In the Claims:

The current status of all claims is listed below and supercedes all previous lists of claims.

Please cancel claim 6 without prejudice to its presentation in another application, and amend claims 9-11 as follows.

1. (original) A compound of formula I

wherein

the dashed line is absent or represents a bond;

A represents C(O), $S(O)_2$, C(O)O (in which latter group the O moiety is attached to R^1), C(O)NH, $S(O)_2NH$ (in which latter two groups the NH moiety is attached to R^1) or C_{1-6} alkylene;

R¹ represents

- (a) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, CN, C_{3-10} cycloalkyl (optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy and aryl), OR^{4a} , $S(O)_nR^{4b}$, $S(O)_2N(R^{4c})(R^{4d})$, $N(R^{4e})S(O)_2R^{4f}$, $N(R^{4g})(R^{4h})$, B^1 -C(O)- B^2 - R^{4i} , aryl and Het^1),
- (b) C_{3-10} cycloalkyl or C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo, =O, CN, C_{1-10} alkyl, C_{3-10} cycloalkyl (optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy and aryl), OR^{4a} , $S(O)_nR^{4b}$, $S(O)_2N(R^{4c})(R^{4d})$, $N(R^{4e})S(O)_2R^{4f}$,

PATENT

 $N(R^{4g})(R^{4h}), B^3-C(O)-B^4-R^{4i}, aryl and Het^2,$

- (c) aryl, or
- (d) Het³;

R^{4a} to R⁴ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, aryl and Het^4),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, aryl and Het^5),
- (d) aryl or
- (e) Het⁶,

provided that R^{4b} does not represent H when n is 1 or 2;

the group -D-E-

- (a) when the dashed line represents a bond, represents $-C(R^{5a})=C(R^{5b})$ -, or
- (b) when the dashed line is absent, represents $-C(R^{6a})(R^{6b})-C(R^{7a})(R^{7b})$ -;

 R^{5a} and R^{5b} independently represent H, halo, OH, C_{1-4} alkyl, $(CH_2)_{0-4}O(C_{1-3}$ alkyl) (which latter two groups are optionally substituted by one OH group or one or more F atoms);

R^{6a}, R^{6b}, R^{7a} and R^{7b} independently represent H, F or methyl;

or R^{5a} and R^{5b} together represent C_{2-4} n-alkylene;

or one of R^{6a} and R^{6b} , together with one of R^{7a} and R^{7b} , represents C_{1-4} n-alkylene;

R² represents

- (a) H,
- (b) halo;
- (c) C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, CN, C_{1-4} alkoxy,

PATENT

C(O)OH, $C(O)O-C_{1-4}$ alkyl and $OC(O)-C_{1-4}$ alkyl) or

- (d) together with R^{3a} , R^2 represents C_{2-3} n-alkylene, T^1 -(C_{1-2} n-alkylene) or (C_{1-2} n-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (e) together with R^{3a} and R^{3b} , R^2 represents T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

 R^{3a} and R^{3b} independently represent H, F or methyl (which latter group is optionally substituted by one or more F atoms), or

- (a) together with R^2 , R^{3a} represents C_{2-3} n-alkylene, T^1 -(C_{1-2} n-alkylene) or (C_{1-2} n-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (b) together with R^2 , R^{3a} and R^{3b} represent T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

 T^1 and T^2 independently represent O, S, N(H) or N(C₁₋₄ alkyl);

G represents

(a) $-C(O)N(R^{8a})-[CH(C(O)R^9)]_{0-1}-C_{0-3}$ alkylene- $(Q^1)_{a^-}$,

(b) $-C(O)N(R^{8b})-C_{2-3}$ alkenylene- $(Q^1)_a$ -,

(c)

$$[N(R^{8c})C_{0-2} \text{ alkylene}]_{0-1} Q^{2a} Q^{2b}$$

(d)

$$\begin{array}{c} O - N \\ N \end{array} (CH_2)_{0-4} \end{array}$$

 R^9 represents H or a 5- to 10-membered aromatic heterocyclic group comprising one or two rings and containing, as heteroatom(s), one sulfur or oxygen atom and/or one or more nitrogen atoms, which heterocyclic group is optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl;

PATENT

 $Q^{1} \ represents \ O, \ NR^{10a}, \ [N(H)]_{0\text{--}1}C(O) - C_{0\text{--}2} \ alkylene, \ C(O)NHNHC(O), \ or \ -N=C(R^{10b}) -;$ a represents 0 or 1;

Q^{2a} represents

$$+CH$$
, $+N-CH$ or $+N$
 $>CH+$ or $>N+$;

Q^{2b} represents

L represents

- (a) C₀₋₆ alkylene-R^a,
- (b) C₀₋₂ alkylene-CH=CH-C₀₋₂ alkylene-R^a,
- (c) C_{0-2} alkylene- $C \equiv C C_{0-2}$ alkylene- R^a ,

(d)

(e)

wherein the dashed line represents an optional double bond, or

(f)

PATENT

Ar represents phenyl or naphthyl;

Het represents a 5- to 10-membered heterocyclic group comprising one or two rings and containing, as heteroatom(s), one sulfur or oxygen atom and/or one or more nitrogen atoms;

 R^{11a} represents H or one or more substituents selected from halo, OH, CN, C_{1-6} alkyl, C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-4} alkoxy, $C(O)OR^{12a}$ and $C(O)N(R^{12b})R^{12c}$) and $S(O)_{0-2}R^{12d}$;

 R^{11b} and R^{11c} independently represent H or one or more substituents selected from halo, OH, CN, C_{1-6} alkyl, C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-4} alkoxy, $C(O)OR^{12a}$ and $C(O)N(R^{12b})R^{12c}$), $S(O)_{0-2}R^{12d}$, =O, =NH, =NOH and =N-CN;

 R^{12a} to R^{12c} independently represent H, C_{1-6} alkyl or C_{3-7} cycloalkyl (which latter two groups are optionally substituted by one OH or $N(R^{12e})R^{12f}$ group or by one or more halo atoms);

 R^{12d} represents, independently at each occurrence, C_{1-6} alkyl optionally substituted by one OH or $N(R^{12e})R^{12f}$ group or by one or more halo atoms;

 R^{12e} and R^{12f} represent, independently at each occurrence, H or C_{1-4} alkyl optionally substituted by one or more halo atoms;

Ra to Rd independently represent

(a)

$$\xrightarrow{\mathsf{N}} (\mathsf{Q}^3)_{a} \xrightarrow{\mathsf{N}} \overset{\mathsf{N}}{\underset{\mathsf{H}}{\bigvee}} \mathsf{R}^{13a}$$

(b)

(c)

$$C_{0-3}$$
 alkylene $N_{R^{14d}}$

(d)

$$\begin{array}{c} & & \\$$

(e)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

(f)

(g) Het^x

or R^b to R^d may also represent H;

 Q^3 represents O, $N(R^{10c})$, $S(O)_2$, $S(O)_2NH$, C(O) or -CH=N-;

Q⁴ represents O, S or CH₂;

a represents 0 or 1;

PATENT

Het^x represents a 5- or 6-membered heterocyclic group containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic group may be substituted by one or more substituents selected from halo, =O, C_{1-6} alkyl and C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more halo atoms);

 R^{13a} to R^{13c} independently represent

- (a) H,
- (b) CN,
- (c) NH₂,
- (d) OR^{15} or
- (e) C(O)OR¹⁶;

R¹⁵ represents

- (a) H,
- (b) C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkynyl,
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl, or
- (d) C₁₋₃ alkyl, which latter group is optionally interrupted by oxygen and is substituted by aryl or -O-aryl;

R¹⁶ represents

- (a) C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkynyl, which latter three groups are optionally interrupted by one or more oxygen atoms, or
- (b) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl, or
- (c) C₁₋₃ alkyl, which latter group is optionally interrupted by oxygen and is substituted by aryl or -O-aryl;

 R^{8a} to R^{8c} , R^{10a} to R^{10c} and R^{14a} to R^{14g} independently represent

- (a) H or
- (b) C_{1-4} alkyl (which latter group is optionally substituted by one or more substituents

PATENT

selected from halo and OH),

or R^{14a} and R^{14b} independently represent $C(O)O-C_{1-6}$ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms), or R^{14c} represents

- (a) C_{1-4} alkyl substituted by C_{3-7} cycloalkyl or aryl,
- (b) C₃₋₇ cycloalkyl,
- (c) C(O)O-C₁₋₆ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),
- (d) $C(O)C_{1-6}$ alkyl,
- (e) $C(O)N(H)-C_{1-6}$ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms) or
- (f) $S(O)_2$ - C_{1-6} alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),

or R^{14c} and R^{14d} together represent C_{3-6} n-alkylene optionally interrupted by O, S, N(H) or N(C₁₋₄ alkyl) and/or substituted by one or more C_{1-4} alkyl groups;

each aryl independently represents a C_{6-10} carbocyclic aromatic group, which group may comprise either one or two rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- (c) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, C(O)OH, $C(O)O-C_{1-6}$ alkyl, phenyl (which latter group is optionally substituted by halo) and Het^7),
- (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het⁸),
- (e) OR^{17a}.
- (f) $S(O)_p R^{17b}$,
- $(g) S(O)_2N(R^{17c})(R^{17d}),$

PATENT

- (h) $N(R^{17e})S(O)_2R^{17f}$,
- (i) $N(R^{17g})(R^{17h})$,
- (j) $B^5-C(O)-B^6-R^{17i}$,
- (k) phenyl (which latter group is optionally substituted by halo),
- (l) Het⁹ and
- (m)Si $(R^{18a})(R^{18b})(R^{18c});$

R^{17a} to R¹⁷ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^{10}),
- (c) C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C₁₋₆ alkyl, C₁₋₆ alkoxy, phenyl (which latter group is optionally substituted by halo) and Het¹¹),
- (d) phenyl (which latter group is optionally substituted by halo) or
- (e) Het¹²,

provided that R^{17b} does not represent H when p is 1 or 2;

Het¹ to Het¹² independently represent 4- to 14-membered heterocyclic groups containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may comprise one, two or three rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- (c) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, C(O)OH, $C(O)O-C_{1-6}$ alkyl, phenyl (which latter group is optionally substituted by halo) and Het^a),
- (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl

PATENT

(which latter group is optionally substituted by halo) and Het^b),

- (e) = 0,
- (f) OR^{19a},
- (g) $S(O)_{q}R^{19b}$,
- (h) $S(O)_2N(R^{19c})(R^{19d})$,
- $(i)\ N(R^{19e})S(O)_2R^{19f},$
- $(j) N(R^{19g})(R^{19h}),$
- (k) B^7 -C(O)- B^8 - R^{19i} ,
- (l) phenyl (which latter group is optionally substituted by halo),
- (m)Het^c and
- (n) $Si(R^{20a})(R^{20b})(R^{20c});$

 R^{19a} to R^{19i} independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^d),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^e),
- (d) phenyl (which latter group is optionally substituted by halo) or
- (e) Hetf,

provided that R^{19b} does not represent H when q is 1 or 2;

Het^a to Het^f independently represent 5- or 6-membered heterocyclic groups containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may be substituted by one or more substituents selected from halo, =O and C_{1-6} alkyl;

B¹ to B⁸ independently represent a direct bond, O, S or NH; n, p and q independently represent 0, 1 or 2;

PATENT

 R^{18a} , R^{18b} , R^{18c} , R^{20a} , R^{20b} and R^{20c} independently represent C_{1-6} alkyl or phenyl (which latter group is optionally substituted by halo or C_{1-4} alkyl);

unless otherwise specified

- (i) alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkylene and alkenylene groups, as well as the alkyl part of alkoxy groups, may be substituted by one or more halo atoms, and
- (ii) cycloalkyl and cycloalkenyl groups may comprise one or two rings and may additionally be ring-fused to one or two phenyl groups;

or a pharmaceutically-acceptable derivative thereof.

2. (original) A compound as claimed in Claim 1, which is a compound of formula Ic, Id or Ie,

$$\begin{array}{c|c}
R^2 & R^{3a} & R^{3b} \\
N & (CH_2)_r & R^y
\end{array}$$
Ic

PATENT

wherein X¹ represents CH or N;

when X¹ represents CH

- (a) R^x represents R^b as defined in Claim 1, and
- (b) R^y represents R^{11a} as defined in Claim 1;

when X1 represents N

- (a) R^x represents R^d as defined in Claim 1, and
- (b) R^y represents R^{11c} as defined in Claim 1;

r represents 1 to 3;

s represents 2 to 4;

t represents 1 to 3;

u and v independently represent 0 to 2, the sum of u and v being 1 or 2; and R^1 , R^2 , R^{3a} , R^{3b} , R^{11a} , R^{11c} , R^{13a} , R^{13b} , R^{14a} , R^{14b} , R^b , R^d and A are as defined in Claim 1.

3. (original) A compound as claimed in Claim 2 which is a compound of formula Ic,

$$\begin{array}{c|c}
R^2 & R^{3a} & R^{3b} & H \\
N & (CH_2)_r & R^x
\end{array}$$

$$\begin{array}{c|c}
R^y & Ic$$

wherein

A represents $CH(CH_3)CH_2$ (in which latter group the $CH(CH_3)$ unit is attached to R^1) or CH_2 , $(CH_2)_2$ or CF_2CH_2 (in which latter group the CF_2 unit is attached to R^1);

PATENT

R¹ represents

- (a) isopropyl or *tert*-butyl,
- (b) cyclopentyl, cyclohexyl or bicyclo[2.2.1]hept-5-ene,
- (c) phenyl optionally substituted by one or two substituents selected from halo, CN, methyl, CF₃, methoxy, OCF₃, phenoxy, morpholin-4-yl or O-CH₂-(2-chlorothiazol-5-yl),
- (d) imidazolyl optionally substituted by one to three substituents selected from Cl, methyl and phenyl,
- (e) isoxazolyl optionally substituted by one or two substituents selected from methyl, phenyl and 2-thienyl,
- (f) thiazolyl optionally substituted by one or two methyl groups,
- (g) thienyl optionally substituted by Cl or pyridinyl,
- (h) pyrazolyl optionally substituted by one to three substituents selected from Cl, methyl, ethyl, phenyl and morpholin-4-yl,
- (i) pyrrolyl optionally substituted by one to three substituents selected from methyl, S(O)₂-phenyl, C(O)-phenyl and 1,3,4-triazol-1-yl,
- (j) pyridinyl optionally substituted by OH, methoxy or morpholin-4-yl, and optionally in the form of an *N*-oxide,
- (k) pyridonyl,
- (l) pyrazinyl,
- (m) benzodioxolyl optionally substituted by halo,
- (n) benzomorpholinyl optionally substituted by methyl;
- (o) 2,1,3-benzoxadiazolyl,
- (p) 2,3-dihydrobenzofuranyl or
- (q) quinolinyl;

R⁵ and R⁶ both represent H;

r represents 1;

the group

$$X^1$$
 R^X

represents

 R^{o} represents H, F, Cl, OH, methyl, tetrazol-1-yl, $OCH_{2}C(O)N(H)R^{12b}$ or $CH_{2}N(H)R^{14c}$;

 R^{12b} represents H or C_{1-3} alkyl optionally substituted by $N(CH_3)_2$;

R^{14c} represents C(O)O-tert-butyl, H, ethyl, CH₂CF₃ or cyclopentyl;

R^m represents H, methyl, CF₃, methoxy, F or Cl; and

 R^{ya} represents H or methyl.

- 4. (original) A pharmaceutical formulation including a compound as defined in any one of Claims 1 to 3, or a pharmaceutically acceptable derivative thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.
- 5. (original) A compound as defined in any one of Claims 1 to 3, or a pharmaceutically acceptable derivative thereof, for use as a pharmaceutical.
- 6. (canceled).
- 7. (original) A method of treatment of a condition where inhibition of thrombin is beneficial, which method comprises administration of a therapeutically effective amount of a compound as defined in any one of Claims 1 to 3, or a pharmaceutically acceptable derivative thereof, to a person suffering from, or susceptible to, such a condition.

PATENT

- 8. (original) A process for the preparation of a compound of formula I as defined in Claim 1, which comprises:
- (a) for compounds of formula I in which the group G represents
 - (i) $C(O)N(R^{8a})-[CH(C(O)R^9)]_{0-1}-C_{0-3}$ alkylene- $(Q^1)_a$ -,
 - (ii) $C(O)N(R^{8b})-C_{2-3}$ alkenylene- $(Q^1)_a$ -,
 - (iii) $C(O)N(R^{8b})-C_{2-3}$ alkynylene- $(Q^1)_{a-}$,

(iv)

$$N(R^{8c})C_{0.2}$$
 alkylene— Q^{2a}

(v)

$$Q^{2a} Q^{2b}$$

wherein Q2a represents N or NHCH,

coupling of a compound of formula II,

wherein the dashed line, R¹, R², R^{3a}, R^{3b}, A, D and E are as defined in Claim 1, with a compound of formula III,

wherein L is as defined in Claim 1 and Ga represents

- (i) $-N(R^{8a})-[CH(C(O)R^9)]_{0-1}-C_{0-3}$ alkylene- $(Q^1)_{a^-}$,
- (ii) $-N(R^{8b})-C_{2-3}$ alkenylene- $(Q^1)_a$ -,
- (iii) $-N(R^{8b})-C_{2-3}$ alkynylene- $(Q^1)_{a-}$,

PATENT

$$\rightarrow$$
 N(R^{8c})C₀₋₂ alkylene \rightarrow Q^{2a} \rightarrow Q^{2b}

(v)

$$\frac{1}{2}$$
Q^{2a} Q^{2b}

wherein Q^{2a} represents N or NHCH and R^{8a} , R^{8b} , R^{8c} , R^{9} , Q^{1} , Q^{2b} and a are as defined in Claim 1;

(b) for compounds of formula I in which G represents

and L represents L^a , which latter group represents L as defined in Claim 1, except that it does not represent C_0 alkylene- R^a , cyclisation of a compound of formula IV,

$$\begin{array}{c|c}
R^{2} & R^{3a} & R^{3b} \\
\hline
D & O & N \\
\hline
I & O & H_{2}N
\end{array}$$

$$\begin{array}{c|c}
CH_{2})_{0\cdot 4} & L^{a} \\
\hline
IV & NH \\
R^{1}
\end{array}$$

wherein L^a is as defined above and the dashed line, R^1 , R^2 , R^{3a} , R^{3b} , A, D and E are as defined in Claim 1;

