DISCRETE STRUCTURE & APPLICATIONS BUM1433

CHAPTER 1: BASIC OF COUNTING

Ref: Rosen K.H., Discrete Mathematics & Its Applications, (Sixth Edition), McGraw-Hill, 2007

1.8: BINOMIAL COEFFICIENTS

Lesson outcome:

 Find the binomial coefficients of a term from a binomial series.

Binomial Theorem

• The binomial theorem states that a binomial expansion $(x+y)^n$ can be expanded as follows:

$$(x+y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y^1 + \binom{n}{2} x^{n-2} y^2 + \dots + \binom{n}{r} x^{n-r} y^r \dots + y^n$$

$$= \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$$

• Where ${}^{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$ is called a binomial coefficient with $k! = k(k-1)(k-2)\cdots(2)(1)$ and 0! = 1

Example 1.8.1

- Find the expansion of $(x+y)^3$
 - using the combinatorial reasoning

Solution:
$$(x+y)^3 = (x+y)(x+y)(x+y)$$
=

using the binomial theorem

Solution:
$$(x+y)^{3} = \sum_{r=0}^{3} \binom{n}{r} x^{n-r} y^{r}$$

$$= \binom{3}{0} x^{3} + \binom{3}{1} x^{2} y^{1} + \binom{3}{2} x^{1} y^{2} + \binom{3}{3} y^{3}$$

$$= \binom{3}{0} x^{3} + \binom{3}{1} x^{2} y^{1} + \binom{3}{2} x^{1} y^{2} + \binom{3}{3} y^{3}$$

EXERCISE 1.8

Expand the following by using Binomial theorem:

$$\mathbf{A} \qquad \left(1+x\right)^4$$

$$D \left(2x+3y^2\right)^4$$

$$(3-x)^{5}$$

$$\mathbf{E} \qquad \left(\frac{1}{x} - 2\sqrt{x}\right)^5$$

$$(2+3x)^3$$

$$\left(\frac{1}{2}c + d^3 \right)^4$$

Example 1.8.2

1. What is the coefficient of $x^{12}y^{13}$ in the expansion of $(x+y)^{25}$?

Solution:

$$\binom{25}{13}$$
=

2. What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x-3y)^{25}$

Solution:

$$(2x-3y)^{25} = \sum_{r=0}^{25} {25 \choose r} (2x)^{25-r} (-3y)^r$$

EXERCISE 1.8 (cont.)

2. Without expanding completely, find the indicated term(s) in the expansion of the expression.

A
$$\left(x^3 + \sqrt{y}\right)^{13}$$
, fifth term

B
$$\left(\frac{1}{3}p+q^2\right)^{12}$$
, term involving q^{10}

c
$$(xy-3y^{-1})^8$$
, term that does not contain y

PASCAL'S TRIANGLE

Used to obtain binomial coefficients

EXERCISE 1.8 (cont.)

3. Expand the following by using Pascal Triangle

$$\mathbf{A} \qquad \left(a+b\right)^7$$

c
$$(2+3x)^3$$

Thank You