Scilab Textbook Companion for Mechanics of Materials by R. C. Hibbeler¹

Created by
Deepika S Namboothiri
Bachelor of Engineering
Mechanical Engineering
CUMMINS COLLEGE OF ENGINEERING

College Teacher
Dr. Gautam S. Chandekar
Cross-Checked by
Chaitanya Potti

April 16, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Mechanics of Materials

Author: R. C. Hibbeler

Publisher: Pearson

Edition: 6

Year: 2010

ISBN: 978-81-317-1502-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	Stress	9
2	Strain	34
3	Mechanical Properties of Materials	39
4	Axial Load	48
5	Torsion	71
6	Bending	93
7	Transverse Shear	118
8	Combined Loadings	128
9	Stress Transformation	137
10	Strain Transformation	150
11	Design of Beams and Shafts	168
12	2 Deflection of Beams and Shafts	175
13	Buckling of Columns	187
14	Energy Methods	204

List of Scilab Codes

Exa 1.1	S1	9
Exa 1.2	S2	10
Exa 1.3	S3	12
Exa 1.4	S4	13
Exa 1.5	S5	14
Exa 1.6	S6	17
Exa 1.7	S7	18
Exa 1.8	S8	19
Exa 1.9	S9	20
Exa 1.10	S10	21
Exa 1.11	S11	23
Exa 1.12	S12	24
Exa 1.13	S13	26
Exa 1.14	S14	27
Exa 1.15	S15	29
Exa 1.16	S16	30
Exa 1.17	S17	31
Exa 2.1	Strain1	34
Exa 2.2	Strain2	35
Exa 2.3	Strain3	36
Exa 2.4	Strain4	37
Exa 3.1	MPM1	39
Exa 3.2	MPM2	40
Exa 3.3	MPM3	41
Exa 3.4	MPM4	43
Exa 3.5	MPM5	44
Exa 3.6	MPM6	46
Eva 4.1	$\Delta I.1$	18

Exa 4.2	AL2	49
Exa 4.3	AL3	51
Exa 4.5	AL5	52
Exa 4.6	AL6	54
Exa 4.7	AL7	55
Exa 4.8	AL8	57
Exa 4.9	AL9	58
Exa 4.10	AL10	59
Exa 4.11	AL11	60
Exa 4.12	AL12	62
Exa 4.13	AL13	64
Exa 4.14	AL14	65
Exa 4.15	AL15	66
Exa 4.16	AL16	67
Exa 4.17	AL17	68
Exa 5.1	T1	71
Exa 5.3	T3	72
Exa 5.4	T4	73
Exa 5.5	T5	74
Exa 5.6	T6	75
Exa 5.7	T7	76
Exa 5.8	T8	77
Exa 5.9	T9	78
Exa 5.11	T11	80
Exa 5.12	T12	81
Exa 5.13	T13	83
Exa 5.15	T15	84
Exa 5.16	T16	85
Exa 5.17	T17	86
Exa 5.18	T18	88
Exa 5.19	T19	89
Exa 5.20	T20	90
Exa 5.21	T21	91
Exa 6.5	B5	93
Exa 6.11	B11	94
Exa 6.13	B13	95
Exa 6.14	B14	95
Exa 6 15	B15	97

Exa 6.16	B16	98
Exa 6.17	B17	99
Exa 6.18	B18	100
Exa 6.19	B19	102
Exa 6.20	B20	104
Exa 6.21	B21	105
Exa 6.22	B22	106
Exa 6.23	B23	108
Exa 6.24	B24	109
Exa 6.25	B25	111
Exa 6.26	B26	112
Exa 6.27	B27	113
Exa 6.28	B28	114
Exa 6.29	B29	115
Exa 6.30	B30	116
Exa 7.1	TS1	118
Exa 7.2	TS2	119
Exa 7.3	TS3	121
Exa 7.4	TS4	122
Exa 7.5	TS5	124
Exa 7.6	TS6	125
Exa 7.7	TS7	126
Exa 8.1	CL1	128
Exa 8.2	CL2	129
Exa 8.3	CL3	130
Exa 8.4	CL4	131
Exa 8.5	CL5	133
Exa 8.6	CL6	135
Exa 9.1	ST1	137
Exa 9.2	ST2	138
Exa 9.5	ST5	139
Exa 9.6	ST6	140
Exa 9.9	ST9	142
Exa 9.10	ST10	143
Exa 9.11	ST11	144
Exa 9.12	ST12	145
Exa 9.13	ST13	146
Exa 9 14	ST14	147

Exa 9.15	ST15	149
Exa 10.1	StnT1	150
Exa 10.2	StnT2	151
Exa 10.3	StnT3	152
Exa 10.4	StnT4	154
Exa 10.5	StnT5	155
Exa 10.6	StnT6	156
Exa 10.7	StnT7	157
Exa 10.8	StnT8	159
Exa 10.9	StnT9	160
Exa 10.10	StnT10	161
Exa 10.11	StnT11	163
Exa 10.12	StnT12	164
Exa 10.13	StnT13	165
Exa 10.14	StnT14	166
Exa 11.1	DBS1	168
Exa 11.2	DBS2	169
Exa 11.3	DBS3	172
Exa 11.6	DBS6	173
Exa 12.6	DefBS6	175
Exa 12.10	DefBS10	175
Exa 12.12	DefBS12	177
Exa 12.13	DefBS13	178
Exa 12.14	DefBS14	179
Exa 12.15	DefBS15	180
Exa 12.16	DefBS16	181
Exa 12.21	DefBS21	182
Exa 12.22	DefBS22	183
Exa 12.23	DefBS23	184
Exa 12.24	DefBS24	185
Exa 13.1	BoC1	187
Exa 13.2	BoC2	188
Exa 13.3	BoC3	189
Exa 13.4	BoC4	190
Exa 13.5	BoC5	191
Exa 13.6	BoC6	192
Exa 13.7	BoC7	194
Exa 13.8	BoC8	195

Exa 13.9	BoC9														196
Exa 13.10	BoC10														197
Exa 13.11	BoC11														199
Exa 13.12	BoC12														200
Exa 13.13	BoC13														201
Exa 13.14	BoC14														202
Exa 14.1	EM1 .														204
Exa 14.5	EM5.														205
Exa 14.6	EM6 .														206
Exa 14.8	EM8.														207
Exa 14.9	EM9.														208
Exa 14.10	EM10														209
Exa 14.11	EM11														210
Exa 14.12	EM12														212
Exa 14.13	EM13														213
Exa 14.16	EM16														214
Exa 14.17	EM17														215
Exa 14.18	EM18														217
Exa 14.21	EM21														218

Chapter 1

Stress

Scilab code Exa 1.1 S1

```
1 clear all; clc;
3 disp("Scilab Code Ex 1.1 :")
5 \text{ w_varying} = 270;
6 l_crossection = 9;
7 \ 1_{cb} = 6;
8 \ 1_ac = 2;
9 w_c = (w_varying/l_crossection) * l_cb //By
      proportion, load at C is found.
10 	ext{ f_resultant_c} = 0.5 	ext{ w_c} 	ext{ *l_cb}
11 // Equations of Equilibrium
12
13 //Balancing forces in the x direction:
14 \quad n_c = 0
15
16 //Balncing forces in the y direction:
17 \text{ v_c} = f_resultant_c}
18
19 // Balncing the moments about C:
20 \text{ m_c} = - (f_resultant_c*l_ac)
```

Scilab code Exa 1.2 S2

```
1 clear all; clc;
3 disp("Scilab Code Ex 1.2 : ")
4
5 f_d = 225; /N
6 \text{ w\_uniform} = 800; // N/m
7 l_ac = 0.200; /m
8 l_cb = 0.05+0.1; /m
9 \ l_bd = 0.100; \ //m
10 l_bearing = 0.05;
                     //m
11 f_resultant = w_uniform*l_cb //120N
12 l_f_resultant_b = (1_cb/2) + 1_bearing; //0.125m
13 \ l = l_ac + l_cb + l_bearing + l_bd
14
15
16 // This problem is solved by considering segment AC
```

```
of the shaft.
17
18 //Support Reactions:
19
20 \text{ m_b} = 0;
                                       // Net moment about
      B is zero for equilibrium . Sum Mb = 0.
21 \quad a_y = -((f_d*l_bd) - (f_resultant*l_f_resultant_b))/
       (1 - 1_bd) // finding the reaction force at A
22
23 // Refer to the free body diagram in Fig.1-5c.
24 \, f_c = 40
25 //Balancing forces in the x direction:
26 n_c = 0
27
28 //Balncing forces in the y direction:
29 \text{ v_c} = \text{a_y} - \text{f_c}
                                 //-18.75N - 40N-Vc = 0
30
31 // Balncing the moments about C:
32 \text{ m_c} = ((a_y * (1_ac + 0.05)) - f_c*(0.025)) // Mc
      +40N(0.025m) + 18.75N(0.250m) = 0
33
34
35 // Displaying results:
36
                                      = \%.2 f N',
37 printf('\n'nThe resultant force
      f_resultant);
38 printf('\nThe reaction force at A = \%.2 \, f \, N', a_y);
39 printf('\nThe horizontal force at C = \%.2 f N', n_c);
40 printf('\nThe vertical force at C = \%.2 f N', v_c);
41 printf('\nThe moment about C = \%.2 \text{ f Nm', m_c});
42
43 //
```

11

END

Scilab code Exa 1.3 S3

```
1 clear all; clc;
3 disp("Scilab Code Ex 1.3 :")
5 // Given:
                  //m.
6 l_ac = 1;
7 l_cd = 1.5;
                  //m.
8 l_bd = 0.5;
                  //m.
9 r_a = 0.125;
                  //m.
10 r_d = 0.125; //m.
11 W = 2000; // N
12
13
14 // Equations of equilibrium:
16 //Balancing forces in the x direction:
17 n_c = -W; // N
18
19 //Balncing forces in the y direction:
20 \text{ v_c} = -W; /N
21
22 // Balncing the moments about C:
23 \text{ m_c} = - (W*(r_a +l_ac) - W*r_a)
24
25
26 // Displaying results:
27
28 printf('\n\nThe horizontal force at C = \%.2 f N',
      n_c);
29 printf('\nThe vertical force at C = \%.2 f N', v_c)
30 printf('\nThe moment about C
                                            =\%.2 \,\mathrm{f}\,\mathrm{Nm}', m_c
```

```
);
31
32 //
END
```

Scilab code Exa 1.4 S4

```
1 clear all; clc;
3 disp("Scilab Code Ex 1.4 :")
4
5 // Given:
6 l_ag = 1; //Length of AG is 1m.
7 l_gd = 1; //Length of GD is 1m.
8 l_de = 3; //Length of DE is 1m.
9 f_a = 1500; //Force at A is 1500N.
10 l_ec = 1.5; //Length of EC is 1m.
11 l = l_ag + l_gd + l_de;
12 w_uniform_varying = 600; /Nm.
13
14 w_resultant = 0.5*l_de*w_uniform_varying;
15 // calling point of action of resultant as P
16 l_ep = (2/3)*l_de; //Distance between points P and E
17
  1_ap = 1 - 1_ep; // Distance between points A and P.
18
19
20 	ext{ f_ba} = 7750; //N
21 	ext{ f_bc} = 6200; //N
22 \text{ f_bd} = 4650; /N
23
24 // Free Body Diagram: Using the result for Fba, the
```

```
left section AG of the beam is shown in Fig 1-7d.
25
  // Equations of equilibrium:
26
27
28 //Balancing forces in the x direction:
29 \text{ n_g} = -f_ba * (4/5); // N
30
31 //Balncing forces in the y direction:
32 \text{ v_g} = -f_a + f_ba*(3/5); //N
33
34 // Balncing the moments about C:
35 \text{ mg} = (f_ba * (3/5)*l_ag) - (f_a * l_ag); /Nm
36
37
38
39 // Displaying results:
40
41
42 printf('\n\nThe horizontal force at G = \%.2 f N', n_g)
43 printf('\nThe vertical force at G = \%.2 f N', v_g);
  printf('\nThe moment about G
                                          = \%.2 \text{ f Nm}', m_g);
45
46
47 //
      END
```

Scilab code Exa 1.5 S5

```
1 clear all; clc;
2
3
```

```
4 disp("Scilab Code Ex 1.5 :")
5
6 // Given:
7 	ext{ f_a = 50; } //N
8 \text{ m\_a} = 70; // Moment at A in Nm
9 \ 1_ad = 1.25; //Length of AD in m.
10 l_bd = 0.5; //Length of BD in m.
11 l_cb = 0.75; //Length of BC in m.
12 \text{ w_l} = 2; //\text{Kg/m}
13 g = 9.81; //N/kg- acceleration due to gravity
14
15
16
17 //Free Body Diagram :
18
19 w_bd = w_1*l_bd*g; //in N. Weight of each segment of
       pipe that acts through the centre of gravity of
      each segment.
20 \text{ w_ad} = \text{w_l*l_ad*g};
21
22 // Equations of Equilibrium
23
24 //Balancing forces in the x direction:
25 	 f_b_x = 0; // N
26
27 //Balncing forces in the y direction:
28 	 f_b_y = 0; //N
29
30 //Balncing forces in the z direction:
31 	ext{ f_b_z = g + w_ad + f_a; } /N
32
33 // Balancing Moments in the x direction:
34 \text{ m_b_x} = - \text{ m_a} + (f_a*l_bd) + (w_ad*l_bd) + (l_bd/2)*
      g; /Nm
35
36 // Balancing Moments in the y direction:
37 \text{ m_b_y} = - (w_ad*(l_ad/2)) - (f_a*l_ad); /Nm
38
```

```
39 // Balancing Moments in the z direction:
40 \text{ m_b_z} = 0; /Nm
41
42 v_b_shear = sqrt(f_b_z ^2 + 0); //Shear Force in N
43 \text{ t_b} = - \text{m_b_y}; // \text{Torsional Moment in Nm}
44 m_b = sqrt(m_b_x ^2 + 0); // Bending moment in Nm
45
46
47 // Display
48
49 // Displaying results:
50
51
52 printf('\n The weight of segment BD
                      =
                           \%.1 \, f \, N', w_bd);
53 printf('\n The weight of segment AD
       \%.1 f N', w_ad);
54 printf('\n The force at B in the Z direction
       \%.1 f N', f_b_z);
55 printf('\n The moment about B in the X direction
       \%.1 f Nm', m_b_x);
56 printf('\n The moment about G in the Y direction
       \%.1 f Nm', m_b_y);
57 printf('\n The Shear Force at B
                                                            =
       \%.1 f N', v_b_shear);
58 printf('\n The Torsional Moment at B
       \%.1 f Nm', t_b);
59 printf('\n The Bending Moment at B
                                                            =
       \%.1 f Nm', m_b);
60
61
62
63 //
      END
```

16

Scilab code Exa 1.6 S6

```
1 clear all; clc;
3
4 disp("Scilab Code Ex 1.6 :")
6 // Given:
7 netf_b = 18*(10^3); //N Net force at B.
8 netf_c = 8*(10^3); //N Net force at C.
9 f_a = 12 *(10^3); /N Force at A.
10 f_d = 22* (10^3); /N Force at D.
11 w = 35; /mm Width.
12 t = 10; /\text{mm} Thickness.
13
14 //calculations:
15 p_bc = netf_b + f_a; //N Net force in region BC.
16 a = w*t; //\text{m}^2 The area of the cross section.
17 avg_normal_stress = p_bc/a; //Average Normal Stress.
18
19
20
21 // Displaying results:
22
23 printf('\n\n Net force in the region BC
                                         = \%.2 \, f \, N', p_bc);
24 printf('\nThe Area of cross section
                                           = \%.2 \, \text{f m}^2, \text{a};
25 printf('\nThe Average Normal Stress in the bar when
      subjected to load = \%.2 \, f MPa', avg_normal_stress);
26
27 //
```

END

Scilab code Exa 1.7 S7

```
1 clear all; clc;
4 disp("Scilab Code Ex 1.7 :")
6 // Given :
7 m_lamp = 80; //Mass of lamp in Kg.
8 d_ab = 10; // Diameter of AB in mm.
9 d_bc = 8; // Diameter of BC in mm.
10 ab_h = 60 *(\%pi/180); // In degrees - Angle made by
     AB with the horizontal.
11 w = m_{\text{lamp}}*9.81; //N
12 a_bc = (\%pi/4)*(d_bc^2); /m^2 Area of cross section
       of rod BC
13 a_ab = (\%pi/4)*(d_ab^2); /m^2 Area of cross section
       of rod AB
14
15
16
17 // Equations of equilibrium: Solving equilibrium
      equations simultaneously , using matrices , in the
     x and y directions to obtain force in BC and
      force in BA.
18
19
20 a = [(4/5) - (\cos(ab_h)); (3/5) (\sin(ab_h))];
21 b = [0 ; w];
22 f = zeros(1)
23
24 f = a \ b;
```

```
25 f_bc = f(1); // Force in BC in N.
26 f_ba = f(2); //Force in BA in N.
27 avg_normal_stress_a = f_ba / a_ab; //Mpa Average
      Normal Stress in AB
  avg_normal_stress_c = f_bc/ a_bc;// Mpa Average
      Normal Stress in BC
29
30
31 // Displaying results:
32
33
34 printf('\n\nThe Weight of lamp = \%.2 \text{ f N',w});
35 printf('\nThe Net force in BC = \%.2 \, f \, N', f_bc);
36 printf('\nTheNet force in BA = \%.2 \, \text{f N',f_ba});
37 printf('\nThe Average Normal Stress in AB when
      subjected to load = \%.2 \, \text{f MPa}, avg_normal_stress_a
      );
38 printf('\nThe Average Normal Stress in BC when
      subjected to load = \%.2 \, \text{f MPa}', avg_normal_stress_c
      );
39
40
  //
      END
```

Scilab code Exa 1.8 S8

```
1 clear all; clc;
2
3
4 disp("Scilab Code Ex 1.8 :")
5
6 //Given:
```

```
7 \text{ h\_above\_ab} = 0.8;
8 h_below_ab = 0.2;
9 d_a = 0.2;
10 d_b = 0.1;
11 \text{ sp_w} = 80;
12
13 // Equation of Equilibrium:
14
15
16 a = \%pi* (d_a^2); // Area of cross section in m^2
17 p = sp_w * h_above_ab * a;
18 avg_comp_stress = p/a; // The average compressive
      stress in kN/m<sup>2</sup>
19
20 // Display:
21
22 printf('\nThe internal Axial force P = \%.2 f kN',
      p);
23 printf('\nThe average compressive stress = \%.2 \text{ f kN/m}
      ^2',avg_comp_stress);
24
25
26 //
```

END

Scilab code Exa 1.9 S9

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 1.9 : ")
4
5 //Given :
```

```
6 f = 3000; //N Force acting at distance x from AB.
7 l_ac = 200; //Length of AC in mm.
8 a_ab = 400; //Cross sectional area of AB in mm<sup>2</sup>.
9 a_c = 650; // area of C in mm^2.
10
11
12 f_{ans} = zeros(3)
13
14 k = [1 1 0; 0 l_ac -f; 1.625 -1 0]
15 \ 1 = [f ; 0 ; 0]
16 f_ans = k \setminus 1;
17
18 	ext{ f_ab} = 	ext{f_ans}(1)
19 	ext{ f_c} = 	ext{f_ans}(2)
20 x = f_ans(3)
21
22 // Display:
23
24 printf('\n'nThe Net force on AB
                                         =\%.2\,\mathrm{f} N', ceil
      (f_ab));
25 printf('\nNet force on C = \%.2 \text{ f N',f_c});
26 printf('\nDistance of force from AB = \%.2 \, \text{f} mm', ceil(
      x));
27
28
29 //
      END
```

Scilab code Exa 1.10 S10

```
1 clear all; clc;
2
```

```
3 disp("Scilab Code Ex 1.10 : ")
5 // Given:
  af = 800; //N Axial force along centroidal axis
7 t = 0.040; //m thickness of square cross section
8 \text{ ang_b} = 30 * (\%pi/180) ;
9 ang_b_comp = 60 * (\%pi/180);
10 a = t^2; //m^2 Area of cross section
11 a_new = ((t*1000)^2)/(\sin(\arg_b \cosh)); // \min^2 Area
       of section at b-b
12
13 // Part (a)
14
15 //Internal Loading: The bar is sectioned, Fig 1-24b,
       and the internal resultant loading consists of
      only axial force.
16
17 // Average Stress:
18 \text{ avg\_stress} = \frac{af}{(a* 1000)};
19
20 //Shear Force at the section is zero.
21 //The average normal stress distribution over the
      cross section is shown in Fig 1-24c.
22
23
24 // Part (b)
25
26
27 //solve the two equations for two unknowns:
28
29 N = af * cos(ang_b);
30 V = af * sin(ang_b);
31 avg_normal_stress = (N*1000) / a_new; // kPa
32 \text{ avg\_shear\_stress} = (V*1000)/a\_new; //kPa
33
34 // Display
35
36 printf('\n\nThe average stress for section a-a
```

```
= %.2 f kPa',avg_stress);

37 printf('\nThe Normal Force for section b-b = %.2 f N',N);

38 printf('\nThe Shear Force for section b-b = %.2 f N',V);

39 printf('\nThe Average Normal Stress for section b-b = %.2 f kPa',avg_normal_stress);

40 printf('\nThe Average Shear Stress for section b-b = %.2 f kPa',ceil(avg_shear_stress));

41 42 //
```

END

Scilab code Exa 1.11 S11

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 1.11 : ")
4
5 //Given :
6 f = 5000; //N
7 d_rod = 10; //Diameter of steel rod in mm.
8 l_bc = 20; //Length of side bc in mm.
9 l_bd = 40; //Length of side bd in mm.
10 a_rod = (%pi/4)* (d_rod^2); //Area of cross section of the rod in mm^2.
11 a_strut = l_bc*l_bd; //Area of strut in mm^2.
12
13
14 //Average shear stress
15
16 avg_shear_rod = f/a_rod; //for rod in Mpa
```

Scilab code Exa 1.12 S12

```
1 clear all; clc;
2
3
4 disp("Scilab Code Ex 1.12 : ")
5
6 // Given:
7 l_bc = 50; //Length of BC in mm.
8 l_db = 75; // mm.
9 \ l_ed = 40; // mm.
10 l_ab = 25; // mm.
11 f_diagonal = 3000; //N
12 a1 = l_ab*l_ed; //Area of face AB in mm<sup>2</sup>.
13 a2 = l_bc*l_ed; //mm^2.
14 a3 = l_db*l_ed; // mm^2.
15
16 //Internal loadings - The free body diagram of the
```

```
inclined member is shown in 1-26b.
17
18 // Equilibrium Equations
19
20 //Balancing forces along the x-direction.
21 f_ab = f_diagonal*(3/5); //Force on segment AB in N
22 V = f_ab; //Shear force acting on the sectioned
      horizontal plane EDB in N
23
24 //Balancing forces along the Y direction.
25 f_bc = f_diagonal*(4/5); //Force on segment BC in N.
26
27 //Average compressive stresses along the horizontal
      and vertical planes:
28
29 avg_comp_ab = f_ab/a1; // N/mm^2
30 avg_comp_bc = f_bc/a2; // N/mm^2
31
32 //Average shear stress acting on the horizontal
      plane defined by EDB:
33
34 avg_shear = f_ab/a3; // N/mm^2
35
36 // Display:
37
38
39 printf('\n'nThe Force on segment AB
                        = \%.2 \, f \, N', f_ab);
40 printf('\nThe Shear Force on sectioned plane EDB
      \%.2 \text{ f N', V)};
41 printf('\nThe Force on segment BC
      \%.2 f N', f_bc);
42 printf('\nThe average compressive stress along AB
      \%.2 \text{ f N/mm}^2, avg_comp_ab);
43 printf('\nThe average compressive stress along BC
      \%.2 \text{ f N/mm}^2, avg_comp_bc);
44 printf('\nThe average shear stress along EDB
      \%.2 \text{ f N/mm}^2, avg_shear);
```

```
45
46 //
```

END

Scilab code Exa 1.13 S13

```
1
2 clear all; clc;
3
5 disp("Scilab Code Ex 1.13 : ")
7 // Given:
8 \text{ shear\_allow} = 90; //MPa
9 tensile_allow = 115; //MPa
10
11 l_AP = 2; //m
12 \ 1_{PB} = 1; /m
13 resultant_A = 5.68; //kN
14 resultant_B = 6.67; //kN
15 v_a = 2.84; //kN
16 \text{ v_b} = 6.67; //kN
17
18
19 // Diameter of the Pins:
20 A_A = (v_a*10^3)/(shear_allow*10^6); //Area of pin A
21 da = (sqrt((4*A_A)/\%pi))*10^3 // d = (square root of
      (area*4/pi)) in mm
22 A_B = (v_b*10^3)/(shear_allow*10^6); //Area of pin
     В
23 db = (sqrt((4*A_B)/\%pi))*10^3 // Area = (\%pi 4) d^2
      in mm<sup>2</sup>
```

```
24
25 chosen_da = ceil(da);
26 chosen_db = ceil(db);
27
28 // Diameter of Rod:
29 A_bc = (resultant_B*10^3)/(tensile_allow*10^6); //
      Area of BC
  dbc = (sqrt((4*A_bc)/\%pi)*10^3); // Area = \%pi/4)d
31 chosen_dbc = ceil(dbc);
32
33 // Displaying Results:
34
35 printf ("\n The diameter of pin A = \%.3 f mm", da)
                                          =\%.3 f mm, db);
36 printf ("\n The diameter of pin B
37 printf ("\n The diameter of rod BC
                                          = \%.2 \, f \, mm'', dbc);
38 printf ("\n\n chosen diameters are: ");
39 printf ("\n The diameter of pin A
                                          = \%.3 \text{ f mm},
      chosen_da);
40 printf ("\n The diameter of pin B
                                         = \%.3 \text{ f mm}",
      chosen_db);
41 printf ("\n The diameter of rod BC = \%.2 \text{ f mm}",
      chosen_dbc);
42
43 //
```

