Modeling citation network topology: A natural graph model and applications to citation theory

Lovro Šubelj^{a,*}, Dalibor Fiala^b, Slavko Žitnik^a, Marko Bajec^a

^a University of Ljubljana, Faculty of Computer and Information Science, Tržaška 25, SI-1000 Ljubljana, Slovenia ^b University of West Bohemia, Faculty of Applied Sciences, Univerzitní 8, CZ-30614 Plzeň, Czech Republic

Abstract

TEXT

Keywords: graph model, citation networks, citation theory, infometrics, bibliometrics, scientometrics.

1. Introduction

TEXT

2. Related work

Figure 1: Largest connected component of citation network of WoS category Information Science & Library Science reduced to papers published before 1980 (see also text). Papers with more than one citation are shown as triangles, while node sizes are proportional to in-degrees. (Network layout was generated with Large Graph Layout [1].)

^{*}Corresponding author. Tel.: +386 1 476 81 86.

3. Modeling citation networks

TEXT

3.1. Study of citation dynamics

TEXT

3.2. Graph model of citation networks

TEXT

Figure 2: Linking dynamics of random graph models of citation networks. (a) In Forest fire model [5], newly added node i chooses an ambassador a uniformly at random and links to it (solid lines). Next, some of its neighbors are taken as the new ambassadors by following the in-links and out-links (e.g., y and z). (b) In the proposed Citation model, i links to a only with a certain probability (dashed lines), while also to some of its neighbors by following the out-links (e.g., x and y). (c) In Random walk model [9, 6], i traverses the network by following the out-links, taking a single new ambassador on each step (e.g., y).

Initially, the graph consists of a single link, while the model repeats the following procedure n-2 times.

- (1) Newly added node i chooses an ambassador node a uniformly at random (we say that i burns a).
- (2) i links to a with probability q_a and randomly selects $x_l \sim G(q_l)$ neighbors of a that were not yet linked by following the out-links, and links to them.
- (3) *i* randomly selects $x_f \sim G(p_f)$ neighbors of *a* that were not yet burned a_1, \ldots, a_{x_f} by following the outlinks and $x_b \sim G(p_b)$ neighbors that were not yet burned $a_{x_f+1}, \ldots, a_{x_f+x_b}$ by following the in-links.
- (4) $a_1, \ldots, a_{x_f + x_b}$ are taken as the new ambass adors of i (step (2)).

When i cannot select enough neighbors of a, the remaining are selected uniformly at random from all nodes.

$$\langle s \rangle = \sum_{x=0}^{\infty} \left(\frac{p_f}{1 - p_f} + \frac{p_b}{1 - p_b} \right)^x = \left(1 - \frac{p_f}{1 - p_f} - \frac{p_b}{1 - p_b} \right)^{-1} \tag{1}$$

for $\frac{p_f}{1-p_f} + \frac{p_b}{1-p_b} < 1$. Hence,

$$m = n \langle s \rangle \left(q_a + \frac{q_l}{1 - q_l} \right) \tag{2}$$

for $q_l < 1$. Thus,

$$q_a = \frac{m}{n\langle s \rangle} - \frac{q_l}{1 - q_l} \tag{3}$$

and

$$q_l = \left(1 + \left(\frac{m}{n\langle s\rangle} - q_a\right)^{-1}\right)^{-1}.$$
 (4)

Also,

$$n_{+} = \frac{nq - nq \left(p - pq\right)^{\langle s \rangle}}{1 - p\left(1 - q\right)} \approx \frac{nq}{1 - p\left(1 - q\right)}$$

$$\tag{5}$$

for p(1-q) < 1, where $p = p_f + p_b - p_f p_b$ and $q = q_a + q_l - q_a q_l$. Thus,

$$q_{l} \approx 1 - \frac{2n_{+} \langle s \rangle (1-p)}{2m - n_{+} \langle k \rangle p}.$$
 (6)

3.3. Alternative citation models

TEXT

3.3.1. Poisson citation distribution

TEXT

Hence,

$$m = n \langle s \rangle (q_a + q_l). \tag{7}$$

Thus,

$$q_a = \frac{m}{n\langle s \rangle} - q_l \tag{8}$$

and

$$q_l = \frac{m}{n\langle s \rangle} - q_a. \tag{9}$$

Also,

$$n_{+} = \frac{n\left(1 - q\right)\left(1 - \left(pq\right)^{\langle s\rangle}\right)}{1 - pq} \approx \frac{n\left(1 - q\right)}{1 - pq} \tag{10}$$

for pq < 1, where $p = p_f + p_b - p_f p_b$ and $q = (1 - q_a) e^{-q_l}$. Thus,

$$q_l \approx \frac{m}{n\langle s \rangle} - W\left(\exp\left(\frac{m}{n\langle s \rangle}\right) (n - n_+ p)^{-1}\right) - 1,$$
 (11)

where W is the Lambert function.

