METODO			
enfriamiento	Temperatura inicial	10	
	Tasa de enfriamiento	0.995	89.661
simulado (SA)	Temperatura final	0.00001	
	Tasa de mutación	0.02	
algoritmos genéticos (AG)	Tamaño de la elite	50	70.9998
	Número de generaciones	20	70.9998
	Tamaño de la población	100	
	Número de partículas	300	
PSO	Alpha	0.02	
	Beta	0.9	49.4951
	Número máximo de iteraciones	1200	

EJECUCION	AG	SA	PSO
1	81.5718	79.1956	49.4951
2	73.96090000000001	110.3086	49.4951
3	67.92170000000002	96.1663	49.4951
4	58.08490000000001	96.1663	49.4951
5	69.1827	96.1662	49.4951
6	76.67550000000001	87.6813	49.4951
7	65.15230000000001	76.3674	49.4951
8	67.9205	76.3674	49.4951
9	84.2685	76.3674	49.4951
10	64.90100000000001	101.8235	49.4951

AG PRUEBAS

PRUEBAS	PARAMETROS		COSTO PROMEDIO
1	Tasa de mutación	0.02	
	Tamaño de la elite	50	75.2312
	Número de generaciones	30	7
	Tamaño de la población	200	7
	Tasa de mutación	0.9	
2	Tamaño de la elite	50	402 2027
2	Número de generaciones	30	102.3927
	Tamaño de la población	200	7
	Tasa de mutación	0.001	
2	Tamaño de la elite	50	00.0450
3	Número de generaciones	30	80.8459
	Tamaño de la población	200	7
	Tasa de mutación	0.02	
4	Tamaño de la elite	100	72.0700
4	Número de generaciones	30	72.9799
	Tamaño de la población	200	
	Tasa de mutación	0.02	
5	Tamaño de la elite	10	69,0059
5	Número de generaciones	30	- 68.9058
	Tamaño de la población	200	
	Tasa de mutación	0.02	
6	Tamaño de la elite	50	70.4000
О	Número de generaciones	100	70.4088
	Tamaño de la población	200	
	Tasa de mutación	0.02	
7	Tamaño de la elite	50	50.1855
/	Número de generaciones	10	30.1833
	Tamaño de la población	200	
	Tasa de mutación	0.02	
8	Tamaño de la elite	50	66.3412
0	Número de generaciones	30	00.3412
	Tamaño de la población	500	
9	Tasa de mutación	0.02	
	Tamaño de la elite	50	76.4143
	Número de generaciones	30	/0.4145
	Tamaño de la población	100	
	Tasa de mutación	0.02	
10	Tamaño de la elite	10	48.1855
	Número de generaciones	10	40.1033
	Tamaño de la población	500	

AG PRUEBA 1		
EJECUCION	COSTO	
1	77. <u>2419399952345</u>	
2	76.0052	
3	70.8073000000001	
4	77.1312999999998	
5	70.7618	
6	75.65416514651141	
7	77.688464645466	
8	74.4584	
9	75.52654654165456	
10	77.2241999999998	

AG PRUEBA 2		
EJECUCION	COSTO	
1	91.0165	
2	106.078799999999	
3	109.6851999999998	
4	95.4626000000001	
5	96.031399999999	
6	102.547099999999	
7	104.144999999998	
8	104.8873999999997	
9	101.9543999999999	
10	112.1193000000001	

SA PRUEBAS

PRUEBAS	PARAMETRO	S	COSTO PROMEDIO
1	Temperatura inicial	50	
	Tasa de enfriamiento	0.995	119.6423
	Temperatura final	0.0001	
	Temperatura inicial	200	
2	Tasa de enfriamiento	0.995	133.2187
	Temperatura final	0.0001	
	Temperatura inicial	100	
3	Tasa de enfriamiento	0.995	128.1640
	Temperatura final	0.0001	
	Temperatura inicial	50	
4	Tasa de enfriamiento	0.0995	167.8200
	Temperatura final	0.0001	
	Temperatura inicial	50	
5	Tasa de enfriamiento	0.00995	189.5057
	Temperatura final	0.0001	
	Temperatura inicial	50	
6	Tasa de enfriamiento	0.9	80.1358
	Temperatura final	0.0001	
	Temperatura inicial	50	
7	Tasa de enfriamiento	0.995	106.5371
	Temperatura final	0.00001	
8	Temperatura inicial	50	
	Tasa de enfriamiento	0.995	119.1193
	Temperatura final	0.000001	
9	Temperatura inicial	50	
	Tasa de enfriamiento	0.995	113.1387
	Temperatura final	0.001	
10	Temperatura inicial	10	74.4817
	Tasa de enfriamiento	0.99	/4.401/
	Temperatura final	0.01	

