Combinatorics I

Kon Yi

September 3, 2025

Contents

1	Chatting	2
	1.1 Prime Numbers	2
2	Elementary Counting Principles	4
	2.1 Sum Rule	4
	2.2 Product Rule	6
	2.3 Double-Counting argument	7

Chapter 1

Chatting

Lecture 1

1.1 Prime Numbers

2 Sep. 15:30

Theorem 1.1.1 (Euclid ≈ 300 BCE). There are infinitely many primes.

proof. (Saidak, 2006).

- Every natural number has at least one prime factor.
- No prime divides n and n+1, for any $n \in \mathbb{N}$.

Consider a sequence of ?? number

$$p_1 = 2, \ p_{n+1} = p_n(p_n + 1).$$

Then the number of prime factors of p_n is strictly increasing in n: p_{n+1} has all the factors of p_n together with the (disstinct) ones of $p_n + 1$.

Example. $p_1=2, p_2=6, p_3=42, p_4=1806$, where the prime factors of them are $\{2\}$, $\{2,3\}$, $\{2,3,7\}$, $\{2,3,7,43\}$.

1.1.1 How many prime numbers are there?

Definition 1.1.1. We define

$$\pi(n) = |\{p : 1 \le p \le n : p \text{ is prime}\}|.$$

Note. By Saidak's proof, we know $\pi(p_n) \ge n$. In fact, $\pi(p_n) \ge \log_2 n$.

Theorem 1.1.2 (Legendre, $\approx 1800 \text{ LE}$).

$$\pi(n) \approx \frac{n}{\ln n} \Leftrightarrow \lim_{n \to \infty} \frac{\pi(n) \ln n}{n} = 1$$

Note. Proven by Hadamard and independently de la Vallée Poussin(1896).

Theorem 1.1.3 (Better Approximation). Dirichlet: $\pi(x) \approx Li(x) = \int_2^x \frac{1}{\ln t} dt$. Known: $\pi(n) = Li(n) + O\left(ne^{-a\sqrt{\ln n}}\right)$ Believed: $\pi(n) = Li(n) + O\left(\sqrt{n}\ln n\right)$

Chapter 2

Elementary Counting Principles

Fundemental problem: Given a set S, and we want to determine |S|.

2.1 Sum Rule

Theorem 2.1.1 (Sum Rule). If $S = \bigcup_{i=1}^k S_i$, then $|S| = \sum_{i=1}^k |S_i|$.

Note. [.] means disjoint union.

Example. A drawer contains 8 pairs of yellow socks, 5 pairs of blue socks, and 3 pairs of red socks. How many socks are there in total.

Informal proof. $2 \times (8 + 5 + 3) = 32$.

Proof. Let S be the set of socks in the drawer, then $S = \bigcup_{p \in P} S_p$, where P is the set of pairs of socks, and S_p is the set of two socks in the pair where $p \in P$. By the sum rule,

$$|S| = \sum_{p \in P} |S_p| = \sum_{p \in P} 2 = 2|P| = 32.$$

 $P = P_{\mathrm{yellow}} \cup P_{\mathrm{blue}} \cup P_{\mathrm{red}}$. By the sum rule,

$$|P| = |P_{\text{yellow}}| + |P_{\text{blue}}| + |P_{\text{red}}| = 8 + 5 + 3 = 16.$$

Note. Sum rule is the basis for case analysis arguments. It needs two requirements:

- Cover each case.
- Cover each case exactly once.

Example. Counting subset of a general set.

Notation. If X is a set, and $k \in \mathbb{N} \cup \{0\}$, then

$$\begin{pmatrix} X \\ k \end{pmatrix} = \{T: \ T \subseteq X, \ |T| = k\}.$$

We define the binomial coefficient as

$$\binom{|X|}{k} = \left| \binom{X}{k} \right|.$$

i.e. Given $n \ge k \ge 0$, $\binom{n}{k}$ is the number of k-element subsets of a set of size n.

