GCN

Graph Convolution Network

Contents

- 1. Introduction
- 2. Background
- 3. GCN
- 4. GCN vs CNN

1. Introduction

GCN Structure

2. Background

CNN Structure

Graph Convolution Network

CNN Structure

- Convolution, Pooling
- Flatten, Fully Connected

2. Background

Graph Structure

Graph Convolution Network

Graph Components

- Edge: Relationship between two nodes
- Vertices(node): vertex of a graph

Graph Utilization

- Social structure, 3D image, Molecular structure
 - Vertices: atomic symbols (oxygen, hydrogen, ...)
 - Edge: Molecular Bonds (ionic, covalent, ...)

5

2. Background

Graph Structure

Graph Convolution Network

Graph Representation

- Adjacency Matrix
 - Connected information
 - $A_{ij} = relationship from node_i to node_j$
- Node Feature Matrix
 - Node information
 - $F_{ij} = j$ -th feature value in node_i

GCN Update (GCN Conv)

- Purpose
 - Node feature matrix update!!
 - Feature update affected by linked nodes
- Method
 - Feature update with connected parts in Graph
 - Similar to Conv layer operation
- Formula
 - W: weight, l: l-th layer, H: Hidden state
 - H_1^{l+1} : node₁ (l+1)-th node feature matrix
 - H_1^{l+1} : affected by linked nodes (node 1, 2, 3, 4)

GCN Structure and Update

where σ is a non – linear activation function

GCN Update example (GCN Conv)

Α			
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1

 W^1

H^1				
0.85	0.55	0.58	0.12	0.38
0.49	0.89	0.7	0.27	0.07
0.83	0.18	0.19	0.23	0.56
0.9	0.24	0.28	0.4	0.95

$$H_i^{(l+1)} = \sigma \left(\sum_{j \in N(l)} H_j^{(l)} W^{(l)} + b^{(l)} \right)$$

$$H^{(l+1)} = \sigma \left(AH^{(l)}W^{(l)} + b^{(l)} \right)$$
| learnable parameters are shared

GCN Update example (GCN Conv)

Α						
1	1	1	1			
1	1	0	0			
1	0	1	0			
1	0	0	1			

H^2					
5.1024	5.2401	1.9779	5.6482	3.1031	4.3366
2.6077	2.6485	0.8359	2.4225	1.7848	2.5303
2.4465	2.3973	0.8698	2.6582	1.292	2.0683
2.7574	2.8255	1.1468	3.2229	1.5833	2.2388

0.71	0.38	0.57	0.93	0.48	0.86
0.56	0.36	0.25	0.23	0.45	0.02
0.14	0.05	0.19	0.37	0.93	0.1
0.68	0.01	0.92	0.17	0.65	0.72
0.66	0.24	0.9	0.58	0.13	0.11
0.91	0.53	0.19	0.23	0.57	0.75

$$H^3 = AH^2W^2$$

41.966	17.793	33.502	26.257	33.038	31.131
25.248	10.803	20.030	15.812	19.663	18.568
24.412	10.292	19.567	15.265	19.329	18.197
25.643	10.744	20.718	16.059	20.431	19.067

$$H_i^{(l+1)} = \sigma \left(\sum_{j \in N(i)} H_j^{(l)} W^{(l)} + b^{(l)} \right)$$

$$H^{(l+1)} = \sigma \left(AH^{(l)}W^{(l)} + b^{(l)} \right)$$

learnable parameters are shared

GCN Update (GCN Conv)

 $f(H^i, A) = \sigma(AH^iW^i)$ where σ is a non – linear activation function

Readout Layer

Readout Layer

- Purpose
 - Gather node information
 - Graphs of the same phase Same graph
- Method
 - MLP operation on feature information for each node
 - Sum of all MLP operations

Node-wise summation

$$z_{G} = \tau \left(\sum_{i \in G} MLP\left(H_{i}^{(L)}\right) \right)$$

$H^3 = AH^2W^2$

41.966	17.793	33.502	26.257	33.038	31.131
25.248	10.803	20.030	15.812	19.663	18.568
24.412	10.292	19.567	15.265	19.329	18.197
25.643	10.744	20.718	16.059	20.431	19.067

$W_{readout}$

0.71	0.38	0.57	0.93	0.48	0.86
0.56	0.36	0.25	0.23	0.45	0.02
0.14	0.05	0.19	0.37	0.93	0.1
0.68	0.01	0.92	0.17	0.65	0.72
0.66	0.24	0.9	0.58	0.13	0.11
0.91	0.53	0.19	0.23	0.57	0.75

Readout Layer example

$H^3W_{readout}$

314.265 | 136.139 | 264.342 | 241.300 | 275.174 | 239.467

Node-wise summation

$$z_G = \tau \left(\sum_{i \in G} MLP\left(H_i^{(L)}\right) \right)$$

GCN Structure

4. GCN vs CNN

Common

- Conv Layer
 - Weight Sharing

CNN

Collect information on areas adjacent to specific pixels

GCN

Collect information on nodes connected to the node

GCN vs CNN

4. GCN vs CNN

GCN Update example

Α			
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1

H^2					
5.1024	5.2401	1.9779	5.6482	3.1031	4.3366
2.6077	2.6485	0.8359	2.4225	1.7848	2.5303
2.4465	2.3973	0.8698	2.6582	1.292	2.0683
2.7574	2.8255	1.1468	3.2229	1.5833	2.2388

$$H_i^{(l+1)} = \sigma \left(\sum_{i \in N(l)} H_j^{(l)} W^{(l)} + b^{(l)} \right)$$

$$H^{(l+1)} = \sigma \left(AH^{(l)}W^{(l)} + b^{(l)} \right)$$
| learnable parameters are shared

15

Next Presentation

Knowledge graph representation for recommendation

Reference

- Blog
 - https://signing.tistory.com/125
 - https://littlefoxdiary.tistory.com/17
 - https://ganghee-lee.tistory.com/27
- Github
 - https://github.com/heartcored98/Standalone DeepLearning/blob/master/Lec9/Lab11_logP_Prediction_with_GCN.ipynb
 - https://github.com/SeungsuKim/CH485--AI-and Chemistry/blob/master/Assignments/5.%20GCN/Assignment5_logP_GCN.ipynb
- Youtube
 - https://www.youtube.com/watch?v=YL1jGgcY78U
 - https://www.youtube.com/watch?v=9eMbvfRM9_8