The subgroup induction property

Paul-Henry Leemann University of Neuchâtel

14 April 2021

► Partially based on joint works with D. Francoeur and with R. Grigorchuk and T. Nagnibeda.

➤ Slides available at www.leemann.website/slides/subgroupinduction.pdf

Main goals

- ▶ Define a group property: the subgroup induction property,
- ▶ Show some interesting consequences of it,
- Exhibit groups with this property.

Advertisement

A property for subgroups of Aut(T), where T is a d-regular rooted tree. If G has the subgroup induction property, then, under some technical hypothesis,

- \triangleright A full description of finitely generated subgroups of G,
- ▶ All maximal subgroups of *G* are of finite index,
- A nice description of weakly maximal subgroups of *G* (maximal among infinite index subgroups),
- ► *G* is torsion and just infinite,
- ► *G* is LERF (locally extensively residually finite),
- ▶ If H is a finitely generated subgroup of G, then H is commensurable with one of $\{1\}, G, \ldots, G^{d-1}$,
- ▶ If L is commensurable with G^n , then all its maximal subgroups are of finite index,
- ▶ Sub(G) has Cantor-Bendixon rank ω .

Regular rooted trees

▶ $T = T_d$: the d-regular rooted tree (the root has degree d and each other vertex has degree d + 1);

- Vertices of T_d are in bijection with finite words on the alphabet $\{0, \ldots, d-1\}$ (root $\leftrightarrow \emptyset$ the empty word);
- ▶ The n^{th} level \mathcal{L}_n of the tree is the set of vertices at distance n of the root;
- $ightharpoonup T_v$ is the subtree of T consisting of vertices below v.

Spherically regular rooted tree

Let $(m_i)_{i\geq 0}$ be a sequence of integers greater than 1. One can define the corresponding spherically regular rooted tree $T_{(m_i)}$ as the rooted tree where every vertex of \mathcal{L}_i has m_i children.

Identification of subtrees

Let T be a regular rooted tree and $v = x_1 \dots x_n$ and $w = x_1' \dots x_m'$ be two vertices of T. Then

$$T_v = \{x_1 \dots x_n y_1 \dots y_k \mid k \in \mathbf{N}\}\$$

$$T_w = \{x'_1 \dots x'_m z_1 \dots z_l \mid l \in \mathbf{N}\}\$$

That is, we have a *canonical* isomorphism between T_v and T_w .

Importance of Aut(T).

Let $T = T_{(m_i)}$ be a spherically rooted tree.

- Any subgroup of Aut(T) is residually finite: $\bigcap_{[G:N]<\infty} N = \{1\},$
- ▶ On the other hand, if G is a finitely generated residually finite group, then there exists T with $G \le \operatorname{Aut}(T)$.

Sections of elements of Aut(T)

For v a vertex of T and $g \in \operatorname{Stab}_{\operatorname{Aut}(T)}(v)$, the section $\pi_v(g) = g_{|_v}$ of g at v is the automorphism of T_v induced by g.

▶ Elements g that fixe \mathcal{L}_n are usually described as the product of their sections:

Some subgroups of $Aut(T_d)$

Let $G \leq Aut(T_d)$. The following subgroups play an important role:

- ▶ Stabilizers of vertices $\operatorname{Stab}_G(v)$ and of rays $\operatorname{Stab}_G(\xi)$, $\xi \in \partial T$;
- ▶ Pointwise stabilizers of levels $Stab_G(\mathcal{L}_n)$;
- ► Rigid stabilizer of vertices:

$$\mathsf{Rist}_G(v) \coloneqq \{g \in G \mid g \text{ acts trivially outside } T_v\}$$

$$= \bigcap_{w \notin T_v} \mathsf{Stab}_G(w)$$

Self-similar groups

Definition

A group $G \leq \operatorname{Aut}(T)$ is self-similar if for every vertex v in T we have $\pi_v(\operatorname{Stab}_G(v)) \leq G$.

