PROBLEM SET 1

Anthony Tam, Nensi Deliana, Swetha Maramganty, CSC236

09/23/2016

Question 1: Prove that $4^n+15n-1$ is divisible by 9 for all $n \ge 1$, using simple inductions.

ANSWER: P(n): $4^n + 15n - 1$ is divisible by $9 \forall n \ge 1$.

Base case: If n=1 we get 4+15-1=18 which is divisible by 9. So the base case holds.

Induction hypothesis: Now we assume it holds for n = k.

Induction step: Prove for n = k + 1. So we have to prove $4^{k+1} + 15(k+1) - 1$ is divisible by $9 + 4^{k+1} + 15(k+1) - 1 = 4 * 4^k + 15k + 15 - 1 = 3 * 4^k + 4^k + 15k - 1 + 15$. We already know that $4^k + 15k - 1$ divisible by 9, so now we only need to prove that the rest is also divisible by 9. Take $3 * 4^k + 15$. We can write it as $3(4^k + 5)$ which is divisible by 3. Now we only need to prove that $4^k + 5$ is divisible by 3.

P(n): $(4^n + 5)$ is divisible by 3

Base case: When $n=1,\,4+5=9,\,$ divisible by 3. Base case holds.

Induction hypothesis: Assume it holds for n=k, so assume (4^k+5) is divisible by 3.

Now we prove for n = k + 1. $4^{k+1} + 5 = 4 * 4^k + 5 = 3 * 4^k + 4^k + 5$. Since $3 * 4^k$ is divisible by 3 and $4^k + 5$ is divisible by 3 from the induction hypothesis, $(4^n + 5)$ is divisible by 3.

Going back to the first induction $4^{k+1} + 15(k+1) - 1$ is divisible by 9. $\therefore Q.E.D$

Question 2a: Consider strings made up only of the characters 0 and 1; these are binary strings. A binary part ANSWER: f(n): Number of binary palindromes of length 2n, for $n \ge 0$.

$$f(0) = 1 \qquad f(1) = 2 \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \qquad f(2) = 4 \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad f(3) = 8 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

 $f(n) = 2^n$

Assignment № 1 Page 1

Question 2b: Prove that your formula is correct for all $n \ge 0$, using simple induction.

ANSWER:

- Base case holds since $f(0) = 1 = 2^0$
- Induction hypothesis: Assume it is true for n=k
- Prove for n = k + 1

$$f(k) = 2^k$$
 Prove $f(k + 1) = 2^{k+1}$

After each calculation of a palindrome, we know the length is 2n. This means we can take the length of the previous palindrome and multiply it by 2 to find the length of the next palindrome.

$$f(k) * 2 = 2^{k+1}$$
$$2^{k} * 2 = 2^{k+1}$$
$$2^{k+1} = 2^{k+1}$$

:. QED.

Assignment № 1 Page 2