3.3.2. Preferential attachment citation

TEXT

 $\it 3.3.3. Random\ walk\ citation\ traversal$

4. Citation data and methodology

TEXT

4.1. Web of Science data

TEXT

Table 1: Basic statistics of Web of Science citation data analyzed in the study.

Data	WoS category	Period	# Journals	# Papers	# Citations
ILS	Information Science & Library Science ¹	1945-2013	177	71253	176240
AI SE	Computer Science, Artificial Intelligence Computer Science, Software Engineering	1964–2013 1954–2013	877 560	$179510 \\ 215745$	639126 323444
CY	Computer Science, Cybernetics	1961 - 2013	66	38097	45755

Figure 3: Journal, paper and citation evolution of Web of Science data analyzed in the study (mind semilogarithmic scales).

4.2. Statistics of citation networks

TEXT

$$c_i = \frac{t_i}{\binom{k_i}{2}} \text{ and } d_i = \frac{t_i}{\omega_i}.$$
 (12)

 α is the scale-free exponent of the power-law degree distribution $P(k) \sim k^{-\alpha}$ (similarly for α_{in} and α_{out}). $r_{(\alpha,\beta)}$ is the Pearson correlation coefficient of α -degrees and β -degrees at links' source and target nodes, respectively, $\alpha, \beta \in \{in, out\}$.

$$\mathcal{F} = \exp\left(-C\left(\frac{|m-m^*|}{m} + \frac{|\langle c \rangle - \langle c \rangle^*|}{\langle c \rangle} + \frac{|\langle d \rangle - \langle d \rangle^*|}{\langle d \rangle} + \frac{|\alpha - \alpha^*|}{\alpha} + \frac{|\alpha_{in} - \alpha_{in}^*|}{\alpha_{in}} + \frac{|\alpha_{out} - \alpha_{out}^*|}{\alpha_{out}} + \right.$$

$$\left. + |r_{(in,in)} - r_{(in,in)}^*| + |r_{(in,out)} - r_{(in,out)}^*| + |r_{(out,in)} - r_{(out,in)}^*| + |r_{(out,out)} - r_{(out,out)}^*| \right) \right),$$
(13)

where C is set to 0.4.

 $^{^{1}}$ Reduced to papers within WoS category $Computer\ Science$ or its subcategories.

4.3. Parameters of citation models \mathbf{TEXT}

Forest fire model Random walk model Citation model Backward burning probability p_b Link copying probability 0.3 0.25 0.5 0.25 0.2 0.2 0.3 0.15 0.15 0.2 0.1 0.1 (b) (a) (c)

Figure 4: Random graph parameter estimation for citation network of WoS category $Information\ Science\ \ensuremath{\mathscr{C}}\ Library\ Science\ (note different color scales).$ (Results are estimates of the mean over 25 graph realizations with the global maximum highlighted.)

5. Results and applications

TEXT

5.1. Validation of citation model

Figure 5: Degree and clustering distributions and degree mixing in citation network of WoS category Information Science & Library Science and graphs generated with random models (see also Figs. B.9 and B.10).

Table 2: Degree and clustering distributions and degree mixing in citation network of WoS category Information Science & Library Science and graphs generated with random models (see also Tables B.8 and B.9). (Results are estimates of the mean over 25 graph realizations.)