Scilab code Exa 1.14 S14

```
1 clear all; clc;
2
```

END

```
4 disp("Scilab Code Ex 1.14 : ")
6 // Given:
7 shear_allow = 55; //MPa
8 \, l_ac = 200; /mm
9 \ 1_cd = 75; /mm
10 l_de = 50; /mm
11 l_ce = l_cd + l_de;
12 load_d =15; //kN
13 load_e = 25; //kN
14
15 //Internal Shear Force:
16 / summation Mc = 0
17
18 f_{ab} = ((load_d*l_cd + load_e*(3/5)*l_ce)/l_ac);
19 c_x = -load_d + (load_e*(4/5)); //resolving C in x
20 c_y = load_d + (load_e*(3/5)); //resolving C in y
      dir
21
22 f_c = sqrt(c_x^2 + c_y^2); /kN
23 \ V = f_c/2;
24
25 // Required Area
26 A = ((V*10^3)/(shear\_allow)); //A = V/Allowable
      shear in mm<sup>2</sup>
27 d = ((sqrt((4*A)/\%pi))) // Area = (\%pi\4)d^2 in mm<sup>2</sup>
28
29 chosen_d = ceil(ceil(d))+1;
30
31 // Displaying Results:
32
33
                                            = \%.2 f kN",
34 printf("\nnThe force at AB
      f_ab);
35 printf("\nThe resultant force at C = \%.2 f \text{ kN}",f_c);
36 printf("\nThe area of pin
                                          = \%.2 \text{ f mm}^2, A);
```

Scilab code Exa 1.15 S15

```
1 clear all; clc;
3 disp("Scilab Code Ex 1.15 : ")
5 // Given:
6 P= 20; //kN
7 \text{ d_hole} = 40; /mm
8 normal_allow = 60; //MPa
9 shear_allow = 35; //MPa
10
11
12 // Diameter of Rod:
13 area1 = (P*10^3)/(normal_allow*10^6); //Area in m^2
14 d = ((sqrt((4*area1)/\%pi))*1000); // Area = (\%pi\4)d
15
16
17 //Thickness of disc:
18 \quad V = P;
19 area2 = (V*10^3)/(shear_allow*10^6); //Area in m^2
20 thickness = (area2*10^6)/(d_hole*\%pi); // A = pi*d*t
21
22
23 printf("\n\nThe cross sectional area of disc
                                                     = \%.8
```

END

Scilab code Exa 1.16 S16

```
1 clear all; clc;
3 disp("Scilab Code Ex 1.16 : ")
5 // Given:
6 bearing_allow = 75; //MPa
7 tensile_allow = 55; //MPa
8 	ext{ d_shaft = 60; } / \text{mm}
9 r_shaft = d_shaft/2; //mm
10 area_shaft = \%pi*(r_shaft^2); //Area = pi*r^2
11 d_collar = 80; //mm
12 r_collar = d_collar/2; //mm
13 area_collar = \pi \cdot (r_collar^2); //Area = pi \cdot r^2
14 thick_collar = 20; //mm
15
16 //Normal Stress:
17 P1 = (tensile_allow* area_shaft)/3; //Tensile stress
      = 3P/A.
18 P1_kN = P1/1000;
19
20
```

```
21 //Bearing Stress:
22 bearing_area = area_collar-area_shaft; /mm^2
23 P2 = (bearing_allow*bearing_area)/3; //Bearing
      stress = 3P/A.
24 P2_kN = P2/1000;
25
26 \quad if(P2_kN < P1_kN)
27
       big = P2_kN;
28 else big = P1_kN;
29
       end
30
31 // Displaying Results:
32
33 printf("\n\nThe load calculated by Normal Stress
                      =\%.1\,\mathrm{f} kN", P1_kN);
34 printf("\nThe load calculated by Bearing Stress
                     =\%.1\,\mathrm{f} kN",P2_kN);
35 printf("\nThe largest load that can be applied to
      the shaft = \%.1 \, \text{f kN}", big);
36
37 //
```

END----

Scilab code Exa 1.17 S17

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 1.17 : ")
4
5 //Given:
6 d_ac= 20; //mm
7 area_ac = %pi*(d_ac/2)^2; //Area = (%pi\4)d^2
8 area_al = 1800; //mm^2
9 d_pins = 18; //mm
```

```
10 area_pins = \%pi*(d_pins/2)^2;
11 st_fail_stress = 680; //MPa
12 al_fail_stress = 70; //MPa
13 shear_fail_pin = 900; //MPa
14 fos = 2; //Factor of safety
15 l_ab = 2; //m
16 l_ap = 0.75; //m
17
18
19 st_allow= st_fail_stress /fos; //MPa
20 al_allow = al_fail_stress/fos; //MPa
21 pin_allow_shear = shear_fail_pin/fos; //MPa
22
23 / \text{Rod AC}
24 \text{ f_ac} = (\text{st_allow*area_ac})/1000;
25 P1 = ((f_ac*l_ab)/(l_ab-l_ap));
26
27 //Block B
28 f_b = (al_allow*area_al)/1000;
29 P2 = ((f_b*l_ab)/l_ap);
30
31 // Pin A or C:
32 V = (pin_allow_shear*area_pins)/1000;
33 P3 = (V*l_ab)/(l_ab-l_ap);
34
35 if (P1 < P2 & P1 < P3)
36
       big = P1;
37 else if (P2<P1 & P2<P3)
38
       big = P2;
39 else big = P3;
40 end
41
42 // Displaying Results:
43
44 printf("\n\nThe load allowed on rod AC
                             = \%.1 \, f \, kN", round(P1));
45 printf("\nThe load allowed on block B
                            = \%.1 \, \text{f kN}", P2);
```

```
46 printf("\nThe load allowed on pins A or C
= %.1 f kN", P3);

47 printf("\nThe largest load that can be applied to
the bar = %.1 f kN ", big);

48
49 //
END
```

Chapter 2

Strain

Scilab code Exa 2.1 Strain1

```
1 clear all; clc;
3 disp("Scilab Code Ex 2.1 : ")
5 // Given:
6 e_z = 4;
7 ab = 0.200; //m
10 // Calculations:
11
12 // Part a)
13
14 z=integrate('1+(40*10^--3)*(sqrt(z))', 'z',0,ab); //
      Strain formula for short line segment = delta(
      sdash) = (1+e_z) delta(s)
15 deltaB= z-ab;
16 deltaB_mm= deltaB*1000;
17
18 // Part b)
19
```

Scilab code Exa 2.2 Strain2

END

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 2.2 : ")
4
5 //Given:
6 theta = 0.002; //radians
7 bc=1; //m
8 ba = 0.5; //m
9
10 //Calculations:
11
12 bb_dash = theta*ba;
13 avg_normal_strain = bb_dash/bc; //m/m
14
```

Scilab code Exa 2.3 Strain3

```
1 clear all; clc;
 3 disp("Scilab Code Ex 2.3 : ")
5 // Given:
7 ab = 250; /mm
8 \text{ bbdash_x} = 3; /\text{mm}
9 bbdash_y = 2; /mm
10 ac = 300; //mm
11
12 //calculations:
13
14 // Part (a)
15 abdash = sqrt((ab - bbdash_y)^2 + (bbdash_x)^2); //
       Pythagoras theorem
16 avg_normal_strain = (abdash-ab)/ab;
17
18 // Part (b)
19 \operatorname{gamma_xy} = \operatorname{atan}(\operatorname{bbdash_x/(ab - bbdash_y)}); //\operatorname{shear}
       strain formula
20
21 // Display:
```

Scilab code Exa 2.4 Strain4

```
1 clear all; clc;
3 disp("Scilab Code Ex 2.4 : ")
4
5 // Given:
6 ab = 150; //mm
7 bc = 150; //mm
8 disp_cd= 2; //mm
9 	 ab_half = ab/2;
10 addash_half = (bc+disp_cd)/2;
11
12 // Calculations:
13
14 // Part (a)
15
16 ac = sqrt((ab)^2 + (bc)^2); //Pythagoras theorem in
      mm
17 ac_m = ac/1000; //in m
18 acdash = sqrt((ab)^2 + (bc+disp_cd)^2);
      Pythagoras theorem in mm
19 acdash_m = acdash/1000; //in m
20
```

```
21 avg_strain_ac = (acdash_m - ac_m)/ac_m; //Normal
      strain formula
22
23 // Part (b)
24
25 theta_dash = 2* atan((addash_half)/(bc/2)); //theta
      found in radians
26 gamma_xy = (\%pi / 2) - theta_dash; //shear strain
      formula
27
28 // Display:
29
30
31 printf("\nnThe average normal strain along the
      diagonal AC is =\%10.5 \text{ f mm/mm}, avg_strain_ac);
32 printf("\nThe shear strain at E relative to the x,y
                  = \%10.5 \, \text{f} \, \text{rad}", gamma_xy);
33
34 //
```

Chapter 3

Mechanical Properties of Materials

Scilab code Exa 3.1 MPM1

```
1 clear all; clc;
3 disp("Scilab Code Ex 3.1 : ")
5 // Given:
6 offset = 0.2; //\%
7 \text{ a_x} = 0.0016; //mm/mm
8 \ a_y = 345; //Mpa
10 //Refer to the given graph.
11
12 // Calculations:
13
14 // Modulus of Elasticity
15 E = a_y/(a_x*10^3); //E is the slope in GPa.
16
17 // Yield Strength:
18 sigma_ys = 469; //Graphically, for a strain of 0.002
     mm/mm
```

```
19
20 // Ultimate Stress:
21 sigma_u = 745.2; //Mpa B is the peak of stress
      strain graph.
22
23 //Fracture Stress:
24 \text{ ep_f} = 0.23; //mm/mm
25 sigma_f = 621; //Mpa from the graph.
26
27 // Display:
28
29 printf("\nnThe Modulus of Elasticity is
      %10.1 \text{ f GPa}",E);
30 printf("\nThe Yield Strength from the graph
         \%0.2 \text{ f MPa}", sigma_ys);
31 printf("\nThe Ultimate Stress from the graph is =\%10
      .1 f MPa", sigma_u);
32 printf("\nThe Fracture Stress from the graph is =\%10
      .1 f MPa", sigma_f);
33
34 //
```

Scilab code Exa 3.2 MPM2

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 3.2 : ")
4
5 //Given:
6 stress_b = 600; //MPa
7 strain_b = 0.023; //mm/mm
```

```
8 \text{ stress\_a} = 450; //Mpa
9 strain_a = 0.006; //mm/mm
10
11 // Calculations:
12
13 //Permanent Strain:
14 E = stress_a/strain_a;
15 strain_cd = stress_b/E; //The recovered elastic
      strain
16 perm_strain = strain_b - strain_cd; //mm/mm
17
18 //Modulus of Resilience:
19 ur_initial = (0.5*stress_a*strain_a); //MJ/m^3
20 ur_final = (0.5*stress_b*strain_cd); /MJ/m^3
21
22 // Display :
23
24 printf("\n Permanent Strain is
      \%10.5 \text{ f mm/mm}, perm_strain);
25 printf("\nThe Initial Modulus of Resilience is = \%0
      .2 f MJ/mm<sup>3</sup>",ur_initial);
26 printf("\nThe Final Modulus of Resilience is
                                                      = \%0
      .2 f MJ/mm^3, ur_final);
27
28
29
  //
```

Scilab code Exa 3.3 MPM3

```
1 clear all; clc;
2
```

```
3 disp("Scilab Code Ex 3.3 : ")
4
5 // Given:
6 p = 10000; /N
7 E_al = 70*(10^3); //MPa
8 l_ab = 600; /mm
9 \text{ d_ab} = 20; /mm
10 l_bc = 400; /mm
11 \, d_bc = 15; /mm
12
13 // Calculations:
14
15 a_ab = (\%pi/4)*(d_ab^2); // Area of AB
16 \text{ a_bc} = (\%pi/4)*(d_bc^2);
17 stress_ab = p/a_ab; // Stress = load/area
18 	ext{ stress_bc = p/a_bc;}
19
20 e_ab = stress_ab/E_al; //Hookes's Law. Elastic
      strain.
21 e_bc = 0.045; //mm/mm . From the graph for stress_bc
22
23 elongation = (l_ab*e_ab)+(l_bc*e_bc);
24 strain_rec = stress_bc/E_al; //Strain Recovery
25
26 e_og = e_bc-strain_rec; // mm/mm
27 rod_elong = e_og*l_bc;
28
29 // Display:
30
31 printf("\nnThe elongation of the rod when load is
      applied
                         =\%10.1 \text{ f mm}", elongation);
32 printf("\nThe permanent elongation of the rod when
      load is removed = \%0.1 f mm", rod_elong);
33
34 //
```

Scilab code Exa 3.4 MPM4

```
1 clear all; clc;
3 disp("Scilab Code Ex 3.4 : ")
5 // \text{Given}:
6 P = 80; //kN
7 l_z = 1.5; /m
8 l_y = 0.05; //m
9 \quad 1_x = 0.1; /m
10
11 // Calculations:
12 A = 1_x * 1_y;
13 normal_stress_z = (P*(10^3))/A; //Pa
14
15 Est = 200; //GPa - from the tables.
16 strain_z = (normal_stress_z)/(Est*(10^9)); // Strain
      = stress/modulus of elasticity
17
18 axial_elong = strain_z*l_z; //elongation in the y
      direction
19
20 nu_st = 0.32; //Poisson's Ratio - from the tables.
21 strain_x = -(nu_st)*(strain_z); //strain in the x
      direction.
22 strain_y = strain_x;
23
24 // Elongations:
25 delta_x = strain_x*l_x;
26 delta_y = strain_y*l_y;
27
28 // Display:
```

```
29
30 printf("\nnThe change in the length (z direction)
            = %10.8 f m", axial_elong);
31 printf("\nThe change in the cross section (x
      direction = \%10.8 f m', delta_x ;
32 \quad printf("\nThe change in the cross section (y)
      direction) = %10.8f m', delta_y);
33
34 printf("\nnIn the standard form:")
35 printf("\nThe change in the length (z direction)
            = \%10.2 \, \text{f} \, \text{x}10\,\hat{} \, \text{6m}, (axial_elong*10^6));
  printf("\nThe change in the cross section (x
      direction = \%10.2 f x10^6m', (delta_x*10^6);
  printf("\nThe change in the cross section (y)
      direction) = %10.2f x10^6m', (delta_y*10^6));
38
39 //
```

Scilab code Exa 3.5 MPM5

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 3.5 : ")
4
5 //Given:
6 //Refer to the graph of shear stress-strain of titanium alloy.
7 x_A = 0.008; //rad - x co-ordinate of A
8 y_A = 360; //MPa - y co-ordinate of A
9 height = 50; //mm
10 l = 75; //mm
```

```
11 b = 100; /mm
12
13
14 // Calculations:
15
16 //Shear Modulus:
17 G = y_A/x_A;
18
19 // Proportional Limit:
20 tou_pl = 360; //Mpa Point A
21
22 // Ultimate Stresss:
23 tou_u = 504; //MPa - Max shear stress at B
24
25 //Maximum Elastic Displacement:
26 tanA = x_A; // tan theta is approximated as theta.
27 d = tanA*height;
28
29 //Shear Force:
30 A = 1*b;
31 V = tou_pl*A;
32
33 // Display:
34
35
36 printf("\nThe Shear Modulus
                                                    = \%10.2
      f MPa",G);
37 printf("\nThe Proportional Limit
                                                 = \%10.2 \text{ f}
      Mpa",tou_pl);
38 printf("\nThe Ultimate Shear Stress
                                                 = \%10.2 \text{ f}
      \mathrm{MPa} ",tou_u);
39 printf("\nThe Maximum Elastic Displacement = \%10.2 f
     mm", d);
40 printf("\nThe Shear Force
                                                  = \%10.2 \text{ f}
     kN ",(V/1000);
41
42 //
```

Scilab code Exa 3.6 MPM6

```
1 clear all; clc;
3 disp("Scilab Code Ex 3.6 : ")
5 // Given:
6 	 d_o = 0.025; /m
7 \ 1_o = 0.25; \ //m
8 F = 165; //kN
9 delta = 1.2; /mm
10 G_al = 26; //GPa
11 sigma_y = 440; //MPa
12
13 // Calculations:
14
15 // Modulus of Elasticity:
16 A = (\%pi/4)*(d_o^2);
17 avg_normal_stress = (F*10^3)/A;
18 avg_normal_strain = delta/l_o;
19 E_al = avg_normal_stress/ avg_normal_strain;
20
21 E_al = E_al/10^6;
22
23 // Contraction of Diameter:
24 \text{ nu} = (E_al/(2*G_al))-1;
25 strain_lat = nu*(avg_normal_strain) ;
26 d_contraction = strain_lat* d_o ;
27
28
29 // Display:
```

```
30
31 printf("\n\nThe Modulus of Elasticity
= %10.1 f GPa", E_al);
32 printf("\nThe contraction in diameter due to the force = %10.4 f mm", d_contraction);
33
34 //
```

Chapter 4

Axial Load

Scilab code Exa 4.1 AL1

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.1 : ")
5 // Given:
6 \text{ a_ab} = 600; //\text{mm}^2
7 \text{ a_bd} = 1200; //mm^2
8 \quad a_bc = a_bd;
9 p = 75; //kN
10 l_ab = 1; //m
11 l_bc = 0.75; //m
12 \ 1_{cd} = 0.5; \ //m
13
14 // Calculations:
15
16 //Internal Forces: By method of Sections
17 P_bc = 35; //kN
18 P_cd = 45; //kN
19
20 // Displacement:
21 E_st = 210*(10^3); //From the tables
```

```
22
23 P = [p P_bc -P_cd];
24 A = [a_ab a_bc a_bd];
25 L= [1_ab 1_bc 1_cd];
26 E = []
27 n = length(P)
28
29 delta_sum =0;
30
31 \text{ for } i = 1:n;
        delta_sum = delta_sum + (P(i)*L(i)*(10^6))/(A(i)
32
           *E_st);
33 \text{ end}
34
35 \text{ delta_bc} = (P_bc*l_bc*10^6)/(a_bc*E_st);
36
37
38
39 // Display:
40
41 printf("\n\nThe vertical displacement of end A
       +\%1.2 \text{ f } \text{mm}", delta_sum);
42 printf("\nThe displacement of B relative to C is = +
      \%1.3 \text{ f mm}, delta_bc);
43
44 //
      END
```

Scilab code Exa 4.2 AL2

```
1 clear all; clc;
2
```

```
3 disp("Scilab Code Ex 4.2 : ")
5 // Given:
6 \text{ a_ab} = 400; /\text{mm}^2
7 \, d_{rod} = 10; /mm
8 \text{ r\_rod} = \text{d\_rod/(2*1000)}; //\text{radius in m}
9 P = 80; //kN
10 E_st = 200*(10^9); //Pa
11 E_al = 70*(10^9); //Pa
12 \ l_ab = 400; /mm
13 \ l_bc = 600; /mm
14
15 // Calculations:
16
17 //Internal forces: tension = compression = 80kN.
18
19 // Displacement:
20
21 / delta = PL/AE
22 numerator1 = P*(10^3)*(1_bc/1000);
23 denominator1 = (\%pi*r\_rod^2*E\_st);
24 delta_cb = numerator1/denominator1; //to the right
25
26 numerator2 = -P*(10^3)*(1_ab/1000);
27 denominator2 = (a_ab* 10^-6 *E_al);
28 delta_a = -numerator2/denominator2; //to the right
29
30 delta_c = delta_a+delta_cb;
31
32 // Display:
33
34
35
36 printf("\n\nThe displacement of C with respect to B
          = +\%1.6 \, \text{f} \, \text{m'}, \, \text{delta\_cb});
37 printf("\nThe displacement of B with respect to A
          = +\%1.6f m'', delta_a);
38 printf('\nThe displacement of C relative to A
```

Scilab code Exa 4.3 AL3

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.3 : ")
5 // Given:
6 \, d_ac = 20; /mm
7 \text{ r_ac} = d_{ac}/(2*1000); //radius in m
8 \, d_bd = 40; /mm
9 \text{ r_bd} = d_bd/(2*1000); //radius in m}
10 P = 90; //kN
11 E_st = 200*(10^9); //Pa
12 E_al = 70*(10^9); //Pa
13 l_af = 200; /mm
14 l_fb = 400; /mm
15 \ l_bd = 300; /mm
16 \ l_ac = l_bd;
17
18 // Calculations:
19
20 //Internal Force:
21 P_{ac} = 60; /kN
22 \text{ P_bd} = 30; //kN
23
24 // Displacement:
25
26 / Post AC: delta = PL/AE
```

```
27 \text{ num1} = -(P_ac*10^3*(l_ac/1000));
28 \text{ denom1} = \%pi* r_ac^2*E_st;
29 delta_a = -num1/denom1; //downwards
30 delta_a = delta_a*1000; //in m
31
32 // Post BD: delta = PL/AE
33 num2 = -(P_bd*10^3*(1_bd/1000));
34 \text{ denom2} = \%pi* r_bd^2*E_al;
35 delta_b = -num2/denom2; //downwards
36 \text{ delta_b} = \text{delta_b*1000; } //\text{in m}
37
38
39 delta_f = delta_b + (0.184)*(1_fb/(1_af+1_fb)); //By
       similar triangles from the figure.
40
41 // Display:
42
43 printf('\n\nThe displacement of Post AC
                                                      = +\%1
      .3 f mm downwards', delta_a);
                                                  = +\%1.3 \text{ f}
44 printf('\nThe displacement of Post BD
       mm downwards',delta_b);
45 printf('\nnThe displacement of point F
                                                     = +\%1.3 \text{ f}
       mm downwards',delta_f);
46
47 //
```

Scilab code Exa 4.5 AL5

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 4.5 : ")
```

```
4
5 // Given:
6 	 d_ab = 5; /mm
7 A = (\%pi/4)*(d_ab/1000)^2;
8 \text{ gap} = 1; /mm
9 P = 20; //kN
10 E_st = 200; //GPa
11 l_ac = 0.4; //m
12 \ 1_{cb} = 0.8; \ //m
13 \ l_ab = l_ac+l_cb;
14
15 // Calculations:
16
17 // Equilibrium:
18 // \text{Eqn1}: -\text{Fa} - \text{Fb} + \text{P}*10^3 = 0;
19
20 // Compatibility:
21 delta_ba = gap/1000; //in m
22
23 delta = delta_ba*(A*E_st*10^9); //delta_ba* Lac/AE
24
25
26 //\text{Eqn2}: (L/AE)*Fa - (Lb/AE)*Fb = delta_ba
27
28 //Solving Equations 1 and 2 by matrices:
29 \text{ coeff}_F = [1 1; l_ac]
                             -1_cb];
30 b = [P*10^3 ; delta];
31 F = coeff_F\b;
32
33 F_a = F(1)/1000;
34 	ext{ F_b} = 	ext{F(2)/1000};
35
36 // Display:
37
38
39 printf("\n\nThe reaction force at A = \%1.1 f \text{ kN}", F_a)
40 printf("\nThe reaction force at B = \%1.2 f \text{ kN}", F_b);
```

```
41
42 //
```

Scilab code Exa 4.6 AL6

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.6 : ")
5 // Given:
6 P = 45; //kN
7 E_al = 70*10^3;
8 E_br = 105*10^3;
9 h = 0.5; /m
10 ri = 25/1000; //m
11 ro = 50/1000; //m
12 A = (\pi^*(ro^2 - ri^2));
13 Ai = \%pi*ri^2;
14
15 // Calculations:
16
17 / Equilibrium : Eqn1 : F_al +F_br = P
18
19 // Compatibility:
20 coeff_F_br = (A*E_al)/(Ai*E_br); // delta_al =
      delta_brass
21
22 //Eqn2 : F_al - (coeff_F_br * F_br) = 0
23
24 //Solving equations 1 and 2 using matrices:
25
```

```
26 \text{ coeff}_F = [1 1; 1 - \text{coeff}_F_br];
27 b = [P; 0];
28 F = coeff_F \ ;
29
30 \text{ F_al = F(1)};
31 F_br = F(2);
32
33 avg_stress_al = F_al/A;
34 avg_stress_br = F_br/Ai;
35
36 avg_stress_al = avg_stress_al/1000;
37 avg_stress_br = avg_stress_br/1000;
38
39 // Display:
40
41
42 printf("\n\nThe axial force experienced by Al
      \%1.1 f kN", F_al);
43 printf("\nThe axial force experienced by Brass
                                                       = \%1
      .2 f kN", F_br);
44 printf('\nThe average normal stress in Al
                                                        = \%1
      .2 f MPa', avg_stress_al);
45 printf('\nThe average normal stress in Al Brass = \%1
      .2 f MPa', avg_stress_br);
46
47
  //
```

