Exercise 15

Author: Andreas Evensen

Date: September 12, 2024

Question

We're asked to show the following two equations validity:

$$-\nabla\left(\frac{1}{r}\right) = \frac{\mathbf{x}}{r^3},\tag{1}$$

and

$$r \neq 0 \implies \nabla^2 \left(\frac{1}{r}\right) = 0.$$
 (2)

In showing this, we will use Cartesian coordinates, as it's requested.

Answer

We begin by showing eq (1). We firstly note that $r = \sqrt{x^2 + y^2 + z^2}$, and using that we rewrite eq (1),

$$-\nabla\left(\frac{1}{r}\right) = -\nabla\left(\frac{1}{\sqrt{x^2 + y^2 + z^2}}\right)$$

$$= -\left(\hat{x}\partial_x + \hat{y}\partial_y + \hat{z}\partial_z\right) \left(\frac{1}{\sqrt{x^2 + y^2 + z^2}}\right)$$

$$= \hat{x} \frac{x}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} + \hat{y} \frac{y}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}} + \hat{z} \frac{z}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}$$

$$= \frac{(\hat{x}x + \hat{y}y + \hat{z}z)}{r^3} = \frac{\mathbf{r}}{r^3}.$$

In the question, the vector \mathbf{x} is the direction of the solution, but name suggest only a \hat{x} direction, and thus I've renamed it to \mathbf{r} to indicate a direction in space.

In order to show the validity of eq (2) we do the following. Supposing that $r \neq 0$:

$$\begin{split} \nabla^2 \left(\frac{1}{r} \right) &= \left(\partial_x^2 + \partial_y^2 + \partial_z^2 \right) \frac{1}{\sqrt{x^2 + y^2 + z^2}} \\ &= -\partial_x \left(x \cdot \left(x^2 + y^2 + z^2 \right)^{\frac{-3}{2}} \right) \\ &- \partial_y \left(y \cdot \left(x^2 + y^2 + z^2 \right)^{\frac{-3}{2}} \right) \\ &- \partial_z \left(z \cdot \left(x^2 + y^2 + z^2 \right)^{\frac{-3}{2}} \right) \\ &= \frac{2x^2 - y^2 - z^2}{r^5} + \frac{2y^2 - x^2 - z^2}{r^5} + \frac{2z^2 - x^2 - y^2}{r^5} = 0. \end{split}$$

And thus we've showed that validity of the two equations (1) and (2).