RESEARCH FOCUS ISSN: 2181-3833

УДК 661.632.232

МАРКАЗИЙ ҚИЗИЛҚУМ ФОСФОРИТЛАРИДАН ФОСФОРЛИ ОДДИЙ ЎҒИТЛАР ОЛИШДА СУВ ТОЗАЛАШ ИНШООТИ КАРБОНАТЛИ ЧИҚИНДИСИДАН ФОЙДАЛАНИШ

Шамшидинов И.Т., НамМҚИ профессори, DSc Нажмиддинов Р.Ю., НамМҚИ докторанти Қодирова Г.Қ., НамМҚИ доценти, PhD Мамуров Б.А., НамМҚИ кафедра мудири, PhD Рустамов И.Т., НамМҚИ ўқитувчиси

Наманган муҳандислик-қурилиш институти (НамМҚИ)

https://doi.org/10.5281/zenodo.7111587

Аннотация: Ишда сув тозалаш иншооти карбонатли чиқиндисидан фойдаланган холда таркибида кальций ва магний фосфатлари бўлган оддий ўгит олиш жараёни келтирилган. Ишлаб чиқаришда мазкур усул фойдаланилганда фосфорли оддий ўгитлар олишга карбонаптли чиқиндиларни қамраб олиш мумкинлиги аниқланган.

Калит сўзлар: фосфат кислота, экстракцион фосфат кислота, ўгит, минерал ўгит, фосфорли ўгит, кальций карбонат, магний карбонат, сув тозалаш иншооти карбонатли чиқиндилари, монокальцийфосфат, дикальцийфосфат, қўшалоқ суперфосфат.

ИСПОЛЬЗОВАНИЕ КАРБОНАТНЫХ ОТХОДОВ ВОДООЧИСТНЫХ СООРУЖЕНИЙ ПРИ ПОЛУЧЕНИИ ОДИНАРНЫХ ФОСФОРНЫХ УДОБРЕНИЙ ИЗ ФОСФОРИТОВ ЦЕНТРАЛЬНЫХ КЫЗЫЛКУМОВ

Аннотация: В работе приведены процессы получения кальций и магнийсодержащих одинарных фосфорных удобрений с использованием карбонатных отходов водоочистительных сооружений. Установлено, что использование данного способа в производстве приводит к вовлечению карбонатных отходов для получения одинарных фосфорных удобрений.

Ключевые слова: фосфорная кислота, экстракционная фосфорная кислота, удобрения, минералные удобрения, фосфорные удобрения, карбонат кальция, карбонат магния, карбонатные отходв водоочистительных сооружений, монокальцийфосфат, двойной суперфосфат.

USE OF CARBONATE WASTE OF WATER PURIFICATION FACILITIES IN OBTAINING SIMPLE PHOSPHORUS FERTILIZERS FROM PHOSPHORITES OF CENTRAL KYZYL KUM

Abstract: The article presents the processes of obtaining calcium and magnesium-containing ordinary phosphorus fertilizers using carbonate waste from water treatment plants. It has been established that the use of this method in production leads to the involvement of carbonate waste for the production of single phosphate fertilizers.

Keywords: phosphoric acid, extraction phosphoric acid, fertilizers, mineral fertilizers, phosphorus fertilizers, calcium carbonate, magnesium carbonate, carbonate waste from water treatment plants, monocalcium phosphate, dicalcium phosphate, double superphosphate.

КИРИШ.

Республикамиз қишлоқ хўжалигида фосфорли ўғитлар сифатида асосан Марказий Қизилкум фосфоритларидан олинган аммофос, шунингдек оддий суперфосфат ишлатилади. Маълумки, аммофос таркибида кальций бўлмайди. Аммофосдан узок вакт мунтазам фойдаланиш натижасида тупрок таркибидаги ҳаракатчан кальций ва магний

йилдан-йилга камайиб боради. Бу эса ўсимлик ва тирик организмлардаги кальций ва магнийнинг етишмовчилигига олиб келади. Натижада тупрок структураси ёмонлашади, ўсимликлар ҳосилдорлиги пасаяди, тирик организмларда касалликлар келиб чиҳади [1, 2].