Model	$\langle k \rangle$	$\langle c \rangle$	$\langle d \rangle$	α_{in}	α_{out}	$r_{(in,in)}$	$r_{(in,out)}$	$r_{(out,in)}$	$r_{(out,out)}$	\mathcal{F}
Data	8.05	0.11	0.14	2.47	3.35	0.06	0.02	-0.01	0.07	1.000
Citation (our)	7.97	0.11	0.13	2.58	3.31	0.12	-0.01	0.01	0.01	0.863
Random walk [9]	7.91	0.11	0.13	2.61	4.68	0.07	-0.01	-0.02	0.00	0.695
Random-citing [7]	7.48	0.21	0.26	2.36	3.26	0.16	-0.02	0.08	0.15	0.400
Forest fire [5]	7.88	0.40	0.52	2.51	2.45	0.13	0.04	0.06	0.17	0.087
Poisson citation	8.03	0.11	0.14	2.63	2.17	0.12	-0.02	0.00	0.01	0.749
Yule dynamics	8.06	0.11	0.14	2.14	2.16	0.12	-0.04	0.01	0.03	0.697
Yule burning	8.02	0.11	0.13	2.53	3.28	0.10	-0.01	0.01	0.02	0.882
Yule citing	8.01	0.11	0.14	2.59	2.17	0.10	-0.02	-0.01	0.02	0.759

5.2. Assessment of citation dynamics

TEXT

Recall that $\langle s \rangle$ in Eq. (1) is the number of papers actually read by an author, while q_a is the probability of citing such paper. The total number of cited papers is $\langle k \rangle /2$, while $\langle s \rangle q_l / (1-q_l)$ is the number of copied citations. The ratio between the papers discovered by citations and services is $p_f / (1-p_f)$: $p_b / (1-p_b)$.

Table 3: Paper citation, study and discovery dynamics of WoS category Information Science & Library Science as predicted by random graph models (see also Table C.10). (Results are estimates of the mean over 25 graph realizations.)

	Paper	citation	Paper	study	Paper discovery by			
Model	# Cite	% Copy	# Read	% Cite	% Citation	% Service	% Other	
Citation (our)	3.98	86.1%	2.14	27.9%	29.2%	41.0%	29.8%	
Random walk [9]	3.95	90.4%	1.54	29.2%	83.7%	-	16.3%	
Random-citing [7]	3.73	65.4%	1.29	100.0%	-	-	-	
Forest fire [5]	3.95	-	3.95	100.0%	62.3%	37.7%	-	

5.3. Applications to citation theory

Table 4: Paper citation, study and discovery dynamics of WoS categories Information Science & Library Science (ILS), Computer Science, Artificial Intelligence (AI), Computer Science, Software Engineering (SE) and Computer Science, Cybernetics (CY) as predicted by citation model (see also Table C.10). (Results are estimates of the mean over 25 graph realizations.)

	Paper citation		Paper	study	Paper discovery by			
Data	# Cite	% Copy	# Read	% Cite	% Citation	% Service	% Other	
ILS	3.98	86.1%	2.14	27.9%	29.2%	41.0%	29.8%	
AI	4.52	87.3%	1.47	40.9%	25.8%	47.6%	26.6%	
SE	2.78	81.5%	1.58	36.4%	68.8%	2.0%	29.2%	
CY	2.18	69.6%	1.59	43.2%	24.5%	37.8%	37.6%	

Table 5: Paper citation, study and discovery evolution of WoS category Information Science & Library Science as predicted by citation model (see also Table D.11). (Results are estimates of the mean over 25 graph realizations.)

	Paper citation		Paper	study	Paper discovery by			
Period	# Cite	% Copy	# Read	% Cite	% Citation	% Service	% Other	
1945-2013	3.98	86.1%	2.14	27.9%	29.2%	41.0%	29.8%	
1970 – 1980	2.23	52.1%	3.39	33.5%	41.4%	0.0%	58.5%	
1980 – 1990	2.62	65.1%	2.96	33.0%	48.3%	1.1%	50.6%	
1990-2000	3.42	81.6%	2.38	29.0%	40.3%	23.2%	36.5%	
2000 – 2010	5.06	83.6%	2.90	32.2%	40.7%	27.5%	31.7%	

Table 6: Paper citation, study and discovery evolution of WoS journals Scientometrics (SCI), Expert Systems with Applications (ESWA), Communications of the ACM (CACM) and IEEE Transactions on Systems, Man, and Cybernetics (TSMC) as predicted by citation model (see also text). (Results are estimates of the mean over 25 graph realizations.)

