Algo may_22

Inputs

1. A *CNF C* : (conjunction of a) set of *clauses*, where each clause is (a disjunction of) a set of *literals*, each literal is either a *positive* or a *negative* of a *variable*, and variables are represented as natural numbers.

No literal/variable is repeated in a clause, and no clause is repeated in the CNF.

2. A set *X* of variables to be existentially quantified: A vector of positive integers, where each number represents a variable.

Outcome

A set of BDDs $\{B_1, B_2, ... B_N\}$ whose conjunction is an over-approximation of $\exists_X C$, i.e., $\land_i \{B_i\} \Leftarrow \exists_X C$.

Discussion

A brief summary of the MUST algorithm might prove useful in order to explain the rest of this algorithm. MUST is a tool for online listing of minimal unsatisfiable subsets of clauses from a set of CNF clauses. To keep track of its search space, it maintains a record of "explored sets", which is initially empty. It then uses a heuristic to start with an *unexplored* set of clauses σ called the "seed" and checks for satisfiability. If satisfiable, starts with a fresh seed. If σ is unsatisfiable, it retests for satisfiability after dropping each clause one at a time. If there is a clause $c \in \sigma$ such that $\sigma \setminus \{c\}$ is unsatisfiable, then MUST continues the search with $\sigma \setminus \{c\}$ as the seed. If there is no such $c \in \sigma$, then σ is returned as a Minimal Unsatisfiable Set (MUS). At every satisfiability check for any set σ , if σ is satisfiable then all subsets of σ are marked as *explored*, and if σ is unsatisfiable, then all super-sets of σ are marked as *explored*.

For the purpose of our algorithm, the MUST tool needs to be modified to produce MUS-es with two properties:

P1: For every generated MUS μ , there is an assignment of \overline{X} variables in ϕ which allows μ to be preserved in ψ , i.e., $assignment(\mu) \neq \bot$.

To satisfy P1, modify the *exploration set* to disable exploring $\{c_1, c_2\}$ together for all clauses c_1 , c_2 in ψ such that there is a variable $x \in \overline{X}$ that satisfies $x \land asignment(c_1) = \bot$ and $\neg x \land assignment(c_2) = \bot$ (i.e., $assignment(c_1)$ has $\neg x$ and $assignment(c_2)$ has x). This ensures that no two clauses in a seed can result in an inconsistent assignment. Note that this has a potential to blow up into a quadratic. If we had to prioritize, we should focus on disjoint pairs as that would cut out larger portions in the search space.

P2: For every generated MUS μ , $assignment(\mu)$ should satisfy the factor graph solution S_0 .

One way to guarantee P2 would be to put a final check on any discovered MUS μ before reporting it, and if $assignment(\mu)$ doesn't satisfy S_0 , then discard μ , and continue searching from a fresh seed. This satisfiability check, of course, is hard, since S_0 is represented as a set of to-be-conjoined BDDs, and therefore may require the application of a SAT solver following a Tseytin transformation.

The satisfiability check with S_0 may also be applied on a starting seed σ , because of the following lemma:

$$(S_0 \land assignment(\sigma) \neq \bot) \Rightarrow (\forall \sigma' \subset \sigma, (S_0 \land assignment(\sigma') \neq \bot))$$

In other words, if a set σ of clauses is consistent with S_0 , then all subsets of σ are consistent with S_0 as well. This property can be utilized during the shrinking process: if a set is consistent with S_0 , then no other subset needs to be tested. The converse however is not true: if a set σ is inconsistent with S_0 , then subsets of σ cannot be assumed as inconsistent with S_0 . Furthermore, if a set σ is found to be inconsistent with S_0 , then even though it is known that its super-sets are inconsistent with S_0 , there is no benefit of marking them as such, since all super-sets would be marked as *explored* owing to the fact that σ is unsatisfiable.

