RNAlib-2.6.0b

Generated by Doxygen 1.9.6

| 3.1.2.5 Pseudo-Knots                                            | 16 |
|-----------------------------------------------------------------|----|
| 3.2 Distance Measures                                           | 16 |
| 3.2.1 Functions for Tree Edit Distances                         | 17 |
| 3.2.2 Functions for String Alignment                            | 18 |
| 3.2.3 Functions for Comparison of Base Pair Probabilities       | 18 |
| 3.3 Free Energy of Secondary Structures                         | 18 |
| 3.3.1 Secondary Structure Loop Decomposition                    | 19 |
| 3.3.1.1 Free Energy Evaluation API                              | 20 |
| 3.3.2 Free Energy Parameters                                    | 20 |
| 3.3.2.1 Free Energy Parameters Modification API                 | 20 |
| 3.3.3 Fine-tuning of the Energy Evaluation Model                | 20 |
| 3.4 Secondary Structure Folding Grammar                         | 20 |
| 3.4.1 Secondary Structure Folding Recurrences                   | 21 |
| 3.4.2 Additional Structural Domains                             | 21 |
| 3.4.2.1 Structured Domains                                      | 22 |
| 3.4.2.2 Unstructured Domains                                    | 22 |
| 3.4.2.3 Domain Extension API                                    | 23 |
| 3.4.3 Constraints on the Folding Grammar                        | 23 |
| 3.4.3.1 Hard Constraints API                                    | 23 |
| 3.4.3.2 Soft Constraints API                                    | 24 |
| 3.5 RNA Secondary Structure Landscapes                          | 24 |
| 3.5.1 The Neighborhood of a Secondary Structure                 | 24 |
| 3.5.2 The Secondary Structure Landscape API                     | 24 |
| 3.6 Minimum Free Energy Algorithm(s)                            | 24 |
| 3.6.1 Zuker's Algorithm                                         | 24 |
| 3.6.2 MFE for circular RNAs                                     | 24 |
| 3.6.3 MFE Algorithm API                                         | 24 |
| 3.7 Partition Function and Equilibrium Probability Algorithm(s) | 25 |
| 3.7.1 Equilibrium Ensemble Statistics                           | 25 |
| 3.7.2 Partition Function and Equilibrium Probability API        | 25 |
| 3.8 Suboptimals and (other) Representative Structures           | 26 |
| 3.8.1 Suboptimal Secondary Structures                           | 26 |
| 3.8.2 Sampling Secondary Structures from the Ensemble           | 26 |
| 3.8.3 Structure Enumeration and Sampling API                    | 26 |
| 3.9 RNA-RNA Interaction                                         | 26 |
| 3.9.1<br>br>                                                    | 26 |
| 3.9.2 Concatenating RNA sequences                               | 26 |
| 3.9.3 RNA-RNA interaction as a Stepwise Process                 | 26 |
| 3.9.4 RNA-RNA Interaction API                                   | 27 |
| 3.10 Locally Stable Secondary Structures                        | 27 |
| 3.10.1 local_intro                                              | 27 |
| 3.10.2 local_mfe                                                | 27 |

| 3.10.3 local_pf                                                          | 27 |
|--------------------------------------------------------------------------|----|
| 3.10.4 Locally Stable Secondary Structure API                            | 27 |
| 3.11 Comparative Structure Prediction                                    | 27 |
| 3.11.1 Incorporate Evolutionary Information                              | 27 |
| 3.11.2 Comparative Structure Prediction API                              | 27 |
| 3.12 Classified DP variations                                            | 27 |
| 3.12.1 The Idea of Classified Dynamic Programming                        | 27 |
| 3.12.2 Distance Class Partitioning                                       | 27 |
| 3.12.3 Density of States (DOS)                                           | 28 |
| 3.12.4 Classified DP API                                                 | 28 |
| 3.13 RNA Sequence Design                                                 | 28 |
| 3.13.1 Generate Sequences that fold into particular Secondary Structures | 28 |
| 3.13.2 RNA Sequence Design API                                           | 28 |
| 3.14 Experimental Structure Probing Data                                 | 28 |
| 3.14.1 Guide the Structure Prediction using Experimental Data            | 28 |
| 3.14.1.1 SHAPE reactivities                                              | 28 |
| 3.14.2 Structure Probing Data API                                        | 28 |
| 3.15 Ligand Binding                                                      | 28 |
| 3.15.1 Small Molecules and Proteins that bind to specific RNA Structures | 28 |
| 3.15.2 ligand_binding_api                                                | 28 |
| 3.16 (Tertiary) Structure Motifs                                         | 29 |
| 3.16.1 Incorporating Higher-Order (Tertiary) Structure Motifs            | 29 |
| 3.16.2 RNA G-Quadruplexes                                                | 29 |
| 3.16.3 (Tertiary) Structure Motif API                                    | 29 |
| 4 I/O Formats                                                            | 31 |
| 4.1 RNA Structure Notations                                              | 31 |
| 4.1.1 Representations of Secondary Structures                            | 31 |
| 4.1.1.1 Dot-Bracket Notation (a.k.a. Dot-Parenthesis Notation)           | 31 |
| 4.1.1.2 Washington University Secondary Structure (WUSS) notation        | 32 |
| 4.1.1.3 Abstract Shapes                                                  | 33 |
| 4.1.1.4 Tree Representations of Secondary Structures                     | 33 |
| 4.1.2 Examples for Structure Parsing and Conversion                      | 34 |
| 4.1.3 Structure Parsing and Conversion API                               | 34 |
| 4.2 File Formats                                                         | 35 |
| 4.2.1 File formats for Multiple Sequence Alignments (MSA)                | 35 |
| 4.2.1.1 ClustalW format                                                  | 35 |
| 4.2.1.2 Stockholm 1.0 format                                             | 36 |
| 4.2.1.3 FASTA (Pearson) format                                           | 36 |
| 4.2.1.4 MAF format                                                       | 37 |
| 4.2.2 File formats to manipulate the RNA folding grammar                 | 38 |
| 4.2.2.1 Command Files                                                    | 38 |

| 4.2.3 File Formats for Energy Parameters                        | 40 |
|-----------------------------------------------------------------|----|
| 4.2.3.1 JSON Parameter Files for Modified Bases                 | 40 |
| 4.3 Plotting                                                    | 43 |
| 4.3.1 Producing secondary structure graphs                      | 43 |
| 4.3.2 Producing (colored) dot plots for base pair probabilities | 44 |
| 4.3.3 Producing (colored) alignments                            | 44 |
| 5 Basic Data Structures                                         | 45 |
| 5.1 Sequence and Structure Data                                 | 45 |
| 5.2 The 'Fold Compound'                                         | 45 |
| 5.3 Model Details                                               | 45 |
| 6 API Features                                                  | 47 |
| 6.1 RNAlib API v3.0                                             | 47 |
| 6.1.1 Introduction                                              | 47 |
| 6.1.2 What are the major changes?                               | 47 |
| 6.1.3 How to port your program to the new API                   | 47 |
| 6.1.4 Some Examples using RNAlib API v3.0                       | 47 |
| 6.2 Callback Functions                                          | 48 |
| 6.2.1 The purpose of Callback mechanisms                        | 48 |
| 6.2.2 List of available Callbacks                               | 48 |
| 6.3 Scripting Language interface(s)                             | 49 |
| 6.3.1 Introduction                                              | 49 |
| 6.3.2 Function Renaming                                         | 49 |
| 6.3.2.1 Global Variables                                        | 49 |
| 6.3.3 Object oriented Interface for Data Structures             | 50 |
| 6.3.4 Examples                                                  | 50 |
| 6.3.5 SWIG generated Wrapper notes                              | 50 |
| 7 Additional Utilities                                          | 63 |
| 8 Examples                                                      | 65 |
| 8.1 C Examples                                                  | 65 |
| 8.1.1 Hello World Examples                                      | 65 |
| 8.1.2 First Steps with the Fold Compound                        | 67 |
| 8.1.3 Writing Callback Functions                                | 68 |
| 8.1.4 Application of Soft Constraints                           | 69 |
| 8.1.5 Other Examples                                            | 69 |
| 8.1.6 Deprecated Examples                                       | 70 |
| 8.2 Perl5 Examples                                              | 71 |
| 8.3 Python Examples                                             | 72 |
| 9 Contributing to the ViennaRNA Package                         | 77 |

| 10 Changelog                                             | 79    |
|----------------------------------------------------------|-------|
| 11 Deprecated List                                       | 113   |
| 12 Bug List                                              | 125   |
| 13 Module Index                                          | 127   |
| 13.1 The RNAlib API                                      | . 127 |
| 14 Data Structure Index                                  | 131   |
| 14.1 Data Structures                                     | . 131 |
| 15 File Index                                            | 133   |
| 15.1 File List                                           | . 133 |
| 16 Module Documentation                                  | 139   |
| 16.1 Free Energy Evaluation                              | . 139 |
| 16.1.1 Detailed Description                              | . 139 |
| 16.1.2 Function Documentation                            | . 142 |
| 16.1.2.1 vrna_eval_structure()                           | . 142 |
| 16.1.2.2 vrna_eval_covar_structure()                     | . 142 |
| 16.1.2.3 vrna_eval_structure_verbose()                   | . 143 |
| 16.1.2.4 vrna_eval_structure_v()                         | . 143 |
| 16.1.2.5 vrna_eval_structure_pt()                        | . 144 |
| 16.1.2.6 vrna_eval_structure_pt_verbose()                | . 144 |
| 16.1.2.7 vrna_eval_structure_pt_v()                      | . 145 |
| 16.1.2.8 vrna_eval_structure_simple()                    | . 146 |
| 16.1.2.9 vrna_eval_circ_structure()                      | . 146 |
| 16.1.2.10 vrna_eval_gquad_structure()                    | . 147 |
| 16.1.2.11 vrna_eval_circ_gquad_structure()               | . 147 |
| 16.1.2.12 vrna_eval_structure_simple_verbose()           | . 148 |
| 16.1.2.13 vrna_eval_structure_simple_v()                 | . 148 |
| 16.1.2.14 vrna_eval_circ_structure_v()                   | . 149 |
| 16.1.2.15 vrna_eval_gquad_structure_v()                  | . 149 |
| 16.1.2.16 vrna_eval_circ_gquad_structure_v()             | . 150 |
| 16.1.2.17 vrna_eval_consensus_structure_simple()         | . 151 |
| 16.1.2.18 vrna_eval_circ_consensus_structure()           | . 151 |
| 16.1.2.19 vrna_eval_gquad_consensus_structure()          | . 152 |
| 16.1.2.20 vrna_eval_circ_gquad_consensus_structure()     | . 152 |
| 16.1.2.21 vrna_eval_consensus_structure_simple_verbose() | . 153 |
| 16.1.2.22 vrna_eval_consensus_structure_simple_v()       | . 154 |
| 16.1.2.23 vrna_eval_circ_consensus_structure_v()         | . 154 |
| 16.1.2.24 vrna_eval_gquad_consensus_structure_v()        | . 155 |
| 16.1.2.25 vrna_eval_circ_gquad_consensus_structure_v()   | . 156 |

| 16.1.2.26 vrna_eval_structure_pt_simple()                   |
|-------------------------------------------------------------|
| 16.1.2.27 vrna_eval_structure_pt_simple_verbose()           |
| 16.1.2.28 vrna_eval_structure_pt_simple_v()                 |
| 16.1.2.29 vrna_eval_consensus_structure_pt_simple()         |
| 16.1.2.30 vrna_eval_consensus_structure_pt_simple_verbose() |
| 16.1.2.31 vrna_eval_consensus_structure_pt_simple_v()       |
| 16.2 Energy Evaluation for Individual Loops                 |
| 16.2.1 Detailed Description                                 |
| 16.2.2 Function Documentation                               |
| 16.2.2.1 vrna_eval_loop_pt()                                |
| 16.2.2.2 vrna_eval_loop_pt_v()                              |
| 16.3 Energy Evaluation for Atomic Moves                     |
| 16.3.1 Detailed Description                                 |
| 16.3.2 Function Documentation                               |
| 16.3.2.1 vrna_eval_move()                                   |
| 16.3.2.2 vrna_eval_move_pt()                                |
| 16.4 Deprecated Interface for Free Energy Evaluation        |
| 16.4.1 Detailed Description                                 |
| 16.4.2 Function Documentation                               |
| 16.4.2.1 energy_of_structure()                              |
| 16.4.2.2 energy_of_struct_par()                             |
| 16.4.2.3 energy_of_circ_structure()                         |
| 16.4.2.4 energy_of_circ_struct_par()                        |
| 16.4.2.5 energy_of_structure_pt()                           |
| 16.4.2.6 energy_of_struct_pt_par()                          |
| 16.4.2.7 energy_of_move()                                   |
| 16.4.2.8 energy_of_move_pt()                                |
| 16.4.2.9 loop_energy()                                      |
| 16.4.2.10 energy_of_struct()                                |
| 16.4.2.11 energy_of_struct_pt()                             |
| 16.4.2.12 energy_of_circ_struct()                           |
| 16.4.2.13 E_Stem()                                          |
| 16.4.2.14 exp_E_ExtLoop()                                   |
| 16.4.2.15 exp_E_Stem()                                      |
| 16.4.2.16 E_IntLoop()                                       |
| 16.4.2.17 exp_E_IntLoop()                                   |
| 16.5 The RNA Folding Grammar                                |
| 16.5.1 Detailed Description                                 |
| 16.5.2 Data Structure Documentation                         |
| 16.5.2.1 struct vrna_gr_aux_s                               |
| 16.5.3 Typedef Documentation                                |
| 16.5.3.1 yrna grammar data free f                           |

| 16.6 Fine-tuning of the Implemented Models  | 175 |
|---------------------------------------------|-----|
| 16.6.1 Detailed Description                 | 175 |
| 16.6.2 Data Structure Documentation         | 180 |
| 16.6.2.1 struct vrna_md_s                   | 180 |
| 16.6.3 Macro Definition Documentation       | 183 |
| 16.6.3.1 VRNA_MODEL_DEFAULT_TEMPERATURE     | 183 |
| 16.6.3.2 VRNA_MODEL_DEFAULT_PF_SCALE        | 183 |
| 16.6.3.3 VRNA_MODEL_DEFAULT_BETA_SCALE      | 183 |
| 16.6.3.4 VRNA_MODEL_DEFAULT_DANGLES         | 184 |
| 16.6.3.5 VRNA_MODEL_DEFAULT_SPECIAL_HP      | 184 |
| 16.6.3.6 VRNA_MODEL_DEFAULT_NO_LP           | 184 |
| 16.6.3.7 VRNA_MODEL_DEFAULT_NO_GU           | 184 |
| 16.6.3.8 VRNA_MODEL_DEFAULT_NO_GU_CLOSURE   | 184 |
| 16.6.3.9 VRNA_MODEL_DEFAULT_CIRC            | 184 |
| 16.6.3.10 VRNA_MODEL_DEFAULT_GQUAD          | 185 |
| 16.6.3.11 VRNA_MODEL_DEFAULT_UNIQ_ML        | 185 |
| 16.6.3.12 VRNA_MODEL_DEFAULT_ENERGY_SET     | 185 |
| 16.6.3.13 VRNA_MODEL_DEFAULT_BACKTRACK      | 185 |
| 16.6.3.14 VRNA_MODEL_DEFAULT_BACKTRACK_TYPE | 185 |
| 16.6.3.15 VRNA_MODEL_DEFAULT_COMPUTE_BPP    | 185 |
| 16.6.3.16 VRNA_MODEL_DEFAULT_MAX_BP_SPAN    | 186 |
| 16.6.3.17 VRNA_MODEL_DEFAULT_WINDOW_SIZE    | 186 |
| 16.6.3.18 VRNA_MODEL_DEFAULT_LOG_ML         | 186 |
| 16.6.3.19 VRNA_MODEL_DEFAULT_ALI_OLD_EN     | 186 |
| 16.6.3.20 VRNA_MODEL_DEFAULT_ALI_RIBO       | 186 |
| 16.6.3.21 VRNA_MODEL_DEFAULT_ALI_CV_FACT    | 186 |
| 16.6.3.22 VRNA_MODEL_DEFAULT_ALI_NC_FACT    | 187 |
| 16.6.4 Function Documentation               | 187 |
| 16.6.4.1 vrna_md_set_default()              | 187 |
| 16.6.4.2 vrna_md_update()                   | 187 |
| 16.6.4.3 vrna_md_copy()                     | 187 |
| 16.6.4.4 vrna_md_option_string()            | 188 |
| 16.6.4.5 vrna_md_defaults_reset()           | 188 |
| 16.6.4.6 vrna_md_defaults_temperature()     | 188 |
| 16.6.4.7 vrna_md_defaults_temperature_get() | 189 |
| 16.6.4.8 vrna_md_defaults_betaScale()       | 189 |
| 16.6.4.9 vrna_md_defaults_betaScale_get()   | 189 |
| 16.6.4.10 vrna_md_defaults_dangles()        | 190 |
| 16.6.4.11 vrna_md_defaults_dangles_get()    | 190 |
| 16.6.4.12 vrna_md_defaults_special_hp()     | 190 |
| 16.6.4.13 vrna_md_defaults_special_hp_get() | 190 |
| 16.6.4.14 vrna_md_defaults_noLP()           | 191 |

| 16.6.4.15 vrna_md_defaults_noLP_get()           |
|-------------------------------------------------|
| 16.6.4.16 vrna_md_defaults_noGU()               |
| 16.6.4.17 vrna_md_defaults_noGU_get()           |
| 16.6.4.18 vrna_md_defaults_noGUclosure()        |
| 16.6.4.19 vrna_md_defaults_noGUclosure_get()    |
| 16.6.4.20 vrna_md_defaults_logML()              |
| 16.6.4.21 vrna_md_defaults_logML_get()          |
| 16.6.4.22 vrna_md_defaults_circ()               |
| 16.6.4.23 vrna_md_defaults_circ_get()           |
| 16.6.4.24 vrna_md_defaults_gquad()              |
| 16.6.4.25 vrna_md_defaults_gquad_get()          |
| 16.6.4.26 vrna_md_defaults_uniq_ML()            |
| 16.6.4.27 vrna_md_defaults_uniq_ML_get()        |
| 16.6.4.28 vrna_md_defaults_energy_set()         |
| 16.6.4.29 vrna_md_defaults_energy_set_get()     |
| 16.6.4.30 vrna_md_defaults_backtrack()          |
| 16.6.4.31 vrna_md_defaults_backtrack_get()      |
| 16.6.4.32 vrna_md_defaults_backtrack_type()     |
| 16.6.4.33 vrna_md_defaults_backtrack_type_get() |
| 16.6.4.34 vrna_md_defaults_compute_bpp()        |
| 16.6.4.35 vrna_md_defaults_compute_bpp_get()    |
| 16.6.4.36 vrna_md_defaults_max_bp_span()        |
| 16.6.4.37 vrna_md_defaults_max_bp_span_get()    |
| 16.6.4.38 vrna_md_defaults_min_loop_size()      |
| 16.6.4.39 vrna_md_defaults_min_loop_size_get()  |
| 16.6.4.40 vrna_md_defaults_window_size()        |
| 16.6.4.41 vrna_md_defaults_window_size_get()    |
| 16.6.4.42 vrna_md_defaults_oldAliEn()           |
| 16.6.4.43 vrna_md_defaults_oldAliEn_get()       |
| 16.6.4.44 vrna_md_defaults_ribo()               |
| 16.6.4.45 vrna_md_defaults_ribo_get()           |
| 16.6.4.46 vrna_md_defaults_cv_fact()            |
| 16.6.4.47 vrna_md_defaults_cv_fact_get()        |
| 16.6.4.48 vrna_md_defaults_nc_fact()            |
| 16.6.4.49 vrna_md_defaults_nc_fact_get()        |
| 16.6.4.50 vrna_md_defaults_sfact()              |
| 16.6.4.51 vrna_md_defaults_sfact_get()          |
| 16.6.4.52 vrna_md_defaults_salt()               |
| 16.6.4.53 vrna_md_defaults_salt_get()           |
| 16.6.4.54 vrna_md_defaults_saltMLLower()        |
| 16.6.4.55 vrna_md_defaults_saltMLLower_get()    |
| 16.6.4.56 vrna_md_defaults_saltMLUpper()        |

| 16.6.4.57 vrna_md_defaults_saltMLUpper_get() | 203 |
|----------------------------------------------|-----|
| 16.6.4.58 vrna_md_defaults_saltDPXInit()     | 203 |
| 16.6.4.59 vrna_md_defaults_saltDPXInit_get() | 203 |
| 16.6.4.60 set_model_details()                | 203 |
| 16.6.5 Variable Documentation                | 203 |
| 16.6.5.1 temperature                         | 204 |
| 16.6.5.2 pf_scale                            | 204 |
| 16.6.5.3 dangles                             | 204 |
| 16.6.5.4 tetra_loop                          | 204 |
| 16.6.5.5 noLonelyPairs                       | 204 |
| 16.6.5.6 energy_set                          | 204 |
| 16.6.5.7 do_backtrack                        | 205 |
| 16.6.5.8 backtrack_type                      | 205 |
| 16.6.5.9 nonstandards                        | 205 |
| 16.6.5.10 max_bp_span                        | 205 |
| 16.7 Energy Parameters                       | 205 |
| 16.7.1 Detailed Description                  | 205 |
| 16.7.2 Data Structure Documentation          | 207 |
| 16.7.2.1 struct vrna_param_s                 | 207 |
| 16.7.2.2 struct vrna_exp_param_s             | 207 |
| 16.7.3 Typedef Documentation                 | 208 |
| 16.7.3.1 paramT                              | 208 |
| 16.7.3.2 pf_paramT                           | 208 |
| 16.7.4 Function Documentation                | 208 |
| 16.7.4.1 vrna_params()                       | 208 |
| 16.7.4.2 vrna_params_copy()                  | 209 |
| 16.7.4.3 vrna_exp_params()                   | 209 |
| 16.7.4.4 vrna_exp_params_comparative()       | 210 |
| 16.7.4.5 vrna_exp_params_copy()              | 210 |
| 16.7.4.6 vrna_params_subst()                 | 210 |
| 16.7.4.7 vrna_exp_params_subst()             | 211 |
| 16.7.4.8 vrna_exp_params_rescale()           | 211 |
| 16.7.4.9 vrna_params_reset()                 | 212 |
| 16.7.4.10 vrna_exp_params_reset()            | 213 |
| 16.7.4.11 get_scaled_pf_parameters()         | 213 |
| 16.7.4.12 get_boltzmann_factors()            | 213 |
| 16.7.4.13 get_boltzmann_factor_copy()        | 214 |
| 16.7.4.14 get_scaled_alipf_parameters()      | 214 |
| 16.7.4.15 get_boltzmann_factors_ali()        | 215 |
| 16.7.4.16 scale_parameters()                 | 215 |
| 16.7.4.17 get_scaled_parameters()            | 215 |
| 16.7.4.18 vrna_salt_loop()                   | 216 |

| 16 |
|----|
| 17 |
| 17 |
| 17 |
| 17 |
| 17 |
| 19 |
| 19 |
| 20 |
| 20 |
| 20 |
| 21 |
| 21 |
| 21 |
| 21 |
| 21 |
| 22 |
| 22 |
| 23 |
| 23 |
| 24 |
| 24 |
| 24 |
| 25 |
| 26 |
| 26 |
| 26 |
| 26 |
| 29 |
| 30 |
| 30 |
| 30 |
| 30 |
| 31 |
| 31 |
| 32 |
| 32 |
| 33 |
| 33 |
| 34 |
| 34 |
| 34 |
|    |

| 16.11.2.14 VRNA_DECOMP_EXT_EXT                  | 235 |
|-------------------------------------------------|-----|
| 16.11.2.15 VRNA_DECOMP_EXT_UP                   | 235 |
| 16.11.2.16 VRNA_DECOMP_EXT_STEM                 | 235 |
| 16.11.2.17 VRNA_DECOMP_EXT_EXT_EXT              | 236 |
| 16.11.2.18 VRNA_DECOMP_EXT_STEM_EXT             | 236 |
| 16.11.2.19 VRNA_DECOMP_EXT_STEM_OUTSIDE         | 236 |
| 16.11.2.20 VRNA_DECOMP_EXT_EXT_STEM             | 237 |
| 16.11.2.21 VRNA_DECOMP_EXT_EXT_STEM1            | 237 |
| 16.11.3 Function Documentation                  | 237 |
| 16.11.3.1 vrna_constraints_add()                | 237 |
| 16.11.3.2 vrna_message_constraint_options()     | 238 |
| 16.11.3.3 vrna_message_constraint_options_all() | 239 |
| 16.12 Hard Constraints                          | 239 |
| 16.12.1 Detailed Description                    | 239 |
| 16.12.2 Data Structure Documentation            | 241 |
| 16.12.2.1 struct vrna_hc_s                      | 241 |
| 16.12.2.2 struct vrna_hc_up_s                   | 241 |
| 16.12.3 Macro Definition Documentation          | 242 |
| 16.12.3.1 VRNA_CONSTRAINT_DB                    | 242 |
| 16.12.3.2 VRNA_CONSTRAINT_DB_ENFORCE_BP         | 242 |
| 16.12.3.3 VRNA_CONSTRAINT_DB_PIPE               | 242 |
| 16.12.3.4 VRNA_CONSTRAINT_DB_DOT                | 242 |
| 16.12.3.5 VRNA_CONSTRAINT_DB_X                  | 243 |
| 16.12.3.6 VRNA_CONSTRAINT_DB_RND_BRACK          | 243 |
| 16.12.3.7 VRNA_CONSTRAINT_DB_INTRAMOL           | 243 |
| 16.12.3.8 VRNA_CONSTRAINT_DB_INTERMOL           | 243 |
| 16.12.3.9 VRNA_CONSTRAINT_DB_GQUAD              | 243 |
| 16.12.3.10 VRNA_CONSTRAINT_DB_WUSS              | 244 |
| 16.12.3.11 VRNA_CONSTRAINT_DB_DEFAULT           | 244 |
| 16.12.3.12 VRNA_CONSTRAINT_CONTEXT_EXT_LOOP     | 244 |
| 16.12.3.13 VRNA_CONSTRAINT_CONTEXT_HP_LOOP      | 244 |
| 16.12.3.14 VRNA_CONSTRAINT_CONTEXT_INT_LOOP     | 244 |
| 16.12.3.15 VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC | 244 |
| 16.12.3.16 VRNA_CONSTRAINT_CONTEXT_MB_LOOP      | 244 |
| 16.12.3.17 VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC  | 245 |
| 16.12.3.18 VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS    | 245 |
| 16.12.4 Typedef Documentation                   | 245 |
| 16.12.4.1 vrna_hc_eval_f                        | 245 |
| 16.12.5 Function Documentation                  | 246 |
| 16.12.5.1 vrna_hc_init()                        | 246 |
| 16.12.5.2 vrna_hc_add_up()                      | 246 |
| 16.12.5.3 yrna hc add up batch()                | 246 |

| 16.12.5.4 vrna_hc_add_bp()                          | 247 |
|-----------------------------------------------------|-----|
| 16.12.5.5 vrna_hc_add_bp_nonspecific()              | 247 |
| 16.12.5.6 vrna_hc_free()                            | 248 |
| 16.12.5.7 vrna_hc_add_from_db()                     | 248 |
| 16.13 Soft Constraints                              | 248 |
| 16.13.1 Detailed Description                        | 248 |
| 16.13.2 Data Structure Documentation                | 249 |
| 16.13.2.1 struct vrna_sc_s                          | 249 |
| 16.13.3 Typedef Documentation                       | 251 |
| 16.13.3.1 vrna_sc_f                                 | 251 |
| 16.13.3.2 vrna_sc_exp_f                             | 251 |
| 16.13.3.3 vrna_sc_bt_f                              | 252 |
| 16.13.4 Function Documentation                      | 253 |
| 16.13.4.1 vrna_sc_init()                            | 253 |
| 16.13.4.2 vrna_sc_set_bp()                          | 253 |
| 16.13.4.3 vrna_sc_add_bp()                          | 254 |
| 16.13.4.4 vrna_sc_set_up()                          | 254 |
| 16.13.4.5 vrna_sc_add_up()                          | 255 |
| 16.13.4.6 vrna_sc_remove()                          | 255 |
| 16.13.4.7 vrna_sc_free()                            | 256 |
| 16.13.4.8 vrna_sc_add_data()                        | 256 |
| 16.13.4.9 vrna_sc_add_f()                           | 256 |
| 16.13.4.10 vrna_sc_add_bt()                         | 257 |
| 16.13.4.11 vrna_sc_add_exp_f()                      | 257 |
| 16.14 The RNA Secondary Structure Landscape         | 258 |
| 16.14.1 Detailed Description                        | 258 |
| 16.15 Minimum Free Energy (MFE) Algorithms          | 258 |
| 16.15.1 Detailed Description                        | 258 |
| 16.16 Partition Function and Equilibrium Properties | 259 |
| 16.16.1 Detailed Description                        | 259 |
| 16.16.2 Function Documentation                      | 259 |
| 16.16.2.1 vrna_pf_float_precision()                 | 260 |
| 16.17 Global MFE Prediction                         | 260 |
| 16.17.1 Detailed Description                        | 260 |
| 16.17.2 Function Documentation                      | 261 |
| 16.17.2.1 vrna_mfe()                                | 261 |
| 16.17.2.2 vrna_mfe_dimer()                          | 261 |
| 16.17.2.3 vrna_fold()                               | 262 |
| 16.17.2.4 vrna_circfold()                           | 263 |
| 16.17.2.5 vrna_alifold()                            | 263 |
| 16.17.2.6 vrna_circalifold()                        | 264 |
| 16.17.2.7 vrna_cofold()                             | 264 |

| 16.18 Local (sliding window) MFE Prediction                                   |
|-------------------------------------------------------------------------------|
| 16.18.1 Detailed Description                                                  |
| 16.18.2 Typedef Documentation                                                 |
| 16.18.2.1 vrna_mfe_window_f                                                   |
| 16.18.3 Function Documentation                                                |
| 16.18.3.1 vrna_mfe_window()                                                   |
| 16.18.3.2 vrna_mfe_window_zscore()                                            |
| 16.18.3.3 vrna_Lfold()                                                        |
| 16.18.3.4 vrna_Lfoldz()                                                       |
| 16.19 Backtracking MFE structures                                             |
| 16.19.1 Detailed Description                                                  |
| 16.19.2 Function Documentation                                                |
| 16.19.2.1 vrna_backtrack5()                                                   |
| 16.19.2.2 vrna_BT_hp_loop()                                                   |
| 16.19.2.3 vrna_BT_stack()                                                     |
| 16.19.2.4 vrna_BT_int_loop()                                                  |
| 16.19.2.5 vrna_BT_mb_loop()                                                   |
| 16.20 Global Partition Function and Equilibrium Probabilities                 |
| 16.20.1 Detailed Description                                                  |
| 16.20.2 Data Structure Documentation                                          |
| 16.20.2.1 struct vrna_dimer_pf_s                                              |
| 16.20.2.2 struct vrna_multimer_pf_s                                           |
| 16.20.3 Function Documentation                                                |
| 16.20.3.1 vrna_pf()                                                           |
| 16.20.3.2 vrna_pf_dimer()                                                     |
| 16.20.3.3 vrna_pf_fold()                                                      |
| 16.20.3.4 vrna_pf_circfold()                                                  |
| 16.20.3.5 vrna_pf_alifold()                                                   |
| 16.20.3.6 vrna_pf_circalifold()                                               |
| 16.20.3.7 vrna_plist_from_probs()                                             |
| 16.20.3.8 vrna_pf_co_fold()                                                   |
| 16.21 Local (sliding window) Partition Function and Equilibrium Probabilities |
| 16.21.1 Detailed Description                                                  |
| 16.21.2 Macro Definition Documentation                                        |
| 16.21.2.1 VRNA_PROBS_WINDOW_BPP                                               |
| 16.21.2.2 VRNA_PROBS_WINDOW_UP                                                |
| 16.21.2.3 VRNA_PROBS_WINDOW_STACKP                                            |
| 16.21.2.4 VRNA_PROBS_WINDOW_UP_SPLIT                                          |
| 16.21.2.5 VRNA_PROBS_WINDOW_PF                                                |
| 16.21.3 Typedef Documentation                                                 |
| 16.21.3.1 vrna_probs_window_f                                                 |
| 16.21.4 Function Documentation 282                                            |

| 16.21.4.1 vrna_probs_window()                                              | 282 |
|----------------------------------------------------------------------------|-----|
| 16.21.4.2 vrna_pfl_fold()                                                  | 283 |
| 16.21.4.3 vrna_pfl_fold_cb()                                               | 283 |
| 16.21.4.4 vrna_pfl_fold_up()                                               | 284 |
| 16.21.4.5 vrna_pfl_fold_up_cb()                                            | 285 |
| 16.22 Suboptimals and Representative Structures                            | 285 |
| 16.22.1 Detailed Description                                               | 285 |
| 16.23 Suboptimal Structures sensu Stiegler et al. 1984 / Zuker et al. 1989 | 286 |
| 16.23.1 Detailed Description                                               | 286 |
| 16.23.2 Function Documentation                                             | 286 |
| 16.23.2.1 zukersubopt()                                                    | 286 |
| 16.23.2.2 zukersubopt_par()                                                | 286 |
| 16.23.2.3 vrna_subopt_zuker()                                              | 287 |
| 16.24 Suboptimal Structures within an Energy Band around the MFE           | 287 |
| 16.24.1 Detailed Description                                               | 287 |
| 16.24.2 Typedef Documentation                                              | 288 |
| 16.24.2.1 vrna_subopt_result_f                                             | 288 |
| 16.24.3 Function Documentation                                             | 288 |
| 16.24.3.1 vrna_subopt()                                                    | 288 |
| 16.24.3.2 vrna_subopt_cb()                                                 | 289 |
| 16.24.3.3 subopt()                                                         | 290 |
| 16.24.3.4 subopt_par()                                                     | 290 |
| 16.24.3.5 subopt_circ()                                                    | 290 |
| 16.24.4 Variable Documentation                                             | 291 |
| 16.24.4.1 print_energy                                                     | 291 |
| 16.24.4.2 subopt_sorted                                                    | 291 |
| 16.25 Random Structure Samples from the Ensemble                           | 291 |
| 16.25.1 Detailed Description                                               | 291 |
| 16.25.2 Macro Definition Documentation                                     | 293 |
| 16.25.2.1 VRNA_PBACKTRACK_DEFAULT                                          | 293 |
| 16.25.2.2 VRNA_PBACKTRACK_NON_REDUNDANT                                    | 293 |
| 16.25.3 Typedef Documentation                                              | 293 |
| 16.25.3.1 vrna_bs_result_f                                                 | 293 |
| 16.25.3.2 vrna_pbacktrack_mem_t                                            | 294 |
| 16.25.4 Function Documentation                                             | 294 |
| 16.25.4.1 vrna_pbacktrack5()                                               | 294 |
| 16.25.4.2 vrna_pbacktrack5_num()                                           | 295 |
| 16.25.4.3 vrna_pbacktrack5_cb()                                            | 296 |
| 16.25.4.4 vrna_pbacktrack5_resume()                                        | 297 |
| 16.25.4.5 vrna_pbacktrack5_resume_cb()                                     | 298 |
| 16.25.4.6 vrna_pbacktrack()                                                | 300 |
| 16.25.4.7 vrna_pbacktrack_num()                                            | 300 |

| 16.25.4.8 vrna_pbacktrack_cb()                                       |
|----------------------------------------------------------------------|
| 16.25.4.9 vrna_pbacktrack_resume()                                   |
| 16.25.4.10 vrna_pbacktrack_resume_cb()                               |
| 16.25.4.11 vrna_pbacktrack_sub()                                     |
| 16.25.4.12 vrna_pbacktrack_sub_num()                                 |
| 16.25.4.13 vrna_pbacktrack_sub_cb()                                  |
| 16.25.4.14 vrna_pbacktrack_sub_resume()                              |
| 16.25.4.15 vrna_pbacktrack_sub_resume_cb()                           |
| 16.25.4.16 vrna_pbacktrack_mem_free()                                |
| 16.26 Compute the Structure with Maximum Expected Accuracy (MEA)     |
| 16.26.1 Detailed Description                                         |
| 16.26.2 Function Documentation                                       |
| 16.26.2.1 vrna_MEA()                                                 |
| 16.26.2.2 vrna_MEA_from_plist()                                      |
| 16.26.2.3 MEA()                                                      |
| 16.27 Compute the Centroid Structure                                 |
| 16.27.1 Detailed Description                                         |
| 16.27.2 Function Documentation                                       |
| 16.27.2.1 vrna_centroid()                                            |
| 16.27.2.2 vrna_centroid_from_plist()                                 |
| 16.27.2.3 vrna_centroid_from_probs()                                 |
| 16.28 RNA-RNA Interaction                                            |
| 16.28.1 Detailed Description                                         |
| 16.29 Classified Dynamic Programming Variants                        |
| 16.29.1 Detailed Description                                         |
| 16.30 Distance Based Partitioning of the Secondary Structure Space   |
| 16.30.1 Detailed Description                                         |
| 16.31 Computing MFE representatives of a Distance Based Partitioning |
| 16.31.1 Detailed Description                                         |
| 16.31.2 Data Structure Documentation                                 |
| 16.31.2.1 struct vrna_sol_TwoD_t                                     |
| 16.31.2.2 struct TwoDfold_vars                                       |
| 16.31.3 Typedef Documentation                                        |
| 16.31.3.1 vrna_sol_TwoD_t                                            |
| 16.31.3.2 TwoDfold_vars                                              |
| 16.31.4 Function Documentation                                       |
| 16.31.4.1 vrna_mfe_TwoD()                                            |
| 16.31.4.2 vrna_backtrack5_TwoD()                                     |
| 16.31.4.3 get_TwoDfold_variables()                                   |
| 16.31.4.4 destroy_TwoDfold_variables()                               |
| 16.31.4.5 TwoDfoldList()                                             |
| 16.31.4.6 TwoDfold_backtrack_f5()                                    |

| 16.32 Computing Partition Functions of a Distance Based Partitioning         | 322 |
|------------------------------------------------------------------------------|-----|
| 16.32.1 Detailed Description                                                 | 322 |
| 16.32.2 Data Structure Documentation                                         | 323 |
| 16.32.2.1 struct vrna_sol_TwoD_pf_t                                          | 323 |
| 16.32.3 Typedef Documentation                                                | 323 |
| 16.32.3.1 vrna_sol_TwoD_pf_t                                                 | 323 |
| 16.32.4 Function Documentation                                               | 323 |
| 16.32.4.1 vrna_pf_TwoD()                                                     | 323 |
| 16.33 Stochastic Backtracking of Structures from Distance Based Partitioning | 324 |
| 16.33.1 Detailed Description                                                 | 324 |
| 16.33.2 Function Documentation                                               | 324 |
| 16.33.2.1 vrna_pbacktrack_TwoD()                                             | 324 |
| 16.33.2.2 vrna_pbacktrack5_TwoD()                                            | 325 |
| 16.34 Predicting various thermodynamic properties                            | 326 |
| 16.34.1 Detailed Description                                                 | 326 |
| 16.34.2 Data Structure Documentation                                         | 327 |
| 16.34.2.1 struct vrna_heat_capacity_s                                        | 327 |
| 16.34.3 Typedef Documentation                                                | 328 |
| 16.34.3.1 vrna_heat_capacity_f                                               | 328 |
| 16.34.3.2 vrna_heat_capacity_t                                               | 328 |
| 16.34.4 Function Documentation                                               | 328 |
| 16.34.4.1 vrna_mean_bp_distance_pr()                                         | 328 |
| 16.34.4.2 vrna_mean_bp_distance()                                            | 329 |
| 16.34.4.3 vrna_ensemble_defect_pt()                                          | 329 |
| 16.34.4.4 vrna_ensemble_defect()                                             | 330 |
| 16.34.4.5 vrna_positional_entropy()                                          | 331 |
| 16.34.4.6 vrna_stack_prob()                                                  | 331 |
| 16.34.4.7 vrna_pf_dimer_probs()                                              | 331 |
| 16.34.4.8 vrna_pr_structure()                                                | 332 |
| 16.34.4.9 vrna_pr_energy()                                                   | 333 |
| 16.34.4.10 vrna_heat_capacity()                                              | 333 |
| 16.34.4.11 vrna_heat_capacity_cb()                                           | 334 |
| 16.34.4.12 vrna_heat_capacity_simple()                                       | 334 |
| 16.35 Compute the Density of States                                          | 335 |
| 16.35.1 Detailed Description                                                 | 335 |
| 16.35.2 Variable Documentation                                               | 335 |
| 16.35.2.1 density_of_states                                                  | 335 |
| 16.36 Inverse Folding (Design)                                               | 336 |
| 16.36.1 Detailed Description                                                 | 336 |
| 16.36.2 Function Documentation                                               | 336 |
| 16.36.2.1 inverse_fold()                                                     | 336 |
| 16.36.2.2 inverse_pf_fold()                                                  | 337 |

| 16.36.3 Variable Documentation                                             | 337 |
|----------------------------------------------------------------------------|-----|
| 16.36.3.1 final_cost                                                       | 337 |
| 16.36.3.2 give_up                                                          | 337 |
| 16.36.3.3 inv_verbose                                                      | 337 |
| 16.37 Neighborhood Relation and Move Sets for Secondary Structures         | 337 |
| 16.37.1 Detailed Description                                               | 337 |
| 16.37.2 Data Structure Documentation                                       | 340 |
| 16.37.2.1 struct vrna_move_s                                               | 340 |
| 16.37.3 Macro Definition Documentation                                     | 341 |
| 16.37.3.1 VRNA_MOVESET_INSERTION                                           | 341 |
| 16.37.3.2 VRNA_MOVESET_DELETION                                            | 341 |
| 16.37.3.3 VRNA_MOVESET_SHIFT                                               | 341 |
| 16.37.3.4 VRNA_MOVESET_NO_LP                                               | 341 |
| 16.37.3.5 VRNA_MOVESET_DEFAULT                                             | 342 |
| 16.37.3.6 VRNA_NEIGHBOR_CHANGE                                             | 342 |
| 16.37.3.7 VRNA_NEIGHBOR_INVALID                                            | 342 |
| 16.37.3.8 VRNA_NEIGHBOR_NEW                                                | 342 |
| 16.37.4 Typedef Documentation                                              | 342 |
| 16.37.4.1 vrna_move_update_f                                               | 342 |
| 16.37.5 Function Documentation                                             | 343 |
| 16.37.5.1 vrna_move_init()                                                 | 343 |
| 16.37.5.2 vrna_move_list_free()                                            | 343 |
| 16.37.5.3 vrna_move_apply()                                                | 343 |
| 16.37.5.4 vrna_move_is_removal()                                           | 343 |
| 16.37.5.5 vrna_move_is_insertion()                                         | 344 |
| 16.37.5.6 vrna_move_is_shift()                                             | 344 |
| 16.37.5.7 vrna_move_compare()                                              | 344 |
| 16.37.5.8 vrna_loopidx_update()                                            | 345 |
| 16.37.5.9 vrna_neighbors()                                                 | 345 |
| 16.37.5.10 vrna_neighbors_successive()                                     | 346 |
| 16.37.5.11 vrna_move_neighbor_diff_cb()                                    | 346 |
| 16.37.5.12 vrna_move_neighbor_diff()                                       | 347 |
| 16.38 (Re-)folding Paths, Saddle Points, Energy Barriers, and Local Minima | 348 |
| 16.38.1 Detailed Description                                               | 348 |
| 16.38.2 Data Structure Documentation                                       | 349 |
| 16.38.2.1 struct vrna_path_s                                               | 349 |
| 16.38.3 Macro Definition Documentation                                     | 350 |
| 16.38.3.1 VRNA_PATH_TYPE_DOT_BRACKET                                       | 350 |
| 16.38.3.2 VRNA_PATH_TYPE_MOVES                                             | 350 |
| 16.38.4 Function Documentation                                             | 350 |
| 16.38.4.1 vrna_path_free()                                                 | 350 |
| 16.38.4.2 vrna_path_options_free()                                         | 351 |

| 16.39 Direct Refolding Paths between two Secondary Structures  |
|----------------------------------------------------------------|
| 16.39.1 Detailed Description                                   |
| 16.39.2 Function Documentation                                 |
| 16.39.2.1 vrna_path_findpath_saddle()                          |
| 16.39.2.2 vrna_path_findpath_saddle_ub()                       |
| 16.39.2.3 vrna_path_findpath()                                 |
| 16.39.2.4 vrna_path_findpath_ub()                              |
| 16.39.2.5 vrna_path_options_findpath()                         |
| 16.39.2.6 vrna_path_direct()                                   |
| 16.39.2.7 vrna_path_direct_ub()                                |
| 16.40 Folding Paths that start at a single Secondary Structure |
| 16.40.1 Detailed Description                                   |
| 16.40.2 Macro Definition Documentation                         |
| 16.40.2.1 VRNA_PATH_STEEPEST_DESCENT                           |
| 16.40.2.2 VRNA_PATH_RANDOM                                     |
| 16.40.2.3 VRNA_PATH_NO_TRANSITION_OUTPUT                       |
| 16.40.2.4 VRNA_PATH_DEFAULT                                    |
| 16.40.3 Function Documentation                                 |
| 16.40.3.1 vrna_path()                                          |
| 16.40.3.2 vrna_path_gradient()                                 |
| 16.40.3.3 vrna_path_random()                                   |
| 16.41 Experimental Structure Probing Data                      |
| 16.41.1 Detailed Description                                   |
| 16.42 SHAPE Reactivity Data                                    |
| 16.42.1 Detailed Description                                   |
| 16.42.2 Function Documentation                                 |
| 16.42.2.1 vrna_sc_add_SHAPE_deigan()                           |
| 16.42.2.2 vrna_sc_add_SHAPE_deigan_ali()                       |
| 16.42.2.3 vrna_sc_add_SHAPE_zarringhalam()                     |
| 16.42.2.4 vrna_sc_SHAPE_to_pr()                                |
| 16.43 Generate Soft Constraints from Data                      |
| 16.43.1 Detailed Description                                   |
| 16.43.2 Macro Definition Documentation                         |
| 16.43.2.1 VRNA_OBJECTIVE_FUNCTION_QUADRATIC                    |
| 16.43.2.2 VRNA_OBJECTIVE_FUNCTION_ABSOLUTE                     |
| 16.43.2.3 VRNA_MINIMIZER_DEFAULT                               |
| 16.43.2.4 VRNA_MINIMIZER_CONJUGATE_FR                          |
| 16.43.2.5 VRNA_MINIMIZER_CONJUGATE_PR                          |
| 16.43.2.6 VRNA_MINIMIZER_VECTOR_BFGS                           |
| 16.43.2.7 VRNA_MINIMIZER_VECTOR_BFGS2                          |
| 16.43.2.8 VRNA_MINIMIZER_STEEPEST_DESCENT                      |
| 16.43.3 Typedef Documentation                                  |

| 16.43.3.1 progress_callback                                                                      | 365 |
|--------------------------------------------------------------------------------------------------|-----|
| 16.43.4 Function Documentation                                                                   | 365 |
| 16.43.4.1 vrna_sc_minimize_pertubation()                                                         | 366 |
| 16.44 Ligands Binding to RNA Structures                                                          | 367 |
| 16.44.1 Detailed Description                                                                     | 367 |
| 16.45 Ligands Binding to Unstructured Domains                                                    | 367 |
| 16.46 Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Constraints | 367 |
| 16.46.1 Detailed Description                                                                     | 367 |
| 16.46.2 Data Structure Documentation                                                             | 368 |
| 16.46.2.1 struct vrna_sc_motif_s                                                                 | 368 |
| 16.46.3 Function Documentation                                                                   | 368 |
| 16.46.3.1 vrna_sc_add_hi_motif()                                                                 | 368 |
| 16.47 Structure Modules and Pseudoknots                                                          | 369 |
| 16.47.1 Detailed Description                                                                     | 369 |
| 16.48 Pseudoknots                                                                                | 369 |
| 16.48.1 Detailed Description                                                                     | 369 |
| 16.48.2 Data Structure Documentation                                                             | 370 |
| 16.48.2.1 struct vrna_pk_plex_result_s                                                           | 370 |
| 16.48.3 Typedef Documentation                                                                    | 371 |
| 16.48.3.1 vrna_pk_plex_score_f                                                                   | 371 |
| 16.48.3.2 vrna_pk_plex_opt_t                                                                     | 371 |
| 16.48.3.3 vrna_pk_plex_t                                                                         | 371 |
| 16.48.4 Function Documentation                                                                   | 372 |
| 16.48.4.1 vrna_pk_plex()                                                                         | 372 |
| 16.48.4.2 vrna_pk_plex_accessibility()                                                           | 372 |
| 16.48.4.3 vrna_pk_plex_opt_defaults()                                                            | 373 |
| 16.48.4.4 vrna_pk_plex_opt()                                                                     | 373 |
| 16.48.4.5 vrna_pk_plex_opt_fun()                                                                 | 373 |
| 16.49 G-Quadruplexes                                                                             | 374 |
| 16.49.1 Detailed Description                                                                     | 374 |
| 16.49.2 Function Documentation                                                                   | 374 |
| 16.49.2.1 get_gquad_matrix()                                                                     | 374 |
| 16.49.2.2 parse_gquad()                                                                          | 375 |
| 16.49.2.3 backtrack_GQuad_IntLoop()                                                              | 375 |
| 16.49.2.4 backtrack_GQuad_IntLoop_L()                                                            | 375 |
| 16.50 Post-transcriptional Modifications                                                         | 376 |
| 16.50.1 Detailed Description                                                                     | 376 |
| 16.50.2 Typedef Documentation                                                                    | 377 |
| 16.50.2.1 vrna_sc_mod_param_t                                                                    | 377 |
| 16.50.3 Function Documentation                                                                   | 377 |
| 16.50.3.1 vrna_sc_mod_read_from_jsonfile()                                                       | 377 |
| 16.50.3.2 vrna_sc_mod_read_from_json()                                                           | 378 |

| 16.50.3.3 vrna_sc_mod_parameters_free() | . 378 |
|-----------------------------------------|-------|
| 16.50.3.4 vrna_sc_mod_json()            | 379   |
| 16.50.3.5 vrna_sc_mod_jsonfile()        | 379   |
| 16.50.3.6 vrna_sc_mod()                 | 380   |
| 16.50.3.7 vrna_sc_mod_m6A()             | 380   |
| 16.50.3.8 vrna_sc_mod_pseudouridine()   | 381   |
| 16.50.3.9 vrna_sc_mod_inosine()         | 381   |
| 16.50.3.10 vrna_sc_mod_7DA()            | 381   |
| 16.50.3.11 vrna_sc_mod_purine()         | 382   |
| 16.50.3.12 vrna_sc_mod_dihydrouridine() | 382   |
| 16.51 Utilities                         | 383   |
| 16.51.1 Detailed Description            | 383   |
| 16.51.2 Macro Definition Documentation  | 385   |
| 16.51.2.1 VRNA_INPUT_FASTA_HEADER       | 385   |
| 16.51.2.2 VRNA_INPUT_CONSTRAINT         | 385   |
| 16.51.3 Function Documentation          | 385   |
| 16.51.3.1 vrna_alloc()                  | 385   |
| 16.51.3.2 vrna_realloc()                | 386   |
| 16.51.3.3 vrna_init_rand()              | 386   |
| 16.51.3.4 vrna_init_rand_seed()         | 386   |
| 16.51.3.5 vrna_urn()                    | 387   |
| 16.51.3.6 vrna_int_urn()                | 387   |
| 16.51.3.7 vrna_time_stamp()             | 387   |
| 16.51.3.8 get_input_line()              | 388   |
| 16.51.3.9 vrna_idx_row_wise()           | 388   |
| 16.51.3.10 vrna_idx_col_wise()          | 388   |
| 16.51.4 Variable Documentation          | 389   |
| 16.51.4.1 xsubi                         | 389   |
| 16.52 Exterior Loops                    | 389   |
| 16.52.1 Detailed Description            | 389   |
| 16.52.2 Typedef Documentation           | 390   |
| 16.52.2.1 vrna_mx_pf_aux_el_t           | 390   |
| 16.52.3 Function Documentation          | 390   |
| 16.52.3.1 vrna_E_ext_stem()             | 390   |
| 16.52.3.2 vrna_eval_ext_stem()          | 391   |
| 16.52.3.3 vrna_exp_E_ext_stem()         | 391   |
| 16.53 Hairpin Loops                     | 392   |
| 16.53.1 Detailed Description            | 392   |
| 16.53.2 Function Documentation          | 392   |
| 16.53.2.1 vrna_E_hp_loop()              | 392   |
| 16.53.2.2 vrna_E_ext_hp_loop()          | 393   |
| 16.53.2.3 yrna eval hp loop()           | 393   |

| 16.53.2.4 E_Hairpin()                                                       | 93             |
|-----------------------------------------------------------------------------|----------------|
| 16.53.2.5 exp_E_Hairpin()                                                   | 94             |
| 16.53.2.6 vrna_exp_E_hp_loop()                                              | <b>3</b> 5     |
| 16.54 Internal Loops                                                        | <del>)</del> 5 |
| 16.54.1 Detailed Description                                                | 96             |
| 16.54.2 Function Documentation                                              | 96             |
| 16.54.2.1 vrna_eval_int_loop()                                              | 96             |
| 16.55 Multibranch Loops                                                     | 96             |
| 16.55.1 Detailed Description                                                | 96             |
| 16.55.2 Typedef Documentation                                               | <del>)</del> 7 |
| 16.55.2.1 vrna_mx_pf_aux_ml_t                                               | <b>9</b> 7     |
| 16.55.3 Function Documentation                                              | 97             |
| 16.55.3.1 vrna_E_mb_loop_stack()                                            | <del>)</del> 7 |
| 16.56 Partition Function for Two Hybridized Sequences                       | <b>9</b> 7     |
| 16.56.1 Detailed Description                                                | 98             |
| 16.56.2 Function Documentation                                              | 98             |
| 16.56.2.1 vrna_pf_co_fold()                                                 | 99             |
| 16.56.2.2 vrna_pf_dimer_concentrations()                                    | 99             |
| 16.57 Partition Function for two Hybridized Sequences as a Stepwise Process | )0             |
| 16.57.1 Detailed Description                                                | )0             |
| 16.57.2 Function Documentation                                              | )0             |
| 16.57.2.1 pf_unstru()                                                       | 00             |
| 16.57.2.2 pf_interact()                                                     | )1             |
| 16.58 Reading/Writing Energy Parameter Sets from/to File                    | )2             |
| 16.58.1 Detailed Description                                                | )2             |
| 16.58.2 Macro Definition Documentation                                      | )3             |
| 16.58.2.1 VRNA_PARAMETER_FORMAT_DEFAULT                                     | )3             |
| 16.58.3 Function Documentation                                              | )3             |
| 16.58.3.1 vrna_params_load()                                                | )3             |
| 16.58.3.2 vrna_params_save()                                                | )3             |
| 16.58.3.3 vrna_params_load_from_string()                                    | )4             |
| 16.58.3.4 vrna_params_load_defaults()                                       | )4             |
| 16.58.3.5 vrna_params_load_RNA_Turner2004()                                 | )5             |
| 16.58.3.6 vrna_params_load_RNA_Turner1999()                                 | )5             |
| 16.58.3.7 vrna_params_load_RNA_Andronescu2007()                             | )5             |
| 16.58.3.8 vrna_params_load_RNA_Langdon2018()                                | )6             |
| 16.58.3.9 vrna_params_load_RNA_misc_special_hairpins()                      | )6             |
| 16.58.3.10 vrna_params_load_DNA_Mathews2004()                               | )6             |
| 16.58.3.11 vrna_params_load_DNA_Mathews1999()                               | )7             |
| 16.58.3.12 last_parameter_file()                                            | )7             |
| 16.58.3.13 read_parameter_file()                                            | )7             |
| 16.58.3.14 write_parameter_file()                                           | )7             |

| 16.59 Converting Energy Parameter Files           | 408 |
|---------------------------------------------------|-----|
| 16.59.1 Detailed Description                      | 408 |
| 16.59.2 Macro Definition Documentation            | 408 |
| 16.59.2.1 VRNA_CONVERT_OUTPUT_ALL                 | 409 |
| 16.59.2.2 VRNA_CONVERT_OUTPUT_HP                  | 409 |
| 16.59.2.3 VRNA_CONVERT_OUTPUT_STACK               | 409 |
| 16.59.2.4 VRNA_CONVERT_OUTPUT_MM_HP               | 409 |
| 16.59.2.5 VRNA_CONVERT_OUTPUT_MM_INT              | 409 |
| 16.59.2.6 VRNA_CONVERT_OUTPUT_MM_INT_1N           | 409 |
| 16.59.2.7 VRNA_CONVERT_OUTPUT_MM_INT_23           | 409 |
| 16.59.2.8 VRNA_CONVERT_OUTPUT_MM_MULTI            | 409 |
| 16.59.2.9 VRNA_CONVERT_OUTPUT_MM_EXT              | 409 |
| 16.59.2.10 VRNA_CONVERT_OUTPUT_DANGLE5            | 410 |
| 16.59.2.11 VRNA_CONVERT_OUTPUT_DANGLE3            | 410 |
| 16.59.2.12 VRNA_CONVERT_OUTPUT_INT_11             | 410 |
| 16.59.2.13 VRNA_CONVERT_OUTPUT_INT_21             | 410 |
| 16.59.2.14 VRNA_CONVERT_OUTPUT_INT_22             | 410 |
| 16.59.2.15 VRNA_CONVERT_OUTPUT_BULGE              | 410 |
| 16.59.2.16 VRNA_CONVERT_OUTPUT_INT                | 410 |
| 16.59.2.17 VRNA_CONVERT_OUTPUT_ML                 | 410 |
| 16.59.2.18 VRNA_CONVERT_OUTPUT_MISC               | 410 |
| 16.59.2.19 VRNA_CONVERT_OUTPUT_SPECIAL_HP         | 411 |
| 16.59.2.20 VRNA_CONVERT_OUTPUT_VANILLA            | 411 |
| 16.59.2.21 VRNA_CONVERT_OUTPUT_NINIO              | 411 |
| 16.59.2.22 VRNA_CONVERT_OUTPUT_DUMP               | 411 |
| 16.59.3 Function Documentation                    | 411 |
| 16.59.3.1 convert_parameter_file()                | 411 |
| 16.60 Utilities to deal with Nucleotide Alphabets | 412 |
| 16.60.1 Detailed Description                      | 412 |
| 16.60.2 Data Structure Documentation              | 413 |
| 16.60.2.1 struct vrna_sequence_s                  | 413 |
| 16.60.2.2 struct vrna_alignment_s                 | 413 |
| 16.60.3 Enumeration Type Documentation            | 413 |
| 16.60.3.1 vrna_seq_type_e                         | 413 |
| 16.60.4 Function Documentation                    | 413 |
| 16.60.4.1 vrna_ptypes()                           | 413 |
| 16.60.4.2 vrna_seq_encode()                       | 414 |
| 16.60.4.3 vrna_seq_encode_simple()                | 414 |
| 16.60.4.4 vrna_nucleotide_encode()                | 414 |
| 16.60.4.5 vrna_nucleotide_decode()                | 415 |
| 16.61 (Nucleic Acid Sequence) String Utilitites   | 415 |
| 16.61.1 Detailed Description                      | 415 |

| 16.61.2 Macro Definition Documentation             | 16  |
|----------------------------------------------------|-----|
| 16.61.2.1 FILENAME_MAX_LENGTH                      | 17  |
| 16.61.2.2 FILENAME_ID_LENGTH                       | 17  |
| 16.61.2.3 VRNA_TRIM_LEADING                        | 17  |
| 16.61.2.4 VRNA_TRIM_TRAILING                       | 17  |
| 16.61.2.5 VRNA_TRIM_IN_BETWEEN                     | 17  |
| 16.61.2.6 VRNA_TRIM_SUBST_BY_FIRST                 | 17  |
| 16.61.2.7 VRNA_TRIM_DEFAULT                        | 18  |
| 16.61.2.8 VRNA_TRIM_ALL                            | 18  |
| 16.61.3 Function Documentation                     | 18  |
| 16.61.3.1 vrna_strdup_printf()                     | 18  |
| 16.61.3.2 vrna_strdup_vprintf()                    | 18  |
| 16.61.3.3 vrna_strcat_printf()                     | 19  |
| 16.61.3.4 vrna_strcat_vprintf()                    | 19  |
| 16.61.3.5 vrna_strtrim()                           | 20  |
| 16.61.3.6 vrna_strsplit()                          | 21  |
| 16.61.3.7 vrna_random_string()                     | 22  |
| 16.61.3.8 vrna_hamming_distance()                  | 22  |
| 16.61.3.9 vrna_hamming_distance_bound()            | 22  |
| 16.61.3.10 vrna_seq_toRNA()                        | 24  |
| 16.61.3.11 vrna_seq_toupper()                      | 24  |
| 16.61.3.12 vrna_seq_reverse()                      | 24  |
| 16.61.3.13 vrna_DNA_complement()                   | 25  |
| 16.61.3.14 vrna_seq_ungapped()                     | 25  |
| 16.61.3.15 vrna_cut_point_insert()                 | 25  |
| 16.61.3.16 vrna_cut_point_remove()                 | 26  |
| 16.62 Secondary Structure Utilities                | 26  |
| 16.62.1 Detailed Description                       | 126 |
| 16.62.2 Function Documentation                     | 27  |
| 16.62.2.1 vrna_refBPcnt_matrix()                   | 27  |
| 16.62.2.2 vrna_refBPdist_matrix()                  | 27  |
| 16.62.2.3 vrna_db_from_probs()                     | 28  |
| 16.62.2.4 vrna_db_from_bp_stack()                  | 28  |
| 16.63 Dot-Bracket Notation of Secondary Structures | 28  |
| 16.63.1 Detailed Description                       | 28  |
| 16.63.2 Macro Definition Documentation             | 29  |
| 16.63.2.1 VRNA_BRACKETS_ALPHA                      | 29  |
| 16.63.2.2 VRNA_BRACKETS_RND                        | 29  |
| 16.63.2.3 VRNA_BRACKETS_CLY                        | 30  |
| 16.63.2.4 VRNA_BRACKETS_ANG                        | 30  |
| 16.63.2.5 VRNA_BRACKETS_SQR                        | 30  |
| 16.63.2.6 VRNA_BRACKETS_DEFAULT                    | 30  |

| 16.63.2.7 VRNA_BRACKETS_ANY                                     | 30             |
|-----------------------------------------------------------------|----------------|
| 16.63.3 Function Documentation                                  | 31             |
| 16.63.3.1 vrna_db_pack()                                        | 31             |
| 16.63.3.2 vrna_db_unpack()                                      | 31             |
| 16.63.3.3 vrna_db_flatten()                                     | 31             |
| 16.63.3.4 vrna_db_flatten_to()                                  | 32             |
| 16.63.3.5 vrna_db_from_ptable()                                 | 32             |
| 16.63.3.6 vrna_db_from_plist()                                  | 33             |
| 16.63.3.7 vrna_db_to_element_string()                           | 33             |
| 16.63.3.8 vrna_db_pk_remove()                                   | 34             |
| 16.64 Washington University Secondary Structure (WUSS) notation | 34             |
| 16.64.1 Detailed Description                                    | 34             |
| 16.64.2 Function Documentation                                  | 35             |
| 16.64.2.1 vrna_db_from_WUSS()                                   | 35             |
| 16.65 Pair Table Representation of Secondary Structures         | 36             |
| 16.65.1 Detailed Description                                    | 36             |
| 16.65.2 Function Documentation                                  | 36             |
| 16.65.2.1 vrna_ptable()                                         | 36             |
| 16.65.2.2 vrna_ptable_from_string()                             | 37             |
| 16.65.2.3 vrna_pt_pk_get()                                      | 37             |
| 16.65.2.4 vrna_ptable_copy()                                    | 38             |
| 16.65.2.5 vrna_pt_ali_get()                                     | 38             |
| 16.65.2.6 vrna_pt_snoop_get()                                   | 38             |
| 16.65.2.7 vrna_pt_pk_remove()                                   | 38             |
| 16.66 Pair List Representation of Secondary Structures          | 39             |
| 16.66.1 Detailed Description                                    | 39             |
| 16.66.2 Data Structure Documentation                            | <del>1</del> 0 |
| 16.66.2.1 struct vrna_elem_prob_s                               | 40             |
| 16.66.3 Function Documentation                                  | <del>1</del> 0 |
| 16.66.3.1 vrna_plist()                                          | 10             |
| 16.67 Abstract Shapes Representation of Secondary Structures    | <del>1</del> 0 |
| 16.67.1 Detailed Description                                    | <del>1</del> 0 |
| 16.67.2 Function Documentation                                  | 41             |
| 16.67.2.1 vrna_abstract_shapes()                                | 41             |
| 16.67.2.2 vrna_abstract_shapes_pt()                             | 12             |
| 16.68 Helix List Representation of Secondary Structures         | 12             |
| 16.68.1 Detailed Description                                    | 12             |
| 16.68.2 Data Structure Documentation                            | 43             |
| 16.68.2.1 struct vrna_hx_s                                      | 13             |
| 16.68.3 Function Documentation                                  | 13             |
| 16.68.3.1 vrna_hx_from_ptable()                                 | 13             |
| 16.69 Tree Representation of Secondary Structures 44            | 43             |

| 16.69.1 Detailed Description                         | 443 |
|------------------------------------------------------|-----|
| 16.69.2 Macro Definition Documentation               | 445 |
| 16.69.2.1 VRNA_STRUCTURE_TREE_HIT                    | 445 |
| 16.69.2.2 VRNA_STRUCTURE_TREE_SHAPIRO_SHORT          | 445 |
| 16.69.2.3 VRNA_STRUCTURE_TREE_SHAPIRO                | 445 |
| 16.69.2.4 VRNA_STRUCTURE_TREE_SHAPIRO_EXT            | 445 |
| 16.69.2.5 VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT         | 446 |
| 16.69.2.6 VRNA_STRUCTURE_TREE_EXPANDED               | 446 |
| 16.69.3 Function Documentation                       | 446 |
| 16.69.3.1 vrna_db_to_tree_string()                   | 446 |
| 16.69.3.2 vrna_tree_string_unweight()                | 447 |
| 16.69.3.3 vrna_tree_string_to_db()                   | 447 |
| 16.70 Distance measures between Secondary Structures | 447 |
| 16.70.1 Detailed Description                         | 447 |
| 16.70.2 Function Documentation                       | 448 |
| 16.70.2.1 vrna_bp_distance_pt()                      | 448 |
| 16.70.2.2 vrna_bp_distance()                         | 448 |
| 16.71 Multiple Sequence Alignment Utilities          | 449 |
| 16.71.1 Detailed Description                         | 449 |
| 16.71.2 Data Structure Documentation                 | 450 |
| 16.71.2.1 struct vrna_pinfo_s                        | 450 |
| 16.71.3 Macro Definition Documentation               | 451 |
| 16.71.3.1 VRNA_MEASURE_SHANNON_ENTROPY               | 451 |
| 16.71.4 Function Documentation                       | 451 |
| 16.71.4.1 vrna_aln_mpi()                             | 451 |
| 16.71.4.2 vrna_aln_pinfo()                           | 451 |
| 16.71.4.3 vrna_aln_slice()                           | 452 |
| 16.71.4.4 vrna_aln_free()                            | 452 |
| 16.71.4.5 vrna_aln_uppercase()                       | 452 |
| 16.71.4.6 vrna_aln_toRNA()                           | 453 |
| 16.71.4.7 vrna_aln_copy()                            | 453 |
| 16.71.4.8 vrna_aln_conservation_struct()             | 453 |
| 16.71.4.9 vrna_aln_conservation_col()                | 454 |
| 16.71.4.10 vrna_aln_consensus_sequence()             | 454 |
| 16.71.4.11 vrna_aln_consensus_mis()                  | 455 |
| 16.72 Files and I/O                                  | 455 |
| 16.72.1 Detailed Description                         | 455 |
| 16.72.2 Function Documentation                       | 456 |
| 16.72.2.1 get_ribosum()                              | 456 |
| 16.72.2.2 readribosum()                              | 456 |
| 16.72.2.3 vrna_read_line()                           | 457 |
| 16.72.2.4 vrna_filename_sanitize()                   | 457 |

| 16.72.2.5 vrna_file_exists()                    | 458 |
|-------------------------------------------------|-----|
| 16.73 Nucleic Acid Sequences and Structures     | 458 |
| 16.73.1 Detailed Description                    | 458 |
| 16.73.2 Macro Definition Documentation          | 459 |
| 16.73.2.1 VRNA_OPTION_MULTILINE                 | 459 |
| 16.73.2.2 VRNA_CONSTRAINT_MULTILINE             | 459 |
| 16.73.3 Function Documentation                  | 459 |
| 16.73.3.1 vrna_file_helixlist()                 | 459 |
| 16.73.3.2 vrna_file_connect()                   | 460 |
| 16.73.3.3 vrna_file_bpseq()                     | 460 |
| 16.73.3.4 vrna_file_json()                      | 461 |
| 16.73.3.5 vrna_file_fasta_read_record()         | 461 |
| 16.73.3.6 vrna_extract_record_rest_structure()  | 462 |
| 16.73.3.7 vrna_file_SHAPE_read()                | 463 |
| 16.73.3.8 vrna_extract_record_rest_constraint() | 463 |
| 16.73.3.9 read_record()                         | 464 |
| 16.74 Multiple Sequence Alignments              | 464 |
| 16.74.1 Detailed Description                    | 464 |
| 16.74.2 Macro Definition Documentation          | 465 |
| 16.74.2.1 VRNA_FILE_FORMAT_MSA_CLUSTAL          | 465 |
| 16.74.2.2 VRNA_FILE_FORMAT_MSA_STOCKHOLM        | 465 |
| 16.74.2.3 VRNA_FILE_FORMAT_MSA_FASTA            | 465 |
| 16.74.2.4 VRNA_FILE_FORMAT_MSA_MAF              | 465 |
| 16.74.2.5 VRNA_FILE_FORMAT_MSA_MIS              | 466 |
| 16.74.2.6 VRNA_FILE_FORMAT_MSA_DEFAULT          | 466 |
| 16.74.2.7 VRNA_FILE_FORMAT_MSA_NOCHECK          | 466 |
| 16.74.2.8 VRNA_FILE_FORMAT_MSA_UNKNOWN          | 466 |
| 16.74.2.9 VRNA_FILE_FORMAT_MSA_APPEND           | 466 |
| 16.74.2.10 VRNA_FILE_FORMAT_MSA_QUIET           | 467 |
| 16.74.2.11 VRNA_FILE_FORMAT_MSA_SILENT          | 467 |
| 16.74.3 Function Documentation                  | 467 |
| 16.74.3.1 vrna_file_msa_read()                  | 467 |
| 16.74.3.2 vrna_file_msa_read_record()           | 468 |
| 16.74.3.3 vrna_file_msa_detect_format()         | 469 |
| 16.74.3.4 vrna_file_msa_write()                 | 470 |
| 16.75 Command Files                             | 471 |
| 16.75.1 Detailed Description                    | 471 |
| 16.75.2 Macro Definition Documentation          | 471 |
| 16.75.2.1 VRNA_CMD_PARSE_HC                     | 472 |
| 16.75.2.2 VRNA_CMD_PARSE_SC                     | 472 |
| 16.75.2.3 VRNA_CMD_PARSE_UD                     | 472 |
| 16.75.2.4 VRNA_CMD_PARSE_SD                     | 472 |

| 16.75.2.5 VRNA_CMD_PARSE_DEFAULTS            | 472 |
|----------------------------------------------|-----|
| 16.75.3 Function Documentation               | 472 |
| 16.75.3.1 vrna_file_commands_read()          | 473 |
| 16.75.3.2 vrna_file_commands_apply()         | 473 |
| 16.75.3.3 vrna_commands_apply()              | 473 |
| 16.75.3.4 vrna_commands_free()               | 474 |
| 16.76 Plotting                               | 474 |
| 16.76.1 Detailed Description                 | 474 |
| 16.76.2 Data Structure Documentation         | 475 |
| 16.76.2.1 struct vrna_dotplot_auxdata_t      | 475 |
| 16.76.3 Function Documentation               | 475 |
| 16.76.3.1 PS_dot_plot_list()                 | 476 |
| 16.76.3.2 PS_dot_plot()                      | 476 |
| 16.76.3.3 vrna_file_PS_rnaplot()             | 476 |
| 16.76.3.4 vrna_file_PS_rnaplot_a()           | 477 |
| 16.76.3.5 gmlRNA()                           | 477 |
| 16.76.3.6 ssv_rna_plot()                     | 478 |
| 16.76.3.7 svg_rna_plot()                     | 478 |
| 16.76.3.8 xrna_plot()                        | 479 |
| 16.76.3.9 PS_rna_plot()                      | 479 |
| 16.76.3.10 PS_rna_plot_a()                   | 479 |
| 16.76.3.11 PS_rna_plot_a_gquad()             | 479 |
| 16.77 Layouts and Coordinates                | 480 |
| 16.77.1 Detailed Description                 | 480 |
| 16.77.2 Data Structure Documentation         | 481 |
| 16.77.2.1 struct vrna_plot_layout_s          | 481 |
| 16.77.2.2 struct vrna_plot_options_puzzler_t | 481 |
| 16.77.3 Macro Definition Documentation       | 481 |
| 16.77.3.1 VRNA_PLOT_TYPE_SIMPLE              | 481 |
| 16.77.3.2 VRNA_PLOT_TYPE_NAVIEW              | 482 |
| 16.77.3.3 VRNA_PLOT_TYPE_CIRCULAR            | 482 |
| 16.77.3.4 VRNA_PLOT_TYPE_TURTLE              | 482 |
| 16.77.3.5 VRNA_PLOT_TYPE_PUZZLER             | 482 |
| 16.77.4 Typedef Documentation                | 482 |
| 16.77.4.1 vrna_plot_layout_t                 | 482 |
| 16.77.5 Function Documentation               | 482 |
| 16.77.5.1 vrna_plot_layout()                 | 483 |
| 16.77.5.2 vrna_plot_layout_simple()          | 483 |
| 16.77.5.3 vrna_plot_layout_circular()        | 484 |
| 16.77.5.4 vrna_plot_layout_turtle()          | 484 |
| 16.77.5.5 vrna_plot_layout_puzzler()         | 485 |
| 16.77.5.6 vrna_plot_layout_free()            | 485 |

| 16.77.5.7 vrna_plot_coords()                 | . 485 |
|----------------------------------------------|-------|
| 16.77.5.8 vrna_plot_coords_pt()              | . 486 |
| 16.77.5.9 vrna_plot_coords_simple()          | . 487 |
| 16.77.5.10 vrna_plot_coords_simple_pt()      | . 488 |
| 16.77.5.11 vrna_plot_coords_circular()       | . 488 |
| 16.77.5.12 vrna_plot_coords_circular_pt()    | . 489 |
| 16.77.5.13 vrna_plot_coords_puzzler()        | . 490 |
| 16.77.5.14 vrna_plot_coords_puzzler_pt()     | . 490 |
| 16.77.5.15 vrna_plot_options_puzzler()       | . 491 |
| 16.77.5.16 vrna_plot_options_puzzler_free()  | . 491 |
| 16.77.5.17 vrna_plot_coords_turtle()         | . 492 |
| 16.77.5.18 vrna_plot_coords_turtle_pt()      | . 493 |
| 16.78 Annotation                             | . 493 |
| 16.78.1 Detailed Description                 | . 493 |
| 16.78.2 Function Documentation               | . 493 |
| 16.78.2.1 vrna_annotate_covar_db()           | . 494 |
| 16.78.2.2 vrna_annotate_covar_pairs()        | . 494 |
| 16.79 Alignment Plots                        | . 494 |
| 16.79.1 Detailed Description                 | . 494 |
| 16.79.2 Function Documentation               | . 494 |
| 16.79.2.1 vrna_file_PS_aln()                 | . 494 |
| 16.79.2.2 vrna_file_PS_aln_slice()           | . 495 |
| 16.80 Search Algorithms                      | . 496 |
| 16.80.1 Detailed Description                 | . 496 |
| 16.80.2 Function Documentation               | . 496 |
| 16.80.2.1 vrna_search_BMH_num()              | . 496 |
| 16.80.2.2 vrna_search_BMH()                  | . 497 |
| 16.80.2.3 vrna_search_BM_BCT_num()           | . 497 |
| 16.80.2.4 vrna_search_BM_BCT()               | . 498 |
| 16.81 Combinatorics Algorithms               | . 498 |
| 16.81.1 Detailed Description                 | . 498 |
| 16.81.2 Function Documentation               | . 499 |
| 16.81.2.1 vrna_enumerate_necklaces()         | . 499 |
| 16.81.2.2 vrna_rotational_symmetry_num()     | . 500 |
| 16.81.2.3 vrna_rotational_symmetry_pos_num() | . 500 |
| 16.81.2.4 vrna_rotational_symmetry()         | . 501 |
| 16.81.2.5 vrna_rotational_symmetry_pos()     | . 501 |
| 16.81.2.6 vrna_rotational_symmetry_db()      | . 502 |
| 16.81.2.7 vrna_rotational_symmetry_db_pos()  | . 502 |
| 16.81.2.8 vrna_n_multichoose_k()             | . 503 |
| 16.81.2.9 vrna_boustrophedon()               | . 504 |
| 16.81.2.10 vrna_boustrophedon_pos()          | . 504 |

| 16.82 (Abstract) Data Structures          | าร |
|-------------------------------------------|----|
| 16.82.1 Detailed Description              |    |
| 16.82.2 Data Structure Documentation      |    |
| 16.82.2.1 struct vrna_basepair_s          |    |
| 16.82.2.2 struct vrna_cpair_s             |    |
| 16.82.2.3 struct vrna_color_s             |    |
| 16.82.2.4 struct vrna_data_linear_s       |    |
| 16.82.2.5 struct vrna_sect_s              | )7 |
| 16.82.2.6 struct vrna_bp_stack_s          | )7 |
| 16.82.2.7 struct pu_contrib               | )7 |
| 16.82.2.8 struct interact                 | )7 |
| 16.82.2.9 struct pu_out                   | 38 |
| 16.82.2.10 struct constrain               | 38 |
| 16.82.2.11 struct duplexT                 | 38 |
| 16.82.2.12 struct node                    | 28 |
| 16.82.2.13 struct snoopT                  | 28 |
| 16.82.2.14 struct dupVar                  | )9 |
| 16.82.3 Typedef Documentation             | )9 |
| 16.82.3.1 PAIR                            | )9 |
| 16.82.3.2 plist                           | )9 |
| 16.82.3.3 cpair                           | )9 |
| 16.82.3.4 sect                            | )9 |
| 16.82.3.5 bondT                           | )9 |
| 16.82.4 Function Documentation            | )9 |
| 16.82.4.1 vrna_C11_features()             | 10 |
| 16.83 Messages                            | 10 |
| 16.83.1 Detailed Description              | 10 |
| 16.83.2 Function Documentation            | 11 |
| 16.83.2.1 vrna_message_error()            | 11 |
| 16.83.2.2 vrna_message_verror()           | 11 |
| 16.83.2.3 vrna_message_warning()          | 11 |
| 16.83.2.4 vrna_message_vwarning()         | 12 |
| 16.83.2.5 vrna_message_info()             | 12 |
| 16.83.2.6 vrna_message_vinfo()            | 12 |
| 16.83.2.7 vrna_message_input_seq_simple() | 13 |
| 16.83.2.8 vrna_message_input_seq()        | 13 |
| 16.84 Unit Conversion                     | 13 |
| 16.84.1 Detailed Description              | 13 |
| 16.84.2 Enumeration Type Documentation    | 14 |
| 16.84.2.1 vrna_unit_energy_e              | 14 |
| 16.84.2.2 vrna_unit_temperature_e         | 15 |
| 16.84.3 Function Documentation            | 15 |

| 16.84.3.1 vrna_convert_energy()             | 515 |
|---------------------------------------------|-----|
| 16.84.3.2 vrna_convert_temperature()        | 515 |
| 16.84.3.3 vrna_convert_kcal_to_dcal()       | 516 |
| 16.84.3.4 vrna_convert_dcal_to_kcal()       | 516 |
| 16.85 The Fold Compound                     | 517 |
| 16.85.1 Detailed Description                | 517 |
| 16.85.2 Data Structure Documentation        | 518 |
| 16.85.2.1 struct vrna_fc_s                  | 518 |
| 16.85.3 Macro Definition Documentation      | 524 |
| 16.85.3.1 VRNA_STATUS_MFE_PRE               | 524 |
| 16.85.3.2 VRNA_STATUS_MFE_POST              | 525 |
| 16.85.3.3 VRNA_STATUS_PF_PRE                | 525 |
| 16.85.3.4 VRNA_STATUS_PF_POST               | 525 |
| 16.85.3.5 VRNA_OPTION_MFE                   | 525 |
| 16.85.3.6 VRNA_OPTION_PF                    | 525 |
| 16.85.3.7 VRNA_OPTION_EVAL_ONLY             | 526 |
| 16.85.4 Typedef Documentation               | 526 |
| 16.85.4.1 vrna_auxdata_free_f               | 526 |
| 16.85.4.2 vrna_recursion_status_f           | 526 |
| 16.85.5 Enumeration Type Documentation      | 527 |
| 16.85.5.1 vrna_fc_type_e                    | 527 |
| 16.85.6 Function Documentation              | 527 |
| 16.85.6.1 vrna_fold_compound()              | 527 |
| 16.85.6.2 vrna_fold_compound_comparative()  | 528 |
| 16.85.6.3 vrna_fold_compound_free()         | 529 |
| 16.85.6.4 vrna_fold_compound_add_auxdata()  | 529 |
| 16.85.6.5 vrna_fold_compound_add_callback() | 530 |
| 16.86 The Dynamic Programming Matrices      | 530 |
| 16.86.1 Detailed Description                | 530 |
| 16.86.2 Data Structure Documentation        | 531 |
| 16.86.2.1 struct vrna_mx_mfe_s              | 531 |
| 16.86.2.2 struct vrna_mx_pf_s               | 532 |
| 16.86.3 Enumeration Type Documentation      | 532 |
| 16.86.3.1 vrna_mx_type_e                    | 532 |
| 16.86.4 Function Documentation              | 533 |
| 16.86.4.1 vrna_mx_add()                     | 533 |
| 16.86.4.2 vrna_mx_mfe_free()                | 534 |
| 16.86.4.3 vrna_mx_pf_free()                 | 534 |
| 16.87 Hash Tables                           | 534 |
| 16.87.1 Detailed Description                | 534 |
| 16.87.2 Data Structure Documentation        | 535 |
| 16.87.2.1 struct vrna ht. entry, db. t      | 535 |

| 16.87.3 Typedef Documentation          | 36 |
|----------------------------------------|----|
| 16.87.3.1 vrna_hash_table_t            | 36 |
| 16.87.3.2 vrna_ht_cmp_f                | 36 |
| 16.87.3.3 vrna_ht_hashfunc_f           | 36 |
| 16.87.3.4 vrna_ht_free_f               | 37 |
| 16.87.4 Function Documentation         | 37 |
| 16.87.4.1 vrna_ht_init()               | 37 |
| 16.87.4.2 vrna_ht_size()               | 38 |
| 16.87.4.3 vrna_ht_collisions()         | 38 |
| 16.87.4.4 vrna_ht_get()                | 38 |
| 16.87.4.5 vrna_ht_insert()             | 39 |
| 16.87.4.6 vrna_ht_remove()             | 39 |
| 16.87.4.7 vrna_ht_clear()              | 39 |
| 16.87.4.8 vrna_ht_free()               | 40 |
| 16.87.4.9 vrna_ht_db_comp()            | 40 |
| 16.87.4.10 vrna_ht_db_hash_func()      | 40 |
| 16.87.4.11 vrna_ht_db_free_entry()     | 41 |
| 16.88 Heaps                            | 41 |
| 16.88.1 Detailed Description           | 41 |
| 16.88.2 Typedef Documentation          | 42 |
| 16.88.2.1 vrna_heap_t                  | 42 |
| 16.88.2.2 vrna_heap_cmp_f              | 42 |
| 16.88.2.3 vrna_heap_get_pos_f          | 44 |
| 16.88.2.4 vrna_heap_set_pos_f          | 44 |
| 16.88.3 Function Documentation         | 44 |
| 16.88.3.1 vrna_heap_init()             | 44 |
| 16.88.3.2 vrna_heap_free()             | 45 |
| 16.88.3.3 vrna_heap_size()             | 45 |
| 16.88.3.4 vrna_heap_insert()           | 46 |
| 16.88.3.5 vrna_heap_pop()              | 46 |
| 16.88.3.6 vrna_heap_top()              | 46 |
| 16.88.3.7 vrna_heap_remove()           | 47 |
| 16.88.3.8 vrna_heap_update()           | 47 |
| 16.89 Arrays                           | 48 |
| 16.89.1 Detailed Description           | 48 |
| 16.89.2 Data Structure Documentation   | 49 |
| 16.89.2.1 struct vrna_array_header_s   | 49 |
| 16.89.3 Macro Definition Documentation | 50 |
| 16.89.3.1 vrna_array_init_size         | 50 |
| 16.89.4 Function Documentation         | 50 |
| 16.89.4.1 vrnaarray_set_capacity()     | 50 |
| 16.90 Ruffers                          | 50 |

| 16.90.1 Detailed Description         |                                 | . 550 |
|--------------------------------------|---------------------------------|-------|
| 16.90.2 Typedef Documentation        | 1                               | . 551 |
| 16.90.2.1 vrna_stream                | _output_f                       | . 551 |
| 16.90.3 Function Documentation       | n                               | . 551 |
| 16.90.3.1 vrna_cstr()                |                                 | . 551 |
| 16.90.3.2 vrna_cstr_dis              | scard()                         | . 552 |
| 16.90.3.3 vrna_cstr_fre              | e()                             | . 552 |
| 16.90.3.4 vrna_cstr_clo              | ose()                           | . 552 |
| 16.90.3.5 vrna_cstr_fflu             | ush()                           | . 553 |
| 16.90.3.6 vrna_ostrean               | n_init()                        | . 553 |
| 16.90.3.7 vrna_ostrean               | 1_free()                        | . 553 |
| 16.90.3.8 vrna_ostrean               | n_request()                     | . 554 |
| 16.90.3.9 vrna_ostrean               | n_provide()                     | . 554 |
| 16.91 Deprecated Interface for Globa | I MFE Prediction                | . 555 |
| 16.91.1 Detailed Description         |                                 | . 555 |
| 16.91.2 Function Documentation       | n                               | . 556 |
| 16.91.2.1 alifold()                  |                                 | . 556 |
| 16.91.2.2 cofold()                   |                                 | . 556 |
| 16.91.2.3 cofold_par()               |                                 | . 557 |
| 16.91.2.4 free_co_arra               | ys()                            | . 557 |
| 16.91.2.5 update_cofol               | d_params()                      | . 557 |
| 16.91.2.6 update_cofol               | d_params_par()                  | . 557 |
| 16.91.2.7 export_cofold              | d_arrays_gq()                   | . 558 |
| 16.91.2.8 export_cofold              | d_arrays()                      | . 558 |
| 16.91.2.9 initialize_cofo            | old()                           | . 559 |
| 16.91.2.10 fold_par()                |                                 | . 559 |
| 16.91.2.11 fold()                    |                                 | . 560 |
| 16.91.2.12 circfold()                |                                 | . 560 |
| 16.91.2.13 free_arrays               | ()                              | . 561 |
| 16.91.2.14 update_fold               | _params()                       | . 561 |
| 16.91.2.15 update_fold               | _params_par()                   | . 561 |
| 16.91.2.16 export_fold_              | _arrays()                       | . 562 |
| 16.91.2.17 export_fold_              | _arrays_par()                   | . 562 |
| 16.91.2.18 export_circf              | old_arrays()                    | . 562 |
| 16.91.2.19 export_circf              | old_arrays_par()                | . 562 |
| 16.91.2.20 LoopEnergy                | ()                              | . 563 |
| 16.91.2.21 HairpinE()                |                                 | . 563 |
| 16.91.2.22 initialize_fol            | d()                             | . 563 |
| 16.91.2.23 circalifold()             |                                 | . 563 |
| 16.91.2.24 free_alifold_             | _arrays()                       | . 564 |
| 16.92 Deprecated Interface for Local | (Sliding Window) MFE Prediction | . 564 |
| 16.92.1 Detailed Description         |                                 | . 564 |

| 16.92.2 Function Documentation                                                       | 564 |
|--------------------------------------------------------------------------------------|-----|
| 16.92.2.1 Lfold()                                                                    | 565 |
| 16.92.2.2 Lfoldz()                                                                   | 565 |
| 16.93 Deprecated Interface for Global Partition Function Computation                 | 565 |
| 16.93.1 Detailed Description                                                         | 565 |
| 16.93.2 Function Documentation                                                       | 567 |
| 16.93.2.1 alipf_fold_par()                                                           | 567 |
| 16.93.2.2 pf_fold_par()                                                              | 567 |
| 16.93.2.3 pf_fold()                                                                  | 568 |
| 16.93.2.4 pf_circ_fold()                                                             | 569 |
| 16.93.2.5 free_pf_arrays()                                                           | 570 |
| 16.93.2.6 update_pf_params()                                                         | 570 |
| 16.93.2.7 update_pf_params_par()                                                     | 570 |
| 16.93.2.8 export_bppm()                                                              | 571 |
| 16.93.2.9 get_pf_arrays()                                                            | 571 |
| 16.93.2.10 get_subseq_F()                                                            | 572 |
| 16.93.2.11 mean_bp_distance()                                                        | 572 |
| 16.93.2.12 mean_bp_distance_pr()                                                     | 572 |
| 16.93.2.13 stackProb()                                                               | 573 |
| 16.93.2.14 init_pf_fold()                                                            | 573 |
| 16.93.2.15 co_pf_fold()                                                              | 573 |
| 16.93.2.16 co_pf_fold_par()                                                          | 573 |
| 16.93.2.17 compute_probabilities()                                                   | 574 |
| 16.93.2.18 init_co_pf_fold()                                                         | 575 |
| 16.93.2.19 export_co_bppm()                                                          | 575 |
| 16.93.2.20 free_co_pf_arrays()                                                       | 575 |
| 16.93.2.21 update_co_pf_params()                                                     | 575 |
| 16.93.2.22 update_co_pf_params_par()                                                 | 576 |
| 16.93.2.23 assign_plist_from_db()                                                    | 576 |
| 16.93.2.24 assign_plist_from_pr()                                                    | 576 |
| 16.93.2.25 alipf_fold()                                                              | 577 |
| 16.93.2.26 alipf_circ_fold()                                                         | 577 |
| 16.93.2.27 export_ali_bppm()                                                         | 578 |
| 16.93.2.28 free_alipf_arrays()                                                       | 578 |
| 16.93.2.29 alipbacktrack()                                                           | 578 |
| 16.93.2.30 get_alipf_arrays()                                                        | 579 |
| 16.94 Deprecated Interface for Local (Sliding Window) Partition Function Computation | 580 |
| 16.94.1 Detailed Description                                                         | 580 |
| 16.94.2 Function Documentation                                                       | 580 |
| 16.94.2.1 update_pf_paramsLP()                                                       | 580 |
| 16.94.2.2 pfl_fold()                                                                 | 580 |
| 16.94.2.3 pfl_fold_par()                                                             | 581 |

| 16.94.2.4 putoutpU_prob()                                            | 581 |
|----------------------------------------------------------------------|-----|
| 16.94.2.5 putoutpU_prob_bin()                                        | 583 |
| 16.95 Deprecated Interface for Stochastic Backtracking               | 583 |
| 16.95.1 Detailed Description                                         | 583 |
| 16.95.2 Function Documentation                                       | 583 |
| 16.95.2.1 pbacktrack()                                               | 584 |
| 16.95.2.2 pbacktrack5()                                              | 584 |
| 16.95.2.3 pbacktrack_circ()                                          | 584 |
| 16.95.3 Variable Documentation                                       | 584 |
| 16.95.3.1 st_back                                                    | 585 |
| 16.96 Deprecated Interface for Multiple Sequence Alignment Utilities | 585 |
| 16.96.1 Detailed Description                                         | 585 |
| 16.96.2 Typedef Documentation                                        | 585 |
| 16.96.2.1 pair_info                                                  | 585 |
| 16.96.3 Function Documentation                                       | 585 |
| 16.96.3.1 get_mpi()                                                  | 586 |
| 16.96.3.2 encode_ali_sequence()                                      | 586 |
| 16.96.3.3 alloc_sequence_arrays()                                    | 586 |
| 16.96.3.4 free_sequence_arrays()                                     | 587 |
| 16.97 Deprecated Interface for Secondary Structure Utilities         | 588 |
| 16.97.1 Detailed Description                                         | 588 |
| 16.97.2 Function Documentation                                       | 589 |
| 16.97.2.1 b2HIT()                                                    | 589 |
| 16.97.2.2 b2C()                                                      | 589 |
| 16.97.2.3 b2Shapiro()                                                | 590 |
| 16.97.2.4 add_root()                                                 | 590 |
| 16.97.2.5 expand_Shapiro()                                           | 590 |
| 16.97.2.6 expand_Full()                                              | 591 |
| 16.97.2.7 unexpand_Full()                                            | 591 |
| 16.97.2.8 unweight()                                                 | 591 |
| 16.97.2.9 unexpand_aligned_F()                                       | 591 |
| 16.97.2.10 parse_structure()                                         | 592 |
| 16.97.2.11 pack_structure()                                          | 592 |
| 16.97.2.12 unpack_structure()                                        | 592 |
| 16.97.2.13 make_pair_table()                                         | 593 |
| 16.97.2.14 copy_pair_table()                                         | 593 |
| 16.97.2.15 alimake_pair_table()                                      | 593 |
| 16.97.2.16 make_pair_table_snoop()                                   | 594 |
| 16.97.2.17 bp_distance()                                             | 594 |
| 16.97.2.18 make_referenceBP_array()                                  | 594 |
| 16.97.2.19 compute_BPdifferences()                                   | 594 |
| 16.97.2.20 parenthesis_structure()                                   | 595 |

|    | 16.97.2.21 parenthesis_zuker()                                                        | 595 |
|----|---------------------------------------------------------------------------------------|-----|
|    | 16.97.2.22 bppm_to_structure()                                                        | 595 |
|    | 16.97.2.23 bppm_symbol()                                                              | 595 |
|    | 16.98 Deprecated Interface for Plotting Utilities                                     | 596 |
|    | 16.98.1 Detailed Description                                                          | 596 |
|    | 16.98.2 Data Structure Documentation                                                  | 596 |
|    | 16.98.2.1 struct COORDINATE                                                           | 596 |
|    | 16.98.3 Function Documentation                                                        | 596 |
|    | 16.98.3.1 PS_color_aln()                                                              | 596 |
|    | 16.98.3.2 aliPS_color_aln()                                                           | 596 |
|    | 16.98.3.3 simple_xy_coordinates()                                                     | 597 |
|    | 16.98.3.4 simple_circplot_coordinates()                                               | 597 |
|    | 16.98.4 Variable Documentation                                                        | 598 |
|    | 16.98.4.1 rna_plot_type                                                               | 598 |
|    | 16.99 Deprecated Interface for (Re-)folding Paths, Saddle Points, and Energy Barriers | 598 |
|    | 16.99.1 Detailed Description                                                          | 598 |
|    | 16.99.2 Typedef Documentation                                                         | 598 |
|    | 16.99.2.1 path_t                                                                      | 599 |
|    | 16.99.3 Function Documentation                                                        | 599 |
|    | 16.99.3.1 find_saddle()                                                               | 599 |
|    | 16.99.3.2 free_path()                                                                 | 599 |
|    | 16.99.3.3 get_path()                                                                  | 599 |
|    |                                                                                       |     |
| 17 | Data Structure Documentation                                                          | 601 |
|    | 17.1 _struct_en Struct Reference                                                      |     |
|    | 17.1.1 Detailed Description                                                           |     |
|    | 17.2 energy_corrections Struct Reference                                              |     |
|    | 17.3 LIST Struct Reference                                                            |     |
|    | 17.4 LST_BUCKET Struct Reference                                                      |     |
|    | 17.5 Postorder_list Struct Reference                                                  |     |
|    | 17.5.1 Detailed Description                                                           |     |
|    | 17.6 swString Struct Reference                                                        |     |
|    | 17.6.1 Detailed Description                                                           | 602 |
|    | 17.7 Tree Struct Reference                                                            |     |
|    | 17.7.1 Detailed Description                                                           |     |
|    | 17.8 TwoDpfold_vars Struct Reference                                                  |     |
|    | 17.8.1 Detailed Description                                                           | 603 |
|    | 17.9 vrna_dimer_conc_s Struct Reference                                               | 603 |
|    | 17.9.1 Detailed Description                                                           |     |
|    | 17.10 vrna_sc_bp_storage_t Struct Reference                                           |     |
|    | 17.10.1 Detailed Description                                                          |     |
|    | 17.11 vrna_sc_mod_param_s Struct Reference                                            | 603 |

|    | 17.12 vrna_string_header_s Struct Reference             | 603 |
|----|---------------------------------------------------------|-----|
|    | 17.12.1 Detailed Description                            | 604 |
|    | 17.13 vrna_structured_domains_s Struct Reference        | 604 |
|    | 17.14 vrna_subopt_sol_s Struct Reference                | 604 |
|    | 17.14.1 Detailed Description                            | 604 |
|    | 17.15 vrna_unstructured_domain_motif_s Struct Reference | 604 |
| 18 | 3 File Documentation                                    | 605 |
|    | 18.1 ViennaRNA/2Dfold.h File Reference                  | 605 |
|    | 18.2 2Dfold.h                                           | 605 |
|    | 18.3 ViennaRNA/2Dpfold.h File Reference                 | 607 |
|    | 18.3.1 Detailed Description                             |     |
|    | 18.3.2 Function Documentation                           | 608 |
|    | 18.3.2.1 get_TwoDpfold_variables()                      | 608 |
|    | 18.3.2.2 destroy_TwoDpfold_variables()                  |     |
|    | 18.3.2.3 TwoDpfoldList()                                |     |
|    | 18.3.2.4 TwoDpfold_pbacktrack()                         |     |
|    | 18.3.2.5 TwoDpfold_pbacktrack5()                        |     |
|    | 18.4 2Dpfold.h                                          |     |
|    | 18.5 ali plex.h                                         |     |
|    | 18.6 ViennaRNA/alifold.h File Reference                 |     |
|    | 18.6.1 Detailed Description                             |     |
|    | 18.6.2 Function Documentation                           |     |
|    | 18.6.2.1 energy_of_alistruct()                          |     |
|    | 18.6.2.2 update_alifold_params()                        |     |
|    | 18.6.3 Variable Documentation                           |     |
|    | 18.6.3.1 cv fact                                        |     |
|    | 18.6.3.2 nc_fact                                        |     |
|    | 18.7 alifold.h                                          |     |
|    | 18.8 ViennaRNA/aln_util.h File Reference                |     |
|    | 18.8.1 Detailed Description                             |     |
|    | 18.9 aln_util.h                                         |     |
|    | 18.10 ViennaRNA/alphabet.h File Reference               |     |
|    | 18.10.1 Detailed Description                            |     |
|    | 18.11 alphabet.h                                        |     |
|    | 18.12 ViennaRNA/boltzmann_sampling.h File Reference     |     |
|    | 18.12.1 Detailed Description                            |     |
|    | 18.13 boltzmann_sampling.h                              |     |
|    | 18.14 ViennaRNA/centroid.h File Reference               |     |
|    | 18.14.1 Detailed Description                            |     |
|    | 18.14.2 Function Documentation                          |     |
|    | 18.14.2.1 get centroid struct pl()                      | 623 |

| 18.14.2.2 get_centroid_struct_pr()                          |
|-------------------------------------------------------------|
| 18.15 centroid.h                                            |
| 18.16 ViennaRNA/char_stream.h File Reference                |
| 18.16.1 Detailed Description                                |
| 18.17 char_stream.h                                         |
| 18.18 ViennaRNA/datastructures/char_stream.h File Reference |
| 18.18.1 Detailed Description                                |
| 18.19 char_stream.h                                         |
| 18.20 ViennaRNA/cofold.h File Reference                     |
| 18.20.1 Detailed Description                                |
| 18.21 cofold.h                                              |
| 18.22 ViennaRNA/combinatorics.h File Reference              |
| 18.22.1 Detailed Description                                |
| 18.23 combinatorics.h                                       |
| 18.24 ViennaRNA/commands.h File Reference                   |
| 18.24.1 Detailed Description                                |
| 18.25 commands.h                                            |
| 18.26 ViennaRNA/concentrations.h File Reference             |
| 18.26.1 Detailed Description                                |
| 18.26.2 Function Documentation                              |
| 18.26.2.1 get_concentrations()                              |
| 18.27 concentrations.h                                      |
| 18.28 ViennaRNA/constraints.h File Reference                |
| 18.28.1 Detailed Description                                |
| 18.29 constraints.h                                         |
| 18.30 ViennaRNA/constraints/hard.h File Reference           |
| 18.30.1 Detailed Description                                |
| 18.30.2 Macro Definition Documentation                      |
| 18.30.2.1 VRNA_CONSTRAINT_NO_HEADER                         |
| 18.30.2.2 VRNA_CONSTRAINT_DB_ANG_BRACK                      |
| 18.30.3 Enumeration Type Documentation                      |
| 18.30.3.1 vrna_hc_type_e                                    |
| 18.30.4 Function Documentation                              |
| 18.30.4.1 vrna_hc_add_data()                                |
| 18.30.4.2 print_tty_constraint()                            |
| 18.30.4.3 print_tty_constraint_full()                       |
| 18.30.4.4 constrain_ptypes()                                |
| 18.31 hard.h                                                |
| 18.32 ViennaRNA/constraints/ligand.h File Reference         |
| 18.32.1 Detailed Description                                |
| 18.33 ligand.h                                              |
| 18.34 sc_cb_intern.h                                        |

| 18.35 ViennaRNA/constraints/SHAPE.h File Reference          |
|-------------------------------------------------------------|
| 18.35.1 Detailed Description                                |
| 18.35.2 Function Documentation                              |
| 18.35.2.1 vrna_sc_SHAPE_parse_method()                      |
| 18.36 SHAPE.h                                               |
| 18.37 ViennaRNA/constraints/soft.h File Reference           |
| 18.37.1 Detailed Description                                |
| 18.37.2 Enumeration Type Documentation                      |
| 18.37.2.1 vrna_sc_type_e                                    |
| 18.38 soft.h                                                |
| 18.39 ViennaRNA/constraints/soft_special.h File Reference   |
| 18.39.1 Detailed Description                                |
| 18.40 soft_special.h                                        |
| 18.41 ViennaRNA/constraints_hard.h File Reference           |
| 18.41.1 Detailed Description                                |
| 18.42 constraints_hard.h                                    |
| 18.43 ViennaRNA/constraints_ligand.h File Reference         |
| 18.43.1 Detailed Description                                |
| 18.44 constraints_ligand.h                                  |
| 18.45 ViennaRNA/constraints_SHAPE.h File Reference          |
| 18.45.1 Detailed Description                                |
| 18.46 constraints_SHAPE.h                                   |
| 18.47 ViennaRNA/constraints_soft.h File Reference           |
| 18.47.1 Detailed Description                                |
| 18.48 constraints_soft.h                                    |
| 18.49 ViennaRNA/convert_epars.h File Reference              |
| 18.49.1 Detailed Description                                |
| 18.50 convert_epars.h                                       |
| 18.51 ViennaRNA/data_structures.h File Reference            |
| 18.51.1 Detailed Description                                |
| 18.52 data_structures.h                                     |
| 18.53 ViennaRNA/datastructures/array.h File Reference       |
| 18.53.1 Detailed Description                                |
| 18.54 array.h                                               |
| 18.55 ViennaRNA/datastructures/hash_tables.h File Reference |
| 18.55.1 Detailed Description                                |
| 18.56 hash_tables.h                                         |
| 18.57 ViennaRNA/datastructures/heap.h File Reference        |
| 18.57.1 Detailed Description                                |
| 18.58 heap.h                                                |
| 18.59 lists.h                                               |
| 18.60 string.h                                              |

| 18.61 ViennaRNA/dist_vars.h File Reference           |
|------------------------------------------------------|
| 18.61.1 Detailed Description                         |
| 18.61.2 Variable Documentation                       |
| 18.61.2.1 edit_backtrack                             |
| 18.61.2.2 cost_matrix                                |
| 18.62 dist_vars.h                                    |
| 18.63 ViennaRNA/dp_matrices.h File Reference         |
| 18.63.1 Detailed Description                         |
| 18.64 dp_matrices.h                                  |
| 18.65 ViennaRNA/duplex.h File Reference              |
| 18.65.1 Detailed Description                         |
| 18.66 duplex.h                                       |
| 18.67 ViennaRNA/edit_cost.h File Reference           |
| 18.67.1 Detailed Description                         |
| 18.68 edit_cost.h                                    |
| 18.69 ViennaRNA/energy_const.h File Reference        |
| 18.69.1 Detailed Description                         |
| 18.70 energy_const.h                                 |
| 18.71 ViennaRNA/energy_par.h File Reference          |
| 18.71.1 Detailed Description                         |
| 18.72 energy_par.h                                   |
| 18.73 ViennaRNA/equilibrium_probs.h File Reference   |
| 18.73.1 Detailed Description                         |
| 18.74 equilibrium_probs.h                            |
| 18.75 ViennaRNA/eval.h File Reference                |
| 18.75.1 Detailed Description                         |
| 18.76 eval.h                                         |
| 18.77 ViennaRNA/exterior_loops.h File Reference      |
| 18.77.1 Detailed Description                         |
| 18.78 exterior_loops.h                               |
| 18.79 ViennaRNA/file_formats.h File Reference        |
| 18.79.1 Detailed Description                         |
| 18.80 file_formats.h                                 |
| 18.81 ViennaRNA/io/file_formats.h File Reference     |
| 18.81.1 Detailed Description                         |
| 18.82 file_formats.h                                 |
| 18.83 ViennaRNA/file_formats_msa.h File Reference    |
| 18.83.1 Detailed Description                         |
| 18.84 file_formats_msa.h                             |
| 18.85 ViennaRNA/io/file_formats_msa.h File Reference |
| 18.85.1 Detailed Description                         |
| 18.86 file formats msa.h                             |

| 18.87 ViennaRNA/file_utils.h File Reference         |
|-----------------------------------------------------|
| 18.87.1 Detailed Description                        |
| 18.88 file_utils.h                                  |
| 18.89 ViennaRNA/findpath.h File Reference           |
| 18.89.1 Detailed Description                        |
| 18.90 findpath.h                                    |
| 18.91 ViennaRNA/landscape/findpath.h File Reference |
| 18.91.1 Detailed Description                        |
| 18.92 findpath.h                                    |
| 18.93 ViennaRNA/fold.h File Reference               |
| 18.93.1 Detailed Description                        |
| 18.94 fold.h                                        |
| 18.95 ViennaRNA/fold_compound.h File Reference      |
| 18.95.1 Detailed Description                        |
| 18.96 fold_compound.h                               |
| 18.97 ViennaRNA/fold_vars.h File Reference          |
| 18.97.1 Detailed Description                        |
| 18.97.2 Variable Documentation                      |
| 18.97.2.1 RibosumFile                               |
| 18.97.2.2 james_rule                                |
| 18.97.2.3 logML                                     |
| 18.97.2.4 cut_point                                 |
| 18.97.2.5 base_pair                                 |
| 18.97.2.6 pr                                        |
| 18.97.2.7 iindx                                     |
| 18.98 fold_vars.h                                   |
| 18.99 ViennaRNA/gquad.h File Reference              |
| 18.99.1 Detailed Description                        |
| 18.100 gquad.h                                      |
| 18.101 ViennaRNA/grammar.h File Reference           |
| 18.101.1 Detailed Description                       |
| 18.102 grammar.h                                    |
| 18.103 ViennaRNA/hairpin_loops.h File Reference     |
| 18.103.1 Detailed Description                       |
| 18.104 hairpin_loops.h                              |
| 18.105 ViennaRNA/heat_capacity.h File Reference     |
| 18.105.1 Detailed Description                       |
| 18.106 heat_capacity.h                              |
| 18.107 ViennaRNA/interior_loops.h File Reference    |
| 18.107.1 Detailed Description                       |
| 18.108 interior_loops.h                             |
| 18 109 Vienna RNA/inverse h File Reference          |

| 18.109.1 Detailed Description                       |
|-----------------------------------------------------|
| 18.110 inverse.h                                    |
| 18.111 ViennaRNA/landscape/move.h File Reference    |
| 18.111.1 Detailed Description                       |
| 18.112 move.h                                       |
| 18.113 ViennaRNA/landscape/paths.h File Reference   |
| 18.113.1 Detailed Description                       |
| 18.114 paths.h                                      |
| 18.115 ViennaRNA/Lfold.h File Reference             |
| 18.115.1 Detailed Description                       |
| 18.116 Lfold.h                                      |
| 18.117 ViennaRNA/loop_energies.h File Reference     |
| 18.117.1 Detailed Description                       |
| 18.118 loop_energies.h                              |
| 18.119 ViennaRNA/loops/all.h File Reference         |
| 18.119.1 Detailed Description                       |
| 18.120 all.h                                        |
| 18.121 ViennaRNA/loops/external.h File Reference    |
| 18.121.1 Detailed Description                       |
| 18.122 external.h                                   |
| 18.123 ViennaRNA/loops/hairpin.h File Reference     |
| 18.123.1 Detailed Description                       |
| 18.124 hairpin.h                                    |
| 18.125 ViennaRNA/loops/internal.h File Reference    |
| 18.125.1 Detailed Description                       |
| 18.126 internal.h                                   |
| 18.127 ViennaRNA/loops/multibranch.h File Reference |
| 18.127.1 Detailed Description                       |
| 18.128 multibranch.h                                |
| 18.129 ViennaRNA/LPfold.h File Reference            |
| 18.129.1 Detailed Description                       |
| 18.129.2 Function Documentation                     |
| 18.129.2.1 init_pf_foldLP()                         |
| 18.130 LPfold.h                                     |
| 18.131 ViennaRNA/MEA.h File Reference               |
| 18.131.1 Detailed Description                       |
| 18.132 MEA.h                                        |
| 18.133 ViennaRNA/mfe.h File Reference               |
| 18.133.1 Detailed Description                       |
| 18.134 mfe.h                                        |
| 18.135 ViennaRNA/mfe_window.h File Reference        |
| 18 135 1 Detailed Description 74                    |

| 18.136 mfe_window.h                                     |
|---------------------------------------------------------|
| 18.137 ViennaRNA/mm.h File Reference                    |
| 18.137.1 Detailed Description                           |
| 18.137.2 Function Documentation                         |
| 18.137.2.1 vrna_maximum_matching()                      |
| 18.137.2.2 vrna_maximum_matching_simple()               |
| 18.138 mm.h                                             |
| 18.139 ViennaRNA/model.h File Reference                 |
| 18.139.1 Detailed Description                           |
| 18.140 model.h                                          |
| 18.141 move_set.h                                       |
| 18.142 ViennaRNA/multibranch_loops.h File Reference     |
| 18.142.1 Detailed Description                           |
| 18.143 multibranch_loops.h                              |
| 18.144 ViennaRNA/naview.h File Reference                |
| 18.144.1 Detailed Description                           |
| 18.145 naview.h                                         |
| 18.146 ViennaRNA/landscape/neighbor.h File Reference    |
| 18.146.1 Detailed Description                           |
| 18.147 neighbor.h                                       |
| 18.148 ViennaRNA/neighbor.h File Reference              |
| 18.148.1 Detailed Description                           |
| 18.149 neighbor.h                                       |
| 18.150 pair_mat.h                                       |
| 18.151 ViennaRNA/params.h File Reference                |
| 18.151.1 Detailed Description                           |
| 18.152 params.h                                         |
| 18.153 ViennaRNA/params/1.8.4_epars.h File Reference    |
| 18.153.1 Detailed Description                           |
| 18.154 1.8.4_epars.h                                    |
| 18.155 ViennaRNA/params/1.8.4_intloops.h File Reference |
| 18.155.1 Detailed Description                           |
| 18.156 1.8.4_intloops.h                                 |
| 18.157 ViennaRNA/constraints/basic.h File Reference     |
| 18.157.1 Detailed Description                           |
| 18.158 basic.h                                          |
| 18.159 ViennaRNA/datastructures/basic.h File Reference  |
| 18.159.1 Detailed Description                           |
| 18.160 basic.h                                          |
| 18.161 ViennaRNA/params/basic.h File Reference          |
| 18.161.1 Detailed Description                           |
| 18 162 basic h 925                                      |

| 18.163 ViennaRNA/utils/basic.h File Reference      |
|----------------------------------------------------|
| 18.163.1 Detailed Description                      |
| 18.163.2 Function Documentation                    |
| 18.163.2.1 get_line()                              |
| 18.163.2.2 print_tty_input_seq()                   |
| 18.163.2.3 print_tty_input_seq_str()               |
| 18.163.2.4 warn_user()                             |
| 18.163.2.5 nrerror()                               |
| 18.163.2.6 space()                                 |
| 18.163.2.7 xrealloc()                              |
| 18.163.2.8 init_rand()                             |
| 18.163.2.9 urn()                                   |
| 18.163.2.10 int_urn()                              |
| 18.163.2.11 filecopy()                             |
| 18.163.2.12 time_stamp()                           |
| 18.164 basic.h                                     |
| 18.165 ViennaRNA/params/constants.h File Reference |
| 18.165.1 Detailed Description                      |
| 18.165.2 Macro Definition Documentation            |
| 18.165.2.1 GASCONST                                |
| 18.165.2.2 K0                                      |
| 18.165.2.3 INF                                     |
| 18.165.2.4 FORBIDDEN                               |
| 18.165.2.5 BONUS                                   |
| 18.165.2.6 NBPAIRS                                 |
| 18.165.2.7 TURN                                    |
| 18.165.2.8 MAXLOOP                                 |
| 18.166 constants.h                                 |
| 18.167 ViennaRNA/params/convert.h File Reference   |
| 18.167.1 Detailed Description                      |
| 18.168 convert.h                                   |
| 18.169 default.h                                   |
| 18.170 intl11.h                                    |
| 18.171 intl11dH.h                                  |
| 18.172 intl21.h                                    |
| 18.173 intl21dH.h                                  |
| 18.174 intl22.h                                    |
| 18.175 intl22dH.h                                  |
| 18.176 ViennaRNA/params/io.h File Reference        |
| 18.176.1 Detailed Description                      |
| 18.177 io.h                                        |
| 18.178 ViennaRNA/params/salt.h File Reference      |

| 18.178.1 Detailed Description                       |
|-----------------------------------------------------|
| 18.179 salt.h                                       |
| 18.180 ViennaRNA/part_func.h File Reference         |
| 18.180.1 Detailed Description                       |
| 18.180.2 Function Documentation                     |
| 18.180.2.1 centroid()                               |
| 18.180.2.2 get_centroid_struct_gquad_pr()           |
| 18.180.2.3 mean_bp_dist()                           |
| 18.180.2.4 expLoopEnergy()                          |
| 18.180.2.5 expHairpinEnergy()                       |
| 18.181 part_func.h                                  |
| 18.182 ViennaRNA/part_func_co.h File Reference      |
| 18.182.1 Detailed Description                       |
| 18.182.2 Function Documentation                     |
| 18.182.2.1 get_plist()                              |
| 18.183 part_func_co.h                               |
| 18.184 ViennaRNA/part_func_up.h File Reference      |
| 18.184.1 Detailed Description                       |
| 18.185 part_func_up.h                               |
| 18.186 ViennaRNA/part_func_window.h File Reference  |
| 18.186.1 Detailed Description                       |
| 18.187 part_func_window.h                           |
| 18.188 ViennaRNA/perturbation_fold.h File Reference |
| 18.188.1 Detailed Description                       |
| 18.189 perturbation_fold.h                          |
| 18.190 pf_multifold.h                               |
| 18.191 ViennaRNA/pk_plex.h File Reference           |
| 18.191.1 Detailed Description                       |
| 18.192 pk_plex.h                                    |
| 18.193 PKplex.h                                     |
| 18.194 plex.h                                       |
| 18.195 ViennaRNA/plot_aln.h File Reference          |
| 18.195.1 Detailed Description                       |
| 18.196 plot_aln.h                                   |
| 18.197 ViennaRNA/plot_layouts.h File Reference      |
| 18.197.1 Detailed Description                       |
| 18.198 plot_layouts.h                               |
| 18.199 ViennaRNA/plot_structure.h File Reference    |
| 18.199.1 Detailed Description                       |
| 18.200 plot_structure.h                             |
| 18.201 ViennaRNA/plot_utils.h File Reference        |
| 18.201.1 Detailed Description                       |

| 18.202 plot_utils.h                                              |
|------------------------------------------------------------------|
| 18.203 ViennaRNA/plotting/alignments.h File Reference            |
| 18.203.1 Detailed Description                                    |
| 18.204 alignments.h                                              |
| 18.205 ViennaRNA/utils/alignments.h File Reference               |
| 18.205.1 Detailed Description                                    |
| 18.206 alignments.h                                              |
| 18.207 ViennaRNA/plotting/layouts.h File Reference               |
| 18.207.1 Detailed Description                                    |
| 18.208 layouts.h                                                 |
| 18.209 ViennaRNA/plotting/probabilities.h File Reference         |
| 18.209.1 Detailed Description                                    |
| 18.210 probabilities.h                                           |
| 18.211 ViennaRNA/plotting/RNApuzzler/RNApuzzler.h File Reference |
| 18.211.1 Detailed Description                                    |
| 18.212 RNApuzzler.h                                              |
| 18.213 ViennaRNA/plotting/RNApuzzler/RNAturtle.h File Reference  |
| 18.213.1 Detailed Description                                    |
| 18.214 RNAturtle.h                                               |
| 18.215 ViennaRNA/plotting/structures.h File Reference            |
| 18.215.1 Detailed Description                                    |
| 18.216 structures.h                                              |
| 18.217 ViennaRNA/utils/structures.h File Reference               |
| 18.217.1 Detailed Description                                    |
| 18.218 structures.h                                              |
| 18.219 ProfileAln.h                                              |
| 18.220 ViennaRNA/profiledist.h File Reference                    |
| 18.220.1 Detailed Description                                    |
| 18.220.2 Function Documentation                                  |
| 18.220.2.1 profile_edit_distance()                               |
| 18.220.2.2 Make_bp_profile_bppm()                                |
| 18.220.2.3 free_profile()                                        |
| 18.220.2.4 Make_bp_profile()                                     |
| 18.221 profiledist.h                                             |
| 18.222 ViennaRNA/PS_dot.h File Reference                         |
| 18.222.1 Detailed Description                                    |
| 18.223 PS_dot.h                                                  |
| 18.224 ViennaRNA/read_epars.h File Reference                     |
| 18.224.1 Detailed Description                                    |
| 18.225 read_epars.h                                              |
| 18.226 ViennaRNA/ribo.h File Reference                           |
| 18,226.1 Detailed Description                                    |

| 18.227 ribo.h                                                  |
|----------------------------------------------------------------|
| 18.228 ViennaRNA/RNAstruct.h File Reference                    |
| 18.228.1 Detailed Description                                  |
| 18.229 RNAstruct.h                                             |
| 18.230 ViennaRNA/search/BoyerMoore.h File Reference            |
| 18.230.1 Detailed Description                                  |
| 18.231 BoyerMoore.h                                            |
| 18.232 ViennaRNA/sequence.h File Reference                     |
| 18.232.1 Detailed Description                                  |
| 18.233 sequence.h                                              |
| 18.234 snofold.h                                               |
| 18.235 snoop.h                                                 |
| 18.236 special_const.h                                         |
| 18.237 ViennaRNA/datastructures/stream_output.h File Reference |
| 18.237.1 Detailed Description                                  |
| 18.238 stream_output.h                                         |
| 18.239 ViennaRNA/stream_output.h File Reference                |
| 18.239.1 Detailed Description                                  |
| 18.240 stream_output.h                                         |
| 18.241 ViennaRNA/string_utils.h File Reference                 |
| 18.241.1 Detailed Description                                  |
| 18.242 string_utils.h                                          |
| 18.243 ViennaRNA/stringdist.h File Reference                   |
| 18.243.1 Detailed Description                                  |
| 18.243.2 Function Documentation                                |
| 18.243.2.1 Make_swString()                                     |
| 18.243.2.2 string_edit_distance()                              |
| 18.244 stringdist.h                                            |
| 18.245 ViennaRNA/structure_utils.h File Reference              |
| 18.245.1 Detailed Description                                  |
| 18.246 structure_utils.h                                       |
| 18.247 ViennaRNA/structured_domains.h File Reference           |
| 18.247.1 Detailed Description                                  |
| 18.248 structured_domains.h                                    |
| 18.249 ViennaRNA/subopt.h File Reference                       |
| 18.249.1 Detailed Description                                  |
| 18.249.2 Typedef Documentation                                 |
| 18.249.2.1 SOLUTION                                            |
| 18.250 subopt.h                                                |
| 18.251 subopt_zuker.h                                          |
| 18.252 ViennaRNA/svm_utils.h File Reference                    |
| 18.252.1 Detailed Description                                  |

| 18.253 svm_utils.h                                     |
|--------------------------------------------------------|
| 18.254 ViennaRNA/treedist.h File Reference             |
| 18.254.1 Detailed Description                          |
| 18.254.2 Function Documentation                        |
| 18.254.2.1 make_tree()                                 |
| 18.254.2.2 tree_edit_distance()                        |
| 18.254.2.3 free_tree()                                 |
| 18.255 treedist.h                                      |
| 18.256 ViennaRNA/units.h File Reference                |
| 18.256.1 Detailed Description                          |
| 18.257 units.h                                         |
| 18.258 ViennaRNA/utils/units.h File Reference          |
| 18.258.1 Detailed Description                          |
| 18.259 units.h                                         |
| 18.260 ViennaRNA/unstructured_domains.h File Reference |
| 18.260.1 Detailed Description                          |
| 18.260.2 Function Documentation                        |
| 18.260.2.1 vrna_ud_get_motif_size_at()                 |
| 18.260.2.2 vrna_ud_set_prob_cb()                       |
| 18.261 unstructured_domains.h                          |
| 18.262 ViennaRNA/io/utils.h File Reference             |
| 18.262.1 Detailed Description                          |
| 18.263 utils.h                                         |
| 18.264 ViennaRNA/plotting/utils.h File Reference       |
| 18.264.1 Detailed Description                          |
| 18.265 utils.h                                         |
| 18.266 ViennaRNA/utils.h File Reference                |
| 18.266.1 Detailed Description                          |
| 18.267 utils.h                                         |
| 18.268 cpu.h                                           |
| 18.269 higher_order_functions.h                        |
| 18.270 ViennaRNA/utils/strings.h File Reference        |
| 18.270.1 Detailed Description                          |
| 18.270.2 Function Documentation                        |
| 18.270.2.1 str_uppercase()                             |
| 18.270.2.2 str_DNA2RNA()                               |
| 18.270.2.3 random_string()                             |
| 18.270.2.4 hamming()                                   |
| 18.270.2.5 hamming_bound()                             |
| 18.271 strings.h                                       |
| 18.272 svm.h                                           |
| 18.273 yrna config.h                                   |

|              | 18.274 ViennaRNA/landscape/walk.h File Reference | 1297 |
|--------------|--------------------------------------------------|------|
|              | 18.274.1 Detailed Description                    | 1298 |
|              | 18.275 walk.h                                    | 1298 |
|              | 18.276 ViennaRNA/walk.h File Reference           | 1299 |
|              | 18.276.1 Detailed Description                    | 1299 |
|              | 18.277 walk.h                                    | 1299 |
|              | 18.278 wrap_dlib.h                               | 1299 |
|              | 18.279 zscore.h                                  | 1299 |
| Bibliography |                                                  |      |
| n            | dex                                              | 1303 |

# **Chapter 1**

## RNAlib-2.6.0b

## 1.1 A Library for predicting and comparing RNA secondary structures

The core of the ViennaRNA Package ([19], [14]) is formed by a collection of routines for the prediction and comparison of RNA secondary structures. These routines can be accessed through stand-alone programs, such as RNAfold, RNAdistance etc., which should be sufficient for most users. For those who wish to develop their own programs we provide a library which can be linked to your own code.

This document describes the library and will be primarily useful to programmers. However, it also contains details about the implementation that may be of interest to advanced users. The stand-alone programs are described in separate man pages. The latest version of the package including source code and html versions of the documentation can be found at

http://www.tbi.univie.ac.at/RNA

Date

1994-2020

**Authors** 

Ivo Hofacker, Peter Stadler, Ronny Lorenz, and so many more

## 1.2 License

Disclaimer and Copyright

The programs, library and source code of the Vienna RNA Package are free software. They are distributed in the hope that they will be useful but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Permission is granted for research, educational, and commercial use and modification so long as 1) the package and any derived works are not redistributed for any fee, other than media costs, 2) proper credit is given to the authors and the Institute for Theoretical Chemistry of the University of Vienna.

If you want to include this software in a commercial product, please contact the authors.

2 RNAlib-2.6.0b

#### 1.3 Contributors

Over the past decades since the <code>ViennaRNA Package</code> first sprang to life as part of Ivo Hofackers PhD project, several different authors contributed more and more algorithm implementations. In 2008, Ronny Lorenz took over the extensive task to harmonize and simplify the already existing implementations for the sake of easier feature addition. This eventually lead to version 2.0 of the <code>ViennaRNA Package</code>. Since then, he (re-)implemented a large portion of the currently existing library features, such as the new, generalized constraints framework, RNA folding grammar domain extensions, and the major part of the scripting language interface. Below is a list of most people who contributed larger parts of the implementations:

- Daniel Wiegreffe (RNAturtle and RNApuzzler secondary structure layouts)
- · Andreas Gruber (first approach on RNALfold Z-score filtering)
- · Juraj Michalik (non-redundant Boltzmann sampling)
- Gregor Entzian (neighbor, walk)
- · Mario Koestl (worked on SWIG interface and related unit testing)
- Dominik Luntzer (pertubation fold)
- Stefan Badelt (cofold evaluation, RNAdesign.pl, cofold findpath extensions)
- Stefan Hammer (parts of SWIG interface and corresponding unit tests)
- Ronny Lorenz (circfold, version 2.0, generic constraints, grammar extensions, and much more)
- Hakim Tafer (RNAplex, RNAsnoop)
- Ulrike Mueckstein (RNAup)
- Stephan Bernhart (RNAcofold, RNAplfold, unpaired probabilities, alifold, and so many more)
- Stefan Wuchty (RNAsubopt)
- Ivo Hofacker, Peter Stadler, and Christoph Flamm (almost every implementation up to version 1.8.5)

We also want to thank the following people:

- Sebastian Bonhoeffer's implementation of partition function folding served as a precursor to our part\_func.c
- · Manfred Tacker hacked constrained folding into fold.c for the first time
- · Martin Fekete made the first attempts at "alignment folding"
- Andrea Tanzer and Martin Raden (Mann) for not stopping to report bugs found through comprehensive usage of our applications and RNAlib
- Thanks also to everyone else who helped testing and finding bugs, especially Christoph Flamm, Martijn Huynen, Baerbel Krakhofer, and many more

If you want to get involved in the development of the ViennaRNA Package yourself, please read the Contributing page.

# Chapter 2

# **Getting Started**

- · Installation and Configuration describes how to install and configure RNAlib for your requirements
- · HelloWorld presents some small example programs to get a first impression on how to use this library
- HelloWorld (Perl/Python) contains small examples that show how to use RNAlib even without C/C++ programming skills from within your favorite scripting language

## 2.1 Installation and Configuration

A documentation on how to configure the different features of RNAlib, how to install the ViennaRNA Package, and finally, how to link you own programs against RNAlib.

## 2.1.1 Installing the ViennaRNA Package

For best portability the ViennaRNA package uses the GNU autoconf and automake tools. The instructions below are for installing the ViennaRNA package from source. However, pre-compiled binaries for various Linux distributions, as well as for Windows users are available from Download section of the main ViennaRNA homepage.

#### 2.1.1.1 Quick-start

Usually you'll just unpack, configure and make. To do this type:

```
tar -zxvf ViennaRNA-2.6.0b.tar.gz
cd ViennaRNA-2.6.0b
./configure
make
sudo make install
```

#### 2.1.1.2 Installation without root privileges

If you do not have root privileges on your computer, you might want to install the ViennaRNA Package to a location where you actually have write access to. To do so, you can set the installation prefix of the ./configure script like so:

```
./configure --prefix=/home/username/ViennaRNA
```

This will install the entire ViennaRNA Package into a new directory ViennaRNA directly into the users username home directory.

#### 2.1.1.3 Notes for MacOS X users

**2.1.1.3.1 Compilation** Although users will find /usr/bin/gcc and /usr/bin/g++ executables in their directory tree, these programs are not at all what they pretend to be. Instead of including the GNU programs, Apple decided to install clang/llvm in disguise. Unfortunately, the default version of clang/llvm does not support OpenMP (yet), but only complains at a late stage of the build process when this support is required. Therefore, it seems necessary to deactivate OpenMP support by passing the option –disable-openmp to the ./configure script.

**2.1.1.3.2 Missing EXTERN.h include file** Furthermore, as far as we are informed, users are discouraged to use the Perl 5 interpreter that is shipped with Mac OS X. Instead, one should install a more recent version from another source, e.g. homebrew. If, however, for any reason you do not want to install your own Perl 5 interpreter but use the one from Apple, you need to specify its include path to enable building the ViennaRNA Perl interface. Otherwise, the file EXTERN.h will be missing at compile time. To fix this problem, you first need to find out where EXTERN.h is located:

```
sudo find /Library -type f -name EXTERN.h
```

Then choose the one that corresponds to your default perl interpreter (find out the version number with perl - v grep version), simply execute the following before running the ./configure script, e.g.:

 ${\tt export~CPATH=/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/Perl/5.18/darwin-thread-models/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/MacOSX10.15.sdk/System/Library/SDKs/System/Library/SDKs/System/Library/SDKs/System/Library/SDKs/System/Library/SDKs/System/Library/SDKs/System/Library/SDKs/System/Library/SDKs/System/SDKs/System/SDKs/System/SDKs/System/SDKs/Sy$ 

if your default perl is v5.18 running on MacOSX10.15. Change the paths according to your current setup. After that, running ./configure and compilation should run fine.

See also https://stackoverflow.com/questions/52682304/fatal-error-extern-h-file-not-found-

**2.1.1.3.3 Universal binaries** Additionally, if you intend to build the ViennaRNA such that it runs on both, x86\_64 and the armv8 (such as for the M1 processors in recent MacBooks), architectures, you need to build a so-called universal binary. Note, however, that to accomplish this task, you might need to deactivate any third-party library dependency as in most cases, only one architecture will be available at link time. This includes the Perl 5 and Python interfaces but also MPFR and GSL support, possibly even more. In order to compile and link the programs, library, and scripting language interfaces of the ViennaRNA Package for multiple architectures, we've added a new configure switch that sets up the required changes automatically:

```
./configure --enable-universal-binary
```

#### Note

Note, that with link time optimization turned on, MacOS X's default compiler (llvm/clang) generates an intermediary binary format that can not easily be combined into a multi-architecture library. Therefore, the –enable-universal-binary switch turns off link time optimization!

#### 2.1.2 Configuring RNAlib features

The ViennaRNA Package includes additional executable programs such as RNAforester, Kinfold, and Kinwalker. Furthermore, we include several features in our C-library that may be activated by default, or have to be explicitly turned on at configure-time. Below we list a selection of the available configure options that affect the features included in all executable programs, the RNAlib C-library, and the corresponding scripting language interface(s).

#### 2.1.2.1 Streaming SIMD Extension (SSE) support

Since version 2.3.5 our sources contain code that implements a faster multibranch loop decomposition in global MFE predictions, as used e.g. in RNAfold. This implementation makes use of modern processors capability to execute particular instructions on multiple data simultaneously (SIMD - single instruction multiple data, thanks to W. B. Langdon for providing the modified code). Consequently, the time required to assess the minimum of all multibranch loop decompositions is reduced up to about one half compared to the runtime of the original implementation. This feature is enabled by default since version 2.4.11 and a dispatcher ensures that the correct implementation will be selected at runtime. If for any reason you want to disable this feature at compile-time use the following configure flag:

```
./configure --disable-simd
```

#### 2.1.2.2 Scripting Interfaces

The ViennaRNA Package comes with scripting language interfaces for Perl 5, Python 3.x, and Python 2.x (provided by swig), that allow one to use the implemented algorithms directly without the need of calling an executable program. The interfaces are build by default whenever the autoconf tool-chain detects the required build tools on your system. You may, however, explicitly turn off particular scripting language interface support at configure-time, for instance for Perl 5 and Python 2, before the actual installation.

#### Example:

```
./configure --without-perl --without-python2
```

Disabling the scripting language support all-together can be accomplished using the following switch:

```
./configure --without-swig
```

#### 2.1.2.3 Cluster Analysis

The programs AnalyseSeqs and AnalyseDists offer some cluster analysis tools (split decomposition, statistical geometry, neighbor joining, Ward's method) for sequences and distance data. To also build these programs add

```
--with-cluster
```

to your configure options.

#### 2.1.2.4 Kinfold

The Kinfold program can be used to simulate the folding dynamics of an RNA molecule, and is compiled by default. Use the

```
--without-kinfold
```

option to skip compilation and installation of Kinfold.

#### 2.1.2.5 RNAforester

The RNAforester program is used for comparing secondary structures using tree alignment. Similar to Kinfold, use the

```
--without-forester
```

option to skip compilation and installation of RNAforester.

#### 2.1.2.6 Kinwalker

The Kinwalker algorithm performs co-transcriptional folding of RNAs, starting at a user specified structure (default ← : open chain) and ending at the minimum free energy structure. Compilation and installation of this program is deactivated by default. Use the

```
--with-kinwalker
```

option to enable building and installation of Kinwalker.

#### 2.1.2.7 Link Time Optimization (LTO)

To increase the performance of our implementations, the ViennaRNA Package tries to make use of the Link Time Optimization (LTO) feature of modern C-compilers. If you are experiencing any troubles at make-time or run-time, or the configure script for some reason detects that your compiler supports this feature although it doesn't, you can deactivate it using the flag

```
./configure --disable-lto
```

Note, that GCC before version 5 is known to produce unreliable LTO code, especially in combination with SIMD (see Streaming SIMD Extension (SSE) support). We therefore recommend using a more recent compiler (GCC 5 or above) or to turn off one of the two features, LTO or SIMD optimized code.

#### 2.1.2.8 OpenMP support

To enable concurrent computation of our implementations and in some cases parallelization of the algorithms we make use of the OpenMP API. This interface is well understood by most modern compilers. However, in some cases it might be necessary to deactivate OpenMP support and therefore transform *RNAlib* into a C-library that is not entirely *thread-safe*. To do so, add the following configure option

```
./configure --disable-openmp
```

#### 2.1.2.9 POSIX threads (pthread) support

To enable concurrent computation of multiple input data in RNAfold, and for our implementation of the concurrent unordered insert, ordered output flush data structure vrna\_ostream\_t we make use of POSIX threads. This should be supported on all modern platforms and usually does not pose any problems. Unfortunately, we use a threadpool implementation that is not compatible with Microsoft Windows yet. Thus, POSIX thread support can not be activated for Windows builds until we have fixed this problem. If you want to compile RNAfold and RNAlib without POSIX threads support for any other reasons, add the following configure option

```
./{\tt configure} \ -{\tt disable-pthreads}
```

#### 2.1.2.10 SVM Z-score filter in RNALfold

By default, RNALfold that comes with the ViennaRNA Package allows for z-score filtering of its predicted results using a support vector machine (SVM). However, the library we use to implement this feature (libsvm) is statically linked to our own RNAlib. If this introduces any problems for your own third-party programs that link against RNAlib, you can safely switch off the z-scoring implementation using

```
./configure --without-svm
```

#### 2.1.2.11 GNU Scientific Library

The new program RNApvmin computes a pseudo-energy perturbation vector that aims to minimize the discrepancy of predicted, and observed pairing probabilities. For that purpose it implements several methods to solve the optimization problem. Many of them are provided by the GNU Scientific Library, which is why the RNApvmin program, and the RNAlib C-library are required to be linked against libgsl. If this introduces any problems in your own third-party programs that link against RNAlib, you can turn off a larger portion of available minimizers in RNApvmin and linking against libgsl all-together, using the switch

```
./configure --without-gsl
```

#### 2.1.2.12 Disable C11/C++11 feature support

By default, we use C11/C++11 features in our implementations. This mainly accounts for unnamed unions/structs within *RNAlib*. The configure script automatically detects whether or not your compiler understands these features. In case you are using an older compiler, these features will be deactivated by setting a specific pre-processor directive. If for some reason you want to deactivate C11/C++11 features despite the capabilities of your compiler, use the following configure option:

```
./configure --disable-c11
```

#### 2.1.2.13 Enable warnings for use of deprecated symbols

Since version 2.2 we are in the process of transforming the API of our *RNAlib*. Hence, several symbols are marked as *deprecated* whenever they have been replaced by the new API. By default, deprecation warnings at compile time are deactivated. If you want to get your terminal spammed by tons of deprecation warnings, enable them using:

```
./configure --enable-warn-deprecated
```

#### 2.1.2.14 Single precision partition function

Calculation of partition functions (via RNAfold -p) uses double precision floats by default, to avoid overflow errors on longer sequences. If your machine has little memory and you don't plan to fold sequences over 1000 bases in length you can compile the package to do the computations in single precision by running

```
./configure --enable-floatpf
```

#### Note

Using this option is discouraged and not necessary on most modern computers.

#### 2.1.2.15 Help

For a complete list of all ./configure options and important environment variables, type

```
./configure --help
```

For more general information on the build process see the INSTALL file.

## 2.1.3 Linking against RNAlib

In order to use our implemented algorithms you simply need to link your program to our *RNAlib* C-library that usually comes along with the ViennaRNA Package installation. If you've installed the ViennaRNA Package as a pre-build binary package, you probably need the corresponding development package, e.g. *viennarna-devel*, or *viennarna-dev*. The only thing that is left is to include the ViennaRNA header files into your source code, e.g.:

```
#include <ViennaRNA/mfe.h>
```

and start using our fast and efficient algorithm implementations.

See also

In the C Examples and Some Examples using RNAlib API v3.0 sections, we list a small set of example code that usually is a good starting point for your application.

## 2.1.3.1 Compiler and Linker flags

Of course, simply adding the ViennaRNA header files into your source code is usually not enough. You probably need to tell your compiler where to find the header files, and sometimes add additional pre-processor directives. Whenever your installation of *RNAlib* was build with default settings and the header files were installed into their default location, a simple

```
-I/usr/include
```

Warning

pre-processor/compile flag should suffice. It can even be omitted in this case, since your compiler should search this directory by default anyway. You only need to change the path from /usr/include to the correct location whenever the header files have been installed into a non-standard directory.

On the other hand, if you've compiled *RNAlib* with some non-default settings then you probably need to define some additional pre-processor macros:

• VRNA\_DISABLE\_C11\_FEATURES . . . Disable C11/C++11 features.

Add this directive to your pre-processor/compile flags only if *RNAlib* was build with the --disable-c11 configure option.

See also

Disable C11/C++11 feature support and vrna C11 features()

• VRNA WARN DEPRECATED ... Enable warnings for using deprecated symbols.

Note

Adding this directive enables compiler warnings whenever you use symbols in *RNAlib* that are marked *deprecated*.

See also

Enable warnings for use of deprecated symbols and Deprecated List

• *USE\_FLOAT\_PF* . . . Use single precision floating point operations instead of double precision in partition function computations.

Warning

Define this macro only if RNAlib was build with the --enable-floatpf configure option!

See also

Single precision partition function

Simply add the corresponding definition(s) to your pre-processor/compile flags, for instance:

```
-DVRNA_DISABLE_C11_FEATURES
```

Finally, linking against RNAlib is achieved by adding the following linker flag

```
-L/usr/lib -lRNA -fopenmp
```

Again, the path to the library, /usr/lib, may be omitted if this path is searched for libraries by default. The second flag tells the linker to include libRNA.a, and the remaining two flags activate Link Time Optimization (LTO) and OpenMP support support, respectively.

Note

Depending on your linker, the last two flags may differ.

Depending on your configure time decisions, you can drop one or both of the last flags.

In case you've compiled *RNAlib* with LTO support (See Link Time Optimization (LTO)) and you are using the same compiler for your third-party project that links against our library, you may add the  $_{-\text{flto}}$ 

flag to enable Link Time Optimization.

## 2.1.3.2 The pkg-config tool

Instead of hard-coding the required compiler and linker flags, you can also let the *pkg-config* tool automatically determine the required flags. This tool is usually packaged for any Linux distribution and should be available for MacOS X and MinGW as well. We ship a file *RNAlib2.pc* which is installed along with the static *libRNA.a* C-library and populated with all required compiler and linker flags that correspond to your configure time decisions.

The compiler flags required for properly building your code that uses RNAlib can be easily obtained via

```
pkg-config --cflags RNAlib2
```

You get the corresponding linker flags using

```
pkg-config --libs RNAlib2
```

With this widely accepted standard it is also very easy to integrate *RNAlib* in your *autotools* project, just have a look at the *PKG\_CHECK\_MODULES* macro.

#### 2.2 HelloWorld

Below, you'll find some more or less simple C programs showing first steps into using *RNAlib*. A complete list of example C programs can be found in the C Examples section.

## Simple MFE prediction for a given sequence

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ViennaRNA/fold.h>
#include <ViennaRNA/utils/basic.h>
int
main()
  /* The RNA sequence */
  char *seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";
  /* allocate memory for MFE structure (length + 1) */
  char *structure = (char *) vrna_alloc(sizeof(char) * (strlen(seq) + 1));
  /* predict Minmum Free Energy and corresponding secondary structure */
  float mfe = vrna_fold(seq, structure);
  /\star print sequence, structure and MFE \star/
  printf("%s\n%s [ %6.2f ]\n", seq, structure, mfe);
  /* cleanup memory */
  free (structure);
  return 0;
```

#### See also

examples/helloworld\_mfe.c in the source code tarball

## Simple MFE prediction for a multiple sequence alignment

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ViennaRNA/alifold.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/alignments.h>
int
main()
  /\star The RNA sequence alignment \star/
  const char *sequences[] = {
    "CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU",
    "CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU",
       -CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU",
    NULL /* indicates end of alignment */
  /\star compute the consensus sequence \star/
              *cons = consensus(sequences);
  /\star allocate memory for MFE consensus structure (length + 1) \star/
              *structure = (char *)vrna_alloc(sizeof(char) * (strlen(sequences[0]) + 1));
  /* print consensus sequence, structure and MFE */ printf("%s\n%s [ %6.2f ]\n", cons, structure, mfe);
  /* cleanup memory */
  free (cons):
  free (structure);
  return 0;
```

2.2 HelloWorld 11

#### See also

examples/helloworld\_mfe\_comparative.c in the source code tarball

## Simple Base Pair Probability computation

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ViennaRNA/fold.h>
#include <ViennaRNA/part_func.h>
#include <ViennaRNA/utils/basic.h>
int
main()
  /* The RNA sequence */
              *seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";
  /* allocate memory for pairing propensity string (length + 1) */
char *propensity = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));
  /\star pointers for storing and navigating through base pair probabilities \star/
  vrna_ep_t *ptr, *pair_probabilities = NULL;
               en = vrna_pf_fold(seq, propensity, &pair_probabilities);
  /* print sequence, pairing propensity string and ensemble free energy */ printf("%s\n%s [ %6.2f ]\n", seq, propensity, en);
  /* print all base pairs with probability above 50% */
for (ptr = pair_probabilities; ptr->i != 0; ptr++)
   if (ptr->p > 0.5)
    printf("p(%d, %d) = %g\n", ptr->i, ptr->j, ptr->p);
  /* cleanup memory */
  free (pair_probabilities);
  free (propensity);
  return 0;
```

#### See also

examples/helloworld probabilities.c in the source code tarball

## **Deviating from the Default Model**

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ViennaRNA/model.h>
#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/mfe.h>
int
  /\star initialize random number generator \star/
  vrna_init_rand();
  /* Generate a random sequence of 50 nucleotides */
           *seq = vrna_random_string(50, "ACGU");
  /* allocate memory for MFE structure (length + 1) */
            *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));
  /* create a new model details structure to store the Model Settings */
  vrna md t md:
  /\star ALWAYS set default model settings first! \star/
  vrna_md_set_default(&md);
  /* change temperature and activate G-Quadruplex prediction */
 md.temperature = 25.0; /* 25 Deg Celcius */
```

#### See also

examples/fold\_compound\_md.c in the source code tarball

## 2.3 HelloWorld (Perl/Python)

#### 2.3.1 Perl5

## Simple MFE prediction for a given sequence

```
use RNA;
# The RNA sequence
my $seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";
# compute minimum free energy (MFE) and corresponding structure
my ($ss, $mfe) = RNA::fold($seq);
# print output
printf "%s\n%s [ %6.2f ]\n", $seq, $ss, $mfe;
```

## Simple MFE prediction for a multiple sequence alignment

```
use RNA;
# The RNA sequence alignment
my @sequences = (
    "CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU",
    "CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU",
    "---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU"
);
# compute the consensus sequence
my $cons = RNA::consensus(\@sequences);
# predict Minmum Free Energy and corresponding secondary structure
my ($ss, $mfe) = RNA::alifold(\@sequences);
# print output
printf "%s\n%s [ %6.2f ]\n", $cons, $ss, $mfe;
```

#### **Deviating from the Default Model**

```
use RNA;
# The RNA sequence
my $seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";
# create a new model details structure
my $md = new RNA::md();
# change temperature and dangle model
$md->(temperature) = 20.0; # 20 Deg Celcius
```

```
$md->{dangles} = 1;  # Dangle Model 1

# create a fold compound
my $fc = new RNA::fold_compound($seq, $md);

# predict Minmum Free Energy and corresponding secondary structure
my ($ss, $mfe) = $fc->mfe();

# print sequence, structure and MFE
printf "%s\n%s [ %6.2f ]\n", $seq, $ss, $mfe;
```

#### 2.3.2 Python

## Simple MFE prediction for a given sequence

```
import RNA
# The RNA sequence
seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA"
# compute minimum free energy (MFE) and corresponding structure
(ss, mfe) = RNA.fold(seq)
# print output
print("{}\n{} [ {:6.2f} ]".format(seq, ss, mfe))
```

#### Simple MFE prediction for a multiple sequence alignment

```
import RNA

# The RNA sequence alignment
sequences = [
    "CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU",
    "CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU",
    "---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU"
]

# compute the consensus sequence
cons = RNA.consensus(sequences)

# predict Minmum Free Energy and corresponding secondary structure
(ss, mfe) = RNA.alifold(sequences);

# print output
print("{}\n{} [ {:6.2f} ]".format(cons, ss, mfe))
```

#### **Deviating from the Default Model**

```
import RNA

# The RNA sequence
seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA"

# create a new model details structure
md = RNA.md()

# change temperature and dangle model
md.temperature = 20.0 # 20 Deg Celcius
md.dangles = 1 # Dangle Model 1

# create a fold compound
fc = RNA.fold_compound(seq, md)

# predict Minmum Free Energy and corresponding secondary structure
(ss, mfe) = fc.mfe()

# print sequence, structure and MFE
print("{}\n{} [ {:6.2f} ]".format(seq, ss, mfe))
```

# **Chapter 3**

# **Concepts and Algorithms**

This is an overview of the concepts and algorithms for which implementations can be found in this library.

Almost all of them rely on the physics based Nearest Neighbor Model for RNA secondary structure prediction.

- · RNA Structure gives an introduction into the different layers of abstraction for RNA structures
- · Distance Measures introduces different metrics to allow for the comparison of secondary structures
- Free Energy of Secondary Structures shows how the stability of a secondary structure can be quantified in terms of free energy
- Secondary Structure Folding Grammar explains the basic recursive decomposition scheme that is applied in secondary structure prediction
- RNA Secondary Structure Landscapes describes how transition paths between secondary structures span a landscape like graph
- Minimum Free Energy Algorithm(s) compute the most stable conformation in thermodynamic equilibrium
- Partition Function and Equilibrium Probability Algorithm(s) enable one to apply statistical mechanics to derive equilibrium probabilities of structure features
- Suboptimals and (other) Representative Structures allow for alternative description and enumeration of the structure ensemble
- RNA-RNA Interaction introduces how to model the interaction between RNA molecules
- Locally Stable Secondary Structures offer insights into structuredness of long sequences and entire genomes
- Comparative Structure Prediction augment structure prediction with evolutionary conservation of homologous sequences
- Classified DP variations perform an *a priori* partitioning of the structure ensemble and compute various properties for the resulting classes.
- RNA Sequence Design constitutes the inverse problem of structure prediction
- Experimental Structure Probing Data can be used to guide structure prediction, for instance using SHAPE reactivity data
- Ligand Binding adds more complexity to structure prediction by modelling the interaction between small chemical compounds or proteins and the RNA
- (Tertiary) Structure Motifs extend the abstraction of secondary structure beyond canonical base pair formation

## 3.1 RNA Structure

#### 3.1.1 RNA Structures

#### 3.1.2 Levels of Structure Abstraction

- 3.1.2.1 Primary Structure
- 3.1.2.2 Secondary Structure
- 3.1.2.3 Tertiary Structure
- 3.1.2.4 Quarternary Structure
- 3.1.2.5 Pseudo-Knots

## 3.2 Distance Measures

A simple measure of dissimilarity between secondary structures of equal length is the base pair distance, given by the number of pairs present in only one of the two structures being compared. I.e. the number of base pairs that have to be opened or closed to transform one structure into the other. It is therefore particularly useful for comparing structures on the same sequence. It is implemented by

Compute the "base pair" distance between two secondary structures s1 and s2.

For other cases a distance measure that allows for gaps is preferable. We can define distances between structures as edit distances between trees or their string representations. In the case of string distances this is the same as "sequence alignment". Given a set of edit operations and edit costs, the edit distance is given by the minimum sum of the costs along an edit path converting one object into the other. Edit distances like these always define a metric. The edit operations used by us are insertion, deletion and replacement of nodes. String editing does not pay attention to the matching of brackets, while in tree editing matching brackets represent a single node of the tree. Tree editing is therefore usually preferable, although somewhat slower. String edit distances are always smaller or equal to tree edit distances.

The different level of detail in the structure representations defined above naturally leads to different measures of distance. For full structures we use a cost of 1 for deletion or insertion of an unpaired base and 2 for a base pair. Replacing an unpaired base for a pair incurs a cost of 1.

Two cost matrices are provided for coarse grained structures:

3.2 Distance Measures 17

```
/* Null, H, B, I, M, S, E */
{ 0, 2, 2, 2, 2, 1, 1}, /* Null replaced */
{ 2, 0, 2, 2, 2, 2, INF, INF}, /* H replaced */
{ 2, 2, 0, 1, 2, INF, INF}, /* B replaced */
{ 2, 2, 1, 0, 2, INF, INF}, /* I replaced */
{ 2, 2, 2, 2, 0, INF, INF}, /* M replaced */
{ 1, INF, INF, INF, INF, 0, INF}, /* S replaced */
{ 1, INF, INF, INF, INF, INF, 0}, /* E replaced */

/* Null, H, B, I, M, S, E */
{ 0, 100, 5, 5, 75, 5, 5}, /* Null replaced */
{ 100, 0, 8, 8, 8, INF, INF}, /* H replaced */
{ 5, 8, 0, 3, 8, INF, INF}, /* B replaced */
{ 5, 8, 3, 0, 8, INF, INF}, /* I replaced */
{ 5, 8, 8, 8, 0, INF, INF}, /* M replaced */
{ 5, INF, INF, INF, INF, 0, INF}, /* S replaced */
{ 5, INF, INF, INF, INF, INF, 0}, /* E replaced */
{ 5, INF, INF, INF, INF, INF, 0}, /* E replaced */
```

The lower matrix uses the costs given in [28]. All distance functions use the following global variables:

```
int cost_matrix;
```

Specify the cost matrix to be used for distance calculations.

```
int edit_backtrack;
```

Produce an alignment of the two structures being compared by tracing the editing path giving the minimum distance.

```
char *aligned_line[4];
```

Contains the two aligned structures after a call to one of the distance functions with edit backtrack set to 1.

See also

utils.h, dist\_vars.h and stringdist.h for more details

#### 3.2.1 Functions for Tree Edit Distances

```
Tree *make_tree (char *struc)
```

Constructs a Tree (essentially the postorder list) of the structure 'struc', for use in tree edit distance().

```
float tree_edit_distance (Tree *T1, Tree *T2)
```

Calculates the edit distance of the two trees.

```
void free_tree(Tree *t)
```

Free the memory allocated for Tree t.

See also

dist\_vars.h and treedist.h for prototypes and more detailed descriptions

## 3.2.2 Functions for String Alignment

```
swString *Make_swString (char *string)
```

Convert a structure into a format suitable for string\_edit\_distance().

```
float string_edit_distance (swString *T1, swString *T2)
```

Calculate the string edit distance of T1 and T2.

See also

dist vars.h and stringdist.h for prototypes and more detailed descriptions

## 3.2.3 Functions for Comparison of Base Pair Probabilities

For comparison of base pair probability matrices, the matrices are first condensed into probability profiles which are the compared by alignment.

condense pair probability matrix into a vector containing probabilities for unpaired, upstream paired and downstream paired.

```
float profile_edit_distance ( const float *T1, const float *T2)
```

Align the 2 probability profiles T1, T2

See also

ProfileDist.h for prototypes and more details of the above functions

## 3.3 Free Energy of Secondary Structures

A description on how secondary structures are decomposed into individual loops to eventually evaluate their stability in terms of free energy.

## 3.3.1 Secondary Structure Loop Decomposition

Each base pair in a secondary structure closes a loop, thereby directly enclosing unpaired nucleotides, and/or further base pairs. Our implementation distinguishes four basic types of loops:

- · hairpin loops
- · interior loops
- · multibranch loops
- · exterior loop

While the exterior loop is a special case without a closing pair, the other loops are determined by the number of base pairs involved in the loop formation, i.e. hairpin loops are 1-loops, since only a single base pair delimits the loop. interior loops are 2-loops due to their enclosing, and enclosed base pair. All loops where more than two base pairs are involved, are termed multibranch loops.



Any secondary structure can be decomposed into its loops. Each of the loops then can be scored in terms of free energy, and the free energy of an entire secondary structure is simply the sum of free energies of its loops.



#### 3.3.1.1 Free Energy Evaluation API

While we implement some functions that decompose a secondary structure into its individual loops, the majority of methods provided in **RNAlib** are dedicated to free energy evaluation. The corresponding modules are:

See also

Free Energy Evaluation, Energy Evaluation for Individual Loops

## 3.3.2 Free Energy Parameters

For secondary structure free energy evaluation we usually utilize the set of Nearest Neighbor Parameters also used in other software, such as *UNAfold* and *RNAstructure*. While the *RNAlib* already contains a compiled-in set of the latest *Turner 2004 Free Energy Parameters*, we defined a file format that allows to change these parameters at runtime. The ViennaRNA Package already comes with a set of parameter files containing

- Turner 1999 RNA parameters
- · Mathews 1999 DNA parameters
- · Andronescu 2007 RNA parameters
- · Mathews 2004 DNA parameters

#### 3.3.2.1 Free Energy Parameters Modification API

See also

Energy Parameters, Reading/Writing Energy Parameter Sets from/to File

#### 3.3.3 Fine-tuning of the Energy Evaluation Model

See also

Fine-tuning of the Implemented Models

## 3.4 Secondary Structure Folding Grammar

A description of the basic grammar to generate secondary structures, used for almost all prediction algorithms in our library and how to modify it.

## 3.4.1 Secondary Structure Folding Recurrences

To predict secondary structures composed of the four distinguished loop types introduced before, all algorithms implemented in *RNAlib* follow a specific decomposition scheme, also known as the *RNA folding grammar*, or *Secondary Structure Folding Recurrences*.



However, compared to other RNA secondary structure prediction libraries, our implementation allows for a fine-grained control of the above recursions by constraining both, the individual derivations of the grammar as well as the evaluation of particular loop contributions. Furthermore, we provide a mechanism to extend the above grammar with additional derivation rules, so-called *Domains*.

#### 3.4.2 Additional Structural Domains

Some applications of RNA secondary structure prediction require an extension of the *regular RNA folding grammar*. For instance one would like to include proteins and other ligands binding to unpaired loop regions while competing with conventional base pairing. Another application could be that one may want to include the formation of self-enclosed structural modules, such as *G-quadruplexes*. For such applications, we provide a pair of additional domains that extend the regular RNA folding grammar, Structured Domains and Unstructured Domains.



While unstructured domains are usually determined by a more or less precise sequence motif, e.g. the binding site for a protein, structured domains are considered self-enclosed modules with a more or less complex pairing pattern. Our extension with these two domains introduces two production rules to fill additional dynamic processing matrices S and U where we store the pre-computed contributions of structured domains (S), and unstructured domains (U).

#### 3.4.2.1 Structured Domains

Usually, structured domains represent self-enclosed structural modules that exhibit a more or less complex base pairing pattern. This can be more or less well-defined 3D motifs, such as *G-Quadruplexes*, or loops with additional non-canonical base pair interactions, such as *kink-turns*.

Note

Currently, our implementation only provides the specialized case of *G-Quadruplexes*.

#### 3.4.2.2 Unstructured Domains

Unstructured domains appear in the production rules of the RNA folding grammar wherever new unpaired nucleotides are attached to a growing substructure (see also [21]):



The white boxes represent the stretch of RNA bound to the ligand and represented by a more or less specific sequence motif. The motif itself is considered unable to form base pairs. The additional production rule U is used to precompute the contribution of unpaired stretches possibly bound by one or more ligands. The auxiliary DP matrix for this production rule is filled right before processing the other (regular) production rules of the RNA folding grammar.

#### 3.4.2.3 Domain Extension API

For the sake of flexibility, each of the domains is associated with a specific data structure serving as an abstract interface to the extension. The interface uses callback functions to

- · pre-compute arbitrary data, e.g. filling up additional dynamic programming matrices, and
- · evaluate the contribution of a paired or unpaired structural feature of the RNA.

Implementations of these callbacks are separate for regular free energy evaluation, e.g. MFE prediction, and partition function applications. A data structure holding arbitrary data required for the callback functions can be associated to the domain as well. While *RNAlib* comes with a default implementation for structured and unstructured domains, the system is entirely user-customizable.

See also

Unstructured Domains, Structured Domains, G-Quadruplexes, Ligands Binding to Unstructured Domains

## 3.4.3 Constraints on the Folding Grammar

Secondary Structure constraints can be subdivided into two groups:

- · Hard Constraints
- · Soft Constraints

While Hard-Constraints directly influence the production rules used in the folding recursions by allowing, disallowing, or enforcing certain decomposition steps, Soft-constraints on the other hand are used to change position specific contributions in the recursions by adding bonuses/penalties in form of pseudo free energies to certain loop configurations.

Note

Secondary structure constraints are always applied at decomposition level, i.e. in each step of the recursive structure decomposition, for instance during MFE prediction.

## 3.4.3.1 Hard Constraints API

Hard constraints as implemented in our library can be specified for individual loop types, i.e. the atomic derivations of the RNA folding grammar rules. Hence, the pairing behavior of both, single nucleotides and pairs of bases, can be constrained in every loop context separately. Additionally, an abstract implementation using a callback mechanism allows for full control of more complex hard constraints.

See also

**Hard Constraints** 

#### 3.4.3.2 Soft Constraints API

For the sake of memory efficiency, we do not implement a loop context aware version of soft constraints. The *static* soft constraints as implemented only distinguish unpaired from paired nucleotides. This is usually sufficient for most use-case scenarios. However, similar to hard constraints, an abstract soft constraints implementation using a callback mechanism exists, that allows for any soft constraint that is compatible with the RNA folding grammar. Thus, loop contexts and even individual derivation rules can be addressed separately for maximum flexibility in soft-constraints application.

See also

Soft Constraints, Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Constraints, SHAPE Reactivity Data

## 3.5 RNA Secondary Structure Landscapes

A description of the implicit landscape-like network of structures that appears upon modelling the transition of one structure into another.

## 3.5.1 The Neighborhood of a Secondary Structure

## 3.5.2 The Secondary Structure Landscape API

## 3.6 Minimum Free Energy Algorithm(s)

Computing the Minimum Free Energy (MFE), i.e. the most stable conformation in thermodynamic equilibrium.

## 3.6.1 Zuker's Algorithm

Our library provides fast dynamic programming Minimum Free Energy (MFE) folding algorithms derived from the decomposition scheme as described by "Zuker & Stiegler (1981)" [36].

## 3.6.2 MFE for circular RNAs

Folding of *circular* RNA sequences is handled as a post-processing step of the forward recursions. See [15] for further details.

## 3.6.3 MFE Algorithm API

We provide interfaces for the prediction of

- · MFE and corresponding secondary structure for single sequences,
- · consensus MFE structures of sequence alignments, and
- · MFE structure for two hybridized RNA strands

See also

Minimum Free Energy (MFE) Algorithms, RNA-RNA Interaction, Computing MFE representatives of a Distance Based Partition

## 3.7 Partition Function and Equilibrium Probability Algorithm(s)

## 3.7.1 Equilibrium Ensemble Statistics

In contrast to methods that compute the property of a single structure in the ensemble, e.g. Minimum Free Energy Algorithm(s), the partition function algorithms always consider the entire equilibrium ensemble. For that purpose, the McCaskill algorithm [23] and its variants can be used to efficiently compute

- · the partition function, and from that
- various equilibrium probabilities, for instance base pair probabilities, probabilities of individual structure motifs, and many more.

The principal idea behind this approach is that in equilibrium, statistical mechanics and polymer theory tells us that the frequency or probability p(s) of a particular state s depends on its energy E(s) and follows a Boltzmann distribution, i.e.

$$p(s) \propto e^{-\beta E(s)}$$
 with  $\beta = \frac{1}{kT}$ 

where  $k\approx 1.987\cdot 10^{-3}\frac{kcal}{mol\ K}$  is the Boltzmann constant, and T the thermodynamic temperature. From that relation, the actual probability of state s can then be obtained using a proper scaling factor, the *canonical partition function* 

$$Z = \sum_{s \in \Omega} e^{-\beta E(s)}$$

where  $\Omega$  is the finite set of all states. Finally, the equilibrium probability of state s can be computed as

$$p(s) = \frac{e^{-\beta E(s)}}{Z}$$

Instead of enumerating all states exhaustively to compute Z one can apply the Secondary Structure Folding Recurrences again for an efficient computation in cubic time. An *outside* variant of the same recursions is then used to compute probabilities for base pairs, stretches of consecutive unpaired nucleotides, or structural motifs.

See also

Further details of the Partition function and Base Pair Probability algorithm can be obtained from McCaskill 1990 [23]

## 3.7.2 Partition Function and Equilibrium Probability API

We implement a wide variety of variants of the partition function algorithm according to McCaskill 1990 [23]. See the corresponding submodules for specific implementation details.

See also

Partition Function and Equilibrium Properties, RNA-RNA Interaction, Partition Function for two Hybridized Sequences as a Step Computing Partition Functions of a Distance Based Partitioning

## 3.8 Suboptimals and (other) Representative Structures

## 3.8.1 Suboptimal Secondary Structures

## 3.8.2 Sampling Secondary Structures from the Ensemble

## 3.8.3 Structure Enumeration and Sampling API

See also

Suboptimal Structures sensu Stiegler et al. 1984 / Zuker et al. 1989, Suboptimal Structures within an Energy Band around the Random Structure Samples from the Ensemble, Compute the Structure with Maximum Expected Accuracy (MEA), Compute the Centroid Structure

## 3.9 RNA-RNA Interaction

#### 3.9.1 <br

The function of an RNA molecule often depends on its interaction with other RNAs. The following routines therefore allows one to predict structures formed by two RNA molecules upon hybridization.

## 3.9.2 Concatenating RNA sequences

One approach to co-folding two RNAs consists of concatenating the two sequences and keeping track of the concatenation point in all energy evaluations. Correspondingly, many of the cofold() and co\_pf\_fold() routines take one sequence string as argument and use the global variable cut\_point to mark the concatenation point. Note that while the *RNAcofold* program uses the '&' character to mark the chain break in its input, you should not use an '&' when using the library routines (set cut\_point instead).

## 3.9.3 RNA-RNA interaction as a Stepwise Process

In a second approach to co-folding two RNAs, cofolding is seen as a stepwise process. In the first step the probability of an unpaired region is calculated and in a second step this probability of an unpaired region is multiplied with the probability of an interaction between the two RNAs. This approach is implemented for the interaction between a long target sequence and a short ligand RNA. Function pf\_unstru() calculates the partition function over all unpaired regions in the input sequence. Function pf\_interact(), which calculates the partition function over all possible interactions between two sequences, needs both sequence as separate strings as input.

### 3.9.4 RNA-RNA Interaction API

## 3.10 Locally Stable Secondary Structures

- 3.10.1 local\_intro
- 3.10.2 local\_mfe
- 3.10.3 local pf
- 3.10.4 Locally Stable Secondary Structure API

## 3.11 Comparative Structure Prediction

## 3.11.1 Incorporate Evolutionary Information

Consensus structures can be predicted by a modified version of the fold() algorithm that takes a set of aligned sequences instead of a single sequence. The energy function consists of the mean energy averaged over the sequences, plus a covariance term that favors pairs with consistent and compensatory mutations and penalizes pairs that cannot be formed by all structures. For details see [13] and [1].

## 3.11.2 Comparative Structure Prediction API

## 3.12 Classified DP variations

## 3.12.1 The Idea of Classified Dynamic Programming

Usually, thermodynamic properties using the basic recursions for Minimum Free Energy Algorithm(s), Partition Function and Equilibriu and so forth, are computed over the entire structure space. However, sometimes it is desired to partition the structure space a priori and compute the above properties for each of the resulting partitions. This approach directly leads to Classified Dynamic Programming.

## 3.12.2 Distance Class Partitioning

The secondary structure space is divided into partitions according to the base pair distance to two given reference structures and all relevant properties are calculated for each of the resulting partitions.

See also

For further details, we refer to Lorenz et al. 2009 [20]

- 3.12.3 Density of States (DOS)
- 3.12.4 Classified DP API
- 3.13 RNA Sequence Design
- 3.13.1 Generate Sequences that fold into particular Secondary Structures
- 3.13.2 RNA Sequence Design API

See also

Inverse Folding (Design)

## 3.14 Experimental Structure Probing Data

- 3.14.1 Guide the Structure Prediction using Experimental Data
- 3.14.1.1 SHAPE reactivities
- 3.14.2 Structure Probing Data API

See also

Experimental Structure Probing Data, SHAPE Reactivity Data, Generate Soft Constraints from Data

## 3.15 Ligand Binding

- 3.15.1 Small Molecules and Proteins that bind to specific RNA Structures
- 3.15.2 ligand\_binding\_api

In our library, we provide two different ways to incorporate ligand binding to RNA structures:

- · Ligands Binding to Unstructured Domains, and
- · Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Constraints

The first approach is implemented as an actual extension of the folding grammar. It adds auxiliary derivation rules for each case when consecutive unpaired nucleotides are evaluated. Therefore, this model is applicable to ligand binding to any loop context.

The second approach, on the other hand, uses the soft-constraints feature to change the energy evaluation of hairpin- or interior-loops. Hence, it can only be appleid when a ligand binds to a hairpin-like, or interior-loop like motif.

See also

Ligands Binding to Unstructured Domains, Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Con

- 3.16 (Tertiary) Structure Motifs
- 3.16.1 Incorporating Higher-Order (Tertiary) Structure Motifs
- 3.16.2 RNA G-Quadruplexes
- 3.16.3 (Tertiary) Structure Motif API

## **Chapter 4**

## I/O Formats

Below, you'll find a listing of different sections that introduce the most common notations of sequence and structure data, specifications of bioinformatics sequence and structure file formats, and various output file formats produced by our library.

- · RNA Structure Notations describes the different notations and representations of RNA secondary structures
- · File Formats gives an overview of the file formats compatible with our library
- Plotting shows the different (PostScript) plotting functions for RNA secondary structures, feature probabilities, and multiple sequence alignments

## 4.1 RNA Structure Notations

## 4.1.1 Representations of Secondary Structures

The standard representation of a secondary structure in our library is the Dot-Bracket Notation (a.k.a. Dot-Parenthesis Notation), where matching brackets symbolize base pairs and unpaired bases are shown as dots. Based on that notation, more elaborate representations have been developed to include additional information, such as the loop context a nucleotide belongs to and to annotated pseudo-knots.

## 4.1.1.1 Dot-Bracket Notation (a.k.a. Dot-Parenthesis Notation)

The Dot-Bracket notation as introduced already in the early times of the ViennaRNA Package denotes base pairs by matching pairs of parenthesis () and unpaired nucleotides by dots ..

As a simple example, consider a helix of size 4 enclosing a hairpin of size 4. In dot-bracket notation, this is annotated as

```
((((...))))
```

### **Extended Dot-Bracket Notation**

A more generalized version of the original Dot-Bracket notation may use additional pairs of brackets, such as <>, and [], and matching pairs of uppercase/lowercase letters. This allows for anotating pseudo-knots, since different pairs of brackets are not required to be nested.

The follwing annotations of a simple structure with two crossing helices of size 4 are equivalent:

```
<<<[[[[....>>>]]]]
((((AAAA....))))aaaa
AAAA{{{{....aaaa}}}}
```

#### See also

vrna\_db\_pack(), vrna\_db\_unpack(), vrna\_db\_flatten(), vrna\_db\_flatten\_to(), vrna\_db\_from\_ptable(),
vrna\_db\_from\_plist(), vrna\_db\_to\_element\_string(), vrna\_db\_pk\_remove()

### 4.1.1.2 Washington University Secondary Structure (WUSS) notation

The WUSS notation, as frequently used for consensus secondary structures in Stockholm 1.0 format.

This notation allows for a fine-grained annotation of base pairs and unpaired nucleotides, including pseudo-knots. Below, you'll find a list of secondary structure elements and their corresponding WUSS annotation (See also the infernal user guide at <a href="http://eddylab.org/infernal/Userguide.pdf">http://eddylab.org/infernal/Userguide.pdf</a>)

#### · Base pairs

Nested base pairs are annotated by matching pairs of the symbols <>, (),  $\{$ }, and []. Each of the matching pairs of parenthesis have their special meaning, however, when used as input in our programs, e.g. structure constraint, these details are usually ignored. Furthermore, base pairs that constitute as pseudo-knot are denoted by letters from the latin alphabet and are, if not denoted otherwise, ignored entirely in our programs.

|   |    |     | •    |   |     |
|---|----|-----|------|---|-----|
| • | на | ırn | ın I | വ | ops |
|   |    |     |      |   | 999 |

| Unpaired nucleotides t | hat constitute the h | nairpin loop are indic | ated by underscores, |
|------------------------|----------------------|------------------------|----------------------|
| Fxample: <<<<          | >>>>                 |                        |                      |

## · Bulges and interior loops

Residues that constitute a bulge or interior loop are denoted by dashes, -.

```
Example: (((--<<___>>>-)))
```

### Multibranch loops

Unpaired nucleotides in multibranch loops are indicated by commas,.

| Example: | (((<< | >>,<< | >>11 |
|----------|-------|-------|------|

#### · External residues

Single stranded nucleotides in the exterior loop, i.e. not enclosed by any other pair are denoted by colons, :.

```
Example: <<<____>>>:::
```

#### Insertions

In cases where an alignment represents the consensus with a known structure, insertions relative to the known structure are denoted by periods, .. Regions where local structural alignment was invoked, leaving regions of both target and query sequence unaligned, are indicated by tildes,  $\sim$ .

Note

These symbols only appear in alignments of a known (query) structure annotation to a target sequence of unknown structure.

#### · Pseudo-knots

The WUSS notation allows for annotation of pseudo-knots using pairs of upper-case/lower-case letters.

Note

Our programs and library functions usually ignore pseudo-knots entirely treating them as unpaired nucleotides, if not stated otherwise.

**Example**: <<<\_AAA\_\_\_>>>aaa

See also

vrna db from WUSS()

## 4.1.1.3 Abstract Shapes

Abstract Shapes, introduced by Giegerich et al. in (2004) [12], collapse the secondary structure while retaining the nestedness of helices and hairpin loops.

The abstract shapes representation abstracts the structure from individual base pairs and their corresponding location in the sequence, while retaining the inherent nestedness of helices and hairpin loops.

Below is a description of what is included in the abstract shapes abstraction for each respective level together with an example structure:

| Shape Level | Description                                                         | Result       |
|-------------|---------------------------------------------------------------------|--------------|
| 1           | Most accurate - all loops and all unpaired                          | [_[_[]]_     |
|             |                                                                     | ]]_          |
| 2           | Nesting pattern for all loop types and unpaired regions in external | [[_[]][_[]]] |
|             | loop and multiloop                                                  |              |
| 3           | Nesting pattern for all loop types but no unpaired regions          | [[[]][[]]]   |
| 4           | Helix nesting pattern in external loop and multiloop                | [[][]]]      |
| 5           | Most abstract - helix nesting pattern and no unpaired regions       | [[][]]       |

#### Note

Our implementations also provide the special Shape Level 0, which does not collapse any structural features but simply convert base pairs and unpaired nucleotides into their corresponding set of symbols for abstract shapes.

### See also

vrna\_abstract\_shapes(), vrna\_abstract\_shapes\_pt()

## 4.1.1.4 Tree Representations of Secondary Structures

Secondary structures can be readily represented as trees, where internal nodes represent base pairs, and leaves represent unpaired nucleotides. The dot-bracket structure string already is a tree represented by a string of parenthesis (base pairs) and dots for the leaf nodes (unpaired nucleotides).

Alternatively, one may find representations with two types of node labels,  $\mathbb P$  for paired and  $\mathbb U$  for unpaired; a dot is then replaced by  $(\mathbb U)$ , and each closed bracket is assigned an additional identifier  $\mathbb P$ . We call this the expanded notation. In [10] a condensed representation of the secondary structure is proposed, the so-called homeomorphically irreducible tree (HIT) representation. Here a stack is represented as a single pair of matching brackets labeled  $\mathbb P$  and weighted by the number of base pairs. Correspondingly, a contiguous strain of unpaired bases is shown as one pair of matching brackets labeled  $\mathbb U$  and weighted by its length. Generally any string consisting of matching brackets and identifiers is equivalent to a plane tree with as many different types of nodes as there are identifiers.

Bruce Shapiro proposed a coarse grained representation [27], which, does not retain the full information of the secondary structure. He represents the different structure elements by single matching brackets and labels them as

- H (hairpin loop),
- I (interior loop),
- B (bulge),
- · M (multi-loop), and
- S (stack).

We extend his alphabet by an extra letter for external elements  $\mathbb{E}$ . Again these identifiers may be followed by a weight corresponding to the number of unpaired bases or base pairs in the structure element. All tree representations (except for the dot-bracket form) can be encapsulated into a virtual root (labeled  $\mathbb{R}$ ).

The following example illustrates the different linear tree representations used by the package:

Consider the secondary structure represented by the dot-bracket string (full tree) .((...((...)))...((...))) which is the most convenient condensed notation used by our programs and library functions.

Then, the following tree representations are equivalent:

· Expanded tree:

HIT representation (Fontana et al. 1993 [10]):

```
((U1)((U2)((U3)P3)(U2)((U2)P2)P2)(U1)R)
```

- Coarse Grained Tree Representation (Shapiro 1988 [27]):
  - Short (with root node R, without stem nodes S):
     ((H)((H)M)R)
  - Full (with root node R): (((((H)S)((H)S)M)S)R)
  - Extended (with root node R, with external nodes E):(((((((H)S)(H)S)M)S)E)R)
  - Weighted (with root node R, with external nodes E):((((((H3)S3)((H2)S2)M4)S2)E2)R)

The Expanded tree is rather clumsy and mostly included for the sake of completeness. The different versions of Coarse Grained Tree Representations are variatios of Shapiro's linear tree notation.

For the output of aligned structures from string editing, different representations are needed, where we put the label on both sides. The above examples for tree representations would then look like:

Aligned structures additionally contain the gap character \_.

See also

```
vrna db to tree string(), vrna tree string unweight(), vrna tree string to db()
```

#### 4.1.2 Examples for Structure Parsing and Conversion

## 4.1.3 Structure Parsing and Conversion API

Several functions are provided for parsing structures and converting to different representations.

```
char *expand_Full(const char *structure)
```

Convert the full structure from bracket notation to the expanded notation including root.

```
char *b2HIT (const char *structure)
```

Converts the full structure from bracket notation to the HIT notation including root.

```
char *b2C (const char *structure)
```

Converts the full structure from bracket notation to the a coarse grained notation using the 'H' 'B' 'I' 'M' and 'R' identifiers.

```
char *b2Shapiro (const char *structure)
```

4.2 File Formats 35

Converts the full structure from bracket notation to the *weighted* coarse grained notation using the 'H' 'B' 'I' 'M' 'S' 'E' and 'R' identifiers.

```
char *expand_Shapiro (const char *coarse);
```

Inserts missing 'S' identifiers in unweighted coarse grained structures as obtained from b2C().

```
char *add_root (const char *structure)
```

Adds a root to an un-rooted tree in any except bracket notation.

```
char *unexpand_Full (const char *ffull)
```

Restores the bracket notation from an expanded full or HIT tree, that is any tree using only identifiers 'U' 'P' and 'R'.

```
char *unweight (const char *wcoarse)
```

Strip weights from any weighted tree.

```
void unexpand_aligned_F (char *align[2])
```

Converts two aligned structures in expanded notation.

```
void parse_structure (const char *structure)
```

Collects a statistic of structure elements of the full structure in bracket notation.

See also

RNAstruct.h for prototypes and more detailed description

## 4.2 File Formats

## 4.2.1 File formats for Multiple Sequence Alignments (MSA)

#### 4.2.1.1 ClustalW format

The *ClustalW* format is a relatively simple text file containing a single multiple sequence alignment of DNA, RNA, or protein sequences. It was first used as an output format for the *clustalw* programs, but nowadays it may also be generated by various other sequence alignment tools. The specification is straight forward:

· The first line starts with the words

```
CLUSTAL W

Or

CLUSTALW
```

- · After the above header there is at least one empty line
- Finally, one or more blocks of sequence data are following, where each block is separated by at least one empty line

Each line in a blocks of sequence data consists of the sequence name followed by the sequence symbols, separated by at least one whitespace character. Usually, the length of a sequence in one block does not exceed 60 symbols. Optionally, an additional whitespace separated cumulative residue count may follow the sequence symbols. Optionally, a block may be followed by a line depicting the degree of conservation of the respective alignment columns.

Note

Sequence names and the sequences must not contain whitespace characters! Allowed gap symbols are the hyphen ("-"), and dot (".").

#### Warning

Please note that many programs that output this format tend to truncate the sequence names to a limited number of characters, for instance the first 15 characters. This can destroy the uniqueness of identifiers in your MSA.

Here is an example alignment in ClustalW format:

```
CLUSTAL W (1.83) multiple sequence alignment

AL031296.1/85969-86120 CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGGUAACAAUACUUAC
AANU01225121.1/438-603 CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGGGACAAUACUUAC
AL031296.1/85969-86120 UCUCGUUGGUGAUAAGGAACAGCU
AANU01225121.1/438-603 UCUCGUUGGUGAUAAGGAACAGCU
AAWR02037329.1/29294-29150 GCUAAUUAGUUGUGAGGACCAACU
```

#### 4.2.1.2 Stockholm 1.0 format

Here is an example alignment in Stockholm 1.0 format:

```
# STOCKHOLM 1.0
#=GF AC
       RF01293
#=GF ID
      ACA59
       Small nucleolar RNA ACA59
#=GF DE
#=GF AU
       Wilkinson A
#=GF SE
       Predicted; WAR; Wilkinson A
#=GF SS
       Predicted; WAR; Wilkinson A
#=GF GA
       43.00
#=GF TC
       44.90
#=GF NC
       40.30
#=GF TP
       Gene; snRNA; snoRNA; HACA-box;
#=GF BM
      cmbuild -F CM SEED
#=GF CB
      cmcalibrate --mpi CM
       cmsearch --cpu 4 --verbose --nohmmonly -E 1000 -Z 549862.597050 CM SEQDB
#=GF SM
#=GF DR
       snoRNABase; ACA59;
#=GF DR
       SO; 0001263; ncRNA_gene;
#=GF DR
       GO; 0006396; RNA processing;
#=GF DR
       GO; 0005730; nucleolus;
#=GF RN
       [1]
       15199136
#=GF RM
#=GF RT
       Human box H/ACA pseudouridylation guide RNA machinery.
#=GF RA
       Kiss AM, Jady BE, Bertrand E, Kiss T
       Mol Cell Biol. 2004;24:5797-5807.
#=GF RL
#=GF WK
       Small_nucleolar_RNA
#=GF SQ
AL031296.1/85969-86120
                   AANU01225121.1/438-603
                    AAWR02037329.1/29294-29150 ---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAUGCUAAUUAGUUGUGAGGACCAAC
                                           _>>>>>
#=GC SS cons
                    ----(((((,<<<<<<
                                                               _>>>>>::::::::
#=GC RF
```

## See also

Washington University Secondary Structure (WUSS) notation on legal characters for the consensus secondary structure line SS\_cons and their interpretation

#### 4.2.1.3 FASTA (Pearson) format

4.2 File Formats 37

#### Note

Sequence names must not contain whitespace characters. Otherwise, the parts after the first whitespace will be dropped. The only allowed gap character is the hyphen ("-").

Here is an example alignment in FASTA format:

```
>AL031296.1/85969-86120
CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGUAACAAUACUUAC
UCUCGUUGGUGAUAAGGAACAGCU
>AANU01225121.1/438-603
CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGUGACAAUACUUAC
UCUCGUUGGUGAUAAGGAACAGCU
>AAWR02037329.1/29294-29150
---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGUAGUAGUACCAAU
GCUAAUUAGUUGUGAGGACCAACU
```

#### 4.2.1.4 MAF format

The multiple alignment format (MAF) is usually used to store multiple alignments on DNA level between entire genomes. It consists of independent blocks of aligned sequences which are annotated by their genomic location. Consequently, an MAF formatted MSA file may contain multiple records. MAF files start with a line

```
##maf
```

which is optionally extended by whitespace delimited key=value pairs. Lines starting with the character ("#") are considered comments and usually ignored.

A MAF block starts with character ("a") at the beginning of a line, optionally followed by whitespace delimited key=value pairs. The next lines start with character ("s") and contain sequence information of the form

```
s src start size strand srcSize sequence
```

#### where

- · src is the name of the sequence source
- start is the start of the aligned region within the source (0-based)
- size is the length of the aligned region without gap characters
- strand is either ("+") or ("-"), depicting the location of the aligned region relative to the source
- · srcSize is the size of the entire sequence source, e.g. the full chromosome
- sequence is the aligned sequence including gaps depicted by the hyphen ("-")

Here is an example alignment in MAF format (bluntly taken from the UCSC Genome browser website):

```
##maf version=1 scoring=tba.v8
# tba.v8 (((human chimp) baboon) (mouse rat))
# multiz.v7
# maf_project.v5 _tba_right.maf3 mouse _tba_C
# single_cov2.v4 single_cov2 /dev/stdin
a score=23262.0
s hq16.chr7 27578828 38 + 158545518 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
s panTrol.chr6 28741140 38 + 161576975 AAA-GGGAATGTTAACCAAATGA---ATTGTCTCTTACGGTG
                                4622798 AAA-GGGAATGTTAACCAAATGA---GTTGTCTCTTATGGTG
                 116834 38 +
           116834 38 + 4622/90 AAA-GGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
53215344 38 + 151104725 -AATGGGAATGTTAAGCAAACGA---ATTGTCTCTCAGTGTG
s mm4.chr6
s rn3.chr4 81344243 40 + 187371129 -AA-GGGGATGCTAAGCCAATGAGTTGTTCTCTCAATGTG
a score=5062.0
s hg16.chr7
               27699739 6 + 158545518 TAAAGA
s panTrol.chr6 28862317 6 + 161576975 TAAAGA
s baboon 241163 6 + 4022...5

s mm4.chr6 53303881 6 + 151104725 TAAAGA
a score=6636.0
s hg16.chr7 27707221 13 + 158545518 gcagctgaaaaca
s panTrol.chr6 28869787 13 + 161576975 gcagctgaaaaca
s baboon
                 249182 13 + 4622798 gcagctgaaaaca
              53310102 13 + 151104725 ACAGCTGAAAATA
s mm4.chr6
```

## 4.2.2 File formats to manipulate the RNA folding grammar

#### 4.2.2.1 Command Files

The RNAlib and many programs of the ViennaRNA Package can parse and apply data from so-called command files. These commands may refer to structure constraints or even extensions of the RNA folding grammar (such as Unstructured Domains). Commands are given as a line of whitespace delimited data fields. The syntax we use extends the constraint definitions used in the mfold / UNAfold software, where each line begins with a command character followed by a set of positions.

However, we introduce several new commands, and allow for an optional loop type context specifier in form of a sequence of characters, and an orientation flag that enables one to force a nucleotide to pair upstream, or downstream.

- **4.2.2.1.1 Constraint commands** The following set of commands is recognized:
  - F ... Force
  - P ... Prohibit
  - C . . . Conflicts/Context dependency
  - A . . . Allow (for non-canonical pairs)
  - E ... Soft constraints for unpaired position(s), or base pair(s)

#### 4.2.2.1.2 RNA folding grammar exensions

- UD ... Add ligand binding using the Unstructured Domains feature
- **4.2.2.1.3** Specification of the loop type context The optional loop type context specifier [LOOP] may be a combination of the following:
  - E ... Exterior loop
  - H ... Hairpin loop
  - I ... Interior loop
  - M ... Multibranch loop
  - A ... All loops

For structure constraints, we additionally allow one to address base pairs enclosed by a particular kind of loop, which results in the specifier [WHERE] which consists of [LOOP] plus the following character:

- i ... enclosed pair of an Interior loop
- m ... enclosed pair of a Multibranch loop

If no [LOOP] or [WHERE] flags are set, all contexts are considered (equivalent to  ${\tt A}$  )

- **4.2.2.1.4 Controlling the orientation of base pairing** For particular nucleotides that are forced to pair, the following [ORIENTATION] flags may be used:
  - $\bullet \ \ \ \ \, \cup \, \ldots \, \, Upstream$
  - D ... Downstream

If no [ORIENTATION] flag is set, both directions are considered.

**4.2.2.1.5** Sequence coordinates Sequence positions of nucleotides/base pairs are 1- based and consist of three positions i, j, and k. Alternativly, four positions may be provided as a pair of two position ranges [i:j], and [k:l] using the '-' sign as delimiter within each range, i.e. i-j, and k-l.

4.2 File Formats 39

### **4.2.2.1.6 Valid constraint commands** Below are resulting general cases that are considered *valid* constraints:

## 1. "Forcing a range of nucleotide positions to be paired":

```
Syntax:
```

```
F i 0 k [WHERE] [ORIENTATION]
```

#### Description:

Enforces the set of k consecutive nucleotides starting at position i to be paired. The optional loop type specifier [WHERE] allows to force them to appear as closing/enclosed pairs of certain types of loops.

#### 2. "Forcing a set of consecutive base pairs to form":

Syntax:

```
Fijk [WHERE]
```

#### Description:

Enforces the base pairs  $(i, j), \dots, (i+(k-1), j-(k-1))$  to form. The optional loop type specifier [WHERE] allows to specify in which loop context the base pair must appear.

### 3. "Prohibiting a range of nucleotide positions to be paired":

Syntax:

```
P i 0 k [WHERE]
```

### Description:

Prohibit a set of k consecutive nucleotides to participate in base pairing, i.e. make these positions unpaired. The optional loop type specifier [WHERE] allows to force the nucleotides to appear within the loop of specific types.

## 4. "Probibiting a set of consecutive base pairs to form":

Syntax:

```
Pijk [WHERE]
```

#### Description:

Probibit the base pairs  $(i, j), \dots, (i + (k - 1), j - (k - 1))$  to form. The optional loop type specifier [WHERE] allows to specify the type of loop they are disallowed to be the closing or an enclosed pair of.

## 5. "Prohibiting two ranges of nucleotides to pair with each other":

Syntax:

```
P i-j k-l [WHERE]
```

#### Description:

Prohibit any nucleotide  $p \in [i:j]$  to pair with any other nucleotide  $q \in [k:l]$ . The optional loop type specifier [WHERE] allows to specify the type of loop they are disallowed to be the closing or an enclosed pair of.

### 6. "Enforce a loop context for a range of nucleotide positions":

Syntax:

```
C i 0 k [WHERE]
```

#### Description:

This command enforces nucleotides to be unpaired similar to *prohibiting* nucleotides to be paired, as described above. It too marks the corresponding nucleotides to be unpaired, however, the [WHERE] flag can be used to enforce specific loop types the nucleotides must appear in.

## 7. "Remove pairs that conflict with a set of consecutive base pairs":

Syntax:

```
Сіј k
```

#### Description:

Remove all base pairs that conflict with a set of consecutive base pairs  $(i,j),\ldots,(i+(k-1),j-(k-1))$ . Two base pairs (i,j) and (p,q) conflict with each other if i , or <math>p < i < q < j.

#### 8. "Allow a set of consecutive (non-canonical) base pairs to form":

Syntax:

A i j k [WHERE]

## Description:

This command enables the formation of the consecutive base pairs  $(i,j),\ldots,(i+(k-1),j-(k-1))$ , no matter if they are *canonical*, or *non-canonical*. In contrast to the above  $\mathbb F$  and  $\mathbb W$  commands, which remove conflicting base pairs, the  $\mathbb A$  command does not. Therefore, it may be used to allow *non-canonical* base pair interactions. Since the RNAlib does not contain free energy contributions  $E_{ij}$  for non-canonical base pairs (i,j), they are scored as the *maximum* of similar, known contributions. In terms of a *Nussinov* like scoring function the free energy of non-canonical base pairs is therefore estimated as

$$E_{ij} = \min \left[ \max_{(i,k) \in \{GC, CG, AU, UA, GU, UG\}} E_{ik}, \max_{(k,j) \in \{GC, CG, AU, UA, GU, UG\}} E_{kj} \right].$$

The optional loop type specifier [WHERE] allows to specify in which loop context the base pair may appear.

## 9. "Apply pseudo free energy to a range of unpaired nucleotide positions":

Syntax:

Ei0ke

#### Description:

Use this command to apply a pseudo free energy of e to the set of k consecutive nucleotides, starting at position i. The pseudo free energy is applied only if these nucleotides are considered unpaired in the recursions, or evaluations, and is expected to be given in kcal/mol.

#### 10. "Apply pseudo free energy to a set of consecutive base pairs":

Syntax

Еіјке

Use this command to apply a pseudo free energy of e to the set of base pairs  $(i, j), \ldots, (i + (k - 1), j - (k - 1))$ . Energies are expected to be given in kcal/mol.

#### 4.2.2.1.7 Valid domain extensions commands

### 1. "Add ligand binding to unpaired motif (a.k.a. unstructured domains)":

Syntax:

UD m e [LOOP]

#### Description:

Add ligand binding to unpaired sequence motif m (given in IUPAC format, capital letters) with binding energy e in particular loop type(s).

Example:

UD AAA -5.0 A

The above example applies a binding free energy of -5kcal/mol for a motif AAA that may be present in all loop types.

## 4.2.3 File Formats for Energy Parameters

## 4.2.3.1 JSON Parameter Files for Modified Bases

The functions vrna\_sc\_mod(), vrna\_sc\_mod\_json() and alike implement an energy correction framework to account for modified bases in the secondary structure predictions. To supply these functions with the energy parameters and general specifications of the base modification, the following JSON data format may be used:

JSON data must consist of a header section **modified\_bases**. This header is an object with the mandatory keys:

4.2 File Formats 41

- · name specifying a name of the modified base
- unmodified that consists of a single upper-case letter of the unmodified version of this base,
- the one\_letter\_code key to specify which letter is used for the modified bases in the subsequent energy parameters, and
- · an array of pairing\_partners.

The latter must be uppercase characters. An optional **sources** key may contain an array of related publications, e.g. those the parameters have been derived from.

Next to the header may follow additional keys to specify the actual energy contributions of the modified base in various loop contexts. All energy contributions must be specified in free energies  $\Delta G$  in units of  $kcal \cdot mol^{-1}$ . To allow for rescaling of the free energies at temperatures that differ from the default (  $37^{\circ}C$ ), enthalpy parameters  $\Delta H$  may be specified as well. Those, however are optional. The keys for free energy (at  $37^{\circ}C$ ) and enthalpy parameters have the suffixes \_energies and \_enthalpies, respectively.

The parser and underlying framework currently supports the following loop contexts:

- base pair stacks (via the stacking key prefix).
  - This key must point to an object with one key value pair for each stacking interaction data is provided for. Here, the key consists of four upper-case characters denoting the interacting bases, where the the first two represent one strand in 5' to 3' direction and the last two the opposite strand in 3' to 5' direction. The values are energies in  $kcal \cdot mol^{-1}$ .
- terminal mismatches (via the mismatch key prefix)
   This key points to an object with key value pairs for each mismatch energy parameter that is available. Keys are 4 characters long nucleotide one-letter codes as used in base pair stacks above. The second and fourth character denote the two unpaired mismatching bases, while the other two represent the closing base pair.
- dangling ends (via the dangle5 and dangle3 key prefixes)
   The object behind these keys, again, consists of key value pairs for each dangling end energy parameter.
   Keys are 3 characters long where the first two represent the two nucleotides that form the base pair, and the third is the unpaired base that either stacks on the 3' or 5' end of the enclosed part of the base pair.
- terminal pairs (via the **terminal** key prefix)

  Terminal base pairs, such as AU or GU, sometimes receive an additional energy penalty. The object behind this key may list energy parameters to apply whenever particular base pairs occur at the end of a helix. Each of those parameters is specified as key value pair, where the key consists of two upper-case characters denoting the terminal base pair.

Below is a JSON template specifying most of the possible input parameters. Actual energy parameter files can be found in the source code tarball within the **misc**/ subdirectory.

```
"modified_base" : {
  "name": "My modification (M)",
"sources": [
       "authors" : "Author 1, Author 2",
       "title": "UV-melting of modified oligos",
"journal": "Some journal",
       "year": 2022,
"doi": "10.0000/000000"
    }
  "unmodified" : "G",
  "pairing_partners" : [
    "U", "A"
  "one_letter_code" : "M"
"stacking_energies" : {
  "MAUU": -1.2,
"AGMC": -2.73
stacking_enthalpies" : {
  "MAUU" : -11.1,
"AGMC" : -9.73
"terminal_energies" : {
  "MU" : 0.5,
```

```
"terminal_enthalpies" : {
    "MU" : 2.0,
    "UM" : 2.0
},

"mismatch_energies" : {
    "CMGM" : -1.11,
    "AGUM" : -0.73
},

"mismatch_enthalpies" : {
    "CMGM" : -11.11,
    "AGUM" : -7.73
},

"dangle5_energies" : {
    "UAM" : -1.01
},

"dangle5_enthalpies" : {
    "UAM" : -6.01
},

"dangle3_energies" : {
    "CGM" : -2.1,
    "GCM" : -1.3
}
}
```

#### See also

misc/rna\_mod\_template\_parameters.json in the source code tarball

## An actual example of real-world data may look like

```
"modified_base" : {
   "name" : "Pseudouridine",
"sources" : [
         "authors": "Graham A. Hudson, Richard J. Bloomingdale, and Brent M. Znosko",
         "title": "Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine
     tatie : Infermodynamic contribut
base pairs in oligoribonucleotides",
"journal" : "RNA 19:1474-1482",
"year" : 2013,
"doi" : "10.1261/rna.039610.113"
   "unmodified" : "U",
   "pairing_partners": [
      "A"
   "one_letter_code" : "P"
"stacking_energies" : {
  "APUA": -2.8,
"CPGA": -2.77,
"GPCA": -3.29,
"UPAA": -1.62,
"PAAU": -2.10,
  "PCAG": -2.49,
"PGAC": -2.2,
"PUAA": -2.74
"stacking_enthalpies" : {
  "APUA" : -22.08,
  "CPGA" : -16.23,
  "GPCA" : -24.07,
  "UPAA": -20.81,
"PAAU": -12.47,
"PCAG": -17.29,
"PGAC": -11.19,
   "PUAA" : -26.94
"terminal_energies" : {
  "PA" : 0.31,
"terminal_enthalpies" : {
  "PA" : -2.04,
"AP" : -2.04
```

4.3 Plotting 43

See also

misc/rna\_mod\_pseudouridine\_parameters.json in the source code tarball

## 4.3 Plotting

Create Plots of Secondary Structures, Feature Motifs, and Sequence Alignments

## 4.3.1 Producing secondary structure graphs

Produce a secondary structure graph in PostScript and write it to 'filename'.

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename'.

Produce a secondary structure graph in Graph Meta Language (gml) and write it to a file.

Produce a secondary structure graph in SStructView format.

Produce a secondary structure plot in SVG format and write it to a file.

Produce a secondary structure plot for further editing in XRNA.

```
int rna_plot_type
```

Switch for changing the secondary structure layout algorithm.

Two low-level functions provide direct access to the graph lauyouting algorithms:

Calculate nucleotide coordinates for secondary structure plot the Simple way

See also

PS\_dot.h and naview.h for more detailed descriptions.

## 4.3.2 Producing (colored) dot plots for base pair probabilities

Produce a postscript dot-plot from two pair lists.

See also

PS\_dot.h for more detailed descriptions.

## 4.3.3 Producing (colored) alignments

Produce PostScript sequence alignment color-annotated by consensus structure.

## **Chapter 5**

## **Basic Data Structures**

- Sequence and Structure Data shows the most common types for sequence or structure data
- The 'Fold Compound' is the basic, central container for our implementations of prediction-, evaluation, and other algorithms
- Model Details provides the means to store the different model parameters

## 5.1 Sequence and Structure Data

See also

Secondary Structure Utilities

## 5.2 The 'Fold Compound'

See also

The Fold Compound

## 5.3 Model Details

See also

Fine-tuning of the Implemented Models

46 Basic Data Structures

## **Chapter 6**

## **API Features**

- RNAlib API v3.0
- · Callback Functions
- Scripting Language interface(s)

## 6.1 RNAlib API v3.0

## 6.1.1 Introduction

With version 2.2 we introduce the new API that will take over the old one in the future version 3.0. By then, backwards compatibility will be broken, and third party applications using RNAlib need to be ported. This switch of API became necessary, since many new features found their way into the RNAlib where a balance between threadsafety and easy-to-use library functions is hard or even impossible to establish. Furthermore, many old functions of the library are present as slightly modified copies of themself to provide a crude way to overload functions.

Therefore, we introduce the new v3.0 API very early in our development stage such that developers have enough time to migrate to the new functions and interfaces. We also started to provide encapsulation of the RNAlib functions, data structures, typedefs, and macros by prefixing them with *vrna\_* and *VRNA\_*, respectively. Header files should also be included using the *ViennaRNA/* namespace, e.g.

#include <ViennaRNA/fold.h>

instead of just using

#include <fold.h>

as required for RNAlib 1.x and 2.x.

This eases the work for programmers of third party applications that would otherwise need to put much effort into renaming functions and data types in their own implementations if their names appear in our library. Since we still provide backward compatibility up to the last version of RNAlib 2.x, this advantage may be fully exploited only starting from v3.0 which will be released in the future. However, our plan is to provide the possibility for an early switch-off mechanism of the backward compatibility in one of our next releases of ViennaRNA Package 2.x.

## 6.1.2 What are the major changes?

...

## 6.1.3 How to port your program to the new API

...

## 6.1.4 Some Examples using RNAlib API v3.0

Examples on how to use the new v3.0 API can be found in the First Steps with the Fold Compound section.

48 API Features

## 6.2 Callback Functions

With the new RNAlib API v3.0 we introduce so-called callback mechanisms for several functions.

## 6.2.1 The purpose of Callback mechanisms

Using callback mechanisms, our library enables users not only to retrieve computed data without the need for parsing complicated data structures, but also allows one to tweak our implementation to do additional tasks without the requirement of a re-implementation of basic algorithms.

Our implementation of the callback mechanisms always follows the same scheme: The user:

- · defines a function that complies with the interface we've defined, and
- · passes a pointer to said function to our implementations

In addition to the specific arguments of our callback interfaces, virtually all callbacks receive an additional *pass-through-pointer* as their last argument. This enables one to:

- · encapsulate data, and
- · provide thread-safe operations,

since this pointer is simply passed through by our library functions. It may therefore hold the address of an arbitrary, user-defined data structure.

#### 6.2.2 List of available Callbacks

Below, you find an enumeration of the individual callback functions that are available in RNAlib.

#### Global vrna auxdata free f)(void \*data)

This callback is supposed to free memory occupied by an auxiliary data structure. It will be called when the vrna\_fold\_compound\_t is erased from memory through a call to vrna\_fold\_compound\_free() and will be passed the address of memory previously bound to the vrna\_fold\_compound\_t via vrna\_fold\_compound\_add\_auxdata().

### Global vrna\_bs\_result\_f )(const char \*structure, void \*data)

This function will be called for each secondary structure that has been successfully backtraced from the partition function DP matrices.

## Global vrna\_hc\_eval\_f )(int i, int j, int k, int l, unsigned char d, void \*data)

This callback enables one to over-rule default hard constraints in secondary structure decompositions.

### Global vrna\_heat\_capacity\_f )(float temp, float heat\_capacity, void \*data)

This function will be called for each evaluated temperature in the heat capacity prediction.

#### Global vrna\_mfe\_window\_f )(int start, int end, const char \*structure, float en, void \*data)

This function will be called for each hit in a sliding window MFE prediction.

## Global vrna\_probs\_window\_f )(FLT\_OR\_DBL \*pr, int pr\_size, int i, int max, unsigned int type, void \*data)

This function will be called for each probability data set in the sliding window probability computation implementation of <a href="mailto:vrna\_probs\_window">vrna\_probs\_window</a>(). The argument <a href="mailto:type">type</a> specifies the type of probability that is passed to this function.

## Global vrna\_recursion\_status\_f )(unsigned char status, void \*data)

This function will be called to notify a third-party implementation about the status of a currently ongoing recursion. The purpose of this callback mechanism is to provide users with a simple way to ensure pre- and post conditions for auxiliary mechanisms attached to our implementations.

## Global vrna\_sc\_bt\_f)(int i, int j, int k, int l, unsigned char d, void \*data)

This callback enables one to add auxiliary base pairs in the backtracking steps of hairpin- and interior loops.

## Global vrna\_sc\_exp\_f )(int i, int j, int k, int l, unsigned char d, void \*data)

This callback enables one to add (pseudo-)energy contributions to individual decompositions of the secondary structure (Partition function variant, i.e. contributions must be returned as Boltzmann factors).

#### Global vrna sc f)(int i, int j, int k, int l, unsigned char d, void \*data)

This callback enables one to add (pseudo-)energy contributions to individual decompositions of the secondary structure.

### Global vrna\_subopt\_result\_f )(const char \*stucture, float energy, void \*data)

This function will be called for each suboptimal secondary structure that is successfully backtraced.

## Global vrna\_ud\_add\_probs\_f )(vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, FLT\_OR\_DBL exp\_energy, void \*data)

A callback function to store equilibrium probabilities for the unstructured domain feature

#### Global vrna ud exp f)(vrna fold compound t \*vc, int i, int j, unsigned int loop type, void \*data)

This function will be called to determine the additional energy contribution of a specific unstructured domain, e.g. the binding free energy of some ligand (Partition function variant, i.e. the Boltzmann factors instead of actual free energies).

#### Global vrna ud exp production f)(vrna fold compound t \*vc, void \*data)

The production rule for the unstructured domain grammar extension (Partition function variant)

#### Global vrna ud f)(vrna fold compound t \*vc, int i, int j, unsigned int loop type, void \*data)

This function will be called to determine the additional energy contribution of a specific unstructured domain, e.g. the binding free energy of some ligand.

# Global vrna\_ud\_get\_probs\_f )(vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, int motif, void \*data)

A callback function to retrieve equilibrium probabilities for the unstructured domain feature

### Global vrna\_ud\_production\_f )(vrna\_fold\_compound\_t \*vc, void \*data)

The production rule for the unstructured domain grammar extension

## 6.3 Scripting Language interface(s)

## 6.3.1 Introduction

For an easy integration into scripting languages, we provide an automatically generated interface to the RNAlib C-library, generated with SWIG.

### 6.3.2 Function Renaming

To provide a namespace-like separation of function symbols from our C library and third-party code, we use the prefix vrna\_ or VRNA\_ whenever possible. This, however, is not necessary for the scripting language interface, as it uses the separate namespace or package RNA anyway. Consequently, symbols that appear to have the vrna\_ or VRNA prefix in the C-library have the corresponding prefix stripped away.

```
For instance, the C code

mfe = vrna_fold(sequence, structure);

translates to

my ($structure, $mfe) = RNA::fold($sequence)
in the Perl 5 interface, and
```

structure, mfe = RNA.fold(sequence)

for Python. Note, that in this example we also make use of the possibility to return multiple data at once in the scripting language, while the C library function uses additional parameters to return multiple data.

Functions that are dedicated to work on specific data structures only, e.g. the vrna\_fold\_compound\_t, are usually not exported at all. Instead, they are attached as object methods of a corresponding class (see Object oriented Interface for Data Structures for detailed information).

#### 6.3.2.1 Global Variables

For the Python interface(s) SWIG places global variables of the C-library into an additional namespace cvar. For instance, changing the global temperature variable thus becomes

```
RNA.cvar.temperature = 25
```

50 API Features

## 6.3.3 Object oriented Interface for Data Structures

For data structures, typedefs, and enumerations the vrna\_prefixes are dropped as well, together with their suffixes \_s, \_t, and \_e, respectively. Furthermore, data structures are usually transformed into classes and relevant functions of the C-library are attached as methods.

### 6.3.4 Examples

Examples on the basic usage of the scripting language interfaces can be found in the Perl5 Examples and Python Examples section.

## 6.3.5 SWIG generated Wrapper notes

Special notes on how functions, structures, enums, and macro definitions are actually wrapped, can be found below

#### Global vrna abstract shapes (const char \*structure, unsigned int level)

This function is available as an overloaded function <code>abstract\_shapes()</code> where the optional second parameter <code>level</code> defaults to 5.

## Global vrna\_abstract\_shapes\_pt (const short \*pt, unsigned int level)

This function is available as an overloaded function abstract\_shapes() where the optional second parameter level defaults to 5.

### Global vrna\_aln\_conservation\_col (const char \*\*alignment, const vrna\_md\_t \*md\_p, unsigned int options)

This function is available in an overloaded form where the last two parameters may be omitted, indicating md = *NULL*, and options = VRNA MEASURE SHANNON ENTROPY, respectively.

## Global vrna\_aln\_conservation\_struct (const char \*\*alignment, const char \*structure, const vrna\_md\_← t \*md)

This function is available in an overloaded form where the last parameter may be omitted, indicating md = NULL

## Global vrna\_backtrack5 (vrna\_fold\_compound\_t \*fc, unsigned int length, char \*structure)

This function is attached as overloaded method **backtrack()** to objects of type *fold\_compound* with default parameter length equal to the total length of the RNA.

#### Global vrna boustrophedon (size t start, size t end)

This function is available as overloaded global function boustrophedon().

## Global vrna\_boustrophedon\_pos (size\_t start, size\_t end, size\_t pos)

This function is available as overloaded global function **boustrophedon()**. Omitting the pos argument yields the entire sequence from start to end.

#### Global vrna bp distance (const char \*str1, const char \*str2)

This function is available as an overloaded method **bp\_distance()**. Note that the SWIG wrapper takes two structure in dot-bracket notation and converts them into pair tables using vrna\_ptable\_from\_string(). The resulting pair tables are then internally passed to vrna\_bp\_distance\_pt(). To control which kind of matching brackets will be used during conversion, the optional argument options can be used. See also the description of vrna\_ptable\_from\_string() for available options. (default: VRNA\_BRACKETS\_RND).

#### Global vrna bp distance pt (const short \*pt1, const short \*pt2)

This function is available as an overloaded method **bp\_distance()**.

#### Global vrna db flatten (char \*structure, unsigned int options)

This function flattens an input structure string in-place! The second parameter is optional and defaults to VRNA BRACKETS DEFAULT.

An overloaded version of this function exists, where an additional second parameter can be passed to specify the target brackets, i.e. the type of matching pair characters all brackets will be flattened to. Therefore, in the scripting language interface this function is a replacement for vrna\_db\_flatten\_to().

## Global vrna\_db\_flatten\_to (char \*string, const char target[3], unsigned int options)

This function is available as an overloaded version of vrna\_db\_flatten()

#### Global vrna db from probs (const FLT\_OR\_DBL \*pr, unsigned int length)

This function is available as parameter-less method **db\_from\_probs()** bound to objects of type *fold\_compound*. Parameters pr and length are implicitly taken from the *fold\_compound* object the method is bound to. Upon missing base pair probabilities, this method returns an empty string.

#### Global vrna\_db\_pk\_remove (const char \*structure, unsigned int options)

This function is available as an overloaded function <code>db\_pk\_remove()</code> where the optional second parameter <code>options</code> defaults to VRNA BRACKETS ANY.

## Global vrna\_ensemble\_defect (vrna\_fold\_compound\_t \*fc, const char \*structure)

This function is attached as method **ensemble\_defect()** to objects of type *fold\_compound*. Note that the SWIG wrapper takes a structure in dot-bracket notation and converts it into a pair table using vrna\_ptable\_from\_string(). The resulting pair table is then internally passed to vrna\_ensemble\_defect\_pt(). To control which kind of matching brackets will be used during conversion, the optional argument options can be used. See also the description of vrna\_ptable\_from\_string() for available options. (default: VRNA\_\circ
BRACKETS\_RND).

#### Global vrna ensemble defect pt (vrna fold compound t \*fc, const short \*pt)

This function is attached as overloaded method ensemble\_defect() to objects of type fold\_compound.

### Global vrna\_enumerate\_necklaces (const unsigned int \*type\_counts)

This function is available as global function **enumerate\_necklaces()** which accepts lists input, an produces list of lists output.

#### Global vrna eval circ consensus structure (const char \*\*alignment, const char \*structure)

This function is available through an overloadeded version of <a href="mailto:vrna\_eval\_circ\_structure">vrna\_eval\_circ\_structure</a>(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

## Global vrna\_eval\_circ\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity\_level, FILE \*file)

This function is available through an overloaded version of vrna\_eval\_circ\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

### Global vrna\_eval\_circ\_gquad\_consensus\_structure (const char \*\*alignment, const char \*structure)

This function is available through an overloadeded version of <a href="mailto:vrna\_eval\_circ\_gquad\_structure">vrna\_eval\_circ\_gquad\_structure</a>(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

## Global vrna\_eval\_circ\_gquad\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity level, FILE \*file)

This function is available through an overloaded version of vrna\_eval\_circ\_gquad\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## Global vrna\_eval\_circ\_gquad\_structure (const char \*string, const char \*structure)

In the target scripting language, this function serves as a wrapper for vrna\_eval\_circ\_gquad\_structure\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## Global vrna\_eval\_circ\_gquad\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)

This function is available through an overloaded version of vrna\_eval\_circ\_gquad\_structure(). The last two arguments for this function are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## Global vrna\_eval\_circ\_structure (const char \*string, const char \*structure)

In the target scripting language, this function serves as a wrapper for vrna\_eval\_circ\_structure\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## Global vrna\_eval\_circ\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)

This function is available through an overloaded version of vrna\_eval\_circ\_structure(). The last two arguments for this function are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

52 API Features

#### Global vrna eval consensus structure pt simple (const char \*\*alignment, const short \*pt)

This function is available through an overloadeded version of <a href="mailto:vrna\_eval\_structure\_pt\_simple">vrna\_eval\_structure\_pt\_simple</a>(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

Global vrna\_eval\_consensus\_structure\_pt\_simple\_v (const char \*\*alignment, const short \*pt, int verbosity\_level, FILE \*file)

This function is available through an overloaded version of vrna\_eval\_structure\_pt\_simple(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

Global vrna\_eval\_consensus\_structure\_pt\_simple\_verbose (const char \*\*alignment, const short \*pt, FILE \*file)

This function is not available. Use vrna\_eval\_consensus\_structure\_pt\_v() instead!

### Global vrna eval consensus structure simple (const char \*\*alignment, const char \*structure)

This function is available through an overloadeded version of vrna\_eval\_structure\_simple(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

Global vrna\_eval\_consensus\_structure\_simple\_v (const char \*\*alignment, const char \*structure, int verbosity level, FILE \*file)

This function is available through an overloaded version of vrna\_eval\_structure\_simple(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA VERBOSITY QUIET and NULL, respectively.

Global vrna\_eval\_consensus\_structure\_simple\_verbose (const char \*\*alignment, const char \*structure, FILE \*file)

This function is not available. Use vrna eval consensus structure simple v() instead!

Global vrna\_eval\_covar\_structure (vrna\_fold\_compound\_t \*fc, const char \*structure)

This function is attached as method eval covar structure() to objects of type fold compound

Global vrna\_eval\_gquad\_consensus\_structure (const char \*\*alignment, const char \*structure)

This function is available through an overloadeded version of vrna\_eval\_gquad\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

Global vrna\_eval\_gquad\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity level, FILE \*file)

This function is available through an overloaded version of vrna\_eval\_gquad\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

Global vrna\_eval\_gquad\_structure (const char \*string, const char \*structure)

In the target scripting language, this function serves as a wrapper for vrna\_eval\_gquad\_structure\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

Global vrna\_eval\_gquad\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)

This function is available through an overloaded version of <a href="vrna\_eval\_gquad\_structure">vrna\_eval\_gquad\_structure</a>(). The last two arguments for this function are optional and default to <a href="vrna\_versions">VRNA\_VERBOSITY\_QUIET</a> and <a href="vrna\_versions">NULL</a>, respectively.

Global vrna\_eval\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

This function is attached as method eval hp loop() to objects of type fold compound

Global vrna\_eval\_int\_loop (vrna\_fold\_compound\_t \*fc, int i, int j, int k, int l)

This function is attached as method eval\_int\_loop() to objects of type fold\_compound

Global vrna\_eval\_loop\_pt (vrna\_fold\_compound\_t \*fc, int i, const short \*pt)

This function is attached as method eval\_loop\_pt() to objects of type fold\_compound

Global vrna\_eval\_move (vrna\_fold\_compound\_t \*fc, const char \*structure, int m1, int m2)

This function is attached as method eval move() to objects of type fold compound

### Global vrna eval move pt (vrna fold compound t \*fc, short \*pt, int m1, int m2)

This function is attached as method eval move pt() to objects of type fold compound

## Global vrna\_eval\_structure (vrna\_fold\_compound\_t \*fc, const char \*structure)

This function is attached as method eval\_structure() to objects of type fold\_compound

## Global vrna\_eval\_structure\_pt (vrna\_fold\_compound\_t \*fc, const short \*pt)

This function is attached as method eval\_structure\_pt() to objects of type fold\_compound

### Global vrna\_eval\_structure\_pt\_simple (const char \*string, const short \*pt)

In the target scripting language, this function serves as a wrapper for <a href="mailto:vrna\_eval\_structure\_pt\_v">vrna\_eval\_structure\_pt\_v</a>() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to <a href="mailto:vrna\_verbosity\_quiet">vrna\_verbosity\_quiet</a> and NULL, respectively.

## Global vrna\_eval\_structure\_pt\_verbose (vrna\_fold\_compound\_t \*fc, const short \*pt, FILE \*file)

This function is attached as method eval\_structure\_pt\_verbose() to objects of type fold\_compound

#### Global vrna eval structure simple (const char \*string, const char \*structure)

In the target scripting language, this function serves as a wrapper for vrna\_eval\_structure\_simple\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA VERBOSITY QUIET and NULL, respectively.

## Global vrna\_eval\_structure\_simple\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)

This function is available through an overloaded version of vrna\_eval\_structure\_simple(). The last two arguments for this function are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

### Global vrna\_eval\_structure\_simple\_verbose (const char \*string, const char \*structure, FILE \*file)

This function is not available. Use vrna eval structure simple v() instead!

## Global vrna eval structure verbose (vrna fold compound t \*fc, const char \*structure, FILE \*file)

This function is attached as method eval structure verbose() to objects of type fold compound

## Global vrna\_exp\_params\_rescale (vrna\_fold\_compound\_t \*vc, double \*mfe)

This function is attached to vrna\_fc\_s objects as overloaded exp\_params\_rescale() method.

When no parameter is passed to this method, the resulting action is the same as passing *NULL* as second parameter to <u>vrna\_exp\_params\_rescale()</u>, i.e. default scaling of the partition function. Passing an energy in kcal/mol, e.g. as retrieved by a previous call to the *mfe()* method, instructs all subsequent calls to scale the partition function accordingly.

## Global vrna\_exp\_params\_reset (vrna\_fold\_compound\_t \*vc, vrna\_md\_t \*md\_p)

This function is attached to vrna fc s objects as overloaded exp params reset() method.

When no parameter is passed to this method, the resulting action is the same as passing *NULL* as second parameter to vrna\_exp\_params\_reset(), i.e. global default model settings are used. Passing an object of type vrna md s resets the fold compound according to the specifications stored within the vrna md s object.

#### Global vrna exp params subst (vrna fold compound t \*vc, vrna exp param t \*params)

This function is attached to vrna\_fc\_s objects as overloaded exp\_params\_subst() method.

When no parameter is passed, the resulting action is the same as passing *NULL* as second parameter to vrna exp params subst(), i.e. resetting the parameters to the global defaults.

## Class vrna\_fc\_s

This data structure is wrapped as an object **fold\_compound** with several related functions attached as methods.

A new **fold\_compound** can be obtained by calling one of its constructors:

- fold\_compound(seq) Initialize with a single sequence, or two concatenated sequences separated by an ampersand character '&' (for cofolding)
- fold\_compound(aln) Initialize with a sequence alignment aln stored as a list of sequences (with gap characters)

54 API Features

The resulting object has a list of attached methods which in most cases directly correspond to functions that mainly operate on the corresponding *C* data structure:

- type() Get the type of the fold compound (See vrna fc type e)
- length() Get the length of the sequence(s) or alignment stored within the fold compound

Global vrna\_file\_commands\_apply (vrna\_fold\_compound\_t \*vc, const char \*filename, unsigned int options)

This function is attached as method file commands apply() to objects of type fold compound

Global vrna\_file\_msa\_detect\_format (const char \*filename, unsigned int options)

This function exists as an overloaded version where the options parameter may be omitted! In that case, the options parameter defaults to VRNA\_FILE\_FORMAT\_MSA\_DEFAULT.

Global vrna\_file\_msa\_read (const char \*filename, char \*\*\*names, char \*\*\*aln, char \*\*id, char \*\*structure, unsigned int options)

In the target scripting language, only the first and last argument, filename and options, are passed to the corresponding function. The other arguments, which serve as output in the C-library, are available as additional return values. Hence, a function call in python may look like this:

Global vrna\_file\_msa\_read\_record (FILE \*fp, char \*\*\*names, char \*\*\*aln, char \*\*id, char \*\*structure, unsigned int options)

In the target scripting language, only the first and last argument, fp and options, are passed to the corresponding function. The other arguments, which serve as output in the C-library, are available as additional return values. Hence, a function call in python may look like this:

Global vrna\_file\_msa\_write (const char \*filename, const char \*\*names, const char \*\*aln, const char \*id, const char \*structure, const char \*source, unsigned int options)

In the target scripting language, this function exists as a set of overloaded versions, where the last four parameters may be omitted. If the options parameter is missing the options default to (VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM | VRNA\_FILE\_FORMAT\_MSA\_APPEND).

Global vrna\_file\_PS\_aln (const char \*filename, const char \*\*seqs, const char \*\*names, const char \*structure, unsigned int columns)

This function is available as overloaded function  $file_PS_aln()$  with three additional parameters start, end, and offset before the columns argument. Thus, it resembles the  $vrna_file_PS_aln_slice()$  function. The last four arguments may be omitted, indicating the default of start = 0, end = 0, offset = 0, and columns = 60.

Global vrna\_file\_PS\_aln\_slice (const char \*filename, const char \*\*seqs, const char \*\*names, const char \*structure, unsigned int start, unsigned int end, int offset, unsigned int columns)

This function is available as overloaded function  $file_PS_aln()$  where the last four parameter may be omitted, indicating start = 0, end = 0, offset = 0, and columns = 60.

Global vrna\_hc\_add\_from\_db (vrna\_fold\_compound\_t \*vc, const char \*constraint, unsigned int options)

This function is attached as method hc\_add\_from\_db() to objects of type fold\_compound

Global vrna\_hc\_init (vrna\_fold\_compound\_t \*vc)

This function is attached as method hc init() to objects of type fold compound

Global vrna\_heat\_capacity (vrna\_fold\_compound\_t \*fc, float T\_min, float T\_max, float T\_increment, unsigned int mpoints)

This function is attached as overloaded method **heat\_capacity()** to objects of type *fold\_compound*. If the optional function arguments T\_min, T\_max, T\_increment, and mpoints are omitted, they default to 0.0, 100.0, 1.0 and 2, respectively.

Global vrna\_heat\_capacity\_cb (vrna\_fold\_compound\_t \*fc, float T\_min, float T\_max, float T\_increment, unsigned int mpoints, vrna\_heat\_capacity\_f cb, void \*data)

This function is attached as method heat capacity cb() to objects of type fold compound

## Global vrna\_heat\_capacity\_simple (const char \*sequence, float T\_min, float T\_max, float T\_increment, unsigned int mpoints)

This function is available as overloaded function  $heat\_capacity()$ . If the optional function arguments  $T_min$ ,  $T_max$ ,  $T_increment$ , and mpoints are omitted, they default to 0.0, 100.0, 1.0 and 2, respectively.

### Global vrna\_init\_rand\_seed (unsigned int seed)

This function is available as an overloaded function init\_rand() where the argument seed is optional.

## Global vrna\_maximum\_matching (vrna\_fold\_compound\_t \*fc)

This function is attached as method maximum\_matching() to objects of type fold\_compound (i.e. vrna fold compound t).

#### Global vrna maximum matching simple (const char \*sequence)

This function is available as global function maximum matching().

#### Class vrna md s

This data structure is wrapped as an object md with multiple related functions attached as methods.

A new set of default parameters can be obtained by calling the constructure of md:

• md() - Initialize with default settings

The resulting object has a list of attached methods which directly correspond to functions that mainly operate on the corresponding *C* data structure:

- reset() vrna md set default()
- set\_from\_globals() set\_model\_details()
- option string() vrna md option string()

Note, that default parameters can be modified by directly setting any of the following global variables. Internally, getting/setting default parameters using their global variable representative translates into calls of the following functions, therefore these wrappers for these functions do not exist in the scripting language interface(s):

#### Global vrna\_MEA (vrna\_fold\_compound\_t \*fc, double gamma, float \*mea)

This function is attached as overloaded method **MEA**(gamma = 1.) to objects of type *fold\_compound*. Note, that it returns the MEA structure and MEA value as a tuple (MEA\_structure, MEA)

## Global vrna\_MEA\_from\_plist (vrna\_ep\_t \*plist, const char \*sequence, double gamma, vrna\_md\_t \*md, float \*mea)

This function is available as overloaded function **MEA\_from\_plist**(gamma = 1., md = NULL). Note, that it returns the MEA structure and MEA value as a tuple (MEA\_structure, MEA)

### Global vrna\_mean\_bp\_distance (vrna\_fold\_compound\_t \*vc)

This function is attached as method mean\_bp\_distance() to objects of type fold\_compound

## Global vrna mfe (vrna fold compound t \*vc, char \*structure)

This function is attached as method mfe() to objects of type fold\_compound

#### Global vrna mfe dimer (vrna fold compound t \*vc, char \*structure)

This function is attached as method mfe\_dimer() to objects of type fold\_compound

#### Global vrna\_mfe\_window (vrna\_fold\_compound\_t \*vc, FILE \*file)

This function is attached as method mfe\_window() to objects of type fold\_compound

## Global vrna\_neighbors (vrna\_fold\_compound\_t \*vc, const short \*pt, unsigned int options)

This function is attached as an overloaded method <code>neighbors()</code> to objects of type <code>fold\_compound</code>. The optional parameter <code>options</code> defaults to <code>VRNA\_MOVESET\_DEFAULT</code> if it is omitted.

## Global vrna\_params\_load (const char fname[], unsigned int options)

This function is available as overloaded function **params\_load**(fname="", options=VRNA\_PARAMETER\_FORMAT\_DEFAULT). Here, the empty filename string indicates to load default RNA parameters, i.e. this is equivalent to calling vrna\_params\_load\_defaults().

56 API Features

#### Global vrna params load defaults (void)

This function is available as overloaded function params\_load().

## Global vrna\_params\_load\_DNA\_Mathews1999 (void)

This function is available as function params load DNA Mathews1999().

## Global vrna\_params\_load\_DNA\_Mathews2004 (void)

This function is available as function params\_load\_DNA\_Mathews2004().

### Global vrna\_params\_load\_from\_string (const char \*string, const char \*name, unsigned int options)

This function is available as overloaded function params load from string(string, name="", options=VRNA PARAMETER FOR

## Global vrna\_params\_load\_RNA\_Andronescu2007 (void)

This function is available as function params\_load\_RNA\_Andronescu2007().

## Global vrna\_params\_load\_RNA\_Langdon2018 (void)

This function is available as function params load RNA Langdon2018().

#### Global vrna params load RNA misc special hairpins (void)

This function is available as function params\_load\_RNA\_misc\_special\_hairpins().

### Global vrna\_params\_load\_RNA\_Turner1999 (void)

This function is available as function params load RNA Turner1999().

#### Global vrna params load RNA Turner2004 (void)

This function is available as function params\_load\_RNA\_Turner2004().

#### Global vrna params reset (vrna fold compound t \*vc, vrna md t \*md p)

This function is attached to <a href="mailto:vrna\_fc\_s">vrna\_fc\_s</a> objects as overloaded <a href="params\_reset">params\_reset()</a> method.

When no parameter is passed to this method, the resulting action is the same as passing *NULL* as second parameter to vrna\_params\_reset(), i.e. global default model settings are used. Passing an object of type vrna\_md\_s resets the fold compound according to the specifications stored within the vrna\_md\_s object.

### Global vrna\_params\_save (const char fname[], unsigned int options)

This function is available as overloaded function params\_save(fname, options=VRNA\_PARAMETER\_FORMAT\_DEFAULT).

## Global vrna\_params\_subst (vrna\_fold\_compound\_t \*vc, vrna\_param\_t \*par)

This function is attached to vrna fc s objects as overloaded params subst() method.

When no parameter is passed, the resulting action is the same as passing *NULL* as second parameter to vrna\_params\_subst(), i.e. resetting the parameters to the global defaults.

## Global vrna\_path (vrna\_fold\_compound\_t \*vc, short \*pt, unsigned int steps, unsigned int options)

This function is attached as an overloaded method path() to objects of type  $fold\_compound$ . The optional parameter options defaults to VRNA\_PATH\_DEFAULT if it is omitted.

# Global vrna\_path\_direct (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, vrna\_path\_options\_t options)

This function is attached as an overloaded method *path\_direct()* to objects of type *fold\_compound*. The optional parameter options defaults to *NULL* if it is omitted.

# Global vrna\_path\_direct\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int maxE, vrna\_← path\_options\_t options)

This function is attached as an overloaded method  $path\_direct()$  to objects of type  $fold\_compound$ . The optional parameter maxE defaults to #INT\_MAX - 1 if it is omitted, while the optional parameter options defaults to NULL. In case the function did not find a path with  $E_{saddle} < E_{max}$  it returns an empty list.

## Global vrna\_path\_findpath (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width)

This function is attached as an overloaded method  $path\_findpath()$  to objects of type  $fold\_compound$ . The optional parameter width defaults to 1 if it is omitted.

## Global vrna\_path\_findpath\_saddle (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width)

This function is attached as an overloaded method *path\_findpath\_saddle()* to objects of type *fold\_compound*. The optional parameter width defaults to 1 if it is omitted.

## Global vrna\_path\_findpath\_saddle\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width, int maxE)

This function is attached as an overloaded method  $path\_findpath\_saddle()$  to objects of type  $fold\_compound$ . The optional parameter width defaults to 1 if it is omitted, while the optional parameter maxE defaults to INF. In case the function did not find a path with  $E_{saddle} < E_{max}$  the function returns a NULL object, i.e. undef for Perl and None for Python.

## Global vrna\_path\_findpath\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width, int maxE)

This function is attached as an overloaded method  $path\_findpath()$  to objects of type  $fold\_compound$ . The optional parameter width defaults to 1 if it is omitted, while the optional parameter maxE defaults to INF. In case the function did not find a path with  $E_{saddle} < E_{max}$  the function returns an empty list.

## Global vrna\_path\_gradient (vrna\_fold\_compound\_t \*vc, short \*pt, unsigned int options)

This function is attached as an overloaded method *path\_gradient()* to objects of type *fold\_compound*. The optional parameter options defaults to VRNA\_PATH\_DEFAULT if it is omitted.

#### Global vrna\_path\_options\_findpath (int width, unsigned int type)

This function is available as overloaded function *path\_options\_findpath()*. The optional parameter width defaults to 10 if omitted, while the optional parameter type defaults to VRNA\_PATH\_TYPE\_DOT\_BRACKET.

## Global vrna\_path\_random (vrna\_fold\_compound\_t \*vc, short \*pt, unsigned int steps, unsigned int options)

This function is attached as an overloaded method *path\_gradient()* to objects of type *fold\_compound*. The optional parameter options defaults to VRNA PATH DEFAULT if it is omitted.

## Global vrna\_pbacktrack (vrna\_fold\_compound\_t \*fc)

This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_compound*. See also Python Examples - Boltzmann Sampling

#### Global vrna\_pbacktrack5 (vrna\_fold\_compound\_t \*fc, unsigned int length)

This function is attached as overloaded method **pbacktrack5()** to objects of type *fold\_compound*. See also Python Examples - Boltzmann Sampling

## Global vrna\_pbacktrack5\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, vrna\_bs\_result\_f cb, void \*data, unsigned int options)

This function is attached as overloaded method **pbacktrack5()** to objects of type *fold\_compound* where the last argument options is optional with default value options = VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

# Global vrna\_pbacktrack5\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, unsigned int options)

This function is attached as overloaded method **pbacktrack5()** to objects of type *fold\_compound* where the last argument options is optional with default value options = VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

# Global vrna\_pbacktrack5\_resume (vrna\_fold\_compound\_t \*vc, unsigned int num\_samples, unsigned int length, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

This function is attached as overloaded method **pbacktrack5()** to objects of type *fold\_compound*. In addition to the list of structures, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

# Global vrna\_pbacktrack5\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, vrna\_bs\_result\_f cb, void \*data, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

This function is attached as overloaded method **pbacktrack5()** to objects of type *fold\_compound*. In addition to the number of structures backtraced, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

## Global vrna\_pbacktrack\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna\_bs\_result\_f cb, void \*data, unsigned int options)

This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_compound* where the last argument options is optional with default value options = VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

58 API Features

Global vrna\_pbacktrack\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int options)

This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_compound* where the last argument options is optional with default value options = VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

Global vrna\_pbacktrack\_resume (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna\_← pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_compound*. In addition to the list of structures, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

Global vrna\_pbacktrack\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna\_bs\_← result\_f cb, void \*data, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_compound*. In addition to the number of structures backtraced, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

Global vrna\_pbacktrack\_sub (vrna\_fold\_compound\_t \*fc, unsigned int start, unsigned int end)

This function is attached as overloaded method **pbacktrack\_sub()** to objects of type *fold\_compound*. See also Python Examples - Boltzmann Sampling

Global vrna\_pbacktrack\_sub\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna\_bs\_result\_f cb, void \*data, unsigned int options)

This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_compound* where the last argument options is optional with default value options = VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

Global vrna\_pbacktrack\_sub\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, unsigned int options)

This function is attached as overloaded method **pbacktrack\_sub()** to objects of type *fold\_compound* where the last argument options is optional with default value options = VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

Global vrna\_pbacktrack\_sub\_resume (vrna\_fold\_compound\_t \*vc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_compound*. In addition to the list of structures, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

Global vrna\_pbacktrack\_sub\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna\_bs\_result\_f cb, void \*data, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_compound*. In addition to the number of structures backtraced, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

Global vrna\_pf (vrna\_fold\_compound\_t \*vc, char \*structure)

This function is attached as method pf() to objects of type fold\_compound

Global vrna pf dimer (vrna fold compound t \*vc, char \*structure)

This function is attached as method pf\_dimer() to objects of type fold\_compound

Global vrna\_positional\_entropy (vrna\_fold\_compound\_t \*fc)

This function is attached as method positional\_entropy() to objects of type fold\_compound

Global vrna\_pr\_energy (vrna\_fold\_compound\_t \*vc, double e)

This function is attached as method **pr\_energy()** to objects of type *fold\_compound* 

Global vrna\_pr\_structure (vrna\_fold\_compound\_t \*fc, const char \*structure)

This function is attached as method pr\_structure() to objects of type fold\_compound

#### Global vrna ptable (const char \*structure)

This functions is wrapped as overloaded function <code>ptable()</code> that takes an optional argument <code>options</code> to specify which type of matching brackets should be considered during conversion. The default set is round brackets, i.e. <code>VRNA\_BRACKETS\_RND</code>.

#### Global vrna\_ptable\_from\_string (const char \*structure, unsigned int options)

This functions is wrapped as overloaded function <code>ptable()</code> that takes an optional argument <code>options</code> to specify which type of matching brackets should be considered during conversion. The default set is round brackets, i.e. <code>VRNA\_BRACKETS\_RND</code>.

#### Global vrna\_rotational\_symmetry (const char \*string)

This function is available as global function **rotational\_symmetry()**. See vrna\_rotational\_symmetry\_pos() for details.

#### Global vrna rotational symmetry db (vrna fold compound t \*fc, const char \*structure)

This function is attached as method rotational\_symmetry\_db() to objects of type fold\_compound (i. ← e. vrna\_fold\_compound\_t). See vrna\_rotational\_symmetry\_db\_pos() for details.

# Global vrna\_rotational\_symmetry\_db\_pos (vrna\_fold\_compound\_t \*fc, const char \*structure, unsigned int \*\*positions)

This function is attached as method **rotational\_symmetry\_db()** to objects of type fold\_compound (i. ← e. vrna\_fold\_compound\_t). Thus, the first argument must be omitted. In contrast to our C-implementation, this function doesn't simply return the order of rotational symmetry of the secondary structure, but returns the list position of cyclic permutation shifts that result in a rotationally symmetric structure. The length of the list then determines the order of rotational symmetry.

# Global vrna\_rotational\_symmetry\_num (const unsigned int \*string, size\_t string\_length)

This function is available as global function **rotational\_symmetry()**. See vrna\_rotational\_symmetry\_pos() for details. Note, that in the target language the length of the list string is always known a-priori, so the parameter string\_length must be omitted.

#### Global vrna rotational symmetry pos (const char \*string, unsigned int \*\*positions)

This function is available as overloaded global function **rotational\_symmetry()**. It merges the functionalities of vrna\_rotational\_symmetry(), vrna\_rotational\_symmetry\_pos(), vrna\_rotational\_symmetry\_num(), and vrna\_rotational\_symmetry\_pos\_num(). In contrast to our C-implementation, this function doesn't return the order of rotational symmetry as a single value, but returns a list of cyclic permutation shifts that result in a rotationally symmetric string. The length of the list then determines the order of rotational symmetry.

# Global vrna\_rotational\_symmetry\_pos\_num (const unsigned int \*string, size\_t string\_length, unsigned int \*\*positions)

This function is available as global function **rotational\_symmetry()**. See vrna\_rotational\_symmetry\_pos() for details. Note, that in the target language the length of the list string is always known a-priori, so the parameter string\_length must be omitted.

## Global vrna\_sc\_add\_bp (vrna\_fold\_compound\_t \*vc, int i, int j, FLT\_OR\_DBL energy, unsigned int options)

This function is attached as an overloaded method **sc\_add\_bp()** to objects of type *fold\_compound*. The method either takes arguments for a single base pair (i,j) with the corresponding energy value:

## Global vrna\_sc\_add\_bt (vrna\_fold\_compound\_t \*vc, vrna\_sc\_bt\_f f)

This function is attached as method sc\_add\_bt() to objects of type fold\_compound

# Global vrna\_sc\_add\_data (vrna\_fold\_compound\_t \*vc, void \*data, vrna\_auxdata\_free\_f free\_data)

This function is attached as method sc\_add\_data() to objects of type fold\_compound

# Global vrna\_sc\_add\_exp\_f (vrna\_fold\_compound\_t \*vc, vrna\_sc\_exp\_f exp\_f)

This function is attached as method sc\_add\_exp\_f() to objects of type fold\_compound

# $\textbf{Global vrna\_sc\_add\_f (vrna\_fold\_compound\_t *vc, vrna\_sc\_f f)}$

This function is attached as method **sc\_add\_f()** to objects of type *fold\_compound* 

# Global vrna\_sc\_add\_hi\_motif (vrna\_fold\_compound\_t \*fc, const char \*seq, const char \*structure, FLT\_← OR\_DBL energy, unsigned int options)

This function is attached as method sc add hi motif() to objects of type fold compound

60 API Features

Global vrna\_sc\_add\_SHAPE\_deigan (vrna\_fold\_compound\_t \*vc, const double \*reactivities, double m, double b, unsigned int options)

This function is attached as method sc add SHAPE deigan() to objects of type fold compound

Global vrna\_sc\_add\_SHAPE\_deigan\_ali (vrna\_fold\_compound\_t \*vc, const char \*\*shape\_files, const int \*shape\_file association, double m, double b, unsigned int options)

This function is attached as method sc\_add\_SHAPE\_deigan\_ali() to objects of type fold\_compound

Global vrna\_sc\_add\_SHAPE\_zarringhalam (vrna\_fold\_compound\_t \*vc, const double \*reactivities, double b, double default\_value, const char \*shape\_conversion, unsigned int options)

This function is attached as method sc add SHAPE zarringhalam() to objects of type fold compound

Global vrna\_sc\_add\_up (vrna\_fold\_compound\_t \*vc, int i, FLT\_OR\_DBL energy, unsigned int options)

This function is attached as an overloaded method  $sc_add_up()$  to objects of type  $fold_compound$ . The method either takes arguments for a single nucleotide i with the corresponding energy value:

Global vrna\_sc\_init (vrna\_fold\_compound\_t \*vc)

This function is attached as method sc init() to objects of type fold compound

Global vrna\_sc\_mod (vrna\_fold\_compound\_t \*fc, const vrna\_sc\_mod\_param\_t params, const unsigned int \*modification\_sites)

This function is attached as method sc mod() to objects of type fold compound

Global vrna\_sc\_mod\_7DA (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

This function is attached as method sc\_mod\_7DA() to objects of type fold\_compound

Global vrna\_sc\_mod\_dihydrouridine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

This function is attached as method sc\_mod\_dihydrouridine() to objects of type fold\_compound

Global vrna\_sc\_mod\_inosine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

This function is attached as method sc\_mod\_inosine() to objects of type fold\_compound

Global vrna\_sc\_mod\_json (vrna\_fold\_compound\_t \*fc, const char \*json, const unsigned int \*modification\_sites)

This function is attached as method sc\_mod\_ison() to objects of type fold\_compound

Global vrna\_sc\_mod\_jsonfile (vrna\_fold\_compound\_t \*fc, const char \*json\_file, const unsigned int \*modification\_sites)

This function is attached as method sc\_mod\_jsonfile() to objects of type fold\_compound

Global vrna\_sc\_mod\_m6A (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

This function is attached as method sc\_mod\_m6A() to objects of type fold\_compound

Global vrna\_sc\_mod\_parameters\_free (vrna\_sc\_mod\_param\_t params)

This function is available as function sc\_mod\_parameters\_free()

Global vrna\_sc\_mod\_pseudouridine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

This function is attached as method sc\_mod\_pseudouridine() to objects of type fold\_compound

Global vrna\_sc\_mod\_purine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

This function is attached as method sc\_mod\_purine() to objects of type fold\_compound

Global vrna\_sc\_mod\_read\_from\_json (const char \*json, vrna\_md\_t \*md)

This function is available as an overloaded function  $sc_mod_read_from_json()$  where the md parameter may be omitted

Global vrna\_sc\_mod\_read\_from\_jsonfile (const char \*filename, vrna\_md\_t \*md)

This function is available as an overloaded function sc\_mod\_read\_from\_jsonfile() where the md parameter may be omitted

Global vrna\_sc\_remove (vrna\_fold\_compound\_t \*vc)

This function is attached as method **sc\_remove()** to objects of type *fold\_compound* 

Global vrna\_sc\_set\_bp (vrna\_fold\_compound\_t \*vc, const FLT\_OR\_DBL \*\*constraints, unsigned int options)

This function is attached as method **sc\_set\_bp()** to objects of type *fold\_compound* 

Global vrna\_sc\_set\_up (vrna\_fold\_compound\_t \*vc, const FLT\_OR\_DBL \*constraints, unsigned int options)

This function is attached as method sc\_set\_up() to objects of type fold\_compound

Global vrna\_seq\_encode (const char \*sequence, vrna\_md\_t \*md)

In the target scripting language, this function is wrapped as overloaded function  $seq\_encode()$  where the last parameter, the  $model\_details$  data structure, is optional. If it is omitted, default model settings are applied, i.e. default nucleotide letter conversion. The wrapped function returns a list/tuple of integer representations of the input sequence.

Global vrna strtrim (char \*string, const char \*delimiters, unsigned int keep, unsigned int options)

Since many scripting languages treat strings as immutable objects, this function does not modify the input string directly. Instead, it returns the modified string as second return value, together with the number of removed delimiters.

The scripting language interface provides an overloaded version of this function, with default parameters delimiters=NULL, keep=0, and options=VRNA\_TRIM\_DEFAULT.

Global vrna\_subopt (vrna\_fold\_compound\_t \*fc, int delta, int sorted, FILE \*fp)

This function is attached as method subopt() to objects of type fold\_compound

Global vrna\_subopt\_cb (vrna\_fold\_compound\_t \*fc, int delta, vrna\_subopt\_result\_f cb, void \*data)

This function is attached as method **subopt\_cb()** to objects of type fold\_compound

Global vrna\_subopt\_zuker (vrna\_fold\_compound\_t \*fc)

This function is attached as method subopt zuker() to objects of type fold compound

Global vrna\_ud\_remove (vrna\_fold\_compound\_t \*vc)

This function is attached as method ud remove() to objects of type fold compound

Global vrna\_ud\_set\_data (vrna\_fold\_compound\_t \*vc, void \*data, vrna\_auxdata\_free\_f free\_cb)

This function is attached as method ud set data() to objects of type fold compound

Global vrna\_ud\_set\_exp\_prod\_rule\_cb (vrna\_fold\_compound\_t \*vc, vrna\_ud\_exp\_production\_f pre\_cb, vrna\_ud\_exp\_f exp\_e\_cb)

This function is attached as method ud set exp prod rule cb() to objects of type fold compound

Global vrna\_ud\_set\_prob\_cb (vrna\_fold\_compound\_t \*vc, vrna\_ud\_add\_probs\_f setter, vrna\_ud\_get\_← probs\_f getter)

This function is attached as method ud set prob cb() to objects of type fold compound

Global vrna\_ud\_set\_prod\_rule\_cb (vrna\_fold\_compound\_t \*vc, vrna\_ud\_production\_f pre\_cb, vrna\_ud\_f e\_cb)

This function is attached as method ud\_set\_prod\_rule\_cb() to objects of type fold\_compound

API Features

# **Chapter 7**

# **Additional Utilities**

64 Additional Utilities

# **Chapter 8**

# **Examples**

- C Examples
- Perl5 Examples
- Python Examples

# 8.1 C Examples

# 8.1.1 Hello World Examples

## helloworld\_mfe.c

The following is an example showing the minimal requirements to compute the Minimum Free Energy (MFE) and corresponding secondary structure of an RNA sequence

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ViennaRNA/fold.h>
#include <ViennaRNA/utils/basic.h>
int
main()
  /\star The RNA sequence \star/
  char *seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";
  /* allocate memory for MFE structure (length + 1) */
char *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));
  /\star predict Minmum Free Energy and corresponding secondary structure \star/
  float mfe = vrna_fold(seq, structure);
  /\star print sequence, structure and MFE \star/
  printf("%s\n%s [ %6.2f ]\n", seq, structure, mfe);
   /* cleanup memory */
  free (structure);
  return 0;
```

examples/helloworld\_mfe.c in the source code tarball

# helloworld\_mfe\_comparative.c

Instead of using a single sequence as done above, this example predicts a consensus structure for a multiple sequence alignment

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <ViennaRNA/alifold.h>
#include <ViennaRNA/utils/basic.h>
```

See also

66 Examples

```
#include <ViennaRNA/utils/alignments.h>
int
main()
  /* The RNA sequence alignment */
  const char *sequences[] = {
    "CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU",
    "CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU",
    "---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU",
    NULL /* indicates end of alignment */
  };
  /* compute the consensus sequence */
               *cons = consensus(sequences);
  /* allocate memory for MFE consensus structure (length + 1) */
               *structure = (char *)vrna_alloc(sizeof(char) * (strlen(sequences[0]) + 1));
  /* predict Minmum Free Energy and corresponding secondary structure */
              mfe = vrna_alifold(sequences, structure);
  /* print consensus sequence, structure and MFE */ printf("%s\n%s [ %6.2f ]\n", cons, structure, mfe);
  /* cleanup memory */
  free (cons);
  free (structure);
  return 0:
```

See also

examples/helloworld\_mfe\_comparative.c in the source code tarball

## helloworld probabilities.c

This example shows how to compute the partition function and base pair probabilities with minimal implementation effort.

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ViennaRNA/fold.h>
#include <ViennaRNA/part_func.h>
#include <ViennaRNA/utils/basic.h>
main()
  /\star The RNA sequence \star/
            *seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";
  /* allocate memory for pairing propensity string (length + 1) */
char *propensity = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));
  char
  /\star pointers for storing and navigating through base pair probabilities \star/
  vrna_ep_t *ptr, *pair_probabilities = NULL;
             en = vrna pf fold(seg, propensity, &pair probabilities);
  /\star print sequence, pairing propensity string and ensemble free energy \star/
  printf("%s\n%s [ %6.2f ]\n", seq, propensity, en);
  /\star print all base pairs with probability above 50% \star/
  for (ptr = pair_probabilities; ptr->i != 0; ptr++)
   if (ptr->p > 0.5)
      printf("p(%d, %d) = %g\n", ptr->i, ptr->j, ptr->p);
  /* cleanup memory */
  free(pair_probabilities);
  free (propensity);
  return 0;
```

8.1 C Examples 67

See also

examples/helloworld\_probabilities.c in the source code tarball

# 8.1.2 First Steps with the Fold Compound

# fold\_compound\_mfe.c

Instead of calling the simple MFE folding interface vrna\_fold(), this example shows how to first create a vrna\_fold\_compound\_t container with the RNA sequence to finally compute the MFE using this container. This is especially useful if non-default model settings are applied or the dynamic programming (DP) matrices of the MFE prediction are required for post-processing operations, or other tasks on the same sequence will be performed.

```
#include <stdlib.h>
#include <stdio.h>
#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/mfe.h>
int
main()
  /* initialize random number generator */
  vrna_init_rand();
  /* Generate a random sequence of 50 nucleotides */
                        *seq = vrna_random_string(50, "ACGU");
  /* Create a fold compound for the sequence */
  vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);
  /* allocate memory for MFE structure (length + 1) */
                         *structure = (char *)vrna_alloc(sizeof(char) * (strlen(seq) + 1));
  /\star predict Minmum Free Energy and corresponding secondary structure \star/
                        mfe = vrna_mfe(fc, structure);
  /* print sequence, structure and MFE */
  printf("%s\n%s [ %6.2f ]\n", seq, structure, mfe);
  /* cleanup memory */
  free (seq);
  free (structure);
  vrna_fold_compound_free(fc);
  return 0;
See also
```

examples/fold\_compound\_mfe.c in the source code tarball

## fold compound md.c

In the following, we change the model settings (model details) to a temperature of 25 Degree Celcius, and activate G-Quadruplex precition.

68 Examples

```
vrna_md_t md;
  /* ALWAYS set default model settings first! */
  vrna_md_set_default(&md);
  /* change temperature and activate G-Quadruplex prediction */
  md.temperature = 25.0; /* 25 Deg Celcius */
md.gquad = 1; /* Turn-on G-Quadrup
                            /* Turn-on G-Quadruples support */
  /* create a fold compound */
  vrna_fold_compound_t *fc = vrna_fold_compound(seq, &md, VRNA_OPTION_DEFAULT);
  /\star predict Minmum Free Energy and corresponding secondary structure \star/
                         mfe = vrna_mfe(fc, structure);
  /\star print sequence, structure and MFE \star/
  printf("%s\n%s [ %6.2f ]\n", seq, structure, mfe);
  /* cleanup memory */
  free(structure);
  vrna_fold_compound_free(fc);
  return 0;
See also
```

examples/fold\_compound\_md.c in the source code tarball

# 8.1.3 Writing Callback Functions

# callback\_subopt.c

Here is a basic example how to use the callback mechanism in vrna\_subopt\_cb(). It simply defines a callback function (see interface definition for vrna\_subopt\_callback) that prints the result and increases a counter variable.

```
#include \(\cdot\)stdlib.h>
#include <stdio.h>
#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/subopt.h>
void
subopt_callback(const char *structure,
                 float
                              energy,
                 void
                               *data)
  /\star simply print the result and increase the counter variable by 1 \star/
    printf("%d.\t%s\t%6.2f\n", (*((int *)data))++, structure, energy);
int
main()
  /\star initialize random number generator \star/
  vrna init rand();
  /\star Generate a random sequence of 50 nucleotides \star/
                          *seq = vrna_random_string(50, "ACGU");
  /* Create a fold compound for the sequence */
vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);
                          counter = 0;
  \star call subopt to enumerate all secondary structures in an energy band of
   \star 5 kcal/mol of the MFE and pass it the address of the callback and counter
  vrna_subopt_cb(fc, 500, &subopt_callback, (void *)&counter);
  /* cleanup memory */
  free (sea):
  vrna fold compound free (fc):
  return 0;
```

8.1 C Examples 69

See also

examples/callback\_subopt.c in the source code tarball

# 8.1.4 Application of Soft Constraints

# soft\_constraints\_up.c

In this example, a random RNA sequence is generated to predict its MFE under the constraint that a particular nucleotide receives an additional bonus energy if it remains unpaired.