Марказий Қизилкум фосфорит рудаларини ташкил этадиган асосий минералларга бирламчи минераллар сифатида: кальцит — 30-50%, фторкарбонатапатит — 25-55%, гилли минераллар — 5-25% хамда иккиламчи минераллар сифатида: гипс, гётит, пирит, кварц киради [3]. Фосфоритлар экстракцион фосфат кислотада (ЭФК) парчаланганда дастлаб осон парчаланадиган кальцит реакцияга киришади. Бунинг натижасида ЭФК қисман нейтралланади ва унда фторкарбонатапатитнинг парчаланиши суст давом этади. Бунинг натижасида фосфоритнинг фосфатли қисми тўла парчаланмайди ва махсулот таркибига ўзлашмайдиган тарзда ўтади.

Таркибида кальций тутган азот-фосфорли ўғитлар олишда паст навдаги фосфоритлардан фойдаланиш бўйича ҳам тадқиқотлар ўтказилган. Натижада фосфорли концентрланган ўғитлар олиш жараёнига паст навдаги фосфоритларни ҳам қамраб олиш мумкинлиги аниқланган [2-3].

ТАДКИКОТ МАТЕРИАЛЛАРИ ВА МЕТОДОЛОГИЯСИ

фосфоритлардан олинган экстракцион фосфат кислотани (ЭФК) нейтраллашга асосланган холда концентрланган фосфорли ўғитлар ишлаб чиқарилади. Бунда нейтралловчи восита сифатида аммиак гази (аммофос ишлаб чикаришда), фосфорит кабилардан (қушалоқ суперфосфат туридаги уғитлар ишлаб чиқаришда) фойдаланилади [4-29]. Махсулот бирлигига нисбатан кимматбахо хомашё – ювиб куйдирилган фосфоконцентрат сарфини камайтириш (қушалоқ суперфосфатга нисбатан), аммиак хомашёси сарфини қисқартириш хамда махсулот хажмини ошириш (аммофосга нисбатан) мақсадида Марказий Қизилқум ювиб куйдирилган фосфоконцентратидан олинган ЭФКни сув тозалаш иншоотининг ("Фарғона-Азот" АЖ корхонаси) карбонатли чиқиндиси ва унинг куйдириш (700°C хароратда) махсулотлари билан нейтраллаш оркали таркибида ўзлашадиган кальций ва магний фосфатлари бўлган фосфорли оддий ўғитларга қайта ишлаш жараёни ўрганилди. Карбонатли чикинди кўлланилганда нейтраллаш реакторида катта хажмдаги барқарор кўпик хосил бўлиши кузатилади. Бу эса реактор унумдорлигини пасайтиради. Шу сабабли ЭФКни куйдирилган (700°C хароратда) карбонатли чикинди билан нейтраллаш тавсия этилди. Натижада нейтралланиш жараёнининг жадаллашиши кузатилади.

ЭФКни нейтраллаш жараёнида таркибида, оғирлик % ҳисобида: CaO=44,83, MgO=1,58, CO₂=36,50, R₂O₃=0,74, SO₃=0,84 ва эримайдиган қолдиқ (э.қ.)=0,37 бўлган сув тозалаш иншооти ("Фарғона-Азот" АЖ) чиқиндиси – кальций ва магний карбонатларидан фойдаланилди.

Дастлаб сув тозалаш иншооти чикиндисига термик ишлов берилди. Чикинди $100 \div 1050^{\rm O}{\rm C}$ харорат интервалида 60 - 180 минут давомида куйдирилганда масса йўкотилиши 12,31% дан 51,64% га етиши аникланди. $100 \div 200^{\rm O}{\rm C}$ харорат интервалида 1 соат давомида киздирилганда масса йўкотилиши 14,11% (намлик ва кристаллизация суви хисобига), $200 \div 400^{\rm O}{\rm C}$ харорат интервалида эса яна 0,54% масса йўкотилиши $(R(OH)_3)$ парчаланиши хисобига) кузатилади [30]. $500 \div 800^{\rm O}{\rm C}$ харорат интервалида масса йўкотилиши 15,14% дан 20,36% гача $(MgCO_3 \cdot CaCO_3)$ парчаланиши хисобига) бўлиши, $850 \div 1050^{\rm O}{\rm C}$ харорат интервалида масса йўкотилиши 30,77% дан 51,64% гача (асосан $CaCO_3$ парчаланиши хисобига) бўлиши аникланди. Сув тозалаш иншооти чикиндиси — кальций ва

RESEARCH FOCUS ISSN: 2181-3833

магний карбонатларига термик ишлов бериш технологик параметри ва хосил килинган куйдириш махсулотларининг кимёвий таркиби 1-жадвалда келтирилган.

