Hierarchical Clustering

Osama Bin Zahir

2023-11-30

#Loading the dataset

```
data=read.csv("C:\\Users\\Osama Zahir\\Downloads\\Cereals.csv")
head(data)
```

```
name mfr type calories protein fat sodium fiber carbo
##
                                         C
                                                 70
                                                           4
                                                               1
                                                                     130
                                                                          10.0
                                                                                  5.0
## 1
                      100% Bran
                                         C
## 2
              100% Natural Bran
                                                           3
                                                               5
                                                                           2.0
                                                120
                                                                      15
                                                                                  8.0
                       All-Bran
                                   Κ
                                        C
                                                 70
                                                           4
                                                                           9.0
                                                                                  7.0
## 3
                                                               1
                                                                     260
## 4 All-Bran with Extra Fiber
                                        C
                                                 50
                                                           4
                                                                     140
                                                                          14.0
                                                                                  8.0
## 5
                 Almond Delight
                                        C
                                                110
                                                           2
                                                               2
                                                                     200
                                                                           1.0
                                                                                14.0
                                                           2
       Apple Cinnamon Cheerios
                                         C
                                                                     180
                                                                           1.5
## 6
                                                110
                                                                                10.5
##
     sugars potass vitamins shelf weight cups
                                                   rating
                280
                          25
                                  3
                                          1 0.33 68.40297
## 1
          6
## 2
          8
                135
                            0
                                  3
                                          1 1.00 33.98368
## 3
          5
                320
                           25
                                  3
                                          1 0.33 59.42551
## 4
          0
                330
                          25
                                  3
                                          1 0.50 93.70491
## 5
          8
                 NA
                           25
                                  3
                                          1 0.75 34.38484
## 6
         10
                 70
                           25
                                  1
                                          1 0.75 29.50954
```

#Viewing the summary and structure of that dataset

```
summary(data)
```

```
##
        name
                             mfr
                                                 type
                                                                    calories
##
    Length:77
                        Length:77
                                             Length:77
                                                                 Min.
                                                                         : 50.0
                                             Class :character
##
    Class :character
                        Class :character
                                                                 1st Qu.:100.0
    Mode :character
                        Mode :character
                                             Mode :character
                                                                 Median :110.0
##
##
                                                                 Mean
                                                                         :106.9
##
                                                                 3rd Qu.:110.0
##
                                                                 Max.
                                                                         :160.0
##
##
       protein
                          fat
                                           sodium
                                                            fiber
##
    Min.
           :1.000
                     Min.
                             :0.000
                                      Min.
                                              : 0.0
                                                       Min.
                                                               : 0.000
    1st Qu.:2.000
                     1st Qu.:0.000
                                      1st Qu.:130.0
                                                        1st Qu.: 1.000
##
    Median :3.000
                     Median :1.000
                                      Median :180.0
                                                       Median : 2.000
##
##
    Mean
           :2.545
                     Mean
                             :1.013
                                      Mean
                                              :159.7
                                                       Mean
                                                               : 2.152
##
    3rd Qu.:3.000
                     3rd Qu.:2.000
                                      3rd Qu.:210.0
                                                        3rd Qu.: 3.000
           :6.000
                             :5.000
                                              :320.0
                                                               :14.000
##
    Max.
                     Max.
                                      Max.
                                                       Max.
##
##
        carbo
                        sugars
                                           potass
                                                            vitamins
           : 5.0
                            : 0.000
                                              : 15.00
                                                                : 0.00
##
    Min.
                    Min.
                                      Min.
                                                         Min.
                                      1st Qu.: 42.50
    1st Qu.:12.0
                                                         1st Qu.: 25.00
##
                    1st Qu.: 3.000
##
    Median :14.5
                    Median : 7.000
                                      Median : 90.00
                                                         Median : 25.00
                                              : 98.67
##
    Mean
           :14.8
                    Mean
                            : 7.026
                                      Mean
                                                         Mean
                                                                : 28.25
##
    3rd Qu.:17.0
                    3rd Qu.:11.000
                                      3rd Qu.:120.00
                                                         3rd Qu.: 25.00
##
    Max.
           :23.0
                    Max.
                            :15.000
                                      Max.
                                              :330.00
                                                         Max.
                                                                :100.00
##
    NA's
           :1
                    NA's
                            :1
                                      NA's
                                              :2
        shelf
                         weight
                                                           rating
##
                                           cups
    Min.
           :1.000
                     Min.
                             :0.50
                                                      Min.
                                                              :18.04
##
                                     Min.
                                             :0.250
##
    1st Qu.:1.000
                     1st Qu.:1.00
                                     1st Qu.:0.670
                                                      1st Qu.:33.17
    Median :2.000
                     Median :1.00
                                     Median :0.750
##
                                                      Median :40.40
           :2.208
                             :1.03
##
    Mean
                     Mean
                                     Mean
                                             :0.821
                                                      Mean
                                                              :42.67
    3rd Qu.:3.000
                     3rd Qu.:1.00
##
                                     3rd Qu.:1.000
                                                      3rd Qu.:50.83
                                             :1.500
                                                              :93.70
##
    Max.
           :3.000
                     Max.
                             :1.50
                                     Max.
                                                      Max.
##
```

