CS2040S Data Structures and Algorithms

All about minimum spanning trees...
(Part 2)

Minimum Spanning Trees

- Background
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

Variations:

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

Minimum Spanning Trees

- The MST Problem
- Basic Properties of an MST
- Generic MST Algorithm
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm
- Variations

Minimum Spanning Trees

- The MST Problem
- Basic Properties of an MST
- Generic MST Algorithm
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm
- Variations

Minimum Spanning Tree

Definition: a spanning tree with minimum weight

Property of MST

- No cycles in a MST
- If you cut an MST, the two pieces are both MSTs.
- Cycle property
 - For every cycle, the maximum weight edge is not in the MST.
- Cut property
 - For every cut D, the minimum weight edge that crosses the cut is in the MST.

Generic MST Algorithm

Red rule:

If C is a cycle with no red arcs, then color the max-weight edge in C red.

Blue rule:

If D is a cut with no blue arcs, then color the min-weight edge in D blue.

Generic MST Algorithm

Greedy Algorithm:

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.

Generic MST Algorithm

Greedy Algorithm:

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.

Minimum Spanning Trees

- The MST Problem
- Basic Properties of an MST
- Generic MST Algorithm
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm
- Variations

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

Basic idea:

S : set of nodes connected by blue edges.

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S : set of nodes connected by blue edges.
- Initially: $S = \{A\}$
- Identify cut: {S, V–S}

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S : set of nodes connected by blue edges.
- Initially: $S = \{A\}$
- Identify cut: {S, V–S}
- Find minimum weight edge on cut.

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S : set of nodes connected by blue edges.
- Initially: $S = \{A\}$
- Identify cut: {S, V–S}
- Find minimum weight edge on cut.
- Add new node to S.

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S: set of nodes connected by blue edges.
- Initially: $S = \{A\}$
- Repeat:
 - Identify cut: {S, V–S}
 - Find minimum weight edge on cut.
 - Add new node to S.

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S: set of nodes connected by blue edges.
- Initially: $S = \{A\}$
- Repeat:
 - Identify cut: {S, V–S}
 - Find minimum weight edge on cut.
 - Add new node to S.

Prim's Algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)

- S: set of nodes connected by blue edges.
- Initially: $S = \{A\}$
- Repeat:
 - Identify cut: {S, V–S}
 - Find minimum weight edge on cut.
 - Add new node to S.

How do we find the lightest edge on a cut?

- ✓ 1. Priority Queue
 - 2. Union-Find
 - 3. Max-flow / Min-cut
 - 4. BFS
 - 5. DFS

Prim's Algorithm: Initialization

```
// Initialize priority queue
PriorityQueue pq = new PriorityQueue();
for (Node v : G.V()) {
         pq.insert(v, INFTY);
pq.decreaseKey(start, 0);
// Initialize set S
HashSet < Node > S = new HashSet < Node > ();
S.put(start);
// Initialize parent hash table
HashMap<Node, Node> parent = new HashMap<Node, Node>();
parent.put(start, null);
```

```
while (!pq.isEmpty()) {
    Node v = pq.deleteMin();
    S.put(v);
    for each (Edge e : v.edgeList()) {
          Node w = e.otherNode(v);
          if (!S.get(w)) {
                  pq.decreaseKey(w, e.getWeight());
                  parent.put(w, v);
                                      Assume for today (only):
```

decreaseKey does nothing

if new weight is larger than

old weight

Vertex	Weight
D	0

Not drawing infinite weight nodes in PQ.

Vertex	Weight
G	4
Н	9
E	16
F	20

Vertex	Weight
Н	9
E	16
F	20

Vertex	Weight
A	3
E	16->6
В	7
Н	9->8
F	20

Vertex	Weight
Н	8->5
Е	6
В	7
C	15
F	20

Vertex	Weight
Н	5
Е	6
В	7
С	15
F	20

Vertex	Weight
Е	6
В	7
С	15
F	20

Vertex	Weight
В	7->1
С	15
F	20->13

Vertex	Weight
В	1
С	15
F	13

Vertex	Weight
С	15->10
F	13->11

Vertex	Weight
С	10
F	11

Vertex	Weight
F	11->2

Vertex Weight

Vertex Weight

Prim's Algorithm

Prim's Algorithm.(Jarnik 1930, Dijkstra 1957, Prim 1959)

Basic idea:

- S : set of nodes connected by blue edges.
- Initially: $S = \{A\}$
- Repeat:
 - Identify cut: {S, V–S}
 - Find minimum weight edge on cut.
 - Add new node to S.