	Paper citation		Paper	study	Paper discovery by			
Journal	# Cite	% Copy	# Read	% Cite	% Citation	% Service	% Other	
SCI	3.83	87.6%	1.40	38.5%	54.3%	23.4%	22.3%	
ESWA	2.12	81.0%	1.67	25.9%	34.7%	27.8%	37.6%	
CACM	1.32	46.5%	1.70	42.0%	8.7%	38.5%	52.8%	
TSMC	1.47	37.1%	1.66	56.8%	13.6%	39.9%	46.4%	

Figure 6: Largest connected components of citation networks of WoS journals (a) *Scientometrics*, (b) *Expert Systems with Applications* and (c) *Communications of the ACM* (see also text). Papers published in the first or second half of the journal's lifespan are shown as triangles and circles, respectively. (Network layouts were generated with Large Graph Layout [1].)

6. Final remarks

TEXT

Acknowledgments

Authors would like to thank Vladimir Batagelj for insightful comments and discussions, and Thomson Reuters for providing the access to WoS citation data. This work has been supported in part by the Slovenian Research Agency Program No. P2-0359, by the Slovenian Ministry of Education, Science and Sport Grant No. 430-168/2013/91, and by the European Union, European Social Fund.

Appendix A. Parameters of graph models

Table A.7: Random graph model parameters for citation networks of WoS categories Information Science & Library Science (ILS), Computer Science, Artificial Intelligence (AI), Computer Science, Software Engineering (SE) and Computer Science, Cybernetics (CY).

		Burning p	orobability	Linking	probability
Data	Model	$\overline{p_f(p_w)}$	p_b	q_a	q_l
	Citation (our)	0.181	0.237	0.279	0.615
ILS	Random walk [9]	0.349	-	0.292	0.699
	Forest fire [5]	0.384	0.274	-	-
	Citation (our)	0.102	0.173	0.409	0.728
AI	Random walk [9]	0.261	-	0.417	0.747
	Forest fire [5]	0.423	0.209	-	=
	Citation (our)	0.264	0.010	0.364	0.588
SE	Random walk [9]	0.351	-	0.333	0.602
	Forest fire [5]	0.444	0.128	-	-
	Citation (our)	0.128	0.184	0.432	0.488
CY	Random walk [9]	0.255	-	0.427	0.549
	Forest fire [5]	0.343	0.191	-	=
		Krone	ecker graph	initiator	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$
Data	Model	a	b	c	d
ILS		0.503	0.398	0.429	0.898
AI	Kronecker [4]	0.450	0.506	0.505	0.701
SE	MOHECKEI [4]	0.859	0.509	0.434	0.337
CY		0.536	0.356	0.371	0.908

Figure A.7: Random graph parameter estimation for citation networks of WoS categories (a)–(c) Information Science & Library Science, (d)–(f) Computer Science, Artificial Intelligence, (g)–(i) Computer Science, Software Engineering and (j)–(l) Computer Science, Cybernetics (note different color scales). (Results are estimates of the mean over 25 graph realizations with the global maximum highlighted.)

Appendix B. Comparison of graph models

Figure B.9: Degree distributions and mixing in citation networks of WoS categories (a)–(d) Information Science & Library Science, (e)–(h) Computer Science, Artificial Intelligence, (i)–(l) Computer Science, Software Engineering and (m)–(p) Computer Science, Cybernetics, and graphs generated with random models (see also Table B.9).

Figure B.10: Clustering profile and distributions in citation networks of WoS categories (a)–(d) Information Science & Library Science, (e)–(h) Computer Science, Artificial Intelligence, (i)–(l) Computer Science, Software Engineering and (m)–(p) Computer Science, Cybernetics, and graphs generated with random models (see also Table B.8).

Table B.8: Standard statistics and clustering in citation networks of WoS categories Information Science & Library Science (ILS), Computer Science, Artificial Intelligence (AI), Computer Science, Software Engineering (SE) and Computer Science, Cybernetics (CY), and graphs generated with random models. (Results are estimates of the mean over 25 graph realizations.)