(c) for compounds of formula I in which R^a, R^b, R^c or R^d represents -C(=NH)NH₂,

-C(=NNH₂)NH₂ or -C(=NOH)NH₂, reaction of a compound of formula V,

PATENT

wherein L^b represents L as defined in Claim 1, except that R^a , R^b , R^c or R^d (as appropriate) is replaced by a cyano or $-C(=NH)O-C_{1-4}$ alkyl group, and the dashed line, R^1 , R^2 , R^{3a} , R^{3b} , A, D, E and E0 are as defined in Claim 1, with a suitable source of ammonia, hydrazine or hydroxylamine; (d) for compounds of formula I in which E^{13a} , E^{13b} or E^{13c} represents E^{13c} 0 appropriate) represents E^{13c} 1 (as appropriate) represents E^{13c} 2 (as appropriate) represents E^{13c} 3 (as appropriate) represents E^{13c} 4 (as appropriate) represents E^{13c} 5 (as appropriate) represents E^{13c} 6 (as appropriate) represents E^{13c} 7 (as appropriate) represents E^{13c} 8 (as appropriate) r

- (e) for compounds of formula I in which R^{14c} represents H, deprotection of a corresponding compound of formula I in which R^{14c} represents $C(O)O-C_{1-6}$ alkyl;
- (f) reaction of a compound of formula VI,

wherein the dashed line, R², R^{3a}, R^{3b}, A, D, E, G and L are as defined in Claim 1, with a compound of formula VII,

wherein Lg1 represents a leaving group and R1 and A are as defined in Claim 1;

(g) for compounds of formula I in which A represents C(O)NH, reaction of a compound of formula VI, as defined above, with a compound of formula VIII,

wherein R¹ is as defined in Claim 1;

(h) for compounds of formula I in which A represents $C_{1\text{-}6}$ alkylene, reaction of a compound of

PATENT

formula VI, as defined above, with a compound of formula IX,

wherein R¹ is as defined in Claim 1, followed by reduction in the presence of a reducing agent; or (i) for compounds of formula I in which R^a, R^b, R^c or R^d represents -C(=NCN)NH₂, reaction of a corresponding compound of formula I in which R^a, R^b, R^c or R^d, respectively, represents -C(=NH)NH₂ with cyanogen bromide.

9. (currently amended) A compound of formula II, as defined in Claim 8.

wherein:

the dashed line is absent or represents a bond;

A represents C(O), $S(O)_2$, C(O)O (in which latter group the O moiety is attached to R^1), C(O)NH, $S(O)_2NH$ (in which latter two groups the NH moiety is attached to R^1) or C_{1-6} alkylene;

R¹ represents

- (a) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, CN, C_{3-10} cycloalkyl (optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy and aryl), OR^{4a} , $S(O)_nR^{4b}$, $S(O)_2N(R^{4c})(R^{4d})$, $N(R^{4e})S(O)_2R^{4f}$, $N(R^{4g})(R^{4h})$, B^1 -C(O)- B^2 - R^{4i} , aryl and Het^1),
- (b) C_{3-10} cycloalkyl or C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo, =0, CN, C_{1-10} alkyl, C_{3-10} cycloalkyl (optionally substituted by one or more substituents selected from halo, OH, =0, C_{1-6}

PATENT

 $\frac{\text{alkyl, C}_{1\text{-}6} \text{ alkoxy and aryl), OR}^{4a}, S(O)_{\underline{n}}R^{4b}, S(O)_{\underline{2}}N(R^{4c})(R^{4d}), N(R^{4e})S(O)_{\underline{2}}R^{4f},}{N(R^{4g})(R^{4h}), B^3\text{-}C(O)\text{-}B^4\text{-}R^{4i}, \text{ aryl and Het}^2,}$

- (c) aryl, or
- (d) Het³;

R^{4a} to R⁴ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, aryl and Het^4),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, aryl and E^5),
- (d) aryl or
- (e) Het⁶.

provided that R4b does not represent H when n is 1 or 2;

the group -D-E-

- (a) when the dashed line represents a bond, represents $-C(R^{5a})=C(R^{5b})$, or
- (b) when the dashed line is absent, represents -C(R^{6a})(R^{6b})-C(R^{7a})(R^{7b})-;

 R^{5a} and R^{5b} independently represent H, halo, OH, C_{1-4} alkyl, $(CH_2)_{0-4}O(C_{1-3}$ alkyl) (which latter two groups are optionally substituted by one OH group or one or more F atoms);

R^{6a}, R^{6b}, R^{7a} and R^{7b} independently represent H, F or methyl;

or R^{5a} and R^{5b} together represent C_{2-4} *n*-alkylene;

or one of R^{6a} and R^{6b}, together with one of R^{7a} and R^{7b}, represents C₁₋₄ n-alkylene;

R² represents

- (a) H,
- (b) halo;
- (c) C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy (which latter four groups are optionally

PATENT

substituted by one or more substituents selected from halo, OH, CN, C_{1-4} alkoxy, C(O)OH, $C(O)O-C_{1-4}$ alkyl and $OC(O)-C_{1-4}$ alkyl) or

- (d) together with R^{3a} , R^2 represents C_{2-3} n-alkylene, T^1 -(C_{1-2} n-alkylene) or (C_{1-2} n-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (e) together with R^{3a} and R^{3b} , R^2 represents T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

R^{3a} and R^{3b} independently represent H, F or methyl (which latter group is optionally substituted by one or more F atoms), or

- (a) together with R^2 , R^{3a} represents C_{2-3} n-alkylene, T^1 -(C_{1-2} n-alkylene) or (C_{1-2} n-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (b) together with R^2 , R^{3a} and R^{3b} represent T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