Scilab code Exa 4.7 AL7

```
1 clear all; clc;
2
```

```
3 disp("Scilab Code Ex 4.7 : ")
4
5 // Given:
6 P = 15; //kN
7 \text{ a_ab} = 25; //mm^2
8 a_ef = a_ab;
9 \text{ a_cd} = 15; //\text{mm}^2
10 l_ef = 0.5; //m
11 l_ce = 0.4; //m
12 l_ac = 0.4; /m
13
14 // Calculations:
15
16 // Equilibrium :
17 //In the y direction; F_a + F_c + F_e = P
18 // of moments: -F_a(l_ac) + P(l_ac/2) + F_e(l_ce) = 0
19
20 //Compatibility equation for displacemnts:
21 coeff_Fc = (1/a_cd); //coefficient of Fc
22 coeff_Fa = (0.5/a_ab); //coefficient of Fc
23 coeff_Fe = (0.5/a_ef); //coefficient of Fc
24
25 //Using matrices to solve the 3 Equations:
26 A = [1 1 1; -l_ac 0 l_ce; coeff_Fa -coeff_Fc
      coeff_Fe];
27 b = [P ; -P*(1_ac/2); 0];
28 F = A \ b;
29
30
31 F_a = F(1);
32 F_b = F(2);
33 F_c = F(3);
34
35 // Display:
36
37
38 printf("\n\nThe force in rod AB = \%1.2 \text{ f kN'},
      F_a);
```

Scilab code Exa 4.8 AL8

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.8 : ")
5 // \text{Given}:
6 \text{ r_o} = 10; /\text{mm}
7 \text{ r_i} = 5; /\text{mm}
8 \ 1 = 60; \ //mm
9 a_t = (%pi)*(r_o^2 - r_i^2); //Area of thread
10 a_b = (\pi^2); // Area of bolt
11 one_turn =20/20;
12 E_am = 45; //GPa
13 E_al = 75; //GPa
14
15 //calculations:
16
17 // Equilibrium:
18 // In Y direction: F_b - F_t = 0
19
20 // Compatibility:
21 half_turn = one_turn/2;
22 coeff_Ft = 1/(a_t*E_am*10^3); // delta = PL/AE
23 coeff_Fb = 1/(a_b*E_al*10^3);
```

```
24
25 //Solving the two simultaneous equations for F<sub>b</sub> and
        F_t:
26 A = [1 -1; coeff_Fb coeff_Ft];
27 b = [0 ; half_turn];
28 \quad F = A \setminus b;
29
30 F_b = F(1);
31 F_t = F(2);
32
33 \text{ stress_b} = F_b/a_b;
34 	ext{ stress_t} = F_t/a_t;
35
36 \text{ F_b} = \text{F_b/1000}; //\text{in kN}
37 	ext{ F_t = F_t/1000; } //in 	ext{ kN}
38
39 // Display:
40
41
42 printf('\n\nThe force experienced by threads
        \%1.2 \text{ f kN', F_t};
43 printf('\nThe force experienced by the bolt
       \%1.2 \text{ f kN', F_b};
44 printf('\nThe stress in the screw
       \%1.1\,\mathrm{f} MPa', stress_t);
45 printf('\nThe stress in the bolt
       \%1.1 f MPa', stress_b);
46
47 //
       END
```

Scilab code Exa 4.9 AL9

```
1 clear all; clc;
 3 disp("Scilab Code Ex 4.9 : ")
5 // Given:
6 l_ab = 800 + 400; //mm
7 P = 20; //kN
8 d = 5/1000; /m
9 area = (\%pi/4)*d^2; //Cross sectional area
10 l_bbdash = 1/1000; //m
11 E = 200; //GPa
12
13 // Calculations:
14
15 // Compatibility
16 delta_p = (P*10^3*0.4)/(area*E*10^9); //delta = PL/
      AE
17 delta_b = delta_p-l_bbdash;
18 F_b = (delta_b*area*E*10^9)/(l_ab/1000);
19 F_b = F_b/1000;
20
21 // Equilibrium:
22 F_a = P - F_b;
23
24 // Display :
25
26 printf("\n\nThe reaction at A = \%1.1 \text{ f kN'}, F_a);
27 printf('\nThe reaction at B = \%1.1 \text{ f kN'}, F_b);
28
29 //---
      END
```

Scilab code Exa 4.10 AL10

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.10 : ")
5 // Given:
6 \text{ T1} = 30; // \text{degree celcius}
7 T2 = 60; // degress celcius
8 l_ab = 1; //m
9 area = 10*10*10^-6; //m^2
10 alpha = 12*10^-6; // per degree celcius
11 E = 200*10^6; //kPa
12
13 // Equilibrium:
14 / F_a = F_b = F
15
16 \text{ del}_T = T2-T1;
17 F = alpha*del_T*area*E; //Thermal Stress Formula
18
19 avg_normal_comp_stress = (F*10^-3)/area; // sigma =
      F/A
20
21 // Display:
22
23 printf("\n The force at A and B
                                                           =
       %1.1 \text{ f kN",F};
24 printf('\nThe average normal compressive stress =
      %1.1 f MPa', avg_normal_comp_stress);
25
26
27 //
      END
```

60

Scilab code Exa 4.11 AL11

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 4.11 : ")
5 // Given:
6 area_sleeve = 600*10^-6; //m^2
7 area_bolt = 400*10^-6; //m^2
8 T1 = 15; //degree celcius
9 T2 = 80; //degree celcius
10 alpha_bolt = 12*10^-6; //per degree celcius
11 alpha_sleeve = 23*10^-6; //per degree celcius
12 \ 1 = 0.15; \ //m
13 E_bolt = 200*10^9; /N/m^2
14 E_sleeve = 73.1*10^9; /N/m^2
15
16 //Equilibrium:
17 / F_s = F_b
18
19 // Compatibility:
20 del_T = T2 - T1; // temperature difference
21 delb_T = alpha_bolt*del_T*1;
22 \text{ delb_F} = 1/(area\_bolt*E\_bolt);
23 dels_T = alpha_sleeve*del_T*1;
24 dels_F = 1/(area_sleeve*E_sleeve);
25
26 // delb_T + F_b*delb_F = dels_T + F_s*dels_F
27
28 	ext{ F_b} = (dels_T-delb_T)/(delb_F+dels_F);
29 F_b = F_b/1000; //in kN
30 \text{ F_s= F_b};
31
32 sigma_b = F_b/(area_bolt*10^3); //Average Normal
33 sigma_s = F_s/(area_sleeve*10^3); //Average Normal
      Stress
34
```

```
// Display:
// Display:
// Display:
// Display:
// Display:
// The printf("\n\nThe force experienced by sleeve and bolt
// Printf('\nThe average normal stress on bolt
// Printf('\nThe average normal stress on sleeve
// Printf('\nThe average normal stress on sleeve)
// Prin
```

Scilab code Exa 4.12 AL12

```
1
2 clear all; clc;
3
4 disp("Scilab Code Ex 4.12 : ")
5
6 //Given:
7 h = 0.250; //m
8 T1 = 20; //degree celcius
9 udl = 150; //kN/m
10 T2 = 80; //degree celcius
11 len = 0.3; //m
12 dia_steel = 0.04; //m
13 r_steel = 0.02;
14 dia_aluminium = 0.06; //m
15 r_al = dia_aluminium/2;
16 area_st = %pi*(r_steel^2);
```

```
17 area_al = %pi*(r_al^2);
18 F = 90*10^3; //N
19 alpha_st = 12*10^-6; //per degree celcius
20 alpha_al = 23*10^-6; //per degree celcius
21 E_st = 200*10^9; // N/m^2
22 E_al = 73.1*10^9; // N/m^2
23
24 // Equilibrium:
25 //From the free body diagram: Eqn1 : 2F_{st} + F_{al}
26
27
28 // - delst_T + F_st*delst_F = -delal_T + F_al*delal_F
29
30 / \text{Eqn2} : 165.9*10^3 = 1.216 \text{ F_al} - \text{F_st} \text{ F} = 0
31
32 // Compatibility:
33 \text{ delst_T} = \text{alpha_st*}(T1+T2)*h;
34 delst_F = h/(area_st*E_st);
35 \text{ delal_T} = \text{alpha_al*}(T1+T2)*h;
36 \text{ delst_F} = h/(area_al*E_al);
37
38 \text{ coeffMat} = [2 1; -1 1.216]
39 b = [90*10^3 ; 165.9*10^3]
40 	ext{ F = coeffMat} \b;
41 F_st = F(1)/1000;
42 F_al = F(2)/1000;
43 F_al =ceil(F_al);
44
45 // Display:
46
47
48 printf("\n The force on the steel post
       %1.1 f kN", F_st);
49 printf('\nThe force on the aluminium post
      %1.1 f kN', F_al);
50
51 //
```

Scilab code Exa 4.13 AL13

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.13 : ")
5 // Given:
6 \text{ sigma\_allow} = 115; //MPa
8 // Determing the stress concentration factor:
10 r_n = 10/20;
11 \text{ w_h} = 40/20;
12 k = 1.4; //from graph
13 sigma_avg = sigma_allow/k;
14 P = sigma_avg * 20 * 10;
15 P = P/1000;
16
17 // Display:
18
19 printf("\n\nThe largest axial force that the bar can
       carry = \%1.2 f kN", P);
20
21 //
```

Scilab code Exa 4.14 AL14

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.14 : ")
5 // Given:
6 P = 80*10^3; //N
7 yield_stress = 700; //MPa;
8 E = 200*10^9; /N/mm^2
9 	 11 = 0.3; 	 /m
10 \ 12 = 0.8; \ //m
11
12 //Maximum Normal Stress:
13 \text{ r_h} = 6/20;
14 \text{ w_h} = 40/20;
15 \text{ K} = 1.6;
16
17 area2 = 0.02*0.01; //\text{m}^2 note its not 0.001.
18 \text{ max\_stress} = (K*P)/area2;
19 max_stress = (max_stress/10^6); // converting to MPa
20
21 // Displacement:
22 \text{ area1} = 0.04*0.01;
23 \text{ del_ad_1} = (P*11)/(area1*E);
24 \text{ del_ad_2} = (P*12)/(area2*E);
25 \text{ del_ad} = (2*del_ad_1) + del_ad_2;
26 del_ad = del_ad*1000; //converting m to mm
27
28 // Display:
29
30
31 printf("\n\nThe maximum normal stress")
                                        = \%1.1 f MPa",
      max_stress);
32 printf('\nThe displacement of one end with respect
      to the other = \%1.2 \,\mathrm{f} mm', del_ad);
```

Scilab code Exa 4.15 AL15

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.15 : ")
4
5 // Given
6 weight = 15; //kN
7 l_ab = 5; //m
8 l_ac = 5.0075; //m
9 area = 30; //mm^2
10
11 //calculations:
12 strain_ab = (1_ac-1_ab)/1_ab;
13 \text{ max\_strain} = 0.0017;
14
15 stress_ab = (350*strain_ab)/max_strain;
16 F_ab = stress_ab*area; // F= stress*area
17 E_st = 350/max_strain; //Modulus ofelasticity
18
19 del1 = l_ab/(area*10^-6*E_st*10^3); //del = PL/AE
20 del2 = l_ac/(area*10^-6*E_st*10^3); //del = PL/AE
21
\frac{22}{\text{Fqn1}} = \text{T_ab} + \text{T_ac} = \text{weight}
23 / Eqn2 = del1*T_ab - del2*T_ac = (l_ac-l_ab)
24
25 // Solving using matrices:
26 A = [1 1; del1 - del2];
27 b = [weight; (l_ac-l_ab)];
28 T = A \setminus b;
29
30 \text{ T_ab} = \text{T(1)};
31 T_ac = T(2);
32
```

```
33 \text{ stress_in_ab} = (T_ab*10^3)/area;
34
35 if (stress_in_ab > 350)
       T_ab = (350*area)/1000;
36
37 end
38
39 \text{ T_ac} = 15 - \text{T_ab};
40 \text{ stress} = (T_ac*10^3)/area;
41 strain_ac = (stress*max_strain)/350;
42
43 elong_ac = strain_ac*l_ac; //m
44 elong_ab = (l_ac-l_ab)+elong_ac; /m
45
46
47
48 // Display:
49
50 printf('\n\nThe force experienced by wire AB = \%1.1
      f kN', T_ab);
51 printf('\nThe force experienced by wire AC = \%1.1 \,\mathrm{f}
      kN',T_ac);
                                                    = \%1.5 f
52 printf('\nThe elongation in wire AB
      m', elong_ab);
53 printf('\nThe elongation in wire AC
                                                   = \%1.5 f
      m', elong_ac);
54
55 //
      END
```

Scilab code Exa 4.16 AL16

```
1 clear all; clc;
```

```
3 disp("Scilab Code Ex 4.16 : ")
5 // Given:
6 yield = 250; //MPa
7 r = 4; /mm
8 width = 40; /mm
9 thick = 2; /mm
10
11 / a
12 r_h = r/(width - (2*r));
13 w_h = width/(width - (2*r));
14 K = 1.75;
15 area = (thick*(width - (2*r))*10^-6);
16 P_y = (yield*10^6*area)/K;
17 P_y = P_y/1000;
18
19 / / b)
20 P_p = (yield*10^6*area);
21 P_p = P_p/1000;
22
23 // Display:
24
25 printf("\n\nThe maximum load P that does not cause
      the steel to yield = \%1.2 \, f \, kN", P_y);
26 printf('\nThe maximum load that the bar can support
                          = \%1.2 f kN', P_p);
27
28 //
```

Scilab code Exa 4.17 AL17

```
1 clear all; clc;
3 disp("Scilab Code Ex 4.17 : ")
5 // Given:
6 r = 5/1000; /m
7 yield = 420; //MPa
8 E = 70; //GPa
9 P = 60; //kN
10 \ l_ac = 100/1000; \ //m
11 \ l_cb = 300/1000; \ //m
12 F_a = 45; //kN by elastic analysis
13 F_b = 15; //kN by elastic analysis
14
15 // Calculations:
16 \text{ area} = \%pi*(r^2)
17 sigma_ac = F_a/(area*1000);
18 sigma_ac1 = sigma_ac;
19 sigma_cb = F_b/(area*1000);
20 sigma_cb1 = sigma_cb;
21
22 if(sigma_ac>yield)
23
       F_a_y = yield*10^3*area;
24
       F_b = P - F_a_y;
25
       sigma_ac = yield;
26
27
       sigma_cb = F_b/(area*1000);
28 end
29
30 //Residual Stress:
31 defl_c = (F_b*l_cb)/(area*E*10^6);
32 strain_cb = defl_c/l_cb;
33 strain_ac = -defl_c/l_ac;
34
35 sigma_ac_r = -sigma_ac+ sigma_ac1;
36 sigma_cb_r = sigma_cb - sigma_cb1;
37
38
       sigma = sigma_cb_r;
```

```
39
40 //Permanent Displacement:
41 res_strain_cb = (sigma*10^6)/(E*10^9);
42 perm_defl_c = res_strain_cb*l_cb*1000;
43
44
45 // Display:
46
47 printf("\n\nThe residual stress in AC
                                 = \%1.1 \, \mathrm{f \ MPa}", sigma_ac_r)
48 printf("\nThe residual stress in CB
                                 = \%1.1 \, f \, MPa", sigma_cb_r)
49 printf("\nThe permanent displacement of the collar
      at C = \%1.3 f mm, perm_defl_c);
50
51 //
      END
```

70

Chapter 5

Torsion

```
Scilab code Exa 5.1 T1
```

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.1 : ")
5 // Given:
6 r = 50; /mm
7 J = (\%pi/2)*(r^4); //polar moment of inertia
8 \text{ tou_max} = 56; //MPa
9 T = (tou_max*J)/(r*10^6); //toumax = Tc/J
10
11 // Display:
12
13
14 printf("\nnThe resultant internal torque = \%1.0 f
      kNm', T);
15
16 //---
     END
```

Scilab code Exa 5.3 T3

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.3 : ")
5 // Given:
6 \text{ T1} = 4250; //\text{kNmm}
7 \text{ T2} = -3000; //\text{kNm}
8 	ext{ T3} = 	ext{T1+T2}; //kNm
9 r = 75; /mm
10
11 // Section Property:
12 J = (\%pi/2)*(r^4); //polar moment of inertia
13
14 //Shear Stress:
15 c_a = 75; /mm
16 tou_a = (T3*c_a*1000)/J; //tou = Tc/J
17
18 c_b = 15; /mm
19 tou_b = (T3*c_b*1000)/J; //tou = Tc/J
20
21 // Display:
22
23 printf('\n\nThe shear stress developed at A = \%1.2
      f MPa',tou_a);
24 printf('\nThe shear stress developed at B = \%1.3 \,\mathrm{f}
      MPa',tou_b);
25
26 //
```

Scilab code Exa 5.4 T4

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.4 : ")
5 // Given:
6 \, di = 80; /mm
7 \text{ ri} = 40/1000; //m
8 d0 = 100; /mm
9 ro = d0/2000; //m
10 F = 80; //N
11 11 = 0.2; //m
12 \ 12 = 0.3; \ //m
13
14 //Internal Torque:
15 T = F*(11+12);
16
17 // Section Property:
18 J = (\%pi/2)*((ro^4)-(ri^4));
19
20 //Shear Stress:
21 c_o = 0.05; //m
22 \text{ tou_o} = (T*c_o)/(J*10^6);
23
24 \text{ c_i} = 0.04; /m
25 \text{ tou_i} = (T*c_i)/(J*10^6);
26
27 // Display:
28
29
30 printf('\n'nThe shear stress in the inner wall
      %1.3 f MPa', tou_i);
31 printf('\nThe shear stress in the outer wall
                                                         = \%1
```

```
.3 f MPa',tou_o);
32
33
34 //
END
```

Scilab code Exa 5.5 T5

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 5.5 : ")
5 // Given:
6 P = 3750; /W
7 N = 175; //rpm
8 \text{ allow\_shear} = 100; //MPa
9
10 // Calculations:
11 ang_vel = (2*\%pi*N)/60; // rad/s
12 T = P/ang_vel; //P = T*angular velocity
13
14 c = ((2*T*1000)/(\%pi*allow_shear))^(1/3);
15 d = round(2*c);
16
17 // Display:
18
19
20 printf('\n\nThe required diameter of the shaft
      %1.0 \text{ f mm}', d);
21
```

Scilab code Exa 5.6 T6

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.6 : ")
4
5 // Given:
6 \, di = 30; /mm
7 ri= (di/2000); //m
8 	 d0 = 42; /mm
9 ro = (d0/2000); //m
10 P = 90; //kW
11 max_shear = 50; //MPa
12
13 // Calculations:
14 c = ro; //m
15 J = (\%pi/2)*((ro^4)-(ri^4)); //Polar moment of
     inertia of hollow shaft
16 T = (\max_{\text{shear}})/c; //tou \max_{\text{tou}} = Tc/J
17
18 / P = 2(\%pi) fT
19 f = (P)/(2*\%pi*T*10^3);
20
21 // Display:
22
23
24 printf('\n\nThe required frequency of rotation of
      the shaft = \%1.1 \, \text{f Hz}, f);
25
26 //
```

Scilab code Exa 5.7 T7

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.7 : ")
5 // Given:
6 E = 80*10^3; /MPa
7 d = 14/1000; /m
8 r = d/2; /m
9 R = 100; /mm
10 l_ac = 0.4; //m
11 \ l_cd = 0.3; \ //m
12 \ l_de = 0.5; /m
13 T_c = 280; //Nm
14 T_a = 150; /Nm
15 T_d = 40; /Nm
16 T_ac = T_a; /Nm
17 \text{ T_cd} = \text{T_ac} - \text{T_c};
18 T_de = T_cd - T_d;
19
20 //Angle of Twist:
21 J = (\%pi/2)*(r^4);
22
23 T = [T_ac T_cd T_de];
24 \ 1 = [l_ac \ l_cd \ l_de];
25
26 \text{ sumTwist} = 0;
27
28 \text{ for } i = 1:3
29
        sumTwist = sumTwist + ((T(i)*l(i))/(J*E*10^6));
```

Scilab code Exa 5.8 T8

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 5.8 : ")
4
5 //Given:
6 T = 45; //N
7 G = 80; //GPa
8 d = 20/1000; //m
9 r = d/2; //m
10 l_dc = 1.5; //m
11 l_ab = 2; //m
12 r1 = 75/1000; //m
13 r2 = 150/1000; //m
14
15 //Internal Torque:
```

```
16 F = T/r2;
17 T_d_x = F*r1;
18
19 //Angle of twist:
20 J = (\%pi/2)*(r^4);
21 phi_c = (T*l_dc)/(2*J*G*10^9);
22 phi_b = (phi_c*r1)/r2;
23
24 phi_ab = (T*l_ab)/(J*G*10^9);
25
26 phi_a = phi_b + phi_ab;
27
28 // Display:
29
30
31 printf('\n\n Che angle of twist of end A of shaft AB
        = + \%1.4 f \text{ rad', phi_a};
32
33 //
```

Scilab code Exa 5.9 T9

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 5.9 : ")
4
5 //Given:
6 d = 50; //mm
7 r = d/2;
8 c = d/2;
9 l_buried = 600; //mm
```

```
10 G = 40*10^3; //MPa
11 F = 100; //N
12 l_handle= 150; //mm
13 l_ab = 900; /mm
14
15 //Internal Torque:
16 \text{ T_ab} = F*2*1\_handle;
17 t = T_ab/l_buried;
18
19 //Maximum Shear Stress:
20 J = (\%pi/2)*(r^4);
21 tou_max = (T_ab*c)/(J);
22
23 // Angle of Twist:
24
25 \times 0 = 0;
26 \text{ x1=l\_buried};
27 X=integrate('x', 'x', x0, x1);
28
29 phi_a = ((T_ab*l_ab)+(50*X))/(J*G);
30
31 // Display:
32
33
34
35 printf('\n\nThe maximum shear stress in the post
                = \%1.2 \, f \, N/mm^2', tou_max);
36 printf('\nThe angle of twist at the top of the post
         = \%1.5 f \text{ rad ',phi_a)};
37
38 //
```

Scilab code Exa 5.11 T11

```
1 clear all; clc;
 3 disp("Scilab Code Ex 5.11 : ")
 5 // Given:
6 d = 20/1000; /m
7 r = d/2;
8 \ 1_bc = 0.2;
9 \ 1_{cd} = 1.5;
10 \ l_da = 0.3;
11 T_c = 800; /Nm
12 \text{ T_d} = -500; /Nm
13
14 // Equilibrium:
15 / \text{Eqn } 1 : 300 = T_a + T_b
16
17 // Compatibility:
18 //Eqn 2:
19 \text{ coeff}_Tb = -l_bc;
20 \text{ coeff_Ta} = 1_\text{cd} + 1_\text{da};
21
22 // Solving Equations simultaneously using matrices:
23 C = [1 1; coeff_Tb coeff_Ta];
24 b = [300 ; -750];
25 T = C \setminus b;
26
27 \text{ T_b} = \text{T(1)};
28 T_a = T(2);
29
30 // Display:
31
32
```

```
33 printf('\n\nThe reaction at A = %1.0 f Nm', T_a);
34 printf('\nThe reaction at B = %1.0 f Nm', T_b);
35
36 //
```

Scilab code Exa 5.12 T12

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 5.12 : ")
5 // Given:
   T = 250; /Nm
   G_st = 80; //GPa
   G_br = 36; //GPa
   ri = 10; /mm
9
10
    ro = 20; /mm
11
    l_ab = 1.2; /m
12
13
    //Equilibrium:
   // -Tst-Tbr+250Nm = 0
14
    coeff1_st = -1;
15
    coeff1_br = -1;
16
17
    b1 = -250;
18
    // Compatibility:
19
    //phi = TL/JG
20
21
22
    J1 = (\%pi/2)*(ro^4 - ri^4);
23
    J2 = (\%pi/2)*(ri^4);
24
    coeff2_st = 1/(J1*G_st*10^3);
```