```
#include <stdio.h>
#include <ViennaRNA/fold_compound.h>
#include <ViennaRNA/utils/basic.h>
#include <ViennaRNA/utils/strings.h>
#include <ViennaRNA/constraints/soft.h>
#include <ViennaRNA/mfe.h>
int
main()
  /* initialize random number generator */
  vrna_init_rand();
  /\star Generate a random sequence of 50 nucleotides \star/
                          *seq = vrna_random_string(50, "ACGU");
  char
  /* Create a fold compound for the sequence */
  vrna_fold_compound_t *fc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);
  /* Add soft constraint of -1.7 kcal/mol to nucleotide 5 whenever it appears in an unpaired context \star/vrna_sc_add_up(fc, 5, -1.7, VRNA_OPTION_DEFAULT);
  /* allocate memory for MFE structure (length + 1) */
                      = (char *)vrna_alloc(sizeof(char) * 51);
  /\star predict Minmum Free Energy and corresponding secondary structure \star/
  float mfe = vrna_mfe(fc, structure);
  /\star print sequence, structure and MFE \star/
  printf("%s\n^{s} [ %6.2f ]\n^{n}, seq, structure, mfe);
  /* cleanup memory */
  free (seq);
  free (structure);
  vrna_fold_compound_free(fc);
  return 0;
```

examples/soft\_constraints\_up.c in the source code tarball

## 8.1.5 Other Examples

# example1.c

See also

A more extensive example including MFE, Partition Function, and Centroid structure prediction.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ViennaRNA/data_structures.h>
#include <ViennaRNA/eval.h>
#include <ViennaRNA/fold.h>
#include <ViennaRNA/part_func.h>
int
main(int argc,
     char *argv[])
  char
    "AGACGACAAGGUUGAAUCGCACCACAGUCUAUGAGUCGGUGACAACAUUACGAAAGGCUGUAAAAUCAAUUAUUCACCACAGGGGGCCCCCGUGUCUAG";
                         *mfe_structure = vrna_alloc(sizeof(char) * (strlen(seq) + 1));
*prob_string = vrna_alloc(sizeof(char) * (strlen(seq) + 1));
  char
  /* get a vrna_fold_compound with default settings */
```

70 Examples

```
vrna_fold_compound_t *vc = vrna_fold_compound(seq, NULL, VRNA_OPTION_DEFAULT);
/* call MFE function */
                         mfe = (double)vrna_mfe(vc, mfe_structure);
double
printf("%s\n%s (%6.2f)\n", seq, mfe_structure, mfe);
/\star rescale parameters for Boltzmann factors \star/
vrna_exp_params_rescale(vc, &mfe);
/* call PF function */
FLT_OR_DBL en = vrna_pf(vc, prob_string);
/* print probability string and free energy of ensemble */printf("%s (%6.2f)\n", prob_string, en);
/* compute centroid structure */
double dist;
         *cent = vrna_centroid(vc, &dist);
char
/* print centroid structure, its free energy and mean distance to the ensemble */ printf("%s (%6.2f d=%6.2f)\n", cent, vrna_eval_structure(vc, cent), dist);
/* free centroid structure */
free (cent);
/* free pseudo dot-bracket probability string */
free(prob_string);
/* free mfe structure */
free (mfe structure);
/* free memory occupied by vrna_fold_compound */
vrna_fold_compound_free(vc);
return EXIT_SUCCESS;
```

examples/example1.c in the source code tarball

# 8.1.6 Deprecated Examples

See also

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "utils.h"
#include "fold_vars.h"
#include "fold.h"
#include "part_func.h"
#include "inverse.h"
#include "RNAstruct.h"
#include "treedist.h"
#include "stringdist.h"
#include "profiledist.h"
void
main()
  char
              *seq1 = "CGCAGGGAUACCCGCG", *seq2 = "GCGCCCAUAGGGACGC",
              *struct1, *struct2, *xstruc;
  float
              e1, e2, tree_dist, string_dist, profile_dist, kT;
  Tree
              *T1, *T2;
  swString
              *S1, *S2;
  float
              *pf1, *pf2;
  FLT_OR_DBL *bppm;
  /* fold at 30C instead of the default 37C */
  temperature = 30.;
                          /* must be set *before* initializing */
  /\star allocate memory for structure and fold \star/
  struct1 = (char *)space(sizeof(char) * (strlen(seq1) + 1));
         = fold(seq1, struct1);
  struct2 = (char *)space(sizeof(char) * (strlen(seq2) + 1));
          = fold(seq2, struct2);
                     /\star free arrays used in fold() \star/
  free arrays():
  /* produce tree and string representations for comparison */
  xstruc = expand_Full(struct1);
          = make_tree(xstruc);
  S1
          = Make_swString(xstruc);
```

8.2 Perl5 Examples 71

```
free (xstruc);
xstruc = expand_Full(struct2);
T2 = make_tree(xstruc);
S2 = Make_swString(xstruc);
free (xstruc);
/\star calculate tree edit distance and aligned structures with gaps \star/
edit_backtrack = 1;
tree dist
               = tree_edit_distance(T1, T2);
free_tree(T1);
free_tree(T2);
unexpand_aligned_F (aligned_line);
printf("%s\n%s %3.2f\n", aligned_line[0], aligned_line[1], tree_dist);
/* same thing using string edit (alignment) distance */
string_dist = string_edit_distance(S1, S2);
free (S1);
free(S2);
printf("%s mfe=%5.2f\n%s mfe=%5.2f dist=%3.2f\n",
      aligned_line[0], e1, aligned_line[1], e2, string_dist);
/st for longer sequences one should also set a scaling factor for
/* calculate partition function and base pair probabilities */
e1 = pf_fold(seq1, struct1);
/\star get the base pair probability matrix for the previous run of pf_fold() \star/
bppm = export_bppm();
pf1 = Make_bp_profile_bppm(bppm, strlen(seq1));
e2 = pf_fold(seq2, struct2);
/\star get the base pair probability matrix for the previous run of pf_fold() \star/
bppm = export_bppm();
pf2 = Make_bp_profile_bppm(bppm, strlen(seq2));
free_pf_arrays(); /* free space allocated for pf_fold() */
profile_dist = profile_edit_distance(pf1, pf2);
printf("%s free energy=%5.2f\n%s free energy=%5.2f dist=%3.2f\n",
      aligned_line[0], e1, aligned_line[1], e2, profile_dist);
free_profile(pf1);
free_profile(pf2);
```

See also

examples/example\_old.c in the source code tarball

# 8.2 Perl5 Examples

# **Hello World Examples**

# Using the flat interface

· MFE prediction

```
use RNA;
# The RNA sequence
my $seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";
# compute minimum free energy (MFE) and corresponding structure
my ($ss, $mfe) = RNA::fold($seq);
# print output
printf "%s\n%s [ %6.2f ]\n", $seq, $ss, $mfe;
```

· comparative MFE prediction for sequence alignments

```
use RNA;

# The RNA sequence alignment
my @sequences = (
    "CUGCCUCACAACGUUUGUGCCUCAGUUACCCGUAGAUGUAGUGAGGGU",
    "CUGCCUCACAACAUUUGUGCCUCAGUUACUCAUAGAUGUAGUGAGGGU",
    "---CUCGACACCACU---GCCUCGGUUACCCAUCGGUGCAGUGCGGGU"
);

# compute the consensus sequence
```

72 Examples

```
my $cons = RNA::consensus(\@sequences);
# predict Minmum Free Energy and corresponding secondary structure
my ($ss, $mfe) = RNA::alifold(\@sequences);
# print output
printf "%s\n%s [ %6.2f ]\n", $cons, $ss, $mfe;
```

# Using the object oriented interface

· MFE prediction

```
#!/usr/bin/perl
use warnings;
use strict;
use RNA;
my $seq1 = "CGCAGGGAUACCCGCG";
# create new fold_compound object
my $fc = new RNA::fold_compound($seq1);
# compute minimum free energy (mfe) and corresponding structure
my ($ss, $mfe) = $fc->mfe();
# print output
printf "%s [ %6.2f ]\n", $ss, $mfe;
```

# **Changing the Model Settings**

# Using the object oriented interface

MFE prediction at different temperature and dangle model
 use RNA;

```
# The RNA sequence
my $seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA";

# create a new model details structure
my $md = new RNA::md();

# change temperature and dangle model
$md->{temperature} = 20.0; # 20 Deg Celcius
$md->{dangles} = 1; # Dangle Model 1

# create a fold compound
my $fc = new RNA::fold_compound($seq, $md);

# predict Minmum Free Energy and corresponding secondary structure
my ($ss, $mfe) = $fc->mfe();

# print sequence, structure and MFE
printf "%s\n%s [ %6.2f ]\n", $seq, $ss, $mfe;
```

# 8.3 Python Examples

# **MFE Prediction (flat interface)**

```
import RNA
# The RNA sequence
seq = "GAGUAGUGGAACCAGGCUAUGUUUGUGACUCGCAGACUAACA"

# compute minimum free energy (MFE) and corresponding structure
(ss, mfe) = RNA.fold(seq)
# print output
print("{}\n{} [ {:6.2f} ]".format(seq, ss, mfe))
```

8.3 Python Examples 73

# MFE Prediction (object oriented interface)

```
import RNA;
sequence = "CGCAGGGAUACCCGCG"

# create new fold_compound object
fc = RNA.fold_compound(sequence)

# compute minimum free energy (mfe) and corresponding structure
(ss, mfe) = fc.mfe()

# print output
print("{} [ {:6.2f} ]".format(ss, mfe))
```

# **Suboptimal Structure Prediction**

```
import RNA
sequence = "GGGGAAAACCCC"
# Set global switch for unique ML decomposition
RNA.cvar.uniq_{ML} = 1
subopt_data = { 'counter' : 1, 'sequence' : sequence }
# Print a subopt result as FASTA record
def print_subopt_result(structure, energy, data):
    if not structure == None:
       # increase structure counter
       data['counter'] = data['counter'] + 1
# Create a 'fold_compound' for our sequence
a = RNA.fold_compound(sequence)
# Enumerate all structures 500 dacal/mol = 5 kcal/mol arround
# the MFE and print each structure using the function above
a.subopt_cb(500, print_subopt_result, subopt_data);
```

# Boltzmann Sampling (a.k.a. Probabilistic Backtracing)

```
import RNA
sequence =
      "UGGGAAUAGUCUCUUCCGAGUCUCGCGGGCGACGGGCGAUCUUCGAAAGUGGAAUCCGUACUUAUACCGCCUGUGCGGACUACUAUCCUGACCACAUAGU"
def store_structure(s, data):
    A simple callback function that stores
    a structure sample into a list
        data.append(s)
First we prepare a fold_compound object
# create model details
md = RNA.md()
# activate unique multibranch loop decomposition
md.uniq\_ML = 1
# create fold compound object
fc = RNA.fold_compound(sequence, md)
# compute MFE
(ss, mfe) = fc.mfe()
# rescale Boltzmann factors according to MFE
fc.exp_params_rescale(mfe)
# compute partition function to fill DP matrices
fc.pf()
Now we are ready to perform Boltzmann sampling
# 1. backtrace a single sub-structure of length 10
```

74 Examples

```
print("{}".format(fc.pbacktrack5(10)))
# 2. backtrace a single sub-structure of length 50
print("{}".format(fc.pbacktrack5(50)))
# 3. backtrace multiple sub-structures of length 10 at once
for s in fc.pbacktrack5(20, 10):
   print("{}".format(s))
# 4. backtrace multiple sub-structures of length 50 at once
for s in fc.pbacktrack5(100, 50):
    print("{}".format(s))
# 5. backtrace a single structure (full length)
print("{}".format(fc.pbacktrack()))
# 6. backtrace multiple structures at once
for s in fc.pbacktrack(100):
   print("{}".format(s))
# 7. backtrace multiple structures non-redundantly
for s in fc.pbacktrack(100, RNA.PBACKTRACK_NON_REDUNDANT):
    print("{}".format(s))
# 8. backtrace multiple structures non-redundantly (with resume option)
num_samples = 500
iterations = 15
d
          = []
            = None # pbacktrack memory object
s list
for i in range(0, iterations):
    d, ss = fc.pbacktrack(num_samples, d, RNA.PBACKTRACK_NON_REDUNDANT)
s_list = s_list + list(ss)
for s in s list:
   print("{}".format(s))
# 9. backtrace multiple sub-structures of length 50 in callback mode
i = fc.pbacktrack5(100, 50, store_structure, ss)
for s in ss:
   print("{}".format(s))
# 10. backtrace multiple full-length structures in callback mode
ss = list()
i = fc.pbacktrack(100, store_structure, ss)
for s in ss:
   print("{}".format(s))
# 11. non-redundantly backtrace multiple full-length structures in callback mode
ss = list()
i = fc.pbacktrack(100, store_structure, ss, RNA.PBACKTRACK_NON_REDUNDANT)
for s in ss:
    print("{}".format(s))
\# 12. non-redundantly backtrace multiple full length structures
# in callback mode with resume option
ss = []
d = None # pbacktrack memory object
for i in range(0, iterations):
    d, i = fc.pbacktrack(num_samples, store_structure, ss, d, RNA.PBACKTRACK_NON_REDUNDANT)
for s in ss:
    print("{}".format(s))
\# 13. backtrace a single substructure from the sequence interval [10:50]
print("{}".format(fc.pbacktrack_sub(10, 50)))
# 14. backtrace multiple substructures from the sequence interval [10:50]
for s in fc.pbacktrack_sub(100, 10, 50):
    print("{}".format(s))
# 15. backtrace multiple substructures from the sequence interval [10:50] non-redundantly
for s in fc.pbacktrack_sub(100, 10, 50, RNA.PBACKTRACK_NON_REDUNDANT):
    print("{}".format(s))
```

## RNAfold -p -MEA equivalent

#!/usr/bin/python

8.3 Python Examples 75

```
#
import RNA
seg = "AUUUCCACUAGAGAAGGUCUAGAGGUGUUUGUCGGUUUGUCAGAAGUCCCUAUUCCAGGUACGACACGGUGGAUAUGUUCGACGACAGGAUCGGCGCACUA"
# create fold_compound data structure (required for all subsequently applied algorithms)
fc = RNA.fold_compound(seq)
# compute MFE and MFE structure
(mfe_struct, mfe) = fc.mfe()
# rescale Boltzmann factors for partition function computation
fc.exp_params_rescale(mfe)
# compute partition function
(pp, pf) = fc.pf()
# compute centroid structure
(centroid_struct, dist) = fc.centroid()
# compute free energy of centroid structure
centroid_en = fc.eval_structure(centroid_struct)
# compute MEA structure
(MEA_struct, MEA) = fc.MEA()
# compute free energy of MEA structure
MEA_en = fc.eval_structure(MEA_struct)
# print everything like RNAfold -p --MEA
print("{}\n{} ({:6.2f})".format(seq, mfe_struct, mfe))
print("{} [{:6.2f}]".format(pp, pf))
print("{} {{:6.2f}} d={:.2f}}}".format(centroid_struct, centroid_en, dist))
print("{} {{{:6.2f} MEA={:.2f}}}".format(MEA_struct, MEA_en, MEA))
print(" frequency of mfe structure in ensemble {:g}; ensemble diversity
       {:-6.2f}".format(fc.pr_structure(mfe_struct), fc.mean_bp_distance()))
Fun with Soft Constraints
import RNA
seq1 = "CUCGUCGCCUUAAUCCAGUGCGGGCGCUAGACAUCUAGUUAUCGCCGCAA"
# Turn-off dangles globally
RNA.cvar.dangles = 0
# Data structure that will be passed to our MaximumMatching() callback with two components:
# 1. a 'dummy' fold_compound to evaluate loop energies w/o constraints, 2. a fresh set of energy parameters
mm_data = { 'dummy': RNA.fold_compound(seq1), 'params': RNA.param() }
# Nearest Neighbor Parameter reversal functions
revert_NN = {
     RNA.DECOMP_PAIR_HP:
                                     lambda i, j, k, l, f, p: - f.eval_hp_loop(i, j) - 100,
                                    lambda i, j, k, l, f, p: - f.eval_int_loop(i, j, k, l) - 100,
lambda i, j, k, l, f, p: - p.MLclosing - p.MLintern[0] - (j - i - k + 1 - 2) *
     RNA.DECOMP_PAIR_IL:
     RNA.DECOMP_PAIR_ML:
     p.MLbase - 100,
RNA.DECOMP_ML_ML_STEM:
                                    lambda i, j, k, l, f, p: - p.MLintern[0] - (1 - k - 1) * p.MLbase, lambda i, j, k, l, f, p: - p.MLintern[0] - (j - i - k + 1) * p.MLbase,
     RNA.DECOMP_ML_STEM:
     RNA.DECOMP_ML_ML:
                                     lambda i, j, k, l, f, p: -(j-i-k+1) * p.MLbase,
     RNA.DECOMP_ML_ML_ML:
                                    lambda i, j, k, l, f, p: 0,
                                   lambda i, j, k, l, f, p: - (j - i + 1) * p.MLbase, lambda i, j, k, l, f, p: - f.eval_ext_stem(k, l),
     RNA.DECOMP_ML_UP:
     RNA.DECOMP_EXT_STEM:
     RNA.DECOMP_EXT_EXT:
     RNA.DECOMP_EXT_EXT: lambda i, j, k, l, f, p: 0, RNA.DECOMP_EXT_STEM_EXT: lambda i, j, k, l, f, p: - f.eval_ext_stem(i, k), RNA.DECOMP_EXT_EXT_STEM: lambda i, j, k, l, f, p: - f.eval_ext_stem(l, j),
# Maximum Matching callback function (will be called by RNAlib in each decomposition step)
def MaximumMatching(i, j, k, 1, d, data):
    return revert_NN[d](i, j, k, 1, data['dummy'], data['params'])
# Create a 'fold_compound' for our sequence
fc = RNA.fold_compound(seq1)
# Add maximum matching soft-constraints
fc.sc_add_f(MaximumMatching)
fc.sc_add_data(mm_data, None)
# Call MFE algorithm
(s, mm) = fc.mfe()
# print result
print("{}\n{} (MM: {:d})".format(seq1, s, int(-mm)))
```

76 Examples

# **Chapter 9**

# **Contributing to the ViennaRNA Package**

## **Contents**

- · General Remarks
- · Reporting Bugs
- · Pull Request Process
- · Contributors License Agreement (CLA)

## **General Remarks**

The ViennaRNA Package is developed by humans and consequently may contain bugs that prevent proper operation of the implemented algorithms. If you think you have found any of those nasty animals, please help us to improve our software by reporting the bug to us.

The ViennaRNA Package also is open-source software, which means that everybody can have a closer look into our implementations to understand and potentially extend it's functionality. If you implemented any novel feature into the ViennaRNA Package that might be of interest to a larger community, please don't hesitate to ask for merging of your code into our official source tree. See the Pull Request Process section below to find information on how to do that

Please note that we have a code of conduct. Please follow it in all your interactions with this project.

If you wish to contribute to this project, please first discuss any proposed changes with the owners and main developers. You may do that either through making an issue at our official GitHub presence, by email, or any other personal communication with the core developer team.

More importantly, if you wish to contribute any files or software, you need to agree to our ViennaRNA Package Contributors License Agreement (CLA)! Otherwise, your contributions can't be merged into our source tree. See below for further information and the full CLA details.

# **Reporting Bugs**

- 1. Please make an issue at GitHub or notify us by emailing to rna@tbi.univie.ac.at
- 2. In your report, include as much information as possible, such that we are able to reproduce it. If possible, find a minimal example that triggers the bug.
- 3. Include the version number for the ViennaRNA Package you experience the bug with.
- 4. Include at least some minimal information regarding your operating system (Linux, Mac OS X, Windows, etc.)

# **Pull Request Process**

1. Ensure that you have not checked-in any files that are automatically build!

- 2. When contributing C source code, follow our code formatting guide lines. You may use the tool uncrustify together with our config located in misc/uncrustify.cfg to accomplish that.
- 3. Only expose symbols (functions, variables, etc.) to the libraries interface that are absolutely necessary! Hide all other symbols in the corresponding object file(s) by declaring them as static.
- 4. Use the prefixes vrna\_ for any symbol you add to the API of our library! Preprocessor macros in header files require the prefix in capital letters, i.e. VRNA\_.
- 5. Use C-style comments at any place necessary to make sure your implementation can still be understood and followed in the future.
- 6. Add test cases for any new implementation! The test suite is located in the tests directory and is split into tests for the C-library, executable programs, and the individual scripting language interfaces.
- 7. Run make check to ensure that all other test suites still run properly with your applied changes!
- 8. When contributing via GitHub, make a personal fork of our project and create a separate branch for your changes. Then make a pull request to our user-contrib branch. Pull requests to the master branch will be rejected to keep its history clean.
- 9. Pull requests that have been successfully merged into the user-contrib branch usually find their way into the next release of the ViennaRNA Package. However, please note that the core developers may decide to include your changes in a later version.

# **Contributors License Agreement**

Thank you for your interest in contributing to the ViennaRNA Package ("We" or "Us").

Before contributing, please note that we adopted a standard Contributors License Agreement (CLA) agreement provided by Project Harmony, a community-centered group focused on contributor agreements for free and open source software (FOSS).

This contributor agreement ("Agreement") documents the rights granted by contributors to Us. To make this document effective, please sign it and send it to Us by email to rna@tbi.univie.ac.at.

The respective CLA PDF documents are available in the doc/CLA directory of the distribution tarball, and online at our official ViennaRNA Website.

# **Chapter 10**

# Changelog

Below, you'll find a list of notable changes for each version of the ViennaRNA Package.

#### Unreleased

# Version 2.6.x

#### Version 2.6.0b

## **Programs**

- · Allow for at least as many threads as CPUs are configured if maximum thread number detection fails
- Fix alignment input parsing in refold.pl
- · Allow for NaCl concentration changes in most executable programs (default 1.021M)
- Add RNAxplorer program to the distribution

- · Add dynamic array data structure utilities
- · Add new soft constraints multi-callback dispatcher
- Add m6A parameters via soft constraints callback mechanism
- · Add Pseuoduridine-A parameters via soft constraints callback
- · Add Dihydrouridine adjustments via soft constraints callback
- Fix potential problems in free\_dp\_matrices() of LPfold.c
- · Add inosine-U and inosine-C parameters via soft constraints callback
- · Add string data structure utilities
- Add arbitrary modified base support (vrna\_sc\_mod()) via soft constraints mechanism and JSON input data
- · Add 7DA modification support via soft constraints
- · Add Purine (nebularine) modification support
- · Refactor function typdefs to make them actual function pointer typedefs
- SWIG: Fix Perl 5 wrapper for vrna\_ud\_prob\_get()
- Fix z-score initialization in vrna\_Lfoldz () amd vrna\_mfe\_window\_zscore\_cb()
- · Fix Python 3 wrapper suffix issue
- Fix file close issue in vrna\_file\_commands\_read()

## **Package**

- · Update dlib to version 19.24
- · Adapt Debian dependencies
- · Fix compilation issues with RNAforester
- · Fix autoconf requirement checks when SVM support is deactivated and swig is missing
- Add auto parameters for -flto compile/link flags
- Require C++17 due to dependencies to compile DLIB

#### Version 2.5.x

```
Version 2.5.1 (Release date: 2022-06-02)
```

#### **Programs**

Refactor ct2db program to allow for pseudoknots in output structure

- · API: Fix MEA computation for G-quadruplex predictions
- · API: Fix memory leak in hard constraints container
- · API: Fix RNApuzzler edge-case that resulted in segmentation faults
- API: Fix invalid memory access in vrna\_strjoin()
- API: Revisit generic soft constraints for sliding-window base pair probability computations
- API: Enable to overwrite automatic unpaired probability determination in MEA computation
- API: Add #VRNA\_PLIST\_TYPE\_UNPAIRED and #VRNA\_PLIST\_TYPE\_TRIPLE identifiers for vrna\_ep\_t
- API: Add vrna\_init\_rand\_seed () to initialize RNG with seed
- API: Add vrna\_zsc\_compute\_raw() to obtain mean and sd for Z-score computation
- API: Add vrna\_file\_connect\_read\_record() function to parse connectivity table (\*.ct) files
- API: Add vrna\_strtrim() function
- API: Update sanity checks for input in vrna\_pbacktrack\_sub\*()
- API: Allow for pseudo-knots in vrna\_db\_from\_ptable()
- API: Do not use min\_loop\_size = 0 for multi strand interaction prediction
- API: Remove unnecessary uses of min\_loop\_size at multiple locations
- API: Deprecate cutpoint member of vrna\_fold\_compound\_t and prepare for 5'/3' encoding
- API: Refactor sequence addition/preparation for vrna\_fold\_compound\_t
- · DOC: Update documentation
- SWIG: Add simple dot-plot file wrapper plot\_dp\_EPS()
- SWIG: Add sequence, sequence\_encoding and sequence\_encoding2 attributes to fold\_← compound objects
- SWIG: Fix RNG wrapping and initialize RNG upon module load and update associated functions

- · SWIG: Add more access to member variable arrays for various objects used throughout the library
- SWIG: Add memory efficient wrapper for dynamically allocated arrays and matrices
- SWIG: Shadow pair table data structure for efficient interactions between C and target languages
- SWIG: Expose hard constraints members in fold\_compound objects
- SWIG: Add exp\_E\_ext\_stem() method (vrna\_exp\_E\_ext\_stem()) to fold\_compound objects
- SWIG: Expose DP matrices within fold\_compound objects
- SWIG: Fix memory leak in wrapper for vrna\_db\_from\_ptable()

#### **Package**

- Update dlib to version 19.23
- DOC: Update doxygen.conf for version 1.9.2
- AUTOCONF: Factor-out Naview layout algorithm to allow for deactivating the Naview layout algorithm at configure-time
- · AUTOCONF: Make LaTeX checks more portable and update LaTeX package checks
- · AUTOCONF: Check whether we can build the swig interface when SVM support is deactivated
- · AUTOCONF: Fix condition check for CLA build

#### Version 2.5.0 (Release date: 2021-11-08)

#### **Programs**

- · Add RNAmultifold program to compute secondary structures for multiple interacting RNAs
- Add multistrand capabilities to RNAeval
- Add multistrand capabilities to RNAsubopt
- Replace RNAcofold with a wrapper to RNAmultifold
- Fix computation of BB homodimer base pair probabilities in RNAcofold

- API: Fix use of undefined values in deprecated function PS\_dot\_plot ()
- · API: Fix probability computations for unstructured domains within multibranch loops
- API: Fix index error in ensemble defect computations
- · API: Fix hard constraints behavior on non-specific base pairing
- API: Fix segmentation fault for short input sequences in vrna\_hx\_from\_ptable()
- API: Fix memory leak in static rna\_layout() function
- API: Fix corner-case in covariance score computation on sequence alignments that determines which alignment columns may pair and which don't
- · API: Add MFE computations for multiple interacting strands
- API: Add partition function computations for multiple interacting strands
- · API: Add base pair probability computations for multiple interacting strands
- · API: Add suboptimal structure prediction for multiple interacting strands

- API: Add multistrand capabilities to vrna\_eval\*() functions
- API: Add new function vrna\_equilibrium\_conc() fir concentration dependency computations of multiple interacting strands with dlib backend
- API: Add vrna\_equilibrium\_constants() function to obtain equilibrium constants for different complexes of multiple interacting strands
- API: Add function vrna\_pf\_add() to add ensemble free energies of two ensembles
- API: Add function vrna\_pf\_substrands() to get ensemble free energies for complexes up to a specific number of interacting strands
- API: Add function vrna\_n\_multichoose\_k () to obtain a list of k-combinations with repetition
- API: Add vrna\_cstr\_discard() function to allow for discarding char streams prior to flushing
- API: Add vrna\_bp\_distance\_pt() function to allow for base pair distance computation with pseudoknots
- API: Add functions vrna\_pbacktrack\_sub\*() to allow for stochastic backtracing within arbitrary sequence intervals
- API: Add functions vrna\_boustrophedon() and vrna\_boustrophedon\_pos() to generate lists of or obtain values from sequences of Boustrophedon distributed integer numbers
- API: Add vrna\_pscore() and vrna\_pscore\_freq() functions to obtain covariance score for particular alignment columns
- API: Rewrite Zuker suboptimals implementation
- · API: Remove old cofold implementations
- API: Make type attribute of vrna\_mx\_mfe\_t and vrna\_mx\_pf\_t a constant
- API: Guard more functions in utils/structure\_utils.c against NULL input
- API: Rename vrna\_E\_ext\_loop() to vrna\_eval\_ext\_stem()
- · API: Use v3 typedefs in dot-plot function declarations
- SWIG: Fix Python 3 file handle as optional argument in eval\* functions and methods
- SWIG: Add wrapper for vrna\_pf\_add()
- SWIG: Add wrapper for vrna\_hx\_from\_ptable()
- SWIG: Add wrapper for vrna\_db\_from\_probs()

#### **Package**

- Update libsvm to version 3.25
- Make Python 3.x the default Python for the scripting languange interfaces
- · Add Python3 capability for Mac OS X installer builds
- TESTS: Create TAP driver output for all unit tests (library, executables, SWIG interfaces)
- Remove compile-time switch to deactivate Boustrophedon backtracing scheme (this is the status-quo now)
- Add Contributors License Agreement (CLA) to the Package in  $\mathtt{doc}/\mathtt{CLA}/$

### Version 2.4.x

## Version 2.4.18 (Release date: 2021-04-22)

#### **Programs**

- Fix and refactor RNApkplex program
- Fix occasional backtracing errors in RNALalifold
- Restrict available dangling end models in RNALalifold to 0 and 2
- Prevent segmentation faults upon bogus input data in RNAfold, RNAalifold, RNAcofold, RNAheat, and RNAeval
- · Free MFE DP matrices in RNAsubopt Boltzmann sampling when not required anymore

- API: Add vrna\_abstract\_shapes() and vrna\_abstract\_shapes\_pt() functions to convert secondary structures into their respective abstract shape notation ala Giegerich et al. 2004
- API: Add functions vrna\_seq\_reverse() and vrna\_DNA\_complement() to create reverse complements of a sequence
- · API: Add more soft constraint handling to comparative structure prediction
- · API: Add generic soft constraints for sliding window comparative MFE backtracing
- API: Add vrna\_ensemble\_defect\_pt () that accepts pair table input instead of dot-bracket string to allow for non-nested reference structures
- · API: Add failure/success return values to generic soft constraints application functions
- API: Refactor RNAPKplex implementation by better using constraints framework and moving out many parts from RNAPKplex.c into RNAlib as separate re-usable functions
- API: Fix energy contributions used in RNAPKplex implementations
- · API: Fix energy evaluation for cofolding with dangle model 1
- API: Fix wrong arithmetic usage for PF variant of combined generic and simple soft constraints applied to external loops
- API: Fix memory size in vrna\_fold\_compound\_t initialization
- API: Fix bogus memory access for comparative prediction when preparing hard constraints
- API: Fix wrong index usage in hard constraints for comparative base pair probability computations of internal loops
- API: Fix G-Quadruplex contributions as part of multibranch loops in single sequence base pair probability computations
- API: Fix multibranch loop MFE decomposition step for multiple strand cases
- · API: Fix external loop generic hard constraint index updating for partition function computations
- · API: Fix memory allocation for auxiliary grammar data structure
- · API: Fix incorporation of auxiliary grammar contrib for closing pairs in sliding-window MFE computation
- API: Fix DP matrix intitialization in sliding window MFE computations (fixes occasional backtracing issues in comparative sliding-window MFE computations)
- API: Make vrna\_sc\_t.type attribute a constant
- API: Remove upper-triangular hard constraint matrix in favor of full matrix

- API: Always ensure sane base pair span settings after vrna\_fold\_compound\_prepare()
- API: Return INF on predictions of vrna\_mfe\_dimer() that fail due to unsatisfiable constraints
- · API: Rename internally used hard and soft constraints API symbols
- · API: Fix header file inclusions to prevent #include cycles
- SWIG: Add wrapper for vrna\_file\_fasta\_read\_record()
- SWIG: Fix memory leak in wrapper for vrna\_probs\_window()
- · SWIG: Refactor and therefore fix soft constraint binding functions for use in comparative structure predictions
- SWIG: Fix typo that prevented properly wrapping vrna\_params\_load\_RNA\_Andronescu2007()
- SWIG: Unify wrappers for vrna\_ptable() and vrna\_ptable\_from\_string()

#### **Package**

- · REFMAN: Refactored structure annotation documentation
- · REFMAN: Update Mac OS X install section
- Replace DEF placeholders in energy parameter files with their value of -50
- Update RNAlocmin subpackage to properly compile with more stringent C++ compilers
- Update RNAforester subpackage to properly compile with more stringent C++ compilers
- · Update autotools framework, e.g. checks for pthreads
- · Update universal binary build instructions for Mac OS X builds to enable ARM compilation for M1 CPUs

#### Version 2.4.17 (Release date: 2020-11-25)

#### **Programs**

- Fix RNAup -b mode with shorter sequence first
- Add --backtrack-global option to RNALfold (currently only available for dangles == 2 | 0)
- Add --zscore-pre-filter and --zscore-report-subsumed options to RNALfold

- API: Fix multiloop backtracing with soft constraints for unpaired positions in vrna\_subopt() and vrna\_subopt\_cb()
- API: Fix parameter parse in vrna\_params\_load\_from\_string()
- API: Add vrna\_heat\_capacity() and vrna\_head\_capacity\_cb() functions to RNAlib
- API: Add backtracing function vrna\_backtrack\_window() for global MFE structure to sliding-window predictions
- API: Add SVG support for RNApuzzler structure layouts
- API: Make vrna\_md\_t argument to vrna\_fold\_compound() a constant pointer
- API: Remove missing symbols from header file ViennaRNA/params/default.h
- API: Refactor z-score threshold filter handling for sliding-window MFE prediction
- · SWIG: Fix typo in interface functions to load DNA parameters
- · SWIG: Add python-3.9 autoconf checks

- SWIG: Add vrna\_head\_capacity\*() wrappers
- · SWIG: Add access to raw energy parameters
- SWIG: Add alias and pair attribute to objects of type md
- SWIG: Add out/varout typemaps for 2-dimensional int-like arrays
- · SWIG: Add all data fields to objects of type 'param' and 'exp\_param'

#### **Package**

· Fix Debian and Windows installer files

#### Version 2.4.16 (Release date: 2020-10-09)

#### **Programs**

- Fix backtracing errors in RNALalifold for alignments with more than 32768 columns
- Fix backtracing errors in RNAalifold and RNALalifold for rare cases when two alignment columns may pair due to covariance score threshold but still yield infinite energies due to energy model
- Refactored manpages/help options for RNAplfold, RNAplot, RNApvmin, RNAsubopt, and RNAup

#### Library

- API: Fix undefined behavior due to short int overflows when accessing alignment lengths with alignments larger than 32768 columns. This fixes occasional backtracing errors in RNALalifold and vrna mfe window()
- · API: Fix adding pscore to base pairs that yield INF energy in comparative global and local MFE prediction
- API: Add vrna\_convert\_kcal\_to\_dcal () and vice-versa function for safely converting integer to float representations of energy values
- SWIG: Add a reasonable Python interface for objects of type vrna\_path\_t
- SWIG: Add a wrapper for vrna\_seq\_encode ()

# **Package**

• Move units.h include file to ViennaRNA/utils/units.h

## Version 2.4.15 (Release date: 2020-08-18)

- Fix compilation of Kinfold with GCC 10
- Add --en-only flag to RNAsubopt to allow for sorting by energy only
- Prevent RNAcofold to process input with more than two strands
- Add cutpoint marker to dot-plots created with RNAcofold -a
- Update Kinfold to version 1.4

#### Library

- API: Fix removal of strand delimiter in vrna\_plot\_dp\_PS\_list()
- API: Fix vrna\_enumerate\_necklaces()
- API: Fix bogus backtracing for co-folded structures in vrna\_subopt() and vrna\_subopt\_cb()
- API: Fix storing co-folded structures for sorted output in vrna\_subopt ()
- · API: Fix multibranch loop component hard constraints for multi-strand cases
- API: Prevent adding internal loop energy contributions to enclosed parts with energy=INF
- API: Adapt vrna\_db\_pack () /vrna\_db\_unpack () functions to produce comparable strings
- API: Add sorting modes VRNA\_UNSORTED, VRNA\_SORT\_BY\_ENERGY\_LEXICOGRAPHIC\_ASC, and VRNA\_SORT\_BY\_ENERGY\_ASC to vrna\_subopt()
- API: Add vrna\_strjoin() function
- · API: Add missing case to external loop hard constraints
- · API: Make hard constrains strand-aware
- SWIG: Fix invalid memory access when using MEA\_from\_plist() in Perl 5 or Python
- SWIG: Enable keyword argument features in Python interface of constructors for fold\_compound, md, move, param, and exp\_param objects
- SWIG: Enable autodoc feature for Python interface of constructors for fold\_compound, md, and move objects
- SWIG: Enable toString conversion for Python interface for objects of type fold\_compound, md, move, params, exp\_params, and subopt\_solution
- SWIG: Add (read-only) attributes type, length, strands, params, and exp\_params to objects of type fold\_compound
- SWIG: Make attributes of objects of type param and exp\_param read-only
- · Add array of strand nicks to EPS dot plot files instead of single cutpoint
- · Draw separator line for each strand nick in EPS dot-plots
- Update libsvm to version 3.24

#### **Package**

- Disable Link-Time-Optimization (LTO) for third-party programs linking against RNAlib using pkg-config
- TESTS: Fix results dir path for out-of-tree builds
- TESTS: Set default timeout for library tests to 20s

# Version 2.4.14 (Release date: 2019-08-13)

- Fix RNApvmin pertubation vector computation
- · Add non-redundant sampling option to RNApvmin
- Add RNAdos program to compute density of states
- Add –P DNA convenience command line parameter to most programs to quickly load DNA parameters without any input file
- MAN: Add example section to man-page of RNAalifold

#### Library

- API: Fix memory leak in vrna\_path\_gradient()
- API: Fix release of memory fir vrna\_sequence\_remove\_all()
- API: Fix soft-constraints application in vrna\_sc\_minimize\_pertubation() that prevented proper computation of the pertubation vector
- API: Add 5' and 3' neighbor nucleotide encoding arrays and name string to vrna\_seq\_t
- · API: Add new data structure for multiple sequence alignments
- API: Add vrna\_sequence\_order\_update() function
- API: Add non-redundant sampling mode to vrna\_sc\_minimize\_pertubation() through passing negative sample-sizes
- · API: Add v3.0 API functions for maximum expected accuracy (MEA) computation
- · API: Include energy parameter sets into RNAlib and provide functions to load them at runtime
- API: Prepare sequence data in vrna\_fold\_compound\_t with vrna\_sequence\_add()
- API: Use vrna\_pbacktrack\_num() instead of vrna\_pbacktrack() in vrna\_sc\_minimize\_pertubation() to speed-up sample generation
- Reduce use of global variable cut\_point in RNAlib
- SWIG: Use import lib in favor of imp to determine Python 3 tag extension
- · SWIG: Update various wrapper functions
- SWIG: Add wrappers for MEA computation with vrna\_MEA() and vrna\_MEA\_from\_plist
- SWIG: Add wrappers for vrna\_pr\_structure() and vrna\_pr\_energy()

#### **Package**

- REFMAN: Fix LaTeX code in units.h that prevented proper compilation with pdflatex
- Add an R script to create 2D landscape plots from RNA2Dfold output
- Add gengetopt to configure-time requirements to build man-pages
- Add new energy parameter file rna\_misc\_special\_hairpins.par with additional UV-melting derived parameters for Tri- and Tetra-loops
- · Update RNA Tutorial
- · Colorize final configure script message
- REFMAN: Always use pdflatex to compile reference manual and tutorial
- EXAMPLES: Add Python script that performs computations equivalent to RNAfold -p --MEA

## Version 2.4.13 (Release date: 2019-05-30)

- Fix centroid structure prediction for RNAcofold
- Fix --noLP option for RNALalifold

#### Library

- API: Refactor and fix collision handling in vrna\_hash\_table\_t
- API: Fix one access using wrong index for odd dangles in loops/external.c
- API: Add two missing MLbase contributions for MFE prediction in loops/multibranch.c
- · API: Refactor multiloop MFE backtracking for odd dangles
- API: Add function vrna\_backtrack5 () to allow for MFE backtracking of sub-sequences starting at the 5'-end
- API: Reduce usage of global macro TURN by replacing it with min\_loop\_size field of vrna\_md\_t
- API: Add functions vrna\_path\_direct() and vrna\_path\_direct\_ub() that may also return move lists instead of dot-bracket lists
- API: Add functions <code>vrna\_pt\_pk\_remove()</code> and <code>vrna\_db\_pk\_remove()</code> that remove pseudoknots from an input structure
- API: Fix invalid memory access for lonely pair mode (--noLP) in comparative sliding-window MFE prediction
- SWIG: Fix access to global variable pf\_smooth and pf\_smooth attribute in model\_details object
- SWIG: Fix Python reference counting for Py\_None in interfaces/findpath.i wrapper
- SWIG: Refactor reference counting for all Python2 and Python3 wrappers
- REFMAN: Larger updates and restructuring of reference manual

#### **Package**

- Install example scripts and source code files, e.g. to \$prefix/share/ViennaRNA/examples
- · Properly pass GSL, PTHREADS, and MPFR flags to sub-projects
- Fix RNApuzzler header file installation
- SWIG: Include Python 3.7 and 3.8 in list of autoconf-probed python interpreters
- SWIG: Fix wrapper building for swig >= 4.0.0

## Version 2.4.12 (Release date: 2019-04-16)

- Add non-redundant stochastic backtracing option for RNAalifold
- Add --noDP option to suppress dot-plot output in RNAfold and RNAalifold
- Add RNApuzzler (4) and RNAturtle (3) secondary structure layout algorithm options to RNAfold and RNAplot
- Update help/man page of  ${\tt RNALfold}$
- Allow for multiple input files and parallel input processing in RNAheat

#### Library

- API: Fix declaration of vrna\_move\_apply\_db()
- API: Fix vrna\_path () lexicographical ordering in gradient walks
- · API: Enable non-redundant stochastic backtracing for comparative structure prediction
- · API: Enable stochastic backtracing for circular comparative structure prediction
- API: Enable stochastic backtracing of subsequences (5' prefixes) for comparative structure prediction
- API: Add pf\_smooth attribute to vrna\_md\_t data stucture to allow for disabling Boltzmann factor energy smoothing
- · API: Add functions to allow for resuming non-redundant stochastic backtracing
- · API: Add functions to retrieve multiple stochastically backtraced structures (list and callback variants)
- API: Add vrna\_positional\_entropy to compute vector of positional entropies
- API: Add RNApuzzler and RNAturtle secondary structure layout algorithm (Wiegreffe et al. 2018)
- API: Add v3.0 API for secondary structure layout/coordinate algorithms
- API: Add more helper/utility functions for vrna\_move\_t data structures
- API: Add callback-based neighborhood update function for (subsequent) vrna\_move\_t application
- API: Add abstract heap data structure available as <ViennaRNA/datastructures/heap.h>
- API: Refactor and speed-up gradient walk implementation available as vrna\_path\_gradient()
- API: Substitute vrna\_file\_PS\_aln\_sub() alignment plot function by vrna\_file\_PS\_aln\_slice() that actually slices out a sub-alignment
- API: Rename vrna\_annotate\_covar\_struct() to vrna\_annotate\_covar\_db() and add new function vrna\_annotate\_covar\_db\_extended() to support more bracket types
- API: Calling vrna\_params\_reset () now implies a call to vrna\_exp\_params\_reset () as well
- API: Move landscape implementations into separate directory, thus headers should be included as <ViennaRNA/landscape/move.h>, <ViennaRNA/landscape/neighbor.h>, etc.
- · Ensure proper rescaling of energy parameters upon temperature changes
- · Refactor soft constraints implementation in stochastic backtracing
- · SWIG: Wrap all non-redundant stochastic backtracing functions to scripting language interface(s)
- SWIG: Refactor stochastic backtracing interface(s)
- SWIG: Add proper constructor for objects of type vrna\_ep\_t
- SWIG: Sanitize alignment plot function interface(s)

# **Package**

- · Update Ubuntu/Debian and OpenSUSE build instructions
- · Reduce intra-package dependency on non-v3.0 API

#### Version 2.4.11 (Release date: 2018-12-17)

- Add --commands option to RNA subopt
- Add non-redundant Boltzmann sampling mode for RNAsubopt

#### Library

- · API: Fix wrong access to base pair soft constraints in equilibrium probability computations
- API: Fix behavior of vrna\_nucleotide\_encode () with lowercase characters in sequence
- API: Fix behavior of encode\_char() with lowercase characters in sequence
- · API: Fix forbidden GU pairs behavior in pscore computation for comparative folding
- API: Fix potential errors due to uninitialized next pointers in vrna\_move\_t of vrna\_eval\_move\_

   shift\_pt
- API: Add AVX 512 optimized version of MFE multibranch loop decomposition
- · API: Add functions for CPU SIMD feature detection
- API: Add dispatcher to automatically delegate exterior-/multibranch loop MFE decomposition to supported SIMD optimized implementation
- API: Add function vrna\_dist\_mountain() to compute mountain distance between two structures
- API: Add function vrna\_ensemble\_defect () to compute ensemble defect given a target structure
- · API: Add non-redundant Boltzmann sampling
- API: Change behavior of vrna\_cstr\_free () and vrna\_cstr\_close () to always flush output before
  unregistering the stream
- SWIG: Add interface for vrna\_loopidx\_from\_ptable()

#### **Package**

- · Activate compilation for compile-time supported SIMD optimized implementations by default
- Replace --enable-sse configure script option with --disable-simd

# Version 2.4.10 (Release date: 2018-09-26)

#### **Programs**

- Fix wrong output filename for binary opening energies in RNAplfold
- Enable G-Quadruplex support for partition function computation in RNAalifold

- · Fix broken SSE4.1 support for multibranch loop MFE computation that resulted in increased run times
- Fix redundant output issue in subopt backtracking with unusually high delta energies (>=INF)
- Restore default behavior of '|' symbol in dot-bracket hard constraint strings that got lost with version 2.2.0
- · Add faster (cache-optimized) version of Nussinov Maximum Matching algorithm
- Change default linker- and loop length computations for G-Quadruplex predictions in comparative prediction modes
- Add hard constraints warning for base pairs that violate the min loop size of the model
- Update libsvm to version 3.23
- · API: Add functions to set auxiliary grammar extension rules
- API: Replace upper-triangular hard constraints matrix with full matrix for cache-optimized access
- · API: Add G-Quadruplex prediction support for comparative partition function
- API: Remove VRNA\_GQUAD\_MISMATCH\_PENALTY and VRNA\_GQUAD\_MISMATCH\_NUM\_ALI macros
- SWIG: Fix invalid memory access in subopt () method of fold compound object when writing to file
- SWIG: Add wrapper for Nussinov Maximum Matching algorithm

## **Package**

• Add -ftree-vectorize compile flag by default if supported

# Version 2.4.9 (Release date: 2018-07-11)

#### **Programs**

- Fix interactive mode behavior for multiple sequence alignment input in RNAalifold, RNALalifold
- Allow for Stockholm formatted multiple sequence alignment input in RNAeval and RNAplot
- Allow for multiple input files in RNAeval and RNAplot
- Allow for parallel processing of input batch jobs in RNAeval and RNAplot
- Add -g option to activate G-Quadruplex support in RNAheat
- Warn on unsatisfiable hard constraints from dot-bracket string input in RNAfold, RNAcofold, and RNAalifold

#### Library

- Fix parameter order bug in vrna\_path\_findpath\* functions that resulted in too large search widths
- Fix wrong application of base pair soft constraints in partition function computations
- · Fix position ruler string in EPS alignment output files
- · Fix MFE backtracking errors that might appear under specific hard constrained base pair patterns
- Refrain from reading anything other than #=GC SS\_cons to retrieve structures when parsing Stockholm
   1.0 format
- Complete soft constraints additions to Boltzmann sampling implementation for single sequences
- Allow for disabling alignment wrapping in vrna\_file\_PS\_aln\* functions
- Do not remove G-Quadruplex annotation from WUSS formatted structure strings upon calls to vrna\_db\_←
  from\_WUSS
- Enable G-Quadruplex related average loop energy correction terms in verbose output of vrna\_eval\_\* functions
- Speed-up backward compatibility layer for energy evaluation functions that unnecessarily slowed down thirdparty tools using the old API
- Allow for passing dot-bracket strings with "&'strand-end identifier to simplevrna\_eval\_← \*functions
- Remove implicitexit()` calls from global MFE backtracking implementation.

## Version 2.4.8 (Release date: 2018-06-23)

- Fix compilation of RNAforester with C++17 standard
- · Fix tty input detection in RNAcofold
- · Fix bad memory access with RNAcofold -p

#### Library

- API: Fix incorrect unpaired probability computations in vrna\_probs\_window()
- API: Fix potential out-of-bounds access situations (for circular RNA folding) in eval.c
- · API: Fix comparative exterior internal loop partition function computation for circfold
- SWIG: Fix false-positive use of uninitialized value in Python3/file\_py3.i

#### **Package**

- · TESTS: Add tests for special features in RNAalifold
- · TESTS: Add test case for RNAcofold -p

# Version 2.4.7 (Release date: 2018-06-13)

- Allow for parallel processing across multiple input files in RNAfold
- · Allow for arbitrary number of input files in RNAalifold
- · Allow for parallel processing of input data in RNAalifold
- Allow for arbitrary number of input files in RNAcofold
- Allow for parallel processing of input data in RNAcofold
- · Enable parallel processing in RNAfold, RNAcofold, RNAalifold for MS Windows build
- · Add centroid and MEA structure computation to RNAcofold
- · Add configure time check for LTO capabilities of the linker
- · Include ligand binding energies in centroid and MEA structure output of RNAfold
- · Refactor ct2db program to process multiple structures from single .ct file
- API: Enable processing of comparative fold\_compound with vrna\_pr\_\*() functions
- API: Refactor vrna\_ostream\_t to enable NULL input in vrna\_ostream\_provide()
- API: Major refactoring in loop energy evaluations (MFE and PF)
- API: Make vrna\_mx\_pf\_aux\_el\_t and vrna\_mx\_pf\_aux\_ml\_s opaque pointers
- API: Make fold compound field type a const attribute
- · API: Refactor MFE post-processing for circular RNAs
- · API: Add motif name/id support for unstructured domains
- · API: Remove major part of implicit exit() calls in RNAlib
- · API: Add implementations of Boyer-Moore-Horspool search algorithm
- · API: Add implementations to determine number of rotational symmetry for strings (of objects)
- API: Make vrna\_cmd\_t an opaque pointer
- API: Move headers for constraints, datastructures, io, loop energy evaluation, energy parameters, plotting, search, and utilities into separate subdirectories (backward compatibility is maintained)
- · API: Add hash table data structure
- API: Fix discrepancy between comparative and single sequence -noLP predictions
- · API: Add functions to replace 'old API' interface of RNAstruct.h

- · API: Add functions to replace 'old API' interface of aln\_util.h
- · API: Add generic soft constraints support to suboptimal structure prediction sensu Wuchty et al.
- SWIG: Refactor callback execution for Python 2 / 3 interface to reduce overhead
- · SWIG: Fix configure-time check for Python 3 interface build
- SWIG: Fix Python 3 IO file stream to C FILE \* conversion
- · Cosmetic changes in final configure notice
- · Major changes in source tree structure of the library
- · Add autoconf checks for maintainer tools
- Generate C strings from static PostScript files at configure time (for structure- and dot plots)
- · REFMAN: Large updates in API documentation and structure of reference manual

#### Version 2.4.6 (Release date: 2018-04-19)

- · Stabilize rounding of free energy output in RNAalifold
- API: Fix potential rounding errors for comparative free energies in eval.c and mfe.c
- API: Fix regression in exterior loop dangling end contributions for comparative base pair probabilities and Boltzmann sampling (introduced with v2.4.4)
- API: Fix regression with hard constrained base pairs for comparative structure prediction (introduced with v2.4.4)
- · TESTS: Add basic tests for RNAalifold executable
- TESTS: Ignore 'frequency of MFE structure' in RNAcofold partition function checks

#### Version 2.4.5 (Release date: 2018-04-17)

- · Allow for arbitrary number of input files in RNAfold
- · Allow for parallel processing of input data in RNAfold (UNIX only, no Windows support yet)
- · Add SHAPE reactivity support through commandline options for RNAplfold
- · Fix unstructured domain motif detection in MFE, centroid, and MEA structures computed by RNAfold
- · Limit allowed set of commands in command file for RNAcofold to hard and soft constraints
- · API: Add functions to compute equilibrium probability of particular secondary structures
- API: Add dynamic string stream data type and associated functions
- API: Add priority-queue like data structure with unordered fill capability and ordered output callback execution
- · API: Add functions to detect unstructured domain motifs in MFE, centroid, and MEA structures
- API: Fix bug in sliding-window partition function computation with SHAPE reactivity and Deigan et al. conversion method
- API: Fix application of '<' and '>' constraint symbols in dot-bracket provided constraints (was broken since v2.4.2)
- · API: Fix MEA structure computation in the presence of unstructured domains
- · API: Stabilize order of probability entries in EPS dot-plot files
- Fix compiler warnings on wrong type of printf() in naview.c

· Define VRNA\_VERSION macro as string literal and add macros for major, minor, and patch numbers

- · Stabilize parallel make of Mac OS X installer
- Add energy parameter set from Langdon et al. 2018
- · Add autoconf checks for POSIX threads compiler/linker support
- · SWIG: Fix 'next' is a perl keyword warnings for Perl5 wrapper
- SWIG: Catch errors and throw execptions whenever scripting language provided callback functions are not applicable or fail
- · SWIG: Add keyword arguments and autodoc feature for Python/Python3 wrappers

### Version 2.4.4 (Release date: 2018-03-06)

- · Change verbose output for soft-constraints derived ligand binding motifs in RNAfold
- · Allow for lowercase letters in ct2db input
- Fix bug in interior-like G-Quadruplex MFE computation for single sequences
- · Fix autoconf switch to enable deprecation warnings
- · Fix bug in eval int loop() that prevented propagation of energy evaluation for loops with nick in strands
- · Fix several bugs for SHAPE reactivity related comparative partition function computations
- · Fix annotation of PostScript output for soft-constraint derived ligand binding motifs in RNAfold
- · Fix constraint indices for multibranch loops in unpaired probability computations of LPfold.c
- · Fix dangling end contributions in comparative partition function for exterior loops
- API: Add simplified interface for vrna\_pf\_dimer()
- · API: Move concentraton dependent implementation for co-folding to separate compile unit
- · API: Add new API functions for exterior loop evaluations
- · API: Add simplified interfaces for energy evaluation with G-Quadruplexes and circular RNAs
- · API: Add findpath functions that allow for specification of an upper bound for the saddle point
- · Add configure-time linker check for Python3 interface
- · Add automatic CPP suggestions for deprecated function substitutes
- · Major restucturing and constraints feature additions in loop type dependent energy evaluation functions
- · Major restructuring in MFE implementations
- · Major restructuring in PF implementations
- · Minor fixes in Boltzmann sampling implementation
- SWIG: Fix wrappers for findpath() implementation
- · SWIG: Add tons of energy evaluation wrappers
- · SWIG: Fix configure-time check of Perl5 interface build capabilities
- · SWIG: Wrap functions from walk.c and neighbor.c
- DOC: Add some missing references to manpages of executable programs
- · REFMAN: Heavy re-ordering of the RNAlib reference manual

## Version 2.4.3 (Release date: 2017-11-14)

- Fix handling of dangling end contribution at sequence boundaries for sliding window base pair probability computations
- Fix handling of base pair hard constraints in sliding-window implementations
- · Fix sliding-window pair probability computations with multibranch-loop unpaired constraints
- Fix sliding-window non-specific base pair hard constraint implementation
- Fix probability computation for stochastic backtracking in RNAsubopt –stochBT en output
- · Fix regression in comparative structure prediction for circular RNAs
- · Fix LDFLAGS for scripting language interfaces in corresponding Makefiles
- · Stabilize partition function scaling by always using sfact scaling factor from model details
- Add –pf scale commandling parameter to RNAplfold
- Add constraint framework for single sequence circular RNA structure prediction
- Add RNAfold test suite to check for working implementation of constraints for circular RNAs
- · Add a brief contribution guideline CONTRIBUTING.md
- · Prevent RNAplfold from creating inf/-inf output when solution set is empty with particular hard constraints
- Include RNAforester v2.0.1

### Version 2.4.2 (Release date: 2017-10-13)

- Fix G-Quadruplex energy corrections in comparative structure energy evaluations
- Fix discrepancy in comparative exterior loop dangling end contribution of eval vs. MFE predictions
- · Fix regression in RNAup unstructuredness and interaction energy computations
- Fix sequence length confusions when FASTA input contains carriage returns
- · Fix build problems of RNAlocmin with older compilers
- · Fix sliding-window hard constraints where single nucleotides are prohibited from pairing
- Fix dot-bracket output string length in sliding-window MFE with G-Quadruplexes
- Fix unpaired probability computations for separate individual loop types in LPfold.c
- · Fix bad memory access in RNAsubopt with dot-bracket constraint
- Add full WUSS support for -SS\_cons constraint option in RNAalifold
- · Add commandline option to RNALalifold that enables splitting of energy contributions into separate parts
- · Add missing hard constraint cases to sliding-window partition function implementation
- · Add CSV output option to RNAcofold
- · Use the same model details for SCI computations in RNAalifold
- Abort computations in vrna\_eval\_structure\_v() if structure has unexpected length
- · Use original MSA in all output generated by RNAalifold and RNALalifold
- · API: Add new functions to convert dot-bracket like structure annotations
- · API: Add various new utility functions for alignment handling and comparative structure predictions
- API: Add function vrna\_strsplit() to split string into tokens

- API: Do not convert sequences of input MSA to uppercase letters in vrna\_file\_msa\_read\_record()
- API: Rename vrna annotate bp covar() and vrna annotate pr covar()
- · API: Add new noLP neighbor generation
- · SWIG: Add wrapper for functions in file utils msa.h
- SWIG: Add wrappers for vrna\_pbacktrack() and vrna\_pbacktrack5()
- SWIG: Add vrna\_db\_to\_element\_string() to scripting language interface
- · REFMAN: Fix formula to image conversion in HTML output

## Version 2.4.1 (Release date: 2017-08-23)

- · Fix memory leak in fold\_compound methods of SWIG interface
- Fix memory leaks in double \*\* returning functions of SWIG PerI5 interface
- Fix memory leak in vrna\_ep\_t to-string() function of SWIG interface
- Regression: Fix reverting pf\_scale to defaults after vrna\_exp\_params\_rescale()
- · Regression: Fix homo-dimer partition function computation in RNAcofold
- · Add unit tests for RNAcofold executable
- · Add SHAPE reactivity support to RNAcofold
- Add SHAPE reactivity support to RNALalifold

## Version 2.4.0 (Release date: 2017-08-01)

- · Bump libsvm to version 3.22
- · Print G-Quadruplex corrections in verbose mode of RNAeval
- · Change behavior of RNAfold -outfile option to something more predictable
- Unify max\_bp\_span usage among sliding window prediction algorithms: RNAplfold, RNALfold, and RNALalifold now consider any base pair (i,j) with (j i + 1) <= max\_bp\_span</li>
- Add SHAPE reactivity data support to RNALfold
- · Add commands-file support for RNALfold, RNAplfold (hard/soft constraints)
- · Add RNAlocmin Calculate local minima from structures via gradient walks
- Add RNA Bioinformatics tutorial (PDF version)
- Add hard constraints to sliding-window MFE implementations (RNALfold, RNALalifold)
- Add hard constraints to sliding-window PF implementations (RNAplfold)
- Add soft constraints to sliding-window MFE implementation for single sequences (RNALfold)
- · Add soft constraints to sliding-window PF implementations (RNAplfold)
- Add SWIG interfaces for sliding-window MFE/PF implementations
- · Add proper SWIG interface for alignment and structure plotting functions
- · Add proper SWIG interface for duplexfold, duplex\_subopt, and its comparative variants
- Add SWIG wrapper for vrna\_exp\_params\_rescale()
- · Add explicit destructor for SWIG generated vrna md t objects

- Add SWIG perl5 typemap for simple nested STL vectors
- · Add dummy field in vrna structured domains s
- · Add note about SSE optimized code in reference manual
- · Add SWIG interface for findpath implementation
- Add prepare() functions for ptypes-arrays and vrna\_(exp\_)param\_t
- Add warnings for ignored commands in function vrna\_commands\_apply()
- · Add callback featured functions for sliding window MFE and PF implementations
- Change default behavior of adding soft constraints to a vrna\_fold\_compound\_t (store only)
- Several fixes with respect to G-Quadruplex prediction in sliding-window MFE recursions (single sequence and comparative implementation)
- Replace comparative sliding-window MFE recursions (All hits are reported to callback and can be filtered in a post-processing step)
- API: Remove E\_mb\_loop\_stack() and introduce new function vrna\_E\_mb\_loop\_stack() as a replacement
- API: change data type of all constraint bit-flags from char to unsigned char
- API: change data type of a2s array in comparative structure prediction from unsigned short to unsigned int
- API: Change function parameter order in vrna\_probs\_window() to follow the style of other callback-aware functions in RNAlib
- · Move sliding-window MFE implementations to new file mfe window.c
- · Fix building PDF Reference manual with non-standard executable paths
- Fix redefinition of macro ON\_SAME\_STRAND() in subopt.c
- · Fix dangling end issues in sliding-window MFE implementations
- Fix regression for -canonicalBPonly switch in RNAfold/RNAcofold/RNAsubopt
- Fix building sliding-window MFE implementation without SVM support
- · Fix parsing of STOCKHOLM 1.0 MSA files that contain MSA spanning multiple blocks
- · Fix Alidot link in RNAalifold manpage
- · Fix wrong pre-processor flags when enabling single-precision PF computations
- Fix unit testing perl5 interface by including builddir/tests in PERL5LIB path
- Fix buffer overflow in hairpin loop sequence motif extraction for circular RNAs
- · Fix out-of-bounds memory access in neighbor.c
- · Restore capability to compile stand-alone findpath utility
- Restore capability to use non-standard alphabets for structure prediction
- · Restore old-API random number functions in SWIG interface
- Allow additional control characters in MAF MSA input that do not end a block
- · Improve reference manual
- Make functions in pair mat.h static inline
- · Prevent users from adding out-of-range base pair soft constraints

- Inline print functions in color\_output.inc
- · Start documenting callback features in reference manual
- · Re-write large portions of sliding-window PF implementation
- · Introduce soft-constraint state flag
- · Clean-up SWIG unit test framework
- Remove obsolete scripts ct2b.pl and colorrna.pl from src/Utils directory
- · Remove old RNAfold tutorial

## Version 2.3.x

## Version 2.3.5 (Release date: 2017-04-14)

- Fix duplication of output filename prefix in RNAfold
- · Add V3.0 API for sliding window partition function (a.k.a. RNAPLfold)
- · Add G-Quadruplex prediction to RNALalifold
- · Add SWIG wrappers for callback-based sliding window comparative MFE prediction
- Add SSE4.1 multiloop decomposition for single sequence MFE prediction
- · Enable RNAfold unit tests to run in paralllel
- · Enable users to turn-off base pair probability computations in RNAcofold with -a option
- · Split move set in neighbor.c

## Version 2.3.4 (Release date: 2017-03-10)

- Fix G-Quadruplex probability computation for single sequences
- · Fix double-free when using SHAPE reactivity data in RNAalifold
- · Fix out-of-bounds access in strand\_number array
- Fix weighting of SHAPE reactivity data in consensus structure prediction when fewer data than sequences are present
- · Fix z-score output in RNALfold
- Substitute field name 'A0'/'B0' in data structure vrna\_dimer\_conc\_s by 'Ac\_start'/'Bc\_start' to avoid clashes
  with termios.h (Mac OSX Python wrapper bug)
- · Minimize usage of 'unsafe' sprintf() calls
- Enhance auto-id feature in executable programs
- Always sanitize output file names to avoid problems due to strange FASTA headers
- · Lift restrictions of FASTA header length in RNAfold, RNAcofold, and RNAeval
- Add ViennaRNA/config.h with pre-processor definitions of configure time choices
- · Add test-suite for RNAfold
- · Add functions to procude colored EPS structure alignments
- Add function to write Stockholm 1.0 formatted alignments
- · Add function to sanitize file names

- Add callback based implementation for sliding-window MFE prediction (single sequences, comparative structure prediction)
- Add fast API 3.0 implementations to generate structural neighbors and perform steepest descent / random walks (Thanks to Gregor!)
- · Add parameter option to RNALalifold for colored EPS structure alignment and structure plot output
- · Add parameter option to RNALalifold to write hits into Stockholm file
- · Add parameter option to RNAalifold to write Stockholm 1.0 formatted output
- · Add parameter option to RNAalifold to suppress stderr spam
- · Add auto-id feature to RNAplot, RNALfold, RNAsubopt, RNAplfold, RNAheat
- · Add SHAPE reactivity derived pseudo-energies as separate output in RNAalifold
- Add colored output to RNA2Dfold, RNALalifold, RNALfold, RNAduplex, RNAheat, RNAinverse, RNAplfold, and RNAsubopt
- · Add command line parameters to RNAsubopt to allow for specification of input/output files

## Version 2.3.3 (Release date: 2017-01-24)

- · Fix multiloop contributions for comparative partition function
- Fix building python2 extension module for OSX

### Version 2.3.2 (Release date: 2017-01-18)

- · Fix pair probability plist creation with G-Quadruplexes
- · Allow for specification of python2/3-config at configure time
- Fix init of vrna\_md\_t data structure after call to set\_model\_details()
- Fix bug in consensus partition function with hard constraints that force nucleotides to be paired
- · Fix compilation of functions that use ellipsis/va list
- · Enable generic hard constraints by default
- · Fix init of partition function DP matrices for unusually short RNAs
- Fix behavior of RNAplfold for unusually short RNAs
- Report SCI of 0 in RNAalifold when sum of single sequence MFEs is 0
- Avoid multiple includes of pair\_mat.h
- · Add configure flag to build entirely static executables

### Version 2.3.1 (Release date: 2016-11-15)

- Add description for how to use unstructured domains through command files to reference manual and RNAfold manpage
- · Fix compilation issue for Windows platforms with MingW
- Add missing newline in non-TTY-color output of vrna\_message\_info()
- Fix regression in vrna\_md\_update() that resulted in incomplete init of reverse-basepair type array
- · Extend coverage of generic hard constraints for partition function computations
- · Fix scaling of secondary structure in EPS plot such that it always fits into bounding box
- Several fixes and improvements for SWIG generated scripting language interface(s)

## Version 2.3.0 (Release date: 2016-11-01)

- · Add grammar extension with structured and unstructured domains
- Add default implementation for unstructured domains to allow for ligand/protein binding to unpaired structure segments (MFE and PF for single sequences)
- · Introduced command files that subsume constraint definition files (currently used in RNAfold and RNAcofold)
- · Replace explicit calls to asprintf() with portable equivalent functions in the library
- · Fix configure script to deal with situations where Perl module can't be build
- Fix bug in doc/Makefile.am that prevented HTML installation due to long argument list
- · Added utility functions that deal with conversion between different units
- · Bugfix in SWIG wrapped generic soft constraint feature
- · Add subopt() and subopt\_zuker() methods to SWIG wrapped fold\_compound objects
- · Bugfix multiloop decomposition in MFE for circular RNAs
- · Add separate function to compute pscore for alignments
- Renamed VRNA VC TYPE \* macros to VRNA FC TYPE \*
- · Bugfix regression that prevented programs to fail on too long input sequences
- · Extend EPS dot-plot in RNAfold to include motif/binding probabilities from unstructured domains
- · Add variadic functions for error/warning/info message
- · Add ID manipulation feature to RNAeval
- · Extend API for soft constraint feature for more fine-grained control
- · Add section on SWIG wrapped functions in reference manual
- · Fix bug in interior loop computations when hard constraints result in non-canonical base pairs

## Version 2.2.x

## Version 2.2.10 (Release date: 2016-09-06)

- · Do not 'forget' subopt results when output is not written to file handle and sorting is switched off
- · Fix bad memory access in vrna\_subopt() with sorted output
- Add SWIG wrappers for vrna\_subopt\_cb()
- · Correctly show if C11 features are activated in configure status
- · Fix autoconf checks to allow for cross compilation again

## Version 2.2.9 (Release date: 2016-09-01)

- Fix bug in partition function scaling for backward compatibility of ali\_pf\_fold()
- Stabilize v3.0 API when building RNAlib and third party program linking against it with compilers that use different C/C++ standards
- Add details on how to link against RNAlib to the reference manual
- Fix RNAlib2.pc
- Fix bug for temperature setting in RNAplfold

- Use -fflat-lto-objects for static RNAlib library to allow linking without LTO
- · Fix interpretation of 'P' hard constraint for single nucleotides in constraint definition files
- · Add 'A' command for hard constraints
- Fix several hard constraint corner-cases in MFE and partition function computation when nucleotides must not be unpaired
- · Fix order of hard constraints when read from input file
- · Allow for non-canonical base pairs in MFE and partition function computations if hard constraints demand it
- Fix behavior of –without-swig configure script option
- · Fix bug in hard constraints usage of exterior loop MFE prediction with odd dangles
- · Add parsers for Clustal, Stockholm, FASTA, and MAF formatted alignment files
- · Enable RNAalifold to use Clustal, Stockholm, FASTA, or MAF alignments as input
- · Lift restriction of sequence number in alignments for RNAalifold
- Enable ANSI colors for TTY output in RNAfold, RNAcofold, RNAalifold, RNAsubopt, and warnings/errors issued by RNAlib
- Add various new commandline options to manipulate sequence/alignment IDs in RNAfold, RNAcofold and RNAalifold

## Version 2.2.8 (Release date: 2016-08-01)

- · Fix bad memory access in RNAalifold
- · Fix regression in RNAalifold to restore covariance contribution ratio determination for circular RNA alignments
- Changed output of RNAsubopt in energy-band enumeration mode to print MFE and energy range in kcal/mol instead of 10cal/mol
- Include latest Kinfold sources that make use of v3.0 API, therefore speeding up runtime substantially
- · Re-activate warnings in RNAeval when non-canonical base pairs are encountered
- · Fix syntactic incompatibilities that potentially prevented compilation with compilers other than gcc
- · dd function to compare nucleotides encoded in IUPAC format
- · Fix regression in energy evaluation for circular RNA sequences
- Fix regression in suboptimal structure enumeration for circular RNAs
- · Allow for P i-j k-l commands in constraint definition files
- · Make free energy evaluation functions polymorphic
- · Add free energy evaluation functions that allow for specifying verbosity level
- · Secure functions in alphabet.c against NULL pointer arguments
- Fix incompatibility with swig >= 3.0.9
- Fix memory leak in swig-generated scripting language interface(s) for user-provided target language softconstraint callbacks
- Expose additional functions to swig-generated scripting language interface(s)
- · Build Python3 interface by default
- · Start of more comprehensive scripting language interface documentation

- Fix linking of python2/python3 interfaces when libpython is in non-standard directory
- · Restructured viennarna.spec for RPM based distributions
- Several syntactic changes in the implementation to minimize compiler warnings
- Fix -with-\*/-without-\* and -enable-\*/-disable-\* configure script behavior

## Version 2.2.7 (Release date: 2016-06-30)

- Fix partition function scaling for long sequences in RNAfold, RNAalifold, and RNAup
- · Fix backtracking issue in RNAcofold when -noLP option is activated
- · Fix hard constraints issue for circular RNAs in generating suboptimal structures
- · Rebuild reference manual only when actually required

## Version 2.2.6 (Release date: 2016-06-19)

- · Plugged memory leak in RNAcofold
- · Fixed partition function rescaling bug in RNAup
- · Fixed bug in RNALfold with window sizes larger than sequence length
- Re-added SCI parameter for RNAalifold
- · Fixed backtracking issue for large G-quadruplexes in RNAalifold
- · Fixed missing FASTA id in RNAeval output
- · Added option to RNAalifold that allows to specify prefix for output files
- · Several fixes and additional functions/methods in scripting language interface(s)
- Added version information for scripting language interface(s)
- · Some changes to allow for compilation with newer compilers, such as gcc 6.1

### Version 2.2.5 (Release date: 2016-04-09)

- Fixed regression in RNAcofold that prohibited output of concentration computations
- Fixed behavior of RNAfold and RNAcofold when hard constraints create empty solution set (programs now abort with error message)
- · Added optional Python 3 interface
- · Added RNA::Params Perl 5 sub-package
- Update RNA::Design Perl 5 sub-package
- · Simplified usage of v3.0 API with default options
- Wrap more functions of v3.0 API in SWIG generated scripting language interfaces
- · Plugged some memory leaks in SWIG generated scripting language interfaces
- · Changed parameters of recursion status callback in vrna\_fold\_compound\_t
- Enable definition and binding of callback functions from within SWIG target language
- · Added optional subpackage Kinwalker
- Added several configure options to ease building and packaging under MacOS X
- · Added new utility script RNAdesign.pl

## Version 2.2.4 (Release date: 2016-02-19)

- · Fixed bug in RNAsubopt that occasionally produced cofolded structures twice
- Removed debugging output in preparations of consensus structure prediction datastructures

## Version 2.2.3 (Release date: 2016-02-13)

- · Added postscipt annotations for found ligand motifs in RNAfold
- Added more documentation for the constraints features in RNAfold and RNAalifold
- Restore backward compatibility of get\_alipf\_arrays()

## Version 2.2.2 (Release date: 2016-02-08)

Fix regression bug that occasionally prevented backtracking with RNAcofold –noLP

## Version 2.2.1 (Release date: 2016-02-06)

- · Fix regression bug that made RNAcofold -a unusable
- Fix regression bug that prohibited RNAfold to compute the MEA structure when G-Quadruplex support was switched on
- Fix bug in Kinfold to enable loading energy parameters from file
- · Fix potential use of uninitialized value in RNApdist
- · Add manpage for ct2db
- · Fix MEA computation when G-Quadruplex support is activated
- · Allow for vendor installation of the perl interface using INSTALLDIRS=vendor at configure time
- Install architecture dependent and independent files of the perl and python interface to their correct file system locations

### Version 2.2.0 (Release date: 2016-01-25)

- RNAforester is now of version 2.0
- New program RNApvmin to compute pseudo-energy pertubation vector that minimizes discrepancy between observed and predicted pairing probabilities
- SHAPE reactivity support for RNAfold, RNAsubopt, and RNAalifold
- · Ligand binding to hairpin- and interior-loop motif support in RNAfold
- New commandline option to limit maximum base pair span for RNAfold, RNAsubopt, RNAcofold, and RNAalifold
- · Bugfix in RNAheat to remove numerical instabilities
- Bugfix in RNAplex to allow for computation of interactions without length limitation
- Bugfix in RNAplot for simple layouts and hairpins of size 0
- (generic) hard- and soft-constraints for MFE, partition function, base pair probabilities, stochastic backtracking, and suboptimal secondary structures of single sequences, sequence alignments, and sequence dimers
- libsvm version as required for z-scoring in RNALfold is now 3.20
- · Stochastic backtracking for single sequences is faster due to usage of Boustrophedon scheme
- First polymorphic functions vrna\_mfe(), vrna\_pf(), and vrna\_pbacktrack().

- · The FLT\_OR\_DBL macro is now a typedef
- New functions to convert between different secondary structure representations, such as helix lists, and RNAshapes abstractions
- · First object-oriented interface for new API functions in the scripting language interfaces
- · new ViennaRNA-perl submodule that augments the Perl interface to RNAlib
- · Ligand binding to hairpin- and interior-loop motif support in C-library and scripting language interfaces.
- · Libraries are generated using libtool
- · Linking of libraries and executables defaults to use Link Time Optimization (LTO)
- · Large changes in directory structure of the source code files

## Version 2.1.x

### Version 2.1.9

- · Fixed integer underflow bug in RNALfold
- Added Sequence Conservation index (SCI) option to RNAalifold
- · Fixed bug in energy evaluation of dangling ends / terminal mismatches of exterior loops and multibranch loops
- Fixed bug in alifold partition function for circular RNAs
- · Fixed bug in alifold that scrambled backtracing with activated G-Quadruplex support
- · Fixed bug in alifold backtracking for larger G-Quadruplexes

### Version 2.1.8

- · Repaired incorporation of RNAinverse user provided alphabet
- · Fix missing FASTA ID in RNAeval output
- · prevent race condition in parallel calls of Lfold()
- Fixed memory bug in Lfold() that occured using long sequences and activated G-Quad support
- · Added latest version of switch.pl

## Version 2.1.7

- · Fixed bug in RNALfold -z
- · Python and Perl interface are compiling again under MacOSX
- · Fixed handling of C arrays in Python interface
- · Added latest version of switch.pl
- · Make relplot.pl work with RNAcofold output

### Version 2.1.6

- New commandline switches allow for elimination of non-canonical base pairs from constraint structures in RNAfold, RNAalifold and RNAsubopt
- · updated moveset functions
- · final fix for discrepancy of tri-loop evaluation between partition function and mfe
- · pkg-config file now includes the OpenMP linker flag if necessary
- · New program ct2db allows for conversion of .ct files into dot-bracket notation (incl. pseudo-knot removal)

### Version 2.1.5

· Fix for discrepancy between special hairpin loop evaluation in partition functions and MFE

## Version 2.1.4

- Fix of G-quadruplex support in subopt()
- · Fix for discrepancy between special hairpin loop evaluation in partition functions and MFE

### Version 2.1.3

- · RNAfold: Bugfix for ignoring user specified energy parameter files
- · RNAcofold: Bugfix for crashing upon constrained folding without specifying a constraint structure
- · RNAsubopt: Added G-quadruplex support
- · RNAalifold: Added parameter option to specify base pair probability threshold in dotplot
- · Fix of several G-quadruplex related bugs
- Added G-quadruplex support in subopt()

#### Version 2.1.2

- RNAfold: Bugfix for randomly missing probabilities in dot-plot during batch job execution
- RNAeval: Bugfix for misinterpreted G-quadruplex containing sequences where the quadruplex starts at nucleotide 1
- · RNAsubopt: Slight changes to the output of stochastic backtracking and zuker subopt
- · Fix of some memory leaks
- Bugfixes in zukersubopt(), assign\_plist\_from\_pr()
- New threadsafe variants of putoutpU\_prob\*() for LPfold()
- · Provision of python2 interface support.

### Version 2.1.1

• Bugfix to restore backward compatibility with ViennaRNA Package 1.8.x API (this bug also affected proper usage of the the perl interface)

## Version 2.1.0

- G-Quadruplex support in RNAfold, RNAcofold, RNALfold, RNAalifold, RNAeval and RNAplot
- · LPfold got a new option to output its computations in split-mode
- several G-Quadruplex related functions were introduced with this release
- · several functions for moves in an RNA landscape were introduced
- new function in alipfold.c now enables access to the partition function matrices of alipf\_fold()
- different numeric approach was implement for concentration dependend co-folding to avoid instabilities which occured under certain circumstances

## Version 2.0.x

### Version 2.0.7

- Bugfix for RNAplfold where segfault happened upon usage of -O option
- · Corrected misbehavior of RNAeval and RNAplot in tty mode

## Version 2.0.6

- · Bugfix for bad type casting with gcc under MacOSX (resulted in accidental "sequence too long" errors)
- · Bugfix for disappearing tri-/hexaloop contributions when read in from certain parameter files
- · Bugfix for RNALfold that segfaulted on short strange sequences like AT+ repeats
- · Change of RNA2Dfold output format for stochastic backtracking

### Version 2.0.5

· Restored z-score computation capabilities in RNALfold

### Version 2.0.4

- · Bugfix for RNAcofold partition function
- · Perl wrapper compatibility to changed RNAlib has been restored
- · Backward compatibility for partition function calls has been restored

### Version 2.0.3

- Bugfix for RNAalifold partition function and base pair probabilities in v2.0.3b
- · Added Boltzmann factor scaling in RNAsubopt, RNAalifold, RNAplfold and RNAcofold
- · Bugfix for alipfold() in v2.0.3b
- Restored threadsafety of folding matrix access in LPfold.c, alipfold.c, part\_func.c, part\_func\_co.c and part
   \_func\_up.c
- Added several new functions regarding threadsafe function calls in terms of concurrently changing the model details
- Added pkg-config file in the distribution to allow easy checks for certain RNAlib2 versions, compiler flags and linker flags.

## Version 2.0.2

- · added support for Boltzmann factor scaling in RNAfold
- · fixed fastaheader to filename bug
- · plugged some memory leaks

### Version 2.0.1

- · First official release of version 2.0
- · included latest bugfixes

## **History**

2011-03-10 Ronny Lorenz ronny@tbi.univie.ac.at

- · new naming scheme for all shipped energy parameter files
- · fixed bugs that appear while compiling with gcc under MacOS X
- fixed bug in RNAup –interaction-first where the longer of the first two sequences was taken as target
- added full FASTA input support to RNAfold, RNAcofold, RNAheat, RNAplfold RNALfoldz, RNAsubopt and RNALfold

2010-11-24 Ronny Lorenz ronny@tbi.univie.ac.at

· first full pre-release of version 2.0

2009-11-03 lvo Hofacker ivo@tbi.univie.ac.at

Fix memory corruption in PS color aln()

2009-09-09 Ivo Hofacker ivo@tbi.univie.ac.at

- · Fix bug in RNAplfold when -u and -L parameters are equal
- Fix double call to free\_arrays() in RNAfold.c
- · Improve drawing of cofolded structures

2009-05-14 Ivo Hofacker ivo@tbi.univie.ac.at

Fix occasional segfault in RNAalifold's print\_aliout()

2009-02-24 Ivo Hofacker ivo@tbi.univie.ac.at

- · Add -MEA options to RNAfold and RNAalifold
- · change energy\_of\_alistruct to return float not void

2009-02-24 Ivo Hofacker ivo@tbi.univie.ac.at

- RNAfold will draw structures unless -noPS is used (no more "structure too long" messages)
- Restore the "alifold.out" output from RNAalifold -p
- · RNAalifold -circ did not work due to wrong return type
- Accessibility calculation with RNAplfold would give wrong results for u<=30</li>

2008-12-03 lvo Hofacker ivo@tbi.univie.ac.at

- Add zuker style suboptimals to RNAsubopt (-z)
- get\_line() should be much faster when reading huge sequences (e.g. whole chromosomes for RNALfold)

2008-08-12 Ivo Hofacker ivo@tbi.univie.ac.at

· Add Ribosum matrices for covariance scoring in RNAalifold

2008-06-27 Ivo Hofacker ivo@tbi.univie.ac.at

- Change RNAalifold to used berni's new energy evaluation w/o gaps
- · Add stochastic backtracking in RNAalifold

2008-07-04 Ivo Hofacker ivo@tbi.univie.ac.at

• modify output of RNAup (again). Program reading RNAup output will have to updated!

2008-07-02 Ivo Hofacker ivo@tbi.univie.ac.at

• RNAplfold now computes accessibilities for all regions up to a max length simultaneously. Slightly slower when only 1 value is needed, but much faster if all of them are wanted. This entails a new output format. Programs reading accessibility output from RNAplfold need to be updated!

2008-03-31 Stephan Bernhart berni@tbi.univie.ac.at

· add cofolding to RNAsubopt

2008-01-08 Ivo Hofacker ivo@tbi.univie.ac.at

· ensure circfold works even for open chain

2007-12-13 Ulli Mueckstein ulli@tbi.univie.ac.at

 upate RNAup related files RNAup can now include the intramolecular structure of both molecules and handles constraints.

2007-12-05 Ronny Lorenz ronny@tbi.univie.ac.at

· add circfold variants in part\_func.c alipfold.c subopt.c

2007-09-19 Ivo Hofacker ivo@tbi.univie.ac.at

- · compute the controid structure of the ensemble in RNAfold -p
- fix a missing factor 2 in mean\_bp\_dist(). CAUTION ensemble diversities returned by RNAfold -p are now twice as large as in earlier versions.

2007-09-04 Ivo Hofacker ivo@blini.tbi.univie.ac.at

• fix a bug in Lfold() where base number n-max-4 would never pair

2007-08-26 Ivo Hofacker ivo@tbi.univie.ac.at

- add RNAaliduplex the alignment version of RNAduplex
- introduce a minimal distance between hits produced by duplex\_subopt()

2007-07-03 Ivo Hofacker ivo@tbi.univie.ac.at

• add a loop energy() function to compute energy of a single loop

2007-06-23 Ivo Hofacker ivo@tbi.univie.ac.at

• add aliLfold() and RNALalifold, alignment variant of Lfold()

2007-04-30 Ivo Hofacker ivo@tbi.univie.ac.at

· add RNAup to distribution

2007-04-15 Ivo Hofacker ivo@tbi.univie.ac.at

· fix segfault in colorps output (thanks to Andres Varon)

2007-03-03 Ivo Hofacker ivo@tbi.univie.ac.at

• avoid unnormalized doubles in scale[], big speedup for pf\_fold() on very long sequences

2007-02-03 Ivo Hofacker ivo@tbi.univie.ac.at

RNAalifold can now produce colored structure plots and alignment plots

```
2007-02-01 Ivo Hofacker ivo@tbi.univie.ac.at
    • Fix segfault in RNAplfold because of missing prototype
2006-12-01 Ivo Hofacker ivo@tbi.univie.ac.at
    · RNAduplex would segfault when no structure base pairs are possible
2006-08-22 lvo Hofacker ivo@tbi.univie.ac.at

    add computation stacking probabilities using RNAfold -p2

    · add -noPS option for NRAfold to supress drawing structures
2006-08-09 Stephan Bernhart berni@tbi.univie.ac.at

    RNAplfold can now compute probabilities of unpaired regions (scanning version of RNAup)

2006-06-14 Ivo Hofacker ivo@tbi.univie.ac.at
    • compile library with -fpic (if available) for use as shared library in the Perl module.
    · fix another bug when calling Lfold() repeatedly
    · fix switch cmdline parsing in RNAalifold (-mis implied -4)
    • fix bug in cofold() with dangles=0
2006-05-08 Ivo Hofacker ivo@tbi.univie.ac.at
    · fix segfault in Lfold() when calling repeatedly
    · fix structure parsing in RNAstruct.c (thanks to Michael Pheasant for reporting both bugs)
    • add duplexfold() and alifold() to Perl module
    · distinguish window size and max pair span in LPfold
2006-04-05 Ivo Hofacker ivo@tbi.univie.ac.at

    fix performance bug in co pf fold()

    · use relative error for termination of Newton iteration
2006-03-02 lvo Hofacker ivo@tbi.univie.ac.at
    • add circular folding in alifold()
2006-01-18 Ivo Hofacker ivo@tbi.univie.ac.at
    · cleanup berni partition cofold code, including several bug fixes
2006-01-16 Ivo Hofacker ivo@tbi.univie.ac.at
    · update RNAplfold to working version
    • add PS_dot_plot_turn() in PS_dot.c
2005-11-07 Ivo Hofacker ivo@tbi.univie.ac.at
    · add new utilities colorna and coloraln
2005-10-11 Christoph Flamm xtof@tbi.univie.ac.at

    adapt PS_rna_plot() for drawing co-folded structures

2005-07-24 Ivo Hofacker ivo@tbi.univie.ac.at
```

 fix a few memory problems in structure comparison routines 2005-04-30 Ivo Hofacker ivo@blini.tbi.univie.ac.at · add folding of circular RNAs 2005-03-11 lvo Hofacker ivo@blini.tbi.univie.ac.at · add -mis option to RNAalifold to give "most informative sequence" as consensus 2005-02-10 Ivo Hofacker ivo@tbi.univie.ac.at · move alifold() into the library 2004-12-22 Stephan Bernhart berni@tbi.univie.ac.at · add partition function version of RNAcofold 2004-12-23 Ivo Hofacker ivo@tbi.univie.ac.at · add RNApaln for fast structural alignments (RNApdist improvement) 2004-08-12 Ivo Hofacker ivo@tbi.univie.ac.at · fix constrained folding in stochastic backtracking 2004-07-21 Ivo Hofacker ivo@tbi.univie.ac.at add RNAduplex, to compute hybrid structures without intra-molecular pairs 2004-02-09 Ivo Hofacker ivo@tbi.univie.ac.at · fix bug in fold that caused segfaults when using Intel compiler · add computation of ensemble diversity to RNAfold 2003-09-10 Ivo Hofacker ivo@tbi.univie.ac.at · add annotation options to RNAplot 2003-08-04 Ivo Hofacker ivo@tbi.univie.ac.at stochastic backtracking finally works. Try e.g. RNAsubopt -p 10 2003-07-18 Ivo Hofacker ivo@tbi.univie.ac.at · add relplot.pl and rotate ss.pl utilities for reliability annotation and rotation of rna structure plots 2003-01-29 Ivo Hofacker ivo@tbi.univie.ac.at · add RNALfold program to compute locally optimal structures with maximum pair span. · add RNAcofold for computing hybrid structure 2002-11-07 Ivo Hofacker ivo@tbi.univie.ac.at • change Make\_bp\_profile() and profile\_edit\_distance() to use simple (float \*) arrays; makes Perl access much easier. RNApdist -B now works again 2002-10-28 Ivo Hofacker ivo@tbi.univie.ac.at • Improved Perl module with pod documentation; allow to write things like (\$structure, \$energy) = RNA ←

::fold(\$seq); Compatibility warning: the ptrvalue() and related functions are gone, see the pod documentation

for alternatives.

2002-10-29 Ivo Hofacker ivo@tbi.univie.ac.at

· added svg structure plots in PS\_dot.c and RNAplot

2002-08-15 lvo Hofacker ivo@tbi.univie.ac.at

- Improve reading of clustal files (alifold)
- add a sample alifold.cgi script

2001-09-18 lvo Hofacker ivo@tbi.univie.ac.at

· moved suboptimal folding into the library, thus it's now accessible from the Perl module

2001-08-31 Ivo Hofacker ivo@tbi.univie.ac.at

• added co-folding support in energy\_of\_struct(), and thus RNAeval

2001-04-30 lvo Hofacker ivo@tbi.univie.ac.at

· switch from handcrafted makefiles to automake and autoconf

2001-04-05 Ivo Hofacker ivo@tbi.univie.ac.at

• added PS\_rna\_plot\_a to produce structure plots with annotation

2001-03-03 Ivo Hofacker ivo@tbi.univie.ac.at

• add alifold; predict consensus structures from alignment

2000-09-28 lvo Hofacker ivo@tbi.univie.ac.at

• add -d3 option to RNAfold for co-axial stacking

## **Chapter 11**

## **Deprecated List**

```
Global alifold (const char **strings, char *structure)
   Usage of this function is discouraged! Use vrna alifold(), or vrna mfe() instead!
Global alimake pair table (const char *structure)
   Use vrna_pt_ali_get() instead!
Global alipbacktrack (double *prob)
   Use vrna_pbacktrack() instead!
Global alipf_circ_fold (const char **sequences, char *structure, vrna_ep_t **pl)
   Use vrna_pf() instead
Global alipf fold (const char **sequences, char *structure, vrna_ep_t **pl)
   Use vrna_pf() instead
Global alipf_fold_par (const char **sequences, char *structure, vrna_ep_t **pl, vrna_exp_param_←
   t *parameters, int calculate_bppm, int is_constrained, int is_circular)
   Use vrna_pf() instead
Global aliPS_color_aln (const char *structure, const char *filename, const char *seqs[], const char
   *names[])
   Use vrna_file_PS_aln() instead!
File aln util.h
   Use ViennaRNA/utils/alignments.h instead
Global assign_plist_from_db (vrna_ep_t **pl, const char *struc, float pr)
   Use vrna plist() instead
Global assign_plist_from_pr (vrna_ep_t **pl, FLT_OR_DBL *probs, int length, double cutoff)
   Use vrna_plist_from_probs() instead!
Global b2C (const char *structure)
   See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_SHAPIRO_SHORT for a replacement
Global b2HIT (const char *structure)
   See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_HIT for a replacement
Global b2Shapiro (const char *structure)
   See vrna_db_to_tree_string() and VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT for a replacement
Global base pair
   Do not use this variable anymore!
Global bondT
   Use vrna_bp_stack_t instead!
Global bp_distance (const char *str1, const char *str2)
   Use vrna_bp_distance instead
```

114 Deprecated List

### Global bppm\_symbol (const float \*x)

Use vrna\_bpp\_symbol() instead!

### Global bppm\_to\_structure (char \*structure, FLT\_OR\_DBL \*pr, unsigned int length)

Use vrna\_db\_from\_probs() instead!

### Global centroid (int length, double \*dist)

This function is deprecated and should not be used anymore as it is not threadsafe!

### File char\_stream.h

Use ViennaRNA/datastructures/char\_stream.h instead

## Global circalifold (const char \*\*strings, char \*structure)

Usage of this function is discouraged! Use vrna alicircfold(), and vrna mfe() instead!

### Global circfold (const char \*sequence, char \*structure)

Use vrna circfold(), or vrna mfe() instead!

### Global co\_pf\_fold (char \*sequence, char \*structure)

{Use vrna\_pf\_dimer() instead!}

## Global co\_pf\_fold\_par (char \*sequence, char \*structure, vrna\_exp\_param\_t \*parameters, int calculate\_← bppm, int is\_constrained)

Use vrna\_pf\_dimer() instead!

### Global cofold (const char \*sequence, char \*structure)

use vrna\_mfe\_dimer() instead

### Global cofold par (const char \*string, char \*structure, vrna param t \*parameters, int is constrained)

use vrna\_mfe\_dimer() instead

### Global compute BPdifferences (short \*pt1, short \*pt2, unsigned int turn)

Use vrna\_refBPdist\_matrix() instead

## Global compute\_probabilities (double FAB, double FEA, double FEB, vrna\_ep\_t \*prAB, vrna\_ep\_t \*prA, vrna\_ep\_t \*prB, int Alength)

{ Use vrna\_pf\_dimer\_probs() instead!}

## Global constrain\_ptypes (const char \*constraint, unsigned int length, char \*ptype, int \*BP, int min\_loop ← size, unsigned int idx\_type)

Do not use this function anymore! Structure constraints are now handled through vrna\_hc\_t and related functions.

### File constraints.h

Use ViennaRNA/constraints/basic.h instead

## File constraints hard.h

Use ViennaRNA/constraints/hard.h instead

### File constraints ligand.h

Use ViennaRNA/constraints/ligand.h instead

## File constraints\_SHAPE.h

Use ViennaRNA/constraints/SHAPE.h instead

## File constraints\_soft.h

Use ViennaRNA/constraints/soft.h instead

### File convert\_epars.h

Use ViennaRNA/params/convert.h instead

## Global copy\_pair\_table (const short \*pt)

Use vrna\_ptable\_copy() instead

### Global cpair

Use vrna\_cpair\_t instead!

#### Global cv fact

See vrna\_md\_t.cv\_fact, and vrna\_mfe() to avoid using global variables

#### File data structures.h

Use ViennaRNA/datastructures/basic.h instead

### Global destroy\_TwoDfold\_variables (TwoDfold\_vars \*our\_variables)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound ← \_\_TwoD(), vrna\_mfe\_TwoD(), and vrna\_fold\_compound\_free() instead!

### Global destroy\_TwoDpfold\_variables (TwoDpfold\_vars \*vars)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound ← \_\_TwoD(), vrna\_pf\_TwoD(), and vrna\_fold\_compound\_free() instead!

### Global E\_Stem (int type, int si1, int sj1, int extLoop, vrna\_param\_t \*P)

Please use one of the functions vrna\_E\_ext\_stem() and E\_MLstem() instead! Use the former for cases where extLoop != 0 and the latter otherwise.

### File energy\_const.h

Use ViennaRNA/params/constants.h instead

### Global energy\_of\_alistruct (const char \*\*sequences, const char \*structure, int n\_seq, float \*energy)

Usage of this function is discouraged! Use vrna\_eval\_structure(), and vrna\_eval\_covar\_structure() instead!

### Global energy\_of\_circ\_struct (const char \*string, const char \*structure)

This function is deprecated and should not be used in future programs Use energy of circ structure() instead!

## Global energy\_of\_circ\_struct\_par (const char \*string, const char \*structure, vrna\_param\_t \*parameters, int verbosity level)

Use vrna\_eval\_structure() or vrna\_eval\_structure\_verbose() instead!

### Global energy of circ structure (const char \*string, const char \*structure, int verbosity level)

Use vrna\_eval\_structure() or vrna\_eval\_structure\_verbose() instead!

### Global energy\_of\_move (const char \*string, const char \*structure, int m1, int m2)

Use vrna eval move() instead!

### Global energy\_of\_move\_pt (short \*pt, short \*s, short \*s1, int m1, int m2)

Use vrna eval move pt() instead!

## Global energy\_of\_struct (const char \*string, const char \*structure)

This function is deprecated and should not be used in future programs! Use energy of structure() instead!

## Global energy\_of\_struct\_par (const char \*string, const char \*structure, vrna\_param\_t \*parameters, int verbosity\_level)

Use vrna\_eval\_structure() or vrna\_eval\_structure\_verbose() instead!

## Global energy of struct pt (const char \*string, short \*ptable, short \*s, short \*s1)

This function is deprecated and should not be used in future programs! Use energy\_of\_structure\_pt() instead!

## Global energy\_of\_struct\_pt\_par (const char \*string, short \*ptable, short \*s, short \*s1, vrna\_param\_← t \*parameters, int verbosity\_level)

Use vrna\_eval\_structure\_pt() or vrna\_eval\_structure\_pt\_verbose() instead!

## Global energy\_of\_structure (const char \*string, const char \*structure, int verbosity\_level)

Use vrna\_eval\_structure() or vrna\_eval\_structure\_verbose() instead!

## $\textbf{Global energy\_of\_structure\_pt (const char *string, short *ptable, short *s, short *s1, int verbosity\_level)}$

Use vrna\_eval\_structure\_pt() or vrna\_eval\_structure\_pt\_verbose() instead!

### File energy\_par.h

Use ViennaRNA/params/default.h instead

## Global exp\_E\_ExtLoop (int type, int si1, int sj1, vrna\_exp\_param\_t \*P)

Use vrna\_exp\_E\_ext\_stem() instead!

116 Deprecated List

Global expHairpinEnergy (int u, int type, short si1, short sj1, const char \*string)

Use exp E Hairpin() from loop energies.h instead

Global expLoopEnergy (int u1, int u2, int type, int type2, short si1, short sj1, short sp1, short sq1)

Use exp\_E\_IntLoop() from loop\_energies.h instead

### Global export ali bppm (void)

Usage of this function is discouraged! The new vrna\_fold\_compound\_t allows direct access to the folding matrices, including the pair probabilities! The pair probability array returned here reflects the one of the latest call to vrna\_pf(), or any of the old API calls for consensus structure partition function folding.

Global export\_circfold\_arrays (int \*Fc\_p, int \*FcH\_p, int \*FcI\_p, int \*FcM\_p, int \*\*fM2\_p, int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p)

See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

Global export\_circfold\_arrays\_par (int \*Fc\_p, int \*FcH\_p, int \*FcI\_p, int \*FcM\_p, int \*\*fM2\_p, int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p, vrna\_param\_t \*\*P\_p)

See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

### Global export co bppm (void)

This function is deprecated and will be removed soon! The base pair probability array is available through the vrna fold compound t data structure, and its associated vrna mx pf t member.

Global export\_cofold\_arrays (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*fc\_p, int \*\*indx\_p, char \*\*ptype\_p)

folding matrices now reside within the vrna\_fold\_compound\_t. Thus, this function will only work in conjunction with a prior call to the deprecated functions cofold() or cofold\_par()

Global export\_cofold\_arrays\_gq (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*fc\_p, int \*\*ggg\_p, int \*\*indx\_p, char \*\*ptype\_p)

folding matrices now reside within the fold compound. Thus, this function will only work in conjunction with a prior call to cofold() or cofold\_par()

Global export\_fold\_arrays (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p)

See vrna mfe() and vrna fold compound t for the usage of the new API!

Global export\_fold\_arrays\_par (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype ← \_\_p, vrna\_param\_t \*\*P\_p)

See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

### File exterior\_loops.h

Use ViennaRNA/loops/external.h instead

## File file\_formats.h

Use ViennaRNA/io/file\_formats.h instead

### File file formats msa.h

Use ViennaRNA/io/file\_formats\_msa.h instead

### File file utils.h

Use ViennaRNA/io/utils.h instead

## Global filecopy (FILE \*from, FILE \*to)

Use vrna\_file\_copy() instead!

Global find\_saddle (const char \*seq, const char \*s1, const char \*s2, int width)

Use vrna\_path\_findpath\_saddle() instead!

### File findpath.h

Use ViennaRNA/landscape/findpath.h instead

### Global fold (const char \*sequence, char \*structure)

use vrna\_fold(), or vrna\_mfe() instead!

## Global fold\_par (const char \*sequence, char \*structure, vrna\_param\_t \*parameters, int is\_constrained, int is circular)

use vrna\_mfe() instead!

### Global free alifold arrays (void)

Usage of this function is discouraged! It only affects memory being free'd that was allocated by an old API function before. Release of memory occupied by the newly introduced vrna\_fold\_compound\_t is handled by vrna\_fold\_compound\_free()

### Global free\_alipf\_arrays (void)

Usage of this function is discouraged! This function only free's memory allocated by old API function calls. Memory allocated by any of the new API calls (starting with vrna ) will be not affected!

### Global free arrays (void)

See vrna\_fold(), vrna\_circfold(), or vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

### Global free\_co\_arrays (void)

This function will only free memory allocated by a prior call of cofold() or cofold\_par(). See vrna\_mfe\_dimer() for how to use the new API

### Global free co pf arrays (void)

This function will be removed for the new API soon! See vrna\_pf\_dimer(), vrna\_fold\_compound(), and vrna\_fold\_compound\_free() for an alternative

### Global free\_path (vrna\_path\_t \*path)

Use vrna path free() instead!

### Global free pf arrays (void)

See vrna\_fold\_compound\_t and its related functions for how to free memory occupied by the dynamic programming matrices

# Global get\_alipf\_arrays (short \*\*\*S\_p, short \*\*\*S5\_p, short \*\*\*S3\_p, unsigned short \*\*\*a2s\_p, char \*\*\*Ss\_p, FLT\_OR\_DBL \*\*qb\_p, FLT\_OR\_DBL \*\*qln←p, short \*\*pscore)

It is discouraged to use this function! The new vrna\_fold\_compound\_t allows direct access to all necessary consensus structure prediction related variables!

### Global get\_boltzmann\_factor\_copy (vrna\_exp\_param\_t \*parameters)

Use vrna\_exp\_params\_copy() instead!

# Global get\_boltzmann\_factors (double temperature, double betaScale, vrna\_md\_t md, double pf\_scale) Use vrna exp\_params() instead!

## Global get\_boltzmann\_factors\_ali (unsigned int n\_seq, double temperature, double betaScale, vrna\_md\_t md, double pf\_scale)

Use vrna exp params comparative() instead!

## Global get\_centroid\_struct\_gquad\_pr (int length, double \*dist)

This function is deprecated and should not be used anymore as it is not threadsafe!

### Global get\_centroid\_struct\_pl (int length, double \*dist, vrna\_ep\_t \*pl)

This function was renamed to vrna centroid from plist()

## Global get\_centroid\_struct\_pr (int length, double \*dist, FLT\_OR\_DBL \*pr)

This function was renamed to vrna\_centroid\_from\_probs()

## Global get\_concentrations (double FEAB, double FEAA, double FEBB, double FEA, double FEB, double \*startconc)

{ Use vrna\_pf\_dimer\_concentrations() instead!}

## Global get\_line (FILE \*fp)

Use vrna\_read\_line() as a substitute!

### Global get\_mpi (char \*Alseq[], int n\_seq, int length, int \*mini)

Use vrna\_aln\_mpi() as a replacement

118 Deprecated List

### Global get\_path (const char \*seq, const char \*s1, const char \*s2, int width)

Use vrna\_path\_findpath() instead!

### Global get\_plist (vrna\_ep\_t \*pl, int length, double cut\_off)

{ This function is deprecated and will be removed soon!} use assign\_plist\_from\_pr() instead!

### Global get scaled alipf parameters (unsigned int n seq)

Use vrna\_exp\_params\_comparative() instead!

### Global get\_scaled\_parameters (double temperature, vrna\_md\_t md)

Use vrna params() instead!

## Global get\_scaled\_pf\_parameters (void)

Use vrna\_exp\_params() instead!

### Global get\_TwoDfold\_variables (const char \*seq, const char \*structure1, const char \*structure2, int circ)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound ← \_\_TwoD(), vrna\_mfe\_TwoD(), and vrna\_fold\_compound\_free() instead!

## Global get\_TwoDpfold\_variables (const char \*seq, const char \*structure1, char \*structure2, int circ)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound ← \_\_TwoD(), vrna\_pf\_TwoD(), and vrna\_fold\_compound\_free() instead!

### File hairpin\_loops.h

Use ViennaRNA/loops/hairpin.h instead

## Global HairpinE (int size, int type, int si1, int sj1, const char \*string)

{This function is deprecated and will be removed soon. Use E Hairpin() instead!}

### Global hamming (const char \*s1, const char \*s2)

Use vrna hamming distance() instead!

### Global hamming bound (const char \*s1, const char \*s2, int n)

Use vrna\_hamming\_distance\_bound() instead!

### Global iindx

Do not use this variable anymore!

## Global init\_co\_pf\_fold (int length)

{ This function is deprecated and will be removed soon!}

### Global init pf fold (int length)

This function is obsolete and will be removed soon!

## Global init\_rand (void)

Use vrna\_init\_rand() instead!

## Global initialize\_cofold (int length)

{This function is obsolete and will be removed soon!}

### Global initialize fold (int length)

See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

### Global int urn (int from, int to)

Use vrna\_int\_urn() instead!

## File interior\_loops.h

Use ViennaRNA/loops/internal.h instead

## Global Lfold (const char \*string, const char \*structure, int maxdist)

Use vrna\_mfe\_window() instead!

### Global Lfoldz (const char \*string, const char \*structure, int maxdist, int zsc, double min\_z)

Use vrna mfe window zscore() instead!

## File loop energies.h Use ViennaRNA/loops/all.h instead Global loop\_energy (short \*ptable, short \*s, short \*s1, int i) Use vrna\_eval\_loop\_pt() instead! Global LoopEnergy (int n1, int n2, int type, int type 2, int si1, int sj1, int sp1, int sq1) {This function is deprecated and will be removed soon. Use E\_IntLoop() instead!} Global Make bp profile (int length) This function is deprecated and will be removed soon! See Make bp profile bppm() for a replacement Global make\_pair\_table (const char \*structure) Use vrna\_ptable() instead Global make\_pair\_table\_snoop (const char \*structure) Use vrna pt snoop get() instead! Global make referenceBP array (short \*reference pt, unsigned int turn) Use vrna refBPcnt matrix() instead Global MEA (plist \*p, char \*structure, double gamma) Use vrna MEA() or vrna MEA from plist() instead! Global mean bp dist (int length) This function is not threadsafe and should not be used anymore. Use mean\_bp\_distance() instead! Global mean bp distance (int length) Use vrna\_mean\_bp\_distance() or vrna\_mean\_bp\_distance\_pr() instead! Global mean\_bp\_distance\_pr (int length, FLT\_OR\_DBL \*pr) Use vrna\_mean\_bp\_distance() or vrna\_mean\_bp\_distance\_pr() instead! File multibranch loops.h Use ViennaRNA/loops/multibranch.h instead File naview.h Use ViennaRNA/plotting/naview/naview.h instead Global nc fact See vrna\_md\_t.nc\_fact, and vrna\_mfe() to avoid using global variables File neighbor.h Use ViennaRNA/landscape/neighbor.h instead Global nrerror (const char message[]) Use vrna\_message\_error() instead! Global pack\_structure (const char \*struc) Use vrna\_db\_pack() as a replacement **Global PAIR** Use vrna basepair t instead! Global pair\_info Use vrna\_pinfo\_t instead!

File params.h

Global paramT

Use ViennaRNA/params/basic.h instead

use vrna\_parenthesis\_structure() instead

Global parenthesis\_structure (char \*structure, vrna\_bp\_stack\_t \*bp, int length)

Use vrna\_param\_t instead!

120 Deprecated List

```
Global parenthesis zuker (char *structure, vrna bp stack t *bp, int length)
   use vrna_parenthesis_zuker instead
Global path t
   Use vrna_path_t instead!
Global pbacktrack_circ (char *sequence)
   Use vrna_pbacktrack() instead.
Global pf circ fold (const char *sequence, char *structure)
   Use vrna pf() instead!
Global pf_fold_par (const char *sequence, char *structure, vrna_exp_param_t *parameters, int calculate ←
   bppm, int is constrained, int is circular)
   Use vrna pf() instead
Global pf_paramT
   Use vrna_exp_param_t instead!
Global plist
   Use vrna ep t or vrna elem prob s instead!
File plot aln.h
   Use ViennaRNA/plotting/alignments.h instead
File plot_layouts.h
   Use ViennaRNA/plotting/layouts.h instead
File plot structure.h
   Use ViennaRNA/plotting/structures.h instead
File plot_utils.h
   Use ViennaRNA/plotting/utils.h instead
Global pr
   Do not use this variable anymore!
Global print tty constraint (unsigned int option)
   Use vrna message constraints() instead!
Global print tty constraint full (void)
   Use vrna_message_constraint_options_all() instead!
Global print tty input seq (void)
   Use vrna_message_input_seq_simple() instead!
Global print_tty_input_seq_str (const char *s)
   Use vrna message input seq() instead!
Global PS color aln (const char *structure, const char *filename, const char *seqs[], const char *names[])
   Use vrna file PS aln() instead!
File PS_dot.h
   Use ViennaRNA/plotting/probabilities.h instead
Global PS_dot_plot (char *string, char *file)
   This function is deprecated and will be removed soon! Use PS_dot_plot_list() instead!
Global PS rna plot (char *string, char *structure, char *file)
   Use vrna_file_PS_rnaplot() instead!
Global PS rna plot a (char *string, char *structure, char *file, char *pre, char *post)
   Use vrna_file_PS_rnaplot_a() instead!
Global PS_rna_plot_a_gquad (char *string, char *structure, char *ssfile, char *pre, char *post)
   Use vrna_file_PS_rnaplot_a() instead!
```

### Global random string (int I, const char symbols[])

Use vrna\_random\_string() instead!

### File read epars.h

Use ViennaRNA/params/io.h instead

## Global read\_parameter\_file (const char fname[])

Use vrna\_params\_load() instead!

### Global read\_record (char \*\*header, char \*\*sequence, char \*\*\*rest, unsigned int options)

This function is deprecated! Use vrna\_file\_fasta\_read\_record() as a replacment.

### Global scale parameters (void)

Use vrna\_params() instead!

### Global sect

Use vrna sect tinstead!

### Global set model details (vrna md t \*md)

This function will vanish as soon as backward compatibility of RNAlib is dropped (expected in version 3). Use <a href="mailto:vrna\_md\_set\_default">vrna\_md\_set\_default</a>() instead!

## Global simple\_circplot\_coordinates (short \*pair\_table, float \*x, float \*y)

Consider switching to vrna plot coords circular pt() instead!

### Global simple xy coordinates (short \*pair\_table, float \*X, float \*Y)

Consider switching to vrna\_plot\_coords\_simple\_pt() instead!

#### **Global SOLUTION**

Use vrna\_subopt\_solution\_t instead!

### Global space (unsigned size)

Use vrna\_alloc() instead!

### Global st back

set the uniq\_ML flag in vrna\_md\_t before passing it to vrna\_fold\_compound().

## Global stackProb (double cutoff)

Use vrna\_stack\_prob() instead!

## Global str\_DNA2RNA (char \*sequence)

Use vrna\_seq\_toRNA() instead!

### Global str\_uppercase (char \*sequence)

Use vrna\_seq\_toupper() instead!

### File stream\_output.h

Use ViennaRNA/datastructures/stream\_output.h instead

## File string\_utils.h

Use ViennaRNA/utils/strings.h instead

### File structure utils.h

Use ViennaRNA/utils/structures.h instead

### File svm\_utils.h

Use ViennaRNA/utils/svm.h instead

## **Global temperature**

Use vrna\_md\_defaults\_temperature(), and vrna\_md\_defaults\_temperature\_get() to change, and read the global default temperature settings

### Global time\_stamp (void)

Use vrna\_time\_stamp() instead!

122 Deprecated List

### Global TwoDfold backtrack f5 (unsigned int j, int k, int I, TwoDfold vars \*vars)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound 
— TwoD(), vrna\_mfe\_TwoD(), vrna\_backtrack5\_TwoD(), and vrna\_fold\_compound\_free() instead!

#### Global TwoDfold vars

This data structure will be removed from the library soon! Use vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_mfe\_TwoD(), and vrna\_fold\_compound\_free() instead!

### Global TwoDfoldList (TwoDfold\_vars \*vars, int distance1, int distance2)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound ← \_\_TwoD(), vrna\_mfe\_TwoD(), and vrna\_fold\_compound\_free() instead!

### Global TwoDpfold\_pbacktrack (TwoDpfold\_vars \*vars, int d1, int d2)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound 
— TwoD(), vrna\_pf\_TwoD(), vrna\_pbacktrack\_TwoD(), and vrna\_fold\_compound\_free() instead!

### Global TwoDpfold pbacktrack5 (TwoDpfold vars \*vars, int d1, int d2, unsigned int length)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound ← \_TwoD(), vrna\_pf\_TwoD(), vrna\_pbacktrack5\_TwoD(), and vrna\_fold\_compound\_free() instead!

### Class TwoDpfold\_vars

This data structure will be removed from the library soon! Use <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> and the corresponding functions <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> free() instead!

### Global TwoDpfoldList (TwoDpfold vars \*vars, int maxDistance1, int maxDistance2)

Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound 
\_TwoD(), vrna\_pf\_TwoD(), and vrna\_fold\_compound\_free() instead!

#### File units.h

Use ViennaRNA/utils/units.h instead

### Global unpack\_structure (const char \*packed)

Use vrna\_db\_unpack() as a replacement

### Global update alifold params (void)

Usage of this function is discouraged! The new API uses <a href="vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> to lump all folding related necessities together, including the energy parameters. Use <a href="vrna\_update\_fold\_params">vrna\_fold\_compound\_t</a>. Use <a href="vrna\_update\_fold\_params">vrna\_fold\_compound\_t</a>.

### Global update\_co\_pf\_params (int length)

Use vrna\_exp\_params\_subst() instead!

## Global update\_co\_pf\_params\_par (int length, vrna\_exp\_param\_t \*parameters)

Use vrna exp params subst() instead!

## Global update\_cofold\_params (void)

See vrna\_params\_subst() for an alternative using the new API

## Global update\_cofold\_params\_par (vrna\_param\_t \*parameters)

See vrna\_params\_subst() for an alternative using the new API

## Global update\_fold\_params (void)

For non-default model settings use the new API with vrna params subst() and vrna mfe() instead!

### Global update\_fold\_params\_par (vrna\_param\_t \*parameters)

For non-default model settings use the new API with vrna\_params\_subst() and vrna\_mfe() instead!

### Global update\_pf\_params (int length)

Use vrna\_exp\_params\_subst() instead

## Global update\_pf\_params\_par (int length, vrna\_exp\_param\_t \*parameters)

Use vrna\_exp\_params\_subst() instead

### Global urn (void)

Use vrna\_urn() instead!

#### File utils.h

Use ViennaRNA/utils/basic.h instead

Use ViennaRNA/utils/basic.h instead

### Global vrna\_cofold (const char \*sequence, char \*structure)

This function is obsolete since vrna\_mfe()/vrna\_fold() can handle complexes multiple sequences since v2.5.0. Use vrna\_mfe()/vrna\_fold() for connected component MFE instead and compute MFEs of unconnected states separately.

### Global VRNA\_CONSTRAINT\_FILE

Use 0 instead!

### **Global VRNA CONSTRAINT MULTILINE**

see vrna\_extract\_record\_rest\_structure()

### Global VRNA\_CONSTRAINT\_NO\_HEADER

This mode is not supported anymore!

### Global VRNA CONSTRAINT SOFT MFE

This flag has no meaning anymore, since constraints are now always stored!

### Global VRNA CONSTRAINT SOFT PF

Use VRNA\_OPTION\_PF instead!

### Global vrna\_exp\_param\_s::id

This attribute will be removed in version 3

#### Global vrna extract record rest constraint (char \*\*cstruc, const char \*\*lines, unsigned int option)

Use vrna\_extract\_record\_rest\_structure() instead!

### Global vrna fc s::pscore pf compat

This attribute will vanish in the future!

### Global vrna\_fc\_s::ptype\_pf\_compat

This attribute will vanish in the future! It's meant for backward compatibility only!

## Global vrna\_mfe\_dimer (vrna\_fold\_compound\_t \*vc, char \*structure)

This function is obsolete since vrna\_mfe() can handle complexes multiple sequences since v2.5.0. Use vrna\_mfe() for connected component MFE instead and compute MFEs of unconnected states separately.

### File walk.h

Use ViennaRNA/landscape/walk.h instead

## Global warn\_user (const char message[])

Use vrna\_message\_warning() instead!

## Global write\_parameter\_file (const char fname[])

Use vrna\_params\_save() instead!

### Global xrealloc (void \*p, unsigned size)

Use vrna\_realloc() instead!

## Global zukersubopt (const char \*string)

use vrna zukersubopt() instead

## Global zukersubopt\_par (const char \*string, vrna\_param\_t \*parameters)

use vrna\_zukersubopt() instead

124 Deprecated List

## **Chapter 12**

# **Bug List**

### Module domains\_up

Although the additional production rule(s) for unstructured domains as descibed in Unstructured Domains are always treated as 'segments possibly bound to one or more ligands', the current implementation requires that at least one ligand is bound. The default implementation already takes care of the required changes, however, upon using callback functions other than the default ones, one has to take care of this fact. Please also note, that this behavior might change in one of the next releases, such that the decomposition schemes as shown above comply with the actual implementation.

## Global VRNA\_PROBS\_WINDOW\_STACKP

Currently, this flag is a placeholder doing nothing as the corresponding implementation for stack probability computation is missing.

### Global vrna subopt zuker (vrna fold compound t \*fc)

Due to resizing, any pre-existing constraints will be lost!

126 Bug List

# **Chapter 13**

# **Module Index**

## 13.1 The RNAlib API

| Our library is grouped into several modules, each addressing different aspects of RNA secondary structure rela<br>problems. You can find an overview of the different groups below. | atec |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Free Energy Evaluation                                                                                                                                                              | 139  |
| Energy Evaluation for Individual Loops                                                                                                                                              | 159  |
| Exterior Loops                                                                                                                                                                      |      |
| Hairpin Loops                                                                                                                                                                       | 392  |
| Internal Loops                                                                                                                                                                      | 395  |
| Multibranch Loops                                                                                                                                                                   | 396  |
| Energy Evaluation for Atomic Moves                                                                                                                                                  |      |
| Deprecated Interface for Free Energy Evaluation                                                                                                                                     | 162  |
| The RNA Folding Grammar                                                                                                                                                             | 174  |
| Fine-tuning of the Implemented Models                                                                                                                                               | 175  |
| Energy Parameters                                                                                                                                                                   | 205  |
| Reading/Writing Energy Parameter Sets from/to File                                                                                                                                  | 402  |
| Converting Energy Parameter Files                                                                                                                                                   | 408  |
| Extending the Folding Grammar with Additional Domains                                                                                                                               | 217  |
| Unstructured Domains                                                                                                                                                                | 217  |
| Structured Domains                                                                                                                                                                  | 226  |
| Constraining the RNA Folding Grammar                                                                                                                                                | 226  |
| Hard Constraints                                                                                                                                                                    | 239  |
| Soft Constraints                                                                                                                                                                    | 248  |
| The RNA Secondary Structure Landscape                                                                                                                                               | 258  |
| Neighborhood Relation and Move Sets for Secondary Structures                                                                                                                        | 337  |
| (Re-)folding Paths, Saddle Points, Energy Barriers, and Local Minima                                                                                                                | 348  |
| Direct Refolding Paths between two Secondary Structures                                                                                                                             | 351  |
| Folding Paths that start at a single Secondary Structure                                                                                                                            |      |
| Deprecated Interface for (Re-)folding Paths, Saddle Points, and Energy Barriers                                                                                                     | 598  |
| Minimum Free Energy (MFE) Algorithms                                                                                                                                                | 258  |
| Global MFE Prediction                                                                                                                                                               | 260  |
| Computing MFE representatives of a Distance Based Partitioning                                                                                                                      | 316  |
| Deprecated Interface for Global MFE Prediction                                                                                                                                      | 555  |
| Local (sliding window) MFE Prediction                                                                                                                                               | 265  |
| Deprecated Interface for Local (Sliding Window) MFE Prediction                                                                                                                      | 564  |
| Backtracking MFE structures                                                                                                                                                         | 269  |
| Partition Function and Equilibrium Properties                                                                                                                                       | 259  |
| Global Partition Function and Equilibrium Probabilities                                                                                                                             | 272  |
| Computing Partition Functions of a Distance Based Partitioning                                                                                                                      |      |
| Predicting various thermodynamic properties                                                                                                                                         |      |
| Deprecated Interface for Global Partition Function Computation                                                                                                                      | 565  |

128 Module Index

| Local (sliding window) Partition Function and Equilibrium Probabilities                                                                            |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Deprecated Interface for Local (Sliding Window) Partition Function Computation                                                                     | 580                                           |
| Suboptimals and Representative Structures                                                                                                          | 285                                           |
| Suboptimal Structures sensu Stiegler et al. 1984 / Zuker et al. 1989                                                                               |                                               |
| Suboptimal Structures within an Energy Band around the MFE                                                                                         |                                               |
| Random Structure Samples from the Ensemble                                                                                                         |                                               |
| Stochastic Backtracking of Structures from Distance Based Partitioning                                                                             |                                               |
| Deprecated Interface for Stochastic Backtracking                                                                                                   |                                               |
| Compute the Structure with Maximum Expected Accuracy (MEA)                                                                                         |                                               |
| Compute the Centroid Structure                                                                                                                     |                                               |
| RNA-RNA Interaction                                                                                                                                |                                               |
| Partition Function for Two Hybridized Sequences                                                                                                    |                                               |
| Partition Function for two Hybridized Sequences as a Stepwise Process                                                                              |                                               |
| Classified Dynamic Programming Variants                                                                                                            |                                               |
| Distance Based Partitioning of the Secondary Structure Space                                                                                       |                                               |
| Computing MFE representatives of a Distance Based Partitioning                                                                                     |                                               |
| Computing Partition Functions of a Distance Based Partitioning                                                                                     |                                               |
| Stochastic Backtracking of Structures from Distance Based Partitioning                                                                             |                                               |
| Compute the Density of States                                                                                                                      |                                               |
| Inverse Folding (Design)                                                                                                                           |                                               |
| Experimental Structure Probing Data                                                                                                                |                                               |
| SHAPE Reactivity Data                                                                                                                              |                                               |
| Generate Soft Constraints from Data                                                                                                                |                                               |
| Ligands Binding to RNA Structures                                                                                                                  |                                               |
| Ligands Binding to Unstructured Domains                                                                                                            |                                               |
| Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Constraints                                                         |                                               |
| Structure Modules and Pseudoknots                                                                                                                  |                                               |
| Pseudoknots                                                                                                                                        |                                               |
| G-Quadruplexes                                                                                                                                     |                                               |
| Post-transcriptional Modifications                                                                                                                 |                                               |
| Utilities                                                                                                                                          |                                               |
| Utilities to deal with Nucleotide Alphabets                                                                                                        |                                               |
| (Nucleic Acid Sequence) String Utilitites                                                                                                          |                                               |
| Dot-Bracket Notation of Secondary Structures                                                                                                       |                                               |
| Washington University Secondary Structure (WUSS) notation                                                                                          | _                                             |
| Pair Table Representation of Secondary Structures                                                                                                  |                                               |
| Pair List Representation of Secondary Structures                                                                                                   |                                               |
| Abstract Shapes Representation of Secondary Structures                                                                                             |                                               |
| Helix List Representation of Secondary Structures                                                                                                  | 442                                           |
| Tree Representation of Secondary Structures                                                                                                        | 443                                           |
| Distance measures between Secondary Structures                                                                                                     |                                               |
| Deprecated Interface for Secondary Structure Utilities                                                                                             |                                               |
| Multiple Sequence Alignment Utilities                                                                                                              |                                               |
| Deprecated Interface for Multiple Sequence Alignment Utilities                                                                                     |                                               |
|                                                                                                                                                    | 455                                           |
| Files and I/O                                                                                                                                      |                                               |
| Nucleic Acid Sequences and Structures                                                                                                              | 458                                           |
| Nucleic Acid Sequences and Structures                                                                                                              | 458                                           |
| Nucleic Acid Sequences and Structures                                                                                                              | 458<br>464<br>471                             |
| Nucleic Acid Sequences and Structures  Multiple Sequence Alignments  Command Files  Plotting                                                       | 458<br>464<br>471<br>474                      |
| Nucleic Acid Sequences and Structures  Multiple Sequence Alignments  Command Files  Plotting  Layouts and Coordinates                              | 458<br>464<br>471<br>480                      |
| Nucleic Acid Sequences and Structures  Multiple Sequence Alignments  Command Files  Plotting  Layouts and Coordinates  Annotation                  | 458<br>464<br>471<br>480<br>493               |
| Nucleic Acid Sequences and Structures  Multiple Sequence Alignments  Command Files  Plotting  Layouts and Coordinates  Annotation  Alignment Plots | 458<br>464<br>471<br>474<br>480<br>493<br>494 |
| Nucleic Acid Sequences and Structures  Multiple Sequence Alignments  Command Files  Plotting  Layouts and Coordinates  Annotation                  | 458<br>464<br>471<br>474<br>480<br>493<br>494 |

13.1 The RNAlib API

| Combinatorics Algorithms       |    | <br> | <br> | 49 | 8 |
|--------------------------------|----|------|------|----|---|
| (Abstract) Data Structures     |    | <br> | <br> | 50 | 5 |
| The Fold Compound              |    | <br> | <br> | 51 | 7 |
| The Dynamic Programming Matric | es | <br> | <br> | 53 | 0 |
| Hash Tables                    |    | <br> | <br> | 53 | 4 |
| Heaps                          |    |      |      |    |   |
| Arrays                         |    | <br> | <br> | 54 | 8 |
| Buffers                        |    | <br> | <br> | 55 | 0 |
| Messages                       |    | <br> | <br> |    | 0 |
| Unit Conversion                |    | <br> | <br> |    | 3 |

130 Module Index

# **Chapter 14**

# **Data Structure Index**

## 14.1 Data Structures

| Here are the data structures with brief descriptions:    |     |
|----------------------------------------------------------|-----|
| _struct_en                                               |     |
| Data structure for energy_of_move()                      | 60  |
| energy_corrections                                       | 60  |
| LIST                                                     | 60  |
| LST_BUCKET                                               | 60  |
| Postorder_list                                           |     |
| Postorder data structure                                 | 60  |
| swString                                                 |     |
| Some other data structure                                | 602 |
| Tree                                                     |     |
| Tree data structure                                      | 60  |
| TwoDpfold_vars                                           |     |
| Variables compound for 2Dfold partition function folding | 60  |
| vrna dimer conc s                                        |     |
| Data structure for concentration dependency computations | 600 |
| vrna sc bp storage t                                     |     |
| A base pair constraint                                   | 603 |
| vrna sc mod param s                                      |     |
| vrna string header s                                     |     |
| The header of an array                                   | 603 |
| vrna structured domains s                                |     |
| vrna_subopt_sol_s                                        |     |
| Solution element from subopt.c                           | 604 |
| vrna unstructured domain motif s                         |     |

132 Data Structure Index

# **Chapter 15**

# File Index

## 15.1 File List

| Here is a list of all documented files with brief descriptions:                                  |     |
|--------------------------------------------------------------------------------------------------|-----|
| ViennaRNA/2Dfold.h                                                                               |     |
| MFE structures for base pair distance classes                                                    | 605 |
| ViennaRNA/2Dpfold.h                                                                              |     |
| Partition function implementations for base pair distance classes                                |     |
| ViennaRNA/ali_plex.h                                                                             | 613 |
| ViennaRNA/alifold.h                                                                              |     |
| Functions for comparative structure prediction using RNA sequence alignments                     | 613 |
| ViennaRNA/aln_util.h                                                                             |     |
| Use ViennaRNA/utils/alignments.h instead                                                         | 617 |
| ViennaRNA/alphabet.h                                                                             |     |
| Functions to process, convert, and generally handle different nucleotide and/or base pair alpha- |     |
| bets                                                                                             | 617 |
| ViennaRNA/boltzmann_sampling.h                                                                   |     |
| Boltzmann Sampling of secondary structures from the ensemble                                     | 619 |
| ViennaRNA/centroid.h                                                                             |     |
| Centroid structure computation                                                                   | 622 |
| ViennaRNA/char_stream.h                                                                          |     |
| Use ViennaRNA/datastructures/char_stream.h instead                                               | 624 |
| ViennaRNA/cofold.h                                                                               |     |
| MFE implementations for RNA-RNA interaction                                                      | 627 |
| ViennaRNA/combinatorics.h                                                                        |     |
| Various implementations that deal with combinatorial aspects of objects                          | 628 |
| ViennaRNA/commands.h                                                                             |     |
| Parse and apply different commands that alter the behavior of secondary structure prediction     |     |
| and evaluation                                                                                   | 630 |
| ViennaRNA/concentrations.h                                                                       |     |
| Concentration computations for RNA-RNA interactions                                              | 631 |
| ViennaRNA/constraints.h                                                                          |     |
| Use ViennaRNA/constraints/basic.h instead                                                        | 633 |
| ViennaRNA/constraints_hard.h                                                                     |     |
| Use ViennaRNA/constraints/hard.h instead                                                         | 651 |
| ViennaRNA/constraints_ligand.h                                                                   |     |
| Use ViennaRNA/constraints/ligand.h instead                                                       | 651 |
| ViennaRNA/constraints_SHAPE.h                                                                    |     |
| Use ViennaRNA/constraints/SHAPE.h instead                                                        | 651 |
| ViennaRNA/constraints_soft.h                                                                     |     |
| Use ViennaRNA/constraints/soft.h instead                                                         | 652 |
| ViennaRNA/convert_epars.h                                                                        |     |
| Use ViennaRNA/params/convert.h instead                                                           | 652 |

134 File Index

| ViennaRNA/data_structures.h                                                                               |      |
|-----------------------------------------------------------------------------------------------------------|------|
| Use ViennaRNA/datastructures/basic.h instead                                                              | 653  |
| ViennaRNA/dist_vars.h                                                                                     |      |
| Global variables for Distance-Package                                                                     | 660  |
| ViennaRNA/dp_matrices.h  Functions to deal with standard dynamic programming (DP) matrices                | 662  |
| ViennaRNA/duplex.h                                                                                        | 002  |
| Functions for simple RNA-RNA duplex interactions                                                          | 666  |
| ViennaRNA/edit cost.h                                                                                     |      |
| Global variables for Edit Costs included by treedist.c and stringdist.c                                   | 666  |
| ViennaRNA/energy_const.h                                                                                  |      |
| Use ViennaRNA/params/constants.h instead                                                                  | 667  |
| ViennaRNA/energy_par.h                                                                                    | 000  |
| Use ViennaRNA/params/default.h instead                                                                    | 668  |
| Equilibrium Probability implementations                                                                   | 668  |
| ViennaRNA/eval.h                                                                                          | 000  |
| Functions and variables related to energy evaluation of sequence/structure pairs                          | 670  |
| ViennaRNA/exterior_loops.h                                                                                |      |
| Use ViennaRNA/loops/external.h instead                                                                    | 677  |
| ViennaRNA/file_formats.h                                                                                  |      |
| Use ViennaRNA/io/file_formats.h instead                                                                   | 677  |
| ViennaRNA/file_formats_msa.h  Use ViennaRNA/io/file_formats_msa.h instead                                 | 680  |
| ViennaRNA/file utils.h                                                                                    | 000  |
| Use ViennaRNA/io/utils.h instead                                                                          | 682  |
| ViennaRNA/findpath.h                                                                                      |      |
| Use ViennaRNA/landscape/findpath.h instead                                                                | 682  |
| ViennaRNA/fold.h                                                                                          |      |
| MFE calculations for single RNA sequences                                                                 | 684  |
| ViennaRNA/fold_compound.h  The Basic Fold Compound API                                                    | 687  |
| ViennaRNA/fold vars.h                                                                                     | 007  |
| Here all all declarations of the global variables used throughout RNAlib                                  | 690  |
| ViennaRNA/gquad.h                                                                                         |      |
| G-quadruplexes                                                                                            | 692  |
| ViennaRNA/grammar.h                                                                                       |      |
| Implementations for the RNA folding grammar                                                               | 712  |
| ViennaRNA/hairpin_loops.h                                                                                 | 71.4 |
| Use ViennaRNA/loops/hairpin.h instead                                                                     | 714  |
| Compute heat capacity for an RNA                                                                          | 714  |
| ViennaRNA/interior_loops.h                                                                                |      |
| Use ViennaRNA/loops/internal.h instead                                                                    | 716  |
| ViennaRNA/inverse.h                                                                                       |      |
| Inverse folding routines                                                                                  | 716  |
| ViennaRNA/Lfold.h                                                                                         | 700  |
| Functions for locally optimal MFE structure prediction                                                    | 720  |
| Use ViennaRNA/loops/all.h instead                                                                         | 721  |
| ViennaRNA/LPfold.h                                                                                        |      |
| Partition function and equilibrium probability implementation for the sliding window algorithm .          | 739  |
| ViennaRNA/MEA.h                                                                                           |      |
| Computes a MEA (maximum expected accuracy) structure                                                      | 741  |
| ViennaRNA/mfe.h                                                                                           |      |
| Compute Minimum Free energy (MFE) and backtrace corresponding secondary structures from RNA sequence data | 742  |
|                                                                                                           |      |

15.1 File List 135

| ViennaRNA/mfe_window.h                                                                                |
|-------------------------------------------------------------------------------------------------------|
| Compute local Minimum Free Energy (MFE) using a sliding window approach and backtrace                 |
| corresponding secondary structures                                                                    |
| ViennaRNA/mm.h                                                                                        |
| Several Maximum Matching implementations                                                              |
| ViennaRNA/model.h                                                                                     |
| The model details data structure and its corresponding modifiers                                      |
| ViennaRNA/move_set.h                                                                                  |
| ViennaRNA/multibranch_loops.h                                                                         |
| Use ViennaRNA/loops/multibranch.h instead                                                             |
| ViennaRNA/naview.h                                                                                    |
| Use ViennaRNA/plotting/naview/naview.h instead                                                        |
| ViennaRNA/neighbor.h  Use ViennaRNA/landscape/neighbor.h instead                                      |
| Use ViennaRNA/landscape/neighbor.h instead                                                            |
| ViennaRNA/params.h                                                                                    |
| Use ViennaRNA/params/basic.h instead                                                                  |
| ViennaRNA/part func.h                                                                                 |
| Partition function implementations                                                                    |
| ViennaRNA/part_func_co.h                                                                              |
| Partition function for two RNA sequences                                                              |
| ViennaRNA/part_func_up.h                                                                              |
| Implementations for accessibility and RNA-RNA interaction as a stepwise process                       |
| ViennaRNA/part func window.h                                                                          |
| Partition function and equilibrium probability implementation for the sliding window algorithm . 1232 |
| ViennaRNA/perturbation fold.h                                                                         |
| Find a vector of perturbation energies that minimizes the discripancies between predicted and         |
| observed pairing probabilities and the amount of neccessary adjustments                               |
| ViennaRNA/pf_multifold.h                                                                              |
| ViennaRNA/pk_plex.h                                                                                   |
| Heuristics for two-step pseudoknot forming interaction predictions                                    |
| ViennaRNA/PKplex.h                                                                                    |
| ViennaRNA/plex.h                                                                                      |
| ViennaRNA/plot aln.h                                                                                  |
| Use ViennaRNA/plotting/alignments.h instead                                                           |
| ViennaRNA/plot layouts.h                                                                              |
| Use ViennaRNA/plotting/layouts.h instead                                                              |
| ViennaRNA/plot_structure.h                                                                            |
| Use ViennaRNA/plotting/structures.h instead                                                           |
| ViennaRNA/plot_utils.h                                                                                |
| Use ViennaRNA/plotting/utils.h instead                                                                |
| ViennaRNA/ProfileAln.h                                                                                |
| ViennaRNA/profiledist.h                                                                               |
| ViennaRNA/PS_dot.h                                                                                    |
| Use ViennaRNA/plotting/probabilities.h instead                                                        |
| ViennaRNA/read_epars.h                                                                                |
| Use ViennaRNA/params/io.h instead                                                                     |
| ViennaRNA/ribo.h                                                                                      |
| Parse RiboSum Scoring Matrices for Covariance Scoring of Alignments                                   |
| ViennaRNA/RNAstruct.h                                                                                 |
| Parsing and Coarse Graining of Structures                                                             |
| ViennaRNA/sequence.h                                                                                  |
| Functions and data structures related to sequence representations,                                    |
| ViennaRNA/snofold.h                                                                                   |
| ViennaRNA/snoop.h                                                                                     |
| ViennaRNA/special_const.h                                                                             |
| ViennaRNA/stream_output.h                                                                             |
| Use ViennaRNA/datastructures/stream_output.h instead                                                  |

136 File Index

| ViennaRNA/string_utils.h                                                                            |
|-----------------------------------------------------------------------------------------------------|
| Use ViennaRNA/utils/strings.h instead                                                               |
| ViennaRNA/stringdist.h                                                                              |
| Functions for String Alignment                                                                      |
| ViennaRNA/structure_utils.h                                                                         |
| Use ViennaRNA/utils/structures.h instead                                                            |
| ViennaRNA/structured domains.h                                                                      |
| This module provides interfaces that deal with additional structured domains in the folding gram-   |
| mar                                                                                                 |
| ViennaRNA/subopt.h                                                                                  |
| RNAsubopt and density of states declarations                                                        |
| ViennaRNA/subopt zuker.h                                                                            |
| ViennaRNA/sym_utils.h                                                                               |
| Use ViennaRNA/utils/svm.h instead                                                                   |
|                                                                                                     |
| ViennaRNA/treedist.h                                                                                |
| Functions for Tree Edit Distances                                                                   |
| ViennaRNA/units.h                                                                                   |
| Use ViennaRNA/utils/units.h instead                                                                 |
| ViennaRNA/unstructured_domains.h                                                                    |
| Functions to modify unstructured domains, e.g. to incorporate ligands binding to unpaired           |
| stretches                                                                                           |
| ViennaRNA/utils.h                                                                                   |
| Use ViennaRNA/utils/basic.h instead                                                                 |
| ViennaRNA/vrna_config.h                                                                             |
| ViennaRNA/walk.h                                                                                    |
| Use ViennaRNA/landscape/walk.h instead                                                              |
| ViennaRNA/wrap dlib.h                                                                               |
| ViennaRNA/zscore.h                                                                                  |
| ViennaRNA/constraints/basic.h                                                                       |
| Functions and data structures for constraining secondary structure predictions and evaluation . 915 |
| ViennaRNA/constraints/hard.h                                                                        |
|                                                                                                     |
| Functions and data structures for handling of secondary structure hard constraints 634              |
| ViennaRNA/constraints/ligand.h                                                                      |
| Functions for incorporation of ligands binding to hairpin and interior loop motifs using the soft   |
| constraints framework                                                                               |
| ViennaRNA/constraints/sc_cb_intern.h                                                                |
| ViennaRNA/constraints/SHAPE.h                                                                       |
| This module provides function to incorporate SHAPE reactivity data into the folding recursions      |
| by means of soft constraints                                                                        |
| ViennaRNA/constraints/soft.h                                                                        |
| Functions and data structures for secondary structure soft constraints 645                          |
| ViennaRNA/constraints/soft_special.h                                                                |
| Specialized implementations that utilize the soft constraint callback mechanism 649                 |
| ViennaRNA/datastructures/array.h                                                                    |
| A macro-based dynamic array implementation                                                          |
| ViennaRNA/datastructures/basic.h                                                                    |
| Various data structures and pre-processor macros                                                    |
| Various data structures and pre-processor macros                                                    |
|                                                                                                     |
|                                                                                                     |
| ViennaRNA/datastructures/hash_tables.h                                                              |
| Implementations of hash table functions                                                             |
| ViennaRNA/datastructures/heap.h                                                                     |
| Implementation of an abstract heap data structure                                                   |
| ViennaRNA/datastructures/lists.h                                                                    |
| ViennaRNA/datastructures/stream_output.h                                                            |
| An implementation of a buffered, ordered stream output data structure                               |
| ViennaRNA/datastructures/string.h                                                                   |

15.1 File List 137

| ViennaRNA/io/file_formats.h                                                                      |
|--------------------------------------------------------------------------------------------------|
| Read and write different file formats for RNA sequences, structures 678                          |
| ViennaRNA/io/file_formats_msa.h                                                                  |
| Functions dealing with file formats for Multiple Sequence Alignments (MSA)                       |
| ViennaRNA/io/utils.h                                                                             |
| Several utilities for file handling                                                              |
| ViennaRNA/landscape/findpath.h                                                                   |
| A breadth-first search heuristic for optimal direct folding paths                                |
| ViennaRNA/landscape/move.h                                                                       |
| Methods to operate with structural neighbors of RNA secondary structures                         |
| ViennaRNA/landscape/neighbor.h                                                                   |
| Methods to compute the neighbors of an RNA secondary structure                                   |
| ViennaRNA/landscape/paths.h                                                                      |
| API for computing (optimal) (re-)folding paths between secondary structures                      |
| ViennaRNA/landscape/walk.h                                                                       |
| Methods to generate particular paths such as gradient or random walks through the energy         |
| landscape of an RNA sequence                                                                     |
| ViennaRNA/loops/all.h                                                                            |
| Energy evaluation for MFE and partition function calculations                                    |
| ViennaRNA/loops/external.h                                                                       |
| Energy evaluation of exterior loops for MFE and partition function calculations                  |
| ViennaRNA/loops/hairpin.h                                                                        |
| Energy evaluation of hairpin loops for MFE and partition function calculations                   |
| ViennaRNA/loops/internal.h                                                                       |
| Energy evaluation of interior loops for MFE and partition function calculations                  |
| ViennaRNA/loops/multibranch.h                                                                    |
| Energy evaluation of multibranch loops for MFE and partition function calculations               |
| ViennaRNA/params/1.8.4_epars.h                                                                   |
| Free energy parameters for parameter file conversion                                             |
| ViennaRNA/params/1.8.4_intloops.h                                                                |
| Free energy parameters for interior loop contributions needed by the parameter file conversion   |
| functions                                                                                        |
| ViennaRNA/params/basic.h  Functions to deal with sets of energy parameters                       |
| ViennaRNA/params/constants.h                                                                     |
| Energy parameter constants                                                                       |
| ViennaRNA/params/convert.h                                                                       |
| Functions and definitions for energy parameter file format conversion                            |
| ViennaRNA/params/default.h                                                                       |
| ViennaRNA/params/intl11.h                                                                        |
| ViennaRNA/params/intl11dH.h                                                                      |
| ViennaRNA/params/intl21.h                                                                        |
| ViennaRNA/params/intl21dH.h                                                                      |
| ViennaRNA/params/intl22.h                                                                        |
| ViennaRNA/params/intl22dH.h                                                                      |
| ViennaRNA/params/io.h                                                                            |
| Read and write energy parameter files                                                            |
| ViennaRNA/params/salt.h                                                                          |
| Functions to compute salt correction                                                             |
| ViennaRNA/plotting/alignments.h                                                                  |
| Various functions for plotting Sequence / Structure Alignments                                   |
| ViennaRNA/plotting/layouts.h                                                                     |
| Secondary structure plot layout algorithms                                                       |
| ViennaRNA/plotting/probabilities.h                                                               |
| Various functions for plotting RNA secondary structures, dot-plots and other visualizations 1249 |
| ViennaRNA/plotting/structures.h                                                                  |
| Various functions for plotting RNA secondary structures                                          |
|                                                                                                  |

138 File Index

| ViennaRNA/plotting/utils.h                                                                       |
|--------------------------------------------------------------------------------------------------|
| Various utilities to assist in plotting secondary structures and consensus structures 129        |
| ViennaRNA/plotting/RNApuzzler/RNApuzzler.h                                                       |
| Implementation of the RNApuzzler RNA secondary structure layout algorithm [30] 125               |
| ViennaRNA/plotting/RNApuzzler/RNAturtle.h                                                        |
| Implementation of the RNAturtle RNA secondary structure layout algorithm [30] 125                |
| ViennaRNA/search/BoyerMoore.h                                                                    |
| Variants of the Boyer-Moore string search algorithm                                              |
| ViennaRNA/utils/alignments.h                                                                     |
| Various utility- and helper-functions for sequence alignments and comparative structure predic-  |
| tion                                                                                             |
| ViennaRNA/utils/basic.h                                                                          |
| General utility- and helper-functions used throughout the ViennaRNA Package 92                   |
| ViennaRNA/utils/cpu.h                                                                            |
| ViennaRNA/utils/higher_order_functions.h                                                         |
| ViennaRNA/utils/strings.h                                                                        |
| General utility- and helper-functions for RNA sequence and structure strings used throughout the |
| ViennaRNA Package                                                                                |
| ViennaRNA/utils/structures.h                                                                     |
| Various utility- and helper-functions for secondary structure parsing, converting, etc 125       |
| ViennaRNA/utils/svm.h                                                                            |
| ViennaRNA/utils/units.h                                                                          |
| Physical Units and Functions to convert them into each other                                     |

# **Chapter 16**

# **Module Documentation**

## 16.1 Free Energy Evaluation

Functions and variables related to free energy evaluation of sequence/structure pairs.

## 16.1.1 Detailed Description

Functions and variables related to free energy evaluation of sequence/structure pairs.

Several different functions to evaluate the free energy of a particular secondary structure under a particular set of parameters and the Nearest Neighbor Energy model are available. For most of them, two different forms of representations for the secondary structure may be used:

- · The Dot-Bracket string
- · A pair table representation

Furthermore, the evaluation functions are divided into <code>basic</code> and <code>simplified</code> variants, where <code>basic</code> functions require the use of a <code>vrna\_fold\_compound\_t</code> data structure holding the sequence string, and model configuration (settings and parameters). The <code>simplified</code> functions, on the other hand, provide often used default model settings that may be called directly with only sequence and structure data.

Finally, verbose options exist for some functions that allow one to print the (individual) free energy contributions to some FILE stream. Collaboration diagram for Free Energy Evaluation:

## **Modules**

· Energy Evaluation for Individual Loops

Functions to evaluate the free energy of particular types of loops.

• Energy Evaluation for Atomic Moves

Functions to evaluate the free energy change of a structure after application of (a set of) atomic moves.

• Deprecated Interface for Free Energy Evaluation

Deprecated Energy Evaluation functions.

## **Files**

• file eval.h

Functions and variables related to energy evaluation of sequence/structure pairs.

• file all.h

Energy evaluation for MFE and partition function calculations.

· file external.h

Energy evaluation of exterior loops for MFE and partition function calculations.

· file hairpin.h

Energy evaluation of hairpin loops for MFE and partition function calculations.

file internal.h

Energy evaluation of interior loops for MFE and partition function calculations.

· file multibranch.h

Energy evaluation of multibranch loops for MFE and partition function calculations.

## **Macros**

#define VRNA VERBOSITY QUIET -1

Quiet level verbosity setting.

• #define VRNA\_VERBOSITY\_DEFAULT 1

Default level verbosity setting.

## **Basic Energy Evaluation Interface with Dot-Bracket Structure String**

• float vrna\_eval\_structure (vrna\_fold\_compound\_t \*fc, const char \*structure)

Calculate the free energy of an already folded RNA.

• float vrna eval covar structure (vrna fold compound t \*fc, const char \*structure)

Calculate the pseudo energy derived by the covariance scores of a set of aligned sequences.

• float vrna\_eval\_structure\_verbose (vrna\_fold\_compound\_t \*fc, const char \*structure, FILE \*file)

Calculate the free energy of an already folded RNA and print contributions on a per-loop base.

- float vrna\_eval\_structure\_v (vrna\_fold\_compound\_t \*fc, const char \*structure, int verbosity\_level, FILE \*file)

  Calculate the free energy of an already folded RNA and print contributions on a per-loop base.
- float vrna\_eval\_structure\_cstr (vrna\_fold\_compound\_t \*fc, const char \*structure, int verbosity\_level, vrna cstr t output stream)

## **Basic Energy Evaluation Interface with Structure Pair Table**

int vrna\_eval\_structure\_pt (vrna\_fold\_compound\_t \*fc, const short \*pt)

Calculate the free energy of an already folded RNA.

• int vrna\_eval\_structure\_pt\_verbose (vrna\_fold\_compound\_t \*fc, const short \*pt, FILE \*file)

Calculate the free energy of an already folded RNA.

• int vrna\_eval\_structure\_pt\_v (vrna\_fold\_compound\_t \*fc, const short \*pt, int verbosity\_level, FILE \*file)

Calculate the free energy of an already folded RNA.

## Simplified Energy Evaluation with Sequence and Dot-Bracket Strings

float vrna\_eval\_structure\_simple (const char \*string, const char \*structure)

Calculate the free energy of an already folded RNA.

float vrna\_eval\_circ\_structure (const char \*string, const char \*structure)

Evaluate the free energy of a sequence/structure pair where the sequence is circular.

• float vrna eval gquad structure (const char \*string, const char \*structure)

Evaluate the free energy of a sequence/structure pair where the structure may contain G-Quadruplexes.

• float vrna\_eval\_circ\_gquad\_structure (const char \*string, const char \*structure)

Evaluate the free energy of a sequence/structure pair where the sequence is circular and the structure may contain G-Quadruplexes.

float vrna\_eval\_structure\_simple\_verbose (const char \*string, const char \*structure, FILE \*file)

Calculate the free energy of an already folded RNA and print contributions per loop.

 $\bullet \ \ \text{float } \textit{vrna\_eval\_structure\_simple\_v} \ \ (\text{const char } * \textit{string}, \ \text{const char } * \textit{structure}, \ \text{int verbosity\_level}, \ \mathsf{FILE} \ * \textit{file}) \\$ 

Calculate the free energy of an already folded RNA and print contributions per loop.

float vrna\_eval\_circ\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)

Evaluate free energy of a sequence/structure pair, assume sequence to be circular and print contributions per loop.

float vrna\_eval\_gquad\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)

Evaluate free energy of a sequence/structure pair, allow for G-Quadruplexes in the structure and print contributions per loop.

float vrna\_eval\_circ\_gquad\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)

Evaluate free energy of a sequence/structure pair, assume sequence to be circular, allow for G-Quadruplexes in the structure, and print contributions per loop.

# Simplified Energy Evaluation with Sequence Alignments and Consensus Structure Dot-Bracket String

- float vrna\_eval\_consensus\_structure\_simple (const char \*\*alignment, const char \*structure)
  - Calculate the free energy of an already folded RNA sequence alignment.
- float vrna\_eval\_circ\_consensus\_structure (const char \*\*alignment, const char \*structure)
  - Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the sequences are circular.
- float vrna\_eval\_gquad\_consensus\_structure (const char \*\*alignment, const char \*structure)
  - Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the structure may contain G-Quadruplexes.
- float vrna\_eval\_circ\_gquad\_consensus\_structure (const char \*\*alignment, const char \*structure)
  - Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the sequence is circular and the structure may contain G-Quadruplexes.
- float vrna\_eval\_consensus\_structure\_simple\_verbose (const char \*\*alignment, const char \*structure, FILE \*file)
  - Evaluate the free energy of a consensus structure for an RNA sequence alignment and print contributions per loop.
- float vrna\_eval\_consensus\_structure\_simple\_v (const char \*\*alignment, const char \*structure, int verbosity\_level, FILE \*file)
  - Evaluate the free energy of a consensus structure for an RNA sequence alignment and print contributions per loop.
- float vrna\_eval\_circ\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity\_
   level, FILE \*file)
  - Evaluate the free energy of a consensus structure for an alignment of circular RNA sequences and print contributions per loop.
- float vrna\_eval\_gquad\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity
   — level, FILE \*file)
  - Evaluate the free energy of a consensus structure for an RNA sequence alignment, allow for annotated G-← Quadruplexes in the structure and print contributions per loop.
- float vrna\_eval\_circ\_gquad\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity level, FILE \*file)
  - Evaluate the free energy of a consensus structure for an alignment of circular RNA sequences, allow for annotated G-Quadruplexes in the structure and print contributions per loop.

## Simplified Energy Evaluation with Sequence String and Structure Pair Table

- int vrna\_eval\_structure\_pt\_simple (const char \*string, const short \*pt)
  - Calculate the free energy of an already folded RNA.
- int vrna\_eval\_structure\_pt\_simple\_verbose (const char \*string, const short \*pt, FILE \*file)
  - Calculate the free energy of an already folded RNA.
- int vrna\_eval\_structure\_pt\_simple\_v (const char \*string, const short \*pt, int verbosity\_level, FILE \*file)

  Calculate the free energy of an already folded RNA.

# Simplified Energy Evaluation with Sequence Alignment and Consensus Structure Pair Table

- int vrna\_eval\_consensus\_structure\_pt\_simple (const char \*\*alignment, const short \*pt)
- Evaluate the Free Energy of a Consensus Secondary Structure given a Sequence Alignment.
- int vrna\_eval\_consensus\_structure\_pt\_simple\_verbose (const char \*\*alignment, const short \*pt, FILE \*file)
   int vrna\_eval\_consensus\_structure\_pt\_simple\_v (const char \*\*alignment, const short \*pt, int verbosity\_level, FILE \*file)

## 16.1.2 Function Documentation

## 16.1.2.1 vrna\_eval\_structure()

Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given pair of structure and sequence (alignment). Model details, energy parameters, and possibly soft constraints are used as provided via the parameter 'fc'. The <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> does not need to contain any DP matrices, but requires all most basic init values as one would get from a call like this:

```
fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);
```

Note

Accepts vrna fold compound t of type VRNA FC TYPE SINGLE and VRNA FC TYPE COMPARATIVE

#### See also

vrna\_eval\_structure\_pt(), vrna\_eval\_structure\_verbose(), vrna\_eval\_structure\_pt\_verbose(), vrna\_fold\_compound(), vrna\_fold\_compound compound comparative(), vrna\_eval\_covar\_structure()

#### **Parameters**

| fc        | A vrna_fold_compound_t containing the energy parameters and model details |
|-----------|---------------------------------------------------------------------------|
| structure | Secondary structure in dot-bracket notation                               |

#### Returns

The free energy of the input structure given the input sequence in kcal/mol

SWIG Wrapper Notes This function is attached as method eval\_structure() to objects of type fold\_compound

## 16.1.2.2 vrna\_eval\_covar\_structure()

Calculate the pseudo energy derived by the covariance scores of a set of aligned sequences.

Consensus structure prediction is driven by covariance scores of base pairs in rows of the provided alignment. This function allows one to retrieve the total amount of this covariance pseudo energy scores. The <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> does not need to contain any DP matrices, but requires all most basic init values as one would get from a call like this:

```
fc = vrna_fold_compound_comparative(alignment, NULL, VRNA_OPTION_EVAL_ONLY);
```

Note

Accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_COMPARATIVE only!

## See also

vrna fold compound comparative(), vrna eval structure()

#### **Parameters**

| fc        | A vrna_fold_compound_t containing the energy parameters and model details |
|-----------|---------------------------------------------------------------------------|
| structure | Secondary (consensus) structure in dot-bracket notation                   |

#### Returns

The covariance pseudo energy score of the input structure given the input sequence alignment in kcal/mol

**SWIG Wrapper Notes** This function is attached as method **eval\_covar\_structure()** to objects of type *fold\_← compound* 

## 16.1.2.3 vrna\_eval\_structure\_verbose()

Calculate the free energy of an already folded RNA and print contributions on a per-loop base.

This function is a simplyfied version of vrna\_eval\_structure\_v() that uses the default verbosity level.

#### See also

vrna\_eval\_structure\_pt(), vrna\_eval\_structure\_verbose(), vrna\_eval\_structure\_pt\_verbose(),

#### **Parameters**

| fc A vrna_fold_compound_t containing the energy parameters and model |                                                                  |
|----------------------------------------------------------------------|------------------------------------------------------------------|
| structure                                                            | Secondary structure in dot-bracket notation                      |
| file                                                                 | A file handle where this function should print to (may be NULL). |

## Returns

The free energy of the input structure given the input sequence in kcal/mol

SWIG Wrapper Notes This function is attached as method eval\_structure\_verbose() to objects of type fold\_← compound

## 16.1.2.4 vrna\_eval\_structure\_v()

Calculate the free energy of an already folded RNA and print contributions on a per-loop base.

This function allows for detailed energy evaluation of a given sequence/structure pair. In contrast to  $vrna\_eval\_structure()$  this function prints detailed energy contributions based on individual loops to a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any positive  $verbosity\_level$  activates potential warning message of the energy evaluting functions, while values  $\geq 1$  allow for detailed control of what data is printed. A negative parameter  $verbosity\_level$  turns off printing all together.

Model details, energy parameters, and possibly soft constraints are used as provided via the parameter 'fc'. The fold\_compound does not need to contain any DP matrices, but all the most basic init values as one would get from a call like this:

```
fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);
```

#### See also

vrna\_eval\_structure\_pt(), vrna\_eval\_structure\_verbose(), vrna\_eval\_structure\_pt\_verbose(),

#### **Parameters**

| fc              | A vrna_fold_compound_t containing the energy parameters and model details |  |
|-----------------|---------------------------------------------------------------------------|--|
| structure       | Secondary structure in dot-bracket notation                               |  |
| verbosity_level | The level of verbosity of this function                                   |  |
| file            | A file handle where this function should print to (may be NULL).          |  |

#### Returns

The free energy of the input structure given the input sequence in kcal/mol

## 16.1.2.5 vrna\_eval\_structure\_pt()

Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is provided in pair\_table format as obtained from vrna\_ptable(). Model details, energy parameters, and possibly soft constraints are used as provided via the parameter 'fc'. The fold\_compound does not need to contain any DP matrices, but all the most basic init values as one would get from a call like this:

```
fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);
```

## See also

vrna\_ptable(), vrna\_eval\_structure(), vrna\_eval\_structure\_pt\_verbose()

## **Parameters**

| fc | A vrna_fold_compound_t containing the energy parameters and model details |
|----|---------------------------------------------------------------------------|
| pt | Secondary structure as pair_table                                         |

#### Returns

The free energy of the input structure given the input sequence in 10cal/mol

SWIG Wrapper Notes This function is attached as method eval structure pt() to objects of type fold compound

### 16.1.2.6 vrna eval structure pt verbose()

Calculate the free energy of an already folded RNA.

This function is a simplyfied version of vrna\_eval\_structure\_simple\_v() that uses the default verbosity level.

#### See also

vrna eval structure pt v(), vrna ptable(), vrna eval structure pt(), vrna eval structure verbose()

#### **Parameters**

| fo | c   | A vrna_fold_compound_t containing the energy parameters and model details |  |
|----|-----|---------------------------------------------------------------------------|--|
| р  | ot  | Secondary structure as pair_table                                         |  |
| fi | ile | A file handle where this function should print to (may be NULL).          |  |

#### Returns

The free energy of the input structure given the input sequence in 10cal/mol

SWIG Wrapper Notes This function is attached as method eval\_structure\_pt\_verbose() to objects of type fold

\_compound

## 16.1.2.7 vrna\_eval\_structure\_pt\_v()

Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is provided in pair\_table format as obtained from vrna\_ptable(). Model details, energy parameters, and possibly soft constraints are used as provided via the parameter 'fc'. The fold\_compound does not need to contain any DP matrices, but all the most basic init values as one would get from a call like this:

```
fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);
```

In contrast to vrna\_eval\_structure\_pt() this function prints detailed energy contributions based on individual loops to a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any positive  $verbosity \leftarrow \_level$  activates potential warning message of the energy evaluting functions, while values  $\geq 1$  allow for detailed control of what data is printed. A negative parameter  $verbosity_level$  turns off printing all together.

#### See also

vrna ptable(), vrna eval structure pt(), vrna eval structure verbose()

## **Parameters**

| fc              | A vrna_fold_compound_t containing the energy parameters and model details |
|-----------------|---------------------------------------------------------------------------|
| pt              | Secondary structure as pair_table                                         |
| verbosity_level | The level of verbosity of this function                                   |
| file            | A file handle where this function should print to (may be NULL).          |

## Returns

The free energy of the input structure given the input sequence in 10cal/mol

#### 16.1.2.8 vrna\_eval\_structure\_simple()

Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair. In contrast to vrna\_eval\_structure() this function assumes default model details and default energy parameters in order to evaluate the free energy of the secondary structure. Therefore, it serves as a simple interface function for energy evaluation for situations where no changes on the energy model are required.

#### See also

vrna\_eval\_structure(), vrna\_eval\_structure\_pt(), vrna\_eval\_structure\_verbose(), vrna\_eval\_structure\_pt\_verbose(),

#### **Parameters**

| string    | RNA sequence in uppercase letters           |
|-----------|---------------------------------------------|
| structure | Secondary structure in dot-bracket notation |

#### Returns

The free energy of the input structure given the input sequence in kcal/mol

SWIG Wrapper Notes In the target scripting language, this function serves as a wrapper for vrna\_eval\_structure\_simple\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## 16.1.2.9 vrna\_eval\_circ\_structure()

Evaluate the free energy of a sequence/structure pair where the sequence is circular.

#### See also

vrna\_eval\_structure\_simple(), vrna\_eval\_gquad\_structure(), vrna\_eval\_circ\_consensus\_structure(), vrna\_eval\_circ\_structure\_vrna\_eval\_structure()

## **Parameters**

| string    | RNA sequence in uppercase letters           |
|-----------|---------------------------------------------|
| structure | Secondary structure in dot-bracket notation |

## Returns

The free energy of the structure given the circular input sequence in kcal/mol

SWIG Wrapper Notes In the target scripting language, this function serves as a wrapper for vrna\_eval\_circ\_structure\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA VERBOSITY QUIET and NULL, respectively.

## 16.1.2.10 vrna\_eval\_gquad\_structure()

Evaluate the free energy of a sequence/structure pair where the structure may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs ('+') for each G involved in the motif. Linker sequences must be denoted by dots ('.') as they are considered unpaired. Below is an example of a 2-layer G-quadruplex:

```
++..++..++
```

#### See also

vrna\_eval\_structure\_simple(), vrna\_eval\_circ\_structure(), vrna\_eval\_gquad\_consensus\_structure(), vrna\_eval\_gquad\_structure() vrna\_eval\_structure()

#### **Parameters**

| string    | RNA sequence in uppercase letters           |
|-----------|---------------------------------------------|
| structure | Secondary structure in dot-bracket notation |

#### Returns

The free energy of the structure including contributions of G-quadruplexes in kcal/mol

SWIG Wrapper Notes In the target scripting language, this function serves as a wrapper for vrna\_eval\_gquad\_structure\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA VERBOSITY QUIET and NULL, respectively.

## 16.1.2.11 vrna\_eval\_circ\_gquad\_structure()

Evaluate the free energy of a sequence/structure pair where the sequence is circular and the structure may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs ('+') for each G involved in the motif. Linker sequences must be denoted by dots ('.') as they are considered unpaired. Below is an example of a 2-layer G-quadruplex:

```
++..++...++.++
```

#### See also

vrna\_eval\_structure\_simple(), vrna\_eval\_circ\_gquad\_consensus\_structure(), vrna\_eval\_circ\_gquad\_structure\_v(), vrna\_eval\_structure()

## **Parameters**

| string    | RNA sequence in uppercase letters           |
|-----------|---------------------------------------------|
| structure | Secondary structure in dot-bracket notation |

#### Returns

The free energy of the structure including contributions of G-quadruplexes in kcal/mol

SWIG Wrapper Notes In the target scripting language, this function serves as a wrapper for vrna\_eval\_circ\_gquad\_structure\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

#### 16.1.2.12 vrna eval structure simple verbose()

Calculate the free energy of an already folded RNA and print contributions per loop.

This function is a simplyfied version of vrna\_eval\_structure\_simple\_v() that uses the default verbosity level.

#### See also

```
vrna_eval_structure_simple_v(), vrna_eval_structure_verbose(), vrna_eval_structure_pt(), vrna_eval_structure_verbose(), vrna_eval_structure_pt verbose()
```

#### **Parameters**

| string                                                | RNA sequence in uppercase letters                                |
|-------------------------------------------------------|------------------------------------------------------------------|
| structure Secondary structure in dot-bracket notation |                                                                  |
| file                                                  | A file handle where this function should print to (may be NULL). |

## Returns

The free energy of the input structure given the input sequence in kcal/mol

SWIG Wrapper Notes This function is not available. Use vrna\_eval\_structure\_simple\_v() instead!

## 16.1.2.13 vrna\_eval\_structure\_simple\_v()

Calculate the free energy of an already folded RNA and print contributions per loop.

This function allows for detailed energy evaluation of a given sequence/structure pair. In contrast to  $vrna\_eval\_structure()$  this function prints detailed energy contributions based on individual loops to a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any positive  $verbosity\_level$  activates potential warning message of the energy evaluting functions, while values  $\geq 1$  allow for detailed control of what data is printed. A negative parameter  $verbosity\_level$  turns off printing all together.

In contrast to <a href="mailto:vrna\_eval\_structure\_verbose">vrna\_eval\_structure\_verbose</a>() this function assumes default model details and default energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as a simple interface function for energy evaluation for situations where no changes on the energy model are required.

## See also

vrna\_eval\_structure\_verbose(), vrna\_eval\_structure\_pt(), vrna\_eval\_structure\_pt\_verbose(),

#### **Parameters**

| string          | RNA sequence in uppercase letters                                |
|-----------------|------------------------------------------------------------------|
| structure       | Secondary structure in dot-bracket notation                      |
| verbosity_level | The level of verbosity of this function                          |
| file            | A file handle where this function should print to (may be NULL). |

#### Returns

The free energy of the input structure given the input sequence in kcal/mol

**SWIG Wrapper Notes** This function is available through an overloaded version of vrna\_eval\_structure\_simple(). The last two arguments for this function are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## 16.1.2.14 vrna eval circ structure v()

Evaluate free energy of a sequence/structure pair, assume sequence to be circular and print contributions per loop. This function is the same as vrna\_eval\_structure\_simple\_v() but assumes the input sequence to be circularized.

## See also

vrna\_eval\_structure\_simple\_v(), vrna\_eval\_circ\_structure(), vrna\_eval\_structure\_verbose()

## **Parameters**

| string          | RNA sequence in uppercase letters                                |
|-----------------|------------------------------------------------------------------|
| structure       | Secondary structure in dot-bracket notation                      |
| verbosity_level | The level of verbosity of this function                          |
| file            | A file handle where this function should print to (may be NULL). |

#### Returns

The free energy of the input structure given the input sequence in kcal/mol

**SWIG Wrapper Notes** This function is available through an overloaded version of vrna\_eval\_circ\_structure(). The last two arguments for this function are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

#### 16.1.2.15 vrna\_eval\_gquad\_structure\_v()

Evaluate free energy of a sequence/structure pair, allow for G-Quadruplexes in the structure and print contributions per loop.

This function is the same as vrna\_eval\_structure\_simple\_v() but allows for annotated G-Quadruplexes in the dot-bracket structure input.

G-Quadruplexes are annotated as plus signs ('+') for each G involved in the motif. Linker sequences must be denoted by dots ('.') as they are considered unpaired. Below is an example of a 2-layer G-quadruplex:

```
++..++..++
```

#### See also

vrna\_eval\_structure\_simple\_v(), vrna\_eval\_gquad\_structure(), vrna\_eval\_structure\_verbose()

#### **Parameters**

| string          | RNA sequence in uppercase letters                                |
|-----------------|------------------------------------------------------------------|
| structure       | Secondary structure in dot-bracket notation                      |
| verbosity_level | The level of verbosity of this function                          |
| file            | A file handle where this function should print to (may be NULL). |

## Returns

The free energy of the input structure given the input sequence in kcal/mol

**SWIG Wrapper Notes** This function is available through an overloaded version of vrna\_eval\_gquad\_structure(). The last two arguments for this function are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

#### 16.1.2.16 vrna eval circ gquad structure v()

Evaluate free energy of a sequence/structure pair, assume sequence to be circular, allow for G-Quadruplexes in the structure, and print contributions per loop.

This function is the same as vrna\_eval\_structure\_simple\_v() but assumes the input sequence to be circular and allows for annotated G-Quadruplexes in the dot-bracket structure input.

G-Quadruplexes are annotated as plus signs ('+') for each G involved in the motif. Linker sequences must be denoted by dots ('.') as they are considered unpaired. Below is an example of a 2-layer G-quadruplex:

```
GGAAGGAAAGGAGG
++..++..++
```

#### **Parameters**

| string          | RNA sequence in uppercase letters                                |
|-----------------|------------------------------------------------------------------|
| structure       | Secondary structure in dot-bracket notation                      |
| verbosity_level | The level of verbosity of this function                          |
| file            | A file handle where this function should print to (may be NULL). |

#### Returns

The free energy of the input structure given the input sequence in kcal/mol

**SWIG Wrapper Notes** This function is available through an overloaded version of vrna\_eval\_circ\_gquad\_structure(). The last two arguments for this function are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## 16.1.2.17 vrna\_eval\_consensus\_structure\_simple()

Calculate the free energy of an already folded RNA sequence alignment.

This function allows for energy evaluation for a given multiple sequence alignment and consensus structure pair. In contrast to <a href="mailto:vrna\_eval\_structure">vrna\_eval\_structure</a>() this function assumes default model details and default energy parameters in order to evaluate the free energy of the secondary structure. Therefore, it serves as a simple interface function for energy evaluation for situations where no changes on the energy model are required.

#### Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

#### See also

```
vrna_eval_covar_structure(), vrna_eval_structure(), vrna_eval_structure_pt(), vrna_eval_structure_verbose(),
vrna_eval_structure_pt_verbose()
```

## Parameters

| alignment | RNA sequence alignment in uppercase letters and hyphen ('-') to denote gaps |
|-----------|-----------------------------------------------------------------------------|
| structure | Consensus Secondary structure in dot-bracket notation                       |

### Returns

The free energy of the consensus structure given the input alignment in kcal/mol

**SWIG Wrapper Notes** This function is available through an overloadeded version of vrna\_eval\_structure\_simple(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

## 16.1.2.18 vrna\_eval\_circ\_consensus\_structure()

Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the sequences are circular.

## Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

#### See also

vrna\_eval\_covar\_structure(), vrna\_eval\_consensus\_structure\_simple(), vrna\_eval\_gquad\_consensus\_structure(), vrna\_eval\_circ\_structure(), vrna\_eval\_circ\_consensus\_structure v(), vrna\_eval\_structure()

#### **Parameters**

| alignment | RNA sequence alignment in uppercase letters           |
|-----------|-------------------------------------------------------|
| structure | Consensus secondary structure in dot-bracket notation |

#### Returns

The free energy of the consensus structure given the circular input sequence in kcal/mol

**SWIG Wrapper Notes** This function is available through an overloadeded version of vrna\_eval\_circ\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

## 16.1.2.19 vrna\_eval\_gquad\_consensus\_structure()

Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the structure may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs ('+') for each G involved in the motif. Linker sequences must be denoted by dots ('.') as they are considered unpaired. Below is an example of a 2-layer G-quadruplex:

```
++..++...++.++
```

## Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

## See also

vrna\_eval\_covar\_structure(), vrna\_eval\_consensus\_structure\_simple(), vrna\_eval\_circ\_consensus\_structure(), vrna\_eval\_gquad\_structure(), vrna\_eval\_gquad\_consensus\_structure\_v(), vrna\_eval\_structure()

## Parameters

| alignment | RNA sequence alignment in uppercase letters           |
|-----------|-------------------------------------------------------|
| structure | Consensus secondary structure in dot-bracket notation |

#### Returns

The free energy of the consensus structure including contributions of G-quadruplexes in kcal/mol

SWIG Wrapper Notes This function is available through an overloadeded version of vrna\_eval\_gquad\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

## 16.1.2.20 vrna\_eval\_circ\_gquad\_consensus\_structure()

```
\verb"int vrna_eval_circ_gquad_consensus_structure" (
```

Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the sequence is circular and the structure may contain G-Quadruplexes.

G-Quadruplexes are annotated as plus signs ('+') for each G involved in the motif. Linker sequences must be denoted by dots ('.') as they are considered unpaired. Below is an example of a 2-layer G-quadruplex:

```
++..++..++.++
```

#### Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

#### See also

```
vrna_eval_covar_structure(), vrna_eval_consensus_structure_simple(), vrna_eval_circ_consensus_structure(), vrna_eval_gquad_structure(), vrna_eval_circ_gquad_consensus_structure v(), vrna_eval_structure()
```

#### **Parameters**

| alignment | RNA sequence alignment in uppercase letters           |
|-----------|-------------------------------------------------------|
| structure | Consensus secondary structure in dot-bracket notation |

#### Returns

The free energy of the consensus structure including contributions of G-quadruplexes in kcal/mol

SWIG Wrapper Notes This function is available through an overloadeded version of vrna\_eval\_circ\_gquad\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

## 16.1.2.21 vrna eval consensus structure simple verbose()

Evaluate the free energy of a consensus structure for an RNA sequence alignment and print contributions per loop. This function is a simplyfied version of <a href="mailto:vrna\_eval\_consensus\_structure\_simple\_v(">vrna\_eval\_consensus\_structure\_simple\_v()</a> that uses the <a href="mailto:default">default</a> verbosity level.

## Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

## See also

```
vrna_eval_consensus_structure_simple_v(), vrna_eval_structure_verbose(), vrna_eval_structure_pt(), vrna_eval_structure_pt_verbose()
```

#### **Parameters**

| alignment | RNA sequence alignment in uppercase letters. Gaps are denoted by hyphens ('-') |
|-----------|--------------------------------------------------------------------------------|
| structure | Consensus secondary structure in dot-bracket notation                          |
| file      | A file handle where this function should print to (may be NULL).               |

#### Returns

The free energy of the conensus structure given the aligned input sequences in kcal/mol

SWIG Wrapper Notes This function is not available. Use vrna\_eval\_consensus\_structure\_simple\_v() instead!

#### 16.1.2.22 vrna eval consensus structure simple v()

Evaluate the free energy of a consensus structure for an RNA sequence alignment and print contributions per loop. This function allows for detailed energy evaluation of a given sequence alignment/consensus structure pair. In contrast to  $vrna\_eval\_consensus\_structure\_simple()$  this function prints detailed energy contributions based on individual loops to a file handle. If NULL is passed as file handle, this function defaults to print to stdout. Any positive  $verbosity\_level$  activates potential warning message of the energy evaluting functions, while values  $\geq 1$  allow for detailed control of what data is printed. A negative parameter  $verbosity\_level$  turns off printing all together.

## Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

#### See also

```
vrna eval consensus structure(), vrna eval structure()
```

### **Parameters**

| alignment       | RNA sequence alignment in uppercase letters. Gaps are denoted by hyphens ('-') |
|-----------------|--------------------------------------------------------------------------------|
| structure       | Consensus secondary structure in dot-bracket notation                          |
| verbosity_level | The level of verbosity of this function                                        |
| file            | A file handle where this function should print to (may be NULL).               |

## Returns

The free energy of the consensus structure given the sequence alignment in kcal/mol

SWIG Wrapper Notes This function is available through an overloaded version of vrna\_eval\_structure\_simple(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## 16.1.2.23 vrna\_eval\_circ\_consensus\_structure\_v()

Evaluate the free energy of a consensus structure for an alignment of circular RNA sequences and print contributions per loop.

This function is identical with vrna\_eval\_consensus\_structure\_simple\_v() but assumed the aligned sequences to be circular.

Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

#### See also

vrna\_eval\_consensus\_structure\_simple\_v(), vrna\_eval\_circ\_consensus\_structure(), vrna\_eval\_structure()

#### **Parameters**

| alignment       | RNA sequence alignment in uppercase letters. Gaps are denoted by hyphens ('-') |
|-----------------|--------------------------------------------------------------------------------|
| structure       | Consensus secondary structure in dot-bracket notation                          |
| verbosity_level | The level of verbosity of this function                                        |
| file            | A file handle where this function should print to (may be NULL).               |

#### Returns

The free energy of the consensus structure given the sequence alignment in kcal/mol

SWIG Wrapper Notes This function is available through an overloaded version of vrna\_eval\_circ\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## 16.1.2.24 vrna eval gquad consensus structure v()

Evaluate the free energy of a consensus structure for an RNA sequence alignment, allow for annotated G- $\leftarrow$  Quadruplexes in the structure and print contributions per loop.

This function is identical with vrna\_eval\_consensus\_structure\_simple\_v() but allows for annotated G-Quadruplexes in the consensus structure.

```
++..++...++.++
```

#### Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

## See also

vrna\_eval\_consensus\_structure\_simple\_v(), vrna\_eval\_gquad\_consensus\_structure(), vrna\_eval\_structure()

#### **Parameters**

| alignment       | RNA sequence alignment in uppercase letters. Gaps are denoted by hyphens ('-') |
|-----------------|--------------------------------------------------------------------------------|
| structure       | Consensus secondary structure in dot-bracket notation                          |
| verbosity_level | The level of verbosity of this function                                        |
| file            | A file handle where this function should print to (may be NULL).               |

#### Returns

The free energy of the consensus structure given the sequence alignment in kcal/mol

SWIG Wrapper Notes This function is available through an overloaded version of vrna\_eval\_gquad\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## 16.1.2.25 vrna\_eval\_circ\_gquad\_consensus\_structure\_v()

Evaluate the free energy of a consensus structure for an alignment of circular RNA sequences, allow for annotated G-Quadruplexes in the structure and print contributions per loop.

This function is identical with vrna\_eval\_consensus\_structure\_simple\_v() but assumes the sequences in the alignment to be circular and allows for annotated G-Quadruplexes in the consensus structure.

G-Quadruplexes are annotated as plus signs ('+') for each G involved in the motif. Linker sequences must be denoted by dots ('.') as they are considered unpaired. Below is an example of a 2-layer G-quadruplex: GGAAGGAAAGGAGG

```
++..++...++.++
```

## Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

#### See also

vrna eval consensus structure simple v(), vrna eval circ gquad consensus structure(), vrna eval structure()

## **Parameters**

| alignment       | RNA sequence alignment in uppercase letters. Gaps are denoted by hyphens ('-') |
|-----------------|--------------------------------------------------------------------------------|
| structure       | Consensus secondary structure in dot-bracket notation                          |
| verbosity_level | The level of verbosity of this function                                        |
| file            | A file handle where this function should print to (may be NULL).               |

## Returns

The free energy of the consensus structure given the sequence alignment in kcal/mol

SWIG Wrapper Notes This function is available through an overloaded version of vrna\_eval\_circ\_gquad\_structure(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## 16.1.2.26 vrna\_eval\_structure\_pt\_simple()

Calculate the free energy of an already folded RNA.

In contrast to vrna\_eval\_structure\_pt() this function assumes default model details and default energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as a simple interface function for energy evaluation for situations where no changes on the energy model are required.

#### See also

```
vrna_ptable(), vrna_eval_structure_simple(), vrna_eval_structure_pt()
```

## **Parameters**

| string | RNA sequence in uppercase letters |
|--------|-----------------------------------|
| pt     | Secondary structure as pair_table |

#### Returns

The free energy of the input structure given the input sequence in 10cal/mol

SWIG Wrapper Notes In the target scripting language, this function serves as a wrapper for vrna\_eval\_structure\_pt\_v() and, thus, allows for two additional, optional arguments, the verbosity level and a file handle which default to VRNA VERBOSITY QUIET and NULL, respectively.

## 16.1.2.27 vrna\_eval\_structure\_pt\_simple\_verbose()

Calculate the free energy of an already folded RNA.

This function is a simplyfied version of vrna\_eval\_structure\_pt\_simple\_v() that uses the default verbosity level.

## See also

```
vrna_eval_structure_pt_simple_v(), vrna_ptable(), vrna_eval_structure_pt_verbose(), vrna_eval_structure_simple()
```

#### **Parameters**

| string | string RNA sequence in uppercase letters                         |  |
|--------|------------------------------------------------------------------|--|
| pt     | Secondary structure as pair_table                                |  |
| file   | A file handle where this function should print to (may be NULL). |  |

## Returns

The free energy of the input structure given the input sequence in 10cal/mol

#### 16.1.2.28 vrna\_eval\_structure\_pt\_simple\_v()

Calculate the free energy of an already folded RNA.

This function allows for energy evaluation of a given sequence/structure pair where the structure is provided in pair\_table format as obtained from vrna\_ptable(). Model details, energy parameters, and possibly soft constraints are used as provided via the parameter 'fc'. The fold\_compound does not need to contain any DP matrices, but all the most basic init values as one would get from a call like this:

```
fc = vrna_fold_compound(sequence, NULL, VRNA_OPTION_EVAL_ONLY);
```

In contrast to <a href="verbase">vrna\_eval\_structure\_pt\_verbase</a>() this function assumes default model details and default energy parameters in order to evaluate the free energy of the secondary structure. Threefore, it serves as a simple interface function for energy evaluation for situations where no changes on the energy model are required.

## See also

```
vrna_ptable(), vrna_eval_structure_pt_v(), vrna_eval_structure_simple()
```

#### **Parameters**

| string          | RNA sequence in uppercase letters                                |
|-----------------|------------------------------------------------------------------|
| pt              | Secondary structure as pair_table                                |
| verbosity_level | The level of verbosity of this function                          |
| file            | A file handle where this function should print to (may be NULL). |

## Returns

The free energy of the input structure given the input sequence in 10cal/mol

## 16.1.2.29 vrna eval consensus structure pt simple()

Evaluate the Free Energy of a Consensus Secondary Structure given a Sequence Alignment.

#### Note

The free energy returned from this function already includes the covariation pseudo energies that is used fir comparative structure prediction within this library.

#### See also

```
vrna_eval_consensus_structure_simple(), vrna_eval_structure_pt(), vrna_eval_structure(), vrna_eval_covar_structure()
```

## **Parameters**

| alignment | RNA sequence alignment in uppercase letters. Gaps are denoted by hyphens ('-') |
|-----------|--------------------------------------------------------------------------------|
| pt        | Secondary structure in pair table format                                       |

Returns

Free energy of the consensus structure in 10cal/mol

SWIG Wrapper Notes This function is available through an overloadeded version of vrna\_eval\_structure\_pt\_simple(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument

## 16.1.2.30 vrna\_eval\_consensus\_structure\_pt\_simple\_verbose()

SWIG Wrapper Notes This function is not available. Use vrna\_eval\_consensus\_structure\_pt\_v() instead!

## 16.1.2.31 vrna\_eval\_consensus\_structure\_pt\_simple\_v()

SWIG Wrapper Notes This function is available through an overloaded version of vrna\_eval\_structure\_pt\_simple(). Simply pass a sequence alignment as list of strings (including gaps) as first, and the consensus structure as second argument. The last two arguments are optional and default to VRNA\_VERBOSITY\_QUIET and NULL, respectively.

## 16.2 Energy Evaluation for Individual Loops

Functions to evaluate the free energy of particular types of loops.

## 16.2.1 Detailed Description

Functions to evaluate the free energy of particular types of loops.

To assess the free energy contribution of a particular loop within a secondary structure, two variants are provided:

- The bare free energy E (usually in deka-calories, i.e. multiples of 10cal/mol), and
- The Boltzmann weight  $q=exp(-\beta E)$  of the free energy E (with  $\beta=\frac{1}{RT}$ , gas constant R and temperature T)

The latter is usually required for partition function computations. Collaboration diagram for Energy Evaluation for Individual Loops:

## **Modules**

Exterior Loops

Functions to evaluate the free energy contributions for exterior loops.

Hairpin Loops

Functions to evaluate the free energy contributions for hairpin loops.

· Internal Loops

Functions to evaluate the free energy contributions for internal loops.

· Multibranch Loops

Functions to evaluate the free energy contributions for mutlibranch loops.

## **Files**

• file all.h

Energy evaluation for MFE and partition function calculations.

· file external.h

Energy evaluation of exterior loops for MFE and partition function calculations.

· file hairpin.h

Energy evaluation of hairpin loops for MFE and partition function calculations.

· file internal.h

Energy evaluation of interior loops for MFE and partition function calculations.

· file multibranch.h

Energy evaluation of multibranch loops for MFE and partition function calculations.

## **Functions**

```
• int vrna_eval_loop_pt (vrna_fold_compound_t *fc, int i, const short *pt)

Calculate energy of a loop.
```

• int vrna\_eval\_loop\_pt\_v (vrna\_fold\_compound\_t \*fc, int i, const short \*pt, int verbosity\_level)

Calculate energy of a loop.

## 16.2.2 Function Documentation

## 16.2.2.1 vrna\_eval\_loop\_pt()

#### **Parameters**

| fc | A vrna_fold_compound_t containing the energy parameters and model details |  |
|----|---------------------------------------------------------------------------|--|
| i  | position of covering base pair                                            |  |
| pt | the pair table of the secondary structure                                 |  |

## Returns

free energy of the loop in 10cal/mol

SWIG Wrapper Notes This function is attached as method eval\_loop\_pt() to objects of type fold\_compound

## 16.2.2.2 vrna\_eval\_loop\_pt\_v()

Calculate energy of a loop.

#### **Parameters**

| fc              | A vrna_fold_compound_t containing the energy parameters and model details |
|-----------------|---------------------------------------------------------------------------|
| i               | position of covering base pair                                            |
| pt              | the pair table of the secondary structure                                 |
| verbosity_level | The level of verbosity of this function                                   |

#### Returns

free energy of the loop in 10cal/mol

## 16.3 Energy Evaluation for Atomic Moves

Functions to evaluate the free energy change of a structure after application of (a set of) atomic moves.

## 16.3.1 Detailed Description

Functions to evaluate the free energy change of a structure after application of (a set of) atomic moves.

Here, atomic moves are not to be confused with moves of actual physical atoms. Instead, an atomic move is considered the smallest conformational change a secondary structure can undergo to form another, distinguishable structure. We currently support the following moves

#### **Atomic Moves:**

- · Opening (dissociation) of a single base pair
- · Closing (formation) of a single base pair
- · Shifting one pairing partner of an existing pair to a different location

Collaboration diagram for Energy Evaluation for Atomic Moves:

## **Functions**

- float vrna\_eval\_move (vrna\_fold\_compound\_t \*fc, const char \*structure, int m1, int m2)

  Calculate energy of a move (closing or opening of a base pair)
- int vrna\_eval\_move\_pt (vrna\_fold\_compound\_t \*fc, short \*pt, int m1, int m2)

  Calculate energy of a move (closing or opening of a base pair)

## 16.3.2 Function Documentation

## 16.3.2.1 vrna\_eval\_move()

Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion (opening).

#### See also

```
vrna_eval_move_pt()
```

#### **Parameters**

| fc        | A vrna_fold_compound_t containing the energy parameters and model details |  |
|-----------|---------------------------------------------------------------------------|--|
| structure | secondary structure in dot-bracket notation                               |  |
| m1        | first coordinate of base pair                                             |  |
| m2        | second coordinate of base pair                                            |  |

#### Returns

energy change of the move in kcal/mol (INF / 100. upon any error)

SWIG Wrapper Notes This function is attached as method eval\_move() to objects of type fold\_compound

## 16.3.2.2 vrna\_eval\_move\_pt()

Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion (opening).

#### See also

```
vrna_eval_move()
```

## **Parameters**

| fc | A vrna_fold_compound_t containing the energy parameters and model details |  |
|----|---------------------------------------------------------------------------|--|
| pt | the pair table of the secondary structure                                 |  |
| m1 | first coordinate of base pair                                             |  |
| m2 | second coordinate of base pair                                            |  |

## Returns

energy change of the move in 10cal/mol

SWIG Wrapper Notes This function is attached as method eval\_move\_pt() to objects of type fold\_compound

## 16.4 Deprecated Interface for Free Energy Evaluation

Deprecated Energy Evaluation functions.

## 16.4.1 Detailed Description

Deprecated Energy Evaluation functions.

Using the functions below is discouraged as they have been marked deprecated and will be removed from the library in the (near) future! Collaboration diagram for Deprecated Interface for Free Energy Evaluation:

#### **Functions**

• float energy of structure (const char \*string, const char \*structure, int verbosity level)

Calculate the free energy of an already folded RNA using global model detail settings.

• float energy\_of\_struct\_par (const char \*string, const char \*structure, vrna\_param\_t \*parameters, int verbosity\_level)

Calculate the free energy of an already folded RNA.

float energy of circ structure (const char \*string, const char \*structure, int verbosity level)

Calculate the free energy of an already folded circular RNA.

• float energy\_of\_circ\_struct\_par (const char \*string, const char \*structure, vrna\_param\_t \*parameters, int verbosity level)

Calculate the free energy of an already folded circular RNA.

• int energy\_of\_structure\_pt (const char \*string, short \*ptable, short \*s, short \*s1, int verbosity\_level)

Calculate the free energy of an already folded RNA.

• int energy\_of\_struct\_pt\_par (const char \*string, short \*ptable, short \*s, short \*s1, vrna\_param\_t \*parameters, int verbosity level)

Calculate the free energy of an already folded RNA.

• float energy\_of\_move (const char \*string, const char \*structure, int m1, int m2)

Calculate energy of a move (closing or opening of a base pair)

int energy\_of\_move\_pt (short \*pt, short \*s, short \*s1, int m1, int m2)

Calculate energy of a move (closing or opening of a base pair)

• int loop\_energy (short \*ptable, short \*s, short \*s1, int i)

Calculate energy of a loop.

- float energy of struct (const char \*string, const char \*structure)
- int energy\_of\_struct\_pt (const char \*string, short \*ptable, short \*s, short \*s1)
- float energy\_of\_circ\_struct (const char \*string, const char \*structure)
- int E\_Stem (int type, int si1, int sj1, int extLoop, vrna\_param\_t \*P)

Compute the energy contribution of a stem branching off a loop-region.

- FLT\_OR\_DBL exp\_E\_ExtLoop (int type, int si1, int sj1, vrna\_exp\_param\_t \*P)
- FLT\_OR\_DBL exp\_E\_Stem (int type, int si1, int si1, int extLoop, vrna\_exp\_param\_t \*P)
- PRIVATE int E\_IntLoop (int n1, int n2, int type, int type\_2, int si1, int sj1, int sp1, int sq1, vrna\_param\_t \*P)
- PRIVATE FLT\_OR\_DBL exp\_E\_IntLoop (int u1, int u2, int type, int type2, short si1, short sj1, short sp1, short sq1, vrna\_exp\_param\_t \*P)

## **Variables**

int cut\_point

first pos of second seq for cofolding

· int eos debug

verbose info from energy\_of\_struct

#### 16.4.2 Function Documentation

## 16.4.2.1 energy\_of\_structure()

Calculate the free energy of an already folded RNA using global model detail settings.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

#### Note

OpenMP: This function relies on several global model settings variables and thus is not to be considered threadsafe. See <a href="mailto:energy\_of\_struct\_par">energy\_of\_struct\_par</a>() for a completely threadsafe implementation.

Deprecated Use vrna\_eval\_structure() or vrna\_eval\_structure\_verbose() instead!

#### See also

```
vrna eval structure()
```

#### **Parameters**

| string          | RNA sequence                                |
|-----------------|---------------------------------------------|
| structure       | secondary structure in dot-bracket notation |
| verbosity_level | a flag to turn verbose output on/off        |

## Returns

the free energy of the input structure given the input sequence in kcal/mol

## 16.4.2.2 energy\_of\_struct\_par()

Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

**Deprecated** Use vrna\_eval\_structure() or vrna\_eval\_structure\_verbose() instead!

### See also

```
vrna eval structure()
```

## **Parameters**

| string          | RNA sequence in uppercase letters                                                     |
|-----------------|---------------------------------------------------------------------------------------|
| structure       | Secondary structure in dot-bracket notation                                           |
| parameters      | A data structure containing the prescaled energy contributions and the model details. |
| verbosity_level | A flag to turn verbose output on/off                                                  |

#### Returns

The free energy of the input structure given the input sequence in kcal/mol

## 16.4.2.3 energy\_of\_circ\_structure()

```
const char * structure,
int verbosity_level )
#include <ViennaRNA/eval.h>
```

Calculate the free energy of an already folded circular RNA.

Note

OpenMP: This function relies on several global model settings variables and thus is not to be considered threadsafe. See <a href="mailto:energy\_of\_circ\_struct\_par">energy\_of\_circ\_struct\_par</a>() for a completely threadsafe implementation.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

**Deprecated** Use vrna\_eval\_structure() or vrna\_eval\_structure\_verbose() instead!

See also

```
vrna_eval_structure()
```

#### **Parameters**

| string          | RNA sequence                                |
|-----------------|---------------------------------------------|
| structure       | Secondary structure in dot-bracket notation |
| verbosity_level | A flag to turn verbose output on/off        |

## Returns

The free energy of the input structure given the input sequence in kcal/mol

## 16.4.2.4 energy\_of\_circ\_struct\_par()

Calculate the free energy of an already folded circular RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Deprecated Use vrna eval structure() or vrna eval structure verbose() instead!

See also

```
vrna_eval_structure()
```

## **Parameters**

| string          | RNA sequence                                                                          |
|-----------------|---------------------------------------------------------------------------------------|
| structure       | Secondary structure in dot-bracket notation                                           |
| parameters      | A data structure containing the prescaled energy contributions and the model details. |
| verbosity_level | A flag to turn verbose output on/off                                                  |

#### Returns

The free energy of the input structure given the input sequence in kcal/mol

## 16.4.2.5 energy\_of\_structure\_pt()

Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

Note

OpenMP: This function relies on several global model settings variables and thus is not to be considered threadsafe. See <a href="mailto:energy\_of\_struct\_pt\_par">energy\_of\_struct\_pt\_par()</a> for a completely threadsafe implementation.

**Deprecated** Use vrna\_eval\_structure\_pt() or vrna\_eval\_structure\_pt\_verbose() instead!

## See also

```
vrna_eval_structure_pt()
```

#### **Parameters**

| string          | RNA sequence                              |
|-----------------|-------------------------------------------|
| ptable          | the pair table of the secondary structure |
| s               | encoded RNA sequence                      |
| s1              | encoded RNA sequence                      |
| verbosity_level | a flag to turn verbose output on/off      |

#### Returns

the free energy of the input structure given the input sequence in 10kcal/mol

## 16.4.2.6 energy\_of\_struct\_pt\_par()

Calculate the free energy of an already folded RNA.

If verbosity level is set to a value >0, energies of structure elements are printed to stdout

**Deprecated** Use vrna\_eval\_structure\_pt() or vrna\_eval\_structure\_pt\_verbose() instead!

# See also

```
vrna_eval_structure_pt()
```

### **Parameters**

| string          | RNA sequence in uppercase letters                                                     |
|-----------------|---------------------------------------------------------------------------------------|
| ptable          | The pair table of the secondary structure                                             |
| s               | Encoded RNA sequence                                                                  |
| s1              | Encoded RNA sequence                                                                  |
| parameters      | A data structure containing the prescaled energy contributions and the model details. |
| verbosity_level | A flag to turn verbose output on/off                                                  |

### Returns

The free energy of the input structure given the input sequence in 10kcal/mol

# 16.4.2.7 energy\_of\_move()

Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion (opening).

## **Deprecated** Use vrna\_eval\_move() instead!

### See also

```
vrna_eval_move()
```

### **Parameters**

| string    | RNA sequence                                |
|-----------|---------------------------------------------|
| structure | secondary structure in dot-bracket notation |
| m1        | first coordinate of base pair               |
| m2        | second coordinate of base pair              |

# Returns

energy change of the move in kcal/mol

# 16.4.2.8 energy\_of\_move\_pt()

```
#include <ViennaRNA/eval.h>
```

Calculate energy of a move (closing or opening of a base pair)

If the parameters m1 and m2 are negative, it is deletion (opening) of a base pair, otherwise it is insertion (opening).

## **Deprecated** Use vrna\_eval\_move\_pt() instead!

### See also

```
vrna_eval_move_pt()
```

## **Parameters**

| pt | the pair table of the secondary structure |
|----|-------------------------------------------|
| s  | encoded RNA sequence                      |
| s1 | encoded RNA sequence                      |
| m1 | first coordinate of base pair             |
| m2 | second coordinate of base pair            |

#### Returns

energy change of the move in 10cal/mol

# 16.4.2.9 loop\_energy()

Calculate energy of a loop.

## **Deprecated** Use vrna\_eval\_loop\_pt() instead!

## See also

```
vrna_eval_loop_pt()
```

## **Parameters**

| ptable | the pair table of the secondary structure |
|--------|-------------------------------------------|
| s      | encoded RNA sequence                      |
| s1     | encoded RNA sequence                      |
| i      | position of covering base pair            |

### Returns

free energy of the loop in 10cal/mol

# 16.4.2.10 energy\_of\_struct()

```
float energy_of_struct (
```

```
const char * string,
const char * structure )
#include <ViennaRNA/eval.h>
```

Calculate the free energy of an already folded RNA

Note

This function is not entirely threadsafe! Depending on the state of the global variable eos\_debug it prints energy information to stdout or not...

**Deprecated** This function is deprecated and should not be used in future programs! Use energy\_of\_structure() instead!

#### See also

```
energy_of_structure, energy_of_circ_struct(), energy_of_struct_pt()
```

#### **Parameters**

| string    | RNA sequence                                |
|-----------|---------------------------------------------|
| structure | secondary structure in dot-bracket notation |

#### Returns

the free energy of the input structure given the input sequence in kcal/mol

## 16.4.2.11 energy\_of\_struct\_pt()

Calculate the free energy of an already folded RNA

Note

This function is not entirely threadsafe! Depending on the state of the global variable eos\_debug it prints energy information to stdout or not...

**Deprecated** This function is deprecated and should not be used in future programs! Use energy\_of\_structure\_pt() instead!

See also

```
make_pair_table(), energy_of_structure()
```

### **Parameters**

| string | RNA sequence                              |
|--------|-------------------------------------------|
| ptable | the pair table of the secondary structure |
| s      | encoded RNA sequence                      |
| s1     | encoded RNA sequence                      |

#### Returns

the free energy of the input structure given the input sequence in 10kcal/mol

### 16.4.2.12 energy of circ struct()

Calculate the free energy of an already folded circular RNA

#### Note

This function is not entirely threadsafe! Depending on the state of the global variable eos\_debug it prints energy information to stdout or not...

**Deprecated** This function is deprecated and should not be used in future programs Use energy\_of\_circ\_structure() instead!

See also

```
energy_of_circ_structure(), energy_of_struct(), energy_of_struct_pt()
```

#### **Parameters**

| string    | RNA sequence                                |  |
|-----------|---------------------------------------------|--|
| structure | secondary structure in dot-bracket notation |  |

#### Returns

the free energy of the input structure given the input sequence in kcal/mol

### 16.4.2.13 E Stem()

Compute the energy contribution of a stem branching off a loop-region.

This function computes the energy contribution of a stem that branches off a loop region. This can be the case in multiloops, when a stem branching off increases the degree of the loop but also *immediately interior base pairs* of an exterior loop contribute free energy. To switch the behavior of the function according to the evaluation of a multiloop-or exterior-loop-stem, you pass the flag 'extLoop'. The returned energy contribution consists of a TerminalAU penalty if the pair type is greater than 2, dangling end contributions of mismatching nucleotides adjacent to the stem if only one of the si1, sj1 parameters is greater than 0 and mismatch energies if both mismatching nucleotides are positive values. Thus, to avoid incorporating dangling end or mismatch energies just pass a negative number, e.g. -1 to the mismatch argument.

This is an illustration of how the energy contribution is assembled:

```
3' 5'
| | |
X - Y
5'-si1 sj1-3'
```

Here, (X,Y) is the base pair that closes the stem that branches off a loop region. The nucleotides si1 and sj1 are the 5'- and 3'- mismatches, respectively. If the base pair type of (X,Y) is greater than 2 (i.e. an A-U or G-U pair, the TerminalAU penalty will be included in the energy contribution returned. If si1 and sj1 are both nonnegative numbers, mismatch energies will also be included. If one of si1 or sj1 is a negative value, only 5' or 3' dangling end contributions are taken into account. To prohibit any of these mismatch contributions to be incorporated, just pass a negative number to both, si1 and sj1. In case the argument extLoop is 0, the returned energy contribution also includes the *internal-loop-penalty* of a multiloop stem with closing pair type.

#### See also

E\_MLstem()
E\_ExtLoop()

Note

This function is threadsafe

**Deprecated** Please use one of the functions vrna\_E\_ext\_stem() and E\_MLstem() instead! Use the former for cases where extLoop != 0 and the latter otherwise.

#### **Parameters**

| type                                                     | The pair type of the first base pair un the stem                                           |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------|
| si1                                                      | The 5'-mismatching nucleotide                                                              |
| sj1                                                      | The 3'-mismatching nucleotide                                                              |
| extLoop                                                  | A flag that indicates whether the contribution reflects the one of an exterior loop or not |
| P The data structure containing scaled energy parameters |                                                                                            |

# Returns

The Free energy of the branch off the loop in dcal/mol

## 16.4.2.14 exp\_E\_ExtLoop()

This is the partition function variant of E\_ExtLoop()

**Deprecated** Use vrna\_exp\_E\_ext\_stem() instead!

### See also

E ExtLoop()

#### Returns

The Boltzmann weighted energy contribution of the introduced exterior-loop stem

## 16.4.2.15 exp\_E\_Stem()

## Compute the Boltzmann weighted energy contribution of a stem branching off a loop-region

This is the partition function variant of E\_Stem()

See also

```
E Stem()
```

Note

This function is threadsafe

Returns

The Boltzmann weighted energy contribution of the branch off the loop

## 16.4.2.16 E\_IntLoop()

## Compute the Energy of an interior-loop

This function computes the free energy  $\Delta G$  of an interior-loop with the following structure:

```
3' 5'
U - V

a_n b_1

. . .

a_1 b_m

X - Y

| 1

5' 3'
```

This general structure depicts an interior-loop that is closed by the base pair (X,Y). The enclosed base pair is (V,U) which leaves the unpaired bases a\_1-a\_n and b\_1-b\_n that constitute the loop. In this example, the length of the interior-loop is (n+m) where n or m may be 0 resulting in a bulge-loop or base pair stack. The mismatching

```
nucleotides for the closing pair (X,Y) are: 5'-mismatch: a_1 3'-mismatch: b_m and for the enclosed base pair (V,U): 5'-mismatch: b_1 3'-mismatch: a_n
```

### Note

Base pairs are always denoted in 5'->3' direction. Thus the enclosed base pair must be 'turned arround' when evaluating the free energy of the interior-loop

#### See also

```
scale_parameters()
vrna_param_t
```

### Note

This function is threadsafe

#### **Parameters**

| n1    | The size of the 'left'-loop (number of unpaired nucleotides)  |
|-------|---------------------------------------------------------------|
| n2    | The size of the 'right'-loop (number of unpaired nucleotides) |
| type  | The pair type of the base pair closing the interior loop      |
| type⊷ | The pair type of the enclosed base pair                       |
| _2    |                                                               |
| si1   | The 5'-mismatching nucleotide of the closing pair             |
| sj1   | The 3'-mismatching nucleotide of the closing pair             |
| sp1   | The 3'-mismatching nucleotide of the enclosed pair            |
| sq1   | The 5'-mismatching nucleotide of the enclosed pair            |
| Р     | The datastructure containing scaled energy parameters         |

## Returns

The Free energy of the Interior-loop in dcal/mol

# 16.4.2.17 exp\_E\_IntLoop()

# Compute Boltzmann weight $e^{-\Delta G/kT}$ of interior loop

multiply by scale[u1+u2+2] for scaling

#### See also

```
get_scaled_pf_parameters()
vrna_exp_param_t
E_IntLoop()
```

Note

This function is threadsafe

#### **Parameters**

| u1    | The size of the 'left'-loop (number of unpaired nucleotides)                   |
|-------|--------------------------------------------------------------------------------|
| u2    | The size of the 'right'-loop (number of unpaired nucleotides)                  |
| type  | The pair type of the base pair closing the interior loop                       |
| type2 | The pair type of the enclosed base pair                                        |
| si1   | The 5'-mismatching nucleotide of the closing pair                              |
| sj1   | The 3'-mismatching nucleotide of the closing pair                              |
| sp1   | The 3'-mismatching nucleotide of the enclosed pair                             |
| sq1   | The 5'-mismatching nucleotide of the enclosed pair                             |
| Р     | The datastructure containing scaled Boltzmann weights of the energy parameters |

### Returns

The Boltzmann weight of the Interior-loop

# 16.5 The RNA Folding Grammar

The RNA folding grammar as implemented in RNAlib.

# 16.5.1 Detailed Description

The RNA folding grammar as implemented in RNAlib. Collaboration diagram for The RNA Folding Grammar:

# **Modules**

· Fine-tuning of the Implemented Models

Functions and data structures to fine-tune the implemented secondary structure evaluation model.

· Energy Parameters

All relevant functions to retrieve and copy pre-calculated energy parameter sets as well as reading/writing the energy parameter set from/to file(s).

· Extending the Folding Grammar with Additional Domains

This module covers simple and straight-forward extensions to the RNA folding grammar.

· Constraining the RNA Folding Grammar

This module provides general functions that allow for an easy control of constrained secondary structure prediction and evaluation.

### **Files**

· file grammar.h

Implementations for the RNA folding grammar.

## **Data Structures**

• struct vrna\_gr\_aux\_s

# **Typedefs**

typedef void(\* vrna\_grammar\_data\_free\_f) (void \*data)
 Free auxiliary data.

### 16.5.2 Data Structure Documentation

### 16.5.2.1 struct vrna\_gr\_aux\_s

Collaboration diagram for vrna gr aux s:

#### **Data Fields**

vrna\_grammar\_cond\_f cb\_proc
 A callback for pre- and post-processing of auxiliary grammar rules.

# 16.5.3 Typedef Documentation

# 16.5.3.1 vrna\_grammar\_data\_free\_f

```
typedef void(* vrna_grammar_data_free_f) (void *data)
#include <ViennaRNA/grammar.h>
Free auxiliary data.
```

### **Parameters**

data The auxiliary data to be free'd

# 16.6 Fine-tuning of the Implemented Models

Functions and data structures to fine-tune the implemented secondary structure evaluation model.

## 16.6.1 Detailed Description

Functions and data structures to fine-tune the implemented secondary structure evaluation model. Collaboration diagram for Fine-tuning of the Implemented Models:

## **Files**

· file model.h

The model details data structure and its corresponding modifiers.

## **Data Structures**

struct vrna\_md\_s

The data structure that contains the complete model details used throughout the calculations. More...

# Macros

• #define VRNA\_MODEL\_DEFAULT\_TEMPERATURE 37.0

Default temperature for structure prediction and free energy evaluation in  $^{\circ}C$ 

#define VRNA MODEL DEFAULT PF SCALE -1

Default scaling factor for partition function computations.

• #define VRNA\_MODEL\_DEFAULT\_BETA\_SCALE 1.

Default scaling factor for absolute thermodynamic temperature in Boltzmann factors.

#define VRNA MODEL DEFAULT DANGLES 2

Default dangling end model.

#define VRNA\_MODEL\_DEFAULT\_SPECIAL\_HP 1

Default model behavior for lookup of special tri-, tetra-, and hexa-loops.

#define VRNA MODEL DEFAULT NO LP 0

Default model behavior for so-called 'lonely pairs'.

#define VRNA\_MODEL\_DEFAULT\_NO\_GU 0

Default model behavior for G-U base pairs.

#define VRNA MODEL DEFAULT NO GU CLOSURE 0

Default model behavior for G-U base pairs closing a loop.

#define VRNA\_MODEL\_DEFAULT\_CIRC 0

Default model behavior to treat a molecule as a circular RNA (DNA)

#define VRNA MODEL DEFAULT GQUAD 0

Default model behavior regarding the treatment of G-Quadruplexes.

#define VRNA MODEL DEFAULT UNIQ ML 0

Default behavior of the model regarding unique multi-branch loop decomposition.

#define VRNA MODEL DEFAULT ENERGY SET 0

Default model behavior on which energy set to use.

#define VRNA MODEL DEFAULT BACKTRACK 1

Default model behavior with regards to backtracking of structures.

#define VRNA\_MODEL\_DEFAULT\_BACKTRACK\_TYPE 'F'

Default model behavior on what type of backtracking to perform.

#define VRNA\_MODEL\_DEFAULT\_COMPUTE\_BPP 1

Default model behavior with regards to computing base pair probabilities.

#define VRNA\_MODEL\_DEFAULT\_MAX\_BP\_SPAN -1

Default model behavior for the allowed maximum base pair span.

#define VRNA\_MODEL\_DEFAULT\_WINDOW\_SIZE -1
 Default model behavior for the sliding window approach.

• #define VRNA MODEL DEFAULT LOG ML 0

Default model behavior on how to evaluate the energy contribution of multi-branch loops.

• #define VRNA\_MODEL\_DEFAULT\_ALI\_OLD\_EN 0

Default model behavior for consensus structure energy evaluation.

#define VRNA\_MODEL\_DEFAULT\_ALI\_RIBO 0

Default model behavior for consensus structure co-variance contribution assessment.

#define VRNA\_MODEL\_DEFAULT\_ALI\_CV\_FACT 1.

Default model behavior for weighting the co-variance score in consensus structure prediction.

• #define VRNA\_MODEL\_DEFAULT\_ALI\_NC\_FACT 1.

Default model behavior for weighting the nucleotide conservation? in consensus structure prediction.

#define VRNA\_MODEL\_DEFAULT\_SALT 1.021

Default model salt concentration (M)

#define VRNA\_MODEL\_DEFAULT\_SALTMLLOWER 6

Default model lower bound of multiloop size for salt correction fiting.

#define VRNA MODEL DEFAULT SALTMLUPPER 24

Default model upper bound of multiloop size for salt correction fiting.

#define VRNA\_MODEL\_DEFAULT\_SALTDPXINIT 99999

Default model value to turn off user-provided salt correction for duplex initializtion.

• #define MAXALPHA 20

Maximal length of alphabet.

## **Typedefs**

typedef struct vrna\_md\_s vrna\_md\_t

Typename for the model details data structure vrna\_md\_s.

#### **Functions**

void vrna md set default (vrna md t \*md)

Apply default model details to a provided vrna md t data structure.

void vrna\_md\_update (vrna\_md\_t \*md)

Update the model details data structure.

vrna\_md\_t \* vrna\_md\_copy (vrna\_md\_t \*md\_to, const vrna\_md\_t \*md\_from)

Copy/Clone a vrna\_md\_t model.

char \* vrna\_md\_option\_string (vrna\_md\_t \*md)

Get a corresponding commandline parameter string of the options in a vrna\_md\_t.

void vrna\_md\_defaults\_reset (vrna\_md\_t \*md\_p)

Reset the global default model details to a specific set of parameters, or their initial values.

void vrna\_md\_defaults\_temperature (double T)

Set default temperature for energy evaluation of loops.

· double vrna md defaults temperature get (void)

Get default temperature for energy evaluation of loops.

• void vrna\_md\_defaults\_betaScale (double b)

Set default scaling factor of thermodynamic temperature in Boltzmann factors.

• double vrna\_md\_defaults\_betaScale\_get (void)

Get default scaling factor of thermodynamic temperature in Boltzmann factors.

void vrna\_md\_defaults\_dangles (int d)

Set default dangle model for structure prediction.

int vrna\_md\_defaults\_dangles\_get (void)

Get default dangle model for structure prediction.

void vrna\_md\_defaults\_special\_hp (int flag)

Set default behavior for lookup of tabulated free energies for special hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

int vrna\_md\_defaults\_special\_hp\_get (void)

Get default behavior for lookup of tabulated free energies for special hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

void vrna\_md\_defaults\_noLP (int flag)

Set default behavior for prediction of canonical secondary structures.

int vrna\_md\_defaults\_noLP\_get (void)

Get default behavior for prediction of canonical secondary structures.

void vrna\_md\_defaults\_noGU (int flag)

Set default behavior for treatment of G-U wobble pairs.

int vrna\_md\_defaults\_noGU\_get (void)

Get default behavior for treatment of G-U wobble pairs.

void vrna\_md\_defaults\_noGUclosure (int flag)

Set default behavior for G-U pairs as closing pair for loops.

int vrna\_md\_defaults\_noGUclosure\_get (void)

Get default behavior for G-U pairs as closing pair for loops.

· void vrna md defaults logML (int flag)

Set default behavior recomputing free energies of multi-branch loops using a logarithmic model.

• int vrna\_md\_defaults\_logML\_get (void)

Get default behavior recomputing free energies of multi-branch loops using a logarithmic model.

· void vrna md defaults circ (int flag)

Set default behavior whether input sequences are circularized.

• int vrna\_md\_defaults\_circ\_get (void)

Get default behavior whether input sequences are circularized.

void vrna\_md\_defaults\_gquad (int flag)

Set default behavior for treatment of G-Quadruplexes.

int vrna\_md\_defaults\_gquad\_get (void)

Get default behavior for treatment of G-Quadruplexes.

void vrna\_md\_defaults\_uniq\_ML (int flag)

Set default behavior for creating additional matrix for unique multi-branch loop prediction.

int vrna md defaults uniq ML get (void)

Get default behavior for creating additional matrix for unique multi-branch loop prediction.

void vrna\_md\_defaults\_energy\_set (int e)

Set default energy set.

int vrna md defaults energy set get (void)

Get default energy set.

void vrna\_md\_defaults\_backtrack (int flag)

Set default behavior for whether to backtrack secondary structures.

int vrna\_md\_defaults\_backtrack\_get (void)

Get default behavior for whether to backtrack secondary structures.

• void vrna\_md\_defaults\_backtrack\_type (char t)

Set default backtrack type, i.e. which DP matrix is used.

char vrna\_md\_defaults\_backtrack\_type\_get (void)

Get default backtrack type, i.e. which DP matrix is used.

void vrna\_md\_defaults\_compute\_bpp (int flag)

Set the default behavior for whether to compute base pair probabilities after partition function computation.

int vrna\_md\_defaults\_compute\_bpp\_get (void)

Get the default behavior for whether to compute base pair probabilities after partition function computation.

void vrna\_md\_defaults\_max\_bp\_span (int span)

Set default maximal base pair span.

int vrna\_md\_defaults\_max\_bp\_span\_get (void)

Get default maximal base pair span.

void vrna\_md\_defaults\_min\_loop\_size (int size)

Set default minimal loop size.

int vrna\_md\_defaults\_min\_loop\_size\_get (void)

Get default minimal loop size.

· void vrna md defaults window size (int size)

Set default window size for sliding window structure prediction approaches.

int vrna\_md\_defaults\_window\_size\_get (void)

Get default window size for sliding window structure prediction approaches.

void vrna md defaults oldAliEn (int flag)

Set default behavior for whether to use old energy model for comparative structure prediction.

int vrna\_md\_defaults\_oldAliEn\_get (void)

Get default behavior for whether to use old energy model for comparative structure prediction.

void vrna\_md\_defaults\_ribo (int flag)

Set default behavior for whether to use Ribosum Scoring in comparative structure prediction.

• int vrna\_md\_defaults\_ribo\_get (void)

Get default behavior for whether to use Ribosum Scoring in comparative structure prediction.

• void vrna\_md\_defaults\_cv\_fact (double factor)

Set the default co-variance scaling factor used in comparative structure prediction.

double vrna\_md\_defaults\_cv\_fact\_get (void)

Get the default co-variance scaling factor used in comparative structure prediction.

- · void vrna md defaults nc fact (double factor)
- double vrna\_md\_defaults\_nc\_fact\_get (void)

void vrna\_md\_defaults\_sfact (double factor)

Set the default scaling factor used to avoid under-/overflows in partition function computation.

• double vrna\_md\_defaults\_sfact\_get (void)

Get the default scaling factor used to avoid under-/overflows in partition function computation.

void vrna\_md\_defaults\_salt (double salt)

Set the default salt concentration.

double vrna\_md\_defaults\_salt\_get (void)

Get the default salt concentration.

void vrna\_md\_defaults\_saltMLLower (int lower)

Set the default multiloop size lower bound for loop salt correciton linear fitting.

int vrna\_md\_defaults\_saltMLLower\_get (void)

Get the default multiloop size lower bound for loop salt correciton linear fitting.

void vrna\_md\_defaults\_saltMLUpper (int upper)

Set the default multiloop size upper bound for loop salt correciton linear fitting.

int vrna\_md\_defaults\_saltMLUpper\_get (void)

Get the default multiloop size upper bound for loop salt correciton linear fitting.

void vrna\_md\_defaults\_saltDPXInit (int value)

Set user-provided salt correciton for duplex initialization If value is 99999 the default value from fitting is used.

int vrna\_md\_defaults\_saltDPXInit\_get (void)

Get user-provided salt correciton for duplex initialization If value is 99999 the default value from fitting is used.

void set\_model\_details (vrna\_md\_t \*md)

Set default model details.

### **Variables**

· double temperature

Rescale energy parameters to a temperature in degC.

double pf\_scale

A scaling factor used by pf\_fold() to avoid overflows.

· int dangles

Switch the energy model for dangling end contributions (0, 1, 2, 3)

int tetra\_loop

Include special stabilizing energies for some tri-, tetra- and hexa-loops;.

· int noLonelyPairs

Global switch to avoid/allow helices of length 1.

int noGU

Global switch to forbid/allow GU base pairs at all.

int no\_closingGU

GU allowed only inside stacks if set to 1.

· int circ

backward compatibility variable.. this does not effect anything

int gquad

Allow G-quadruplex formation.

· int uniq ML

do ML decomposition uniquely (for subopt)

· int energy\_set

0 = BP; 1=any with GC; 2=any with AU-parameter

· int do backtrack

do backtracking, i.e. compute secondary structures or base pair probabilities

char backtrack\_type

A backtrack array marker for inverse\_fold()

• char \* nonstandards

contains allowed non standard base pairs

• int max\_bp\_span

Maximum allowed base pair span.

· int oldAliEn

use old alifold energies (with gaps)

· int ribo

use ribosum matrices

int logML

if nonzero use logarithmic ML energy in energy\_of\_struct

· double salt

salt concentration

· int saltDPXInit

Salt correction for duplex initialization.

## 16.6.2 Data Structure Documentation

#### 16.6.2.1 struct vrna\_md\_s

The data structure that contains the complete model details used throughout the calculations.

For convenience reasons, we provide the type name <a href="vrna\_md\_t">vrna\_md\_t</a> to address this data structure without the use of the struct keyword

See also

vrna\_md\_set\_default(), set\_model\_details(), vrna\_md\_update(), vrna\_md\_t

**SWIG Wrapper Notes** This data structure is wrapped as an object **md** with multiple related functions attached as methods.

A new set of default parameters can be obtained by calling the constructure of  $\mathbf{md}$ :

• md() - Initialize with default settings

The resulting object has a list of attached methods which directly correspond to functions that mainly operate on the corresponding C data structure:

- reset() vrna\_md\_set\_default()
- set from globals() set model details()
- option\_string() vrna\_md\_option\_string()

Note, that default parameters can be modified by directly setting any of the following global variables. Internally, getting/setting default parameters using their global variable representative translates into calls of the following functions, therefore these wrappers for these functions do not exist in the scripting language interface(s):

| global variable | C getter                           | C setter                       |
|-----------------|------------------------------------|--------------------------------|
| temperature     | vrna_md_defaults_temperature_get() | vrna_md_defaults_temperature() |
| dangles         | vrna_md_defaults_dangles_get()     | vrna_md_defaults_dangles()     |
| betaScale       | vrna_md_defaults_betaScale_get()   | vrna_md_defaults_betaScale()   |
| tetra_loop      | this is an alias of special_hp     |                                |
| special_hp      | vrna_md_defaults_special_hp_get()  | vrna_md_defaults_special_hp()  |
| noLonelyPairs   | this is an alias of <i>noLP</i>    |                                |
| noLP            | vrna_md_defaults_noLP_get()        | vrna_md_defaults_noLP()        |

| global variable | C getter                              | C setter                          |
|-----------------|---------------------------------------|-----------------------------------|
| noGU            | vrna_md_defaults_noGU_get()           | vrna_md_defaults_noGU()           |
| no_closingGU    | this is an alias of noGUclosure       |                                   |
| noGUclosure     | vrna_md_defaults_noGUclosure_get()    | vrna_md_defaults_noGUclosure()    |
| logML           | vrna_md_defaults_logML_get()          | vrna_md_defaults_logML()          |
| circ            | vrna_md_defaults_circ_get()           | vrna_md_defaults_circ()           |
| gquad           | vrna_md_defaults_gquad_get()          | vrna_md_defaults_gquad()          |
| uniq_ML         | vrna_md_defaults_uniq_ML_get()        | vrna_md_defaults_uniq_ML()        |
| energy_set      | vrna_md_defaults_energy_set_get()     | vrna_md_defaults_energy_set()     |
| backtrack       | vrna_md_defaults_backtrack_get()      | vrna_md_defaults_backtrack()      |
| backtrack_type  | vrna_md_defaults_backtrack_type_get() | vrna_md_defaults_backtrack_type() |
| do_backtrack    | this is an alias of compute_bpp       |                                   |
| compute_bpp     | vrna_md_defaults_compute_bpp_get()    | vrna_md_defaults_compute_bpp()    |
| max_bp_span     | vrna_md_defaults_max_bp_span_get()    | vrna_md_defaults_max_bp_span()    |
| min_loop_size   | vrna_md_defaults_min_loop_size_get()  | vrna_md_defaults_min_loop_size()  |
| window_size     | vrna_md_defaults_window_size_get()    | vrna_md_defaults_window_size()    |
| oldAliEn        | vrna_md_defaults_oldAliEn_get()       | vrna_md_defaults_oldAliEn()       |
| ribo            | vrna_md_defaults_ribo_get()           | vrna_md_defaults_ribo()           |
| cv_fact         | vrna_md_defaults_cv_fact_get()        | vrna_md_defaults_cv_fact()        |
| nc_fact         | vrna_md_defaults_nc_fact_get()        | vrna_md_defaults_nc_fact()        |
| sfact           | vrna_md_defaults_sfact_get()          | vrna_md_defaults_sfact()          |

### **Data Fields**

· double temperature

The temperature used to scale the thermodynamic parameters.

• double betaScale

A scaling factor for the thermodynamic temperature of the Boltzmann factors.

int pf\_smooth

A flat specifying whether energies in Boltzmann factors need to be smoothed.

• int dangles

Specifies the dangle model used in any energy evaluation (0,1,2 or 3)

int special\_hp

Include special hairpin contributions for tri, tetra and hexaloops.

· int noLP

Only consider canonical structures, i.e. no 'lonely' base pairs.

int noGU

Do not allow GU pairs.

· int noGUclosure

Do not allow loops to be closed by GU pair.

int logML

Use logarithmic scaling for multiloops.

· int circ

Assume RNA to be circular instead of linear.

• int gquad

Include G-quadruplexes in structure prediction.

int uniq ML

Flag to ensure unique multi-branch loop decomposition during folding.

int energy\_set

Specifies the energy set that defines set of compatible base pairs.

### · int backtrack

Specifies whether or not secondary structures should be backtraced.

## char backtrack\_type

Specifies in which matrix to backtrack.

### int compute\_bpp

Specifies whether or not backward recursions for base pair probability (bpp) computation will be performed.

### • char nonstandards [64]

contains allowed non standard bases

### int max\_bp\_span

maximum allowed base pair span

### · int min\_loop\_size

Minimum size of hairpin loops.

## • int window\_size

Size of the sliding window for locally optimal structure prediction.

#### · int oldAliEn

Use old alifold energy model.

#### · int ribo

Use ribosum scoring table in alifold energy model.

### · double cv\_fact

Co-variance scaling factor for consensus structure prediction.

#### double nc fact

Scaling factor to weight co-variance contributions of non-canonical pairs.

#### · double sfact

Scaling factor for partition function scaling.

### • int rtype [8]

Reverse base pair type array.

#### short alias [MAXALPHA+1]

alias of an integer nucleotide representation

# int pair [MAXALPHA+1][MAXALPHA+1]

Integer representation of a base pair.

### • float pair\_dist [7][7]

Base pair dissimilarity, a.k.a. distance matrix.

#### · double salt

Salt (monovalent) concentration (M) in buffer.

# • int saltMLLower

Lower bound of multiloop size to use in loop salt correction linear fitting.

### · int saltMLUpper

Upper bound of multiloop size to use in loop salt correction linear fitting.

## int saltDPXInit

User-provided salt correction for duplex initialization (in dcal/mol). If set to 99999 the default salt correction is used. If set to 0 there is no salt correction for duplex initialization.

### 16.6.2.1.1 Field Documentation

```
16.6.2.1.1.1 dangles int vrna_md_s::dangles
```

Specifies the dangle model used in any energy evaluation (0,1,2 or 3)

If set to 0 no stabilizing energies are assigned to bases adjacent to helices in free ends and multiloops (so called dangling ends). Normally (dangles = 1) dangling end energies are assigned only to unpaired bases and a base cannot participate simultaneously in two dangling ends. In the partition function algorithm vrna\_pf() these checks are neglected. To provide comparability between free energy minimization and partition function algorithms, the default setting is 2. This treatment of dangling ends gives more favorable energies to helices directly adjacent to one another, which can be beneficial since such helices often do engage in stabilizing interactions through co-axial stacking.

If set to 3 co-axial stacking is explicitly included for adjacent helices in multiloops. The option affects only mfe folding and energy evaluation (vrna\_mfe() and vrna\_eval\_structure()), as well as suboptimal folding (vrna\_subopt()) via re-evaluation of energies. Co-axial stacking with one intervening mismatch is not considered so far.

Note

Some function do not implement all dangle model but only a subset of (0,1,2,3). In particular, partition function algorithms can only handle 0 and 2. Read the documentation of the particular recurrences or energy evaluation function for information about the provided dangle model.

```
16.6.2.1.1.2 min_loop_size int vrna_md_s::min_loop_size
```

Minimum size of hairpin loops.

Note

The default value for this field is TURN, however, it may be 0 in cofolding context.

#### 16.6.3 Macro Definition Documentation

## 16.6.3.1 VRNA\_MODEL\_DEFAULT\_TEMPERATURE

```
#define VRNA_MODEL_DEFAULT_TEMPERATURE 37.0
#include <ViennaRNA/model.h>
```

Default temperature for structure prediction and free energy evaluation in  ${}^{\circ}C$ 

See also

vrna\_md\_t.temperature, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.2 VRNA\_MODEL\_DEFAULT\_PF\_SCALE

```
#define VRNA_MODEL_DEFAULT_PF_SCALE -1
#include <ViennaRNA/model.h>
```

Default scaling factor for partition function computations.

See also

vrna\_exp\_param\_t.pf\_scale, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.3 VRNA\_MODEL\_DEFAULT\_BETA\_SCALE

```
#define VRNA_MODEL_DEFAULT_BETA_SCALE 1.
#include <ViennaRNA/model.h>
```

Default scaling factor for absolute thermodynamic temperature in Boltzmann factors.

See also

vrna exp param t.alpha, vrna md t.betaScale, vrna md defaults reset(), vrna md set default()

## 16.6.3.4 VRNA\_MODEL\_DEFAULT\_DANGLES

```
#define VRNA_MODEL_DEFAULT_DANGLES 2
#include <ViennaRNA/model.h>
```

Default dangling end model.

See also

vrna\_md\_t.dangles, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.5 VRNA\_MODEL\_DEFAULT\_SPECIAL\_HP

```
#define VRNA_MODEL_DEFAULT_SPECIAL_HP 1
#include <ViennaRNA/model.h>
```

Default model behavior for lookup of special tri-, tetra-, and hexa-loops.

See also

vrna\_md\_t.special\_hp, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

### 16.6.3.6 VRNA MODEL DEFAULT NO LP

```
#define VRNA_MODEL_DEFAULT_NO_LP 0
#include <ViennaRNA/model.h>
```

Default model behavior for so-called 'lonely pairs'.

See also

vrna md t.noLP, vrna md defaults reset(), vrna md set default()

# 16.6.3.7 VRNA\_MODEL\_DEFAULT\_NO\_GU

```
#define VRNA_MODEL_DEFAULT_NO_GU 0
#include <ViennaRNA/model.h>
```

Default model behavior for G-U base pairs.

See also

vrna\_md\_t.noGU, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.8 VRNA\_MODEL\_DEFAULT\_NO\_GU\_CLOSURE

```
#define VRNA_MODEL_DEFAULT_NO_GU_CLOSURE 0
#include <ViennaRNA/model.h>
```

Default model behavior for G-U base pairs closing a loop.

See also

vrna\_md\_t.noGUclosure, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

### 16.6.3.9 VRNA MODEL DEFAULT CIRC

```
#define VRNA_MODEL_DEFAULT_CIRC 0
#include <ViennaRNA/model.h>
```

Default model behavior to treat a molecule as a circular RNA (DNA)

See also

vrna\_md\_t.circ, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.10 VRNA\_MODEL\_DEFAULT\_GQUAD

```
#define VRNA_MODEL_DEFAULT_GQUAD 0
#include <ViennaRNA/model.h>
```

Default model behavior regarding the treatment of G-Quadruplexes.

See also

vrna\_md\_t.gquad, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.11 VRNA\_MODEL\_DEFAULT\_UNIQ\_ML

```
#define VRNA_MODEL_DEFAULT_UNIQ_ML 0
#include <ViennaRNA/model.h>
```

Default behavior of the model regarding unique multi-branch loop decomposition.

See also

vrna\_md\_t.uniq\_ML, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

### 16.6.3.12 VRNA MODEL DEFAULT ENERGY SET

```
#define VRNA_MODEL_DEFAULT_ENERGY_SET 0
#include <ViennaRNA/model.h>
```

Default model behavior on which energy set to use.

See also

vrna\_md\_t.energy\_set, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

# 16.6.3.13 VRNA\_MODEL\_DEFAULT\_BACKTRACK

```
#define VRNA_MODEL_DEFAULT_BACKTRACK 1
#include <ViennaRNA/model.h>
```

Default model behavior with regards to backtracking of structures.

See also

vrna\_md\_t.backtrack, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

### 16.6.3.14 VRNA\_MODEL\_DEFAULT\_BACKTRACK\_TYPE

```
#define VRNA_MODEL_DEFAULT_BACKTRACK_TYPE 'F'
#include <ViennaRNA/model.h>
```

Default model behavior on what type of backtracking to perform.

See also

vrna\_md\_t.backtrack\_type, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

### 16.6.3.15 VRNA MODEL DEFAULT COMPUTE BPP

```
#define VRNA_MODEL_DEFAULT_COMPUTE_BPP 1
#include <ViennaRNA/model.h>
```

Default model behavior with regards to computing base pair probabilities.

See also

vrna\_md\_t.compute\_bpp, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.16 VRNA\_MODEL\_DEFAULT\_MAX\_BP\_SPAN

```
#define VRNA_MODEL_DEFAULT_MAX_BP_SPAN -1
#include <ViennaRNA/model.h>
```

Default model behavior for the allowed maximum base pair span.

See also

vrna\_md\_t.max\_bp\_span, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.17 VRNA\_MODEL\_DEFAULT\_WINDOW\_SIZE

```
#define VRNA_MODEL_DEFAULT_WINDOW_SIZE -1
#include <ViennaRNA/model.h>
```

Default model behavior for the sliding window approach.

See also

vrna\_md\_t.window\_size, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

### 16.6.3.18 VRNA\_MODEL\_DEFAULT\_LOG\_ML

```
#define VRNA_MODEL_DEFAULT_LOG_ML 0
#include <ViennaRNA/model.h>
```

Default model behavior on how to evaluate the energy contribution of multi-branch loops.

See also

vrna\_md\_t.logML, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.19 VRNA\_MODEL\_DEFAULT\_ALI\_OLD\_EN

```
#define VRNA_MODEL_DEFAULT_ALI_OLD_EN 0
#include <ViennaRNA/model.h>
```

Default model behavior for consensus structure energy evaluation.

See also

vrna\_md\_t.oldAliEn, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

### 16.6.3.20 VRNA MODEL DEFAULT ALI RIBO

```
#define VRNA_MODEL_DEFAULT_ALI_RIBO 0
#include <ViennaRNA/model.h>
```

Default model behavior for consensus structure co-variance contribution assessment.

See also

vrna\_md\_t.ribo, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

## 16.6.3.21 VRNA\_MODEL\_DEFAULT\_ALI\_CV\_FACT

```
#define VRNA_MODEL_DEFAULT_ALI_CV_FACT 1.
#include <ViennaRNA/model.h>
```

Default model behavior for weighting the co-variance score in consensus structure prediction.

See also

vrna\_md\_t.cv\_fact, vrna\_md\_defaults\_reset(), vrna\_md\_set\_default()

### 16.6.3.22 VRNA\_MODEL\_DEFAULT\_ALI\_NC\_FACT

```
#define VRNA_MODEL_DEFAULT_ALI_NC_FACT 1.
#include <ViennaRNA/model.h>
```

Default model behavior for weighting the nucleotide conservation? in consensus structure prediction.

See also

```
vrna_md_t.nc_fact, vrna_md_defaults_reset(), vrna_md_set_default()
```

### 16.6.4 Function Documentation

### 16.6.4.1 vrna\_md\_set\_default()

Apply default model details to a provided vrna\_md\_t data structure.

Use this function to initialize a vrna\_md\_t data structure with its default values

#### **Parameters**

md A pointer to the data structure that is about to be initialized

# 16.6.4.2 vrna\_md\_update()

Update the model details data structure.

This function should be called after changing the vrna\_md\_t.energy\_set attribute since it re-initializes base pairing related arrays within the vrna\_md\_t data structure. In particular, vrna\_md\_t.pair, vrna\_md\_t.alias, and vrna md t.rtype are set to the values that correspond to the specified vrna md t.energy set option

See also

```
vrna_md_t, vrna_md_t.energy_set, vrna_md_t.pair, vrna_md_t.rtype, vrna_md_t.alias, vrna_md_set_default()
```

## 16.6.4.3 vrna\_md\_copy()

Copy/Clone a vrna\_md\_t model.

Use this function to clone a given model either inplace (target container  $md\_to$  given) or create a copy by cloning the source model and returning it ( $md\_to == NULL$ ).

### **Parameters**

| md_to   | The model to be overwritten (if non-NULL and md_to != md_from) |
|---------|----------------------------------------------------------------|
| md_from | The model to copy (if non-NULL)                                |

#### Returns

A pointer to the copy model (or NULL if md\_from == NULL)

## 16.6.4.4 vrna\_md\_option\_string()

Get a corresponding commandline parameter string of the options in a vrna\_md\_t.

Note

This function is not threadsafe!

## 16.6.4.5 vrna\_md\_defaults\_reset()

Reset the global default model details to a specific set of parameters, or their initial values.

This function resets the global default model details to their initial values, i.e. as specified by the ViennaRNA Package release, upon passing NULL as argument. Alternatively it resets them according to a set of provided parameters.

Note

The global default parameters affect all function calls of RNAlib where model details are not explicitly provided. Hence, any change of them is not considered threadsafe

### Warning

This function first resets the global default settings to factory defaults, and only then applies user provided settings (if any). User settings that do not meet specifications are skipped.

#### See also

```
vrna_md_set_default(), vrna_md_t
```

## **Parameters**

| md← | A set of model details to use as global default (if NULL is passed, factory defaults are restored) |
|-----|----------------------------------------------------------------------------------------------------|
| _p  |                                                                                                    |

## 16.6.4.6 vrna\_md\_defaults\_temperature()

Set default temperature for energy evaluation of loops.

#### See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_TEMPERATURE

#### **Parameters**

T Temperature in centigrade

## 16.6.4.7 vrna\_md\_defaults\_temperature\_get()

Get default temperature for energy evaluation of loops.

#### See also

vrna\_md\_defaults\_temperature(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_TE

### Returns

The global default settings for temperature in centigrade

## 16.6.4.8 vrna\_md\_defaults\_betaScale()

Set default scaling factor of thermodynamic temperature in Boltzmann factors.

Bolzmann factors are then computed as  $exp(-E/(b \cdot kT))$ .

## See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_BETA\_SCALE

#### **Parameters**

```
b The scaling factor, default is 1.0
```

## 16.6.4.9 vrna\_md\_defaults\_betaScale\_get()

Get default scaling factor of thermodynamic temperature in Boltzmann factors.

#### See also

vrna\_md\_defaults\_betaScale(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_BET

### Returns

The global default thermodynamic temperature scaling factor

## 16.6.4.10 vrna\_md\_defaults\_dangles()

Set default dangle model for structure prediction.

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_DANGLES

#### **Parameters**

```
d The dangle model
```

### 16.6.4.11 vrna\_md\_defaults\_dangles\_get()

Get default dangle model for structure prediction.

See also

vrna\_md\_defaults\_dangles(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_DANG

Returns

The global default settings for the dangle model

# 16.6.4.12 vrna\_md\_defaults\_special\_hp()

Set default behavior for lookup of tabulated free energies for special hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_SPECIAL\_HP

## **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

### 16.6.4.13 vrna\_md\_defaults\_special\_hp\_get()

Get default behavior for lookup of tabulated free energies for special hairpin loops, such as Tri-, Tetra-, or Hexaloops.

See also

vrna\_md\_defaults\_special\_hp(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_SPI

#### Returns

The global default settings for the treatment of special hairpin loops

## 16.6.4.14 vrna\_md\_defaults\_noLP()

Set default behavior for prediction of canonical secondary structures.

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_NO\_LP

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

### 16.6.4.15 vrna\_md\_defaults\_noLP\_get()

Get default behavior for prediction of canonical secondary structures.

See also

vrna\_md\_defaults\_noLP(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_NO\_LP

### Returns

The global default settings for predicting canonical secondary structures

### 16.6.4.16 vrna\_md\_defaults\_noGU()

```
void vrna_md_defaults_noGU (
         int flag )
#include <ViennaRNA/model.h>
```

Set default behavior for treatment of G-U wobble pairs.

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_NO\_GU

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

### 16.6.4.17 vrna\_md\_defaults\_noGU\_get()

Get default behavior for treatment of G-U wobble pairs.

See also

 $vrna\_md\_defaults\_noGU(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_NO\_GU(), vrna\_md\_defaults\_noGU(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, vrna\_t, vr$ 

Returns

The global default settings for treatment of G-U wobble pairs

### 16.6.4.18 vrna\_md\_defaults\_noGUclosure()

Set default behavior for G-U pairs as closing pair for loops.

See also

vrna md defaults reset(), vrna md set default(), vrna md t, VRNA MODEL DEFAULT NO GU CLOSURE

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

#### 16.6.4.19 vrna md defaults noGUclosure get()

Get default behavior for G-U pairs as closing pair for loops.

See also

vrna\_md\_defaults\_noGUclosure(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_N

Returns

The global default settings for treatment of G-U pairs closing a loop

## 16.6.4.20 vrna\_md\_defaults\_logML()

Set default behavior recomputing free energies of multi-branch loops using a logarithmic model.

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_LOG\_ML

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

# 16.6.4.21 vrna\_md\_defaults\_logML\_get()

Get default behavior recomputing free energies of multi-branch loops using a logarithmic model.

#### See also

vrna\_md\_defaults\_logML(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_LOG\_M

### Returns

The global default settings for logarithmic model in multi-branch loop free energy evaluation

### 16.6.4.22 vrna\_md\_defaults\_circ()

Set default behavior whether input sequences are circularized.

#### See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_CIRC

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

# 16.6.4.23 vrna\_md\_defaults\_circ\_get()

Get default behavior whether input sequences are circularized.

# See also

vrna\_md\_defaults\_circ(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_CIRC

### Returns

The global default settings for treating input sequences as circular

## 16.6.4.24 vrna\_md\_defaults\_gquad()

```
#include <ViennaRNA/model.h>
```

Set default behavior for treatment of G-Quadruplexes.

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_GQUAD

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

### 16.6.4.25 vrna\_md\_defaults\_gquad\_get()

Get default behavior for treatment of G-Quadruplexes.

See also

vrna\_md\_defaults\_gquad(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_GQUAD

#### Returns

The global default settings for treatment of G-Quadruplexes

## 16.6.4.26 vrna\_md\_defaults\_uniq\_ML()

Set default behavior for creating additional matrix for unique multi-branch loop prediction.

Note

Activating this option usually results in higher memory consumption!

See also

```
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_UNIQ_ML
```

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

# 16.6.4.27 vrna\_md\_defaults\_uniq\_ML\_get()

Get default behavior for creating additional matrix for unique multi-branch loop prediction.

See also

 $vrna\_md\_defaults\_uniq\_ML(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_UNIQLOS (vrna\_md\_t, Vrna\_md\_t, Vrna\_t, V$ 

#### Returns

The global default settings for creating additional matrices for unique multi-branch loop prediction

## 16.6.4.28 vrna\_md\_defaults\_energy\_set()

#### See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_ENERGY\_SET

#### **Parameters**

```
e Energy set (0, 1, 2, 3)
```

### 16.6.4.29 vrna\_md\_defaults\_energy\_set\_get()

Get default energy set.

See also

vrna\_md\_defaults\_energy\_set(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_EN

# Returns

The global default settings for the energy set

### 16.6.4.30 vrna\_md\_defaults\_backtrack()

Set default behavior for whether to backtrack secondary structures.

### See also

vrna md defaults reset(), vrna md set default(), vrna md t, VRNA MODEL DEFAULT BACKTRACK

### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

#### 16.6.4.31 vrna\_md\_defaults\_backtrack\_get()

Get default behavior for whether to backtrack secondary structures.

See also

vrna\_md\_defaults\_backtrack(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_BAC

Returns

The global default settings for backtracking structures

### 16.6.4.32 vrna\_md\_defaults\_backtrack\_type()

See also

vrna md defaults reset(), vrna md set default(), vrna md t, VRNA MODEL DEFAULT BACKTRACK TYPE

#### **Parameters**

```
t The type ('F', 'C', or 'M')
```

### 16.6.4.33 vrna\_md\_defaults\_backtrack\_type\_get()

Get default backtrack type, i.e. which DP matrix is used.

See also

```
vrna_md_defaults_backtrack_type(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_BACKTRACK_TYPE
```

Returns

The global default settings that specify which DP matrix is used for backtracking

## 16.6.4.34 vrna\_md\_defaults\_compute\_bpp()

Set the default behavior for whether to compute base pair probabilities after partition function computation.

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_COMPUTE\_BPP

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

### 16.6.4.35 vrna\_md\_defaults\_compute\_bpp\_get()

Get the default behavior for whether to compute base pair probabilities after partition function computation.

#### See also

vrna\_md\_defaults\_compute\_bpp(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_0

#### Returns

The global default settings that specify whether base pair probabilities are computed together with partition function

## 16.6.4.36 vrna\_md\_defaults\_max\_bp\_span()

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_MAX\_BP\_SPAN

### **Parameters**

span Maximal base pair span

## 16.6.4.37 vrna\_md\_defaults\_max\_bp\_span\_get()

Get default maximal base pair span.

See also

vrna\_md\_defaults\_max\_bp\_span(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_

## Returns

The global default settings for maximum base pair span

## 16.6.4.38 vrna\_md\_defaults\_min\_loop\_size()

```
#include <ViennaRNA/model.h>
```

Set default minimal loop size.

See also

```
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, TURN
```

#### **Parameters**

size | Minimal size, i.e. number of unpaired nucleotides for a hairpin loop

### 16.6.4.39 vrna\_md\_defaults\_min\_loop\_size\_get()

Get default minimal loop size.

See also

```
vrna_md_defaults_min_loop_size(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, TURN
```

Returns

The global default settings for minimal size of hairpin loops

## 16.6.4.40 vrna\_md\_defaults\_window\_size()

Set default window size for sliding window structure prediction approaches.

See also

vrna md defaults reset(), vrna md set default(), vrna md t, VRNA MODEL DEFAULT WINDOW SIZE

## **Parameters**

size The size of the sliding window

### 16.6.4.41 vrna\_md\_defaults\_window\_size\_get()

Get default window size for sliding window structure prediction approaches.

See also

vrna\_md\_defaults\_window\_size(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_W

#### Returns

The global default settings for the size of the sliding window

### 16.6.4.42 vrna\_md\_defaults\_oldAliEn()

Set default behavior for whether to use old energy model for comparative structure prediction.

#### Note

This option is outdated. Activating the old energy model usually results in worse consensus structure predictions.

#### See also

vrna md defaults reset(), vrna md set default(), vrna md t, VRNA MODEL DEFAULT ALI OLD EN

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

### 16.6.4.43 vrna\_md\_defaults\_oldAliEn\_get()

Get default behavior for whether to use old energy model for comparative structure prediction.

### See also

vrna\_md\_defaults\_oldAliEn(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_ALI\_C

## Returns

The global default settings for using old energy model for comparative structure prediction

# 16.6.4.44 vrna\_md\_defaults\_ribo()

Set default behavior for whether to use Ribosum Scoring in comparative structure prediction.

#### See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_ALI\_RIBO

#### **Parameters**

```
flag On/Off switch (0 = OFF, else = ON)
```

### 16.6.4.45 vrna\_md\_defaults\_ribo\_get()

Get default behavior for whether to use Ribosum Scoring in comparative structure prediction.

See also

```
vrna_md_defaults_ribo(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_ALI_RIBO
```

Returns

The global default settings for using Ribosum scoring in comparative structure prediction

### 16.6.4.46 vrna\_md\_defaults\_cv\_fact()

Set the default co-variance scaling factor used in comparative structure prediction.

See also

```
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_ALI_CV_FACT
```

#### **Parameters**

| factor | The co-variance factor |
|--------|------------------------|
|--------|------------------------|

### 16.6.4.47 vrna\_md\_defaults\_cv\_fact\_get()

Get the default co-variance scaling factor used in comparative structure prediction.

See also

```
vrna_md_defaults_cv_fact(), vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t, VRNA_MODEL_DEFAULT_ALI_C\
```

Returns

The global default settings for the co-variance factor

### 16.6.4.48 vrna\_md\_defaults\_nc\_fact()

See also

vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_ALI\_NC\_FACT

#### **Parameters**

factor

### 16.6.4.49 vrna\_md\_defaults\_nc\_fact\_get()

#### See also

vrna\_md\_defaults\_nc\_fact(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t, VRNA\_MODEL\_DEFAULT\_ALI\_NC

Returns

## 16.6.4.50 vrna\_md\_defaults\_sfact()

Set the default scaling factor used to avoid under-/overflows in partition function computation.

See also

```
vrna_md_defaults_reset(), vrna_md_set_default(), vrna_md_t
```

#### **Parameters**

factor The scaling factor (default: 1.07)

## 16.6.4.51 vrna\_md\_defaults\_sfact\_get()

Get the default scaling factor used to avoid under-/overflows in partition function computation.

See also

vrna\_md\_defaults\_sfact(), vrna\_md\_defaults\_reset(), vrna\_md\_set\_default(), vrna\_md\_t

Returns

The global default settings of the scaling factor

## 16.6.4.52 vrna\_md\_defaults\_salt()

Set the default salt concentration.

#### **Parameters**

salt The sodium concentration in M (default: 1.021)

## 16.6.4.53 vrna\_md\_defaults\_salt\_get()

Get the default salt concentration.

#### Returns

The default salt concentration

### 16.6.4.54 vrna\_md\_defaults\_saltMLLower()

Set the default multiloop size lower bound for loop salt correciton linear fitting.

#### **Parameters**

lower | Size lower bound (number of backbone in loop)

## 16.6.4.55 vrna\_md\_defaults\_saltMLLower\_get()

Get the default multiloop size lower bound for loop salt correciton linear fitting.

### Returns

The default lower bound

## 16.6.4.56 vrna\_md\_defaults\_saltMLUpper()

Set the default multiloop size upper bound for loop salt correciton linear fitting.

### **Parameters**

*upper* | Size Upper bound (number of backbone in loop)

#### 16.6.4.57 vrna\_md\_defaults\_saltMLUpper\_get()

Get the default multiloop size upper bound for loop salt correciton linear fitting.

#### Returns

The default upper bound

### 16.6.4.58 vrna md defaults saltDPXInit()

Set user-provided salt correciton for duplex initialization If value is 99999 the default value from fitting is used.

#### **Parameters**

value The value of salt correction for duplex initialization (in dcal/mol)

### 16.6.4.59 vrna\_md\_defaults\_saltDPXInit\_get()

Get user-provided salt correciton for duplex initialization If value is 99999 the default value from fitting is used.

### Returns

The user-provided salt correction for duplex initialization

### 16.6.4.60 set\_model\_details()

Set default model details.

Use this function if you wish to initialize a vrna\_md\_t data structure with its default values, i.e. the global model settings as provided by the deprecated global variables.

Deprecated This function will vanish as soon as backward compatibility of RNAlib is dropped (expected in version 3). Use vrna md set default() instead!

### **Parameters**

md A pointer to the data structure that is about to be initialized

### 16.6.5 Variable Documentation

## 16.6.5.1 temperature

```
double temperature [extern]
#include <ViennaRNA/model.h>
```

Rescale energy parameters to a temperature in degC.

Default is 37C. You have to call the update\_...\_params() functions after changing this parameter.

**Deprecated** Use vrna\_md\_defaults\_temperature(), and vrna\_md\_defaults\_temperature\_get() to change, and read the global default temperature settings

See also

vrna\_md\_defaults\_temperature(), vrna\_md\_defaults\_temperature\_get(), vrna\_md\_defaults\_reset()

### 16.6.5.2 pf scale

```
double pf_scale [extern]
#include <ViennaRNA/model.h>
```

A scaling factor used by pf\_fold() to avoid overflows.

Should be set to approximately exp((-F/kT)/length), where F is an estimate for the ensemble free energy, for example the minimum free energy. You must call update pf params() after changing this parameter.

If pf\_scale is -1 (the default), an estimate will be provided automatically when computing partition functions, e.g. pf\_fold() The automatic estimate is usually insufficient for sequences more than a few hundred bases long.

### 16.6.5.3 dangles

```
int dangles [extern]
#include <ViennaRNA/model.h>
```

Switch the energy model for dangling end contributions (0, 1, 2, 3)

If set to 0 no stabilizing energies are assigned to bases adjacent to helices in free ends and multiloops (so called dangling ends). Normally (dangles = 1) dangling end energies are assigned only to unpaired bases and a base cannot participate simultaneously in two dangling ends. In the partition function algorithm pf\_fold() these checks are neglected. If dangles is set to 2, all folding routines will follow this convention. This treatment of dangling ends gives more favorable energies to helices directly adjacent to one another, which can be beneficial since such helices often do engage in stabilizing interactions through co-axial stacking.

If dangles = 3 co-axial stacking is explicitly included for adjacent helices in multiloops. The option affects only mfe folding and energy evaluation (fold() and energy\_of\_structure()), as well as suboptimal folding (subopt()) via re-evaluation of energies. Co-axial stacking with one intervening mismatch is not considered so far.

Default is 2 in most algorithms, partition function algorithms can only handle 0 and 2

#### 16.6.5.4 tetra loop

```
int tetra_loop [extern]
#include <ViennaRNA/model.h>
Include special stabilizing energies for some tri-, tetra- and hexa-loops;.
default is 1.
```

#### 16.6.5.5 noLonelyPairs

```
int noLonelyPairs [extern]
#include <ViennaRNA/model.h>
```

Global switch to avoid/allow helices of length 1.

Disallow all pairs which can only occur as lonely pairs (i.e. as helix of length 1). This avoids lonely base pairs in the predicted structures in most cases.

#### 16.6.5.6 energy\_set

```
int energy_set [extern]
```

```
#include <ViennaRNA/model.h>
```

0 = BP; 1=any with GC; 2=any with AU-parameter

If set to 1 or 2: fold sequences from an artificial alphabet ABCD..., where A pairs B, C pairs D, etc. using either GC (1) or AU parameters (2); default is 0, you probably don't want to change it.

### 16.6.5.7 do\_backtrack

```
int do_backtrack [extern]
#include <ViennaRNA/model.h>
```

do backtracking, i.e. compute secondary structures or base pair probabilities

If 0, do not calculate pair probabilities in pf\_fold(); this is about twice as fast. Default is 1.

### 16.6.5.8 backtrack\_type

```
char backtrack_type [extern]
#include <ViennaRNA/model.h>
```

A backtrack array marker for inverse\_fold()

If set to 'C': force (1,N) to be paired, 'M' fold as if the sequence were inside a multiloop. Otherwise ('F') the usual mfe structure is computed.

#### 16.6.5.9 nonstandards

```
char* nonstandards [extern]
#include <ViennaRNA/model.h>
```

contains allowed non standard base pairs

Lists additional base pairs that will be allowed to form in addition to GC, CG, AU, UA, GU and UG. Nonstandard base pairs are given a stacking energy of 0.

### 16.6.5.10 max\_bp\_span

```
int max_bp_span [extern]
#include <ViennaRNA/model.h>
```

Maximum allowed base pair span.

A value of -1 indicates no restriction for distant base pairs.

# 16.7 Energy Parameters

All relevant functions to retrieve and copy pre-calculated energy parameter sets as well as reading/writing the energy parameter set from/to file(s).

# 16.7.1 Detailed Description

All relevant functions to retrieve and copy pre-calculated energy parameter sets as well as reading/writing the energy parameter set from/to file(s).

All relevant functions to compute salt correction at a given salt concentration and temperature.

This module covers all relevant functions for pre-calculation of the energy parameters necessary for the folding routines provided by RNAlib. Furthermore, the energy parameter set in the RNAlib can be easily exchanged by a user-defined one. It is also possible to write the current energy parameter set into a text file.

The corrections for loop and stack are taken from Einert and Netz, 2011 All corrections ruterned are in dcal/mol Collaboration diagram for Energy Parameters:

### **Modules**

Reading/Writing Energy Parameter Sets from/to File

Read and Write energy parameter sets from and to files or strings.

### **Files**

· file basic.h

Functions to deal with sets of energy parameters.

· file constants.h

Energy parameter constants.

· file convert.h

Functions and definitions for energy parameter file format conversion.

· file io.h

Read and write energy parameter files.

· file salt.h

Functions to compute salt correction.

#### **Data Structures**

• struct vrna\_param\_s

The datastructure that contains temperature scaled energy parameters. More...

struct vrna\_exp\_param\_s

The data structure that contains temperature scaled Boltzmann weights of the energy parameters. More...

### **Typedefs**

typedef struct vrna\_param\_s vrna\_param\_t

Typename for the free energy parameter data structure vrna\_params.

typedef struct vrna\_exp\_param\_s vrna\_exp\_param\_t

Typename for the Boltzmann factor data structure vrna\_exp\_params.

typedef struct vrna\_param\_s paramT

Old typename of vrna\_param\_s.

typedef struct vrna\_exp\_param\_s pf\_paramT

Old typename of vrna\_exp\_param\_s.

### **Functions**

vrna\_param\_t \* vrna\_params (vrna\_md\_t \*md)

Get a data structure containing prescaled free energy parameters.

vrna\_param\_t \* vrna\_params\_copy (vrna\_param\_t \*par)

Get a copy of the provided free energy parameters.

vrna\_exp\_param\_t \* vrna\_exp\_params (vrna\_md\_t \*md)

Get a data structure containing prescaled free energy parameters already transformed to Boltzmann factors.

vrna\_exp\_param\_t \* vrna\_exp\_params\_comparative (unsigned int n\_seq, vrna\_md\_t \*md)

Get a data structure containing prescaled free energy parameters already transformed to Boltzmann factors (alifold version)

vrna\_exp\_param\_t \* vrna\_exp\_params\_copy (vrna\_exp\_param\_t \*par)

Get a copy of the provided free energy parameters (provided as Boltzmann factors)

void vrna\_params\_subst (vrna\_fold\_compound\_t \*vc, vrna\_param\_t \*par)

Update/Reset energy parameters data structure within a vrna\_fold\_compound\_t.

void vrna exp params subst (vrna fold compound t \*vc, vrna exp param t \*params)

Update the energy parameters for subsequent partition function computations.

void vrna\_exp\_params\_rescale (vrna\_fold\_compound\_t \*vc, double \*mfe)

Rescale Boltzmann factors for partition function computations.

void vrna params reset (vrna fold compound t \*vc, vrna md t \*md p)

Reset free energy parameters within a vrna\_fold\_compound\_t according to provided, or default model details.

void vrna\_exp\_params\_reset (vrna\_fold\_compound\_t \*vc, vrna\_md\_t \*md\_p)

Reset Boltzmann factors for partition function computations within a vrna\_fold\_compound\_t according to provided, or default model details.

- vrna\_exp\_param\_t \* get\_scaled\_pf\_parameters (void)
- vrna\_exp\_param\_t \* get\_boltzmann\_factors (double temperature, double betaScale, vrna\_md\_t md, double pf\_scale)

Get precomputed Boltzmann factors of the loop type dependent energy contributions with independent thermodynamic temperature.

vrna\_exp\_param\_t \* get\_boltzmann\_factor\_copy (vrna\_exp\_param\_t \*parameters)

Get a copy of already precomputed Boltzmann factors.

vrna\_exp\_param\_t \* get\_scaled\_alipf\_parameters (unsigned int n\_seq)

Get precomputed Boltzmann factors of the loop type dependent energy contributions (alifold variant)

vrna\_exp\_param\_t \* get\_boltzmann\_factors\_ali (unsigned int n\_seq, double temperature, double betaScale, vrna md t md, double pf scale)

Get precomputed Boltzmann factors of the loop type dependent energy contributions (alifold variant) with independent thermodynamic temperature.

vrna param t \* scale parameters (void)

Get precomputed energy contributions for all the known loop types.

vrna\_param\_t \* get\_scaled\_parameters (double temperature, vrna\_md\_t md)

Get precomputed energy contributions for all the known loop types.

double vrna salt loop (int L, double salt, double T)

Get salt correction for a loop at a given salt concentration and temperature.

int vrna\_salt\_loop\_int (int L, double salt, double T)

Get salt correction for a loop at a given salt concentration and temperature.

int vrna\_salt\_stack (double salt, double T)

Get salt correction for a stack at a given salt concentration and temperature.

### 16.7.2 Data Structure Documentation

### 16.7.2.1 struct vrna\_param\_s

The datastructure that contains temperature scaled energy parameters. Collaboration diagram for vrna param s:

#### **Data Fields**

· double temperature

Temperature used for loop contribution scaling.

vrna\_md\_t model\_details

Model details to be used in the recursions.

char param\_file [256]

The filename the parameters were derived from, or empty string if they represent the default.

### 16.7.2.2 struct vrna\_exp\_param\_s

The data structure that contains temperature scaled Boltzmann weights of the energy parameters. Collaboration diagram for vrna\_exp\_param\_s:

### **Data Fields**

int id

An identifier for the data structure.

· double pf\_scale

Scaling factor to avoid over-/underflows.

double temperature

Temperature used for loop contribution scaling.

· double alpha

Scaling factor for the thermodynamic temperature.

· vrna md t model details

Model details to be used in the recursions.

• char param file [256]

The filename the parameters were derived from, or empty string if they represent the default.

#### 16.7.2.2.1 Field Documentation

```
16.7.2.2.1.1 id int vrna_exp_param_s::id
```

An identifier for the data structure.

**Deprecated** This attribute will be removed in version 3

```
16.7.2.2.1.2 alpha double vrna_exp_param_s::alpha
```

Scaling factor for the thermodynamic temperature.

This allows for temperature scaling in Boltzmann factors independently from the energy contributions. The resulting Boltzmann factors are then computed by  $e^{-E/(\alpha \cdot K \cdot T)}$ 

## 16.7.3 Typedef Documentation

#### 16.7.3.1 paramT

```
typedef struct vrna_param_s paramT
#include <ViennaRNA/params/basic.h>
Old typename of vrna_param_s.
```

**Deprecated** Use vrna param t instead!

### 16.7.3.2 pf\_paramT

```
typedef struct vrna_exp_param_s pf_paramT
#include <ViennaRNA/params/basic.h>
Old typename of vrna_exp_param_s.
```

**Deprecated** Use vrna\_exp\_param\_t instead!

### 16.7.4 Function Documentation

### 16.7.4.1 vrna\_params()

Get a data structure containing prescaled free energy parameters.

If a NULL pointer is passed for the model details parameter, the default model parameters are stored within the requested <a href="mailto:vrna\_param\_t">vrna\_param\_t</a> structure.

See also

vrna\_md\_t, vrna\_md\_set\_default(), vrna\_exp\_params()

#### **Parameters**

md A pointer to the model details to store inside the structure (Maybe NULL)

#### Returns

A pointer to the memory location where the requested parameters are stored

### 16.7.4.2 vrna\_params\_copy()

Get a copy of the provided free energy parameters.

If NULL is passed as parameter, a default set of energy parameters is created and returned.

#### See also

```
vrna_params(), vrna_param_t
```

#### **Parameters**

par | The free energy parameters that are to be copied (Maybe NULL)

### Returns

A copy or a default set of the (provided) parameters

## 16.7.4.3 vrna\_exp\_params()

Get a data structure containing prescaled free energy parameters already transformed to Boltzmann factors.

This function returns a data structure that contains all necessary precomputed energy contributions for each type of loop.

In contrast to vrna\_params(), the free energies within this data structure are stored as their Boltzmann factors, i.e. exp(-E/kT)

where E is the free energy.

If a NULL pointer is passed for the model details parameter, the default model parameters are stored within the requested <a href="mailto:vrna\_exp\_param\_t">vrna\_exp\_param\_t</a> structure.

#### See also

```
vrna_md_t, vrna_md_set_default(), vrna_params(), vrna_rescale_pf_params()
```

### **Parameters**

md A pointer to the model details to store inside the structure (Maybe NULL)

### Returns

A pointer to the memory location where the requested parameters are stored

### 16.7.4.4 vrna\_exp\_params\_comparative()

Get a data structure containing prescaled free energy parameters already transformed to Boltzmann factors (alifold version)

If a NULL pointer is passed for the model details parameter, the default model parameters are stored within the requested <a href="mailto:vrna\_exp\_param\_t">vrna\_exp\_param\_t</a> structure.

See also

```
vrna_md_t, vrna_md_set_default(), vrna_exp_params(), vrna_params()
```

#### **Parameters**

| n_seq | The number of sequences in the alignment                                  |
|-------|---------------------------------------------------------------------------|
| md    | A pointer to the model details to store inside the structure (Maybe NULL) |

#### Returns

A pointer to the memory location where the requested parameters are stored

### 16.7.4.5 vrna\_exp\_params\_copy()

Get a copy of the provided free energy parameters (provided as Boltzmann factors)

If NULL is passed as parameter, a default set of energy parameters is created and returned.

See also

```
vrna_exp_params(), vrna_exp_param_t
```

### **Parameters**

| par The free energy parameters that are to be copied (May | /be NULL) |
|-----------------------------------------------------------|-----------|
|-----------------------------------------------------------|-----------|

#### Returns

A copy or a default set of the (provided) parameters

### 16.7.4.6 vrna\_params\_subst()

Update/Reset energy parameters data structure within a vrna fold compound t.

Passing NULL as second argument leads to a reset of the energy parameters within vc to their default values. Otherwise, the energy parameters provided will be copied over into vc.

#### See also

```
vrna_params_reset(), vrna_param_t, vrna_md_t, vrna_params()
```

#### **Parameters**

| VC  | The vrna_fold_compound_t that is about to receive updated energy parameters |
|-----|-----------------------------------------------------------------------------|
| par | The energy parameters used to substitute those within vc (Maybe NULL)       |

SWIG Wrapper Notes This function is attached to vrna\_fc\_s objects as overloaded params\_subst() method.

When no parameter is passed, the resulting action is the same as passing *NULL* as second parameter to vrna\_params\_subst(), i.e. resetting the parameters to the global defaults.

#### 16.7.4.7 vrna exp params subst()

Update the energy parameters for subsequent partition function computations.

This function can be used to properly assign new energy parameters for partition function computations to a  $vrna\_fold\_compound\_t$ . For this purpose, the data of the provided pointer params will be copied into vc and a recomputation of the partition function scaling factor is issued, if the  $pf\_scale$  attribute of params is less than 1.0.

Passing NULL as second argument leads to a reset of the energy parameters within vc to their default values

### See also

```
vrna_exp_params_reset(), vrna_exp_params_rescale(), vrna_exp_param_t, vrna_md_t, vrna_exp_params()
```

### **Parameters**

| VC     | The fold compound data structure       |
|--------|----------------------------------------|
| params | A pointer to the new energy parameters |

SWIG Wrapper Notes This function is attached to vrna\_fc\_s objects as overloaded exp\_params\_subst() method.

When no parameter is passed, the resulting action is the same as passing *NULL* as second parameter to vrna\_exp\_params\_subst(), i.e. resetting the parameters to the global defaults.

### 16.7.4.8 vrna\_exp\_params\_rescale()

Rescale Boltzmann factors for partition function computations.

This function may be used to (automatically) rescale the Boltzmann factors used in partition function computations. Since partition functions over subsequences can easily become extremely large, the RNAlib internally rescales them to avoid numerical over- and/or underflow. Therefore, a proper scaling factor s needs to be chosen that in turn is then used to normalize the corresponding partition functions  $\hat{q}[i,j] = q[i,j]/s^{(j-i+1)}$ .

This function provides two ways to automatically adjust the scaling factor.

Automatic guess

### 2. Automatic adjustment according to MFE

Passing NULL as second parameter activates the *automatic guess mode*. Here, the scaling factor is recomputed according to a mean free energy of 184.3\*length cal for random sequences.

Note

This recomputation only takes place if the  $pf\_scale$  attribute of the  $exp\_params$  data structure contained in vc has a value below 1.0.

On the other hand, if the MFE for a sequence is known, it can be used to recompute a more robust scaling factor, since it represents the lowest free energy of the entire ensemble of structures, i.e. the highest Boltzmann factor. To activate this second mode of *automatic adjustment according to MFE*, a pointer to the MFE value needs to be passed as second argument. This value is then taken to compute the scaling factor as s = exp((sfact\*MFE)/kT/length), where sfact is an additional scaling weight located in the vrna\_md\_t data structure of expe\_params in vc.

The computed scaling factor s will be stored as  $pf\_scale$  attribute of the  $exp\_params$  data structure in vc.

#### See also

```
vrna_exp_params_subst(), vrna_md_t, vrna_exp_param_t, vrna_fold_compound_t
```

### **Parameters**

| VC  | The fold compound data structure           |
|-----|--------------------------------------------|
| mfe | A pointer to the MFE (in kcal/mol) or NULL |

**SWIG Wrapper Notes** This function is attached to vrna\_fc\_s objects as overloaded **exp\_params\_rescale()** method.

When no parameter is passed to this method, the resulting action is the same as passing *NULL* as second parameter to vrna\_exp\_params\_rescale(), i.e. default scaling of the partition function. Passing an energy in kcal/mol, e.g. as retrieved by a previous call to the *mfe()* method, instructs all subsequent calls to scale the partition function accordingly.

## 16.7.4.9 vrna\_params\_reset()

Reset free energy parameters within a <a href="mailto:vrna\_fold\_compound\_taccording">vrna\_fold\_compound\_taccording</a> to provided, or default model details. This function allows one to rescale free energy parameters for subsequent structure prediction or evaluation according to a set of model details, e.g. temperature values. To do so, the caller provides either a pointer to a set of model details to be used for rescaling, or NULL if global default setting should be used.

#### See also

```
vrna_exp_params_reset(), vrna_params_subs()
```

### Parameters

| VC  | The fold compound data structure                                   |
|-----|--------------------------------------------------------------------|
| md← | A pointer to the new model details (or NULL for reset to defaults) |
| _p  |                                                                    |

SWIG Wrapper Notes This function is attached to vrna\_fc\_s objects as overloaded params\_reset() method.

When no parameter is passed to this method, the resulting action is the same as passing *NULL* as second parameter to <a href="mailto:vrna\_params\_reset">vrna\_params\_reset</a>(), i.e. global default model settings are used. Passing an object of type <a href="mailto:vrna\_md\_s">vrna\_md\_s</a> resets the fold compound according to the specifications stored within the <a href="mailto:vrna\_md\_s">vrna\_md\_s</a> object.

### 16.7.4.10 vrna\_exp\_params\_reset()

Reset Boltzmann factors for partition function computations within a <a href="mailto:vrna\_fold\_compound\_">vrna\_fold\_compound\_</a> t according to provided, or default model details.

This function allows one to rescale Boltzmann factors for subsequent partition function computations according to a set of model details, e.g. temperature values. To do so, the caller provides either a pointer to a set of model details to be used for rescaling, or NULL if global default setting should be used.

#### See also

```
vrna_params_reset(), vrna_exp_params_subst(), vrna_exp_params_rescale()
```

#### **Parameters**

| VC  | The fold compound data structure                                   |
|-----|--------------------------------------------------------------------|
| md← | A pointer to the new model details (or NULL for reset to defaults) |
| _p  |                                                                    |

SWIG Wrapper Notes This function is attached to vrna fc s objects as overloaded exp params reset() method.

When no parameter is passed to this method, the resulting action is the same as passing *NULL* as second parameter to <a href="mailto:vrna\_exp\_params\_reset">vrna\_exp\_params\_reset</a>(), i.e. global default model settings are used. Passing an object of type <a href="mailto:vrna\_md\_s">vrna\_md\_s</a> resets the fold compound according to the specifications stored within the <a href="mailto:vrna\_md\_s">vrna\_md\_s</a> object.

### 16.7.4.11 get\_scaled\_pf\_parameters()

get a data structure of type vrna\_exp\_param\_t which contains the Boltzmann weights of several energy parameters scaled according to the current temperature

**Deprecated** Use vrna\_exp\_params() instead!

### Returns

The data structure containing Boltzmann weights for use in partition function calculations

#### 16.7.4.12 get\_boltzmann\_factors()

Get precomputed Boltzmann factors of the loop type dependent energy contributions with independent thermodynamic temperature.

This function returns a data structure that contains all necessary precalculated Boltzmann factors for each loop type contribution.

In contrast to get\_scaled\_pf\_parameters(), this function enables setting of independent temperatures for both, the individual energy contributions as well as the thermodynamic temperature used in  $exp(-\Delta G/kT)$ 

**Deprecated** Use vrna\_exp\_params() instead!

### See also

```
get_scaled_pf_parameters(), get_boltzmann_factor_copy()
```

#### **Parameters**

| temperature | The temperature in degrees Celcius used for (re-)scaling the energy contributions                  |
|-------------|----------------------------------------------------------------------------------------------------|
| betaScale   | A scaling value that is used as a multiplication factor for the absolute temperature of the system |
| md          | The model details to be used                                                                       |
| pf_scale    | The scaling factor for the Boltzmann factors                                                       |

#### Returns

A set of precomputed Boltzmann factors

### 16.7.4.13 get boltzmann factor copy()

Get a copy of already precomputed Boltzmann factors.

**Deprecated** Use vrna\_exp\_params\_copy() instead!

#### See also

```
get_boltzmann_factors(), get_scaled_pf_parameters()
```

## **Parameters**

| parameters | The input data structure that shall be copied |
|------------|-----------------------------------------------|

### Returns

A copy of the provided Boltzmann factor data set

## 16.7.4.14 get\_scaled\_alipf\_parameters()

Get precomputed Boltzmann factors of the loop type dependent energy contributions (alifold variant)

**Deprecated** Use vrna\_exp\_params\_comparative() instead!

### 16.7.4.15 get boltzmann factors ali()

Get precomputed Boltzmann factors of the loop type dependent energy contributions (alifold variant) with independent thermodynamic temperature.

**Deprecated** Use vrna\_exp\_params\_comparative() instead!

### 16.7.4.16 scale\_parameters()

Get precomputed energy contributions for all the known loop types.

Note

OpenMP: This function relies on several global model settings variables and thus is not to be considered threadsafe. See <a href="mailto:get\_get\_scaled\_parameters">get\_scaled\_parameters</a>() for a completely threadsafe implementation.

Deprecated Use vrna\_params() instead!

Returns

A set of precomputed energy contributions

### 16.7.4.17 get\_scaled\_parameters()

Get precomputed energy contributions for all the known loop types.

Call this function to retrieve precomputed energy contributions, i.e. scaled according to the temperature passed. Furthermore, this function assumes a data structure that contains the model details as well, such that subsequent folding recursions are able to retrieve the correct model settings

**Deprecated** Use vrna\_params() instead!

See also

vrna\_md\_t, set\_model\_details()

#### **Parameters**

| temperature | The temperature in degrees Celcius |
|-------------|------------------------------------|
| md          | The model details                  |

### Returns

precomputed energy contributions and model settings

### 16.7.4.18 vrna\_salt\_loop()

Get salt correction for a loop at a given salt concentration and temperature.

#### **Parameters**

| L    | backbone number in loop  |
|------|--------------------------|
| salt | salt concentration (M)   |
| T    | absolute temperature (K) |

### Returns

Salt correction for loop in dcal/mol

# 16.7.4.19 vrna\_salt\_loop\_int()

Get salt correction for a loop at a given salt concentration and temperature.

This functions is same as vrna\_salt\_loop but returns rounded salt correction in integer

## See also

```
vrna_salt_loop
```

### **Parameters**

| L    | backbone number in loop  |
|------|--------------------------|
| salt | salt concentration (M)   |
| T    | absolute temperature (K) |

#### Returns

Rounded salt correction for loop in dcal/mol

### 16.7.4.20 vrna\_salt\_stack()

Get salt correction for a stack at a given salt concentration and temperature.

#### **Parameters**

| salt   salt concentration (M) |                          |
|-------------------------------|--------------------------|
| T                             | absolute temperature (K) |

#### Returns

Rounded salt correction for stack in dcal/mol

# 16.8 Extending the Folding Grammar with Additional Domains

This module covers simple and straight-forward extensions to the RNA folding grammar.

### 16.8.1 Detailed Description

This module covers simple and straight-forward extensions to the RNA folding grammar. Collaboration diagram for Extending the Folding Grammar with Additional Domains:

#### **Modules**

· Unstructured Domains

Add and modify unstructured domains to the RNA folding grammar.

· Structured Domains

Add and modify structured domains to the RNA folding grammar.

### 16.9 Unstructured Domains

Add and modify unstructured domains to the RNA folding grammar.

### 16.9.1 Detailed Description

Add and modify unstructured domains to the RNA folding grammar.

This module provides the tools to add and modify unstructured domains to the production rules of the RNA folding grammar. Usually this functionality is utilized for incorporating ligand binding to unpaired stretches of an RNA.

Bug Although the additional production rule(s) for unstructured domains as descibed in Unstructured Domains are always treated as 'segments possibly bound to one or more ligands', the current implementation requires that at least one ligand is bound. The default implementation already takes care of the required changes, however, upon using callback functions other than the default ones, one has to take care of this fact. Please also note, that this behavior might change in one of the next releases, such that the decomposition schemes as shown above comply with the actual implementation.

A default implementation allows one to readily use this feature by simply adding sequence motifs and corresponding binding free energies with the function <a href="mailto:vrna\_ud\_add\_motif">vrna\_ud\_add\_motif</a>() (see also Ligands Binding to Unstructured Domains). The grammar extension is realized using a callback function that

- evaluates the binding free energy of a ligand to its target sequence segment (white boxes in the figures above), or
- returns the free energy of an unpaired stretch possibly bound by a ligand, stored in the additional UDP matrix.

The callback is passed the segment positions, the loop context, and which of the two above mentioned evaluations are required. A second callback implements the pre-processing step that prepares the *U* DP matrix by evaluating all possible cases of the additional production rule. Both callbacks have a default implementation in *RNAlib*, but may be over-written by a user-implementation, making it fully user-customizable.

For equilibrium probability computations, two additional callbacks exist. One to store/add and one to retrieve the probability of unstructured domains at particular positions. Our implementation already takes care of computing the probabilities, but users of the unstructured domain feature are required to provide a mechanism to efficiently store/add the corresponding values into some external data structure. Collaboration diagram for Unstructured Domains:

### **Files**

· file unstructured domains.h

Functions to modify unstructured domains, e.g. to incorporate ligands binding to unpaired stretches.

#### **Data Structures**

· struct vrna unstructured domain s

Data structure to store all functionality for ligand binding. More...

#### **Macros**

#define VRNA UNSTRUCTURED DOMAIN EXT LOOP 1U

Flag to indicate ligand bound to unpiared stretch in the exterior loop.

#define VRNA\_UNSTRUCTURED\_DOMAIN\_HP\_LOOP 2U

Flag to indicate ligand bound to unpaired stretch in a hairpin loop.

#define VRNA UNSTRUCTURED DOMAIN INT LOOP 4U

Flag to indicate ligand bound to unpiared stretch in an interior loop.

#define VRNA\_UNSTRUCTURED\_DOMAIN\_MB\_LOOP 8U

Flag to indicate ligand bound to unpiared stretch in a multibranch loop.

#define VRNA\_UNSTRUCTURED\_DOMAIN\_MOTIF 16U

Flag to indicate ligand binding without additional unbound nucleotides (motif-only)

#define VRNA UNSTRUCTURED DOMAIN ALL LOOPS

Flag to indicate ligand bound to unpiared stretch in any loop (convenience macro)

# **Typedefs**

· typedef struct vrna unstructured domain s vrna ud t

Typename for the ligand binding extension data structure vrna\_unstructured\_domain\_s.

typedef int(\* vrna\_ud\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, void \*data)

Callback to retrieve binding free energy of a ligand bound to an unpaired sequence segment.

typedef FLT\_OR\_DBL(\* vrna\_ud\_exp\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, void \*data)

Callback to retrieve Boltzmann factor of the binding free energy of a ligand bound to an unpaired sequence segment.

typedef void(\* vrna\_ud\_production\_f) (vrna\_fold\_compound\_t \*vc, void \*data)

Callback for pre-processing the production rule of the ligand binding to unpaired stretches feature.

typedef void(\* vrna\_ud\_exp\_production\_f) (vrna\_fold\_compound\_t \*vc, void \*data)

Callback for pre-processing the production rule of the ligand binding to unpaired stretches feature (partition function variant)

 typedef void(\* vrna\_ud\_add\_probs\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, FLT\_OR\_DBL exp\_energy, void \*data)

Callback to store/add equilibrium probability for a ligand bound to an unpaired sequence segment.

typedef FLT\_OR\_DBL(\* vrna\_ud\_get\_probs\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, int motif, void \*data)

Callback to retrieve equilibrium probability for a ligand bound to an unpaired sequence segment.

16.9 Unstructured Domains 219

### **Functions**

vrna\_ud\_motif\_t \* vrna\_ud\_motifs\_centroid (vrna\_fold\_compound\_t \*fc, const char \*structure)

Detect unstructured domains in centroid structure.

vrna\_ud\_motif\_t \* vrna\_ud\_motifs\_MEA (vrna\_fold\_compound\_t \*fc, const char \*structure, vrna\_ep\_t \*probability\_list)

Detect unstructured domains in MEA structure.

vrna\_ud\_motif\_t \* vrna\_ud\_motifs\_MFE (vrna\_fold\_compound\_t \*fc, const char \*structure)

Detect unstructured domains in MFE structure.

void vrna\_ud\_add\_motif (vrna\_fold\_compound\_t \*vc, const char \*motif, double motif\_en, const char \*motif
 —name, unsigned int loop\_type)

Add an unstructured domain motif, e.g. for ligand binding.

void vrna\_ud\_remove (vrna\_fold\_compound\_t \*vc)

Remove ligand binding to unpaired stretches.

void vrna\_ud\_set\_data (vrna\_fold\_compound\_t \*vc, void \*data, vrna\_auxdata\_free\_f free\_cb)

Attach an auxiliary data structure.

- void vrna\_ud\_set\_prod\_rule\_cb (vrna\_fold\_compound\_t \*vc, vrna\_ud\_production\_f pre\_cb, vrna\_ud\_f e\_cb)

  Attach production rule callbacks for free energies computations.
- void vrna\_ud\_set\_exp\_prod\_rule\_cb (vrna\_fold\_compound\_t \*vc, vrna\_ud\_exp\_production\_f pre\_cb, vrna\_ud\_exp\_f exp\_e\_cb)

Attach production rule for partition function.

### 16.9.2 Data Structure Documentation

### 16.9.2.1 struct vrna\_unstructured\_domain\_s

Data structure to store all functionality for ligand binding. Collaboration diagram for vrna unstructured domain s:

#### **Data Fields**

· int uniq motif count

The unique number of motifs of different lengths.

unsigned int \* uniq\_motif\_size

An array storing a unique list of motif lengths.

· int motif count

Total number of distinguished motifs.

char \*\* motif

Motif sequences.

char \*\* motif\_name

Motif identifier/name.

unsigned int \* motif\_size

Motif lengths.

· double \* motif\_en

Ligand binding free energy contribution.

unsigned int \* motif\_type

Type of motif, i.e. loop type the ligand binds to.

· vrna\_ud\_production\_f prod\_cb

Callback to ligand binding production rule, i.e. create/fill DP free energy matrices.

vrna\_ud\_exp\_production\_f exp\_prod\_cb

Callback to ligand binding production rule, i.e. create/fill DP partition function matrices.

vrna\_ud\_f energy\_cb

Callback to evaluate free energy of ligand binding to a particular unpaired stretch.

vrna\_ud\_exp\_f exp\_energy\_cb

Callback to evaluate Boltzmann factor of ligand binding to a particular unpaired stretch.

void \* data

Auxiliary data structure passed to energy evaluation callbacks.

vrna\_auxdata\_free\_f free\_data

Callback to free auxiliary data structure.

· vrna ud add probs f probs add

Callback to store/add outside partition function.

vrna\_ud\_get\_probs\_f probs\_get

Callback to retrieve outside partition function.

### 16.9.2.1.1 Field Documentation

```
16.9.2.1.1.1 prod_cb vrna_ud_production_f vrna_unstructured_domain_s::prod_cb
```

Callback to ligand binding production rule, i.e. create/fill DP free energy matrices.

This callback will be executed right before the actual secondary structure decompositions, and, therefore, any implementation must not interleave with the regular DP matrices.

### 16.9.3 Typedef Documentation

#### 16.9.3.1 vrna\_ud\_f

typedef int(\* vrna\_ud\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, void \*data)

#include <ViennaRNA/unstructured\_domains.h>

Callback to retrieve binding free energy of a ligand bound to an unpaired sequence segment.

**Notes on Callback Functions** This function will be called to determine the additional energy contribution of a specific unstructured domain, e.g. the binding free energy of some ligand.

#### **Parameters**

| VC        | The current vrna_fold_compound_t              |
|-----------|-----------------------------------------------|
| i         | The start of the unstructured domain (5' end) |
| j         | The end of the unstructured domain (3' end)   |
| loop_type | The loop context of the unstructured domain   |
| data      | Auxiliary data                                |

### Returns

The auxiliary energy contribution in deka-cal/mol

### 16.9.3.2 vrna\_ud\_exp\_f

```
typedef FLT_OR_DBL(* vrna_ud_exp_f) (vrna_fold_compound_t *vc, int i, int j, unsigned int
loop_type, void *data)
#include <ViennaRNA/unstructured_domains.h>
```

Callback to retrieve Boltzmann factor of the binding free energy of a ligand bound to an unpaired sequence segment.

Notes on Callback Functions This function will be called to determine the additional energy contribution of a specific unstructured domain, e.g. the binding free energy of some ligand (Partition function variant, i.e. the Boltzmann factors instead of actual free energies).

16.9 Unstructured Domains 221

#### **Parameters**

| VC        | The current vrna_fold_compound_t              |
|-----------|-----------------------------------------------|
| i         | The start of the unstructured domain (5' end) |
| j         | The end of the unstructured domain (3' end)   |
| loop_type | The loop context of the unstructured domain   |
| data      | Auxiliary data                                |

#### Returns

The auxiliary energy contribution as Boltzmann factor

#### 16.9.3.3 vrna ud production f

```
typedef void(* vrna_ud_production_f) (vrna_fold_compound_t *vc, void *data)
#include <ViennaRNA/unstructured domains.h>
```

Callback for pre-processing the production rule of the ligand binding to unpaired stretches feature.

Notes on Callback Functions The production rule for the unstructured domain grammar extension

### 16.9.3.4 vrna\_ud\_exp\_production\_f

```
typedef void(* vrna_ud_exp_production_f) (vrna_fold_compound_t *vc, void *data)
#include <ViennaRNA/unstructured_domains.h>
```

Callback for pre-processing the production rule of the ligand binding to unpaired stretches feature (partition function variant)

**Notes on Callback Functions** The production rule for the unstructured domain grammar extension (Partition function variant)

### 16.9.3.5 vrna\_ud\_add\_probs\_f

```
typedef void(* vrna_ud_add_probs_f) (vrna_fold_compound_t *vc, int i, int j, unsigned int
loop_type, FLT_OR_DBL exp_energy, void *data)
#include <ViennaRNA/unstructured_domains.h>
```

Callback to store/add equilibrium probability for a ligand bound to an unpaired sequence segment.

Notes on Callback Functions A callback function to store equilibrium probabilities for the unstructured domain feature

### 16.9.3.6 vrna\_ud\_get\_probs\_f

```
typedef FLT_OR_DBL(* vrna_ud_get_probs_f) (vrna_fold_compound_t *vc, int i, int j, unsigned int
loop_type, int motif, void *data)
#include <ViennaRNA/unstructured_domains.h>
```

Callback to retrieve equilibrium probability for a ligand bound to an unpaired sequence segment.

Notes on Callback Functions A callback function to retrieve equilibrium probabilities for the unstructured domain feature

### 16.9.4 Function Documentation

### 16.9.4.1 vrna\_ud\_motifs\_centroid()

Detect unstructured domains in centroid structure.

Given a centroid structure and a set of unstructured domains compute the list of unstructured domain motifs present in the centroid. Since we do not explicitly annotate unstructured domain motifs in dot-bracket strings, this function can be used to check for the presence and location of unstructured domain motifs under the assumption that the dot-bracket string is the centroid structure of the equilibrium ensemble.

#### See also

```
vrna centroid()
```

#### **Parameters**

| fc        | The fold_compound data structure with pre-computed equilibrium probabilities and model settings |
|-----------|-------------------------------------------------------------------------------------------------|
| structure | The centroid structure in dot-bracket notation                                                  |

#### Returns

A list of unstructured domain motifs (possibly NULL). The last element terminates the list with start=0, number=-1

### 16.9.4.2 vrna\_ud\_motifs\_MEA()

Detect unstructured domains in MEA structure.

Given an MEA structure and a set of unstructured domains compute the list of unstructured domain motifs present in the MEA structure. Since we do not explicitly annotate unstructured domain motifs in dot-bracket strings, this function can be used to check for the presence and location of unstructured domain motifs under the assumption that the dot-bracket string is the MEA structure of the equilibrium ensemble.

#### See also

MEA()

### **Parameters**

| fc               | The fold_compound data structure with pre-computed equilibrium probabilities and model settings |
|------------------|-------------------------------------------------------------------------------------------------|
| structure        | The MEA structure in dot-bracket notation                                                       |
| probability_list | The list of probabilities to extract the MEA structure from                                     |

### Returns

A list of unstructured domain motifs (possibly NULL). The last element terminates the list with start=0, number=-1

16.9 Unstructured Domains 223

### 16.9.4.3 vrna\_ud\_motifs\_MFE()

Detect unstructured domains in MFE structure.

Given an MFE structure and a set of unstructured domains compute the list of unstructured domain motifs present in the MFE structure. Since we do not explicitly annotate unstructured domain motifs in dot-bracket strings, this function can be used to check for the presence and location of unstructured domain motifs under the assumption that the dot-bracket string is the MFE structure of the equilibrium ensemble.

#### See also

```
vrna_mfe()
```

#### **Parameters**

| fc        | The fold_compound data structure with model settings |  |
|-----------|------------------------------------------------------|--|
| structure | The MFE structure in dot-bracket notation            |  |

#### Returns

A list of unstructured domain motifs (possibly NULL). The last element terminates the list with start=0, number=-1

### 16.9.4.4 vrna\_ud\_add\_motif()

Add an unstructured domain motif, e.g. for ligand binding.

This function adds a ligand binding motif and the associated binding free energy to the vrna\_ud\_t attribute of a vrna\_fold\_compound\_t. The motif data will then be used in subsequent secondary structure predictions. Multiple calls to this function with different motifs append all additional data to a list of ligands, which all will be evaluated. Ligand motif data can be removed from the vrna\_fold\_compound\_t again using the vrna\_ud\_remove() function. The loop type parameter allows one to limit the ligand binding to particular loop type, such as the exterior loop, hairpin loops, interior loops, or multibranch loops.

### See also

```
VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP, VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP, VRNA_UNSTRUCTURED_VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP, VRNA_UNSTRUCTURED_DOMAIN_ALL_LOOPS, vrna_ud_remove()
```

### **Parameters**

| vc         | The vrna_fold_compound_t data structure the ligand motif should be bound to |
|------------|-----------------------------------------------------------------------------|
| motif      | The sequence motif the ligand binds to                                      |
| motif_en   | The binding free energy of the ligand in kcal/mol                           |
| motif_name | The name/id of the motif (may be NULL)                                      |
| loop_type  | The loop type the ligand binds to                                           |

## 16.9.4.5 vrna\_ud\_remove()

Remove ligand binding to unpaired stretches.

This function removes all ligand motifs that were bound to a vrna\_fold\_compound\_t using the vrna\_ud\_add\_motif() function.

#### **Parameters**

vc The vrna\_fold\_compound\_t data structure the ligand motif data should be removed from

SWIG Wrapper Notes This function is attached as method ud\_remove() to objects of type fold\_compound

### 16.9.4.6 vrna ud set data()

Attach an auxiliary data structure.

This function binds an arbitrary, auxiliary data structure for user-implemented ligand binding. The optional callback free\_cb will be passed the bound data structure whenever the vrna\_fold\_compound\_t is removed from memory to avoid memory leaks.

#### See also

```
vrna_ud_set_prod_rule_cb(), vrna_ud_set_exp_prod_rule_cb(), vrna_ud_remove()
```

### **Parameters**

| VC      | The vrna_fold_compound_t data structure the auxiliary data structure should be bound to |
|---------|-----------------------------------------------------------------------------------------|
| data    | A pointer to the auxiliary data structure                                               |
| free_cb | A pointer to a callback function that free's memory occupied by data                    |

SWIG Wrapper Notes This function is attached as method ud\_set\_data() to objects of type fold\_compound

### 16.9.4.7 vrna ud set prod rule cb()

Attach production rule callbacks for free energies computations.

Use this function to bind a user-implemented grammar extension for unstructured domains.

The callback e\_cb needs to evaluate the free energy contribution f(i,j) of the unpaired segment [i,j]. It will be executed in each of the regular secondary structure production rules. Whenever the callback is passed the VRNA\_UNSTRUCTURED\_DOMAIN\_MOTIF flag via its loop\_type parameter the contribution of

16.9 Unstructured Domains 225

any ligand that consecutively binds from position i to j (the white box) is requested. Otherwise, the callback usually performs a lookup in the precomputed  $\mathbb B$  matrices. Which  $\mathbb B$  matrix is addressed will be indicated by the flags VRNA\_UNSTRUCTURED\_DOMAIN\_EXT\_LOOP, VRNA\_UNSTRUCTURED\_DOMAIN\_HP\_LOOP VRNA\_UNSTRUCTURED\_DOMAIN\_INT\_LOOP, and VRNA\_UNSTRUCTURED\_DOMAIN\_MB\_LOOP. As their names already imply, they specify exterior loops ( $\mathbb F$  production rule), hairpin loops and interior loops ( $\mathbb F$  production rule), and multibranch loops ( $\mathbb F$  and  $\mathbb F$  production rule).

The pre\_cb callback will be executed as a pre-processing step right before the regular secondary structure rules. Usually one would use this callback to fill the dynamic programming matrices U and preparations of the auxiliary data structure vrna unstructured domain s.data

#### **Parameters**

| VC     | The vrna_fold_compound_t data structure the callback will be bound to     |
|--------|---------------------------------------------------------------------------|
| pre_cb | A pointer to a callback function for the $\ensuremath{B}$ production rule |
| e_cb   | A pointer to a callback function for free energy evaluation               |

SWIG Wrapper Notes This function is attached as method ud\_set\_prod\_rule\_cb() to objects of type fold\_← compound

## 16.9.4.8 vrna\_ud\_set\_exp\_prod\_rule\_cb()

Attach production rule for partition function.

This function is the partition function companion of  $vrna\_ud\_set\_prod\_rule\_cb()$ .

Use it to bind callbacks to (i) fill the U production rule dynamic programming matrices and/or prepare the  $vrna\_unstructured\_domain\_s.data$ , and (ii) provide a callback to retrieve partition functions for subsegments [i,j].



See also

vrna\_ud\_set\_prod\_rule\_cb()

#### **Parameters**

| VC       | The vrna_fold_compound_t data structure the callback will be bound to                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|
| pre_cb   | A pointer to a callback function for the $\ensuremath{\mathbb{B}}$ production rule                                                     |
| exp_e_cb | A pointer to a callback function that retrieves the partition function for a segment $[i,j]$ that may be bound by one or more ligands. |

SWIG Wrapper Notes This function is attached as method ud\_set\_exp\_prod\_rule\_cb() to objects of type fold

\_compound

# 16.10 Structured Domains

Add and modify structured domains to the RNA folding grammar.

## 16.10.1 Detailed Description

Add and modify structured domains to the RNA folding grammar.

This module provides the tools to add and modify structured domains to the production rules of the RNA folding grammar. Usually this functionality is utilized for incorporating self-enclosed structural modules that exhibit a more or less complex base pairing pattern. Collaboration diagram for Structured Domains:

### **Files**

· file structured domains.h

This module provides interfaces that deal with additional structured domains in the folding grammar.

# 16.11 Constraining the RNA Folding Grammar

This module provides general functions that allow for an easy control of constrained secondary structure prediction and evaluation.

### 16.11.1 Detailed Description

This module provides general functions that allow for an easy control of constrained secondary structure prediction and evaluation.

Secondary Structure constraints can be subdivided into two groups:

- · Hard Constraints, and
- · Soft Constraints.

While Hard-Constraints directly influence the production rules used in the folding recursions by allowing, disallowing, or enforcing certain decomposition steps, Soft-constraints on the other hand are used to change position specific contributions in the recursions by adding bonuses/penalties in form of pseudo free energies to certain loop configurations.

Secondary structure constraints are always applied at decomposition level, i.e. in each step of the recursive structure decomposition, for instance during MFE prediction. Below is a visualization of the decomposition scheme



For Hard Constraints the following option flags may be used to constrain the pairing behavior of single, or pairs of nucleotides:

- VRNA\_CONSTRAINT\_CONTEXT\_EXT\_LOOP Hard constraints flag, base pair in the exterior loop.
- VRNA\_CONSTRAINT\_CONTEXT\_HP\_LOOP Hard constraints flag, base pair encloses hairpin loop.
- VRNA\_CONSTRAINT\_CONTEXT\_INT\_LOOP Hard constraints flag, base pair encloses an interior loop.
- VRNA\_CONSTRAINT\_CONTEXT\_INT\_LOOP\_ENC Hard constraints flag, base pair encloses a multi branch loop.
- VRNA\_CONSTRAINT\_CONTEXT\_MB\_LOOP Hard constraints flag, base pair is enclosed in an interior loop.
- VRNA\_CONSTRAINT\_CONTEXT\_MB\_LOOP\_ENC Hard constraints flag, base pair is enclosed in a multi branch loop.
- VRNA\_CONSTRAINT\_CONTEXT\_ENFORCE Hard constraint flag to indicate enforcement of constraints.
- VRNA\_CONSTRAINT\_CONTEXT\_NO\_REMOVE Hard constraint flag to indicate not to remove base pairs that conflict with a given constraint.
- VRNA\_CONSTRAINT\_CONTEXT\_ALL\_LOOPS Constraint context flag indicating any loop context.

However, for Soft Constraints we do not allow for simple loop type dependent constraining. But soft constraints are equipped with generic constraint support. This enables the user to pass arbitrary callback functions that return auxiliary energy contributions for evaluation the evaluation of any decomposition.

The callback will then always be notified about the type of decomposition that is happening, and the corresponding delimiting sequence positions. The following decomposition steps are distinguished, and should be captured by the user's implementation of the callback:

- VRNA\_DECOMP\_PAIR\_HP Flag passed to generic softt constraints callback to indicate hairpin loop decomposition step.
- VRNA\_DECOMP\_PAIR\_IL Indicator for interior loop decomposition step.

- VRNA\_DECOMP\_PAIR\_ML Indicator for multibranch loop decomposition step.
- VRNA DECOMP ML ML ML Indicator for decomposition of multibranch loop part.
- VRNA DECOMP ML STEM Indicator for decomposition of multibranch loop part.
- VRNA DECOMP ML ML Indicator for decomposition of multibranch loop part.
- VRNA\_DECOMP\_ML\_UP Indicator for decomposition of multibranch loop part.
- · VRNA\_DECOMP\_ML\_ML\_STEM Indicator for decomposition of multibranch loop part.
- VRNA DECOMP ML COAXIAL Indicator for decomposition of multibranch loop part.
- VRNA\_DECOMP\_EXT\_EXT Indicator for decomposition of exterior loop part.
- VRNA\_DECOMP\_EXT\_UP Indicator for decomposition of exterior loop part.
- VRNA\_DECOMP\_EXT\_STEM Indicator for decomposition of exterior loop part.
- VRNA\_DECOMP\_EXT\_EXT\_EXT Indicator for decomposition of exterior loop part.
- VRNA\_DECOMP\_EXT\_STEM\_EXT Indicator for decomposition of exterior loop part.
- VRNA\_DECOMP\_EXT\_STEM\_OUTSIDE Indicator for decomposition of exterior loop part.
- VRNA DECOMP EXT EXT STEM Indicator for decomposition of exterior loop part.
- VRNA\_DECOMP\_EXT\_EXT\_STEM1 Indicator for decomposition of exterior loop part.

Simplified interfaces to the soft constraints framework can be obtained by the implementations in the submodules

- · SHAPE Reactivity Data and
- Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Constraints.

An implementation that generates soft constraints for unpaired nucleotides by minimizing the discrepancy between their predicted and expected pairing probability is available in submodule Generate Soft Constraints from Data. Collaboration diagram for Constraining the RNA Folding Grammar:

#### **Modules**

Hard Constraints

This module covers all functionality for hard constraints in secondary structure prediction.

Soft Constraints

Functions and data structures for secondary structure soft constraints.

## **Files**

· file basic.h

Functions and data structures for constraining secondary structure predictions and evaluation.

#### **Macros**

#define VRNA\_CONSTRAINT\_FILE 0

Flag for vrna\_constraints\_add() to indicate that constraints are present in a text file.

• #define VRNA CONSTRAINT SOFT MFE 0

Indicate generation of constraints for MFE folding.

#define VRNA\_CONSTRAINT\_SOFT\_PF VRNA\_OPTION\_PF

Indicate generation of constraints for partition function computation.

• #define VRNA DECOMP PAIR HP (unsigned char)1

Flag passed to generic softt constraints callback to indicate hairpin loop decomposition step.

#define VRNA\_DECOMP\_PAIR\_IL (unsigned char)2

Indicator for interior loop decomposition step.

• #define VRNA\_DECOMP\_PAIR\_ML (unsigned char)3

Indicator for multibranch loop decomposition step.

#define VRNA\_DECOMP\_ML\_ML (unsigned char)5

Indicator for decomposition of multibranch loop part.

• #define VRNA DECOMP ML STEM (unsigned char)6

Indicator for decomposition of multibranch loop part.

#define VRNA\_DECOMP\_ML\_ML (unsigned char)7

Indicator for decomposition of multibranch loop part.

• #define VRNA\_DECOMP\_ML\_UP (unsigned char)8

Indicator for decomposition of multibranch loop part.

• #define VRNA\_DECOMP\_ML\_ML\_STEM (unsigned char)9

Indicator for decomposition of multibranch loop part.

• #define VRNA\_DECOMP\_ML\_COAXIAL (unsigned char)10

Indicator for decomposition of multibranch loop part.

• #define VRNA\_DECOMP\_ML\_COAXIAL\_ENC (unsigned char)11

Indicator for decomposition of multibranch loop part.

• #define VRNA DECOMP EXT EXT (unsigned char)12

Indicator for decomposition of exterior loop part.

• #define VRNA DECOMP EXT UP (unsigned char)13

Indicator for decomposition of exterior loop part.

#define VRNA DECOMP EXT STEM (unsigned char)14

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_EXT\_EXT (unsigned char)15

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_STEM\_EXT (unsigned char)16

Indicator for decomposition of exterior loop part.

• #define VRNA DECOMP EXT STEM OUTSIDE (unsigned char)17

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_EXT\_STEM (unsigned char)18

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_EXT\_STEM1 (unsigned char)19

Indicator for decomposition of exterior loop part.

### **Functions**

• void vrna\_constraints\_add (vrna\_fold\_compound\_t \*vc, const char \*constraint, unsigned int options)

Add constraints to a vrna\_fold\_compound\_t data structure.

void vrna message constraint options (unsigned int option)

Print a help message for pseudo dot-bracket structure constraint characters to stdout. (constraint support is specified by option parameter)

void vrna\_message\_constraint\_options\_all (void)

Print structure constraint characters to stdout (full constraint support)

### 16.11.2 Macro Definition Documentation

### 16.11.2.1 VRNA\_CONSTRAINT\_FILE

#define VRNA\_CONSTRAINT\_FILE 0
#include <ViennaRNA/constraints/basic.h>

Flag for vrna\_constraints\_add() to indicate that constraints are present in a text file.

See also

vrna\_constraints\_add()

**Deprecated** Use 0 instead!

### 16.11.2.2 VRNA\_CONSTRAINT\_SOFT\_MFE

#define VRNA\_CONSTRAINT\_SOFT\_MFE 0
#include <ViennaRNA/constraints/basic.h>
Indicate generation of constraints for MFE folding.

Deprecated This flag has no meaning anymore, since constraints are now always stored!

### 16.11.2.3 VRNA\_CONSTRAINT\_SOFT\_PF

#define VRNA\_CONSTRAINT\_SOFT\_PF VRNA\_OPTION\_PF
#include <ViennaRNA/constraints/basic.h>
!adicate generation of constraints for notified function computation."

Indicate generation of constraints for partition function computation. \\

**Deprecated** Use VRNA\_OPTION\_PF instead!

### 16.11.2.4 VRNA\_DECOMP\_PAIR\_HP

#define VRNA\_DECOMP\_PAIR\_HP (unsigned char)1
#include <ViennaRNA/constraints/basic.h>

Flag passed to generic softt constraints callback to indicate hairpin loop decomposition step.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a hairpin loop enclosed by the base pair (i, j).



## 16.11.2.5 VRNA\_DECOMP\_PAIR\_IL

#define VRNA\_DECOMP\_PAIR\_IL (unsigned char)2
#include <ViennaRNA/constraints/basic.h>

Indicator for interior loop decomposition step.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates an interior loop enclosed by the base pair (i, j), and enclosing the base pair (k, l).



### 16.11.2.6 VRNA\_DECOMP\_PAIR\_ML

#define VRNA\_DECOMP\_PAIR\_ML (unsigned char)3
#include <ViennaRNA/constraints/basic.h>

Indicator for multibranch loop decomposition step.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a multi-branch loop enclosed by the base pair (i,j), and consisting of some enclosed multi loop content from k to l.



# 16.11.2.7 VRNA\_DECOMP\_ML\_ML\_ML

#define VRNA\_DECOMP\_ML\_ML\_ML (unsigned char)5
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a multi-branch loop part in the interval [i:j], which will be decomposed into two multibranch loop parts [i:k], and [i:j].



### 16.11.2.8 VRNA\_DECOMP\_ML\_STEM

#define VRNA\_DECOMP\_ML\_STEM (unsigned char)6
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a multibranch loop part in the interval [i:j], which will be considered a single stem branching off with base pair (k,l).



### 16.11.2.9 VRNA DECOMP ML ML

#define VRNA\_DECOMP\_ML\_ML (unsigned char)7
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a multibranch loop part in the interval [i:j], which will be decomposed into a (usually) smaller multibranch loop part [k:l].



## 16.11.2.10 VRNA\_DECOMP\_ML\_UP

#define VRNA\_DECOMP\_ML\_UP (unsigned char)8
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a multi-branch loop part in the interval [i:j], which will be considered a multibranch loop part that only consists of unpaired nucleotides.



### 16.11.2.11 VRNA\_DECOMP\_ML\_ML\_STEM

#define VRNA\_DECOMP\_ML\_ML\_STEM (unsigned char)9
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a multibranch loop part in the interval [i:j], which will decomposed into a multibranch loop part [i:k], and a stem with enclosing base pair (l,j).



## 16.11.2.12 VRNA\_DECOMP\_ML\_COAXIAL

#define VRNA\_DECOMP\_ML\_COAXIAL (unsigned char)10
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a multibranch loop part in the interval [i:j], where two stems with enclosing pairs (i,k) and (l,j) are coaxially stacking onto each other.



### 16.11.2.13 VRNA\_DECOMP\_ML\_COAXIAL\_ENC

#define VRNA\_DECOMP\_ML\_COAXIAL\_ENC (unsigned char)11
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of multibranch loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates a multibranch loop part in the interval [i:j], where two stems with enclosing pairs (i,k) and (l,j) are coaxially stacking onto each other.



### 16.11.2.14 VRNA DECOMP EXT EXT

#define VRNA\_DECOMP\_EXT\_EXT (unsigned char)12
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates an exterior loop part in the interval [i:j], which will be decomposed into a (usually) smaller exterior loop part [k:l].

## 16.11.2.15 VRNA\_DECOMP\_EXT\_UP

#define VRNA\_DECOMP\_EXT\_UP (unsigned char)13
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates an exterior loop part in the interval [i:j], which will be considered as an exterior loop component consisting of only unpaired nucleotides.



### 16.11.2.16 VRNA\_DECOMP\_EXT\_STEM

#define VRNA\_DECOMP\_EXT\_STEM (unsigned char)14
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates an exterior loop part in the interval [i:j], which will be considered a stem with enclosing pair (k,l).



## 16.11.2.17 VRNA\_DECOMP\_EXT\_EXT\_EXT

#define VRNA\_DECOMP\_EXT\_EXT\_EXT (unsigned char)15
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates an exterior loop part in the interval [i:j], which will be decomposed into two exterior loop parts [i:k] and [l:j].

# 16.11.2.18 VRNA\_DECOMP\_EXT\_STEM\_EXT

#define VRNA\_DECOMP\_EXT\_STEM\_EXT (unsigned char)16
#include <ViennaRNA/constraints/basic.h>

Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates an exterior loop part in the interval [i:j], which will be decomposed into a stem branching off with base pair (i,k), and an exterior loop part [i:j].



## 16.11.2.19 VRNA\_DECOMP\_EXT\_STEM\_OUTSIDE

#define VRNA\_DECOMP\_EXT\_STEM\_OUTSIDE (unsigned char)17
#include <ViennaRNA/constraints/basic.h>
Indicator for decomposition of exterior loop part.

### 16.11.2.20 VRNA\_DECOMP\_EXT\_EXT\_STEM

```
#define VRNA_DECOMP_EXT_EXT_STEM (unsigned char)18
#include <ViennaRNA/constraints/basic.h>
```

Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates an exterior loop part in the interval [i:j], which will be decomposed into an exterior loop part [i:k], and a stem branching off with base pair (l,j).



### 16.11.2.21 VRNA\_DECOMP\_EXT\_EXT\_STEM1

```
#define VRNA_DECOMP_EXT_EXT_STEM1 (unsigned char)19
#include <ViennaRNA/constraints/basic.h>
```

Indicator for decomposition of exterior loop part.

This flag notifies the soft or hard constraint callback function that the current decomposition step evaluates an exterior loop part in the interval [i:j], which will be decomposed into an exterior loop part [i:k], and a stem branching off with base pair (l,j-1).



### 16.11.3 Function Documentation

### 16.11.3.1 vrna\_constraints\_add()

Add constraints to a vrna\_fold\_compound\_t data structure.

Use this function to add/update the hard/soft constraints The function allows for passing a string 'constraint' that can either be a filename that points to a constraints definition file or it may be a pseudo dot-bracket notation indicating hard constraints. For the latter, the user has to pass the VRNA\_CONSTRAINT\_DB option. Also, the user has to specify, which characters are allowed to be interpreted as constraints by passing the corresponding options via the third parameter.

#### See also

vrna\_hc\_init(), vrna\_hc\_add\_up(), vrna\_hc\_add\_up\_batch(), vrna\_hc\_add\_bp(), vrna\_sc\_init(), vrna\_sc\_set\_up(), vrna\_sc\_set\_bp(), vrna\_sc\_add\_SHAPE\_deigan(), vrna\_sc\_add\_SHAPE\_zarringhalam(), vrna\_hc\_free(), vrna\_sc\_free(), VRNA\_CONSTRAINT\_DB, VRNA\_CONSTRAINT\_DB\_DEFAULT, VRNA\_CONSTRAINT\_DB\_PIPE, VRNA\_CONSTRAINT\_DB\_DOT, VRNA\_CONSTRAINT\_DB\_X, VRNA\_CONSTRAINT\_DB\_ANG\_BRACK, VRNA\_CONSTRAINT\_DB\_INTERMOL, VRNA\_CONSTRAINT\_DB\_INTERMOL, VRNA\_CONSTRAINT\_DB\_GQUAD

The following is an example for adding hard constraints given in pseudo dot-bracket notation. Here, vc is the vrna\_fold\_compound\_t object, structure is a char array with the hard constraint in dot-bracket notation, and enforceConstraints is a flag indicating whether or not constraints for base pairs should be enforced instead of just doing a removal of base pair that conflict with the constraint.

