

Algorithmen und Datenstrukturen

Datentyp Menge (Forts.):

Suchbäume ♦ Balancieren

Verwalten von Mengen durch Suchbäume

Joiversital, Polistani

Suchbäume

 Idee: Verwalten der Elemente einer Menge in einem Baum, in den die Elemente in gewisser Weise geordnet eingefügt werden (Suchbaum)

 Voraussetzung: Lineare Ordnung auf dem Grundbereich definiert (→ Schlüssel verwenden)

 Implementierung einer geeigneten Operation zum Einfügen eines Elements in einen geordneten Baum

Universitati

Binärer Suchbaum

- Für jeden Knoten gilt:
- 1. Alle Werte in seinem linken Teilbaum sind kleiner als der Wert des Knotens.
- 2. Alle Werte in seinem rechten Teilbaum sind größer als der Wert des Knotens.

Funktion Suchen

Name: contains(x,t)

Eingabe: binärer Suchbaum t mit Wurzel r,

Wert x aus dem Grundbereich

Ausgabe: True, falls x Wert eines Knotens von t ist, False sonst

Funktion Einfügen

Name: add(x,t)

Eingabe: binärer Suchbaum t mit Wurzel r,

Wert x aus dem Grundbereich

Ausgabe: True, falls x dem Baum t hinzugefügt wurde,

False sonst

Nebeneffekt: *t* ist binärer Suchbaum mit einem neuen Blatt, dessen Wert *x* ist, falls *x* noch nicht enthalten war

Methode: Suchen; falls nicht gefunden, am zuletzt aufgefundenen Knoten auf der korrekten Seite anfügen

O(depth(t))

add(3,t)

add(7,t)

add(6,t)

add(8,t)

Funktion Einfügen – Beispiel (Forts.)

Funktion Entfernen

Name: remove(x,t)

Eingabe: binärer Suchbaum t mit Wurzel r,

Wert x aus dem Grundbereich

Ausgabe: True, falls x aus dem Baum t entfernt wurde,

False sonst

Nebeneffekt: *t* ist binärer Suchbaum, aus dem der Knoten mit Wert *x* entfernt ist, falls dieser existierte

Methode: Suchen, falls gefunden Knoten entfernen nach folgender Fallunterscheidung:

Funktion Entfernen (falls enthalten)

- 1. Fall: x ist Wert eines Blattes w
 - → Streichen dieses Blattes w

- 2. Fall: Knoten w mit Wert x hat genau ein Kind z
 - \rightarrow Ersetzen von w mit z

Funktion Entfernen (falls enthalten)

- 3. Fall: Knoten w mit Wert x hat zwei Kinder
 - → Tauschen des Wertes in w mit dem Wert im am weitesten rechts stehenden Knoten z des linken Teilbaums von w und Entfernen von z

Universitation of the state of

Funktion Entfernen

- Voraussetzung: Vater ist bekannt
- entweder Kopieren der Werte zwischen Knoten oder Umsetzen von Zeigern

Laufzeit:

- Alle Operationen auf einem Weg von der Wurzel zu einem Blatt:
 - Suchen des zu löschenden Knotens, seines Vaters und des Knotens am weitesten rechts;
 - Austausch von Knoten auf diesem Weg
- somit O(depth(t))

Balancierte binäre Suchbäume

Universitation of the Contraction of the Contractio

Entarten von Suchbäumen

- Basisoperationen contains, add, remove mit Laufzeit O(depth(t))
- ➤ Laufzeit *O*(log *n*) bei Suchbaum mit *n* Knoten bei einem balancierten Suchbaum
- Tiefe des Baums hängt aber von der Reihenfolge ab, in der Elemente eingefügt/entfernt werden
- Bäume können zu linearer Liste entarten

Entarten von Suchbäumen – Beispiel

1. günstige Reihenfolge des Einfügens: 5, 7, 6, 3, 8, 4, 1

Entarten von Suchbäumen – Beispiel

2. ungünstige Reihenfolge des Einfügens: 1, 3, 4, 5, 6, 7, 8

contains, add und remove mit O(n) Laufzeit im schlechtesten Fall


```
remove(6,t);
remove(8,t);
remove(7,t);
remove(4,t)
```

