Test1-SearchAlgorithms

- Due Feb 8 at 4:46pm
- Points 38
- Ouestions 19
- Available Feb 8 at 4:02pm Feb 14 at 6:45am
- Time Limit 40 Minutes

Instructions

- * Reference Figures in questions are uploaded on Canvas (SearchTestFigures.pdf and ConstraintProblems.pdf) for the test.
- * You may need extra papers for scratch work. Submit the sheet after the exam with your name on it.
- * Use the best answer, i.e., read all choices.
- * Closed book test. Do not refer to any material or use any communication devices during the test.
- * Use your honor code and do not talk to anyone about the test during or after the test
- * In-class test, unless permitted otherwise

This quiz was locked Feb 14 at 6:45am.

Attempt History

	Attempt	Time	Score	
LATEST	Attempt 1	39 minutes	30 out of 38	
! Correct a	nswers are hidden.			
Score for this	quiz: 30 out of 38			
Submitted Feb 8 at 4:41pm				
This attempt took 39 minutes.				
• • • • • • • • • • • • • • • • • • •				
Question 1				
2 / 2 pts				

Genetic algorithm is a type of stochastic beam search over an even number of current nodes.

https://fit.instructure.com/courses/637640/quizzes/1002107

True

○ False
Question 2
2 / 2 pts
[Refer: SearhTestFigures, Figure 1] Consider an A* search algorithm using the function $f(n) = the level of the node n, i.e., the distance from the root to n in terms of number of edges. This is same as:$
○ Simulated annealing
Blind breadth first search
O None of the above
O Blind depth first search
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Question 3 2 / 2 pts
(Refer: SearhTestFigures, Figure 2, use heuristic values f on nodes) In an A* search, current min- priority queue Q has nodes (c, b, d) with c at the top/root of the Q. Next, c is popped off and expanded with its children. Which nodes are in Q now as a sorted list with the best node on the left.
○ (b, f, g, d)
○ (f, b, d)
(e, f, g, goal)
Question 4
2 / 2 pts
(Refer: SearhTestFigures, Figure 3, 8-puzzle) How many grand-children of the root node <i>s</i> exist at level
2, starting with the start/root node as level 0 <i>? [Visited nodes may be revisited, as in a tree-search.]</i>
© 12
O 8
O 6
O 10
IncorrectQuestion 5
0/2 nts

(Refer: SearhTestFigures, Figure 3, 8-puzzle) Using heuristic h1=number of misplaced tiles, what is the h1(d) value of the node <i>d</i> ?
O 4
◎ 6
O 5
O 7
Question 6
2 / 2 pts
[Refer: SearhTestFigures, Figure 3, 8-puzzle] Using heuristic h2=Sum of Manhattan distances from each tile's correct position, where the h2(s) value of the start state = 1+1+0+0+1+1+0+2 (distances for tile #1 through #8, respectively) [Note, Manhattan distance is measured by summing horizontal and vertical distances.]
What is the h2(d) value of node d?
O 9
7
O 11
O 5
Question 7 2 / 2 pts
(Refer: SearhTestFigures, Figure 3, 8-puzzle) Using heuristic h2=Sum of Manhattan distances from each tile's correct tile position, where the h2(s) value of the start state = 1+1+0+0+1+1+0+2 (distances for tile #1 through #8),
which of the node(s) a, b, c, and/or d will be chosen by the A* algorithm at the level 1?
O node a or b
onode a or c
O node c or d
O node b or c
::

Question 8
2 / 2 pts
Adversarial/Game search: a maximizing node $n1$ has its current maximum (alpha)=3 that it passed to $n1$ s currently active (minimizing) child node $n2$. Then, $n2$ received 2 from $n2$ s latest executed child, which became $n2$ s current minimum (beta). Should $n2$ continue executing its remaining children?
[You may refer SearchTestFigures 4th slide, if that helps.]
○ Yes
Should use the average value
● No
O Depends
• • • • • • • • • • • • • • • • • • •
Question 9
2 / 2 pts
Refer SearchTestFigures fourth/last slide.
What will be the value at the root after running min-max algorithm WITHOUT alpha-beta pruning?
O 15
3
O 2
O 0
Question 10 2 / 2 pts
Refer SearchTestFigures fourth/last slide.
What will be the value at the root after running min-max algorithm WITH alpha-beta pruning?
O 2
O 0
O 15
⊚ 3