1-жадвал Чиқинди кимёвий таркибининг куйдириш хароратига боғлиқлиги

	Куйди- риш ҳаро- рати, ^O C	Куйди- риш вакти, минут	Macca	Олинган махсулот кимёвий таркиби, %						
№			йўқо- тилиши, %	CaO	MgO	R ₂ O ₃	SO ₃	CO ₂	H ₂ O	э.қ.
				44,83	1,58	0,74	0,84	36,5	15,14	0,37
1.	100	60	12,31	51,12	1,80	0,84	0,96	41,62	3,23	0,42
2.	200	60	14,11	52,19	1,84	0,86	0,98	42,50	1,20	0,43
3.	300	60	14,49	52,43	1,85	0,87	0,98	42,69	0,76	0,43
4.	400	60	14,65	52,52	1,85	0,87	0,98	42,77	0,57	0,43
5.	500	60	15,14	52,83	1,86	0,87	0,99	43,01	-	0,44
6.	600	60	15,39	52,98	1,87	0,87	0,99	42,84	-	0,44
7.	700	60	16,28	53,55	1,89	0,88	1,00	42,24	ı	0,44
8.	800	60	20,36	56,29	1,98	0,93	1,05	39,28	-	0,46
9.	850	60	25,49	60,17	2,12	0,99	1,13	35,10	-	0,50
10.	900	60	30,77	64,76	2,28	1,07	1,21	30,15	ı	0,53
11.	950	60	41,63	76,80	2,71	1,27	1,44	17,15	-	0,63
12.	1000	60	50,51	90,58	3,19	1,50	1,70	2,28	1	0,75
13.	1000	120	51,55	92,53	3,26	1,53	1,73	0,19	ı	0,76
14.	1000	180	51,64	92,70	3,27	1,53	1,74	-	1	0,77
15.	1050	60	51,64	92,70	3,27	1,53	1,74	-	ı	0,77

Сув тозалаш иншоотининг кальций ва магний карбонатли чикиндиси ва унинг куйдириш махсулотлари ($100 \div 1050^{\rm O}$ С харорат интервалида) билан ЭФКни нейтраллаш ва бунда хосил бўладиган барқарор кўпикланиш жараёнлари ўрганилди. Бунинг учун таркибида, оғирлик % ҳисобида: $P_2O_5 = 17,23$, CaO = 0,32, MgO = 0,66, $Fe_2O_3 = 0,30$, Al_2O_3 = 0,41, F = 1,18 ва бошкалар бўлган ЭФК, таркиби юкорида кўрсатилган "Фарғона-Азот" АЖ корхонасининг карбонатли чикиндиси хамда уни 700°C хароратда куйдирилишидан олинган ва таркибида, оғирлик % хисобида: CaO = 53,55, MgO = 1,89, $R_2O_3 = 0,88$, $CO_2 =$ 42,24, $SO_3 = 1,00$ ва бошкалар бўлган куйдириш махсулотидан фойдаланилди. ЭФКга унинг массасига нисбатан 1% микдорида аммоний нитрат кушилди. Кушилган аммоний нитрат нейтраллаш жараёнида хосил бўладиган суспензиялардаги кальций ва магний фосфатларининг эрувчанлигини яхшилашга хизмат қилади. 17,23% Р₂О₅ концентрацияли ЭФКни кальций ва магний карбонатли чикинди хамда уни куйдириш махсулоти билан нейтраллаш жараёнидаги кислота меъёри монокальцийфосфат, мономагнийфосфат, темир ва алюминий фосфатлари хосил бўлишига мувофик келадиган стехиометрик микдорга нисбатан 100% ни ташкил этди. Нейтраллаш жараёни хона хароратда 30-40 минут давом этди. Хосил қилинган суспензиялар $95 \div 100^{\rm o}$ С харорат интервалида қуритилди.