Universitate Post of the Control of

Balancieren von Suchbäumen

- Ist ein Suchbaum "zu stark entartet"
 - z.B. wenn es einen Knoten v gibt, so dass
 |depth(left(v)) depth(right(v))| > D für ein gewisses D,

dann wird der Suchbaum ausgeglichen

- Naiver Algorithmus:
 - Bestimmung des Medians der gespeicherten Werte
 - neuer Suchbaum mit Median an der Wurzel
 - lineare Zeit zum Balancieren (S)

Universitate Political Pol

AVL-Bäume

- binäre Suchbäume mit Operation "Rotieren" zum effizienten Balancieren
- von <u>A</u>delson-<u>V</u>elskii und <u>L</u>andis (1962)
- Aufruf der Funktion zum Balancieren nach jedem Einfügen oder Löschen, wenn die Eigenschaft balanciert dadurch zerstört wurde
- Jeder Knoten v bekommt zusätzlich einen int-Wert, der den Unterschied der Tiefen seiner Teilbäume misst (Balancefaktor von v)

Balancefaktor eines Knotens

Balancefaktor von u:

$$b_u = \text{Linkstiefe}(u) - \text{Rechtstiefe}(u) = b_{\text{address}(u)}$$

Linkstiefe eines Knotens

- Sei t ein gewurzelter Baum und u ein Knoten von t.
- Linkstiefe(u) ist die Tiefe des Teilbaums von t mit Wurzel u ohne right(u)

Rechtstiefe eines Knotens

- Sei t ein gewurzelter Baum und u ein Knoten von t.
- Rechtstiefe(u) ist die Tiefe des Teilbaums von t mit Wurzel u ohne left(u)

Balancefaktor – Beispiel

balancierter Binärbaum mit Balancefaktoren:

► Bei balancierten Bäumen für alle $v: b_v \in \{-1, 0, 1\}$

Einfügen in AVL-Bäume – Beispiel

Eingabe: Blatt *n* eines AVL-Baums *t*

Ausgabe: t mit neu berechneten Balancefaktoren von n an aufwärts

bis zur Wurzel

```
update_factors_add(n):

b_n \leftarrow 0

v \leftarrow Vater von n

solange v \neq null # n ist nicht die Wurzel

führe aus

falls (left(v) = address(n))

b_v \leftarrow b_v + 1

sonst

b_v \leftarrow b_v - 1

n \leftarrow v

v \leftarrow Vater von n
```


Rechtsrotation – Beispiel

Einfügen in einen AVL-Baum (1)

- neues Element als Blatt einfügen
- Balancefaktoren können sich nur entlang des Suchpfades verändert haben
- Ist der Balancefaktor nach dem Einfügen überall aus {-1, 0, 1}, so ist wieder ein AVL-Baum entstanden.
- Sonst: suche Knoten w mit maximaler Tiefe, dessen Balancefaktor 2 oder -2 ist

Nun gibt es vier Fälle ...

Universitate Paragram

Einfügen in einen AVL-Baum (2)

- "Überhang" am linken Teilbaum links von w (Suchpfad von w beginnt mit links-links)
 - → Rechtsrotation

Einfügen in einen AVL-Baum (3.1)

- "Überhang" am rechten Teilbaum links von w (Suchpfad von w beginnt mit links-rechts)
 - → Doppelrotation (zuerst Linksrotation ...)