```
coeff2_br = -1/(J2*G_br*10^3);
26 b2 = 0;
27
28 //Solving the above two equations simultaneously
      using matrices:
29 A = [coeff1_st coeff1_br;coeff2_st coeff2_br];
30 b = [b1 ; b2];
31 \quad T = A \setminus b;
32
33 T_st = T(1);
34 \text{ T_br} = \text{T(2)};
35
36 shear_br_max = (T_br*10^3*ri)/(J2); //tou = (Tr)/J
37 shear_st_min = (T_st*10^3*ri)/(J1); //tou = (Tr)/J
38 shear_st_max = (T_st*10^3*ro)/(J1); /tou = (Tr)/J
39
40 shear_strain = shear_br_max / G_br;
41 shear_strain = shear_strain;
42
43 // Display:
44
45
46 printf('\n\nThe Torque acting on Steel
                               = \%1.2 \, f \, Nm', T_st);
47 printf('\nThe Torque acting on Brass
                               = \%1.2 \, f \, Nm', T_br);
48 printf('\nThe maximum shear stress experienced by
              = \%1.2 \, \text{f MPa'}, shear_st_max);
49 printf('\nThe minimum shear stress experienced by
              = \%1.2 \, \text{f MPa'}, \text{shear\_st\_min};
50 printf('\nThe maximum shear stress experienced by
      Brass = \%1.2 \, \text{f MPa'}, shear_br_max);
51 printf('\nThe shear strain at the interface
                       = \%1.5 \, f *10^-3 \, rad', shear_strain);
52
53
54 //
```

Scilab code Exa 5.13 T13

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.13 : ")
5 // Given:
   1 = 1.2; /m
7
   a = 40; /mm
   tou_allow = 56; //MPa
    phi_allow = 0.02; //rad
9
    G = 26; //GPa
10
    alpha = (60*\%pi)/180; //degrees
11
12
    // Calculations:
13
14
    T_{shear1} = (tou_allow*a^3)/(20*1000); // allowable
       shear stress = (20T)/(a^3)
    T_{twist1} = (phi_allow*a^4*G*10^3)/(46*l*10^6); //
15
       angle of twist =(46TL)/(a^4*G)
16
17
    T1 = min(T_shear1, T_twist1);
18
19 // Circular Cross Section:
20 c_{=} (a*a*sin(alpha))/(%pi*2);
21 c = sqrt(c_);
22
23 J = (\%pi/2)*(c^4);
24 T_{shear2} = (tou_allow*J)/(c*1000);
25 \text{ T_twist2} = (phi_allow*J*G*10^3)/(1*10^6);
26
27
    T2 = min(T_shear2, T_twist2);
```

```
28
29
30 //Display:
31
32 printf('\n\nThe largest torque that can be applied
    at the end of the triangular shaft = %1.2 f Nm'
    ,T1);
33 printf('\nThe largest torque that can be applied at
        the end of the circular shaft = %1.2 f Nm',T2
    );
34
35
36 //
END
```

Scilab code Exa 5.15 T15

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 5.15 : ")
4
5 //Given:
6 l_cd = 0.5; //m
7 l_de = 1.5; //m
8 h =60/1000; //m
9 w = 40/1000; //m
10 t_h = 3/1000; //m
11 t_w = 5/1000; //m
12 T_c = 60; //Nm
13 T_d = 25; //Nm
14 G = 38*10^9; //N/m^2
15 T1 = T_c - T_d;
```

```
16
17 // Average Shear Stress:
18 area = (w-t_w)*(h-t_h);
19
20 shear_a = T1/(2*t_w*area*10^6);
21 \text{ shear_b} = T1/(2*t_h*area*10^6);
22
23 //Angle of Twist:
24
25 ds_t = 2*(((w-t_w)/t_h)+((h-t_h)/t_w));
26 T = [T_c T1];
27 \ 1 = [1_cd \ 1_de];
28 \text{ phi} = 0;
29
30 \text{ for } i = 1:2
       phi = phi + (T(i)*l(i)*ds_t)/(4*area^2*G);
31
32
33 end
34
35 // Display:
36
37 printf('\n\nThe average shear stress of the tube at
           = \%1.2 f MPa', shear_a);
38 printf('\nThe average shear stress of the tube at B
         = \%1.2 f MPa', shear_b);
39 printf('\nThe angle of twist of end C
                         = \%1.6 f \text{ rad}', phi);
40
41 //
```

Scilab code Exa 5.16 T16

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.16 : ")
5 // Given:
6 \text{ T} = 85; /Nm
7 G = 26; //GPa
8 t = 10; //\text{mm} thickness
9 a = 60; /mm side
10 1 = 1.5; //m
11
12 // Average Shear Stress:
13 area_m = (a-t)*(a-t);
14 avg_shear = (T*10^3)/(2*t*area_m); //tou_avg = T/(2)
      tarea_m);
15
16
17 // Angle of Twist:
18 \, ds_t = (4*(a-t))/t;
19 phi = (T*10^3*1*10^3*ds_t)/(4*(area_m^2)*G*10^3);
20
21 // Display:
22
23
24 printf('\n\nThe average shear stress in the tube at
           = \%1.1 \, f \, N/mm^2, avg_shear);
25 printf('\nThe angle of twist due to loading
                  = \%1.5 f \text{ rad ',phi)};
26
27 //
```

Scilab code Exa 5.17 T17

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 5.17 : ")
5 // Given:
6 \text{ tou\_allow} = 90; //MPa
7 phi_allow = 2*10^-3; //rad
8 = 200; /mm side
9 angle = (60*\%pi)/180;
10 h = a*sin(angle);
11 1 = 3; //m
12 t = 5/1000; //m
13 G = 75*10^9; //N/mm^2
14
15 // Calculations:
16 area_m = 0.5*a*h*10^-6; //m^2 a = (1/2)bh
17 \text{ ds_t} = (3*a)/(t*1000);
18
19 T_shear = (tou_allow*10^6*2*t*area_m); //tou_avg = T
      /(2 tarea_m);
20
21 T_{twist} = (phi_allow*4*area_m^2*G)/(1*ds_t);
22
23
    T = min(T_shear, T_twist);
24
25
26 // Display:
27
28
29 printf('\n'nThe maximum torque that the thin tube
      can be subjected to = \%1.1 \, \text{f Nm}', T);
30
31 //
```

Scilab code Exa 5.18 T18

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.18 : ")
5 // Given:
6 \text{ fillet_r} = 6; /\text{mm}
7 D = 40/1000; //m
8 d = 20/1000; /m
9 T = 30; /Nm
10 D_d = D/d;
11 r_d = fillet_r/d;
12 k = 1.3;
13
14 //Maximum Shear Stress:
15 c = D/2;
16 J = (\%pi/2)*(c^4)
17 max_shear = (k*T*c)/(J*10^6); // tou = K(Tc/J)
18
19 // Display:
20
21 printf('\n'nThe maximum shear stress in the shaft
      due to the applied torques = \%1.2 f MPa',
      max_shear);
22
23 //
```

Scilab code Exa 5.19 T19

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.19 : ")
5 // Given:
6 \text{ ro} = 50/1000; //m
7 \text{ ri} = 30/1000; //m
8 c = ro;
9 shear = 20*10^6; //N/m^2
10
11 //Maximum Elastic Torque:
12 J = (\%pi/2)*((ro^4)-(ri^4));
13 T_y = (shear*J)/c; // tou = Tc/J
14 \text{ T_y} = \text{T_y/1000}; //\text{in kN}
15
16 // Plastic Torque:
17 \times 0 = 0.03;
18 \times 1 = 0.05;
19 I = integrate('rho^2', 'rho', x0, x1)
20 \text{ Tp = } (2*\%pi*I*shear);
21 \text{ Tp= Tp/1000};
22
23 //Outer Shear Strain:
24 \text{ strain} = (0.286*10^-3*ro)/(ri);
25
26 // Display:
27
28
29 printf('\nnThe maximum torque that can be applied
      to the shaft without causing the material to
              = \%1.2 \text{ f kNm}', T_y);
30 printf('\nThe plastic torque that can be applied to
```

```
the shaft

= %1.2 f

kNm', Tp);

printf('\nThe minimum shear strain at the outer radius of the shaft

= %1.7 f rad',

strain);

END
```

Scilab code Exa 5.20 T20

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.19 : ")
5 // Given:
6 r = 20/1000; /m
7 1 = 1.5; /m
8 phi = 0.6; //rad
9 shear_y = 75*10^6; //N/m^2
10
11 // Calculations:
12 max_shear_strain = (phi*r)/(1); //phi = (strain*L)/r
13 \text{ strain_y} = 0.0016;
14
15 r_y = (r*strain_y)/(max_shear_strain); //by ratios
16
17 //T = (\%pi*shear_y)*(4c^3 - r_y^3)/6;
18 \ c = r;
```

19

Scilab code Exa 5.21 T21

```
1 clear all; clc;
3 disp("Scilab Code Ex 5.21 : ")
5 // Given:
6 \ 1 = 1.5; \ //m
7 G = 42*10^3; //GPa
8 \text{ co} = 50; //\text{mm}
9 \text{ ci} = 25; //\text{mm}
10 shear_y = 84; //N/mm^2
11 strain_y = 0.002; //rad
12
13 // Plastic Torque:
T_p = ((2*\%pi)*(co^3 - ci^3)*shear_y)/3;
15 phi_p = (strain_y*l*10^3)/ci;
16
17 J = (\%pi/2)*(co^4 - ci^4);
18 shear_r = (T_p*co)/J;
```

```
19 shear_i = (shear_r*ci)/(co);// shear = Tc/J
20
21 G = shear_y/strain_y;
22
23 phi_dash = (T_p*l*10^3)/(J*G); //phi = TpL/JG;
24
25 phi = phi_p - phi_dash;
26 T_p = T_p/10^6;
27
28 // Display:
29
30
31 printf('\n\nThe plastic torque Tp
                                         = \%1.2 \text{ f x } 10^6
      Nmm', T_p);
32 printf('\nThe permanent twist of the tube if Tp is
      removed = \%1.5 \, \text{f} \, \text{rad}', phi);
33
34
35 //
```

Chapter 6

Bending

Scilab code Exa 6.5 B5

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.5 : ")
5 // Shear and Moment Diagrams:
6 p = [-1/9 -2 30]
7 x = roots(p)
8 y = (x(2));
10
      M = (30*y) - (y^2) - (y^3)/27;
11
12
13
14
  //Display:
15
16
17 printf("\nnThe magnitude of the maximum moment is =
       \%1.0 \text{ f kNm'}, \text{ M});
18 printf('\nRefer to the shear and moment diagrams in
      the book.');
19
```

Scilab code Exa 6.11 B11

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.11 : ")
5 // Given:
6 \ 1 = 4.5; \ //m
7 R1 = 1.5; //kN
8 R2 = 3; //kN
9 uvl = 2; //kN/m
10
11 //Shear diagram:
12 x = sqrt((2*R1*1)/(uv1));
13 M = (R1*x) - (0.5*uvl*x^3)/(3*1);
14
15 // Display:
16
17
18
    printf('\n\nV becomes zero at x = \%1.1 \,\text{fm}',x);
    printf('\nThe magnitude of the maximum moment = %1
19
       .1 f kNm', M);
20
21 //
```

Scilab code Exa 6.13 B13

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.13 : ")
5 // Given:
6 \ l_ab = 4; \ //m
7 \ 1_cd = 4; \ //m
8 \ l_bc = 6; \ //m
9 Rb = 8; //kN
10 uvl = 2; //kN/m
11
12 //Moment diagram:
13 p = [-1/18 0 -3.6 17.6]
14 x = roots(p)
15 y = x(3);
16
17 // Display:
18
    printf('\n\nV becomes zero at x = \%1.2 \text{ f m',y};
19
20
21
22 //
```

Scilab code Exa 6.14 B14

```
1 clear all; clc;
```

```
3 disp("Scilab Code Ex 6.14 : ")
5 // Given:
6 b = 60; /mm
7 h = 120; /mm
8 sigma_max = 20; //N/mm^2
9 c = b;
10
11 // Part (a):
12 I = (1/12)*b*h^3;
13 M1 = (sigma_max*I)/(c); //sigma_max = Mc/I Flexure
      Formula
14 M1 = M1 * 10 ^{-6}; // in kN/m
15
16 // Part (b):
17 y0=60;
18 y1 = -60
19
20 M2 = integrate('-(20*y^2)', 'y', y0, y1);
21 \quad M2 = M2*10^-6;
22
23 F = (0.5*sigma_max*b*b);
24 c = 2*(60 - (0.5*b)); //distance between centroids of
       both the volumes.
25 M = F*c/1000;
26
27 // Display:
28
    printf("\n\nThe internal moment M calculated using
29
       : ");
    printf('\na) The flexure formula = \%1.2 \text{ f kNm'}, M1);
30
31
    printf('\nb)The resultant of the stress
       distribution using the basic principles = \%1.2 f
       kNm', M2);
32
33
34 //
```

Scilab code Exa 6.15 B15

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.15 : ")
5 // Given:
6 udl = 5; //kN/m
7 \ 11 = 3; //m
8 \ 12 = 6; \ //m
9 t = 20/1000; /mm
10 yb = 0.15; //m
11
12 // Section Property:
13 I_bar1 = (1/12)*(0.25)*(0.02^3);
14 Ad2 = (0.25)*(0.02)*(yb+(t/2))^2;
15 I_bar2 = (1/12)*(0.02)*(0.3^3);
16 I = 2*(I_bar1 + Ad2) + I_bar2;
17
18 //Bending stress:
19 c = 0.15 + t;
20 M= 22.5; //kNm
21
22 \text{ sigma_max} = (M*c)/(I*1000);
23
24 \text{ sigma_B} = (M*yb)/(I*1000);
25
26 // Display:
27
28
   printf('\n\nThe absolute maximum bending stress is
```

```
= %1.1 f MPa', sigma_max);
29
30
31 //
```

Scilab code Exa 6.16 B16

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 6.16 : ")
5 // Given:
6 \text{ t1} = 15/1000; //\text{m}
7 	 t2 = 20/1000; //m
8 1 = 250/1000; //m
9 b = 200/1000; /m
10 P = 2.4; //kN
11 l_a = 2; //m
12 \ l_b = 1; /m
13
14 //Internal Moment:
15 \text{ y1} = b/2;
16 	 y2 = t2/2;
17 A = (2*t1*b)+(t2*1);
18 y_bar = ((2*y1*t1*b)+(y2*t2*1))/A;
19
20 M = (P*l_a)+(1*y_bar);
21
22 // Section Property:
23 I1 = (1/12)*(1*t2^3) + (1*t2*(y_bar - y2)^2);
24 I2 = (1/12)*(t1*b^3) + (t1*b*(y1 - y_bar)^2);
```

Scilab code Exa 6.17 B17

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 6.17 : ")
4
5 //Given:
6 b = 60/1000; //m
7 h = 30/1000; //m
8 M = 40; //Nm
9 c1= h/2;
10 rib_t = 5/1000; //m
11 rib_w = 10/1000; //m
12
13 //Without Ribs:
14 I1 = (1/12)*(b*h^3);
15 sigma_max1 = (M*c1)/(I1*10^6);
```

```
17 //With Ribs:
18 y1 = c1;
19 y2 = h + (rib_t/2);
20 \text{ A1} = h*b;
21 A2 = rib_t*rib_w;
22 \text{ y_bar} = ((y1*A1)+2*(y2*A2))/(A1 + 2*A2);
23
24 c2 = h+rib_t - y_bar;
25 	 I2 = I1 + (b*h*(y_bar - y1)^2);
26 	ext{ I3} = (1/12)*rib_w*rib_t^3 + (rib_w*rib_t*(y2 - y_bar))
      )^2);
27 I = I2 + 2*I3;
28
29 sigma_max2 = (M*c2)/(I*10^6);
30
31 if(sigma_max2>sigma_max1)
32
33
     printf("\n\nThe maximum normal stress in the
        member without ribs = \%1.2 \, \text{f MPa}', sigma_max1);
    printf("\nThe maximum normal stress in the member
34
       with ribs = %1.2f MPa',sigma_max2);
    printf("\nThe ribs should be omitted.");
35
36
37
    end
38
39
40 //
      END
```

Scilab code Exa 6.18 B18

16

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.18 : ")
5 // Given:
6 M = 12; //kNm
7 l_bc = 0.2; /m
8 l_be = 0.4; /m
10 //Internal Moment Components:
11 My = (-4/5)*M;
12 \text{ Mz} = (3/5)*\text{M};
13
14 Iy = (1/12)*(l_be*l_bc^3);
15 Iz = (1/12)*(1_bc*1_be^3);
16
17 //Bending Stress:
18 sigma_B = (-Mz*1000*(1_be/2))/Iz + (My*1000*(-1_bc)
      /2))/Iy;
19 sigma_B = sigma_B/10^6;
20 sigma_C = (-Mz*1000*(1_be/2))/Iz + (My*1000*(1_bc/2))
      )/Iy;
21 sigma_C = sigma_C/10^6;
22 \text{ sigma_D} = (-Mz*1000*(-l_be/2))/Iz + (My*1000*(l_bc))
      /2))/Iy;
23 \text{ sigma_D} = \text{sigma_D}/10^6;
24 \text{ sigma}_E = (-Mz*1000*(-1_be/2))/Iz + (My*1000*(-1_bc)
      /2))/Iy;
25 \text{ sigma_E} = \text{sigma_E}/10^6;
26
27 // Orientation of Nuetral Axis:
28 z = (0.45)/(sigma_E + sigma_B);
29
30 / theta = -atan(4/3);
31 \tan A = (Iz/Iy)*(-4/3);
32 alpha = atan(tanA);
33 alpha = alpha*(180/\%pi);
34
```

```
35
36
  //Display:
37
38
39
    printf("\n nThe normal stress at B = \%1.2 f MPa',
       sigma_B);
    printf("\nThe normal stress at C = %1.2f MPa',
40
       sigma_C);
    printf("\nThe normal stress at D = %1.2 f MPa',
41
       sigma_D);
    printf("\nThe normal stress at E = %1.2f MPa',
42
       sigma_E);
43
    printf("\nThe orientation of the nuetral axis = \%1
       .1f degrees', alpha);
44
45
      END
```

Scilab code Exa 6.19 B19

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 6.19 : ")
4
5 //Given:
6 theta = 30*(%pi/180);
7 M = 15; //kNm
8 My = M*cos(theta);
9 Mz = M*sin(theta);
10 b = 0.1; //m
11 t1 = 0.04; //m
12 t2 = 0.03; //m
13
```

```
14
15 // Section Properties:
16 \text{ y1} = b/2;
17 	 y2 = b + t2/2;
18 \text{ A1} = (b*t1);
19 A2 = (b*2*t2);
20 z_{bar} = (y1*A1 + y2*A2)/(A1+A2);
21
22 Iz = (1/12)*(b*t1^3) + (1/12)*(t2*(2*b)^3);
23 Iy = (1/12)*(t1*b^3) + b*t1*(z_bar - y1)^2 + (1/12)
      *(2*b*t2^3) + 2*b*t2*(y2 - z_bar)^2;
24
25 //Maximum Bending Stress:
26 \ l_b = b+t2 - z_bar;
27 \text{ sigma_B} = (-Mz*1000*(-b))/Iz + (My*1000*(l_b))/Iy;
28 \text{ sigma}_B = \text{sigma}_B/10^6;
29 sigma_C = (-Mz*1000*(t1/2))/Iz + (My*1000*(-z_bar))/
      Iy;
30 sigma_C = sigma_C/10^6;
31
32 sigma = max(abs(sigma_B),abs(sigma_C));
33
34 //Orientation of the nuetral axis:
35 \text{ theta1} = 60*(\%pi/180);
36 alpha = atan((Iz/Iy)*tan(theta1));
37 \text{ alpha} = \text{alpha}*(180/\%pi);
38
39 // Display:
40
41
42
    printf("\n\nThe maximum normal stress in the beam =
        %1.2 f MPa', sigma);
43
    printf("\n The orientation of the nuetral axis = %1
       .1f degrees',alpha);
44
45
    //
```

Scilab code Exa 6.20 B20

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.20 : ")
5 // Given:
6 \text{ M} = 20; //kN
7 Iy = 0.96*10^{-3}; //m^4
8 Iz = 7.54*10^{-3}; //m^4
9 theta = 57.1*(\%pi/180);
10
11
12 //Internal moment Components:
13 My = M*sin(theta);
14 Mz = M*cos(theta);
15
16 //Bending Stress:
17 y_p = -0.2; //y Coordinate of P
18 z_p = 0.35; //z Coordinate of P
19
20 \text{ theta1} = (\%pi/2) - (theta);
21 yp = -z_p*sin(theta1) + y_p*cos(theta1);
22 zp = z_p*cos(theta1) + y_p*sin(theta1);
23
24 / \text{Eq } 6-17
25
26 \quad sigma_p = ((Mz*-yp)/Iz) + ((My*zp)/Iy) ;
27 \text{ sigma_p} = \text{sigma_p/10^3};
28
29 //Orientation of the Nuetral Axis:
30 alpha = atan((Iz/Iy)*tan(theta));
```

```
alpha = alpha*(180/%pi);

// Display:

// Display:

// Display:

// The maximum normal stress at point P =
// 1.2 f MPa', sigma_p);

// The orientation of the nuetral axis = %1
// END

//

END
//
```

Scilab code Exa 6.21 B21

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 6.21 : ")
5 // Given:
6 \text{ M} = 2; //\text{kNm}
7 Ew = 12; //GPa
8 \text{ Est} = 200; //GPa
9 bw = 150/1000; //m
10 t = 20/1000; //m
11 rib = 9/1000; //m
12
13 // Section Properties:
14 n = (Ew/Est);
15 bst = n*bw;
16
17 y1 = t/2;
```

```
18 \quad A1 = t*bw;
19 y2 = bw/2 + t;
20 \text{ A2} = \text{rib*bw};
21
22 \text{ y_bar} = (y1*A1 + y2*A2)/(A1+A2);
23
24 I1 = (1/12)*(bw)*(t^3) + A1*(y_bar - y1)^2;
25 	ext{ I2} = (1/12)*(rib)*(bw^3) + A2*(y2-y_bar)^2;
26 \text{ Ina} = I1+I2;
27
28 //Normal Stress:
29 sigma_B = (M*(bw+t-y_bar))/(Ina*1000);
30 \text{ sigma\_C} = (M*(y_bar))/(Ina*1000);
31
32 //Normal Stress in the wood:
33 sigmaB = n*sigma_B;
34
35 // Display:
36
37
38
    printf("\n nThe normal stress at point B = \%1.1 f
       MPa', sigma_B);
    printf("\nThe normal stress at point C = %1.2f MPa
39
       ',sigma_C);
    printf("\nThe normal stress at point B in the wood
40
       = \%1.2 f MPa', sigmaB);
41
42
    //----
       END
```

Scilab code Exa 6.22 B22

```
1 clear all; clc;
```

```
3 disp("Scilab Code Ex 6.22 : ")
5 // Given:
6 sigma_allow_st = 168; //MPa
7 sigma_allow_w = 21; //MPa
8 Est = 200; //GPa
9 Ew = 12; //\text{GPa}
10 Iz = 7.93*10^6; //mm^4
11 A1 = 5493.75; //mm^2
12 t = 5; //mm
13 h = 100; /mm
14
15 // Without Board:
16 c = h+t;
17 M1 = (sigma_allow_st*Iz)/(c*10^6);
18
19 //With Board:
20 \text{ bw} = 300; //\text{mm}
21 n = (Ew/Est);
22 \text{ bst} = n*bw;
23
24 //For the transformed section:
25 \text{ y1} = 0;
26 	 y2 = 55;
27 \quad A2 = bst*h;
28
29 y_bar = (y_1*A_1 + y_2*A_2)/(A_1+A_2);
30
31 I1 = Iz + A1*y_bar^2;
32 	ext{ I2} = (1/12)*(bst*h^3) + (A2*(y2-y_bar)^2);
33 I = I1 + I2;
34
35 c = c+y_bar;
36 \text{ M2} = (\text{sigma\_allow\_st*I})/(\text{c*10^6});
37
38 \text{ cw} = \text{c} - \text{y\_bar};
39 Mw = (sigma_allow_w*I)/(n*cw*10^6);
```

Scilab code Exa 6.23 B23

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 6.23 : ")
5 // Given:
6 \text{ M} = 60; //\text{kNm}
7 Est = 200; //GPa
8 \text{ Econc} = 25; //GPa
9 d = 25; //mm
10 r = d/2;
11 w = 300; /mm
12 ht = 400; /mm
13
14 // Section Properties:
15 n = Est/Econc;
16 Ast = 2*\%pi*r^2;
17 A = n*Ast;
```

```
18
19 p = [1 52.37 -20949.33]
20 h = roots(p)
21 h = h(2);
22
23 I = (1/12)*(w*h^3) + w*h*(h/2)^2 + A*(ht - h)^2;
24
25 //Normal Stress:
26 \text{ sigma\_conc\_max} = (M*1000*h*1000)/(I);
27 \text{ sigma\_conc} = (M*1000*(ht-h)*1000)/(I);
28 sigma_st = n*sigma_conc;
29
30 // Display:
31
32
    printf("\n\nThe normal stress in each steel
33
       reinforcing rod = %1.2 f MPa', sigma_st);
34
    printf("\nThe maximum normal stress in the concrete
        = %1.2f MPa', sigma_conc_max);
35
```

Scilab code Exa 6.24 B24

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 6.24 : ")
4
5 //Given:
6 sigma = 140; //Mpa
7 ri = 90; //mm
8 ro = 110; //mm
```

```
9 \ a = 20; /mm
10
11 // Section Properties:
12
13 y = integrate('a*(1/r)','r',ri,ro)
14 R = (a*a)/y;
15
16 \text{ r_avg} = (ri+ro)/2;
17 M1 = (-sigma*a*a*ro*(r_avg - R))/(R-ro);
18 \quad M1 = M1*10^-6;
19
20 M2 = (sigma*a*a*ri*(r_avg - R))/(R-ri);
21 \quad M2 = M2*10^-6;
22
23 M = \min(M1, M2);
24
25 \text{ sigma1} = (M*(R - ro))/(a*a*ro*(r_avg - R));
26
27 //For a straight Bar:
28 I = (1/12)*(a*a^3);
29 c = 10; /mm
30 M_strt= (sigma*I)/c;
31 M_strt = M_strt*10^-6;
32
33 // Display:
34
35
    printf("\n\nThe maximum bending moment that can be
       applied to the bar = \%1.3 \text{ f kNm}', \text{M};
    printf("\nThe maximum bending moment that can be
36
       applied to a straight bar = %1.3f kNm', M_strt);
37
```