ТАДКИКОТ НАТИЖАЛАРИ ВА МИНОКАМА

Нейтраллаш жараёнида суспензия баландлигига нисбатан хосил бўладиган барқарор кўпик баландлигини фоиз хисобида олинди (1-расм). Нейтраллаш жараёнида

куйдирилмаган кальций ва магний карбонатли чикиндидан фойдаланилганда 5 минут давомида баркарор кўпикнинг хосил бўлиши 345% га етади, унинг батамом сўниши учун 45-50 минут сарфланади. Бу эса табиий кальций ва магний карбонатли хомашёга нисбатан баркарор кўпикнинг сўнишига нисбатан 2,5-3 марта кам вакт сарфланишини кўрсатади. 500°C гача термик ишлов берилган кальций ва магний карбонатли чикинди билан ЭФКни нейтралланганда баркарор кўпик хосил бўлиши (296%), унинг сўниши 30-40 минутда кузатилади, 700°C (236%) ва ундан юкори ҳароратда (79-174%) термик ишлов берилган кальций ва магний карбонатли чикинди билан ЭФК нейтралланганда хосил бўладиган кўпикнинг сўнишига атиги 10-20 минут вакт сарфланиши аникланди.

Шундай қилиб, ЭФКни бўрсимон хомашё билан нейтраллаш жараёнида кўпикланишни камайтириш мақсадида бошланғич хомашёга 700° С хароратда дастлабки термик ишлов бериш мақсадга мувофиқ, деб ҳисобланиши мумкин.

ЭФКни карбонатли чикинди билан нейтраллаш жараёни хона хароратида (20-25°C) карбонатли хомашёга нисбатан кислотанинг 100% ли стехиометрик меъёрида амалга оширилди.

1-расм. Кальций ва магний карбонатли чикиндига термик ишлов бериш хароратига боғлик холда ЭФКни нейтраллаш жараёнида кўпикланиш даражасининг вакт давомида ўзгариши: 1 — кальций ва магний карбонатли чикиндига термик ишлов берилмаган; $2-500^{\rm o}{\rm C}$; $3-700^{\rm o}{\rm C}$; $4-850^{\rm o}{\rm C}$; $5-950^{\rm o}{\rm C}$.

ЭФКни нейтраллаш жараёнининг тезлиги сув тозалаш иншооти карбонатли чикиндиси билан жадал бориши кузатилади. Нейтраллаш жараёнида карбонатли чикинди таркибидаги кальцийнинг фосфат кислотали эритмага ажралиши 30-40 минут давомида 80% дан ортик микдорни ташкил этади.

ЭФКни кальций ва магний карбонатли хомашёлар билан нейтраллаш жараёнининг оптимал (мақбул) давомийлиги 30-40 минут этиб белгилаш мақсадга мувофиклиги ўтказилган тажрибалар натижасида аникланди.

ЭФКни аммоний нитрат (1%) иштирокида кальций ва магний карбонатли чикинди хамда уни куйдириш махсулоти билан нейтраллаш, суспензияларни буғлатиш ва куритиш орқали таркибида кальций ва магнийфосфатлари бўлган фосфорли ўғит олиш жараёни ўрганилди. Нейтраллаш жараёни хона хароратида (20-25°C) карбонатли хомашёга нисбатан

кислотанинг 100% ли стехиометрик меъёрида ва 30 минут давомида амалга оширилди, суспензиялар $95\text{-}100^{\circ}\mathrm{C}$ хароратда куритилди. Жараённинг технологик параметрлари, оралик (суспензия) ва хосил килинган махсулотнинг кимёвий таркиби 2-жадвалда келтирилган.

2-жадвал ЭФКни кальций ва магний карбонатли чикинди ва уни куйдириш махсулоти билан нейтраллаш натижасида хосил бўладиган суспензия, уларни куритиш натижасида олинган махсулотнинг кимёвий таркиби ва жараённинг технологик кўрсаткичлари