```
unsigned int constraint_options = VRNA_CONSTRAINT_DB_DEFAULT;

if (enforceConstraints)
    constraint_options |= VRNA_CONSTRAINT_DB_ENFORCE_BP;

if (canonicalBPonly)
    constraint_options |= VRNA_CONSTRAINT_DB_CANONICAL_BP;

vrna_constraints_add(fc, (const char *)cstruc, constraint_options);
In constrat to the above, constraints may also be read from file:
    vrna_constraints_add(fc, constraints_file, VRNA_OPTION_DEFAULT);
```

#### See also

```
vrna_hc_add_from_db(), vrna_hc_add_up(), vrna_hc_add_up_batch() vrna_hc_add_bp_unspecific(),
vrna hc add bp()
```

#### **Parameters**

| VC         | The fold compound                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| constraint | A string with either the filename of the constraint definitions or a pseudo dot-bracket notation of the hard constraint. May be NULL. |
| options    | The option flags                                                                                                                      |

### 16.11.3.2 vrna\_message\_constraint\_options()

Print a help message for pseudo dot-bracket structure constraint characters to stdout. (constraint support is specified by option parameter)

Currently available options are:

```
VRNA_CONSTRAINT_DB_PIPE (paired with another base)
```

VRNA\_CONSTRAINT\_DB\_DOT (no constraint at all)

VRNA CONSTRAINT DB X (base must not pair)

VRNA\_CONSTRAINT\_DB\_ANG\_BRACK (paired downstream/upstream)

VRNA CONSTRAINT DB RND BRACK (base i pairs base i)

pass a collection of options as one value like this:

```
vrna_message_constraints(option_1 | option_2 | option_n)
```

### See also

vrna\_message\_constraint\_options\_all(), vrna\_constraints\_add(), VRNA\_CONSTRAINT\_DB, VRNA\_CONSTRAINT\_DB\_PIPE, VRNA\_CONSTRAINT\_DB\_DOT, VRNA\_CONSTRAINT\_DB\_X, VRNA\_CONSTRAINT\_DB\_ANG\_BRACK, VRNA\_CONSTRAINT\_DB\_INTERMOL, VRNA\_CONSTRAINT\_DB\_INTRAMOL

16.12 Hard Constraints 239

### **Parameters**

option Option switch that tells which constraint help will be printed

## 16.11.3.3 vrna\_message\_constraint\_options\_all()

See also

vrna\_message\_constraint\_options(), vrna\_constraints\_add(), VRNA\_CONSTRAINT\_DB, VRNA\_CONSTRAINT\_DB\_PIPE, VRNA\_CONSTRAINT\_DB\_DOT, VRNA\_CONSTRAINT\_DB\_X, VRNA\_CONSTRAINT\_DB\_ANG\_BRACK, VRNA\_CONSTRAINT\_DB\_INTERMOL, VRNA\_CONSTRAINT\_DB\_INTRAMOL

## 16.12 Hard Constraints

This module covers all functionality for hard constraints in secondary structure prediction.

## 16.12.1 Detailed Description

This module covers all functionality for hard constraints in secondary structure prediction. Collaboration diagram for Hard Constraints:

## **Files**

· file hard.h

Functions and data structures for handling of secondary structure hard constraints.

## **Data Structures**

struct vrna\_hc\_s

The hard constraints data structure. More...

• struct vrna\_hc\_up\_s

A single hard constraint for a single nucleotide. More...

## **Macros**

#define VRNA\_CONSTRAINT\_DB 16384U

Flag for vrna\_constraints\_add() to indicate that constraint is passed in pseudo dot-bracket notation.

• #define VRNA CONSTRAINT DB ENFORCE BP 32768U

Switch for dot-bracket structure constraint to enforce base pairs.

• #define VRNA\_CONSTRAINT\_DB\_PIPE 65536U

Flag that is used to indicate the pipe '|' sign in pseudo dot-bracket notation of hard constraints.

#define VRNA\_CONSTRAINT\_DB\_DOT 131072U

dot '.' switch for structure constraints (no constraint at all)

#define VRNA\_CONSTRAINT\_DB\_X 262144U

'x' switch for structure constraint (base must not pair)

#define VRNA\_CONSTRAINT\_DB\_RND\_BRACK 1048576U

round brackets '(',')' switch for structure constraint (base i pairs base j)

#define VRNA CONSTRAINT DB INTRAMOL 2097152U

Flag that is used to indicate the character 'I' in pseudo dot-bracket notation of hard constraints.

#define VRNA\_CONSTRAINT\_DB\_INTERMOL 4194304U

Flag that is used to indicate the character 'e' in pseudo dot-bracket notation of hard constraints.

#define VRNA CONSTRAINT DB GQUAD 8388608U

'+' switch for structure constraint (base is involved in a gquad)

#define VRNA CONSTRAINT DB WUSS 33554432U

Flag to indicate Washington University Secondary Structure (WUSS) notation of the hard constraint string.

#define VRNA CONSTRAINT DB DEFAULT

Switch for dot-bracket structure constraint with default symbols.

#define VRNA\_CONSTRAINT\_CONTEXT\_EXT\_LOOP (unsigned char)0x01

Hard constraints flag, base pair in the exterior loop.

#define VRNA CONSTRAINT CONTEXT HP LOOP (unsigned char)0x02

Hard constraints flag, base pair encloses hairpin loop.

• #define VRNA CONSTRAINT CONTEXT INT LOOP (unsigned char)0x04

Hard constraints flag, base pair encloses an interior loop.

#define VRNA CONSTRAINT CONTEXT INT LOOP ENC (unsigned char)0x08

Hard constraints flag, base pair encloses a multi branch loop.

• #define VRNA CONSTRAINT CONTEXT MB LOOP (unsigned char)0x10

Hard constraints flag, base pair is enclosed in an interior loop.

#define VRNA\_CONSTRAINT\_CONTEXT\_MB\_LOOP\_ENC (unsigned char)0x20

Hard constraints flag, base pair is enclosed in a multi branch loop.

#define VRNA CONSTRAINT CONTEXT ALL LOOPS

Constraint context flag indicating any loop context.

## **Typedefs**

• typedef struct vrna hc s vrna hc t

Typename for the hard constraints data structure vrna\_hc\_s.

typedef struct vrna\_hc\_up\_s vrna\_hc\_up\_t

Typename for the single nucleotide hard constraint data structure vrna\_hc\_up\_s.

• typedef unsigned char(\* vrna\_hc\_eval\_f) (int i, int j, int k, int l, unsigned char d, void \*data)

Callback to evaluate whether or not a particular decomposition step is contributing to the solution space.

## **Functions**

void vrna\_hc\_init (vrna\_fold\_compound\_t \*vc)

Initialize/Reset hard constraints to default values.

void vrna\_hc\_add\_up (vrna\_fold\_compound\_t \*vc, int i, unsigned char option)

Make a certain nucleotide unpaired.

int vrna\_hc\_add\_up\_batch (vrna\_fold\_compound\_t \*vc, vrna\_hc\_up\_t \*constraints)

Apply a list of hard constraints for single nucleotides.

• int vrna\_hc\_add\_bp (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned char option)

Favorize/Enforce a certain base pair (i,j)

void vrna\_hc\_add\_bp\_nonspecific (vrna\_fold\_compound\_t \*vc, int i, int d, unsigned char option)

Enforce a nucleotide to be paired (upstream/downstream)

void vrna\_hc\_free (vrna\_hc\_t \*hc)

Free the memory allocated by a vrna\_hc\_t data structure.

int vrna\_hc\_add\_from\_db (vrna\_fold\_compound\_t \*vc, const char \*constraint, unsigned int options)

Add hard constraints from pseudo dot-bracket notation.

16.12 Hard Constraints 241

## 16.12.2 Data Structure Documentation

## 16.12.2.1 struct vrna\_hc\_s

The hard constraints data structure.

The content of this data structure determines the decomposition pattern used in the folding recursions. Attribute 'matrix' is used as source for the branching pattern of the decompositions during all folding recursions. Any entry in matrix[i,j] consists of the 6 LSB that allows one to distinguish the following types of base pairs:

- in the exterior loop (VRNA\_CONSTRAINT\_CONTEXT\_EXT\_LOOP)
- enclosing a hairpin (VRNA\_CONSTRAINT\_CONTEXT\_HP\_LOOP)
- enclosing an interior loop (VRNA\_CONSTRAINT\_CONTEXT\_INT\_LOOP)
- enclosed by an exterior loop (VRNA\_CONSTRAINT\_CONTEXT\_INT\_LOOP\_ENC)
- enclosing a multi branch loop (VRNA\_CONSTRAINT\_CONTEXT\_MB\_LOOP)
- enclosed by a multi branch loop (VRNA\_CONSTRAINT\_CONTEXT\_MB\_LOOP\_ENC)

The four linear arrays 'up\_xxx' provide the number of available unpaired nucleotides (including position i) 3' of each position in the sequence.

See also

vrna\_hc\_init(), vrna\_hc\_free(), VRNA\_CONSTRAINT\_CONTEXT\_EXT\_LOOP, VRNA\_CONSTRAINT\_CONTEXT\_HP\_LOOP, VRNA\_CONSTRAINT\_CONTEXT\_INT\_LOOP, VRNA\_CONSTRAINT\_CONTEXT\_MB\_LOOP, VRNA\_CONTEXT\_MB\_LOOP, VRNA\_CONTE

### **Data Fields**

int \* up ext

A linear array that holds the number of allowed unpaired nucleotides in an exterior loop.

int \* up\_hp

A linear array that holds the number of allowed unpaired nucleotides in a hairpin loop.

int \* up\_int

A linear array that holds the number of allowed unpaired nucleotides in an interior loop.

int \* up\_ml

A linear array that holds the number of allowed unpaired nucleotides in a multi branched loop.

· vrna hc eval f f

A function pointer that returns whether or not a certain decomposition may be evaluated.

void \* data

A pointer to some structure where the user may store necessary data to evaluate its generic hard constraint function.

· vrna auxdata free f free data

A pointer to a function to free memory occupied by auxiliary data.

## 16.12.2.1.1 Field Documentation

## **16.12.2.1.1.1 free\_data** vrna\_auxdata\_free\_f vrna\_hc\_s::free\_data

A pointer to a function to free memory occupied by auxiliary data.

The function this pointer is pointing to will be called upon destruction of the vrna\_hc\_s, and provided with the vrna\_hc\_s.data pointer that may hold auxiliary data. Hence, to avoid leaking memory, the user may use this pointer to free memory occupied by auxiliary data.

### 16.12.2.2 struct vrna\_hc\_up\_s

A single hard constraint for a single nucleotide.

### **Data Fields**

· int position

The sequence position (1-based)

· unsigned char options

The hard constraint option

## 16.12.3 Macro Definition Documentation

## 16.12.3.1 VRNA\_CONSTRAINT\_DB

```
#define VRNA_CONSTRAINT_DB 16384U
#include <ViennaRNA/constraints/hard.h>
```

Flag for vrna constraints add() to indicate that constraint is passed in pseudo dot-bracket notation.

See also

vrna constraints add(), vrna message constraint options(), vrna message constraint options all()

## 16.12.3.2 VRNA\_CONSTRAINT\_DB\_ENFORCE\_BP

```
#define VRNA_CONSTRAINT_DB_ENFORCE_BP 32768U
#include <ViennaRNA/constraints/hard.h>
```

Switch for dot-bracket structure constraint to enforce base pairs.

This flag should be used to really enforce base pairs given in dot-bracket constraint rather than just weakly-enforcing them.

See also

vrna\_hc\_add\_from\_db(), vrna\_constraints\_add(), vrna\_message\_constraint\_options(), vrna\_message\_constraint\_options\_all()

## 16.12.3.3 VRNA\_CONSTRAINT\_DB\_PIPE

```
#define VRNA_CONSTRAINT_DB_PIPE 65536U
#include <ViennaRNA/constraints/hard.h>
```

Flag that is used to indicate the pipe '|' sign in pseudo dot-bracket notation of hard constraints.

Use this definition to indicate the pipe sign '|' (paired with another base)

See also

vrna\_hc\_add\_from\_db(), vrna\_constraints\_add(), vrna\_message\_constraint\_options(), vrna\_message\_constraint\_options\_all()

## 16.12.3.4 VRNA\_CONSTRAINT\_DB\_DOT

```
#define VRNA_CONSTRAINT_DB_DOT 131072U
#include <ViennaRNA/constraints/hard.h>
dot'.' switch for structure constraints (no constraint at all)
```

See also

vrna hc add from db(), vrna constraints add(), vrna message constraint options(), vrna message constraint options all()

16.12 Hard Constraints 243

## 16.12.3.5 VRNA\_CONSTRAINT\_DB\_X

```
#define VRNA_CONSTRAINT_DB_X 262144U
#include <ViennaRNA/constraints/hard.h>
'x' switch for structure constraint (base must not pair)
```

See also

vrna\_hc\_add\_from\_db(), vrna\_constraints\_add(), vrna\_message\_constraint\_options(), vrna\_message\_constraint\_options\_all()

## 16.12.3.6 VRNA\_CONSTRAINT\_DB\_RND\_BRACK

```
#define VRNA_CONSTRAINT_DB_RND_BRACK 1048576U
#include <ViennaRNA/constraints/hard.h>
round brackets '(',')' switch for structure constraint (base i pairs base j)
```

See also

vrna\_hc\_add\_from\_db(), vrna\_constraints\_add(), vrna\_message\_constraint\_options(), vrna\_message\_constraint\_options\_all()

## 16.12.3.7 VRNA\_CONSTRAINT\_DB\_INTRAMOL

```
#define VRNA_CONSTRAINT_DB_INTRAMOL 2097152U
#include <ViennaRNA/constraints/hard.h>
```

Flag that is used to indicate the character 'I' in pseudo dot-bracket notation of hard constraints.

Use this definition to indicate the usage of 'I' character (intramolecular pairs only)

See also

vrna\_hc\_add\_from\_db(), vrna\_constraints\_add(), vrna\_message\_constraint\_options(), vrna\_message\_constraint\_options\_all()

## 16.12.3.8 VRNA\_CONSTRAINT\_DB\_INTERMOL

```
#define VRNA_CONSTRAINT_DB_INTERMOL 4194304U
#include <ViennaRNA/constraints/hard.h>
```

Flag that is used to indicate the character 'e' in pseudo dot-bracket notation of hard constraints.

Use this definition to indicate the usage of 'e' character (intermolecular pairs only)

See also

vrna\_hc\_add\_from\_db(), vrna\_constraints\_add(), vrna\_message\_constraint\_options(), vrna\_message\_constraint\_options\_all()

## 16.12.3.9 VRNA\_CONSTRAINT\_DB\_GQUAD

```
#define VRNA_CONSTRAINT_DB_GQUAD 8388608U
#include <ViennaRNA/constraints/hard.h>
'+' switch for structure constraint (base is involved in a gquad)
```

See also

vrna\_hc\_add\_from\_db(), vrna\_constraints\_add(), vrna\_message\_constraint\_options(), vrna\_message\_constraint\_options\_all()

Warning

This flag is for future purposes only! No implementation recognizes it yet.

## 16.12.3.10 VRNA\_CONSTRAINT\_DB\_WUSS

```
#define VRNA_CONSTRAINT_DB_WUSS 33554432U
#include <ViennaRNA/constraints/hard.h>
```

Flag to indicate Washington University Secondary Structure (WUSS) notation of the hard constraint string.

This secondary structure notation for RNAs is usually used as consensus secondary structure (SS\_cons) entry in Stockholm formatted files

## 16.12.3.11 VRNA\_CONSTRAINT\_DB\_DEFAULT

Switch for dot-bracket structure constraint with default symbols.

This flag conveniently combines all possible symbols in dot-bracket notation for hard constraints and VRNA\_CONSTRAINT\_DB

See also

vrna\_hc\_add\_from\_db(), vrna\_constraints\_add(), vrna\_message\_constraint\_options(), vrna\_message\_constraint\_options\_all()

## 16.12.3.12 VRNA\_CONSTRAINT\_CONTEXT\_EXT\_LOOP

```
#define VRNA_CONSTRAINT_CONTEXT_EXT_LOOP (unsigned char) 0x01
#include <ViennaRNA/constraints/hard.h>
Hard constraints flag, base pair in the exterior loop.
```

## 16.12.3.13 VRNA CONSTRAINT CONTEXT HP LOOP

```
#define VRNA_CONSTRAINT_CONTEXT_HP_LOOP (unsigned char) 0x02
#include <ViennaRNA/constraints/hard.h>
Hard constraints flag, base pair encloses hairpin loop.
```

## 16.12.3.14 VRNA\_CONSTRAINT\_CONTEXT\_INT\_LOOP

```
#define VRNA_CONSTRAINT_CONTEXT_INT_LOOP (unsigned char) 0x04 #include <ViennaRNA/constraints/hard.h> Hard constraints flag, base pair encloses an interior loop.
```

## 16.12.3.15 VRNA CONSTRAINT CONTEXT INT LOOP ENC

```
#define VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC (unsigned char) 0x08
#include <ViennaRNA/constraints/hard.h>
Hard constraints flag, base pair encloses a multi branch loop.
```

## 16.12.3.16 VRNA CONSTRAINT CONTEXT MB LOOP

```
#define VRNA_CONSTRAINT_CONTEXT_MB_LOOP (unsigned char) 0x10
```

16.12 Hard Constraints 245

#include <ViennaRNA/constraints/hard.h>

Hard constraints flag, base pair is enclosed in an interior loop.

### 16.12.3.17 VRNA CONSTRAINT CONTEXT MB LOOP ENC

#define VRNA\_CONSTRAINT\_CONTEXT\_MB\_LOOP\_ENC (unsigned char) 0x20
#include <ViennaRNA/constraints/hard.h>

Hard constraints flag, base pair is enclosed in a multi branch loop.

## 16.12.3.18 VRNA\_CONSTRAINT\_CONTEXT\_ALL\_LOOPS

#define VRNA\_CONSTRAINT\_CONTEXT\_ALL\_LOOPS
#include <ViennaRNA/constraints/hard.h>
Value:

char) (VRNA\_CONSTRAINT\_CONTEXT\_CLOSING\_LOOPS | \

(unsigned

VRNA\_CONSTRAINT\_CONTEXT\_ENCLOSED\_LOOPS)

Constraint context flag indicating any loop context.

## 16.12.4 Typedef Documentation

## 16.12.4.1 vrna\_hc\_eval\_f

```
typedef unsigned char(* vrna_hc_eval_f) (int i, int j, int k, int l, unsigned char d, void
*data)
```

#include <ViennaRNA/constraints/hard.h>

Callback to evaluate whether or not a particular decomposition step is contributing to the solution space.

This is the prototype for callback functions used by the folding recursions to evaluate generic hard constraints. The first four parameters passed indicate the delimiting nucleotide positions of the decomposition, and the parameter denotes the decomposition step. The last parameter data is the auxiliary data structure associated to the hard constraints via vrna\_hc\_add\_data(), or NULL if no auxiliary data was added.

**Notes on Callback Functions** This callback enables one to over-rule default hard constraints in secondary structure decompositions.

### See also

```
VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML, VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML, VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_EXT_EXT, VRNA_DECOMP_EXT_UP, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_EXT, VRNA_DECOMP_EXT_EXT_STEM, VRNA_DECOMP_EXT_EXT_STEM, VRNA_DECOMP_EXT_EXT_STEM1, vrna_hc_add_f(), vrna_hc_add_data()
```

### **Parameters**

| i    | Left (5') delimiter position of substructure  |
|------|-----------------------------------------------|
| j    | Right (3') delimiter position of substructure |
| k    | Left delimiter of decomposition               |
| 1    | Right delimiter of decomposition              |
| d    | Decomposition step indicator                  |
| data | Auxiliary data                                |

### Returns

A non-zero value if the decomposition is valid, 0 otherwise

### 16.12.5 Function Documentation

## 16.12.5.1 vrna\_hc\_init()

Initialize/Reset hard constraints to default values.

This function resets the hard constraints to their default values, i.e. all positions may be unpaired in all contexts, and base pairs are allowed in all contexts, if they resemble canonical pairs. Previously set hard constraints will be removed before initialization.

### See also

```
vrna_hc_add_bp(), vrna_hc_add_bp_nonspecific(), vrna_hc_add_up()
```

### **Parameters**

vc The fold compound

SWIG Wrapper Notes This function is attached as method hc\_init() to objects of type fold\_compound

## 16.12.5.2 vrna\_hc\_add\_up()

Make a certain nucleotide unpaired.

## See also

vrna\_hc\_add\_bp(), vrna\_hc\_add\_bp\_nonspecific(), vrna\_hc\_init(), VRNA\_CONSTRAINT\_CONTEXT\_EXT\_LOOP, VRNA\_CONSTRAINT\_CONTEXT\_HP\_LOOP, VRNA\_CONSTRAINT\_CONTEXT\_INT\_LOOP, VRNA\_CONSTRAINT\_CONTE VRNA\_CONSTRAINT\_CONTEXT\_ALL\_LOOPS

## **Parameters**

| VC     | The vrna_fold_compound_t the hard constraints are associated with   |
|--------|---------------------------------------------------------------------|
| i      | The position that needs to stay unpaired (1-based)                  |
| option | The options flag indicating how/where to store the hard constraints |

## 16.12.5.3 vrna\_hc\_add\_up\_batch()

16.12 Hard Constraints 247

```
#include <ViennaRNA/constraints/hard.h>
```

Apply a list of hard constraints for single nucleotides.

### **Parameters**

| VC          | The vrna_fold_compound_t the hard constraints are associated with                   |
|-------------|-------------------------------------------------------------------------------------|
| constraints | The list off constraints to apply, last entry must have position attribute set to 0 |

## 16.12.5.4 vrna\_hc\_add\_bp()

### See also

```
vrna_hc_add_bp_nonspecific(), vrna_hc_add_up(), vrna_hc_init(), VRNA_CONSTRAINT_CONTEXT_EXT_LOOP, VRNA_CONSTRAINT_CONTEXT_HP_LOOP, VRNA_CONSTRAINT_CONTEXT_INT_LOOP, VRNA_CONSTRAINT_CONTEXT_MB_LOOP, VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC, VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS
```

### **Parameters**

| VC     | The vrna_fold_compound_t the hard constraints are associated with   |
|--------|---------------------------------------------------------------------|
| i      | The 5' located nucleotide position of the base pair (1-based)       |
| j      | The 3' located nucleotide position of the base pair (1-based)       |
| option | The options flag indicating how/where to store the hard constraints |

## 16.12.5.5 vrna\_hc\_add\_bp\_nonspecific()

## See also

```
vrna_hc_add_bp(), vrna_hc_add_up(), vrna_hc_init(), VRNA_CONSTRAINT_CONTEXT_EXT_LOOP, VRNA_CONSTRAINT_CONTEXT_HP_LOOP, VRNA_CONSTRAINT_CONTEXT_INT_LOOP, VRNA_CONSTRAINT_CONTEXT_MB_LOOP, VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC, VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS
```

### **Parameters**

| VC | The vrna_fold_compound_t the hard constraints are associated with |
|----|-------------------------------------------------------------------|
| i  | The position that needs to stay unpaired (1-based)                |

### **Parameters**

| d      | The direction of base pairing ( $d<0$ : pairs upstream, $d>0$ : pairs downstream, $d==0$ : no direction) |
|--------|----------------------------------------------------------------------------------------------------------|
| option | The options flag indicating in which loop type context the pairs may appear                              |

## 16.12.5.6 vrna\_hc\_free()

Free the memory allocated by a vrna\_hc\_t data structure.

Use this function to free all memory that was allocated for a data structure of type  $vrna\_hc\_t$ .

### See also

```
get_hard_constraints(), vrna_hc_t
```

## 16.12.5.7 vrna hc add from db()

Add hard constraints from pseudo dot-bracket notation.

This function allows one to apply hard constraints from a pseudo dot-bracket notation. The options parameter controls, which characters are recognized by the parser. Use the VRNA\_CONSTRAINT\_DB\_DEFAULT convenience macro, if you want to allow all known characters

## See also

VRNA\_CONSTRAINT\_DB\_PIPE, VRNA\_CONSTRAINT\_DB\_DOT, VRNA\_CONSTRAINT\_DB\_X, VRNA\_CONSTRAINT\_DB\_VRNA\_CONSTRAINT\_DB\_RND\_BRACK, VRNA\_CONSTRAINT\_DB\_INTRAMOL, VRNA\_CONSTRAINT\_DB\_INTERMOL, VRNA\_CONSTRAINT\_DB\_GQUAD

### **Parameters**

| VC         | The fold compound                                     |
|------------|-------------------------------------------------------|
| constraint | A pseudo dot-bracket notation of the hard constraint. |
| options    | The option flags                                      |

SWIG Wrapper Notes This function is attached as method hc\_add\_from\_db() to objects of type fold\_compound

## 16.13 Soft Constraints

Functions and data structures for secondary structure soft constraints.

## 16.13.1 Detailed Description

Functions and data structures for secondary structure soft constraints.

Soft-constraints are used to change position specific contributions in the recursions by adding bonuses/penalties in form of pseudo free energies to certain loop configurations. Collaboration diagram for Soft Constraints:

16.13 Soft Constraints 249

## **Files**

· file soft.h

Functions and data structures for secondary structure soft constraints.

· file soft\_special.h

Specialized implementations that utilize the soft constraint callback mechanism.

### **Data Structures**

struct vrna sc s

The soft constraints data structure. More...

## **Typedefs**

typedef struct vrna\_sc\_s vrna\_sc\_t

Typename for the soft constraints data structure vrna\_sc\_s.

• typedef int(\* vrna\_sc\_f) (int i, int j, int k, int l, unsigned char d, void \*data)

Callback to retrieve pseudo energy contribution for soft constraint feature.

typedef FLT\_OR\_DBL(\* vrna\_sc\_exp\_f) (int i, int j, int k, int I, unsigned char d, void \*data)

Callback to retrieve pseudo energy contribution as Boltzmann Factors for soft constraint feature.

typedef vrna\_basepair\_t \*(\* vrna\_sc\_bt\_f) (int i, int j, int k, int l, unsigned char d, void \*data)

Callback to retrieve auxiliary base pairs for soft constraint feature.

## **Functions**

void vrna\_sc\_init (vrna\_fold\_compound\_t \*vc)

Initialize an empty soft constraints data structure within a vrna fold compound t.

- int vrna\_sc\_set\_bp (vrna\_fold\_compound\_t \*vc, const FLT\_OR\_DBL \*\*constraints, unsigned int options)

  Set soft constraints for paired nucleotides.
- int vrna\_sc\_add\_bp (vrna\_fold\_compound\_t \*vc, int i, int j, FLT\_OR\_DBL energy, unsigned int options)

  Add soft constraints for paired nucleotides.
- int vrna\_sc\_set\_up (vrna\_fold\_compound\_t \*vc, const FLT\_OR\_DBL \*constraints, unsigned int options)

  Set soft constraints for unpaired nucleotides.
- int vrna\_sc\_add\_up (vrna\_fold\_compound\_t \*vc, int i, FLT\_OR\_DBL energy, unsigned int options)

  Add soft constraints for unpaired nucleotides.
- void vrna\_sc\_remove (vrna\_fold\_compound\_t \*vc)

Remove soft constraints from vrna\_fold\_compound\_t.

void vrna\_sc\_free (vrna\_sc\_t \*sc)

Free memory occupied by a vrna\_sc\_t data structure.

- int vrna\_sc\_add\_data (vrna\_fold\_compound\_t \*vc, void \*data, vrna\_auxdata\_free\_f free\_data)
  - Add an auxiliary data structure for the generic soft constraints callback function.
- int vrna\_sc\_add\_f (vrna\_fold\_compound\_t \*vc, vrna\_sc\_f f)

Bind a function pointer for generic soft constraint feature (MFE version)

int vrna\_sc\_add\_bt (vrna\_fold\_compound\_t \*vc, vrna\_sc\_bt\_f f)

Bind a backtracking function pointer for generic soft constraint feature.

int vrna\_sc\_add\_exp\_f (vrna\_fold\_compound\_t \*vc, vrna\_sc\_exp\_f exp\_f)

Bind a function pointer for generic soft constraint feature (PF version)

### 16.13.2 Data Structure Documentation

## 16.13.2.1 struct vrna\_sc\_s

The soft constraints data structure. Collaboration diagram for vrna\_sc\_s:

### **Data Fields**

int \*\* energy\_up

Energy contribution for stretches of unpaired nucleotides.

FLT\_OR\_DBL \*\* exp\_energy\_up

Boltzmann Factors of the energy contributions for unpaired sequence stretches.

int \* up storage

Storage container for energy contributions per unpaired nucleotide.

vrna\_sc\_bp\_storage\_t \*\* bp\_storage

Storage container for energy contributions per base pair.

int \* energy\_stack

Pseudo Energy contribution per base pair involved in a stack.

• FLT\_OR\_DBL \* exp\_energy\_stack

Boltzmann weighted pseudo energy contribution per nucleotide involved in a stack.

· vrna sc ff

A function pointer used for pseudo energy contribution in MFE calculations.

· vrna sc bt f bt

A function pointer used to obtain backtraced base pairs in loop regions that were altered by soft constrained pseudo energy contributions.

vrna\_sc\_exp\_f exp\_f

A function pointer used for pseudo energy contribution boltzmann factors in PF calculations.

void \* data

A pointer to the data object provided for for pseudo energy contribution functions of the generic soft constraints feature.

int \* energy\_bp

Energy contribution for base pairs.

FLT\_OR\_DBL \* exp\_energy\_bp

Boltzmann Factors of the energy contribution for base pairs.

int \*\* energy\_bp\_local

Energy contribution for base pairs (sliding window approach)

FLT\_OR\_DBL \*\* exp\_energy\_bp\_local

Boltzmann Factors of the energy contribution for base pairs (sliding window approach)

## 16.13.2.1.1 Field Documentation

```
16.13.2.1.1.1 f vrna_sc_f vrna_sc_s::f
```

A function pointer used for pseudo energy contribution in MFE calculations.

See also

```
vrna_sc_add_f()
```

## **16.13.2.1.1.2** bt vrna\_sc\_bt\_f vrna\_sc\_s::bt

A function pointer used to obtain backtraced base pairs in loop regions that were altered by soft constrained pseudo energy contributions.

See also

```
vrna_sc_add_bt()
```

16.13 Soft Constraints 251

```
16.13.2.1.1.3 exp_f vrna_sc_exp_f vrna_sc_s::exp_f
```

A function pointer used for pseudo energy contribution boltzmann factors in PF calculations.

See also

```
vrna_sc_add_exp_f()
```

## 16.13.3 Typedef Documentation

## 16.13.3.1 vrna\_sc\_f

```
typedef int(* vrna_sc_f) (int i, int j, int k, int l, unsigned char d, void *data)
#include <ViennaRNA/constraints/soft.h>
```

Callback to retrieve pseudo energy contribution for soft constraint feature.

This is the prototype for callback functions used by the folding recursions to evaluate generic soft constraints. The first four parameters passed indicate the delimiting nucleotide positions of the decomposition, and the parameter denotes the decomposition step. The last parameter data is the auxiliary data structure associated to the hard constraints via vrna sc add data(), or NULL if no auxiliary data was added.

**Notes on Callback Functions** This callback enables one to add (pseudo-)energy contributions to individual decompositions of the secondary structure.

### See also

```
VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML, VRNA_DECOMP_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML, VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_ML_COAXIAL, VRNA_DECOMP_EXT_EXT, VRNA_DECOMP_EXT_UP, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_EXT_STEM, VRNA_DECOMP_EXT_EXT_STEM, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_STEM1, vrna_sc_add_f(), vrna_sc_add_exp_f(), vrna_sc_add_bt(), vrna_sc_add_data()
```

### **Parameters**

| i    | Left (5') delimiter position of substructure  |
|------|-----------------------------------------------|
| j    | Right (3') delimiter position of substructure |
| k    | Left delimiter of decomposition               |
| 1    | Right delimiter of decomposition              |
| d    | Decomposition step indicator                  |
| data | Auxiliary data                                |

### Returns

Pseudo energy contribution in deka-kalories per mol

## 16.13.3.2 vrna\_sc\_exp\_f

```
typedef FLT_OR_DBL(* vrna_sc_exp_f) (int i, int j, int k, int l, unsigned char d, void *data)
#include <ViennaRNA/constraints/soft.h>
```

Callback to retrieve pseudo energy contribution as Boltzmann Factors for soft constraint feature.

This is the prototype for callback functions used by the partition function recursions to evaluate generic soft constraints. The first four parameters passed indicate the delimiting nucleotide positions of the decomposition, and the parameter denotes the decomposition step. The last parameter data is the auxiliary data structure associated to the hard constraints via vrna\_sc\_add\_data(), or NULL if no auxiliary data was added.

Notes on Callback Functions This callback enables one to add (pseudo-)energy contributions to individual de-

compositions of the secondary structure (Partition function variant, i.e. contributions must be returned as Boltzmann factors).

### See also

VRNA\_DECOMP\_PAIR\_HP, VRNA\_DECOMP\_PAIR\_IL, VRNA\_DECOMP\_PAIR\_ML, VRNA\_DECOMP\_ML\_ML, VRNA\_DECOMP\_ML\_STEM, VRNA\_DECOMP\_ML\_ML, VRNA\_DECOMP\_ML\_UP, VRNA\_DECOMP\_ML\_ML\_STEM, VRNA\_DECOMP\_ML\_COAXIAL, VRNA\_DECOMP\_EXT\_EXT, VRNA\_DECOMP\_EXT\_UP, VRNA\_DECOMP\_EXT\_STEM, VRNA\_DECOMP\_EXT\_EXT\_STEM, VRNA\_DECOMP\_EXT\_EXT\_STEM, VRNA\_DECOMP\_EXT\_STEM, VRNA\_DECOMP\_EXT\_STEM1, vrna\_sc\_add\_exp\_f(), vrna\_sc\_add\_f(), vrna\_sc\_add\_bt(), vrna\_sc\_add\_data()

### **Parameters**

| i    | Left (5') delimiter position of substructure  |
|------|-----------------------------------------------|
| j    | Right (3') delimiter position of substructure |
| k    | Left delimiter of decomposition               |
| 1    | Right delimiter of decomposition              |
| d    | Decomposition step indicator                  |
| data | Auxiliary data                                |

### Returns

Pseudo energy contribution in deka-kalories per mol

## 16.13.3.3 vrna\_sc\_bt\_f

```
typedef vrna_basepair_t *(* vrna_sc_bt_f) (int i, int j, int k, int l, unsigned char d, void
*data)
#include <ViennaRNA/constraints/soft.h>
```

Callback to retrieve auxiliary base pairs for soft constraint feature.

**Notes on Callback Functions** This callback enables one to add auxiliary base pairs in the backtracking steps of hairpin- and interior loops.

### See also

```
VRNA_DECOMP_PAIR_HP, VRNA_DECOMP_PAIR_IL, VRNA_DECOMP_PAIR_ML, VRNA_DECOMP_ML_ML_ML, VRNA_DECOMP_ML_STEM, VRNA_DECOMP_ML_ML, VRNA_DECOMP_ML_UP, VRNA_DECOMP_ML_ML_STEM, VRNA_DECOMP_ML_COAXIAL, VRNA_DECOMP_EXT_EXT, VRNA_DECOMP_EXT_UP, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_EXT, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_STEM_EXT, VRNA_DECOMP_EXT_STEM, VRNA_DECOMP_EXT_STEM_SC add data()
```

### **Parameters**

| i    | Left (5') delimiter position of substructure  |
|------|-----------------------------------------------|
| j    | Right (3') delimiter position of substructure |
| k    | Left delimiter of decomposition               |
| 1    | Right delimiter of decomposition              |
| d    | Decomposition step indicator                  |
| data | Auxiliary data                                |

16.13 Soft Constraints 253

### Returns

List of additional base pairs

### 16.13.4 Function Documentation

## 16.13.4.1 vrna\_sc\_init()

Initialize an empty soft constraints data structure within a vrna\_fold\_compound\_t.

This function adds a proper soft constraints data structure to the <a href="vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> data structure. If soft constraints already exist within the fold compound, they are removed.

Note

Accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE and VRNA\_FC\_TYPE\_COMPARATIVE

### See also

```
vrna_sc_set_bp(), vrna_sc_set_up(), vrna_sc_add_SHAPE_deigan(), vrna_sc_add_SHAPE_zarringhalam(), vrna_sc_remove(), vrna_sc_add_f(), vrna_sc_add_exp_f(), vrna_sc_add_pre(), vrna_sc_add_post()
```

## **Parameters**

```
vc The vrna_fold_compound_t where an empty soft constraint feature is to be added to
```

SWIG Wrapper Notes This function is attached as method sc\_init() to objects of type fold\_compound

## 16.13.4.2 vrna sc set bp()

Note

This function replaces any pre-exisitng soft constraints with the ones supplied in constraints.

## See also

```
vrna\_sc\_add\_bp(), \, vrna\_sc\_set\_up(), \, vrna\_sc\_add\_up()
```

### **Parameters**

| VC          | The vrna_fold_compound_t the soft constraints are associated with   |
|-------------|---------------------------------------------------------------------|
| constraints | A two-dimensional array of pseudo free energies in $kcal/mol$       |
| options     | The options flag indicating how/where to store the soft constraints |

### Returns

Non-zero on successful application of the constraint, 0 otherwise.

SWIG Wrapper Notes This function is attached as method sc\_set\_bp() to objects of type fold\_compound

## 16.13.4.3 vrna\_sc\_add\_bp()

### See also

```
vrna sc set bp(), vrna sc set up(), vrna sc add up()
```

### **Parameters**

| VC      | The vrna_fold_compound_t the soft constraints are associated with   |
|---------|---------------------------------------------------------------------|
| i       | The 5' position of the base pair the soft constraint is added for   |
| j       | The 3' position of the base pair the soft constraint is added for   |
| energy  | The free energy (soft-constraint) in $kcal/mol$                     |
| options | The options flag indicating how/where to store the soft constraints |

## Returns

Non-zero on successful application of the constraint, 0 otherwise.

**SWIG Wrapper Notes** This function is attached as an overloaded method **sc\_add\_bp()** to objects of type *fold*← \_\_*compound*. The method either takes arguments for a single base pair (i,j) with the corresponding energy value:

```
fold_compound.sc_add_bp(i, j, energy, options)
```

or an entire 2-dimensional matrix with dimensions n x n that stores free energy contributions for any base pair (i,j) with  $1 \le i < j \le n$ :

```
fold_compound.sc_add_bp(matrix, options)
```

In both variants, the options argument is optional can may be omitted.

## 16.13.4.4 vrna\_sc\_set\_up()

## Note

This function replaces any pre-exisitng soft constraints with the ones supplied in constraints.

## See also

```
vrna_sc_add_up(), vrna_sc_set_bp(), vrna_sc_add_bp()
```

16.13 Soft Constraints 255

### **Parameters**

| VC          | The vrna_fold_compound_t the soft constraints are associated with   |
|-------------|---------------------------------------------------------------------|
| constraints | A vector of pseudo free energies in $kcal/mol$                      |
| options     | The options flag indicating how/where to store the soft constraints |

### Returns

Non-zero on successful application of the constraint, 0 otherwise.

SWIG Wrapper Notes This function is attached as method sc\_set\_up() to objects of type fold\_compound

## 16.13.4.5 vrna\_sc\_add\_up()

### See also

```
vrna_sc_set_up(), vrna_sc_add_bp(), vrna_sc_set_bp()
```

## **Parameters**

| vc      | The vrna_fold_compound_t the soft constraints are associated with   |
|---------|---------------------------------------------------------------------|
| i       | The nucleotide position the soft constraint is added for            |
| energy  | The free energy (soft-constraint) in $kcal/mol$                     |
| options | The options flag indicating how/where to store the soft constraints |

### Returns

Non-zero on successful application of the constraint, 0 otherwise.

SWIG Wrapper Notes This function is attached as an overloaded method  $sc_add_up()$  to objects of type  $fold \leftarrow \_compound$ . The method either takes arguments for a single nucleotide i with the corresponding energy value:

```
\label{eq:compound.sc_add_up(i, energy, options)} \text{or an entire vector that stores free energy contributions for each nucleotide } i \text{ with } 1 \leq i \leq n \text{:} \\ \text{fold\_compound.sc\_add\_bp(vector, options)}
```

In both variants, the  ${\tt options}$  argument is optional can may be omitted.

## 16.13.4.6 vrna\_sc\_remove()

## Note

Accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE and VRNA\_FC\_TYPE\_COMPARATIVE

### **Parameters**

vc The vrna\_fold\_compound\_t possibly containing soft constraints

SWIG Wrapper Notes This function is attached as method sc remove() to objects of type fold compound

## 16.13.4.7 vrna\_sc\_free()

### **Parameters**

sc The data structure to free from memory

### 16.13.4.8 vrna sc add data()

Add an auxiliary data structure for the generic soft constraints callback function.

### See also

```
vrna_sc_add_f(), vrna_sc_add_exp_f(), vrna_sc_add_bt()
```

## **Parameters**

| VC        | The fold compound the generic soft constraint function should be bound to    |
|-----------|------------------------------------------------------------------------------|
| data      | A pointer to the data structure that holds required data for function 'f'    |
| free_data | A pointer to a function that free's the memory occupied by data (Maybe NULL) |

### Returns

Non-zero on successful binding the data (and free-function), 0 otherwise

SWIG Wrapper Notes This function is attached as method sc\_add\_data() to objects of type fold\_compound

## 16.13.4.9 vrna\_sc\_add\_f()

Bind a function pointer for generic soft constraint feature (MFE version)

This function allows one to easily bind a function pointer and corresponding data structure to the soft constraint part  $vrna\_sc\_t$  of the  $vrna\_fold\_compound\_t$ . The function for evaluating the generic soft constraint feature has to return a pseudo free energy  $\hat{E}$  in dacal/mol, where 1dacal/mol = 10cal/mol.

16.13 Soft Constraints 257

### See also

```
vrna_sc_add_data(), vrna_sc_add_bt(), vrna_sc_add_exp_f()
```

#### **Parameters**

| VC | The fold compound the generic soft constraint function should be bound to    |
|----|------------------------------------------------------------------------------|
| f  | A pointer to the function that evaluates the generic soft constraint feature |

### Returns

Non-zero on successful binding the callback function, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc add f() to objects of type fold compound

## 16.13.4.10 vrna\_sc\_add\_bt()

Bind a backtracking function pointer for generic soft constraint feature.

This function allows one to easily bind a function pointer to the soft constraint part vrna\_sc\_t of the vrna\_fold\_compound\_t. The provided function should be used for backtracking purposes in loop regions that were altered via the generic soft constraint feature. It has to return an array of vrna\_basepair\_t data structures, were the last element in the list is indicated by a value of -1 in it's i position.

### See also

```
vrna_sc_add_data(), vrna_sc_add_f(), vrna_sc_add_exp_f()
```

### **Parameters**

| VC | The fold compound the generic soft constraint function should be bound to |
|----|---------------------------------------------------------------------------|
| f  | A pointer to the function that returns additional base pairs              |

## Returns

Non-zero on successful binding the callback function, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc add bt() to objects of type fold compound

## 16.13.4.11 vrna\_sc\_add\_exp\_f()

Bind a function pointer for generic soft constraint feature (PF version)

This function allows one to easily bind a function pointer and corresponding data structure to the soft constraint part  $vrna\_sc\_t$  of the  $vrna\_fold\_compound\_t$ . The function for evaluating the generic soft constraint feature has to return a pseudo free energy  $\hat{E}$  as Boltzmann factor, i.e.  $exp(-\hat{E}/kT)$ . The required unit for E is cal/mol.

### See also

vrna\_sc\_add\_bt(), vrna\_sc\_add\_f(), vrna\_sc\_add\_data()

#### **Parameters**

| VC   | The fold compound the generic soft constraint function should be bound to    |
|------|------------------------------------------------------------------------------|
| ехр⊷ | A pointer to the function that evaluates the generic soft constraint feature |
| _f   |                                                                              |

### Returns

Non-zero on successful binding the callback function, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc add exp f() to objects of type fold compound

## 16.14 The RNA Secondary Structure Landscape

## 16.14.1 Detailed Description

Collaboration diagram for The RNA Secondary Structure Landscape:

### **Modules**

- Neighborhood Relation and Move Sets for Secondary Structures
  - Different functions to generate structural neighbors of a secondary structure according to a particular Move Set.
- · (Re-)folding Paths, Saddle Points, Energy Barriers, and Local Minima

API for various RNA folding path algorithms.

## 16.15 Minimum Free Energy (MFE) Algorithms

Predicting the Minimum Free Energy (MFE) and a corresponding (consensus) secondary structure.

## 16.15.1 Detailed Description

Predicting the Minimum Free Energy (MFE) and a corresponding (consensus) secondary structure. In a nutshell we provide two different flavors for MFE prediction:

- Global MFE Prediction to compute the MFE for the entire sequence
- Local (sliding window) MFE Prediction to compute MFEs for each window using a sliding window approach

Each of these flavors, again, provides two implementations to either compute the MFE based on

- single RNA (DNA) sequence(s), or
- a comparative approach using multiple sequence alignments (MSA).

For the latter, a consensus secondary structure is predicted and our implementations compute an average of free energies for each sequence in the MSA plus an additional covariance pseudo-energy term.

The implementations for Backtracking MFE structures are generally agnostic with respect to whether local or global structure prediction is in place. Collaboration diagram for Minimum Free Energy (MFE) Algorithms:

## **Modules**

· Global MFE Prediction

Variations of the global Minimum Free Energy (MFE) prediction algorithm.

· Local (sliding window) MFE Prediction

Variations of the local (sliding window) Minimum Free Energy (MFE) prediction algorithm.

· Backtracking MFE structures

Backtracking related interfaces.

## **Files**

· file mfe.h

Compute Minimum Free energy (MFE) and backtrace corresponding secondary structures from RNA sequence data.

· file mfe window.h

Compute local Minimum Free Energy (MFE) using a sliding window approach and backtrace corresponding secondary structures.

## 16.16 Partition Function and Equilibrium Properties

Compute the partition function to assess various equilibrium properties.

## 16.16.1 Detailed Description

Compute the partition function to assess various equilibrium properties.

Similar to our Minimum Free Energy (MFE) Algorithms, we provide two different flavors for partition function computations:

- Global Partition Function and Equilibrium Probabilities to compute the partition function for a full length sequence
- Local (sliding window) Partition Function and Equilibrium Probabilities to compute the partition function of each window using a sliding window approach

While the global partition function approach supports predictions using single sequences as well as consensus partition functions for multiple sequence alignments (MSA), we currently do not support MSA input for the local variant.

Comparative prediction computes an average of the free energy contributions plus an additional covariance pseudoenergy term, exactly as we do for the Minimum Free Energy (MFE) Algorithms implementation.

Boltzmann weights for the free energy contributions of individual loops can be found in Energy Evaluation for Individual Loops. Our implementations also provide a stochastic backtracking procedure to draw Random Structure Samples from the Ensemble according to their equilibrium probabilty. Collaboration diagram for Partition Function and Equilibrium Properties:

## **Modules**

· Global Partition Function and Equilibrium Probabilities

Variations of the global partition function algorithm.

· Local (sliding window) Partition Function and Equilibrium Probabilities

Scanning version using a sliding window approach to compute equilibrium probabilities.

## **Files**

· file concentrations.h

Concentration computations for RNA-RNA interactions.

file part\_func.h

Partition function implementations.

· file part func window.h

Partition function and equilibrium probability implementation for the sliding window algorithm.

### **Functions**

• int vrna pf float precision (void)

Find out whether partition function computations are using single precision floating points.

## 16.16.2 Function Documentation

## 16.16.2.1 vrna\_pf\_float\_precision()

Find out whether partition function computations are using single precision floating points.

See also

```
FLT_OR_DBL
```

Returns

1 if single precision is used, 0 otherwise

## 16.17 Global MFE Prediction

Variations of the global Minimum Free Energy (MFE) prediction algorithm.

## 16.17.1 Detailed Description

Variations of the global Minimum Free Energy (MFE) prediction algorithm. We provide implementations of the global MFE prediction algorithm for

- · Single sequences,
- · Multiple sequence alignments (MSA), and
- · RNA-RNA hybrids

Collaboration diagram for Global MFE Prediction:

### **Modules**

Computing MFE representatives of a Distance Based Partitioning

Compute the minimum free energy (MFE) and secondary structures for a partitioning of the secondary structure space according to the base pair distance to two fixed reference structures basepair distance to two fixed reference structures.

• Deprecated Interface for Global MFE Prediction

## **Files**

• file mfe.h

Compute Minimum Free energy (MFE) and backtrace corresponding secondary structures from RNA sequence data.

## **Basic global MFE prediction interface**

float vrna\_mfe (vrna\_fold\_compound\_t \*vc, char \*structure)

Compute minimum free energy and an appropriate secondary structure of an RNA sequence, or RNA sequence alignment.

float vrna\_mfe\_dimer (vrna\_fold\_compound\_t \*vc, char \*structure)

Compute the minimum free energy of two interacting RNA molecules.

## Simplified global MFE prediction using sequence(s) or multiple sequence alignment(s)

float vrna\_fold (const char \*sequence, char \*structure)

Compute Minimum Free Energy (MFE), and a corresponding secondary structure for an RNA sequence.

• float vrna circfold (const char \*sequence, char \*structure)

Compute Minimum Free Energy (MFE), and a corresponding secondary structure for a circular RNA sequence.

• float vrna\_alifold (const char \*\*sequences, char \*structure)

Compute Minimum Free Energy (MFE), and a corresponding consensus secondary structure for an RNA sequence alignment using a comparative method.

float vrna circalifold (const char \*\*sequences, char \*structure)

Compute Minimum Free Energy (MFE), and a corresponding consensus secondary structure for a sequence alignment of circular RNAs using a comparative method.

float vrna\_cofold (const char \*sequence, char \*structure)

Compute Minimum Free Energy (MFE), and a corresponding secondary structure for two dimerized RNA sequences.

### 16.17.2 Function Documentation

## 16.17.2.1 vrna\_mfe()

Compute minimum free energy and an appropriate secondary structure of an RNA sequence, or RNA sequence alignment.

Depending on the type of the provided  $vrna\_fold\_compound\_t$ , this function predicts the MFE for a single sequence (or connected component of multiple sequences), or an averaged MFE for a sequence alignment. If backtracking is activated, it also constructs the corresponding secondary structure, or consensus structure. Therefore, the second parameter, structure, has to point to an allocated block of memory with a size of at least strlen(sequence) + 1 to store the backtracked MFE structure. (For consensus structures, this is the length of the alignment + 1. If NULL is passed, no backtracking will be performed.

Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

### See also

vrna\_fold\_compound\_t, vrna\_fold\_compound(), vrna\_fold(), vrna\_circfold(), vrna\_fold\_compound\_comparative(),
vrna\_alifold(), vrna\_circalifold()

### **Parameters**

| VC        | fold compound                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where the secondary structure in dot-bracket notation will be written |
|           | to (Maybe NULL)                                                                                        |

## Returns

the minimum free energy (MFE) in kcal/mol

SWIG Wrapper Notes This function is attached as method mfe() to objects of type fold\_compound

## 16.17.2.2 vrna\_mfe\_dimer()

Compute the minimum free energy of two interacting RNA molecules.

The code is analog to the vrna\_mfe() function.

**Deprecated** This function is obsolete since vrna\_mfe() can handle complexes multiple sequences since v2.5.0.

Use vrna\_mfe() for connected component MFE instead and compute MFEs of unconnected states separately.

### See also

```
vrna mfe()
```

### **Parameters**

| VC        | fold compound                                             |
|-----------|-----------------------------------------------------------|
| structure | Will hold the barcket dot structure of the dimer molecule |

### Returns

minimum free energy of the structure

SWIG Wrapper Notes This function is attached as method mfe dimer() to objects of type fold compound

## 16.17.2.3 vrna\_fold()

Compute Minimum Free Energy (MFE), and a corresponding secondary structure for an RNA sequence.

This simplified interface to vrna\_mfe() computes the MFE and, if required, a secondary structure for an RNA sequence using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_mfe">vrna\_mfe</a>(), and the data structure <a href="mailto:vrna\_fold\_compound">vrna\_fold\_compound</a> t instead.

## See also

```
vrna circfold(), vrna mfe()
```

### **Parameters**

| sequence  | RNA sequence                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where the secondary structure in dot-bracket notation will be written to |

### Returns

the minimum free energy (MFE) in kcal/mol

## 16.17.2.4 vrna\_circfold()

Compute Minimum Free Energy (MFE), and a corresponding secondary structure for a circular RNA sequence. This simplified interface to <a href="mailto:vrna\_mfe">vrna\_mfe</a>() computes the MFE and, if required, a secondary structure for a circular RNA sequence using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See [15] for further details.

### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_mfe">vrna\_mfe</a>(), and the data structure <a href="mailto:vrna\_fold\_compound">vrna\_fold\_compound</a> t instead.

### See also

```
vrna_fold(), vrna_mfe()
```

### **Parameters**

| sequence  | RNA sequence                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where the secondary structure in dot-bracket notation will be written to |

### Returns

the minimum free energy (MFE) in kcal/mol

## 16.17.2.5 vrna\_alifold()

Compute Minimum Free Energy (MFE), and a corresponding consensus secondary structure for an RNA sequence alignment using a comparative method.

This simplified interface to vrna\_mfe() computes the MFE and, if required, a consensus secondary structure for an RNA sequence alignment using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_mfe">vrna\_mfe</a>(), and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_fold\_compound\_tinstead</a>.

### See also

vrna\_circalifold(), vrna\_mfe()

## **Parameters**

| sequences | RNA sequence alignment                                                                         |
|-----------|------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where the secondary structure in dot-bracket notation will be |
|           | written to                                                                                     |

### Returns

the minimum free energy (MFE) in kcal/mol

## 16.17.2.6 vrna\_circalifold()

Compute Minimum Free Energy (MFE), and a corresponding consensus secondary structure for a sequence alignment of circular RNAs using a comparative method.

This simplified interface to vrna\_mfe() computes the MFE and, if required, a consensus secondary structure for an RNA sequence alignment using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See [15] for further details.

## Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_mfe">vrna\_mfe</a>(), and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_mfe</a>(), and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_mfe</a>().

### See also

vrna\_alifold(), vrna\_mfe()

## **Parameters**

| sequences | Sequence alignment of circular RNAs                                                            |
|-----------|------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where the secondary structure in dot-bracket notation will be |
|           | written to                                                                                     |

## Returns

the minimum free energy (MFE) in kcal/mol

## 16.17.2.7 vrna\_cofold()

Compute Minimum Free Energy (MFE), and a corresponding secondary structure for two dimerized RNA sequences.

This simplified interface to vrna\_mfe() computes the MFE and, if required, a secondary structure for two RNA sequences upon dimerization using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing, e.g. suboptimal backtracking, etc.

### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_mfe">vrna\_mfe</a>(), and the data structure <a href="mailto:vrna\_fold\_compound">vrna\_fold\_compound</a> t instead.

**Deprecated** This function is obsolete since <a href="mailto:vrna\_mfe">vrna\_mfe</a>()/vrna\_fold() can handle complexes multiple sequences since <a href="mailto:v2.5.0">v2.5.0</a>. Use <a href="mailto:vrna\_mfe">vrna\_mfe</a>()/vrna\_fold() for connected component MFE instead and compute MFEs of unconnected states separately.

#### See also

vrna\_fold(), vrna\_mfe(), vrna\_fold\_compound(), vrna\_fold\_compound\_t, vrna\_cut\_point\_insert()

### **Parameters**

| sequence  | two RNA sequences separated by the '&' character                                                          |  |
|-----------|-----------------------------------------------------------------------------------------------------------|--|
| structure | A pointer to the character array where the secondary structure in dot-bracket notation will be written to |  |

### Returns

the minimum free energy (MFE) in kcal/mol

## 16.18 Local (sliding window) MFE Prediction

Variations of the local (sliding window) Minimum Free Energy (MFE) prediction algorithm.

## 16.18.1 Detailed Description

Variations of the local (sliding window) Minimum Free Energy (MFE) prediction algorithm. We provide implementations for the local (sliding window) MFE prediction algorithm for

- · Single sequences,
- · Multiple sequence alignments (MSA), and

Note, that our implementation scans an RNA sequence (or MSA) from the 3' to the 5' end, and reports back locally optimal (consensus) structures, the corresponding free energy, and the position of the sliding window in global coordinates.

For any particular RNA sequence (or MSA) multiple locally optimal (consensus) secondary structures may be predicted. Thus, we tried to implement an interface that allows for an effortless conversion of the corresponding hits into any target data structure. As a consequence, we provide two distinct ways to retrieve the corresponding predictions, either

- through directly writing to an open FILE stream on-the-fly, or
- · through a callback function mechanism.

The latter allows one to store the results in any possible target data structure. Our implementations then pass the results through the user-implemented callback as soon as the prediction for a particular window is finished. Collaboration diagram for Local (sliding window) MFE Prediction:

## **Modules**

· Deprecated Interface for Local (Sliding Window) MFE Prediction

## **Files**

· file mfe window.h

Compute local Minimum Free Energy (MFE) using a sliding window approach and backtrace corresponding secondary structures

## **Typedefs**

• typedef void(\* vrna\_mfe\_window\_f) (int start, int end, const char \*structure, float en, void \*data)

The default callback for sliding window MFE structure predictions.

## Basic local (sliding window) MFE prediction interface

- float vrna\_mfe\_window (vrna\_fold\_compound\_t \*vc, FILE \*file)
   Local MFE prediction using a sliding window approach.
- float vrna\_mfe\_window\_cb (vrna\_fold\_compound\_t \*vc, vrna\_mfe\_window\_f cb, void \*data)
- $\bullet \ \ float \ vrna\_mfe\_window\_zscore \ (vrna\_fold\_compound\_t \ *vc, \ double \ min\_z, \ FILE \ *file)$

Local MFE prediction using a sliding window approach (with z-score cut-off)

float vrna\_mfe\_window\_zscore\_cb (vrna\_fold\_compound\_t \*vc, double min\_z, vrna\_mfe\_window\_
 zscore\_f cb, void \*data)

## Simplified local MFE prediction using sequence(s) or multiple sequence alignment(s)

- float vrna\_Lfold (const char \*string, int window\_size, FILE \*file)
  - Local MFE prediction using a sliding window approach (simplified interface)
- float vrna\_Lfold\_cb (const char \*string, int window\_size, vrna\_mfe\_window\_f cb, void \*data)
- float vrna\_Lfoldz (const char \*string, int window\_size, double min\_z, FILE \*file)

Local MFE prediction using a sliding window approach with z-score cut-off (simplified interface)

- float **vrna\_Lfoldz\_cb** (const char \*string, int window\_size, double min\_z, vrna\_mfe\_window\_zscore\_f cb, void \*data)
- float vrna\_aliLfold (const char \*\*alignment, int maxdist, FILE \*fp)
- float vrna\_aliLfold\_cb (const char \*\*alignment, int maxdist, vrna\_mfe\_window\_f cb, void \*data)

## 16.18.2 Typedef Documentation

## 16.18.2.1 vrna\_mfe\_window\_f

```
typedef void(* vrna_mfe_window_f) (int start, int end, const char *structure, float en, void
*data)
```

#include <ViennaRNA/mfe\_window.h>

The default callback for sliding window MFE structure predictions.

Notes on Callback Functions This function will be called for each hit in a sliding window MFE prediction.

### **Parameters**

See also

vrna\_mfe\_window()

### **Parameters**

| start     | provides the first position of the hit (1-based, relative to entire sequence/alignment)    |  |
|-----------|--------------------------------------------------------------------------------------------|--|
| end       | provides the last position of the hit (1-based, relative to the entire sequence/alignment) |  |
| structure | provides the (sub)structure in dot-bracket notation                                        |  |
| en        | is the free energy of the structure hit in kcal/mol                                        |  |
| data      | is some arbitrary data pointer passed through by the function executing the callback       |  |

## 16.18.3 Function Documentation

## 16.18.3.1 vrna\_mfe\_window()

Local MFE prediction using a sliding window approach.

Computes minimum free energy structures using a sliding window approach, where base pairs may not span outside the window. In contrast to vrna\_mfe(), where a maximum base pair span may be set using the vrna\_md\_t.max\_bp\_span attribute and one globally optimal structure is predicted, this function uses a sliding window to retrieve all locally optimal structures within each window. The size of the sliding window is set in the vrna\_md\_t.window\_size attribute, prior to the retrieval of the vrna\_fold\_compound\_t using vrna\_fold\_compound() with option VRNA\_OPTION\_WINDOW

The predicted structures are written on-the-fly, either to stdout, if a NULL pointer is passed as file parameter, or to the corresponding filehandle.

### See also

vrna\_fold\_compound(), vrna\_mfe\_window\_zscore(), vrna\_mfe(), vrna\_Lfold(), vrna\_Lfoldz(), VRNA\_OPTION\_WINDOW, vrna\_md\_t.max\_bp\_span, vrna\_md\_t.window\_size

### **Parameters**

| vc   | The vrna_fold_compound_t with preallocated memory for the DP matrices |
|------|-----------------------------------------------------------------------|
| file | The output file handle where predictions are written to (maybe NULL)  |

SWIG Wrapper Notes This function is attached as method mfe window() to objects of type fold compound

### 16.18.3.2 vrna\_mfe\_window\_zscore()

Local MFE prediction using a sliding window approach (with z-score cut-off)

Computes minimum free energy structures using a sliding window approach, where base pairs may not span outside the window. This function is the z-score version of <a href="mailto:vrna\_mfe\_window">vrna\_mfe\_window</a>(), i.e. only predictions above a certain z-score cut-off value are printed. As for <a href="mailto:vrna\_mfe\_window">vrna\_mfe\_window</a>(), the size of the sliding window is set in the <a href="mailto:vrna\_md\_t.window\_size">vrna\_md\_t.window\_size</a> attribute, prior to the retrieval of the <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> using <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a>) with option <a href="mailto:vrna\_fold\_compound\_t">VRNA OPTION WINDOW</a>.

The predicted structures are written on-the-fly, either to stdout, if a NULL pointer is passed as file parameter, or to the corresponding filehandle.

#### See also

vrna\_fold\_compound(), vrna\_mfe\_window\_zscore(), vrna\_mfe(), vrna\_Lfold(), vrna\_Lfoldz(), VRNA\_OPTION\_WINDOW, vrna\_md\_t.max\_bp\_span, vrna\_md\_t.window\_size

### **Parameters**

| VC   | The vrna_fold_compound_t with preallocated memory for the DP matrices |  |
|------|-----------------------------------------------------------------------|--|
| min← | The minimal z-score for a predicted structure to appear in the output |  |
| _Z   |                                                                       |  |
| file | The output file handle where predictions are written to (maybe NULL)  |  |

## 16.18.3.3 vrna Lfold()

Local MFE prediction using a sliding window approach (simplified interface)

This simplified interface to vrna\_mfe\_window() computes the MFE and locally optimal secondary structure using default options. Structures are predicted using a sliding window approach, where base pairs may not span outside the window. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing.

### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_mfe\_window">vrna\_mfe\_window</a>(), and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_fold\_compound\_tinstead</a>.

## See also

```
vrna_mfe_window(), vrna_Lfoldz(), vrna_mfe_window_zscore()
```

### **Parameters**

|                                                          | string | The nucleic acid sequence                                                                      |
|----------------------------------------------------------|--------|------------------------------------------------------------------------------------------------|
| window_size  The window size for locally optimal stru    |        | The window size for locally optimal structures                                                 |
| file The output file handle where predictions are writte |        | The output file handle where predictions are written to (if NULL, output is written to stdout) |

## 16.18.3.4 vrna\_Lfoldz()

```
float vrna_Lfoldz (
```

```
const char * string,
   int window_size,
   double min_z,
   FILE * file )
#include <ViennaRNA/mfe_window.h>
```

Local MFE prediction using a sliding window approach with z-score cut-off (simplified interface)

This simplified interface to vrna\_mfe\_window\_zscore() computes the MFE and locally optimal secondary structure using default options. Structures are predicted using a sliding window approach, where base pairs may not span outside the window. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing. This function is the z-score version of vrna\_Lfold(), i.e. only predictions above a certain z-score cut-off value are printed.

### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_mfe\_window">vrna\_mfe\_window</a>(), and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_fold\_compound\_tinstead</a>.

### See also

```
vrna_mfe_window_zscore(), vrna_Lfold(), vrna_mfe_window()
```

### **Parameters**

| string                                                                                      | The nucleic acid sequence                                             |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| window_size The window size for locally optimal structures                                  |                                                                       |  |
| min_z                                                                                       | The minimal z-score for a predicted structure to appear in the output |  |
| file The output file handle where predictions are written to (if NULL, output is written to |                                                                       |  |

## 16.19 Backtracking MFE structures

Backtracking related interfaces.

## 16.19.1 Detailed Description

Backtracking related interfaces.

Collaboration diagram for Backtracking MFE structures:

## **Functions**

- float vrna\_backtrack5 (vrna\_fold\_compound\_t \*fc, unsigned int length, char \*structure)

  \*\*Backtrack an MFE (sub)structure.\*\*
- int vrna\_BT\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j, int en, vrna\_bp\_stack\_t \*bp\_stack, int \*stack\_←
  count)

Backtrack a hairpin loop closed by (i, j).

• int vrna\_BT\_stack (vrna\_fold\_compound\_t \*fc, int \*i, int \*j, int \*en, vrna\_bp\_stack\_t \*bp\_stack, int \*stack count)

Backtrack a stacked pair closed by (i, j).

• int vrna\_BT\_int\_loop (vrna\_fold\_compound\_t \*fc, int \*i, int \*j, int en, vrna\_bp\_stack\_t \*bp\_stack, int \*stack
\_count)

Backtrack an interior loop closed by (i, j).

• int vrna\_BT\_mb\_loop (vrna\_fold\_compound\_t \*fc, int \*i, int \*j, int \*k, int en, int \*component1, int \*component2)

Backtrack the decomposition of a multi branch loop closed by (i,j).

## 16.19.2 Function Documentation

## 16.19.2.1 vrna\_backtrack5()

Backtrack an MFE (sub)structure.

This function allows one to backtrack the MFE structure for a (sub)sequence

Note

On error, the function returns INF / 100. and stores the empty string in structure.

### Precondition

Requires pre-filled MFE dynamic programming matrices, i.e. one has to call vrna\_mfe() prior to calling this function

### See also

```
vrna_mfe(), vrna_pbacktrack5()
```

### **Parameters**

| fc        | fold compound                                                                                                                                                                     |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| length    | The length of the subsequence, starting from the 5' end                                                                                                                           |  |
| structure | <ul> <li>A pointer to the character array where the secondary structure in dot-bracket notation will be writt</li> <li>to. (Must have size of at least \$p length + 1)</li> </ul> |  |

## Returns

The minimum free energy (MFE) for the specified length in kcal/mol and a corresponding secondary structure in dot-bracket notation (stored in structure)

SWIG Wrapper Notes This function is attached as overloaded method backtrack() to objects of type  $fold\_ \leftarrow compound$  with default parameter length equal to the total length of the RNA.

## 16.19.2.2 vrna\_BT\_hp\_loop()

## Note

This function is polymorphic! The provided vrna\_fold\_compound\_t may be of type VRNA\_FC\_TYPE\_SINGLE or VRNA\_FC\_TYPE\_COMPARATIVE

## 16.19.2.3 vrna\_BT\_stack()

## 16.19.2.4 vrna\_BT\_int\_loop()

## 16.19.2.5 vrna\_BT\_mb\_loop()

Backtrack the decomposition of a multi branch loop closed by (i,j).

## **Parameters**

| fc         | The vrna_fold_compound_t filled with all relevant data for backtracking                                                                  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| i          | 5' position of base pair closing the loop (will be set to 5' position of leftmost decomposed block upon successful backtracking)         |  |  |
| j          | 3' position of base pair closing the loop (will be set to 3' position of rightmost decomposed by upon successful backtracking)           |  |  |
| k          | Split position that delimits leftmost from rightmost block, [i,k] and [k+1, j], respectively. (Will be set upon successful backtracking) |  |  |
| en         | The energy contribution of the substructure enclosed by $\left(i,j\right)$                                                               |  |  |
| component1 | Type of leftmost block (1 = ML, 2 = C)                                                                                                   |  |  |
| component2 | Type of rightmost block (1 = ML, 2 = C)                                                                                                  |  |  |

### Returns

1, if backtracking succeeded, 0 otherwise.

## 16.20 Global Partition Function and Equilibrium Probabilities

Variations of the global partition function algorithm.

## 16.20.1 Detailed Description

Variations of the global partition function algorithm.

We provide implementations of the global partition function algorithm for

- · Single sequences,
- · Multiple sequence alignments (MSA), and
- · RNA-RNA hybrids

Collaboration diagram for Global Partition Function and Equilibrium Probabilities:

### **Modules**

· Computing Partition Functions of a Distance Based Partitioning

Compute the partition function and stochastically sample secondary structures for a partitioning of the secondary structure space according to the base pair distance to two fixed reference structures.

· Predicting various thermodynamic properties

Compute various thermodynamic properties using the partition function.

• Deprecated Interface for Global Partition Function Computation

## **Files**

· file part\_func.h

Partition function implementations.

## **Data Structures**

struct vrna\_dimer\_pf\_s

Data structure returned by vrna\_pf\_dimer() More...

· struct vrna multimer pf s

## **Functions**

vrna\_ep\_t \* vrna\_plist\_from\_probs (vrna\_fold\_compound\_t \*vc, double cut\_off)
 Create a vrna\_ep\_t from base pair probability matrix.

## Basic global partition function interface

• FLT\_OR\_DBL vrna\_pf (vrna\_fold\_compound\_t \*vc, char \*structure)

Compute the partition function  ${\cal Q}$  for a given RNA sequence, or sequence alignment.

• vrna\_dimer\_pf\_t vrna\_pf\_dimer (vrna\_fold\_compound\_t \*vc, char \*structure)

Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.

- FLT\_OR\_DBL \* vrna\_pf\_substrands (vrna\_fold\_compound\_t \*fc, size\_t complex\_size)
- FLT\_OR\_DBL vrna\_pf\_add (FLT\_OR\_DBL dG1, FLT\_OR\_DBL dG2, double kT)

# Simplified global partition function computation using sequence(s) or multiple sequence alignment(s)

• float vrna\_pf\_fold (const char \*sequence, char \*structure, vrna\_ep\_t \*\*pl)

Compute Partition function Q (and base pair probabilities) for an RNA sequence using a comparative method.

• float vrna\_pf\_circfold (const char \*sequence, char \*structure, vrna\_ep\_t \*\*pl)

Compute Partition function Q (and base pair probabilities) for a circular RNA sequences using a comparative method.

• float vrna\_pf\_alifold (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl)

Compute Partition function Q (and base pair probabilities) for an RNA sequence alignment using a comparative method.

• float vrna\_pf\_circalifold (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl)

Compute Partition function Q (and base pair probabilities) for an alignment of circular RNA sequences using a comparative method.

vrna\_dimer\_pf\_t vrna\_pf\_co\_fold (const char \*seq, char \*structure, vrna\_ep\_t \*\*pl)

Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.

## 16.20.2 Data Structure Documentation

## 16.20.2.1 struct vrna\_dimer\_pf\_s

Data structure returned by vrna pf dimer()

### **Data Fields**

· double F0AB

Null model without DuplexInit.

· double FAB

all states with DuplexInit correction

double FcAB

true hybrid states only

double FA

monomer A

· double FB

monomer B

## 16.20.2.2 struct vrna\_multimer\_pf\_s

## **Data Fields**

double F\_connected

Fully connected ensemble (incl. DuplexInititiation and rotational symmetry correction.

double \* F\_monomers

monomers

• size t num monomers

Number of monomers.

## 16.20.3 Function Documentation

## 16.20.3.1 vrna\_pf()

Compute the partition function Q for a given RNA sequence, or sequence alignment.

If *structure* is not a NULL pointer on input, it contains on return a string consisting of the letters " . , | { } ( ) " denoting bases that are essentially unpaired, weakly paired, strongly paired without preference, weakly upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. If the model's compute\_bpp is set to 0 base pairing probabilities will not be computed (saving CPU time), otherwise after calculations took place pr will contain the probability that bases i and j pair.

#### Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

This function may return INF / 100. in case of contradicting constraints or numerical over-/underflow. In the latter case, a corresponding warning will be issued to stdout.

### See also

vrna\_fold\_compound\_t, vrna\_fold\_compound(), vrna\_pf\_fold(), vrna\_pf\_circfold(), vrna\_fold\_compound\_comparative(), vrna\_pf\_alifold(), vrna\_pf\_circalifold(), vrna\_db\_from\_probs(), vrna\_exp\_params(), vrna\_aln\_pinfo()

### **Parameters**

| in,out | VC        | The fold compound data structure                                                                     |
|--------|-----------|------------------------------------------------------------------------------------------------------|
| in,out | structure | A pointer to the character array where position-wise pairing propensity will be stored. (Maybe NULL) |

### Returns

The ensemble free energy  $G = -RT \cdot \log(Q)$  in kcal/mol

SWIG Wrapper Notes This function is attached as method pf() to objects of type fold\_compound

## 16.20.3.2 vrna pf dimer()

Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.

This is the cofold partition function folding.

### Note

This function may return INF / 100. for the FA, FB, FAB, FOAB members of the output data structure in case of contradicting constraints or numerical over-/underflow. In the latter case, a corresponding warning will be issued to stdout.

## See also

vrna\_fold\_compound() for how to retrieve the necessary data structure

#### **Parameters**

| VC        | the fold compound data structure       |
|-----------|----------------------------------------|
| structure | Will hold the structure or constraints |

# Returns

vrna\_dimer\_pf\_t structure containing a set of energies needed for concentration computations.

SWIG Wrapper Notes This function is attached as method pf\_dimer() to objects of type fold\_compound

# 16.20.3.3 vrna\_pf\_fold()

Compute Partition function Q (and base pair probabilities) for an RNA sequence using a comparative method. This simplified interface to  $vrna\_pf()$  computes the partition function and, if required, base pair probabilities for an RNA sequence using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing.

#### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_pf()">vrna\_pf()</a>, and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_pf()</a>, and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_pf()</a>, and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_fold\_compound\_tinstead</a>.

# See also

vrna\_pf\_circfold(), vrna\_pf(), vrna\_fold\_compound(), vrna\_fold\_compound\_t

# **Parameters**

| sequence  | RNA sequence                                                                                         |
|-----------|------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where position-wise pairing propensity will be stored. (Maybe NULL) |
| pl        | A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)                         |

## Returns

The ensemble free energy  $G = -RT \cdot \log(Q)$  in kcal/mol

# 16.20.3.4 vrna\_pf\_circfold()

Compute Partition function  ${\cal Q}$  (and base pair probabilities) for a circular RNA sequences using a comparative method.

This simplified interface to vrna\_pf() computes the partition function and, if required, base pair probabilities for a circular RNA sequence using default options. Memory required for dynamic programming (DP) matrices will be

allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing.

Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_pf">vrna\_pf</a>(), and the data structure <a href="mailto:vrna\_fold\_compound">vrna\_fold\_compound</a> t instead.

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See [15] for further details.

## See also

```
vrna_pf_fold(), vrna_pf(), vrna_fold_compound(), vrna_fold_compound_t
```

#### **Parameters**

| sequence  | A circular RNA sequence                                                                              |
|-----------|------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where position-wise pairing propensity will be stored. (Maybe NULL) |
| pl        | A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)                         |

## Returns

The ensemble free energy  $G = -RT \cdot \log(Q)$  in kcal/mol

# 16.20.3.5 vrna\_pf\_alifold()

Compute Partition function  ${\cal Q}$  (and base pair probabilities) for an RNA sequence alignment using a comparative method.

This simplified interface to vrna\_pf() computes the partition function and, if required, base pair probabilities for an RNA sequence alignment using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing.

Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_pf()">vrna\_pf()</a>, and the data structure <a href="mailto:vrna\_fold\_compound\_timestand">vrna\_fold\_compound\_timestand</a>.

# See also

```
vrna\_pf\_circalifold(), vrna\_pf(), vrna\_fold\_compound\_comparative(), vrna\_fold\_compound\_t
```

## **Parameters**

| sequences | RNA sequence alignment                                                                               |  |
|-----------|------------------------------------------------------------------------------------------------------|--|
| structure | A pointer to the character array where position-wise pairing propensity will be stored. (Maybe NULL) |  |
| pl        | A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)                         |  |

#### Returns

The ensemble free energy  $G = -RT \cdot \log(Q)$  in kcal/mol

# 16.20.3.6 vrna\_pf\_circalifold()

Compute Partition function  ${\cal Q}$  (and base pair probabilities) for an alignment of circular RNA sequences using a comparative method.

This simplified interface to vrna\_pf() computes the partition function and, if required, base pair probabilities for an RNA sequence alignment using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing.

## Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_pf">vrna\_pf()</a>, and the data structure <a href="mailto:vrna\_fold\_compound\_tinstead">vrna\_pf()</a>, and the data structure

Folding of circular RNA sequences is handled as a post-processing step of the forward recursions. See [15] for further details.

#### See also

vrna\_pf\_alifold(), vrna\_pf(), vrna\_fold\_compound\_comparative(), vrna\_fold\_compound\_t

# Parameters

| sequences | Sequence alignment of circular RNAs                                                                  |
|-----------|------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where position-wise pairing propensity will be stored. (Maybe NULL) |
| pl        | A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)                         |

# Returns

The ensemble free energy  $G = -RT \cdot \log(Q)$  in kcal/mol

# 16.20.3.7 vrna\_plist\_from\_probs()

Create a vrna ep t from base pair probability matrix.

The probability matrix provided via the <a href="mailto:vrna\_fold\_compound\_">vrna\_fold\_compound\_</a> t is parsed and all pair probabilities above the given threshold are used to create an entry in the plist

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be used to stop looping over its entries

# **Parameters**

| in | VC      | The fold compound |
|----|---------|-------------------|
| in | cut_off | The cutoff value  |

#### Returns

A pointer to the plist that is to be created

# 16.20.3.8 vrna\_pf\_co\_fold()

Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.

This simplified interface to vrna\_pf\_dimer() computes the partition function and, if required, base pair probabilities for an RNA-RNA interaction using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing.

#### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_pf\_dimer">vrna\_pf\_dimer</a>(), and the data structure <a href="wrna\_fold\_compound\_tinstead">vrna\_fold\_compound\_tinstead</a>.

#### See also

```
vrna_pf_dimer()
```

# **Parameters**

| seq       | Two concatenated RNA sequences with a delimiting '&' in between                                      |
|-----------|------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where position-wise pairing propensity will be stored. (Maybe NULL) |
| pl        | A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL)                         |

# Returns

vrna\_dimer\_pf\_t structure containing a set of energies needed for concentration computations.

# 16.21 Local (sliding window) Partition Function and Equilibrium Probabilities

Scanning version using a sliding window approach to compute equilibrium probabilities.

# 16.21.1 Detailed Description

Scanning version using a sliding window approach to compute equilibrium probabilities.

Collaboration diagram for Local (sliding window) Partition Function and Equilibrium Probabilities:

# **Modules**

• Deprecated Interface for Local (Sliding Window) Partition Function Computation

# **Files**

• file part\_func\_window.h

Partition function and equilibrium probability implementation for the sliding window algorithm.

# **Macros**

• #define VRNA\_EXT\_LOOP 1U

Exterior loop.

• #define VRNA\_HP\_LOOP 2U

Hairpin loop.

#define VRNA\_INT\_LOOP 4U

Internal loop.

• #define VRNA\_MB\_LOOP 8U

Multibranch loop.

#define VRNA\_ANY\_LOOP (VRNA\_EXT\_LOOP | VRNA\_HP\_LOOP | VRNA\_INT\_LOOP | VRNA\_MB\_LOOP)
 Any loop.

• #define VRNA PROBS WINDOW BPP 4096U

Trigger base pairing probabilities.

#define VRNA\_PROBS\_WINDOW\_UP 8192U

Trigger unpaired probabilities.

#define VRNA\_PROBS\_WINDOW\_STACKP 16384U

Trigger base pair stack probabilities.

#define VRNA PROBS WINDOW UP SPLIT 32768U

Trigger detailed unpaired probabilities split up into different loop type contexts.

#define VRNA PROBS WINDOW PF 65536U

Trigger partition function.

# **Typedefs**

 typedef void(\* vrna\_probs\_window\_f) (FLT\_OR\_DBL \*pr, int pr\_size, int i, int max, unsigned int type, void \*data)

Sliding window probability computation callback.

# **Basic local partition function interface**

• int vrna\_probs\_window (vrna\_fold\_compound\_t \*fc, int ulength, unsigned int options, vrna\_probs\_window\_f cb, void \*data)

Compute various equilibrium probabilities under a sliding window approach.

# Simplified global partition function computation using sequence(s) or multiple sequence alignment(s)

vrna\_ep\_t \* vrna\_pfl\_fold (const char \*sequence, int window\_size, int max\_bp\_span, float cutoff)

Compute base pair probabilities using a sliding-window approach.

int vrna\_pfl\_fold\_cb (const char \*sequence, int window\_size, int max\_bp\_span, vrna\_probs\_window\_f cb, void \*data)

Compute base pair probabilities using a sliding-window approach (callback version)

• double \*\* vrna\_pfl\_fold\_up (const char \*sequence, int ulength, int window\_size, int max\_bp\_span)

Compute probability of contiguous unpaired segments.

• int vrna\_pfl\_fold\_up\_cb (const char \*sequence, int ulength, int window\_size, int max\_bp\_span, vrna\_probs\_window\_f cb, void \*data)

Compute probability of contiguous unpaired segments.

# 16.21.2 Macro Definition Documentation

# 16.21.2.1 VRNA\_PROBS\_WINDOW\_BPP

```
#define VRNA_PROBS_WINDOW_BPP 4096U
#include <ViennaRNA/part_func_window.h>
```

Trigger base pairing probabilities.

Passing this flag to vrna\_probs\_window() activates callback execution for base pairing probabilities. In turn, the corresponding callback receives this flag through the type argument whenever base pairing probabilities are provided.

Detailed information for the algorithm to compute unpaired probabilities can be taken from [3].

See also

vrna\_probs\_window()

# 16.21.2.2 VRNA\_PROBS\_WINDOW\_UP

```
#define VRNA_PROBS_WINDOW_UP 8192U
#include <ViennaRNA/part_func_window.h>
```

Trigger unpaired probabilities.

Passing this flag to vrna\_probs\_window() activates callback execution for unpaired probabilities. In turn, the corresponding callback receives this flag through the type argument whenever unpaired probabilities are provided. Detailed information for the algorithm to compute unpaired probabilities can be taken from [4].

See also

vrna\_probs\_window()

# 16.21.2.3 VRNA\_PROBS\_WINDOW\_STACKP

```
#define VRNA_PROBS_WINDOW_STACKP 16384U
#include <ViennaRNA/part_func_window.h>
```

Trigger base pair stack probabilities.

Passing this flag to vrna\_probs\_window() activates callback execution for stacking probabilities. In turn, the corresponding callback receives this flag through the type argument whenever stack probabilities are provided.

**Bug** Currently, this flag is a placeholder doing nothing as the corresponding implementation for stack probability computation is missing.

See also

vrna\_probs\_window()

# 16.21.2.4 VRNA\_PROBS\_WINDOW\_UP\_SPLIT

```
#define VRNA_PROBS_WINDOW_UP_SPLIT 32768U
#include <ViennaRNA/part_func_window.h>
```

Trigger detailed unpaired probabilities split up into different loop type contexts.

Passing this flag to vrna\_probs\_window() activates callback execution for unpaired probabilities. In contrast to VRNA\_PROBS\_WINDOW\_UP this flag requests unpaired probabilities to be split up into different loop type contexts. In turn, the corresponding callback receives the VRNA\_PROBS\_WINDOW\_UP flag OR-ed together with the corresponding loop type, i.e.:

- VRNA EXT LOOP Exterior loop.
- VRNA\_HP\_LOOP Hairpin loop.
- VRNA\_INT\_LOOP Internal loop.

- VRNA\_MB\_LOOP Multibranch loop.
- VRNA ANY LOOP Any loop.

See also

vrna\_probs\_window(), VRNA\_PROBS\_WINDOW\_UP

# 16.21.2.5 VRNA PROBS WINDOW PF

```
#define VRNA_PROBS_WINDOW_PF 65536U
#include <ViennaRNA/part_func_window.h>
```

Trigger partition function.

Passing this flag to  $vrna\_probs\_window()$  activates callback execution for partition function. In turn, the corresponding callback receives this flag through it's type argument whenever partition function data is provided.

Note

Instead of actually providing the partition function Z, the callback is always provided with the corresponding enemble free energy  $\Delta G = -RT \ln Z$ .

See also

vrna probs window()

# 16.21.3 Typedef Documentation

# 16.21.3.1 vrna\_probs\_window\_f

```
typedef void(* vrna_probs_window_f) (FLT_OR_DBL *pr, int pr_size, int i, int max, unsigned int
type, void *data)
#include <ViennaRNA/part_func_window.h>
```

Sliding window probability computation callback.

**Notes on Callback Functions** This function will be called for each probability data set in the sliding window probability computation implementation of <a href="mailto:vrna\_probs\_window">vrna\_probs\_window</a>(). The argument <a href="mailto:type">type</a> specifies the type of probability that is passed to this function.

# Types:

- VRNA PROBS WINDOW BPP Trigger base pairing probabilities.
- VRNA\_PROBS\_WINDOW\_UP Trigger unpaired probabilities.
- VRNA PROBS WINDOW PF Trigger partition function.

The above types usually come exclusively. However, for unpaired probabilities, the VRNA\_PROBS\_WINDOW\_UP flag is OR-ed together with one of the loop type contexts

- VRNA\_EXT\_LOOP Exterior loop.
- VRNA\_HP\_LOOP Hairpin loop.
- VRNA\_INT\_LOOP Internal loop.
- VRNA\_MB\_LOOP Multibranch loop.
- VRNA\_ANY\_LOOP Any loop.

to indicate the particular type of data available through the pr pointer.

See also

vrna\_probs\_window(), vrna\_pfl\_fold\_up\_cb()

## **Parameters**

| pr      | An array of probabilities                                 |
|---------|-----------------------------------------------------------|
| pr_size | The length of the probability array                       |
| i       | The i-position (5') of the probabilities                  |
| max     | The (theoretical) maximum length of the probability array |
| type    | The type of data that is provided                         |
| data    | Auxiliary data                                            |

# 16.21.4 Function Documentation

# 16.21.4.1 vrna\_probs\_window()

Compute various equilibrium probabilities under a sliding window approach.

This function applies a sliding window scan for the sequence provided with the argument fc and reports back equilibrium probabilities through the callback function cb. The data reported to the callback depends on the options flag.

# Note

The parameter ulength only affects computation and resulting data if unpaired probability computations are requested through the options flag.

# Options:

- VRNA\_PROBS\_WINDOW\_BPP Trigger base pairing probabilities.
- VRNA PROBS WINDOW UP Trigger unpaired probabilities.
- VRNA\_PROBS\_WINDOW\_UP\_SPLIT Trigger detailed unpaired probabilities split up into different loop type contexts.

Options may be OR-ed together

# See also

```
vrna_pfl_fold_cb(), vrna_pfl_fold_up_cb()
```

# **Parameters**

| fc      | The fold compound with sequence data, model settings and precomputed energy parameters |
|---------|----------------------------------------------------------------------------------------|
| ulength | The maximal length of an unpaired segment (only for unpaired probability computations) |
| cb      | The callback function which collects the pair probability data for further processing  |
| data    | Some arbitrary data structure that is passed to the callback cb                        |
| options | Option flags to control the behavior of this function                                  |

#### Returns

0 on failure, non-zero on success

# 16.21.4.2 vrna\_pfl\_fold()

Compute base pair probabilities using a sliding-window approach.

This is a simplified wrapper to vrna\_probs\_window() that given a nucleid acid sequence, a window size, a maximum base pair span, and a cutoff value computes the pair probabilities for any base pair in any window. The pair probabilities are returned as a list and the user has to take care to free() the memory occupied by the list.

#### Note

This function uses default model settings! For custom model settings, we refer to the function <a href="mailto:vrna\_probs\_window">vrna\_probs\_window</a>().

In case of any computation errors, this function returns  $\mathtt{NULL}$ 

#### See also

```
vrna_probs_window(), vrna_pfl_fold_cb(), vrna_pfl_fold_up()
```

## **Parameters**

| sequence    | The nucleic acid input sequence                                                        |  |
|-------------|----------------------------------------------------------------------------------------|--|
| window_size | The size of the sliding window                                                         |  |
| max_bp_span | The maximum distance along the backbone between two nucleotides that form a base pairs |  |
| cutoff      | A cutoff value that omits all pairs with lower probability                             |  |

# Returns

A list of base pair probabilities, terminated by an entry with vrna ep t.i and vrna ep t.j set to 0

# 16.21.4.3 vrna\_pfl\_fold\_cb()

Compute base pair probabilities using a sliding-window approach (callback version)

This is a simplified wrapper to vrna\_probs\_window() that given a nucleid acid sequence, a window size, a maximum base pair span, and a cutoff value computes the pair probabilities for any base pair in any window. It is similar to vrna\_pfl\_fold() but uses a callback mechanism to return the pair probabilities.

Read the details for vrna\_probs\_window() for details on the callback implementation!

#### Note

This function uses default model settings! For custom model settings, we refer to the function <a href="mailto:vrna\_probs\_window">vrna\_probs\_window</a>().

#### See also

```
vrna probs window(), vrna pfl fold(), vrna pfl fold up cb()
```

#### **Parameters**

| sequence    | The nucleic acid input sequence                                                        |
|-------------|----------------------------------------------------------------------------------------|
| window_size | The size of the sliding window                                                         |
| max_bp_span | The maximum distance along the backbone between two nucleotides that form a base pairs |
| cb          | The callback function which collects the pair probability data for further processing  |
| data        | Some arbitrary data structure that is passed to the callback cb                        |

## Returns

0 on failure, non-zero on success

# 16.21.4.4 vrna\_pfl\_fold\_up()

Compute probability of contiguous unpaired segments.

This is a simplified wrapper to  $\operatorname{vrna\_probs\_window}()$  that given a nucleic acid sequence, a maximum length of unpaired segments ( $\operatorname{ulength}$ ), a window size, and a maximum base pair span computes the equilibrium probability of any segment not exceeding  $\operatorname{ulength}$ . The probabilities to be unpaired are returned as a 1-based, 2-dimensional matrix with dimensions  $N \times M$ , where N is the length of the sequence and M is the maximum segment length. As an example, the probability of a segment of size 5 starting at position 100 is stored in the matrix entry X[100][5]. It is the users responsibility to free the memory occupied by this matrix.

# Note

This function uses default model settings! For custom model settings, we refer to the function vrna\_probs\_window().

## **Parameters**

| sequence    | The nucleic acid input sequence                                                        |
|-------------|----------------------------------------------------------------------------------------|
| ulength     | The maximal length of an unpaired segment                                              |
| window_size | The size of the sliding window                                                         |
| max_bp_span | The maximum distance along the backbone between two nucleotides that form a base pairs |

# Returns

The probabilities to be unpaired for any segment not exceeding ulength

## 16.21.4.5 vrna\_pfl\_fold\_up\_cb()

Compute probability of contiguous unpaired segments.

This is a simplified wrapper to vrna\_probs\_window() that given a nucleic acid sequence, a maximum length of unpaired segments (ulength), a window size, and a maximum base pair span computes the equilibrium probability of any segment not exceeding ulength. It is similar to vrna\_pfl\_fold\_up() but uses a callback mechanism to return the unpaired probabilities.

Read the details for vrna\_probs\_window() for details on the callback implementation!

Note

This function uses default model settings! For custom model settings, we refer to the function <a href="mailto:vrna\_probs\_window">vrna\_probs\_window</a>().

# **Parameters**

| sequence    | The nucleic acid input sequence                                                        |
|-------------|----------------------------------------------------------------------------------------|
| ulength     | The maximal length of an unpaired segment                                              |
| window_size | The size of the sliding window                                                         |
| max_bp_span | The maximum distance along the backbone between two nucleotides that form a base pairs |
| cb          | The callback function which collects the pair probability data for further processing  |
| data        | Some arbitrary data structure that is passed to the callback cb                        |

# Returns

0 on failure, non-zero on success

# 16.22 Suboptimals and Representative Structures

Sample and enumerate suboptimal secondary structures from RNA sequence data.

# 16.22.1 Detailed Description

Sample and enumerate suboptimal secondary structures from RNA sequence data. Collaboration diagram for Suboptimals and Representative Structures:

# **Modules**

- Suboptimal Structures sensu Stiegler et al. 1984 / Zuker et al. 1989
- · Suboptimal Structures within an Energy Band around the MFE
- · Random Structure Samples from the Ensemble

Functions to draw random structure samples from the ensemble according to their equilibrium probability.

- Compute the Structure with Maximum Expected Accuracy (MEA)
- · Compute the Centroid Structure

# **Files**

• file boltzmann\_sampling.h

Boltzmann Sampling of secondary structures from the ensemble.

· file centroid.h

Centroid structure computation.

file MEA.h

Computes a MEA (maximum expected accuracy) structure.

· file mm.h

Several Maximum Matching implementations.

· file subopt.h

RNAsubopt and density of states declarations.

# 16.23 Suboptimal Structures sensu Stiegler et al. 1984 / Zuker et al. 1989

# 16.23.1 Detailed Description

Collaboration diagram for Suboptimal Structures sensu Stiegler et al. 1984 / Zuker et al. 1989:

# **Functions**

• SOLUTION \* zukersubopt (const char \*string)

Compute Zuker type suboptimal structures.

• SOLUTION \* zukersubopt\_par (const char \*string, vrna\_param\_t \*parameters)

Compute Zuker type suboptimal structures.

vrna\_subopt\_solution\_t \* vrna\_subopt\_zuker (vrna\_fold\_compound\_t \*fc)

Compute Zuker type suboptimal structures.

# 16.23.2 Function Documentation

# 16.23.2.1 zukersubopt()

Compute Zuker type suboptimal structures.

Compute Suboptimal structures according to M. Zuker, i.e. for every possible base pair the minimum energy structure containing the resp. base pair. Returns a list of these structures and their energies.

Deprecated use vrna\_zukersubopt() instead

# **Parameters**

```
string RNA sequence
```

# Returns

List of zuker suboptimal structures

# 16.23.2.2 zukersubopt par()

```
#include <ViennaRNA/subopt.h>
Compute Zuker type suboptimal structures.
```

Compate Zaker type easeptimal etractaree.

**Deprecated** use vrna\_zukersubopt() instead

# 16.23.2.3 vrna subopt zuker()

Compute Zuker type suboptimal structures.

Compute Suboptimal structures according to M. Zuker [35] , i.e. for every possible base pair the minimum energy structure containing the resp. base pair. Returns a list of these structures and their energies.

Note

This function internally uses the cofold implementation to compute the suboptimal structures. For that purpose, the function doubles the sequence and enlarges the DP matrices, which in fact will grow by a factor of 4 during the computation! At the end of the structure prediction, everything will be re-set to its original requriements, i.e. normal sequence, normal (empty) DP matrices.

Bug Due to resizing, any pre-existing constraints will be lost!

See also

```
vrna_subopt(), zukersubopt(), zukersubopt_par()
```

#### **Parameters**

```
vc fold compound
```

## Returns

List of zuker suboptimal structures

SWIG Wrapper Notes This function is attached as method subopt\_zuker() to objects of type fold\_compound

# 16.24 Suboptimal Structures within an Energy Band around the MFE

# 16.24.1 Detailed Description

Collaboration diagram for Suboptimal Structures within an Energy Band around the MFE:

# **Typedefs**

typedef void(\* vrna\_subopt\_result\_f) (const char \*stucture, float energy, void \*data)
 Callback for vrna\_subopt\_cb()

# **Functions**

- vrna\_subopt\_solution\_t \* vrna\_subopt (vrna\_fold\_compound\_t \*fc, int delta, int sorted, FILE \*fp)
   Returns list of subopt structures or writes to fp.
- void vrna\_subopt\_cb (vrna\_fold\_compound\_t \*fc, int delta, vrna\_subopt\_result\_f cb, void \*data)

  Generate suboptimal structures within an energy band arround the MFE.
- SOLUTION \* subopt (char \*seq, char \*structure, int delta, FILE \*fp)

Returns list of subopt structures or writes to fp.

SOLUTION \* subopt\_par (char \*seq, char \*structure, vrna\_param\_t \*parameters, int delta, int is\_
 constrained, int is\_circular, FILE \*fp)

Returns list of subopt structures or writes to fp.

SOLUTION \* subopt\_circ (char \*seq, char \*sequence, int delta, FILE \*fp)

Returns list of circular subopt structures or writes to fp.

# **Variables**

· double print energy

printing threshold for use with logML

· int subopt sorted

Sort output by energy.

# 16.24.2 Typedef Documentation

# 16.24.2.1 vrna\_subopt\_result\_f

```
typedef void(* vrna_subopt_result_f) (const char *stucture, float energy, void *data)
#include <ViennaRNA/subopt.h>
Callback for vrna_subopt_cb()
```

**Notes on Callback Functions** This function will be called for each suboptimal secondary structure that is successfully backtraced.

# See also

```
vrna_subopt_cb()
```

# **Parameters**

| structure | The suboptimal secondary structure in dot-bracket notation           |
|-----------|----------------------------------------------------------------------|
| energy    | The free energy of the secondary structure in kcal/mol               |
| data      | Some arbitrary, auxiliary data address as passed to vrna_subopt_cb() |

# 16.24.3 Function Documentation

# 16.24.3.1 vrna\_subopt()

Returns list of subopt structures or writes to fp.

This function produces **all** suboptimal secondary structures within 'delta' \* 0.01 kcal/mol of the optimum, see [33]. The results are either directly written to a 'fp' (if 'fp' is not NULL), or (fp==NULL) returned in a vrna\_subopt\_solution\_t \* list terminated by an entry were the 'structure' member is NULL.

#### Note

This function requires all multibranch loop DP matrices for unique multibranch loop backtracing. Therefore, the supplied  $vrna\_fold\_compound\_t \lor c$  (argument 1) must be initialized with  $vrna\_md\_t.uniq\_ML = 1$ , for instance like this:

```
vrna_md_t md;
vrna_md_set_default(&md);
md.uniq_ML = 1;
vrna_fold_compound_t *vc=vrna_fold_compound("GGGGGGAAAAAACCCCCC", &md, VRNA_OPTION_DEFAULT);
```

#### See also

vrna\_subopt\_cb(), vrna\_subopt\_zuker()

## **Parameters**

| fc     |                                           |
|--------|-------------------------------------------|
| delta  |                                           |
| sorted | Sort results by energy in ascending order |
| fp     |                                           |

## Returns

SWIG Wrapper Notes This function is attached as method subopt() to objects of type fold\_compound

# 16.24.3.2 vrna\_subopt\_cb()

Generate suboptimal structures within an energy band arround the MFE.

This is the most generic implementation of the suboptimal structure generator according to Wuchty et al. 1999 [33]. Identical to vrna\_subopt(), it computes all secondary structures within an energy band delta arround the MFE. However, this function does not print the resulting structures and their corresponding free energies to a file pointer, or returns them as a list. Instead, it calls a user-provided callback function which it passes the structure in dot-bracket format, the corresponding free energy in kcal/mol, and a user-provided data structure each time a structure was backtracked successfully. This function indicates the final output, i.e. the end of the backtracking procedure by passing NULL instead of an actual dot-bracket string to the callback.

# Note

This function requires all multibranch loop DP matrices for unique multibranch loop backtracing. Therefore, the supplied  $vrna\_fold\_compound\_t \lor c$  (argument 1) must be initialized with  $vrna\_md\_t.uniq\_ML = 1$ , for instance like this:

```
vrna_md_t md;
vrna_md_set_default(&md);
md.uniq_ML = 1;
vrna_fold_compound_t *vc=vrna_fold_compound("GGGGGGAAAAAACCCCCC", &md, VRNA_OPTION_DEFAULT);
```

# See also

vrna\_subopt\_result\_f, vrna\_subopt(), vrna\_subopt\_zuker()

## **Parameters**

| fc    | fold compount with the sequence data                                                                  |  |
|-------|-------------------------------------------------------------------------------------------------------|--|
| delta | Energy band arround the MFE in 10cal/mol, i.e. deka-calories                                          |  |
| cb    | Pointer to a callback function that handles the backtracked structure and its free energy in kcal/mol |  |
| data  | Pointer to some data structure that is passed along to the callback                                   |  |

SWIG Wrapper Notes This function is attached as method subopt\_cb() to objects of type fold\_compound

# 16.24.3.3 subopt()

Returns list of subopt structures or writes to fp.

This function produces **all** suboptimal secondary structures within 'delta' \* 0.01 kcal/mol of the optimum. The results are either directly written to a 'fp' (if 'fp' is not NULL), or (fp==NULL) returned in a SOLUTION \* list terminated by an entry were the 'structure' pointer is NULL.

#### **Parameters**

| seq       |  |
|-----------|--|
| structure |  |
| delta     |  |
| fp        |  |

Returns

# 16.24.3.4 subopt\_par()

Returns list of subopt structures or writes to fp.

# 16.24.3.5 subopt\_circ()

```
int delta,
    FILE * fp )
#include <ViennaRNA/subopt.h>
```

Returns list of circular subopt structures or writes to fp.

This function is similar to subopt() but calculates secondary structures assuming the RNA sequence to be circular instead of linear

## **Parameters**

| seq      |  |
|----------|--|
| sequence |  |
| delta    |  |
| fp       |  |

Returns

# 16.24.4 Variable Documentation

# 16.24.4.1 print\_energy

```
double print_energy [extern]
#include <ViennaRNA/subopt.h>
printing threshold for use with logML
```

# 16.24.4.2 subopt\_sorted

```
int subopt_sorted [extern]
#include <ViennaRNA/subopt.h>
Sort output by energy.
```

# 16.25 Random Structure Samples from the Ensemble

Functions to draw random structure samples from the ensemble according to their equilibrium probability.

# 16.25.1 Detailed Description

Functions to draw random structure samples from the ensemble according to their equilibrium probability. Collaboration diagram for Random Structure Samples from the Ensemble:

# **Modules**

- Stochastic Backtracking of Structures from Distance Based Partitioning
   Contains functions related to stochastic backtracking from a specified distance class.
- · Deprecated Interface for Stochastic Backtracking

# **Macros**

• #define VRNA PBACKTRACK DEFAULT 0

Boltzmann sampling flag indicating default backtracing mode.

• #define VRNA\_PBACKTRACK\_NON\_REDUNDANT 1

Boltzmann sampling flag indicating non-redundant backtracing mode.

# **Typedefs**

- typedef void(\* vrna\_bs\_result\_f) (const char \*structure, void \*data)
  - Callback for Boltzmann sampling.
- typedef struct vrna\_pbacktrack\_memory\_s \* vrna\_pbacktrack\_mem\_t
  - Boltzmann sampling memory data structure.

## **Functions**

- char \* vrna pbacktrack5 (vrna fold compound t \*fc, unsigned int length)
  - Sample a secondary structure of a subsequence from the Boltzmann ensemble according its probability.
- char \*\* vrna\_pbacktrack5\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, unsigned int options)
  - Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.
- unsigned int vrna\_pbacktrack5\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, vrna\_bs\_result\_f cb, void \*data, unsigned int options)
  - Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.
- char \*\* vrna\_pbacktrack5\_resume (vrna\_fold\_compound\_t \*vc, unsigned int num\_samples, unsigned int length, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)
  - Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.
- unsigned int vrna\_pbacktrack5\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, vrna\_bs\_result\_f cb, void \*data, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)
  - Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.
- char \* vrna\_pbacktrack (vrna\_fold\_compound\_t \*fc)
  - Sample a secondary structure from the Boltzmann ensemble according its probability.
- char \*\* vrna\_pbacktrack\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int options)
  - Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.
- unsigned int vrna\_pbacktrack\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna\_bs\_result\_f cb, void \*data, unsigned int options)
  - Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.
- char \*\* vrna\_pbacktrack\_resume (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna\_pbacktrack\_mem\_t
   \*nr mem, unsigned int options)
  - Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.
- unsigned int vrna\_pbacktrack\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna bs result f cb, void \*data, vrna pbacktrack mem t \*nr mem, unsigned int options)
  - Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.
- char \* vrna\_pbacktrack\_sub (vrna\_fold\_compound\_t \*fc, unsigned int start, unsigned int end)
  - Sample a secondary structure of a subsequence from the Boltzmann ensemble according its probability.
- char \*\* vrna\_pbacktrack\_sub\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, unsigned int options)
  - Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.
- unsigned int vrna\_pbacktrack\_sub\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna\_bs\_result\_f cb, void \*data, unsigned int options)
  - Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.
- char \*\* vrna\_pbacktrack\_sub\_resume (vrna\_fold\_compound\_t \*vc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)
  - Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

unsigned int vrna\_pbacktrack\_sub\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna\_bs\_result\_f cb, void \*data, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

void vrna pbacktrack mem free (vrna pbacktrack mem t s)

Release memory occupied by a Boltzmann sampling memory data structure.

## 16.25.2 Macro Definition Documentation

# 16.25.2.1 VRNA\_PBACKTRACK\_DEFAULT

```
#define VRNA_PBACKTRACK_DEFAULT 0
#include <ViennaRNA/boltzmann_sampling.h>
Boltzmann sampling flag indicating default backtracing mode.
```

#### See also

vrna\_pbacktrack5\_num(), vrna\_pbacktrack5\_cb(), vrna\_pbacktrack5\_resume(), vrna\_pbacktrack5\_resume\_cb(), vrna\_pbacktrack\_num(), vrna\_pbacktrack\_cb(), vrna\_pbacktrack\_resume(), vrna\_pbacktrack\_resume\_cb()

# 16.25.2.2 VRNA\_PBACKTRACK\_NON\_REDUNDANT

```
#define VRNA_PBACKTRACK_NON_REDUNDANT 1
#include <ViennaRNA/boltzmann_sampling.h>
```

Boltzmann sampling flag indicating non-redundant backtracing mode.

This flag will turn the Boltzmann sampling into non-redundant backtracing mode along the lines of Michalik et al. 2017 [24]

See also

vrna\_pbacktrack5\_num(), vrna\_pbacktrack5\_cb(), vrna\_pbacktrack5\_resume(), vrna\_pbacktrack5\_resume\_cb(), vrna\_pbacktrack num(), vrna\_pbacktrack cb(), vrna\_pbacktrack resume(), vrna\_pbacktrack resume cb()

# 16.25.3 Typedef Documentation

# 16.25.3.1 vrna\_bs\_result\_f

```
typedef void(* vrna_bs_result_f) (const char *structure, void *data)
#include <ViennaRNA/boltzmann_sampling.h>
Callback for Boltzmann sampling.
```

**Notes on Callback Functions** This function will be called for each secondary structure that has been successfully backtraced from the partition function DP matrices.

# See also

vrna\_pbacktrack5\_cb(), vrna\_pbacktrack\_cb(), vrna\_pbacktrack5\_resume\_cb(), vrna\_pbacktrack\_resume\_cb()

## **Parameters**

| structure | The secondary structure in dot-bracket notation                            |
|-----------|----------------------------------------------------------------------------|
| data      | Some arbitrary, auxiliary data address as provided to the calling function |

# 16.25.3.2 vrna\_pbacktrack\_mem\_t

```
typedef struct vrna_pbacktrack_memory_s* vrna_pbacktrack_mem_t
#include <ViennaRNA/boltzmann_sampling.h>
```

Boltzmann sampling memory data structure.

This structure is required for properly resuming a previous sampling round in specialized Boltzmann sampling, such as non-redundant backtracking.

Initialize with  $\mathtt{NULL}$  and pass its address to the corresponding functions  $\mathtt{vrna\_pbacktrack5\_resume()}$ , etc.

Note

Do not forget to release memory occupied by this data structure before losing its context! Use <a href="mailto:vrna\_pbacktrack\_mem\_free">vrna\_pbacktrack\_mem\_free</a>().

See also

vrna\_pbacktrack5\_resume(), vrna\_pbacktrack\_resume(), vrna\_pbacktrack5\_resume\_cb(), vrna\_pbacktrack\_resume\_cb(), vrna\_pbacktrack mem free()

# 16.25.4 Function Documentation

## 16.25.4.1 vrna pbacktrack5()

Sample a secondary structure of a subsequence from the Boltzmann ensemble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary structure. The parameter length specifies the length of the substructure starting from the 5' end.

The structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z=\sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T.

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with  $vrna\_fold\_compound()$  or similar. This can be done easily by passing  $vrna\_fold\_compound()$  a model details parameter with  $vrna\_md\_t.uniq\_ML = 1$ .

vrna\_pf() has to be called first to fill the partition function matrices

Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# See also

vrna pbacktrack5 num(), vrna pbacktrack5 cb(), vrna pbacktrack()

## **Parameters**

| fc     | The fold compound data structure                                 |
|--------|------------------------------------------------------------------|
| length | The length of the subsequence to consider (starting with 5' end) |

#### Returns

A sampled secondary structure in dot-bracket notation (or NULL on error)

**SWIG Wrapper Notes** This function is attached as overloaded method **pbacktrack5()** to objects of type *fold\_← compound*. See also Python Examples - Boltzmann Sampling

# 16.25.4.2 vrna\_pbacktrack5\_num()

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures. The parameter length specifies the length of the substructure starting from the 5' end. Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z=\sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

# Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna\_pf() has to be called first to fill the partition function matrices

# Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

## See also

vrna\_pbacktrack5(), vrna\_pbacktrack5\_cb(), vrna\_pbacktrack\_num(), VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT

## **Parameters**

| fc          | The fold compound data structure                                 |
|-------------|------------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures            |
| length      | The length of the subsequence to consider (starting with 5' end) |
| options     | A bitwise OR-flag indicating the backtracing mode.               |

# Generated by Doxygen

#### Returns

A set of secondary structure samples in dot-bracket notation terminated by NULL (or NULL on error)

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack5() to objects of type fold\_← compound where the last argument options is optional with default value options = VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

# 16.25.4.3 vrna\_pbacktrack5\_cb()

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures. The parameter length specifies the length of the substructure starting from the 5' end. Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z = \sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to vrna\_pbacktrack5() and vrna\_pbacktrack5\_num() this function yields the structure samples through a callback mechanism.

# Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna pf() has to be called first to fill the partition function matrices

# Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

# See also

vrna\_pbacktrack5(), vrna\_pbacktrack5\_num(), vrna\_pbacktrack\_cb(), VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT

#### **Parameters**

| fc          | The fold compound data structure                                 |
|-------------|------------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures            |
| length      | The length of the subsequence to consider (starting with 5' end) |
| cb          | The callback that receives the sampled structure                 |
| data        | A data structure passed through to the callback cb               |
| options     | A bitwise OR-flag indicating the backtracing mode.               |

## Returns

The number of structures actually backtraced

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack5() to objects of type fold\_←
compound where the last argument options is optional with default value options =
VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

# 16.25.4.4 vrna\_pbacktrack5\_resume()

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures. The parameter length specifies the length of the substructure starting from the 5' end. Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z = \sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to vrna\_pbacktrack5\_cb() this function allows for resuming a previous sampling round in specialized Boltzmann sampling, such as non-redundant backtracking. For that purpose, the user passes the address of a Boltzmann sampling data structure (vrna\_pbacktrack\_mem\_t) which will be re-used in each round of sampling, i.e. each successive call to vrna\_pbacktrack5\_resume\_cb() or vrna\_pbacktrack5\_resume().

A successive sample call to this function may look like:

# Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna pf() has to be called first to fill the partition function matrices

#### Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

## See also

vrna\_pbacktrack5\_resume\_cb(), vrna\_pbacktrack5\_cb(), vrna\_pbacktrack\_resume(), vrna\_pbacktrack\_mem\_t, VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT, vrna\_pbacktrack\_mem\_free

## **Parameters**

| fc          | The fold compound data structure                                 |
|-------------|------------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures            |
| length      | The length of the subsequence to consider (starting with 5' end) |
| nr_mem      | The address of the Boltzmann sampling memory data structure      |
| options     | A bitwise OR-flag indicating the backtracing mode.               |

# Returns

A set of secondary structure samples in dot-bracket notation terminated by NULL (or NULL on error)

**SWIG Wrapper Notes** This function is attached as overloaded method **pbacktrack5()** to objects of type *fold*\_← *compound*. In addition to the list of structures, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

# 16.25.4.5 vrna\_pbacktrack5\_resume\_cb()

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures. The parameter length specifies the length of the substructure starting from the 5' end.

Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z = \sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to vrna\_pbacktrack5\_resume() this function yields the structure samples through a callback mechanism. A successive sample call to this function may look like:

```
vrna_pbacktrack_mem_t nonredundant_memory = NULL;
// sample the first 100 structures
vrna_pbacktrack5_resume_cb(fc,
                            100.
                            fc->length,
                            &callback_function,
                            (void *) &callback_data,
                            &nonredundant_memory,
                            options);
// sample another 500 structures
vrna pbacktrack5 resume cb(fc,
                            fc->length,
                            &callback_function,
                            (void *)&callback_data,
                            &nonredundant_memory,
                           options);
// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);
```

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna\_pf() has to be called first to fill the partition function matrices

## Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

## Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structuresin the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

# See also

vrna\_pbacktrack5\_resume(), vrna\_pbacktrack5\_cb(), vrna\_pbacktrack\_resume\_cb(), vrna\_pbacktrack\_mem\_t, VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT, vrna\_pbacktrack\_mem\_free

# **Parameters**

| fc          | The fold compound data structure                                 |
|-------------|------------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures            |
| length      | The length of the subsequence to consider (starting with 5' end) |
| cb          | The callback that receives the sampled structure                 |
| data        | A data structure passed through to the callback cb               |
| nr_mem      | The address of the Boltzmann sampling memory data structure      |
| options     | A bitwise OR-flag indicating the backtracing mode.               |

Generated by Doxygen

#### Returns

The number of structures actually backtraced

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack5() to objects of type fold\_← compound. In addition to the number of structures backtraced, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

# 16.25.4.6 vrna\_pbacktrack()

Sample a secondary structure from the Boltzmann ensemble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary structure. The structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z=\sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T.

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna\_pf() has to be called first to fill the partition function matrices

# Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# See also

vrna\_pbacktrack5(), vrna\_pbacktrack\_num, vrna\_pbacktrack\_cb()

# **Parameters**

fc The fold compound data structure

# Returns

A sampled secondary structure in dot-bracket notation (or NULL on error)

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack() to objects of type fold\_← compound. See also Python Examples - Boltzmann Sampling

# 16.25.4.7 vrna\_pbacktrack\_num()

Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures.

Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z=\sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with  $vrna\_fold\_compound()$  or similar. This can be done easily by passing  $vrna\_fold\_compound()$  a model details parameter with  $vrna\_md\_t.uniq\_ML = 1$ .

vrna\_pf() has to be called first to fill the partition function matrices

#### Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

# See also

vrna\_pbacktrack(), vrna\_pbacktrack\_cb(), vrna\_pbacktrack5\_num(), VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT

# Parameters

| fc          | The fold compound data structure                      |
|-------------|-------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures |
| options     | A bitwise OR-flag indicating the backtracing mode.    |

## Returns

A set of secondary structure samples in dot-bracket notation terminated by NULL (or NULL on error)

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack() to objects of type fold\_←

compound where the last argument options is optional with default value options =

VRNA PBACKTRACK DEFAULT. See also Python Examples - Boltzmann Sampling

# 16.25.4.8 vrna\_pbacktrack\_cb()

```
void * data,
unsigned int options )
```

#include <ViennaRNA/boltzmann\_sampling.h>

Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures.

Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z = \sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to vrna\_pbacktrack() and vrna\_pbacktrack\_num() this function yields the structure samples through a callback mechanism.

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna\_pf() has to be called first to fill the partition function matrices

# Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

## See also

vrna\_pbacktrack(), vrna\_pbacktrack\_num(), vrna\_pbacktrack5\_cb(), VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT

## **Parameters**

| fc          | The fold compound data structure                      |
|-------------|-------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures |
| cb          | The callback that receives the sampled structure      |
| data        | A data structure passed through to the callback cb    |
| options     | A bitwise OR-flag indicating the backtracing mode.    |

# Returns

The number of structures actually backtraced

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack() to objects of type fold\_←
compound where the last argument options is optional with default value options =
VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

# 16.25.4.9 vrna\_pbacktrack\_resume()

Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures.

Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z=\sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to <a href="mailto:vrna\_pbacktrack\_cb">vrna\_pbacktrack\_cb</a>() this function allows for resuming a previous sampling round in specialized Boltzmann sampling, such as non-redundant backtracking. For that purpose, the user passes the address of a Boltzmann sampling data structure (<a href="mailto:vrna\_pbacktrack\_mem\_t">vrna\_pbacktrack\_mem\_t</a>) which will be re-used in each round of sampling, i.e. each successive call to <a href="mailto:vrna\_pbacktrack\_resume\_cb">vrna\_pbacktrack\_resume\_cb</a>() or <a href="mailto:vrna\_pbacktrack\_resume()">vrna\_pbacktrack\_resume()</a>.

A successive sample call to this function may look like:

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1

vrna\_pf() has to be called first to fill the partition function matrices

# Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structuresin the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

# See also

vrna\_pbacktrack\_resume\_cb(), vrna\_pbacktrack\_cb(), vrna\_pbacktrack5\_resume(), vrna\_pbacktrack\_mem\_t, VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT, vrna\_pbacktrack\_mem\_free

#### **Parameters**

| fc          | The fold compound data structure                            |
|-------------|-------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures       |
| nr_mem      | The address of the Boltzmann sampling memory data structure |
| options     | A bitwise OR-flag indicating the backtracing mode.          |

## Returns

A set of secondary structure samples in dot-bracket notation terminated by NULL (or NULL on error)

**SWIG Wrapper Notes** This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_← compound*. In addition to the list of structures, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

# 16.25.4.10 vrna\_pbacktrack\_resume\_cb()

Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures.

Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z = \sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to vrna\_pbacktrack5\_resume() this function yields the structure samples through a callback mechanism. A successive sample call to this function may look like:

```
vrna_pbacktrack_mem_t nonredundant_memory = NULL;
// sample the first 100 structures
vrna_pbacktrack5_resume_cb(fc,
                            &callback function.
                            (void *) &callback_data,
                            &nonredundant_memory,
                            options);
// sample another 500 structures
vrna_pbacktrack5_resume_cb(fc,
                            500,
                            &callback_function,
                            (void *) &callback_data,
                            &nonredundant_memory,
                           options);
// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);
```

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna pf() has to be called first to fill the partition function matrices

#### Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

## See also

vrna\_pbacktrack\_resume(), vrna\_pbacktrack\_cb(), vrna\_pbacktrack5\_resume\_cb(), vrna\_pbacktrack\_mem\_t, VRNA PBACKTRACK DEFAULT, VRNA PBACKTRACK NON REDUNDANT, vrna pbacktrack mem free

## **Parameters**

| fc          | The fold compound data structure                            |
|-------------|-------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures       |
| cb          | The callback that receives the sampled structure            |
| data        | A data structure passed through to the callback cb          |
| nr_mem      | The address of the Boltzmann sampling memory data structure |
| options     | A bitwise OR-flag indicating the backtracing mode.          |

## Returns

The number of structures actually backtraced

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack() to objects of type fold\_← compound. In addition to the number of structures backtraced, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

# 16.25.4.11 vrna pbacktrack sub()

Sample a secondary structure of a subsequence from the Boltzmann ensemble according its probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a secondary structure. The parameters start and end specify the interval [start:end] of the subsequence with  $1 \leq start < end \leq n$  for sequence length n, the structure  $s_{start,end}$  should be drawn from.

The resulting substructure  $s_{start,end}$  with free energy  $E(s_{start,end})$  is picked from the Boltzmann distributed sub ensemble of all structures within the interval [start:end] according to its probability

$$p(s_{start,end}) = \frac{exp(-E(s_{start,end})/kT)}{Z_{start,end}}$$

with partition function  $Z_{start,end} = \sum_{s_{start,end}} exp(-E(s_{start,end})/kT)$ , Boltzmann constant k and thermodynamic temperature T.

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with  $vrna\_fold\_compound()$  or similar. This can be done easily by passing  $vrna\_fold\_compound()$  a model details parameter with  $vrna\_md\_t.uniq\_ML = 1$ .

vrna\_pf() has to be called first to fill the partition function matrices

#### Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

## See also

vrna\_pbacktrack\_sub\_num(), vrna\_pbacktrack\_sub\_cb(), vrna\_pbacktrack()

#### **Parameters**

| fc    | The fold compound data structure                                        |
|-------|-------------------------------------------------------------------------|
| start | The start of the subsequence to consider, i.e. 5'-end position(1-based) |
| end   | The end of the subsequence to consider, i.e. 3'-end position (1-based)  |

## Returns

A sampled secondary structure in dot-bracket notation (or NULL on error)

**SWIG Wrapper Notes** This function is attached as overloaded method **pbacktrack\_sub()** to objects of type *fold*← *compound*. See also Python Examples - Boltzmann Sampling

# 16.25.4.12 vrna\_pbacktrack\_sub\_num()

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of  $num\_samples$  secondary structures. The parameter length specifies the length of the substructure starting from the 5' end. Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z=\sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the <code>options</code> flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

#### Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna pf() has to be called first to fill the partition function matrices

#### Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

## See also

vrna\_pbacktrack\_sub(), vrna\_pbacktrack\_sub\_cb(), vrna\_pbacktrack\_num(), VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT

## **Parameters**

| fc          | The fold compound data structure                                        |
|-------------|-------------------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures                   |
| start       | The start of the subsequence to consider, i.e. 5'-end position(1-based) |
| end         | The end of the subsequence to consider, i.e. 3'-end position (1-based)  |
| options     | A bitwise OR-flag indicating the backtracing mode.                      |

## Returns

A set of secondary structure samples in dot-bracket notation terminated by NULL (or NULL on error)

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack\_sub() to objects of type fold

\_compound where the last argument options is optional with default value options =

VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

# 16.25.4.13 vrna\_pbacktrack\_sub\_cb()

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures. The parameter length specifies the length of the substructure starting from the 5' end.

Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z = \sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to vrna\_pbacktrack5() and vrna\_pbacktrack5\_num() this function yields the structure samples through a callback mechanism.

## Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna\_pf() has to be called first to fill the partition function matrices

#### Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

## Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

# See also

vrna\_pbacktrack5(), vrna\_pbacktrack5\_num(), vrna\_pbacktrack\_cb(), VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT

## **Parameters**

| fc          | The fold compound data structure                                        |
|-------------|-------------------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures                   |
| start       | The start of the subsequence to consider, i.e. 5'-end position(1-based) |
| end         | The end of the subsequence to consider, i.e. 3'-end position (1-based)  |
| cb          | The callback that receives the sampled structure                        |
| data        | A data structure passed through to the callback cb                      |
| options     | A bitwise OR-flag indicating the backtracing mode.                      |

# Returns

The number of structures actually backtraced

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack() to objects of type fold\_←
compound where the last argument options is optional with default value options =
VRNA\_PBACKTRACK\_DEFAULT. See also Python Examples - Boltzmann Sampling

# 16.25.4.14 vrna\_pbacktrack\_sub\_resume()

char \*\* vrna\_pbacktrack\_sub\_resume (

```
vrna_fold_compound_t * fc,
unsigned int num_samples,
unsigned int start,
unsigned int end,
vrna_pbacktrack_mem_t * nr_mem,
unsigned int options)
#include <ViennaRNA/boltzmann_sampling.h>
```

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures. The parameter length specifies the length of the substructure starting from the 5' end. Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z = \sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to vrna\_pbacktrack5\_cb() this function allows for resuming a previous sampling round in specialized Boltzmann sampling, such as non-redundant backtracking. For that purpose, the user passes the address of a Boltzmann sampling data structure (vrna\_pbacktrack\_mem\_t) which will be re-used in each round of sampling, i.e. each successive call to vrna\_pbacktrack5\_resume\_cb() or vrna\_pbacktrack5\_resume().

A successive sample call to this function may look like:

# Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna\_pf() has to be called first to fill the partition function matrices

## Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

# Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

# See also

vrna\_pbacktrack5\_resume\_cb(), vrna\_pbacktrack5\_cb(), vrna\_pbacktrack\_resume(), vrna\_pbacktrack\_mem\_t, VRNA PBACKTRACK DEFAULT, VRNA PBACKTRACK NON REDUNDANT, vrna pbacktrack mem free

#### **Parameters**

| fc          | The fold compound data structure                                        |
|-------------|-------------------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures                   |
| start       | The start of the subsequence to consider, i.e. 5'-end position(1-based) |
| end         | The end of the subsequence to consider, i.e. 3'-end position (1-based)  |
| nr_mem      | The address of the Boltzmann sampling memory data structure             |
| options     | A bitwise OR-flag indicating the backtracing mode.                      |

#### Returns

A set of secondary structure samples in dot-bracket notation terminated by NULL (or NULL on error)

**SWIG Wrapper Notes** This function is attached as overloaded method **pbacktrack()** to objects of type *fold\_← compound*. In addition to the list of structures, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

# 16.25.4.15 vrna\_pbacktrack\_sub\_resume\_cb()

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

Perform a probabilistic (stochastic) backtracing in the partition function DP arrays to obtain a set of num\_samples secondary structures. The parameter length specifies the length of the substructure starting from the 5' end. Any structure s with free energy E(s) is picked from the Boltzmann distributed ensemble according to its probability

$$p(s) = \frac{exp(-E(s)/kT)}{Z}$$

with partition function  $Z=\sum_s exp(-E(s)/kT)$ , Boltzmann constant k and thermodynamic temperature T. Using the options flag one can switch between regular (VRNA\_PBACKTRACK\_DEFAULT) backtracing mode, and non-redundant sampling (VRNA\_PBACKTRACK\_NON\_REDUNDANT) along the lines of Michalik et al. 2017 [24].

In contrast to vrna\_pbacktrack5\_resume() this function yields the structure samples through a callback mechanism. A successive sample call to this function may look like:

```
vrna_pbacktrack_mem_t nonredundant_memory = NULL;
// sample the first 100 structures
vrna_pbacktrack5_resume_cb(fc,
                            100.
                            fc->length,
                            &callback_function,
                            (void *) &callback_data,
                            &nonredundant_memory,
                           options);
// sample another 500 structures
vrna_pbacktrack5_resume_cb(fc,
                            fc->length,
                            &callback_function,
                            (void *) & callback data.
                            &nonredundant_memory,
                           options);
// release memory occupied by the non-redundant memory data structure
vrna_pbacktrack_mem_free(nonredundant_memory);
```

#### Precondition

Unique multiloop decomposition has to be active upon creation of fc with vrna\_fold\_compound() or similar. This can be done easily by passing vrna\_fold\_compound() a model details parameter with vrna\_md\_t.uniq\_ML = 1.

vrna pf() has to be called first to fill the partition function matrices

#### Note

This function is polymorphic. It accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE.

### Warning

In non-redundant sampling mode (VRNA\_PBACKTRACK\_NON\_REDUNDANT), this function may not yield the full number of requested samples. This may happen if a) the number of requested structures is larger than the total number of structures in the ensemble, b) numeric instabilities prevent the backtracking function to enumerate structures with high free energies, or c) any other error occurs.

#### See also

vrna\_pbacktrack5\_resume(), vrna\_pbacktrack5\_cb(), vrna\_pbacktrack\_resume\_cb(), vrna\_pbacktrack\_mem\_t, VRNA\_PBACKTRACK\_DEFAULT, VRNA\_PBACKTRACK\_NON\_REDUNDANT, vrna\_pbacktrack\_mem\_free

#### **Parameters**

| fc          | The fold compound data structure                                        |
|-------------|-------------------------------------------------------------------------|
| num_samples | The size of the sample set, i.e. number of structures                   |
| start       | The start of the subsequence to consider, i.e. 5'-end position(1-based) |
| end         | The end of the subsequence to consider, i.e. 3'-end position (1-based)  |
| cb          | The callback that receives the sampled structure                        |
| data        | A data structure passed through to the callback cb                      |
| nr_mem      | The address of the Boltzmann sampling memory data structure             |
| options     | A bitwise OR-flag indicating the backtracing mode.                      |

### Returns

The number of structures actually backtraced

SWIG Wrapper Notes This function is attached as overloaded method pbacktrack() to objects of type fold\_← compound. In addition to the number of structures backtraced, this function also returns the nr\_mem data structure as first element. See also Python Examples - Boltzmann Sampling

### 16.25.4.16 vrna\_pbacktrack\_mem\_free()

Release memory occupied by a Boltzmann sampling memory data structure.

#### See also

vrna\_pbacktrack\_mem\_t, vrna\_pbacktrack5\_resume(), vrna\_pbacktrack5\_resume\_cb(), vrna\_pbacktrack\_resume\_cb(), vrna\_pbacktrack\_resume\_cb()

#### **Parameters**

s The non-redundancy memory data structure

# 16.26 Compute the Structure with Maximum Expected Accuracy (MEA)

### 16.26.1 Detailed Description

Collaboration diagram for Compute the Structure with Maximum Expected Accuracy (MEA):

#### **Functions**

- char \* vrna\_MEA (vrna\_fold\_compound\_t \*fc, double gamma, float \*mea)
  - Compute a MEA (maximum expected accuracy) structure.
- char \* vrna\_MEA\_from\_plist (vrna\_ep\_t \*plist, const char \*sequence, double gamma, vrna\_md\_t \*md, float \*mea)

Compute a MEA (maximum expected accuracy) structure from a list of probabilities.

• float MEA (plist \*p, char \*structure, double gamma)

Computes a MEA (maximum expected accuracy) structure.

### 16.26.2 Function Documentation

### 16.26.2.1 vrna\_MEA()

Compute a MEA (maximum expected accuracy) structure.

The algorithm maximizes the expected accuracy

$$A(S) = \sum_{(i,j)\in S} 2\gamma p_{ij} + \sum_{i\notin S} p_i^u$$

Higher values of  $\gamma$  result in more base pairs of lower probability and thus higher sensitivity. Low values of  $\gamma$  result in structures containing only highly likely pairs (high specificity). The code of the MEA function also demonstrates the use of sparse dynamic programming scheme to reduce the time and memory complexity of folding.

#### Precondition

vrna\_pf() must be executed on input parameter fc

#### **Parameters**

| fc    | The fold compound data structure with pre-filled base pair probability matrix |
|-------|-------------------------------------------------------------------------------|
| gamma | The weighting factor for base pairs vs. unpaired nucleotides                  |
| mea   | A pointer to a variable where the MEA value will be written to                |

#### Returns

An MEA structure (or NULL on any error)

**SWIG Wrapper Notes** This function is attached as overloaded method **MEA**(gamma = 1.) to objects of type *fold*← \_\_compound. Note, that it returns the MEA structure and MEA value as a tuple (MEA\_← structure, MEA)

### 16.26.2.2 vrna\_MEA\_from\_plist()

Compute a MEA (maximum expected accuracy) structure from a list of probabilities.

The algorithm maximizes the expected accuracy

$$A(S) = \sum_{(i,j)\in S} 2\gamma p_{ij} + \sum_{i\notin S} p_i^u$$

Higher values of  $\gamma$  result in more base pairs of lower probability and thus higher sensitivity. Low values of  $\gamma$  result in structures containing only highly likely pairs (high specificity). The code of the MEA function also demonstrates the use of sparse dynamic programming scheme to reduce the time and memory complexity of folding.

#### Note

The unpaired probabilities  $p_i^u=1-\sum_{j\neq i}p_{ij}$  are usually computed from the supplied pairing probabilities  $p_{ij}$  as stored in <code>plist</code> entries of type <code>VRNA\_PLIST\_TYPE\_BASEPAIR</code>. To overwrite individual  $p_o^u$  values simply add entries with type <code>VRNA\_PLIST\_TYPE\_UNPAIRED</code>

To include G-Quadruplex support, the corresponding field in md must be set.

#### **Parameters**

| plist    | A list of base pair probabilities the MEA structure is computed from |
|----------|----------------------------------------------------------------------|
| sequence | The RNA sequence that corresponds to the list of probability values  |
| gamma    | The weighting factor for base pairs vs. unpaired nucleotides         |
| md       | A model details data structure (maybe NULL)                          |
| mea      | A pointer to a variable where the MEA value will be written to       |

#### Returns

An MEA structure (or NULL on any error)

**SWIG Wrapper Notes** This function is available as overloaded function **MEA\_from\_plist**(gamma = 1., md = NULL). Note, that it returns the MEA structure and MEA value as a tuple (MEA\_structure, MEA)

#### 16.26.2.3 MEA()

#include <ViennaRNA/MEA.h>

Computes a MEA (maximum expected accuracy) structure.

The algorithm maximizes the expected accuracy

$$A(S) = \sum_{(i,j)\in S} 2\gamma p_{ij} + \sum_{i\notin S} p_i^u$$

Higher values of  $\gamma$  result in more base pairs of lower probability and thus higher sensitivity. Low values of  $\gamma$  result in structures containing only highly likely pairs (high specificity). The code of the MEA function also demonstrates the use of sparse dynamic programming scheme to reduce the time and memory complexity of folding.

Deprecated Use vrna MEA() or vrna MEA from plist() instead!

#### 16.27 **Compute the Centroid Structure**

# 16.27.1 Detailed Description

Collaboration diagram for Compute the Centroid Structure:

#### **Functions**

char \* vrna\_centroid (vrna\_fold\_compound\_t \*vc, double \*dist)

Get the centroid structure of the ensemble.

char \* vrna centroid from plist (int length, double \*dist, vrna ep t \*pl)

Get the centroid structure of the ensemble.

char \* vrna\_centroid\_from\_probs (int length, double \*dist, FLT\_OR\_DBL \*probs)

Get the centroid structure of the ensemble.

### 16.27.2 Function Documentation

### 16.27.2.1 vrna\_centroid()

```
char * vrna_centroid (
           vrna_fold_compound_t * vc,
           double * dist )
#include <ViennaRNA/centroid.h>
```

Get the centroid structure of the ensemble.

The centroid is the structure with the minimal average distance to all other structures

$$\langle d(S) \rangle = \sum_{(i,j) \in S} (1 - p_{ij}) + \sum_{(i,j) \notin S} p_{ij}$$

<  $d(S)>=\sum_{(i,j)\in S}(1-p_{ij})+\sum_{(i,j)\notin S}p_{ij}$  Thus, the centroid is simply the structure containing all pairs with  $p_ij>0.5$  The distance of the centroid to the ensemble is written to the memory adressed by dist.

#### **Parameters**

| in  | in vc The fold compound data structure |                                                                                   |
|-----|----------------------------------------|-----------------------------------------------------------------------------------|
| out | dist                                   | A pointer to the distance variable where the centroid distance will be written to |

### Returns

The centroid structure of the ensemble in dot-bracket notation (NULL on error)

### 16.27.2.2 vrna\_centroid\_from\_plist()

```
char * vrna_centroid_from_plist (
```

16.28 RNA-RNA Interaction 315

```
int length,
           double * dist,
           vrna_ep_t * pl)
#include <ViennaRNA/centroid.h>
```

Get the centroid structure of the ensemble.

This function is a threadsafe replacement for centroid() with a vrna ep t input

The centroid is the structure with the minimal average distance to all other structures

```
< d(S) > = \sum_{(i,j) \in S} (1 - p_{ij}) + \sum_{(i,j) \notin S} p_{ij}
```

Thus, the centroid is simply the structure containing all pairs with  $p_{ij} > 0.5$  The distance of the centroid to the ensemble is written to the memory adressed by dist.

#### **Parameters**

| in  | length | The length of the sequence                                                        |
|-----|--------|-----------------------------------------------------------------------------------|
| out | dist   | A pointer to the distance variable where the centroid distance will be written to |
| in  | pl     | A pair list containing base pair probability information about the ensemble       |

#### Returns

The centroid structure of the ensemble in dot-bracket notation (NULL on error)

### 16.27.2.3 vrna\_centroid\_from\_probs()

```
char * vrna_centroid_from_probs (
           int length,
            double * dist,
            FLT_OR_DBL * probs )
#include <ViennaRNA/centroid.h>
```

Get the centroid structure of the ensemble.

This function is a threadsafe replacement for centroid() with a probability array input

The centroid is the structure with the minimal average distance to all other structures

$$\langle d(S) \rangle = \sum_{(i,j) \in S} (1 - p_{ij}) + \sum_{(i,j) \notin S} p_{ij}$$

<  $d(S)>=\sum_{(i,j)\in S}(1-p_{ij})+\sum_{(i,j)\notin S}p_{ij}$  Thus, the centroid is simply the structure containing all pairs with  $p_ij>0.5$  The distance of the centroid to the ensemble is written to the memory adressed by dist.

### **Parameters**

| in  | length                                                                                                        | The length of the sequence                                                        |
|-----|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| out | dist                                                                                                          | A pointer to the distance variable where the centroid distance will be written to |
| in  | in probs An upper triangular matrix containing base pair probabilities (access via iindx vrna_idx_row_wise()) |                                                                                   |

#### Returns

The centroid structure of the ensemble in dot-bracket notation (NULL on error)

#### 16.28 **RNA-RNA Interaction**

### 16.28.1 Detailed Description

Collaboration diagram for RNA-RNA Interaction:

### **Modules**

Partition Function for Two Hybridized Sequences

Partition Function Cofolding.

Partition Function for two Hybridized Sequences as a Stepwise Process

RNA-RNA interaction as a stepwise process.

#### **Files**

· file concentrations.h

Concentration computations for RNA-RNA interactions.

· file duplex.h

Functions for simple RNA-RNA duplex interactions.

file part\_func\_up.h

Implementations for accessibility and RNA-RNA interaction as a stepwise process.

# 16.29 Classified Dynamic Programming Variants

### 16.29.1 Detailed Description

Collaboration diagram for Classified Dynamic Programming Variants:

#### **Modules**

- · Distance Based Partitioning of the Secondary Structure Space
- · Compute the Density of States

# 16.30 Distance Based Partitioning of the Secondary Structure Space

### 16.30.1 Detailed Description

Collaboration diagram for Distance Based Partitioning of the Secondary Structure Space:

#### **Modules**

Computing MFE representatives of a Distance Based Partitioning

Compute the minimum free energy (MFE) and secondary structures for a partitioning of the secondary structure space according to the base pair distance to two fixed reference structures basepair distance to two fixed reference structures.

Computing Partition Functions of a Distance Based Partitioning

Compute the partition function and stochastically sample secondary structures for a partitioning of the secondary structure space according to the base pair distance to two fixed reference structures.

· Stochastic Backtracking of Structures from Distance Based Partitioning

Contains functions related to stochastic backtracking from a specified distance class.

#### **Files**

· file 2Dfold.h

MFE structures for base pair distance classes.

file 2Dpfold.h

Partition function implementations for base pair distance classes.

# 16.31 Computing MFE representatives of a Distance Based Partitioning

Compute the minimum free energy (MFE) and secondary structures for a partitioning of the secondary structure space according to the base pair distance to two fixed reference structures basepair distance to two fixed reference structures.

### 16.31.1 Detailed Description

Compute the minimum free energy (MFE) and secondary structures for a partitioning of the secondary structure space according to the base pair distance to two fixed reference structures basepair distance to two fixed reference structures.

See also

For further details, we refer to Lorenz et al. 2009 [20]

Collaboration diagram for Computing MFE representatives of a Distance Based Partitioning:

#### **Data Structures**

struct vrna\_sol\_TwoD\_t

Solution element returned from vrna\_mfe\_TwoD() More...

· struct TwoDfold vars

Variables compound for 2Dfold MFE folding. More...

### **Typedefs**

typedef struct vrna\_sol\_TwoD\_t vrna\_sol\_TwoD\_t

Solution element returned from <a href="mailto:vrna\_mfe\_TwoD(">vrna\_mfe\_TwoD()</a>)

typedef struct TwoDfold\_vars TwoDfold\_vars

Variables compound for 2Dfold MFE folding.

### **Functions**

vrna\_sol\_TwoD\_t \* vrna\_mfe\_TwoD (vrna\_fold\_compound\_t \*vc, int distance1, int distance2)

Compute MFE's and representative for distance partitioning.

char \* vrna\_backtrack5\_TwoD (vrna\_fold\_compound\_t \*vc, int k, int l, unsigned int j)

Backtrack a minimum free energy structure from a 5' section of specified length.

TwoDfold\_vars \* get\_TwoDfold\_variables (const char \*seq, const char \*structure1, const char \*structure2, int circ)

Get a structure of type TwoDfold vars prefilled with current global settings.

void destroy TwoDfold variables (TwoDfold vars \*our variables)

Destroy a TwoDfold\_vars datastructure without memory loss.

• TwoDfold\_solution \* TwoDfoldList (TwoDfold\_vars \*vars, int distance1, int distance2)

Compute MFE's and representative for distance partitioning.

char \* TwoDfold\_backtrack\_f5 (unsigned int j, int k, int I, TwoDfold\_vars \*vars)

Backtrack a minimum free energy structure from a 5' section of specified length.

### 16.31.2 Data Structure Documentation

#### 16.31.2.1 struct vrna sol TwoD t

Solution element returned from vrna mfe TwoD()

This element contains free energy and structure for the appropriate kappa (k), lambda (l) neighborhood The datastructure contains two integer attributes 'k' and 'l' as well as an attribute 'en' of type float representing the free energy in kcal/mol and an attribute 's' of type char\* containg the secondary structure representative,

A value of INF in k denotes the end of a list

See also

vrna\_mfe\_TwoD()

#### **Data Fields**

int k

Distance to first reference.

int I

Distance to second reference.

· float en

Free energy in kcal/mol.

• char \* **s** 

MFE representative structure in dot-bracket notation.

#### 16.31.2.2 struct TwoDfold\_vars

Variables compound for 2Dfold MFE folding.

**Deprecated** This data structure will be removed from the library soon! Use vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_mfe\_TwoD(), and vrna\_fold\_compound\_free() instead!

Collaboration diagram for TwoDfold\_vars:

#### **Data Fields**

vrna param t \* P

Precomputed energy parameters and model details.

int do backtrack

Flag whether to do backtracing of the structure(s) or not.

char \* ptype

Precomputed array of pair types.

• char \* sequence

The input sequence

short \* S1

The input sequences in numeric form.

unsigned int maxD1

Maximum allowed base pair distance to first reference.

unsigned int maxD2

Maximum allowed base pair distance to second reference.

unsigned int \* mm1

Maximum matching matrix, reference struct 1 disallowed.

unsigned int \* mm2

Maximum matching matrix, reference struct 2 disallowed.

int \* my\_iindx

Index for moving in quadratic distancy dimensions.

unsigned int \* referenceBPs1

Matrix containing number of basepairs of reference structure1 in interval [i,j].

unsigned int \* referenceBPs2

Matrix containing number of basepairs of reference structure2 in interval [i,j].

- unsigned int \* **bpdist** 

Matrix containing base pair distance of reference structure 1 and 2 on interval [i,j].

# 16.31.3 Typedef Documentation

### 16.31.3.1 vrna\_sol\_TwoD\_t

```
typedef struct vrna_sol_TwoD_t vrna_sol_TwoD_t
#include <ViennaRNA/2Dfold.h>
Solution element returned from vrna mfe TwoD()
```

This element contains free energy and structure for the appropriate kappa (k), lambda (l) neighborhood The datastructure contains two integer attributes 'k' and 'l' as well as an attribute 'en' of type float representing the free energy in kcal/mol and an attribute 's' of type char\* containg the secondary structure representative,

A value of INF in k denotes the end of a list

See also

```
vrna mfe TwoD()
```

#### 16.31.3.2 TwoDfold\_vars

```
typedef struct TwoDfold_vars TwoDfold_vars
#include <ViennaRNA/2Dfold.h>
Variables compound for 2Dfold MFE folding.
```

**Deprecated** This data structure will be removed from the library soon! Use vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_mfe\_TwoD(), and vrna\_fold\_compound\_free() instead!

### 16.31.4 Function Documentation

#### 16.31.4.1 vrna\_mfe\_TwoD()

Compute MFE's and representative for distance partitioning.

This function computes the minimum free energies and a representative secondary structure for each distance class according to the two references specified in the datastructure 'vars'. The maximum basepair distance to each of both references may be set by the arguments 'distance1' and 'distance2', respectively. If both distance arguments are set to '-1', no restriction is assumed and the calculation is performed for each distance class possible.

The returned list contains an entry for each distance class. If a maximum basepair distance to either of the references was passed, an entry with k=l=-1 will be appended in the list, denoting the class where all structures exceeding the maximum will be thrown into. The end of the list is denoted by an attribute value of INF in the k-attribute of the list entry.

#### See also

```
vrna_fold_compound_TwoD(), vrna_fold_compound_free(), vrna_pf_TwoD() vrna_backtrack5_TwoD(), vrna sol TwoD t, vrna fold compound t
```

### **Parameters**

| VC        | The datastructure containing all precomputed folding attributes |
|-----------|-----------------------------------------------------------------|
| distance1 | maximum distance to reference1 (-1 means no restriction)        |
| distance2 | maximum distance to reference2 (-1 means no restriction)        |

#### Returns

A list of minimum free energies (and corresponding structures) for each distance class

### 16.31.4.2 vrna\_backtrack5\_TwoD()

Backtrack a minimum free energy structure from a 5' section of specified length.

This function allows one to backtrack a secondary structure beginning at the 5' end, a specified length and residing in a specific distance class. If the argument 'k' gets a value of -1, the structure that is backtracked is assumed to reside in the distance class where all structures exceeding the maximum basepair distance specified in vrna\_mfe\_TwoD() belong to.

Note

The argument 'vars' must contain precalculated energy values in the energy matrices, i.e. a call to <a href="mailto-vrna\_mfe\_TwoD">vrna\_mfe\_TwoD</a>() preceding this function is mandatory!

#### See also

```
vrna_mfe_TwoD()
```

#### **Parameters**

| VC | The datastructure containing all precomputed folding attributes |
|----|-----------------------------------------------------------------|
| j  | The length in nucleotides beginning from the 5' end             |
| k  | distance to reference1 (may be -1)                              |
| 1  | distance to reference2                                          |

#### 16.31.4.3 get\_TwoDfold\_variables()

Get a structure of type TwoDfold vars prefilled with current global settings.

This function returns a datastructure of type TwoDfold\_vars. The data fields inside the TwoDfold\_vars are prefilled by global settings and all memory allocations necessary to start a computation are already done for the convenience of the user

Note

Make sure that the reference structures are compatible with the sequence according to Watson-Crick- and Wobble-base pairing

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound TwoD(), vrna mfe TwoD(), and vrna\_fold\_compound\_free() instead!

#### **Parameters**

| seq        | The RNA sequence                                                                           |
|------------|--------------------------------------------------------------------------------------------|
| structure1 | The first reference structure in dot-bracket notation                                      |
| structure2 | The second reference structure in dot-bracket notation                                     |
| circ       | A switch to indicate the assumption to fold a circular instead of linear RNA (0=OFF, 1=ON) |

#### Returns

A datastructure prefilled with folding options and allocated memory

### 16.31.4.4 destroy TwoDfold variables()

Destroy a TwoDfold\_vars datastructure without memory loss.

This function free's all allocated memory that depends on the datastructure given.

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_mfe\_TwoD(), and vrna\_fold\_compound\_free() instead!

#### **Parameters**

|  | our_variables | A pointer to the datastructure to be destroyed |  |
|--|---------------|------------------------------------------------|--|
|--|---------------|------------------------------------------------|--|

#### 16.31.4.5 TwoDfoldList()

Compute MFE's and representative for distance partitioning.

This function computes the minimum free energies and a representative secondary structure for each distance class according to the two references specified in the datastructure 'vars'. The maximum basepair distance to each of both references may be set by the arguments 'distance1' and 'distance2', respectively. If both distance arguments are set to '-1', no restriction is assumed and the calculation is performed for each distance class possible.

The returned list contains an entry for each distance class. If a maximum basepair distance to either of the references was passed, an entry with k=l=-1 will be appended in the list, denoting the class where all structures exceeding the maximum will be thrown into. The end of the list is denoted by an attribute value of INF in the k-attribute of the list entry.

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_mfe\_TwoD(), and vrna\_fold\_compound\_free() instead!

#### **Parameters**

| vars      | the datastructure containing all predefined folding attributes |
|-----------|----------------------------------------------------------------|
| distance1 | maximum distance to reference1 (-1 means no restriction)       |
| distance2 | maximum distance to reference2 (-1 means no restriction)       |

#### 16.31.4.6 TwoDfold backtrack f5()

Backtrack a minimum free energy structure from a 5' section of specified length.

This function allows one to backtrack a secondary structure beginning at the 5' end, a specified length and residing in a specific distance class. If the argument 'k' gets a value of -1, the structure that is backtracked is assumed to reside in the distance class where all structures exceeding the maximum basepair distance specified in TwoDfold() belong to.

Note

The argument 'vars' must contain precalculated energy values in the energy matrices, i.e. a call to TwoDfold() preceding this function is mandatory!

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_mfe\_TwoD(), vrna\_backtrack5\_TwoD(), and vrna\_fold\_compound\_free() instead!

#### **Parameters**

| j    | The length in nucleotides beginning from the 5' end            |
|------|----------------------------------------------------------------|
| k    | distance to reference1 (may be -1)                             |
| 1    | distance to reference2                                         |
| vars | the datastructure containing all predefined folding attributes |

# 16.32 Computing Partition Functions of a Distance Based Partitioning

Compute the partition function and stochastically sample secondary structures for a partitioning of the secondary structure space according to the base pair distance to two fixed reference structures.

# 16.32.1 Detailed Description

Compute the partition function and stochastically sample secondary structures for a partitioning of the secondary structure space according to the base pair distance to two fixed reference structures.

Collaboration diagram for Computing Partition Functions of a Distance Based Partitioning:

#### **Data Structures**

struct vrna\_sol\_TwoD\_pf\_t
 Solution element returned from vrna\_pf\_TwoD() More...

# **Typedefs**

typedef struct vrna\_sol\_TwoD\_pf\_t vrna\_sol\_TwoD\_pf\_t
 Solution element returned from vrna\_pf\_TwoD()

### **Functions**

• vrna\_sol\_TwoD\_pf\_t \* vrna\_pf\_TwoD (vrna\_fold\_compound\_t \*vc, int maxDistance1, int maxDistance2)

Compute the partition function for all distance classes.

#### 16.32.2 Data Structure Documentation

### 16.32.2.1 struct vrna\_sol\_TwoD\_pf\_t

Solution element returned from vrna pf TwoD()

This element contains the partition function for the appropriate kappa (k), lambda (l) neighborhood The datastructure contains two integer attributes 'k' and 'l' as well as an attribute 'q' of type FLT OR DBL

A value of INF in k denotes the end of a list

See also

```
vrna_pf_TwoD()
```

#### **Data Fields**

int k

Distance to first reference.

int I

Distance to second reference.

FLT\_OR\_DBL q

partition function

### 16.32.3 Typedef Documentation

### 16.32.3.1 vrna\_sol\_TwoD\_pf\_t

```
typedef struct vrna_sol_TwoD_pf_t vrna_sol_TwoD_pf_t
#include <ViennaRNA/2Dpfold.h>
```

Solution element returned from vrna pf TwoD()

This element contains the partition function for the appropriate kappa (k), lambda (l) neighborhood The datastructure contains two integer attributes 'k' and 'l' as well as an attribute 'q' of type FLT\_OR\_DBL

A value of INF in k denotes the end of a list

See also

```
vrna_pf_TwoD()
```

# 16.32.4 Function Documentation

### 16.32.4.1 vrna pf TwoD()

Compute the partition function for all distance classes.

This function computes the partition functions for all distance classes according the two reference structures specified in the datastructure 'vars'. Similar to  $vrna\_mfe\_TwoD()$  the arguments maxDistance1 and maxDistance2 specify the maximum distance to both reference structures. A value of '-1' in either of them makes the appropriate distance restrictionless, i.e. all basepair distancies to the reference are taken into account during computation. In case there is a restriction, the returned solution contains an entry where the attribute k=l=-1 contains the partition function for all structures exceeding the restriction. A value of INF in the attribute 'k' of the returned list denotes the end of the list

#### See also

vrna fold compound TwoD(), vrna fold compound free(), vrna fold compound vrna sol TwoD pf t

#### **Parameters**

| VC                                                                   | The datastructure containing all necessary folding attributes and matrices |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| maxDistance1                                                         | The maximum basepair distance to reference1 (may be -1)                    |  |
| maxDistance2 The maximum basepair distance to reference2 (may be -1) |                                                                            |  |

### Returns

A list of partition funtions for the corresponding distance classes

# 16.33 Stochastic Backtracking of Structures from Distance Based Partitioning

Contains functions related to stochastic backtracking from a specified distance class.

# 16.33.1 Detailed Description

Contains functions related to stochastic backtracking from a specified distance class.

Collaboration diagram for Stochastic Backtracking of Structures from Distance Based Partitioning:

### **Functions**

- char \* vrna\_pbacktrack\_TwoD (vrna\_fold\_compound\_t \*vc, int d1, int d2)
  - Sample secondary structure representatives from a set of distance classes according to their Boltzmann probability.
- char \* vrna\_pbacktrack5\_TwoD (vrna\_fold\_compound\_t \*vc, int d1, int d2, unsigned int length)

Sample secondary structure representatives with a specified length from a set of distance classes according to their Boltzmann probability.

### 16.33.2 Function Documentation

### 16.33.2.1 vrna\_pbacktrack\_TwoD()

Sample secondary structure representatives from a set of distance classes according to their Boltzmann probability. If the argument 'd1' is set to '-1', the structure will be backtracked in the distance class where all structures exceeding the maximum basepair distance to either of the references reside.

### Precondition

The argument 'vars' must contain precalculated partition function matrices, i.e. a call to vrna\_pf\_TwoD() preceding this function is mandatory!

#### See also

```
vrna pf TwoD()
```

#### **Parameters**

| in,out | VC | The vrna_fold_compound_t datastructure containing all necessary folding attributes and matrices |
|--------|----|-------------------------------------------------------------------------------------------------|
| in     | d1 | The distance to reference1 (may be -1)                                                          |
| in     | d2 | The distance to reference2                                                                      |

#### Returns

A sampled secondary structure in dot-bracket notation

### 16.33.2.2 vrna\_pbacktrack5\_TwoD()

Sample secondary structure representatives with a specified length from a set of distance classes according to their Boltzmann probability.

This function does essentially the same as <a href="mailto:vrna\_pbacktrack\_TwoD">vrna\_pbacktrack\_TwoD</a>() with the only difference that partial structures, i.e. structures beginning from the 5' end with a specified length of the sequence, are backtracked

#### Note

This function does not work (since it makes no sense) for circular RNA sequences!

### Precondition

The argument 'vars' must contain precalculated partition function matrices, i.e. a call to vrna\_pf\_TwoD() preceding this function is mandatory!

#### See also

```
vrna_pbacktrack_TwoD(), vrna_pf_TwoD()
```

### **Parameters**

| in,out | vc     | The vrna_fold_compound_t datastructure containing all necessary folding attributes and |
|--------|--------|----------------------------------------------------------------------------------------|
|        |        | matrices                                                                               |
| in     | d1     | The distance to reference1 (may be -1)                                                 |
| in     | d2     | The distance to reference2                                                             |
| in     | length | The length of the structure beginning from the 5' end                                  |

Returns

A sampled secondary structure in dot-bracket notation

# 16.34 Predicting various thermodynamic properties

Compute various thermodynamic properties using the partition function.

### 16.34.1 Detailed Description

Compute various thermodynamic properties using the partition function. Many thermodynamic properties can be derived from the partition function

$$Q = \sum_{s \in \omega} e^{\frac{-E(s)}{kT}}.$$

In particular, for nucleic acids in equilibrium the probability p(F) of a particular structural feature F follows Boltzmanns law, i.e.

$$p(F) \propto \sum_{s|F \in s} e^{\frac{-E(s)}{kT}}.$$

The actual probabilities can then be obtained from the ratio of those structures containing F and all structures, i.e.

$$p(F) = \frac{1}{Q} \sum_{s|F \in s} e^{\frac{-E(s)}{kT}}.$$

Consequently, a particular secondary structure s has equilibrium probability

$$p(s) = \frac{1}{Q}e^{\frac{-E(s)}{kT}}$$

which can be easily computed once Q and E(s) are known.

On the other hand, efficient dynamic programming algorithms exist to compute the equilibrium probabilities

$$p_{ij} = \frac{1}{Q} \sum_{s|(i,j)\in s} e^{\frac{-E(s)}{kT}}$$

of base pairs (i, j) without the need for exhaustive enumeration of s.

This interface provides the functions for all thermodynamic property computations implemented in *RNAlib*. Collaboration diagram for Predicting various thermodynamic properties:

## **Files**

file equilibrium\_probs.h

Equilibrium Probability implementations.

· file heat capacity.h

Compute heat capacity for an RNA.

### **Data Structures**

· struct vrna heat capacity s

A single result from heat capacity computations. More...

### **Typedefs**

typedef void(\* vrna\_heat\_capacity\_f) (float temp, float heat\_capacity, void \*data)

The callback for heat capacity predictions.

typedef struct vrna\_heat\_capacity\_s vrna\_heat\_capacity\_t

A single result from heat capacity computations.

### Base pair probabilities and derived computations

- int vrna\_pairing\_probs (vrna\_fold\_compound\_t \*vc, char \*structure)
- double vrna mean bp distance pr (int length, FLT OR DBL \*pr)

Get the mean base pair distance in the thermodynamic ensemble from a probability matrix.

double vrna mean bp distance (vrna fold compound t \*vc)

Get the mean base pair distance in the thermodynamic ensemble.

double vrna\_ensemble\_defect\_pt (vrna\_fold\_compound\_t \*fc, const short \*pt)

Compute the Ensemble Defect for a given target structure provided as a vrna\_ptable.

double vrna ensemble defect (vrna fold compound t \*fc, const char \*structure)

Compute the Ensemble Defect for a given target structure.

double \* vrna\_positional\_entropy (vrna\_fold\_compound\_t \*fc)

Compute a vector of positional entropies.

vrna ep t \* vrna stack prob (vrna fold compound t \*vc, double cutoff)

Compute stacking probabilities.

### Multimer probabilities computations

• void vrna\_pf\_dimer\_probs (double FAB, double FA, double FB, vrna\_ep\_t \*prAB, const vrna\_ep\_t \*prA, const vrna\_ep\_t \*prB, int Alength, const vrna\_exp\_param\_t \*exp\_param\_s)

Compute Boltzmann probabilities of dimerization without homodimers.

### Structure probability computations

• double vrna\_pr\_structure (vrna\_fold\_compound\_t \*fc, const char \*structure)

Compute the equilibrium probability of a particular secondary structure.

double vrna\_pr\_energy (vrna\_fold\_compound\_t \*vc, double e)

### Basic heat capacity function interface

vrna\_heat\_capacity\_t \* vrna\_heat\_capacity (vrna\_fold\_compound\_t \*fc, float T\_min, float T\_max, float T\_
increment, unsigned int mpoints)

Compute the specific heat for an RNA.

• int vrna\_heat\_capacity\_cb (vrna\_fold\_compound\_t \*fc, float T\_min, float T\_max, float T\_increment, unsigned int mpoints, vrna\_heat\_capacity\_f cb, void \*data)

Compute the specific heat for an RNA (callback variant)

#### Simplified heat capacity computation

• vrna\_heat\_capacity\_t \* vrna\_heat\_capacity\_simple (const char \*sequence, float T\_min, float T\_max, float T\_increment, unsigned int mpoints)

Compute the specific heat for an RNA (simplified variant)

### 16.34.2 Data Structure Documentation

### 16.34.2.1 struct vrna\_heat\_capacity\_s

A single result from heat capacity computations.

See also

vrna\_heat\_capacity()

#### **Data Fields**

· float temperature

The temperature in  $\mathcal{C}$ .

· float heat\_capacity

The specific heat at this temperature in Kcal/(Mol \* K)

### 16.34.3 Typedef Documentation

### 16.34.3.1 vrna\_heat\_capacity\_f

```
typedef void(* vrna_heat_capacity_f) (float temp, float heat_capacity, void *data)
#include <ViennaRNA/heat_capacity.h>
```

The callback for heat capacity predictions.

**Notes on Callback Functions** This function will be called for each evaluated temperature in the heat capacity prediction.

See also

vrna heat capacity cb()

#### **Parameters**

| temp          | The current temperature this results corresponds to in ℃                          |  |
|---------------|-----------------------------------------------------------------------------------|--|
| heat_capacity | The heat capacity in Kcal/(Mol * K)                                               |  |
| data          | Some arbitrary data pointer passed through by the function executing the callback |  |

#### 16.34.3.2 vrna\_heat\_capacity\_t

```
typedef struct vrna_heat_capacity_s vrna_heat_capacity_t
#include <ViennaRNA/heat_capacity.h>
```

A single result from heat capacity computations.

This is a convenience typedef for vrna\_heat\_capacity\_s, i.e. results as obtained from vrna\_heat\_capacity()

### 16.34.4 Function Documentation

#### 16.34.4.1 vrna\_mean\_bp\_distance\_pr()

Get the mean base pair distance in the thermodynamic ensemble from a probability matrix.

$$\langle d \rangle = \sum_{a,b} p_a p_b d(S_a, S_b)$$

this can be computed from the pair probs  $p_{ij}$  as

$$< d > = \sum_{ij} p_{ij} (1 - p_{ij})$$

#### **Parameters**

| length | The length of the sequence                        |
|--------|---------------------------------------------------|
| pr     | The matrix containing the base pair probabilities |

#### Returns

The mean pair distance of the structure ensemble

#### 16.34.4.2 vrna\_mean\_bp\_distance()

Get the mean base pair distance in the thermodynamic ensemble.

$$\langle d \rangle = \sum_{a,b} p_a p_b d(S_a, S_b)$$

this can be computed from the pair probs  $p_{ij}$  as

$$< d > = \sum_{ij} p_{ij} (1 - p_{ij})$$

#### **Parameters**

| VC | The fold compound data structure |
|----|----------------------------------|
|----|----------------------------------|

#### Returns

The mean pair distance of the structure ensemble

SWIG Wrapper Notes This function is attached as method mean\_bp\_distance() to objects of type fold\_compound

### 16.34.4.3 vrna\_ensemble\_defect\_pt()

Compute the Ensemble Defect for a given target structure provided as a vrna\_ptable.

Given a target structure s, compute the average dissimilarity of a randomly drawn structure from the ensemble, i.e.:

$$ED(s) = 1 - \frac{1}{n} \sum_{ij,(i,j) \in s} p_{ij} - \frac{1}{n} \sum_{i} (1 - s_i) q_i$$

with sequence length n, the probability  $p_{ij}$  of a base pair (i,j), the probability  $q_i=1-\sum_j p_{ij}$  of nucleotide i being unpaired, and the indicator variable  $s_i=1$  if  $\exists (i,j)\in s$ , and  $s_i=0$  otherwise.

#### Precondition

The vrna\_fold\_compound\_t input parameter fc must contain a valid base pair probability matrix. This means that partition function and base pair probabilities must have been computed using fc before execution of this function!

#### See also

vrna pf(), vrna pairing probs(), vrna ensemble defect()

#### **Parameters**

| fc | A fold_compound with pre-computed base pair probabilities |
|----|-----------------------------------------------------------|
| pt | A pair table representing a target structure              |

#### Returns

The ensemble defect with respect to the target structure, or -1. upon failure, e.g. pre-conditions are not met

SWIG Wrapper Notes This function is attached as overloaded method ensemble defect() to objects of type fold← compound.

#### 16.34.4.4 vrna\_ensemble\_defect()

```
double vrna_ensemble_defect (
            vrna_fold_compound_t * fc,
            const char * structure )
#include <ViennaRNA/equilibrium_probs.h>
```

Compute the Ensemble Defect for a given target structure.

This is a wrapper around vrna ensemble defect pt(). Given a target structure s, compute the average dissimilarity of a randomly drawn structure from the ensemble, i.e.:

$$ED(s) = 1 - \frac{1}{n} \sum_{ij,(i,j) \in s} p_{ij} - \frac{1}{n} \sum_{i} (1 - s_i) q_i$$

with sequence length n, the probability  $p_{ij}$  of a base pair (i,j), the probability  $q_i=1-\sum_j p_{ij}$  of nucleotide ibeing unpaired, and the indicator variable  $s_i=1$  if  $\exists (i,j)\in s$ , and  $s_i=0$  otherwise.

#### Precondition

The vrna fold compound tinput parameter fc must contain a valid base pair probability matrix. This means that partition function and base pair probabilities must have been computed using fc before execution of this function!

#### See also

```
vrna pf(), vrna pairing probs(), vrna ensemble defect pt()
```

#### **Parameters**

| fc        | A fold_compound with pre-computed base pair probabilities |
|-----------|-----------------------------------------------------------|
| structure | A target structure in dot-bracket notation                |

#### Returns

The ensemble defect with respect to the target structure, or -1. upon failure, e.g. pre-conditions are not met

SWIG Wrapper Notes This function is attached as method ensemble defect() to objects of type fold compound. Note that the SWIG wrapper takes a structure in dot-bracket notation and converts it into a pair table using vrna ptable from string(). The resulting pair table is then internally passed to vrna ensemble defect pt(). To control which kind of matching brackets will be used during conversion, the optional argument options can be used. See also the description of vrna\_ptable\_from\_string() for available options. (default: VRNA\_BRACKETS\_RND).

### 16.34.4.5 vrna\_positional\_entropy()

Compute a vector of positional entropies.

This function computes the positional entropies from base pair probabilities as

$$S(i) = -\sum_{j} p_{ij} \log(p_{ij}) - q_i \log(q_i)$$

with unpaired probabilities  $q_i = 1 - \sum_i p_{ij}$ .

Low entropy regions have little structural flexibility and the reliability of the predicted structure is high. High entropy implies many structural alternatives. While these alternatives may be functionally important, they make structure prediction more difficult and thus less reliable.

#### Precondition

This function requires pre-computed base pair probabilities! Thus, vrna\_pf() must be called beforehand.

#### **Parameters**

fc A fold\_compound with pre-computed base pair probabilities

#### Returns

A 1-based vector of positional entropies S(i). (position 0 contains the sequence length)

SWIG Wrapper Notes This function is attached as method positional\_entropy() to objects of type fold\_compound

### 16.34.4.6 vrna\_stack\_prob()

Compute stacking probabilities.

For each possible base pair (i, j), compute the probability of a stack (i, j), (i + 1, j - 1).

# **Parameters**

| VC     | The fold compound data structure with precomputed base pair probabilities  |
|--------|----------------------------------------------------------------------------|
| cutoff | A cutoff value that limits the output to stacks with $p > \text{cutoff}$ . |

### Returns

A list of stacks with enclosing base pair  $\left(i,j\right)$  and probabiltiy p

### 16.34.4.7 vrna\_pf\_dimer\_probs()

```
double FB,
    vrna_ep_t * prAB,
    const vrna_ep_t * prA,
    const vrna_ep_t * prB,
    int Alength,
    const vrna_exp_param_t * exp_params)
#include <ViennaRNA/equilibrium_probs.h>
```

Compute Boltzmann probabilities of dimerization without homodimers.

Given the pair probabilities and free energies (in the null model) for a dimer AB and the two constituent monomers A and B, compute the conditional pair probabilities given that a dimer AB actually forms. Null model pair probabilities are given as a list as produced by <a href="mailto:vrna\_plist\_from\_probs">vrna\_plist\_from\_probs</a>(), the dimer probabilities 'prAB' are modified in place.

#### **Parameters**

| FAB        | free energy of dimer AB           |
|------------|-----------------------------------|
| FA         | free energy of monomer A          |
| FB         | free energy of monomer B          |
| prAB       | pair probabilities for dimer      |
| prA        | pair probabilities monomer        |
| prB        | pair probabilities monomer        |
| Alength    | Length of molecule A              |
| exp_params | The precomputed Boltzmann factors |

### 16.34.4.8 vrna\_pr\_structure()

Compute the equilibrium probability of a particular secondary structure.

The probability p(s) of a particular secondary structure s can be computed as

$$p(s) = \frac{exp(-\beta E(s))}{Z}$$

from the structures free energy  $\boldsymbol{E}(\boldsymbol{s})$  and the partition function

$$Z = \sum_{s} exp(-\beta E(s)), \text{ with } \beta = \frac{1}{RT}$$

where R is the gas constant and T the thermodynamic temperature.

# Precondition

The fold compound fc must have went through a call to vrna\_pf() to fill the dynamic programming matrices with the corresponding partition function.

### Parameters

| fc        | The fold compound data structure with precomputed partition function           |
|-----------|--------------------------------------------------------------------------------|
| structure | The secondary structure to compute the probability for in dot-bracket notation |

#### Returns

The probability of the input structure (range [0:1])

SWIG Wrapper Notes This function is attached as method pr\_structure() to objects of type fold\_compound

### 16.34.4.9 vrna\_pr\_energy()

SWIG Wrapper Notes This function is attached as method pr\_energy() to objects of type fold\_compound

### 16.34.4.10 vrna\_heat\_capacity()

Compute the specific heat for an RNA.

This function computes an RNAs specific heat in a given temperature range from the partition function by numeric differentiation. The result is returned as a list of pairs of temperature in  $^{\circ}$ C and specific heat in Kcal/(Mol\*K). Users can specify the temperature range for the computation from  $T_{min}$  to  $T_{max}$ , as well as the increment step size  $T_{increment}$ . The latter also determines how many times the partition function is computed. Finally, the parameter points determines how smooth the curve should be. The algorithm itself fits a parabola to points + 1 data points to calculate 2nd derivatives. Increasing this parameter produces a smoother curve.

#### See also

```
vrna_heat_capacity_cb(), vrna_heat_capacity_t, vrna_heat_capacity_s
```

#### **Parameters**

| fc          | The vrna_fold_compound_t with the RNA sequence to analyze                                                         |
|-------------|-------------------------------------------------------------------------------------------------------------------|
| T_min       | Lowest temperature in ℃                                                                                           |
| T_max       | Highest temperature in °C                                                                                         |
| T_increment | Stepsize for temperature incrementation in °C (a reasonable choice might be 1 °C)                                 |
| mpoints     | The number of interpolation points to calculate 2nd derivative (a reasonable choice might be 2, min: 1, max: 100) |

### Returns

A list of pairs of temperatures and corresponding heat capacity or *NULL* upon any failure. The last entry of the list is indicated by a **temperature** field set to a value smaller than T\_min

SWIG Wrapper Notes This function is attached as overloaded method heat\_capacity() to objects of type fold

\_compound. If the optional function arguments T\_min, T\_max, T\_increment, and

mpoints are omitted, they default to 0.0, 100.0, 1.0 and 2, respectively.

#### 16.34.4.11 vrna\_heat\_capacity\_cb()

Compute the specific heat for an RNA (callback variant)

Similar to vrna\_heat\_capacity(), this function computes an RNAs specific heat in a given temperature range from the partition function by numeric differentiation. Instead of returning a list of temperature/specific heat pairs, however, this function returns the individual results through a callback mechanism. The provided function will be called for each result and passed the corresponding temperature and specific heat values along with the arbitrary data as provided through the data pointer argument.

Users can specify the temperature range for the computation from  $T_{min}$  to  $T_{max}$ , as well as the increment step size  $T_{increment}$ . The latter also determines how many times the partition function is computed. Finally, the parameter mpoints determines how smooth the curve should be. The algorithm itself fits a parabola to  $2 \cdot mpoints + 1$  data points to calculate 2nd derivatives. Increasing this parameter produces a smoother curve.

#### See also

vrna\_heat\_capacity(), vrna\_heat\_capacity\_f

#### **Parameters**

| fc          | The vrna_fold_compound_t with the RNA sequence to analyze                                                         |  |
|-------------|-------------------------------------------------------------------------------------------------------------------|--|
| T_min       | Lowest temperature in ℃                                                                                           |  |
| T_max       | ghest temperature in °C                                                                                           |  |
| T_increment | tepsize for temperature incrementation in °C (a reasonable choice might be 1 °C)                                  |  |
| mpoints     | The number of interpolation points to calculate 2nd derivative (a reasonable choice might be 2, min: 1, max: 100) |  |
| cb          | The user-defined callback function that receives the individual results                                           |  |
| data        | An arbitrary data structure that will be passed to the callback in conjunction with the results                   |  |

#### Returns

Returns 0 upon failure, and non-zero otherwise

SWIG Wrapper Notes This function is attached as method heat\_capacity\_cb() to objects of type fold\_compound

### 16.34.4.12 vrna\_heat\_capacity\_simple()

Compute the specific heat for an RNA (simplified variant)

Similar to vrna\_heat\_capacity(), this function computes an RNAs specific heat in a given temperature range from the partition function by numeric differentiation. This simplified version, however, only requires the RNA sequence as input instead of a vrna\_fold\_compound\_t data structure. The result is returned as a list of pairs of temperature in °C and specific heat in Kcal/(Mol\*K).

Users can specify the temperature range for the computation from  $T_{min}$  to  $T_{max}$ , as well as the increment step size  $T_{increment}$ . The latter also determines how many times the partition function is computed. Finally, the parameter mpoints determines how smooth the curve should be. The algorithm itself fits a parabola to  $2 \cdot mpoints + 1$  data points to calculate 2nd derivatives. Increasing this parameter produces a smoother curve.

#### See also

vrna heat capacity(), vrna heat capacity cb(), vrna heat capacity t, vrna heat capacity s

#### **Parameters**

| sequence    | The RNA sequence input (must be uppercase)                                                                        |  |
|-------------|-------------------------------------------------------------------------------------------------------------------|--|
| T_min       | Lowest temperature in ℃                                                                                           |  |
| T_max       | Highest temperature in ℃                                                                                          |  |
| T_increment | Stepsize for temperature incrementation in °C (a reasonable choice might be 1 °C)                                 |  |
| mpoints     | The number of interpolation points to calculate 2nd derivative (a reasonable choice might be 2, min: 1, max: 100) |  |

#### Returns

A list of pairs of temperatures and corresponding heat capacity or *NULL* upon any failure. The last entry of the list is indicated by a **temperature** field set to a value smaller than T\_min

SWIG Wrapper Notes This function is available as overloaded function heat\_capacity(). If the optional function arguments T\_min, T\_max, T\_increment, and mpoints are omitted, they default to 0.0, 100.0, 1.0 and 2, respectively.

# 16.35 Compute the Density of States

### 16.35.1 Detailed Description

Collaboration diagram for Compute the Density of States:

### **Variables**

int density\_of\_states [MAXDOS+1]
 The Density of States.

### 16.35.2 Variable Documentation

#### 16.35.2.1 density\_of\_states

```
int density_of_states[MAXDOS+1] [extern]
#include <ViennaRNA/subopt.h>
```

The Density of States.

This array contains the density of states for an RNA sequences after a call to subopt\_par(), subopt() or subopt\_circ().

### Precondition

Call one of the functions subopt\_par(), subopt() or subopt\_circ() prior accessing the contents of this array

### See also

subopt\_par(), subopt(), subopt\_circ()

# 16.36 Inverse Folding (Design)

RNA sequence design.

### 16.36.1 Detailed Description

RNA sequence design.

#### **Files**

· file inverse.h

Inverse folding routines.

### **Functions**

float inverse\_fold (char \*start, const char \*target)

Find sequences with predefined structure.

float inverse\_pf\_fold (char \*start, const char \*target)

Find sequence that maximizes probability of a predefined structure.

#### **Variables**

· char \* symbolset

This global variable points to the allowed bases, initially "AUGC". It can be used to design sequences from reduced alphabets.

- · float final cost
- · int give up
- · int inv\_verbose

### 16.36.2 Function Documentation

#### 16.36.2.1 inverse fold()

Find sequences with predefined structure.

This function searches for a sequence with minimum free energy structure provided in the parameter 'target', starting with sequence 'start'. It returns 0 if the search was successful, otherwise a structure distance in terms of the energy difference between the search result and the actual target 'target' is returned. The found sequence is returned in 'start'. If give\_up is set to 1, the function will return as soon as it is clear that the search will be unsuccessful, this speeds up the algorithm if you are only interested in exact solutions.

### **Parameters**

|                                                           | start | The start sequence                                     |  |
|-----------------------------------------------------------|-------|--------------------------------------------------------|--|
| target The target secondary structure in dot-bracket nota |       | The target secondary structure in dot-bracket notation |  |

#### Returns

The distance to the target in case a search was unsuccessful, 0 otherwise

### 16.36.2.2 inverse\_pf\_fold()

Find sequence that maximizes probability of a predefined structure.

This function searches for a sequence with maximum probability to fold into the provided structure 'target' using the partition function algorithm. It returns  $-kT \cdot \log(p)$  where p is the frequency of 'target' in the ensemble of possible structures. This is usually much slower than inverse\_fold().

#### **Parameters**

|                                                            | start | The start sequence |  |
|------------------------------------------------------------|-------|--------------------|--|
| target The target secondary structure in dot-bracket notat |       |                    |  |

#### Returns

The distance to the target in case a search was unsuccessful, 0 otherwise

#### 16.36.3 Variable Documentation

### 16.36.3.1 final\_cost

```
float final_cost [extern]
#include <ViennaRNA/inverse.h>
when to stop inverse pf fold()
```

#### 16.36.3.2 give\_up

```
int give_up [extern]
#include <ViennaRNA/inverse.h>
```

default 0: try to minimize structure distance even if no exact solution can be found

### 16.36.3.3 inv\_verbose

```
int inv_verbose [extern]
#include <ViennaRNA/inverse.h>
print out substructure on which inverse fold() fails
```

## 16.37 Neighborhood Relation and Move Sets for Secondary Structures

Different functions to generate structural neighbors of a secondary structure according to a particular Move Set.

### 16.37.1 Detailed Description

Different functions to generate structural neighbors of a secondary structure according to a particular Move Set. This module contains methods to compute the neighbors of an RNA secondary structure. Neighbors of a given structure are all structures that differ in exactly one base pair. That means one can insert an delete base pairs in the given structure. These insertions and deletions of base pairs are usually called moves. A third move which is considered in these methods is a shift move. A shifted base pair has one stable position and one position that changes. These moves are encoded as follows:

```
• insertion: (i, j) where i,j > 0
```

deletion: (i, j) where i,j < 0
 shift: (i, j) where either i > 0, j < 0 or i < 0, j > 0
 The negative position of a shift indicates the position that has changed.

```
Example:

We have given a sequence and a structure.

Sequence AAGGAAACC

Structure .(....)

Indices 123456789

The given base pair is (3,9) and the neighbors are the insertion (4, 8), the deletion (-3,-9), the shift (3,-8)

and the shift (-4, 9).

This leads to the neighbored structures:
...(...)
....(...)
....(...)
```

A simple method to construct all insertions is to iterate over the positions of a sequence twice. The first iteration has the index i in [1, sequence length], the second iteration has the index j in [i+1, sequence length]. All pairs (i,j) with compatible letters and which are non-crossing with present base pairs are valid neighbored insertion moves. Valid deletion moves are all present base pairs with negative sign. Valid shift moves are constructed by taking all paired positions as fix position of a shift move and iterating over all positions of the sequence. If the letters of a position are compatible and if it the move is non-crossing with existing base pairs, we have a valid shift move. The method of generating shift moves can be accelerated by skipping neighbored base pairs.

If we need to construct all neighbors several times for subsequent moves, we can speed up the task by using the move set of the previous structure. The previous move set has to be filtered, such that all moves that would cross the next selected move are non-crossing. Next, the selected move has to be removed. Then one has to only to generate all moves that were not possible before. One move is the inverted selected move (if it was an insertion, simply make the indices negative). The generation of all other new moves is different and depends on the selected move. It is easy for an insertion move, because we have only to include all non-crossing shift moves, that are possible with the new base pair. For that we can either iterate over the sequence or we can select all crossing shift moves in the filter procedure and convert them into shifts.

The generation of new moves given a deletion is a little bit more complex, because we can create more moves. At first we can insert the deleted pair as insertion move. Then we generate all insertions that would have crossed the deleted base pair. Finally we construct all crossing shift moves.

If the given move is a shift, we can save much time by specifying the intervals for the generation of new moves. The interval which was enclosed by the positive position of the shift move and the previous paired position is the freed interval after applying the move. This freed interval includes all positions and base pairs that we need to construct new insertions and shifts. All these new moves have one position in the freed interval and the other position in the environment of the freed interval. The environment are all position which are outside the freed interval, but within the same enclosing loop of the shift move. The environment for valid base pairs can be divided into one or more intervals, depending on the shift move. The following examples describe a few scenarios to specify the intervals of the environment.



- freed interval
- —environment for new non-crossing moves
- X intervals that would produce crossing pairs
- new shift moves from pairs in one interval to positions in the other interval
- → points to the new position of the shift move

Given the intervals of the environment and the freed interval, the new shift moves can be constructed quickly. One has to take all positions of pairs from the environment in order to create valid pairs with positions in the freed interval. The same procedure can be applied for the other direction. This is taking all paired positions within the freed interval in order to look for pairs with valid positions in the intervals of the environment. Collaboration diagram for Neighborhood Relation and Move Sets for Secondary Structures:

#### **Files**

· file move.h

Methods to operate with structural neighbors of RNA secondary structures.

· file neighbor.h

Methods to compute the neighbors of an RNA secondary structure.

#### **Data Structures**

• struct vrna\_move\_s

An atomic representation of the transition / move from one structure to its neighbor. More...

### **Macros**

• #define VRNA\_MOVESET\_INSERTION 4

Option flag indicating insertion move.

• #define VRNA MOVESET DELETION 8

Option flag indicating deletion move.

#define VRNA\_MOVESET\_SHIFT 16

Option flag indicating shift move.

• #define VRNA MOVESET NO LP 32

Option flag indicating moves without lonely base pairs.

#define VRNA\_MOVESET\_DEFAULT (VRNA\_MOVESET\_INSERTION | VRNA\_MOVESET\_DELETION)

Option flag indicating default move set, i.e. insertions/deletion of a base pair.

• #define VRNA NEIGHBOR CHANGE 1

State indicator for a neighbor that has been changed.

• #define VRNA\_NEIGHBOR\_INVALID 2

State indicator for a neighbor that has been invalidated.

• #define VRNA\_NEIGHBOR\_NEW 3

State indicator for a neighbor that has become newly available.

# **Typedefs**

typedef struct vrna\_move\_s vrna\_move\_t

A single move that transforms a secondary structure into one of its neighbors.

 typedef void(\* vrna\_move\_update\_f) (vrna\_fold\_compound\_t \*fc, vrna\_move\_t neighbor, unsigned int state, void \*data)

Prototype of the neighborhood update callback.

#### **Functions**

vrna move t vrna move init (int pos 5, int pos 3)

Create an atomic move.

- void vrna\_move\_list\_free (vrna\_move\_t \*moves)
- void vrna\_move\_apply (short \*pt, const vrna\_move\_t \*m)

Apply a particular move / transition to a secondary structure, i.e. transform a structure.

int vrna\_move\_is\_removal (const vrna\_move\_t \*m)

Test whether a move is a base pair removal.

int vrna\_move\_is\_insertion (const vrna\_move\_t \*m)

Test whether a move is a base pair insertion.

int vrna move is shift (const vrna move t \*m)

Test whether a move is a base pair shift.

int vrna\_move\_compare (const vrna\_move\_t \*a, const vrna\_move\_t \*b, const short \*pt)

Compare two moves.

void vrna loopidx update (int \*loopidx, const short \*pt, int length, const vrna move t \*m)

Alters the loopIndices array that was constructed with vrna\_loopidx\_from\_ptable().

vrna\_move\_t \* vrna\_neighbors (vrna\_fold\_compound\_t \*vc, const short \*pt, unsigned int options)

Generate neighbors of a secondary structure.

Generate neighbors of a secondary structure (the fast way)

• int vrna\_move\_neighbor\_diff\_cb (vrna\_fold\_compound\_t \*fc, short \*ptable, vrna\_move\_t move, vrna\_move\_update\_f cb, void \*data, unsigned int options)

Apply a move to a secondary structure and indicate which neighbors have changed consequentially.

vrna\_move\_t \* vrna\_move\_neighbor\_diff (vrna\_fold\_compound\_t \*fc, short \*ptable, vrna\_move\_t move, vrna\_move\_t \*\*invalid\_moves, unsigned int options)

Apply a move to a secondary structure and indicate which neighbors have changed consequentially.

### 16.37.2 Data Structure Documentation

#### 16.37.2.1 struct vrna\_move\_s

An atomic representation of the transition / move from one structure to its neighbor.

An atomic transition / move may be one of the following:

- · a base pair insertion,
- · a base pair removal, or
- a base pair shift where an existing base pair changes one of its pairing partner.

These moves are encoded by two integer values that represent the affected 5' and 3' nucleotide positions. Furthermore, we use the following convention on the signedness of these encodings:

- both values are positive for insertion moves
- both values are negative for base pair removals
- both values have different signedness for *shift moves*, where the positive value indicates the nucleotide that stays constant, and the others absolute value is the new pairing partner

Note

A value of 0 in either field is used as list-end indicator and doesn't represent any valid move.

Collaboration diagram for vrna\_move\_s:

#### **Data Fields**

• int pos\_5

The (absolute value of the) 5' position of a base pair, or any position of a shifted pair.

• int pos 3

The (absolute value of the) 3' position of a base pair, or any position of a shifted pair.

vrna\_move\_t \* next

The next base pair (if an elementary move changes more than one base pair), or NULL Has to be terminated with move 0.0.

#### 16.37.3 Macro Definition Documentation

#### 16.37.3.1 VRNA\_MOVESET\_INSERTION

```
#define VRNA_MOVESET_INSERTION 4
#include <ViennaRNA/landscape/move.h>
Option flag indicating insertion move.
```

See also

vrna\_neighbors(), vrna\_neighbors\_successive, vrna\_path()

### 16.37.3.2 VRNA\_MOVESET\_DELETION

```
#define VRNA_MOVESET_DELETION 8
#include <ViennaRNA/landscape/move.h>
Option flag indicating deletion move.
```

See also

vrna\_neighbors(), vrna\_neighbors\_successive, vrna\_path()

## 16.37.3.3 VRNA\_MOVESET\_SHIFT

```
#define VRNA_MOVESET_SHIFT 16
#include <ViennaRNA/landscape/move.h>
Option flag indicating shift move.
```

See also

vrna\_neighbors(), vrna\_neighbors\_successive, vrna\_path()

### 16.37.3.4 VRNA\_MOVESET\_NO\_LP

```
#define VRNA_MOVESET_NO_LP 32
#include <ViennaRNA/landscape/move.h>
Option flag indicating moves without lonely base pairs.
```

See also

vrna\_neighbors(), vrna\_neighbors\_successive, vrna\_path()

### 16.37.3.5 VRNA\_MOVESET\_DEFAULT

#define VRNA\_MOVESET\_DEFAULT (VRNA\_MOVESET\_INSERTION | VRNA\_MOVESET\_DELETION)
#include <ViennaRNA/landscape/move.h>

Option flag indicating default move set, i.e. insertions/deletion of a base pair.

See also

vrna\_neighbors(), vrna\_neighbors\_successive, vrna\_path()

#### 16.37.3.6 VRNA NEIGHBOR CHANGE

#define VRNA\_NEIGHBOR\_CHANGE 1
#include <ViennaRNA/landscape/neighbor.h>
State indicator for a neighbor that has been changed.

See also

vrna\_move\_neighbor\_diff\_cb()

### 16.37.3.7 VRNA\_NEIGHBOR\_INVALID

#define VRNA\_NEIGHBOR\_INVALID 2
#include <ViennaRNA/landscape/neighbor.h>
State indicator for a neighbor that has been invalidated.

See also

vrna\_move\_neighbor\_diff\_cb()

### 16.37.3.8 VRNA\_NEIGHBOR\_NEW

#define VRNA\_NEIGHBOR\_NEW 3
#include <ViennaRNA/landscape/neighbor.h>
State indicator for a neighbor that has become newly available.

See also

vrna\_move\_neighbor\_diff\_cb()

### 16.37.4 Typedef Documentation

#### 16.37.4.1 vrna\_move\_update\_f

```
typedef void(* vrna_move_update_f) (vrna_fold_compound_t *fc, vrna_move_t neighbor, unsigned
int state, void *data)
#include <ViennaRNA/landscape/neighbor.h>
```

Prototype of the neighborhood update callback.

See also

vrna\_move\_neighbor\_diff\_cb(), VRNA\_NEIGHBOR\_CHANGE, VRNA\_NEIGHBOR\_INVALID, VRNA\_NEIGHBOR\_NEW

#### **Parameters**

| fc       | The fold compound the calling function is working on                  |  |
|----------|-----------------------------------------------------------------------|--|
| neighbor | The move that generates the (changed or new) neighbor                 |  |
| state    | The state of the neighbor (move) as supplied by argument neighbor     |  |
| data     | Some arbitrary data pointer as passed to vrna_move_neighbor_diff_cb() |  |

Generated by Doxygen

### 16.37.5 Function Documentation

### 16.37.5.1 vrna\_move\_init()

#### See also

```
vrna_move_s
```

#### **Parameters**

| <i>pos</i> ← _5 | The 5' position of the move (positive for insertions, negative for removal, any value for shift moves) |
|-----------------|--------------------------------------------------------------------------------------------------------|
| <i>pos</i> ← _3 | The 3' position of the move (positive for insertions, negative for removal, any value for shift moves) |

#### Returns

An atomic move as specified by pos\_5 and pos\_3

### 16.37.5.2 vrna\_move\_list\_free()

### 16.37.5.3 vrna\_move\_apply()

Apply a particular move / transition to a secondary structure, i.e. transform a structure.

#### **Parameters**

| in,out | pt | The pair table representation of the secondary structure |
|--------|----|----------------------------------------------------------|
| in     | m  | The move to apply                                        |

### 16.37.5.4 vrna\_move\_is\_removal()

#### **Parameters**

m The move to test against

#### Returns

Non-zero if the move is a base pair removal, 0 otherwise

### 16.37.5.5 vrna\_move\_is\_insertion()

### Parameters

```
m The move to test against
```

#### Returns

Non-zero if the move is a base pair insertion, 0 otherwise

#### 16.37.5.6 vrna\_move\_is\_shift()

Test whether a move is a base pair shift.

#### **Parameters**

```
m The move to test against
```

### Returns

Non-zero if the move is a base pair shift, 0 otherwise

### 16.37.5.7 vrna\_move\_compare()

Compare two moves.

The function compares two moves a and b and returns whether move a is lexicographically smaller (-1), larger (1) or equal to move b.

If any of the moves a or b is a shift move, this comparison only makes sense in a structure context. Thus, the third argument with the current structure must be provided.

Note

This function returns 0 (equality) upon any error, e.g. missing input

#### Warning

Currently, shift moves are not supported!

#### **Parameters**

| а  | The first move of the comparison                                                                                                |  |
|----|---------------------------------------------------------------------------------------------------------------------------------|--|
| b  | The second move of the comparison                                                                                               |  |
| pt | The pair table of the current structure that is compatible with both moves (maybe NULL if moves are guaranteed to be no shifts) |  |

#### Returns

```
-1 if a < b, 1 if a > b, 0 otherwise
```

### 16.37.5.8 vrna\_loopidx\_update()

Alters the loopIndices array that was constructed with vrna\_loopidx\_from\_ptable().

The loopIndex of the current move will be inserted. The correctness of the input will not be checked because the speed should be optimized.

#### **Parameters**

| in,out       | loopidx | The loop index data structure that needs an update |
|--------------|---------|----------------------------------------------------|
| in <i>pt</i> |         | A pair table on which the move will be executed    |
|              | length  | The length of the structure                        |
| in           | m       | The move that is applied to the current structure  |

# 16.37.5.9 vrna\_neighbors()

Generate neighbors of a secondary structure.

This function allows one to generate all structural neighbors (according to a particular move set) of an RNA secondary structure. The neighborhood is then returned as a list of transitions / moves required to transform the current structure into the actual neighbor.

#### See also

vrna\_neighbors\_successive(), vrna\_move\_apply(), VRNA\_MOVESET\_INSERTION, VRNA\_MOVESET\_DELETION, VRNA\_MOVESET\_SHIFT, VRNA\_MOVESET\_DEFAULT

#### **Parameters**

| in                                                                               | VC | A vrna_fold_compound_t containing the energy parameters and model details |  |
|----------------------------------------------------------------------------------|----|---------------------------------------------------------------------------|--|
| in                                                                               | pt | The pair table representation of the structure                            |  |
| options Options to modify the behavior of this function, e.g. available move set |    | Options to modify the behavior of this function, e.g. available move set  |  |

#### Returns

Neighbors as a list of moves / transitions (the last element in the list has both of its fields set to 0)

SWIG Wrapper Notes This function is attached as an overloaded method *neighbors()* to objects of type *fold\_← compound*. The optional parameter options defaults to VRNA\_MOVESET\_DEFAULT if it is omitted.

### 16.37.5.10 vrna\_neighbors\_successive()

Generate neighbors of a secondary structure (the fast way)

This function implements a fast way to generate all neighbors of a secondary structure that results from successive applications of individual moves. The speed-up results from updating an already known list of valid neighbors before the individual move towards the current structure took place. In essence, this function removes neighbors that are not accessible anymore and inserts neighbors emerging after a move took place.

#### See also

vrna\_neighbors(), vrna\_move\_apply(), VRNA\_MOVESET\_INSERTION, VRNA\_MOVESET\_DELETION, VRNA\_MOVESET\_SHIFT, VRNA\_MOVESET\_DEFAULT

#### **Parameters**

| in  | vc                  | A vrna_fold_compound_t containing the energy parameters and model details    |
|-----|---------------------|------------------------------------------------------------------------------|
| in  | curr_move           | The move that was/will be applied to prev_pt                                 |
| in  | prev_pt             | A pair table representation of the structure before curr_move is/was applied |
| in  | prev_neighbors      | The list of neighbors of prev_pt                                             |
|     | size_prev_neighbors | The size of prev_neighbors, i.e. the lists length                            |
| out | size_neighbors      | A pointer to store the size / length of the new neighbor list                |
|     | options             | Options to modify the behavior of this function, e.g. available move set     |

### Returns

Neighbors as a list of moves / transitions (the last element in the list has both of its fields set to 0)

### 16.37.5.11 vrna\_move\_neighbor\_diff\_cb()

```
short * ptable,
    vrna_move_t move,
    vrna_move_update_f cb,
    void * data,
    unsigned int options )
#include <ViennaRNA/landscape/neighbor.h>
```

Apply a move to a secondary structure and indicate which neighbors have changed consequentially.

This function applies a move to a secondary structure and explores the local neighborhood of the affected loop. Any changes to previously compatible neighbors that have been affected by this loop will be reported through a callback function. In particular, any of the three cases might appear:

- A previously available neighbor move has changed, usually the free energy change of the move (VRNA\_NEIGHBOR\_CHANGE)
- A previously available neighbor move became invalid (VRNA NEIGHBOR INVALID)
- A new neighbor move becomes available (VRNA\_NEIGHBOR\_NEW)

### See also

vrna\_move\_neighbor\_diff(), VRNA\_NEIGHBOR\_CHANGE, VRNA\_NEIGHBOR\_INVALID, VRNA\_NEIGHBOR\_NEW, vrna\_move\_update\_f

### **Parameters**

| fc      | A fold compound for the RNA sequence(s) that this function operates on            |  |
|---------|-----------------------------------------------------------------------------------|--|
| ptable  | The current structure as pair table                                               |  |
| move    | The move to apply                                                                 |  |
| cb      | The address of the callback function that is passed the neighborhood changes      |  |
| data    | An arbitrary data pointer that will be passed through to the callback function cb |  |
| options | Options to modify the behavior of this function, .e.g available move set          |  |

### Returns

Non-zero on success, 0 otherwise

### 16.37.5.12 vrna\_move\_neighbor\_diff()

Apply a move to a secondary structure and indicate which neighbors have changed consequentially.

Similar to vrna\_move\_neighbor\_diff\_cb(), this function applies a move to a secondary structure and reports back the neighbors of the current structure become affected by this move. Instead of executing a callback for each of the affected neighbors, this function compiles two lists of neighbor moves, one that is returned and consists of all moves that are novel or may have changed in energy, and a second, invalid\_moves, that consists of all the neighbor moves that become invalid, respectively.

| fc     | A fold compound for the RNA sequence(s) that this function operates on |
|--------|------------------------------------------------------------------------|
| ptable | The current structure as pair table                                    |

#### **Parameters**

| move          | The move to apply                                                                    |
|---------------|--------------------------------------------------------------------------------------|
| invalid_moves | The address of a move list where the function stores those moves that become invalid |
| options       | Options to modify the behavior of this function, .e.g available move set             |

#### Returns

A list of moves that might have changed in energy or are novel compared to the structure before application of the move

# 16.38 (Re-)folding Paths, Saddle Points, Energy Barriers, and Local Minima

API for various RNA folding path algorithms.

# 16.38.1 Detailed Description

API for various RNA folding path algorithms.

This part of our API allows for generating RNA secondary structure (re-)folding paths between two secondary structures or simply starting from a single structure. This is most important if an estimate of the refolding energy barrier between two structures is required, or a structure's corresponding local minimum needs to be determined, e.g. through a gradient-descent walk.

This part of the interface is further split into the following sections:

- · Direct Refolding Paths between two Secondary Structures, and
- · Folding Paths that start at a single Secondary Structure

Collaboration diagram for (Re-)folding Paths, Saddle Points, Energy Barriers, and Local Minima:

# **Modules**

· Direct Refolding Paths between two Secondary Structures

Heuristics to explore direct, optimal (re-)folding paths between two secondary structures.

Folding Paths that start at a single Secondary Structure

Implementation of gradient- and random walks starting from a single secondary structure.

• Deprecated Interface for (Re-)folding Paths, Saddle Points, and Energy Barriers

# **Files**

· file findpath.h

A breadth-first search heuristic for optimal direct folding paths.

file paths.h

API for computing (optimal) (re-)folding paths between secondary structures.

file walk.h

Methods to generate particular paths such as gradient or random walks through the energy landscape of an RNA sequence.

### **Data Structures**

struct vrna\_path\_s

An element of a refolding path list. More...

### **Macros**

- #define VRNA\_PATH\_TYPE\_DOT\_BRACKET 1U
  - Flag to indicate producing a (re-)folding path as list of dot-bracket structures.
- #define VRNA PATH TYPE MOVES 2U

Flag to indicate producing a (re-)folding path as list of transition moves.

# **Typedefs**

- typedef struct vrna\_path\_s vrna\_path\_t
  - Typename for the refolding path data structure vrna path s.
- typedef struct vrna\_path\_options\_s \* vrna\_path\_options\_t

Options data structure for (re-)folding path implementations.

### **Functions**

void vrna\_path\_free (vrna\_path\_t \*path)

Release (free) memory occupied by a (re-)folding path.

void vrna\_path\_options\_free (vrna\_path\_options\_t options)

Release (free) memory occupied by an options data structure for (re-)folding path implementations.

### 16.38.2 Data Structure Documentation

### 16.38.2.1 struct vrna\_path\_s

An element of a refolding path list.

Usually, one has to deal with an array of vrna\_path\_s, e.g. returned from one of the refolding-path algorithms. Since in most cases the length of the list is not known in advance, such lists have an *end-of-list* marker, which is either:

- a value of NULL for vrna\_path\_s::s if vrna\_path\_s::type = VRNA\_PATH\_TYPE\_DOT\_BRACKET, or
- a vrna\_path\_s::move with zero in both fields vrna\_move\_t::pos\_5 and vrna\_move\_t::pos\_3 if vrna\_path\_s::type = VRNA\_PATH\_TYPE\_MOVES.

In the following we show an example for how to cover both cases of iteration:

### See also

```
vrna_path_free()
```

Collaboration diagram for vrna path s:

### **Data Fields**

· unsigned int type

The type of the path element.

· double en

Free energy of current structure.

• char \* s

Secondary structure in dot-bracket notation.

· vrna move t move

Move that transforms the previous structure into it's next neighbor along the path.

### 16.38.2.1.1 Field Documentation

```
16.38.2.1.1.1 type unsigned int vrna_path_s::type
```

The type of the path element.

A value of VRNA\_PATH\_TYPE\_DOT\_BRACKET indicates that vrna\_path\_s::s consists of the secondary structure in dot-bracket notation, and vrna\_path\_s::en the corresponding free energy.

On the other hand, if the value is VRNA\_PATH\_TYPE\_MOVES, vrna\_path\_s::s is NULL and vrna\_path\_s::move is set to the transition move that transforms a previous structure into it's neighbor along the path. In this case, the attribute vrna\_path\_s::en states the change in free energy with respect to the structure before application of vrna\_path\_s::move.

### 16.38.3 Macro Definition Documentation

# 16.38.3.1 VRNA\_PATH\_TYPE\_DOT\_BRACKET

```
#define VRNA_PATH_TYPE_DOT_BRACKET 1U
#include <ViennaRNA/landscape/paths.h>
```

Flag to indicate producing a (re-)folding path as list of dot-bracket structures.

See also

vrna\_path\_t, vrna\_path\_options\_findpath(), vrna\_path\_direct(), vrna\_path\_direct\_ub()

# 16.38.3.2 VRNA\_PATH\_TYPE\_MOVES

```
#define VRNA_PATH_TYPE_MOVES 2U
#include <ViennaRNA/landscape/paths.h>
```

Flag to indicate producing a (re-)folding path as list of transition moves.

See also

vrna\_path\_t, vrna\_path\_options\_findpath(), vrna\_path\_direct(), vrna\_path\_direct\_ub()

# 16.38.4 Function Documentation

### 16.38.4.1 vrna\_path\_free()

Release (free) memory occupied by a (re-)folding path.

See also

vrna\_path\_direct(), vrna\_path\_direct\_ub(), vrna\_path\_findpath(), vrna\_path\_findpath\_ub()

### **Parameters**

path The refolding path to be free'd

### 16.38.4.2 vrna\_path\_options\_free()

Release (free) memory occupied by an options data structure for (re-)folding path implementations.

#### See also

vrna\_path\_options\_findpath(), vrna\_path\_direct(), vrna\_path\_direct\_ub()

#### **Parameters**

options The options data structure to be free'd

# 16.39 Direct Refolding Paths between two Secondary Structures

Heuristics to explore direct, optimal (re-)folding paths between two secondary structures.

# 16.39.1 Detailed Description

Heuristics to explore direct, optimal (re-)folding paths between two secondary structures. Collaboration diagram for Direct Refolding Paths between two Secondary Structures:

### **Functions**

- int vrna\_path\_findpath\_saddle (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width)

  Find energy of a saddle point between 2 structures (search only direct path)
- int vrna\_path\_findpath\_saddle\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width, int maxE)

Find energy of a saddle point between 2 structures (search only direct path)

- vrna\_path\_t \* vrna\_path\_findpath (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width)
   Find refolding path between 2 structures (search only direct path)
- vrna\_path\_t \* vrna\_path\_findpath\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width, int maxE)

Find refolding path between 2 structures (search only direct path)

- vrna\_path\_options\_t vrna\_path\_options\_findpath (int width, unsigned int type)
  - Create options data structure for findpath direct (re-)folding path heuristic.
- vrna\_path\_t \* vrna\_path\_direct (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, vrna\_path\_options\_t options)

Determine an optimal direct (re-)folding path between two secondary structures.

vrna\_path\_t \* vrna\_path\_direct\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int maxE, vrna\_path\_options\_t options)

Determine an optimal direct (re-)folding path between two secondary structures.

### 16.39.2 Function Documentation

# 16.39.2.1 vrna\_path\_findpath\_saddle()

```
const char * s2,
    int width )
#include <ViennaRNA/landscape/findpath.h>
```

Find energy of a saddle point between 2 structures (search only direct path)

This function uses an inplementation of the *findpath* algorithm [9] for near-optimal direct refolding path prediction. Model details, and energy parameters are used as provided via the parameter 'fc'. The vrna\_fold\_compound\_t does not require memory for any DP matrices, but requires all most basic init values as one would get from a call like this:

fc = vrna\_fold\_compound(sequence, NULL, VRNA\_OPTION\_DEFAULT);

#### See also

vrna path findpath saddle ub(), vrna fold compound(), vrna fold compound t, vrna path findpath()

#### **Parameters**

| fc    | The vrna_fold_compound_t with precomputed sequence encoding and model details        |
|-------|--------------------------------------------------------------------------------------|
| s1    | The start structure in dot-bracket notation                                          |
| s2    | The target structure in dot-bracket notation                                         |
| width | A number specifying how many strutures are being kept at each step during the search |

### Returns

The saddle energy in 10cal/mol

**SWIG Wrapper Notes** This function is attached as an overloaded method *path\_findpath\_saddle()* to objects of type *fold compound*. The optional parameter width defaults to 1 if it is omitted.

### 16.39.2.2 vrna path findpath saddle ub()

Find energy of a saddle point between 2 structures (search only direct path)

This function uses an inplementation of the *findpath* algorithm [9] for near-optimal direct refolding path prediction. Model details, and energy parameters are used as provided via the parameter 'fc'. The vrna\_fold\_compound\_t does not require memory for any DP matrices, but requires all most basic init values as one would get from a call like this:

fc = vrna\_fold\_compound(sequence, NULL, VRNA\_OPTION\_DEFAULT);

# Warning

The argument  $\max E$  (  $E_{max}$ ) enables one to specify an upper bound, or maximum free energy for the saddle point between the two input structures. If no path with  $E_{saddle} < E_{max}$  is found, the function simply returns  $\max E$ 

### See also

vrna\_path\_findpath\_saddle(), vrna\_fold\_compound(), vrna\_fold\_compound\_t, vrna\_path\_findpath()

| fc    | The vrna_fold_compound_t with precomputed sequence encoding and model details        |                      |
|-------|--------------------------------------------------------------------------------------|----------------------|
| s1    | The start structure in dot-bracket notation                                          |                      |
| s2    | The target structure in dot-bracket notation                                         |                      |
| width | A number specifying how many strutures are being kept at each step during the search | 1                    |
| maxE  | An upper bound for the saddle point energy in 10cal/mol                              | Generated by Doxygen |

#### Returns

The saddle energy in 10cal/mol

SWIG Wrapper Notes This function is attached as an overloaded method  $path\_findpath\_saddle()$  to objects of type  $fold\_compound$ . The optional parameter width defaults to 1 if it is omitted, while the optional parameter maxE defaults to INF. In case the function did not find a path with  $E_{saddle} < E_{max}$  the function returns a NULL object, i.e. undef for Perl and None for Python.

# 16.39.2.3 vrna\_path\_findpath()

#include <ViennaRNA/landscape/findpath.h>
Find refolding path between 2 structures (search only direct path)

This function uses an inplementation of the *findpath* algorithm [9] for near-optimal direct refolding path prediction. Model details, and energy parameters are used as provided via the parameter 'fc'. The vrna\_fold\_compound\_t does not require memory for any DP matrices, but requires all most basic init values as one would get from a call like this:

fc = vrna\_fold\_compound(sequence, NULL, VRNA\_OPTION\_DEFAULT);

See also

vrna\_path\_findpath\_ub(), vrna\_fold\_compound(), vrna\_fold\_compound\_t, vrna\_path\_findpath\_saddle()

#### **Parameters**

| fc    | The vrna_fold_compound_t with precomputed sequence encoding and model details        |  |
|-------|--------------------------------------------------------------------------------------|--|
| s1    | The start structure in dot-bracket notation                                          |  |
| s2    | The target structure in dot-bracket notation                                         |  |
| width | A number specifying how many strutures are being kept at each step during the search |  |

### Returns

The saddle energy in 10cal/mol

SWIG Wrapper Notes This function is attached as an overloaded method path\_findpath() to objects of type fold

\_compound. The optional parameter width defaults to 1 if it is omitted.

# 16.39.2.4 vrna\_path\_findpath\_ub()

```
vrna_path_t * vrna_path_findpath_ub (
    vrna_fold_compound_t * fc,
    const char * s1,
    const char * s2,
    int width,
    int maxE )
```

#include <ViennaRNA/landscape/findpath.h>

Find refolding path between 2 structures (search only direct path)

This function uses an inplementation of the *findpath* algorithm [9] for n

This function uses an inplementation of the *findpath* algorithm [9] for near-optimal direct refolding path prediction. Model details, and energy parameters are used as provided via the parameter 'fc'. The vrna\_fold\_compound\_t does not require memory for any DP matrices, but requires all most basic init values as one would get from a call like this: fc = vrna\_fold\_compound(sequence, NULL, VRNA\_OPTION\_DEFAULT);

### Warning

The argument maxE enables one to specify an upper bound, or maximum free energy for the saddle point between the two input structures. If no path with  $E_{saddle} < E_{max}$  is found, the function simply returns *NULL* 

#### See also

vrna\_path\_findpath(), vrna\_fold\_compound(), vrna\_fold\_compound\_t, vrna\_path\_findpath\_saddle()

#### **Parameters**

| fc    | The vrna_fold_compound_t with precomputed sequence encoding and model details        |
|-------|--------------------------------------------------------------------------------------|
| s1    | The start structure in dot-bracket notation                                          |
| s2    | The target structure in dot-bracket notation                                         |
| width | A number specifying how many strutures are being kept at each step during the search |
| maxE  | An upper bound for the saddle point energy in 10cal/mol                              |

### Returns

The saddle energy in 10cal/mol

SWIG Wrapper Notes This function is attached as an overloaded method  $path\_findpath()$  to objects of type  $fold \leftarrow \_compound$ . The optional parameter width defaults to 1 if it is omitted, while the optional parameter maxE defaults to INF. In case the function did not find a path with  $E_{saddle} < E_{max}$  the function returns an empty list.

### 16.39.2.5 vrna\_path\_options\_findpath()

Create options data structure for findpath direct (re-)folding path heuristic.

This function returns an options data structure that switches the  $vrna_path\_direct()$  and  $vrna_path\_direct\_ub()$  API functions to use the findpath [9] heuristic. The parameter width specifies the width of the breadth-first search while the second parameter type allows one to set the type of the returned (re-)folding path. Currently, the following return types are available:

- A list of dot-bracket structures and corresponding free energy (flag: VRNA\_PATH\_TYPE\_DOT\_BRACKET)
- A list of transition moves and corresponding free energy changes (flag: VRNA\_PATH\_TYPE\_MOVES)

### See also

VRNA\_PATH\_TYPE\_DOT\_BRACKET, VRNA\_PATH\_TYPE\_MOVES, vrna\_path\_options\_free(), vrna\_path\_direct(), vrna\_path\_direct\_ub()

| width | Width of the breath-first search strategy                                 |  |
|-------|---------------------------------------------------------------------------|--|
| type  | Setting that specifies how the return (re-)folding path should be encoded |  |

#### Returns

An options data structure with settings for the findpath direct path heuristic

SWIG Wrapper Notes This function is available as overloaded function path\_options\_findpath(). The optional parameter width defaults to 10 if omitted, while the optional parameter type defaults to VRNA PATH TYPE DOT BRACKET.

### 16.39.2.6 vrna\_path\_direct()

Determine an optimal direct (re-)folding path between two secondary structures.

This is the generic wrapper function to retrieve (an optimal) (re-)folding path between two secondary structures s1 and s2. The actual algorithm that is used to generate the (re-)folding path is determined by the settings specified in the options data structure. This data structure also determines the return type, which might be either:

- · a list of dot-bracket structures with corresponding free energy, or
- · a list of transition moves with corresponding free energy change

If the options parameter is passed a NULL pointer, this function defaults to the *findpath heuristic* [9] with a breadth-first search width of 10, and the returned path consists of dot-bracket structures with corresponding free energies.

#### See also

vrna\_path\_direct\_ub(), vrna\_path\_options\_findpath(), vrna\_path\_options\_free(), vrna\_path\_free()

### **Parameters**

| fc      | The vrna_fold_compound_t with precomputed sequence encoding and model details                       |  |  |
|---------|-----------------------------------------------------------------------------------------------------|--|--|
| s1      | The start structure in dot-bracket notation                                                         |  |  |
| s2      | The target structure in dot-bracket notation                                                        |  |  |
| options | An options data structure that specifies the path heuristic and corresponding settings (maybe NULL) |  |  |

### Returns

An optimal (re-)folding path between the two input structures

**SWIG Wrapper Notes** This function is attached as an overloaded method *path\_direct()* to objects of type *fold\_← compound*. The optional parameter options defaults to *NULL* if it is omitted.

### 16.39.2.7 vrna path direct ub()

Determine an optimal direct (re-)folding path between two secondary structures.

This function is similar to vrna\_path\_direct(), but allows to specify an upper-bound for the saddle point energy. The underlying algorithms will stop determining an (optimal) (re-)folding path, if none can be found that has a saddle point below the specified upper-bound threshold maxE.

### Warning

The argument maxE enables one to specify an upper bound, or maximum free energy for the saddle point between the two input structures. If no path with  $E_{saddle} < E_{max}$  is found, the function simply returns NULL

### See also

vrna\_path\_direct\_ub(), vrna\_path\_options\_findpath(), vrna\_path\_options\_free(), vrna\_path\_free()

#### **Parameters**

| fc      | The vrna_fold_compound_t with precomputed sequence encoding and model details                               |  |
|---------|-------------------------------------------------------------------------------------------------------------|--|
| s1      | The start structure in dot-bracket notation                                                                 |  |
| s2      | The target structure in dot-bracket notation                                                                |  |
| maxE    | Upper bound for the saddle point along the (re-)folding path                                                |  |
| options | An options data structure that specifies the path heuristic and corresponding settings (maybe <i>NULL</i> ) |  |

#### Returns

An optimal (re-)folding path between the two input structures

SWIG Wrapper Notes This function is attached as an overloaded method path\_direct() to objects of type fold\_← compound. The optional parameter maxE defaults to #INT MAX - 1 if it is omitted, while the optional parameter options defaults to NULL. In case the function did not find a path with  $E_{saddle} < E_{max}$  it returns an empty list.

#### 16.40 Folding Paths that start at a single Secondary Structure

Implementation of gradient- and random walks starting from a single secondary structure.

# 16.40.1 Detailed Description

Implementation of gradient- and random walks starting from a single secondary structure. Collaboration diagram for Folding Paths that start at a single Secondary Structure:

### **Macros**

#define VRNA PATH STEEPEST DESCENT 128

Option flag to request a steepest descent / gradient path.

• #define VRNA PATH RANDOM 256

Option flag to request a random walk path.

#define VRNA PATH NO TRANSITION OUTPUT 512

Option flag to omit returning the transition path.

• #define VRNA PATH DEFAULT (VRNA PATH STEEPEST DESCENT | VRNA MOVESET DEFAULT)

Option flag to request defaults (steepest descent / default move set)

# **Functions**

- vrna\_move\_t \* vrna\_path (vrna\_fold\_compound\_t \*vc, short \*pt, unsigned int steps, unsigned int options) Compute a path, store the final structure, and return a list of transition moves from the start to the final structure.
- vrna move t \* vrna path gradient (vrna fold compound t \*vc, short \*pt, unsigned int options)

Compute a steepest descent / gradient path, store the final structure, and return a list of transition moves from the start to the final structure.

vrna\_move\_t \* vrna\_path\_random (vrna\_fold\_compound\_t \*vc, short \*pt, unsigned int steps, unsigned int options)

Generate a random walk / path of a given length, store the final structure, and return a list of transition moves from the start to the final structure.

# 16.40.2 Macro Definition Documentation

# 16.40.2.1 VRNA\_PATH\_STEEPEST\_DESCENT

```
#define VRNA_PATH_STEEPEST_DESCENT 128
#include <ViennaRNA/landscape/walk.h>
Option flag to request a steepest descent / gradient path.
```

See also

vrna path()

# 16.40.2.2 VRNA\_PATH\_RANDOM

```
#define VRNA_PATH_RANDOM 256
#include <ViennaRNA/landscape/walk.h>
Option flag to request a random walk path.
```

See also

vrna\_path()

### 16.40.2.3 VRNA PATH NO TRANSITION OUTPUT

```
#define VRNA_PATH_NO_TRANSITION_OUTPUT 512
#include <ViennaRNA/landscape/walk.h>
Option flag to omit returning the transition path.
```

See also

vrna\_path(), vrna\_path\_gradient(), vrna\_path\_random()

# 16.40.2.4 VRNA\_PATH\_DEFAULT

```
#define VRNA_PATH_DEFAULT (VRNA_PATH_STEEPEST_DESCENT | VRNA_MOVESET_DEFAULT)
#include <ViennaRNA/landscape/walk.h>
```

Option flag to request defaults (steepest descent / default move set)

See also

vrna path(), VRNA PATH STEEPEST DESCENT, VRNA MOVESET DEFAULT

# 16.40.3 Function Documentation

### 16.40.3.1 vrna\_path()

Compute a path, store the final structure, and return a list of transition moves from the start to the final structure. This function computes, given a start structure in pair table format, a transition path, updates the pair table to the final structure of the path. Finally, if not requested otherwise by using the VRNA\_PATH\_NO\_TRANSITION\_OUTPUT flag in the options field, this function returns a list of individual transitions that lead from the start to the final structure if requested.

The currently available transition paths are

- Steepest Descent / Gradient walk (flag: VRNA\_PATH\_STEEPEST\_DESCENT)
- Random walk (flag: VRNA\_PATH\_RANDOM)

The type of transitions must be set through the options parameter

Note

Since the result is written to the input structure you may want to use <a href="mailto:vrna\_ptable\_copy">vrna\_ptable\_copy</a>() before calling this function to keep the initial structure

### See also

```
vrna_path_gradient(), vrna_path_random(), vrna_ptable(), vrna_ptable_copy(), vrna_fold_compound() 
VRNA_PATH_STEEPEST_DESCENT, VRNA_PATH_RANDOM, VRNA_MOVESET_DEFAULT, VRNA_MOVESET_SHIFT, 
VRNA_PATH_NO_TRANSITION_OUTPUT
```

# **Parameters**

| in     | VC      | A vrna_fold_compound_t containing the energy parameters and model details                  |
|--------|---------|--------------------------------------------------------------------------------------------|
| in,out | pt      | The pair table containing the start structure. Used to update to the final structure after |
|        |         | execution of this function                                                                 |
| in     | options | Options to modify the behavior of this function                                            |

### Returns

A list of transition moves (default), or NULL (if options & VRNA\_PATH\_NO\_TRANSITION\_OUTPUT)

**SWIG Wrapper Notes** This function is attached as an overloaded method *path()* to objects of type *fold\_compound*. The optional parameter options defaults to VRNA\_PATH\_DEFAULT if it is omitted.

# 16.40.3.2 vrna\_path\_gradient()

Compute a steepest descent / gradient path, store the final structure, and return a list of transition moves from the start to the final structure.

This function computes, given a start structure in pair table format, a steepest descent path, updates the pair table to the final structure of the path. Finally, if not requested otherwise by using the VRNA\_PATH\_NO\_TRANSITION\_OUTPUT flag in the options field, this function returns a list of individual transitions that lead from the start to the final structure if requested.

#### Note

Since the result is written to the input structure you may want to use <a href="mailto:vrna\_ptable\_copy">vrna\_ptable\_copy</a>() before calling this function to keep the initial structure

#### See also

vrna\_path\_random(), vrna\_path(), vrna\_ptable(), vrna\_ptable\_copy(), vrna\_fold\_compound() VRNA\_MOVESET\_DEFAULT, VRNA\_MOVESET\_SHIFT, VRNA\_PATH\_NO\_TRANSITION\_OUTPUT

### **Parameters**

| in     | vc      | A vrna_fold_compound_t containing the energy parameters and model details                  |
|--------|---------|--------------------------------------------------------------------------------------------|
| in,out | pt      | The pair table containing the start structure. Used to update to the final structure after |
|        |         | execution of this function                                                                 |
| in     | options | Options to modify the behavior of this function                                            |

#### Returns

A list of transition moves (default), or NULL (if options & VRNA\_PATH\_NO\_TRANSITION\_OUTPUT)

SWIG Wrapper Notes This function is attached as an overloaded method path\_gradient() to objects of type fold

\_compound. The optional parameter options defaults to VRNA\_PATH\_DEFAULT if it is omitted.

### 16.40.3.3 vrna path random()

Generate a random walk / path of a given length, store the final structure, and return a list of transition moves from the start to the final structure.

This function generates, given a start structure in pair table format, a random walk / path, updates the pair table to the final structure of the path. Finally, if not requested otherwise by using the VRNA\_PATH\_NO\_TRANSITION\_OUTPUT flag in the options field, this function returns a list of individual transitions that lead from the start to the final structure if requested.

### Note

Since the result is written to the input structure you may want to use <a href="mailto:vrna\_ptable\_copy">vrna\_ptable\_copy</a>() before calling this function to keep the initial structure

### See also

vrna\_path\_gradient(), vrna\_path(), vrna\_ptable(), vrna\_ptable\_copy(), vrna\_fold\_compound() VRNA\_MOVESET\_DEFAULT, VRNA\_MOVESET\_SHIFT, VRNA\_PATH\_NO\_TRANSITION\_OUTPUT

| in      | vc      | A vrna_fold_compound_t containing the energy parameters and model details                  |
|---------|---------|--------------------------------------------------------------------------------------------|
| in, out | pt      | The pair table containing the start structure. Used to update to the final structure after |
|         |         | execution of this function                                                                 |
| in      | steps   | The length of the path, i.e. the total number of transitions / moves                       |
| in      | options | Options to modify the behavior of this function                                            |

Returns

A list of transition moves (default), or NULL (if options & VRNA\_PATH\_NO\_TRANSITION\_OUTPUT)

SWIG Wrapper Notes This function is attached as an overloaded method path\_gradient() to objects of type fold

\_compound. The optional parameter options defaults to VRNA\_PATH\_DEFAULT if it is omitted.

# 16.41 Experimental Structure Probing Data

Include Experimental Structure Probing Data to Guide Structure Predictions.

# 16.41.1 Detailed Description

Include Experimental Structure Probing Data to Guide Structure Predictions. Collaboration diagram for Experimental Structure Probing Data:

### **Modules**

· SHAPE Reactivity Data

Incorporate SHAPE reactivity structure probing data into the folding recursions by means of soft constraints.

· Generate Soft Constraints from Data

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments.

# 16.42 SHAPE Reactivity Data

Incorporate SHAPE reactivity structure probing data into the folding recursions by means of soft constraints.

# 16.42.1 Detailed Description

Incorporate SHAPE reactivity structure probing data into the folding recursions by means of soft constraints. Details for our implementation to incorporate SHAPE reactivity data to guide secondary structure prediction can be found in [22] Collaboration diagram for SHAPE Reactivity Data:

### **Files**

• file SHAPE.h

This module provides function to incorporate SHAPE reactivity data into the folding recursions by means of soft constraints.

# **Functions**

• int vrna\_sc\_add\_SHAPE\_deigan (vrna\_fold\_compound\_t \*vc, const double \*reactivities, double m, double b, unsigned int options)

Add SHAPE reactivity data as soft constraints (Deigan et al. method)

• int vrna\_sc\_add\_SHAPE\_deigan\_ali (vrna\_fold\_compound\_t \*vc, const char \*\*shape\_files, const int \*shape\_file\_association, double m, double b, unsigned int options)

Add SHAPE reactivity data from files as soft constraints for consensus structure prediction (Deigan et al. method)

• int vrna\_sc\_add\_SHAPE\_zarringhalam (vrna\_fold\_compound\_t \*vc, const double \*reactivities, double b, double default\_value, const char \*shape\_conversion, unsigned int options)

Add SHAPE reactivity data as soft constraints (Zarringhalam et al. method)

• int vrna\_sc\_SHAPE\_to\_pr (const char \*shape\_conversion, double \*values, int length, double default\_value)

\*Convert SHAPE reactivity values to probabilities for being unpaired.

### 16.42.2 Function Documentation

### 16.42.2.1 vrna\_sc\_add\_SHAPE\_deigan()

Add SHAPE reactivity data as soft constraints (Deigan et al. method)

This approach of SHAPE directed RNA folding uses the simple linear ansatz

```
\Delta G_{\mathsf{SHAPE}}(i) = m \ln(\mathsf{SHAPE} \ \mathsf{reactivity}(i) + 1) + b
```

to convert SHAPE reactivity values to pseudo energies whenever a nucleotide i contributes to a stacked pair. A positive slope m penalizes high reactivities in paired regions, while a negative intercept b results in a confirmatory 'bonus" free energy for correctly predicted base pairs. Since the energy evaluation of a base pair stack involves two pairs, the pseudo energies are added for all four contributing nucleotides. Consequently, the energy term is applied twice for pairs inside a helix and only once for pairs adjacent to other structures. For all other loop types the energy model remains unchanged even when the experimental data highly disagrees with a certain motif.

### See also

```
For further details, we refer to [8]. vrna_sc_remove(), vrna_sc_add_SHAPE_zarringhalam(), vrna_sc_minimize_pertubation()
```

### **Parameters**

| VC           | The vrna_fold_compound_t the soft constraints are associated with   |
|--------------|---------------------------------------------------------------------|
| reactivities | A vector of normalized SHAPE reactivities                           |
| т            | The slope of the conversion function                                |
| b            | The intercept of the conversion function                            |
| options      | The options flag indicating how/where to store the soft constraints |

# Returns

1 on successful extraction of the method, 0 on errors

SWIG Wrapper Notes This function is attached as method sc\_add\_SHAPE\_deigan() to objects of type fold\_← compound

# 16.42.2.2 vrna\_sc\_add\_SHAPE\_deigan\_ali()

Add SHAPE reactivity data from files as soft constraints for consensus structure prediction (Deigan et al. method)

### **Parameters**

| VC                     | The vrna_fold_compound_t the soft constraints are associated with             |
|------------------------|-------------------------------------------------------------------------------|
| shape_files            | A set of filenames that contain normalized SHAPE reactivity data              |
| shape_file_association | An array of integers that associate the files with sequences in the alignment |
| m                      | The slope of the conversion function                                          |
| b                      | The intercept of the conversion function                                      |
| options                | The options flag indicating how/where to store the soft constraints           |

### Returns

1 on successful extraction of the method, 0 on errors

SWIG Wrapper Notes This function is attached as method sc\_add\_SHAPE\_deigan\_ali() to objects of type fold

compound

# 16.42.2.3 vrna\_sc\_add\_SHAPE\_zarringhalam()

Add SHAPE reactivity data as soft constraints (Zarringhalam et al. method)

This method first converts the observed SHAPE reactivity of nucleotide i into a probability  $q_i$  that position i is unpaired by means of a non-linear map. Then pseudo-energies of the form

$$\Delta G_{\text{SHAPE}}(x,i) = \beta |x_i - q_i|$$

are computed, where  $x_i=0$  if position i is unpaired and  $x_i=1$  if i is paired in a given secondary structure. The parameter  $\beta$  serves as scaling factor. The magnitude of discrepancy between prediction and experimental observation is represented by  $|x_i-q_i|$ .

# See also

```
For further details, we refer to [34] vrna_sc_remove(), vrna_sc_add_SHAPE_deigan(), vrna_sc_minimize_pertubation()
```

| vc               | The vrna_fold_compound_t the soft constraints are associated with       |
|------------------|-------------------------------------------------------------------------|
| reactivities     | A vector of normalized SHAPE reactivities                               |
| b                | The scaling factor $\beta$ of the conversion function                   |
| default_value    | The default value for a nucleotide where reactivity data is missing for |
| shape_conversion | A flag that specifies how to convert reactivities to probabilities      |
| options          | The options flag indicating how/where to store the soft constraints     |

### Returns

1 on successful extraction of the method, 0 on errors

SWIG Wrapper Notes This function is attached as method sc\_add\_SHAPE\_zarringhalam() to objects of type fold\_compound

### 16.42.2.4 vrna\_sc\_SHAPE\_to\_pr()

Convert SHAPE reactivity values to probabilities for being unpaired.

This function parses the informations from a given file and stores the result in the preallocated string sequence and the FLT\_OR\_DBL array values.

See also

```
vrna_file_SHAPE_read()
```

#### **Parameters**

| shape_conversion | String definining the method used for the conversion process    |
|------------------|-----------------------------------------------------------------|
| values           | Pointer to an array of SHAPE reactivities                       |
| length           | Length of the array of SHAPE reactivities                       |
| default_value    | Result used for position with invalid/missing reactivity values |

# 16.43 Generate Soft Constraints from Data

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments.

# 16.43.1 Detailed Description

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments.

Collaboration diagram for Generate Soft Constraints from Data:

### **Files**

· file perturbation\_fold.h

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments.

# **Macros**

#define VRNA\_OBJECTIVE\_FUNCTION\_QUADRATIC 0

Use the sum of squared aberrations as objective function.

#define VRNA\_OBJECTIVE\_FUNCTION\_ABSOLUTE 1

Use the sum of absolute aberrations as objective function.

• #define VRNA\_MINIMIZER\_DEFAULT 0

Use a custom implementation of the gradient descent algorithm to minimize the objective function.

#define VRNA\_MINIMIZER\_CONJUGATE\_FR 1

Use the GNU Scientific Library implementation of the Fletcher-Reeves conjugate gradient algorithm to minimize the objective function.

#define VRNA MINIMIZER CONJUGATE PR 2

Use the GNU Scientific Library implementation of the Polak-Ribiere conjugate gradient algorithm to minimize the objective function.

• #define VRNA MINIMIZER VECTOR BFGS 3

Use the GNU Scientific Library implementation of the vector Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the objective function.

#define VRNA MINIMIZER VECTOR BFGS2 4

Use the GNU Scientific Library implementation of the vector Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the objective function.

#define VRNA MINIMIZER STEEPEST DESCENT 5

Use the GNU Scientific Library implementation of the steepest descent algorithm to minimize the objective function.

# **Typedefs**

typedef void(\* progress\_callback) (int iteration, double score, double \*epsilon)
 Callback for following the progress of the minimization process.

### **Functions**

void vrna\_sc\_minimize\_pertubation (vrna\_fold\_compound\_t \*vc, const double \*q\_prob\_unpaired, int objective\_function, double sigma\_squared, double tau\_squared, int algorithm, int sample\_size, double \*epsilon, double initialStepSize, double minStepSize, double minImprovement, double minimizerTolerance, progress\_callback callback)

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments.

# 16.43.2 Macro Definition Documentation

# 16.43.2.1 VRNA OBJECTIVE FUNCTION QUADRATIC

```
#define VRNA_OBJECTIVE_FUNCTION_QUADRATIC 0 #include <ViennaRNA/perturbation_fold.h> Use the sum of squared aberrations as objective function. F(\vec{\epsilon}) = \sum_{i=1}^n \frac{\epsilon_i^2}{\tau^2} + \sum_{i=1}^n \frac{(p_i(\vec{\epsilon}) - q_i)^2}{\sigma^2} \to min
```

# 16.43.2.2 VRNA\_OBJECTIVE\_FUNCTION\_ABSOLUTE

```
#define VRNA_OBJECTIVE_FUNCTION_ABSOLUTE 1  
#include <ViennaRNA/perturbation_fold.h>  
Use the sum of absolute aberrations as objective function.  
F(\vec{\epsilon}) = \sum_{i=1}^n \frac{|\epsilon_i|}{\tau^2} + \sum_{i=1}^n \frac{|p_i(\vec{\epsilon}) - q_i|}{\sigma^2} \to min
```

### 16.43.2.3 VRNA MINIMIZER DEFAULT

```
#define VRNA_MINIMIZER_DEFAULT 0
#include <ViennaRNA/perturbation_fold.h>
```

Use a custom implementation of the gradient descent algorithm to minimize the objective function.

# 16.43.2.4 VRNA\_MINIMIZER\_CONJUGATE\_FR

```
#define VRNA_MINIMIZER_CONJUGATE_FR 1
#include <ViennaRNA/perturbation_fold.h>
```

Use the GNU Scientific Library implementation of the Fletcher-Reeves conjugate gradient algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your system

### 16.43.2.5 VRNA MINIMIZER CONJUGATE PR

```
#define VRNA_MINIMIZER_CONJUGATE_PR 2
#include <ViennaRNA/perturbation_fold.h>
```

Use the GNU Scientific Library implementation of the Polak-Ribiere conjugate gradient algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your system

### 16.43.2.6 VRNA MINIMIZER VECTOR BFGS

```
#define VRNA_MINIMIZER_VECTOR_BFGS 3
#include <ViennaRNA/perturbation_fold.h>
```

Use the GNU Scientific Library implementation of the vector Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your system

### 16.43.2.7 VRNA\_MINIMIZER\_VECTOR\_BFGS2

```
#define VRNA_MINIMIZER_VECTOR_BFGS2 4
#include <ViennaRNA/perturbation_fold.h>
```

Use the GNU Scientific Library implementation of the vector Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the objective function.

Please note that this algorithm can only be used when the GNU Scientific Library is available on your system

# 16.43.2.8 VRNA\_MINIMIZER\_STEEPEST\_DESCENT

```
#define VRNA_MINIMIZER_STEEPEST_DESCENT 5
#include <ViennaRNA/perturbation_fold.h>
```

Use the GNU Scientific Library implementation of the steepest descent algorithm to minimize the objective function. Please note that this algorithm can only be used when the GNU Scientific Library is available on your system

# 16.43.3 Typedef Documentation

# 16.43.3.1 progress\_callback

```
typedef void(* progress_callback) (int iteration, double score, double *epsilon)
#include <ViennaRNA/perturbation_fold.h>
```

Callback for following the progress of the minimization process.

# **Parameters**

| iteration | The number of the current iteration                 |
|-----------|-----------------------------------------------------|
| score     | The score of the objective function                 |
| epsilon   | The perturbation vector yielding the reported score |

### 16.43.4 Function Documentation

# 16.43.4.1 vrna\_sc\_minimize\_pertubation()

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments.

Use an iterative minimization algorithm to find a vector of perturbation energies whose incorporation as soft constraints shifts the predicted pairing probabilities closer to the experimentally observed probabilities. The algorithm aims to minimize an objective function that penalizes discripancies between predicted and observed pairing probabilities and energy model adjustments, i.e. an appropriate vector of perturbation energies satisfies

$$F(\vec{\epsilon}) = \sum_{\mu} \frac{\epsilon_{\mu}^2}{\tau^2} + \sum_{i=1}^n \frac{(p_i(\vec{\epsilon}) - q_i)^2}{\sigma^2} \to \min.$$

An initialized fold compound and an array containing the observed probability for each nucleotide to be unbound are required as input data. The parameters objective\_function, sigma\_squared and tau\_squared are responsible for adjusting the aim of the objective function. Dependend on which type of objective function is selected, either squared or absolute aberrations are contributing to the objective function. The ratio of the parameters sigma\_\circ\ squared and tau\_squared can be used to adjust the algorithm to find a solution either close to the thermodynamic prediction (sigma\_squared >> tau\_squared) or close to the experimental data (tau\_squared >> sigma\_squared). The minimization can be performed by makeing use of a custom gradient descent implementation or using one of the minimizing algorithms provided by the GNU Scientific Library. All algorithms require the evaluation of the gradient of the objective function, which includes the evaluation of conditional pairing probabilites. Since an exact evaluation is expensive, the probabilities can also be estimated from sampling by setting an appropriate sample size. The found vector of perturbation energies will be stored in the array epsilon. The progress of the minimization process can be tracked by implementing and passing a callback function.

# See also

For further details we refere to [29].

| VC                 | Pointer to a fold compound                                                                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| q_prob_unpaired    | Pointer to an array containing the probability to be unpaired for each nucleotide                                                                     |
| objective_function | The type of objective function to be used (VRNA_OBJECTIVE_FUNCTION_QUADRATIC / VRNA_OBJECTIVE_FUNCTION_LINEAR)                                        |
| sigma_squared      | A factor used for weighting the objective function. More weight on this factor will lead to a solution close to the null vector.                      |
| tau_squared        | A factor used for weighting the objective function. More weight on this factor will lead to a solution close to the data provided in q_prob_unpaired. |
| algorithm          | The minimization algorithm (VRNA_MINIMIZER_*)                                                                                                         |
| sample_size        | The number of sampled sequences used for estimating the pairing probabilities. A value <= 0 will lead to an exact evaluation.                         |
| epsilon            | A pointer to an array used for storing the calculated vector of perturbation energies                                                                 |
| callback           | A pointer to a callback function used for reporting the current minimization progress                                                                 |

# 16.44 Ligands Binding to RNA Structures

Simple Extensions to Model Ligand Binding to RNA Structures.

# 16.44.1 Detailed Description

Simple Extensions to Model Ligand Binding to RNA Structures. Collaboration diagram for Ligands Binding to RNA Structures:

### **Modules**

- · Ligands Binding to Unstructured Domains
  - Add ligand binding to loop regions using the Unstructured Domains feature.
- Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Constraints

Ligand binding to specific hairpin/interior loop like motifs using the Soft Constraints feature.

### **Files**

· file ligand.h

Functions for incorporation of ligands binding to hairpin and interior loop motifs using the soft constraints framework.

# 16.45 Ligands Binding to Unstructured Domains

Add ligand binding to loop regions using the Unstructured Domains feature.

Add ligand binding to loop regions using the Unstructured Domains feature.

Sometime, certain ligands, like single strand binding (SSB) proteins, compete with intramolecular base pairing of the RNA. In situations, where the dissociation constant of the ligand is known and the ligand binds to a consecutive stretch of single-stranded nucleotides we can use the Unstructured Domains functionality to extend the RNA folding grammar. This module provides a convenience default implementation that covers most of the application scenarios. The function vrna\_ud\_add\_motif() attaches a ligands sequence motif and corresponding binding free energy to the list of known ligand motifs within a vrna\_fold\_compound\_t.domains\_up attribute. The first call to this function initializes the Unstructured Domains feature with our default implementation. Subsequent calls of secondary structure predciction algorithms with the modified vrna\_fold\_compound\_t then directly include the competition of the ligand with regules base pairing. Since we utilize the unstructured domain extension, The ligand binding model can be removed again using the vrna\_ud\_remove() function. Collaboration diagram for Ligands Binding to Unstructured Domains:

# 16.46 Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Constraints

Ligand binding to specific hairpin/interior loop like motifs using the Soft Constraints feature.

### 16.46.1 Detailed Description

Ligand binding to specific hairpin/interior loop like motifs using the Soft Constraints feature.

Collaboration diagram for Incorporating Ligands Binding to Specific Sequence/Structure Motifs using Soft Constraints:

### **Data Structures**

struct vrna\_sc\_motif\_s

### **Typedefs**

typedef struct vrna\_sc\_motif\_s vrna\_sc\_motif\_t

Type definition for soft constraint motif.

# **Functions**

• int vrna\_sc\_add\_hi\_motif (vrna\_fold\_compound\_t \*fc, const char \*seq, const char \*structure, FLT\_OR\_DBL energy, unsigned int options)

Add soft constraints for hairpin or interior loop binding motif.

# 16.46.2 Data Structure Documentation

16.46.2.1 struct vrna\_sc\_motif\_s

# 16.46.3 Function Documentation

# 16.46.3.1 vrna\_sc\_add\_hi\_motif()

#include <ViennaRNA/constraints/ligand.h>

Add soft constraints for hairpin or interior loop binding motif.

Here is an example that adds a theophylline binding motif. Free energy contribution is derived from  $k_d=0.1\mu M$ , taken from Jenison et al. 1994. At 1M concentration the corresponding binding free energy amounts to -9.93~kcal/mol.



