Time Series Analysis- GroupH - Assignment 2

Group H: Shenyi Mao, Yueting Jiang, Chenyu Zhao, Jose Ferreira

Question 1

```
In [1]: %matplotlib inline
        import numpy as np
        import matplotlib.pyplot as plt
        from statsmodels.tsa.ar_model import AR
        from statsmodels.tsa.arima_model import ARMA
        import statsmodels as sm
        import pandas as pd
In [2]: #Simulate AR(1)
          alpha=0.1
          beta = 0.3
          sigma=0.005
          T_list=[100,250,1250]
          N = 2000
          for T in T_list:
              alpha_sum = 0
              beta_sum = 0
              sigma_sum = 0
              for i in range(0,N):
                  x0=alpha/(1-beta)
                  x=np.zeros(T+1)
                  0x = [0]x
                  eps=np.random.normal(0.0,sigma,T)
                  for i in range(1,T+1):
                      x[i]=alpha+beta*x[i-1]+eps[i-1]
                  y=x[0:T]
                  yp=x[1:(T+1)]
                  m=np.sum(y)/T
                  mp=np.sum(yp)/T
                  betaCMLE=np.inner(y-m,yp-mp)/np.inner(y-m,y-m)
                  alphaCMLE=mp-betaCMLE*m
                  sigmaCMLE=np.sqrt(np.inner(yp-betaCMLE*y-alphaCMLE,
                                             yp-betaCMLE*y-alphaCMLE)/T)
                  alpha_sum += alphaCMLE
                  beta_sum += betaCMLE
                  sigma_sum += sigmaCMLE
```

```
alpha_hat = alpha_sum / N
beta_hat = beta_sum / N
sigma_hat = sigma_sum / N
print("T = ", T, ",(alpha,beta,sigma) = ",[alpha_hat,beta_hat,sigma_hat])

T = 100 ,(alpha,beta,sigma) = [0.1024153805831, 0.2831247621365, 0.004951490497068]
T = 250 ,(alpha,beta,sigma) = [0.1009745294900, 0.2932032633954, 0.004971390214618]
T = 1250 ,(alpha,beta,sigma) = [0.1002329906964, 0.2983269719304, 0.004993956810083]
```

Comment

- We run simulations N(=2000) times to give T(=100,250,1250) observations from the given AR(1) model and then fit the observations into AR(1) to give the average MLE estimates.
- The output is:

$$T = 100, [\hat{\alpha}, \hat{\beta}, \hat{\sigma}] = [0.102415, 0.283124, 0.00495149]$$

 $T = 250, [\hat{\alpha}, \hat{\beta}, \hat{\sigma}] = [0.100974, 0.293203, 0.00497139]$
 $T = 1250, [\hat{\alpha}, \hat{\beta}, \hat{\sigma}] = [0.100232, 0.298326, 0.00499396]$

we can see that the estimates are biased compare with the given parameters

$$[\alpha, \beta, \sigma] = [0.1, 0.3, 0.005]$$

• for these biased estimates, we can see that when T goes larger, the bias get smaller because the error is $O(\frac{1}{N})$, which means that they are consistant.

