

CMT311 Principles of Machine Learning

Bayesian Networks

Angelika Kimmig KimmigA@cardiff.ac.uk

15.11.2019

- Last week:
 - basics of discrete probability
 - Naive Bayes: imposing structure on joint distribution by making strong conditional independence assumptions
- Today:
 - Bayesian Networks: general, graphical representation of conditional independence assumptions
- Later:
 - efficient reasoning with Bayesian networks, learning Bayesian networks from data

full joint distribution: 192 parameters

Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy	Ρ(ω)
Sunny	Warm	Normal	Strong	Warm	Same	0	0.0007875
Sunny	Warm	Normal	Strong	Warm	Same	1	0.00648
Sunny	Warm	Normal	Strong	Warm	Change	0	0.0070875
Sunny	Warm	Normal	Strong	Warm	Change	1	0.00648
Sunny	Warm	Normal	Strong	Cool	Same	0	0.0018375
Sunny	Warm	Normal	Strong	Cool	Same	1	0.00432
Sunny	Warm	Normal	Strong	Cool	Change	0	0.0165375
Sunny	Warm	Normal	Strong	Cool	Change	1	0.00432
Sunny	Warm	Normal	Weak	Warm	Same	0	0.0003375
Rainy	Cold	High	Weak	Cool	Change	1	0.00448

Let's assume the attributes are independent given the label:

 $P(S, A, H, Wi, Wa, F, E) = P(S \mid E)P(A \mid E)P(H \mid E)P(Wi \mid E)P(Wa \mid E)P(F \mid E)P(E)$

E=0	E=1
10/20	10/20

P(S E)	S=Sunny	S=Cloudy	S=Rainy
E=0	3/10	3/10	4/10
E=1	4/10	2/10	4/10

P(A E)	A=Warm	A=Cold
E=0	5/10	5/10
E=1	6/10	4/10

P(H E)	H=Normal	H=High
E=0	6/10	4/10
E=1	5/10	5/10

P(Wa E)	Wa=Warm	Wa=Cool
E=0	3/10	7/10
E=1	6/10	4/10

P(Wi E)	Wi=Strong	Wi=Weak
E=0	7/10	3/10
E=1	3/10	7/10

P(F E)	F=Same	F=Change
E=0	1/10	9/10
E=1	5/10	5/10

exploiting conditional independence: 28 parameters Let's assume the attributes are independent given the label:

$$P(S, A, H, Wi, Wa, F, E) = P(S | E)P(A | E)P(H | E)P(Wi | E)P(Wa | E)P(F | E)P(E)$$

P(S E)	S=Sunny	S=Cloudy	S=Rainy
E=0	3/10	3/10	4/10
E=1	4/10	2/10	4/10

P(Wi E)	Wi=Strong	Wi=Weak
E=0	7/10	3/10
E=1	3/10	7/10

P(A E)	A=Warm	A=Cold
E=0	5/10	5/10
E=1	6/10	4/10

P(H E)	H=Normal	H=High
E=0	6/10	4/10
E=1	5/10	5/10

P(Wa E)	Wa=Warm	Wa=Cool
E=0	3/10	7/10
E=1	6/10	4/10

P(F E)	F=Same	F=Change
E=0	1/10	9/10
E=1	5/10	5/10

Example: Bayesian Network

Background: Graphs

- A graph consists of nodes (vertices) and directed or undirected edges
- directed graph: all edges are directed
- undirected graph: all edges are undirected

- a path from node A to node B is a sequence of nodes connected by edges starting at A and ending at B
- directed path: path following the direction of arrows
- cycle: directed path that starts and ends at the same node
- **loop**: path with more than 2 nodes that starts and ends at the same node (ignoring edge directions)
- Directed acyclic graph (DAG): directed graph with no cycles

Relationships in DAGs

- X is a parent of Y if there is a directed edge from X to Y.
- X is a child of Y if there is a directed edge from Y to X.
- X is an ancestor of Y if there is a directed path from X to Y.
- X is a descendant of Y if there is a directed path from Y to X.
- Markov blanket of X = parents of X + children of X + parents of children of X (excluding X itself)

Bayesian Networks

Bayesian Network

- A Bayesian network (BN, also called belief network) is a DAG in which each node corresponds to a random variable with an associated conditional probability of the node given its parents.
- Structured factorisation of the joint distribution:

$$P(X_1, ..., X_n) = \prod_{i=1}^{n} P(X_i | parents(X_i))$$

• Factors $P(X_i | parents(X_i))$ often written as conditional probability tables (CPTs)