```
"(...((((&)...)))...)",
-9.93, VRNA_OPTION_DEFAULT);
```

#### **Parameters**

| fc        | The vrna_fold_compound_t the motif is applied to         |
|-----------|----------------------------------------------------------|
| seq       | The sequence motif (may be interspaced by '&' character  |
| structure | The structure motif (may be interspaced by '&' character |
| energy    | The free energy of the motif (e.g. binding free energy)  |
| options   | Options                                                  |

### Returns

non-zero value if application of the motif using soft constraints was successful

SWIG Wrapper Notes This function is attached as method sc\_add\_hi\_motif() to objects of type fold\_compound

# 16.47 Structure Modules and Pseudoknots

# 16.47.1 Detailed Description

Collaboration diagram for Structure Modules and Pseudoknots:

### **Modules**

Pseudoknots

Implementations to predict pseudoknotted structures.

G-Quadruplexes

Various functions related to G-quadruplex computations.

# **Files**

• file gquad.h

G-quadruplexes.

# 16.48 Pseudoknots

Implementations to predict pseudoknotted structures.

# 16.48.1 Detailed Description

Implementations to predict pseudoknotted structures. Collaboration diagram for Pseudoknots:

### **Files**

· file pk plex.h

Heuristics for two-step pseudoknot forming interaction predictions.

# **Data Structures**

struct vrna\_pk\_plex\_result\_s

A result of the RNA PKplex interaction prediction. More...

# **Typedefs**

• typedef int(\* vrna\_pk\_plex\_score\_f) (const short \*pt, int start\_5, int end\_5, int start\_3, int end\_3, void \*data)

\*Pseudoknot loop scoring function prototype.

typedef struct vrna\_pk\_plex\_option\_s \* vrna\_pk\_plex\_opt\_t

RNA PKplex options object.

typedef struct vrna\_pk\_plex\_result\_s vrna\_pk\_plex\_t

Convenience typedef for results of the RNA PKplex prediction.

# **Functions**

vrna\_pk\_plex\_t \* vrna\_pk\_plex (vrna\_fold\_compound\_t \*fc, const int \*\*accessibility, vrna\_pk\_plex\_opt\_t options)

Predict Pseudoknot interactions in terms of a two-step folding process.

int \*\* vrna\_pk\_plex\_accessibility (const char \*sequence, unsigned int unpaired, double cutoff)

Obtain a list of opening energies suitable for PKplex computations.

vrna\_pk\_plex\_opt\_t vrna\_pk\_plex\_opt\_defaults (void)

Default options for PKplex algorithm.

vrna\_pk\_plex\_opt\_t vrna\_pk\_plex\_opt (unsigned int delta, unsigned int max\_interaction\_length, int pk\_
penalty)

Simple options for PKplex algorithm.

vrna\_pk\_plex\_opt\_t vrna\_pk\_plex\_opt\_fun (unsigned int delta, unsigned int max\_interaction\_length, vrna\_pk\_plex\_score\_f scoring\_function, void \*scoring\_data)

Simple options for PKplex algorithm.

### 16.48.2 Data Structure Documentation

# 16.48.2.1 struct vrna\_pk\_plex\_result\_s

A result of the RNA PKplex interaction prediction.

See also

vrna\_pk\_plex\_t

### **Data Fields**

• char \* structure

Secondary Structure in dot-bracket notation.

· double energy

Net free energy in kcal/mol.

double dGpk

Free energy of PK loop in kcal/mol.

· double dGint

Free energy of PK forming duplex interaction.

· double dG1

Opening energy for the 5' interaction site used in the heuristic.

double dG2

Opening energy for the 3' interaction site used in the heuristic.

· unsigned int start\_5

Start coordinate of the 5' interaction site.

unsigned int end 5

End coordinate of the 5' interaction site.

· unsigned int start\_3

Start coordinate of the 3' interaction site.

unsigned int end 3

End coordinate of the 3' interaction site.

16.48 Pseudoknots 371

# 16.48.3 Typedef Documentation

### 16.48.3.1 vrna\_pk\_plex\_score\_f

```
typedef int(* vrna_pk_plex_score_f) (const short *pt, int start_5, int end_5, int start_3, int
end_3, void *data)
#include <ViennaRNA/pk_plex.h>
```

Pseudoknot loop scoring function prototype.

This function is used to evaluate a formed pseudoknot (PK) interaction in vrna\_pk\_plex(). It is supposed to take a PK-free secondary structure as input and coordinates of an additional interaction site. From this data, the energy (penalty) to score the PK loop is derived and returned in decakal/mol. Upon passing zero in any of the interaction site coordinates (start\_5, end\_5, start\_3, end\_3) or a NULL pointer in pt, the function must return a PK loop score. This minimum PK loop score is used in the first phase of the heuristic implemented in vrna\_pk\_plex() to assess whether a particular interaction is further taken into account in a later, more thorough evaluation step. The simplest scoring function would simply return a constant score for any PK loop, no matter what type of loop is formed and how large the loop is. This is the default if vrna\_pk\_plex\_opt\_defaults() or vrna\_pk\_plex\_opt() is used to generate options for vrna\_pk\_plex().

### See also

vrna\_pk\_plex\_opt\_fun(), vrna\_pk\_plex()

### **Parameters**

| pt           | The secondary structure (without pseudoknot) in pair table notation                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| start⊷       | The start coordinate of the 5' site of the pseudoknot interaction                                                                  |
| _5           |                                                                                                                                    |
| end⇔         | The end coordinate of the 5' site of the pseudoknot interaction                                                                    |
| _5           |                                                                                                                                    |
|              |                                                                                                                                    |
| start⇔       | The start coordinate of the 3' site of the pseudoknot interaction                                                                  |
| start⊷<br>_3 | The start coordinate of the 3' site of the pseudoknot interaction                                                                  |
|              | The start coordinate of the 3' site of the pseudoknot interaction  The end coordinate of the 3' site of the pseudoknot interaction |
| _3           | ·                                                                                                                                  |

### Returns

The energy (penalty) of the resulting pseudoknot

# 16.48.3.2 vrna\_pk\_plex\_opt\_t

typedef struct vrna\_pk\_plex\_option\_s\* vrna\_pk\_plex\_opt\_t
#include <ViennaRNA/pk\_plex.h>
RNA PKplex options object.

### See also

vrna\_pk\_plex\_opt\_defaults(), vrna\_pk\_plex\_opt(), vrna\_pk\_plex\_opt\_fun(), vrna\_pk\_plex(), vrna\_pk\_plex\_score\_f

### 16.48.3.3 vrna\_pk\_plex\_t

```
typedef struct vrna_pk_plex_result_s vrna_pk_plex_t
#include <ViennaRNA/pk_plex.h>
```

Convenience typedef for results of the RNA PKplex prediction.

See also

```
#vrna pk plex results s, vrna pk plex()
```

### 16.48.4 Function Documentation

### 16.48.4.1 vrna\_pk\_plex()

Predict Pseudoknot interactions in terms of a two-step folding process.

Computes simple pseudoknot interactions according to the PKplex algorithm. This simple heuristic first compiles a list of potential interaction sites that may form a pseudoknot. The resulting candidate interactions are then fixed and an PK-free MFE structure for the remainder of the sequence is computed.

The accessibility argument is a list of opening energies for potential interaction sites. It is used in the first step of the algorithm to identify potential interactions. Upon passing *NULL*, the opening energies are determined automatically based on the current model settings.

Depending on the options, the function can return the MFE (incl. PK loops) or suboptimal structures within an energy band around the MFE. The PK loop is internally scored by a scoring function that in the simplest cases assigns a constant value for each PK loop. More complicated scoring functions can be passed as well, see <a href="https://www.vrna\_pk\_plex\_score\_fand-vrna\_pk\_plex\_opt\_fun()">vrna\_pk\_plex\_score\_fand-vrna\_pk\_plex\_opt\_fun()</a>.

The function returns *NULL* on any error. Otherwise, a list of structures and interaction coordinates with corresponding energy contributions is returned. If no PK-interaction that satisfies the options is found, the list only consists of the PK-free MFE structure.

### **Parameters**

| fc            | fold compound with the input sequence and model settings                              |  |
|---------------|---------------------------------------------------------------------------------------|--|
| accessibility | An array of opening energies for the implemented heuristic (maybe <i>NULL</i> )       |  |
| options       | An vrna_pk_plex_opt_t options data structure that determines the algorithm parameters |  |

### Returns

A list of potentially pseudoknotted structures (Last element in the list indicated by *NULL* value in vrna\_pk\_plex\_result\_s.structure)

### 16.48.4.2 vrna\_pk\_plex\_accessibility()

Obtain a list of opening energies suitable for PKplex computations.

### See also

```
vrna_pk_plex()
```

| sequence | The RNA sequence                                                       |
|----------|------------------------------------------------------------------------|
| unpaired | The maximum number of unpaired nucleotides, i.e. length of interaction |
| cutoff   | A cutoff value for unpaired probabilities                              |

16.48 Pseudoknots 373

#### Returns

Opening energies as required for vrna\_pk\_plex()

# 16.48.4.3 vrna\_pk\_plex\_opt\_defaults()

### See also

```
vrna_pk_plex(), vrna_pk_plex_opt(), vrna_pk_plex_opt_fun()
```

### Returns

An options data structure suitabe for PKplex computations

# 16.48.4.4 vrna\_pk\_plex\_opt()

### See also

```
vrna_pk_plex(), vrna_pk_plex_opt_defaults(), vrna_pk_plex_opt_fun()
```

### **Parameters**

| delta                  | Size of energy band around MFE for suboptimal results in dekacal/mol |
|------------------------|----------------------------------------------------------------------|
| max_interaction_length | Maximum length of interaction                                        |
| pk_penalty             | Energy constant to score the PK forming loop                         |

# Returns

An options data structure suitabe for PKplex computations

### 16.48.4.5 vrna\_pk\_plex\_opt\_fun()

### See also

vrna\_pk\_plex(), vrna\_pk\_plex\_opt\_defaults(), vrna\_pk\_plex\_opt(), vrna\_pk\_plex\_score\_f

### **Parameters**

| delta                  | Size of energy band around MFE for suboptimal results in dekacal/mol           |
|------------------------|--------------------------------------------------------------------------------|
| max_interaction_length | Maximum length of interaction                                                  |
| scoring_function       | Energy evaluating function to score the PK forming loop                        |
| scoring_data           | An arbitrary data structure passed to the scoring function (maybe <i>NUL</i> ) |

### Returns

An options data structure suitabe for PKplex computations

# 16.49 G-Quadruplexes

Various functions related to G-quadruplex computations.

# 16.49.1 Detailed Description

Various functions related to G-quadruplex computations. Collaboration diagram for G-Quadruplexes:

### **Functions**

- int \* get\_gquad\_matrix (short \*S, vrna\_param\_t \*P)
   Get a triangular matrix prefilled with minimum free energy contributions of G-quadruplexes.
- int parse gquad (const char \*struc, int \*L, int I[3])
- PRIVATE int backtrack\_GQuad\_IntLoop (int c, int i, int j, int type, short \*S, int \*ggg, int \*index, int \*p, int \*q, vrna param t \*P)
- PRIVATE int backtrack\_GQuad\_IntLoop\_L (int c, int i, int j, int type, short \*S, int \*\*ggg, int maxdist, int \*p, int \*q, vrna\_param\_t \*P)

# 16.49.2 Function Documentation

### 16.49.2.1 get\_gquad\_matrix()

Get a triangular matrix prefilled with minimum free energy contributions of G-quadruplexes.

At each position ij in the matrix, the minimum free energy of any G-quadruplex delimited by i and j is stored. If no G-quadruplex formation is possible, the matrix element is set to INF. Access the elements in the matrix via matrix[indx[j]+i]. To get the integer array indx see get\_jindx().

### See also

```
get_jindx(), encode_sequence()
```

| S | The encoded sequence                                                            | ] |
|---|---------------------------------------------------------------------------------|---|
| Р | A pointer to the data structure containing the precomputed energy contributions | 1 |

16.49 G-Quadruplexes 375

### Returns

A pointer to the G-quadruplex contribution matrix

# 16.49.2.2 parse\_gquad()

given a dot-bracket structure (possibly) containing gquads encoded by '+' signs, find first gquad, return end position or 0 if none found Upon return L and I[] contain the number of stacked layers, as well as the lengths of the linker regions. To parse a string with many gquads, call parse\_gquad repeatedly e.g. end1 = parse\_gquad(struc, &L, I); ...; end2 = parse\_gquad(struc+end1, &L, I); end2+=end1; ...; end3 = parse\_gquad(struc+end2, &L, I); end3+=end2; ...;

# 16.49.2.3 backtrack\_GQuad\_IntLoop()

### **Parameters**

| С     | The total contribution the loop should resemble             |
|-------|-------------------------------------------------------------|
| i     | position i of enclosing pair                                |
| j     | position j of enclosing pair                                |
| type  | base pair type of enclosing pair (must be reverse type)     |
| S     | integer encoded sequence                                    |
| 999   | triangular matrix containing g-quadruplex contributions     |
| index | the index for accessing the triangular matrix               |
| р     | here the 5' position of the gquad is stored                 |
| q     | here the 3' position of the gquad is stored                 |
| Р     | the datastructure containing the precalculated contibutions |

### Returns

1 on success, 0 if no gquad found

# 16.49.2.4 backtrack\_GQuad\_IntLoop\_L()

```
PRIVATE int backtrack_GQuad_IntLoop_L (  \quad \text{int } c, \\
```

```
int i,
int j,
int type,
short * S,
int ** ggg,
int maxdist,
int * p,
int * q,
vrna_param_t * P )
```

#include <ViennaRNA/gquad.h>

backtrack an interior loop like enclosed g-quadruplex with closing pair (i,j) with underlying Lfold matrix

#### **Parameters**

| С    | The total contribution the loop should resemble             |
|------|-------------------------------------------------------------|
| i    | position i of enclosing pair                                |
| j    | position j of enclosing pair                                |
| type | base pair type of enclosing pair (must be reverse type)     |
| S    | integer encoded sequence                                    |
| 999  | triangular matrix containing g-quadruplex contributions     |
| р    | here the 5' position of the gquad is stored                 |
| q    | here the 3' position of the gquad is stored                 |
| Р    | the datastructure containing the precalculated contibutions |

#### Returns

1 on success, 0 if no gquad found

# 16.50 Post-transcriptional Modifications

Support of modified bases in secondary structure prediction.

### 16.50.1 Detailed Description

Support of modified bases in secondary structure prediction.

Energy parameter corrections for modified bases.

Many RNAs are known to be (heavily) modified post-trasnciptionaly. The best known examples are tRNAs and rRNAs. To-date, more than 150 different modifications are listed in the MODOMICS database (  $http \leftarrow ://genesilico.pl/modomics/)$  [5].

Many of the modified bases change the pairing behavior compared to their unmodified version, affecting not only the pairing partner preference, but also the resulting stability of the loops the base pairs may form.

Here, we provide a simple soft constraints callback implementation to correct for some well known modified bases where energy parameters are available for. This mechanism also supports arbitrary new modified base energy parameters supplied in JSON format (see JSON Parameter Files for Modified Bases for details). Collaboration diagram for Post-transcriptional Modifications:

# **Files**

· file soft\_special.h

Specialized implementations that utilize the soft constraint callback mechanism.

### **Typedefs**

typedef struct vrna\_sc\_mod\_param\_s \* vrna\_sc\_mod\_param\_t
 Modified base parameter data structure.

### **Functions**

- vrna\_sc\_mod\_param\_t vrna\_sc\_mod\_read\_from\_jsonfile (const char \*filename, vrna\_md\_t \*md)
  - Parse and extract energy parameters for a modified base from a JSON file.
- vrna\_sc\_mod\_param\_t vrna\_sc\_mod\_read\_from\_json (const char \*json, vrna\_md\_t \*md)

Parse and extract energy parameters for a modified base from a JSON string.

- void vrna\_sc\_mod\_parameters\_free (vrna\_sc\_mod\_param\_t params)
  - Release memory occupied by a modified base parameter data structure.
- int vrna\_sc\_mod\_json (vrna\_fold\_compound\_t \*fc, const char \*json, const unsigned int \*modification\_sites)

  Prepare soft constraint callbacks for modified base as specified in JSON string.
- int vrna\_sc\_mod\_jsonfile (vrna\_fold\_compound\_t \*fc, const char \*json\_file, const unsigned int \*modification sites)

Prepare soft constraint callbacks for modified base as specified in JSON string.

 int vrna\_sc\_mod (vrna\_fold\_compound\_t \*fc, const vrna\_sc\_mod\_param\_t params, const unsigned int \*modification sites)

Prepare soft constraint callbacks for modified base as specified in JSON string.

- int vrna\_sc\_mod\_m6A (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)
  - Add soft constraint callbacks for N6-methyl-adenosine (m6A)
- int vrna sc mod pseudouridine (vrna fold compound t \*fc, const unsigned int \*modification sites)

Add soft constraint callbacks for Pseudouridine.

- int vrna\_sc\_mod\_inosine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)
  - Add soft constraint callbacks for Inosine.
- int vrna\_sc\_mod\_7DA (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

Add soft constraint callbacks for 7-deaza-adenosine (7DA)

- int vrna\_sc\_mod\_purine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)
  - Add soft constraint callbacks for Purine (a.k.a. nebularine)
- int vrna sc mod dihydrouridine (vrna fold compound t \*fc, const unsigned int \*modification sites)

Add soft constraint callbacks for dihydrouridine.

# 16.50.2 Typedef Documentation

### 16.50.2.1 vrna\_sc\_mod\_param\_t

```
typedef struct vrna_sc_mod_param_s* vrna_sc_mod_param_t
#include <ViennaRNA/constraints/soft_special.h>
```

Modified base parameter data structure.

See also

vrna sc mod read from jsonfile(), vrna sc mod read from json(), vrna sc mod()

# 16.50.3 Function Documentation

### 16.50.3.1 vrna\_sc\_mod\_read\_from\_jsonfile()

Parse and extract energy parameters for a modified base from a JSON file.

See also

vrna sc mod read from json(), vrna sc mod parameters free(), vrna sc mod(), JSON Parameter Files for Modified Bases

### **Parameters**

| filename | The JSON file containing the specifications of the modified base     |
|----------|----------------------------------------------------------------------|
| md       | A model-details data structure (for look-up of canonical base pairs) |

### Returns

Parameters of the modified base

SWIG Wrapper Notes This function is available as an overloaded function sc\_mod\_read\_from\_jsonfile() where the md parameter may be omitted

# 16.50.3.2 vrna\_sc\_mod\_read\_from\_json()

Parse and extract energy parameters for a modified base from a JSON string.

#### See also

vrna\_sc\_mod\_read\_from\_jsonfile(), vrna\_sc\_mod\_parameters\_free(), vrna\_sc\_mod(), JSON Parameter Files for Modified Base

### **Parameters**

| filename | The JSON file containing the specifications of the modified base     |
|----------|----------------------------------------------------------------------|
| md       | A model-details data structure (for look-up of canonical base pairs) |

### Returns

Parameters of the modified base

**SWIG Wrapper Notes** This function is available as an overloaded function **sc\_mod\_read\_from\_json()** where the md parameter may be omitted

# 16.50.3.3 vrna\_sc\_mod\_parameters\_free()

# Properly free a vrna\_sc\_mod\_param\_t data structure

### **Parameters**

| params | The data structure to free |
|--------|----------------------------|
|--------|----------------------------|

SWIG Wrapper Notes This function is available as function sc\_mod\_parameters\_free()

# 16.50.3.4 vrna\_sc\_mod\_json()

Prepare soft constraint callbacks for modified base as specified in JSON string.

This function prepares all requirements to acknowledge modified bases as specified in the provided json string. All subsequent predictions will treat each modification site special and adjust energy contributions if necessary.

#### See also

vrna\_sc\_mod\_jsonfile(), vrna\_sc\_mod(), vrna\_sc\_mod\_m6A(), vrna\_sc\_mod\_pseudouridine(), vrna\_sc\_mod\_inosine(), vrna\_sc\_mod\_7DA(), vrna\_sc\_mod\_purine(), vrna\_sc\_mod\_dihydrouridine(), JSON Parameter Files for Modified Bases

#### **Parameters**

| fc                 | The fold_compound the corrections should be bound to                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| json               | The JSON formatted string with the modified base parameters                                                                   |
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last element in the list indicated by 0) |

SWIG Wrapper Notes This function is attached as method sc mod json() to objects of type fold compound

### 16.50.3.5 vrna\_sc\_mod\_jsonfile()

Prepare soft constraint callbacks for modified base as specified in JSON string.

Similar to vrna\_sc\_mod\_json(), this function prepares all requirements to acknowledge modified bases as specified in the provided json file. All subsequent predictions will treat each modification site special and adjust energy contributions if necessary.

### See also

vrna\_sc\_mod\_json(), vrna\_sc\_mod(), vrna\_sc\_mod\_m6A(), vrna\_sc\_mod\_pseudouridine(), vrna\_sc\_mod\_inosine(), vrna\_sc\_mod\_7DA(), vrna\_sc\_mod\_purine(), vrna\_sc\_mod\_dihydrouridine(), JSON Parameter Files for Modified Bases

### **Parameters**

| fc                 | The fold_compound the corrections should be bound to                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| json               | The JSON formatted string with the modified base parameters                                                                   |
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last element in the list indicated by 0) |

SWIG Wrapper Notes This function is attached as method sc\_mod\_jsonfile() to objects of type fold\_compound

### 16.50.3.6 vrna\_sc\_mod()

Prepare soft constraint callbacks for modified base as specified in JSON string.

This function takes a vrna\_sc\_mod\_param\_t data structure as obtained from vrna\_sc\_mod\_read\_from\_json() or vrna\_sc\_mod\_read\_from\_jsonfile() and prepares all requirements to acknowledge modified bases as specified in the provided params data structure. All subsequent predictions will treat each modification site special and adjust energy contributions if necessary.

# See also

```
vrna_sc_mod_read_from_json(), vrna_sc_mod_read_from_jsonfile(), vrna_sc_mod_json(), vrna_sc_mod_jsonfile(),
vrna_sc_mod_m6A(), vrna_sc_mod_pseudouridine(), vrna_sc_mod_inosine(), vrna_sc_mod_7DA(),
vrna_sc_mod_purine(), vrna_sc_mod_dihydrouridine()
```

#### **Parameters**

| fc                 | The fold_compound the corrections should be bound to                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| json               | The JSON formatted string with the modified base parameters                                                                   |
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last element in the list indicated by 0) |

### Returns

Non-zero if corrections have been added to the fold compound, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc\_mod() to objects of type fold\_compound

### 16.50.3.7 vrna sc mod m6A()

Add soft constraint callbacks for N6-methyl-adenosine (m6A)

This is a convenience wrapper to add support for m6A using the soft constraint callback mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections are derived from [18].

### **Parameters**

| fc                 | The fold_compound the corrections should be bound to                                      |
|--------------------|-------------------------------------------------------------------------------------------|
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last |
|                    | element in the list indicated by 0)                                                       |

### Returns

Non-zero if corrections have been added to the fold compound, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc\_mod\_m6A() to objects of type fold\_compound

### 16.50.3.8 vrna\_sc\_mod\_pseudouridine()

Add soft constraint callbacks for Pseudouridine.

This is a convenience wrapper to add support for pseudouridine using the soft constraint callback mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections are derived from [16].

### **Parameters**

| fc                 | The fold_compound the corrections should be bound to                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last element in the list indicated by 0) |

### Returns

Non-zero if corrections have been added to the fold compound, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc\_mod\_pseudouridine() to objects of type fold\_← compound

### 16.50.3.9 vrna\_sc\_mod\_inosine()

Add soft constraint callbacks for Inosine.

This is a convenience wrapper to add support for inosine using the soft constraint callback mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections are derived from [32] and [31].

### **Parameters**

| fc                 | The fold_compound the corrections should be bound to                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last element in the list indicated by 0) |

### Returns

Non-zero if corrections have been added to the fold\_compound, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc\_mod\_inosine() to objects of type fold\_compound

# 16.50.3.10 vrna\_sc\_mod\_7DA()

This is a convenience wrapper to add support for 7-deaza-adenosine using the soft constraint callback mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections are derived from [25].

### **Parameters**

| fc                 | The fold_compound the corrections should be bound to                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last element in the list indicated by 0) |

### Returns

Non-zero if corrections have been added to the fold compound, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc\_mod\_7DA() to objects of type fold\_compound

# 16.50.3.11 vrna\_sc\_mod\_purine()

Add soft constraint callbacks for Purine (a.k.a. nebularine)

This is a convenience wrapper to add support for Purine using the soft constraint callback mechanism. Modification sites are provided as a list of sequence positions (1-based). Energy parameter corrections are derived from [17].

### **Parameters**

| fc                 | The fold_compound the corrections should be bound to                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last element in the list indicated by 0) |

### Returns

Non-zero if corrections have been added to the fold\_compound, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc\_mod\_purine() to objects of type fold\_compound

### 16.50.3.12 vrna sc mod dihydrouridine()

Add soft constraint callbacks for dihydrouridine.

This is a convenience wrapper to add support for dihydrouridine using the soft constraint callback mechanism. Modification sites are provided as a list of sequence positions (1-based). This implementation simply assumes that dihydrouridines favor destacking and destabilize base pair stacks by at least 1.5kcal/mol, as suggested in [7].

| fc                 | The fold_compound the corrections should be bound to                                      |
|--------------------|-------------------------------------------------------------------------------------------|
| modification_sites | A list of modification site, i.e. positions that contain the modified base (1-based, last |
|                    | element in the list indicated by 0)                                                       |

16.51 Utilities 383

#### Returns

Non-zero if corrections have been added to the fold\_compound, 0 otherwise

SWIG Wrapper Notes This function is attached as method sc\_mod\_dihydrouridine() to objects of type fold\_← compound

# 16.51 Utilities

### 16.51.1 Detailed Description

Collaboration diagram for Utilities:

### **Modules**

Utilities to deal with Nucleotide Alphabets

Functions to cope with various aspects related to the nucleotide sequence alphabet.

• (Nucleic Acid Sequence) String Utilitites

Functions to parse, convert, manipulate, create, and compare (nucleic acid sequence) strings.

· Secondary Structure Utilities

Functions to create, parse, convert, manipulate, and compare secondary structure representations.

· Multiple Sequence Alignment Utilities

Functions to extract features from and to manipulate multiple sequence alignments.

Files and I/O

Functions to parse, write, and convert various file formats and to deal with file system related issues.

Plotting

Functions for Creating Secondary Structure Plots, Dot-Plots, and More.

· Search Algorithms

Implementations of various search algorithms to detect strings of objects within other strings of objects.

· Combinatorics Algorithms

Implementations to solve various combinatorial aspects for strings of objects.

(Abstract) Data Structures

All datastructures and typedefs shared among the ViennaRNA Package can be found here.

Messages

Functions to print various kind of messages.

• Unit Conversion

Functions to convert between various physical units.

### **Files**

· file alphabet.h

Functions to process, convert, and generally handle different nucleotide and/or base pair alphabets.

· file combinatorics.h

Various implementations that deal with combinatorial aspects of objects.

· file commands.h

Parse and apply different commands that alter the behavior of secondary structure prediction and evaluation.

· file sequence.h

Functions and data structures related to sequence representations,.

• file file\_formats\_msa.h

Functions dealing with file formats for Multiple Sequence Alignments (MSA)

· file utils.h

Several utilities for file handling.

· file utils.h

Various utilities to assist in plotting secondary structures and consensus structures.

· file alignments.h

Various utility- and helper-functions for sequence alignments and comparative structure prediction.

· file basic.h

General utility- and helper-functions used throughout the ViennaRNA Package.

· file strings.h

General utility- and helper-functions for RNA sequence and structure strings used throughout the ViennaRNA Package.

· file units.h

Physical Units and Functions to convert them into each other.

file BoyerMoore.h

Variants of the Boyer-Moore string search algorithm.

· file char stream.h

Implementation of a dynamic, buffered character stream.

· file stream output.h

An implementation of a buffered, ordered stream output data structure.

#### **Macros**

#define VRNA INPUT ERROR 1U

Output flag of get\_input\_line(): "An ERROR has occured, maybe EOF".

#define VRNA\_INPUT\_QUIT 2U

Output flag of get input line(): "the user requested quitting the program".

• #define VRNA INPUT MISC 4U

Output flag of get\_input\_line(): "something was read".

#define VRNA INPUT FASTA HEADER 8U

Input/Output flag of <a href="mailto:get\_input\_line">get\_input\_line</a>():

if used as input option this tells <code>get\_input\_line()</code> that the data to be read should comply with the FASTA format.

• #define VRNA INPUT CONSTRAINT 32U

Input flag for get\_input\_line():

Tell get\_input\_line() that we assume to read a structure constraint.

#define VRNA\_INPUT\_NO\_TRUNCATION 256U

Input switch for get\_input\_line(): "do not trunkate the line by eliminating white spaces at end of line".

#define VRNA INPUT\_NO REST 512U

Input switch for vrna\_file\_fasta\_read\_record(): "do fill rest array".

#define VRNA\_INPUT\_NO\_SPAN 1024U

Input switch for vrna\_file\_fasta\_read\_record(): "never allow data to span more than one line".

• #define VRNA INPUT NOSKIP BLANK LINES 2048U

Input switch for vrna\_file\_fasta\_read\_record(): "do not skip empty lines".

#define VRNA\_INPUT\_BLANK\_LINE 4096U

Output flag for vrna\_file\_fasta\_read\_record(): "read an empty line".

#define VRNA\_INPUT\_NOSKIP\_COMMENTS 128U

Input switch for get\_input\_line(): "do not skip comment lines".

#define VRNA\_INPUT\_COMMENT 8192U

Output flag for vrna\_file\_fasta\_read\_record(): "read a comment".

• #define MIN2(A, B) ((A) < (B) ? (A) : (B))

Get the minimum of two comparable values.

#define MAX2(A, B) ((A) > (B) ? (A) : (B))

Get the maximum of two comparable values.

#define MIN3(A, B, C) (MIN2((MIN2((A), (B))), (C)))

Get the minimum of three comparable values.

#define MAX3(A, B, C) (MAX2((MAX2((A), (B))), (C)))

Get the maximum of three comparable values.

16.51 Utilities 385

### **Functions**

void \* vrna\_alloc (unsigned size)

Allocate space safely.

void \* vrna\_realloc (void \*p, unsigned size)

Reallocate space safely.

void vrna init rand (void)

Initialize seed for random number generator.

void vrna\_init\_rand\_seed (unsigned int seed)

Initialize the random number generator with a pre-defined seed.

• double vrna urn (void)

get a random number from [0..1]

• int vrna\_int\_urn (int from, int to)

Generates a pseudo random integer in a specified range.

char \* vrna\_time\_stamp (void)

Get a timestamp.

- unsigned int get\_input\_line (char \*\*string, unsigned int options)
- int \* vrna\_idx\_row\_wise (unsigned int length)

Get an index mapper array (lindx) for accessing the energy matrices, e.g. in partition function related functions.

int \* vrna\_idx\_col\_wise (unsigned int length)

Get an index mapper array (indx) for accessing the energy matrices, e.g. in MFE related functions.

### **Variables**

• unsigned short xsubi [3]

Current 48 bit random number.

### 16.51.2 Macro Definition Documentation

### 16.51.2.1 VRNA INPUT FASTA HEADER

```
#define VRNA_INPUT_FASTA_HEADER 8U
#include <ViennaRNA/utils/basic.h>
Input/Output flag of get input line():
```

if used as input option this tells get\_input\_line() that the data to be read should comply with the FASTA format.
the function will return this flag if a fasta header was read

### 16.51.2.2 VRNA\_INPUT\_CONSTRAINT

```
#define VRNA_INPUT_CONSTRAINT 32U
#include <ViennaRNA/utils/basic.h>
Input flag for get_input_line():
```

Tell get\_input\_line() that we assume to read a structure constraint.

### 16.51.3 Function Documentation

### 16.51.3.1 vrna\_alloc()

#### **Parameters**

| size The size of the memory to be allocated i | in bytes |
|-----------------------------------------------|----------|
|-----------------------------------------------|----------|

#### Returns

A pointer to the allocated memory

### 16.51.3.2 vrna\_realloc()

#### **Parameters**

| р    | A pointer to the memory region to be reallocated |
|------|--------------------------------------------------|
| size | The size of the memory to be allocated in bytes  |

#### Returns

A pointer to the newly allocated memory

### 16.51.3.3 vrna\_init\_rand()

### See also

```
vrna_init_rand_seed(), vrna_urn()
```

# 16.51.3.4 vrna\_init\_rand\_seed()

Initialize the random number generator with a pre-defined seed.

#### See also

```
vrna_init_rand(), vrna_urn()
```

### **Parameters**

| seed The seed for the random number generator |
|-----------------------------------------------|
|-----------------------------------------------|

**SWIG Wrapper Notes** This function is available as an overloaded function **init\_rand()** where the argument seed is optional.

16.51 Utilities 387

# 16.51.3.5 vrna\_urn()

See also

```
vrna_int_urn(), vrna_init_rand(), vrna_init_rand_seed()
```

Note

Usually implemented by calling erand48().

Returns

A random number in range [0..1]

### 16.51.3.6 vrna\_int\_urn()

Generates a pseudo random integer in a specified range.

See also

```
vrna_urn(), vrna_init_rand()
```

### **Parameters**

| from | The first number in range |
|------|---------------------------|
| to   | The last number in range  |

#### Returns

A pseudo random number in range [from, to]

### 16.51.3.7 vrna\_time\_stamp()

Get a timestamp.

Returns a string containing the current date in the format

```
Fri Mar 19 21:10:57 1993
```

### Returns

A string containing the timestamp

### 16.51.3.8 get\_input\_line()

Retrieve a line from 'stdin' savely while skipping comment characters and other features This function returns the type of input it has read if recognized. An option argument allows one to switch between different reading modes. Currently available options are:

VRNA\_INPUT\_COMMENT, VRNA\_INPUT\_NOSKIP\_COMMENTS, VRNA\_INPUT\_NO\_TRUNCATION pass a collection of options as one value like this:

```
get_input_line(string, option_1 | option_2 | option_n)
```

If the function recognizes the type of input, it will report it in the return value. It also reports if a user defined 'quit' command (-sign on 'stdin') was given. Possible return values are:

VRNA\_INPUT\_FASTA\_HEADER, VRNA\_INPUT\_ERROR, VRNA\_INPUT\_MISC, VRNA\_INPUT\_QUIT

#### **Parameters**

| string  | A pointer to the character array that contains the line read |  |
|---------|--------------------------------------------------------------|--|
| options | A collection of options for switching the functions behavior |  |

#### Returns

A flag with information about what has been read

### 16.51.3.9 vrna\_idx\_row\_wise()

Get an index mapper array (iindx) for accessing the energy matrices, e.g. in partition function related functions. Access of a position "(i,j)" is then accomplished by using

```
(i, j) ~ iindx[i]-j
```

This function is necessary as most of the two-dimensional energy matrices are actually one-dimensional arrays throughout the ViennaRNA Package

Consult the implemented code to find out about the mapping formula;)

### See also

```
vrna idx col wise()
```

#### **Parameters**

| length | The length of the RNA sequence |
|--------|--------------------------------|
|--------|--------------------------------|

### Returns

The mapper array

### 16.51.3.10 vrna\_idx\_col\_wise()

16.52 Exterior Loops 389

```
#include <ViennaRNA/utils/basic.h>
```

Get an index mapper array (indx) for accessing the energy matrices, e.g. in MFE related functions. Access of a position "(i,j)" is then accomplished by using

```
1 (3)
```

```
(i,j) \sim indx[j]+i
```

This function is necessary as most of the two-dimensional energy matrices are actually one-dimensional arrays throughout the ViennaRNAPackage

Consult the implemented code to find out about the mapping formula;)

See also

```
vrna idx row wise()
```

#### **Parameters**

|  | length | The length of the RNA sequence |
|--|--------|--------------------------------|
|--|--------|--------------------------------|

#### Returns

The mapper array

#### 16.51.4 Variable Documentation

#### 16.51.4.1 xsubi

```
unsigned short xsubi[3] [extern]
#include <ViennaRNA/utils/basic.h>
```

Current 48 bit random number.

This variable is used by vrna\_urn(). These should be set to some random number seeds before the first call to vrna\_urn().

See also

vrna urn()

# 16.52 Exterior Loops

Functions to evaluate the free energy contributions for exterior loops.

### 16.52.1 Detailed Description

Functions to evaluate the free energy contributions for exterior loops. Collaboration diagram for Exterior Loops:

### **Files**

· file external.h

Energy evaluation of exterior loops for MFE and partition function calculations.

# Boltzmann weight (partition function) interface

typedef struct vrna\_mx\_pf\_aux\_el\_s \* vrna\_mx\_pf\_aux\_el\_t

Auxiliary helper arrays for fast exterior loop computations.

• FLT\_OR\_DBL vrna\_exp\_E\_ext\_stem (unsigned int type, int n5d, int n3d, vrna\_exp\_param\_t \*p)

Evaluate a stem branching off the exterior loop (Boltzmann factor version)

- vrna\_mx\_pf\_aux\_el\_t vrna\_exp\_E\_ext\_fast\_init (vrna\_fold\_compound\_t \*fc)
- void vrna\_exp\_E\_ext\_fast\_rotate (vrna\_mx\_pf\_aux\_el\_t aux\_mx)
- void vrna\_exp\_E\_ext\_fast\_free (vrna\_mx\_pf\_aux\_el\_t aux\_mx)
- FLT\_OR\_DBL vrna\_exp\_E\_ext\_fast (vrna\_fold\_compound\_t \*fc, int i, int j, vrna\_mx\_pf\_aux\_el\_t aux\_mx)
- void vrna\_exp\_E\_ext\_fast\_update (vrna\_fold\_compound\_t \*fc, int j, vrna\_mx\_pf\_aux\_el\_t aux\_mx)

# Basic free energy interface

- int vrna\_E\_ext\_stem (unsigned int type, int n5d, int n3d, vrna\_param\_t \*p)
   Evaluate a stem branching off the exterior loop.
- int vrna\_eval\_ext\_stem (vrna\_fold\_compound\_t \*fc, int i, int j)

Evaluate the free energy of a base pair in the exterior loop.

- int vrna\_E\_ext\_loop\_5 (vrna\_fold\_compound\_t \*fc)
- int vrna\_E\_ext\_loop\_3 (vrna\_fold\_compound\_t \*fc, int i)

### 16.52.2 Typedef Documentation

### 16.52.2.1 vrna\_mx\_pf\_aux\_el\_t

```
typedef struct vrna_mx_pf_aux_el_s* vrna_mx_pf_aux_el_t
#include <ViennaRNA/loops/external.h>
```

Auxiliary helper arrays for fast exterior loop computations.

See also

vrna\_exp\_E\_ext\_fast\_init(), vrna\_exp\_E\_ext\_fast\_rotate(), vrna\_exp\_E\_ext\_fast\_free(), vrna\_exp\_E\_ext\_← fast()

### 16.52.3 Function Documentation

### 16.52.3.1 vrna\_E\_ext\_stem()

Evaluate a stem branching off the exterior loop.

Given a base pair (i,j) encoded by  $\it type$ , compute the energy contribution including dangling-end/terminal-mismatch contributions. Instead of returning the energy contribution per-se, this function returns the corresponding Boltzmann factor. If either of the adjacent nucleotides (i-1) and (j+1) must not contribute stacking energy, the corresponding encoding must be -1.

See also

```
vrna_E_exp_stem()
```

#### **Parameters**

| type | The base pair encoding                                                               |
|------|--------------------------------------------------------------------------------------|
| n5d  | The encoded nucleotide directly adjacent at the 5' side of the base pair (may be -1) |
| n3d  | The encoded nucleotide directly adjacent at the 3' side of the base pair (may be -1) |
| р    | The pre-computed energy parameters                                                   |

16.52 Exterior Loops 391

#### Returns

The energy contribution of the introduced exterior-loop stem

### 16.52.3.2 vrna\_eval\_ext\_stem()

Evaluate the free energy of a base pair in the exterior loop.

Evalue the free energy of a base pair connecting two nucleotides in the exterior loop and take hard constraints into account.

Typically, this is simply dangling end contributions of the adjacent nucleotides, potentially a terminal A-U mismatch penalty, and maybe some generic soft constraint contribution for that decomposition.

#### Note

For dangles  $== 1 \mid | 3$  this function also evaluates the three additional pairs (i + 1, j), (i, j - 1), and (i + 1, j - 1) and returns the minimum for all four possibilities in total.

#### **Parameters**

| fc | Fold compound to work on (defines the model and parameters) |
|----|-------------------------------------------------------------|
| i  | 5' position of the base pair                                |
| j  | 3' position of the base pair                                |

#### Returns

Free energy contribution that arises when this pair is formed in the exterior loop

### 16.52.3.3 vrna\_exp\_E\_ext\_stem()

Evaluate a stem branching off the exterior loop (Boltzmann factor version)

Given a base pair (i,j) encoded by  $\it type$ , compute the energy contribution including dangling-end/terminal-mismatch contributions. Instead of returning the energy contribution per-se, this function returns the corresponding Boltzmann factor. If either of the adjacent nucleotides (i-1) and (j+1) must not contribute stacking energy, the corresponding encoding must be -1.

### See also

```
vrna_E_ext_stem()
```

#### **Parameters**

| type | The base pair encoding                                                               |
|------|--------------------------------------------------------------------------------------|
| n5d  | The encoded nucleotide directly adjacent at the 5' side of the base pair (may be -1) |
| n3d  | The encoded nucleotide directly adjacent at the 3' side of the base pair (may be -1) |
| р    | The pre-computed energy parameters (Boltzmann factor version)                        |

Returns

The Boltzmann weighted energy contribution of the introduced exterior-loop stem

# 16.53 Hairpin Loops

Functions to evaluate the free energy contributions for hairpin loops.

### 16.53.1 Detailed Description

Functions to evaluate the free energy contributions for hairpin loops. Collaboration diagram for Hairpin Loops:

### **Files**

· file hairpin.h

Energy evaluation of hairpin loops for MFE and partition function calculations.

### Basic free energy interface

```
    int vrna E hp loop (vrna fold compound t *fc, int i, int j)
```

Evaluate the free energy of a hairpin loop and consider hard constraints if they apply.

int vrna\_E\_ext\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

Evaluate the free energy of an exterior hairpin loop and consider possible hard constraints.

int vrna\_eval\_ext\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

Evaluate free energy of an exterior hairpin loop.

• int vrna\_eval\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

Evaluate free energy of a hairpin loop.

PRIVATE int E\_Hairpin (int size, int type, int si1, int sj1, const char \*string, vrna\_param\_t \*P)

Compute the Energy of a hairpin-loop.

### Boltzmann weight (partition function) interface

```
    PRIVATE FLT_OR_DBL exp_E_Hairpin (int u, int type, short si1, short sj1, const char *string, vrna_exp_param_t *P)
```

Compute Boltzmann weight  $e^{-\Delta G/kT}$  of a hairpin loop.

• FLT\_OR\_DBL vrna\_exp\_E\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

High-Level function for hairpin loop energy evaluation (partition function variant)

### 16.53.2 Function Documentation

# 16.53.2.1 vrna\_E\_hp\_loop()

Evaluate the free energy of a hairpin loop and consider hard constraints if they apply.

This function evaluates the free energy of a hairpin loop

In case the base pair is not allowed due to a constraint conflict, this function returns INF.

Note

This function is polymorphic! The provided vrna\_fold\_compound\_t may be of type VRNA\_FC\_TYPE\_SINGLE or VRNA\_FC\_TYPE\_COMPARATIVE

16.53 Hairpin Loops 393

#### **Parameters**

| fc | The vrna_fold_compound_t that stores all relevant model settings                      |
|----|---------------------------------------------------------------------------------------|
| i  | The 5' nucleotide of the base pair (3' to evaluate the pair as exterior hairpin loop) |
| j  | The 3' nucleotide of the base pair (5' to evaluate the pair as exterior hairpin loop) |

### Returns

The free energy of the hairpin loop in 10cal/mol

### 16.53.2.2 vrna\_E\_ext\_hp\_loop()

Evaluate the free energy of an exterior hairpin loop and consider possible hard constraints.

Note

This function is polymorphic! The provided vrna\_fold\_compound\_t may be of type VRNA\_FC\_TYPE\_SINGLE or VRNA\_FC\_TYPE\_COMPARATIVE

### 16.53.2.3 vrna\_eval\_hp\_loop()

Note

This function is polymorphic! The provided vrna\_fold\_compound\_t may be of type VRNA\_FC\_TYPE\_SINGLE or VRNA\_FC\_TYPE\_COMPARATIVE

#### **Parameters**

| fc | The vrna_fold_compound_t for the particular energy evaluation |
|----|---------------------------------------------------------------|
| i  | 5'-position of the base pair                                  |
| j  | 3'-position of the base pair                                  |

### Returns

Free energy of the hairpin loop closed by (i,j) in deka-kal/mol

SWIG Wrapper Notes This function is attached as method eval\_hp\_loop() to objects of type fold\_compound

### 16.53.2.4 E\_Hairpin()

```
PRIVATE int E_Hairpin ( int \ size,
```

```
int type,
    int sil,
    int sjl,
    const char * string,
        vrna_param_t * P )
#include <ViennaRNA/loops/hairpin.h>
```

Compute the Energy of a hairpin-loop.

To evaluate the free energy of a hairpin-loop, several parameters have to be known. A general hairpin-loop has this structure:

```
a3 a4
a2 a5
a1 a6
X - Y
| | |
5' 3'
```

where X-Y marks the closing pair [e.g. a (G,C) pair]. The length of this loop is 6 as there are six unpaired nucleotides (a1-a6) enclosed by (X,Y). The 5' mismatching nucleotide is a1 while the 3' mismatch is a6. The nucleotide sequence of this loop is "a1.a2.a3.a4.a5.a6"

### Note

The parameter sequence should contain the sequence of the loop in capital letters of the nucleic acid alphabet if the loop size is below 7. This is useful for unusually stable tri-, tetra- and hexa-loops which are treated differently (based on experimental data) if they are tabulated.

#### See also

```
scale_parameters()
vrna_param_t
```

### Warning

Not (really) thread safe! A threadsafe implementation will replace this function in a future release! Energy evaluation may change due to updates in global variable "tetra\_loop"

### **Parameters**

| size   | The size of the loop (number of unpaired nucleotides)                                         |  |
|--------|-----------------------------------------------------------------------------------------------|--|
| type   | The pair type of the base pair closing the hairpin                                            |  |
| si1    | The 5'-mismatching nucleotide                                                                 |  |
| sj1    | The 3'-mismatching nucleotide                                                                 |  |
| string | The sequence of the loop (May be $\mathtt{NULL}$ , otherwise mst be at least $size + 2$ long) |  |
| Р      | The datastructure containing scaled energy parameters                                         |  |

### Returns

The Free energy of the Hairpin-loop in dcal/mol

### 16.53.2.5 exp\_E\_Hairpin()

```
PRIVATE FLT_OR_DBL exp_E_Hairpin ( int \ \textit{u,}
```

16.54 Internal Loops 395

#### Warning

Not (really) thread safe! A threadsafe implementation will replace this function in a future release! Energy evaluation may change due to updates in global variable "tetra\_loop"

#### **Parameters**

| и      | The size of the loop (number of unpaired nucleotides)                                         |  |
|--------|-----------------------------------------------------------------------------------------------|--|
| type   | The pair type of the base pair closing the hairpin                                            |  |
| si1    | The 5'-mismatching nucleotide                                                                 |  |
| sj1    | The 3'-mismatching nucleotide                                                                 |  |
| string | The sequence of the loop (May be $\mathtt{NULL}$ , otherwise mst be at least $size + 2$ long) |  |
| Р      | The datastructure containing scaled Boltzmann weights of the energy parameters                |  |

### Returns

The Boltzmann weight of the Hairpin-loop

### 16.53.2.6 vrna\_exp\_E\_hp\_loop()

See also

```
vrna_E_hp_loop() for it's free energy counterpart
```

Note

This function is polymorphic! The provided vrna\_fold\_compound\_t may be of type VRNA\_FC\_TYPE\_SINGLE or VRNA\_FC\_TYPE\_COMPARATIVE

# 16.54 Internal Loops

Functions to evaluate the free energy contributions for internal loops.

### 16.54.1 Detailed Description

Functions to evaluate the free energy contributions for internal loops. Collaboration diagram for Internal Loops:

### **Files**

· file internal.h

Energy evaluation of interior loops for MFE and partition function calculations.

### Basic free energy interface

```
• int vrna_E_int_loop (vrna_fold_compound_t *fc, int i, int j)
```

```
• int vrna_eval_int_loop (vrna_fold_compound_t *fc, int i, int j, int k, int l)
```

Evaluate the free energy contribution of an interior loop with delimiting base pairs (i, j) and (k, l).

- int vrna E ext int loop (vrna fold compound t \*fc, int i, int j, int \*ip, int \*iq)
- int vrna\_E\_stack (vrna\_fold\_compound\_t \*fc, int i, int j)

### **Boltzmann weight (partition function) interface**

```
• FLT_OR_DBL vrna_exp_E_int_loop (vrna_fold_compound_t *fc, int i, int j)
```

```
• FLT_OR_DBL vrna_exp_E_interior_loop (vrna_fold_compound_t *fc, int i, int j, int k, int l)
```

### 16.54.2 Function Documentation

### 16.54.2.1 vrna\_eval\_int\_loop()

Evaluate the free energy contribution of an interior loop with delimiting base pairs (i, j) and (k, l).

Note

This function is polymorphic, i.e. it accepts vrna\_fold\_compound\_t of type VRNA\_FC\_TYPE\_SINGLE as well as VRNA\_FC\_TYPE\_COMPARATIVE

SWIG Wrapper Notes This function is attached as method eval\_int\_loop() to objects of type fold\_compound

# 16.55 Multibranch Loops

Functions to evaluate the free energy contributions for mutlibranch loops.

### 16.55.1 Detailed Description

Functions to evaluate the free energy contributions for mutlibranch loops. Collaboration diagram for Multibranch Loops:

### **Files**

· file multibranch.h

Energy evaluation of multibranch loops for MFE and partition function calculations.

### Boltzmann weight (partition function) interface

- typedef struct vrna\_mx\_pf\_aux\_ml\_s \* vrna\_mx\_pf\_aux\_ml\_t
   Auxiliary helper arrays for fast exterior loop computations.
- FLT\_OR\_DBL vrna\_exp\_E\_mb\_loop\_fast (vrna\_fold\_compound\_t \*fc, int i, int j, vrna\_mx\_pf\_aux\_ml\_t aux mx)
- vrna mx pf aux ml t vrna exp E ml fast init (vrna fold compound t \*fc)
- void vrna exp E ml fast rotate (vrna mx pf aux ml t aux mx)
- void vrna\_exp\_E\_ml\_fast\_free (vrna\_mx\_pf\_aux\_ml\_t aux\_mx)
- const FLT\_OR\_DBL \* vrna\_exp\_E\_ml\_fast\_qqm (vrna\_mx\_pf\_aux\_ml\_t aux\_mx)
- const FLT\_OR\_DBL \* vrna\_exp\_E\_ml\_fast\_qqm1 (vrna\_mx\_pf\_aux\_ml\_t aux\_mx)
- FLT\_OR\_DBL vrna\_exp\_E\_ml\_fast (vrna\_fold\_compound\_t \*fc, int i, int j, vrna\_mx\_pf\_aux\_ml\_t aux\_mx)

### Basic free energy interface

- int vrna\_E\_mb\_loop\_stack (vrna\_fold\_compound\_t \*fc, int i, int j)
  - Evaluate energy of a multi branch helices stacking onto closing pair (i,j)
- int vrna E mb loop fast (vrna fold compound t \*fc, int i, int j, int \*dmli1, int \*dmli2)
- int E ml rightmost stem (int i, int j, vrna fold compound t \*fc)
- int vrna\_E\_ml\_stems\_fast (vrna\_fold\_compound\_t \*fc, int i, int j, int \*fmi, int \*dmli)

### 16.55.2 Typedef Documentation

### 16.55.2.1 vrna\_mx\_pf\_aux\_ml\_t

```
typedef struct vrna_mx_pf_aux_ml_s* vrna_mx_pf_aux_ml_t
#include <ViennaRNA/loops/multibranch.h>
Auxiliary helper arrays for fast exterior loop computations.
```

See also

vrna\_exp\_E\_ml\_fast\_init(), vrna\_exp\_E\_ml\_fast\_rotate(), vrna\_exp\_E\_ml\_fast\_free(), vrna\_exp\_E\_ml\_fast()

### 16.55.3 Function Documentation

### 16.55.3.1 vrna\_E\_mb\_loop\_stack()

Evaluate energy of a multi branch helices stacking onto closing pair (i,j)
Computes total free energy for coaxial stacking of (i.j) with (i+1.k) or (k+1.j-1)

# 16.56 Partition Function for Two Hybridized Sequences

Partition Function Cofolding.

### 16.56.1 Detailed Description

Partition Function Cofolding.

To simplify the implementation the partition function computation is done internally in a null model that does not include the duplex initiation energy, i.e. the entropic penalty for producing a dimer from two monomers). The resulting free energies and pair probabilities are initially relative to that null model. In a second step the free energies can be corrected to include the dimerization penalty, and the pair probabilities can be divided into the conditional pair probabilities given that a re dimer is formed or not formed. See [2] for further details.

As for folding one RNA molecule, this computes the partition function of all possible structures and the base pair probabilities. Uses the same global pf\_scale variable to avoid overflows.

After computing the partition functions of all possible dimeres one can compute the probabilities of base pairs, the concentrations out of start concentrations and sofar and soaway.

Dimer formation is inherently concentration dependent. Given the free energies of the monomers A and B and dimers AB, AA, and BB one can compute the equilibrium concentrations, given input concentrations of A and B, see e.g. Dimitrov & Zuker (2004) Collaboration diagram for Partition Function for Two Hybridized Sequences:

### **Files**

· file concentrations.h

Concentration computations for RNA-RNA interactions.

· file part func up.h

Implementations for accessibility and RNA-RNA interaction as a stepwise process.

### **Typedefs**

typedef struct vrna\_dimer\_pf\_s vrna\_dimer\_pf\_t

Typename for the data structure that stores the dimer partition functions, vrna\_dimer\_pf\_s, as returned by vrna\_pf\_dimer()

typedef struct vrna\_dimer\_pf\_s cofoldF

Backward compatibility typedef for vrna\_dimer\_pf\_s.

### **Variables**

int mirnatog

Toggles no intrabp in 2nd mol.

• double **F\_monomer** [2]

Free energies of the two monomers.

• typedef struct vrna\_dimer\_conc\_s vrna\_dimer\_conc\_t

Typename for the data structure that stores the dimer concentrations, vrna\_dimer\_conc\_s, as required by vrna\_pf← \_dimer\_concentration()

typedef struct vrna\_dimer\_conc\_s ConcEnt

Backward compatibility typedef for vrna\_dimer\_conc\_s.

• vrna\_dimer\_conc\_t \* vrna\_pf\_dimer\_concentrations (double FcAB, double FcAA, double FcBB, double FEA, double FEB, const double \*startconc, const vrna\_exp\_param\_t \*exp\_params)

Given two start monomer concentrations a and b, compute the concentrations in thermodynamic equilibrium of all dimers and the monomers.

# Simplified global partition function computation using sequence(s) or multiple sequence alignment(s)

• vrna\_dimer\_pf\_t vrna\_pf\_co\_fold (const char \*seq, char \*structure, vrna\_ep\_t \*\*pl)

Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.

### 16.56.2 Function Documentation

### 16.56.2.1 vrna\_pf\_co\_fold()

Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.

This simplified interface to vrna\_pf\_dimer() computes the partition function and, if required, base pair probabilities for an RNA-RNA interaction using default options. Memory required for dynamic programming (DP) matrices will be allocated and free'd on-the-fly. Hence, after return of this function, the recursively filled matrices are not available any more for any post-processing.

### Note

In case you want to use the filled DP matrices for any subsequent post-processing step, or you require other conditions than specified by the default model details, use <a href="mailto:vrna\_pf\_dimer">vrna\_pf\_dimer</a>(), and the data structure <a href="vrna\_fold\_compound\_tinstead">vrna\_fold\_compound\_tinstead</a>.

#### See also

```
vrna pf dimer()
```

#### **Parameters**

| seq                                                                             | Two concatenated RNA sequences with a delimiting '&' in between                                      |  |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| structure                                                                       | A pointer to the character array where position-wise pairing propensity will be stored. (Maybe NULL) |  |
| pl A pointer to a list of vrna_ep_t to store pairing probabilities (Maybe NULL) |                                                                                                      |  |

### Returns

vrna dimer pf t structure containing a set of energies needed for concentration computations.

### 16.56.2.2 vrna\_pf\_dimer\_concentrations()

Given two start monomer concentrations a and b, compute the concentrations in thermodynamic equilibrium of all dimers and the monomers.

This function takes an array 'startconc' of input concentrations with alternating entries for the initial concentrations of molecules A and B (terminated by two zeroes), then computes the resulting equilibrium concentrations from the free energies for the dimers. Dimer free energies should be the dimer-only free energies, i.e. the FcAB entries from the vrna dimer pf t struct.

### **Parameters**

| FcAB | Free energy of AB dimer (FcAB entry) |
|------|--------------------------------------|
| FcAA | Free energy of AA dimer (FcAB entry) |
| FcBB | Free energy of BB dimer (FcAB entry) |

### **Parameters**

| FEA        | Free energy of monomer A                                           |
|------------|--------------------------------------------------------------------|
| FEB        | Free energy of monomer B                                           |
| startconc  | List of start concentrations [a0],[b0],[a1],[b1],,[an][bn],[0],[0] |
| exp_params | The precomputed Boltzmann factors                                  |

#### Returns

vrna\_dimer\_conc\_t array containing the equilibrium energies and start concentrations

# 16.57 Partition Function for two Hybridized Sequences as a Stepwise Process

RNA-RNA interaction as a stepwise process.

# 16.57.1 Detailed Description

RNA-RNA interaction as a stepwise process.

In this approach to cofolding the interaction between two RNA molecules is seen as a stepwise process. In a first step, the target molecule has to adopt a structure in which a binding site is accessible. In a second step, the ligand molecule will hybridize with a region accessible to an interaction. Consequently the algorithm is designed as a two step process: The first step is the calculation of the probability that a region within the target is unpaired, or equivalently, the calculation of the free energy needed to expose a region. In the second step we compute the free energy of an interaction for every possible binding site. Collaboration diagram for Partition Function for two Hybridized Sequences as a Stepwise Process:

### **Functions**

- pu\_contrib \* pf\_unstru (char \*sequence, int max\_w)
  - Calculate the partition function over all unpaired regions of a maximal length.
- interact \* pf\_interact (const char \*s1, const char \*s2, pu\_contrib \*p\_c, pu\_contrib \*p\_c2, int max\_w, char \*cstruc, int incr3, int incr5)

Calculates the probability of a local interaction between two sequences.

void free\_interact (interact \*pin)

Frees the output of function pf\_interact().

void free\_pu\_contrib\_struct (pu\_contrib \*pu)

Frees the output of function pf\_unstru().

### 16.57.2 Function Documentation

### 16.57.2.1 pf\_unstru()

Calculate the partition function over all unpaired regions of a maximal length.

You have to call function pf\_fold() providing the same sequence before calling pf\_unstru(). If you want to calculate unpaired regions for a constrained structure, set variable 'structure' in function 'pf\_fold()' to the constrain string. It returns a pu\_contrib struct containing four arrays of dimension [i = 1 to length(sequence)][j = 0 to u-1] containing all possible contributions to the probabilities of unpaired regions of maximum length u. Each array in pu\_contrib contains one of the contributions to the total probability of being unpaired: The probability of being unpaired within an

exterior loop is in array pu\_contrib->E, the probability of being unpaired within a hairpin loop is in array pu\_contrib->H, the probability of being unpaired within an interior loop is in array pu\_contrib->I and probability of being unpaired within a multi-loop is in array pu\_contrib->M. The total probability of being unpaired is the sum of the four arrays of pu\_contrib.

This function frees everything allocated automatically. To free the output structure call free\_pu\_contrib().

#### Parameters 4 8 1

| sequence |  |
|----------|--|
| max_w    |  |

Returns

### 16.57.2.2 pf\_interact()

Calculates the probability of a local interaction between two sequences.

The function considers the probability that the region of interaction is unpaired within 's1' and 's2'. The longer sequence has to be given as 's1'. The shorter sequence has to be given as 's2'. Function pf\_unstru() has to be called for 's1' and 's2', where the probabilities of being unpaired have to be given in 'p\_c' and 'p\_c2', respectively. If you do not want to include the probabilities of being unpaired for 's2' set 'p\_c2' to NULL. If variable 'cstruc' is not NULL, constrained folding is done: The available constrains for intermolecular interaction are: '.' (no constrain), 'x' (the base has no intermolecular interaction) and '|' (the corresponding base has to be paired intermolecularily).

The parameter 'w' determines the maximal length of the interaction. The parameters 'incr5' and 'incr3' allows inclusion of unpaired residues left ('incr5') and right ('incr3') of the region of interaction in 's1'. If the 'incr' options are used, function pf unstru() has to be called with w=w+incr5+incr3 for the longer sequence 's1'.

It returns a structure of type interact which contains the probability of the best local interaction including residue in Pi and the minimum free energy in Gi, where i is the position in sequence 's1'. The member Gikjl of structure interact is the best interaction between region [k,i] k < i in longer sequence 's1' and region [j,l] j < l in 's2'. Gikjl\_wo is Gikjl without the probability of beeing unpaired.

Use free\_interact() to free the returned structure, all other stuff is freed inside pf\_interact().

#### **Parameters**

| s1         |  |
|------------|--|
| s2         |  |
| <i>p_c</i> |  |
| p_c2       |  |
| max⇔       |  |
| _ <i>w</i> |  |
| cstruc     |  |
| incr3      |  |
| incr5      |  |
|            |  |

Returns

# 16.58 Reading/Writing Energy Parameter Sets from/to File

Read and Write energy parameter sets from and to files or strings.

### 16.58.1 Detailed Description

Read and Write energy parameter sets from and to files or strings.

Collaboration diagram for Reading/Writing Energy Parameter Sets from/to File:

### **Modules**

· Converting Energy Parameter Files

Convert energy parameter files into the latest format.

### **Macros**

• #define VRNA\_PARAMETER\_FORMAT\_DEFAULT 0

Default Energy Parameter File format.

### **Functions**

• int vrna\_params\_load (const char fname[], unsigned int options)

Load energy parameters from a file.

int vrna\_params\_save (const char fname[], unsigned int options)

Save energy parameters to a file.

int vrna\_params\_load\_from\_string (const char \*string, const char \*name, unsigned int options)

Load energy paramters from string.

· int vrna params load defaults (void)

Load default RNA energy parameter set.

int vrna\_params\_load\_RNA\_Turner2004 (void)

Load Turner 2004 RNA energy parameter set.

• int vrna\_params\_load\_RNA\_Turner1999 (void)

int vina\_paramo\_load\_riivi\_ramorrood (void)

Load Turner 1999 RNA energy parameter set.

• int vrna\_params\_load\_RNA\_Andronescu2007 (void)

Load Andronsecu 2007 RNA energy parameter set.

• int vrna\_params\_load\_RNA\_Langdon2018 (void)

Load Langdon 2018 RNA energy parameter set.

• int vrna\_params\_load\_RNA\_misc\_special\_hairpins (void)

Load Misc Special Hairpin RNA energy parameter set.

int vrna\_params\_load\_DNA\_Mathews2004 (void)

Load Mathews 2004 DNA energy parameter set.

• int vrna params load DNA Mathews1999 (void)

Load Mathews 1999 DNA energy parameter set.

const char \* last\_parameter\_file (void)

Get the file name of the parameter file that was most recently loaded.

void read parameter file (const char fname[])

Read energy parameters from a file.

void write\_parameter\_file (const char fname[])

Write energy parameters to a file.

### 16.58.2 Macro Definition Documentation

### 16.58.2.1 VRNA\_PARAMETER\_FORMAT\_DEFAULT

```
#define VRNA_PARAMETER_FORMAT_DEFAULT 0
#include <ViennaRNA/params/io.h>
Default Energy Parameter File format.
```

See also

vrna\_params\_load(), vrna\_params\_load\_from\_string(), vrna\_params\_save()

#### 16.58.3 Function Documentation

#### 16.58.3.1 vrna params load()

#### See also

vrna\_params\_load\_from\_string(), vrna\_params\_save(), vrna\_params\_load\_defaults(), vrna\_params\_load\_RNA\_Turner2004(), vrna\_params\_load\_RNA\_Turner1999(), vrna\_params\_load\_RNA\_Andronescu2007(), vrna\_params\_load\_RNA\_Langdon2018(vrna\_params\_load\_RNA\_misc\_special\_hairpins(), vrna\_params\_load\_DNA\_Mathews2004(), vrna\_params\_l

#### **Parameters**

| fname   | The path to the file containing the energy parameters        |  |
|---------|--------------------------------------------------------------|--|
| options | File format bit-mask (usually VRNA_PARAMETER_FORMAT_DEFAULT) |  |

#### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as overloaded function params\_load(fname="", options=VRNA\_PARAMETER\_FOR Here, the empty filename string indicates to load default RNA parameters, i.e. this is equivalent to calling vrna\_params\_load\_defaults().

# 16.58.3.2 vrna\_params\_save()

### See also

vrna\_params\_load()

#### **Parameters**

| fname   | A filename (path) for the file where the current energy parameters will be written to |
|---------|---------------------------------------------------------------------------------------|
| options | File format bit-mask (usually VRNA_PARAMETER_FORMAT_DEFAULT)                          |

#### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as overloaded function params\_save(fname, options=VRNA\_PARAMETER\_FORM

### 16.58.3.3 vrna\_params\_load\_from\_string()

Load energy paramters from string.

The string must follow the default energy parameter file convention! The optional name argument allows one to specify a name for the parameter set which is stored internally.

#### See also

```
vrna_params_load(), vrna_params_save(), vrna_params_load_defaults(), vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(), vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(), vrna_params_DNA_Mat
```

#### **Parameters**

| string                                                              | A 0-terminated string containing energy parameters  |  |
|---------------------------------------------------------------------|-----------------------------------------------------|--|
| name                                                                | A name for the parameter set in string (Maybe NULL) |  |
| options File format bit-mask (usually VRNA_PARAMETER_FORMAT_DEFAULT |                                                     |  |

### Returns

Non-zero on success, 0 on failure

**SWIG Wrapper Notes** This function is available as overloaded function **params\_load\_from\_string**(string, name="", options=VRNA\_PARAMETER\_FORMAT\_DEFAULT).

#### 16.58.3.4 vrna params load defaults()

Load default RNA energy parameter set.

This is a convenience function to load the Turner 2004 RNA free energy parameters. It's the same as calling vrna params load RNA Turner2004()

### See also

vrna\_params\_load(), vrna\_params\_load\_from\_string(), vrna\_params\_save(), vrna\_params\_load\_RNA\_Turner2004(), vrna\_params\_load\_RNA\_Turner1999(), vrna\_params\_load\_RNA\_Andronescu2007(), vrna\_params\_load\_RNA\_Langdon2018(vrna\_params\_load\_RNA\_misc\_special\_hairpins(), vrna\_params\_load\_DNA\_Mathews2004(), vrna\_params\_load\_DNA\_M

#### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as overloaded function params\_load().

### 16.58.3.5 vrna\_params\_load\_RNA\_Turner2004()

#### See also

vrna\_params\_load(), vrna\_params\_load\_from\_string(), vrna\_params\_save(), vrna\_params\_load\_defaults(), vrna\_params\_load\_RNA\_Turner1999(), vrna\_params\_load\_RNA\_Andronescu2007(), vrna\_params\_load\_RNA\_Langdon2018(vrna\_params\_load\_RNA\_misc\_special\_hairpins(), vrna\_params\_load\_DNA\_Mathews2004(), vrna\_params\_DNA\_Mathews2004(), vrna\_params\_DNA\_Mathews2004(), vrna\_params\_DNA\_Mathews2004(), vrna\_params\_DNA\_Mathews2004(), vrna\_params\_

#### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as function params load RNA Turner2004().

### 16.58.3.6 vrna params load RNA Turner1999()

Load Turner 1999 RNA energy parameter set.

#### See also

```
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(), vrna_params_load_RNA_Turner2004(), vrna_params_load_defaults(), vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(), vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(
```

### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as function params\_load\_RNA\_Turner1999().

### 16.58.3.7 vrna\_params\_load\_RNA\_Andronescu2007()

Load Andronsecu 2007 RNA energy parameter set.

#### See also

```
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(), vrna_params_load_RNA_Turner2004(), vrna_params_load_RNA_Turner1999(), vrna_params_load_defaults(), vrna_params_load_RNA_Langdon2018(), vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(), vrna_params_DNA_Mathews2004(), vrna_params
```

#### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as function params load RNA Andronescu2007().

#### 16.58.3.8 vrna\_params\_load\_RNA\_Langdon2018()

```
int vrna_params_load_RNA_Langdon2018 (
            void )
#include <ViennaRNA/params/io.h>
Load Langdon 2018 RNA energy parameter set.
```

See also

```
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(), vrna_params_load_RNA_Turner2004(),
vrna params load RNA Turner1999(), vrna params load RNA Andronescu2007(), vrna params load defaults(),
vrna_params_load_RNA_misc_special_hairpins(), vrna_params_load_DNA_Mathews2004(), vrna_params_load_DNA
```

### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as function params\_load\_RNA\_Langdon2018().

### 16.58.3.9 vrna\_params\_load\_RNA\_misc\_special\_hairpins()

```
int vrna_params_load_RNA_misc_special_hairpins (
           void )
#include <ViennaRNA/params/io.h>
```

Load Misc Special Hairpin RNA energy parameter set.

#### See also

```
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(), vrna_params_load_RNA_Turner2004(),
vrna_params_load_RNA_Turner1999(), vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(
vrna_params_load_DNA_Mathews1999(), vrna_params_load_DNA_Mathews1999()
```

### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as function params\_load\_RNA\_misc\_special\_hairpins().

### 16.58.3.10 vrna params load DNA Mathews2004()

```
int vrna_params_load_DNA_Mathews2004 (
           void )
#include <ViennaRNA/params/io.h>
```

Load Mathews 2004 DNA energy parameter set.

### See also

```
vrna_params_load(), vrna_params_load_from_string(), vrna_params_save(), vrna_params_load_RNA_Turner2004(),
vrna_params_load_RNA_Turner1999(), vrna_params_load_RNA_Andronescu2007(), vrna_params_load_RNA_Langdon2018(
vrna params load RNA misc special hairpins(), vrna params load defaults(), vrna params load DNA Mathews1999()
```

### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as function params load DNA Mathews2004().

#### 16.58.3.11 vrna\_params\_load\_DNA\_Mathews1999()

Load Mathews 1999 DNA energy parameter set.

#### See also

vrna\_params\_load(), vrna\_params\_load\_from\_string(), vrna\_params\_save(), vrna\_params\_load\_RNA\_Turner2004(), vrna\_params\_load\_RNA\_Turner1999(), vrna\_params\_load\_RNA\_Andronescu2007(), vrna\_params\_load\_RNA\_Langdon2018(vrna\_params\_load\_RNA\_misc\_special\_hairpins(), vrna\_params\_load\_DNA\_Mathews2004(), vrna\_params\_load\_defaults()

### Returns

Non-zero on success, 0 on failure

SWIG Wrapper Notes This function is available as function params\_load\_DNA\_Mathews1999().

### 16.58.3.12 last\_parameter\_file()

Get the file name of the parameter file that was most recently loaded.

#### Returns

The file name of the last parameter file, or NULL if parameters are still at defaults

### 16.58.3.13 read\_parameter\_file()

Read energy parameters from a file.

Deprecated Use vrna\_params\_load() instead!

### **Parameters**

fname The path to the file containing the energy parameters

### 16.58.3.14 write\_parameter\_file()

**Deprecated** Use vrna\_params\_save() instead!

#### **Parameters**

fname A filename (path) for the file where the current energy parameters will be written to

# 16.59 Converting Energy Parameter Files

Convert energy parameter files into the latest format.

### 16.59.1 Detailed Description

Convert energy parameter files into the latest format.

To preserve some backward compatibility the RNAlib also provides functions to convert energy parameter files from the format used in version 1.4-1.8 into the new format used since version 2.0 Collaboration diagram for Converting Energy Parameter Files:

### **Files**

• file 1.8.4 epars.h

Free energy parameters for parameter file conversion.

• file 1.8.4 intloops.h

Free energy parameters for interior loop contributions needed by the parameter file conversion functions.

#### **Macros**

- #define VRNA CONVERT OUTPUT ALL 1U
- #define VRNA CONVERT OUTPUT HP 2U
- #define VRNA CONVERT OUTPUT STACK 4U
- #define VRNA CONVERT OUTPUT MM HP 8U
- #define VRNA\_CONVERT\_OUTPUT\_MM\_INT 16U
- #define VRNA\_CONVERT\_OUTPUT\_MM\_INT\_1N 32U
- #define VRNA\_CONVERT\_OUTPUT\_MM\_INT\_23 64U
- #define VRNA CONVERT OUTPUT MM MULTI 128U
- #define VRNA\_CONVERT\_OUTPUT\_MM\_EXT 256U
- #define VRNA\_CONVERT\_OUTPUT\_DANGLE5 512U
- #define VRNA\_CONVERT\_OUTPUT\_DANGLE3 1024U
- #define VRNA\_CONVERT\_OUTPUT\_INT\_11 2048U
- #define VRNA\_CONVERT\_OUTPUT\_INT\_21 4096U
- #define VRNA CONVERT OUTPUT INT 22 8192U
- #define VRNA CONVERT OUTPUT BULGE 16384U
- #define VRNA\_CONVERT\_OUTPUT\_INT 32768U
- #define VRNA\_CONVERT\_OUTPUT\_ML 65536U
- #define VRNA CONVERT OUTPUT MISC 131072U
- #define VRNA CONVERT OUTPUT SPECIAL HP 262144U
- #define VRNA\_CONVERT\_OUTPUT\_VANILLA 524288U
- #define VRNA\_CONVERT\_OUTPUT\_NINIO 1048576U
- #define VRNA\_CONVERT\_OUTPUT\_DUMP 2097152U

### **Functions**

• void convert parameter file (const char \*iname, const char \*oname, unsigned int options)

# 16.59.2 Macro Definition Documentation

### 16.59.2.1 VRNA\_CONVERT\_OUTPUT\_ALL

#define VRNA\_CONVERT\_OUTPUT\_ALL 1U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of a complete parameter set

### 16.59.2.2 VRNA\_CONVERT\_OUTPUT\_HP

#define VRNA\_CONVERT\_OUTPUT\_HP 2U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of hairpin contributions

# 16.59.2.3 VRNA\_CONVERT\_OUTPUT\_STACK

#define VRNA\_CONVERT\_OUTPUT\_STACK 4U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of base pair stack contributions

### 16.59.2.4 VRNA\_CONVERT\_OUTPUT\_MM\_HP

#define VRNA\_CONVERT\_OUTPUT\_MM\_HP 8U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of hairpin mismatch contribution

#### 16.59.2.5 VRNA CONVERT OUTPUT MM INT

#define VRNA\_CONVERT\_OUTPUT\_MM\_INT 16U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of interior loop mismatch contribution

### 16.59.2.6 VRNA\_CONVERT\_OUTPUT\_MM\_INT\_1N

#define VRNA\_CONVERT\_OUTPUT\_MM\_INT\_1N 32U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of 1:n interior loop mismatch contribution

### 16.59.2.7 VRNA CONVERT OUTPUT MM INT 23

#define VRNA\_CONVERT\_OUTPUT\_MM\_INT\_23 64U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of 2:3 interior loop mismatch contribution

### 16.59.2.8 VRNA\_CONVERT\_OUTPUT\_MM\_MULTI

#define VRNA\_CONVERT\_OUTPUT\_MM\_MULTI 128U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of multi loop mismatch contribution

### 16.59.2.9 VRNA CONVERT OUTPUT MM EXT

#define VRNA\_CONVERT\_OUTPUT\_MM\_EXT 256U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of exterior loop mismatch contribution

### 16.59.2.10 VRNA\_CONVERT\_OUTPUT\_DANGLE5

#define VRNA\_CONVERT\_OUTPUT\_DANGLE5 512U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of 5' dangle conctribution

### 16.59.2.11 VRNA CONVERT OUTPUT DANGLE3

#define VRNA\_CONVERT\_OUTPUT\_DANGLE3 1024U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of 3' dangle contribution

### 16.59.2.12 VRNA\_CONVERT\_OUTPUT\_INT\_11

#define VRNA\_CONVERT\_OUTPUT\_INT\_11 2048U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of 1:1 interior loop contribution

### 16.59.2.13 VRNA\_CONVERT\_OUTPUT\_INT\_21

#define VRNA\_CONVERT\_OUTPUT\_INT\_21 4096U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of 2:1 interior loop contribution

### 16.59.2.14 VRNA\_CONVERT\_OUTPUT\_INT\_22

#define VRNA\_CONVERT\_OUTPUT\_INT\_22 8192U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of 2:2 interior loop contribution

### 16.59.2.15 VRNA\_CONVERT\_OUTPUT\_BULGE

#define VRNA\_CONVERT\_OUTPUT\_BULGE 16384U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of bulge loop contribution

### 16.59.2.16 VRNA\_CONVERT\_OUTPUT\_INT

#define VRNA\_CONVERT\_OUTPUT\_INT 32768U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of interior loop contribution

# 16.59.2.17 VRNA\_CONVERT\_OUTPUT\_ML

#define VRNA\_CONVERT\_OUTPUT\_ML 65536U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of multi loop contribution

# 16.59.2.18 VRNA\_CONVERT\_OUTPUT\_MISC

#define VRNA\_CONVERT\_OUTPUT\_MISC 131072U
#include <ViennaRNA/params/convert.h>

Flag to indicate printing of misc contributions (such as terminalAU)

### 16.59.2.19 VRNA CONVERT OUTPUT SPECIAL HP

```
#define VRNA_CONVERT_OUTPUT_SPECIAL_HP 262144U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of special hairpin contributions (tri-, tetra-, hexa-loops)
```

### 16.59.2.20 VRNA CONVERT OUTPUT VANILLA

```
#define VRNA_CONVERT_OUTPUT_VANILLA 524288U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of given parameters only
```

Note

This option overrides all other output options, except VRNA\_CONVERT\_OUTPUT\_DUMP!

### 16.59.2.21 VRNA\_CONVERT\_OUTPUT\_NINIO

```
#define VRNA_CONVERT_OUTPUT_NINIO 1048576U
#include <ViennaRNA/params/convert.h>
Flag to indicate printing of interior loop asymmetry contribution
```

### 16.59.2.22 VRNA\_CONVERT\_OUTPUT\_DUMP

```
#define VRNA_CONVERT_OUTPUT_DUMP 2097152U
#include <ViennaRNA/params/convert.h>
```

Flag to indicate dumping the energy contributions from the library instead of an input file

### 16.59.3 Function Documentation

#### 16.59.3.1 convert\_parameter\_file()

Convert/dump a Vienna 1.8.4 formatted energy parameter file

The options argument allows one to control the different output modes.

Currently available options are:

```
VRNA_CONVERT_OUTPUT_ALL, VRNA_CONVERT_OUTPUT_HP, VRNA_CONVERT_OUTPUT_STACK
VRNA_CONVERT_OUTPUT_MM_HP, VRNA_CONVERT_OUTPUT_MM_INT, VRNA_CONVERT_OUTPUT_MM_INT_1N
VRNA_CONVERT_OUTPUT_MM_INT_23, VRNA_CONVERT_OUTPUT_MM_MULTI, VRNA_CONVERT_OUTPUT_MM_EXT
VRNA_CONVERT_OUTPUT_DANGLE5, VRNA_CONVERT_OUTPUT_DANGLE3, VRNA_CONVERT_OUTPUT_INT_11
VRNA_CONVERT_OUTPUT_INT_21, VRNA_CONVERT_OUTPUT_INT_22, VRNA_CONVERT_OUTPUT_BULGE
VRNA_CONVERT_OUTPUT_INT, VRNA_CONVERT_OUTPUT_ML, VRNA_CONVERT_OUTPUT_MISC
VRNA_CONVERT_OUTPUT_SPECIAL_HP, VRNA_CONVERT_OUTPUT_VANILLA, VRNA_CONVERT_OUTPUT_NINIO
VRNA_CONVERT_OUTPUT_DUMP
```

The defined options are fine for bitwise compare- and assignment-operations, e. g.: pass a collection of options as a single value like this:

```
convert_parameter_file(ifile, ofile, option_1 | option_2 | option_n)
```

#### **Parameters**

| iname                                    | The input file name (If NULL input is read from stdin)     |  |
|------------------------------------------|------------------------------------------------------------|--|
| oname                                    | The output file name (If NULL output is written to stdout) |  |
| options The options (as described above) |                                                            |  |

# 16.60 Utilities to deal with Nucleotide Alphabets

Functions to cope with various aspects related to the nucleotide sequence alphabet.

# 16.60.1 Detailed Description

Functions to cope with various aspects related to the nucleotide sequence alphabet. Collaboration diagram for Utilities to deal with Nucleotide Alphabets:

### **Files**

· file alphabet.h

Functions to process, convert, and generally handle different nucleotide and/or base pair alphabets.

file sequence.h

Functions and data structures related to sequence representations,.

#### **Data Structures**

· struct vrna sequence s

Data structure representing a nucleotide sequence. More...

struct vrna\_alignment\_s

### **Typedefs**

typedef struct vrna\_sequence\_s vrna\_seq\_t

Typename for nucleotide sequence representation data structure vrna\_sequence\_s.

### **Enumerations**

enum vrna\_seq\_type\_e { VRNA\_SEQ\_UNKNOWN , VRNA\_SEQ\_RNA , VRNA\_SEQ\_DNA }

A enumerator used in vrna\_sequence\_s to distinguish different nucleotide sequences.

### **Functions**

char \* vrna\_ptypes (const short \*S, vrna\_md\_t \*md)

Get an array of the numerical encoding for each possible base pair (i,j)

short \* vrna\_seq\_encode (const char \*sequence, vrna\_md\_t \*md)

Get a numerical representation of the nucleotide sequence.

• short \* vrna seg encode simple (const char \*sequence, vrna md t \*md)

Get a numerical representation of the nucleotide sequence (simple version)

int vrna\_nucleotide\_encode (char c, vrna\_md\_t \*md)

Encode a nucleotide character to numerical value.

char vrna\_nucleotide\_decode (int enc, vrna\_md\_t \*md)

Decode a numerical representation of a nucleotide back into nucleotide alphabet.

### 16.60.2 Data Structure Documentation

### 16.60.2.1 struct vrna\_sequence\_s

Data structure representing a nucleotide sequence.

#### **Data Fields**

• vrna\_seq\_type\_e type

The type of sequence.

• char \* string

The string representation of the sequence.

· short \* encoding

The integer representation of the sequence.

· unsigned int length

The length of the sequence.

### 16.60.2.2 struct vrna\_alignment\_s

Collaboration diagram for vrna\_alignment\_s:

# 16.60.3 Enumeration Type Documentation

### 16.60.3.1 vrna\_seq\_type\_e

```
enum vrna_seq_type_e
#include <ViennaRNA/sequence.h>
```

A enumerator used in vrna\_sequence\_s to distinguish different nucleotide sequences.

### **Enumerator**

| VRNA_SEQ_UNKNOWN | Nucleotide sequence represents an Unkown type. |
|------------------|------------------------------------------------|
| VRNA_SEQ_RNA     | Nucleotide sequence represents an RNA type.    |
| VRNA_SEQ_DNA     | Nucleotide sequence represents a DNA type.     |

### 16.60.4 Function Documentation

# 16.60.4.1 vrna\_ptypes()

Get an array of the numerical encoding for each possible base pair (i,j)

Note

This array is always indexed in column-wise order, in contrast to previously different indexing between mfe and pf variants!

### See also

```
vrna_idx_col_wise(), vrna_fold_compound_t
```

### 16.60.4.2 vrna\_seq\_encode()

Get a numerical representation of the nucleotide sequence.

#### **Parameters**

| sequence | The input sequence in upper-case letters                                   |
|----------|----------------------------------------------------------------------------|
| md       | A pointer to a vrna_md_t data structure that specifies the conversion type |

### Returns

A list of integer encodings for each sequence letter (1-based). Position 0 denotes the length of the list

SWIG Wrapper Notes In the target scripting language, this function is wrapped as overloaded function  $seq\_\leftarrow encode()$  where the last parameter, the  $model\_details$  data structure, is optional. If it is omitted, default model settings are applied, i.e. default nucleotide letter conversion. The wrapped function returns a list/tuple of integer representations of the input sequence.

### 16.60.4.3 vrna\_seq\_encode\_simple()

Get a numerical representation of the nucleotide sequence (simple version)

### 16.60.4.4 vrna\_nucleotide\_encode()

Encode a nucleotide character to numerical value.

This function encodes a nucleotide character to its numerical representation as required by many functions in RNAlib.

See also

```
vrna_nucleotide_decode(), vrna_seq_encode()
```

### Parameters

| С  | The nucleotide character to encode                    |
|----|-------------------------------------------------------|
| md | The model details that determine the kind of encoding |

#### Returns

The encoded nucleotide

### 16.60.4.5 vrna\_nucleotide\_decode()

Decode a numerical representation of a nucleotide back into nucleotide alphabet.

This function decodes a numerical representation of a nucleotide character back into nucleotide alphabet

#### See also

vrna\_nucleotide\_encode(), vrna\_seq\_encode()

#### **Parameters**

| enc | The encoded nucleotide                                |
|-----|-------------------------------------------------------|
| md  | The model details that determine the kind of decoding |

#### Returns

The decoded nucleotide character

# 16.61 (Nucleic Acid Sequence) String Utilitites

Functions to parse, convert, manipulate, create, and compare (nucleic acid sequence) strings.

### 16.61.1 Detailed Description

Functions to parse, convert, manipulate, create, and compare (nucleic acid sequence) strings. Collaboration diagram for (Nucleic Acid Sequence) String Utilitites:

# **Files**

· file strings.h

General utility- and helper-functions for RNA sequence and structure strings used throughout the ViennaRNA Package.

### **Macros**

#define XSTR(s) STR(s)

Stringify a macro after expansion.

#define STR(s) #s

Stringify a macro argument.

• #define FILENAME MAX LENGTH 80

Maximum length of filenames that are generated by our programs.

#define FILENAME\_ID\_LENGTH 42

Maximum length of id taken from fasta header for filename generation.

• #define VRNA\_TRIM\_LEADING 1U

Trim only characters leading the string.

#define VRNA\_TRIM\_TRAILING 2U

Trim only characters trailing the string.

#define VRNA\_TRIM\_IN\_BETWEEN 4U

Trim only characters within the string.

• #define VRNA TRIM SUBST BY FIRST 8U

Replace remaining characters after trimming with the first delimiter in list.

• #define VRNA\_TRIM\_DEFAULT ( VRNA\_TRIM\_LEADING | VRNA\_TRIM\_TRAILING )

Default settings for trimming, i.e. trim leading and trailing.

• #define VRNA TRIM ALL ( VRNA TRIM DEFAULT | VRNA TRIM IN BETWEEN )

Trim characters anywhere in the string.

### **Functions**

char \* vrna\_strdup\_printf (const char \*format,...)

Safely create a formatted string.

char \* vrna\_strdup\_vprintf (const char \*format, va\_list argp)

Safely create a formatted string.

int vrna\_strcat\_printf (char \*\*dest, const char \*format,...)

Safely append a formatted string to another string.

• int vrna\_strcat\_vprintf (char \*\*dest, const char \*format, va\_list args)

Safely append a formatted string to another string.

unsigned int vrna\_strtrim (char \*string, const char \*delimiters, unsigned int keep, unsigned int options)

Trim a string by removing (multiple) occurences of a particular character.

• char \*\* vrna\_strsplit (const char \*string, const char \*delimiter)

Split a string into tokens using a delimiting character.

char \* vrna\_random\_string (int I, const char symbols[])

Create a random string using characters from a specified symbol set.

• int vrna\_hamming\_distance (const char \*s1, const char \*s2)

Calculate hamming distance between two sequences.

int vrna hamming distance bound (const char \*s1, const char \*s2, int n)

Calculate hamming distance between two sequences up to a specified length.

void vrna\_seq\_toRNA (char \*sequence)

Convert an input sequence (possibly containing DNA alphabet characters) to RNA alphabet.

void vrna\_seq\_toupper (char \*sequence)

Convert an input sequence to uppercase.

void vrna\_seq\_reverse (char \*sequence)

Reverse a string in-place.

char \* vrna DNA complement (const char \*sequence)

Retrieve a DNA sequence which resembles the complement of the input sequence.

char \* vrna\_seq\_ungapped (const char \*sequence)

Remove gap characters from a nucleotide sequence.

char \* vrna\_cut\_point\_insert (const char \*string, int cp)

Add a separating '&' character into a string according to cut-point position.

char \* vrna\_cut\_point\_remove (const char \*string, int \*cp)

Remove a separating '&' character from a string.

### 16.61.2 Macro Definition Documentation

### 16.61.2.1 FILENAME\_MAX\_LENGTH

```
#define FILENAME_MAX_LENGTH 80
#include <ViennaRNA/utils/strings.h>
```

Maximum length of filenames that are generated by our programs.

This definition should be used throughout the complete ViennaRNA package wherever a static array holding filenames of output files is declared.

### 16.61.2.2 FILENAME ID LENGTH

```
#define FILENAME_ID_LENGTH 42
#include <ViennaRNA/utils/strings.h>
```

Maximum length of id taken from fasta header for filename generation.

this has to be smaller than FILENAME\_MAX\_LENGTH since in most cases, some suffix will be appended to the ID

### 16.61.2.3 VRNA\_TRIM\_LEADING

```
#define VRNA_TRIM_LEADING 1U
#include <ViennaRNA/utils/strings.h>
Trim only characters leading the string.
```

See also

vrna\_strtrim()

#### 16.61.2.4 VRNA TRIM TRAILING

```
#define VRNA_TRIM_TRAILING 2U
#include <ViennaRNA/utils/strings.h>
Trim only characters trailing the string.
```

See also

vrna\_strtrim()

### 16.61.2.5 VRNA\_TRIM\_IN\_BETWEEN

```
#define VRNA_TRIM_IN_BETWEEN 4U
#include <ViennaRNA/utils/strings.h>
Trim only characters within the string.
```

See also

vrna\_strtrim()

### 16.61.2.6 VRNA\_TRIM\_SUBST\_BY\_FIRST

```
#define VRNA_TRIM_SUBST_BY_FIRST 8U
#include <ViennaRNA/utils/strings.h>
```

Replace remaining characters after trimming with the first delimiter in list.

See also

vrna\_strtrim()

### 16.61.2.7 VRNA\_TRIM\_DEFAULT

```
#define VRNA_TRIM_DEFAULT ( VRNA_TRIM_LEADING | VRNA_TRIM_TRAILING )
#include <ViennaRNA/utils/strings.h>
```

Default settings for trimming, i.e. trim leading and trailing.

See also

vrna\_strtrim()

### 16.61.2.8 VRNA TRIM ALL

```
#define VRNA_TRIM_ALL ( VRNA_TRIM_DEFAULT | VRNA_TRIM_IN_BETWEEN )
#include <ViennaRNA/utils/strings.h>
Trim characters anywhere in the string.
```

See also

vrna\_strtrim()

### 16.61.3 Function Documentation

### 16.61.3.1 vrna\_strdup\_printf()

Safely create a formatted string.

This function is a safe implementation for creating a formatted character array, similar to *sprintf*. Internally, it uses the *asprintf* function if available to dynamically allocate a large enough character array to store the supplied content. If *asprintf* is not available, mimic it's behavior using *vsnprintf*.

Note

The returned pointer of this function should always be passed to free() to release the allocated memory

### See also

```
vrna_strdup_vprintf(), vrna_strcat_printf()
```

### **Parameters**

| forma | at | The format string (See also asprintf)                |
|-------|----|------------------------------------------------------|
|       |    | The list of variables used to fill the format string |

### Returns

The formatted, null-terminated string, or NULL if something has gone wrong

#### 16.61.3.2 vrna strdup vprintf()

```
#include <ViennaRNA/utils/strings.h>
```

Safely create a formatted string.

This function is the *va\_list* version of vrna\_strdup\_printf()

Note

The returned pointer of this function should always be passed to free() to release the allocated memory

## See also

```
vrna_strdup_printf(), vrna_strcat_printf(), vrna_strcat_vprintf()
```

### **Parameters**

| format | The format string (See also asprintf)           |
|--------|-------------------------------------------------|
| argp   | The list of arguments to fill the format string |

### Returns

The formatted, null-terminated string, or NULL if something has gone wrong

# 16.61.3.3 vrna\_strcat\_printf()

Safely append a formatted string to another string.

This function is a safe implementation for appending a formatted character array, similar to a cobination of *strcat* and *sprintf*. The function automatically allocates enough memory to store both, the previous content stored at dest and the appended format string. If the dest pointer is NULL, the function allocate memory only for the format string. The function returns the number of characters in the resulting string or -1 in case of an error.

## See also

```
vrna_strcat_vprintf(), vrna_strdup_printf(), vrna_strdup_vprintf()
```

### **Parameters**

| dest                                                 | The address of a char *pointer where the formatted string is to be appended |  |
|------------------------------------------------------|-----------------------------------------------------------------------------|--|
| format                                               | The format string (See also sprintf)                                        |  |
| The list of variables used to fill the format string |                                                                             |  |

### Returns

The number of characters in the final string, or -1 on error

# 16.61.3.4 vrna\_strcat\_vprintf()

```
#include <ViennaRNA/utils/strings.h> Safely append a formatted string to another string.
```

This function is the va list version of vrna streat printf()

#### See also

vrna strcat printf(), vrna strdup printf(), vrna strdup vprintf()

#### **Parameters**

| dest   | The address of a char *pointer where the formatted string is to be appended |  |
|--------|-----------------------------------------------------------------------------|--|
| format | The format string (See also sprintf)                                        |  |
| args   | gs The list of argument to fill the format string                           |  |

#### Returns

The number of characters in the final string, or -1 on error

### 16.61.3.5 vrna\_strtrim()

Trim a string by removing (multiple) occurences of a particular character.

This function removes (multiple) consecutive occurences of a set of characters (delimiters) within an input string. It may be used to remove leading and/or trailing whitespaces or to restrict the maximum number of consecutive occurences of the delimiting characters delimiters. Setting keep=0 removes all occurences, while other values reduce multiple consecutive occurences to at most keep delimiters. This might be useful if one would like to reduce multiple whitespaces to a single one, or to remove empty fields within a comma-separated value string. The parameter delimiters may be a pointer to a 0-terminated char string containing a set of any ASCII character. If NULL is passed as delimiter set or an empty char string, all whitespace characters are trimmed. The options parameter is a bit vector that specifies which part of the string should undergo trimming. The implementation distinguishes the leading (VRNA\_TRIM\_LEADING), trailing (VRNA\_TRIM\_TRAILING), and in-between (VRNA\_TRIM\_IN\_BETWEEN) part with respect to the delimiter set. Combinations of these parts can be specified by using logical-or operator.

The following example code removes all leading and trailing whitespace characters from the input string:

### Note

The delimiter always consists of a single character from the set of characters provided. In case of alternative delimiters and non-null keep parameter, the first keep delimiters are preserved within the string. Use VRNA\_TRIM\_SUBST\_BY\_FIRST to substitute all remaining delimiting characters with the first from the delimiters list.

# See also

VRNA\_TRIM\_LEADING, VRNA\_TRIM\_TRAILING, VRNA\_TRIM\_IN\_BETWEEN, VRNA\_TRIM\_SUBST\_BY\_FIRST, VRNA\_TRIM\_DEFAULT, VRNA\_TRIM\_ALL

#### **Parameters**

| string     | The '\0'-terminated input string to trim                                           |  |
|------------|------------------------------------------------------------------------------------|--|
| delimiters | The delimiter characters as 0-terminated char array (or NULL)                      |  |
| keep       | The maximum number of consecutive occurences of the delimiter in the output string |  |
| options    | The option bit vector specifying the mode of operation                             |  |

## Returns

The number of delimiters removed from the string

**SWIG Wrapper Notes** Since many scripting languages treat strings as immutable objects, this function does not modify the input string directly. Instead, it returns the modified string as second return value, together with the number of removed delimiters.

The scripting language interface provides an overloaded version of this function, with default parameters delimiters=NULL, keep=0, and options=VRNA\_TRIM\_DEFAULT.

## 16.61.3.6 vrna\_strsplit()

Split a string into tokens using a delimiting character.

This function splits a string into an array of strings using a single character that delimits the elements within the string. The default delimiter is the ampersand '&' and will be used when NULL is passed as a second argument. The returned list is NULL terminated, i.e. the last element is NULL. If the delimiter is not found, the returned list contains exactly one element: the input string.

For instance, the following code:

```
char **tok = vrna_strsplit("GGGG&CCCC&AAAAA", NULL);
for (char **ptr = tok; *ptr; ptr++) {
   printf("%s\n", *ptr);
   free(*ptr);
}
free(tok);
```

# produces this output:

\* GGGG \* CCCC \* AAAAA

and properly free's the memory occupied by the returned element array.

### Note

This function internally uses  $strtok_r()$  and is therefore considered to be thread-safe. Also note, that it is the users responsibility to free the memory of the array and that of the individual element strings!

In case the input string consists of consecutive delimiters, starts or ends with one or multiple delimiters, empty strings are produced in the output list, indicating the empty fields of data resulting from the split. Use <a href="mailto:vrna\_strtrim">vrna\_strtrim</a>() prior to a call to this function to remove any leading, trailing, or in-between empty fields.

## See also

vrna strtrim()

### **Parameters**

| string                                                          | The input string that should be split into elements |  |
|-----------------------------------------------------------------|-----------------------------------------------------|--|
| delimiter The delimiting character. If NULL, the delimiter is " |                                                     |  |

## Returns

A  $\mathtt{NULL}$  terminated list of the elements in the string

# 16.61.3.7 vrna\_random\_string()

Create a random string using characters from a specified symbol set.

### **Parameters**

| 1       | The length of the sequence |
|---------|----------------------------|
| symbols | The symbol set             |

### Returns

A random string of length 'I' containing characters from the symbolset

# 16.61.3.8 vrna\_hamming\_distance()

### **Parameters**

| s1 | The first sequence  |
|----|---------------------|
| s2 | The second sequence |

## Returns

The hamming distance between s1 and s2

# 16.61.3.9 vrna\_hamming\_distance\_bound()

Calculate hamming distance between two sequences up to a specified length.

This function is similar to vrna\_hamming\_distance() but instead of comparing both sequences up to their actual length only the first 'n' characters are taken into account

### **Parameters**

| s1 | The first sequence                                                    |  |
|----|-----------------------------------------------------------------------|--|
| s2 | The second sequence                                                   |  |
| n  | The length of the subsequences to consider (starting from the 5' end) |  |

# Returns

The hamming distance between s1 and s2

# 16.61.3.10 vrna\_seq\_toRNA()

Convert an input sequence (possibly containing DNA alphabet characters) to RNA alphabet.

This function substitudes T and t with U and u, respectively

## **Parameters**

| sequence | The sequence to be converted |
|----------|------------------------------|
|----------|------------------------------|

# 16.61.3.11 vrna\_seq\_toupper()

Convert an input sequence to uppercase.

# **Parameters**

| sequence | The sequence to be converted |
|----------|------------------------------|

# 16.61.3.12 vrna\_seq\_reverse()

Reverse a string in-place.

This function reverses a character string in the form of an array of characters in-place, i.e. it changes the input parameter.

## Postcondition

 $\label{prop:consists} \mbox{ After execution, the input $\tt sequence consists of the reverse string prior to the execution. }$ 

## See also

vrna\_DNA\_complement()

### **Parameters**

| sequence | The string to reverse |
|----------|-----------------------|
|----------|-----------------------|

# 16.61.3.13 vrna\_DNA\_complement()

Retrieve a DNA sequence which resembles the complement of the input sequence.

This function returns a mew DNA string which is the complement of the input, i.e. the nucleotide letters A,C,G, and T are substituted by their complements T,G,C, and A, respectively.

Any characters not belonging to the alphabet of the 4 canonical bases of DNA are not altered.

Note

This function also handles lower-case input sequences and treats U of the RNA alphabet equally to T

### See also

```
vrna_seq_reverse()
```

### **Parameters**

| sequence | the input DNA sequence |
|----------|------------------------|
|----------|------------------------|

# Returns

The complement of the input DNA sequence

## 16.61.3.14 vrna\_seq\_ungapped()

# Parameters

| sequence The original, null-terminated nucleotide sequence |
|------------------------------------------------------------|
|------------------------------------------------------------|

# Returns

A copy of the input sequence with all gap characters removed

# 16.61.3.15 vrna\_cut\_point\_insert()

Add a separating '&' character into a string according to cut-point position.

If the cut-point position is less or equal to zero, this function just returns a copy of the provided string. Otherwise, the cut-point character is set at the corresponding position

#### **Parameters**

| string | The original string    |
|--------|------------------------|
| ср     | The cut-point position |

### Returns

A copy of the provided string including the cut-point character

## 16.61.3.16 vrna\_cut\_point\_remove()

Remove a separating '&' character from a string.

This function removes the cut-point indicating '&' character from a string and memorizes its position in a provided integer variable. If not '&' is found in the input, the integer variable is set to -1. The function returns a copy of the input string with the '&' being sliced out.

### **Parameters**

| string | The original string    |
|--------|------------------------|
| ср     | The cut-point position |

### Returns

A copy of the input string with the '&' being sliced out

# 16.62 Secondary Structure Utilities

Functions to create, parse, convert, manipulate, and compare secondary structure representations.

# 16.62.1 Detailed Description

Functions to create, parse, convert, manipulate, and compare secondary structure representations. Collaboration diagram for Secondary Structure Utilities:

## **Modules**

· Dot-Bracket Notation of Secondary Structures

The Dot-Bracket notation as introduced already in the early times of the ViennaRNA Package denotes base pairs by matching pairs of parenthesis () and unpaired nucleotides by dots ..

· Washington University Secondary Structure (WUSS) notation

The WUSS notation, as frequently used for consensus secondary structures in Stockholm 1.0 format.

- · Pair Table Representation of Secondary Structures
- · Pair List Representation of Secondary Structures
- Abstract Shapes Representation of Secondary Structures

Abstract Shapes, introduced by Giegerich et al. in (2004) [12], collapse the secondary structure while retaining the nestedness of helices and hairpin loops.

· Helix List Representation of Secondary Structures

· Tree Representation of Secondary Structures

Secondary structures can be readily represented as trees, where internal nodes represent base pairs, and leaves represent unpaired nucleotides. The dot-bracket structure string already is a tree represented by a string of parenthesis (base pairs) and dots for the leaf nodes (unpaired nucleotides).

- · Distance measures between Secondary Structures
- · Deprecated Interface for Secondary Structure Utilities

## **Files**

· file structures.h

Various utility- and helper-functions for secondary structure parsing, converting, etc.

## **Functions**

int \* vrna\_loopidx\_from\_ptable (const short \*pt)

Get a loop index representation of a structure.

unsigned int \* vrna\_refBPcnt\_matrix (const short \*reference\_pt, unsigned int turn)

Make a reference base pair count matrix.

unsigned int \* vrna\_refBPdist\_matrix (const short \*pt1, const short \*pt2, unsigned int turn)

Make a reference base pair distance matrix.

• char \* vrna db from probs (const FLT OR DBL \*pr, unsigned int length)

Create a dot-bracket like structure string from base pair probability matrix.

• char vrna\_bpp\_symbol (const float \*x)

Get a pseudo dot bracket notation for a given probability information.

char \* vrna\_db\_from\_bp\_stack (vrna\_bp\_stack\_t \*bp, unsigned int length)

Create a dot-backet/parenthesis structure from backtracking stack.

## 16.62.2 Function Documentation

## 16.62.2.1 vrna refBPcnt matrix()

Make a reference base pair count matrix.

Get an upper triangular matrix containing the number of basepairs of a reference structure for each interval [i,j] with i < j. Access it via iindx!!!

### 16.62.2.2 vrna refBPdist matrix()

Make a reference base pair distance matrix.

Get an upper triangular matrix containing the base pair distance of two reference structures for each interval [i,j] with i < j. Access it via iindx!!!

# 16.62.2.3 vrna\_db\_from\_probs()

Create a dot-bracket like structure string from base pair probability matrix.

**SWIG Wrapper Notes** This function is available as parameter-less method **db\_from\_probs()** bound to objects of type *fold\_compound*. Parameters pr and length are implicitly taken from the *fold\_compound* object the method is bound to. Upon missing base pair probabilities, this method returns an empty string.

# 16.62.2.4 vrna\_db\_from\_bp\_stack()

Create a dot-backet/parenthesis structure from backtracking stack.

This function is capable to create dot-bracket structures from suboptimal structure prediction sensu M. Zuker

#### **Parameters**

| bp     | Base pair stack containing the traced base pairs |
|--------|--------------------------------------------------|
| length | The length of the structure                      |

### Returns

The secondary structure in dot-bracket notation as provided in the input

# 16.63 Dot-Bracket Notation of Secondary Structures

The Dot-Bracket notation as introduced already in the early times of the ViennaRNA Package denotes base pairs by matching pairs of parenthesis () and unpaired nucleotides by dots ..

# 16.63.1 Detailed Description

The Dot-Bracket notation as introduced already in the early times of the ViennaRNA Package denotes base pairs by matching pairs of parenthesis () and unpaired nucleotides by dots...

As a simple example, consider a helix of size 4 enclosing a hairpin of size 4. In dot-bracket notation, this is annotated as

```
((((...))))
```

### **Extended Dot-Bracket Notation**

A more generalized version of the original Dot-Bracket notation may use additional pairs of brackets, such as <>, and [], and matching pairs of uppercase/lowercase letters. This allows for anotating pseudo-knots, since different pairs of brackets are not required to be nested.

The follwing annotations of a simple structure with two crossing helices of size 4 are equivalent:

```
<<<[[[[....>>>]]]] \\ ((((AAAA....)))) aaaa \\ AAAA \{ \{ \{ ....aaaa \} \} \} \}  Collaboration diagram for Dot-Bracket Notation of Secondary Structures:
```

## **Macros**

#define VRNA\_BRACKETS\_ALPHA 4U

Bitflag to indicate secondary structure notations using uppercase/lowercase letters from the latin alphabet.

#define VRNA BRACKETS RND 8U

Bitflag to indicate secondary structure notations using round brackets (parenthesis), ()

• #define VRNA BRACKETS CLY 16U

Bitflag to indicate secondary structure notations using curly brackets, {}

#define VRNA BRACKETS ANG 32U

Bitflag to indicate secondary structure notations using angular brackets, <>

• #define VRNA BRACKETS SQR 64U

Bitflag to indicate secondary structure notations using square brackets, []

#define VRNA BRACKETS DEFAULT

Default bitmask to indicate secondary structure notation using any pair of brackets.

#define VRNA\_BRACKETS\_ANY

Bitmask to indicate secondary structure notation using any pair of brackets or uppercase/lowercase alphabet letters.

### **Functions**

char \* vrna\_db\_pack (const char \*struc)

Pack secondary secondary structure, 5:1 compression using base 3 encoding.

char \* vrna\_db\_unpack (const char \*packed)

Unpack secondary structure previously packed with vrna db pack()

• void vrna\_db\_flatten (char \*structure, unsigned int options)

Substitute pairs of brackets in a string with parenthesis.

void vrna\_db\_flatten\_to (char \*string, const char target[3], unsigned int options)

Substitute pairs of brackets in a string with another type of pair characters.

char \* vrna\_db\_from\_ptable (const short \*pt)

Convert a pair table into dot-parenthesis notation.

char \* vrna db from plist (vrna ep t \*pairs, unsigned int n)

Convert a list of base pairs into dot-bracket notation.

char \* vrna\_db\_to\_element\_string (const char \*structure)

Convert a secondary structure in dot-bracket notation to a nucleotide annotation of loop contexts.

char \* vrna\_db\_pk\_remove (const char \*structure, unsigned int options)

Remove pseudo-knots from an input structure.

# 16.63.2 Macro Definition Documentation

### 16.63.2.1 VRNA\_BRACKETS\_ALPHA

```
#define VRNA_BRACKETS_ALPHA 4U
#include <ViennaRNA/utils/structures.h>
```

Bitflag to indicate secondary structure notations using uppercase/lowercase letters from the latin alphabet.

See also

vrna\_ptable\_from\_string()

# 16.63.2.2 VRNA\_BRACKETS\_RND

```
#define VRNA_BRACKETS_RND 8U
#include <ViennaRNA/utils/structures.h>
```

Bitflag to indicate secondary structure notations using round brackets (parenthesis), ()

See also

vrna\_ptable\_from\_string(), vrna\_db\_flatten(), vrna\_db\_flatten\_to()

## 16.63.2.3 VRNA\_BRACKETS\_CLY

```
#define VRNA_BRACKETS_CLY 16U
#include <ViennaRNA/utils/structures.h>
Bitflag to indicate secondary structure notations using curly brackets, { }
See also
    vrna_ptable_from_string(), vrna_db_flatten(), vrna_db_flatten_to()
```

# 16.63.2.4 VRNA\_BRACKETS\_ANG

```
#define VRNA_BRACKETS_ANG 32U
#include <ViennaRNA/utils/structures.h>
Bitflag to indicate secondary structure notations using angular brackets, <>
```

See also

vrna\_ptable\_from\_string(), vrna\_db\_flatten(), vrna\_db\_flatten\_to()

# 16.63.2.5 VRNA\_BRACKETS\_SQR

```
#define VRNA_BRACKETS_SQR 64U
#include <ViennaRNA/utils/structures.h>
Bitflag to indicate secondary structure notations using square brackets, []
See also
```

vrna\_ptable\_from\_string(), vrna\_db\_flatten(), vrna\_db\_flatten\_to()

# 16.63.2.6 VRNA\_BRACKETS\_DEFAULT

Default bitmask to indicate secondary structure notation using any pair of brackets.

This set of matching brackets/parenthesis is always nested, i.e. pseudo-knot free, in WUSS format. However, in general different kinds of brackets are mostly used for annotating pseudo-knots. Thus special care has to be taken to remove pseudo-knots if this bitmask is used in functions that return secondary structures without pseudo-knots!

See also

vrna\_ptable\_from\_string(), vrna\_db\_flatten(), vrna\_db\_flatten\_to(), vrna\_db\_pk\_remove() vrna\_pt\_pk\_remove()

# 16.63.2.7 VRNA\_BRACKETS\_ANY

```
#define VRNA_BRACKETS_ANY
#include <ViennaRNA/utils/structures.h>
Value:
    (VRNA_BRACKETS_RND | \
        VRNA_BRACKETS_CLY | \
        VRNA_BRACKETS_ANG | \
        VRNA_BRACKETS_SQR | \
        VRNA_BRACKETS ALPHA)
```

Bitmask to indicate secondary structure notation using any pair of brackets or uppercase/lowercase alphabet letters.

See also

```
vrna_ptable_from_string(), vrna_db_pk_remove(), vrna_db_flatten(), vrna_db_flatten_to()
```

### 16.63.3 Function Documentation

## 16.63.3.1 vrna\_db\_pack()

Pack secondary secondary structure, 5:1 compression using base 3 encoding.

Returns a binary string encoding of the secondary structure using a 5:1 compression scheme. The string is NULL terminated and can therefore be used with standard string functions such as strcmp(). Useful for programs that need to keep many structures in memory.

See also

```
vrna_db_unpack()
```

#### **Parameters**

|  | struc | The secondary structure in dot-bracket notation |
|--|-------|-------------------------------------------------|
|--|-------|-------------------------------------------------|

## Returns

The binary encoded structure

## 16.63.3.2 vrna\_db\_unpack()

Unpack secondary structure previously packed with <a href="mailto:vrna\_db\_pack">vrna\_db\_pack</a>()

Translate a compressed binary string produced by vrna\_db\_pack() back into the familiar dot-bracket notation.

See also

```
vrna_db_pack()
```

# Parameters

| packed  | The binary encoded packed secondary structure          |
|---------|--------------------------------------------------------|
| pasitoa | in a smary and a decided passing a secondary an actual |

### Returns

The unpacked secondary structure in dot-bracket notation

# 16.63.3.3 vrna\_db\_flatten()

Substitute pairs of brackets in a string with parenthesis.

This function can be used to replace brackets of unusual types, such as angular brackets <> , to dot-bracket format. The options parameter is used too specify which types of brackets will be replaced by round parenthesis ().

### See also

vrna\_db\_flatten\_to(), VRNA\_BRACKETS\_RND, VRNA\_BRACKETS\_ANG, VRNA\_BRACKETS\_CLY, VRNA\_BRACKETS\_SQR, VRNA\_BRACKETS\_DEFAULT

### **Parameters**

| structure | The structure string where brackets are flattened in-place           |
|-----------|----------------------------------------------------------------------|
| options   | A bitmask to specify which types of brackets should be flattened out |

**SWIG Wrapper Notes** This function flattens an input structure string in-place! The second parameter is optional and defaults to VRNA\_BRACKETS\_DEFAULT.

An overloaded version of this function exists, where an additional second parameter can be passed to specify the target brackets, i.e. the type of matching pair characters all brackets will be flattened to. Therefore, in the scripting language interface this function is a replacement for vrna\_db\_flatten\_to().

# 16.63.3.4 vrna\_db\_flatten\_to()

Substitute pairs of brackets in a string with another type of pair characters.

This function can be used to replace brackets in a structure annotation string, such as square brackets [], to another type of pair characters, e.g. angular brackets <> .

The target array must contain a character for the 'pair open' annotation at position 0, and one for 'pair close' at position 1. Toptions parameter is used to specify which types of brackets will be replaced by the new pairs.

## See also

vrna\_db\_flatten(), VRNA\_BRACKETS\_RND, VRNA\_BRACKETS\_ANG, VRNA\_BRACKETS\_CLY, VRNA\_BRACKETS\_SQR, VRNA\_BRACKETS\_DEFAULT

### **Parameters**

| string  | The structure string where brackets are flattened in-place           |
|---------|----------------------------------------------------------------------|
| target  | The new pair characters the string will be flattened to              |
| options | A bitmask to specify which types of brackets should be flattened out |

**SWIG Wrapper Notes** This function is available as an overloaded version of vrna\_db\_flatten()

### 16.63.3.5 vrna db from ptable()

Convert a pair table into dot-parenthesis notation.

This function also converts pair table formatted structures that contain pseudoknots. Non-nested base pairs result in additional pairs of parenthesis and brackets within the resulting dot-parenthesis string. The following pairs are awailable: (), []. {}. <>>, as well as pairs of matching upper-/lower-case characters from the alphabet A-Z.

### Note

In cases where the level of non-nested base pairs exceeds the maximum number of 30 different base pair indicators (4 parenthesis/brackets, 26 matching characters), a warning is printed and the remaining base pairs are left out from the conversion.

### **Parameters**

| pt The pai | r table to be copied |
|------------|----------------------|
|------------|----------------------|

#### Returns

A char pointer to the dot-bracket string

# 16.63.3.6 vrna\_db\_from\_plist()

Convert a list of base pairs into dot-bracket notation.

## See also

```
vrna plist()
```

# Parameters

| pairs | A vrna_ep_t containing the pairs to be included in the dot-bracket string |
|-------|---------------------------------------------------------------------------|
| n     | The length of the structure (number of nucleotides)                       |

### Returns

The dot-bracket string containing the provided base pairs

# 16.63.3.7 vrna\_db\_to\_element\_string()

Convert a secondary structure in dot-bracket notation to a nucleotide annotation of loop contexts.

### **Parameters**

| structure | The secondary structure in dot-bracket notation |
|-----------|-------------------------------------------------|

#### Returns

A string annotating each nucleotide according to it's structural context

# 16.63.3.8 vrna\_db\_pk\_remove()

Remove pseudo-knots from an input structure.

This function removes pseudo-knots from an input structure by determining the minimum number of base pairs that need to be removed to make the structure pseudo-knot free.

To accomplish that, we use a dynamic programming algorithm similar to the Nussinov maxmimum matching approach.

The input structure must be in a dot-bracket string like form where crossing base pairs are denoted by the use of additional types of matching brackets, e.g. <>,  $\{\}$ , [],  $\{\}$ . Furthermore, crossing pairs may be annotated by matching uppercase/lowercase letters from the alphabet A-Z. For the latter, the uppercase letter must be the 5' and the lowercase letter the 3' nucleotide of the base pair. The actual type of brackets to be recognized by this function must be specifed through the options parameter.

Note

Brackets in the input structure string that are not covered by the options bitmask will be silently ignored!

#### See also

vrna\_pt\_pk\_remove(), vrna\_db\_flatten(), VRNA\_BRACKETS\_RND, VRNA\_BRACKETS\_ANG, VRNA\_BRACKETS\_CLY, VRNA\_BRACKETS\_ALPHA, VRNA\_BRACKETS\_DEFAULT, VRNA\_BRACKETS\_ANY

### **Parameters**

| structure | Input structure in dot-bracket format that may include pseudo-knots |
|-----------|---------------------------------------------------------------------|
| options   | A bitmask to specify which types of brackets should be processed    |

### Returns

The input structure devoid of pseudo-knots in dot-bracket notation

**SWIG** Wrapper Notes This function is available as an overloaded function db\_pk\_remove() where the optional second parameter options defaults to VRNA BRACKETS ANY.

# 16.64 Washington University Secondary Structure (WUSS) notation

The WUSS notation, as frequently used for consensus secondary structures in Stockholm 1.0 format.

# 16.64.1 Detailed Description

The WUSS notation, as frequently used for consensus secondary structures in Stockholm 1.0 format.

This notation allows for a fine-grained annotation of base pairs and unpaired nucleotides, including pseudo-knots. Below, you'll find a list of secondary structure elements and their corresponding WUSS annotation (See also the infernal user guide at <a href="http://eddylab.org/infernal/Userguide.pdf">http://eddylab.org/infernal/Userguide.pdf</a>)

### · Base pairs

Nested base pairs are annotated by matching pairs of the symbols <>, (),  $\{\}$ , and []. Each of the matching pairs of parenthesis have their special meaning, however, when used as input in our programs, e.g.

structure constraint, these details are usually ignored. Furthermore, base pairs that constitute as pseudo-knot are denoted by letters from the latin alphabet and are, if not denoted otherwise, ignored entirely in our programs.

# · Hairpin loops

Unpaired nucleotides that constitute the hairpin loop are indicated by underscores,  $\_$ .

Example: <<<<\_\_\_\_>>>>

## Bulges and interior loops

Residues that constitute a bulge or interior loop are denoted by dashes, -.

Example: (((--<<\_\_\_>>-)))

## Multibranch loops

Unpaired nucleotides in multibranch loops are indicated by commas,.

```
Example: (((,,<<___>>,,<<___>>)))
```

### External residues

Single stranded nucleotides in the exterior loop, i.e. not enclosed by any other pair are denoted by colons, :.

```
Example: <<<____>>>:::
```

### Insertions

In cases where an alignment represents the consensus with a known structure, insertions relative to the known structure are denoted by periods,  $\dots$  Regions where local structural alignment was invoked, leaving regions of both target and query sequence unaligned, are indicated by tildes,  $\sim$ .

Note

These symbols only appear in alignments of a known (query) structure annotation to a target sequence of unknown structure.

### · Pseudo-knots

The WUSS notation allows for annotation of pseudo-knots using pairs of upper-case/lower-case letters.

Note

Our programs and library functions usually ignore pseudo-knots entirely treating them as unpaired nucleotides, if not stated otherwise.

```
Example: <<<_AAA___>>>aaa
```

Collaboration diagram for Washington University Secondary Structure (WUSS) notation:

## **Functions**

• char \* vrna db from WUSS (const char \*wuss)

Convert a WUSS annotation string to dot-bracket format.

# 16.64.2 Function Documentation

# 16.64.2.1 vrna\_db\_from\_WUSS()

Note

This function flattens all brackets, and treats pseudo-knots annotated by matching pairs of upper/lowercase letters as unpaired nucleotides

### **Parameters**

| wuss | The input string in WUSS notation |
|------|-----------------------------------|
|------|-----------------------------------|

Returns

A dot-bracket notation of the input secondary structure

# 16.65 Pair Table Representation of Secondary Structures

# 16.65.1 Detailed Description

Collaboration diagram for Pair Table Representation of Secondary Structures:

## **Functions**

• short \* vrna ptable (const char \*structure)

Create a pair table from a dot-bracket notation of a secondary structure.

short \* vrna\_ptable\_from\_string (const char \*structure, unsigned int options)

Create a pair table for a secondary structure string.

short \* vrna\_pt\_pk\_get (const char \*structure)

Create a pair table of a secondary structure (pseudo-knot version)

short \* vrna\_ptable\_copy (const short \*pt)

Get an exact copy of a pair table.

short \* vrna\_pt\_ali\_get (const char \*structure)

Create a pair table of a secondary structure (snoop align version)

short \* vrna\_pt\_snoop\_get (const char \*structure)

Create a pair table of a secondary structure (snoop version)

• short \* vrna\_pt\_pk\_remove (const short \*ptable, unsigned int options)

Remove pseudo-knots from a pair table.

## 16.65.2 Function Documentation

# 16.65.2.1 vrna\_ptable()

Create a pair table from a dot-bracket notation of a secondary structure.

Returns a newly allocated table, such that table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains the length of the structure.

See also

```
vrna ptable from string(), vrna db from ptable()
```

### **Parameters**

| structure | The secondary structure in dot-bracket notation |
|-----------|-------------------------------------------------|
|-----------|-------------------------------------------------|

#### Returns

A pointer to the created pair\_table

SWIG Wrapper Notes This functions is wrapped as overloaded function ptable() that takes an optional argument options to specify which type of matching brackets should be considered during conversion. The default set is round brackets, i.e. VRNA BRACKETS RND.

## 16.65.2.2 vrna\_ptable\_from\_string()

Create a pair table for a secondary structure string.

This function takes an input string of a secondary structure annotation in Dot-Bracket Notation (a.k.a. Dot-Parenthesis Notation) or dot-bracket-ext-notation, and converts it into a pair table representation.

#### Note

This function also extracts crossing base pairs, i.e. pseudo-knots if more than a single matching bracket type is allowed through the bitmask options.

### See also

vrna\_ptable(), vrna\_db\_from\_ptable(), vrna\_db\_flatten\_to(), vrna\_pt\_pk\_remove() VRNA\_BRACKETS\_RND, VRNA\_BRACKETS\_ANG, VRNA\_BRACKETS\_CLY, VRNA\_BRACKETS\_SQR, VRNA\_BRACKETS\_ALPHA, VRNA\_BRACKETS\_DEFAULT, VRNA\_BRACKETS\_ANY

## **Parameters**

| structure                                                                                  | ucture Secondary structure in dot-bracket-ext-notation |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| options A bitmask to specify which brackets are recognized during conversion to pair table |                                                        |  |

## Returns

A pointer to a new pair table of the provided secondary structure

SWIG Wrapper Notes This functions is wrapped as overloaded function ptable() that takes an optional argument options to specify which type of matching brackets should be considered during conversion. The default set is round brackets, i.e. VRNA\_BRACKETS\_RND.

# 16.65.2.3 vrna\_pt\_pk\_get()

Create a pair table of a secondary structure (pseudo-knot version)

Returns a newly allocated table, such that table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains the length of the structure.

In contrast to vrna\_ptable() this function also recognizes the base pairs denoted by '[' and ']' brackets. Thus, this function behaves like

```
vrna_ptable_from_string(structure, #VRNA_BRACKETS_RND | VRNA_BRACKETS_SQR)
```

## See also

vrna\_ptable\_from\_string()

### **Parameters**

structure The secondary structure in (extended) dot-bracket notation

#### Returns

A pointer to the created pair\_table

# 16.65.2.4 vrna\_ptable\_copy()

### **Parameters**

```
pt The pair table to be copied
```

### Returns

A pointer to the copy of 'pt'

# 16.65.2.5 vrna\_pt\_ali\_get()

# 16.65.2.6 vrna\_pt\_snoop\_get()

Create a pair table of a secondary structure (snoop version)

returns a newly allocated table, such that: table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains the length of the structure. The special pseudoknotted H/ACA-mRNA structure is taken into account.

# 16.65.2.7 vrna\_pt\_pk\_remove()

Remove pseudo-knots from a pair table.

This function removes pseudo-knots from an input structure by determining the minimum number of base pairs that need to be removed to make the structure pseudo-knot free.

To accomplish that, we use a dynamic programming algorithm similar to the Nussinov maxmimum matching approach.

## See also

vrna\_db\_pk\_remove()

### **Parameters**

| ptable  | Input structure that may include pseudo-knots |
|---------|-----------------------------------------------|
| options |                                               |

## Returns

The input structure devoid of pseudo-knots

# 16.66 Pair List Representation of Secondary Structures

# 16.66.1 Detailed Description

Collaboration diagram for Pair List Representation of Secondary Structures:

# **Data Structures**

· struct vrna\_elem\_prob\_s

Data structure representing a single entry of an element probability list (e.g. list of pair probabilities) More...

## **Macros**

• #define VRNA PLIST TYPE BASEPAIR 0

A Base Pair element.

#define VRNA\_PLIST\_TYPE\_GQUAD 1

A G-Quadruplex element.

#define VRNA\_PLIST\_TYPE\_H\_MOTIF 2

A Hairpin loop motif element.

#define VRNA\_PLIST\_TYPE\_I\_MOTIF 3

An Internal loop motif element.

• #define VRNA\_PLIST\_TYPE\_UD\_MOTIF 4

An Unstructured Domain motif element.

#define VRNA PLIST\_TYPE STACK 5

A Base Pair stack element.

#define VRNA\_PLIST\_TYPE\_UNPAIRED 6

An unpaired base.

• #define VRNA\_PLIST\_TYPE\_TRIPLE 7

One pair of a base triplet.

# **Typedefs**

typedef struct vrna\_elem\_prob\_s vrna\_ep\_t

Convenience typedef for data structure vrna\_elem\_prob\_s.

# **Functions**

vrna\_ep\_t \* vrna\_plist (const char \*struc, float pr)

Create a vrna\_ep\_t from a dot-bracket string.

## 16.66.2 Data Structure Documentation

# 16.66.2.1 struct vrna\_elem\_prob\_s

Data structure representing a single entry of an element probability list (e.g. list of pair probabilities)

See also

```
vrna_plist(), vrna_plist_from_probs(), vrna_db_from_plist(), VRNA_PLIST_TYPE_BASEPAIR, VRNA_PLIST_TYPE_GQUAD, VRNA_PLIST_TYPE_H_MOTIF, VRNA_PLIST_TYPE_I_MOTIF, VRNA_PLIST_TYPE_UD_MOTIF, VRNA_PLIST_TYPE_STACK
```

### **Data Fields**

int i

Start position (usually 5' nucleotide that starts the element, e.g. base pair)

int j

End position (usually 3' nucleotide that ends the element, e.g. base pair)

float p

Probability of the element.

· int type

Type of the element.

# 16.66.3 Function Documentation

## 16.66.3.1 vrna\_plist()

Create a vrna\_ep\_t from a dot-bracket string.

The dot-bracket string is parsed and for each base pair an entry in the plist is created. The probability of each pair in the list is set by a function parameter.

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be used to stop looping over its entries

## **Parameters**

| struc                                                  | The secondary structure in dot-bracket notation |  |
|--------------------------------------------------------|-------------------------------------------------|--|
| pr The probability for each base pair used in the plis |                                                 |  |

# Returns

The plist array

# 16.67 Abstract Shapes Representation of Secondary Structures

Abstract Shapes, introduced by Giegerich et al. in (2004) [12], collapse the secondary structure while retaining the nestedness of helices and hairpin loops.

## 16.67.1 Detailed Description

Abstract Shapes, introduced by Giegerich et al. in (2004) [12], collapse the secondary structure while retaining the nestedness of helices and hairpin loops.

The abstract shapes representation abstracts the structure from individual base pairs and their corresponding location in the sequence, while retaining the inherent nestedness of helices and hairpin loops.

Below is a description of what is included in the abstract shapes abstraction for each respective level together with an example structure:

| Shape Level | Description                                                         | Result       |
|-------------|---------------------------------------------------------------------|--------------|
| 1           | Most accurate - all loops and all unpaired                          | [_[_[]]_     |
|             |                                                                     | ]]_          |
| 2           | Nesting pattern for all loop types and unpaired regions in external | [[_[]][_[]]] |
|             | loop and multiloop                                                  |              |
| 3           | Nesting pattern for all loop types but no unpaired regions          | [[[]][[]]]   |
| 4           | Helix nesting pattern in external loop and multiloop [[][]]]        |              |
| 5           | Most abstract - helix nesting pattern and no unpaired regions       | [[][]]       |

### Note

Our implementations also provide the special Shape Level 0, which does not collapse any structural features but simply convert base pairs and unpaired nucleotides into their corresponding set of symbols for abstract shapes.

Collaboration diagram for Abstract Shapes Representation of Secondary Structures:

### **Functions**

- char \* vrna\_abstract\_shapes (const char \*structure, unsigned int level)
  - Convert a secondary structure in dot-bracket notation to its abstract shapes representation.
- char \* vrna\_abstract\_shapes\_pt (const short \*pt, unsigned int level)

Convert a secondary structure to its abstract shapes representation.

# 16.67.2 Function Documentation

# 16.67.2.1 vrna\_abstract\_shapes()

Convert a secondary structure in dot-bracket notation to its abstract shapes representation.

This function converts a secondary structure into its abstract shapes representation as presented by Giegerich et al. 2004 [12].

## See also

```
vrna_abstract_shapes_pt()
```

### **Parameters**

| structure | e A secondary structure in dot-bracket notation        |  |
|-----------|--------------------------------------------------------|--|
| level     | The abstraction level (integer in the range of 0 to 5) |  |

#### Returns

The secondary structure in abstract shapes notation

SWIG Wrapper Notes This function is available as an overloaded function abstract\_shapes() where the optional second parameter level defaults to 5.

## 16.67.2.2 vrna\_abstract\_shapes\_pt()

Convert a secondary structure to its abstract shapes representation.

This function converts a secondary structure into its abstract shapes representation as presented by Giegerich et al. 2004 [12]. This function is equivalent to vrna\_db\_to\_shapes(), but requires a pair table input instead of a dot-bracket structure.

Note

The length of the structure must be present at pt[0]!

### See also

```
vrna_abstract_shapes()
```

### **Parameters**

| pt                                                     | A secondary structure in pair table format |  |
|--------------------------------------------------------|--------------------------------------------|--|
| level The abstraction level (integer in the range of 0 |                                            |  |

## Returns

The secondary structure in abstract shapes notation

SWIG Wrapper Notes This function is available as an overloaded function abstract\_shapes() where the optional second parameter level defaults to 5.

# 16.68 Helix List Representation of Secondary Structures

# 16.68.1 Detailed Description

Collaboration diagram for Helix List Representation of Secondary Structures:

## **Data Structures**

struct vrna hx s

Data structure representing an entry of a helix list. More...

# **Typedefs**

typedef struct vrna\_hx\_s vrna\_hx\_t

Convenience typedef for data structure vrna\_hx\_s.

## **Functions**

vrna\_hx\_t \* vrna\_hx\_from\_ptable (short \*pt)

Convert a pair table representation of a secondary structure into a helix list.

vrna\_hx\_t \* vrna\_hx\_merge (const vrna\_hx\_t \*list, int maxdist)

Create a merged helix list from another helix list.

### 16.68.2 Data Structure Documentation

```
16.68.2.1 struct vrna hx s
```

Data structure representing an entry of a helix list.

## 16.68.3 Function Documentation

# 16.68.3.1 vrna\_hx\_from\_ptable()

Convert a pair table representation of a secondary structure into a helix list.

#### **Parameters**

pt The secondary structure in pair table representation

### Returns

The secondary structure represented as a helix list

# 16.69 Tree Representation of Secondary Structures

Secondary structures can be readily represented as trees, where internal nodes represent base pairs, and leaves represent unpaired nucleotides. The dot-bracket structure string already is a tree represented by a string of parenthesis (base pairs) and dots for the leaf nodes (unpaired nucleotides).

# 16.69.1 Detailed Description

Secondary structures can be readily represented as trees, where internal nodes represent base pairs, and leaves represent unpaired nucleotides. The dot-bracket structure string already is a tree represented by a string of parenthesis (base pairs) and dots for the leaf nodes (unpaired nucleotides).

Alternatively, one may find representations with two types of node labels,  $\mathbb P$  for paired and  $\mathbb U$  for unpaired; a dot is then replaced by  $(\mathbb U)$ , and each closed bracket is assigned an additional identifier  $\mathbb P$ . We call this the expanded notation. In [10] a condensed representation of the secondary structure is proposed, the so-called homeomorphically irreducible tree (HIT) representation. Here a stack is represented as a single pair of matching brackets labeled  $\mathbb P$  and weighted by the number of base pairs. Correspondingly, a contiguous strain of unpaired bases is shown as one pair of matching brackets labeled  $\mathbb U$  and weighted by its length. Generally any string consisting of matching brackets and identifiers is equivalent to a plane tree with as many different types of nodes as there are identifiers.

Bruce Shapiro proposed a coarse grained representation [27], which, does not retain the full information of the secondary structure. He represents the different structure elements by single matching brackets and labels them as

- H (hairpin loop),
- I (interior loop),
- B (bulge),
- M (multi-loop), and
- S (stack).

We extend his alphabet by an extra letter for external elements E. Again these identifiers may be followed by a weight corresponding to the number of unpaired bases or base pairs in the structure element. All tree representations (except for the dot-bracket form) can be encapsulated into a virtual root (labeled R).

The following example illustrates the different linear tree representations used by the package:

Consider the secondary structure represented by the dot-bracket string (full tree) .((...((...))))...((...))) which is the most convenient condensed notation used by our programs and library functions.

Then, the following tree representations are equivalent:

· Expanded tree:

HIT representation (Fontana et al. 1993 [10]):
 ((U1) ((U2) ((U3) P3) (U2) ((U2) P2) P2) (U1) R)

- Coarse Grained Tree Representation (Shapiro 1988 [27]):
  - Short (with root node R, without stem nodes S):
     ((H)((H)M)R)
  - Full (with root node R): (((((H)S)((H)S)M)S)R)
  - Extended (with root node R, with external nodes E):(((((((H)S)(H)S)M)S)E)R)
  - Weighted (with root node R, with external nodes E):((((((H3)S3)((H2)S2)M4)S2)E2)R)

The Expanded tree is rather clumsy and mostly included for the sake of completeness. The different versions of Coarse Grained Tree Representations are variatios of Shapiro's linear tree notation.

For the output of aligned structures from string editing, different representations are needed, where we put the label on both sides. The above examples for tree representations would then look like:

Aligned structures additionally contain the gap character \_. Collaboration diagram for Tree Representation of Secondary Structures:

### **Macros**

• #define VRNA STRUCTURE TREE HIT 1U

Homeomorphically Irreducible Tree (HIT) representation of a secondary structure.

#define VRNA\_STRUCTURE\_TREE\_SHAPIRO\_SHORT 2U

(short) Coarse Grained representation of a secondary structure

#define VRNA STRUCTURE TREE SHAPIRO 3U

(full) Coarse Grained representation of a secondary structure

• #define VRNA\_STRUCTURE\_TREE\_SHAPIRO\_EXT 4U

(extended) Coarse Grained representation of a secondary structure

• #define VRNA\_STRUCTURE\_TREE\_SHAPIRO\_WEIGHT 5U

(weighted) Coarse Grained representation of a secondary structure

• #define VRNA\_STRUCTURE\_TREE\_EXPANDED 6U

Expanded Tree representation of a secondary structure.

## **Functions**

- char \* vrna\_db\_to\_tree\_string (const char \*structure, unsigned int type)
  - Convert a Dot-Bracket structure string into tree string representation.
- char \* vrna\_tree\_string\_unweight (const char \*structure)

Remove weights from a linear string tree representation of a secondary structure.

char \* vrna\_tree\_string\_to\_db (const char \*tree)

Convert a linear tree string representation of a secondary structure back to Dot-Bracket notation.

## 16.69.2 Macro Definition Documentation

## 16.69.2.1 VRNA\_STRUCTURE\_TREE\_HIT

```
#define VRNA_STRUCTURE_TREE_HIT 1U
#include <ViennaRNA/utils/structures.h>
Homeomorphically Irreducible Tree (HIT) representation of a secondary structure.
```

See also

vrna\_db\_to\_tree\_string()

# 16.69.2.2 VRNA\_STRUCTURE\_TREE\_SHAPIRO\_SHORT

```
#define VRNA_STRUCTURE_TREE_SHAPIRO_SHORT 2U
#include <ViennaRNA/utils/structures.h>
(short) Coarse Grained representation of a secondary structure
```

See also

vrna\_db\_to\_tree\_string()

# 16.69.2.3 VRNA\_STRUCTURE\_TREE\_SHAPIRO

```
#define VRNA_STRUCTURE_TREE_SHAPIRO 3U
#include <ViennaRNA/utils/structures.h>
(full) Coarse Grained representation of a secondary structure
```

See also

vrna\_db\_to\_tree\_string()

## 16.69.2.4 VRNA\_STRUCTURE\_TREE\_SHAPIRO\_EXT

```
#define VRNA_STRUCTURE_TREE_SHAPIRO_EXT 4U
#include <ViennaRNA/utils/structures.h>
(extended) Coarse Grained representation of a secondary structure
```

See also

vrna\_db\_to\_tree\_string()

## 16.69.2.5 VRNA\_STRUCTURE\_TREE\_SHAPIRO\_WEIGHT

```
#define VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT 5U
#include <ViennaRNA/utils/structures.h>
(weighted) Coarse Grained representation of a secondary structure
```

See also

```
vrna_db_to_tree_string()
```

## 16.69.2.6 VRNA STRUCTURE TREE EXPANDED

```
#define VRNA_STRUCTURE_TREE_EXPANDED 6U
#include <ViennaRNA/utils/structures.h>
Expanded Tree representation of a secondary structure.
```

See also

vrna\_db\_to\_tree\_string()

## 16.69.3 Function Documentation

# 16.69.3.1 vrna\_db\_to\_tree\_string()

Convert a Dot-Bracket structure string into tree string representation.

This function allows one to convert a secondary structure in dot-bracket notation into one of the various tree representations for secondary structures. The resulting tree is then represented as a string of parenthesis and node symbols, similar to to the Newick format.

Currently we support conversion into the following formats, denoted by the value of parameter type:

- VRNA\_STRUCTURE\_TREE\_HIT Homeomorphically Irreducible Tree (HIT) representation of a secondary structure. (See also Fontana et al. 1993 [10])
- VRNA\_STRUCTURE\_TREE\_SHAPIRO\_SHORT (short) Coarse Grained representation of a secondary structure (same as Shapiro 1988 [27], but with root node R and without S nodes for the stems)
- VRNA\_STRUCTURE\_TREE\_SHAPIRO (full) Coarse Grained representation of a secondary structure (See also Shapiro 1988 [27])
- VRNA\_STRUCTURE\_TREE\_SHAPIRO\_EXT (extended) Coarse Grained representation of a secondary structure (same as Shapiro 1988 [27], but external nodes denoted as E)
- VRNA\_STRUCTURE\_TREE\_SHAPIRO\_WEIGHT (weighted) Coarse Grained representation of a secondary structure (same as VRNA\_STRUCTURE\_TREE\_SHAPIRO\_EXT but with additional weights for number of unpaired nucleotides in loop, and number of pairs in stems)
- VRNA\_STRUCTURE\_TREE\_EXPANDED Expanded Tree representation of a secondary structure.

## See also

Tree Representations of Secondary Structures

### **Parameters**

| structure | structure         The null-terminated dot-bracket structure string           type         A switch to determine the type of tree string representation |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| type      |                                                                                                                                                        |  |

#### Returns

A tree representation of the input structure

# 16.69.3.2 vrna\_tree\_string\_unweight()

Remove weights from a linear string tree representation of a secondary structure.

This function strips the weights of a linear string tree representation such as HIT, or Coarse Grained Tree sensu Shapiro [27]

### See also

```
vrna_db_to_tree_string()
```

#### **Parameters**

structure

A linear string tree representation of a secondary structure with weights

### Returns

A linear string tree representation of a secondary structure without weights

## 16.69.3.3 vrna\_tree\_string\_to\_db()

Convert a linear tree string representation of a secondary structure back to Dot-Bracket notation.

### Warning

This function only accepts *Expanded* and *HIT* tree representations!

### See also

```
vrna_db_to_tree_string(), VRNA_STRUCTURE_TREE_EXPANDED, VRNA_STRUCTURE_TREE_HIT, Tree Representations of Secondary Structures
```

### **Parameters**

tree A linear tree string representation of a secondary structure

## Returns

A dot-bracket notation of the secondary structure provided in tree

# 16.70 Distance measures between Secondary Structures

# 16.70.1 Detailed Description

Collaboration diagram for Distance measures between Secondary Structures:

## **Functions**

• int vrna\_bp\_distance\_pt (const short \*pt1, const short \*pt2)

Compute the "base pair" distance between two pair tables pt1 and pt2 of secondary structures.

• int vrna\_bp\_distance (const char \*str1, const char \*str2)

Compute the "base pair" distance between two secondary structures s1 and s2.

## 16.70.2 Function Documentation

## 16.70.2.1 vrna\_bp\_distance\_pt()

Compute the "base pair" distance between two pair tables pt1 and pt2 of secondary structures.

The pair tables should have the same length. dist = number of base pairs in one structure but not in the other same as edit distance with open-pair close-pair as move-set

#### See also

```
vrna_bp_distance()
```

### **Parameters**

|                                   | pt1 | First structure in dot-bracket notation  |  |
|-----------------------------------|-----|------------------------------------------|--|
| pt2 Second structure in dot-brace |     | Second structure in dot-bracket notation |  |

## Returns

The base pair distance between pt1 and pt2

SWIG Wrapper Notes This function is available as an overloaded method bp\_distance().

# 16.70.2.2 vrna\_bp\_distance()

Compute the "base pair" distance between two secondary structures s1 and s2.

This is a wrapper around **vrna\_bp\_distance\_pt()**. The sequences should have the same length. dist = number of base pairs in one structure but not in the other same as edit distance with open-pair close-pair as move-set

### See also

```
vrna_bp_distance_pt()
```

## **Parameters**

| str1                                          | First structure in dot-bracket notation |
|-----------------------------------------------|-----------------------------------------|
| str2 Second structure in dot-bracket notation |                                         |

Returns

The base pair distance between str1 and str2

SWIG Wrapper Notes This function is available as an overloaded method bp\_distance(). Note that the SWIG wrapper takes two structure in dot-bracket notation and converts them into pair tables using vrna ptable from string(). The resulting pair tables are then internally passed to vrna\_bp\_distance\_pt(). To control which kind of matching brackets will be used during conversion, the optional argument options can be used. See also the description of vrna ptable from string() for available options. (default: VRNA BRACKETS RND).

#### 16.71 **Multiple Sequence Alignment Utilities**

Functions to extract features from and to manipulate multiple sequence alignments.

# 16.71.1 Detailed Description

Functions to extract features from and to manipulate multiple sequence alignments. Collaboration diagram for Multiple Sequence Alignment Utilities:

### **Modules**

Deprecated Interface for Multiple Sequence Alignment Utilities

## **Files**

· file alignments.h

Various utility- and helper-functions for sequence alignments and comparative structure prediction.

# **Data Structures**

struct vrna\_pinfo\_s

A base pair info structure. More...

### **Macros**

#define VRNA ALN DEFAULT 0U

Use default alignment settings.

#define VRNA ALN RNA 1U

Convert to RNA alphabet.

#define VRNA ALN DNA 2U

Convert to DNA alphabet.

#define VRNA ALN UPPERCASE 4U

Convert to uppercase nucleotide letters.

#define VRNA\_ALN\_LOWERCASE 8U

Convert to lowercase nucleotide letters.

#define VRNA MEASURE SHANNON ENTROPY 1U

Flag indicating Shannon Entropy measure.

# **Typedefs**

· typedef struct vrna\_pinfo\_s vrna\_pinfo\_t

Typename for the base pair info repesenting data structure vrna\_pinfo\_s.

## **Functions**

int vrna\_aln\_mpi (const char \*\*alignment)

Get the mean pairwise identity in steps from ?to?(ident)

• vrna\_pinfo\_t \* vrna\_aln\_pinfo (vrna\_fold\_compound\_t \*vc, const char \*structure, double threshold)

Retrieve an array of vrna\_pinfo\_t structures from precomputed pair probabilities.

• char \*\* vrna\_aln\_slice (const char \*\*alignment, unsigned int i, unsigned int j)

Slice out a subalignment from a larger alignment.

void vrna\_aln\_free (char \*\*alignment)

Free memory occupied by a set of aligned sequences.

char \*\* vrna\_aln\_uppercase (const char \*\*alignment)

Create a copy of an alignment with only uppercase letters in the sequences.

char \*\* vrna\_aln\_toRNA (const char \*\*alignment)

Create a copy of an alignment where DNA alphabet is replaced by RNA alphabet.

char \*\* vrna\_aln\_copy (const char \*\*alignment, unsigned int options)

Make a copy of a multiple sequence alignment.

- float \* vrna\_aln\_conservation\_struct (const char \*\*alignment, const char \*structure, const vrna\_md\_t \*md)

  Compute base pair conservation of a consensus structure.
- float \* vrna\_aln\_conservation\_col (const char \*\*alignment, const vrna\_md\_t \*md\_p, unsigned int options)

  Compute nucleotide conservation in an alignment.
- char \* vrna aln consensus sequence (const char \*\*alignment, const vrna md t \*md p)

Compute the consensus sequence for a given multiple sequence alignment.

char \* vrna\_aln\_consensus\_mis (const char \*\*alignment, const vrna\_md\_t \*md\_p)

Compute the Most Informative Sequence (MIS) for a given multiple sequence alignment.

# 16.71.2 Data Structure Documentation

## 16.71.2.1 struct vrna pinfo s

A base pair info structure.

For each base pair (i,j) with i,j in [0, n-1] the structure lists:

- · its probability 'p'
- · an entropy-like measure for its well-definedness 'ent'
- · the frequency of each type of pair in 'bp[]'
  - 'bp[0]' contains the number of non-compatible sequences
  - 'bp[1]' the number of CG pairs, etc.

### **Data Fields**

· unsigned i

nucleotide position i

unsigned j

nucleotide position j

float p

Probability.

· float ent

Pseudo entropy for  $p(i,j) = S_i + S_j - p_i j * ln(p_i j)$ .

short **bp** [8]

Frequencies of pair\_types.

· char comp

1 iff pair is in mfe structure

## 16.71.3 Macro Definition Documentation

# 16.71.3.1 VRNA\_MEASURE\_SHANNON\_ENTROPY

```
#define VRNA_MEASURE_SHANNON_ENTROPY 1U #include <ViennaRNA/utils/alignments.h> Flag indicating Shannon Entropy measure. Shannon Entropy is defined as H = -\sum_c p_c \cdot \log_2 p_c
```

# 16.71.4 Function Documentation

# 16.71.4.1 vrna\_aln\_mpi()

#### **Parameters**

| alignment | Aligned sequences |
|-----------|-------------------|
|-----------|-------------------|

### Returns

The mean pairwise identity

# 16.71.4.2 vrna\_aln\_pinfo()

Retrieve an array of vrna\_pinfo\_t structures from precomputed pair probabilities.

This array of structures contains information about positionwise pair probabilies, base pair entropy and more

## See also

```
vrna pinfo t, and vrna pf()
```

## **Parameters**

| VC        | The vrna_fold_compound_t of type VRNA_FC_TYPE_COMPARATIVE with precomputed partition |
|-----------|--------------------------------------------------------------------------------------|
|           | function matrices                                                                    |
| structure | An optional structure in dot-bracket notation (Maybe NULL)                           |
| threshold | Do not include results with pair probabilities below threshold                       |

# Returns

The vrna\_pinfo\_t array

# 16.71.4.3 vrna\_aln\_slice()

Note

The user is responsible to free the memory occupied by the returned subalignment

## See also

```
vrna_aln_free()
```

### **Parameters**

| alignment | The input alignment                            |
|-----------|------------------------------------------------|
| i         | The first column of the subalignment (1-based) |
| j         | The last column of the subalignment (1-based)  |

### Returns

The subalignment between column i and j

# 16.71.4.4 vrna\_aln\_free()

## **Parameters**

| alignment | The input alignment |
|-----------|---------------------|

# 16.71.4.5 vrna\_aln\_uppercase()

Create a copy of an alignment with only uppercase letters in the sequences.

# See also

```
vrna_aln_copy
```

# **Parameters**

| alignment | The input sequence alignment (last entry must be NULL terminated)   |
|-----------|---------------------------------------------------------------------|
| angrimoni | The input obquerios diigriment (last only mast be 71022 terminated) |

### Returns

A copy of the input alignment where lowercase sequence letters are replaced by uppercase letters

# 16.71.4.6 vrna\_aln\_toRNA()

Create a copy of an alignment where DNA alphabet is replaced by RNA alphabet.

### See also

```
vrna_aln_copy
```

### **Parameters**

| alignment | The input sequence alignment (last entry must be <i>NULL</i> terminated) |
|-----------|--------------------------------------------------------------------------|
|-----------|--------------------------------------------------------------------------|

#### Returns

A copy of the input alignment where DNA alphabet is replaced by RNA alphabet (T -> U)

## 16.71.4.7 vrna aln copy()

Make a copy of a multiple sequence alignment.

This function allows one to create a copy of a multiple sequence alignment. The options parameter additionally allows for sequence manipulation, such as converting DNA to RNA alphabet, and conversion to uppercase letters.

# See also

```
vrna_aln_copy(), VRNA_ALN_RNA, VRNA_ALN_UPPERCASE, VRNA_ALN_DEFAULT
```

### **Parameters**

| alignment | The input sequence alignment (last entry must be NULL terminated)         |
|-----------|---------------------------------------------------------------------------|
| options   | Option flags indicating whether the aligned sequences should be converted |

# Returns

A (manipulated) copy of the input alignment

# 16.71.4.8 vrna\_aln\_conservation\_struct()

Compute base pair conservation of a consensus structure.

This function computes the base pair conservation (fraction of canonical base pairs) of a consensus structure given a multiple sequence alignment. The base pair types that are considered canonical may be specified using the vrna\_md\_t.pair array. Passing *NULL* as parameter md results in default pairing rules, i.e. canonical Watson-Crick and GU Wobble pairs.

## **Parameters**

| alignment | The input sequence alignment (last entry must be NULL terminated) |
|-----------|-------------------------------------------------------------------|
| structure | The consensus structure in dot-bracket notation                   |
| md        | Model details that specify compatible base pairs (Maybe NULL)     |

### Returns

A 1-based vector of base pair conservations

**SWIG Wrapper Notes** This function is available in an overloaded form where the last parameter may be omitted, indicating md = *NULL* 

### 16.71.4.9 vrna aln conservation col()

Compute nucleotide conservation in an alignment.

This function computes the conservation of nucleotides in alignment columns. The simples measure is Shannon Entropy and can be selected by passing the VRNA\_MEASURE\_SHANNON\_ENTROPY flag in the options parameter.

Note

Currently, only VRNA\_MEASURE\_SHANNON\_ENTROPY is supported as conservation measure.

## See also

VRNA MEASURE SHANNON ENTROPY

### **Parameters**

| alignment | The input sequence alignment (last entry must be NULL terminated) |
|-----------|-------------------------------------------------------------------|
| md        | Model details that specify known nucleotides (Maybe NULL)         |
| options   | A flag indicating which measure of conservation should be applied |

## Returns

A 1-based vector of column conservations

**SWIG Wrapper Notes** This function is available in an overloaded form where the last two parameters may be omitted, indicating md = *NULL*, and options = VRNA\_MEASURE\_SHANNON\_ENTROPY, respectively.

# 16.71.4.10 vrna\_aln\_consensus\_sequence()

```
{\tt char} \; * \; {\tt vrna\_aln\_consensus\_sequence} \; \; (
```

16.72 Files and I/O 455

Compute the consensus sequence for a given multiple sequence alignment.

#### **Parameters**

| alignment | The input sequence alignment (last entry must be NULL terminated) |
|-----------|-------------------------------------------------------------------|
| md_p      | Model details that specify known nucleotides (Maybe NULL)         |

#### Returns

The consensus sequence of the alignment, i.e. the most frequent nucleotide for each alignment column

### 16.71.4.11 vrna\_aln\_consensus\_mis()

Compute the Most Informative Sequence (MIS) for a given multiple sequence alignment.

The most informative sequence (MIS) [11] displays for each alignment column the nucleotides with frequency greater than the background frequency, projected into IUPAC notation. Columns where gaps are over-represented are in lower case.

#### **Parameters**

| alignment | The input sequence alignment (last entry must be NULL terminated) |
|-----------|-------------------------------------------------------------------|
| md_p      | Model details that specify known nucleotides (Maybe <i>NULL</i> ) |

#### Returns

The most informative sequence for the alignment

# 16.72 Files and I/O

Functions to parse, write, and convert various file formats and to deal with file system related issues.

# 16.72.1 Detailed Description

Functions to parse, write, and convert various file formats and to deal with file system related issues. Collaboration diagram for Files and I/O:

### **Modules**

Nucleic Acid Sequences and Structures

Functions to read/write different file formats for nucleic acid sequences and secondary structures.

• Multiple Sequence Alignments

Functions to read/write multiple sequence alignments (MSA) in various file formats.

Command Files

Functions to parse and interpret the content of Command Files.

### **Files**

· file commands.h

Parse and apply different commands that alter the behavior of secondary structure prediction and evaluation.

· file ribo.h

Parse RiboSum Scoring Matrices for Covariance Scoring of Alignments.

· file file formats.h

Read and write different file formats for RNA sequences, structures.

• file file\_formats\_msa.h

Functions dealing with file formats for Multiple Sequence Alignments (MSA)

· file utils.h

Several utilities for file handling.

### **Functions**

float \*\* get\_ribosum (const char \*\*Alseq, int n\_seq, int length)

Retrieve a RiboSum Scoring Matrix for a given Alignment.

float \*\* readribosum (char \*name)

Read a RiboSum or other user-defined Scoring Matrix and Store into global Memory.

void vrna\_file\_copy (FILE \*from, FILE \*to)

Inefficient 'cp'.

char \* vrna\_read\_line (FILE \*fp)

Read a line of arbitrary length from a stream.

• int vrna\_mkdir\_p (const char \*path)

Recursivly create a directory tree.

• char \* vrna\_basename (const char \*path)

Extract the filename from a file path.

char \* vrna\_dirname (const char \*path)

Extract the directory part of a file path.

char \* vrna\_filename\_sanitize (const char \*name, const char \*replacement)

Sanitize a file name.

• int vrna\_file\_exists (const char \*filename)

Check if a file already exists in the file system.

### 16.72.2 Function Documentation

### 16.72.2.1 get\_ribosum()

Retrieve a RiboSum Scoring Matrix for a given Alignment.

### 16.72.2.2 readribosum()

Read a RiboSum or other user-defined Scoring Matrix and Store into global Memory.

16.72 Files and I/O 457

# 16.72.2.3 vrna\_read\_line()

Read a line of arbitrary length from a stream.

Returns a pointer to the resulting string. The necessary memory is allocated and should be released using *free()* when the string is no longer needed.

#### **Parameters**

fp A file pointer to the stream where the function should read from

#### Returns

A pointer to the resulting string

# 16.72.2.4 vrna\_filename\_sanitize()

Sanitize a file name.

Returns a new file name where all invalid characters are substituted by a replacement character. If no replacement character is supplied, invalid characters are simply removed from the filename. File names may also never exceed a length of 255 characters. Longer file names will undergo a 'smart' truncation process, where the filenames' suffix, i.e. everything after the last dot '.', is attempted to be kept intact. Hence, only the filename part before the suffix is reduced in such a way that the total filename complies to the length restriction of 255 characters. If no suffix is present or the suffix itself already exceeds the maximum length, the filename is simply truncated from the back of the string.

For now we consider the following characters invalid:

- backslash '\'
- slash '/'
- · question mark '?'
- · percent sign "
- · asterisk '\*'
- · colon ':'
- pipe symbol '|'
- · double quote ""
- triangular brackets '<' and '>'

Furthermore, the (resulting) file name must not be a reserved file name, such as:

- '.'
- '..'

#### Note

This function allocates a new block of memory for the sanitized string. It also may return (a) NULL if the input is pointing to NULL, or (b) an empty string if the input only consists of invalid characters which are simply removed!

#### **Parameters**

| name        | The input file name                |
|-------------|------------------------------------|
| replacement | The replacement character, or NULL |

#### Returns

The sanitized file name, or NULL

# 16.72.2.5 vrna\_file\_exists()

Check if a file already exists in the file system.

#### **Parameters**

| <i>Tilename</i>   The name of (path to) the file to check for existence | filename | The name of (path to) the file to check for existence |
|-------------------------------------------------------------------------|----------|-------------------------------------------------------|
|-------------------------------------------------------------------------|----------|-------------------------------------------------------|

#### Returns

0 if it doesn't exists, 1 otherwise

# 16.73 Nucleic Acid Sequences and Structures

Functions to read/write different file formats for nucleic acid sequences and secondary structures.

# 16.73.1 Detailed Description

Functions to read/write different file formats for nucleic acid sequences and secondary structures. Collaboration diagram for Nucleic Acid Sequences and Structures:

### **Files**

· file file\_formats.h

Read and write different file formats for RNA sequences, structures.

### **Macros**

• #define VRNA\_OPTION\_MULTILINE 32U

Tell a function that an input is assumed to span several lines.

#define VRNA\_CONSTRAINT\_MULTILINE 32U

parse multiline constraint

### **Functions**

- void vrna\_file\_helixlist (const char \*seq, const char \*db, float energy, FILE \*file)
  - Print a secondary structure as helix list.
- void vrna\_file\_connect (const char \*seq, const char \*db, float energy, const char \*identifier, FILE \*file)

Print a secondary structure as connect table.

void vrna\_file\_bpseq (const char \*seq, const char \*db, FILE \*file)

Print a secondary structure in bpseq format.

- void vrna\_file\_json (const char \*seq, const char \*db, double energy, const char \*identifier, FILE \*file)
   Print a secondary structure in jsonformat.
- unsigned int vrna\_file\_fasta\_read\_record (char \*\*header, char \*\*sequence, char \*\*\*rest, FILE \*file, unsigned int options)
- char \* vrna\_extract\_record\_rest\_structure (const char \*\*lines, unsigned int length, unsigned int option)

  Extract a dot-bracket structure string from (multiline)character array.
- int vrna\_file\_SHAPE\_read (const char \*file\_name, int length, double default\_value, char \*sequence, double \*values)

Read data from a given SHAPE reactivity input file.

- void vrna\_extract\_record\_rest\_constraint (char \*\*cstruc, const char \*\*lines, unsigned int option)

  Extract a hard constraint encoded as pseudo dot-bracket string.
- unsigned int read\_record (char \*\*header, char \*\*sequence, char \*\*\*rest, unsigned int options)

  Get a data record from stdin.

### 16.73.2 Macro Definition Documentation

### 16.73.2.1 VRNA OPTION MULTILINE

```
#define VRNA_OPTION_MULTILINE 32U
#include <ViennaRNA/io/file_formats.h>
```

Tell a function that an input is assumed to span several lines.

If used as input-option a function might also be returning this state telling that it has read data from multiple lines.

See also

vrna\_extract\_record\_rest\_structure(), vrna\_file\_fasta\_read\_record()

### 16.73.2.2 VRNA\_CONSTRAINT\_MULTILINE

```
#define VRNA_CONSTRAINT_MULTILINE 32U
#include <ViennaRNA/io/file_formats.h>
parse multiline constraint
```

**Deprecated** see vrna\_extract\_record\_rest\_structure()

# 16.73.3 Function Documentation

# 16.73.3.1 vrna\_file\_helixlist()

Print a secondary structure as helix list.

| seq    | The RNA sequence                                                                |
|--------|---------------------------------------------------------------------------------|
| db     | The structure in dot-bracket format                                             |
| energy | Free energy of the structure in kcal/mol                                        |
| file   | The file handle used to print to (print defaults to 'stdout' if(file == NULL) ) |

# 16.73.3.2 vrna\_file\_connect()

Print a secondary structure as connect table.

Connect table file format looks like this:

```
* 300 ENERGY = 7.0 example
* 1 G 0 2 22 1
* 2 G 1 3 21 2
```

where the headerline is followed by 6 columns with:

- 1. Base number: index n
- 2. Base (A, C, G, T, U, X)
- 3. Index n-1 (0 if first nucleotide)
- 4. Index n+1 (0 if last nucleotide)
- 5. Number of the base to which n is paired. No pairing is indicated by 0 (zero).
- 6. Natural numbering.

# Parameters

| seq        | The RNA sequence                                                                |
|------------|---------------------------------------------------------------------------------|
| db         | The structure in dot-bracket format                                             |
| energy     | The free energy of the structure                                                |
| identifier | An optional identifier for the sequence                                         |
| file       | The file handle used to print to (print defaults to 'stdout' if(file == NULL) ) |

# 16.73.3.3 vrna\_file\_bpseq()

Print a secondary structure in bpseq format.

| seq  | The RNA sequence                                                                |
|------|---------------------------------------------------------------------------------|
| db   | The structure in dot-bracket format                                             |
| file | The file handle used to print to (print defaults to 'stdout' if(file == NULL) ) |

# 16.73.3.4 vrna\_file\_json()

#### **Parameters**

| seq        | The RNA sequence                                                                |
|------------|---------------------------------------------------------------------------------|
| db         | The structure in dot-bracket format                                             |
| energy     | The free energy                                                                 |
| identifier | An identifier for the sequence                                                  |
| file       | The file handle used to print to (print defaults to 'stdout' if(file == NULL) ) |

#### 16.73.3.5 vrna file fasta read record()

```
unsigned int vrna_file_fasta_read_record (
            char ** header,
             char ** sequence,
             char *** rest,
             FILE * file,
             unsigned int options )
#include <ViennaRNA/io/file_formats.h>
@brief Get a (fasta) data set from a file or stdin
This function may be used to obtain complete datasets from a filehandle or stdin.
A dataset is always defined to contain at least a sequence. If data starts with a
fasta header, i.e. a line like
@verbatim >some header info @endverbatim
then vrna_file_fasta_read_record() will assume that the sequence that follows the header may span
over several lines. To disable this behavior and to assign a single line to the argument
'sequence' one can pass #VRNA_INPUT_NO_SPAN in the 'options' argument.
If no fasta header is read in the beginning of a data block, a sequence must not span over
multiple lines!\n
Unless the options #VRNA_INPUT_NOSKIP_COMMENTS or #VRNA_INPUT_NOSKIP_BLANK_LINES are passed,
a sequence may be interrupted by lines starting with a comment character or empty lines. \n
A sequence is regarded as completely read if it was either assumed to not span over multiple
lines, a secondary structure or structure constraint follows the sequence on the next line,
or a new header marks the beginning of a new sequence...\n
All lines following the sequence (this includes comments) that do not initiate a new dataset
according to the above definition are available through the line-array 'rest'.
Here one can usually find the structure constraint or other information belonging to the
current dataset. Filling of 'rest' may be prevented by passing \#VRNA\_INPUT\_NO\_REST to the
options argument.\n
@note This function will exit any program with an error message if no sequence could be read!
```

@note This function will exit any program with an error message if no sequence could be read!
@note This function is NOT threadsafe! It uses a global variable to store information about
the next data block.

The main purpose of this function is to be able to easily parse blocks of data in the header of a loop where all calculations for the appropriate data is done inside the loop. The loop may be then left on certain return values, e.g.: @code

char \*id, \*seq, \*\*rest; int i; id = seq = NULL; rest = NULL; while(!(vrna\_file\_fasta\_read\_record(&id, &seq, &rest, NULL, 0) & (VRNA\_INPUT\_ERROR | VRNA\_INPUT\_QUIT))){ if(id) printf("%s\n", id); printf("%s\n", seq); if(rest) for(i=0;rest[i];i++){ printf("%s\n", rest[i]); } free(rest[i]); } free(rest); free(seq); free(id); } In the example above, the

while loop will be terminated when vrna\_file\_fasta\_read\_record() returns either an error, EOF, or a user initiated quit request.

As long as data is read from stdin (we are passing NULL as the file pointer), the id is printed if it is available for the current block of data. The sequence will be printed in any case and if some more lines belong to the current block of data each line will be printed as well.

# Note

Do not forget to free the memory occupied by header, sequence and rest!

#### **Parameters**

| header   | A pointer which will be set such that it points to the header of the record                          |
|----------|------------------------------------------------------------------------------------------------------|
| sequence | A pointer which will be set such that it points to the sequence of the record                        |
| rest     | A pointer which will be set such that it points to an array of lines which also belong to the record |
| file     | A file handle to read from (if NULL, this function reads from stdin)                                 |
| options  | Some options which may be passed to alter the behavior of the function, use 0 for no options         |

### Returns

A flag with information about what the function actually did read

# 16.73.3.6 vrna\_extract\_record\_rest\_structure()

Extract a dot-bracket structure string from (multiline)character array.

This function extracts a dot-bracket structure string from the 'rest' array as returned by vrna\_file\_fasta\_read\_record() and returns it. All occurences of comments within the 'lines' array will be skipped as long as they do not break the structure string. If no structure could be read, this function returns NULL.

### Precondition

The argument 'lines' has to be a 2-dimensional character array as obtained by vrna file fasta read record()

# See also

```
vrna_file_fasta_read_record()
```

| lines  | The (multiline) character array to be parsed                                                  |
|--------|-----------------------------------------------------------------------------------------------|
| length | The assumed length of the dot-bracket string (passing a value < 1 results in no length limit) |
| option | Some options which may be passed to alter the behavior of the function, use 0 for no options  |

#### Returns

The dot-bracket string read from lines or NULL

# 16.73.3.7 vrna\_file\_SHAPE\_read()

Read data from a given SHAPE reactivity input file.

This function parses the informations from a given file and stores the result in the preallocated string sequence and the double array values.

#### **Parameters**

| file_name     | Path to the constraints file                                                              |
|---------------|-------------------------------------------------------------------------------------------|
| length        | Length of the sequence (file entries exceeding this limit will cause an error)            |
| default_value | Value for missing indices                                                                 |
| sequence      | Pointer to an array used for storing the sequence obtained from the SHAPE reactivity file |
| values        | Pointer to an array used for storing the values obtained from the SHAPE reactivity file   |

# 16.73.3.8 vrna\_extract\_record\_rest\_constraint()

Extract a hard constraint encoded as pseudo dot-bracket string.

**Deprecated** Use vrna\_extract\_record\_rest\_structure() instead!

### Precondition

The argument 'lines' has to be a 2-dimensional character array as obtained by vrna\_file\_fasta\_read\_record()

### See also

vrna\_file\_fasta\_read\_record(), VRNA\_CONSTRAINT\_DB\_PIPE, VRNA\_CONSTRAINT\_DB\_DOT, VRNA\_CONSTRAINT\_DB\_VRNA\_CONSTRAINT\_DB\_RND\_BRACK

| cstruc | A pointer to a character array that is used as pseudo dot-bracket output           |
|--------|------------------------------------------------------------------------------------|
| lines  | A 2-dimensional character array with the extension lines from the FASTA input      |
| option | The option flags that define the behavior and recognition pattern of this function |

### 16.73.3.9 read\_record()

**Deprecated** This function is deprecated! Use vrna\_file\_fasta\_read\_record() as a replacment.

# 16.74 Multiple Sequence Alignments

Functions to read/write multiple sequence alignments (MSA) in various file formats.

# 16.74.1 Detailed Description

Functions to read/write multiple sequence alignments (MSA) in various file formats. Collaboration diagram for Multiple Sequence Alignments:

### **Files**

· file file formats msa.h

Functions dealing with file formats for Multiple Sequence Alignments (MSA)

#### **Macros**

• #define VRNA\_FILE\_FORMAT\_MSA\_CLUSTAL 1U

Option flag indicating ClustalW formatted files.

• #define VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM 2U

Option flag indicating Stockholm 1.0 formatted files.

• #define VRNA FILE\_FORMAT\_MSA\_FASTA 4U

Option flag indicating FASTA (Pearson) formatted files.

#define VRNA\_FILE\_FORMAT\_MSA\_MAF 8U

Option flag indicating MAF formatted files.

• #define VRNA FILE FORMAT MSA MIS 16U

Option flag indicating most informative sequence (MIS) output.

#define VRNA\_FILE\_FORMAT\_MSA\_DEFAULT

Option flag indicating the set of default file formats.

#define VRNA FILE FORMAT MSA NOCHECK 4096U

Option flag to disable validation of the alignment.

#define VRNA\_FILE\_FORMAT\_MSA\_UNKNOWN 8192U

Return flag of vrna\_file\_msa\_detect\_format() to indicate unknown or malformatted alignment.

• #define VRNA FILE FORMAT MSA APPEND 16384U

Option flag indicating to append data to a multiple sequence alignment file rather than overwriting it.

#define VRNA\_FILE\_FORMAT\_MSA\_QUIET 32768U

Option flag to suppress unnecessary spam messages on stderr

#define VRNA FILE FORMAT MSA SILENT 65536U

Option flag to completely silence any warnings on stderr

### **Functions**

• int vrna\_file\_msa\_read (const char \*filename, char \*\*\*names, char \*\*\*aln, char \*\*id, char \*\*structure, unsigned int options)

Read a multiple sequence alignment from file.

• int vrna\_file\_msa\_read\_record (FILE \*fp, char \*\*\*names, char \*\*\*aln, char \*\*id, char \*\*structure, unsigned int options)

Read a multiple sequence alignment from file handle.

unsigned int vrna\_file\_msa\_detect\_format (const char \*filename, unsigned int options)

Detect the format of a multiple sequence alignment file.

• int vrna\_file\_msa\_write (const char \*filename, const char \*\*names, const char \*\*aln, const char \*id, const char \*structure, const char \*source, unsigned int options)

Write multiple sequence alignment file.

#### 16.74.2 Macro Definition Documentation

### 16.74.2.1 VRNA FILE FORMAT MSA CLUSTAL

```
#define VRNA_FILE_FORMAT_MSA_CLUSTAL 1U
#include <ViennaRNA/io/file_formats_msa.h>
```

Option flag indicating ClustalW formatted files.

See also

vrna\_file\_msa\_read(), vrna\_file\_msa\_read\_record(), vrna\_file\_msa\_detect\_format()

# 16.74.2.2 VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM

```
#define VRNA_FILE_FORMAT_MSA_STOCKHOLM 2U
#include <ViennaRNA/io/file_formats_msa.h>
```

Option flag indicating Stockholm 1.0 formatted files.

See also

vrna\_file\_msa\_read(), vrna\_file\_msa\_read\_record(), vrna\_file\_msa\_detect\_format()

# 16.74.2.3 VRNA\_FILE\_FORMAT\_MSA\_FASTA

```
#define VRNA_FILE_FORMAT_MSA_FASTA 4U
#include <ViennaRNA/io/file_formats_msa.h>
```

Option flag indicating FASTA (Pearson) formatted files.

See also

vrna file msa read(), vrna file msa read record(), vrna file msa detect format()

# 16.74.2.4 VRNA\_FILE\_FORMAT\_MSA\_MAF

```
#define VRNA_FILE_FORMAT_MSA_MAF 8U
#include <ViennaRNA/io/file_formats_msa.h>
```

Option flag indicating MAF formatted files.

See also

vrna\_file\_msa\_read(), vrna\_file\_msa\_read\_record(), vrna\_file\_msa\_detect\_format()

### 16.74.2.5 VRNA\_FILE\_FORMAT\_MSA\_MIS

```
#define VRNA_FILE_FORMAT_MSA_MIS 16U
#include <ViennaRNA/io/file_formats_msa.h>
```

Option flag indicating most informative sequence (MIS) output.

The default reference sequence output for an alignment is simply a consensus sequence. This flag allows to write the most informative equence (MIS) instead.

See also

vrna\_file\_msa\_write()

# 16.74.2.6 VRNA\_FILE\_FORMAT\_MSA\_DEFAULT

Option flag indicating the set of default file formats.

See also

vrna file msa read(), vrna file msa read record(), vrna file msa detect format()

#### 16.74.2.7 VRNA FILE FORMAT MSA NOCHECK

```
#define VRNA_FILE_FORMAT_MSA_NOCHECK 4096U
#include <ViennaRNA/io/file_formats_msa.h>
```

Option flag to disable validation of the alignment.

See also

vrna\_file\_msa\_read(), vrna\_file\_msa\_read\_record()

# 16.74.2.8 VRNA\_FILE\_FORMAT\_MSA\_UNKNOWN

```
#define VRNA_FILE_FORMAT_MSA_UNKNOWN 8192U
#include <ViennaRNA/io/file_formats_msa.h>
```

Return flag of vrna\_file\_msa\_detect\_format() to indicate unknown or malformatted alignment.

See also

vrna\_file\_msa\_detect\_format()

### 16.74.2.9 VRNA FILE FORMAT MSA APPEND

```
#define VRNA_FILE_FORMAT_MSA_APPEND 16384U
#include <ViennaRNA/io/file_formats_msa.h>
```

Option flag indicating to append data to a multiple sequence alignment file rather than overwriting it.

See also

vrna\_file\_msa\_write()

# 16.74.2.10 VRNA\_FILE\_FORMAT\_MSA\_QUIET

```
#define VRNA_FILE_FORMAT_MSA_QUIET 32768U
#include <ViennaRNA/io/file_formats_msa.h>
Option flag to suppress unnecessary spam messages on stderr
See also
    vrna_file_msa_read(), vrna_file_msa_read_record()
```

#### 16.74.2.11 VRNA FILE FORMAT MSA SILENT

```
#define VRNA_FILE_FORMAT_MSA_SILENT 65536U
#include <ViennaRNA/io/file_formats_msa.h>
Option flag to completely silence any warnings on stderr
See also
    vrna_file_msa_read(), vrna_file_msa_read_record()
```

viria\_ille\_illsa\_reau(), viria\_ille\_illsa\_reau\_record(

#### 16.74.3 Function Documentation

# 16.74.3.1 vrna\_file\_msa\_read()

Read a multiple sequence alignment from file.

This function reads the (first) multiple sequence alignment from an input file. The read alignment is split into the sequence id/name part and the actual sequence information and stored in memory as arrays of ids/names and sequences. If the alignment file format allows for additional information, such as an ID of the entire alignment or consensus structure information, this data is retrieved as well and made available. The options parameter allows to specify the set of alignment file formats that should be used to retrieve the data. If 0 is passed as option, the list of alignment file formats defaults to VRNA\_FILE\_FORMAT\_MSA\_DEFAULT.

Currently, the list of parsable multiple sequence alignment file formats consists of:

- ClustalW format
- · Stockholm 1.0 format
- · FASTA (Pearson) format
- · MAF format

#### Note

After successfully reading an alignment, this function performs a validation of the data that includes uniqueness of the sequence identifiers, and equal sequence lengths. This check can be deactivated by passing VRNA\_FILE\_FORMAT\_MSA\_NOCHECK in the options parameter.

It is the users responsibility to free any memory occupied by the output arguments <code>names</code>, <code>aln</code>, <code>id</code>, and <code>structure</code> after calling this function. The function automatically sets the latter two arguments to <code>NULL</code> in case no corresponding data could be retrieved from the input alignment.

#### See also

vrna\_file\_msa\_read\_record(), VRNA\_FILE\_FORMAT\_MSA\_CLUSTAL, VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM, VRNA\_FILE\_FORMAT\_MSA\_FASTA, VRNA\_FILE\_FORMAT\_MSA\_MAF, VRNA\_FILE\_FORMAT\_MSA\_DEFAULT, VRNA\_FILE\_FORMAT\_MSA\_NOCHECK

#### **Parameters**

| filename  | The name of input file that contains the alignment                                                |
|-----------|---------------------------------------------------------------------------------------------------|
| names     | An address to the pointer where sequence identifiers should be written to                         |
| aln       | An address to the pointer where aligned sequences should be written to                            |
| id        | An address to the pointer where the alignment ID should be written to (Maybe NULL)                |
| structure | An address to the pointer where consensus structure information should be written to (Maybe NULL) |
| options   | Options to manipulate the behavior of this function                                               |

#### Returns

The number of sequences in the alignment, or -1 if no alignment record could be found

SWIG Wrapper Notes In the target scripting language, only the first and last argument, filename and options, are passed to the corresponding function. The other arguments, which serve as output in the C-library, are available as additional return values. Hence, a function call in python may look like this:

```
num_seq, names, aln, id, structure = RNA.file_msa_read("msa.stk", RNA.FILE_FORMAT_MSA_STOCKHOLM)
```

After successfully reading the first record, the variable  $num\_seq$  contains the number of sequences in the alignment (the actual return value of the C-function), while the variables names, aln, id, and structure are lists of the sequence names and aligned sequences, as well as strings holding the alignment ID and the structure as stated in the  $SS\_cons$  line, respectively. Note, the last two return values may be empty strings in case the alignment does not provide the required data.

This function exists as an overloaded version where the options parameter may be omitted! In that case, the options parameter defaults to VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM.

# 16.74.3.2 vrna file msa read record()

Read a multiple sequence alignment from file handle.

Similar to vrna\_file\_msa\_read(), this function reads a multiple sequence alignment from an input file handle. Since using a file handle, this function is not limited to the first alignment record, but allows for looping over all alignments within the input.

The read alignment is split into the sequence id/name part and the actual sequence information and stored in memory as arrays of ids/names and sequences. If the alignment file format allows for additional information, such as an ID of the entire alignment or consensus structure information, this data is retrieved as well and made available. The options parameter allows to specify the alignment file format used to retrieve the data. A single format must be specified here, see <a href="mailto:vrna\_file\_msa\_detect\_format">vrna\_file\_msa\_detect\_format</a>() for helping to determine the correct MSA file format.

Currently, the list of parsable multiple sequence alignment file formats consists of:

- · ClustalW format
- · Stockholm 1.0 format
- FASTA (Pearson) format
- · MAF format

#### Note

After successfully reading an alignment, this function performs a validation of the data that includes uniqueness of the sequence identifiers, and equal sequence lengths. This check can be deactivated by passing VRNA FILE FORMAT MSA NOCHECK in the options parameter.

It is the users responsibility to free any memory occupied by the output arguments names, aln, id, and structure after calling this function. The function automatically sets the latter two arguments to NULL in case no corresponding data could be retrieved from the input alignment.

#### See also

vrna\_file\_msa\_read(), vrna\_file\_msa\_detect\_format(), VRNA\_FILE\_FORMAT\_MSA\_CLUSTAL, VRNA\_FILE\_FORMAT\_MSA\_S VRNA\_FILE\_FORMAT\_MSA\_FASTA, VRNA\_FILE\_FORMAT\_MSA\_MAF, VRNA\_FILE\_FORMAT\_MSA\_DEFAULT, VRNA\_FILE\_FORMAT\_MSA\_NOCHECK

#### **Parameters**

| fp        | The file pointer the data will be retrieved from                                                  |
|-----------|---------------------------------------------------------------------------------------------------|
| names     | An address to the pointer where sequence identifiers should be written to                         |
| aln       | An address to the pointer where aligned sequences should be written to                            |
| id        | An address to the pointer where the alignment ID should be written to (Maybe NULL)                |
| structure | An address to the pointer where consensus structure information should be written to (Maybe NULL) |
| options   | Options to manipulate the behavior of this function                                               |

#### Returns

The number of sequences in the alignment, or -1 if no alignment record could be found

SWIG Wrapper Notes In the target scripting language, only the first and last argument, fp and options, are passed to the corresponding function. The other arguments, which serve as output in the C-library, are available as additional return values. Hence, a function call in python may look like this:

```
f = open('msa.stk', 'r')
num_seq, names, aln, id, structure = RNA.file_msa_read_record(f, RNA.FILE_FORMAT_MSA_STOCKHOLM)
f.close()
```

After successfully reading the first record, the variable <code>num\_seq</code> contains the number of sequences in the alignment (the actual return value of the C-function), while the variables <code>names</code>, <code>aln</code>, <code>id</code>, and <code>structure</code> are lists of the sequence names and aligned sequences, as well as strings holding the alignment ID and the structure as stated in the <code>SS\_cons</code> line, respectively. Note, the last two return values may be empty strings in case the alignment does not provide the required data.

This function exists as an overloaded version where the options parameter may be omitted! In that case, the options parameter defaults to VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM.

### 16.74.3.3 vrna\_file\_msa\_detect\_format()

Detect the format of a multiple sequence alignment file.

This function attempts to determine the format of a file that supposedly contains a multiple sequence alignment (MSA). This is useful in cases where a MSA file contains more than a single record and therefore <a href="mailto:vrna\_file\_msa\_read">vrna\_file\_msa\_read()</a>) can not be applied, since it only retrieves the first. Here, one can try to guess the correct file format using this function and then loop over the file, record by record using one of the low-level record retrieval functions for the corresponding MSA file format.

#### Note

This function parses the entire first record within the specified file. As a result, it returns VRNA\_FILE\_FORMAT\_MSA\_UNKNOW! not only if it can't detect the file's format, but also in cases where the file doesn't contain sequences!

#### See also

```
vrna file msa read(), vrna file stockholm read record(), vrna file clustal read record(), vrna file fasta read record()
```

#### **Parameters**

| filename | The name of input file that contains the alignment  |
|----------|-----------------------------------------------------|
| options  | Options to manipulate the behavior of this function |

### Returns

The MSA file format, or VRNA\_FILE\_FORMAT\_MSA\_UNKNOWN

SWIG Wrapper Notes This function exists as an overloaded version where the options parameter may be omitted! In that case, the options parameter defaults to VRNA\_FILE\_FORMAT\_MSA\_DEFAULT.

#### 16.74.3.4 vrna file msa write()

Write multiple sequence alignment file.

Note

Currently, we only support Stockholm 1.0 format output

# See also

VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM, VRNA\_FILE\_FORMAT\_MSA\_APPEND, VRNA\_FILE\_FORMAT\_MSA\_MIS

| filename  | The output filename                                 |
|-----------|-----------------------------------------------------|
| names     | The array of sequence names / identifies            |
| aln       | The array of aligned sequences                      |
| id        | An optional ID for the alignment                    |
| structure | An optional consensus structure                     |
| source    | A string describing the source of the alignment     |
| options   | Options to manipulate the behavior of this function |

16.75 Command Files 471

Returns

Non-null upon successfully writing the alignment to file

SWIG Wrapper Notes In the target scripting language, this function exists as a set of overloaded versions, where the last four parameters may be omitted. If the options parameter is missing the options default to (VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM | VRNA\_FILE\_FORMAT\_MSA\_APPEND).

# 16.75 Command Files

Functions to parse and interpret the content of Command Files.

# 16.75.1 Detailed Description

Functions to parse and interpret the content of Command Files. Collaboration diagram for Command Files:

#### **Files**

· file commands.h

Parse and apply different commands that alter the behavior of secondary structure prediction and evaluation.

#### **Macros**

#define VRNA CMD PARSE HC 1U

Command parse/apply flag indicating hard constraints.

#define VRNA\_CMD\_PARSE\_SC 2U

Command parse/apply flag indicating soft constraints.

#define VRNA CMD PARSE UD 4U

Command parse/apply flag indicating unstructured domains.

#define VRNA\_CMD\_PARSE\_SD 8U

Command parse/apply flag indicating structured domains.

#define VRNA CMD PARSE DEFAULTS

Command parse/apply flag indicating default set of commands.

# **Typedefs**

typedef struct vrna command s \* vrna cmd t

A data structure that contains commands.

# **Functions**

• vrna\_cmd\_t vrna\_file\_commands\_read (const char \*filename, unsigned int options)

Extract a list of commands from a command file.

• int vrna\_file\_commands\_apply (vrna\_fold\_compound\_t \*vc, const char \*filename, unsigned int options)

Apply a list of commands from a command file.

- int vrna\_commands\_apply (vrna\_fold\_compound\_t \*vc, vrna\_cmd\_t commands, unsigned int options)

  Apply a list of commands to a vrna\_fold\_compound\_t.
- void vrna\_commands\_free (vrna\_cmd\_t commands)

Free memory occupied by a list of commands.

# 16.75.2 Macro Definition Documentation

### 16.75.2.1 VRNA\_CMD\_PARSE\_HC

```
#define VRNA_CMD_PARSE_HC 1U
#include <ViennaRNA/commands.h>
```

Command parse/apply flag indicating hard constraints.

See also

vrna\_cmd\_t, vrna\_file\_commands\_read(), vrna\_file\_commands\_apply(), vrna\_commands\_apply()

# 16.75.2.2 VRNA\_CMD\_PARSE\_SC

```
#define VRNA_CMD_PARSE_SC 2U
#include <ViennaRNA/commands.h>
```

Command parse/apply flag indicating soft constraints.

See also

vrna\_cmd\_t, vrna\_file\_commands\_read(), vrna\_file\_commands\_apply(), vrna\_commands\_apply()

# 16.75.2.3 VRNA\_CMD\_PARSE\_UD

```
#define VRNA_CMD_PARSE_UD 4U
#include <ViennaRNA/commands.h>
```

Command parse/apply flag indicating unstructured domains.

See also

vrna\_cmd\_t, vrna\_file\_commands\_read(), vrna\_file\_commands\_apply(), vrna\_commands\_apply()

# 16.75.2.4 VRNA\_CMD\_PARSE\_SD

```
#define VRNA_CMD_PARSE_SD 8U
#include <ViennaRNA/commands.h>
```

Command parse/apply flag indicating structured domains.

See also

vrna\_cmd\_t, vrna\_file\_commands\_read(), vrna\_file\_commands\_apply(), vrna\_commands\_apply()

### 16.75.2.5 VRNA\_CMD\_PARSE\_DEFAULTS

Command parse/apply flag indicating default set of commands.

See also

vrna\_cmd\_t, vrna\_file\_commands\_read(), vrna\_file\_commands\_apply(), vrna\_commands\_apply()

# 16.75.3 Function Documentation

16.75 Command Files 473

# 16.75.3.1 vrna\_file\_commands\_read()

Extract a list of commands from a command file.

Read a list of commands specified in the input file and return them as list of abstract commands

See also

vrna\_commands\_apply(), vrna\_file\_commands\_apply(), vrna\_commands\_free()

#### **Parameters**

| filename | The filename                                             |
|----------|----------------------------------------------------------|
| options  | Options to limit the type of commands read from the file |

#### Returns

A list of abstract commands

# 16.75.3.2 vrna\_file\_commands\_apply()

Apply a list of commands from a command file.

This function is a shortcut to directly parse a commands file and apply all successfully parsed commands to a <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> data structure. It is the same as:

# **Parameters**

| vc The vrna_fold_compound_t the command list will be appl                                                            |  |
|----------------------------------------------------------------------------------------------------------------------|--|
| filename         The filename           options         Options to limit the type of commands read from the filename |  |

### Returns

The number of commands successfully applied

SWIG Wrapper Notes This function is attached as method file\_commands\_apply() to objects of type fold\_← compound

# 16.75.3.3 vrna\_commands\_apply()

### **Parameters**

| vc The vrna_fold_compound_t the command list will be |                                                          |
|------------------------------------------------------|----------------------------------------------------------|
| commands                                             | The commands to apply                                    |
| options                                              | Options to limit the type of commands read from the file |

### Returns

The number of commands successfully applied

### 16.75.3.4 vrna commands free()

#### **Parameters**

|  | commands | A pointer to a list of commands |  |
|--|----------|---------------------------------|--|
|--|----------|---------------------------------|--|

# 16.76 Plotting

Functions for Creating Secondary Structure Plots, Dot-Plots, and More.

# 16.76.1 Detailed Description

Functions for Creating Secondary Structure Plots, Dot-Plots, and More. Collaboration diagram for Plotting:

# **Modules**

· Layouts and Coordinates

Functions to compute coordinate layouts for secondary structure plots.

Annotation

Functions to generate annotations for Secondary Structure Plots, Dot-Plots, and Others.

Alignment Plots

Functions to generate Alignment plots with annotated consensus structure.

· Deprecated Interface for Plotting Utilities

# **Files**

· file alignments.h

Various functions for plotting Sequence / Structure Alignments.

· file layouts.h

Secondary structure plot layout algorithms.

16.76 Plotting 475

· file probabilities.h

Various functions for plotting RNA secondary structures, dot-plots and other visualizations.

· file structures.h

Various functions for plotting RNA secondary structures.

file utils.h

Various utilities to assist in plotting secondary structures and consensus structures.

· file RNApuzzler.h

Implementation of the RNApuzzler RNA secondary structure layout algorithm [30].

· file RNAturtle.h

Implementation of the RNAturtle RNA secondary structure layout algorithm [30].

#### **Data Structures**

· struct vrna\_dotplot\_auxdata\_t

#### **Functions**

• int PS\_dot\_plot\_list (char \*seq, char \*filename, vrna\_ep\_t \*pl, vrna\_ep\_t \*mf, char \*comment)

Produce a postscript dot-plot from two pair lists.

int PS\_dot\_plot (char \*string, char \*file)

Produce postscript dot-plot.

• int vrna\_file\_PS\_rnaplot (const char \*seq, const char \*structure, const char \*file, vrna\_md\_t \*md\_p)

Produce a secondary structure graph in PostScript and write it to 'filename'.

• int vrna\_file\_PS\_rnaplot\_a (const char \*seq, const char \*structure, const char \*file, const char \*pre, const char \*post, vrna\_md\_t \*md\_p)

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename'.

int gmlRNA (char \*string, char \*structure, char \*ssfile, char option)

Produce a secondary structure graph in Graph Meta Language (gml) and write it to a file.

• int ssv\_rna\_plot (char \*string, char \*structure, char \*ssfile)

Produce a secondary structure graph in SStructView format.

int svg rna plot (char \*string, char \*structure, char \*ssfile)

Produce a secondary structure plot in SVG format and write it to a file.

• int xrna plot (char \*string, char \*structure, char \*ssfile)

Produce a secondary structure plot for further editing in XRNA.

int PS\_rna\_plot (char \*string, char \*structure, char \*file)

Produce a secondary structure graph in PostScript and write it to 'filename'.

• int PS\_rna\_plot\_a (char \*string, char \*structure, char \*file, char \*pre, char \*post)

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename'.

int PS\_rna\_plot\_a\_gquad (char \*string, char \*structure, char \*ssfile, char \*pre, char \*post)

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename' (detect and draw g-quadruplexes)

### 16.76.2 Data Structure Documentation

### 16.76.2.1 struct vrna dotplot auxdata t

Collaboration diagram for vrna dotplot auxdata t:

# 16.76.3 Function Documentation

# 16.76.3.1 PS\_dot\_plot\_list()

Produce a postscript dot-plot from two pair lists.

This function reads two plist structures (e.g. base pair probabilities and a secondary structure) as produced by <a href="mailto:assign\_plist\_from\_pr">assign\_plist\_from\_pr</a>() and <a href="mailto:assign\_plist\_from\_db">assign\_plist\_from\_db</a>() and produces a postscript "dot plot" that is written to 'filename'. Using base pair probabilities in the first and mfe structure in the second plist, the resulting "dot plot" represents each base pairing probability by a square of corresponding area in a upper triangle matrix. The lower part of the matrix contains the minimum free energy structure.

#### See also

```
assign_plist_from_pr(), assign_plist_from_db()
```

#### **Parameters**

| seq      | The RNA sequence                     |
|----------|--------------------------------------|
| filename | A filename for the postscript output |
| pl       | The base pair probability pairlist   |
| mf       | The mfe secondary structure pairlist |
| comment  | A comment                            |

### Returns

1 if postscript was successfully written, 0 otherwise

# 16.76.3.2 PS\_dot\_plot()

Produce postscript dot-plot.

Wrapper to PS\_dot\_plot\_list

Reads base pair probabilities produced by pf\_fold() from the global array pr and the pair list base\_pair produced by fold() and produces a postscript "dot plot" that is written to 'filename'. The "dot plot" represents each base pairing probability by a square of corresponding area in a upper triangle matrix. The lower part of the matrix contains the minimum free energy

Note

# DO NOT USE THIS FUNCTION ANYMORE SINCE IT IS NOT THREADSAFE

**Deprecated** This function is deprecated and will be removed soon! Use PS\_dot\_plot\_list() instead!

# 16.76.3.3 vrna\_file\_PS\_rnaplot()

16.76 Plotting 477

Produce a secondary structure graph in PostScript and write it to 'filename'.

Note that this function has changed from previous versions and now expects the structure to be plotted in dot-bracket notation as an argument. It does not make use of the global base pair array anymore.

#### **Parameters**

| seq       | The RNA sequence                                                                         |
|-----------|------------------------------------------------------------------------------------------|
| structure | The secondary structure in dot-bracket notation                                          |
| file      | The filename of the postscript output                                                    |
| md_p      | Model parameters used to generate a commandline option string in the output (Maybe NULL) |

### Returns

1 on success, 0 otherwise

# 16.76.3.4 vrna\_file\_PS\_rnaplot\_a()

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename'. Same as <a href="mailto:vrna\_file\_PS\_rnaplot">vrna\_file\_PS\_rnaplot</a>() but adds extra PostScript macros for various annotations (see generated PS code). The 'pre' and 'post' variables contain PostScript code that is verbatim copied in the resulting PS file just before and after the structure plot. If both arguments ('pre' and 'post') are NULL, no additional macros will be printed into the PostScript.

### **Parameters**

| seq       | The RNA sequence                                                                         |
|-----------|------------------------------------------------------------------------------------------|
| structure | The secondary structure in dot-bracket notation                                          |
| file      | The filename of the postscript output                                                    |
| pre       | PostScript code to appear before the secondary structure plot                            |
| post      | PostScript code to appear after the secondary structure plot                             |
| md_p      | Model parameters used to generate a commandline option string in the output (Maybe NULL) |

#### Returns

1 on success, 0 otherwise

# 16.76.3.5 gmIRNA()

Produce a secondary structure graph in Graph Meta Language (gml) and write it to a file.

If 'option' is an uppercase letter the RNA sequence is used to label nodes, if 'option' equals X' or X' the resulting file will coordinates for an initial layout of the graph.

#### **Parameters**

| string    | The RNA sequence                                |
|-----------|-------------------------------------------------|
| structure | The secondary structure in dot-bracket notation |
| ssfile    | The filename of the gml output                  |
| option    | The option flag                                 |

### Returns

1 on success, 0 otherwise

# 16.76.3.6 ssv\_rna\_plot()

Produce a secondary structure graph in SStructView format.

Write coord file for SStructView

#### **Parameters**

| string    | The RNA sequence                                |
|-----------|-------------------------------------------------|
| structure | The secondary structure in dot-bracket notation |
| ssfile    | The filename of the ssv output                  |

# Returns

1 on success, 0 otherwise

# 16.76.3.7 svg\_rna\_plot()

Produce a secondary structure plot in SVG format and write it to a file.

| string    | The RNA sequence                                |
|-----------|-------------------------------------------------|
| structure | The secondary structure in dot-bracket notation |
| ssfile    | The filename of the svg output                  |

16.76 Plotting 479

#### Returns

1 on success, 0 otherwise

# 16.76.3.8 xrna\_plot()

Produce a secondary structure plot for further editing in XRNA.

#### **Parameters**

| string    | The RNA sequence                                |
|-----------|-------------------------------------------------|
| structure | The secondary structure in dot-bracket notation |
| ssfile    | The filename of the xrna output                 |

#### Returns

1 on success, 0 otherwise

# 16.76.3.9 PS\_rna\_plot()

Produce a secondary structure graph in PostScript and write it to 'filename'.

**Deprecated** Use vrna\_file\_PS\_rnaplot() instead!

# 16.76.3.10 PS\_rna\_plot\_a()

#include <ViennaRNA/plotting/structures.h>

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename'.

**Deprecated** Use vrna\_file\_PS\_rnaplot\_a() instead!

### 16.76.3.11 PS\_rna\_plot\_a\_gquad()

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename' (detect and draw g-quadruplexes)

Deprecated Use vrna file PS rnaplot a() instead!

# 16.77 Layouts and Coordinates

Functions to compute coordinate layouts for secondary structure plots.

# 16.77.1 Detailed Description

Functions to compute coordinate layouts for secondary structure plots. Collaboration diagram for Layouts and Coordinates:

#### **Data Structures**

- · struct vrna plot layout s
- struct vrna\_plot\_options\_puzzler\_t

Options data structure for RNApuzzler algorithm implementation. More...

#### **Macros**

• #define VRNA PLOT TYPE SIMPLE 0

Definition of Plot type simple

• #define VRNA\_PLOT\_TYPE\_NAVIEW 1

Definition of Plot type Naview

#define VRNA\_PLOT\_TYPE\_CIRCULAR 2

Definition of Plot type Circular

• #define VRNA\_PLOT\_TYPE\_TURTLE 3

Definition of Plot type Turtle [30].

#define VRNA\_PLOT\_TYPE\_PUZZLER 4

Definition of Plot type RNApuzzler [30].

# **Typedefs**

typedef struct vrna\_plot\_layout\_s vrna\_plot\_layout\_t

RNA secondary structure figure layout.

#### **Functions**

vrna\_plot\_layout\_t \* vrna\_plot\_layout (const char \*structure, unsigned int plot\_type)

Create a layout (coordinates, etc.) for a secondary structure plot.

vrna\_plot\_layout\_t \* vrna\_plot\_layout\_simple (const char \*structure)

Create a layout (coordinates, etc.) for a simple secondary structure plot.

vrna\_plot\_layout\_t \* vrna\_plot\_layout\_circular (const char \*structure)

Create a layout (coordinates, etc.) for a circular secondary structure plot.

vrna\_plot\_layout\_t \* vrna\_plot\_layout\_turtle (const char \*structure)

Create a layout (coordinates, etc.) for a secondary structure plot using the Turtle Algorithm [30].

vrna\_plot\_layout\_t \* vrna\_plot\_layout\_puzzler (const char \*structure, vrna\_plot\_options\_puzzler\_t \*options)

Create a layout (coordinates, etc.) for a secondary structure plot using the RNApuzzler Algorithm [30].

void vrna\_plot\_layout\_free (vrna\_plot\_layout\_t \*layout)

Free memory occupied by a figure layout data structure.

• int vrna plot coords (const char \*structure, float \*\*x, float \*\*y, int plot type)

Compute nucleotide coordinates for secondary structure plot.

int vrna\_plot\_coords\_pt (const short \*pt, float \*\*x, float \*\*y, int plot\_type)

Compute nucleotide coordinates for secondary structure plot.

int vrna\_plot\_coords\_simple (const char \*structure, float \*\*x, float \*\*y)

Compute nucleotide coordinates for secondary structure plot the Simple way

int vrna\_plot\_coords\_simple\_pt (const short \*pt, float \*\*x, float \*\*x)

Compute nucleotide coordinates for secondary structure plot the Simple way

int vrna\_plot\_coords\_circular (const char \*structure, float \*\*x, float \*\*y)

Compute coordinates of nucleotides mapped in equal distancies onto a unit circle.

int vrna\_plot\_coords\_circular\_pt (const short \*pt, float \*\*x, float \*\*y)

Compute nucleotide coordinates for a Circular Plot

• int vrna\_plot\_coords\_puzzler (const char \*structure, float \*\*x, float \*\*y, double \*\*arc\_coords, vrna\_plot\_options\_puzzler\_t \*options)

Compute nucleotide coordinates for secondary structure plot using the RNApuzzler algorithm [30].

• int vrna\_plot\_coords\_puzzler\_pt (short const \*const pair\_table, float \*\*x, float \*\*y, double \*\*arc\_coords, vrna plot options puzzler t \*puzzler)

Compute nucleotide coordinates for secondary structure plot using the RNApuzzler algorithm [30].

vrna\_plot\_options\_puzzler\_t \* vrna\_plot\_options\_puzzler (void)

Create an RNApuzzler options data structure.

void vrna\_plot\_options\_puzzler\_free (vrna\_plot\_options\_puzzler\_t \*options)

Free memory occupied by an RNApuzzler options data structure.

int vrna\_plot\_coords\_turtle (const char \*structure, float \*\*x, float \*\*y, double \*\*arc\_coords)

Compute nucleotide coordinates for secondary structure plot using the RNAturtle algorithm [30].

Compute nucleotide coordinates for secondary structure plot using the RNAturtle algorithm [30].

 $\bullet \ \ \text{int vrna\_plot\_coords\_turtle\_pt (short const *const pair\_table, float **x, float **y, double **arc\_coords)}$ 

# 16.77.2 Data Structure Documentation

16.77.2.1 struct vrna\_plot\_layout\_s

16.77.2.2 struct vrna\_plot\_options\_puzzler\_t

Options data structure for RNA puzzler algorithm implementation.

### 16.77.3 Macro Definition Documentation

# 16.77.3.1 VRNA\_PLOT\_TYPE\_SIMPLE

```
#define VRNA_PLOT_TYPE_SIMPLE 0
#include <ViennaRNA/plotting/layouts.h>
```

Definition of Plot type simple

This is the plot type definition for several RNA structure plotting functions telling them to use **Simple** plotting algorithm

See also

```
rna_plot_type, vrna_file_PS_rnaplot_a(), vrna_file_PS_rnaplot(), svg_rna_plot(), gmlRNA(), ssv_rna_plot(),
xrna_plot()
```

# 16.77.3.2 VRNA\_PLOT\_TYPE\_NAVIEW

```
#define VRNA_PLOT_TYPE_NAVIEW 1
#include <ViennaRNA/plotting/layouts.h>
```

Definition of Plot type Naview

This is the plot type definition for several RNA structure plotting functions telling them to use **Naview** plotting algorithm [6].

See also

rna\_plot\_type, vrna\_file\_PS\_rnaplot\_a(), vrna\_file\_PS\_rnaplot(), svg\_rna\_plot(), gmlRNA(), ssv\_rna\_plot(), xrna\_plot()

# 16.77.3.3 VRNA\_PLOT\_TYPE\_CIRCULAR

```
#define VRNA_PLOT_TYPE_CIRCULAR 2
#include <ViennaRNA/plotting/layouts.h>
```

Definition of Plot type Circular

This is the plot type definition for several RNA structure plotting functions telling them to produce a Circular plot

See also

rna\_plot\_type, vrna\_file\_PS\_rnaplot\_a(), vrna\_file\_PS\_rnaplot(), svg\_rna\_plot(), gmlRNA(), ssv\_rna\_plot(),
xrna\_plot()

# 16.77.3.4 VRNA\_PLOT\_TYPE\_TURTLE

```
#define VRNA_PLOT_TYPE_TURTLE 3
#include <ViennaRNA/plotting/layouts.h>
Definition of Plot type Turtle [30].
```

# 16.77.3.5 VRNA PLOT TYPE PUZZLER

```
#define VRNA_PLOT_TYPE_PUZZLER 4
#include <ViennaRNA/plotting/layouts.h>
Definition of Plot type RNApuzzler [30].
```

### 16.77.4 Typedef Documentation

# 16.77.4.1 vrna\_plot\_layout\_t

```
typedef struct vrna_plot_layout_s vrna_plot_layout_t
#include <ViennaRNA/plotting/layouts.h>
RNA secondary structure figure layout.
```

See also

vrna\_plot\_layout(), vrna\_plot\_layout\_free(), vrna\_plot\_layout\_simple(), vrna\_plot\_layout\_circular(), vrna\_⇔ plot\_layout\_naview(), vrna\_plot\_layout\_turtle(), vrna\_plot\_layout\_puzzler()

# 16.77.5 Function Documentation

### 16.77.5.1 vrna\_plot\_layout()

Create a layout (coordinates, etc.) for a secondary structure plot.

This function can be used to create a secondary structure nucleotide layout that is then further processed by an actual plotting function. The layout algorithm can be specified using the plot\_type parameter, and the following algorithms are currently supported:

- VRNA\_PLOT\_TYPE\_SIMPLE
- VRNA\_PLOT\_TYPE\_NAVIEW
- VRNA\_PLOT\_TYPE\_CIRCULAR
- VRNA\_PLOT\_TYPE\_TURTLE
- VRNA PLOT TYPE PUZZLER

Passing an unsupported selection leads to the default algorithm VRNA\_PLOT\_TYPE\_NAVIEW

#### Note

If only X-Y coordinates of the corresponding structure layout are required, consider using vrna\_plot\_coords() instead!

#### See also

```
vrna_plot_layout_free(), vrna_plot_layout_simple(), vrna_plot_layout_naview(), vrna_plot_layout_circular(), vrna_plot_layout_turtle(), vrna_plot_layout_puzzler(), vrna_plot_coords(), vrna_file_PS_rnaplot_layout()
```

### **Parameters**

| structure | The secondary structure in dot-bracket notation |
|-----------|-------------------------------------------------|
| plot_type | The layout algorithm to be used                 |

#### Returns

The layout data structure for the provided secondary structure

# 16.77.5.2 vrna\_plot\_layout\_simple()

Create a layout (coordinates, etc.) for a simple secondary structure plot.

This function basically is a wrapper to vrna\_plot\_layout() that passes the plot\_type VRNA\_PLOT\_TYPE\_SIMPLE.

### Note

If only X-Y coordinates of the corresponding structure layout are required, consider using vrna\_plot\_coords\_simple() instead!

# See also

```
vrna_plot_layout_free(), vrna_plot_layout(), vrna_plot_layout_naview(), vrna_plot_layout_circular(), vrna_plot_layout_turtle(), vrna_plot_layout_puzzler(), vrna_plot_coords_simple(), vrna_file_PS_rnaplot_layout()
```

#### **Parameters**

| structure | The secondary structure in dot-bracket notation |
|-----------|-------------------------------------------------|
|-----------|-------------------------------------------------|

#### Returns

The layout data structure for the provided secondary structure

### 16.77.5.3 vrna\_plot\_layout\_circular()

Create a layout (coordinates, etc.) for a *circular* secondary structure plot.

This function basically is a wrapper to vrna plot layout() that passes the plot type VRNA PLOT TYPE CIRCULAR.

#### Note

If only X-Y coordinates of the corresponding structure layout are required, consider using vrna\_plot\_coords\_circular() instead!

#### See also

vrna\_plot\_layout\_free(), vrna\_plot\_layout(), vrna\_plot\_layout\_naview(), vrna\_plot\_layout\_simple(), vrna\_plot\_layout\_turtle(), vrna\_plot\_layout\_puzzler(), vrna\_plot\_coords\_circular(), vrna\_file\_PS\_rnaplot\_layout()

#### **Parameters**

| structure | The secondary structure in dot-bracket notation |
|-----------|-------------------------------------------------|
|-----------|-------------------------------------------------|

### Returns

The layout data structure for the provided secondary structure

# 16.77.5.4 vrna\_plot\_layout\_turtle()

Create a layout (coordinates, etc.) for a secondary structure plot using the Turtle Algorithm [30].

This function basically is a wrapper to vrna\_plot\_layout() that passes the plot\_type VRNA\_PLOT\_TYPE\_TURTLE.

Note

If only X-Y coordinates of the corresponding structure layout are required, consider using vrna\_plot\_coords\_turtle() instead!

#### See also

 $\label{layout_free} $$\operatorname{vrna\_plot\_layout\_free}(), \ \operatorname{vrna\_plot\_layout\_simple}(), \ \operatorname{vrna\_plot\_layout\_circular}(), \ \operatorname{vrna\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout(), \ \operatorname{vrna\_plot\_layout\_plot\_layout}(), \ \operatorname{vrna\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layout\_plot\_layou$ 

| structure | The secondary structure in dot-bracket notation |
|-----------|-------------------------------------------------|
|-----------|-------------------------------------------------|

#### Returns

The layout data structure for the provided secondary structure

# 16.77.5.5 vrna\_plot\_layout\_puzzler()

Create a layout (coordinates, etc.) for a secondary structure plot using the *RNApuzzler Algorithm* [30]. This function basically is a wrapper to vrna\_plot\_layout() that passes the plot\_type VRNA\_PLOT\_TYPE\_PUZZLER.

#### Note

If only X-Y coordinates of the corresponding structure layout are required, consider using vrna\_plot\_coords\_puzzler() instead!

#### See also

```
vrna_plot_layout_free(), vrna_plot_layout(), vrna_plot_layout_simple(), vrna_plot_layout_circular(), vrna_⇔ plot_layout_naview(), vrna_plot_layout_turtle(), vrna_plot_coords_puzzler(), vrna_file_PS_rnaplot_layout()
```

#### **Parameters**

|  | structure | The secondary structure in dot-bracket notation |  |
|--|-----------|-------------------------------------------------|--|
|--|-----------|-------------------------------------------------|--|

#### Returns

The layout data structure for the provided secondary structure

# 16.77.5.6 vrna\_plot\_layout\_free()

Free memory occupied by a figure layout data structure.

#### See also

vrna\_plot\_layout\_t, vrna\_plot\_layout(), vrna\_plot\_layout\_simple(), vrna\_plot\_layout\_circular(), vrna\_plot\_\( \text{ayout\_naview}(), vrna\_plot\_layout\_turtle(), vrna\_plot\_layout\_puzzler(), vrna\_file\_PS\_rnaplot\_layout()

#### **Parameters**

```
layout The layout data structure to free
```

### 16.77.5.7 vrna plot coords()

```
#include <ViennaRNA/plotting/layouts.h>
```

Compute nucleotide coordinates for secondary structure plot.

This function takes a secondary structure and computes X-Y coordinates for each nucleotide that then can be used to create a structure plot. The parameter  $plot\_type$  is used to select the underlying layout algorithm. Currently, the following selections are provided:

- VRNA\_PLOT\_TYPE\_SIMPLE
- VRNA\_PLOT\_TYPE\_NAVIEW
- VRNA PLOT TYPE CIRCULAR
- VRNA PLOT TYPE TURTLE
- VRNA PLOT TYPE PUZZLER

Passing an unsupported selection leads to the default algorithm VRNA\_PLOT\_TYPE\_NAVIEW

Here is a simple example how to use this function, assuming variable structure contains a valid dot-bracket string:

```
float *x, *y;

if (vrna_plot_coords(structure, &x, &y)) {
   printf("all fine");
} else {
   printf("some failure occured!");
}

free(x);
free(y);
```

### Note

On success, this function allocates memory for X and Y coordinates and assigns the pointers at addressess x and y to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

### See also

vrna\_plot\_coords\_pt(), vrna\_plot\_coords\_simple(), vrna\_plot\_coords\_naview() vrna\_plot\_coords\_circular(), vrna\_plot\_coords\_turtle(), vrna\_plot\_coords\_puzzler()

### Parameters

|        | structure | The secondary structure in dot-bracket notation                                     |
|--------|-----------|-------------------------------------------------------------------------------------|
| in,out | Х         | The address of a pointer of X coordinates (pointer will point to memory, or NULL on |
|        |           | failure)                                                                            |
| in,out | У         | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on |
|        |           | failure)                                                                            |
|        | plot_type | The layout algorithm to be used                                                     |

### Returns

The length of the structure on success, 0 otherwise

# 16.77.5.8 vrna\_plot\_coords\_pt()

Same as vrna\_plot\_coords() but takes a pair table with the structure information as input.

#### Note

On success, this function allocates memory for X and Y coordinates and assigns the pointers at addressess x and y to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

# See also

vrna\_plot\_coords(), vrna\_plot\_coords\_simple\_pt(), vrna\_plot\_coords\_naview\_pt() vrna\_plot\_coords\_circular\_pt(), vrna\_plot\_coords\_turtle\_pt(), vrna\_plot\_coords\_puzzler\_pt()

#### **Parameters**

|        | pt        | The pair table that holds the secondary structure                                            |
|--------|-----------|----------------------------------------------------------------------------------------------|
| in,out | X         | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure) |
| in,out | у         | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure) |
|        | plot_type | The layout algorithm to be used                                                              |

### Returns

The length of the structure on success, 0 otherwise

### 16.77.5.9 vrna\_plot\_coords\_simple()

Compute nucleotide coordinates for secondary structure plot the Simple way

This function basically is a wrapper to vrna\_plot\_coords() that passes the plot\_type VRNA\_PLOT\_TYPE\_SIMPLE. Here is a simple example how to use this function, assuming variable structure contains a valid dot-bracket string:

```
float *x, *y;

if (vrna_plot_coords_simple(structure, &x, &y)) {
   printf("all fine");
} else {
   printf("some failure occured!");
}

free(x);
free(y);
```

#### Note

On success, this function allocates memory for X and Y coordinates and assigns the pointers at addressess  ${\tt x}$  and  ${\tt y}$  to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

### See also

vrna\_plot\_coords(), vrna\_plot\_coords\_simple\_pt(), vrna\_plot\_coords\_circular(), vrna\_plot\_coords\_naview(), vrna\_plot\_coords\_turtle(), vrna\_plot\_coords\_puzzler()

|  | structure | The secondary structure in dot-bracket notation |
|--|-----------|-------------------------------------------------|
|--|-----------|-------------------------------------------------|

#### **Parameters**

| in,out | X | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure) |
|--------|---|----------------------------------------------------------------------------------------------|
| in,out | у | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure) |

#### Returns

The length of the structure on success, 0 otherwise

### 16.77.5.10 vrna plot coords simple pt()

Compute nucleotide coordinates for secondary structure plot the Simple way

Same as vrna plot coords simple() but takes a pair table with the structure information as input.

#### Note

On success, this function allocates memory for X and Y coordinates and assigns the pointers at addressess x and y to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

### See also

vrna\_plot\_coords\_pt(), vrna\_plot\_coords\_simple(), vrna\_plot\_coords\_circular\_pt(), vrna\_plot\_coords\_← naview pt(), vrna plot coords turtle pt(), vrna plot coords puzzler pt()

# Parameters

|        | pt | The pair table that holds the secondary structure                                            |  |
|--------|----|----------------------------------------------------------------------------------------------|--|
| in,out | х  | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure) |  |
| in,out | у  | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure) |  |

### Returns

The length of the structure on success, 0 otherwise

# 16.77.5.11 vrna\_plot\_coords\_circular()

Compute coordinates of nucleotides mapped in equal distancies onto a unit circle.

This function basically is a wrapper to vrna\_plot\_coords() that passes the plot\_type VRNA\_PLOT\_TYPE\_CIRCULAR. In order to draw nice arcs using quadratic bezier curves that connect base pairs one may calculate a second tangential point  $P^t$  in addition to the actual  $R^2$  coordinates. the simplest way to do so may be to compute a radius scaling factor rs in the interval [0,1] that weights the proportion of base pair span to the actual length of the

sequence. This scaling factor can then be used to calculate the coordinates for  $P^t$ , i.e.

$$P_x^t[i] = X[i] * rs$$

and

$$P_u^t[i] = Y[i] * rs$$

Note

On success, this function allocates memory for X and Y coordinates and assigns the pointers at addressess x and y to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

#### See also

vrna\_plot\_coords(), vrna\_plot\_coords\_circular\_pt(), vrna\_plot\_coords\_simple(), vrna\_plot\_coords\_naview(),
vrna\_plot\_coords turtle(), vrna\_plot\_coords puzzler()

#### **Parameters**

|        | structure | The secondary structure in dot-bracket notation                                              |
|--------|-----------|----------------------------------------------------------------------------------------------|
| in,out | X         | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure) |
| in,out | У         | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure) |

#### Returns

The length of the structure on success, 0 otherwise

# 16.77.5.12 vrna\_plot\_coords\_circular\_pt()

Compute nucleotide coordinates for a Circular Plot

Same as vrna\_plot\_coords\_circular() but takes a pair table with the structure information as input.

Note

On success, this function allocates memory for X and Y coordinates and assigns the pointers at addressess  ${\bf x}$  and  ${\bf y}$  to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

### See also

 $vrna\_plot\_coords\_pt(), \quad vrna\_plot\_coords\_circular(), \quad vrna\_plot\_coords\_simple\_pt(), \quad vrna\_plot\_coords\_circular(), \quad vrna\_plot\_coords\_turtle\_pt(), \quad vrna\_plot\_coords\_puzzler\_pt()$ 

|        | pt | The pair table that holds the secondary structure                                            |  |
|--------|----|----------------------------------------------------------------------------------------------|--|
| in,out | X  | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure) |  |
| in,out | У  | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure) |  |

#### Returns

The length of the structure on success, 0 otherwise

# 16.77.5.13 vrna\_plot\_coords\_puzzler()

Compute nucleotide coordinates for secondary structure plot using the *RNApuzzler* algorithm [30].

This function basically is a wrapper to vrna\_plot\_coords() that passes the plot\_type VRNA\_PLOT\_TYPE\_PUZZLER. Here is a simple example how to use this function, assuming variable structure contains a valid dot-bracket string and using the default options (options = NULL):

```
float *x, *y;
double *arcs;

if (vrna_plot_coords_puzzler(structure, &x, &y, &arcs, NULL)) {
   printf("all fine");
} else {
   printf("some failure occured!");
}

free(x);
free(y);
free(arcs);
```

#### Note

On success, this function allocates memory for X, Y and arc coordinates and assigns the pointers at addressess x, y and  $arc\_coords$  to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

### See also

vrna\_plot\_coords(), vrna\_plot\_coords\_puzzler\_pt(), vrna\_plot\_coords\_circular(), vrna\_plot\_coords\_simple(), vrna\_plot\_coords\_turtle(), vrna\_plot\_coords\_naview(), vrna\_plot\_options\_puzzler()

### **Parameters**

|        | structure  | The secondary structure in dot-bracket notation                                                            |
|--------|------------|------------------------------------------------------------------------------------------------------------|
| in,out | Х          | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure)               |
| in,out | у          | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure)               |
| in,out | arc_coords | The address of a pointer that will hold arc coordinates (pointer will point to memory, or NULL on failure) |
|        | options    | The options for the RNApuzzler algorithm (or NULL)                                                         |

# Returns

The length of the structure on success, 0 otherwise

# 16.77.5.14 vrna\_plot\_coords\_puzzler\_pt()

```
float ** x,
float ** y,
double ** arc_coords,
vrna_plot_options_puzzler_t * puzzler )
#include <ViennaRNA/plotting/RNApuzzler/RNApuzzler.h>
```

Compute nucleotide coordinates for secondary structure plot using the *RNApuzzler* algorithm [30]. Same as vrna\_plot\_coords\_puzzler() but takes a pair table with the structure information as input.

#### Note

On success, this function allocates memory for X, Y and arc coordinates and assigns the pointers at addressess x, y and  $arc\_coords$  to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

#### See also

 $vrna\_plot\_coords\_pt(), vrna\_plot\_coords\_puzzler(), vrna\_plot\_coords\_circular\_pt(), vrna\_plot\_coords\_simple\_pt(), vrna\_plot\_coords\_turtle\_pt(), vrna\_plot\_coords\_naview\_pt()\\$ 

#### **Parameters**

|        | pt         | The pair table that holds the secondary structure                                                          |
|--------|------------|------------------------------------------------------------------------------------------------------------|
| in,out | Х          | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure)               |
| in,out | У          | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure)               |
| in,out | arc_coords | The address of a pointer that will hold arc coordinates (pointer will point to memory, or NULL on failure) |
|        | options    | The options for the RNApuzzler algorithm (or NULL)                                                         |

#### Returns

The length of the structure on success, 0 otherwise

### 16.77.5.15 vrna\_plot\_options\_puzzler()

### See also

vrna\_plot\_options\_puzzler\_free(), vrna\_plot\_coords\_puzzler(), vrna\_plot\_coords\_puzzler\_pt(), vrna\_plot\_layout\_puzzler()

### Returns

An RNApuzzler options data structure with default settings

### 16.77.5.16 vrna\_plot\_options\_puzzler\_free()

#### See also

vrna\_plot\_options\_puzzler(), vrna\_plot\_coords\_puzzler(), vrna\_plot\_coords\_puzzler\_pt(), vrna\_plot\_layout\_puzzler()

#### **Parameters**

```
options A pointer to the options data structure to free
```

#### 16.77.5.17 vrna plot coords turtle()

Compute nucleotide coordinates for secondary structure plot using the RNAturtle algorithm [30].

This function basically is a wrapper to vrna\_plot\_coords() that passes the plot\_type VRNA\_PLOT\_TYPE\_TURTLE. Here is a simple example how to use this function, assuming variable structure contains a valid dot-bracket string:

```
float *x, *y;
double *arcs;

if (vrna_plot_coords_turtle(structure, &x, &y, &arcs)) {
   printf("all fine");
} else {
   printf("some failure occured!");
}

free(x);
free(y);
free(arcs);
```

#### Note

On success, this function allocates memory for X, Y and arc coordinates and assigns the pointers at addressess x, y and  $arc\_coords$  to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

#### See also

vrna\_plot\_coords(), vrna\_plot\_coords\_turtle\_pt(), vrna\_plot\_coords\_circular(), vrna\_plot\_coords\_simple(), vrna\_plot\_coords\_naview(), vrna\_plot\_coords\_puzzler()

#### **Parameters**

|        | structure  | The secondary structure in dot-bracket notation                                                            |
|--------|------------|------------------------------------------------------------------------------------------------------------|
| in,out | X          | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure)               |
| in,out | У          | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure)               |
| in,out | arc_coords | The address of a pointer that will hold arc coordinates (pointer will point to memory, or NULL on failure) |

#### Returns

The length of the structure on success, 0 otherwise

16.78 Annotation 493

### 16.77.5.18 vrna\_plot\_coords\_turtle\_pt()

Compute nucleotide coordinates for secondary structure plot using the *RNAturtle* algorithm [30]. Same as vrna\_plot\_coords\_turtle() but takes a pair table with the structure information as input.

Note

On success, this function allocates memory for X, Y and arc coordinates and assigns the pointers at addressess x, y and  $arc\_coords$  to the corresponding memory locations. It's the users responsibility to cleanup this memory after usage!

#### See also

vrna\_plot\_coords\_pt(), vrna\_plot\_coords\_turtle(), vrna\_plot\_coords\_circular\_pt(), vrna\_plot\_coords\_simple\_pt(), vrna\_plot\_coords\_puzzler\_pt(), vrna\_plot\_coords\_naview\_pt()

#### **Parameters**

|        | pt         | The pair table that holds the secondary structure                                                          |
|--------|------------|------------------------------------------------------------------------------------------------------------|
| in,out | X          | The address of a pointer of X coordinates (pointer will point to memory, or NULL on failure)               |
| in,out | У          | The address of a pointer of Y coordinates (pointer will point to memory, or NULL on failure)               |
| in,out | arc_coords | The address of a pointer that will hold arc coordinates (pointer will point to memory, or NULL on failure) |

#### Returns

The length of the structure on success, 0 otherwise

### 16.78 Annotation

Functions to generate annotations for Secondary Structure Plots, Dot-Plots, and Others.

### 16.78.1 Detailed Description

Functions to generate annotations for Secondary Structure Plots, Dot-Plots, and Others. Collaboration diagram for Annotation:

#### **Functions**

- char \*\* vrna\_annotate\_covar\_db (const char \*\*alignment, const char \*structure, vrna\_md\_t \*md\_p)
  - Produce covariance annotation for an alignment given a secondary structure.
- vrna\_cpair\_t \* vrna\_annotate\_covar\_pairs (const char \*\*alignment, vrna\_ep\_t \*pl, vrna\_ep\_t \*mfel, double threshold, vrna\_md\_t \*md)

Produce covariance annotation for an alignment given a set of base pairs.

### 16.78.2 Function Documentation

### 16.78.2.1 vrna\_annotate\_covar\_db()

Produce covariance annotation for an alignment given a secondary structure.

#### 16.78.2.2 vrna\_annotate\_covar\_pairs()

Produce covariance annotation for an alignment given a set of base pairs.

# 16.79 Alignment Plots

Functions to generate Alignment plots with annotated consensus structure.

### 16.79.1 Detailed Description

Functions to generate Alignment plots with annotated consensus structure. Collaboration diagram for Alignment Plots:

### **Functions**

• int vrna\_file\_PS\_aln (const char \*filename, const char \*\*seqs, const char \*\*names, const char \*structure, unsigned int columns)

Create an annotated PostScript alignment plot.

• int vrna\_file\_PS\_aln\_slice (const char \*filename, const char \*\*seqs, const char \*\*names, const char \*structure, unsigned int start, unsigned int end, int offset, unsigned int columns)

Create an annotated PostScript alignment plot.

### 16.79.2 Function Documentation

#### 16.79.2.1 vrna\_file\_PS\_aln()

See also

```
vrna_file_PS_aln_slice()
```

16.79 Alignment Plots 495

#### **Parameters**

| filename  | The output file name                                                                                      |
|-----------|-----------------------------------------------------------------------------------------------------------|
| seqs      | The aligned sequences                                                                                     |
| names     | The names of the sequences                                                                                |
| structure | The consensus structure in dot-bracket notation                                                           |
| columns   | The number of columns before the alignment is wrapped as a new block (a value of 0 indicates no wrapping) |

SWIG Wrapper Notes This function is available as overloaded function  $file_PS_aln()$  with three additional parameters start, end, and offset before the columns argument. Thus, it resembles the  $vrna_file_PS_aln_slice()$  function. The last four arguments may be omitted, indicating the default of start = 0, end = 0, offset = 0, and columns = 60.

### 16.79.2.2 vrna\_file\_PS\_aln\_slice()

Create an annotated PostScript alignment plot.

Similar to vrna\_file\_PS\_aln() but allows the user to print a particular slice of the alignment by specifying a start and end position. The additional offset parameter allows for adjusting the alignment position ruler value.

### See also

```
vrna_file_PS_aln_slice()
```

#### **Parameters**

| filename  | The output file name                                                                                                      |
|-----------|---------------------------------------------------------------------------------------------------------------------------|
| seqs      | The aligned sequences                                                                                                     |
| names     | The names of the sequences                                                                                                |
| structure | The consensus structure in dot-bracket notation                                                                           |
| start     | The start of the alignment slice (a value of 0 indicates the first position of the alignment, i.e. no slicing at 5' side) |
| end       | The end of the alignment slice (a value of 0 indicates the last position of the alignment, i.e. no slicing at 3' side)    |
| offset    | The alignment coordinate offset for the position ruler.                                                                   |
| columns   | The number of columns before the alignment is wrapped as a new block (a value of 0 indicates no wrapping)                 |

SWIG Wrapper Notes This function is available as overloaded function file\_PS\_aln() where the last four parameter may be omitted, indicating start = 0, end = 0, offset = 0, and columns = 60.

# 16.80 Search Algorithms

Implementations of various search algorithms to detect strings of objects within other strings of objects.

### 16.80.1 Detailed Description

Implementations of various search algorithms to detect strings of objects within other strings of objects. Collaboration diagram for Search Algorithms:

#### **Files**

· file BoyerMoore.h

Variants of the Boyer-Moore string search algorithm.

#### **Functions**

• const unsigned int \* vrna\_search\_BMH\_num (const unsigned int \*needle, size\_t needle\_size, const unsigned int \*haystack, size\_t haystack\_size, size\_t start, size\_t \*badchars, unsigned char cyclic)

Search for a string of elements in a larger string of elements using the Boyer-Moore-Horspool algorithm.

• const char \* vrna\_search\_BMH (const char \*needle, size\_t needle\_size, const char \*haystack, size\_← t haystack\_size, size\_t start, size\_t \*badchars, unsigned char cyclic)

Search for an ASCII pattern within a larger ASCII string using the Boyer-Moore-Horspool algorithm.

size\_t \* vrna\_search\_BM\_BCT\_num (const unsigned int \*pattern, size\_t pattern\_size, unsigned int num\_←
max)

Retrieve a Boyer-Moore Bad Character Table for a pattern of elements represented by natural numbers.

size t \* vrna search BM BCT (const char \*pattern)

Retrieve a Boyer-Moore Bad Character Table for a NULL-terminated pattern of ASCII characters.

#### 16.80.2 Function Documentation

### 16.80.2.1 vrna\_search\_BMH\_num()

Search for a string of elements in a larger string of elements using the Boyer-Moore-Horspool algorithm.

To speed-up subsequent searches with this function, the Bad Character Table should be precomputed and passed as argument badchars.

See also

```
vrna_search_BM_BCT_num(), vrna_search_BMH()
```

#### **Parameters**

| needle        | The pattern of object representations to search for   |
|---------------|-------------------------------------------------------|
| needle_size   | The size (length) of the pattern provided in needle   |
| haystack      | The string of objects the search will be performed on |
| haystack_size | The size (length) of the haystack string              |

#### **Parameters**

| start    | The position within haystack where to start the search                                |  |
|----------|---------------------------------------------------------------------------------------|--|
| badchars | A pre-computed Bad Character Table obtained from vrna_search_BM_BCT_num() (If NULL, a |  |
|          | Bad Character Table will be generated automatically)                                  |  |
| cyclic   | Allow for cyclic matches if non-zero, stop search at end of haystack otherwise        |  |

#### Returns

A pointer to the first occurence of needle within haystack after position start

#### 16.80.2.2 vrna\_search\_BMH()

Search for an ASCII pattern within a larger ASCII string using the Boyer-Moore-Horspool algorithm.

To speed-up subsequent searches with this function, the Bad Character Table should be precomputed and passed as argument badchars. Furthermore, both, the lengths of needle and the length of haystack should be pre-computed and must be passed along with each call.

#### See also

```
vrna_search_BM_BCT(), vrna_search_BMH_num()
```

### **Parameters**

| needle        | The NULL-terminated ASCII pattern to search for                                                                                        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|
| needle_size   | The size (length) of the pattern provided in needle                                                                                    |
| haystack      | The NULL-terminated ASCII string of the search will be performed on                                                                    |
| haystack_size | The size (length) of the haystack string                                                                                               |
| start         | The position within haystack where to start the search                                                                                 |
| badchars      | A pre-computed Bad Character Table obtained from vrna_search_BM_BCT() (If NULL, a Bad Character Table will be generated automatically) |
| cyclic        | Allow for cyclic matches if non-zero, stop search at end of haystack otherwise                                                         |

#### Returns

A pointer to the first occurence of needle within haystack after position start

#### 16.80.2.3 vrna\_search\_BM\_BCT\_num()

Retrieve a Boyer-Moore Bad Character Table for a pattern of elements represented by natural numbers.

#### Note

We store the maximum number representation of an element  $num\_max$  at position 0. So the actual bad character table T starts at T[1] for an element represented by number 0.

#### See also

```
vrna_search_BMH_num(), vrna_search_BM_BCT()
```

#### **Parameters**

| pattern      | The pattern of element representations used in the subsequent search           |
|--------------|--------------------------------------------------------------------------------|
| pattern_size | The size (length) of the pattern provided in pattern                           |
| num_max      | The maximum number representation of an element, i.e. the size of the alphabet |

#### Returns

A Bad Character Table for use in our Boyer-Moore search algorithm implementation(s)

### 16.80.2.4 vrna\_search\_BM\_BCT()

Retrieve a Boyer-Moore Bad Character Table for a NULL-terminated pattern of ASCII characters.

#### Note

We store the maximum number representation of an element, i.e. 127 at position 0. So the actual bad character table T starts at T[1] for an element represented by ASCII code 0.

### See also

```
vrna_search_BMH(), vrna_search_BM_BCT_num()
```

#### **Parameters**

| pattern | The NULL-terminated pattern of ASCII characters used in the subsequent search |
|---------|-------------------------------------------------------------------------------|
|---------|-------------------------------------------------------------------------------|

#### Returns

A Bad Character Table for use in our Boyer-Moore search algorithm implementation(s)

# 16.81 Combinatorics Algorithms

Implementations to solve various combinatorial aspects for strings of objects.

### 16.81.1 Detailed Description

Implementations to solve various combinatorial aspects for strings of objects. Collaboration diagram for Combinatorics Algorithms:

### **Files**

· file combinatorics.h

Various implementations that deal with combinatorial aspects of objects.

#### **Functions**

unsigned int \*\* vrna\_enumerate\_necklaces (const unsigned int \*type\_counts)

Enumerate all necklaces with fixed content.

unsigned int vrna rotational symmetry num (const unsigned int \*string, size t string length)

Determine the order of rotational symmetry for a string of objects represented by natural numbers.

unsigned int vrna\_rotational\_symmetry\_pos\_num (const unsigned int \*string, size\_t string\_length, unsigned int \*positions)

Determine the order of rotational symmetry for a string of objects represented by natural numbers.

unsigned int vrna\_rotational\_symmetry (const char \*string)

Determine the order of rotational symmetry for a NULL-terminated string of ASCII characters.

unsigned int vrna\_rotational\_symmetry\_pos (const char \*string, unsigned int \*\*positions)

Determine the order of rotational symmetry for a NULL-terminated string of ASCII characters.

unsigned int vrna\_rotational\_symmetry\_db (vrna\_fold\_compound\_t \*fc, const char \*structure)

Determine the order of rotational symmetry for a dot-bracket structure.

unsigned int vrna\_rotational\_symmetry\_db\_pos (vrna\_fold\_compound\_t \*fc, const char \*structure, unsigned int \*positions)

Determine the order of rotational symmetry for a dot-bracket structure.

• unsigned int \*\* vrna n multichoose k (size t n, size t k)

Obtain a list of k-combinations with repetition (n multichoose k)

• unsigned int \* vrna boustrophedon (size t start, size t end)

Generate a sequence of Boustrophedon distributed numbers.

• unsigned int vrna boustrophedon pos (size t start, size t end, size t pos)

Obtain the i-th element in a Boustrophedon distributed interval of natural numbers.

### 16.81.2 Function Documentation

### 16.81.2.1 vrna enumerate necklaces()

Enumerate all necklaces with fixed content.

This function implements A fast algorithm to generate necklaces with fixed content as published by Joe Sawada in 2003 [26].

The function receives a list of counts (the elements on the necklace) for each type of object within a necklace. The list starts at index 0 and ends with an entry that has a count of 0. The algorithm then enumerates all non-cyclic permutations of the content, returned as a list of necklaces. This list, again, is zero-terminated, i.e. the last entry of the list is a <code>NULL</code> pointer.

### Parameters

| type_counts | A 0-terminated list of entity counts |
|-------------|--------------------------------------|

### Returns

A list of all non-cyclic permutations of the entities

**SWIG Wrapper Notes** This function is available as global function **enumerate\_necklaces()** which accepts lists input, an produces list of lists output.

### 16.81.2.2 vrna\_rotational\_symmetry\_num()

Determine the order of rotational symmetry for a string of objects represented by natural numbers.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string wraps around to connect with it's start. For example, a string of the form 011011 has rotational symmetry of order 2

This is a simplified version of vrna\_rotational\_symmetry\_pos\_num() that may be useful if one is only interested in the degree of rotational symmetry but not the actual set of rotational symmetric strings.

#### See also

```
vrna_rotational_symmetry_pos_num(), vrna_rotationa_symmetry()
```

#### **Parameters**

| string        | The string of elements encoded as natural numbers |
|---------------|---------------------------------------------------|
| string_length | The length of the string                          |

#### Returns

The order of rotational symmetry

SWIG Wrapper Notes This function is available as global function rotational\_symmetry(). See vrna\_rotational\_symmetry\_pos() for details. Note, that in the target language the length of the list string is always known a-priori, so the parameter string\_length must be omitted.

### 16.81.2.3 vrna\_rotational\_symmetry\_pos\_num()

Determine the order of rotational symmetry for a string of objects represented by natural numbers.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string wraps around to connect with it's start. For example, a string of the form 011011 has rotational symmetry of order 2

If the argument positions is not NULL, the function stores an array of string start positions for rotational shifts that map the string back onto itself. This array has length of order of rotational symmetry, i.e. the number returned by this function. The first element positions[0] always contains a shift value of 0 representing the trivial rotation.

#### Note

Do not forget to release the memory occupied by positions after a successful execution of this function.

### See also

```
vrna_rotational_symmetry_num(), vrna_rotational_symmetry(), vrna_rotational_symmetry_pos()
```

#### **Parameters**

| string        | The string of elements encoded as natural numbers                                                                     |
|---------------|-----------------------------------------------------------------------------------------------------------------------|
| string_length | The length of the string                                                                                              |
| positions     | A pointer to an (undefined) list of alternative string start positions that lead to an identity mapping (may be NULL) |

#### Returns

The order of rotational symmetry

SWIG Wrapper Notes This function is available as global function rotational\_symmetry(). See vrna\_rotational\_symmetry\_pos() for details. Note, that in the target language the length of the list string is always known a-priori, so the parameter string length must be omitted.

### 16.81.2.4 vrna\_rotational\_symmetry()

Determine the order of rotational symmetry for a NULL-terminated string of ASCII characters.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string wraps around to connect with it's start. For example, a string of the form AABAAB has rotational symmetry of order 2 This is a simplified version of vrna\_rotational\_symmetry\_pos() that may be useful if one is only interested in the degree of rotational symmetry but not the actual set of rotational symmetric strings.

See also

```
vrna_rotational_symmetry_pos(), vrna_rotationa_symmetry_num()
```

#### **Parameters**

```
string A NULL-terminated string of characters
```

#### Returns

The order of rotational symmetry

**SWIG Wrapper Notes** This function is available as global function **rotational\_symmetry()**. See vrna\_rotational\_symmetry\_pos() for details.

#### 16.81.2.5 vrna\_rotational\_symmetry\_pos()

Determine the order of rotational symmetry for a NULL-terminated string of ASCII characters.

The algorithm applies a fast search of the provided string within itself, assuming the end of the string wraps around to connect with it's start. For example, a string of the form AABAAB has rotational symmetry of order 2

If the argument positions is not NULL, the function stores an array of string start positions for rotational shifts that map the string back onto itself. This array has length of order of rotational symmetry, i.e. the number returned by this function. The first element positions[0] always contains a shift value of 0 representing the trivial rotation.

Note

Do not forget to release the memory occupied by positions after a successful execution of this function.

#### See also

vrna\_rotational\_symmetry(), vrna\_rotational\_symmetry\_num(), vrna\_rotational\_symmetry\_num\_pos()

#### **Parameters**

| string    | A NULL-terminated string of characters                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------|
| positions | A pointer to an (undefined) list of alternative string start positions that lead to an identity mapping (may be NULL) |

#### Returns

The order of rotational symmetry

SWIG Wrapper Notes This function is available as overloaded global function rotational\_symmetry(). It merges the functionalities of vrna\_rotational\_symmetry(), vrna\_rotational\_symmetry\_pos(), vrna\_rotational\_symmetry\_num(), and vrna\_rotational\_symmetry\_pos\_num(). In contrast to our C-implementation, this function doesn't return the order of rotational symmetry as a single value, but returns a list of cyclic permutation shifts that result in a rotationally symmetric string. The length of the list then determines the order of rotational symmetry.

#### 16.81.2.6 vrna\_rotational\_symmetry\_db()

Determine the order of rotational symmetry for a dot-bracket structure.

Given a (permutation of multiple) RNA strand(s) and a particular secondary structure in dot-bracket notation, compute the degree of rotational symmetry. In case there is only a single linear RNA strand, the structure always has degree 1, as there are no rotational symmetries due to the direction of the nucleic acid sequence and the fixed positions of 5' and 3' ends. However, for circular RNAs, rotational symmetries might arise if the sequence consists of a concatenation of k identical subsequences.

This is a simplified version of vrna\_rotational\_symmetry\_db\_pos() that may be useful if one is only interested in the degree of rotational symmetry but not the actual set of rotational symmetric strings.

#### See also

vrna rotational symmetry db pos(), vrna rotational symmetry(), vrna rotational symmetry num()

#### **Parameters**

| fc        | A fold_compound data structure containing the nucleic acid sequence(s), their order, and model settings |
|-----------|---------------------------------------------------------------------------------------------------------|
| structure | The dot-bracket structure the degree of rotational symmetry is checked for                              |

### Returns

The degree of rotational symmetry of the structure (0 in case of any errors)

SWIG Wrapper Notes This function is attached as method rotational\_symmetry\_db() to objects of type fold 
—compound (i.e. vrna\_fold\_compound\_t). See vrna\_rotational\_symmetry\_db\_pos() for details.

#### 16.81.2.7 vrna rotational symmetry db pos()

```
const char * structure.
           unsigned int ** positions )
#include <ViennaRNA/combinatorics.h>
```

Determine the order of rotational symmetry for a dot-bracket structure.

Given a (permutation of multiple) RNA strand(s) and a particular secondary structure in dot-bracket notation, compute the degree of rotational symmetry. In case there is only a single linear RNA strand, the structure always has degree 1, as there are no rotational symmetries due to the direction of the nucleic acid sequence and the fixed positions of 5' and 3' ends. However, for circular RNAs, rotational symmetries might arise if the sequence consists of a concatenation of k identical subsequences.

If the argument positions is not NULL, the function stores an array of string start positions for rotational shifts that map the string back onto itself. This array has length of order of rotational symmetry, i.e. the number returned by this function. The first element positions[0] always contains a shift value of 0 representing the trivial rotation.

#### Note

Do not forget to release the memory occupied by positions after a successful execution of this function.

#### See also

vrna rotational symmetry db(), vrna rotational symmetry pos(), vrna rotational symmetry pos num()

#### **Parameters**

| fc        | A fold_compound data structure containing the nucleic acid sequence(s), their order, and model settings               |
|-----------|-----------------------------------------------------------------------------------------------------------------------|
| structure | The dot-bracket structure the degree of rotational symmetry is checked for                                            |
| positions | A pointer to an (undefined) list of alternative string start positions that lead to an identity mapping (may be NULL) |

#### Returns

The degree of rotational symmetry of the structure (0 in case of any errors)

SWIG Wrapper Notes This function is attached as method rotational symmetry db() to objects of type fold↔ \_compound (i.e. vrna fold compound t). Thus, the first argument must be omitted. In contrast to our C-implementation, this function doesn't simply return the order of rotational symmetry of the secondary structure, but returns the list position of cyclic permutation shifts that result in a rotationally symmetric structure. The length of the list then determines the order of rotational symmetry.

### 16.81.2.8 vrna\_n\_multichoose\_k()

```
unsigned int ** vrna_n_multichoose_k (
           size_t n,
            size_t k )
#include <ViennaRNA/combinatorics.h>
```

Obtain a list of k-combinations with repetition (n multichoose k)

This function compiles a list of k-combinations, or k-multicombination, i.e. a list of multisubsets of size k from a set of integer values from 0 to n - 1. For that purpose, we enumerate n + k - 1 choose k and decrease each index position i by i to obtain n multichoose k.

#### **Parameters**

| n | Maximum number to choose from (interval of integers from 0 to $n$ - 1) |
|---|------------------------------------------------------------------------|
| k | Number of elements to choose, i.e. size of each multisubset            |

#### Returns

A list of lists of elements of combinations (last entry is terminated by NULL

### 16.81.2.9 vrna\_boustrophedon()

Generate a sequence of Boustrophedon distributed numbers.

This function generates a sequence of positive natural numbers within the interval [start, end] in a Boustrophedon fashion. That is, the numbers  $start, \ldots, end$  in the resulting list are alternating between left and right ends of the interval while progressing to the inside, i.e. the list consists of a sequence of natural numbers of the form:

```
start, end, start + 1, end - 1, start + 2, end - 2, \dots
```

The resulting list is 1-based and contains the length of the sequence of numbers at it's 0-th position. Upon failure, the function returns **NULL** 

See also

```
vrna_boustrophedon_pos()
```

#### **Parameters**

| start | The first number of the list (left side of the interval) |
|-------|----------------------------------------------------------|
| end   | The last number of the list (right side of the interval) |

#### Returns

A list of alternating numbers from the interval [start, end] (or **NULL** on error)

SWIG Wrapper Notes This function is available as overloaded global function boustrophedon().

### 16.81.2.10 vrna\_boustrophedon\_pos()

Obtain the i-th element in a Boustrophedon distributed interval of natural numbers.

See also

```
vrna_boustrophedon()
```

### **Parameters**

| start | The first number of the list (left side of the interval)                        |
|-------|---------------------------------------------------------------------------------|
| end   | The last number of the list (right side of the interval)                        |
| pos   | The index of the number within the Boustrophedon distributed sequence (1-based) |

Returns

The pos-th element in the Boustrophedon distributed sequence of natural numbers of the interval

**SWIG Wrapper Notes** This function is available as overloaded global function **boustrophedon()**. Omitting the pos argument yields the entire sequence from start to end.

# 16.82 (Abstract) Data Structures

All datastructures and typedefs shared among the ViennaRNA Package can be found here.

### 16.82.1 Detailed Description

All datastructures and typedefs shared among the ViennaRNA Package can be found here. Collaboration diagram for (Abstract) Data Structures:

#### **Modules**

· The Fold Compound

This module provides interfaces that deal with the most basic data structure used in structure predicting and energy evaluating function of the RNAlib.

• The Dynamic Programming Matrices

This module provides interfaces that deal with creation and destruction of dynamic programming matrices used within the RNAlib.

· Hash Tables

Various implementations of hash table functions.

Heaps

Interface for an abstract implementation of a heap data structure.

Arrays

Interface for an abstract implementation of an array data structure.

Buffers

Functions that provide dynamically buffered stream-like data structures.

#### **Files**

· file dp matrices.h

Functions to deal with standard dynamic programming (DP) matrices.

file array.h

A macro-based dynamic array implementation.

· file basic.h

Various data structures and pre-processor macros.

### **Data Structures**

struct vrna basepair s

Base pair data structure used in subopt.c. More...

struct vrna\_cpair\_s

this datastructure is used as input parameter in functions of PS\_dot.c More...

- struct vrna\_color\_s
- struct vrna\_data\_linear\_s
- struct vrna\_sect\_s

Stack of partial structures for backtracking. More...

· struct vrna bp stack s

Base pair stack element. More...

struct pu\_contrib

contributions to p\_u More...

· struct interact

interaction data structure for RNAup More...

struct pu out

Collection of all free\_energy of beeing unpaired values for output. More...

· struct constrain

constraints for cofolding More...

struct duplexT

Data structure for RNAduplex. More...

struct node

Data structure for RNAsnoop (fold energy list) More...

struct snoopT

Data structure for RNAsnoop. More...

struct dupVar

Data structure used in RNApkplex. More...

### **Typedefs**

typedef struct vrna basepair s vrna basepair t

Typename for the base pair repesenting data structure vrna\_basepair\_s.

typedef struct vrna\_elem\_prob\_s vrna\_plist\_t

Typename for the base pair list repesenting data structure vrna\_elem\_prob\_s.

typedef struct vrna\_bp\_stack\_s vrna\_bp\_stack\_t

Typename for the base pair stack repesenting data structure vrna\_bp\_stack\_s.

• typedef struct vrna\_cpair\_s vrna\_cpair\_t

Typename for data structure vrna\_cpair\_s.

• typedef struct vrna\_sect\_s vrna\_sect\_t

Typename for stack of partial structures vrna\_sect\_s.

• typedef double FLT\_OR\_DBL

Typename for floating point number in partition function computations.

typedef struct vrna\_basepair\_s PAIR

Old typename of vrna\_basepair\_s.

• typedef struct vrna\_elem\_prob\_s plist

Old typename of vrna\_elem\_prob\_s.

• typedef struct vrna\_cpair\_s cpair

Old typename of vrna\_cpair\_s.

• typedef struct vrna\_sect\_s sect

Old typename of vrna\_sect\_s.

• typedef struct vrna\_bp\_stack\_s bondT

Old typename of vrna\_bp\_stack\_s.

typedef struct pu\_contrib pu\_contrib

contributions to p\_u

typedef struct interact interact

interaction data structure for RNAup

typedef struct pu\_out pu\_out

Collection of all free\_energy of beeing unpaired values for output.

• typedef struct constrain constrain

constraints for cofolding

typedef struct node folden

Data structure for RNAsnoop (fold energy list)

typedef struct dupVar dupVar

Data structure used in RNApkplex.

# **Functions**

• void vrna\_C11\_features (void)

Dummy symbol to check whether the library was build using C11/C++11 features.

#### 16.82.2 Data Structure Documentation

### 16.82.2.1 struct vrna\_basepair\_s

Base pair data structure used in subopt.c.

### 16.82.2.2 struct vrna\_cpair\_s

this datastructure is used as input parameter in functions of PS\_dot.c

16.82.2.3 struct vrna\_color\_s

#### 16.82.2.4 struct vrna\_data\_linear\_s

Collaboration diagram for vrna\_data\_linear\_s:

### 16.82.2.5 struct vrna\_sect\_s

Stack of partial structures for backtracking.

### 16.82.2.6 struct vrna\_bp\_stack\_s

Base pair stack element.

### 16.82.2.7 struct pu\_contrib

contributions to p\_u

### **Data Fields**

double \*\* H

hairpin loops

double \*\* I

interior loops

double \*\* M

multi loops

double \*\* E

exterior loop

• int length

length of the input sequence

int w

longest unpaired region

### 16.82.2.8 struct interact

interaction data structure for RNAup

### **Data Fields**

double \* Pi

probabilities of interaction

double \* Gi

free energies of interaction

· double Gikjl

full free energy for interaction between [k,i] k < i in longer seq and [j,l] j < l in shorter seq

· double Gikjl\_wo

Gikjl without contributions for prob\_unpaired.

int i

k<i in longer seq

int k

k<i in longer seq

int j

*j*<*l* in shorter seq

int I

jjin shorter seq

• int length

length of longer sequence

### 16.82.2.9 struct pu\_out

Collection of all free\_energy of beeing unpaired values for output.

#### **Data Fields**

• int len

sequence length

• int u\_vals

number of different -u values

· int contribs

[-c "SHIME"]

• char \*\* header

header line

double \*\* u values

(the -u values \* [-c "SHIME"]) \* seq len

### 16.82.2.10 struct constrain

constraints for cofolding

#### 16.82.2.11 struct duplexT

Data structure for RNAduplex.

### 16.82.2.12 struct node

Data structure for RNAsnoop (fold energy list) Collaboration diagram for node:

### 16.82.2.13 struct snoopT

Data structure for RNAsnoop.

### 16.82.2.14 struct dupVar

Data structure used in RNApkplex.

### 16.82.3 Typedef Documentation

#### 16.82.3.1 PAIR

typedef struct vrna\_basepair\_s PAIR
#include <ViennaRNA/datastructures/basic.h>
Old typename of vrna\_basepair\_s.

Deprecated Use vrna\_basepair\_t instead!

#### 16.82.3.2 plist

typedef struct vrna\_elem\_prob\_s plist
#include <ViennaRNA/datastructures/basic.h>
Old typename of vrna\_elem\_prob\_s.

**Deprecated** Use vrna\_ep\_t or vrna\_elem\_prob\_s instead!

#### 16.82.3.3 cpair

typedef struct vrna\_cpair\_s cpair
#include <ViennaRNA/datastructures/basic.h>
Old typename of vrna\_cpair\_s.

**Deprecated** Use vrna\_cpair\_t instead!

#### 16.82.3.4 sect

typedef struct vrna\_sect\_s sect
#include <ViennaRNA/datastructures/basic.h>
Old typename of vrna\_sect\_s.

**Deprecated** Use vrna\_sect\_t instead!

### 16.82.3.5 bondT

typedef struct vrna\_bp\_stack\_s bondT
#include <ViennaRNA/datastructures/basic.h>
Old typename of vrna\_bp\_stack\_s.

**Deprecated** Use vrna\_bp\_stack\_t instead!

#### 16.82.4 Function Documentation

### 16.82.4.1 vrna\_C11\_features()

Dummy symbol to check whether the library was build using C11/C++11 features.

By default, several data structures of our new v3.0 API use C11/C++11 features, such as unnamed unions, unnamed structs. However, these features can be deactivated at compile time to allow building the library and executables with compilers that do not support these features.

Now, the problem arises that once our static library is compiled and a third-party application is supposed to link against it, it needs to know, at compile time, how to correctly address particular data structures. This is usually implicitely taken care of through the API exposed in our header files. Unfortunately, we had some preprocessor directives in our header files that changed the API depending on the capabilities of the compiler the third-party application is build with. This in turn prohibited the use of an RNAlib compiled without C11/C++11 support in a program that compiles/links with enabled C11/C++11 support and vice-versa.

Therefore, we introduce this dummy symbol which can be used to check, whether the static library was build with C11/C++11 features.

Note

If the symbol is present, the library was build with enabled C11/C++11 features support and no action is required. However, if the symbol is missing in RNAlib >= 2.2.9, programs that link to RNAlib must define a pre-processor identifier VRNA\_DISABLE\_C11\_FEATURES before including any ViennaRNA Package header file, for instance by adding a CPPFLAG

CPPFLAGS+=-DVRNA\_DISABLE\_C11\_FEATURES

Since

v2.2.9

# 16.83 Messages

Functions to print various kind of messages.

### 16.83.1 Detailed Description

Functions to print various kind of messages. Collaboration diagram for Messages:

### **Functions**

void vrna\_message\_error (const char \*format,...)

Print an error message and die.

• void vrna\_message\_verror (const char \*format, va\_list args)

Print an error message and die.

void vrna\_message\_warning (const char \*format,...)

Print a warning message.

• void vrna\_message\_vwarning (const char \*format, va\_list args)

Print a warning message.

void vrna\_message\_info (FILE \*fp, const char \*format,...)

Print an info message.

void vrna\_message\_vinfo (FILE \*fp, const char \*format, va\_list args)

Print an info message.

void vrna\_message\_input\_seq\_simple (void)

Print a line to stdout that asks for an input sequence.

void vrna message input seq (const char \*s)

Print a line with a user defined string and a ruler to stdout.

16.83 Messages 511

# 16.83.2 Function Documentation

### 16.83.2.1 vrna\_message\_error()

Print an error message and die.

This function is a wrapper to *fprintf(stderr, ...)* that puts a capital **ERROR:** in front of the message and then exits the calling program.

See also

```
vrna_message_verror(), vrna_message_warning(), vrna_message_info()
```

#### **Parameters**

| format | The error message to be printed                     |
|--------|-----------------------------------------------------|
|        | Optional arguments for the formatted message string |

### 16.83.2.2 vrna\_message\_verror()

Print an error message and die.

This function is a wrapper to *vfprintf(stderr, ...)* that puts a capital **ERROR:** in front of the message and then exits the calling program.

See also

```
vrna_message_error(), vrna_message_warning(), vrna_message_info()
```

### **Parameters**

| format | The error message to be printed                    |
|--------|----------------------------------------------------|
| args   | The argument list for the formatted message string |

#### 16.83.2.3 vrna\_message\_warning()

Print a warning message.

This function is a wrapper to fprintf(stderr, ...) that puts a capital WARNING: in front of the message.

See also

```
vrna_message_vwarning(), vrna_message_error(), vrna_message_info()
```

#### **Parameters**

| format | The warning message to be printed                   |
|--------|-----------------------------------------------------|
|        | Optional arguments for the formatted message string |

### 16.83.2.4 vrna\_message\_vwarning()

Print a warning message.

This function is a wrapper to fprintf(stderr, ...) that puts a capital WARNING: in front of the message.

See also

vrna\_message\_vwarning(), vrna\_message\_error(), vrna\_message\_info()

#### **Parameters**

| format | The warning message to be printed                  |
|--------|----------------------------------------------------|
| args   | The argument list for the formatted message string |

### 16.83.2.5 vrna\_message\_info()

Print an info message.

This function is a wrapper to fprintf(...).

See also

vrna\_message\_vinfo(), vrna\_message\_error(), vrna\_message\_warning()

### **Parameters**

| fp     | The file pointer where the message is printed to    |
|--------|-----------------------------------------------------|
| format | The warning message to be printed                   |
|        | Optional arguments for the formatted message string |

#### 16.83.2.6 vrna\_message\_vinfo()

16.84 Unit Conversion 513

This function is a wrapper to *fprintf(...)*.

See also

```
vrna_message_vinfo(), vrna_message_error(), vrna_message_warning()
```

#### **Parameters**

| fp     | The file pointer where the message is printed to   |
|--------|----------------------------------------------------|
| format | The info message to be printed                     |
| args   | The argument list for the formatted message string |

#### 16.83.2.7 vrna message input seq simple()

Print a line to *stdout* that asks for an input sequence.

There will also be a ruler (scale line) printed that helps orientation of the sequence positions

### 16.83.2.8 vrna\_message\_input\_seq()

Print a line with a user defined string and a ruler to stdout.

(usually this is used to ask for user input) There will also be a ruler (scale line) printed that helps orientation of the sequence positions

#### **Parameters**

s A user defined string that will be printed to stdout

### 16.84 Unit Conversion

Functions to convert between various physical units.

### 16.84.1 Detailed Description

Functions to convert between various physical units. Collaboration diagram for Unit Conversion:

### **Files**

· file units.h

Physical Units and Functions to convert them into each other.

### **Enumerations**

```
    enum vrna_unit_energy_e {
        VRNA_UNIT_J, VRNA_UNIT_KJ, VRNA_UNIT_CAL_IT, VRNA_UNIT_DACAL_IT,
        VRNA_UNIT_KCAL_IT, VRNA_UNIT_CAL, VRNA_UNIT_DACAL, VRNA_UNIT_KCAL,
        VRNA_UNIT_G_TNT, VRNA_UNIT_KG_TNT, VRNA_UNIT_T_TNT, VRNA_UNIT_EV,
        VRNA_UNIT_WH, VRNA_UNIT_KWH}
```

Energy / Work Units.

enum vrna\_unit\_temperature\_e {
 VRNA\_UNIT\_K, VRNA\_UNIT\_DEG\_C, VRNA\_UNIT\_DEG\_F, VRNA\_UNIT\_DEG\_R,
 VRNA\_UNIT\_DEG\_N, VRNA\_UNIT\_DEG\_DE, VRNA\_UNIT\_DEG\_RE, VRNA\_UNIT\_DEG\_RO}}

 Temperature Units.

### **Functions**

- double vrna\_convert\_energy (double energy, vrna\_unit\_energy\_e from, vrna\_unit\_energy\_e to)

  Convert between energy / work units.
- double vrna\_convert\_temperature (double temp, vrna\_unit\_temperature\_e from, vrna\_unit\_temperature\_e to)

Convert between temperature units.

• int vrna\_convert\_kcal\_to\_dcal (double energy)

Convert floating point energy value into integer representation.

double vrna\_convert\_dcal\_to\_kcal (int energy)

Convert an integer representation of free energy in deka-cal/mol to kcal/mol.

### 16.84.2 Enumeration Type Documentation

### 16.84.2.1 vrna\_unit\_energy\_e

```
enum vrna_unit_energy_e
#include <ViennaRNA/utils/units.h>
Energy / Work Units.
```

See also

vrna\_convert\_energy()

#### **Enumerator**

| VRNA_UNIT_J        | Joule ( $1 J = 1 kg \cdot m^2 s^{-2}$ )                                                   |
|--------------------|-------------------------------------------------------------------------------------------|
| VRNA_UNIT_KJ       | Kilojoule ( $1 kJ = 1,000 J$ )                                                            |
| VRNA_UNIT_CAL_IT   | Calorie (International (Steam) Table, $1 \ cal_{IT} = 4.1868 \ J$ )                       |
|                    | Decacolorie (International (Steam) Table, $1 \ dacal_{IT} = 10 \ cal_{IT} = 41.868 \ J$ ) |
| VRNA_UNIT_DACAL_IT |                                                                                           |
| VRNA_UNIT_KCAL_IT  | Kilocalorie (International (Steam) Table, $1\ kcal_{IT} = 4.1868\ kJ$ )                   |
| VRNA_UNIT_CAL      | Calorie (Thermochemical, $1 \ cal_{th} = 4.184 \ J$ )                                     |
| VRNA_UNIT_DACAL    | Decacalorie (Thermochemical, $1 \ dacal_{th} = 10 \ cal_{th} = 41.84 \ J$ )               |
| VRNA_UNIT_KCAL     | Kilocalorie (Thermochemical, $1 \ kcal_{th} = 4.184 \ kJ$ )                               |
| VRNA_UNIT_G_TNT    | g TNT ( $1~g$ TNT $=1,000~cal_{th}=4,184~J$ )                                             |
| VRNA_UNIT_KG_TNT   | kg TNT ( $1~kg~\mathrm{TNT} = 1,000~kcal_{th} = 4,184~kJ$ )                               |
| VRNA_UNIT_T_TNT    | ton TNT ( $1~t~{ m TNT}=1,000,000~kcal_{th}=4,184~MJ$ )                                   |
| VRNA_UNIT_EV       | Electronvolt ( $1~eV = 1.602176565 \times 10^{-19}~J$ )                                   |
| VRNA_UNIT_WH       | Watt hour ( $1~W\cdot h=1~W\cdot 3,600s=3,600~J=3.6~kJ$ )                                 |
| VRNA_UNIT_KWH      | Kilowatt hour ( $1~kW \cdot h = 1~kW \cdot 3,600~s = 3,600~kJ = 3.6~MJ$ )                 |

16.84 Unit Conversion 515

### 16.84.2.2 vrna\_unit\_temperature\_e

```
enum vrna_unit_temperature_e
#include <ViennaRNA/utils/units.h>
Temperature Units.
```

#### See also

vrna\_convert\_temperature()

#### Enumerator

| VRNA_UNIT_K      | Kelvin (K)                                                                          |
|------------------|-------------------------------------------------------------------------------------|
| VRNA_UNIT_DEG_C  | Degree Celcius (°C) ( $[°C] = [K] - 273.15$ )                                       |
| VRNA_UNIT_DEG_F  | Degree Fahrenheit (°F) ( $[^{\circ}F] = [K] 	imes rac{9}{5} - 459.67$ )            |
| VRNA_UNIT_DEG_R  | Degree Rankine (°R) ( $[{}^{\circ}R] = [K] 	imes rac{9}{5}$ )                      |
| VRNA_UNIT_DEG_N  | Degree Newton (°N) ( $[$ ° $N] = ([K] - 273.15) \times \frac{33}{100}$ )            |
| VRNA_UNIT_DEG_DE | Degree Delisle (°De) ( $[^{\circ}De] = (373.15 - [K]) 	imes \frac{3}{2}$ )          |
| VRNA_UNIT_DEG_RE | Degree Réaumur (°Ré) ( $[{}^{\circ}R\acute{e}] = ([K] - 273.15) 	imes rac{4}{5}$ ) |
| VRNA_UNIT_DEG_RO | Degree Rømer (°Rø) ( $[$ °Rø $] = ([K] - 273.15) 	imes rac{21}{40} + 7.5$ )        |

### 16.84.3 Function Documentation

### 16.84.3.1 vrna\_convert\_energy()

### See also

```
vrna_unit_energy_e
```

### **Parameters**

| energy | Input energy value |
|--------|--------------------|
| from   | Input unit         |
| to     | Output unit        |

#### Returns

Energy value in Output unit

### 16.84.3.2 vrna\_convert\_temperature()

```
vrna_unit_temperature_e from,
vrna_unit_temperature_e to)
#include <ViennaRNA/utils/units.h>
```

Convert between temperature units.

#### See also

```
vrna unit temperature e
```

#### **Parameters**

| temp | Input temperature value |
|------|-------------------------|
| from | Input unit              |
| to   | Output unit             |

#### Returns

Temperature value in Output unit

#### 16.84.3.3 vrna\_convert\_kcal\_to\_dcal()

Convert floating point energy value into integer representation.

This function converts a floating point value in kcal/mol into its corresponding deka-cal/mol integer representation as used throughout RNAlib.

### See also

```
vrna convert dcal to kcal()
```

#### **Parameters**

| energy | The energy value in kcal/mol |
|--------|------------------------------|
|--------|------------------------------|

### Returns

The energy value in deka-cal/mol

### 16.84.3.4 vrna\_convert\_dcal\_to\_kcal()

Convert an integer representation of free energy in deka-cal/mol to kcal/mol.

This function converts a free energy value given as integer in deka-cal/mol into the corresponding floating point number in kcal/mol

### See also

```
vrna_convert_kcal_to_dcal()
```

#### **Parameters**

| energy | The energy in deka-cal/mol |
|--------|----------------------------|
|--------|----------------------------|

#### Returns

The energy in kcal/mol

# 16.85 The Fold Compound

This module provides interfaces that deal with the most basic data structure used in structure predicting and energy evaluating function of the RNAlib.

### 16.85.1 Detailed Description

This module provides interfaces that deal with the most basic data structure used in structure predicting and energy evaluating function of the RNAlib.

Throughout the entire RNAlib, the vrna\_fold\_compound\_t, is used to group information and data that is required for structure prediction and energy evaluation. Here, you'll find interface functions to create, modify, and delete vrna\_fold\_compound\_t data structures. Collaboration diagram for The Fold Compound:

#### **Files**

· file fold\_compound.h

The Basic Fold Compound API.

### **Data Structures**

• struct vrna fc s

The most basic data structure required by many functions throughout the RNAlib. More...

### **Macros**

• #define VRNA\_STATUS\_MFE\_PRE (unsigned char)1

Status message indicating that MFE computations are about to begin.

• #define VRNA\_STATUS\_MFE\_POST (unsigned char)2

Status message indicating that MFE computations are finished.

#define VRNA\_STATUS\_PF\_PRE (unsigned char)3

Status message indicating that Partition function computations are about to begin.

• #define VRNA\_STATUS\_PF\_POST (unsigned char)4

Status message indicating that Partition function computations are finished.

#define VRNA\_OPTION\_DEFAULT 0U

Option flag to specify default settings/requirements.

#define VRNA\_OPTION\_MFE 1U

Option flag to specify requirement of Minimum Free Energy (MFE) DP matrices and corresponding set of energy parameters.

#define VRNA\_OPTION\_PF 2U

Option flag to specify requirement of Partition Function (PF) DP matrices and corresponding set of Boltzmann factors.

#define VRNA OPTION HYBRID 4U

Option flag to specify requirement of dimer DP matrices.

#define VRNA\_OPTION\_EVAL\_ONLY 8U

Option flag to specify that neither MFE, nor PF DP matrices are required.

#define VRNA\_OPTION\_WINDOW 16U

Option flag to specify requirement of DP matrices for local folding approaches.

### **Typedefs**

typedef struct vrna\_fc\_s vrna\_fold\_compound\_t

Typename for the fold\_compound data structure vrna\_fc\_s.

typedef void(\* vrna\_auxdata\_free\_f) (void \*data)

Callback to free memory allocated for auxiliary user-provided data.

typedef void(\* vrna\_recursion\_status\_f) (unsigned char status, void \*data)

Callback to perform specific user-defined actions before, or after recursive computations.

#### **Enumerations**

enum vrna fc type e { VRNA FC TYPE SINGLE, VRNA FC TYPE COMPARATIVE }

An enumerator that is used to specify the type of a vrna\_fold\_compound\_t.

#### **Functions**

vrna\_fold\_compound\_t \* vrna\_fold\_compound (const char \*sequence, const vrna\_md\_t \*md\_p, unsigned int options)

Retrieve a vrna fold compound t data structure for single sequences and hybridizing sequences.

vrna\_fold\_compound\_t \* vrna\_fold\_compound\_comparative (const char \*\*sequences, vrna\_md\_t \*md\_p, unsigned int options)

Retrieve a vrna\_fold\_compound\_t data structure for sequence alignments.

void vrna fold compound free (vrna fold compound t \*fc)

Free memory occupied by a vrna fold compound t.

- void vrna\_fold\_compound\_add\_auxdata (vrna\_fold\_compound\_t \*fc, void \*data, vrna\_auxdata\_free\_f f)

  Add auxiliary data to the vrna\_fold\_compound\_t.
- void vrna\_fold\_compound\_add\_callback (vrna\_fold\_compound\_t \*fc, vrna\_recursion\_status\_f f)

  Add a recursion status callback to the vrna\_fold\_compound\_t.

#### 16.85.2 Data Structure Documentation

#### 16.85.2.1 struct vrna fc s

The most basic data structure required by many functions throughout the RNAlib.

Note

Please read the documentation of this data structure carefully! Some attributes are only available for specific types this data structure can adopt.

### Warning

Reading/Writing from/to attributes that are not within the scope of the current type usually result in undefined behavior!

### See also

vrna\_fold\_compound\_t.type, vrna\_fold\_compound(), vrna\_fold\_compound\_comparative(), vrna\_fold\_compound\_free(), VRNA\_FC\_TYPE\_SINGLE, VRNA\_FC\_TYPE\_COMPARATIVE

**SWIG Wrapper Notes** This data structure is wrapped as an object **fold\_compound** with several related functions attached as methods.

A new **fold\_compound** can be obtained by calling one of its constructors:

• fold\_compound(seq) — Initialize with a single sequence, or two concatenated sequences separated by an ampersand character '&' (for cofolding)

fold\_compound(aln) – Initialize with a sequence alignment aln stored as a list of sequences (with gap characters)

The resulting object has a list of attached methods which in most cases directly correspond to functions that mainly operate on the corresponding *C* data structure:

- type() Get the type of the fold\_compound (See vrna\_fc\_type\_e)
- length() Get the length of the sequence(s) or alignment stored within the fold\_←
  compound

Collaboration diagram for vrna fc s:

#### **Data Fields**

#### Common data fields

• const vrna\_fc\_type\_e type

The type of the vrna\_fold\_compound\_t.

unsigned int length

The length of the sequence (or sequence alignment)

int cutpoint

The position of the (cofold) cutpoint within the provided sequence. If there is no cutpoint, this field will be set to -1.

unsigned int \* strand number

The strand number a particular nucleotide is associated with.

unsigned int \* strand\_order

The strand order, i.e. permutation of current concatenated sequence.

unsigned int \* strand\_order\_uniq

The strand order array where identical sequences have the same ID.

unsigned int \* strand\_start

The start position of a particular strand within the current concatenated sequence.

unsigned int \* strand\_end

The end (last) position of a particular strand within the current concatenated sequence.

unsigned int strands

Number of interacting strands.

vrna seq t \* nucleotides

Set of nucleotide sequences.

vrna\_msa\_t \* alignment

Set of alignments.

vrna\_hc\_t \* hc

The hard constraints data structure used for structure prediction.

vrna\_mx\_mfe\_t \* matrices

The MFE DP matrices.

vrna mx pf t \* exp matrices

The PF DP matrices

vrna\_param\_t \* params

The precomputed free energy contributions for each type of loop.

vrna\_exp\_param\_t \* exp\_params

The precomputed free energy contributions as Boltzmann factors

• int \* iindx

DP matrix accessor

int \* jindx

DP matrix accessor

#### User-defined data fields

vrna\_recursion\_status\_f stat\_cb

Recursion status callback (usually called just before, and after recursive computations in the library.

void \* auxdata

A pointer to auxiliary, user-defined data.

vrna\_auxdata\_free\_f free\_auxdata

A callback to free auxiliary user data whenever the fold\_compound itself is free'd.

#### Secondary Structure Decomposition (grammar) related data fields

vrna sd t \* domains struc

Additional structured domains.

vrna\_ud\_t \* domains\_up

Additional unstructured domains.

vrna\_gr\_aux\_t \* aux\_grammar

Additional decomposition grammar rules.

#### Data fields available for single/hybrid structure prediction

### Data fields for consensus structure prediction

### Additional data fields for Distance Class Partitioning

These data fields are typically populated with meaningful data only if used in the context of Distance Class Partitioning

unsigned int maxD1

Maximum allowed base pair distance to first reference.

unsigned int maxD2

Maximum allowed base pair distance to second reference.

short \* reference\_pt1

A pairtable of the first reference structure.

short \* reference\_pt2

A pairtable of the second reference structure.

unsigned int \* referenceBPs1

Matrix containing number of basepairs of reference structure1 in interval [i,j].

unsigned int \* referenceBPs2

Matrix containing number of basepairs of reference structure2 in interval [i,j].

unsigned int \* bpdist

Matrix containing base pair distance of reference structure 1 and 2 on interval [i,j].

unsigned int \* mm1

Maximum matching matrix, reference struct 1 disallowed.

unsigned int \* mm2

Maximum matching matrix, reference struct 2 disallowed.

#### Additional data fields for local folding

These data fields are typically populated with meaningful data only if used in the context of local folding

· int window size

window size for local folding sliding window approach

char \*\* ptype local

Pair type array (for local folding)

vrna\_zsc\_dat\_t zscore\_data

Data structure with settings for z-score computations.

### 16.85.2.1.1 Field Documentation

16.85.2.1.1.1 type const vrna\_fc\_type\_e vrna\_fc\_s::type

The type of the vrna fold compound t.

Currently possible values are VRNA\_FC\_TYPE\_SINGLE, and VRNA\_FC\_TYPE\_COMPARATIVE

Warning

Do not edit this attribute, it will be automagically set by the corresponding get() methods for the <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a>. The value specified in this attribute dictates the set of other attributes to use within this data structure.

16.85.2.1.1.2 stat\_cb vrna\_recursion\_status\_f vrna\_fc\_s::stat\_cb

Recursion status callback (usually called just before, and after recursive computations in the library.

See also

vrna recursion status f(), vrna fold compound add callback()

16.85.2.1.1.3 auxdata void\* vrna\_fc\_s::auxdata

A pointer to auxiliary, user-defined data.

See also

vrna\_fold\_compound\_add\_auxdata(), vrna\_fold\_compound\_t.free\_auxdata

**16.85.2.1.1.4 free\_auxdata** vrna\_auxdata\_free\_f vrna\_fc\_s::free\_auxdata

A callback to free auxiliary user data whenever the fold\_compound itself is free'd.

See also

vrna\_fold\_compound\_t.auxdata, vrna\_auxdata\_free\_f()

16.85.2.1.1.5 sequence char\* vrna\_fc\_s::sequence

The input sequence string.

Warning

Only available if

type==VRNA\_FC\_TYPE\_SINGLE

**16.85.2.1.1.6 sequence\_encoding** short\* vrna\_fc\_s::sequence\_encoding

Numerical encoding of the input sequence.

See also

vrna\_sequence\_encode()

Warning

Only available if

type==VRNA\_FC\_TYPE\_SINGLE

```
16.85.2.1.1.7 ptype char* vrna_fc_s::ptype
```

Pair type array.

Contains the numerical encoding of the pair type for each pair (i,j) used in MFE, Partition function and Evaluation computations.

Note

This array is always indexed via jindx, in contrast to previously different indexing between mfe and pf variants!

### Warning

### Only available if

```
type==VRNA_FC_TYPE_SINGLE
```

#### See also

```
vrna_idx_col_wise(), vrna_ptypes()
```

# **16.85.2.1.1.8** ptype\_pf\_compat char\* vrna\_fc\_s::ptype\_pf\_compat ptype array indexed via iindx

Deprecated This attribute will vanish in the future! It's meant for backward compatibility only!

### Warning

### Only available if

```
type==VRNA_FC_TYPE_SINGLE
```

### **16.85.2.1.1.9 sc** vrna\_sc\_t\* vrna\_fc\_s::sc

The soft constraints for usage in structure prediction and evaluation.

### Warning

#### Only available if

```
type==VRNA_FC_TYPE_SINGLE
```

### 16.85.2.1.1.10 sequences char\*\* vrna\_fc\_s::sequences

The aligned sequences.

Note

The end of the alignment is indicated by a NULL pointer in the second dimension

### Warning

### Only available if

```
type==VRNA_FC_TYPE_COMPARATIVE
```

**16.85.2.1.1.11 n\_seq** unsigned int vrna\_fc\_s::n\_seq

The number of sequences in the alignment.

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

**16.85.2.1.1.12 cons\_seq** char\* vrna\_fc\_s::cons\_seq

The consensus sequence of the aligned sequences.

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

**16.85.2.1.1.13 S\_cons** short\* vrna\_fc\_s::S\_cons

Numerical encoding of the consensus sequence.

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

**16.85.2.1.1.14 S** short\*\* vrna\_fc\_s::S

Numerical encoding of the sequences in the alignment.

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

**16.85.2.1.1.15 S5** short\*\* vrna\_fc\_s::S5

S5[s][i] holds next base 5' of i in sequence s.

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

**16.85.2.1.1.16 S3** short\*\* vrna\_fc\_s::S3

Sl[s][i] holds next base 3' of i in sequence s.

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

### **16.85.2.1.1.17 pscore** int\* vrna\_fc\_s::pscore

Precomputed array of pair types expressed as pairing scores.

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

### 16.85.2.1.1.18 pscore\_local int\*\* vrna\_fc\_s::pscore\_local

Precomputed array of pair types expressed as pairing scores.

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

# $\textbf{16.85.2.1.1.19} \quad \textbf{pscore\_pf\_compat} \quad \texttt{short* vrna\_fc\_s::pscore\_pf\_compat}$

Precomputed array of pair types expressed as pairing scores indexed via iindx.

**Deprecated** This attribute will vanish in the future!

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

### **16.85.2.1.1.20 scs** vrna\_sc\_t\*\* vrna\_fc\_s::scs

A set of soft constraints (for each sequence in the alignment)

Warning

Only available if

type==VRNA\_FC\_TYPE\_COMPARATIVE

### 16.85.3 Macro Definition Documentation

### 16.85.3.1 VRNA\_STATUS\_MFE\_PRE

```
#define VRNA_STATUS_MFE_PRE (unsigned char)1
#include <ViennaRNA/fold compound.h>
```

Status message indicating that MFE computations are about to begin.

See also

vrna\_fold\_compound\_t.stat\_cb, vrna\_recursion\_status\_f(), vrna\_mfe(), vrna\_fold(), vrna\_circfold(),
vrna\_alifold(), vrna\_circalifold(), vrna\_cofold()

### 16.85.3.2 VRNA\_STATUS\_MFE\_POST

#define VRNA\_STATUS\_MFE\_POST (unsigned char)2
#include <ViennaRNA/fold\_compound.h>

Status message indicating that MFE computations are finished.

See also

vrna\_fold\_compound\_t.stat\_cb, vrna\_recursion\_status\_f(), vrna\_mfe(), vrna\_fold(), vrna\_circfold(), vrna\_alifold(), vrna\_circalifold(), vrna\_cofold()

### 16.85.3.3 VRNA\_STATUS\_PF\_PRE

#define VRNA\_STATUS\_PF\_PRE (unsigned char)3
#include <ViennaRNA/fold\_compound.h>

Status message indicating that Partition function computations are about to begin.

See also

vrna\_fold\_compound\_t.stat\_cb, vrna\_recursion\_status\_f(), vrna\_pf()

### 16.85.3.4 VRNA\_STATUS\_PF\_POST

#define VRNA\_STATUS\_PF\_POST (unsigned char)4
#include <ViennaRNA/fold\_compound.h>

Status message indicating that Partition function computations are finished.

See also

vrna\_fold\_compound\_t.stat\_cb, vrna\_recursion\_status\_f(), vrna\_pf()

### 16.85.3.5 VRNA\_OPTION\_MFE

#define VRNA\_OPTION\_MFE 1U
#include <ViennaRNA/fold\_compound.h>

Option flag to specify requirement of Minimum Free Energy (MFE) DP matrices and corresponding set of energy parameters.

See also

vrna\_fold\_compound(), vrna\_fold\_compound\_comparative(), VRNA\_OPTION\_EVAL\_ONLY

### 16.85.3.6 VRNA\_OPTION\_PF

#define VRNA\_OPTION\_PF 2U
#include <ViennaRNA/fold\_compound.h>

Option flag to specify requirement of Partition Function (PF) DP matrices and corresponding set of Boltzmann factors.

See also

vrna\_fold\_compound(), vrna\_fold\_compound\_comparative(), VRNA\_OPTION\_EVAL\_ONLY

### 16.85.3.7 VRNA\_OPTION\_EVAL\_ONLY

```
#define VRNA_OPTION_EVAL_ONLY 8U
#include <ViennaRNA/fold_compound.h>
```

Option flag to specify that neither MFE, nor PF DP matrices are required.

Use this flag in conjuntion with VRNA\_OPTION\_MFE, and VRNA\_OPTION\_PF to save memory for a vrna\_fold\_compound\_t obtained from vrna\_fold\_compound(), or vrna\_fold\_compound\_comparative() in cases where only energy evaluation but no structure prediction is required.

See also

vrna fold compound(), vrna fold compound comparative(), vrna eval structure()

### 16.85.4 Typedef Documentation

### 16.85.4.1 vrna auxdata free f

```
typedef void(* vrna_auxdata_free_f) (void *data)
#include <ViennaRNA/fold_compound.h>
```

Callback to free memory allocated for auxiliary user-provided data.

This type of user-implemented function usually deletes auxiliary data structures. The user must take care to free all the memory occupied by the data structure passed.

Notes on Callback Functions This callback is supposed to free memory occupied by an auxiliary data structure. It will be called when the vrna fold compound t is erased from memory through a call to vrna fold compound free() and will be passed the address of memory previously bound to the vrna\_fold\_compound\_t via vrna fold compound add auxdata().

See also

vrna\_fold\_compound\_add\_auxdata(), vrna\_fold\_compound\_free(), vrna\_fold\_compound\_add\_callback()

### **Parameters**

| data | The data that needs to be free'd |
|------|----------------------------------|
| uala | The data that heeds to be hee d  |

#### 16.85.4.2 vrna recursion status f

typedef void(\* vrna\_recursion\_status\_f) (unsigned char status, void \*data) #include <ViennaRNA/fold\_compound.h>

Callback to perform specific user-defined actions before, or after recursive computations.

Notes on Callback Functions This function will be called to notify a third-party implementation about the status of a currently ongoing recursion. The purpose of this callback mechanism is to provide users with a simple way to ensure pre- and post conditions for auxiliary mechanisms attached to our implementations.

See also

vrna\_fold\_compound\_add\_auxdata(), vrna\_fold\_compound\_add\_callback(), vrna\_mfe(), vrna\_pf(), VRNA\_STATUS\_MFE\_PRE VRNA\_STATUS\_MFE\_POST, VRNA\_STATUS\_PF\_PRE, VRNA\_STATUS\_PF\_POST

#### **Parameters**

| status | The status indicator                                                       |
|--------|----------------------------------------------------------------------------|
| data   | The data structure that was assigned with vrna_fold_compound_add_auxdata() |

## 16.85.5 Enumeration Type Documentation

### 16.85.5.1 vrna\_fc\_type\_e

```
enum vrna_fc_type_e
#include <ViennaRNA/fold_compound.h>
An enumerator that is used to specify the type of a vrna fold compound t.
```

#### **Enumerator**

| VRNA_FC_TYPE_SINGLE      | Type is suitable for single, and hybridizing sequences                    |
|--------------------------|---------------------------------------------------------------------------|
| VRNA_FC_TYPE_COMPARATIVE | Type is suitable for sequence alignments (consensus structure prediction) |

## 16.85.6 Function Documentation

#### 16.85.6.1 vrna fold compound()

Retrieve a vrna fold compound t data structure for single sequences and hybridizing sequences.

This function provides an easy interface to obtain a prefilled vrna\_fold\_compound\_t by passing a single sequence, or two contatenated sequences as input. For the latter, sequences need to be seperated by an '&' character like this:

```
char *sequence = "GGGG&CCCC";
```

The optional parameter md\_p can be used to specify the model details for successive computations based on the content of the generated vrna\_fold\_compound\_t. Passing NULL will instruct the function to use default model details. The third parameter options may be used to specify dynamic programming (DP) matrix requirements.

### **Options**

- VRNA OPTION DEFAULT Option flag to specify default settings/requirements.
- VRNA\_OPTION\_MFE Option flag to specify requirement of Minimum Free Energy (MFE) DP matrices and corresponding set of energy parameters.
- VRNA\_OPTION\_PF Option flag to specify requirement of Partition Function (PF) DP matrices and corresponding set of Boltzmann factors.
- VRNA\_OPTION\_WINDOW Option flag to specify requirement of DP matrices for local folding approaches.

The above options may be OR-ed together.

If you just need the folding compound serving as a container for your data, you can simply pass VRNA\_OPTION\_DEFAULT to the option parameter. This creates a vrna\_fold\_compound\_t without DP matrices, thus saving memory. Subsequent calls of any structure prediction function will then take care of allocating

the memory required for the DP matrices. If you only intend to evaluate structures instead of actually predicting them, you may use the VRNA\_OPTION\_EVAL\_ONLY macro. This will seriously speedup the creation of the vrna fold compound t.

Note

The sequence string must be uppercase, and should contain only RNA (resp. DNA) alphabet depending on what energy parameter set is used

#### See also

```
vrna fold compound free(), vrna fold compound comparative(), vrna md t
```

#### **Parameters**

| sequence | A single sequence, or two concatenated sequences seperated by an '&' character |
|----------|--------------------------------------------------------------------------------|
| md_p     | An optional set of model details                                               |
| options  | The options for DP matrices memory allocation                                  |

### Returns

A prefilled vrna\_fold\_compound\_t ready to be used for computations (may be NULL on error)

### 16.85.6.2 vrna\_fold\_compound\_comparative()

Retrieve a vrna\_fold\_compound\_t data structure for sequence alignments.

This function provides an easy interface to obtain a prefilled vrna\_fold\_compound\_t by passing an alignment of sequences.

The optional parameter md\_p can be used to specify the model details for successive computations based on the content of the generated vrna\_fold\_compound\_t. Passing NULL will instruct the function to use default model details. The third parameter options may be used to specify dynamic programming (DP) matrix requirements.

## **Options**

- VRNA\_OPTION\_DEFAULT Option flag to specify default settings/requirements.
- VRNA\_OPTION\_MFE Option flag to specify requirement of Minimum Free Energy (MFE) DP matrices and corresponding set of energy parameters.
- VRNA\_OPTION\_PF Option flag to specify requirement of Partition Function (PF) DP matrices and corresponding set of Boltzmann factors.
- VRNA OPTION WINDOW Option flag to specify requirement of DP matrices for local folding approaches.

The above options may be OR-ed together.

If you just need the folding compound serving as a container for your data, you can simply pass VRNA\_OPTION\_DEFAULT to the option parameter. This creates a vrna\_fold\_compound\_t without DP matrices, thus saving memory. Subsequent calls of any structure prediction function will then take care of allocating the memory required for the DP matrices. If you only intend to evaluate structures instead of actually predicting them, you may use the VRNA\_OPTION\_EVAL\_ONLY macro. This will seriously speedup the creation of the vrna fold compound t.

#### Note

The sequence strings must be uppercase, and should contain only RNA (resp. DNA) alphabet including gap characters depending on what energy parameter set is used.

#### See also

```
vrna_fold_compound_free(), vrna_fold_compound(), vrna_md_t, VRNA_OPTION_MFE, VRNA_OPTION_PF, VRNA_OPTION_EVAL_ONLY, read_clustal()
```

### **Parameters**

| sequences | A sequence alignment including 'gap' characters |
|-----------|-------------------------------------------------|
| md_p      | An optional set of model details                |
| options   | The options for DP matrices memory allocation   |

#### Returns

A prefilled vrna\_fold\_compound\_t ready to be used for computations (may be NULL on error)

### 16.85.6.3 vrna\_fold\_compound\_free()

#### See also

vrna\_fold\_compound(), vrna\_fold\_compound\_comparative(), vrna\_mx\_mfe\_free(), vrna\_mx\_pf\_free()

### **Parameters**

```
fc The vrna_fold_compound_t that is to be erased from memory
```

### 16.85.6.4 vrna\_fold\_compound\_add\_auxdata()

Add auxiliary data to the vrna\_fold\_compound\_t.

This function allows one to bind arbitrary data to a vrna\_fold\_compound\_t which may later on be used by one of the callback functions, e.g. vrna\_recursion\_status\_f(). To allow for proper cleanup of the memory occupied by this auxiliary data, the user may also provide a pointer to a cleanup function that free's the corresponding memory. This function will be called automatically when the vrna\_fold\_compound\_t is free'd with vrna\_fold\_compound\_free().

### Note

Before attaching the arbitrary data pointer, this function will call the vrna\_auxdata\_free\_f() on any pre-existing data that is already attached.

#### See also

```
vrna_auxdata_free_f()
```

#### **Parameters**

| fc   | The fold_compound the arbitrary data pointer should be associated with                |
|------|---------------------------------------------------------------------------------------|
| data | A pointer to an arbitrary data structure                                              |
| f    | A pointer to function that free's memory occupied by the arbitrary data (May be NULL) |

## 16.85.6.5 vrna\_fold\_compound\_add\_callback()

Binding a recursion status callback function to a <a href="vrna\_fold\_compound\_">vrna\_fold\_compound\_</a> t allows one to perform arbitrary operations just before, or after an actual recursive computations, e.g. MFE prediction, is performed by the RNAlib. The callback function will be provided with a pointer to its <a href="vrna\_fold\_compound\_">vrna\_fold\_compound\_</a>, and a status message. Hence, it has complete access to all variables that incluence the recursive computations.

#### See also

```
vrna_recursion_status_f(), vrna_fold_compound_t, VRNA_STATUS_MFE_PRE, VRNA_STATUS_MFE_POST, VRNA_STATUS_PF_PRE, VRNA_STATUS_PF_POST
```

### **Parameters**

| fc | The fold_compound the callback function should be attached to |
|----|---------------------------------------------------------------|
| f  | The pointer to the recursion status callback function         |

# 16.86 The Dynamic Programming Matrices

This module provides interfaces that deal with creation and destruction of dynamic programming matrices used within the RNAlib.

# 16.86.1 Detailed Description

This module provides interfaces that deal with creation and destruction of dynamic programming matrices used within the RNAlib.

Collaboration diagram for The Dynamic Programming Matrices:

## **Data Structures**

• struct vrna mx mfe s

Minimum Free Energy (MFE) Dynamic Programming (DP) matrices data structure required within the vrna\_fold\_compound\_t. More...

struct vrna\_mx\_pf\_s

Partition function (PF) Dynamic Programming (DP) matrices data structure required within the vrna\_fold\_compound\_t.

## **Typedefs**

- typedef struct vrna\_mx\_mfe\_s vrna\_mx\_mfe\_t
  - Typename for the Minimum Free Energy (MFE) DP matrices data structure vrna\_mx\_mfe\_s.
- typedef struct vrna\_mx\_pf\_s vrna\_mx\_pf\_t

Typename for the Partition Function (PF) DP matrices data structure vrna\_mx\_pf\_s.

### **Enumerations**

enum vrna mx type e { VRNA MX DEFAULT , VRNA MX WINDOW , VRNA MX 2DFOLD }

An enumerator that is used to specify the type of a polymorphic Dynamic Programming (DP) matrix data structure.

### **Functions**

- int vrna\_mx\_add (vrna\_fold\_compound\_t \*vc, vrna\_mx\_type\_e type, unsigned int options)
- Add Dynamic Programming (DP) matrices (allocate memory)
   void vrna\_mx\_mfe\_free (vrna\_fold\_compound\_t \*vc)

Free memory occupied by the Minimum Free Energy (MFE) Dynamic Programming (DP) matrices.

void vrna\_mx\_pf\_free (vrna\_fold\_compound\_t \*vc)

Free memory occupied by the Partition Function (PF) Dynamic Programming (DP) matrices.

### 16.86.2 Data Structure Documentation

#### 16.86.2.1 struct vrna\_mx\_mfe\_s

Minimum Free Energy (MFE) Dynamic Programming (DP) matrices data structure required within the <a href="mailto:vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a>.

### **Data Fields**

### Common fields for MFE matrices

- const vrna\_mx\_type\_e type
- unsigned int length

Length of the sequence, therefore an indicator of the size of the DP matrices.

· unsigned int strands

### **Default DP matrices**

Note

```
These data fields are available if vrna_mx_mfe_t.type == VRNA_MX_DEFAULT
```

### Local Folding DP matrices using window approach

Note

```
These data fields are available if vrna_mx_mfe_t.type == VRNA_MX_WINDOW
```

#### **Distance Class DP matrices**

Note

```
These data fields are available if vrna_mx_mfe_t.type == VRNA_MX_2DFOLD
```

# 16.86.2.1.1 Field Documentation

```
16.86.2.1.1.1 type const vrna_mx_type_e vrna_mx_mfe_s::type
Type of the DP matrices
```

```
16.86.2.1.1.2 strands unsigned int vrna_mx_mfe_s::strands Number of strands
```

## 16.86.2.2 struct vrna\_mx\_pf\_s

Partition function (PF) Dynamic Programming (DP) matrices data structure required within the vrna\_fold\_compound\_t.

#### **Data Fields**

### Common fields for DP matrices

- const vrna\_mx\_type\_e type
- unsigned int length
- FLT OR DBL \* scale
- FLT\_OR\_DBL \* expMLbase

### **Default PF matrices**

Note

```
These data fields are available if vrna_mx_pf_t.type == VRNA_MX_DEFAULT
```

### Local Folding DP matrices using window approach

Note

```
These data fields are available if vrna_mx_mfe_t.type == VRNA_MX_WINDOW
```

#### **Distance Class DP matrices**

Note

```
These data fields are available if vrna_mx_pf_t.type == VRNA_MX_2DFOLD
```

## 16.86.2.2.1 Field Documentation

```
16.86.2.2.1.1 type const vrna_mx_type_e vrna_mx_pf_s::type Type of the DP matrices
```

```
16.86.2.2.1.2 length unsigned int vrna_mx_pf_s::length Size of the DP matrices (i.e. sequence length)
```

```
16.86.2.2.1.3 scale FLT_OR_DBL* vrna_mx_pf_s::scale Boltzmann factor scaling
```

```
16.86.2.2.1.4 expMLbase FLT_OR_DBL* vrna_mx_pf_s::expMLbase Boltzmann factors for unpaired bases in multibranch loop
```

## 16.86.3 Enumeration Type Documentation

## 16.86.3.1 vrna\_mx\_type\_e

```
enum vrna_mx_type_e
#include <ViennaRNA/dp_matrices.h>
```

An enumerator that is used to specify the type of a polymorphic Dynamic Programming (DP) matrix data structure.

#### See also

```
vrna_mx_mfe_t, vrna_mx_pf_t
```

#### **Enumerator**

| VRNA_MX_DEFAULT | Default DP matrices.                                                       |
|-----------------|----------------------------------------------------------------------------|
| VRNA_MX_WINDOW  | DP matrices suitable for local structure prediction using window approach. |
|                 | See also                                                                   |
|                 | vrna_mfe_window(), vrna_mfe_window_zscore(), pfl_fold()                    |
| VRNA_MX_2DFOLD  | DP matrices suitable for distance class partitioned structure prediction.  |
|                 | See also                                                                   |
|                 | vrna_mfe_TwoD(), vrna_pf_TwoD()                                            |

### 16.86.4 Function Documentation

## 16.86.4.1 vrna\_mx\_add()

Add Dynamic Programming (DP) matrices (allocate memory)

This function adds DP matrices of a specific type to the provided vrna\_fold\_compound\_t, such that successive DP recursion can be applied. The function caller has to specify which type of DP matrix is requested, see vrna\_mx\_type\_e, and what kind of recursive algorithm will be applied later on, using the parameters type, and options, respectively. For the latter, Minimum free energy (MFE), and Partition function (PF) computations are distinguished. A third option that may be passed is VRNA\_OPTION\_HYBRID, indicating that auxiliary DP arrays are required for RNA-RNA interaction prediction.

#### Note

Usually, there is no need to call this function, since the constructors of vrna\_fold\_compound\_t are handling all the DP matrix memory allocation.

### See also

vrna\_mx\_mfe\_add(), vrna\_mx\_pf\_add(), vrna\_fold\_compound(), vrna\_fold\_compound\_comparative(), vrna\_fold\_compound\_free(), vrna\_mx\_pf\_free(), vrna\_mx\_mfe\_free(), vrna\_mx\_type\_e, VRNA\_OPTION\_MFE, VRNA\_OPTION\_HYBRID, VRNA\_OPTION\_EVAL\_ONLY

| VC      | The vrna_fold_compound_t that holds pointers to the DP matrices                                         |
|---------|---------------------------------------------------------------------------------------------------------|
| type    | The type of DP matrices requested                                                                       |
| options | Option flags that specify the kind of DP matrices, such as MFE or PF arrays, and auxiliary requirements |

#### Returns

1 if DP matrices were properly allocated and attached, 0 otherwise

## 16.86.4.2 vrna\_mx\_mfe\_free()

Free memory occupied by the Minimum Free Energy (MFE) Dynamic Programming (DP) matrices.

#### See also

vrna\_fold\_compound(), vrna\_fold\_compound\_comparative(), vrna\_fold\_compound\_free(), vrna\_mx\_pf\_free()

#### **Parameters**

vc The vrna\_fold\_compound\_t storing the MFE DP matrices that are to be erased from memory

### 16.86.4.3 vrna\_mx\_pf\_free()

Free memory occupied by the Partition Function (PF) Dynamic Programming (DP) matrices.

#### See also

vrna\_fold\_compound(), vrna\_fold\_compound\_comparative(), vrna\_fold\_compound\_free(), vrna\_mx\_mfe\_free()

### **Parameters**

vc The vrna fold compound t storing the PF DP matrices that are to be erased from memory

## 16.87 Hash Tables

Various implementations of hash table functions.

## 16.87.1 Detailed Description

Various implementations of hash table functions.

Hash tables are common data structures that allow for fast random access to the data that is stored within.

Here, we provide an abstract implementation of a hash table interface and a concrete implementation for pairs of secondary structure and corresponding free energy value. Collaboration diagram for Hash Tables:

## **Files**

• file hash\_tables.h

Implementations of hash table functions.

### **Data Structures**

• struct vrna\_ht\_entry\_db\_t

16.87 Hash Tables 535

Default hash table entry. More ...

### **Abstract interface**

typedef struct vrna\_hash\_table\_s \* vrna\_hash\_table\_t

A hash table object.

typedef int(\* vrna\_ht\_cmp\_f) (void \*x, void \*y)

Callback function to compare two hash table entries.

- typedef int() vrna\_callback\_ht\_compare\_entries(void \*x, void \*y)
- typedef unsigned int(\* vrna\_ht\_hashfunc\_f) (void \*x, unsigned long hashtable\_size)

Callback function to generate a hash key, i.e. hash function.

- typedef unsigned int() vrna\_callback\_ht\_hash\_function(void \*x, unsigned long hashtable\_size)
- typedef int(\* vrna ht free f) (void \*x)

Callback function to free a hash table entry.

- typedef int() vrna callback ht free entry(void \*x)
- vrna\_hash\_table\_t vrna\_ht\_init (unsigned int b, vrna\_ht\_cmp\_f compare\_function, vrna\_ht\_hashfunc\_f hash\_function, vrna\_ht\_free\_f free\_hash\_entry)

Get an initialized hash table.

• unsigned long vrna\_ht\_size (vrna\_hash\_table\_t ht)

Get the size of the hash table.

unsigned long vrna\_ht\_collisions (struct vrna\_hash\_table\_s \*ht)

Get the number of collisions in the hash table.

void \* vrna\_ht\_get (vrna\_hash\_table\_t ht, void \*x)

Get an element from the hash table.

int vrna\_ht\_insert (vrna\_hash\_table\_t ht, void \*x)

Insert an object into a hash table.

void vrna\_ht\_remove (vrna\_hash\_table\_t ht, void \*x)

Remove an object from the hash table.

void vrna\_ht\_clear (vrna\_hash\_table\_t ht)

Clear the hash table.

void vrna\_ht\_free (vrna\_hash\_table\_t ht)

Free all memory occupied by the hash table.

## **Dot-Bracket / Free Energy entries**

int vrna\_ht\_db\_comp (void \*x, void \*y)

Default hash table entry comparison.

• unsigned int vrna\_ht\_db\_hash\_func (void \*x, unsigned long hashtable\_size)

Default hash function.

int vrna\_ht\_db\_free\_entry (void \*hash\_entry)

Default function to free memory occupied by a hash entry.

### 16.87.2 Data Structure Documentation

### 16.87.2.1 struct vrna ht entry db t

Default hash table entry.

See also

vrna\_ht\_init(), vrna\_ht\_db\_comp(), vrna\_ht\_db\_hash\_func(), vrna\_ht\_db\_free\_entry()

## **Data Fields**

- char \* structure
- · float energy

### 16.87.2.1.1 Field Documentation

**16.87.2.1.1.1 structure** char\* vrna\_ht\_entry\_db\_t::structure A secondary structure in dot-bracket notation

16.87.2.1.1.2 energy float vrna\_ht\_entry\_db\_t::energy The free energy of structure

## 16.87.3 Typedef Documentation

## 16.87.3.1 vrna\_hash\_table\_t

typedef struct vrna\_hash\_table\_s\* vrna\_hash\_table\_t #include <ViennaRNA/datastructures/hash\_tables.h> A hash table object.

#### See also

vrna\_ht\_init(), vrna\_ht\_free()

### 16.87.3.2 vrna\_ht\_cmp\_f

typedef int(\* vrna\_ht\_cmp\_f) (void \*x, void \*y) #include <ViennaRNA/datastructures/hash\_tables.h> Callback function to compare two hash table entries.

### See also

vrna\_ht\_init(), vrna\_ht\_db\_comp()

#### **Parameters**

| X | A hash table entry |
|---|--------------------|
| У | A hash table entry |

#### Returns

-1 if x is smaller, +1 if x is larger than y. 0 if x == y

## 16.87.3.3 vrna\_ht\_hashfunc\_f

typedef unsigned int(\* vrna\_ht\_hashfunc\_f) (void \*x, unsigned long hashtable\_size) #include <ViennaRNA/datastructures/hash\_tables.h>

Callback function to generate a hash key, i.e. hash function.

## See also

vrna\_ht\_init(), vrna\_ht\_db\_hash\_func()

| X              | A hash table entry         |
|----------------|----------------------------|
| hashtable_size | The size of the hash table |

16.87 Hash Tables 537

#### Returns

The hash table key for entry x

## 16.87.3.4 vrna\_ht\_free\_f

```
typedef int(* vrna_ht_free_f) (void *x)
#include <ViennaRNA/datastructures/hash_tables.h>
Callback function to free a hash table entry.
```

See also

```
vrna_ht_init(), vrna_ht_db_free_entry()
```

#### **Parameters**

```
x A hash table entry
```

### Returns

0 on success

#### 16.87.4 Function Documentation

#### 16.87.4.1 vrna\_ht\_init()

Get an initialized hash table.

This function returns a ready-to-use hash table with pre-allocated memory for a particular number of entries.

## Note

If all function pointers are NULL, this function initializes the hash table with default functions, i.e.

- vrna ht db comp() for the compare\_function,
- vrna\_ht\_db\_hash\_func() for the hash\_function, and
- vrna\_ht\_db\_free\_entry() for the free\_hash\_entry

arguments.

### Warning

If hash\_bits is larger than 27 you have to compile it with the flag gcc -mcmodel=large.

| b                | Number of bits for the hash table. This determines the size ( $2^b-1$ ).                  |
|------------------|-------------------------------------------------------------------------------------------|
| compare_function | A function pointer to compare any two entries in the hash table (may be $\mathtt{NULL}$ ) |
| hash_function    | A function pointer to retrieve the hash value of any entry (may be $\mathtt{NULL}$ )      |
| free_hash_entry  | A function pointer to free the memory occupied by any entry (may be NULL)                 |

#### Returns

An initialized, empty hash table, or NULL on any error

## 16.87.4.2 vrna\_ht\_size()

#### **Parameters**

```
ht The hash table
```

#### Returns

The size of the hash table, i.e. the maximum number of entries

## 16.87.4.3 vrna\_ht\_collisions()

### **Parameters**

```
ht The hash table
```

#### Returns

The number of collisions in the hash table

## 16.87.4.4 vrna\_ht\_get()

Get an element from the hash table.

This function takes an object x and performs a look-up whether the object is stored within the hash table ht. If the object is already stored in ht, the function simply returns the entry, otherwise it returns NULL.

### See also

```
vrna_ht_insert(), vrna_hash_delete(), vrna_ht_init()
```

| ht | The hash table            |
|----|---------------------------|
| X  | The hash entry to look-up |

16.87 Hash Tables 539

#### Returns

The entry x if it is stored in ht, NULL otherwise

## 16.87.4.5 vrna\_ht\_insert()

Writes the pointer to your hash entry into the table.

Times are pointer to your mach only into the tas

# Warning

In case of collisions, this function simply increments the hash key until a free entry in the hash table is found.

#### See also

```
vrna_ht_init(), vrna_hash_delete(), vrna_ht_clear()
```

#### **Parameters**

| ht | The hash table |
|----|----------------|
| X  | The hash entry |

### Returns

0 on success, 1 if the value is already in the hash table, -1 on error.

## 16.87.4.6 vrna\_ht\_remove()

Remove an object from the hash table.

Deletes the pointer to your hash entry from the table.

Note

This function doesn't free any memory occupied by the hash entry.

### Parameters

| ht | The hash table |
|----|----------------|
| X  | The hash entry |

## 16.87.4.7 vrna\_ht\_clear()

Clear the hash table.

This function removes all entries from the hash table and automatically free's the memory occupied by each entry using the bound <a href="mailto:vrna\_ht\_free\_f(">vrna\_ht\_free\_f(")</a> function.

#### See also

```
vrna_ht_free(), vrna_ht_init()
```

#### **Parameters**

```
ht The hash table
```

## 16.87.4.8 vrna\_ht\_free()

Free all memory occupied by the hash table.

This function removes all entries from the hash table by calling the vrna\_ht\_free\_f() function for each entry. Finally, the memory occupied by the hash table itself is free'd as well.

#### **Parameters**

```
ht The hash table
```

### 16.87.4.9 vrna\_ht\_db\_comp()

Default hash table entry comparison.

This is the default comparison function for hash table entries. It assumes the both entries x and y are of type  $vrna\_ht\_entry\_db\_t$  and compares the structure attribute of both entries

## See also

```
vrna_ht_entry_db_t, vrna_ht_init(), vrna_ht_db_hash_func(), vrna_ht_db_free_entry()
```

#### **Parameters**

```
x A hash table entry of type vrna_ht_entry_db_ty A hash table entry of type vrna_ht_entry_db_t
```

### Returns

-1 if x is smaller, +1 if x is larger than y. 0 if both are equal.

## 16.87.4.10 vrna\_ht\_db\_hash\_func()

```
unsigned int vrna_ht_db_hash_func ( \label{eq:void} \mbox{void} \ * \ x, \mbox{unsigned long } \mbox{\it hashtable\_size} \ )
```

16.88 Heaps 541

```
#include <ViennaRNA/datastructures/hash_tables.h>
```

Default hash function.

This is the default hash function for hash table insertion/lookup. It assumes that entries are of type <a href="mailto:vrna\_ht\_entry\_db\_t">vrna\_ht\_entry\_db\_t</a> and uses the Bob Jenkins 1996 mix function to create a hash key from the structure attribute of the hash entry.

#### See also

```
vrna_ht_entry_db_t, vrna_ht_init(), vrna_ht_db_comp(), vrna_ht_db_free_entry()
```

#### **Parameters**

| X              | A hash table entry to compute the key for |
|----------------|-------------------------------------------|
| hashtable_size | The size of the hash table                |

### Returns

The hash key for entry x

## 16.87.4.11 vrna\_ht\_db\_free\_entry()

Default function to free memory occupied by a hash entry.

This function assumes that hash entries are of type vrna\_ht\_entry\_db\_t and free's the memory occupied by that entry.

## See also

```
vrna_ht_entry_db_t, vrna_ht_init(), vrna_ht_db_comp(), vrna_ht_db_hash_func()
```

### **Parameters**

| hash_entry | The hash entry to remove from memory |
|------------|--------------------------------------|
|------------|--------------------------------------|

### Returns

0 on success

# 16.88 **Heaps**

Interface for an abstract implementation of a heap data structure.

## 16.88.1 Detailed Description

Interface for an abstract implementation of a heap data structure. Collaboration diagram for Heaps:

## **Files**

· file heap.h

Implementation of an abstract heap data structure.

## **Typedefs**

typedef struct vrna\_heap\_s \* vrna\_heap\_t

An abstract heap data structure.

• typedef int(\* vrna\_heap\_cmp\_f) (const void \*a, const void \*b, void \*data)

Heap compare function prototype.

typedef size\_t(\* vrna\_heap\_get\_pos\_f) (const void \*a, void \*data)

Retrieve the position of a particular heap entry within the heap.

typedef void(\* vrna\_heap\_set\_pos\_f) (const void \*a, size\_t pos, void \*data)

Store the position of a particular heap entry within the heap.

## **Functions**

vrna\_heap\_t vrna\_heap\_init (size\_t n, vrna\_heap\_cmp\_f cmp, vrna\_heap\_get\_pos\_f get\_entry\_pos, vrna\_heap\_set\_pos\_f set\_entry\_pos, void \*data)

Initialize a heap data structure.

void vrna heap free (vrna heap t h)

Free memory occupied by a heap data structure.

• size\_t vrna\_heap\_size (struct vrna\_heap\_s \*h)

Get the size of a heap data structure, i.e. the number of stored elements.

void vrna heap insert (vrna heap t h, void \*v)

Insert an element into the heap.

void \* vrna heap pop (vrna heap th)

Pop (remove and return) the object at the root of the heap.

const void \* vrna\_heap\_top (vrna\_heap\_t h)

Get the object at the root of the heap.

void \* vrna\_heap\_remove (vrna\_heap\_t h, const void \*v)

Remove an arbitrary element within the heap.

void \* vrna\_heap\_update (vrna\_heap\_t h, void \*v)

Update an arbitrary element within the heap.

## 16.88.2 Typedef Documentation

## 16.88.2.1 vrna\_heap\_t

```
typedef struct vrna_heap_s* vrna_heap_t
#include <ViennaRNA/datastructures/heap.h>
```

An abstract heap data structure.

See also

vrna\_heap\_init(), vrna\_heap\_free(), vrna\_heap\_insert(), vrna\_heap\_pop(), vrna\_heap\_top(), vrna\_heap\_top(), vrna\_heap\_update()

## 16.88.2.2 vrna\_heap\_cmp\_f

```
typedef int(* vrna_heap_cmp_f) (const void *a, const void *b, void *data)
#include <ViennaRNA/datastructures/heap.h>
```

Heap compare function prototype.

Use this prototype to design the compare function for the heap implementation. The arbitrary data pointer data may be used to get access to further information required to actually compare the two values a and b.

16.88 Heaps 543



The heap implementation acts as a *min-heap*, therefore, the minimum element will be present at the heap's root. In case a *max-heap* is required, simply reverse the logic of this compare function.

#### **Parameters**

| а    | The first object to compare                                           |
|------|-----------------------------------------------------------------------|
| b    | The second object to compare                                          |
| data | An arbitrary data pointer passed through from the heap implementation |

### Returns

A value less than zero if a < b, a value greater than zero if a > b, and 0 otherwise

## 16.88.2.3 vrna\_heap\_get\_pos\_f

```
typedef size_t(* vrna_heap_get_pos_f) (const void *a, void *data)
#include <ViennaRNA/datastructures/heap.h>
Retrieve the position of a particular heap entry within the heap.
```

#### **Parameters**

| а    | The object to look-up within the heap                                 |
|------|-----------------------------------------------------------------------|
| data | An arbitrary data pointer passed through from the heap implementation |

#### Returns

The position of the element a within the heap, or 0 if it is not in the heap

### 16.88.2.4 vrna\_heap\_set\_pos\_f

```
typedef void(* vrna_heap_set_pos_f) (const void *a, size_t pos, void *data)
#include <ViennaRNA/datastructures/heap.h>
```

Store the position of a particular heap entry within the heap.

### **Parameters**

| а    | The object whose position shall be stored                             |
|------|-----------------------------------------------------------------------|
| pos  | The current position of a within the heap, or 0 if a was deleted      |
| data | An arbitrary data pointer passed through from the heap implementation |

## 16.88.3 Function Documentation

## 16.88.3.1 vrna\_heap\_init()

16.88 Heaps 545

This function initializes a heap data structure. The implementation is based on a *min-heap*, i.e. the minimal element is located at the root of the heap. However, by reversing the logic of the compare function, one can easily transform this into a *max-heap* implementation.

Beside the regular operations on a heap data structure, we implement removal and update of arbitrary elements within the heap. For that purpose, however, one requires a reverse-index lookup system that, (i) for a given element stores the current position in the heap, and (ii) allows for fast lookup of an elements current position within the heap. The corresponding getter- and setter- functions may be provided through the arguments get\_entry\_pos and set\_entry\_pos, respectively.

Sometimes, it is difficult to simply compare two data structures without any context. Therefore, the compare function is provided with a user-defined data pointer that can hold any context required.

#### Warning

If any of the arguments get\_entry\_pos or set\_entry\_pos is NULL, the operations vrna\_heap\_update() and vrna\_heap\_remove() won't work.

#### See also

vrna\_heap\_free(), vrna\_heap\_insert(), vrna\_heap\_pop(), vrna\_heap\_top(), vrna\_heap\_remove(), vrna\_heap\_update(), vrna\_heap\_t, vrna\_heap\_cmp\_f, vrna\_heap\_get\_pos\_f, vrna\_heap\_set\_pos\_f

#### **Parameters**

| n             | The initial size of the heap, i.e. the number of elements to store                              |
|---------------|-------------------------------------------------------------------------------------------------|
| стр           | The address of a compare function that will be used to fullfill the partial order requirement   |
| get_entry_pos | The address of a function that retrieves the position of an element within the heap (or NULL)   |
| set_entry_pos | The address of a function that stores the position of an element within the heap (or NULL)      |
| data          | An arbitrary data pointer passed through to the compare function cmp, and the set/get functions |
|               | get_entry_pos/set_entry_pos                                                                     |

### Returns

An initialized heap data structure, or NULL on error

## 16.88.3.2 vrna\_heap\_free()

#### See also

```
vrna_heap_init()
```

#### **Parameters**

```
h The heap that should be free'd
```

### 16.88.3.3 vrna\_heap\_size()

```
size_t vrna_heap_size ( struct vrna\_heap\_s \, * \, h \, )
```

```
#include <ViennaRNA/datastructures/heap.h>
```

Get the size of a heap data structure, i.e. the number of stored elements.

#### **Parameters**

```
h The heap data structure
```

#### Returns

The number of elements currently stored in the heap, or 0 upon any error

### 16.88.3.4 vrna\_heap\_insert()

#### See also

vrna\_heap\_init(), vrna\_heap\_pop(), vrna\_heap\_top(), vrna\_heap\_free(), vrna\_heap\_remove(), vrna\_heap\_update()

#### **Parameters**

| h | The heap data structure                                            |
|---|--------------------------------------------------------------------|
| V | A pointer to the object that is about to be inserted into the heap |

# 16.88.3.5 vrna\_heap\_pop()

Pop (remove and return) the object at the root of the heap.

This function removes the root from the heap and returns it to the caller.

#### See also

vrna\_heap\_init(), vrna\_heap\_top(), vrna\_heap\_insert(), vrna\_heap\_free() vrna\_heap\_remove(), vrna\_heap\_update()

## **Parameters**

```
h The heap data structure
```

### Returns

The object at the root of the heap, i.e. the minimal element (or NULL if (a) the heap is empty or (b) any error occurred)

## 16.88.3.6 vrna\_heap\_top()

16.88 Heaps 547

```
#include <ViennaRNA/datastructures/heap.h>
```

Get the object at the root of the heap.

#### See also

vrna\_heap\_init(), vrna\_heap\_pop(), vrna\_heap\_insert(), vrna\_heap\_free() vrna\_heap\_remove(), vrna\_heap\_update()

#### **Parameters**

```
h The heap data structure
```

#### Returns

The object at the root of the heap, i.e. the minimal element (or NULL if (a) the heap is empty or (b) any error occurred)

### 16.88.3.7 vrna\_heap\_remove()

Remove an arbitrary element within the heap.

#### See also

vrna\_heap\_init(), vrna\_heap\_get\_pos\_f, vrna\_heap\_set\_pos\_f, vrna\_heap\_pop(), vrna\_heap\_free()

## Warning

This function won't work if the heap was not properly initialized with callback functions for fast reverse-index mapping!

## Parameters

| h | The heap data structure            |
|---|------------------------------------|
| V | The object to remove from the heap |

## Returns

The object that was removed from the heap (or NULL if (a) it wasn't found or (b) any error occurred)

## 16.88.3.8 vrna\_heap\_update()

### Note

If the object that is to be updated is not currently stored in the heap, it will be inserted. In this case, the function returns NULL.

#### Warning

This function won't work if the heap was not properly initialized with callback functions for fast reverse-index mapping!

#### See also

```
vrna_heap_init(), vrna_heap_get_pos_f, vrna_heap_set_pos_f vrna_heap_pop(), vrna_heap_remove(),
vrna_heap_free()
```

#### **Parameters**

| h | The heap data structure |
|---|-------------------------|
| V | The object to update    |

#### Returns

The 'previous' object within the heap that now got replaced by v (or NULL if (a) it wasn't found or (b) any error occurred)

# **16.89 Arrays**

Interface for an abstract implementation of an array data structure.

## 16.89.1 Detailed Description

Interface for an abstract implementation of an array data structure.

Arrays of a particular Type are defined and initialized using the following code:

```
vrna_array(Type) my_array;
vrna_array_init(my_array);
or equivalently:
vrna_array_make(Type, my_array);
```

Dynamic arrays can be used like regular pointers, i.e. elements are simply addressed using the [] operator, e.g.:  $my\_array[1] = 42$ ;

Using the vrna\_array\_append() macro, items can be safely appended and the array will grow accordingly if required:

```
vrna_array_append(my_array, item);
```

Finally, memory occupied by an array must be released using the vrna\_array\_free() macro:

```
vrna_array_free(my_array);
```

Use the vrna\_array\_size() macro to get the number of items stored in an array, e.g. for looping over its elements: // define and initialize

```
vrna_array_make(int, my_array);

// append some items
vrna_array_append(my_array, 42);
vrna_array_append(my_array, 23);
vrna_array_append(my_array, 5);

// loop over items and print
for (size_t i = 0; i < vrna_array_size(my_array); i++)
    printf("%d\n", my_array[i]);

// release memory of the array
vrna_array_free(my_array);</pre>
```

Under the hood, arrays are preceded by a header that actually stores the number of items they contain and the capacity of elements they are able to store. The general ideas for this implementation are taken from Ginger Bill's C Helper Library (public domain). Collaboration diagram for Arrays:

### **Files**

· file array.h

A macro-based dynamic array implementation.

16.89 Arrays 549

### **Data Structures**

· struct vrna\_array\_header\_s

The header of an array. More...

### **Macros**

#define vrna\_array(Type) Type \*

Define an array.

#define vrna\_array\_make(Type, Name) Type \* Name; vrna\_array\_init(Name)

Make an array Name of type Type.

#define VRNA ARRAY GROW FORMULA(n) (1.4 \* (n) + 8)

The default growth formula for array.

#define VRNA\_ARRAY\_HEADER(input) ((vrna\_array\_header\_t \*)(input) - 1)

Retrieve a pointer to the header of an array input.

#define vrna\_array\_size(input) (VRNA\_ARRAY\_HEADER(input)->num)

Get the number of elements of an array input.

#define vrna\_array\_capacity(input) (VRNA\_ARRAY\_HEADER(input)->size)

Get the size of an array input, i.e. its actual capacity.

#define vrna\_array\_set\_capacity(a, capacity)

Explicitely set the capacity of an array a.

#define vrna\_array\_init\_size(a, init\_size)

Initialize an array a with a particular pre-allocated size init\_size.

#define vrna\_array\_init(a) vrna\_array\_init\_size(a, VRNA\_ARRAY\_GROW\_FORMULA(0));

Initialize an array a.

• #define vrna\_array\_free(a)

Release memory of an array a.

#define vrna\_array\_append(a, item)

Safely append an item to an array a.

#define vrna\_array\_grow(a, min\_capacity)

Grow an array a to provide a minimum capacity min\_capacity.

#### **Typedefs**

typedef struct vrna\_array\_header\_s vrna\_array\_header\_t

The header of an array.

### **Functions**

VRNA\_NO\_INLINE void \* vrna\_\_array\_set\_capacity (void \*array, size\_t capacity, size\_t element\_size)
 Explicitely set the capacity of an array.

## 16.89.2 Data Structure Documentation

## 16.89.2.1 struct vrna\_array\_header\_s

The header of an array.

### **Data Fields**

· size t num

The number of elements in an array.

size\_t size

The actual capacity of an array.

## 16.89.3 Macro Definition Documentation

### 16.89.3.1 vrna\_array\_init\_size

Initialize an array a with a particular pre-allocated size init\_size.

#### 16.89.4 Function Documentation

#### 16.89.4.1 vrna\_array\_set\_capacity()

Note

Do not use this function. Rather resort to the vrna\_array\_set\_capacity macro

## 16.90 Buffers

Functions that provide dynamically buffered stream-like data structures.

## 16.90.1 Detailed Description

Functions that provide dynamically buffered stream-like data structures. Collaboration diagram for Buffers:

### **Files**

· file char stream.h

Implementation of a dynamic, buffered character stream.

· file stream\_output.h

An implementation of a buffered, ordered stream output data structure.

## **Typedefs**

typedef struct vrna\_ordered\_stream\_s \* vrna\_ostream\_t

An ordered output stream structure with unordered insert capabilities.

• typedef void(\* vrna\_stream\_output\_f) (void \*auxdata, unsigned int i, void \*data)

Ordered stream processing callback.

16.90 Buffers 551

### **Functions**

vrna\_cstr\_t vrna\_cstr (size\_t size, FILE \*output)

Create a dynamic char \* stream data structure.

void vrna\_cstr\_discard (struct vrna\_cstr\_s \*buf)

Discard the current content of the dynamic char \* stream data structure.

void vrna\_cstr\_free (vrna\_cstr\_t buf)

Free the memory occupied by a dynamic char \* stream data structure.

void vrna\_cstr\_close (vrna\_cstr\_t buf)

Free the memory occupied by a dynamic char  $\ast$  stream and close the output stream.

void vrna\_cstr\_fflush (struct vrna\_cstr\_s \*buf)

Flush the dynamic char \* output stream.

vrna\_ostream\_t vrna\_ostream\_init (vrna\_stream\_output\_f output, void \*auxdata)

Get an initialized ordered output stream.

void vrna\_ostream\_free (vrna\_ostream\_t dat)

Free an initialized ordered output stream.

void vrna\_ostream\_request (vrna\_ostream\_t dat, unsigned int num)

Request index in ordered output stream.

void vrna\_ostream\_provide (vrna\_ostream\_t dat, unsigned int i, void \*data)

Provide output stream data for a particular index.

# 16.90.2 Typedef Documentation

## 16.90.2.1 vrna\_stream\_output\_f

```
typedef void(* vrna_stream_output_f) (void *auxdata, unsigned int i, void *data)
#include <ViennaRNA/datastructures/stream_output.h>
```

Ordered stream processing callback.

This callback will be processed in sequential order as soon as sequential data in the output stream becomes available.

Note

The callback must also release the memory occupied by the data passed since the stream will lose any reference to it after the callback has been executed.

### **Parameters**

| auxdata | A shared pointer for all calls, as provided by the second argument to vrna_ostream_init() |
|---------|-------------------------------------------------------------------------------------------|
| i       | The index number of the data passed to data                                               |
| data    | A block of data ready for processing                                                      |

# 16.90.3 Function Documentation

## 16.90.3.1 vrna\_cstr()

Create a dynamic char \* stream data structure.

#### See also

```
vrna_cstr_free(), vrna_cstr_close(), vrna_cstr_fflush(), vrna_cstr_discard(), vrna_cstr_printf()
```

### **Parameters**

| size   | The initial size of the buffer in characters                                                                   |
|--------|----------------------------------------------------------------------------------------------------------------|
| output | An optional output file stream handle that is used to write the collected data to (defaults to stdout if NULL) |

## 16.90.3.2 vrna\_cstr\_discard()

Discard the current content of the dynamic char \* stream data structure.

#### See also

```
vrna_cstr_free(), vrna_cstr_close(), vrna_cstr_fflush(), vrna_cstr_printf()
```

### **Parameters**

```
buf The dynamic char * stream data structure to free
```

## 16.90.3.3 vrna\_cstr\_free()

Free the memory occupied by a dynamic char \* stream data structure.

This function first flushes any remaining character data within the stream and then free's the memory occupied by the data structure.

### See also

```
vrna_cstr_close(), vrna_cstr_fflush(), vrna_cstr()
```

## Parameters

```
buf The dynamic char * stream data structure to free
```

## 16.90.3.4 vrna\_cstr\_close()

Free the memory occupied by a dynamic char \* stream and close the output stream.

This function first flushes any remaining character data within the stream then closes the attached output file stream (if any), and finally free's the memory occupied by the data structure.

16.90 Buffers 553

#### See also

```
vrna_cstr_free(), vrna_cstr_fflush(), vrna_cstr()
```

### **Parameters**

```
buf The dynamic char * stream data structure to free
```

## 16.90.3.5 vrna\_cstr\_fflush()

Flush the dynamic char \* output stream.

This function flushes the collected char \* stream, either by writing to

This function flushes the collected char \* stream, either by writing to the attached file handle, or simply by writing to stdout if no file handle has been attached upon construction using vrna\_cstr().

#### Postcondition

The stream buffer is empty after execution of this function

#### See also

```
vrna_cstr(), vrna_cstr_close(), vrna_cstr_free()
```

#### **Parameters**

```
buf The dynamic char * stream data structure to flush
```

## 16.90.3.6 vrna\_ostream\_init()

### See also

```
vrna_ostream_free(), vrna_ostream_request(), vrna_ostream_provide()
```

#### **Parameters**

| output  | A callback function that processes and releases data in the stream          |
|---------|-----------------------------------------------------------------------------|
| auxdata | A pointer to auxiliary data passed as first argument to the output callback |

### Returns

An initialized ordered output stream

## 16.90.3.7 vrna\_ostream\_free()

```
void vrna_ostream_free (
```

```
\label{linear_vrna_ostream_t} $$ vrna_ostream_t $ dat $ ) $$ \#include < ViennaRNA/datastructures/stream_output.h> $$ Free an initialized ordered output stream.
```

See also

```
vrna_ostream_init()
```

#### **Parameters**

```
dat The output stream for which occupied memory should be free'd
```

### 16.90.3.8 vrna\_ostream\_request()

Request index in ordered output stream.

This function must be called prior to vrna\_ostream\_provide() to indicate that data associted with a certain index number is expected to be inserted into the stream in the future.

See also

```
vrna_ostream_init(), vrna_ostream_provide(), vrna_ostream_free()
```

### **Parameters**

| dat | The output stream for which the index is requested |
|-----|----------------------------------------------------|
| num | The index to request data for                      |

## 16.90.3.9 vrna\_ostream\_provide()

Provide output stream data for a particular index.

### Precondition

The index data is provided for must have been requested using vrna\_ostream\_request() beforehand.

## See also

```
vrna_ostream_request()
```

| dat  | The output stream for which data is provided |
|------|----------------------------------------------|
| i    | The index of the provided data               |
| data | The data provided                            |

# 16.91 Deprecated Interface for Global MFE Prediction

## 16.91.1 Detailed Description

Collaboration diagram for Deprecated Interface for Global MFE Prediction:

### **Files**

· file alifold.h

Functions for comparative structure prediction using RNA sequence alignments.

· file cofold.h

MFE implementations for RNA-RNA interaction.

· file fold.h

MFE calculations for single RNA sequences.

## **Functions**

• float cofold (const char \*sequence, char \*structure)

Compute the minimum free energy of two interacting RNA molecules.

• float cofold par (const char \*string, char \*structure, vrna param t \*parameters, int is constrained)

Compute the minimum free energy of two interacting RNA molecules.

void free\_co\_arrays (void)

Free memory occupied by cofold()

void update cofold params (void)

Recalculate parameters.

void update\_cofold\_params\_par (vrna\_param\_t \*parameters)

Recalculate parameters.

void export\_cofold\_arrays\_gq (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*fc\_p, int \*\*ggg\_p, int \*\*indx\_p, char \*\*ptype\_p)

Export the arrays of partition function cofold (with gquadruplex support)

void export\_cofold\_arrays (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*fc\_p, int \*\*indx\_p, char
 \*\*ptype\_p)

Export the arrays of partition function cofold.

- void initialize cofold (int length)
- float fold\_par (const char \*sequence, char \*structure, vrna\_param\_t \*parameters, int is\_constrained, int is
   \_circular)

Compute minimum free energy and an appropriate secondary structure of an RNA sequence.

float fold (const char \*sequence, char \*structure)

Compute minimum free energy and an appropriate secondary structure of an RNA sequence.

float circfold (const char \*sequence, char \*structure)

Compute minimum free energy and an appropriate secondary structure of a circular RNA sequence.

void free\_arrays (void)

Free arrays for mfe folding.

void update\_fold\_params (void)

Recalculate energy parameters.

void update\_fold\_params\_par (vrna\_param\_t \*parameters)

Recalculate energy parameters.

- void export\_fold\_arrays (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p)
- void export\_fold\_arrays\_par (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p, vrna\_param\_t \*\*P\_p)
- void export\_circfold\_arrays (int \*Fc\_p, int \*FcH\_p, int \*FcH\_p, int \*FcM\_p, int \*\*fM2\_p, int \*\*f5\_p, int \*\*c\_p, int \*\*fML p, int \*\*fM1 p, int \*\*indx p, char \*\*ptype p)
- void export\_circfold\_arrays\_par (int \*Fc\_p, int \*FcH\_p, int \*FcI\_p, int \*FcM\_p, int \*\*fM2\_p, int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p, vrna\_param\_t \*\*P\_p)

- int LoopEnergy (int n1, int n2, int type, int type\_2, int si1, int sj1, int sp1, int sq1)
- int HairpinE (int size, int type, int si1, int sj1, const char \*string)
- · void initialize fold (int length)
- float alifold (const char \*\*strings, char \*structure)

Compute MFE and according consensus structure of an alignment of sequences.

float circalifold (const char \*\*strings, char \*structure)

Compute MFE and according structure of an alignment of sequences assuming the sequences are circular instead of linear

void free\_alifold\_arrays (void)

Free the memory occupied by MFE alifold functions.

## 16.91.2 Function Documentation

### 16.91.2.1 alifold()

Compute MFE and according consensus structure of an alignment of sequences.

This function predicts the consensus structure for the aligned 'sequences' and returns the minimum free energy; the mfe structure in bracket notation is returned in 'structure'.

Sufficient space must be allocated for 'structure' before calling alifold().

Deprecated Usage of this function is discouraged! Use vrna\_alifold(), or vrna\_mfe() instead!

See also

```
vrna alifold(), vrna mfe()
```

#### **Parameters**

| strings   | A pointer to a NULL terminated array of character arrays                                    |
|-----------|---------------------------------------------------------------------------------------------|
| structure | A pointer to a character array that may contain a constraining consensus structure (will be |
|           | overwritten by a consensus structure that exhibits the MFE)                                 |

#### Returns

The free energy score in kcal/mol

## 16.91.2.2 cofold()

Compute the minimum free energy of two interacting RNA molecules.

The code is analog to the fold() function. If cut\_point ==-1 results should be the same as with fold().

Deprecated use vrna mfe dimer() instead

#### **Parameters**

| sequence  | The two sequences concatenated                            |
|-----------|-----------------------------------------------------------|
| structure | Will hold the barcket dot structure of the dimer molecule |

#### Returns

minimum free energy of the structure

## 16.91.2.3 cofold\_par()

Compute the minimum free energy of two interacting RNA molecules.

Deprecated use vrna\_mfe\_dimer() instead

## 16.91.2.4 free\_co\_arrays()

Free memory occupied by cofold()

**Deprecated** This function will only free memory allocated by a prior call of cofold() or cofold\_par(). See vrna\_mfe\_dimer() for how to use the new API

Note

folding matrices now reside in the fold compound, and should be free'd there

See also

```
vrna_fc_destroy(), vrna_mfe_dimer()
```

## 16.91.2.5 update\_cofold\_params()

Recalculate parameters.

Deprecated See vrna\_params\_subst() for an alternative using the new API

### 16.91.2.6 update\_cofold\_params\_par()

Recalculate parameters.

Deprecated See vrna\_params\_subst() for an alternative using the new API

## 16.91.2.7 export\_cofold\_arrays\_gq()

Export the arrays of partition function cofold (with gquadruplex support)

Export the cofold arrays for use e.g. in the concentration Computations or suboptimal secondary structure back-tracking

**Deprecated** folding matrices now reside within the fold compound. Thus, this function will only work in conjunction with a prior call to cofold() or cofold\_par()

#### See also

```
vrna_mfe_dimer() for the new API
```

#### **Parameters**

| f5_p       | A pointer to the 'f5' array, i.e. array conatining best free energy in interval [1,j]                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <i>c_p</i> | A pointer to the 'c' array, i.e. array containing best free energy in interval [i,j] given that i pairs with j                        |
| fML_p      | A pointer to the 'M' array, i.e. array containing best free energy in interval [i,j] for any multiloop segment with at least one stem |
| fM1_p      | A pointer to the 'M1' array, i.e. array containing best free energy in interval [i,j] for multiloop segment with exactly one stem     |
| fc_p       | A pointer to the 'fc' array, i.e. array                                                                                               |
| ggg_p      | A pointer to the 'ggg' array, i.e. array containing best free energy of a gquadruplex delimited by [i,j]                              |
| indx_p     | A pointer to the indexing array used for accessing the energy matrices                                                                |
| ptype⇔     | A pointer to the ptype array containing the base pair types for each possibility (i,j)                                                |
| _ <i>p</i> |                                                                                                                                       |

### 16.91.2.8 export\_cofold\_arrays()

Export the arrays of partition function cofold.

Export the cofold arrays for use e.g. in the concentration Computations or suboptimal secondary structure backtracking

**Deprecated** folding matrices now reside within the vrna\_fold\_compound\_t. Thus, this function will only work in conjunction with a prior call to the deprecated functions cofold() or cofold\_par()

#### See also

vrna mfe dimer() for the new API

#### **Parameters**

| f5_p       | A pointer to the 'f5' array, i.e. array conatining best free energy in interval [1,j]                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <i>c_p</i> | A pointer to the 'c' array, i.e. array containing best free energy in interval [i,j] given that i pairs with j                        |
| fML_p      | A pointer to the 'M' array, i.e. array containing best free energy in interval [i,j] for any multiloop segment with at least one stem |
| fM1_p      | A pointer to the 'M1' array, i.e. array containing best free energy in interval [i,j] for multiloop segment with exactly one stem     |
| fc_p       | A pointer to the 'fc' array, i.e. array                                                                                               |
| indx_p     | A pointer to the indexing array used for accessing the energy matrices                                                                |
| ptype↔     | A pointer to the ptype array containing the base pair types for each possibility (i,j)                                                |
| _p         |                                                                                                                                       |

## 16.91.2.9 initialize\_cofold()

**Deprecated** {This function is obsolete and will be removed soon!}

### 16.91.2.10 fold\_par()

Compute minimum free energy and an appropriate secondary structure of an RNA sequence.

The first parameter given, the RNA sequence, must be uppercase and should only contain an alphabet  $\Sigma$  that is understood by the RNAlib

```
(e.g. \Sigma = \{A, U, C, G\})
```

The second parameter, structure, must always point to an allocated block of memory with a size of at least strlen(sequence) + 1

If the third parameter is NULL, global model detail settings are assumed for the folding recursions. Otherwise, the provided parameters are used.

The fourth parameter indicates whether a secondary structure constraint in enhanced dot-bracket notation is passed through the structure parameter or not. If so, the characters "|x < >" are recognized to mark bases that are paired, unpaired, paired upstream, or downstream, respectively. Matching brackets "()" denote base pairs, dots "." are used for unconstrained bases.

To indicate that the RNA sequence is circular and thus has to be post-processed, set the last parameter to non-zero After a successful call of fold\_par(), a backtracked secondary structure (in dot-bracket notation) that exhibits the minimum of free energy will be written to the memory *structure* is pointing to. The function returns the minimum of free energy for any fold of the sequence given.

#### Note

OpenMP: Passing NULL to the 'parameters' argument involves access to several global model detail variables and thus is not to be considered threadsafe

## Deprecated use vrna\_mfe() instead!

#### See also

```
vrna mfe(), fold(), circfold(), vrna md t, set energy model(), get scaled parameters()
```

#### **Parameters**

| sequence       | RNA sequence                                                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| structure      | A pointer to the character array where the secondary structure in dot-bracket notation will be written to                           |
| parameters     | A data structure containing the pre-scaled energy contributions and the model details. (NULL may be passed, see OpenMP notes above) |
| is_constrained | Switch to indicate that a structure constraint is passed via the structure argument (0==off)                                        |
| is_circular    | Switch to (de-)activate post-processing steps in case RNA sequence is circular (0==off)                                             |

### Returns

the minimum free energy (MFE) in kcal/mol

### 16.91.2.11 fold()

Compute minimum free energy and an appropriate secondary structure of an RNA sequence.

This function essentially does the same thing as fold\_par(). However, it takes its model details, i.e. temperature, dangles, tetra\_loop, noGU, no\_closingGU, fold\_constrained, noLonelyPairs from the current global settings within the library

**Deprecated** use vrna\_fold(), or vrna\_mfe() instead!

### See also

```
fold_par(), circfold()
```

## **Parameters**

| sequence  | RNA sequence                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where the secondary structure in dot-bracket notation will be written to |

#### Returns

the minimum free energy (MFE) in kcal/mol

## 16.91.2.12 circfold()

```
float circfold (
```

Compute minimum free energy and an appropriate secondary structure of a circular RNA sequence.

This function essentially does the same thing as fold\_par(). However, it takes its model details, i.e. temperature, dangles, tetra\_loop, noGU, no\_closingGU, fold\_constrained, noLonelyPairs from the current global settings within the library

Deprecated Use vrna circfold(), or vrna mfe() instead!

#### See also

```
fold_par(), circfold()
```

#### **Parameters**

| sequence  | RNA sequence                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------|
| structure | A pointer to the character array where the secondary structure in dot-bracket notation will be written to |

#### Returns

the minimum free energy (MFE) in kcal/mol

## 16.91.2.13 free\_arrays()

**Deprecated** See vrna\_fold(), vrna\_circfold(), or vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

### 16.91.2.14 update\_fold\_params()

Recalculate energy parameters.

Recalculate energy parameters.

Deprecated For non-default model settings use the new API with vrna\_params\_subst() and vrna\_mfe() instead!

## 16.91.2.15 update\_fold\_params\_par()

Deprecated For non-default model settings use the new API with vrna\_params\_subst() and vrna\_mfe() instead!

## 16.91.2.16 export\_fold\_arrays()

**Deprecated** See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

### 16.91.2.17 export\_fold\_arrays\_par()

**Deprecated** See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

## 16.91.2.18 export\_circfold\_arrays()

```
void export_circfold_arrays (
    int * Fc_p,
    int * FcH_p,
    int * FcI_p,
    int * FcM_p,
    int ** FcM_p,
    int ** fM2_p,
    int ** f5_p,
    int ** c_p,
    int ** fML_p,
    int ** fM1_p,
    int ** indx_p,
    char ** ptype_p)
#include <ViennaRNA/fold.h>
```

**Deprecated** See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

## 16.91.2.19 export\_circfold\_arrays\_par()

```
void export_circfold_arrays_par (
    int * Fc_p,
    int * FcH_p,
    int * FcI_p,
    int * FcM_p,
    int ** fM2_p,
    int ** f5_p,
    int ** c_p,
```

```
int ** fML_p,
    int ** fM1_p,
    int ** indx_p,
        char ** ptype_p,
        vrna_param_t ** P_p)
#include <ViennaRNA/fold.h>
```

**Deprecated** See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

# 16.91.2.20 LoopEnergy()

Deprecated {This function is deprecated and will be removed soon. Use E\_IntLoop() instead!}

# 16.91.2.21 HairpinE()

Deprecated {This function is deprecated and will be removed soon. Use E Hairpin() instead!}

# 16.91.2.22 initialize\_fold()

**Deprecated** See vrna\_mfe() and vrna\_fold\_compound\_t for the usage of the new API!

# 16.91.2.23 circalifold()

Compute MFE and according structure of an alignment of sequences assuming the sequences are circular instead of linear.

Deprecated Usage of this function is discouraged! Use vrna\_alicircfold(), and vrna\_mfe() instead!

### See also

```
vrna_alicircfold(), vrna_alifold(), vrna_mfe()
```

### **Parameters**

| strings   | A pointer to a NULL terminated array of character arrays                                    |
|-----------|---------------------------------------------------------------------------------------------|
| structure | A pointer to a character array that may contain a constraining consensus structure (will be |
|           | overwritten by a consensus structure that exhibits the MFE)                                 |

### Returns

The free energy score in kcal/mol

# 16.91.2.24 free\_alifold\_arrays()

Free the memory occupied by MFE alifold functions.

**Deprecated** Usage of this function is discouraged! It only affects memory being free'd that was allocated by an old API function before. Release of memory occupied by the newly introduced vrna\_fold\_compound\_t is handled by vrna\_fold\_compound\_free()

### See also

vrna\_fold\_compound\_free()

# 16.92 Deprecated Interface for Local (Sliding Window) MFE Prediction

# 16.92.1 Detailed Description

Collaboration diagram for Deprecated Interface for Local (Sliding Window) MFE Prediction:

# Files

• file Lfold.h

Functions for locally optimal MFE structure prediction.

# **Functions**

- float Lfold (const char \*string, const char \*structure, int maxdist)
   The local analog to fold().
- float Lfoldz (const char \*string, const char \*structure, int maxdist, int zsc, double min\_z)

### 16.92.2 Function Documentation

# 16.92.2.1 Lfold()

Computes the minimum free energy structure including only base pairs with a span smaller than 'maxdist'

**Deprecated** Use vrna\_mfe\_window() instead!

### 16.92.2.2 Lfoldz()

The local analog to fold().

**Deprecated** Use vrna\_mfe\_window\_zscore() instead!

# 16.93 Deprecated Interface for Global Partition Function Computation

# 16.93.1 Detailed Description

Collaboration diagram for Deprecated Interface for Global Partition Function Computation:

### **Files**

• file part\_func\_co.h

Partition function for two RNA sequences.

### **Functions**

• float pf\_fold\_par (const char \*sequence, char \*structure, vrna\_exp\_param\_t \*parameters, int calculate\_← bppm, int is\_constrained, int is\_circular)

Compute the partition function  ${\cal Q}$  for a given RNA sequence.

float pf\_fold (const char \*sequence, char \*structure)

Compute the partition function  ${\cal Q}$  of an RNA sequence.

• float pf\_circ\_fold (const char \*sequence, char \*structure)

Compute the partition function of a circular RNA sequence.

void free\_pf\_arrays (void)

Free arrays for the partition function recursions.

void update\_pf\_params (int length)

Recalculate energy parameters.

• void update\_pf\_params\_par (int length, vrna\_exp\_param\_t \*parameters)

Recalculate energy parameters.

FLT OR DBL \* export bppm (void)

Get a pointer to the base pair probability array.

int get\_pf\_arrays (short \*\*S\_p, short \*\*S1\_p, char \*\*ptype\_p, FLT\_OR\_DBL \*\*qb\_p, FLT\_OR\_DBL \*\*qth\_p, FLT\_OR\_DBL \*\*qth\_p)

Get the pointers to (almost) all relavant computation arrays used in partition function computation.

double get\_subseq\_F (int i, int j)

Get the free energy of a subsequence from the q[] array.

• double mean\_bp\_distance (int length)

Get the mean base pair distance of the last partition function computation.

double mean\_bp\_distance\_pr (int length, FLT\_OR\_DBL \*pr)

Get the mean base pair distance in the thermodynamic ensemble.

vrna ep t \* stackProb (double cutoff)

Get the probability of stacks.

void init\_pf\_fold (int length)

Allocate space for pf fold()

vrna dimer pf t co pf fold (char \*sequence, char \*structure)

Calculate partition function and base pair probabilities.

• vrna\_dimer\_pf\_t co\_pf\_fold\_par (char \*sequence, char \*structure, vrna\_exp\_param\_t \*parameters, int calculate\_bppm, int is\_constrained)

Calculate partition function and base pair probabilities.

• void compute\_probabilities (double FAB, double FEA, double FEB, vrna\_ep\_t \*prAB, vrna\_ep\_t \*prA, vrna\_ep\_t \*prB, int Alength)

Compute Boltzmann probabilities of dimerization without homodimers.

- void init co pf fold (int length)
- FLT OR\_DBL \* export\_co\_bppm (void)

Get a pointer to the base pair probability array.

void free co pf arrays (void)

Free the memory occupied by co\_pf\_fold()

void update co pf params (int length)

Recalculate energy parameters.

void update co pf params par (int length, vrna exp param t \*parameters)

Recalculate energy parameters.

void assign\_plist\_from\_db (vrna\_ep\_t \*\*pl, const char \*struc, float pr)

Create a vrna\_ep\_t from a dot-bracket string.

void assign\_plist\_from\_pr (vrna\_ep\_t \*\*pl, FLT\_OR\_DBL \*probs, int length, double cutoff)

Create a vrna\_ep\_t from a probability matrix.

- float alipf\_fold\_par (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl, vrna\_exp\_param\_t \*parameters, int calculate\_bppm, int is\_constrained, int is\_circular)
- float alipf\_fold (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl)

The partition function version of alifold() works in analogy to  $pf_fold()$ . Pair probabilities and information about sequence covariations are returned via the 'pi' variable as a list of  $vrna_pinfo_t$  structs. The list is terminated by the first entry with pi.i = 0.

- float alipf\_circ\_fold (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl)
- FLT\_OR\_DBL \* export\_ali\_bppm (void)

Get a pointer to the base pair probability array.

void free alipf arrays (void)

Free the memory occupied by folding matrices allocated by alipf\_fold, alipf\_circ\_fold, etc.

char \* alipbacktrack (double \*prob)

Sample a consensus secondary structure from the Boltzmann ensemble according its probability.

int get\_alipf\_arrays (short \*\*\*\$S\_p, short \*\*\*\$S\_p, short \*\*\*\$S\_p, unsigned short \*\*\*a2s\_p, char \*\*\*\$S←
 \_p, FLT\_OR\_DBL \*\*qb\_p, FLT\_OR\_DBL \*\*qn\_p, FLT\_OR\_DBL \*\*q1k\_p, FLT\_OR\_DBL \*\*q1n\_p, short
 \*\*pscore)

Get pointers to (almost) all relavant arrays used in alifold's partition function computation.

### 16.93.2 Function Documentation

# 16.93.2.1 alipf\_fold\_par()

### Deprecated Use vrna pf() instead

### **Parameters**

| sequences      |  |
|----------------|--|
| structure      |  |
| pl             |  |
| parameters     |  |
| calculate_bppm |  |
| is_constrained |  |
| is_circular    |  |

# Returns

# 16.93.2.2 pf\_fold\_par()

Compute the partition function Q for a given RNA sequence.

If structure is not a NULL pointer on input, it contains on return a string consisting of the letters " . , | { } ( ) " denoting bases that are essentially unpaired, weakly paired, strongly paired without preference, weakly upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. If fold\_constrained is not 0, the structure string is interpreted on input as a list of constraints for the folding. The character "x" marks bases that must be unpaired, matching brackets " ( ) " denote base pairs, all other characters are ignored. Any pairs conflicting with the constraint will be forbidden. This is usually sufficient to ensure the constraints are honored. If the parameter calculate\_bppm is set to 0 base pairing probabilities will not be computed (saving CPU time), otherwise after calculations took place pr will contain the probability that bases i and j pair.

Deprecated Use vrna\_pf() instead

### Note

The global array pr is deprecated and the user who wants the calculated base pair probabilities for further computations is advised to use the function export\_bppm()

### Postcondition

After successful run the hidden folding matrices are filled with the appropriate Boltzmann factors. Depending on whether the global variable do\_backtrack was set the base pair probabilities are already computed and may be accessed for further usage via the export\_bppm() function. A call of free\_pf\_arrays() will free all memory allocated by this function. Successive calls will first free previously allocated memory before starting the computation.

#### See also

```
vrna_pf(), bppm_to_structure(), export_bppm(), vrna_exp_params(), free_pf_arrays()
```

#### **Parameters**

| in     | sequence       | The RNA sequence input                                                                                                                |
|--------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| in,out | structure      | A pointer to a char array where a base pair probability information can be stored in a pseudo-dot-bracket notation (may be NULL, too) |
| in     | parameters     | Data structure containing the precalculated Boltzmann factors                                                                         |
| in     | calculate_bppm | Switch to Base pair probability calculations on/off (0==off)                                                                          |
| in     | is_constrained | Switch to indicate that a structure contraint is passed via the structure argument (0==off)                                           |
| in     | is_circular    | Switch to (de-)activate postprocessing steps in case RNA sequence is circular (0==off)                                                |

# Returns

The ensemble free energy  $G = -RT \cdot \log(Q)$  in kcal/mol

# 16.93.2.3 pf\_fold()

Compute the partition function Q of an RNA sequence.

If structure is not a NULL pointer on input, it contains on return a string consisting of the letters " . , | { } ( ) " denoting bases that are essentially unpaired, weakly paired, strongly paired without preference, weakly upstream (downstream) paired, or strongly up- (down-)stream paired bases, respectively. If fold\_constrained is not 0, the structure string is interpreted on input as a list of constraints for the folding. The character "x" marks bases that must be unpaired, matching brackets " ( ) " denote base pairs, all other characters are ignored. Any pairs conflicting with the constraint will be forbidden. This is usually sufficient to ensure the constraints are honored. If do\_backtrack has been set to 0 base pairing probabilities will not be computed (saving CPU time), otherwise pr will contain the probability that bases i and j pair.

### Note

The global array pr is deprecated and the user who wants the calculated base pair probabilities for further computations is advised to use the function export\_bppm().

**OpenMP:** This function is not entirely threadsafe. While the recursions are working on their own copies of data the model details for the recursions are determined from the global settings just before entering the recursions. Consider using pf\_fold\_par() for a really threadsafe implementation.

### Precondition

This function takes its model details from the global variables provided in RNAlib

### Postcondition

After successful run the hidden folding matrices are filled with the appropriate Boltzmann factors. Depending on whether the global variable do\_backtrack was set the base pair probabilities are already computed and may be accessed for further usage via the export\_bppm() function. A call of free\_pf\_arrays() will free all memory allocated by this function. Successive calls will first free previously allocated memory before starting the computation.

### See also

```
pf_fold_par(), pf_circ_fold(), bppm_to_structure(), export_bppm()
```

#### **Parameters**

| sequence  | The RNA sequence input                                                                                                                |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|
| structure | A pointer to a char array where a base pair probability information can be stored in a pseudo-dot-bracket notation (may be NULL, too) |

### Returns

The ensemble free energy  $G = -RT \cdot \log(Q)$  in kcal/mol

# 16.93.2.4 pf\_circ\_fold()

Compute the partition function of a circular RNA sequence.

### Note

The global array pr is deprecated and the user who wants the calculated base pair probabilities for further computations is advised to use the function export bppm().

**OpenMP:** This function is not entirely threadsafe. While the recursions are working on their own copies of data the model details for the recursions are determined from the global settings just before entering the recursions. Consider using pf fold par() for a really threadsafe implementation.

# Precondition

This function takes its model details from the global variables provided in RNAlib

### Postcondition

After successful run the hidden folding matrices are filled with the appropriate Boltzmann factors. Depending on whether the global variable do\_backtrack was set the base pair probabilities are already computed and may be accessed for further usage via the export\_bppm() function. A call of free\_pf\_arrays() will free all memory allocated by this function. Successive calls will first free previously allocated memory before starting the computation.

### See also

vrna\_pf()

Deprecated Use vrna\_pf() instead!

### **Parameters**

| in     | sequence  | The RNA sequence input                                                                 |
|--------|-----------|----------------------------------------------------------------------------------------|
| in,out | structure | A pointer to a char array where a base pair probability information can be stored in a |
|        |           | pseudo-dot-bracket notation (may be NULL, too)                                         |

### Returns

The ensemble free energy  $G = -RT \cdot \log(Q)$  in kcal/mol

# 16.93.2.5 free\_pf\_arrays()

Free arrays for the partition function recursions.

Call this function if you want to free all allocated memory associated with the partition function forward recursion.

Note

Successive calls of pf\_fold(), pf\_circ\_fold() already check if they should free any memory from a previous run.

### OpenMP notice:

This function should be called before leaving a thread in order to avoid leaking memory

**Deprecated** See vrna\_fold\_compound\_t and its related functions for how to free memory occupied by the dynamic programming matrices

### Postcondition

All memory allocated by pf\_fold\_par(), pf\_fold() or pf\_circ\_fold() will be free'd

### See also

```
pf_fold_par(), pf_fold(), pf_circ_fold()
```

### 16.93.2.6 update\_pf\_params()

Recalculate energy parameters.

Call this function to recalculate the pair matrix and energy parameters after a change in folding parameters like temperature

Deprecated Use vrna\_exp\_params\_subst() instead

### 16.93.2.7 update\_pf\_params\_par()

Recalculate energy parameters.

Deprecated Use vrna\_exp\_params\_subst() instead

### 16.93.2.8 export\_bppm()

Get a pointer to the base pair probability array.

Accessing the base pair probabilities for a pair (i,j) is achieved by

```
FLT_OR_DBL *pr = export_bppm();
pr_ij = pr[iindx[i]-j];
```

# Precondition

Call pf\_fold\_par(), pf\_fold() or pf\_circ\_fold() first to fill the base pair probability array

### See also

```
pf_fold(), pf_circ_fold(), vrna_idx_row_wise()
```

### Returns

A pointer to the base pair probability array

# 16.93.2.9 get\_pf\_arrays()

Get the pointers to (almost) all relavant computation arrays used in partition function computation.

# Precondition

In order to assign meaningful pointers, you have to call pf\_fold\_par() or pf\_fold() first!

### See also

```
pf_fold_par(), pf_fold(), pf_circ_fold()
```

# **Parameters**

| out | S_p    | A pointer to the 'S' array (integer representation of nucleotides)      |
|-----|--------|-------------------------------------------------------------------------|
| out | S1_p   | A pointer to the 'S1' array (2nd integer representation of nucleotides) |
| out | ptype⇔ | A pointer to the pair type matrix                                       |
|     | _p     |                                                                         |
| out | qb_p   | A pointer to the Q <sup>B</sup> matrix                                  |
| out | qm_p   | A pointer to the Q <sup>M</sup> matrix                                  |
| out | q1k_p  | A pointer to the 5' slice of the Q matrix ( $q1k(k)=Q(1,k)$ )           |
| out | qln_p  | A pointer to the 3' slice of the Q matrix ( $qln(l)=Q(l,n)$ )           |

### Returns

Non Zero if everything went fine, 0 otherwise

# 16.93.2.10 get\_subseq\_F()

Get the free energy of a subsequence from the q[] array.

### 16.93.2.11 mean bp distance()

Get the mean base pair distance of the last partition function computation.

**Deprecated** Use vrna\_mean\_bp\_distance() or vrna\_mean\_bp\_distance\_pr() instead!

### See also

vrna\_mean\_bp\_distance(), vrna\_mean\_bp\_distance\_pr()

### **Parameters**

length

# Returns

mean base pair distance in thermodynamic ensemble

### 16.93.2.12 mean\_bp\_distance\_pr()

Get the mean base pair distance in the thermodynamic ensemble.

This is a threadsafe implementation of mean bp dist()!

