Discrete mathematics, **logic** and reasoning (COMP40018)

Dalal Alrajeh Jany thanks to Jan Hodkinson and Robert C

Many thanks to Ian Hodkinson and Robert Craven for some of the original material, and none of the errors.

Let's go back to our L-structure M.

How can we tell if $\exists x \; \mathtt{Bought}(x,\mathtt{heron})$ is true in M? In symbols, do we have $M \models \exists x \; \mathtt{Bought}(x,\mathtt{heron})$? In English, 'does M say that something bought Heron?'.

How can we tell if $\exists x \; \mathtt{Bought}(x,\mathtt{heron})$ is true in M? In symbols, do we have $M \models \exists x \; \mathtt{Bought}(x,\mathtt{heron})$? In English, 'does M say that something bought Heron?'.

Well, for this to be so, there must be an object x in \mathbb{D} such that $M \models \mathsf{Bought}(x, \mathsf{heron})$ — that is, M says that x Bought heron.

How can we tell if $\exists x \; \mathsf{Bought}(x, \mathsf{heron})$ is true in M? In symbols, do we have $M \models \exists x \; \mathsf{Bought}(x, \mathsf{heron})$? In English, 'does M say that something bought Heron?'.

Well, for this to be so, there must be an object x in \mathbb{D} such that $M \models \mathsf{Bought}(x, \mathsf{heron})$ — that is, M says that x Bought heron.

There is: we have a look, and we see that we can take (eg.) x to be o_5 marked on the diagram as $tony_M$.

So yes indeed, $M \models \exists x \; \mathtt{Bought}(x, \mathtt{heron}).$

$$M \models \forall x (\mathtt{Bought}(\mathtt{tony}, x) \rightarrow \mathtt{Bought}(\mathtt{susan}, x))?$$

Is it true that "for every object x in \mathbb{D} , Bought(tony, x) \to Bought(susan, x) is true in M"?

$$M \models \forall x (\texttt{Bought}(\texttt{tony}, x) \rightarrow \texttt{Bought}(\texttt{susan}, x))?$$

Is it true that "for every object x in \mathbb{D} , Bought(tony, x) \to Bought(susan, x) is true in M"?

In M, there are 12 possible x.

We need to check whether $\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{Bought}(\mathtt{susan}, x)$ is true in M for each of the 12 possible x in M.

$$M \models \forall x (\mathtt{Bought}(\mathtt{tony}, x) \rightarrow \mathtt{Bought}(\mathtt{susan}, x))?$$

Is it true that "for every object x in \mathbb{D} ,

$$\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{Bought}(\mathtt{susan}, x) \text{ is true in } M$$
"?

In M, there are 12 possible x.

We need to check whether $\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{Bought}(\mathtt{susan}, x)$ is true in M for each of the 12 possible x in M.

BUT

 $\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{Bought}(\mathtt{susan}, x)$ true in M for any object x such that $\mathtt{Bought}(\mathtt{tony}, x)$ is false in M. ('False \to anything is true.')

$$M \models \forall x (\mathtt{Bought}(\mathtt{tony}, x) \rightarrow \mathtt{Bought}(\mathtt{susan}, x))?$$

Is it true that "for every object x in \mathbb{D} ,

Bought(tony, x) \to Bought(susan, x) is true in M"?

In M, there are 12 possible x.

We need to check whether $\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{Bought}(\mathtt{susan}, x)$ is true in M for each of the 12 possible x in M.

BUT

 $\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{Bought}(\mathtt{susan}, x)$ true in M for any object x such that $\mathtt{Bought}(\mathtt{tony}, x)$ is false in M. ('False \to anything is true.')

So we only need check those x — here, just the object o_{10} — for which Bought(tony, x) is true, (i.e. $(tony_M, heron_M) \in Bought_M$).