Proof:

- Each added edge is the lightest on some cut (BLUE RULE).
- Hence each edge is in the MST.

What is the running time of Prim's Algorithm, using a binary heap?

- 1. O(V)
- 2. O(E)
- √3. O(E log V)
 - 4. O(V log E)
 - 5. O(EV)

Prim's Algorithm

Prim's Algorithm.(Jarnik 1930, Dijkstra 1957, Prim 1959)

Basic idea:

- S : set of nodes connected by blue edges.
- Initially: $S = \{A\}$
- Repeat:
 - Identify cut: {S, V–S}
 - Find minimum weight edge on cut.
 - Add new node to S.

Analysis:

- Each vertex added/removed once from the priority queue: O(V log V)
- Each edge => one decreaseKey:O(E log V).

Two Algorithms

Prim's Algorithm.

Basic idea:

- Maintain a set of visited nodes.
- Greedily grow the set by adding node connected via the lightest edge.
- Use Priority Queue to order nodes by edge weight.

Dijkstra's Algorithm.

Basic idea:

- Maintain a set of visited nodes.
- Greedily grow the set by adding neighboring node that is closest to the source.
- Use Priority Queue to order nodes by distance.

Roadmap

Minimum Spanning Trees

- The MST Problem
- Basic Properties of an MST
- Generic MST Algorithm
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm
- Variations

Generic MST Algorithm

Greedy Algorithm:

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.

Kruskal's Algorithm. (Kruskal 1956)

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

- Sort edges by weight from smallest to biggest.
- Consider edges in ascending order:

• If both endpoints are in the **same** blue tree, then color the edge red.

• Otherwise, color the edge blue.

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

 Sort edges by weight from smallest to biggest.

Consider edges in ascending order:

• If both endpoints are in the **same** blue tree, then color the edge red.

• Otherwise, color the edge blue.

Must be the heaviest edge on the cycle!

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

- Sort edges by weight from smallest to biggest.
- Consider edges in ascending order:

• If both endpoints are in the **same** blue tree, then color the edge red.

• Otherwise, color the edge blue.

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

- Sort edges by weight from smallest to biggest.
- Consider edges in ascending order:

• If both endpoints are in the **same** blue tree, then color the edge red.

• Otherwise, color the edge blue.

Data structure:

- Union-Find
- Connect two nodes if they are in the same blue tree.


```
// Sort edges and initialize
Edge[] sortedEdges = sort(G.E());
ArrayList<Edge> mstEdges = new ArrayList<Edge>();
UnionFind uf = new UnionFind(G.V());
// Iterate through all the edges, in order
for (int i=0; i<sortedEdges.length; i++) {</pre>
         Edge e = sortedEdges[i]; // get edge
         Node v = e.one(); // get node endpoints
         Node w = e.two();
         if (!uf.find(v,w)) { // in the same tree?
                mstEdges.add(e); // save edge
                uf.union(v,w); // combine trees
```


Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
 - If both endpoints are in the **same** blue tree, then color the edge red.
 - Otherwise, color the edge blue.

Proof:

- Each added edge crosses a cut.
- Each edge is the lightest edge across the cut: all other lighter edges across the cut have already been considered.

Generic MST Algorithm

Greedy Algorithm:

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.

What is the running time of Kruskal's Algorithm on a connected graph?

- 1. O(V)
- 2. O(E)
- 3. O(E α)
- 4. $O(V \alpha)$
- **✓**5. O(E log V)
 - 6. O(V log E)

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
 - If both endpoints are in the **same** blue tree, then color the edge red.
 - Otherwise, color the edge blue.