Einfügen in einen AVL-Baum (3.2)

- "Überhang" am rechten Teilbaum links von w (Suchpfad von w beginnt mit links-rechts)
 - → Doppelrotation (... dann Rechtsrotation)

Einfügen in einen AVL-Baum (4)

symmetrische Fälle:

- 3. "Überhang" am linken Teilbaum rechts von **w** (Suchpfad von **w** beginnt mit *rechts-links*)
 - → Doppelrotation (erst Rechts- dann Linksrotation)

- 4. "Überhang" am rechten Teilbaum rechts von **w** (Suchpfad von **w** beginnt mit *rechts-rechts*)
 - → Linksrotation

Pseudocode: Einfache Rotation

R_rotate(w):

 $u \leftarrow \text{content}(\text{left}(w))$ $\beta \leftarrow \text{content}(\text{right}(u))$ $\text{setLeft}(w, \text{address}(\beta))$ setRight(u, address(w)) setParent(u, getParent(w)) setParent(w, address(u)) $\text{setParent}(\beta, \text{address}(w))$

Analog L_rotate(w)

Doppelte Rotation

LR_rotate(w):

 $u \leftarrow \text{content}(\text{left}(w))$

L_rotate(*u*)

R_rotate(w)

(Alternativ kann die Konstruktion des Ergebnisbaums auch direkt implementiert werden.)

Analog RL_rotate(w)

Pseudocode Einfügen (1)

Eingabe: AVL-Baum t mit Wurzel r,

Element x aus Grundbereich

Ausgabe: True, falls x dem Baum hinzugefügt wurde, False sonst

Nebeneffekt: t ist binärer AVL-Baum mit einem neuen Blatt n,

dessen Wert x ist, falls x noch nicht enthalten war

```
res \leftarrow \operatorname{add}(x,t) # Suchbaum mit neuem Blatt n (mit Wert x)

falls res = False gib res aus, STOP

update_factors_add(n)

w \leftarrow \operatorname{Vater von} n

solange -1 \leq b_w \leq 1 UND w \neq r # tiefsten Knoten w \neq r # tiefsten Knoten w \neq r

w \leftarrow \operatorname{Vater von} w

falls -1 \leq b_w \leq 1 gib res aus # sonst: siehe nächste Folie
```



```
sonst

falls b_w = 2 \text{ UND } b_{\text{left(content(w))}} = 1

u \leftarrow \text{content(left(w))}

R_{\text{rotate}(w)}

b_w \leftarrow 0

b_u \leftarrow 0
```

w ist jetzt Knoten mit $b_w = 2$ oder $b_w = -2$

Fall, der die Rechtsrotation erfordert

Balancefaktoren entlang des Suchpfads neu berechnen

gib res aus STOP

Analog die drei anderen Fälle

Universitation of the state of

Löschen aus AVL-Bäumen

- remove aufrufen
- Jeden Knoten entlang des Suchpfads, beginnend am Vater des gelöschten Knotens bis zur Wurzel, auf Ausgeglichenheit testen und ggf. durch Rotieren ausgleichen (rebalancieren).
- Annahme: Wir sind dabei an einem Knoten angelangt, dessen linker Teilbaum "verkürzt" wurde.
 (Betrachtungen für rechten Teilbaum symmetrisch)

Fallunterscheidung Löschen

- Sei u der zu gerade behandelte Knoten, dessen linker Teilbaum "verkürzt" wurde. Es gibt drei Fälle:
 - 1. Vorher war $b_u = 1$. Dann setze b_u auf 0.
 - 2. Vorher war $b_u = 0$. Dann setze b_u auf -1.
 - 3. Vorher war b_u = -1. Dann unterscheide drei Unterfälle. Sei v rechtes Kind von u:
 - 1. $b_v = -1$
 - 2. $b_v = 0$
 - 3. $b_v = 1$

L-Rotation von *u*

L-Rotation von *u*

RL-Rotation

Universitate

Laufzeitanalyse

- Für einen AVL-Baum *t* mit *n* Elementen (*worst case*):
- add bzw. remove: O(depth(t)) = O(log n)
- Aufsuchen der Stellen, an denen rotiert werden muss, nur entlang des Suchpfads (zurück zur Wurzel):
 O(depth(t)) = O(log n)
- Rotationsoperationen: O(1)
- Aktualisierung der Balancefaktoren nur entlang des Suchpfads: O(log n) (nach dem Einfügen bzw. Löschen und nach jeder Rotation)
- > O(log n) für Suchen, Einfügen und Löschen in AVL-Bäumen