str(data)

```
## 'data.frame':
                  77 obs. of 16 variables:
## $ name
             : chr "100%_Bran" "100%_Natural_Bran" "All-Bran" "All-Bran_with_Extra_Fiber" ...
             : chr "N" "Q" "K" "K" ...
## $ mfr
             : chr "C" "C" "C" "C" ...
## $ type
## $ calories: int 70 120 70 50 110 110 130 90 90 ...
##
   $ protein : int 4 3 4 4 2 2 2 3 2 3 ...
   $ fat
            : int 1510220210...
##
  $ sodium : int 130 15 260 140 200 180 125 210 200 210 ...
##
##
  $ fiber : num 10 2 9 14 1 1.5 1 2 4 5 ...
##
  $ carbo : num 5 8 7 8 14 10.5 11 18 15 13 ...
  $ sugars : int 6 8 5 0 8 10 14 8 6 5 ...
##
  $ potass : int 280 135 320 330 NA 70 30 100 125 190 ...
##
## $ vitamins: int 25 0 25 25 25 25 25 25 25 ...
   $ shelf
            : int 3 3 3 3 3 1 2 3 1 3 ...
## $ weight : num 1 1 1 1 1 1 1 1.33 1 1 ...
## $ cups : num 0.33 1 0.33 0.5 0.75 0.75 1 0.75 0.67 0.67 ...
  $ rating : num 68.4 34 59.4 93.7 34.4 ...
```

#Loading required packages

```
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.3.2
## corrplot 0.92 loaded
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.3.2
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.2
## Warning: package 'forcats' was built under R version 4.3.2
```

```
## — Attaching core tidyverse packages -
                                                                - tidyverse 2.0.0 —
## √ dplyr
               1.1.3 ✓ readr
                                      2.1.4
               1.0.0
## √ forcats

√ stringr

                                      1.5.0
## √ lubridate 1.9.2
                         √ tibble
                                      3.2.1
## √ purrr
               1.0.2
                         √ tidyr
                                      1.3.0
## — Conflicts -
                                                          - tidyverse_conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
## X purrr::lift() masks caret::lift()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to becom
e errors
library(tidyr)
library(dplyr)
library(e1071)
library(reshape2)
##
## Attaching package: 'reshape2'
##
## The following object is masked from 'package:tidyr':
##
##
       smiths
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.3.2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(cluster)
library(cowplot)
## Warning: package 'cowplot' was built under R version 4.3.2
## Attaching package: 'cowplot'
##
## The following object is masked from 'package:lubridate':
##
##
       stamp
library(pander)
library(kernlab)
```

```
##
## Attaching package: 'kernlab'
##
## The following object is masked from 'package:purrr':
##
## cross
##
## The following object is masked from 'package:ggplot2':
##
## alpha
```

```
library(FactoMineR)
```

```
## Warning: package 'FactoMineR' was built under R version 4.3.2
```

#Data Preprocessing. Remove all cereals with missing values.

```
dim(data)
```

```
## [1] 77 16
```

```
c_d2=na.omit(data)
dim(c_d2)
```

```
## [1] 74 16
```

#There were 4 missing values in the dataset

#Assigning row names to the cereal column

```
c_d3 = as.data.frame(c_d2)
row.names(c_d3) = c_d3[,1]
c_d4 = c_d3[,-1]
```

#Only selecting numerical values and removing catergorical variables

```
c_d5 = c_d4[, c(3:11,13:15)]
```

