 + qR + r (I \text{ en mA})$$

avec:

$$p = 7 \cdot 10^{-4}$$
 ; $q = 0.35$; $r = 62.3$

mais on peut affiner.

◆ Au dessous de 100 mA

Quand I diminue, la résistance tend vers sa valeur R_{20} à 20°C. En extrapolant on trouve $36\,\Omega < R_{20} < 37\,\Omega$, ce qui correspond à l'indication de l'ohmmètre :

$$R_{20} = 36.3 \Omega$$

(donc l'ohmmètre ne fait pas sensiblement chauffer le filament lors de la mesure).

Figure 2 : Résistance d'une lampe de 100 W.

Avec
$$R_t = R_0 (1 + at + bt^2)$$
, pour $t = 20^{\circ}$ C, on trouve pour 0° C:
 $R_0 = 33,12 \Omega$

2.2. Détermination de la température du filament pour U ou I quelconque

Si on néglige les variations des dimensions du filament, alors :

$$\frac{R_t}{R_0} = \frac{\rho_t}{\rho_0}$$

On trouve la température t en identifiant les rapports R_t / R_0 et ρ_t / ρ_0 , calculés au préalable (cf. tableaux 1 et 2). Exemple :

$$U=220~{\rm V}~~;~~R_t=514~\Omega~~;~~R_t~/~R_0=15,52$$

qui correspond à $t \approx 2407^{\circ}$ C, $T \approx 2680$ K.

2.3. Longueur d'onde d'émission énergétique maximale

• Loi de Wien
$$\lambda_{\text{max}} \cdot T = \text{constante } (2.9 \cdot 10^{-3} \text{ K} \cdot \text{m})$$

Résultats dans le tableau 2, exemple :

$$T = 2680 \text{ K}$$

on trouve :
$$\lambda_{max} = 1082 \text{ nm}$$

tungstène : rapport des résistivités à t°C et 0°C Coefficients 0,0048 a r/ro=(1+at+bt2)

	0,00000051	b			
t (*C)	r /ro	t (*C)	r / ro	t (*C)	r /ro
0	1,00	1250	7,80	2500	16,19
25	1,12	1275	7,95	2525	16,37
50	1,24	1300	8,10	2550	16,56
75	1,36	1325	8,26	2575	16,74
100	1,49	1350	8,41	2600	16,93
125	1,61	1375	8,56	2625	17,11
150	1,73	1400	8,72	2650	17,30
175	1,86	1425	8,88	2675	17,49
200	1,98	1450	9,03	2700	17,68
225	2,11	1475	9,19	2725	17,87
250	2,23	1500	9,35	2750	18,06
275	2,36	1525	9,51	2775	18,25
300	2,49	1550	9,67	2800	18,44
325	2,61	1575	9,83	2825	18,63
350	2,74	1600	9,99	2850	18,82
375	2,87	1625	10,15	2875	19.02
400	3,00	1650	10,31	2900	19,21
425	3,13	1675	10,47	2925	19,40
450	3,26	1700	10,63	2950	19,60
475	3,40	1725	10,80	2975	19,79
500	3,53	1750	10,96	3000	19,99
525	3,66	1775	11,13	3025	20,19
550	3,79	1800	11,29	3050	20,38
575	3,93	1825	11,46	3075	20,58
600	4,06	1850	11,63	3100	20,78
625	4,20	1875	11,79	3125	20,98
650	4.34	1900	11,96	3150	21,18
675	4,47	1925	12,13	3175	21,38
700	4,61	1950	12,30	3200	21,58
725	4.75	1975	12,47	3225	21,78
750	4,89	2000	12,64	3250	21,99
775	5,03	2025	12,81	3275	22,19
800	5,17	2050	12,98	3300	22.39
825	5,31	2075	13,16	3325	22,60
850	5,45	2100	13,33	3350	22,80
875	5,59	2125	13,50	3375	23,01
900	5,73	2150	13,68	3400	23,22
925	5,88	2175		FUSION	
950	6,02	2200	14,03		
975	6,16	2225	14,20		
1000	6,31	2250	14,38		
1025	6,46	2275	14,56		
1050	6,60	2300	14.74		
1075	6,75	2325	14,92		
1100	6,90	2350	15,10		
1125	7,05	2375	15,28		
1150	7.19	2400	15,46		
1175	7,34	2425	15,64		
1200	7,49	2450	15,82		
1225	7.65	2475	16,00		

Tableau 1

Lampe 220V, 100 W

Mesures : U et l

Calculs: P, R, T, lambda maximale et rendement

U(V)	I(mA)	R(Ohm)	T(K)	L.max.	P(W)	P(W)	Pr(W)	Pr/P	l(mA)
mesurée	mesurée			(nm)	mesurée	calculée	calculée	rendement	calculée
1	25	40	315	9206	0,03	0,04	0,00	0.10	32,13
2	44	45	350	8286	0,09	0.11	0,01	0,11	50,32
3	58	52	390	7436	0,17	0,20	0,03	0.13	62,60
4	69	58	430	6744	0,28	0,29	0,05	0,16	71,28
5	77	65	470	6170	0,39	0,39	0,07	0,18	78.11
6	84	71	510	5686	0,50	0,49	0,10	0.21	83,85
7	90	78	550	5273	0,63	0,60	0,14	0,24	88,93
10,2	103	99	670	4328	1,05	1.00	0,33	0,33	102,36
15	118	127	830	3494	1,77	1.76	0,79	0.45	119.49
20	130	154	980	2959	2.60	2,79	1,56	0,56	136,67
25	142	176	1100	2636	3,55	3,93	2,48	0,63	151.61
30	152	197	1210	2397	4,56	5,28	3,63	0,69	166,29
35	163	215	1300	2231	5.71	6,65	4,85	0,73	178,98
40	174	230	1380	2101	6,96	8,11	6,16	0,76	190,75
45	184	245	1455	1993	8,28	9,70	7,61	0,78	202,19
50	194	258	1520	1908	9,70	11,27	9,07	0,80	212,40
55	203	271	1590	1824	11,17	13,19	10,86	0,82	223,70
60	212	283	1645	1763	12,72	14,87	12,44	0,84	232,78
70	230	304	1750	1657	16.10	18,56	15,94	0.86	250,58
80	247	324	1840	1576	19,76	22,27	19,48	0,88	266,31
90	263	342	1930	1503	23,67	26,53	23,59	0,89	282,45
100	278	360	2010	1443	27,80	30,84	27,75	0,90	297,11
110	292	377	2085	1391	32,12	35,36	32,13	0,91	311,11
120	307	391	2150	1349	36,84	39,67	36,33	0,92	323,44
130	320	406	2215	1309	41,60	44,39	40,93	0,92	335,94
140	333	420	2280	1272	46,62	49,53	45,95	0,93	348,61
150	346	434	2340	1239	51,90	54,67	50,99	0,93	360,44
160	358	447	2395	1211	57,28	59.73	55,95	0.94	371,40
170	370	459	2450	1184	62,90	65,15	61,27	0,94	382,47
180	382	471	2500	1160	68,76	70,40	66,43	0.94	392.62
190	393	483	2550	1137	74,67	75,97	71,91	0,95	402,85
200	406	493	2590	1120	81,20	80,66	76,53	0,95	411,09
210	417	504	2640	1098	87,57	86,83	82,61	0,95	421.47
220	428	514	2680	1082	94,16	92,03	87,74		429.83
230	438	525	2730	1062	100,74	98,85	94,47	0,96	440.34

Tableau 2

3. SURFACE DU FILAMENT : PUISSANCE ET TEMPÉRATURE

Connaissant T pour tout I et U, on peut tracer la courbe $P_{mesur\acute{e}e}(T) = UI$. On cherche maintenant l'équation théorique de P(T), soit S la surface du filament :

