Assignment 9 MAT 257

Q1a:

We define f in the following way.

$$f(x) = \begin{cases} \frac{3(-1)^n}{n} & \text{if } x \in [n + \frac{1}{3}, n + \frac{2}{3}] \text{for } n \in \mathbb{N} \\ 0 & \text{if } x < 1 \text{ or } x \in (n - \frac{1}{3}, n + \frac{1}{3}) & \text{for } n \in \mathbb{N} \end{cases}$$

It is readily available that the support of f is as desired, by construction. It suffices to check that $\int_{n+\frac{1}{3}}^{n+\frac{2}{3}} f = \frac{(-1)^n}{n}$.

$$\int_{n+\frac{1}{3}}^{n+\frac{2}{3}} f = \int_{n+\frac{1}{3}}^{n+\frac{2}{3}} \frac{3(-1)^n}{n} dx = \left(n + \frac{2}{3} - n - \frac{2}{3}\right) \cdot \frac{3(-1)^n}{n} = \frac{(-1)^n}{n}$$

1b:

Choose an open cover \mathcal{U} of \mathbb{R} in the following way. Each $A_n = [n + \frac{1}{3}, n + \frac{2}{3}]$ has some $U_n \in \mathcal{U}$ with $[n + \frac{1}{3}, n + \frac{2}{3}] \subset U_n$, and each U_n disjoint from one another. We cover the rest of \mathbb{R} in any collection of open sets such that these sets will be disjoint from each A_n . Find a PO1 Φ subordinate to \mathcal{U} . We note that $\sum_{\phi \in \Phi} \int_{R \supset \mathcal{U}} \varphi \cdot |f| = \sum_{i=1}^{\infty} \frac{1}{n}$. This is a divergent series, hence $\int_{\mathbb{R}} f$ is not integrable. 1c:

For each $A_n = [n + \frac{1}{3}, n + \frac{2}{3}]$ choose an open cover U_n which contains it disjoint from any other U_i . We take V_n to cover sets of the form $(n - \frac{1}{3}, n + \frac{1}{3})$ and we say that $V_0 = (-\infty, 1)$. Together, the set of all U_n and V_n cover all of \mathbb{R} . Consider the following rearrangement of the alternating harmonic series. We rearrange as

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \dots = (-1 + \frac{1}{2} + \frac{1}{4}) - \frac{1}{3} + \dots$$

Where we rearrange each term to be in groups of 3 of the form $\frac{1}{2k-1} - \frac{1}{2(2k-1)} - \frac{1}{4k}$. From MAT157 this will absolutely converge. Choose a PO1 $\Phi = \{\phi_i\}$ such that each ϕ_{2i} corresponds to the i'th term in our rearrangement of the series subordinate to an open set U_i , and each ϕ_{2k+1} is subordinate to a V_i . It follows that $\sum \int \phi_i |f|$ will converge, and $\sum \int \phi_i f = -\frac{1}{2} \log(2)$. We will now find a different rearrangement of our series. Consider the following rearrangement:

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \dots = (-1 - \frac{1}{3} - \frac{1}{5}) + (\frac{1}{2} + \frac{1}{4} + \dots)$$

Where the negative terms appear consecutively 3 times in a row, and the positive terms appear 7 times in a row. This sequence will absolutely converge, for similar reason as the first. We also have that its limit will be $-(\log(2) + \log(\frac{3}{7}))$. Now consider another PO1, $\Psi = \{\psi_j\}$ where each ψ_i is chosen so that ψ_i will correspond to A_i . WLOG we may consider this specific PO1, since it is only defined on the support of the function f. We see that $\sum \int \psi_i f = -(\log(2) + \log(\frac{3}{7}))$