Question 11
2 / 2 pts

Which of the following ones do not necessarily output a satisfiable solution in CSP?
Constraint Propagation
Forward Checking with Degree heuristics
O Backtracking
Forward Checking with Min-remaining Value heuristic
IncorrectQuestion 12 0 / 2 pts
Refer to the file ConstraintProblems.
Is the network Arc-consistent? If no domain changes when an AC algorithm is run it is arc consistent.
■ True
○ False
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Question 13 2 / 2 pts
A Constraint problem over three variables and respective domains, x1: {1,2,3}, x2: {2,3}, x3:{3}, and constraints are x1 <=x2, and x2<=x3.
How many solutions exist for the problem?
6
O 0
⊚ 5
O 2
00 00 00 00
IncorrectQuestion 14
0 / 2 pts
Consider the 4-queens problem: four variables c1, c2, c3, and c4 for four columns, each variable has

the same domain {r1, r2, r3, r4} for the row-position of each queen in the respective column.

Constraints for the problem is that no two queens may be in the same diagonal or row (column-constraint is being taken care of by the design).

During a Forward Checking algorithm the state (board) is: c1=r1 and c3=r2. FC will reduce available domain values of c2 and c4. What are those reduced domains?
© c2: {r4}, c4:{r3}
© c2: {r3}, c4:{r4}
C2: {r4}, c4:{empty}
C2: {empty}, c4:{r3}
Question 15 2 / 2 pts
Consider a 5-queens (CSP) problem represented with each column as a variable in {c1, c2, c3, c4,c5}, and the row index of the placed queen as the variable's domain {r1,r2,r3,r4,r5}. What is the size of the search space?
○ 5*5
© 5^5
O 5
O 5+5
Question 16 2 / 2 pts
Refer to the file ConstraintProblems. Start the Forward Checking algorithm with WA=r. What are the values of the other variables after the first iteration?
\bigcirc SA={b}, NT ={g}, Q={b,g}, NSW={b}, V ={g}
\bigcirc SA={b}, NT ={g}, Q={g}, NSW={g,b}, V ={g,b}
\bigcirc SA={b}, NT ={g}, Q={b,g}, NSW={g,b}, V ={g,b}
\bigcirc SA={b}, NT ={g}, Q={b,g}, NSW={g}, V ={b}
Question 17 2 / 2 pts
Refer to the file ConstraintProblems.

Which one of the following is a solution to the problem?
○ WA=r, NT=r, SA=b, Q=g, NSW=g, V=b
○ WA=g, NT=g, SA=b, Q=g, NSW=b, V=b
○ WA=r, NT=g, SA=b, Q=g, NSW=g, V=b
None of the above
Question 18 2 / 2 pts
Consider a constraints satisfaction problem over three variables and domains v1:{1,2}, v2:{2,3}, and v3: {3,4}, with a constraint v1+v2<5, v1+v3<6. Is the input arc-consistent, i.e., will running AC algorithm reduce any domain?
Odepends on the algorithm
○ yes
⊚ no
Odepends on the data structure
**
IncorrectQuestion 19 O / 2 pts
A Constraint problem over three variables and respective domains, x1: {1,2,3}, x2: {2,3}, x3:{3}, x1 <=x2, and x2 <x3.< td=""></x3.<>
After running Arc-consistency algorithm, what will be the output?
x1:{}, x2:{}, x3:{}
○ x1:{1,2}, x2:{2}, x3:{3}
○ x1:{1,2}, x2:{2,3}, x3:{3}
○ x1:{1}, x2:{2}, x3:{3}
Quiz Score: 30 out of 38