

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral I — Avaliação PS Prof. Adriano Barbosa

1	
2	
3	
4	
5	
Nota	

Aluno(a):....

Todas as respostas devem ser justificadas.

Avaliação P1:

1. Determine o maior domínio de $f(x) = \frac{\operatorname{sen}(6x)}{x}$ e calcule $\lim_{x\to 0} f(x)$.

2. Mostre que $\lim_{x\to 0} x^2 \cos\left(\frac{1}{x^2}\right) = 0$.

3. Dados $f(x) = x^3 - 2x - \cos x$ e $I = (0, \frac{\pi}{2})$:

(a) Determine se a função f é contínua no intervalo I.

(b) Mostre que a função f possui uma raiz no intervalo I.

4. Dada a equação implícita $x^4(x+y) = y^2(3x-y)$, calcule $\frac{dy}{dx}$.

5. Para quais valores de x no intervalo $[0,\pi]$ a tangente ao gráfico de $f(x) = \operatorname{sen}(x) \cos(x)$ é horizontal?

Avaliação P2:

1. (2 pts) Calcule o limite $\lim_{x \to \frac{\pi}{2}^+} \frac{\cos x}{1 - \sin x}$.

2. (2 pts) Um tanque cilíndrico com raio 5m está enchendo com água a uma taxa de $3\text{m}^3/\text{min}$. Quão rápido a altura da água está aumentando?

3. (2 pts) Uma sorveteria vende 130 picolés por dia por R\$ 5,00 cada. Observou-se que, durante uma promoção de verão, cada vez que diminuia R\$ 0,50 no preço do picolé, vendia 20 unidades a mais por dia. Qual deve ser o preço do picolé para que a receita da sorveteria seja máxima?

4. (2 pts) Uma partícula de move com velocidade $v(t) = \text{sen}(t) - \cos(t)$. Determine a posição da partícula em função do tempo sabendo que s(0) = 0.

5. (2 pts) Calcule a integral definida $\int_0^4 \frac{4+6u}{\sqrt{u}} du$.

Boa Prova!

Avaliação P1

1)
$$f(x) = \frac{\sin(6x)}{x}$$
 está def. para todo x $\neq 0$ e

$$\lim_{x\to 0} \frac{\sin(6x)}{x} \cdot \frac{6}{6} = \lim_{x\to 0} \left[6 \cdot \frac{\sin(6x)}{6x} \right] = 6 \cdot \lim_{x\to 0} \frac{\sin(6x)}{6x}$$

= 6. lim
$$\frac{8m(6x)}{6x}$$
 = 6.1=6, $\frac{1}{6}$ $\frac{1}{6}$

$$-1 \leq \cos\left(\frac{1}{x^{2}}\right) \leq 1 \quad \Rightarrow \quad -x^{2} \leq x^{2} \cos\left(\frac{1}{x^{2}}\right) \leq x^{2} \quad , \quad pois \quad x^{2} \neq 0$$

mas,

$$\lim_{x\to 0} -x^2 = 0$$
 e $\lim_{x\to 0} x^2 = 0$.

Pelo Teo. do Confronto, lim
$$x^2 cos(\frac{1}{x^2}) = 0$$

(3) a) $F(x) = x^3 - 2x$ é polinomial, logo é contínua un todo $x \in \mathbb{R}$. $G(x) = \cos x$ é trigonométrico, logo contínua em \mathbb{R} .

Como a soma de funções contínuos é contínuo, temos que $f(x) = x^3 - 2x - \cos x$ é contínuo em todo $x \in \mathbb{R}$. Em particular, é contínua em I.

$$f(0) = 0^3 - 2 \cdot 0 - \infty = -1 < 0$$

$$f(\Xi) = (\Xi)^3 - 2 \cdot \Xi - \cos \Xi = \Xi^3 - \pi \approx 0,73 > 0$$

Pelo Teo. do valor intermediário existe $c \in (0, \frac{\pi}{2})$ tal que f(c) = 0.

$$\Rightarrow \frac{d}{dx} \left[x^4 (x+y) \right] = \frac{d}{dx} \left[y^2 (3x-y) \right]$$

$$\Rightarrow 4x^{3}(x+y) + x^{4}(1+\frac{dy}{dx}) = 2y\frac{dy}{dx}(3x-y) + y^{2}(3-\frac{dy}{dx})$$

$$\Rightarrow 4x^{3}(x+y) + x^{4} + x^{4} \frac{dy}{dx} = 2y(3x-y) \frac{dy}{dx} + 3y^{2} - y^{2} \frac{dy}{dx}$$

$$\Rightarrow x^{4} \frac{dy}{dx} - 2y(3x-y) \frac{dy}{dx} + y^{2} \frac{dy}{dx} = 3y^{2} - 4x^{3}(x+y) - x^{4}$$

$$\Rightarrow \frac{dy}{dx} = \frac{3y^2 - 4x^3(x+y) - x^4}{x^4 - 2y(3x-y) + y^2} = \frac{3y^2 - 4x^4 - 4x^3y - x^4}{x^4 - 6xy + 2y^2 + y^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{3y^2 - 5x^4 - 4x^3y}{x^4 - 6xy + 3y^2}$$

(5) A tanguite é horizontal quando f'(x) = 0. Derivando:

$$f'(x) = \cos x \cdot \cos x + \sin x \cdot (-\sin x) = \cos^2 x - \sin^2 x = \cos^2 x - (1 - \cos^2 x)$$

= $2\cos^2 x - 1$

$$f'(x) = 0 \iff 2 \cos^2 x - 1 = 0 \iff \cos^2 x = \frac{1}{2} \iff |\cos x| = \sqrt{\frac{2}{2}} = \frac{2}{2}$$

$$\iff \int \cos x = \frac{\sqrt{2}}{2}, \cos x \neq 0 \qquad x \in [0, \pi] \begin{cases} \cos x = \frac{\sqrt{2}}{2}, 0 \leq x \leq \frac{\pi}{2} \\ -\cos x = \frac{\sqrt{2}}{2}, \cos x \neq 0 \end{cases}$$

$$\iff \int \cos x = \frac{\sqrt{2}}{2}, \cos x \neq 0 \qquad (\cos x = -\frac{\sqrt{2}}{2}, \frac{\pi}{2} \leq x \leq \pi)$$

Portanto, a tangente ao gráfico de f é horizontal em $[0,\pi]$ quando $\chi = \frac{\pi}{4}$ ou $\chi = \frac{3\pi}{4}$.

① Quando $x \to \frac{\pi}{2}^+$, temos $\cos x \to 0^-$ e $\sin x \to 1^+ \Rightarrow 1 - \sin x \to 0^+$. Logo, o limite é uma inditerminação do tipo $\frac{1}{0}$. Aphicando a regra de L'Hospital:

$$\lim_{\chi \to \frac{\pi}{2}^+} \frac{\cos \chi}{1 - \sin \chi} = \lim_{\chi \to \frac{\pi}{2}^+} \frac{-\sin \chi}{-\cos \chi} = -\infty$$

O volume do cilindro é dado por $V = \pi r^2 h$, onde V = h sau funções do tempo. Temos que V' = 3 e queremos h'. Derivando

$$V = \pi r^2 h' \implies 3 = \pi \cdot 5^2 \cdot h' \implies h' = \frac{3}{25\pi} m/min.$$

Chamando de x o número de vezes que o desconto foi aplicado, temos que o faturamento é dodo por

$$f(x) = (130 + 20x) \cdot (5 - 0.5x) = 650 - 65x + 100x - 10x^{2}$$

$$=) f(x) = -10x^{2} + 35x + 650$$

Calculando os pontos críticos de f:

$$f(x) = -20x + 35$$
 (polinom., logo bem def. em R)

$$\therefore -20x + 35 = 0 \Rightarrow x = \frac{35}{20} = \frac{7}{4}$$

Aphicando o teste da 2º durivada:

$$f''(x) = -20$$
 $\Rightarrow f'(\frac{\pi}{4}) = -20 < 0$: $x = \frac{\pi}{4} \neq \pi$ de méx local.

Portanto, o faturamento méximo ocorre quando o disconto é aplicado
$$\frac{1}{4}$$
 vezes, ou seje, quando o disconto é de

$$\frac{7}{4} \cdot 0,50 = \frac{7}{8} = 0,875$$
 e o prevo do piolé é $2$4,125$.

(4) Sabemos que v(t) = s'(t), logo queremos uma primitiva de v(t).

$$S(t) = -\cos(t) - \sin(t) + C$$

Como
$$S(0) = 0$$
: $0 = -\cos 0 - \sin 0 + C \rightarrow C = 1$.

Portanto,
$$S(t) = -\cos(t) - \sin(t) + 1$$
.

$$\int_{0}^{4} \frac{4+6u}{\sqrt{u}} du = \int_{0}^{4} (4+6u) \cdot u^{-1/2} du = \int_{0}^{4} 4 u^{-1/2} + 6 u^{-1/2} du$$

$$= 4 \cdot \frac{u^{1/2}}{1/2} + 6 \cdot \frac{u^{3/2}}{3/2} \Big|_{0}^{4} = 8 u^{1/2} + 4 u^{-3/2} \Big|_{0}^{4} = 8 \cdot 4^{1/2} + 4 \cdot 4^{3/2} - 8 \cdot 0^{1/2} - 4 \cdot 0^{3/2}$$

$$= 8.2 + 4.8 = 48.$$