# Dynamic Graph CNN for learning on Point Clouds.

Mérigot-Lombard Matthieu; Vindry Guillaume

# Learning on point clouds



Point cloud from the ModelNet40 dataset

#### Tasks:

- Classification: Assign a label to an entire point cloud (identifying an object as a car or a tree)
- **Segmentation**: Partition the point cloud into meaningful regions (separating ground, vehicles, and pedestrians in an urban scene)

#### Applications:

- Autonomous Navigation: Use LiDAR sensors to map and understand the environment for self-driving cars or robotic systems
- **Medical Imaging**: Analyze 3D scans such as MRI or CT data, to identify anatomical structures or detect anomalies

# Handcrafted geometric features



# Transform the point cloud before applying a deep learning model:

- Normals: Compute surface normals
- Voxelization: Discretize the point cloud into a 3D grid of voxels
- Grid Representation: Use other methods to project the point cloud into a structured grid, enabling convolution operations



Normals

### PointNet and PointNet++

#### PointNet architecture



#### **Extension to PointNet++**

**Step 1:** Operates **hierarchically** by applying PointNet to **local neighborhoods**, capturing finer-grained geometric structures

Step 2: Successively pools local features, creating coarser representations until summarizing the entire cloud

# **Dynamic Graph CNNs main ideas**

#### **Input: Raw Point Cloud Input**

Retain the input as a raw point cloud, preserving the **original spatial and geometric information** 

#### **Step 1: Local Feature Extraction**

Construct a graph within the **local neighborhood of points** to capture local features. Apply graph operations to update point features

#### Step 2: Non-Local Interactions

Dynamically update the graph as features evolve, enabling interactions between distant but similar points, enhancing **non-locality** 



# Local feature extraction: Edge Convolution

#### **Objective:**

Capture **local geometric structure** by updating point features based on these relationships

#### **General EdgeConv definition**

## **DGCNN Classification Architecture**



The graph is updated multiple times to capture **interactions between distant but similar points** helping the model detect **non-local patterns**.

# Dynamic graphs : evolution of the distance metric for the k-nearest neighbors



# **DGCNN Segmentation Architecture**







**Similar Core Structure**: Builds on the previous architecture.

**Categorical Vectors**: Incorporates vectors providing information about the number of segments per class.





# Fixed number of class of segmentation

Ground Truth DGCNN Prediction



**Potential loss of generalization**: Fixed number of segmentation classes per object class which may not capture variations in complexity or structure

**Scalability Issue**: Adding point clouds with new segmentation classes would probably require retraining





# Dependency to the number of points and density



**Model on fixed number of points:** k-NN approach could struggle with point clouds with different sizes as the one it is trained on

 $\rightarrow$  Could **modify k** to compensate

**Density inhomogeneity:** k-NN could also struggle as the number of necessary neighbors to generate an expressive feature can vary

# **Efficiency of k-NN computations**

**Drawback**: k-NN calculation is **computationally intensive** and **challenging to parallelize** 

**Performance Comparison**: From our computations, PointNet runs ~50x faster during inference than DGCNN for classification task with 2048 points

**Efficiency**: From the authors, dynamic graph computation improved accuracy from PointNet by **less than 1%**