Topology

Raneem Madani

Student number:11820975

January 23, 2021

1. Prove that if X is finite then the cofinite topology on X =discrete topology.

Solution: since every subset of X is finite then their complement is also finite, so every subset of $X \in \mathfrak{F} \Rightarrow$ the finite topology is the discrete topology.

2. Prove that the union of a finite number of closed sets is closed.

Solution: Let $F_1, F_2, F_3, ..., F_n$ be closed $\Rightarrow F_1^c, F_2^c, F_3^c, ..., F_n^c$ are open and their was in \mathfrak{F} , that's mean $F_1^c \cap F_2^c \cap ... \cap F_n^c$ is open in $\mathfrak{F} \Rightarrow (F_1^c \cap F_2^c \cap ... \cap F_n^c)^c = F_1 \cup F_2 \cup ... \cup F_n$ is closed.

- 3. Let \mathfrak{F} be a topology on X; $A, B \subset X$, Prove that:
 - $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$

Solution:
$$A \subseteq A \cup B \Rightarrow A^{\circ} \subseteq (A \cup B)^{\circ}$$

$$B \subseteq A \cup B \Rightarrow B^{\circ} \subseteq (A \cup B)^{\circ}$$

$$A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$$

• $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$

Solution:
$$A \cap B \subseteq A \Rightarrow (A \cap B)^{\circ} \subseteq A^{\circ}$$

$$A \cap B \subseteq B \Rightarrow (A \cap B)^{\circ} \subseteq B^{\circ}$$

$$(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$$

Let
$$x \in A^{\circ} \cap B^{\circ} \Rightarrow x \in A^{\circ} \& B^{\circ}$$

$$\Rightarrow \exists u_x \ nbd \ of \ x \ \text{such that} \ u_x \subseteq A \ \& \ u_x \subseteq B$$

$$\Rightarrow u_x \subseteq A \cap B \Rightarrow x \in (A \cap B)^\circ$$

$$A^{\circ} \cap B^{\circ} \subseteq (A \cap B)^{\circ}$$

• Give an example where $(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$

Solution: Let
$$A = \mathbb{Q} \Rightarrow A^{\circ} = \phi$$

Let
$$B = \mathbb{Q}^c \Rightarrow B^\circ = \phi \Rightarrow A^\circ \cup B^\circ = \phi$$

But
$$(A \cup B)^{\circ} = (\mathbb{R})^{\circ} = \mathbb{R}$$

.

4. Prove that $\bar{A} = \bigcap \{F : F \text{ is closed } A \subseteq F\}$

Solution: \bar{A} is one of the closed sets containing A so $\cap \{F: F \text{ closed}, A \subseteq F\} \subseteq \bar{A}$. R.H.S \subseteq L.H.S Since $A \subseteq F \Rightarrow \bar{A} \subseteq \bar{F}$ but F is closed $\Rightarrow \bar{F} = F \Rightarrow \bar{A} \subseteq F \Rightarrow \bar{A} \subseteq \cap \{F: F \text{ closed } A \subseteq F\}$. L.H.S \subseteq R.H.S

so
$$\bar{A} = \{F : F \ closed \ A \subseteq F\}$$

- 5. Let $\mathfrak{F}_1, \mathfrak{F}_2$ be two topology on X prove that $\mathfrak{F}_1 \cap \mathfrak{F}_2$ is a topology on X.

 Solution:
 - since $X, \phi \in \mathfrak{F}_1$ and $\mathfrak{F}_2 \Rightarrow X, \phi \in \mathfrak{F}_1 \cap \mathfrak{F}_2$.
 - Let $\mathfrak{F} = \mathfrak{F}_1 \cap \mathfrak{F}_2$ if $A_1, A_2, A_3, \ldots \in \mathfrak{F} \Rightarrow A_1, A_2, A_3, \ldots \in \mathfrak{F}_1 \text{ and } A_1, A_2, A_3, \ldots \in \mathfrak{F}_2$ $\Rightarrow A_1 \cup A_2 \cup A_3 \cup \ldots \in \mathfrak{F}_1 \& \mathfrak{F}_2 \Rightarrow A_1 \cup A_2 \cup A_3 \cup \ldots \in \mathfrak{F}.$
 - if $A_1, A_2, ..., A_n \in \mathfrak{F} \Rightarrow A_1, A_2, ..., A_n \in \mathfrak{F}_1 \text{ and } A_1, A_2, ..., A_n \in \mathfrak{F}_2$ $\Rightarrow A_1 \cap A_2 \cap ... \cap A_n \in \mathfrak{F}_1 \& \mathfrak{F}_2 \Rightarrow A_1 \cap A_2 \cap ... \cap A_n \in \mathfrak{F}.$