Sayısal Sistemler-H10CD1

Senkron ve Asenkron Flip-Flop Girişleri Ardışık Lojik Devre Analizi

Dr. Meriç Çetin versiyon091224

Bu derste öğreneceklerimiz

5 Synchronous Sequential Logic

5.1	Introduction	190
5.2	Sequential Circuits	190
5.3	Storage Elements: Latches	193
5.4	Storage Elements: Flip-Flops	196
5.5	Analysis of Clocked Sequential Circuits	204
5.6	Synthesizable HDL Models of Sequential Circuits	217
5.7	State Reduction and Assignment	231
5.8	Design Procedure	236

Senkron ve Asenkron Flip-Flop Girişleri

- Flip- flop mantığında R-S, J-K, D, T girişleri kontrol uçlarıdır. Bu girişlere **senkron giriş** adı verilir. Senkron girişler **clock** sinyali ile ilişkili olarak çalışır.
- Birçok flip-flop senkron girişler dışında asenkron girişlere de sahiptir.
- Asenkron girişler senkron girişlerden bağımsız olarak flip-flop çıkışlarını etkiler.
- Genelde bu girişler flip-flop'u
 - «set» yani «lojik 1» e kurma ve «clear» yani «lojik 0» a kurma için kullanılır.
- «Set» ve «clear» işlemleri yapan asenkron girişler, diğer girişlere göre daha üstündür ve diğer girişlerin durumuna bakmaksızın flip-flop çıkış durumunu belirler.
- Bu girişler terslenmiş halleri ile flip-flop'a bağlanır.
 - Bunun anlamı şudur: Clear ve set lojik '0' olduğunda görevini yerine getirir (aktif olur).

Senkron ve Asenkron Flip-Flop Girişlerine bir örnek

- Örnek olarak verilen J-K flip-flop blok diyagramı üzerinde örneklemeye çalışalım:
- Set ve clear girişleri asenkron girişlerdir.
- J-K girişleri senkron girişlerdir.
- Özel olarak alçalan kenar tetiklemeli flip-flop olduğu belirtilmiş. Aksi durumda mümkündür, yani clock tetiklemesi yükselen kenara göre de verilebilir.
- Flip-flop çıkışı öncelikli olarak asenkron girişlere göre hesaplanır.
- Senkron girişlere göre flip-flop çıkışı yalnızca asenkron girişler «lojik 1» olduğunda hesaplanır.

Senkron ve Asenkron Flip-Flop Girişlerine bir örnek

ASENKRON GİRİŞLER		SENKRON GİRİŞLER		ÇIKIŞ	
PRE	\overline{CLR}	J	K	CLK	Q
1	1	0	0	*	Q_0
1	1	0	1	* -	0
1	1	1	0		1
1	1	1	1	-	$\overline{oldsymbol{Q}_0}$
1	0	Х	Х	-	0
0	1	Х	Χ		1
0	0	Х	X	•	Kullanılmaz.

Ardışık Lojik Devre Analizi

Ardışık Lojik Devre Analizi

- Ardışık lojik devre davranışı;
 - girişler, çıkışlar ve flip-flop'ların durumlarına göre belirlenir.
- Çıkışlar ve bir sonraki durum,
 - girişlerin ve flip-flop'lara clock sinyali (CP) uygulanmadan önceki durumun bir fonksiyonudur.
- Ardışık devre analizi zamana göre girişleri, çıkışları ve flip-flop'ların durumlarını belirleyen tabloları ve diyagramları içerir.

Ardışık Lojik Devre Analizi

- Buradaki ardışık lojik devrede çıkışlar girişin bir fonksiyonudur.
- Flip-flop'un bir sonraki durumu dışarıdan gelen harici girişlere ve flip-flop'un bir önceki durumuna bağlıdır.
- Örneğin Q_b(t+1) çıkışı;
 - $Q_b(t+1) = f(X, Q_b(t), Q_a(t))$ şeklindedir.