Definition

A group $G \le \operatorname{Aut}(T)$ is self-replicating (or fractal) if for every vertex v in T we have $\pi_v(\operatorname{Stab}_G(v)) = G$.

Some subgroups of $Aut(T_d)$

Let $G \leq Aut(T_d)$. The following subgroups play an important role:

- ▶ Stabilizers of vertices $\operatorname{Stab}_G(v)$ and of rays $\operatorname{Stab}_G(\xi)$, $\xi \in \partial T$,
- ▶ Pointwise stabilizers of levels $Stab_G(\mathcal{L}_n)$;
- ightharpoonup Rigid stabilizer of vertices Rist_G(v),
- ▶ Rigid stabilizer of levels: $\operatorname{Rist}_G(\mathcal{L}_n) := \prod_{v \in \mathcal{L}_n} \operatorname{Rist}_G(v)$. Carefull: $\operatorname{Rist}_G(\mathcal{L}_n) \neq \operatorname{Rist}_{\operatorname{Aut}(T)}(\mathcal{L}_n) \cap G$.

The subgroup induction property (original definition)

Definition

Let $G \leq \operatorname{Aut}(T)$ be a self-similar group. A family $\mathcal X$ of subgroups of G is said to be inductive if

- 1. Both $\{1\}$ and G belong to X,
- 2. If $H \le L$ are two subgroups of G with [L:H] finite, then L is in \mathcal{X} if and only if H is in \mathcal{X} ,
- 3. If H is a finitely generated subgroup of $\operatorname{Stab}_G(\mathcal{L}_1)$ and all first level sections of H are in \mathcal{X} , then H is in \mathcal{X} .

Definition (Grigorchuk-Wilson, 2003)

A self-similar group G has the subgroup induction property if for any inductive class of subgroups \mathcal{X} , each finitely generated subgroup of G is contained in \mathcal{X} .

Branch groups: motivations

- ▶ Introduced in 1997 by Grigorchuk,
- ► Contain groups with unusual properties,
- ▶ Part of the classification of just infinite groups,
- ▶ Share some properties of Aut(*T*).

The subgroup induction property (alternative definition)

Definition (GLS, 2021)

A group $G \leq \operatorname{Aut}(T)$ has the subgroup induction property if for every finitely generated subgroup $H \leq G$, there exists n such that for every $v \in \mathcal{L}_n$, the section $\pi_v(\operatorname{Stab}_H(X))$ is either trivial or has finite index in $\pi_v(\operatorname{Stab}_G(X))$.

- ► *G* need not to be self-similar.
- ► For self-similar groups, the two definitions are equivalent [GLS, 2021],
- Examples: locally finite groups.

Branch groups

Definition

A subgroup G of Aut(T) is branch if for all n

- 1. G acts transitively on \mathcal{L}_n ,
- 2. Rist_G(\mathcal{L}_n) is a finite index subgroup of G.

Example

The first Grigorchuk group \mathfrak{G} , the Gupta-Sidki p-groups ($p \ge 3$ prime), torsion GGS groups (acting on T_p , $p \ge 3$ prime).

All these examples are infinite, just infinite, torsion, of finite rank, all their maximal subgroups are of finite index, $\mathfrak G$ has intermediate growth, ...

The first Grigorchuk group

The first Grigorchuk group $\mathfrak{G}=\langle a,b,c,d \rangle$ acts on T_2 and is generated by

$$d = 0$$
 1

The first Grigorchuk group

$$c = 0$$

$$d = 0$$
 1
 b

The first Grigorchuk group

The first Grigorchuk group

The Gupta-Sidki p-group

The group G_p acts on T_p ($p \ge 3$ prime) and is generated by a and b, where

1 ... 1

Properties

Let ${\it G}$ be either the first Grigorchuk group, or a torsion GGS groups. Then

- ► G is self-replicating,
- ▶ $\operatorname{Stab}_G(v) = \operatorname{Stab}_G(\mathcal{L}_1)$ for every vertex v on the first level,
- \triangleright G is a p group for some prime p,
- ► *G* is branch,
- ▶ *G* has the congruence subgroup property.