Data	Model	\overline{n}	\overline{m}	WCC	$\langle k \rangle$	$\langle c \rangle$	$\langle d \rangle$	δ_e	\mathcal{F}
	Data	43808	176219	94.7%	8.05	0.11	0.14	9.6	1.000
ILS	Citation (our) Random walk [9] Random-citing [7] Forest fire [5]	43808 43808 43808 43808	174467 173241 163743 172510	92.5% 94.7% 77.3% 100.0%	7.97 7.91 7.48 7.88	0.11 0.11 0.21 0.40	0.13 0.13 0.26 0.52	8.6 8.8 5.6 7.7	0.863 0.695 0.400 0.087
	Kronecker [4] Small-world [10] Scale-free [2] Random [3]	32768 43808 43808 43808	165822 175228 175226 176219	98.6% 100.0% 100.0% 100.0%	10.12 8.00 8.00 8.05	0.00 0.12 0.00 0.00	0.00 0.14 0.00 0.00	7.7 11.5 7.3 9.8	0.209 0.000 0.329 0.001
	Data	140362	639110	97.0%	9.11	0.14	0.16	8.8	1.000
AI	Citation (our) Random walk [9] Random-citing [7] Forest fire [5]	140362 140362 140362 140362	635007 629652 590798 464120	95.8% 96.4% 76.9% 100.0%	9.05 8.97 8.42 6.61	0.14 0.14 0.22 0.41	0.16 0.16 0.26 0.53	9.7 9.9 5.7 9.6	0.849 0.798 0.486 0.129
	Kronecker [4] Small-world [10] Scale-free [2] Random [3]	131072 140362 140362 140362	487535 561445 561442 639110	99.0% 100.0% 100.0% 100.0%	7.44 8.00 8.00 9.11	0.00 0.14 0.00 0.00	0.00 0.16 0.00 0.00	10.0 12.7 7.8 9.8	0.073 0.000 0.309 0.003
	Data	113907	323406	90.5%	5.68	0.13	0.16	12.3	1.000
SE	Citation (our) Random walk [9] Random-citing [7] Forest fire [5]	113907 113907 113907 113907	316471 316495 314972 295989	91.1% 91.5% 70.9% 100.0%	5.56 5.56 5.53 5.20	0.13 0.13 0.21 0.41	0.16 0.16 0.26 0.53	9.3 9.1 5.0 7.5	0.841 0.718 0.475 0.139
	Kronecker [4] Small-world [10] Scale-free [2] Random [3]	131072 113907 113907 113907	410583 227813 227812 323406	88.8% 74.0% 100.0% 99.7%	6.26 4.00 4.00 5.68	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	8.7 - 16.1 13.7	0.253 0.000 0.288 0.000
	Data	20706	45743	83.4%	4.42	0.16	0.20	9.4	1.000
CY	Citation (our) Random walk [9] Random-citing [7] Forest fire [5]	20706 20706 20706 20706	45196 44731 44892 42883	88.2% 89.5% 72.1% 100.0%	4.37 4.32 4.34 4.14	0.16 0.16 0.19 0.37	0.20 0.19 0.24 0.50	7.9 7.6 5.4 7.3	0.849 0.770 0.608 0.246
	Kronecker [4] Small-world [10] Scale-free [2] Random [3]	16384 20706 20706 20706	51143 41412 41410 45743	96.2% 68.6% 100.0% 98.7%	6.24 4.00 4.00 4.42	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	9.2 - 14.0 15.4	0.284 0.000 0.311 0.031

Table B.9: Degree distributions and mixing in citation networks of WoS categories Information Science & Library Science (ILS), Computer Science, Artificial Intelligence (AI), Computer Science, Software Engineering (SE) and Computer Science, Cybernetics (CY), and graphs generated with random models. (Results are estimates of the mean over 25 graph realizations.)

