Logic Gates

Sequential Logic Circuits

Course Outline

- 1. Introduction
- 2. Logic Gates & Related Devices
- 3. Combination Circuits I
- 4. Combination Circuits II
- 5. Combination Circuits III
- 6. Combination Circuits IV, Kmap
- 7. Combination Circuits IV, Kmap

- 8. Sequential Circuit I
- 9. Sequential Circuit II
- 10. Sequential Circuit III
- 11. Sequential Circuit IV
- 12. FPGA + Logic circuit project |
- 13. FPGA + Logic circuit project II
- 14. Lab Exam

Logic Circuit Laboratory Week9

Agenda

- 1. Counter Circuit
- 2. Ripper Counter
- 3. Self Stopping Counter
- 4. Synchronous Counter
- 5. Modulo Counter
- 6. Design Counter Circuit

Counter Circuit วงจรนับ

Counter Circuit

- ประยุกต์เอา Flip Flop มาสร้างวงจร
- Flip Flop 1 ตัวเก็บข้อมูลได้ 1 Bit

A three-bit binary counter.

6

Counter Circuit

- 1. Asynchronous Counter
 - Ripper Counter
 - Self Stopping Counter
- 2. Synchronous Counter
 - Synchronous Counter
 - Modulo Counter
 - Modulo Counter with Setting Value
- 3. Design Counter Circuit

Asynchronous Counter

Ripper Counter

7

5

Asynchronous Counter

Flip Flop แต่ละตัวจะทำงานไม่พร้อมกัน

- CLK จะต่อเข้ากับ Flip Flop เพียงตัวเดียว (ตัวแรก)
- Flip Flop (ตัวถัดไป) จะรับ Output จากตัวก่อนหน้าเข้า CLK
- ผลจะเกิดขึ้นไปจนถึง Flip Flop ตัวสุดท้าย
- Output ที่ได้จะเป็นการเพิ่มขึ้นของ เลขฐานสอง (Binary Counter)

Asynchronous (Ripple) Counters

Asynchronous Counter

Review 4 bit counter operation

- After the 15th clock pulse : FFs are recycled back to 0000.

Asynchronous Counter

Review of 4 bit counter operation

- CLK input to FF A.
- J & K are HIGH in all FFs.

Asynchronous Counter

Review of 4 bit counter operation

- CLK input to FF A.
- J & K are HIGH in all FFs.
- Output of FF A is CLK of FF B, etc.

Asynchronous Counter

Self Stopping Counter

Modulo Counter

- วงจรนับที่ผ่านมา จะนับจาก 0 ไปจนถึงค่าสูงสุดที่ตั้งค่า
- จากนั้นจะกลับมาวน เริ่มนับ 0 ใหม่
- สามารถออกแบบให้เมื่อนับจนถึงค่าที่ต้องการแล้วหยุด

- ขา JK ของตัวแรก จะไม่ตั้งค่า 1 ตลอด เพิ่ม logic gate

13

Asynchronous Counter

Review of 4 bit counter operation With Self Stopping Counter

- CLK input to FF A.
- J & K are HIGH in all FFs.
- Output of FF A is CLK of FF B, etc.

Counter Circuit

- 1. Asynchronous Counter
 - Ripper Counter
 - Self Stopping Counter
- 2. Synchronous Counter
 - Synchronous Counter
 - Modulo Counter
 - Modulo Counter with Setting Value
- 3. Design Counter Circuit

Synchronous Counter วงจรนับชนิดเข้าจังหวะ

17

Synchronous Counter

- JK ตัวแรกของวงจร จะเป็น 1,1 หมายถึงจะเปลี่ยนค่าทุกๆรอบ CLK
- การออกแบบวงจรต้องอาศัย การดูตารางค่าความจริง.