For the object $o_{10} = heron_M$,

Bought(susan, heron) is true in
$$M$$

 $(susan_M, heron_M) \in Bought_M$

So
$$\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{Bought}(\mathtt{susan}, x)$$
 is true in M for $every$ object x in M

Hence,

$$M \models \forall x (\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{Bought}(\mathtt{susan}, x)).$$

The effect of ' $\forall x (\texttt{Bought}(\texttt{tony}, x) \to \cdots$ ' is to restrict the $\forall x$ to those x that Tony bought. This trick is extremely useful. Remember it!

Exercise: which are true in M?

Remember: the black dots are the lecturers.

Truth in a structure — formally!

We saw informally how to evaluate formulas with no variables and formulas where variables are quantified, in a structure 'by inspection'.

But as in propositional logic, English can only be a rough guide. For engineering, this is not good enough.

We need a more formal way to evaluate all predicate logic formulas in structures.

In propositional logic, we calculated the truth value of a formula in a situation by working up through its formation tree — from the atomic subformulas (leaves) up to the root.

For predicate logic, things are not so simple...

A problem

Consider the formula $\forall x (\mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{PC}(x))$ in the structure M given in Slide 183. Its formation tree is:

Can we evaluate the main formula by working up the tree?

Is Bought(tony, x) true in M?!

Is PC(x) true in M?!

It depends on what x is! So, what's going on?

Free and bound variables

We'd better investigate how variables can arise in formulas.

Definition 4.5 (free and bound variables)

Let ϕ be a formula.

- 1. An occurrence of a variable x in ϕ is said to be *bound* if it occurs in the scope of a quantifier $\forall x$ or $\exists x$.
- 2. Variables that are not bound are said to be free.
- 3. The *free variables of* ϕ are those variables with free occurrences in ϕ .

A variables x that is bound in ϕ occurs in an atomic subformula of ϕ that lies under a quantifier $\forall x$ or $\exists x$ in the formation tree of ϕ .

Example

The free variables of the formula are y, z. Note: z has both free and bound occurrences.

Problem 1: free variables

A formulae with free variables is neither true nor false in a structure M, because the variables have no meaning in M.

It's like asking 'is x = 7 true?'

So, the structure is not a 'complete' situation — it doesn't fix the meanings of free variables. (They are variables, after all!)

So we must specify values for free variables, before evaluating a formula to true or false.

This is so even if it turns out that the values do not affect the answer (like x = x).

Assignments to variables

We supply the missing values of free variables using something called an *assignment*.

What a structure does for constants, an assignment does for variables.

Definition 4.6 (assignment)

Let $M = \langle \mathbb{D}, \mathbb{I} \rangle$ be a structure. An assignment (or 'valuation') over M is a function that assigns an object in \mathbb{D} to each variable. That is, $h: V \mapsto \mathbb{D}$ is an assignment, where V is the set of variables.

For an assignment h and a variable x, we write h(x) to denote the object in \mathbb{D} assigned to x by h.

Evaluating terms

An L-structure M plus an assignment h over M form a 'complete situation'. We can then evaluate:

- any L-term to an object in dom(M),
- any L-formula with no quantifiers to $true\ or\ false$.

We do the evaluation in two stages: first terms, then formulas.

Definition 4.7 (value of a term)

Let L be a signature, $M = \langle \mathbb{D}, \mathbb{I} \rangle$ an L-structure, and h an assignment over M. Then for any L-term t, the value of t in M under h, denoted as $|t|_M^h$, is the object in \mathbb{D} allocated to t by:

- M, if t is a constant that is, $|t|_M^h = \mathbb{I}(t) = t_M$
- h, if t is a variable that is, $|t|_M^h = h(t)$.
- M and h, if t is a term $f(t_1, \ldots, t_n)$ that is, $|t|_M^h = f_M(|t_1|_M^h, \ldots, |t_n|_M^h)$

Evaluating terms: example

The value in M under h of the term tony is:

The value in M under h of the term x is:

A useful signature for arithmetic and for programs using numbers is the L consisting of:

- constants $\underline{0}$, $\underline{1}$, $\underline{2}$, ... (I use underlined typewriter font to avoid confusion with actual numbers $0, 1, \ldots$)
- binary function symbols $+, -, \times$
- binary relation symbols $<, \le, >, \ge$.