 \underline{T}^1 and \underline{T}^2 independently represent O, S, N(H) or N(C₁₋₄ alkyl);

each aryl independently represents a C_{6-10} carbocyclic aromatic group, which group may comprise either one or two rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- (c) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, C(O)OH, C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and Het^7),
- (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het⁸),
- (e) OR^{17a} ,
- $(f) S(O)_p R^{17b}$,
- (g) $S(O)_2N(R^{17c})(R^{17d})$,
- (h) $N(R^{17e})S(O)_2R^{17f}$,

PATENT

- (i) $N(R^{17g})(R^{17h})$,
- (j) $B^5-C(O)-B^6-R^{17i}$,
- (k) phenyl (which latter group is optionally substituted by halo),
- (1) Het⁹ and
- (m)Si $(R^{18a})(R^{18b})(R^{18c});$

R^{17a} to R¹⁷ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^{10}),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^{11}),
- (d) phenyl (which latter group is optionally substituted by halo) or
- (e) Het¹²,

provided that R^{17b} does not represent H when p is 1 or 2;

Het¹ to Het¹² independently represent 4- to 14-membered heterocyclic groups containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may comprise one, two or three rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- (c) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, C(O)OH, C(O)O- C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and Het^a),
- (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^b),

PATENT

- (e) = 0,
- (f) OR^{19a} ,
- $(g) S(O)_{q} R^{19b}$,
- (h) $S(O)_2N(R^{19c})(R^{19d})$,
- (i) $N(R^{19e})S(O)_2R^{19f}$,
- $(j) N(R^{19g})(R^{19h}),$
- (k) B^7 -C(O)- B^8 -R¹⁹ⁱ,
- (l) phenyl (which latter group is optionally substituted by halo),
- (m)Het^c and
- (n) $Si(R^{20a})(R^{20b})(R^{20c})$;

R^{19a} to R¹⁹ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^d),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^e),
- (d) phenyl (which latter group is optionally substituted by halo) or
- (e) Het^f,

provided that R^{19b} does not represent H when q is 1 or 2;

Het a to Het independently represent 5- or 6-membered heterocyclic groups containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may be substituted by one or more substituents selected from halo, =O and C_{1-6} alkyl;

B¹ to B⁸ independently represent a direct bond, O, S or NH; n, p and q independently represent 0, 1 or 2; and

 R^{18a} , R^{18b} , R^{18c} , R^{20a} , R^{20b} and R^{20c} independently represent C_{1-6} alkyl or phenyl (which latter

group is optionally substituted by halo or C_{1-4} alkyl);

unless otherwise specified

- (i) alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and alkylene groups, as well as the alkyl part of alkoxy groups, may be substituted by one or more halo atoms, and
- (ii) cycloalkyl and cycloalkenyl groups may comprise one or two rings and may additionally be ring-fused to one or two phenyl groups;

or a protected derivative thereof.

10. (currently amended) A compound of formula IV, as defined in Claim 8,

$$\begin{array}{c|c}
R^{2} & R^{3a} & R^{3b} \\
D & & & \\
O & & & \\
N & & \\
N$$

wherein

the dashed line is absent or represents a bond;

A represents C(O), $S(O)_2$, C(O)O (in which latter group the O moiety is attached to R^1), C(O)NH, $S(O)_2NH$ (in which latter two groups the NH moiety is attached to R^1) or C_{1-6} alkylene;

R¹ represents

- (b) C₃₋₁₀ cycloalkyl or C₄₋₁₀ cycloalkenyl, which latter two groups are optionally substituted

PATENT

by one or more substituents selected from halo, =O, CN, C_{1-10} alkyl, C_{3-10} cycloalkyl (optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy and aryl), OR^{4a} , $S(O)_nR^{4b}$, $S(O)_2N(R^{4c})(R^{4d})$, $N(R^{4e})S(O)_2R^{4f}$, $N(R^{4g})(R^{4h})$, B^3 -C(O)- B^4 - R^{4i} , aryl and Het^2 ,

- (c) aryl, or
- (d) Het^3 ;

R^{4a} to R⁴ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, aryl and Het⁴),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, aryl and E^5),
- (d) aryl or
- (e) Het⁶,

provided that R^{4b} does not represent H when n is 1 or 2;

the group -D-E-

- (a) when the dashed line represents a bond, represents $-C(R^{5a})=-C(R^{5b})$, or
- (b) when the dashed line is absent, represents $-C(R^{6a})(R^{6b})-C(R^{7a})(R^{7b})$ -;

R^{5a} and R^{5b} independently represent H, halo, OH, C₁₋₄ alkyl, (CH₂)₀₋₄O(C₁₋₃ alkyl) (which latter two groups are optionally substituted by one OH group or one or more F atoms);

R^{6a}, R^{6b}, R^{7a} and R^{7b} independently represent H, F or methyl;

or R^{5a} and R^{5b} together represent C₂₋₄ *n*-alkylene;

or one of R^{6a} and R^{6b}, together with one of R^{7a} and R^{7b}, represents C₁₋₄ n-alkylene;

R² represents

(a) H,

PATENT

(b) halo;

- (c) C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, CN, C_{1-4} alkoxy, C(O)OH, $C(O)O-C_{1-4}$ alkyl and $OC(O)-C_{1-4}$ alkyl) or
- (d) together with R^{3a} , R^2 represents C_{2-3} n-alkylene, T^1 -(C_{1-2} n-alkylene) or (C_{1-2} n-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (e) together with R^{3a} and R^{3b} , R^2 represents T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

R^{3a} and R^{3b} independently represent H, F or methyl (which latter group is optionally substituted by one or more F atoms), or

- (a) together with R^2 , R^{3a} represents C_{2-3} *n*-alkylene, T^1 -(C_{1-2} *n*-alkylene) or (C_{1-2} *n*-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (b) together with R^2 , R^{3a} and R^{3b} represent T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

 \underline{T}^1 and \underline{T}^2 independently represent O, S, N(H) or N(C₁₋₄ alkyl);

L^a represents

- (a) C₁₋₆ alkylene-R^a,
- (b) C₀₋₂ alkylene-CH=CH-C₀₋₂ alkylene-R^a,
- (c) C_{0-2} alkylene- $C = C C_{0-2}$ alkylene- R^a ,

(d)

<u>(e)</u>

PATENT

$$\begin{array}{c} (CH_2)_{0-1} \\ R^{11b} \end{array}$$

wherein the dashed line represents an optional double bond, or

<u>(f)</u>

Ar represents phenyl or naphthyl;