Flip-Flop Devrelerinde Durum Geçiş Tabloları

- Ardışık lojik devre analizi yapmak için
 - Durum geçiş tablosu,
 - Durum diyagramı,
 - Durum denklemi
- gibi gösterim ve ifadeler kullanılmaktadır.
- Lojik devre tasarımı sırasında, flip flop durumlarında gerekli değişmeyi sağlayacak giriş değişkenlerini belirlemek önemlidir.
- Bunun için doğruluk tablolarından faydalanılır.

Flip-flop doğruluk tablolarını hatırlayalım

GİRİ	ŞLER	ÇIKIŞ	
S R		$Q_{(t+1)}$	
0	0	$Q_{(t)}$	
0	1	0	
1	0	1	
1	1	Kullanılmaz	

GİRİŞ	ÇIKIŞ	
D	$Q_{(t+1)}$	
0	0	
1	1	

GİRİ	ŞLER	ÇIKIŞ
J	K	$Q_{(t+1)}$
0	0	$Q_{(t)}$
0	1	0
1	0	1
1	1	$\overline{oldsymbol{Q}_{(t)}}$

GiRiŞ	ÇIKIŞ
Т	$Q_{(t+1)}$
0	$Q_{(t)}$
1	$\overline{oldsymbol{Q}_{(t)}}$

Flip-Flop Devrelerinde Durum Geçiş Tabloları

- Flip flop'ların istenilen çıkış değerini verebilmesi için hangi giriş değerine sahip olması gerektiğini belirtmek için kullanılan tabloya 'flip flop durum geçiş tablosu' denir.
- Durum geçiş tablosunda clock pulse'den (CP) önceki durum (present state)→Q(t)
- Durum geçiş tablosunda clock pulse'den (CP) sonraki durum (next state) →Q(t+1) olarak ifade edilir.
- Durum geçişi sırasında, giriş değerlerinin önemli olmadığı durumlar 'önemsiz/belirsiz' olarak ifade edilir ve genellikle 'X' veya 'd' ile gösterilir.
- 'X' veya 'd' ile ifade edilen bilginin '1' veya '0' olmasında bir farklılık yoktur.

Örnek bir flip-flop durum geçiş tablosu

	Next state		Out	put
Present State	x = 0	x = 1	x = 0	x = 1
AB	AB	AB	y	у
00	00	01	0	0
01	11	01	0	0
10	10	00	0	1
11	10	11	0	0

Örnek bir flip-flop durum geçiş tablosu

• Önceki durum geçiş tablosuna ait ardışık devre

Figure 6.15 Example of a clocked sequential circuit

	Next state		O	utput
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1
AB	AB	AB	у	у
00	00	01	0	0
01	11	01	0	0
10	10	00	0	1
11	10	11	0	0

RS Flip-Flop için Durum Geçiş Tablosu

- √ '0' konumundaki çıkışın durumunu '0' olarak korunması için S=0 olmalı R'ye uygulanacak bilginin önemi yoktur.
- ✓ Bu nedenle, geçiş tablosuna S=0, R=X değerleri yazılabilir.
- ✓ FF'in '0'dan '1' durumuna geçmesi isteniyorsa; S=1 ve R=0 olmalıdır.
- ✓ FF'in '1'den '0' durumuna geçmesi isteniyorsa; S=0 ve R=1 olmalıdır.
- √ '1' konumundaki çıkışın durumunu '1' olarak korunması için R=0 olmalı S'ye uygulanacak bilginin önemi yoktur.

GİRİ	ŞLER	ÇIKIŞ
s	R	$Q_{(t+1)}$
0	0	$Q_{(t)}$
0	1	0
1	0	1
1	1	Kullanılmaz

DURUM G	EÇİŞLERİ	GİRİŞLER		
$Q_{(t)}$ $Q_{(t+1)}$		s	R	
0	0	0	X	
0	1	1	0	
1	0	0	1	
1	1	X	0	

S=0, R=0 veya S=0, R=1

S=0, R=0 veya S=1, R=0

JK Flip-Flop için Durum Geçiş Tablosu

- ✓ Mevcut ve yeni durumun '0' olması isteniyorsa; J=0, K=X uygulanmalı.
- ✓ Mevcut ve yeni durumun '1' olması isteniyorsa; J=X, K=0 uygulanmalı.
- ✓ Çıkışın O'dan 1'e değişmesi isteniyorsa; J=1 olmalı, K'ya uygulanacak değerin önemi yoktur (K=X).
- ✓ Çıkışın 1'dan 0'a değişmesi isteniyorsa; K=1 olmalı, J'ye uygulanacak değerin önemi yoktur (J=X).