110

Scilab code Exa 6.25 B25

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.25 : ")
5 // Given:
6 \text{ ri} = 200/1000; //\text{m}
7 \text{ r1} = 250/1000; //\text{m}
8 \text{ ro} = 280/1000; //\text{m}
9 M = 4; //kNm
10 a = 0.05; //m
11 h = 0.03; //m
12
13 // Section Properties:
14 \quad A1 = a^2 ;
15 A2 = (0.5*a*h);
16 A = A1 + A2;
17 r_avg1 = (r1+ri)/2;
18 r_{avg2} = r1+(h/3);
19 r_bar = ((r_avg1*A1) + (r_avg2*A2))/A;
20
21 int_dA_r1 = a*log(r1/ri);
21 int_dA_r2 = (a*ro*log(ro/r1))/(ro-r1) - a;
23 R = (A)/(int_dA_r1 + int_dA_r2);
24 \text{ k= r_bar - R};
25
26 //Normal Stress:
27 \text{ sigma_B} = (-M*(R-ri))/(A*ri*k*1000);
28 sigma_A = (-M*(R-ro))/(A*ro*k*1000);
29
30 sigma = max(abs(sigma_B),abs(sigma_A))
31
32
```

Scilab code Exa 6.26 B26

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.26 : ")
5 // Given:
6 M = 5; /kNm
7 sigma_y = 500; //MPa
8 r = 16; /mm
9 h = 80; /mm
10 \text{ w} = 120; /\text{mm}
11 r_h = r/h;
12 \text{ w_h} = \text{w/h};
13 k = 1.45;
14 c = h/(2000);
15 t = 20/1000; //m
16
17 // Calculations:
18 I = (1/12)*(t)*(h/1000)^3
19 sigma_max = (k*M*c)/(I*1000);
20
21 // Display:
22
    printf("\n\nThe maximum normal stress in the steel
23
```

Scilab code Exa 6.27 B27

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.27 : ")
5 // Given:
6 \text{ sigma_y} = 250; //MPa
7 t = 12.5; /mm
8 \text{ w} = 200; /\text{mm}
9 h = 225; /mm
10
11 //Maximum Elastic Moment:
12 \text{ yy} = (h+t)/2;
13 I1 = (1/12)*(w*t^3) + (w*t*yy^2);
14 I = (1/12)*(t*h^3) + 2*(I1);
15 c = 125; /mm
16
17 My = (sigma_y*I)/(c); //Flexure Formula
18
19 // Plastic Moment:
20 C1= sigma_y*t*(h/2);
21 C2= sigma_y*t*(w);
22 \text{ Mp} = (2*56.25*C1) + (2*yy*C2);
23
24 //Shape Factor:
25 \text{ k} = \text{Mp/My};
26
```

Scilab code Exa 6.28 B28

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.28 : ")
4
 5 // Given:
6 \text{ sigma_y} = 250; //MPa
 7 t = 15/1000; /m
8 \text{ w} = 100/1000; //\text{m}
9 h = 120/1000; /m
10 c = 10/1000; /m
11
12 // Calculations:
13 d = ((sigma_y*t*w)+(sigma_y*t*h))/(sigma_y*t*2);
14
15 T = sigma_y*t*d*10^3;
16 \text{ C1} = \text{sigma_y*t*c*10^3};
17 C2 = sigma_y*t*w*10^3;
18
19 Mp = (T*d/2)+(C1*c/2)+(C2*(c+t/2));
20
21 // Display:
22
```

Scilab code Exa 6.29 B29

```
1 clear all; clc;
3 disp("Scilab Code Ex 6.29 : ")
5 // Given:
6 \text{ ep1} = 0.01;
7 \text{ ep2} = 0.05;
8 \text{ sig1} = 1050; //N/mm^2
9 \text{ sig2} = 1330; //N/mm^2
10 sig3 = 280; //N/mm^2
11 y = 0.3; //cm
12 h = 3; //cm
13 w = 2; //cm
14
15 // Calculations:
16 \text{ yy} = (h/2) - y
17 T1 = (1/2)*(sig3*yy*w);
18 y1 = y + (2/3)*(yy);
19 T2 = yy*sig1*w;
20 y2 = y+(0.5*yy);
21 T3 = (0.5*y*sig1*w);
22 y3 = (2/3)*(y);
23
24 M = 2*(T1*y1 + T2*y2 + T3*y3);
```

Scilab code Exa 6.30 B30

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 6.30 : ")
5 // Given:
6 \text{ sigma_y = 250; } / \text{MPa}
7 t = 12.5; /mm
8 \text{ w} = 200; /\text{mm}
9 h = 225; /mm
10 c = (h/2) + t;
11 I = 82.44*10^6; //mm^4
12 Mp = 188; //kN
13
14 // Calculations:
15 sigma_allow = (Mp*10^6*c)/(I);
16 y = (sigma_y*c)/(sigma_allow);
17
18 // Display:
19
    printf("\n point of zero normal stress = \%1.2 \, f
20
```


Chapter 7

Transverse Shear

Scilab code Exa 7.1 TS1

```
1 clear all; clc;
3 disp("Scilab Code Ex 7.1 : ")
5 // Given:
6 V = 3; //kN
7 h = 125; /mm
8 b = 100; /mm
9 \text{ y_top = 50; } /\text{mm}
10 x_right = 37.5; //mm
11
12 // Part (a):
13
14 // Section Properties:
15 I = (b*h^3)/12;
16 \text{ y_dash_1} = ((h-y_top)-(h/2));
17 A = y_top*b;
18 Q = (y_dash_1 + (y_top/2))*A;
19
20 //Shear Stress:
21 tou_p = (V*Q)/(I*b); //tou = VQ/It
```

```
22 \text{ tou_p} = \text{tou_p*10^3};
23
24 // Part (b):
25
26 // Section Properties:
27 \text{ y_dash_2} = (y_dash_1+(y_top));
28 \quad a_dash = b*y_dash_2;
29 Q_{dash} = (y_{dash_2}*a_{dash})/2;
30
31 //Shear Stress:
32 tou_max = (V*Q_dash)/(I*b);
33 \text{ tou_max} = \text{tou_max}*10^3;
34
35 // Display:
36
37 printf("\n\nThe shear stress in the beam at point P
          = \%1.3 \, f \, MPa', tou_p);
  printf('\nThe maximum shear stress in the beam
             = \%1.3 f MPa', tou_max);
39
40 //-
      END
```

Scilab code Exa 7.2 TS2

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 7.2 : ")
4
5 //Given:
6 V = 80; //kN
7 thick_1 = 20/1000; //m
8 thick_2 = 15/1000; //m
```

```
9 1 = 300/1000; /m
10 y = 100/1000; //m
11 h = 2*y;
12 \text{ y_dash} = \text{y +thick}_1/2;
13
14 // Part (a):
15
16 \text{ I1} = (\text{thick}_2*(\text{h}^3))/12;
17 I2 = (1*(thick_1^3))/12;
18 I3 = (1*thick_1*(y_dash)^2);
19 I = I1+2*(I2+I3); //Moment of inertia
20
21 Q_b = y_dsh*l*thick_1;
22 //At B'
23 tou_b_dash = (V*Q_b)/(I*I*1000);
24 //At B
25 \text{ tou_b} = (V*Q_b)/(I*thick_2*1000);
26
27 //At C:
28 Q_c = (y_dash*l*thick_1)+(y*thick_2*y/2);
29 tou_c = (V*Q_c)/(I*thick_2*1000);
30
31 // Part (b)
32
33
34 \text{ y0} = -0.1;
35 \text{ y1} = 0.1;
36
37 function Q = f(y), Q = ((0.735 - (7.5*y*y))*10^-3),
38 endfunction
39 Int = intg(y0,y1,f)
40
41 V_w = (V*Int*thick_2)/(I*thick_2);
42
43 // Display:
44
45 printf("\nnThe shear stress at B dash
       \%1.2 \text{ f MPa'}, \text{tou\_b\_dash});
```

Scilab code Exa 7.3 TS3

```
1 clear all; clc;
3 disp("Scilab Code Ex 7.3 : ")
5 // Given:
6 udl = 6.5; //kN
7 l_bc = 8; /m
8 1 = 150/1000; //m
9 t = 30/1000; //m
10
11 //Internal Shear:
12 w = udl*l_bc/2;
13 \ l_wc = l_bc/4;
14 \ l_bw = l_bc - l_wc;
15 \ V = (w*l_bw)/l_bc;
16 R_b = w - V;
17
18 // Section Properties:
19 y1 = 1/2;
20 A = (1*t);
```

```
21 	 y2 = 1 + (t/2);
22 \text{ y_dash} = (y1*A + y2*A)/(2*A);
23 I1 = (t*1^3)/12;
24 	 I2 = (A*(y_dash-y1)^2);
25 	 I3 = (1*t^3)/12;
26 	 I4 = (A*(y2 - y_dash)^2);
27 I = I1+I2+I3+I4;
28
29 Q = ((1+t)-(t/2)-y_{dash})*A;
30
31 //Shear Stress:
32 \text{ tou_max} = (V*Q)/(I*t*1000);
33
34 // Display:
35
36 printf("\n\nThe maximum shear stress in the glue
      necessary to hold the boards together = \%1.2 \,\mathrm{f}
      MPa', tou_max);
37
38
39 //-
      END
```

Scilab code Exa 7.4 TS4

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 7.4 : ")
4
5 //Given:
6
7 V = 850; //kN
8 l1 = 250/1000; //m
```

```
9 12 = 300/1000; /m
10 \ 13 = 125/1000; //m
11 t = 10/1000; //m
12 h = 200/1000; /m
13
14 \text{ A1} = 11*t;
15 \quad A2 = 12*t;
16 \text{ A3} = 13*t;
17
18 \text{ y1} = 12 + (t/2);
19 y2 = 12/2;
20 y3 = h+(t/2);
21
22 \text{ y_dash} = (2*y2*A2 + A1*y1 + A3*y3)/(2*A2 + A1 + A3);
23
24 I1 = ((11*t^3)/12) + (A1 * (12+(t/2)-y_dash)^2);
25 I2 = ((t*12^3)/12) + (A2 * (y_dash - (12/2))^2);
26 I3 = ((13*t^3)/12) + (A1 * (h+(t/2)-y_dash)^2);
27 I = 2*I2 + I1 + I3;
28
29 Q_b = (12+(t/2) - y_{dash})*A1; //Q = y'A'
30 Q_c = (h+(t/2) - y_{dash})*A3; //Q = y'A'
31
32 //Shear Flow:
33
34 \ q_b = (V*Q_b)/I;
35 q_c = (V*Q_c)/I;
36
37 q_b = q_b/(2*1000);
38 q_c = q_c/(2*1000);
39
40 // Display:
41
42 printf("\n\nThe shear flow at B, resisted by the
                = \%1.2 \text{ f MN/m'}, q_b);
43 \text{ printf} ("\nThe shear flow at C, resisted by the glue
      is = %1.4f MN/m', q_c);
44
```

```
45
46
47
48 //
```

Scilab code Exa 7.5 TS5

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 7.5 : ")
5 // Given:
6 \ V = 80; \ //N
7 t = 1.5; //cm
8 \ a = 7.5; //cm
9 \ b = a-2*t; //cm
10 F_nail= 30; //N
11
12 // Section Properties:
13 I = (a*a^3 - b*b^3)/12;
14 Q_b = (((a-2*t)/2)+(t/2))*a*t; /Q = y'A'
15 Q_c = (((a-2*t)/2)+(t/2))*(a-2*t)*t; /Q = y'A'
16
17 //Shear Flow:
18 \ q_b = (V*Q_b)/I;
19 q_c = (V*Q_c)/I;
20
21 	 s_b = F_nail/(q_b/2);
22 \text{ s_c} = F_nail/(q_c/2);
23
24 // Display :
```

Scilab code Exa 7.6 TS6

```
1 clear all; clc;
3 disp("Scilab Code Ex 7.6 : ")
5 // Given:
6 	ext{ F} = 40; /N
 7 	 s = 9; //cm
8 h = 5; //cm
9 t = 0.5; /cm
10 w = 3; //cm
11 \text{ w}_3 = \text{w}/3; //\text{cm}
12
13 // Calculations:
14
15 I = (w*h^3)/12 - (2*w_3*(h - 2*t)^3)/12;
16
17 // Case 1:
18
```

```
19 Q1 = ((h-t)/2)*(w*t);
20 V1 = ((F/s)*I)/Q1; //q = VQ/I
21
22 / Case2:
23
24 \ Q2 = ((h-t)/2)*(w_3*t);
25 V2 = ((F/s)*I)/Q2; //q = VQ/I
26
27 // Display:
28
29
30 printf("\nnThe largest vertical shear that can be
      supported in Case 1 = \%1.1 \text{ f N', V1};
31 \quad printf("\nThe largest vertical shear that can be
      supported in Case 2 = %1.1f N', V2);
32
33 //
```

Scilab code Exa 7.7 TS7

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 7.7 : ")
4
5 //Given:
6 V = 10; //kN
7 b1 = 6; //cm
8 h1 = 8; //cm
9 t = 1; //cm
10 b2 = b1-2*t;
11 h2 = h1-2*t; //cm
```

```
12 b3 = 4; //cm
13
14 // Calculations:
15 I = ((b1*h1^3)/12) - ((b2*h2^3)/12);
16
17 \quad q_b = 0;
18
19 Q_c = ((b1/2)+(t/2))*(b3+(t))*t;
20 q_c = (V*Q_c*100)/(I); //Q = VQ/I
21
22 Q_d = (2*h1/4*t*b3) + ((b1/2)+(t/2))*b3*t;
23 q_d = (V*Q_d*100)/(I); //Q = VQ/I
24
25 // Display:
26
27
28 printf("\n variation of shear flow at B = \%1.1 \, f \, N/
     mm', q_b);
  printf("\nVariation of shear flow at C = %1.1f N/mm
29
      ',q_c);
30 printf('\nVariation of shear flow at D = \%1.1 \text{ f N/mm}
      ',q_d);
31
32 //
```

Chapter 8

Combined Loadings

Scilab code Exa 8.1 CL1

```
1 clear all; clc;
3 disp("Scilab Code Ex 8.1 : ")
5 // Given:
6 \text{ di} = 1.2*1000; //m
7 \text{ ri} = di/2;
8 t = 12; /mm
9 \text{ sigma} = 140; /MPa
10
11 // Cylindrical Pressure Vessel:
12
13 p1 = (t*sigma)/ri; //sigma = pr/t
14
15 // Spherical Vessel:
16
17 p2 = (2*t*sigma)/(ri); //sigma = pr/2t
18
19 // Display:
20
21 printf("\n\nThe maximum internal pressure the
```

Scilab code Exa 8.2 CL2

```
1 clear all; clc;
3 disp("Scilab Code Ex 8.2 : ")
4
5 // Given:
6 P = 15000; //N
7 \ a = 40; /mm
8 b = 100; /mm
9
10 //Stress Components:
11
12 // Normal Force:
13 A = a*b;
14 sigma = P/A;
15
16 // Bending Moment:
17 I = (a*b^3)/12; //I = (1/12)*bh^3
18 M = P*(b/2);(b/2);
19 c = b/2;
20 sigma_max = (M*c)/I;
21
22 // Superposition:
```

Scilab code Exa 8.3 CL3

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 8.3 : ")
4
5 //Given:
6 ri = 600/1000; //m
7 t = 12/1000; //m
8 ro = ri+t;
9 sp_wt_water = 10; //kN/m^3
10 sp_wt_steel = 78; //kN/m^3
11 l_a = 1; //m depth of point A from the top
12
13 //Internal Loadings:
14 v = (%pi*l_a)*(ro^2 - ri^2);
15 W_st = sp_wt_steel*v;
16
```

```
17 p = sp_wt_water*l_a; //Pascal's Law
18
19 // Stress Components:
20
21 // Circumferential Stress:
22 \text{ sigma1} = (p*ri)/t;
23
24 //Longitudinal Stress:
25 A_st = (%pi)*(ro^2 - ri^2);
26 sigma2 = W_st/A_st;
27
28 // Display:
29
30
31 printf("\n The state of stress at A (
      Circumferential) = %1.1 f kPa', sigmal);
32 printf('\nThe state of stress at A (Longitudinal)
            = \%1.1 \, \text{f kPa'}, \, \text{sigma2};
33
34 //---
      END
```

Scilab code Exa 8.4 CL4

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 8.4 : ")
4
5 //Given:
6 y_c = 125/1000; //m
7 x_c = 1.5; //m
8 y_b = 1.5; //m
9 x_b = 6; //m
```

```
10 udl = 50; //kN/m
11 l_udl = 2.5; //m
12 \ 1 = 250/1000; \ //m
13 width = 50/1000; //m
14
15
16 //Internal Loadings:
17 N = 16.45; //kN
18 V = 21.93; //kN
19 M = 32.89; //kNm
20
21 // Stress Components:
22
23 // Normal Force:
24 A = 1*width;
25 \text{ sigma1} = N/(A*1000);
26
27 //Shear Force:
28 \text{ tou_c} = 0;
29
30 //Bending Moment:
31 c = y_c;
32 I = (1/12)*(width*1^3);
33 sigma2 = (M*c)/(I*1000);
34
35 // Superposition:
36 sigmaC = sigma1+sigma2;
37
38 // Display:
39
40
41 printf('\n)nThe stress due to normal force at C
      = \%1.2 \, f \, MPa', sigma1);
42 printf('\nThe stress due to shear force at C
      \%1.2 f MPa', tou_c);
43 printf('\nThe stress due to bending moment at C
      \%1.2 \, \mathrm{f} \, \mathrm{MPa}', sigma2);
44 printf('\nThe resultant stress at C
                                                            =
```

```
%1.1 f MPa', sigmaC);
45
46 //
END
```

Scilab code Exa 8.5 CL5

```
1 clear all; clc;
3 disp("Scilab Code Ex 8.5 : ")
4
 5 // Given:
6 r = 0.75*10; //mm
7 \text{ f}_x = 500; //N
8 \text{ f_y} = 800; //N
9 \ 11 = 8*10; /mm
10 \ 12 = 10*10; /mm
11 13 = 14*10; //mm
12
13 // Stress Components:
14
15 // Normal Force:
16 \text{ A1} = (\%pi*r^2);
17 sigma1 = f_x/A1; //stress = P/A
18
19 //Shear Force:
20 \text{ y_bar} = (4*r)/(3*\%pi);
21 \quad A2 = A1/2;
22 Q = y_bar*A2; //Q = yA
23 \quad V = f_y;
24 I = (1/4)*(\%pi*r^4);
25 t = 2*r;
```

```
26 tou_a = (V*Q)/(I*t); //Shear = VQ/It
27
28 // Bending Moment:
29 \text{ M_y} = f_x*13;
30 c = r;
31 \text{ sigma\_A} = (M_y*c)/I;
32
33 // Torsional Moment:
34 T = f_y*13;
35 J = (0.5*\%pi*r^4);
36 \text{ tou_A} = (T*c)/J;
37
38 // Resultant:
39 res_normal= sigma1+sigma_A;
40 res_shear = tou_a+tou_A;
41
42 // Display:
43
44 printf('\n\nThe stress due to normal force at A
               = \%1.2 \, f \, MPa', sigma1);
45 printf('\nThe stress due to shear force at A
                = \%1.2 \, f \, MPa', tou_a);
46 printf('\nThe stress due to bending moment at A
             = \%1.2 \, \text{f MPa', sigma_A)};
  printf('\nThe stress due to torsional moment at A
          = \%1.2 \, f \, MPa', tou_A);
  printf('\nThe resultant normal stress component at A
        = \%1.2 \, \text{f MPa', res_normal)};
  printf('\nThe resultant shear stress component at A
        = \%1.2 \, \text{f MPa', res\_shear});
50
51 //
```

Scilab code Exa 8.6 CL6

```
1 clear all; clc;
3 disp("Scilab Code Ex 8.6 : ")
4
5 // Given:
6 P = 40; //kN
7 l_ab = 0.4; /m
8 l_bc = 0.8; /m
10 // Stress Components:
11
12 //Normal Force:
13 A = l_ab*l_bc;
14 sigma = P/A;
15
16 //Bendng Moments:
17 M_x = P*l_ab/2;
18 \text{ cy} = 1_ab/2;
19 Ix = (1/12)*(1_bc*1_ab^3); //I = (1/12)*(bh^3)
20 sigma_max_1 = (M_x*cy)/Ix; //sigma = My/I
21
22 M_y = P*1_bc/2;
23 \text{ cx} = 1_bc/2;
24 Iy = (1/12)*(1_ab*1_bc^3); //I = (1/12)*(bh^3)
25 sigma_max_2 = (M_y*cx)/Iy; //sigma = My/I
26
27 // Superposition:
28 stress_A = -sigma + sigma_max_1 + sigma_max_2;
29 stress_B = -sigma - sigma_max_1 + sigma_max_2;
30 stress_C = -sigma - sigma_max_1 - sigma_max_2;
31 stress_D = -sigma + sigma_max_1 - sigma_max_2;
32
```

```
33 e = abs((stress_B*l_ab)/(stress_A-stress_B));
34 h = abs((stress_B*l_bc)/(stress_A-stress_B));
35
36 // Display:
37
38
39 printf('\nnThe normal stress at corner A
      = \%1.0 \,\mathrm{f} \,\mathrm{kPa}', \mathrm{stress\_A});
40 printf('\nThe normal stress at corner B
      \%1.0 \, f \, kPa', stress_B);
41 printf('\nThe normal stress at corner C
      \%1.0 \, f \, kPa', stress_C);
42 printf('\nThe normal stress at corner D
      \%1.0\,\mathrm{f} kPa',stress_D);
43 printf('\nThe line of zero stress along AB
      %1.4 \text{ f m',e};
44 printf('\nThe line of zero stress along AD
      %1.3 \, f \, m', h);
45
46 //
```

136

Chapter 9

Stress Transformation

Scilab code Exa 9.1 ST1

```
2 clear all; clc;
4 disp("Scilab Code Ex 9.1 : ")
6 // Given:
7 tou = 25; //MPa
8 \text{ sigma1} = 50; //MPa
9 \text{ sigma2} = 80; //MPa
10 phi = 30*(\%pi/180);
11
12 // Calculations:
13 \operatorname{sigma_x1} = (\operatorname{sigma1*cos}(\operatorname{phi})*\operatorname{cos}(\operatorname{phi})) - (\operatorname{tou*cos}(\operatorname{phi}))
       *sin(phi)) - (sigma2*sin(phi)*sin(phi))- (tou*sin
       (phi)*cos(phi));
14 tou1 = (sigma1*cos(phi)*sin(phi))+ (tou*cos(phi)*cos
       (phi)) + (sigma2*sin(phi)*cos(phi))- (tou*sin(phi
       )*sin(phi));
15 sigma_x2 = (tou*cos(phi)*sin(phi)) - (sigma2*cos(phi))
       *cos(phi)) + (tou*sin(phi)*cos(phi))+ (sigma1*sin
       (phi)*sin(phi));
```

```
16 tou2 = (tou*cos(phi)*cos(phi))+ (sigma2*cos(phi)*sin
       (phi)) - (tou*sin(phi)*sin(phi))+ (sigma1*sin(phi
      )*cos(phi));
17
18 // Display:
19
20 printf("\n nThe normal stress component in the x
      diection is
                         = \%1.2 \, \text{f MPa'}, \, \text{sigma}_{-} \text{x} 1);
21 printf("\n
                 The shear stress component in the x
                        = %1.1f MPa',tou1);
      diection is
22 printf("\n
                 The normal stress component in the y
      diection is
                      = \%1.1 \, \text{f MPa'}, \, \text{sigma}_{-} \text{x2});
23
   printf("\n
                The shear stress component in the y
                        = %1.1f MPa',tou2);
      diection is
24
25 //
```

Scilab code Exa 9.2 ST2

```
1 clear all; clc;
2
3
4 disp("Scilab Code Ex 9.2 : ")
5
6 //Given:
7 phi = -30*(%pi/180);
8 theta = 60*(%pi/180);
9 sigma_x = -80; //MPa
10 sigma_y = 50; //MPa
11 tou_xy = -25; //MPa
12
```