In this algorithm, we choose to compute an inexact solution for the consistency with S_0 , by testing fixed number random assignments. If a satisfying assignment is found then σ is proved to be consistent with S_0 , along with all subsets of σ . However, if no satisfying assignment is found, we consider σ to be inconsistent with S_0 . This does not affect the correctness of our algorithm, but it does affect how the factors in our factor graph are merged, and hence affects the memory \Leftrightarrow time \Leftrightarrow exactness tradeoff.

We also use a heuristic count of the consistency of clause sets with S_0 to drive the order in which subsets $\sigma \setminus \{c_i\}$ of an unsatisfiable clause $\sigma = \{c_1, c_2, ... c_n\}$ are explored. Let S_0 be represented as (a conjunction of) a set of bdds $\{b_1, b_2, ... b_m\}$. Then a heuristic estimate of how consistent $\sigma \setminus \{c_k\}$ is with $S_0 = \land_i \{b_i\}$ is $\prod_i satratio(b_i \land assignment(\sigma \setminus \{c_k\}))$ where satratio gives the ratio of satisfying assignments of a bdd, and is easily computable. We explore the most consistent subset first.

High level algorithm

Let λ be a high level parameter controlling how large we allow the support sets of individual BDDs to be.

Create a factor graph out of C. Merge the factors and variables using some weights determined by how many common neighbours they have, while respecting λ . Compute an over-approximation $S_0 \Leftarrow \exists_x C$.

Let ϕ be the clauses in C which have X literals, and let $\overline{\phi}$ be the rest of the clauses, i.e., the clauses with literals only on \overline{X} .

For each clause c in ϕ , $\forall_{x}c$ is the disjunction of the literals in c on the variables in \overline{X} .

Let ψ be a set of clauses generated by dropping all \overline{X} literals in ϕ . For duplicate clauses, add unique fake variables that would get projected out without harming the final result of the algorithm. For every clause c in ψ let orig(c) be the corresponding clause in ϕ . Let $assignment(c) = \neg(\nabla_X orig(c))$ denote the assignments of \overline{X} variables which allows c to be preserved in $\psi(X)$. Similarly, for a set of clauses $S = \{c_1, c_2, ... c_N\}$, let $assignment(S) = \wedge_i \{assignment(c_i)\}$ denote the assignments of \overline{X} variables which allows all the clauses in S to be preserved in $\psi(X)$.

Initialize a MUST solver on ψ . For all $x \in \overline{X}$, for all c_1 , c_2 in ψ such that $assignment(c_1)$ has $\neg x$ and $assignment(c_2)$ has x, modify the exploration set of the solver to disable exploring $\{c_1,c_2\}$ together. Also modify the Clause Set Reduction algorithm to prefer to first drop the clause c from a set σ which maximizes the c of $assignment(\sigma \setminus \{c\})$ satisfying $S_0 = \{b_1 \land b_2 \land ... \land b_n\}$, which is defined as:

chance
$$(\sigma \setminus \{c\}, S_0) = \prod_i \text{chance}(\sigma \setminus \{c\}, b_i)$$

chance $(x, b) = \text{satratio}(\text{assignment}(x) \land b)$

satratio(b) is the ratio of rows in truth table of b which are \top

Use the MUST solver to generate an MUC $\mu_1 = \{d_1, d_2, ... d_M\}$ such that $assignment(\mu_1)$ satisfies S_0 . (To check for satisfiability, use a Tseytin transformation on S_0 .) Undo the grouping of factors and variable in the factor graph. Add $\neg assignment(\mu_1)$ as a factor to the factor graph. Increase the grouping weights of $(orig(d_i), orig(d_j))$ for all $d_i, d_j \in \mu_1$. Then re-group and compute the factor graph approximation S_1 .

Re-iterate the above algorithm to generate μ_{i+1} using S_i and then generate S_{i+1} using μ_{i+1} . Keep doing this until you either run out of MUCs or the program time limit.