Performance:

- Sorting: O(E log E) = O(E log V)
- For E edges:
 - Find: $O(\alpha(n))$ or $O(\log V)$
 - Union: $O(\alpha(n))$ or $O(\log V)$

Roadmap

Minimum Spanning Trees

- The MST Problem
- Basic Properties of an MST
- Generic MST Algorithm
- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm
- Variations

MST Algorithms

Classic:

- Prim's Algorithm
- Kruskal's Algorithm

Modern requirements:

- Parallelizable
- Faster in "good" graphs (e.g., planar graphs)
- Flexible

Boruvka's Algorithm

Origin: 1926

- Otakar Boruvka
- Improve the electrical network of Moravia

Based on generic algorithm:

- Repeat: add all "obvious" blue edges.
- Very simple, very flexible.

Generic MST Algorithm

Greedy Algorithm:

Repeat:

Apply red rule or blue rule to an arbitrary edge.

until no more edges can be colored.

Which edges are "obviously" in the MST?

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

The minimum adjacent edge!

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

For every node: add minimum adjacent edge. Add at least n/2 edges.

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Look at connected components...

At most n/2 connected components.

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Boruvka's Example

Repeat: for every connected components, add minimum outgoing edge.

Weight	Edge		
1	(E,B)		
2	(C,F)		
3	(A,G)		
4	(D,G)		
5	(C,F)		
6	(E,G)		
7	(B,G)		
8	(G,H)		
9	(D,G)		
10	(B,C)		
11	(B,F)		
12	(A,B)		
13	(E,F)		
15	(A,C)		
16	(D,E)		
20	(D,F)		

Boruvka's Algorithm

Initially:

 Create n connected components, one for each node in the graph.

One "Boruvka" Step:

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

Boruvka's Algorithm

Initially:

Create n connected components, one for each node in the graph.

For each node: store a component identifier.

H, 7

One "Boruvka" Step:

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

For each node: store a component identifier.

Boruvka's Algorithm

Initially:

 Create n connected components, one for each node in the graph.

One "Boruvka" Step:

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

Component	1	2	3
Min cost edge	(G,E), 6	(G,E), 6	(B,C), 10
To be merged	1 and 2	1 and 2	2 and 3

DFS or BFS:

Check if edge connects two components.

Remember minimum cost edge connected to each component.

For each node: store a component identifier.

Boruvka's Algorithm

Initially:

 Create n connected components, one for each node in the graph.

One "Boruvka" Step:

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

Component	1	2	3
Min cost edge	(G,E), 6	(G,E), 6	(B,C), 10
To be merged	1 and 2	1 and 2	2 and 3
New ID:	1	1	1

DFS or BFS:

Check if edge connects two components.

Remember minimum cost edge connected to each component.

Scan every node:

Compute new component ids.

Update component ids.

Mark added edges.

Boruvka's Algorithm

Initially:

 Create n connected components, one for each node in the graph.

One "Boruvka" Step: O(V+E)

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

For each node: O(V)

store a component identifier.

DFS or BFS: O(V + E)

Check if edge connects two components.

Remember minimum cost edge connected to each component.

Scan every node: O(V)

Compute new component ids.

Update component ids.

Mark added edges.

Boruvka's Example: Contraction

Boruvka's Algorithm

Initially:

 Create n connected components, one for each node in the graph.

In each "Boruvka" Step: O(V+E)

- Assume k components, initially.
- At least k/2 edges added.

Count edges:

Each component adds one edge.

Some choose same edge.

Each edge is chosen by at most two different components.

Boruvka's Algorithm

Initially:

 Create n connected components, one for each node in the graph.

In each "Boruvka" Step: O(V+E)

- Assume k components, initially.
- At least k/2 edges added.
- At least k/2 components merge. <

Merging

Each edge merges two components

Boruvka's Algorithm

Initially:

 Create n connected components, one for each node in the graph.

In each "Boruvka" Step: O(V+E)

- Assume k components, initially.
- At least k/2 edges added.
- At least k/2 components merge.
- At end, at most k/2 components remain.

Boruvka's Algorithm

Initially:

n components

At each step:

k components \rightarrow k/2 components.

Termination:

1 component

Conclusion:

At most O(log V) Boruvka steps.