. •					
Кўрсаткичлар	Суспен	R ИЕН	Қуритилган махсулот		
Бошланғич карбонатли хомашёга	_	700°C	_	700°C	
термик ишлов бериш харорати					
P ₂ O ₅ (умумий), %	15,56	15,89	46,53	46,72	
P ₂ O ₅ (ўзлашадиган), %	15,34	15,64	45,84	45,94	
Р ₂ О ₅ (сувда эрийдиган), %	14,46	14,75	42,97	43,08	
СаО (умумий), %	6,59	6,72	19,69	19,83	
МдО (умумий), %	0,84	0,86	2,52	2,59	
R ₂ O ₃ (умумий), %	1,16	1,19	3,47	3,44	
SO ₃ (умумий), %	1,21	1,24	3,62	3,59	
F, %	1,07	1,08	3,03	3,02	
N (умумий), %	0,32	0,32	0,95	0,95	
H ₂ O, %	67,72	66,72	4,00	3,73	
(Р2О5ўзл.:Р2О5умум.)х100, %	98,59	98,43	98,52	98,33	
(P ₂ O _{5c.9} .:P ₂ O _{5yмум.})x100, %	92,93	92,81	92,35	92,20	

Натижада 17,23% P_2O_5 концентрацияли ЭФКни кальций ва магний карбонатли чикинди хамда уни куйдириш махсулоти билан нейтраллаш жараёнида, таркибида оғирлик % хисобида: $P_2O_{5умум.} = 15,56$ ва 15,89; $P_2O_{5y₃л.} = 15,34$ ва 15,64; $P_2O_{5c.₃.} = 14,46$ ва 14,75; CaO = 6,59 ва 6,72; MgO = 0,84 ва 0,76; N = 0,32; $H_2O = 66,72$ ва 67,72 ва бошқалар булган суспензия олинди. Бундай суспензиядаги ўзлашадиган фосфатлар микдори, яъни $(P_2O_{5y₃л.}:P_2O_{5yмум.})$ х100 нисбат мос холда 98,59 ва 98,43% ни ташкил қилади.

Хосил қилинган суспензиялар $95 \div 100^{\rm O}$ С харорат интервалида қуритилганда, таркибида оғирлик % ҳисобида: $P_2O_{5умум.} = 46,53$ ва 46,72; $P_2O_{5y₃л.} = 45,84$ ва 45,94; $P_2O_{5c.э.} = 43,17$ ва 43,08; CaO = 19,69 ва 19,83; MgO = 2,52 ва 2,59; N = 0,95; $H_2O = 4,00$ ва 3,73 ва бошқалар бўлган кальций ва магнийфосфатли ўғит ҳосил бўлди. Олинган маҳсулотдаги $(P_2O_{5y₃л.}:P_2O_{5yмум.})$ х100 нисбат мос ҳолда 98,52 ва 98,33% ни, $(P_2O_{5c.э.}:P_2O_{5умум.})$ х100 нисбат эса 92,35 ва 92,20% ни ташкил этади.

ХУЛОСА.

Шундай қилиб, ЭФКни кальций ва магний карбонатли хомашёлар ҳамда уни куйдириш маҳсулоти билан нейтраллаш йўли билан таркибида монокальцийфосфат ва мономагнийфосфат бўлган фосфорли ўғитлар олишда сув тозалаш иншоотининг кальций ва магний карбонатли чикиндисидан фойдаланиш орқали нейтраллаш жараёнини 2,5-3 марта жадаллаштиришга эришилади. Ҳосил қилинадиган маҳсулот сифати яхшиланади. Фосфоритлардан қўшалоқ суперфосфат туридаги ўғитлар ишлаб чиқаришнинг амалдаги усулларига нисбатан қимматбаҳо фосфорит хомашёси 15-20% га тежалади, аммофос ишлаб

чиқаришга солиштирилганда эса аммиак хомашёси тўла тежалади хамда махсулот хажмини 4-5% га ошириш имконияти яратилади.

ФОЙДАЛАНИЛГАН АДАБИЁТЛАР РЎЙХАТИ.

