Finding Maximal Exact Matches in Graph

G. Trapani

Università di Pisa

13/05/2024

Contents

- Prerequisites: BWT Transform, Elastic Founder Graph.
- **2** Algorithm to find κ -node MEMs.
- **3** Algorithm to find κ -node-MEMs spanning exactly L nodes.
- 4 Algorithm to find κ -node-MEMs in EFGs.
- Experimental results.

BWT Transform: Pseudocode

Assuming our strings' indices are 1-based, we now give a non-efficient algorithm to calculate the BWT transform of a string.

```
def BWT(s: str) -> str:
    T = []
    for character in s:
        s = s[len(s)] + s[1..len(s)-1]
        T.push(s)
    sort_lexicographically(T)
    return last_column(T)
```


BWT Transform: Example

Transformation				
1. Input	2. All rotations	3. Sort into lexical order	4. Take the last column	5. Output
BANANA\$	BANANA\$ \$BANAN A\$BANA NA\$BANA ANA\$BAN NANA\$BA ANANA\$B BANANA\$	\$BANANA BANANA\$ A\$BANAN ANA\$BAN ANANA\$B BANANA\$ NA\$BANA NANA\$BA	\$BANANA BANANA\$ A\$BANAN ANA\$BAN ANANA\$B BANANA\$ NA\$BANA	A\$NNBAA

Elastic Founder Graph: Block graph

Definition (Block Graph)

We call **block graph** an undirected graph in which every biconnected component (i.e. a **block**) is a clique.

Elastic Founder Graph: definition

Definition (Elastic Founder Graph)

Consider a block graph G = (V, E, I) with $I : V \to \Sigma^+$. We call such a graph an **indexable Elastic Founder Graph** if the **semi-repeat-free** property holds: for each v in block V_i , I(v) occurs in G only as prefix of paths starting with some $w \in V_i$.

k-MEMs: LEFTMAX, RIGHTMAX

Let $Q \in \Sigma^+$ be a query string, κ be a threshold, lext(i, P, j) the left extension of the string P[i..j] and rext(i, P, j) the right extension.

Definition (LEFTMAX)

A match ([x..y], (i, P, j)) of Q[x..y] in G satisfies the *LEFTMAX* property if and only if

$$x = 1 \ \lor \ lext(i, P, j) = \emptyset \ \lor \ Q[x - 1] \notin lext(i, P, j)$$

We can analogously define the RIGHTMAX property

Let $Q \in \Sigma^+$ be a query string, κ be a threshold, lext(i, P, j) the left extension of the string P[i..j] and rext(i, P, j) the right extension.

Definition (LEFTMAX)

A match ([x..y], (i, P, j)) of Q[x..y] in G satisfies the LEFTMAX property if and only if

$$x = 1 \lor lext(i, P, j) = \emptyset \lor Q[x - 1] \notin lext(i, P, j)$$

We can analogously define the RIGHTMAX property

k-MEMs: LEFTMAX, RIGHTMAX

Let $Q \in \Sigma^+$ be a query string, κ be a threshold, lext(i, P, j) the left extension of the string P[i..j] and rext(i, P, j) the right extension.

Definition (LEFTMAX)

A match ([x..y], (i, P, j)) of Q[x..y] in G satisfies the LEFTMAX property if and only if

$$x = 1 \lor lext(i, P, j) = \emptyset \lor Q[x - 1] \notin lext(i, P, j)$$

We can analogously define the RIGHTMAX property.

Definition (κ -MEM)

A match ([x..y], (i, P, j)) of Q[x..y] in G is called a κ -MEM if it satisfies all the following conditions:

- **1** LEFTMAX $\vee |lext(i, P, j)| \geq 2$
- **2** RIGHTMAX $\vee |rext(i, P, j)| \geq 2$
- $y x + 1 \ge \kappa$

Definition (Node MEM)

A κ -MEM between a query string Q and the label I(v) of a vertex $v \in V$ is called a node-MEM.

