Home Work 2 Machine Learning Foundations

R04323050

經濟碩三 陳伯駒

1.

2.

Positive & Negative interval on R. 可能的區間有以下情形:

- ①: 全為"-"或全為"+"
- ②: +- 或 -+
- ③: +-+ 或 -+-
- N 個點中間有 N-1 個間隔

$$\therefore m_{\mathcal{H}}(N) = 2 \times \left(1 + \binom{N-1}{1} + \binom{N-2}{2}\right) = N^2 - N + 2$$

3.

Claim: $d_{vc}(\mathcal{H}) = D + 1$

We can observe the Hypothesis Set \mathcal{H} is a D-dim PLA from the slide in lecture 2.

 \therefore By the slide in lecture 7, we've shown $d_{vc}(\mathcal{H}) = D + 1$ during the class.

4.

"Triangle Waves" Hypothesis Set in \mathbb{R} :

$$\mathcal{H} = \{ h_{\alpha} | \quad h_{\alpha}(x) = sgn(|(\alpha x) \mod 4 - 2| - 1), \alpha \in \mathbb{R} \}$$

是個週期為 $\frac{4}{|\alpha|}$ 的三角波函數. 1

 $:: \alpha \in \mathbb{R}$... 週期可以任意小。i.e x 軸 (\mathbb{R}^1) 可以被該曲線切成無限多個區域,故 $d_{vc}(\mathcal{H}) = \infty$

5.

Claim: If $\mathcal{H}_1 \subseteq \mathcal{H}_2$, then $d_{vc}(\mathcal{H}_1) \leq d_{vc}(\mathcal{H}_2)$

Suppose $d_{vc}(\mathcal{H}) > d_{vc}(\mathcal{H}_2)$,則代表 \mathcal{H}_1 可以 shatter 的 inputs 個數超過 \mathcal{H}_2 所可以 shatter 的 inputs。i.e 至少存在一個 inputs x 使得 $\mathcal{H}_1(x) \notin \mathcal{H}_2$, contradiction.(::

¹Triangle Waves Function: http://bit.ly/2nneX45

 $\mathcal{H}_1 \subseteq \mathcal{H}_2$, :: \mathcal{H}_1 所能夠產生的 dichotomies, \mathcal{H}_2 也都要能夠產出) Hence, $d_{vc}(\mathcal{H}) \leq d_{vc}(\mathcal{H}_2)$

6.

By Q.15 on Couresa:
$$\underline{\underline{\mathbf{Claim:}}} \max \{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \le d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \le K - 1 + \sum_{k=1}^K d_{vc}(\mathcal{H}_k)$$

Left: 設 $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_K$ 所能夠 shatter 的最大 inputs 個數為 N,則 $\bigcup_{k=1}^{\infty} \mathcal{H}_k$ 也至少能 夠 shatter N 個 inputs:

Suppose not, i.e suppose $d_{vc}(\bigcup_{k=1}^{n} \mathcal{H}_k) = N-1$, 這些 $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_K$ 聯集起來 所形成的 Hypothesis Set 最多只能 shatter N-1 個 inputs, 代表這之中所能 shatter 最多的 inputs 也只會到 N-1 個, contradiction.

Hence, $\max \{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \leq d_{vc}(\bigcup_{k=1}^m \mathcal{H}_k)$

Right: 假設現在只有 \mathcal{H}_1 , \mathcal{H}_2 這兩種 Hypothesis Sets, \mathcal{H}_1 是把平面上所有的點歸類為 +1; \mathcal{H}_2 是把平面上所有點歸類為 -1,則我們知道 $d_{vc}(\mathcal{H}_1)=0$ & $d_{vc}(\mathcal{H}_2)=0$, $d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2) = 1.$

... 從 Coursera Q.15 的選項中,
$$d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2) = 1$$
, $\sum_{k=1}^K d_{vc}(\mathcal{H}_k) = 0$.