Het represents a 5- to 10-membered heterocyclic group comprising one or two rings and containing, as heteroatom(s), one sulfur or oxygen atom and/or one or more nitrogen atoms;

 R^{11a} represents H or one or more substituents selected from halo, OH, CN, C_{1-6} alkyl, C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-4} alkoxy, $C(O)OR^{12a}$ and $C(O)N(R^{12b})R^{12c}$) and $S(O)_{0-2}R^{12d}$;

 R^{11b} and R^{11c} independently represent H or one or more substituents selected from halo, OH, CN, C_{1-6} alkyl, C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-4} alkoxy, $C(O)OR^{12a}$ and $C(O)N(R^{12b})R^{12c}$), $S(O)_{0-2}R^{12d}$, =O, =NH, =NOH and =N-CN;

 R^{12a} to R^{12c} independently represent H, C_{1-6} alkyl or C_{3-7} cycloalkyl (which latter two groups are optionally substituted by one OH or $N(R^{12e})R^{12f}$ group or by one or more halo atoms);

 R^{12d} represents, independently at each occurrence, C_{1-6} alkyl optionally substituted by one OH or $N(R^{12e})R^{12f}$ group or by one or more halo atoms;

 R^{12e} and R^{12f} represent, independently at each occurrence, H or C_{1-4} alkyl optionally substituted by one or more halo atoms;

Ra to Rd independently represent

<u>(a)</u>

<u>(b)</u>

<u>(c)</u>

$$C_{0-3}$$
 alkylene $-N$

<u>(d)</u>

$$R^{13c}$$
 R^{14e}

<u>(e)</u>

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

PATENT

<u>(f)</u>

(g) Het^x

or R^b to R^d may also represent H;

 Q^3 represents O, $N(R^{10c})$, $S(O)_2$, $S(O)_2$ NH, C(O) or -CH=N-;

 Q^4 represents O, S or CH₂;

a represents 0 or 1;

Het^x represents a 5- or 6-membered heterocyclic group containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic group may be substituted by one or more substituents selected from halo, =0, C_{1-6} alkyl and C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more halo atoms);

R^{13a} to R^{13c} independently represent

- (a) H,
- (b) CN,
- (c) NH_2 ,
- (d) OR¹⁵ or
- (e) C(O)OR¹⁶;

R¹⁵ represents

- $(a)_H$
- (b) C₁₋₁₀ alkyl, C₃₋₁₀ alkenyl, C₃₋₁₀ alkynyl,
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl, or
- (d) C_{1-3} alkyl, which latter group is optionally interrupted by oxygen and is substituted by aryl or -O-aryl;

R¹⁶ represents

- (a) C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkynyl, which latter three groups are optionally interrupted by one or more oxygen atoms, or
- (b) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl, or
- (c) C_{1-3} alkyl, which latter group is optionally interrupted by oxygen and is substituted by aryl or -O-aryl;

\underline{R}^{10c} and \underline{R}^{14a} to \underline{R}^{14g} independently represent

- (a) H or
- (b) C_{1-4} alkyl (which latter group is optionally substituted by one or more substituents selected from halo and OH),
- or R^{14a} and R^{14b} independently represent $C(O)O-C_{1-6}$ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms).

or R^{14c} represents

- (a) C₁₋₄ alkyl substituted by C₃₋₇ cycloalkyl or aryl,
- (b) C₃₋₇ cycloalkyl,
- (c) C(O)O-C₁₋₆ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),
- (d) $C(O)C_{1-6}$ alkyl,
- (e) C(O)N(H)-C₁₋₆ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms) or
- (f) S(O)₂-C₁₋₆ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or_one_or_more_halo_atoms),
- or R^{14c} and R^{14d} together represent C_{3-6} n-alkylene optionally interrupted by O, S, N(H) or N(C_{1-4} alkyl) and/or substituted by one or more C_{1-4} alkyl groups;

each aryl independently represents a C_{6-10} carbocyclic aromatic group, which group may comprise either one or two rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- (c) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, C(O)OH, C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and Het⁷),
- (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het⁸),
- (e) OR^{17a},
- $(f) S(O)_p R^{17b}$
- $(g) S(O)_2N(R^{17c})(R^{17d}),$
- (h) $N(R^{17e})S(O)_2R^{17f}$,
- (i) $N(R^{17g})(R^{17h})$,
- (i) $B^5-C(O)-B^6-R^{17i}$,
- (k) phenyl (which latter group is optionally substituted by halo),
- (1) Het⁹ and
- $(m) Si(R^{18a})(R^{18b})(R^{18c});$

R^{17a} to R¹⁷ⁱ independently represent, at each occurrence,

- (a)_H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^{10}),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het¹¹),
- (d) phenyl (which latter group is optionally substituted by halo) or
- (e) Het¹²,

provided that R^{17b} does not represent H when p is 1 or 2;

PATENT

Het¹ to Het¹² independently represent 4- to 14-membered heterocyclic groups containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may comprise one, two or three rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- (c) C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, C₁₋₆ alkoxy, C(O)OH, C(O)O-C₁₋₆ alkyl, phenyl (which latter group is optionally substituted by halo) and Het^a),
- (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^b),
- (e) = 0
- (f) OR^{19a},
- (g) $S(O)_{q}R^{19b}$,
- (h) $S(O)_2N(R^{19c})(R^{19d})$,
- (i) $N(R^{19e})S(O)_2R^{19f}$,
- $(i) N(R^{19g})(R^{19h}),$
- (k) B^7 -C(O)- B^8 - R^{19i} ,
- (1) phenyl (which latter group is optionally substituted by halo),
- (m)Het^c and
- (n) $Si(R^{20a})(R^{20b})(R^{20c})$;

R^{19a} to R¹⁹ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^d),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl

PATENT

(which latter group is optionally substituted by halo) and Het^e),

(d) phenyl (which latter group is optionally substituted by halo) or

(e) Hetf,

provided that R^{19b} does not represent H when g is 1 or 2;

Het^a to Het^f independently represent 5- or 6-membered heterocyclic groups containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may be substituted by one or more substituents selected from halo, =O and C_{1-6} alkyl;

B¹ to B⁸ independently represent a direct bond, O, S or NH;

n, p and q independently represent 0, 1 or 2;

 R^{18a} , R^{18b} , R^{18c} , R^{20a} , R^{20b} and R^{20c} independently represent C_{1-6} alkyl or phenyl (which latter group is optionally substituted by halo or C_{1-4} alkyl);

unless otherwise specified

- (i) alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and alkylene groups, as well as the alkyl part of alkoxy groups, may be substituted by one or more halo atoms, and
- (ii) cycloalkyl and cycloalkenyl groups may comprise one or two rings and may additionally be ring-fused to one or two phenyl groups;

or a protected derivative thereof.