Co	ount	D	С	В	A	ตัวอย่าง
	0	0	0	0	0	1
	1	0	0	0	1	A = เปลี่ยนค่าตาม CLK
	2	0	0	1	0	
	3	0	0	1	1	B = เปลี่ยนค่าเมื่อ A เป็น 1
	4	0	1	0	0	
	D D	CLR CLR	AB	c C		A AB B B CLK C CLK C A

Synchronous Counter

Flip Flop แต่ละตัวจะทำงานพร้อมกัน

- CLK จะต่อเข้ากับ Flip Flop <u>ทุกตัว</u>
- Flip Flop จะทำงานพร้อมกัน
- ความผิดพลาดเมื่อความถี่สูงๆ จะน้อยกว่าแบบ Async

Synchronous Counter

ตัวอย่าง

Synchronous Counter

Review of 4 bit Synchronous counter operation

Synchronous Counter

Modulo Counter

22

Modulo Counter

- วงจรนับที่จะตั้งค่าการนับได้
- ค่าสูงสุดของวงจรนับ 2^n-1 เมื่อ n คือจำนวน Flip Flop ของวงจร

เช่น วงจรนับมี Flip Flop 4ตัว

- สามารถออกแบบวงจร M Counter สูงสุด 15
- ถ้าต้องการให้วงจรนับ 0 ถึง 5 (ทำได้) = วงจร Mod6
- ถ้าต้องการให้วงจรนับ 0 ถึง 12 (ทำได้) = วงจร Mod13
- ถ้าต้องการให้วงจรนับ 0 ถึง 17 (<u>ทำไม่ได้</u>) = วงจร Mod18

Modulo Counter

วงจรนับมี Flip Flop 4ตัว

- สามารถออกแบบวงจร M Counter สูงสุด 15
- ถ้าต้องการให้วงจรนับ 0 ถึง 5 (ทำได้) = วงจร Mod6

Modulo Counter

Mod6 Counter

Modulo Counter

วงจรนับมี Flip Flop 4ตัว

- สามารถออกแบบวงจร M Counter สูงสุด 15
- ถ้าต้องการให้วงจรนับ 0 ถึง 9 (ทำได้) = วงจร Mod10
- ดังนั้น ABCD ขาที่ต้อง Set ดังนี้ A = 0, B = 1, C = 0, D = 1

25

Modulo Counter

Mod10 Counter

Modulo Counter

Flip Flop = 6 ตัว นับได้สูงสุด 64 - 1 = 63

Synchronous Counter

Modulo Counter with Setting Value

Modulo Counter

- วงจรนับที่จะตั้งค่าการนับได้
- ค่าสูงสุดของวงจรนับ 2^n-1 เมื่อ n คือจำนวน Flip Flop ของวงจร

Setting Value

- เพิ่มวงจรในการกำหนดค่าสูงสุดในการนับ
- ง่ายต่อการนำไปใช้ และยืดหยุ่นในการทำงาน
- ใช้ประโยชน์จากขา Q' นำมาออกแบบวงจรให้ไป CLR ค่า ของ JK Flip Flop เมื่อถึงการนับที่กำหนด

30

29

Modulo Counter

Modulo Counter with Setting Value

Counter Circuit

- 1. Asynchronous Counter
 - Ripper Counter
 - Self Stopping Counter
- 2. Synchronous Counter
 - Synchronous Counter
 - Modulo Counter
 - Modulo Counter with Setting Value
- 3. Design Counter Circuit

#1 RS Flip Flop (NAND)

Design Counter Circuit

ตัวอย่าง ออกแบบวงจรนับ ดังนี้

- นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่
- ใช้ RS Flip Flop แบบ NAND Gate

Step การออกแบบดังนี้

- 1. ตรวจสอบว่าใช้ Flip Flop กี่ตัวจาก -> <u>3 ตัว นับค่าได้ส</u>ูงสุดที่ 7
- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

Design Counter Circuit

- นับจาก 0>3>5>2>1>0 วนกลับมาที่ 0 ใหม่ (RS NAND) Step การออกแบบดังนี้
- 1. ตรวจสอบว่าใช้ Flip Flop กี่ตัวจาก -> <u>3 ตัว</u>นับค่าได้สูงสุดที่ 7

2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
 memory 1 1
 mrรางการกระตุ้น RS Flip Flop NAND Gate

Q(t) > Q(t+1)	S	R	
0 > 0			
0 > 1			(2) Tip
1 > 0			ใส่ค่าของ Not Change ก่อน S R
1 > 1	Х	1	1 1

Design Counter Circuit

- นับจาก 0>3>5>2>1>0 วนกลับมาที่ 0 ใหม่ (RS NAND) Step การออกแบบดังนี้
- 1. ตรวจสอบว่าใช้ Flip Flop กี่ตัวจาก -> <u>3 ตัว</u>นับค่าได้สูงสุดที่ 7

ตารางการกระตุ้น RS Flip Flop NAND Gate

2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด

	Q(t) > Q(t+1)	S	R
ſ	0 > 0	1	Х
	0 > 1		
	1 > 0		
	1 > 1	Х	1

Error 0 0

3 ใส่ค่าของ Error
S R
1 1
1 0
Tip สลับ Not Change

Memory 1 1

34

- นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NAND) Step การออกแบบดังนี้
- 1. ตรวจสอบว่าใช้ Flip Flop กี่ตัวจาก -> <u>3 ตัว</u>นับค่าได้สูงสุดที่ 7

2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด

ตารางการกระตุ้น RS Flip Flop NAND Gate Q(t) > Q(t+1)S R 0 > 0 Χ 1 0 > 10 1 1 > 0 1 0 Χ

Memory 1 1 Error

ใส่ค่าของ RS NAND 0 > 1 S R 0 1 1 > 0 S R 1 0

37

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NAND)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

Stage Transition

Stage	Hans	SILIOIT					
	Output						
	Q(t)						
А	В	С	А	В	С		

Input							
F	Ą	E	3	С			
S	R	S	R	S	R		

38

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NAND)

1

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

1	Stage Transition
<u>.</u>	

1 > 1

	Output							
ส่ค่าของ Output ให้ครบ		Q(t)		Q(t+1)				
Satpat simiso	А	В	С	А	В	С		
0 > 3	0	0	0	1	1	0		
3 > 5								
5 > 2								
2 > 1								
1 > 0								

Input							
A	Ą	E	3	С			
S	R	S	R	S	R		

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NAND)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

Stage Transition

	Output							
ใส่ค่าของ Output ให้ครบ		Q(t)		Q(t+1)				
	Α	В	С	А	В	С		
0 > 3	0	0	0	1	1	0		
3 > 5	1	1	0	1	0	1		
5 > 2	1	0	1	0	1	0		
2 > 1	0	1	0	1	0	0		
1 > 0	1	0	0	0	0	0		

Input							
,	4	Е	3	С			
S	R	S	R	S	R		

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NAND)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

ใส่ค่าใน Input โดยเอา ตารางการกระตุ้นมาใส่

Q(t) > Q(t+1)	S	R
0 > 0	1	Х
0 > 1	0	1
1 > 0	1	0
1 > 1	Х	1

Stage Transition

	Output						
		Q(t)		Q(t+1)			
	А	В	С	А	В	С	
0 > 3	0	0	0	1	1	0	
3 > 5	1	1	0	1	0	1	
5 > 2	1	0	1	0	1	0	
2 > 1	0	1	0	1	0	0	
1 > 0	1	0	0	0	0	0	

Flip Flop A

Input						
A	АВ		С			
S	R	S	R	S	R	
0	1					
Х	1					
1	0					
0	1					
1	0					
					41	

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NAND)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

-		$\overline{}$	
	_	١.	
	•,	٠,	
	_		
ĸ	_	_	

ใส่ค่าใน Input โดยเอา ตารางการกระตุ้นมาใส่

Q(t) > Q(t+1)	S	R
0 > 0	1	Х
0 > 1	0	1
1 > 0	1	0
1 > 1	Х	1

Stage Transition

	Output					
		Q(t)		Q(t+1)		
	А	В	С	А	В	С
0 > 3	0	0	0	1	1	0
3 > 5	1	1	0	1	0	1
5 > 2	1	0	1	0	1	0
2 > 1	0	1	0	1	0	0
1 > 0	1	0	0	0	0	0
		-				