#Normalizing the data using the scale function

```
c_d5 = scale(c_d5)
head(c_d5)
```

```
protein
                             calories
                                                       fat
                                                               sodium
## 100%_Bran
                           -1.8659155 1.3817478 0.0000000 -0.3910227
## 100% Natural Bran
                            ## All-Bran
                           -1.8659155 1.3817478 0.0000000 1.1795987
## All-Bran with Extra Fiber -2.8737823 1.3817478 -0.9932203 -0.2702057
## Apple Cinnamon Cheerios
                            0.1498180 -0.4773310 0.9932203 0.2130625
## Apple_Jacks
                            0.1498180 -0.4773310 -0.9932203 -0.4514312
##
                                           carbo
                                                     sugars
## 100%_Bran
                            3.22866747 -2.5001396 -0.2542051 2.5605229
## 100% Natural Bran
                           -0.07249167 -1.7292632 0.2046041 0.5147738
## All-Bran
                            2.81602258 -1.9862220 -0.4836096 3.1248675
## All-Bran with Extra Fiber 4.87924705 -1.7292632 -1.6306324 3.2659536
## Apple Cinnamon Cheerios -0.27881412 -1.0868662 0.6634132 -0.4022862
## Apple Jacks
                           -0.48513656 -0.9583868 1.5810314 -0.9666308
##
                             vitamins
                                          weight
                                                      cups
                                                               rating
## 100% Bran
                           -0.1818422 -0.2008324 -2.0856582 1.8549038
## 100%_Natural Bran
                           -1.3032024 -0.2008324 0.7567534 -0.5977113
## All-Bran
                           -0.1818422 -0.2008324 -2.0856582 1.2151965
## All-Bran with Extra Fiber -0.1818422 -0.2008324 -1.3644493 3.6578436
## Apple_Cinnamon_Cheerios
                           -0.1818422 -0.2008324 -0.3038480 -0.9165248
## Apple Jacks
                            -0.1818422 -0.2008324 0.7567534 -0.6553998
```

Question 1 (part A): Apply hierarchical clustering to the data using Euclidean distance to the normalized measurements and looking at the correaltion values by plotting the corrplot

```
distance_table <- get_dist(c_d5)
fviz_dist(distance_table)</pre>
```


corr_plot = cor(c_d5)
ggcorrplot(corr_plot, outline.color = "grey50", lab = TRUE, hc.order = TRUE, type = "full")

#Sugar and calories are highly negatively correlated with rating. Also, Potass is highly positively correlated with fiber and Protien.

Question 1 (part B): comparing hierarchical clustering with different linkages: single, average, complete and ward.

```
# Hierarchical clustering using Complete Linkage
hc1 <- hclust(distance_table, method = "complete" )
# Plot the obtained dendrogram
plot(hc1, cex = 0.6, hang = -1, main = "Dendrogram of Hierarchical Clustering")
rect.hclust(hc1, k = 10, border = 2:10)</pre>
```

Dendrogram of Hierarchical Clustering

distance_table hclust (*, "complete")

#Computing with AGNES and with different linkage methods

```
hc_single <- agnes(distance_table, method = "single")
print(hc_single$ac)</pre>
```

```
## [1] 0.6072384
```

```
hc_complete <- agnes(distance_table, method = "complete")
print(hc_complete$ac)</pre>
```

```
## [1] 0.8469328
```

```
hc_average <- agnes(distance_table, method = "average")
print(hc_average$ac)</pre>
```

[1] 0.7881955

```
hc_ward <- agnes(distance_table, method = "ward")
print(hc_ward$ac)</pre>
```

```
## [1] 0.9087265
```

#These results confirm that the Ward linkage, which provides 90.87% accuracy, is the optimal agg lomerative (AGNES) linkage to use.

#Visualizing the dendogram

```
hc_Ward <- agnes(distance_table, method = "ward")
pltree(hc_Ward, cex = 0.6, hang = -1, main = "Dendrogram of agnes for ward")</pre>
```

Dendrogram of agnes for ward

distance_table
agnes (*, "ward")

Question 2: How many cluster would you choose?

The largest difference in height can be used to determine the k value hence K =5 is the best o ption.

fviz_dend(hc_ward, k = 5,main = "Dendrogram of AGNES (Ward)",cex = 0.5, k_colors = c("red", "blu
e", "darkgreen", "violet", "purple"), color_labels_by_k = TRUE,labels_track_height = 16,ggtheme
= theme_bw())

```
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## i The deprecated feature was likely used in the factoextra package.
## Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

Dendrogram of AGNES (Ward)


```
c_d6 <- cutree(hc_ward, k = 5)
Clustered_df <-as.data.frame(cbind ( c_d5, c_d6 ))</pre>
```

Question 3: Comment on the structure of the clusters and on their stability. Hint: To check stability, partition the data and see how well clusters formed based on one part apply to the other part

#For the stability of the clusters, We will partition the data into A and B.