GGS groups

Let $p \ge 3$ be a prime and let $\mathbf{e} = (e_0, \dots, e_{p-2})$ be a vector in $(F_p)^{p-1} \setminus \{0\}$. The GGS group $G_\mathbf{e} = \langle a, b \rangle$ with defining vector \mathbf{e} is the subgroup of $\operatorname{Aut}(T_p)$ generated by

a = cyclic permutation $(12 \dots p)$ of the first level vertices $b = (a^{e_0}, \dots, a^{e_{p-2}}, b),$

- ▶ The group $G_{\mathbf{e}}$ is torsion if and only if $\sum_{i=0}^{p-2} e_i = 0$,
- The Gupta-Sidki *p*-group correspond to the special case $\mathbf{e} = (1, -1, 0, \dots, 0)$.

Groups with the subgroup induction property

Theorem (Grigorchuk-Wilson, 2003)

The first Grigorchuk group & has the subgroup induction property.

Theorem (Garrido, 2016)

The Gupta-Sidki 3 group G_3 has the subgroup induction property.

Theorem (Francoeur-L, 2020)

The torsion GGS groups have the subgroup induction property.

Rough idea of the proof

Let $G = \langle a, b \rangle$ be a torsion GGS groups. For $g \in G$, define its **b-length** |g| to be the minimum n such that $g = a^{i_1}b^{j_1}\dots a^{i_n}b^{j_n}a^{i_{n+1}}$ (a pseudo-norm).

Let $\mathcal X$ be an inductive classes of G and $H \leq G$ be a finitely generated subgroup. Then

- ▶ If there exists n such that $\varphi_v(\operatorname{Stab}_H(v)) \in \mathcal{X}$ for all $v \in \mathcal{L}_n$, then $H \in \mathcal{X}$,
- ► There exists n = n(H) such that for all $v \in \mathcal{L}_n$ the subgroup $\varphi_v(\operatorname{Stab}_H(v))$ is generated by elements of b-length at most 1,
- ▶ If H is generated by elements of b-length at most 1, then $H \in \mathcal{X}$.

Some consequences (2)

Theorem (Gr-W;Ga;F-L)

Let $G \leq \operatorname{Aut}(T_d)$ be a self-replicating branch group such that $\operatorname{Stab}_G(v) = \operatorname{Stab}_G(\mathcal{L}_1)$ for every vertex v on the first level. Suppose that G has the subgroup induction property and let H be an infinite finitely generated subgroup of G. Then H is commensurable with one of G, G^2, \ldots, G^{d-1} .

If moreover G is strongly self-replicating, has the congruence subgroup property and is a p-group, then all maximal subgroups of H are of finite index

Some consequences (1)

Theorem (Francoeur-L, 2020)

Let G be a finitely generated branch group with the subgroup induction property. Then G is torsion, and hence just infinite (it is infinite and all its proper quotients are finite).

Theorem (F-L, 2020)

Let G be a finitely generated branch group with the subgroup induction property. Suppose that G is a p-group. Then all maximal subgroups of G are of finite index.

Some consequences (3)

- ► Any group *G* can be endowed with the profinite topology: the topology generated by finite index subgroups,
- \triangleright *G* is residually finite iff $\{1\}$ is closed in the profinite topology,
- ► *G* is locally extended residually finite (LERF or subgroup separable) if all its finitely generated subgroups are closed in the profinite topology,
- ▶ $G \le \operatorname{Aut}(T)$ has the congruence subgroup property if the profinite topology on G coincide with the $\operatorname{Aut}(T)$ -topology.

Theorem (Grigorchuk-L-Nagnibeda, 2020)

Let G be a finitely generated self-similar branch group with the congruence subgroup property and such that for every vertex v of the first level $\operatorname{Stab}_G(v) = \operatorname{Stab}_G(\mathcal{L}_1)$. If G has the subgroup induction property, it is LERF.

