1) Simplify.
a)
$$\frac{x-4}{x^2-3x-4}$$

b)
$$\frac{x^2 - 4x - 32}{x^2 - 16}$$

c)
$$\frac{5-x}{x^2-25}$$

2) Simplify each expression. Write answers with positive exponents where applicable:

a)
$$\frac{1}{x+h} - \frac{1}{x}$$

b)
$$\frac{\frac{2}{x^2}}{\frac{10}{x^5}}$$

c)
$$\frac{12x^{-3}y^2}{18xy^{-1}}$$

$$d) \quad \frac{15x^2}{5\sqrt{x}}$$

e)
$$(5a^3)(4a^2)$$

f)
$$\left(4a^{\frac{5}{3}}\right)^{\frac{3}{2}}$$

g)
$$\frac{\frac{1}{2} - \frac{5}{4}}{\frac{3}{8}}$$

- 3) Simplify the following exponents and logarithms.
 - a) $\log_2 8$

d) $27^{\frac{2}{3}}$

b) $\log \frac{1}{100}$

e) ln 1

c) $\ln e^7$

f) e^0

- 4) Solve for z:
 - a) 4x + 10yz 3 = 0

b) $y^2 + 3yz - 8z - 4x = 0$

- 5) Given $f(x) = \frac{x}{x+3}$, $g(x) = \sqrt{x-3}$, $h(x) = x^2 + 5$, find:
 - a) h(g(x))
 - b) $(f \circ h)(-2)$
 - c) f(f(3))
 - d) $h^{-1}(x)$ (inverse!)

- 6) Using either the slope-intercept or point-slope form of a line to write the equation for the lines described:
 - a) with slope -2 and containing the point (3,4)
 - b) containing the points (1,-3) and (-5,2)
 - c) with slope 0 and containing the point (4,2)
 - d) parallel to line 2x 3y = 7 and containing the point (5,1)
 - e) perpendicular to the line -3y + 6x = 2 and containing the point (4,3)
- 7) Let f be a linear function where f(2) = -5 and f(-3) = 1. State the function f(x).
- 8) Find the distance between the points (8,-1) and (-4,-6).
- 9) Without a calculator, determine the exact value of each expression:
 - a) $\sin \frac{\pi}{2}$

e) $\cos \frac{\pi}{3}$

b) $\sin \frac{3\pi}{4}$

f) $\tan \frac{7\pi}{4}$

c) $\cos \pi$

g) $\tan \frac{2\pi}{3}$

d) $\cos \frac{7\pi}{6}$

h) $\tan \frac{\pi}{2}$

- 10) For each function, make a neat sketch, including a scale or numbering of the axes. Name the domain and range for each as well. (Remember no calculator!)
 - a) $y = \sqrt{x}$

b) $y = \sqrt[3]{x}$

c) $y = e^x$

- D:
- R:

- D:
- R:

- D:
- R:

d)
$$y = \ln x$$

D: R:

R:

D:

D: R:

h)
$$y = x^2 + 4x + 3$$

i)
$$y = \sin x$$

$$j) \quad y = \sqrt{x-2}$$

$$k) \quad y = \sqrt{4 - x^2}$$

1)
$$y = |x+3| - 2$$

D: R: D: R:

- D: R:
- 11) Identify the vertical and horizontal asymptotes in the graph of $y = \frac{3x^2 + 5}{x^2 4}$.
- 12) Sketch a graph of the piecewise function:

$$f(x) = \begin{cases} x^2 - 5, x < -1 \\ 0, x = -1 \\ 3 - 2x, x > -1 \end{cases}$$

- 13) Determine all points of intersection (using algebra):
 - a) parabola $y = x^2 + 3x 4$ and the line y = 5x + 11
 - b) $y = \cos x$ and $y = \sin x$ in the first quadrant

14) Solve for x, where x is a real number (remember – no calculator!).

a)
$$x^2 + 3x - 4 = 14$$

f)
$$|x-3| < 7$$

b)
$$2x^2 + 5x = 3$$

g)
$$3\sqrt{x-2} - 8 = 8$$

c)
$$(x-5)^2 = 9$$

h)
$$12x^2 = 3x$$

d)
$$(x+3)(x-3) > 0$$

i)
$$27^{2x} = 9^{x-3}$$

e)
$$\log x + \log(x - 3) = 1$$

j)
$$4e^{2x} = 12$$

15) Eliminate the parameter and write the rectangular equation for: $\begin{cases} x = t^2 + 3 \\ y = 2t \end{cases}$

16) Expand and simplify:

a)
$$\sum_{n=2}^{5} 3n - 6$$

b)
$$\sum_{n=0}^{4} \frac{(n+1)^2}{n!}$$

- 17) Given the vectors $\vec{v} = -2i + 5j$ and $\vec{w} = 3i + 4j$, determine:
 - a) $\frac{1}{2}\vec{v}$

 - d) magnitude of \vec{v}
 - e) $\overrightarrow{w} \bullet \overrightarrow{v}$
- 18) Rectangular-Polar conversions:
 - a) Convert (1,4) to polar coordinates.
 - b) Convert $(2, \frac{\pi}{6})$ to rectangular coordinates.
- 19) Graph the following parametric equations for $0 \le t \le 3$:

$$\begin{cases} x = 2t - 1 \\ y = 3t - 5 \end{cases}$$

- 20) Complete the following identities:
 - a) $\sin^2 x + \cos^2 x =$ b) $1 + \tan^2 x =$ c) $\cot^2 x + 1 =$ d) $\sin 2x =$
- e) $\cos 2x =$

- b) $1 + \tan^2 x =$