This Week

Monday

 Modeling and Solving Linear Optimization Problems

Wednesday

Lab Exercise: Using Excel Solver

Topics

 Modeling Decision Problems as Linear Programs (LPs)

Solving Simple LPs Graphically

Solving LPs using Excel Solver

A Problem Solving Framework

- 1. Define the Problem
- 2. Collect and Organize Data
- 3. Characterize Uncertainty and Data Relationships
- 4. Build an Evaluation Model
- 5. Formulate a Solution Approach
- 6. Evaluate Potential Solutions
 - 7. Recommend a Course of Action

Product Mix Decision Problem

- A company manufactures two products: A and B.
- Product information and next month's labor availability by Sector are given in the tables below:

			Produc	t Inforn	nation				
	Unit	Unit				Unit	Unit		
	Selling	RM	Labor	Hours Red	quired	Labor		Marketin	g Forecast
Product	Price	Cost	Sector 1	Sector 2	Sector 3	Cost	Margin	Min	Max
Α	\$600	\$50	2	0	2	\$100.00	\$450.00	75	140
В	\$600	\$100	0	2.5	1.5	\$80.00	\$420.00	0	140

	Resource Information				
	Sector 1	Sector 2	Sector 3		
Hourly Labor Cost:	\$30	\$20	\$20		
Labor Hours Available:	336	336	336		

How much of each product should be produced to maximize next month's profit?

Organizing the Problem

- The decisions are to choose production levels for products A and B.
- The objective is to maximize next month's profit.
- In order for the decisions to be feasible, they must simultaneously satisfy the following conditions, or constraints:
- In Sector 1, no more than 336 labor hours can be used.
 In Sector 2, no more than 336 labor hours can be used.
 In Sector 3, no more than 336 labor hours can be used.
- Marketing

 Between 75 and 140 units of A must be produced.

 Retween 0 and 140 units of B must be produced.
 - Between 0 and 140 units of B must be produced.

Formulating the Problem

 Let the decision variables be denoted x_A and x_B, where:

 X_A = the number of units of product A to produce next month.

 X_B = the number of units of product B to produce next month.

 The contribution margin per unit of product A is \$450, and the contribution margin per unit of product B is \$420. Hence, the objective is to:

Maximize
$$450 x_A + 420 x_B$$

This is the *objective function*.

Formulating the Problem (cont'd)

Labor Constraints

 Each unit of product A requires 2 labor hours in Sector 1, and product B does not require any labor in Sector 1. So, the Sector 1 labor constraint is:

$$2 x_A \leq 336.$$

Similarly, the labor constraints for Sectors 2 and 3 are:

Sector 2 $2.5 x_B \le 336$.

Sector 3 $2 x_A + 1.5 x_B \le 336$.

Formulating the Problem (cont'd)

Marketing Constraints

 The marketing constraints for product A can be represented with the following inequalities:

$$x_A \geq 75.$$
 $x_A \leq 140.$

Similarly, marketing constraints for product B can be written as:

$$x_B \ge 0.$$
 $x_B \le 140.$

The Linear Program

Putting this all together, we formulate the problem as:

Maximize
$$450 x_A + 420 x_B$$
 subject to:

$$\label{eq:labor_constraints} \left\{ \begin{array}{rcl} 2 \; x_A & \leq & 336. \\ & 2.5 \; x_B \leq & 336. \\ 2 \; x_A \; + 1.5 \; x_B \leq & 336. \\ & x_A \; \geq & 75. \\ & x_A \; \leq & 140. \\ & x_B \geq & 0. \\ & x_B \leq & 140. \end{array} \right.$$

Solving Linear Programs

- Many different methods exist for solving LPs.
 Variations of the simplex method, first developed by George Dantzig in 1947, are still the most widely used.
- Since our problem has only two variables, x_A and x_B, we can represent the problem on a two-dimensional graph, where each point (x_A, x_B) represents a possible solution to the LP.
- By plotting the constraints on the graph, we will be able to tell which points are feasible.
- The problem can then be solved using simple algebra.

Which labor resource would you invest in to increase profit?

Setting Up LPs In Excel

Fact of life: Excel Solver is extremely fussy and does not always behave the way you think it should.

Before attempting a Solver implementation, make sure that you can write down your LP in standard form:

subject to:

$$Ax \leq b \quad (\geq =)$$

In particular, the entries of c, b, and A should NOT depend upon the decision variable vector x.

Setting Up LPs In Excel

Next, organize the worksheet so that you have **one cell representing each "piece" of the LP**:

Maximize
$$450 x_A + 420 x_B$$
 Objective Function subject to:

1. Create cells for the decision variables.

Designate one cell for each decision variable in the model. These cells should *not* contain formulas.