- 1. Шамшидинов, И. Т. (2017). Разработка усовершенствованной технологии производства экстракционной фосфорной кислоты и получения концентрированных фосфорсодержащих удобрений из фосфоритов Каратау и Центральных Кызылкумов. Дисс. ... докт. техн. наук, Ташкент.
- 2. Шамшидинов, И. Т. (2014). Технология неорганических веществ и минеральных удобрений: Учебник для профессиональных вузов. ИТ Шамшидинов.
- 3. Геология и полезные ископаемые Республики Узбекистан / Т. Н. Долимов, Т. Ш. Шаякубов и др.: Редкол.: Т. Ш. Шаякубов (гл. ред.) и др. Т.: Университет, 1998. 724 с.
- 4. Мамуров, Б. А., Шамшидинов, И. Т., Усманов, И. И., & Кодирова, Г. К. (2019). Исследование процесса нейтрализации экстракционной фосфорной кислоты мелом. *Universum: химия и биология*, (2 (56)), 21-26.
- 5. Шамшидинов, И. Т. (1994). Получение удобрений типа двойного суперфосфата из фосфоритов Каратау.
- 6. Gafurov, K., Shamshidinov, I. T., & Arislanov, A. S. (2020). Sulfuric acid processing of high-magnesium phosphates and obtaining NPS-fertilizers based on them. *Monograph. Publishing house" Istedodziyo press" Namangan*, 26-27.
- 7. Шамшидинов, И. Т. (2017). Исследование процесса переработки фосфоритов Каратау на концентрированные фосфорные удобрения по поточной технологии. *Universum: технические науки*, (3 (36)), 29-34.
- 8. Кодирова, Г. К., Шамшидинов, И. Т., Тураев, З., & Нажмиддинов, Р. Ю. У. (2020). ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННЫХ ФОСФАТОВ АММОНИЯ ИЗ ЭКСТРАКТНОЙ ФОСФАТНОЙ КИСЛОТЫ НА ОСНОВЕ ФОСФОРИТОВ ЦЕНТРАЛЬНОГО КЫЗЫЛКУМА. *Universum: технические науки*, (12-3 (81)), 71-75.
- 9. Нажмиддинов, Р. Ю., Меликўзиева, Г. Қ., Зокиров, М., & Юсупов, И. (2022). МАРКАЗИЙ ҚИЗИЛҚУМ ФОСФОРИТЛАРИДАН ТАРКИБИДА КАЛЬЦИЙ ВА МАГНИЙ БЎЛГАН КОНЦЕНТРЛАНГАН ФОСФОРЛИ ОДДИЙ ЎГИТЛАР ОЛИШ. *IJTIMOIY FANLARDA INNOVASIYA ONLAYN ILMIY JURNALI*, 2(6), 56-61.
- 10. Shamshidinov, I., Qodirova, G., Mamurov, B., Najmiddinov, R., & Nishonov, A. (2022). ЭКСТРАКЦИОН ФОСФАТ КИСЛОТАНИ ОХАКТОШ ХОМАШЁСИ БИЛАН НЕЙТРАЛЛАШ АСОСИДА КАЛЬЦИЙ ВА МАГНИЙ ФОСФАТЛИ ЎГИТЛАР ОЛИШ. Science and innovation, 1(A4), 161-169.
- 11. Najmiddinov, R., Shamshidinov, I., Qodirova, G., Nishonov, A., & Sayfiddinov, O. (2022). МАРКАЗИЙ ҚИЗИЛҚУМ ФОСФОРИТЛАРИ АСОСИДАГИ ЭКСТРАКЦИОН ФОСФАТ КИСЛОТАДАН ЮҚОРИ СИФАТЛИ АММОНИЙ ФОСФАТЛАРИ ОЛИШ. Science and innovation, *I*(A4), 150-160.
- 12. Kodirova, G., Shamshidinov, I., Sultonov, B., Najmiddinov, R., & Mamurov, B. (2021). Investigation of the Process of Purification of Wet-Process Phosphoric Acid and Production of Concentrated Phosphoric Fertilizers Based on it. *Chemical Science International Journal*, 30(1).
- 13. Shamshidinov, I., Qodirova, G. Mamadjanov, Z., Najmiddinov, R. (2021). International Journal of Advanced Science and Technology.