```
13 //Plane CD:
14 sigma_x1 = (sigma_x+sigma_y)/2 + ((sigma_x-sigma_y)*
      \cos(2*\text{phi}))/2 + (\tan_xy*\sin(2*\text{phi})); //\text{Eqn } 9.1
15 tou_xy1 = ((-(sigma_x - sigma_y)*sin(2*phi))/2) + (
      tou_xy*cos(2*phi)); //Eqn 9.2
16
17 //Plane BC:
18 sigma_x2 = (sigma_x+sigma_y)/2 + ((sigma_x-sigma_y)*
      \cos(2*\text{theta}))/2 + (\cot_x y * \sin(2*\text{theta})); // Eqn
19 tou_xy2 = (-(sigma_x - sigma_y)*sin(2*theta))/2 +
      tou_xy*\cos(2*theta); //Eqn 9.2
20
21 // Display:
22
23 printf('\n\nThe normal stress of plane CD inclined
                         = \%1.1 \, \text{f MPa', sigma_x1};
      at 30 degrees
24 printf('\nThe shear stress of plane CD inclined at
      30 degrees
                      = \%1.1 \, \text{f MPa',tou_xy1};
25 printf('\nThe normal stress of plane BC inclined at
                     = \%1.2 \, \text{f MPa', sigma_x2};
      60 degrees
26 printf('\nThe shear stress of plane BC inclined at
                  = \%1.1 \, f \, MPa', tou_xy2);
      60 degrees
27
28 //
      END
```

Scilab code Exa 9.5 ST5

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 9.5 : ")
```

```
4
    5 // Given:
    6 \text{ sigma_x} = -20; //MPa
    7 \text{ sigma_y = 90; } //\text{MPa}
   8 \text{ tou_xy} = 60; //\text{MPa}
10 // Orientation of Element:
11 theta_p2 = \frac{atan}{(2*tou_xy)/(sigma_x - sigma_y)};
12 theta_p2 = theta_p2/2;
13 theta_p1 = (180+2*theta_p2)/2;
14
15 // Principal Stresses:
16
17 sigma1 = ((sigma_x + sigma_y)/2) + (sqrt(((sigma_x - sigma_x)/2)) + (sqrt(((sigma_x - sigma_x)
                                     sigma_y)/2)^2 + tou_xy^2));
18 sigma2 = ((sigma_x+sigma_y)/2) - sqrt(((sigma_x-
                                     sigma_y)/2)^2 + tou_xy^2;
19 sigma_x^2 = ((sigma_x + sigma_y)/2) + (((sigma_x - sigma_x - sigma_y)/2) + (((sigma_x - sigma_x - sigma_x - sigma_x)/2) + (((sigma_x - sigma_x - sigma_x)/2) + (((sigma_x - sigma_x - sigma_x)/2) + ((sigma_x - sigma_x - sigma_x)/2) + ((sigma_x - sigma_x - sigma_x)/2) + ((sigma_x - s
                                    )/2)*\cos(2*\text{theta}_p2)) + (tou_xy*\sin(2*\text{theta}_p2));
20
21 // Display:
22
23 printf("\n\nThe first principal stress is
                                                                                                                                                                                   = \%1.0 \, \text{f} \, \text{MPa'}, \, \text{sigma1});
24 \quad printf("\nThe second principal stress is
                                                                                                                                                                             = %1.1f MPa', sigma2);
25 printf('\nThe normal stress acting on the 23.7
                                     degrees plane = %1.1 f MPa', sigma_x2);
26
27 //
```

140

Scilab code Exa 9.6 ST6

```
2 clear all; clc;
3
4 disp("Scilab Code Ex 9.6 : ")
6 // Given:
7 \text{ sigma_x} = -20; //MPa
8 \text{ sigma_y} = 90; //MPa
9 tou_xy =60; //Mpa
10
11 //Orientation of Element:
12 theta_s2 = \frac{atan}{-(sigma_x - sigma_y)/(2*tou_xy)};
13 theta_s2 = theta_s2/2;
14 theta_s1 = \%pi + 2*theta_s2;
15 theta_s1 = theta_s1/2;
16
17 //Maximum in plane Shear Stress:
18 tou_max = (sqrt(((sigma_x - sigma_y)/2)^2 + tou_xy)
      ^2));
19 tou_xy1 = -(sigma_x - sigma_y)*(sin(2*theta_s2))/2 +
       (tou_xy*cos(2*theta_s2));
20
21 // Average Normal Stress:
22 sigma_avg = (sigma_x+sigma_y)/2;
23
24 // Display:
25
26 printf("\n\nThe maximum in-plane shear stress is
             = \%1.1 f MPa', tou_xy1);
  printf("\nThe average normal stress is
                      = %1.0f MPa', sigma_avg);
28
29 //
```

Scilab code Exa 9.9 ST9

```
1 clear all; clc;
3 disp("Scilab Code Ex 9.9 : ")
5 // Given:
6 \text{ sigma_x} = -12; //MPa
7 \text{ sigma_y = 0};
8 \text{ tou_xy} = -6; /MPa
9
10 //Construction of the circle:
11 sigma_avg = (sigma_x+sigma_y)/2;
12 R = sqrt((-sigma_x+sigma_avg)^2 + (tou_xy)^2);
13
14 // Principal Stresses:
15 sigma2 = -R+sigma_avg; //From the Mohr's circle
16 sigma1 = R+sigma_avg;
17
18 theta_p2 = \frac{atan}{(-tou_xy)/(-sigma_x+sigma_avg)};
19 theta_p2 = theta_p2/2*(180/\%pi);
20
21 // Display:
22
23 printf('\n\nThe first principal stress is
                  = \%1.2 \, \text{f} MPa', sigma1);
24 printf('\nThe second principal stress is
       \%1.1 f MPa', sigma2);
25 printf('\nThe direction of the principal plane is
       \%1.1 f degrees', theta_p2);
26
27
28 //
```

Scilab code Exa 9.10 ST10

```
1 clear all; clc;
3 disp("Scilab Code Ex 9.10 : ")
4
5 // Given:
6 \text{ sigma_x} = -20; //MPa
7 \text{ sigma_y = 90; } //\text{MPa}
8 \text{ tou_xy} = 60; //MPa
9
10 //Construction of the circle:
11 sigma_avg = (sigma_x+sigma_y)/2;
12 R = sqrt(((sigma_x-sigma_avg))^2 + (tou_xy)^2);
13
14 //Maximum In plane Shear Stress:
15 \text{ tou_max} = R;
16
17 theta_s1 = atan(-(sigma_x - sigma_avg)/(tou_xy));
18 theta_s1 = theta_s1/2*(180/\%pi);
19
20 // Display :
21
22 printf('\n\nThe maximum in-plane shear stresses are
        = \%1.1 f
                  MPa',tou_max);
23 printf('\n
      = \%1.1 \, \text{f} \, \text{MPa',sigma_avg};
24 printf('\nThe orientation of the element is
      = \%1.1 \, \text{f} \, \text{degrees}', \text{theta_s1};
25
```

26 //

END

Scilab code Exa 9.11 ST11

```
1
2 clear all; clc;
4 disp("Scilab Code Ex 9.11 : ")
6 // Given:
7 \text{ sigma_x} = -8; //MPa
8 \text{ sigma_y} = 12; //MPa
9 tou_xy = -6; //Mpa
10
11 //Construction of the circle:
12 sigma_avg = (sigma_x+sigma_y)/2;
13
14 R = sqrt(10^2 + tou_xy^2);
15
16 //Stresses on 30 degree element:
17 phi = atan(6/10);
18 psi = (\%pi/3) - phi;
19
20 //On face BD:
21 sigma_x1 = 2 - (R*cos(psi));
22 tou_xy1 = (R*sin(psi));
23
24 //On face DE:
25 sigma_x2 = 2 + (R*cos(psi));
26 \text{ tou_xy2} = -(R*\sin(psi));
27
```

Scilab code Exa 9.12 ST12

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 9.12 : ")
4
5 //Given:
6 P = 900; //N
7 T = 2.5; //Nm
8 d = 40/1000; //m
9 r = d/2;
10 c = r;
11
12 //Stress Components:
13 J = (%pi/2)*(r^4);
14 tou = (T*c)/(J*1000);
15
16 A = (%pi*r^2);
```

```
17 sigma = P/(A*1000);
18
19 // Principal Stresses:
20 \text{ sigma_avg} = (0 + \text{sigma})/2;
21
22 R = sqrt( sigma_avg^2 + tou^2);
23 sigma1 = sigma_avg + R;
24 sigma2 = sigma_avg - R;
25
26 // Display:
27
28 printf('\n\nThe prinicpal stresses at point P are:')
29 printf('\n %1.1 f kPa', sigma1);
30 printf('\n %1.1 f kPa', sigma2);
31
32 / /
```

Scilab code Exa 9.13 ST13

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 9.13 : ")
4
5 //Given:
6 w = 120; //kN/m
7 I = 67.4*(10^-6);
8 V= 84; //kN
9 M = 30.6; //kNm
10 t = 10/1000; //m
11
```

```
14 sigma = -(M*10^3*y)/(I*10^6);
15
16 Q = (0.100 + 0.015/2)*(0.175)*(0.015);
17 tou = (V*Q*10^3)/(I*t*10^6);
18
19 // Principal Stresses:
20
21 k = sigma/2;
22 R = sqrt((-sigma+k)^2 + tou^2);
23 \text{ sigma1} = R + k;
24 \text{ sigma2} = k -R;
25
26 theta_p2 = atan(-tou/(sigma-k));
27 theta_p2 =theta_p2/2*(180/%pi);
28
29 // Display:
30
31
32 printf('\n\nThe prinicpal stresses at point P are:')
33 printf('\n %1.1 f MPa', sigma1);
34 printf('\n %1.1 f MPa', sigma2);
35 printf('\nThe angle of rotation of the plane %1.1f
       degrees',theta_p2);
36
37 //
     END
```

Scilab code Exa 9.14 ST14

12 //Stress Components:

13 y = 0.200/2;

```
1 clear all; clc;
3 disp("Scilab Code Ex 9.14 : ")
5 // Given:
6 \text{ tou} = 40; //\text{kPa}
7 sigma = -20; //kPa
9 // Principal Stresses:
10 sigma_avg = sigma/2;
11 R = sqrt((-sigma + sigma_avg)^2 + tou^2);
12 sigma_max = sigma_avg + R ;
13 sigma_min = sigma_avg - R
14
15 theta = atan(tou/(-sigma+sigma_avg));
16 theta = theta/2;
17
18 // Absolute Maximum Shear Stress:
19 tou_max = (sigma_max - sigma_min)/2;
20 sigma_avg = (sigma_max + sigma_min)/2;
21
22 // Display:
23
24 printf('\n'nThe prinicpal stresses at the point are:
      ');
25 printf('\n %1.1 f kPa', sigma_max);
26 printf('n \%1.1 f kPa', sigma_min);
27 printf('\nThe absolute maximum shear stress at the
      point %1.1 f kPa', tou_max);
28
29 //
```

Scilab code Exa 9.15 ST15

```
1 clear all; clc;
3 disp("Scilab Code Ex 9.15 : ")
4
5 // Given:
6 \text{ sigma_max} = 32; //MPa
7 sigma_min = 0; //MPa
8 \text{ sigma\_int} = 16; //MPa
10 tou_max = (sigma_max - sigma_min)/2 ; //MPa
11 sigma_avg = (sigma_max + sigma_min)/2; //MPa
12
13 tou_in_plane = (sigma_max - sigma_int)/2;
14 sigma_avg2 = sigma_avg + (tou_in_plane);
15
16 // Display:
17
18 printf('\n\nThe maximum absolute shear stress = \%1
      .2 f MPa', tou_max);
19
20 //
```

END

Chapter 10

Strain Transformation

Scilab code Exa 10.1 StnT1

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.1 : ")
5 // Given:
6 \text{ ep_x} = 500; //Normal Strain}
7 \text{ ep_y} = -300; //Normal Strain}
8 gamma_xy = 200; //Shear Strain
9 theta = 30*(\%pi/180);
10 theta = theta*-1;
11
12 ep_x_new = ((ep_x+ep_y)/2) + ((ep_x - ep_y)/2)*cos
      (2*theta) + (gamma_xy/2)*sin(2*theta);
13
14 gamma_xy_new = -((ep_x - ep_y)/2)*sin(2*theta) + (
      gamma_xy/2)*cos(2*theta);
15 gamma_xy_new = 2*gamma_xy_new;
16
17 phi = 60*(\%pi/180);
18 ep_y_new = (ep_x+ep_y)/2 + ((ep_x - ep_y)/2)*cos(2*)
      phi) + (gamma_xy/2)*sin(2*phi);
```

```
19
20 // Display:
21
22
23 printf('\n'nThe equivalent strain acting on the
      element in the x plain oriented at 30 degrees
                    = \%1.1 \, f *10^-6', ep_x_new);
      clockwise
24 printf('\nThe equivalent strain acting on the
      element in the v plain oriented at 30 degrees
                    = \%1.1 \, \text{f} *10^-6', \text{ep_y_new};
25 printf('\nThe equivalent shear strain acting on the
      element
                                                        = \%1
      .0 f *10^-6', gamma_xy_new);
26
27 //
      END
```

Scilab code Exa 10.2 StnT2

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.2 : ")
4
5 // Given:
6 \text{ ep_x} = -350; //(*10^-6) \text{ Normal Strain}
7 ep_y = 200; //*(10^{\circ}-6) Normal Strain
8 gamma_xy = 80; //*(10^{\circ}-6) Shear Strain
9
10 // Orientation of the element:
11 tan_thetap = (gamma_xy)/(ep_x - ep_y);
12 thetap1 = (0.5)*(atan(tan_thetap));
```

```
13
14 // Principal Strains:
15
16 k = (ep_x + ep_y)/2;
17 \ 1 = (ep_x - ep_y)/2;
18 tou = gamma_xy/2;
19 R = sqrt((1)^2 + tou^2);
20 \text{ ep1} = R + k;
21 \text{ ep2} = k -R;
22 \text{ ep = [ep1 ep2]};
23
24 ep_x1 = k + 1*cos(2*thetap1) + tou*sin(2*thetap1);
25 thetap1 = thetap1*(180/\%pi);
26 \text{ thetap2} = (90 + \text{thetap1});
27 thetap =[thetap1 thetap2];
28
29
30 // Display:
31
32 printf('\n\nThe orientation of the element in the
      positive counterclockwise direction
      degrees, %1.2f degrees ', thetap);
33 printf('\nThe principal strains are
      = \%1.0 \, \text{f} *10^{-}6 \, , \%1.0 \, \text{f} *10^{-}6 \, , \text{ep});
34 printf('\nThe principal strain in the new x
                                                         = \%1.0
      direction is
      f *10^-6, ep_x1);
35
36 //
      END
```

152

Scilab code Exa 10.3 StnT3

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.3 : ")
5 // Given:
6 ep_x = -350; //(*10^-6) Normal Strain
7 ep_y = 200; //*(10^{\circ}-6) Normal Strain
8 gamma_xy = 80; //*(10^{\circ}-6) Shear Strain
10 // Orientation of the element:
11 tan_tetap = -(ep_x - ep_y)/(gamma_xy);
12 thetap1 = (0.5)*(atan(tan_thetap));
13
14 //Maximum in-plane shear strain:
15
16 \ 1 = (ep_x - ep_y)/2;
17 tou = gamma_xy/2;
18 R = sqrt(1^2 + tou^2);
19 max_inplane_strain = 2*R;
20
21 \operatorname{gamma_xy_1} = (-1 * \sin(2 * \operatorname{thetap1}) + \operatorname{tou*\cos}(2 * \operatorname{thetap1}))
      *2;
22 strain_avg = (ep_x + ep_y)/2;
23
24 thetap1 = thetap1*(180/\%pi);
25 thetap2 = (90 + \text{thetap1});
26 thetap =[thetap1 thetap2];
27
28 // Display:
29
30 printf('\n\nThe orientation of the element
                   = \%1.1 f degrees, \%1.1 f
                                               degrees ',
      thetap);
31 printf('\nThe maximum in-plane shear strain
      = \%1.0 \, \text{f} *10^-6 ', max_inplane_strain);
32 printf('\nThe average strain
```

Scilab code Exa 10.4 StnT4

END

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.4 : ")
4
5 // Given:
6 ep_x = 250; //(*10^-6) Normal Strain
7 ep_y = -150; //*(10^{\circ}-6) Normal Strain
8 gamma_xy = 120; //*(10^{\circ}-6) Shear Strain
10 // Construction of the circle:
11 strain_avg = (ep_x + ep_y)/2;
12 tou = gamma_xy/2;
13 R = sqrt((ep_x - strain_avg)^2 + (tou^2));
14
15 // Principal Strains:
16 \text{ ep1} = (\text{strain}_{\text{avg}} + R);
17 \text{ ep2} = (\text{strain}_{\text{avg}} - R);
18 strain = [ep1 ep2];
19
20 tan_thetap = (tou)/(ep_x - strain_avg);
21 thetap1 = (atan(tan_thetap))/2;
22 thetap1 = thetap1*(180/\%pi);
23
24 // Display:
25
```

Scilab code Exa 10.5 StnT5

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 10.5 : ")
5 // Given:
6 ep_x = 250; //(*10^-6) Normal Strain
7 ep_y = -150; //*(10^{\circ}-6) Normal Strain
8 gamma_xy = 120; //*(10^{\circ}-6) Shear Strain
10 //Orientation of the element:
11 thetas = 90 - 2*8.35;
12 thetas1 = thetas/2;
13
14 //Maximum in-plane shear strain:
15
16 \ 1 = (ep_x - ep_y)/2;
17 tou = gamma_xy/2;
18 R = sqrt(1^2 + tou^2);
19 max_inplane_strain = 2*R;
20
```

Scilab code Exa 10.6 StnT6

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 10.6 : ")
4
5 //Given:
6 ep_x = -300; //(*10^-6) Normal Strain
7 ep_y = -100; //*(10^-6) Normal Strain
8 gamma_xy = 100; //*(10^-6) Shear Strain
9 theta = 20; //degrees
10
11
12 //Construction of the circle:
13 strain_avg = (ep_x+ ep_y)/2;
14 tou = gamma_xy/2;
```

```
16
17 // Strains on Inclined Element:
18 theta1 = 2*theta;
19
20 phi = atan((tou)/(-ep_x +strain_avg));
21 \text{ phi} = \text{phi}*(180/\%\text{pi});
22 psi = theta1 - phi;
23 \text{ psi} = \text{psi*(\%pi/180)};
24
25 \text{ ep_x1} = -(-\text{strain\_avg+ R*cos}(psi));
26 \quad \text{gamma}_xy1 = -(R*\sin(psi))*2;
27
28 ep_y1 = -(-strain_avg - R*cos(psi));
29
30 // Display:
31
32 printf('\n\nThe normal strain in the new x direction
               = \%1.0 \text{ f } *10^-6 ', ep_x1);
33 printf('\nThe normal strain in the new y direction
             = \%1.1 \text{ f } *10^-6 ', ep_y1);
34 printf('\nThe shear strain in the new xy direction
              = \%1.0 \, f *10^-6'', gamma_xy1);
35 printf('\nThe average strain
                                         = \%1.0 \text{ f } *10^{-6} 
       strain_avg);
36
37 //
      END
```

15 R = $sqrt((-ep_x + strain_avg)^2 + tou^2);$

Scilab code Exa 10.7 StnT7

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.7 : ")
5 // Given:
6 \text{ ep_x} = -400; //(*10^{\circ}-6) \text{ Normal Strain}
7 ep_y = 200; //*(10^{\circ}-6) Normal Strain
8 gamma_xy = 150; //*(10^{\circ}-6) Shear Strain
10 //Maximum in-plane Shear Strain:
11 strain_avg = (ep_x + ep_y)/2;
12 tou = gamma_xy/2;
13
14 R = sqrt((-ep_x + strain_avg)^2 + tou^2);
15 strain_max = strain_avg + R;
16 strain_min = strain_avg - R;
17
18 max_shear_strain = strain_max - strain_min;
19
20 // Absolute Maximum Shear Strain:
21 abs_max_shear = max_shear_strain;
22
23 // Display:
24
25 printf('\n\nThe maximum in-plane principal strain
          = \%1.0 \, f *10^-6', strain_max);
26 printf('\nThe minimum in-plane principal strain
      = \%1.0 \, \text{f} *10^{-}6^{-}, \text{strain_min};
27 printf('\nThe maximum in-plane shear strain
      = \%1.0 \, \text{f} *10^-6 ', max_shear_strain);
28 printf('\nThe absolute maximum shear strain
      = \%1.0 \, \text{f} *10^-6 ',abs_max_shear);
29 printf ('\nThe average strain
      = \%1.0 \, f *10^-6 ', strain_avg);
30 //
```

Scilab code Exa 10.8 StnT8

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.8 : ")
5 // Given:
6 ep_a = 60; //(*10^{\circ}-6) Normal Strain
7 ep_b = 135; //*(10^{\circ}-6) Normal Strain
8 ep_c = 264; //*(10^{\circ}-6) Normal Strain
9
10 \text{ theta_a} = 0;
11 theta_b = 60*(\%pi/180);
12 theta_c = 120*(\%pi/180);
13
14 //Using matrices to solve the equations:
15 a1 = (\cos(\text{theta}_a))^2;
16 	 b1 = (sin(theta_a))^2;
17 c1 = \cos(\text{theta}_a) * \sin(\text{theta}_a);
18
19 a2 = (\cos(\text{theta}_b))^2;
20 b2 = (sin(theta_b))^2;
21 c2 = cos(theta_b)*sin(theta_b);
22
23 a3 = (\cos(\text{theta_c}))^2;
24 b3 = (sin(theta_c))^2;
25 c3 = \cos(\text{theta\_c})*\sin(\text{theta\_c});
26
27 A = [a1 b1 c1 ; a2 b2 c2; a3 b3 c3]
28 b = [ep_a ; ep_b ; ep_c];
29 strain = A \setminus b;
30
31 \text{ ep_x} = \text{strain}(1);
```

```
32 \text{ ep_y} = \text{strain}(2);
33 gamma_xy = strain(3);
34
35 \text{ strain} = (ep_x + ep_y)/2;
36 \text{ tou = } \text{gamma_xy/2};
37
38 R = sqrt((-ep_x + strain_avg)^2 + tou^2);
39
40 \text{ ep1} = \text{strain}_{\text{avg}} + R;
41 ep2 = strain_avg - R;
42 \text{ ep = [ep1 ep2]};
43
44 tan_thetap = atan(-tou/(-ep_x + strain_avg));
45 thetap = tan_thetap/2;
46 thetap2 = thetap*(180/\%pi);
47
48 // Display:
49
50
51 printf('\n\nThe maximum in-plane principal strains
       are = \%1.0 \, \text{f} *10^{-}6 , \%1.1 \, \text{f} *10^{-}6, ep);
52 printf('\nThe angle of orientation
                                  = \%1.1 f degrees', thetap2);
53
54 //
      END
```

Scilab code Exa 10.9 StnT9

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 10.9 : ")
```

```
4
5 // Given:
6 E_st = 200*10^9; //GPa
7 nu_st = 0.3; //Poisson's ratio
8 \text{ ep1} = 272 *10^-6;
9 \text{ ep2} = 33.8 *10^-6;
10
11 //Solving for sigma using matrices:
12 A = [1 -nu_st; -nu_st 1];
13 b = [(ep1*E_st) ; (ep2*E_st)];
14 sigma = A \setminus b;
15
16 sigma1 = sigma(1)/(10<sup>6</sup>);
17 sigma2= sigma(2)/(10<sup>6</sup>);
18
19 // Display :
20
21 printf('\n\nThe principal stresses at point A are
          = \%1.0 \, f \, MPa \, , \, \%1.1 \, f \, MPa', sigma1, sigma2);
22
23
24 //
      END
```

Scilab code Exa 10.10 StnT10

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 10.10 : ")
4
5 //Given:
6 a = 300; //mm
```

```
7 b = 50; //mm
8 t = 20; /mm
9 E_cu = 120*10^3; /MPa
10 nu_cu = 0.34; // Poisson 's ratio
11
12 //By inspection:
13 sigma_x = 800; //MPa
14 sigma_y = -500; //MPa
15 \text{ tou}_xy = 0;
16 \text{ sigma_z} = 0;
17
18 //By Hooke's Law:
19 ep_x = (sigma_x/E_cu) - (nu_cu/E_cu)*(sigma_y +
      sigma_z);
20 ep_y = (sigma_y/E_cu) - (nu_cu/E_cu)*(sigma_x +
      sigma_z);
21 ep_z = (sigma_z/E_cu) - (nu_cu/E_cu)*(sigma_y +
      sigma_x);
22
23 //New lengths:
24
25 a_dash = a + ep_x*a;
26 \text{ b\_dash} = \text{b} + \text{ep\_y*b};
27 t_dash = t + ep_z*t;
28
29 // Display:
30
31 printf('\n\nThe new length = \%1.2 \text{fmm}',a_dash);
32 printf('\nThe new width = \%1.2 \text{ f mm}', b_dash);
33 printf('\nThe new thickness = \%1.2 \text{ f mm}', t_dash);
34 //
```