Strategy for the proof

- 1. Prove that the original definition is equivalent to the alternative definition.
- 2. Show a general result on subdirect products of just infinite groups,
- 3. Use it to have a nice characterization of finitely generated subgroups,
- 4. Conclude.

Full block subgroups

Let K be a finite index subgroup of G and v a vertex of T. Then one can define the group K_v of elements of $g \in \text{Rist}(v)$ such that $g|_v \in K$.

- \triangleright K_{ν} is naturally isomorphic to K,
- ▶ If G is self-similar, then K_v is a subgroup of G called a full block,
- ▶ If v and w are uncomparable, then $\langle K_v, L_w \rangle = K_v \times L_w$.

Classification of finitely generated subgroups

Theorem (Gr-L-N, 2021)

Let G be a finitely generated (self-similar) branch group such that $\operatorname{Stab}_G(v) = \operatorname{Stab}_G(\mathcal{L}_1)$ for every first level vertex v. Suppose that G has the subgroup induction property. If H is a finitely generated subgroup of G, there exists a block subgroup B of G with $B \leq H$ of finite index.

- ▶ In fact, finitely generated subgroups coincide with virtually block subgroups if and only if *G* has the subgroup induction property;
- ► But what are block subgroups?

Diagonal subgroups

Let v_1, \ldots, v_n be pairwise uncomparable vertices and $\varphi_1, \ldots, \varphi_n$ be automorphisms of K. This datas define a diagonal subgroup:

Block subgroups: definition

Definition

A block subgroup is a finite product of full blocks and of diagonal blocks (such that all the corresponding vertices are uncomparable).

Example

LERF

Theorem (G-L-N)

Let G be a finitely generated self-similar branch group such that $\operatorname{Stab}_G(v) = \operatorname{Stab}_G(\mathcal{L}_1)$ for every first level vertex v. Suppose that G has the subgroup induction property. Then finitely generated subgroups of G coincide with virtually block subgroups.

Corollary

Let G be as in the theorem. Suppose that G has also the congruence subgroup property. Then G is LERF.

Block subgroups: properties

- ► If *G* is finitely generated, then block subgroups are finitely generated,
- ▶ If *G* is a branch group with the congruence subgroup property, then virtually block subgroups are closed in the profinite topology [L. 2020].

The next step

We understand

- ► Finitely generated subgroups,
- ► Maximal subgroups.

The next step: understand weakly maximal subgroups.

Weakly maximal subgroups

Recall that a maximal subgroup of G is a maximal element in the lattice of proper subgroups of G.

Definition

A weakly maximal subgroup is a maximal element in the lattice of infinite index subgroups of G.

Weakly maximal subgroups of branch groups

Question (Grigorchuk, 2005)

Describe all weakly maximal subgroups of &.

- ▶ (Pervova, 2011) Concrete example of a weakly maximal subgroup W_P of \mathfrak{G} which is not parabolic.
- ▶ (Bou-Rabee L. Nagnibeda, 2016) If *G* is branch and contains a finite subgroup *F* that fixes no rays, then it contains uncountably many non parabolic weakly maximal subgroups (non-constructive proof).
- ▶ (L., 2019) Complete description of the weakly maximal subgroups of 𝒪 and of torsion GGS groups.

Weakly maximal subgroups

- ▶ If *G* is finitely generated, then every infinite index subgroup is contained in a weakly maximal subgroup (use Zorn's Lemma).
- ▶ If $M \le G$ is both maximal and of infinite index, then it is weakly maximal.
- ▶ If $G \le \operatorname{Aut}(T)$ is branch, then the parabolic subgroups $\operatorname{Stab}_G(\xi)$, $\xi \in \partial T$, are weakly maximal, infinite and pairwise distinct [Bartholdi Grigorchuk, 2000].

