Institut Supérieur du Numérique Algèbre / Série II

Exercice 1

Soit $E = \{1, 2, 3, 4\}$ et R la relation binaire sur E dont le graphe est $\{(1, 1), (1, 2), (2, 1), (2, 2), (2, 2), (2, 3, 4)\}$ (3, 3), (3, 4), (4, 3), (4, 4)

- 1. Vérifier que la relation R est une relation d'équivalence.
- 2. Faire la liste des classes d'équivalences distinctes et donner l'ensemble quotient E/R.

Exercice 2.

On considère sur $\mathcal{F}(E, E)$ la relation binaire R définie par :

$$fRg \Leftrightarrow \exists \varphi \in S(E) \text{ telle que } fo\varphi = \varphi og$$

- a) Montrer que R est une relation d'équivalence.
- b) Décrire la classe d'équivalence d'une fonction donnée $f \in \mathcal{F}(E, E)$

Exercice 3

Soit \mathcal{R} la relation définie sur R par : $x\mathcal{R}y \Leftrightarrow x^2 - y^2 = x - y$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence \hat{x} de pour tout réel x.
- 3. Déterminer l'ensemble quotient.

Exercice 4

Dans N^* on définit une relation \ll en posant $m \ll n$ s'ilexiste $k \in N^*$ tel que n = kmMontrer que \ll est une relation d'ordre partiel sur N^* .

Exercice 5

Dans R^2 on définit une relation \ll en posant

$$(x,y) \ll (x',y') \Leftrightarrow x < x'ou (x = x'et y < y')$$

Montrer que \ll est une relation d'ordre sur R^2 . Est-ce une relation d'ordre total

Exercice 6

1) Montrer que les nombres entiers suivants sont composés, c'est-à-dire non premier

i)
$$A = 5^{45} + 4^{30}$$
; ii) $B = n^4 - 20n^2 + 4$, $\forall n \in \mathbb{Z}$
2) Montre que a) $\forall n \in \mathbb{N}$ 14 | $3^{4n+2} + 5^{2n+1}$

b)
$$\forall n \in \mathbb{N} \ 11 \mid 3^{5n} + 5^{5n+1} + 4^{5n+2}$$

Exercice 7.

- 1) Trouvez tous les $n \in Z$ tel que $\sqrt{\frac{11n-5}{n+4}} \in N$
- 2) Résoudre dans Z l'équation $x 1 \mid x + 3$.

Exercice 8

- 1) Déterminer le nombre de diviseurs de 10!
- 2) Sachant que $3285 = 25 \times 123 + 210$ trouver, sans effectuer cette division, le reste et le quotient de la division euclidienne de 3285 par 123.
- 3) Montrer que. $\forall n \geq 0$, $6 \mid 5n^3 + n$

Exercice 9

Calculer le pgcd des couples

1. (120,230), 2. (210,135), 3. (211,112)

Exercice 10

Soient a, b des nombres premiers entre eux. Montrer que :

- 1) $a \wedge (a + b) = b \wedge (a + b) = 1$.
- 2) $(a + b) \wedge ab = 1$

Exercice 11

Trouver tous les couples d'entiers naturels $(a, b) \in N^2$ $(a \le b)$ tels que :

- i) $a \wedge b = 18$ et a + b = 360.
- ii) $a \wedge b = 18 \text{ et } ab = 126$