Задание № 2

Вычисления в языке Пролог. Рекурсия. Форматированный вывод данных.

Для заданных значения переменной x и количества слагаемых ряда n вычислить по приведённой приближённой формуле значение указанной функции и путём сравнения с точным значением функции (левой части, вычисляемой с помощью стандартной функции/предиката/оператора языка) найти абсолютную погрешность вычислений.

Вывод данных выполнить в ясной для пользователя форме – например, в формате:

```
StdSin(...) = ...
ApproxSin(...) = ...
(n = ...)
AbsError = ...
```

Вывод числовых значений выполнять с достаточной (единой, фиксированной) точностью (не менее 6 знаков после запятой). Для этого использовать, например, форматированный вывод данных (стандартный предикат writef() или format()см. раздел Formatted Write в руководстве по SWI Prolog).

При сдаче работы иметь подготовленные варианты тестовых примеров, являющихся доказательством того, что соответствующая приближённая формула реализована верно.

Варианты индивидуальных заданий

Номер варианта (v) выбирать в соответствии с номером группы (g) и порядковым номером в списке группы (n) по формуле: $v = (2(n-1) + (g \pmod 5)) + 1) \pmod 33$.

v	Функция для реализации	Приближённая формула	Ограничения
1	$(1+x)^{-1/2}$	$1 - \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4}x^2 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8}x^4 - \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}x^5 + \dots$	<i>x</i> < 1
2	arctg x	$-\frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \frac{1}{7x^7} - \dots + (-1)^{n+1} \frac{1}{(2n+1)x^{2n+1}} \pm \dots$	x < -1
3	ln x	$(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + (-1)^{n+1} \frac{(x-1)^n}{n} \pm \dots$	$0 < x \le 2$
4	Arth x	$x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots + \frac{x^{2n+1}}{2n+1} + \dots$	x < 1
5	$(1+x)^{1/4}$	$1 + \frac{1}{4}x - \frac{1 \cdot 3}{4 \cdot 8}x^2 + \frac{1 \cdot 3 \cdot 7}{4 \cdot 8 \cdot 12}x^3 - \frac{1 \cdot 3 \cdot 7 \cdot 11}{4 \cdot 8 \cdot 12 \cdot 16}x^4 + \frac{1 \cdot 3 \cdot 7 \cdot 11 \cdot 15}{4 \cdot 8 \cdot 12 \cdot 16 \cdot 20}x^5 - \dots$	<i>x</i> ≤ 1
6	$\sin x$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \pm \dots$	$ x < \infty$
7	arctg x	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} \pm \dots$	x < 1
8	$(1+x)^{1/3}$	$1 + \frac{1}{3}x - \frac{1 \cdot 2}{3 \cdot 6}x^2 + \frac{1 \cdot 2 \cdot 5}{3 \cdot 6 \cdot 9}x^3 - \frac{1 \cdot 2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9 \cdot 12}x^4 + \frac{1 \cdot 2 \cdot 5 \cdot 8 \cdot 11}{3 \cdot 6 \cdot 9 \cdot 12 \cdot 15}x^5 - \dots$	$ x \le 1$
9	ch x	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$	$ x < \infty$
10	$\ln\left(1-x\right)$	$-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \dots - \frac{x^n}{n} - \dots$	$-1 \le x < 1$

11	$(1+x)^{-3/2}$	$1 - \frac{3}{2}x + \frac{3 \cdot 5}{2 \cdot 4}x^2 - \frac{3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6}x^3 + \frac{3 \cdot 5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6 \cdot 8}x^4 - \frac{3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}x^5 + \dots$	x < 1
12	sh x	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$	$ x < \infty$
13	$\ln\left(\frac{1+x}{1-x}\right)$	$2\left(x+\frac{x^3}{3}+\frac{x^5}{5}+\frac{x^7}{7}+\ldots+\frac{x^{2n+1}}{2n+1}+\ldots\right)$	x < 1
14	$(1+x)^{-5/2}$	$1 - \frac{5}{2}x + \frac{5 \cdot 7}{2 \cdot 4}x^2 - \frac{5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6}x^3 + \frac{5 \cdot 7 \cdot 9 \cdot 11}{2 \cdot 4 \cdot 6 \cdot 8}x^4 - \frac{5 \cdot 7 \cdot 9 \cdot 11 \cdot 13}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}x^5 + \dots$	x < 1
15	arcsin x	$x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots + \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n \cdot (2n+1)} + \dots$	x < 1
16	e^{x}	$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$	$ x < \infty$
17	$(1+x)^{-4}$	$1 - \frac{1}{1 \cdot 2 \cdot 3} (2 \cdot 3 \cdot 4x - 3 \cdot 4 \cdot 5x^{2} + 4 \cdot 5 \cdot 6x^{3} - 5 \cdot 6 \cdot 7x^{4} + 6 \cdot 7 \cdot 8x^{5} - \dots)$	x < 1
18	$\ln\left(\frac{x+1}{x-1}\right)$	$2\left(\frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \frac{1}{7x^7} + \dots + \frac{1}{(2n+1)x^{2n+1}} + \dots\right)$	x > 1
19	$(1+x)^{2/3}$	$1 + \frac{2}{3}x - \frac{2 \cdot 1}{3 \cdot 6}x^2 + \frac{2 \cdot 1 \cdot 4}{3 \cdot 6 \cdot 9}x^3 - \frac{2 \cdot 1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9 \cdot 12}x^4 + \frac{2 \cdot 1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12 \cdot 15}x^5 - \dots$	<i>x</i> ≤ 1
20	arccos x	$\frac{\pi}{2} - \left(x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots + \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n \cdot (2n+1)} + \dots\right)$	x < 1
21	$(1+x)^{-1/3}$	$1 - \frac{1}{3}x + \frac{1 \cdot 4}{3 \cdot 6}x^2 - \frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9}x^3 + \frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12}x^4 - \frac{1 \cdot 4 \cdot 7 \cdot 10 \cdot 13}{3 \cdot 6 \cdot 9 \cdot 12 \cdot 15}x^5 + \dots$	x < 1
22	Arsh x	$x - \frac{1 \cdot x^{3}}{2 \cdot 3} + \frac{1 \cdot 3x^{5}}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5x^{7}}{2 \cdot 4 \cdot 6 \cdot 7} + \dots + (-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n \cdot (2n+1)} \pm \dots$	x < 1
23	arctg x	$\frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \frac{1}{7x^7} - \dots + (-1)^{n+1} \frac{1}{(2n+1)x^{2n+1}} \pm \dots$	<i>x</i> > 1
24	$(1+x)^{-3}$	$1 - \frac{1}{1 \cdot 2} (2 \cdot 3x - 3 \cdot 4x^2 + 4 \cdot 5x^3 - 5 \cdot 6x^4 + 6 \cdot 7x^5 - \dots)$	x < 1
25	$\ln x$	$2\left(\frac{x-1}{x+1} + \frac{(x-1)^3}{3(x+1)^3} + \frac{(x-1)^5}{5(x+1)^5} + \dots + \frac{(x-1)^{2n+1}}{(2n+1)(x+1)^{2n+1}} + \dots\right)$	<i>x</i> > 0
26	$(1+x)^{-1/4}$	$1 - \frac{1}{4}x + \frac{1 \cdot 5}{4 \cdot 8}x^2 - \frac{1 \cdot 5 \cdot 9}{4 \cdot 8 \cdot 12}x^3 + \frac{1 \cdot 5 \cdot 9 \cdot 13}{4 \cdot 8 \cdot 12 \cdot 16}x^4 - \frac{1 \cdot 5 \cdot 9 \cdot 13 \cdot 17}{4 \cdot 8 \cdot 12 \cdot 16 \cdot 20}x^5 + \dots$	x < 1
27	$\ln\left(1+x\right)$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} \pm \dots$	$-1 < x \le 1$
28	$(1+x)^{3/4}$	$1 + \frac{3}{4}x - \frac{3 \cdot 1}{4 \cdot 8}x^2 + \frac{3 \cdot 1 \cdot 5}{4 \cdot 8 \cdot 12}x^3 - \frac{3 \cdot 1 \cdot 5 \cdot 9}{4 \cdot 8 \cdot 12 \cdot 16}x^4 + \frac{3 \cdot 1 \cdot 5 \cdot 9 \cdot 13}{4 \cdot 8 \cdot 12 \cdot 16 \cdot 20}x^5 - \dots$	<i>x</i> ≤ 1
29	cos x	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} \pm \dots$	$ x < \infty$
30	$(1+x)^{1/2}$	$1 + \frac{1}{2}x - \frac{1 \cdot 1}{2 \cdot 4}x^2 + \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6}x^3 - \frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}x^4 + \frac{1 \cdot 1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}x^5 - \dots$	<i>x</i> ≤ 1
31	Arcth $x \left(= \operatorname{Arth} \frac{1}{x} \right)$	$\frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \frac{1}{7x^7} + \dots + \frac{1}{(2n+1)x^{2n+1}} + \dots$	x > 1
32	$\ln x$	$\frac{x-1}{x} + \frac{(x-1)^2}{2x^2} + \frac{(x-1)^3}{3x^3} + \dots + \frac{(x-1)^n}{nx^n} + \dots$	$x > \frac{1}{2}$
33	$(1+x)^{-5}$	$1 - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \left(2 \cdot 3 \cdot 4 \cdot 5x - 3 \cdot 4 \cdot 5 \cdot 6x^2 + 4 \cdot 5 \cdot 6 \cdot 7x^3 - 5 \cdot 6 \cdot 7 \cdot 8x^4 + \ldots \right)$	x < 1

Примечание. Для справки по реализации отдельных действий см. руководство по SWI-Prolog (разделы Operators и Arithmetic).