```
\langle d \rangle = \sum_{a,b} p_a p_b d(S_a, S_b)
```

this can be computed from the pair probs  $p_i j$  as

$$\langle d \rangle = \sum_{ij} p_{ij} (1 - p_{ij})$$

**Deprecated** Use vrna\_mean\_bp\_distance() or vrna\_mean\_bp\_distance\_pr() instead!

### **Parameters**

| length | The length of the sequence                        |
|--------|---------------------------------------------------|
| pr     | The matrix containing the base pair probabilities |

### Returns

The mean pair distance of the structure ensemble

# 16.93.2.13 stackProb()

**Deprecated** Use vrna\_stack\_prob() instead!

# 16.93.2.14 init\_pf\_fold()

**Deprecated** This function is obsolete and will be removed soon!

# 16.93.2.15 co\_pf\_fold()

Calculate partition function and base pair probabilities.

This is the cofold partition function folding. The second molecule starts at the cut\_point nucleotide.

### Note

OpenMP: Since this function relies on the global parameters do\_backtrack, dangles, temperature and pf\_scale it is not threadsafe according to concurrent changes in these variables! Use co\_pf\_fold\_par() instead to circumvent this issue.

Deprecated {Use vrna\_pf\_dimer() instead!}

# **Parameters**

| sequence  | Concatenated RNA sequences             |
|-----------|----------------------------------------|
| structure | Will hold the structure or constraints |

### Returns

vrna\_dimer\_pf\_t structure containing a set of energies needed for concentration computations.

# 16.93.2.16 co\_pf\_fold\_par()

```
vrna_exp_param_t * parameters,
int calculate_bppm,
int is_constrained)
#include <ViennaRNA/part_func_co.h>
```

Calculate partition function and base pair probabilities.

This is the cofold partition function folding. The second molecule starts at the cut point nucleotide.

# Deprecated Use vrna pf dimer() instead!

### See also

```
get_boltzmann_factors(), co_pf_fold()
```

### **Parameters**

| sequence       | Concatenated RNA sequences                                                                  |
|----------------|---------------------------------------------------------------------------------------------|
| structure      | Pointer to the structure constraint                                                         |
| parameters     | Data structure containing the precalculated Boltzmann factors                               |
| calculate_bppm | Switch to turn Base pair probability calculations on/off (0==off)                           |
| is_constrained | Switch to indicate that a structure contraint is passed via the structure argument (0==off) |

### Returns

vrna dimer pf t structure containing a set of energies needed for concentration computations.

# 16.93.2.17 compute\_probabilities()

Compute Boltzmann probabilities of dimerization without homodimers.

Given the pair probabilities and free energies (in the null model) for a dimer AB and the two constituent monomers A and B, compute the conditional pair probabilities given that a dimer AB actually forms. Null model pair probabilities are given as a list as produced by assign\_plist\_from\_pr(), the dimer probabilities 'prAB' are modified in place.

# Deprecated { Use vrna\_pf\_dimer\_probs() instead!}

# **Parameters**

| FAB     | free energy of dimer AB      |
|---------|------------------------------|
| FEA     | free energy of monomer A     |
| FEB     | free energy of monomer B     |
| prAB    | pair probabilities for dimer |
| prA     | pair probabilities monomer   |
| prB     | pair probabilities monomer   |
| Alength | Length of molecule A         |

# 16.93.2.18 init\_co\_pf\_fold()

**Deprecated** { This function is deprecated and will be removed soon!}

### 16.93.2.19 export\_co\_bppm()

Get a pointer to the base pair probability array.

Accessing the base pair probabilities for a pair (i,j) is achieved by

```
FLT_OR_DBL *pr = export_bppm(); pr_ij = pr[iindx[i]-j];
```

**Deprecated** This function is deprecated and will be removed soon! The base pair probability array is available through the vrna\_fold\_compound\_t data structure, and its associated vrna\_mx\_pf\_t member.

### See also

```
vrna_idx_row_wise()
```

### Returns

A pointer to the base pair probability array

### 16.93.2.20 free co pf arrays()

**Deprecated** This function will be removed for the new API soon! See vrna\_pf\_dimer(), vrna\_fold\_compound(), and vrna\_fold\_compound\_free() for an alternative

# 16.93.2.21 update\_co\_pf\_params()

Recalculate energy parameters.

This function recalculates all energy parameters given the current model settings.

**Deprecated** Use vrna\_exp\_params\_subst() instead!

### **Parameters**

| length | Length of the current RNA sequence |
|--------|------------------------------------|
|--------|------------------------------------|

# 16.93.2.22 update\_co\_pf\_params\_par()

Recalculate energy parameters.

This function recalculates all energy parameters given the current model settings. It's second argument can either be NULL or a data structure containing the precomputed Boltzmann factors. In the first scenario, the necessary data structure will be created automatically according to the current global model settings, i.e. this mode might not be threadsafe. However, if the provided data structure is not NULL, threadsafety for the model parameters dangles, pf\_scale and temperature is regained, since their values are taken from this data structure during subsequent calculations.

**Deprecated** Use vrna\_exp\_params\_subst() instead!

### **Parameters**

| length     | Length of the current RNA sequence                          |
|------------|-------------------------------------------------------------|
| parameters | data structure containing the precomputed Boltzmann factors |

### 16.93.2.23 assign\_plist\_from\_db()

Create a vrna\_ep\_t from a dot-bracket string.

The dot-bracket string is parsed and for each base pair an entry in the plist is created. The probability of each pair in the list is set by a function parameter.

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be used to stop looping over its entries

Deprecated Use vrna\_plist() instead

# **Parameters**

| pl    | A pointer to the vrna_ep_t that is to be created |
|-------|--------------------------------------------------|
| struc | The secondary structure in dot-bracket notation  |
| pr    | The probability for each base pair               |

# 16.93.2.24 assign plist from pr()

Create a vrna\_ep\_t from a probability matrix.

The probability matrix given is parsed and all pair probabilities above the given threshold are used to create an entry in the plist

The end of the plist is marked by sequence positions i as well as j equal to 0. This condition should be used to stop looping over its entries

Note

This function is threadsafe

Deprecated Use vrna plist from probs() instead!

### **Parameters**

| out | pl     | A pointer to the vrna_ep_t that is to be created   |
|-----|--------|----------------------------------------------------|
| in  | probs  | The probability matrix used for creating the plist |
| in  | length | The length of the RNA sequence                     |
| in  | cutoff | The cutoff value                                   |

# 16.93.2.25 alipf\_fold()

The partition function version of alifold() works in analogy to  $pf_fold()$ . Pair probabilities and information about sequence covariations are returned via the 'pi' variable as a list of  $vrna_pinfo_t$  structs. The list is terminated by the first entry with pi.i = 0.

Deprecated Use vrna\_pf() instead

### **Parameters**

| sequences |  |
|-----------|--|
| structure |  |
| pl        |  |

Returns

# 16.93.2.26 alipf\_circ\_fold()

Deprecated Use vrna\_pf() instead

### **Parameters**

| sequences |  |
|-----------|--|
| structure |  |
| pl        |  |

Returns

# 16.93.2.27 export\_ali\_bppm()

Get a pointer to the base pair probability array.

Accessing the base pair probabilities for a pair (i,j) is achieved by

```
FLT_OR_DBL *pr = export_bppm(); pr_ij = pr[iindx[i]-j];
```

Deprecated Usage of this function is discouraged! The new <a href="vrna\_fold\_compound\_t">vrna\_fold\_compound\_t</a> allows direct access to the folding matrices, including the pair probabilities! The pair probability array returned here reflects the one of the latest call to <a href="vrna\_pf()">vrna\_pf()</a>, or any of the old API calls for consensus structure partition function folding.

See also

```
vrna_fold_compound_t, vrna_fold_compound_comparative(), and vrna_pf()
```

Returns

A pointer to the base pair probability array

## 16.93.2.28 free\_alipf\_arrays()

Free the memory occupied by folding matrices allocated by alipf\_fold, alipf\_circ\_fold, etc.

**Deprecated** Usage of this function is discouraged! This function only free's memory allocated by old API function calls. Memory allocated by any of the new API calls (starting with vrna\_) will be not affected!

See also

```
vrna_fold_compound_t, vrna_vrna_fold_compound_free()
```

# 16.93.2.29 alipbacktrack()

Sample a consensus secondary structure from the Boltzmann ensemble according its probability.

**Deprecated** Use vrna\_pbacktrack() instead!

### **Parameters**

| prob | to be described (berni) |
|------|-------------------------|
|------|-------------------------|

### Returns

A sampled consensus secondary structure in dot-bracket notation

# 16.93.2.30 get\_alipf\_arrays()

Get pointers to (almost) all relavant arrays used in alifold's partition function computation.

Note

To obtain meaningful pointers, call alipf\_fold first!

### See also

```
pf_alifold(), alipf_circ_fold()
```

**Deprecated** It is discouraged to use this function! The new vrna\_fold\_compound\_t allows direct access to all necessary consensus structure prediction related variables!

### See also

```
vrna_fold_compound_t, vrna_fold_compound_comparative(), vrna_pf()
```

# **Parameters**

| S_p          | A pointer to the 'S' array (integer representation of nucleotides)   |
|--------------|----------------------------------------------------------------------|
| S5_p         | A pointer to the 'S5' array                                          |
| S3_p         | A pointer to the 'S3' array                                          |
| <i>a2s</i> ⇔ | A pointer to the alignment-column to sequence position mapping array |
| _p           |                                                                      |
| Ss_p         | A pointer to the 'Ss' array                                          |
| qb_p         | A pointer to the Q <sup>B</sup> matrix                               |
| qm_p         | A pointer to the Q <sup>M</sup> matrix                               |
| q1k↔         | A pointer to the 5' slice of the Q matrix ( $q1k(k)=Q(1,k)$ )        |
| _p           |                                                                      |
| qln_p        | A pointer to the 3' slice of the Q matrix ( $qln(l)=Q(l,n)$ )        |
| pscore       | A pointer to the start of a pscore list                              |

Returns

Non Zero if everything went fine, 0 otherwise

# 16.94 Deprecated Interface for Local (Sliding Window) Partition Function Computation

# 16.94.1 Detailed Description

Collaboration diagram for Deprecated Interface for Local (Sliding Window) Partition Function Computation:

### **Files**

· file LPfold.h

Partition function and equilibrium probability implementation for the sliding window algorithm.

# **Functions**

- void update\_pf\_paramsLP (int length)
- vrna\_ep\_t \* pfl\_fold (char \*sequence, int winSize, int pairSize, float cutoffb, double \*\*pU, vrna\_ep\_t \*\*dpp2,
   FILE \*pUfp, FILE \*spup)

Compute partition functions for locally stable secondary structures.

vrna\_ep\_t \* pfl\_fold\_par (char \*sequence, int winSize, int pairSize, float cutoffb, double \*\*pU, vrna\_ep\_t
 \*\*dpp2, FILE \*pUfp, FILE \*spup, vrna\_exp\_param\_t \*parameters)

Compute partition functions for locally stable secondary structures.

void putoutpU\_prob (double \*\*pU, int length, int ulength, FILE \*fp, int energies)

Writes the unpaired probabilities (pU) or opening energies into a file.

• void putoutpU\_prob\_bin (double \*\*pU, int length, int ulength, FILE \*fp, int energies)

Writes the unpaired probabilities (pU) or opening energies into a binary file.

# 16.94.2 Function Documentation

### 16.94.2.1 update pf paramsLP()

# Parameters

length

# 16.94.2.2 pfl\_fold()

```
#include <ViennaRNA/LPfold.h>
```

Compute partition functions for locally stable secondary structures.

pfl\_fold computes partition functions for every window of size 'winSize' possible in a RNA molecule, allowing only pairs with a span smaller than 'pairSize'. It returns the mean pair probabilities averaged over all windows containing the pair in 'pl'. 'winSize' should always be >= 'pairSize'. Note that in contrast to Lfold(), bases outside of the window do not influence the structure at all. Only probabilities higher than 'cutoffb' are kept.

If 'pU' is supplied (i.e is not the NULL pointer), pfl\_fold() will also compute the mean probability that regions of length 'u' and smaller are unpaired. The parameter 'u' is supplied in 'pup[0][0]'. On return the 'pup' array will contain these probabilities, with the entry on 'pup[x][y]' containing the mean probability that x and the y-1 preceding bases are unpaired. The 'pU' array needs to be large enough to hold n+1 float\* entries, where n is the sequence length.

If an array dpp2 is supplied, the probability of base pair (i,j) given that there already exists a base pair (i+1,j-1) is also computed and saved in this array. If pUfp is given (i.e. not NULL), pU is not saved but put out imediately. If spup is given (i.e. is not NULL), the pair probabilities in pl are not saved but put out imediately.

### **Parameters**

| sequence | RNA sequence                             |
|----------|------------------------------------------|
| winSize  | size of the window                       |
| pairSize | maximum size of base pair                |
| cutoffb  | cutoffb for base pairs                   |
| pU       | array holding all unpaired probabilities |
| dpp2     | array of dependent pair probabilities    |
| pUfp     | file pointer for pU                      |
| spup     | file pointer for pair probabilities      |

### Returns

list of pair probabilities

### 16.94.2.3 pfl\_fold\_par()

Compute partition functions for locally stable secondary structures.

# 16.94.2.4 putoutpU\_prob()

Writes the unpaired probabilities (pU) or opening energies into a file.



### **Parameters**

| ρU       | pair probabilities                    |
|----------|---------------------------------------|
| length   | length of RNA sequence                |
| ulength  | maximum length of unpaired stretch    |
| fp       | file pointer of destination file      |
| energies | switch to put out as opening energies |

### 16.94.2.5 putoutpU prob bin()

Writes the unpaired probabilities (pU) or opening energies into a binary file.

Can write either the unpaired probabilities (accessibilities) pU or the opening energies -log(pU)kT into a file

### **Parameters**

| рU       | pair probabilities                    |
|----------|---------------------------------------|
| length   | length of RNA sequence                |
| ulength  | maximum length of unpaired stretch    |
| fp       | file pointer of destination file      |
| energies | switch to put out as opening energies |

# 16.95 Deprecated Interface for Stochastic Backtracking

# 16.95.1 Detailed Description

Collaboration diagram for Deprecated Interface for Stochastic Backtracking:

# **Functions**

• char \* pbacktrack (char \*sequence)

Sample a secondary structure from the Boltzmann ensemble according its probability.

char \* pbacktrack5 (char \*sequence, int length)

Sample a sub-structure from the Boltzmann ensemble according its probability.

char \* pbacktrack\_circ (char \*sequence)

Sample a secondary structure of a circular RNA from the Boltzmann ensemble according its probability.

# **Variables**

• int st\_back

Flag indicating that auxilary arrays are needed throughout the computations. This is essential for stochastic backtracking.

# 16.95.2 Function Documentation

### 16.95.2.1 pbacktrack()

Sample a secondary structure from the Boltzmann ensemble according its probability.

#### Precondition

```
st_back has to be set to 1 before calling pf_fold() or pf_fold_par()
pf_fold_par() or pf_fold() have to be called first to fill the partition function matrices
```

### **Parameters**

| sequence | The RNA sequence |
|----------|------------------|
|----------|------------------|

### Returns

A sampled secondary structure in dot-bracket notation

# 16.95.2.2 pbacktrack5()

Sample a sub-structure from the Boltzmann ensemble according its probability.

### 16.95.2.3 pbacktrack\_circ()

Sample a secondary structure of a circular RNA from the Boltzmann ensemble according its probability. This function does the same as pbacktrack() but assumes the RNA molecule to be circular

### Precondition

```
st_back has to be set to 1 before calling pf_fold() or pf_fold_par()

pf_fold_par() or pf_circ_fold() have to be called first to fill the partition function matrices
```

**Deprecated** Use vrna\_pbacktrack() instead.

### **Parameters**

```
sequence The RNA sequence
```

# Returns

A sampled secondary structure in dot-bracket notation

# 16.95.3 Variable Documentation

# 16.95.3.1 st\_back

```
int st_back [extern]
#include <ViennaRNA/part_func.h>
```

Flag indicating that auxiliary arrays are needed throughout the computations. This is essential for stochastic backtracking.

Set this variable to 1 prior to a call of pf\_fold() to ensure that all matrices needed for stochastic backtracking are filled in the forward recursions

Deprecated set the uniq\_ML flag in vrna\_md\_t before passing it to vrna\_fold\_compound().

See also

pbacktrack(), pbacktrack circ

# 16.96 Deprecated Interface for Multiple Sequence Alignment Utilities

# 16.96.1 Detailed Description

Collaboration diagram for Deprecated Interface for Multiple Sequence Alignment Utilities:

# **Typedefs**

typedef struct vrna\_pinfo\_s pair\_info
 Old typename of vrna\_pinfo\_s.

### **Functions**

• int get\_mpi (char \*Alseq[], int n\_seq, int length, int \*mini)

Get the mean pairwise identity in steps from ?to?(ident)

• void encode\_ali\_sequence (const char \*sequence, short \*S, short \*s5, short \*s3, char \*ss, unsigned short \*as, int circ)

Get arrays with encoded sequence of the alignment.

• void alloc\_sequence\_arrays (const char \*\*sequences, short \*\*\*S, short \*\*\*S, short \*\*\*S, unsigned short \*\*\*a2s, char \*\*\*Ss, int circ)

Allocate memory for sequence array used to deal with aligned sequences.

• void free\_sequence\_arrays (unsigned int n\_seq, short \*\*\*S, short \*\*\*S, short \*\*\*S, unsigned short \*\*\*a2s, char \*\*\*Ss)

Free the memory of the sequence arrays used to deal with aligned sequences.

# 16.96.2 Typedef Documentation

### 16.96.2.1 pair\_info

```
typedef struct vrna_pinfo_s pair_info
#include <ViennaRNA/utils/alignments.h>
Old typename of vrna_pinfo_s.
```

**Deprecated** Use vrna\_pinfo\_t instead!

### 16.96.3 Function Documentation

# 16.96.3.1 get\_mpi()

**Deprecated** Use vrna\_aln\_mpi() as a replacement

### **Parameters**

| Alseq  |                                          |
|--------|------------------------------------------|
| n_seq  | The number of sequences in the alignment |
| length | The length of the alignment              |
| mini   |                                          |

### Returns

The mean pairwise identity

# 16.96.3.2 encode\_ali\_sequence()

Get arrays with encoded sequence of the alignment.

this function assumes that in S, S5, s3, ss and as enough space is already allocated (size must be at least sequence length+2)

# **Parameters**

| sequence | The gapped sequence from the alignment                                  |
|----------|-------------------------------------------------------------------------|
| S        | pointer to an array that holds encoded sequence                         |
| s5       | pointer to an array that holds the next base 5' of alignment position i |
| s3       | pointer to an array that holds the next base 3' of alignment position i |
| ss       |                                                                         |
| as       |                                                                         |
| circ     | assume the molecules to be circular instead of linear (circ=0)          |

# 16.96.3.3 alloc\_sequence\_arrays()

```
short *** S5,
short *** S3,
unsigned short *** a2s,
char *** Ss,
int circ )
#include <ViennaRNA/utils/alignments.h>
```

Allocate memory for sequence array used to deal with aligned sequences.

Note that these arrays will also be initialized according to the sequence alignment given

# See also

```
free_sequence_arrays()
```

### **Parameters**

| sequences | The aligned sequences                                                              |
|-----------|------------------------------------------------------------------------------------|
| S         | A pointer to the array of encoded sequences                                        |
| S5        | A pointer to the array that contains the next 5' nucleotide of a sequence position |
| S3        | A pointer to the array that contains the next 3' nucleotide of a sequence position |
| a2s       | A pointer to the array that contains the alignment to sequence position mapping    |
| Ss        | A pointer to the array that contains the ungapped sequence                         |
| circ      | assume the molecules to be circular instead of linear (circ=0)                     |

# 16.96.3.4 free\_sequence\_arrays()

```
void free_sequence_arrays (
        unsigned int n_seq,
        short *** S,
        short *** S5,
        short *** S3,
        unsigned short *** a2s,
        char *** Ss )
#include <ViennaRNA/utils/alignments.h>
```

Free the memory of the sequence arrays used to deal with aligned sequences. This function frees the memory previously allocated with alloc\_sequence\_arrays()

# See also

```
alloc_sequence_arrays()
```

# **Parameters**

| n_seq | The number of aligned sequences                                                    |
|-------|------------------------------------------------------------------------------------|
| S     | A pointer to the array of encoded sequences                                        |
| S5    | A pointer to the array that contains the next 5' nucleotide of a sequence position |
| S3    | A pointer to the array that contains the next 3' nucleotide of a sequence position |
| a2s   | A pointer to the array that contains the alignment to sequence position mapping    |
| Ss    | A pointer to the array that contains the ungapped sequence                         |

# 16.97 Deprecated Interface for Secondary Structure Utilities

# 16.97.1 Detailed Description

Collaboration diagram for Deprecated Interface for Secondary Structure Utilities:

### **Files**

• file RNAstruct.h

Parsing and Coarse Graining of Structures.

# **Functions**

char \* b2HIT (const char \*structure)

Converts the full structure from bracket notation to the HIT notation including root.

char \* b2C (const char \*structure)

Converts the full structure from bracket notation to the a coarse grained notation using the 'H' 'B' 'I' 'M' and 'R' identifiers.

char \* b2Shapiro (const char \*structure)

Converts the full structure from bracket notation to the weighted coarse grained notation using the 'H' 'B' 'I' 'M' 'S' 'E' and 'R' identifiers.

char \* add root (const char \*structure)

Adds a root to an un-rooted tree in any except bracket notation.

char \* expand\_Shapiro (const char \*coarse)

Inserts missing 'S' identifiers in unweighted coarse grained structures as obtained from b2C().

char \* expand Full (const char \*structure)

Convert the full structure from bracket notation to the expanded notation including root.

char \* unexpand\_Full (const char \*ffull)

Restores the bracket notation from an expanded full or HIT tree, that is any tree using only identifiers 'U' 'P' and 'R'.

char \* unweight (const char \*wcoarse)

Strip weights from any weighted tree.

void unexpand\_aligned\_F (char \*align[2])

Converts two aligned structures in expanded notation.

void parse\_structure (const char \*structure)

Collects a statistic of structure elements of the full structure in bracket notation.

char \* pack\_structure (const char \*struc)

Pack secondary secondary structure, 5:1 compression using base 3 encoding.

char \* unpack\_structure (const char \*packed)

Unpack secondary structure previously packed with pack\_structure()

short \* make\_pair\_table (const char \*structure)

Create a pair table of a secondary structure.

short \* copy\_pair\_table (const short \*pt)

Get an exact copy of a pair table.

- short \* alimake pair table (const char \*structure)
- short \* make\_pair\_table\_snoop (const char \*structure)
- int bp distance (const char \*str1, const char \*str2)

Compute the "base pair" distance between two secondary structures s1 and s2.

unsigned int \* make\_referenceBP\_array (short \*reference\_pt, unsigned int turn)

Make a reference base pair count matrix.

unsigned int \* compute BPdifferences (short \*pt1, short \*pt2, unsigned int turn)

Make a reference base pair distance matrix.

void parenthesis structure (char \*structure, vrna bp stack t \*bp, int length)

Create a dot-backet/parenthesis structure from backtracking stack.

void parenthesis\_zuker (char \*structure, vrna\_bp\_stack\_t \*bp, int length)

Create a dot-backet/parenthesis structure from backtracking stack obtained by zuker suboptimal calculation in cofold.c.

• void bppm\_to\_structure (char \*structure, FLT\_OR\_DBL \*pr, unsigned int length)

Create a dot-bracket like structure string from base pair probability matrix.

char bppm\_symbol (const float \*x)

Get a pseudo dot bracket notation for a given probability information.

### **Variables**

• int loop size [STRUC]

contains a list of all loop sizes. loop\_size[0] contains the number of external bases.

• int helix\_size [STRUC]

contains a list of all stack sizes.

int loop\_degree [STRUC]

contains the corresponding list of loop degrees.

int loops

contains the number of loops ( and therefore of stacks ).

int unpaired

contains the number of unpaired bases.

int pairs

contains the number of base pairs in the last parsed structure.

### 16.97.2 Function Documentation

### 16.97.2.1 b2HIT()

Converts the full structure from bracket notation to the HIT notation including root.

Deprecated See vrna\_db\_to\_tree\_string() and VRNA\_STRUCTURE\_TREE\_HIT for a replacement

**Parameters** 

structure

Returns

### 16.97.2.2 b2C()

Converts the full structure from bracket notation to the a coarse grained notation using the 'H' 'B' 'I' 'M' and 'R' identifiers.

**Deprecated** See vrna\_db\_to\_tree\_string() and VRNA\_STRUCTURE\_TREE\_SHAPIRO\_SHORT for a replacement

**Parameters** 

structure

Returns

# 16.97.2.3 b2Shapiro()

Converts the full structure from bracket notation to the *weighted* coarse grained notation using the 'H' 'B' 'I' 'M' 'S' 'E' and 'R' identifiers.

Deprecated See vrna\_db\_to\_tree\_string() and VRNA\_STRUCTURE\_TREE\_SHAPIRO\_WEIGHT for a replacement

**Parameters** 

structure

Returns

# 16.97.2.4 add\_root()

Adds a root to an un-rooted tree in any except bracket notation.

**Parameters** 

structure

Returns

# 16.97.2.5 expand\_Shapiro()

Inserts missing 'S' identifiers in unweighted coarse grained structures as obtained from b2C().

**Parameters** 

coarse

Returns

# 16.97.2.6 expand\_Full()

Convert the full structure from bracket notation to the expanded notation including root.

**Parameters** 

structure

Returns

# 16.97.2.7 unexpand\_Full()

Restores the bracket notation from an expanded full or HIT tree, that is any tree using only identifiers 'U' 'P' and 'R'.

# **Parameters**

ffull

Returns

# 16.97.2.8 unweight()

Strip weights from any weighted tree.

**Parameters** 

wcoarse

Returns

# 16.97.2.9 unexpand\_aligned\_F()

```
#include <ViennaRNA/RNAstruct.h>
```

Converts two aligned structures in expanded notation.

Takes two aligned structures as produced by tree\_edit\_distance() function back to bracket notation with '\_' as the gap character. The result overwrites the input.

### **Parameters**

```
align
```

# 16.97.2.10 parse\_structure()

Collects a statistic of structure elements of the full structure in bracket notation.

The function writes to the following global variables: loop size, loop degree, helix size, loops, pairs, unpaired

### **Parameters**

structure

# 16.97.2.11 pack\_structure()

Pack secondary secondary structure, 5:1 compression using base 3 encoding.

Returns a binary string encoding of the secondary structure using a 5:1 compression scheme. The string is NULL terminated and can therefore be used with standard string functions such as strcmp(). Useful for programs that need to keep many structures in memory.

**Deprecated** Use vrna\_db\_pack() as a replacement

### **Parameters**

struc The secondary structure in dot-bracket notation

### Returns

The binary encoded structure

# 16.97.2.12 unpack\_structure()

Unpack secondary structure previously packed with pack structure()

Translate a compressed binary string produced by pack\_structure() back into the familiar dot-bracket notation.

Deprecated Use vrna\_db\_unpack() as a replacement

### **Parameters**

| packed | The binary encoded packed secondary structure |
|--------|-----------------------------------------------|
|--------|-----------------------------------------------|

### Returns

The unpacked secondary structure in dot-bracket notation

# 16.97.2.13 make\_pair\_table()

Create a pair table of a secondary structure.

Returns a newly allocated table, such that table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains the length of the structure.

Deprecated Use vrna\_ptable() instead

### **Parameters**

| structure | The secondary structure in dot-bracket notation |
|-----------|-------------------------------------------------|
|-----------|-------------------------------------------------|

### Returns

A pointer to the created pair\_table

# 16.97.2.14 copy\_pair\_table()

Get an exact copy of a pair table.

Deprecated Use vrna\_ptable\_copy() instead

### **Parameters**

```
pt The pair table to be copied
```

# Returns

A pointer to the copy of 'pt'

# 16.97.2.15 alimake\_pair\_table()

Pair table for snoop align

**Deprecated** Use vrna\_pt\_ali\_get() instead!

# 16.97.2.16 make\_pair\_table\_snoop()

returns a newly allocated table, such that: table[i]=j if (i.j) pair or 0 if i is unpaired, table[0] contains the length of the structure. The special pseudoknotted H/ACA-mRNA structure is taken into account.

Deprecated Use vrna\_pt\_snoop\_get() instead!

### 16.97.2.17 bp distance()

Compute the "base pair" distance between two secondary structures s1 and s2.

The sequences should have the same length. dist = number of base pairs in one structure but not in the other same as edit distance with open-pair close-pair as move-set

**Deprecated** Use vrna\_bp\_distance instead

### **Parameters**

| str1 | First structure in dot-bracket notation  |
|------|------------------------------------------|
| str2 | Second structure in dot-bracket notation |

### Returns

The base pair distance between str1 and str2

### 16.97.2.18 make referenceBP array()

Make a reference base pair count matrix.

Get an upper triangular matrix containing the number of basepairs of a reference structure for each interval [i,j] with i < j. Access it via iindx!!!

Deprecated Use vrna\_refBPcnt\_matrix() instead

### 16.97.2.19 compute BPdifferences()

Make a reference base pair distance matrix.

Get an upper triangular matrix containing the base pair distance of two reference structures for each interval [i,j] with i < j. Access it via iindx!!!

Deprecated Use vrna\_refBPdist\_matrix() instead

# 16.97.2.20 parenthesis\_structure()

Create a dot-backet/parenthesis structure from backtracking stack.

Deprecated use vrna parenthesis structure() instead

Note

This function is threadsafe

# 16.97.2.21 parenthesis\_zuker()

Create a dot-backet/parenthesis structure from backtracking stack obtained by zuker suboptimal calculation in cofold.c.

**Deprecated** use vrna\_parenthesis\_zuker instead

Note

This function is threadsafe

# 16.97.2.22 bppm to structure()

Create a dot-bracket like structure string from base pair probability matrix.

**Deprecated** Use vrna\_db\_from\_probs() instead!

# 16.97.2.23 bppm\_symbol()

Get a pseudo dot bracket notation for a given probability information.

**Deprecated** Use vrna\_bpp\_symbol() instead!

# 16.98 Deprecated Interface for Plotting Utilities

# 16.98.1 Detailed Description

Collaboration diagram for Deprecated Interface for Plotting Utilities:

### **Data Structures**

struct COORDINATE

this is a workarround for the SWIG Perl Wrapper RNA plot function that returns an array of type COORDINATE More...

# **Functions**

- int PS\_color\_aln (const char \*structure, const char \*filename, const char \*seqs[], const char \*names[])

  Produce PostScript sequence alignment color-annotated by consensus structure.
- int aliPS\_color\_aln (const char \*structure, const char \*filename, const char \*seqs[], const char \*names[]) PS\_color\_aln for duplexes.
- int simple\_xy\_coordinates (short \*pair\_table, float \*X, float \*Y)

Calculate nucleotide coordinates for secondary structure plot the Simple way

int simple\_circplot\_coordinates (short \*pair\_table, float \*x, float \*y)

Calculate nucleotide coordinates for Circular Plot

### **Variables**

• int rna\_plot\_type

Switch for changing the secondary structure layout algorithm.

# 16.98.2 Data Structure Documentation

# 16.98.2.1 struct COORDINATE

this is a workarround for the SWIG Perl Wrapper RNA plot function that returns an array of type COORDINATE

# 16.98.3 Function Documentation

# 16.98.3.1 PS\_color\_aln()

Produce PostScript sequence alignment color-annotated by consensus structure.

**Deprecated** Use vrna\_file\_PS\_aln() instead!

# 16.98.3.2 aliPS color aln()

```
#include <ViennaRNA/plotting/alignments.h>
PS color aln for duplexes.
```

Deprecated Use vrna\_file\_PS\_aln() instead!

# 16.98.3.3 simple\_xy\_coordinates()

### See also

make\_pair\_table(), rna\_plot\_type, simple\_circplot\_coordinates(), naview\_xy\_coordinates(), vrna\_file\_PS\_rnaplot\_a(), vrna\_file\_PS\_rnaplot, svg\_rna\_plot()

**Deprecated** Consider switching to vrna\_plot\_coords\_simple\_pt() instead!

### **Parameters**

| pair_table | The pair table of the secondary structure                                   |
|------------|-----------------------------------------------------------------------------|
| Χ          | a pointer to an array with enough allocated space to hold the x coordinates |
| Y          | a pointer to an array with enough allocated space to hold the y coordinates |

### Returns

length of sequence on success, 0 otherwise

### 16.98.3.4 simple\_circplot\_coordinates()

Calculate nucleotide coordinates for Circular Plot

This function calculates the coordinates of nucleotides mapped in equal distancies onto a unit circle.

### Note

In order to draw nice arcs using quadratic bezier curves that connect base pairs one may calculate a second tangential point  $P^t$  in addition to the actual  $\mathsf{R}^2$  coordinates. the simplest way to do so may be to compute a radius scaling factor rs in the interval [0,1] that weights the proportion of base pair span to the actual length of the sequence. This scaling factor can then be used to calculate the coordinates for  $P^t$ , i.e.  $P^t_x[i] = X[i] * rs$  and  $P^t_y[i] = Y[i] * rs$ .

## See also

```
make_pair_table(), rna_plot_type, simple_xy_coordinates(), naview_xy_coordinates(), vrna_file_PS_rnaplot_a(), vrna_file_PS_rnaplot, svg_rna_plot()
```

**Deprecated** Consider switching to vrna\_plot\_coords\_circular\_pt() instead!

### **Parameters**

| pair_table | The pair table of the secondary structure                                   |
|------------|-----------------------------------------------------------------------------|
| Χ          | a pointer to an array with enough allocated space to hold the x coordinates |
| У          | a pointer to an array with enough allocated space to hold the y coordinates |

### Returns

length of sequence on success, 0 otherwise

### 16.98.4 Variable Documentation

### 16.98.4.1 rna\_plot\_type

```
int rna_plot_type [extern]
#include <ViennaRNA/plotting/layouts.h>
```

Switch for changing the secondary structure layout algorithm.

Current possibility are 0 for a simple radial drawing or 1 for the modified radial drawing taken from the *naview* program of [6].

Note

To provide thread safety please do not rely on this global variable in future implementations but pass a plot type flag directly to the function that decides which layout algorithm it may use!

See also

VRNA\_PLOT\_TYPE\_SIMPLE, VRNA\_PLOT\_TYPE\_NAVIEW, VRNA\_PLOT\_TYPE\_CIRCULAR

# 16.99 Deprecated Interface for (Re-)folding Paths, Saddle Points, and Energy Barriers

# 16.99.1 Detailed Description

Collaboration diagram for Deprecated Interface for (Re-)folding Paths, Saddle Points, and Energy Barriers:

# **Typedefs**

typedef struct vrna\_path\_s path\_t
 Old typename of vrna\_path\_s.

# **Functions**

• int find\_saddle (const char \*seq, const char \*s1, const char \*s2, int width)

Find energy of a saddle point between 2 structures (search only direct path)

void free\_path (vrna\_path\_t \*path)

Free memory allocated by get\_path() function.

vrna path t \* get path (const char \*seq, const char \*s1, const char \*s2, int width)

Find refolding path between 2 structures (search only direct path)

# 16.99.2 Typedef Documentation

#### 16.99.2.1 path\_t

```
typedef struct vrna_path_s path_t
#include <ViennaRNA/landscape/paths.h>
Old typename of vrna_path_s.
```

**Deprecated** Use vrna\_path\_t instead!

#### 16.99.3 Function Documentation

### 16.99.3.1 find\_saddle()

**Deprecated** Use vrna\_path\_findpath\_saddle() instead!

#### **Parameters**

| seq   | RNA sequence                                                                                          |
|-------|-------------------------------------------------------------------------------------------------------|
| s1    | A pointer to the character array where the first secondary structure in dot-bracket notation will be  |
|       | written to                                                                                            |
| s2    | A pointer to the character array where the second secondary structure in dot-bracket notation will be |
|       | written to                                                                                            |
| width | integer how many strutures are being kept during the search                                           |

### Returns

the saddle energy in 10cal/mol

#### 16.99.3.2 free path()

Deprecated Use vrna\_path\_free() instead!

#### **Parameters**

| path | pointer to memory to be freed |
|------|-------------------------------|
|------|-------------------------------|

### 16.99.3.3 get\_path()

```
vrna_path_t * get_path (
```

600 Module Documentation

```
const char * seq,
const char * s1,
const char * s2,
int width )
#include <ViennaRNA/landscape/findpath.h>
Find refolding path between 2 structures (search only direct path)
```

**Deprecated** Use vrna\_path\_findpath() instead!

# Parameters

| seq   | RNA sequence                                                                                                     |
|-------|------------------------------------------------------------------------------------------------------------------|
| s1    | A pointer to the character array where the first secondary structure in dot-bracket notation will be written to  |
| s2    | A pointer to the character array where the second secondary structure in dot-bracket notation will be written to |
| width | integer how many strutures are being kept during the search                                                      |

### Returns

direct refolding path between two structures

# **Chapter 17**

# **Data Structure Documentation**

# 17.1 struct en Struct Reference

Data structure for energy\_of\_move()

# 17.1.1 Detailed Description

Data structure for energy\_of\_move()

The documentation for this struct was generated from the following file:

ViennaRNA/move\_set.h

# 17.2 energy\_corrections Struct Reference

The documentation for this struct was generated from the following file:

• ViennaRNA/constraints/sc\_cb\_intern.h

# 17.3 LIST Struct Reference

Collaboration diagram for LIST:

The documentation for this struct was generated from the following file:

· ViennaRNA/datastructures/lists.h

# 17.4 LST\_BUCKET Struct Reference

Collaboration diagram for LST BUCKET:

The documentation for this struct was generated from the following file:

· ViennaRNA/datastructures/lists.h

# 17.5 Postorder list Struct Reference

Postorder data structure.

# 17.5.1 Detailed Description

Postorder data structure.

The documentation for this struct was generated from the following file:

· ViennaRNA/dist vars.h

# 17.6 swString Struct Reference

Some other data structure.

## 17.6.1 Detailed Description

Some other data structure.

The documentation for this struct was generated from the following file:

· ViennaRNA/dist\_vars.h

### 17.7 Tree Struct Reference

Tree data structure.

Collaboration diagram for Tree:

### 17.7.1 Detailed Description

Tree data structure.

The documentation for this struct was generated from the following file:

· ViennaRNA/dist vars.h

# 17.8 TwoDpfold\_vars Struct Reference

Variables compound for 2Dfold partition function folding. Collaboration diagram for TwoDpfold\_vars:

## **Data Fields**

char \* ptype

Precomputed array of pair types.

• char \* sequence

The input sequence

• short \* **S1** 

The input sequences in numeric form.

unsigned int maxD1

Maximum allowed base pair distance to first reference.

unsigned int maxD2

Maximum allowed base pair distance to second reference.

int \* my\_iindx

Index for moving in quadratic distancy dimensions.

int \* jindx

Index for moving in the triangular matrix qm1.

unsigned int \* referenceBPs1

Matrix containing number of basepairs of reference structure1 in interval [i,j].

unsigned int \* referenceBPs2

Matrix containing number of basepairs of reference structure2 in interval [i,j].

unsigned int \* bpdist

Matrix containing base pair distance of reference structure 1 and 2 on interval [i,j].

unsigned int \* mm1

Maximum matching matrix, reference struct 1 disallowed.

unsigned int \* mm2

Maximum matching matrix, reference struct 2 disallowed.

# 17.8.1 Detailed Description

Variables compound for 2Dfold partition function folding.

**Deprecated** This data structure will be removed from the library soon! Use vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_pf\_TwoD(), and vrna\_fold\_compound\_free() instead!

The documentation for this struct was generated from the following file:

ViennaRNA/2Dpfold.h

# 17.9 vrna dimer conc s Struct Reference

Data structure for concentration dependency computations.

### **Data Fields**

· double Ac\_start

start concentration A

double Bc start

start concentration B

· double ABc

End concentration AB.

## 17.9.1 Detailed Description

Data structure for concentration dependency computations.

The documentation for this struct was generated from the following file:

· ViennaRNA/concentrations.h

# 17.10 vrna\_sc\_bp\_storage\_t Struct Reference

A base pair constraint.

### 17.10.1 Detailed Description

A base pair constraint.

The documentation for this struct was generated from the following file:

ViennaRNA/constraints/soft.h

# 17.11 vrna\_sc\_mod\_param\_s Struct Reference

The documentation for this struct was generated from the following file:

• ViennaRNA/constraints/sc\_cb\_intern.h

# 17.12 vrna\_string\_header\_s Struct Reference

The header of an array.

#### **Data Fields**

· size t len

The length of the string.

· size t size

The actual capacity of an array.

# 17.12.1 Detailed Description

The header of an array.

The documentation for this struct was generated from the following file:

· ViennaRNA/datastructures/string.h

# 17.13 vrna\_structured\_domains\_s Struct Reference

The documentation for this struct was generated from the following file:

· ViennaRNA/structured domains.h

# 17.14 vrna subopt sol s Struct Reference

Solution element from subopt.c.

### **Data Fields**

· float energy

Free Energy of structure in kcal/mol.

· char \* structure

Structure in dot-bracket notation.

# 17.14.1 Detailed Description

Solution element from subopt.c.

The documentation for this struct was generated from the following file:

· ViennaRNA/subopt.h

# 17.15 vrna\_unstructured\_domain\_motif\_s Struct Reference

The documentation for this struct was generated from the following file:

• ViennaRNA/unstructured\_domains.h

# **Chapter 18**

# **File Documentation**

# 18.1 ViennaRNA/2Dfold.h File Reference

MFE structures for base pair distance classes. Include dependency graph for 2Dfold.h:

# 18.2 2Dfold.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_TWO_D_FOLD_H
00002 #define VIENNA_RNA_PACKAGE_TWO_D_FOLD_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(_clang_)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC___)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00035 #include <ViennaRNA/fold_compound.h>
00036 #include <ViennaRNA/datastructures/basic.h>
00037 #include <ViennaRNA/params/basic.h>
00038
00053 typedef struct vrna_sol_TwoD_t {
00054 int k;
00055
        int
              1;
      float en;
00057
        char *s;
00058 } vrna_sol_TwoD_t;
00059
00060
00088 vrna_sol_TwoD_t *
00089 vrna_mfe_TwoD(vrna_fold_compound_t *vc,
00090
00091
                                            distance2);
00092
00093
00112 char *
00113 vrna_backtrack5_TwoD(vrna_fold_compound_t *vc,
00115
                            int
00116
                            unsigned int
                                                   j);
00117
00118
00119 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00120
00121 #define TwoDfold_solution
                                       vrna_sol_TwoD_t
                                                                /* restore compatibility of struct rename */
00122
00130 typedef struct TwoDfold_vars {
00131 vrna_param_t
00132 int
                          *P;
                               do_backtrack;
00133
        char
                               *ptype;
00134
        char
                               *sequence;
00135
        short
                               *S, *S1;
00136 unsigned int 00137 unsigned int
       unsigned int
                              maxD1;
                               maxD2;
```

```
unsigned int
                                *mm1;
00141
        unsigned int
                                *mm2;
00143
        int
                                *my_iindx;
00145
        double
                                temperature;
00146
00147
        unsigned int
                                *referenceBPs1;
00148
        unsigned int
                                *referenceBPs2;
00149
        unsigned int
                                *bpdist;
00151
        short
                                *reference_pt1;
00152
        short
                                *reference_pt2;
00153
        int
                                circ;
                                dangles;
00154
        int
                                seq_length;
00155
        unsigned int
00156
00157
                                ***E_F5;
00158
        int
                                ***E_F3;
                                ***E C:
00159
        int
00160
                                ***E M;
        int
00161
        int
                                ***E_M1;
00162
                                ***E_M2;
        int
00163
00164
        int
                                **E_Fc;
00165
        int
                                **E_FcH;
00166
                                **E FcT:
        int
00167
                                **E_FcM;
        int
00168
00169
                                **l_min_values;
00170
        int
                                **l_max_values;
00171
        int
                                *k\_min\_values;
00172
        int
                                *k_max_values;
00173
00174
                                **l_min_values_m;
        int
00175
                                **l_max_values_m;
        int
00176
        int
                                *k_min_values_m;
00177
                                *k_max_values_m;
00178
00179
        int
                                **l_min_values_m1;
00180
        int
                                **l_max_values_m1;
00181
                                *k_min_values_m1;
00182
                                *k_max_values_m1;
00183
00184
        int
                                **l_min_values_f;
                                **1_max_values_f;
*k_min_values_f;
00185
        int
00186
        int
00187
                                *k_max_values_f;
        int
00188
00189
        int
                                **1_min_values_f3;
00190
        int
                                **l_max_values_f3;
00191
                                *k\_min\_values\_f3;
        int
00192
                                *k max values f3;
        int
00193
00194
                                **1_min_values_m2;
00195
        int
                                **l_max_values_m2;
00196
        int
                                *k_min_values_m2;
00197
        int
                                *k_max_values_m2;
00198
00199
                                *l_min_values_fc;
00200
                                *l_max_values_fc;
        int
00201
                                k_min_values_fc;
00202
        int
                                k_max_values_fc;
00203
00204
        int
                                *l_min_values_fcH;
00205
        int
                                *1_max_values_fcH;
00206
                                k_min_values_fcH;
        int
00207
                                k_max_values_fcH;
00208
00209
        int
                                *l_min_values_fcI;
00210
        int
                                *l_max_values_fcI;
00211
                                k_min_values_fcI;
        int
00212
        int
                                k_max_values_fcI;
00213
00214
        int
                                *l_min_values_fcM;
00215
        int
                                *l_max_values_fcM;
00216
        int
                                k_min_values_fcM;
00217
                                k_max_values_fcM;
        int
00218
00219
        /\star auxilary arrays for remaining set of coarse graining (k,1) > (k_max, l_max) \star/
00220
        int
                                *E_F5_rem;
00221
        int
                                *E_F3_rem;
                                *E_C_rem;
00222
        int
                                *E_M_rem;
00223
        int
00224
                                *E_M1_rem;
        int
00225
                                *E_M2_rem;
        int
00226
00227
        int
                                E_Fc_rem;
00228
        int
                                E_FcH_rem;
00229
                                E_FcI_rem;
        int
```

```
00230
                              E_FcM_rem;
00231
00232 #ifdef COUNT_STATES
00233
       unsigned long
                             ***N F5:
00234
       unsigned long
                             ***N C:
      unsigned long
unsigned long
00235
                             ***N M;
00236
                            ***N_M1;
00237 #endif
00238
00239
       vrna_fold_compound_t *compatibility;
00240 } TwoDfold_vars;
00241
00260 DEPRECATED (TwoDfold_vars *
               get_TwoDfold_variables(const char *seq,
00261
00262
                                       const char *structure1,
00263
                                        const char *structure2,
00264
                                        int
                                                    circ).
                "Use the new API and corresponding functions vrna_fold_compound_TwoD(), etc. instead");
00265
00266
00277 DEPRECATED (void
00278
                 destroy_TwoDfold_variables(TwoDfold_vars *our_variables),
00279
                 "Use the new API and vrna_fold_compound_free() instead");
00280
00306 DEPRECATED (TwoDfold solution *
00307 TwoDfoldList(TwoDfold_vars *vars, 00308 int distan
                   int distance1, int distance2),
00309
00310
               "Use the new API and vrna_mfe_TwoD() instead");
00311
00332 DEPRECATED(char *TwoDfold_backtrack_f5(unsigned int
                                                            i.
00333
                                             int
                                                            k.
00334
                                             int
00335
                                             TwoDfold_vars *vars),
00336
               "Use the new API and vrna_backtrack5_TwoD() instead");
00337
00341 DEPRECATED (TwoDfold_solution **TwoDfold(TwoDfold_vars *our_variables,
00342
                                          int distance1,
int distance2),
00344
               "Use the new API and vrna_mfe_TwoD() instead");
00345
00346
00347 #endif
00348
00353 #endif
```

# 18.3 ViennaRNA/2Dpfold.h File Reference

Partition function implementations for base pair distance classes. Include dependency graph for 2Dpfold.h:

#### **Data Structures**

struct vrna\_sol\_TwoD\_pf\_t

Solution element returned from vrna\_pf\_TwoD() More...

struct TwoDpfold vars

Variables compound for 2Dfold partition function folding.

# **Typedefs**

typedef struct vrna\_sol\_TwoD\_pf\_t vrna\_sol\_TwoD\_pf\_t
 Solution element returned from vrna\_pf\_TwoD()

#### **Functions**

- vrna\_sol\_TwoD\_pf\_t \* vrna\_pf\_TwoD (vrna\_fold\_compound\_t \*vc, int maxDistance1, int maxDistance2)

  Compute the partition function for all distance classes.
- char \* vrna\_pbacktrack\_TwoD (vrna\_fold\_compound\_t \*vc, int d1, int d2)

Sample secondary structure representatives from a set of distance classes according to their Boltzmann probability.

char \* vrna\_pbacktrack5\_TwoD (vrna\_fold\_compound\_t \*vc, int d1, int d2, unsigned int length)

Sample secondary structure representatives with a specified length from a set of distance classes according to their Boltzmann probability.

TwoDpfold\_vars \* get\_TwoDpfold\_variables (const char \*seq, const char \*structure1, char \*structure2, int circ)

Get a datastructure containing all necessary attributes and global folding switches.

void destroy TwoDpfold variables (TwoDpfold vars \*vars)

Free all memory occupied by a TwoDpfold\_vars datastructure.

• TwoDpfold\_solution \* TwoDpfoldList (TwoDpfold\_vars \*vars, int maxDistance1, int maxDistance2)

Compute the partition function for all distance classes.

char \* TwoDpfold pbacktrack (TwoDpfold vars \*vars, int d1, int d2)

Sample secondary structure representatives from a set of distance classes according to their Boltzmann probability.

char \* TwoDpfold\_pbacktrack5 (TwoDpfold\_vars \*vars, int d1, int d2, unsigned int length)

Sample secondary structure representatives with a specified length from a set of distance classes according to their Boltzmann probability.

# 18.3.1 Detailed Description

Partition function implementations for base pair distance classes.

#### 18.3.2 Function Documentation

#### 18.3.2.1 get\_TwoDpfold\_variables()

Get a datastructure containing all necessary attributes and global folding switches.

This function prepares all necessary attributes and matrices etc which are needed for a call of TwoDpfold() . A snapshot of all current global model switches (dangles, temperature and so on) is done and stored in the returned datastructure. Additionally, all matrices that will hold the partition function values are prepared.

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_pf\_TwoD(), and vrna\_fold\_compound\_free() instead!

#### Parameters

| seq        | the RNA sequence in uppercase format with letters from the alphabet {AUCG} |
|------------|----------------------------------------------------------------------------|
| structure1 | the first reference structure in dot-bracket notation                      |
| structure2 | the second reference structure in dot-bracket notation                     |
| circ       | a switch indicating if the sequence is linear (0) or circular (1)          |

#### Returns

the datastructure containing all necessary partition function attributes

### 18.3.2.2 destroy\_TwoDpfold\_variables()

Free all memory occupied by a TwoDpfold\_vars datastructure.

This function free's all memory occupied by a datastructure obtained from from get\_TwoDpfold\_variabless() or get 
\_TwoDpfold\_variables\_from\_MFE()

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_pf\_TwoD(), and vrna\_fold\_compound\_free() instead!

See also

```
get_TwoDpfold_variables(), get_TwoDpfold_variables_from_MFE()
```

#### **Parameters**

#### 18.3.2.3 TwoDpfoldList()

Compute the partition function for all distance classes.

This function computes the partition functions for all distance classes according the two reference structures specified in the datastructure 'vars'. Similar to TwoDfold() the arguments maxDistance1 and maxDistance2 specify the maximum distance to both reference structures. A value of '-1' in either of them makes the appropriate distance restrictionless, i.e. all basepair distancies to the reference are taken into account during computation. In case there is a restriction, the returned solution contains an entry where the attribute k=l=-1 contains the partition function for all structures exceeding the restriction. A values of INF in the attribute 'k' of the returned list denotes the end of the list

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_TwoD(), vrna\_pf\_TwoD(), and vrna\_fold\_compound\_free() instead!

See also

```
get_TwoDpfold_variables(), destroy_TwoDpfold_variables(), vrna_sol_TwoD_pf_t
```

#### **Parameters**

| vars         | the datastructure containing all necessary folding attributes and matrices |
|--------------|----------------------------------------------------------------------------|
| maxDistance1 | the maximum basepair distance to reference1 (may be -1)                    |
| maxDistance2 | the maximum basepair distance to reference2 (may be -1)                    |

#### Returns

a list of partition funtions for the appropriate distance classes

## 18.3.2.4 TwoDpfold\_pbacktrack()

Sample secondary structure representatives from a set of distance classes according to their Boltzmann probability. If the argument 'd1' is set to '-1', the structure will be backtracked in the distance class where all structures exceeding the maximum basepair distance to either of the references reside.

# Precondition

The argument 'vars' must contain precalculated partition function matrices, i.e. a call to TwoDpfold() preceding this function is mandatory!

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold compound\_TwoD(), vrna\_pf\_TwoD(), vrna\_pbacktrack\_TwoD(), and vrna\_fold\_compound\_free() instead!

#### See also

TwoDpfold()

#### **Parameters**

| in | vars | the datastructure containing all necessary folding attributes and matrices |
|----|------|----------------------------------------------------------------------------|
| in | d1   | the distance to reference1 (may be -1)                                     |
| in | d2   | the distance to reference2                                                 |

#### Returns

A sampled secondary structure in dot-bracket notation

### 18.3.2.5 TwoDpfold\_pbacktrack5()

Sample secondary structure representatives with a specified length from a set of distance classes according to their Boltzmann probability.

This function does essentially the same as TwoDpfold\_pbacktrack() with the only difference that partial structures, i.e. structures beginning from the 5' end with a specified length of the sequence, are backtracked

#### Note

This function does not work (since it makes no sense) for circular RNA sequences!

#### Precondition

The argument 'vars' must contain precalculated partition function matrices, i.e. a call to TwoDpfold() preceding this function is mandatory!

**Deprecated** Use the new API that relies on vrna\_fold\_compound\_t and the corresponding functions vrna\_fold\_compound\_to compound\_TwoD(), vrna\_pf\_TwoD(), vrna\_pbacktrack5\_TwoD(), and vrna\_fold\_compound\_free() instead!

### See also

TwoDpfold pbacktrack(), TwoDpfold()

#### **Parameters**

| in | vars   | the datastructure containing all necessary folding attributes and matrices |
|----|--------|----------------------------------------------------------------------------|
| in | d1     | the distance to reference1 (may be -1)                                     |
| in | d2     | the distance to reference2                                                 |
| in | length | the length of the structure beginning from the 5' end                      |

18.4 2Dpfold.h 611

#### Returns

A sampled secondary structure in dot-bracket notation

# 18.4 2Dpfold.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_TWO_D_PF_FOLD_H
00002 #define VIENNA_RNA_PACKAGE_TWO_D_PF_FOLD_H
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang_
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00032 #include <ViennaRNA/fold_compound.h>
00033 #include <ViennaRNA/datastructures/basic.h>
00034 #include <ViennaRNA/fold_compound.h>
00035 #include <ViennaRNA/params/basic.h>
00036
00049 typedef struct vrna_sol_TwoD_pf_t {
00050
        int k;
00051 int
                    1;
00052
        FLT_OR_DBL q;
00053 } vrna_sol_TwoD_pf_t;
00054
00077 vrna_sol_TwoD_pf_t *
00078 vrna_pf_TwoD(vrna_fold_compound_t *vc,
08000
                                          maxDistance2);
00081
00082 /* End of group kl_neighborhood_pf */
00084
00108 char *
00109 vrna_pbacktrack_TwoD(vrna_fold_compound_t *vc,
00110
00111
                            int
                                                   d2);
00112
00113
00133 char *
00134 vrna_pbacktrack5_TwoD(vrna_fold_compound_t
00135
                                                     d1,
00136
                             int
                                                     d2,
                             unsigned int
00137
                                                    length);
00138
00139 /* End of group kl neighborhood stochbt */
00144 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00145
00146 #define TwoDpfold_solution
                                       vrna_sol_TwoD_pf_t
                                                                    /* restore compatibility of struct rename
00155 typedef struct {
00156
       unsigned int
                               alloc;
00157
00158
        char
                               *sequence;
00159
        short
                               *S. *S1;
00160
        unsigned int
                               maxD1:
00161
        unsigned int
                               maxD2;
                              temperature; /* temperature in last call to scale_pf_params */
init_temp; /* temperature in last call to scale_pf_params */
00163
        double
00164
        double
00165
        FLT_OR_DBL
                               pf_scale;
00166
        FLT_OR_DBL
                               *pf_params; /* holds all [unscaled] pf parameters */
00167
        vrna_exp_param_t
00168
00169
                                *my_iindx;
00170
        int
                                *jindx;
00172
        short
                                *reference_pt1;
00173
        short
                               *reference_pt2;
00174
00175
        unsigned int
                               *referenceBPs1;
00176
        unsigned int
                                *referenceBPs2;
                                *bpdist;
00177
        unsigned int
00179
        unsigned int
                                *mm1;
00180
        unsigned int
                                *mm2;
00182
        int
                                circ:
00183
        int
                               dangles;
```

```
00184
       unsigned int
                              seq_length;
00185
00186
        FLT_OR_DBL
                               ***Q;
00187
        FLT_OR_DBL
                               ***0 B;
00188
        FLT_OR_DBL
                               ***0 M:
00189
        FLT_OR_DBL
                               ***0 M1;
00190
        FLT_OR_DBL
                               ***Q_M2;
00191
                               **Q_c;
00192
        FLT_OR_DBL
00193
        FLT_OR_DBL
                              **Q_cH;
00194
        FLT_OR_DBL
                               **Q_CI;
00195
        FLT_OR_DBL
                               **Q_cM;
00196
00197
                               **l_min_values;
00198
        int
                               **l_max_values;
00199
        int
                               *k\_min\_values;
00200
        int
                               *k_max_values;
00201
00202
                               **l_min_values_b;
00203
        int
                               **l_max_values_b;
00204
                               *k_min_values_b;
00205
        int
                               *k_max_values_b;
00206
00207
        int
                               **l_min_values_m;
00208
                               **l_max_values_m;
        int
00209
                               *k_min_values_m;
        int
00210
                               *k_max_values_m;
00211
00212
        int
                               **l_min_values_m1;
00213
        int
                               **l_max_values_m1;
00214
                               *k min values m1:
        int
00215
                               *k_max_values_m1;
        int
00216
00217
        int
                               **l_min_values_m2;
00218
        int
                               **l_max_values_m2;
00219
        int
                               *k_min_values_m2;
00220
        int
                               *k_max_values_m2;
00221
00222
                               *l_min_values_qc;
00223
                               *l_max_values_qc;
        int
00224
        int
                               k_min_values_qc;
00225
        int
                               k_max_values_qc;
00226
00227
        int
                               *l_min_values_qcH;
00228
                               *l_max_values_qcH;
        int
00229
                               k_min_values_qcH;
00230
       int
                               k_max_values_qcH;
00231
00232
                               *l_min_values_qcI;
        int
00233
                               *1 max values gcI;
        int
00234
                               k_min_values_qcI;
        int
00235
                               k_max_values_qcI;
00236
00237
        int
                               *l_min_values_qcM;
00238
        int
                               *1_max_values_qcM;
00239
                               k min values qcM;
        int
00240
                               k_max_values_qcM;
00241
00242
        /\star auxilary arrays for remaining set of coarse graining (k,1) > (k_max, l_max) \star/
00243
        FLT_OR_DBL
                     *Q_rem;
00244
        FLT_OR_DBL
                              *Q_B_rem;
00245
        FLT_OR_DBL
                              *Q_M_rem;
00246
        FLT_OR_DBL
                              *Q_M1_rem;
00247
       FLT_OR_DBL
                              *Q_M2_rem;
00248
00249
       FLT_OR_DBL
                              Q_c_rem;
00250
       FLT_OR_DBL
FLT_OR_DBL
                              Q_cH_rem;
00251
                              O cI rem;
00252
       FLT OR DBL
                              O cM rem;
00253
00254
       vrna_fold_compound_t *compatibility;
00255 } TwoDpfold_vars;
00256
00275 DEPRECATED (TwoDpfold vars *
00276
                 get TwoDpfold variables (const char *seg,
00277
                                          const char *structure1,
00278
                                                 *structure2,
                                          char
                                                     circ),
00279
                                          int
                "Use the new API and vrna_fold_compound_TwoD() instead");
00280
00281
00295 DEPRECATED (void
                 destroy_TwoDpfold_variables(TwoDpfold_vars *vars),
00296
00297
                 "Use the new API and vrna_fold_compound_free() instead");
00298
00323 DEPRECATED(TwoDpfold_solution *
                 TwoDpfoldList(TwoDpfold_vars *vars,
00324
00325
                                int
                                               maxDistancel.
```

18.5 ali\_plex.h 613

```
maxDistance2),
                               int
00327
                "Use the new API and vrna_pf_TwoD() instead");
00328
00350 DEPRECATED (char *
                TwoDpfold_pbacktrack(TwoDpfold_vars *vars,
00351
00352
                                                      dl.
                                      int
                                      int
                                                      d2),
00354
                "Use the new API and vrna_pbacktrack_TwoD() instead");
00355
00379 DEPRECATED (char *
                 TwoDpfold_pbacktrack5(TwoDpfold_vars *vars,
00380
00381
                                       int
00382
                                       int
                                       unsigned int length),
00383
00384
                "Use the new API and vrna_pbacktrack5_TwoD() instead");
00385
00391 DEPRECATED(FLT_OR_DBL **TwoDpfold(TwoDpfold_vars *our_variables,
00392
                                        int
                                                       maxDistance1,
                                        int
                                                        maxDistance2),
00394
                "Use the new API and vrna_pf_TwoD() instead");
00395
00401 DEPRECATED(FLT_OR_DBL **TwoDpfold_circ(TwoDpfold_vars *our_variables,
00402
                                          int maxDistance1,
00403
                                             int
                                                            maxDistance2),
00404
                "Use the new API and vrna_pf_TwoD() instead");
00405
00406 #endif
00407
00408 #endif
```

# 18.5 ali\_plex.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_ALI_PLEX_H
00002 #define VIENNA_RNA_PACKAGE_ALI_PLEX_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005
00006 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00007
00011 duplexT **aliLduplexfold(const char *s1[],
00012
                               const char *s2[],
                               const int threshold,
00014
                               const int
                                           extension_cost,
00015
                               const int
                                           alignment_length,
00016
                               const int delta,
00017
                               const int
                                          fast.
00018
                               const int
                                          il_a,
00019
                               const int il_b,
00020
                               const int
00021
                               const int b_b);
00022
00023
00027 duplexT **aliLduplexfold_XS(const char *s1[],
                                  const char *s2[],
00029
                                   const int
00030
                                   const int
00031
                                   const int
                                               threshold,
00032
                                   const int
                                               alignment_length,
00033
                                   const int
                                               delta,
00034
                                   const int
                                               fast,
00035
                                               il_a,
                                   const int
00036
                                   const int
                                               il_b,
00037
                                   const int
00038
                                   const int
                                               b_b);
00039
00040
00041 /*
00042 * extern duplexT aliduplexfold(const char *s1[], const char *s2[], const int extension_cost);
00043 * extern duplexT aliduplexfold_XS(const char *s1[], const char *s2[],const int **access_s1,
00044 * const int **access_s2, const int i_pos, const int j_pos, const int threshold);
00045 */
00046 #endif
00047
00048 #endif
```

### 18.6 ViennaRNA/alifold.h File Reference

Functions for comparative structure prediction using RNA sequence alignments. Include dependency graph for alifold.h:

#### **Functions**

- float energy\_of\_alistruct (const char \*\*sequences, const char \*structure, int n\_seq, float \*energy)
  - Calculate the free energy of a consensus structure given a set of aligned sequences.
- void update\_alifold\_params (void)

Update the energy parameters for alifold function.

float alifold (const char \*\*strings, char \*structure)

Compute MFE and according consensus structure of an alignment of sequences.

float circalifold (const char \*\*strings, char \*structure)

Compute MFE and according structure of an alignment of sequences assuming the sequences are circular instead of linear.

· void free alifold arrays (void)

Free the memory occupied by MFE alifold functions.

- float alipf\_fold\_par (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl, vrna\_exp\_param\_t \*parameters, int calculate\_bppm, int is\_constrained, int is\_circular)
- float alipf\_fold (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl)

The partition function version of alifold() works in analogy to  $pf_fold()$ . Pair probabilities and information about sequence covariations are returned via the 'pi' variable as a list of  $vrna_pinfo_t$  structs. The list is terminated by the first entry with pi.i = 0.

- float alipf\_circ\_fold (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl)
- FLT OR DBL \* export ali bppm (void)

Get a pointer to the base pair probability array.

void free alipf arrays (void)

Free the memory occupied by folding matrices allocated by alipf\_fold, alipf\_circ\_fold, etc.

char \* alipbacktrack (double \*prob)

Sample a consensus secondary structure from the Boltzmann ensemble according its probability.

int get\_alipf\_arrays (short \*\*\*\$S\_p, short \*\*\*\$S\_p, short \*\*\*\$S\_p, unsigned short \*\*\*a2s\_p, char \*\*\*\$S ←
 \_p, FLT\_OR\_DBL \*\*qb\_p, FLT\_OR\_DBL \*\*qm\_p, FLT\_OR\_DBL \*\*q1k\_p, FLT\_OR\_DBL \*\*qln\_p, short
 \*\*pscore)

Get pointers to (almost) all relavant arrays used in alifold's partition function computation.

### **Variables**

· double cv\_fact

This variable controls the weight of the covariance term in the energy function of alignment folding algorithms.

· double nc fact

This variable controls the magnitude of the penalty for non-compatible sequences in the covariance term of alignment folding algorithms.

#### 18.6.1 Detailed Description

Functions for comparative structure prediction using RNA sequence alignments.

#### 18.6.2 Function Documentation

### 18.6.2.1 energy\_of\_alistruct()

Calculate the free energy of a consensus structure given a set of aligned sequences.

**Deprecated** Usage of this function is discouraged! Use vrna\_eval\_structure(), and vrna\_eval\_covar\_structure() instead!

#### **Parameters**

| sequences | The NULL terminated array of sequences                                                                                                                                           |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| structure | The consensus structure                                                                                                                                                          |
| n_seq     | The number of sequences in the alignment                                                                                                                                         |
| energy    | A pointer to an array of at least two floats that will hold the free energies (energy[0] will contain the free energy, energy[1] will be filled with the covariance energy term) |

#### Returns

free energy in kcal/mol

#### 18.6.2.2 update\_alifold\_params()

Update the energy parameters for alifold function.

Call this to recalculate the pair matrix and energy parameters after a change in folding parameters like temperature

**Deprecated** Usage of this function is discouraged! The new API uses vrna\_fold\_compound\_t to lump all folding related necessities together, including the energy parameters. Use vrna\_update\_fold\_params() to update the energy parameters within a vrna\_fold\_compound\_t.

#### 18.6.3 Variable Documentation

### 18.6.3.1 cv\_fact

```
double cv_fact [extern]
```

This variable controls the weight of the covariance term in the energy function of alignment folding algorithms.

**Deprecated** See vrna\_md\_t.cv\_fact, and vrna\_mfe() to avoid using global variables

Default is 1.

### 18.6.3.2 nc\_fact

```
double nc_fact [extern]
```

This variable controls the magnitude of the penalty for non-compatible sequences in the covariance term of alignment folding algorithms.

Deprecated See vrna\_md\_t.nc\_fact, and vrna\_mfe() to avoid using global variables

Default is 1.

### 18.7 alifold.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_ALIFOLD_H
00002 #define VIENNA_RNA_PACKAGE_ALIFOLD_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005 #include <ViennaRNA/params/basic.h>
00006 #include <ViennaRNA/ribo.h>
00007 #include <ViennaRNA/mfe.h>
00008 #include <ViennaRNA/part_func.h>
00009 #include <ViennaRNA/utils/alignments.h>
00010 #include <ViennaRNA/utils/structures.h>
00011 #include <ViennaRNA/boltzmann_sampling.h>
00012
00013 #ifdef VRNA_WARN_DEPRECATED
00014 # if defined(__clang__)
00015 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00016 # elif defined(__GNUC_
00017 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00018 # else
00019 # define DEPRECATED(func, msg) func
00020 # endif
00021 #else
00022 # define DEPRECATED(func, msg) func
00023 #endif
00024
00032 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00033
00034 /*
00036 # DEPRECATED FUNCTIONS
00038 */
00063 DEPRECATED(float alifold( const char **strings, char *structure),
00064
                               "Use vrna_alifold() or vrna_mfe() instead");
00065
00077 DEPRECATED(float circalifold( const char **strings, char *structure),
00078
                                "Use vrna_alicircfold() or vrna_mfe() instead");
00091 DEPRECATED (void free_alifold_arrays (void),
00092
                               "This function is obsolete");
00093
00094 /\star End group <code>mfe_global_deprecated \star/</code>
\texttt{00112 DEPRECATED(float} \ \underline{\texttt{energy\_of\_alistruct}} \ (\texttt{const char} \ \star \star \texttt{sequences}, \ \texttt{const char} \ \star \star \texttt{structure}, \ \texttt{int n\_seq}, \ \texttt{float} \ \\
           *energy),
00113
                                  "Use vrna_eval_structure() and vrna_eval_covar_structure() instead");
00114
\texttt{00115} \ \texttt{DEPRECATED(float energy\_of\_ali\_gquad\_structure(const \ char \ \star sequences, \ const \ char \ \star structure, \ interval \ \texttt{ontopic} \ \texttt{
           n_seq, float *energy),
    "Use vrna_eval_structure() and vrna_eval_covar_structure() instead");
00117
00128 DEPRECATED (extern double cv_fact,
00129
                               "Use the cv_fact attribute of the vrna_md_t datastructure instead");
00140 DEPRECATED(extern double nc_fact,
                                "Use the nc_fact attribute of the vrna_md_t datastructure instead");
00141
00142
00162 DEPRECATED(float alipf_fold_par( const char **sequences,
00163
                                                       char *structure,
00164
                                                       vrna_ep_t **pl,
00165
                                                       vrna_exp_param_t *parameters,
00166
                                                       int calculate_bppm,
00167
                                                       int is constrained,
00168
                                                       int is circular),
                               "Use vrna_pf_alifold() or vrna_pf() instead");
00187 DEPRECATED(float alipf_fold( const char **sequences, char *structure, vrna_ep_t **pl),
00188
                               "Use vrna_pf_alifold() or vrna_pf() instead");
00189
00200 DEPRECATED (float alipf_circ_fold (const char **sequences, char *structure, vrna_ep_t **pl),
00201
                               "Use vrna_pf_circalifold() or vrna_pf() instead");
00202
00203
00220 DEPRECATED(FLT_OR_DBL *export_ali_bppm(void),
                               "Use the new API with vrna_fold_compound_t datastructure instead");
00221
00222
00233 DEPRECATED (void free_alipf_arrays (void),
                               "This function is obsolete");
00234
00235
00244 DEPRECATED (char *alipbacktrack (double *prob),
                               "Use the new API and vrna_pbacktrack() instead");
00245
00246
00271 DEPRECATED (int get_alipf_arrays (short ***S_p,
                                                     short ***S5_p,
00273
                                                     short ***S3_p,
```

```
00274
                            unsigned short ***a2s_p,
00275
                            char ***Ss_p,
00276
                            FLT_OR_DBL **qb_p,
                            FLT_OR_DBL **qm_p,
00277
00278
                            FLT_OR_DBL **q1k_p,
                            FLT_OR_DBL **qln_p,
00279
00280
                            short **pscore),
00281
                "Use the new API with vrna_fold_compound_t datastructure instead");
00282
00283
00284 /* End group part_func_global_deprecated */
00298 DEPRECATED (void update_alifold_params (void),
                 "Use the new API with vrna_fold_compound_t datastructure instead");
00299
00300
00301 #endif
00302
00303
00304 #endif
```

# 18.8 ViennaRNA/aln\_util.h File Reference

Use ViennaRNA/utils/alignments.h instead. Include dependency graph for aln\_util.h:

# 18.8.1 Detailed Description

Use ViennaRNA/utils/alignments.h instead.

Deprecated Use ViennaRNA/utils/alignments.h instead

# 18.9 aln util.h

```
Go to the documentation of this file.
```

# 18.10 ViennaRNA/alphabet.h File Reference

Functions to process, convert, and generally handle different nucleotide and/or base pair alphabets. Include dependency graph for alphabet.h: This graph shows which files directly or indirectly include this file:

#### **Functions**

```
char * vrna_ptypes (const short *S, vrna_md_t *md)
```

Get an array of the numerical encoding for each possible base pair (i,j)

short \* vrna\_seq\_encode (const char \*sequence, vrna\_md\_t \*md)

Get a numerical representation of the nucleotide sequence.

short \* vrna\_seq\_encode\_simple (const char \*sequence, vrna\_md\_t \*md)

Get a numerical representation of the nucleotide sequence (simple version)

• int vrna nucleotide encode (char c, vrna md t \*md)

Encode a nucleotide character to numerical value.

char vrna\_nucleotide\_decode (int enc, vrna\_md\_t \*md)

Decode a numerical representation of a nucleotide back into nucleotide alphabet.

# 18.10.1 Detailed Description

Functions to process, convert, and generally handle different nucleotide and/or base pair alphabets.

,

# 18.11 alphabet.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_ALPHABET_H
00002 #define VIENNA_RNA_PACKAGE_ALPHABET_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(_clang_)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00029 #include <ViennaRNA/fold_compound.h>
00030 #include <ViennaRNA/model.h>
00031
00032 unsigned int
00033 vrna_sequence_length_max(unsigned int options);
00035
00036 int
00037 vrna_nucleotide_IUPAC_identity(char a,
00038
00039
00040
00041 void
00042 vrna_ptypes_prepare(vrna_fold_compound_t *fc,
00043
                         unsigned int
                                                options);
00044
00045
00055 char *
00056 vrna_ptypes(const short *S,
00057
                 vrna_md_t *md);
00058
00059
00067 short *
00068 vrna_seq_encode(const char *sequence,
                     vrna_md_t *md);
00070
00071
00076 short *
00077 vrna_seq_encode_simple(const char *sequence,
00078
                             vrna md t *md);
08000
00092 int
00093 vrna_nucleotide_encode(char
                             vrna_md_t *md);
00094
00095
00108 char
00109 vrna_nucleotide_decode(int
00110
                             vrna_md_t *md);
00111
00112
00113 void
00114 vrna_aln_encode(const char *sequence,
00115
                                    **s5_p,
00116
                      short
00117
                      short
                                   **s3_p,
00118
                     char
                                    **ss_p,
                     unsigned int **as_p,
00119
                      vrna_md_t
                                    *md);
00121
00122
00123 unsigned int
00124 vrna_get_ptype_md(int i,
00125
                    int j,
vrna_md_t *md);
00127
00128
00129 unsigned int
00130 vrna_get_ptype(int ij,
```

```
00131
                     char *ptype);
00132
00133
00134 unsigned int
00135 vrna_get_ptype_window(int
00136
                            int
                            char **ptype);
00138
00139
00144 #ifndef VRNA DISABLE BACKWARD COMPATIBILITY
00145
00146 DEPRECATED(char *get_ptypes(const short
00147
                                                 *md.
00148
                                  unsigned int idx_type),
00149
                 "Use vrna_pytpes() instead");
00150
00151 #endif
00152
00153 #endif
```

# 18.12 ViennaRNA/boltzmann\_sampling.h File Reference

Boltzmann Sampling of secondary structures from the ensemble.

Include dependency graph for boltzmann\_sampling.h: This graph shows which files directly or indirectly include this file.

#### **Macros**

• #define VRNA PBACKTRACK DEFAULT 0

Boltzmann sampling flag indicating default backtracing mode.

#define VRNA\_PBACKTRACK\_NON\_REDUNDANT 1

Boltzmann sampling flag indicating non-redundant backtracing mode.

#### **Typedefs**

• typedef void(\* vrna\_bs\_result\_f) (const char \*structure, void \*data)

Callback for Boltzmann sampling.

typedef struct vrna\_pbacktrack\_memory\_s \* vrna\_pbacktrack\_mem\_t

Boltzmann sampling memory data structure.

#### **Functions**

char \* vrna\_pbacktrack5 (vrna\_fold\_compound\_t \*fc, unsigned int length)

Sample a secondary structure of a subsequence from the Boltzmann ensemble according its probability.

 char \*\* vrna\_pbacktrack5\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

• unsigned int vrna\_pbacktrack5\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, vrna\_bs\_result\_f cb, void \*data, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

 char \*\* vrna\_pbacktrack5\_resume (vrna\_fold\_compound\_t \*vc, unsigned int num\_samples, unsigned int length, vrna\_pbacktrack\_mem\_t \*nr mem, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

• unsigned int vrna\_pbacktrack5\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int length, vrna\_bs\_result\_f cb, void \*data, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

char \* vrna pbacktrack (vrna fold compound t \*fc)

Sample a secondary structure from the Boltzmann ensemble according its probability.

char \*\* vrna\_pbacktrack\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int options)

Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.

 unsigned int vrna\_pbacktrack\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna\_bs\_result\_f cb, void \*data, unsigned int options)

Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.

char \*\* vrna\_pbacktrack\_resume (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna\_pbacktrack\_mem\_t
 \*nr mem, unsigned int options)

Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.

unsigned int vrna\_pbacktrack\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, vrna bs result f cb, void \*data, vrna pbacktrack mem t \*nr mem, unsigned int options)

Obtain a set of secondary structure samples from the Boltzmann ensemble according their probability.

char \* vrna\_pbacktrack\_sub (vrna\_fold\_compound\_t \*fc, unsigned int start, unsigned int end)

Sample a secondary structure of a subsequence from the Boltzmann ensemble according its probability.

 char \*\* vrna\_pbacktrack\_sub\_num (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

unsigned int vrna\_pbacktrack\_sub\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna bs result f cb, void \*data, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

char \*\* vrna\_pbacktrack\_sub\_resume (vrna\_fold\_compound\_t \*vc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

unsigned int vrna\_pbacktrack\_sub\_resume\_cb (vrna\_fold\_compound\_t \*fc, unsigned int num\_samples, unsigned int start, unsigned int end, vrna\_bs\_result\_f cb, void \*data, vrna\_pbacktrack\_mem\_t \*nr\_mem, unsigned int options)

Obtain a set of secondary structure samples for a subsequence from the Boltzmann ensemble according their probability.

void vrna\_pbacktrack\_mem\_free (vrna\_pbacktrack\_mem\_t s)

Release memory occupied by a Boltzmann sampling memory data structure.

# 18.12.1 Detailed Description

Boltzmann Sampling of secondary structures from the ensemble.

A.k.a. Stochastic backtracking

# 18.13 boltzmann sampling.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_BOLTZMANN_SAMPLING_H
00002 #define VIENNA_RNA_PACKAGE_BOLTZMANN_SAMPLING_H
00003
00004 #ifdef VRNA WARN DEPRECATED
00005 # if defined(DEPRECATED)
00006 #
          undef DEPRECATED
00007 # endif
00008 # if defined(__clang_
00009 #
        define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00010 # elif defined( GNUC )
00011 #
        define DEPRECATED(func, msq) func attribute ((deprecated(msq)))
00012 #
00013 #
        define DEPRECATED (func, msg) func
00014 # endif
00015 #else
00016 # define DEPRECATED (func. msg) func
00017 #endif
00043 #define VRNA_PBACKTRACK_DEFAULT
```

```
00044
00055 #define VRNA_PBACKTRACK_NON_REDUNDANT 1
00056
00072 typedef void (*vrna_bs_result_f)(const char *structure,
00073
                                                     void
                                                                 *data);
00074
00075 DEPRECATED(typedef void (vrna_boltzmann_sampling_callback)(const char *structure,
00076
00077
                "Use vrna_bs_result_f instead!");
00078
00079
00095 typedef struct vrna_pbacktrack_memory_s *vrna_pbacktrack_mem_t;
00096
00097 #include <ViennaRNA/fold_compound.h>
00098
00128 char *
00129 vrna_pbacktrack5(vrna_fold_compound_t *fc,
00130
                      unsigned int
                                           length);
00131
00132
00177 char **
00178 vrna_pbacktrack5_num(vrna_fold_compound_t *fc,
00179
               unsigned int num_samples,
00180
                          unsigned int
                                               length.
00181
                          unsigned int
                                               options);
00182
00183
00233 unsigned int
00234 vrna_pbacktrack5_cb(vrna_fold_compound_t
                                                           *fc,
                         unsigned int
00235
                                                           num_samples,
00236
                         unsigned int
                                                           length,
00237
                         vrna_bs_result_f cb,
00238
                         void
00239
                         unsigned int
                                                           options);
00240
00241
00316 char **
00317 vrna_pbacktrack5_resume(vrna_fold_compound_t *vc,
                         unsigned int num_samples, unsigned int length,
00318
00319
00320
                             vrna_pbacktrack_mem_t *nr_mem,
00321
                             unsigned int
                                                  options);
00322
00323
00401 unsigned int
00402 vrna_pbacktrack5_resume_cb(vrna_fold_compound_t
                                                                 *fc,
                                unsigned int
00403
                                                                 num_samples,
00404
                                unsigned int
                                                                 length,
00405
                                vrna_bs_result_f cb,
00406
                                void
                                                                 *data,
                                vrna_pbacktrack_mem_t
00407
                                                                 *nr_mem,
00408
                                unsigned int
                                                                 options);
00409
00410
00438 char *
00439 vrna_pbacktrack(vrna_fold_compound_t *fc);
00441
00484 char **
00485 vrna_pbacktrack_num(vrna_fold_compound_t *fc,
00486
                        unsigned int num_samples,
00487
                         unsigned int
                                               options);
00488
00489
00537 unsigned int
00538 vrna_pbacktrack_cb(vrna_fold_compound_t
                                                         *fc,
00539
                        unsigned int
                                                         num_samples,
                        vrna_bs_result_f cb,
00540
00541
                        void
                                                         *data,
00542
                        unsigned int
                                                         options);
00543
00544
00615 char **
00616 vrna_pbacktrack_resume(vrna_fold_compound_t *fc,
00617
                            unsigned int
                                                  num samples,
                            vrna_pbacktrack_mem_t *nr_mem,
00618
00619
                            unsigned int
00620
00621
00695 unsigned int
00696 vrna_pbacktrack_resume_cb(vrna_fold_compound_t
                                                                 *fc,
                               unsigned int
                                                                 num_samples,
00698
                               vrna_bs_result_f cb,
00699
                               void
                                                                 *data,
00700
                               vrna_pbacktrack_mem_t
                                                                 *nr_mem,
00701
                               unsigned int
                                                                 options);
00702
```

```
00703
00704
00705
00706
00707
00708
00709
00742 char *
00743 vrna_pbacktrack_sub(vrna_fold_compound_t *fc,
00744
                          unsigned int
00745
                          unsigned int
                                               end);
00746
00747
00793 char **
00794 vrna_pbacktrack_sub_num(vrna_fold_compound_t *fc,
00795
                              unsigned int num_samples,
00796
                              unsigned int
                                                    start,
00797
                              unsigned int
                                                   end,
00798
                              unsigned int
                                                   options);
00799
00800
00851 unsigned int
00852 vrna_pbacktrack_sub_cb(vrna_fold_compound_t
                                                                *fc,
00853
                                                                num samples,
                             unsigned int
00854
                             unsigned int
                                                                start,
00855
                             unsigned int
00856
                             vrna_bs_result_f cb,
00857
                             void
                                                                *data,
00858
                             unsigned int
                                                                options);
00859
00860
00936 char **
00937 vrna_pbacktrack_sub_resume(vrna_fold_compound_t *vc,
                                 unsigned int
00938
                                                        num_samples,
                                                        start,
00939
                                 unsigned int
00940
                                 unsigned int
                                                        end.
00941
                                 vrna_pbacktrack_mem_t *nr_mem,
00942
                                 unsigned int
                                                       options);
00943
00944
01023 unsigned int
{\tt 01024 \ vrna\_pbacktrack\_sub\_resume\_cb(vrna\_fold\_compound\_t)}
                                                                      *fc,
                                                                      num samples,
01025
                                    unsigned int
01026
                                     unsigned int
                                                                      start,
01027
                                     unsigned int
                                                                      end,
01028
                                     vrna_bs_result_f cb,
01029
                                    void
                                                                      *data,
01030
                                     vrna_pbacktrack_mem_t
                                                                      *nr mem,
01031
                                    unsigned int
                                                                      options);
01032
01042 void
01043 vrna_pbacktrack_mem_free(vrna_pbacktrack_mem_t s);
01044
01045
01049 #endif
```

# 18.14 ViennaRNA/centroid.h File Reference

Centroid structure computation.

Include dependency graph for centroid.h: This graph shows which files directly or indirectly include this file:

### **Functions**

• char \* vrna\_centroid (vrna\_fold\_compound\_t \*vc, double \*dist)

Get the centroid structure of the ensemble.

• char \* vrna\_centroid\_from\_plist (int length, double \*dist, vrna\_ep\_t \*pl)

Get the centroid structure of the ensemble.

char \* vrna\_centroid\_from\_probs (int length, double \*dist, FLT\_OR\_DBL \*probs)

Get the centroid structure of the ensemble.

char \* get centroid struct pl (int length, double \*dist, vrna ep t \*pl)

Get the centroid structure of the ensemble.

• char \* get\_centroid\_struct\_pr (int length, double \*dist, FLT\_OR\_DBL \*pr)

Get the centroid structure of the ensemble.

18.15 centroid.h 623

# 18.14.1 Detailed Description

Centroid structure computation.

### 18.14.2 Function Documentation

### 18.14.2.1 get\_centroid\_struct\_pl()

Get the centroid structure of the ensemble.

**Deprecated** This function was renamed to vrna centroid from plist()

#### 18.14.2.2 get\_centroid\_struct\_pr()

Get the centroid structure of the ensemble.

**Deprecated** This function was renamed to vrna\_centroid\_from\_probs()

# 18.15 centroid.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CENTROID_H
00002 #define VIENNA_RNA_PACKAGE_CENTROID_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005 #include <ViennaRNA/fold_compound.h>
00006 #include <ViennaRNA/utils/structures.h>
00007
00008 #ifdef VRNA_WARN_DEPRECATED
00009 # if defined(__clang__)
00010 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00011 # elif defined(__GNUC_
00012 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00013 # else
00014 # define DEPRECATED(func, msg) func
00015 # endif
00016 #else
00017 # define DEPRECATED(func, msg) func
00018 #endif
00019
00039 char *
00040 vrna_centroid(vrna_fold_compound_t *vc,
00041
                    double
                                           *dist);
00042
00043
00060 char *
                                         length,
00061 vrna_centroid_from_plist(int
                               double
00062
                                           *dist,
00063
                               vrna_ep_t *pl);
00064
00065
00082 char *
00083 vrna_centroid_from_probs(int
                                          length,
                               double
00084
                                           *dist.
                               FLT_OR_DBL *probs);
00085
00086
00088 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00095 DEPRECATED (char *get_centroid_struct_pl(int
                                                         length,
```

```
double
                                                         *dist,
00097
                                               vrna_ep_t *pl),
00098
                 "Use vrna_centroid_from_plist() instead");
00099
00105 DEPRECATED(char *get_centroid_struct_pr(int
                                                            length,
00106
                                               double
                                                           *dist.
                                               FLT_OR_DBL *pr),
00108
                 "Use vrna_centroid_from_probs() instead");
00109
00110 #endif
00111
00112 #endif
```

# 18.16 ViennaRNA/char stream.h File Reference

Use ViennaRNA/datastructures/char\_stream.h instead. Include dependency graph for char\_stream.h:

### 18.16.1 Detailed Description

Use ViennaRNA/datastructures/char\_stream.h instead.

Deprecated Use ViennaRNA/datastructures/char stream.h instead

# 18.17 char\_stream.h

Go to the documentation of this file.

# 18.18 ViennaRNA/datastructures/char stream.h File Reference

Implementation of a dynamic, buffered character stream.

Include dependency graph for char\_stream.h: This graph shows which files directly or indirectly include this file:

### **Functions**

vrna\_cstr\_t vrna\_cstr (size\_t size, FILE \*output)

Create a dynamic char \* stream data structure.

void vrna\_cstr\_discard (struct vrna\_cstr\_s \*buf)

Discard the current content of the dynamic char \* stream data structure.

void vrna\_cstr\_free (vrna\_cstr\_t buf)

Free the memory occupied by a dynamic char \* stream data structure.

void vrna\_cstr\_close (vrna\_cstr\_t buf)

Free the memory occupied by a dynamic char \* stream and close the output stream.

void vrna\_cstr\_fflush (struct vrna\_cstr\_s \*buf)

Flush the dynamic char \* output stream.

### 18.18.1 Detailed Description

Implementation of a dynamic, buffered character stream.

,

18.19 char\_stream.h 625

# 18.19 char stream.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CHAR_STREAM_H
00002 #define VIENNA_RNA_PACKAGE_CHAR_STREAM_H
00003
00016 #include <stdarg.h>
00017 #include <stdio.h>
00018
00019 /* below is our own implementation of a dynamic char * stream */
00020 typedef struct vrna_cstr_s *vrna_cstr_t;
00021
00030 vrna_cstr_t
00031 vrna_cstr(size_t size,
00032
              FILE
                      *output);
00034
00042 void
00043 vrna_cstr_discard(struct vrna_cstr_s *buf);
00044
00045
00057 vrna_cstr_free(vrna_cstr_t buf);
00058
00059
00071 void
00072 vrna_cstr_close(vrna_cstr_t buf);
00074
00088 void
00089 vrna_cstr_fflush(struct vrna_cstr_s *buf);
00090
00091
00092 const char *
00093 vrna_cstr_string(vrna_cstr_t buf);
00094
00095
00096 int
00097 vrna_cstr_vprintf(vrna_cstr_t buf,
00098
                       const char *format,
va_list args);
00100
00101
00102 int
00103 vrna_cstr_printf(vrna_cstr_t buf,
00104
                       const char *format,
                       ...);
00106
00107
00108 void
00109 vrna_cstr_message_info(vrna_cstr_t buf,
00110
                             const char *format,
                             ...);
00113
00114 void
00115 vrna_cstr_message_vinfo(vrna_cstr_t buf,
00116
                             const char *format,
va_list args);
00117
00118
00119
00120 void
00121 vrna_cstr_message_warning(struct vrna_cstr_s *buf,
00122
                                const char
                                                     *format,
00123
                                 ...);
00125
00126 void
00127 vrna\_cstr\_message\_vwarning(struct <math>vrna\_cstr\_s *buf,
00128
                                 const char     *format,
va_list     args);
00129
00130
00131
00132 void
00133 vrna_cstr_print_fasta_header(vrna_cstr_t buf,
00134
                                   const char
                                                 *head);
00135
00136
00137 void
00138 vrna_cstr_printf_structure(struct vrna_cstr_s *buf,
                                              *structure,
*format,
00139
                                 const char
00140
                                  const char
00141
                                  ...);
00142
00144 void
```

```
00145 vrna_cstr_vprintf_structure(struct vrna_cstr_s *buf,
                               const char *structure,
const char *format,
00147
00148
                                va_list
                                                   args);
00149
00150
00151 void
00152 vrna_cstr_printf_comment(struct vrna_cstr_s *buf,
         const char *format,
00153
00154
                             ...);
00155
00156
00157 void
00158 vrna_cstr_vprintf_comment(struct vrna_cstr_s *buf,
00159
            const char *format,
00160
                              va_list
                                                 args);
00161
00162
00163 void
00164 vrna_cstr_printf_thead(struct vrna_cstr_s *buf,
00165
                      const char
00166
                            ...);
00167
00168
00169 void
00170 vrna_cstr_vprintf_thead(struct vrna_cstr_s *buf,
                         const char *format, va_list args);
00171
00172
00173
00174
00175 void
00176 vrna_cstr_printf_tbody(struct vrna_cstr_s *buf,
00177
                           const char *format,
00178
                            ...);
00179
00180
00181 void
00182 vrna_cstr_vprintf_tbody(struct vrna_cstr_s *buf,
                         const char *format, va_list args);
00183
00184
00185
00186
00187 void
00188 vrna_cstr_print_eval_sd_corr(struct vrna_cstr_s *buf);
00189
00190
00191 void
00192 vrna\_cstr\_print\_eval\_ext\_loop(struct <math>vrna\_cstr\_s *buf,
00193
                                   int
                                                     energy);
00194
00195
00196 void
00197 vrna\_cstr\_print\_eval\_hp\_loop(struct vrna\_cstr\_s *buf,
00198
                                int
                                                    i,
00199
                                 int
                                                    j,
00200
                                 char
                                                    si,
00201
                                 char
                                                   sj,
00202
                                                    energy);
00203
00204
00205 void
00206 vrna_cstr_print_eval_hp_loop_revert(struct vrna_cstr_s *buf,
                                        int
                                                           i,
00208
                                        int
00209
                                        char
00210
                                        char
                                                            sj,
00211
                                        int
                                                            energy);
00212
00213
00215 vrna_cstr_print_eval_int_loop(struct vrna_cstr_s *buf,
00216
                                  int
00217
                                   int
00218
                                   char
                                                      si.
00219
                                   char
                                                      sή,
00220
                                   int
00221
                                   int
00222
                                   char
00223
                                   char
                                                      sl.
00224
                                   int.
                                                      energy);
00225
00226
00227 void
00228 vrna_cstr_print_eval_int_loop_revert(struct vrna_cstr_s *buf,
00229
                                        int i,
00230
                                         int
00231
                                         char
                                                            si.
```

```
00232
                                             char
                                                                 sj,
00233
                                                                 k,
00234
                                             int
                                                                 1.
00235
                                             char
                                                                 sk,
00236
                                             char
                                                                 sl.
00237
                                                                 energy);
                                             int
00238
00239
00240 void
00241 vrna_cstr_print_eval_mb_loop(struct vrna_cstr_s *buf,
                                    int
00242
00243
                                    int
                                                        j,
00244
                                    char
                                                        si,
00245
                                                        sj,
00246
                                                        energy);
00247
00248
00249 void
00250 vrna_cstr_print_eval_mb_loop_revert(struct vrna_cstr_s *buf,
00252
00253
                                            char
00254
                                            char
                                                                 sj,
00255
                                            int
                                                                 energy);
00256
00257
00258 void
00259 vrna_cstr_print_eval_gquad(struct vrna_cstr_s *buf,
                                 int
00260
00261
                                  int
00262
                                                      1[3],
                                  int
00263
                                  int
                                                      energy);
00264
00265
00270 #endif
```

### 18.20 ViennaRNA/cofold.h File Reference

MFE implementations for RNA-RNA interaction. Include dependency graph for cofold.h:

### **Functions**

• float cofold (const char \*sequence, char \*structure)

Compute the minimum free energy of two interacting RNA molecules.

float cofold\_par (const char \*string, char \*structure, vrna\_param\_t \*parameters, int is\_constrained)

Compute the minimum free energy of two interacting RNA molecules.

• void free co arrays (void)

Free memory occupied by cofold()

void update\_cofold\_params (void)

Recalculate parameters.

void update cofold params par (vrna param t \*parameters)

Recalculate parameters.

void export\_cofold\_arrays\_gq (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*fc\_p, int \*\*ggg\_p, int \*\*indx\_p, char \*\*ptype\_p)

Export the arrays of partition function cofold (with gquadruplex support)

void export\_cofold\_arrays (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*fc\_p, int \*\*indx\_p, char \*\*ptype\_p)

Export the arrays of partition function cofold.

void initialize cofold (int length)

### 18.20.1 Detailed Description

MFE implementations for RNA-RNA interaction.

# 18.21 cofold.h

```
Go to the documentation of this file.
```

```
00001 #ifndef VIENNA_RNA_PACKAGE_COFOLD_H
00002 #define VIENNA_RNA_PACKAGE_COFOLD_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005 #include <ViennaRNA/params/basic.h>
00006 #include <ViennaRNA/mfe.h>
00008 #ifdef VRNA_WARN_DEPRECATED
00009 # if defined(__clang_
00010 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00011 # elif defined(__GNUC__)
00012 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00013 # else
00014 # define DEPRECATED(func, msg) func
00015 # endif
00016 #else
00017 # define DEPRECATED(func, msg) func
00018 #endif
00026 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00027
00042 DEPRECATED (float
00043
                 cofold(const char *sequence,
00044
                        char
                                    *structure).
                 "Use vrna_cofold() instead");
00045
00054 DEPRECATED (float
00055
                 cofold_par(const char
00056
                           char
                                          *structure,
00057
                            vrna_param_t *parameters,
int is_constrained),
00058
                 "Use the new API and vrna_mfe_dimer() instead");
00060
00072 DEPRECATED(void
00073
                 free co arrays (void).
                 "This function is obsolete");
00074
00075
00082 DEPRECATED (void
00083
                 update_cofold_params(void),
00084
                 "This function is obsolete");
00085
00092 DEPRECATED (void
00093
                 update_cofold_params_par(vrna_param_t *parameters),
00094
                 "Use the new API with vrna_fold_compound_t instead");
00095
00096
00118 DEPRECATED (void
00119
                 export_cofold_arrays_gq(int **f5_p,
00120
                                          int **c p.
00121
                                          int
                                              **fML_p,
00122
                                          int
                                              **fM1_p,
                                              **fc_p,
00123
00124
                                          int **ggg_p
                                          int **indx_p,
00125
00126
                                          char **ptype_p),
                 "Use the new API with vrna_fold_compound_t instead");
00127
00128
00149 DEPRECATED (void
00150
                 export_cofold_arrays(int
00151
                                       int
00152
                                             **fML_p,
                                       int
00153
                                             **fM1_p,
                                       int
                                             **fc_p,
00154
                                       int
00155
                                             **indx_p,
00156
                                       char **ptype_p),
00157
                 "Use the new API with vrna_fold_compound_t instead");
00158
00159
00166 DEPRECATED(void
        initialize_cofold(int length),
00168
                 "This function is obsolete");
00169
00170 #endif
00171
00172 #endif
```

# 18.22 ViennaRNA/combinatorics.h File Reference

Various implementations that deal with combinatorial aspects of objects. Include dependency graph for combinatorics.h:

18.23 combinatorics.h 629

#### **Functions**

unsigned int \*\* vrna\_enumerate\_necklaces (const unsigned int \*type\_counts)

Enumerate all necklaces with fixed content.

• unsigned int vrna\_rotational\_symmetry\_num (const unsigned int \*string, size\_t string\_length)

Determine the order of rotational symmetry for a string of objects represented by natural numbers.

unsigned int vrna\_rotational\_symmetry\_pos\_num (const unsigned int \*string, size\_t string\_length, unsigned int \*positions)

Determine the order of rotational symmetry for a string of objects represented by natural numbers.

unsigned int vrna\_rotational\_symmetry (const char \*string)

Determine the order of rotational symmetry for a NULL-terminated string of ASCII characters.

unsigned int vrna\_rotational\_symmetry\_pos (const char \*string, unsigned int \*\*positions)

Determine the order of rotational symmetry for a NULL-terminated string of ASCII characters.

unsigned int vrna\_rotational\_symmetry\_db (vrna\_fold\_compound\_t \*fc, const char \*structure)

Determine the order of rotational symmetry for a dot-bracket structure.

unsigned int vrna\_rotational\_symmetry\_db\_pos (vrna\_fold\_compound\_t \*fc, const char \*structure, unsigned int \*positions)

Determine the order of rotational symmetry for a dot-bracket structure.

unsigned int \*\* vrna n multichoose k (size t n, size t k)

Obtain a list of k-combinations with repetition (n multichoose k)

unsigned int \* vrna\_boustrophedon (size\_t start, size\_t end)

Generate a sequence of Boustrophedon distributed numbers.

unsigned int vrna\_boustrophedon\_pos (size\_t start, size\_t end, size\_t pos)

Obtain the i-th element in a Boustrophedon distributed interval of natural numbers.

# 18.22.1 Detailed Description

Various implementations that deal with combinatorial aspects of objects.

.

# 18.23 combinatorics.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_COMBINATORICS_H
00002 #define VIENNA_RNA_PACKAGE_COMBINATORICS_H
00003
00010 #include <ViennaRNA/fold_compound.h>
00011
00033 unsigned int **
00034 vrna_enumerate_necklaces(const unsigned int *type_counts);
00035
00036
00056 unsigned int
00057 vrna_rotational_symmetry_num(const unsigned int *string,
                                                                                                                      size_t
00058
                                                                                                                                                                                         string_length);
00059
00060
00087 unsigned int
00088 vrna\_rotational\_symmetry\_pos\_num(const unsigned int *string, or the string of 
                                                                                                                                       size_t string_length,
unsigned int **positions);
00089
00090
00091
00092
00110 unsigned int
00111 vrna_rotational_symmetry(const char *string);
00112
00113
00138 unsigned int
00139 vrna_rotational_symmetry_pos(const char *string,
00140
                                                                                                                       unsigned int **positions);
00141
00142
00165 unsigned int
00166 vrna_rotational_symmetry_db(vrna_fold_compound_t *fc,
00167
                                                                                                                                                                                                 *structure);
00168
```

```
00169
00200 unsigned int
00201 vrna_rotational_symmetry_db_pos(vrna_fold_compound_t *fc,
00202
                                      const char
                                                            *structure,
                                                           **positions);
00203
                                      unsigned int
00204
00205
00218 unsigned int **
00219 vrna_n_multichoose_k(size_t
00220
                           size t
00221
00222
00245 unsigned int *
00246 vrna_boustrophedon(size_t start,
00247
00248
00249
00261 unsigned int
00262 vrna_boustrophedon_pos(size_t start,
                            size_t end,
                            size_t pos);
00264
00265
00266
00270 #endif
```

# 18.24 ViennaRNA/commands.h File Reference

Parse and apply different commands that alter the behavior of secondary structure prediction and evaluation. Include dependency graph for commands.h:

#### **Macros**

• #define VRNA\_CMD\_PARSE\_HC 1U

Command parse/apply flag indicating hard constraints.

• #define VRNA\_CMD\_PARSE\_SC 2U

Command parse/apply flag indicating soft constraints.

• #define VRNA CMD PARSE UD 4U

Command parse/apply flag indicating unstructured domains.

#define VRNA\_CMD\_PARSE\_SD 8U

Command parse/apply flag indicating structured domains.

• #define VRNA\_CMD\_PARSE\_DEFAULTS

Command parse/apply flag indicating default set of commands.

### **Typedefs**

typedef struct vrna\_command\_s \* vrna\_cmd\_t

A data structure that contains commands.

# **Functions**

vrna cmd t vrna file commands read (const char \*filename, unsigned int options)

Extract a list of commands from a command file.

• int vrna\_file\_commands\_apply (vrna\_fold\_compound\_t \*vc, const char \*filename, unsigned int options)

Apply a list of commands from a command file.

• int vrna\_commands\_apply (vrna\_fold\_compound\_t \*vc, vrna\_cmd\_t commands, unsigned int options)

Apply a list of commands to a vrna\_fold\_compound\_t.

void vrna\_commands\_free (vrna\_cmd\_t commands)

Free memory occupied by a list of commands.

### 18.24.1 Detailed Description

Parse and apply different commands that alter the behavior of secondary structure prediction and evaluation.

, ,

18.25 commands.h 631

# 18.25 commands.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_COMMANDS_H
00002 #define VIENNA_RNA_PACKAGE_COMMANDS_H
00003
00018 typedef struct vrna_command_s *vrna_cmd_t;
00019
00020
00021 #include <ViennaRNA/fold_compound.h>
00022
00027 #define VRNA_CMD_PARSE_HC
00032 #define VRNA_CMD_PARSE_SC
00037 #define VRNA_CMD_PARSE_UD
                                      4U
00042 #define VRNA_CMD_PARSE_SD
                                      811
00047 #define VRNA_CMD_PARSE_DEFAULTS (VRNA_CMD_PARSE_HC
00048
                                          VRNA_CMD_PARSE_SC
00049
                                          VRNA_CMD_PARSE_UD \
00050
                                         VRNA_CMD_PARSE_SD \
00051
00052
00053 #define VRNA_CMD_PARSE_SILENT
00054
00068 vrna_cmd_t
00069 vrna_file_commands_read(const char
                                             *filename.
00070
                              unsigned int options);
00071
00072
00086 int
00087 vrna_file_commands_apply(vrna_fold_compound_t *vc,
                                                     *filename,
00088
                                const char
00089
                               unsigned int
                                                     options);
00090
00091
00100 int
00101 vrna_commands_apply(vrna_fold_compound_t *vc,
00102
                           vrna_cmd_t
                                                 commands,
00103
                          unsigned int
                                                 options);
00104
00105
00113 vrna_commands_free(vrna_cmd_t commands);
00114
00115
00120 #endif
```

### 18.26 ViennaRNA/concentrations.h File Reference

Concentration computations for RNA-RNA interactions.

Include dependency graph for concentrations.h: This graph shows which files directly or indirectly include this file:

### **Data Structures**

• struct vrna\_dimer\_conc\_s

Data structure for concentration dependency computations.

#### **Functions**

vrna\_dimer\_conc\_t \* get\_concentrations (double FEAB, double FEAA, double FEBB, double FEBB, double FEBB, double FEBB, double \*startconc)

Given two start monomer concentrations a and b, compute the concentrations in thermodynamic equilibrium of all dimers and the monomers.

typedef struct vrna\_dimer\_conc\_s vrna\_dimer\_conc\_t

Typename for the data structure that stores the dimer concentrations, vrna\_dimer\_conc\_s, as required by vrna\_pf← \_\_dimer\_concentration()

• typedef struct vrna\_dimer\_conc\_s ConcEnt

Backward compatibility typedef for vrna\_dimer\_conc\_s.

vrna\_dimer\_conc\_t \* vrna\_pf\_dimer\_concentrations (double FcAB, double FcAA, double FcBB, double FEA, double FEB, const double \*startconc, const vrna\_exp\_param\_t \*exp\_params)

Given two start monomer concentrations a and b, compute the concentrations in thermodynamic equilibrium of all dimers and the monomers.

# 18.26.1 Detailed Description

Concentration computations for RNA-RNA interactions.

### 18.26.2 Function Documentation

### 18.26.2.1 get\_concentrations()

Given two start monomer concentrations a and b, compute the concentrations in thermodynamic equilibrium of all dimers and the monomers.

This function takes an array 'startconc' of input concentrations with alternating entries for the initial concentrations of molecules A and B (terminated by two zeroes), then computes the resulting equilibrium concentrations from the free energies for the dimers. Dimer free energies should be the dimer-only free energies, i.e. the FcAB entries from the vrna\_dimer\_pf\_t struct.

**Deprecated** { Use vrna\_pf\_dimer\_concentrations() instead!}

#### **Parameters**

| FEAB      | Free energy of AB dimer (FcAB entry)                               |
|-----------|--------------------------------------------------------------------|
| FEAA      | Free energy of AA dimer (FcAB entry)                               |
| FEBB      | Free energy of BB dimer (FcAB entry)                               |
| FEA       | Free energy of monomer A                                           |
| FEB       | Free energy of monomer B                                           |
| startconc | List of start concentrations [a0],[b0],[a1],[b1],,[an][bn],[0],[0] |

#### Returns

vrna dimer conc t array containing the equilibrium energies and start concentrations

# 18.27 concentrations.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CONCENTRATIONS_H
00002 #define VIENNA_RNA_PACKAGE_CONCENTRATIONS_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 #
         define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00028 typedef struct vrna_dimer_conc_s vrna_dimer_conc_t;
00030
00031 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00032
00036 typedef struct vrna_dimer_conc_s ConcEnt;
```

```
00037
00038 #endif
00039
00040 #include <ViennaRNA/params/basic.h>
00041
00045 struct vrna_dimer_conc_s {
00046 double Ac_start;
00047 double Bc_start;
00048
      double ABc;
00049
       double AAc;
00050
      double BBc;
00051
      double Ac:
00052
       double Bc;
00053 };
00054
00055
00075 vrna_dimer_conc_t *vrna_pf_dimer_concentrations(double
                                                                        FCAB.
00076
                                                                        FcAA,
                                                  double
                                                  double
                                                                        FcBB,
00078
                                                  double
                                                                        FEA,
00079
                                                                        FEB,
00080
                                                  const double
                                                                        *startconc,
00081
                                                  const vrna_exp_param_t *exp_params);
00082
00083 double *
00084 vrna_equilibrium_constants(const double
                                                 *dG_complexes,
00085
                                            *dG_strands,
00086
                          const unsigned int **A,
                                  kT,
00087
                          double
00088
                         size_t
                                      strands.
00089
                                      complexes);
                          size_t
00090
00095 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00096
00097 /
00099 # DEPRECATED FUNCTIONS
00102
00123 DEPRECATED(vrna_dimer_conc_t *get_concentrations(double FEAB,
                                                   double FEAA,
00124
00125
                                                   double FEBB.
00126
                                                   double FEA,
00127
                                                   double FEB,
00128
                                                   double *startconc),
00129
              "Use vrna_pf_dimer_concentrations() instead");
00130
00131 #endif
00132
00133 #endif
```

# 18.28 ViennaRNA/constraints.h File Reference

Use ViennaRNA/constraints/basic.h instead. Include dependency graph for constraints.h:

# 18.28.1 Detailed Description

Use ViennaRNA/constraints/basic.h instead.

Deprecated Use ViennaRNA/constraints/basic.h instead

#### 18.29 constraints.h

```
00018 #include <ViennaRNA/constraints/ligand.h>
00019 #endif
00020
00021 #endif
```

### 18.30 ViennaRNA/constraints/hard.h File Reference

Functions and data structures for handling of secondary structure hard constraints.

Include dependency graph for hard.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

struct vrna\_hc\_s

The hard constraints data structure. More...

struct vrna\_hc\_up\_s

A single hard constraint for a single nucleotide. More...

#### **Macros**

• #define VRNA CONSTRAINT NO HEADER 0

do not print the header information line

#define VRNA CONSTRAINT DB 16384U

Flag for vrna\_constraints\_add() to indicate that constraint is passed in pseudo dot-bracket notation.

#define VRNA\_CONSTRAINT\_DB\_ENFORCE\_BP 32768U

Switch for dot-bracket structure constraint to enforce base pairs.

• #define VRNA CONSTRAINT DB PIPE 65536U

Flag that is used to indicate the pipe 'I' sign in pseudo dot-bracket notation of hard constraints.

#define VRNA\_CONSTRAINT\_DB\_DOT 131072U

dot '.' switch for structure constraints (no constraint at all)

• #define VRNA\_CONSTRAINT\_DB\_X 262144U

'x' switch for structure constraint (base must not pair)

#define VRNA\_CONSTRAINT\_DB\_ANG\_BRACK 524288U

angle brackets '<', '>' switch for structure constraint (paired downstream/upstream)

#define VRNA\_CONSTRAINT\_DB\_RND\_BRACK 1048576U

round brackets '(',')' switch for structure constraint (base i pairs base j)

#define VRNA CONSTRAINT DB INTRAMOL 2097152U

Flag that is used to indicate the character 'I' in pseudo dot-bracket notation of hard constraints.

#define VRNA\_CONSTRAINT\_DB\_INTERMOL 4194304U

Flag that is used to indicate the character 'e' in pseudo dot-bracket notation of hard constraints.

#define VRNA\_CONSTRAINT\_DB\_GQUAD 8388608U

'+' switch for structure constraint (base is involved in a gquad)

#define VRNA\_CONSTRAINT\_DB\_WUSS 33554432U

Flag to indicate Washington University Secondary Structure (WUSS) notation of the hard constraint string.

• #define VRNA\_CONSTRAINT\_DB\_DEFAULT

Switch for dot-bracket structure constraint with default symbols.

#define VRNA CONSTRAINT CONTEXT EXT LOOP (unsigned char)0x01

Hard constraints flag, base pair in the exterior loop.

#define VRNA\_CONSTRAINT\_CONTEXT\_HP\_LOOP (unsigned char)0x02

Hard constraints flag, base pair encloses hairpin loop.

#define VRNA CONSTRAINT CONTEXT INT LOOP (unsigned char)0x04

Hard constraints flag, base pair encloses an interior loop.

• #define VRNA CONSTRAINT CONTEXT INT LOOP ENC (unsigned char)0x08

Hard constraints flag, base pair encloses a multi branch loop.

#define VRNA\_CONSTRAINT\_CONTEXT\_MB\_LOOP (unsigned char)0x10

Hard constraints flag, base pair is enclosed in an interior loop.

• #define VRNA CONSTRAINT CONTEXT MB LOOP ENC (unsigned char)0x20

Hard constraints flag, base pair is enclosed in a multi branch loop.

#define VRNA\_CONSTRAINT\_CONTEXT\_ENFORCE (unsigned char)0x40

Hard constraint flag to indicate enforcement of constraints.

• #define VRNA\_CONSTRAINT\_CONTEXT\_NO\_REMOVE (unsigned char)0x80

Hard constraint flag to indicate not to remove base pairs that conflict with a given constraint.

• #define VRNA\_CONSTRAINT\_CONTEXT\_NONE (unsigned char)0

Constraint context flag that forbids any loop.

#define VRNA CONSTRAINT CONTEXT CLOSING LOOPS

Constraint context flag indicating base pairs that close any loop.

#define VRNA\_CONSTRAINT\_CONTEXT\_ENCLOSED\_LOOPS

Constraint context flag indicating base pairs enclosed by any loop.

• #define VRNA CONSTRAINT CONTEXT ALL LOOPS

Constraint context flag indicating any loop context.

#### **Typedefs**

typedef struct vrna\_hc\_s vrna\_hc\_t

Typename for the hard constraints data structure vrna hc s.

typedef struct vrna\_hc\_up\_s vrna\_hc\_up\_t

Typename for the single nucleotide hard constraint data structure vrna hc up s.

• typedef unsigned char(\* vrna\_hc\_eval\_f) (int i, int j, int k, int l, unsigned char d, void \*data)

Callback to evaluate whether or not a particular decomposition step is contributing to the solution space.

#### **Enumerations**

• enum vrna hc type e { VRNA HC DEFAULT , VRNA HC WINDOW }

The hard constraints type.

#### **Functions**

· void vrna\_message\_constraint\_options (unsigned int option)

Print a help message for pseudo dot-bracket structure constraint characters to stdout. (constraint support is specified by option parameter)

void vrna\_message\_constraint\_options\_all (void)

Print structure constraint characters to stdout (full constraint support)

void vrna\_hc\_init (vrna\_fold\_compound\_t \*vc)

Initialize/Reset hard constraints to default values.

void vrna\_hc\_add\_up (vrna\_fold\_compound\_t \*vc, int i, unsigned char option)

Make a certain nucleotide unpaired.

• int vrna\_hc\_add\_up\_batch (vrna\_fold\_compound\_t \*vc, vrna\_hc\_up\_t \*constraints)

Apply a list of hard constraints for single nucleotides.

• int vrna\_hc\_add\_bp (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned char option)

Favorize/Enforce a certain base pair (i,j)

void vrna hc add bp nonspecific (vrna fold compound t \*vc, int i, int d, unsigned char option)

Enforce a nucleotide to be paired (upstream/downstream)

void vrna\_hc\_free (vrna\_hc\_t \*hc)

Free the memory allocated by a vrna\_hc\_t data structure.

void vrna\_hc\_add\_f (vrna\_fold\_compound\_t \*vc, vrna\_hc\_eval\_f f)

Add a function pointer pointer for the generic hard constraint feature.

void vrna\_hc\_add\_data (vrna\_fold\_compound\_t \*vc, void \*data, vrna\_auxdata\_free\_f f)

Add an auxiliary data structure for the generic hard constraints callback function.

int vrna\_hc\_add\_from\_db (vrna\_fold\_compound\_t \*vc, const char \*constraint, unsigned int options)

Add hard constraints from pseudo dot-bracket notation.

void print\_tty\_constraint (unsigned int option)

Print structure constraint characters to stdout. (constraint support is specified by option parameter)

void print\_tty\_constraint\_full (void)

Print structure constraint characters to stdout (full constraint support)

• void constrain\_ptypes (const char \*constraint, unsigned int length, char \*ptype, int \*BP, int min\_loop\_size, unsigned int idx\_type)

Insert constraining pair types according to constraint structure string.

### 18.30.1 Detailed Description

Functions and data structures for handling of secondary structure hard constraints.

#### 18.30.2 Macro Definition Documentation

#### 18.30.2.1 VRNA CONSTRAINT NO HEADER

#define VRNA\_CONSTRAINT\_NO\_HEADER 0
do not print the header information line

**Deprecated** This mode is not supported anymore!

#### 18.30.2.2 VRNA\_CONSTRAINT\_DB\_ANG\_BRACK

#define VRNA\_CONSTRAINT\_DB\_ANG\_BRACK 524288U
angle brackets '<', '>' switch for structure constraint (paired downstream/upstream)

See also

vrna hc add from db(), vrna constraints add(), vrna message constraint options(), vrna message constraint options all()

### 18.30.3 Enumeration Type Documentation

#### 18.30.3.1 vrna hc type e

enum vrna\_hc\_type\_e

The hard constraints type.

Global and local structure prediction methods use a slightly different way to handle hard constraints internally. This enum is used to distinguish both types.

#### **Enumerator**

| VRNA_HC_DEFAULT | Default Hard Constraints.                                                       |
|-----------------|---------------------------------------------------------------------------------|
| VRNA_HC_WINDOW  | Hard Constraints suitable for local structure prediction using window approach. |
|                 | See also                                                                        |
|                 | vrna_mfe_window(), vrna_mfe_window_zscore(), pfl_fold()                         |

### 18.30.4 Function Documentation

#### 18.30.4.1 vrna\_hc\_add\_data()

Add an auxiliary data structure for the generic hard constraints callback function.

#### See also

```
vrna_hc_add_f()
```

#### **Parameters**

| VC   | The fold compound the generic hard constraint function should be bound to    |
|------|------------------------------------------------------------------------------|
| data | A pointer to the data structure that holds required data for function 'f'    |
| f    | A pointer to a function that free's the memory occupied by data (Maybe NULL) |

#### 18.30.4.2 print\_tty\_constraint()

```
void print_tty_constraint (
          unsigned int option )
```

Print structure constraint characters to stdout. (constraint support is specified by option parameter)

**Deprecated** Use vrna\_message\_constraints() instead!

#### **Parameters**

| option | Option switch that tells which constraint help will be printed |
|--------|----------------------------------------------------------------|
|--------|----------------------------------------------------------------|

#### 18.30.4.3 print\_tty\_constraint\_full()

```
void print_tty_constraint_full (
```

Print structure constraint characters to stdout (full constraint support)

**Deprecated** Use vrna\_message\_constraint\_options\_all() instead!

### 18.30.4.4 constrain\_ptypes()

Insert constraining pair types according to constraint structure string.

**Deprecated** Do not use this function anymore! Structure constraints are now handled through vrna\_hc\_t and related functions.

#### **Parameters**

| constraint    | The structure constraint string                                       |
|---------------|-----------------------------------------------------------------------|
| length        | The actual length of the sequence (constraint may be shorter)         |
| ptype         | A pointer to the basepair type array                                  |
| BP            | (not used anymore)                                                    |
| min_loop_size | The minimal loop size (usually TURN )                                 |
| idx_type      | Define the access type for base pair type array (0 = indx, 1 = iindx) |

### 18.31 hard.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CONSTRAINTS_HARD_H
00002 #define VIENNA_RNA_PACKAGE_CONSTRAINTS_HARD_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00016
00034 typedef struct vrna_hc_s vrna_hc_t;
00035
00040 typedef struct vrna_hc_up_s vrna_hc_up_t;
00041
00042 typedef struct vrna_hc_depot_s vrna_hc_depot_t;
00044 #include <ViennaRNA/fold_compound.h>
00045 #include <ViennaRNA/constraints/basic.h>
00046
00078 typedef unsigned char (*vrna_hc_eval_f) (int
00079
                                                int
                                                              j,
00080
                                                int
                                                              k,
00081
00082
                                                unsigned char d,
00083
                                                void
                                                               *data);
00084
00085 DEPRECATED (typedef unsigned char (vrna_callback_hc_evaluate) (int i,
00086
                                                                      int j,
00087
00088
00089
                                                                      unsigned char d,
00090
                                                                      void *data),
00091
                 "Use vrna_hc_eval_f instead!");
00092
00093
00099 #define VRNA_CONSTRAINT_NO_HEADER
                                                  0
00100
00109 #define VRNA_CONSTRAINT_DB
                                                  16384U
00110
00122 #define VRNA_CONSTRAINT_DB_ENFORCE_BP
                                                        32768U
00123
00135 #define VRNA_CONSTRAINT_DB_PIPE
                                                     65536U
00136
00145 #define VRNA_CONSTRAINT_DB_DOT
                                                     13107211
00154 #define VRNA_CONSTRAINT_DB_X
00161 #define VRNA_CONSTRAINT_DB_ANG_BRACK
                                                     262144U
                                                     524288U
00170 #define VRNA_CONSTRAINT_DB_RND_BRACK
                                                     1048576U
00171
00183 #define VRNA_CONSTRAINT_DB_INTRAMOL
                                               2097152U
00184
00196 #define VRNA_CONSTRAINT_DB_INTERMOL
                                              41943040
00197
00208 #define VRNA_CONSTRAINT_DB_GQUAD
                                                        8388608U
00209
```

18.31 hard.h 639

```
00210 #define VRNA_CONSTRAINT_DB_CANONICAL_BP
                                                       16777216U
00211
00220 #define VRNA_CONSTRAINT_DB_WUSS
                                                       33554432U
00221
00222
00234 #define VRNA_CONSTRAINT_DB_DEFAULT \
       (VRNA_CONSTRAINT_DB \
00235
00236
          VRNA_CONSTRAINT_DB_PIPE \
00237
           VRNA_CONSTRAINT_DB_DOT \
00238
         | VRNA_CONSTRAINT_DB_X \
00239
         | VRNA_CONSTRAINT_DB_ANG_BRACK \
00240
         | VRNA_CONSTRAINT_DB_RND_BRACK \
00241
         | VRNA_CONSTRAINT_DB_INTRAMOL
00242
           VRNA_CONSTRAINT_DB_INTERMOL
00243
         | VRNA_CONSTRAINT_DB_GQUAD \
00244
00245
00252 #define VRNA CONSTRAINT CONTEXT EXT LOOP
                                                     (unsigned char) 0x01
00253
00260 #define VRNA_CONSTRAINT_CONTEXT_HP_LOOP
                                                     (unsigned char) 0x02
00261
00268 #define VRNA_CONSTRAINT_CONTEXT_INT_LOOP
                                                      (unsigned char) 0x04
00269
00276 #define VRNA CONSTRAINT CONTEXT INT LOOP ENC (unsigned char) 0x08
00277
00284 #define VRNA_CONSTRAINT_CONTEXT_MB_LOOP
                                                      (unsigned char) 0x10
00285
00292 #define VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC
                                                      (unsigned char) 0x20
00293
00297 #define VRNA CONSTRAINT CONTEXT ENFORCE
                                                     (unsigned char) 0x40
00298
00302 #define VRNA_CONSTRAINT_CONTEXT_NO_REMOVE
                                                     (unsigned char) 0x80
00303
00304
00308 #define VRNA_CONSTRAINT_CONTEXT_NONE
                                                     (unsigned char) 0
00309
00313 #define VRNA_CONSTRAINT_CONTEXT_CLOSING_LOOPS (unsigned char)(VRNA_CONSTRAINT_CONTEXT_EXT_LOOP |
                                                                      VRNA_CONSTRAINT_CONTEXT_HP_LOOP |
00314
00315
                                                                      VRNA_CONSTRAINT_CONTEXT_INT_LOOP |
00316
                                                                      VRNA_CONSTRAINT_CONTEXT_MB_LOOP)
00317
00321 #define VRNA_CONSTRAINT_CONTEXT_ENCLOSED_LOOPS (unsigned char)(VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC |
00322
                                                                        VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC)
00323
00330 #define VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS
                                                     (unsigned char) (VRNA_CONSTRAINT_CONTEXT_CLOSING_LOOPS |
00331
                                                                      VRNA_CONSTRAINT_CONTEXT_ENCLOSED_LOOPS)
00332
00333
00334 #define VRNA_CONSTRAINT_WINDOW_UPDATE_5
00335
00336 #define VRNA_CONSTRAINT_WINDOW_UPDATE_3
00337
00344 typedef enum {
       VRNA_HC_DEFAULT,
VRNA_HC_WINDOW
00345
00346
00350 } vrna_hc_type_e;
00351
00352
00377 struct vrna_hc_s {
00378 vrna_hc_type_e type;
00379
       unsigned int
                       n;
00380
00381
       unsigned char state;
00382
00383 #ifndef VRNA_DISABLE_C11_FEATURES
       /* Cl1 support for unnamed unions/structs */
00384
00385
       union {
00386
         struct {
00387 #endif
00388
       unsigned char *mx;
00389 #ifndef VRNA_DISABLE_C11_FEATURES
00390 };
00391 struct {
00392 #endif
00393
       unsigned char **matrix_local;
00394 #ifndef VRNA_DISABLE_C11_FEATURES
00395 };
00396 1:
00397 #endif
00398
00399
                             *up ext;
00402
        int
                             *up_hp;
00405
        int
                             *up_int;
00408
        int
                             *up_ml;
00412
        vrna_hc_eval_f
                            f:
```

```
void
                           *data;
       vrna_auxdata_free_f free_data;
00421
00432
      vrna_hc_depot_t *depot;
00433 };
00434
00440 struct vrna_hc_up_s {
00441 int position;
00442 int strand;
00443 unsigned char options;
00444 };
00445
00468 void
00469 vrna_message_constraint_options(unsigned int option);
00470
00471
00482 void
00483 vrna_message_constraint_options_all(void);
00484
00500 void
00501 vrna_hc_init(vrna_fold_compound_t *vc);
00502
00503
00504 void
00505 vrna_hc_init_window(vrna_fold_compound_t *vc);
00506
00507
00508 int
00509 vrna_hc_prepare(vrna_fold_compound_t *fc,
00510
                   unsigned int
                                         options);
00511
00512
00513 void
00514 vrna_hc_update(vrna_fold_compound_t *fc,
                                  i,
options);
             unsigned int
00515
00516
                    unsigned int
00517
00533 void
00534 vrna_hc_add_up(vrna_fold_compound_t *vc,
00535
                    int
                    unsigned char option);
00536
00537
00538
00540 vrna_hc_add_up_strand(vrna_fold_compound_t *fc,
                       unsigned int i, unsigned int strand,
00541
00542
00543
                           unsigned char
                                               option);
00544
00545
00555 int
00556 vrna_hc_add_up_batch(vrna_fold_compound_t *vc,
00557
                        vrna_hc_up_t
                                            *constraints);
00558
00559
00560 int
00561 vrna_hc_add_up_strand_batch(vrna_fold_compound_t *fc,
00562
                                vrna_hc_up_t
                                                      *constraints);
00563
00564
00581 int
00582 vrna_hc_add_bp(vrna_fold_compound_t *vc,
00583
          int i, int j,
00584
00585
                    unsigned char
                                        option);
00586
00587
00588 int
00589 vrna_hc_add_bp_strand(vrna_fold_compound_t *fc,
00590
                      unsigned int i,
00591
                           unsigned int
                                                strand_i,
                                             j,
strand_j,
00592
                           unsigned int
00593
                           unsigned int
00594
                           unsigned char
                                               option);
00595
00596
00614 void
00615 vrna_hc_add_bp_nonspecific(vrna_fold_compound_t *vc,
00616
                                int
                                       i,
d,
00617
                                int
                                unsigned char option);
00618
00619
00620
00632 void
00633 vrna_hc_free(vrna_hc_t *hc);
00634
```

```
00635
00640 void
00641 vrna_hc_add_f(vrna_fold_compound_t *vc,
00642
                   vrna_hc_eval_f
00643
00644
00656 void
00657 vrna_hc_add_data(vrna_fold_compound_t *vc,
            void
                                            *data,
00658
00659
                      vrna_auxdata_free_f f);
00660
00661
00680 int
00681 vrna_hc_add_from_db(vrna_fold_compound_t *vc,
                const char
00682
                         00683
00684
00685
00686 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00695 DEPRECATED (void
                print_tty_constraint(unsigned int option),
00696
00697
                 "Use vrna_message_constraint_options() instead");
00698
00705 DEPRECATED (void
00706
       print_tty_constraint_full(void),
    "Use vrna_message_constraint_options_all() instead");
00707
00708
00721 DEPRECATED (void
00722
                constrain_ptypes(const char
                                               *constraint.
                                 unsigned int length,
00723
00724
                                  char
                                               *ptvpe,
00725
                                  int min_loop_size,
unsigned int idx_type),
00726
00727
                "Use the new API and the hard constraint framework instead");
00728
00729
00730 #endif
00731
00732 #endif
```

# 18.32 ViennaRNA/constraints/ligand.h File Reference

Functions for incorporation of ligands binding to hairpin and interior loop motifs using the soft constraints framework. Include dependency graph for ligand.h: This graph shows which files directly or indirectly include this file:

### **Data Structures**

struct vrna\_sc\_motif\_s

### **Typedefs**

• typedef struct vrna\_sc\_motif\_s vrna\_sc\_motif\_t

Type definition for soft constraint motif.

### **Functions**

• int vrna\_sc\_add\_hi\_motif (vrna\_fold\_compound\_t \*fc, const char \*seq, const char \*structure, FLT\_OR\_DBL energy, unsigned int options)

Add soft constraints for hairpin or interior loop binding motif.

### 18.32.1 Detailed Description

Functions for incorporation of ligands binding to hairpin and interior loop motifs using the soft constraints framework.

# 18.33 ligand.h

# Go to the documentation of this file. 00001 #ifndef VIENNA\_RNA\_PACKAGE\_LIGAND\_H 00002 #define VIENNA\_RNA\_PACKAGE\_LIGAND\_H

```
00019 typedef struct vrna_sc_motif_s vrna_sc_motif_t;
00020
00021 #include <ViennaRNA/datastructures/basic.h> 00022 #include <ViennaRNA/fold_compound.h>
00023
00024 struct vrna_sc_motif_s {
00025
       int i;
       int j;
00026
00027
       int k;
00028
       int 1;
00029
        int number:
00030 };
00031
00032
00059 int
00060 vrna_sc_add_hi_motif(vrna_fold_compound_t *fc,
00061
                            const char
                                                   *seq,
                             const char
                                                   *structure,
00063
                             FLT_OR_DBL
                                                   energy,
00064
                             unsigned int
00065
00066
00067 vrna sc motif t *
00068 vrna_sc_ligand_detect_motifs(vrna_fold_compound_t *fc,
                                    const char
                                                           *structure);
00070
00071
00072 vrna_sc_motif_t *
00073 vrna_sc_ligand_get_all_motifs(vrna_fold_compound_t *fc);
00074
00080 #endif
```

# 18.34 sc cb intern.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CONSTRAINTS_SOFT_INTERN_H
00002 #define VIENNA_RNA_PACKAGE_CONSTRAINTS_SOFT_INTERN_H
00003
00004 #define MOD_PARAMS_STACK_dG
00005 #define MOD_PARAMS_STACK_dH
                                        (1 \ll 1)
00006 #define MOD_PARAMS_MISMATCH_dG (1 « 2)
00007 #define MOD_PARAMS_MISMATCH_dH (1 « 3)
00008 #define MOD_PARAMS_TERMINAL_dG
00009 #define MOD_PARAMS_TERMINAL_dH (1 « 5)
00010 #define MOD_PARAMS_DANGLES_dG (1 « 6)
00011 #define MOD_PARAMS_DANGLES_dH (1 « 7)
00012
00013 /*
00014 #define DEBUG
00015 */
00016 #define MAX_ALPHABET (6)
00017 #define MAX_PAIRS
                             (NBPAIRS + 1 + 25)
00018
00019
00020 /\star a container to store the data read from a json parameter file \star/
00021 struct vrna_sc_mod_param_s {
00022 unsigned int available;
00023
00024
00025
       char
                      one_letter_code;
00026
       char
                      unmodified;
00027
       char
                      pairing_partners[7];
       unsigned int pairing_partners_encoding[7]; unsigned int unmodified_encoding;
00028
00029
00030
00031
       size_t
                  ptypes[MAX_ALPHABET][MAX_ALPHABET];
00032
       size_t
00033
                      stack dG[MAX PAIRS][MAX ALPHABET][MAX ALPHABET];
00034
00035
                     stack_dH[MAX_PAIRS][MAX_ALPHABET][MAX_ALPHABET];
       int
00036
00037
                      dangle5_dG[MAX_PAIRS][MAX_ALPHABET];
                   dangle5_dG[MAX_PAIRS][MAX_ALPHABE1];
dangle5_dH[MAX_PAIRS][MAX_ALPHABET];
00038
       int
00039
        int
                      dangle3_dG[MAX_PAIRS][MAX_ALPHABET];
00040
       int
                      dangle3_dH[MAX_PAIRS][MAX_ALPHABET];
00041
00042
                      mismatch_dG[MAX_PAIRS][MAX_ALPHABET][MAX_ALPHABET];
00043
                      mismatch_dH[MAX_PAIRS][MAX_ALPHABET][MAX_ALPHABET];
00044
00045
       int
                      terminal_dG[MAX_PAIRS];
00046
       int
                      terminal_dH[MAX_PAIRS];
00047 };
00049 /\star the actual data structure passed around while evaluating \star/
```

```
00050 typedef struct {
00051
00052
       size_t ptypes[MAX_ALPHABET][MAX_ALPHABET];
00053
               stack_diff[MAX_PAIRS][MAX_ALPHABET][MAX ALPHABET];
00054
00055
00056
             dangle5_diff[MAX_PAIRS][MAX_ALPHABET];
00057
               dangle3_diff[MAX_PAIRS][MAX_ALPHABET];
00058
00059
               mismatch diff[MAX PAIRS][MAX ALPHABET][MAX ALPHABET];
00060
               terminal_diff[MAX_PAIRS];
00061
       int
00062 } energy_corrections;
00063
00064
00065 #endif
```

#### 18.35 ViennaRNA/constraints/SHAPE.h File Reference

This module provides function to incorporate SHAPE reactivity data into the folding recursions by means of soft constraints.

Include dependency graph for SHAPE.h: This graph shows which files directly or indirectly include this file:

#### **Functions**

• int vrna\_sc\_add\_SHAPE\_deigan (vrna\_fold\_compound\_t \*vc, const double \*reactivities, double m, double b, unsigned int options)

Add SHAPE reactivity data as soft constraints (Deigan et al. method)

• int vrna\_sc\_add\_SHAPE\_deigan\_ali (vrna\_fold\_compound\_t \*vc, const char \*\*shape\_files, const int \*shape\_file\_association, double m, double b, unsigned int options)

Add SHAPE reactivity data from files as soft constraints for consensus structure prediction (Deigan et al. method)

 int vrna\_sc\_add\_SHAPE\_zarringhalam (vrna\_fold\_compound\_t \*vc, const double \*reactivities, double b, double default\_value, const char \*shape\_conversion, unsigned int options)

Add SHAPE reactivity data as soft constraints (Zarringhalam et al. method)

• int vrna\_sc\_SHAPE\_parse\_method (const char \*method\_string, char \*method, float \*param\_1, float \*param 2)

Parse a character string and extract the encoded SHAPE reactivity conversion method and possibly the parameters for conversion into pseudo free energies.

• int vrna\_sc\_SHAPE\_to\_pr (const char \*shape\_conversion, double \*values, int length, double default\_value)

Convert SHAPE reactivity values to probabilities for being unpaired.

# 18.35.1 Detailed Description

This module provides function to incorporate SHAPE reactivity data into the folding recursions by means of soft constraints.

#### 18.35.2 Function Documentation

### 18.35.2.1 vrna\_sc\_SHAPE\_parse\_method()

Parse a character string and extract the encoded SHAPE reactivity conversion method and possibly the parameters for conversion into pseudo free energies.

#### **Parameters**

| method_string | The string that contains the encoded SHAPE reactivity conversion method                                |  |
|---------------|--------------------------------------------------------------------------------------------------------|--|
| method        | A pointer to the memory location where the method character will be stored                             |  |
| param_1       | A pointer to the memory location where the first parameter of the corresponding method will be stored  |  |
| param_2       | A pointer to the memory location where the second parameter of the corresponding method will be stored |  |

#### Returns

1 on successful extraction of the method, 0 on errors

#### 18.36 SHAPE.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CONSTRAINTS_SHAPE_H
00002 #define VIENNA_RNA_PACKAGE_CONSTRAINTS_SHAPE_H
00003
00004 #include <ViennaRNA/fold_compound.h>
00005
00023 void
00024 vrna_constraints_add_SHAPE(vrna_fold_compound_t *vc,
                                    const char *shape_file,
const char *shape_method,
00025
00026
00027
                                    const char
                                                          *shape conversion,
00028
                                    int
                                                          verbose,
00029
                                    unsigned int
                                                          constraint_type);
00030
00031
00032 void
00033 vrna_constraints_add_SHAPE_ali(vrna_fold_compound_t *vc,
                                        const char *shape_method,
const char *shape_files,
00035
                                        const int *shape_file_assoc int verbose, unsigned int constraint_type);
00036
                                                               *shape_file_association,
00037
00038
00039
00040
00066 int
00067 vrna_sc_add_SHAPE_deigan(vrna_fold_compound_t *vc,
00068
                                 const double *reactivities,
                                  double
00069
                                                         m,
00070
                                  double
                                                        b.
                                 double unsigned int
00071
                                                        options);
00072
00073
00086 int
00087 vrna_sc_add_SHAPE_deigan_ali(vrna_fold_compound_t *vc,
                                     const char **shape_files,
const int *shape_file_association,
double m,
double b,
unsigned int options);
00088
00089
00090
00091
00092
00093
00094
00117 int
00118 vrna_sc_add_SHAPE_zarringhalam(vrna_fold_compound_t *vc,
                                        (vrna_roru_com, const double *re b,
                                                               *reactivities,
                                        double
00120
                                                       default_value,
 *shape_conversion,
 options);
00121
                                        const char
00122
00123
                                        unsigned int
00124
00125
00138 int
00139 vrna\_sc\_SHAPE\_parse\_method(const char *method\_string,
                                           *method,
00140
                                    char
00141
                                    float
                                               *param_1,
00142
                                    float
                                                *param_2);
00143
00144
00159 int
00160 vrna_sc_SHAPE_to_pr(const char *shape_conversion,
                double *values,
int length,
00161
00162
00163
                            double
                                        default_value);
00164
```

```
00165
00166 #endif
```

### 18.37 ViennaRNA/constraints/soft.h File Reference

Functions and data structures for secondary structure soft constraints. Include dependency graph for soft.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

struct vrna\_sc\_bp\_storage\_t
 A base pair constraint.

• struct vrna\_sc\_s

The soft constraints data structure. More...

### **Typedefs**

• typedef struct vrna\_sc\_s vrna\_sc\_t

Typename for the soft constraints data structure vrna sc s.

• typedef int(\* vrna\_sc\_f) (int i, int j, int k, int l, unsigned char d, void \*data)

Callback to retrieve pseudo energy contribution for soft constraint feature.

typedef FLT\_OR\_DBL(\* vrna\_sc\_exp\_f) (int i, int j, int k, int l, unsigned char d, void \*data)

Callback to retrieve pseudo energy contribution as Boltzmann Factors for soft constraint feature.

 $\bullet \ \ \text{typedef vrna\_basepair\_t } *(*\ \text{vrna\_sc\_bt\_f}) \ (\text{int i, int j, int k, int I, unsigned char d, void } * \text{data}) \\$ 

Callback to retrieve auxiliary base pairs for soft constraint feature.

#### **Enumerations**

enum vrna\_sc\_type\_e { VRNA\_SC\_DEFAULT , VRNA\_SC\_WINDOW }
 The type of a soft constraint.

#### **Functions**

void vrna sc init (vrna fold compound t \*vc)

Initialize an empty soft constraints data structure within a vrna\_fold\_compound\_t.

- int vrna\_sc\_set\_bp (vrna\_fold\_compound\_t \*vc, const FLT\_OR\_DBL \*\*constraints, unsigned int options) Set soft constraints for paired nucleotides.
- int vrna\_sc\_add\_bp (vrna\_fold\_compound\_t \*vc, int i, int j, FLT\_OR\_DBL energy, unsigned int options)

  Add soft constraints for paired nucleotides.
- int vrna\_sc\_set\_up (vrna\_fold\_compound\_t \*vc, const FLT\_OR\_DBL \*constraints, unsigned int options) Set soft constraints for unpaired nucleotides.
- int vrna\_sc\_add\_up (vrna\_fold\_compound\_t \*vc, int i, FLT\_OR\_DBL energy, unsigned int options)

  Add soft constraints for unpaired nucleotides.
- void vrna sc remove (vrna fold compound t \*vc)

Remove soft constraints from vrna\_fold\_compound\_t.

void vrna\_sc\_free (vrna\_sc\_t \*sc)

Free memory occupied by a vrna\_sc\_t data structure.

• int vrna sc add data (vrna fold compound t \*vc, void \*data, vrna auxdata free f free data)

Add an auxiliary data structure for the generic soft constraints callback function.

• int vrna sc add f (vrna fold compound t \*vc, vrna sc f f)

Bind a function pointer for generic soft constraint feature (MFE version)

• int vrna\_sc\_add\_bt (vrna\_fold\_compound\_t \*vc, vrna\_sc\_bt\_f f)

Bind a backtracking function pointer for generic soft constraint feature.

int vrna\_sc\_add\_exp\_f (vrna\_fold\_compound\_t \*vc, vrna\_sc\_exp\_f exp\_f)

Bind a function pointer for generic soft constraint feature (PF version)

### 18.37.1 Detailed Description

Functions and data structures for secondary structure soft constraints.

# 18.37.2 Enumeration Type Documentation

### 18.37.2.1 vrna\_sc\_type\_e

```
enum vrna_sc_type_e
```

The type of a soft constraint.

#### Enumerator

| VRNA_SC_DEFAULT | Default Soft Constraints.                                                       |
|-----------------|---------------------------------------------------------------------------------|
| VRNA_SC_WINDOW  | Soft Constraints suitable for local structure prediction using window approach. |
|                 | See also                                                                        |
|                 | vrna_mfe_window(), vrna_mfe_window_zscore(), pfl_fold()                         |
|                 |                                                                                 |

# 18.38 soft.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CONSTRAINTS_SOFT_H
00002 #define VIENNA_RNA_PACKAGE_CONSTRAINTS_SOFT_H
00003
00026 typedef struct vrna_sc_s vrna_sc_t;
00027
00028 #include <ViennaRNA/datastructures/basic.h>
00029 #include <ViennaRNA/fold_compound.h>
00030 #include <ViennaRNA/constraints/basic.h>
00031
00064 typedef int (*vrna_sc_f)(int
00065
                                 int
                                                  j,
00066
                                                  k,
00067
                                 int
00068
                                 unsigned char d,
00069
                                                  *data);
                                 void
00070
00071 DEPRECATED(typedef int (vrna_callback_sc_energy)(int i,
00072
00073
00074
                                                            int 1,
00075
                                                            unsigned char d,
00076
                                                            void *data),
00077
                  "Use vrna_sc_f instead!");
00078
00079
00080 typedef int (*vrna_sc_direct_f)(vrna_fold_compound_t *fc,
00081
                                         int
00082
                                                                 j,
k,
                                         int
00083
                                         int
00084
00085
                                                                 *data);
00086
00119 typedef FLT_OR_DBL (*vrna_sc_exp_f)(int
00120
                                                             j,
                                             int
00121
                                             int
                                                             k,
00122
00123
00124
                                             void
00125
00126 DEPRECATED(typedef FLT_OR_DBL (vrna_callback_sc_exp_energy)(int i,
00127
                                                                        int j,
00128
                                                                        int k,
00129
00130
                                                                        unsigned char d,
00131
                                                                        void *data),
                  "Use vrna_sc_exp_f instead!");
00132
00133
00134
```

18.38 soft.h 647

```
00135 typedef FLT_OR_DBL (*vrna_sc_exp_direct_f)(vrna_fold_compound_t *fc,
00137
                                                       int
00138
                                                       int.
                                                                              k,
00139
                                                       int.
                                                                              1.
00140
                                                       void
                                                                              *data);
00141
00168 typedef vrna_basepair_t *(*vrna_sc_bt_f)(int
00169
                                                                      j,
00170
                                                     int
00171
                                                     int
                                                                     1.
00172
                                                     unsigned char
                                                                     d.
00173
                                                    void
                                                                     *data);
00174
00175 DEPRECATED(typedef vrna_basepair_t *(vrna_callback_sc_backtrack)(int i,
                                                                               int j,
00176
00177
                                                                               int k,
00178
                                                                               int 1,
00179
                                                                               unsigned char d,
00180
                                                                               void *data),
00181
                  "Use vrna_sc_bt_f instead");
00182
00183
00193 } vrna_sc_type_e;
00194
00195
00199 typedef struct {
00200 unsigned int interval_start;
00201 unsigned int interval_end;
00202 int e:
00202
                        е;
00203 } vrna_sc_bp_storage_t;
00204
00205
00211 struct vrna_sc_s {
00212 const vrna_sc_type_e type;
00213
        unsigned int
                                 n;
00214
00215
        unsigned char
                                 state;
00216
00217
        int
                                 **energy_up;
00218
        FLT_OR_DBL
                                 **exp_energy_up;
00220
        int
                                 *up_storage;
00221
        vrna_sc_bp_storage_t **bp_storage;
00223 #ifndef VRNA_DISABLE_C11_FEATURES
00224 /* C11 support for unnamed unions/structs */
       union {
00225
00226
         struct {
00227 #endif
00228 int *energy_bp;
00229 FLT_OR_DBL *exp
        FLT_OR_DBL *exp_energy_bp;
00230 #ifndef VRNA_DISABLE_C11_FEATURES
00231 /\star C11 support for unnamed unions/structs \star/
00232 };
00233 struct
00234 #endif
00235 int **energy_bp_local;
00236 FLT_OR_DBL **exp_energy_bp_local;
00237 #ifndef VRNA_DISABLE_C11_FEATURES
00238 /\star C11 support for unnamed unions/structs \star/
00239 };
00240 };
00241 #endif
00242
00243
                       *energy_stack;
*exp_energy_stack;
00244
        FLT_OR_DBL
00246
        /* generic soft contraints below */
        vrna_sc_f f;
vrna_sc_bt_f bt;
00247
00252
00258
        vrna_sc_exp_f exp_f;
00264
        void
                               *data;
00268
        vrna_auxdata_free_f free_data;
00269 };
00270
00287 void
00288 vrna_sc_init(vrna_fold_compound_t *vc);
00289
00290
00291 void
00292 vrna_sc_prepare(vrna_fold_compound_t *vc,
00293
                        unsigned int
                                                 options);
00294
00295
00296 int.
00297 vrna_sc_update(vrna_fold_compound_t *vc,
```

```
unsigned int i, unsigned int options);
00299
00300
00301
00317 int
00318 vrna_sc_set_bp(vrna_fold_compound_t *vc,
                    const FLT_OR_DBL **constraints, unsigned int options);
00320
00321
00322
00337 int
00338 vrna_sc_add_bp(vrna_fold_compound_t *vc,
             int i, int j,
00339
00340
                     FLT_OR_DBL
00341
                                           energy,
                     unsigned int options);
00342
00343
00344
00360 int
00361 vrna_sc_set_up(vrna_fold_compound_t *vc,
                    const FLT_OR_DBL *constraints,
unsigned int options);
00362
00363
00364
00365
00379 int
00380 vrna_sc_add_up(vrna_fold_compound_t *vc,
                     int i,
FLT_OR_DBL energy,
00381
00382
00383
                     unsigned int
                                          options);
00384
00385
00386 int
00387 vrna_sc_set_stack(vrna_fold_compound_t *vc,
           const FLT_OR_DBL *constraints,
unsigned int options);
00388
00389
00390
00391
00392 int
00393 vrna_sc_set_stack_comparative(vrna_fold_compound_t *fc,
                                   const FLT_OR_DBL **constraints, unsigned int options);
00394
00395
00396
00397
00398 int
00399 vrna_sc_add_stack(vrna_fold_compound_t *vc,
                        int i,
FLT_OR_DBL energy,
unsigned int options);
00400
00401
                        unsigned int
00402
00403
00404
00406 vrna_sc_add_stack_comparative(vrna_fold_compound_t *fc,
00407
                                     int
                                     const FLT OR DBL
                                                           *energies,
00408
00409
                                                          options);
                                     unsigned int
00410
00411
00421 void
00422 vrna_sc_remove(vrna_fold_compound_t *vc);
00423
00424
00432 void
00433 vrna_sc_free(vrna_sc_t *sc);
00434
00435
00448 int
00449 vrna_sc_add_data(vrna_fold_compound_t *vc,
00450
              void
                                             *data,
                       vrna_auxdata_free_f free_data);
00451
00452
00453
00454 int.
00455 vrna_sc_add_data_comparative(vrna_fold_compound_t *vc,
00456
                                    void
                                                          **data.
                                    vrna_auxdata_free_f *free_data);
00457
00458
00459
00476 int
00477 vrna_sc_add_f(vrna_fold_compound_t *vc,
00478
                    vrna sc f
00479
00480
00481 size_t
00482 vrna_sc_multi_cb_add(vrna_fold_compound_t *fc,
                           vrna_sc_direct_f cb,
vrna_sc_exp_direct_f cb_exp,
00483
                          vrna_sc_direct_f
00484
00485
                            void
                                                 *data,
```

```
00486
                           vrna_auxdata_free_f free_data,
00487
                                                decomp_type);
00488
00489
00490 int.
00491 vrna_sc_add_f_comparative(vrna_fold_compound_t *vc,
                                vrna sc f
00493
00494
00513 int
00514 vrna_sc_add_bt(vrna_fold_compound_t *vc,
00515
                     vrna_sc_bt_f
00516
00517
00535 int
00536 vrna_sc_add_exp_f(vrna_fold_compound_t *vc,
00537
                        vrna_sc_exp_f
                                              exp_f);
00538
00541 vrna_sc_add_exp_f_comparative(vrna_fold_compound_t *vc,
00542
                                    vrna_sc_exp_f
                                                           *exp_f);
00543
00544
00545 #endif
```

# 18.39 ViennaRNA/constraints/soft\_special.h File Reference

Specialized implementations that utilize the soft constraint callback mechanism.

#### **Typedefs**

typedef struct vrna\_sc\_mod\_param\_s \* vrna\_sc\_mod\_param\_t
 Modified base parameter data structure.

#### **Functions**

- vrna sc mod param t vrna sc mod read from jsonfile (const char \*filename, vrna md t \*md)
  - Parse and extract energy parameters for a modified base from a JSON file.
- vrna\_sc\_mod\_param\_t vrna\_sc\_mod\_read\_from\_json (const char \*json, vrna\_md\_t \*md)

Parse and extract energy parameters for a modified base from a JSON string.

void vrna\_sc\_mod\_parameters\_free (vrna\_sc\_mod\_param\_t params)

Release memory occupied by a modified base parameter data structure.

- int vrna\_sc\_mod\_json (vrna\_fold\_compound\_t \*fc, const char \*json, const unsigned int \*modification\_sites)

  Prepare soft constraint callbacks for modified base as specified in JSON string.
- int vrna\_sc\_mod\_jsonfile (vrna\_fold\_compound\_t \*fc, const char \*json\_file, const unsigned int \*modification\_sites)

Prepare soft constraint callbacks for modified base as specified in JSON string.

• int vrna\_sc\_mod (vrna\_fold\_compound\_t \*fc, const vrna\_sc\_mod\_param\_t params, const unsigned int \*modification sites)

Prepare soft constraint callbacks for modified base as specified in JSON string.

• int vrna sc mod m6A (vrna fold compound t \*fc, const unsigned int \*modification sites)

Add soft constraint callbacks for N6-methyl-adenosine (m6A)

int vrna\_sc\_mod\_pseudouridine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

Add soft constraint callbacks for Pseudouridine.

int vrna\_sc\_mod\_inosine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

Add soft constraint callbacks for Inosine.

int vrna\_sc\_mod\_7DA (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

Add soft constraint callbacks for 7-deaza-adenosine (7DA)

int vrna\_sc\_mod\_purine (vrna\_fold\_compound\_t \*fc, const unsigned int \*modification\_sites)

Add soft constraint callbacks for Purine (a.k.a. nebularine)

• int vrna sc mod dihydrouridine (vrna fold compound t \*fc, const unsigned int \*modification sites)

Add soft constraint callbacks for dihydrouridine.

### 18.39.1 Detailed Description

Specialized implementations that utilize the soft constraint callback mechanism.

,

# 18.40 soft special.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CONSTRAINTS_SOFT_SPECIAL_H
00002 #define VIENNA_RNA_PACKAGE_CONSTRAINTS_SOFT_SPECIAL_H
00037 typedef struct vrna_sc_mod_param_s *vrna_sc_mod_param_t;
00038
00039
00050 vrna sc mod param t
00051 vrna_sc_mod_read_from_jsonfile(const char *filename,
                                     vrna_md_t *md);
00053
00054
00065 vrna_sc_mod_param_t
00066 vrna_sc_mod_read_from_json(const char *json,
                                vrna_md_t *md);
00068
00069
00077 void
00078 vrna_sc_mod_parameters_free(vrna_sc_mod_param_t params);
00079
00080
00098 vrna_sc_mod_json(vrna_fold_compound_t *fc,
00099
                     const char
                      const unsigned int *modification_sites);
00100
00101
00102
00120 int
00121 vrna_sc_mod_jsonfile(vrna_fold_compound_t *fc,
00122
                          const char
                                                *json_file,
                           const unsigned int *modification_sites);
00123
00124
00125
00146 int
00147 vrna_sc_mod(vrna_fold_compound_t
           const vrna_sc_mod_param_t params,
const unsigned int *modifi
00148
00149
                                            *modification_sites);
00150
00151
00164 int
00165 vrna_sc_mod_m6A(vrna_fold_compound_t *fc,
00166
                     const unsigned int
                                           *modification_sites);
00167
00168
00181 int
00182 vrna_sc_mod_pseudouridine(vrna_fold_compound_t *fc,
00183
                               const unsigned int *modification_sites);
00184
00185
00198 int
00199 vrna_sc_mod_inosine(vrna_fold_compound_t *fc,
00200
                                               *modification sites);
                          const unsigned int
00202
00215 int
00216 vrna_sc_mod_7DA(vrna_fold_compound_t *fc,
00217
                     const unsigned int
                                           *modification sites);
00218
00219
00232 int
00233 vrna_sc_mod_purine(vrna_fold_compound_t *fc,
00234
                        const unsigned int *modification_sites);
00235
00236
00250 int
00251 vrna_sc_mod_dihydrouridine(vrna_fold_compound_t *fc,
00252
                                const unsigned int *modification_sites);
00253
00254
00258 #endif
```

# 18.41 ViennaRNA/constraints hard.h File Reference

Use ViennaRNA/constraints/hard.h instead. Include dependency graph for constraints\_hard.h:

### 18.41.1 Detailed Description

Use ViennaRNA/constraints/hard.h instead.

Deprecated Use ViennaRNA/constraints/hard.h instead

# 18.42 constraints hard.h

### Go to the documentation of this file.

# 18.43 ViennaRNA/constraints\_ligand.h File Reference

Use ViennaRNA/constraints/ligand.h instead.

Include dependency graph for constraints\_ligand.h:

### 18.43.1 Detailed Description

Use ViennaRNA/constraints/ligand.h instead.

Deprecated Use ViennaRNA/constraints/ligand.h instead

# 18.44 constraints\_ligand.h

### Go to the documentation of this file.

# 18.45 ViennaRNA/constraints\_SHAPE.h File Reference

Use ViennaRNA/constraints/SHAPE.h instead.

Include dependency graph for constraints SHAPE.h:

### 18.45.1 Detailed Description

Use ViennaRNA/constraints/SHAPE.h instead.

Deprecated Use ViennaRNA/constraints/SHAPE.h instead

# 18.46 constraints\_SHAPE.h

#### Go to the documentation of this file.

# 18.47 ViennaRNA/constraints\_soft.h File Reference

Use ViennaRNA/constraints/soft.h instead.

Include dependency graph for constraints\_soft.h:

### 18.47.1 Detailed Description

Use ViennaRNA/constraints/soft.h instead.

Deprecated Use ViennaRNA/constraints/soft.h instead

# 18.48 constraints soft.h

```
Go to the documentation of this file.
```

# 18.49 ViennaRNA/convert\_epars.h File Reference

Use ViennaRNA/params/convert.h instead.

Include dependency graph for convert\_epars.h:

#### 18.49.1 Detailed Description

Use ViennaRNA/params/convert.h instead.

Deprecated Use ViennaRNA/params/convert.h instead

# 18.50 convert\_epars.h

# 18.51 ViennaRNA/data structures.h File Reference

Use ViennaRNA/datastructures/basic.h instead. Include dependency graph for data\_structures.h:

### 18.51.1 Detailed Description

Use ViennaRNA/datastructures/basic.h instead.

Deprecated Use ViennaRNA/datastructures/basic.h instead

# 18.52 data\_structures.h

#### Go to the documentation of this file.

# 18.53 ViennaRNA/datastructures/array.h File Reference

A macro-based dynamic array implementation. Include dependency graph for array.h:

### **Data Structures**

struct vrna\_array\_header\_s
 The header of an array. More...

### Macros

#define vrna\_array(Type) Type \*

Define an array.

• #define vrna\_array\_make(Type, Name) Type \* Name; vrna\_array\_init(Name)

Make an array Name of type Type.

#define VRNA\_ARRAY\_GROW\_FORMULA(n) (1.4 \* (n) + 8)

The default growth formula for array.

• #define VRNA ARRAY HEADER(input) ((vrna array header t \*)(input) - 1)

Retrieve a pointer to the header of an array input.

#define vrna\_array\_size(input) (VRNA\_ARRAY\_HEADER(input)->num)

Get the number of elements of an array input.

• #define vrna\_array\_capacity(input) (VRNA\_ARRAY\_HEADER(input)->size)

Get the size of an array input, i.e. its actual capacity.

• #define vrna\_array\_set\_capacity(a, capacity)

Explicitely set the capacity of an array a.

• #define vrna\_array\_init\_size(a, init\_size)

Initialize an array a with a particular pre-allocated size init\_size.

#define vrna\_array\_init(a) vrna\_array\_init\_size(a, VRNA\_ARRAY\_GROW\_FORMULA(0));

Initialize an array a.

• #define vrna\_array\_free(a)

Release memory of an array a.

• #define vrna\_array\_append(a, item)

Safely append an item to an array a.

#define vrna\_array\_grow(a, min\_capacity)

Grow an array a to provide a minimum capacity min\_capacity.

#### **Typedefs**

typedef struct vrna\_array\_header\_s vrna\_array\_header\_t
 The header of an array.

#### **Functions**

• VRNA\_NO\_INLINE void \* vrna\_\_array\_set\_capacity (void \*array, size\_t capacity, size\_t element\_size) Explicitely set the capacity of an array.

### 18.53.1 Detailed Description

A macro-based dynamic array implementation.

### ,

# 18.54 array.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_ARRAY_H
00002 #define VIENNA_RNA_PACKAGE_ARRAY_H
00003
00004 #include <stddef.h>
00005
00006
00007 #if !defined(VRNA_NO_INLINE)
00008 #if defined(_MSC_VER)
00009
          #define VRNA NO INLINE declspec(noinline)
        #else
00010
00011
          #define VRNA_NO_INLINE __attribute__ ((noinline))
00012
00013 #endif
00014
00091 typedef struct vrna_array_header_s {
00092 size_t num;
00093 size_t size;
00094 } vrna_array_header_t;
00095
00099 #define vrna_array(Type) Type \star
00100
00104 #define vrna_array_make(Type, Name) Type * Name; vrna_array_init(Name)
00106
00107 #ifndef VRNA_ARRAY_GROW_FORMULA
00111 #define VRNA_ARRAY_GROW_FORMULA(n)
                                                                 (1.4 * (n) + 8)
00112 #endif
00113
                                                                  ((vrna_array_header_t *)(input) - 1)
00117 #define VRNA_ARRAY_HEADER(input)
00121 #define vrna_array_size(input)
                                                                  (VRNA_ARRAY_HEADER(input)->num)
00125 #define vrna_array_capacity(input)
                                                                  (VRNA_ARRAY_HEADER(input)->size)
00126
00130 #define vrna_array_set_capacity(a, capacity) do { \setminus
00131 if (a) { \
         void **a_ptr = (void **)&(a); \
00133
          *a_ptr = vrna__array_set_capacity((a), (capacity), sizeof(*(a))); \
00134
00135 } while (0)
00136
00137
00143 VRNA_NO_INLINE void *
00144 vrna__array_set_capacity(void
                                         *array,
00145
                                size_t capacity,
00146
                                size_t element_size);
00147
00152 #define vrna_array_init_size(a, init_size) do { \
00153 void **a_ptr = (void **)&(a); \
00154 size_t size = sizeof(*(a)) * (init_size) + sizeof(vrna_array_header_t); \
00155
       vrna_array_header_t *h = (void *)vrna_alloc(size); \
```

```
00156
        h->num
                           = init_size; \
= (void *)(h + 1); \
00157 h->size
00158
        *a_ptr
00159 } while (0)
00160
00164 #define vrna_array_init(a) vrna_array_init_size(a, VRNA_ARRAY_GROW_FORMULA(0));
00166
00170 #define vrna_array_free(a) do {
00171
        vrna_array_header_t *h = VRNA_ARRAY_HEADER(a); \
00172
        free(h); \
00173 } while (0)
00174
00175
00179 #define vrna_array_append(a, item) do { \
00180 if (vrna_array_capacity(a) < vrna_array_size(a) + 1) \
00181 vrna array grow(a, 0); \
          vrna_array_grow(a, 0); \
        (a) [vrna_array_size(a)++] = (item); \
00182
00183 } while (0)
00184
00185
00189 #define vrna_array_grow(a, min_capacity) do { \
00190 size_t new_capacity = VRNA_ARRAY_GROW_FORMULA(vrna_array_capacity(a)); \
       if (new_capacity < (min_capacity))
  new_capacity = (min_capacity); \</pre>
00191
00192
00193 vrna_array_set_capacity(a, new_capacity); \
00194 } while (0)
00195
00201 #endif
```

# 18.55 ViennaRNA/datastructures/hash\_tables.h File Reference

Implementations of hash table functions.

#### **Data Structures**

struct vrna\_ht\_entry\_db\_t

Default hash table entry. More ...

### **Functions**

#### **Dot-Bracket / Free Energy entries**

• int vrna ht db comp (void \*x, void \*y)

Default hash table entry comparison.

unsigned int vrna\_ht\_db\_hash\_func (void \*x, unsigned long hashtable\_size)

Default hash function.

int vrna\_ht\_db\_free\_entry (void \*hash\_entry)

Default function to free memory occupied by a hash entry.

#### **Abstract interface**

typedef struct vrna\_hash\_table\_s \* vrna\_hash\_table\_t

A hash table object.

typedef int(\* vrna\_ht\_cmp\_f) (void \*x, void \*y)

Callback function to compare two hash table entries.

- typedef int() vrna\_callback\_ht\_compare\_entries(void \*x, void \*y)
- typedef unsigned int(\* vrna\_ht\_hashfunc\_f) (void \*x, unsigned long hashtable\_size)

Callback function to generate a hash key, i.e. hash function.

- typedef unsigned int() vrna\_callback\_ht\_hash\_function(void \*x, unsigned long hashtable\_size)
- typedef int(\* vrna\_ht\_free\_f) (void \*x)

Callback function to free a hash table entry.

- typedef int() vrna\_callback\_ht\_free\_entry(void \*x)
- vrna\_hash\_table\_t vrna\_ht\_init (unsigned int b, vrna\_ht\_cmp\_f compare\_function, vrna\_ht\_hashfunc\_f hash function, vrna ht free f free hash entry)

Get an initialized hash table.

unsigned long vrna\_ht\_size (vrna\_hash\_table\_t ht)

Get the size of the hash table.

unsigned long vrna ht collisions (struct vrna hash table s \*ht)

Get the number of collisions in the hash table.

void \* vrna\_ht\_get (vrna\_hash\_table\_t ht, void \*x)

Get an element from the hash table.

int vrna\_ht\_insert (vrna\_hash\_table\_t ht, void \*x)

Insert an object into a hash table.

void vrna\_ht\_remove (vrna\_hash\_table\_t ht, void \*x)

Remove an object from the hash table.

void vrna\_ht\_clear (vrna\_hash\_table\_t ht)

Clear the hash table.

void vrna\_ht\_free (vrna\_hash\_table\_t ht)

Free all memory occupied by the hash table.

### 18.55.1 Detailed Description

Implementations of hash table functions.

# 18.56 hash\_tables.h

```
Go to the documentation of this file.
```

```
00001 #ifndef VIENNA_RNA_PACKAGE_HASH_UTIL_H
00002 #define VIENNA_RNA_PACKAGE_HASH_UTIL_H
00003
00004 /\star Taken from the barriers tool and modified by GE. \star/
00005
00006 #ifdef VRNA_WARN_DEPRECATED
00007 # if defined(DEPRECATED)
00008 # undef DEPRECATED
00009 # endif
00010 # if defined(__clang_
00011 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00012  # elif defined(__GNUC__)
00013 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00014 # else
00015 # define DEPRECATED(func, msg) func
00016 # endif
00017 #else
00018 # define DEPRECATED(func, msg) func
00019 #endif
00020
00050 typedef struct vrna_hash_table_s *vrna_hash_table_t;
00051
00052
00060 typedef int (*vrna_ht_cmp_f)(void *x,
00061
                                                      void *v);
00062
00063 DEPRECATED(typedef int (vrna_callback_ht_compare_entries)(void \star x,
00064
                                                      void *y),
00065
                 "Use vrna_ht_cmp_f instead!");
00066
00067
00068
                                                                *×,
00076 typedef unsigned int (*vrna_ht_hashfunc_f)(void
00077
                                                             unsigned long hashtable_size);
00078
00079 DEPRECATED (typedef unsigned int (vrna_callback_ht_hash_function) (void
08000
                                                             unsigned long hashtable_size),
00081
                "Use vrna_ht_hashfunc_f instead!");
00082
00083
00090 typedef int (*vrna_ht_free_f) (void *x);
00092 DEPRECATED (typedef int (vrna_callback_ht_free_entry) (void *x),
00093
                 "Use vrna_ht_free_f instead!");
00094
00095
00121 vrna hash table t
00122 vrna_ht_init(unsigned int
00123
                   vrna_ht_cmp_f compare_function,
```

```
vrna_ht_hashfunc_f hash_function,
vrna_ht_free_f free_hash_entry);
00125
00126
00127
00134 unsigned long
00135 vrna ht size(vrna hash table t ht);
00137
00144 unsigned long
00145 vrna_ht_collisions(struct vrna_hash_table_s *ht);
00146
00147
00162 void *
00163 vrna_ht_get(vrna_hash_table_t ht,
00164
                  void
00165
00166
00182 int
00183 vrna_ht_insert(vrna_hash_table_t ht,
               void
00185
00186
00198 void
00199 vrna_ht_remove(vrna_hash_table_t ht,
00200
                      void
00202
00214 void
00215 vrna_ht_clear(vrna_hash_table_t ht);
00216
00217
00228 void
00229 vrna_ht_free(vrna_hash_table_t ht);
00230
00231
00232 /* End of abstract interface */
00244 typedef struct {
00245 char *structure;
00246 float energy;
00247 } vrna_ht_entry_db_t;
00248
00249
00263 int
00264 vrna_ht_db_comp(void *x,
00266
00267
00282 unsigned int
00283 vrna_ht_db_hash_func(void
                                             *X.
00284
                            unsigned long hashtable_size);
00286
00298 int vrna_ht_db_free_entry(void *hash_entry);
00299
00300
00301 /* End of dot-bracket interface */
```

# 18.57 ViennaRNA/datastructures/heap.h File Reference

Implementation of an abstract heap data structure.

### **Typedefs**

- typedef struct vrna heap s \* vrna heap t
  - An abstract heap data structure.
- typedef int(\* vrna\_heap\_cmp\_f) (const void \*a, const void \*b, void \*data)
  - Heap compare function prototype.
- typedef size\_t(\* vrna\_heap\_get\_pos\_f) (const void \*a, void \*data)
  - Retrieve the position of a particular heap entry within the heap.
- typedef void(\* vrna\_heap\_set\_pos\_f) (const void \*a, size\_t pos, void \*data)
  - Store the position of a particular heap entry within the heap.

#### **Functions**

vrna\_heap\_t vrna\_heap\_init (size\_t n, vrna\_heap\_cmp\_f cmp, vrna\_heap\_get\_pos\_f get\_entry\_pos, vrna\_heap\_set\_pos\_f set\_entry\_pos, void \*data)

Initialize a heap data structure.

void vrna\_heap\_free (vrna\_heap\_t h)

Free memory occupied by a heap data structure.

size\_t vrna\_heap\_size (struct vrna\_heap\_s \*h)

Get the size of a heap data structure, i.e. the number of stored elements.

void vrna heap insert (vrna heap t h, void \*v)

Insert an element into the heap.

void \* vrna\_heap\_pop (vrna\_heap\_t h)

Pop (remove and return) the object at the root of the heap.

const void \* vrna\_heap\_top (vrna\_heap\_t h)

Get the object at the root of the heap.

void \* vrna\_heap\_remove (vrna\_heap\_t h, const void \*v)

Remove an arbitrary element within the heap.

void \* vrna\_heap\_update (vrna\_heap\_t h, void \*v)

Update an arbitrary element within the heap.

# 18.57.1 Detailed Description

Implementation of an abstract heap data structure.

# 18.58 heap.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_HEAP_H
00002 #define VIENNA_RNA_PACKAGE_HEAP_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(DEPRECATED)
00006 # undef DEPRECATED
00007 # endif
00008 # if defined(__clang_
00009 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00010 # elif defined(__GNUC_
00011 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00012 # else
00013 # define DEPRECATED(func, msg) func
00014 # endif
00015 #else
00016 # define DEPRECATED(func, msg) func
00017 #endif
00018
00040 typedef struct vrna_heap_s *vrna_heap_t;
00041
00059 typedef int (*vrna_heap_cmp_f)(const void *a,
00060
                                             const void *b,
                                                        *data);
00061
                                             void
00062
00063 DEPRECATED(typedef int (vrna_callback_heap_cmp)(const void *a,
00064
                                             const void *b,
00065
00066
                  "Use vrna_heap_cmp_f instead!");
00067
00068
00076 typedef size_t (*vrna_heap_get_pos_f)(const void *a,
                                                                 *data);
00079 DEPRECATED(typedef size_t (vrna_callback_heap_get_pos)(const void *a,
08000
                                                                 *data),
00081
                 "Use vrna_heap_get_pos_f instead!");
00082
00083
00091 typedef void (*vrna_heap_set_pos_f) (const void *a,
00092
                                                  size_t
                                                              pos,
00093
                                                  void
                                                               *data);
00094
```

18.59 lists.h 659

```
00095 DEPRECATED (typedef void (vrna_callback_heap_set_pos) (const void *a,
                                               size_t
00097
                                                void
                                                            *data),
                "USe vrna_heap_set_pos_f instead!");
00098
00099
00100
00134 vrna_heap_t
00135 vrna_heap_init(size_t
                 vrna_heap_cmp_f cmp,
00136
                    vrna_heap_get_pos_f get_entry_pos,
00137
00138
                    vrna_heap_set_pos_f set_entry_pos,
00139
                    void
                                               *data);
00140
00141
00149 void
00150 vrna_heap_free(vrna_heap_t h);
00151
00152
00159 size_t
00160 vrna_heap_size(struct vrna_heap_s *h);
00161
00162
00172 void
00173 vrna_heap_insert(vrna_heap_t h,
00174
                                    *∇);
                       void
00175
00176
00188 void *
00189 vrna_heap_pop(vrna_heap_t h);
00190
00191
00201 const void *
00202 vrna_heap_top(vrna_heap_t h);
00203
00204
00218 void *
00219 vrna_heap_remove(vrna_heap_t h,
                      const void
00221
00222
00239 void *
00240 vrna_heap\_update(vrna_heap\_t h,
00241
                      void
                                    *V):
00242
00243
00248 #endif
```

#### 18.59 lists.h

```
00001 /*
00002 $Log: lists.h,v $
00003 Revision 1.2 2000/10/10 08:50:01 ivo
00004 some annotation for lclint
00005
00006 Revision 1.1 1997/08/04 21:05:32 walter 00007 Initial revision
00008
00009 */
00010
00011 #ifndef __LIST_H
00012 #define __LIST_H
00013
00014 / \star - - - - \star /
00015
O0017 struct LST_BUCKET *next;
00016 typedef struct LST_BUCKET {
00019 LST_BUCKET;
00020
00022 int count; /* Number of elements currently in 10022 int count; /* Pointer to head element of list 00024 LST_BUCKET *z; /* Pointer to last node of list (2002) for head and z nodes
00025 LST_BUCKET hz[2]; /* Space for head and z nodes
00026 1
00027 LIST:
00028
00029 /\star Return a pointer to the user space given the address of the header of
00030 * a node.
00031 */
00032
00033 #define LST_USERSPACE(h) ((void*)((LST_BUCKET*)(h) + 1))
00034
00035 /\star Return a pointer to the header of a node, given the address of the
00036 * user space.
```

```
00039 #define LST_HEADER(n) ((LST_BUCKET*)(n) - 1)
00040
00041 /\star Return a pointer to the user space of the list's head node. This user
00042 * space does not actually exist, but it is useful to be able to address 00043 * it to enable insertion at the start of the list.
00044 */
00045
00046 #define LST HEAD(1) LST USERSPACE((1) -> head)
00047
00048 /* Determine if a list is empty
00049 */
00050
00051 #define LST_EMPTY(1)
                                          ((1) -> count == 0)
00052
00053 /*-----*
00054
00055 /*@only@*//*@out@*/ void *lst_newnode (int size);
00056 void lst_freenode (/*@only@*/ void *node);
00056 void lst_treenode (/*@only@*/ void *node);
00057 /*@only@*//*@out@*/ LIST *lst_init (void);
00058 void lst_kill (LIST * l, void (*freeNode) ());
00059 void lst_insertafter (LIST * l, /*@keep@*/ void *node, void *after);
00060 void *lst_deletenext (/*@only@*/ LIST * l, void *node);
00061 /*@dependent@*/ void *lst_first (LIST * l);
00062 /*@dependent@*/ void *lst_next (void *prev);
00062 /*@dependent@*/ void *lst_next (void *prev);
00063 void lst_mergesort (LIST * 1, int (*cmp_func) ());
00064
00065 #endif
```

# 18.60 string.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_STRING_H
00002 #define VIENNA_RNA_PACKAGE_STRING_H
00003
00004 #include <stddef.h>
00005 #include <string.h>
00006
00007 typedef char *vrna_string_t;
00008
00012 typedef struct vrna_string_header_s {
00013 size_t len;
00014 size_t size;
        size_t shift_post;
char backup;
00015
00016
       char
00017 } vrna_string_header_t;
00018
00020 #define VRNA_STRING_HEADER(s) ((vrna_string_header_t *)s - 1)
00021
00022 vrna_string_t
00023 vrna_string_make(char const *str);
00024
00025 void
00026 vrna_string_free(vrna_string_t str);
00027
00028 vrna_string_t
00029 vrna_string_append(vrna_string_t str,
00030
                           vrna_string_t const other);
00031
00032 vrna_string_t
00033 vrna_string_append_cstring(vrna_string_t str,
00034
                                    char const
                                                     *other);
00035
00036
00037 #endif
```

# 18.61 ViennaRNA/dist\_vars.h File Reference

Global variables for Distance-Package.

This graph shows which files directly or indirectly include this file:

#### **Data Structures**

· struct Postorder list

Postorder data structure.

struct Tree

18.62 dist\_vars.h 661

Tree data structure.

· struct swString

Some other data structure.

#### **Variables**

· int edit backtrack

Produce an alignment of the two structures being compared by tracing the editing path giving the minimum distance.

char \* aligned\_line [4]

Contains the two aligned structures after a call to one of the distance functions with edit backtrack set to 1.

· int cost matrix

Specify the cost matrix to be used for distance calculations.

### 18.61.1 Detailed Description

Global variables for Distance-Package.

#### 18.61.2 Variable Documentation

#### 18.61.2.1 edit backtrack

```
int edit_backtrack [extern]
```

Produce an alignment of the two structures being compared by tracing the editing path giving the minimum distance. set to 1 if you want backtracking

#### 18.61.2.2 cost\_matrix

```
int cost_matrix [extern]
```

Specify the cost matrix to be used for distance calculations.

if 0, use the default cost matrix (upper matrix in example), otherwise use Shapiro's costs (lower matrix).

# 18.62 dist\_vars.h

```
00002 #define VIENNA_RNA_PACKAGE_DIST_VARS_H
00003
00009 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00010
00017 extern int
                  edit_backtrack;
00018
00023 extern char *aligned_line[4];
00024
00031 extern int cost matrix;
00032
00033 /* Global type defs for Distance-Package */
00034
00038 typedef struct {
00039
                        int type;
00040
                       int weight;
int father;
00041
                       int sons;
int leftmostleaf;
00042
00043
00044
                      } Postorder_list;
00045
00049 typedef struct {
                        Postorder_list *postorder_list;
00050
00051
                        int
                                       *kevroots;
00052
                      } Tree;
00053
00057 typedef struct {
                        int
00058
                               type;
00059
                       int
                               sign;
                        float weight;
00060
00061
                      } swString;
```

```
00062 #endif
00063
00064 #endif
```

# 18.63 ViennaRNA/dp\_matrices.h File Reference

Functions to deal with standard dynamic programming (DP) matrices. Include dependency graph for dp matrices.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

· struct vrna mx mfe s

Minimum Free Energy (MFE) Dynamic Programming (DP) matrices data structure required within the vrna\_fold\_compound\_t. More...

struct vrna mx pf s

Partition function (PF) Dynamic Programming (DP) matrices data structure required within the vrna\_fold\_compound\_t.

### **Typedefs**

• typedef struct vrna\_mx\_mfe\_s vrna\_mx\_mfe\_t

Typename for the Minimum Free Energy (MFE) DP matrices data structure vrna\_mx\_mfe\_s.

typedef struct vrna\_mx\_pf\_s vrna\_mx\_pf\_t

Typename for the Partition Function (PF) DP matrices data structure vrna\_mx\_pf\_s.

#### **Enumerations**

• enum vrna mx type e { VRNA MX DEFAULT , VRNA MX WINDOW , VRNA MX 2DFOLD }

An enumerator that is used to specify the type of a polymorphic Dynamic Programming (DP) matrix data structure.

#### **Functions**

• int vrna\_mx\_add (vrna\_fold\_compound\_t \*vc, vrna\_mx\_type\_e type, unsigned int options)

Add Dynamic Programming (DP) matrices (allocate memory)

void vrna\_mx\_mfe\_free (vrna\_fold\_compound\_t \*vc)

Free memory occupied by the Minimum Free Energy (MFE) Dynamic Programming (DP) matrices.

void vrna\_mx\_pf\_free (vrna\_fold\_compound\_t \*vc)

Free memory occupied by the Partition Function (PF) Dynamic Programming (DP) matrices.

### 18.63.1 Detailed Description

Functions to deal with standard dynamic programming (DP) matrices.

# 18.64 dp matrices.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_DP_MATRICES_H
00002 #define VIENNA_RNA_PACKAGE_DP_MATRICES_H
00020 typedef struct vrna_mx_mfe_s vrna_mx_mfe_t;
00022 typedef struct vrna_mx_pf_s vrna_mx_pf_t;
00023
00024 #include <ViennaRNA/datastructures/basic.h>
00025 #include <ViennaRNA/fold_compound.h>
00026
00032 typedef enum {
00033
        VRNA_MX_DEFAULT,
       VRNA MX WINDOW.
00034
       VRNA MX 2DFOLD
00038
00041 } vrna_mx_type_e;
```

18.64 dp\_matrices.h 663

```
00042
00046 struct vrna_mx_mfe_s {
00050
        const vrna_mx_type_e type;
00051
        unsigned int length;
00052
        unsigned int
                                strands;
00057 #ifndef VRNA_DISABLE_C11_FEATURES
00058 /* C11 support for unnamed unions/structs */
00059
        union {
00060
         struct {
00061 #endif
00067
        int *c;
int *f5;
00068
00069
        int *f3;
00070
        int **fms5;
00071
        int **fms3;
00072
        int *fML;
00073
        int *fM1;
00074
        int *fM2;
00075
        int *ggg;
00076
        int Fc;
00077
        int FcH;
00078
        int FcI;
00079
        int FcM;
00084 #ifndef VRNA_DISABLE_C11_FEATURES
00085
        /* C11 support for unnamed unions/structs */
00086 };
00087 struct {
00088 #endif
00094 int **c_local;

00095 int *f3_local;

00096 int **fML_local;

00097 int **ggg_local;
00101 #ifndef VRNA_DISABLE_C11_FEATURES
00102 \, /* C11 support for unnamed unions/structs */
00103 };
00104 struct {
00105 #endif
00112
                       ***E_F5;
00113
        int
                       **1_min_F5;
00114
        int
                       **1_max_F5;
                       *k_min_F5;
00115
        int
00116
                       *k_max_F5;
        int
00117
00118
                       ***E_F3;
00119
        int
                       **1_min_F3;
00120
        int
                        **1_max_F3;
00121
        int
                        *k_min_F3;
00122
                       *k_max_F3;
        int
00123
00124
                       ***E_C;
        int
00125
        int
                       **1_min_C;
00126
        int
                        **l_max_C;
00127
        int
                        *k_min_C;
00128
        int
                       *k_max_C;
00129
00130
                       * * * E_M;
00131
                       **1_min_M;
        int
00132
        int
                        **1_max_M;
00133
        int
                        *k_min_M;
00134
        int
                       *k_max_M;
00135
00136
        int
                       ***E_M1;
00137
                       **1_min_M1;
        int
00138
        int
                        **1_max_M1;
00139
        int
                        *k_min_M1;
00140
        int
                       *k_max_M1;
00141
00142
        int
                       ***E_M2;
00143
                       **1_min_M2;
        int
00144
        int
                        **1_max_M2;
00145
        int
                        *k_min_M2;
00146
        int
                       *k_max_M2;
00147
00148
                       **E_Fc;
        int
00149
                        *l_min_Fc;
        int
00150
                        *1_max_Fc;
00151
        int
                        k_min_Fc;
00152
        int
                       k_max_Fc;
00153
                       **E_FcH;
00154
        int
00155
                       *l_min_FcH;
        int
00156
        int
                        *1_max_FcH;
00157
        int
                       k_min_FcH;
00158
        int
                       k_max_FcH;
00159
00160
                        **E_FcI;
        int
```

```
00161
       int
                      *l_min_FcI;
00162
                      *l_max_FcI;
       int
00163
        int
                      k_min_FcI;
00164
        int
                      k_max_FcI;
00165
00166
        int
                      **E_FcM;
00167
        int
                      *l_min_FcM;
00168
        int
                      *l_max_FcM;
00169
        int
                       k_min_FcM;
00170
        int
                      k_max_FcM;
00171
00172
        /\star auxilary arrays for remaining set of coarse graining (k,1) > (k_max, 1_max) \star/
             *E_F5_rem;
*E_F3_rem;
00173
       int
       int
00174
00175
        int
                      *E_C_rem;
                     *E_M_rem;
*E_M1_rem;
00176
        int
00177
       int
00178
                     *E_M2_rem;
       int
00179
                   E_Fc_rem;
E_FcH_rem;
E_FcI_rem;
00180
       int
00181
       int
00182
       int
                     E_FcM_rem;
00183
       int
00184
00185 #ifdef COUNT_STATES
00186 unsigned long ***N_F5;
00187 unsigned long ***N C;
       unsigned long ***N_C;
00188
       unsigned long ***N_M;
00189
       unsigned long ***N_M1;
00190 #endif
00191
00196 #ifndef VRNA_DISABLE_C11_FEATURES
00197 /* C11 support for unnamed unions/structs */
00198 };
00199 };
00200 #endif
00201 };
00206 struct vrna_mx_pf_s {
00210 const vrna_mx_type_e type;
00211 unsigned int lengt
       unsigned int
                              length;
                       *scale;
00212 FLT_OR_DBL
00213 FLT_OR_DBL
                               *expMLbase;
00219 #ifndef VRNA_DISABLE_C11_FEATURES
00220 /* C11 support for unnamed unions/structs */
00221
       union {
00222
         struct {
00223 #endif
00224
00230
       FLT_OR_DBL *q;
       FLT_OR_DBL *qb;
00232
       FLT_OR_DBL *qm;
00233
       FLT_OR_DBL *qm1;
00234
       FLT_OR_DBL *probs;
00235
       FLT_OR_DBL *q1k;
00236
        FLT_OR_DBL *qln;
00237
       FLT_OR_DBL *G;
00238
00239
       FLT_OR_DBL qo;
00240
       FLT_OR_DBL *qm2;
00241
       FLT_OR_DBL qho;
00242
       FLT OR_DBL qio;
00243
       FLT_OR_DBL qmo;
00244
00249 #ifndef VRNA_DISABLE_C11_FEATURES
00250 /* C11 support for unnamed unions/structs */
00251 };
00252 struct {
00253 #endif
00254
00260
       FLT_OR_DBL **q_local;
00261
       FLT_OR_DBL **qb_local;
       FLT_OR_DBL **qm_local;
00262
       FLT_OR_DBL **pR;
00263
       FLT_OR_DBL **qm2_local;
00264
00265
       FLT_OR_DBL **QI5;
00266
       FLT_OR_DBL **q21;
00267
       FLT_OR_DBL **qmb;
00268
       FLT_OR_DBL **G_local;
00273 #ifndef VRNA_DISABLE_C11_FEATURES
00274
       /\star C11 support for unnamed unions/structs \star/
00275 };
00276 struct {
00277 #endif
00278
       FLT_OR_DBL ***Q;
00284
00285
       int **1 min O;
```

18.64 dp\_matrices.h 665

```
int **l_max_Q;
00287
        int *k_min_Q;
00288
       int *k_max_Q;
00289
00290
00291
        FLT_OR_DBL ***Q_B;
00292
        int **l_min_Q_B;
00293
        int **l_max_Q_B;
00294
        int *k_min_Q_B;
00295
        int *k_max_Q_B;
00296
00297
        FLT OR DBL ***O M;
       int **l_min_Q_M;
int **l_max_Q_M;
00298
00299
00300
        int *k_min_Q_M;
00301
        int *k_max_Q_M;
00302
00303
        FLT OR DBL ***O M1;
00304
        int **l_min_Q_M1;
00305
        int **l_max_Q_M1;
00306
        int *k_min_Q_M1;
00307
        int *k_max_Q_M1;
00308
        FLT_OR_DBL ***Q_M2;
00309
00310
        int **1_min_Q_M2;
00311
        int **1_max_Q_M2;
00312
        int *k_min_Q_M2;
00313
       int *k_max_Q_M2;
00314
00315
        FLT_OR_DBL **Q_c;
00316
        int *l_min_Q_c;
00317
        int *1_max_Q_c;
00318
       int k_min_Q_c;
00319
        int k_max_Q_c;
00320
        FLT_OR_DBL **Q_cH;
00321
       int *l_min_Q_cH;
int *l_max_Q_cH;
00322
00324
        int k_min_Q_cH;
00325
       int k_max_Q_cH;
00326
00327
       FLT OR DBL **O cI;
       int *l_min_Q_cI;
int *l_max_Q_cI;
00328
00329
00330
       int k_min_Q_cI;
00331
        int k_max_Q_cI;
00332
        FLT_OR_DBL **Q_cM;
00333
00334
       int *l_min_Q_cM;
int *l_max_Q_cM;
00335
00336
        int k_min_Q_cM;
00337
        int k_max_Q_cM;
00338
00339
        /\star auxilary arrays for remaining set of coarse graining (k,1) > (k_max, l_max) \star/
       FLT_OR_DBL *Q_rem;
FLT_OR_DBL *Q_B_rem;
00340
00341
        FLT_OR_DBL *Q_M_rem;
00343
        FLT_OR_DBL *Q_M1_rem;
00344
       FLT_OR_DBL *Q_M2_rem;
00345
00346
       FLT OR DBL O c rem;
00347
       FLT_OR_DBL Q_cH_rem;
00348 FLT_OR_DBL Q_cI_rem;
00349 FLT_OR_DBL Q_cM_rem;
00354 #ifndef VRNA_DISABLE_C11_FEATURES
00355 /\star C11 support for unnamed unions/structs \star/
00356 };
00357 };
00358 #endif
00359 };
00360
00390 int
00391 vrna_mx_add(vrna_fold_compound_t *vc,
              vrna_mx_type_e
unsigned int
00392
                                          type,
00393
                                         options);
00394
00395
00396 int
00397 vrna_mx_mfe_add(vrna_fold_compound_t *vc,
00398
                       vrna_mx_type_e
                                              mx type,
00399
                       unsigned int
                                              options);
00400
00401
00402 int
00403 vrna_mx_pf_add(vrna_fold_compound_t *vc,
                     00404
00405
```

```
00406
00407
00408 int
00409 vrna_mx_prepare(vrna_fold_compound_t *vc,
00410 unsigned int options);
00411
00412
00420 void
00421 vrna_mx_mfe_free(vrna_fold_compound_t *vc);
00422
00423
00431 void
00432 vrna_mx_pf_free(vrna_fold_compound_t *vc);
00433
00434
00439 #endif
```

# 18.65 ViennaRNA/duplex.h File Reference

Functions for simple RNA-RNA duplex interactions. Include dependency graph for duplex.h:

# 18.65.1 Detailed Description

Functions for simple RNA-RNA duplex interactions.

# 18.66 duplex.h

```
Go to the documentation of this file.
```

```
00001 #ifndef VIENNA_RNA_PACKAGE_DUPLEX_H
00002 #define VIENNA_RNA_PACKAGE_DUPLEX_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00006 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00007
00015 duplexT duplexfold(const char *s1,
00016
                      const char *s2);
00017
00018
00019 duplexT *duplex_subopt(const char *s1,
                  const char *s2,
00020
00021
                         int
                                   delta,
00022
                         int
                                   w);
00023
00024
00025 duplexT aliduplexfold(const char *s1[],
              const char *s2[]);
00026
00027
00028
delta,
00032
00033
00034
00035 #endif
00036
00037 #endif
```

# 18.67 ViennaRNA/edit\_cost.h File Reference

global variables for Edit Costs included by treedist.c and stringdist.c

### 18.67.1 Detailed Description

global variables for Edit Costs included by treedist.c and stringdist.c

# 18.68 edit cost.h

```
00001
00006 #define PRIVATE static
00007
00008 PRIVATE char
                                                          sep
00009 PRIVATE char *coding = "Null:U:P:H:B:I:M:S:E:R";
00010
00011 #define DIST_INF 10000 /* infinity */
00012
00013 typedef int CostMatrix[10][10];
00014
00015 PRIVATE CostMatrix *EditCost; /* will point to UsualCost or ShapiroCost */
00016
00017 PRIVATE CostMatrix UsualCost =
00018 {
00019
00020 /*
                                 Null,
00021
00022
                                                                                                                                          2,
                                                      /* Null replaced */
                 DIST INF }.
                                                                                Ο,
                                                                                                             1, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF,
                                                       /* U
                 DIST_INF },
00024
                                                                               1,
                                                                                                            O, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF,
                                                                              replaced */
                DIST_INF } ,
00025
                                                   2, DIST_INF, DIST_INF,
                                                                                                                                         Ο,
                                                                                                                                                                                                                                2, DIST_INF, DIST_INF,
                                                                             replaced */
00026
                                                   2, DIST_INF, DIST_INF,
                                                                                                                                          2,
                                                                                                                                                                                                                                2, DIST_INF, DIST_INF,
                                                                             replaced */
                                                       /* B
                 DIST_INF } ,
00027
                                                   2, DIST_INF, DIST_INF,
                                                                                                                                         2.
                                                                                                                                                                      1,
                                                                                                                                                                                                   0,
                                                                                                                                                                                                                                2, DIST_INF, DIST_INF,
                DIST INF }.
                                                                             replaced */
                                                   2, DIST_INF, DIST_INF,
00028
                                                                                                                                         2.
                                                                                                                                                                      2.
                                                                                                                                                                                                   2.
                                                                                                                                                                                                                                O, DIST INF, DIST INF,
                DIST_INF},
                                                                             replaced */
                                                   1, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF,
00029
                                                       /* S
                DIST_INF } ,
                                                                            replaced */
00030
                                                   1, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF,
                DIST INF }.
                                                      /* E
                                                                            replaced */
                        { DIST_INF, DIST
00031
                                                         replaced */
00032
00033 };
00034
00035
00036 PRIVATE CostMatrix ShapiroCost =
00037 {
00039
                                  Null,
                                                                                                                              Η,
00040
                                                                                                                                                                                                                                                                                         5.
00041
                                                                                1.
                                                                                                            2.
                                                                                                                                    100.
                                                                                                                                                                      5.
                                                                                                                                                                                                   5.
                                                                                                                                                                                                                             75.
                                                                                                                                                                                                                                                            5.
                                                     /* Null replaced */
                 DIST INF }.
00042
                                                   1,
                                                                               Ο,
                                                                                                            1, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF,
                                                       /* U
                                                                              replaced */
00043
                                                   2,
                                                                               1,
                                                                                                            O, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF,
                 DIST_INF },
                                                                             replaced */
                                             100, DIST_INF, DIST_INF,
00044
                                                                                                                                         0.
                                                                                                                                                                                                                                8, DIST_INF, DIST_INF,
                 DIST INF },
                                                       /* H
                                                                             replaced */
                                                    5, DIST_INF, DIST_INF,
                                                                                                                                                                                                                                8, DIST_INF, DIST_INF,
                 DIST INF }.
                                                                             replaced */
00046
                                                   5, DIST_INF, DIST_INF,
                                                                                                                                                                                                                                8, DIST_INF, DIST_INF,
                DIST_INF},
                                                                             replaced */
                                                75, DIST_INF, DIST_INF,
00047
                                                                                                                                         8.
                                                                                                                                                                      8.
                                                                                                                                                                                                   8.
                                                                                                                                                                                                                                0, DIST INF, DIST INF,
                                                      /* M
                DIST_INF } ,
                                                                            replaced */
00048
                                                   5, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF,
                                                                                                                                                                                                                                                           0, DIST_INF,
                                                                             replaced */
00049
                                                   5, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF, DIST_INF,
                                                       /* E
                DIST_INF },
                                                                            replaced */
                         { DIST_INF, DIST
00050
                0 } .
                                 /* R
                                                         replaced */
00051
00052 };
00053
```

# 18.69 ViennaRNA/energy\_const.h File Reference

Use ViennaRNA/params/constants.h instead. Include dependency graph for energy\_const.h:

### 18.69.1 Detailed Description

Use ViennaRNA/params/constants.h instead.

Deprecated Use ViennaRNA/params/constants.h instead

# 18.70 energy\_const.h

#### Go to the documentation of this file.

# 18.71 ViennaRNA/energy\_par.h File Reference

Use ViennaRNA/params/default.h instead.

Include dependency graph for energy\_par.h:

### 18.71.1 Detailed Description

Use ViennaRNA/params/default.h instead.

Deprecated Use ViennaRNA/params/default.h instead

# 18.72 energy\_par.h

#### Go to the documentation of this file.

# 18.73 ViennaRNA/equilibrium probs.h File Reference

Equilibrium Probability implementations.

Include dependency graph for equilibrium\_probs.h: This graph shows which files directly or indirectly include this file:

#### **Functions**

# Base pair probabilities and derived computations

- int vrna\_pairing\_probs (vrna\_fold\_compound\_t \*vc, char \*structure)
- double vrna\_mean\_bp\_distance\_pr (int length, FLT\_OR\_DBL \*pr)

Get the mean base pair distance in the thermodynamic ensemble from a probability matrix.

- double vrna\_mean\_bp\_distance (vrna\_fold\_compound\_t \*vc)
  - Get the mean base pair distance in the thermodynamic ensemble.
- double vrna\_ensemble\_defect\_pt (vrna\_fold\_compound\_t \*fc, const short \*pt)

Compute the Ensemble Defect for a given target structure provided as a vrna\_ptable.

- double vrna\_ensemble\_defect (vrna\_fold\_compound\_t \*fc, const char \*structure)
  - Compute the Ensemble Defect for a given target structure.
- double \* vrna\_positional\_entropy (vrna\_fold\_compound\_t \*fc)

Compute a vector of positional entropies.

vrna\_ep\_t \* vrna\_stack\_prob (vrna\_fold\_compound\_t \*vc, double cutoff)

Compute stacking probabilities.

#### Multimer probabilities computations

void vrna\_pf\_dimer\_probs (double FAB, double FA, double FB, vrna\_ep\_t \*prAB, const vrna\_ep\_t \*prA, const vrna\_ep\_t \*prB, int Alength, const vrna\_exp\_param\_t \*exp\_params)

Compute Boltzmann probabilities of dimerization without homodimers.

#### Structure probability computations

- double vrna\_pr\_structure (vrna\_fold\_compound\_t \*fc, const char \*structure)

  Compute the equilibrium probability of a particular secondary structure.
- double vrna\_pr\_energy (vrna\_fold\_compound\_t \*vc, double e)

### 18.73.1 Detailed Description

Equilibrium Probability implementations.

This file includes various implementations for equilibrium probability computations based on the partition function of an RNA sequence, two concatenated sequences, or a sequence alignment.

# 18.74 equilibrium probs.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_EQUILIBRIUM_PROBS_H
00002 #define VIENNA_RNA_PACKAGE_EQUILIBRIUM_PROBS_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005 #include <ViennaRNA/fold_compound.h>
00006 #include <ViennaRNA/utils/structures.h>
00007 #include <ViennaRNA/params/basic.h>
80000
00020 /
00024
00025
00026
00062 int
00063 vrna_pairing_probs(vrna_fold_compound_t *vc,
00064
                                           *structure);
00065
00066
00082 double
00083 vrna_mean_bp_distance_pr(int
                                      length,
                            FLT OR DBL *pr);
00085
00086
00101 double
00102 vrna_mean_bp_distance(vrna_fold_compound_t *vc);
00103
00128 vrna_ensemble_defect_pt(vrna_fold_compound_t *fc,
00129
                           const short
00130
00131
00155 double
00156 vrna_ensemble_defect(vrna_fold_compound_t *fc,
00157
                        const char
                                            *structure);
00158
00159
00182 double *
00183 vrna_positional_entropy(vrna_fold_compound_t *fc);
00196 vrna_ep_t *
00197 vrna_stack_prob(vrna_fold_compound_t *vc,
00198
                                        cutoff);
                    double
00199
00201 /\star End base pair related functions \star/
00227 void
00228 vrna_pf_dimer_probs(double
                                              FAB,
00229
                        double
                                              FA.
00230
                        double
                                              FB,
```

```
vrna_ep_t
00232
                          const vrna_ep_t
00233
                          const vrna_ep_t
                                                  *prB,
00234
                          int.
                                                   Alength,
00235
                          const vrna_exp_param_t *exp_params);
00236
00238 /\star End multimer probability related functions \star/
00268 double
00269 vrna_pr_structure(vrna_fold_compound_t *fc,
                                               *structure);
00270
                        const char
00271
00272
00273 double
00274 vrna_pr_energy(vrna_fold_compound_t *vc,
                    double
00275
00276
00277
00278 /* End structure probability related functions */
00281 /* End thermodynamics */
00284 #endif
```

# 18.75 ViennaRNA/eval.h File Reference

Functions and variables related to energy evaluation of sequence/structure pairs.

Include dependency graph for eval.h: This graph shows which files directly or indirectly include this file:

#### **Macros**

• #define VRNA\_VERBOSITY\_QUIET -1

Quiet level verbosity setting.

#define VRNA\_VERBOSITY\_DEFAULT 1

Default level verbosity setting.

#### **Functions**

int vrna eval loop pt (vrna fold compound t \*fc, int i, const short \*pt)

Calculate energy of a loop.

int vrna\_eval\_loop\_pt\_v (vrna\_fold\_compound\_t \*fc, int i, const short \*pt, int verbosity\_level)

Calculate energy of a loop.

• float vrna eval move (vrna fold compound t \*fc, const char \*structure, int m1, int m2)

Calculate energy of a move (closing or opening of a base pair)

• int vrna\_eval\_move\_pt (vrna\_fold\_compound\_t \*fc, short \*pt, int m1, int m2)

Calculate energy of a move (closing or opening of a base pair)

• float energy\_of\_structure (const char \*string, const char \*structure, int verbosity\_level)

Calculate the free energy of an already folded RNA using global model detail settings.

• float energy\_of\_struct\_par (const char \*string, const char \*structure, vrna\_param\_t \*parameters, int verbosity\_level)

Calculate the free energy of an already folded RNA.

float energy\_of\_circ\_structure (const char \*string, const char \*structure, int verbosity\_level)

Calculate the free energy of an already folded circular RNA.

• float energy\_of\_circ\_struct\_par (const char \*string, const char \*structure, vrna\_param\_t \*parameters, int verbosity level)

Calculate the free energy of an already folded circular RNA.

- int energy\_of\_structure\_pt (const char \*string, short \*ptable, short \*s, short \*s1, int verbosity\_level)

  Calculate the free energy of an already folded RNA.
- int energy\_of\_struct\_pt\_par (const char \*string, short \*ptable, short \*s, short \*s1, vrna\_param\_t \*parameters, int verbosity level)

Calculate the free energy of an already folded RNA.

• float energy\_of\_move (const char \*string, const char \*structure, int m1, int m2)

Calculate energy of a move (closing or opening of a base pair)

int energy\_of\_move\_pt (short \*pt, short \*s, short \*s1, int m1, int m2)

Calculate energy of a move (closing or opening of a base pair)

- int loop\_energy (short \*ptable, short \*s, short \*s1, int i)
  - Calculate energy of a loop.
- float energy\_of\_struct (const char \*string, const char \*structure)
- int energy of struct pt (const char \*string, short \*ptable, short \*s, short \*s1)
- float energy\_of\_circ\_struct (const char \*string, const char \*structure)

#### Basic Energy Evaluation Interface with Dot-Bracket Structure String

- float vrna eval structure (vrna fold compound t \*fc, const char \*structure)
  - Calculate the free energy of an already folded RNA.
- float vrna\_eval\_covar\_structure (vrna\_fold\_compound\_t \*fc, const char \*structure)
  - Calculate the pseudo energy derived by the covariance scores of a set of aligned sequences.
- float vrna eval structure verbose (vrna fold compound t \*fc, const char \*structure, FILE \*file)
  - Calculate the free energy of an already folded RNA and print contributions on a per-loop base.
- float vrna\_eval\_structure\_v (vrna\_fold\_compound\_t \*fc, const char \*structure, int verbosity\_level, FILE \*file)

Calculate the free energy of an already folded RNA and print contributions on a per-loop base.

float vrna\_eval\_structure\_cstr (vrna\_fold\_compound\_t \*fc, const char \*structure, int verbosity\_level, vrna cstr t output stream)

### **Basic Energy Evaluation Interface with Structure Pair Table**

- int vrna eval structure pt (vrna fold compound t \*fc, const short \*pt)
  - Calculate the free energy of an already folded RNA.
- int vrna\_eval\_structure\_pt\_verbose (vrna\_fold\_compound\_t \*fc, const short \*pt, FILE \*file)
  - Calculate the free energy of an already folded RNA.
- int vrna\_eval\_structure\_pt\_v (vrna\_fold\_compound\_t \*fc, const short \*pt, int verbosity\_level, FILE \*file)

  Calculate the free energy of an already folded RNA.

## Simplified Energy Evaluation with Sequence and Dot-Bracket Strings

- float vrna\_eval\_structure\_simple (const char \*string, const char \*structure)
  - Calculate the free energy of an already folded RNA.
- float vrna\_eval\_circ\_structure (const char \*string, const char \*structure)
  - Evaluate the free energy of a sequence/structure pair where the sequence is circular.
- float vrna\_eval\_gquad\_structure (const char \*string, const char \*structure)
  - Evaluate the free energy of a sequence/structure pair where the structure may contain G-Quadruplexes.
- float vrna eval circ gquad structure (const char \*string, const char \*structure)
  - Evaluate the free energy of a sequence/structure pair where the sequence is circular and the structure may contain G-Quadruplexes.
- float vrna\_eval\_structure\_simple\_verbose (const char \*string, const char \*structure, FILE \*file)
  - Calculate the free energy of an already folded RNA and print contributions per loop.
- float vrna\_eval\_structure\_simple\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)
  - Calculate the free energy of an already folded RNA and print contributions per loop.
- float vrna\_eval\_circ\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)

  Evaluate free energy of a sequence/structure pair, assume sequence to be circular and print contributions per loop.
- float vrna\_eval\_gquad\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)
  - Evaluate free energy of a sequence/structure pair, allow for G-Quadruplexes in the structure and print contributions per loop.
- float vrna\_eval\_circ\_gquad\_structure\_v (const char \*string, const char \*structure, int verbosity\_level, FILE \*file)
  - Evaluate free energy of a sequence/structure pair, assume sequence to be circular, allow for G-Quadruplexes in the structure, and print contributions per loop.

### Simplified Energy Evaluation with Sequence Alignments and Consensus Structure Dot-Bracket String

- float vrna\_eval\_consensus\_structure\_simple (const char \*\*alignment, const char \*structure)
  - Calculate the free energy of an already folded RNA sequence alignment.
- float vrna\_eval\_circ\_consensus\_structure (const char \*\*alignment, const char \*structure)
  - Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the sequences are circular.
- float vrna\_eval\_gquad\_consensus\_structure (const char \*\*alignment, const char \*structure)
  - Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the structure may contain G-Quadruplexes.
- float vrna eval circ gguad consensus structure (const char \*\*alignment, const char \*structure)
  - Evaluate the free energy of a multiple sequence alignment/consensus structure pair where the sequence is circular and the structure may contain G-Quadruplexes.
- float vrna\_eval\_consensus\_structure\_simple\_verbose (const char \*\*alignment, const char \*structure, FILE \*file)
  - Evaluate the free energy of a consensus structure for an RNA sequence alignment and print contributions per loop.
- float vrna\_eval\_consensus\_structure\_simple\_v (const char \*\*alignment, const char \*structure, int verbosity level, FILE \*file)
  - Evaluate the free energy of a consensus structure for an RNA sequence alignment and print contributions per
- float vrna\_eval\_circ\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity level, FILE \*file)
  - Evaluate the free energy of a consensus structure for an alignment of circular RNA sequences and print contributions per loop.
- float vrna\_eval\_gquad\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity level, FILE \*file)
  - Evaluate the free energy of a consensus structure for an RNA sequence alignment, allow for annotated G-← Quadruplexes in the structure and print contributions per loop.
- float vrna\_eval\_circ\_gquad\_consensus\_structure\_v (const char \*\*alignment, const char \*structure, int verbosity\_level, FILE \*file)
  - Evaluate the free energy of a consensus structure for an alignment of circular RNA sequences, allow for annotated G-Quadruplexes in the structure and print contributions per loop.

#### Simplified Energy Evaluation with Sequence String and Structure Pair Table

- int vrna\_eval\_structure\_pt\_simple (const char \*string, const short \*pt)
  - Calculate the free energy of an already folded RNA.
- int vrna\_eval\_structure\_pt\_simple\_verbose (const char \*string, const short \*pt, FILE \*file)
   Calculate the free energy of an already folded RNA.
- int vrna\_eval\_structure\_pt\_simple\_v (const char \*string, const short \*pt, int verbosity\_level, FILE \*file)

  Calculate the free energy of an already folded RNA.

## Simplified Energy Evaluation with Sequence Alignment and Consensus Structure Pair Table

- int vrna\_eval\_consensus\_structure\_pt\_simple (const char \*\*alignment, const short \*pt)

  Evaluate the Free Energy of a Consensus Secondary Structure given a Sequence Alignment.
- int vrna\_eval\_consensus\_structure\_pt\_simple\_verbose (const char \*\*alignment, const short \*pt, FILE \*file)
- int vrna\_eval\_consensus\_structure\_pt\_simple\_v (const char \*\*alignment, const short \*pt, int verbosity
   — level, FILE \*file)

## **Variables**

· int cut\_point

first pos of second seq for cofolding

int eos\_debug

verbose info from energy\_of\_struct

18.76 eval.h 673

## 18.75.1 Detailed Description

Functions and variables related to energy evaluation of sequence/structure pairs.

## 18.76 eval.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_EVAL_H
00002 #define VIENNA_RNA_PACKAGE_EVAL_H
00003
00004 #include <stdio.h>
00005 #include <ViennaRNA/datastructures/basic.h>
00006 #include <ViennaRNA/fold_compound.h>
00007 #include <ViennaRNA/datastructures/char_stream.h>
00008 #include <ViennaRNA/landscape/move.h>
00009 #include <ViennaRNA/params/basic.h> /* for deprecated functions */
00010
00011 #ifdef VRNA WARN DEPRECATED
00012 # if defined(__clang__)
00013 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00014 # elif defined(__GNUC__)
00015 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00016 # else
00017 # define DEPRECATED(func, msg) func
00018 # endif
00019 #else
00020 # define DEPRECATED(func, msg) func
00021 #endif
00022
00023
00058 #define VRNA_VERBOSITY_QUIET -1
00059
00060
00064 #define VRNA_VERBOSITY_DEFAULT
00065
00066
00093 float
00094 vrna_eval_structure(vrna_fold_compound_t *fc,
                       const char
                                              *structure);
00096
00097
00118 float
00119 vrna_eval_covar_structure(vrna_fold_compound_t *fc,
00120
                              const char
                                                    *structure);
00121
00122
00136 float
00137 vrna_eval_structure_verbose(vrna_fold_compound_t *fc,
00138
                                 const char
                                                      *structure,
00139
                                 FILE
                                                      *file);
00140
00141
00168 vrna_eval_structure_v(vrna_fold_compound_t *fc,
                       const char
00169
                                                *structure.
00170
                           int
                                                verbosity_level,
00171
                           FILE
00172
00173
00174 float
00175 vrna_eval_structure_cstr(vrna_fold_compound_t *fc,
00176
                            00177
00178
                              vrna_cstr_t
                                                 output_stream);
00179
00180
00181 /* End basic eval interface */
00208 int
00209 vrna_eval_structure_pt(vrna_fold_compound_t *fc,
                           const short
00211
00212
00226 int
00227 vrna_eval_structure_pt_verbose(vrna_fold_compound_t *fc,
00228
                                   const short *pt,
00229
00230
00231
00257 int
00258 vrna\_eval\_structure\_pt\_v(vrna\_fold\_compound\_t *fc,
00259
                              const short
                                                  *pt,
00260
                              int
                                                  verbosity_level,
                              FILE
                                                  *file);
00262
```

```
00264 /\star End basic eval interface with pair table \star/
00288 float
00289 vrna_eval_structure_simple(const char *string, 00290 const char *structure);
00291
00292
00303 float
00304 vrna_eval_circ_structure(const char *string,
00305
                                const char *structure);
00306
00307
00325 float
00326 vrna_eval_gquad_structure(const char *string,
00327
                                 const char *structure);
00328
00329
00348 float
00349 vrna_eval_circ_gquad_structure(const char *string,
00350
                                     const char *structure);
00351
00352
00367 float
00368 vrna_eval_structure_simple_verbose(const char *string,
00369
                                          const char *structure,
00370
00371
00372
00396 float
00397 vrna_eval_structure_simple_v(const char *string,
00398
                                    const char *structure,
                                           verbosity_level,
00399
                                    int
00400
                                    FILE
00401
00402
00418 float
00419 vrna_eval_circ_structure_v(const char *string,
                                 const char *structure,
                                         verbosity_level,
00421
00422
                                  FILE
                                             *file);
00423
00424
00447 float
00448 vrna_eval_gquad_structure_v(const char *string, 00449 const char *structure,
                                          verbosity_level,
00450
                                   int
00451
                                   FILE
                                               *file);
00452
00453
00474 float
00475 vrna_eval_circ_gquad_structure_v(const char *string,
00476
                                        const char *structure,
00477
                                        int
                                               verbosity_level,
00478
                                        FILE
                                                   *file);
00479
00480
00481 /* End simplified eval interface */
00511 float
00512 vrna_eval_consensus_structure_simple(const char **alignment,
00513
                                             const char *structure);
00514
00515
00531 float
00532 vrna_eval_circ_consensus_structure(const char **alignment,
00533
                                          const char *structure);
00534
00535
00558 float
00559 vrna_eval_gquad_consensus_structure(const char **alignment,
                                           const char *structure);
00561
00562
00585 float
00586 vrna_eval_circ_gquad_consensus_structure(const char **alignment,
00587
                                                const char *structure);
00588
00589
00609 float
00610 vrna_eval_consensus_structure_simple_verbose(const char **alignment,
00611
                                                     const char *structure,
00612
                                                     FILE
                                                              *file);
00613
00614
00639 float
00640 vrna_eval_consensus_structure_simple_v(const char **alignment,
00641
                                               const char *structure,
00642
                                                       verbosity_level,
                                               int
```

18.76 eval.h 675

```
00643
                                             FILE
                                                      *file);
00644
00645
00665 float
{\tt 00666\ vrna\_eval\_circ\_consensus\_structure\_v(const\ char\ **alignment,}
00667
                                           const char *structure.
                                           int
                                                  verbosity_level,
00669
                                           FILE
00670
00671
00698 float
{\tt 00699\ vrna\_eval\_gquad\_consensus\_structure\_v(const\ char\ **alignment,}
00700
                                            const char *structure,
00701
                                                        verbosity_level,
00702
                                            FILE
                                                       *file);
00703
00704
00731 float
00732 vrna_eval_circ_gquad_consensus_structure_v(const char **alignment,
00733
                                                 const char *structure,
                                                        verbosity_level, *file);
00734
00735
                                                 FILE
00736
00737
00738 /* End simplified comparative eval interface */
00761 int
00762 vrna_eval_structure_pt_simple(const char *string,
00763
                                   const short *pt);
00764
00765
00779 int
00780 vrna_eval_structure_pt_simple_verbose(const char *string,
00781
                                           const short *pt,
00782
                                            FILE
                                                   *file);
00783
00784
00809 int
00810 vrna_eval_structure_pt_simple_v(const char *string,
00811
                                      const short *pt,
                                            verbosity_level,
00812
00813
                                      FILE
                                                 *file);
00814
00815
00816 /\star End simplified eval interface with pair table \star/
00839 vrna_eval_consensus_structure_pt_simple(const char **alignment,
00840
                                              const short *pt);
00841
00842
00843 int
00844 vrna_eval_consensus_structure_pt_simple_verbose(const char **alignment,
00845
                                                      const short *pt,
00846
                                                      FILE
                                                                 *file);
00847
00848
00849 int
00850 vrna_eval_consensus_structure_pt_simple_v(const char **alignment,
00851
                                                const short *pt,
                                                       verbosity_level,
00852
                                                int
00853
                                                FILE
                                                            *file);
00854
00855
00856 /* End simplified eval interface with pair table */
00887 int
00888 vrna_eval_loop_pt(vrna_fold_compound_t *fc,
00889
                        int
00890
                        const short
                                             *pt);
00891
00892
00903 vrna_eval_loop_pt_v(vrna_fold_compound_t *fc,
00904
                         int
                                               i,
                          const short
00905
                                               *pt,
00906
                                               verbosity_level);
                          int
00907
00908
00943 float
00944 vrna_eval_move(vrna_fold_compound_t *fc,
00945
            const char
                                         *structure,
00946
                                         m1.
                    int
00947
                    int
                                         m2);
00948
00949
00964 int
00965 vrna_eval_move_pt(vrna_fold_compound_t *fc,
                      short
00966
                                              *pt,
00967
                                             m1.
                        int
```

```
00968
                                               m2);
                        int
00969
00970
00971 int
00972 vrna\_eval\_move\_pt\_simple(const char *string,
00973
                                short *pt,
00974
                                int
                                           m1,
00975
                                           m2);
00976
00977
00978 int
00979 vrna_eval_move_shift_pt(vrna_fold_compound_t *fc,
00980
                               vrna move t
                                                     *m,
00981
00982
00983
00988 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00989
01003 extern int cut_point;
01004
01008 extern int eos_debug;
01009
01028 DEPRECATED(float energy_of_structure(const char *string,
01029
                                            const char *structure,
                 int verbosity_level),

"Use vrna_eval_structure_simple() and vrna_eval_structure() instead");
01030
01031
01032
                                                            *string,
01048 DEPRECATED(float energy_of_struct_par(const char
01049
                                             const char
                                                            *structure,
                                             vrna_param_t *parameters,
01050
01051
                                                            verbosity_level),
                                             int
01052
                 "Use vrna_eval_structure() instead");
01053
01072 DEPRECATED(float energy_of_circ_structure(const char *string,
                                                  const char *structure,
01073
01074
                                                             verbosity_level),
                                                  int
01075
                 "Use vrna_eval_circ_structure_simple() and vrna_eval_structure() instead");
01076
01092 DEPRECATED(float energy_of_circ_struct_par(const char
01093
                                                  const char *structure,
01094
                                                   vrna_param_t *parameters,
01095
                                                  int.
                                                                verbosity_level),
01096
                 "Use vrna_eval_structure() instead");
01097
01098
01099 DEPRECATED(float energy_of_gquad_structure(const char *string,
01100
                                                  const char *structure,
01101
                                                   int
                                                             verbosity_level),
                 "Use vrna_eval_structure_simple() instead");
01102
01103
                                                                 *string,
01104 DEPRECATED(float energy_of_gquad_struct_par(const char
01105
                                                    const char
01106
                                                    vrna_param_t *parameters,
01107
                                                    int
                                                                 verbosity_level),
01108
                  "Use vrna_eval_structure() instead");
01109
01110
01131 DEPRECATED(int energy_of_structure_pt(const char *string,
01132
                                              short
                                                          *ptable,
                                                          *s,
01133
                                             short
01134
                                             short
                                                          *s1.
01135
                                                         verbosity level),
                                             int
01136
                 "Use vrna_eval_structure_pt_simple() and vrna_eval_structure_pt() instead");
01137
01155 DEPRECATED(int energy_of_struct_pt_par(const char *string,
                                                            *ptable,
01156
                                               short
01157
                                              short
                                                            *s,
01158
                                              short
                                                            *s1.
01159
                                              vrna_param_t *parameters,
01160
                                               int
                                                            verbosity_level),
01161
                 "Use vrna_eval_structure_pt() instead");
01162
01163
01180 DEPRECATED(float energy_of_move(const char *string,
01181
                                       const char *structure,
                                              m1,
01182
                                       int
01183
                                                   m2),
                                       int
01184
                 "Use vrna_eval_move() instead");
01185
01186
01205 DEPRECATED(int energy_of_move_pt(short *pt, 01206 short *s,
01207
                                               *s1,
01208
                                        int
                                               m1,
01209
                                        int
                                               m2),
                 "Use vrna\_eval\_move\_pt\_simple() and vrna\_eval\_move\_pt() instead");
01210
01211
```

```
01225 DEPRECATED(int loop_energy(short *ptable,
                                   short *s,
01227
                                   short *s1,
01228
                                   int.
                                          i),
                 "Use vrna_eval_loop_pt() instead");
01229
01230
01245 DEPRECATED(float energy_of_struct(const char *string,
01247
                 "Use vrna_eval_structure_simple() instead");
01248
01265 DEPRECATED(int energy_of_struct_pt(const char *string,
01266
                                         short
                                                     *ptable,
01267
                                         short
                                                     *S,
                                                     *s1),
01268
                                         short
01269
                 "Use vrna_eval_structure_pt_simple() instead");
01270
01285 DEPRECATED(float energy_of_circ_struct(const char *string,
01286
                                             const char *structure),
                 "Use vrna_eval_circ_structure_simple() and vrna_eval_structure() instead");
01288
01289 #endif
01290
01295 #endif
```

## 18.77 ViennaRNA/exterior\_loops.h File Reference

Use ViennaRNA/loops/external.h instead.

Include dependency graph for exterior\_loops.h:

## 18.77.1 Detailed Description

Use ViennaRNA/loops/external.h instead.

Deprecated Use ViennaRNA/loops/external.h instead

# 18.78 exterior loops.h

```
Go to the documentation of this file.
```

# 18.79 ViennaRNA/file\_formats.h File Reference

Use ViennaRNA/io/file\_formats.h instead.

Include dependency graph for file\_formats.h:

## 18.79.1 Detailed Description

Use ViennaRNA/io/file formats.h instead.

Deprecated Use ViennaRNA/io/file formats.h instead

# 18.80 file\_formats.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_FILE_FORMATS_DEPRECATED_H 00002 #define VIENNA_RNA_PACKAGE_FILE_FORMATS_DEPRECATED_H 00003
```

# 18.81 ViennaRNA/io/file\_formats.h File Reference

Read and write different file formats for RNA sequences, structures.

Include dependency graph for file\_formats.h: This graph shows which files directly or indirectly include this file:

### **Macros**

#define VRNA OPTION MULTILINE 32U

Tell a function that an input is assumed to span several lines.

#define VRNA\_CONSTRAINT\_MULTILINE 32U

parse multiline constraint

#### **Functions**

• void vrna file helixlist (const char \*seq, const char \*db, float energy, FILE \*file)

Print a secondary structure as helix list.

- void vrna\_file\_connect (const char \*seq, const char \*db, float energy, const char \*identifier, FILE \*file)
- Print a secondary structure as connect table.

   void vrna file bpseq (const char \*seq, const char \*db, FILE \*file)

Print a secondary structure in bpseq format.

- void vrna\_file\_json (const char \*seq, const char \*db, double energy, const char \*identifier, FILE \*file)
  - Print a secondary structure in jsonformat.
- unsigned int vrna\_file\_fasta\_read\_record (char \*\*header, char \*\*sequence, char \*\*\*rest, FILE \*file, unsigned int options)
- char \* vrna\_extract\_record\_rest\_structure (const char \*\*lines, unsigned int length, unsigned int option)

  Extract a dot-bracket structure string from (multiline)character array.
- int vrna\_file\_SHAPE\_read (const char \*file\_name, int length, double default\_value, char \*sequence, double \*values)

Read data from a given SHAPE reactivity input file.

- void vrna\_extract\_record\_rest\_constraint (char \*\*cstruc, const char \*\*lines, unsigned int option)
  - Extract a hard constraint encoded as pseudo dot-bracket string.
- unsigned int read\_record (char \*\*header, char \*\*sequence, char \*\*\*rest, unsigned int options)

Get a data record from stdin.

# 18.81.1 Detailed Description

Read and write different file formats for RNA sequences, structures.

# 18.82 file formats.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_FILE_FORMATS_H
00002 #define VIENNA_RNA_PACKAGE_FILE_FORMATS_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
```

18.82 file\_formats.h 679

```
00007 # elif defined(__GNUC_
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00028 #include <stdio.h>
00029
00030 #include <ViennaRNA/datastructures/basic.h>
00031
00040 void
00041 vrna_file_helixlist(const char
00042
                          const char *db,
00043
                          float
                                      energy,
00044
                          FILE
                                     *file);
00045
00046
00070 void
00071 vrna_file_connect(const char
              const char
00072
                                   *db,
00073
                       float.
                                    energy,
00074
                        const char
                                    *identifier,
00075
                        FILE
                                    *file);
00076
00077
00085 void
00086 vrna_file_bpseq(const char *seq,
00087
                     const char *db.
00088
                     FILE
                                 *file);
00089
00090
00091 #if VRNA_WITH_JSON_SUPPORT
00092
00102 void
00103 vrna_file_json(const char *seq,
00104
                    const char *db,
00105
                     double energy,
00106
                     const char *identifier,
00107
                    FILE
                               *file);
00108
00109
00110 #endif
00111
00121 #define VRNA_OPTION_MULTILINE
00126 #define VRNA_CONSTRAINT_MULTILINE
00127
00193 unsigned int
00194 vrna_file_fasta_read_record(char
                                                **header,
00195
                                                **sequence,
00196
                                  char
00197
                                  FILE
                                                *file,
00198
                                  unsigned int options);
00199
00200
00217 char *
00218 vrna_extract_record_rest_structure(const char **lines,
00219
                                         unsigned int length,
00220
                                         unsigned int option);
00221
00222
00235 int
00236 vrna_file_SHAPE_read(const char *file_name,
                                  length,
00237
                           int
00238
                           double
                                      default_value,
00239
                           char
                                      *sequence,
00240
                           double
                                      *values);
00241
00242 #define VRNA_INPUT_VERBOSE 16384U
00243
00244
00245 int
00246 vrna_file_connect_read_record(FILE
                                                  *fp,
00247
                                                  **id,
                                    char
00248
                                    char
                                                  **sequence,
00249
                                    char
                                                  **structure,
                                                  **remainder,
00250
                                    char
00251
                                    unsigned int options);
00252
00253 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00254
00271 DEPRECATED (void vrna_extract_record_rest_constraint (char
                                                                         **lines,
00272
                                                          const char
                                                          unsigned int option),
00273
00274
                 "This function is obsolete");
```

```
00280 DEPRECATED(char *extract_record_rest_structure(const char
00281
                                                      unsigned int length,
00282
                                                      unsigned int option),
00283
                 "Use vrna_extract_record_rest_structure() instead");
00284
00291 DEPRECATED (unsigned int read_record(char
00292
00293
                                           char
                                          unsigned int options),
00294
                 "Use vrna_file_fasta_read_record() instead");
00295
00296
00297
00298 DEPRECATED(unsigned int get_multi_input_line(char
00299
                                                    unsigned int options),
00300
                 "This function is obsolete");
00301
00302 #endif
00303
00308 #endif
```

# 18.83 ViennaRNA/file\_formats\_msa.h File Reference

Use ViennaRNA/io/file\_formats\_msa.h instead. Include dependency graph for file\_formats\_msa.h:

## 18.83.1 Detailed Description

Use ViennaRNA/io/file\_formats\_msa.h instead.

Deprecated Use ViennaRNA/io/file formats msa.h instead

## 18.84 file formats msa.h

```
Go to the documentation of this file.
```

# 18.85 ViennaRNA/io/file\_formats\_msa.h File Reference

Functions dealing with file formats for Multiple Sequence Alignments (MSA) Include dependency graph for file\_formats\_msa.h: This graph shows which files directly or indirectly include this file:

## **Macros**

- #define VRNA\_FILE\_FORMAT\_MSA\_CLUSTAL 1U
  - Option flag indicating ClustalW formatted files.
- #define VRNA\_FILE\_FORMAT\_MSA\_STOCKHOLM 2U

Option flag indicating Stockholm 1.0 formatted files.

• #define VRNA FILE FORMAT MSA FASTA 4U

Option flag indicating FASTA (Pearson) formatted files.

#define VRNA\_FILE\_FORMAT\_MSA\_MAF 8U

Option flag indicating MAF formatted files.

#define VRNA\_FILE\_FORMAT\_MSA\_MIS 16U

Option flag indicating most informative sequence (MIS) output.

#define VRNA\_FILE\_FORMAT\_MSA\_DEFAULT

Option flag indicating the set of default file formats.

#define VRNA FILE FORMAT MSA NOCHECK 4096U

Option flag to disable validation of the alignment.

#define VRNA\_FILE\_FORMAT\_MSA\_UNKNOWN 8192U

Return flag of vrna\_file\_msa\_detect\_format() to indicate unknown or malformatted alignment.

#define VRNA FILE FORMAT MSA APPEND 16384U

Option flag indicating to append data to a multiple sequence alignment file rather than overwriting it.

#define VRNA\_FILE\_FORMAT\_MSA\_QUIET 32768U

Option flag to suppress unnecessary spam messages on stderr

#define VRNA FILE FORMAT MSA SILENT 65536U

Option flag to completely silence any warnings on stderr

### **Functions**

int vrna\_file\_msa\_read (const char \*filename, char \*\*\*names, char \*\*\*aln, char \*\*id, char \*\*structure, unsigned int options)

Read a multiple sequence alignment from file.

int vrna\_file\_msa\_read\_record (FILE \*fp, char \*\*\*names, char \*\*\*aln, char \*\*id, char \*\*structure, unsigned int options)

Read a multiple sequence alignment from file handle.

unsigned int vrna\_file\_msa\_detect\_format (const char \*filename, unsigned int options)

Detect the format of a multiple sequence alignment file.

• int vrna\_file\_msa\_write (const char \*filename, const char \*\*names, const char \*\*aln, const char \*id, const char \*structure, const char \*source, unsigned int options)

Write multiple sequence alignment file.

## 18.85.1 Detailed Description

Functions dealing with file formats for Multiple Sequence Alignments (MSA)

, ,

# 18.86 file\_formats\_msa.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_FILE_FORMATS_MSA_H
00002 #define VIENNA_RNA_PACKAGE_FILE_FORMATS_MSA_H
00003
00010 #include <stdio.h>
00011
00022 #define VRNA FILE FORMAT MSA CLUSTAL
00023
00028 #define VRNA_FILE_FORMAT_MSA_STOCKHOLM
                                                 2U
00034 #define VRNA_FILE_FORMAT_MSA_FASTA
00035
00040 #define VRNA_FILE_FORMAT_MSA_MAF
                                                 811
00041
00050 #define VRNA_FILE_FORMAT_MSA_MIS
                                                 16U
00051
00056 #define VRNA_FILE_FORMAT_MSA_DEFAULT
00057
          VRNA_FILE_FORMAT_MSA_CLUSTAL
00058
          | VRNA_FILE_FORMAT_MSA_STOCKHOLM \
          | VRNA_FILE_FORMAT_MSA_FASTA \
00059
00060
          | VRNA FILE FORMAT MSA MAF \
00061
00062
00067 #define VRNA_FILE_FORMAT_MSA_NOCHECK
                                                 4096U
00068
00073 #define VRNA_FILE_FORMAT_MSA_UNKNOWN
                                                 81920
00074
00079 #define VRNA_FILE_FORMAT_MSA_APPEND
                                                 16384U
00080
```

```
00085 #define VRNA_FILE_FORMAT_MSA_QUIET
00091 #define VRNA_FILE_FORMAT_MSA_SILENT
                                               65536U
00092
00145 int
00146 vrna_file_msa_read(const char *filename,
                       char
                                     ***names,
00148
                               **id,
00149
                        char
00150
                        char
                                     **structure,
                        unsigned int options);
00151
00152
00153
00210 int
00211 vrna_file_msa_read_record(FILE
00212
                                             ***names,
00213
                               char
                                             ***aln,
00214
                                             **id,
                               char
                               char
                                             **structure,
00216
                               unsigned int options);
00217
00218
00244 unsigned int
00245 vrna_file_msa_detect_format(const char
                                               *filename.
00246
                                 unsigned int options);
00247
00248
00266 int
00267 vrna_file_msa_write(const char
                                       *filename,
                    const char
00268
                                       **names,
00269
                         const char
                                       **aln,
                        const char
                                       *id,
00271
                        const char
                                       *structure,
00272
                         const char
                                       *source,
00273
                         unsigned int options);
00274
00275
00280 #endif
```

# 18.87 ViennaRNA/file\_utils.h File Reference

Use ViennaRNA/io/utils.h instead. Include dependency graph for file\_utils.h:

## 18.87.1 Detailed Description

Use ViennaRNA/io/utils.h instead.

Deprecated Use ViennaRNA/io/utils.h instead

# 18.88 file\_utils.h

#### Go to the documentation of this file.

# 18.89 ViennaRNA/findpath.h File Reference

Use ViennaRNA/landscape/findpath.h instead.

Include dependency graph for findpath.h:

18.90 findpath.h 683

## 18.89.1 Detailed Description

Use ViennaRNA/landscape/findpath.h instead.

**Deprecated** Use ViennaRNA/landscape/findpath.h instead

## 18.90 findpath.h

#### Go to the documentation of this file.

# 18.91 ViennaRNA/landscape/findpath.h File Reference

A breadth-first search heuristic for optimal direct folding paths.

Include dependency graph for findpath.h: This graph shows which files directly or indirectly include this file:

#### **Functions**

- int vrna\_path\_findpath\_saddle (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width)

  Find energy of a saddle point between 2 structures (search only direct path)
- int vrna\_path\_findpath\_saddle\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width, int maxE)

Find energy of a saddle point between 2 structures (search only direct path)

- vrna\_path\_t \* vrna\_path\_findpath (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width)

  Find refolding path between 2 structures (search only direct path)
- vrna\_path\_t \* vrna\_path\_findpath\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int width, int maxE)

Find refolding path between 2 structures (search only direct path)

• int find saddle (const char \*seq, const char \*s1, const char \*s2, int width)

Find energy of a saddle point between 2 structures (search only direct path)

void free\_path (vrna\_path\_t \*path)

Free memory allocated by get\_path() function.

vrna\_path\_t \* get\_path (const char \*seq, const char \*s1, const char \*s2, int width)

Find refolding path between 2 structures (search only direct path)

## 18.91.1 Detailed Description

A breadth-first search heuristic for optimal direct folding paths.