Boruvka's Algorithm

Initially:

n components

At each step:

k components → k/2 components.

Termination:

1 component

Conclusion:

At most O(log V) Boruvka steps.

Total time:

$$O((E+V)\log V) = O(E \log V)$$

Why does it have a lot of parallelism?

Each connected component can perform a Boruvka step (mostly) independently:

Each component can search for its own minimum weight outgoing edge.

→ Many edges found in parallel.

Merging requires coordination between components.

→ Key bottleneck

Lots of parallelism in searching for edges and updating connected components.

Boruvka's Algorithm

Initially:

 Create n connected components, one for each node in the graph.

One "Boruvka" Step: O(V+E)

- For each connected component, search for the minimum weight outgoing edge.
- Add selected edges.
- Merge connected components.

Roadmap

So far:

Minimum Spanning Trees

- Prim's Algorith
- Kruskal's Algorithm
- Boruvka's Algorithm

Minimum Spanning Tree Summary

Classic greedy algorithms: O(E log V)

- Prim's (Priority Queue)
- Kruskal's (Union-Find)
- Boruvka's

Best known: $O(m \alpha(m, n))$

- Chazelle (2000)
- Uses a "soft heap" (!?)

Holy grail and major open problem: O(m)

Minimum Spanning Tree Summary

Classic greedy algorithms: O(E log V)

- Prim's (Priority Queue)
- Kruskal's (Union-Find)
- Boruvka's

Best known: O(m α (m, n))

Chazelle (2000)

Holy grail and major open problem: O(m)

- Randomized: Karger-Klein-Tarjan (1995)
- Verification: Dixon-Rauch-Tarjan (1992)

Roadmap

Last time: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

Today: Variations

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

MST Variants

What if all the edges have the same weight?

How fast can you find an MST?

- 1. O(V)
- **✓**2. O(E)
 - 3. O(E log V)
 - 4. O(V log E)
 - 5. O(VE)

MST Variants

What if all the edges have the same weight?

Depth-First-Search or Breadth-First-Search

If all edge-weights are 2, what is the **cost** of a MST?

- 1. V-1
- 2. V
- **✓**3. 2(V-1)
 - 4. 2V
 - 5. E-V
 - 6. E

MST Variants

What if all the edges have the same weight?

- Depth-First-Search or Breadth-First-Search
- An MST contains exactly (V-1) edges.
- Every spanning tree contains (V-1) edges!
- Thus, any spanning tree you find with DFS/BFS is a minimum spanning tree.

Kruskal's Variants

What if all the edges have weights from {1..10}?

Kruskal's Variants

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10 to sort

slot A[j] holds a linked list of edges of weight j

Kruskal's Variants

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10

- Putting edges in array of linked lists: O(E)
- Iterating over all edges in ascending order: O(E)
- For each edge:
 - Checking whether to add an edge: $O(\alpha)$
 - Union two components: $O(\alpha)$

Total: $O(\alpha E)$

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10 as a Priority Queue

slot A[j] holds a linked list of nodes of weight j

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10 as a Priority Queue

decreaseKey: move node to new linked list

What is the running time of (modified) Prim's if all the edge weights are in {1..10}?

- 1. O(V)
- **✓**2. O(E)
 - 3. O(E log V)
 - 4. O(V log E)
 - 5. O(EV)

What if all the edges have weights from {1..10}?

Implement Priority Queue:

- Use an array of size 10 to implement
- Insert: put node in correct list
- Remove: lookup node (e.g., in hash table) and remove from liked list.
- ExtractMin: Remove from the minimum bucket.
- DecreaseKey: lookup node (e.g., in hash table)
 and move to correct liked list.

What if all the edges have weights from {1..10}?

Idea: Use an array of size 10

- Inserting/Removing nodes from PQ: O(V)
- decreaseKey: O(E)

Total: O(V + E) = O(E)

What if all the edges have weights from {1..10}?

Implement Priority Queue....

Why does this fail for Dijkstra's Algorithm?

Roadmap

Today: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

Variations:

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

Directed Minimum Spanning Tree

What if the edges are directed?

Directed Minimum Spanning Tree

A rooted spanning tree:

Every node is reachable on a path from the root.