Flip Flop B

Input						
A	A	В		С		
S	R	S	R	S	R	
0	1	0	1			
X	1	1	0			
1	0	0	1			
0	1	Х	1			
1	0	1	Х			
					40	

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NAND)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

Stage Transition

ใส่ค่าใน Input โดยเอา ตารางการกระตุ้นมาใส่

Q(t) > Q(t+1)	S	R
0 > 0	1	Х
0 > 1	0	1
1 > 0	1	0
1 > 1	Х	1

Flip Flop C

	Output					
		Q(t)		Q(t+1)		
	А	В	С	А	В	С
0 > 3	0	0	0	1	1	0
3 > 5	1	1	0	1	0	1
5 > 2	1	0	1	0	1	0
2 > 1	0	1	0	1	0	0
1 > 0	1	0	0	0	0	0

Input						
,	4	E	3	(_	
S	R	S	R	S	R	
0	1	0	1	1	X	
X	1	1	0	0	1	
1	0	0	1	1	0	
0	1	X	1	1	X	
1	0	1	Х	1	X	

Design Counter Circuit

เมื่อได้ตารางการเปลี่ยนสถานะ ให้นำไปออกแบบวงจร - สามารถใช้ Kmap

Stage Transition

		Output					
		Q(t)		Q(t+1)			
	А	В	С	А	В	С	
0 > 3	0	0	0	1	1	0	
3 > 5	1	1	0	1	0	1	
5 > 2	1	0	1	0	1	0	
2 > 1	0	1	0	1	0	0	
1 > 0	1	0	0	0	0	0	

เขียน K Map จำนวนตาราง ขึ้นกับค่า Input 6 input = 6 ตาราง

Input						
А		В		С		
S	R	S	R	S	R	
0	1	0	1	1	Х	
Х	1	1	0	0	1	
1	0	0	1	1	0	
0	1	Х	1	1	Х	
1	0	1	Х	1	Х	

#2 RS Flip Flop (NOR)

Design Counter Circuit

ตัวอย่าง ออกแบบวงจรนับ ดังนี้

- นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่
- ใช้ RS Flip Flop แบบ NOR Gate

Step การออกแบบดังนี้

- 1. ตรวจสอบว่าใช้ Flip Flop กี่ตัวจาก -> <u>3 ตัว</u> นับค่าได้สูงสุดที่ 7
- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

- นับจาก 0>3>5>2>1>0 วนกลับมาที่ 0 ใหม่ (RS NOR) Step การออกแบบดังนี้

1. ตรวจสอบว่าใช้ Flip Flop กี่ตัวจาก -> <u>3 ตัว</u>นับค่าได้สูงสุดที่ 7

2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด

ตารางการกระตุ้น RS Flip Flop NOR Gate

Q(t) > Q(t+1)	S	R	_
0 > 0	0	Х	1
0 > 1			_
1 > 0			
1 > 1			

Design Counter Circuit

- นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NOR) Step การออกแบบดังนี้

- 1. ตรวจสอบว่าใช้ Flip Flop กี่ตัวจาก -> <u>3 ตัว</u>นับค่าได้สูงสุดที่ 7
- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด

ตารางการกระตุ้น RS Flip Flop NOR Gate

Q(t) > Q(t+1)	S	R
0 > 0	0	Х
0 > 1		
1 > 0		
1 > 1	Х	0

3 ใส่คำของ Error S R 0 0 0

Memory 0 0

50

Tip สลับ Not Change

Design Counter Circuit

- นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NOR) Step การออกแบบดังนี้
- 1. ตรวจสอบว่าใช้ Flip Flop กี่ตัวจาก -> <u>3 ตัว</u>นับค่าได้สูงสุดที่ 7
- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด

Memory 0 0

Memory 0 0

ใส่ค่าของ Not Change ก่อน

Error

Frror 1 1

ตารางการกระตุ้น RS Flip Flop NOR Gate					
Q(t) > Q(t+1)	S	R			
0 > 0	0	Х	_/		
0 > 1	1	0			
1 > 0	0	1	l		
1 > 1	Х	0			

