

DECODERS

COMBINATIONAL LOGIC CIRCUITS

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Binary Decoder

BCD-to-7-Segment Decoder

BINARY DECODER

BINARY DECODER

Graphical Symbol

A <u>binary decoder</u> takes n input bits and activates one of 2^n output lines.

Truth Table

D_1	D_0	Y_0	Y_1	Y_2	Y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1 /

EXERCISE

Given the truth table, synthesize a 2-to-4 binary decoder with an enable input.

En	D_1	D_0	Y_0	Y_1	<i>Y</i> ₂	<i>Y</i> ₃
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	X	0	0	0	0

Solution

DEMULTIPLEXER

A <u>demultiplexer</u> is a digital circuit that routes a <u>single data input</u> to one of <u>several outputs</u> based on select input lines, performing the inverse function of a multiplexer.

A 1-line-to-4-line Demultiplexer

BCD-TO-7-SEGMENT DECODER

THE 7-SEGMENT DISPLAY

A standard <u>7-segment display</u> consists of <u>seven</u>

<u>LEDs</u> (segments) arranged in a rectangular layout to form the number 8. Each segment is labeled from *a* to *g*, and an optional eighth segment (DP) is used for the decimal point.

Segment Arrangement

EXPRESSION FOR SEGMENT A

Truth Table

N	DCBA	f_a
0		
1		
2		
3		
4		
5		
6		
7		
8		

N	DCBA	f_a
9		
10		
11		
12		
13		
14		
15		

Segment Arrangement

EXPRESSION FOR SEGMENT A

Truth Table

N	DCBA	f_a
0		
1		
2		
3		
4		
5		
6		
7		
8		

N	DCBA	f_a
9		
10		
11		
12		
13		
14		
15		

K-Map

EXERCISE

Synthesize and implement a combinational logic circuit that functions as a decoder for a 7-segment display.

Segment Arrangement

LABORATORY

