MATH 108A Review Sheet

Vincent La Math 108A March 20, 2017

	vector Spaces
.A	
1.	A complex number is an ordered pair (a,b) of real numbers $a,b\in\mathbb{R}$ that we write
2.	Suppose we have $\alpha, \beta \in \mathbb{C}$ such that
	$\alpha := a + bi$
	$\beta := c + di$
	What is $\alpha \cdot \beta$?
3.	If $a \in \mathbb{R}$ then if $b \in \mathbb{R}$ is the multiplicative inverse of a, $a \cdot b = \underline{\hspace{1cm}}$
4.	Two lists of vectors are considered the same if they have the same length and
.В	
1.	A is a set with two operations and and distributive and both have identity and inverse elements.
2.	A over a field $\mathbb F$ is a set V with two operations
	 Vector addition + Scalar multiplication ·
3.	In general, is there a such thing as multiplication between vectors?
4.	An element of a vector space is called a
5.	What is the trivial vector space?
6.	The set F^{∞} is the set of
7	The set $\mathbb{R}^{\mathbb{R}}$ is the set of

8. What are the sets \mathbb{R}^n , \mathbb{C}^n , and \mathbb{F}^n ?

1.C

- 1. Subspace Test
 - (a) In English, explain the _____ conditions of the Subspace Test.
 - (b) Write out the Subspace Test using logical symbols.
- 2. Suppose that $U_1, U_2, ...U_m$ are subspaces of V such that

$$0 = u_1 + u_2 + \dots + u_m$$

where $u_1 \in U_1, ..., u_m \in U_m$, has a unique solution.

Then we can say that ______ (not talking about linear independence).

- (a) And what specifically is the value of these u_i ?
- 3. If U+W are subspaces of V, then U+W is a direct sum if and only if ______
- 4. Let $v_1, v_2, ..., v_m$ be a list of vectors in V. Then, span $(v_1, v_2, ..., v_m)$ is a _____ of V.
- 5. Let U_1, U_2, U_3 be subspaces of V such that $U_1 \cap U_2 \cap U_3 = \{0\}$ and that $U_1 + U_2 + U_3 = V$. Can we conclude that $U_1 \oplus U_2 \oplus U_3 = V$?

2. Finite Dimensional Vector Spaces

2.A

- 1. The set $\mathscr{P}(\mathbb{F})$ is _____-dimensional while $\mathscr{P}_m(\mathbb{F})$ is _____-dimensional.
- 2. Two functions p, q are the **same** if for all $z \in \mathbb{F}$ ______
- 3. Suppose for there exists a $v_j \in \text{span}(v_1, v_2, ..., v_n)$. Then, we know that $v_1, v_2, ..., v_j, ..., v_n$ is _____.
- 4. True or False. If $a_1v_1 + a_2v_2 + ... + a_mv_m = 0$, given that $a_1 = a_2 = ... = a_m = 0$, then $v_1, v_2, ..., v_m$ are linearly independent.

2.B

- 1. If a list $v_1, v_2, ..., v_n \in V$ is both linearly independent and spanning, then it is a
- 2. If a list is spanning but not a basis, then it is ______
- 3. The standard basis for \mathbb{F}^n is the list ______
- 4. If a list $v_1, v_2, ..., v_n$ (of length n) is a basis for V, then dim $V = \underline{\hspace{1cm}}$.
- 5. If $v_1, v_2, ..., v_j$ is linearly independent in V, and $v_1, v_2, ..., v_k$ spans V, then j ____ k.

2.C

...

3. Linear Maps

3.A

- 1. A linear map (linear transformation) from V to W is a function $T: V \to W$ such that
 - _____
 - _____

3.B

- 1. Suppose $v_1, v_2, ..., v_n$ is linearly independent in V. Do we know that $v_1, v_2, ..., v_n$ can be extended to be a basis for V?
- 2. Let $T \in \mathcal{L}(V, W)$. Then, dim $V = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$.
- 3. Let $T:L\to W,$ be a linear map. Then the ______ of T is the set

$$\{v \in V | Tv = 0\}$$

- 4. Does the null space contain the zero vector?
- 5. A linear map $T: V \to W$ if injective if whenever $u \neq w$, then _____
- 6. Prove that T is injective, if and only if null $T = {\vec{0}}$.
- 7. If a linear map $T: V \to W$ is such that range T = W then we say T is ______.

3.C

- 1. $\mathbb{F}^{m,n}$ is the set of all _____.
- 2. Suppose $T \in \mathcal{L}(V)$ is such that with respect to the basis v_1, v_2, v_3

$$\mathcal{M}(T) = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

What are Tv_1, Tv_2, Tv_3 equal to? Source: Last lecture

3.D

- 1. Suppose $T \in \mathcal{L}(V, W)$ is such that null $T = \{\vec{0}\}$ and range T = W. Then, we know that T is
- 2. Let $T \in L(V, W)$ be such there are $R, S \in L(W, V)$ such that R, S are inverses of T. Is R = S?
- 3. Suppose $T \in L(V, W)$ is invertible. Then, we can say V and W are ______ and T is
- 4. Let V, W be finite-dimensional and isomorphic. Then,

5. Suppose T is a linear function from \mathbb{R}^3 to \mathbb{R}^3 . Then we can say, T is a(n) ______ on \mathbb{R}^3 .

4. Polynomials

- 1. Let p(z) = 0 for all $z \in \mathbb{F}$, i.e. the zero polynomial. Then, $\deg(p) = \underline{\hspace{1cm}}$.
- 2. Let $p(z) = a_0 + a_1 z + a_2 z^2 + ... + a_m z^m$ for all $z \in \mathbb{F}$. Then, $\deg(p) = \underline{\hspace{1cm}}$.

5. Eigenvalues, Eigenvectors, and Invariant Subspaces

5.A

- 1. Suppose U is a subspace of V and $T \in \mathcal{L}(V)$. If for any $u \in U$, Tu is also in U, we say U is...
- 2. Suppose T is a linear operator on V. If for some $v \in V$, there is some scalar $\lambda \in \mathbb{F}$ is an eigenvalue (Def 5.5) for v, then $Tv = \dots$
- 3. Is null T invariant under T? Why?
- 4. Is range T invariant under T? Why?
- 5. Suppose that U is a one-dimensional subspace invariant under T and v is a basis for U. Then v is a(n) _____ for T and there exists a __ $\in \mathbb{F}$ such that __ = __.
- 6. Suppose that $T \in \mathcal{L}(V)$, when applied to some basis of V, gives the following matrix

$$\begin{bmatrix}
1 & 5 & 3 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

Is T invertible?

7. Suppose $T \in \mathcal{L}(V)$ with distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_m$. Then, we know that the corresponding eigenvectors $v_1, v_2, ... v_m$ are ______.