Proposition 2.1.1 (Pascal's relation). If $n \ge k \ge 1$, then

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

Proof. Let X be an n-element set (e.g. $X = [n] = \{1, 2, ..., n\}$), and let $S = {n \choose k} = \{T \subseteq X : |T| = k\}$. Then, by definition, ${n \choose k} = |S|$. For each k-element subset, we can ask: "Do you contain n?" Let

$$S_0 = \{T : T \subseteq X, n \notin T, |T| = k\},\$$

and

$$S_1 = \{T : T \subseteq X, n \in T, |T| = k\}.$$

Then, $S = S_0 \cup S_1$. By the sum rule, $|S| = |S_0| + |S_1|$. Observe that

$$S_0 = \{T \subseteq [n], n \notin T, |T| = k\}$$

= $\{T \subseteq [n-1], |T| = k\},$

so by definition,

$$|S_0| = \binom{|[n-1]|}{k} = \binom{n-1}{k}.$$

$$S_1 = \{ T \subseteq [n], n \in T, |T| = k \}.$$

Let

$$S_1' = \{T' \subseteq [n-1], |T'| = k-1\},\$$

then we know a bijection from S_1 to S'_1 :

$$T \in S_1 \longleftrightarrow T \setminus \{n\} \in S'_1.$$

Theorem 2.1.2 (bijection rule). Given two sets S and S', if there is a bijection $f: S \to S'$, then |S| = |S'|.

By this rule, we know

$$|S_1| = |S_1'| = {\binom{|[n-1]|}{k-1}} = {\binom{n-1}{k-1}}.$$

Hence,

$$\binom{n}{k} = |S| = |S_0| + |S_1| = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

2.1.1 Pascal's Triangle

We can use Pascal's relation to compute $\binom{n}{k}$.

Note. Boundary case: $\binom{n}{0} = 1$, $\binom{n}{n} = 1$. Also, $\binom{n}{k} = 0$ for k = -1, n + 1.

2.2 Product Rule

Theorem 2.2.1. If $S = S_1 \times S_2 \times \cdots \times S_k = \{(x_1, x_2, x_k), x_i \in S_i\}$, then $|S| = \prod_{i=1}^k |S_i|$.

Proof. Induction on k:

Base case: k = 1, trivial.

Induction step: separate into cases bases on choice of $x_{k+1} \in S_{k+1}$. Let

$$S(x) = \{(x_1, \dots, x_{k+1}) \in S, x_{k+1} = x \in S_{k+1}\},\$$

then

$$S = \bigcup_{x \in S_{k+1}} S(x) \to |S| = \sum_{x \in S_{k+1}} |S(x)|.$$

But $S(x) = S_1 \times S_2 \times \cdots \times \{x\}$, which is in bijection with $S_1 \times S_2 \times \cdots \times S_k$. By induction rule,

$$|S(x)| = |S_1 \times S_2 \times \dots \times S_k| \quad \forall x$$

Hence,

$$|S| = \sum_{x \in S_{k+1}} |S(x)| = \sum_{x \in S_{k+1}} |S_1 \times S_2 \times \dots S_k|$$

= $|S_1 \times S_2 \times \dots \times S_k| \times |S_{k+1}| = |S_1| \times |S_2| \times \dots \times |S_{k+1}|.$

Example. Consider binary strings of length n.

Proof.

$$S = \{0, 1\}^n \Rightarrow |S| = |\{0, 1\}^n| = |\{0, 1\}|^n = 2^n.$$

Definition 2.2.1 (Power Set). Given a finite set X, let 2^X denote the set of all subsets of X (also denoted $\mathcal{P}(x)$), which is called the power set.

Corollary 2.2.1. $|2^X| = 2^{|X|}$.

Proof. Without lose of generality, X = [n]. We build a bijection between $2^{[n]}$ and the set of binary string of length n. Suppose for every $T \in 2^{[n]}$, we have $\chi_T = (x_1, x_2, \dots, x_n)$, where

$$x_i = \begin{cases} 1, & \text{if } i \in T; \\ 0, & \text{if } i \notin T. \end{cases}$$

Then,

$$|2^{[n]}| = |\{0,1\}^n| = 2^n.$$

2.3 Double-Counting argument

If we count a set in two different ways, the answer should be equal.

Example. Count $2^{[n]}$.

Proof.

- 1. Product rule $\rightarrow 2^n$.
- 2. Use the sum rule, split the subsets by size.

$$2^{[n]} = \binom{[n]}{0} \cup \binom{[n]}{1} \cup \ldots \cup \binom{[n]}{n}$$

Hence, we have the following proposition:

Proposition 2.3.1. For all $n \geq 0$,

$$2^n = \sum_{k=0}^n \binom{n}{k}.$$

(*

Lecture 2

5 Sep. 13:10

Appendix