SA PRUEBA 1		
EJECUCION	COSTO	
1	<u>115.9656</u>	
2	118.7938	
3	121.6221	
4	<u>128</u> .5926	
5	113.1371	
6	135.7642	
7	113.1369	
8	115.9653	
9	<u>111</u> .8231	
10	121.6224	

SA PRUEBA 2		
EJECUCION	COSTO	
1	<u>147.0781</u>	
2	124.4508	
3	130.1075	
4	127.2791	
5	138.5928	
6	132.9359	
7	118.7938	
8	127.2789	
9	141.4212	
10	144.2495	

^{*}SE REALIZARON LAS DEMAS TABLAS AL REALIZAR LAS PRUEBAS QUE FALTAN, PERO CON MOTIVO DE NO SATURAR EL DOCUMENTO DE TABLAS SOLO SE TOMARON DOS EN CADA UNO DE LOS ALGORITMOS PARA QUE SE EVIDENCIE EL TRABAJO REALIZADO.

^{*}NUMERO EN ROJO SIGNIFICAN CAMBIOS REALIZADOS A ESOS PARAMETROS.

CONCLUCIONES

Se realizaron diferentes pruebas para los 3 algoritmos dados dando como resultado lo siguiente:

VALORES INICIALES

SA:

Para el algoritmo de enfriamiento simulador se utilizaron los siguientes datos como parámetros iniciales:

Temperatura inicial	10
Tasa de enfriamiento	0.995
Temperatura final	0.000001

Dando como resultado 89.661 de costo mínimo en promedio, realizando 10 ejecuciones con una oscilación de 76.3674 hasta 110.3086, con esta poca convergencia podemos confiar en esos datos seleccionados.

SA PRUEBAS:

Se realizaron 10 pruebas de ensayo y error para este algoritmo, a las cuales se ejerció 10 ensayos con diferentes parámetros a cada una. Con los resultados obtenidos podemos concluir que:

Las diferentes pruebas arrojaron una oscilación de 74.4817 hasta 189.5057, probando esto podemos decir que hay un cambio significativo entre los costos mínimos promedio cuándo se cambian los parámetros iniciales del algoritmo.

Los costos mínimos y el menor tiempo de ejecución arrojados por las pruebas se evidenciaron cuando: la temperatura inicial fue más baja, la tasa de enfriamiento se acercó más a 1 y la temperatura final fue más alta. Dándonos como menor costo promedio la prueba número 10 en la que se usaron estos resultados para cambiar la totalidad de los parámetros.

AG:

Para los algoritmos genéticos se utilizaron los siguientes datos como parámetros iniciales:

Tasa de mutación	0.02
Tamaño de la elite	50
Número de generaciones	20
Tamaño de la población	100

Dando como resultado 70.9998 de costo mínimo en promedio, realizando 10 ejecuciones con una oscilación de 58.0849 hasta 84.2685, con esta poca convergencia podemos confiar en esos datos seleccionados.

AG PRUEBAS:

Se realizaron 10 pruebas de ensayo y error para este algoritmo, a las cuales se ejerció 10 ensayos con diferentes parámetros a cada una. Con los resultados obtenidos podemos concluir que:

Las diferentes pruebas arrojaron una oscilación de 48.1855 hasta 102.3927, probando esto podemos decir que hay un cambio significativo entre los costos mínimos promedio cuándo se cambian los parámetros iniciales del algoritmo.

Los costos mínimos y el menor tiempo de ejecución arrojados por las pruebas se evidenciaron cuando: la tasa de mutación es más pequeña, el tamaño de la élite es más pequeño, el número de generaciones es más pequeño y el tamaño de la población es más grande. Dándonos como menor costo promedio la prueba número 10 en la que se usaron estos resultados para cambiar la totalidad de los parámetros.