A useful signature for arithmetic and for programs using numbers is the L consisting of:

- constants <u>0</u>, <u>1</u>, <u>2</u>, ... (I use underlined typewriter font to avoid confusion with actual numbers 0, 1, ...)
- binary function symbols $+, -, \times$
- binary relation symbols $<, \le, >, \ge$.

We'll abuse notation by writing *L*-terms and formulas in infix notation (everybody does this, but it breaks Definitions 4.2 and 4.3):

- x + y, rather than +(x, y),
- x > y, rather than >(x, y).

A useful signature for arithmetic and for programs using numbers is the L consisting of:

- constants <u>0</u>, <u>1</u>, <u>2</u>, ... (I use underlined typewriter font to avoid confusion with actual numbers 0, 1, ...)
- binary function symbols $+, -, \times$
- binary relation symbols $<, \le, >, \ge$.

We'll abuse notation by writing *L*-terms and formulas in infix notation (everybody does this, but it breaks Definitions 4.2 and 4.3):

- x + y, rather than +(x, y),
- x > y, rather than >(x, y).

Examples of terms: $x + \underline{1}$, $\underline{2} + (x + \underline{5})$, $(\underline{3} \times \underline{7}) + x$. Not x + y + z. Examples of formulas: $\underline{3} \times x > \underline{0}$, $\forall x (x > \underline{0} \to x \times x > x)$.

A useful signature for arithmetic and for programs using numbers is the L consisting of:

- constants <u>0</u>, <u>1</u>, <u>2</u>, ... (I use underlined typewriter font to avoid confusion with actual numbers 0, 1, ...)
- binary function symbols $+, -, \times$
- binary relation symbols $<, \le, >, \ge$.

We'll abuse notation by writing *L*-terms and formulas in infix notation (everybody does this, but it breaks Definitions 4.2 and 4.3):

- x + y, rather than +(x, y),
- x > y, rather than >(x, y).

Examples of terms: $x + \underline{1}$, $\underline{2} + (x + \underline{5})$, $(\underline{3} \times \underline{7}) + x$. Not x + y + z. Examples of formulas: $\underline{3} \times x > \underline{0}$, $\forall x(x > \underline{0} \to x \times x > x)$.

We evaluate arithmetic terms in a structure with domain $\mathbb{D} = \{0, 1, 2, \ldots\}$ in the obvious way.

But (eg) 34-61 is unpredictable — can be any number.

Semantics of quantifier-free formulas

We can now evaluate any formula without quantifiers.

Fix an L-structure M and an assignment h.

We write $M, h \models \phi$ if ϕ is true in M under h, and $M, h \not\models \phi$ if not.

Definition 4.8

- 1. Let R be an n-ary predicate symbol in L, and t_1, \ldots, t_n be L-terms (see Def. 4.2). Let $|t_i|_M^h = a_i$ be the value of t_i in M under h for each $i = 1, \ldots, n$.
 - $M, h \models R(t_1, \ldots, t_n)$ if $(a_1, \ldots, a_n) \in R_M$. If not, then $M, h \not\models R(t_1, \ldots, t_n)$.
- 2. Let t, t' be terms. Then $M, h \models t = t'$ if t and t' have the same value in M under h, that is $|t|_M^h = |t'|_M^h$. If they don't, then $M, h \not\models t = t'$.
- 3. $M, h \models \top$, and $M, h \not\models \bot$.
- 4. $M, h \models A \land B$ if $M, h \models A$ and $M, h \models B$. Otherwise, $M, h \not\models A \land B$.
- 5. $\neg A, A \lor B, A \to B, A \leftrightarrow B$ as in propositional logic.

Evaluating quantifier-free formulas: example

- $M, h \models \operatorname{Human}(z)$?
- $M, h \models x = \text{heron}$?
- $M, h \models \mathtt{Bought}(\mathtt{susan}, y) \lor z = \mathtt{frank}$?