P(X1,X2,X3,X4,X5,X6,X7,X8)=P(X1)*P(X2)*P(X3|X5)*P(X4|X5)*P(X5|X1,X2)
*P(X6|X8)*P(X7|X4,X5)*P(X8|X5)

- Sally's burglary Alarm is sounding. Was there a Burglary, or was the alarm triggered by an Earthquake? She turns on the Radio for news of an earthquake.
- From the chain rule:

$$P(A, R, E, B) = P(A \mid R, E, B) \cdot P(R, E, B)$$

$$= P(A \mid R, E, B) \cdot P(R \mid E, B) \cdot P(E, B)$$

$$= P(A \mid R, E, B) \cdot P(R \mid E, B) \cdot P(E \mid B) \cdot P(B)$$

$$P(A, R, E, B) = P(A | R, E, B) \cdot P(R | E, B) \cdot P(E | B) \cdot P(B)$$

Assumptions:

- the alarm does not directly depend on reports on the radio: $P(A \mid R, E, B) = P(A \mid E, B)$
- reports on the radio do not directly depend on burglaries: $P(R \mid E, B) = P(R \mid E)$
- earthquakes do not directly depend on burglaries: P(E | B) = P(E)

$$P(A, R, E, B) = P(A \mid E, B) \cdot P(R \mid E) \cdot P(E) \cdot P(B)$$

 $P(A, R, E, B) = P(A \mid E, B) \cdot P(R \mid E) \cdot P(E) \cdot P(B)$

P(A B,E)		A=1
B=1	E=1	0.9999
B=1	E=0	0.99
B=0	E=1	0.99
B=0	E=0	0.0001

P(R E)	R=1
E=1	1
E=0	0

E=1 0.000001

Example

P(A B,E)		A=1
B=1	E=1	0.9999
B=1	E=0	0.99
B=0	E=1	0.99
B=0	E=0	0.0001

P(R E)	R=1
E=1	1
E=0	0

What is the probability that there was a burglary if the alarm sounds?

$$P(B=1 | A=1) = \frac{P(B=1,A=1)}{P(A=1)} = \frac{\sum_{E,R} P(A=1,R,E,B=1)}{\sum_{E,R,B} P(A=1,R,E,B)}$$
$$= \frac{\sum_{E,R,B} P(A=1 | E,B=1) P(B=1) P(E) P(R | E)}{\sum_{E,R,B} P(A=1 | E,B) P(B) P(E) P(R | E)} = 0.99$$

What is the probability that there was a burglary if the alarm sounds and the radio reports on an earthquake?

$$P(B=1 \mid A=1,R=1) = \frac{P(B=1,A=1,R=1)}{P(A=1,R=1)} = \frac{\sum_{E} P(A=1,R=1,E,B=1)}{\sum_{E,B} P(A=1,R=1,E,B)} = 0.01$$

What have we gained?

- Here: 1+1+2+4=8 parameters instead of $2^4 1 = 15$
- In general, a distribution over n Boolean variables needs 2^n-1 probability values
- If using a BN with at most k parents per node, only $n \times 2^k$
- e.g., for n = 20 and k = 5 reduction from 1048575 to 640
- number of values depends on skill of designer (and problem)
- fewer parameters means faster inference and learning

Logic as a special case of BNs

	Z=1
X=1	0
X=0	1

We write such CPTs compactly using the logic notation

$$Z = X \wedge Y$$

P(Z	P(Z X,Y)	
X=1	Y=1	1
X=1	Y=0	0
X=0	Y=1	0
X=0	Y=0	0

$$Z = X \vee Y$$

P(Z X,Y)		Z=1
X=1	Y=1	1
X=1	Y=0	1
X=0	Y=1	1
X=0	Y=0	0

similarly for $Z=X_1\wedge\ldots\wedge X_n$ and $Z=X_1\vee\ldots\vee X_n$

Noisy-OR

If Z is a disjunction (**OR**-gate), $Z = X_1 \vee ... \vee X_n$, each event $X_i = 1$ causes the event Z = 1

In a **noisy-OR**, each event $X_i = 1$ causes the event Z = 1 unless an inhibitor prevents it, which happens with probability q_i (independently for each i)

for fixed values $X_1 = v_1, ..., X_n = v_n$ of the parents, when do we get Z=1?

