

High-level camera-LiDAR fusion for 3D object detection with Machine Learning

Gustavo A. Salazar-Gomez, Miguel A. Saavedra-Ruiz & Victor Romero-Cano

Universidad Autónoma de Occidente, Colombia

3D object detection

Allows autonomous agents to estimate the relative pose of multiple objects neighbouring an ego-vehicle.

The astonishing results presented by Deep Learning models to address this issue, are usually occluded by the vast need of computational resources required to deploy them.

Our proposed solution

- A frustum region proposal is assembled, taking advantage of 2D object detectors.
- The point cloud instance inside the frustum is segmented using DBSCAN .
- A global feature representation encoding the given segmented instance.
- A Support Vector Regressor (SVR) estimates the 3D bounding box parameters.

Why is our work relevant

- Model deployment under conditions of low computational resources.
- Acceptable accuracy for low complexity tasks.
- Promising results in terms of accuracy based on processing times for training and inference working on CPU only.

Results

Set	X	У	z	ψ	W	1	h	Avg.	Avg. 3D	Avg. BEV
Training	98.8	98.2	99.9	78.0	96.8	94.2	99.8	95.1	62.0	68.4
Test	96.6	97.8	95.4	55.7	80.7	88.4	95.0	87.1	42.7	47.8

Table 1: Evaluation metrics of the proposed method

Module	Instance Segmentation	Feature Extraction	Regression	Total	
Training	$11.1s \pm 2.3s$	$19.1s \pm 0.5s$	$2.6s \pm 8.3ms$	$32.8s \pm 2.35s$	
Inference	$4.7ms \pm 4.8ms$	$13ms\pm1.4ms$	$0.7ms \pm 1.2ms$	$18.4ms \pm 5.1ms$	

Table 2: Processing times through training and inference stages per module.

- Accurate estimation of centroid coordinates x, y, z and the boundingbox dimensions w, l, h.
- Training of the whole system with 1136 images and LiDAR sweeps in roughly 32.8s.
- Process a new data sample in approximately 18.4ms or 55FPS in a CPU-only setup.

Conclusions and future work

- Our framework is capable of predicting 3D bounding boxes for vehicles and shows promising results estimating its parameters using classic ML techniques.
- With improvements as MultiBin for heading estimation, the evaluation metrics could be considerable boosted toward better results.

