

# TTK4135 – Lecture 18 Sequential Quadratic Programming (SQP)

Lecturer: Lars Imsland

#### **Outline**

- Recap: Newton's method for solving nonlinear equations
- Recap: Equality-constrained QPs
- SQP for equality-constrained nonlinear programming problems
  - Next time: SQP for general nonlinear programming problems

Reference: N&W Ch.18-18.1

#### **Types of Constrained Optimization Problems**

- Linear programming
  - Convex problem
  - Feasible set polyhedron



- Quadratic programming
  - Convex problem if  $P \ge 0$
  - Feasible set polyhedron

$$\min \quad \frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x$$
subject to  $Ax \le b$ 

$$Cx = d$$



- Nonlinear programming
  - In general non-convex!

min 
$$f(x)$$
  
subject to  $g(x) = 0$   
 $h(x) \ge 0$ 

$$\in \mathcal{E},$$
 $\in \mathcal{I}.$ 

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to 
$$c_i(x) = 0, \quad i$$
  
 $c_i(x) > 0, \quad i$ 



# **General Optimization Problem (NLP)**

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Example:

$$\min (x_1 - 2)^2 + (x_2 - 1)^2$$







# **Today: Only equality constraints**





# The Lagrangian

For constrained optimization problems, introduce modification of objective function:

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

- Multipliers for equality constrains may have both signs in a solution
- Multipliers for inequality constraints cannot be negative (cf. shadow prices)
- For (inequality) constraints that are *inactive*, multipliers are zero

# KKT conditions (Theorem 12.1)

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

**KKT conditions** (First-order necessary conditions): If  $x^*$  is a local solution and LICQ holds, then there exist  $\lambda^*$  such that



# **Example KKT system**

$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0$$



# **Today: Equality-constrained NLP**



#### **Newton's method for solving nonlinear equations (Ch. 11)**

- Solve equation system r(x) = 0,  $r(x) : \mathbb{R}^n \to \mathbb{R}^n$
- Assume Jacobian  $J(x) \in \mathbb{R}^{n \times n}$  exists and is continuous
- Taylor:  $r(x+p) = r(x) + J(x)p + O(||p||^2)$

$$J(x) = \begin{pmatrix} \frac{\partial r_1}{\partial x_1} & \frac{\partial r_1}{\partial x_2} & \cdots \\ \frac{\partial r_2}{\partial x_1} & \frac{\partial r_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Algorithm 11.1 (Newton's Method for Nonlinear Equations). Choose  $x_0$ ; for  $k=0,1,2,\ldots$  Calculate a solution  $p_k$  to the Newton equations  $J(x_k)p_k = -r(x_k);$   $x_{k+1} \leftarrow x_k + p_k;$  end (for)



• Convergence rate (Thm 11.2): Quadratic convergence if J(x) is invertible (quadratic convergence is very good, but only holds close to the solution)

# Newton's method to solve $F(x, \lambda) = 0$

$$F(x,\lambda) = \begin{pmatrix} \nabla f(x) - A^{\top}(x)\lambda \\ c(x) \end{pmatrix}$$

# Newton's method to solve $F(x, \lambda) = 0$

$$F(x,\lambda) = \begin{pmatrix} \nabla f(x) - A^{\top}(x)\lambda \\ c(x) \end{pmatrix}$$

## **Equality-constrained QP (EQP)**

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} x^\top G x + c^\top x$$
  
subject to  $Ax = b, \quad A \in \mathbb{R}^{m \times n}$ 

Basic assumption: *A* full row rank

KKT-conditions (KKT system, KKT matrix):

$$\begin{pmatrix} G & -A^{\top} \\ A & 0 \end{pmatrix} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = \begin{pmatrix} -c \\ b \end{pmatrix} \quad \text{or, if we let } x^* = x + p, \quad \begin{pmatrix} G & A^{\top} \\ A & 0 \end{pmatrix} \begin{pmatrix} -p \\ \lambda^* \end{pmatrix} = \begin{pmatrix} c + Gx \\ Ax - b \end{pmatrix}$$

• Solvable when  $Z^{\top}GZ > 0$  (columns of Z basis for nullspace of A)