To give an algorithm to find node-MEMs we must consider the text

$$T_{\text{nodes}} = \prod_{v \in V} 0 \times I(v).$$

We also need a data structure supporting the following operations over a bitvector B:

- 1 r = rank(B, i) in O(1) with $r = \sum_{i=1}^{i} B[j]$,
- 2 j = select(B, r) in O(1) with $j \le i$ the position of the r-th 1 in B.

Definition (Node MEM)

A κ -MEM between a query string Q and the label I(v) of a vertex $v \in V$ is called a node-MEM.

To give an algorithm to find node-MEMs we must consider the text

$$T_{\mathsf{nodes}} = \prod_{v \in V} 0 \times I(v).$$

We also need a data structure supporting the following operations over a bitvector B:

- **1** r = rank(B, i) in O(1) with $r = \sum_{j=1}^{i} B[j]$,
- 2 j = select(B, r) in O(1) with $j \le i$ the position of the r-th 1 in B.

Definition (Node MEM)

A κ -MEM between a query string Q and the label I(v) of a vertex $v \in V$ is called a node-MEM.

To give an algorithm to find node-MEMs we must consider the text

$$T_{\mathsf{nodes}} = \prod_{v \in V} 0 \times I(v).$$

We also need a data structure supporting the following operations over a bitvector B:

- I r = rank(B, i) in O(1) with $r = \sum_{j=1}^{i} B[j]$,
- 2 j = select(B, r) in O(1) with $j \le i$ the position of the r-th 1 in B.

MEMs in Node Labels

Algorithm to find k-node MEMs: prerequisites

We assume we have at our disposal the following procedures:

- I mems_using_bidirectional_bwts which takes as input two bidirectional BWT indices on strings T,Q and a threshold κ and outputs Q' MEM strings with $|Q'| \geq \kappa$ and for each string Q' four BWT intervals $([i_T..j_T], [i'_T..j'_T], [i_Q..j_Q], [i'_Q..j'_Q])$ which represent the maximal matches of T and Q in O(|T| + |Q|) time;
- 2 mems_from_bidirectional_bwt which takes as input four BWT intervals and outputs the corresponding MEM string Q in O(|Q'|).

For both of these algorithms, one may refer to Algorithm 11.3 and Algorithm 11.4 from Genome-Scale Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing (Belazzougui et alia).

MEMs in Node Labels

Algorithm to find k-node MEMs: prerequisites

We assume we have at our disposal the following procedures:

- I mems_using_bidirectional_bwts which takes as input two bidirectional BWT indices on strings T,Q and a threshold κ and outputs Q' MEM strings with $|Q'| \geq \kappa$ and for each string Q' four BWT intervals $([i_T..j_T], [i'_T..j'_T], [i_Q..j_Q], [i'_Q..j'_Q])$ which represent the maximal matches of T and Q in O(|T| + |Q|) time;
- 2 mems_from_bidirectional_bwt which takes as input four BWT intervals and outputs the corresponding MEM string Q' in O(|Q'|).

For both of these algorithms, one may refer to Algorithm 11.3 and Algorithm 11.4 from Genome-Scale Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing (Belazzougui et alia).

MEMs in Node Labels

Algorithm to find k-node MEMs: prerequisites

We assume we have at our disposal the following procedures:

- I mems_using_bidirectional_bwts which takes as input two bidirectional BWT indices on strings T,Q and a threshold κ and outputs Q' MEM strings with $|Q'| \geq \kappa$ and for each string Q' four BWT intervals $([i_T..j_T], [i'_T..j'_T], [i_Q..j_Q], [i'_Q..j'_Q])$ which represent the maximal matches of T and Q in O(|T| + |Q|) time;
- 2 mems_from_bidirectional_bwt which takes as input four BWT intervals and outputs the corresponding MEM string Q' in O(|Q'|).

For both of these algorithms, one may refer to Algorithm 11.3 and Algorithm 11.4 from Genome-Scale Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing (Belazzougui et alia).

- I We build a bitvector B to mark the location of 0s in T_{nodes} so that with the rank operation we can identify the corresponding node in G.
- We call mems_using_bidirectional_bwts using bidirectional BWT indices on strings T_{nodes} and Q.
- For each string Q' we get, we call mems_from_bidirectional_bwt on its corresponding BWT intervals.
- 4 We use B to obtain the tuple (i, P, j) in O(1) time.

