

Candidate ID: 3888430

Candidate Name: Kaliraj Balakrishnan

Date: 21-Mar-2021

Assessment Name: ML_01_ML1_Senior

Client Name: Upgrad

Kaliraj Balakrishnan scored 38% and completed assessment in 81% of the alloted time

Sections	Questions	Q Appeared	Correct Answer	Section Time	Time Taken	Score
ML_Concepts	16	16	10	17 min	11 min 51 sec	10/16
ML_Coding	1	1	0	15 min	15 min	0/10
Cognitive_Ability	12	12	3	12 min	11 min 6 sec	3/ 12
Python_LogicBox	2	2	1	15 min	12 min 4 sec	3/10
Data_Toolkit	14	14	8	18 min	12 min 34 sec	8/ 14
SQL_Concepts	4	4	1	4 min	3 min 17 sec	1/ 4

DIFFICULTY LEVEL ANALYSIS

Level	Number of Questions	Correct Attempts	Correctness

Level	Number of Questions	Correct Attempts	Correctness
Easy	19	7	36.84 %
Medium	18	12	66.67 %
Hard	12	4	33.33 %

PROCTORING ANALYSIS

Window Violation: **0**Time Violation: **0 sec**

0 images captured. Image violation detected in 0 images

QUESTION DETAILS				
Question: #1	Type: Coding	Skill: Machine Learning Coding	Status: Answered	Result: Wrong
Level: Easy	Time Taken:	Score: 0 / 10	Window Violation: 0 times	Time Violation: 0 sec

OLIECTION DETAILS

Question #1

You are a data science professor.

15 min 2 sec

You are teaching linear regression to your students.

As part of the lesson, you want to show the students the line with the least-squares fit.

Thus, given some values for the independent variable 'X', and the corresponding dependent variable 'Y', output the sum of the slope and the intercept of the linear regression fit, rounded off to the second decimal place.

Note

Train the model on default hyperparameters.

Round off the output number to 2 digits after the decimal. Example: 2.33, 5.88

<u>Input Format</u>

Line 1: A space-separated list of floating-point numbers denoting the *independent* variables.

Line 2: A space-separated list of floating-point numbers denoting the *dependent* variables.

Output Format

Print a single floating point number denoting the sum of the slope and intercept of the fitted linear regression rounded up to the second decimal place.

Sample Input

- -1.053347195170761 -0.07047909428095181 0.09683910047859905
- -1.7673884778971813 -1.2470643567216502 -1.598828633884807
- -1.470326613668779 0.06373640328726708 0.8313079349445928 0.810428363101334
- -8.787747649931456 -0.4283737851271292 1.0784334837561802
- -14.868094220695752 -9.860690691161116 -14.132472220335451
- -13.185944016121688 3.7540726760233563 8.180097232403666 11.623121566237993

Sample Output

11.24

Explanation

The sum of the slope and the intercept of the linear regression fit rounded off to the second decimal place is 11.24.

```
Answer:
Coding Language: Python with ML
Candidate Code:
"'IMPORTANT: click on "Compile & Run" to generate an output to the written code
ONLY this will generate scores for your code!
Also this will help you to check correctness of your code against test cases"
import numpy as np
# INPUT [uncomment & modify if required]
#input for independent variables
x = list(map(float, input().split()))
#input for dependent variables
y = list(map(float, input().split()))
m,c = np.polyfit(x,y,1);
#this is default OUTPUT. You are allowed to modify it.
result=0
size = len(x);
for i in range(0,size-1):
  result += (y[i]-(m*x[i]+c))**2
#NOTE: The variable "x" contains list of independent variables and variable "y" contains list of dependent variables
#WRITE YOUR LOGIC HERE:
# OUTPUT [uncomment & modify if required]
print(format(result,'.2f'))
Compilation Summary:
 Compilation Status: Compile Successfully
                                                      No Of Compilations: 6
```

Defualt Input: Candidate Output:

-1.053347195170761 -0.07047909428095181 0.0968391 9.48

0047859905 -1.7673884778971813 -1.24706435672165

02 -1.598828633884807 -1.470326613668779 0.06373

640328726708 0.8313079349445928 0.8104283631013

34

br>-8.787747649931456 -0.4283737851271292 1.07

84334837561802 -14.868094220695752 -9.86069069

1161116 -14.132472220335451 -13.185944016121688 3.75

40726760233563 8.180097232403666 11.623121566237

993

Test Case Summary:

Test Case: 1 Status: Fail Score:0

Test Case Input	Expected Output	Actual Output
-1.053347195170761 -0.07047909428095181 0.096 83910047859905 -1.7673884778971813 -1.247064 3567216502 -1.598828633884807 -1.47032661366 8779 0.06373640328726708 0.831307934944592 8 0.810428363101334 -8.787747649931456 -0.4283737851271292 1.0784 334837561802 -14.868094220695752 -9.860690 691161116 -14.132472220335451 -13.18594401612168 8 3.7540726760233563 8.180097232403666 11.62 3121566237993	11.24	9.48

Test Case: 2 Status: Fail Score:0

Test Case Input	Expected Output	Actual Output
-0.6462928194729174 1.5112420039891516 0.91552 70919790113 -0.3820530494472467 0.7123023785 388861 0.8775648991069698 1.38290586266108 2 -0.604871381953642 -0.8006928770429605 -0. 7204982871528259 -8.995515118674142 25.855562169066932 14.8449 9797104278 -2.5143299737862206 11.0592526873 74283 15.247973938374962 21.45398824691205 8 -7.114398260701733 -10.581363839097492 -11.51 8875613934384	16.63	9.77