11. (currently amended) A compound of formula VI, as defined in Claim 8,

wherein wherein

the dashed line is absent or represents a bond;

PATENT

the group -D-E-

- (a) when the dashed line represents a bond, represents $-C(R^{5a})=C(R^{5b})$, or
- (b) when the dashed line is absent, represents $-C(R^{6a})(R^{6b})-C(R^{7a})(R^{7b})$ -;

 R^{5a} and R^{5b} independently represent H, halo, OH, C_{1-4} alkyl, $(CH_2)_{0-4}O(C_{1-3}$ alkyl) (which latter two groups are optionally substituted by one OH group or one or more F atoms);

R^{6a}, R^{6b}, R^{7a} and R^{7b} independently represent H, F or methyl;

or R^{5a} and R^{5b} together represent C_{2-4} *n*-alkylene;

or one of R^{6a} and R^{6b}, together with one of R^{7a} and R^{7b}, represents C₁₋₄ n-alkylene;

R² represents

- (a) H,
- (b) halo;
- (c) C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₆ alkoxy (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, CN, C₁₋₄ alkoxy, C(O)OH, C(O)O-C₁₋₄ alkyl and OC(O)-C₁₋₄ alkyl) or
- (d) together with R^{3a} , R^2 represents C_{2-3} n-alkylene, T^1 -(C_{1-2} n-alkylene) or (C_{1-2} n-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (e) together with R^{3a} and R^{3b} , R^2 represents T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

R^{3a} and R^{3b} independently represent H, F or methyl (which latter group is optionally substituted by one or more F atoms), or

- (a) together with R^2 , R^{3a} represents C_{2-3} n-alkylene, T^1 -(C_{1-2} n-alkylene) or (C_{1-2} n-alkylene)- T^1 , which latter three groups are optionally substituted by halo, or
- (b) together with R^2 , R^{3a} and R^{3b} represent T^2 -[C(H)=], wherein T^2 is bonded to the C-atom to which the group R^2 is attached;

 T^1 and T^2 independently represent O, S, N(H) or N(C₁₋₄ alkyl);

G represents

 $\underline{(a)\ -C(O)N(R^{8a})-[CH(C(O)R^9)]_{0-1}-C_{0-3}\ alkylene-(Q^1)_{\underline{a^-}},}$

PATENT

(b) $-C(O)N(R^{8b})-C_{2-3}$ alkenylene- $(Q^1)_{\underline{a}}$,

<u>(c)</u>

$$[N(R^{8c})C_{0-2} \text{ alkylene}]_{0-1}Q^{2a}Q^{2b}$$

(d)

$$\begin{array}{c} O = N \\ N \end{array} \qquad \begin{array}{c} O = N \\ O = A \end{array}$$

 R^9 represents H or a 5- to 10-membered aromatic heterocyclic group comprising one or two rings and containing, as heteroatom(s), one sulfur or oxygen atom and/or one or more nitrogen atoms, which heterocyclic group is optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl;

 Q^1 represents O, NR^{10a} , $[N(H)]_{0-1}C(O)-C_{0-2}$ alkylene, C(O)NHNHC(O), or $-N=C(R^{10b})-$; a represents 0 or 1;

Q^{2a} represents

$$+cH$$
, $+N-cH$ or $+N$

Q^{2b} represents

L represents

- (a) C₀₋₆ alkylene-R^a,
- (b) C₀₋₂ alkylene-CH=CH-C₀₋₂ alkylene-R^a,
- (c) C_{0-2} alkylene- $C \equiv C C_{0-2}$ alkylene- R^a ,

(d)

<u>(e)</u>

wherein the dashed line represents an optional double bond, or

<u>(f)</u>

Ar represents phenyl or naphthyl;

Het represents a 5- to 10-membered heterocyclic group comprising one or two rings and containing, as heteroatom(s), one sulfur or oxygen atom and/or one or more nitrogen atoms;

 $\frac{R^{11a} \text{ represents H or one or more substituents selected from halo, OH, CN, C$_{\underline{1-6}}$ alkyl, C$_{\underline{1-6}}$ alkoxy}{\text{(which latter two groups are optionally substituted by one or more substituents selected from halo, OH, C$_{\underline{1-4}}$ alkoxy, C(O)OR12a and C(O)N(R$^{12b})(R$^{12c}) and S(O)$_{\underline{0-2}}R12d;}$

 R^{11b} and R^{11c} independently represent H or one or more substituents selected from halo, OH, CN, C_{1-6} alkyl, C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-4} alkoxy, $C(O)OR^{12a}$ and $C(O)N(R^{12b})(R^{12c})$, $S(O)_{0-2}R^{12d}$, =O, =NH, =NOH and =N-CN;

 R^{12a} to R^{12c} independently represent H, C_{1-6} alkyl or C_{3-7} cycloalkyl (which latter two groups are optionally substituted by one OH or $N(R^{12e})R^{12f}$ group or by one or more halo atoms); R^{12d} represents, independently at each occurrence, C_{1-6} alkyl optionally substituted by one OH or

PATENT

 $N(R^{12e})R^{12f}$ group or by one or more halo atoms;

 R^{12e} and R^{12f} represent, independently at each occurrence, H or C_{1-4} alkyl optionally substituted by one or more halo atoms;

Ra to Rd independently represent

<u>(a)</u>

<u>(b)</u>

<u>(c)</u>

$$C_{0-3}$$
 alkylene N_{R}^{14c}

<u>(d)</u>

$$\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

<u>(e)</u>

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

<u>(f)</u>

(g) Het^x

or R^b to R^d may also represent H;

