

РАЗРАБОТЧИК: AMIGO GROUP®

Техническое руководство

ВЕРТИКАЛЬНЫЕ ЖАЛЮЗИ СИСТЕМЫ V34

Версия 1.24 от 04.03.2014

2009-2014 г.

Содержание

1. Введение	3
2. Резка комплектующих	4
2.1. Резка карниза	
2.2. Резка стержня поворотного	4
2.3. Резка цепи управления	4
2.4. Резка веревки	4
2.5. Резка валанса	4
3. Обработка ламелей	5
3.1. Расчет количества ламелей	5
3.2. Обработка тканевых ламелей	
3.3. Резка пластиковых и алюминиевых ламелей	6
3.4. Расчет и обработка ламелей наклонных жалюзи	6
4. Сборка карниза	8
4.1. Подготовка профиля	8
4.2. Подготовка бегунков	8
4.3. Сборка карниза	8
4.4. Установка веревки и цепи управления	9
4.4.1. Движение ламелей от механизма управления	9
4.4.2. Движение ламелей к механизму управления	10
4.4.3. Движение ламелей к центру	10
4.4.4. Движение ламелей от центра	10
4.4.5. Цепь управления	
4.5. Упаковка карниза	11

1. Введение

В настоящем руководстве описана пошаговая технология изготовления вертикальных жалюзи системы V34 (далее вертикальные жалюзи), используемая на производстве компании AMIGO GROUP®.

В руководстве описаны жалюзи с тканевыми, алюминиевыми и пластиковыми ламелями, в горизонтальном и наклонном исполнениях.

Для изготовления вертикальных жалюзи необходимы следующие параметры:

- высота изделия, [Высота];
- ширина изделия, [Ширина];
- расположение управления (правое или левое);
- длина цепи и веревки управления, [Длина управления];
- материал и цвет ламелей;
- наличие валанса (да или нет);
- комплектация (пластиковая или металлическая).

Основное оборудование, необходимое для производства вертикальных жалюзи:

- 1) Стол для сборки карнизов
- 2) Дисковая пила для резки карнизов и стержней
- 3) Пресс-ножницы для резки тканевых ламелей
- 4) Пресс для резки пластиковых и алюминиевых лмелей
- 5) Пресс мультифактурный для резки ткани и фольги
- 6) Пресс мультифактурный для резки алюминия, пластика и грувера
- 7) Швейная машина (промышленная с возможностью прошивки мононитью)
- 8) Стол для комплектования и упаковки тканевых ламелей
- 9) Шуруповерт
- 10) Ручной пробойник для пластика/алюминия
- 11) Пробойник-клепатель для мультифактурных жалюзи

Предельные размеры изделий, особенности замера, установки и эксплуатации описаны в соответствующих инструкциях.

2. Резка комплектующих

2.1. Резка карниза

Отрезать профиль алюминиевый белый V34 (120101-0000) на расчётную длину.

- [Длина карниза] = [Ширина] 0.02, [м]
 - 2.2. Резка стержня поворотного

Отрезать стержень поворотный алюминиевый (120111-0000) на расчётную длину.

- [Длина стержня] = [Ширина] 0.035, [м]
 - 2.3. Резка цепи управления

Отрезать цепь управления (120214-0000, 120211-0000) на расчётную длину.

- [Длина цепи управления] = [Длина управления] х 2
 - 2.4. Резка веревки

Отрезать веревку (120203-0000, 120201-0000) на расчётную длину.

- [Длина веревки] = ([Ширина] + [Длина управления] -0.1) x 2
 - 2.5. Резка валанса (грувера)

При наличии опции «Валанс» отрезать грувер (120303-0000) на расчётную длину.

• [Длина грувера] = [Ширина] + 0.01

При наличии опции «Боковой валанс» дополнительно отрезать грувер (120303-0000) на расчётную длину.

• [Длина грувера(боковой валанс)] = 0.1 х 2

3. Обработка ламелей

3.1. Расчет количества ламелей

Количество ламелей определяется по формуле:

• [Кол-во ламелей] = [Ширина] x 12.5, [м]

Шаг ламелей 0.08 м (80 мм).

Если движение ламелей от механизма или к механизму управления, то [Кол-во ламелей] округляется до ближайшего большего целого числа.

Если движение ламелей от центра или к центру, то [Кол-во ламелей] округляется до ближайшего большего четного числа.

3.2 Обработка тканевых ламелей

Длина отрезаемой ткани для одной тканевой ламели определяется по формуле:

• [Длина ткани для одной ламели] = [Высота] + 0.045, [м]

Количество отрезаемых ламелей равно значению [Кол-во ламелей], рассчитанному в п.3.1. Резка должна осуществляться на специальных прессножницах, имеющих возможность загибать ткань под грузик, под держатель и прорезать отверстие.

Прошить на швейной машине загиб под груз нижний.

Вставить держатель ламели (120191-0000) в отверстие в ткани и прошить этот загиб.