Test Case: 3 Status: Fail Score:0

Test Case Input	Expected Output	Actual Output
0.20076599207795404 -0.36597173416618545 0.11 509494440343183 -1.7011514131966492 -0.782290 1409936784 -0.2837055622647406 1.9857159855 05638 -0.3308663426558487 -0.105872061177212 78 -0.42926503507535413 5.819207450683875 -3.476493792097122 -1.2662 709189285595 -2.097499402204781 0.004960791 3843068285 0.21525959653513693 17.986541769 721853 1.6683158455592788 1.372752710693148 5 -1.205243043763006	8.64	86.07

Test Case: 4 Status: Fail Score:0

Test Case Input	Expected Output	Actual Output
-0.5754432391087806 0.4684332567381314 -0.21 07152388066264 1.0883807349571344 0.9971886 718733006 1.3446395082373481 -2.1298971293183 593 1.1289929362444253 0.7067615732992125 -1. 433364558370002 -35.13644158837215 43.21440716831026 -14.4503 6549817872 82.97168563468632 75.32329288222 742 100.07665745412869 -150.1521220889344 84. 52175584458142 54.964219180648506 -101.90656 032702331	76.37	49.26

Test Case: **5** Status: **Fail** Score:**0**

Test Case Input	Expected Sutput	Astual Sutput
-0.4160074130286227 0.6087003482876278 0.74		
42195446742945 -1.0098081275365054 -0.03403		
845911276064 0.8794794841101103 0.46011726527		
3801 -0.7322152001681816 -0.3883743862179800		
4 -0.18226962845813346	58.76	92.50
-24.300180054813847 32.725970021001146 41.9012	56.76	92.50
27594232346 -51.67089004925092 3.6293627135		
03361 52.825993532876815 32.18556987087824 -		
43.52459351180278 -21.326959040444187 -1.3356		
919373799139		

Test Case: 6 Status: Fail Score:0

Test Case Input	Expected Output	Actual Output

Test Case Input	Expected Output	Actual Output
0.5946041914990825 -0.7184336320243087 -0.04 466439181020556 0.9966053681404196 -0.32480 00524298263 -1.4252832666338595 -1.156176314 065439 -0.09027141096077067 -0.109005282767 0868 -0.6753238528196934 9.32630404749119 -8.660303417481598 0.976623 0036260993 12.448790897780574 -3.408972282 5904394 -16.437084531080185 -13.071570988060 54 -0.7496544096406333 0.3692715798848340 6 -5.459929801090279	13.31	4.14

Question: #2	Type: AI-LogicBox	Skill: Machine Learning	Status: Answered	Result: Correct
Level: Easy	Time Taken: 7 min 39 sec	Score: 3 / 5	Window Violation: 0 times	Time Violation: 0 sec

Question #2

The scikit-learn library in Python is a well-known library used to solve modeling problems. You have the following dataset at hand:

Throttle Speed (m/s)	Throttle Acceleration (m/s²)	Steering Angle (radians)
5	1.5	0
6.5	0.4	1.08
10	3.3	0.06
3	2.1	0.22

In relation to the modeling of the above dataset (Throttle Speed and Acceleration being the independent variables, Steering Angle being the dependent variable).

Complete the code as per the instructions given for each blank:

At Blank 1: Which paradigm of Machine Learning Problems does the above scenario belong to?

At Blank 2: Write the code to import the relevant libraries required to model the problem.

At Blank 3: Write the code to split the data into 80:20 train/test sets and a random state equal to 123.

At Blank 4: Write the code to fit a Linear Regression model on the training set.

Sample Script:

Name the ML Paradigm associated with the problem:

Blank 1: Write your answer here

import numpy as np import pandas as pd

Blank 2: Write your code here

X = data.features

y = data.target

X_train, X_test, y_train, y_test =

Blank 3: Write your code here

Ir = LinearRegression()

Blank 4: Write your code here

r2_Score =

Blank 5: Write your code here

At Blank 5: Write the code to calculate the R² score on the test set.

Answer:

Question: #3 Type: Al-LogicBox Skill: Status: Answered Result: Wrong

Machine Learning

Level: Medium Time Taken: Score: 0 / 5 Window Violation: 0 times Time Violation: 0 sec
4 min 25 sec

Question #3

The scikit-learn library in Python is a well-known library used to solve modelling problems. You have the following dataset at hand:

Transaction Region	Transaction Amount (\$)	Transaction Status (1/0/2 for Malicious/Normal/Cannot Say)
APAC	334500	0
EU	23345	1
USA	345678	2
CN	23456	0

In relation to the modelling of the above dataset (Transaction Region and Amount being the independent variables, Transaction Status being the dependent variable), fill in the blanks below:

At Blank 1: Which loss is minimized when the above data is modelled using Logistic Regression?

At Blank 2: Write the code to import the relevant libraries required to model the problem using Logistic Regression.

At Blank 3: Write the code to convert the 'Transaction Region' column into dummy variables using pandas.

At Blank 4: Write the code to fit a Logistic

Sample Script:

The loss that is minimized when the above data is modelled using Logistic Regression:

Blank 1: Write your answer h

import numpy as np
import pandas as pd
from sklearn.model_selection import
train_test_split

Blank 2: Write your code here

X = data.features
y = data.target

X_transformed =

Blank 3: Write your code here

clf = SVC()

Blank 4: Write your code here

r2_score=

Blank 5: Write your code here

Regression Classifier on the transformed set.

At Blank 5: Write the code to find the R2 score on the transformed set.

Answer:

