К ТЕМЕ «ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ»

7.1. Выравнивающие переменные

Идея введения выравнивающих переменных, рассмотренная при изучении аппроксимации функций, очень хорошо работает при проведении операций дифференцирования. Действительно, при удачном выборе этих переменных исходная кривая может быть преобразована в прямую линию, производная от которой вычисляется точно по самым простым формулам.

Итак, пусть задана функция y(x) и введены выравнивающие переменные $\xi = \xi(x)$, $\eta = \eta(y)$. После вычисления производной в новых переменных η'_{ξ} возврат к заданным переменным осуществляется следующим образом

$$y'_{x} = y'_{\eta} \eta'_{\xi} \xi'_{x} = \frac{\eta'_{\xi} \xi'_{x}}{\eta'_{y}}.$$
 (1)

Например, пусть известно, что табличная функция описывает некоторую закономерность вида $y=ax^n$, причем параметры a и n неизвестны и на разных участках таблицы они разные. Вводим выравнивающие переменные $\xi=\ln x, \eta=\ln y$. В новых переменных имеем $\eta=\ln a+n$ ξ - прямая линия. Производная будет вычислена точно по любой односторонней формуле, в итоге получим точное значение производной, например, в точке x_1

$$y'_{x}(x_{1}) = \frac{\eta_{2} - \eta_{1}}{\xi_{2} - \xi_{1}} \cdot \frac{1/x_{1}}{1/y_{1}} = \frac{\eta_{2} - \eta_{1}}{\xi_{2} - \xi_{1}} \cdot \frac{y_{1}}{x_{1}}$$

Пример 2. Задана таблица функции $y = x^{2.3}$. Определить разными численными методами производную y'(2).

X	у
1	1
2	4.925
3	12.514
4	24.251

1. Правостороння формула с шагом
$$h=1$$
 - $y'_{+}=\frac{12.514-4.925}{1}=7.589$.

2. Правостороння формула с шагом
$$h = 2 - y'_{+} = \frac{24.251 - 4.925}{2} = 9.663$$
.

3. Формула центральной разности -
$$y'_c = \frac{12.514 - 1}{2} = 5.757$$

4. Вторая формула Рунге. Используем правосторонние производные, вычисленные выше. При этом p=1, m=2. Получаем $y'_R=7.589+\frac{7.589-9.663}{2^1-1}=5.515$.

5. Выравнивающие переменные.

Вводим переменные $\xi = \ln x$, $\eta = \ln y$. Таблица примет вид

$\xi = \ln x$	$\eta = \ln y$
0	0
0.693	1.594
1.099	2.527
1.386	3.188

Теперь
$$y'_{\nu} = \frac{2.527 - 1.594}{1.099 - 0.693} \cdot \frac{4.925}{2} = 5.660$$

Точное значение производной y'(2)=5.663. Видно что первые две формулы, как и ожидалось, дают результат низкой точности, в отличие от трех последних.

Пример 3. Ввести выравнивающие переменные, отображающие график заданной функции в прямую линию. Исходная функция $v = a \ x e^{b/x}$.

Искомый результат достигается введением новых переменные $\xi = \frac{1}{x}, \ \eta = \ln \frac{y}{x}$.

Для возврата к исходным переменным формула (1) уже не годится, т.к. здесь $\eta = \eta(x,y)$. Теперь надо использовать соотношение

$$y'_{x} = \frac{\eta'_{\xi} \varsigma'_{x} - \frac{\partial \eta}{\partial x}}{\frac{\partial \eta}{\partial y}}.$$

В самом общем случае, когда $\xi = \xi(x, y), \ \eta = \eta(x, y)$ искомая производная находится по формуле

$$y'_{x} = \frac{\eta'_{\xi} \frac{\partial \xi}{\partial x} - \frac{\partial \eta}{\partial x}}{\frac{\partial \eta}{\partial y} - \eta'_{\xi} \frac{\partial \xi}{\partial y}}$$

7.2. Дифференцирование предварительно сглаженной кривой

В этом методе, не имеющем строгого обоснования, методом наилучшего среднеквадратичного приближения подбирается функция, производная от которой в заданной точке принимается за искомую производную. В ряде случаев таким образом удается уменьшить влияние погрешности в задании табличной функции на результат вычисления производной.