- 14. Shamshidinov, I., Qodirova, G. Mamadjanov, Z., Najmiddinov, R. (2021). ЭКСТРАКЦИЯ ЖАРАЁНИДА ФОСФАТ КИСЛОТАНИ СУЛЬФАТ ВА ФТОРДАН ТОЗАЛАШ ХАМДА ЮКОРИ СИФАТЛИ АЗОТ-ФОСФОРЛИ ЎГИТ ОЛИШНИ ТАДКИК КИЛИШ.
- 15. Shamshidinov, I., Qodirova, G., Turayev, Z., Mamurov, B. (2020). Study Of The Process Of Heat Treatment Of Limestone To The Process Of Obtaining Calcium-Magnesium-Containing Phosphorous Fertilizers.
- 16. Shamshidinov, I., Qodirova, G., Mamurov, B. (2019). ШЎРСУВ ДОЛОМИТЛАРИ АСОСИДА КАЛЬЦИЙ ВА МАГНИЙ ФОСФАТЛИ ЎГИТЛАР ОЛИШ. НамМТИ илмий-техника журнали.
- 17. Shamshidinov, I., Qodirova, G., Mamurov, B. (2017). КАЛЬЦИЙ ВА МАГНИЙ ФОСФАТЛИ ЎГИТЛАР ОЛИШДА МАХАЛЛИЙ ДОЛОМИТ ХОМАШЁСИДАН ФОЙДАЛАНИШ.
- 18. Gʻafurov, Q., & Shamshidinov, I. (2010). Mineral oʻgʻit ishlab chiqarish nazariyasi va texnologik hisoblari. *T.: Fan va texnologiya*, *360*.
- 19. G'afurov Q. Mineral o'g'itlar va tuzlar texnologiyasi: Darslik./ Q. G'afurov, I. Shamshidinov. T.: Fan va texnologiya, 2007. 360 b.
- 20. Гафуров, К., Шамшидинов, И. Т., & Арисланов, А. С. (2020). Сернокислотная переработка фосфоритов Каратау и сложных удобрений на их основе. *Монография*. *Издательство LAP LAMBERT Academic Publishing*.
- 21. Shamshidinov, I. T., & Mamajanov, Z. N. (2014). Use of low-grade of phosphorites at picking calcium and microelement containing nitrogen-phosphorus fertilizers. *Europaische Fachhochschule*, (3), 117-119.
- 22. Shamshidinov, I. T. Qodirova, G. Najmiddinov, R. Y. (2020). БИОГУМУСДАН СУЮҚ БИООРГАНОМИНЕРАЛ ЎҒИТЛАР ОЛИШ ЖАРАЁНИНИ ТАДҚИҚ ҚИЛИШ.
- 23. Гафуров, К., Шамшидинов, И. Т., & Арисланов, А. С. (2020). Сернокислотная переработка высокомагнезиальных фосфатов и получение NPS—удобрений на их основе. *Монография.—Наманган: Издательство «Истердод зиё пресс.*
- 24. Zokirzhon, T., Shamshidinov, I. T., Madamindzanovna, I. O., & Usmanov, I. I. (2019). Researches of the solubility of copper sulfate in orthophosphoric acid at 30 and 80° c. *International Journal of Scientific and Technology Research*, 8(12), 1870-1872.
- 25. Turaev, Z., Shamshidinov, I. T., Usmanov, I. I., Isakova, O. M., & Sultonov, B. E. (2019). Thermodinamical Analyse the Formation of Phosphates Copper, Zinc and Cobalt on the Base Double Superphosphate and Sulphates of Copper, Zinc and Cobalt. *Chemical Science Internatinal Journal*, 28(1), 1-7.
- 26. Shamshidinov, I. T., Gafurov, K. G., & Ikramov, M. M. (2016). INVESTIGATION ON THE PHOSPHORIC ACID PRODUCTION FROM LOW GRADE PHOSPHORITES WITH HIGH CONTENT OF MAGNESIUM. *Journal of Chemical Technology & Metallurgy*, *51*(2).
- 27. Шамшидинов, И. Т., & Арисланов, А. С. (2022). ВЛИЯНИЕ МАГНИЯ НА ПРОЦЕСС ЭКСТРАКЦИИ ФОСФОРНОЙ КИСЛОТЫ. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 3(6), 485-491.
- 28. No, P. 5698 UZ. Method of obtaining extraction phosphoric acid/Gafurov K., Shamshidinov IT, Arislanov A., Mamadaliev A.(UZ)/1998.
- 29. Turgunovich, S. I., & Chorievich, M. K. (2017). Research of process of washing of fluorine from phosphor gypsum. *Austrian Journal of Technical and Natural Sciences*, (1-2), 107-11.
- 30. Рабинович В.А. Краткий химический справочник/ В.А. Рабинович, З.Я. Хавин. М.: Химия, 1978. C.71-79.