Problem 2: bound variables

We now know how to specify values for *free variables*: with an assignment. This allowed us to evaluate all quantifier-free formulas.

But most formulas involve quantifiers and bound variables.

Values of bound variables are not — and should not be — given by the complete situation, as they are controlled by quantifiers.

How do we handle this?

Answer: Informally, we let the assignment vary. Rough idea:

- for \exists , we want *some* assignment to make the formula true;
- for \forall , we demand that *all* assignments make the formula true.

Formally, we use the notion of [variable]-equivalent variable assignments.

[Variable]-equivalent variable assignments

Two variable assignments are [variable]-equivalent if they differ at most in the assignment of the variable "[variable]".

Let M be a structure, g, h be two assignments under M, and x be a variable.

We say that g and h are x-equivalent, written $g =_x h$, if they differ at most in the assignment of x.

- The following four variable assignments are y-equivalent.
 - h_1 : $h_1(x) = a_1, h_1(y) = a_2, h_1(z) = a_3$
 - h_2 : $h_2(x) = a_1, h_2(y) = a_4, h_2(z) = a_3$
 - h_3 : $h_3(x) = a_1, h_3(y) = a_6, h_3(z) = a_3$
 - h_4 : $h_4(x) = a_1, h_4(y) = a_2, h_4(z) = a_3$

Note: A variable assignment is always [variable]-equivalent to itself.

Warning: Don't be misled by the '=' sign in $=_x$.

 $g =_x h$ does not imply g = h, because we may have $g(x) \neq h(x)$.

Semantics of quantified formulas

Definition 4.9 (Def. 4.8 continued)

Let M be a L-structure and h be any assignment over M.

Suppose we already know how to evaluate a formula ϕ in M under any assignment. Let x be any variable. Then:

- 6. $M, h \models \exists x \phi \text{ if } M, g \models \phi \text{ for } some \text{ assignment } g \text{ over } M \text{ that is } g =_x h.$ If not, then $M, h \not\models \exists x \phi$.
- 7. $M, h \models \forall x \phi$ if $M, g \models \phi$ for *every* assignment g over M that is $g =_x h$. If not, then $M, h \not\models \forall x \phi$.

Evaluating formulas with quantifiers: an example

				1
$y \backslash x$	$tony_Q$	0	$clyde_Q$	
$tony_Q$	h_1	h_2	h_3	$=_x$
0	h_4	h_5	h_6	$=_x$
$clyde_Q$	h_7	h_8	h_9	$=_x$
	$=_{y}$	$=_{y}$	$=_{y}$,

Eg: $h_2(x) = \bigcirc$, and $h_2(y) = tony_Q$

- $Q, h_2 \not\models \operatorname{Human}(x)$
- $Q, h_2 \models \exists x \text{ Human}(x)$, because there is an assignment h_1 where $h_1 =_x h_2$ and $Q, h_1 \models \text{Human}(x)$.
- $Q, h_7 \not\models \forall x \text{ Human}(x)$, because it is not true that $Q, g \models \text{Human}(x)$ for all g with $g =_x h_7$: e.g., $h_8 =_x h_7$ and $Q, h_8 \not\models \text{Human}(x)$.

The object assigned to y is irrelevant here. But it is needed next...

A more complex one: $Q, h_4 \models \forall x \exists y, \mathtt{Bought}(x, y)$

For this to be true, we require $Q, g \models \exists y, \mathtt{Bought}(x,y)$ for every assignment g over Q with $g =_x h_4$.

These are: h_4, h_5, h_6 .

- $Q, h_4 \models \exists y \operatorname{Bought}(x, y)$, because
 - \bullet $h_4 =_y h_4$ and $Q, h_4 \models \mathsf{Bought}(x, y)$
- $Q, h_5 \models \exists y \operatorname{Bought}(x, y)$, because
 - \bullet $h_8 =_y h_5$ and $Q, h_8 \models \mathsf{Bought}(x, y)$
- $Q, h_6 \models \exists y \operatorname{Bought}(x, y), \text{ because}$
 - $h_3 =_y h_6$ and $Q, h_3 \models \mathsf{Bought}(x, y)$

So indeed, $Q, h_4 \models \forall x \exists y \, \mathtt{Bought}(x, y)$.