# 18.92 findpath.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_FIND_PATH_H
00002 #define VIENNA_RNA_PACKAGE_FIND_PATH_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
```

```
00010 # define DEPRECATED(func, msg) func
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00030 #include <ViennaRNA/fold_compound.h>
00031 #include <ViennaRNA/landscape/paths.h>
00032
00054 int
00055 vrna_path_findpath_saddle(vrna_fold_compound_t *fc,
                              (vrna_1010_1
const char *$1,
00056
                                                     *s1.
00057
00058
00059
00060
00087 int
00088 vrna_path_findpath_saddle_ub(vrna_fold_compound_t *fc,
                                 const char
                                              *s1,
00090
                                  const char
                                                       *s2,
00091
00092
                                  int
                                                      maxE);
00093
00094
00116 vrna_path_t *
00117 vrna_path_findpath(vrna_fold_compound_t *fc,
                        const char *s1, const char *s2,
00118
00119
00120
                        int
                                             width);
00121
00122
00150 vrna_path_t *
00151 vrna_path_findpath_ub(vrna_fold_compound_t *fc,
                    const char
00152
00153
                           const char
00154
                           int
                                                 width.
00155
                                                maxE);
                           int
00156
00157
00158 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00159
00176 DEPRECATED (int.
       find_saddle(const char *seq,
00177
00178
                            const char *s1,
00179
                            const char *s2,
00180
                                      width),
00181
                "Use vrna_path_findpath_saddle() instead!");
00182
00183
00193 DEPRECATED (void
                free_path(vrna_path_t *path),
00194
00195
                "Use vrna_path_free() instead!");
00196
00197
00214 DEPRECATED(vrna_path_t *
00215
      get_path(const char *seq,
                const char *s1,
00217
                        const char *s2,
00218
                        int
                                    width),
                "Use vrna_path_findpath() instead!");
00219
00220
00221
00222 #endif
00223
00228 #endif
```

## 18.93 ViennaRNA/fold.h File Reference

MFE calculations for single RNA sequences. Include dependency graph for fold.h:

#### **Functions**

float fold\_par (const char \*sequence, char \*structure, vrna\_param\_t \*parameters, int is\_constrained, int is
 circular)

Compute minimum free energy and an appropriate secondary structure of an RNA sequence.

• float fold (const char \*sequence, char \*structure)

Compute minimum free energy and an appropriate secondary structure of an RNA sequence.

18.94 fold.h 685

float circfold (const char \*sequence, char \*structure)

Compute minimum free energy and an appropriate secondary structure of a circular RNA sequence.

void free\_arrays (void)

Free arrays for mfe folding.

void update\_fold\_params (void)

Recalculate energy parameters.

void update fold params par (vrna param t \*parameters)

Recalculate energy parameters.

- void export\_fold\_arrays (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p)
- void export\_fold\_arrays\_par (int \*\*f5\_p, int \*\*c\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p,
   vrna param t \*\*P p)
- void export\_circfold\_arrays (int \*Fc\_p, int \*FcH\_p, int \*FcH\_p, int \*FcM\_p, int \*\*fM2\_p, int \*\*f5\_p, int \*\*e\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p)
- void export\_circfold\_arrays\_par (int \*Fc\_p, int \*FcH\_p, int \*FcI\_p, int \*FcM\_p, int \*\*fM2\_p, int \*\*f5\_p, int \*\*e\_p, int \*\*fML\_p, int \*\*fM1\_p, int \*\*indx\_p, char \*\*ptype\_p, vrna\_param\_t \*\*P\_p)
- int LoopEnergy (int n1, int n2, int type, int type\_2, int si1, int sj1, int sp1, int sq1)
- int HairpinE (int size, int type, int si1, int sj1, const char \*string)
- void initialize fold (int length)

## 18.93.1 Detailed Description

MFE calculations for single RNA sequences.

## 18.94 fold.h

```
Go to the documentation of this file.
```

```
00001 #ifndef VIENNA_RNA_PACKAGE_FOLD_H
00002 #define VIENNA_RNA_PACKAGE_FOLD_H
00003
00004 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00006 #include <ViennaRNA/datastructures/basic.h>
00007 #include <ViennaRNA/params/basic.h>
00008 #include <ViennaRNA/mfe.h>
00009 #include <ViennaRNA/eval.h>
00010
00011 #ifdef VRNA_WARN_DEPRECATED
00012 # if defined(__clang_
00013 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00014 # elif defined(__GNUC
00015 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00016 # else
00017 # define DEPRECATED(func, msg) func
00018 # endif
00019 #else
00020 # define DEPRECATED (func, msg) func
00021 #endif
00022
00077 DEPRECATED(float
00078 fold_par( const char *sequence,
00079
                char *structure,
08000
                vrna_param_t *parameters,
00081
                int is_constrained,
int is_circular),
00082
00083 "Use the new API and vrna_mfe() instead");
00101 DEPRECATED(float fold( const char *sequence, char *structure),
00102 "Use vrna_fold() or vrna_mfe() instead");
00103
00120 DEPRECATED(float circfold( const char *sequence, char *structure),
00121 "Use vrna_circfold() or vrna_mfe() instead");
00122
00123
00130 DEPRECATED (void free_arrays (void),
00131 "This function is obsolete");
00132
00133
00141 DEPRECATED(void update_fold_params(void),
00142 "This function is obsolete");
00143
```

```
00150 DEPRECATED (void update_fold_params_par(vrna_param_t *parameters),
00151 "Use the new API with vrna_fold_compound_t datastructure instead");
00152
00158 DEPRECATED (void
00159 export_fold_arrays( int **f5_p,
                              int **c_p,
00160
                              int **fML_p,
00161
00162
                              int **fM1_p,
                              int **indx_p,
00163
00164
                              char **ptype_p),
00165 "Use the new API with vrna_fold_compound_t datastructure instead");
00166
00172 DEPRECATED (void
00173 export_fold_arrays_par( int **f5_p,
00174
                                   int **c_p,
                                   int **fML_p,
00175
                                   int **fM1_p,
00176
00177
                                   int **indx_p,
                                   char **ptype_p,
vrna_param_t **P_p),
00178
00179
00180 "Use the new API with vrna_fold_compound_t datastructure instead");
00181
00187 DEPRECATED (void
00188 export_circfold_arrays( int *Fc_p,
00189
                                   int *FcH_p,
00190
                                   int *FcI_p,
                                   int *FcM_p,
00191
00192
                                   int **fM2_p,
                                   int **f5_p,
00193
00194
                                   int **c_p,
00195
                                   int **fML_p,
00196
                                   int **fM1_p,
00197
                                   int **indx_p,
00198
                                   char **ptype_p),
00199 "Use the new API with vrna_fold_compound_t datastructure instead");
00200
00206 DEPRECATED (void
00207 export_circfold_arrays_par( int *Fc_p,
00208
                                        int *FcH_p,
00209
                                        int *FcI_p,
                                        int *FcM_p,
00210
00211
                                        int **fM2_p,
00212
                                        int **f5_p,
00213
                                        int **c_p,
00214
                                        int **fML_p,
                                        int **fM1_p,
00215
00216
                                        int **indx_p,
                                        char **ptype_p,
00217
                                        vrna_param_t **P_p),
00218
00219 "Use the new API with vrna_fold_compound_t datastructure instead");
00221
00222
00223 /* finally moved the loop energy function declarations to this header... */
00224 /* BUT: The functions only exist for backward compatibility reasons! */
00225 /* You better include "loop_energies.h" and call the functions: */
00226 /* E_Hairpin() and E_IntLoop() which are (almost) threadsafe as they get */
00227 /\star a pointer to the energy parameter data structure as additional argument \star/
00228
00233 DEPRECATED (int LoopEnergy (int n1,
00234
                                     int n2,
00235
                                     int type,
00236
                                     int type_2,
00237
                                     int sil,
00238
                                     int sj1,
00239
                                     int spl,
00240
                                     int sq1),
00241 "This function is obsolete");
00242
00247 DEPRECATED (int HairpinE (int size,
00248
                                   int type,
00249
                                   int sil,
00250
                                   int sj1,
00251
                                   const char *string),
00252 "Use E_Hairpin() instead");
00253
00259 DEPRECATED (void initialize_fold(int length),
00260 "This function is obsolete");
00261
00265 DEPRECATED(char *backtrack_fold_from_pair(char *sequence,
00266
                                                       int i,
                                                        int j),
00268 "This function is obsolete. Consider using vrna_backtrack_from_intervals() instead");
00269
00270
00271 #endif
00272
```

00277 #endif

## 18.95 ViennaRNA/fold compound.h File Reference

The Basic Fold Compound API.

Include dependency graph for fold\_compound.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

· struct vrna fc s

The most basic data structure required by many functions throughout the RNAlib. More...

#### **Macros**

• #define VRNA STATUS MFE PRE (unsigned char)1

Status message indicating that MFE computations are about to begin.

#define VRNA STATUS MFE POST (unsigned char)2

Status message indicating that MFE computations are finished.

#define VRNA STATUS PF PRE (unsigned char)3

Status message indicating that Partition function computations are about to begin.

#define VRNA\_STATUS\_PF\_POST (unsigned char)4

Status message indicating that Partition function computations are finished.

• #define VRNA OPTION DEFAULT 0U

Option flag to specify default settings/requirements.

#define VRNA OPTION MFE 1U

Option flag to specify requirement of Minimum Free Energy (MFE) DP matrices and corresponding set of energy parameters.

• #define VRNA\_OPTION\_PF 2U

Option flag to specify requirement of Partition Function (PF) DP matrices and corresponding set of Boltzmann factors.

• #define VRNA\_OPTION\_HYBRID 4U

Option flag to specify requirement of dimer DP matrices.

• #define VRNA\_OPTION\_EVAL\_ONLY 8U

Option flag to specify that neither MFE, nor PF DP matrices are required.

• #define VRNA\_OPTION\_WINDOW 16U

Option flag to specify requirement of DP matrices for local folding approaches.

## **Typedefs**

• typedef struct vrna\_fc\_s vrna\_fold\_compound\_t

Typename for the fold\_compound data structure vrna\_fc\_s.

typedef void(\* vrna\_auxdata\_free\_f) (void \*data)

Callback to free memory allocated for auxiliary user-provided data.

• typedef void(\* vrna\_recursion\_status\_f) (unsigned char status, void \*data)

Callback to perform specific user-defined actions before, or after recursive computations.

## **Enumerations**

enum vrna\_fc\_type\_e { VRNA\_FC\_TYPE\_SINGLE , VRNA\_FC\_TYPE\_COMPARATIVE }

An enumerator that is used to specify the type of a vrna\_fold\_compound\_t.

### **Functions**

vrna\_fold\_compound\_t \* vrna\_fold\_compound (const char \*sequence, const vrna\_md\_t \*md\_p, unsigned int options)

Retrieve a vrna\_fold\_compound\_t data structure for single sequences and hybridizing sequences.

vrna\_fold\_compound\_t \* vrna\_fold\_compound\_comparative (const char \*\*sequences, vrna\_md\_t \*md\_p, unsigned int options)

Retrieve a vrna fold compound t data structure for sequence alignments.

void vrna fold compound free (vrna fold compound t \*fc)

Free memory occupied by a vrna\_fold\_compound\_t.

• void vrna\_fold\_compound\_add\_auxdata (vrna\_fold\_compound\_t \*fc, void \*data, vrna\_auxdata\_free\_f f)

Add auxiliary data to the vrna\_fold\_compound\_t.

void vrna\_fold\_compound\_add\_callback (vrna\_fold\_compound\_t \*fc, vrna\_recursion\_status\_f f)

Add a recursion status callback to the vrna fold compound t.

## 18.95.1 Detailed Description

The Basic Fold Compound API.

# 18.96 fold\_compound.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_FOLD_COMPOUND_H
00002 #define VIENNA_RNA_PACKAGE_FOLD_COMPOUND_H
00003
00004 #ifdef VRNA WARN DEPRECATED
00005 # if defined(__clang_
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC_
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00038 typedef struct vrna_fc_s vrna_fold_compound_t;
00039
00058 typedef void (*vrna_auxdata_free_f) (void *data);
00059
00060 DEPRECATED(typedef void (vrna_callback_free_auxdata)(void *data),
00061
                 "Use vrna_auxdata_free_f instead!");
00062
00081 typedef void (*vrna recursion status f) (unsigned char status,
00082
                                                                   *data);
                                                     void
00084 DEPRECATED(typedef void (vrna_callback_recursion_status)(unsigned char status,
00085
                 "Use vrna_recursion_status_f instead!");
00086
00087
00095 #define VRNA_STATUS_MFE_PRE
                                       (unsigned char)1
00096
00103 #define VRNA_STATUS_MFE_POST
                                       (unsigned char) 2
00104
00110 #define VRNA STATUS PF PRE
                                       (unsigned char)3
00111
00117 #define VRNA_STATUS_PF_POST
                                      (unsigned char) 4
00118
00119
00120 #include <ViennaRNA/model.h>
00121 #include <ViennaRNA/params/basic.h>
00122 #include <ViennaRNA/sequence.h>
00123 #include <ViennaRNA/dp_matrices.h>
00124 #include <ViennaRNA/constraints/hard.h>
00125 #include <ViennaRNA/constraints/soft.h>
00126 #include <ViennaRNA/grammar.h>
00127 #include <ViennaRNA/structured domains.h>
00128 #include <ViennaRNA/unstructured domains.h>
00130 #ifdef VRNA_WITH_SVM
00131 #include <ViennaRNA/zscore.h>
00132 #endif
```

```
00133
00134
00138 typedef enum {
       VRNA_FC_TYPE_SINGLE,
VRNA_FC_TYPE_COMPARATIVE
00139
00140
00141 } vrna_fc_type_e;
00142
00143
00156 struct vrna_fc_s {
00161
       const vrna_fc_type_e type;
                         length;
00168
      unsigned int
00169 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
      DEPRECATED(int cutpoint,

"Use strand_* members instead");
00170
00171
00175 #endif
00176 unsigned int
                         *strand_number;
                         *strand order;
00177
       unsigned int
00178
                        *strand_order_uniq;
*strand_start;
       unsigned int
00179
       unsigned int
00180
       unsigned int
                         *strand_end;
00182
       unsigned int
                        strands;
00183
       vrna_seq_t
                         *nucleotides;
00184
       vrna_msa_t
                         *alignment;
00186
       vrna_hc_t
                         *hc;
00188
       vrna_mx_mfe_t
                         *matrices;
00189
       vrna_mx_pf_t
                         *exp_matrices;
00191
       vrna_param_t
00192
       vrna_exp_param_t *exp_params;
               *iindx;
*jindx;
00194
       int
00195
       int
00203
       vrna_recursion_status_f stat_cb;
00208
       void
                                       *auxdata;
       00212
00223
       /\star data structure to adjust additional structural domains, such as G-quadruplexes \star/
00224
       vrna_sd_t *domains_struc;
       /\star data structure to adjust additional contributions to unpaired stretches, e.g. due to protein
00226
     binding */
*domains_up;
00229
       /* auxiliary (user-defined) extension to the folding grammar */
00230
      vrna_gr_aux_t *aux_grammar;
00236 #ifndef VRNA_DISABLE_C11_FEATURES
       /\star C11 support for unnamed unions/structs \star/
00237
00238
       union {
00239
        struct {
00240 #endif
00241
00246
           char *sequence;
00249
           short *sequence_encoding;
00253
           short *encoding5;
00254
           short *encoding3:
00255
00256
           short *sequence_encoding2;
00257
00258
00259
           char *ptype;
00268
           char *ptype_pf_compat;
            vrna_sc_t *sc;
00281 #ifndef VRNA_DISABLE_C11_FEATURES
00282 /\star C11 support for unnamed unions/structs \star/
00283 };
00284 struct {
00285 #endif
00286
00291
                         **sequences;
00295
           unsigned int n_seq;
                  *cons_seq;
           char
00298
00301
           short
00304
                        **S;
**S5;
           short
00307
           short
           short
00310
                         **S3;
00313
       char
                     **Ss;
00314
       unsigned int **a2s;
       int
                      *pscore;
00315
                         **pscore_local;
00318
           int
00321
           short
                        *pscore_pf_compat;
**scs;
00325
           vrna_sc_t
00328
                    oldAliEn;
00329
00333 #ifndef VRNA_DISABLE_C11_FEATURES
00334 };
00335 };
00336 #endif
00337
00344
       unsigned int maxD1;
00345
       unsigned int maxD2;
00346
       short
                     *reference_pt1;
00347
                     *reference pt2:
       short
```

```
unsigned int *referenceBPs1;
       unsigned int *referenceBPs2;
unsigned int *bpdist;
00350
00351
       unsigned int *mm1;
unsigned int *mm2;
00353
00354
       int window_size;
char **ptype_local;
00366
00367
00368 #ifdef VRNA_WITH_SVM
00369
       vrna_zsc_dat_t zscore_data;
00370 #endif
00371
00375 };
00376
00377
00378 /\star the definitions below should be used for functions that return/receive/destroy fold compound data
      structures */
00379
00383 #define VRNA_OPTION_DEFAULT
00384
00391 #define VRNA_OPTION_MFE
00392
00399 #define VRNA_OPTION_PF
00400
00404 #define VRNA_OPTION_HYBRID
00405
00415 #define VRNA_OPTION_EVAL_ONLY
00416
00420 #define VRNA_OPTION_WINDOW
00421
00459 vrna fold compound t *
00460 vrna_fold_compound(const char
                                            *sequence,
00461
                         const vrna_md_t *md_p,
00462
                         unsigned int
                                           options);
00463
00464
00502 vrna_fold_compound_t *
00503 vrna_fold_compound_comparative(const char **sequences,
                                      vrna_md_t
                                                    *md_p,
00505
                                      unsigned int options);
00506
00507
00508 vrna_fold_compound_t \star
00509 vrna_fold_compound_comparative2(const char
                                                                  **sequences,
00510
                                       const char
                                                                   **names,
00511
                                        const unsigned char
00512
                                        const unsigned long long
00513
                                        const unsigned long long *genome_size,
00514
                                       vrna md t
                                                                   *md_p,
                                       unsigned int
00515
                                                                   options);
00516
00518 vrna_fold_compound_t *
00519 vrna_fold_compound_TwoD(const char
                                              *sequence,
00520
                             const char
                                              *s1,
00521
                               const char
                                              *s2.
00522
                               vrna md t
                                              *md p,
00523
                               unsigned int
                                             options);
00524
00525
00526 int
00527 vrna_fold_compound_prepare(vrna_fold_compound_t *fc,
00528
                                  unsigned int
                                                       options);
00530
00538 void
00539 vrna_fold_compound_free(vrna_fold_compound_t *fc);
00540
00541
00559 void
00560 vrna_fold_compound_add_auxdata(vrna_fold_compound_t
                                                                   *fc,
00561
00562
                                      vrna_auxdata_free_f f);
00563
00564
00580 void
00581 vrna_fold_compound_add_callback(vrna_fold_compound_t
00582
                                       vrna_recursion_status_f f);
00583
00584
00589 #endif
```

# 18.97 ViennaRNA/fold\_vars.h File Reference

Here all all declarations of the global variables used throughout RNAlib.

Include dependency graph for fold\_vars.h: This graph shows which files directly or indirectly include this file:

### **Variables**

· int fold\_constrained

Global switch to activate/deactivate folding with structure constraints.

int csv

generate comma seperated output

- char \* RibosumFile
- int james rule
- int logML
- · int cut point

Marks the position (starting from 1) of the first nucleotide of the second molecule within the concatenated sequence.

bondT \* base pair

Contains a list of base pairs after a call to fold().

FLT\_OR\_DBL \* pr

A pointer to the base pair probability matrix.

• int \* iindx

index array to move through pr.

## 18.97.1 Detailed Description

Here all all declarations of the global variables used throughout RNAlib.

#### 18.97.2 Variable Documentation

## 18.97.2.1 RibosumFile

```
char* RibosumFile [extern]
```

warning this variable will vanish in the future ribosums will be compiled in instead

### 18.97.2.2 james rule

```
int james_rule [extern]
```

interior loops of size 2 get energy 0.8Kcal and no mismatches, default 1

### 18.97.2.3 logML

```
int logML [extern]
```

use logarithmic multiloop energy function

## 18.97.2.4 cut\_point

```
int cut_point [extern]
```

Marks the position (starting from 1) of the first nucleotide of the second molecule within the concatenated sequence. To evaluate the energy of a duplex structure (a structure formed by two strands), concatenate the to sequences and set it to the first base of the second strand in the concatenated sequence. The default value of -1 stands for single molecule folding. The cut\_point variable is also used by vrna\_file\_PS\_rnaplot() and PS\_dot\_plot() to mark the chain break in postscript plots.

### 18.97.2.5 base\_pair

```
bondT* base_pair [extern]

Contains a list of base pairs after a call to fold().

base_pair[0].i contains the total number of pairs.
```

**Deprecated** Do not use this variable anymore!

#### 18.97.2.6 pr

```
FLT_OR_DBL* pr [extern]
```

A pointer to the base pair probability matrix.

**Deprecated** Do not use this variable anymore!

#### 18.97.2.7 iindx

```
int* iindx [extern]
```

index array to move through pr.

The probability for base i and j to form a pair is in pr[iindx[i]-j].

**Deprecated** Do not use this variable anymore!

# 18.98 fold vars.h

## Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_FOLD_VARS_H
00002 #define VIENNA_RNA_PACKAGE_FOLD_VARS_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005 /\star For now, we include model.h by default to provide backwards compatibility 00006 However, this will most likely change, since fold_vars.h is scheduled to
          vanish from the sources at latest in ViennaRNA Package v3
00007
00009 #include <ViennaRNA/model.h>
00010
00011
00012 #ifndef VRNA DISABLE BACKWARD COMPATIBILITY
00013
00022 extern int
                    fold_constrained;
00023
00027 extern int csv;
00028
00033 extern char *RibosumFile;
00034
00039 extern int james_rule;
00040
00044 extern int logML;
00045
00057 extern int cut_point;
00058
00065 extern bondT *base_pair;
00072 extern FLT_OR_DBL *pr;
00073
00080 extern int *iindx;
00081
00082
00083 #endif
00084
00085
00086 #endif
```

# 18.99 ViennaRNA/gquad.h File Reference

#### G-quadruplexes.

Include dependency graph for gquad.h:

### **Functions**

- int \* get\_gquad\_matrix (short \*S, vrna\_param\_t \*P)
   Get a triangular matrix prefilled with minimum free energy contributions of G-quadruplexes.
- int parse\_gquad (const char \*struc, int \*L, int I[3])
- PRIVATE int backtrack\_GQuad\_IntLoop (int c, int i, int j, int type, short \*S, int \*ggg, int \*index, int \*p, int \*q, vrna\_param\_t \*P)
- PRIVATE int backtrack\_GQuad\_IntLoop\_L (int c, int i, int j, int type, short \*S, int \*\*ggg, int maxdist, int \*p, int \*q, vrna\_param\_t \*P)

## 18.99.1 Detailed Description

G-quadruplexes.

## 18.100 gquad.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_GQUAD_H
00002 #define VIENNA_RNA_PACKAGE_GQUAD_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005 #include <ViennaRNA/fold_compound.h>
00006 #include <ViennaRNA/params/basic.h>
00007
00008 #ifndef INLINE
00009 #ifdef __GNUC__
00010 # define INLINE inline
00011 #else
00012 # define INLINE
00013 #endif
00014 #endif
00015
00030 int
                  E_gquad(int
                                          L,
1[3],
00031
                           int
00032
                           vrna_param_t
                                         *P);
00033
00034
00035 FLT_OR_DBL exp_E_gquad(int
                                                   1[3],
00036
                                int
00037
                               vrna_exp_param_t
                                                  *pf);
00038
00039
00040 void E_gquad_ali_en(int
00041
                          int
                                          1[3],
00042
                           int
00043
                           const short
                                          **S.
00044
                           unsigned int
                                         **a2s,
00045
                           unsigned int n_seq,
00046
                           vrna_param_t
00047
                           int
                                          en[2]);
00048
00049
00066 int *get_gquad_matrix(short
                             vrna_param_t *P);
00068
00069
00070 int *get_gquad_ali_matrix(unsigned int n,
00071
                                  short
                                                *S cons,
00072
                                  short
                                                **S,
00073
                                  unsigned int **a2s,
00074
                                                n_seq,
00075
                                  vrna_param_t *P);
00076
00077
00078 FLT_OR_DBL *get_gquad_pf_matrix(short
                                                           *S,
00079
                                        FLT_OR_DBL
                                                           *scale,
00080
                                        vrna_exp_param_t
                                                          *pf);
00081
00082
00083 FLT_OR_DBL *get_gquad_pf_matrix_comparative(unsigned int \ \ n ,
00084
                                                     short
                                                                        *S_cons,
00085
                                                                        **S.
                                                     short
00086
                                                     unsigned int
                                                                        **a2s,
00087
                                                     FLT_OR_DBL
                                                                        n_seq,
00088
                                                     unsigned int
                                                                        *pf);
00089
                                                     vrna_exp_param_t
00090
00091
```

```
00092 int **get_gquad_L_matrix(short
00093
                            int
00094
                              int
                                           maxdist,
00095
                              int
                                          n,
00096
                              int.
                                          * * CI .
00097
                              vrna_param_t *P);
00098
00099
00100 void
                vrna_gquad_mx_local_update(vrna_fold_compound_t *vc,
00101
                                            int
                                                                start);
00102
00103
00104 void get_gquad_pattern_mfe(short
                                            *S,
00105
                                             i,
00106
                                int
00107
                                vrna_param_t *P,
00108
                                     *L,
1[3]);
                                int
00109
                                int
00110
00111
00112 void
00113 get_gquad_pattern_exhaustive(short 00114 int 00115 int
                                              *S,
                                              i,
00116
                                  vrna_param_t *P,
00117
                                  int *L,
00118
                                  int
00119
                                  int
                                              threshold);
00120
00121
00122 void get_gquad_pattern_pf(short
                                                *S,
                               int
int
00123
                                                i,
00124
                                                j,
00125
                               vrna_exp_param_t *pf,
                               int
00126
00127
                                                1[3]);
                               int
00128
                                           *S,
gi,
gj,
DBL *G,
DBL *probs,
DBL *scale,
00130 plist *get_plist_gquad_from_pr(short
                                int
00131
00132
                                    int
                                    FLT_OR_DBL
00133
                                    FLT_OR_DBL
00134
                                    FLT_OR_DBL
00135
00136
                                    vrna_exp_param_t *pf);
00137
00138
00139 plist *get_plist_gquad_from_pr_max(short
00140
                                        int
                                                        gi,
                                                      gj,
*G,
00141
                                        int
00142
                                        FLT_OR_DBL
00143
                                        FLT_OR_DBL
                                                        *probs,
00144
                                        FLT_OR_DBL
                                                        *scale,
                                                        *L,
00145
                                        int
00146
                                                        1/31,
                                        int
00147
                                        vrna_exp_param_t *pf);
00148
00149
00150 plist *get_plist_gquad_from_db(const char *structure,
00151
                                   float pr);
00152
00153
00154 plist *
00155 vrna_get_plist_gquad_from_pr(vrna_fold_compound_t *fc,
              int
00156
00157
                                  int
                                                      gj);
00158
00159
00160 plist *
00161 vrna_get_plist_gquad_from_pr_max(vrna_fold_compound_t *fc,
                       int
00162
00163
                                      int
                                                          gj,
                                                          *Lmax,
00164
                                      int
00165
                                                          lmax[3]);
                                      int
00166
00167
00168 int
                 get_gquad_count(short *S,
00169
                  int i,
00170
                                 int
                                       j);
00171
00172
00173 int
                get_gquad_layer_count(short *S,
                                     int i, int j);
00174
00175
00176
00177
00178 void get_gquad_pattern_mfe_ali(short
```

```
00179
                                        unsigned int **a2s,
00180
                                        short
                                                      *S_cons,
00181
                                        int
                                                      n_seq,
00182
                                        int
                                                      i,
00183
                                        int
                                                      i,
00184
                                        vrna param t *P.
00185
                                        int
                                                       *L,
00186
                                        int
                                                      1[3]);
00187
00188
00199 int parse_gquad(const char *struc,
00200
              int
                                     *L.
00201
                                     1[3]);
                        int
00202
00203
00204 INLINE PRIVATE int backtrack_GQuad_IntLoop(int
00205
                                                     int
                                                                    i,
00206
                                                     int
                                                                    j,
00207
                                                      int
                                                                    type,
00208
                                                      short
                                                                    *S,
00209
                                                      int
                                                                    *ggg,
00210
                                                     int
                                                                    *index
00211
                                                     int.
                                                                    *p,
00212
                                                     int.
                                                                    *q,
00213
                                                     vrna_param_t *P);
00214
00215
00216 INLINE PRIVATE int backtrack_GQuad_IntLoop_comparative(int
00217
                                                                                 i,
00218
                                                                   int
                                                                                 j,
00219
                                                                   unsigned int *type,
00220
                                                                   short
                                                                                 *S_cons,
00221
                                                                   short
                                                                                 **S5,
00222
                                                                   short
                                                                                 **S3,
00223
                                                                   unsigned int **a2s,
00224
                                                                   int
                                                                                *ggg,
00225
                                                                                 *index,
                                                                   int
00226
                                                                   int
                                                                                 *p,
00227
                                                                   int
                                                                                 *q,
00228
                                                                   int
                                                                                 n_seq,
00229
                                                                  vrna_param_t *P);
00230
00231
00232 INLINE PRIVATE int backtrack_GQuad_IntLoop_L(int
                                                                      c,
00233
                                                                      i,
00234
                                                        int
00235
                                                        int
                                                                      type,
00236
                                                        short
                                                                     *S,
00237
                                                        int
                                                                     **ddd,
00238
                                                        int
                                                                      maxdist,
00239
                                                        int
                                                                      *p,
00240
                                                                      ٠q,
00241
                                                        vrna_param_t *P);
00242
00243
00244 PRIVATE INLINE int
00245 vrna_BT_gquad_int(vrna_fold_compound_t
                                                 *VC,
00246
                         int
                                                  i,
00247
                          int
                                                  j,
00248
                          int
                                                  en,
                                                  *bp_stack.
00249
                          vrna bp stack t
00250
                                                  *stack count);
                          int
00251
00252
00253 PRIVATE INLINE int
00254 vrna_BT_gquad_mfe(vrna_fold_compound_t
                                                 *VC,
00255
                         int
                                                  i,
00256
                          int
                                                  j,
00257
                          vrna_bp_stack_t
                                                  *bp stack,
00258
                          int
                                                  *stack_count)
00259 {
00260
         \star here we do some fancy stuff to backtrace the stacksize and linker lengths \star of the g-quadruplex that should reside within position i,j
00261
00262
00263
00264
        short
00265
        int
                       1[3], L, a, n_seq;
00266
        vrna_param_t *P;
00267
00268
        if (vc) {
00269
        P = vc->params;
          switch (vc->type) {
  case VRNA_FC_TYPE_SINGLE:
00270
00271
00272
              S = vc->sequence_encoding2;
00273
              L = -1;
00274
00275
               get gguad pattern mfe(S, i, i, P, &L, 1);
```

```
00276
               break;
00277
00278
             case VRNA_FC_TYPE_COMPARATIVE:
               n_seq = vc->n_seq;
L = -1;
00279
00280
00281
               qet_qquad_pattern_mfe_ali(vc->S, vc->a2s, vc->S_cons, n_seq, i, j, P, &L, 1);
00282
               break;
00283
          }
00284
00285
          if (L != -1) {
             /\star fill the G's of the quadruplex into base_pair2 \star/
00286
             for (a = 0; a < L; a++) {
00287
00288
               bp_stack[++(*stack_count)].i = i + a;
00289
               bp_stack[(*stack_count)].j
                                                 = i + a;
00290
               bp_stack[++(*stack_count)].i = i + L + 1[0] + a;
              bp_stack[(*stack_count)].i = i + L + 1[0] + a;
bp_stack[(*stack_count)].i = i + L + 1[0] + L + 1[1] + a;
bp_stack[(*stack_count)].i = i + L + 1[0] + L + 1[1] + a;
bp_stack[(*stack_count)].i = i + L + 1[0] + L + 1[1] + L + 1[2] + a;
00291
00292
00293
00294
00295
               bp_stack[(*stack_count)].j = i + L + 1[0] + L + 1[1] + L + 1[2] + a;
00296
00297
             return 1;
00298
          } else {
00299
             return 0;
00300
          }
00301
00302
00303
        return 0;
00304 }
00305
00306
00307 PRIVATE INLINE int
00308 vrna_BT_gquad_int(vrna_fold_compound_t
00309
                          int
00310
                          int.
00311
                          int
                                                   en,
00312
                          vrna_bp_stack_t
                                                   *bp stack,
00313
                          int
                                                   *stack_count)
00314 {
00315
        int
                        energy, dangles, *idx, ij, p, q, maxl, minl, c0, l1, *ggg;
00316
        unsigned char type;
00317
        char
                       *ptype;
00318
                        si, sj, *S, *S1;
        short
00319
00320
        vrna_param_t *P;
00321
        vrna_md_t
                        *md;
00322
                = vc->jindx;
00323
        idx
                = idx[j] + i;
00324
        ij
00325
                = vc->params;
                 = & (P->model_details);
00326
        md
00327
                = vc->ptype;
        ptype
00328
         type
                = (unsigned char)ptype[ij];
        S1
00329
                 = vc->sequence_encoding;
                 = vc->sequence_encoding2;
00330
        S
00331
        dangles = md->dangles;
        si = S1[i + 1];
sj = S1[j - 1];
00332
00333
00334
                 = vc->matrices->ggg;
        ggg
        energy = 0;
00335
00336
00337
        if (dangles == 2)
00338
          energy += P->mismatchI[type][si][sj];
00339
00340
        if (type > 2)
00341
         energy += P->TerminalAU;
00342
        p = i + 1;
00343
00344
        if (S1[p] == 3) {
         if (p < j - VRNA_GQUAD_MIN_BOX_SIZE) {
00345
             min1 = j - i + p - MAXLOOP - 2;

c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
00346
00347
             minl = MAX2(c0, minl);
00348
             c0 = j - 3;
max1 = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
00349
00350
00351
             maxl = MIN2(c0, maxl);
00352
             for (q = minl; q < maxl; q++) {
00353
              if (S[q] != 3)
00354
                 continue:
00355
               if (en == energy + ggg[idx[q] + p] + P->internal_loop[j - q - 1])
00356
                 return vrna_BT_gquad_mfe(vc, p, q, bp_stack, stack_count);
00357
00358
00359
          }
00360
        }
00361
00362
        for (p = i + 2;
```

```
p < j - VRNA_GQUAD_MIN_BOX_SIZE;
           p++) {

11 = p - i - 1;

if (11 > MAXLOOP)
00364
00365
00366
00367
             break;
00368
00369
           if (S1[p] != 3)
00370
             continue;
00371
           minl = j - i + p - MAXLOOP - 2;
c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
minl = MAX2(c0, minl);
00372
00373
00374
           c0 = j - 1;
max1 = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
00375
00376
00377
            maxl = MIN2(c0, maxl);
           for (q = min1; q < max1; q++) {
  if (S1[q] != 3)</pre>
00378
00379
00380
               continue;
00381
00382
              if (en == energy + ggg[idx[q] + p] + P->internal_loop[l1 + j - q - 1])
00383
               return vrna_BT_gquad_mfe(vc, p, q, bp_stack, stack_count);
00384
           }
         }
00385
00386
00387
         q = j - 1;
         if (S1[q] == 3)
00389
           for (p = i + 4;
00390
               p < j - VRNA_GQUAD_MIN_BOX_SIZE;
             p++) {
11 = p - i - 1;
if (11 > MAXLOOP)
00391
00392
00393
00394
                break;
00395
00396
             if (S1[p] != 3)
00397
00398
00399
              if (en == energy + ggg[idx[q] + p] + P->internal_loop[11])
                return vrna_BT_gquad_mfe(vc, p, q, bp_stack, stack_count);
00401
00402
00403
         return 0;
00404 }
00405
00406
00424 INLINE PRIVATE int
00425 backtrack_GQuad_IntLoop(int
00426
                                    int
00427
                                    int.
00428
                                    int
                                                     type,
00429
                                    short
                                                     *S.
00430
                                    int
                                                     *ggg,
00431
00432
                                    int
00433
                                    int.
00434
                                    vrna_param_t *P)
00435 {
        int energy, dangles, k, l, maxl, minl, c0, 11;
00437
         short si, sj;
00438
00439
         dangles = P->model_details.dangles;
         si = S[i + 1];

sj = S[j - 1];
00440
00441
00442
         energy = 0;
00443
00444
         if (dangles == 2)
00445
          energy += P->mismatchI[type][si][sj];
00446
00447
         if (type > 2)
          energy += P->TerminalAU;
00448
00450
         k = i + 1;
         if (S[k] == 3) {
00451
          if (k < j - VRNA_GQUAD_MIN_BOX_SIZE) {
  min1 = j - i + k - MAXLOOP - 2;
  c0 = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;</pre>
00452
00453
00454
00455
              minl = MAX2(c0, minl);
              c0 = j - 3;

max1 = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;

max1 = MIN2(c0, max1);

for (1 = min1; 1 < max1; 1++) {

  if (S[1] != 3)
00456
00457
00458
00459
00460
00461
                  continue;
00462
00463
                if (c == energy + ggg[index[l] + k] + P->internal_loop[j - l - 1]) {
                 *p = k;
*q = 1;
00464
00465
00466
                   return 1:
```

```
00468
00469
           }
        }
00470
00471
         for (k = i + 2;
    k < j - VRNA_GQUAD_MIN_BOX_SIZE;
    k++) {
    11 = k - i - 1;
    if (11 > MAXLOOP)
00472
00474
00475
00476
00477
             break;
00478
00479
           if (S[k] != 3)
00480
            continue;
00481
           minl = j - i + k - MAXLOOP - 2;
c0 = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;
minl = MAX2(c0, minl);
00482
00483
00484
           c0 = j - 1;
00485
00486
           maxl = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;
           max1 = MIN2(c0, max1);
for (1 = min1; 1 < max1; 1++) {
  if (S[1] != 3)</pre>
00487
00488
00489
00490
               continue:
00491
00492
             if (c == energy + ggg[index[1] + k] + P->internal_loop[11 + j - 1 - 1]) {
               *p = k;
00493
                *q = 1;
00494
00495
                return 1;
             }
00496
00497
           }
00498
        }
00499
00500
        1 = j - 1;
        if (S[1] == 3)
    for (k = i + 4;
        k < j - VRNA_GQUAD_MIN_BOX_SIZE;
        k++) {</pre>
00501
00502
00503
             11 = k - i - 1;
if (11 > MAXLOOP)
00505
00506
00507
                break;
00508
             if (S[k] != 3)
00509
00510
               continue;
00511
00512
              if (c == energy + ggg[index[1] + k] + P->internal_loop[11]) {
              *p = k;
*q = 1;
00513
00514
00515
                return 1:
00516
             }
00517
           }
00518
00519
        return 0;
00520 }
00521
00522
00523 INLINE PRIVATE int
00524 backtrack_GQuad_IntLoop_comparative(int
                                                                  c,
00525
                                                  int
                                                                  i,
00526
                                                  int
                                                  unsigned int *type,
00527
00528
                                                  short
                                                                  *S cons,
00529
                                                  short
                                                                  **S5,
00530
00531
                                                  unsigned int **a2s,
                                                  int
00532
                                                                  *ggg,
00533
                                                  int
                                                                  *index,
00534
                                                  int
                                                                  *p,
00535
                                                  int
                                                                  *q,
                                                  int
                                                                  n_seq,
00537
                                                  vrna_param_t *P)
00538 {
00539
         int energy, dangles, k, 1, max1, min1, c0, 11, ss, tt, u1, u2, eee;
00540
00541
         dangles = P->model_details.dangles;
00542
         energy = 0;
00543
00544
         for (ss = 0; ss < n_seq; ss++) {</pre>
         tt = type[ss];
if (tt == 0)
   tt = 7;
00545
00546
00547
00548
00549
           if (dangles == 2)
00550
              energy += P->mismatchI[tt][S3[ss][i]][S5[ss][j]];
00551
00552
           if (tt > 2)
             energy += P->TerminalAU;
00553
```

```
}
00555
00556
         k = i + 1;
          if (S_cons[k] == 3) {
00557
            if (k < j - VRNA_GQUAD_MIN_BOX_SIZE) {
  min1 = j - i + k - MAXLOOP - 2;
  c0 = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;</pre>
00558
00559
00561
               minl = MAX2(c0, minl);
              maxl = MAX2(CO, maxl);

c0 = j - 3;

maxl = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;

maxl = MIN2(c0, maxl);

for (1 = min1; 1 < maxl; 1++) {
00562
00563
00564
00565
                if (S_cons[1] != 3)
00566
00567
                   continue;
00568
00569
                 eee = 0;
00570
00571
                 for (ss = 0; ss < n_seq; ss++) {
  u1 = a2s[ss][j - 1] - a2s[ss][l];</pre>
00573
                    eee += P->internal_loop[u1];
00574
00575
00576
                  if (c == energy + ggg[index[l] + k] + eee) {
                   *p = k;
*q = 1;
00577
00578
00579
                    return 1;
00580
00581
00582
            }
         }
00583
00584
         00585
00586
00587
            11 = k - i - 1;
if (11 > MAXLOOP)
00588
00589
00590
              break;
00592
            if (S_cons[k] != 3)
00593
              continue;
00594
            min1 = j - i + k - MAXLOOP - 2;
00595
                   = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;
00596
            c.0
            min1 = MAX2(c0, min1);
00597
            c0 = j - 1;
max1 = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;
00598
00599
            maxl = MIN2(c0, maxl);
for (1 = minl; 1 < maxl; 1++) {
  if (S_cons[1] != 3)</pre>
00600
00601
00602
00603
                continue;
00604
00605
              eee = 0;
00606
               for (ss = 0; ss < n_seq; ss++) {
  u1 = a2s[ss][k - 1] - a2s[ss][i];
  u2 = a2s[ss][j - 1] - a2s[ss][1];</pre>
00607
00608
00609
                 eee += P->internal_loop[u1 + u2];
00611
00612
00613
               if (c == energy + ggg[index[l] + k] + eee) {
                *p = k;
*q = 1;
00614
00615
00616
                 return 1;
00617
00618
            }
         }
00619
00620
          1 = j - 1;
00621
00622
         if (S_cons[1] == 3)
            for (k = i + 4;
k < j - VRNA_GQUAD_MIN_BOX_SIZE;
00624
00625
                  k++) {
               11 = k - i - 1;
if (11 > MAXLOOP)
00626
00627
00628
                 break;
00630
               if (S_cons[k] != 3)
00631
                continue;
00632
00633
               eee = 0:
00634
               for (ss = 0; ss < n_seq; ss++) {
  u1 = a2s[ss][k - 1] - a2s[ss][i];</pre>
00635
00636
00637
                  eee += P->internal_loop[u1];
00638
00639
00640
               if (c == energy + ggg[index[1] + k] + eee) {
```

```
*p = k;
*q = 1;
00642
00643
                  return 1;
              }
00644
00645
            }
00646
00647
          return 0;
00648 }
00649
00650
00667 INLINE PRIVATE int
{\tt 00668\ backtrack\_GQuad\_IntLoop\_L(int}
                                                             c,
00669
                                          int
                                                             i,
00670
                                                             j,
00671
                                          int
                                                             type,
00672
                                          short
                                                             *S,
00673
                                          int
                                                             **ddd
00674
                                          int
                                                             maxdist,
00675
                                          int
                                                             *p,
00676
                                                             *q,
                                          vrna_param_t
00677
00678 {
          int energy, dangles, k, l, maxl, minl, c0, l1;
00679
          short si, sj;
00680
00681
          dangles = P->model_details.dangles;
          si = S[i + 1];

sj = S[j - 1];
00683
00684
00685
          energy = 0;
00686
00687
          if (dangles == 2)
00688
            energy += P->mismatchI[type][si][sj];
00689
00690
          if (type > 2)
           energy += P->TerminalAU;
00691
00692
00693
          k = i + 1;
          if (S[k] == 3) {
          if (S[k] == 3) {
   if (k < j - VRNA_GQUAD_MIN_BOX_SIZE) {
     minl = j - i + k - MAXLOOP - 2;
     c0 = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;
     minl = MAX2 (c0, minl);
   c0 = j - 3;
   maxl = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;</pre>
00695
00696
00697
00698
00699
00700
               max1 = MIN2(c0, max1);
for (1 = min1; 1 < max1; 1++) {
00701
00702
00703
                if (S[1] != 3)
00704
                    continue;
00705
00706
                  if (c == energy + ggg[k][1 - k] + P->internal_loop[j - 1 - 1]) {
00707
                   *p = k;
00708
                     *q = 1;
00709
                     return 1;
00710
                  }
00711
               }
00712
            }
00713
00714
          for (k = i + 2;
     k < j - VRNA_GQUAD_MIN_BOX_SIZE;</pre>
00715
00716
            k++) {

11 = k - i - 1;

if (11 > MAXLOOP)
00717
00718
00719
00720
               break;
00721
00722
            if (S[k] != 3)
00723
              continue;
00724
            minl = j - i + k - MAXLOOP - 2;
c0 = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;
00725
00726
             min1 = MAX2(c0, min1);
00727
            maxl = MAX2(co, maxl),

c0 = j - 1;

maxl = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;

maxl = MIN2(c0, maxl);

for (1 = min1; 1 < maxl; 1++) {

  if (S[1] != 3)
00728
00729
00730
00731
00732
00733
                 continue;
00734
               if (c == energy + ggg[k][1 - k] + P \rightarrow internal_loop[11 + j - 1 - 1]) {
00735
                 *p = k;
*q = 1;
00736
00737
00738
                  return 1;
00739
00740
            }
00741
         }
00742
00743
         1 = j - 1;
```

```
if (S[1] == 3)
         for (k = i + 4;
k < j - VRNA_GQUAD_MIN_BOX_SIZE;
00745
00746
            k++) {
11 = k - i - 1;
00747
00748
             if (11 > MAXLOOP)
00749
00750
               break;
00751
00752
             if (S[k] != 3)
00753
               continue;
00754
00755
             if (c == energy + ggg[k][1 - k] + P->internal_loop[11]) {
              *p = k;
*q = 1;
00756
00757
00758
               return 1;
            }
00759
00760
00761
00762
        return 0;
00763 }
00764
00765
00766 INLINE PRIVATE int
00767 backtrack_GQuad_IntLoop_L_comparative(int
                                                  int
                                                                  i,
00769
                                                  int
                                                                  j,
00770
                                                  unsigned int
                                                                  *type,
00771
                                                  short
                                                                  *S_cons,
00772
                                                  short
                                                                  **S5,
00773
                                                  short
                                                                  **S3.
00774
                                                  unsigned int **a2s,
00775
                                                                  **ggg,
                                                  int
00776
                                                                   *p,
00777
                                                  int
                                                                  ٠q,
00778
                                                  int
                                                                  n_seq,
00779
                                                  vrna_param_t *P)
00780 {
00782
         * The case that is handled here actually resembles something like
00783
         * an interior loop where the enclosing base pair is of regular
00784
         \star kind and the enclosed pair is not a canonical one but a g-quadruplex
00785
         \star that should then be decomposed further...
00786
00787
         int mm, dangle_model, k, l, maxl, minl, c0, l1, ss, tt, eee, u1, u2;
00788
00789
         dangle_model = P->model_details.dangles;
00790
00791
         mm = 0;
00792
        for (ss = 0; ss < n_seq; ss++) {</pre>
00793
          tt = type[ss];
00795
         if (dangle_model == 2)
00796
             mm += P->mismatchI[tt][S3[ss][i]][S5[ss][j]];
00797
00798
          if (tt > 2)
00799
             mm += P->TerminalAU;
00800
00801
00802
         for (k = i + 2;
              k < j - VRNA_GQUAD_MIN_BOX_SIZE;
00803
00804
              k++) {
00805
           if (S_cons[k] != 3)
00806
            continue;
00807
           11 = k - i - 1;
00808
           if (11 > MAXLOOP)
00809
00810
             break;
00811
           minl = j - i + k - MAXLOOP - 2;
c0 = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;
00812
00814
           minl = MAX2(c0, minl);
           maxl = MAX(co, maxl);

c0 = j - 1;

maxl = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;

maxl = MIN2(c0, maxl);

for (1 = min1; 1 < maxl; 1++) {

  if (S_cons[1] != 3)
00815
00816
00817
00818
00819
00820
               continue;
00821
             eee = 0;
00822
00823
             for (ss = 0; ss < n_seq; ss++) {</pre>
00824
              u1 = a2s[ss][k - 1] - a2s[ss][i];
u2 = a2s[ss][j - 1] - a2s[ss][1];
00825
00826
00827
                eee += P->internal_loop[u1 + u2];
00828
00829
00830
             c0 = mm +
```

```
ggg[k][l - k] +
00832
                    eee;
00833
              if (c == c0) {
00834
               *p = k;
*q = 1;
00835
00836
                 return 1;
00838
00839
00840
         k = i + 1;
00841
         if (S_cons[k] == 3) {
   if (k < j - VRNA_GQUAD_MIN_BOX_SIZE) {
     min1 = j - i + k - MAXLOOP - 2;
     c0 = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;</pre>
00842
00843
00844
00845
              minl = MAX2(c0, minl);
00846
              max1 = MAX2(CO, max1),

c0 = j - 3;

max1 = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;

max1 = MIN2(c0, max1);

for (1 = min1; 1 < max1; 1++) {
00847
00848
00849
00850
00851
                if (S_cons[1] != 3)
00852
                   continue;
00853
                eee = 0:
00854
00855
                 for (ss = 0; ss < n_seq; ss++) {
  u1 = a2s[ss][j - 1] - a2s[ss][1];</pre>
00857
                   eee += P->internal_loop[u1];
00858
00859
00860
                 if (c == mm + ggg[k][1 - k] + eee) {
00861
                  *p = k;
*q = 1;
00862
00863
00864
                   return 1;
00865
00866
00867
           }
00868
00869
00870
         1 = j - 1;
00871
         if (S_cons[1] == 3) {
          for (k = i + 4; k < j - VRNA_GQUAD_MIN_BOX_SIZE; k++) {
    11 = k - i - 1;
00872
00873
              if (11 > MAXLOOP)
00874
                break;
00875
00876
00877
              if (S_cons[k] != 3)
00878
               continue;
00879
00880
              eee = 0;
00881
              for (ss = 0; ss < n_seq; ss++) {
  u1 = a2s[ss][k - 1] - a2s[ss][i];</pre>
00882
00883
00884
                eee += P->internal_loop[u1];
00885
00886
              if (c == mm + ggg[k][1 - k] + eee) {
               *p = k;
*q = 1;
00888
00889
00890
                 return 1;
00891
              }
00892
00893
         }
00894
00895
         return 0;
00896 }
00897
00898
00899 PRIVATE INLINE
00900 int
00901 E_GQuad_IntLoop(int
00902
                           int
00903
                           int
                                            type,
00904
                           short
                                            *S,
00905
                           int
                                            *aaa,
00906
                           int
                                            *index,
00907
                           vrna_param_t *P)
00908 {
         int energy, ge, dangles, p, q, 11, minq, maxq, c0;
00909
         short si, sj;
00910
00911
00912
         dangles = P->model_details.dangles;
         si = S[i + 1];

sj = S[j - 1];
00913
00914
00915
         energy = 0;
00916
00917
         if (dangles == 2)
```

```
energy += P->mismatchI[type][si][sj];
00919
00920
         if (type > 2)
          energy += P->TerminalAU;
00921
00922
00923
         ae = INF;
00925
00926
         if (S[p] == 3) {
          if (p < j - VRNA_GQUAD_MIN_BOX_SIZE) {
  minq = j - i + p - MAXLOOP - 2;
  c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
  minq = MAX2(c0, minq);</pre>
00927
00928
00929
00930
              c0 = j - 3;
maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
00931
00932
              maxq = MIN2(c0, maxq);
for (q = minq; q < maxq; q++) {
  if (S[q] != 3)</pre>
00933
00934
00935
00936
                  continue;
00937
00938
                c0 = energy + ggg[index[q] + p] + P->internal_loop[j - q - 1];
                ge = MIN2(ge, c0);
00939
              }
00940
00941
           }
00942
         }
00943
00944
         for (p = i + 2;
00945
           p < j - VRNA_GQUAD_MIN_BOX_SIZE;
           p++) {
11 = p - i - 1;
if (11 > MAXLOOP)
00946
00947
00948
00949
              break;
00950
00951
           if (S[p] != 3)
00952
00953
            minq = j - i + p - MAXLOOP - 2;
c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
00954
00956
            minq = MAX2(c0, minq);
            c0 = j - 1;
maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
00957
00958
            maxq = MIN2(c0, maxq);
00959
            for (q = minq; q < maxq; q++) {
  if (S[q] != 3)
00960
00961
00962
               continue;
00963
00964
              c0 = energy + ggg[index[q] + p] + P->internal_loop[l1 + j - q - 1];
00965
              ge = MIN2(ge, c0);
00966
           }
00967
00968
         q = j - 1;
if (S[q] == 3)
00969
00970
          for (S[q] == 3)
  for (p = i + 4;
     p < j - VRNA_GQUAD_MIN_BOX_SIZE;
     p++) {
     11 = p - i - 1;</pre>
00971
00972
00973
00974
              if (11 > MAXLOOP)
00975
00976
                break;
00977
00978
              if (S[p] != 3)
00979
               continue;
00980
00981
              c0 = energy + ggg[index[q] + p] + P->internal_loop[11];
00982
              ge = MIN2(ge, c0);
           }
00983
00984
00985 #if 0
00986
        /* here comes the additional stuff for the odd dangle models */
         if (dangles % 1) {
00988
           en1 = energy + P->dangle5[type][si];
            en2 = energy + P->dangle5[type][sj];
00989
            en3 = energy + P->mismatchI[type][si][sj];
00990
00991
00992
            /\star first case with 5' dangle (i.e. j-1) onto enclosing pair \star/
00993
00994
            if (S[p] == 3) {
              if (p < j - VRNA_GQUAD_MIN_BOX_SIZE) {
  minq = j - i + p - MAXLOOP - 2;
  c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;</pre>
00995
00996
00997
                minq = MAX2(c0, minq);
00998
                 c0 = j - 4;
maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
01000
                 maxq = MIN2(c0, maxq);
01001
                 for (q = minq; q < maxq; q++) {</pre>
01002
01003
                  if (S[q] != 3)
01004
                      continue:
```

```
01006
                  c0 = en1 + ggg[index[q] + p] + P->internal_loop[j - q - 1];
01007
                 ge = MIN2(ge, c0);
               }
01008
01009
01010
           }
01011
01012
           for (p = i + 2; p < j - VRNA_GQUAD_MIN_BOX_SIZE; p++) {</pre>
           11 = p - i - 1;
if (11 > MAXLOOP)
01013
01014
01015
               break:
01016
01017
             if (S[p] != 3)
01018
              continue;
01019
             minq = j - i + p - MAXLOOP - 2;
c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
minq = MAX2(c0, minq);
01020
01021
01022
             c0 = j - 2;
01023
             maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
maxq = MIN2(c0, maxq);
01024
01025
             for (q = minq; q < maxq; q++) {
  if (S[q] != 3)
01026
01027
01028
                 continue;
01029
01030
              c0 = en1 + ggg[index[q] + p] + P->internal_loop[l1 + j - q - 1];
01031
               ge = MIN2(ge, c0);
01032
01033
           }
01034
           q = j - 2;
if (S[q] == 3)
   for (p = i + 4; p < j - VRNA_GQUAD_MIN_BOX_SIZE; p++) {
     11 = p - i - 1;</pre>
01035
01036
01037
01038
               if (11 > MAXLOOP)
01039
01040
                 break:
01041
01042
              if (S[p] != 3)
01043
                 continue;
01044
01045
               c0 = en1 + ggg[index[q] + p] + P->internal_loop[l1 + 1];
              ge = MIN2(ge, c0);
01046
01047
01048
01049
           /\star second case with 3' dangle (i.e. i+1) onto enclosing pair \star/
01050 }
01051
01052 #endif
01053
        return ge;
01054 }
01056
01057 PRIVATE INLINE
01058 int.
01059 E_GQuad_IntLoop_comparative(int
                                                      i.
01060
                                      int
                                                      i,
                                      unsigned int
                                                     *tt,
01062
                                      short
01063
                                       short
                                                      **S5,
01064
                                      short
                                                      **53.
                                      unsigned int **a2s,
01065
01066
                                      int
                                                      *aaa,
01067
                                      int
                                                      *index
01068
                                                      n_seq,
01069
                                      vrna_param_t *P)
01070 {
01071
        unsigned int type;
01072
                        eee, energy, ge, p, q, 11, u1, u2, minq, maxq, c0, s;
        int
01073
        vrna md t
                        *md;
        md = &(P->model_details);
energy = 0;
01075
01076
01077
        for (s = 0; s < n_seq; s++) {</pre>
01078
        type = tt[s];
if (md->dangles == 2)
01079
01080
01081
            energy += P->mismatchI[type][S3[s][i]][S5[s][j]];
01082
          if (type > 2)
01083
            energy += P->TerminalAU;
01084
01085
01086
        ge = INF;
01087
01088
01089
        p = i + 1;
        if (S_cons[p] == 3) {
  if (p < j - VRNA_GQUAD_MIN_BOX_SIZE) {</pre>
01090
01091
```

```
minq = j - i + p - MAXLOOP - 2;
c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
01093
01094
              minq = MAX2(c0, minq);
              maxq = j - 3;

maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;

maxq = MIN2(c0, maxq);

for (q = minq; q < maxq; q++) {

  if (S_cons[q] != 3)
01095
01096
01097
01099
01100
                  continue;
01101
                eee = 0;
01102
01103
                for (s = 0; s < n_seq; s++) {
  u1 = a2s[s][j - 1] - a2s[s][q];</pre>
01104
01105
01106
                   eee += P->internal_loop[u1];
01107
01108
                 c0 = energy +
01109
01110
                      ggg[index[q] + p] +
01111
                       eee;
01112
                ge = MIN2(ge, c0);
01113
           }
01114
         }
01115
01116
         for (p = i + 2;
01117
           p < j - VRNA_GQUAD_MIN_BOX_SIZE;
01118
          p++) {
    11 = p - i - 1;
    if (11 > MAXLOOP)
01119
01120
01121
01122
             break:
01123
01124
            if (S_cons[p] != 3)
01125
            continue;
01126
            minq = j - i + p - MAXLOOP - 2;
c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
minq = MAX2(c0, minq);
01127
01128
            c0 = j - 1;
maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
01130
01131
01132
            maxq = MIN2(c0, maxq);
            for (q = minq; q < maxq; q++) {
  if (S_cons[q] != 3)</pre>
01133
01134
01135
                continue;
01136
01137
              eee = 0;
01138
              for (s = 0; s < n_seq; s++) {</pre>
01139
               u1 = a2s[s][p - 1] - a2s[s][i];

u2 = a2s[s][j - 1] - a2s[s][q];
01140
01141
01142
                eee += P->internal_loop[u1 + u2];
01143
01144
01145
              c0 = energy +
                     ggg[index[q] + p] +
01146
01147
                     eee;
              ge = MIN2(ge, c0);
01149
01150
01151
         01152
01153
01154
01155
01156
                 p++) {
             11 = p - i - 1;
if (11 > MAXLOOP)
01157
01158
01159
                break:
01160
01161
              if (S_cons[p] != 3)
01162
                continue;
01163
01164
              eee = 0;
01165
              for (s = 0; s < n_seq; s++) {
  u1 = a2s[s][p - 1] - a2s[s][i];</pre>
01166
01167
01168
                eee += P->internal_loop[u1];
01169
01170
01171
              c0 = energy +
01172
                   ggg[index[q] + p] +
01173
                     eee;
01174
              ge = MIN2(ge, c0);
01175
01176
01177
         return ge;
01178 }
```

```
01179
01180
01181 PRIVATE INLINE
01182 int
01183 E_GQuad_IntLoop_L_comparative(int
01184
                                           int
                                                            j,
                                           unsigned int *tt,
01185
01186
                                           short
                                                            **S5,
01187
                                           short
01188
                                           short
                                                            **S3.
                                           unsigned int **a2s,
01189
01190
                                           int
                                                            **aaa,
01191
                                           int
                                                           n seq,
01192
                                           vrna_param_t *P)
01193 {
01194
         unsigned int type;
                          eee, energy, ge, p, q, 11, u1, u2, minq, maxq, c0, s;
01195
         int
         vrna md t
01196
                         *md;
01197
         md = &(P->model_details);
energy = 0;
01198
01199
01200
         for (s = 0; s < n_seq; s++) {</pre>
01201
         type = tt[s];
if (md->dangles == 2)
01202
01203
01204
            energy += P->mismatchI[type][S3[s][i]][S5[s][j]];
01205
01206
         if (type > 2)
             energy += P->TerminalAU;
01207
01208
01209
01210
         ge = INF;
01211
         p = i + 1;
01212
         if (S_cons[p] == 3) {
  if (p < j - VRNA_GQUAD_MIN_BOX_SIZE) {
    minq = j - i + p - MAXLOOP - 2;
    c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;</pre>
01213
01214
01215
01216
              minq = MAX2(c0, minq);
01217
              c0 = j - 3;
maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
01218
01219
              maxq = MIN2(c0, maxq);
01220
              for (q = minq; q < maxq; q++) {
  if (S_cons[q] != 3)</pre>
01221
01222
01223
                 continue;
01224
01225
               eee = 0;
01226
               for (s = 0; s < n_seq; s++) {
  u1 = a2s[s][j - 1] - a2s[s][q];</pre>
01227
01228
                  eee += P->internal_loop[u1];
01230
01231
01232
                c0 = energy +
                      ggg[p][q - p] +
01233
01234
                      eee;
01235
                ge = MIN2(ge, c0);
01236
01237
        }
01238
01239
         for (p = i + 2;
01240
          p < j - VRNA_GQUAD_MIN_BOX_SIZE;
01241
          p++) {

11 = p - i - 1;

if (11 > MAXLOOP)
01242
01243
01244
01245
             break;
01246
01247
           if (S_cons[p] != 3)
01248
            continue;
01249
           minq = j - i + p - MAXLOOP - 2;
c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
minq = MAX2(c0, minq);
01250
01251
01252
           c0 = j - 1;
maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
01253
01254
01255
            maxq = MIN2(c0, maxq);
01256
           for (q = minq; q < maxq; q++) {</pre>
01257
             if (S_cons[q] != 3)
01258
               continue:
01259
              eee = 0;
01260
01261
01262
              for (s = 0; s < n_seq; s++) {</pre>
              u1 = a2s[s][p - 1] - a2s[s][i];
u2 = a2s[s][j - 1] - a2s[s][q];
01263
01264
01265
                eee += P->internal_loop[u1 + u2];
```

18.100 gquad.h 707

```
01266
             }
01267
01268
              c0 = energy +
01269
                    ggg[p][q - p] +
01270
             eee;
ge = MIN2(ge, c0);
01271
01272
01273
01274
        q = j - 1;
if (S_cons[q] == 3)
01275
01276
          for (p = i + 4;
01277
             p < j - VRNA_GQUAD_MIN_BOX_SIZE;
01278
             p++) {

11 = p - i - 1;

if (11 > MAXLOOP)
01279
01280
01281
01282
                break:
01283
01284
             if (S_cons[p] != 3)
01285
              continue;
01286
01287
              eee = 0;
01288
              for (s = 0; s < n_seq; s++) {
  u1 = a2s[s][p - 1] - a2s[s][i];
  eee += P->internal_loop[u1];
01289
01290
01291
01292
01293
01294
              c0 = energy +
01295
                    ggg[p][q - p] +
01296
                    eee;
01297
              ge = MIN2(ge, c0);
01298
01299
01300
        return ge;
01301 }
01302
01304 PRIVATE INLINE
01305 int *
01306 E_GQuad_IntLoop_exhaustive(int
01307
                                       int
                                                       j,
01308
                                        int
                                                       **p p,
01309
                                                        **q_p,
                                        int
01310
                                        int
                                                       type,
01311
                                        short
01312
                                        int
                                                       *ggg,
01313
                                        int
                                                       threshold,
01314
                                        int
                                                        *index.
01315
                                       vrna param t *P)
01316 {
01317
        int energy, *ge, dangles, p, q, 11, minq, maxq, c0;
         short si, sj;
01318
01319
         int cnt = 0;
01320
         dangles = P->model_details.dangles;
01321
         si = S[i + 1];

sj = S[j - 1];
01323
01324
         energy = 0;
01325
01326
         if (dangles == 2)
           energy += P->mismatchI[type][si][sj];
01327
01328
01329
         if (type > 2)
01330
           energy += P->TerminalAU;
01331
         /\star guess how many gquads are possible in interval [i+1,j-1] \star/
01332
        *p_p = (int *)vrna_alloc(sizeof(int) * 256);
*q_p = (int *)vrna_alloc(sizeof(int) * 256);
01333
01334
                = (int *) vrna_alloc(sizeof(int) * 256);
         ge
01336
01337
         p = i + 1;
         if (S[p] == 3) {
   if (p < j - VRNA_GQUAD_MIN_BOX_SIZE) {
      minq = j - i + p - MAXLOOP - 2;
      c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
}</pre>
01338
01339
01340
01341
01342
              minq = MAX2(c0, minq);
              maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
maxq = MIN2(c0, maxq);
01343
01344
01345
              for (q = minq; q < maxq; q++) {
  if (S[q] != 3)</pre>
01346
01347
01348
                  continue;
01349
01350
                c0 = energy + ggg[index[q] + p] + P->internal_loop[j - q - 1];
01351
                if (c0 <= threshold) {</pre>
01352
                   ge[cnt]
                                 = energy + P->internal_loop[j - g - 1];
```

```
(*p_p)[cnt]
01354
                 (*q_p)[cnt++] = q;
01355
              }
            }
01356
       }
01357
01358
01359
01360
        for (p = i + 2;
         p < j - VRNA_GQUAD_MIN_BOX_SIZE;
p++) {
11 = p - i - 1;
if (11 > MAXLOOP)
01361
01362
01363
01364
01365
            break;
01366
01367
          if (S[p] != 3)
01368
            continue;
01369
          minq = j - i + p - MAXLOOP - 2;
c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
01370
01371
01372
           minq = MAX2(c0, minq);
          c0 = j - 1;
maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
01373
01374
01375
           maxq = MIN2(c0, maxq);
          for (q = minq; q < maxq; q++) {
  if (S[q] != 3)
01376
01377
01378
              continue;
01379
01380
             c0 = energy + ggg[index[q] + p] + P->internal\_loop[l1 + j - q - 1];
               ge[cnt] = energy + P->internal_loop[l1 + j - q - 1];
(*p_p)[cnt] = p;
01381
             if (c0 <= threshold) {</pre>
              ge[cnt]
01382
01383
01384
               (*q_p)[cnt++] = q;
01385
01386
          }
        }
01387
01388
        q = j - 1;
if (S[q] == 3)
01389
01390
01391
         for (p = i + 4;
01392
             p < j - VRNA_GQUAD_MIN_BOX_SIZE;
01393
                p++) {
            11 = p - i - 1;
if (11 > MAXLOOP)
01394
01395
01396
              break;
01397
01398
             if (S[p] != 3)
01399
01400
01401
             c0 = energy + ggg[index[q] + p] + P->internal_loop[11];
             if (c0 <= threshold) {
01402
               ge[cnt] = energy + P->internal_loop[11];
(*p_p)[cnt] = p;
(*q_p)[cnt++] = q;
01403
              ge[cnt]
01404
01405
01406
            }
01407
01408
        (*p_p)[cnt] = -1;
01410
01411
        return ge;
01412 }
01413
01414
01415 PRIVATE INLINE
01416 int
01417 E_GQuad_IntLoop_L(int
                         int
01418
01419
                          int
                                          type,
                          short
01420
                                          *S.
01421
                                          **qqq,
                          int
01422
                          int
                                          maxdist,
01423
                          vrna_param_t *P)
01424 {
01425
        int energy, ge, dangles, p, q, l1, minq, maxq, c0;
short si, sj;
01426
01427
01428
        dangles = P->model_details.dangles;
        si = S[i + 1];

sj = S[j - 1];
01429
01430
        energy = 0;
01431
01432
        if (dangles == 2)
01433
          energy += P->mismatchI[type][si][sj];
01434
01435
01436
        if (type > 2)
01437
        energy += P->TerminalAU;
01438
01439
        ge = INF;
```

18.100 gquad.h 709

```
01441
                   p = i + 1;
01442
                   if (S[p] == 3) {
                   if (p < j - VRNA_GQUAD_MIN_BOX_SIZE) {
    minq = j - i + p - MAXLOOP - 2;
    c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
    minq = MAXZ (c0, minq);
    co = max = 1;
    co
01443
01444
01445
                            c0 = j - 3;

maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;

maxq = MIN2(c0, maxq);
01447
01448
01449
                           for (q = minq; q < maxq; q++) {
  if (S[q] != 3)
01450
01451
01452
                                   continue;
01453
01454
                               c0 = energy + ggg[p][q - p] + P->internal_loop[j - q - 1];
                               ge = MIN2(ge, c0);
01455
01456
01457
                      }
01458
01460
                  for (p = i + 2;
                    p < j - VRNA_GQUAD_MIN_BOX_SIZE;
01461
                      p++) {

11 = p - i - 1;

if (11 > MAXLOOP)
01462
01463
01464
                          break;
01465
01466
01467
                      if (S[p] != 3)
01468
                           continue;
01469
                      minq = j - i + p - MAXLOOP - 2;
c0 = p + VRNA_GQUAD_MIN_BOX_SIZE - 1;
01470
01471
01472
                       minq = MAX2(c0, minq);
                       c0 = j - 1;
maxq = p + VRNA_GQUAD_MAX_BOX_SIZE + 1;
01473
01474
                       maxq = MIN2(c0, maxq);
01475
                       for (q = minq; q < maxq; q++) {
  if (S[q] != 3)</pre>
01476
01478
                               continue;
01479
01480
                           c0 = energy + ggg[p][q - p] + P->internal_loop[l1 + j - q - 1];
                           ge = MIN2(ge, c0);
01481
01482
01483
                  }
01484
                 q = j - 1;
if (S[q] == 3)
for (p = i + 4;
01485
01486
01487
                          p = 1 + 4;
  p < j - VRNA_GQUAD_MIN_BOX_SIZE;
  p++) {
  11 = p - i - 1;
  if (11 > MAXLOOP)
01488
01489
01490
01491
01492
                                break;
01493
                           if (S[p] != 3)
01494
01495
                             continue;
01497
                           c0 = energy + ggg[p][q - p] + P->internal_loop[11];
01498
                           ge = MIN2(ge, c0);
01499
01500
01501
                 return ge;
01502 }
01503
01504
01505 PRIVATE INLINE
01506 FLT_OR_DBL
01507 exp_E_GQuad_IntLoop(int
                                                                                                          i.
01508
                                                            int
                                                                                                          i.
                                                              int
                                                                                                          type,
01510
                                                              short
                                                                                                          *S,
01511
                                                              FLT_OR_DBL
                                                                                                          *G,
01512
                                                              FLT_OR_DBL
                                                                                                         *scale,
01513
                                                              int
                                                                                                          *index.
01514
                                                              vrna exp param t *pf)
01515 {
01516
                                              k, 1, min1, max1, u, r;
01517
                  FLT_OR_DBL q, qe;
01518
                  double
                                                *expintern;
01519
                                              si, sj;
                  short
01520
                                          = 0;
01522
                                         = S[i + 1];
                                = S[j - 1];
= (FLT_OR_DBL)pf->expmismatchI[type][si][sj];
01523
                   sj
01524
                   expintern = & (pf->expinternal[0]);
01525
01526
```

```
if (type > 2)
01528
          qe *= (FLT_OR_DBL)pf->expTermAU;
01529
01530
         k = i + 1;
        k = 1 + 1;
if (S[k] == 3) {
   if (k < j - VRNA_GQUAD_MIN_BOX_SIZE) {
      min1 = j - MAXLOOP - 1;
      u = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;</pre>
01531
01532
01534
01535
              minl = MAX2(u, minl);
             min = max(u, min),
u = j - 3;
maxl = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;
maxl = MIN2(u, maxl);
for (l = minl; l < maxl; l++) {</pre>
01536
01537
01538
01539
01540
               if (S[1] != 3)
01541
                   continue;
01542
               if (G[index[k] - 1] == 0.)
01543
01544
                  continue;
01545
                q += qe
                      * G[index[k] - 1]

* (FLT_OR_DBL) expintern[j - 1 - 1]
01547
01548
01549
                       * scale[j - l + 1];
01550
01551
           }
01552 }
01553
01554
         for (k = i + 2;
         k <= j - VRNA_GQUAD_MIN_BOX_SIZE;
k++) {
01555
01556
         u = k - i - 1;

if (u > MAXLOOP)
01557
01558
01559
             break;
01560
01561
           if (S[k] != 3)
01562
              continue;
01563
           min1 = j - i + k - MAXLOOP - 2;
01564
                  = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;
01565
01566
            min1 = MAX2(r, min1);
           max1 = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;

r = j - 1;

max1 = MIN2(r, max1);

for (1 = min1; 1 < max1; 1++) {
01567
01568
01569
01570
01571
            if (S[1] != 3)
01572
01573
             if (G[index[k] - 1] == 0.)
01574
01575
               continue;
01576
              q += qe
                   * G[index[k] - 1]

* (FLT_OR_DBL) expintern[u + j - 1 - 1]
01578
01579
01580
                     * scale[u + j - l + 1];
01581
           }
        }
01582
01584
         if (S[1] == 3)
for (k = i + 4; k <= j - VRNA_GQUAD_MIN_BOX_SIZE; k++) {
    u = k - i - 1;
}</pre>
01585
01586
01587
              if (u > MAXLOOP)
01588
01589
                break;
01590
01591
             if (S[k] != 3)
01592
               continue;
01593
              if (G[index[k] - 1] == 0.)
01594
01595
               continue:
01597
              q += qe
                  * G[index[k] - 1]
* (FLT_OR_DBL)expintern[u]
01598
01599
01600
                    * scale[u + 2];
01601
          }
01602
01603
         return q;
01604 }
01605
01606
01607 PRIVATE INLINE
01608 FLT_OR_DBL
01609 exp_E_GQuad_IntLoop_comparative(int
01610
                                               int
01611
                                               unsigned int
                                                                     *tt,
01612
                                               short
                                                                     *S cons,
01613
                                               short
                                                                     **S5.
```

18.100 gquad.h 711

```
short
01615
                                              unsigned int
                                                                    **a2s,
01616
                                              FLT_OR_DBL
                                                                    *G,
                                              FLT_OR_DBL
                                                                     *scale,
01617
01618
                                              int.
                                                                    *index.
01619
                                              int
                                                                    n_seq,
01620
                                              vrna_exp_param_t *pf)
01621 {
01622
         unsigned int type;
                          k, l, minl, maxl, u, u1, u2, r, s;
01623
         int K, 1, ....., FLT_OR_DBL q, qe, qqq;
01624
01625
         double
                          *expintern;
01626
         vrna_md_t
                          *md;
01627
01628
                     = 0;
              = 1.;
= & (pf->model_details);
01629
01630
         md
         expintern = & (pf->expinternal[0]);
01631
01632
         for (s = 0; s < n_seq; s++) {</pre>
          type = tt[s];
if (md->dangles == 2)
01634
01635
             qe *= (FLT_OR_DBL)pf->expmismatchI[type][S3[s][i]][S5[s][j]];
01636
01637
01638
          if (type > 2)
             qe *= (FLT_OR_DBL)pf->expTermAU;
01639
01640
01641
         k = i + 1;
01642
01643
         if (S_cons[k] == 3) {
          if (k < j - VRNA_GQUAD_MIN_BOX_SIZE) {
    minl = j - MAXLOOP - 1;
    u = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;</pre>
01644
01645
01646
01647
              minl = MAX2(u, minl);
              maxl = MAX2(u, mill),

u = j - 3;

maxl = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;

maxl = MIN2(u, maxl);

for (1 = min1; 1 < maxl; 1++) {
01648
01649
01650
01651
01652
               if (S_cons[1] != 3)
01653
                  continue;
01654
                if (G[index[k] - 1] == 0.)
01655
01656
                  continue;
01657
01658
                qqq = 1.;
01659
01660
                for (s = 0; s < n_seq; s++) {</pre>
                  u1 = a2s[s][j - 1] - a2s[s][1];
01661
                  qqq *= expintern[u1];
01662
01663
01664
01665
01666
                      G[index[k] - 1] *
01667
                       scale[j - 1 + 1];
01668
01669
01670
          }
01671
01672
         for (k = i + 2;
01673
          k <= j - VRNA_GQUAD_MIN_BOX_SIZE;
k++) {</pre>
01674
01675
01676
           u = k - i - 1;
01677
           if (u > MAXLOOP)
01678
              break;
01679
01680
           if (S_cons[k] != 3)
01681
             continue:
01682
           minl = j - i + k - MAXLOOP - 2;
r = k + VRNA_GQUAD_MIN_BOX_SIZE - 1;
minl = MAX2(r, minl);
01684
01685
           max1 = k + VRNA_GQUAD_MAX_BOX_SIZE + 1;
r = j - 1;
01686
01687
           maxl = MIN2(r, maxl);

for (1 = min1; 1 < maxl; 1++) {
01688
01689
01690
             if (S_cons[1] != 3)
01691
01692
             if (G[index[k] - 1] == 0.)
01693
01694
                continue;
01695
01696
              qqq = 1.;
01697
              for (s = 0; s < n_seq; s++) {
  u1 = a2s[s][k - 1] - a2s[s][i];
  u2 = a2s[s][j - 1] - a2s[s][1];</pre>
01698
01699
01700
```

```
qqq *= expintern[u1 + u2];
01702
01703
01704
             q += qe *
01705
                  G[index[k] - 1] *
01706
                  qqq * scale[u + j - l + 1];
01707
01708
01709
01710
01711
        1 = 1 - 1:
        if (S_cons[1] == 3)
01712
         for (k = i + 4; k <= j - VRNA_GQUAD_MIN_BOX_SIZE; k++) {
    u = k - i - 1;</pre>
01713
01714
            if (u > MAXLOOP)
01715
01716
               break;
01717
01718
            if (S_cons[k] != 3)
               continue;
01720
01721
            if (G[index[k] - 1] == 0.)
01722
               continue;
01723
            qqq = 1.;
01724
01725
01726
            for (s = 0; s < n_seq; s++) {
  u1 = a2s[s][k - 1] - a2s[s][i];</pre>
01727
01728
               qqq *= expintern[u1];
01729
01730
            q += qe *
    G[index[k] - 1] *
01731
01732
01733
                   qqq *
01734
                   scale[u + 2];
01735
          }
01736
01737
        return q;
01739
01740
01746 #endif
```

# 18.101 ViennaRNA/grammar.h File Reference

Implementations for the RNA folding grammar.

Include dependency graph for grammar.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

struct vrna\_gr\_aux\_s

### **Typedefs**

typedef void(\* vrna\_grammar\_data\_free\_f) (void \*data)
 Free auxiliary data.

### 18.101.1 Detailed Description

Implementations for the RNA folding grammar.

# 18.102 grammar.h

### Go to the documentation of this file.

18.102 grammar.h 713

```
00024 typedef void (*vrna_grammar_rule_f_aux)(vrna_fold_compound_t *vc,
00025
00026
                                          int.
00027
                                          void
                                                                 *data):
00028
00030 typedef FLT_OR_DBL (*vrna_grammar_rule_f_exp)(vrna_fold_compound_t *vc,
00031
00032
                                                     int
00033
                                                      void
                                                                           *data);
00034
00035
00036 typedef void (*vrna_grammar_rule_f_aux_exp) (vrna_fold_compound_t *vc,
00037
00038
                                                      int
00039
                                                      void
                                                                           *data);
00040
00041
00042 typedef void (*vrna_grammar_cond_f)(vrna_fold_compound_t *fc,
00043
                                           unsigned char
00044
                                           void
                                                                *data);
00045
00046
00051 typedef void (*vrna_grammar_data_free_f) (void *data);
00053
00054 typedef struct vrna_gr_aux_s vrna_gr_aux_t;
00055
00056
00057 struct vrna_gr_aux_s {
00058 vrna_grammar_cond_f
00060 vrna_grammar_rule_f
                                  cb proc;
                                 cb_aux_f;
                                  cb_aux_c;
00061
       vrna_grammar_rule_f
00062
       vrna_grammar_rule_f
                                 cb_aux_m;
00063
       vrna_grammar_rule_f
                                 cb_aux_m1;
00064
       vrna_grammar_rule_f_aux
                                     cb_aux;
00065
00066
       vrna_grammar_rule_f_exp
                                 cb_aux_exp_f;
00067
       vrna_grammar_rule_f_exp
                                 cb_aux_exp_c;
                                 cb_aux_exp_m;
00068
       vrna_grammar_rule_f_exp
00069
       vrna_grammar_rule_f_exp
                                   cb_aux_exp_m1;
00070
       vrna_grammar_rule_f_aux_exp cb_aux_exp;
00071
00072
00073
       vrna_grammar_data_free_f free_data;
00074 };
00075
00076
00077 int
00078 vrna_gr_set_aux_f(vrna_fold_compound_t *fc,
00079
                        vrna_grammar_rule_f cb);
08000
00081
00082 int
00083 vrna_gr_set_aux_exp_f(vrna_fold_compound_t
                           vrna_grammar_rule_f_exp cb);
00085
00086
00087 int
00088 vrna_gr_set_aux_c(vrna_fold_compound_t *fc,
00089
                       vrna_grammar_rule_f cb);
00090
00091
00092 int
00093 vrna_gr_set_aux_exp_c(vrna_fold_compound_t
00094
                            vrna_grammar_rule_f_exp cb);
00095
00096
00098 vrna_gr_set_aux_m(vrna_fold_compound_t *fc,
00099
                        vrna_grammar_rule_f cb);
00100
00101
00102 int
00103 vrna_gr_set_aux_exp_m(vrna_fold_compound_t
00104
                            vrna_grammar_rule_f_exp cb);
00105
00106
00107 int
00108 vrna_gr_set_aux_ml(vrna_fold_compound_t
                         vrna_grammar_rule_f cb);
00110
00111
00112 int
00113 vrna_gr_set_aux_exp_m1(vrna_fold_compound_t
00114
                             vrna_grammar_rule_f_exp cb);
```

```
00115
00117 int
00118 vrna_gr_set_aux(vrna_fold_compound_t *fc,
00119
                      vrna_grammar_rule_f_aux cb);
00120
00121
00123 vrna_gr_set_aux_exp(vrna_fold_compound_t
00124
                          vrna_grammar_rule_f_aux_exp cb);
00125
00126
00127 int
00128 vrna_gr_set_data(vrna_fold_compound_t
00129
                       void
00130
                       vrna_grammar_data_free_f free_data);
00131
00132
00133 int
00134 vrna_gr_set_cond(vrna_fold_compound_t
00135
                       vrna_grammar_cond_f cb);
00136
00137
00138 int.
00139 vrna_gr_reset(vrna_fold_compound_t *fc);
00141
00151 #endif
```

# 18.103 ViennaRNA/hairpin\_loops.h File Reference

Use ViennaRNA/loops/hairpin.h instead.

Include dependency graph for hairpin\_loops.h:

## 18.103.1 Detailed Description

Use ViennaRNA/loops/hairpin.h instead.

Deprecated Use ViennaRNA/loops/hairpin.h instead

# 18.104 hairpin\_loops.h

```
Go to the documentation of this file.
```

# 18.105 ViennaRNA/heat\_capacity.h File Reference

Compute heat capacity for an RNA.

Include dependency graph for heat\_capacity.h:

### **Data Structures**

struct vrna\_heat\_capacity\_s

A single result from heat capacity computations. More...

### **Typedefs**

typedef void(\* vrna\_heat\_capacity\_f) (float temp, float heat\_capacity, void \*data)

18.106 heat\_capacity.h 715

The callback for heat capacity predictions.

typedef struct vrna\_heat\_capacity\_s vrna\_heat\_capacity\_t

A single result from heat capacity computations.

### **Functions**

#### Basic heat capacity function interface

 vrna\_heat\_capacity\_t \* vrna\_heat\_capacity (vrna\_fold\_compound\_t \*fc, float T\_min, float T\_max, float T increment, unsigned int mpoints)

Compute the specific heat for an RNA.

• int vrna\_heat\_capacity\_cb (vrna\_fold\_compound\_t \*fc, float T\_min, float T\_max, float T\_increment, unsigned int mpoints, vrna\_heat\_capacity\_f cb, void \*data)

Compute the specific heat for an RNA (callback variant)

### Simplified heat capacity computation

 vrna\_heat\_capacity\_t \* vrna\_heat\_capacity\_simple (const char \*sequence, float T\_min, float T\_max, float T increment, unsigned int mpoints)

Compute the specific heat for an RNA (simplified variant)

### 18.105.1 Detailed Description

Compute heat capacity for an RNA.

This file includes the interface to all functions related to predicting the heat capacity for an RNA.

# 18.106 heat\_capacity.h

### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_MELTING_H
00002 #define VIENNA_RNA_PACKAGE_MELTING_H
00003
00004 #include <stdio.h>
00006 #include <ViennaRNA/datastructures/basic.h>
00007
00008 #ifdef VRNA_WARN_DEPRECATED
00009 # if defined(DEPRECATED)
00010 #
         undef DEPRECATED
00011 # endif
00012 # if defined(__clang_
00013 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00014 # elif defined(__GNUC__)
00015 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00016 # else
00017 # define DEPRECATED(func, msg) func
00018 # endif
00019 #else
00020 # define DEPRECATED(func, msg) func
00021 #endif
00022
00053 typedef void (*vrna_heat_capacity_f)(float temp,
00054
                                                  float heat_capacity,
00055
                                                         *data);
00056
00057 DEPRECATED(typedef void (vrna_heat_capacity_callback)(float temp,
00058
                                                  float heat_capacity,
00059
                                                  void
                                                         *data).
00060
                 "Use vrna_heat_capacity_f instead!");
00061
00062
00068 typedef struct vrna_heat_capacity_s vrna_heat_capacity_t;
00069
00070
00076 struct vrna_heat_capacity_s {
00077
       float temperature;
00078
       float heat_capacity;
00079 };
08000
00081
00111 vrna_heat_capacity_t *
00112 vrna_heat_capacity(vrna_fold_compound_t *fc,
```

```
float
                                                   T_min,
00114
                                                   T_max,
00115
                            float
                                                  T_increment,
                           unsigned int
00116
                                                  mpoints);
00117
00118
00148 int
00149 vrna_heat_capacity_cb(vrna_fold_compound_t
00150
                             float
                                                              T_min,
00151
                               float
                                                              T max,
                                                              T increment.
00152
                              float
00153
                              unsigned int
                                                              mpoints,
00154
                               vrna_heat_capacity_f cb,
00155
                                                              *data);
00156
00157
00158 /* End basic interface */
00192 vrna_heat_capacity_t *
00193 vrna_heat_capacity_simple(const_char
                                                 *sequence,
                                   float T_max,
float T_increment,
coints);
00194
00195
00196
                                   unsigned int mpoints);
00197
00198
00199 /* End basic interface */
00202 /* End thermodynamics */
00205 #endif
```

# 18.107 ViennaRNA/interior loops.h File Reference

Use ViennaRNA/loops/internal.h instead.

Include dependency graph for interior\_loops.h:

## 18.107.1 Detailed Description

Use ViennaRNA/loops/internal.h instead.

Deprecated Use ViennaRNA/loops/internal.h instead

# 18.108 interior\_loops.h

```
Go to the documentation of this file.
```

## 18.109 ViennaRNA/inverse.h File Reference

Inverse folding routines.

### **Functions**

• float inverse\_fold (char \*start, const char \*target)

Find sequences with predefined structure.

float inverse\_pf\_fold (char \*start, const char \*target)

Find sequence that maximizes probability of a predefined structure.

18.110 inverse.h 717

### **Variables**

· char \* symbolset

This global variable points to the allowed bases, initially "AUGC". It can be used to design sequences from reduced alphabets.

- · float final\_cost
- · int give up
- · int inv\_verbose

### 18.109.1 Detailed Description

Inverse folding routines.

### 18.110 inverse.h

### Go to the documentation of this file.

# 18.111 ViennaRNA/landscape/move.h File Reference

Methods to operate with structural neighbors of RNA secondary structures.

This graph shows which files directly or indirectly include this file:

### **Data Structures**

• struct vrna\_move\_s

An atomic representation of the transition / move from one structure to its neighbor. More...

#### **Macros**

• #define VRNA MOVESET INSERTION 4

Option flag indicating insertion move.

• #define VRNA\_MOVESET\_DELETION 8

Option flag indicating deletion move.

• #define VRNA MOVESET SHIFT 16

Option flag indicating shift move.

#define VRNA\_MOVESET\_NO\_LP 32

Option flag indicating moves without lonely base pairs.

#define VRNA\_MOVESET\_DEFAULT (VRNA\_MOVESET\_INSERTION | VRNA\_MOVESET\_DELETION)

Option flag indicating default move set, i.e. insertions/deletion of a base pair.

# **Typedefs**

• typedef struct vrna\_move\_s vrna\_move\_t

A single move that transforms a secondary structure into one of its neighbors.

### **Functions**

```
• vrna_move_t vrna_move_init (int pos_5, int pos_3)
```

Create an atomic move.

- void vrna\_move\_list\_free (vrna\_move\_t \*moves)
- void vrna move apply (short \*pt, const vrna move t \*m)

Apply a particular move / transition to a secondary structure, i.e. transform a structure.

int vrna\_move\_is\_removal (const vrna\_move\_t \*m)

Test whether a move is a base pair removal.

int vrna move is insertion (const vrna move t \*m)

Test whether a move is a base pair insertion.

int vrna\_move\_is\_shift (const vrna\_move\_t \*m)

Test whether a move is a base pair shift.

int vrna move compare (const vrna move t \*a, const vrna move t \*b, const short \*pt)

Compare two moves.

### 18.111.1 Detailed Description

Methods to operate with structural neighbors of RNA secondary structures.

## 18.112 move.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_MOVE_H
00002 #define VIENNA_RNA_PACKAGE_MOVE_H
00003
00004
00020 typedef struct vrna_move_s vrna_move_t;
00021
00026 #define VRNA_MOVESET_INSERTION 4
00027
00032 #define VRNA_MOVESET_DELETION
00033
00038 #define VRNA_MOVESET_SHIFT
00043 #define VRNA_MOVESET_NO_LP
00044
00049 #define VRNA_MOVESET_DEFAULT (VRNA_MOVESET_INSERTION | VRNA_MOVESET_DELETION)
00050
00051
00073 struct vrna_move_s {
00074 int pos_5;
00075 int pos_3;
00076 vrna_move_t *next;
00079 };
08000
00081
00091 vrna_move_t
00092 vrna_move_init(int pos_5, 00093 int pos_3);
00093
00094
00095
00099 void
00100 vrna_move_list_free(vrna_move_t *moves);
00102
00109 void
00110 vrna_move_apply(short
00111
                      const vrna_move_t *m);
00112
00113
00114 void
00115 vrna_move_apply_db(char
                                              *structure,
00116
                          const short
                          const vrna_move t *m):
00117
00118
00119
00126 int
00127 vrna_move_is_removal(const vrna_move_t *m);
00128
00129
00136 int
00137 vrna_move_is_insertion(const vrna_move_t *m);
00138
```

# 18.113 ViennaRNA/landscape/paths.h File Reference

API for computing (optimal) (re-)folding paths between secondary structures. Include dependency graph for paths.h: This graph shows which files directly or indirectly include this file:

### **Data Structures**

struct vrna path s

An element of a refolding path list. More...

#### **Macros**

#define VRNA PATH TYPE DOT BRACKET 1U

Flag to indicate producing a (re-)folding path as list of dot-bracket structures.

#define VRNA\_PATH\_TYPE\_MOVES 2U

Flag to indicate producing a (re-)folding path as list of transition moves.

### **Typedefs**

typedef struct vrna\_path\_s vrna\_path\_t

Typename for the refolding path data structure vrna\_path\_s.

• typedef struct vrna\_path\_options\_s \* vrna\_path\_options\_t

Options data structure for (re-)folding path implementations.

typedef struct vrna\_path\_s path\_t

Old typename of vrna\_path\_s.

## **Functions**

void vrna\_path\_free (vrna\_path\_t \*path)

Release (free) memory occupied by a (re-)folding path.

void vrna\_path\_options\_free (vrna\_path\_options\_t options)

Release (free) memory occupied by an options data structure for (re-)folding path implementations.

• vrna\_path\_options\_t vrna\_path\_options\_findpath (int width, unsigned int type)

Create options data structure for findpath direct (re-)folding path heuristic.

vrna\_path\_t \* vrna\_path\_direct (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, vrna\_path\_options\_t options)

Determine an optimal direct (re-)folding path between two secondary structures.

vrna\_path\_t \* vrna\_path\_direct\_ub (vrna\_fold\_compound\_t \*fc, const char \*s1, const char \*s2, int maxE, vrna\_path\_options\_t options)

Determine an optimal direct (re-)folding path between two secondary structures.

## 18.113.1 Detailed Description

API for computing (optimal) (re-)folding paths between secondary structures.

# 18.114 paths.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_PATHS_H
00002 #define VIENNA_RNA_PACKAGE_PATHS_H
00003
00004 #ifdef VRNA WARN DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC_
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func 00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00042 typedef struct vrna_path_s vrna_path_t;
00043
00044
00049 typedef struct vrna_path_options_s *vrna_path_options_t;
00050
00051
00052 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00053
00059 DEPRECATED(typedef struct vrna_path_s path_t, 00060 "Use vrna_path_t instead!");
00061
00062 #endif
00063
00064 #include <ViennaRNA/fold_compound.h>
00065 #include <ViennaRNA/landscape/move.h>
00066
00071 #define VRNA_PATH_TYPE_DOT_BRACKET
00072
00077 #define VRNA_PATH_TYPE_MOVES
00078
00108 struct vrna_path_s {
00109 unsigned int type;
       double en;
00119
00120
       char
00121
       vrna_move_t move;
00122 };
00123
00124
00131 void
00132 vrna_path_free(vrna_path_t *path);
00133
00134
00141 void
00142 vrna_path_options_free(vrna_path_options_t options);
00143
00173 vrna_path_options_t
00174 vrna_path_options_findpath(int
                                              width.
                                  unsigned int type);
00175
00176
00177
00203 vrna_path_t *
00204 vrna_path_direct(vrna_fold_compound_t *fc,
                     const char *s1,
00205
00206
                       const char
                                             *s2
00207
                       vrna_path_options_t options);
00208
00232 vrna_path_t *
00233 vrna_path_direct_ub(vrna_fold_compound_t *fc,
            const char
00234
                                                 *s1,
00235
                          const char
                                                 *s2.
00236
                          int
                                                 maxE.
00237
                          vrna_path_options_t options);
00238
00239
00242 #endif
```

### 18.115 ViennaRNA/Lfold.h File Reference

Functions for locally optimal MFE structure prediction. Include dependency graph for Lfold.h:

18.116 Lfold.h 721

### **Functions**

- float Lfold (const char \*string, const char \*structure, int maxdist)
   The local analog to fold().
- float Lfoldz (const char \*string, const char \*structure, int maxdist, int zsc, double min\_z)

### 18.115.1 Detailed Description

Functions for locally optimal MFE structure prediction.

### 18.116 Lfold.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_LFOLD_H
00002 #define VIENNA_RNA_PACKAGE_LFOLD_H
00003
00004 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00005
00012 #ifdef VRNA_WARN_DEPRECATED
00013 # if defined(__clang_
00014 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00015 # elif defined(__GNUC
00016 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00017 # else
00018 # define DEPRECATED(func, msg) func
00019 # endif
00020 #else
00021 # define DEPRECATED(func, msg) func
00022 #endif
00023
00024 #include <ViennaRNA/mfe_window.h>
00025
00036 DEPRECATED (float Lfold (const char *string,
00037
                             const char *structure,
00038
                             int
                                        maxdist),
00039
                 "Use vrna_Lfold() or vrna_Lfold_cb() instead");
00040
00041 #ifdef VRNA_WITH_SVM
00049 DEPRECATED(float Lfoldz(const char *string, 00050 const char *structure,
00051
                                          maxdist,
00052
                              int
                                          zsc,
                                         min_z),
00053
                              double
00054
                 "Use vrna_Lfoldz() or vrna_Lfoldz_cb() instead");
00055 #endif
00062 DEPRECATED(float aliLfold(const char **AS,
00063
                                 const char *structure,
00064
                                 int.
                                            maxdist),
00065
                 "Use vrna_aliLfold() or vrna_aliLfold_cb() instead");
00066
00074 DEPRECATED(float aliLfold_cb(const char
00075
                                                             maxdist,
00076
                                    vrna_mfe_window_f cb,
00077
                                    void
                                                              *data),
00078
                 "Use vrna_aliLfold() or vrna_aliLfold_cb() instead");
08000
00081 #endif
00082
00083 #endif
```

# 18.117 ViennaRNA/loop\_energies.h File Reference

Use ViennaRNA/loops/all.h instead.

Include dependency graph for loop\_energies.h:

## 18.117.1 Detailed Description

Use ViennaRNA/loops/all.h instead.

Deprecated Use ViennaRNA/loops/all.h instead

# 18.118 loop energies.h

#### Go to the documentation of this file.

# 18.119 ViennaRNA/loops/all.h File Reference

Energy evaluation for MFE and partition function calculations.

Include dependency graph for all.h: This graph shows which files directly or indirectly include this file:

## 18.119.1 Detailed Description

Energy evaluation for MFE and partition function calculations.

This file contains functions for the calculation of the free energy  $\Delta G$  of a hairpin- [E\_Hairpin()] or interior-loop [E\_IntLoop()].

The unit of the free energy returned is  $10^{-2} * kcal/mol$ 

In case of computing the partition function, this file also supplies functions which return the Boltzmann weights  $e^{-\Delta G/kT}$  for a hairpin-[ exp E Hairpin() ] or interior-loop [ exp\_E\_IntLoop() ].

### 18.120 all.h

### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_LOOPS_ALL_H
00002 #define VIENNA_RNA_PACKAGE_LOOPS_ALL_H
00003
00027 /* below we include the loop type specific energy evaluation functions */
00028
00029 #include <ViennaRNA/loops/external.h>
00030
00031 #include <ViennaRNA/loops/hairpin.h>
00032
00033 #include <ViennaRNA/loops/internal.h>
00034
00035 #include <ViennaRNA/loops/multibranch.h>
00036
00041 #endif
```

# 18.121 ViennaRNA/loops/external.h File Reference

Energy evaluation of exterior loops for MFE and partition function calculations.

Include dependency graph for external.h: This graph shows which files directly or indirectly include this file:

### **Functions**

```
    int E_Stem (int type, int si1, int sj1, int extLoop, vrna_param_t *P)
```

Compute the energy contribution of a stem branching off a loop-region.

- FLT\_OR\_DBL exp\_E\_ExtLoop (int type, int si1, int sj1, vrna\_exp\_param\_t \*P)
- FLT\_OR\_DBL exp\_E\_Stem (int type, int si1, int sj1, int extLoop, vrna\_exp\_param\_t \*P)

### Basic free energy interface

int vrna\_E\_ext\_stem (unsigned int type, int n5d, int n3d, vrna\_param\_t \*p)
 Evaluate a stem branching off the exterior loop.

18.122 external.h 723

```
    int vrna_eval_ext_stem (vrna_fold_compound_t *fc, int i, int j)
        Evaluate the free energy of a base pair in the exterior loop.
    int vrna_E_ext_loop_5 (vrna_fold_compound_t *fc)
    int vrna_E_ext_loop_3 (vrna_fold_compound_t *fc, int i)
```

## **Boltzmann weight (partition function) interface**

 $\bullet \ \ typedef \ struct \ vrna\_mx\_pf\_aux\_el\_s * vrna\_mx\_pf\_aux\_el\_t \\$ 

Auxiliary helper arrays for fast exterior loop computations.

FLT\_OR\_DBL vrna\_exp\_E\_ext\_stem (unsigned int type, int n5d, int n3d, vrna\_exp\_param\_t \*p)

Evaluate a stem branching off the exterior loop (Boltzmann factor version)

- vrna\_mx\_pf\_aux\_el\_t vrna\_exp\_E\_ext\_fast\_init (vrna\_fold\_compound\_t \*fc)
- void vrna\_exp\_E\_ext\_fast\_rotate (vrna\_mx\_pf\_aux\_el\_t aux\_mx)
- void vrna\_exp\_E\_ext\_fast\_free (vrna\_mx\_pf\_aux\_el\_t aux\_mx)
- FLT OR DBL vrna exp E ext fast (vrna fold compound t \*fc, int i, int j, vrna mx pf aux el t aux mx)
- void vrna\_exp\_E\_ext\_fast\_update (vrna\_fold\_compound\_t \*fc, int j, vrna\_mx\_pf\_aux\_el\_t aux\_mx)

## 18.121.1 Detailed Description

Energy evaluation of exterior loops for MFE and partition function calculations.

, ,

# 18.122 external.h

```
Go to the documentation of this file.
```

```
00001 #ifndef VIENNA_RNA_PACKAGE_LOOPS_EXTERNAL_H
00002 #define VIENNA_RNA_PACKAGE_LOOPS_EXTERNAL_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005 #include <ViennaRNA/fold_compound.h>
00006 #include <ViennaRNA/params/basic.h>
00007
00008 #ifdef VRNA WARN DEPRECATED
00009 # if defined(DEPRECATED)
00010 #
         undef DEPRECATED
00011 # endif
00012 # if defined(_
00013 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00014 # elif defined(__GNUC__)
00015 # define DEPRECATED(func, msg) func attribute ((deprecated(msg)))
00016 # else
00017 # define DEPRECATED(func, msg) func
00018 # endif
00019 #else
00020 # define DEPRECATED(func, msg) func
00021 #endif
00022
00059 int
00060 vrna_E_ext_stem(unsigned int type,
00061
                    int
                                    n5d,
00062
                     int
                                    n3d,
00063
                     vrna_param_t *p);
00064
00065
00085 int
00086 vrna_eval_ext_stem(vrna_fold_compound_t
                                              *fc,
00087
                        int
00088
                         int
                                               j);
00089
00090
00092 vrna_E_ext_loop_5(vrna_fold_compound_t *fc);
00093
00094
00095 int
00096 vrna_E_ext_loop_3(vrna_fold_compound_t
                                              *fc.
00097
00098
00099
00100 /* End basic interface */
00116 typedef struct yrna mx pf aux el s *yrna mx pf aux el t:
00117
00118
```

```
00136 FLT_OR_DBL
00137 vrna_exp_E_ext_stem(unsigned int
                                            type,
               int
00138
                                           n5d,
00139
                          int.
                                            n3d,
00140
                          vrna_exp_param_t
                                           *p);
00141
00142
00143 vrna_mx_pf_aux_el_t
00144 vrna_exp_E_ext_fast_init(vrna_fold_compound_t *fc);
00145
00146
00147 void
00148 vrna_exp_E_ext_fast_rotate(vrna_mx_pf_aux_el_t aux_mx);
00149
00150
00151 void
00152 vrna_exp_E_ext_fast_free(vrna_mx_pf_aux_el_t aux_mx);
00153
00154
00155 FLT_OR_DBL
00156 vrna_exp_E_ext_fast(vrna_fold_compound_t *fc,
                       int
00157
00158
                          int.
                                                j,
00159
                          vrna_mx_pf_aux_el_t
                                                aux mx);
00160
00161
00162 void
00163 vrna_exp_E_ext_fast_update(vrna_fold_compound_t *fc,
00164
                                 int
                                 vrna_mx_pf_aux_el_t aux_mx);
00165
00166
00167
00168 /\star End partition function interface \star/
00182 int
00183 vrna_BT_ext_loop_f5(vrna_fold_compound_t *fc,
00184
                         int
                                                *k,
00185
                          int
                                                *i,
00186
                          int
                                                * j,
00187
                          vrna_bp_stack_t
                                                *bp_stack,
00188
                                                *stack_count);
00189
00190
00191 int
00192 vrna_BT_ext_loop_f3(vrna_fold_compound_t *fc,
00193
                        int
                                                *k,
00194
                          int
                                                maxdist,
00195
                          int
                                                *i.
00196
                          int
                                                *j,
00197
                                                *bp_stack,
                          vrna_bp_stack_t
00198
                                                *stack count);
                          int
00199
00200
00201 int
00202 vrna_BT_ext_loop_f3_pp(vrna_fold_compound_t *fc,
00203
                 int
                                                  *i.
00204
                                                 maxdist);
                             int
00205
00206
00211 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00212
00268 DEPRECATED (int. E. Stem (int.
                                          type.
00269
                           int
                                         sil,
00270
                                         sj1,
                            int
                           int extLoop,
vrna_param_t *P),
00271
00272
                 "This function is obsolete. Use vrna_E_ext_stem() or E_MLstem() instead");
00273
00274
00275
00276 DEPRECATED (int E_ExtLoop (int
                                           type,
                                    type
sil,
                              int
00278
                                            sj1,
00279
                              vrna_param_t *P),
00280
                 "Use vrna_E_ext_stem() instead");
00281
00282
00290 DEPRECATED (FLT_OR_DBL exp_E_ExtLoop (int
                                                            type,
00291
                                                            sil,
00292
                                          int
                                                            sjl,
00293
                                          vrna_exp_param_t
00294
                 "Use vrna_exp_E_ext_stem() instead");
00295
00296
00305 DEPRECATED(FLT_OR_DBL exp_E_Stem(int
                                                        type,
00306
                                       int
                                                        sil,
00307
                                       int
                                                        sj1,
00308
                                       int
                                                        extLoop,
00309
                                       vrna exp param t *P).
```

```
00310 "This function is obsolete");

00311

00312

00313 #endif

00314

00320 #endif
```

# 18.123 ViennaRNA/loops/hairpin.h File Reference

Energy evaluation of hairpin loops for MFE and partition function calculations.

Include dependency graph for hairpin.h: This graph shows which files directly or indirectly include this file:

### **Functions**

int vrna\_BT\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j, int en, vrna\_bp\_stack\_t \*bp\_stack, int \*stack\_
 count)

Backtrack a hairpin loop closed by (i, j).

#### Basic free energy interface

• int vrna E hp loop (vrna fold compound t \*fc, int i, int j)

Evaluate the free energy of a hairpin loop and consider hard constraints if they apply.

int vrna\_E\_ext\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

Evaluate the free energy of an exterior hairpin loop and consider possible hard constraints.

int vrna\_eval\_ext\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

Evaluate free energy of an exterior hairpin loop.

int vrna\_eval\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

Evaluate free energy of a hairpin loop.

PRIVATE int E\_Hairpin (int size, int type, int si1, int sj1, const char \*string, vrna\_param\_t \*P)

Compute the Energy of a hairpin-loop.

### Boltzmann weight (partition function) interface

PRIVATE FLT\_OR\_DBL exp\_E\_Hairpin (int u, int type, short si1, short sj1, const char \*string, vrna\_exp\_param\_t \*P)

Compute Boltzmann weight  $e^{-\Delta G/kT}$  of a hairpin loop.

• FLT\_OR\_DBL vrna\_exp\_E\_hp\_loop (vrna\_fold\_compound\_t \*fc, int i, int j)

High-Level function for hairpin loop energy evaluation (partition function variant)

### 18.123.1 Detailed Description

Energy evaluation of hairpin loops for MFE and partition function calculations.

, ,

# 18.124 hairpin.h

# Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_LOOPS_HAIRPIN_H
00002 #define VIENNA_RNA_PACKAGE_LOOPS_HAIRPIN_H
00003
00004 #include <math.h>
00005 #include <string.h>
00006 #include <ViennaRNA/utils/basic.h>
00007 #include <ViennaRNA/datastructures/basic.h>
00008 #include <ViennaRNA/fold compound.h>
00009 #include <ViennaRNA/params/basic.h>
00010 #include <ViennaRNA/params/salt.h>
00012 #ifdef VRNA_WARN_DEPRECATED
00013 # if defined(DEPRECATED)
00014 #
        undef DEPRECATED
00015 # endif
00016 # if defined(__clang_
00017 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00018 # elif defined(__GNUC__)
```

```
00019 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00020 # else
00021 # define DEPRECATED(func, msg) func
00022 # endif
00023 #else
00024 # define DEPRECATED(func, msg) func
00025 #endif
00026
00027 #ifdef ___GNUC_
00028 # define INLINE inline
00029 #else
00030 # define INLINE
00031 #endif
00032
00071 int
00072 vrna_E_hp_loop(vrna_fold_compound_t *fc,
00073
                      int
00074
                      int
                                            i);
00076
00085 int
00086 vrna_E_ext_hp_loop(vrna_fold_compound_t *fc,
                int
00087
00088
                          int
                                                i);
00089
00090
00094 int
00095 vrna_eval_ext_hp_loop(vrna_fold_compound_t *fc,
00096
                             int
00097
                             int
                                                     j);
00098
00099
00111 int
00112 vrna_eval_hp_loop(vrna_fold_compound_t *fc,
                       int
00113
00114
                         int
                                                j);
00115
00116
00149 PRIVATE INLINE int
00150 E_Hairpin(int
                               size,
                int
00151
                               type,
00152
                int
                               sil,
00153
                int
                               sjl,
00154
                const char
                               *string,
00155
                vrna_param_t *P)
00156 {
00157
       int energy, salt_correction;
00158
00159
       salt correction = 0:
00160
00161
        if (P->model_details.salt != VRNA_MODEL_DEFAULT_SALT) {
00162
         if (size<=MAXLOOP)
00163
            salt_correction = P->SaltLoop[size+1];
00164
            salt_correction = vrna_salt_loop_int(size+1, P->model_details.salt, P->temperature+KO);
00165
00166
        }
00167
00168
        if (size <= 30)
00169
          energy = P->hairpin[size];
00170
        else
          energy = P->hairpin[30] + (int)(P->lxc * log((size) / 30.));
00171
00172
00173
       energy += salt_correction;
00174
00175
        if (size < 3)
00176
         return energy;
                                     /\star should only be the case when folding alignments \star/
00177
00178
        if ((string) && (P->model_details.special_hp)) {
00179
         if (size == 4) {
            /* check for tetraloop bonus */
00180
00181
            char tl[7] = {
00182
              0
00183
            }, *ts;
            memcpy(tl, string, sizeof(char) * 6);
tl[6] = '\0';
if ((ts = strstr(P->Tetraloops, tl)))
00184
00185
00186
00187
              return P->Tetraloop_E[(ts - P->Tetraloops) / 7] + salt_correction;
00188
          } else if (size == 6) {
00189
            char tl[9] = {
00190
              0
00191
            }, *ts;
00192
            memcpy(tl, string, sizeof(char) * 8);
00193
            t1[8] = ' \setminus 0';
            if ((ts = strstr(P->Hexaloops, tl)))
00194
          return P->Hexaloop_E[(ts - P->Hexaloops) / 9] + salt_correction;
} else if (size == 3) {
00195
00196
            char t1[6] = {
00197
```

18.124 hairpin.h 727

```
00198
              0
00199
             }, *ts;
00200
             memcpy(tl, string, sizeof(char) * 5);
            t1[5] = '\0';
if ((ts = strstr(P->Triloops, t1)))
00201
00202
              return P->Triloop_E[(ts - P->Triloops) / 6] + salt_correction;
00203
00205
             return energy + (type > 2 ? P->TerminalAU : 0);
00206
00207
00208
00209
        energy += P->mismatchH[type][si1][sj1];
00210
00211
        return energy;
00212 }
00213
00214
00215 /* End basic interface */
00243 PRIVATE INLINE FLT_OR_DBL
00244 exp_E_Hairpin(int
                                         u,
00245
                                         type,
00246
                     short
                                         sil,
00247
                     short
                                         sj1,
00248
                     const char
                                         *string,
00249
                     vrna_exp_param_t *P)
00250 {
00251
        double q, kT, salt_correction;
00252
        kT = P->kT; /* kT in cal/mol */
00253
        salt_correction = 1.;
00254
00255
00256
        if (P->model_details.salt != VRNA_MODEL_DEFAULT_SALT) {
00257
         if (u<=MAXLOOP)
00258
            salt_correction = P->expSaltLoop[u+1];
00259
          else
            salt_correction = exp(-vrna_salt_loop_int(u+1, P->model_details.salt, P->temperature+K0) * 10. /
00260
      kT);
00261
00262
00263
        if (u <= 30)
00264
          q = P->exphairpin[u];
        else
00265
          q = P-\exp[30] * \exp(-(P-)xc * \log(u / 30.)) * 10. / kT);
00266
00267
00268
        q *= salt_correction;
00269
00270
        if (u < 3)
00271
          return (FLT_OR_DBL)q;
                                           /* should only be the case when folding alignments */
00272
00273
        if ((string) && (P->model_details.special_hp)) {
00274
         if (u == 4) {
00275
            char tl[7] = {
00276
00277
             }, *ts;
            memcpy(tl, string, sizeof(char) * 6);
tl[6] = '\0';
if ((ts = strstr(P->Tetraloops, tl))) {
00278
00279
00280
00281
              if (type != 7)
00282
                 return (FLT_OR_DBL) (P->exptetra[(ts - P->Tetraloops) / 7] * salt_correction);
00283
               else
00284
                q *= P->exptetra[(ts - P->Tetraloops) / 7];
00285
00286
          } else if (u == 6) {
00287
            char tl[9] = {
00288
              0
00289
             }, *ts;
            memcpy(tl, string, sizeof(char) * 8);
tl[8] = ' \setminus 0';
if ((ts = strstr(P->Hexaloops, tl)))
00290
00291
00292
          return (FLT_OR_DBL) (P->exphex[(ts - P->Hexaloops) / 9] * salt_correction);
} else if (u == 3) {
00293
00294
00295
            char tl[6] = {
00296
              0
             }, *ts;
00297
            memcpy(tl, string, sizeof(char) * 5);
t1[5] = '\0';
00298
00299
             if ((ts = strstr(P->Triloops, tl)))
00300
00301
              return (FLT_OR_DBL) (P->exptri[(ts - P->Triloops) / 6] * salt_correction);
00302
00303
             if (type > 2)
00304
              return (FLT_OR_DBL) (q * P->expTermAU);
00305
             else
00306
              return (FLT_OR_DBL)q;
00307
00308
        }
00309
        g *= P->expmismatchH[tvpe][si1][si1];
00310
```

```
return (FLT_OR_DBL)q;
00313 }
00314
00315
00325 FLT_OR_DBL
00326 vrna_exp_E_hp_loop(vrna_fold_compound_t *fc,
00328
                                               j);
00329
00330
00331 /* End partition function interface */
00352 int
00353 vrna_BT_hp_loop(vrna_fold_compound_t *fc,
00354
00355
                      int
00356
                      int
00357
                      vrna_bp_stack_t
                                             *bp stack,
00358
                                             *stack_count);
00359
00360
00365 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00366
00376 #endif
00377
00378 #endif
```

# 18.125 ViennaRNA/loops/internal.h File Reference

Energy evaluation of interior loops for MFE and partition function calculations.

Include dependency graph for internal.h: This graph shows which files directly or indirectly include this file:

### **Functions**

int vrna\_BT\_stack (vrna\_fold\_compound\_t \*fc, int \*i, int \*j, int \*en, vrna\_bp\_stack\_t \*bp\_stack, int \*stack←
 \_count)

Backtrack a stacked pair closed by (i, j).

int vrna\_BT\_int\_loop (vrna\_fold\_compound\_t \*fc, int \*i, int \*j, int en, vrna\_bp\_stack\_t \*bp\_stack, int \*stack←
 \_count)

Backtrack an interior loop closed by (i, j).

- PRIVATE int E IntLoop (int n1, int n2, int type, int type 2, int si1, int sj1, int sp1, int sq1, vrna param t\*P)
- PRIVATE FLT\_OR\_DBL exp\_E\_IntLoop (int u1, int u2, int type, int type2, short si1, short sj1, short sp1, short sq1, vrna\_exp\_param\_t \*P)

### Basic free energy interface

```
• int vrna_E_int_loop (vrna_fold_compound_t *fc, int i, int j)
```

• int vrna\_eval\_int\_loop (vrna\_fold\_compound\_t \*fc, int i, int j, int k, int l)

Evaluate the free energy contribution of an interior loop with delimiting base pairs (i, j) and (k, l).

- int vrna E ext int loop (vrna fold compound t \*fc, int i, int i, int \*ip, int \*iq)
- int vrna\_E\_stack (vrna\_fold\_compound\_t \*fc, int i, int j)

## Boltzmann weight (partition function) interface

```
• FLT_OR_DBL vrna_exp_E_int_loop (vrna_fold_compound_t *fc, int i, int j)
```

• FLT OR DBL vrna exp E interior loop (vrna fold compound t \*fc, int i, int j, int k, int l)

# 18.125.1 Detailed Description

Energy evaluation of interior loops for MFE and partition function calculations.

, ,

18.126 internal.h 729

## 18.126 internal.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_LOOPS_INTERNAL_H
00002 #define VIENNA_RNA_PACKAGE_LOOPS_INTERNAL_H
00003
00004 #include <math.h>
00005
00006 #include <ViennaRNA/utils/basic.h>
00007 #include <ViennaRNA/params/default.h>
00008 #include <ViennaRNA/datastructures/basic.h>
00009 #include <ViennaRNA/fold_compound.h>
00010 #include <ViennaRNA/params/basic.h>
00011 #include <ViennaRNA/constraints/hard.h>
00012 #include <ViennaRNA/constraints/soft.h>
00013 #include <ViennaRNA/params/salt.h>
00014
00015 #ifdef VRNA_WARN_DEPRECATED
00016 # if defined(DEPRECATED)
00017 # undef DEPRECATED
00018 # endif
00019 # if defined(__clang__)
00020 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00021 # elif defined(__GNUC__)
00022 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00023 # else
00024 # define DEPRECATED (func. msg) func
00025 # endif
00026 #else
00027 # define DEPRECATED(func, msg) func
00028 #endif
00029
00030 #ifdef __GNUC_
00031 # define INLINE inline
00032 #else
00033 # define INLINE
00034 #endif
00035
00053 int
00054 vrna_E_int_loop(vrna_fold_compound_t *fc,
                    int
00056
                                            j);
00057
00058
00066 int.
00067 vrna_eval_int_loop(vrna_fold_compound_t *fc,
         int
00069
00070
                         int
00071
                         int
                                              1);
00072
00073
00075 vrna_E_ext_int_loop(vrna_fold_compound_t *fc,
00076
                        int
00077
                          int
00078
                          int
                                                *ip,
00079
                          int
                                                *iq);
08000
00083 vrna_E_stack(vrna_fold_compound_t *fc,
00084
       int
int
00085
                                        i);
00086
00088 /* End basic interface */
00098 /\star j < i indicates circular folding, i.e. collect contributions for exterior int loops \star/
00099 FLT_OR_DBL
00100 vrna_exp_E_int_loop(vrna_fold_compound_t *fc,
                 int
00101
00102
                          int
                                                j);
00103
00104
00105 FLT OR DBL
00106 vrna_exp_E_interior_loop(vrna_fold_compound_t *fc,
00107
                              int
                                                    i.
00108
                               int
                                                    i,
00109
00110
00111
00112
00113 /\star End partition function interface \star/
00131 int
00132 vrna_BT_stack(vrna_fold_compound_t *fc,
00133
```

```
int
                                            * j,
00135
                    int
                                            *en,
00136
                    vrna_bp_stack_t
                                           *bp_stack,
00137
                    int.
                                           *stack_count);
00138
00139
00144 int
00145 vrna_BT_int_loop(vrna_fold_compound_t *fc,
00146
               int *i,
00147
                        int
                                             *j,
00148
                        int
                                              en,
00149
                        vrna_bp_stack_t
                                              *bp stack,
00150
                        int
                                             *stack count);
00151
00152
00158 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00165 #ifdef ON_SAME_STRAND
00166 #undef ON_SAME_STRAND
00167 #endif
00168
00169 \#define ON_SAME_STRAND(I, J, C) (((I) >= (C)) || ((J) < (C)))
00170
00215 PRIVATE INLINE int E_IntLoop(int
                                                 n1.
00216
                                    int
                                                 n2.
00217
                                    int
                                                  type,
00218
                                    int
                                                  type_2,
00219
                                    int
00220
                                    int
                                                  sj1,
00221
                                    int
                                                 sp1,
00222
                                    int
                                                 sql,
00223
                                    vrna_param_t *P);
00224
00225
00245 PRIVATE INLINE FLT_OR_DBL exp_E_IntLoop(int
                                                                  u1,
00246
                                                int
                                                                  u2,
00247
                                                int
                                                                   type,
00248
                                                int
                                                                   type2,
00249
                                                                  sil,
                                                short
00250
                                                short
                                                                   sj1,
00251
                                                short
                                                                   sp1,
00252
                                                short
                                                                  sq1,
00253
                                                vrna_exp_param_t *P);
00254
00255
00256 PRIVATE INLINE int E_IntLoop_Co(int
                                                      type,
00257
                                                      type_2,
00258
                                        int
                                                      i,
00259
                                        int
                                                      j,
00260
                                        int
                                                      p,
00261
                                        int
                                                      q,
00262
                                        int
                                                      cutpoint,
00263
                                        short
                                                      sil,
00264
                                        short
                                                      sj1,
00265
                                        short
                                                      sp1,
00266
                                        short
                                                      sq1,
00267
                                        int
                                                      dangles,
00268
                                        vrna_param_t
00269
00270
00271 /*
00272 ^{\star} ugly but fast interior loop evaluation 00273 ^{\star}
00274 \star Avoid including this function in your own code. It only serves
00275 * as a fast inline block internally re-used throughout the RNAlib. It
00276 *
          evalutes the free energy of interior loops in single sequences or sequence
00277 \star hybrids. Soft constraints are also applied if available.
00278 *
00279 * NOTE: do not include into doxygen reference manual!
00280 */
00281 PRIVATE INLINE int
00282 ubf_eval_int_loop(int
00283
                        int
                                       j,
00284
                         int
00285
                         int
                                        q,
00286
                         int
                                       i1,
00287
                        int
                                        j1,
00288
                         int
00289
                         int
                                        q1,
00290
                         short
                                        si,
00291
                         short
                                       sj,
00292
                        short
                                       sp,
00293
                         short
                                       sq,
00294
                         unsigned char type,
00295
                         unsigned char type_2,
00296
                         int
                                       *rtype,
00297
                         int.
                                       ij,
00298
                         int
                                       cp,
```

18.126 internal.h 731

```
00299
                           vrna_param_t *P,
00300
                           vrna_sc_t
00301 {
00302
        int energy, u1, u2;
00303
00304
        u1 = p1 - i;
        u2 = j1 - q;
00306
00307
         if ((cp < 0) || (ON_SAME_STRAND(i, p, cp) && ON_SAME_STRAND(q, j, cp))) {
         /* regular interior loop */
00308
          energy = E_IntLoop(u1, u2, type, type_2, si, sj, sp, sq, P);
00309
00310
         } else {
00311
          /* interior loop like cofold structure */
          short Si, Sj;
Si = ON_SAME_STRAND(i, i1, cp) ? si : -1;
Sj = ON_SAME_STRAND(j1, j, cp) ? sj : -1;
energy = E_IntLoop_Co(rtype[type], rtype[type_2],
00312
00313
00314
00315
00316
                                     i, j, p, q,
00317
                                     cp,
00318
                                     Si, Sj,
00319
                                      sp, sq,
00320
                                     P->model_details.dangles,
                                     P):
00321
00322
00323
00324
        /* add soft constraints */
00325
         if (sc) {
00326
         if (sc->energy_up)
00327
            energy += sc->energy_up[i1][u1]
00328
                        + sc->energy_up[q1][u2];
00329
00330
          if (sc->energy_bp)
00331
            energy += sc->energy_bp[ij];
00332
          if (sc->energy_stack)
  if (u1 + u2 == 0) {
00333
00334
               int a = sc->energy_stack[i]
00335
00336
                        + sc->energy_stack[p]
00337
                        + sc->energy_stack[q]
00338
                        + sc->energy_stack[j];
00339
                energy += a;
            }
00340
00341
00342
           if (sc->f)
00343
             energy += sc->f(i, j, p, q, VRNA_DECOMP_PAIR_IL, sc->data);
00344
00345
00346
        return energy;
00347 }
00348
00350 PRIVATE INLINE int
00351 ubf_eval_int_loop2(int
                          int
00352
00353
                            int
00354
                            int
00355
                            int
00356
                            int
                                              j1,
00357
                            int
00358
                            int
                                              q1,
00359
                            short
                                              si,
00360
                            short
                                             sj,
00361
                            short
                                             sp,
00362
                            short
                                             sq,
00363
                            unsigned char
                                             type,
00364
                            unsigned char type_2,
                            int
00365
                                              *rtype,
00366
                            int
                                             ij,
00367
                            unsigned int
                                             *sn.
00368
                            unsigned int
                                             *ss,
00369
                            vrna_param_t
                                              *P,
00370
                            vrna_sc_t
                                              *sc)
00371 {
00372
        int energy, u1, u2;
00373
00374
        u1 = p1 - i;
00375
        u2 = j1 - q;
00376
         if ((sn[i] == sn[p]) && (sn[q] == sn[j])) {
   /* regular interior loop */
00377
00378
00379
           energy = E_IntLoop(u1, u2, type, type_2, si, sj, sp, sq, P);
00380
         } else {
00381
          /* interior loop like cofold structure */
00382
           short Si, Sj;
           Si = (sn[i1] == sn[i]) ? si : -1;
Sj = (sn[j] == sn[j1]) ? sj : -1;
energy = E_IntLoop_Co(rtype[type], rtype[type_2],
00383
00384
00385
```

```
i, j, p, q,
00386
00387
                                   ss[1],
00388
                                   Si, Sj,
00389
                                   sp, sq,
00390
                                   P->model details.dangles,
00391
                                   P);
00392
00393
00394
        /* add soft constraints */
00395
        if (sc) {
00396
         if (sc->energy_up)
           energy += sc->energy_up[i1][u1]
00397
                       + sc->energy_up[q1][u2];
00398
00399
00400
          if (sc->energy_bp)
00401
            energy += sc->energy_bp[ij];
00402
00403
          if (sc->energy_stack)
            if (u1 + u2 == 0) {
00404
00405
              int a = sc->energy_stack[i]
00406
                       + sc->energy_stack[p]
00407
                      + sc->energy_stack[q]
00408
                       + sc->energy_stack[j];
00409
              energy += a;
00410
00411
00412
          if (sc->f)
00413
            energy += sc->f(i, j, p, q, VRNA_DECOMP_PAIR_IL, sc->data);
00414
00415
00416
        return energy;
00417 }
00418
00419
00420 /*
         ugly but fast exterior interior loop evaluation
00421 *
00422 *
      * Avoid including this function in your own code. It only serves
          as a fast inline block internally re-used throughout the RNAlib. It evalutes the free energy of interior loops in single sequences or sequence
00424 *
00425 *
00426 *
          hybrids. Soft constraints are also applied if available.
00427 *
00428 * NOTE: do not include into doxygen reference manual!
00429 */
00430 PRIVATE INLINE int
00431 ubf_eval_ext_int_loop(int
00432
                             int
                                            j,
00433
                              int
00434
                              int
                                            q,
00435
                             int
                                            i1.
00436
                              int
                                            j1,
00437
                              int
                                            p1,
00438
                              int
                                            q1,
00439
                             short
                                            si,
00440
                             short
                                            sj,
00441
                             short
                                            sp,
00442
                             short
                                            sq,
00443
                              unsigned char type,
00444
                              unsigned char type_2
00445
                             int
                                            length,
                             vrna_param_t *P,
00446
00447
                             vrna_sc_t
                                            *sc)
00448 {
00449
        int energy, u1, u2, u3;
00450
        u1 = i1;
u2 = p1 - j;
00451
00452
00453
        u3 = length - q;
00454
00455
        energy = E_IntLoop(u2, u1 + u3, type, type_2, si, sj, sp, sq, P);
00456
00457
        /* add soft constraints */
00458
        if (sc) {
00459
          if (sc->energy_up) {
00460
            energy += sc->energy_up[j1][u2]
00461
                       + ((u3 > 0) ? sc->energy_up[q1][u3] : 0)
00462
                       + ((u1 > 0) ? sc->energy_up[1][u1] : 0);
00463
00464
00465
          if (sc->energy_stack)
            if (u1 + u2 + u3 == 0)
00466
00467
              energy += sc->energy_stack[i]
00468
                         + sc->energy_stack[p]
00469
                         + sc->energy_stack[q]
00470
                         + sc->energy_stack[j];
00471
00472
          if (sc->f)
```

18.126 internal.h 733

```
energy += sc->f(i, j, p, q, VRNA_DECOMP_PAIR_IL, sc->data);
00474
00475
00476
       return energy;
00477 }
00478
00479
00480 PRIVATE INLINE int
00481 E_IntLoop(int
00482
                int
                              n2,
00483
                int
                              type,
00484
                int
                               type 2.
00485
                int
                               sil,
00486
                               sj1,
00487
                int
                               sp1,
00488
                int
                               sql,
00489
                vrna_param_t
                             *P)
00490 {
00491 /* compute energy of degree 2 loop (stack bulge or interior) */
00492
       int nl, ns, u, energy, salt_stack_correction, salt_loop_correction, backbones;
00493
00494
       salt_stack_correction = P->SaltStack;
00495
       salt_loop_correction = 0;
00496
00497
       if (n1 > n2) {
        nl = n1;
ns = n2;
00498
00499
00500
       } else {
00501
         n1 = n2;
00502
         ns = n1;
00503
00504
00505
        if (nl == 0) {
00506
         return P->stack[type][type_2] + salt_stack_correction; /* stack */
00507
00508
00509
       backbones = n1+ns+2;
00511
        if (P->model_details.salt != VRNA_MODEL_DEFAULT_SALT) {
00512
         /* salt correction for loop */
         if (backbones <= MAXLOOP+1)</pre>
00513
00514
           salt_loop_correction = P->SaltLoop[backbones];
00515
          else
00516
           salt_loop_correction = vrna_salt_loop_int(backbones, P->model_details.salt, P->temperature+KO);
00517
00518
00519
       if (ns == 0) {
00520
         /* bulge */
         energy = (nl <= MAXLOOP) ? P->bulge[nl] :
00521
                  (P->bulge[30] + (int)(P->lxc * log(nl / 30.)));
00522
          if (n1 == 1) {
00523
00524
           energy += P->stack[type][type_2];
00525
         } else {
00526
          if (type > 2)
             energy += P->TerminalAU;
00527
00528
           if (type_2 > 2)
00530
             energy += P->TerminalAU;
00531
00532
00533
         return energy + salt_loop_correction;
00534
       } else {
00535
         /* interior loop */
00536
         if (ns == 1) {
00537
           if (n1 == 1)
                                             /* 1x1 loop */
00538
             return P->int11[type][type_2][si1][sj1] + salt_loop_correction;
00539
00540
            if (n1 == 2) {
00541
             /* 2x1 loop */
              if (n1 == 1)
00543
                energy = P->int21[type][type_2][si1][sq1][sj1];
00544
              else
00545
               energy = P->int21[type_2][type][sq1][si1][sp1];
00546
00547
              return energy + salt loop correction;
00548
           } else {
              /* 1xn loop */
00549
              energy = (n1 + 1 <=
00550
00551
                 MAXLOOP) ? (P->internal_loop[n1 + 1]) : (P->internal_loop[30] +
00552
00553
                                                           (int) (P->lxc * log((nl + 1) / 30.)));
              energy += MIN2(MAX_NINIO, (n1 - ns) * P->ninio[2]);
00555
              energy += P->mismatch1nI[type][si1][sj1] + P->mismatch1nI[type_2][sq1][sp1];
00556
              return energy + salt_loop_correction;
00557
         } else if (ns == 2) {
  if (nl == 2) {
00558
00559
```

```
/* 2x2 loop */
00561
              return P->int22[type][type_2][si1][sp1][sq1][sj1] + salt_loop_correction;
00562
            } else if (n1 == 3)
              /* 2x3 loop */
00563
              energy = P->internal_loop[5] + P->ninio[2];
energy += P->mismatch23I[type][si1][sj1] + P->mismatch23I[type_2][sq1][sp1];
00564
00565
00566
              return energy + salt_loop_correction;
00567
00568
          }
00569
00570
00571
            /\star generic interior loop (no else here!) \star/
00572
            u
                   = nl + ns;
00573
            energy =
00574
             (u <=
00575
               MAXLOOP) ? (P->internal_loop[u]) : (P->internal_loop[30] + (int)(P->lxc * log((u) / 30.)));
00576
00577
            energy += MIN2(MAX NINIO, (nl - ns) * P->ninio[2]);
00579
            energy += P->mismatchI[type][si1][sj1] + P->mismatchI[type_2][sq1][sp1];
00580
00581
00582
00583
        return energy + salt_loop_correction;
00584 }
00585
00586
00587 PRIVATE INLINE FLT_OR_DBL
00588 exp_E_IntLoop(int
                                       u1,
00589
                    int
                                       u2.
00590
                    int
                                       type,
00591
                    int
                                       type2,
00592
                    short
00593
                    short
                                       sj1,
00594
                    short
                                       sp1,
00595
                    short
                                       sql,
00596
                    vrna_exp_param_t *P)
00597 {
00598
                ul, us, no_close = 0;
                z = 0.;
noGUclosure = P->model_details.noGUclosure;
00599
        double z
00600
        int
00601
               backbones:
        int
        double salt_stack_correction = P->expSaltStack;
00602
       double salt_loop_correction = 1.;
00603
00604
00605
       if ((noGUclosure) && ((type2 == 3) || (type2 == 4) || (type == 3) || (type == 4)))
00606
         no_close = 1;
00607
00608
       if (u1 > u2) {
        ul = u1;
us = u2;
00609
00610
00611
       } else {
00612
         u1 = u2;
00613
         us = u1;
00614
00615
00616
        /* salt correction for loop */
00617
        backbones = ul+us+2;
00618
        if (P->model_details.salt != VRNA_MODEL_DEFAULT_SALT) {
00619
        if (backbones <= MAXLOOP+1)
00620
           salt_loop_correction = P->expSaltLoop[backbones];
00621
00622
          else
           salt_loop_correction = exp(-vrna_salt_loop_int(backbones, P->model_details.salt,
00623
     P->temperature+K0) * 10. / P->kT);
00624 }
00625
00626
        if (u1 == 0) {
        /* stack */
00627
          z = P->expstack[type][type2] * salt_stack_correction;
       } else if (!no_close) {
  if (us == 0) {
00629
00630
            /* bulge */
00631
00632
            z = P \rightarrow expbulge[ul];
            if (ul == 1) {
00633
00634
             z *= P->expstack[type][type2];
00635
            } else {
00636
             if (type > 2)
00637
                z *= P->expTermAU;
00638
             if (type2 > 2)
00639
00640
               z *= P->expTermAU;
00641
00642
          00643
00644
00645
                                              /* 1x1 loop */
```

18.126 internal.h 735

```
return (FLT_OR_DBL) (P->expint11[type][type2][si1][sj1] * salt_loop_correction);
00647
00648
            if (u1 == 2) {
              /* 2x1 loop */
if (u1 == 1)
00649
00650
                return (FLT_OR_DBL) (P->expint21[type][type2][si1][sq1][sj1] * salt_loop_correction);
00651
00652
              else
00653
                return (FLT_OR_DBL) (P->expint21[type2][type][sq1][si1][sp1] * salt_loop_correction);
00654
            } else {
00655
              /* 1xn loop */
00656
              z = P->expinternal[ul + us] * P->expmismatch1nI[type][si1][sj1] *
                  P->expmismatch1nI[type2][sq1][sp1];
00657
              return (FLT_OR_DBL) (z * P->expninio[2][ul - us] * salt_loop_correction);
00658
00659
00660
          } else if (us == 2) {
00661
            if (u1 == 2) {
              /* 2x2 loop */
00662
            return (FLT_OR_DBL) (P->expint22[type][type2][sil][spl][sql][sjl] * salt_loop_correction);
} else if (ul == 3) {
00663
00664
              /* 2x3 loop */
00665
00666
              z = P->expinternal[5] * P->expmismatch23I[type][si1][sj1] *
00667
                  P->expmismatch23I[type2][sq1][sp1];
00668
              return (FLT_OR_DBL) (z * P->expninio[2][1] * salt_loop_correction);
00669
            }
00670
          }
00671
00672
          /\star generic interior loop (no else here!) \star/
00673
          z = P - \exp[internal[ul + us] * P - \exp[ismatchI[type][sil][sjl] *
00674
             P->expmismatchI[type2][sq1][sp1];
00675
          return (FLT_OR_DBL) (z * P->expninio[2][ul - us] * salt_loop_correction);
00676
00677
00678
        return (FLT_OR_DBL) z;
00679 }
00680
00681
00682 PRIVATE INLINE int
00683 E_IntLoop_Co(int
                                 type,
00684
                   int
                                 type_2,
00685
                    int
00686
                    int
                                 j,
00687
                   int
                                 p,
00688
                   int
                                 q,
00689
                                 cutpoint,
                    int
                                 sil,
00690
                   short
00691
                    short
                                 sj1,
00692
                    short
                                 spl,
00693
                   short
                                 sql,
00694
                   int
                                 dangles,
00695
                   vrna param t *P)
00696 {
00697
       int e, energy, ci, cj, cp, cq, d3, d5, d5_2, d3_2, tmm, tmm_2;
00698
        int salt_loop_correction, backbones;
00699
00700
        salt_loop_correction = 0;
00701
00702
        backbones = p - i + j - q;
00703
        /* salt correction for loop */
00704
        if (P->model_details.salt != VRNA_MODEL_DEFAULT_SALT) {
00705
          if (backbones <= MAXLOOP+1)
00706
            salt_loop_correction = P->SaltLoop[backbones];
00707
          else
00708
            salt_loop_correction = vrna_salt_loop_int(backbones, P->model_details.salt, P->temperature+KO);
00709
00710
00711
        energy = 0;
00712
        if (type > 2)
          energy += P->TerminalAU;
00713
00714
00715
        if (type_2 > 2)
00716
          energy += P->TerminalAU;
00717
00718
       if (!dangles)
          return energy + salt_loop_correction;
00719
00720
00721
        ci = ON_SAME_STRAND(i, i + 1, cutpoint);
        cj = ON_SAME_STRAND(j - 1, j, cutpoint);
cp = ON_SAME_STRAND(p - 1, p, cutpoint);
00722
00723
00724
        cq = ON_SAME_STRAND(q, q + 1, cutpoint);
00725
00726
        d3
              = ci ? P->dangle3[type][si1]
00727
        d5
             = cj ? P->dangle5[type][sj1]
                                                : 0;
00728
        d5_2 = cp ? P->dangle5[type_2][sp1] : 0;
        d3_2 = cq ? P->dangle3[type_2][sq1] : 0;
00729
00730
              = (cj && ci) ? P->mismatchExt[type][sj1][si1]
00731
        t.mm
                                                                : d5 + d3;
        tmm_2 = (cp && cq) ? P->mismatchExt[type_2][sp1][sq1] : d5_2 + d3_2;
00732
```

```
00734
         if (dangles == 2)
00735
            return energy + tmm + tmm_2 + salt_loop_correction;
00736
00737
         /* now we may have non-double dangles only */
00738
         if (p - i > 2) {
          if (j - q > 2) {
00740
             /* all degrees of freedom */
00741
              e = MIN2 (tmm, d5);
              e = MIN2(e, d3);
00742
00743
             energy += e;
e = MIN2(tmm_2, d5_2);
00744
              e = MIN2(e, d3_2);
00745
00746
              energy += e;
00747
           } else if (j - q == 2) {
             /* all degrees of freedom in 5' part between i and p */
e = MIN2(tmm + d5_2, d3 + d5_2);
e = MIN2(e, d5 + d5_2);
e = MIN2(e, d3 + tmm_2);
00748
00749
00750
00752
             e = MIN2(e, d3 + d3_2);
             e = MIN2(e, tmm_2); /* no dangles on enclosing pair */
e = MIN2(e, d5_2); /* no dangles on enclosing pair */
e = MIN2(e, d3_2); /* no dangles on enclosing pair */
00753
00754
00755
00756
              energy += e;
00757
           } else {
00758
              /\star no unpaired base between q and j \star/
00759
              energy += d3 + d5_2;
00760
         } else if (p - i == 2) {
   if (j - q > 2) {
     /* all degrees of freedom in 3' part between q and j */
00761
00762
00763
00764
              e = MIN2 (tmm + d3_2, d5 + d3_2);
00765
             e = MIN2(e, d5 + d3_2);
00766
              e = MIN2(e, d3 + d3_2);
00767
             e = MIN2(e, d5 + tmm_2);
00768
             e = MIN2(e, tmm_2);
00769
             e = MIN2(e, d5_2);
00770
             e = MIN2(e, d3_2);
         energy += e;
} else if (j - q == 2) {
00771
00772
00773
             /\star one possible dangling base between either side \star/
00774
             e = MIN2 (tmm, tmm_2);
             e = MIN2(e, d3);
00775
00776
             e = MIN2(e, d5);
00777
             e = MIN2(e, d5_2);
00778
             e = MIN2(e, d3_2);
             e = MIN2(e, d3 + d3_2);
e = MIN2(e, d5 + d5_2);
00779
00780
00781
              energy += e;
00782
           } else {
00783
              /* one unpaired base between i and p */
00784
              energy += MIN2(d3, d5_2);
00785
00786
         } else {
           /\star no unpaired base between i and p \star/
00787
           if (j-q>2) {
  /* all degrees of freedom in 3' part between q and j */
00788
00790
              energy += d5 + d3_2;
00791
           } else if (j - q == 2) {
00792
              /* one unpaired base between q and j */
00793
              energy += MIN2(d5, d3_2);
00794
00795
00796
00797
         return energy + salt_loop_correction;
00798 }
00799
00800
00805 #endif
00806
00807 #endif
```

# 18.127 ViennaRNA/loops/multibranch.h File Reference

Energy evaluation of multibranch loops for MFE and partition function calculations. Include dependency graph for multibranch.h: This graph shows which files directly or indirectly include this file:

### **Functions**

• int vrna\_BT\_mb\_loop (vrna\_fold\_compound\_t \*fc, int \*i, int \*j, int \*k, int en, int \*component1, int \*component2)

18.128 multibranch.h 737

Backtrack the decomposition of a multi branch loop closed by (i, j).

#### Basic free energy interface

```
    int vrna_E_mb_loop_stack (vrna_fold_compound_t *fc, int i, int j)
        Evaluate energy of a multi branch helices stacking onto closing pair (i,j)
    int vrna_E_mb_loop_fast (vrna_fold_compound_t *fc, int i, int j, int *dmli1, int *dmli2)
    int E_ml_rightmost_stem (int i, int j, vrna_fold_compound_t *fc)
    int vrna_E_ml_stems_fast (vrna_fold_compound_t *fc, int i, int j, int *fmi, int *dmli)
```

## Boltzmann weight (partition function) interface

```
    typedef struct vrna_mx_pf_aux_ml_s * vrna_mx_pf_aux_ml_t
    Auxiliary helper arrays for fast exterior loop computations.
```

- FLT\_OR\_DBL vrna\_exp\_E\_mb\_loop\_fast (vrna\_fold\_compound\_t \*fc, int i, int j, vrna\_mx\_pf\_aux\_ml\_t aux\_mx)
- vrna\_mx\_pf\_aux\_ml\_t vrna\_exp\_E\_ml\_fast\_init (vrna\_fold\_compound\_t \*fc)
- void vrna exp E ml fast rotate (vrna mx pf aux ml t aux mx)
- void vrna exp E ml fast free (vrna mx pf aux ml t aux mx)
- const FLT\_OR\_DBL \* vrna\_exp\_E\_ml\_fast\_qqm (vrna\_mx\_pf\_aux\_ml\_t aux\_mx)
- const FLT\_OR\_DBL \* vrna\_exp\_E\_ml\_fast\_qqm1 (vrna\_mx\_pf\_aux\_ml\_t aux\_mx)
- FLT\_OR\_DBL vrna\_exp\_E\_ml\_fast (vrna\_fold\_compound\_t \*fc, int i, int j, vrna\_mx\_pf\_aux\_ml\_t aux\_mx)

## 18.127.1 Detailed Description

Energy evaluation of multibranch loops for MFE and partition function calculations.

, ,

### 18.128 multibranch.h

```
Go to the documentation of this file.
```

```
00001 #ifndef VIENNA_RNA_PACKAGE_LOOPS_MULTIBRANCH_H
00002 #define VIENNA_RNA_PACKAGE_LOOPS_MULTIBRANCH_H
00003
00004 #include <ViennaRNA/utils/basic.h>
00005 #include <ViennaRNA/datastructures/basic.h>
00006 #include <ViennaRNA/fold compound.h>
00007 #include <ViennaRNA/params/basic.h>
80000
00009 #ifdef VRNA_WARN_DEPRECATED
00010 # if defined(DEPRECATED)
00011 #
         undef DEPRECATED
00012 # endif
00013 # if defined(__clang_
00014 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00015 # elif defined(__GNUC__)
00016 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00017 # else
00018 # define DEPRECATED(func, msg) func
00019 # endif
00020 #else
00021 # define DEPRECATED(func, msg) func
00022 #endif
00023
00024 #ifdef ___GNUC
00025 # define INLINE inline
00026 #else
00027 # define INLINE
00028 #endif
00029
00054 int
00055 vrna_E_mb_loop_stack(vrna_fold_compound_t *fc,
00056
                           int
00057
                                                 j);
00058
00059
00060 int
00061 vrna_E_mb_loop_fast(vrna_fold_compound_t
                                                *fc,
00062
                          int
                                                 i.
00063
                          int
                                                 j,
00064
                                                 *dmli1,
                          int
```

```
int
                                                 *dmli2);
00066
00067
00068 int
00069 E_ml_rightmost_stem(int
                                                 i,
00070
                          int
                          vrna_fold_compound_t
00072
00073
00074 int
00075 vrna_E_ml_stems_fast(vrna_fold_compound_t *fc,
00076
                          int
00077
                           int
00078
                                                 *fmi,
00079
                           int
                                                 *dmli);
08000
00081
00082 /* End basic interface */
00098 typedef struct vrna_mx_pf_aux_ml_s *vrna_mx_pf_aux_ml_t;
00099
00100
00101 FLT OR DBL
00102 vrna_exp_E_mb_loop_fast(vrna_fold_compound_t *fc,
00103
                              int.
                                                     i,
00104
                              int
00105
                              vrna_mx_pf_aux_ml_t
                                                     aux_mx);
00106
00107
00108 vrna_mx_pf_aux_ml_t
00109 vrna_exp_E_ml_fast_init(vrna_fold_compound_t *fc);
00110
00111
00112 void
00113 vrna_exp_E_ml_fast_rotate(vrna_mx_pf_aux_ml_t aux_mx);
00114
00115
00116 void
00117 vrna_exp_E_ml_fast_free(vrna_mx_pf_aux_ml_t aux_mx);
00118
00119
00120 const FLT OR DBL *
00121 vrna_exp_E_ml_fast_qqm(vrna_mx_pf_aux_ml_t aux_mx);
00122
00123
00124 const FLT_OR_DBL *
00125 vrna_exp_E_ml_fast_qqm1(vrna_mx_pf_aux_ml_t aux_mx);
00126
00127
00128 FLT OR DBL
00129 vrna_exp_E_ml_fast(vrna_fold_compound_t *fc,
                         int
                                               i,
00131
00132
                         vrna_mx_pf_aux_ml_t aux_mx);
00133
00134
00135 /* End partition function interface */
00164 vrna_BT_mb_loop(vrna_fold_compound_t *fc,
00165
                     int
                                             *i,
00166
                      int
                                             ∗j,
00167
                      int
                                             *k,
00168
                      int
                                             en,
00169
                      int
                                             *component1,
00170
                      int
                                             *component2);
00171
00172
00173 int
00174 vrna_BT_mb_loop_split(vrna_fold_compound_t *fc,
00175
                            int
                                                   *i.
00176
                            int
                                                   *j,
00177
                                                   *k,
00178
                            int
                                                   *1,
00179
                            int
                                                   *component1,
00180
                            int
                                                   *component2,
00181
                            vrna bp stack t
                                                  *bp stack,
00182
                                                   *stack_count);
00183
00184
00190 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00191
00216 PRIVATE INLINE int
00217 E_MLstem(int
                            type,
00218
                            sil,
00219
               int
                            sj1,
00220
              vrna_param_t *P)
00221 {
00222 int energy = 0;
```

```
00223
       if (si1 >= 0 && sj1 >= 0)
00224
00225
          energy += P->mismatchM[type][si1][sj1];
       else if (si1 >= 0)
00226
00227
       energy += P->dangle5[type][si1];
else if (si1 >= 0)
00228
         energy += P->dangle3[type][sj1];
00230
00231
       if (type > 2)
00232
         energy += P->TerminalAU;
00233
00234
       energy += P->MLintern[type];
00235
00236
       return energy;
00237 }
00238
00239
00246 PRIVATE INLINE FLT OR DBL
00247 exp_E_MLstem(int
                                     type,
00248
                                     sil,
00249
00250
                   vrna_exp_param_t *P)
00251 {
       double energy = 1.0;
00252
00253
       if (si1 >= 0 && sj1 >= 0)
00255
         energy = P->expmismatchM[type][si1][sj1];
00256
       else if (si1 >= 0)
00257
         energy = P->expdangle5[type][si1];
00258
       else if (si1 >= 0)
00259
         energy = P->expdangle3[type][sj1];
00260
00261
       if (type > 2)
         energy *= P->expTermAU;
00262
00263
       energy *= P->expMLintern[type];
00264
00265
       return (FLT_OR_DBL) energy;
00266 }
00267
00268
00269 #endif
00270
00275 #endif
```

## 18.129 ViennaRNA/LPfold.h File Reference

Partition function and equilibrium probability implementation for the sliding window algorithm. Include dependency graph for LPfold.h:

### **Functions**

- void update\_pf\_paramsLP (int length)
- vrna\_ep\_t \* pfl\_fold (char \*sequence, int winSize, int pairSize, float cutoffb, double \*\*pU, vrna\_ep\_t \*\*dpp2,
   FILE \*pUfp, FILE \*spup)

Compute partition functions for locally stable secondary structures.

vrna\_ep\_t \* pfl\_fold\_par (char \*sequence, int winSize, int pairSize, float cutoffb, double \*\*pU, vrna\_ep\_t
 \*\*dpp2, FILE \*pUfp, FILE \*spup, vrna\_exp\_param\_t \*parameters)

Compute partition functions for locally stable secondary structures.

void putoutpU prob (double \*\*pU, int length, int ulength, FILE \*fp, int energies)

Writes the unpaired probabilities (pU) or opening energies into a file.

void putoutpU\_prob\_bin (double \*\*pU, int length, int ulength, FILE \*fp, int energies)

Writes the unpaired probabilities (pU) or opening energies into a binary file.

void init pf foldLP (int length)

### 18.129.1 Detailed Description

Partition function and equilibrium probability implementation for the sliding window algorithm.

This file contains the implementation for sliding window partition function and equilibrium probabilities. It also provides the unpaired probability implementation from Bernhart et al. 2011 [4]

### 18.129.2 Function Documentation

### 18.129.2.1 init\_pf\_foldLP()

Dunno if this function was ever used by external programs linking to RNAlib, but it was declared PUBLIC before. Anyway, never use this function as it will be removed soon and does nothing at all

## 18.130 LPfold.h

### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_LPFOLD_H
00002 #define VIENNA_RNA_PACKAGE_LPFOLD_H
00003
00004 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00005
00016 #include <stdio.h>
00017
00018 #include <ViennaRNA/datastructures/basic.h>
00019 #include <ViennaRNA/params/basic.h>
00020 #include <ViennaRNA/part_func_window.h>
00021
00022 #ifdef VRNA_WARN_DEPRECATED
00023 # if defined(__clang__)
00024 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00025 # elif defined(__GNUC__)
00026 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00027 # else
00028 # define DEPRECATED(func, msg) func
00029 # endif
00030 #else
00031 # define DEPRECATED(func, msg) func
00032 #endif
00033
00041 DEPRECATED(void update_pf_paramsLP(int length),
00042 "This function is obsolete");
00043
00044
00051 DEPRECATED(void update_pf_paramsLP_par(int
00052
                                               vrna_exp_param_t *parameters),
00053 "Use the new API with vrna_folc_compound_t instead");
00054
00055
00093 DEPRECATED(vrna_ep_t *pfl_fold(char
                                                      *sequence,
00094
                                                     pairSize,
00095
                                       int
                                                      cutoffb,
00096
                                       float
00097
                                       double
                                                      **pU,
00098
                                       vrna ep t
                                                      **dpp2,
00099
                                       FILE
                                                     *pUfp,
                                       FILE
                                                      *spup),
00101 "Use vrna_pfl_fold(), vrna_pfl_fold_cb(), vrna_pfl_fold_up(), or vrna_pfl_fold_up_cb() instead");
00102
00103
00110 DEPRECATED(vrna_ep_t *pfl_fold_par(char
                                                              *sequence,
00111
                                              int
                                                                 winSize,
00112
                                              int
                                                                 pairSize,
00113
                                              float
00114
                                              double
                                                                 **pU,
00115
                                              vrna_ep_t
                                                                 **dpp2
00116
                                              FILE
                                                                 *pUfp,
00117
                                              FILE
                                                                 *spup,
                                              vrna_exp_param_t
                                                                 *parameters),
00119 "Use the new API and vrna_probs_window() instead");
00120
00121
00122 DEPRECATED(void putoutpU_prob_par(double
                                                             **pU,
00123
                                          int
                                                             length,
00124
                                          int
                                                             ulength,
00125
                                                             *fp,
00126
                                                             energies,
00127
                                          vrna_exp_param_t
                                                             *parameters),
00128 ""):
00129
00130
00145 DEPRECATED (void
                          putoutpU_prob(double **pU,
00146
```

```
00147
                                                ulength,
00148
                                         FILE
                                                *fp,
00149
                                         int
                                                energies),
00150 ""):
00151
00152
00153 DEPRECATED(void putoutpU_prob_bin_par(double
                                                                 **pU,
00154
                                                                 length,
00155
                                              int
                                                                 ulength,
00156
                                              FILE
                                                                 *fp,
00157
                                                                 energies,
                                              int
00158
                                              vrna_exp_param_t *parameters),
00159 "");
00160
00161
00176 DEPRECATED(void
                          putoutpU_prob_bin(double **pU,
                                             i.nt
00177
                                                    length,
00178
                                                    ulength,
                                             int
                                             FILE
                                                   *fp,
00180
                                             int
                                                    energies),
00181 "");
00182
00183
00189 DEPRECATED (void init_pf_foldLP (int length),
00190 "This function is obsolete");
00192 #endif
00193
00194 #endif
```

## 18.131 ViennaRNA/MEA.h File Reference

Computes a MEA (maximum expected accuracy) structure. Include dependency graph for MEA.h:

### **Functions**

- char \* vrna\_MEA (vrna\_fold\_compound\_t \*fc, double gamma, float \*mea)
  - Compute a MEA (maximum expected accuracy) structure.
- char \* vrna\_MEA\_from\_plist (vrna\_ep\_t \*plist, const char \*sequence, double gamma, vrna\_md\_t \*md, float \*mea)

Compute a MEA (maximum expected accuracy) structure from a list of probabilities.

float MEA (plist \*p, char \*structure, double gamma)

Computes a MEA (maximum expected accuracy) structure.

### 18.131.1 Detailed Description

Computes a MEA (maximum expected accuracy) structure.

## 18.132 MEA.h

### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_MEA_H
00002 #define VIENNA_RNA_PACKAGE_MEA_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005 #include <ViennaRNA/params/basic.h>
00006
00035 char *
00036 vrna_MEA(vrna_fold_compound_t *fc,
00037
              double
00038
               float
                                     *mea);
00039
00040
00070 char *
00071 vrna_MEA_from_plist(vrna_ep_t
                                      *plist,
00072
                        const char *sequence,
00073
                          double
                                      gamma,
00074
                          vrna_md_t
                                      *md,
00075
                          float
                                      *mea);
00076
00077
```

```
00078 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00080 #ifdef VRNA_WARN_DEPRECATED
00081 # if defined(__clang__)
00082 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00083 # elif defined( GNUC
        define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00085 # else
00086 # define DEPRECATED(func, msg) func
00087 # endif
00088 #else
00089 # define DEPRECATED(func, msg) func
00090 #endif
00091
00092
00108 DEPRECATED (float
                 MEA(plist *p,
char *structure,
00109
00110
00111
                     double gamma),
00112
                 "Use vrna_MEA() or vrna_MEA_from_plist() instead!");
00113
00114
00115 DEPRECATED(float
                 MEA_seq(plist
00116
00117
                         const char
                                          *sequence,
00118
                         char
                                          *structure,
00119
                         double
00120
                         vrna_exp_param_t *pf),
                 "Use vrna_MEA() or vrna_MEA_from_plist() instead!");
00121
00122
00123
00124 #endif
00125
00126 #endif
```

## 18.133 ViennaRNA/mfe.h File Reference

Compute Minimum Free energy (MFE) and backtrace corresponding secondary structures from RNA sequence data.

Include dependency graph for mfe.h: This graph shows which files directly or indirectly include this file:

### **Functions**

• float vrna\_backtrack5 (vrna\_fold\_compound\_t \*fc, unsigned int length, char \*structure)

Backtrack an MFE (sub)structure.

### **Basic global MFE prediction interface**

- float vrna\_mfe (vrna\_fold\_compound\_t \*vc, char \*structure)
   Compute minimum free energy and an appropriate secondary structure of an RNA sequence, or RNA sequence alignment
- float vrna\_mfe\_dimer (vrna\_fold\_compound\_t \*vc, char \*structure)

  Compute the minimum free energy of two interacting RNA molecules.

### Simplified global MFE prediction using sequence(s) or multiple sequence alignment(s)

- float vrna\_fold (const char \*sequence, char \*structure)
  - Compute Minimum Free Energy (MFE), and a corresponding secondary structure for an RNA sequence.
- float vrna\_circfold (const char \*sequence, char \*structure)
  - Compute Minimum Free Energy (MFE), and a corresponding secondary structure for a circular RNA sequence.
- float vrna\_alifold (const char \*\*sequences, char \*structure)
  - Compute Minimum Free Energy (MFE), and a corresponding consensus secondary structure for an RNA sequence alignment using a comparative method.
- float vrna\_circalifold (const char \*\*sequences, char \*structure)
  - Compute Minimum Free Energy (MFE), and a corresponding consensus secondary structure for a sequence alignment of circular RNAs using a comparative method.
- float vrna cofold (const char \*sequence, char \*structure)
  - Compute Minimum Free Energy (MFE), and a corresponding secondary structure for two dimerized RNA sequences.

18.134 mfe.h 743

## 18.133.1 Detailed Description

Compute Minimum Free energy (MFE) and backtrace corresponding secondary structures from RNA sequence data.

This file includes (almost) all function declarations within the RNAlib that are related to MFE folding...

### 18.134 mfe.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_MFE_H
00002 #define VIENNA_RNA_PACKAGE_MFE_H
00003
00004 #include <stdio.h>
00005 #include <ViennaRNA/datastructures/basic.h>
00006 #include <ViennaRNA/fold_compound.h>
00007
00008 #ifdef VRNA_WARN_DEPRECATED
00009 # if defined(__clang__)
00010 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00011 # elif defined(__GNUC__)
00012 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00013 # else
00014 # define DEPRECATED(func, msg) func
00015 # endif
00016 #else
00017 # define DEPRECATED(func, msg) func
00018 #endif
00019
00020
00097 float
00098 vrna_mfe(vrna_fold_compound_t *vc,
00099
                                    *structure);
              char
00100
00101
00117 DEPRECATED(float
00118
       vrna_mfe_dimer(vrna_fold_compound_t *vc,
00119
                                char
                                                      *structure),
                "Use vrna_mfe() instead");
00120
00121
00122
00153 float
00154 vrna_fold(const char *sequence,
               char
00155
                          *structure);
00156
00157
00181 vrna_circfold(const char *sequence,
00182
                  char
00183
00184
00206 float
00207 vrna_alifold(const char **sequences,
00208
                 char
00209
00210
00235 float
00236 vrna_circalifold(const char **sequences,
                              *structure);
                      char
00238
00239
00264 DEPRECATED(float
       vrna_cofold(const char *sequence,
00265
00266
                            char
                                      *structure),
00267
                "USe vrna_fold() instead");
00268
00269
00289 int
00290 vrna\_backtrack\_from\_intervals(vrna\_fold\_compound\_t *vc,
                                    vrna_bp_stack_t
00291
                                                          *bp_stack,
00292
                                    sect
                                                          bt stack[],
00293
00294
00295
00317 float
00318 vrna_backtrack5(vrna_fold_compound_t *fc,
             unsigned int
00319
                                           length,
                                            *structure);
00321
00322
00323 int
00324 vrna_backtrack_window(vrna_fold_compound_t *fc,
```

```
00325 const char *Lfold_filename,
00326 long file_pos,
00327 char **structure,
00328 double mfe);
00329
00330
00337 #endif
```

## 18.135 ViennaRNA/mfe window.h File Reference

Compute local Minimum Free Energy (MFE) using a sliding window approach and backtrace corresponding secondary structures.

Include dependency graph for mfe window.h: This graph shows which files directly or indirectly include this file:

## **Typedefs**

typedef void(\* vrna\_mfe\_window\_f) (int start, int end, const char \*structure, float en, void \*data)
 The default callback for sliding window MFE structure predictions.

#### **Functions**

#### Basic local (sliding window) MFE prediction interface

- float vrna\_mfe\_window (vrna\_fold\_compound\_t \*vc, FILE \*file)
  - Local MFE prediction using a sliding window approach.
- float vrna\_mfe\_window\_cb (vrna\_fold\_compound\_t \*vc, vrna\_mfe\_window\_f cb, void \*data)
- float vrna\_mfe\_window\_zscore (vrna\_fold\_compound\_t \*vc, double min\_z, FILE \*file)
   Local MFE prediction using a sliding window approach (with z-score cut-off)
- float vrna\_mfe\_window\_zscore\_cb (vrna\_fold\_compound\_t \*vc, double min\_z, vrna\_mfe\_window\_
   zscore f cb, void \*data)

### Simplified local MFE prediction using sequence(s) or multiple sequence alignment(s)

- float vrna\_Lfold (const char \*string, int window\_size, FILE \*file)
  - Local MFE prediction using a sliding window approach (simplified interface)
- float vrna\_Lfold\_cb (const char \*string, int window\_size, vrna\_mfe\_window\_f cb, void \*data)
- float vrna\_Lfoldz (const char \*string, int window\_size, double min\_z, FILE \*file)
- Local MFE prediction using a sliding window approach with z-score cut-off (simplified interface)
- float vrna\_Lfoldz\_cb (const char \*string, int window\_size, double min\_z, vrna\_mfe\_window\_zscore\_f cb, void \*data)
- float vrna\_aliLfold (const char \*\*alignment, int maxdist, FILE \*fp)
- float vrna\_aliLfold\_cb (const char \*\*alignment, int maxdist, vrna\_mfe\_window\_f cb, void \*data)

### 18.135.1 Detailed Description

Compute local Minimum Free Energy (MFE) using a sliding window approach and backtrace corresponding secondary structures.

This file includes the interface to all functions related to predicting locally stable secondary structures.

## 18.136 mfe window.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_MFE_WINDOW_H
00002 #define VIENNA_RNA_PACKAGE_MFE_WINDOW_H
00003
00004 #include <stdio.h>
00005 #include <ViennaRNA/fold_compound.h>
00006
00007 #ifdef VRNA_WITH_SVM
00008 #include <ViennaRNA/zscore.h>
00009 #endif
00010
```

18.136 mfe\_window.h 745

```
00011 #ifdef VRNA_WARN_DEPRECATED
00012 # if defined(DEPRECATED)
00013 #
         undef DEPRECATED
00014 # endif
00015 # if defined(_
00016 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00017 # elif defined(__GNUC__)
00018 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00019 # else
00020 # define DEPRECATED(func, msg) func
00021 # endif
00022 #else
00023 # define DEPRECATED(func, msg) func
00024 #endif
00025
                                              start,
00079 typedef void (*vrna_mfe_window_f)(int
                                              int end,
const char *structure,
00080
00081
                                               float
00082
                                                          en,
00083
                                               void
                                                           *data);
00084
00085 DEPRECATED(typedef void (vrna_mfe_window_callback)(int
                                                                     start,
                                                         end,
00086
                                              int
                                              const char *structure,
00087
00088
                                               float
                                                          en,
00089
                                                           *data),
00090
                 "Use vrna_mfe_window_f instead!");
00091
00092
00093
00094 #ifdef VRNA_WITH_SVM
00095 typedef void (*vrna_mfe_window_zscore_f)(int
                                                          start,
00096
00097
                                                      const char *structure,
                                                              en,
00098
                                                      float
00099
                                                      float
                                                                zscore,
00100
                                                      void
                                                                *data);
00102 DEPRECATED(typedef void (vrna_mfe_window_zscore_callback)(int
                                                                            start,
00103
00104
                                                      const char *structure,
                                                              en,
00105
                                                      float.
00106
                                                      float.
                                                                 zscore.
00107
                                                      void
                                                                 *data),
00108
                "Use vrna_mfe_window_zscore_f instead!");
00109 #endif
00110
00141 float
00142 vrna_mfe_window(vrna_fold_compound_t *vc,
00143
                    FILE
                                             *file);
00144
00145
00146 float
00147 vrna_mfe_window_cb(vrna_fold_compound_t
                                                  *VC,
00148
                         vrna_mfe_window_f cb,
00149
                         void
                                                  *data);
00150
00151
00152 #ifdef VRNA_WITH_SVM
00178 float
00179 vrna_mfe_window_zscore(vrna_fold_compound_t *vc,
00180
                             double
                                                  min z,
00181
                             FILE
00182
00183
00184 float
{\tt 00185\ vrna\_mfe\_window\_zscore\_cb(vrna\_fold\_compound\_t)}
                                                                 *VC.
00186
                                double
                                                                 min_z,
00187
                                vrna_mfe_window_zscore_f cb,
00188
                                void
                                                                 *data);
00189
00190
00191 #endif
00192
00193 /* End basic local MFE interface */
00221 float
00222 vrna_Lfold(const char *string,
                        window_size,
00223
00224
                 FILE
                            *file);
00225
00226
00227 float
                                               *string,
00228 vrna_Lfold_cb(const char
00229
                    int
                                              window_size,
00230
                    vrna_mfe_window_f cb,
00231
                    void
                                              *data);
00232
```

```
00234 #ifdef VRNA_WITH_SVM
00259 float
00260 vrna_Lfoldz(const char *string,
                 int
                         window_size,
min_z,
*file);
00261
                  double
00262
00263
                 FILE
00264
00265
00266 float
00267 vrna_Lfoldz_cb(const char
                                                       *string,
00268
                     int
                                                       window_size,
00269
                     double
                                                      min z,
00270
                     vrna_mfe_window_zscore_f cb,
00271
                     void
                                                       *data);
00272
00273
00274 #endif
00276 float vrna_aliLfold(const char **alignment,
                                maxdist, *fp);
00277
00278
                          FILE
00279
00280
00281 float vrna_aliLfold_cb(const char
                                                       **alignment,
                                                      maxdist,
00283
                             vrna_mfe_window_f cb,
00284
                             void
                                                       *data);
00285
00286
00287 /* End simplified local MFE interface */
00290 /* End group mfe_fold_window */
00294 #endif
```

### 18.137 ViennaRNA/mm.h File Reference

Several Maximum Matching implementations. Include dependency graph for mm.h:

## **Functions**

- int vrna\_maximum\_matching (vrna\_fold\_compound\_t \*fc)
- int vrna\_maximum\_matching\_simple (const char \*sequence)

## 18.137.1 Detailed Description

Several Maximum Matching implementations.

This file contains the declarations for several maximum matching implementations

## 18.137.2 Function Documentation

### 18.137.2.1 vrna maximum matching()

**SWIG Wrapper Notes** This function is attached as method **maximum\_matching()** to objects of type fold\_← compound (i.e. vrna\_fold\_compound\_t).

### 18.137.2.2 vrna\_maximum\_matching\_simple()

SWIG Wrapper Notes This function is available as global function maximum\_matching().

18.138 mm.h 747

### 18.138 mm.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_MM_H
00002 #define VIENNA_RNA_PACKAGE_MM_H
00003
00013 #include <ViennaRNA/fold_compound.h>
00014
00015 int
00016 vrna_maximum_matching(vrna_fold_compound_t *fc);
00017
00018
00019 int.
00020 vrna_maximum_matching_simple(const char *sequence);
00021
00022
00023 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00024
00025 unsigned int
00026 maximumMatching(const char *string);
00027
00029 unsigned int *
00030 maximumMatchingConstraint(const char *string,
00031
                                short
                                            *ptable);
00032
00033
00034 unsigned int *
00035 maximumMatching2Constraint(const char *string,
00036
                                short *ptable,
00037
                                 short
                                            *ptable2);
00038
00039
00040 #endif
00041
00042 #endif
```

## 18.139 ViennaRNA/model.h File Reference

The model details data structure and its corresponding modifiers. This graph shows which files directly or indirectly include this file:

#### **Data Structures**

· struct vrna md s

The data structure that contains the complete model details used throughout the calculations. More...

#### **Macros**

• #define VRNA MODEL DEFAULT TEMPERATURE 37.0

Default temperature for structure prediction and free energy evaluation in  ${}^{\circ}C$ 

#define VRNA\_MODEL\_DEFAULT\_PF\_SCALE -1

Default scaling factor for partition function computations.

• #define VRNA\_MODEL\_DEFAULT\_BETA\_SCALE 1.

Default scaling factor for absolute thermodynamic temperature in Boltzmann factors.

#define VRNA\_MODEL\_DEFAULT\_DANGLES 2

Default dangling end model.

• #define VRNA MODEL DEFAULT SPECIAL HP 1

Default model behavior for lookup of special tri-, tetra-, and hexa-loops.

• #define VRNA\_MODEL\_DEFAULT\_NO\_LP 0

Default model behavior for so-called 'lonely pairs'.

• #define VRNA\_MODEL\_DEFAULT\_NO\_GU 0

Default model behavior for G-U base pairs.

• #define VRNA\_MODEL\_DEFAULT\_NO\_GU\_CLOSURE 0

Default model behavior for G-U base pairs closing a loop.

#define VRNA\_MODEL\_DEFAULT\_CIRC 0

Default model behavior to treat a molecule as a circular RNA (DNA)

#define VRNA\_MODEL\_DEFAULT\_GQUAD 0

Default model behavior regarding the treatment of G-Quadruplexes.

#define VRNA MODEL DEFAULT UNIQ ML 0

Default behavior of the model regarding unique multi-branch loop decomposition.

#define VRNA MODEL DEFAULT ENERGY SET 0

Default model behavior on which energy set to use.

#define VRNA MODEL DEFAULT BACKTRACK 1

Default model behavior with regards to backtracking of structures.

• #define VRNA\_MODEL\_DEFAULT\_BACKTRACK\_TYPE 'F'

Default model behavior on what type of backtracking to perform.

• #define VRNA\_MODEL\_DEFAULT\_COMPUTE\_BPP 1

Default model behavior with regards to computing base pair probabilities.

• #define VRNA\_MODEL\_DEFAULT\_MAX\_BP\_SPAN -1

Default model behavior for the allowed maximum base pair span.

• #define VRNA MODEL DEFAULT WINDOW SIZE -1

Default model behavior for the sliding window approach.

• #define VRNA MODEL DEFAULT LOG ML 0

Default model behavior on how to evaluate the energy contribution of multi-branch loops.

• #define VRNA MODEL DEFAULT ALI OLD EN 0

Default model behavior for consensus structure energy evaluation.

• #define VRNA\_MODEL\_DEFAULT\_ALI\_RIBO 0

Default model behavior for consensus structure co-variance contribution assessment.

• #define VRNA MODEL DEFAULT ALI CV FACT 1.

Default model behavior for weighting the co-variance score in consensus structure prediction.

• #define VRNA MODEL DEFAULT ALI NC FACT 1.

Default model behavior for weighting the nucleotide conservation? in consensus structure prediction.

• #define VRNA MODEL DEFAULT SALT 1.021

Default model salt concentration (M)

#define VRNA\_MODEL\_DEFAULT\_SALTMLLOWER 6

Default model lower bound of multiloop size for salt correction fiting.

• #define VRNA\_MODEL\_DEFAULT\_SALTMLUPPER 24

Default model upper bound of multiloop size for salt correction fiting.

• #define VRNA\_MODEL\_DEFAULT\_SALTDPXINIT 99999

Default model value to turn off user-provided salt correction for duplex initializtion.

• #define MAXALPHA 20

Maximal length of alphabet.

#### **Typedefs**

typedef struct vrna md s vrna md t

Typename for the model details data structure vrna\_md\_s.

#### **Functions**

void vrna md set default (vrna md t \*md)

Apply default model details to a provided vrna\_md\_t data structure.

void vrna\_md\_update (vrna\_md\_t \*md)

Update the model details data structure.

vrna md t \* vrna md copy (vrna md t \*md to, const vrna md t \*md from)

Copy/Clone a vrna md t model.

• char \* vrna\_md\_option\_string (vrna\_md\_t \*md)

Get a corresponding commandline parameter string of the options in a vrna\_md\_t.

void vrna\_md\_defaults\_reset (vrna\_md\_t \*md\_p)

Reset the global default model details to a specific set of parameters, or their initial values.

void vrna md defaults temperature (double T)

Set default temperature for energy evaluation of loops.

double vrna md defaults temperature get (void)

Get default temperature for energy evaluation of loops.

void vrna\_md\_defaults\_betaScale (double b)

Set default scaling factor of thermodynamic temperature in Boltzmann factors.

double vrna\_md\_defaults\_betaScale\_get (void)

Get default scaling factor of thermodynamic temperature in Boltzmann factors.

• void vrna\_md\_defaults\_dangles (int d)

Set default dangle model for structure prediction.

int vrna\_md\_defaults\_dangles\_get (void)

Get default dangle model for structure prediction.

void vrna\_md\_defaults\_special\_hp (int flag)

Set default behavior for lookup of tabulated free energies for special hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

int vrna\_md\_defaults\_special\_hp\_get (void)

Get default behavior for lookup of tabulated free energies for special hairpin loops, such as Tri-, Tetra-, or Hexa-loops.

void vrna md defaults noLP (int flag)

Set default behavior for prediction of canonical secondary structures.

int vrna\_md\_defaults\_noLP\_get (void)

Get default behavior for prediction of canonical secondary structures.

void vrna\_md\_defaults\_noGU (int flag)

Set default behavior for treatment of G-U wobble pairs.

int vrna\_md\_defaults\_noGU\_get (void)

Get default behavior for treatment of G-U wobble pairs.

void vrna\_md\_defaults\_noGUclosure (int flag)

Set default behavior for G-U pairs as closing pair for loops.

int vrna\_md\_defaults\_noGUclosure\_get (void)

Get default behavior for G-U pairs as closing pair for loops.

void vrna\_md\_defaults\_logML (int flag)

Set default behavior recomputing free energies of multi-branch loops using a logarithmic model.

int vrna\_md\_defaults\_logML\_get (void)

Get default behavior recomputing free energies of multi-branch loops using a logarithmic model.

void vrna\_md\_defaults\_circ (int flag)

Set default behavior whether input sequences are circularized.

int vrna\_md\_defaults\_circ\_get (void)

Get default behavior whether input sequences are circularized.

void vrna\_md\_defaults\_gquad (int flag)

Set default behavior for treatment of G-Quadruplexes.

int vrna\_md\_defaults\_gquad\_get (void)

Get default behavior for treatment of G-Quadruplexes.

void vrna\_md\_defaults\_uniq\_ML (int flag)

Set default behavior for creating additional matrix for unique multi-branch loop prediction.

int vrna\_md\_defaults\_uniq\_ML\_get (void)

Get default behavior for creating additional matrix for unique multi-branch loop prediction.

void vrna\_md\_defaults\_energy\_set (int e)

Set default energy set.

int vrna\_md\_defaults\_energy\_set\_get (void)

Get default energy set.

void vrna\_md\_defaults\_backtrack (int flag)

Set default behavior for whether to backtrack secondary structures.

int vrna\_md\_defaults\_backtrack\_get (void)

Get default behavior for whether to backtrack secondary structures.

void vrna\_md\_defaults\_backtrack\_type (char t)

Set default backtrack type, i.e. which DP matrix is used.

· char vrna md defaults backtrack type get (void)

Get default backtrack type, i.e. which DP matrix is used.

void vrna\_md\_defaults\_compute\_bpp (int flag)

Set the default behavior for whether to compute base pair probabilities after partition function computation.

int vrna md defaults compute bpp get (void)

Get the default behavior for whether to compute base pair probabilities after partition function computation.

void vrna md defaults max bp span (int span)

Set default maximal base pair span.

int vrna\_md\_defaults\_max\_bp\_span\_get (void)

Get default maximal base pair span.

void vrna\_md\_defaults\_min\_loop\_size (int size)

Set default minimal loop size.

int vrna\_md\_defaults\_min\_loop\_size\_get (void)

Get default minimal loop size.

void vrna\_md\_defaults\_window\_size (int size)

Set default window size for sliding window structure prediction approaches.

int vrna\_md\_defaults\_window\_size\_get (void)

Get default window size for sliding window structure prediction approaches.

void vrna\_md\_defaults\_oldAliEn (int flag)

Set default behavior for whether to use old energy model for comparative structure prediction.

int vrna\_md\_defaults\_oldAliEn\_get (void)

Get default behavior for whether to use old energy model for comparative structure prediction.

void vrna\_md\_defaults\_ribo (int flag)

Set default behavior for whether to use Ribosum Scoring in comparative structure prediction.

int vrna\_md\_defaults\_ribo\_get (void)

Get default behavior for whether to use Ribosum Scoring in comparative structure prediction.

· void vrna md defaults cv fact (double factor)

Set the default co-variance scaling factor used in comparative structure prediction.

double vrna\_md\_defaults\_cv\_fact\_get (void)

Get the default co-variance scaling factor used in comparative structure prediction.

- void vrna md defaults nc fact (double factor)
- double vrna md defaults nc fact get (void)
- void vrna\_md\_defaults\_sfact (double factor)

Set the default scaling factor used to avoid under-/overflows in partition function computation.

• double vrna\_md\_defaults\_sfact\_get (void)

Get the default scaling factor used to avoid under-/overflows in partition function computation.

void vrna\_md\_defaults\_salt (double salt)

Set the default salt concentration.

· double vrna md defaults salt get (void)

Get the default salt concentration.

void vrna\_md\_defaults\_saltMLLower (int lower)

Set the default multiloop size lower bound for loop salt correciton linear fitting.

int vrna md defaults saltMLLower get (void)

Get the default multiloop size lower bound for loop salt correciton linear fitting.

void vrna\_md\_defaults\_saltMLUpper (int upper)

Set the default multiloop size upper bound for loop salt correciton linear fitting.

int vrna\_md\_defaults\_saltMLUpper\_get (void)

Get the default multiloop size upper bound for loop salt correciton linear fitting.

void vrna md defaults saltDPXInit (int value)

Set user-provided salt correciton for duplex initialization If value is 99999 the default value from fitting is used.

int vrna\_md\_defaults\_saltDPXInit\_get (void)

Get user-provided salt correciton for duplex initialization If value is 99999 the default value from fitting is used.

void set model details (vrna md t \*md)

Set default model details.

#### **Variables**

· double temperature

Rescale energy parameters to a temperature in degC.

double pf scale

A scaling factor used by pf\_fold() to avoid overflows.

int dangles

Switch the energy model for dangling end contributions (0, 1, 2, 3)

int tetra loop

Include special stabilizing energies for some tri-, tetra- and hexa-loops;.

· int noLonelyPairs

Global switch to avoid/allow helices of length 1.

int noGU

Global switch to forbid/allow GU base pairs at all.

• int no\_closingGU

GU allowed only inside stacks if set to 1.

int circ

backward compatibility variable.. this does not effect anything

• int gquad

Allow G-quadruplex formation.

int uniq ML

do ML decomposition uniquely (for subopt)

int energy\_set

0 = BP; 1=any with GC; 2=any with AU-parameter

int do\_backtrack

do backtracking, i.e. compute secondary structures or base pair probabilities

char backtrack\_type

A backtrack array marker for inverse\_fold()

char \* nonstandards

contains allowed non standard base pairs

• int max\_bp\_span

Maximum allowed base pair span.

• int oldAliEn

use old alifold energies (with gaps)

• int ribo

use ribosum matrices

• int logML

if nonzero use logarithmic ML energy in energy\_of\_struct

· double salt

salt concentration

• int saltDPXInit

Salt correction for duplex initialization.

## 18.139.1 Detailed Description

The model details data structure and its corresponding modifiers.

## 18.140 model.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_MODEL_H
00002 #define VIENNA_RNA_PACKAGE_MODEL_H
00003
00017 #ifndef NBASES
00018 #define NBASES 8
00019 #endif
00020
00022 typedef struct vrna_md_s vrna_md_t;
00023
00030 #define VRNA_MODEL_DEFAULT_TEMPERATURE
                                                37.0
00031
00036 #define VRNA_MODEL_DEFAULT_PF_SCALE
00037
00042 #define VRNA_MODEL_DEFAULT_BETA_SCALE
00043
00047 #define VRNA_MODEL_DEFAULT_DANGLES
00048
00053 #define VRNA_MODEL_DEFAULT_SPECIAL_HP
00054
00059 #define VRNA_MODEL_DEFAULT_NO_LP
00060
00065 #define VRNA_MODEL_DEFAULT_NO_GU
00066
00071 #define VRNA MODEL DEFAULT NO GU CLOSURE
00072
00077 #define VRNA_MODEL_DEFAULT_CIRC
00078
00083 #define VRNA_MODEL_DEFAULT_GQUAD
00084
00089 #define VRNA_MODEL_DEFAULT_UNIQ_ML
00090
00095 #define VRNA_MODEL_DEFAULT_ENERGY_SET
00096
00101 #define VRNA_MODEL_DEFAULT_BACKTRACK
00102
00107 #define VRNA_MODEL_DEFAULT_BACKTRACK_TYPE 'F'
00108
00113 #define VRNA_MODEL_DEFAULT_COMPUTE_BPP
00114
00119 #define VRNA_MODEL_DEFAULT_MAX_BP_SPAN
00120
00125 #define VRNA_MODEL_DEFAULT_WINDOW_SIZE
00126
00131 #define VRNA_MODEL_DEFAULT_LOG_ML
00132
00137 #define VRNA_MODEL_DEFAULT_ALI_OLD_EN
00138
00143 #define VRNA MODEL DEFAULT ALI RIBO
                                                0
00144
00149 #define VRNA_MODEL_DEFAULT_ALI_CV_FACT
00154 #define VRNA_MODEL_DEFAULT_ALI_NC_FACT
00155
00156
00157 #define VRNA MODEL DEFAULT PF SMOOTH
00158
00162 #define VRNA_MODEL_DEFAULT_SALT
                                                1.021
00163
00164
00168 #define VRNA MODEL DEFAULT SALTMLLOWER
00169
00170
00174 #define VRNA_MODEL_DEFAULT_SALTMLUPPER
00175
00176
00180 #define VRNA_MODEL_DEFAULT_SALTDPXINIT 99999
00181
00182
00183 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00185 #ifndef MAXALPHA
00189 #define MAXALPHA
                                    20
00190 #endif
00191
00192 #endif
00203 struct vrna_md_s {
```

18.140 model.h 753

```
00204
        double temperature;
00205
        double betaScale;
00206
        int
                pf_smooth;
00207
        int
                dangles;
00231
        int
                special_hp;
00232
                noLP;
        int
00233
                noGU;
        int
00234
                noGUclosure;
00235
        int
                logML;
00236
        int
                circ;
00237
        int
                gquad;
00238
        int
                uniq_ML;
00239
        int
                energy set;
00240
                backtrack;
        int
00241
        char
                backtrack_type;
00242
        int
                compute_bpp;
                nonstandards[64]:
00243
        char
00244
        int
                max_bp_span;
00246
        int
                min_loop_size;
00250
                window_size;
        int
00251
        int
                oldAliEn;
00252
        int
                ribo;
00253
        double cv_fact;
00254
        double nc_fact;
00255
        double sfact;
00256
                rtype[8];
        int
00257
        short
                alias[MAXALPHA + 1];
00258
        int
                pair[MAXALPHA + 1][MAXALPHA + 1];
00259
        float
                pair_dist[7][7];
00260
        double
                salt:
                saltMLLower;
00261
       int
00262
        int
                saltMLUpper;
00263
       int
               saltDPXInit;
00267 };
00268
00269
00278 void
00279 vrna_md_set_default(vrna_md_t *md);
00280
00281
00294 void
00295 vrna_md_update(vrna_md_t *md);
00296
00297
00308 vrna_md_t *
00309 vrna_md_copy(vrna_md_t
                                     *md_to,
00310
                   const vrna_md_t *md_from);
00311
00312
00318 char *
00319 vrna_md_option_string(vrna_md_t *md);
00320
00321
00322 void
00323 vrna_md_set_nonstandards(vrna_md_t *md,
00324
                               const char *ns_bases);
00326
00344 void
00345 vrna_md_defaults_reset(vrna_md_t *md_p);
00346
00347
00353 void
00354 vrna_md_defaults_temperature(double T);
00355
00356
00362 double
00363 vrna_md_defaults_temperature_get(void);
00364
00365
00373 void
00374 vrna_md_defaults_betaScale(double b);
00375
00376
00383 double
00384 vrna_md_defaults_betaScale_get(void);
00385
00386
00387 void
00388 vrna_md_defaults_pf_smooth(int s);
00389
00390
00391 int
00392 vrna_md_defaults_pf_smooth_get(void);
00393
00394
00400 void
```

```
00401 vrna_md_defaults_dangles(int d);
00402
00403
00409 int
00410 vrna_md_defaults_dangles_get(void);
00411
00412
00418 void
00419 vrna_md_defaults_special_hp(int flag);
00420
00421
00427 int
00428 vrna_md_defaults_special_hp_get(void);
00429
00430
00436 void
00437 vrna_md_defaults_noLP(int flag);
00438
00445 int
00446 vrna_md_defaults_noLP_get(void);
00447
00448
00454 void
00455 vrna_md_defaults_noGU(int flag);
00456
00457
00463 int
00464 vrna_md_defaults_noGU_get(void);
00465
00466
00472 void
00473 vrna_md_defaults_noGUclosure(int flag);
00474
00475
00481 int
00482 vrna_md_defaults_noGUclosure_get(void);
00484
00490 void
00491 vrna_md_defaults_logML(int flag);
00492
00493
00499 int
00500 vrna_md_defaults_logML_get(void);
00501
00502
00508 void
00509 vrna_md_defaults_circ(int flag);
00510
00511
00517 int
00518 vrna_md_defaults_circ_get(void);
00519
00520
00526 void
00527 vrna_md_defaults_gquad(int flag);
00528
00529
00535 int
00536 vrna_md_defaults_gquad_get(void);
00537
00538
00545 void
00546 vrna_md_defaults_uniq_ML(int flag);
00547
00548
00554 int
00555 vrna_md_defaults_uniq_ML_get(void);
00557
00563 void
00564 vrna_md_defaults_energy_set(int e);
00565
00566
00572 int
00573 vrna_md_defaults_energy_set_get(void);
00574
00575
00581 void
00582 vrna md defaults backtrack(int flag);
00583
00584
00590 int
00591 vrna_md_defaults_backtrack_get(void);
00592
00593
```

18.140 model.h 755

```
00599 void
00600 vrna_md_defaults_backtrack_type(char t);
00601
00602
00608 char
00609 vrna_md_defaults_backtrack_type_get(void);
00611
00617 void
00618 vrna_md_defaults_compute_bpp(int flag);
00619
00620
00626 int
00627 vrna_md_defaults_compute_bpp_get(void);
00628
00629
00635 void
00636 vrna_md_defaults_max_bp_span(int span);
00637
00638
00644 int
00645 vrna_md_defaults_max_bp_span_get(void);
00646
00647
00653 void
00654 vrna_md_defaults_min_loop_size(int size);
00655
00656
00662 int
00663 vrna_md_defaults_min_loop_size_get(void);
00664
00665
00671 void
00672 vrna_md_defaults_window_size(int size);
00673
00674
00680 int
00681 vrna_md_defaults_window_size_get(void);
00682
00683
00691 void
00692 vrna_md_defaults_oldAliEn(int flag);
00693
00694
00700 int
00701 vrna_md_defaults_oldAliEn_get(void);
00702
00703
00709 void
00710 vrna_md_defaults_ribo(int flag);
00711
00712
00718 int
00719 vrna_md_defaults_ribo_get(void);
00720
00721
00727 void
00728 vrna_md_defaults_cv_fact(double factor);
00729
00730
00736 double
00737 vrna_md_defaults_cv_fact_get(void);
00739
00745 void
00746 vrna_md_defaults_nc_fact(double factor);
00747
00748
00754 double
00755 vrna_md_defaults_nc_fact_get(void);
00756
00757
00763 void
00764 vrna_md_defaults_sfact(double factor);
00765
00766
00772 double
00773 vrna_md_defaults_sfact_get(void);
00774
00775
00781 void
00782 vrna_md_defaults_salt(double salt);
00783
00784
00789 double
00790 vrna_md_defaults_salt_get(void);
00791
```

```
00792
00798 void
00799 vrna_md_defaults_saltMLLower(int lower);
00800
00801
00806 int
00807 vrna_md_defaults_saltMLLower_get(void);
00808
00809
00815 void
00816 vrna_md_defaults_saltMLUpper(int upper);
00817
00818
00823 int
00824 vrna_md_defaults_saltMLUpper_get(void);
00825
00826
00833 void
00834 vrna_md_defaults_saltDPXInit(int value);
00835
00836
00843 int
00844 vrna_md_defaults_saltDPXInit_get(void);
00845
00846 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00848 #define model_detailsT
                                    vrna_md_t
                                                             /\star restore compatibility of struct rename \star/
00849
00850 /\star BEGIN deprecated global variables: \star/
00851
00861 extern double temperature;
00862
00874 extern double pf_scale;
00875
00897 extern int dangles;
00898
00904 extern int tetra_loop;
00913 extern int noLonelyPairs;
00914
00918 extern int noGU;
00919
00923 extern int no_closingGU;
00924
00928 extern int circ;
00929
00933 extern int gquad;
00934
00938 extern int uniq ML:
00939
00947 extern int energy_set;
00948
00955 extern int do_backtrack;
00956
00964 extern char backtrack_type;
00965
00973 extern char *nonstandards;
00974
00980 extern int max_bp_span;
00981
00985 extern int oldAliEn;
00986
00990 extern int
                   ribo;
00991
00992 extern double cv_fact;
00993
00994 extern double nc_fact;
00995
00997 extern int
                  loaML:
00998
01000 extern double salt;
01001
01003 extern int saltDPXInit;
01004
01005
01006 /* END deprecated global variables: */
01007
01021 void
01022 set_model_details(vrna_md_t *md);
01023
01024
01025 char *
01026 option_string(void);
01027
01028
01029 #endif
01034 #endif
```

18.141 move set.h 757

# 18.141 move\_set.h

```
00001 #ifndef __MOVE_SET_H
00002 #define __MOVE_SET_H
00003
00004 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00005
00009 typedef struct _struct_en{
00010 int energy; /* en
       int energy;    /* energy in 10kcal/mol*/
short *structure;    /* structure in energy_of_move format*/
00011
00012 } struct_en;
00013
00014 /* prints structure*/
00015 void print_stren(FILE *out, struct_en *str);
00016 void print_str(FILE *out, short *str);
00017
00018 /* copying functions*/
00019 void copy_arr(short *dest, short *src); /*just copy*/
00020 short *allocopy(short *src);
                                                  /*copy and make space*/
00022 enum MOVE_TYPE {GRADIENT, FIRST, ADAPTIVE};
00023
00024 \ / * walking methods (verbose_lvl 0-2, shifts = use shift moves? noLP = no lone pairs? (not compatible
      with shifts))
00025
                     seq - sequence
          input:
00026
                     ptable - structure encoded with make_pair_table() from pair_mat.h
00027
                      s, s1 - sequence encoded with encode_sequence from pair_mat.h
00028
                     deepest - lowest energy structure is used
          methods:
                     first - first found lower energy structure is used rand - random lower energy structure is used
00029
00030
          returns local minima structure in ptable and its energy in 10kcal/mol as output \star/
00031
00033 int move_gradient( char *seq,
00034
                         short *ptable,
00035
                          short *s,
00036
                          short *s1.
00037
                          int verbosity_level,
00038
                          int shifts,
                          int noLP);
00040 int move_first( char *seq,
00041
                      short *ptable,
                        short *s,
short *s1,
00042
00043
00044
                        int verbosity level,
00045
                        int shifts,
00046
                        int noLP);
00047 int move_adaptive( char *seq,
00048
                     short *ptable,
00049
                       short *s,
short *s1,
00050
00051
                       int verbosity_level);
00052
00053 /\star standardized method that encapsulates above "_pt" methods
00054 input: seq - sequence
                 struc - structure in dot-bracket notation
00055
        type - type of move selection according to MOVE_TYPE enum return: energy of LM
00056
00058
                 structure of LM in struc in bracket-dot notation
00059 */
00060 int move_standard(char *seq,
00061
                          char *struc
00062
                          enum MOVE_TYPE type,
                          int verbosity_level,
00064
                          int shifts,
00065
                          int noLP);
00066
00067
00068 /\star browse_neighbours and perform funct function on each of them (used mainly for user specified
      flooding)
00069
          input:
                      seq - sequence
00070
                     ptable - structure encoded with make_pair_table() from pair_mat.h
                     s, s1 - sequence encoded with encode_sequence from pair_mat.h
funct - function (structure from neighbourhood, structure from input) toperform on every
00071
00072
      structure in neighbourhood (if the function returns non-zero, the iteration through neighbourhood
      stops.)
00073
          returns energy of the structure funct sets as second argument*/
00074 int browse_neighs_pt( char *seq,
00075
                           short *ptable,
00076
                           short *s,
00077
                           short *s1.
00078
                           int verbosity level.
00079
                           int shifts,
00080
                           int noLP,
00081
                           int (*funct) (struct_en*, struct_en*));
00082
00083 int browse_neighs( char *seq,
00084
                           char *struc.
```

# 18.142 ViennaRNA/multibranch\_loops.h File Reference

Use ViennaRNA/loops/multibranch.h instead.

Include dependency graph for multibranch loops.h:

### 18.142.1 Detailed Description

Use ViennaRNA/loops/multibranch.h instead.

Deprecated Use ViennaRNA/loops/multibranch.h instead

# 18.143 multibranch\_loops.h

#### Go to the documentation of this file.

### 18.144 ViennaRNA/naview.h File Reference

Use ViennaRNA/plotting/naview/naview.h instead.

## 18.144.1 Detailed Description

Use ViennaRNA/plotting/naview/naview.h instead.

Deprecated Use ViennaRNA/plotting/naview/naview.h instead

## 18.145 naview.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PLOT_NAVIEW_DEPRECATED_H
00002 #define VIENNA_RNA_PACKAGE_PLOT_NAVIEW_DEPRECATED_H
00003
00010 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00011 # ifdef VRNA_WARN_DEPRECATED
00012 # warning "Including deprecated header file <ViennaRNA/naview.h>! Use <ViennaRNA/plotting/naview.h>
      instead!"
00013 # endif
00014 # ifdef VRNA_WITH_NAVIEW_LAYOUT
00015 #
          include <ViennaRNA/plotting/naview/naview.h>
00016 # else
00017 # warning "Naview Layout algorithm is not available in this version!"
00018 # endif
00019 #endif
00020
00021 #endif
```

# 18.146 ViennaRNA/landscape/neighbor.h File Reference

Methods to compute the neighbors of an RNA secondary structure.

Include dependency graph for neighbor.h: This graph shows which files directly or indirectly include this file:

#### **Macros**

• #define VRNA NEIGHBOR CHANGE 1

State indicator for a neighbor that has been changed.

#define VRNA NEIGHBOR INVALID 2

State indicator for a neighbor that has been invalidated.

• #define VRNA NEIGHBOR NEW 3

State indicator for a neighbor that has become newly available.

## **Typedefs**

• typedef void(\* vrna\_move\_update\_f) (vrna\_fold\_compound\_t \*fc, vrna\_move\_t neighbor, unsigned int state, void \*data)

Prototype of the neighborhood update callback.

#### **Functions**

- $\bullet \ \ void \ vrna\_loopidx\_update \ (int *loopidx, const \ short *pt, int \ length, \ const \ vrna\_move\_t \ *m)$ 
  - Alters the loopIndices array that was constructed with vrna\_loopidx\_from\_ptable().
- vrna\_move\_t \* vrna\_neighbors (vrna\_fold\_compound\_t \*vc, const short \*pt, unsigned int options)

Generate neighbors of a secondary structure.

Generate neighbors of a secondary structure (the fast way)

• int vrna\_move\_neighbor\_diff\_cb (vrna\_fold\_compound\_t \*fc, short \*ptable, vrna\_move\_t move, vrna\_move\_update\_f cb, void \*data, unsigned int options)

Apply a move to a secondary structure and indicate which neighbors have changed consequentially.

vrna\_move\_t \* vrna\_move\_neighbor\_diff (vrna\_fold\_compound\_t \*fc, short \*ptable, vrna\_move\_t move, vrna move t \*\*invalid moves, unsigned int options)

Apply a move to a secondary structure and indicate which neighbors have changed consequentially.

#### 18.146.1 Detailed Description

Methods to compute the neighbors of an RNA secondary structure.

# 18.147 neighbor.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_NEIGHBOR_H 00002 #define VIENNA_RNA_PACKAGE_NEIGHBOR_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(DEPRECATED)
00006 #
         undef DEPRECATED
00007 # endif
00008 # if defined(
                      clang
00009 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00010 # elif defined(__GNUC
00011 #
        define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00012 # else
00013 # define DEPRECATED(func, msg) func
00014 # endif
00015 #else
00016 # define DEPRECATED(func, msg) func
00017 #endif
```

```
00126 #include <ViennaRNA/fold_compound.h>
00127 #include <ViennaRNA/landscape/move.h>
00128
00139 typedef void (*vrna_move_update_f)(vrna_fold_compound_t *fc,
                                                                neighbor,
00140
                                            vrna move t
00141
                                            unsigned int
                                                               state,
00142
00143
00144 DEPRECATED(typedef void (vrna_callback_move_update)(vrna_fold_compound_t *fc,
                                                         neighbor,
00145
                                            vrna_move_t
00146
                                            unsigned int
                                                                state,
00147
                                                                *data),
00148
               "Use vrna_move_update_f instead!");
00149
00150
00151
00157 #define VRNA_NEIGHBOR_CHANGE
00165 #define VRNA_NEIGHBOR_INVALID 2
00166
00167
00173 #define VRNA_NEIGHBOR_NEW
00174
00175
00187 void
00188 vrna_loopidx_update(int
                                         *loopidx,
            const short
00189
                                         *pt,
00190
                        int
                                         length,
00191
                        const vrna move t *m);
00192
00193
00209 vrna\_move\_t *
00210 vrna_neighbors(vrna_fold_compound_t *vc,
       const short
                   unsigned int
00211
00212
                                      options);
00214
00236 vrna_move_t *
00237 vrna_neighbors_successive(const vrna_fold_compound_t \star vc ,
                             00238
00239
00240
00241
00242
                              int
                                                        *size_neighbors,
00243
                              unsigned int
                                                       options);
00244
00245
00267 int
00268 vrna_move_neighbor_diff_cb(vrna_fold_compound_t
                                                        *fc,
00269
                                                        *ptable,
                               vrna_move_t
00270
00271
                               vrna_move_update_f cb,
00272
                                                        *data,
                               void
00273
                               unsigned int
                                                        options);
00275
00292 vrna_move_t *
00293 vrna_move_neighbor_diff(vrna_fold_compound_t *fc,
                            snort
vrna_move_t
                                                *ptable.
00294
00295
                                                move,
00296
                            unsigned int
                            vrna_move_t
                                                 **invalid_moves,
00297
                                                options);
00298
00299
00303 #endif /* VIENNA_RNA_PACKAGE_NEIGHBOR_H */
```

# 18.148 ViennaRNA/neighbor.h File Reference

Use ViennaRNA/landscape/neighbor.h instead. Include dependency graph for neighbor.h:

## 18.148.1 Detailed Description

Use ViennaRNA/landscape/neighbor.h instead.

Deprecated Use ViennaRNA/landscape/neighbor.h instead

18.149 neighbor.h 761

## 18.149 neighbor.h

#### Go to the documentation of this file.

## 18.150 pair mat.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PAIR_MAT_H
00002 #define VIENNA_RNA_PACKAGE_PAIR_MAT_H
00003
00004 #include <ctype.h>
00005 #include <ViennaRNA/utils/basic.h>
00006 #include <ViennaRNA/fold_vars.h>
00008 #define NBASES 8
00009 /*@notnull@*/
00010
00011 #ifndef INLINE
00012 # ifdef ___GNUC
00013 # define INLINE inline
00014 # else
00015 # define INLINE
00016 # endif
00017 #endif
00018
00019 static const char Law_and_Order[]
                                                    = "_ACGUTXKI";
00020 static int
                         BP_pair[NBASES][NBASES] =
00020 Static int BP_pair(NBAS)
00021 /* _ A C G U X K I */
00022 { { 0, 0, 0, 0, 0, 0, 0, 0 },
00023
        { 0, 0, 0, 0, 5, 0, 0, 5 },
00024
        { 0, 0, 0, 1, 0, 0, 0, 0 },
00025
        \{0, 0, 2, 0, 3, 0, 0, 0\},\
00026
        { 0, 6, 0, 4, 0, 0, 0, 6
00027
        { 0, 0, 0, 0, 0, 0, 2, 0 },
00028
        { 0, 0, 0, 0, 0, 1, 0, 0 },
00029
       { 0, 6, 0, 0, 5, 0, 0, 0 } };
00030
00031 #define MAXALPHA 20
                                /* maximal length of alphabet */
00033 static short alias[MAXALPHA + 1];
                     pair[MAXALPHA + 1][MAXALPHA + 1];
00034 static int
00035 /* rtype[pair[i][j]]:=pair[j][i] */
       tatic int rtype[8] = {
0, 2, 1, 4, 3, 6, 5, 7
00036 static int
00037
00039
00040 #ifdef _OPENMP
00041 #pragma omp threadprivate(Law_and_Order, BP_pair, alias, pair, rtype)
00042 #endif
00043
00044 /* for backward compatibility */
00045 #define ENCODE(c) encode_char(c)
00046
00047 static INLINE int
00048 encode_char(char c)
00049 {
00050
       /* return numerical representation of base used e.g. in pair[][] */
00051
       int code;
00052
00053
       c = toupper(c);
00054
00055
        if (energy_set > 0) {
  code = (int)(c - 'A') + 1;
00056
        } else {
00058
          const char *pos;
00059
          pos = strchr(Law_and_Order, c);
00060
          if (pos == NULL)
00061
            code = 0;
00062
          else
00063
            code = (int)(pos - Law_and_Order);
00064
00065
          if (code > 5)
```

```
code = 0;
00067
00068
           if (code > 4)
            code--;
00069
                                   /* make T and U equivalent */
00070
00071
00072
         return code;
00073 }
00074
00075
00076 /*@+boolint +charint@*/
00077 /*@null@*/
00078 extern char *nonstandards;
00079
00080 static INLINE void
00081 make_pair_matrix(void)
00082 {
00083
         int i, j;
         if (energy_set == 0) {
  for (i = 0; i < 5; i++)</pre>
00085
00086
           alias[i] = (short);

alias[i] = (short);

alias[5] = 3; /* X <-> G */

alias[6] = 2; /* K <-> C */

alias[7] = 0; /* I <-> default base '@' */
00087
00088
00089
00090
00091
            for (i = 0; i < NBASES; i++)</pre>
00092
            for (j = 0; j < NBASES; j++)
           pair[i][j] = BP_pair[i][j];
if (noGU)
00093
00094
            pair[3][4] = pair[4][3] = 0;
00095
00096
00097
            if (nonstandards != NULL) {
00098
             /* allow nonstandard bp's */
00099
              for (i = 0; i < (int) strlen(nonstandards); i += 2)
00100
                 pair[encode_char(nonstandards[i])]
                 [encode\_char(nonstandards[i + 1])] = 7;
00101
00102
           }
00104
            for (i = 0; i < NBASES; i++)</pre>
00105
             for (j = 0; j < NBASES; j++)</pre>
00106
                rtype[pair[i][j]] = pair[j][i];
00107
         } else {
           for (i = 0; i <= MAXALPHA; i++)</pre>
00108
             for (j = 0; j <= MAXALPHA; j++)
pair[i][j] = 0;
00109
00110
00111
            if (energy_set == 1) {
00112
             for (i = 1; i < MAXALPHA; ) {</pre>
                alias[i++] = 3;
alias[i++] = 2;
                                       /* A <-> G */
/* B <-> C */
00113
00114
00115
00116
              for (i = 1; i < MAXALPHA; i++) {</pre>
                                              /* AB <-> GC */
00117
               pair[i][i + 1] = 2;
00118
00119
                pair[i][i - 1] = 1;
                                                /* BA <-> CG */
00120
           } else if (energy_set == 2) {
  for (i = 1; i < MAXALPHA; ) {</pre>
00121
                alias[i++] = 1;
alias[i++] = 4;
                                       /* A <-> A*/
/* B <-> U */
00123
00124
00125
              for (i = 1; i < MAXALPHA; i++) {</pre>
00126
                                            /* AB <-> AU */
00127
               pair[i][i + 1] = 5;
00128
                 i++;
00129
                pair[i][i - 1] = 6;
00130
           } else if (energy_set == 3) {
  for (i = 1; i < MAXALPHA - 2; ) {</pre>
00131
00132
                alias[i++] = 3; /* A <-> G */
alias[i++] = 2; /* B <-> C */
00133
00134
                 alias[i++] = 1;
00135
00136
                alias[i++] = 4;
00137
              for (i = 1; i < MAXALPHA - 2; i++) {
  pair[i][i + 1] = 2; /* AB <->
00138
                                           /* AB <-> GC */
00139
00140
                 i++;
00141
                pair[i][i - 1] = 1;
                                            /* BA <-> CG */
00142
00143
                 pair[i][i + 1] = 5;
                                            /* CD <-> AU */
00144
                 i++;
                 pair[i][i - 1] = 6;
                                             /* DC <-> UA */
00145
00146
00147
           } else {
00148
              vrna_message_error("What energy_set are YOU using??");
00149
00150
            for (i = 0; i <= MAXALPHA; i++)
  for (j = 0; j <= MAXALPHA; j++)</pre>
00151
00152
```

```
00153
                rtype[pair[i][j]] = pair[j][i];
00154
        }
00155 }
00156
00157
00158 static INLINE short *
00159 encode_sequence(const char *sequence,
00161 {
        unsigned int i, 1 = (unsigned int)strlen(sequence);
00162
                        *S = (short *)vrna_alloc(sizeof(short) * (1 + 2));
00163
00164
00165
        switch (how) {
00166
          /\star standard encoding as always used for S \star/
00167
           case 0:
            for (i = 1; i <= 1; i++)  /* make numerical
   S[i] = (short)encode_char(sequence[i - 1]);</pre>
00168
                                              /\star make numerical encoding of sequence \star/
00169
             S[1 + 1] = S[1];

S[0] = (short)1;
00170
00172
             break;
00173
           /\star encoding for mismatches of nostandard bases (normally used for S1) \star/
00174
00175
             for (i = 1; i <= 1; i++)
             S[i] = alias((short)encode_char(sequence[i - 1])];

S[1 + 1] = S[1];

S[0] = S[1];
00176
00177
00178
00179
             break;
00180
        }
00181
00182
        return S:
00183 }
00184
00186 #endif /* VIENNA_RNA_PACKAGE_PAIR_MAT_H */
```

# 18.151 ViennaRNA/params.h File Reference

Use ViennaRNA/params/basic.h instead.

Include dependency graph for params.h:

### 18.151.1 Detailed Description

Use ViennaRNA/params/basic.h instead.

Deprecated Use ViennaRNA/params/basic.h instead

## 18.152 params.h

### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_PARAMS_DEPRECATED_H
00002 #define VIENNA_RNA_PACKAGE_PARAMS_DEPRECATED_H
00003
00010 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00011 # ifdef VRNA_WARN_DEPRECATED
00012 #warning "Including deprecated header file <ViennaRNA/params.h>! Use <ViennaRNA/params/basic.h>
instead!"
00013 # endif
00014 #include <ViennaRNA/params/basic.h>
00015 #endif
00016
00017 #endif
```

# 18.153 ViennaRNA/params/1.8.4 epars.h File Reference

Free energy parameters for parameter file conversion.

## 18.153.1 Detailed Description

Free energy parameters for parameter file conversion.

This file contains the free energy parameters used in ViennaRNAPackage 1.8.4. They are summarized in:

D.H.Mathews, J. Sabina, M. ZUker, D.H. Turner "Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure" JMB, 288, pp 911-940, 1999 Enthalpies taken from:

A. Walter, D Turner, J Kim, M Lyttle, P M"uller, D Mathews, M Zuker "Coaxial stckaing of helices enhances binding of oligoribonucleotides.." PNAS, 91, pp 9218-9222, 1994 D.H. Turner, N. Sugimoto, and S.M. Freier. "RNA Structure Prediction", Ann. Rev. Biophys. Biophys. Chem. 17, 167-192, 1988. John A.Jaeger, Douglas H.Turner, and Michael Zuker. "Improved predictions of secondary structures for RNA", PNAS, 86, 7706-7710, October 1989. L. He, R. Kierzek, J. SantaLucia, A.E. Walter, D.H. Turner "Nearest-Neughbor Parameters for GU Mismatches...." 
Biochemistry 1991, 30 11124-11132 A.E. Peritz, R. Kierzek, N, Sugimoto, D.H. Turner "Thermodynamic Study of Internal Loops in Oligoribonucleotides..." Biochemistry 1991, 30, 6428–6435

# 18.154 1.8.4\_epars.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_OLD_EPARS_
00002 #define VIENNA_RNA_PACKAGE_OLD_EPARS_
00039 #define K0
00040 #ifdef INF
00041 #undef INF
00042 #endif
00043 #define INF
00044 #define NBPAIRS
00045 #define NST
                                 /* Energy for nonstandard stacked pairs */
                                 /* Default terminal mismatch, used for I */
00046 #define DEF
00047
                                 /\star and any non_pairing bases \star/
00048 #define NSM
                          Ω
                                 /\star terminal mismatch for non standard pairs \star/
00049
00050 PRIVATE double Tmeasure_184 = 37 + KO; /* temperature of param measurements */
00051 PRIVATE double 1xc37_184 = 107.856; /* parameter for logarithmic loop
                                                      energy extrapolation */
00053
00054 PRIVATE int stack37_184[NBPAIRS+1][NBPAIRS+1] =
                                                          UA */
00055 /*
                   CG
                           GC
                                   GH
                                           HG
                                                  AII
                           INF-
                                                          INF, INF},
00056 { {
            INF.
                                           INF.
                                                   INF.
                   TNF.
                                   TNF.
00057
            INF,
                  -240,
                          -330,
                                  -210,
                                          -140,
                                                  -210,
                                                         -210, NST},
00058
            INF,
                  -330,
                          -340,
                                          -150,
                                                  -220,
                                                         -240, NST},
00059
            INF,
                  -210,
                          -250,
                                   130,
                                                         -130, NST},
                                   -50,
                                                  -
-60,
00060
            INF,
                  -140,
                          -150,
                                           30,
                                                         -100, NST},
                                 -140,
00061
            INF,
                  -210,
                          -220.
                                           -60,
                                                  -110,
                                                          -90, NST},
                  -210,
                                          -100.
                                                         -130, NST}.
00062
                          -240.
                                  -130.
            INF.
                                                   -90.
00063
           INF.
                   NST.
                                                  NST.
                                                          NST, NST}};
                           NST.
                                  NST.
                                          NST.
00065 /* enthalpies (0.01*kcal/mol at 37 C) for stacked pairs */
00066 /\star different from mfold-2.3, which uses values from mfold-2.2 \star/
00067 PRIVATE int enthalpies_184[NBPAIRS+1][NBPAIRS+1] =
00068 /*
                   CG
                           GC
                                   GU
                                           UG
                                                  AU
            INF,
                           INF,
                                           INF,
                                                   INF,
00069 { {
                   INF,
                                   INF,
                                                          INF, INF},
00070
            INF, -1060, -1340, -1210,
                                          -560, -1050, -1040, NST},
            INF, -1340, -1490, -1260,
00071
                                          -830,
                                                -1140,
00072
            INF, -1210, -1260,
                                 -1460,
                                         -1350,
                                                 -880,
                                                        -1280, NST},
                 -560,
                         -830,
                                -1350,
                                                 -320,
                                                         -700, NST},
            TNF.
                                         -930,
00073
            INF, -1050, -1140,
00074
                                 -880.
                                          -320.
                                                 -940,
                                                         -680, NST},
                                          -700,
00075
            INF, -1040, -1240, -1280,
                                                  -680,
                                                         -770, NST\},
00076
           INF,
                   NST,
                           NST,
                                   NST,
                                          NST,
                                                  NST,
                                                          NST, NST}};
00077
00079 /* old values are here just for comparison */
00080 PRIVATE int oldhairpin37_184[31] = { /* from ViennaRNA 1.3 */
        INF, INF, 1NF, 410, 490, 440, 470, 500, 510, 520, 531, 542, 551, 560, 568, 575, 582, 589, 595, 601, 606,
00081
00082
              611, 616, 621, 626, 630, 634, 638, 642, 646, 650};
00084
00085 PRIVATE int hairpin37_184[31] =
        INF, INF, INF, 570, 560, 560, 540, 590, 560, 640, 650, 660, 670, 678, 686, 694, 701, 707, 713, 719, 725,
00086
00087
00088
              730, 735, 740, 744, 749, 753, 757, 761, 765, 769};
00089
00090 PRIVATE int oldbulge37_184[31] =
00091
        INF, 390, 310, 350, 420, 480, 500, 516, 531, 543, 555,
              565, 574, 583, 591, 598, 605, 612, 618, 624,
00092
00093
              635, 640, 645, 649, 654, 658, 662, 666, 670, 6731;
00094
00095 PRIVATE int bulge37_184[31] = {
      INF, 380, 280, 320, 360, 400, 440, 459, 470, 480, 490,
00097
              500, 510, 519, 527, 534, 541, 548, 554, 560, 565,
00098
        571, 576, 580, 585, 589, 594, 598, 602, 605, 609};
00099
00100 PRIVATE int oldinternal loop37 184[31] = {
        INF, INF, 410, 510, 490, 530, 570, 587, 601, 614, 625,
00101
00102
              635, 645, 653, 661, 669, 676, 682, 688, 694, 700,
```

18.154 1.8.4\_epars.h 765

```
705, 710, 715, 720, 724, 728, 732, 736, 740, 744};
00104
00105 PRIVATE int internal_loop37_184[31] =
       INF, INF, 410, 510, 170, 180, 200, 220, 230, 240, 250, 260, 270, 278, 286, 294, 301, 307, 313, 319, 325, 330, 335, 340, 345, 349, 353, 357, 361, 365, 369};
00106
00107
00108
00109
00110 /* terminal mismatches */
00111 /* mismatch free energies for interior loops at 37C \star/
00112 PRIVATE int mismatchI37_184[NBPAIRS+1][5][5] =
00113 { /* @@ */
         00114
00115
         { /* CG */
00116
              Ο,
                     Ο,
                            Ο,
                                  0,
                                          0}, /* @@
00117
               Ο,
                     Ο,
                            0, -110,
                                          0}, /* A@
                                                       AA
                                                            AC
                                                                AG
                                                                     AU */
00118
               Ο,
                     Ο,
                            Ο,
                                 0,
                                          0}, /* C@
                                                       CA
                                                            CC
                                                                CG CU */
                                          0}, /* G@
                                                            GC
00119
              0. -110.
                            Ο.
                                   0.
                                                       GA
                                                                GG
                                                                     GII */
        ( ), 0,
{ /* GC */
                                                            UC
                                        -70}},/* U@
00120
                                                       UA
                                                                UG
                                                                     UU */
                            0,
                                   0,
00121
                    0,
00122
               Ο,
                            0.
                                   0.
                                          0}, /* @@
                                                       @A
                                                            @C
                                                                 ٥G
         {
                            0, -110,
00123
                                          0}, /* A@
                                                            AC
               0,
                    0,
                                                       AA
                                                                AG
                                                                     AU */
                            Ο,
                                          0}, /* C@
00124
               Ο,
                     0,
                                   0,
                                                       CA
                                                            CC
                                                                CG
                                                                     CII */
               0, -110,
                                          0}, /* G@
                                                       GA GC
00125
                            0,
                                   0,
                                                                GG
                                                                     GU */
                                         -70}},/* U@
                                                            UC
00126
               0.
                   0,
                            0,
                                   0,
                                                       IJA
                                                                UG
                                                                     UU */
        { /* GU */
00127
                     Ο,
                            Ο,
00128
               Ο,
                                   Ο,
                                          0}, /* @@
                                                       @A
00129
                    70,
                           70,
                                 -40,
                                         70}, /* A@
                                                       AA
                                                            AC
                                                                AG
                                                                     AU */
               0,
00130
               Ο,
                   70,
                           70,
                                  70,
                                         70}, /* C@
                                                       CA
                                                            CC
                                                                CG
                                                                     CU */
                                         70}, /* G@
                           70,
00131
               Ο,
                   -40,
                                  70,
                                                       GA
                                                            GC
                                                                GG
                                                                     GU */
                                          0}},/* U@
00132
               0.
                   70.
                           70.
                                  70.
                                                       UA UC
                                                                UG UU */
        { /* UG */
00133
                    Ο,
00134
               Ο,
                            Ο,
                                   Ο,
                                                       @A
                                                            @C
                                          0}, /* @@
                                                                 0G
         {
00135
                    70,
                           70,
                                 -40,
                                         70}, /* A@
                                                       AA
                                                            AC
               Ο,
                                                                AG
                                                                     AU */
00136
               Ο,
                    70,
                           70,
                                  70,
                                         70}, /* C@
                                                       CA
                                                            CC
                                                                CG
                                                                     CU */
                           70,
00137
               0,
                   -40,
                                  70,
                                         70}, /* G@
                                                       GA
                                                            GC
                                                                GG
                                                                     GII */
                                          0}},/* U@
                                                            UC
00138
               0.
                    70,
                           70.
                                  70,
                                                       UA
                                                                UG
                                                                     UU */
        { /* AU */
00139
                   0,
00140
               Ο,
                            0.
                                   0.
                                          0}, /* @@
                                                       @A
                                                                 @G
         {
                                         70}, /* A@
00141
               0.
                    70.
                           70,
                                 -40,
                                                       AA
                                                            AC
                                                                AG
                                                                     AU */
00142
                   70,
                           70,
                                  70,
                                         70}, /* C@
                                                       CA
                                                            CC
                                                                CG
                                                                     CU */
               Ο,
                   -40,
                           70,
                                  70,
                                         70}, /* G@
00143
               Ο,
                                                       GA
                                                            GC
                                                                GG
                                                                     GII */
                   70,
                                          0}},/* U@
                                                       UA UC
00144
              0.
                           70.
                                  70,
                                                                UG
                                                                     UU */
        { /* UA */
00145
                     Ο,
00146
                            Ο,
                                   Ο,
                                          0}, /* @@
                                                       @A
                                                            @C
                                                                 @G
                                                                     @U */
               Ο,
          {
                    70,
                                         70}, /* A@
00147
               0,
                           70,
                                 -40,
                                                       AA
                                                            AC
                                                                AG
                                                                     AU */
                                                                     CU */
00148
               Ο,
                    70,
                           70,
                                  70,
                                         70}, /* C@
                                                       CA
                                                            CC
                                                                CG
00149
               Ο,
                   -40.
                           70,
                                  70,
                                         70}, /* G@
                                                       GA
                                                            GC
                                                                GG
                                                                     GII */
00150
              0,
                    70,
                           70,
                                  70,
                                          0}},/* U@
                                                       UA
                                                            UC
                                                                UG
                                                                     UU */
        { /* @@ */

{ 90, 90, 90, 90, 90}, { 90, 90, 90, 90, -20}, { 90, 90, 90, 90}, { 90, -20, 90, 90, 90, 90, 90, 90},
00151
00152
00153
00154 };
00155
00156 /\star mismatch free energies for hairpins at 37C \star/
00157 PRIVATE int mismatchH37_184[NBPAIRS+1][5][5] =
00158 { /* @@ */
         {{0,0,0,0,0},{0,0,0,0},{0,0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}},
00160
         { /* CG */
                    Ο,
00161
             0,
                           Ο,
                                  Ο,
                                          0}, /* @@
                                                       @A
          { -90, -150, -150, -140, -180}, /* A@ 
{ -90, -100, -90, -290, -80}, /* C@ 
{ -90, -220, -200, -160, -110}, /* G@ 
{ -90, -170, -140, -180, -200}},/* U@
00162
                                                       AA
                                                            AC
                                                                AG
                                                                     AII */
00163
                                                       CA CC
                                                                CG CU */
00164
                                                       GA
                                                            GC
                                                                GG
                                                                     GU */
00165
                                                       UA
                                                            UC
         { /* GC */
{ 0, 0,
00166
                                  0,
00167
                            Ο,
                                          0}, /* @@
                                                       @A
                                                            @C
                                                                 @G
                                                                     att */
          { -70, -110, -150, -130, -210}, /* A@ 
{ -70, -110, -150, -130, -210}, /* A@ 
{ -70, -240, -240, -50}, /* C@ 
{ -70, -240, -290, -140, -120}, /* G@ 
{ -70, -190, -100, -220, -150}},/* U@
00168
                                                       AA AC
                                                                AG
                                                                     AU */
00169
                                                       CA
                                                            CC
                                                                CG
                                                                     CU */
                                                            GC
00170
                                                       GA
                                                                GG
                                                                     GU */
00171
                                                       UA
                                                            UC
                                                                UG
                                                                     UU */
00172
        { /* GU */
00173
               Ο,
                  20,
                     0,
                            0,
                                   0,
                                          0}, /* @@
                                                       @A
                                                            @C
                                                                 @G
                                                                     @U */
                          -50, -30,
00174
               0,
                                        -30}, /* A@
                                                       AA
                                                            AC
                                                                AG
                                                                     AU */
                         -20, -150,
              Ο,
00175
                  -10,
                                        -20}, /* C@
                                                       CA
                                                            CC
                                                                CG
                                                                     CU */
                                          0}, /* G@
                   -90, -110,
                                                            GC
00176
               0.
                                -30,
                                                       GA
                                                                GG
                                                                     GU */
                  -30,
              0,
UG */
0,
                                -40, -110}},/* U@
                                                           UC
00177
                                                       UA
                                                                UG
                                                                     UU */
                          -30,
00178
        { /*
00179
         {
                            0,
                                   Ο,
                                                       @A
                   -50,
00180
               Ο,
                          -30,
                                -60,
                                        -50}, /* A@
                                                       AA
                                                            AC
                                                                AG
                                                                     AU */
                                          0}, /* C@
00181
               0.
                  -20,
                         -10, -170,
                                                       CA
                                                            CC
                                                                CG
                                                                     CII */
                                        -70}, /* G@
                                                            GC
00182
                  -80. -120.
                                -30.
                                                       GA
                                                                GG
               0.
                                                                     GU */
                                        -80}},/* U@
              0,
AU */
0,
                                -60,
                                                            UC
00183
                                                       UA
                                                                UG
                                                                     UU */
                          -10,
        { /*
00184
00185
                            0,
                                          0}, /* @@
                                                       @A
00186
               Ο,
                   -30,
                          -50,
                                -30,
                                        -30}, /* A@
                                                       AA
                                                            AC
                                                                AG
                                                                     AU */
                         -20, -150,
00187
               Ο,
                 -10,
                                        -20}, /* C@
                                                       CA CC
                                                                CG
                                                                    CII */
                                         20}, /* G@
00188
               0, -110, -120, -20,
                                                       GA
                                                            GC
                                                                GG
                                                                     GU */
                                -60, -110}},/* U@
00189
                                                            UC
               0. -30.
                         -30,
                                                       UA
                                                                HG
                                                                     IIII */
```

```
{ /* UA */
00190
          { 0, 0, 0, { 0, -50,
00191
                              0,
                                             0}, /* @@
                                                           @A @C
                                  -60,
                                           -50}, /* A@
00192
                            -30,
                                                           AA
                                                                AC
                                                                     AG AU */
                   -20,
                           -10, -120,
                                           -0}, /* C@
                                                           CA CC CG CU */
00193
               Ο,
        { 0, -140, -120, -70, -20}, /* G@ GA GC { 0, -30, -10, -50, -80}},/* U@ UA UC { /* @@ */ { 0, 0, 0, 0, 0}, { 0, 0, 0, 0, 0}, { 0, 0, 0, 0, 0}}
00194
                                                                     GG
                                                                          GU */
00195
                                                                     UG UU */
00196
00197
                                                                     0, 0, 0,
00198
00199 };
00200
00201 /* mismatch energies in multiloops */
00202 PRIVATE int mismatchM37_184[NBPAIRS+1][5][5];
00204 /\star these are probably junk \star/
00205 /\star mismatch enthalpies for temperature scaling \star/
00206 PRIVATE int mism_H_184[NBPAIRS+1][5][5] =
00207 { /* no pair */
         00209
         { /* CG */
00210
              Ο,
                      Ο,
                                             0}, /* @@ @A @C
                              0,
                                     Ο,
          { DEF, -1030, -950, -1030, -1030}, /* A@
00211
                                                          AA AC
                                                                     AG
                                                                          AU */
          { DEF, -520, -450, -520, -670}, /* C@ 
{ DEF, -940, -940, -940, -940}, /* G@ 
{ DEF, -810, -740, -810, -860}},/* U@
00212
                                                           CA CC CG CU */
00213
                                                                GC
                                                                     GG
                                                                          GU */
                                                           GA
00214
                                                               UC
         { DEF, - { /* GC */ 0,
                                                           UA
00215
00216
                             0,
                                     0,
                                             0}, /* @@
                                                           @A
                                                                @C
          { DEF, -520, -880, -560, -880}, /* A@ { DEF, -720, -310, -310, -390}, /* C@ { DEF, -710, -740, -620, -740}, /* G@ { DEF, -500, -500, -500, -570}},/* U@
00217
                                                           AA AC
                                                                     AG
                                                                          AII */
00218
                                                           CA
                                                                CC
                                                                     CG
                                                                          CU */
00219
                                                           GA GC
                                                                     GG
                                                                          GU */
00220
         UC
                                                           UA
                                                                     UG
                                                                          UU */
00221
                             0,
                                     0,
00222
                                             0}, /* @@
                                                           @A
00223
          { DEF, -430, -600, -600, -600}, /* A@
                                                           AA
                                                                AC
                                                                     AG
                                                                          AU */
          { DEF, -260, -240, -240, -240}, /* C@ { DEF, -340, -690, -690, -690}, /* G@ { DEF, -330, -330, -330, -330}},/* U@
00224
                                                           CA
                                                                CC
                                                                     CG
                                                                          CU */
                                                                GC
00225
                                                           GA
                                                                     GG
                                                                          GU */
00226
                                                           UA UC
                                                                     UG
                                                                          UU */
         { /* UG */
00228
              0,
                      0,
                              Ο,
                                      0.
                                                           @A
          {
          { DEF, -720, -790, -960, -810}, /* A@ { DEF, -480, -480, -360, -480}, /* C@ { DEF, -660, -810, -920, -810}, /* G@ { DEF, -550, -440, -550, -360}},/* U@
00229
                                                                AC
                                                           AA
                                                                     AG
                                                                          AU */
00230
                                                           CA
                                                                CC
                                                                     CG
                                                                          CII */
                                                                GC
00231
                                                           GA
                                                                     GG
                                                                          GU */
00232
                                                                UC
                                                           IJA
                                                                     UG
                                                                          UU */
00233
         { /* AU */
          { 0, 0, 0, 0, 0}, /* @@ 
{ DEF, -430, -600, -600, -600}, /* A@
              0,
00234
                                                           @A
00235
                                                           AA
                                                                AC
                                                                     AG
                                                                          AU */
          { DEF, -260, -240, -240, -240}, /* C@ { DEF, -340, -690, -690, -690}, /* G@
00236
                                                           CA
                                                                CC
                                                                     CG
                                                                          CU */
00237
                                                           GA
                                                                GC
                                                                     GG
                                                                          GU */
          { DEF, -330, -330, -330, -330}},/* U@
                                                                UC
00238
         UA
                                                                          UU */
                                                                     UG
00239
00240
                             Ο,
                                     Ο,
                                             0}, /* @@
                                                           @A
                                                                @C
                                                                     @G
          { DEF, -400, -630, -890, -590}, /* A@ { DEF, -430, -510, -200, -180}, /* C@
00241
                                                                AC
                                                           AA
                                                                     AG
                                                                          AU */
00242
                                                           CA
                                                                CC
                                                                     CG
                                                                          CU */
          { DEF, -380, -680, -890, -680}, /* G@ { DEF, -280, -140, -280, -140}},/* U@
00243
                                                           GA
                                                                GC
                                                                     GG
                                                                          GII */
                                                                UC
00244
                                                           UA
                                                                     UG
                                                                          UU */
         { /* nonstandard pair */
00245
         00247
          {DEF, DEF, DEF, DEF, DEF}, {DEF, DEF, DEF, DEF, DEF}}
00248 };
00249
00250 /\star 5' dangling ends (unpaird base stacks on first paired base) \star/
00251 PRIVATE int dangle5_37_184[NBPAIRS+1][5]=
00252 {/* @
                     Α
                                    G
                                            U */
         { INF,
                    INF,
                            INF,
                                   INF,
                                           INF}, /* no pair */
00253
                    -50,
                            -30,
                                           -10}, /* CG (stacks on C) */
-0}, /* GC (stacks on G) */
00254
           { INF,
                                   -20,
00255
           { INF,
                    -20,
                            -30,
                                   -0,
                                           -20}, /* GU */
00256
           { INF,
                    -30,
                            -30,
                                   -40,
                                          -20}, /* UG */
                                   -20,
00257
                    -30,
          { INF.
                            -10,
                           -30, -40, -20}, /* AU */
-10, -20, -20}, /* UA */
00258
          \{ INF, -30, 
                                          -20}, /* UA */
0} /* @ */
                    -30,
00259
           { INF,
00260
                       Ο,
                                0.
                                      0.
00261 };
00262
00263 /\star 3' dangling ends (unpaired base stacks on second paired base \star/
00264 PRIVATE int dangle3_37_184[NBPAIRS+1][5]=
00265 {/* @ A C G U */
00265 {/*
                                              */
                           INF, INF, INF}, /* no pair */
-40, -130, -60}, /* CG (stacks on G) */
-80, -170, -120}, /* GC */
          { INF,
                    INF,
00266
00267
           { INF, -110,
00268
          \{ INF, -170, 
                                                  /* GU */
                            -10, -70, -10,
00269
          \{ INF, -70, 
                           -50, -80, -60}, /* UG */
-10, -70, -10}, /* AU */
-50, -80, -60}, /* UA */
                    -80,
00270
          { INF,
                    -70,
00271
           { INF,
00272
                    -80,
           { INF,
00273
                      0,
                               Ο,
                                      Ο,
                                             0 }
                                                   /* @ */
               0,
00274 };
00275
00276 /* enthalpies for temperature scaling */
```

18.154 1.8.4\_epars.h 767

```
00277 PRIVATE int dangle3_H_184[NBPAIRS+1][5] =
00278 {/*
                @ A C G U */
{ INF, INF, INF, INF, INF}, /* no pair */
                        0, -740, -280, -640, -360},
00280
                        0, -900, -410, -860, -750}, 0, -740, -240, -720, -490},
00281
00282
                        0, -490, -90, -550, -230},
00284
                        0, -570,
                                          -70, -580, -220},
00285
                        0, -490,
                                          -90, -550, -230},
00286
                       0,
                                 Ο,
                                           0,
                                                      0,
                                                                 0 }
00287 };
00288
00289 PRIVATE int dangle5_H_184[NBPAIRS+1][5] =
00290 {/* @
00291
              { INF, INF,
                                          INF,
                                                      INF,
                                                                 INF}, /* no pair */
                    0, -240, 330,
00292
                                                       80, -140},
                                                               -40},
00293
                        0, -160,
                                            70, -460,
                                                        70,
00294
                       0, 160,
                                          220,
                                                                 310},
                      0, -150,
                                                                 100},
                                           510,
                                                       10,
                        0, 160,
0, -50,
00296
                                           220,
                                                        70, 310},
00297
                                           690,
                                                     -60,
                                                                 -60},
00298
                       Ο,
                                 0,
                                              0,
                                                         0,
                                                                   0 }
00299 };
00300
00301
00302 /* constants for linearly destabilizing contributions for multi-loops
00303
               F = ML_closing + ML_intern*k + ML_BASE*u
00304 /\star old versions erroneously used ML_intern*(k-1) \star/
00305 PRIVATE int ML_BASE37_184 = 0;
00306 PRIVATE int ML_closing37_184 = 340;
00307 PRIVATE int ML_intern37_184 = 40;
00309 /* Ninio-correction for asymmetric internal loops with branches n1 and n2 */
00310 /* ninio_energy = min{max_ninio, |n1-n2|*F_ninio[min{4.0, n1, n2}] } */
/* only F[2] used */
00313
00314 /\star stabilizing contribution due to special hairpins of size 4 (tetraloops) \star/
00315
00316 PRIVATE char Tetraloops_184[1400] = /* place for up to 200 tetra loops */
00317
              "GGGGAC "
              "GGUGAC "
00318
               "CGAAAG
00319
00320
              "GGAGAC
              "CGCAAG "
00321
00322
              "GGAAAC "
              "CGGAAG "
00323
               "CUUCGG
00324
              "CGUGAG
00325
              "CGAAGG
00326
00327
              "CUACGG "
00328
              "GGCAAC "
              "CGCGAG "
00329
              "UGAGAG "
00330
               "CGAGAG
00331
00332
              "AGAAAU
              "CGUAAG "
00334
              "CUAACG "
00335
              "UGAAAG "
00336
               "GGAAGC
              "GGGAAC "
00337
              "UGAAAA
00338
00339
              "AGCAAU "
00340
              "AGUAAU "
00341
               "CGGGAG "
              "AGUGAU "
00342
               "GGCGAC "
00343
              "GGGAGC "
00344
              "GUGAAC "
00345
              "UGGAAA "
00347 ;
00348
00349 PRIVATE int
                                    TETRA_ENERGY37_184[200] = {
             -300, -300, -300, -300, -300, -300, -300, -300, -250, -250, -250, -250, -250, -200, -200, -200, -200, -200, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, -150, 
00350
00351
00353
00354 PRIVATE int TETRA_ENTH37_184 = -400;
00355
00356 PRIVATE char Triloops_184[241] = "";
00357
00358 PRIVATE int Triloop_E37_184[40];
00360 /* penalty for AU (or GU) terminating helix) */
00361 /\star mismatches already contain these \star/
00362 PRIVATE int TerminalAU_184 = 50;
00363
```

```
00364 /* penalty for forming a bi-molecular duplex */
00365 PRIVATE int DuplexInit_184 = 410;
00366
00367 #endif
```

# 18.155 ViennaRNA/params/1.8.4\_intloops.h File Reference

Free energy parameters for interior loop contributions needed by the parameter file conversion functions.

## 18.155.1 Detailed Description

Free energy parameters for interior loop contributions needed by the parameter file conversion functions.

## 18.156 1.8.4 intloops.h

```
00001
00007 PRIVATE int int11_37_184[NBPAIRS+1][NBPAIRS+1][5][5] =
00008 { /* noPair */ {{{0}}}},
00009 { /* noPair */ {{0}}},
00010 /* CG..CG */
00011 {{ 110, 110, 110, 110, 110},
                     40, 40,
40, 40,
00012 { 110, 110,
                                 40},
00013 { 110, 40,
                                 40},
                40,
                      40, -140,
00015 { 110,
                40,
                     40, 40,
00016 },
00017 /* CG. GC */
00018 {{ 110, 110, 110, 110, 110},
00019 { 110, 40, -40, 40, 40}, 00020 { 110, 30, 50, 40, 50},
00021 {
                      40, -170, 40},
00022 { 110,
               40,
                      0, 40, -30}
00023 },
00024 /* CG..GU */
00025 {{ 110, 110, 110, 110, 110},
00026 { 110, 110, 110, 110, 110},
00027 { 110, 110, 110, 110, 110},
00028 { 110, 110, 110, -100, 110},
00029 { 110, 110, 110, 110, 110}
00030 }.
00031 /* CG..UG */
00032 {{ 110, 110, 110, 110, 110}, 00033 { 110, 110, 110, 110, 110, 110},
00034 { 110, 110, 110, 110, 110},
00035 { 110, 110, 110, -100, 110},
00036 { 110, 110, 110, 110, 110}
00037 }
00038 /* CG..AU */
00039 {{ 110, 110, 110, 110, 110},
00040 { 110, 110, 110, 110, 110},
00041 { 110, 110, 110, 110, 110},
00042 { 110, 110, 110, -100, 110},
00043 { 110, 110, 110, 110, 110}
00044 },
00045 /* CG..UA */
00046 {{ 110, 110, 110, 110, 110},
00047 { 110, 110, 110, 110, 110},
00048 { 110, 110, 110, 110, 110},
00049 { 110, 110, 110, -100, 110},
00050 { 110, 110, 110, 110, 110}
00051 }
00052 /* CG..?? */
00053 {{ 110, 110, 110, 110, 110}, 00054 { 110, 110, 110, 110, 110, 110},
00055 { 110, 110, 110, 110, 110},
00056 { 110, 110, 110, 110, 110}, 00057 { 110, 110, 110, 110, 110}
00058
00059 },
00060 { /* noPair */ {{0}}},
00061 /* GC..CG */
00062 {{ 110, 110, 110, 110, 110}, 00063 { 110, 40, 30, -10, 40},
                     30, -10, 40},
50, 40, 0},
       { 110, -40,
                     40, -170, 40
50, 40, -30}
00065 { 110, 40,
                                  40},
00066 { 110,
               40,
00067 },
00068 /* GC..GC */
```

```
00069 {{ 110, 110, 110, 110, 110},
00070 { 110, 80, 40, 40, 40}, 00071 { 110, 40, 40, 40, 40},
                     40, 40, -210, 40},
40, 40, 40, -70}
00072 { 110,
00073 { 110,
00074 },
00075 /* GC..GU */
00076 {{ 110, 110, 110, 110, 110},
00077 { 110, 110, 110, 110, 110},
00078 { 110, 110, 110, 110, 110},
00079 { 110, 110, 110, -100, 110}, 00080 { 110, 110, 110, 110, 110}
00081 },
00082 /* GC..UG */
00083 {{ 110, 110, 110, 110, 110},
00084 { 110, 110, 110, 110, 110}, 00085 { 110, 110, 110, 110, 110, 110},
00086 { 110, 110, 110, -100, 110}, 00087 { 110, 110, 110, 110, 110}
00088 },
00089 /* GC..AU */
00090 {{ 110, 110, 110, 110, 110},
00091 { 110, 110, 110, 110, 110}, 00092 { 110, 110, 110, 110, 110}, 00093 { 110, 110, 110, -100, 110}, 00094 { 110, 110, 110, 110, 110, 100}
00095 },
00096 /* GC..UA */
00099 /* GC..0A */
00097 {{ 110, 110, 110, 110, 110},
00098 { 110, 110, 110, 110, 110},
00099 { 110, 110, 110, 110, 110},
00100 { 110, 110, 110, -100, 110},
00101 { 110, 110, 110, 110, 110}
00102 },
00103 /* GC..?? */
00104 {{ 110, 110, 110, 110, 110},
00105 { 110, 110, 110, 110, 110}, 00106 { 110, 110, 110, 110, 110},
00107 { 110, 110, 110, 110, 110},
00108 { 110, 110, 110, 110, 110}
00109
00110 },
00111 { /* noPair */ {{0}},
00112 /* GU..CG */
00113 {{ 110, 110, 110, 110, 110}, 00114 { 110, 110, 110, 110, 110},
00115 { 110, 110, 110, 110, 110},
00116 { 110, 110, 110, -100, 110}, 00117 { 110, 110, 110, 110, 110, 110}
00118 },
00119 /* GU..GC */
00120 {{ 110, 110, 110, 110, 110},
00121 { 110, 110, 110, 110, 110},
00122 { 110, 110, 110, 110, 110}, 00123 { 110, 110, 110, -100, 110}, 00124 { 110, 110, 110, 110, 110, 110}
00125 },
00126 /* GU..GU */
00127 {{ 170, 170, 170, 170, 170}, 00128 { 170, 170, 170, 170, 170, 170},
00129 { 170, 170, 170, 170, 170},

00130 { 170, 170, 170, -40, 170},

00131 { 170, 170, 170, 170, 170}
00132 },
00133 /* GU..UG */
00134 {{ 170, 170, 170, 170, 170},
00135 { 170, 170, 170, 170, 170}, 00136 { 170, 170, 170, 170, 170, 170}, 00137 { 170, 170, 170, 170, -40, 170},
00138 { 170, 170, 170, 170, 170}
00139 },
00140 /* GU..AU */
00141 {{ 170, 170, 170, 170, 170}, 00142 { 170, 170, 170, 170, 170}, 00143 { 170, 170, 170, 170, 170}, 00144 { 170, 170, 170, 170, -40, 170},
00145 { 170, 170, 170, 170, 170}
00146 },
00147 /* GU..UA */
00148 {{ 170, 170, 170, 170, 170}, 00149 { 170, 170, 170, 170, 170}, 00150 { 170, 170, 170, 170, 170},
00151 { 170, 170, 170, -40, 170},
00152 { 170, 170, 170, 170, 170}
00153 },
00154 /* GU..?? */
00155 {{ 170, 170, 170, 170, 170},
```

```
00156 { 170, 170, 170, 170, 170},
00157 { 170, 170, 170, 170, 170}, 00158 { 170, 170, 170, 170, 170},
00159 { 170, 170, 170, 170, 170}
00160 }
00161 }.
00162 { /* noPair */ {{0}}},
00163 /* UG..CG */
00164 {{ 110, 110, 110, 110, 110},
00165 { 110, 110, 110, 110, 110}, 00166 { 110, 110, 110, 110, 110, 110}, 00167 { 110, 110, 110, -100, 110},
00168 { 110, 110, 110, 110, 110}
00169 },
00170 /* UG..GC */
00171 {{ 110, 110, 110, 110, 110}, 00172 { 110, 110, 110, 110, 110}, 00173 { 110, 110, 110, 110, 110}, 00174 { 110, 110, 110, 110, 110},
00175 { 110, 110, 110, 110, 110}
00176 },
00177 /* UG..GU */
00178 {{ 170, 170, 170, 170, 170}, 00179 { 170, 170, 170, 170, 170}, 00180 { 170, 170, 170, 170, 170},
00181 { 170, 170, 170, -40, 170},
00182 { 170, 170, 170, 170, 170}
00183 },
00184 /* UG..UG */
00185 {{ 170, 170, 170, 170, 170}, 00186 { 170, 170, 170, 170, 170}, 00187 { 170, 170, 170, 170, 170},
00188 { 170, 170, 170, -40, 170},
00189 { 170, 170, 170, 170, 170}
00190 },
00191 /* UG..AU */
00194 { 170, 170, 170, 170, 170},
00195 { 170, 170, 170, -40, 170},
00196 { 170, 170, 170, 170, 170}
00197 },
00198 /* UG..UA */
00199 {{ 170, 170, 170, 170, 170},
00200 { 170, 170, 170, 170, 170},
00201 { 170, 170, 170, 170, 170},
00202 { 170, 170, 170, -40, 170},
00203 { 170, 170, 170, 170, 170}
00204 },
00205 /* UG..?? */
00206 {{ 170, 170, 170, 170, 170},
00207 { 170, 170, 170, 170, 170},
00208 { 170, 170, 170, 170, 170},
00209 { 170, 170, 170, 170, 170}, 00210 { 170, 170, 170, 170, 170}
00211 }
00212 },
00213 { /* noPair */ {{0}}},
00214 /* AU..CG */
00215 {{ 110, 110, 110, 110, 110},
00216 { 110, 110, 110, 110, 110}, 00217 { 110, 110, 110, 110, 110, 110, 120}, 00218 { 110, 110, 110, -100, 110},
00219 { 110, 110, 110, 110, 110}
00220 },
00221 /* AU..GC */
00222 {{ 110, 110, 110, 110, 110}, 00223 { 110, 110, 110, 110, 110, 110}, 00224 { 110, 110, 110, 110, 110},
00225 { 110, 110, 110, -100, 110},
00226 { 110, 110, 110, 110, 100}
00227 },
00228 /* AU..GU */
00229 {{ 170, 170, 170, 170, 170}, 00230 { 170, 170, 170, 170, 170}, 00231 { 170, 170, 170, 170, 170},
00232 { 170, 170, 170, -40, 170},
00233 { 170, 170, 170, 170, 170}
00234 },
00235 /* AU..UG */
00236 {{ 170, 170, 170, 170, 170}, 00237 { 170, 170, 170, 170, 170, 170},
00238 { 170, 170, 170, 170, 170}, 00239 { 170, 170, 170, -40, 170},
00240 { 170, 170, 170, 170, 170}
00241 },
00242 /* AU..AU */
```

```
00243 {{ 170, 170, 170, 170, 170},
00244 { 170, 170, 170, 170, 170}, 00245 { 170, 170, 170, 170, 170},
00246 { 170, 170, 170, -40, 170},
00247 { 170, 170, 170, 170, 120}
00248 },
00249 /* AU..UA */
00250 {{ 170, 170, 170, 170, 170},
00251 { 170, 170, 170, 170, 170},
00252 { 170, 170, 170, 170, 170}, 00253 { 170, 170, 170, -40, 170}, 00254 { 170, 170, 170, 170, 150}
00255 },
00256 /* AU..?? */
00257 {{ 170, 170, 170, 170, 170},
00258 { 170, 170, 170, 170, 170}, 00259 { 170, 170, 170, 170, 170, 170}, 00260 { 170, 170, 170, 170, 170, 170}, 00261 { 170, 170, 170, 170, 170}
00262
00263 },
00264 { /* noPair */ {{0}}},
00265 /* UA..CG */
00266 {{ 110, 110, 110, 110, 110}, 00267 { 110, 110, 110, 110, 110},
        { 110, 110, 110, 110, 110},
00269 { 110, 110, 110, -100, 110},
00270 { 110, 110, 110, 110, 110}
00271 },
00272 /* UA..GC */
00273 {{ 110, 110, 110, 110, 110}, 00274 { 110, 110, 110, 110, 110, 110},
00275 { 110, 110, 110, 110, 110},
00276 { 110, 110, 110, -100, 110},
00277 { 110, 110, 110, 110, 110}
00278 },
00279 /* UA..GU */
00280 {{ 170, 170, 170, 170, 170},
00281 { 170, 170, 170, 170, 170},
00282 { 170, 170, 170, 170, 170},
00283 { 170, 170, 170, -40, 170},
00284 { 170, 170, 170, 170, 170}
00285 },
00286 /* UA..UG */
00287 {{ 170, 170, 170, 170, 170}, 00288 { 170, 170, 170, 170, 170, 170},
00289 { 170, 170, 170, 170, 170},
00290 { 170, 170, 170, -40, 170}, 00291 { 170, 170, 170, 170, 170}
00292 }.
00293 /* UA..AU */
00294 {{ 170, 170, 170, 170, 170},
00295 { 170, 170, 170, 170, 170},
00296 { 170, 170, 170, 170, 170}, 00297 { 170, 170, 170, -40, 170}, 00298 { 170, 170, 170, 170, 150}
00300 /* UA..UA */
00301 {{ 170, 170, 170, 170, 170}, 00302 { 170, 170, 170, 170, 170, 170},
00303 { 170, 170, 170, 170, 170}, 00304 { 170, 170, 170, -40, 170}, 00305 { 170, 170, 170, 170, 180}
00306 },
00307 /* UA..?? */
00308 {{ 170, 170, 170, 170, 170},
00309 { 170, 170, 170, 170, 170}, 00310 { 170, 170, 170, 170, 170, 170}, 00311 { 170, 170, 170, 170, 170},
00312 { 170, 170, 170, 170, 170}
00313
00314 },
00315 { /* noPair */ {{0}},
00316 /* ??..CG */
00317 {{ 110, 110, 110, 110, 110}, 00318 { 110, 110, 110, 110, 110},
00319 { 110, 110, 110, 110, 110},
00320 { 110, 110, 110, 110, 110},
00321 { 110, 110, 110, 110, 110}
00322 },
00323 /* ??..GC */
00324 {{ 110, 110, 110, 110, 110},
00325 { 110, 110, 110, 110, 110},
00326 { 110, 110, 110, 110, 110},
00327 { 110, 110, 110, 110, 110},
00328 { 110, 110, 110, 110, 110}
00329 },
```

```
00330 /* ??..GU */
00331 {{ 170, 170, 170, 170, 170}, 00332 { 170, 170, 170, 170, 170, 170},
00333 { 170, 170, 170, 170, 170},
00334 { 170, 170, 170, 170, 170}, 00335 { 170, 170, 170, 170, 170, 170}
00336 },
00337 /* ??..UG */
00338 {{ 170, 170, 170, 170, 170},
00339 { 170, 170, 170, 170, 170}, 00340 { 170, 170, 170, 170, 170}, 00341 { 170, 170, 170, 170, 170},
00342 { 170, 170, 170, 170, 170}
00343 },
00344 /* ??..AU */
00345 {{ 170, 170, 170, 170, 170}, 00346 { 170, 170, 170, 170, 170}, 00347 { 170, 170, 170, 170, 170}, 00348 { 170, 170, 170, 170, 170},
00349 { 170, 170, 170, 170, 170}
00350 },
00351 /* ??..UA */
00352 {{ 170, 170, 170, 170, 170}, 00353 { 170, 170, 170, 170, 170, 170}, 00354 { 170, 170, 170, 170, 170},
00355 { 170, 170, 170, 170, 170},
00356 { 170, 170, 170, 170, 170}
00357 },
00358 /* ??..?? */
00359 {{ 170, 170, 170, 170, 170}, 00360 {{ 170, 170, 170, 170, 170}, 00361 {{ 170, 170, 170, 170, 170}, 170},
00362 { 170, 170, 170, 170, 170},
00363 { 170, 170, 170, 170, 170}
00364
00365
00366 };
00367
00368 PRIVATE int int11_H_184[NBPAIRS+1][NBPAIRS+1][5][5] =
00369 /* GC..GC */
00370 { /* noPair */ {{{0}}}},
00371 { /* noPair */ {{0}}},
00372 { { 0, 0, 0, 0, 0}, 0}, 00373 { 0, 0, 0, 0, 0}, 00374 { 0, 0, 0, 0, 0},
00375 { 0, 0, 0, 0, 0},
00376 { 0, 0, 0, 0, 0}},
          /* GC..CG */
00377
00378 { { 0, 0, 0, 0, 0},
00379 { 0, 0, 0, 0, 0},
00380 { 0, 0, 0, 0, 0},
00381 { 0, 0, 0, 0, 0},
00382 { 0, 0, 0, 0, 0}},
          /* GC..GU */
00383
00383 /* GC..GO */
00384 { 0, 0, 0, 0, 0},
00385 { 0, 0, 0, 0, 0},
00386 { 0, 0, 0, 0, 0},
00387 { 0, 0, 0, 0, 0},
00388 { 0, 0, 0, 0, 0}},
00389 /* GC..UG */
00390 { { 0, 0, 0, 0, 0},
00391 { 0, 0, 0, 0, 0}, 0
00392 { 0, 0, 0, 0, 0},
00393 { 0, 0, 0, 0, 0},
00394 { 0, 0, 0, 0, 0}},
          /* GC..AU */
00395
00396 { { 0, 0, 0, 0, 0}, 0}, 00397 { 0, 0, 0, 0, 0, 0}, 00398 { 0, 0, 0, 0, 0},
00399
         { 0, 0, 0, 0, 0},
00400 { 0, 0, 0, 0, 0}},
          /* GC..UA */
00401
00402 { { 0, 0, 0, 0, 0},
00403 { 0, 0, 0, 0, 0},
00404 { 0, 0, 0, 0, 0},
00405 { 0, 0, 0, 0, 0},
00406 { 0, 0, 0, 0, 0}},
00407 /* GC.. @ */
00408 { { 0, 0, 0, 0, 0}, 0}, 00409 { 0, 0, 0, 0, 0}, 00410 { 0, 0, 0, 0, 0},
00411 { 0, 0, 0, 0, 0},
00412 { 0, 0, 0, 0, 0}}},
          /* CG..GC */
00413
```

```
00417 {
             0, 0, 0, 0, 0},
00418 { 0, 0, 0, 0, 0},
00419 { 0, 0, 0, 0, 0}},
          /* CG..CG */
00420
00421 { { 0, 0, 0, 0, 0}, 0}, 00422 { 0, 0, 0, 0, 0},
00423 { 0, 0, 0, 0, 0},
00424 { 0, 0, 0, 0, 0},
00425 { 0, 0, 0, 0, 0}},

00426 /* CG..GU */

00427 { { 0, 0, 0, 0, 0},
00428 { 0, 0, 0, 0, 0},
00429 { 0, 0, 0, 0, 0},
00430 { 0, 0, 0, 0, 0},
00431 { 0, 0, 0, 0, 0}},
           /* CG..UG */
00432
00433 { { 0, 0, 0, 0, 0}, 0}, 00434 { 0, 0, 0, 0, 0}, 00435 { 0, 0, 0, 0, 0},
00436 { 0, 0, 0, 0, 0},
00437 { 0, 0, 0, 0, 0}},
           /* CG..AU */
00438
00439 { { 0, 0, 0, 0, 0}, 0}, 00440 { 0, 0, 0, 0, 0}, 00441 { 0, 0, 0, 0, 0},
00442 { 0, 0, 0, 0, 0},
00443 { 0, 0, 0, 0, 0}},
00444 /* CG..UA */
00445 { { 0, 0, 0, 0, 0}, 0}, 00446 { 0, 0, 0, 0, 0}, 00447 { 0, 0, 0, 0, 0},
00448 { 0, 0, 0, 0, 0},
00449 { 0, 0, 0, 0, 0}},
          /* CG.. @ */
00450
00451 { { 0, 0, 0, 0, 0}, 0}, 00452 { 0, 0, 0, 0, 0}, 00453 { 0, 0, 0, 0, 0},
00454 { 0, 0, 0, 0, 0},
00454 { 0, 0, 0, 0, 0}, 0
00455 { 0, 0, 0, 0, 0}}, 00456 /* GU.GC */
00457 { /* noPair */ {{0}}, 00458 { 0, 0, 0, 0, 0}, 00459 { 0, 0, 0, 0, 0}, 00460 { 0, 0, 0, 0, 0},
00461 { 0, 0, 0, 0, 0},
00462 { 0, 0, 0, 0, 0}},
00463
          /* GU..CG */
00464 { { 0, 0, 0, 0, 0}, 0}, 00465 { 0, 0, 0, 0, 0}, 00466 { 0, 0, 0, 0, 0},
00467 { 0, 0, 0, 0, 0},
00468 { 0, 0, 0, 0, 0}},
          /* GU..GU */
00469
00470 { { 0, 0, 0, 0, 0, 0}, 00471 { 0, 0, 0, 0, 0}, 00472 { 0, 0, 0, 0, 0},
00473 { 0, 0, 0, 0, 0},
00474 { 0, 0, 0, 0, 0}},
00475 /* GU..UG */
00476 { { 0, 0, 0, 0, 0}, 0
00477 { 0, 0, 0, 0, 0},
00478 { 0, 0, 0, 0, 0},
00479 { 0, 0, 0, 0, 0},
00480 { 0, 0, 0, 0, 0}},
           /* GU..AU */
00481
00482 { { 0, 0, 0, 0, 0},
00483 { 0, 0, 0, 0, 0},
00484 { 0, 0, 0, 0, 0},
00485 { 0, 0, 0, 0, 0},
00486 { 0, 0, 0, 0, 0},
00487 /* GU..UA */
00488 { { 0, 0, 0, 0, 0},
00489 { 0, 0, 0, 0, 0},
00490 { 0, 0, 0, 0, 0},
00491 { 0, 0, 0, 0, 0},
00492 { 0, 0, 0, 0, 0}},
00493
          /* GU.. @ */
00494 { { 0, 0, 0, 0, 0},
00495 { 0, 0, 0, 0, 0},
00496 { 0, 0, 0, 0, 0},
00497 { 0, 0, 0, 0, 0},
00498 { 0, 0, 0, 0, 0}}},
         /* UG..GC */
00499
00500 { /* noPair */ {{0}}},
00501 { { 0, 0, 0, 0, 0}, 0}, 00502 { 0, 0, 0, 0, 0}, 00503 { 0, 0, 0, 0, 0},
```

```
00504 { 0, 0, 0, 0, 0},
00505 { 0, 0, 0, 0, 0}},
00506 /* UG..CG */
00507 { { 0, 0, 0, 0, 0}, 0}, 00508 { 0, 0, 0, 0, 0}, 00509 { 0, 0, 0, 0, 0},
00510 { 0, 0, 0, 0, 0},
00511 { 0, 0, 0, 0, 0}},
00512 /* UG..GU */
00513 { { 0, 0, 0, 0, 0}, 0}, 00514 { 0, 0, 0, 0, 0}, 00515 { 0, 0, 0, 0, 0},
00516 {
           0, 0, 0, 0, 0},
00517 { 0, 0, 0, 0, 0}},
         /* UG..UG */
00518
00519 { { 0, 0, 0, 0, 0}, 0}, 00520 { 0, 0, 0, 0, 0}, 00521 { 0, 0, 0, 0, 0},
00522 { 0, 0, 0, 0, 0},
00523 { 0, 0, 0, 0, 0}},
         /* UG..AU */
00524
00525 { { 0, 0, 0, 0, 0}, 0}, 00526 { 0, 0, 0, 0, 0},
00527 { 0, 0, 0, 0, 0},
00528 { 0, 0, 0, 0, 0},
00529 { 0, 0, 0, 0, 0}},
00530
         /* UG..UA */
00531 { { 0, 0, 0, 0, 0},
00532 { 0, 0, 0, 0, 0},
00533 { 0, 0, 0, 0, 0},
00534 { 0, 0, 0, 0, 0},
00535 { 0, 0, 0, 0, 0}},
00536
         /* UG.. @ */
00537 { { 0, 0, 0, 0, 0},
00538 { 0, 0, 0, 0, 0},
00539 { 0, 0, 0, 0, 0},
00540 { 0, 0, 0, 0, 0},
00541 { 0, 0, 0, 0, 0}},
00542
         /* AU..GC */
00542 /* A0..GC */
00543 { /* noPair */ {{0}},
00544 { { 0, 0, 0, 0, 0},
00545 { 0, 0, 0, 0, 0},
00546 { 0, 0, 0, 0, 0},
00547 { 0, 0, 0, 0, 0},
00548 { 0, 0, 0, 0, 0}},
00549
         /* AU..CG */
00550 { { 0, 0, 0, 0, 0},
00551 { 0, 0, 0, 0, 0}, 0
00552 { 0, 0, 0, 0, 0},
00553 { 0, 0, 0, 0, 0},
00554 { 0, 0, 0, 0, 0}},
         /* AU..GU */
00555
00556 { { 0, 0, 0, 0, 0},
00557 { 0, 0, 0, 0, 0},
00558 { 0, 0, 0, 0, 0},
00559 {
           0, 0, 0, 0, 0},
00560 { 0, 0, 0, 0, 0}},
00561
         /* AU..UG */
00562 { { 0, 0, 0, 0, 0},
00563 { 0, 0, 0, 0, 0},
00564 { 0, 0, 0, 0, 0},
00565 { 0, 0, 0, 0, 0},
00566 { 0, 0, 0, 0, 0}},
00567
         /* AU..AU */
00568 { { 0, 0, 0, 0, 0},
00569 { 0, 0, 0, 0, 0},
00570 { 0, 0, 0, 0, 0},
00571 {
           0, 0, 0, 0, 0},
00572 { 0, 0, 0, 0, 0}},
00573
         /* AU..UA */
00574 { { 0, 0, 0, 0, 0},
00575 { 0, 0, 0, 0, 0},
00576 { 0, 0, 0, 0, 0},
00577 { 0, 0, 0, 0, 0},
00578 { 0, 0, 0, 0, 0}},
00579
         /* AU.. @ */
00580 { { 0, 0, 0, 0, 0},
00581 { 0, 0, 0, 0, 0},
00582 { 0, 0, 0, 0, 0},
00583 { 0, 0, 0, 0, 0},
00584 { 0, 0, 0, 0, 0}},
00585 /* UA..GC */
00586 { /* noPair */ {{0}}},
00587 { { 0, 0, 0, 0, 0},
00588 { 0, 0, 0, 0, 0},
00589 { 0, 0, 0, 0, 0},
00590 { 0, 0, 0, 0, 0},
```

```
00591 { 0, 0, 0, 0, 0}},
00592
      /* UA..CG */
00593 { { 0, 0, 0, 0, 0},
00594 { 0, 0, 0, 0, 0},
00595 { 0, 0, 0, 0, 0},
00596 {
        0, 0, 0, 0, 0},
00597 { 0, 0, 0, 0, 0}},
00598
      /* UA..GU */
00599 { { 0, 0, 0, 0, 0},
00600 { 0, 0, 0, 0, 0},
00601 { 0, 0, 0, 0, 0},
00602 { 0, 0, 0, 0, 0},
00603 { 0, 0, 0, 0, 0}},
00604
      /* UA..UG */
00605 { { 0, 0, 0, 0, 0},
00606 { 0, 0, 0, 0, 0},
00607 { 0, 0, 0, 0, 0},
00608 {
        0, 0, 0, 0, 0},
00609 { 0, 0, 0, 0, 0}},
      /* UA..AU */
00610
00611 { { 0, 0, 0, 0, 0},
00612 {
       0, 0, 0, 0, 0},
00613 { 0, 0, 0, 0, 0},
00614 { 0, 0, 0, 0, 0},
00615 { 0, 0, 0, 0, 0}},
      /* UA..UA */
00616
00617 { { 0, 0, 0, 0, 0},
00618 { 0, 0, 0, 0, 0},
00619 { 0, 0, 0, 0, 0},
00620 {
        0, 0, 0, 0, 0},
00621 { 0, 0, 0, 0, 0}},
00622
      /* UA.. @ */
00623 { { 0, 0, 0, 0, 0},
00624 { 0, 0, 0, 0, 0},
00625 { 0, 0, 0, 0, 0},
00626 { 0, 0, 0, 0, 0},
00627 { 0, 0, 0, 0, 0}}},
     /* @..GC */
00628
00629 { /* noPair */ {{0}}},
00630 { { 0, 0, 0, 0, 0},
00631 { 0, 0, 0, 0, 0},
00632 { 0, 0, 0, 0, 0},
00633 { 0, 0, 0, 0, 0},
00634 { 0, 0, 0, 0, 0}},
      /* @..CG */
00636 { { 0, 0, 0, 0, 0},
00637 { 0, 0, 0, 0, 0},
00638 { 0, 0, 0, 0, 0},
00639 { 0, 0, 0, 0, 0},
00640 { 0, 0, 0, 0, 0}}
      /* @..GU */
00641
00642 { { 0, 0, 0, 0, 0},
00643 { 0, 0, 0, 0, 0},
00644 { 0, 0, 0, 0, 0},
00645 { 0, 0, 0, 0, 0},
00646 { 0, 0, 0, 0, 0}},
00647
      /* @..UG */
00648 { { 0, 0, 0, 0, 0},
00649 { 0, 0, 0, 0, 0},
00650 { 0, 0, 0, 0, 0},
00651 { 0, 0, 0, 0, 0},
00652 { 0, 0, 0, 0, 0}},
00653 /* @..AU */
00654 { 0, 0, 0, 0, 0},
00655 { 0, 0, 0, 0, 0},
00656 { 0, 0, 0, 0, 0},
00657 { 0, 0, 0, 0, 0},
00658 { 0, 0, 0, 0, 0}}
     /* @..UA */
00659
00660 { { 0, 0, 0, 0, 0},
00661 { 0, 0, 0, 0, 0},
00662 { 0, 0, 0, 0, 0},
00663 {
        0, 0, 0, 0, 0},
00664 { 0, 0, 0, 0, 0}},
          @.. @ */
00665
00666 { { 0, 0, 0, 0, 0},
00667 { 0, 0, 0, 0, 0},
00668 { 0, 0, 0, 0, 0},
00669 { 0, 0, 0, 0, 0},
00670 { 0, 0, 0, 0, 0}}};
00671
00672 PRIVATE int int21_37_184[NBPAIRS+1][NBPAIRS+1][5][5][5] =
00673 { /* noPair */ {{{0}}}},
00674 { /* noPair */ {{{0}}}},
00675 {
00676 /* CG.@..GC */
```

```
550, 550}, { 550, 550, 550, 550, 550}},
00678 /* CG.A..GC */
00679 {{ 550, 550, 550, 550, 550}, { 550, 240, 220, 160, 400}, { 550, 210, 170, 160, 400}, { 550, 100, 60,
     40, 400}, { 550, 400, 400, 400, 400}},
00680 /* CG.C..GC */
00681 {{ 550, 550, 550, 550, 550, 550, 550, 230, 220, 400, 220}, { 550, 220, 250, 400, 220}, { 550, 400, 400,
     400, 400}, { 550, 250, 190, 400, 220}},
00682 /* CG.G..GC */
00683 {{ 550, 550, 550, 550, 550},{ 550, 170, 400, 80, 400},{ 550, 400, 400, 400, 400},{ 550, 80, 400,
     220, 400},{ 550, 400, 400, 400, 400}},
00684 /* CG.U..GC */
00685 {{ 550, 550, 550, 550, 550},{ 550, 400, 400, 400, 400},{ 550, 400, 220, 400, 130},{ 550, 400, 400, 400, 400},{ 550, 400, 170, 400, 120}}
00686 },
00687 {
00688 /* CG.@..CG */
550, 550}, { 550, 550, 550, 550, 550}},
00690 /* CG.A..CG */
00691 {{ 550, 550, 550, 550, 550, 550, 550, 230, 220, 110, 400},{ 550, 210, 170, 160, 400},{ 550, 80, 60,
     40, 400}, { 550, 400, 400, 400, 400}},
00692 /* CG.C..CG */
00693 {{ 550, 550, 550, 550, 550},{ 550, 230, 220, 400, 220},{ 550, 220, 250, 400, 220},{ 550, 400, 400,
     400, 400}, { 550, 250, 190, 400, 220}},
00694 /* CG.G..CG */
00695 {{ 550, 550, 550, 550, 550},{ 550, 170, 400, 80, 400},{ 550, 400, 400, 400, 400},{ 550, 80, 400,
     220, 400}, { 550, 400, 400, 400, 400}},
00696 /* CG.U..CG */
00697 {{ 550, 550, 550, 550, 550},{ 550, 400, 400, 400, 400},{ 550, 400, 220, 400, 150},{ 550, 400, 400, 400, 400},{ 550, 400, 170, 400, 120}}
00698 },
00699 (
00700 /* CG.@..UG */
550, 550}, { 550, 550, 550, 550, 550}},
00702 /* CG.A..UG */
00703 {{ 550, 550, 550, 550, 550}, { 550, 320, 300, 240, 480}, { 550, 290, 250, 240, 480}, { 550, 180, 140,
     120, 480}, { 550, 480, 480, 480, 480}},
00704 /* CG.C..UG */
00705 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
00706 /* CG.G..UG */
00707 {{ 550, 550, 550, 550}, { 550, 250, 480, 160, 480}, { 550, 480, 480, 480, 480}, { 550, 160, 480}, 300, 480}, { 550, 480, 480, 480, 480, 480},
00708 /* CG.U..UG */
00709 {{ 550, 550, 550, 550},{ 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
00710 },
00711 {
00712 /* CG.@..GU */
550, 550}, { 550, 550, 550, 550, 550}},
00714 /* CG.A..GU */
00715 {{ 550, 550, 550, 550, 550}, { 550, 320, 300, 240, 480}, { 550, 290, 250, 240, 480}, { 550, 180, 140,
     120, 480}, { 550, 480, 480, 480, 480}},
00716 /* CG.C..GU */
00717 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
00718 /* CG.G..GU */
00719 {{ 550, 550, 550, 550, 550}, { 550, 250, 480, 160, 480}, { 550, 480, 480, 480, 480}, { 550, 160, 480,
     300, 480}, { 550, 480, 480, 480, 480}},
00720 /* CG.U..GU */
00721 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
00722 },
00723 {
00724 /* CG.@..UA */
550, 550}, { 550, 550, 550, 550, 550}},
00726 /* CG.A..UA */
00727 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
     120, 480},{ 550, 480, 480, 480, 480}},
00728 /* CG.C..UA */
00729 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
00730 /* CG.G..UA */
00731 {{ 550, 550, 550, 550, 550},{ 550, 250, 480, 160, 480},{ 550, 480, 480, 480, 480},{ 550, 160, 480,
     300, 480}, { 550, 480, 480, 480, 480}},
00732 /* CG.U..UA */
00733 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
00734 },
00735 {
00736 /* CG.@..AU */
550, 550}, { 550, 550, 550, 550, 550}},
00738 /* CG.A..AU */
```

```
00739 {{ 550, 550, 550, 550, 550, 550, 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
     120, 480}, { 550, 480, 480, 480, 480}},
00740 /* CG.C..AU */
00741 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
00742 /* CG.G..AU */
00743 {{ 550, 550, 550, 550, 550},{ 550, 250, 480, 160, 480},{ 550, 480, 480, 480, 480},{ 550, 160, 480,
     300, 480}, { 550, 480, 480, 480, 480}},
00744 /* CG.U..AU */
00745 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480, 480, 480},{ 550, 480, 250, 480, 200}}
00746 }.
00747 {
00748 /* CG.@..?? */
550, 550},{ 550, 550, 550, 550, 550}},
00750 /* CG.A..?? */
550, 550}, { 550, 550, 550, 550, 550}},
00752 /* CG.C..?? */
550, 550},{ 550, 550, 550, 550, 550}},
00754 /* CG.G..?? */
00756 /* CG.U..?? */
550, 550}, { 550, 550, 550, 550, 550}}
00758 }
00759 1.
00760 { /* noPair */ {{{0}}}},
00761 {
00762 /* GC.@..GC */
00763 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550, 550,
     550, 550},{ 550, 550, 550, 550, 550}},
00764 /* GC.A..GC */
00765 {{ 550, 550, 550, 550, 550}, { 550, 250, 220, 210, 400}, { 550, 210, 170, 160, 400}, { 550, 120, 60,
     40, 400}, { 550, 400, 400, 400, 400}},
00766 /* GC.C..GC */
00767 {{ 550, 550, 550, 550, 550},{ 550, 230, 220, 400, 220},{ 550, 220, 250, 400, 220},{ 550, 400, 400,
     400, 400}, { 550, 250, 190, 400, 220}},
00768 /* GC.G..GC */
00769 {{ 550, 550, 550, 550, 550},{ 550, 170, 400, 80, 400},{ 550, 400, 400, 400, 400},{ 550, 80, 400, 220, 400},{ 550, 400, 400, 400, 400}},
00770 /* GC.U..GC */
00771 {{ 550, 550, 550, 550, 550},{ 550, 400, 400, 400, 400},{ 550, 400, 220, 400, 120},{ 550, 400, 400,
     400, 400}, { 550, 400, 170, 400, 120}}
00772 },
00773 {
00774 /* GC.@..CG */
550, 550}, { 550, 550, 550, 550, 550}},
00776 /* GC.A..CG */
00777 {{ 550, 550, 550, 550, 550}, { 550, 240, 220, 160, 400}, { 550, 210, 170, 160, 400}, { 550, 100, 60,
     40, 400}, { 550, 400, 400, 400, 400}},
00778 /* GC.C..CG */
00779 {{ 550, 550, 550, 550}, { 550, 220, 400, 220}, { 550, 220, 250, 400, 220}, { 550, 400, 400,
     400, 400}, { 550, 250, 190, 400, 220}},
00780 /* GC.G..CG */
00781 {{ 550, 550, 550, 550, 550}, { 550, 170, 400, 80, 400}, { 550, 400, 400, 400, 400}, { 550, 80, 400,
220, 400},{ 550, 400, 400, 400, 400},
00782 /* GC.U..CG */
00783 {{ 550, 550, 550, 550, 550},{ 550, 400, 400, 400, 400},{ 550, 400, 220, 400, 130},{ 550, 400, 400,
     400, 400}, { 550, 400, 170, 400, 120}}
00784 },
00785
00786 /* GC.@..UG */
550, 550}, { 550, 550, 550, 550, 550}},
00788 /* GC.A..UG */
00789 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
     120, 480},{ 550, 480, 480, 480, 480}},
00790 /* GC.C..UG */
00791 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
00792 /* GC.G..UG */
00793 {{ 550, 550, 550, 550, 550, 550, 550, 480, 160, 480}, { 550, 480, 480, 480, 480, 480}, { 550, 160, 480,
     300, 480},{ 550, 480, 480, 480, 480}},
00794 /* GC.U..UG */
00795 {{ 550, 550, 550, 550, 550, 550, 480, 480, 480, 480, 480}, { 550, 480, 300, 480, 210}, { 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
00796 }.
00797
00798 /* GC.@..GU */
550, 550}, { 550, 550, 550, 550, 550}},
00800 /* GC.A..GU */
```

```
00801 {{ 550, 550, 550, 550, 550, 550, 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
     120, 480}, { 550, 480, 480, 480, 480}},
00802 /* GC.C..GU */
00803 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480},{ 550, 330, 270, 480, 300}},
00804 /* GC.G..GU */
00805 {{ 550, 550, 550, 550, 550},{ 550, 250, 480, 160, 480},{ 550, 480, 480, 480, 480, 480},{ 550, 160, 480,
     300, 480}, { 550, 480, 480, 480, 480}},
00806 /* GC.U..GU */
00807 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480, 480},{ 550, 480, 250, 480, 200}}
00808 }.
00809 {
00810 /* GC.@..UA */
550, 550},{ 550, 550, 550, 550, 550}},
00812 /* GC.A..UA */
00813 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
     120, 480}, { 550, 480, 480, 480, 480}},
00814 /* GC.C..UA */
00815 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480},{ 550, 330, 270, 480, 300}},
00816 /* GC.G..UA */
00817 {{ 550, 550, 550, 550, 550},{ 550, 250, 480, 160, 480},{ 550, 480, 480, 480, 480},{ 550, 160, 480, 300, 480},{ 550, 480, 480, 480, 480, 480}},
00818 /* GC.U..UA */
00819 {{ 550, 550, 550, 550, 550}, { 550, 480, 480, 480, 480}, { 550, 480, 300, 480, 210}, { 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
00820 },
00821 {
00822 /* GC.@..AU */
550, 550}, { 550, 550, 550, 550, 550}},
00824 /* GC.A..AU */
00825 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140, 120, 480},{ 550, 480, 480, 480, 480}},
00826 /* GC.C..AU */
00827 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
00828 /* GC.G..AU */
00829 {{ 550, 550, 550, 550, 550},{ 550, 250, 480, 160, 480},{ 550, 480, 480, 480, 480, 480},{ 550, 160, 480,
     300, 480}, { 550, 480, 480, 480, 480}},
00830 /* GC.U..AU */
00831 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
00832 },
00833 {
00834 /* GC.@..?? */
550, 550}, { 550, 550, 550, 550, 550}},
00836 /* GC.A..?? */
550, 550}, { 550, 550, 550, 550, 550}},
00838 /* GC.C..?? */
550, 550}, { 550, 550, 550, 550, 550}},
00840 /* GC.G..?? */
550, 550}, { 550, 550, 550, 550, 550}},
00842 /* GC.U..?? */
550, 550}, { 550, 550, 550, 550, 550}}
00845 },
00846 { /* noPair */ {{{0}}}},
00847
00848 /* GU.@..GC */
550, 550}, { 550, 550, 550, 550, 550}},
00850 /* GU.A..GC */
00851 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
     120, 480},{ 550, 480, 480, 480, 480}},
00852 /* GU.C..GC */
00853 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
00854 /* GU.G..GC */
00855 {{ 550, 550, 550, 550, 550}, 550, 550, 250, 480, 160, 480}, { 550, 480, 480, 480, 480}, { 550, 160, 480,
     300, 480},{ 550, 480, 480, 480, 480}},
00856 /* GU.U..GC */
00857 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
     480, 480},{ 550, 480, 250, 480, 200}}
00858 },
00859 {
00860 /* GU.@..CG */
00861 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550, 550,
     550, 550}, { 550, 550, 550, 550, 550}},
00862 /* GU.A..CG */
```

```
00863 {{ 550, 550, 550, 550, 550, 550, 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
    120, 480}, { 550, 480, 480, 480, 480}},
00864 /* GU.C..CG */
00865 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
    480, 480},{ 550, 330, 270, 480, 300}},
00866 /* GU.G..CG */
00867 {{ 550, 550, 550, 550, 550},{ 550, 250, 480, 160, 480},{ 550, 480, 480, 480, 480, 480},{ 550, 160, 480,
    300, 480}, { 550, 480, 480, 480, 480}},
00868 /* GU.U..CG */
00869 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480, 480, 480},{ 550, 480, 250, 480, 200}}
00870 }.
00871 {
00872 /* GU.@..UG */
550, 550},{ 550, 550, 550, 550, 550}},
00874 /* GU.A..UG */
00875 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210,
    190, 550}, { 550, 550, 550, 550, 550}},
00876 /* GU.C..UG */
00877 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550, 550,
    550, 550}, { 550, 400, 340, 550, 370}},
00878 /* GU.G..UG */
00879 {{ 550, 550, 550, 550, 550},{ 550, 320, 550, 230, 550},{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550, 550},
00880 /* GU.U..UG */
550, 550}, { 550, 550, 320, 550, 270}}
00882 },
00883 {
00884 /* GU.@..GU */
550, 550}, { 550, 550, 550, 550, 550}},
00886 /* GU.A..GU */
00887 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210, 190, 550},{ 550, 550, 550, 550, 550},
00888 /* GU.C..GU */
00889 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550, 550,
    550, 550}, { 550, 400, 340, 550, 370}},
00890 /* GU.G..GU */
370, 550},{ 550, 550, 550, 550, 550}},
00892 /* GU.U..GU */
00893 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 370, 550, 280},{ 550, 550, 550,
     550, 550},{ 550, 550, 320, 550, 270}}
00894 },
00895 {
00896 /* GU.@..UA */
550, 550}, { 550, 550, 550, 550, 550}},
00898 /* GU.A..UA */
00899 {{ 550, 550, 550, 550},{ 550}, 550}, { 550, 390, 370, 310, 550}, { 550, 360, 320, 310, 550}, { 550, 250, 210,
    190, 550}, { 550, 550, 550, 550, 550}},
00900 /* GU.C..UA */
00901 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550,
    550, 550}, { 550, 400, 340, 550, 370}},
00902 /* GU.G..UA */
370, 550}, { 550, 550, 550, 550, 550}},
00904 /* GU.U..UA */
00905 {{ 550, 550, 550, 550, 550}, { 550, 550, 550, 550, 550, 550}, { 550, 550, 370, 550, 280}, { 550, 550, 550,
    550, 550}, { 550, 550, 320, 550, 270}}
00907 {
00908 /* GU.@..AU */
550, 550}, { 550, 550, 550, 550, 550}},
00910 /* GU.A..AU */
00911 {{ 550, 550, 550, 550, 550, 550, { 550, 390, 370, 310, 550}, { 550, 360, 320, 310, 550}, { 550, 250, 210,
    190, 550}, { 550, 550, 550, 550, 550}},
00912 /* GU.C..AU */
00913 {{ 550, 550, 550, 550, 550}, { 550, 380, 370, 550, 370}, { 550, 370, 400, 550, 370}, { 550, 550, 550,
    550, 550}, { 550, 400, 340, 550, 370}},
00914 /* GU.G..AU */
370, 550}, { 550, 550, 550, 550, 550}},
00916 /* GU.U..AU */
00917 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550, 550, 370, 550, 280},{ 550, 550, 550,
    550, 550},{ 550, 550, 320, 550, 270}}
00918 }.
00919 {
00920 /* GU.@..?? */
550, 550}, { 550, 550, 550, 550, 550}},
00922 /* GU.A..?? */
```

```
00924 /* GU.C..?? */
550, 550}, { 550, 550, 550, 550, 550}},
00926 /* GU.G..?? */
550, 550}, { 550, 550, 550, 550, 550}},
00928 /* GU.U..?? */
00929 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550, 550,
     550, 550}, { 550, 550, 550, 550, 550}}
00930 }
00931 },
00932 { /* noPair */ {{{0}}}}.
00933 {
00934 /* UG.@..GC */
550, 550},{ 550, 550, 550, 550, 550}},
00936 /* UG.A..GC */
00937 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
     120, 480}, { 550, 480, 480, 480, 480}},
00938 /* UG.C..GC */
00939 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480},{ 550, 330, 270, 480, 300}},
00940 /* UG.G..GC */
00941 {{ 550, 550, 550, 550, 550},{ 550, 250, 480, 160, 480},{ 550, 480, 480, 480, 480},{ 550, 160, 480, 300, 480},{ 550, 480, 480, 480, 480, 480}},
00942 /* UG.U..GC */
00943 {{ 550, 550, 550, 550, 550, 550, 480, 480, 480, 480, 480}, { 550, 480, 300, 480, 210}, { 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
00944 },
00945 {
00946 /* UG.@..CG */
550, 550}, { 550, 550, 550, 550, 550}},
00948 /* UG.A..CG */
00949 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140, 120, 480},{ 550, 480, 480, 480, 480}},
00950 /* UG.C..CG */
00951 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
00952 /* UG.G..CG */
00953 {{ 550, 550, 550, 550}, 550}, { 550, 250, 480, 160, 480}, { 550, 480, 480, 480, 480}, { 550, 160, 480,
     300, 480}, { 550, 480, 480, 480, 480}},
00954 /* UG.U..CG */
00955 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
00956 },
00957 {
00958 /* UG.@..UG */
550, 550}, { 550, 550, 550, 550, 550}},
00960 /* UG.A..UG */
00961 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210,
     190, 550}, { 550, 550, 550, 550, 550}},
00962 /* UG.C..UG */
00963 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550,
     550, 550}, { 550, 400, 340, 550, 370}},
00964 /* UG.G..UG */
370, 550}, { 550, 550, 550, 550, 550}},
00966 /* UG.U..UG */
00967 {{ 550, 550, 550, 550, 550}, { 550, 550, 550, 550, 550, 550}, { 550, 550, 370, 550, 280}, { 550, 550, 550,
     550, 550}, { 550, 550, 320, 550, 270}}
00969 {
00970 /* UG.@..GU */
550, 550}, { 550, 550, 550, 550, 550}},
00972 /* UG.A..GU */
00973 {{ 550, 550, 550, 550, 550}, { 550, 390, 370, 310, 550}, { 550, 360, 320, 310, 550}, { 550, 250, 210,
     190, 550}, { 550, 550, 550, 550, 550}},
00974 /* UG.C..GU */
00975 {{ 550, 550, 550, 550, 550}, { 550, 380, 370, 550, 370}, { 550, 370, 400, 550, 370}, { 550, 550, 550,
     550, 550}, { 550, 400, 340, 550, 370}},
00976 /* UG.G..GU */
370, 550}, { 550, 550, 550, 550, 550}},
00978 /* UG.U..GU */
00979 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 370, 550, 280},{ 550, 550, 550,
     550, 550}, { 550, 550, 320, 550, 270}}
00980 },
00981 {
00982 /* UG.@..UA */
550, 550}, { 550, 550, 550, 550, 550}},
00984 /* UG.A..UA */
00985 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210, 190, 550},{ 550, 550, 550, 550, 550},
```

```
00986 /* UG.C..UA */
00987 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550, 550,
       550, 550}, { 550, 400, 340, 550, 370}},
00988 /* UG.G..UA */
00989 {{ 550, 550, 550, 550, 550}, { 550, 320, 550, 230, 550}, { 550, 550, 550, 550, 550}, { 550, 230, 550,
       370, 550}, { 550, 550, 550, 550, 550}},
00990 /* UG.U..UA */
00991 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 370, 550, 280},{ 550, 550, 550,
       550, 550}, { 550, 550, 320, 550, 270}}
00992 },
00993 {
00994 /* UG.@..AU */
550, 550}, { 550, 550, 550, 550, 550}},
00996 /* UG.A..AU */
00997 {{ 550, 550, 550, 550},{ 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210,
       190, 550}, { 550, 550, 550, 550, 550}},
00998 /* UG.C..AU */
00999 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550, 550,
       550, 550}, { 550, 400, 340, 550, 370}},
01000 /* UG.G..AU */
370, 550},{ 550, 550, 550, 550, 550}},
550, 550}, { 550, 550, 320, 550, 270}}
01004 },
01005 {
01006 /* UG.@..?? */
550, 550}, { 550, 550, 550, 550, 550}},
01008 /* UG.A..?? */
550, 550},{ 550, 550, 550, 550, 550}},
550, 550}, { 550, 550, 550, 550, 550}},
01012 /* UG.G..?? */
550, 550}, { 550, 550, 550, 550, 550}},
01014 /* UG.U..?? */
550, 550}, { 550, 550, 550, 550, 550}}
01017 },
01018 { /* noPair */ {{{0}}}},
01019
01020 /* AU.@..GC */
550, 550}, { 550, 550, 550, 550, 550}},
01022 /* AU.A..GC */
01023 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
       120, 480}, { 550, 480, 480, 480, 480}},
01024 /* AU.C..GC */
01025 {{ 550, 550, 550, 550}, { 550, 310, 300, 480, 300}, { 550, 300, 330, 480, 300}, { 550, 480, 480,
01026 /* AU.G..GC */
01027 {{ 550, 550, 550, 550, 550, 550, 550, 480, 480, 480}, { 550, 480, 480, 480, 480, 480}, { 550, 160, 480,
       300, 480}, { 550, 480, 480, 480, 480}},
01028 /* AU.U..GC */
01029 {{ 550, 550, 550, 550, 550}, { 550, 480, 480, 480, 480}, { 550, 480, 300, 480, 210}, { 550, 480, 480,
       480, 480}, { 550, 480, 250, 480, 200}}
01030 }.
01031 {
01032 /* AU.@..CG */
550, 550}, { 550, 550, 550, 550, 550}},
01034 /* AU.A..CG */
120, 480}, { 550, 480, 480, 480, 480}},
01036 /* AU.C..CG */
01037 {{ 550, 550, 550, 550, 550}, { 550, 310, 300, 480, 300}, { 550, 300, 330, 480, 300}, { 550, 480, 480,
       480, 480}, { 550, 330, 270, 480, 300}},
01038 /* AU.G..CG */
01039 {{ 550, 550, 550, 550, 550, 550, 550, 480, 480, 160, 480}, { 550, 480, 480, 480, 480, 480}, { 550, 160, 480,
       300, 480}, { 550, 480, 480, 480, 480}},
01040 /* AU.U..CG */
01041 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
       480, 480},{ 550, 480, 250, 480, 200}}
01042 }.
01043 {
01044 /* AU.@..UG */
01045 \ \{ \{ \ 550, \ 550, \ 550, \ 550\}, \{ \ 550, \ 550, \ 550, \ 550, \ 550\}, \{ \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 550, \ 5
       550, 550}, { 550, 550, 550, 550, 550}},
01046 /* AU.A..UG */
01047 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210, 190, 550},{ 550, 550, 550, 550, 550},
```

```
01048 /* AU.C..UG */
01049 {{ 550, 550, 550, 550, 550},{ 550, 550}, { 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550, 550,
    550, 550}, { 550, 400, 340, 550, 370}},
01050 /* AU.G..UG */
01051 {{ 550, 550, 550, 550, 550}, { 550, 320, 550, 230, 550}, { 550, 550, 550, 550, 550}, { 550, 230, 550,
    370, 550}, { 550, 550, 550, 550, 550}},
01052 /* AU.U..UG */
01053 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 370, 550, 280},{ 550, 550, 550,
    550, 550}, { 550, 550, 320, 550, 270}}
01054 },
01055 {
01056 /* AU.@..GU */
550, 550}, { 550, 550, 550, 550, 550}},
01058 /* AU.A..GU */
01059 {{ 550, 550, 550, 550}, 550}, { 550, 390, 370, 310, 550}, { 550, 360, 320, 310, 550}, { 550, 250, 210,
    190, 550}, { 550, 550, 550, 550, 550}},
01060 /* AU.C..GU */
01061 {{ 550, 550, 550, 550, 550},{ 550, 550}, { 550, 380, 370, 550, 370}, { 550, 370, 400, 550, 370}, { 550, 550, 550,
    550, 550}, { 550, 400, 340, 550, 370}},
01062 /* AU.G..GU */
370, 550},{ 550, 550, 550, 550, 550}},
550, 550}, { 550, 550, 320, 550, 270}}
01066 },
01067 {
01068 /* AU.@..UA */
550, 550}, { 550, 550, 550, 550, 550}},
01070 /* AU.A..UA */
01071 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210,
    190, 550}, { 550, 550, 550, 550, 550}},
01072 /* AU.C..UA */
01073 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550,
    550, 550}, { 550, 400, 340, 550, 370}},
01074 /* AU.G..UA */
01075 {{ 550, 550, 550, 550, 550}, { 550, 320, 550, 230, 550}, { 550, 550, 550, 550, 550}, { 550, 230, 550,
    370, 550},{ 550, 550, 550, 550, 550}},
01076 /* AU.U..UA */
01077 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550}, { 550, 550, 370, 550, 280},{ 550, 550, 550, 550, 550, 550, 280},
01078 },
01079 {
01080 /* AU.@..AU */
550, 550}, { 550, 550, 550, 550, 550}},
01082 /* AU.A..AU */
01083 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210,
    190, 550}, { 550, 550, 550, 550, 550}},
01084 /* AU.C..AU */
01085 {{ 550, 550, 550, 550, 550}, { 550, 380, 370, 550, 370}, { 550, 370, 400, 550, 370}, { 550, 550, 550,
550, 550},{ 550, 400, 340, 550, 370}},
01086 /* AU.G..AU */
01087 {{ 550, 550, 550, 550, 550}, { 550, 320, 550, 230, 550}, { 550, 550, 550, 550, 550}, { 550, 230, 550,
    370, 550}, { 550, 550, 550, 550, 550}},
01088 /* AU.U..AU */
01089 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 370, 550, 280},{ 550, 550, 550,
    550, 550}, { 550, 550, 320, 550, 270}}
01090 },
01091 {
01092 /* AU.@..?? */
550, 550}, { 550, 550, 550, 550, 550}},
01094 /* AU.A..?? */
01096 /* AU.C..?? */
550, 550},{ 550, 550, 550, 550, 550}},
01098 /* AU.G..?? */
01100 /* AU.U..?? *
550, 550}, { 550, 550, 550, 550, 550}}
01102 }
01.103 }.
01104 { /* noPair */ {{{0}}}}.
01105 {
01106 /* UA.@..GC */
01108 /* UA.A..GC */
01109 {{ 550, 550, 550, 550, 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140, 120, 480},{ 550, 480, 480, 480, 480}},
```

783

```
01110 /* UA.C..GC */
01111 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
01112 /* UA.G..GC */
01113 {{ 550, 550, 550, 550, 550}, { 550, 250, 480, 160, 480}, { 550, 480, 480, 480, 480}, { 550, 160, 480,
     300, 480}, { 550, 480, 480, 480, 480}},
01114 /* UA.U..GC */
01115 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
01116 },
01117 {
01118 /* UA.@..CG */
550, 550}, { 550, 550, 550, 550, 550}},
01120 /* UA.A..CG */
01121 {{ 550, 550, 550, 550, 550},{ 550},{ 550, 320, 300, 240, 480},{ 550, 290, 250, 240, 480},{ 550, 180, 140,
     120, 480},{ 550, 480, 480, 480, 480}},
01122 /* UA.C..CG */
01123 {{ 550, 550, 550, 550, 550},{ 550, 310, 300, 480, 300},{ 550, 300, 330, 480, 300},{ 550, 480, 480,
     480, 480}, { 550, 330, 270, 480, 300}},
01124 /* UA.G..CG */
01125 {{ 550, 550, 550, 550, 550},{ 550, 250, 480, 160, 480},{ 550, 480, 480, 480, 480, 480},{ 550, 160, 480,
     300, 480},{ 550, 480, 480, 480, 480}},
01126 /* UA.U..CG */
01127 {{ 550, 550, 550, 550, 550},{ 550, 480, 480, 480, 480},{ 550, 480, 300, 480, 210},{ 550, 480, 480,
     480, 480}, { 550, 480, 250, 480, 200}}
01128 },
01129
01130 /* UA.@..UG */
550, 550}, { 550, 550, 550, 550, 550}},
01132 /* UA.A..UG */
01133 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210,
     190, 550},{ 550, 550, 550, 550, 550}},
01134 /* UA.C..UG */
01135 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550,
     550, 550}, { 550, 400, 340, 550, 370}},
01136 /* UA.G..UG */
370, 550},{ 550, 550, 550, 550, 550}},
01138 /* UA.U..UG */
01139 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550},{ 550, 550, 370, 550, 280},{ 550, 550, 550,
     550, 550},{ 550, 550, 320, 550, 270}}
01140 },
01141 {
01142 /* UA.@..GU */
550, 550}, { 550, 550, 550, 550, 550}},
01144 /* UA.A..GU */
01145 {{ 550, 550, 550, 550, 550}, { 550, 390, 370, 310, 550}, { 550, 360, 320, 310, 550}, { 550, 250, 210,
     190, 550}, { 550, 550, 550, 550, 550}},
01146 /* UA.C..GU */
01147 {{ 550, 550, 550, 550, 550}, { 550, 380, 370, 550, 370}, { 550, 370, 400, 550, 370}, { 550, 550, 550,
     550, 550},{ 550, 400, 340, 550, 370}},
01148 /* UA.G..GU */
01149 {{ 550, 550, 550, 550, 550}, { 550, 320, 550, 230, 550}, { 550, 550, 550, 550, 550}, { 550, 230, 550,
     370, 550}, { 550, 550, 550, 550, 550}},
01150 /* UA.U..GU */
01151 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550, 550, 370, 550, 280},{ 550, 550, 550,
     550, 550}, { 550, 550, 320, 550, 270}}
01152 },
01153 {
01154 /* UA.@..UA */
550, 550}, { 550, 550, 550, 550, 550}},
01156 /* UA.A..UA */
01157 {{ 550, 550, 550, 550, 550},{ 550, 390, 370, 310, 550},{ 550, 360, 320, 310, 550},{ 550, 250, 210, 190, 550},{ 550, 550, 550, 550, 550},
01158 /* UA.C..UA */
01159 {{ 550, 550, 550, 550, 550},{ 550, 550}, { 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550, 550,
     550, 550}, { 550, 400, 340, 550, 370}},
01160 /* UA.G..UA */
01161 {{ 550, 550, 550, 550, 550},{ 550, 320, 550, 230, 550},{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550, 550},
01162 /* UA.U..UA */
01163 {{ 550, 550, 550, 550, 550},{ 550, 550, 550, 550, 550, 550, 550, 370, 550, 280},{ 550, 550, 550,
     550, 550}, { 550, 550, 320, 550, 270}}
01164 },
01165
01166 /* UA.@..AU */
550, 550}, { 550, 550, 550, 550, 550}},
01168 /* UA.A..AU */
01169 {{ 550, 550, 550, 550, 550}, { 550, 390, 370, 310, 550}, { 550, 360, 320, 310, 550}, { 550, 250, 210,
     190, 550}, { 550, 550, 550, 550, 550}},
01170 /* UA.C..AU */
01171 {{ 550, 550, 550, 550, 550},{ 550, 380, 370, 550, 370},{ 550, 370, 400, 550, 370},{ 550, 550, 550,
```

```
550, 550}, { 550, 400, 340, 550, 370}},
01172 /* UA.G..AU */
370, 550}, { 550, 550, 550, 550, 550}},
550, 550}, { 550, 550, 320, 550, 270}}
01176 },
01177 {
01178 /* UA.@..?? */
550, 550}, { 550, 550, 550, 550, 550}},
01180 /* UA.A..?? */
550, 550}, { 550, 550, 550, 550, 550}},
01182 /* UA.C..?? */
01184 /* UA.G..?? */
550, 550}, { 550, 550, 550, 550, 550}},
01186 /* UA.U..?? */
550, 550},{ 550, 550, 550, 550, 550}}
01188 }
01189 },
01190 { /* noPair */ {{{0}}}},
01191
01192 /* ??.@..GC */
550, 550}, { 550, 550, 550, 550, 550}},
01194 /* ??.A..GC */
550, 550},{ 550, 550, 550, 550, 550}},
550, 550}, { 550, 550, 550, 550, 550}},
01198 /* ??.G..GC */
550, 550}, { 550, 550, 550, 550, 550}},
01200 /* ??.U..GC */
550, 550}, { 550, 550, 550, 550, 550}}
01202 },
01203 {
01204 /* ??.@..CG */
550, 550}, { 550, 550, 550, 550, 550}},
01206 /* ??.A..CG */
550, 550}, { 550, 550, 550, 550, 550}},
01208 /* ??.C..CG */
550, 550},{ 550, 550, 550, 550, 550},
01210 /* ??.G..CG */
550, 550}, { 550, 550, 550, 550, 550}},
01212 /* ??.U..CG */
550, 550},{ 550, 550, 550, 550, 550}}
01214 },
01215 {
01216 /* ??.@..UG */
550, 550}, { 550, 550, 550, 550, 550}},
01218 /* ??.A..UG */
01220 /* ??.C..UG */
550, 550},{ 550, 550, 550, 550, 550}},
01222 /* ??.G..UG */
01224 /* ??.U..UG */
550, 550}, { 550, 550, 550, 550, 550}}
01226 },
01227
01228 /* ??.@..GU */
550, 550}, { 550, 550, 550, 550, 550}},
01230 /* ??.A..GU */
550, 550},{ 550, 550, 550, 550, 550}},
01232 /* ??.C..GU */
```

```
550, 550}, { 550, 550, 550, 550, 550}},
550, 550},{ 550, 550, 550, 550, 550}},
01236 /* ??.U..GU */
550, 550}, { 550, 550, 550, 550, 550}
01238 },
01239 {
01240 /* ??.@..UA */
550, 550}, { 550, 550, 550, 550, 550}},
01242 /* ??.A..UA */
550, 550}, { 550, 550, 550, 550, 550}},
01246 /* ??.G..UA */
550, 550}, { 550, 550, 550, 550, 550}},
01248 /* ??.U..UA */
550, 550},{ 550, 550, 550, 550, 550}}
01250 }.
01251 {
01252 /* ??.@..AU */
550, 550}, { 550, 550, 550, 550, 550}},
01254 /* ??.A..AU */
550, 550}, { 550, 550, 550, 550, 550}},
01256 /* ??.C..AU */
550, 550},{ 550, 550, 550, 550, 550}},
01258 /* ??.G..AU */
550, 550}, { 550, 550, 550, 550, 550}},
01260 /* ??.U..AU */
550, 550},{ 550, 550, 550, 550, 550}}
01262 1.
01263 {
01264 /* ??.@..?? */
550, 550}, { 550, 550, 550, 550, 550}},
01266 /* ??.A..?? */
01268 /* ??.C..?? */
550, 550}, { 550, 550, 550, 550, 550}},
01270 /* ??.G..?? */
550, 550},{ 550, 550, 550, 550, 550}},
01272 /* ??.U..?? */
01274 }
01275
01276 1:
01277
01278 PRIVATE int int21_H_184[NBPAIRS+1][NBPAIRS+1][5][5][5] =
01279 { /* noPair */ {{{{0}}}}},
01280 { /* noPair */ {{{{0}}}},
01281 {
01282 /* CG.@..CG */
01283 {{
                                                 O},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
       01284 /* CG.A..CG */
01285 \ \{ \{ \ \mathsf{DEF}, -1029, \ -949, -1029, -1029\}, \{ -1079, -2058, -1978, -2058, -2058\}, \{ \ -569, -1548, -1468, -1548, -1548\}, \{ \ -569, -1548, -1468, -1548, -1548\}, \{ \ -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -1049, -10
         -989,-1968,-1888,-1968,-1968},{ -859,-1838,-1758,-1838,-1838}},
01286 /* CG.C..CG */
01287 {{ DEF, -519, -449, -519, -669}, { -999, -1468, -1398, -1468, -1618}, { -499, -968, -898, -968, -1118}, {
         -989,-1458,-1388,-1458,-1608},{ -789,-1258,-1188,-1258,-1408}},
01288 /* CG.G..CG */
                     -939, -939, -939, (-1079, -1968, -1968, -1968, (-569, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -1458, -14
01289 {{ DEF,
         -989,-1878,-1878,-1878,-1878},{ -859,-1748,-1748,-1748,-1748}},
01290 /* CG.U..CG */
1291 {{ DEF, -809, -739, -809, -859}, {-1079, -1838, -1768, -1838, -1888}, { -719, -1478, -1408, -1478, -1528}, { -989, -1748, -1678, -1748, -1798}, { -909, -1668, -1598, -1668, -1718}}
01292 }.
01293 {
01294 /* CG.@..GC */
O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
01296 /* CG.A..GC */
```

```
01297 {{ DEF,-1029, -949,-1029,-1029},{ -569,-1548,-1468,-1548,-1548},{ -769,-1748,-1668,-1748,-1748},{
                           759,-1738,-1658,-1738,-1738},{-549,-1528,-1448,-1528,-1528}},
 01298 /* CG.C..GC */
01299 {{ DEF, -519, -449, -519, -669},{ -929,-1398,-1328,-1398,-1548},{ -359, -828, -758, -828, -978},{ -789,-1258,-1188,-1258,-1408},{ -549,-1018, -948,-1018,-1168}},
01300 /* CG.G..GC */
01301 {{ DEF, -939, -939, -939}, { -609, -1498, -1498, -1498}, { -359, -1248, -1248, -1248}, { -669, -1558, -1558, -1558, -1558}, { -549, -1438, -1438, -1438}},
01302 /* CG.U..GC */
01303 {{ DEF, -809, -739, -809, -859}, { -929, -1688, -1618, -1688, -1738}, { -439, -1198, -1128, -1198, -1248}, { -789, -1548, -1478, -1548, -1598}, { -619, -1378, -1308, -1378, -1428}}
 01304 },
01305 {
 01306 /* CG.@..GU */
                                    Ο,
 01307 {{
                                                          0,
                                                                                       0,
                                                                                                            Ο,
                                                                                                                               O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
                     01308 /* CG.A..GU */
                                   DEF, -1029, -949, -1029, -1029}, { -479, -1458, -1378, -1458, -1458}, { -309, -1288, -1208, -1288, -1288}, {
01309 {{
                       -389, -1368, -1288, -1368, -1368}, { -379, -1358, -1278, -1358, -1358}},
 01310 /* CG.C..GU */
01311 \ \{ \{ \ DEF, \ -519, \ -449, \ -519, \ -669 \}, \{ \ -649, -1118, -1048, -1118, -1268 \}, \{ \ -289, \ -758, \ -688, \ -758, \ -908 \}, \{ \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \ -849, \
                       -739,-1208,-1138,-1208,-1358},{ -379, -848, -778, -848, -998}},
01312 /* CG.G..GU */
01313 {{ DEF, -939, -939, -939}, { -649, -1538, -1538, -1538, -1538}, { -289, -1178, -1178, -1178, -1178}, { -739, -1628, -1628, -1628, -1628, 1268, -1268, -1268, -1268},
 01314 /* CG.U..GU */
01315 \ \{ \{ \ \text{DEF, } -809, \ -739, \ -809, \ -859 \}, \{ \ -649, -1408, -1338, -1408, -1458 \}, \{ \ -289, -1048, \ -978, -1048, -1098 \}, \{ \ -849, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -1408, -
                       -739, -1498, -1428, -1498, -1548}, { -379, -1138, -1068, -1138, -1188}}
 01316 },
01317 {
 01318 /* CG.@..UG */
                     01319 {{
                                                                                                                                  O},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
 01320 /* CG.A..UG */
01321 {{ DEF,-1029, -949,-1029,-1029},{ -769,-1748,-1668,-1748,-1748},{ -529,-1508,-1428,-1508,-1508},{ -709,-1688,-1608,-1688,-1688},{ -599,-1578,-1498,-1578,-1578}},
01322 /* CG.C..UG */
01323 {{ DEF, -519, -449, -519, -669}, { -839, -1308, -1238, -1308, -1458}, { -529, -998, -928, -998, -1148}, {
                       -859, -1328, -1258, -1328, -1478}, \{-489, -958, -888, -958, -1108}},
 01324 /* CG.G..UG */
01325 \ \{ \{ \ \text{DEF, } -939, \ -939, \ -939, \ -939 \}, \{ -1009, -1898, -1898, -1898, -1898 \}, \{ \ -409, -1298, -1298, -1298, -1298 \}, \{ -1009, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1298, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -1288, -128
                       -969,-1858,-1858,-1858,-1858},{ -599,-1488,-1488,-1488,-1488}},
 01326 /* CG.U..UG */
                                    DEF, -809, -739, -809, -859},{ -859,-1618,-1548,-1618,-1668},{ -529,-1288,-1218,-1288,-1338},{
01327 {{
                          -859, -1618, -1548, -1618, -1668}, { -409, -1168, -1098, -1168, -1218}}
 01328 },
 01329 {
 01330 /* CG.@..AU */
                                                                                       0.
                                                                                                                                O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
01331 {{
                                     DEF.
 01332 /* CG.A..AU */
 01333 \ \{ \{ \ \mathsf{DEF}, -1029, \ -949, -1029, -1029 \}, \{ \ -479, -1458, -1378, -1458, -1458 \}, \{ \ -309, -1288, -1208, -1288, -1288 \}, \{ \ -1479, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -1488, -14
                       -389, -1368, -1288, -1368, -1368}, { -379, -1358, -1278, -1358, -1358}},
01334 /* CG.C..AU */
01335 {{ DEF, -519, -449, -519, -669}, { -649, -1118, -1048, -1118, -1268}, { -289, -758, -688, -758, -908}, { -739, -1208, -1138, -1208, -1358}, { -379, -848, -778, -848, -998}},
 01336 /* CG.G..AU */
01337 \ \{ \{ \ \mathsf{DEF}, \ -939, \ -939, \ -939, \ -939 \}, \{ \ -649, -1538, -1538, -1538\}, \{ \ -289, -1178, -1178, -1178, -1178 \}, \{ \ -289, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1178, -1
                       -739,-1628,-1628,-1628,-1628},{ -379,-1268,-1268,-1268,-1268}},
01338 /* CG.U..AU */
01339 {{ DEF, -809, -739, -809, -859}, { -649,-1408,-1338,-1408,-1458}, { -289,-1048, -978,-1048,-1098}, {
                       -739,-1498,-1428,-1498,-1548}, { -379,-1138,-1068,-1138,-1188}}
 01340 }.
 01341 {
 01342 /* CG.@..UA */
                                    0,
DEF,
                                                          0, 0, 0, 0},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF}},
01343 {{
                    DEF,
01344 /* CG.A..UA */
01345 {{ DEF, 1029, -949, -1029, -1029}, { -449, -1428, -1348, -1428, -1428}, { -479, -1458, -1378, -1458, -1458}, {
                           429,-1408,-1328,-1408,-1408},{ -329,-1308,-1228,-1308,-1308}},
01346 /* CG.C..UA */
-729, -1198, -1128, -1198, -1348, { -189, -658, -588, -658, -808},
01348 /* CG.G..UA */
                                   DEF, -939, -939, -939, -939), { -939,-1828,-1828,-1828,-1828}, { -249,-1138,-1138,-1138,-1138}, {
01349 {{
                         -939,-1828,-1828,-1828,-1828,, { -329,-1218,-1218,-1218,-1218}},
 01350 /* CG.U..UA */
01351\ \{\{\ \mathsf{DEF},\ -809,\ -739,\ -809,\ -859\}, \{\ -639, -1398, -1328, -1398, -1448\}, \{\ -229,\ -988,\ -918,\ -988, -1038\}, \{\ -809,\ -988,\ -1038\}, \{\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -809,\ -8
                         -729,-1488,-1418,-1488,-1538},{ -190, -949, -879, -949, -999}}
01352 }.
 01353 {
 01354 /* CG.@.. @ */
 01356 /* CG.A.. @ */
01357 {{ -100,-1079, -999,-1079,-1079},{ -100,-1079, -999,-1079,-1079},{ -100,-1079, -999,-1079,-1079},{ -100,-1079, -999,-1079,-1079},{ -100,-1079, -999,-1079,-1079},
```

```
01358 /* CG.C.. @
01359 \ \{ \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -499, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -569, -719 \}, \{ -100, -719, -719 \}, \{ -100, -719, -719 \}, \{ -100, -719, -719 \}, \{ -100, -719
                            -100, -569, -499, -569, -719}, { -100, -569, -499, -569, -719}},
01360 /* CG.G.. @ */
01361 {{ -100, -989, -989, -989, -989}, { -100, -989, -989, -989, -989}, { -100, -989, -989, -989, -989}, { -100, -989, -989, -989, -989, -989}, { -100, -989, -989, -989, -989, -989}},
 01362 /* CG.U.. @ */
                                                                -859, -789, -859, -909\}, \{-100, -859, -789, -859, -909\}, \{-100, -859, -789, -859, -909\}, \{-100, -859, -859, -859, -909\}, \{-100, -859, -859, -859, -909\}, \{-100, -859, -859, -859, -909\}, \{-100, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859
 01363 {{ -100,
                           -100, -859, -789, -859, -909}, { -100, -859, -789, -859, -909}}
 01364 }
 01365 }.
 01366 { /* noPair */ {{{0}}}},
 01367 {
 01368 /* GC.@..CG */
 01369 {{
                                            Ο,
                                                                      0,
                                                                                                                                Ο,
                                                                                                                                                        O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
                        01370 /* GC.A..CG */
                                         DEF, -519, -879, -559, -879}, {-1079, -1548, -1908, -1588, -1908}, { -569, -1038, -1398, -1078, -1398}, {
01371 {{
                           -989, -1458, -1818, -1498, -1818}, { -859, -1328, -1688, -1368, -1688}},
 01372 /* GC.C..CG */
1373 {{ DEF, -719, -309, -309, -389}, { -999, -1668, -1258, -1258, -1338}, { -499, -1168, -758, -758, -838}, { -989, -1658, -1248, -1248, -1328}, { -789, -1458, -1048, -1048, -1128}},
01374 /* GC.G..CG */
01375 {{ DEF, -709, -739, -619, -739},{-1079,-1738,-1768,-1648,-1768},{ -569,-1228,-1258,-1138,-1258},{ -989,-1648,-1678,-1558,-1678},{ -859,-1518,-1548,-1428,-1548}},
 01376 /* GC.U..CG */
 01377\ \{\{\ \text{DEF, } -499,\ -499,\ -499,\ -569\}, \{-1079, -1528, -1528, -1528, -1598\}, \{\ -719, -1168, -1168, -1168, -1238\}, \{\ -719, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1168, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -1688, -
                           -989, -1438, -1438, -1438, -1508, { -909, -1358, -1358, -1358, -1428}
 01378 },
01379 {
 01380 /* GC.@..GC */
                         01381 {{
                                                                                                                                                          O},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
 01382 /* GC.A..GC */
01383 {{ DEF, -519, -879, -559, -879}, { -569, -1038, -1398, -1078, -1398}, { -769, -1238, -1598, -1278, -1598}, { -759, -1228, -1588, -1268, -1588}, { -549, -1018, -1378, -1058, -1378}},
01384 /* GC.C..GC */
01385 {{ DEF, -719, -309, -309, -389},{ -929,-1598,-1188,-1188,-1268},{ -359,-1028, -618, -618, -698},{
                               -789,-1458,-1048,-1048,-1128},{ -549,-1218, -808, -808, -888}},
01386 /* GC.G..GC */
01387\ \{\{\ \text{DEF, } -709,\ -739,\ -619,\ -739\}, \{\ -609, -1268, -1298, -1178, -1298\}, \{\ -359, -1018, -1048,\ -928, -1048\}, \{\ -369, -1018, -1048,\ -928, -1048\}, \{\ -369, -1018, -1048,\ -928, -1048\}, \{\ -369, -1018, -1048,\ -928, -1048\}, \{\ -369, -1018, -1048,\ -928, -1048\}, \{\ -369, -1018, -1048,\ -928, -1048\}, \{\ -369, -1018, -1048,\ -928, -1048\}, \{\ -369, -1018, -1048,\ -928, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1018, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -1048\}, \{\ -369, -
                           -669, -1328, -1358, -1238, -1358, { -549, -1208, -1238, -1118, -1238},
 01388 /* GC.U..GC */
                                          DEF, -499, -499, -499, -569},{ -929,-1378,-1378,-1378,-1448},{ -439, -888, -888, -888, -958},{
01389 {{
                               -789,-1238,-1238,-1238,-1308},{ -619,-1068,-1068,-1068,-1138}}
 01390 },
01391 {
 01392 /* GC.@..GU */
                                                                                                     0.
                                                                                                                                                       O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
01393 {{
                                            0, 0, 0, 0, 0},{ DEF, DEF, DEF, DEF, DE
DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF}},
                        DEF.
 01394 /* GC.A..GU */
 01395 \ \{ \{ \ \text{DEF, } -519, \ -879, \ -559, \ -879 \}, \{ \ -479, \ -948, -1308, \ -988, -1308 \}, \{ \ -309, \ -778, -1138, \ -818, -1138 \}, \{ \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -818, -1138, \ -818, -1138, \ -818, -1138, \ -818, -1138, \ -818,
                           -389, -858, -1218, -898, -1218}, { -379, -848, -1208, -888, -1208}},
01396 /* GC.C..GU */
01397 {{ DEF, -719, -309, -309, -389}, { -649, -1318, -908, -908, -988}, { -289, -958, -548, -548, -628}, {
                            -739,-1408, -998, -998,-1078}, { -379,-1048, -638, -638, -718}},
 01398 /* GC.G..GU */
                                                               -709, -739, -619, -739}, { -649, -1308, -1338, -1218, -1338}, { -289, -948, -978, -858, -978}, {
01399 {{ DEF.
                            -739,-1398,-1428,-1308,-1428},{ -379,-1038,-1068, -948,-1068}},
01400 /* GC.U..GU */
01401 {{ DEF, -499, -499, -499, -569},{ -649,-1098,-1098,-1098,-1168},{ -289, -738, -738, -738, -808},{
                            -739,-1188,-1188,-1188,-1258},{ -379, -828, -828, -828, -898}}
 01402 }.
 01403 {
 01404 /* GC.@..UG */
                                          0,
, DEF,
                                                                  0, 0, 0, 0},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
, DEF, DEF, DEF}, DEF, DEF, DEF, DEF}},
01405 {{
                        DEF.
01406 /* GC.A..UG */
01407 {{ DEF, -519, -879, -559, -879}, { -769, -1238, -1598, -1278, -1598}, { -529, -998, -1358, -1038, -1358}, {
                               709,-1178,-1538,-1218,-1538},{ -599,-1068,-1428,-1108,-1428}},
01408 /* GC.C..UG */
01409 \ \{ \{ \ \ \text{DEF}, \ -719, \ -309, \ -309, \ -389 \}, \{ \ -839, -1508, -1098, -1098, -1178 \}, \{ \ -529, -1198, \ -788, \ -788, \ -868 \}, \{ \ -839, -1508, -1098, -1098, -1178 \}, \{ \ -529, -1198, \ -788, \ -788, \ -888, -888 \}, \{ \ -839, -1508, -1098, -1098, -1178 \}, \{ \ -529, -1198, \ -788, \ -788, \ -888, -888 \}, \{ \ -839, -1508, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, -1098, 
                          -859,-1528,-1118,-1118,-1198},{-489,-1158,-748,-748,-828}},
01410 /* GC.G..UG */
                                         DEF, -709, -739, -619, -739}, {-1009, -1668, -1698, -1578, -1698}, { -409, -1068, -1098, -978, -1098}, {
01411 {{
                             -969,-1628,-1658,-1538,-1658},{ -599,-1258,-1288,-1168,-1288}},
 01412 /* GC.U..UG */
01413 \ \{ \{ \text{DEF, } -499, \ -499, \ -499, \ -569 \}, \{ \ -859, -1308, -1308, -1378 \}, \{ \ -529, \ -978, \ -978, \ -978, -1048 \}, \{ \ -859, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -1308, -
                            -859,-1308,-1308,-1308,-1378},{ -409, -858, -858, -858, -928}}
01414 }.
 01415 {
 01416 /* GC.@..AU */
                        01417 {{
01418 /* GC.A..AU */
01419 {{ DEF, -519, -879, -559, -879}, { -479, -948, -1308, -988, -1308}, { -309, -778, -1138, -818, -1138}, { -389, -858, -1218, -898, -1218}, { -379, -848, -1208, -888, -1208}},
```

```
01420 /* GC.C..AU */
01421 \ \{ \{ \ DEF, \ -719, \ -309, \ -309, \ -389 \}, \{ \ -649, -1318, \ -908, \ -908, \ -988 \}, \{ \ -289, \ -958, \ -548, \ -548, \ -628 \}, \{ \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89
                               -739,-1408, -998, -998,-1078}, { -379,-1048, -638, -638, -718}},
01422 /* GC.G..AU */
01423 {{ DEF, -709, -739, -619, -739}, { -649, -1308, -1338, -1218, -1338}, { -289, -948, -978, -858, -978}, { -739, -1398, -1428, -1308, -1428}, { -379, -1038, -1068, -948, -1068}},
 01424 /* GC.U..AU */
                                                                      -499, -499, -499, -569}, { -649, -1098, -1098, -1098, -1168}, { -289, -738, -738, -738, -808}, {
 01425 {{ DEF,
                               -739,-1188,-1188,-1188,-1258},{ -379, -828, -828, -828, -898}}
 01426 },
01427 {
01428 /* GC.@..UA */
                          01429 {{
01431 {{ DEF, -519, -879, -559, -879}, { -449, -918,-1278, -958,-1278}, { -479, -948,-1308, -988,-1308}, { -429, -898,-1258, -938,-1258}, { -329, -798,-1158, -838,-1158}}, 01432 /* GC.C..UA */
 01430 /* GC.A..UA */
01433 \ \{ \{ \ \mathsf{DEF}, \ -719, \ -309, \ -309, \ -389 \}, \{ \ -679, -1348, \ -938, \ -938, -1018 \}, \{ \ -559, -1228, \ -818, \ -818, \ -898 \}, \{ \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -818, \ -81
                                   729,-1398, -988, -988,-1068}, { -189, -858, -448, -448, -528}},
 01434 /* GC.G..UA */
01435\ \{\{\ \text{DEF, } -709,\ -739,\ -619,\ -739\}, \{\ -939, -1598, -1628, -1508, -1628\}, \{\ -249,\ -908,\ -938,\ -818,\ -938\}, \{\ -938, -938,\ -938,\ -938,\ -938\}, \{\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938\}, \{\ -939,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -938,\ -
                             -939,-1598,-1628,-1508,-1628},{ -329, -988,-1018, -898,-1018}},
 01436 /* GC.U..UA */
                                               DEF, -499, -499, -499, -569}, { -639, -1088, -1088, -1158}, { -229, -678, -678, -678, -748}, {
01437 {{
                                 729,-1178,-1178,-1178,-1248},{-190,-639,-639,-639,-709}}
 01438 },
01439 {
 01440 /* GC.@.. @ */
DEF, DEF, DEF, DEF, DEF}, { DEF, DEF, DEF, DEF, DEF}},
 01442 /* GC.A.. @ */
 01443 \ \{ \{ -100, \ -569, \ -929, \ -609, \ -929 \}, \{ \ -100, \ -569, \ -929, \ -609, \ -929 \}, \{ \ -100, \ -569, \ -929, \ -609, \ -929 \}, \{ \ -100, \ -569, \ -929, \ -609, \ -929 \}, \{ \ -100, \ -569, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -609, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ -929, \ 
                               -100, -569, -929, -609, -929}, { -100, -569, -929, -609, -929}},
01444 /* GC.C.. @ */
01445 {{ -100, -769, -359, -359, -439}, { -100, -769, -359, -359, -439}, { -100, -769, -359, -359, -359, -439}, {
                               -100, -769, -359, -359, -439}, { -100, -769, -359, -359, -439}},
 01446 /* GC.G.. @ */
01447 \ \{ \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -669, -789 \}, \{ -100, -759, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, -789, 
                               -100, -759, -789, -669, -789}, { -100, -759, -789, -669, -789}},
01448 /* GC.U.. @ */
01449 \ \{ \{ -100, \ -549, \ -549, \ -549, \ -619 \}, \{ \ -100, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -619 \}, \{ \ -100, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ -549, \ 
                             -100, -549, -549, -549, -619}, { -100, -549, -549, -549, -619}}
 01451 },
 01452 { /* noPair */ {{{0}}}},
 01453 {
 01454 /* GU.@..CG */
                         01455 {{
 01456 /* GU.A..CG */
01457 \ \{ \{ \ \text{DEF, } -429, \ -599, \ -599, \ -599 \}, \{ -1079, -1458, -1628, -1628, -1628 \}, \{ \ -569, \ -948, -1118, -1118, -1118 \}, \{ \ -1048, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -1118, -
                              -989,-1368,-1538,-1538,-1538},{ -859,-1238,-1408,-1408,-1408}},
01458 /* GU.C..CG */
01459 {{ DEF, -259, -239, -239, -239}, { -999, -1208, -1188, -1188, -1188}, { -499, -708, -688, -688, -688}, { -989, -1198, -1178, -1178, -1178, -789, -998, -978, -978, -978},
 01460 /* GU.G..CG */
01461 \ \{ \{ \ \mathsf{DEF}, \ -339, \ -689, \ -689, \ -689\}, \{ -1079, -1368, -1718, -1718, -1718\}, \{ \ -569, \ -858, -1208, -1208, -1208\}, \{ \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -869, \ -86
                               -989,-1278,-1628,-1628,-1628},{-859,-1148,-1498,-1498,-1498}},
01462 /* GU.U..CG */
1463 {{ DEF, -329, -329, -329, -329}, (-1079, -1358, -1358, -1358, -1358), { -719, -998, -998, -998, -998}, { -989, -1268, -1268, -1268, -1268, +1268, -1268, -1188, -1188, -1188, -1188, -1188}
 01464 },
 01465 {
 01466 /* GU.@..GC */
01468 /* GU.A..GC */
01469 {{ DEF, -429, -599, -599, -599}, { -569, -948, -1118, -1118, -1118}, { -769, -1148, -1318, -1318, -1318}, {
                                   759,-1138,-1308,-1308,-1308},{ -549, -928,-1098,-1098,-1098}},
01470 /* GU.C..GC */
01471 {{ DEF, -259, -239, -239, -239},{ -929,-1138,-1118,-1118,-1118},{ -359, -568, -548, -548, -548},{
-789, -998, -978, -978, -978}, { -549, -758, -738, -738, -738}}, 01472 /* GU.G..GC */
01473 {{
                                             DEF, -339, -689, -689, -689}, { -609, -898, -1248, -1248, -1248}, { -359, -648, -998, -998, -998}, {
                               -669, -958, -1308, -1308, -1308}, \{-549, -838, -1188, -1188, -1188},
 01474 /* GU.U..GC */
01475 {{ DEF, -329, -329, -329, -329},{ -929,-1208,-1208,-1208,-1208},{ -439, -718, -718, -718, -718},{ -789,-1068,-1068,-1068,-1068},{ -619, -898, -898, -898, -898}}
 01476 }.
01477 {
 01478 /* GU.@..GU */
 01480 /* GU.A..GU */
01481 {{ DEF, -429, -599, -599, -599}, { -479, -858, -1028, -1028, -1028}, { -309, -688, -858, -858, -858}, {
-389, -768, -938, -938, -938, -379, -758, -928, -928, -928},
```

```
01482 /* GU.C..GU
 01483 \ \{ \{ \ \mathsf{DEF}, \ -259, \ -239, \ -239, \ -239\}, \{ \ -649, \ -858, \ -838, \ -838\}, \{ \ -289, \ -498, \ -478, \ -478, \ -478\}, \{ \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -84
                                            -739, -948, -928, -928, -928}, { -379, -588, -568, -568, -568}},
  01484 /* GU.G..GU */
01485 {{ DEF, -339, -689, -689, -689}, { -649, -938, -1288, -1288, -1288}, { -289, -578, -928, -928, -928}, { -739, -1028, -1378, -1378, -1378, -379, -668, -1018, -1018, -1018}},
  01486 /* GU.U..GU */
                                                                                                     -329, \ -329, \ -329, \ -329\}, \{\ -649, \ -928, \ -928, \ -928, \ -928\}, \{\ -289, \ -568, \ -568, \ -568\}, \{\ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -8
  01487 {{ DEF,
                                           -739, -1018, -1018, -1018, -1018, { -379, -658, -658, -658, -658}
  01488 },
 01489 {
  01490 /* GU.@..UG */
                                       01491 {{
  01492 /* GU.A..UG */
 01493\ \{\{\ \ \mathsf{DEF},\ -429,\ -599,\ -599\}, \{\ -769, -1148, -1318, -1318\}, \{\ -529,\ -908, -1078, -1078, -1078\}, \{\ -769, -1148, -1318\}, \{\ -769, -1148, -1318\}, \{\ -769, -1148, -1318\}, \{\ -769, -1148, -1318\}, \{\ -769, -1148, -1318\}, \{\ -769, -1078, -1078\}, \{\ -769, -1148, -1318\}, \{\ -769, -1148, -1318\}, \{\ -769, -1078, -1078, -1078\}, \{\ -769, -1148, -1318\}, \{\ -769, -1148, -1318\}, \{\ -769, -1078, -1078, -1078, -1078\}, \{\ -769, -1148, -1318\}, \{\ -769, -1148, -1318\}, \{\ -769, -1078, -1078, -1078, -1078\}, \{\ -769, -1148, -1318, -1318\}, \{\ -769, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078, -1078,
                                            -709, -1088, -1258, -1258, -1258}, { -599, -978, -1148, -1148, -1148}},
 01494 /* GU.C..UG */
 01495 \ \{ \{ \ \mathsf{DEF}, \ -259, \ -239, \ -239, \ -239\}, \{ \ -839, -1048, -1028, -1028, -1028\}, \{ \ -529, \ -738, \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ -718, \ -718\}, \{ \ 
                                            -859, -1068, -1048, -1048, -1048, \{-489, -698, -678, -678, -678},
  01496 /* GU.G..UG */
 01497\ \{\{\ \mathsf{DEF},\ -339,\ -689,\ -689,\ -689\},\{-1009,-1298,-1648,-1648,-1648\},\{\ -409,\ -698,-1048,-1048,-1048\},\{\ -409,\ -698,-1048,-1048\},\{\ -409,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689\},\{-1009,-1298,-1648,-1648\},\{\ -409,\ -698,-1048,-1048\},\{\ -409,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -689,\ -68
                                         -969,-1258,-1608,-1608,-1608},{ -599, -888,-1238,-1238,-1238}},
  01498 /* GU.U..UG */
                                                                   DEF, -329, -329, -329, -329}, { -859, -1138, -1138, -1138}, { -529, -808, -808, -808, -808}, {
 01499 {{
                                            -859,-1138,-1138,-1138,,-1138},{-409,-688,-688,-688,-688}}
  01500 },
  01501 {
  01502 /* GU.@..AU */
01504 /* GU.A..AU */
  01505 \ \{ \{ \ \text{DEF}, \ -429, \ -599, \ -599, \ -599 \}, \{ \ -479, \ -858, -1028, -1028, -1028 \}, \{ \ -309, \ -688, \ -858, \ -858, \ -858 \}, \{ \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -85
                                             -389, -768, -938, -938, -938}, { -379, -758, -928, -928, -928}},
 01506 /* GU.C..AU */
 01507 \ \{ \{ \ \text{DEF}, \ -259, \ -239, \ -239, \ -239 \}, \{ \ -649, \ -858, \ -838, \ -838, \ -838 \}, \{ \ -289, \ -498, \ -478, \ -478, \ -478 \}, \{ \ -89, \ -498, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -
                                            -739, -948, -928, -928, -928<sub>}</sub>, { -379, -588, -568, -568<sub>}</sub>,
  01508 /* GU.G..AU */
  01509 \ \{ \{ \ \text{DEF, } -339, \ -689, \ -689, \ -689\}, \{ \ -649, \ -938, -1288, -1288, -1288\}, \{ \ -289, \ -578, \ -928, \ -928, \ -928\}, \{ \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \
                                            -739,-1028,-1378,-1378,-1378},{ -379, -668,-1018,-1018,-1018}},
  01510 /* GU.U..AU */
 01511 {{ DEF, -329, -329, -329, -329},{ -649, -928, -928, -928, -928},{ -289, -568, -568, -568, -568},{
                                           -739, -1018, -1018, -1018, -1018}, { -379, -658, -658, -658, -658}}
  01512 },
  01513 {
  01514 /* GU.@..UA */
O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
 01516 /* GU.A..UA */
 01517\ \{\{\ DEF,\ -429,\ -599,\ -599,\ -599\}, \{\ -449,\ -828,\ -998,\ -998,\ -998\}, \{\ -479,\ -858, -1028, -1028, -1028\}, \{\ -479,\ -858, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -479,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, \{\ -478,\ -878, -1028, -1028\}, 
                                                  429, -808, -978, -978, -978}, { -329, -708, -878, -878, -878}},
  01518 /* GU.C..UA */
 01519 {{ DEF, -259, -239, -239, -239}, { -679, -888, -868, -868, -868}, { -559, -768, -748, -748, -748}, {
-729, -938, -918, -918, -918}, { -189, -398, -378, -378, -378}}, 01520 /* GU.G..UA*/
                                                                  DEF, -339, -689, -689, -689}, { -939, -1228, -1578, -1578, -1578}, { -249, -538, -888, -888, -888}, {
 01521 {{
                                            -939,-1228,-1578,-1578,-1578},{ -329, -618, -968, -968, -968}},
  01522 /* GU.U..UA */
 01523 \ \{ \{ \ \text{DEF, } -329, \ -329, \ -329, \ -329\}, \{ \ -639, \ -918, \ -918, \ -918\}, \{ \ -229, \ -508, \ -508, \ -508, \ -508\}, \{ \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839
                                           -729, -1008, -1008, -1008, -1008\}, \{-190, -469, -469, -469, -469\}
 01524 },
 01525 {
  01526 /* GU.@.. @ */
  01528 /* GU.A.. @ */
01529 {{ -100, -479, -649, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479, -649}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -100, -479}, { -10
  01530 /* GU.C.. @ */
 01531\ \{\{\ -100,\ -309,\ -289,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289,\ -289,\ -289\},\{\ -100,\ -309,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\ -289,\
                                              -100, -309, -289, -289, -289}, { -100, -309, -289, -289, -289}},
 01532 /* GU.G.. @ */
01533 {{ -100, -389, -739, -739, -739}, { -100, -389, -739, -739}, { -100, -389, -739, -739}, { -100, -389, -739, -739}, { -100, -389, -739, -739}, { -100, -389, -739, -739},
  01534 /* GU.U.. @ */
  01535 \ \{ \{ -100, \ -379, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379\}, \{ \ -100, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, \ -379, 
                                              -100, -379, -379, -379, -379}, { -100, -379, -379, -379, -379}
  01.536 }
 01.537 }.
  01538 { /* noPair */ {{{0}}}}.
  01539 {
  01540 /* UG.@..CG */
                                     O},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
  01541 {{
01542 /* UG.A..CG */
01543 {{ DEF, -719, -789, -959, -809}, {-1079, -1748, -1818, -1988, -1838}, { -569, -1238, -1308, -1478, -1328}, { -989, -1658, -1728, -1898, -1748}, { -859, -1528, -1598, -1768, -1618}},
```

```
01544 /* UG.C..CG */
01545 {{ DEF, -479, -479, -359, -479}, { -999, -1428, -1428, -1308, -1428}, { -499, -928, -928, -808, -928}, { -989, -1418, -1298, -1418}, { -789, -1218, -1218, -1298, -1218}},
 01546 /* UG.G..CG */
01547 {{ DEF, -659, -809, -919, -809}, {-1079, -1688, -1838, -1948, -1838}, { -569, -1178, -1328, -1438, -1328}, { -989, -1598, -1748, -1858, -1748}, { -859, -1468, -1618, -1728, -1618}},
 01548 /* UG.U..CG */
 01549 \ \{ \{ \ \text{DEF, } -549, \ -439, \ -549, \ -359 \}, \{ -1079, -1578, -1468, -1578, -1388 \}, \{ \ -719, -1218, -1108, -1218, -1028 \}, \{ -1079, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1108, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -1218, -121
                                 -989,-1488,-1378,-1488,-1298},{ -909,-1408,-1298,-1408,-1218}}
 01550 },
01551 {
01552 /* UG.@..GC */
                             01553 {{
 01554 /* UG.A..GC */
01555 {{ DEF, -719, -789, -959, -809}, { -569,-1238,-1308,-1478,-1328}, { -769,-1438,-1508,-1678,-1528}, { -759,-1428,-1498,-1668,-1518}, { -549,-1218,-1288,-1458,-1308}},
01556 /* UG.C..GC */
01557 \ \{ \{ \ \mathsf{DEF}, \ -479, \ -479, \ -359, \ -479 \}, \{ \ -929, -1358, -1358, -1358 \}, \{ \ -359, \ -788, \ -788, \ -668, \ -788 \}, \{ \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -788, \ -78
                                     789,-1218,-1218,-1098,-1218},{ -549, -978, -978, -858, -978}},
 01558 /* UG.G..GC */
01559 \ \{ \{ \ \text{DEF, } -659, \ -809, \ -919, \ -809 \}, \{ \ -609, -1218, -1368, -1478, -1368 \}, \{ \ -359, \ -968, -1118, -1228, -1118 \}, \{ \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ 
                                -669,-1278,-1428,-1538,-1428},{-549,-1158,-1308,-1418,-1308}},
 01560 /* UG.U..GC */
                                                  DEF, -549, -439, -549, -359}, { -929, -1428, -1318, -1428, -1238}, { -439, -938, -828, -938, -748}, {
01561 {{
                                    789,-1288,-1178,-1288,-1098},{-619,-1118,-1008,-1118,-928}}
 01562 },
 01563 {
 01564 /* UG.@..GU */
01566 /* UG.A..GU */
 01567 {{ DEF, -719, -789, -959, -809}, { -479,-1148,-1218,-1388,-1238}, { -309, -978,-1048,-1218,-1068}, {
                                  -389,-1058,-1128,-1298,-1148},{ -379,-1048,-1118,-1288,-1138}},
01568 /* UG.C..GU */
-739,-1168,-1168,-1048,-1168},{ -379, -808, -808, -688, -808}},
 01570 /* UG.G..GU */
01571 \ \{ \{ \ \text{DEF, } -659, \ -809, \ -919, \ -809 \}, \{ \ -649, -1258, -1408, -1518, -1408 \}, \{ \ -289, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048, -1158, -1048 \}, \{ \ -89, \ -898, -1048, -1158, -1048, -1158, -1048, -1158, -1048, -1158, -1048, -1158, -1048, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1588, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1588, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158, -1158,
                                 -739,-1348,-1498,-1608,-1498},{ -379, -988,-1138,-1248,-1138}},
01572 /* UG.U..GU */
01573 \ \{ \{ \ \text{DEF, } -549, \ -439, \ -549, \ -359 \}, \{ \ -649, -1148, -1038, -1148, \ -958 \}, \{ \ -289, \ -788, \ -678, \ -788, \ -598 \}, \{ \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89
                               -739, -1238, -1128, -1238, -1048}, { -379, -878, -768, -878, -688}}
 01574 },
 01575 {
 01576 /* UG.@..UG */
O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
01578 /* UG.A..UG */
01579 {{ DEF, -719, -789, -959, -809}, { -769, -1438, -1508, -1678, -1528}, { -529, -1198, -1268, -1438, -1288}, {
                                      709,-1378,-1448,-1618,-1468},{ -599,-1268,-1338,-1508,-1358}},
 01580 /* UG.C..UG */
01581 \ \{ \{ \ \text{DEF, } -479, \ -479, \ -359, \ -479 \}, \{ \ -839, -1268, -1268, -1148, -1268 \}, \{ \ -529, \ -958, \ -958, \ -838, \ -958 \}, \{ \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -958, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838, \ -838,
-859,-1288,-1288,-1168,-1288},{ -489, -918, -918, -798, -918}},
01582 /* UG.G..UG */
                                                  DEF, -659, -809, -919, -809}, {-1009, -1618, -1768, -1878, -1768}, { -409, -1018, -1168, -1278, -1168}, {
01583 {{
                                 -969, -1578, -1728, -1838, -1728}, { -599, -1208, -1358, -1468, -1358}},
 01584 /* UG.U..UG */
01585 {{ DEF, -549, -439, -549, -359}, { -859,-1358,-1248,-1358,-1168}, { -529,-1028, -918,-1028, -838}, { -859,-1358,-1248,-1358,-1168}, { -409, -908, -798, -908, -718}}
01586 }.
01587 {
 01588 /* UG.@..AU */
O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
01590 /* UG.A..AU */
01591 {{ DEF, -719, -789, -959, -809},{ -479,-1148,-1218,-1388,-1238},{ -309, -978,-1048,-1218,-1068},{ -389,-1058,-1128,-1298,-1148},{ -379,-1048,-1118,-1288,-1138}},
 01592 /* UG.C..AU */
01593 \ \{ \{ \ \mathsf{DEF}, \ -479, \ -479, \ -359, \ -479 \}, \{ \ -649, -1078, \ -1078, \ -958, -1078 \}, \{ \ -289, \ -718, \ -718, \ -598, \ -718 \}, \{ \ -89, \ -718, \ -89, \ -718, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, 
                                  739,-1168,-1168,-1048,-1168},{ -379, -808, -808, -688, -808}},
01594 /* UG.G..AU */
01595 {{ DEF, -659, -809, -919, -809}, { -649, -1258, -1408, -1518, -1408}, { -289, -898, -1048, -1158, -1048}, { -739, -1348, -1498, -1608, -1498}, { -379, -988, -1138, -1248, -1138}},
 01596 /* UG.U..AU */
 01597 \ \{ \{ \ \text{DEF, } -549, \ -439, \ -549, \ -359 \}, \{ \ -649, -1148, -1038, -1148, \ -958 \}, \{ \ -289, \ -788, \ -678, \ -788, \ -598 \}, \{ \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89
                                  -739,-1238,-1128,-1238,-1048},{ -379, -878, -768, -878, -688}}
 01598 },
 01599 {
 01600 /* UG.@..UA */
O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
 01602 /* UG.A..UA */
 01603 \ \{ \{ \ DEF, \ -719, \ -789, \ -959, \ -809 \}, \{ \ -449, -1118, -1188, -1358, -1208 \}, \{ \ -479, -1148, -1218, -1388, -1238 \}, \{ \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -809, \ -80
                                -429,-1098,-1168,-1338,-1188},{ -329, -998,-1068,-1238,-1088}},
 01604 /* UG.C..UA */
 01605 {{ DEF, -479, -479, -359, -479}, { -679, -1108, -1108, -988, -1108}, { -559, -988, -988, -868, -988}, {
```

```
-729,-1158,-1158,-1038,-1158},{ -189, -618, -618, -498, -618}},
01606 /* UG.G..UA */
01607 {{ DEF, -659, -809, -919, -809},{ -939,-1548,-1698,-1808,-1698},{ -249, -858,-1008,-1118,-1008},{
                                 -939,-1548,-1698,-1808,-1698},{ -329, -938,-1088,-1198,-1088}},
 01608 /* UG.U..UA */
                                                   DEF, -549, -439, -549, -359}, { -639, -1138, -1028, -1138, -948}, { -229, -728, -618, -728, -538}, {
01609 {{
                                       729,-1228,-1118,-1228,-1038},{-190,-689,-579,-689,-499}}
 01610 },
 01611 {
 01612 /* UG.@.. @ */
01614 /* UG.A.. @
 01615 \ \{ \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -839, -1009, -859 \}, \{ -100, -769, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859, -859,
                                  -100, -769, -839, -1009, -859}, { -100, -769, -839, -1009, -859}},
01616 /* UG.C.. @ */
01617 {{ -100, -529, -409, -529}, { -100, -529, -529, -409, -529}, { -100, -529, -529, -409, -529}, {
                                  -100, -529, -529, -409, -529}, { -100, -529, -529, -409, -529}},
 01618 /* UG.G.. @ */
01619\ \{\{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -709,\ -859\},\ \{\ -100,\ -859\},\ \{\ -100,\ -859\},\ \{\ -100,\ -859\},\ \{\ -100,\ -859\},\ \{\ -100,\ -859
                                   -100, -709, -859, -969, -859}, { -100, -709, -859, -969, -859}},
01620 /* UG.U.. @ */
01621 \ \{ \{ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -409 \}, \{ \ -100, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -599, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ -489, \ 
                                  -100, -599, -489, -599, -409}, { -100, -599, -489, -599, -409}}
 01623 },
 01624 { /* noPair */ {{{0}}}},
01625 {
 01626 /* AU.@..CG */
01627 {{ 0, 0, 0, 0, 0},{ DEF, DEF, DEF, DEF, DE
DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF}},
                                                                                                                                                               0, 0},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
 01628 /* AU.A..CG */
 01629 \ \{ \{ \ \text{DEF, } -429, \ -599, \ -599, \ -599\}, \{ -1079, -1458, -1628, -1628, -1628\}, \{ \ -569, \ -948, -1118, -1118, -1118\}, \{ \ -1048, -1118, -1118, -1118\}, \{ \ -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048, -1048,
                                  -989,-1368,-1538,-1538,-1538},{ -859,-1238,-1408,-1408,-1408}},
01630 /* AU.C..CG */
01631 \ \{ \{ \ \text{DEF, } -259, \ -239, \ -239, \ -239 \}, \{ \ -999, -1208, -1188, -1188, -1188 \}, \{ \ -499, \ -708, \ -688, \ -688, \ -688 \}, \{ \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888, \ -888,
                                  -989, -1198, -1178, -1178, -1178\}, \{-789, -998, -978, -978, -978\}\},
 01632 /* AU.G..CG */
01633 {{
                                                   DEF.
                                                                               -339, -689, -689, -689}, \{-1079, -1368, -1718, -1718, \{-1718\}, \{-569, -858, -1208, -1208, -1208, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-1208\}, \{-120
                                  -989,-1278,-1628,-1628,-1628},{ -859,-1148,-1498,-1498,-1498}},
01634 /* AU.U..CG */
01635 \ \{ \{ \ \mathsf{DEF}, \ -329, \ -329, \ -329, \ -329\}, \{ -1079, -1358, -1358, -1358, -1358\}, \{ \ -719, \ -998, \ -998, \ -998, \ -998\}, \{ -998, \ -998, \ -998, \ -998, \ -998\}, \{ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -998, \ -
                                 -989,-1268,-1268,-1268,-1268},{ -909,-1188,-1188,-1188,-1188}}
 01636 },
 01637 {
 01638 /* AU.@..GC */
O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
01640 /* AU.A..GC */
01641 \ \{ \{ \ DEF, -429, -599, -599, -599\}, \{ \ -569, -948, -1118, -1118, -1118\}, \{ \ -769, -1148, -1318, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1148, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -769, -1318\}, \{ \ -
                                       759,-1138,-1308,-1308,-1308},{ -549, -928,-1098,-1098,-1098}},
 01642 /* AU.C..GC */
01643 {{ DEF, -259, -239, -239, -239}, { -929, -1138, -1118, -1118}, { -359, -568, -548, -548, -548}, {
-789, -998, -978, -978, -978}, { -549, -758, -738, -738, -738}}, 01644 /* AU.G..GC */
                                                    DEF, -339, -689, -689, -689}, { -609, -898, -1248, -1248, -1248}, { -359, -648, -998, -998, -998}, {
01645 {{
                                  -669, -958, -1308, -1308, -1308}, { -549, -838, -1188, -1188, -1188}},
 01646 /* AU.U..GC */
 01647 \ \{ \{ \text{DEF, } -329, \ -329, \ -329, \ -329\}, \{ \ -929, -1208, -1208, -1208, -1208\}, \{ \ -439, \ -718, \ -718, \ -718, \ -718\}, \{ \ -718, \ -718, \ -718, \ -718, \ -718\}, \{ \ -718, \ -718, \ -718, \ -718, \ -718, \ -718\}, \{ \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718\}, \{ \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -718, \ -
                                 -789, -1068, -1068, -1068, -1068\}, \{-619, -898, -898, -898, -898\}
01648 },
01649 {
 01650 /* AU.@..GU */
O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
01652 /* AU.A..GU */
01653 {{ DEF, -429, -599, -599}, { -479, -858,-1028,-1028,-1028}, { -309, -688, -858, -858}, {
-389, -768, -938, -938, -938, { -379, -758, -928, -928, -928},
01654 /* AU.C..GU */
01655 {{
                                                   DEF, -259, -239, -239, -239}, { -649, -858, -838, -838, -838}, { -289, -498, -478, -478, -478}, {
                                    -739, -948, -928, -928, -928}, { -379, -588, -568, -568, -568}},
 01656 /* AU.G..GU */
01657 {{ DEF, -339, -689, -689, -689}, { -649, -938, -1288, -1288, -1288}, { -289, -578, -928, -928, -928}, { -739, -1028, -1378, -1378, -1378, -379, -668, -1018, -1018, -1018}},
 01658 /* AU.U..GU */
 01659 {{ DEF, -329, -329, -329, -329},{ -649, -928, -928, -928, -928},{ -289, -568, -568, -568, -568},{
                                   -739,-1018,-1018,-1018,-1018},{ -379, -658, -658, -658, -658}}
 01660 },
 01661 (
 01662 /* AU.@..UG */
O},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
 01664 /* AU.A..UG */
 01665 \ \{ \{ \ DEF, \ -429, \ -599, \ -599, \ -599 \}, \{ \ -769, -1148, -1318, -1318, -1318 \}, \{ \ -529, \ -908, -1078, -1078, -1078 \}, \{ \ -769, -1148, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -1318, -13
                                  -709, -1088, -1258, -1258, -1258\}, \{ \ -599, \ -978, -1148, -1148, -1148\}\},
 01666 /* AU.C..UG */
01667 {{ DEF, -259, -239, -239, -239},{ -839,-1048,-1028,-1028,-1028},{ -529, -738, -718, -718, -718},{
```

```
-859, -1068, -1048, -1048, -1048\}, \{-489, -698, -678, -678, -678\}
01668 /* AU.G..UG */
01669 {{ DEF, -339, -689, -689, -689}, {-1009, -1298, -1648, -1648, -1648}, { -409, -698, -1048, -1048, -1048}, {
                              -969, -1258, -1608, -1608, -1608}, { -599, -888, -1238, -1238, -1238}},
 01670 /* AU.U..UG */
                                                                           -329, -329, -329, -329}, \{-859, -1138, -1138, -1138}, \{-529, -808, -808, -808}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, \{-808\}, 
01671 {{
                                                  DEF.
                                   -859,-1138,-1138,-1138,-1138},{ -409, -688, -688, -688, -688}}
 01672 },
 01673 {
 01674 /* AU.@..AU */
                                                                                  0, 0, 0, 0},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
DEF, DEF, DEF},{ DEF, DEF, DEF, DEF}},
01675 {{
                                                  0,
, DEF,
                           DEF.
 01676 /* AU.A..AU */
 01677 \ \{ \{ \text{DEF, } -429, \ -599, \ -599, \ -599 \}, \{ \ -479, \ -858, -1028, -1028, -1028 \}, \{ \ -309, \ -688, \ -858, \ -858, \ -858 \}, \{ \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, \ -858, 
                                 -389, -768, -938, -938, -938}, { -379, -758, -928, -928, -928}},
01678 /* AU.C..AU */
01679 {{ DEF, -259, -239, -239, -239}, { -649, -858, -838, -838, -838}, { -289, -498, -478, -478, -478}, { -739, -948, -928, -928, -928, -588, -568, -568, -568},
 01680 /* AU.G..AU */
01681 {{ DEF, -339, -689, -689, -689}, { -649, -938, -1288, -1288, -1288}, { -289, -578, -928, -928, -928}, {
                                   -739,-1028,-1378,-1378,-1378},{ -379, -668,-1018,-1018,-1018}},
01682 /* AU.U..AU */
01683 \ \{ \{ \ \text{DEF}, \ -329, \ -329, \ -329\}, \{ \ -649, \ -928, \ -928, \ -928\}, \{ \ -289, \ -568, \ -568, \ -568\}, \{ \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, \ -89, 
                                -739, -1018, -1018, -1018, -1018, { -379, -658, -658, -658, -658}
01684 },
 01685 {
 01686 /* AU.@..UA */
01688 /* AU.A..UA */
01689 {{ DEF, -429, -599, -599, -599}, { -449, -828, -998, -998, -998}, { -479, -858, -1028, -1028, -1028}, {
                                   -429, -808, -978, -978, -978}, { -329, -708, -878, -878, -878}},
01690 /* AU.C..UA */
01691 {{ DEF, -259, -239, -239, -239}, { -679, -888, -868, -868, -868}, { -559, -768, -748, -748, -748}, {
                                -729, -938, -918, -918, -918}, { -189, -398, -378, -378, -378}},
01692 /* AU.G..UA */
01693 {{ DEF, -339, -689, -689, -689}, { -939, -1228, -1578, -1578, -1578}, { -249, -538, -888, -888, -888}, {
                                 -939,-1228,-1578,-1578,-1578},{ -329, -618, -968, -968, -968}},
 01694 /* AU.U..UA */
01695 \ \{ \{ \ \text{DEF, } -329, \ -329, \ -329, \ -329\}, \{ \ -639, \ -918, \ -918, \ -918\}, \{ \ -229, \ -508, \ -508, \ -508, \ -508\}, \{ \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839, \ -839
                                -729, -1008, -1008, -1008, -1008\}, \{ -190, -469, -469, -469, -469\} \}
01696 },
01697 {
 01698 /* AU.@.. @ */
01700 /* AU.A.. @ */
01701 {{ -100, -479, -649, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649}, { -100, -479, -649, -649},
01702 /* AU.C.. @ */
01703 {{ -100, -309, -289, -289, -289}, { -100, -309, -289, -289}, { -100, -309, -289, -289}, {
                                   -100, -309, -289, -289, -289}, { -100, -309, -289, -289, -289}},
01704 /* AU.G.. @ */
01705 \{\{-100, -389, -739, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, \{-100, -389, -739, -739\}, [-100, -389, -739], [-100, -389, -739], [-100, -389, -739], [-100, -389, -739], [-100, -389], [-100, -389], [-100, -389], [-100, -389], [-100, -389], [-100, -3
 01706 /* AU.U.. @ */
01707 \ \{\{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379\}, \{\ -100,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379,\ -379\}, \{\ -100,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\ -379,\
                                    -100, -379, -379, -379, -379}, { -100, -379, -379, -379, -379}}
 01708 }
01709 },
 01710 { /* noPair */ {{{0}}}},
01711 {
 01712 /* UA.@..CG */
O},{ DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{
01714 /* UA.A..CG */
01715 {{ DEF, -399, -629, -889, -589}, {-1079, -1428, -1658, -1918, -1618}, { -569, -918, -1148, -1408, -1108}, { -989, -1338, -1568, -1828, -1528}, { -859, -1208, -1438, -1698, -1398}},
 01716 /* UA.C..CG */
01717\ \{\{\ \mathsf{DEF},\ -429,\ -509,\ -199,\ -179\}, \{\ -999, -1378, -1458, -1148, -1128\}, \{\ -499,\ -878,\ -958,\ -648,\ -628\}, \{\ -899,\ -878,\ -958,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\ -889,\
                                  -989,-1368,-1448,-1138,-1118},{ -789,-1168,-1248, -938, -918}},
01718 /* UA.G..CG */
01719 {{ DEF, -379, -679, -889, -679}, {-1079, -1408, -1708, -1918, -1708}, { -569, -898, -1198, -1408, -1198}, { -989, -1318, -1618, -1828, -1618}, { -859, -1188, -1488, -1698, -1488}},
 01720 /* UA.U..CG */
 01721 \ \{ \{ \ \text{DEF, } -279, \ -139, \ -279, \ -140 \}, \{ -1079, -1308, -1168, -1308, -1169 \}, \{ \ -719, \ -948, \ -808, \ -948, \ -809 \}, \{ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ -808, \ 
                                   -989,-1218,-1078,-1218,-1079},{ -909,-1138, -998,-1138, -999}}
 01722 },
01723 {
 01724 /* UA.@..GC */
                                                                                                                                                                                      O},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
                             01725 {{
 01726 /* UA.A..GC */
 01727 \ \{ \{ \ DEF, \ -399, \ -629, \ -889, \ -589 \}, \{ \ -569, \ -918, -1148, -1408, -1108 \}, \{ \ -769, -1118, -1348, -1608, -1308 \}, \{ \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -889, \ -8
                               -759, -1108, -1338, -1598, -1298\}, \{ -549, -898, -1128, -1388, -1088\}\},
 01728 /* UA.C..GC */
 01729 {{ DEF, -429, -509, -199, -179}, { -929, -1308, -1388, -1078, -1058}, { -359, -738, -818, -508, -488}, {
```

```
-789, -1168, -1248, -938, -918}, { -549, -928, -1008, -698, -678}},
01730 /* UA.G..GC */
01731 {{ DEF, -379, -679, -889, -679}, { -609, -938,-1238,-1448,-1238}, { -359, -688, -988,-1198, -988}, {
                        -669, -998, -1298, -1508, -1298}, { -549, -878, -1178, -1388, -1178}},
 01732 /* UA.U..GC */
                                                           -279, -139, -279, -140}, { -929, -1158, -1018, -1158, -1019}, { -439, -668, -528, -668, -529}, {
01733 {{
                                       DEF.
                             789,-1018, -878,-1018, -879}, { -619, -848, -708, -848, -709}}
 01734 },
 01735 {
 01736 /* UA.@..GU */
                                                                 0, 0, 0, 0},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF},{ DEF, DEF},
01737 {{
                                        0,
, DEF,
                      DEF.
 01738 /* UA.A..GU */
 01739 {{ DEF, -399, -629, -889, -589}, { -479, -828, -1058, -1318, -1018}, { -309, -658, -888, -1148, -848}, {
                          -389, -738, -968, -1228, -928}, { -379, -728, -958, -1218, -918}},
01740 /* UA.C..GU */
01741 \ \{ \{ \ \text{DEF, } -429, \ -509, \ -199, \ -179 \}, \{ \ -649, -1028, -1108, \ -798, \ -778 \}, \{ \ -289, \ -668, \ -748, \ -438, \ -418 \}, \{ \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -848, \ -84
                          -739, -1118, -1198, -888, -868}, \{-379, -758, -838, -528, -508}},
 01742 /* UA.G..GU */
01743 {{ DEF, -379, -679, -889, -679},{ -649, -978, -1278, -1488, -1278},{ -289, -618, -918, -1128, -918},{
                          -739,-1068,-1368,-1578,-1368},{ -379, -708,-1008,-1218,-1008}},
01744 /* UA.U..GU */
01745 \ \{ \{ \ \text{DEF, } -279, \ -139, \ -279, \ -140 \}, \{ \ -649, \ -878, \ -738, \ -878, \ -739 \}, \{ \ -289, \ -518, \ -378, \ -518, \ -379 \}, \{ \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -
                        -739, -968, -828, -968, -829}, \{-379, -608, -468, -608, -469}
01746 },
 01747 {
 01748 /* UA.@..UG */
Ο,
01750 /* UA.A..UG */
01751 {{ DEF, -399, -629, -889, -589}, { -769,-1118,-1348,-1608,-1308}, { -529, -878,-1108,-1368,-1068}, {
                             -709,-1058,-1288,-1548,-1248},{ -599, -948,-1178,-1438,-1138}},
01752 /* UA.C..UG */
01753 {{ DEF, -429, -509, -199, -179}, { -839, -1218, -1298, -988, -968}, { -529, -908, -988, -678, -658}, {
                        -859,-1238,-1318,-1008, -988}, { -489, -868, -948, -638, -618}},
01754 /* UA.G..UG */
01755 {{ DEF, -379, -679, -889, -679}, {-1009, -1338, -1638, -1848, -1638}, { -409, -738, -1038, -1248, -1038}, {
                          -969,-1298,-1598,-1808,-1598},{ -599, -928,-1228,-1438,-1228}},
 01756 /* UA.U..UG */
01757 \ \{ \{ \ \text{DEF, } -279, \ -139, \ -279, \ -140 \}, \{ \ -859, -1088, \ -948, -1088, \ -949 \}, \{ \ -529, \ -758, \ -618, \ -758, \ -619 \}, \{ \ -859, -1088, \ -948, -1088, \ -949, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -1088, \ -859, -10
                         -859, -1088, -948, -1088, -949, { -409, -638, -498, -638, -499}
01758 },
01759 {
 01760 /* UA.@..AU */
01762 /* UA.A..AU */
01763 {{ DEF, -399, -629, -889, -589}, { -479, -828, -1058, -1318, -1018}, { -309, -658, -888, -1148, -848}, {
                         -389, -738, -968, -1228, -928}, \{-379, -728, -958, -1218, -918}},
01764 /* UA.C..AU */
                                      DEF, -429, -509, -199, -179}, { -649, -1028, -1108, -798, -778}, { -289, -668, -748, -438, -418}, {
01765 {{
                           739,-1118,-1198, -888, -868}, { -379, -758, -838, -528, -508}},
01766 /* UA.G..AU */
01767 {{ DEF, -379, -679, -889, -679}, { -649, -978, -1278, -1488, -1278}, { -289, -618, -918, -1128, -918}, { -739, -1068, -1368, -1578, -1368}, { -379, -708, -1008, -1218, -1008}},
 01768 /* UA.U..AU */
01769 \ \{ \{ \ \text{DEF, } -279, \ -139, \ -279, \ -140 \}, \{ \ -649, \ -878, \ -738, \ -878, \ -739 \}, \{ \ -289, \ -518, \ -378, \ -518, \ -379 \}, \{ \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -878, \ -
                             -739, -968, -828, -968, -829}, \{-379, -608, -468, -608, -469}
 01770 },
01771 {
01772 /* UA.@..UA */
0, 0},{ DEF, DEF, DEF, DEF, DEF},{ DEF, DEF, DEF, DEF},{
01774 /* UA.A..UA */
01775 {{ DEF, -399, -629, -889, -589},{ -449, -798,-1028,-1288, -988},{ -479, -828,-1058,-1318,-1018},{
                         -429, -778, -1008, -1268, -968}, { -329, -678, -908, -1168, -868}},
 01776 /* UA.C..UA */
01777 {{ DEF, -429, -509, -199, -179}, { -679, -1058, -1138, -828, -808}, { -559, -938, -1018, -708, -688}, {
                         -729, -1108, -1188, -878, -858}, \{-189, -568, -648, -338, -318}},
 01778 /* UA.G..UA */
01779 \ \{ \{ \ \text{DEF, } -379, \ -679, \ -889, \ -679 \}, \{ \ -939, -1268, -1568, -1778, -1568 \}, \{ \ -249, \ -578, \ -878, -1088, \ -878 \}, \{ \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088, \ -878, -1088,
                        -939,-1268,-1568,-1778,-1568},{ -329, -658, -958,-1168, -958}},
01780 /* UA.U..UA */
01781\ \{\{\ \ \mathsf{DEF},\ -279,\ -139,\ -279,\ -140\}, \{\ -639,\ -868,\ -728,\ -868,\ -729\}, \{\ -229,\ -458,\ -318,\ -458,\ -319\}, \{\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868,\ -868
                            -729, -958, -818, -958, -819}, \{-190, -419, -279, -419, -280}}
 01782 },
 01783 {
01786 /* UA.A.. @ */
01787 {{ -100, -449, -679, -939, -639}, { -100, -449, -679, -939, -639}, { -100, -449, -679, -939, -639}, {
                           -100, -449, -679, -939, -639}, { -100, -449, -679, -939, -639}},
 01788 /* UA.C.. @ */
01789 \ \{ \{ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -559, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -259, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -259, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -249, \ -249, \ -229 \}, \{ \ -100, \ -479, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ -249, \ 
-100,\ -479,\ -559,\ -249,\ -229\},\{\ -100,\ -479,\ -559,\ -249,\ -229\}\}, 01790 /* UA.G.. @ */
```

```
01791 \ \{ \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -939, -729 \}, \{ -100, -429, -729, -729, -729, -729 \}, \{ -100, -429, -729, -729, -729, -729, -729, -729, -729, -729, -729 \}, \{ -100, -429, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, -729, 
                        -100, -429, -729, -939, -729}, { -100, -429, -729, -939, -729}},
 01792 /* UA.U.. @ */
 01793 \ \{ \{ -100, \ -329, \ -189, \ -329, \ -190 \}, \{ \ -100, \ -329, \ -189, \ -329, \ -190 \}, \{ \ -100, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -189, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ -329, \ 
                     -100, -329, -189, -329, -190}, { -100, -329, -189, -329, -190}}
 01795 },
 01796 { /* noPair */ {{{0}}}},
 01797 {
01798 /* @.@..CG */
01799 {{ DEF, DEF, DEF, DEF}, { -100, -100, -100, -100}, { -100, -100, -100, -100}, {
                   -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100}},
01800 /* @.A..CG */
01801 {{ DEF, DEF,
                                                    DEF, DEF, DEF, (-1079,-1079,-1079,-1079,-1079), (-569, -569, -569, -569, -569), (
                      -989, -989, -989, -989, -989}, { -859, -859, -859, -859}},
01802 /* @.C..CG */
01803 {{ DEF, DEF, DEF, DEF}, { -999, -999, -999, -999}, { -499, -499, -499, -499, -499}, { -989, -989, -989, -989, -989, -789, -789, -789, -789, -789},
 01804 /* @.G..CG */
01805 {{ DEF,
                                                    DEF, DEF, DEF, DEF}, (-1079,-1079,-1079,-1079}, (-569, -569, -569, -569, -569), (-569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569), (-569, -569)
                      -989, -989, -989, -989, -989}, { -859, -859, -859, -859}},
 01806 /* @.U..CG */
01807 {{ DEF, DEF,
                                                                        DEF, DEF, DEF}, {-1079,-1079,-1079,-1079}, {-719, -719, -719, -719}, {
                     -989, -989, -989, -989, \{-909, -909, -909, -909, -909}
 01808 }.
 01809 {
 01810 /* @.@..GC */
 01811 {{ DEF, DEF, DEF, DEF}, { -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100, -100},
                    -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100}},
01815 {{ DEF, DEF, DEF, DEF}, { -929, -929, -929, -929}, { -359, -359, -359, -359, -359}, -
-789, -789, -789, -789, -789}, { -549, -549, -549, -549}, 01816 /* @.G..GC */
01817 {{ DEF, DEF, DEF, DEF}, { -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609, -609
                                                                        DEF, DEF, DEF}, { -609, -609, -609, -609}, { -359, -359, -359, -359}, {
                      -669, -669, -669, -669, -669}, \{-549, -549, -549, -549, -549},
 01818 /* @.U..GC */
 01819 {{ DEF,
                                                    DEF,
                                                                        DEF,
                                                                                           DEF, DEF}, { -929, -929, -929, -929}, { -439, -439, -439, -439}, {
                     -789, -789, -789, -789, -619, -619, -619, -619}
 01820 },
 01821 {
 01822 /* @.@..GU */
01823 {{ DEF, DEF, DEF, DEF, DEF}, { -100, -100, -100, -100}, { -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100, -100, -100, -100}, {
01824 /* @.A..GU */
01825 {{ DEF, DEF, DEF, DEF}, { -479, -479, -479, -479, -479}, { -309, -309, -309, -309, -309}, {
-389, -389, -389, -389, -389, -389}, { -379, -379, -379, -379, -379}},
 01826 /* @.C..GU */
01827 {{ DEF,
                                                     DEF, DEF, DEF, DEF},{ -649, -649, -649, -649},{ -289, -289, -289, -289},{
                      -739, -739, -739, -739, -739},{ -379, -379, -379, -379}},
 01828 /* @.G..GU */
01829 {{ DEF, DEF, DEF, DEF, DEF}, { -649, -649, -649, -649}, { -289, -289, -289, -289}, { -739, -739, -739, -739}, { -379, -379, -379, -379}, 
01830 /* @.U..GU */
01831 {{ DEF, DEF, DEF, DEF}, { -649, -649, -649, -649}, { -289, -289, -289, -289, -289}, {
                                                   DEF,
                        -739, -739, -739, -739, -739}, { -379, -379, -379, -379}}
 01832 },
 01833 {
01834 /* @.@..UG */
01835 {{ DEF, DEF, DEF, DEF}, { -100, -100, -100, -100}, { -100, -100, -100, -100}, {
                     -100, -100, -100, -100, -100, -100, -100, -100, -100, -100},
01836 /* @.A..UG */
01837 {{ DEF, DEF, DEF, DEF}, { -769, -769, -769, -769}, { -529, -529, -529, -529}, {
                     -709, -709, -709, -709, -709}, { -599, -599, -599, -599}},
01838 /* @.C..UG */
01839 {{ DEF, DEF,
                                                    DEF, DEF, DEF, (-839, -839, -839, -839, -839), (-529, -529, -529, -529), (
                     -859, -859, -859, -859, -859}, \{-489, -489, -489, -489, -489}},
01840 /* @.G..UG */
01841 {{ DEF, DEF,
                                                    DEF.
                                                                       DEF, DEF, DEF}, {-1009,-1009,-1009,-1009}, {-409, -409, -409, -409, -409}, {
                      -969, -969, -969, -969, -969}, { -599, -599, -599, -599}},
01842 /* @.U..UG */
01843 {{ DEF, DEF,
                                                                        DEF, DEF, DEF}, { -859, -859, -859, -859, -859}, { -529, -529, -529, -529}, {
                                 DEF. DEF.
                       -859, -859, -859, -859, -859<sub>}</sub>, { -409, -409, -409, -409<sub>}</sub>}
 01844 },
 01845 {
01846 /* @.@..AU */
01847 {{ DEF, DEF, DEF, DEF}, { -100, -100, -100, -100}, { -100, -100, -100, -100, -100}, {
                     -100, -100, -100, -100, -100, \{-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -10
 01848 /* @.A..AU */
 01849 {{ DEF,
                                                     DEF.
                                                                       DEF, DEF, DEF}, { -479, -479, -479, -479}, { -309, -309, -309, -309, -309}, {
                       -389, -389, -389, -389, -389},{ -379, -379, -379, -379}},
 01850 /* @.C..AU */
01851 {{ DEF, DEF, DEF, DEF, DEF}, { -649, -649, -649, -649, -649, -739, -739, -739, -739, -739}, { -379, -379, -379, -379}, 01852 /* @.G..AU */
                                                                        DEF, DEF, DEF}, { -649, -649, -649, -649, -649}, { -289, -289, -289, -289}, {
```

```
-739, -739, -739, -739, -739}, { -379, -379, -379, -379}, 01854 /* @.U..AU */
                     DEF.
                              DEF,
                                     DEF,
                                              DEF},{ -649, -649, -649, -649, -649},{ -289, -289, -289, -289},{
01853 {{
01855 {{ DEF, DEF, DEF, DEF}, { -649, -649, -649, -649, -649}, { -289, -289, -289, -289, -289}, {
        -739, -739, -739, -739, -379, -379, -379, -379, -379}
01856 },
01857 {
01858 /* @.@..UA */
01859 {{ DEF, DEF, DEF, DEF}, { -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100, -100, -100},
        -100, -100, -100, -100, -100}, { -100, -100, -100, -100}}
01860 /* @.A..UA */
                                     DEF, DEF}, { -449, -449, -449, -449, -449}, { -479, -479, -479, -479, -479}, {
01861 {{
             DEF. DEF.
                              DEF.
          -429, -429, -429, -429, -429}, { -329, -329, -329, -329, -329}},
01862 /* @.C..UA */
01863 {{ DEF,
                     DEF,
                             DEF,
                                     DEF, DEF}, { -679, -679, -679, -679}, { -559, -559, -559, -559}, -559}, {
         -729, \ -729, \ -729, \ -729, \ -729\}, \{ \ -189, \ -189, \ -189, \ -189, \ -189\}\},
01864 /* @.G..UA */
01865 {{ DEF, DEF,
                                     DEF, DEF}, { -939, -939, -939, -939}, { -249, -249, -249, -249, -249}, {
                              DEF,
        -939, -939, -939, -939, -939}, \{-329, -329, -329, -329},
01866 /* @.U..UA */
01867 {{ DEF, DEF, DEF, DEF}, { -639, -639, -639, -639}, { -229, -229, -229, -229, -229}, {
         -729, -729, -729, -729, -729},{ -190, -190, -190, -190, -190}}
01868 },
01869 (
01870 /* @.@.. @ */
01871 {{ -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100}, {
         -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100}},
01872 /* @.A.. @ */
01873 {{ -100, -100, -100, -100, -100, -100, -100, -100, -100}, { -100, -100, -100, -100, -100, -100}, {
-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 
01876 /* @.G.. @ */
01877 \{\{-100, -100, -100, -100, -100\}, \{-100, -100, -100, -100, -100\}, \{-100, -100, -100, -100, -100, -100, -100, -100, -100\}, \{-100, -100, -100, -100, -100, -100, -100, -100, -100\}\}
01878 /* @.U.. @ */
01879 {{ -100, -100, -100, -100, -100}, { -100, -100, -100, -100}, { -100, -100, -100, -100}, {
         -100, -100, -100, -100, -100}, { -100, -100, -100, -100}
01880 }
01881 }
01882 };
01883
01884 PRIVATE int int22_37_184[NBPAIRS+1][NBPAIRS+1][5][5][5][5] = {
01885 /* noPair */ {{{{0}}}}},
01886 { /* noPair */ {{{{0}}}}},
01887 /* CG....CG */
01888 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
01894 },
01895
-70, 200},{ 340, 200, 200, 200, 200}},
01898 {{ 340, 340, 340, 340, 340},{ 340, 160, 200, 60, 200},{ 340, 210, 180, 150, 200},{ 340, 200, 200,
        200, 200},{ 340, 190, 170, 130, 200}},
01899 {{ 340, 340, 340, 340, 340},{ 340, 30,
                                                                60, -70, 200}, { 340, 200, 200, 200, 200}, { 340, 100, 140,
        0, 200}, { 340, -40, -110, -60, 200}},
01900 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 190, 170, 130, 200},{ 340, 110, 40,
        90, 200},{ 340, 140, 80, 130, 200}}
01901 },
01902
200, 130},{ 340, 200, 200, 200, 200}},
01905 {{ 340, 340, 340, 340, 340, 40, 150, 180, 200, 170},{ 340, 140, 170, 200, 150},{ 340, 200, 200,
         200, 200},{ 340, 120, 150, 200, 140}},
01906 {{ 340, 340, 340, 340, 340},{ 340, 20, 150, 200, 130},{ 340, 200, 200, 200, 200},{ 340, 90, 180, 200, 170},{ 340, -150, -20, 200, -40}},
01907 {{ 340, 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 120, 150, 200, 140},{ 340, 0, 130,
        200, 110},{ 340, 30, 60, 200, 50}}
01908 },
01909
340, 340},{ 340, 340, 340, 340, 340}},
01911 {{ 340, 340, 340, 340, 340},{ 340, 30, 200, 100, 110},{ 340, 20, 200, 90, 0},{ 340, -70, 200,
```

```
90},{ 340, 200, 200, 200, 200}},
         Ο,
01912 {{ 340, 340, 340, 340, 340, { 340, 60 200, 200}, { 340, 130, 200, 170, 110}},
                                                               60, 200, 140, 40}, { 340, 150, 200, 180, 130}, { 340, 200, 200,
01913 {{ 340, 340, 340, 340, 340},{ 340, -70, 200,
                                                                              0, 90},{ 340, 200, 200, 200, 200},{ 340,
                                                                                                                                               0, 200.
         80,
80, 90},{ 340, -60, 200, -70, -260}},
01914 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 130, 200, 170, 110},{ 340, 90, 200,
         90, -110}, { 340, 130, 200, 120, 110}}
01915 },
01916
340, 340},{ 340, 340, 340, 340, 340}},
01918 {{ 340, 340, 340, 340, 340},{ 340, 200, 190, -40, 140},{ 340, 200, 120, -150, 30},{ 340, 200, 130,
          -60, 130}, { 340, 200, 200, 200, 200}},
01919 {{ 340, 340, 340, 340, 340}, { 340, 200, 170, -110, 80}, { 340, 200, 150, -20, 60}, { 340, 200, 200,
         200, 200},{ 340, 200, 140, -40,
                                                         50}},
01920 {{ 340, 340, 340, 340, 340}, { 340, 200, 130, -60, 130}, { 340, 200, 200, 200, 200}, { 340, 200, 170, -70, 120}, { 340, 200, -40, -420, -50}},
01921 {{ 340, 340, 340, 340, 340, 340}, { 340, 200, 200, 200}, { 340, 200, 140, -40, 50}, { 340, 200, 110, -260, 110}, { 340, 200, 50, -50, -40}}
01922
01923 },
01924 /* CG....GC */
01925 {{
01926 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
01929 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}}
01931 },
01932
340, 340},{ 340, 340, 340, 340, 340}},
01934 {{ 340, 340, 340, 340},{ 340},50
                                                                      60.
                                                                              0, 200},{ 340, 110, 150, -70, 200},{ 340, -30, 10,
          -160, 200},{ 340, 200, 200, 200, 200}},
01935 {{ 340, 340, 340, 340, 340, { 340, 110, 110, -100, 200}, { 340, 170, 150, -60, 200}, { 340, 200, 200,
         200, 200},{ 340,
                                    70, 50, 20, 200}},
01936 {{ 340, 340, 340, 340, 340},{ 340, 40,
                                                                     50, -70, 200}, { 340, 200, 200, 200, 200}, { 340, 100, 140,
0, 200},{ 340, 10, -70, -80, 200}},
01937 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 180, 150, 120, 200},{ 340, -50, -60,
          -60, 200},{ 340, 150,
                                            0, 90, 200}}
01938 },
01939 +
40},{ 340, 200, 200, 200, 200}},
         200,
01942 {{ 340, 340, 340, 340, 340},{ 340, 100, 190, 200, 110},{ 340, 100, 130, 200, 120},{ 340, 200, 200,
         200, 200},{ 340,
                                    0, 30, 200, 170}},
01943 {{ 340, 340, 340, 340}, 340}, {{ 340, 70, 70, 200, 100}, { 340, 200, 200, 200}, { 340, 90, 180, 200, 170}, { 340, -190, -30, 200, -70}}, 01944 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200}, { 340, 110, 140, 200, 120}, { 340, -150, -20, 200, -30}, { 340, -20, -10, 200, 20}}
01945 },
01946
340, 340},{ 340, 340, 340, 340, 340}},
01948 {{ 340, 340, 340, 340, 340},{ 344, -20, 200, 110, 90},{ 340, -40, 200, 90, 0},{ 340, -170, 200, -90, 30},{ 340, 200, 200, 200, 200}},
01949 {{ 340, 340, 340, 340, 340},{ 340, 200, 200},{ 340, 20, 200, 50, 0
                                                               70, 200, 80, -10}, { 340, 110, 200, 150, 100}, { 340, 200, 200,
                                                           0 } } ,
01950 \ \{ \{ \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ -50, \ 200, \ -20, \ \ 60 \}, \{ \ 340, \ 200, \ 200, \ 200, \ 200 \}, \{ \ 340, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200 \}, \{ \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 3
80, 90},{ 340, -90, 200, -100, -300}},
01951 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 120, 200, 150, 100},{ 340, -130, 200, -60, -240},{ 340, 90, 200, 110, 60}}
01952 },
01953
340, 340),{ 340, 340, 340, 340, 340},
01955 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, -10, 140},{ 340, 200, 120, -160, 30},{ 340, 200, 40,
                   50}, { 340, 200, 200, 200, 200}},
          -160,
01956 {{ 340, 340, 340, 340, 340, { 340, 200, 110, -160, 30}, { 340, 200, 120, -60, 30}, { 340, 200, 200,
         200, 200},{ 340, 200, 20, -160,
                                                           10}},
01957 {{ 340, 340, 340, 340, 340},{ 340, 200, -70, 120},{ 340, 200, -70, -440, -100}},
                                                                      50, -60, 140},{ 340, 200, 200, 200, 200},{ 340, 200, 170,
01958 {{ 340, 340, 340, 340}, 340}, {340, 200, 200, 200}, {340, 200, 120, -50, 30}, {340, 200, -10, -410, 10}, {340, 200, 40, -100, 60}}
01959
01960 },
01961 /* CG....GU */
01962 {{
01963 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340, 340},
```

```
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
01968 },
01969
01970 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}, 01971 {{ 340, 340, 340, 340}, { 340, 200, 240, 100, 200}, { 340, 180, 210, 80, 200}, { 340, 80, 110,
           -20, 200},{ 340, 200, 200, 200, 200}},
01972 {{ 340, 340, 340, 340, 340},{ 340, 190, 220, 90, 200},{ 340, 230, 210, 170, 200},{ 340, 200, 200,
          200, 200},{ 340, 230, 210, 170, 200}},
01973 {{ 340, 340, 340, 340, 340},{ 340,
                                                                        80, 110, -20, 200}, { 340, 200, 200, 200, 200}, { 340, 130, 170,
30, 200},{ 340, 60, 0, 40, 200}},
01974 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200},{ 340, 230, 210, 170, 200},{ 340, 160, 90,
           140, 200},{ 340, 190, 130, 180, 200}}
01975 },
01976
340, 340},{ 340, 340, 340, 340, 340}},
01978 {{ 340, 340, 340, 340, 340},{ 340, 190, 280, 200, 270},{ 340, 170, 200, 200, 180},{ 340, 70, 200,
          200, 180},{ 340, 200, 200, 200, 200}},
01979 {{ 340, 340, 340, 340, 340},{ 340, 180, 210, 200, 190},{ 340, 160, 190, 200, 180},{ 340, 200, 200,
200, 200},{ 340, 160, 150, 251, 201, 201, 201, 201, 201, 240, 340, 340, 340},{ 340, 70}, 70}},
                                                                       70, 200, 200, 180},{ 340, 200, 200, 200, 200},{ 340, 120, 210,
200, 200},{ 340, -50, 80, 200, 70}},
01981 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 160, 190, 200, 180},{ 340, 50, 180,
          200, 160},{ 340, 80, 110, 200, 100}}
01982 },
01983
01984 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
01985 {{ 340, 340, 340, 340, 340}, { 340, 100, 200, 180, 180}, { 340, 80, 200, 150, 60}, { 340, -20, 200,
          50, 140},{ 340, 200, 200, 200, 200}},
01986 {{ 340, 340, 340, 340, 340}, { 340,
                                                                        90, 200, 160, 70},{ 340, 170, 200, 210, 150},{ 340, 200, 200,
           200, 200},{ 340, 170, 200, 210, 150}},
01987 {{ 340, 340, 340, 340, 340},{ 340, -20, 200, 50, 140},{ 340, 200, 200, 200, 200},{ 340, 30, 200,
110, 110},{ 340, 40, 200, 40, -160}},
01988 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 170, 200, 210, 150},{ 340, 140, 200, 130, -60},{ 340, 180, 200, 170, 160}}
01989
01990
340, 340}, { 340, 340, 340, 340, 340}, 01992 {{ 340, 340, 340, 340}, { 340, 200, 270, 30, 220}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180, -90, 90}, { 340, 200, 180,
           -10, 180<sub>}</sub>, { 340, 200, 200, 200, 200<sub>}</sub>},
01993 {{ 340, 340, 340, 340, 340},{ 340, 200, 190, -80, 100},{ 340, 200, 180,
                                                                                                                                       0, 90},{ 340, 200, 200,
           200, 200},{ 340, 200, 180,
                                                           0,
                                                                   90}},
01994 {{ 340, 340, 340, 340, 340},{ 340, 200, 180, -10, 180},{ 340, 200, 200, 200, 200},{ 340, 200, 200,
-40, 150),{ 340, 200, 70, -310, 60}},
01995 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 180,
                                                                                                                                         0, 90},{ 340, 200, 160,
           -210, 160},{ 340, 200, 100,
                                                             0,
                                                                    10}}
01996 }
01997 }.
01998 /* CG....UG */
01999 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02005 },
02006
0, 200},{ 340, 200, 200, 200, 200}},
              340, 340, 340, 340, 340},{ 340, 200, 240, 100, 200},{ 340, 260, 240, 200, 200},{ 340, 200, 200,
           200, 200},{ 340, 260, 240, 200, 200}},
02010 {{ 340, 340, 340, 340}, 340}, { 340, 100, 130, 0, 200}, { 340, 200, 200, 200, 200}, { 340, 140, 170, 40, 200}, { 340, 340, 340, 340}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0, 200}, 0
02012 },
02013 +
340, 340, { 340, 340, 340, 340, 340}, 02015 {{ 340, 340, 340, 340, 190, 280, 200, 270}, { 340, 150, 180, 200, 160}, { 340, 90, 220,
```

```
200, 200},{ 340, 200, 200, 200, 200}},
02016 {{ 340, 340, 340, 340, 340},{ 340, 190, 220, 200, 210},{ 340, 190, 220, 200, 210},{ 340, 200, 200,
     200, 200},{ 340, 190, 220, 200, 210}},
02017 {{ 340, 340, 340, 340, 340},{ 340, 90, 220, 200, 200},{ 340, 200, 200, 200, 200},{ 340, 130, 220,
200, 200},{ 340, -90, 40, 200, 30}},
02018 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 160, 190, 200, 180},{ 340, 40, 170,
     200, 150},{ 340, 110, 140, 200, 120}}
02019 },
02020 {
160},{ 340, 200, 200, 200, 200}},
     70,
02023 {{ 340, 340, 340, 340, 340},{ 340, 100, 200, 180, 80},{ 340, 200, 200, 240, 180},{ 340, 200, 200,
     200, 200},{ 340, 200, 200, 240, 180}},
02024 {{ 340, 340, 340, 340, 340}, { 340, 0, 200, 70, 160}, { 340, 200, 200, 200, 200}, { 340, 40, 200, 110, 120}, { 340, 0, 200, 0, -200}},

02025 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 170, 200, 210, 150}, { 340, 130, 200, 120, -70}, { 340, 200, 200, 190, 180}}
02026 }.
02027
340, 340},{ 340, 340, 340, 340, 340}},
02029 {{ 340, 340, 340, 340, 340},{ 340, 200, 270, 30, 220},{ 340, 200, 160, -110, 70},{ 340, 200, 200,
     10, 190}, { 340, 200, 200, 200, 200}},
02030 {{ 340, 340, 340, 340, 340},{ 340, 200, 210, -70, 120},{ 340, 200, 210, 30, 120},{ 340, 200, 200,
     200, 200},{ 340, 200, 210,
                             30, 120}},
02031 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 10, 190},{ 340, 200, 200, 200, 200},{ 340, 200, 200,
-30, 150},{ 340, 200, 30, -350, 20}},
02032 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 180, -220, 150},{ 340, 200, 120, 30, 30}}
                                                                   0, 90},{ 340, 200, 150,
02034 },
02035 /* CG....AU */
02036 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02042 },
02043
-20, 200},{ 340, 200, 200, 200, 200}},
02046 {{ 340, 340, 340, 340, 340},{ 340, 190, 220, 90, 200},{ 340, 230, 210, 170, 200},{ 340, 200, 200,
     200, 200},{ 340, 230, 210, 170, 200}},
02047 {{ 340, 340, 340, 340, 340},{ 340, 80, 110, -20, 200},{ 340, 200, 200, 200, 200},{ 340, 130, 170,
02049 },
02050
340, 340},{ 340, 340, 340, 340, 340}},
02052 {{ 340, 340, 340, 340, 340},{ 340, 190, 280, 200, 270},{ 340, 170, 200, 200, 180},{ 340, 70, 200, 200, 180},{ 340, 200, 200, 200, 200}},
02053 {{ 340, 340, 340, 340, 340},{ 340, 180, 210, 200, 190},{ 340, 160, 190, 200, 180},{ 340, 200, 200,
     200, 200},{ 340, 160, 190, 200, 180}},
02054 {{ 340, 340, 340, 340, 340},{ 340},
                                   70, 200, 200, 180},{ 340, 200, 200, 200, 200},{ 340, 120, 210,
200, 200},{ 340, -50, 80, 200, 70}},
02055 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 160, 190, 200, 180},{ 340, 50, 180, 200, 160},{ 340, 80, 110, 200, 100}}
02056 },
02057
340, 340},{ 340, 340, 340, 340, 340}}
02059 {{ 340, 340, 340, 340, 340},{ 340, 100, 200, 180, 180},{ 340, 80, 200, 150, 60},{ 340, -20, 200,
50, 140), { 340, 200, 200, 200, 200}, 02060 {{ 340, 340, 340, 340, 340}, { 340, 9
                                    90, 200, 160, 70},{ 340, 170, 200, 210, 150},{ 340, 200, 200,
     200, 200},{ 340, 170, 200, 210, 150}},
02061 {{ 340, 340, 340, 340}, 340}, {4340, -20, 200, 50, 140}, {340, 200, 200, 200}, {340, 30, 200, 110, 110}, {340, 40, 200, 40, -160}},
02062 {{ 340, 340, 340, 340, 340}, {340, 200, 200, 200, 200}, {340, 170, 200, 210, 150}, {340, 140, 200, 130, -60}, {340, 180, 200, 170, 160}}
02063 }.
02064
340, 340},{ 340, 340, 340, 340, 340}},
02066 {{ 340, 340, 340, 340, 340},{ 340, 200, 270, 30, 220},{ 340, 200, 180, -90, 90},{ 340, 200, 180, -10, 180},{ 340, 200, 200, 200, 200}},
```

```
02067 {{ 340, 340, 340, 340, 340, 340, 200, 190, -80, 100},{ 340, 200, 180, 0, 90},{ 340, 200, 200,
200, 200], { 340, 200, 180, 0, 90}},
02068 {{ 340, 340, 340, 340, 340}, { 340, 200, 180, -10, 180}, { 340, 200, 200, 200}, { 340, 200, 200, 200, 200},
        -40, 150<sub>}</sub>, { 340, 200, 70, -310, 60<sub>}</sub>},
02069 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 180, 0, 90},{ 340, 200, 160, -210, 160},{ 340, 200, 100, 0, 10}}
02071 },
02072 /* CG....UA */
02073 {{
02074 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02079 },
02080 4
340, 340},{ 340, 340, 340, 340, 340}},
02082 {{ 340, 340, 340, 340, 340},{ 340, 200, 240, 100, 200},{ 340, 160, 190, 60, 200},{ 340, 100, 130,
        0, 200},{ 340, 200, 200, 200, 200}},
                 340, 340, 340, 340},{ 340, 200, 240, 100, 200},{ 340, 260, 240, 200, 200},{ 340, 200, 200,
02083 {{ 340,
       200, 200},{ 340, 260, 240, 200, 200}},
02084 {{ 340, 340, 340, 340, 340}, { 340, 100, 130, 0, 200}, { 340, 200, 200, 200, 200}, { 340, 140, 170, 40, 200}, { 340, 20, -40, 0, 200}}, 

02085 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 230, 210, 170, 200}, { 340, 150, 80, 130, 200}, { 340, 220, 150, 200, 200}}
02086 },
02087
02088 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
02089 {{ 340, 340, 340, 340, 340}, { 340, 190, 280, 200, 270}, { 340, 150, 180, 200, 160}, { 340, 90, 220,
        200, 200},{ 340, 200, 200, 200, 200}},
02090 {{ 340, 340, 340, 340, 340, 40, 190, 220, 200, 210},{ 340, 190, 220, 200, 210},{ 340, 200, 200,
        200, 200},{ 340, 190, 220, 200, 210}},
02091 {{ 340, 340, 340, 340, 340},{ 340},
                                                      90, 220, 200, 200}, { 340, 200, 200, 200, 200}, { 340, 130, 220,
200, 200},{ 340, -90, 40, 200, 30}},
02092 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 160, 190, 200, 180},{ 340, 40, 170, 200, 150},{ 340, 110, 140, 200, 120}}
02093
02094
340, 340},{ 340, 340, 340, 340, 340}}
02096 \ \{ \{ \ 340, \ 340, \ 340, \ 340, \ 340\}, \{ \ 340, \ 100, \ 200, \ 180, \ 180\}, \{ \ 340, \ 60, \ 200, \ 130, \ 40\}, \{ \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 
                                                                                                                            0, 200,
        70, 160}, { 340, 200, 200, 200, 200}},
02097 {{ 340, 340, 340, 340, 340, 40, 100, 200, 180, 80},{ 340, 200, 200, 240, 180},{ 340, 200, 200,
        200, 200},{ 340, 200, 200, 240, 180}},
02098 {{ 340, 340, 340, 340, 340},{ 340,
                                                        0, 200, 70, 160},{ 340, 200, 200, 200, 200},{ 340, 40, 200,
110, 120},{ 340, 0, 200, 0, -200}},
02099 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 170, 200, 210, 150},{ 340, 130, 200,
        120, -70}, { 340, 200, 200, 190, 180}}
02100 },
02101 {
340, 340},{ 340, 340, 340, 340, 340}},
02103 {{ 340, 340, 340, 340, 340, 340},{ 340, 200, 270, 30, 220},{ 340, 200, 160, -110, 70},{ 340, 200, 200,
       10, 190}, { 340, 200, 200, 200, 200}},
02104 {{ 340, 340, 340, 340, 340},{ 340, 200, 210, -70, 120},{ 340, 200, 210, 30, 120},{ 340, 200, 200,
        200, 200},{ 340, 200, 210, 30, 120}},
02105 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 10, 190},{ 340, 200, 200, 200, 200, 200},{ 340, 200, 200,
-30, 150},{ 340, 200, 30, -350, 20}},
02106 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 180, 0, 90},{ 340, 200, 150, -220, 150},{ 340, 200, 120, 30, 30}}
02108 },
02109 /* CG....?? */
02110 {{
02111 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
02115 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340},
        340, 340},{ 340, 340, 340, 340, 340}}
02116 },
02117
```

```
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02123 },
02124
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02130 }.
02131
340, 340},{ 340, 340, 340, 340, 340}},
02133 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
02136 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
   340, 3401, { 340, 340, 340, 340, 3401}
02138 {
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
02144 }
02145
02146 },
02147 { /* noPair */ {{{{0}}}}},
02148 /* GC....CG */
02149 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02155 },
02156 {
02158 {{ 340, 340, 340, 340, 340}, { 340,
                      110, 40, 200}, { 340, 130, 100, 70, 200}, { 340, -20, 70,
   -50, 200},{ 340, 200, 200, 200, 200}},
02159 {{ 340, 340, 340, 340, 340},{ 340},
                    60, 110, 50, 200},{ 340, 220, 190, 70, 200},{ 340, 200, 200,
  200, 200},{ 340, 200, 110, 50, 200}},
02160 {{ 340, 340, 340, 340, 340}, { 340},
                     0, -100, -70, 200, { 340, 200, 200, 200, 200}, { 340, 110, 80,
-20, 200], { 340, -10, -160, -60, 200}},
02161 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200}, { 340, 200, 110, 100, 200}, { 340, 90, -10,
   60, 200}, { 340, 140, 30, 140, 200}}
02162 },
02163
200, 120},{ 340, 200, 200, 200, 200}},
02166 {{ 340, 340, 340, 340, 340},{ 340, 150, 150, 200, 150},{ 340, 130, 130, 200, 140},{ 340, 200, 200,
   200, 200},{ 340, 120, 120, 200, 120}},
02167 {{ 340, 340, 340, 340, 340},{ 340, -70, -60, 200, 120},{ 340, 200, 200, 200, 200},{ 340, 90, 150,
  200, 150}, { 340, -160, -60, 200, -50}},
02168 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 120, 120, 200, 120},{ 340,
   200, 100}, { 340, 30, 30, 200, 30}}
02169 },
02170 {
```

18.156 1.8.4 intloops.h 801

```
02172 {{ 340, 340, 340, 340, 340, 40, 340, -30, 200, 100, -50}, { 340, -70, 200, 90, -150}, { 340, -170, 200,
0, -130}, { 340, 200, 200, 200, 200}, 02173 {{ 340, 340, 340, 340, 340}, { 340, 1
                                                           10, 200, 140, -60}, { 340, 70, 200, 180, -20}, { 340, 200, 200,
200, 200},{ 340, 40, 200, 170, -10}},
02174 {{ 340, 340, 340, 340, 340},{ 340, -160, 200, 0, -60},{ 340, 200, 200, 200, 200},{ 340, -90, 200, 80, -60},{ 340, -160, 200, -70, -410}},
02175 {{ 340, 340, 340, 340, 340, 340, 200, 200, 200, 200}, { 340, 40, 200, 170, -30}, { 340, 30, 200, 90, -240}, { 340, 50, 200, 120, 10}}
02176 },
02177
02178 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340, 340, 340, 340, 340, 340, 340},
02179 {{ 340, 340, 340, 340, 340},{ 340, 200,
                                                                  70, 10, 150},{ 340, 200,
                                                                                                         0, -190, -20}, { 340, 200, 20,
                 90},{ 340, 200, 200, 200, 200}},
02180 {{ 340, 340, 340, 340, 340},{ 340, 200, 50, -70,
                                                                                  0},{ 340, 200, 30, -30, -10},{ 340, 200, 200,
                                                      40}},
        200, 200},{ 340, 200, 20, -70,
02181 {{ 340, 340, 340, 340, 340},{ 340, 200,
                                                                 20, -80, 90}, { 340, 200, 200, 200, 200}, { 340, 200, 50,
         -100, 110},{ 340, 200, -160, -440, -100}},
02182 {{ 340, 340, 340, 340, 340},{ 340},{ 340, 200, 200, 200},{ 340, 200, 170, -70, 20},{ 340, 200,
         -300, 60<sub>}</sub>,{ 340, 200, 10, -100, 60<sub>}</sub>}
02183 }
02184 },
02185 /* GC....GC */
02186 11
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02192 },
02193 {
02194 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
02195 {{ 340, 340, 340, 340, 340, 40, 150, 120, 10, 200},{ 340, 120, 90, -10, 200},{ 340, -50, -80,
         -190, 200},{ 340, 200, 200, 200, 200}},
02196 {{ 340, 340, 340, 340, 340},{ 340, 120,
                                                                 90, -20, 200}, { 340, 180, 90, 90, 200}, { 340, 200, 200,
        200, 200},{ 340, 80,
                                          0, -10, 200}},
02197 {{ 340, 340, 340, 340, 340}, { 340, 10, -20, 200}, { 340, -70, -200, -130, 200}},
                                                           10, -20, -130, 200}, { 340, 200, 200, 200, 200}, { 340, 110, 80,
02198 {{ 340, 340, 340, 340, 340, 440, 420, 200, 200, 200, 200},{ 340, 190, 100, 90, 200},{ 340, -30, -160,
         -90, 200},{ 340, 150, 20,
                                               90, 200}}
02199 },
02200 {
340, 340},{ 340, 340, 340, 340, 340}},
02202 {{ 340, 340, 340, 340, 340},{ 340, 120, 180, 200, 190},{ 340, 100, 100, 200, 100},{ 340, -80, 20,
                30},{ 340, 200, 200, 200, 200}},
        200,
02203 {{ 340, 340, 340, 340, 340},{ 340, 90,
                                                                 90, 200, 100},{ 340, 100, 100, 200, 100},{ 340, 200, 200,
                                   0,
        200, 200},{ 340,
                                          0, 200,
                                                        0 } } ,
02204 {{ 340, 340, 340, 340, 340},{ 340, -10,
                                                                  90, 200, 90}, { 340, 200, 200, 200, 200}, { 340, 90, 150,
200, 150},{ 340, -190, -90, 200, -90}},
02205 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 100, 100, 200, 110},{ 340, -150, -50,
         200, -50}, { 340, 20, 20, 200, 30}}
02206 },
02207
02208 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, 340, 340, 340, 340, 340, 340, 340},{ 340, 340},{ 340, 340},{ 340, 340, 340},

02209 {{ 340, 340, 340, 340, 340, 340},{ 340, -50, 200, 110, -30},{ 340, -80, 200, 90, -150},{ 340, -260, 200,
         -90, -150},{ 340, 200, 200, 200, 200}},
                          340, 340, 340},{ 340, -80, 200, 80, -160},{ 340, 20, 200, 150, -50},{ 340, 200, 200,
02210 {{ 340, 340,
        200, 200},{ 340, -80, 200, 50, -150}},
02211 {{ 340, 340, 340, 340, 340},{ 340, -190, 200, -20, -90},{ 340, 200, 200, 200, 200},{ 340, -90, 200, 80, -60},{ 340, -190, 200, -100, -450}},
02212 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 30, 200, 150, -50}, { 340, -150, 200,
         -60, -410},{ 340, 30, 200, 110, -50}}
02213 },
02214 (
02215 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
02216 {{ 340, 340, 340, 340, 340},{ 340, 200, 80, -70, 150},{ 340, 200,
                                                                                                        0, -190, 20}, { 340, 200, -80,
         -190, 30},{ 340, 200, 200, 200, 200}},
02217 {{ 340, 340, 340, 340, 340}, { 340, 200,
                                                                    0, -200, 20, { 340, 200,
                                                                                                           0, -90, 20}, { 340, 200, 200,
        200, 200},{ 340, 200, -100, -190, -70}},
02218 \ \{ \{ \ 340, \ 340, \ 340, \ 340, \ 340, \ 200, \ -10, \ -130, \quad 90 \}, \{ \ 340, \ 200, \ 200, \ 200, \ 200 \}, \{ \ 340, \ 200, \ 50, \ 50, \ 340, \ 200, \ 200, \ 200, \ 200 \}, \{ \ 340, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200,
-100, 110},{ 340, 200, -190, -490, -90}},
02219 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 0, -90, 30},{ 340, 200, -150, -450, -50},{ 340, 200, -70, -90, -50}}
02220 }
02221 },
02222 /* GC....GU */
02223 (-
```

```
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
02226 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340},
     340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02229 },
02230 {
02231 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340},
02232 {{ 340, 340, 340, 340, 340},{ 340, 210, 180, 70, 200},{ 340, 190, 160, 50, 200},{ 340, 90,
      -50, 200},{ 340, 200, 200, 200, 200}},
02233 {{ 340, 340, 340, 340, 340},{ 340, 200, 170, 60, 200},{ 340, 240, 150, 140, 200},{ 340, 200, 200,
     200, 200}, { 340, 240, 150, 140, 200}},
02234 {{ 340, 340, 340, 340, 340},{ 340, 90, 60, -50, 200},{ 340, 200, 200, 200, 200},{ 340, 140, 110,
                    70, -60, 10, 200}},
     0, 200},{ 340,
02235 {{ 340, 340, 340, 340}, 340}, {340, 200, 200, 200, 200}, {340, 240, 150, 140, 200}, {340, 170, 40, 110, 200}, {340, 200, 70, 150, 200}}
02236 },
02237
02238 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
02239 {{ 340, 340, 340, 340, 340},{ 340, 190, 250, 200, 250},{ 340, 160, 160, 200, 170},{ 340, 60, 160,
     200, 170},{ 340, 200, 200, 200, 200}},
02240 {{ 340, 340, 340, 340, 340},{ 340, 170, 170, 200, 180},{ 340, 160, 160, 200, 160},{ 340, 200, 200,
     200, 200},{ 340, 160, 160, 200, 160}},
02241 {{ 340, 340, 340, 340, 340, 340},{ 340, 60, 160, 200, 170},{ 340, 200, 200, 200, 200},{ 340, 120, 180, 200, 180},{ 340, -50, 50, 200, 50}},
02242 {{ 340, 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 160, 160, 200, 160},{ 340, 40, 140,
      200, 150},{ 340, 80, 80, 200, 80}}
02243 },
02244
340, 340},{ 340, 340, 340, 340},
02246 {{ 340, 340, 340, 340},{ 340}, 10
                                       10, 200, 180, 40},{ 340, -10, 200, 150, -90},{ 340, -110, 200,
         -10},{ 340, 200, 200, 200, 200}},
      50,
02247 {{ 340, 340, 340, 340, 340},{ 340},
                                        0, 200, 160, -80}, { 340, 80, 200, 210, 10}, { 340, 200, 200,
     200, 200},{ 340, 80, 200, 210, 10}},
02248 {{ 340, 340, 340, 340, 340},{ 340, -110, 200, 50, -10},{ 340, 200, 200, 200, 200},{ 340, -60, 200, 110, -30},{ 340, -50, 200, 40, -310}},
02249 {{ 340, 340, 340, 340, 340, 340},{ 340, 200, 200, 200},{ 340, 80, 200, 210, 10},{ 340, 50, 200,
     130, -210}, { 340, 80, 200, 170, 10}}
02250 },
02251
02252 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340},{ 340, 340, 340, 340, 340},

02253 {{ 340, 340, 340, 340, 340, 340},{ 340, 200, 150, 0, 210},{ 340, 200, 60, -130, 90},{ 340, 200, 70,
      -50, 170},{ 340, 200, 200, 200, 200}},
02254 {{ 340, 340, 340, 340, 340},{ 340, 200,
                                           70, -120, 100}, { 340, 200, 60, -30, 80}, { 340, 200, 200,
     200, 200},{ 340, 200, 60, -30, 80}},
02255 {{ 340, 340, 340, 340, 340}, {340, 200, 70, -50, 170}, { 340, 200, 200, 200, 200}, { 340, 200, 80, -70, 140}, { 340, 200, -50, -350, 50}},
02256 {{ 340, 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 200, 60, -30, 80}, { 340, 200, 50, -250, 150}, { 340, 200, -20, -30, 0}}
02257 }
02258 },
02259 /* GC....UG */
02260 11
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02266 },
02267
-30, 200},{ 340, 200, 200, 200, 200}},
02270 {{ 340, 340, 340, 340, 340},{ 340, 210, 180, 70, 200},{ 340, 270, 180, 170, 200},{ 340, 200, 200,
     200, 200},{ 340, 270, 180, 170, 200}},
02271 {{ 340, 340, 340, 340, 340},{ 340, 110, 80, -30, 200},{ 340, 200, 200, 200, 200},{ 340, 150, 120,
                     30, -100, -30, 200}},
     10, 200},{ 340,
02272 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 150, 140, 200},{ 340, 160, 30,
     100, 200},{ 340, 230, 100, 170, 200}}
02273 },
02274 {
02275 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
```

```
02276 {{ 340, 340, 340, 340, 340, 40, 190, 250, 200, 250},{ 340, 140, 140, 200, 150},{ 340, 80, 180,
         200, 190},{ 340, 200, 200, 200, 200}},
02277 {{ 340, 340, 340, 340, 340, 40, 190, 190, 190, 200, 190}, { 340, 190, 190, 200, 190}, { 340, 200, 200,
        200, 200},{ 340, 190, 190, 200, 190}},
02278 {{ 340, 340, 340, 340, 340},{ 340, 80, 180, 200, 190},{ 340, 200, 200, 200, 200},{ 340, 120, 180, 200, 190},{ 340, -90, 10, 200, 10}},
02279 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 160, 160, 200, 160},{ 340, 30, 130,
         200, 140},{ 340, 100, 100, 200, 110}}
02280 },
02281
02282 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340), { 340, 340, 340, 340}, 02283 {{ 340, 340, 340, 340, 340}, 10
                                                            10, 200, 180, 40},{ 340, -30, 200, 130, -110},{ 340, -90, 200,
               10},{ 340, 200, 200, 200, 200}},
02284 {{ 340, 340, 340, 340, 340},{ 340},
                                                            10, 200, 180, -60}, { 340, 110, 200, 240, 40}, { 340, 200, 200,
         200, 200},{ 340, 110, 200, 240,
                                                       40}},
02285 {{ 340, 340, 340, 340, 340},{ 340, -90, 200, 70, 10},{ 340, 200, 200, 200, 200},{ 340, -50, 200,
110, -30), { 340, -90, 200, 0, -350}, 
02286 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 80, 200, 210, 10}, { 340, 40, 200,
         120, -220}, { 340, 110, 200, 190, 30}}
02287 },
02288 (
340, 340},{ 340, 340, 340, 340, 340},
02290 {{ 340, 340, 340, 340},{ 340, 200, 150,
                                                                          0, 210}, { 340, 200, 40, -150, 70}, { 340, 200, 90,
         -30, 190},{ 340, 200, 200, 200, 200}},
02291 {{ 340, 340, 340, 340, 340},{ 340, 200,
                                                                  90, -100, 110}, { 340, 200, 90, 0, 110}, { 340, 200, 200,
        200, 200},{ 340, 200, 90, 0, 110}},
02292 {{ 340, 340, 340, 340}, 340}, 340}, 200, 90, -30, 190}, { 340, 200, 200, 200, 200}, { 340, 200, 80, -70, 150}, { 340, 200, -90, -390, 10}},
02293 {{ 340, 340, 340, 340, 340, 340}, { 340, 200, 200, 200}, { 340, 200, 60, -30, 80}, { 340, 200, 40, -260, 140}, { 340, 200, 0, -10, 30}}
02294 }
02295 },
02296 /* GC...AU */
02297 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
02301 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}}
02303 },
02304
340, 340},{ 340, 340, 340, 340, 340}},
02306 {{ 340, 340, 340, 340, 340},{ 340, 210, 180, 70, 200},{ 340, 190, 160, 50, 200},{ 340, 90, 60,
         -50, 200},{ 340, 200, 200, 200, 200}},
02307 {{ 340, 340, 340, 340, 340},{ 340, 200, 170, 60, 200},{ 340, 240, 150, 140, 200},{ 340, 200, 200,
         200, 200},{ 340, 240, 150, 140, 200}},
02308 {{ 340, 340, 340, 340, 340},{ 340},
                                                            90.
                                                                  60, -50, 200}, { 340, 200, 200, 200, 200}, { 340, 140, 110,
0, 200},{ 340, 70, -60, 10, 200}},
02309 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 150, 140, 200},{ 340, 170, 40, 110, 200},{ 340, 200, 70, 150, 200}}
02310 },
02311
200, 170},{ 340, 200, 200, 200, 200}},
02314 {{ 340, 340, 340, 340, 340, 340, 470, 170, 200, 180},{ 340, 160, 160, 200, 160},{ 340, 200, 200,
         200, 200},{ 340, 160, 160, 200, 160}},
02315 {{ 340, 340, 340, 340, 340},{ 340, 60, 160, 200, 170},{ 340, 200, 200, 200, 200},{ 340, 120, 180, 200, 180},{ 340, -50, 50, 200, 50}},
200, 180},{ 340, -50, 50, 200, 50}},
02316 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 160, 160, 200, 160},{ 340, 40, 140,
         200, 150},{ 340, 80, 80, 200, 80}}
02317 },
02318
02319 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
02320 {{ 340, 340, 340, 340, 340}, { 340},
                                                           10, 200, 180, 40}, { 340, -10, 200, 150, -90}, { 340, -110, 200,
         50, -10}, { 340, 200, 200, 200, 200}},
02321 {{ 340, 340, 340, 340, 340},{ 340,
                                                             0, 200, 160, -80}, { 340, 80, 200, 210, 10}, { 340, 200, 200,
         200, 200},{ 340, 80, 200, 210,
                                                       10}},
02322 \ \{ \ 340, \ 340, \ 340, \ 340, \ 340, \ 40, \ -110, \ 200, \ 50, \ -10 \}, \{ \ 340, \ 200, \ 200, \ 200, \ 200, \ 200, \ 340, \ -60, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 2000, \ 2000,
110, -30}, { 340, -50, 200, 40, -310}, 
02323 {{ 340, 340, 340, 340, 340, 340, 200, 200, 200, 200}, { 340, 80, 200, 210, 10}, { 340, 50, 200, 130, -210}, { 340, 80, 200, 170, 10}}
02324 },
02325
340, 340},{ 340, 340, 340, 340, 340},
02327 {{ 340, 340, 340, 340, 340},{ 340, 200, 150,
                                                                          0, 210}, { 340, 200, 60, -130, 90}, { 340, 200, 70,
```

```
-50, 170},{ 340, 200, 200, 200, 200}},
02328 {{ 340, 340, 340, 340, 340},{ 340, 200,
                                  70, -120, 100}, { 340, 200, 60, -30, 80}, { 340, 200, 200,
    200, 200}, { 340, 200, 60, -30, 80}},
02329 {{ 340, 340, 340, 340, 340},{ 340, 200,
                                  70, -50, 170}, { 340, 200, 200, 200, 200}, { 340, 200, 80,
-70, 140},{ 340, 200, -50, -350, 50}},
02330 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200},{ 340, 200, 60, -30, 80},{ 340, 200, 50,
    -250, 150},{ 340, 200, -20, -30,
                              0 } }
02331 }
02332 },
02333 /* GC....UA */
02334 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
02340 },
02341 +
02343 {{ 340, 340, 340, 340, 340},{ 340, 210, 180, 70, 200},{ 340, 170, 140, 30, 200},{ 340, 110, 80,
     -30, 200},{ 340, 200, 200, 200, 200}},
02344 {{ 340, 340, 340, 340, 340},{ 340, 210, 180, 70, 200},{ 340, 270, 180, 170, 200},{ 340, 200, 200,
    200, 200},{ 340, 270, 180, 170, 200}}
02345 {{ 340, 340, 340, 340, 340},{ 340, 110, 80, -30, 200},{ 340, 200, 200, 200, 200},{ 340, 150, 120,
    10, 200}, { 340, 30, -100, -30, 200}},
02346 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 150, 140, 200},{ 340, 160, 30,
    100, 200},{ 340, 230, 100, 170, 200}}
02347 },
02348
340, 3401, { 340, 340, 340, 340, 340, 340}, .
02350 {{ 340, 340, 340, 340, 340}, { 340, 190, 250, 200, 250}, { 340, 140, 140, 200, 150}, { 340, 80, 180,
    200, 190},{ 340, 200, 200, 200, 200}},
02351 {{ 340, 340, 340, 340, 340},{ 340, 190, 190, 200, 190},{ 340, 190, 190, 200, 190},{ 340, 200, 200,
    200, 200},{ 340, 190, 190, 200, 190}},
02352 {{ 340, 340, 340, 340, 340},{ 340, 80, 180, 200, 190},{ 340, 200, 200, 200, 200},{ 340, 120, 180, 200, 190},{ 340, 340, 340, 340, 340, 10, 200, 200, 200},{ 340, 160, 160, 200, 160},{ 340, 30, 130,
    200, 140},{ 340, 100, 100, 200, 110}}
02354 },
02355
10, 200, 180, 40}, { 340, -30, 200, 130, -110}, { 340, -90, 200,
        10},{ 340, 200, 200, 200, 200}},
    70,
02358 {{ 340, 340, 340, 340, 340},{ 340},
                               10, 200, 180, -60}, { 340, 110, 200, 240, 40}, { 340, 200, 200,
    200, 200},{ 340, 110, 200, 240, 40}},
02359 {{ 340, 340, 340, 340}, { 340}, { 340, -90, 200, 70, 10}, { 340, 200, 200, 200, 200}, { 340, -50, 200, 110, -30}, { 340, -90, 200, 0, -350}},
02360 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 80, 200, 210, 10}, { 340, 40, 200, 120, -220}, { 340, 110, 200, 190, 30}}
02361 },
02362
340, 340},{ 340, 340, 340, 340, 340}},
02364 {{ 340, 340, 340, 340, 340}, { 340, 200, 150,
                                      0, 210}, { 340, 200, 40, -150, 70}, { 340, 200, 90,
     -30, 190},{ 340, 200, 200, 200, 200}},
02365 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200}, { 340, 200, 90, 0, 110}},
                                  90, -100, 110}, { 340, 200, 90, 0, 110}, { 340, 200, 200,
                          0, 110}},
02366 {{ 340, 340, 340, 340, 340},{ 340, 200,
                                  90, -30, 190},{ 340, 200, 200, 200, 200},{ 340, 200, 80,
-70, 150},{ 340, 200, -90, -390, 10}},
02367 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200},{ 340, 200, 60, -30, 80},{ 340, 200, 40,
    -260, 140, { 340, 200, 0, -10, 30}}
02369 },
02370 /* GC....?? */
02371 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
02377 },
02378 {
```

```
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02384 },
02385
02386 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
   340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02391 },
02392 4
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
02396 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}}
02398 },
02399
02400 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
02401 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
   340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
02404 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}}
02405
02406
02407 },
02408 { /* noPair */ {{{{0}}}}},
02409 /* GU....CG */
02410 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02416 },
02417
340, 340},{ 340, 340, 340, 340, 340}},
02419 {{ 340, 340, 340, 340, 340},{ 340, 200, 190, 80, 200},{ 340, 190, 180, 70, 200},{ 340, 100, 90,
   -20, 200},{ 340, 200, 200, 200, 200}},
02420 {{ 340, 340, 340, 340, 340},{ 340, 240, 220, 110, 200},{ 340, 280, 210, 200, 200},{ 340, 200, 200, 200}, 340, 270, 190, 180, 200}},
02421 {{ 340, 340, 340, 340, 340}, { 340, 100,
                           90, -20, 200}, { 340, 200, 200, 200, 200}, { 340, 180, 160,
             30, -80,
   50, 200},{ 340,
                   -10, 200}},
02422 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 270, 190, 180, 200},{ 340, 180, 70,
   140, 200},{ 340, 220, 100, 180, 200}}
02423 },
02424 {
02425 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
02426 {{ 340, 340, 340, 340, 340},{ 340, 180, 230, 200, 230},{ 340, 170, 160, 200, 160},{ 340,
   200, 170},{ 340, 200, 200, 200, 200}},
02427 {{ 340, 340, 340, 340, 340},{ 340, 210, 210, 200, 210},{ 340, 200, 190, 200, 190},{ 340, 200, 200,
   200, 200},{ 340, 180, 180, 200, 180}},
02428 {{ 340, 340, 340, 340, 340},{ 340, 80, 170, 200, 170},{ 340, 200, 200, 200, 200},{ 340, 150, 210, 200, 210},{ 340, -90, 0, 200, 0}},
02429 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200}, { 340, 180, 180, 200, 180}, { 340, 60, 150, 200, 150}, { 340, 90, 90, 200, 90}}
02430 },
02431
```

```
340, 340},{ 340, 340, 340, 340, 340}},
02433 {{ 340, 340, 340, 340, 340},{ 340, 80, 200, 130, 160},{ 340, 70, 200, 120, 50},{ 340, -20, 200,
        30, 140},{ 340, 200, 200, 200, 200}},
02434 {{ 340, 340, 340, 340, 340},{ 340, 110, 200, 170, 90},{ 340, 200, 200, 210, 180},{ 340, 200, 200,
        200, 200},{ 340, 180, 200, 200, 160}},
02435 {{ 340, 340, 340, 340, 340, 40, 340, -20, 200, 30, 140}, { 340, 200, 200, 200, 200}, { 340, 50, 200,
        110, 130}, { 340, -10, 200, -40, -210}},
02436 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 180, 200, 200, 160},{ 340, 140, 200,
        110, -60},{ 340, 180, 200, 150, 160}}
02437 },
02438 {
40, 180}, { 340, 200, 200, 200, 200}},
02441 {{ 340, 340, 340, 340, 340}, { 340, 200, 210, 200, 200}, { 340, 200, 180, 70, 100}},
                                                                     0, 130},{ 340, 200, 190, 80, 110},{ 340, 200, 200,
02442 {{ 340, 340, 340, 340}, 340}, { 340, 200, 170, 40, 180}, { 340, 200, 200, 200, 200}, { 340, 200, 210, 40, 170}, { 340, 200, 0, -310, 0}},
02443 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 180, 70, 100},{ 340, 200, 150,
         -160, 160}, { 340, 200, 90, 60, 10}}
02444 }
02445 }.
02446 /* GU...GC */
02447 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02450 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
        340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02453 }.
02454
02456 \ \{ \{ \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 210, \ 200, \ 90, \ 200 \}, \{ \ 340, \ 190, \ 170, \ 60, \ 200 \}, \{ \ 340, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, \ 10, 
        -110, 200},{ 340, 200, 200, 200, 200}}
02457 {{ 340, 340, 340, 340, 340},{ 340, 180, 170, 60, 200},{ 340, 250, 170, 160, 200},{ 340, 200, 200, 200, 200},{ 340, 150, 70, 70, 200}},
02458 {{ 340, 340, 340, 340, 340},{ 340},
                                                              60, -50, 200}, { 340, 200, 200, 200, 200}, { 340, 180, 160,
                                                        70.
        50, 200},{ 340, 0, -120, -50, 200}},
02459 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 250, 180, 170, 200},{ 340, 40, -80,
        -10, 200},{ 340, 210, 100, 170, 200}}
02460 },
02461 {
02463 {{ 340, 340, 340, 340, 340},{ 340, 190, 240, 200, 240},{ 340, 160, 160, 200, 160},{ 340, -10, 80,
        200, 80},{ 340, 200, 200, 200, 200}},
02464 {{ 340, 340, 340, 340, 340},{ 340, 160, 150, 200, 150},{ 340, 160, 160, 200, 160},{ 340, 200, 200,
200, 200},{ 340, 60, 60, 200, 60}},
02465 {{ 340, 340, 340, 340, 340},{ 340, 50}}
                                                        50, 140, 200, 140}, { 340, 200, 200, 200, 200}, { 340, 150, 210,
        200, 210},{ 340, -130, -30, 200, -30}},
02466 {{ 340, 340, 340, 340, 340}, 340}, { 340, 200, 200, 200, 200}, { 340, 170, 160, 200, 160}, { 340, -90, 10,
        200, 10},{ 340, 90, 80, 200, 80}}
02467 },
02468 {
02469 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
02470 {{ 340, 340, 340, 340, 340}, { 340,
                                                        90, 200, 140, 170}, { 340, 60, 200, 120, 40}, { 340, -110, 200,
        -60, 50},{ 340, 200, 200, 200, 200}},
02471 {{ 340, 340, 340, 340, 340},{ 340,
                                                       60, 200, 110, 40},{ 340, 160, 200, 180, 140},{ 340, 200, 200,
        200, 200},{ 340,
                               70, 200, 80,
                                                   50}},
02472 {{ 340, 340, 340, 340, 340}, { 340, -50, 200,
                                                                     0, 110}, { 340, 200, 200, 200, 200}, { 340, 50, 200,
110, 130},{ 340, -50, 200, -70, -250}},
02473 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 170, 200, 180, 150},{ 340, -10, 200,
         -30, -210},{ 340, 170, 200, 140, 150}}
02474 },
02475
80},{ 340, 200, 200, 200, 200}},
02478 {{ 340, 340, 340, 340, 340},{ 340, 200, 150, -60, 70},{ 340, 200, 160, 50, 80},{ 340, 200, 200,
200, 200},{ 340, 200, 60, -50, -20}},
02479 {{ 340, 340, 340, 340, 340},{ 340, 200, 140, 10, 150},{ 340, 200, 200, 200, 200},{ 340, 200, 210,
        40, 170}, { 340, 200, -30, -350, -30}},
02480 {{ 340, 340, 340, 340}, 340}, { 340, 200, 200, 200, 200}, { 340, 200, 160, 50, 80}, { 340, 200, 10, -310, 10}, { 340, 200, 80, 50, 0}}
02481 }
02482 },
02483 /* GU....GU */
02484 {{
```

```
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02490 }.
02491 {
340, 340}, { 340, 340, 340, 340, 340}},
02493 {{ 340, 340, 340, 340, 340},{ 340, 280, 260, 150, 200},{ 340, 250, 240, 130, 200},{ 340, 150, 140,
     30, 200},{ 340, 200, 200, 200, 200}},
02494 {{ 340, 340, 340, 340, 340},{ 340, 260, 250, 140, 200},{ 340, 310, 230, 220, 200},{ 340, 200, 200, 200, 200, 340, 310, 230, 220, 200}},
02495 {{ 340, 340, 340, 340, 340, 340},{ 340, 150, 140, 30, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 190,
     80, 200},{ 340, 130, 20,
                          90, 200}},
02496 {{ 340, 340, 340, 340, 340}, {340, 200, 200, 200}, { 340, 310, 230, 220, 200}, { 340, 230, 120, 190, 200}, { 340, 270, 150, 220, 200}}
02497 },
02498 {
340, 340},{ 340, 340, 340, 340, 340}},
02500 {{ 340, 340, 340, 340, 340},{ 340, 250, 310, 200, 310},{ 340, 230, 220, 200, 220},{ 340, 130, 220,
     200, 220},{ 340, 200, 200, 200, 200}},
02501 {{ 340, 340, 340, 340, 340},{ 340, 240, 230, 200, 230},{ 340, 220, 220, 200, 220},{ 340, 200, 200,
     200, 200}, { 340, 220, 220, 200, 220}},
02502 {{ 340, 340, 340, 340, 340},{ 340, 130, 220, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 180, 240,
     200, 240}, { 340,
                   10, 100, 200, 100}},
02503 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 220, 200, 220},{ 340, 110, 200,
     200, 200},{ 340, 140, 140, 200, 140}}
02504 },
02505 +
02506 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
02507 {{ 340, 340, 340, 340, 340, 40, 150, 200, 210, 230},{ 340, 130, 200, 180, 110},{ 340, 30, 200,
     80, 190}, { 340, 200, 200, 200, 200}},
02508 {{ 340, 340, 340, 340, 340},{ 340, 140, 200, 190, 120},{ 340, 220, 200, 240, 200},{ 340, 200, 200, 200},{ 340, 220, 200, 240, 200}},
02509 {{ 340, 340, 340, 340, 340},{ 340, 30, 200, 80, 190},{ 340, 200, 200, 200, 200},{ 340, 80, 200, 140, 160},{ 340, 90, 200, 70, -110}},
02510 {{ 340, 340, 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 200, 240, 200},{ 340, 190, 200, 200, 200}
     160, -10},{ 340, 220, 200, 200, 200}}
02511 },
02512
340, 340}, { 340, 340, 340, 340, 340}},
02514 {{ 340, 340, 340, 340, 340},{ 340, 200, 310, 130, 270},{ 340, 200, 220, 10, 140},{ 340, 200, 220,
     90, 220},{ 340, 200, 200, 200, 200}},
02515 {{ 340, 340, 340, 340, 340},{ 340, 200, 230, 20, 150},{ 340, 200, 220, 100, 140},{ 340, 200, 200,
     200, 200},{ 340, 200, 220, 100, 140}},
02516 {{ 340, 340, 340, 340, 340}, { 340, 200, 220, 90, 220}, { 340, 200, 200, 200, 200}, { 340, 200, 240,
     70, 200}, { 340, 200, 100, -210, 110}},
02517 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 220, 100, 140},{ 340, 200, 200,
     110, 200}, { 340, 200, 140, 110, 60}}
02518 }
02519 },
02520 /* GU....UG */
02521 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02527 },
02528 {
02529 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
02530 {{ 340, 340, 340, 340, 340, 340, 40, 280, 260, 150, 200},{ 340, 230, 220, 110, 200},{ 340, 170, 160,
     50, 200},{ 340, 200, 200, 200, 200}},
02531 {{ 340, 340, 340, 340, 340},{ 340, 280, 260, 150, 200},{ 340, 340, 260, 250, 200},{ 340, 340, 260, 250, 200}},
02532 {{ 340, 340, 340, 340, 340},{ 340, 170, 160, 50, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 200,
     90, 200},{ 340, 100, -20,
                          50, 200}},
02533 {{ 340, 340, 340, 340}, 340}, {340, 200, 200, 200, 200}, {340, 310, 230, 220, 200}, {340, 220, 110, 180, 200}, {340, 290, 180, 250, 200}}
02534 },
02535
```

```
340, 340},{ 340, 340, 340, 340, 340}},
02537 {{ 340, 340, 340, 340, 340},{ 340, 250, 310, 200, 310},{ 340, 210, 200, 200, 200},{ 340, 150, 240,
     200, 240},{ 340, 200, 200, 200, 200}},
02538 {{ 340, 340, 340, 340, 340},{ 340, 250, 250, 200, 250},{ 340, 250, 250, 200, 250},{ 340, 200, 200,
     200, 200}, { 340, 250, 250, 200, 250}}
02539 {{ 340, 340, 340, 340, 340},{ 340, 150, 240, 200, 240},{ 340, 200, 200, 200, 200},{ 340, 190, 240, 200, 240},{ 340, -30, 70, 200, 70}},
02540 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 220, 200, 220},{ 340, 100, 190,
     200, 190},{ 340, 170, 160, 200, 160}}
02541 },
02542 {
02544 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 230},{ 340, 110, 200, 160, 90},{ 340, 50, 200,
     100, 210},{ 340, 200, 200, 200, 200}},
02545 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 130},{ 340, 250, 200, 270, 230},{ 340, 200, 200,
     200, 200},{ 340, 250, 200, 270, 230}},
02546 {{ 340, 340, 340, 340, 340}, { 340, 50, 140, 170}, { 340, 50, 200, 30, -150}},
                                    50, 200, 100, 210}, { 340, 200, 200, 200, 200}, { 340, 90, 200,
02547 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 200, 240, 200},{ 340, 180, 200,
     150, -20}, { 340, 250, 200, 220, 230}}
02548 },
02549
02550 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
02551 {{ 340, 340, 340, 340, 340},{ 340, 200, 310, 130, 270},{ 340, 200, 200, -10, 120},{ 340, 200, 240,
     110, 240},{ 340, 200, 200, 200, 200}},
02552 {{ 340, 340, 340, 340, 340},{ 340, 200, 250, 30, 170},{ 340, 200, 250, 130, 170},{ 340, 200, 200,
     200, 200},{ 340, 200, 250, 130, 170}}
02553 {{ 340, 340, 340, 340, 340},{ 340, 200, 240, 110, 240},{ 340, 200, 200, 200, 200},{ 340, 200, 240, 70, 200},{ 340, 200, 70, -250, 70}},
     76, 200], (340, 340, 740, 740), (340, 200, 200, 200, 200), (340, 200, 220, 100, 140), (340, 200, 190, -120, 190), (340, 200, 160, 130, 80)}
02554 {{
02555 }
02556 },
02557 /* GU...AU */
02558 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02564 },
02565 {
02567 {{ 340, 340, 340, 340, 340},{ 340, 280, 260, 150, 200},{ 340, 250, 240, 130, 200},{ 340, 150, 140,
     30, 200},{ 340, 200, 200, 200, 200}},
02568 {{ 340, 340, 340, 340, 340},{ 340, 260, 250, 140, 200},{ 340, 310, 230, 220, 200},{ 340, 200, 200, 200},{ 340, 310, 230, 220, 200}},
02569 {{ 340, 340, 340, 340, 340}, { 340, 150, 140, 30, 200}, { 340, 200, 200, 200, 200}, { 340, 210, 190,
     80, 200}, { 340, 130, 20,
                            90, 200}},
02570 {{ 340, 340, 340, 340, 340, 340, 400, 200, 200, 200, 200},{ 340, 310, 230, 220, 200},{ 340, 230, 120,
     190, 200},{ 340, 270, 150, 220, 200}}
02571 },
02572 {
02574 {{ 340, 340, 340, 340, 340},{ 340, 250, 310, 200, 310},{ 340, 230, 220, 200, 220},{ 340, 130, 220,
     200, 220},{ 340, 200, 200, 200, 200}},
02575 {{ 340, 340, 340, 340, 340},{ 340, 240, 230, 200, 230},{ 340, 220, 220, 200, 220},{ 340, 200, 200,
     200, 200}, { 340, 220, 220, 200, 220}},
02576 {{ 340, 340, 340, 340, 340},{ 340, 130, 220, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 180, 240, 200, 240},{ 340, 10, 100, 200, 100}},
02577 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 220, 220, 200, 220}, { 340, 110, 200,
     200, 200},{ 340, 140, 140, 200, 140}}
02578 },
02579
80, 190}, { 340, 200, 200, 200, 200}},
02582 {{ 340, 340, 340, 340, 340},{ 340, 140, 200, 190, 120},{ 340, 220, 200, 240, 200},{ 340, 200, 200,
     200, 200},{ 340, 220, 200, 240, 200}},
02583 {{ 340, 340, 340, 340, 340},{ 340,
                                    30, 200, 80, 190}, { 340, 200, 200, 200, 200}, { 340, 80, 200,
140, 160],{ 340, 90, 200, 70, -110}},
02584 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200},{ 340, 220, 200, 240, 200},{ 340, 190, 200,
     160, -10}, { 340, 220, 200, 200, 200}}
02585 },
02586 {
02587 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
```

```
02588 {{ 340, 340, 340, 340, 340, 340, 40, 200, 310, 130, 270},{ 340, 200, 220, 10, 140},{ 340, 200, 220,
90, 220}, { 340, 200, 200, 200, 200}},
02589 {{ 340, 340, 340, 340, 340}, { 340, 200, 230, 20, 150}, { 340, 200, 220, 100, 140}, { 340, 200, 200,
    200, 200},{ 340, 200, 220, 100, 140}},
02590 {{ 340, 340, 340, 340, 340},{ 340, 200, 220, 90, 220},{ 340, 200, 200, 200, 200},{ 340, 200, 240,
     70, 200}, { 340, 200, 100, -210, 110}},
02591 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 220, 100, 140},{ 340, 200, 200,
     -110, 200},{ 340, 200, 140, 110,
02592 }
02593 },
02594 /* GU....UA */
02595 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02601 },
02602
340, 340},{ 340, 340, 340, 340, 340}},
02604 {{ 340, 340, 340, 340, 340, 340, 40, 280, 260, 150, 200},{ 340, 230, 220, 110, 200},{ 340, 170, 160,
    50, 200},{ 340, 200, 200, 200, 200}},
02605 {{ 340, 340, 340, 340, 340},{ 340, 280, 260, 150, 200},{ 340, 340, 260, 250, 200},{ 340, 340, 260, 250, 200}},
02606 {{ 340, 340, 340, 340, 340}, { 340, 170, 160, 50, 200}, { 340, 200, 200, 200, 200}, { 340, 210, 200, 200, 200}
    90, 200}, { 340, 100, -20,
                         50, 200}},
02607 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 230, 220, 200},{ 340, 220, 110,
    180, 200},{ 340, 290, 180, 250, 200}}
02608 },
02609 +
02611 {{ 340, 340, 340, 340, 340, 340, 40, 250, 310, 200, 310},{ 340, 210, 200, 200, 200},{ 340, 150, 240,
     200, 240},{ 340, 200, 200, 200, 200}},
02612 {{ 340, 340, 340, 340, 340},{ 340, 250, 250, 200, 250},{ 340, 250, 250, 200, 250},{ 340, 200, 200, 200, 200},{ 340, 250, 250, 250, 200, 250}},
02613 {{ 340, 340, 340, 340, 340},{ 340, 150, 240, 200, 240},{ 340, 200, 200, 200, 200},{ 340, 190, 240, 200, 240},{ 340, -30, 70, 200, 70}},
02614 {{ 340, 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 220, 200, 220},{ 340, 100, 190,
    200, 190},{ 340, 170, 160, 200, 160}}
02615 },
02616
340, 340}, { 340, 340, 340, 340, 340}},
02618 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 230},{ 340, 110, 200, 160, 90},{ 340, 50, 200,
    100, 210},{ 340, 200, 200, 200, 200}},
02619 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 130},{ 340, 250, 200, 270, 230},{ 340, 200, 200,
    200, 200},{ 340, 250, 200, 270, 230}},
                                 50, 200, 100, 210}, { 340, 200, 200, 200, 200}, { 340, 90, 200,
02620 {{ 340, 340, 340, 340, 340},{ 340,
140, 170], { 340, 50, 200, 30, -150}},
02621 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 220, 200, 240, 200}, { 340, 180, 200,
     150, -20}, { 340, 250, 200, 220, 230}}
02622 },
02623
110, 240},{ 340, 200, 200, 200, 200}},
02626 {{ 340, 340, 340, 340, 340},{ 340, 200, 250, 30, 170},{ 340, 200, 250, 130, 170},{ 340, 200, 200,
    200, 200},{ 340, 200, 250, 130, 170}},
02627 {{ 340, 340, 340, 340, 340},{ 340, 200, 240, 110, 240},{ 340, 200, 200, 200, 200},{ 340, 200, 240, 70, 200},{ 340, 200, 70, -250, 70}},
02628 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 220, 100, 140},{ 340, 200, 190,
     -120, 190},{ 340, 200, 160, 130, 80}}
02629 }
02630 },
02631 /* GU....?? */
02632 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
02636 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340},
    340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02638 },
02639
```

```
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
02642 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340},{ 340, 340, 340},
   340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02645 },
02646 {
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
02652 },
02653
02654 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02657 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}}
02659 },
02660
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340},{ 340, 340, 340, 340, 340}}
02666 }
02667
02668 }
02669 { /* noPair */ {{{{0}}}}},
02670 /* UG...CG */
02671 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02677 },
02678 {
02679 {{ 340,
        340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}
   340, 340},{ 340, 340, 340, 340, 340}}
02680 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 100, 200},{ 340, 190, 190, 90, 200},{ 340, 100, 100,
   0, 200},{ 340, 200, 200, 200, 200}},
02681 {{ 340, 340, 340, 340, 340}, 340}, {340, 240, 240, 130, 200}, {340, 280, 220, 220, 200}, {340, 200, 200,
   200, 200}, { 340, 270, 210, 200, 200}},
02682 {{ 340, 340, 340, 340, 340},{ 340, 100, 100,
                              0, 200},{ 340, 200, 200, 200, 200},{ 340, 180, 180,
   70, 200}, { 340, 30, -70,
                   10, 200}},
02683 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 270, 210, 200, 200},{ 340, 180, 80,
   160, 200},{ 340, 220, 120, 190, 200}}
02684 }.
02685
340, 340}, { 340, 340, 340, 340, 340}},
02687 {{ 340, 340, 340, 340, 340},{ 340, 160, 260, 200, 230},{ 340, 150, 190, 200, 160},{ 340, 60, 200,
   200, 170},{ 340, 200, 200, 200, 200}},
02688 {{ 340, 340, 340, 340, 340}, 340, 190, 240, 200, 210}, { 340, 180, 220, 200, 190}, { 340, 200, 200, 200, 200, 340, 160, 210, 200, 180}}, 02689 {{ 340, 340, 340, 340, 340}, { 340, 60, 200, 200, 170}, { 340, 200, 200, 200}, { 340, 340, 340, 340}, { 340, 60, 200, 200, 170}, { 340, 200, 200, 200, 200}, { 340, 130, 240, 200, 210}, { 340, -110, 30, 200, 0}},
200, 210),{ 340, -110, 30, 200, 0}},
02690 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 160, 210, 200, 180},{ 340, 40, 180,
   200, 150},{ 340, 70, 120, 200, 90}}
02691 },
02692 {
```

```
340, 340},{ 340, 340, 340, 340, 340}},
02694 {{ 340, 340, 340, 340, 340},{ 340, 100, 200, 140, 150},{ 340, 90, 200, 130, 40},{ 340,
     40, 130},{ 340, 200, 200, 200, 200}},
02695 {{ 340, 340, 340, 340, 340},{ 340, 130, 200, 170, 80},{ 340, 220, 200, 220, 170},{ 340, 200, 200, 200, 200, 200, 200, 200, 150}},
02696 {{ 340, 340, 340, 340, 340}, { 340, 0, 110, 120}, { 340, 10, 200, -30, -220}},
                                      0, 200, 40, 130},{ 340, 200, 200, 200, 200},{ 340, 70, 200,
02697 {{ 340, 340, 340, 340, 340, 340, 40, 200, 200, 200, 200, 200}, { 340, 200, 200, 200, 150}, { 340, 160, 200,
     120, -70},{ 340, 190, 200, 150, 150}}
02698 }.
02699 +
02701 {{ 340, 340, 340, 340, 340},{ 340, 200, 260, 20, 220},{ 340, 200, 190, -90, 110},{ 340, 200, 200,
0, 200},{ 340, 200, 200, 200, 200},

02702 {{ 340, 340, 340, 340, 340},{ 340, 200, 240, -40, 150},{ 340, 200, 220, 40, 140},{ 340, 200, 200, 200, 200, 200, 340, 340, 340, 340, 340, 340, 200, 200, 0, 200},{ 340, 340, 340, 340, 340, 340, 340, 200, 200, 0, 200},{ 340, 200, 200, 200, 200},{ 340, 200, 240, 200, 200},
     0, 190},{ 340, 200, 30, -350,
                                 30}},
02704 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 210, 30, 120},{ 340, 200, 180,
     -200, 180},{ 340, 200, 120, 20, 30}}
02705 }
02706 },
02707 /* UG....GC */
02708 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02714 },
340, 340},{ 340, 340, 340, 340, 340}},
02717 {{ 340, 340, 340, 340, 340},{ 340, 210, 210, 110, 200},{ 340, 190, 190, 80, 200},{ 340, 10, 10,
     -90, 200},{ 340, 200, 200, 200, 200}},
02718 {{ 340, 340, 340, 340, 340},{ 340, 180, 180, 80, 200},{ 340, 250, 190, 180, 200},{ 340, 200, 200, 200},{ 340, 150, 90, 90, 200}},
02719 {{ 340, 340, 340, 340, 340}, { 340,
                                     70,
                                         70, -30, 200}, { 340, 200, 200, 200, 200}, { 340, 180, 180,
     70, 200},{ 340,
                     0, -100, -30, 200}},
02720 {{ 340, 340, 340, 340, 340, 40, -60,
     10, 200},{ 340, 210, 110, 190, 200}}
02721 }.
02722 {
340, 340},{ 340, 340, 340, 340, 340}},
02724 {{ 340, 340, 340, 340, 340},{ 340, 170, 270, 200, 240},{ 340, 140, 190, 200, 160},{ 340, -30, 110,
     200,
          80},{ 340, 200, 200, 200, 200}},
02725 {{ 340, 340, 340, 340, 340},{ 340, 140, 180, 200, 150},{ 340, 140, 190, 200, 160},{ 340, 200, 200,
     200, 200}, { 340, 40, 90, 200,
                                   60}},
02726 {{ 340, 340, 340, 340, 340}, { 340,
                                     30, 170, 200, 140}, { 340, 200, 200, 200, 200}, { 340, 130, 240,
     200, 210},{ 340, -150,
                           0, 200, -30}},
02727 {{ 340, 340, 340, 340, 340, 340, 40}, { 340, 200, 200, 200, 200}, { 340, 150, 190, 200, 160}, { 340, -110, 40, 200, 10}, { 340, 70, 110, 200, 80}}
02728 },
02729 {
340, 340},{ 340, 340, 340, 340, 340}},
02731 {{ 340, 340, 340, 340, 340},{ 340, 110, 200, 150, 160},{ 340, 80, 200, 120, 30},{ 340, -90, 200,
     -50,
          40},{ 340, 200, 200, 200, 200}},
02732 {{ 340, 340, 340, 340, 340},{ 340, 80, 200, 120, 30},{ 340, 180, 200, 180, 130},{ 340, 200, 200, 200, 200, 200},{ 340, 90, 200, 80, 40}},
02733 {{ 340, 340, 340, 340, 340},{ 340, -30, 200, 10, 100},{ 340, 200, 200, 200, 200},{ 340, 70, 200,
     110, 120},{ 340, -30, 200,
                              -70, -260}},
02734 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 190, 200, 190, 140},{ 340, 10, 200,
     -30, -220},{ 340, 190, 200, 150, 140}}
02735 },
02736 {
02737 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
02738 {{ 340, 340, 340, 340, 340, 340, 40, 200, 270, 30, 230}, { 340, 200, 190, -90, 100}, { 340, 200, 110,
      -90, 110},{ 340, 200, 200, 200, 200}},
02739 {{ 340, 340, 340, 340, 340},{ 340, 200, 180, -100, 100},{ 340, 200, 190, 10, 100},{ 340, 200, 200, 200, 200, { 340, 200, 90, -90, 0}},
02740 {{ 340, 340, 340, 340, 340},{ 340, 200, 170, -30, 170},{ 340, 200, 200, 200, 200},{ 340, 200, 240,
     0, 190},{ 340, 200,
                        0, -390, -10}},
02741 {{ 340, 340, 340, 340, 340}, {\ 340, 200, 200, 200, 200}, {\ 340, 200, 190, 10, 110}, {\ 340, 200, 40, -350, 30}, {\ 340, 200, 110, 10, 30}}
     -350,
02742 }
02743 },
02744 /* UG....GU */
```

```
02745 {{
02746 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
02751 }.
02752
02753 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
02754 {{ 340, 340, 340, 340, 340},{ 340, 280, 280, 170, 200},{ 340, 250, 250, 150, 200},{ 340, 150, 150,
50, 200},{ 340, 200, 200, 200, 200}},
02755 {{ 340, 340, 340, 340, 340},{ 340, 260, 260, 160, 200},{ 340, 310, 250, 240, 200},{ 340, 200, 200,
     200, 200}, { 340, 310, 250, 240, 200}},
02756 {{ 340, 340, 340, 340, 340, 40, 150, 150, 50, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 210,
100, 200),{ 340, 130, 30, 110, 200}},
02757 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 250, 240, 200},{ 340, 230, 130,
     210, 200},{ 340, 270, 170, 240, 200}}
02758 },
02759 {
02760 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340},
02761 {{ 340, 340, 340, 340, 340},{ 340, 230, 340, 200, 310},{ 340, 210, 250, 200, 220},{ 340, 110, 250,
     200, 220},{ 340, 200, 200, 200, 200}},
02762 {{ 340, 340, 340, 340, 340}, { 340, 220, 260, 200, 230}, { 340, 200, 250, 200, 220}, { 340, 200, 200, 200,
     200, 200},{ 340, 200, 250, 200, 220}},
02763 {{ 340, 340, 340, 340, 340, 40, 110, 250, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 160, 270,
     200, 240},{ 340, -10, 130, 200, 100}},
02764 {{ 340, 340, 340, 340, 340, 40, 200, 200, 200, 200, 200},{ 340, 200, 250, 200, 220},{ 340, 90, 230,
     200, 200},{ 340, 120, 170, 200, 140}}
02765 }.
02766
02768 {{ 340, 340, 340, 340, 340},{ 340, 170, 200, 210, 220},{ 340, 150, 200, 190, 100},{ 340, 50, 200,
     90, 180},{ 340, 200, 200, 200, 200}},
02769 {{ 340, 340, 340, 340, 340},{ 340, 160, 200, 200, 110},{ 340, 240, 200, 240, 190},{ 340, 200, 200, 200, 200, 200, 340, 240, 200, 240, 190}},
02770 {{ 340, 340, 340, 340, 340, 340},{ 340, 50, 200, 90, 180},{ 340, 200, 200, 200, 200},{ 340, 100, 200,
     140, 150},{ 340, 110, 200, 70, -120}},
02771 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 200, 240, 190},{ 340, 210, 200,
     170, -20},{ 340, 240, 200, 200, 190}}
02772 },
02773 {
02775 {{ 340, 340, 340, 340, 340},{ 340, 200, 340, 100, 290},{ 340, 200, 250, -30, 170},{ 340, 200, 250,
     50, 250},{ 340, 200, 200, 200, 200}},
02776 {{ 340, 340, 340, 340, 340},{ 340, 200, 260, -20, 180},{ 340, 200, 250, 70, 160},{ 340, 200, 200, 200, 200, { 340, 200, 250, 70, 160}},
02777 {{ 340, 340, 340, 340, 340, 340, { 340, 200, 250, 50, 250}, { 340, 200, 200, 200, 200}, { 340, 200, 270,
     30, 220}, { 340, 200, 130, -250, 130}},
02778 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 70, 160},{ 340, 200, 230,
     -150, 230<sub>}</sub>,{ 340, 200, 170, 70, 80<sub>}</sub>}
02779 1
02780 }.
02781 /* UG....UG */
02782 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02788 }.
02789 4
02790 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
02791 {{ 340, 340, 340, 340, 340},{ 340, 280, 280, 170, 200},{ 340, 230, 230, 130, 200},{ 340, 170, 170,
     70, 200},{ 340, 200, 200, 200, 200}},
02792 {{ 340, 340, 340, 340, 340},{ 340, 280, 280, 170, 200},{ 340, 340, 280, 270, 200},{ 340, 200, 200,
     200, 200}, { 340, 340, 280, 270, 200}},
02793 {{ 340, 340, 340, 340, 340, 340, 470, 170, 70, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 210,
     110, 200},{ 340, 100,
                         0, 70, 200}},
02794 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 250, 240, 200},{ 340, 220, 120,
     200, 200},{ 340, 290, 190, 270, 200}}
02795 },
02796 {
```

```
340, 340},{ 340, 340, 340, 340, 340}},
02798 {{ 340, 340, 340, 340, 340, 40, 230, 340, 200, 310},{ 340, 190, 230, 200, 200},{ 340, 130, 270,
     200, 240},{ 340, 200, 200, 200, 200}},
02799 {{ 340, 340, 340, 340, 340},{ 340, 230, 280, 200, 250},{ 340, 230, 280, 200, 250},{ 340, 200, 200, 200, 200, 200, 340, 230, 280, 200, 250}},
02800 {{ 340, 340, 340, 340, 340},{ 340, 130, 270, 200, 240},{ 340, 200, 200, 200, 200},{ 340, 170, 270,
     200, 240},{ 340, -50, 100, 200,
02801 {{ 340, 340, 340, 340, 340, 340, 40, 200, 200, 200, 200},{ 340, 200, 250, 200, 220},{ 340, 80, 220,
     200, 190},{ 340, 150, 190, 200, 160}}
02802 }.
02803 +
340, 340},{ 340, 340, 340, 340, 340}},
02805 {{ 340, 340, 340, 340, 340},{ 340, 170, 200, 210, 220},{ 340, 130, 200, 170, 80},{ 340, 70, 200,
     110, 200},{ 340, 200, 200, 200, 200}},
02806 {{ 340, 340, 340, 340, 340},{ 340, 170, 200, 210, 120},{ 340, 270, 200, 270, 220},{ 340, 200, 200, 200, 200, 200},{ 340, 270, 200, 270, 220}},
02807 {{ 340, 340, 340, 340, 340},{ 340,
                                     70, 200, 110, 200},{ 340, 200, 200, 200, 200},{ 340, 110, 200,
     150, 160}, { 340, 70, 200, 30, -160}},
02808 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 200, 240, 190},{ 340, 200, 200,
     160, -30},{ 340, 270, 200, 230, 220}}
02809 },
02810 {
340, 340},{ 340, 340, 340, 340, 340}},
02812 {{ 340, 340, 340, 340, 340, 40, 200, 340, 100, 290},{ 340, 200, 230, -50, 150},{ 340, 200, 270,
     70, 270},{ 340, 200, 200, 200, 200}},
02813 {{ 340, 340, 340, 340, 340},{ 340, 200, 280, 0, 190},{ 340, 200, 280, 100, 190},{ 340, 200, 200, 200, 200, 340, 340, 340, 340, 100, 190}},
02814 {{ 340, 340, 340, 340, 340, 340},{ 340, 200, 270, 70, 270},{ 340, 200, 200, 200, 200},{ 340, 200, 270,
     30, 230}, { 340, 200, 100, -290,
                                   90}},
02815 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 70, 160},{ 340, 200, 220,
      -160, 220},{ 340, 200, 190, 90, 110}}
02816 1
02817 }.
02818 /* UG....AU */
02819 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02825 }.
02826 (
340, 340},{ 340, 340, 340, 340, 340}},
02828 {{ 340, 340, 340, 340, 340, 40, 340, 280, 280, 170, 200},{ 340, 250, 250, 150, 200},{ 340, 150, 150,
     50, 200},{ 340, 200, 200, 200, 200}},
200, 2001, { 340, 340, 340, 340, 340, 260, 260, 260, 160, 200}, { 340, 310, 250, 240, 200}, { 340, 200, 200, 200, 200}, { 340, 310, 250, 240, 200}}, 

02830 {{ 340, 340, 340, 340, 340, 340}, { 340, 150, 150, 50, 200}, { 340, 200, 200, 200, 200}, { 340, 210, 210, 100, 200}}, 

100, 200}, { 340, 130, 30, 110, 200}},
02831 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 250, 240, 200},{ 340, 230, 130,
     210, 200},{ 340, 270, 170, 240, 200}}
02832 },
02833 {
340, 340},{ 340, 340, 340, 340, 340}},
02835 {{ 340, 340, 340, 340, 340},{ 340, 230, 340, 200, 310},{ 340, 210, 250, 200, 220},{ 340, 110, 250,
     200, 220},{ 340, 200, 200, 200, 200}},
02836 {{ 340, 340, 340, 340, 340},{ 340, 220, 260, 200, 230},{ 340, 200, 250, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 200, 220}},
02837 {{ 340, 340, 340, 340, 340, 40, 110, 250, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 160, 270,
     200, 240}, { 340, -10, 130, 200, 100}},
02838 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 200, 220},{ 340, 90, 230,
     200, 200},{ 340, 120, 170, 200, 140}}
02839 },
02840 {
02841 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
02842 {{ 340, 340, 340, 340, 340},{ 340, 170, 200, 210, 220},{ 340, 150, 200, 190, 100},{ 340,
     90, 180},{ 340, 200, 200, 200, 200}},
02843 {{ 340, 340, 340, 340, 340},{ 340, 160, 200, 200, 110},{ 340, 240, 200, 240, 190},{ 340, 200, 200, 200, 200},{ 340, 240, 200, 240, 190}},
02844 {{ 340, 340, 340, 340, 340}, { 340, 50, 140, 150}, { 340, 110, 200, 70, -120}},
                                     50, 200, 90, 180}, { 340, 200, 200, 200}, { 340, 100, 200,
02845 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200}, { 340, 240, 200, 240, 190}, { 340, 210, 200, 170, -20}, { 340, 240, 200, 200, 190}}
02846 },
02847
```

```
340, 340},{ 340, 340, 340, 340, 340}},
02849 {{ 340, 340, 340, 340, 340},{ 340, 200, 340, 100, 290},{ 340, 200, 250, -30, 170},{ 340, 200, 250,
    50, 250}, { 340, 200, 200, 200, 200}},
02850 {{ 340, 340, 340, 340, 340},{ 340, 200, 260, -20, 180},{ 340, 200, 250, 70, 160},{ 340, 200, 200,
    200, 200},{ 340, 200, 250,
                        70, 160}},
02851 {{ 340, 340, 340, 340, 340, 340, { 340, 200, 250, 50, 250}, { 340, 200, 200, 200, 200}, { 340, 200, 270,
    30, 220}, { 340, 200, 130, -250, 130}},
02852 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 70, 160},{ 340, 200, 230,
    -150, 230<sub>}</sub>, { 340, 200, 170, 70, 80<sub>}</sub>}
02853 }
02854 }.
02855 /* UG....UA */
02856 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02862 },
02863
02864 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340, 340},
02865 {{ 340, 340, 340, 340, 340, 470, 280, 280, 170, 200},{ 340, 230, 230, 130, 200},{ 340, 170, 170,
    70, 200},{ 340, 200, 200, 200, 200}},
02866 {{ 340, 340, 340, 340, 340},{ 340, 280, 280, 170, 200},{ 340, 340, 280, 270, 200},{ 340, 340, 280, 270, 200},
02867 {{ 340, 340, 340, 340, 340},{ 340, 170, 170, 70, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 210,
    110, 200},{ 340, 100,
                        70, 200}},
                     Ο,
02868 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 250, 240, 200},{ 340, 220, 120,
    200, 200},{ 340, 290, 190, 270, 200}}
02869 }.
02870
02872 {{ 340, 340, 340, 340, 340},{ 340, 230, 340, 200, 310},{ 340, 190, 230, 200, 200},{ 340, 130, 270,
    200, 240},{ 340, 200, 200, 200, 200}},
200, 240},{ 340, -50, 100, 200,
                            70}},
02875 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 200, 220},{ 340, 80, 220,
    200, 190},{ 340, 150, 190, 200, 160}}
02876 },
02877 +
02879 {{ 340, 340, 340, 340, 340},{ 340, 170, 200, 210, 220},{ 340, 130, 200, 170, 80},{ 340, 70, 200,
    110, 200},{ 340, 200, 200, 200, 200}},
02880 {{ 340, 340, 340, 340, 340},{ 340, 170, 200, 210, 120},{ 340, 270, 200, 270, 220},{ 340, 200, 200, 200, 200},{ 340, 270, 200, 270, 220}},
02881 {{ 340, 340, 340, 340, 340}, { 340, 70, 150, 160}, { 340, 70, 200, 30, -160}},
                              70, 200, 110, 200}, { 340, 200, 200, 200, 200}, { 340, 110, 200,
02882 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 200, 240, 190},{ 340, 200, 200,
    160, -30},{ 340, 270, 200, 230, 220}}
02883 },
02884 {
02886 {{ 340, 340, 340, 340, 340},{ 340, 200, 340, 100, 290},{ 340, 200, 230, -50, 150},{ 340, 200, 270,
    70, 270},{ 340, 200, 200, 200, 200}},
02887 {{ 340, 340, 340, 340, 340},{ 340, 200, 280,
                                      0, 190},{ 340, 200, 280, 100, 190},{ 340, 200, 200,
    200, 200},{ 340, 200, 280, 100, 190}},
02888 {{ 340, 340, 340, 340, 340}, { 340, 200, 270, 70, 270}, { 340, 200, 200, 200}, { 340, 200, 270,
    30, 230}, { 340, 200, 100, -290, 90}},
02889 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 70, 160},{ 340, 200, 220,
    -160, 220},{ 340, 200, 190, 90, 110}}
02890 }
02891 },
02892 /* UG...?? */
02893 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02899 },
02900 {
```

```
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02906 }.
02907
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
02913 },
02914 {
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340},{ 340, 340, 340, 340, 340}},
   340,
340, 340},{ 340, 340, 340, 340, 340}}
02920 },
02921 {
02922 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
02925 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}}
02927 1
02928
02929 1.
02930 { /* noPair */ {{{{0}}}}},
02931 /* AU....CG */
02932 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340},{ 340, 340, 340, 340, 340}}
02939
340, 340},{ 340, 340, 340, 340, 340}},
02941 {{ 340, 340, 340, 340, 340},{ 340, 200, 190, 80, 200},{ 340, 190, 180, 70, 200},{ 340, 100, 90, -20, 200},{ 340, 200, 200, 200, 200}},
02942 {{ 340, 340, 340, 340, 340}, { 340, 240, 220, 110, 200}, { 340, 280, 210, 200, 200}, { 340, 200, 200,
   200, 200},{ 340, 270, 190, 180, 200}},
02943 {{ 340, 340, 340, 340, 340},{ 340, 100,
                        90, -20, 200}, { 340, 200, 200, 200, 200}, { 340, 180, 160,
   50, 200}, { 340, 30, -80, -10, 200}},
02944 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 270, 190, 180, 200},{ 340, 180, 70, 140, 200},{ 340, 220, 100, 180, 200}}
02945 },
02946
340, 340},{ 340, 340, 340, 340, 340}},
02948 {{ 340, 340, 340, 340, 340},{ 340, 180, 230, 200, 230},{ 340, 170, 160, 200, 160},{ 340, 80, 170,
   200, 170}, { 340, 200, 200, 200, 200}},
02949 {{ 340, 340, 340, 340, 340},{ 340, 210, 210, 200, 210},{ 340, 200, 190, 200, 190},{ 340, 200, 200, 200, 200, 200, 340, 180, 180, 200, 180}},
02950 {{ 340, 340, 340, 340, 340},{ 340, 200, 210},{ 340, -90, 0, 200, 0}
                      80, 170, 200, 170}, { 340, 200, 200, 200, 200}, { 340, 150, 210,
                    0 } } ,
02951 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 180, 180, 200, 180},{ 340, 60, 150,
   200, 150}, { 340, 90, 90, 200, 90}}
02952 },
```

```
02953 {
02954 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
02955 {{ 340, 340, 340, 340, 340},{ 340, 80, 200, 130, 160},{ 340, 70, 200, 120, 50},{ 340, -20, 200,
30, 140},{ 340, 200, 200, 200, 200}},
02956 {{ 340, 340, 340, 340, 340},{ 340, 110, 200, 170, 90},{ 340, 200, 200, 210, 180},{ 340, 200, 200,
     200, 200},{ 340, 180, 200, 200, 160}},
02957 {{ 340, 340, 340, 340, 340},{ 340, -20, 200, 30, 140},{ 340, 200, 200, 200, 200},{ 340, 50, 200,
     110, 130},{ 340, -10, 200, -40, -210}},
02958 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 180, 200, 200, 160},{ 340, 140, 200,
     110, -60}, { 340, 180, 200, 150, 160}}
02959 }.
02960 4
02961 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
02962 {{ 340, 340, 340, 340, 340},{ 340, 200, 230, 60, 190},{ 340, 200, 160, -50, 80},{ 340, 200, 170,
40, 180},{ 340, 200, 200, 200, 200}},
02963 {{ 340, 340, 340, 340, 340},{ 340, 200, 210,
                                                 0, 130}, { 340, 200, 190, 80, 110}, { 340, 200, 200,
     200, 200},{ 340, 200, 180,
                               70, 100}},
02964 {{ 340, 340, 340, 340, 340, 340, 40, 170, 40, 180},{ 340, 200, 200, 200, 200, 200},{ 340, 200, 210,
40, 170), { 340, 200, 0, -310, 0}},
02965 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200, 200}, { 340, 200, 180, 70, 100}, { 340, 200, 150,
      -160, 160<sub>}</sub>, { 340, 200, 90, 60, 10<sub>}</sub>}
02966 }
02967 },
02968 /* AU...GC */
02969 {{
340, 340},{ 340, 340, 340, 340, 340}},
02971 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340},
     340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
02975
02976 {
340, 340},{ 340, 340, 340, 340, 340}}
-110, 200}, { 340, 200, 200, 200, 200}},
02979 {{ 340, 340, 340, 340, 340},{ 340, 180, 170, 60, 200},{ 340, 250, 170, 160, 200},{ 340, 200, 200,
                           70, 70, 200}},
     200, 200},{ 340, 150,
02980 {{ 340, 340, 340, 340, 340},{ 340,
                                       70, 60, -50, 200}, { 340, 200, 200, 200, 200}, { 340, 180, 160,
     50, 200},{ 340,
                     0, -120, -50, 200}},
02981 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 250, 180, 170, 200},{ 340, 40, -80, -10, 200},{ 340, 210, 100, 170, 200}}
02982 },
02983
340, 340},{ 340, 340, 340, 340, 340}},
02985 {{ 340, 340, 340, 340, 340},{ 340, 190, 240, 200, 240},{ 340, 160, 160, 200, 160},{ 340, -10, 80, 200, 80},{ 340, 200, 200, 200, 200}},
02986 {{ 340, 340, 340, 340, 340}, { 340, 160, 150, 200, 150}, { 340, 160, 160, 200, 160}, { 340, 200, 200, 200, 200, 340, 60, 60, 200, 60}},
02987 {{ 340, 340, 340, 340, 340},{ 340},
                                       50, 140, 200, 140}, { 340, 200, 200, 200, 200}, { 340, 150, 210,
     200, 210},{ 340, -130, -30, 200, -30}},
02988 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 170, 160, 200, 160},{ 340, -90,
     200, 10},{ 340, 90, 80, 200, 80}}
02989 },
02990 {
02991 {{ 340,
            340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}
     340, 340},{ 340, 340, 340, 340, 340}},
02992 {{ 340, 340, 340, 340, 340},{ 340,
                                       90, 200, 140, 170}, { 340, 60, 200, 120, 40}, { 340, -110, 200,
      -60,
          50},{ 340, 200, 200, 200, 200}},
02993 {{ 340, 340, 340, 340, 340},{ 340, 60
200, 200},{ 340, 70, 200, 80, 50}},
                                       60, 200, 110, 40},{ 340, 160, 200, 180, 140},{ 340, 200, 200,
02994 {{ 340, 340, 340, 340, 340}, { 340,
                                       -50, 200,
                                                 0, 110},{ 340, 200, 200, 200, 200},{ 340, 50, 200,
      110, 130},{ 340, -50, 200, -70, -250}},
02995 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 170, 200, 180, 150},{ 340, -10, 200,
      -30, -210<sub>}</sub>,{ 340, 170, 200, 140, 150<sub>}</sub>}
02996 }.
02997
02998 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340},
02999 {{ 340, 340, 340, 340, 340},{ 340, 200, 240, 70, 200},{ 340, 200, 160, -50, 80},{ 340, 200, 80,
      -50, 80},{ 340, 200, 200, 200, 200}},
03000 {{ 340, 340, 340, 340, 340},{ 340, 200, 150, -60, 70},{ 340, 200, 160, 50, 80},{ 340, 200, 200,
200, 200], { 340, 200, 60, -50, -20}, 
03001 {{ 340, 340, 340, 340, 340, 340, 200, 140, 10, 150}, { 340, 200, 200, 200, 200}, { 340, 200, 210,
      40, 170}, { 340, 200, -30, -350, -30}},
03002 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 160, 50, 80},{ 340, 200,
      -310, 10},{ 340, 200, 80, 50,
                                      0 } }
03003 }
03004 },
```

```
03005 /* AU....GU */
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340}, { 340, 340, 340, 340, 340}}
03013
340, 340},{ 340, 340, 340, 340, 340}},
03015 {{ 340, 340, 340, 340, 340},{ 340, 280, 260, 150, 200},{ 340, 250, 240, 130, 200},{ 340, 150, 140,
    30, 200}, { 340, 200, 200, 200, 200}},
03016 {{ 340, 340, 340, 340, 340}, { 340, 260, 250, 140, 200}, { 340, 310, 230, 220, 200}, { 340, 200, 200,
    200, 200}, { 340, 310, 230, 220, 200}},
03017 {{ 340, 340, 340, 340, 340},{ 340, 150, 140, 30, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 190,
    80, 200},{ 340, 130, 20,
                        90, 200}},
03018 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200},{ 340, 310, 230, 220, 200},{ 340, 230, 120,
    190, 200}, { 340, 270, 150, 220, 200}}
03019 }.
03020
340, 340},{ 340, 340, 340, 340, 340}},
03022 {{ 340, 340, 340, 340, 340},{ 340, 250, 310, 200, 310},{ 340, 230, 220, 200, 220},{ 340, 130, 220,
200, 220}, { 340, 200, 200, 200, 200}, },

03023 {{ 340, 340, 340, 340, 340}, { 340, 240, 230, 200, 230}, { 340, 220, 220, 200, 220}, { 340, 200, 200},

200, 200}, { 340, 220, 220, 200, 220}},
03024 {{ 340, 340, 340, 340, 340},{ 340, 130, 220, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 180, 240,
    200, 240},{ 340, 10, 100, 200, 100}},
03025 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 220, 200, 220},{ 340, 110, 200,
    200, 200},{ 340, 140, 140, 200, 140}}
03026 },
03027
340, 340},{ 340, 340, 340, 340, 340}},
03029 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 230},{ 340, 130, 200, 180, 110},{ 340, 30, 200,
    80, 190},{ 340, 200, 200, 200, 200}},
03030 {{ 340, 340, 340, 340, 340},{ 340, 140, 200, 190, 120},{ 340, 220, 200, 240, 200},{ 340, 200, 200, 200, 200},{ 340, 220, 200, 240, 200}},
03031 {{ 340, 340, 340, 340, 340},{ 340, 140, 160},{ 340, 90, 200, 70, -11
                                30, 200, 80, 190}, { 340, 200, 200, 200, 200}, { 340, 80, 200,
                         70, -110}},
03032 {{ 340, 340, 340, 340, 340, 40, 340, 200, 200, 200, 200}, { 340, 220, 200, 240, 200}, { 340, 190, 200, 200, 200},
    160, -10},{ 340, 220, 200, 200, 200}}
03033 }.
03034 {
340, 340},{ 340, 340, 340, 340, 340}},
03036 {{ 340, 340, 340, 340, 340, 40, 340, 200, 310, 130, 270},{ 340, 200, 220, 10, 140},{ 340, 200, 220,
    90, 220},{ 340, 200, 200, 200, 200}},
03037 {{ 340, 340, 340, 340, 340},{ 340, 200, 230, 20, 150},{ 340, 200, 220, 100, 140},{ 340, 200, 200, 200, 200, 340, 340, 340, 340, 340, 340, 340, 200, 220, 90, 220},{ 340, 200, 200, 200, 200, 340, 340, 340, 340, 340, 340, 200, 220, 90, 220},{ 340, 200, 200, 200, 200, 200},{ 340, 200, 240,
    70, 200},{ 340, 200, 100, -210, 110}},
03039 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 220, 100, 140},{ 340, 200, 200,
    -110, 200},{ 340, 200, 140, 110,
                              6011
03040 }
03041 },
03042 /* AU...UG */
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03049 },
03050
340, 340},{ 340, 340, 340, 340, 340}},
03052 {{ 340, 340, 340, 340, 340, 340, 40, 280, 260, 150, 200},{ 340, 230, 220, 110, 200},{ 340, 170, 160,
    50, 200}, { 340, 200, 200, 200, 200}},
03053 {{ 340, 340, 340, 340, 340},{ 340, 280, 260, 150, 200},{ 340, 340, 260, 250, 200},{ 340, 200, 200, 200, 340, 340, 260, 250, 200}},
03054 {{ 340, 340, 340, 340, 340, 40, 170, 160, 50, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 200,
    90, 200},{ 340, 100, -20,
                        50, 200}},
03055 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 230, 220, 200},{ 340, 220, 110,
    180, 200}, { 340, 290, 180, 250, 200}}
03056 },
```

```
03057
03058 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
03059 {{ 340, 340, 340, 340, 340},{ 340, 250, 310, 200, 310},{ 340, 210, 200, 200, 200},{ 340, 150, 240,
     200, 240},{ 340, 200, 200, 200, 200}},
03060 {{ 340, 340, 340, 340, 340, 40, 250, 250, 250, 200, 250}, { 340, 250, 250, 200, 250}, { 340, 200, 200, 200, 250},
     200, 200},{ 340, 250, 250, 200, 250}},
03061 {{ 340, 340, 340, 340, 340, 40, 150, 240, 200, 240},{ 340, 200, 200, 200, 200},{ 340, 190, 240,
     200, 240},{ 340, -30, 70, 200,
                                  70}},
03062 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 220, 200, 220},{ 340, 100, 190,
     200, 190}, { 340, 170, 160, 200, 160}}
03063 }.
03064
340, 340},{ 340, 340, 340, 340, 340}},
03066 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 230},{ 340, 110, 200, 160, 90},{ 340, 50, 200,
     100, 210},{ 340, 200, 200, 200, 200}},
03067 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 130},{ 340, 250, 200, 270, 230},{ 340, 200, 200,
     200, 200}, { 340, 250, 200, 270, 230}},
03068 {{ 340, 340, 340, 340, 340},{ 340,
                                     50, 200, 100, 210},{ 340, 200, 200, 200, 200},{ 340, 90, 200,
     140, 170},{ 340, 50, 200, 30, -150}},
03069 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 200, 240, 200},{ 340, 180, 200,
     150, -20},{ 340, 250, 200, 220, 230}}
03070 },
03071 {
03072 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340, 340},
03073 {{ 340, 340, 340, 340, 340},{ 340, 200, 310, 130, 270},{ 340, 200, 200, -10, 120},{ 340, 200, 240,
     110, 240},{ 340, 200, 200, 200, 200}},
03074 {{ 340, 340, 340, 340, 340}, { 340, 200, 250, 30, 170},{ 340, 200, 250, 130, 170},{ 340, 200, 200,
     200, 200}, { 340, 200, 250, 130, 170}},
03075 {{ 340, 340, 340, 340, 340}, { 340, 200, 240, 110, 240}, { 340, 200, 200, 200, 200}, { 340, 200, 240, 70, 200}, { 340, 200, -250, 70}},
03076 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 220, 100, 140},{ 340, 200, 190,
     -120, 190},{ 340, 200, 160, 130, 80}}
03077 }
03078 },
03079 /* AU...AU */
03080 {{
340, 340},{ 340, 340, 340, 340, 340}}
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03085 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}}
03086 },
03087
340, 340},{ 340, 340, 340, 340, 340}},
03089 {{ 340, 340, 340, 340, 340, 340, 40, 280, 260, 150, 200},{ 340, 250, 240, 130, 200},{ 340, 150, 140,
     30, 200}, { 340, 200, 200, 200, 200}},
03090 {{ 340, 340, 340, 340, 340},{ 340, 260, 250, 140, 200},{ 340, 310, 230, 220, 200},{ 340, 200, 200,
     200, 200}, { 340, 310, 230, 220, 200}},
03091 {{ 340, 340, 340, 340, 340, 40, 150, 140, 30, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 190,
80, 200}, { 340, 130, 20, 90, 200}},
03092 {{ 340, 340, 340, 340, 340, 200, 200, 200, 200}, { 340, 310, 230, 220, 200}, { 340, 230, 120, 190, 200}, { 340, 270, 150, 220, 200}}
03093 },
03094 {
     03095 {{ 340,
03096 {{ 340, 340, 340, 340, 340},{ 340, 250, 310, 200, 310},{ 340, 230, 220, 200, 220},{ 340, 130, 220,
     200, 220},{ 340, 200, 200, 200, 200}}
03097 {{ 340, 340, 340, 340, 340, 340, { 340, 240, 230, 200, 230}, { 340, 220, 220, 200, 220}, { 340, 200, 200,
     200, 200}, { 340, 220, 220, 200, 220}},
03098 {{ 340, 340, 340, 340, 340},{ 340, 130, 220, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 180, 240,
     200, 240},{ 340, 10, 100, 200, 100}},
03099 {{ 340, 340, 340, 340, 340, 40, 340, 200, 200, 200, 200}, { 340, 220, 220, 200, 220}, { 340, 110, 200,
     200, 200},{ 340, 140, 140, 200, 140}}
03100 }.
03101
03103 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 230},{ 340, 130, 200, 180, 110},{ 340, 30, 200,
     80, 190},{ 340, 200, 200, 200, 200}},
03104 {{ 340, 340, 340, 340, 340}, { 340, 140, 200, 190, 120}, { 340, 220, 200, 240, 200}, { 340, 200, 200, 200}, { 340, 220, 200, 240, 200}},
03105 {{ 340, 340, 340, 340, 340},{ 340},
                                     30, 200, 80, 190}, { 340, 200, 200, 200, 200}, { 340, 80, 200,
140, 160),{ 340, 90, 200, 70, -110}},
03106 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 200, 240, 200},{ 340, 190, 200,
     160, -10},{ 340, 220, 200, 200, 200}}
03107 },
03108 {
```

```
340, 340},{ 340, 340, 340, 340, 340}},
03110 {{ 340, 340, 340, 340, 340, 40, 340, 200, 310, 130, 270}, { 340, 200, 220, 10, 140}, { 340, 200, 220,
    90, 220},{ 340, 200, 200, 200, 200}},
03111 {{ 340, 340, 340, 340, 340},{ 340, 200, 230, 20, 150},{ 340, 200, 220, 100, 140},{ 340, 200, 200, 200, 200, 200, 200, 340, 200, 220, 100, 140}},
03112 {{ 340, 340, 340, 340, 340},{ 340, 200, 220, 90, 220},{ 340, 200, 200, 200, 200},{ 340, 200, 240,
    70, 200},{ 340, 200, 100, -210, 110}},
03113 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 220, 100, 140},{ 340, 200, 200,
     -110, 200},{ 340, 200, 140, 110,
                              60}}
03114 }
03115 }.
03116 /* AU....UA */
03117
    { {
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340}, { 340, 340, 340, 340, 340}}
03123 }.
03124
340, 340},{ 340, 340, 340, 340, 340}},
03126 {{ 340, 340, 340, 340, 340, 40, 280, 280, 260, 150, 200},{ 340, 230, 220, 110, 200},{ 340, 170, 160,
    50, 200}, { 340, 200, 200, 200, 200}},
03127 {{ 340, 340, 340, 340, 340}, {340, 260, 260, 150, 200}, { 340, 340, 260, 250, 200}, { 340, 200, 200, 200}, { 340, 340, 340, 260, 250, 200}},
03128 {{ 340, 340, 340, 340, 340},{ 340, 170, 160, 50, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 200,
    90, 200},{ 340, 100, -20, 50, 200}},
03129 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 230, 220, 200},{ 340, 220, 110, 180, 200},{ 340, 290, 180, 250, 200}}
03130 },
03131 {
340, 340},{ 340, 340, 340, 340, 340}},
03133 {{ 340, 340, 340, 340, 340},{ 340, 250, 310, 200, 310},{ 340, 210, 200, 200, 200},{ 340, 150, 240,
    200, 240},{ 340, 200, 200, 200, 200}},
03134 {{ 340, 340, 340, 340, 340},{ 340, 250, 250, 200, 250},{ 340, 250, 250, 200, 250},{ 340, 200, 200, 200, 200, 340, 250, 250, 250, 200, 250}},
03135 {{ 340, 340, 340, 340, 340},{ 340, 150, 240, 200, 240},{ 340, 200, 200, 200, 200},{ 340, 190, 240, 200, 240},{ 340, -30, 70, 200, 70}},
03136 {{ 340, 340, 340, 340, 340, 40, 340, 200, 200, 200, 200}, { 340, 220, 220, 200, 220}, { 340, 100, 190,
    200, 190},{ 340, 170, 160, 200, 160}}
03137 }.
03138 {
340, 340},{ 340, 340, 340, 340, 340}},
03140 {{ 340, 340, 340, 340, 340, 40, 150, 200, 210, 230},{ 340, 110, 200, 160, 90},{ 340, 50, 200,
    100, 210},{ 340, 200, 200, 200, 200}},
03141 {{ 340, 340, 340, 340, 340},{ 340, 150, 200, 210, 130},{ 340, 250, 200, 270, 230},{ 340, 200, 200, 200, 200, 340, 250, 200, 270, 230}},
03142 {{ 340, 340, 340, 340, 340},{ 340,
                                50, 200, 100, 210},{ 340, 200, 200, 200, 200},{ 340, 90, 200,
    140, 170}, { 340, 50, 200, 30, -150}},
03143 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 220, 200, 240, 200},{ 340, 180, 200,
    150, -20},{ 340, 250, 200, 220, 230}}
03144 },
03145 {
340, 340},{ 340, 340, 340, 340, 340}},
03147 {{ 340, 340, 340, 340, 340},{ 340, 200, 310, 130, 270},{ 340, 200, 200, -10, 120},{ 340, 200, 240,
    110, 240},{ 340, 200, 200, 200, 200}},
03148 {{ 340, 340, 340, 340, 340},{ 340, 200, 250, 30, 170},{ 340, 200, 250, 130, 170},{ 340, 200, 200, 200, 200, 200, 340, 200, 250, 130, 170}},
03149 {{ 340, 340, 340, 340, 340, 340, 40, 200, 240, 110, 240},{ 340, 200, 200, 200, 200},{ 340, 200, 240,
                     70, -250,
    70, 200},{ 340, 200,
                              70}},
03150 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 220, 100, 140},{ 340, 200, 190,
     -120, 190},{ 340, 200, 160, 130,
                              80}}
03151 }
03152 }.
03153 /* AU....?? */
03154 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03157 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03160 },
```

```
03161 {
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03167 }.
03168
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03174 },
03175 {
03176 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
03178 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
   340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03181 }.
03182
03183 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03188 }
03189
03190 }.
03191 { /* noPair */ {{{{0}}}}},
03192 /* UA...CG */
03193 {{
03194 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03198 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}}
03199
03200 4
340, 340},{ 340, 340, 340, 340, 340}},
03202 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 100, 200}, { 340, 190, 190, 90, 200}, { 340, 100, 100,
   0, 200},{ 340, 200, 200, 200, 200}},
       340, 340, 340, 340}, { 340, 240, 240, 130, 200}, { 340, 280, 220, 220, 200}, { 340, 200, 200,
03203 {{ 340,
   200, 200},{ 340, 270, 210, 200, 200}},
03204 {{ 340, 340, 340, 340, 340},{ 340, 100, 100,
                             0, 200},{ 340, 200, 200, 200, 200},{ 340, 180, 180,
70, 200},{ 340, 30, -70, 10, 200}},
03205 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 270, 210, 200, 200},{ 340, 180, 80, 160, 200},{ 340, 220, 120, 190, 200}}
03206
03207
340, 340},{ 340, 340, 340, 340, 340}}
03209 {{ 340, 340, 340, 340, 340}, { 340, 160, 260, 200, 230}, { 340, 150, 190, 200, 160}, { 340, 60, 200,
   200, 170},{ 340, 200, 200, 200, 200}},
03210 {{ 340, 340, 340, 340, 340, 430, 190, 240, 200, 210}, { 340, 180, 220, 200, 190}, { 340, 200, 200,
   200, 200},{ 340, 160, 210, 200, 180}},
200, 210},{ 340, -110, 30, 200, 0}},
03212 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200},{ 340, 160, 210, 200, 180},{ 340, 40, 180, 200, 150},{ 340, 70, 120, 200, 90}}
```

```
03213 }.
340, 340},{ 340, 340, 340, 340, 340}},
03216 {{ 340, 340, 340, 340, 340},{ 340, 100, 200, 140, 150},{ 340, 90, 200, 130, 40},{ 340, 0, 200,
        40, 130}, { 340, 200, 200, 200, 200}},
03217 {{ 340, 340, 340, 340, 340}, {340, 130, 200, 170, 80},{ 340, 220, 200, 220, 170},{ 340, 200, 200, 200, 200, 200, 340, 200, 200, 200, 150}},
03218 {{ 340, 340, 340, 340, 340},{ 340},
                                                       0, 200, 40, 130}, { 340, 200, 200, 200, 200}, { 340, 70, 200,
110, 120},{ 340, 10, 200, -30, -220}},
03219 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 200, 200, 150},{ 340, 160, 200,
       120, -70}, { 340, 190, 200, 150, 150}}
03221
340, 340},{ 340, 340, 340, 340, 340}},
03223 \ \{ \{ \ 340, \ 340, \ 340, \ 340, \ 340\}, \{ \ 340, \ 200, \ 260, \ \ 20, \ 220\}, \{ \ 340, \ 200, \ 190, \ -90, \ 110\}, \{ \ 340, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 2000, \ 2000, \ 2000, \ 2000, \ 2000, \ 2000, \ 2000, \ 2000, \ 2000, \ 2000, \ 2000, \ 2000, \
0, 200}, { 340, 200, 200, 200, 200}, 
03224 {{ 340, 340, 340, 340, 340}, { 340, 200, 240, -40, 150}, { 340, 200, 220, 40, 140}, { 340, 200, 200,
        200, 200}, { 340, 200, 210, 30, 120}},
03225 {{ 340, 340, 340, 340, 340},{ 340, 200, 200,
                                                                  0, 200}, { 340, 200, 200, 200, 200}, { 340, 200, 240,
0, 190},{ 340, 200, 30, -350, 30}},
03226 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 210, 30, 120},{ 340, 200, 180,
        -200, 180}, { 340, 200, 120, 20, 30}}
03227
03228 },
03229 /* UA....GC */
03230 {{
340, 340},{ 340, 340, 340, 340, 340}},
340},{ 340, 340, 340, 340, 340}},
        340,
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03236 }.
03237
340, 340},{ 340, 340, 340, 340, 340}},
03239 {{ 340, 340, 340, 340, 340},{ 340, 210, 210, 110, 200},{ 340, 190, 190, 80, 200},{ 340, 10, 10, -90, 200},{ 340, 200, 200, 200, 200}},
03240 {{ 340, 340, 340, 340, 340}, { 340, 180, 180, 80, 200}, { 340, 250, 190, 180, 200}, { 340, 200, 200, 200, 200, 340, 150, 90, 90, 200}},
03241 {{ 340, 340, 340, 340, 340},{ 340, 70,
                                                           70, -30, 200}, { 340, 200, 200, 200, 200}, { 340, 180, 180,
70, 200},{ 340, 0, -100, -30, 200}},
03242 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 250, 190, 190, 200},{ 340, 40, -60,
        10, 200}, { 340, 210, 110, 190, 200}}
03243 },
03244
340, 340),{ 340, 340, 340, 340, 340},
03246 {{ 340, 340, 340, 340, 340},{ 340, 170, 270, 200, 240},{ 340, 140, 190, 200, 160},{ 340, -30, 110,
               80}, { 340, 200, 200, 200, 200}}
        200,
03247 {{ 340, 340, 340, 340, 340},{ 340, 140, 180, 200, 150},{ 340, 140, 190, 200, 160},{ 340, 200, 200,
        200, 200}, { 340, 40, 90, 200, 60}},
03248 {{ 340, 340, 340, 340, 340},{ 340,
                                                     30, 170, 200, 140},{ 340, 200, 200, 200, 200},{ 340, 130, 240,
       200, 210},{ 340, -150,
                                       0, 200, -30}},
03249 {{ 340, 340, 340, 340}, { 340}, { 340, 200, 200, 200}, { 340, 150, 190, 200, 160}, { 340, -110, 40, 200, 10}, { 340, 70, 110, 200, 80}}
340, 340},{ 340, 340, 340, 340, 340}},
03253 {{ 340, 340, 340, 340, 340},{ 340, 110, 200, 150, 160},{ 340, 80, 200, 120, 30},{ 340, -90, 200, -50, 40},{ 340, 200, 200, 200, 200}},
03254 {{ 340, 340, 340, 340, 340},{ 340,
                                                     80, 200, 120, 30},{ 340, 180, 200, 180, 130},{ 340, 200, 200,
        200, 200},{ 340,
                              90, 200,
                                           80,
                                                  40}},
03255 {{ 340, 340, 340, 340, 340},{ 340, -30, 200, 10, 100},{ 340, 200, 200, 200, 200},{ 340, 70, 200,
       110, 120},{ 340, -30, 200, -70, -260}},
03256 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 190, 200, 190, 140},{ 340, 10, 200, -30, -220},{ 340, 190, 200, 150, 140}}
03257
03258
340, 340},{ 340, 340, 340, 340, 340}},
03260 {{ 340, 340, 340, 340, 340},{ 340, 200, 270, 30, 230},{ 340, 200, 190, -90, 100},{ 340, 200, 110,
        -90, 110},{ 340, 200, 200, 200, 200}},
03261 {{ 340, 340, 340, 340, 340},{ 340, 200, 180, -100, 100},{ 340, 200, 190, 10, 100},{ 340, 200, 200, 200, 200, { 340, 200, 90, -90, 0}},
03262 {{ 340, 340, 340, 340, 340},{ 340, 200, 170, -30, 170},{ 340, 200, 200, 200, 200},{ 340, 200, 240,
        0, 190},{ 340, 200,
                                   0, -390, -10}},
03263 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 190, 10, 110},{ 340, 200, 40,
        -350, 30},{ 340, 200, 110, 10,
                                                  30}}
03264
```

```
03265 },
03266 /* UA....GU */
03267 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03273 },
03274
03275 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
03276 {{ 340, 340, 340, 340, 340, { 340, 280, 280, 170, 200}, { 340, 250, 250, 150, 200}, { 340, 150, 150, 150,
       50, 200}, { 340, 200, 200, 200, 200}},
03277 {{ 340, 340, 340, 340, 340, 340, 40, 260, 260, 160, 200},{ 340, 310, 250, 240, 200},{ 340, 200, 200,
       200, 200},{ 340, 310, 250, 240, 200}},
03278 {{ 340, 340, 340, 340, 340},{ 340, 150, 150, 50, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 210,
100, 200},{ 340, 130, 30, 110, 200}},
03279 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 250, 240, 200},{ 340, 230, 130, 210, 200},{ 340, 270, 170, 240, 200}}
03280 },
03281
340, 340},{ 340, 340, 340, 340, 340}},
03283 {{ 340, 340, 340, 340, 340}, { 340, 230, 340, 200, 310}, { 340, 210, 250, 200, 220}, { 340, 110, 250,
200, 200},{ 340, 200, 250, 200, 220}},
03285 {{ 340, 340, 340, 340, 340, 40, 110, 250, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 160, 270,
200, 240},{ 340, -10, 130, 200, 100}},
03286 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 200, 220},{ 340, 90, 230,
       200, 200},{ 340, 120, 170, 200, 140}}
03287 },
03288 {
340, 340},{ 340, 340, 340, 340, 340}}
03290 {{ 340, 340, 340, 340, 340},{ 340, 170, 200, 210, 220},{ 340, 150, 200, 190, 100},{ 340, 50, 200,
      90, 180}, { 340, 200, 200, 200, 200}},
03291 {{ 340, 340, 340, 340, 340, 40, 160, 200, 200, 110}, { 340, 240, 200, 240, 190}, { 340, 200, 200,
       200, 200},{ 340, 240, 200, 240, 190}},
03292 {{ 340, 340, 340, 340, 340},{ 340,
                                               50, 200, 90, 180}, { 340, 200, 200, 200, 200}, { 340, 100, 200,
      140, 150},{ 340, 110, 200, 70, -120}},
03293 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 200, 240, 190},{ 340, 210, 200, 170, -20},{ 340, 240, 200, 200, 190}}
03294 },
03295
340, 340},{ 340, 340, 340, 340, 340}},
03297 \ \{ \ 340, \ 340, \ 340, \ 340, \ 340\}, \{ \ 340, \ 200, \ 340, \ 100, \ 290\}, \{ \ 340, \ 200, \ 250, \ -30, \ 170\}, \{ \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 200, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 250, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 340, \ 
       50, 250}, { 340, 200, 200, 200, 200}},
03298 {{ 340, 340, 340, 340}, 340}, { 340, 200, 260, -20, 180}, { 340, 200, 250, 70, 160}, { 340, 200, 200, 200, 200}, 340, 340, 200, 250, 70, 160}},
       200, 200},{ 340, 200, 250,
03299 {{ 340, 340, 340, 340, 340}, { 340, 200, 250, 50, 250}, { 340, 200, 200, 200, 200}, { 340, 200, 270,
       30, 220},{ 340, 200, 130, -250, 130}},
03300 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 70, 160},{ 340, 200, 230,
       -150, 230},{ 340, 200, 170, 70, 80}}
03301 }
03302 },
03303 /* UA...UG */
03304 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03310 },
03311
340, 340},{ 340, 340, 340, 340, 340}}
03313 {{ 340, 340, 340, 340, 340},{ 340, 280, 280, 170, 200},{ 340, 230, 230, 130, 200},{ 340, 170, 170,
       70, 200},{ 340, 200, 200, 200, 200}},
03314 {{ 340, 340, 340, 340, 340, 340, 40, 280, 280, 170, 200},{ 340, 340, 280, 270, 200},{ 340, 200, 200,
       200, 200},{ 340, 340, 280, 270, 200}},
03315 {{ 340, 340, 340, 340, 340},{ 340, 170, 170, 70, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 210,
       110, 200},{ 340, 100,
                                 0, 70, 200}},
03316 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 250, 240, 200},{ 340, 220, 120, 200, 200},{ 340, 290, 190, 270, 200}}
```

```
03317 }.
340, 340},{ 340, 340, 340, 340, 340}},
03320 {{ 340, 340, 340, 340, 340},{ 340, 230, 340, 200, 310},{ 340, 190, 230, 200, 200},{ 340, 130, 270, 200, 240},{ 340, 200, 200, 200, 200}},
03321 {{ 340, 340, 340, 340, 340},{ 340, 230, 280, 200, 250},{ 340, 230, 280, 200, 250},{ 340, 200, 200,
     200, 200},{ 340, 230, 280, 200, 250}},
03322 {{ 340, 340, 340, 340, 340},{ 340, 130, 270, 200, 240},{ 340, 200, 200, 200, 200},{ 340, 170, 270,
     200, 240},{ 340, -50, 100, 200,
                                70}}
03323 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 200, 220},{ 340, 80, 220,
     200, 190}, { 340, 150, 190, 200, 160}}
03325
340, 340},{ 340, 340, 340, 340, 340}},
200, 200},{ 340, 270, 200, 270, 220}},
03329 {{ 340, 340, 340, 340, 340}, { 340, 150, 160}, { 340, 70, 200, 30, -16
                                  70, 200, 110, 200}, { 340, 200, 200, 200, 200}, { 340, 110, 200,
                            30, -160}},
03330 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 200, 240, 190},{ 340, 200, 200,
     160, -30}, { 340, 270, 200, 230, 220}}
03331 }.
03332
340, 340},{ 340, 340, 340, 340, 340}},
03334 {{ 340, 340, 340, 340, 340, 40, 200, 340, 100, 290},{ 340, 200, 230, -50, 150},{ 340, 200, 270,
     70, 270},{ 340, 200, 200, 200, 200}},
03335 {{ 340, 340, 340, 340}, { 340, 200, 280, 200, 200}, { 340, 200, 280, 100, 190}},
                                           0, 190}, { 340, 200, 280, 100, 190}, { 340, 200, 200,
03336 {{ 340, 340, 340, 340, 340},{ 340, 200, 270, 70, 270},{ 340, 200, 200, 200, 200},{ 340, 200, 270,
     30, 230}, { 340, 200, 100, -290, 90}},
03337 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 70, 160},{ 340, 200, 220, -160, 220},{ 340, 200, 190, 90, 110}}
03338 }
03339 },
03340 /* UA...AU */
03341 {{
340, 340},{ 340, 340, 340, 340, 340}},
03343 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03347
03348
340, 340},{ 340, 340, 340, 340, 340}},
03350 {{ 340, 340, 340, 340, 340, 340, 280, 280, 170, 200},{ 340, 250, 250, 150, 200},{ 340, 150, 150,
50, 200},{ 340, 200, 200, 200, 200}},
03351 {{ 340, 340, 340, 340, 340},{ 340, 260, 260, 160, 200},{ 340, 310, 250, 240, 200},{ 340, 200, 200,
     200, 200},{ 340, 310, 250, 240, 200}},
03352 {{ 340, 340, 340, 340, 340},{ 340, 150, 150, 50, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 210,
100, 200},{ 340, 130, 30, 110, 200}},
03353 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 310, 250, 240, 200},{ 340, 230, 130,
     210, 200},{ 340, 270, 170, 240, 200}}
340, 340},{ 340, 340, 340, 340, 340}},
03357 {{ 340, 340, 340, 340, 340},{ 340, 230, 340, 200, 310},{ 340, 210, 250, 200, 220},{ 340, 110, 250, 200, 220},{ 340, 200, 200, 200, 200}},
03358 {{ 340, 340, 340, 340, 340}, { 340, 220, 260, 200, 230}, { 340, 200, 250, 200, 220}, { 340, 200, 200,
     200, 200},{ 340, 200, 250, 200, 220}},
03359 {{ 340, 340, 340, 340, 340},{ 340, 110, 250, 200, 220},{ 340, 200, 200, 200, 200},{ 340, 160, 270,
     200, 240},{ 340, -10, 130, 200, 100}},
03360 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 200, 220},{ 340, 90, 230,
     200, 200},{ 340, 120, 170, 200, 140}}
03361 },
03362
340, 340},{ 340, 340, 340, 340, 340}},
03364 {{ 340, 340, 340, 340, 340, 470, 200, 210, 220},{ 340, 150, 200, 190, 100},{ 340, 50, 200,
     90, 180}, { 340, 200, 200, 200, 200}},
03365 {{ 340, 340, 340, 340, 340},{ 340, 160, 200, 200, 110},{ 340, 240, 200, 240, 190},{ 340, 200, 200, 200, 200, 340, 240, 200, 240, 190}},
03366 {{ 340, 340, 340, 340, 340},{ 340,
                                   50, 200, 90, 180}, { 340, 200, 200, 200, 200}, { 340, 100, 200,
     140, 150},{ 340, 110, 200,
                            70, -120}},
03367 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 240, 200, 240, 190},{ 340, 210, 200,
     170, -20}, { 340, 240, 200, 200, 190}}
03368 },
```

```
03369 {
03370 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
03371 {{ 340, 340, 340, 340, 340},{ 340, 200, 340, 100, 290},{ 340, 200, 250, -30, 170},{ 340, 200, 250,
50, 250},{ 340, 200, 200, 200, 200}},
03372 {{ 340, 340, 340, 340, 340},{ 340, 200, 260, -20, 180},{ 340, 200, 250, 70, 160},{ 340, 200, 200,
     200, 200},{ 340, 200, 250,
                               70, 160}},
03373 {{ 340, 340, 340, 340, 340, 340, 200, 250, 50, 250},{ 340, 200, 200, 200, 200},{ 340, 200, 270,
     30, 220},{ 340, 200, 130, -250, 130}},
03374 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 70, 160},{ 340, 200, 230, -150, 230},{ 340, 200, 170, 70, 80}}
      -150, 230},{ 340, 200, 170,
03375 }
03376 },
03377 /* UA...UA */
03378 {{
03379 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03383 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340}}
03384
     },
03385
03386 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340},
03387 {{ 340, 340, 340, 340, 340},{ 340, 280, 280, 170, 200},{ 340, 230, 230, 130, 200},{ 340, 170, 170,
70, 200},{ 340, 200, 200, 200, 200},
03388 {{ 340, 340, 340, 340, 340},{ 340, 280, 280, 170, 200},{ 340, 340, 280, 270, 200},{ 340, 200, 200,
      200, 200},{ 340, 340, 280, 270, 200}},
03389 {{ 340, 340, 340, 340, 340},{ 340, 170, 170, 70, 200},{ 340, 200, 200, 200, 200},{ 340, 210, 210,
110, 200},{ 340, 100, 0, 70, 200}},
03390 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200},{ 340, 310, 250, 240, 200},{ 340, 220, 120, 200, 200},{ 340, 290, 190, 270, 200}}
03391
     }.
03392 {
340, 340},{ 340, 340, 340, 340, 340}}
03394 {{ 340, 340, 340, 340, 340},{ 340, 230, 340, 200, 310},{ 340, 190, 230, 200, 200},{ 340, 130, 270, 200, 240},{ 340, 200, 200, 200, 200}},
03395 {{ 340, 340, 340, 340, 340, 340},{ 340, 230, 280, 200, 250},{ 340, 230, 280, 200, 250},{ 340, 200, 200, 200,
     200, 200},{ 340, 230, 280, 200, 250}},
03396 {{ 340, 340, 340, 340, 340},{ 340, 130, 270, 200, 240},{ 340, 200, 200, 200, 200},{ 340, 170, 270,
     200, 240},{ 340, -50, 100, 200,
                                    70}},
03397 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 200, 220},{ 340, 80, 220, 200, 190},{ 340, 150, 190, 200, 160}}
03398 },
03399
340, 340},{ 340, 340, 340, 340, 340}},
03401 {{ 340, 340, 340, 340, 340},{ 340, 170, 200, 210, 220},{ 340, 130, 200, 170, 80},{ 340, 70, 200, 110, 200},{ 340, 200, 200, 200, 200}},
03402 {{ 340, 340, 340, 340, 340, 470, 200, 210, 120},{ 340, 270, 200, 270, 220},{ 340, 200, 200,
     200, 200},{ 340, 270, 200, 270, 220}},
03403 {{ 340, 340, 340, 340, 340},{ 340},
                                       70, 200, 110, 200}, { 340, 200, 200, 200, 200}, { 340, 110, 200,
150, 160), { 340, 70, 200, 30, -160}},
03404 {{ 340, 340, 340, 340, 340}, { 340, 200, 200, 200}, { 340, 240, 200, 240, 190}, { 340, 200, 200, 160, -30}, { 340, 270, 200, 230, 220}}
03405 },
03406 {
03407 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
03408 {{ 340, 340, 340, 340, 340},{ 340, 200, 340, 100, 290},{ 340, 200, 230, -50, 150},{ 340, 200, 270,
70, 270},{ 340, 200, 200, 200, 200}},
03409 {{ 340, 340, 340, 340, 340},{ 340, 200, 280,
                                                 0, 190}, { 340, 200, 280, 100, 190}, { 340, 200, 200,
     200, 200}, { 340, 200, 280, 100, 190}},
03410 {{ 340, 340, 340, 340, 340},{ 340, 200, 270, 70, 270},{ 340, 200, 200, 200, 200, 200},{ 340, 200, 270,
      30, 230}, { 340, 200, 100, -290,
                                    90}},
03411 {{ 340, 340, 340, 340, 340},{ 340, 200, 200, 200, 200},{ 340, 200, 250, 70, 160},{ 340, 200, 220,
      -160, 220},{ 340, 200, 190, 90, 110}}
03412 }
03413 },
03414 /* UA...?? */
03415 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03420 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}}
```

```
03421 }.
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340}, { 340, 340, 340, 340, 340}}
03429
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340}, { 340, 340, 340, 340, 340}}
03435 }.
03436
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03439 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03442 },
03443
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03449 }
03450 1
03451 },
03452 { /* noPair */ {{{{0}}}}},
03453 /* ??....CG */
03454 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340},{ 340, 340, 340, 340, 340}}
03460 },
03461
03462 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}
03467 },
03468
340, 340},{ 340, 340, 340, 340, 340}},
03470 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340},{ 340, 340, 340},
  340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
```

```
340, 340},{ 340, 340, 340, 340, 340}}
03474 },
03475
340, 340}, { 340, 340, 340, 340, 340}}
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03481 },
03482
03483 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03489 },
03490 /* ??....GC */
03491 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03497 },
03498
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03504 },
03505
03506 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03510 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}}
03511
  },
03512
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03518 },
03519
340, 340},{ 340, 340, 340, 340, 340}}
03521 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
  340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
```

```
03526 },
03527 /* ??...GU */
03528 {{
03529 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340}, { 340, 340, 340, 340, 340}}
03534 },
03535
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340},{ 340, 340, 340, 340, 340}}
03541 },
03542
340, 340},{ 340, 340, 340, 340, 340}},
340},{ 340, 340, 340, 340, 340}},
  340,
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03548 }.
03549
340, 340},{ 340, 340, 340, 340, 340}},
03551 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03555 },
03556
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03563 },
03564 /* ??....UG */
03565 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}
03571 },
03572
03573 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
```

```
340, 340},{ 340, 340, 340, 340, 340}}
03578 },
03579
340, 340}, { 340, 340, 340, 340, 340}}
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03585 },
03586
03587 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03592 },
03593
340, 340},{ 340, 340, 340, 340, 340}}
03595 {{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340}, { 340, 340, 340},
  340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03600 },
03601 /* ??....AU */
03602 {{
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03608 },
03609
03610 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03614 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340}}
03615 },
03616
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03622 },
03623
340, 340},{ 340, 340, 340, 340, 340}}
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
```

```
03629 1.
340, 340},{ 340, 340, 340, 340, 340}},
03632 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03636 }
03637
03638 /* ??...UA */
03639 {{
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
340, 340},{ 340, 340, 340, 340, 340}}
03645 },
03646 {
340},{ 340, 340, 340, 340, 340}},
  340,
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}
03652 }.
03653
340, 340},{ 340, 340, 340, 340, 340}},
03655 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340}, { 340, 340, 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03659
03660
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}}
03666 }.
340, 340},{ 340, 340, 340, 340, 340}},
03669 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03673 }
03674 },
03675 /* ??....?? */
03676 {
340, 340},{ 340, 340, 340, 340, 340}},
 340, 340},{ 340, 340, 340, 340, 340}}
```

```
340, 340},{ 340, 340, 340, 340, 340}}
03682 },
03683
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340}, { 340, 340, 340, 340, 340}}
03689 },
03690 {
03691 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340, 340, 340},{ 340, 340, 340, 340},
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03696 },
03697 +
03698 {{ 340, 340, 340, 340, 340},{ 340, 340, 340, 340}, 340, 340}, { 340, 340, 340, 340, 340}, { 340, 340, 340, 340}, { 340, 340, 340, 340},
340, 340},{ 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03703 },
03704 {
340, 340},{ 340, 340, 340, 340, 340}}
340, 340}, { 340, 340, 340, 340, 340}},
340, 340},{ 340, 340, 340, 340, 340}},
03711
03712
03713 };
03714
03715 PRIVATE int int22_H_184[NBPAIRS+1][NBPAIRS+1][5][5][5][5] =
03716 { /* noPair */ {{{{0}}}}}},
03717 { /* noPair */ {{{{0}}}}},
03718 /* CG.@@..CG */
DEF },
03721 { DEF, DEF,
           DEF.
              DEF,
                  DEF },
DEF },
                 DEF } } .
03724 /* CG.@A..CG */
03725 { { 0, 0, 0, 0, 0},
03726 {-1029,-1029,-1029,-1029,-1029},
03727 { -519, -519, -519, -519, -519}, 03728 { -939, -939, -939, -939, -939}, 03729 { -809, -809, -809, -809, -809}},
03730 /* CG.@C..CG */
03731 { {
     0, 0, 0, 0, 0},
03732 { -949, -949, -949, -949, -949},
03733 { -449, -449, -449, -449, -449},
03734 { -939, -939, -939, -939}, 03735 { -739, -739, -739, -739, -739, -739}},
03736 /* CG.@G..CG */
03737 { { 0, 0, 0, 0, 0},
03738 {-1029,-1029,-1029,-1029,-1029},
03739 { -519, -519, -519, -519, -519}, 
03740 { -939, -939, -939, -939, -939}, 
03741 { -809, -809, -809, -809, -809}},
03742 /* CG.@U..CG */
     0, 0, 0, 0, 0},
03743 { {
03744 {-1029, -1029, -1029, -1029, -1029},
03745 { -669, -669, -669, -669, -669},
03746 { -939, -939, -939, -939, -939},
03747 { -859, -859, -859, -859, -859}}},
```

```
03748 /* CG.A@..CG */
03749 {{{ DEF, -1029, -949, -1029, -1029}, 03750 { -100, -1079, -999, -1079, -1079}, 03751 { -100, -1079, -999, -1079, -1079},
03752 { -100,-1079, -999,-1079,-1079},
03753 { -100,-1079, -999,-1079,-1079}},
03754 /* CG.AA..CG */
03755 {{ DEF,-1029, -949,-1029,-1029},
03756 {-1079, -2058, -1978, -2058, -2058},
03757 { -569, -1548, -1468, -1548, -1548},
03758 { -989, -1968, -1888, -1968, -1968},
03759 { -859, -1838, -1758, -1838, -1838}},
03760 /* CG.AC..CG */
03761 {{ DEF,-1029, -949,-1029,-1029},
03762 { -999, -1978, -1898, -1978, -1978},
03763 {
         -499, -1478, -1398, -1478, -1478},
03764 { -989, -1968, -1888, -1968, -1968}
03765 { -789, -1768, -1688, -1768, -1768}},
03766 /* CG.AG..CG */
03767 {{ DEF,-1029, -949,-1029,-1029},
03768 {-1079, -2058, -1978, -2058, -2058},
03769 \{ -569, -1548, -1468, -1548, -1548 \},
03770 { -989, -1968, -1888, -1968, -1968}
03771 { -859, -1838, -1758, -1838, -1838}},
03772 /* CG.AU..CG */
03773 {{ DEF,-1029, -949,-1029,-1029},
03774 {-1079, -2058, -1978, -2058, -2058},
03775 { -719, -1698, -1618, -1698, -1698},
03776 { -989, -1968, -1888, -1968, -1968}
03777 { -909, -1888, -1808, -1888, -1888}}},
03778 /* CG.CQ..CG */
03779 {{{ DEF, -519, -449, -519,
03780 { -100, -569, -499, -569, -719}, 03781 { -100, -569, -499, -569, -719},
03782 { -100, -569, -499, -569, -719}, 03783 { -100, -569, -499, -569, -719}},
03784 /* CG.CA..CG */
03785 {{ DEF, -519, -449, -519, -669},
03786 {-1079, -1548, -1478, -1548, -1698},
03787 { -569, -1038, -968, -1038, -1188},
03788 { -989, -1458, -1388, -1458, -1608}
03789 { -859, -1328, -1258, -1328, -1478}},
03790 /* CG.CC..CG */
03791 {{ DEF, -519, -449, -519, -669},
03792 { -999, -1468, -1398, -1468, -1618},
03793 {
         -499, -968, -898, -968, -1118},
03794 {
         -989, -1458, -1388, -1458, -1608},
03795 \{ -789, -1258, -1188, -1258, -1408 \} \}
03796 /* CG.CG..CG */
03797 {{ DEF, -519, -449, -519, -669},
       \{-1079, -1548, -1478, -1548, -1698\},
03799
       { -569, -1038, -968, -1038, -1188},
03800 { -989, -1458, -1388, -1458, -1608},
03801 { -859,-1328,-1258,-1328,-1478}},
03802 /* CG.CU..CG */
           DEF, -519, -449, -519, -669},
03803 {{
       \{-1079, -1548, -1478, -1548, -1698\},\
       \{-719, -1188, -1118, -1188, -1338\},
03805
03806
         -989,-1458,-1388,-1458,-1608},
03807 \{ -909, -1378, -1308, -1378, -1528 \} \}
03808 /* CG.G@..CG */
03809 {{{ DEF, -939, -939, -939},
03810 { -100, -989, -989, -989, -989},
03811 { -100, -989, -989, -989, -989},
         -100, -989, -989, -989, -989}
03812
03813 { -100, -989, -989, -989}, 03814 /* CG.GA..CG */
03815 {{ DEF, -939, -939, -939, -939},
03816 {-1079, -1968, -1968, -1968, -1968},
       { -569, -1458, -1458, -1458, -1458},
03818 {
         -989, -1878, -1878, -1878, -1878},
03819 { -859, -1748, -1748, -1748, -1748}},
03820 /* CG.GC..CG */
03821 {{ DEF, -939, -939, -939},
03822 { -999, -1888, -1888, -1888, -1888},
03823 { -499, -1388, -1388, -1388, -1388},
03824 { -989, -1878, -1878, -1878, -1878},
03825 { -789, -1678, -1678, -1678, -1678}},
03826 /* CG.GG..CG */
03827 {{ DEF, -939, -939, -939},
03828 {-1079,-1968,-1968,-1968,-1968},
03829 { -569, -1458, -1458, -1458, -1458},
03830 { -989, -1878, -1878, -1878, -1878},
03831 { -859, -1748, -1748, -1748, -1748}},
03832 /* CG.GU..CG */
03833 {{ DEF, -939, -939, -939, -939}, 03834 {-1079,-1968,-1968,-1968,-1968},
```

```
03835 { -719, -1608, -1608, -1608, -1608},
03836 { -989,-1878,-1878,-1878,-1878},
03837 { -909,-1798,-1798,-1798,-1798}}},
03838 /* CG.Ue..CG */
03839 {{{ DEF, -809, -739, -809, -859}, 03840 { -100, -859, -789, -859, -909}, 03841 { -100, -859, -789, -859, -909},
03842 { -100, -859, -789, -859, -909},
03843 { -100, -859, -789, -859, -909}},
03844 /* CG.UA..CG */
03845 {{ DEF, -809, -739, -809, -859}, 03846 {-1079,-1838,-1768,-1838,-1888},
03847 { -569, -1328, -1258, -1328, -1378},
03848 { -989, -1748, -1678, -1748, -1798},
03849 { -859, -1618, -1548, -1618, -1668}},
03850 /* CG.UC..CG */
03850 /* CG.UC..CG */
03851 {{ DEF, -809, -739, -809, -859},
03852 { -999,-1758,-1688,-1758,-1808},
03853 { -499, -1258, -1188, -1258, -1308},
03854 { -989, -1748, -1678, -1748, -1798},
03855 { -789, -1548, -1478, -1548, -1598}},
03856 /* CG.UG..CG */
03857 {{ DEF, -809, -739, -809, -859},
03858 {-1079,-1838,-1768,-1838,-1888},
03859 { -569, -1328, -1258, -1328, -1378},
03860 { -989, -1748, -1678, -1748, -1798},
03861 { -859, -1618, -1548, -1618, -1668}},
03862 /* CG.UU..CG */
03862 /* CG.00..CG */
03863 {{ DEF, -809, -739, -809, -859},
03864 {-1079,-1838,-1768,-1838,-1888},
03865 { -719, -1478, -1408, -1478, -1528},
03866 { -989, -1748, -1678, -1748, -1798},
03867 { -909, -1668, -1598, -1668, -1718}}}},
03868 /* CG.@@..GC */
            [{{ 0, 0, 0, 0, 0, 0, DEF, DEF, DEF, DEF},
03869 {{{
03870 {
              DEF, DEF, DEF, DEF,
                                                   DEF},
03871
              DEF, DEF,
                                 DEF, DEF,
03879 { -499, -455,
03880 /* CG.@C..GC */
0, 0,
03881 {{ 0, 0, 0, 0, 0}, 0}, 03881 {{ 0, 0, 0, 0, 0}, 0}, 03883 { -879, -879, -879, -879, -879}, 03883 { -309, -309, -309, -309, -309}, 03884 { -739, -739, -739, -739, -739}, 03885 { -499, -499, -499, -499, -499}},
03886 /* CG.@G..GC */
03887 {{ 0, 0,
03887 {{ 0, 0, 0, 0, 0}, 0}, 03888 { -559, -559, -559, -559, -559}, 03889 { -309, -309, -309, -309, -309}, 03890 { -619, -619, -619, -619, -619}, 03891 { -499, -499, -499, -499, -499}},
03892 /* CG.@U..GC */
03893 {{ 0, 0, 0, 0, 0}, 0}, 0}, 03893 {{ 0, 0, 0, 0, 0}, 0}, 03894 { -879, -879, -879, -879, -879}, 03895 { -389, -389, -389, -389, -389}, 03896 { -739, -739, -739, -739, -739}, 03897 { -569, -569, -569, -569, -569}}},
         /* CG.A@..GC */
03899 {{{ DEF, -1029, -949, -1029, -1029},
03900 { -100,-1079, -999,-1079,-1079},
03901 { -100,-1079, -999,-1079,-1079},
03902 { -100,-1079, -999,-1079,-1079},
03903 { -100,-1079, -999,-1079,-1079}},
03904 /* CG.AA..GC */
03905 {{ DEF,-1029, -949,-1029,-1029},
03906 { -569, -1548, -1468, -1548, -1548},
03907 {
            -769, -1748, -1668, -1748, -1748},
03908 { -759, -1738, -1658, -1738, -1738},
03909 { -549, -1528, -1448, -1528, -1528}},
03910 /* CG.AC..GC */
03911 {{ DEF,-1029, -949,-1029,-1029},
03912 {
            -929,-1908,-1828,-1908,-1908},
03913 \{ -359, -1338, -1258, -1338, -1338 \}
03914 { -789, -1768, -1688, -1768, -1768},
03915 { -549, -1528, -1448, -1528, -1528}},
03916 /* CG.AG..GC */
03917 {{ DEF,-1029, -949,-1029,-1029},
03918 { -609, -1588, -1508, -1588, -1588},
03919 { -359, -1338, -1258, -1338, -1338},
03920 { -669,-1648,-1568,-1648,-1648},
03921 { -549,-1528,-1448,-1528,-1528}},
```

```
03922 /* CG.AU..GC */
03923 {{ DEF,-1029, -949,-1029,-1029},
03924 {
         -929,-1908,-1828,-1908,-1908},
03925 {
         -439, -1418, -1338, -1418, -1418},
03926 \{ -789, -1768, -1688, -1768, -1768 \}
03927 { -619, -1598, -1518, -1598, -1598}}},
03928 /* CG.C@..GC */
03929 {{{ DEF, -519, -449, -519, -669},
03930 { -100, -569, -499, -569, -719}, 03931 { -100, -569, -499, -569, -719},
03932 { -100, -569, -499, -569, -719}, 03933 { -100, -569, -499, -569, -719}},
03934 /* CG.CA..GC */
03935 {{ DEF, -519, -449, -519, -669}, 03936 { -569,-1038, -968,-1038,-1188},
03937 {
         -769, -1238, -1168, -1238, -1388},
03938 { -759, -1228, -1158, -1228, -1378}
03939 { -549, -1018, -948, -1018, -1168}}
03940 /* CG.CC..GC */
03941 {{ DEF, -519, -449, -519, -669},
03942
         -929, -1398, -1328, -1398, -1548},
03943 {
         -359, -828, -758, -828, -978},
         -789, -1258, -1188, -1258, -1408},
03944 {
03945 { -549,-1018, -948,-1018,-1168}},
03946 /* CG.CG..GC */
03947 {{ DEF, -519, -449, -519, -669},
03948
       \{-609, -1078, -1008, -1078, -1228\},\
03949 {
         -359, -828, -758, -828, -978},
03950 {
         -669, -1138, -1068, -1138, -1288}
03951 { -549, -1018, -948, -1018, -1168}},
03952 /* CG.CU..GC */
03953 {{ DEF, -519, -449, -519, -669},
03953 {{
03954 { -929, -1398, -1328, -1398, -1548},
03955 {
         -439, -908, -838, -908, -1058},
03956
         -789,-1258,-1188,-1258,-1408}
03957 \{ -619, -1088, -1018, -1088, -1238 \} \}
03958 /* CG.G@..GC */
03959 {{{ DEF, -939, -939, -939},
03960
       \{-100, -989, -989, -989, -989\},\
03961
         -100, -989, -989, -989, -989},
03962 { -100, -989, -989, -989, -989}, 03963 { -100, -989, -989, -989, -989}, 03964 /* CG.GA..GC */
03965 {{ DEF, -939, -939, -939, -939},
       \{-569, -1458, -1458, -1458, -1458\},
03967 {
         -769, -1658, -1658, -1658, -1658},
03968 {
         -759, -1648, -1648, -1648, -1648},
03969 { -549, -1438, -1438, -1438, -1438}},
03970 /* CG.GC..GC */
03971 {{ DEF, -939, -939, -939, -939},
       { -929, -1818, -1818, -1818, -1818},
03972
03973
         -359, -1248, -1248, -1248, -1248},
03974 {
         -789, -1678, -1678, -1678, -1678}
03975 { -549,-1438,-1438,-1438,-1438}},
03976 /* CG.GG..GC */
03977 {{ DEF, -939, -939, -939},
       \{-609, -1498, -1498, -1498, -1498\},\
03979
       \{-359, -1248, -1248, -1248, -1248\},
03980 {
         -669, -1558, -1558, -1558, -1558},
03981 { -549, -1438, -1438, -1438, -1438}},
03982 /* CG.GU..GC */
03983 {{ DEF, -939, -939, -939},
03984 { -929, -1818, -1818, -1818, -1818},
         -439, -1328, -1328, -1328, -1328},
03985
03986 {
         -789, -1678, -1678, -1678, -3080}
03987 { -619, -1508, -1508, -1508, -1508}}},
03988 /* CG.U@..GC */
03989 {{{ DEF, -809, -739, -809, -859}},
03990 { -100, -859, -789, -859, -909}, 03991 { -100, -859, -789, -859, -909},
03992
         -100, -859, -789, -859, -909},
03993 { -100, -859, -789, -859, -909}},
03994 /* CG.UA..GC */
03995 {{ DEF, -809, -739, -809, -859}, 03996 { -569,-1328,-1258,-1328,-1378},
         -769, -1528, -1458, -1528, -1578},
       \{-759, -1518, -1448, -1518, -1568\},
03998
03999 { -549, -1308, -1238, -1308, -1358}},
04000 /* CG.UC..GC */
04001 {{ DEF, -809, -739, -809, -859},
04002 { -929, -1688, -1618, -1688, -1738},
04003 { -359, -1118, -1048, -1118, -1168},
         -789, -1548, -1478, -1548, -1598},
04004
04005 { -549, -1308, -1238, -1308, -1358}},
04006 /* CG.UG..GC */
04006 /* CG.0G..GC */
04007 {{ DEF, -809, -739, -809, -859},
04008 { -609,-1368,-1298,-1368,-1418},
```

```
04009 { -359, -1118, -1048, -1118, -1168},
04010 { -669, -1428, -1358, -1428, -1478},
04011 { -549, -1308, -1238, -1308, -1358}},
04012 /* CG.UU..GC */
04012 /* CG.00..GC */
04013 {{ DEF, -809, -739, -809, -859},
04014 { -929,-1688,-1618,-1688,-1738},
04015 { -439, -1198, -1128, -1198, -1248},
04016 { -789, -1548, -1478, -1548, -1598},
04017 { -619, -1378, -1308, -1378, -1428}}}}
04018 /* CG.@@..GU */
04021 {
              DEF, DEF,
                                  DEF, DEF, DEF},
04022 {
              DEF, DEF,
                                  DEF, DEF,
                                                      DEF },
04023 {
              DEF, DEF, DEF, DEF,
                                                     DEF } },
04024 /* CG.@A..GU */
04025 {{ 0, 0, 0, 0, 0}, 0}, 0}, 04025 {{ 0, 0, 0, 0, 0, 0}, 04026 { -429, -429, -429, -429, -259, -259, -259, -259}, 04027 { -259, -259, -259, -259, -259}, 04028 { -339, -339, -339, -339, -339, -329, -329, -329}, 04030 /* CG.@C..GU */
04031 {{ 0, 0, 0, 0, 0}, 0}, 04032 { -599, -599, -599, -599, -599}, 04033 { -239, -239, -239, -239},
04034 { -689, -689, -689, -689, -689}, 04035 { -329, -329, -329, -329, -329}},
04036 /* CG.@G..GU */
04037 {{ 0, 0, 0, 0, 0}, 0}, 04038 { -599, -599, -599, -599, -599}, 04039 { -239, -239, -239, -239, -239}, 04040 { -689, -689, -689, -689, -689, -689}, 04041 { -329, -329, -329, -329, -329}}
04042 /* CG.@U..GU */
04043 {{ 0, 0, 0, 0, 0}, 0}, 04044 { -599, -599, -599, -599, -599}, 04045 { -239, -239, -239, -239, -239}, 04046 { -689, -689, -689, -689, -689, -689}, 04047 { -329, -329, -329, -329, -329}}}
04048 /* CG.A@..GU */
04049 {{{ DEF,-1029, -949,-1029,-1029}, 04050 { -100,-1079, -999,-1079,-1079}, 04051 { -100,-1079, -999,-1079,-1079}, 04052 { -100,-1079, -999,-1079,-1079},
04053 { -100, -1079, -999, -1079, -1079}},
04054 /* CG.AA..GU */
04055 {{ DEF, -1029, -949, -1029, -1029}, 04056 { -479, -1458, -1378, -1458, -1458}, 04057 { -309, -1288, -1208, -1288, -1288},
04058 { -389, -1368, -1288, -1368, -1368},
04059 { -379, -1358, -1278, -1358, -1358}},
04060 /* CG.AC..GU */
04061 {{ DEF,-1029, -949,-1029,-1029},
04062 { -649, -1628, -1548, -1628, -1628},
04063 { -289, -1268, -1188, -1268, -1268},
04064 \{ -739, -1718, -1638, -1718, -1718 \}
04065 { -379, -1358, -1278, -1358, -1358}},
04066 /* CG.AG..GU */
04067 {{ DEF, -1029, -949, -1029, -1029}, 04068 { -649, -1628, -1548, -1628, -1628},
04069 { -289, -1268, -1188, -1268, -1268},
04070 \{ -739, -1718, -1638, -1718, -1718 \},
04071 { -379, -1358, -1278, -1358, -1358}},
04072 /* CG.AU..GU */
04073 {{ DEF,-1029, -949,-1029,-1029},
04074 { -649, -1628, -1548, -1628, -1628},
04075 \{ -289, -1268, -1188, -1268, -1268 \},
04076 { -739, -1718, -1638, -1718, -1718},
04077 \{ -379, -1358, -1278, -1358, -1358 \} \}
          /* CG.C@..GU */
04079 {{{ DEF, -519, -449, -519, -669},
04080 { -100, -569, -499, -569, -719}, 04081 { -100, -569, -499, -569, -719},
04082 { -100, -569, -499, -569, -719}, 04083 { -100, -569, -499, -569, -719}},
04084 /* CG.CA..GU */
04085 {{ DEF, -519, -449, -519, -669},
04086 { -479, -948, -878, -948, -1098}, 04087 { -309, -778, -708, -778, -928},
04088 { -389, -858, -788, -858, -1008},
04089 { -379, -848, -778, -848, -998}},
04090 /* CG.CC..GU */
04091 {{ DEF, -519, -449, -519, -669},
04092 { -649, -1118, -1048, -1118, -1268},
04093 { -289, -758, -688, -758, -908},
04094 { -739, -1208, -1138, -1208, -1358},
04095 { -379, -848, -778, -848, -998}},
```

```
04096 /* CG.CG..GU */
04097 {{ DEF, -519, -449, -519, -669},
04098 { -649, -1118, -1048, -1118, -1268},
04099 { -289, -758, -688, -758, -908},
04100 { -739, -1208, -1138, -1208, -1358},
04101 { -379, -848, -778, -848, -998}}
04102 /* CG.CU..GU */
04103 {{ DEF, -519, -449, -519, -669},
04104 { -649,-1118,-1048,-1118,-1268},
04105 { -289, -758, -688, -758, -908},
04106 { -739, -1208, -1138, -1208, -1358},
04107 { -379, -848, -778, -848, -998}}},
04108 /* CG.G@..GU */
04109 {{{ DEF, -939, -939, -939, -939}, 04110 { -100, -989, -989, -989, -989},
04111 {
        -100, -989, -989, -989, -989},
04112 { -100, -989, -989, -989, -989}, 04113 { -100, -989, -989, -989, -989, -989}},
04114 /* CG.GA..GU */
04115 {{ DEF, -939, -939, -939, -939},
04116 { -479, -1368, -1368, -1368, -1368},
04117 \{ -309, -1198, -1198, -1198, -1198 \},
04118 \{ -389, -1278, -1278, -1278, -1278 \}
04119 { -379, -1268, -1268, -1268, -1268}},
04120 /* CG.GC..GU */
04121 {{ DEF, -939, -939, -939, -939},
04122 { -649, -1538, -1538, -1538, -1538},
04123 \{ -289, -1178, -1178, -1178, -1178 \},
04124 \{ -739, -1628, -1628, -1628, -1628 \}
04125 \{ -379, -1268, -1268, -1268, -1268 \} \}
04128 { -649, -1538, -1538, -1538, -1538},
04129 { -289, -1178, -1178, -1178, -1178},
04130 {
         -739,-1628,-1628,-1628,-1628}
04131 { -379, -1268, -1268, -1268, -1268}},
04132 /* CG.GU..GU */
04133 {{ DEF, -939, -939, -939},
04134 { -649, -1538, -1538, -1538, -1538},
04135 {
         -289, -1178, -1178, -1178, -1178},
04136 { -739, -1628, -1628, -1628, -1628}
04137 { -379, -1268, -1268, -1268, -1268}}},
04138 /* CG.U@..GU */
04139 {{{ DEF, -809, -739, -809, -859},
       { -100, -859, -789, -859, -909}, 
{ -100, -859, -789, -859, -909},
04141 {
04142 { -100, -859, -789, -859, -909}, 04143 { -100, -859, -789, -859, -909}},
04144 /* CG.UA..GU */
04145 {{ DEF, -809, -739, -809, -859},
04146 { -479, -1238, -1168, -1238, -1288},
04147 {
         -309, -1068, -998, -1068, -1118},
04148 { -389, -1148, -1078, -1148, -1198}
04149 { -379,-1138,-1068,-1138,-1188}},
04150 /* CG.UC..GU */
04151 {{ DEF, -809, -739, -809, -859},
04152 { -649, -1408, -1338, -1408, -1458},
04153 { -289, -1048, -978, -1048, -1098},
04154 { -739, -1498, -1428, -1498, -1548}
04155 { -379, -1138, -1068, -1138, -1188}},
04156 /* CG.UG..GU */
04157 {{ DEF, -809, -739, -809, -859},
04158 { -649, -1408, -1338, -1408, -1458},
04159 { -289, -1048, -978, -1048, -1098},
04160 { -739, -1498, -1428, -1498, -1548}
04161 { -379, -1138, -1068, -1138, -1188}},
04162 /* CG.UU..GU */
04163 {{ DEF, -809, -739, -809, -859},
04164 { -649, -1408, -1338, -1408, -1458},
04165 { -289, -1048, -978, -1048, -1098},
04166 {
         -739, -1498, -1428, -1498, -1548},
04167 { -379, -1138, -1068, -1138, -1188}}}},
04168 /* CG.@@..UG */
                     0,
                               0.
04169 {{{{ 0,
          DEF, DEF, DEF, DEF, DEF},
DEF, DEF, DEF, DEF, DEF},
04170 {
04171 {
04172 { DEF, DEF, DEF, DEF, DEF}, 04173 { DEF, DEF, DEF, DEF, DEF}, 04174 /* CG.@A..UG */
04175 {{ 0, 0, 0, 0, 0}, 0}
04176 { -719, -719, -719, -719, -719},
04177 { -479, -479, -479, -479, -479},
04178 { -659, -659, -659, -659, -659}, 04179 { -549, -549, -549, -549, -549, -549, -549}}
04180 /* CG.@C..UG */
04181 {{ 0, 0, 0, 0, 0}, 0}
04182 { -789, -789, -789, -789, -789},
```

```
04183 { -479, -479, -479, -479, -479},
04184 { -809, -809, -809, -809, -809}, 04185 { -439, -439, -439, -439, -439}}
04186 /* CG.@G..UG */
04187 {{ 0, 0, 0, 0, 0}, 0}, 0, 04188 { -959, -959, -959, -959, -959}, 04189 { -359, -359, -359, -359, -359}, 04190 { -919, -919, -919, -919, -919},
                                    0,
04191 { -549, -549, -549, -549, -549}},
04192 /* CG.@U..UG */
04193 {{ 0, 0, 0, 0, 0}, 0}, 04194 {-809, -809, -809, -809, -809}, 04195 {-479, -479, -479, -479},
                                                       0 } .
04196 { -809, -809, -809, -809, -809}, 04197 { -359, -359, -359, -359, -359}}},
04198 /* CG.A@..UG */
04199 {{ DEF,-1029, -949,-1029,-1029},
04200 { -100,-1079, -999,-1079,-1079},
04201 { -100,-1079, -999,-1079,-1079},
04202 { -100,-1079, -999,-1079,-1079},
04203 { -100,-1079, -999,-1079,-1079}},
04204 /* CG.AA..UG */
04205 {{ DEF,-1029, -949,-1029,-1029},
04206 { -769, -1748, -1668, -1748, -1748},
04207 { -529, -1508, -1428, -1508, -1508},
         \{-709, -1688, -1608, -1688, -1688\},
04209 { -599, -1578, -1498, -1578, -1578}},
04210 /* CG.AC..UG */
04210 /* CG.AC..0G */
04211 {{ DEF,-1029, -949,-1029,-1029},
04212 { -839,-1818,-1738,-1818,-1818},
04213 { -529, -1508, -1428, -1508, -1508},
04214 { -859, -1838, -1758, -1838, -1838},
04215 { -489, -1468, -1388, -1468, -1468}},
04216 /* CG.AG..UG */
04217 {{ DEF,-1029, -949,-1029,-1029}, 04218 {-1009,-1988,-1908,-1988,-1988},
04219 { -409, -1388, -1308, -1388, -1388},
04220 { -969, -1948, -1868, -1948, -1948},
04221 \{ -599, -1578, -1498, -1578, -1578 \} \}
04222 /* CG.AU..UG */
04223 {{ DEF,-1029, -949,-1029,-1029}, 04224 { -859,-1838,-1758,-1838,-1838},
04225 \{ -529, -1508, -1428, -1508, -1508 \}
04226 { -859, -1838, -1758, -1838, -1838}
04227 { -409, -1388, -1308, -1388, -1388}}}
04228 /* CG.C@..UG */
04229 {{{ DEF, -519, -449, -519, -669},
04230 { -100, -569, -499, -569, -719}, 04231 { -100, -569, -499, -569, -719}, 04232 { -100, -569, -499, -569, -719}, 04233 { -100, -569, -499, -569, -719}}, 04233 { -100, -569, -499, -569, -719}}}
04234 /* CG.CA..UG */
04235 {{ DEF, -519, -449, -519, -669},
04236 { -769,-1238,-1168,-1238,-1388},
04237 \{ -529, -998, -928, -998, -1148 \},
04238 { -709, -1178, -1108, -1178, -1328},
04239 { -599, -1068, -998, -1068, -1218}},
04240 /* CG.CC..UG */
04241 {{ DEF, -519, -449, -519, -669},
04242 { -839, -1308, -1238, -1308, -1458},
04243 \{ -529, -998, -928, -998, -1148 \}
04244 { -859, -1328, -1258, -1328, -1478}
04245 { -489, -958, -888, -958, -1108}},
04246 /* CG.CG..UG */
04247 {{ DEF, -519, -449, -519, -669},
04248 {-1009,-1478,-1408,-1478,-1628},
04249 { -409, -878, -808, -878, -1028}, 04250 { -969, -1438, -1368, -1438, -1588},
04251 { -599, -1068, -998, -1068, -1218}},
04252 /* CG.CU..UG */
04253 {{ DEF, -519, -449, -519, -669},
04254 { -859, -1328, -1258, -1328, -1478},
04255 { -529, -998, -928, -998, -1148}, 
04256 { -859, -1328, -1258, -1328, -1478},
04257 { -409, -878, -808, -878,-1028}}},
04258 /* CG.G@..UG */
04259 {{{ DEF, -939, -939, -939},
04260 { -100, -989, -989, -989, -989}, 04261 { -100, -989, -989, -989, -989, -989},
04262 { -100, -989, -989, -989, -989},
04263 { -100, -989, -989, -989, -989}}
04264 /* CG.GA..UG */
04265 {{ DEF, -939, -939, -939, -939}, 04266 { -769,-1658,-1658,-1658,-1658},
04267 { -529, -1418, -1418, -1418, -1418},
04268 { -709,-1598,-1598,-1598,-1598},
04269 { -599,-1488,-1488,-1488,-1488}},
```

```
04270 /* CG.GC..UG */
04271 {{ DEF, -939, -939, -939, -939}, 04272 { -839,-1728,-1728,-1728,-1728},
04273 \{ -529, -1418, -1418, -1418, -1418 \},
04274 \{ -859, -1748, -1748, -1748, -1748 \}
04275 { -489, -1378, -1378, -1378, -1378}},
04276 /* CG.GG..UG */
04277 {{ DEF, -939, -939, -939, -939},
04278 \{-1009, -1898, -1898, -1898, -1898\},
04279 \{ -409, -1298, -1298, -1298, -1298 \},
04280 { -969, -1858, -1858, -1858, -1858},
04281 { -599, -1488, -1488, -1488, -1488}},
04282 /* CG.GU..UG */
04283 {{ DEF, -939, -939, -939},
04284 { -859, -1748, -1748, -1748, -1748},
04285 {
          -529, -1418, -1418, -1418, -1418},
04286 + -859, -1748, -1748, -1748, -1748
04287 \{ -409, -1298, -1298, -1298, -1298 \} \} \}
04288 /* CG.U@..UG */
04289 {{{ DEF, -809, -739, -809, -859},
04290 { -100, -859, -789, -859, -909}, 04291 { -100, -859, -789, -859, -909},
04292 { -100, -859, -789, -859, -909}, 04293 { -100, -859, -789, -859, -909}}, 04294 /* CG.UA..UG */
04295 {{ DEF, -809, -739, -809, -859}, 04296 { -769,-1528,-1458,-1528,-1578},
04297 {
          -529, -1288, -1218, -1288, -1338},
04298 { -709, -1468, -1398, -1468, -1518}
04299 \{ -599, -1358, -1288, -1358, -1408 \} \}
04300 /* CG.UC..UG */
04301 {{ DEF, -809, -739, -809, -859},
04301 {{
04302 { -839, -1598, -1528, -1598, -1648},
04303 { -529, -1288, -1218, -1288, -1338},
04304 {
          -859,-1618,-1548,-1618,-1668}
04305 \{ -489, -1248, -1178, -1248, -1298 \} \}
04306 /* CG.UG..UG */
04307 {{ DEF, -809, -739, -809, -859},
04308
        \{-1009, -1768, -1698, -1768, -1818\},\
04309 { -409, -1168, -1098, -1168, -1218},
04310 \{ -969, -1728, -1658, -1728, -1778 \}
04311 { -599, -1358, -1288, -1358, -1408}},
04312 /* CG.UU..UG */
04313 {{ DEF, -809, -739, -809, -859},
        \{-859, -1618, -1548, -1618, -1668\},\
04315 {
          -529, -1288, -1218, -1288, -1338},
04316 {
          -859, -1618, -1548, -1618, -1668}
04317 { -409,-1168,-1098,-1168,-1218}}}},
04318 /* CG.@@..AU */
04319 {{{{{
                 0.
                         0.
            DEF, DEF, DEF, DEF, DEF},
DEF, DEF, DEF, DEF, DEF},
04320 {
04321 {
04322 {
            DEF, DEF,
                             DEF, DEF, DEF},
04323 { DEF, DEF, DEF, DEF, DEF}}, 04324 /* CG.@A..AU */
04325 {{ 0, 0, 0, 0, 0}, 0}, 04326 { -429, -429, -429, -429, -429}, 04327 { -259, -259, -259, -259}, -259},
04328 { -339, -339, -339, -339}, 04329 { -329, -329, -329, -329, -329}},
04330 /* CG.@C..AU */
04331 {{ 0, 0, 0, 0, 0}, 0}, 04332 { -599, -599, -599, -599, -599}, 04333 { -239, -239, -239, -239, -239}, 04334 { -689, -689, -689, -689, -689},
04335 { -329, -320,
04336 /* CG.@G..AU */
0, 0,
04335 { -329, -329, -329, -329, -329}},
04337 {{ 0, 0, 0, 0, 0}
04338 { -599, -599, -599, -599},
04339 { -239, -239, -239, -239},
                                        0,
                                                   0 } .
04340 { -689, -689, -689, -689, -689},
04341 { -329, -329, -329, -329, -329}},
04342 /* CG.@U..AU */
                                 0,
04343 {{ 0, 0, 0, 0, 0}, 0}, 04344 { -599, -599, -599, -599, -599}, 04345 { -239, -239, -239, -239},
04346 { -689, -689, -689, -689, -689},
04347 { -329, -329, -329, -329, -329}}},
04348 /* CG.A@..AU */
04349 {{ DEF, -1029, -949, -1029, -1029},
04350 { -100, -1079, -999, -1079, -1079}, 04351 { -100, -1079, -999, -1079, -1079},
04352 { -100,-1079, -999,-1079,-1079},
04353 { -100,-1079, -999,-1079,-1079}},
04354 /* CG.AA..AU */
04355 {{ DEF,-1029, -949,-1029,-1029}, 04356 { -479,-1458,-1378,-1458,-1458},
```

```
04357 { -309, -1288, -1208, -1288, -1288},
04358 { -389, -1368, -1288, -1368, -1368},
04359 { -379, -1358, -1278, -1358, -1358}},
04360 /* CG.AC..AU */
04361 {{ DEF,-1029, -949,-1029,-1029}, 04362 { -649,-1628,-1548,-1628,-1628},
        { -289, -1268, -1188, -1268, -1268},
04364 {
          -739, -1718, -1638, -1718, -1718}
04365 { -379, -1358, -1278, -1358, -1358}},
04366 /* CG.AG..AU */
04367 {{ DEF,-1029, -949,-1029,-1029},
04368 { -649, -1628, -1548, -1628, -1628},
04369 { -289, -1268, -1188, -1268, -1268},
04370 { -739, -1718, -1638, -1718, -1718},
04371 { -379, -1358, -1278, -1358, -1358}},
04372 /* CG.AU..AU */
04372 /* CG.RO..RO */
04373 {{ DEF,-1029, -949,-1029,-1029},
04374 { -649,-1628,-1548,-1628,-1628},
04375 { -289, -1268, -1188, -1268, -1268},
04376 { -739, -1718, -1638, -1718, -1718}
04377 { -379, -1358, -1278, -1358, -1358}}}
04378 /* CG.C@..AU */
04379 {{{ DEF, -519, -449, -519, -669},
04380 { -100, -569, -499, -569, -719}, 04381 { -100, -569, -499, -569, -719},
04382 { -100, -569, -499, -569, -719},
04383 { -100, -569, -499, -569, -719}},
04384 /* CG.CA..AU */
04384 /* CG.CA..AU */
04385 {{ DEF, -519, -449, -519, -669},
04386 { -479, -948, -878, -948,-1098},
04387 { -309, -778, -708, -778, -928},
04388 { -389, -858, -788, -858,-1008},
04389 { -379, -848, -778, -848, -998}},
04390 /* CG.CC..AU */
04391 {{ DEF, -519, -449, -519, -669}, 04392 { -649,-1118,-1048,-1118,-1268},
04393 { -289, -758, -688, -758, -908},
04394 { -739, -1208, -1138, -1208, -1358},
04395 \{ -379, -848, -778, -848, -998 \} \}
04396 /* CG.CG..AU */
04397 {{ DEF, -519, -449, -519, -669}, 04398 { -649,-1118,-1048,-1118,-1268},
04399 \{ -289, -758, -688, -758, -908 \}
04400 { -739, -1208, -1138, -1208, -1358},
04401 { -379, -848, -778, -848, -998}},
04402 /* CG.CU..AU */
04403 {{ DEF, -519, -449, -519, -669},
04404 { -649,-1118,-1048,-1118,-1268},
04405 { -289, -758, -688, -758, -908},
04406 { -739, -1208, -1138, -1208, -1358},
04407 { -379, -848, -778, -848, -998}}},
04408 /* CG.G@..AU */
04409 {{{ DEF, -939, -939, -939, -939}}
04409 {{ DEF, -939, -939, -939, -939, 04410 { -100, -989, -989, -989, -989, 04411 { -100, -989, -989, -989, -989, 04412 { -100, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989}},
04414 /* CG.GA..AU */
04415 {{ DEF, -939, -939, -939, -939}, 04416 { -479,-1368,-1368,-1368,-1368},
04417 { -309, -1198, -1198, -1198, -1198},
04418 \{ -389, -1278, -1278, -1278, -1278 \}
04419 { -379, -1268, -1268, -1268, -1268}},
04420 /* CG.GC..AU */
04421 {{ DEF, -939, -939, -939, -939},
04422 { -649, -1538, -1538, -1538, -1538},
04423 \{ -289, -1178, -1178, -1178, -1178 \},
04424 { -739, -1628, -1628, -1628, -1628},
04425 { -379, -1268, -1268, -1268, -1268}},
04426 /* CG.GG..AU */
04427 {{ DEF, -939, -939, -939, -939},
04428 { -649, -1538, -1538, -1538, -1538},
04429 {
         -289, -1178, -1178, -1178, -1178},
04430 + -739, -1628, -1628, -1628, -1628
04431 { -379, -1268, -1268, -1268, -1268}},
04432 /* CG.GU..AU */
04433 {{ DEF, -939, -939, -939},
04434 { -649, -1538, -1538, -1538, -1538},
04435 \{ -289, -1178, -1178, -1178, -1178 \}
04436 \{ -739, -1628, -1628, -1628, -1628 \}
04437 { -379, -1268, -1268, -1268, -1268}}}
04438 /* CG.U@..AU */
04439 {{{ DEF, -809, -739, -809, -859}, 04440 { -100, -859, -789, -859, -909},
04441 { -100, -859, -789, -859, -909},
04442 { -100, -859, -789, -859, -909}, 04443 { -100, -859, -789, -859, -909}},
```

```
04444 /* CG.UA..AU */
04445 {{ DEF, -809, -739, -809, -859},
04446 { -479, -1238, -1168, -1238, -1288},
04447 { -309,-1068, -998,-1068,-1118},
04448 { -389, -1148, -1078, -1148, -1198}.
04449 { -379, -1138, -1068, -1138, -1188}},
04450 /* CG.UC..AU */
04451 {{ DEF, -809, -739, -809, -859},
04452 { -649, -1408, -1338, -1408, -1458},
04453 { -289,-1048, -978,-1048,-1098},
04454 { -739,-1498,-1428,-1498,-1548},
04455 { -379, -1138, -1068, -1138, -1188}},
04456 /* CG.UG..AU */
04457 {{ DEF, -809, -739, -809, -859},
04458 { -649,-1408,-1338,-1408,-1458},
04459 {
04459 { -289,-1048, -978,-1048,-1098},
04460 { -739,-1498,-1428,-1498,-1548},
04461 \{ -379, -1138, -1068, -1138, -1188 \} \}
04462 /* CG.UU..AU */
04463 {{ DEF, -809, -739, -809, -859},
04464 { -649, -1408, -1338, -1408, -1458},
04465 { -289, -1048, -978, -1048, -1098}, 04466 { -739, -1498, -1428, -1498, -1548},
04467 \{ -379, -1138, -1068, -1138, -1188 \} \} \}
04468 /* CG.@@..UA */
                0,
                        0,
04469 {{{
04470 {
           DEF, DEF, DEF, DEF},
04471 {
           DEF, DEF, DEF, DEF, DEF},
04472 { DEF, DEF, DEF, DEF, DEF}, 04473 { DEF, DEF, DEF, DEF, DEF, DEF, DEF}},
04474 /* CG.@A..UA */
04475 {{ 0, 0, 0, 0, 0}, 0}, 04476 {-399, -399, -399, -399, -399}, 04477 {-429, -429, -429, -429},
04478 { -379, -379, -379, -379}, 04479 { -279, -279, -279, -279, -279}},
04480 /* CG.@C..UA */
                             Ο,
04481 {{
              Ο,
                      0,
04482 { -629, -629, -629, -629, -629},
04483 { -509, -509, -509, -509, -509},
04484 { -679, -679, -679, -679, -679}
04485 { -139, -139, -139, -139, -139}},
04486 /* CG.@G..UA */
04487 {{ 0, 0, 0, 0, 0},
04488 { -889, -889, -889, -889, -889},
04489 { -199, -199, -199, -199},
04490 { -889, -889, -889, -889, -889},
04491 { -279, -279, -279, -279, 04492 /* CG.@U..UA */
04491 { -279, -279, -279, -279, -279}},
04493 {{ 0, 0, 0, 0, 0}, 0}, 04494 { -589, -589, -589, -589, -589}, 04495 { -179, -179, -179, -179}, 04496 { -679, -679, -679, -679},
04497 { -140, -140, -140, -140, -140}},
04498 /* CG.A@..UA */
04499 {{{ DEF, -1029, -949, -1029, -1029}, 04500 { -100, -1079, -999, -1079, -1079}, 04501 { -100, -1079, -999, -1079, -1079},
04502 { -100, -1079, -999, -1079, -1079},
04503 { -100,-1079, -999,-1079,-1079}}, 04504 /* CG.AA..UA */
04505 {{ DEF,-1029, -949,-1029,-1029},
04506 { -449, -1428, -1348, -1428, -1428},
04507 { -479, -1458, -1378, -1458, -1458},
04508 { -429, -1408, -1328, -1408, -1408}
04509 { -329, -1308, -1228, -1308, -1308}},
04510 /* CG.AC..UA */
04511 {{ DEF,-1029, -949,-1029,-1029},
04512 { -679, -1658, -1578, -1658, -1658},
04513 { -559, -1538, -1458, -1538, -1538},
04514 {
          -729, -1708, -1628, -1708, -1708},
04515 { -189, -1168, -1088, -1168, -1168}},
04516 /* CG.AG..UA */
04517 {{ DEF,-1029, -949,-1029,-1029},
04518 { -939, -1918, -1838, -1918, -1918},
04519 { -249, -1228, -1148, -1228, -1228},
04520 { -939, -1918, -1838, -1918, -1918},
04521 { -329, -1308, -1228, -1308, -1308}},
04522 /* CG.AU..UA */
04523 {{ DEF,-1029, -949,-1029,-1029},
04524 { -639, -1618, -1538, -1618, -1618},
04525 { -229, -1208, -1128, -1208, -1208},
04526 { -729, -1708, -1628, -1708, -1708},
04527 { -190, -1169, -1089, -1169, -1169}}}
04528 /* CG.C@..UA */
04529 {{{ DEF, -519, -449, -519, -669}, 04530 { -100, -569, -499, -569, -719},
```

```
04531 { -100, -569, -499, -569, -719},
04532 { -100, -569, -499, -569, -719}, 04533 { -100, -569, -499, -569, -719}},
04534 /* CG.CA..UA */
04535 {{ DEF, -519, -449, -519, -669}, 04536 { -449, -918, -848, -918, -1068}, 04537 { -479, -948, -878, -948, -1098},
       \{-429, -898, -828, -898, -1048\},\
04538
04539 { -329, -798, -728, -798, -948}},
04540 /* CG.CC..UA */
04541 {{ DEF, -519, -449, -519, -669}, 04542 { -679, -1148, -1078, -1148, -1298},
04543 { -559, -1028, -958, -1028, -1178},
04544 { -729, -1198, -1128, -1198, -1348},
04545 { -189, -658, -588, -658, -808}},
04546 /* CG.CG..UA */
04547 {{ DEF, -519, -449, -519, -669},
04548 { -939,-1408,-1338,-1408,-1558},
04549 { -249, -718, -648, -718, -868},
04550 { -939, -1408, -1338, -1408, -1558},
04551 { -329, -798, -728, -798, -948}},
04552 /* CG.CU..UA */
04553 {{ DEF, -519, -449, -519, -669}, 04554 { -639, -1108, -1038, -1108, -1258}, 04555 { -229, -698, -628, -698, -848},
       { -729, -1198, -1128, -1198, -1348},
04557 { -190, -659, -589, -659, -809}}},
04558 /* CG.GQ..UA */
04559 {{ DEF, -939, -939, -939},
04560 {-100, -989, -989, -989, -989},
04561 {-100, -989, -989, -989, -989},
04562 {-100, -989, -989, -989, -989},
04563 { -100, -989, -989, -989, -989}},
04564 /* CG.GA..UA */
04565 {{ DEF, -939, -939, -939, -939}, 04566 { -449,-1338,-1338,-1338,-1338},
04567 { -479, -1368, -1368, -1368, -1368},
04568 { -429, -1318, -1318, -1318, -1318},
04569 \{ -329, -1218, -1218, -1218, -1218 \} \}
04570 /* CG.GC..UA */
04571 {{ DEF, -939, -939, -939}, 04572 { -679,-1568,-1568,-1568,-1568},
04573 { -559.-1448.-1448.-1448.-1448}.
04574 { -729, -1618, -1618, -1618, -1618},
04575 \{ -189, -1078, -1078, -1078, -1078 \} \}
04576 /* CG.GG..UA */
04577 {{ DEF, -939, -939, -939},
04578 { -939,-1828,-1828,-1828,-1828},
04579 { -249, -1138, -1138, -1138, -1138},
04580 { -939, -1828, -1828, -1828, -1828},
04581 { -329, -1218, -1218, -1218, -1218}},
04582 /* CG.GU..UA */
04583 {{ DEF, -939, -939, -939},
04584 { -639,-1528,-1528,-1528,-1528},
04585 { -229,-1118,-1118,-1118,-1118}.
04586 \{ -729, -1618, -1618, -1618, -1618 \}
04587 { -190, -1079, -1079, -1079, -1079}}}
04588 /* CG.U@..UA */
04588 /* ( DEF, -809, -739, -809, -859), 04590 { -100, -859, -789, -859, -909}, 04591 { -100, -859, -789, -859, -909}, 04592 { -100, -859, -789, -859, -909}, 04593 { -100, -859, -789, -859, -909}},
04594 /* CG.UA..UA */
04595 {{ DEF, -809, -739, -809, -859},
04596 { -449,-1208,-1138,-1208,-1258},
04597 \{ -479, -1238, -1168, -1238, -1288 \},
04598 { -429, -1188, -1118, -1188, -1238},
04599 { -329, -1088, -1018, -1088, -1138}},
04600 /* CG.UC..UA */
04601 {{ DEF, -809, -739, -809, -859},
04602 { -679, -1438, -1368, -1438, -1488},
04603 {
          -559, -1318, -1248, -1318, -1368},
04604 \{ -729, -1488, -1418, -1488, -1538 \},
04605 { -189, -948, -878, -948, -998}},
04606 /* CG.UG..UA */
04607 {{ DEF, -809, -739, -809, -859},
04608 {
          -939,-1698,-1628,-1698,-1748},
04609 (
         -249, -1008, -938, -1008, -1058
04610 { -939, -1698, -1628, -1698, -1748},
04611 { -329, -1088, -1018, -1088, -1138}},
04612 /* CG.UU..UA */
04613 {{ DEF, -809, -739, -809, -859},
04614 {
          -639, -1398, -1328, -1398, -1448},
04615 { -229, -988, -918, -988, -1038},
04616 { -729, -1488, -1418, -1488, -1538}
04617 { -190, -949, -879, -949, -999}}}},
```

```
04618 /* CG.@@.. @ */
04619 {{{{ DEF,
                          DEF, DEF, DEF,
04620 {
             DEF, DEF, DEF, DEF},
04621 {
             DEF,
                    DEF,
                              DEF,
                                       DEF,
                                                 DEF },
04622 {
             DEF,
                      DEF,
                               DEF.
                                        DEF.
                                                 DEF).
04623 {
             DEF.
                    DEF. DEF.
                                        DEF.
                                                DEF } }.
04624 /* CG.@A.. @ */
04625 {{ DEF,
                       DEF, DEF,
                                         DEF,
04626 {
             DEF, DEF, DEF,
                                       DEF, DEF},
                                                 DEF},
04627 {
             DEF,
                      DEF,
                               DEF,
                                        DEF,
04628 {
             DEF,
                      DEF.
                               DEF,
                                        DEF,
                                                 DEF }.
                     DEF, DEF,
04629 {
             DEF.
                                        DEF.
                                                 DEF } }.
04630 /* CG.@C.. @ */
                                        DEF,
04631 {{ DEF, DEF, DEF,
04632 {
             DEF, DEF, DEF, DEF, DEF},
04633 {
                                                 DEF } ,
             DEF,
                      DEF,
                               DEF,
                                        DEF,
04634 (
             DEF.
                      DEF.
                               DEF.
                                        DEF.
                                                 DEF).
             DEF,
                    DEF,
04635 {
                               DEF,
                                        DEF,
                                                 DEF } },
04636 /* CG.@G.. @ */
04637 {{
                       DEF, DEF, DEF,
              DEF,
                              DEF,
04638 {
             DEF, DEF,
                                       DEF, DEF},
                                                 DEF },
04639 {
             DEF,
                      DEF,
                               DEF,
                                        DEF,
                    DEF,
04640 {
             DEF,
                               DEF,
                                       DEF,
                                                 DEF).
04641 {
             DEF.
                     DEF, DEF,
                                        DEF,
                                                DEF } },
04642 /* CG.@U.. @ */
04643 {{ DEF, DEF, DEF, DEF,
04644 {
             DEF, DEF,
                               DEF, DEF, DEF},
                              DEF,
04645 {
             DEF, DEF,
                                       DEF,
                                               DEF } ,
                                        DEF,
04646 {
             DEF, DEF,
                               DEF,
                                                 DEF 1.
04647 { DEF, DEF, DEF, DEF, DEF}}},
04648 /* CG.A@.. @ */
04649 {{{ -100,-1079, -999,-1079,-1079},
04650 { -100,-1079, -999,-1079,-1079},
04651 { -100,-1079, -999,-1079,-1079},
04652 {
04652 { -100,-1079, -999,-1079,-1079},
04653 { -100,-1079, -999,-1079,-1079}},
04654 /* CG.AA.. @ */
04655 {{ -100,-1079, -999,-1079,-1079},
04656 \{ -100, -1079, -999, -1079, -1079 \},
04657 {
           -100, -1079, -999, -1079, -1079},
04658 \{ -100, -1079, -999, -1079, -1079 \}
04659 { -100,-1079, -999,-1079,-1079}},
04660 /* CG.AC.. @ */
04661 {{ -100,-1079, -999,-1079,-1079},
        { -100, -1079, -999, -1079, -1079}, 
{ -100, -1079, -999, -1079, -1079},
04663 {
04664 {
           -100,-1079, -999,-1079,-1079},
04665 { -100, -1079, -999, -1079, -1079}},
04666 /* CG.AG.. @ */
04667 {{ -100,-1079, -999,-1079,-1079}, 04668 { -100,-1079, -999,-1079,-1079},
04669
           -100, -1079, -999, -1079, -1079},
04670 {
           -100,-1079, -999,-1079,-1079}
04671 { -100, -1079, -999, -1079, -1079}}, 04672 /* CG.AU.. @ */ 04673 {{ -100, -1079, -999, -1079, -1079},
04674 { -100, -1079, -999, -1079, -1079}, 04675 { -100, -1079, -999, -1079, -1079},
04676 { -100, -1079, -999, -1079, -1079}
04677 \{ -100, -1079, -999, -1079, -1079 \} \} \}
04678 /* CG.C@.. @ */
04679 {{{ -100, -569, -499, -569, -719},
04680 { -100, -569, -499, -569, -719}, 04681 { -100, -569, -499, -569, -719},
04682
           -100, -569, -499, -569, -719}
04682 { -100, -569, -499, -569, -719}, 04683 { -100, -569, -499, -569, -719}}, 04684 /* CG.CA.. @ */
04685 {{ -100, -569, -499, -569, -719}, 04686 { -100, -569, -499, -569, -719}, 04687 { -100, -569, -499, -569, -719},
04688 { -100, -569, -499, -569, -719}, 04689 { -100, -569, -499, -569, -719}},
04689 { -100, -569, -499, -569, -719}},

04690 /* CG.CC.. @ */

04691 {{ -100, -569, -499, -569, -719},

04692 { -100, -569, -499, -569, -719},

04693 { -100, -569, -499, -569, -719},
04694 { -100, -569, -499, -569, -719},
04695 { -100, -569, -499, -569, -719}},
04696 /* CG.CG.. @ */
04697 {{ -100, -569, -499, -569, -719},
04698 { -100, -569, -499, -569, -719},
04698 { -100, -569, -499, -569, -719},
04700 { -100, -569, -499, -569, -719}, 04701 { -100, -569, -499, -569, -719}},
04702 /* CG.CU.. @ */
04703 {{ -100, -569, -499, -569, -719},
04704 { -100, -569, -499, -569, -719},
```

```
04705 { -100, -569, -499, -569, -719},
04706 { -100, -569, -499, -569, -719}, 04707 { -100, -569, -499, -569, -719}}},
04708 /* CG.GG.. @ */
04709 {{ -100, -989, -989, -989, -989},
04710 { -100, -989, -989, -989, -989},
04711 { -100, -989, -989, -989, -989},
 04712
                          { -100, -989, -989, -989, -989},
04712 { -100, -989, -989, -989, -989}},

04713 { -100, -989, -989, -989, -989}},

04715 {{ -100, -989, -989, -989, -989},

04716 { -100, -989, -989, -989, -989},

04717 { -100, -989, -989, -989, -989},
 04718 { -100, -989, -989, -989, -989}, 04719 { -100, -989, -989, -989, -989, -989}}
04712 (-100, -989, -989, -989, -989), 04721 ({ -100, -989, -989, -989, -989, -989}, 04722 (-100, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989, -989,
 04724 { -100, -989, -989, -989, -989},
04724 { -100, -989, -989, -989, -989}, 04725 { -100, -989, -989, -989, -989}, 04726 /* CG.GG. @ */
04727 {{ -100, -989, -989, -989, -989}, 04728 { -100, -989, -989, -989, -989}, 04729 { -100, -989, -989, -989, -989},
 04730 { -100, -989, -989, -989, -989},
 04731 { -100, -989, -989, -989, -989}},
04732 /* CG.GU.. @ */
04733 {{ -100, -989, -989, -989, -989},
04734 { -100, -989, -989, -989, -989},
04735 { -100, -989, -989, -989, -989},
04736 { -100, -989, -989, -989, -989},
 04737 { -100, -989, -989, -989, -989}}}
 04738 /* CG.U@.. @ */
 04739 {{{ -100, -859, -789, -859, -909}, 04740 { -100, -859, -789, -859, -909}, 04741 { -100, -859, -789, -859, -909},
 04742 { -100, -859, -789, -859, -909}, 04743 { -100, -859, -789, -859, -909}},
 04744 /* CG.UA.. @ */
04744 /* CG.UAL. @ */
04745 {{ -100, -859, -789, -859, -909},
04746 { -100, -859, -789, -859, -909},
04747 { -100, -859, -789, -859, -909},
04748 { -100, -859, -789, -859, -909},
04749 { -100, -859, -789, -859, -909}},
 04750 /* CG.UC.. @ */
04751 {{ -100, -859, -789, -859, -909}, 04752 { -100, -859, -789, -859, -909}, 04753 { -100, -859, -789, -859, -909}, 04754 { -100, -859, -789, -859, -909}, 04755 { -100, -859, -789, -859, -909}},
04755 { -100, -859, -789, -859, -909}},
04756 /* CG.UG.. @ */
04757 {{ -100, -859, -789, -859, -909},
04758 { -100, -859, -789, -859, -909},
04759 { -100, -859, -789, -859, -909},
04760 { -100, -859, -789, -859, -909},
04761 { -100, -859, -789, -859, -909}},
 04762 /* CG.UU.. @ */
04762 /* CG.UU.. @ */
04763 {{ -100, -859, -789, -859, -909},
04764 { -100, -859, -789, -859, -909},
04765 { -100, -859, -789, -859, -909},
04766 { -100, -859, -789, -859, -909},
04767 { -100, -859, -789, -859, -909}}},
04768 { /* noPair */ {{{{0}}}}},
 04769 /* GC.@@..CG */
04771 { DEF, DEF, DEF, DEF, DEF}, 04772 { DEF, DEF, DEF, DEF, DEF}, 04773 { DEF, DEF, DEF, DEF, DEF}, 04774 { DEF, DEF, DEF, DEF, DEF}}, 04775 /* GC.@A..CG */
04776 {{ 0, 0, 0, 0, 0}, 0},
 04777 {-1029,-1029,-1029,-1029},
 04778 { -519, -519, -519, -519}, 04778 { -939, -939, -939, -939, -939, -809, -809, -809}},
 04781 /* GC.@C..CG */
04782 {{ 0, 0, 0, 0, 0}, 0}, 04783 { -949, -949, -949, -949, -949}, 04784 { -449, -449, -449, -449, -449}, 04785 { -939, -939, -939, -939, -939}, 04786 { -739, -739, -739, -739, -739}},
 04787 /* GC.@G..CG */
04788 {{ 0, 0,
                                                                                                                     0,
                                                                                                       Ο,
 04789 {-1029,-1029,-1029,-1029,-1029},
04790 { -519, -519, -519, -519, -519}, 04791 { -939, -939, -939, -939, -939},
```

```
04792 { -809, -809, -809, -809, -809}},
04793 /* GC.@U..CG */
04794 {{ 0, 0,
                                Ο,
                                       0,
04795 {-1029,-1029,-1029,-1029,-1029},
04796 { -669, -669, -669, -669, -669},
04797 { -939, -939, -939, -939, -939},
04798 { -859, -859, -859, -859, -859}}},
04799 /* GC.A@..CG */
04800 {{ DEF, -519, -879, -559, -879}, 04801 { -100, -569, -929, -609, -929}, 04802 { -100, -569, -929, -609, -929}, 04803 { -100, -569, -929, -609, -929}, 04804 { -100, -569, -929, -609, -929}},
04805 /* GC.AA..CG */
04806 {{ DEF, -519, -879, -559, -879},
04807 {-1079,-1548,-1908,-1588,-1908},
04808 { -569,-1038,-1398,-1078,-1398},
04809 { -989, -1458, -1818, -1498, -1818}
04810 { -859, -1328, -1688, -1368, -1688}},
04811 /* GC.AC..CG */
04812 {{ DEF, -519, -879, -559, -879},
04813 { -999,-1468,-1828,-1508,-1828},
04814 \{ -499, -968, -1328, -1008, -1328 \},
04815 { -989, -1458, -1818, -1498, -1818},
04816 { -789, -1258, -1618, -1298, -1618}},
04817 /* GC.AG..CG */
04818 {{ DEF, -519, -879, -559, -879},
04819 {-1079, -1548, -1908, -1588, -1908},
04820 \{ -569, -1038, -1398, -1078, -1398 \},
04821 { -989, -1458, -1818, -1498, -1818}
04822 { -859, -1328, -1688, -1368, -1688}},
04823 /* GC.AU..CG */
04824 {{ DEF, -519, -879, -559, -879},
04825 {-1079,-1548,-1908,-1588,-1908},
04826 \{ -719, -1188, -1548, -1228, -1548 \},
04827 { -989, -1458, -1818, -1498, -1818}
04828 { -909, -1378, -1738, -1418, -1738}}},
04829 /* GC.C@..CG */
04830 {{{ DEF, -719, -309, -309, -389},
04831 { -100, -769, -359, -359, -439}, 04832 { -100, -769, -359, -359, -439},
04833 { -100, -769, -359, -359, -439},
04834 { -100, -769, -359, -359, -439}},
04835 /* GC.CA..CG */
04836 {{ DEF, -719, -309, -309, -389},
04837 {-1079,-1748,-1338,-1338,-1418},
04838 { -569, -1238, -828, -828, -908},
04839 { -989, -1658, -1248, -1248, -1328},
04840 { -859, -1528, -1118, -1118, -1198}}
04841 /* GC.CC..CG */
04842 {{ DEF, -719, -309, -309, -389},
04843 { -999,-1668,-1258,-1258,-1338},
04844 \{ -499, -1168, -758, -758, -838 \},
04845 { -989,-1658,-1248,-1248,-1328},
04846 { -789,-1458,-1048,-1048,-1128}},
04847 /* GC.CG..CG */
04848 {{ DEF, -719, -309, -309, -389},
04849 {-1079, -1748, -1338, -1338, -1418},
04850 { -569,-1238, -828, -828, -908},
04851 \{ -989, -1658, -1248, -1248, -1328 \}
04852 \{ -859, -1528, -1118, -1118, -1198 \} \}
04853 /* GC.CU..CG */
04854 {{ DEF, -719, -309, -309, -389},
04855 {-1079,-1748,-1338,-1338,-1418},
04856 { -719, -1388, -978, -978, -1058},
04857 { -989, -1658, -1248, -1248, -1328},
04858 \{ -909, -1578, -1168, -1168, -1248 \} \}
04859 /* GC.G@..CG */
04860 {{{ DEF, -709, -739, -619, -739},
04861 { -100, -759, -789, -669, -789},
04862 {
          -100, -759, -789, -669, -789},
04862 { -100, -759, -789, -669, -789}, 04863 { -100, -759, -789, -669, -789}, 04864 { -100, -759, -789, -669, -789}}, 04865 /* GC.GA..CG */
04866 {{ DEF, -709, -739, -619, -739}, 04867 {-1079, -1738, -1768, -1648, -1768},
04868 { -569, -1228, -1258, -1138, -1258},
04869 { -989,-1648,-1678,-1558,-1678}
04870 { -859, -1518, -1548, -1428, -1548}},
04871 /* GC.GC..CG */
04872 {{ DEF, -709, -739, -619, -739},
04873 { -999, -1658, -1688, -1568, -1688},
04874 { -499, -1158, -1188, -1068, -1188},
04875 { -989, -1648, -1678, -1558, -1678}
04876 { -789, -1448, -1478, -1358, -1478}},
04877 /* GC.GG..CG */
04878 {{ DEF, -709, -739, -619, -739},
```

```
04879 {-1079, -1738, -1768, -1648, -1768},
04880 { -569, -1228, -1258, -1138, -1258},
04881 { -989, -1648, -1678, -1558, -1678}
04882 \{ -859, -1518, -1548, -1428, -1548 \} 
04883 /* GC.GU..CG */
04884 {{ DEF, -709, -739, -619, -739},
04885 {-1079,-1738,-1768,-1648,-1768},
04886 { -719, -1378, -1408, -1288, -1408},
04887 {
          -989, -1648, -1678, -1558, -3080}
04888 { -909, -1568, -1598, -1478, -1598}}},
04889 /* GC.U@..CG */
04890 {{{ DEF, -499, -499, -499, -569},
04891 { -100, -549, -549, -549, -619},
04892 { -100, -549, -549, -549, -619},
04893 { -100, -549, -549, -549, -619}
04894 { -100, -549, -549, -549, -619}},
04895 /* GC.UA..CG */
04896 {{ DEF, -499, -499, -499, -569},
04897 {-1079, -1528, -1528, -1528, -1598},
        \{-569, -1018, -1018, -1018, -1088\},
04899 { -989, -1438, -1438, -1438, -1508},
04900 { -859, -1308, -1308, -1308, -1378}},
04901 /* GC.UC..CG */
04902 {{ DEF, -499, -499, -499, -569}, 04903 { -999,-1448,-1448,-1448,-1518},
        { -499, -948, -948, -948,-1018},
04904
04905 { -989, -1438, -1438, -1438, -1508}
04906 { -789, -1238, -1238, -1238, -1308}},
04907 /* GC.UG..CG */
04908 {{ DEF, -499, -499, -499, -569},
04909 {-1079, -1528, -1528, -1528, -1598},
04910 \{ -569, -1018, -1018, -1018, -1088 \},
04911 { -989, -1438, -1438, -1438, -1508},
04912 { -859, -1308, -1308, -1308, -1378}},
04913 /* GC.UU..CG */
04913 /* GC.00..CG */
04914 {{ DEF, -499, -499, -499, -569},
04915 {-1079,-1528,-1528,-1528,-1598},
04916 { -719, -1168, -1168, -1168, -1238},
04917 { -989, -1438, -1438, -1438, -1508},
04918 { -909, -1358, -1358, -1358, -1428}}}},
04919 /* GC.@@..GC */
0,
04923 {
            DEF, DEF, DEF, DEF},
04924 {
                                           DEF } },
           DEF,
                  DEF,
                           DEF, DEF,
04925 /* GC.@A..GC */
04926 {{ 0, 0, 0, 0, 0}
04927 { -519, -519, -519, -519},
04928 { -719, -719, -719, -719},
04929 { -709, -709, -709, -709},
04930 { -499, -499, -499, -499}},
04931 /* GC.@C..GC */
04932 {{ 0, 0, 0, 0, 0}
04933 { -879, -879, -879, -879, -879},
04934 { -309, -309, -309, -309, -309},
04935 { -739, -739, -739, -739},
04936 { -499, -499, -499, -499, -499}},
04937 /* GC.@G..GC */
04938 {{ 0, 0, 0, 0, 0}, 0}, 04938 {{ 0, -559, -559, -559, -559}, 04940 { -309, -309, -309, -309, -309}, 04941 { -619, -619, -619, -619, -619}, 04942 { -499, -499, -499, -499, -499}}
04943 /* GC.@U..GC */
04944 {{ 0, 0, 0, 0, 0, 0}, 0}, 04945 { -879, -879, -879, -879, -879}, 04946 { -389, -389, -389, -389, -389}, 04947 { -739, -739, -739, -739, -739}, 04948 { -569, -569, -569, -569}, -569}}
04949 /* GC.A@..GC */
04950 {{{ DEF, -519, -879, -559, -879},
04955 /* GC.AA..GC */
04956 {{ DEF, -519, -879, -559, -879}, 04957 { -569, -1038, -1398, -1078, -1398},
04958 { -769, -1238, -1598, -1278, -1598},
04959 { -759, -1228, -1588, -1268, -1588},
04960 { -549, -1018, -1378, -1058, -1378}},
04961 /* GC.AC..GC */
04962 {{ DEF, -519, -879, -559, -879},
04963 { -929, -1398, -1758, -1438, -1758},
04964 \{ -359, -828, -1188, -868, -1188 \},
04965 { -789, -1258, -1618, -1298, -1618},
```

```
04966 { -549, -1018, -1378, -1058, -1378}},
04967 /* GC.AG..GC */
04968 {{ DEF, -519, -879, -559, -879},
04969 { -609, -1078, -1438, -1118, -1438},
04970 \{ -359, -828, -1188, -868, -1188 \}
04971 { -669, -1138, -1498, -1178, -1498},
04972 \{ -549, -1018, -1378, -1058, -1378 \} \}
04973 /* GC.AU..GC */
04974 {{ DEF, -519, -879, -559, -879},
04975 \{ -929, -1398, -1758, -1438, -1758 \},
04976 { -439, -908, -1268, -948, -1268},
04977 { -789, -1258, -1618, -1298, -1618},
04978 \{ -619, -1088, -1448, -1128, -1448 \} \} \}
04979 /* GC.C@..GC */
04980 {{ DEF, -719, -309, -309, -389}, 04981 { -100, -769, -359, -359, -439}, 04982 { -100, -769, -359, -359, -439}, 04983 { -100, -769, -359, -359, -439}, 04984 { -100, -769, -359, -359, -439}},
04985 /* GC.CA..GC */
04986 {{ DEF, -719, -309, -309, -389}, 04987 {-569,-1238, -828, -828, -908}, 04988 {-769,-1438,-1028,-1028,-1108},
04989 { -759, -1428, -1018, -1018, -1098},
04990 { -549, -1218, -808, -808, -888}},
04991 /* GC.CC..GC */
04992 {{ DEF, -719, -309, -309, -389},
04993 {
          -929, -1598, -1188, -1188, -1268},
04994 { -359,-1028, -618, -618, -698},
04995 { -789, -1458, -1048, -1048, -1128},
04996 { -549, -1218, -808, -808, -888}},
04997 /* GC.CG..GC */
04998 {{ DEF, -719, -309, -309, -389},
04999 \{ -609, -1278, -868, -868, -948 \},
05000 { -359,-1028, -618, -618, -698}, 05001 { -669,-1338, -928, -928,-1008}, 05002 { -549,-1218, -808, -808, -888}},
05003 /* GC.CU..GC */
05004 {{ DEF, -719, -309, -309, -389},
05005 { -929, -1598, -1188, -1188, -1268},
05006 { -439,-1108, -698, -698, -778},
05007 { -789, -1458, -1048, -1048, -1128},
05007 { -789,-1436,-1046,-1046,-11287,
05008 { -619,-1288, -878, -878, -958}}},
05009 /* GC.G@..GC */
05010 {{{ DEF, -709, -739, -619, -739}, 05011 { -100, -759, -789, -669, -789},
05012 { -100, -759, -789, -669, -789},
05013 { -100, -759, -789, -669, -789}, 05014 { -100, -759, -789, -669, -789}},
05014 { 100, 733, 703, 603, 703}},

05015 /* GC.GA..GC */

05016 {{ DEF, -709, -739, -619, -739}},
05017 { -569, -1228, -1258, -1138, -1258},
05018 { -769, -1428, -1458, -1338, -1458},
05019 {
         -759, -1418, -1448, -1328, -1448}
05020 \{ -549, -1208, -1238, -1118, -1238 \} 
05021 /* GC.GC..GC */
05022 {{ DEF, -709, -739, -619, -739},
05023 { -929, -1588, -1618, -1498, -1618},
05024 {
          -359,-1018,-1048, -928,-1048},
05025 {
         -789, -1448, -1478, -1358, -1478}
05026 \{ -549, -1208, -1238, -1118, -1238 \} \}
\{-609, -1268, -1298, -1178, -1298\},\
05029
05030 {
          -359, -1018, -1048, -928, -1048},
05031 {
         -669, -1328, -1358, -1238, -1358},
05032 \{ -549, -1208, -1238, -1118, -1238 \} 
05033 /* GC.GU..GC */
05034 {{ DEF, -709, -739, -619, -739},
05035 { -929, -1588, -1618, -1498, -1618},
05036 {
          -439,-1098,-1128,-1008,-1128},
05037 { -789, -1448, -1478, -1358, -3080}
05038 { -619, -1278, -1308, -1188, -1308}}},
05039 /* GC.U@..GC */
05040 {{{ DEF, -499, -499, -499, -569}, 05041 { -100, -549, -549, -549, -619},
05042 { -100, -549, -549, -549, -619},
05043 {
05043 { -100, -549, -549, -549, -619}, 05044 { -100, -549, -549, -549, -619}},
05045 /* GC.UA..GC */
05046 {{ DEF, -499, -499, -499, -569},
05047 { -569, -1018, -1018, -1018, -1088},
05048 { -769, -1218, -1218, -1218, -1288},
05049 { -759, -1208, -1208, -1208, -1278}
05050 { -549, -998, -998, -998, -1068}},
05051 /* GC.UC..GC */
05052 {{ DEF, -499, -499, -499, -569},
```

```
05053 { -929, -1378, -1378, -1378, -1448},
05054 { -359, -808, -808, -808, -878}, 05055 { -789, -1238, -1238, -1238, -1308},
05056 { -549, -998, -998, -998,-1068}},
05057 /* GC.UG..GC */
05058 {{ DEF, -499, -499, -499, -569},
         { -609, -1058, -1058, -1058, -1128},
05060 { -359, -808, -808, -808, -878},
05061 {
            -669, -1118, -1118, -1118, -1188},
05062 { -549, -998, -998, -998, -1068}},
05063 /* GC.UU..GC */
05064 {{ DEF, -499, -499, -499, -569},
05065 { -929, -1378, -1378, -1378, -1448},
05066 { -439, -888, -888, -888, -958},
05067 { -789, -1238, -1238, -1238, -1308},
05068 { -619, -1068, -1068, -1068, -1138}}}},
05069 /* GC.@@..GU */
05072
             DEF, DEF,
                                DEF, DEF, DEF},
                                DEF,
05073
              DEF, DEF,
                                         DEF,
                                                   DEF },
05074 {
             DEF, DEF,
                               DEF, DEF,
                                                  DEF } }
05074 ( DBL, DLL, 05075 /* GC.@A..GU */
05076 {{ 0, 0, 0, 0, 0}

05077 { -429, -429, -429, -429, -429},

05078 { -259, -259, -259, -259, -259},

05079 { -339, -339, -339, -339},
05076 {{
05080 { -329, -329, -329, -329}, 
05081 /* GC.@C..GU */
05082 {{ 0, 0, 0, 0, 0},
05082 {{ 0, 0, 0, 0, 0}, 0}, 0}
05083 { -599, -599, -599, -599, -599}, 05084 { -239, -239, -239, -239, -239},
05085 { -689, -689, -689, -689, -689},
05086 { -329, -329, -329, -329, -329}},
05087 /* GC.@G..GU */
05088 {{ 0, 0, 0, 0, 0}, 0}, 05089 { -599, -599, -599, -599, -599}, 05090 { -239, -239, -239, -239, -239},
05091 { -689, -689, -689, -689, -689}, 05092 { -329, -329, -329, -329, -329}},
05093 /* GC.@U..GU */
05094 {{ 0, 0, 0, 0, 0}, 0}, 05095 { -599, -599, -599, -599, -599}, 05096 { -239, -239, -239, -239, -239},
05097 { -689, -689, -689, -689, -689}, 05098 { -329, -329, -329, -329, -329}}},
05096 { -329, -329, -329, -329, }, 05099 /* GC.A@..GU */
05100 {{ DEF, -519, -879, -559, -879}, }, 05101 { -100, -569, -929, -609, -929}, 05102 { -100, -569, -929, -609, -929}, 05103 { -100, -569, -929, -609, -929},
05104 { -100, -569, -929, -609, -929}}
05105 /* GC.AA..GU */
05106 {{ DEF, -519, -879, -559, -879}, 05107 { -479, -948, -1308, -988, -1308}, 05108 { -309, -778, -1138, -818, -1138},
05109 { -389, -858, -1218, -898, -1218},
05110 \{ -379, -848, -1208, -888, -1208 \} \}
05111 /* GC.AC..GU */
05111 /* GC.AC..GO */
05112 {{ DEF, -519, -879, -559, -879},
05113 { -649,-1118,-1478,-1158,-1478},
05114 \{ -289, -758, -1118, -798, -1118 \},
05115 { -739, -1208, -1568, -1248, -1568},
05116 { -379, -848, -1208, -888, -1208}},
05117 /* GC.AG..GU */
05118 {{ DEF, -519, -879, -559, -879},
05119 { -649,-1118,-1478,-1158,-1478},
05120 { -289, -758,-1118, -798,-1118},
05121 { -739, -1208, -1568, -1248, -1568},
05122 { -379, -848,-1208, -888,-1208}},
05123 /* GC.AU..GU */
05124 {{ DEF, -519, -879, -559, -879},
           -649,-1118,-1478,-1158,-1478},
05125 {
05126 { -289, -758, -1118, -798, -1118},
05127 { -739, -1208, -1568, -1248, -1568}
05128 { -379, -848, -1208, -888, -1208}}}
05129 /* GC.C@..GU */
05130 {{ DEF, -719, -309, -309, -389}, 05131 { -100, -769, -359, -359, -439}, 05132 { -100, -769, -359, -359, -439}, 05133 { -100, -769, -359, -359, -439}, 05134 { -100, -769, -359, -359, -439}},
05135 /* GC.CA..GU */
05136 {{ DEF, -719, -309, -309, -389},
05137 { -479,-1148, -738, -738, -818},

05138 { -309, -978, -568, -568, -648},

05139 { -389,-1058, -648, -648, -728},
```

```
05140 { -379, -1048, -638, -638, -718}},
05141 /* GC.CC..GU */
05142 {{ DEF, -719, -309, -309, -389},
05143 { -649, -1318, -908, -908, -988}, 
05144 { -289, -958, -548, -548, -628}, 
05145 { -739, -1408, -998, -998, -1078},
05146 { -379, -1048, -638, -638, -718}},
05147 /* GC.CG..GU */
05148 {{ DEF, -719, -309, -309, -389}, 05149 { -649,-1318, -908, -908, -988}, 05150 { -289, -958, -548, -548, -628},
05151 { -739, -1408, -998, -998, -1078},
05152 \{ -379, -1048, -638, -638, -718 \} \}
05153 /* GC.CU..GU */
05154 {{ DEF, -719, -309, -309, -389},
05155 { -649, -1318, -908, -908, -988}, 
05156 { -289, -958, -548, -548, -628},
05157 { -739, -1408, -998, -998, -1078},
05158 { -379, -1048, -638, -638, -718}}}
05159 /* GC.G@..GU */
05160 {{{ DEF, -709, -739, -619, -739}, 05161 { -100, -759, -789, -669, -789}, 05162 { -100, -759, -789, -669, -789},
05163 { -100, -759, -789, -669, -789}, 
05164 { -100, -759, -789, -669, -789}},
05165 /* GC.GA..GU */
05166 {{ DEF, -709, -739, -619, -739},
05167 { -479, -1138, -1168, -1048, -1168},
05168 { -309, -968, -998, -878, -998},
05169 { -389, -1048, -1078, -958, -1078},
05170 { -379, -1038, -1068, -948, -1068}},
05171 /* GC.GC..GU */
05172 {{ DEF, -709, -739, -619, -739},
05173 \{ -649, -1308, -1338, -1218, -1338 \},
05174 {
05174 { -289, -948, -978, -858, -978}, 05175 { -739, -1398, -1428, -1308, -1428},
05176 { -379, -1038, -1068, -948, -1068}}
05177 /* GC.GG..GU */
05178 {{ DEF, -709, -739, -619, -739},
05179 { -649, -1308, -1338, -1218, -1338},
05180 { -289, -948, -978, -858, -978},
05181 { -739, -1398, -1428, -1308, -1428},
05182 { -379, -1038, -1068, -948, -1068}},
05183 /* GC.GU..GU */
05184 {{ DEF, -709, -739, -619, -739},
05185 { -649, -1308, -1338, -1218, -1338},
05186 { -289, -948, -978, -858, -978},
05187 { -739, -1398, -1428, -1308, -1428}
05188 { -379, -1038, -1068, -948, -1068}}},
05189 /* GC.U@..GU */
05190 {{{ DEF, -499, -499, -499, -569},
05191 { -100, -549, -549, -549, -619},
05192 { -100, -549, -549, -549, -619},
05193 { -100, -549, -549, -549, -619}, 05194 { -100, -549, -549, -549, -619}},
05193 {
05195 /* GC.UA..GU */
05196 {{ DEF, -499, -499, -499, -569},
05197 { -479, -928, -928, -928, -998},
05198 { -309, -758, -758, -758, -828},
05199 { -389, -838, -838, -838, -908},
05200 { -379, -828, -828, -828, -898}},

05201 /* GC.UC..GU */

05202 {{ DEF, -499, -499, -499, -569},
05203 { -649, -1098, -1098, -1098, -1168},
05204 { -289, -738, -738, -738, -808},
05205 { -739, -1188, -1188, -1188, -1258},
05206 { -379, -828, -828, -828, -898}},
05207 /* GC.UG..GU */
05208 {{ DEF, -499, -499, -499, -569},
       { -649, -1098, -1098, -1098, -1168},
05210 {
         -289, -738, -738, -738, -808},
05211 { -739, -1188, -1188, -1188, -1258}
05212 { -379, -828, -828, -828, -898}},
05213 /* GC.UU..GU */
05214 {{ DEF, -499, -499, -499, -569},
05215 { -649, -1098, -1098, -1098, -1168},
05216 { -289, -738, -738, -738, -808},
05217 { -739, -1188, -1188, -1258}
05218 { -379, -828, -828, -828, -898}}}},
05219 /* GC.@@..UG */
05220 {{{{
               0,
                       0,
                                 0,
                                         0,
           DEF, DEF, DEF, DEF,
           DEF, DEF,
                          DEF, DEF, DEF},
05222 {
05223 {
           DEF, DEF,
                          DEF,
                                  DEF, DEF},
05224 { DEF, DEF, DEF, DEF, DEF}}, 05225 /* GC.@A..UG */
05226 {{
              0.
                      0,
                            0,
                                     0.
```

```
05227 { -719, -719, -719, -719, -719},
05228 { -479, -479, -479, -479, -479}, 05229 { -659, -659, -659, -659, -659},
05230 { -549, -549, -549, -549, -549}},
05231 /* GC.@C..UG */
05232 {{ 0, 0, 0,
05232 { 0, 0, 0, 0, 0}
05233 { -789, -789, -789, -789, -789},
05234 { -479, -479, -479, -479},
05235 { -809, -809, -809, -809, -809}, 05236 { -439, -439, -439, -439, -439}, 05237 /* GC.@G..UG */
05238 { 0, 0, 0, 0, 0}

05239 { -959, -959, -959, -959},

05240 { -359, -359, -359, -359},

05241 { -919, -919, -919, -919},
05242 { -549, -549, -549, -549, -549}},
05243 /* GC.@U..UG */
05244 {{ 0, 0, 0, 0, 0}, 0}, 05245 {-809, -809, -809, -809, -809}, 05246 {-479, -479, -479, -479, -479},
05247 { -809, -809, -809, -809, -809}, 05248 { -359, -359, -359, -359, -359}}}
05249 /* GC.A@..UG */
05250 {{{ DEF, -519, -879, -559, -879}, 05251 { -100, -569, -929, -609, -929}, 05252 { -100, -569, -929, -609, -929},
05253 { -100, -569, -929, -609, -929},
05254 { -100, -569, -929, -609, -929}},
05255 /* GC.AA..UG */
05256 {{ DEF, -519, -879, -559, -879},
05257 { -769, -1238, -1598, -1278, -1598},
05258 { -529, -998, -1358, -1038, -1358},
05259 { -709, -1178, -1538, -1218, -1538},
05260 { -599, -1068, -1428, -1108, -1428}},
05261 /* GC.AC..UG */
05262 {{ DEF, -519, -879, -559, -879},
05263 { -839,-1308,-1668,-1348,-1668},
05264 { -529, -998, -1358, -1038, -1358},
05265 { -859, -1328, -1688, -1368, -1688},
05266 \{ -489, -958, -1318, -998, -1318 \} \}
05267 /* GC.AG..UG */
05268 {{ DEF, -519, -879, -559, -879}, 05269 {-1009,-1478,-1838,-1518,-1838},
05270 { -409, -878, -1238, -918, -1238},
05271 { -969, -1438, -1798, -1478, -1798},
05272 { -599, -1068, -1428, -1108, -1428}},
05273 /* GC.AU..UG */
05274 {{ DEF, -519, -879, -559, -879}, 05275 { -859,-1328,-1688,-1368,-1688},
05276 { -529, -998, -1358, -1038, -1358},
        { -859, -1328, -1688, -1368, -1688},
05278 { -409, -878, -1238, -918, -1238}}}
05279 /* GC.C@..UG */
05280 {{{ DEF, -719, -309, -309, -389}, 05281 { -100, -769, -359, -359, -439}, 05282 { -100, -769, -359, -359, -439},
05283 { -100, -769, -359, -359, -439},
05284 \{ -100, -769, -359, -359, -439 \} \}
05285 /* GC.CA..UG */
05286 {{ DEF, -719, -309, -309, -389}, 05287 { -769, -1438, -1028, -1028, -1108},
05288 { -529, -1198, -788, -788, -868},
05289 { -709, -1378, -968, -968, -1048},
05290 { -599, -1268, -858, -858, -938}},
05291 /* GC.CC..UG */
05292 {{ DEF, -719, -309, -309, -389}, 05293 { -839,-1508,-1098,-1098,-1178},
05294 { -529, -1198, -788, -788, -868},
05295 { -859, -1528, -1118, -1118, -1198},
05296 \{ -489, -1158, -748, -748, -828 \} \}
05297 /* GC.CG..UG */
05298 {{ DEF, -719, -309, -309, -389},
05299 {-1009,-1678,-1268,-1268,-1348},
05300 { -409,-1078, -668, -668, -748},
05301 { -969, -1638, -1228, -1228, -1308},
05302 { -599, -1268, -858, -858, -938}},
05303 /* GC.CU..UG */
05304 {{ DEF, -719, -309, -309, -389}, 05305 { -859,-1528,-1118,-1118,-1198},
05306 { -529, -1198, -788, -788, -868},
05307 { -859, -1528, -1118, -1118, -1198},
05308 { -409, -1078, -668, -668, -748}}},
```

```
05314 { -100, -759, -789, -669, -789}},
05315 /* GC.GA..UG */
05316 {{ DEF, -709, -739, -619, -739},
05317 { -769, -1428, -1458, -1338, -1458},
05318 \{ -529, -1188, -1218, -1098, -1218 \},
05319 { -709, -1368, -1398, -1278, -1398},
05320 { -599, -1258, -1288, -1168, -1288}},
05321 /* GC.GC..UG */
05322 {{ DEF, -709, -739, -619, -739},
05323 { -839, -1498, -1528, -1408, -1528},
05324 { -529, -1188, -1218, -1098, -1218},
05325 { -859, -1518, -1548, -1428, -1548},
05326 { -489, -1148, -1178, -1058, -1178}},
05327 /* GC.GG..UG */
05328 {{ DEF, -709, -739, -619, -739},
05329 {-1009,-1668,-1698,-1578,-1698},
05330 { -409,-1068,-1098, -978,-1098},
05331 { -969, -1628, -1658, -1538, -1658},
05332 { -599, -1258, -1288, -1168, -1288}},
05333 /* GC.GU..UG */
05334 {{ DEF, -709, -739, -619, -739},
05335 { -859, -1518, -1548, -1428, -1548},
05336 \{ -529, -1188, -1218, -1098, -1218 \},
05337 { -859, -1518, -1548, -1428, -1548}
05338 { -409, -1068, -1098, -978, -1098}}},
05339 /* GC.U@..UG */
05340 {{{ DEF, -499, -499, -569},
05341 { -100, -549, -549, -549, -619}, 05342 { -100, -549, -549, -549, -619},
05343 { -100, -549, -549, -549, -619},
05344 { -100, -549, -549, -549, -619}},
05345 /* GC.UA..UG */
05346 {{ DEF, -499, -499, -499, -569},
05347 \{ -769, -1218, -1218, -1218, -1288 \},
05348 {
05348 { -529, -978, -978, -978,-1048},
05349 { -709,-1158,-1158,-1158,-1228},
05350 { -599, -1048, -1048, -1048, -1118}},
05351 /* GC.UC..UG */
05352 {{ DEF, -499, -499, -499, -569},
05353 { -839, -1288, -1288, -1288, -1358},
05354 { -529, -978, -978, -978, -1048},
05355 { -859, -1308, -1308, -1308, -1378},
05356 { -489, -938, -938, -938, -1008}}, 05357 /* GC.UG..UG */
05358 {{ DEF, -499, -499, -499, -569},
05359 {-1009,-1458,-1458,-1458,-1528},
05360 { -409, -858, -858, -858, -928},
05361 { -969, -1418, -1418, -1418, -1488},
05362 { -599,-1048,-1048,-1048,-1118}}
05363 /* GC.UU..UG */
05364 {{ DEF, -499, -499, -499, -569},
05365 { -859, -1308, -1308, -1308, -1378},
05366 { -529, -978, -978, -978, -1048},
05367 { -859, -1308, -1308, -1378}
05368 { -409, -858, -858, -858, -928}}}},
05369 /* GC.@@..AU */
                0,
05370 {{{{
                        Ο,
05371 { DEF, DEF, DEF, DEF, DEF},
05372 {
           DEF, DEF, DEF, DEF},
                                           DEF }
0.5373 {
           DEF, DEF,
                           DEF, DEF,
05374 { DEF, DEF, DEF, DEF, DEF}},
05375 /* GC.@A..AU */
05376 {{ 0, 0, 0, 0, 0}, 0}, 0}, 05377 { -429, -429, -429, -429, -429, -259, -259, -259}, 05378 { -259, -259, -259, -259}, 05378 { -259, -259, -259, -259}, -259}
05379 { -339, -339, -339, -339}, 05380 { -329, -329, -329, -329, -329}}, 05381 /* GC.@C..AU */
                             0,
                      0,
05382 {{
               0.
05383 { -599, -599, -599, -599, -599},
05384 { -239, -239, -239, -239}, 05385 { -689, -689, -689, -689, -689, -689},
05386 { -329, -329, -329, -329, -329}},
05387 /* GC.@G..AU */
05388 {{ 0, 0, 0, 0, 0}, 0},
05388 {{ 0, 0, 0, 0, 0}, 0}, 05389 { -599, -599, -599, -599, -599}, 05390 { -239, -239, -239, -239, -239},
                                       Ο,
05391 { -689, -689, -689, -689, -689}, 
05392 { -329, -329, -329, -329, -329}},
05393 /* GC.@U..AU */
05394 {{ 0, 0, 0, 0, 0}, 0}, 05395 { -599, -599, -599, -599, -599}, 05396 { -239, -239, -239, -239, -239}, 05397 { -689, -689, -689, -689, -689},
05398 { -329, -329, -329, -329, -329}}},
05399 /* GC.A@..AU */
05400 {{{ DEF, -519, -879, -559, -879},
```

```
05401 { -100, -569, -929, -609, -929},
05402 { -100, -569, -929, -609, -929}, 05403 { -100, -569, -929, -609, -929},
05404 { -100, -569, -929, -609, -929}},
05405 /* GC.AA..AU */
05406 {{ DEF, -519, -879, -559, -879},
05407 { -479, -948,-1308, -988,-1308},
05408
         \{-309, -778, -1138, -818, -1138\},\
05409 { -389, -858,-1218, -898,-1218},
05410 { -379, -848,-1208, -888,-1208}},
05411 /* GC.AC..AU */
05412 {{ DEF, -519, -879, -559, -879},
05413 { -649, -1118, -1478, -1158, -1478},
05414 { -289, -758, -1118, -798, -1118},
05415 { -739, -1208, -1568, -1248, -1568}
05416 { -379, -848,-1208, -888,-1208}},
05417 /* GC.AG..AU */
05418 {{ DEF, -519, -879, -559, -879},
05419 { -649, -1118, -1478, -1158, -1478},
05420 { -289, -758, -1118, -798, -1118},
05421 {
           -739, -1208, -1568, -1248, -1568},
05422 \{ -379, -848, -1208, -888, -1208 \} \}
05423 /* GC.AU..AU */
05424 {{ DEF, -519, -879, -559, -879}, 05425 { -649,-1118,-1478,-1158,-1478},
         { -289, -758, -1118, -798, -1118},
05427 { -739, -1208, -1568, -1248, -1568}
05428 { -379, -848,-1208, -888,-1208}}}, 05429 /* GC.C@..AU */
05430 {{{ DEF, -719, -309, -309, -389},
05431 { -100, -769, -359, -359, -439}, 05432 { -100, -769, -359, -359, -439},
05433
           -100, -769, -359, -359, -439},
05434 { -100, -769, -359, -359, -439}},
05435 /* GC.CA..AU */
05436 {{ DEF, -719, -309, -309, -389}, 05436 {{ DEF, -719, -738, -738, -818}, 05438 { -309, -978, -568, -568, -648},
05439
         \{-389, -1058, -648, -648, -728\},
05440 { -379, -1048, -638, -638, -718}},
05441 /* GC.CC..AU */
05442 {{ DEF, -719, -309, -309, -389}, 05443 { -649, -1318, -908, -908, -988}, 05444 { -289, -958, -548, -548, -628},
05445 { -739, -1408, -998, -998, -1078},
05446 { -379, -1048, -638, -638, -718}},
05447 /* GC.CG..AU */
05447 /* GC.CG..AU */
05448 {{ DEF, -719, -309, -309, -389},
05449 { -649,-1318, -908, -908, -988},
05450 { -289, -958, -548, -548, -628},
05451 { -739,-1408, -998, -998,-1078},
05452 { -379, -1048, -638, -638, -718}},
05453 /* GC.CU..AU */
05454 {{ DEF, -719, -309, -309, -389}, 05455 { -649,-1318, -908, -908, -988}, 05456 { -289, -958, -548, -548, -628},
        { -739,-1408, -998, -998,-1078},
05458 { -379, -1048, -638, -638, -718}}},
05458 { -379, -1048, -638, -638, -718}}},
05459 /* GC.GQ..AU */
05460 {{{ DEF, -709, -739, -619, -739},
05461 { -100, -759, -789, -669, -789},
05462 { -100, -759, -789, -669, -789},
05463 { -100, -759, -789, -669, -789},
05464 { -100, -759, -789, -669, -789}},
05465 /* GC.GA..AU */
05466 {{ DEF, -709, -739, -619, -739},
05467 { -479,-1138,-1168,-1048,-1168},
05468 { -309, -968, -998, -878, -998},
05469 { -389,-1048,-1078, -958,-1078},
05470 { -379, -1038, -1068, -948, -1068}},
05471 /* GC.GC..AU */
05472 {{ DEF, -709, -739, -619, -739},
           -649,-1308,-1338,-1218,-1338},
05473 {
05474 { -289, -948, -978, -858, -978},
05475 { -739, -1398, -1428, -1308, -1428},
05476 { -379, -1038, -1068, -948, -1068}},
05477 /* GC.GG..AU */
05478 {{ DEF, -709, -739, -619, -739},
0.5479 {
           -649,-1308,-1338,-1218,-1338},
05480 { -289, -948, -978, -858, -978},
05481 { -739, -1398, -1428, -1308, -1428},
05482 { -379, -1038, -1068, -948, -1068}},
05483 /* GC.GU..AU */
05484 {{ DEF, -709, -739, -619, -739},
05485 { -649,-1308,-1338,-1218,-1338},
05486 { -289, -948, -978, -858, -978}, 05487 { -739, -1398, -1428, -1308, -1428},
```

```
05488 { -379, -1038, -1068, -948, -1068}}},
05489 /* GC.U@..AU */
05490 {{{ DEF, -499, -499, -499, -569},
05490 {{ DEF, -499, -499, -499, -589, 05491 { -100, -549, -549, -549, -619}, 05492 { -100, -549, -549, -549, -619}, 05493 { -100, -549, -549, -549, -619}, 05494 { -100, -549, -549, -549, -619}},
05495 /* GC.UA..AU */
05496 {{ DEF, -499, -499, -499, -569}, 05497 { -479, -928, -928, -928, -998}, 05498 { -309, -758, -758, -758, -828},
05499 { -389, -838, -838, -838, -908},
05500 { -379, -828, -828, -828, -898}},
05501 /* GC.UC..AU */
05502 {{ DEF, -499, -499, -499, -569},
05503 { -649,-1098,-1098,-1098,-1168},
05504 \{ -289, -738, -738, -738, -808 \},
05505 { -739, -1188, -1188, -1188, -1258},
05506 { -379, -828, -828, -828, -898}},
05507 /* GC.UG..AU */
05508 {{ DEF, -499, -499, -499, -569},
05509 { -649,-1098,-1098,-1098,-1168},
05510 \{ -289, -738, -738, -738, -808 \}
05511 { -739, -1188, -1188, -1188, -1258},
05512 { -379, -828, -828, -828, -898}},
05513 /* GC.UU..AU */
05514 {{ DEF, -499, -499, -499, -569},
05515 { -649, -1098, -1098, -1098, -1168},
05516 { -289, -738, -738, -738, -808},
05517 { -739, -1188, -1188, -1188, -1258},
05518 { -379, -828, -828, -828, -898}}}}
05519 /* GC.@@..UA */
                                                        0,
05520 {{{
                             0,
                                             Ο,
05521 {
                     DEF, DEF, DEF, DEF,
05522
                     DEF, DEF,
                                                 DEF, DEF, DEF},
05523 { DEF, DEF, DEF, DEF, DEF}, 05524 { DEF, DEF, DEF, DEF, DEF, DEF}},
05524 { DEF, DEF, CONTROL OF STATE OF S
05525 /* GC.EAL.OR */
05526 {{ 0, 0, 0, 0, 0},
05527 { -399, -399, -399, -399},
05528 { -429, -429, -429, -429, -429},
05529 { -379, -379, -379, -379, -379},
05530 { -279, -279, -279, -279, -279}},
05530 { -2/9, -2/9, -2/9, -2/9, -2/9} 

05531 /* GC.@C..UA */ 

05532 { 0, 0, 0, 0, 0} 

05533 { -629, -629, -629, -629, -629}, 

05534 { -509, -509, -509, -509, -509},
05535 { -679, -679, -679, -679, -679}, 05536 { -139, -139, -139, -139, -139}},
05536 { -139, -139, 102, 05537 /* GC.@G..UA */ 0, 0,
                                                                      0,
05539 { -889, -889, -889, -889, -889},
05540 { -199, -199, -199, -199},
05541 { -889, -889, -889, -889, -889}, 05542 { -279, -279, -279, -279, -279}},
05542 { -279, -2/3, 2...
05543 /* GC.@U..UA */
0, 0,
05545 { -589, -589, -589, -589, -589}, 05546 { -179, -179, -179, -179, -179},
05547 { -679, -679, -679, -679, -679}
05548 { -140, -140, -140, -140, -140}},
05549 /* GC.A@..UA */
05550 {{{ DEF, -519, -879, -559, -879},
05551 { -100, -569, -929, -609, -929}, 05552 { -100, -569, -929, -609, -929},
05553 { -100, -569, -929, -609, -929}, 05554 { -100, -569, -929, -609, -929}}, 05555 /* GC.AA..UA */
05556 {{ DEF, -519, -879, -559, -879},
             { -449, -918, -1278, -958, -1278},
05558 { -479, -948, -1308, -988, -1308},
05559 { -429, -898,-1258, -938,-1258}
05560 { -329, -798, -1158, -838, -1158}},
05561 /* GC.AC..UA */
05562 {{ DEF, -519, -879, -559, -879},
 05563 { -679,-1148,-1508,-1188,-1508},
05564 { -559, -1028, -1388, -1068, -1388},
05565 { -729, -1198, -1558, -1238, -1558},
05566 \{ -189, -658, -1018, -698, -1018 \} 
05567 /* GC.AG..UA */
05568 {{ DEF, -519, -879, -559, -879},
05569 { -939, -1408, -1768, -1448, -1768},
05570 { -249, -718, -1078, -758, -1078},
05571 { -939, -1408, -1768, -1448, -1768},
05572 \{ -329, -798, -1158, -838, -1158 \} \}
05573 /* GC.AU..UA */
05574 {{ DEF, -519, -879, -559, -879},
```

```
05575 { -639, -1108, -1468, -1148, -1468},
05576 { -229, -698, -1058, -738, -1058}, 
05577 { -729, -1198, -1558, -1238, -1558},
05578 { -190, -659,-1019, -699,-1019}}},
05579 /* GC.C@..UA */
05580 {{ DEF, -719, -309, -309, -389},
05581 { -100, -769, -359, -359, -439}, 05582 { -100, -769, -359, -359, -439},
05583 { -100, -769, -359, -359, -439}, 05584 { -100, -769, -359, -359, -439}},
05585 /* GC.CA..UA */
05586 {{ DEF, -719, -309, -309, -389}, 05587 { -449,-1118, -708, -708, -788}, 05588 { -479,-1148, -738, -738, -818},
05589 { -429,-1098, -688, -688, -768},
05590 { -329, -998, -588, -588, -668}}
05591 /* GC.CC..UA */
05592 {{ DEF, -719, -309, -309, -389},
05593 { -679,-1348, -938, -938,-1018},
05594 { -559,-1228, -818, -818, -898},
05595 {
            -729,-1398, -988, -988,-1068},
05596 { -189, -858, -448, -448, -528}},
05597 /* GC.CG..UA */
05598 {{ DEF, -719, -309, -309, -389}, 05599 { -939, -1608, -1198, -1198, -1278},
05600 { -249, -918, -508, -508, -588},
05601 { -939,-1608,-1198,-1198,-1278}
05602 { -329, -998, -588, -588, -668}},
05603 /* GC.CU..UA */
05604 {{ DEF, -719, -309, -309, -389},
05605 { -639, -1308, -898, -898, -978},
05606 { -229, -898, -488, -488, -568},
05607 { -729, -1398, -988, -988, -1068},
05608 { -190, -859, -449, -449, -529}}}
05600 { -150, -059, -449, -449, -529}},

05609 /* GC.G@..UA */

05610 {{ DEF, -709, -739, -619, -739},

05611 { -100, -759, -789, -669, -789},

05612 { -100, -759, -789, -669, -789},
05613 { -100, -759, -789, -669, -789},
05614 { -100, -759, -789, -669, -789}},
05615 /* GC.GA..UA */
05616 {{ DEF, -709, -739, -619, -739}, 05617 { -449, -1108, -1138, -1018, -1138},
05618 { -479,-1138,-1168,-1048,-1168},
05619 { -429,-1088,-1118, -998,-1118},
05620 \{ -329, -988, -1018, -898, -1018 \} \}
05621 /* GC.GC..UA */
05622 {{ DEF, -709, -739, -619, -739}, 05623 { -679, -1338, -1368, -1248, -1368},
05624 { -559, -1218, -1248, -1128, -1248},
05625 { -729, -1388, -1418, -1298, -1418},
05626 { -189, -848, -878, -758, -878}},
05627 /* GC.GG..UA */
05628 {{ DEF, -709, -739, -619, -739}, 05629 { -939, -1598, -1628, -1508, -1628},
05630 { -249, -908, -938, -818, -938},
05631 { -939, -1598, -1628, -1508, -1628},
05632 \{ -329, -988, -1018, -898, -1018 \} \}
05633 /* GC.GU..UA */

05634 {{ DEF, -709, -739, -619, -739},

05635 { -639,-1298,-1328,-1208,-1328},
05636 { -229, -888, -918, -798, -918},
05637 { -729, -1388, -1418, -1298, -1418},
05638 { -190, -849, -879, -759, -879}}}
05639 /* GC.U@..UA */
05640 {{{ DEF, -499, -499, -499, -569}, 05641 { -100, -549, -549, -549, -619}, 05642 { -100, -549, -549, -549, -619}, 05643 { -100, -549, -549, -549, -619}, 05644 { -100, -549, -549, -549, -619}},
05645 /* GC.UA..UA */
05646 {{ DEF, -499, -499, -499, -569},
05646 { DEF, -499, -499, -499, -509, 05647 { -449, -898, -898, -898, -968}, 05648 { -479, -928, -928, -928, -998}, 05649 { -429, -878, -878, -878, -948}, 05650 { -329, -778, -778, -778, -848}},
05651 /* GC.UC..UA */
05652 {{ DEF, -499, -499, -499, -569}, 05653 { -679,-1128,-1128,-1128,-1198},
05654 { -559,-1008,-1008,-1008,-1078}.
05655 { -729, -1178, -1178, -1178, -1248},
05656 { -189, -638, -638, -638, -708}},
05657 /* GC.UG..UA */
05658 {{ DEF, -499, -499, -499, -569},
05659 { -939,-1388,-1388,-1388,-1458},
05660 { -249, -698, -698, -698, -768}, 05661 { -939, -1388, -1388, -1388, -1458},
```

```
05662 { -329, -778, -778, -778, -848}},
05663 /* GC.UU..UA */
05664 {{ DEF, -499, -499, -499, -569},
05665 { -639, -1088, -1088, -1088, -1158},
05666 { -229, -678, -678, -678, -748}, 05667 { -729, -1178, -1178, -1178, -1248},
05668 { -190, -639, -639, -639, -709}}}},
05669 /* GC.@@.. @ */
05670 {{{{ DEF, DEF, DEF, DEF},
05671 { DEF, DEF, DEF, DEF, DEF},
05672 { DEF, DEF,
                             DEF, DEF,
                                             DEF }.
05673 { DEF, DEF, DEF, DEF, DEF}, 05674 { DEF, DEF, DEF, DEF, DEF, DEF}}, 05675 /* GC.@A.. @ */
05676 {{ DEF, DEF, DEF, DEF},
05677 {
            DEF, DEF, DEF, DEF, DEF},
                                               DEF } ,
05678 (
            DEF.
                     DEF.
                             DEF.
                                      DEF.
05679 {
             DEF,
                     DEF,
                             DEF,
                                      DEF,
                                               DEF },
05680 {
            DEF,
                    DEF,
                             DEF,
                                      DEF,
                                              DEF } },
05681 /* GC.@C.. @
                           */
05682 {{ DEF, DEF, DEF,
                                      DEF,
                                                DEF },
05683 {
           DEF, DEF, DEF, DEF, DEF},
                                               DEF },
05684 {
            DEF,
                     DEF,
                             DEF,
                                      DEF,
05685 {
            DEF,
                     DEF.
                             DEF.
                                      DEF.
                                               DEF).
05686 {
            DEF,
                   DEF,
                             DEF,
                                      DEF,
                                              DEF } },
05687 /* GC.@G.. @ */
05688 {{ DEF,
                      DEF, DEF,
                                      DEF,
                                                DEF },
05689 {
            DEF, DEF,
                             DEF,
                                     DEF, DEF},
                     DEF,
                                               DEF },
05690 {
            DEF,
                             DEF,
                                      DEF,
05691 {
            DEF,
                     DEF.
                             DEF.
                                      DEF.
                                              DEF }.
05692 {
            DEF.
                   DEF. DEF.
                                      DEF.
                                             DEF 1 } .
05693 /* GC.@U.. @ */
05694 {{ DEF, DEF, DEF,
                                      DEF, DEF},
05695 {
            DEF,
                     DEF, DEF, DEF, DEF},
                                              DEF },
05696 {
            DEF,
                     DEF,
                             DEF,
                                     DEF,
05697 {
            DEF,
                     DEF,
                             DEF.
                                      DEF.
                                              DEF }.
05698 { DEF, DEF, DEF,
                                     DEF, DEF } } }
05699 /* GC.A@.. @ */
05700 {{{ -100, -569, -929, -609, -929},
05701 { -100, -569, -929, -609, -929},
05702 { -100, -569, -929, -609, -929},
05703 { -100, -569, -929, -609, -929},
05704 { -100, -569, -929, -609, -929}},
05705 /* GC.AA.. @ */
05706 {{ -100, -569, -929, -609, -929}, 05707 { -100, -569, -929, -609, -929},
05708 {
          -100, -569, -929, -609, -929},
05709 { -100, -569, -929, -609, -929}, 
05710 { -100, -569, -929, -609, -929}},
05711 /* GC.AC.. @ */
05712 {{ -100, -569, -929, -609, -929},
05713 { -100, -569, -929, -609, -929},
05714 { -100, -569, -929, -609, -929},
05715 { -100, -569, -929, -609, -929}, 05716 { -100, -569, -929, -609, -929}},
05715 {
05716 { 100, 303, 323, 603, 323}, 05717 /* GC.AG.. @ */
05718 {{ -100, -569, -929, -609, -929},
05719 { -100, -569, -929, -609, -929},
05720 { -100, -569, -929, -609, -929},
05721 { -100, -569, -929, -609, -929},
05722 { -100, -569, -929, -609, -929}},
05723 /* GC.AU.. @ */
05724 {{ -100, -569, -929, -609, -929}},
05725 { -100, -569, -929, -609, -929}, 
05726 { -100, -569, -929, -609, -929},
05722 { -100, -569, -929, -609, -929},

05727 { -100, -569, -929, -609, -929},

05728 { -100, -569, -929, -609, -929}},

05729 /* GC.C@.. @ */

05730 {{{ -100, -769, -359, -359, -439},
05731 { -100, -769, -359, -359, -439},
05732 {
          -100, -769, -359, -359, -439},
05733 { -100, -769, -359, -359, -439},
05735 { -100, -769, -359, -359, -439}, 05734 { -100, -769, -359, -359, -439}}, 05735 /* GC.CA.. @ */ 05736 {{ -100, -769, -359, -359, -439}, 05737 { -100, -769, -359, -359, -439},
05738 { -100, -769, -359, -359, -439},
05739 { -100, -769, -359, -359, -439}, 
05740 { -100, -769, -359, -359, -439}},
05741 /* GC.CC.. @ */
05742 {{ -100, -769, -359, -359, -439},

05743 { -100, -769, -359, -359, -439},

05744 { -100, -769, -359, -359, -439},
05745 { -100, -769, -359, -359, -439},
05746 { -100, -769, -359, -359, -439}},

05747 /* GC.CG.. @ */

05748 {{ -100, -769, -359, -359, -439}},
```

```
05749 { -100, -769, -359, -359, -439},
05749 { -100, -769, -359, -359, -439}, 05750 { -100, -769, -359, -359, -439}, 05751 { -100, -769, -359, -359, -439}, 05752 { -100, -769, -359, -359, -439}}, 05753 /* GC.CU.. @ */
05754 {{ -100, -769, -359, -359, -439}, 05755 { -100, -769, -359, -359, -439}, 05756 { -100, -769, -359, -359, -439}, 05756 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -359, -
05756 { -100, -769, -359, -359, -439}, 05757 { -100, -769, -359, -359, -439}, 05758 { -100, -769, -359, -359, -439}}}, 05760 { { -100, -759, -789, -669, -789}, 05761 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789, -669, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759, -789}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762 { -100, -759}, 05762
 05763 { -100, -759, -789, -669, -789}
05763 { -100, -759, -789, -669, -789}, 05764 { -100, -759, -789, -669, -789}}, 05765 /* GC.GA. @ */
05766 {{ -100, -759, -789, -669, -789}, 05767 { -100, -759, -789, -669, -789}, 05768 { -100, -759, -789, -669, -789},
05769 { -100, -759, -789, -669, -789}, 
05770 { -100, -759, -789, -669, -789}}
05770 { -100, -759, -789, -669, -789}},

05771 /* GC.GC.. @ */

05772 {{ -100, -759, -789, -669, -789},

05773 { -100, -759, -789, -669, -789},

05774 { -100, -759, -789, -669, -789},
05775 { -100, -759, -789, -669, -789}, 
05776 { -100, -759, -789, -669, -789}},
05777 { GC.GG.. @ */
05778 {{ -100, -759, -789, -669, -789},
05778 {{ -100, -759, -789, -669, -789},
05780 { -100, -759, -789, -669, -789},
05781 { -100, -759, -789, -669, -789}, 
05782 { -100, -759, -789, -669, -789}}}
05783 /* GC.GU.. 0 */
05783 /* GC.GU.. 0 */
05785 { -100, -759, -789, -669, -789},
05785 { -100, -759, -789, -669, -789},
05786 { -100, -759, -789, -669, -789},
 05787 { -100, -759, -789, -669, -789},
05788 { -100, -759, -789, -669, -789}}},
05789 /* GC.U@.. @ */
05790 {{{ -100, -549, -549, -619}, 05791 { -100, -549, -549, -619}, 05792 { -100, -549, -549, -549, -619},
05793 { -100, -549, -549, -549, -619},
05794 { -100, -549, -549, -549, -619}},
 05795 /* GC.UA.. @ */
05796 {{ -100, -549, -549, -619},

05797 { -100, -549, -549, -549, -619},

05798 { -100, -549, -549, -549, -619},

05798 { -100, -549, -549, -549, -619},
 05800 { -100, -549, -549, -549, -619}}
 05801 /* GC.UC.. @ */
05802 {{ -100, -549, -549, -549, -619}, 05803 { -100, -549, -549, -549, -619}, 05804 { -100, -549, -549, -549, -619},
                                \{-100, -549, -549, -549, -619\},\
 05806 \{ -100, -549, -549, -549, -619 \} \},
05806 { -100, -549, -549, -549, -619}},
05807 /* GC.UG.. @ */
05808 {{ -100, -549, -549, -549, -619},
05809 { -100, -549, -549, -549, -619},
05810 { -100, -549, -549, -549, -619},
05811 { -100, -549, -549, -549, -619},
05812 { -100, -549, -549, -549, -619}},
 05813 /* GC.UU.. @ */
05813 /* GC.UU.. e */
05814 {{ -100, -549, -549, -549, -619},
05815 { -100, -549, -549, -549, -619},
05816 { -100, -549, -549, -549, -619},
05817 { -100, -549, -549, -549, -619},
05818 { -100, -549, -549, -549, -619}}},
05819 { /* noPair */ {{{0}}}},
 05820 /* GU.@@..CG */
DEF, DEF,
                                                                                                               DEF, DEF, DEF},
 05823
                                                                                                               DEF, DEF,
 05824
 05825 {
                                               DEF, DEF,
                                                                                                             DEF, DEF, DEF}},
 05826 /* GU.@A..CG */
05827 {{ 0, 0, 0, 0, 0}, 0}, 0}
05828 {-1029,-1029,-1029,-1029,-1029},
 05829 { -519, -519, -519, -519, -519}, 05830 { -939, -939, -939, -939, -939},
 05831 { -809, -809, -809, -809, -809}},
 05832 /* GU.@C..CG */
 05833 {{ 0, 0, 0, 0, 0}, 0}, 0}
05834 { -949, -949, -949, -949, -949}, 05835 { -449, -449, -449, -449, -449},
```

```
05836 { -939, -939, -939, -939},
05837 { -739, -739, -739, -739, -739}},
05838 /* GU.@G..CG */
05839 {{ 0, 0, 0, 0, 0}, 05840 {-1029,-1029,-1029,-1029,-1029, -1029,-1029,-1029},
05841 { -519, -519, -519, -519, -519}, 
05842 { -939, -939, -939, -939, -939}, 
05843 { -809, -809, -809, -809, -809}},
05844 /* GU.@U..CG */
05845 {{ 0, 0, 0, 0, 0}, 0}, 0}
05846 {-1029,-1029,-1029,-1029,-1029},
05847 { -669, -669, -669, -669, -669},
05848 { -939, -939, -939, -939, -939},
05849 { -859, -859, -859, -859, -859}}},
05850 /* GU.A@..CG */
05851 {{ DEF, -429, -599, -599, -599}, 05852 { -100, -479, -649, -649, -649}, 05853 { -100, -479, -649, -649, -649}, 05854 { -100, -479, -649, -649, -649}, 05855 { -100, -479, -649, -649, -649}, 05855 { -100, -479, -649, -649, -649}},
05856 /* GU.AA..CG */
05857 {{ DEF, -429, -599, -599, -599}, 05858 {-1079,-1458,-1628,-1628,-1628},
05859 \{ -569, -948, -1118, -1118, -1118 \}
05860 { -989, -1368, -1538, -1538, -1538},
05861 { -859, -1238, -1408, -1408, -1408}},
05862 /* GU.AC..CG */
05863 {{ DEF, -429, -599, -599, -599}, 05864 { -999, -1378, -1548, -1548, -1548},
05865 { -499, -878, -1048, -1048, -1048},
05866 { -989, -1368, -1538, -1538, -1538},
05867 { -789, -1168, -1338, -1338, -1338}},
05868 /* GU.AG..CG */
05869 {{ DEF, -429, -599, -599, -599},
05870 {-1079,-1458,-1628,-1628,-1628},
05871 \{ -569, -948, -1118, -1118, -1118 \},
05872 { -989, -1368, -1538, -1538, -1538},
05873 { -859, -1238, -1408, -1408, -1408}},
05874 /* GU.AU..CG */
05875 {{ DEF, -429, -599, -599, -599},
05876 {-1079,-1458,-1628,-1628,-1628},
05877 \{ -719, -1098, -1268, -1268, -1268 \}
05878 { -989.-1368.-1538.-1538.-1538}
05879 { -909, -1288, -1458, -1458, -1458}}},
05880 /* GU.C@..CG */
05881 {{{ DEF, -259, -239, -239, -239},
05882 { -100, -309, -289, -289}, 289}, 05883 { -100, -309, -289, -289, -289}, 05884 { -100, -309, -289, -289, -289}, 05885 { -100, -309, -289, -289, -289}, 289}}
05886 /* GU.CA..CG */
05887 {{ DEF, -259, -239, -239, -239},
05888 {-1079,-1288,-1268,-1268,-1268},
05889 { -569, -778, -758, -758, -758}, 05890 { -989,-1198,-1178,-1178,-1178},
05891 { -859, -1068, -1048, -1048, -1048}},
05892 /* GU.CC..CG */
05893 {{ DEF, -259, -239, -239},
05894 {
           -999,-1208,-1188,-1188,-1188},
0.5895 {
          -499, -708, -688, -688, -688},
05896 { -989, -1198, -1178, -1178, -1178},
05897 { -789, -998, -978, -978, -978}},
05898 /* GU.CG..CG */
05899 {{ DEF, -259, -239, -239, -239},
05900 {-1079,-1288,-1268,-1268,-1268},
05901 { -569, -778, -758, -758, -758},
05902 \{ -989, -1198, -1178, -1178, -1178 \}
05903 { -859, -1068, -1048, -1048, -1048}},
05904 /* GU.CU..CG */
             DEF, -259, -239, -239, -239},
05905 {{
05906 {-1079,-1288,-1268,-1268,-1268},
05907 { -719, -928, -908, -908, -908},
05908 { -989,-1198,-1178,-1178,-1178},
05909 { -909,-1118,-1098,-1098,-1098}}},
05910 /* GU.G@..CG */
05911 {{{ DEF, -339, -689, -689, -689},
05912 { -100, -389, -739, -739, -739},
05913 {
          -100, -389, -739, -739, -739},
05914 { -100, -389, -739, -739, -739}, 05915 { -100, -389, -739, -739, -739, -739}},
05916 /* GU.GA..CG */
05917 {{ DEF, -339, -689, -689, -689},
05918 {-1079,-1368,-1718,-1718,-1718},
05919 { -569, -858, -1208, -1208, -1208},
05920 { -989, -1278, -1628, -1628, -1628},
05921 { -859,-1148,-1498,-1498,-1498}},
05922 /* GU.GC..CG */
```

```
05923 {{ DEF, -339, -689, -689, -689},
05924 { -999, -1288, -1638, -1638, -1638},
05925 { -499, -788, -1138, -1138, -1138}
05926 { -989,-1278,-1628,-1628,-1628},
05927 { -789, -1078, -1428, -1428, -1428}},
05928 /* GU.GG..CG */
05929 {{ DEF, -339, -689, -689, -689},
05930 {-1079,-1368,-1718,-1718,-1718},
05931 { -569, -858, -1208, -1208, -1208},
05932 { -989, -1278, -1628, -1628, -1628}
05933 { -859,-1148,-1498,-1498,-1498}}
05934 /* GU.CG */
05935 {{ DEF, -339, -689, -689, -689},
05936 {-1079,-1368,-1718,-1718,-1718},
05937 { -719, -1008, -1358, -1358, -1358},
05938 { -989,-1278,-1628,-1628,-1628},
05939 { -909,-1198,-1548,-1548,-1548}}},
05940 /* GU.U@..CG */
05941 {{{ DEF, -329, -329, -329, -329},
05941 {{ DEF, -329, -329, -329, -329, 05942 { -100, -379, -379, -379, -379, 05943 { -100, -379, -379, -379, -379}, 05944 { -100, -379, -379, -379, -379}, 05945 { -100, -379, -379, -379, -379}}, 05946 /* GU.UA..CG */ 05947 {{ DEF, -329, -329, -329, -329}, -329},
         {-1079, -1358, -1358, -1358, -1358},
05949 { -569, -848, -848, -848, -848},
05950 { -989,-1268,-1268,-1268,-1268},
05951 { -859, -1138, -1138, -1138, -1138}},
05952 /* GU.UC..CG */
05953 {{ DEF, -329, -329, -329},
05954 { -999, -1278, -1278, -1278, -1278},
05955 { -499, -778, -778, -778, -778},
05956 { -989,-1268,-1268,-1268,-1268}
05957 { -789, -1068, -1068, -1068, -1068}},
05958 /* GU.UG..CG */
05959 {{ DEF, -329, -329, -329, -329},
05960 {-1079, -1358, -1358, -1358, -1358},
05961 { -569, -848, -848, -848, -848},
05962 { -989, -1268, -1268, -1268, -1268},
05963 \{ -859, -1138, -1138, -1138, -1138 \} 
05964 /* GU.UU..CG */
05965 {{ DEF, -329, -329, -329, -329},
05966 {-1079,-1358,-1358,-1358,-1358},
05967 { -719, -998, -998, -998, -998},
05968 { -989, -1268, -1268, -1268, -1268},
05969 { -909, -1188, -1188, -1188, -1188}}}}
DEF, DEF, DEF, DEF, DEF,
                               DEF, DEF, DEF},
05975 {
                                                DEF } }
05976 /* GU.@A..GC */
05977 {{ 0, 0, 0, 0, 0}

05978 { -519, -519, -519, -519, -519},

05979 { -719, -719, -719, -719, -719},

05980 { -709, -709, -709, -709},
05981 { -499, -499, -499, -499}},

05982 /* GU.@C..GC */

05983 {{ 0, 0, 0, 0, 0}}
05988 /* GU.@G..GC */
05989 {{ 0, 0, 0, 0, 0}, 0}, 05990 { -559, -559, -559, -559, -559}, 05991 { -309, -309, -309, -309, -309}, 05992 { -619, -619, -619, -619, -619, -619}, 05993 { -499, -499, -499, -499, -499}}
05994 /* GU.@U..GC */
05995 {{ 0, 0, 0, 0, 0}

05996 {-879, -879, -879, -879, -879},

05997 {-389, -389, -389, -389, -389},

05998 {-739, -739, -739, -739},
05999 { -569, -569, -569, -569, -569}}},
06000 /* GU.A@..GC */
06001 {{{ DEF, -429, -599, -599, -599},
06002 { -100, -479, -649, -649, -649},

06003 { -100, -479, -649, -649, -649},

06004 { -100, -479, -649, -649, -649},
06005 { -100, -479, -649, -649, -649}},
06006 /* GU.AA..GC */
06007 {{ DEF, -429, -599, -599, -599}, 06008 { -569, -948, -1118, -1118, -1118}, 06009 { -769, -1148, -1318, -1318, -1318},
```

```
06010 { -759, -1138, -1308, -1308, -1308},
06011 { -549, -928, -1098, -1098, -1098}},
06012 /* GU.AC..GC */
06013 {{ DEF, -429, -599, -599, -599},
06014 \{ -929, -1308, -1478, -1478, -1478 \},
06015 { -359, -738, -908, -908, -908},
        { -789, -1168, -1338, -1338, -1338},
06017 { -549, -928, -1098, -1098, -1098}},
06018 /* GU.AG..GC */
06019 {{ DEF, -429, -599, -599}, -599}, 06020 { -609, -988, -1158, -1158, -1158}, 06021 { -359, -738, -908, -908, -908},
06022 { -669, -1048, -1218, -1218, -1218},
06023 { -549, -928, -1098, -1098, -1098}},
06024 /* GU.AU..GC */
06025 {{ DEF, -429, -599, -599, -599}, 06026 { -929,-1308,-1478,-1478,-1478},
06027 { -439, -818, -988, -988, -988},
06028 { -789, -1168, -1338, -1338, -1338},
06029 { -619, -998, -1168, -1168, -1168}}},
06030 /* GU.C@..GC */
06031 {{{ DEF, -259, -239, -239},
06031 {{{ DEF, -259, -239, -239, -239, 06032 { -100, -309, -289, -289, -289}, 06033 { -100, -309, -289, -289, -289}, 06034 { -100, -309, -289, -289, -289}, 06035 { -100, -309, -289, -289, -289}}
06036 /* GU.CA..GC */
06037 {{ DEF, -259, -239, -239, -239}, 06038 { -569, -778, -758, -758, -758}, 06039 { -769, -978, -958, -958, -958},
06040 { -759, -968, -948, -948, -948},
06041 { -549, -758, -738, -738, -738}},
06042 /* GU.CC..GC */
06043 {{ DEF, -259, -239, -239, -239},
06044 {
           -929, -1138, -1118, -1118, -1118},
06045 { -359, -568, -548, -548, -548},
06046 { -789, -998, -978, -978, -978},
06047 { -549, -758, -738, -738, -738}},
06048 /* GU.CG..GC */
06049 {{ DEF, -259, -239, -239, -239}, 06050 { -609, -818, -798, -798, -798}, 06051 { -359, -568, -548, -548, -548},
06052 { -669, -878, -858, -858, -858}, 06053 { -549, -758, -738, -738, -738}},
06054 /* GU.CU..GC */
06055 {{ DEF, -259, -239, -239},
06056 { -929,-1138,-1118,-1118,-1118},
06057 { -439, -648, -628, -628, -628},
06058 { -789, -998, -978, -978, -978},
06059 { -619, -828, -808, -808, -808}}},
06060 /* GU.G@..GC */
06061 {{{ DEF, -339, -689, -689, -689}, 06062 { -100, -389, -739, -739, -739},
          -100, -389, -739, -739, -739},
06063 {
06063 { -100, -389, -739, -739, -739}, 06064 { -100, -389, -739, -739, -739}, 06065 { -100, -389, -739, -739, -739}},
06066 /* GU.GA..GC */
06067 {{ DEF, -339, -689, -689, -689},
06068 { -569, -858, -1208, -1208, -1208},
06069 { -769, -1058, -1408, -1408, -1408},
06070 \{ -759, -1048, -1398, -1398, -1398 \}
06071 { -549, -838, -1188, -1188, -1188}}
06072 /* GU.GC..GC */
06073 {{ DEF, -339, -689, -689, -689},
06074 {
           -929, -1218, -1568, -1568, -1568},
06075 { -359, -648, -998, -998, -998},
06076 { -789, -1078, -1428, -1428, -1428},
06077 { -549, -838, -1188, -1188, -1188}}
06078 /* GU.GG..GC */
        {{ DEF, -339, -689, -689, -689},
06080 { -609, -898,-1248,-1248,-1248},
06081 { -359, -648, -998, -998, -998},
06082 { -669, -958, -1308, -1308, -1308},
06083 { -549, -838, -1188, -1188, -1188}},
06084 /* GU.GU..GC */
06085 {{ DEF, -339, -689, -689, -689},
06086 { -929, -1218, -1568, -1568, -1568},
06087 {
           -439, -728, -1078, -1078, -1078},
06088 { -789,-1078,-1428,-1428,-1428}
06089 { -619, -908, -1258, -1258, -1258}}},
06090 /* GU.U@..GC */
06091 {{{ DEF, -329, -329, -329, -329},
        \{-100, -379, -379, -379, -379\},\
06092
06093 { -100, -379, -379, -379, -379},
06094 { -100, -379, -379, -379, -379},
06095 { -100, -379, -379, -379, -379}},
06096 /* GU.UA..GC */
```

```
06097 {{ DEF, -329, -329, -329, -329},
06098 { -569, -848, -848, -848, -848},
06099 { -769,-1048,-1048,-1048,-1048},
06100 { -759, -1038, -1038, -1038, -1038},
06101 { -549, -828, -828, -828, -828}}, 06102 /* GU.UC..GC */
06103 {{ DEF, -329, -329, -329, -329},
06104 { -929, -1208, -1208, -1208, -1208},
06105 { -359, -638, -638, -638, -638},
06106 { -789, -1068, -1068, -1068, -1068}
06107 { -549, -828, -828, -828, -828}},
06108 /* GU.UG..GC */
06109 {{ DEF, -329, -329, -329},
06110 { -609, -888, -888, -888, -888},
06111 { -359, -638, -638, -638, -638},
06112 { -669, -948, -948, -948, -948},
06113 { -549, -828, -828, -828, -828}},
06112 {
06114 /* GU.UU..GC */
06115 {{ DEF, -329, -329, -329, -329},
06116 { -929, -1208, -1208, -1208, -1208},
06117 {
            -439, -718, -718, -718, -718},
06118 { -789, -1068, -1068, -1068, -1068}
06119 { -619, -898, -898, -898, -898}}}}
06120 /* GU.@@..GU */
         /* GU.ee.... ({{{ 0, 0, 0, 0, 0, { DEF, DEF, DEF, DEF, DEF, DEF}, DEF, DEF, DEF}, DEF, DEF, DEF},
06121 {{{{
06123
DEF, DEF, DEF},
                                                   DEF } }
06127 {{ 0, 0, 0, 0, 0}

06128 { -429, -429, -429, -429, -429},

06129 { -259, -259, -259, -259, -259},

06130 { -339, -339, -339, -339},
06131 { -329, -329, -329, -329}},

06132 /* GU.@C..GU */

06133 {{ 0, 0, 0, 0, 0}}
06133 {{ 0, 0, 0, 0, 0}, 0}, 06134 { -599, -599, -599, -599, -599}, 06135 { -239, -239, -239, -239},
                                               0,
06136 { -689, -689, -689, -689, -689},
06137 { -329, -329, -329, -329}},
06138 /* GU.@G..GU */
06139 {{ 0, 0, 0, 0, 0}

06140 { -599, -599, -599, -599}, 06141 { -239, -239, -239, -239, -239, 06142 { -689, -689, -689, -689, -689},
06143 { -329, -329, -329, -329, -329}},
06144 /* GU.GU.*/
06145 {{ 0, 0, 0, 0, 0}, 0}, 0}
06146 { -599, -599, -599, -599}, 06147 { -239, -239, -239, -239, -239},
06148 { -689, -689, -689, -689, -689}, 06149 { -329, -329, -329, -329, -329}}}
06150 /* GU.A@..GU */
06151 {{{ DEF, -429, -599, -599},
06152 { -100, -479, -649, -649, -649}, 06153 { -100, -479, -649, -649, -649, -649},
06154 { -100, -479, -649, -649, -649},
06154 { -100, -479, -649, -649, -649}, 06155 { -100, -479, -649, -649, -649}}, 06156 /* GU.AA..GU */
06157 {{ DEF, -429, -599, -599, -599}, 06158 { -479, -858, -1028, -1028, -1028, -1028, -309, -688, -858, -858, -858}, 06160 { -389, -768, -938, -938, -938, -938}, 06161 { -370, -758, -938, -938, -938}, -938}, 0616161 { -370, -758, -938, -938, -938}, -938}, 0616161 { -370, -758, -938, -938}, -938}, -938}, -938}, -938}, -938}
06161 { -379, -758, -928, -928, -928}},
06162 /* GU.AC..GU */
06163 {{ DEF, -429, -599, -599, -599}, 06164 { -649,-1028,-1198,-1198,-1198},
06165 { -289, -668, -838, -838, -838},
06166 { -739, -1118, -1288, -1288, -1288},
06167 { -379, -758, -928, -928, -928}}
06168 /* GU.AG..GU */
06169 {{ DEF, -429, -599, -599, -599}, 06170 { -649,-1028,-1198,-1198,-1198},
06171 { -289, -668, -838, -838, -838},
06172 { -739, -1118, -1288, -1288, -1288},
06173 \{ -379, -758, -928, -928, -928 \} \}
06174 /* GU.AU..GU */
06175 {{ DEF, -429, -599, -599, -599}, 06176 { -649,-1028,-1198,-1198,-1198},
06177 { -289, -668, -838, -838, -838},
06178 { -739, -1118, -1288, -1288, -1288}
06179 { -379, -758, -928, -928, -928}}}
06180 /* GU.C@..GU */
06181 {{{ DEF, -259, -239, -239}, 06182 { -100, -309, -289, -289, -289}, 06183 { -100, -309, -289, -289, -289},
```

```
06184 { -100, -309, -289, -289, -289},
06185 { -100, -309, -289, -289, -289}},
06186 /* GU.CA..GU */
06187 {{ DEF, -259, -239, -239, -239}, 06188 { -479, -688, -668, -668, -668}, 06189 { -309, -518, -498, -498, -498, -498},
06190 { -389, -598, -578, -578, -578},
06191 { -379, -588, -568, -568, -568}},
06192 /* GU.CC..GU */
06193 {{ DEF, -259, -239, -239, -239},
06194 { -649, -858, -838, -838, -838}, 06195 { -289, -498, -478, -478, -478, 06196 { -739, -948, -928, -928, -928},
06197 { -379, -588, -568, -568, -568}},
06198 /* GU.CG..GU */
06199 {{ DEF, -259, -239, -239, -239}, 06200 { -649, -858, -838, -838, -838, 838}, 06201 { -289, -498, -478, -478, -478},
06202 { -739, -948, -928, -928, -928},
06203 { -379, -588, -568, -568, -568}},
06204 /* GU.CU..GU */
06205 {{ DEF, -259, -239, -239, -239},
06206 { -649, -858, -838, -838, -838}, 
06207 { -289, -498, -478, -478, -478}, 
06208 { -739, -948, -928, -928, -928}, 
06209 { -379, -588, -568, -568, -568}}},
06210 /* GU.G@..GU */
06211 {{ DEF, -339, -689, -689, -689}, 06212 { -100, -389, -739, -739, -739}, 06213 { -100, -389, -739, -739, -739}, 06214 { -100, -389, -739, -739, -739}, 06215 { -100, -389, -739, -739, -739},
06216
         /* GU.GA..GU */
06217 {{ DEF, -339, -689, -689, -689},
06218 { -479, -768, -1118, -1118, -1118}, 06219 { -309, -598, -948, -948, -948},
06220 { -389, -678, -1028, -1028, -1028},
06221 { -379, -668, -1018, -1018, -1018}},
06222 /* GU.GC..GU */
06223 {{ DEF, -339, -689, -689, -689},
06224 { -649, -938, -1288, -1288, -1288},
06225 { -289, -578, -928, -928, -928},
06226 { -739, -1028, -1378, -1378, -1378},
06227 { -379, -668, -1018, -1018, -1018}},
06228 /* GU.GG..GU */
06229 {{ DEF, -339, -689, -689, -689},
06230 { -649, -938,-1288,-1288,-1288},
06231 { -289, -578, -928, -928, -928},
06232 { -739, -1028, -1378, -1378, -1378},
06233 { -379, -668, -1018, -1018, -1018}}
06234 /* GU.GU..GU */
06235 {{ DEF, -339, -689, -689, -689}, 06236 { -649, -938, -1288, -1288, -1288},
06237 { -289, -578, -928, -928, -928}, 
06238 { -739, -1028, -1378, -1378, -1378},
06239 \{ -379, -668, -1018, -1018, -1018 \} \},
06240 /* GU.U@..GU */
06241 {{{ DEF, -329, -329, -329, -329},
06242 { -100, -379, -379, -379, -379},
06243 { -100, -379, -379, -379}, 
06244 { -100, -379, -379, -379, -379}, 
06245 { -100, -379, -379, -379, -379}},
06246 /* GU.UA..GU */
06247 {{ DEF, -329, -329, -329, -329}, 06248 { -479, -758, -758, -758, -758},
06249 { -309, -588, -588, -588, -588},
06250 { -389, -668, -668, -668, -668}, 06251 { -379, -658, -658, -658, -658, }},
06252 /* GU.UC..GU */
06253 {{ DEF, -329, -329, -329, -329},
06254 { -649, -928, -928, -928, -928},
06255 { -289, -568, -568, -568, -568},
06256 {
           -739,-1018,-1018,-1018,-1018}
06257 \{ -379, -658, -658, -658, -658 \}
06258 /* GU.UG..GU */
06259 {{ DEF, -329, -329, -329},
06260 { -649, -928, -928, -928, -928},
           -289, -568, -568, -568, -568},
06261 {
06262 \{ -739, -1018, -1018, -1018, -1018 \}
06263 \{ -379, -658, -658, -658, -658 \} \}
06264 /* GU.UU..GU */
06265 {{ DEF, -329, -329, -329},
06266 { -649, -928, -928, -928, -928},
06267 { -289, -568, -568, -568, -568},
06268 { -739, -1018, -1018, -1018, -1018}
06269 { -379, -658, -658, -658, -658}}}},
06270 /* GU.@@..UG */
```

```
06271 {{{{
 06272
 06273
                                                                                          DEF },
 06274 {
                         DEF,
                                      DEF,
                                                          DEF,
                                                                          DEF,
06275 { DEF, DEF, DEF, DEF, 06276 /* GU.@A..UG */
                                                                                        DEF } },
06276 /* GU.@A..UG */
06277 {{ 0, 0, 0, 0, 0},
06278 { -719, -719, -719, -719, -719},
06279 { -479, -479, -479, -479, -479},
06280 { -659, -659, -659, -659, -659},
06281 { -549, -549, -549, -549, -549}},
06282 /* GU.@C..UG */
 06283 {{ 0, 0, 0, 0, 0}, 0}, 0}, 06284 { -789, -789, -789, -789, -789}, 06285 { -479, -479, -479, -479}, -479},
06286 { -809, -809, -809, -809, -809}, 
06287 { -439, -439, -439, -439, -439}},
06287 { -439, -437, ..., 06288 /* GU.@G..UG */ 0, 0,
06290 { -959, -959, -959, -959}, -959}, 06291 { -359, -359, -359, -359}, -359}, 06292 { -919, -919, -919, -919, -919}, 06293 { -549, -549, -549, -549, -549}}, 06294 /* GU.@U.UG */
 06295 { 0, 0, 0, 0, 0, 06296 { -809, -809, -809, -809, -809, -479, -479, -479, -479}, 06297 { -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -479, -4
 06298 { -809, -809, -809, -809, -809}, 
06299 { -359, -359, -359, -359, -359}}},
 06300 /* GU.A@..UG */
 06301 {{{ DEF, -429, -599, -599, -599},
 06302 { -100, -479, -649, -649, -649}, 06303 { -100, -479, -649, -649, -649},
 06304 { -100, -479, -649, -649, -649}
 06305 { -100, -479, -649, -649, -649}},
06306 /* GU.AA..UG */
06307 {{ DEF, -429, -599, -599, -599},
 06308 { -769, -1148, -1318, -1318, -1318},
 06309
                 \{-529, -908, -1078, -1078, -1078\},
 06310 {
                     -709, -1088, -1258, -1258, -1258},
06311 { -599, -978,-1148,-1148,-1148}},
06312 /* GU.AC..UG */
06313 {{ DEF, -429, -599, -599, -599}},
 06314 { -839, -1218, -1388, -1388, -1388},
 06315 { -529, -908, -1078, -1078, -1078},
 06316 { -859, -1238, -1408, -1408, -1408}
 06317 { -489, -868, -1038, -1038, -1038}},
 06318 /* GU.AG..UG */
 06319 {{ DEF, -429, -599, -599, -599},
 06320 {-1009,-1388,-1558,-1558,-1558},
 06321 { -409, -788, -958, -958, -958},
 06322 { -969, -1348, -1518, -1518, -1518},
 06323 { -599, -978, -1148, -1148, -1148}},
 06324 /* GU.AU..UG */
06325 {{ DEF, -429, -599, -599}, -599}, 06326 { -859,-1238,-1408,-1408,-1408},
 06327 { -529, -908, -1078, -1078, -1078},
 06328 { -859, -1238, -1408, -1408, -1408},
06325 { -409, -788, -958, -958, -958}},
06329 { -409, -788, -958, -958, -958}},
06330 /* GU.C0..UG */
06331 {{{ DEF, -259, -239, -239, -239},
06332 { -100, -309, -289, -289, -289},
06333 { -100, -309, -289, -289, -289},
 06334 { -100, -309, -289, -289, -289}, 06335 { -100, -309, -289, -289, -289, -289}}
 06336 /* GU.CA..UG */
06336 /* GU.CA...0G */
06337 {{ DEF, -259, -239, -239, -239},
06338 { -769, -978, -958, -958, -958},
06339 { -529, -738, -718, -718, -718},
06340 { -709, -918, -898, -898, -898},
 06341 { -599, -808, -788, -788, -788}},
 06342 /* GU.CC..UG */
 06343 {{ DEF, -259, -239, -239, -239}, 06344 { -839,-1048,-1028,-1028,-1028},
 06345 { -529, -738, -718, -718, -718},
                 { -859, -1068, -1048, -1048, -1048},
 06347 \{ -489, -698, -678, -678, -678 \} \}
 06348 /* GU.CG..UG */
 06349 {{ DEF, -259, -239, -239, -239}, 06350 {-1009,-1218,-1198,-1198,-1198},
 06351 { -409, -618, -598, -598, -598},
 06352 { -969, -1178, -1158, -1158, -1158},
 06353 { -599, -808, -788, -788, -788}},
 06354 /* GU.CU..UG */
 06355 {{ DEF, -259, -239, -239, -239},
06356 { -859,-1068,-1048,-1048,-1048},
06357 { -529, -738, -718, -718, -718},
```

```
06358 { -859, -1068, -1048, -1048, -1048},
06359 { -409, -618, -598, -598, -598}}},
06360 /* GU.G@..UG */
06361 {{{ DEF, -339, -689, -689, -689}, 06362 { -100, -389, -739, -739, -739}, 06363 { -100, -389, -739, -739, -739},
06364 { -100, -389, -739, -739, -739}, 
06365 { -100, -389, -739, -739, -739}}}
06366 /* GU.GA..UG */
06367 {{ DEF, -339, -689, -689, -689}, 06368 { -769,-1058,-1408,-1408,-1408},
06369 { -529, -818,-1168,-1168,-1168},
06370 { -709, -998,-1348,-1348,-1348},
06371 { -599, -888, -1238, -1238, -1238}},
06372 /* GU.GC..UG */
06373 {{ DEF, -339, -689, -689, -689}, 06374 { -839,-1128,-1478,-1478,-1478},
06375 { -529, -818, -1168, -1168, -1168},
06376 { -859, -1148, -1498, -1498, -1498},
06377 \{ -489, -778, -1128, -1128, -1128 \} \}
06378 /* GU.GG..UG */
06379 {{ DEF, -339, -689, -689},
06380 {-1009,-1298,-1648,-1648,-1648},
06381 \{ -409, -698, -1048, -1048, -1048 \},
06382 { -969, -1258, -1608, -1608, -1608},
06383 { -599, -888, -1238, -1238, -1238}},
06384 /* GU.GU..UG */
06385 {{ DEF, -339, -689, -689, -689},
06386 { -859,-1148,-1498,-1498,-1498},
06387 { -529, -818, -1168, -1168, -1168},
06388 { -859, -1148, -1498, -1498, -1498},
06389 { -409, -698, -1048, -1048, -1048}}},
06390 /* GU.U@..UG */
06391 {{{ DEF, -329, -329, -329, -329},
06396 /* GU.UA..UG */
06397 {{ DEF, -329, -329, -329, -329},
06398 { -769, -1048, -1048, -1048, -1048},
06399 { -529, -808, -808, -808, -808}, 
06400 { -709, -988, -988, -988, -988}, 
06401 { -599, -878, -878, -878, -878}},
06402 /* GU.UC..UG */
06403 {{ DEF, -329, -329, -329, -329},
06404 { -839,-1118,-1118,-1118,-1118},
06405 \{ -529, -808, -808, -808, -808 \},
06406 { -859, -1138, -1138, -1138, -1138},
06407 { -489, -768, -768, -768, -768}}
06408 /* GU.UG..UG */
06409 {{ DEF, -329, -329, -329},
06410 {-1009,-1288,-1288,-1288,-1288},
06411 { -409, -688, -688, -688, -688},
06412 { -969, -1248, -1248, -1248, -1248},
06413 { -599, -878, -878, -878, -878}},
06414 /* GU.UU..UG */
06415 {{ DEF, -329, -329, -329, -329},
06416 { -859,-1138,-1138,-1138,-1138},
06417 { -529, -808, -808, -808, -808},
06418 { -859, -1138, -1138, -1138, -1138},
06419 { -409, -688, -688, -688, -688}}}}
06420 /* GU.@@..AU */
           {{ 0, 0, 0, 0, 0, DEF, DEF, DEF},
06421 {{{
06422
06423 {
          DEF, DEF, DEF, DEF},
                                         DEF}.
06424 { DEF, DEF, DEF, DEF, DEF}, 06425 { DEF, DEF, DEF, DEF, DEF, DEF}},
06427 {{ 0, 0, 0, 0, 0}, 0}, 06428 { -429, -429, -429, -429, -429}, 06429 { -259, -259, -259, -259},
06430 { -339, -339, -339, -339}, 06431 { -329, -329, -329, -329, -329}}
06431 { -329, -329, -22, 06432 /* GU.@C..AU */ 0, 0,
06434 { -599, -599, -599, -599, -599},
06435 { -239, -239, -239, -239, -239},
06436 { -689, -689, -689, -689, -689}, 06437 { -329, -329, -329, -329, -329, }},
06438 /* GU.@G..AU */
06439 {{ 0, 0, 0, 0, 0}, 0}, 06440 {-599, -599, -599, -599, -599}, 06441 {-239, -239, -239, -239, -239},
06442 { -689, -689, -689, -689, -689}, 
06443 { -329, -329, -329, -329, -329}}, 
06444 /* GU.@U..AU */
```

```
06445 {{
                  0,
                           Ο,
                                     0,
                                              Ο,
06446 { -599, -599, -599, -599}, 06447 { -239, -239, -239, -239, -239},
06448 { -689, -689, -689, -689, -689},
06449 { -329, -329, -329, -329, -329}}},
06450 /* GU.A@..AU */
06451 {{{ DEF, -429, -599, -599, -599}, 06452 { -100, -479, -649, -649, -649},
06453 { -100, -479, -649, -649, -649},
06454 { -100, -479, -649, -649, -649}, 06455 { -100, -479, -649, -649, -649}},
06456 /* GU.AA..AU */
06457 {{ DEF, -429, -599, -599, -599},
06458 { -479, -858, -1028, -1028, -1028},
06459 { -309, -688, -858, -858, -858},
06460 {
06460 { -389, -768, -938, -938, -938},
06461 { -379, -758, -928, -928, -928}},
06462 /* GU.AC..AU */
06463 {{ DEF, -429, -599, -599, -599},
06464 { -649, -1028, -1198, -1198, -1198},
06465 {
            -289, -668, -838, -838, -838},
06466 {
           -739, -1118, -1288, -1288, -1288<sub>}</sub>
06467 { -379, -758, -928, -928, -928}},
06468 /* GU.AG..AU */
06469 {{ DEF, -429, -599, -599, -599},
06470 { -649,-1028,-1198,-1198,-1198},
06471 { -289, -668, -838, -838, -838},
06472 {
            -739, -1118, -1288, -1288, -1288},
06473 { -379, -758, -928, -928, -928}}
06474 /* GU.AU..AU */
06475 {{ DEF, -429, -599, -599, -599},
06476 { -649, -1028, -1198, -1198, -1198},
06477 { -289, -668, -838, -838, -838},
06478 { -739, -1118, -1288, -1288, -1288}
06479 { -379, -758, -928, -928, -928}},
06480 /* GU.C@..AU */
06481 {{ DEF, -259, -239, -239, -239},
06482 { -100, -309, -289, -289, -289}, 06483 { -100, -309, -289, -289, -289},
06484 {
            -100, -309, -289, -289, -289},
06485 { -100, -309, -289, -289, -289}},
06486 /* GU.CA..AU */
06487 {{ DEF, -259, -239, -239, -239}, 06488 { -479, -688, -668, -668, -668}, 06489 { -309, -518, -498, -498, -498}, 06490 { -389, -598, -578, -578, -578},
06491 { -379, -588, -568, -568, -568}}, 06492 /* GU.CC..AU */
06493 {{ DEF, -259, -239, -239},
06496 { -739, -948, -928, -928, -928}, 06497 { -379, -588, -568, -568, -568}}
06498 /* GU.CG..AU */
06499 {{ DEF, -259, -239, -239}, 06500 { -649, -858, -838, -838, -838, -838}, 06501 { -289, -498, -478, -478, -478},
06502 { -739, -948, -928, -928, -928},
06503 { -379, -588, -568, -568, -568},
06504 /* GU.CU..AU */
06505 {{ DEF, -259, -239, -239, -239}, 06506 { -649, -858, -838, -838, -838}, 06507 { -289, -498, -478, -478, -478},
         \{-739, -948, -928, -928, -928\},
06508
06509 { -379, -588, -568, -568, -568}}}
06510 /* GU.GQ..AU */
06511 {{ DEF, -339, -689, -689, -689}, 06512 {-100, -389, -739, -739, -739}, 06513 {-100, -389, -739, -739, -739},
06514 { -100, -389, -739, -739, -739},
06515 { -100, -389, -739, -739, -739}}
06516 /* GU.GA..AU */
06517 {{ DEF, -339, -689, -689, -689}, 06518 { -479, -768, -1118, -1118, -1118}, 06519 { -309, -598, -948, -948, -948},
06520 { -389, -678, -1028, -1028, -1028},
06521 \{ -379, -668, -1018, -1018, -1018 \} \}
06522 /* GU.GC..AU */
06522 {{ DEF, -339, -689, -689, -689}, 06524 { -649, -938, -1288, -1288, -1288}, 06525 { -289, -578, -928, -928, -928},
06526 { -739, -1028, -1378, -1378, -1378},
06527 \{ -379, -668, -1018, -1018, -1018 \} \},
06528 /* GU.GG..AU */
06529 {{ DEF, -339, -689, -689, -689}, 06530 { -649, -938, -1288, -1288, -1288}, 06531 { -289, -578, -928, -928, -928},
```

```
06532 \{ -739, -1028, -1378, -1378, -1378 \},
06533 { -379, -668, -1018, -1018, -1018}},
06534 /* GU.GU..AU */
06535 {{ DEF, -339, -689, -689, -689}, 06536 { -649, -938, -1288, -1288, -1288}, 06537 { -289, -578, -928, -928, -928},
         { -739, -1028, -1378, -1378, -1378},
06539 \{ -379, -668, -1018, -1018, -1018 \} \}
06540 /* GU.U@..AU */
06540 /* GU.UG..AO */
06541 {{ DEF, -329, -329, -329, -329},
06542 { -100, -379, -379, -379, -379},
06543 { -100, -379, -379, -379, -379},
06544 { -100, -379, -379, -379, -379},
06545 { -100, -379, -379, -379, -379},
06546 /* GU.UA..AU */
06547 {{ DEF, -329, -329, -329, -329}, 06548 { -479, -758, -758, -758, -758}, 06549 { -309, -588, -588, -588, -588},
06550 { -389, -668, -668, -668, -668},
06551 \{ -379, -658, -658, -658, -658 \} \}
06552 /* GU.UC..AU */
06552 /* GO.UC..AU */
06553 {{ DEF, -329, -329, -329, -329},
06554 { -649, -928, -928, -928, -928},
06555 { -289, -568, -568, -568, -568},
06556 { -739, -1018, -1018, -1018, -1018},
06557 \{ -379, -658, -658, -658, -658 \} 
06558 /* GU.UG..AU */
06559 {{ DEF, -329, -329, -329, -329}, 06560 { -649, -928, -928, -928, -928, -928}, 06561 { -289, -568, -568, -568, -568},
06562 \{ -739, -1018, -1018, -1018, -1018 \},
06563 { -379, -658, -658, -658, -658}},
06564 /* GU.UU..AU */
06565 {{ DEF, -329, -329, -329, -329},
06566 { -649, -928, -928, -928, -928},
06567 { -289, -568, -568, -568, -568},
06568 { -739, -1018, -1018, -1018, -1018}
06569 \{ -379, -658, -658, -658, -658\} \} \},
06570 /* GU.@@..UA */
             06571 {{{{
06572 {
06573 {
             DEF, DEF, DEF, DEF, DEF},
06574 { DEF, DEF, DEF, DEF, DEF}, 06575 { DEF, DEF, DEF, DEF, DEF, DEF, DEF}},
06576 /* GU.@A..UA */
06577 {{ 0, 0, 0, 0, 0}, 0}, 06578 { -399, -399, -399, -399, -399}, 06579 { -429, -429, -429, -429, -429}, 06580 { -379, -379, -379, -379, -379}, 06581 { -279, -279, -279, -279, -279}},
06581 { -279, -279, 200, 06582 /* GU.@C..UA */ 0, 0, 0,
06583 {{ 0, 0, 0, 0, 0}, 0}, 0}
06584 { -629, -629, -629, -629, -629},
06585 { -509, -509, -509, -509, -509},
06586 { -679, -679, -679, -679}, 06587 { -139, -139, -139, -139, -139}},
06587 { -139, -139, -109, 06588 /* GU.@G..UA */
                0,
                                               0.
06593 { -279, -279, -2...,
06594 /* GU.@U..UA */
0. 0, 0,
06595 { 0, 0, 0, 0, 0}, 0}, 06595 { 0, 0, -589, -589, -589, -589}, 06597 { -179, -179, -179, -179, -179}, 06598 { -679, -679, -679, -679, -679}, 06599 { -140, -140, -140, -140, -140}}},
06600 /* GU.A@..UA */
06601 {{{ DEF, -429, -599, -599},
06602 { -100, -479, -649, -649, -649}, 06603 { -100, -479, -649, -649, -649},
06604 { -100, -479, -649, -649, -649}, 06605 { -100, -479, -649, -649, -649}},
06606 /* GU.AA..UA */
06607 {{ DEF, -429, -599, -599, -599},
         \{-449, -828, -998, -998, -998\},
06608
06609 {
            -479, -858, -1028, -1028, -1028},
06610 { -429, -808, -978, -978, -978},
06611 { -329, -708, -878, -878, -878}},
06612 /* GU.AC..UA */
06613 {{ DEF, -429, -599, -599, -599},
         \{-679, -1058, -1228, -1228, -1228\},
06615 { -559, -938,-1108,-1108,-1108},
06616 { -729, -1108, -1278, -1278, -1278}
06617 { -189, -568, -738, -738, -738}}, 06618 /* GU.AG..UA */
```

```
06619 {{ DEF, -429, -599, -599, -599},
06620 { -939, -1318, -1488, -1488, -1488},
06621 { -249, -628, -798, -798, -798}
            -939, -1318, -1488, -1488, -1488},
06622 {
06623 { -329, -708, -878, -878, -878}}, 06624 /* GU.AU..UA */
06625 {{ DEF, -429, -599, -599, -599},
06626 { -639,-1018,-1188,-1188,-1188},
06627 {
            -229, -608, -778, -778, -778},
06628 { -729, -1108, -1278, -1278, -1278}
06629 { -190, -569, -739, -739, -739}}},
06630 /* GU.CQ..UA */
06631 {{{ DEF, -259, -239, -239, -239},
06632 { -100, -309, -289, -289, -289}, 06633 { -100, -309, -289, -289, -289},
06634 { -100, -309, -289, -289, -289}, 06635 { -100, -309, -289, -289, -289, -289}}
06636 /* GU.CA..UA */
06637 {{ DEF, -259, -239, -239},
          \{-449, -658, -638, -638, -638\},\
06638
            -479, -688, -668, -668, -668},
06639
            -429, -638, -618, -618, -618}
06640 {
06641 { -329, -538, -518, -518}, 
06642 /* GU.CC..UA */
06643 {{ DEF, -259, -239, -239, -239},
06644 { -679, -888, -868, -868, -868},
06645 { -559, -768, -748, -748, -748},
06646 {
06646 { -729, -938, -918, -918, -918},
06647 { -189, -398, -378, -378, -378}}
06648 /* GU.CG..UA */
06649 {{ DEF, -259, -239, -239},
06650 { -939, -1148, -1128, -1128, -1128},
06651 { -249, -458, -438, -438, -438},
06652 { -939,-1148,-1128,-1128,-1128}
06653 { -329, -538, -518, -518, -518}}, 06654 /* GU.CU..UA */ 06655 {{ DEF, -259, -239, -239, -239},
06656 { -639, -848, -828, -828, -828},
06657 { -229, -438, -418, -418, -418},
06658 {
            -729, -938, -918, -918, -918}
06659 { -190, -399, -379, -379, -379}}},
06660 /* GU.G@..UA */
06661 {{{ DEF, -339, -689, -689, -689}, 06662 { -100, -389, -739, -739, -739}, 06663 { -100, -389, -739, -739, -739},
06664 { -100, -389, -739, -739, -739},

06665 { -100, -389, -739, -739, -739},

06666 /* GU.GA..UA */
06667 {{ DEF, -339, -689, -689, -689}, 06668 { -449, -738, -1088, -1088, -1088}, 06669 { -479, -768, -1118, -1118, -1118},
06669 { -4/9, -/68,-1118,-1118,-1118,

06670 { -429, -718,-1068,-1068,-1068,

06671 { -329, -618, -968, -968, -968},

06672 /* GU.GC..UA */

06673 {{ DEF, -339, -689, -689, -689},

06674 { -679, -968,-1318,-1318,-1318},

06675 { -559, -848,-1198,-1198,-1198},
06676 { -729, -1018, -1368, -1368, -1368},
06677 { -189, -478, -828, -828, -828}},
06678 /* GU.GG..UA */
06679 {{ DEF, -339, -689, -689, -689},
06680 { -939,-1228,-1578,-1578,-1578},
06681 { -249, -538, -888, -888, -888},
         { -939, -1228, -1578, -1578, -1578},
06683 { -329, -618, -968, -968, -968}},
06684 /* GU.GU..UA */
06685 {{ DEF, -339, -689, -689, -689}, 06686 { -639, -928, -1278, -1278, -1278}, 06687 { -229, -518, -868, -868, -868},
         { -729, -1018, -1368, -1368, -1368},
06689 { -190, -479, -829, -829, -829}}}
06690 /* GU.U@..UA */
06691 {{{ DEF, -329, -329, -329, -329}, 06692 { -100, -379, -379, -379, -379}, 06693 { -100, -379, -379, -379, -379},
         \{-100, -379, -379, -379, -379\},
06695 \{ -100, -379, -379, -379, -379 \} \}
06696 /* GU.UA..UA */
06697 {{ DEF, -329, -329, -329}, 06698 { -449, -728, -728, -728, -728, -728}, 06699 { -479, -758, -758, -758, -758},
06700 { -429, -708, -708, -708, -708},
06701 \{ -329, -608, -608, -608, -608 \} \}
06702 /* GU.UC..UA */
06703 {{ DEF, -329, -329, -329}, 06704 { -679, -958, -958, -958, -958}, 06705 { -559, -838, -838, -838, -838, -838},
```

```
06706 \{ -729, -1008, -1008, -1008, -1008 \},
06707 { -189, -468, -468, -468, -468}},
06708 /* GU.UG..UA */
06709 {{ DEF, -329, -329, -329, -329},
06710 \ \{ \ -939, -1218, -1218, -1218, -1218 \},
06711 { -249, -528, -528, -528, -528},
06712 { -939, -1218, -1218, -1218, -1218},
06713 { -329, -608, -608, -608, -608}},
06714 /* GU.UU..UA */
06715 {{ DEF, -329, -329, -329, -329}, 06716 { -639, -918, -918, -918, -918}, 06717 { -229, -508, -508, -508, -508},
06718 { -729, -1008, -1008, -1008, -1008}
06719 { -190, -469, -469, -469, -469}}}},
06720 /* GU.@@.. @ */
06721 {{{{ DEF, DEF,
                             DEF, DEF,
                                             DEF).
06722 {
           DEF, DEF, DEF, DEF, DEF},
           DEF,
                  DEF,
06723 {
                          DEF,
                                 DEF,
                                          DEF },
           DEF, DEF,
                          DEF,
                                  DEF.
06725 { DEF, DEF, DEF, 06726 /* GU.@A.. @ */
                                  DEF, DEF}},
                                           DEF },
06727 {{ DEF, DEF, DEF,
                                   DEF,
06728 {
           DEF, DEF, DEF,
                                  DEF, DEF},
           DEF,
                   DEF,
06729 {
                                           DEF },
                          DEF.
                                   DEF.
06730 {
           DEF,
                   DEF,
                          DEF,
                                   DEF,
                                           DEF },
           DEF,
                  DEF,
                          DEF,
                                  DEF,
                                          DEF } },
06732 /* GU.@C.. @ */
                                           DEF }
06733 {{ DEF, DEF, DEF,
                                   DEF.
06734 {
          DEF, DEF, DEF, DEF},
06735 {
           DEF.
                   DEF.
                          DEF.
                                   DEF.
                                           DEF }.
06736 {
           DEF. DEF.
                          DEF.
                                   DEF.
                                           DEF }.
06737 {
           DEF,
                  DEF,
                          DEF,
                                  DEF,
                                          DEF } },
06738 /* GU.@G.. @ */
06739 {{ DEF, DEF, DEF,
                                   DEF, DEF},
06740 {
           DEF, DEF,
                          DEF,
                                  DEF, DEF},
06741 {
           DEF.
                   DEF.
                           DEF,
                                  DEF,
                                          DEF }.
06742 {
           DEF,
                   DEF,
                          DEF,
                                   DEF,
                                           DEF },
           DEF.
                  DEF, DEF,
                                   DEF,
06744 /* GU.@U.. @ */
06745 {{ DEF, DEF, DEF, DEF, DEF}
06746 { DEF, DEF, DEF, DEF, DEF},
                                           DEF }
06747 {
           DEF, DEF,
                                          DEF },
                          DEF,
                                 DEF,
           DEF, DEF, DEF, DEF, DEF},
DEF, DEF, DEF, DEF, DEF}}},
06748 {
06749 {
06750 /* GU.A@.. @ */
06751 {{{ -100, -479, -649, -649, -649}}
06751 {{ -100, -479, -649, -649, -649}, 06752 { -100, -479, -649, -649, -649}, 06753 { -100, -479, -649, -649, -649}, 06754 { -100, -479, -649, -649, -649}, 06755 { -100, -479, -649, -649, -649}},
06756 /* GU.AA.. @ */
06757 {{ -100, -479, -649, -649, -649},
       \{-100, -479, -649, -649, -649\},\
06758
06759 {
         -100, -479, -649, -649, -649},
06760 { -100, -479, -649, -649, -649}, 
06761 { -100, -479, -649, -649, -649}},
06762 /* GU.AC.. @ */
06763 {{ -100, -479, -649, -649, -649},
06764 { -100, -479, -649, -649, -649},
06765 { -100, -479, -649, -649, -649},
06766 { -100, -479, -649, -649, -649},
06767 { -100, -479, -649, -649, -649}},
06768 /* GU.AG.. @ */
06769 {{ -100, -479, -649, -649},
06770 {
         -100, -479, -649, -649, -649},
-100, -479, -649, -649, -649},
06771 {
06772 { -100, -479, -649, -649, -649}, 
06773 { -100, -479, -649, -649, -649}},
06774 /* GU.AU.. @ */
06775 {{ -100, -479, -649, -649, -649},
06776 { -100, -479, -649, -649, -649}, 
06777 { -100, -479, -649, -649, -649},
06778 { -100, -479, -649, -649, -649}, 
06779 { -100, -479, -649, -649, -649}}},
06780 /* GU.C@.. @ */
06781 {{{ -100, -309, -289, -289, -289},
06782
       \{-100, -309, -289, -289, -289\},\
06783 {
          -100, -309, -289, -289, -289},
06784 { -100, -309, -289, -289, -289}, 06785 { -100, -309, -289, -289, -289, }},
06788
       \{-100, -309, -289, -289, -289\},\
06789 { -100, -309, -289, -289, -289},
06790 { -100, -309, -289, -289, -289}, 
06791 { -100, -309, -289, -289, -289}}, 
06792 /* GU.CC.. @ */
```

```
06793 {{ -100, -309, -289, -289, -289},
   06794 { -100, -309, -289, -289, -289}, 06795 { -100, -309, -289, -289, -289, -289},
 06796 { -100, -309, -289, -289, -289}, 06797 { -100, -309, -289, -289, -289}, 06798 /* GU.CG.. @ */
06799 {{ -100, -309, -289, -289, -289}, 06800 { -100, -309, -289, -289, -289}, 289},
 06800 { -100, -309, -289, -289, -289}, 06801 { -100, -309, -289, -289, -289}, 06802 { -100, -309, -289, -289, -289}, 06803 { -100, -309, -289, -289, -289}, 06804 /* GU.CU.. @ */
06805 {{ -100, -309, -289, -289, -289}, 06806 { -100, -309, -289, -289, -289}, 06807 { -100, -309, -289, -289, -289}, 06808 { -100, -309, -289, -289, -289}, 289}, 06808 { -100, -309, -289, -289, -289}, 289}
  06808 { -100, -309, -289, -289, -289}, 06808 { -100, -309, -289, -289, -289}}, 06810 /* GU.G@.. @ */
06811 {{ -100, -389, -739, -739, -739},
   06812 { -100, -389, -739, -739, -739}, 06813 { -100, -389, -739, -739, -739},
 06813 { -100, -389, -739, -739, -739}, 06814 { -100, -389, -739, -739, -739}, 06815 { -100, -389, -739, -739, -739}}, 06816 /* GU.GA.. @ */
06817 {{ -100, -389, -739, -739, -739}, 06818 { -100, -389, -739, -739, -739}, 06819 { -100, -389, -739, -739, -739}, 06819 { -100, -389, -739, -739, -739}, 06820 ( 100, -389, -739, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739, -739), 06820 ( 100, -389, -739), 06820 ( 100, -389, -739), 06820 ( 100, -389, -739), 06820 ( 100, -389, -739), 06820 ( 100, -389), 06820 ( 100, -389), 06820 ( 100, -389), 06820 ( 100, -389), 06820 ( 100, -389), 068
  06820 { -100, -389, -739, -739}, -739}, 06821 { -100, -389, -739, -739, -739}}
 06821 { -100, -389, -/39, -/39, -/39}},

06822 /* GU.GC.. @ */

06823 {{ -100, -389, -739, -739, -739},

06824 { -100, -389, -739, -739, -739},

06825 { -100, -389, -739, -739, -739},
   06826 { -100, -389, -739, -739, -739}
  06827 { -100, -389, -739, -739, -739}},
06828 /* GU.GG.. @ */
06829 {{ -100, -389, -739, -739, -739},
   06830 { -100, -389, -739, -739, -739}, 
06831 { -100, -389, -739, -739, -739},
06831 { -100, -389, -739, -739, -739}, 06832 { -100, -389, -739, -739, -739}, 06833 { -100, -389, -739, -739, -739}}, 06834 /* GU.GU. @ */
06835 {{ -100, -389, -739, -739, -739}, 06836 { -100, -389, -739, -739, -739}, 06837 { -100, -389, -739, -739, -739}, 06838 { -100, -389, -739, -739, -739}, 06839 { -100, -389, -739, -739, -739}}, 06840 /* GU.U@. @ */
06841 {{{ -100, -379, -379, -379, -379}, -379}}
   06841 \{\{\{-100, -379, -379, -379\}, -379\}, 
   06842 { -100, -379, -379, -379, -379}, 
06843 { -100, -379, -379, -379, -379},
   06844 { -100, -379, -379, -379, -379}, 06845 { -100, -379, -379, -379, -379, -379}}
 06846 (* GU.UA.. @ */

06847 {{ -100, -379, -379, -379, -379},

06848 { -100, -379, -379, -379, -379},

06848 { -100, -379, -379, -379, -379},
   06850 { -100, -379, -379, -379, -379},
 06851 { -100, -379, -379, -379, -379}, 06851 { -100, -379, -379, -379, -379}}, 06852 /* GU.U... @ */
06853 {{ -100, -379, -379, -379, -379}, 06854 { -100, -379, -379, -379, -379}, 06855 { -100, -379, -379, -379, -379}, 06855 { -100, -379, -379, -379, -379}, 06855 { -100, -379, -379, -379, -379}, 06855 { -100, -379, -379, -379, -379}, 06855 { -100, -379, -379, -379, -379}, 06855 { -100, -379, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379}, 06855 { -100, -379, -379, -379}, 06855 { -100, -379, -379}, 06855 { -100, -379, -379}, 06855 { -100, -379, -379}, 06855 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 06850 { -100, -379}, 068
   06856 { -100, -379, -379, -379, -379}, 
06857 { -100, -379, -379, -379, -379}}
 06858 /* GU.UG.. @ */
06858 /* GU.UG.. @ */
06859 {{ -100, -379, -379, -379, -379},
06860 { -100, -379, -379, -379, -379},
06861 { -100, -379, -379, -379, -379},
06862 { -100, -379, -379, -379, -379},
   06863 { -100, -379, -379, -379, -379}}
   06864 /* GU.UU.. @ */
 06864 /* GU.UU. @ */
06865 {{ -100, -379, -379, -379, -379},
06866 { -100, -379, -379, -379, -379},
06867 { -100, -379, -379, -379, -379},
06868 { -100, -379, -379, -379, -379},
06869 { -100, -379, -379, -379, -379}}}},
06870 { /* noPair */ {{{{0}}}}},
   06871 /* UG.@@..CG */
   DEF, DEF,
                                                                                                                                  DEF, DEF, DEF},
                                                        DEF, DEF,
                                                                                                                                  DEF, DEF,
                                                                                                                                                                                                         DEF } },
   06876 { DEF, DEF,
                                                                                                                                DEF, DEF,
   06877 /* UG.@A..CG */
                                                                                                                                                                                       Ο,
  06878 {{ 0, 0, 0, 0, 0}, 0}
06879 {-1029,-1029,-1029,-1029,-1029},
```

```
06880 { -519, -519, -519, -519, -519},
06881 { -939, -939, -939, -939, -939}, 06882 { -809, -809, -809, -809, -809, -809}}
06883 /* UG.@C..CG */
06884 {{ 0, 0, 0, 0, 0}, 0}, 06885 { -949, -949, -949, -949, -949}, 06886 { -449, -449, -449, -449, -449},
06887 { -939, -939, -939, -939, -939},
06888 { -739, -739, -739, -739}},
06889 /* UG.@G..CG */
                              0.
06890 {{
              0,
                     0.
                                     0.
                                              0 } .
06895 /* UG.@U..CG */
                              Ο,
06896 {{ 0, 0, 0, 0, 0, 0}, 0}
06897 {-1029,-1029,-1029,-1029,-1029},
       { -669, -669, -669, -669, -669}, 
{ -939, -939, -939, -939, -939},
06900 { -859, -859, -859, -859, -859}}},
06901 /* UG.A@..CG */
06902 {{{ DEF, -719, -789, -959, -809}, 06903 { -100, -769, -839, -1009, -859}, 06904 { -100, -769, -839, -1009, -859},
06905 { -100, -769, -839, -1009, -859},
06906 { -100, -769, -839, -1009, -859}},
06907 /* UG.AA..CG */
06907 /* 0G.AA..CG */
06908 {{ DEF, -719, -789, -959, -809},
06909 {-1079,-1748,-1818,-1988,-1838},
06910 \{ -569, -1238, -1308, -1478, -1328 \},
06911 \{ -989, -1658, -1728, -1898, -1748 \},
06912 { -859, -1528, -1598, -1768, -1618}},
06913 /* UG.AC..CG */
06914 {{ DEF, -719, -789, -959, -809}, 06915 { -999,-1668,-1738,-1908,-1758},
06916 { -499, -1168, -1238, -1408, -1258},
06917 { -989, -1658, -1728, -1898, -1748},
06918 { -789, -1458, -1528, -1698, -1548}},
06919 /* UG.AG..CG */
06920 {{ DEF, -719, -789, -959, -809},
06921 {-1079,-1748,-1818,-1988,-1838},
06922 { -569.-1238.-1308.-1478.-1328}.
06923 { -989, -1658, -1728, -1898, -1748},
06924 { -859, -1528, -1598, -1768, -1618}},
06925 /* UG.AU..CG */
06926 {{ DEF, -719, -789, -959, -809}, 06927 {-1079,-1748,-1818,-1988,-1838},
06928 { -719, -1388, -1458, -1628, -1478},
06929 \{ -989, -1658, -1728, -1898, -1748 \},
06930 { -909, -1578, -1648, -1818, -1668}}},
06931 /* UG.C@..CG */
06932 {{{ DEF, -479, -479, -359, -479}}
06937 /* UG.CA..CG */
06938 {{ DEF, -479, -479, -359, -479},
06939 {-1079,-1508,-1508,-1388,-1508},
06940 { -569, -998, -998, -878, -998},
06941 { -989, -1418, -1418, -1298, -1418},
06942 { -859, -1288, -1288, -1168, -1288}},
06943 /* UG.CC..CG */
06944 {{ DEF, -479, -479, -359, -479},
06945 { -999,-1428,-1428,-1308,-1428},
06946 { -499, -928, -928, -808, -928}, 
06947 { -989, -1418, -1418, -1298, -1418},
06948 { -789, -1218, -1218, -1098, -1218}},
06949 /* UG.CG..CG */
06950 {{ DEF, -479, -479, -359, -479},
06951 {-1079,-1508,-1508,-1388,-1508},
06952 { -569, -998, -998, -878, -998},
06953 { -989,-1418,-1418,-1298,-1418},
06954 { -859, -1288, -1288, -1168, -1288}},
06955 /* UG.CU..CG */
06956 {{ DEF, -479, -479, -359, -479},
06957 {-1079,-1508,-1508,-1388,-1508},
06958 \{ -719, -1148, -1148, -1028, -1148 \}
06959 \{ -989, -1418, -1418, -1298, -1418 \}
06960 { -909, -1338, -1338, -1218, -1338}}}
06961 /* UG.G@..CG */
06962 {{{ DEF, -659, -809, -919, -809}, 06963 { -100, -709, -859, -969, -859},
06964 { -100, -709, -859, -969, -859},
06965 { -100, -709, -859, -969, -859},
06966 { -100, -709, -859, -969, -859}},
```

```
06967 /* UG.GA..CG */
06968 {{ DEF, -659, -809, -919, -809}, 06969 {-1079,-1688,-1838,-1948,-1838},
06970 \{ -569, -1178, -1328, -1438, -1328 \},
06971 \{ -989, -1598, -1748, -1858, -1748 \},
06972 { -859, -1468, -1618, -1728, -1618}},
06973 /* UG.GC..CG */
06974 {{ DEF, -659, -809, -919, -809},
06975 { -999,-1608,-1758,-1868,-1758},
06976 { -499, -1108, -1258, -1368, -1258},
06977 \{ -989, -1598, -1748, -1858, -1748 \},
06978 { -789, -1398, -1548, -1658, -1548}},
06979 /* UG.GG..CG */
06980 {{ DEF, -659, -809, -919, -809},
06981 {-1079,-1688,-1838,-1948,-1838},
06982 { -569,-1178,-1328,-1438,-1328},
06983 { -989, -1598, -1748, -1858, -1748}
06984 { -859, -1468, -1618, -1728, -1618}},
06985 /* UG.GU..CG */
06986 {{ DEF, -659, -809, -919, -809},
06987 {-1079,-1688,-1838,-1948,-1838},
06988 { -719, -1328, -1478, -1588, -1478}
06989 { -989, -1598, -1748, -1858, -1748},
06990 { -909,-1518,-1668,-1778,-1668}}},
06991 /* UG.U@..CG */
06991 /* UG.UG.CG */
06992 {{{ DEF, -549, -439, -549, -359}, 06993 { -100, -599, -489, -599, -409}, 06994 { -100, -599, -489, -599, -409}, 06995 { -100, -599, -489, -599, -409}, 06996 { -100, -599, -489, -599, -409}, 06996 { -100, -599, -489, -599, -409}}, 06997 /* UG.UA..CG */
06998 {{ DEF, -549, -439, -549, -359}, 06999 {-1079, -1578, -1468, -1578, -1388}, 06990 { -1079, -1578, -1468, -1578, -1388}, 07000 { -569, -1068, -958, -1068, -878}
07000 { -569, -1068, -958, -1068, -878},
07001 { -989,-1488,-1378,-1488,-1298},
07002 { -859,-1358,-1248,-1358,-1168}},
07003 /* UG.UC..CG */
07004 {{ DEF, -549, -439, -549, -359},
07005 { -999, -1498, -1388, -1498, -1308},
07006 { -499, -998, -888, -998, -808},
07007 { -989, -1488, -1378, -1488, -1298}
07008 { -789, -1288, -1178, -1288, -1098}},
07009 /* UG.UG..CG */
07010 {{ DEF, -549, -439, -549, -359},
07011 {-1079, -1578, -1468, -1578, -1388},
07012 { -569, -1068, -958, -1068, -878},
07013 { -989, -1488, -1378, -1488, -1298},
07014 { -859, -1358, -1248, -1358, -1168}},
07015 /* UG.UU..CG */
07016 {{ DEF, -549, -439, -549, -359},
         \{-1079, -1578, -1468, -1578, -1388\},
07018 { -719, -1218, -1108, -1218, -1028},
07019 { -989, -1488, -1378, -1488, -1298}
07020 { -909, -1408, -1298, -1408, -1218}}}},
07021 /* UG.@@..GC */
07025 {
              DEF, DEF, DEF, DEF, DEF},
07026 { DEF, DEF, DEF, DEF,
07026 { DEF, DEF, DEF, 07027 /* UG.@A..GC */
                                                    DEF } }
07028 {{ 0, 0, 0, 0, 0}

07029 { -519, -519, -519, -519, -519},

07030 { -719, -719, -719, -719, -719},

07031 { -709, -709, -709, -709, -709},
07032 { -499, -499, -499, -499}, 07033 /* UG.@C..gC */
07034 {{ 0, 0, 0, 0, 0}, 0},
                                              Ο,
07035 { -879, -879, -879, -879, -879},
07036 { -309, -309, -309, -309, -309},
07037 { -739, -739, -739, -739, -739},
07038 { -499, -499, -499, -499},
07039 /* UG.@G..GC */
07040 {{ 0, 0, 0, 0, 0}, 0}, 00, 07041 { -559, -559, -559, -559, -559}, 07042 { -309, -309, -309, -309, -309},
07042 { -509, -509, -509, -509, -509, -509, -509, -509, -619, -619, -619, -619, -619, -619, -619, -499, -499, -499, -499, -499}, 07045 /* UG.@U..GC */
07046 {{ 0, 0, 0, 0, 0}, 0},
07046 {{ 0, 0, 0, 0, 0}, 0}, 07046 {{ 0, 0, 0, 0, 0}, 07047 { -879, -879, -879, -879, -879}, 07048 { -389, -389, -389, -389, -389, 07049 { -739, -739, -739, -739, -739}, 07050 { -569, -569, -569, -569, -569}}},
07051 /* UG.A@..GC */

07052 {{{ DEF, -719, -789, -959, -809},

07053 { -100, -769, -839,-1009, -859},
```

```
07054 { -100, -769, -839, -1009, -859},
07055 { -100, -769, -839,-1009, -859},
07056 { -100, -769, -839,-1009, -859}},
07057 /* UG.AA..GC */
07057 /* 00.AA..GC */
07058 {{ DEF, -719, -789, -959, -809},
07059 { -569,-1238,-1308,-1478,-1328},
        { -769, -1438, -1508, -1678, -1528},
07061
          -759, -1428, -1498, -1668, -1518},
07062 {
          -549,-1218,-1288,-1458,-1308}},
07063 /* UG.AC..GC */
07064 {{ DEF, -719, -789, -959, -809},
07065 { -929, -1598, -1668, -1838, -1688},
07066 { -359, -1028, -1098, -1268, -1118},
07067 {
          -789, -1458, -1528, -1698, -1548},
07068 { -549, -1218, -1288, -1458, -1308}},
07069 /* UG.AG..GC */
07070 {{ DEF, -719, -789, -959, -809},
07071 { -609,-1278,-1348,-1518,-1368},
07072 { -359, -1028, -1098, -1268, -1118},
07073 { -669, -1338, -1408, -1578, -1428},
07074 \{ -549, -1218, -1288, -1458, -1308 \} \},
07075 /* UG.AU..GC */
07076 {{ DEF, -719, -789, -959, -809},
07077 { -929,-1598,-1668,-1838,-1688},
07078 { -439, -1108, -1178, -1348, -1198},
07079
        { -789, -1458, -1528, -1698, -1548},
07080 { -619, -1288, -1358, -1528, -1378}}},
07081 /* UG.C@..GC */
07082 {{ DEF, -479, -479, -359, -479},
07083 { -100, -529, -529, -409, -529},
07084 { -100, -529, -529, -409, -529},
07085 { -100, -529, -529, -409, -529},
07086
        \{-100, -529, -529, -409, -529\}\}
07087 /* UG.CA..GC */
07088 {{ DEF, -479, -479, -359, -479}, 07089 { -569, -998, -998, -878, -998},
07090 { -769, -1198, -1198, -1078, -1198},
07091 { -759, -1188, -1188, -1068, -1188},
07092 \{ -549, -978, -978, -858, -978 \} \}
07093 /* UG.CC..GC */
07094 {{ DEF, -479, -479, -359, -479},
07095 { -929, -1358, -1358, -1238, -1358},
07096 { -359, -788, -788, -668, -788},
        { -789, -1218, -1218, -1098, -1218},
07097
        { -549, -978, -978, -858, -978}},
07098
07099 /* UG.CG..GC */
07100 {{ DEF, -479, -479, -359, -479},
07101 { -609,-1038,-1038, -918,-1038}, 07102 { -359, -788, -788, -668, -788}, 07103 { -669,-1098,-1098, -978,-1098},
07104 { -549, -978, -978, -858, -978}},
07105 /* UG.CU..GC */
07106 {{ DEF, -479, -479, -359, -479},
07107 { -929, -1358, -1358, -1238, -1358},
07108 { -439, -868, -868, -748, -868},
07109 { -789, -1218, -1218, -1098, -1218}
07110 { -619, -1048, -1048, -928, -1048}}}
07111 /* UG.G@..GC */
07112 {{{ DEF, -659, -809, -919, -809}, 07113 { -100, -709, -859, -969, -859}, 07114 { -100, -709, -859, -969, -859},
07115 { -100, -709, -859, -969, -859}, 07116 { -100, -709, -859, -969, -859}}
07117 /* UG.GA..GC */
07118 {{ DEF, -659, -809, -919, -809},
07119 { -569, -1178, -1328, -1438, -1328},
07120 \{ -769, -1378, -1528, -1638, -1528 \},
07121 { -759, -1368, -1518, -1628, -1518}
07122 { -549, -1158, -1308, -1418, -1308}},
07123 /* UG.GC..GC */
07124 {{ DEF, -659, -809, -919, -809},
07125 { -929, -1538, -1688, -1798, -1688},
07126 {
          -359, -968, -1118, -1228, -1118},
07127 { -789, -1398, -1548, -1658, -1548}
07128 { -549, -1158, -1308, -1418, -1308}},
07129 /* UG.GG..GC */
07130 {{ DEF, -659, -809, -919, -809},
07131 { -609, -1218, -1368, -1478, -1368},
07132 \{ -359, -968, -1118, -1228, -1118 \}
07133 { -669, -1278, -1428, -1538, -1428},
07134 { -549, -1158, -1308, -1418, -1308}},
07135 /* UG.GU..GC */
07136
        {{ DEF, -659, -809, -919, -809},
07137 {
          -929,-1538,-1688,-1798,-1688},
07138 { -439, -1048, -1198, -1308, -1198},
07139 { -789,-1398,-1548,-1658,-1548},
07140 { -619,-1228,-1378,-1488,-1378}}},
```

```
07141 /* UG.U@..GC */
07141 /* UG.Ud..GC */
07142 {{ DEF, -549, -439, -549, -359}, 
07143 { -100, -599, -489, -599, -409}, 
07144 { -100, -599, -489, -599, -409}, 
07145 { -100, -599, -489, -599, -409}, 
07146 { -100, -599, -489, -599, -409}}, 
07147 /* UG.UA..GC */
07148 {{ DEF, -549, -439, -549, -359},
07149 { -569, -1068, -958, -1068, -878},
07150 { -769, -1268, -1158, -1268, -1078},
07151 \{ -759, -1258, -1148, -1258, -1068 \},
07152 { -549, -1048, -938, -1048, -858}},
07153 /* UG.UC..GC */
07154 {{ DEF, -549, -439, -549, -359},
07155 { -929, -1428, -1318, -1428, -1238},
07156 { -359, -858, -748, -858, -668}, 07157 { -789,-1288,-1178,-1288,-1098},
07158 { -549, -1048, -938, -1048, -858}},
07159 /* UG.UG..GC */
07160 {{ DEF, -549, -439, -549, -359},
07161 { -609, -1108, -998, -1108, -918},
07162 { -359, -858, -748, -858, -668},
07163 { -669, -1168, -1058, -1168, -978},
07164 { -549, -1048, -938, -1048, -858}},
07165 /* UG.UU..GC */
07166 {{ DEF, -549, -439, -549, -359},
07167 { -929, -1428, -1318, -1428, -1238},
07168 { -439, -938, -828, -938, -748},
07169 { -789, -1288, -1178, -1288, -1098}
07170 \{ -619, -1118, -1008, -1118, -928 \} \} \}
07171 /* UG.@@..GU */
DEF, DEF,
                                DEF,
                                         DEF,
07176 { DEF, DEF, DEF, 07177 /* UG.@A..GU */ 0, 0,
             DEF, DEF, DEF, DEF, DEF}},
                  0,
                           0,
07179 { -429, -429, -429, -429, -429}, 07180 { -259, -259, -259, -259, -259},
07181 { -339, -339, -339, -339}, 07181 { -339, -339, -329, -329, -329}, 07182 { -329, -329, -329, -329}}, 07183 /* UG.@C..GU */
07184 {{ 0, 0, 0, 0, 0}, 0},
07185 { -599, -599, -599, -599}, 07186 { -239, -239, -239, -239, -239},
07187 { -689, -689, -689, -689, -689}, 07188 { -329, -329, -329, -329, -329}},
07188 { -329, -329, -323, 07189 /* UG.@G..GU */ 0, 0,
07190 {{ 0, 0, 0, 0, 0}

07191 { -599, -599, -599, -599}, -599},

07192 { -239, -239, -239, -239, -239},

07193 { -689, -689, -689, -689},
07194 { -329, -329, -329, -329}, 07195 /* UG.@U..GU */
07196 {{ 0, 0, 0, 0, 0}

07197 { -599, -599, -599, -599, -599},

07198 { -239, -239, -239, -239, -239},
07199 { -689, -689, -689, -689, -689},

07200 { -329, -329, -329, -329, -329}},

07201 /* UG.A@..GU */
07202 {{{ DEF, -719, -789, -959, -809},
07203 { -100, -769, -839,-1009, -859}, 07204 { -100, -769, -839,-1009, -859},
07205 { -100, -769, -839, -1009, -859}, 07205 { -100, -769, -839, -1009, -859}}, 07206 { -100, -769, -839, -1009, -859}}, 07207 /* UG.AA..GU */
07208 {{ DEF, -719, -789, -959, -809},
07209 { -479, -1148, -1218, -1388, -1238},
07210 { -309, -978,-1048,-1218,-1068},
07211 {
            -389, -1058, -1128, -1298, -1148},
07212 { -379, -1048, -1118, -1288, -1138}},
07213 /* UG.AC..GU */
07214 {{ DEF, -719, -789, -959, -809},
07215 { -649, -1318, -1388, -1558, -1408},
07216 { -289, -958, -1028, -1198, -1048},
07217 { -739, -1408, -1478, -1648, -1498},
07218 { -379, -1048, -1118, -1288, -1138}},
07219 /* UG.AG..GU */
07220 {{ DEF, -719, -789, -959, -809},
07221 { -649, -1318, -1388, -1558, -1408},
07222 { -289, -958, -1028, -1198, -1048},
07223 { -739, -1408, -1478, -1648, -1498},
07224 { -379, -1048, -1118, -1288, -1138}},
07225 /* UG.AU..GU */
07226 {{ DEF, -719, -789, -959, -809},
07227 { -649,-1318,-1388,-1558,-1408},
```

```
07228 { -289, -958, -1028, -1198, -1048},
07229 { -739, -1408, -1478, -1648, -1498},
07230 { -379, -1048, -1118, -1288, -1138}}},
07231 /* UG.C@..GU */
07232 {{ DEF, -479, -479, -359, -479},
07233 { -100, -529, -529, -409, -529},
07234 { -100, -529, -529, -409, -529},
07235
         \{-100, -529, -529, -409, -529\},\
07236 { -100, -529, -529, -409, -529}},
07237 /* UG.CA..GU */
07238 {{ DEF, -479, -479, -359, -479},
07239 { -479, -908, -908, -788, -908},
07240 { -309, -738, -738, -618, -738},
07241 { -389, -818, -818, -698, -818},
07242 \{ -379, -808, -808, -688, -808 \} \}
07243 /* UG.CC..GU */
07244 {{ DEF, -479, -479, -359, -479}, 07245 { -649, -1078, -1078, -958, -1078}, 07246 { -289, -718, -718, -598, -718},
07247 { -739, -1168, -1168, -1048, -1168},
07247 { -379, -1168, -1168, -1168, -1068, -1069, -1069, -1069, -1069, -1069, -1069, -1069, -1069, -1069, -1069, -1069, -1069, -107249 /* UG.CG..GU */
07250 {{ DEF, -479, -479, -359, -479}, -07251 { -649, -1078, -1078, -958, -1078}, -7252 { -289, -718, -718, -598, -718},
07253 { -739, -1168, -1168, -1048, -1168},
07254 { -379, -808, -808, -688, -808}},
07255 /* UG.CU..GU */
07255 { DEF, -479, -479, -359, -479}, 07256 { DEF, -1078, -1078, -958, -1078}, 07258 { -289, -718, -718, -598, -718},
07259
         \{-739, -1168, -1168, -1048, -1168\},
07260 { -379, -808, -808, -688, -808}}}
07261 /* UG.G@..GU */
07262 {{{ DEF, -659, -809, -919, -809}, 07263 { -100, -709, -859, -969, -859}, 07264 { -100, -709, -859, -969, -859},
         \{-100, -709, -859, -969, -859\},\
07265
07266 { -100, -709, -859, -969, -859}},
07267 /* UG.GA..GU */
07268 {{ DEF, -659, -809, -919, -809}, 07269 { -479,-1088,-1238,-1348,-1238},
07270 { -309, -918, -1068, -1178, -1068},
07271 { -389, -998, -1148, -1258, -1148},
07272 { -379, -988, -1138, -1248, -1138}},
07273 /* UG.GC..GU */
07274 {{ DEF, -659, -809, -919, -809},
07275 \{ -649, -1258, -1408, -1518, -1408 \},
07276 { -289, -898, -1048, -1158, -1048},
07277 \{ -739, -1348, -1498, -1608, -1498 \},
07278 { -379, -988, -1138, -1248, -1138}},
07279 /* UG.GG..GU */
07280 {{ DEF, -659, -809, -919, -809},
07281 { -649, -1258, -1408, -1518, -1408},
07282 { -289, -898, -1048, -1158, -1048},
07283 { -739, -1348, -1498, -1608, -1498}
07284 { -379, -988, -1138, -1248, -1138}},
07285 /* UG.GU..GU */
07286 {{ DEF, -659, -809, -919, -809}, 07287 { -649,-1258,-1408,-1518,-1408},
07288 { -289. -898.-1048.-1158.-1048}.
07289 { -739, -1348, -1498, -1608, -1498}
07290 { -379, -988, -1138, -1248, -1138}}},
07291 /* UG.U@..GU */
07292 {{{ DEF, -549, -439, -549, -359},
/* UG.UA..GU */
07297
07298 {{ DEF, -549, -439, -549, -359}, 07299 { -479, -978, -868, -978, -788},
07300 { -309, -808, -698, -808, -618}, 07301 { -389, -888, -778, -888, -698}, 07302 { -379, -878, -768, -878, -688}},
07303 /* UG.UC..GU */
07304 {{ DEF, -549, -439, -549, -359},
07305 { -649,-1148,-1038,-1148, -958}, 07306 { -289, -788, -678, -788, -598},
07307 { -739, -1238, -1128, -1238, -1048},
07308 { -379, -878, -768, -878, -688}}
         /* UG.UG..GU */
07310 {{ DEF, -549, -439, -549, -359},
07311 {
            -649,-1148,-1038,-1148, -958},
07312 { -289, -788, -678, -788, -598},
07313 { -739, -1238, -1128, -1238, -1048},
07314 { -379, -878, -768, -878, -688}},
```

```
07315 /* UG.UU..GU */
 07316 {{ DEF, -549, -439, -549, -359}, 07317 { -649, -1148, -1038, -1148, -958},
 07318 { -289, -788, -678, -788, -598},
 07319 { -739, -1238, -1128, -1238, -1048},
 07320 { -379, -878, -768, -878, -688}}}},
 07321 /* UG.00..UG */
 07322 {{{{
                   0,
                            Ο,
                                      0,
                                               0,
 07323 {
             DEF,
                       DEF, DEF, DEF, DEF}, DEF, DEF, DEF, DEF, DEF, DEF, DEF,
07324 { DEF, DEF, DEF, DEF, DEF, DEF, DEF, O7325 { DEF, DEF, DEF, DEF, DEF, DEF}}, 07326 { DEF, DEF, DEF, DEF, DEF, DEF}}, 07327 /* UG.@A..UG */
07334 {{ 0, 0, 0, 0, 0}, 0}, 07335 { -789, -789, -789, -789, -789}, 07336 { -479, -479, -479, -479, -479},
07337 { -809, -809, -809, -809, -809}, 07338 { -439, -439, -439, -439, -439}, 07339 /* UG.@G..UG */
07340 {{ 0, 0, 0, 0, 0}, 0},
                          0,
07341 { 0, 0, 0, 0, 0},
07341 { -959, -959, -959, -959},
07342 { -359, -359, -359, -359},
07343 { -919, -919, -919, -919, -919},
07344 { -549, -549, -549, -549, -549}},
07345 /* UG.@U..UG */
 07349 { -809, -809, -809, -809}, 07350 { -359, -359, -359, -359, -359}}}
 07351 /* UG.A@..UG */
 07352 {{{ DEF, -719, -789, -959, -809},
 07353 { -100, -769, -839, -1009, -859},
 07354 { -100, -769, -839, -1009, -859},
07355 { -100, -769, -839, -1009, -859}, 07355 { -100, -769, -839, -1009, -859}}, 07356 { -100, -769, -839, -1009, -859}}, 07357 /* UG.AA..UG */
07358 {{ DEF, -719, -789, -959, -809},
 07359 { -769, -1438, -1508, -1678, -1528},
 07360 { -529, -1198, -1268, -1438, -1288},
 07361 { -709, -1378, -1448, -1618, -1468},
 07362 { -599, -1268, -1338, -1508, -1358}}
 07363 /* UG.AC..UG */
07364 {{ DEF, -719, -789, -959, -809},
         { -839, -1508, -1578, -1748, -1598},
 07365
 07366 { -529, -1198, -1268, -1438, -1288},
 07367 { -859, -1528, -1598, -1768, -1618},
 07368 { -489,-1158,-1228,-1398,-1248}},
07369 /* UG.AG..UG */
07370 {{ DEF, -719, -789, -959, -809}},
 07371 {-1009,-1678,-1748,-1918,-1768},
 07372
         \{-409, -1078, -1148, -1318, -1168\},
 07373 {
            -969, -1638, -1708, -1878, -1728},
 07374 \{ -599, -1268, -1338, -1508, -1358 \} 
 07375 /* UG.AU..UG */
07376 {{ DEF, -719, -789, -959, -809},
 07377 { -859, -1528, -1598, -1768, -1618},
 07378 { -529, -1198, -1268, -1438, -1288},
 07379 { -859, -1528, -1598, -1768, -1618}
 07380 { -409, -1078, -1148, -1318, -1168}}},
 07381 /* UG.C@..UG */
07382 {{ DEF, -479, -479, -359, -479},
 07383 { -100, -529, -529, -409, -529}, 07384 { -100, -529, -529, -409, -529},
 07385 { -100, -529, -529, -409, -529}, 07386 { -100, -529, -529, -409, -529}},
 07387 /* UG.CA..UG */
07388 {{ DEF, -479, -479, -359, -479},
 07389 { -769, -1198, -1198, -1078, -1198},
 07390 { -529, -958, -958, -838, -958},
 07391 { -709, -1138, -1138, -1018, -1138},
 07392 { -599, -1028, -1028, -908, -1028}},
 07393 /* UG.CC..UG */
 07394 {{ DEF, -479, -479, -359, -479},
 07395 { -839, -1268, -1268, -1148, -1268},
 07396 { -529, -958, -958, -838, -958},
 07397 { -859, -1288, -1288, -1168, -1288},
 07398 { -489, -918, -918, -798, -918}},
 07399 /* UG.CG..UG */
07400 {{ DEF, -479, -479, -359, -479},
07401 {-1009,-1438,-1438,-1318,-1438},
```

```
07402 { -409, -838, -838, -718, -838},
07403 {
         -969, -1398, -1398, -1278, -1398},
07404 { -599, -1028, -1028, -908, -1028}},
07405 /* UG.CU..UG */
07403 /* 06.60..03 */
07406 {{ DEF, -479, -479, -359, -479},
07407 { -859,-1288,-1288,-1168,-1288},
07408
       \{-529, -958, -958, -838, -958\},\
07409
       \{-859, -1288, -1288, -1168, -1288\},\
07410 { -409, -838, -838, -718, -838}}},
07411 /* UG.G@..UG */
07412 {{{ DEF, -659, -809, -919, -809}},
07413 { -100, -709, -859, -969, -859}, 07414 { -100, -709, -859, -969, -859},
07415 { -100, -709, -859, -969, -859}, 07416 { -100, -709, -859, -969, -859}},
07417 /* UG.GA..UG */
07420 { -529, -1138, -1288, -1398, -1288},
07421 { -709, -1318, -1468, -1578, -1468},
07422 { -599, -1208, -1358, -1468, -1358}},
07423 /* UG.GC..UG */
07424 {{ DEF, -659, -809, -919, -809},
07425 { -839,-1448,-1598,-1708,-1598},
07426 { -529, -1138, -1288, -1398, -1288},
07427 { -859,-1468,-1618,-1728,-1618},
07428 {
         -489,-1098,-1248,-1358,-1248}},
07429 /* UG.GG..UG */
07429 /* 06.GG..0G */
07430 {{ DEF, -659, -809, -919, -809},
07431 {-1009,-1618,-1768,-1878,-1768},
07432 \{ -409, -1018, -1168, -1278, -1168 \},
07433 { -969, -1578, -1728, -1838, -1728},
07434 { -599, -1208, -1358, -1468, -1358}},
07435 /* UG.GU..UG */
07436 {{ DEF, -659, -809, -919, -809}, 07437 { -859,-1468,-1618,-1728,-1618},
       { -529, -1138, -1288, -1398, -1288},
07438
07439
       \{-859, -1468, -1618, -1728, -1618\},\
07440 { -409, -1018, -1168, -1278, -1168}}},
07441 /* UG.U@..UG */
07442 {{{ DEF, -549, -439, -549, -359},
07443 { -100, -599, -489, -599, -409}, 07444 { -100, -599, -489, -599, -409}, 07445 { -100, -599, -489, -599, -409},
07446
       \{-100, -599, -489, -599, -409\}\}
07447 /* UG.UA..UG */
07448 {{ DEF, -549, -439, -549, -359},
07449 { -769, -1268, -1158, -1268, -1078},
07450 { -529, -1028, -918, -1028, -838},
07451 { -709, -1208, -1098, -1208, -1018},
07452 { -599, -1098, -988, -1098, -908}},
07453 /* UG.UC..UG */
07454 {{ DEF, -549, -439, -549, -359},
07455 { -839,-1338,-1228,-1338,-1148},
07456 { -529,-1028, -918,-1028, -838},
07457 { -859, -1358, -1248, -1358, -1168},
07458 { -489, -988, -878, -988, -798}},
07459 /* UG.UG..UG */
07460 {{ DEF, -549, -439, -549, -359},
07461 {-1009,-1508,-1398,-1508,-1318},
07462 \{ -409, -908, -798, -908, -718 \}
07463 { -969, -1468, -1358, -1468, -1278},
07464 { -599, -1098, -988, -1098, -908}},
07465
       /* UG.UU..UG */
07466 {{ DEF, -549, -439, -549, -359},
07467 {
         -859,-1358,-1248,-1358,-1168},
07468 {
         -529,-1028, -918,-1028, -838},
-859,-1358,-1248,-1358,-1168},
07469 {
07470 { -409, -908, -798, -908, -718}}}},
07471 /* UG.@@..AU */
          {{ 0, 0, 0, 0, 0, DEF, DEF, DEF},
07472 {{{{
07473 {
07474 {
          DEF, DEF, DEF, DEF, DEF},
07475 { DEF, DEF, DEF, DEF, DEF}, 07476 { DEF, DEF, DEF, DEF, DEF, DEF, DEF}},
07477 /* UG.@A..AU */
07483 /* UG.@C..AU */
07484 {{ 0, 0, 0, 0, 0}, 0}, 0, 0, 0}
07485 { -599, -599, -599, -599},
07486 { -239, -239, -239, -239, -239},
07487 { -689, -689, -689, -689, -689}, 07488 { -329, -329, -329, -329, -329, }},
```

```
07489 /* UG.@G..AU */
07490 {{ 0, 0, 0, 0, 0}, 0}, 07491 { -599, -599, -599, -599, -599}, 07492 { -239, -239, -239, -239, -239}, 07493 { -689, -689, -689, -689, -689, -689}, 07494 { -329, -329, -329, -329, -329}},
07495 /* UG.@U..AU */
07496 {{
                 0,
                          0,
                                   0,
07501 /* UG.A@..AU */
07502 {{{ DEF, -719, -789, -959, -809}, 07503 { -100, -769, -839, -1009, -859},
07504 {
           -100, -769, -839,-1009, -859},
07505 { -100, -769, -839, -1009, -859}, 07506 { -100, -769, -839, -1009, -859}},
07507 /* UG.AA..AU */
07508 {{ DEF, -719, -789, -959, -809},
07509 { -479, -1148, -1218, -1388, -1238},
07510 \{ -309, -978, -1048, -1218, -1068 \}
07511 { -389, -1058, -1128, -1298, -1148},
07512 { -379, -1048, -1118, -1288, -1138}},
07512 ( 375, 1616, 1116, 1266, 1136),,
07513 /* UG.AC..AU */
07514 {{ DEF, -719, -789, -959, -809},
07515 { -649, -1318, -1388, -1558, -1408},
07516 { -289, -958, -1028, -1198, -1048},
07517 { -739, -1408, -1478, -1648, -1498},
07518 \{ -379, -1048, -1118, -1288, -1138 \} \}
07521 { -649, -1318, -1388, -1558, -1408},
07522 { -289, -958, -1028, -1198, -1048},
07523 {
           -739,-1408,-1478,-1648,-1498}
07524 { -379, -1048, -1118, -1288, -1138}},
07525 /* UG.AU..AU */
07526 {{ DEF, -719, -789, -959, -809},
07527 { -649, -1318, -1388, -1558, -1408},
07528 { -289, -958, -1028, -1198, -1048},
07529 \{ -739, -1408, -1478, -1648, -1498 \}
07530 \{ -379, -1048, -1118, -1288, -1138 \} \}
07530 { -379, -1040, -1110, -1200, -1130, }, 

07531 /* UG.C@..AU */ 

07532 {{ DEF, -479, -479, -359, -479},
         { -100, -529, -529, -409, -529}, 
{ -100, -529, -529, -409, -529},
07533
07534 {
07535 { -100, -529, -529, -409, -529}, 07536 { -100, -529, -529, -409, -529}},
07537 /* UG.CA..AU */
07538 {{ DEF, -479, -479, -359, -479}, 07538 {-479, -908, -908, -788, -908}, 07540 {-309, -738, -738, -618, -738},
07541 {
           -389, -818, -818, -698, -818}
07542 { -379, -808, -808, -688, -808}},
07543 /* UG.CC..AU */
07544 {{ DEF, -479, -479, -359, -479},
07545 { -649, -1078, -1078, -958, -1078}, 07546 { -289, -718, -718, -598, -718},
07547 {
           -739,-1168,-1168,-1048,-1168},
07548 { -379, -808, -808, -688, -808}}, 07549 /* UG.CG..AU */
07550 {{ DEF, -479, -479, -359, -479}, 07551 { -649, -1078, -1078, -958, -1078}, 07552 { -289, -718, -718, -598, -718},
07553 {
           -739,-1168,-1168,-1048,-1168}
07554 { -379, -808, -808, -688, -808}},
07555 /* UG.CU..AU */
07556 {{ DEF, -479, -479, -359, -479},
07557 { -649, -1078, -1078, -958, -1078}, 07558 { -289, -718, -718, -598, -718},
07559 {
           -739,-1168,-1168,-1048,-1168},
07560 { -379, -808, -808, -688, -808}}},
07561 /* UG.G@..AU */
07562 {{{ DEF, -659, -809, -919, -809},
07563 { -100, -709, -859, -969, -859}, 07564 { -100, -709, -859, -969, -859},
07565 { -100, -709, -859, -969, -859},
07566 { -100, -709, -859, -969, -859}},
07567 /* UG.GA..AU */
07568 {{ DEF, -659, -809, -919, -809},
07569 { -479, -1088, -1238, -1348, -1238},
07570 { -309, -918, -1068, -1178, -1068},
07571 { -389, -998,-1148,-1258,-1148},
07572 { -379, -988,-1138,-1248,-1138}},
07573 /* UG.GC..AU */
07575 /* 0G.GC..A0 */
07574 {{ DEF, -659, -809, -919, -809},
07575 { -649,-1258,-1408,-1518,-1408},
```

```
07576 { -289, -898, -1048, -1158, -1048},
07577 { -739, -1348, -1498, -1608, -1498},
07578 \{ -379, -988, -1138, -1248, -1138 \} 
07579 /* UG.GG..AU */
07580 {{ DEF, -659, -809, -919, -809}, 07581 { -649,-1258,-1408,-1518,-1408},
07582 { -289, -898, -1048, -1158, -1048},
07583 { -739, -1348, -1498, -1608, -1498},
07584 { -379, -988, -1138, -1248, -1138}},
07585 /* UG.GU..AU */
07586 {{ DEF, -659, -809, -919, -809}, 07587 { -649,-1258,-1408,-1518,-1408},
07588 { -289, -898, -1048, -1158, -1048},
07589 { -739, -1348, -1498, -1608, -1498},
07590 { -379, -988, -1138, -1248, -1138}}},
07590 ( -579, -560, 1130, 1210, 1210), 17591 /* UG.U@..AU */
07592 {{ DEF, -549, -439, -549, -359}, 07593 { -100, -599, -489, -599, -409}, 07594 { -100, -599, -489, -599, -409},
07595 { -100, -599, -489, -599, -409},
07596 { -100, -599, -489, -599, -409}},
07596 { -100, -599, -489, -599, -409}},
07597 /* UG.UA..AU */
07598 {{ DEF, -549, -439, -549, -359},
07599 { -479, -978, -868, -978, -788},
07600 { -309, -808, -698, -808, -618},
07601 { -389, -888, -778, -888, -698},
07602 { -379, -878, -768, -878, -688}},
07603 /* UG.UC..AU */
07604 {{ DEF, -549, -439, -549, -359}, 07605 { -649, -1148, -1038, -1148, -958}, 07606 { -289, -788, -678, -788, -598},
07607
         \{-739, -1238, -1128, -1238, -1048\},
07608 { -379, -878, -768, -878, -688}},
07609 /* UG.UG..AU */
07610 {{ DEF, -549, -439, -549, -359}, 07611 { -649,-1148,-1038,-1148, -958}, 07612 { -289, -788, -678, -788, -598},
07613 { -739, -1238, -1128, -1238, -1048},
07614 \{ -379, -878, -768, -878, -688 \} \}
07615 /* UG.UU..AU */
07616 {{ DEF, -549, -439, -549, -359},
07617 { -649, -1148, -1038, -1148, -958},
07618 { -289, -788, -678, -788, -598},
07619 { -739, -1238, -1128, -1238, -1048},
07620 { -379, -878, -768, -878, -688}}}},
07621 /* UG.@@..UA */
07628 {{ 0, 0, 0, 0, 0}, 0}, 07629 { -399, -399, -399, -399, -399}, 07630 { -429, -429, -429, -429, -429}, 07631 { -379, -379, -379, -379, -379}, 07632 { -279, -279, -279, -279, -279}},
07632 { -279, -279, _ 07633 /* UG.@C..UA */ 0, 0,
07633 /* 0, 0, 0, 0, 0}, 07634 {{ 0, 0, 0, 0, 0}, 0}, 07635 { -629, -629, -629, -629, -629}, 07636 { -509, -509, -509, -509, -509}, 07637 { -679, -679, -679, -679, -679}, 07638 { -139, -139, -139, -139, -139}},
07639 /* UG.@G..UA */
07640 {{ 0, 0, 0, 0,
07644 { -279, -279, 200, 07645 /* UG.@U..UA */
07646 {{ 0, 0, 0, 0, 0}, 0}, 0, 0, 0}, 07647 { -589, -589, -589, -589, -589},
07648 { -179, -179, -179, -179, -179},
07649 { -679, -679, -679, -679, -679},
07650 { -140, -140, -140, -140, -140}}},
07651 /* UG.A@..UA */
07652 {{{ DEF, -719, -789, -959, -809},
07653 { -100, -769, -839, -1009, -859},
07654 { -100, -769, -839, -1009, -859},
07655 { -100, -769, -839, -1009, -859}, 07656 { -100, -769, -839, -1009, -859}}}
07657 /* UG.AA..UA */
07658 {{ DEF, -719, -789, -959, -809},
07659 {
            -449, -1118, -1188, -1358, -1208},
07660 { -479,-1148,-1218,-1388,-1238},
07661 { -429,-1098,-1168,-1338,-1188},
07662 { -329, -998,-1068,-1238,-1088}},
```

```
07663 /* UG.AC..UA */
07664 {{ DEF, -719, -789, -959, -809}, 07665 { -679,-1348,-1418,-1588,-1438},
07666 \{ -559, -1228, -1298, -1468, -1318 \},
07667 { -729, -1398, -1468, -1638, -1488},
07668 { -189, -858, -928, -1098, -948}},
07669 /* UG.AG..UA */
07670 {{ DEF, -719, -789, -959, -809},
07671 { -939, -1608, -1678, -1848, -1698},
07672 { -249, -918, -988, -1158, -1008}, 07673 { -939, -1608, -1678, -1848, -1698},
07674 \{ -329, -998, -1068, -1238, -1088 \} \}
07675 /* UG.AU..UA */
07676 {{ DEF, -719, -789, -959, -809},
07677 { -639,-1308,-1378,-1548,-1398},
07678 {
07678 { -229, -898, -968,-1138, -988}, 07679 { -729,-1398,-1468,-1638,-1488},
07680 { -190, -859, -929,-1099, -949}}},
07681 /* UG.CC..UA */
07682 {{ DEF, -479, -479, -359, -479},
07683 { -100, -529, -529, -409, -529}, 07684 { -100, -529, -529, -409, -529},
07685 { -100, -529, -529, -409, -529},
07686 { -100, -529, -529, -409, -529}},
07687 /* UG.CA..UA */
07687 /* 0768. CAT. 104 */
07688 {{ DEF, -479, -479, -359, -479},
07689 { -449, -878, -878, -758, -878},
07690 { -479, -908, -908, -788, -908},
07691 { -429, -858, -858, -738, -858},
07692 { -329, -758, -758, -638, -758}},
07693 /* UG.CC..UA */
07694 {{ DEF, -479, -479, -359, -479},
07695 { -679, -1108, -1108, -988, -1108},
07696 { -559, -988, -988, -868, -988},
07697 {
            -729, -1158, -1158, -1038, -1158}
07698 { -189, -618, -618, -498, -618}}, 07699 /* UG.CG..UA */
07700 {{ DEF, -479, -479, -359, -479},
07701 { -939, -1368, -1368, -1248, -1368},
07702 {
            -249, -678, -678, -558, -678},
07703 { -939, -1368, -1368, -1248, -1368},
07704 { -329, -758, -758, -638, -758}},
07705 /* UG.CU..UA */
07706 {{ DEF, -479, -479, -359, -479},
07707 { -639, -1068, -1068, -948, -1068}, 07708 { -229, -658, -658, -538, -658},
07709 {
            -729, -1158, -1158, -1038, -1158}
07710 { -190, -619, -619, -499, -619}}}
07711 /* UG.G@..UA */
07712 {{{ DEF, -659, -809, -919, -809},
07712 {{ DEF, -659, -809, -919, -809} 
07713 { -100, -709, -859, -969, -859}, 
07714 { -100, -709, -859, -969, -859}, 
07715 { -100, -709, -859, -969, -859}, 
07716 { -100, -709, -859, -969, -859}}, 
07717 /* UG.GA..UA */
         \{-449, -1058, -1208, -1318, -1208\},\
07720 { -479, -1088, -1238, -1348, -1238},
07721 { -429, -1038, -1188, -1298, -1188}
07722 { -329, -938,-1088,-1198,-1088}},
07723 /* UG.GC..UA */
07724 {{ DEF, -659, -809, -919, -809},
07725 { -679, -1288, -1438, -1548, -1438},
07726
         \{-559, -1168, -1318, -1428, -1318\},\
07727 { -729, -1338, -1488, -1598, -1488}
07728 { -189, -798, -948, -1058, -948}},
07729 /* UG.GG..UA */
07730 {{ DEF, -659, -809, -919, -809},
07731 { -939, -1548, -1698, -1808, -1698},
07732 { -249, -858, -1008, -1118, -1008},
07733 {
            -939, -1548, -1698, -1808, -1698},
07734 { -329, -938, -1088, -1198, -1088}},
07735 /* UG.GU..UA */
07736 {{ DEF, -659, -809, -919, -809},
07737 { -639, -1248, -1398, -1508, -1398},
07738 { -229, -838, -988, -1098, -988},
07739 { -729, -1338, -1488, -1598, -1488},
07740 { -190, -799, -949, -1059, -949}}},
07741 /* UG.U@..UA */
07742 {{{ DEF, -549, -439, -549, -359},
07743 { -100, -599, -489, -599, -409}, 07744 { -100, -599, -489, -599, -409},
07745 { -100, -599, -489, -599, -409}, 07746 { -100, -599, -489, -599, -409}}
07747 /* UG.UA..UA */
07748 {{ DEF, -549, -439, -549, -359},
07749 { -449, -948, -838, -948, -758},
```

```
07750 { -479, -978, -868, -978, -788},
07751 { -429, -928, -818, -928, -738}, 07752 { -329, -828, -718, -828, -638}},
07753 /* UG.UC..UA */
07754 {{ DEF, -549, -439, -549, -359}, 07755 { -679,-1178,-1068,-1178, -988}, 07756 { -559,-1058, -948,-1058, -868},
07757 { -729, -1228, -1118, -1228, -1038},
07758 { -189, -688, -578, -688, -498}},
07759 /* UG.UG..UA */
07760 {{ DEF, -549, -439, -549, -359},
07761 { -939, -1438, -1328, -1438, -1248},
07762 { -249, -748, -638, -748, -558},
07763 { -939, -1438, -1328, -1438, -1248},
07764 { -329, -828, -718, -828, -638}},
07765 /* UG.UU..UA */
07766 {{ DEF, -549, -439, -549, -359}, 07767 { -639, -1138, -1028, -1138, -948}, 07768 { -229, -728, -618, -728, -538},
07769
            { -729, -1228, -1118, -1228, -1038},
07770 { -190, -689, -579, -689, -499}}}},
07771 /* UG.@@.. @ */
07772 {{{{ DEF, DEF, DEF, DEF},
07773 { DEF, DEF, DEF, DEF, DEF}, 07774 { DEF, DEF, DEF, DEF, DEF},
07775
                  DEF, DEF,
                                          DEF,
                                                      DEF,
07776 {
                  DEF,
                            DEF,
                                         DEF, DEF, DEF}},
07777 /* UG.@A.. @ */
07778 {{ DEF, DEF, DEF, DEF, DEF},
07779 { DEF, DEF, DEF, DEF, DEF},
07780 {
                  DEF. DEF.
                                          DEF.
                                                                   DEF }.
                                                      DEF.
07781 {
                  DEF,
                              DEF,
                                          DEF,
                                                      DEF,
                                                                   DEF },
07782 {
                            DEF,
                  DEF,
                                          DEF,
                                                      DEF,
07783 /* UG.@C.. @ */
07784 {{ DEF, DEF, DEF, DEF, DEF}
07785 { DEF, DEF, DEF, DEF, DEF},
                                                                     DEF },
07786 {
                              DEF,
                  DEF,
                                          DEF,
                                                      DEF,
                                                                   DEF },
07787
                              DEF,
                                          DEF,
                  DEF,
                                                      DEF.
                            DEF,
07788 {
                  DEF,
                                          DEF,
                                                      DEF.
07789 /* UG.@G.. @ */
07790 {{ DEF, DEF, DEF, DEF},
                                                     DEF,
07791 {
                                         DEF,
                                                                 DEF } ,
                  DEF, DEF,
07792 {
                  DEF.
                              DEF.
                                                      DEF.
                                          DEF.
                                                                   DEF } .
07793 {
                  DEF, DEF,
                                          DEF,
                                                      DEF,
                                                                   DEF },
07794 {
                                                                  DEF } },
                  DEF,
                            DEF, DEF,
                                                      DEF,
07795 /* UG.@U.. @ */
07796 {{ DEF, DEF, DEF,
                                                      DEF.
                                                                   DEF).
07797 {
                 DEF, DEF, DEF, DEF},
07798 {
                  DEF. DEF.
                                          DEF.
                                                     DEF.
                                                                 DEF }.
07799 {
                  DEF, DEF,
                                          DEF.
                                                      DEF. DEF .
07799 { DEF, DEF, DEF, DEF, DEF}, D7800 { DEF, DEF, DEF, DEF, DEF, DEF}}, D7801 /* UG.A@...@ */
07802 {{{-100, -769, -839, -1009, -859}, D7804 { -100, -769, -839, -1009, -859}, D7805 { -100, -769, -839, -1009, -859}, D7806 { -100, -769, -839, -1009, -859}, D7806 { -100, -769, -839, -1009, -859}}, D7806 { -100, -769, -839, -1009, -859}}
07807 /* UG.AA.. @ */
07808 {{ -100, -769, -839,-1009, -859},
07809 { -100, -769, -839,-1009, -859},
07810 { -100, -769, -839,-1009, -859},
07811 { -100, -769, -839, -1009, -859}, 07812 { -100, -769, -839, -1009, -859}}}
07813 /* UG.AC.. @ */
07814 {{ -100, -769, -839,-1009, -859},
07814 {{ -100, -769, -839, -1009, -859}, 07815 { -100, -769, -839, -1009, -859}, 07816 { -100, -769, -839, -1009, -859}, 07817 { -100, -769, -839, -1009, -859}, 07818 { -100, -769, -839, -1009, -859}},
            /* UG.AG.. @ */
07820 {{ -100, -769, -839,-1009, -859}, 07821 { -100, -769, -839,-1009, -859},
               -100, -769, -839, -1009, -859},
07822 {
07823 { -100, -769, -839, -1009, -859}, 07824 { -100, -769, -839, -1009, -859}},
07825 /* UG.AU.. @ */
07826 {{ -100, -769, -839,-1009, -859},
07826 { -100, -769, -839, -1009, -859}, 07827 { -100, -769, -839, -1009, -859}, 07828 { -100, -769, -839, -1009, -859}, 07829 { -100, -769, -839, -1009, -859}, 07830 { -100, -769, -839, -1009, -859}}},
07831 /* UG.C@.. @ */
07832 {{{ -100, -529, -529, -409, -529}, 07833 { -100, -529, -529, -409, -529},
07834 { -100, -529, -529, -409, -529},
07835 { -100, -529, -529, -409, -529}, 07836 { -100, -529, -529, -409, -529}},
```

```
07837 /* UG.CA.. @ */
 07838 {{ -100, -529, -529, -409, -529}, 07839 { -100, -529, -529, -409, -529}, 07840 { -100, -529, -529, -409, -529},
 07841 { -100, -529, -529, -409, -529}, 07842 { -100, -529, -529, -409, -529}},
 07843 /* UG.CC.. @ */
 07844 {{ -100, -529, -529, -409, -529},
07845 { -100, -529, -529, -409, -529}, 07846 { -100, -529, -529, -409, -529}, 07847 { -100, -529, -529, -409, -529}, 07848 { -100, -529, -529, -409, -529}},
 07849 /* UG.CG.. @ */
 07850 {{ -100, -529, -529, -409, -529},
 07851 { -100, -529, -529, -409, -529},
 07852 {
                            -100, -529, -529, -409, -529},
 07853 { -100, -529, -529, -409, -529}, 07854 { -100, -529, -529, -409, -529}}
 07855 /* UG.CU.. @ */
 07856 {{ -100, -529, -529, -409, -529},
 07857 { -100, -529, -529, -409, -529}, 07858 { -100, -529, -529, -409, -529},
07859 { -100, -529, -529, -409, -529}, 07859 { -100, -529, -529, -409, -529}, 07860 { -100, -529, -529, -409, -529}}}, 07861 /* UG.G@.. @ */
07862 {{{ -100, -709, -859, -969, -859}}}
07862 {{ -100, -709, -859, -969, -859}, 07863 { -100, -709, -859, -969, -859}, 07864 { -100, -709, -859, -969, -859}, 07865 { -100, -709, -859, -969, -859}, 07866 { -100, -709, -859, -969, -859}}, 07867 /* UG.GA.. @ */
07868 {{ -100, -709, -859, -969, -859}, 07869 { -100, -709, -859, -969, -859}, 07870 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, -859}, 07871 { -100, -709, -859, -969, 
 07871 { -100, -709, -859, -969, -859}, 07872 { -100, -709, -859, -969, -859}},
 07873 /* UG.GC.. @ */
 07874 {{ -100, -709, -859, -969, -859},
 07875
                      \{-100, -709, -859, -969, -859\},\
 07876
                            -100, -709, -859, -969, -859},
07877 { -100, -709, -859, -969, -859}, 07877 { -100, -709, -859, -969, -859}, 07878 { -100, -709, -859, -969, -859}}, 07879 /* UG.GG. @ */
07880 {{ -100, -709, -859, -969, -859}},
                      { -100, -709, -859, -969, -859}, 
{ -100, -709, -859, -969, -859},
 07881
 07882
 07883 { -100, -709, -859, -969, -859}, 07884 { -100, -709, -859, -969, -859}}}
 07885 /* UG.GU.. @ */
07885 /* UG.GU.. @ */
07886 {{ -100, -709, -859, -969, -859},
07887 { -100, -709, -859, -969, -859},
07888 { -100, -709, -859, -969, -859},
07889 { -100, -709, -859, -969, -859},
07890 { -100, -709, -859, -969, -859}},
07891 /* UG.U@.. @ */
07892 {{{ -100, -599, -489, -599, -409},
07893 { -100, -599, -489, -599, -409},
07895 { -100, -599, -489, -599, -409},
07895 { -100, -599, -489, -599, -409},
 07895 { -100, -599, -489, -599, -409}, 07896 { -100, -599, -489, -599, -409}}
07896 { -100, -599, -489, -599, -409}},
07897 /* UG.UA.. @ */
07898 { { -100, -599, -489, -599, -409},
07899 { -100, -599, -489, -599, -409},
07900 { -100, -599, -489, -599, -409},
 07901 {
                            -100, -599, -489, -599, -409}
 07902 { -100, -599, -489, -599, -409}},
07903 /* UG.UC.. @ */
07904 {{ -100, -599, -489, -599, -409},
 07905 { -100, -599, -489, -599, -409}, 07906 { -100, -599, -489, -599, -409},
 07907 { -100, -599, -489, -599, -409}, 07908 { -100, -599, -489, -599, -409}},
 07908 { -100, -599, -489, -599, -409}},
07909 /* UG.UG.. @ */
07910 {{ -100, -599, -489, -599, -409},
07911 { -100, -599, -489, -599, -409},
07912 { -100, -599, -489, -599, -409},
 07913 { -100, -599, -489, -599, -409},
 07914 { -100, -599, -489, -599, -409}},
07915 /* UG.UU.. @ */
07916 {{ -100, -599, -489, -599, -409},
 07918 { -100, -599, -489, -599, -409},
07918 { -100, -599, -489, -599, -409},
 07919 { -100, -599, -489, -599, -409}, 07920 { -100, -599, -489, -599, -409}}
                                                                                                                    -409}}}},
 07921 { /* noPair */ {{{{0}}}}},
07922 /* AU.@@..CG */
 07923 {{{{
                                                  0,
                                                                    0,
                                                                                               0.
                                                                                                                     0.
                                                                                                                                           0 } .
```

```
07924 {
            DEF, DEF, DEF, DEF},
07925 {
             DEF, DEF, DEF, DEF},
                                      DEF,
07926 {
            DEF, DEF,
                              DEF,
                                              DEF 1
07927 { DEF, Z--.
07928 /* AU.@A..CG */
0, 0,
07927 {
            DEF, DEF, DEF,
                                      DEF,
                                              DEF } }
                                       0,
07930 {-1029,-1029,-1029,-1029,-1029},
07931 { -519, -519, -519, -519, -519},
07932 { -939, -939, -939, -939, -939}, 07933 { -809, -809, -809, -809, -809}}, 07934 /* AU.@C..CG */
07935 {{ 0, 0, 0, 0, 0}, 0}, 07936 { -949, -949, -949, -949, -949}, 07937 { -449, -449, -449, -449, -449}, 07938 { -939, -939, -939, -939, -939},
07939 { -739, -739, -739, -739}}, 07940 /* AU.@G..CG */
07941 {{
                0,
                         0,
                                  0,
                                           0,
07942 {-1029, -1029, -1029, -1029, -1029},
07943 { -519, -519, -519, -519}, 07944 { -939, -939, -939, -939, -939}, 07945 { -809, -809, -809, -809, -809}},
07946 /* AU.@U..CG */
                         Ο,
                                  Ο,
07947 {{
                Ο,
07948 {-1029,-1029,-1029,-1029,-1029},
07949 { -669, -669, -669, -669, -669}, 07950 { -939, -939, -939, -939, -939, -939, -939, -939},
07951 { -859, -859, -859, -859, -859}}},
07952 /* AU.A@..CG */
07953 {{{ DEF, -429, -599, -599, -599}},
07954 { -100, -479, -649, -649, -649}, 07955 { -100, -479, -649, -649, -649, -649},
07956
           -100, -479, -649, -649, -649},
07957 \{ -100, -479, -649, -649, -649 \} \}
07958 /* AU.AA..CG */
07950 /* AC.AR.1.CG */
07959 {{ DEF, -429, -599, -599, -599},
07960 {-1079,-1458,-1628,-1628,-1628},
07961 { -569, -948, -1118, -1118, -1118},
07962 { -989, -1368, -1538, -1538, -1538},
07963 { -859, -1238, -1408, -1408, -1408}},
07964 /* AU.AC..CG */
07965 {{ DEF, -429, -599, -599, -599}, 07966 { -999,-1378,-1548,-1548,-1548},
        { -499, -878, -1048, -1048, -1048},
07967
07968 { -989, -1368, -1538, -1538, -1538},
07969 { -789, -1168, -1338, -1338, -1338}},
07970 /* AU.AG..CG */
07971 {{ DEF, -429, -599, -599, -599}, 07972 {-1079,-1458,-1628,-1628,-1628},
07973 { -569, -948, -1118, -1118, -1118},
07974 { -989, -1368, -1538, -1538, -1538},
07975 { -859, -1238, -1408, -1408, -1408}},
07976 /* AU.AU..CG */
07977 {{ DEF, -429, -599, -599, -599}, 07978 {-1079,-1458,-1628,-1628,-1628},
07979 { -719, -1098, -1268, -1268, -1268},
07980 { -989, -1368, -1538, -1538, -1538},
07981 { -909, -1288, -1458, -1458, -1458}}},
07981 { -909, -1288, -1458, -1458, -1458}}},
07982 /* AU.CQ..CG */
07983 {{ DEF, -259, -239, -239, -239},
07984 { -100, -309, -289, -289, -289},
07985 { -100, -309, -289, -289, -289},
07986 { -100, -309, -289, -289, -289},
07987 { -100, -309, -289, -289, -289}},
07988 /* AU.CA..CG */
07989 {{ DEF, -259, -239, -239, -239},
07990 \ \{-1079, -1288, -1268, -1268, -1268\},
07991 { -569, -778, -758, -758, -758},
07992 { -989, -1198, -1178, -1178, -1178},
07993 { -859, -1068, -1048, -1048, -1048}},
07994 /* AU.CC..CG */
07995 {{ DEF, -259, -239, -239},
07996 { -999,-1208,-1188,-1188,-1188},
07997 { -499, -708, -688, -688, -688},
07998 { -989, -1198, -1178, -1178, -1178},
07999 { -789, -998, -978, -978, -978}},
08000 /* AU.CG..CG */
08001 {{ DEF, -259, -239, -239, -239},
08002 {-1079,-1288,-1268,-1268,-1268},
08003 { -569, -778, -758, -758, -758},
08004 { -989, -1198, -1178, -1178, -1178},
08005 { -859, -1068, -1048, -1048, -1048}},
08006 /* AU.CU..CG */
08007 {{ DEF, -259, -239, -239, -239},
08008 {-1079,-1288,-1268,-1268,-1268},
08009 { -719, -928, -908, -908, -908}, 08010 { -989, -1198, -1178, -1178, -1178},
```

```
08011 \{ -909, -1118, -1098, -1098, -1098 \} \}
08012 /* AU.G@..CG */
08013 {{{ DEF, -339, -689, -689, -689},
08014 { -100, -389, -739, -739}, -739}, 08015 { -100, -389, -739, -739, -739}, 08016 { -100, -389, -739, -739, -739}, 08016 { -100, -389, -739, -739, -739}, 08017 { -100, -389, -739, -739, -739}}
08018 /* AU.GA..CG */
08019 {{ DEF, -339, -689, -689, -689},
08020 {-1079, -1368, -1718, -1718, -1718},
08021 { -569, -858, -1208, -1208, -1208},
08022 \{ -989, -1278, -1628, -1628, -1628 \},
08023 { -859, -1148, -1498, -1498, -1498}},
08024 /* AU.GC..CG */
08025 {{ DEF, -339, -689, -689, -689},
08026 { -999,-1288,-1638,-1638,-1638},
08027 { -499, -788, -1138, -1138, -1138},
08028 { -989, -1278, -1628, -1628, -1628},
08029 \{ -789, -1078, -1428, -1428, -1428 \} \}
08030 /* AU.GG..CG */
08031 {{ DEF, -339, -689, -689, -689},
08032 {-1079,-1368,-1718,-1718,-1718},
08033 { -569, -858, -1208, -1208, -1208},
08034 { -989, -1278, -1628, -1628, -1628},
08035 { -859, -1148, -1498, -1498, -1498}},
08036 /* AU.GU..CG */
08037 {{ DEF, -339, -689, -689, -689},
08038 {-1079,-1368,-1718,-1718,-1718},
08039 { -719, -1008, -1358, -1358, -1358},
08040 { -989, -1278, -1628, -1628, -1628}
08041 { -909, -1198, -1548, -1548, -1548}}},
08042 /* AU.U@..CG */
08043 {{{ DEF, -329, -329, -329, -329},
08044 { -100, -379, -379, -379, -379},

08045 { -100, -379, -379, -379, -379},

08046 { -100, -379, -379, -379, -379},

08047 { -100, -379, -379, -379, -379},

08048 /* AU.UA..CG */
08049 {{ DEF, -329, -329, -329, -329},
08050 {-1079,-1358,-1358,-1358,-1358},
08051 { -569, -848, -848, -848, -848},
08052 { -989, -1268, -1268, -1268, -1268},
08053 { -859,-1138,-1138,-1138,-1138}},
08054 /* AU.UC..CG */
08055 {{ DEF, -329, -329, -329, -329},
08056 { -999,-1278,-1278,-1278,-1278},
08057 { -499, -778, -778, -778, -778},
08058 { -989, -1268, -1268, -1268, -1268}
08059 { -789,-1068,-1068,-1068,-1068}}
08060 /* AU.UG..CG */
08061 {{ DEF, -329, -329, -329},
08062 {-1079,-1358,-1358,-1358,-1358},
08063 { -569, -848, -848, -848, -848},

08064 { -989,-1268,-1268,-1268,-1268},

08065 { -859,-1138,-1138,-1138,-1138}},
08066 /* AU.UU..CG */
08067 {{ DEF, -329, -329, -329, -329},
08068 {-1079, -1358, -1358, -1358, -1358},
08069 { -719, -998, -998, -998, -998},
08070 { -989, -1268, -1268, -1268, -1268}
08071 { -909, -1188, -1188, -1188, -1188}}}},
08072 /* AU.@@..GC */
08076 { DEF, DEF, DEF, DEF, DEF}, 08077 { DEF, DEF, DEF, DEF, DEF, DEF}, 08078 /* AU.@A..GC */
08079 {{ 0, 0, 0, 0, 0}, 0},
                        0,
               0,
08079 {{ 0, 0, 0, 0, 0}, 0}, 08080 { -519, -519, -519, -519, -519}, 08081 { -719, -719, -719, -719, -719}, 08082 { -709, -709, -709, -709, -709}, 08083 { -499, -499, -499, -499, -499}}, 08084 /* AU.@C..GC */
08085 {{ 0, 0, 0, 0, 0, 0}, 0},
08089 { -455, -455, 08090 /* AU.@G..GC */
08091 {{ 0, 0, 0, 0, 0}

08092 { -559, -559, -559, -559}, -559},

08093 { -309, -309, -309, -309, -309},

08094 { -619, -619, -619, -619, -619},
08095 { -499, -499, -499, -499}},

08096 /* AU.@U..GC */

08097 {{ 0, 0, 0, 0, 0}}
```