 Q^3 represents O, $N(R^{10c})$, $S(O)_2$, $S(O)_2NH$, C(O) or -CH=N-;

Q⁴ represents O, S or CH₂;

a represents 0 or 1;

Het^x represents a 5- or 6-membered heterocyclic group containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic group may be substituted by one or more substituents selected from halo, =O, C_{1-6} alkyl and C_{1-6} alkoxy (which latter two groups are optionally substituted by one or more halo atoms);

R^{13a} to R^{13c} independently represent

- (a) H,
- (b) CN,
- $(c)_NH_2$
- (d) OR¹⁵ or
- (e) C(O)OR¹⁶;

R¹⁵ represents

- (a) H,
- (b) C₁₋₁₀ alkyl, C₃₋₁₀ alkenyl, C₃₋₁₀ alkynyl,
- (c) C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, which latter two groups are optionally substituted by

PATENT

one or more substituents selected from halo and C₁₋₆ alkyl, or

(d) C_{1-3} alkyl, which latter group is optionally interrupted by oxygen and is substituted by aryl or -O-aryl;

R¹⁶ represents

- (a) C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkynyl, which latter three groups are optionally interrupted by one or more oxygen atoms, or
- (b) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, which latter two groups are optionally substituted by one or more substituents selected from halo and C_{1-6} alkyl, or
- (c) C₁₋₃ alkyl, which latter group is optionally interrupted by oxygen and is substituted by aryl or -O-aryl;

R^{8a} to R^{8c}, R^{10a} to R^{10c} and R^{14a} to R^{14g} independently represent

- (a) Hor
- (b) C₁₋₄ alkyl (which latter group is optionally substituted by one or more substituents selected from halo and OH),
- or R^{14a} and R^{14b} independently represent $C(O)O-C_{1-6}$ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),

or R^{14c} represents

- (a) C₁₋₄ alkyl substituted by C₃₋₇ cycloalkyl or aryl,
- (b) C₃₋₇ cycloalkyl,
- (c) C(O)O-C₁₋₆ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),
- (d)_C(O)C₁₋₆ alkyl,
- (e) C(O)N(H)-C₁₋₆ alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms) or
- (f) $S(O)_2$ - C_{1-6} alkyl (the alkyl part of which latter group is optionally substituted by aryl and/or one or more halo atoms),
- or R^{14c} and R^{14d} together represent C_{3-6} n-alkylene optionally interrupted by O, S, N(H) or N(C_{1-4} alkyl) and/or substituted by one or more C_{1-4} alkyl groups;

each aryl independently represents a C_{6-10} carbocyclic aromatic group, which group may comprise either one or two rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- (c) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, C(O)OH, C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, phenyl (which latter group is optionally substituted by halo) and C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6
- (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het⁸),
- (e) OR^{17a} ,
- (f) $S(O)_p R^{17b}$,
- $(g) S(O)_2N(R^{17c})(R^{17d}),$
- (h) $N(R^{17e})S(O)_2R^{17f}$,
- (i) $N(R^{17g})(R^{17h})$
- (i) $B^5-C(O)-B^6-R^{17i}$,
- (k) phenyl (which latter group is optionally substituted by halo),
- (1) Het⁹ and
- $(m)Si(R^{18a})(R^{18b})(R^{18c});$

R^{17a} to R¹⁷ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^{10}),
- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^{11}),
- (d) phenyl (which latter group is optionally substituted by halo) or

PATENT

(e) Het¹²,

provided that R^{17b} does not represent H when p is 1 or 2;

Het⁷ to Het¹² independently represent 4- to 14-membered heterocyclic groups containing one or more heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may comprise one, two or three rings and may be substituted by one or more substituents selected from

- (a) halo,
- (b) CN,
- (c) C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl (which latter four groups are optionally substituted by one or more substituents selected from halo, OH, C₁₋₆ alkoxy, C(O)OH, C(O)O-C₁₋₆ alkyl, phenyl (which latter group is optionally substituted by halo) and Het^a),
- (d) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^b),
- (e) = 0,
- (f) OR^{19a},
- (g) $S(O)_{q}R^{19b}$,
- (h) $S(O)_2N(R^{19c})(R^{19d})$,
- (i) $N(R^{19e})S(O)_2R^{19f}$,
- (j) $N(R^{19g})(R^{19h})$,
- $(k) B^7 C(O) B^8 R^{19i}$
- (l) phenyl (which latter group is optionally substituted by halo),
- (m)Het^c and
- $(n) \operatorname{Si}(R^{20a})(R^{20b})(R^{20c});$

R^{19a} to R¹⁹ⁱ independently represent, at each occurrence,

- (a) H,
- (b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl (which latter three groups are optionally substituted by one or more substituents selected from halo, OH, C_{1-6} alkoxy, phenyl

PATENT

(which latter group is optionally substituted by halo) and Het^d),

- (c) C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl (which latter two groups are optionally substituted by one or more substituents selected from halo, OH, =O, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl (which latter group is optionally substituted by halo) and Het^e),
- (d) phenyl (which latter group is optionally substituted by halo) or
- (e) Het^f,

provided that R^{19b} does not represent H when q is 1 or 2;

Het^a to Het^f independently represent 5- or 6-membered heterocyclic groups containing one to four heteroatoms selected from oxygen, nitrogen and/or sulfur, which heterocyclic groups may be substituted by one or more substituents selected from halo, =O and C_{1-6} alkyl;

B⁵ to B⁸ independently represent a direct bond, O, S or NH;

n, p and q independently represent 0, 1 or 2;

 R^{18a} , R^{18b} , R^{18c} , R^{20a} , R^{20b} and R^{20c} independently represent C_{1-6} alkyl or phenyl (which latter group is optionally substituted by halo or C_{1-4} alkyl);

unless otherwise specified

- (i) alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, alkylene and alkenylene groups, as well as the alkyl part of alkoxy groups, may be substituted by one or more halo atoms, and
- (ii) cycloalkyl and cycloalkenyl groups may comprise one or two rings and may additionally be ring-fused to one or two phenyl groups;

or a protected derivative thereof.