	Decisio	n Area
A:	1	
B:	1	

2. Create cells for the objective function coefficients.

Designate one cell for each objective function coefficient in the model. In each cell, enter the appropriate formula or value for the coefficient.

Maximize
$$450 x_A + 420 x_B$$

3. Create the objective function cell.

Designate one cell for the objective function value. In this cell, put the formula for the objective function by referencing the decision variable cells and the coefficient cells.

4. Create cells for the constraint coefficients.

Designate one cell for each constraint coefficient in the model. In each cell, enter the appropriate formula or value for the coefficient.

 $2x_A$

	Labor	Hours Red	quired
Product	Sector 1	Sector 2	Sector 3
A	2	0	2
В	0	2.5	1.5

Note: We do not designate separate cells for these simple constraints since we can describe the left-hand sides using the decision variable cells directly.

≤ 336

5. Create cells for the constraint left-hand sides.

Designate one cell for each constraint LHS in the model. In each cell, enter the formula for the LHS by referencing the decision variable cells and the coefficient cells.

$$2 x_A$$
 ≤ 336 $2.5 x_B$ ≤ 336 $2 x_A + 1.5 x_B$ ≤ 336

	Sector 1	Sector 2	Sector 3
Labor Hours Used in Production Decision:	2.0	2.5	3.5

	Labor Hours Required					
Product	Sector 1	Sector 2	Sector 3			
A	2	0	2			
В	0	2.5	1.5			

	Decisio	n Area
A:	1	
B:	1	

6. Create cells for the constraint right-hand sides.

Designate one cell for each constraint RHS in the model. In each cell, enter the appropriate formula or value for the RHS.

	Sector 1	Sector 2	Sector 3
Labor Hours Available:	336	336	336

$$2 x_A$$
 ≤ 336 $2.5 x_B \leq 336$ $2 x_A + 1.5 x_B \leq 336$

	Marketing Forecast				
Product	Min	Max			
Α	75	140			
В	0	140			

$$x_A$$
 ≥ 75
 x_A ≤ 140
 $x_B \geq 0$
 $x_B \leq 140$

Solving LPs With Excel Solver

We can now solve the LP using Data→Analysis→Solver

Maximize
$$450 x_A + 420 x_B$$
 subject to:

$$2 x_{A} \le 336$$
 $2.5 x_{B} \le 336$
 $2 x_{A} + 1.5 x_{B} \le 336$
 $x_{A} \ge 75$
 $x_{A} \le 140$
 $x_{B} \ge 0$

Solving LPs With Excel Solver

Solver Options

Solver Results and Reports

Solver Answer Report

Objective Cell (Max)

Cell	Name	Original Value	Final Value		Optimal Objective
\$E\$25 Tota	al_Gross_Margin	\$66,000	\$85,830	-	Function Value
					Function value

Variable Cells

\$E\$22 x_A 100 75 Contin \$E\$23 x B 50 124 Contin	Cell	Name	Original Value	Final Value	Integer	
\$E\$23 x B 50 124 Contin	SE\$22 x_A		100	75	Contin	
<u> </u>	SE\$23 x_B		50	124	Contin	

Optimal Decision Variable Values

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$9	Sector_1_Hours_Used	150.00	\$E\$9<=\$E\$8	Not Binding	186
\$F\$9	Sector_2_Hours_Used	310.00	\$F\$9<=\$F\$8	Not Binding	26
\$G\$9	Sector_3_Hours_Used	336.00	\$G\$9<=\$G\$8	Binding	0
\$E\$22	x_A	75	\$E\$22<=\$K\$17	Not Binding	65
\$E\$23	x_B	124	\$E\$23<=\$K\$18	Not Binding	16
\$E\$22	x_A	75	\$E\$22>=\$J\$17	Binding	0
\$E\$23	x_B	124	\$E\$23>=\$J\$18	Not Binding	124

Optimal Left-Hand Side Values

Which constraints are binding at the optimal solution?

Solver Sensitivity Report

How will the objective function value change if we increase a decision variable value by one unit (while maintaining feasibility)?

How much can the Objective Function Coefficients change without affecting the optimal decision variable values?

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$E\$22 x_A		75	-110	450	110	1E+30
\$E\$23 x_B		124	0	420	1E+30	82.5

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$E\$9	Sector_1_Hours_Used	150	0	336	1E+30	186
\$F\$9	Sector_2_Hours_Used	310	0	336	1E+30	26
\$G\$9	Sector_3_Hours_Used	336	280	336	15.6	186

How will the optimal objective function value change if the R.H.S. increases by one unit?

How much can the Constraint R.H.S.s change without affecting the constraints that are binding at the optimal solution?