```
cereal_a = c_d5[1:55,]
cereal_b = c_d5[56:74,]
```

#Computing the distances of cereal a

```
distance_cereal_a = get_dist(cereal_a)
```

#Compute with AGNES and with different linkage methods for cereal a

```
hc_single_cereal_a <- agnes(distance_cereal_a, method = "single")
print(hc_single_cereal_a$ac)</pre>
```

```
## [1] 0.6663587
```

```
hc_complete_cereal_a <- agnes(distance_cereal_a, method = "complete")
print(hc_complete_cereal_a$ac)</pre>
```

```
## [1] 0.8285192
```

```
hc_average_cereal_a <- agnes(distance_cereal_a, method = "average")
print(hc_average_cereal_a$ac)</pre>
```

```
## [1] 0.7646836
```

```
hc_ward_cereal_a <- agnes(distance_cereal_a, method = "ward")
print(hc_ward_cereal_a$ac)</pre>
```

```
## [1] 0.8891086
```

#With 88.91% accuracy, it enables us to establish that the best linkage for cereal_a is Ward.

#Computing the distances of cereal_a

```
distance_cereal_b = get_dist(cereal_b)
```

#Compute with AGNES and with different linkage methods for cereal_b

```
hc_single_cereal_b <- agnes(distance_cereal_b, method = "single")
print(hc_single_cereal_b$ac)</pre>
```

```
## [1] 0.4805129
```

```
hc_complete_cereal_b <- agnes(distance_cereal_b, method = "complete")
print(hc_complete_cereal_b$ac)</pre>
```

```
## [1] 0.71298
```

```
hc_average_cereal_b <- agnes(distance_cereal_b, method = "average")
print(hc_average_cereal_b$ac)</pre>
```

```
## [1] 0.6232053
```

```
hc_ward_cereal_b <- agnes(distance_cereal_b, method = "ward")
print(hc_ward_cereal_b$ac)</pre>
```

```
## [1] 0.7710122
```

#With 77.10% accuracy, it enables us to establish that the best linkage for cereal a is Ward.

#Plotting dendogram of cereal a and cereal b

```
fviz_dend(hc_ward_cereal_a, k = 5,main = "Cereal_a Dendrogram of AGNES",cex = 0.5, k_colors = c
("black", "purple", "blue", "brown", "red"), color_labels_by_k = TRUE,labels_track_height = 16,g
gtheme = theme_bw())
```

Cereal a Dendrogram of AGNES

fviz_dend(hc_ward_cereal_b, k = 5,main = "Cereal_b Dendrogram of AGNES",cex = 0.5, k_colors = c
("black", "purple", "blue", "brown", "red"), color_labels_by_k = TRUE,labels_track_height = 16,g
gtheme = theme_bw())

Question 3 (part B): Use the cluster centroids from A to assign each record in partition B (each record is assigned to the cluster with the closest centroid)

```
Clustered_df_A <-cutree (hc_ward_cereal_a, k=5)
Clusters_A <-as.data.frame(cbind(cereal_a, Clustered_df_A))
Clust_1 <- colMeans (Clusters_A [Clusters_A$ Clustered_df_A == "1" ,])
# The centroid of cluster 1 is represented by a vector of mean values for each column of the dat a sa a result.
```

```
Clustered_df_B <-cutree (hc_ward_cereal_b, k=5)
Clusters_B <-as.data.frame(cbind(cereal_b, Clustered_df_B))
Clust_2 <- colMeans (Clusters_B [Clusters_B$ Clustered_df_B == "1" ,])
# The centroid of cluster 2 is represented by a vector of mean values for each column of the dat a as a result.
```

