| вариант | ф. номер | група | поток | курс | специалност |
|---------|----------|-------|-------|------|-------------|
| 1       |          |       |       |      |             |
| Име:    |          |       |       |      |             |

## ВТОРИ ТЕСТ ПО ЕАИ спец. Информатика 21.1.2011 г.

**Задача 1.** Дайте дефиниция за контекстносвободна граматика  $G = \langle V, \Sigma, S, \mathcal{R} \rangle$  в нормална форма на Чомски. (не е необходимо да дефинирате понятието контекстносвободна граматика)

**Задача 2.** Дайте дефиниция за недетерминиран стеков автомат  $A = \langle Q, \Sigma, \Gamma, \delta, s, \# \rangle$ . (без финални състояния, но с начален стеков символ)

**Задача 3.** Нека  $G = \langle V, \Sigma, S, \mathcal{R} \rangle$  е (произволна) контекстносвободна граматика. Опишете конструкция, която построява недетерминиран стеков автомат  $A = \langle Q, \Sigma, \Gamma, \delta, s, \# \rangle$  с език L(A) = L(G).

**Задача 4.** Постройте недетерминиран стеков автомат с език L(G), където G е граматиката:

$$G = \langle \{S,T\}, \{a,b\}, S, \{S \to TS | aTb, T \to \varepsilon | aTb\} \rangle$$

**Задача 5.** Формулирайте лемата за нарастването (покачването, Pumping Lemma) за контекстносвободни езици.



**Задача 7.** Нека  $G_1$  е граматиката:

$$G_1 = \langle \{A, B, S\}, \{a, b\}, S, \{S \rightarrow BB | AS | a, A \rightarrow SA, B \rightarrow \varepsilon | b | BS \} \rangle.$$

Ако  $\mathcal{E}_1 = \{B, S\}$  е множеството от нетерминали в  $G_1$ , които извеждат празната дума, намерете гаматика G без  $\varepsilon$ -правила, за която  $L(G) = L(G_1) \setminus \{\varepsilon\}$ . Принадлежи ли празната дума на езика  $L(G_1)$ ?

**Задача 8.** Постройте к.св.г. G, несъдържаща единични(преименуващи) правила и с език  $L(G) = L(G_1)$ , където:

$$G_1 = \langle \{A,B,S,C\}, \{a,b\}, S, \{S \rightarrow A|B,A \rightarrow a|C|AB,B \rightarrow b|C,C \rightarrow CS|a|b\} \rangle.$$

**Задача 9.** Използвайте СҮК-алгоритъма (алгоритъма на динамично програмиране), за да проверите дали думата  $\alpha = baab$  се генерира от граматиката:

$$G = \langle \{S, A, B, C\}, \{a, b\}, S, \{S \rightarrow AB | BC, A \rightarrow bA | ba, B \rightarrow AC | Ab, C \rightarrow AB | aa\} \rangle$$

| вариант | ф. номер | група | поток | курс | специалност |
|---------|----------|-------|-------|------|-------------|
| 2       |          |       |       |      |             |
| Име:    |          |       |       |      |             |

## ВТОРИ ТЕСТ ПО ЕАИ спец. Информатика 21.1.2011 г.

**Задача 1.** Дайте дефиниция за контекстносвободна граматика  $G = \langle V, \Sigma, S, \mathcal{R} \rangle$  в нормална форма на Чомски. (не е необходимо да дефинирате понятието контекстносвободна граматика)

**Задача 2.** Дайте дефиниция за недетерминиран стеков автомат  $A = \langle Q, \Sigma, \Gamma, \delta, s, \# \rangle$ . (без финални състояния, но с начален стеков символ)

**Задача 3.** Нека  $G = \langle V, \Sigma, S, \mathcal{R} \rangle$  е (произволна) контекстносвободна граматика. Опишете конструкция, която построява недетерминиран стеков автомат  $A = \langle Q, \Sigma, \Gamma, \delta, s, \# \rangle$  с език L(A) = L(G).

**Задача 4.** Постройте недетерминиран стеков автомат с език L(G), където G е граматиката:

$$G = \langle \{S,T\}, \{a,b\}, S, \{S \to TT | aSb, T \to \varepsilon | bTa\} \rangle$$

**Задача 5.** Формулирайте лемата за нарастването (покачването, Pumping Lemma) за контекстносвободни езици.



**Задача 7.** Нека  $G_1$  е граматиката:

$$G_1 = \langle \{A, B, S\}, \{a, b\}, S, \{S \rightarrow BB | AS, A \rightarrow SA | SB, B \rightarrow \varepsilon | b | BS \} \rangle.$$

Ако  $\mathcal{E}_1 = \{B, S\}$  е множеството от нетерминали в  $G_1$ , които извеждат празната дума, намерете гаматика G без  $\varepsilon$ -правила, за която  $L(G) = L(G_1) \setminus \{\varepsilon\}$ . Принадлежи ли празната дума на езика  $L(G_1)$ ?

**Задача 8.** Постройте к.св.г. G, несъдържаща единични(преименуващи) правила и с език  $L(G) = L(G_1)$ , където:

$$G_1 = \langle \{A, B, S, C\}, \{a, b\}, S, \{S \rightarrow A | B, A \rightarrow a | C | SB, B \rightarrow b | C, C \rightarrow CS | a | b \} \rangle.$$

**Задача 9.** Използвайте СҮК-алгоритъма (алгоритъма на динамично програмиране), за да проверите дали думата  $\alpha = baab$  се генерира от граматиката:

$$G = \langle \{S, A, B, C\}, \{a, b\}, S, \{S \rightarrow AB | BC, A \rightarrow BA | ba, B \rightarrow CC | aa, C \rightarrow aB | ab \} \rangle$$