NOV 0'5 2003 ES

<211> 21

SEQUENCE LISTING

```
<110> Bublot, et al.
<120>
      Equine GM-CSF
      454313-2334.1
<130>
<140> 09/589,460
      2000-06-07
<141>
<150> 60/138,843
      1999-06-10
<151>
<160>
<170> PatentIn version 3.0
<210>
      1
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide primer
<220>
<221> misc_feature
      (13)..(13)
<222>
<223> nucleotide "y" can be either of the pyrimidine nucleotides "c" or
<400> 1
                                                                      20
tgggcactgt ggyctgcagc
<210> 2
<211> 17
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide primer
<220>
<221> misc_feature
<222>
      (9)..(9)
<223> nucleotide "r" can be either of the purine nucleotides "a" or "g"
<400> 2
                                                                      17
agcatgtgra tgccatc
<210> 3
```

<212>			
<213>	Artificial		
<220>			
	oligonucleotide primer		
<400>		0.1	
agctcc	cagg gctagctcct a	21	
			•
<210>	4		
<211>			
<212>			
<213>	Artificial		
<220>			
<223>	oligonucleotide primer		
<400>	4		
	ttgt acagcttcag g	21	
3			
<210>			
<211> <212>			
	Artificial		
12137			
<220>			
<223>	oligonucleotide primer		
<400>	E		
	tcag aaggetcagg g	21	
-33-			
<210>			
<211> <212>			
	Artificial		
(21)/	ALCIEL CLUE	,	
<220>			
<223>	oligonucleotide primer		
<400>	6 catg tegaegeeae catgtggetg cagaacetge ttet	44	
catcat	caty togatyctae catytygety cagaacetye teet	• •	
<210>	7		
<211>			
<212>			
<213>	Artificial		
<220>			
	oligonucleotide primer		
7227			
<400>			
catcat	catg cggccgctac ttctgggctg ctggcttcca g	41	

<u>.</u>

<210 <211 <212 <213	> 4: > Di	35 NA quin	e sp													
<220 <221 <222 <223	> C > ((432 g se		ce o	of eq	uine	GM-	CSF	gene	:					
<400 atg Met 1	t.aa	cta	cag Gln	aac Asn 5	ctg Leu	ctt Leu	ctt Leu	ctg Leu	ggc Gly 10	act Thr	gtg Val	gtt Val	tac Tyr	agc Ser 15	atg Met	48
ccc Pro	gca Ala	ccc Pro	acc Thr 20	cgc Arg	caa Gln	ccc Pro	agc Ser	cct Pro 25	gtc Val	act Thr	cgg Arg	ccc Pro	tgg Trp 30	cag Gln	cat His	96
gtg Val	gat Asp	gcc Ala 35	atc Ile	aag Lys	gag Glu	gcc Ala	ctg Leu 40	agc Ser	ctt Leu	ctg Leu	aac Asn	aac Asn 45	agt Ser	agt Ser	gac Asp	144
act Thr	gct Ala 50	gct Ala	atc Ile	atg Met	aat Asn	gaa Glu 55	aca Thr	gta Val	gaa Glu	gtc Val	gtc Val 60	tct Ser	gaa Glu	acg Thr	ttt Phe	192
gac Asp 65	gcc Ala	gag Glu	gag Glu	ctg Leu	aca Thr 70	tgc Cys	ctg Leu	cag Gln	act Thr	cgc Arg 75	ctg Leu	aag Lys	ctg Leu	tac Tyr	aaa Lys 80	240
cag Gln	ggc Gly	ttg Leu	cgg Arg	ggc Gly 85	agc Ser	ctc Leu	atc Ile	aag Lys	ctc Leu 90	gaa Glu	ggc Gly	ccc Pro	ttg Leu	acc Thr 95	atg Met	288
atg Met	gcc Ala	agc Ser	cac His 100	tac Tyr	aag Lys	cag Gln	cac His	tgc Cys 105	ccc Pro	ccc Pro	acc Thr	ctg Leu	gaa Glu 110	act Thr	tcc Ser	336
tgt Cys	gca Ala	acc Thr 115	Gln	atg Met	atc Ile	acc Thr	ttc Phe 120	Lys	agt Ser	ttc Phe	aaa Lys	aag Lys 125	Asn	ctg Leu	aag Lys	384
gat Asp	ttt Phe 130	Leu	ttt Phe	gag Glu	atc Ile	ccg Pro 135	Phe	gac Asp	tgc Cys	tgg Trp	aag Lys 140	Pro	gcc Ala	cag Gln	aag Lys	432
taa																435

<210> 9 <211> 144 <212> PRT <213> Equine sp.

Met Trp Leu Gln Asn Leu Leu Leu Leu Gly Thr Val Val Tyr Ser Met 1 5 10 15

Pro Ala Pro Thr Arg Gln Pro Ser Pro Val Thr Arg Pro Trp Gln His 20 25 30

Val Asp Ala Ile Lys Glu Ala Leu Ser Leu Leu Asn Asn Ser Ser Asp 35 40 45

Thr Ala Ala Ile Met Asn Glu Thr Val Glu Val Val Ser Glu Thr Phe 50 55 60

Asp Ala Glu Glu Leu Thr Cys Leu Gln Thr Arg Leu Lys Leu Tyr Lys 65 70 75 80

Gln Gly Leu Arg Gly Ser Leu Ile Lys Leu Glu Gly Pro Leu Thr Met 85 90 95

Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Leu Glu Thr Ser 100 105 110

Cys Ala Thr Gln Met Ile Thr Phe Lys Ser Phe Lys Lys Asn Leu Lys 115 120 125

Asp Phe Leu Phe Glu Ile Pro Phe Asp Cys Trp Lys Pro Ala Gln Lys 130 135 140