如

考

东 南 大 学 考 试 卷 (A 卷)

课程名称 概率论与数理统计 考试学期 21-22-2 得分

适	用专业	全校	考试	_ , 形 式	闭卷	考试	时间长度	120 分钟
	题号	 	11:1	四	五.	六	八	八
	得分							

 $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$ 表示标准正态分布的分布函数,

$$\Phi(-1.65) = 0.05; \Phi(-1.96) = 0.025; \Phi(1) = 0.8413; \Phi(2) = 0.9772$$

$$T_n \sim t(n)$$
 $P(T_{24} \ge 2.064) = 0.025; P(T_{24} \ge 1.711) = 0.05;$
 $P(T_{75} \ge 2.060) = 0.025; P(T_{75} \ge 1.708) = 0.05;$

$$K_n \sim \chi^2(n)$$
 $P(K_{24} \ge 39.36) = 0.025; P(K_{24} \ge 12.40) = 0.975;$ $P(K_{25} \ge 40.65) = 0.025; P(K_{25} \ge 13.12) = 0.975;$

- 一、选择题(每题 2', 共 10')
 - 1) 设 A,B 为两随机事件,且 $P(AB) = P(\bar{A}\bar{B})$,则下列说法正确的是 ()
 - A) A 和 B 互不相容;
- B) A U B 是必然事件;
- C) P(A) + P(B) = 1;
- D) 以上三个选项均不正确。
- 2) 随机变量X服从自由度为 5 的 t 分布, $Y = X^2$,则下列说法正确的是 ()
 - A) $Y \sim \chi^2(5)$;

B) $Y \sim \chi^2(4)$;

C) $Y \sim F(5, 1)$;

- D) $Y \sim F(1,5)$.
- 3) 设 X 和 Y 是两个相互独立的连续型随机变量,它们的概率密度函数分别为 $f_1(x)$ 和

 $f_2(x)$,分布函数分别为 $F_1(x)$ 和 $F_2(x)$,则下列说法不正确的是

- A) $0.5f_1(x) + 0.5f_2(x)$ 必为某一随机变量的概率密度函数;
- B) $F_1(x)F_2(x)$ 必为某一随机变量的分布函数;
- C)1.5 $f_1(x) 0.5f_2(x)$ 必为某一随机变量的概率密度函数;
- D)0.5($F_1(x) + F_2(x)$) 必为某一随机变量的分布函数;
- 4)设总体 X 的均值为 θ , X_1 , X_2 , ..., X_n 是来自该总体的简单随机样本, \bar{X} 为样本均值。现需要检验 H_0 : $\theta = \theta_0$, $H_1\theta \neq \theta_0$ 。若有两种拒接域 $S_1 = \{|\bar{X}| > 1\}$ 和 $S_2 = \{|\bar{X}| > 2\}$. 设基于这两种拒绝域的检验水平分别为 α_1 和 α_2 , 则以下结论正确的是 ()
 - (A) $\alpha_1 \leq \alpha_2$;

(B) $\alpha_1 \geq \alpha_2$;

(C) $\alpha_1 = \alpha_2$;

(D) 不能确定 α_1 和 α_2 的大小关系。

第1页共5页-

李 心 悉 小 无

效

姓名

叩 শ

自

		体 X 服从正态分布 N(3,16), <i>X</i> 直和样本方差。下列结论中不	Y ₁ , X ₂ ,,16 是来自该总体的样本, 正确的是	<i>Ī</i> , <i>S</i> ² 分别表示样
i	(A)	$\frac{15S^2}{16} \sim \chi^2(15);$	(B) $cov(\bar{X}, S^2)=0;$	
	(C)	$\bar{X} - 3 \sim N(0,1)$	(D) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2$	(n-1)
	二、填充	充题 (每空格 2', 共 26')		
	1)	设事件A和B相互独立,P((A)=0.2; P(B)=0.4,则 P(B AUB)=_	o
 	2)	设一批产品的次品率为 0.2%	。从该批产品逐个抽取产品进行检	测。则第四次检测
 		首次检测出正品的概率是	0	
 	3)	设随机变量X服指数分布,均	均值为 2,则 cov(X²,X - 2) =	o
	4)	随机变量 X, Y 相互独立,	X~N(2,5),Y~N(2,1),则 P(X-2Y>	> - 5)=∘
; 4137	5)	随机变量 X, Y 的联合分布	律为: P(X=1,Y=3)=0.3; P(X=2,Y=4	1)=0.3;
1		P(X=1,Y=4)=0.2; P(X=2,Y=3)=0.2。 则 <i>Emin(X,Y)</i> =	o
	6)	若随机变量 X,Y 互不相差	关, DX=2,DY=7, 则 3X-Y 和	X+Y 的相关系数
 		为。		
: ਗ਼ਿ	7)	设随机变量序列{Xn,n=1,2,	.}独立同分布于 U[-1,2]。	
ΠΠ. !		则 $\frac{1}{n}(X_1^2 + X_2^2 + \dots + X_n^2)$	→o	
 	8)	设总体 X 服从泊松分布 P(2)	。 X_1, X_2, \dots, X_8 是来自该总体的样	本, $ar{X}$ 表示样本均
		值,则 $E(\bar{X}-2)^2=$	°	
[Á∃	9)	随机变量 X 的分布律为 P(X	= -2)=0.5, P(X=0)=0.2, P(X=2)=0.3	3。则其分布函数
		为。		
! !	10)	随机变量 X 的概率密度为f($x) = \begin{cases} 0.25 & -1 < x < 0 \\ 0.375 & 0 \le x < 2 \\ 0 & \cancel{\cancel{X}} : \cancel{\cancel{Y}} : 0 \end{cases} $	的密度
 		函数为。		
 	11)	设 X_1, X_2, X_3, X_4 相互独立,且 $\frac{1}{4}(X_1^2 + X_2^2) + 2X_3^2 \sim \chi^2(3)$,	$X_1 \sim N(0,4), X_2 \sim N(0,4), X_3 \sim N(0,c)$ 则常数 $c = $ 。),X ₄ ~N(0,c)。 若
 	12)	设某总体服从 $N(m,4)$,有来 15,基于该样本的 m 的置信	E自该总体的容量为 16 的简单随机 度为 0.95 的置信区间为	样本,样本均值为 。

矩估计值为____。

13) 设总体 X 的概率分布律为 $f(x,\theta) = (x-1)\theta^2(1-\theta)^{x-2}, x = 2,3,\cdots; 0 < \theta < 1$ 为 未知参数。若 3, 2, 4, 5, 2, 6 是来自该总体的简单随机样本的观测值,则 θ 的

此

答

卷

无 效

心他

自

三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} ax^2y & x^2 < y < 1\\ 0 & 其他 \end{cases}$$

求(1)常数a;(2)X的边缘密度函数;(3)条件概率P(Y>0.5|X=0.5)。

奸名

i M

Ą

四、(10') 设一盒子中有一个球,不知道其颜色是白色还是黑色(两种颜色等可能)。现在再往盒子中放入一个白球,然后从盒子中任意取出一球。(1) 求取出的球是白球的概率; (2) 若已知取出的球为白球,求原来盒子中的球是白球的概率。 姓名

小小

自

五、(10')设随机变量 X 和 Y 的联合密度为

 $\diamondsuit Z = \max(X,Y)$. 求随机变量 Z 的概率密度函数 $f_Z(z)$ 。

六、(9') 设某工厂仓库有一批零件,其中一等品占 60%,二等品占 20%,三等品占 20%。 现从中任取 100 件零件进行检测,求检测出一等品的个数超过 68 件的概率。(用中心极限 定理进行近似计算,并可使用标准正态分布的分布函数Φ(x)表示相关概率)。

此 答 卷 无 效

自 觉 七、(10')设总体 X 的概率密度为

$$f(x) = egin{cases} 5e^{5(x- heta)} & x \leq heta \ 0 &$$
其他 其中 $heta$ 为未知知参数。 $X_1,...X_n$ 为

来自该总体的样本。(1)求参数 θ 的最大似然估计量 $\hat{\theta}$ 。(2) $\hat{\theta}$ 是否是 θ 的无偏估计量, 说明理由。

姓名

卟 শ 八、 (10')设总体 X 服从正态分布 N (u,σ^2) , u 和 σ^2 未知。 现有来自该总体样本容量为 25 的样本, 其样本均值为 26, 样本方差为 16。 (1) 试检验 H₀: u=24, v.s. H₁: u >24(检验水 平 $\alpha = 0.05$); (2)求 σ^2 的置信度为 95%的置信区间。