

Advanced NLP with Machine Learning using Python

PIKAKSHI MANCHANDA

POST DOCTORAL RESEARCH FELLOW, VISTA AR

p. Manchanda @ Exeter.ac.uk

Natural Language Processing with Python

Discussion on:

- What is NLP?
- Defining Text Analytics with the NLP Pipeline
 - Libraries used in Python
- Advanced Text Processing
 - Vector Space Model: TFIDF

Available on github.com/Pikakshi/NLP Introduction

What is NLP?

- ➤ <u>Natural Language Processing: teaching computers to understand (and generate) natural language for a range of applications</u> by drawing insights.
- An umbrella term that describes the ability to break down the unstructured language to understand, process and generate a comprehensible unstructured output for humans.
- ➤ Draws from many disciplines including Computer Science, Computational Linguistics, Mathematics, Statistics, Artificial Intelligence, Psychology, ...

Text Analytics

- Process of examining unstructured text data to extract useful information (key concepts and themes) to uncover meaningful insights.
- Helpful in tasks such as understanding customer experience, product reviews, sentiment analysis, document summarization and so on which aid in decision making processes.

Libraries available in Python

- Natural Language Toolkit (NLTK): Python Library for all NLP techniques.
- <u>TextBlob</u> Easy to use NLP tools API, built on top of NLTK and Pattern.
- spaCy Industrial strength NLP with Python and Cython.
- Gensim Python library specialising in vector space modelling and topic modelling.
- <u>Stanford Core NLP</u> A suite of NLP tools that provide POS tagging, entity recognition, sentiment analysis and many other services.
- <u>Apache OpenNLP</u>: Machine Learning toolkit that provides tokenizers, sentence segmentation, POS tagging, and more.
- <u>scikit-learn</u>: Machine learning in Python

Libraries available in Python

- Natural Language Toolkit (NLTK): Python Library for all NLP techniques.
- <u>TextBlob</u> Easy to use NLP tools API, built on top of NLTK and Pattern.
- spaCy Industrial strength NLP with Python and Cython.
- Gensim Python library specialising in vector space modelling and topic modelling.
- <u>Stanford Core NLP</u> A suite of NLP tools that provide POS tagging, entity recognition, sentiment analysis and many other services.
- <u>Apache OpenNLP</u>: Machine Learning toolkit that provides tokenizers, sentence segmentation, POS tagging, and more.
- <u>scikit-learn</u>: Machine learning in Python

The NLP Pipeline

➤ Different NLP systems may use different techniques, but overall, data processing steps are fairly similar.

- Stopwords, URLs, special characters, punctuation
- Case normalization

- set(stopwords.words('english'))
- s.translate(str.maketrans("", "", string.punctuation))
- word = word.lower()

Segmentation & Tokenization

- Paragraph/sentence segmentation
- Tokenization

- tokenize.sent_tokenize(line)
- word_tokenize(line)

Normalization

- Stemming
- Lemmatization

- porter = PorterStemmer()
- lem = WordNetLemmatizer()

Text Preprocessing

Refer to the python code for all the above steps available on github.com/Pikakshi/NLP_Introduction/TextPreprocessing.ipynb

In the morning session...

Text Processing

We also learnt that...

A Machine Learning project has a series of well known steps:

- Define the problem
- Load data
- Evaluate Algorithms
- Make Predictions

So how do we process text?

Following the same steps:

- Define the problem
- Load data
 - Loading, visualising and pre-processing for cleaning the data
 - Feature Engineering: Use of Vector space models, word embeddings, Text based features, ...

- Evaluate Algorithms
 - Training on available data
 - Evaluation Metrics
 - Model Selection
- Make Predictions
 - Test selected model on unseen data

Text Processing

1. Sentiment Classification

- Can be seen as a *Text Categorization problem*, wherein given a set of predefined categories and a training set of labeled text objects, the task is to classify a new text object into one or more of the categories.
- Learn a classifier function $f: X \rightarrow Y$, s.t. $f(x) = y \in Y$ where X = all text objects and Y = all categories
- Use of features of text objects to distinguish categories (such as use of semantic categories)
- Good performance requires: 1.) effective features and 2.) plenty of training data
- Performance is generally effected more by the effectiveness of features than by choice of a specific classifier.
- Common evaluation metrics: P/R/F1/Accuracy
- Step-by-step tutorial provided <u>here</u>.

What is an opinion?

In contrast with an objective or factual statement

Opinion holder

Subjective statement describing what a person believes or thinks about something.

Depends on cultural, situational, physical,...

Copinion holder

What is an opinion?

In contrast with an objective or factual statement

Opinion holder

Depends on cultural, situational, physical,... context

Opinion holder

Opinion sentiment: What does the opinion tells us about the opinion holder's feelings? Eg. Positive/negative

2. Text Clustering

■ Discovering 'natural structure' in data and group similar objects together. Objects can be documents, terms, passages, websites and so on.

K-means Clustering:

- Represent each text object as a term vector and assume a similarity function defined on 2 objects.
- Start with k randomly selected vectors and assume they are the centroids of the k clusters.
- Assign every vector to a cluster whose centroid is closest to the vector (using Euclidian distance).
- Re-compute the centroid for each cluster based on the newly assigned vectors in the cluster.
- Repeat until the similarity-based objective function converges to a local minimum.
- K-means algo → easy to implement and computationally effective.
- Step-by-step tutorial provided <u>here</u>.

Reading Material

Online courses/Articles:

- Applied Text Mining in Python by University of Michigan at Coursera.
- Machine Learning with Text in Python Data School

Books:

- Natural Language Processing with Python by Steven Bird, Ewan Klein and Edward Loper.
- Foundations of Statistical Natural Language Processing by Christopher Manning and Hinrich Schütze.