Hence,
$$d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2) = 1 \le 2 - 1 + 0 = K - 1 + \sum_{k=1}^{K} d_{vc}(\mathcal{H}_k) = 0$$
 成立。

Therefore, $\max \{d_{vc}(\mathcal{H}_k)\}_{k=1}^K \le d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k) \le K - 1 + \sum_{k=1}^K d_{vc}(\mathcal{H}_k).$

Now let \mathcal{H}_1 be positive-ray hypothesis set and \mathcal{H}_2 be negative-ray hypothesis set. By the slides in lecture 5, we know: $m_{\mathcal{H}_1}(N) = N + 1$, $d_{vc}(\mathcal{H}_1) = 1$

$$m_{\mathcal{H}_2}(N) = N + 1, \quad d_{vc}(\mathcal{H}_2) = 1$$

$$m_{\mathcal{H}_2}(N) = N + 1, \quad d_{vc}(\mathcal{H}_2) = 1$$

$$\therefore \max \{d_{vc}(\mathcal{H}_k)\}_{k=1}^2 = 1 \le d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2) \le K - 1 + \sum_{k=1}^2 d_{vc}(\mathcal{H}_k) = 2 - 1 + 2 = 3$$

$$\Rightarrow 1 \le d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2) \le 3.$$

Also, we know the hypothesis set $\mathcal{H}_1 \cup \mathcal{H}_2$ is actually the 1-d perceptron. Hence, $m_{\mathcal{H}_1 \cup \mathcal{H}_2}(N) = 2N$ and $d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2) = 2$ by the slides in lecture 5 and 7, which holds in the above inequality.

7.

x is generated by a uniform distribution in [-1,1].

	θ	s	預測錯誤率 $\mu = P(h \neq f)$
			$= P(s \cdot sgn(x - \theta) \neq sgn(x))$
0	> 0	+1	$P(sgn(x-\theta) \neq sgn(x)) = \theta \times \frac{1}{2}$
(2)	> 0	_1	$P(-sgn(x-\theta) \neq sgn(x))$
			$= [1 + (1 - \theta)] \times \frac{1}{2} = 1 - \frac{\theta}{2}$
3	< 0	+1	$P(sgn(x - \theta) \neq sgn(x)) = -\theta \times \frac{1}{2}$
4	< 0	-1	$P(-sgn(x-\theta) \neq sgn(x))$
			$= [1 + (1 + \theta)] \times \frac{1}{2} = 1 + \frac{\theta}{2}$

綜合
$$\Phi$$
、 Φ 、 Φ : $\mu = \begin{cases} |\theta| \times \frac{1}{2} & \text{if } s = +1 \\ 1 - \frac{|\theta|}{2} & \text{if } s = -1 \end{cases}$ 兩點式 $\mu = \frac{1}{2} + \left(\frac{|\theta| - 1}{2}\right) \times s$ 。 2

$$\stackrel{\text{MLR}}{\Longrightarrow} \mu = \frac{1}{2} + \left(\frac{|\theta| - 1}{2}\right) \times s. \quad ^{2}$$

By Q.1 on coursera, we know
$$E_{out}(h_{s,\theta}) = \lambda \cdot \mu + (1 - \lambda) \cdot (1 - \mu)$$
, where $\lambda = 1 - 0.2 = 0.8$
= $0.8 \times \mu + 0.2 \times (1 - \mu)$
= $0.5 + 0.3 \cdot (|\theta| - 1) \cdot s$

8.

In the left figure, we can observe that the value of E_{in} is at least 0.2, which is exactly the probability of flipping noise. Intuitively, E_{out} is the expectation of $[g(x) \neq f(x)]$ out of sample, now the flipping rate is 20%, then the above expectation term will be at least 20%.