No cycles.

Directed Minimum Spanning Tree

Harder problem:

- Cut property does not hold.
- Cycle property does not hold.
- Generic MST algorithm does not work.

Prim's, Kruskal's, Boruvka's do not work.

See CS3230 / CS4234 for more details...

Exercise: Draw a directed graph where the cut property or cycle property is violated.

Special case: a directed acyclic graph with one "root":

For a directed acyclic graph with one "root":

For every node except the root: add minimum weight incoming edge.

For a directed acyclic graph with one "root":

For every node except the root: add minimum weight incoming edge.

Observations:

- No cycles (since acyclic graph). 🕢
- Each edge is chosen only once.

Tree

V nodes

V – 1 edges

No cycles

For a directed acyclic graph with one "root":

For every node except the root: add minimum weight incoming edge.

Observations:

- No cycles (since acyclic graph).
- Each edge is chosen only once.

·

No cycles

V - 1 edges

V nodes

Tree

 Every node has to have at least one incoming edge in the MST, so this is the minimum spanning tree.

For a directed acyclic graph with one "root":

For every node except the root: add minimum weight incoming edge.

Conclusion: Minimum Spanning Tree

O(E) time

Roadmap

Today: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

Variations:

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

A MaxST is a spanning tree of maximum weight.

How do you find a MaxST?

Reweighting a spanning tree:

– What happens if you add a constant k to the weight of every edge?

Kruskal's Algorithm

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

- Sort edges by weight.
- Consider edges in ascending order:
 - If both endpoints are in the **same** blue tree, then color the edge red.
 - Otherwise, color the edge blue.

What matters?

- Relative edge weights.
- Absolute edge weights have no impact.

Generic MST Algorithm

Red rule:

If C is a cycle with no red arcs, then color the max-weight edge in C red.

Blue rule:

If D is a cut with no blue arcs, then color the min-weight edge in D blue.

Reweighting a spanning tree:

– What happens if you add a constant k to the weight of every edge?

No change!

We can add or subtract weights without effecting the MST.

(Very *different* from shortest paths...)

MST with negative weights?

MST with negative weights?

No problem!

1. Reweight MST by adding a big enough value to each edge so that it is positive.

2. Actually, no need to reweight. Only relative edge weights matter, so negative weights have no bad impact.

A MaxST is a spanning tree of maximum weight.

How do you find a MaxST?

Easy!

- 1. Multiply each edge weight by -1.
- 2. Run MST algorithm.
- 3. MST that is "most negative" is the maximum.

A MaxST is a spanning tree of maximum weight.

How do you find a MaxST?

Or... run Kruskal's in reverse.

Roadmap

Last time: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

Today: Variations

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree

What if I want a minimum spanning tree of a subset of the vertices?

What if I want a minimum spanning tree of a subset of the vertices?

1. Just use the sub-graph.

weight = 27

What if I want a minimum spanning tree of a subset of the vertices?

- 1. Just use the sub-graph.
- 2. Use other nodes.

H 3 12 10 B 5 F

weight = 15

What is the minimum spanning tree of a subset of the vertices?

Just calculate MST doesn't work:

1. Calculate MST with no Steiner nodes.

Just calculate MST doesn't work:

2. Calculate MST with all Steiner nodes.

What is the minimum spanning tree of a subset of the vertices?

Bad News: NP-Hard

No efficient (polynomial) time algorithm

(unless P = NP).

What is the minimum spanning tree of a subset of the vertices?

Good News: Efficient approximation algorithms

Algorithm SteinerMST guarantees:

- OPT(G) = minimum cost Steiner Tree
- -T = output of SteinerMST
- -T < 2*OPT(G)

Algorithm SteinerMST guarantees:

- OPT(G) = minimum cost Steiner Tree
- -T = output of SteinerMST
- -T < 2*OPT(G)

Example:

- Optimal Steiner Tree has cost 50.
- Our algorithm always outputs a solution with cost < 100.

Algorithm SteinerMST:

- 1. For every pair of required vertices (v,w), calculate the shortest path from (v to w).
 - Use Dijkstra V times.
 - Or wait until we cover All-Pairs-Shortest-Paths next time.