Например, выполняя сглаживание прямой линией $\varphi(x) = a_0 + a_1 x$, получим для первой производной $y'(x) = a_1$, где

$$a_{1} = \frac{\sum_{i=0}^{N} \rho_{i} \sum_{i=0}^{N} \rho_{i} x_{i} y_{i} - \sum_{i=0}^{N} \rho_{i} x_{i} \sum_{i=0}^{N} \rho_{i} y_{i}}{\sum_{i=0}^{N} \rho_{i} \sum_{i=0}^{N} \rho_{i} x_{i}^{2} - (\sum_{i=0}^{N} \rho_{i} x_{i})^{2}}.$$

7.3. Регуляризация дифференцирования

При уменьшении шага приведенные выше формулы дают все более точный результат. Порядок точности этих формул относительно шага $O(h^p)$ т.е. при $h \to 0$ погрешность метода тоже стремится к нулю. Однако на практике дело обстоит несколько сложнее. Во-первых, в реальных вычислениях приходится иметь дело с функциями, заданными с некоторой погрешностью. Во-вторых, при расчетах на компьютере в силу ограниченности разрядной сетки неизбежно возникает ошибка округления. Рассмотрим, к каким это приводит эффектам.

Пусть точные значения функции будут $\overline{y_n}$ и $\overline{y_{n+1}}$, а погрешность представления функции - δ Тогда

$$y'_{n} = \frac{y_{n+1} - y_{n}}{h} - y''(\xi) \frac{h}{2} = \frac{(\overline{y_{n+1}} + \delta) - (\overline{y_{n}} - \delta)}{h} - y''(\xi) \frac{h}{2} = \frac{\overline{y_{n+1}} - \overline{y_{n}}}{h} - y''(\xi) \frac{h}{2} + \frac{2\delta}{h},$$

где
$$x_n < \xi < x_{n+1}$$
.

Видим, что суммарная погрешность складывается из ошибки метода и погрешности представления функции, причем первая погрешность уменьшается с уменьшением шага, а вторая - наоборот, увеличивается, т.е. существует оптимальный шаг, при котором погрешность минимальна. Действительно

$$|R_{\Sigma}| = |y'| \frac{h}{2} + \frac{2\delta}{h},$$

$$\frac{d|R_{\Sigma}|}{dh} = \frac{|y''|}{2} - \frac{2\delta}{h^2} = 0$$

Откуда

$$h_{opt} = \sqrt{\frac{4\delta}{|y''_n|}} .$$

Факт существования оптимального шага h_{opt} , в результате чего расчеты с шагами меньше оптимального не повышают точность вычислений, позволяют говорить о возможности регуляризации по шагу. На практике строго выполнить процедуру отыскания h_{opt} невозможно из-за трудности определения значений погрешности δ и второй производной на интервале сетки. Но сам факт наличия h_{opt} важен при решении вопроса о выборе численных формул и параметров сетки.

К ТЕМЕ «ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ»

8.1. Формула Гаусса

Формула $\int\limits_{-1}^{1}f(t)dt=\sum\limits_{i=1}^{N}A_{i}f(t_{1})$, в которой \mathbf{t}_{i} - нули полинома Лежандра $P_{N}(t)$,

а A_i определяют из первых N уравнений системы линейных уравнений (1), называют квадратурной формулой Гаусса.

$$\begin{cases} \sum_{i=1}^{N} A_{i} = 2, \\ \sum_{i=1}^{N} A_{i} t_{i} = 0, \\ \sum_{i=1}^{N} A_{i} t_{i}^{2} = \frac{2}{3}, \\ \dots \\ \sum_{i=1}^{N} A_{i} t_{i}^{2N-1} = 0. \end{cases}$$

$$(1)$$

Пример. Вывести квадратурную формулу Гаусса для случая трех узлов, т.е. N=3.

1. Ищем корни полинома Лежандра третьей степени

$$P_3(t) = \frac{1}{2}(5t^3 - 3t) = 0.$$

Корни полинома:

$$t_1 = -\sqrt{\frac{3}{5}}, \quad t_2 = 0, \quad t_3 = \sqrt{\frac{3}{5}}.$$

2. Из первых трех уравнений (1) находим коэффициенты A_i

$$A_1 + A_2 + A_3 = 2$$
,

$$-\sqrt{\frac{3}{5}}A_1 + \sqrt{\frac{3}{5}}A_3 = 0 ,$$

$$\frac{3}{5}A_1 + \frac{3}{5}A_3 = \frac{2}{3} .$$

Отсюда

$$A_1 = A_3 = \frac{5}{9}, \ A_2 = \frac{8}{9}$$
.