```
Centroid <-rbind(Clust_1, Clust_2)
Centroid
```

```
fiber
            calories
                        protein
                                       fat
                                               sodium
                                                                       carbo
## Clust 1 -2.201871 1.3817478 -0.3310734 0.1727901 3.64131237 -2.0718749
## Clust 2 0.149818 -0.2449462 0.2483051 -0.2702057 -0.02091106 -0.7977876
                                  vitamins
                                               weight
               sugars
                         potass
                                                           cups
## Clust 1 -0.7894824 2.9837813 -0.1818422 -0.2008324 -1.845255 2.2426479
## Clust 2 1.0648712 0.1796942 -0.1818422 0.3369228 -0.303848 -0.5618826
           Clustered df A
## Clust 1
## Clust 2
                        1
```

Question 3 (part C): Assess how consistent the cluster assignments are compared to the assignments based on all the data.

After reviewing the centroid, it shows that cluster 1 is high in protein, fiber, and potassiu m. It means that the cereals in cluster 1 is more healthier than cluster 2. It can also be supported by looking at calories, fat, carbs, and sugar levels which are higher in cluster 2 as compared to cluster 1. Thus cereals in cluster 1 are healthier.

Q4:The elementary public schools would like to choose a set of cereals to include in their daily cafeterias. Every day a different cereal is offered, but all cereals should support a healthy diet. For this goal, you are requested to find a cluster of "healthy cereals." Should the data be normalized? If not, how should they be used in the cluster analysis?

#Visualizing the clusters in Scatter plot fviz_cluster(list(data=distance_table, cluster = c_d6))

Healthy_cereal<- cbind(c_d2,c_d6)
mean(Healthy_cereal[Healthy_cereal\$c_d6==1,"rating"])</pre>

[1] 73.84446

mean(Healthy_cereal[Healthy_cereal\$c_d6==2,"rating"])

[1] 38.37137

mean(Healthy_cereal[Healthy_cereal\$c_d6==3,"rating"])

[1] 28.66112

mean(Healthy_cereal[Healthy_cereal\$c_d6==4,"rating"])

[1] 46.17608

mean(Healthy_cereal[Healthy_cereal\$c_d6==5,"rating"])

[1] 63.0184

#It is evident that Cluster1 has the highest rating (73.84446), so we will select it as a nutritious cereal.

#lets also visualize the results by plotting a bar chart

```
calories <- ggplot(Clustered_df, aes(x = c_d6, y = calories)) +</pre>
  geom bar(stat = "identity", fill = "steelblue") +
  labs(x = "Cluster", y = "Calories") +
  ggtitle("Cluster by Calories")
protein <- ggplot(Clustered df, aes(x = c d6, y = protein)) +</pre>
  geom_bar(stat = "identity", fill = "red") +
  labs(x = "Cluster", y = "protein") +
  ggtitle("Cluster by Protein")
fat <- ggplot(Clustered df, aes(x = c d6, y = fat)) +
  geom_bar(stat = "identity", fill = "orange") +
  labs(x = "Cluster", y = "fat") +
  ggtitle("Cluster by Fat")
sodium <- ggplot(Clustered_df, aes(x = c_d6, y = sodium)) +</pre>
  geom bar(stat = "identity", fill = "pink") +
  labs(x = "Cluster", y = "sodium") +
  ggtitle("Cluster by sodium")
fiber <- ggplot(Clustered df, aes(x = c d6, y = fiber)) +
  geom bar(stat = "identity", fill = "gray") +
  labs(x = "Cluster", y = "fiber") +
  ggtitle("Cluster by fiber")
carbo <- ggplot(Clustered_df, aes(x = c_d6,, y = carbo)) +</pre>
  geom_bar(stat = "identity", fill = "brown") +
  labs(x = "Cluster", y = "carbo") +
  ggtitle("Cluster by carbo")
sugars <- ggplot(Clustered_df, aes(x = c_d6,, y = sugars)) +</pre>
  geom bar(stat = "identity", fill = "lightgreen") +
  labs(x = "Cluster", y = "sugars") +
  ggtitle("Cluster by sugars")
potass <- ggplot(Clustered df, aes(x = c d6, y = potass)) +
  geom_bar(stat = "identity", fill = "yellow") +
  labs(x = "Cluster", y = "potass") +
  ggtitle("Cluster by potass")
rating <- ggplot(Clustered_df, aes(x = c_d6,, y = rating)) +
  geom bar(stat = "identity", fill = "black") +
  labs(x = "Cluster", y = "rating") +
  ggtitle("Cluster by rating")
plot_grid(calories, protein, fat, sodium, fiber, carbo, sugars, potass, rating)
```


#Here we can see that cluster 1 still has the best results. It is low in calories, sugar, and fat. It has higher content of fiber, potassium and protein. Thus we can conclude that cluster 1 can be a set of cereals to include in their daily cafeterias.