puissance électrique consommée : $P = U \cdot I$

• Loi de Stefan
$$(\sigma = 5.67 \cdot 10^{-8} \text{ S. I.})$$

puissance rayonnée à T_A (U = 0 V): $\sigma S T_A^4$

puissance rayonnée à $T (U \neq 0 \text{ V})$: $\sigma S T^4$

partie de P rayonnée : $Pr = \sigma S (T^4 - T_A^4)$

◆ Loi de Newton

Partie de P dissipée par conduction et convection = P_O

$$P_Q = K \left(T - T_A \right)$$

$$P = P_r + P_Q$$

donc: $P(T) = \sigma S (T^4 - T_A^4) + K (T - T_A)$

• Deux inconnues : S et K

En théorie il suffit d'écrire cette équation pour deux températures, connaissant U et I pour tout T, donc $P = U \cdot I$, et d'en tirer les valeurs de S et K. Cette méthode, compte tenu des variations expérimentales, donne des résultats trop variables suivant les températures choisies : de 24 à 33 mm² pour S, pour S0, et même d'une valeur négative, à 10^{-2} W · K⁻¹.

On approche de plus près la réalité avec la simulation sur ordinateur : on trace avec un tableur les courbes $P_{mesur\acute{e}e}(T)$ et P(T) théorique, on ajuste les coefficients S et K de façon à arriver à une coı̈ncidence satisfaisante des deux courbes (cf. figure 3). On trouve alors :

$$S = 30 \text{ mm}^2$$
 et $K = 1.8 \cdot 10^{-3} \text{ W} \cdot \text{K}^{-1}$

4. DIMENSIONS DU FILAMENT

Surface du filament : $S = 30 \text{ mm}^2$

On le suppose cylindrique, donc deux inconnues : rayon r et longueur L. Deux équations :

résistance : $R = \rho L / \pi r^2$ et surface : $S = 2 \pi r \cdot L$

On trouve: $L \approx 36 \text{ cm}$ et $r \approx 13 \cdot 10^{-3} \text{ mm}$

5. COURBE TEMPÉRATURE / INTENSITÉ

D'après P(T), avec $U=R_t\cdot I$ pour l'intensité $I_{calcul\acute{e}e}(T)$:

$$I^2 = \sigma S (T^4 - T_A^4) + K (T - T_A) / R_0 (1 + at + bt^2)$$

Avec: $t = T - T_0$; $T_0 = 273 \text{ K}$

$$I^{2} = \frac{\sigma S (T^{4} - T_{A}^{4}) + K (T - T_{A})}{R_{0} \left[1 + a (T - T_{0}) + b (T - T_{0})^{2} \right]}$$

Connaissant S et K, on peut avec un tableur tracer la courbe $I_{calcul\acute{e}e}(T)$ et comparer avec $I_{mesur\acute{e}e}(T)$ (cf. figure 4): on retrouve bien la coïncidence des courbes. On peut donc choisir la température du filament en jouant sur I (ou sur U si on trace U(T)).

Figure 4

6. RENDEMENT

On calcule Pr/P aux différentes températures : on trouve des valeurs de l'ordre de 0,9 à la température de fonctionnement, au lieu de 0,7 environ attendu. Les mesures et calculs effectués pour d'autres lampes (220 V / 25 W et 220 V / 60 W mais aussi 12 V) amènent au même résultat. La bonne correspondance des courbes des puissances mesurée et calculée en fonction de la température indique que l'équation admise pour la puissance est correcte, il faut donc admettre que le filament ne fonctionne pas comme un corps noir mais comme un corps gris et que la puissance rayonnée n'est que de ϵ P_r , ϵ étant compris entre 0 et 1, le reste étant évacué sous forme de chaleur dans P_Q . Pour retrouver une valeur du rendement de 0,67 par exemple il faut prendre ϵ = 0,7. Le filament fonctionne donc comme un corps noir à 70 % environ.

 $\underline{\textit{Remarque}}$: l'introduction de ϵ n'oblige pas à reconsidérer la valeur de la surface du filament, et donc de ses dimensions, car la puissance totale consommée par le filament reste la même, elle est seulement répartie en puissance rayonnée et en chaleur.

7. ON A NÉGLIGÉ LA DILATATION DU FILAMENT

Dilatation linéaire du tungstène :

$$L = L_0 (1 + \alpha t)$$

avec: $\alpha = 5.5 \cdot 10^{-6} \, \text{C}^{-1}$

Pour une augmentation de température de 2000°C en tenant compte de la dilatation de la longueur et du rayon du filament, on trouve $\Delta R / R \approx 10^{-2}$, ce qui est compatible avec la précision des mesures effectuées.