The algorithm described above has complexity $O(|T_{\text{nodes}}| + |Q| + N_{\kappa})$ with N_{κ} the number of output MEM.

- 1 We build a bitvector B to mark the location of 0s in T_{nodes} so that with the rank operation we can identify the corresponding node in G.
- 2 We call mems_using_bidirectional_bwts using bidirectional BWT indices on strings T_{nodes} and Q.
- For each string Q' we get, we call mems_from_bidirectional_bwt on its corresponding BWT intervals.
- 4 We use B to obtain the tuple (i, P, j) in O(1) time.

The algorithm described above has complexity $O(|T_{\text{nodes}}| + |Q| + N_{\kappa})$ with N_{κ} the number of output MEM

- I We build a bitvector B to mark the location of 0s in T_{nodes} so that with the rank operation we can identify the corresponding node in G.
- 2 We call mems_using_bidirectional_bwts using bidirectional BWT indices on strings T_{nodes} and Q.
- For each string Q' we get, we call mems_from_bidirectional_bwt on its corresponding BWT intervals.
- We use B to obtain the tuple (i, P, j) in O(1) time.

The algorithm described above has complexity $O(|T_{\rm nodes}| + |Q| + N_{\kappa})$ with N_{κ} the number of output MEM

- I We build a bitvector B to mark the location of 0s in T_{nodes} so that with the rank operation we can identify the corresponding node in G.
- 2 We call mems_using_bidirectional_bwts using bidirectional BWT indices on strings T_{nodes} and Q.
- ${\tt 3}$ For each string Q' we get, we call mems_from_bidirectional_bwt on its corresponding BWT intervals.
- We use B to obtain the tuple (i, P, j) in O(1) time.

The algorithm described above has complexity $O(|T_{\rm nodes}| + |Q| + N_{\kappa})$ with N_{κ} the number of output MEM

- I We build a bitvector B to mark the location of 0s in T_{nodes} so that with the rank operation we can identify the corresponding node in G.
- 2 We call mems_using_bidirectional_bwts using bidirectional BWT indices on strings T_{nodes} and Q.
- ${\tt 3}$ For each string Q' we get, we call mems_from_bidirectional_bwt on its corresponding BWT intervals.
- 4 We use B to obtain the tuple (i, P, j) in O(1) time.

The algorithm described above has complexity $O(|T_{\text{nodes}}| + |Q| + N_{\kappa})$ with N_{κ} the number of output MEM

- I We build a bitvector B to mark the location of 0s in T_{nodes} so that with the rank operation we can identify the corresponding node in G.
- 2 We call mems_using_bidirectional_bwts using bidirectional BWT indices on strings T_{nodes} and Q.
- For each string Q' we get, we call mems_from_bidirectional_bwt on its corresponding BWT intervals.
- 4 We use B to obtain the tuple (i, P, j) in O(1) time.

The algorithm described above has complexity $O(|T_{\mathsf{nodes}}| + |Q| + N_{\kappa})$ with N_{κ} the number of output MEMs.

Algorithm to find k-Node MEMs spanning exactly L nodes: prerequisites

- I We call P_G^L a path of G spanning exactly L nodes.
- 2 We define two new symbols c and d not originally part of the alphabet Σ and the two operators:

$$left(u) = \begin{cases} c & \text{if } lext(u) = \{c\} \\ \# & \text{otherwise} \end{cases}$$
$$ight(u) = \begin{cases} d & \text{if } rext(u) = \{d\} \\ \# & \text{otherwise} \end{cases}$$

3 We define the text

$$T_L = 0 \times \prod_{u_1,...,u_L \in P_G^L} \left(left(u_1) \times l(u_1) \times \cdots \times l(u_L) \times right(u_L) \times 0 \right).$$