Example: Step 1

Shortest Paths:

$$(A,H) = 2$$

$$(A,D) = 7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$

Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
 - V = required nodes
 - E = shortest path distances

Example: Step 2

Shortest Paths:

$$(A,H) = 2$$

$$(A,D) = 7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$

Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
 - Use Prim's or Kruskal's or Boruvka's
 - MST gives edges on new graph

Example: Step 3

Shortest Paths:

$$(A,H) = 2$$

$$(A,D) = 7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$

Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
- 4. Map new edges back to original graph.
 - Use shortest path discovered in Step 1.
 - Add these edges to Steiner MST.
 - Remove duplicates.

Example: Step 4

Shortest Paths:

$$(A,H) = 2$$

$$(A,D) = 7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$

Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
- 4. Map new edges back to original graph.

Note: Does NOT guarantee optimal Steiner tree.

Example:

Shortest Paths:

$$(D,H) = 19$$

$$(D,E) = 19$$

$$(E,H) = 19$$

Example:

Shortest Paths:

$$(D,H) = 19$$

$$(D,E) = 19$$

$$(E,H) = 19$$

Example:

Shortest Paths:

$$(D,H) = 19$$

$$(D,E) = 19$$

$$(E,H) = 19$$

Cost = 38:

OPT Steiner = 30

Challenge: bigger gap!

Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
- 4. Map new edges back to original graph.

Note: Does NOT guarantee optimal Steiner tree.

Algorithm SteinerMST:

Let O be OPT (Steiner) tree.
 Let T be SteinerMST tree.

Algorithm SteinerMST:

- Let O be OPT (Steiner) tree.
 Let T be SteinerMST tree.
- 2. Let D = DFS on O. cost(D) = 2*OPT.

Traverse each edge exactly twice!

Example: Step 3

Shortest Paths:

$$(A,H) = 2$$

$$(A,D) = 7$$

$$(A,E) = 9$$

$$(H,D) = 9$$

$$(H,E) = 11$$

$$(D,E) = 10$$

- Let O be OPT tree.
 Let T be SteinerMST tree.
- 2. Let D = DFS on O. cost(D) = 2*OPT.
- 3. $D = \{H, A, G, D, G, E, G, A, H\}$

- 1. Let O be OPT tree.
 - Let T be SteinerMST tree.
- 2. Let D = DFS on O.
 - cost(D) = 2*OPT.
- 3. $D = \{H, A, G, D, G, E, G, A, H\}$
- 4. cost(D) = w(H,A) + w(A,G) + ... + w(A,H)

- Let O be OPT tree.
 Let T be SteinerMST tree.
- 2. Let D = DFS on O. cost(D) = 2*OPT.
- 3. $D = \{H, A, G, D, G, E, G, A, H\}$
- 4. cost(D) = w(H,A) + w(A,G) + ... + w(A,H)
- 5. Skip Steiner Nodes: $D' = \{H, A, D, E, A, H\}$

 $D' = \{H, A, D, E, A, H\}$

D' = set of edges on shortest path graph

D' = spanning subgraph of shortest path graph

$$D' = \{H, A, D, E, A, H\}$$

D' = set of edges on shortest path graph

D' = spanning subgraph of shortest path graph

cost(D') = cost of traversing shortest paths
 <= cost(D) <= 2*OPT</pre>

- 6. cost(D') = cost of traversing shortest paths <= cost(D) <= 2*OPT.
- 7. D' spans shortest path graph
- 8. cost(T) = cost(MST) < cost(D') <= 2*OPT

Algorithm SteinerMST:

- 1. For every required vertex (v,w), calculate the shortest path from (v to w).
- 2. Construct new graph on required nodes.
- 3. Run MST on new graph.
- 4. Map new edges back to original graph.

Note: Does NOT guarantee optimal Steiner tree. Best known approximation: 1.55

Roadmap

Last time: Minimum Spanning Trees

- Prim's Algorithm
- Kruskal's Algorithm
- Boruvka's Algorithm

Today: Variations:

- Constant weight edges
- Bounded integer edge weights
- Directed graphs
- Maximum Spanning Tree
- Steiner Tree