Data	Model	α	α_{in}	α_{out}	$r_{(in,in)}$	$r_{(in,out)}$	$r_{(out,in)}$	$r_{(out,out)}$	\mathcal{F}
	Data	2.57	2.47	3.35	0.06	0.02	-0.01	0.07	1.000
ILS	Citation (our) Random walk [9] Random-citing [7] Forest fire [5]	2.83 3.24 2.72 2.39	2.58 2.61 2.36 2.51	3.31 4.68 3.26 2.45	0.12 0.07 0.16 0.13	-0.01 -0.01 -0.02 0.04	0.01 -0.02 0.08 0.06	0.01 0.00 0.15 0.17	0.863 0.695 0.400 0.087
	Kronecker [4] Small-world [10] Scale-free [2] Random [3]	3.13 15.51 3.13 8.58	4.75 - 3.06 22.30	4.12 - 3.06 22.34	0.16 -0.07 -0.03 0.00	0.16 -0.07 -0.03 0.00	0.16 -0.07 -0.03 0.00	0.16 -0.07 -0.03 0.00	0.209 0.000 0.329 0.001
	Data	2.74	2.39	3.88	0.04	-0.02	-0.03	0.09	1.000
AI	Citation (our) Random walk [9] Random-citing [7] Forest fire [5]	2.94 3.12 2.57 2.67	2.60 2.61 2.30 2.63	3.84 4.36 2.97 2.91	0.13 0.07 0.11 0.08	-0.01 -0.01 -0.02 0.01	-0.01 -0.01 0.08 0.09	0.01 0.00 0.15 0.17	0.849 0.798 0.486 0.129
	Kronecker [4] Small-world [10] Scale-free [2] Random [3]	4.70 16.52 3.13 7.12	7.88 - 3.06 19.03	8.15 - 3.06 18.93	0.02 -0.07 -0.02 0.00	0.02 -0.07 -0.02 0.00	0.03 -0.07 -0.02 0.00	0.02 -0.07 -0.02 0.00	0.073 0.000 0.309 0.003
	Data	3.01	2.61	4.46	0.07	0.01	-0.02	0.13	1.000
SE	Citation (our) Random walk [9] Random-citing [7] Forest fire [5]	3.32 3.50 2.95 3.19	2.73 2.69 2.50 2.68	4.47 6.17 3.63 4.34	0.08 0.06 0.15 0.07	-0.01 -0.01 -0.01 -0.01	0.03 0.01 0.11 0.16	0.00 0.00 0.19 0.15	0.841 0.718 0.475 0.139
	Kronecker [4] Small-world [10] Scale-free [2] Random [3]	2.96 61.87 3.13 14.19	4.35 - 3.05 37.46	3.26 - 3.05 37.74	0.04 -0.14 -0.02 0.00	0.04 -0.14 -0.02 0.00	0.04 -0.14 -0.02 0.00	0.04 -0.14 -0.02 0.00	0.253 0.000 0.288 0.000
	Data	3.03	3.00	4.05	0.10	0.04	-0.01	0.09	1.000
СҮ	Citation (our) Random walk [9] Random-citing [7] Forest fire [5]	3.05 3.25 2.74 3.14	2.81 2.78 2.67 2.96	4.09 4.98 3.26 4.06	0.23 0.15 0.26 0.23	-0.01 -0.01 -0.02 -0.00	0.01 0.00 0.10 0.21	0.02 0.00 0.18 0.17	0.849 0.770 0.608 0.246
	Kronecker [4] Small-world [10] Scale-free [2] Random [3]	2.91 5.31 2.58 5.85	4.39 73.77 3.10 12.91	4.16 73.77 3.10 12.94	0.18 -0.13 -0.05 0.00	0.18 -0.13 -0.05 0.00	0.18 -0.13 -0.05 0.00	0.19 -0.13 -0.05 0.00	0.284 0.000 0.311 0.031

Appendix C. WoS citation dynamics

Table C.10: Paper citation, study and discovery dynamics of WoS categories Information Science & Library Science (ILS), Computer Science, Artificial Intelligence (AI), Computer Science, Software Engineering (SE) and Computer Science, Cybernetics (CY) as predicted by random graph models. (Results are estimates of the mean over 25 graph realizations.)

		Paper	citation	Paper	study	Pape	er discovery	by
Data	Model	# Cite	% Copy	# Read	% Cite	% Citation	% Service	% Other
	Citation (our)	3.98	86.1%	2.14	27.9%	29.2%	41.0%	29.8%
ILS	Random walk [9]	3.95	90.4%	1.54	29.2%	83.7%	-	16.3%
	Random-citing [7]	3.73	65.4%	1.29	100.0%	-	-	-
	Forest fire [5]	3.95	-	3.95	100.0%	62.3%	37.7%	-
ΑI	Citation (our)	4.52	87.3%	1.47	40.9%	25.8%	47.6%	26.6%
	Random walk [9]	4.49	88.9%	1.35	41.7%	88.1%	-	11.9%
AI	Random-citing [7]	4.21	69.7%	1.28	100.0%	-	-	-
	Forest fire [5]	3.31	-	3.31	100.0%	73.5%	26.5%	-
	Citation (our)	2.78	81.5%	1.58	36.4%	68.8%	2.0%	29.2%
SE	Random walk [9]	2.78	83.7%	1.54	33.3%	80.2%	-	19.8%
SE	Random-citing [7]	2.75	61.0%	1.07	100.0%	-	-	-
	Forest fire [5]	2.59	-	2.59	100.0%	84.4%	15.6%	-
	Citation (our)	2.18	69.6%	1.59	43.2%	24.5%	37.8%	37.6%
CY	Random walk [9]	2.16	75.7%	1.34	42.7%	79.0%	-	21.0%
C I	Random-citing [7]	2.17	49.1%	1.10	100.0%	-	-	-
	Forest fire [5]	2.07	-	2.07	100.0%	68.9%	31.1%	-

