Statistical

Consultation CANAB

CANTAB:

Computerized Neuropsychiatric Test in Dementia

Group 3 members:

- 流預所 博一 黃煜鈞
- 流預所 碩二 葉憲周
- 流預所 碩二 張宏卿
- 流預所 碩二 余奇祐

Statistical Data Analysis

Outline

Introduction

What is CANTAB?

- Cambridge Neuropsychological Test **Automated Battery (CANTAB)**
- Measures of cognitive function

Introduction

Research Aim

- Early detection of dementia
 - Inefficiency in traditional methods (e.g. MMSE, CDR, NPT)
- Which information from CANTAB is required?
 - Which variables can be used in prediction?

Introduction to data

Response

Introduction to data

Response

Basic covariates

Introduction to data

Response

SCD MCI Dementia

Introduction

Basic covariates

Gender

79 samples \rightarrow 78 samples

- Remove one sample (chart no. 3324878)
- Gender
- APOE
 - Not used in the following analysis APOE

Age

Education

	E2/E3	E2/E4	E3/E3	E3/E4	E4/E4
SCD	6	1	27	7	1
MCI	2	0	12	7	0
Dementia	3	0	10	3	0
	MCI	SCD 6 MCI 2	SCD 6 1 MCI 2 0	SCD 6 1 27 MCI 2 0 12	SCD 6 1 27 7 MCI 2 0 12 7

	Female	Male
SCD	23	19
MCI	12	9
Dementia	6	10

Basic covariates

78 samples

- Age
- Education

Re-define response variable

SCD

(主觀認知下降)

Mild/moderate

MCI

(輕度知能障礙)

Severe

Dementia

(失智)

Re-define response variable

Re-define response variable

Introduction

Data processing flow chart

Methods

First Part: Single Variable Selection

Using all available variables as inputs (153 variables)

Goal: find the first 5 predictor variables which provide the best prediction

4-fold

Cross-validation

Split into training set and testing set

One variable at a time single logistic regression

Prediction

Performance measurement:
Brier score

$$\sum (prob_{test} - Obs_{test})^2$$

The rule of thumb: $n > 10 \times p$ (sample size 至少要是變數個數的10倍)

我們的 training set 大約有60筆資料(78*3/4), 建議最多選6個變數放入模型

Model 1 **ERTMDRTH**

PALNPR ERTMDRTH Model 2 **MTTICE**

PALFAMS ERTMDRTH MTTICE

PALTEA

MTTICE

Model 3

Education

Gender

模型的預測表現擺放在附錄(詳見P.34)

How to use our model

- A new subject: (Age, Gender, Education, PALTEA, MTTICE, ERTMDRTH) = (50, Male, 15, 19, 5, 877)
- $log\left(\frac{P(Y=1)}{1-P(Y=1)}\right) = -1.085 0.058 \times 50 + 0.321 \times 1 0.033 \times 15 + 0.075 \times 19$ $+0.081 \times 5 + 0.0004 \times 877 = -1.9782$

• The probability of the subject to be clinically diagnosed with dementia:

 $e \approx 2.718$

$$P(\widehat{Y} = 1) = \frac{e^{-1.9782}}{1 + e^{-1.9782}} = 0.1215$$

More focus on these three tests

Second Part: Ensemble tree

Covariates

Age Education Gender

+ CANTAB variables

PAL = 13 variables MTT = 33 variables ERT = 20 variables Logistic regression (3 covariates as adjustment and one CANTAB variable at a time)

4-fold cross validation Replicate 10 times

Brier Score

$$\sum (prob_{test} - Obs_{test})^2$$

Select variables with the smallest 3 Brier scores Within each category

PALTA8, PALTEA4, PALTEA8, MTTDBE, MTTMTCM, MTTDE, ERTOCRTSD, ERTTHD, ERTOMDCRT

Cut-off value investigation

PALTA8, PALTEA4, PALTEA8,
MTTDBE, MTTMTCM, MTTDE,
ERTOCRTSD, ERTTHD, ERTOMDCRT

Classification tree (find out cut-off value for each)