Algorithm to find k-Node MEMs spanning exactly L nodes: prerequisites

- I We call P_G^L a path of G spanning exactly L nodes.
- **2** We define two new symbols c and d not originally part of the alphabet Σ and the two operators:

$$left(u) = \begin{cases} c \text{ if } lext(u) = \{c\} \\ \# \text{ otherwise} \end{cases}$$
$$right(u) = \begin{cases} d \text{ if } rext(u) = \{d\} \\ \# \text{ otherwise} \end{cases}$$

3 We define the text

$$T_L = 0 \times \prod_{u_1,..,u_L \in P_G^L} \left(left(u_1) \times l(u_1) \times \cdots \times l(u_L) \times right(u_L) \times 0 \right).$$

Algorithm to find k-Node MEMs spanning exactly L nodes: prerequisites

- I We call P_G^L a path of G spanning exactly L nodes.
- **2** We define two new symbols c and d not originally part of the alphabet Σ and the two operators:

$$left(u) = \begin{cases} c \text{ if } lext(u) = \{c\} \\ \# \text{ otherwise} \end{cases}$$
$$right(u) = \begin{cases} d \text{ if } rext(u) = \{d\} \\ \# \text{ otherwise} \end{cases}$$

We define the text

$$T_L = 0 \times \prod_{u_1,...,u_L \in P_G^L} \left(left(u_1) \times l(u_1) \times \cdots \times l(u_L) \times right(u_L) \times 0 \right).$$

- I We modify the mems_from_bidirectional_bwt so that it makes use of the symbols defined before we get the result using the algorithm we defined for κ -node MEMs.
- 2 The complexity we get is $O(|T_L| + |Q| + M_{\kappa,L})$ with $M_{\kappa,L}$ the number of output MEMs.
- 3 Let *d* be the maximum in-degree (or out-degree) of a node, *n* the total label length of *G*. Now we can reformulate the time complexity.
- 4 $|T_L|$ is the concatenation of paths of G of length L: for a node v the number of paths containing I(v) is at most $L \times d^{L-1}$. The complexity can be rewritten as $O(|Q| + M_{\kappa,L} + n \times L \times d^{L-1})$ which is exponential on L

- I We modify the mems_from_bidirectional_bwt so that it makes use of the symbols defined before we get the result using the algorithm we defined for κ -node MEMs.
- 2 The complexity we get is $O(|T_L| + |Q| + M_{\kappa,L})$ with $M_{\kappa,L}$ the number of output MEMs.
- 3 Let *d* be the maximum in-degree (or out-degree) of a node, *n* the total label length of *G*. Now we can reformulate the time complexity.
- 4 $|T_L|$ is the concatenation of paths of G of length L: for a node v the number of paths containing I(v) is at most $L \times d^{L-1}$. The complexity can be rewritten as $O(|Q| + M_{\kappa,L} + n \times L \times d^{L-1})$ which is exponential on L

- I We modify the mems_from_bidirectional_bwt so that it makes use of the symbols defined before we get the result using the algorithm we defined for κ -node MEMs.
- 2 The complexity we get is $O(|T_L| + |Q| + M_{\kappa,L})$ with $M_{\kappa,L}$ the number of output MEMs.
- 3 Let *d* be the maximum in-degree (or out-degree) of a node, *n* the total label length of *G*. Now we can reformulate the time complexity.
- 4 $|T_L|$ is the concatenation of paths of G of length L: for a node v the number of paths containing I(v) is at most $L \times d^{L-1}$. The complexity can be rewritten as $O(|Q| + M_{\kappa,L} + n \times L \times d^{L-1})$ which is exponential on L

- I We modify the mems_from_bidirectional_bwt so that it makes use of the symbols defined before we get the result using the algorithm we defined for κ -node MEMs.
- 2 The complexity we get is $O(|T_L| + |Q| + M_{\kappa,L})$ with $M_{\kappa,L}$ the number of output MEMs.
- 3 Let *d* be the maximum in-degree (or out-degree) of a node, *n* the total label length of *G*. Now we can reformulate the time complexity.
- 4 $|T_L|$ is the concatenation of paths of G of length L: for a node v the number of paths containing I(v) is at most $L \times d^{L-1}$. The complexity can be rewritten as $O(|Q| + M_{\kappa,L} + n \times L \times d^{L-1})$ which is exponential on L.

k-Node MEMs in EFGs: Remark

Remark

Given an indexable EFG G = (V, E, I), for each $(v, w) \in E$ string I(v)I(w) occurs only as prefix of paths starting with v.