Question 2

```
In [7]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from statsmodels.tsa.stattools import adfuller

In [37]: def perform_adf_test(xt):
        """
        input: a timeseries
        output: outputs the statistic values from the ADF test
        """
        test = adfuller(xt)
        print('ADF Statistic: %f' % test[0])
        print('p-value: %f' % test[1])
        for key, value in test[4].items():
            print('\t%s: %.3f' % (key, value))

        def plot_series(eur, diff_rates):
            plt.figure()
```

```
plt.plot(eur,label='EUR')
             plt.plot(diff_rates,label='Rates differential')
             plt.title('EUR/USD')
             plt.xlabel('Date')
             plt.ylabel('Last')
             plt.legend()
             plt.show()
         def plot_coint_residual(u):
             plt.figure()
             plt.plot(u,label='Cointegrating residual')
             plt.title('EUR/USD - (FED-ECB)')
             plt.xlabel('Date')
             plt.ylabel('Last')
             plt.legend()
             plt.show()
In [54]: def perform_engle_granger_test(eur, diff_rates, coint_residual, confidence):
             input:a cointegrating residual vector and the level of confidence
             output: True if the series are cointegrated
             # run Dickey-Fuller on each series separately to check if they are I(d).
             print("EURUSD")
             eur_p = perform_adf_test(eur)
             print("Diff")
             diff_p = perform_adf_test(diff_rates)
             # this should be stationary
             print("delta EURUSD")
             lagged_eur = eur.diff().dropna()
             lag_eur_p = perform_adf_test(lagged_eur)
             # this too should be stationary
             print("delta rates")
             lagged_rates = diff_rates.diff().dropna()
             lag_rates_p = perform_adf_test(lagged_rates)
             # test unit root on the cointegration residual process
             # this would need to be stationary to say there is cointegration
             print("u")
             perform_adf_test(coint_residual)
             test = adfuller(coint_residual)
             p_value=test[1]
             if (p_value>confidence):
                 print("The cointegrating residual is not stationary")
```

```
return False
             print ("The series are cointegrated")
             return True
In [57]: def problem_2():
             # Section 2.1: Perform a cointegration test
             # Read data and generate time series
             eur = pd.read_excel('HW2_Data.xlsx', sheet_name = 'EUR',
                                 index_col=0, parse_dates=True, infer_datetime_format=True)
             fed = pd.read_excel('HW2_Data.xlsx', sheet_name = 'FEDL01',
                                 index_col=0, parse_dates=True, infer_datetime_format=True)
             ecb = pd.read_excel('HW2_Data.xlsx', sheet_name = 'EUORDEPOT',
                                 index_col=0, parse_dates=True, infer_datetime_format=True)
             diff = fed - ecb
             plot_series(eur, diff)
             eur_rates = eur['Last Price'].dropna()
             diff_interest_rates = diff['Last Price'].dropna()
             merged_data = pd.concat([eur_rates.rename('eur'), diff_interest_rates.rename
             ('rates')], axis=1)
             print(merged_data.head())
             clean_data = merged_data.dropna()
             u = (clean_data['rates'] - clean_data['eur'])
             plot_coint_residual(u)
             perform_engle_granger_test(eur_rates, diff_interest_rates, u, confidence=0.05)
```

```
In [58]: problem_2()
```


	eur	rates
Date		
2003-09-11	1.1210	0.00
2003-09-12	1.1291	0.02
2003-09-15	1.1284	0.11
2003-09-16	1.1177	-0.03
2003-09-17	1.1285	-0.03

EURUSD

ADF Statistic: -1.966646

p-value: 0.301386

5%: -2.862

1%: -3.432

10%: -2.567

Diff

ADF Statistic: -1.016293

p-value: 0.747276

5%: -2.862

1%: -3.432

10%: -2.567

 ${\tt delta} \ {\tt EURUSD}$

ADF Statistic: -62.279418

p-value: 0.000000

5%: -2.862

1%: -3.432

10%: -2.567

delta rates

ADF Statistic: -9.600190

p-value: 0.000000

5%: -2.862

1%: -3.432

10%: -2.567

u

ADF Statistic: -0.930077

p-value: 0.777906 5%: -2.862 1%: -3.432

10%: -2.567

The cointegrating residual is not stationary

Comment

First, we run ADF on EURUUSD, the short interest difference between Fed and ECB. The test result shows that both series are not stationary at 5% significance level. And the first difference of both series are stationary at 5% significance level. Thus we can conclude that both series are I(1).

Second, we use the given cointegration vector $\alpha = (1, -1)$ to calculate the residual of the cointegration process u_t . Then we test the stationarity of the reriduals. The test shows that the residual is not stationary at 5% significance level. Thus the vector $\alpha = (1, -1)$ is not the cointegration vector of EURUSD exchange rate and the differential between Fed and ECB short interest rates in these currencies.