Длина получившихся ламелей должна быть равна:

• [Высота ламели] = [Высота] – 0.045, [м]

Если жалюзи наклонные используется двусоставной держатель ламелей (120192-0000).

Вставить грузы нижние (120256-0000) во все ламели.

Отрезать две цепочки нижние (120236-0000, 120238-0000) на расчетную длину:

• [Длина одной цепочки нижней] = ([Кол-во ламелей] + 1) х 0.21, [м]

Надеть обе цепочки нижние на все ламели.

Свернуть ламели и упаковать. Упаковка ламелей при высокой температуре запрещена.

3.3 Резка пластиковых и алюминиевых ламелей

Длина отрезаемого пластика или алюминия для одной ламели определяется по формуле:

• [Длина для одной ламели] = [Высота] – 0.03, [м]

Количество отрезаемых ламелей равно значению [Кол-во ламелей], рассчитанному в п.З.1. Резка должна осуществляться на специальных прессах, имеющих возможность пробивать отверстие для бегунка и скруглять углы.

Если ламели комплектуются нижней цепочкой, то пробить отверстия внизу у всех ламелей при помощи ручного пробойника и отрезать одну цепочку нижнюю для вертикального пластика (120230-0000, 120231-0000):

• [Длина цепочки нижней] = [Ширина] х 1.3

Свернуть ламели и упаковать вместе цепочкой. Упаковка ламелей при высокой температуре запрещена.

3.4. Расчет и обработка ламелей наклонных жалюзи

В качестве исходных данных выступают (рис.1):

Н1 – малая высота проема

Н2 – большая высота проема

L1 – ширина проема

Для расчета длины карниза, количества ламелей и их высот использовать специальный расчетный файл, который можно получить у менеджеров компании AMIGO.

Для наклонных вертикальных жалюзи всегда необходимо использовать блок-фиксатор веревки, в противном случае ламели будут съезжать к нижнему краю карниза.

В наклонных жалюзи используются дополнительные клипсы для обеспечения вертикальности всех ламелей.

Рис.1. Замер и расчет вертикальных наклонных жалюзи

4. Сборка карниза

4.1. Подготовка профиля

В случае если [Ширина]>1.3 м и движение ламелей от или к механизму управления, просверлить отверстие \emptyset 2 мм по центру карниза. Закрутить в отверстие шуруп 3,5х6. Шуруп необходим в качестве упора для стопора.

4.2. Подготовка бегунков

Если движение <u>от механизма управления</u>, то берется комплект левых бегунков с дистанциями (120131-0000) в количестве, равном количеству ламелей, [Кол-во ламелей].

Если движение <u>к механизму управления</u>, то берется комплект правых бегунков с дистанциями в количестве, равном количеству ламелей, [Кол-во ламелей].

Если движение ламелей <u>от центра или к центру</u>, то берется равное количество левых и правых бегунков с дистанциями равное [Кол-во ламелей]/2.

У первого (тянущего) бегунка отрезать дистанцию и снять боковые колеса.

Надеть фиксатор веревки (120180-0000) на первый бегунок.

Если движение ламелей от центра или к центру проделать эти операции с двумя бегунками.

Если [Ширина]>1.3 м и движение от или к механизму управления, то к комплекту бегунков добавляется магнитный стопор (120167-0000).

Если движение ламелей от или к центру, то к комплекту бегунков добавляется стопор (120165-0000) (устанавливается в центре).

4.3. Сборка карниза

Продеть стержень поворотный сквозь все бегунки.

Надеть механизм управления (120121-0000) на стержень поворотный.

Просверлить сквозное отверстие через выходной вал механизма управления (отв. должно быть изначально) и стержень.

Завинтить шуруп 3,5х6 в это отверстие для соединения стержня и механизма управления.

Установить С-клип (120160-0000) на стержень поворотный с противоположной стороны от механизма управления рядом с последним бегунком для его фиксации. Если движение ламелей от центра, то ставятся два С-клипа около бегунков на концах карниза. Если движение ламелей к центру, то ставятся два С-клипа около бегунков в центре карниза.

Вставить бегунки в сборе в карниз вместе механизмом управления.

Если [Ширина]>1.3 м и движение ламелей к механизму управления, то вставить с противоположной от механизма управления стороны карниза магнитный стопор.

На противоположную от механизма управления сторону карниза установить ответную часть механизма.

Надеть на выступающую часть стержня поворотного стопорное кольцо (120117-0000).

В зависимости от типа управления установить на стержень поворотный тюбики со стороны ответной части механизма:

- К механизму управления 1 шт. 10 мм, (120175-0000) При наличии магнитного стопора ([Ширина]>1.3 м), тюбики не устанавливаются
- От механизма управления 3 шт. по 10 мм
- К центру 1 шт. 10 мм
- От центра 3 шт. по 10 мм

Вручную проверить движение бегунков, двигая их за первый бегунок.

4.4. Установка веревки и цепи управления

4.4.1. Движение ламелей от механизма управления

Продеть один край веревки через механизм управления со стороны одного из роликов.