Scilab code Exa 10.11 StnT11

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.11 : ")
4
5 // Given:
6 p = 20; //kPa
7 E = 600; //kPa
8 \text{ nu} = 0.45
9 \ a = 4; \ //cm
10 b = 2; //cm
11 c = 3; //cm
12
13 // Dilatation:
14 \text{ sigma_x} = -p;
15 \text{ sigma_y} = -p;
16 \text{ sigma_z} = -p;
17
18 e = ((1-2*nu)/E)*(sigma_x + sigma_y + sigma_z);
19
20 //Change in Length:
21 ep = (sigma_x - nu*(sigma_y + sigma_z))/E;
22
23 \text{ del_a} = \text{ep*a};
24 \text{ del_b} = \text{ep*b};
25 \text{ del_c} = \text{ep*c};
26
27 // Display:
29 printf('\n\nThe change in length a = \%1.4 fcm',
      del_a);
30 printf('\nThe change in length b = \%1.5 \text{ fcm}',
      del_b);
```

Scilab code Exa 10.12 StnT12

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.12 : ")
4
5 // Given:
6 \text{ di} = 60/1000; //\text{m}
7 \text{ ri} = \text{di}/2;
8 d0 = 80/1000; //m
9 \text{ ro} = d0/2;
10 T = 8000; /Nm
11 M = 3500; //Nm
12 sigma_y_sqr = 250^2; //MPa
13
14 // Calculations:
15 c = ro;
16 J = (\%pi/2)*(ro^4 - ri^4)*(10^6);
17 I = (\%pi/4)*(ro^4 - ri^4)*(10^6);
18 tou_a = (T*c)/J;
19 sigma_a = (M*c)/I;
20
21 \text{ sigma_avg} = (0-\text{sigma_a})/2;
22
23 R = sqrt(116.4^2 + sigma_avg^2);
24 sigma1 = sigma_avg + R;
25 sigma2 = sigma_avg - R;
```

Scilab code Exa 10.13 StnT13

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 10.13 : ")
4
5 //Given:
6 T = 400; //Nm
7 sigma_ult = 150*10^6; //N/m^2
8
9 //Calculations:
10
11 x = T/(%pi/2);
12 r_3 = [x/sigma_ult];
13 r = nthroot(r_3, 3);
14 r= r*1000; //in mm
15
16 //Display:
17
18 printf('\n\nThe smallest radius of the solid cast
```

```
iron shaft = %1.2 fmm ',r);

19
20 //
```

Scilab code Exa 10.14 StnT14

```
1 clear all; clc;
3 disp("Scilab Code Ex 10.14 : ")
4
5 // Given:
6 r = 0.5; //cm
7 sigma_yield = 360; //MPa
8 T = 3.25; //kN/cm
9 A= (%pi*r^2);
10 P = 15; //kN
11 J = (\%pi/2)*(r^4);
12 sigma_y_sqr = sigma_yield^2;
13
14 // Calculations:
15 sigma_x = -(P/A)*10;
16 \text{ sigma_y} = 0;
17 tou_xy = (T*r*10)/J;
18
19 k = (sigma_x + sigma_y)/2;
20 R = sqrt(k^2 + (tou_xy^2));
21
22 \text{ sigma1} = k+R;
23 \text{ sigma2} = k-R;
24 l = sigma1 - sigma2;
25
```

```
26 //Maximum Shear Stress Theory:
27 \text{ test1} = abs(1);
28
29 if(test1 >= sigma_yield)
30
       printf("\n\nFailure occurs by Maximum Shear
31
          Stress Theory. ');
32
  end
33
34
  //Maximum Distortion-Energy Theory:
35
   test2 = (sigma1^2 - (sigma1*sigma2) + sigma2^2);
36
37
38
  if(test2 < sigma_y_sqr)
39
40
       printf("\nFailure will not occur by Maximum
41
          Distortion-Energy Theory.');
42 end
```

Chapter 11

Design of Beams and Shafts

Scilab code Exa 11.1 DBS1

```
1 clear all; clc;
3 disp("Scilab Code Ex 11.1 : ")
5 // Given:
6 \text{ sigma\_allow} = 170; /MPa
7 tou_allow = 100; //MPa
9 //Shear and Moment Diagrams:
10 V_{max} = 90; //kN
11 M_{max} = 120; //kNm
12
13 //Bending Stress:
14 \text{ S_reqd} = (M_max*(10^3))/sigma_allow;
15
16 W = [60 67 64 74 80 100];
17 S = [1120 1200 1030 1060 984 987];
18
19 i = find(min(W));
20 S_{chosen} = S(i);
21 \text{ flag1 = 0};
```

```
22 \text{ flag2} = 0;
23
24 if (S_reqd < S_chosen)
25
       flag1 = 1;
26 \text{ end}
27
28 //Shear Stress:
29 \, d = 455; /mm
30 \text{ tw} = 8; /\text{mm}
31 tou_avg = (V_max*10^3)/(d*tw);
32
33 if(tou_avg<tou_allow)</pre>
34
        flag2 = 1;
35 end
36
37 if(flag1==1 & flag2==1)
38
39
         printf("\n\nUse a W460X60 standard shape.');
40
41 end
42
43 //---
      END
```

Scilab code Exa 11.2 DBS2

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 11.2 : ")
4
5 //Given:
6 1 = 200/1000;//m
7 t = 30/1000;//m
```

```
8 \text{ sigma\_allow} = 12; //MPa
9 tou_allow = 0.8; //MPa
10 V_nail = 1.50; //kN
11 l_bc = 2; //m
12 \ 1_{cd} = 2; \ /m
13
14 //Shear and Moment Diagrams:
15 V_{max} = 1.5; //kN
16 M_max = 2; /kNm
17
18 //Bending Stress:
19 y1 = 1/2;
20 \text{ A1} = 1*t;
21 	 y2 = 1+(t/2);
22 A2 = t*1;
23 \text{ y_dash} = (y1*A1 + y2*A2)/(A1 + A2);
24
25 I1 = (t*1^3)/12 + (t*1*(y_dash - y1)^2);
26 	ext{ I2} = (1*t^3)/12 + (t*1*(y2 - y_dash)^2);
27 I = I1 + I2;
28
29 c = y_dash;
30 \text{ sigma} = (M_max*c)/(I);
31 \text{ flag1} = 0;
32 sigma_allow = sigma_allow*1000; //kPa
33
34 if (sigma < sigma_allow)
35
        flag1 = 1;
36 \text{ end}
37
38 //Shear Stress:
39 y3 = y_dash/2;
40 \text{ A3} = y_dash*t;
41 \ Q = y3*A3;
42
43 tou = (V_max*Q)/(I*t);
44 tou_allow = tou_allow*1000; //kPa
45 \text{ flag2} = 0;
```

```
46
47 if (tou < tou_allow)
        flag2 = 1;
48
49 end
50
51 // Nail Spacing:
52 y4a = (1+t-y_dash);
53 \text{ y4} = \text{y4a} - (t/2);
54 \text{ A4} = 1*t;
55 Q4 = y4*A4;
56 \text{ V_bc} = 1.5; //kN
57 \text{ V_cd} = 1; //kN
58
59 \text{ q_bc} = (V_bc*Q4)/I;
60 \text{ q_cd} = (V_cd*Q4)/I;
61
62 \text{ s_bc} = (V_nail)/(q_bc);
63 \text{ s\_cd} = (V_nail)/(q_cd);
64
65 \text{ chosen_bc} = 150; //\text{mm}
66 \text{ chosen\_cd} = 250; //mm
67
68 if (flag1==1 & flag2==1)
69
        printf('\n\nThe design is safe in bending and
70
            shear.');
        printf('\nThe calculated nail spacing BC = \%1.3 f
71
            m',s_bc);
72
        printf('\nThe calculated nail spacing CD = \%1.3 f
            m',s_cd);
        printf('\nThe chosen nail spacing BC
                                                           = \%1.0 f
73
            mm', chosen_bc);
        printf('\nThe chosen nail spacing CD
74
                                                           = \%1.0 \text{ f}
            mm', chosen_cd);
75
   end
76
77 //
```

Scilab code Exa 11.3 DBS3

```
1 clear all; clc;
3 disp("Scilab Code Ex 11.3 : ")
5 // Given:
6 udl = 12; //kN/m
7 h_by_a = 1.5;
8 \text{ sigma\_allow} = 9; //MPa
9 tou_allow = 0.6; //MPa
10
11 //Shear and Moment Diagrams:
12 V_{max} = 20; //kN
13 M_max = 10.67; //kNm
14
15 //Bending Stress:
16 S_{reqd} = (M_{max})/(sigma_allow*1000);
17 c = h_by_a/2;
18 a_cube = (S_reqd*c*12)/(1.5^3); //S_reqd = I/c
19 a = a_cube^(1/3);
20
21
22 A = a*h_by_a*a;
23 tou_max = (1.5*V_max)/(A*1000);
24
25
26 if (tou_max>tou_allow)
       a_{q} = (3/2)*(V_{max})/(h_{by_a}*tou_allow*1000);
27
28
       a =sqrt(a_sqr);
29 \text{ end}
```

```
30
31 // Display:
32
33 printf("\n\nThe smallest width for the laminated wooden beam = %1.3 f m', a);
34
35 //
END
```

Scilab code Exa 11.6 DBS6

```
1 clear all; clc;
3 disp("Scilab Code Ex 11.6 : ")
4
5 // Given:
6 \text{ tou\_allow} = 50*10^6; //MPa
7 T = 7.5; /Nm
8 \text{ R_ah} = 150; //N
9 \text{ R_av} = 475; //N
10 l_ac = 0.25; //m
11
12 \text{ mc} = R_ah*l_ac;
13 m = R_av*l_ac;
14
15 M_c = sqrt(m^2 + mc^2);
16
17 k = sqrt(M_c^2 + T^2);
18 c1 = (2*k)/(\%pi*tou_allow);
19 c = c1^(1/3);
20
21 d = 2*c*1000;
22
```

Chapter 12

Deflection of Beams and Shafts

Scilab code Exa 12.6 DefBS6

Scilab code Exa 12.10 DefBS10

```
1 clear all; clc;
2
```

```
3 disp("Scilab Code Ex 12.10 : ")
5 // Given:
6 E = 200*10^6; //kN/m^2
7 I = 17*10^-6; //mm^4
8 l_ac = 2; /m
9 \ 1_cF = 4; \ //m
10 l_Fb = 2; //m
11 l_cb = 6; //m
12 l_aF = 6; //m
13 l_ab = 8; //m
14 F = 16; //kN
15 R_b = (F*l_cb)/l_ab;
16 R_a = F - R_b;
17
18 \text{ mc} = R_a*l_ac;
19 mf = R_b*l_Fb;
20 theta_ca = (0.5*1_ac*mc)/(E*I);
21
22 \text{ A1} = 0.5*1_aF*mf;
23 t1_ba = (l_Fb + l_aF/3)*(A1);
24
25 \text{ A2} = 0.5*1_\text{Fb*mf};
26 	 t2_ba = (1_Fb*2*A2)/3;
27
28 t_ba = (t1_ba+t2_ba)/(E*I);
29
30 theta_c = (t_ba/l_ab)-(theta_ca);
31
32 // Display:
33
34 printf("\n\nThe slope at point C of the steel beam
         = \%1.5 \, f \, rad', theta_c);
35
36
37 //—
      END
```

Scilab code Exa 12.12 DefBS12

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 12.12 : ")
5 // Given:
6 E = 200; //kN/m^2
7 I = 50*10^6; //mm^4
8 l_ab = 4; /m
9 \ 1_bc = 4; \ //m
10 \ l_ac = l_ab+l_bc;
11 R_a = -25; //kN
12 R_b = 50; //kN
13 R_c = 25; //kN
14
15 \text{ mb} = R_a*l_ab;
16
17 //Moment-Area Theorem:
18
19 t_{ca} = (l_{ab}*0.5*l_{ac}*mb*(10^3)^3)/(E*I);
20 t_ba = (l_ab*0.5*l_ab*mb*(10^3)^3)/(E*I*3);
21
22 \text{ del_c} = -t_ca + 2*t_ba;
23
24 // Display:
25
26 printf("\n\nThe displacement at point C for the
      steel overhanging beam = \%1.1 f mm', del_c);
27
28
29 //-
      END
```

Scilab code Exa 12.13 DefBS13

```
1 clear all; clc;
3 disp("Scilab Code Ex 12.13 : ")
5 // Given:
6 \text{ w} = 2; //kN/m
7 L = 8; /m
8 P = 8; //kN
9
10 // Calculations:
11 EI_theta_A1 = (3*w*L^3)/(128); //ThetaA1 = (3wL^3)
      /(128 EI)
12 EI_nu_C1 = (5*w*L^4)/(768); //NuC1 = (5wL^4)/(768EI)
14 EI_theta_A2 = (P*L^2)/(16); //theta_A2 = (PL^2)/(16)
      EI)
15 EI_nu_C2 = (P*L^3)/(48); //nu_C2 = (PL^3)/(48EI)
16
17 theta_A = EI_theta_A1 + EI_theta_A2;
18 \text{ nu}_C = \text{EI}_{\text{nu}}C1 + \text{EI}_{\text{nu}}C2;
19
20 // Display:
21
22 printf('\n\nThe slope at A in terms of EI
                       = \%1.0 \text{ f/EI} \text{ kNm}^2', theta_A);
23 printf('\nThe displacement at point C in terms of EI
         = \%1.0 f/EI kNm^3', nu_C);
24
25 //
```

Scilab code Exa 12.14 DefBS14

```
1 clear all; clc;
3 disp("Scilab Code Ex 12.14 : ")
5 // Given:
6 \text{ w} = 5; //kN/m
7 l_ab = 4; /m
8 \ 1_bc = 2; /m
9 P = 10; //kN
10 M = w*l_ab; /kNm
11
12 // Calculations:
13 EI_theta_B1 = (w*l_ab^3)/(24); //ThetaB1 = (wL^3)
      /(24 EI)
14 EI_nu_C1 = l_bc*EI_theta_B1;
15
16 EI_theta_B2 = (M*1_ab)/(3); //
17 EI_nu_C2 = l_bc*EI_theta_B2;
18
19 EI_nu_C3 = (P*1_bc^3)/(3); /(nuC3) = (PL^3)/(24EI)
20
21 \quad nu_C = -EI_nu_C1 + EI_nu_C2 + EI_nu_C3;
22
23 // Display:
24
25 printf('\n'nThe displacement at end C of the
      overhanging beam, in terms of EI = \%1.1 f/EI kNm
      ^3',nu_C);
26
```

27 //

END

Scilab code Exa 12.15 DefBS15

```
1 clear all; clc;
 2
3 disp("Scilab Code Ex 12.15 : ")
5 // Given:
6 \text{ w} = 4; //kN/m
7 \ 1 = 10; \ //m
8 l_bc = 3; /m
9
10 // Calculations:
11 EI_theta_B = (w*1^3)/(24); //ThetaB1 = (wL^3)/(24EI)
12 EI_nu_B = (w*1^4)/(30); //nuB = (wL^4)/(30EI)
13
14 \text{ nu}_C = \text{EI}_{\text{nu}} + (\text{EI}_{\text{theta}} + \text{sl}_{\text{bc}});
15
16 // Display:
17
18 printf('\n\nThe displacement at end C of the
       cantilever beam, in terms of EI = \%1.0 \,\mathrm{f/EI} \,\mathrm{kNm}
       ^3',nu_C);
19
20 //
```

Scilab code Exa 12.16 DefBS16

```
1 clear all; clc;
3 disp("Scilab Code Ex 12.16 : ")
5 // Given:
6 k = 45; //kN/m
7 F = 3; //kN
8 E = 200*10^6; //kPa
9 \ l_ab = 3; \ //m
10 l_ac = 1; //m
11 l_cb = 2; //m
12 I = 4.687*10^-6; //m^4
13 R_a = (F*l_cb)/(l_ab);
14 R_b = F-R_a;
15
16 // Calculations:
17 nu_a = (R_a)/k;
18 \text{ nu_b} = (R_b)/k;
19
20 \text{ nu_c1} = \text{nu_b} + (l_cb/l_ab)*(\text{nu_a} - \text{nu_b});
21 \text{ nu_c2} = ((F*l_ac*l_cb)*(l_ab^2 - l_ac^2 - l_cb^2))
      /(6*E*I*l_ab);
22
23 \text{ nu_c} = \text{nu_c1} + \text{nu_c2};
24 \text{ nu_C} = \text{nu_c}*1000;
25
26 // Display:
27
28 printf('\n\nThe vertical displacement of the force
      at C = \%1.3 f \text{ mm}', \text{nu\_C};
29
30 //
```

Scilab code Exa 12.21 DefBS21

```
1 clear all; clc;
3 disp("Scilab Code Ex 12.21 : ")
4
5 // Given:
6 \ 1 = 3; \ //m
7 l_af = 1/2; /m
8 P = 8; //kN
9 \text{ w} = 6; //\text{kN/m}
10
11 // Compatibility Equation:
12 EI_nu_b1 = (w*l^4)/8 + (5*P*l^3)/48; //nu_b = (wl^4)
      /8EI + (5Pl^3)/48EI
13 EI_nu_b2 = (1^3)/3;
14
15 B_y = EI_nu_b1 / EI_nu_b2;
16
17 // Display:
18
19 printf("\nnThe reactions at roller support B =
      \%1.2 \text{ f kN}', B_{-y});
20
21
22 //--
      END
```

Scilab code Exa 12.22 DefBS22

```
1 clear all; clc;
3 disp("Scilab Code Ex 12.22 : ")
4
5 // Given:
6 \ 1 = 8; \ //m
7 l_ab = 1/2; /m
8 l_bc = 1/2; /m
9 l_af = l_ab/2; /m
10 b = 12/1000; //m
11 w = 24; //kN/m
12 E = 200*10^6; /(Kn/m^2)
13 I = 80*10^-6; // m^4
14
15 // Compatibility Equation:
16 nu_b = (5*w*1^4)/(768*E*I); //nu_b = (5wl^4)/768EI
17 nu_b_y = (1^3)/(48*E*I); //nu_b' = (Pl^3)/48EI
18
19 B_y = (nu_b-b)/nu_b_byBy;
20
21 C_y = ((w*l_ab*l_af) - (B_y*l_ab))/1;
22
23 \text{ A_y} = (w*l_ab - B_y - C_y);
24
25 // Display:
26
27 printf('\n\nThe reaction at A = \%1.0 \text{ f kN'}, A_y);
28 printf('\nThe reaction at B = \%1.0 \,\text{f kN'}, B_y);
29 printf('\nThe reaction at C = \%1.0 \,\text{f kN'}, C_y);
30
31
32 //
```

Scilab code Exa 12.23 DefBS23

```
1 clear all; clc;
3 disp("Scilab Code Ex 12.23 : ")
4
5 // Given:
6 d = 12; /mm
7 E = 210; //GPa
8 I = 186*10^6; /mm^4
9 P = 40; //kN
10 l_bc = 3; //m
11 l_ab = 4;/m
12 1 = 5; //m
13
14 // Compatibility Equation: nuB' = nuB - nuB'
15 A = (\%pi/4)*(d^2);
16
17 nuB1_by_Fbc = (1_bc*1000)/(A*E*1000); //nuB'' = PL/
18 nuB2 = (5*P*1000*(1_ab*1000)^3)/(48*E*1000*I); //nuB
      = (5PL^3)/(48EI)
19 nuB2_by_Fbc = ((1*1000)^3)/(3*E*1000*I); //nuB' = (
     PL^3 / (3 EI)
20
21 	ext{ F_bc} = (nuB2)/(nuB1_by_Fbc + nuB2_by_Fbc );
22 F_bc = F_bc/1000; //in kN
23
24 // Display:
25
```

Scilab code Exa 12.24 DefBS24

```
1 clear all; clc;
3 disp("Scilab Code Ex 12.24 : ")
5 // Given:
6 l_ab = 4; /m
7 1 = 1_ab/2;
8 \text{ w} = 9; //\text{kN/m}
10 // Compatibility Equations:
11
12 EI_thetaB = (w*1_ab^3)/(48); //thetaB = (wL^3)/(48EI)
13 EI_nuB = (7*w*1_ab^4)/(384); //nuB = (7wl^4)/(384EI)
14
15 //Only redundant By applied:
16 EI_thetaB_by_By = (1_ab^2)/(2); //thetaB' = (PL^2)
     /(2EI)
17 EI_nuB_by_By = (1_ab^3)/(3); //nuB' = (PL^3)/(3EI)
18
19 //Only redundant Mb is applied:
20 EI_thetaB_by_Mb = l_ab; //thetaB'' = (ML)/(EI)
21 EI_nuB_by_Mb = (1_ab^2)/(2); /(nuB') = (ML^2)/(2EI)
```

```
22
23 //Solving for By and Mb using matrices:
24
25 A = [EI_thetaB_by_By EI_thetaB_by_Mb; EI_nuB_by_By
      EI_nuB_by_Mb ];
26 b = [-EI\_thetaB; -EI\_nuB];
27 moments = A \setminus b;
28
29 By = moments(1);
30 \text{ Mb} = \text{moments}(2);
31
32 // Display:
33
34 printf('\n\nThe vertical force at B for the beam
      = \%1.3 \, f \, kN', By);
35 printf('\nThe moment at B for the beam
      \%1.2 \text{ f kNm}', \text{Mb});
36
37 //
```

186

Chapter 13

Buckling of Columns

Scilab code Exa 13.1 BoC1

```
1 clear all; clc;
3 disp("Scilab Code Ex 13.1 : ")
5 // Given:
6 \ 1 = 7.2*1000; \ //mm
7 E = 200; //GPa
8 \text{ ro} = 75; //\text{mm}
9 ri = 70; //mm
10 sigma_y = 250; //MPa
11
12 // Calculations:
13 I = (\%pi/4)*(ro^4 - ri^4)
14 A = (\%pi)*(ro^2 -ri^2);
15
16 Pcr = (\%pi^2*(E*10^6)*I*(1000)^-2)/(1^2); //Pcr = (
      \%pi^2*EI)/(1^2)
17
18 \text{ sigma\_cr} = (Pcr*1000)/A;
19
20 if (sigma_cr < sigma_y)
```

Scilab code Exa 13.2 BoC2

```
1 clear all; clc;
3 disp("Scilab Code Ex 13.2 : ")
4
5 // Given:
6 E = 200; //GPa
7 I = 15.3*10^6; /mm^4
8 1 = 4*1000; //mm
9 A = 5890; //mm^2
10 sigma_y = 250; //MPa
11
12 // Calculations:
13
14 Pcr = ((\%pi^2)*E*10^6*I*1000^-2)/(1^2); //Pcr = (\%pi)
      ^2 * EI) / (1 ^2)
15
16 \text{ sigma\_cr} = (Pcr*1000)/A;
17
18 if(sigma_cr>sigma_y)
       Pcr = (sigma_y*A);
19
       Pcr = Pcr/1000; //in kN
20
21 end
```

Scilab code Exa 13.3 BoC3

```
1 clear all; clc;
3 disp("Scilab Code Ex 13.3 : ")
4
5 // Given:
6 E = 200; //GPa
7 \text{ Ix} = 13.4*10^-6;
8 \text{ Iy} = 1.83*10^-6;
9 1 = 8;
10 KLx = 0.5*1; //m
11 KLy = 0.7*(1/2); //m
12 \text{ rx} = 66.2; /\text{mm}
13 ry = 24.5; /mm
14
15 Pcrx = (\%pi^2*E*10^6*Ix)/(KLx^2); //Pcr = (\%pi^2*EI)
      /(1^2)
16 Pcry = (\%pi^2*E*10^6*Iy)/(KLy^2); //Pcr = (\%pi^2*EI)
      /(1^2)
17
18 Pcr = min(Pcrx, Pcry);
19 A = 3060; //mm^2
20 sigma_cr = Pcr/A;
```

```
21
22 sl_ratio_x = (KLx*1000)/(rx);
23 sl_ratio_y = (KLy*1000)/(ry);
24 s_ratio = max(sl_ratio_x, sl_ratio_y);
25
26 //Display:
27
28 printf("\n\nThe maximum load that the column can support without buckling = %1.0 f kN', Pcr);
29 printf("\nThe largest slenderness ratio = %1.1 f N/mm ^2', s_ratio);
30 //
END
```

Scilab code Exa 13.4 BoC4

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 13.4 : ")
4
5 //Given:
6 E = 70; //GPa
7 Ix = 61.3*10^-6;
8 Iy = 23.2*10^-6;
9 l = 5;
10 KLx = 2*1; //m
11 KLy = 0.7*(1); //m
12 FS = 3; //Factor of safety
13 sigma_y = 215; //MPa
14
15
```

```
16 Pcrx = (\%pi^2*E*10^6*Ix)/(KLx^2); //Pcr = (\%pi^2*EI)
      /(1^2)
17 Pcry = (\%pi^2*E*10^6*Iy)/(KLy^2); //Pcr = (\%pi^2*EI)
      /(1^2)
18
19 Pcr = min(Pcrx, Pcry);
20 A = 7.5*10^{-3}; /mm^{2}
21 P_allow = Pcr/FS;
22 \text{ sigma\_cr} = (Pcr*10^-3)/A;
23
24
25 if (sigma_cr < sigma_y)
26
     printf("\n\nThe largest allowable load that the
27
        column can support = %1.0 f kN', P_allow);
28
  end
29
30 //---
      END
```