ใส่ค่าของ RS NOR

0 > 1

S R

1 0

1 > 0

S R

0 1

51

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NOR)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

Stage Transition

		Out	put:		
	Q(t)			Q(t+1)	
А	В	С	А	В	С

Input						
A	Ą	В С		В С		1.1
S	R	S	R	S	R	

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NOR)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

	Stage Transition				
			Out	put	
ใส่ค่าของ Output ให้ครบ		Q(t)			Q(t+1)

0 > 3 > 5 > 2 > 1 >

		Output					
์ ครบ	Q(t)			Q(t+1)			
	А	В	C	А	В	U	
3	0	0	0	1	1	0	
5							
2							
1							
0							

Input						
A	Ą	E	3	(
S	R	S	R	S	R	

53

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NOR)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

Stage Transition

(1)		J				
			Out	put		
ใส่ค่าของ Output ให้ครบ		Q(t)			Q(t+1)	
	А	В	C	А	В	С
0 > 3	0	0	0	1	1	0
3 > 5	1	1	0	1	0	1
5 > 2	1	0	1	0	1	0
2 > 1	0	1	0	1	0	0
1 > 0	1	0	0	0	0	0

	Input						
,	A	E	3	(2		
S	R	S	R	S	R		

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NOR)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

ใส่ค่าใน Input โดยเอา ตารางการกระตุ้นมาใส่

Q(t) > Q(t+1)	S	R
0 > 0	0	Х
0 > 1	1	0
1 > 0	0	1
1 > 1	Х	0

Stage Transition

	Output					
		Q(t)		Q(t+1)		
	А	В	С	А	В	С
0 > 3	0	0	0	1	1	0
3 > 5	1	1	0	1	0	1
5 > 2	1	0	1	0	1	0
2 > 1	0	1	0	1	0	0
1 > 0	1	0	0	0	0	0

Flip Flop A

Input					
F	Ą	E	3	С	
S	R	S	R	S	R
1	0				
Х	0				
0	1				
1	0				
0	1				

Design Counter Circuit

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NOR)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

1			
(2	-)	
Α.	_	1	

ใส่ค่าใน Input โดยเอา ตารางการกระตุ้นมาใส่

Q(t) > Q(t+1)	S	R
0 > 0	0	Х
0 > 1	1	0
1 > 0	0	1
1 > 1	Х	0

Stage Transition

	Output										
		Q(t)		Q(t+1)							
	А	В	С	А	В	С					
0 > 3	0	0	0	1	1	0					
3 > 5	1	1	0	1	0	1					
5 > 2	1	0	1	0	1	0					
2 > 1	0	1	0	1	0	0					
1 > 0	1	0	0	0	0	0					
					_						

Flip Flop B

Тиртюрь												
Input												
A	Ą	E	3	(-							
S	R	S	R	S	R							
1	0	1	0									
X	0	0	1									
0	1	1	0									
1	0	0	1									
0	1	0	Х									

นับจาก 0 > 3 > 5 > 2 > 1 > 0 วนกลับมาที่ 0 ใหม่ (RS NOR)

- 2. เขียนตารางการกระตุ้นของ Flip Flop ที่กำหนด
- 3. เขียน Stage Transition ตารางการเปลี่ยนสถานะ

ใส่ค่าใน Input โดยเอา ตารางการกระตุ้นมาใส่

Q(t) > Q(t+1)	S	R
0 > 0	0	Х
0 > 1	1	0
1 > 0	0	1
1 > 1	Х	0

Stage Transition

	Output										
		Q(t)		Q(t+1)							
	А	В	С	А	В	С					
0 > 3	0	0	0	1	1	0					
3 > 5	1	1	0	1	0	1					
5 > 2	1	0	1	0	1	0					
2 > 1	0	1	0	1	0	0					
1 > 0	1	0	0	0	0	0					

