Vision Transformers

Class organization

- I have created a slack channel
- There are quizzes every week, which will build up to a substantial part of your grade

Recap: Transformer basics

- Self-Attention computes a weighted similarity matrix between all input tokens
- This process is replicated in parallel ("multi-head attention") to capture different relationships
 - Bark is a dog and he is cute:
 - Bark is a dog
 - Bark is cute
 - Bark is a he
- Layer normalization and residual connections
- Multi-layer perceptron then performs classification
- Repeat structure L times

Norm Norm Norm Norm Norm

Embedded Patches

Recap: Transformer

- The transformer trains faster (vs. recurrent network) and is *parallelizable*
- Previously unheard of 100 billion parameters became doable to train
- Large language models consist of two parts
 - Transformer Decoder (Masked self-attention)
 - Transformer Encoder (Full self-attention)

Other application: image classification

Excurse: Convolutional Neural Networks

- CNNs offer "inductive bias"
- Translation Equivarence
 - Pro: it does not matter where a feature is on an image
 - Con: its hard to learn spatial relations between features
- Locality
 - Pro: Relevant information is next to each other, e.g. an edge, a corner
 - Con: its hard to capture cues that rely on information that is far apart

An Image is Worth 16x16 words

- Image recognition
- Image with C colors is split into sequence each P x P pixels wide
- Original paper: P=16
- An image of WxH pixels has N=W*H/P² patches
- x is a single patch of PxP pixels
- E is a matrix of size C*P*P x D
- D is the dimension of the embedding
- 1x768 * (768*D) -> 1xD
- X_{class} is a learned class embedding (the same for every class)

$$\mathbf{z}_0 = [\mathbf{x}_{ ext{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}]$$

$$\mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}$$

https://arxiv.org/pdf/2010.11929.pdf

An Image is Worth 16x16 words

- Example with P=16, C=3:
- Each patch is 16*16*3=768 values
- ViT-Large uses D=1024
- Embedding E is a 768x1024 matrix

$$\mathbf{z}_0 = [\mathbf{x}_{\mathrm{class}}; \ \mathbf{x}_p^1 \mathbf{E}; \ \mathbf{x}_p^2 \mathbf{E}; \cdots; \ \mathbf{x}_p^N \mathbf{E}]$$

$$\mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}$$

https://arxiv.org/pdf/2010.11929.pdf

Full architecture

- Add position encoding and class embedding
- Encoder just like for text
- Final MLP head for classification on x_{class} token

$$\begin{aligned} \mathbf{z}_0 &= [\mathbf{x}_{\text{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, & \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D} \\ \mathbf{z}'_{\ell} &= \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, & \ell = 1 \dots L \\ \mathbf{z}_{\ell} &= \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, & \ell = 1 \dots L \\ \mathbf{y} &= \text{LN}(\mathbf{z}_L^0) \end{aligned}$$

Trick: combine patching and linear projection

- 2D Convolution
- Kernel size is the same as patch size
- Stride length is the same as patch size
- Convolution reduces to matrix multiplication

```
class PatchEmbedding(nn.Module):
 def __init__(self, d_model, img_size, patch_size, n_channels):
    super(). init ()
   self.d model = d model # Dimensionality of Model
   self.imq_size = img_size # Image Size
    self.patch_size = patch_size # Patch Size
   self.n_channels = n_channels # Number of Channels
   self.linear_project = nn.Conv2d(self.n_channels, self.d_model, kernel_size=self.patch_size, stride=self.patch_size)
  # B: Batch Size
  # C: Image Channels
  # H: Image Height
  # W: Image Width
  # P_col: Patch Column
  # P row: Patch Row
  def forward(self, x):
   x = self.linear_project(x) # (B, C, H, W) -> (B, d_model, P_col, P_row)
   x = x.flatten(2) \# (B, d_model, P_col, P_row) \rightarrow (B, d_model, P)
   x = x.transpose(-2, -1) \# (B, d_model, P) \rightarrow (B, P, d_model)
    return x
```

2D Convolution as Matrix multiplication

- W,H: width and height of image
- C : number of channels
- patch_size: kernel width/height
- d_model: desired model dimension
- Desired operation: x @ E
 - 1x patch_size^2 @ patch_size^2 x d_model
- The convolution accomplishes this by using d_model kernels of patch_size^2

2D Convolution as Matrix Multiplication

- To obtain the transformed patches we need to
- 1. Flatten
- 2. Transpose

```
x = self.linear_project(x) # (B, C, H, W) -> (B, d_model, P_col, P_row)

x = x.flatten(2) # (B, d_model, P_col, P_row) -> (B, d_model, P)

x = x.transpose(-2, -1) # (B, d_model, P) -> (B, P, d_model)

return x
```


© Matthew Nguyen

What does the E matrix do?