Scilab code Exa 13.5 BoC5

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 13.5 : ")
4
5 //Given:
6 E = 200*10^3; //MPa
7 sigma_y = 250; //MPa
8 x1 = 50; //mm
9 y1 = 75; //mm
10 z1 = 4.5; //m
11 e = 25; //mm
```

```
12
13 Ix = (1/12)*x1*(y1*2)^3;
14 A = x1*2*y1;
15 rx = sqrt(Ix/A);
16 L = z1*1000;
17 KL = 1*L;
18
19 sl_ratio = KL/rx;
20 c = y1;
21 \text{ ec_r} = \text{e*c/(rx^2)};
22 P_a = 83; //MPa
23 A = 7500; /\text{mm}^2
24 P = P_a*A;
25 P = P/1000; //in kN
26
27 k = (L/(2*rx))*(sqrt(P/(E*A)));
28 sigma_max = (P*1000/A)*(1+ec_r*sec(k)); //Secant
      Formula
29
30 \ 1 = sqrt((P*1000)/(E*Ix));
31 nu_max = e*(sec(1*L/2)-1);
32
33 // Display:
34
35 printf('\n\nThe allowable eccentric load that can be
       applied on the column = \%1.1 \, \text{fkN}',P);
36 printf('\nThe maximum deflection of the column due
      to the loading
                               = \%1.0 \text{ f mm',nu_max)};
37
38 //
```

Scilab code Exa 13.6 BoC6

```
1 clear all; clc;
3 disp("Scilab Code Ex 13.6 : ")
5 // Given:
6 z1 = 4*1000; /mm
7 e = 200; /mm
8 \text{ KLy} = 0.7*z1;
9 	ext{ Iy = } 20.4*10^6;
10 E = 200*10^3; //N/mm^2
11 sigma_y =250; //MPa
12
13 //y-y Axis Buckling:
14 Pcry = (\%pi^2*E*10^6*Iy)/(KLy^2); //Pcr = (\%pi^2*EI)
      /(1^2)
15 Pcry = Pcry/1000;
16
17 //x-x Axis Yielding:
18 Kx = 2;
19 KLx = Kx*z1;
20 c = (z1-KLy)/2;
21 \text{ rx} = 89.9;
22
23 //Solved by applying the Secant Formula and then
      finding Px by trial and error:
24
25 trial_Px = 419.4; //kN
26
27 A = 7850; //mm^2
28 sigma = (trial_Px*1000)/(A);
29
30 if(Pcry>trial_Px & sigma<sigma_y)
31 printf('\n\nThe maximum eccentric load that the
      column can support = \%1.1 \, \text{fkN}', trial_Px);
32 printf('\nFailure will occur about the x-x axis.');
33
```

```
34 end
35
36 //
```

Scilab code Exa 13.7 BoC7

```
1 clear all; clc;
3 disp("Scilab Code Ex 13.7 : ")
4
5 // Given:
6 \, d = 30; /mm
7 r = d/2;
8 L = 600; /mm
9 \text{ sigma_pl} = 150; //MPa
10
11 // Calculations:
12 I = (\%pi/4)*(r^4);
13 A = \%pi*r^2;
14 r_gyr = sqrt(I/A);
15 K = 1;
16 sl_ratio = (K*L)/(r_gyr);
17 \text{ flag1 = 0};
18
19 //Assuming the critical stress is elastic:
20 E = 150/0.001;
21 sigma_cr1 = (\%pi^2*E)/(sl_ratio^2); //Pcr = (\%pi^2*
      EI)/(1^2)
22
23
24 if(sigma_cr1 > sigma_pl)
```

```
25
       Et = (270 - 150)/(0.002 - 0.001);
        sigma_cr2 = (\%pi^2*Et)/(sl_ratio^2); //Pcr = (
26
           \%pi^2*EI)/(1^2)
27
28
      if(sigma_cr2>150 & sigma_cr2<270)</pre>
29
           Pcr = sigma_cr2*A;
           Pcr = Pcr/1000; //in kN
30
            printf('\n\nThe critical load when used as a
31
                pin supported column = \%1.0 fkN', Pcr);
32
33
      end
34
35
36 \text{ end}
```

Scilab code Exa 13.8 BoC8

```
1 clear all; clc;
3 disp("Scilab Code Ex 13.8 : ")
5 // Given:
6 E = 200*10^3; /MPa
7 \text{ sigma_y} = 250; //MPa
8 L = 5*1000; /mm
9 K = 1;
10 A = 19000; //mm^2
11 rx = 117; //mm
12 ry = 67.4; //mm
13
14 // Calculations:
15 sl_ratio = (K*L)/(ry);
16 sl_ratio_c = sqrt((2*%pi^2*E)/(sigma_y));
17
18 if(sl_ratio > 0 & sl_ratio < sl_ratio_c)</pre>
```

```
19
       num = (1 - (sl_ratio^2/(2*sl_ratio_c^2)))*
          sigma_y;
20
       denom1 = (5/3) + ((3/8)*sl_ratio/sl_ratio_c);
       denom2 = (sl_ratio^3)/(8*sl_ratio_c^3);
21
22
       sigma_allow = num/(denom1 - denom2);
23
       P = sigma_allow*A;
24
       P = P/1000;
25
          printf('\n\nThe largest load the pin
26
             supported column can safely bear = \%1.0 f
             kN',P);
27
28
      end
29
30 //
```

Scilab code Exa 13.9 BoC9

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 13.9 : ")
4
5 //Given:
6 P = 80; //kN
7 E = 210*10^3; //MPa
8 sigma_y = 360; //MPa
9 L = 5000; //mm
10 K = 0.5;
11
12 //Calculations:
13 I_by_d = (1/4)*(%pi)*(0.5^4);
```

```
14 \text{ A_by_d} = (1/4)*(\%pi);
15 r_by_d = sqrt(I_by_d/A_by_d);
16
17 sl_ratio_c = sqrt((2*%pi^2*E)/(sigma_y));
18 sigma_allow = (P*1000)/A_by_d;
19
20 d4 = (sigma_allow*23*(K*L)^2*16)/(12*%pi^2*E);
21 d = d4^{(1/4)};
22
23 // Check:
24 d = ceil(d);
25 r = d/4;
26 \text{ KL_r} = (\text{K*L})/\text{r};
27
28
29 if(KL_r>sl_ratio_c & KL_r<200)
            printf('\n\nThe smallest diameter of the rod
30
                as allowed by AISC specification = \%1.0
               fmm',d);
31
32 end
33
34 //
```

Scilab code Exa 13.10 BoC10

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 13.10 : ")
4
5 //Given:
```

```
6 L = 750; /mm
7 P = 60; //kN
8 \text{ sigma} = 195; //N/mm^2
9 K = 1;
10
11 // Calculations:
12 b2 = (P*1000)/(2*sigma);
13 b = sqrt(b2);
14
15 A = 2*b*b;
16 Iy = (1/12)*(2*b*b^3);
17 ry = sqrt(Iy/A);
18
19 sl_ratio = (K*L)/(ry);
20
21
22
23 if(sl_ratio > 12)
24
       b4 = (P*1000*2598.1^2)/(2*378125); //Eqn 13.26
25
       b = b4^{(1/4)};
26
27
       sl_ratio = (2598.1)/(b);
28
       w = 2*b;
29
       if(sl_ratio>55)
30
           printf('\n\nThe thickness of the bar = \%1.0
31
              fmm',b);
          printf('\nThe width of the bar = %1.0fmm
32
              ',w);
33
      end
34 end
35
36 //
```

198

Scilab code Exa 13.11 BoC11

```
1 clear all; clc;
3 disp("Scilab Code Ex 13.11 : ")
4
5 // Given:
6 P = 20*10^3; /N
7 \text{ y1} = 150; /\text{mm}
8 \times 1 = 40; /mm
9 A = (x1*y1);
10 d = 40;
11 \text{ K} = 1;
12
13 //Eqn 13.29
14
15 L2 = (3718*A*d^2)/(P);
16 L = sqrt(L2);
17 KL_d = (K*L)/(d);
18
19 if(KL_d>26 \& KL_d<=50)
         printf('\n\nThe greatest allowable length L as
20
             specified by the NFPA = \%1.0 \, \text{f mm}',L);
21
22 \text{ end}
23
24 //
```

Scilab code Exa 13.12 BoC12

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 13.12 : ")
5 // Given:
6 L = 1600; /mm
7 K = 2;
8 \ 1 = 80; \ //mm
9 b = 40; /mm
10 e = 20; /mm
11 c = 40; /mm
12
13 // Calculations:
14 	ext{ I1 } = (1/12)*(1*b^3);
15 A = 1*b;
16 r = sqrt(I1/A);
17 sl_ratio = (K*L)/(r);
18
19 //Eqn 13.26:
20 sigma_allow = (378125)/(sl_ratio^2);
21
22 	 I2 = (1/12)*(b*1^3);
23 coefficient = (1/A) + (e*c)/I2;
24 sigma_max = sigma_allow;
25 P = sigma_max/coefficient;
26 P = P/1000;
27
28 // Display:
29
30 printf('\n\nThe load that can be supported if the
     column is fixed at its base = \%1.2 \, f \, kN', P);
31
32 //
```

Scilab code Exa 13.13 BoC13

```
1 clear all; clc;
3 disp("Scilab Code Ex 13.13 : ")
5 // Given:
6 \text{ sigmaB\_allow} = 160; //MPa
7 E = 200; //GPa
8 \text{ sigma_y} = 250; //MPa
9 K = 1;
10 A = 3790; //mm^2
11 Ix = 17.1*10^6; //mm^4
12 ry = 38.2; //mm
13 d = 157; /mm
14 c = d/2;
15 e = 750; //mm
16 L = 4000; /mm
17
18 sl_ratio = (K*L)/(ry);
19 sl_ratio_c = sqrt((2*%pi^2*E*1000)/(sigma_y));
20
21
22
23 if(sl_ratio < sl_ratio_c)
24
       num = (1 - (sl_ratio^2/(2*sl_ratio_c^2)))*
          sigma_y;
       denom1 = (5/3) + ((3/8)*sl_ratio/sl_ratio_c);
25
       denom2 = (sl_ratio^3)/(8*sl_ratio_c^3);
26
27
       sigmaA_allow = num/(denom1 - denom2);
28
29
       coeffP = 1/(sigmaA_allow*A) + (e*c)/(Ix*
          sigmaB_allow);
```

```
30
       P = 1/coeffP;
31
32
        sigA = (P/A)/(sigmaA_allow);
        P = P/1000; //in kN
33
34
35
        if(sigA < 0.15)
36
            printf('\n\nThe maximum allowable value of
37
                eccentric load = \%1.2 \, \text{f kN}', P);
38
        end
39 end
40
41 //
```

Scilab code Exa 13.14 BoC14

```
1
2 clear all; clc;
3
4 disp("Scilab Code Ex 13.14 : ")
5
6 //Given:
7 K = 2;
8 d= 60; //mm
9 L = 1200; //mm
10 e = 80; //mm
11 c = d;
12 A = 60*120; //mm
14 b = 120; //mm
15
```

```
16
17 // Calculations:
18 sl_ratio = (K*L)/(d);
19
20 if(sl_ratio > 26 & sl_ratio < 50)
21
        sigma_allow = (3718)/(sl_ratio^2);
22
       sigma_max = sigma_allow;
23
24
       I = (1/12)*(1*b^3);
       coeffP = (1/A) + (e*c)/(I);
25
       P = sigma_max/coeffP;
26
       P = P/1000; //kN
27
28
29
        printf('\n\nThe eccentric load that can be
            supported = \%1.2 \text{ f kN}', P);
30 \text{ end}
31
32 //Answer given in the textbook varies.
33
34 //
```

Chapter 14

Energy Methods

Scilab code Exa 14.1 EM1

```
1 clear all; clc;
3 disp("Scilab Code Ex 14.1 : ")
5 // Given:
6 sigma_y = 310; //N/mm^2
7 db = 18; /mm
8 \text{ rb} = db/2;
9 \text{ Ab} = \text{\%pi*(rb^2)};
10 E = 210*10^3; //N/mm^2
11 da1 = 20; /mm
12 \text{ ra1} = da1/2;
13 Aa1 = \%pi*(ra1^2);
14 La1 = 50; /mm
15 La2= 6; /mm
16 \text{ da2} = 18; //mm
17 \text{ ra2} = da2/2;
18 Aa2 = \pi *(ra2^2);
19 Lb = 56; //mm
20
21
```

```
22 //Bolt A:
23 P_max = sigma_y*Ab;
24 Uia = (P_max^2/(2*E))*(La1/Aa1 + La2/Aa2); //Ui = (N
      ^{2L} / (2AE)
25 Uia = Uia/1000;
26
27 //Bolt B:
28 Uib = (P_max^2/(2*E))*(Lb/Ab);
29 \text{ Uib} = \text{Uib}/1000;
30
31 // Display:
32
       printf('\n\nThe greatest amount of strain energy
           absorbed by bolt A = \%1.3 f J', Uia);
       printf('\nThe greatest amount of strain energy
33
          absorbed by bolt B = \%1.3 f J', Uib);
34
35
    //
```

Scilab code Exa 14.5 EM5

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 14.5 : ")
4
5 //Given:
6 G = 75*10^9; //N/m^2
7 ro = 80/1000; //m
8 t = 15/1000; //m
9 ri = ro - t;
10 11 = 750/1000; //m
11 12 = 300/1000; //m
```

```
12 T1 = 40; //Nm
13 T2 = 15; /N_{\rm m}
14
15 // Calculations:
16
17 J = (\%pi/2)*(ro^4 - ri^4);
18
19 / \text{Eqn } 14-22
20 U1 = (T1^2*11)/(2*G*J);
21 U2 = (T2^2*12)/(2*G*J);
22 \text{ Ui} = \text{U1} + \text{U2};
23 Ui = Ui*10^6; //in micro Joule
24
25 // Display:
26
       printf('\n\nThe strain energy stored in the shaft
27
               = \%1.0 \, fX10^-6 \, J', Ui);
28
29 //
```

Scilab code Exa 14.6 EM6

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 14.6 : ")
4
5 //Given:
6 l_ab = 1; //m
7 l_bc = 2; //m
8 N_ab = 11.547*1000; //N
9 Nb = 20*1000; //N
```

```
15
16 / \text{Eqn } 14-26
17 P_by_2 = P/2;
18 \ l_ac = sqrt(l_bc^2 - l_ab^2);
19 \text{ del} = 0;
20
21 N2= [N_ab^2 Nc^2 N_ac^2];
22 L = [l_ab l_bc l_ac];
23
24 \text{ for } i = 1:3
        del = del + (N2(i)*L(i))/(2*A*E);
25
26 \text{ end}
27
28 \text{ del_bh} = \text{del/P_by_2};
29 del_bh = del_bh * 1000;
30
31 // Display:
32
33 printf('\n\nThe horizontal displacement at point B
         = \%1.2 \, \text{fmm}', del_bh);
34
35 //
      END
```

Scilab code Exa 14.8 EM8

10 Nc = -23.094*1000; //N 11 N_ac = -20*1000; //N 12 A = $100/(1000^2)$; //mm² 13 E = $200*10^9$; //N/m²

 $14 P = 20*10^3; //N$

```
1 clear all; clc;
```

```
3 disp("Scilab Code Ex 14.8 : ")
5 // Given:
6 \text{ ro} = 60; /\text{mm}
7 \text{ ri} = 50; //mm
8 E = 70; //kN/mm^2
9 W = 600; //kN
10 L = 240; //mm
11 h = 0;
12
13 // Part a:
14
15 A = (\%pi)*(ro^2 - ri^2);
16 del_st = (W*L)/(A*E);
17
18 // Part b:
19
20 del_max = del_st*(1 + sqrt(1 + 2*(h/del_st)));
21
22 // Display:
23
     printf('\n\nThe maximum displacement at the top of
24
         the pipe for gradually applied load
                                                 = \%1.4 \text{ f}
        mm', del_st);
       printf('\nThe maximum displacement at the top of
25
            the pipe for suddenly applied load = \%1.4
          f mm',del_max);
26
27 //
```

208

Scilab code Exa 14.9 EM9

```
1 clear all; clc;
3 disp("Scilab Code Ex 14.9 : ")
5 // Given:
6 \text{ W} = 6000; /N
7 h = 50; /mm
8 E = 210*1000; //N/mm^2
9 L = 5000; /mm
10 I = 87.3*10^6; //mm^2
11
12 // Calculations:
13
14 del_st = (W*L^3)/(48*E*I);
15 del_max = del_st*(1 + sqrt(1 + 2*(h/del_st)));
16
17 c = 252/2;
18 \operatorname{sigma_max} = (12*E*del_max*c)/(L^2);
19
20 // Display:
21
22
         printf('\n\nThe maximum bending stress in the
                          = \%1.2 \, \text{f N/mm}^2, sigma_max);
            steel beam
        printf('\nThe maximum deflection in the beam
23
                        = \%1.3 \, \text{f mm}, del_max);
24
25 //
```

END

Scilab code Exa 14.10 EM10

```
1 clear all; clc;
3 disp("Scilab Code Ex 14.10 : ")
5 // Given:
6 \text{ m} = 80*1000; //\text{kg}
7 v = 0.2; //m/s
8 l_ac = 1.5; /m
9 E = 200*10^9; /N/m^2
10 w = 0.2; //m
11 I = (1/12)*(w^4);
12 l_ab = 1000; /mm
13
14 // Calculations:
15 del_Amax = sqrt((m*v^2*l_ac^3)/(3*E*I));
16
17 P_{max} = (3*E*I*del_Amax)/(1_ac^3);
18 theta_A = (P_max*l_ac^2)/(2*E*I);
19 del_Amax = del_Amax*1000;
20 del_Bmax = del_Amax + (theta_A*l_ab);
21
22
23 // Display:
24
       printf('\n\nThe maximum horizontal displacement
25
          of the post at B due to impact = \%1.1 f mm',
          del_Bmax);
26
27
28 //
```

210

Scilab code Exa 14.11 EM11

```
1 clear all; clc;
 2
3 disp("Scilab Code Ex 14.11 : ")
5 // Given:
6 A = 400*10^-6; /m^2
7 E = 200*10^6; //kN/m^2
8 P = 100; //kN
10 // Virtual Work Equation:
12 \quad n = [0 \quad 0 \quad -1.414 \quad 1];
13 N = [-100 141.4 -141.4 200];
14 L = [4 2.828 2.828 2];
15 \text{ del_cv} = 0;
16
17 \text{ for } i=1:4
        del_cv = del_cv + (n(i)*N(i)*L(i))/(A*E);
19 end
20
21 del_cv = del_cv * 1000;
22
23 // Display:
24
25
        printf('\n\nThe vertical displacement of joint C
             of the steel truss = \%1.1 \,\mathrm{f} \,\mathrm{mm}', \mathrm{del}_{-}\mathrm{cv});
26
27
28 //
```

Scilab code Exa 14.12 EM12

```
1 clear all; clc;
3 disp("Scilab Code Ex 14.12 : ")
5 // Given:
6 A = 300*10^-6; /m^2
7 E = 210*10^6; //kN/m^2
8 P = 60; //kN
9 \text{ F_ac} = 1.25; //kN
10
11 // Part a:
12
13 // Virtual Work Equation:
14
15 n = [0 1.25 0 -0.75];
16 N = [0 75 -60 -45];
17 L = [1.5 2.5 2 1.5];
18 \text{ del\_ch} = 0;
19
20 \text{ for } i=1:4
21
        del_ch = del_ch + (n(i)*N(i)*L(i))/(A*E);
22 end
23
24 \text{ del\_chA} = \text{del\_ch*1000};
25
26 // Part b:
27
28 \text{ del_L} = -6; /mm
29 del_chB = F_ac*del_L;
30
31 if (del_chB < 0)
32
```

```
33
34 // Display:
35
       printf('\n\nThe horizontal displacement of joint
36
           C if a force is applied to B = \%1.3 f mm',
          del_chA);
       printf('\nThe horizontal displacement of joint C
37
           if AC is fabricated short = \%1.1 f mm',
          del_chB);
38 end
39
40
41
42 //
```

Scilab code Exa 14.13 EM13

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 14.13 : ")
4
5 //Given:
6 del_T = 60; //degree celcius
7 alpha = 12*10^-6; //per degree celcius
8 E = 200*10^6; //kN/m^2
9 A = 250*10^-6; //m^2
10 L = 4; //m
11
12 //Virtual Work Equation:
13 n = 1.155; //kN
14 N = -12; //kN
```

Scilab code Exa 14.16 EM16

```
1 clear all; clc;
3 disp("Scilab Code Ex 14.16 : ")
5 // Given:
6 I = 175.8*10^-6; /m^4
7 E = 200*10^6; //kN/m^2
8 Ra = 1; //kN
9 \ l_ab = 3; //m
10 l_bc = 6; //m
11
12
13 // Virtual Work Equation:
14 m1 = -1; //*x1
15 M1 = -2.5; //*x1^3
16 \text{ m2} = -0.5; //*x2
17
18 \times 10 = 0;
```

```
19 \times 11 = l_ab;
20 I1 = integrate ('m1*M1*(x1^4)', 'x1', x10, x11);
21
22 \times 20 = 0;
23 \times 21 = 1_bc;
24 I2 = integrate('m2*123.75*(x2^2)', 'x2', x20, x21);
25
26 \times 20 = 0;
27 \times 21 = 1_bc;
28 I3 = integrate(' -m2*22.5*(x2^3)', 'x2', x20, x21);
29
30 \text{ In} = I1 + I2 + I3;
31 del_A = (In)/(E*I);
32 del_A = del_A * 1000;
33
34
35 // Display:
36
        printf('\n\nThe displacement of point A of the
37
           steel beam = \%1.1 \, \text{f mm}', del_A);
38
39
  //
```

Scilab code Exa 14.17 EM17

```
1 clear all; clc;
2
3 disp("Scilab Code Ex 14.17 : ")
4
5 //Given:
6 E = 210*10^3; //N/mm^2
```

```
7 P = 40*10^3; //N
8 \text{ A_ab} = 1250; //\text{mm}^2
9 \text{ A_ac} = 625; //mm^2
10 A_cd = 1250; /mm^2
11 A_bc = 625; //mm^2
12
13 \text{ N_by_P} = [0 \ 0 \ 1.67 \ -1.33];
14 L = [4000 3000 5000 4000];
15 A = [A_ab A_bc A_ac A_cd];
16 N = zeros(4);
17 \quad sum = 0;
18
19
20 \text{ for } i = 1:4
       N(i) = N_by_P(i)*P;
21
        num(i) = N(i)*N_by_P(i)*L(i);
22
23
24 end
25
26 \text{ for i} = 1:4
        sum = sum + (num(i)/(A(i)*E)); //By Castigliano'
           s Second theorem.
28 end
29
30 \text{ del_ch} = sum;
31
32 // Display:
        printf('\n\nThe horizontal displacement of joint
33
            C of the steel truss = \%1.2 f mm', sum);
34
35 //
```

Scilab code Exa 14.18 EM18

```
1 clear all; clc;
3 disp("Scilab Code Ex 14.18 : ")
5 // Given:
6 E = 200*10^6; //kN/m^2
7 P = 0; //N
8 A = 400*10^-6; /m^2
10 \ N_by_P = [0 \ 0 \ -1.414 \ 1];
11 L = [4 2.828 2.828 2];
12 N = [-100 141.4 -141.4 200];
13 \quad sum = 0;
14
15
16 \text{ for } i = 1:4
17
        num(i) = N(i)*N_by_P(i)*L(i);
18 end
19
20 \text{ for } i = 1:4
        sum = sum + (num(i)/(A*E)); //By Castigliano's
           Second theorem.
22 end
23
24 \text{ del_ch} = sum * 1000;
25
26 // Display:
     printf('\n\nThe vertical displacement of joint C
         of the steel truss = \%1.1 \,\mathrm{f} \,\mathrm{mm}', del_ch);
28
29 //
```

Scilab code Exa 14.21 EM21

```
1 clear all; clc;
3 disp("Scilab Code Ex 14.21 : ")
5 // Given:
6 I = 125*10^-6; //m^4
7 E = 200*10^6; //kN/m^2
8 \text{ Rc} = 5; //kN
9 \ l_ac = 6; /m
10 l_cb = 4; //m
11
12
13 // Castigliano 's Second Theorem:
14 m = 0.4/9;
15
16 \times 10 = 0;
17 x11 = l_ac;
18 I11 = integrate('4.4*(x1^2)', 'x1', x10, x11);
19 I12 = integrate('-m*(x1^4)', 'x1', x10, x11);
20 \text{ I1} = \text{I11} + \text{I12};
21
22 \times 20 = 0;
23 \times 21 = 1_{cb};
24 I21 = integrate(`6*0.6*(x2^2)`, `x2', x20, x21);
25 I22 = integrate('18*0.6*(x2)', 'x2', x20, x21);
26 	 I2 = I21 + I22;
27
28 \text{ In} = I1 + I2 ;
29 del_cv = (In)/(E*I);
```

```
30 del_cv = del_cv*1000;
31
32
33 //Display:
34
35    printf('\n\nThe vertical displacement of point C
        of the steel beam = %1.1 f mm', del_cv);
36
37 //
END
```