Rephrasing what is written above, all occurrences of some string S in G spanning at least four nodes can be decomposed as $\alpha I(u_2) \dots I(u_{L-1})\beta$ such that:

- 1 $u_2 ldots u_{L-1}$ is a path in G and $u_2, ldots, u_{L-1}$ are unequivocally identified;
- **2** $\alpha = l(u_1)[i..||u_1||]$ with $1 \le i \le ||u_1||$ for some $(u_1, u_2) \in E$;
- 3 $\beta = l(u_L)$ for some $(u_{L-1}, u_L) \in E$ or $\beta = l(uL)(l(uL+1)[1..j])$ with $1 \le j \le ||u_{L+1}||$ for some $(u_{L-1}, u_L), (u_L, u_{L+1}) \in E$.

Note that $\alpha, \beta \neq \epsilon$ and β has as prefix a full node label, α might Università di Pisa spell any suffix of a node label.

k-Node MEMs in EFGs: Remark

Remark

Given an indexable EFG G = (V, E, I), for each $(v, w) \in E$ string I(v)I(w) occurs only as prefix of paths starting with v.

Rephrasing what is written above, all occurrences of some string S in G spanning at least four nodes can be decomposed as $\alpha I(u_2) \dots I(u_{L-1})\beta$ such that:

- **1** $u_2 ldots u_{L-1}$ is a path in G and $u_2, ldots, u_{L-1}$ are unequivocally identified;
- **2** $\alpha = I(u_1)[i..||u_1||]$ with $1 \le i \le ||u_1||$ for some $(u_1, u_2) \in E$;
- **3** $\beta = l(u_L)$ for some $(u_{L-1}, u_L) \in E$ or $\beta = l(uL)(l(uL+1)[1..j])$ with $1 \le j \le ||u_{L+1}||$ for some (u_{L-1}, u_L) , $(u_L, u_{L+1}) \in E$.

Note that $\alpha, \beta \neq \epsilon$ and β has as prefix a full node label, α might spell any suffix of a node label.

k-Node MEMs in EFGs: Remark

Remark

Given an indexable EFG G = (V, E, I), for each $(v, w) \in E$ string I(v)I(w) occurs only as prefix of paths starting with v.

Rephrasing what is written above, all occurrences of some string S in G spanning at least four nodes can be decomposed as $\alpha I(u_2) \dots I(u_{L-1})\beta$ such that:

- **1** $u_2 ldots u_{L-1}$ is a path in G and $u_2, ldots, u_{L-1}$ are unequivocally identified;
- **2** $\alpha = I(u_1)[i..||u_1||]$ with $1 \le i \le ||u_1||$ for some $(u_1, u_2) \in E$;
- **3** $\beta = l(u_L)$ for some $(u_{L-1}, u_L) \in E$ or $\beta = l(uL)(l(uL+1)[1..j])$ with $1 \le j \le ||u_{L+1}||$ for some (u_{L-1}, u_L) , $(u_L, u_{L+1}) \in E$.

Note that $\alpha, \beta \neq \epsilon$ and β has as prefix a full node label, α might spell any suffix of a node label.

k-Node MEMs in EFGs spanning more than 3 nodes: preprocessing

- 1 We mark all implicit or explicit nodes \bar{p} such that the corresponding root-to- \bar{p} path spells I(u)I(v) for some $(u,v)\in E$, so that we can query in constant time if \bar{p} is such a node.
- We compute pointers from each node \bar{p} to an arbitrarily chosen leaf in the subtree rooted at \bar{p} ;
- for each node $v \in V$ of the indexable EFG we build trie T_v for the set of strings $I(u):(u,v)\in E$;
- 4 for each leaf, we store the corresponding path uvw and the starting position of the suffix inside I(u)I(v)I(w).