Продеть этот край веревки через весь комплект бегунков в отверстия, расположенные над дистанциями.

Продеть этот же край веревки через ролик ответной части механизма и вставить его в фиксатор веревки, сделав петлю.

Второй край веревки продеть через второй ролик механизма управления и весь комплект бегунков в отверстия, расположенные над дистанциями и также вставить его в фиксатор веревки, сделав петлю.

Закрепить края веревки в фиксаторе уголком металлическим с шурупом (120181-0000) если [Ширина]>1.3 м. В противном случае использовать обычный пластиковый зажим.

Повесить груз (120265-0000) на веревку.

4.4.2. Движение ламелей к механизму управления

Продеть один край веревки через механизм управления со стороны одного из роликов.

Продеть этот край веревки через весь комплект бегунков в отверстия, расположенные над дистанциями.

Продеть этот же край веревки через ролик ответной части механизма и через весь комплект бегунков еще раз. Вставить его в фиксатор веревки, сделав петлю.

Второй край веревки продеть через второй ролик механизма управления и также вставить его в фиксатор веревки, сделав петлю.

Закрепить края веревки в фиксаторе уголком металлическим с шурупом если [Ширина]>1.3 м. В противном случае использовать обычный пластиковый зажим.

Повесить груз на веревку.

4.4.3. Движение ламелей к центру

Продеть один край веревки через механизм управления со стороны одного из роликов.

Продеть этот край веревки через весь комплект бегунков в отверстия, расположенные над дистанциями.

Этот же край веревки продеть через ролик ответной части механизма и вставить в ближайший фиксатор веревки.

Второй край веревки продеть через второй ролик механизма управления и через весь комплект бегунков. Вставить его в тот же фиксатор веревки, что и первый край.

Закрепить края веревки в фиксаторе обычным пластиковым зажимом. В другой фиксатор веревки вставить первую половину веревки и также закрепить её обычным пластиковым зажимом.

Повесить груз на веревку.

4.4.4. Движение ламелей от центра

Продеть один край веревки через механизм управления со стороны одного из роликов.

Продеть этот край веревки через весь комплект бегунков в отверстия, расположенные над дистанциями.

Этот же край веревки продеть через ролик ответной части механизма и вставить в ближайший фиксатор веревки.

Второй край веревки продеть через второй ролик механизма управления и через первую половину комплекта бегунков. Вставить его в тот же фиксатор веревки, что и первый край.

Закрепить края веревки в фиксаторе обычным пластиковым зажимом. В другой фиксатор веревки вставить первую половину веревки и также закрепить её обычным пластиковым зажимом.

Повесить груз на веревку.

4.4.5. Цепь управления

Вытянуть всю веревку и проверить движение бегунков.

Вставить цепь управления в колесо механизма управления. Продеть ее на половину длины, так чтобы все бегунки выровнялись.

Надеть замок (120220-0000, 120222-0000) на цепь управления.

4.5. Упаковка карниза

Упаковка собранного карниза допускается при высокой температуре. В комплект вложить кронштейны потолочные (120380-0000) или для подвесных потолков типа "Armstrong" (120385-0000). Их количество определяется следующим образом:

```
0 < [Ширина] \le 0.7, 2 шт.; 0.7 < [Ширина] \le 1.4, 3 шт.; 1.4 < [Ширина] \le 2.1, 4 шт.; 2.1 < [Ширина] \le 2.8, 5 шт.; 2.8 < [Ширина] \le 3.5, 6 шт.; 3.5 < [Ширина] < 4.2, 7 шт.;
```


В случае установки на стену в дополнение к потолочным кронштейнам вкладываются стеновые (120391-0000, 120392-0000, 120393-0000) вместе с крепежами болт-гайка(120370-0000). Их количество определяется так же. Потолочный кронштейн крепится к стеновому при помощи болта и гайки.

В случае необходимости большого выноса жалюзи от стены в комплект вкладываются удлинители стеновых кронштейнов (120396-0000) в количестве, равном количеству кронштейнов.

При наличии опции «Валанс» помимо грувера в комплект вкладываются кронштейны валанса. Их количество определяется следующим образом:

```
0 < [\text{Ширина}] < 0.7
                          2 шт.;
0.7 < [Ширина] \le 1.4,
                          3 шт.;
1.4 < [Ширина] \le 2.1,
                          4 шт.;
2.1 < [Ширина] \le 2.8,
                          5 шт.;
2.8 < [Ширина] \le 3.5,
                          6 шт.;
3.5 < [Ширина] < 4.2,
                          7 шт.;
4.2 < [Ширина] \le 4.9,
                          8 шт.;
4.9 < [Ширина] \le 5.6,
                          9 шт.;
```

При наличии опции «Боковой валанс» дополнительно к лицевому груверу и кронштейнам в комплект вкладываются 2 боковых грувера длиной по 10 см и 2 уголка торцевых для грувера.