- Each column of E is one filter
- Principal Component Analysis of the columns of E
- Example:
 - Image patch is 16x16x3 = 1x768
 - Dimension is 1024
 - E is 768x1024
 - Output is 1x1024
- "The components resemble plausible basis functions for a lowdimensional representation of the fine structure within each patch."

RGB embedding filters (first 28 principal components)

How does positional encoding turn out?

- Positional encoding is also learned
- Closer patches tend to have more similar position embeddings
- Patches in the same row/column have similar embeddings

How far does self-attention look?

- Initially, attention looks at both far and near (in pixel distance) information
- The deeper the layer, the more emphasis is on relations across the image
- Analogous to CNNs, except for CNNs not looking far in lower layers (inductive bias?)

Finetuning

- Remove pre-trained classification head at the top
- Add D x K fresh prediction head
 - D: Transformer dimension
 - K: Number of classes to finetune
- What is kept are
 - Transformer embedding E
 - Weights for key, query and value
 - All MLPs below the top
- Finetuning often at higher resolution
 - Same patch size, longer sequence
 - Interpolate position embeddings to span the larger area

Evaluation

Pretrained on

- ImageNet: 1k classes and 1.3M images
- ImageNet-21k: 21k classes and 14M images
- JFT: 18k classes and **303M** images

Note

- JFT dataset is proprietary
- TPU Hardware is not for sale
- ViT outperforms all other models at fraction of computational time

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Notes

- ViT underperforms ResNet on Midsize datasets, but outperforms on really large datasets 14M-300M images
- Inductive bias of CNN helps with small datasets, but transformer learns the relevant structures with enough data
- Transformer-only wasn't new. Key insight was to use the efficient NLP implementations directly.
- Prior papers with the same idea go back 2+ years, Google DeepMind picked up on it and did it at scale

Combining vision transformers and convolution?

- Hybrid networks perform better than ViT or BiT when trained less
- The advantage vanishes as training goes on

Practice: Inspect a Basic ViT model

- Goal: bring its accuracy up
- Exploratory tasks:
 - where is the E matrix?
 - visualize positional embeddings
 - make positional embeddings trainable
 - What happens when removing the cls token.

```
correct = 0
total = 0

with torch.no_grad():
    for data in test_loader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)

        outputs = transformer(images)

_, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        print(f'\nModel Accuracy: {100 * correct // total} %')

Model Accuracy: 98 %
```

Solution

Parameters

```
    d_model = 64

                    # Increased model dimension for better feature learning
• n classes = 10
                    # No change, 10 classes for MNIST digits
• img_size = (28,28) # Matching the original MNIST size
• patch_size = (4,4) # Reasonable for 28x28 input
• n channels = 1 # MNIST is grayscale
• n heads = 4
                    # Better division of attention with 64-dimensional model

    n_layers = 2 # Two layers should suffice for MNIST

• batch size = 256
                    # Larger batch size for faster training
epochs = 10
                    # More epochs to allow convergence
alpha = 0.001
                    # Smaller learning rate for better training stability
```

- Add dropout to self-attention module (but not too many)
- Use weight decay (penalizes large weights)
- More training

Learning positional encodings

Cosine Similarity between Positional Encodings (7x7 Subplots)

After 1 epoch

Cosine Similarity between Positional Encodings (7x7 Subplots)

After 50 epochs

Positional Encodings do Matter

Cosine Similarity between Positional Encodings (7x7 Subplots)

68% after 10 epochs

Cosine Similarity between Positional Encodings (7x7 Subplots)

95% after 10 epochs

Next week

- Contrastive Image-Language Pretraining (CLIP)
- Combining images and text