k-Node MEMs in EFGs spanning more than 3 nodes: preprocessing

- I We mark all implicit or explicit nodes \bar{p} such that the corresponding root-to- \bar{p} path spells I(u)I(v) for some $(u,v)\in E$, so that we can query in constant time if \bar{p} is such a node.
- 2 We compute pointers from each node \bar{p} to an arbitrarily chosen leaf in the subtree rooted at \bar{p} ;
- for each node $v \in V$ of the indexable EFG we build trie T_v for the set of strings $I(u):(u,v)\in E$;
- 4 for each leaf, we store the corresponding path uvw and the starting position of the suffix inside I(u)I(v)I(w).

k-Node MEMs in EFGs spanning more than 3 nodes: preprocessing

- I We mark all implicit or explicit nodes \bar{p} such that the corresponding root-to- \bar{p} path spells I(u)I(v) for some $(u,v)\in E$, so that we can query in constant time if \bar{p} is such a node.
- 2 We compute pointers from each node \bar{p} to an arbitrarily chosen leaf in the subtree rooted at \bar{p} ;
- 3 for each node $v \in V$ of the indexable EFG we build trie T_v for the set of strings $I(u): (u, v) \in E$;
- 4 for each leaf, we store the corresponding path uvw and the starting position of the suffix inside I(u)I(v)I(w).

k-Node MEMs in EFGs spanning more than 3 nodes: preprocessing

- I We mark all implicit or explicit nodes \bar{p} such that the corresponding root-to- \bar{p} path spells I(u)I(v) for some $(u,v)\in E$, so that we can query in constant time if \bar{p} is such a node.
- 2 We compute pointers from each node \bar{p} to an arbitrarily chosen leaf in the subtree rooted at \bar{p} ;
- 3 for each node $v \in V$ of the indexable EFG we build trie T_v for the set of strings $I(u): (u, v) \in E$;
- 4 for each leaf, we store the corresponding path uvw and the starting position of the suffix inside I(u)I(v)I(w).

k-Node MEMs in EFGs spanning more than 3 nodes: preprocessing

- 1 We mark all implicit or explicit nodes \bar{p} such that the corresponding root-to- \bar{p} path spells I(u)I(v) for some $(u,v)\in E$, so that we can query in constant time if \bar{p} is such a node.
- 2 We compute pointers from each node \bar{p} to an arbitrarily chosen leaf in the subtree rooted at \bar{p} ;
- 3 for each node $v \in V$ of the indexable EFG we build trie T_v for the set of strings $I(u): (u, v) \in E$;
- 4 for each leaf, we store the corresponding path uvw and the starting position of the suffix inside I(u)I(v)I(w).

k-Node MEMs in EFGs spanning more than 3 nodes: processing

- If we cannot continue with a 0, Q[1..y] spans no more than 3 nodes, so we can discard it. We can now consider matching Q[2..y] in G taking the suffix link of \bar{p} .
- If we can continue with a 0 and the occurrences of Q[1..y] span no more than 2 nodes, we proceed as in the previous step.
- In this case, $Q[1..y] = \alpha I(u_2)I(u_3)$ for exactly one $u_2 \in V$, with $(u_2, u_3) \in E$, we follow the suffix link walk from \bar{p} until we find the marked node \bar{q} corresponding to $I(u_2)I(u_3)$: from \bar{q} we try to match Q[y+1..] until failure, matching Q[y+1..y'] and reaching node \bar{r} .

k-Node MEMs in EFGs spanning more than 3 nodes: processing

- If we cannot continue with a 0, Q[1..y] spans no more than 3 nodes, so we can discard it. We can now consider matching Q[2..y] in G taking the suffix link of \bar{p} .
- If we can continue with a 0 and the occurrences of Q[1..y] span no more than 2 nodes, we proceed as in the previous step.
- In this case, $Q[1..y] = \alpha l(u_2)l(u_3)$ for exactly one $u_2 \in V$, with $(u_2, u_3) \in E$, we follow the suffix link walk from \bar{p} until we find the marked node \bar{q} corresponding to $l(u_2)l(u_3)$: from \bar{q} we try to match Q[y+1..] until failure, matching Q[y+1..y'] and reaching node \bar{r} .