any X_i with $v_i = 0$ never causes Z=1

any X_i with $v_i = 1$ causes Z=1 unless inhibited

we get Z=1 if at least one of the X_i with $v_i=1$ is not inhibited conversely, we get Z=0 if all of the X_i with $v_i=1$ are inhibited

$$P(Z = 0 | X_1 = v_1, ..., X_n = v_n) = \prod_{\{i | v_i = 1\}} q_i$$

$$P(Z = 1 | X_1 = v_1, ..., X_n = v_n) = 1 - \prod_{\{i | v_i = 1\}} q_i$$

Noisy-OR

noisy-AND follows the same principle for logical **AND**: for Z to be 1, all parents need to be 1, but X_i is independently inhibited with probability q_i

Noisy-OR: example

			Z=1
A=1	B=1	C=1	1-0.05*0.2*0.4=0.996
A=1	B=1	C=0	1-0.05*0.2=0.990
A=1	B=0	C=1	1-0.05*0.4=0.980
A=1	B=0	C=0	1-0.05=0.950
A=0	B=1	C=1	1-0.2*0.4=0.920
A=0	B=1	C=0	1-0.2=0.800
A=0	B=0	C=1	1-0.4=0.600
A=0	B=0	C=0	1-1=0.000

$$P(Z = 0 | X_1 = v_1, ..., X_n = v_n) = \prod_{\{i | v_i = 1\}} q_i$$

$$P(Z = 1 | X_1 = v_1, ..., X_n = v_n) = 1 - \prod_{\{i | v_i = 1\}} q_i$$

Judea Pearl's Alarm network

You have a new burglary alarm that is fairly reliable at detecting a burglary, but also responds to earthquakes. Your neighbours, Mary and John, promise to call you if they hear the alarm sounding.

Judea Pearl's Alarm network

order: M,J,A,B,E order: M,J,E,B,A

Edges in BNs do not always have a **causal** interpretation, but directing them from causes to effects often gives cleaner models

Factorisation in BNs

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$$

chain rule lets us write any joint distribution in this form:

$$P(X_1, X_2, ..., X_n) = P(X_1 | X_2, ..., X_n) \cdot P(X_2, ..., X_n)$$

$$= P(X_1 | X_2, ..., X_n) \cdot P(X_2 | X_3, ..., X_n) \cdot P(X_3, ..., X_n)$$

$$= P(X_n) \cdot \prod_{i=1}^{n-1} P(X_i | X_{i+1}, ..., X_n)$$

Order of variables is important if we want to gain something: determines which edges we can omit because of independence

Why graphs?

- Data structure to compactly represent a factored joint distribution
- Compact representation of a set of conditional independence assumption about a joint distribution
- Both views are equivalent: a distribution P satisfies all conditional independence assumptions in a DAG if and only if it has the factorised form.

DAGs & conditional independence

Random variables X and Y are conditionally independent of each other given the state of random variable Z, written $X \perp Y \mid Z$, if $P(X, Y \mid Z) = P(X \mid Z) \cdot P(Y \mid Z)$

Each node is conditionally independent of its **non- descendants given** its **parents**.

Each node is conditionally independent of **all other nodes** in the network **given** its **Markov blanket**.

Both characterisations follow from the more general notion of d-separation [proof: see exercises]

26

Each node is conditionally independent of its **non- descendants given** its **parents**.

Each node is conditionally independent of **all other nodes** in the network **given** its **Markov blanket**.

What do these statements tell us about the following nodes?

X6

X4

X5

X1

Conditional independence

$$P(X, Y | Z) = \frac{P(X | Z)P(Y | Z)P(Z)}{P(Z)} = P(X | Z)P(Y | Z)$$

$$P(X,Y|Z) = \frac{P(X)P(Z|X)P(Y|Z)}{P(Z)} = \frac{P(X,Z)P(Y|Z)}{P(Z)} = P(X|Z)P(Y|Z)$$

$$P(X,Y|Z) = \frac{P(Y)P(Z|Y)P(X|Z)}{P(Z)} = \frac{P(Y,Z)P(X|Z)}{P(Z)} = P(Y|Z)P(X|Z)$$

X₁Y|Z holds

X**I**Y**|**Z does not hold

$$P(X, Y|Z) = \frac{P(X)P(Y)P(Z|X, Y)}{P(Z)} \text{ in general } \neq P(X|Z)P(Y|Z)$$

Collider

- Consider an acyclic path between two nodes.
- An intermediate node on the path is a collider if it has incoming edges from both its neighbours on the path.
- An intermediate node on the path is a non-collider if it is not a collider.