GİRİ	ŞLER	ÇIKIŞ
J	K	$Q_{(t+1)}$
0	0	$Q_{(t)}$
0	1	0
1	0	1
1	1	$\overline{Q_{(t)}}$

JK FF Doğruluk Tablosu

DURUM G	EÇİŞLERİ	GİRİŞLER		
$Q_{(t)}$	$Q_{(t+1)}$		К	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

S=0, R=0 veya S=0, R=1 S=1, R=0 veya S=1, R=1 S=0, R=1 veya S=1, R=1 S=0, R=0 veya S=1, R=0

D Flip-Flop için Durum Geçiş Tablosu

D tipi FF doğruluk tablosundan, FF'nin sonraki durumunun her zaman D girişine eşit olduğu söyleyebiliriz. $Q_{(t+1)}$ değerinin ne olması isteniyorsa, D'ye aynı bilginin uygulanması yeterlidir.

GİRİŞ	ÇIKIŞ	
D	$Q_{(t+1)}$	
0	0	
1	1	

D FF Doğruluk Tablosu

DURUM GEÇİŞLERİ		GiRiş
$Q_{(t)}$	$Q_{(t+1)}$	D
0	0	0
0	1	1
1	0	0
1	1	1

D FF Durum Geçiş Tablosu

T Flip-Flop için Durum Geçiş Tablosu

T tipi FF doğruluk tablosundan, T=1 durumunda FF'nin çıkışını terslediğini, T=0 olduğunda ise FF'nin çıkışının bir önceki durumunu koruduğunu bulabiliriz. Bu nedenle; T tipi FF'nin çıkışının bir önceki durumunu koruması isteniyorsa T=0, durumunu değiştirmesi isteniyorsa T=1 yapılmalıdır.

GiRiŞ	ÇIKIŞ	
т	$Q_{(t+1)}$	
0	$Q_{(t)}$	
1	$\overline{Q_{(t)}}$	

T FF Doğruluk Tablosu

DURUM GEÇİŞLERİ		GİRİŞ
$Q_{(t)}$	$Q_{(t+1)}$	Т
0	0	0
0	1	1
1	0	1
1	1	0

T FF Durum Geçiş Tablosu

Flip-flop durum geçiş tablolarını özetleyelim

DURUM GEÇİŞLERİ		GİRİŞLER	
$Q_{(t)}$	$Q_{(t+1)}$	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Х	0

S=0, R=0 veya S=0, R=1

S=0, R=0 veya S=1, R=0

RS FF Durum Geçiş Tablosu

DURUM GEÇİŞLERİ		GİRİŞ
$Q_{(t)}$	$Q_{(t+1)}$	D
0	0	0
0	1	1
1	0	0
1	1	1

D FF Durum Geçiş Tablosu

DURUM GEÇİŞLERİ		GiRi	ŞLER
$Q_{(t)}$	$Q_{(t+1)}$	J	к
0	0	0	X
0	1	1	Х
1	0	Х	1
1	1	Х	0

S=0, R=0 veya S=0, R=1 S=1, R=0 veya S=1, R=1 S=0, R=1 veya S=1, R=1 S=0, R=0 veya S=1, R=0

JK FF Durum Geçiş Tablosu

DURUM GEÇİŞLERİ		GİRİŞ
$Q_{(t)}$	$Q_{(t+1)}$	Т
0	0	0
0	1	1
1	0	1
1	1	0

T FF Durum Geçiş Tablosu