Appendix D. WoS citation evolution

TEXT

Table D.11: Paper citation, study and discovery evolution of WoS categories Information Science & Library Science (ILS), Computer Science, Artificial Intelligence (AI), Computer Science, Software Engineering (SE) and Computer Science, Cybernetics (CY) as predicted by citation model. (Results are estimates of the mean over 25 graph realizations.)

		Paper	citation	Paper	study	Pape	er discovery	by
Data	Period	# Cite	% Copy	# Read	% Cite	% Citation	% Service	% Other
	1945-2013	3.98	86.1%	2.14	27.9%	29.2%	41.0%	29.8%
II C	1970 – 1980	2.23	52.1%	3.39	33.5%	41.4%	0.0%	58.5%
ILS	1980 – 1990	2.62	65.1%	2.96	33.0%	48.3%	1.1%	50.6%
	1990 – 2000	3.42	81.6%	2.38	29.0%	40.3%	23.2%	36.5%
	2000 – 2010	5.06	83.6%	2.90	32.2%	40.7%	27.5%	31.7%
	1964-2013	4.52	87.3%	1.47	40.9%	25.8%	47.6%	26.6%
A T	1970 – 1980	1.23	38.3%	2.11	36.8%	28.9%	19.5%	51.6%
ΑI	1980 – 1990	2.84	78.1%	1.56	42.1%	25.2%	39.8%	35.0%
	1990 – 2000	3.38	79.7%	1.70	43.4%	36.0%	34.9%	29.1%
	2000 – 2010	4.27	85.5%	1.53	44.7%	58.9%	18.4%	22.7%
	1954-2013	2.78	81.5%	1.58	36.4%	68.8%	2.0%	29.2%
CIE.	1970 – 1980	1.89	25.1%	2.69	54.5%	33.9%	23.3%	42.7%
SE	1980 – 1990	2.22	65.0%	2.01	40.9%	40.7%	21.0%	38.3%
	1990 – 2000	2.54	76.2%	1.70	37.9%	50.7%	14.1%	35.2%
	2000 – 2010	2.90	83.0%	1.49	36.1%	63.1%	5.8%	31.1%
	1961-2013	2.18	69.6%	1.59	43.2%	24.5%	37.8%	37.6%
CV	1970 – 1980	1.62	27.6%	1.81	66.9%	27.5%	34.1%	38.4%
CY	1980 – 1990	2.06	53.5%	1.76	56.6%	35.8%	25.8%	38.4%
	1990 – 2000	2.07	67.9%	1.49	45.8%	16.1%	43.4%	40.5%
	2000-2010	2.19	72.3%	1.65	40.0%	43.9%	21.4%	34.7%

References

- [1] Adai, A.T., Date, S.V., Wieland, S., Marcotte, E.M., 2004. LGL: Creating a map of protein function with an algorithm for visualizing very large biological networks. J. Mol. Biol. 340, 179–190.
- [2] Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science 286, 509–512.
- [3] Erdős, P., Rényi, A., 1959. On random graphs i. Publ. Math. Debrecen 6, 290–297.
- [4] Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z., 2010. Kronecker graphs: An approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042.
- [5] Leskovec, J., Kleinberg, J., Faloutsos, C., 2007. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1, 1–41.
- [6] McGlohon, M., Akoglu, L., Faloutsos, C., 2008. Weighted graphs and disconnected components: Patterns and a generator, in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA. p. 524–532.
- [7] Simkin, M.V., Roychowdhury, V.P., 2005. Copied citations create renowned papers? Annals Improb. Res. 11, 24–27.
- [8] Šubelj, L., Bajec, M., 2013. Model of complex networks based on citation dynamics, in: Proceedings of the WWW Workshop on Large Scale Network Analysis, Rio de Janeiro, Brazil. pp. 527–530.
- [9] Vázquez, A., 2003. Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67, 056104.
- [10] Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of 'small-world' networks. Nature 393, 440–442.