Università degli Studi Roma Tre Corso di Studi in Ingegneria Informatica

Primo Modulo di Ricerca Operativa

16 Settembre 2003

Nome:	
Cognome:	Matricola:

Esercizio 1

L'azienda Ethil S.p.A. vuole investire nelle seguenti attività per la prossima stagione:

- Produzione Vermut Venerini
- 2. Produzione di Vino Brindisino
- 3. Produzione Vino Morello
- 4. Produzione Spumante Ottonari
- 5. Produzione Grappa Decino

La produzione delle bevande 1-5 richiede di utilizzare diversi uvaggi (Sangiovese, Trebbiano) nelle proporzioni indicate in Tavola 1. In particolare ciascuna colonna indica il profitto per bottiglia in migliaia di lire e le quantità di uve (in hg) necessarie alla produzione di una bottiglia del vino o liquore corrispondente a quella colonna.

L'ultima colonna indica le disponibilità di uvaggi (in q.li) previste per la prossima stagione.

- 1. Formulare come problema di PL il problema di decidere quante bottiglie produrre in modo da massimizzare i profitti della Ethil S.p.A.
- 2. Determinare una soluzione ottima con l'algoritmo del simplesso (Fase 1 e Fase 2).
- 3. Costruire il problema duale e risolverlo con il metodo grafico. Se la formulazione del primale comprende più di due vincoli, utilizzare solo i primi due.
- 4. La soluzione ottenuta al passo 2 è coerente con quella ottenuta al passo 3? Motivare la risposta.

Tavola 1: Dati di ingresso

	Vermut Venerini	Vino Brindisino	Vino Morello	Spumante Ottonari	Grappa Decino	Disp. Uve
Profitto Unitario	10	5	12	35	38	
Sangiovese Trebbiano	1 3	8 2	3 4	0	20 15	50000 60000

Esercizio 2

È dato il grafo orientato in figura. In tabella è dato il costo di ogni arco. Utilizzando l'algoritmo di Dijkstra, determinare il cammino minimo dal nodo 1 a tutti gli altri nodi.

Archi	(1,2)	(1,3)	(2,4)	(3,4)	(3,5)	(3,6)	(3,7)	(5,2)	(5,6)	(6,4)	(6,7)	(7,4)
Costi	2	4	13	9	1	3	5	6	5	4	1	2