Formally showing $M \models \forall x (\texttt{Lecturer}(x) \to \texttt{Human}(x))$

Let h be arbitrary assignment. There are two cases. Take $|x|_M^h \in \mathbb{I}(\text{Lecturer})$. That is $|x|_M^h$ is either o_3, o_2, o_4, o_5, o_6 . Take h to be an assignment where $|x|_M^h = o_6$. But $o_6 \notin \mathbb{I}(\text{Human})$. Hence $M, h \not\models \text{Human}(x)$. Therefore $M, h \not\models (\text{Lecturer}(x) \to \text{Human}(x))$. Hence $M \not\models \forall x (\text{Lecturer}(x) \to \text{Human}(x))$

Useful notation for free variables

The following notation is useful for writing and evaluating formulas.

The books often write things like

'Let
$$\phi(x_1,\ldots,x_n)$$
 be a formula.'

This indicates that the free variables of ϕ are among x_1, \ldots, x_n . Note: x_1, \ldots, x_n should all be different. And not all of them need actually occur free in ϕ .

Example: if ϕ is the formula

$$\forall x (\mathtt{R}(x,y) \to \exists y \mathtt{S}(y,z)),$$

we could write it as

- $\phi(y,z)$
- $\phi(x,z,y)$
- ϕ (if we're not using the useful notation)

but not as $\phi(x)$.

Notation for assignments

Fact 1

Given a formula ϕ , whether or not $M, h \models \phi$ only depends on $\phi(x)$ for those variables x that occur free in ϕ .

So for a formula $\phi(x_1, \ldots, x_n)$, if $h(x_1) = a_1, \ldots, h(x_n) = a_n$, it's OK to write $M \models \phi(a_1, \ldots, a_n)$ instead of $M, h \models \phi$.

• Suppose we are explicitly given a formula $\phi(y,z)$, such as

$$\forall x (\mathbf{R}(x,y) \to \exists y \mathbf{S}(y,z))$$

If h(y) = a, h(z) = b, say, we can write

$$M \models \phi(a,b), \text{ or } M \models \forall x (\mathbf{R}(x,a) \to \exists y \mathbf{S}(y,b)),$$

instead of $M, h \models \phi$. Note: only the *free* occurrences of y in ϕ are replaced by a. The bound y is unchanged.

For a sentence S, whether M, h |= S does not depend on h at all.
 So we can just write M |= S.

Sentences

Definition 4.10 (sentence)

A *sentence* is a formula with no free variables.

Example:

- $\forall x (\texttt{Bought}(\texttt{tony}, x) \to \texttt{PC}(x))$ is a sentence.
- Its subformulas are not sentences:

$$\begin{aligned} & \mathtt{Bought}(\mathtt{tony}, x) \to \mathtt{PC}(x) \\ & \mathtt{Bought}(\mathtt{tony}, x) \\ & \mathtt{PC}(x) \end{aligned}$$

Which are sentences?

- Bought(frank, heron)
- \bullet x = x
- Bought(susan, x)

•
$$\forall x \forall y (x = y \to \forall z (\mathbf{R}(x, z) \to \mathbf{R}(y, z)))$$

• $\forall x(\exists y(y=x) \to x=y)$

Useful notation for free variables

The following notation is useful for writing and evaluating formulas.

The books often write things like

'Let
$$\phi(x_1,\ldots,x_n)$$
 be a formula.'

This indicates that the free variables of ϕ are among x_1, \ldots, x_n . Note: x_1, \ldots, x_n should all be different. And not all of them need actually occur free in ϕ .

Example: if ϕ is the formula

$$\forall x (R(x,y) \rightarrow \exists y S(y,z)),$$

we could write it as

- $\phi(y,z)$
- $\phi(x,z,y)$
- ϕ (if we're not using the useful notation)

but not as $\phi(x)$.