Though we also have noise in sample of E_{in} , we can choose s and θ to let E_{in} become smaller, so E_{in} could be less than 20%. However, the flipped y for out-of-sample is fol-

²Let
$$\mu = a \cdot s + b$$
. $|\theta| \times \frac{1}{2} = a + b - \mathbb{O}$, $1 - \frac{|\theta|}{2} = -a + b - \mathbb{O}$ By \mathbb{O} , $\mathbb{O} \Rightarrow a = \frac{|\theta| - 1}{2}$, $b = \frac{1}{2}$

lowed a distribution (i.e our target function) like Q.1 in coursera, which has a 20% filpped rate the optimal s and θ that I choose through E_{in} , so E_{out} will be at least 20%.

Moreover, if we put E_{in} and E_{out} in the same plot, we can observe that when E_{in} is smaller; the variation of E_{out} will also be smaller. This result corresponds to what we expect: we can let E_{out} be small enough as long as we choose optimal s and θ to minimize E_{in} . i.e Learning succeed: $E_{in} \approx E_{out}$ and E_{in} , E_{out} are small.

9.

Cover's Function Counting Theorem:

Let $\{x^1, x^2, ..., x^p\}$ be vectors in \mathbb{R}^N , then the number of distinct dichotomies applied to these points that can be realized by a plane through the origin is:

$$C(P, N) = 2 \times \sum_{k=0}^{N-1} {P-1 \choose k}$$

在 d-維的 PLA 中,我們會對門檻值 w_0 再墊高一個向量 $x_0 = (1,1,1,...,1)$,用來突破分隔線只能通過原點的限制,而廣義上來說就是在 \mathbb{R}^{d+1} 中的向量 $\{x_1,x_2,...,x_N\}$ 做通過原點的 PLA。

$$\therefore \text{ By Cover's theorem, } m_{\mathcal{H}}(N) = C(N, d+1) = 2 \times \sum_{i=0}^{d+1-1} \binom{N-1}{i} = 2 \times \sum_{i=0}^{d} \binom{N-1}{i}$$

Proof of Cover's theorem:³

Denote the number of linearly separable partition by C(P, N). We will find the expression for C(P, N) by induction. Image first having p points and then adding one more point. Now, considering the linearly separable partitions of previous p points, there are two possibilities:

³Reference: http://bit.ly/2nnEtGC

Case 1: there is a separating hyperplane for the previous p points passing through the new point, in which case each such linearly separable partition of the previous p points gives rise to two distinct linearly separable partitions as the hyperplane can be shifted infinitesimally to place the new point in either class.

Case 2: there is no separating hyperplane for the previous p points passing through the new point, in which case each such linearly separable partition gives rise to only one linearly separable partition.

The number of linearly separable partition in Case 1 is precisely C(P, N-1), because restricting the separating hyperplane to pass through a fixed point is the same as eliminating one degree of freedom and thus projecting the p points to a N-1-dim space. This can be understood if the new point is on the x-axis, for example - then the hyperplane has N-1 axes left to work with. If the point is not on the x-axis, then rotate the axes of space around to get the point on the x axis, and this of course has no effect on the geometry of the problem.

The recursive relation:

C(P+1,N) = C(P,N) + C(P,N-1), where C(P,N) is the number of separable hyperplanes in Case 2, and C(P,N-1) is the number of separable hyperplanes in Case 1.

Iterating the recursion once, we have

$$C(P+1,N) = C(P-1,N) + 2C(P-1,N-1) + C(P-1,N-2)$$

Continue to iterate the recursion (twice)

$$C(P+1,N) = C(P-2,N) + 3C(P-2,N-1) + 3C(P-2,N-2) + C(P-2,N-3)$$

After P-1 iterations, we have

$$C(P+1,N) = \binom{P}{0}C(1,N) + \binom{P}{1}C(1,N-1) + \dots + \binom{P}{P}C(1,N-P)$$
, where $C(1,k) = 2$ for all $k \le 1$.

So, finally we have
$$C(P+1,N) = 2 \times \sum_{i=0}^{N-1} {P \choose i}$$
, where ${P \choose i} = 0$ if $i > P$.