PROIECT EI2

Nicolae Danut Popa Grupa 5402 2017-2018 Enunt: sa se realizeze proiectarea unui convertizor static de frecventa cu urmatoarele date:

- V_{motor} = 390 V
- Sm = 10 kVA
- $\Delta f = \{f_{min;} f_{max}\} = \{5; 79\} Hz$
- Tip redresor: RPMT redresor trifazat cu punct median comandat
- E = 310 V

Schema bloc:

Etapa 1:

 $reve{V}$ = valoarea amplitudinii tensiunii de faza

V_{LL} = valoarea efectiva a tensiunii de linie

$$\check{V} = 2 \cdot \frac{1}{T} \left[\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{Vd}{3} \cos(wt) \, dwt + \int_{\frac{-\pi}{6}}^{\frac{\pi}{6}} \frac{Vd}{3} \cos(wt) \, dwt \right]$$

$$\check{V} = \frac{2Vd}{3\pi} \left[\sin(wt) \, dt \, \left| \frac{\frac{\pi}{2}}{\frac{-\pi}{2}} + \sin(wt) \, dt \, \left| \frac{\frac{\pi}{6}}{\frac{-\pi}{6}} \right| \right]$$

$$\check{V} = \frac{2Vd}{3\pi} \left[\left(\sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right) \right) + \left(\sin\left(\frac{\pi}{6}\right) - \sin\left(-\frac{\pi}{6}\right) \right) \right]$$

$$\check{V} = Vd \cdot a$$

$$a = \frac{2}{\pi} \cong 0.636$$

$$V_{LL} = \frac{\sqrt{3}}{\sqrt{2}} \cdot Vd \cdot a => Vd = \frac{\sqrt{2}}{\sqrt{3}a} V_{LL}$$

$$V_{LL} = V_{motor} = 390V$$

$$Vd = \frac{\sqrt{2} \cdot 390}{\sqrt{3} \cdot 0.636} = \frac{551.543}{1.101} = 500.947 \cong 501V$$

Raportul de transformare al transformatorului Tr este n = 1.7 = >

$$=> E = 1.7 * 310 => E = 527V$$

Redresorul folosit este de tip trifazat cu punct median comandat =>

$$=> Vd = \frac{3\sqrt{6}}{2\pi} \cdot E \cdot \cos \alpha <=> 501 = \frac{3\sqrt{6} \cdot 527 \cdot \cos \alpha}{2\pi} <=> 501 = 616.662 \cos \alpha$$
$$\cos \alpha = \frac{501}{616.662} = 0.812352 => \alpha = \cos^{-1}(0.812352) => \alpha = 35.67^{\circ}$$

Schema redresor trifazat cu punct median comandat:

Redresor trifazat cu punct median funcționând pe sarcină puternic inductivă.

Forma de unda redresata si diagram de conductie a tiristoarelor:

$$Sm = Vd \cdot Id = > Id = \frac{Sm}{Vd} = \frac{10^4}{501} = > Id \approx 19.96A$$

$$I_{Tavr\alpha} = \frac{\sqrt{6}}{2\pi} Id \cdot cos\alpha = \frac{\sqrt{6} \cdot 19.96}{2\pi} \cdot cos(35.67^\circ) = \frac{48.891 \cdot 0.812}{6.28} = >$$

$$=>I_{Tavr\alpha}\cong 6.32A$$

Se allege un coefficient de siguranta de 1.1 =>

$$I_{Tavr\alpha} = 1.1 \cdot 6.32 = 6.95A => I_{Tavr\alpha} = 7A$$

$$I_{TRM\alpha} = 3 \cdot I_{Tavr\alpha} = 21A$$

$$I_{Trms\alpha} = \frac{I_{TRM\alpha}}{\sqrt{3}} \cong 12.3A$$

$$V_{RRM} = \sqrt{2}E = \sqrt{2} \cdot 527 = V_{RRM} = 745.3V$$

Dupa datele calculate anterior se allege tiristorul 2N6509

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, T _J = 25 to 125°C) 2N6504 2N6505 2N6507 2N6508 2N6509	V _{DRM} , V _{RRM}	50 100 400 600 800	V
On-State RMS Current (180° Conduction Angles; T _c = 85°C)	I _{T (RMS)}	25	Α
Average On-State Current (180° Conduction Angles; T _c = 85°C)	I _{T (407)}	16	А
Peak Non-repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 100°C)	I _{TSM}	250	A ² s
Forward Peak Gate Power (Pulse Width ≤ 1.0 µs, T _c = 85°C)	P _{GM}	20	W
Forward Average Gate Power (t = 8.3 ms, T _c = 85°C)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width ≤ 1.0 µs, T _c = 85°C)	I _{GM}	2.0	Α
Operating Junction Temperature Range	T _J	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C

Thermal Characteristics

Rating	Symbol	Value	Unit
*Thermal Resistance, Junction to Case	R _{suc}	1.5	°C/W
*Maximum LeadTemperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate of Rise of Off State Voltage (Gate Open, Rated VDRM, Exponential Waveform)	dv/dt(c)	T	50	-	V/µs

Electrical Characteristics · OFF (T_c = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
†Peak Repetitive Blocking Current	T _J = 25°C	I _{DRM} ,	-	-	1.0	μА
$(V_{AK} = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	IRRM			2.0	mA

Electrical Characteristics \cdot ON (T_c = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Тур	Max	Unit
* Forward On-State Voltage (Note 2) (ITM = 50 A)	V _{TM}	(2)	_	1.8	٧
* Gate Trigger Current (Continuous dc) $T_c = 25^{\circ}C$	I _{GT}	-	9.0	30	- mA
$(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, \text{ Gate Open})$ $T_c = -40 ^{\circ}\text{C}$		_	_	75	
* Gate Trigger Voltage (Continuous dc) (V _{AK} = 12 Vdc, R _L = 100 Ω, T _C = -40 °C)		(2)	1.0	1.5	٧
Gate Non-Trigger Voltage (V _{AK} = 12 Vdc, R _L = 100 Ω, T _J = 125°C)	V _{ao}	0.2		(-)	٧
*Holding Current ($V_D = 12 \text{ Vdc}$, $T_C = 25^{\circ}\text{C}$	I _H	-	18	40	- mA
Initiating Current = 200 mA, Gate Open) T_c = -40 °C		153	-	80	
*Turn-On Time (I _{TM} = 25 A, I _{GT} = 50 mAdc)		-	1.5	2.0	μs
Turn-Off Time (V_{RM} = rated voltage) (I_{TM} = 25 A, I_{R} = 25 A)		4.7		15	μs
$(I_{TM} = 25 \text{ A}, I_{R} = 25 \text{ A}, T_{J} = 125^{\circ}\text{C})$	t _q	-	-	35	μѕ