k-Node MEMs in EFGs spanning more than 3 nodes: processing

- If we cannot continue with a 0, Q[1..y] spans no more than 3 nodes, so we can discard it. We can now consider matching Q[2..y] in G taking the suffix link of \bar{p} .
- 2 If we can continue with a 0 and the occurrences of Q[1..y] span no more than 2 nodes, we proceed as in the previous step.
- In this case, $Q[1..y] = \alpha l(u_2)l(u_3)$ for exactly one $u_2 \in V$, with $(u_2, u_3) \in E$, we follow the suffix link walk from \bar{p} until we find the marked node \bar{q} corresponding to $l(u_2)l(u_3)$: from \bar{q} we try to match Q[y+1..] until failure, matching Q[y+1..y'] and reaching node \bar{r} .

k-Node MEMs in EFGs spanning more than 3 nodes: processing

- If we cannot continue with a 0, Q[1..y] spans no more than 3 nodes, so we can discard it. We can now consider matching Q[2..y] in G taking the suffix link of \bar{p} .
- 2 If we can continue with a 0 and the occurrences of Q[1..y] span no more than 2 nodes, we proceed as in the previous step.
- In this case, $Q[1..y] = \alpha I(u_2)I(u_3)$ for exactly one $u_2 \in V$, with $(u_2, u_3) \in E$, we follow the suffix link walk from \bar{p} until we find the marked node \bar{q} corresponding to $I(u_2)I(u_3)$: from \bar{q} we try to match Q[y+1..] until failure, matching Q[y+1..y'] and reaching node \bar{r} .

Algorithm complexity

Theorem (Algorithm complexity)

Let alphabet Σ be of constant size, and let G=(V,E,I) be an indexable Elastic Founder Graph of height H, that is, the maximum number of nodes in a block of G is H. The algorithm to find κ -node-MEMs spanning L>3 nodes has time complexity $O(nH^2+|Q|+M_\kappa)$ with $n=\sum_{v\in V}|v|$ and M_κ the number of output MEMs.

Proof

It derives from the complexity of the algorithm to find κ -node MEMs spanning exactly L nodes given before.

Theorem (Algorithm complexity)

Let alphabet Σ be of constant size, and let G=(V,E,I) be an indexable Elastic Founder Graph of height H, that is, the maximum number of nodes in a block of G is H. The algorithm to find κ -node-MEMs spanning L>3 nodes has time complexity $O(nH^2+|Q|+M_\kappa)$ with $n=\sum_{v\in V}|v|$ and M_κ the number of output MEMs.

Proof.

It derives from the complexity of the algorithm to find κ -node MEMs spanning exactly L nodes given before.

Corollaries

Corollary

The results we have given for κ -node MEMs, κ -node MEMs spanning exactly L nodes and EFGs hold when Q[1..m] is replaced by a set of queries of total length m.

Corollary

The algorithms we have given before (including the corollary above) can be modified to report only MEMs that occur in text T formed by concatenating the rows (ignoring gaps and adding separator symbols) of the input MSA of the indexable EFG.

This can be done in additional $O(|T| + r \log r)$ time and $O(r \log n)$ bits of space, and with multiplicative factor $O(\log \log n)$ added to the running times of the respective algorithms, where r is the number of equal-letter runs in the BWT of T.

UNIVERSITADIP

Corollaries

Corollary

The results we have given for κ -node MEMs, κ -node MEMs spanning exactly L nodes and EFGs hold when Q[1..m] is replaced by a set of queries of total length m.

Corollary

The algorithms we have given before (including the corollary above) can be modified to report only MEMs that occur in text T formed by concatenating the rows (ignoring gaps and adding separator symbols) of the input MSA of the indexable EFG.

This can be done in additional $O(|T| + r \log r)$ time and $O(r \log n)$ bits of space, and with multiplicative factor $O(\log \log n)$ added to the running times of the respective algorithms, where r is the number of equal-letter runs in the BWT of T.

Experimental results

Number of MEMs with different indices and varying number of covid19 strains

Experimental results

Number of BWT runs with different indexes and varying number of covid19 strains