Observations blocking paths in a BN

- Let ${\mathcal Z}$ be the set of nodes in a BN whose values are observed, and X and Y distinct nodes that are not in ${\mathcal Z}$
- We say a path from X to Y is **blocked** by \mathcal{Z} if at least one of the following holds:
 - there is a collider on the path such that neither the collider nor any of its descendants is in \mathcal{Z}
 - ullet there is a non-collider on the path that is in ${\mathscr Z}$

Which paths are blocked by each of the following sets?

•
$$\mathcal{Z} = \emptyset$$

•
$$\mathcal{Z} = \{B\}$$

•
$$\mathcal{Z} = \{D\}$$

•
$$\mathcal{Z} = \{F\}$$

•
$$\mathcal{Z} = \{D, F\}$$

d-separation

- Let ${\mathcal Z}$ be the set of nodes in a BN whose values are observed, and X and Y distinct nodes that are not in ${\mathcal Z}$
- X and Y are **d-separated** (by \mathcal{Z}) if every path from X to Y is blocked by \mathcal{Z}
- X and Y are d-connected if they are not d-separated

Conditional independence in BNs

- Let \mathcal{X} , \mathcal{Y} and \mathcal{Z} be disjoint sets of nodes in a BN.
- \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z} if every pair of nodes $X \in \mathcal{X}, Y \in \mathcal{Y}$ is d-separated by \mathcal{Z} .
- If $\mathcal X$ and $\mathcal Y$ are d-separated by $\mathcal E$, then $\mathcal X \perp \mathcal Y \mid \mathcal E$, i.e., $\mathcal X$ and $\mathcal Y$ are conditionally independent given $\mathcal E$

Are {E} and {D} conditionally independent given {A}?

Are {E} and {D} conditionally independent given {A,G}?

Are {A,B} and {D} conditionally independent given {C}?

Are {A,B} and {D} conditionally independent given {E}?

Are {A,B} and {D} conditionally independent given {G}?

DAGs and independencies

- We've seen earlier that different graphs can represent the same conditional independence assumptions.
- Given two DAGs, can we tell whether this is the case, without figuring out all the conditional independencies?
- YES: Markov equivalence

- The skeleton of a DAG is the undirected graph obtained by removing the direction of edges.
- An immorality in a DAG consists of three nodes X,Y,Z such that X and Z are parents of Y, but there is no edge between X and Z

Two DAGs represent the same set of conditional independence assumptions if and only if they have the same skeleton and the same set of immoralities.

Example 1

NO: different skeleton

Two DAGs represent the same set of conditional independence assumptions if and only if they have the same skeleton and the same set of immoralities.

Example 2

NO: same skeleton, but different immoralities

Two DAGs represent the same set of conditional independence assumptions if and only if they have the same skeleton and the same set of immoralities.

Example 3

NO: same skeleton, but different immoralities

Two DAGs represent the same set of conditional independence assumptions if and only if they have the same skeleton and the same set of immoralities.

Example 4

YES: same skeleton, same immoralities

Limits of expressibility

Health of patient, two treatments T1 and T2 with outcomes Y1 and Y2

 $\{T1\} \perp \{T2, Y2\} \text{ and } \{T2\} \perp \{T1, Y1\}$ (why?)

summing out H:
$$P(T1,Y1,T2,Y2) = \sum_{H} P(H)P(T1)P(T2)P(Y1 \mid H,T1)P(Y2 \mid H,T2)$$
$$= P(T1)P(T2) \sum_{H} P(H)P(Y1 \mid H,T1)P(Y2 \mid H,T2)$$

{T1}⊥(T2,Y2) and {T2}⊥(T1,Y1) still hold for P(T1,Y1,T2,Y2), but there is no BN over these four variables that precisely encodes these independence assumptions

Exercises: start here, finish at home

(solutions will be on learning central later)

Reading Material

- Today:
 - Russell & Norvig: sections 14.1 & 14.2
 - Barber: chapters 2 & 3
- Next week:
 - Russell & Norvig: 14.4
 - Barber: chapters 4 & 5

- Parts of slides based on
 - David Barber's slides for the BRML book
 - Tinne De Laet & Luc De Raedt's slides for the UAI course at KU Leuven