That is: QP with only equality constraints is solved by a solving a set of linear equations

# **Alternative "derivation" of KKT-system**

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad c(x) = 0$$

## Alternative "derivation" of KKT-system, cont'd

From Newton's method:

$$\underbrace{\begin{pmatrix} \nabla_{xx}^{2} \mathcal{L}(x_{k}, \lambda_{k}) & -A^{\top}(x_{k}) \\ A(x_{k}) & 0 \end{pmatrix}}_{\text{Jacobian of } F(x, \lambda) \text{ at } (x_{k}, \lambda_{k})} \begin{pmatrix} p_{k} \\ p_{\lambda_{k}} \end{pmatrix} = \underbrace{\begin{pmatrix} -\nabla f(x_{k}) + A^{\top}(x_{k})\lambda_{k} \\ -c(x_{k}) \end{pmatrix}}_{-F(x_{k}, \lambda_{k})}$$

#### We see that one iteration of algorithm has two interpretations:

- Newton's method to solve KKT of NLP.
  - Analysis: Method has quadratic convergence
- 2. Sequentially solving QP approximations of NLP
  - Extension to inequalities
  - Practical implementation: Use QP-solvers

#### Local SQP-algorithm for solving equality-constrained NLPs

$$\min f(x)$$
subject to  $c(x) = 0$ 

Algorithm 18.1 (Local SQP Algorithm for solving (18.1)).

Choose an initial pair  $(x_0, \lambda_0)$ ; set  $k \leftarrow 0$ ;
repeat until a convergence test is satisfied

Evaluate  $f_k$ ,  $\nabla f_k$ ,  $\nabla^2_{xx} \mathcal{L}_k$ ,  $c_k$ , and  $A_k$ ;
Solve (18.7) to obtain  $p_k$  and  $l_k$ ;
Set  $x_{k+1} \leftarrow x_k + p_k$  and  $\lambda_{k+1} \leftarrow l_k$ ;

end (repeat)

$$\min f(x)$$
subject to  $c(x) = 0$ 

$$EQP$$
:
$$\min f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla^2_{xx} \mathcal{L}_k p$$
subject to  $A_k p + c_k = 0$ .



```
\min_{x_1, x_2, \dots, x_n} -x_1 - x_2 s.t. x_1^2 + x_2^2 - 1 = 0
% \min -x1 - x2 \text{ s.t. } x1^2 + x2^2 = 1
                                                             x \in \mathbb{R}^2
f = Q(x) - x(1) - x(2);
df = @(x) [-1; -1];
c = (x) \times (1)^2 + (2)^2 - 1;
A = Q(x) [2*x(1), 2*x(2)];
HL = @(x,lambda) diag([-2*lambda, -2*lambda]);
                                                                                         \min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p
x0 = [-1;1]; lambda0 = -1;
                                                                                   subject to A_k p + c_k = 0.
x(:,1) = x0; lambda(1,:) = lambda0;
for i = 1:10,
     [p, fval, exitflag, output, lo] = quadprog(HL(x(:,i), lambda(i)), df(x(:,i))', [], [], A(x(:,i)), -c(x(:,i)));
    l = -lo.eqlin;
    z = [HL(x(:,i),lambda(i)), -A(x(:,i))'; A(x(:,i)), 0] \setminus [-df(x(:,i)); -c(x(:,i))];
    % p = z(1:2);
    % 1 = z(3);
    x(:,i+1) = x(:,i) + p;
    lambda(:,i+1) = 1;
end
```

$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0$$





$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0$$



$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
  
subject to 
$$A_k p + c_k = 0.$$

■ NTNU

$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0$$



 $\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$ <br/>subject to  $A_k p + c_k = 0.$ 

$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0$$



$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
  
subject to 
$$A_k p + c_k = 0.$$

NTNU

$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0$$



$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
  
subject to 
$$A_k p + c_k = 0.$$



$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0$$



$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
  
subject to 
$$A_k p + c_k = 0.$$



$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0$$



$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
  
subject to 
$$A_k p + c_k = 0.$$



# QP approximation can be seen as approximation of Lagrangian

$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
  
subject to 
$$A_k p + c_k = 0.$$