Classification of weakly maximal subgroups

Theorem (L., 2019)

Let G be either the first Grigorchuk group, or a torsion GGS group. Weakly maximal subgroups of G are either generalized parabolic subgroups or virtually block subgroups. These two classes admit many characterization:

generalized parabolic	virtually block
finitely generated	not finitely generated
$\forall n \exists v \in \mathcal{L}_n : [\pi_v(\mathcal{G}) : \pi_v(W)]$	$\exists n \forall v \in \mathcal{L}_n : [\pi_v(\mathcal{G}) : \pi_v(W)]$
is infinite	is finite
$\forall v : Rist_W(v)$ is infinite	$\exists v : Rist_{W}(v) = \{1\}$
$W \sim \partial T$ has infinitely many	$W \curvearrowright \partial T$ has finitely many
closed invariant subset	closed invariant subset

Generalized parabolic subgroups

Definition

A generalized parabolic subgroup of $G \leq \operatorname{Aut}(T)$ is a setwise stabilizer $\operatorname{SStab}_G(C)$ where

- $ightharpoonup C \subseteq \partial T$ is closed,
- C has empty interior (i.e. is nowhere dense),
- ▶ the action of $SStab_G(C)$ on C is minimal.

Example

- ▶ Parabolic subgroups: $C = \{\xi\}$ for $\xi \in \partial T$,
- $ightharpoonup C = F.\{\xi\}$ where F is a finite subgroup of G.

Block subgroups: properties

Let B be a block subgroup of a finitely generated, self-replicating branch group $G \leq \operatorname{Aut}(T)$. Then

- ▶ If *B* has no trivial blocks and at least one diagonal block, then it is of infinite index and every weakly maximal subgroup *W* containing *B* is not generalized parabolic,
- ▶ In particular, there exists infinitely many weakly maximal subgroups of *G* that are not generalized parabolic.

Generalized parabolic subgroups: properties

Lemma (L)

Let G be branch. Then generalized parabolic subgroups are infinite and pairwise distinct ($SStab_G(C_1) \neq SStab_G(C_2)$ if $C_1 \neq C_2$).

Corollary

Any branch group with an element of finite order contains a continuum of generalized parabolic subgroups that are not parabolic (they are all weakly maximal).

The next step (2)

We understand

- ► Finitely generated subgroups,
- ► Maximal subgroups,
- ► Weakly maximal subgroups.

The next step: understand the space Sub(G) of all subgroups of G.

The space Sub(G)

For a countable group G, there is a natural topology, the Chabauty topology on the set Sub(G) that turns it onto a totally disconnected compact topological space.

The Cantor-Bendixon rank of Sub(G) is the number of steps necessary to obtain a subspace of Sub(G) without isolated points:

- $ightharpoonup X^0 := \operatorname{Sub}(G),$
- ▶ $X^{\alpha+1}$ is X^{α} minus its isolated points,
- ▶ For λ a limit ordinal $X^{\lambda} := \bigcap_{\alpha < \lambda} X^{\alpha}$,
- ▶ The CB rank of Sub(G) is the least ordinal α such that $X^{\alpha} = X^{\alpha+1}$.

The next step (3)

We understand

- ► Finitely generated subgroups,
- Maximal subgroups,
- Weakly maximal subgroups,
- ▶ The (Cantor-Bendixon rank of) the space Sub(G).

The next step: understand all subgroups of G that are closed in the profinite topology...

Subgroup induction property and the Cantor-Bendixon rank

Theorem (Wesolek-Skipper 2020; F-L)

Let G be a finitely generated regular branch group that is strongly self-replicating and such that for every vertex v of the first level, we have $\operatorname{Stab}_G(v) = \operatorname{Stab}_G(\mathcal{L}_1)$. Suppose that G has the congruence subgroup property and the subgroup induction property. Then $\operatorname{Sub}(G)$ has Cantor-Bendixson rank ω .

Corollary

The first Grigorchuk group as well as torsion GGS groups have Cantor-Bendixson rank ω .