CANTAB variable	DZ	NL
PALTA8	>0.5	<=0.5
PALTEA4	>=3.5	<3.5
PALTEA8	>=22	<22
MTTDBE	>=12	<12
MTTMTCM	<39	>=39
MTTDE	>=21	<21
ERTOCRTSD	>=2427	<2427
ERTTHD	<0.5	>=0.5
ERTOMDCRT	>=1650	<1650

Results

PAL

Example: (Chart No. 4160135) --- Dementia

PALTA8 = 0	PALTEA4 = 12	PALTEA8 = 28	
NL	DZ	DZ	

no

NL

MTT

ERT

Conclusion

→ Conclusion

Model Evaluation

- ·如何衡量一個模型(model)的好壞?
 - 用各種衡量的指標,例如正確率(accuracy rate)、敏感度、特異度
 - 選擇一個你覺得最重要的指標就好
 - 不可能每個指標都好,在統計的世界,魚與熊掌不可兼得,其中一個好,通常另外的 指標就會有些相對較差
- 正確率越高越好?
 - 只答對一半而已!為什麼?
 - 如果只有考慮這小小的資料,可以達到非常高的正確率,就會發生過度配適 (overfitting)的狀況

What is overfitting?

• 什麼是過度配適?

Underfitted

Good Fit/Robust

針對手中現有的資料, 為了達到最高的正確率 而選擇沒有彈性的模型

What is overfitting?

• 什麼是過度配適?

Values

Underfitted

具有彈性的模型,可以幫助外推作更好的預測,所以黑色虛線,並沒有追求和 每個點連線,這個就是**容忍誤差的彈性**

Overfitted

Model Evaluation

- 所以要怎麼樣才能衡量模型好壞,而且又確保模型有彈性可外推執行更好的預測呢?
 - 利用外部的資料,也就是請醫生再額外蒐集樣本,讓模型預測看看 (這個通常很困難,因為沒有那麼多時間和金錢)
 - 資料切割(data splitting)
 - Resample
 - Holdout sets
 - K-fold cross validation (K折交叉驗證)
 - Leave-one-out cross validation (留一驗證) (為K折交互驗證的特例)
- 選擇使用K折交叉驗證
 - 相對穩健且安全的做法

K-fold Cross Validation

• 例如四折交叉驗證

K-fold Cross Validation

- 例如四折交叉驗證
 - 重複同樣的方式,但是是針對Part 3作為測試資料集

Model

再拿剩下的一等份作為 測試資料集(testing set), 丟入模型預測, 並得到一個正確率P₂

K-fold Cross Validation

- 完成四次的交叉驗證後,得到了四個正確率
 - 通常取平均作為這個模型的交叉驗證正確率

$$Accuracy\ rate = \frac{(P_1 + P_2 + P_3 + P_4)}{4}$$

• 比較不同模型的預測力好壞

Model A

Model B

Model C

交叉驗證正確率:

60%

80%

75%

→ Full Model

$$log(\frac{\widehat{P(Y=1)}}{1 - P(Y=1)})$$
= -1.085 - 0.058 age + 0.321 Gender - 0.033 Edu + 0.075 PALTEA + 0.081 MTTICE + 0.0004 ERTMDRTH

$$log(\frac{P(Y=1)}{1 - P(Y=1)})$$
= 7.4 - 0.062 age + 0.393 Gender - 0.057 Edu - 0.825 PALNPR + 0.086 MTTICE + 0.0006 ERTMDRTH

$$log(\frac{\widehat{P(Y=1)}}{1 - P(Y=1)})$$
= 2.168 - 0.044 age + 0.213 Gender - 0.011 Edu - 0.272 PALFAMS + 0.076 MTTICE + 0.0007 ERTMDRTH

Predictive performance

	Model 1	Model 2	Model 3
Accuracy	0.764	0.753	0.753
Specificity	0.81	0.802	0.791
Sensitivity	0.717	0.706	0.717

Results

PAL

Chart No. 8044822

PALTA8 = 0 PALTEA4 = 4 PALTEA8 = 28

Results

MTT

ERT

Descriptive Statistics

> Descriptive Statistics

> Descriptive Statistics

