Cosmic Dawn Intensity Mapper

Scientific goal: produce three-dimensional maps of reionization from z=6-12 with Lyman-alpha as a tracer.

Applications: reionization tomography, cross-correlate with 21-cm

Asantha Cooray

University of California, Irvine

Cosmic Dawn Intensity Mapper

Scientific goal: produce three-dimensional maps of reionization from z=6-12 with Lyman-alpha as a tracer.

Applications: reionization tomography, cross-correlate with 21-cm

Lyman-alpha intensity mapping reionization applications discussed in Gong et al. 2013; Pullen et al. 2013

Numerical simulation predictions: Silva et al. 2014

- Large uncertainty in the relation (SFR, UV escape fraction, Lya escape fraction)
- Dominated by 10¹⁰ 10¹¹ M_{sun} halos!!

Cosmic Dawn Intensity Mapper

Survey requirements: R=500-1000 spectral imaging around 0.9-1.6 micron, 200-300 deg2 survey down to 1e-18 erg/cm2/s line flux density, 26th mag point detections (in broad bands)

Instrumental requirements: ~1.5m aperture.

Spectral imaging/integral field options are to be studied.

A possibility is linear variable filters, LVFs.

Can be extended to include Halpha etc (gets more expensive)

See SPHEREx posters tomorrow (session 147)

Asantha Cooray

if interested in contributing to CDIM please contact acooray@uci.edu