Flip Flop C

Input											
A B C											
S	R	S	R	S	R						
1	0	1	0	0	X						
Х	0	0	1	1	0						
0	1	1	0	0	1						
1	0	0	1	0	X						
0	1	0 X 0 X									
					57						

Design Counter Circuit

เมื่อได้ตารางการเปลี่ยนสถานะ ให้นำไปออกแบบวงจร - สามารถใช้ Kmap

เขียน K Map จำนวนตาราง ขึ้นกับค่า Input 6 input = 6 ตาราง

Stage Transition

	Output									
		Q(t)		Q(t+1)						
	А	В	\cup	А	В	C				
0 > 3	0	0	0	1	1	0				
3 > 5	1	1	0	1	0	1				
5 > 2	1	0	1	0	1	0				
2 > 1	0	1	0	1	0	0				
1 > 0	1	0	0	0	0	0				

Input											
A	Ą	E	3	С							
S	R	S	R	S	R						
1	0	1	0	0	X						
X	0	0	1	1	0						
0	1	1	0	0	1						
1	0	0	1	0	X						
0	1	0	Х	0	Х						

58

Design Counter Circuit

เมื่อได้ตารางการเปลี่ยนสถานะ ให้นำไปออกแบบวงจร - สามารถใช้ Kmap

เขียน K Map จำนวนตาราง ขึ้นกับค่า Input 6 input = 6 ตาราง

Stage Transition

	Output									
		Q(t)		Q(t+1)						
	А	В	С	А	В	С				
0 > 3	0	0	0	1	1	0				
3 > 5	1	1	0	1	0	1				
5 > 2	1	0	1	0	1	0				
2 > 1	0	1	0	1	0	0				
1 > 0	1	0	0	0	0	0				

Design Counter Circuit

เขียน K Map จำนวนตาราง ขึ้นกับค่า Input 6 input = 6 ตาราง

FFA input S

FFA input R

$$R_A = ABC$$

3

เขียน K Map จำนวนตาราง ขึ้นกับค่า Input 6 input = 6 ตาราง

FFA input S

$$S_A = ABC$$

$$S_A = \overline{A}$$

FFA input R

$$R_A = ABC$$

$$R_A = A\overline{B}$$

61

Design Counter Circuit

3 เขียน K Map จำนวนตาราง ขึ้นกับค่า Input 6 input = 6 ตาราง

	Output					П			Ing	SUIT		
	Q(t)			Q(t+1)			A,	В		c		
A	В	C	A	В	C		5	8	5	R	5	R
0	0	0	1	1	0		1	0	1	0	0	×
1	1	0	1	0	1		×	0	0	1	1	0
1	0	1	0	1	0		0	1	1	0	0	1
0	-1	0	1	0	0		1	0	0	1	0	×
1	0	0	0	0	0		0	1	0	×	0	×

		H	-A	in	pu ⁻	t	R
CAI	³ 00	01 11					10
0	0	2	0	6	0	4	1
1	X	3	Х	7	Х	5	1

S_A	$= \overline{A}$
$R_A =$	$= A\overline{B}$

FFB input S

0 0 01 11 10

0 X 2 X 6 X 4 X

1 X 3 X 7 X X

C ^A	B 00	FF(C inp	out S 10 4 X	
0	°×	² X	6 X		
1	1 X	3 X	7 X	5 X	

 $S_B = \underline{\hspace{1cm}}$

Design Counter Circuit

เขียน K Map จำนวนตาราง ขึ้นกับค่า Input 6 input = 6 ตาราง

								1
FFA input S				FFA input R				
00	01	11	10	C A	В 00	01	11	1
1	1	6 X	4 0	0	0	0	6 0	4 1
Y	3 Y	7 Y	5	1	1 Y	3 Y	7 Y	5

Design Counter Circuit

0 > 3 > 5 > 2 > 1 > 0

SR Flip Flop NOR Gate (Use JK FF in Simulation)

Program Simulation

- Logicly 1.8.0

START

Lab8 Sequential Circuits 3 Counter Circuit

Ref: Digital Systems: Principles and Applications, 11/e Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss

65