В итоге формула Гаусса при интегрировании на промежутке [-1;1] имеет вид

$$\int_{-1}^{1} f(t)dt = \frac{1}{9} \left[5f(-\sqrt{\frac{3}{5}}) + 8f(0) + 5f(\sqrt{\frac{3}{5}}) \right].$$

При вычислении интеграла на произвольном интервале [a;b], т.е. $\int_a^b f(x)dx$ для применения квадратурной формулы Гаусса необходимо выполнить преобразование переменной

$$x = \frac{b+a}{2} + \frac{b-a}{2}t.$$

Получим

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(\frac{b+a}{2} + \frac{b-a}{2}t) dt ,$$

тогда

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \sum_{i=1}^{N} A_{i} f(x_{i}) ,$$

где

$$x_i = \frac{b+a}{2} + \frac{b-a}{2}t_i$$
, $i = 1,2,...,N$;

здесь $t_{\scriptscriptstyle i}$ - нули полинома Лежандра $P_{\scriptscriptstyle N}(t)$, т.е. $P_{\scriptscriptstyle N}(t_{\scriptscriptstyle i})=0$.

Погрешность формулы Гаусса с N узлами выражается формулой

$$R_{N} = \frac{(b-a)^{2n+1}(N!)^{4}}{(2N+1)[(2N)!]^{3}} f^{(2N)}(\xi) .$$

Отсюда, в частности, следует

$$R_3 = \frac{1}{15750} \left(\frac{b-a}{2}\right)^7 f^{(6)}(\xi) ,$$

$$R_4 = \frac{1}{3472875} \left(\frac{b-a}{2}\right)^9 f^{(8)}(\xi)$$

••••••

$$R_8 = \frac{1}{648984486150} \left(\frac{b-a}{2}\right)^{13} f^{(12)}(\xi)$$

и т.д.

Сделаем замечание по поводу отыскания корней полинома Лежандра произвольной степени. Эта процедура выполняется численным методом, например, можно применить метод половинного деления. Сам полином строится по выписанной на Лекции №8 рекуррентной формуле, а для начала процесса используются полиномы $P_0(t) = 1$ и $P_1(t) = t$. Процедура повторяется до тех пор, пока не будут найдены все N корней полинома. При этом решение задачи существенно упрощается благодаря свойству полиномов, согласно которому все его корни располагаются на интервале [–1; 1], при этом они все действительны и различны, т.е. комплексных и кратных корней нет.

8.2. Другие формулы численного интегрирования

Ставится задача вычисления определенного интеграла

$$F = \int_{a}^{b} f(x) dx$$

Приведем сводку ряда простейших формул, используемых в практике численного интегрирования, при большом количестве узлов и постоянном расстоянии между узлами (шаге сетки).

Формула трапеций:

$$\int_{a}^{b} f(x)dx \approx h(\frac{1}{2}f_{0} + f_{1} + \dots + f_{N-1} + \frac{1}{2}f_{N}) ,$$

$$R \approx -\frac{1}{12}h^{2} \int_{a}^{b} f''(x) dx = O(h^{2}) ,$$

$$h = x_{i} - x_{i-1} = const ,$$

где R - асимптотическая погрешность формулы; $f_i = f(x_i)$ - значения интегрируемой функции в узлах.

Формула средних:

$$\int_{a}^{b} f(x)dx \approx h \sum_{i=1}^{N} f(x_{i-1/2}), \quad x_{i-1/2} = \frac{x_{i-1} + x_{i}}{2},$$

$$R \approx \frac{1}{24} h^{2} \int_{a}^{b} f''(x)dx = O(h^{2}).$$

Формула Симпсона:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \sum_{i=0}^{\frac{N}{2}-1} (f_{2i} + 4f_{2i+1} + f_{2i+2}) ,$$

$$R \approx -\frac{1}{180} h^{4} \int_{a}^{b} f^{(4)}(x) dx = O(h^{4}) .$$

Отметим, что если подинтегральная функция не имеет соответствующих производных, то указанный теоретический порядок точности не достигается. Так, если на отрезке интегрирования не существуют 3-я и 4-я производные, то порядок точности формулы Симпсона будет только 2-ой, $O(h^2)$.