881

```
08098 { -879, -879, -879, -879, -879},
08099 { -389, -389, -389, -389, -389},
08100 { -739, -739, -739, -739, -739},
08101 { -569, -569, -569, -569}},

08102 /* AU.A@..GC */

08103 {{ DEF, -429, -599, -599, -599},
08104 { -100, -479, -649, -649, -649}, 08105 { -100, -479, -649, -649, -649},
08106 { -100, -479, -649, -649, -649}, 08107 { -100, -479, -649, -649, -649}}
08108 /* AU.AA..GC */
08109 {{ DEF, -429, -599, -599, -599}, 08110 { -569, -948, -1118, -1118, -1118},
08111 { -769, -1148, -1318, -1318, -1318},
08112 { -759, -1138, -1308, -1308, -1308}
08113 { -549, -928, -1098, -1098, -1098}}, 08114 /* AU.AC..GC */
08115 {{ DEF, -429, -599, -599, -599},
08116 { -929, -1308, -1478, -1478, -1478},
        \{-359, -738, -908, -908, -908\},
           -789, -1168, -1338, -1338, -1338},
08118 {
08119 { -549, -928, -1098, -1098, -1098}},
08120 /* AU.AG..GC */
08121 {{ DEF, -429, -599, -599}, 08122 { -609, -988, -1158, -1158, -1158, 08123 { -359, -738, -908, -908, -908},
08124 { -669, -1048, -1218, -1218, -1218}
08125 { -549, -928, -1098, -1098, -1098}},
08126 /* AU.AU..GC */
08127 {{ DEF, -429, -599, -599, -599},
08128 { -929, -1308, -1478, -1478, -1478},
08129 { -439, -818, -988, -988, -988},
08130 { -789, -1168, -1338, -1338, -1338},
08131 { -619, -998, -1168, -1168, -1168}}},
08132 /* AU.C@..GC */
08133 {{{ DEF, -259, -239, -239},
08134 { -100, -309, -289, -289, -289}, 
08135 { -100, -309, -289, -289, -289},
08136 { -100, -309, -289, -289, -289},
08137 { -100, -309, -289, -289, -289}},
08138 /* AU.CA..GC */
08139 {{ DEF, -259, -239, -239, -239}, 08140 { -569, -778, -758, -758, -758}, 08141 { -769, -978, -958, -958, -958},
         { -759, -968, -948, -948, -948}, 
{ -549, -758, -738, -738, -738}},
08143 {
08144 /* AU.CC..GC */
08145 {{ DEF, -259, -239, -239}, 08146 { -929,-1138,-1118,-1118,-1118},
08147 { -359, -568, -548, -548, -548}, 08148 { -789, -998, -978, -978, -978},
08149 { -549, -758, -738, -738, -738}},
08150 /* AU.CG..GC */
08151 {{ DEF, -259, -239, -239, -239}, 08152 { -609, -818, -798, -798, -798}, 08153 { -359, -568, -548, -548, -548},
08154 { -669, -878, -858, -858, -858},
08155 { -549, -758, -738, -738, -738}},
08156 /* AU.CU..GC */
08157 {{ DEF, -259, -239, -239, -239}, 08158 { -929,-1138,-1118,-1118,-1118},
08159 { -439, -648, -628, -628, -628}, 08160 { -789, -998, -978, -978, -978},
08161 { -619, -828, -808, -808, -808}}}, 08162 /* AU.G@..GC */
08163 {{ DEF, -339, -689, -689, -689}, 08164 { -100, -389, -739, -739, -739}, 08165 { -100, -389, -739, -739, -739}, 08166 { -100, -389, -739, -739, -739}, 08167 { -100, -389, -739, -739, -739}},
08168 /* AU.GA..GC */
08169 {{ DEF, -339, -689, -689, -689},
08170 { -569, -858, -1208, -1208, -1208}, 
08171 { -769, -1058, -1408, -1408, -1408},
08172 { -759, -1048, -1398, -1398, -1398},
08173 { -549, -838, -1188, -1188, -1188}},
08174 /* AU.GC..GC */
08175 {{ DEF, -339, -689, -689, -689},
08176 { -929, -1218, -1568, -1568, -1568},
08177 { -359, -648, -998, -998, -998},
08178 { -789, -1078, -1428, -1428, -1428},
08179 { -549, -838, -1188, -1188, -1188}},
08180 /* AU.GG..GC */
08181 {{ DEF, -339, -689, -689, -689},
08182 \{ -609, -898, -1248, -1248, -1248\},
08183 { -359, -648, -998, -998, -998}, 08184 { -669, -958, -1308, -1308, -1308},
```

```
08185 { -549, -838, -1188, -1188, -1188}},
08186 /* AU.GU..GC */
08187 {{ DEF, -339, -689, -689, -689},
08188 { -929, -1218, -1568, -1568, -1568},
08189 \{ -439, -728, -1078, -1078, -1078 \}
08190 { -789, -1078, -1428, -1428, -1428}
08191 { -619, -908, -1258, -1258, -1258}}}
08192 /* AU.U@..GC */
08193 {{ DEF, 329, -329, -329, -329}, 08194 { -100, -379, -379, -379, -379}, 08195 { -100, -379, -379, -379, -379}, 08196 { -100, -379, -379, -379, -379}, 08197 { -100, -379, -379, -379, -379}, 08197 { -100, -379, -379, -379, -379}}
08198 /* AU.UA..GC */
08199 {{ DEF, -329, -329, -329, -329},
08200 { -569, -848, -848, -848, -848},
08201 { -769,-1048,-1048,-1048,-1048},
08202 { -759, -1038, -1038, -1038, -1038}
08203 { -549, -828, -828, -828, -828}},
08204 /* AU.UC..GC */
08205 {{ DEF, -329, -329, -329, -329},
08206 { -929,-1208,-1208,-1208,-1208},
08207 { -359, -638, -638, -638, -638},
08208 { -789, -1068, -1068, -1068, -1068},
08209 { -549, -828, -828, -828, -828}},
08210 /* AU.UG..GC */
08211 {{ DEF, -329, -329, -329, -329},
08212 { -609, -888, -888, -888, -888},
08213 { -359, -638, -638, -638, -638},
08214 { -669, -948, -948, -948, -948},
08215 { -549, -828, -828, -828, -828}},
08216 /* AU.UU..GC */
08217 {{ DEF, -329, -329, -329, -329},
08218 { -929,-1208,-1208,-1208,-1208},
08219 {
08219 { -439, -718, -718, -718, -718}, 08220 { -789, -1068, -1068, -1068, -1068},
08221 { -619, -898, -898, -898, -898}}}},
08222 /* AU.@@..GU */
08223 {{{
                    0, 0,
                                       0,
             08224 {
08225 {
08226 { DEF, DEF, DEF, DEF, DEF}, 08227 { DEF, DEF, DEF, DEF, DEF, DEF}},
08227 { DEF, DEF, DEF, DEF, DEF}},
08228 /* AU.@A..GU */
08229 {{ 0, 0, 0, 0, 0}, 0},
08230 { -429, -429, -429, -429, -429},
08231 { -259, -259, -259, -259, -259},
08232 { -339, -339, -339, -339, -339},
08233 { -329, -329, -329, -329, -329}},
08233 { -329, -329, 522, 08234 /* AU.@C..GU */ 0, 0,
08235 {{ 0, 0, 0, 0, 0}, 0}, 08236 { -599, -599, -599, -599, -599}, 08237 { -239, -239, -239, -239},
08238 { -689, -689, -689, -689, -689}, 08239 { -329, -329, -329, -329, -329}},
08239 { -329, -329, 08240 /* AU.@G..GU */ 0, 0,
08242 { -599, -599, -599, -599, -599}, 08243 { -239, -239, -239, -239, -239},
08244 { -689, -689, -689, -689, -689}, 08245 { -329, -329, -329, -329, -329}}, 08246 /* AU.@U..GU */
08247 {{ 0, 0, 0, 0, 0}, 0}, 08248 { -599, -599, -599, -599, -599}, 08249 { -239, -239, -239, -239, -239},
08250 { -689, -689, -689, -689, -689}, 08251 { -329, -329, -329, -329, -329}}}
08252 /* AU.A@..GU */
08253 {{{ DEF, -429, -599, -599, -599},
08254 { -100, -479, -649, -649, -649},
08255 { -100, -479, -649, -649, -649},
08256 { -100, -479, -649, -649, -649}
08257 { -100, -479, -649, -649, -649}},
08258 /* AU.AA..GU */
08259 {{ DEF, -429, -599, -599, -599}},
08260 { -479, -858, -1028, -1028, -1028},
08261 { -309, -688, -858, -858, -858},
08262 { -389, -768, -938, -938, -938}, 08263 { -379, -758, -928, -928, -928}},
08264 /* AU.AC..GU */
08265 {{ DEF, -429, -599, -599}, -599},
08266 { -649, -1028, -1198, -1198, -1198},
08267 { -289, -668, -838, -838, -838},
08268 { -739, -1118, -1288, -1288, -1288},
08269 { -379, -758, -928, -928, -928}},
08270 /* AU.AG..GU */
08271 {{ DEF, -429, -599, -599, -599},
```

```
08272 { -649, -1028, -1198, -1198, -1198},
            -289, -668, -838, -838, -838},
-739,-1118,-1288,-1288,-1288},
08273
08274 {
08275 \{ -379, -758, -928, -928, -928 \} \}
08276 /* AU.AU..GU */
08277 {{ DEF, -429, -599, -599, -599},
          { -649, -1028, -1198, -1198, -1198},
08279
          \{-289, -668, -838, -838, -838\},\
08280 {
             -739, -1118, -1288, -1288, -1288},
08281 { -379, -758, -928, -928, -928}}}
08282 /* AU.C@..GU */
08283 {{{ DEF, -259, -239, -239},
08284 { -100, -309, -289, -289, -289}, 08285 { -100, -309, -289, -289, -289},
08286 { -100, -309, -289, -289, -289}
08287 { -100, -309, -289, -289, -289}},
08288 /* AU.CA..GU */
08289 {{ DEF, -259, -239, -239, -239}, 08290 { -479, -688, -668, -668, -668}, 08291 { -309, -518, -498, -498, -498},
08292 { -389, -598, -578, -578, -578}, 08293 { -379, -588, -568, -568, -568}}
08294 /* AU.CC..GU */
08295 {{ DEF, -259, -239, -239, -239}, 08296 { -649, -858, -838, -838, -838}, 08297 { -289, -498, -478, -478, -478},
08298
          { -739, -948, -928, -928, -928},
08299 \{ -379, -588, -568, -568, -568 \} 
08300 /* AU.CG..GU */
08301 {{ DEF, -259, -239, -239},
08302 { -649, -858, -838, -838, -838}, 
08303 { -289, -498, -478, -478, -478},
08304 { -739, -948, -928, -928, -928},
08305 \{ -379, -588, -568, -568, -568 \} \}
08306 /* AU.CU..GU */
08307 {{ DEF, -259, -239, -239, -239}, 08308 { -649, -858, -838, -838, -838}, 08309 { -289, -498, -478, -478, -478},
08310
          \{-739, -948, -928, -928, -928\},
08310 { -379, -946, -926, -926, -926, 08311 { -379, -588, -568, -568, -568}}, 08312 /* AU.G@..GU */ 08313 {{ DEF, -339, -689, -689, -689}, 08314 { -100, -389, -739, -739, -739}, 08315 { -100, -389, -739, -739, -739},
08316 { -100, -389, -739, -739, -739}, 
08317 { -100, -389, -739, -739, -739}}
08318 /* AU.GA..GU */
08319 {{ DEF, -339, -689, -689, -689}, 08320 { -479, -768, -1118, -1118, -1118, 08321 { -309, -598, -948, -948, -948},
08322 { -389, -678, -1028, -1028, -1028},
08323 { -379, -668, -1018, -1018, -1018}},
08324 /* AU.GC..GU */
08325 {{ DEF, -339, -689, -689, -689}, 08326 { -649, -938, -1288, -1288, -1288}, 08327 { -289, -578, -928, -928, -928},
          { -739, -1028, -1378, -1378, -1378},
08329 \{ -379, -668, -1018, -1018, -1018 \} \}
08330 /* AU.GG..GU */
08331 {{ DEF, -339, -689, -689, -689}, 08332 { -649, -938, -1288, -1288, -1288}, 08333 { -289, -578, -928, -928, -928},
08334 { -739, -1028, -1378, -1378, -1378},
08335 { -379, -668, -1018, -1018, -1018}},
08336 /* AU.GU..GU */
08337 {{ DEF, -339, -689, -689, -689}, 08338 { -649, -938, -1288, -1288, -1288}, 08339 { -289, -578, -928, -928, -928},
08340 { -739, -1028, -1378, -1378, -1378},
08341 { -379, -668, -1018, -1018, -1018}}},
08342 /* AU.U@..GU */
08343 {{{ DEF, -329, -329, -329},
08343 {{ DEF, -329, -329, -329, -329, 08344 { -100, -379, -379, -379, -379}, 08345 { -100, -379, -379, -379, -379}, 08346 { -100, -379, -379, -379, -379}, 08347 { -100, -379, -379, -379, -379},
          /* AU.UA..GU */
08348
08349 {{ DEF, -329, -329, -329, -329}, 08350 { -479, -758, -758, -758, -758}, 08351 { -309, -588, -588, -588, -588},
08352 { -389, -668, -668, -668, -668},
08353 { -379, -658, -658, -658, -658}},
08354 /* AU.UC..GU */
08355 {{ DEF, -329, -329, -329, -329},
08356 { -649, -928, -928, -928, -928}, 08357 { -289, -568, -568, -568, -568}, 08358 { -739,-1018,-1018,-1018,-1018},
```

```
08359 \{ -379, -658, -658, -658, -658 \}
08360 /* AU.UG..GU */
08361 {{ DEF, -329, -329, -329},
08362 { -649, -928, -928, -928, -928}, 08363 { -289, -568, -568, -568, -568},
08364 { -739, -1018, -1018, -1018, -1018},
08365 { -379, -658, -658, -658, -658}},
08366 /* AU.UU..GU */
08367 {{ DEF, -329, -329, -329, -329}, 08368 { -649, -928, -928, -928, -928, -928}, 08369 { -289, -568, -568, -568, -568},
08370 { -739, -1018, -1018, -1018, -1018},
08371 { -379, -658, -658, -658, -658}}}},
08372 /* AU.@@..UG */
08373 {{{{ 0, 0,
                                       Ο,
                                               Ο,
08374 { DEF, DEF, DEF, DEF, DEF},
                                                DEF } ,
08375 {
             DEF, DEF,
                               DEF, DEF,
08376 { DEF, DEF, DEF, DEF, DEF}, 08377 { DEF, DEF, DEF, DEF, DEF, DEF}},
08378 /* AU.@A..UG */
08379 {{ 0, 0, 0, 0, 0}, 0}, 08380 { -719, -719, -719, -719, -719}, 08381 { -479, -479, -479, -479, -479}, 08382 { -659, -659, -659, -659, -659}, 08383 { -549, -549, -549, -549, -549}},
08384 /* AU.@C..UG */
08385 {{ 0, 0, 0,
08385 { 0, 0, 0, 0, 0}, 0}, 08385 { 0, 0, 0, 0, 0}, 08386 { -789, -789, -789, -789, -789}, 08387 { -479, -479, -479, -479, -479}, 08388 { -809, -809, -809, -809, -809}, 08389 { -439, -439, -439, -439, -439}},
08389 { -439, -439, ..., 08390 /* AU.@G..UG */ 0, 0,
                                            Ο,
08392 { -959, -959, -959, -959, -959},
08393 { -359, -359, -359, -359}, 08394 { -919, -919, -919, -919, -919}, 08395 { -549, -549, -549, -549, -549}},
08395 { -549, 515, 08396 /* AU.@U..UG */
08403 {{{ DEF, -429, -599, -599, -599}, 08404 { -100, -479, -649, -649, -649},
08405 { -100, -479, -649, -649}, -649},
08406 { -100, -479, -649, -649, -649}, 
08407 { -100, -479, -649, -649, -649}},
08408 /* AU.AA..UG */
08409 {{ DEF, -429, -599, -599, -599},
08410 { -769, -1148, -1318, -1318, -1318},
08411 { -529, -908, -1078, -1078, -1078},
08412 {
           -709, -1088, -1258, -1258, -1258}
08413 \{ -599, -978, -1148, -1148, -1148 \} 
08414 /* AU.AC..UG */
08415 {{ DEF, -429, -599, -599, -599},
08416 \{ -839, -1218, -1388, -1388, -1388 \},
08417 {
           -529, -908, -1078, -1078, -1078},
08418 \{ -859, -1238, -1408, -1408, -1408 \}
08419 \{ -489, -868, -1038, -1038, -1038 \} \}
08420 /* AU.AG..UG */
08421 {{ DEF, -429, -599, -599, -599},
08422 \{-1009, -1388, -1558, -1558, -1558\},
08423 { -409, -788, -958, -958, -958},
08424 { -969, -1348, -1518, -1518, -1518}
08425 \{ -599, -978, -1148, -1148, -1148 \} 
08426 /* AU.AU..UG */
08427 {{ DEF, -429, -599, -599, -599},
         { -859, -1238, -1408, -1408, -1408},
08429 {
            -529, -908, -1078, -1078, -1078},
08430 { -859, -1238, -1408, -1408, -1408}
08431 { -409, -788, -958, -958, -958}},
08432 /* AU.CC..UG */
08433 {{ DEF, -259, -239, -239, -239},
         \{-100, -309, -289, -289, -289\},\
08435 { -100, -309, -289, -289, -289},
08436 { -100, -309, -289, -289, -289}, 08437 { -100, -309, -289, -289, -289, -289}},
08438 /* AU.CA..UG */
08439 {{ DEF, -259, -239, -239, -239}, 08440 { -769, -978, -958, -958, -958}, 08441 { -529, -738, -718, -718, -718},
08442 { -709, -918, -898, -898, -898},
08443 { -599, -808, -788, -788, -788},

08444 /* AU.CC..UG */

08445 {{ DEF, -259, -239, -239, -239},
```

```
08446 { -839, -1048, -1028, -1028, -1028},
08447 { -529, -738, -718, -718, -718}, 08448 { -859, -1068, -1048, -1048, -1048},
08449 \{ -489, -698, -678, -678, -678 \} 
08450 /* AU.CG..UG */
08451 {{ DEF, -259, -239, -239}, -239},
08452 {-1009,-1218,-1198,-1198,-1198},
08453 { -409, -618, -598, -598, -598},
08454 {
          -969, -1178, -1158, -1158, -1158},
08455 { -599, -808, -788, -788, -788}},
08456 /* AU.CU..UG */
08457 {{ DEF, -259, -239, -239},
08458 { -859, -1068, -1048, -1048, -1048},
08459 { -529, -738, -718, -718, -718},
08460 { -859, -1068, -1048, -1048, -1048}
08461 { -409, -618, -598, -598, -598}}}
08462 /* AU.G@..UG */
08463 {{{ DEF, -339, -689, -689, -689},
08464 { -100, -389, -739, -739, -739}, 
08465 { -100, -389, -739, -739, -739},
08466 { -100, -389, -739, -739}, 
08467 { -100, -389, -739, -739, -739}}
08468 /* AU.GA..UG */
08469 {{ DEF, -339, -689, -689, -689}, 08470 { -769,-1058,-1408,-1408,-1408},
08471 { -529, -818, -1168, -1168, -1168},
08472 {
          -709, -998, -1348, -1348, -1348}
08473 { -599, -888, -1238, -1238, -1238}}
08474 /* AU.GC..UG */
08475 {{ DEF, -339, -689, -689, -689},
08476 \{ -839, -1128, -1478, -1478, -1478 \},
        \{-529, -818, -1168, -1168, -1168\},
08478 { -859, -1148, -1498, -1498, -1498},
08479 { -489, -778, -1128, -1128, -1128}},
08480 /* AU.GG..UG */
08481 {{ DEF, -339, -689, -689, -689}, 08482 {-1009,-1298,-1648,-1648,-1648},
08483 { -409, -698, -1048, -1048, -1048},
08484 { -969, -1258, -1608, -1608, -1608},
08485 { -599, -888, -1238, -1238, -1238}},
08486 /* AU.GU..UG */
08487 {{ DEF, -339, -689, -689, -689}, 08488 { -859,-1148,-1498,-1498,-1498},
08489 { -529, -818, -1168, -1168, -1168},
08490 { -859, -1148, -1498, -1498, -1498},
08491 { -409, -698, -1048, -1048, -1048}}},
08491 { -409, -699, -1040, -1040, -1040}},

08492 /* AU.U@..UG */

08493 {{ DEF, -329, -329, -329, -329},

08494 { -100, -379, -379, -379, -379},

08495 { -100, -379, -379, -379, -379},

08496 { -100, -379, -379, -379, -379},
08497 { -100, -379, -379, -379, -379}},
08498 /* AU.UA..UG */
08499 {{ DEF, -329, -329, -329, -329}, 08500 { -769,-1048,-1048,-1048,-1048},
08501 { -529, -808, -808, -808, -808},
08502 { -709, -988, -988, -988, -988},
08503 \{ -599, -878, -878, -878, -878 \} \}
08504 /* AU.UC..UG */
08505 {{ DEF, -329, -329, -329, -329}, 08506 { -839, -1118, -1118, -1118, -1118},
08507 { -529, -808, -808, -808, -808},
08508 { -859, -1138, -1138, -1138, -1138},
08509 { -489, -768, -768, -768, -768}},
08510 /* AU.UG..UG */
08511 {{ DEF, -329, -329, -329, -329},
08512 {-1009,-1288,-1288,-1288,-1288},
08513 { -409, -688, -688, -688, -688},
08514 { -969, -1248, -1248, -1248, -1248},
08515 { -599, -878, -878, -878, -878}},
08516 /* AU.UU..UG */
08517 {{ DEF, -329, -329, -329},
08518 { -859, -1138, -1138, -1138, -1138},
08519 { -529, -808, -808, -808, -808},
08520 { -859, -1138, -1138, -1138, -1138}
08521 { -409, -688, -688, -688, -688}}}},
08522 /* AU.@@..AU */
           {{ 0, 0, 0, 0, 0, 0, DEF, DEF, DEF, DEF},
08523 {{{
08524 {
           DEF, DEF,
08525 {
                           DEF, DEF, DEF},
08526 { DEF, DEF, DEF, DEF, DEF}, 08527 { DEF, DEF, DEF, DEF, DEF}},
08528 /* AU.@A..AU */
08529 {{ 0, 0,
08529 {{ 0, 0, 0, 0, 0}

08530 { -429, -429, -429, -429, -429},

08531 { -259, -259, -259, -259, -259},

08532 { -339, -339, -339, -339},
```

```
08533 \{ -329, -329, -329, -329, -329 \} \}
08534 /* AU.@C..AU */
08535 {{ 0, 0,
08535 {{ 0, 0, 0, 0, 0}, 0}, 08536 { -599, -599, -599, -599, -599}, 08537 { -239, -239, -239, -239, -239}, 08538 { -689, -689, -689, -689, -689, -689}, 08539 { -329, -329, -329, -329, -329}}
08540 /* AU.@G..AU */
08541 {{ 0, 0, 0, 0, 0}, 0}, 08542 { -599, -599, -599, -599, -599}, 08543 { -239, -239, -239, -239, -239}, 08544 { -689, -689, -689, -689, -689, -689}, 08545 { -329, -329, -329, -329, -329}},
08546 /* AU.@U..AU */
                         0,
08547 {{
               Ο,
                                     Ο,
08552 /* AU.A@..AU */
08553 {{ DEF, -429, -599, -599, -599}, 08554 { -100, -479, -649, -649, -649},
08555 { -100, -479, -649, -649, -649},
08556 { -100, -479, -649, -649, -649}, 08557 { -100, -479, -649, -649, -649}},
08558 /* AU.AA..AU */
08559 {{ DEF, -429, -599, -599, -599},
08560 { -479, -858, -1028, -1028, -1028},
08561 { -309, -688, -858, -858, -858},

08562 { -389, -768, -938, -938, -938},

08563 { -379, -758, -928, -928, -928}},
08564 /* AU.AC..AU */
08565 {{ DEF, -429, -599, -599, -599},
08566 \{ -649, -1028, -1198, -1198, -1198 \},
08567 {
08567 { -289, -668, -838, -838, -838}, 08568 { -739,-1118,-1288,-1288,-1288},
08569 \{ -379, -758, -928, -928, -928 \} \}
08570 /* AU.AG..AU */
08571 {{ DEF, -429, -599, -599}, -599},
08572 { -649, -1028, -1198, -1198, -1198},
08573 \{ -289, -668, -838, -838, -838 \}
08574 { -739, -1118, -1288, -1288, -1288},
08575 { -379, -758, -928, -928, -928}}, 08576 /* AU.AU.AU */
08577 {{ DEF, -429, -599, -599, -599},
08578 { -649, -1028, -1198, -1198, -1198},
08579 { -289, -668, -838, -838, -838},
08580 { -739, -1118, -1288, -1288, -1288}
08581 { -379, -758, -928, -928, -928}}},
08582 /* AU.C@..AU */
08583 {{{ DEF, -259, -239, -239, -239},
08584 { -100, -309, -289, -289, -289}, 08585 { -100, -309, -289, -289, -289},
08586 { -100, -309, -289, -289, -289}, 08587 { -100, -309, -289, -289, -289}}
08588 /* AU.CA..AU */
08589 {{ DEF, -259, -239, -239, -239},
08590 { -479, -688, -668, -668, -668},
           -309, -518, -498, -498, -498},
08591 {
08591 { -389, -598, -578, -578, -578}, 08592 { -389, -598, -568, -568, -568}, 08594 /* AU.CC..AU */
08595 {{ DEF, -259, -239, -239, -239},
08596 { -649, -858, -838, -838, -838},
08597 { -289, -498, -478, -478, -478},
08598 { -739, -948, -928, -928, -928}, 08599 { -379, -588, -568, -568, -568}, 08600 /* AU.CG..AU */
08601 {{ DEF, -259, -239, -239},
08602 { -649, -858, -838, -838, -838},
08603 { -289, -498, -478, -478, -478}, 
08604 { -739, -948, -928, -928, -928},
08605 { -379, -588, -568, -568, -568}}, 08606 /* AU.CU..AU */ 08607 {{ DEF, -259, -239, -239, -239},
08608 { -649, -858, -838, -838, -838},
08609 { -289, -498, -478, -478, -478},
08610 { -739, -948, -928, -928, -928},
08611 { -379, -588, -568, -568, -568}}},
08612 /* AU.G@..AU */
08613 {{{ DEF, -339, -689, -689, -689}}
08614 { -100, -389, -739, -739, -739}, 08615 { -100, -389, -739, -739, -739},
08616 { -100, -389, -739, -739, -739},
08617 { -100, -389, -739, -739}, 08618 /* AU.GA..AU */
08619 {{ DEF, -339, -689, -689, -689},
```

```
08620 { -479, -768, -1118, -1118, -1118},
08621 { -309, -598, -948, -948, -948}, 
08622 { -389, -678, -1028, -1028, -1028},
08623 { -379, -668, -1018, -1018, -1018}},
08624 /* AU.GC..AU */
08625 {{ DEF, -339, -689, -689, -689},
08626 { -649, -938, -1288, -1288, -1288},
08627 { -289, -578, -928, -928, -928},
08628 { -739, -1028, -1378, -1378, -1378},
08629 \{ -379, -668, -1018, -1018, -1018 \} 
08630 /* AU.GG..AU */
08631 {{ DEF, -339, -689, -689, -689},
08632 { -649, -938,-1288,-1288,-1288},
08633 { -289, -578, -928, -928, -928},
08634 { -739, -1028, -1378, -1378, -1378}
08635 { -379, -668,-1018,-1018,-1018}}, 08636 /* AU.GU..AU */
08637 {{ DEF, -339, -689, -689, -689},
08638 { -649, -938,-1288,-1288,-1288},
08639 { -289, -578, -928, -928, -928},
08640 { -739, -1028, -1378, -1378, -1378},
08641 { -379, -668, -1018, -1018, -1018}}}
08642 /* AU.U@..AU */
08643 {{ DEF, -329, -329, -329}, 08644 { -100, -379, -379, -379, -379}, 08645 { -100, -379, -379, -379, -379},
08646 { -100, -379, -379, -379, -379},
08647 { -100, -379, -379, -379, -379}}, 08648 /* AU.UA..AU */
08649 {{ DEF, -329, -329, -329}, 08650 { -479, -758, -758, -758, -758}, 08651 { -309, -588, -588, -588, -588},
08652 { -389, -668, -668, -668, -668},
08653 { -379, -658, -658, -658, -658}},
08654 /* AU.UC..AU */
08655 {{ DEF, -329, -329, -329, -329}, 08656 { -649, -928, -928, -928, -928}, 08657 { -289, -568, -568, -568, -568},
          \{-739, -1018, -1018, -1018, -1018\},
08659 { -379, -658, -658, -658, -658}},
08660 /* AU.UG..AU */
08661 {{ DEF, -329, -329, -329, -329}, 08662 { -649, -928, -928, -928, -928}, 08663 { -289, -568, -568, -568, -568},
          { -739, -1018, -1018, -1018, -1018},
08665 \{ -379, -658, -658, -658, -658 \} 
08666 /* AU.UU..AU */
08667 {{ DEF, -329, -329, -329}, 08668 { -649, -928, -928, -928, -928}, 08669 { -289, -568, -568, -568, -568},
08670 \{ -739, -1018, -1018, -1018, -1018 \},
08671 { -379, -658, -658, -658, -658}}},
08672 /* AU.@@..UA */
08673 {{{{ 0, 0, 0, 0, 0, 0, 0, 08674 { DEF, DEF, DEF, DEF, DEF},
               DEF, DEF, DEF, DEF, DEF},
08675 {
08676 { DEF, DEF, DEF, DEF, DEF},
08677 { DEF, DEF, DEF, DEF, DEF}},
08678 /* AU.@A..UA */
08679 {{ 0, 0, 0, 0, 0}, 0}, 08679 {{ 0, 0, 0, 0, 0}, 08680 { -399, -399, -399, -399, -399}, 08681 { -429, -429, -429, -429, -429}, 08682 { -379, -379, -379, -379, -379}, 08683 { -279, -279, -279, -279, -279}},
08684 /* AU.@C..UA */
08685 {{ 0, 0, 0, 0, 0}, 0}, 08686 {-629, -629, -629, -629, -629}, 08687 {-509, -509, -509, -509, -509}, 08688 {-679, -679, -679, -679, -679}, 08689 {-139, -139, -139, -139, -139}},
08690 /* AU.@G..UA */
08691 {{ 0, 0, 0,
                                                  0,
08696 /* AU.@U..UA */
08697 {{ 0, 0, 0, 0, 0}, 0}, 08698 { -589, -589, -589, -589, -589}, 08699 { -179, -179, -179, -179, -179}, 08700 { -679, -679, -679, -679, -679}, 08701 { -140, -140, -140, -140, -140}}},
08702 /* AU.A@..UA */
08703 {{{ DEF, -429, -599, -599, -599}}
08704 { -100, -479, -649, -649, -649}, 08705 { -100, -479, -649, -649, -649}, 08706 { -100, -479, -649, -649, -649},
```

```
08707 \{ -100, -479, -649, -649, -649 \} \}
08708 /* AU.AA..UA */
08709 {{ DEF, -429, -599, -599},
08710 { -449, -828, -998, -998, -998}, 08711 { -479, -858, -1028, -1028, -1028},
08712 { -429, -808, -978, -978, -978}, 08713 { -329, -708, -878, -878, -878}},
08714 /* AU.AC..UA */
08715 {{ DEF, -429, -599, -599, -599},
08716 { -679, -1058, -1228, -1228, -1228},
08717 { -559, -938, -1108, -1108, -1108},
08718 { -729, -1108, -1278, -1278, -1278},
08719 { -189, -568, -738, -738, -738}},
08720 /* AU.AG..UA */
08721 {{ DEF, -429, -599, -599, -599},
08722 \{ -939, -1318, -1488, -1488, -1488 \},
08723 \{ -249, -628, -798, -798, -798 \}
08724 { -939, -1318, -1488, -1488, -1488},
08725 { -329, -708, -878, -878, -878}},
08726 /* AU.AU..UA */
08727 {{ DEF, -429, -599, -599, -599},
08728 { -639,-1018,-1188,-1188,-1188},
08729 \{ -229, -608, -778, -778, -778 \}
08730 { -729, -1108, -1278, -1278, -1278}
08731 { -190, -569, -739, -739, -739}}},
08732 /* AU.C@..UA */
08733 {{{ DEF, -259, -239, -239},
08734 { -100, -309, -289, -289, -289}, 08735 { -100, -309, -289, -289, -289},
08736 { -100, -309, -289, -289, -289}, 
08737 { -100, -309, -289, -289, -289}},
08738 /* AU.CA..UA */
08739 {{ DEF, -259, -239, -239},
08740 {
           -449, -658, -638, -638, -638},
08741 { -479, -688, -668, -668, -668}, 08742 { -429, -638, -618, -618, -618}, 08743 { -329, -538, -518, -518, -518}, 08744 /* AU.CC..UA */
08745 {{ DEF, -259, -239, -239},
08746 { -679, -888, -868, -868, -868},
08747 { -559, -768, -748, -748, -748},
08748 { -729, -938, -918, -918, -918}, 08749 { -189, -398, -378, -378, -378}}, 08750 /* AU.CG..UA */
08751 {{ DEF, -259, -239, -239, -239},
08752 {
           -939,-1148,-1128,-1128,-1128},
08753 {
          -249, -458, -438, -438, -438},
08754 { -939, -1148, -1128, -1128, -1128}
08755 \{ -329, -538, -518, -518, -518 \} \}
08756 /* AU.CU..UA */
08757 {{ DEF, -259, -239, -239, -239},
08758 { -639, -848, -828, -828, -828},
          -229, -438, -418, -418, -418},
08759 {
08760 { -729, -938, -918, -918, -918},

08761 { -190, -399, -379, -379, -379}}},

08762 /* AU.G@..UA */
08763 {{{ DEF, -339, -689, -689, -689}}
08764 { -100, -389, -739, -739, -739}, 
08765 { -100, -389, -739, -739, -739},
08766 { -100, -389, -739, -739, -739}, 08766 { -100, -389, -739, -739, -739}, 08767 { -100, -389, -739, -739, -739}, 08768 /* AU.GA..UA */
08769 {{ DEF, -339, -689, -689, -689}, 08770 { -449, -738, -1088, -1088, -1088},
08771 {
          -479, -768, -1118, -1118, -1118}
08772 { -429, -718,-1068,-1068,-1068},

08773 { -329, -618, -968, -968, -968}},

08774 /* AU.GC..UA */
08775 {{ DEF, -339, -689, -689, -689},
08776 { -679, -968, -1318, -1318, -1318},
08777 {
           -559, -848,-1198,-1198,-1198},
08778 { -729, -1018, -1368, -1368, -1368}
08779 { -189, -478, -828, -828, -828}},
08780 /* AU.GG..UA */
08781 {{ DEF, -339, -689, -689, -689},
08782 { -939,-1228,-1578,-1578,-1578},
08783 { -249, -538, -888, -888, -888},
08784 { -939, -1228, -1578, -1578, -1578}
08785 \{ -329, -618, -968, -968, -968 \} 
08786 /* AU.GU..UA */
08787 {{ DEF, -339, -689, -689, -689}, 08788 { -639, -928, -1278, -1278, -1278}, 08789 { -229, -518, -868, -868, -868},
08790 \{ -729, -1018, -1368, -1368, -1368 \}
08791 { -190, -479, -829, -829, -829}}},
08792 /* AU.UG..UA */
08793 {{ DEF, -329, -329, -329, -329},
```

```
08794 { -100, -379, -379, -379, -379},
08795 { -100, -379, -379, -379, -379}, 
08796 { -100, -379, -379, -379, -379},
08797 \{ -100, -379, -379, -379, -379 \} 
08798 /* AU.UA..UA */
08799 {{ DEF, -329, -329, -329}, 08800 { -449, -728, -728, -728, -728},
08801 { -479, -758, -758, -758, -758},
08802 { -429, -708, -708, -708, -708}, 08803 { -329, -608, -608, -608, -608}}
08804 /* AU.UC..UA */
08805 {{ DEF, -329, -329, -329}, 08806 { -679, -958, -958, -958, -958}, 08807 { -559, -838, -838, -838, -838},
08808 { -729, -1008, -1008, -1008, -1008}
08809 { -189, -468, -468, -468, -468}}
08810 /* AU.UG..UA */
08811 {{ DEF, -329, -329, -329},
08812 { -939, -1218, -1218, -1218, -1218},
08813 { -249, -528, -528, -528, -528},
         { -939, -1218, -1218, -1218, -1218},
08814
08815 { -329, -608, -608, -608, -608}},
08816 /* AU.UU..UA */
08817 {{ DEF, -329, -329, -329, -329}, 08818 { -639, -918, -918, -918, -918, -918}, 08819 { -229, -508, -508, -508, -508},
08820 { -729,-1008,-1008,-1008,-1008}
08821 { -190, -469, -469, -469, -469}}}},
08822 /* AU.@@.. @ */
08823 {{{{ DEF, DEF, DEF, DEF, DEF},
08824 { DEF, DEF, DEF, DEF, DEF},
08825
             DEF, DEF,
                              DEF,
                                        DEF,
                                                 DEF }.
08826
             DEF,
                      DEF,
                              DEF,
                                       DEF,
08827 { DEF, DEF, DEF, 08828 /* AU.@A.. @ */
                                       DEF,
                                                DEF } },
08829 {{ DEF, DEF, DEF,
                                        DEF,
                                                  DEF }.
             DEF,
                     DEF,
                              DEF,
                                        DEF,
                                                DEF },
08830 {
                              DEF,
             DEF,
                      DEF,
                                        DEF.
08832 {
             DEF,
                      DEF,
                               DEF,
                                        DEF.
08833 {
             DEF,
                     DEF, DEF,
                                        DEF,
08834 /* AU.@C.. @ */
08835 {{ DEF, DEF, DEF,
                                        DEF.
                                                 DEF ).
08836 { DEF, DEF, DEF, DEF, DEF},
08837 {
             DEF,
                     DEF,
                              DEF,
                                                 DEF },
                                        DEF,
                      DEF,
             DEF,
                               DEF,
                                        DEF,
08839 {
             DEF,
                     DEF,
                              DEF,
                                        DEF,
                                                 DEF } },
08840 /* AU.@G.. @ */
08841 {{ DEF, DEF, DEF,
                                        DEF, DEF},
             DEF, DEF,
                              DEF,
                                       DEF, DEF},
08842 {
08843 {
             DEF. DEF.
                              DEF.
                                        DEF.
                                                 DEF }.
             DEF, DEF, DEF, DEF,
08844 {
                                        DEF,
                                                 DEF },
08845 {
08846 /* AU.@U.. @ */
08847 {{ DEF, DEF, DEF, DEF, DEF}}
08848 { DEF, DEF, DEF, DEF, DEF},
                                                 DEF },
             DEF,
                      DEF,
08849 {
                              DEF,
                                        DEF,
                                                 DEF },
                              DEF,
             DEF, DEF,
                                        DEF.
             DEF, DEF, DEF, DEF}}},
08851 {
08852 /* AU.A@.. @ */
08853 {{{ -100, -479, -649, -649, -649},
08853 {{ -100, -479, -649, -649, -649, 649}, 6855 { -100, -479, -649, -649, -649}, 68856 { -100, -479, -649, -649, -649}, 68857 { -100, -479, -649, -649, -649}, 68857 { -100, -479, -649, -649, -649}}
08858 /* AU.AA.. @ */
08859 {{ -100, -479, -649, -649, -649},
08860 { -100, -479, -649, -649, -649}, 08861 { -100, -479, -649, -649, -649}, 08862 { -100, -479, -649, -649, -649}, 08863 { -100, -479, -649, -649, -649},
08864 /* AU.AC.. @ */
08865 {{ -100, -479, -649, -649, -649},
08866 { -100, -479, -649, -649, -649},

08867 { -100, -479, -649, -649, -649},

08868 { -100, -479, -649, -649, -649},

08868 { -100, -479, -649, -649, -649},
08870 /* AU.AG.. @ */
08871 {{ -100, -479, -649, -649, -649},
08872 { -100, -479, -649, -649, -649}, 
08873 { -100, -479, -649, -649, -649}, 
08874 { -100, -479, -649, -649, -649}, 
08875 { -100, -479, -649, -649, -649},
08876
         /* AU.AU.. @ */
08877 {{ -100, -479, -649, -649, -649},
08878 { -100, -479, -649, -649, -649}, 08879 { -100, -479, -649, -649, -649}, 08880 { -100, -479, -649, -649, -649},
```

```
08881 \{ -100, -479, -649, -649, -649 \} \}
 08882 /* AU.C@.. @ */
08883 {{{ -100, -309, -289, -289, -289},
08883 {{{ -100, -309, -289, -289, -289, 08884 { -100, -309, -289, -289, -289, 08885 { -100, -309, -289, -289, -289, 08886 { -100, -309, -289, -289, -289, -289}, 08887 { -100, -309, -289, -289, -289}},
 08888 /* AU.CA.. @ */
08888 /* AU.CA.. @ */
08889 {{ -100, -309, -289, -289, -289},
08890 { -100, -309, -289, -289, -289},
08891 { -100, -309, -289, -289, -289},
08892 { -100, -309, -289, -289, -289},
08893 { -100, -309, -289, -289, -289}},
08894 /* AU.CC.. @ */
 08895 {{ -100, -309, -289, -289, -289},
08896 { -100, -309, -289, -289, -289}, 08896 { -100, -309, -289, -289, -289}, 08897 { -100, -309, -289, -289, -289}, 0898 { -100, -309, -289, -289, -289}, 08899 { -100, -309, -289, -289, -289}}
 08900 /* AU.CG.. @ */
08900 /* A.C.G. . # */
08901 {{ -100, -309, -289, -289, -289},
08902 { -100, -309, -289, -289, -289},
08903 { -100, -309, -289, -289, -289},
08904 { -100, -309, -289, -289, -289},
08905 { -100, -309, -289, -289, -289}},
 08906 /* AU.CU.. @ */
 08907 {{ -100, -309, -289, -289, -289},
08908 { -100, -309, -289, -289, -289}, 08909 { -100, -309, -289, -289, -289},
08910 { -100, -309, -289, -289, -289}, 
08911 { -100, -309, -289, -289, -289}}}
 08912 /* AU.G@.. @ */
08912 /* AU.Ge.. @ */
08913 {{{ -100, -389, -739, -739, -739}, }
08914 { -100, -389, -739, -739, -739}, }
08915 { -100, -389, -739, -739, -739}, }
08916 { -100, -389, -739, -739, -739}, }
08917 { -100, -389, -739, -739, -739}, }
08918 /* AU.GA.. @ */
 08919 {{ -100, -389, -739, -739, -739},
 08920 { -100, -389, -739, -739, -739},
08921 { -100, -389, -739, -739, -739},

08922 { -100, -389, -739, -739, -739},

08923 { -100, -389, -739, -739, -739}},
 08924 /* AU.GC.. @ */
08924 /* AU.GC.. @ */
08925 {{ -100, -389, -739, -739, -739},
08926 { -100, -389, -739, -739, -739},
08927 { -100, -389, -739, -739, -739},
08928 { -100, -389, -739, -739, -739},
08929 { -100, -389, -739, -739, -739},
08930 /* AU.GG.. @ */
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739, -739},
08931 {{ -100, -389, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739, -739,
                        { -100, -389, -739, -739, -739}, { -100, -389, -739, -739, -739, -739},
 08932
 08933 {
08934 { -100, -389, -739, -739, -739}, 
08935 { -100, -389, -739, -739, -739}},
08936 /* AU.GU.. @ */
08937 {{ -100, -389, -739, -739, -739},
                        { -100, -389, -739, -739, -739}, 
{ -100, -389, -739, -739, -739},
 08938
 08939 {
08940 { -100, -389, -739, -739, -739}, 

08940 { -100, -389, -739, -739, -739}, 

08941 { -100, -389, -739, -739, -739}}}, 

08942 /* AU.U@.. @ */ 

08943 {{{ -100, -379, -379, -379}, -379},
 08944 { -100, -379, -379, -379}, 08945 { -100, -379, -379, -379, -379},
08946 { -100, -379, -379, -379, -379}, 08947 { -100, -379, -379, -379, -379}, 08948 /* AU.UA.. @ */
 08949 {{ -100, -379, -379, -379},
 08950 { -100, -379, -379, -379, -379},
 08951
                               -100, -379, -379, -379, -379},
 08952 { -100, -379, -379, -379, -379}
08952 { -100, -379, -379, -379, -379}, 08953 { -100, -379, -379, -379, -379}}, 08954 /* AU.UC.. @ */
08955 {{ -100, -379, -379, -379, -379}, 08956 { -100, -379, -379, -379, -379}, 08957 { -100, -379, -379, -379, -379},
 08958 {
 08958 { -100, -379, -379, -379, -379}, 
08959 { -100, -379, -379, -379, -379}},
 08960 /* AU.UG.. @ */
08960 /* A0.0G.. @ */
08961 {{ -100, -379, -379, -379, -379},
08962 { -100, -379, -379, -379, -379},
08963 { -100, -379, -379, -379, -379},
08964 { -100, -379, -379, -379, -379},
08965 { -100, -379, -379, -379, -379}},

08966 /* AU.UU.. @ */

08967 {{ -100, -379, -379, -379, -379},
```

```
08968 { -100, -379, -379, -379, -379},
08966 { -100, -379, -379, -379, -379, 08969 { -100, -379, -379, -379, -379}, 08970 { -100, -379, -379, -379, -379}, 08971 { -100, -379, -379, -379, -379}}}}, 08972 { /* noPair */ {{{{0}}}}},
08973 /* UA.@@..CG */
             08974 {{{{
08975 {
08976 {
             DEF, DEF,
                              DEF, DEF, DEF},
08977 {
                                                 DEF }
08978 { DEF, DEE, - 08979 /* UA.@A..CG */ 0, 0,
                                               DEF } }.
                                            Ο,
08981 {-1029,-1029,-1029,-1029,-1029},
08982 { -519, -519, -519, -519, -519},
08983 {
08983 { -939, -939, -939, -939, -939}, 08984 { -809, -809, -809, -809, -809, -809}}
0,
08992 {{
                 0,
                          0,
                                   Ο,
08993 {-1029,-1029,-1029,-1029,-1029},
08994 { -519, -519, -519, -519, -519}, 
08995 { -939, -939, -939, -939, -939}, 
08996 { -809, -809, -809, -809, -809}},
08996 { -809, -809, -600
08997 /* UA.@U..CG */
08998 {{
               0.
                        0.
                                   0.
                                            0.
08999 \{-1029, -1029, -1029, -1029, -1029\},
09000 { -669, -669, -669, -669, -669}, 09001 { -939, -939, -939, -939, -939},
09002 { -859, -859, -859, -859, -859}}},
09003 /* UA.A@..CG */
09004 {{{ DEF, -399, -629, -889, -589},
09005 { -100, -449, -679, -939, -639}, 09006 { -100, -449, -679, -939, -639},
09000 { -100, -449, -679, -939, -639}, 09007 { -100, -449, -679, -939, -639}, 09008 { -100, -449, -679, -939, -639}}, 09009 /* UA.AA..CG */
09010 {{ DEF, -399, -629, -889, -589}, 09011 {-1079, -1428, -1658, -1918, -1618},
         \{-569, -918, -1148, -1408, -1108\},\
09013 { -989, -1338, -1568, -1828, -1528}
09014 { -859, -1208, -1438, -1698, -1398}},
09015 /* UA.AC..CG */
09016 {{ DEF, -399, -629, -889, -589},
09017 { -999, -1348, -1578, -1838, -1538},
         \{-499, -848, -1078, -1338, -1038\},
09019 { -989, -1338, -1568, -1828, -1528},
09020 { -789, -1138, -1368, -1628, -1328}},
09021 /* UA.AG..CG */
09022 {{ DEF, -399, -629, -889, -589},
09023 {-1079, -1428, -1658, -1918, -1618},
09024 { -569, -918, -1148, -1408, -1108},
09025 { -989, -1338, -1568, -1828, -1528},
09026 { -859, -1208, -1438, -1698, -1398}},
09027 /* UA.AU..CG */
09028 {{ DEF, -399, -629, -889, -589},
09029 {-1079,-1428,-1658,-1918,-1618},
09030 { -719, -1068, -1298, -1558, -1258},
09031 { -989, -1338, -1568, -1828, -1528},
09032 { -909, -1258, -1488, -1748, -1448}}}
09033 /* UA.C@..CG */
09034 {{ DEF, -429, -509, -199, -179},
09035 { -100, -479, -559, -249, -229},
09036 { -100, -479, -559, -249, -229},
09037 { -100, -479, -559, -249, -229},
09038 { -100, -479, -559, -249, -229}}, 09039 /* UA.CA..CG */
09040 {{ DEF, -429, -509, -199, -179}, 09041 {-1079,-1458,-1538,-1228,-1208},
09042 { -569, -948, -1028, -718, -698},
09043 { -989, -1368, -1448, -1138, -1118},
09044 \{ -859, -1238, -1318, -1008, -988 \} \}
09045 /* UA.CC..CG */
09046 {{ DEF, -429, -509, -199, -179}, 09047 { -999, -1378, -1458, -1148, -1128},
09048 { -499, -878, -958, -648, -628},
09049 { -989, -1368, -1448, -1138, -1118},
09050 { -789, -1168, -1248, -938, -918}},
09051 /* UA.CG..CG */
09052 {{ DEF, -429, -509, -199, -179},
09053 {-1079,-1458,-1538,-1228,-1208},
09054 { -569, -948,-1028, -718, -698},
```

```
09055 { -989, -1368, -1448, -1138, -1118},
09056 { -859, -1238, -1318, -1008, -988}},
09057 /* UA.CU..CG */
09058 {{ DEF, -429, -509, -199, -179},
09059 {-1079,-1458,-1538,-1228,-1208},
09060 { -719,-1098,-1178, -868, -848},
09061 { -989, -1368, -1448, -1138, -1118},
09062 { -909, -1288, -1368, -1058, -1038}}},
09063 /* UA.G@..CG */
09063 /* UA.Get..CG */
09064 {{ DEF, -379, -679, -889, -679},
09065 { -100, -429, -729, -939, -729},
09066 { -100, -429, -729, -939, -729},
09067 { -100, -429, -729, -939, -729},
09068 { -100, -429, -729, -939, -729},
09069 /* UA.GA..CG */
09070 {{ DEF, -379, -679, -889, -679}, 09071 {-1079,-1408,-1708,-1918,-1708},
09072 { -569, -898, -1198, -1408, -1198},
09073 { -989, -1318, -1618, -1828, -1618},
09074 { -859, -1188, -1488, -1698, -1488}},
09075 /* UA.GC..CG */
09076 {{ DEF, -379, -679, -889, -679},
09077 { -999,-1328,-1628,-1838,-1628},
09078 { -499, -828,-1128,-1338,-1128},
09079 { -989, -1318, -1618, -1828, -1618},
09080 { -789, -1118, -1418, -1628, -1418}},
09081 /* UA.GG..CG */
09082 {{ DEF, -379, -679, -889, -679},
09083 {-1079,-1408,-1708,-1918,-1708},
09084 { -569, -898, -1198, -1408, -1198}.
09085 { -989, -1318, -1618, -1828, -1618},
09086 { -859, -1188, -1488, -1698, -1488}},
09087 /* UA.GU..CG */
09088 {{ DEF, -379, -679, -889, -679},
09089 {-1079,-1408,-1708,-1918,-1708},
09090 \{ -719, -1048, -1348, -1558, -1348 \},
09091 { -989, -1318, -1618, -1828, -1618}
09092 { -909, -1238, -1538, -1748, -1538}}}
09093 /* UA.U@..CG */
09094 {{{ DEF, -279, -139, -279, -140},
09095 { -100, -329, -189, -329, -190},

09096 { -100, -329, -189, -329, -190},

09097 { -100, -329, -189, -329, -190},

09098 { -100, -329, -189, -329, -190},
09099 /* UA.UA..CG */
09100 {{ DEF, -279, -139, -279, -140},
09101 {-1079,-1308,-1168,-1308,-1169},
09102 { -569, -798, -658, -798, -659},
09103 { -989, -1218, -1078, -1218, -1079},
09104 { -859, -1088, -948, -1088, -949}},
09105 /* UA.UC..CG */
09106 {{ DEF, -279, -139, -279, -140},
09107 { -999, -1228, -1088, -1228, -1089},
09108 { -499, -728, -588, -728, -589}, 09109 { -989, -1218, -1078, -1218, -1079},
09110 { -789, -1018, -878, -1018, -879}},
09111 /* UA.UG..CG */
09112 {{ DEF, -279, -139, -279, -140},
09113 {-1079,-1308,-1168,-1308,-1169},
09114 { -569, -798, -658, -798, -659}, 09115 { -989, -1218, -1078, -1218, -1079},
09116 { -859, -1088, -948, -1088, -949}},
09117 /* UA.UU..CG */
09118 {{ DEF, -279, -139, -279, -140},
09119 {-1079,-1308,-1168,-1308,-1169},
09120 { -719, -948, -808, -948, -809},
09121 { -989, -1218, -1078, -1218, -1079},
09122 { -909, -1138, -998, -1138, -999}}}},
09123 /* UA.@@..GC */
09124 {{{
                 Ο,
                         0,
                                  Ο,
09131 { -519, -519, -519, -519, -519},
09132 { -719, -719, -719, -719, -719},
09133 { -709, -709, -709, -709, -709},
09134 { -499, -499, -499, -499},
09135 /* UA.@C..GC */
09136 {{
                Ο,
                       0,
                               0,
                                        0,
09137 { -879, -879, -879, -879, -879},
09138 { -309, -309, -309, -309, -309},
09139 { -739, -739, -739, -739}, 09140 { -499, -499, -499, -499, -499}, 09141 /* UA.@G..GC */
```

```
09142 {{
                 0,
                          Ο,
                                  0,
                                           0,
09143 { -559, -559, -559, -559}, 09144 { -309, -309, -309, -309, -309},
09145 { -619, -619, -619, -619, -619},
09146 { -499, -499, -499, -499, -499}},
09147 /* UA.@U..GC */
                                0,
09148 {{ 0, 0, 0, 0, 0}, 0}
09149 { -879, -879, -879, -879, -879},
09150 { -389, -389, -389, -389, -389},
09151 { -739, -739, -739, -739}, 09152 { -569, -569, -569, -569, -569}}, 09153 /* UA.A@..GC */
09154 {{{ DEF, -399, -629, -889, -589}, 09155 { -100, -449, -679, -939, -639},
09156 { -100, -449, -679, -939, -639},
09157 {
09157 { -100, -449, -679, -939, -639}, 09158 { -100, -449, -679, -939, -639}},
09159 /* UA.AA..GC */
09160 {{ DEF, -399, -629, -889, -589},
09161 { -569, -918, -1148, -1408, -1108},
09162
           -769, -1118, -1348, -1608, -1308},
09163 {
           -759, -1108, -1338, -1598, -1298}
09164 { -549, -898,-1128,-1388,-1088}},
09165 /* UA.AC..GC */
09166 {{ DEF, -399, -629, -889, -589},
09167 { -929, -1278, -1508, -1768, -1468},
09168 { -359, -708, -938, -1198, -898},
09169 {
           -789, -1138, -1368, -1628, -1328}
09170 { -549, -898, -1128, -1388, -1088}}
09171 /* UA.AG..GC */
09172 {{ DEF, -399, -629, -889, -589},
09175 { -669, -1018, -1248, -1508, -1208}
09176 { -549, -898, -1128, -1388, -1088}},
09177 /* UA.AU..GC */
09178 {{ DEF, -399, -629, -889, -589},
09179 { -929, -1278, -1508, -1768, -1468},
09180 { -439, -788, -1018, -1278, -978},
09181 {
           -789, -1138, -1368, -1628, -1328},
09182 { -619, -968, -1198, -1458, -1158}},
09183 /* UA.C@..GC */
09184 {{{ DEF, -429, -509, -199, -179},
09185 { -100, -479, -559, -249, -229},
09186 { -100, -479, -559, -249, -229},
09187 {
           -100, -479, -559, -249, -229}
09188 { -100, -479, -559, -249, -229}},
09189 /* UA.CA..GC */
09190 {{ DEF, -429, -509, -199, -179}, 09191 { -569, -948, -1028, -718, -698}, 09192 { -769, -1148, -1228, -918, -898},
09193 { -759, -1138, -1218, -908, -888},
09194 { -549, -928, -1008, -698, -678}},
09195 /* UA.CC..GC */
09196 {{ DEF, -429, -509, -199, -179},
09197 { -929, -1308, -1388, -1078, -1058},
09198 { -359, -738, -818, -508, -488},
09199 { -789, -1168, -1248, -938, -918},
09200 { -549, -928, -1008, -698, -678}},
09201 /* UA.CG..GC */
09202 {{ DEF, -429, -509, -199, -179}, 09203 { -609, -988, -1068, -758, -738}, 09204 { -359, -738, -818, -508, -488},
09205 { -669, -1048, -1128, -818, -798},
09206 { -549, -928, -1008, -698, -678}},
09207 /* UA.CU..GC */
09208 {{ DEF, -429, -509, -199, -179},
09209 { -929,-1308,-1388,-1078,-1058},
09210 { -439, -818, -898, -588, -568},
09211 { -789,-1168,-1248, -938, -918},
09212 { -619, -998, -1078, -768, -748}}}
09213 /* UA.G@..GC */
09214 {{{ DEF, -379, -679, -889, -679}, 09215 { -100, -429, -729, -939, -729}, 09216 { -100, -429, -729, -939, -729},
           -100, -429, -729, -939, -729},
        \{-100, -429, -729, -939, -729\}\}
09218
09219 /* UA.GA..GC */
09220 {{ DEF, -379, -679, -889, -679}, 09221 { -569, -898, -1198, -1408, -1198},
09222 { -769, -1098, -1398, -1608, -1398},
09223 { -759, -1088, -1388, -1598, -1388},
09224 { -549, -878, -1178, -1388, -1178}},
09225 /* UA.GC..GC */
09226 {{ DEF, -379, -679, -889, -679},
09227 { -929,-1258,-1558,-1768,-1558},
09228 { -359, -688, -988,-1198, -988},
```

```
09229 { -789, -1118, -1418, -1628, -1418},
 09230 { -549, -878, -1178, -1388, -1178}},
 09231 /* UA.GG..GC */
09232 {{ DEF, -379, -679, -889, -679}, 09233 { -609, -938, -1238, -1448, -1238}, 09234 { -359, -688, -988, -1198, -988},
                          { -669, -998, -1298, -1508, -1298},
 09236 { -549, -878, -1178, -1388, -1178}},
 09237 /* UA.GU..GC */
 09238 {{ DEF, -379, -679, -889, -679}, 09239 { -929,-1258,-1558,-1768,-1558},
 09240 { -439, -768, -1068, -1278, -1068},
 09241 { -789, -1118, -1418, -1628, -1418}
 09242 { -619, -948, -1248, -1458, -1248}}}
 09243 /* UA.U@..GC */
09244 {{{ DEF, -279, -139, -279, -140}, 09245 { -100, -329, -189, -329, -190}, 09246 { -100, -329, -189, -329, -190}, 09247 { -100, -329, -189, -329, -190}, 09248 { -100, -329, -189, -329, -190}},
09248 { -100, -329, -189, -329, -190}},
09249 /* UA.UA..GC */
09250 {{ DEF, -279, -139, -279, -140},
09251 { -569, -798, -658, -798, -659},
09252 { -769, -998, -858, -998, -859},
09253 { -759, -988, -848, -988, -849},
09254 { -549, -778, -638, -778, -639}},
09255 /* UA.UC..GC */
 09256 {{ DEF, -279, -139, -279, -140},
 09257 { -929, -1158, -1018, -1158, -1019},
09258 { -359, -588, -448, -588, -449},
09259 { -789,-1018, -878,-1018, -879},
09260 { -549, -778, -638, -778, -639}},
 09261 /* UA.UG..GC */
 09262 {{ DEF, -279, -139, -279, -140},
09263 { -609, -838, -698, -838, -699},
09264 { -359, -588, -448, -588, -449},
09265 { -669, -898, -758, -898, -759},
09266 { -549, -778, -638, -778, -639}},
 09267 /* UA.UU..GC */
09268 {{ DEF, -279, -139, -279, -140}, 09269 { -929, -1158, -1018, -1158, -1019},
09270 { -439, -668, -528, -668, -529}, 09271 { -789,-1018, -878,-1018, -879}, 09272 { -619, -848, -708, -848, -709}}}},
 09273 /* UA.@@..GU */
                                                    0, 0,
 09274 {{{
                                                                                                                 Ο,
                                                                                                                                           0.
 09275 { DEF, DEF, DEF, DEF, DEF},
 09276 {
                                      DEF, DEF,
                                                                                          DEF,
                                                                                                                  DEF,
                                                                                                                                          DEF } ,
09277 { DEF, DEF, DEF, DEF, DEF},
09278 { DEF, DEF, DEF, DEF, DEF}},
 09279 /* UA.@A..GU */
09280 {{ 0, 0, 0, 0, 0}, 0}, 0}
09281 { -429, -429, -429, -429, -429},
                                                                                                                                Ο,
09281 { -429, -429, -429, -429, -429, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929, -929
09287 { -599, -599, -599, -599, -599}, 09288 { -239, -239, -239, -239, -239}, 09289 { -689, -689, -689, -689, -689}, 09290 { -329, -329, -329, -329, -329}},
 09290 { -329, -329, -321, 09291 /* UA.@G..GU */ 0, 0,
09291 /* 0, 0, 0, 0, 0}

09292 {{ 0, 0, 0, 0, 0}, 0},

09293 { -599, -599, -599, -599},

09294 { -239, -239, -239, -239, -239},

09295 { -689, -689, -689, -689, -689},

09296 { -329, -329, -329, -329}},
 09296 { -329, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323, -323
 09298 {{ 0, 0, 0, 0, 0}, 0}, 09299 { -599, -599, -599, -599, -599}, 09300 { -239, -239, -239, -239},
 09301 { -689, -689, -689, -689, -689}, 09302 { -329, -329, -329, -329, -329}}}
 09303 /* UA.A@..GU */
  09304 {{{ DEF, -399, -629, -889, -589},
 09305 { -100, -449, -679, -939, -639},
 09306 { -100, -449, -679, -939, -639},
 09307 { -100, -449, -679, -939, -639}, 09308 { -100, -449, -679, -939, -639}},
 09309 /* UA.AA..GU */
 09310 {{ DEF, -399, -629, -889, -589},
 09311 { -479, -828, -1058, -1318, -1018},
 09312 { -309, -658, -888, -1148, -848},
09313 { -389, -738, -968,-1228, -928},
09314 { -379, -728, -958,-1218, -918}},
09315 /* UA.AC..GU */
```

```
09316 {{ DEF, -399, -629, -889, -589},
09317 { -649, -998, -1228, -1488, -1188},
09318 { -289, -638, -868, -1128, -828},
           -739, -1088, -1318, -1578, -1278},
09319 {
09320 { -379, -728, -958,-1218, -918}},
09321 /* UA.AG..GU */
09322 {{ DEF, -399, -629, -889, -589},
09323
         \{-649, -998, -1228, -1488, -1188\},\
09324 { -289, -638, -868, -1128, -828},
09325 { -739, -1088, -1318, -1578, -1278}
09326 { -379, -728, -958, -1218, -918}},
09327 /* UA.AU..GU */
09328 {{ DEF, -399, -629, -889, -589},
09329 { -649, -998, -1228, -1488, -1188},
09330 { -289, -638, -868, -1128, -828},
09331 {
           -739, -1088, -1318, -1578, -1278}
09332 \{ -379, -728, -958, -1218, -918 \} \}
09333 /* UA.C@..GU */
09334 {{{ DEF, -429, -509, -199, -179},
         \{-100, -479, -559, -249, -229\},\
09335
09336
           -100, -479, -559, -249, -229},
           -100, -479, -559, -249, -229}
09337 {
09338 { -100, -479, -559, -249, -229}},
09339 /* UA.CA..GU */
09340 {{ DEF, -429, -509, -199, -179},
09341 { -479, -858, -938, -628, -608}, 09342 { -309, -688, -768, -458, -438},
09343 {
09343 { -389, -768, -848, -538, -518}, 09344 { -379, -758, -838, -528, -508}}
09345 /* UA.CC..GU */
09346 {{ DEF, -429, -509, -199, -179},
09347
         { -649, -1028, -1108, -798, -778},
09348
            -289, -668, -748, -438, -418},
09349 {
           -739,-1118,-1198, -888, -868}
09350 { -379, -758, -838, -528, -508}},
09351 /* UA.CG..GU */
09352 {{ DEF, -429, -509, -199, -179},
09353 { -649,-1028,-1108, -798, -778},
09354 { -289, -668, -748, -438, -418},
09355 {
           -739, -1118, -1198, -888, -868},
09356 { -379, -758, -838, -528, -508}}, 09357 /* UA.CU..GU */
09358 {{ DEF, -429, -509, -199, -179},
09359 { -649, -1028, -1108, -798, -778},
09360 { -289, -668, -748, -438, -418},
09361 {
           -739,-1118,-1198, -888, -868}
09362 { -379, -758, -838, -528, -508}}},
09363 /* UA.G@..GU */
09364 {{ DEF, -379, -679, -889, -679},
09365 { -100, -429, -729, -939, -729}, 09366 { -100, -429, -729, -939, -729},
           -100, -429, -729, -939, -729},
-100, -429, -729, -939, -729}}
09367 {
09368 {
09369 /* UA.GA..GU */
09370 {{ DEF, -379, -679, -889, -679}, 09371 { -479, -808, -1108, -1318, -1108}, 09372 { -309, -638, -938, -1148, -938},
09373 { -389, -718, -1018, -1228, -1018},
09374 { -379, -708, -1008, -1218, -1008}},
09375 /* UA.GC..GU */
09376 {{ DEF, -379, -679, -889, -679}, 09377 { -649, -978, -1278, -1488, -1278}, 09378 { -289, -618, -918, -1128, -918},
         { -739, -1068, -1368, -1578, -1368},
09380 { -379, -708, -1008, -1218, -1008}},
09381 /* UA.GG..GU */
09382 { DEF, -379, -679, -889, -679}, 09383 { -649, -978, -1278, -1488, -1278}, 09384 { -289, -618, -918, -1128, -918},
         { -739, -1068, -1368, -1578, -1368},
09386 { -379, -708, -1008, -1218, -1008}},
09387 /* UA.GU..GU */
09388 {{ DEF, -379, -679, -889, -679}, 09389 { -649, -978, -1278, -1488, -1278}, 09390 { -289, -618, -918, -1128, -918},
           -739, -1068, -1368, -1578, -1368},
09391
09392 { -379, -708, -1008, -1218, -1008}}},
09393 /* UA.U@..GU */
09394 {{ DEF, -279, -139, -279, -140},
09395 { -100, -329, -189, -329, -190},
09396 { -100, -329, -189, -329, -190},
         \{-100, -329, -189, -329, -190\},\
09398 { -100, -329, -189, -329, -190}},
09399 /* UA.UA..GU */
09400 {{ DEF, -279, -139, -279, -140}, 09401 { -479, -708, -568, -708, -569}, 09402 { -309, -538, -398, -538, -399},
```

```
09403 { -389, -618, -478, -618, -479},
09404 { -379, -608, -468, -608, -469}},
09405 /* UA.UC..GU */
09406 {{ DEF, -279, -139, -279, -140}, 09407 { -649, -878, -738, -878, -739}, 09408 { -289, -518, -378, -518, -379}, 09409 { -739, -968, -828, -968, -829},
09410 { -379, -608, -468, -608, -469}},
09411 /* UA.UG..GU */
09411 /* UA.UG..GU */
09412 {{ DEF, -279, -139, -279, -140},
09413 { -649, -878, -738, -878, -739},
09414 { -289, -518, -378, -518, -379},
09415 { -739, -968, -828, -968, -829},
09416 { -379, -608, -468, -608, -469}},
09417 /* UA.UU..GU */
09418 {{ DEF, -279, -139, -279, -140}, 09418 {{ DEF, -279, -139, -279, -140}, 09419 { -649, -878, -738, -878, -739}, 09420 { -289, -518, -378, -518, -379}, 09421 { -739, -968, -828, -968, -829}, 09422 { -379, -608, -468, -608, -469}}}},
09423 /* UA.@@..UG */
Ο,
                                                        0.
               DEF, DEF, DEF, DEF, DEF},
DEF, DEF, DEF, DEFF,
09425 {
09426 {
09427 { DEF, DEF, DEF, DEF, DEF},
09428 { DEF, DEF, DEF, DEF, DEF}},
09428 { DEF, DEL, 09429 /* UA.@A..UG */
09430 {{ 0, 0, 0, 0, 0}, 0}, 09431 { -719, -719, -719, -719, -719}, 09432 { -479, -479, -479, -479, -479}, 09433 { -659, -659, -659, -659, -659}, 09434 { -549, -549, -549, -549, -549},
09435 /* UA.@C..UG */
09436 {{ 0, 0, 0,
09436 {{ 0, 0, 0, 0, 0}, 0}, 09436 {{ 0, 0, 0, 0, 0}, 0}, 09438 { -789, -789, -789, -789, -789}, 09438 { -479, -479, -479, -479, -479}, 09439 { -809, -809, -809, -809, -809}, 09440 { -439, -439, -439, -439, -439}},
09441 /* UA.@G..UG */
09441 /* 0. 0, 0, 0, 0, 0}

09442 {{ 0, 0, 0, 0, 0}

09443 { -959, -959, -959, -959}, 09444 { -359, -359, -359, -359, -359}, 09445 { -919, -919, -919, -919, -919}, 09446 { -549, -549, -549, -549, -549}},
09447 /* UA.@U..UG */
09448 {{ 0, 0,
                                               0,
                                         Ο,
09448 { 0, 0, 0, 0, 0},

09449 { -809, -809, -809, -809, -809},

09450 { -479, -479, -479, -479},

09451 { -809, -809, -809, -809},

09452 { -359, -359, -359, -359, -359}}},
09453 /* UA.A@..UG */
09454 {{{ DEF, -399, -629, -889, -589},
09455 { -100, -449, -679, -939, -639},
09456 { -100, -449, -679, -939, -639},
09457 { -100, -449, -679, -939, -639},
09458 { -100, -449, -679, -939, -639}},
09459 /* UA.AA..UG */
09460 {{ DEF, -399, -629, -889, -589},
09461 { -769, -1118, -1348, -1608, -1308},
09462 \{ -529, -878, -1108, -1368, -1068 \},
09463 { -709, -1058, -1288, -1548, -1248},
09464 { -599, -948, -1178, -1438, -1138}},
09465 /* UA.AC..UG */
          {{ DEF, -399, -629, -889, -589},
09466
09467 {
              -839, -1188, -1418, -1678, -1378},
09468 { -529, -878, -1108, -1368, -1068},
09469 { -859,-1208,-1438,-1698,-1398},
09470 { -489, -838, -1068, -1328, -1028}}
09471 /* UA.AG..UG */
09472 {{ DEF, -399, -629, -889, -589},
09473 {-1009,-1358,-1588,-1848,-1548},
09474 { -409, -758, -988, -1248, -948},
             -969, -1318, -1548, -1808, -1508}
09475 {
09476 { -599, -948, -1178, -1438, -1138}},
09477 /* UA.AU..UG */
09478 {{ DEF, -399, -629, -889, -589},
09479 { -859, -1208, -1438, -1698, -1398},
09480 { -529, -878, -1108, -1368, -1068},
09481 { -859, -1208, -1438, -1698, -1398}
09482 { -409, -758, -988, -1248, -948}}},
09483 /* UA.C@..UG */
09484 {{{ DEF, -429, -509, -199, -179},
09485 { -100, -479, -559, -249, -229}, 09486 { -100, -479, -559, -249, -229},
09487 { -100, -479, -559, -249, -229},
09488 { -100, -479, -559, -249, -229}},
09489 /* UA.CA..UG */
```

```
09490 {{ DEF, -429, -509, -199, -179},
09491 { -769, -1148, -1228, -918, -898},
09492 { -529, -908, -988, -678, -658},
         -709, -1088, -1168, -858, -838},
09493 {
09494 { -599, -978, -1058, -748, -728}},
09495 /* UA.CC..UG */
09496 {{ DEF, -429, -509, -199, -179},
09497 { -839,-1218,-1298, -988, -968},
09498 {
         -529, -908, -988, -678, -658},
09499 { -859, -1238, -1318, -1008, -988}
09500 { -489, -868, -948, -638, -618}}
09501 /* UA.CG..UG */
09502 {{ DEF, -429, -509, -199, -179},
09502 {{
09503 {-1009,-1388,-1468,-1158,-1138},
09504
       \{-409, -788, -868, -558, -538\},\
09505 {
         -969, -1348, -1428, -1118, -1098}
09506 \{ -599, -978, -1058, -748, -728 \} 
09507 /* UA.CU..UG */
09508 {{ DEF, -429, -509, -199, -179},
       \{-859, -1238, -1318, -1008, -988\},
09510
         -529, -908, -988, -678, -658},
09511 {
         -859,-1238,-1318,-1008, -988}
09512 { -409, -788, -868, -558, -538}}},
09513 /* UA.GC..UG */
09514 {{ DEF, -379, -679, -889, -679},
       { -100, -429, -729, -939, -729}, 
{ -100, -429, -729, -939, -729},
09516
09517 { -100, -429, -729, -939, -729},
09518 { -100, -429, -729, -939, -729}}
09519 /* UA.GA..UG */
09520 {{ DEF, -379, -679, -889, -679},
09521 { -769, -1098, -1398, -1608, -1398},
09522
          -529, -858, -1158, -1368, -1158},
09523 { -709, -1038, -1338, -1548, -1338}
09524 { -599, -928,-1228,-1438,-1228}},
09525 /* UA.GC..UG */
09526 {{ DEF, -379, -679, -889, -679},
       { -839, -1168, -1468, -1678, -1468},
09528
       \{-529, -858, -1158, -1368, -1158\},\
09529 {
         -859, -1188, -1488, -1698, -1488},
09530 { -489, -818, -1118, -1328, -1118}
09531 /* UA.GG..UG */
09532 {{ DEF, -379, -679, -889, -679}, 09533 {-1009,-1338,-1638,-1848,-1638},
       \{-409, -738, -1038, -1248, -1038\},
09535 {
         -969, -1298, -1598, -1808, -1598}
09536 { -599, -928, -1228, -1438, -1228}},
09537 /* UA.GU..UG */
09538 {{ DEF, -379, -679, -889, -679},
09539 { -859, -1188, -1488, -1698, -1488},
09540 { -529, -858, -1158, -1368, -1158},
09541 {
          -859, -1188, -1488, -1698, -1488},
09542 { -409, -738,-1038,-1248,-1038}}},
09543 /* UA.U@..UG */
09544 {{{ DEF, -279, -139, -279, -140},
09545 { -100, -329, -189, -329, -190},
09546 { -100, -329, -189, -329, -190},
09547 { -100, -329, -189, -329, -190},
09548 { -100, -329, -189, -329, -190}},
09549 /* UA.UA.UG */
09550 {{ DEF, -279, -139, -279, -140}, 09551 { -769, -998, -858, -998, -859}, 09552 { -529, -758, -618, -758, -619},
          -709, -938, -798, -938, -799},
09553
09554 { -599, -828, -688, -828, -689}},
09555 /* UA.UC..UG */
09555 {{ DEF, -279, -139, -279, -140}, 09557 { -839, -1068, -928, -1068, -929}, 09558 { -529, -758, -618, -758, -619},
       { -859, -1088, -948, -1088, -949},
09560 { -489, -718, -578, -718, -579}},
09561 /* UA.UG..UG */
09562 {{ DEF, -279, -139, -279, -140}, 09563 {-1009,-1238,-1098,-1238,-1099},
       \{-409, -638, -498, -638, -499\},\
09564
       \{-969, -1198, -1058, -1198, -1059\},
09566 { -599, -828, -688, -828, -689}},
09567 /* UA.UU..UG */
09568 {{ DEF, -279, -139, -279, -140}, 09569 {-859,-1088, -948,-1088, -949}, 09570 {-529, -758, -618, -758, -619},
09571 { -859, -1088, -948, -1088, -949},
09572 { -409, -638, -498, -638, -499}}}}
09573 /* UA.@@..AU */
```

```
09577 { DEF, DEF, DEF, DEF, DEF},
09578 { DEF, DEF, DEF, DEF, DEF}},
09579 /* UA.@A..AU */
09580 {{ 0, 0, 0, 0, 0}, 0}, 0}
09581 { -429, -429, -429, -429, -429}, 09582 { -259, -259, -259, -259},
09583 { -339, -339, -339, -339}, 
09584 { -329, -329, -329, -329, -329}},
09585 /* UA.@C..AU */
09586 {{ 0, 0, 0, 0, 0}, 0}, 09588 { -239, -239, -239, -239, -239, -239}, 09588 { -689, -689, -689, -689, -689}, 09590 { -329, -329, -329, -329, -329}},
09591 /* UA.@G..AU */
09592 {{ 0, 0, 0, 0, 0}, 0}, 09593 { -599, -599, -599, -599, -599}, 09594 { -239, -239, -239, -239, -239},
09592 {{
09595 { -689, -689, -689, -689}, 09596 { -329, -329, -329, -329, -329}},
09596 { -329, -329, -329, -329},

09597 /* UA.@U..AU */

09598 { 0, 0, 0, 0, 0},

09599 { -599, -599, -599, -599},

09600 { -239, -239, -239, -239, -239},

09601 { -689, -689, -689, -689, -689},

09602 { -329, -329, -329, -329, -329}}},
09603 /* UA.A@..AU */
09604 {{{ DEF, -399, -629, -889, -589},
09609 /* UA.AA..AU */
09610 {{ DEF, -399, -629, -889, -589},
09611 {
            -479, -828, -1058, -1318, -1018},
09612 { -309, -658, -888,-1148, -848},
09613 { -389, -738, -968,-1228, -928},
09614 { -379, -728, -958,-1218, -918}},
09615 /* UA.AC..AU */
09616 {{ DEF, -399, -629, -889, -589}, 09617 { -649, -998, -1228, -1488, -1188}, 09618 { -289, -638, -868, -1128, -828},
09619 { -739, -1088, -1318, -1578, -1278},
09620 { -379, -728, -958, -1218, -918}},
09621 /* UA.AG..AU */
09622 {{ DEF, -399, -629, -889, -589},
09623 { -649, -998, -1228, -1488, -1188},
09624 { -289, -638, -868, -1128, -828},
09625 { -739, -1088, -1318, -1578, -1278},
09626 { -379, -728, -958, -1218, -918}},
09627 /* UA.AU..AU */
09628 {{ DEF, -399, -629, -889, -589}, 09629 { -649, -998, -1228, -1488, -1188},
09630 { -289, -638, -868, -1128, -828}, 
09631 { -739, -1088, -1318, -1578, -1278},
09632 { -379, -728, -958,-1218, -918}}},
09633 /* UA.C@..AU */
09634 {{{ DEF, -429, -509, -199, -179},
09635 { -100, -479, -559, -249, -229},
09636 { -100, -479, -559, -249, -229}, 
09637 { -100, -479, -559, -249, -229}, 
09638 { -100, -479, -559, -249, -229}},
09639 /* UA.CA..AU */
09640 {{ DEF, -429, -509, -199, -179}, 09641 { -479, -858, -938, -628, -608}, 09642 { -309, -688, -768, -458, -438},
09643 { -389, -768, -848, -538, -518}, 09644 { -379, -758, -838, -528, -508}},
09645 /* UA.CC..AU */
09646 {{ DEF, -429, -509, -199, -179},
09647 { -649,-1028,-1108, -798, -778},
09648 { -289, -668, -748, -438, -418},
09649 {
            -739,-1118,-1198, -888, -868}
09650 \{ -379, -758, -838, -528, -508 \} 
09651 /* UA.CG..AU */
09652 {{ DEF, -429, -509, -199, -179},
09653 { -649, -1028, -1108, -798, -778},
09654 { -289, -668, -748, -438, -418},
09655 { -739, -1118, -1198, -888, -868},
09656 { -379, -758, -838, -528, -508}},
09657 /* UA.CU..AU */
09658 {{ DEF, -429, -509, -199, -179},
09659 { -649, -1028, -1108, -798, -778},
09660 { -289, -668, -748, -438, -418},
09661 { -739,-1118,-1198, -888, -868}
09662 { -379, -758, -838, -528, -508}}},
09663 /* UA.G@..AU */
```

```
09664 {{{ DEF, -379, -679, -889, -679},
09665 { -100, -429, -729, -939, -729}, 09666 { -100, -429, -729, -939, -729},
09667 { -100, -429, -729, -939, -729}, 09668 { -100, -429, -729, -939, -729}}, 09669 /* UA.GA..AU */
09670 {{ DEF, -379, -679, -889, -679},
09671 { -479, -808, -1108, -1318, -1108},
09672 {
            -309, -638, -938, -1148, -938},
09673 { -389, -718, -1018, -1228, -1018}, 
09674 { -379, -708, -1008, -1218, -1008}},
09675 /* UA.GC..AU */
09676 {{ DEF, -379, -679, -889, -679},
09677 { -649, -978, -1278, -1488, -1278},
09678 { -289, -618, -918, -1128, -918},
09679 {
            -739,-1068,-1368,-1578,-1368}
09680 \{ -379, -708, -1008, -1218, -1008 \} 
09681 /* UA.GG..AU */
09682 {{ DEF, -379, -679, -889, -679},
         \{-649, -978, -1278, -1488, -1278\},
09684
            -289, -618, -918, -1128, -918},
09685 {
            -739, -1068, -1368, -1578, -1368}
09686 { -379, -708,-1008,-1218,-1008}},
09687 /* UA.GU..AU */
09688 {{ DEF, -379, -679, -889, -679},
         { -649, -978, -1278, -1488, -1278},
09690 { -289, -618, -918, -1128, -918},
09691 {
            -739, -1068, -1368, -1578, -1368},
09692 { -379, -708, -1008, -1218, -1008}}},
09693 /* UA.U@..AU */
09694 {{{ DEF, -279, -139, -279, -140},
09695 { -100, -329, -189, -329, -190},
09696 { -100, -329, -189, -329, -190},
09697 { -100, -329, -189, -329, -190}
09698 { -100, -329, -189, -329, -190}, 09698 { -100, -329, -189, -329, -190}}, 09699 /* UA.UA..AU */
09700 {{ DEF, -279, -139, -279, -140}, 09701 { -479, -708, -568, -708, -569}, 09702 { -309, -538, -398, -538, -399},
09703 {
            -389, -618, -478, -618, -479},
09704 { -379, -608, -468, -608, -469}},
09705 /* UA.UC..AU */
09705 /* 0A.UC..AU */
09706 {{ DEF, -279, -139, -279, -140},
09707 { -649, -878, -738, -878, -739},
09708 { -289, -518, -378, -518, -379},
09709 { -739, -968, -828, -968, -829},
09710 { -379, -608, -468, -608, -469}},
09711 /* UA.UG..AU */
09712 {{ DEF, -279, -139, -279, -140},
09713 { -649, -878, -738, -878, -739}, 09714 { -289, -518, -378, -518, -379},
09715 { -739, -968, -828, -968, -829}, 09716 { -379, -608, -468, -608, -469}},
09717 /* UA.UU..AU */
09718 {{ DEF, -279, -139, -279, -140}, 09718 {-649, -878, -738, -878, -739}, 09720 { -289, -518, -378, -518, -379},
09721 { -739, -968, -828, -968, -829},
09722 { -379, -608, -468, -608, -469}}}},
09723 /* UA.@@..UA */
              09724 {{{{
09725 {
              DEF, DEF, DEF, DEF, DEF},
09727 {
           DEF, DEF, DEF, DEF,
                                 DEF, DEF, DEF},
09728 {
                                          DEF,
                                                   DEF } }
09729 /* UA.@A..UA */
09730 {{ 0, 0, 0, 0, 0}, 0}, 09731 { -399, -399, -399, -399, -399}, 09732 { -429, -429, -429, -429, -429}, 09733 { -379, -379, -379, -379, -379}, 09734 { -279, -279, -279, -279, -279}},
09735 /* UA.@C..UA */
09736 {{ 0, 0, 0, 0, 0}, 0}, 09737 { -629, -629, -629, -629, -629}, 09738 { -509, -509, -509, -509, -509},
         \{-679, -679, -679, -679, -679\},
09739
09740 { -139, -139, -139, -139, -139}},
09741 /* UA.@G..UA */
09742 {{ 0, 0, 0, 0, 0}
09743 {-889, -889, -889, -889, -889},
09744 {-199, -199, -199, -199, -199},
09745 {-889, -889, -889, -889, -889},
09746 { -279, -279, -279, -279, -279}},
09747 /* UA.@U..UA */
09748 {{ 0, 0, 0, 0, 0}, 0}, 0}
09749 { -589, -589, -589, -589, -589}, 09750 { -179, -179, -179, -179},
```

```
09751 { -679, -679, -679, -679, -679},
09752 { -140, -140, -140, -140, -140}}},
09753 /* UA.A@..UA */
09754 {{{ DEF, -399, -629, -889, -589},
09755 { -100, -449, -679, -939, -639}, 
09756 { -100, -449, -679, -939, -639},
09757 { -100, -449, -679, -939, -639}, 09758 { -100, -449, -679, -939, -639}},
09759 /* UA.AA..UA */
09759 /* UA.AA..UA */
09760 {{ DEF, -399, -629, -889, -589}, 09761 { -449, -798, -1028, -1288, -988}, 09762 { -479, -828, -1058, -1318, -1018}, 09763 { -429, -778, -1008, -1268, -968}, 09764 { -329, -678, -908, -1168, -868}},
09765 /* UA.AC..UA */
09766 {{ DEF, -399, -629, -889, -589}, 09767 { -679, -1028, -1258, -1518, -1218},
09768 { -559, -908, -1138, -1398, -1098},
         { -729, -1078, -1308, -1568, -1268},
09770 { -189, -538, -768, -1028, -728}},
09771 /* UA.AG..UA */
09772 {{ DEF, -399, -629, -889, -589}, 09773 { -939, -1288, -1518, -1778, -1478},
09774 { -249, -598, -828, -1088, -788},
09775 { -939, -1288, -1518, -1778, -1478},
09776 { -329, -678, -908, -1168, -868}},
09777 /* UA.AU..UA */
09778 {{ DEF, -399, -629, -889, -589}, 09779 { -639, -988, -1218, -1478, -1178}, 09780 { -229, -578, -808, -1068, -768},
09781 { -729, -1078, -1308, -1568, -1268},
09782 { -190, -539, -769,-1029, -729}}},
09783 /* UA.C@..UA */
09784 {{{ DEF, -429, -509, -199, -179},
09789
         /* UA.CA..UA */
09790 {{ DEF, -429, -509, -199, -179}, 09791 { -449, -828, -908, -598, -578}, 09792 { -479, -858, -938, -628, -608},
09793 { -429, -808, -888, -578, -558}, 
09794 { -329, -708, -788, -478, -458}},
09795 /* UA.CC..UA */
09796 {{ DEF, -429, -509, -199, -179},
09797 { -679, -1058, -1138, -828, -808}, 
09798 { -559, -938, -1018, -708, -688},
09799 { -729, -1108, -1188, -878, -858},
09800 { -189, -568, -648, -338, -318}},
09801 /* UA.CG..UA */
09802 {{ DEF, -429, -509, -199, -179},
09803 { -939, -1318, -1398, -1088, -1068},
09804 { -249, -628, -708, -398, -378},
09805 { -939, -1318, -1398, -1088, -1068},
09806 { -329, -708, -788, -478, -458}},
09807 /* UA.CU..UA */
09808 {{ DEF, -429, -509, -199, -179},
09809 { -639,-1018,-1098, -788, -768},
09810 { -229, -608, -688, -378, -358},

09811 { -729, -1108, -1188, -878, -858},

09812 { -190, -569, -649, -339, -319}}},

09813 /* UA.G@..UA */
09813 /* 074.08...0 */
09814 {{{ DEF, -379, -679, -889, -679}, 
09815 { -100, -429, -729, -939, -729}, 
09816 { -100, -429, -729, -939, -729}, 
09817 { -100, -429, -729, -939, -729}, 
09818 { -100, -429, -729, -939, -729}},
09819 /* UA.GA..UA */
09820 {{ DEF, -379, -679, -889, -679}, 09821 { -449, -778, -1078, -1288, -1078},
09822 { -479, -808, -1108, -1318, -1108},
09823 { -429, -758,-1058,-1268,-1058},
09824 { -329, -658, -958,-1168, -958}},
09825 /* UA.GC..UA */
09826 {{ DEF, -379, -679, -889, -679},
09827 { -679, -1008, -1308, -1518, -1308},
09828 {
            -559, -888, -1188, -1398, -1188},
09829 { -729, -1058, -1358, -1568, -1358},
09830 { -189, -518, -818, -1028, -818}},
09831 /* UA.GG..UA */
09832 {{
               DEF, -379, -679, -889, -679},
         \{-939, -1268, -1568, -1778, -1568\},
09833
09834 { -249, -578, -878, -1088, -878},
09835 { -939,-1268,-1568,-1778,-1568},
09836 { -329, -658, -958, -1168, -958}},
09837 /* UA.GU..UA */
```

```
09838 {{ DEF, -379, -679, -889, -679},
09839 { -639, -968, -1268, -1478, -1268},
09840 { -229, -558, -858, -1068, -858},
          -729, -1058, -1358, -1568, -1358},
09841 {
09842 { -190, -519, -819, -1029, -819}}}
09843 /* UA.U@..UA */
09844 {{{ DEF, -279, -139, -279, -140},
09845 { -100, -329, -189, -329, -190},
09846 { -100, -329, -189, -329, -190},
09847 { -100, -329, -189, -329, -190},
09848 { -100, -329, -189, -329, -190}},
09849 /* UA.UA..UA */
09850 {{ DEF, -279, -139, -279, -140},
09851 { -449, -678, -538, -678, -539},
09852 { -479, -708, -568, -708, -569},
09853 {
09853 { -429, -658, -518, -658, -519},
09854 { -329, -558, -418, -558, -419}},
09855 /* UA.UC..UA */
09856 {{ DEF, -279, -139, -279, -140},
        \{-679, -908, -768, -908, -769\},
          -559, -788, -648, -788, -649},
09858
09859 {
          -729, -958, -818, -958, -819}
09860 { -189, -418, -278, -418, -279}},
09861 /* UA.UG..UA */
09862 {{ DEF, -279, -139, -279, -140},
        { -939, -1168, -1028, -1168, -1029},
09864 { -249, -478, -338, -478, -339},
09865 {
          -939,-1168,-1028,-1168,-1029},
09866 { -329, -558, -418, -558, -419}},
09867 /* UA.UU..UA */
09868 {{ DEF, -279, -139, -279, -140}, 09869 { -639, -868, -728, -868, -729},
09870 {
           -229, -458, -318, -458, -319},
09871 { -729, -958, -818, -958, -819}
09872 { -190, -419, -279, -419, -280}}}},
09873 /* UA.@@.. @ */
09874 {{{{DEF, DEF, DEF,
                                         DEF,
                                                 DEF },
        { DEF, DEF, DEF, DEF, DEF},
09876 {
            DEF, DEF,
                             DEF, DEF,
            DEF, DEF, DEF, DEF,
09877 {
                             DEF,
                                     DEF,
09878 {
                                     DEF,
                                             DEF } }
09879 /* UA.@A.. @ */
09880 {{ DEF, DEF, DEF, DEF, DEF}
09881 { DEF, DEF, DEF, DEF, DEF},
                                     DEF, DEF},
            DEF, DEF,
                             DEF,
                                     DEF,
                    DEF,
                             DEF,
09883
            DEF,
                                     DEF,
09884 {
            DEF,
                   DEF, DEF, DEF,
                                            DEF } },
09885 /* UA.@C.. @ */
09886 {{ DEF, DEF, DEF, DEF, DEF},
09887 { DEF, DEF, DEF, DEF},
            DEF,
                     DEF,
                             DEF,
                                     DEF,
09889
            DEF,
                     DEF,
                             DEF,
                                     DEF,
09890 {
                                              DEF } },
            DEF,
                   DEF,
                             DEF,
                                     DEF,
09891 /* UA.@G.. @ */
09892 {{ DEF, DEF, DEF,
                                     DEF, DEF},
            DEF, DEF,
                                     DEF,
                                              DEF } ,
09893 {
                             DEF,
            DEF,
                     DEF,
                             DEF,
                                     DEF,
            DEF,
09895 {
                     DEF,
                             DEF,
                                     DEF,
                                              DEF }.
09896 {
            DEF,
                   DEF, DEF,
                                     DEF,
                                              DEF } }
09897 /* UA.@U.. @ */
09898 {{ DEF, DEF, DEF, DEF, DEF}
09899 { DEF, DEF, DEF, DEF, DEF},
                                              DEF).
            DEF, DEF,
                             DEF,
                                     DEF,
                                             DEF},
09901 {
            DEF,
                     DEF,
                             DEF,
                                     DEF,
09902 {
            DEF,
                   DEF,
                            DEF,
                                     DEF,
                                             DEF } } }
09902 ( bEr, bEr, bEr, bEr), 19903 (* UA.A@.. @ */
09904 {{{ -100, -449, -679, -939, -639},
09905 { -100, -449, -679, -939, -639},
09906 { -100, -449, -679, -939, -639},
09907 { -100, -449, -679, -939, -639},
09908 { -100, -449, -679, -939, -639}},
09909 /* UA.AA.. @ */
09910 {{ -100, -449, -679, -939, -639}, 09911 { -100, -449, -679, -939, -639}, 09912 { -100, -449, -679, -939, -639},
        \{-100, -449, -679, -939, -639\},\
09913
09914 \{ -100, -449, -679, -939, -639 \} \}
09915 /* UA.AC. (0 */

09916 {{ -100, -449, -679, -939, -639},

09917 { -100, -449, -679, -939, -639},

09918 { -100, -449, -679, -939, -639},
09919 { -100, -449, -679, -939, -639},
09920 { -100, -449, -679, -939, -639}},
09921 /* UA.AG.. @ */
09922 {{ -100, -449, -679, -939, -639}, 09923 { -100, -449, -679, -939, -639}, 09924 { -100, -449, -679, -939, -639},
```

```
09925 { -100, -449, -679, -939, -639},
09926 { -100, -449, -679, -939, -639}},
09927 /* UA.AU.. @ */
09928 {{ -100, -449, -679, -939, -639},
09928 { -100, -449, -679, -939, -639},

09929 { -100, -449, -679, -939, -639},

09931 { -100, -449, -679, -939, -639},

09931 { -100, -449, -679, -939, -639},

09932 { -100, -449, -679, -939, -639}}},
09932 { -100, -449, -679, -939, -639}}},
09933 /* UA.C@.. @ */
09934 {{{ -100, -479, -559, -249, -229},
09935 { -100, -479, -559, -249, -229},
09936 { -100, -479, -559, -249, -229},
09937 { -100, -479, -559, -249, -229},
09938 { -100, -479, -559, -249, -229},
09939 /* UA.CA.. @ */
09940 {{ -100, -479, -559, -249, -229}, 09941 { -100, -479, -559, -249, -229}, 09942 { -100, -479, -559, -249, -229}, 09943 { -100, -479, -559, -249, -229}, 09944 { -100, -479, -559, -249, -229}, 09944 { -100, -479, -559, -249, -229}},
09945 /* UA.CC.. @ */
09946 {{ -100, -479, -559, -249, -229},

09947 { -100, -479, -559, -249, -229},

09948 { -100, -479, -559, -249, -229},

09949 { -100, -479, -559, -249, -229},

09950 { -100, -479, -559, -249, -229},
09951 /* UA.CG.. @ */
09951 /* 0A.CG.. e */
09952 {{ -100, -479, -559, -249, -229},
09953 { -100, -479, -559, -249, -229},
09954 { -100, -479, -559, -249, -229},
09955 { -100, -479, -559, -249, -229},
09956 { -100, -479, -559, -249, -229}},
09957 /* UA.CU.. @ */
09958 {{ -100, -479, -559, -249, -229},
09959 { -100, -479, -559, -249, -229}, 09959 { -100, -479, -559, -249, -229}, 09960 { -100, -479, -559, -249, -229}, 09961 { -100, -479, -559, -249, -229}, 09962 { -100, -479, -559, -249, -229}}},
09963 /* UA.G@.. @ */
09964 {{ -100, -429, -729, -939, -729}, 09965 { -100, -429, -729, -939, -729}, 09966 { -100, -429, -729, -939, -729}, 09967 { -100, -429, -729, -939, -729}, 09968 { -100, -429, -729, -939, -729}},
               /* UA.GA.. @ */
09969
09970 {{ -100, -429, -729, -939, -729},
09971 { -100, -429, -729, -939, -729}, 
09972 { -100, -429, -729, -939, -729}, 
09973 { -100, -429, -729, -939, -729}, 
09973 { -100, -429, -729, -939, -729}, 
09974 { -100, -429, -729, -939, -729}},
09975 /* UA.GC.. @ */
09976 {{ -100, -429, -729, -939, -729},
09977 {
                    -100, -429, -729, -939, -729},
09978 {
                   -100, -429, -729, -939, -729},
09979 { -100, -429, -729, -939, -729}, 
09980 { -100, -429, -729, -939, -729}},
09981 /* UA.GG.. @ */
09982 {{ -100, -429, -729, -939, -729},
09983 { -100, -429, -729, -939, -729}, 09984 { -100, -429, -729, -939, -729}, 09985 { -100, -429, -729, -939, -729}, 09986 { -100, -429, -729, -939, -729},
09987 /* UA.GU.. @ */
0998 { -100, -429, -729, -939, -729}, 0998 { -100, -429, -729, -939, -729}, 0999 { -100, -429, -729, -939, -729}, 0999 { -100, -429, -729, -939, -729}, 0999 { -100, -429, -729, -939, -729}, 0999 { -100, -429, -729, -939, -729}}, 0999 { -100, -429, -729, -939, -729}}}
09993 /* UA.U@.. @ */
09994 {{{ -100, -329, -189, -329, -190},
09995 { -100, -329, -189, -329, -190},
09996 { -100, -329, -189, -329, -190},
09997 { -100, -329, -189, -329, -190},
09998 { -100, -329, -189, -329, -190}},
09999 /* UA.UA.. @ */
10000 {{ -100, -329, -189, -329, -190},
 10001 { -100, -329, -189, -329, -190},
 10002 {
                    -100, -329, -189, -329, -190},
10003 { -100, -329, -189, -329, -190},

10003 { -100, -329, -189, -329, -190},

10004 { -100, -329, -189, -329, -190},

10005 /* UA.UC.. @ */

10006 {{ -100, -329, -189, -329, -190},
10007 { -100, -329, -189, -329, -190},
10008 { -100, -329, -189, -329, -190},
10009 { -100, -329, -189, -329, -190},
10010 { -100, -329, -189, -329, -190}},
 10011 /* UA.UG.. @ */
```

```
10012 {{ -100, -329, -189, -329, -190},
10013 { -100, -329, -189, -329, -190},
10014 { -100, -329, -189, -329, -190},
10015 { -100, -329, -189, -329, -190},
10016 { -100, -329, -189, -329, -190}},
10017 /* UA.UU.. @ */
10018 {{ -100, -329, -189, -329, -190}, 10019 { -100, -329, -189, -329, -190},
10020 { -100, -329, -189, -329, -190},
10021 { -100, -329, -189, -329, -190}, 10022 { -100, -329, -189, -329, -190}}}}, 10023 { /* noPair */ {{{{0}}}}},
10024 /* @.@@..CG */
10025 {{{{ DEF, DEF, DEF, DEF, DEF},
10026 { -100, -100, -100, -100, -100},
10027 {
             -100, -100, -100, -100, -100},
10028 { -100, -100, -100, -100, -100}, 10029 { -100, -100, -100, -100, -100}},
10030 /* @.@A..CG */
10031 {{ DEF, DEF, DEF, DEF, DEF},
10032 {-1079,-1079,-1079,-1079,-1079},
10033 { -569, -569, -569, -569, -569},
10033 { -569, -569, -569, -569, -569, }
10034 { -989, -989, -989, -989, -989},
10035 { -859, -859, -859, -859},
10036 /* @.@C..CG */
10037 {{ DEF, DEF, DEF, DEF, DEF},
10038 { -999, -999, -999, -999, -999},
10039 { -499, -499, -499, -499, -499},
10040 { -989, -989, -989, -989, -989}, 10040 { -989, -989, -989, -989, -789, -789}, 10041 { -789, -789, -789, -789, -789}}, 10042 /* @.@G..CG */
10043 {{ DEF, DEF, DEF, DEF, DEF}, DEF},
10044 {-1079,-1079,-1079,-1079,-1079},
10045 { -569, -569, -569, -569, -569},
10046 { -989, -989, -989, -989, -989},
10047 { -859, -859, -859, -859, -859}}
10048 /* @.@U..CG */
10049 {{ DEF, DEF, DEF, DEF, DEF},
10050 {-1079,-1079,-1079,-1079,-1079},
10051 { -719, -719, -719, -719, -719},
10052 { -989, -989, -989, -989, -989},
10053 { -909, -909, -909, -909, -909}}},
10054 /* @.A@..CG */
10055 {{ DEF, DEF, DEF, DEF, DEF},
10056 { -100, -100, -100, -100}, 10057 { -100, -100, -100, -100, -100},
10058 { -100, -100, -100, -100, -100},

10058 { -100, -100, -100, -100, -100},

10060 /* @.AA..CG */

10061 {{ DEF, DEF, DEF, DEF},
10062 {-1079, -1079, -1079, -1079, -1079},
10063 { -569, -569, -569, -569, -569}, 10064 { -989, -989, -989, -989, -989, -989, -989, -989},
10065 { -859, -859, -859, -859, -859}},
10066 /* @.AC..CG */
10067 {{ DEF, DEF, DEF, DEF, DEF}, 10068 { -999, -999, -999, -999, -999}, 10069 { -499, -499, -499, -499, -499},
10070 { -989, -989, -989, -989, -989},
10071 { -789, -789, -789, -789, -789}}
10072 /* @.AG..CG */
10073 {{ DEF, DEF, DEF, DEF, DEF},
10074 {-1079, -1079, -1079, -1079, -1079},
10075 { -569, -569, -569, -569, -569}, 10076 { -989, -989, -989, -989, -989, -989, -989, -989},
10077 { -859, -859, -859, -859}},
10078 /* @.AU..CG */
10079 {{ DEF, DEF, DEF, DEF, DEF}},
10080 {-1079, -1079, -1079, -1079, -1079},
10081 { -719, -719, -719, -719, -719},
10082 { -989, -989, -989, -989, -989},
10083 { -909, -909, -909, -909, -909}}},
10084 /* @.C@..CG */
10085 {{ DEF, DEF, DEF, DEF, DEF}, 10086 { -100, -100, -100, -100, -100}, 10087 { -100, -100, -100, -100, -100},
           \{-100, -100, -100, -100, -100\},\
10088
10089 { -100, -100, -100, -100, -100}},
10090 /* @.CA..CG */
10091 {{ DEF, DEF, DEF, DEF, DEF}},
10092 {-1079,-1079,-1079,-1079,-1079},
10093 { -569, -569, -569, -569, -569},
10094 { -989, -989, -989, -989, -989},
10095 { -859, -859, -859, -859, -859}}
10096 /* @.CC..CG */
10097 {{ DEF, DEF, DEF, DEF, DEF},
10098 { -999, -999, -999, -999},
```

```
10099 { -499, -499, -499, -499, -499},
 10100 { -989, -989, -989, -989, -989},
10101 { -789, -789, -789, -789, -789}},
 10102 /* @.CG..CG */
10103 {{ DEF, DEF, DEF, DEF, DEF}
10104 {-1079,-1079,-1079,-1079},
                                                                                                           DEF, DEF},
                       { -569, -569, -569, -569},
  10106 { -989, -989, -989, -989, -989},
10107 { -859, -859, -859, -859}, -859}}, 10108 /* @.CU..CG */
10109 {{ DEF, DEF, DEF, DEF, DEF}, D1100 {-1079, -1079, -1079, -1079, -1079},
  10111 { -719, -719, -719, -719, -719},
 10112 { -989, -989, -989, -989, -989},
10113 { -909, -909, -909, -909, -909}}},
10113 { -909, -900, 300, 300, 300, 101114 /* @.G@.CG */
10115 {{ DEF, DEF, DEF, DEF, DEF}, 10116 { -100, -100, -100, -100, -100}, 10117 { -100, -100, -100, -100, -100}
10117 { -100, -100, -100, -100, -100},
10118 { -100, -100, -100, -100, -100},
10119 { -100, -100, -100, -100, -100}},
10120 /* @.GA..CG */
10121 {{ DEF, DEF, DEF, DEF, DEF},
10122 {-1079, -1079, -1079, -1079, -1079},
10123 { -569, -569, -569, -569, -569},
10124 { -989, -989, -989, -989, -989},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859, -859},
10125 { -859, -859, -859, -859},
10125 { -859, -859, -859},
10125 { -859, -859, -859},
10125 { -859, -859, 
  10125 { -859, -859, -859, -859, -859}},
10125 { -859, -859, -859, -859, -859}, 10126 /* @.GC..CG */
10127 {{ DEF, DEF, DEF, DEF, DEF, DEF}, 10128 { -999, -999, -999, -999, -999}, 10129 { -499, -499, -499, -499, -499, -499, -10130 { -989, -989, -989, -989, -989, -989}, 10131 { -789, -789, -789, -789, -789}, -789},
 10132 /* @.GG..CG */
 10133 {{ DEF, DEF, DEF, DEF, DEF} 
10134 {-1079,-1079,-1079,-1079,-1079},
                                                                                                          DEF, DEF},
 10135 { -569, -569, -569, -569}, 10136 { -989, -989, -989, -989, -989, -989}, 10137 { -859, -859, -859, -859, -859}}
 10138 /* @.GU..CG */
10139 {{ DEF, DEF, DEF, DEF, DEF},
10140 {-1079,-1079,-1079,-1079},
 10141 { -719, -719, -719, -719, -719},
10142 { -989, -989, -989, -989, -989},
  10143 { -909, -909, -909, -909, -909}}},
10143 { -909, -909, -909, -909, -909}}},
10144 /* @.U@..CG */
10145 {{{ DEF, DEF, DEF, DEF, DEF},
10146 { -100, -100, -100, -100, -100},
10147 { -100, -100, -100, -100, -100},
10148 { -100, -100, -100, -100, -100},
10149 { -100, -100, -100, -100, -100}},
10150 /* @.UA..CG */
10151 {{ DEF, DEF, DEF, DEF, DEF},
10152 { -1079, -1079, -1079, -1079},
10150 /* @.UA..CG */
 10152 {-1079, -1079, -1079, -1079},
 10153 { -569, -569, -569, -569, -569},
10154 { -989, -989, -989, -989, -989},
10155 { -859, -859, -859, -859, -859}},
  10156 /* @.UC..CG */
10158 /* E.OC...CG */
10157 {{ DEF, DEF, DEF, DEF, DEF},
10158 { -999, -999, -999, -999},
10159 { -499, -499, -499, -499, -499},
10160 { -989, -989, -989, -989, -989},
10161 { -789, -789, -789, -789, -789}},
 10162 /* @.UG..CG */
10163 {{ DEF, DEF, DEF, DEF, DEF},
 10164 {-1079,-1079,-1079,-1079,-1079},
 10165 { -569, -569, -569, -569, -569},
10166 { -989, -989, -989, -989, -989},
10167 { -859, -859, -859, -859, -859}},
 10168 /* @.UU..CG */
10169 {{ DEF, DEF, DEF, DEF, DEF},
 10170 {-1079, -1079, -1079, -1079, -1079},
10171 { -719, -719, -719, -719}, 10172 { -989, -989, -989, -989, -989}, 10173 { -909, -909, -909, -909, -909}}}}, 10174 /* @.@@..GC */
  10175 {{{{ DEF, DEF, DEF, DEF, DEF},
 10176 { -100, -100, -100, -100, -100}, 10177 { -100, -100, -100, -100, -100},
10177 { -100, -100, -100, -100, -100}, 10178 { -100, -100, -100, -100, -100}, 10179 { -100, -100, -100, -100, -100}}, 10180 /* @.@A..gc */
10181 {{ DEF, DEF, DEF, DEF, DEF}, 10182 { -569, -569, -569, -569}, -569},
 10183 { -769, -769, -769, -769},
 10184 { -759, -759, -759, -759, -759}, 10185 { -549, -549, -549, -549, -549}},
```

```
10186 /* @.@C..GC */
10187 {{ DEF, DEF, DEF, DEF, DEF},
10188 { -929, -929, -929, -929, -929},
10189 { -359, -359, -359, -359, -359},
                                                             DEF, DEF},
10190 { -789, -789, -789, -789, -789}, 10191 { -549, -549, -549, -549, -549, -549}},
10191 ( 349, 349, 349, 349), 10192 /* @.@G..GC */
10193 {{ DEF, DEF, DEF, DEF, DEF},
10194 { -609, -609, -609, -609, -609},
10195 { -359, -359, -359, -359, -359},
10196 { -669, -669, -669, -669, -669}, 10197 { -549, -549, -549, -549, -549, -549}}
10198 /* @.@U..GC */
10199 {{ DEF, DEF, DEF, DEF, DEF},
10200 { -929, -929, -929, -929},
10201 { -439, -439, -439, -439}, 10202 { -789, -789, -789, -789, -789}, 10203 { -619, -619, -619, -619, -619}}}, 10204 /* @.A@..GC */
10205 {{ DEF, DEF, DEF, DEF, DEF},
10206 { -100, -100, -100, -100, -100}, 10207 { -100, -100, -100, -100, -100},
10207 { -100, -100, -100, -100, -100}, 10208 { -100, -100, -100, -100, -100, -100}, 10209 { -100, -100, -100, -100, -100, -100}, 10210 /* @.AA..GC */
10211 {{ DEF, DEF, DEF, DEF, DEF, DEF}, 10212 { -569, -569, -569, -569, -769}, 10213 { -769, -769, -769, -769, -769}, 10214 { -759, -759, -759, -759}, -759, 10215 { -549, -549, -549, -549, -549}, 10216 /* @.AC..GC */
10217 { DEF, DEF, DEF, DEF, DEF, DEF}, 10218 { -929, -929, -929, -929}, -929}, 10219 { -359, -359, -359, -359, -359}, 359, -359},
 10219
                 -359, -359, -359, -359, -359},
10220 { -789, -789, -789, -789, -789}, 10221 { -549, -549, -549, -549, -549, -549}},
10222 /* @.AG..GC */
10223 {{ DEF, DEF, DEF, DEF, DEF},
 10224 { -609, -609, -609, -609, -609},
 10225 {
                 -359, -359, -359, -359, -359},
10226 { -669, -669, -669, -669}
10226 { -549, -549, -549, -549, -549},

10227 { -549, -549, -549, -549},

10228 /* @.AU..GC */

10229 {{ DEF, DEF, DEF, DEF, DEF},

10230 { -929, -929, -929, -929, -929},

10231 { -439, -439, -439, -439, -439},
10232 { -789, -789, -789, -789, -789}, 10233 { -619, -619, -619, -619, -619}}}
10234 /* @.C@..GC */
10235 {{{ DEF, DEF, DEF, DEF, DEF},
10236 { -100, -100, -100, -100, -100}, 10237 { -100, -100, -100, -100, -100},
10238 { -100, -100, -100, -100, -100}
10239 { -100, -100, -100, -100, -100}},
10240 /* @.CA..GC */
10241 {{ DEF, DEF, DEF, DEF, DEF} 10242 { -569, -569, -569, -569, -569, -569},
                                                                            DEF }
 10243
             \{-769, -769, -769, -769, -769\},
 10244
                 -759, -759, -759, -759, -759},
 10245 { -549, -549, -549, -549, -549}},
10246 /* @.CC..GC */
10247 {{ DEF, DEF, DEF, DEF, DEF},
10248 { -929, -929, -929, -929, -929},
                 -359, -359, -359, -359, -359},
 10249
 1.0250 {
                 -789, -789, -789, -789, -789}
10251 { -549, -549, -549, -549, -549}},
10251 { -549, -549, -549, -549}},
10252 /* @.CG..GC */
10253 {{ DEF, DEF, DEF, DEF, DEF},
10254 { -609, -609, -609, -609, -609},
10255 { -359, -359, -359, -359},
10256 { -669, -669, -669, -669, -669}, 10257 { -549, -549, -549, -549, -549, -549}}
10258 /* @.CU..GC */
10259 {{ DEF, DEF, DEF, DEF, DEF},
10260 { -929, -929, -929, -929, -929},
10261 { -439, -439, -439, -439, -439},
 10262 { -789, -789, -789, -789, -789},
10263 { -619, -619, -619, -619, -619}},
10264 /* @.G@..GC */
10265 {{ DEF, DEF, DEF, DEF, DEF}, 10266 { -100, -100, -100, -100, -100}, 10267 { -100, -100, -100, -100, -100},
10268 { -100, -100, -100, -100, -100},
10269 { -100, -100, -100, -100, -100}}
10270 /* @.GA..GC */
10271 {{ DEF, DEF, DEF, DEF, DEF},
10272 { -569, -569, -569, -569, -569},
```

```
10273 { -769, -769, -769, -769},
10274 { -759, -759, -759, -759, -759}, 10275 { -549, -549, -549, -549, -549, -549}}
10276 /* @.GC..GC */
10277 {{ DEF, DEF, DEF, DEF, DEF}, 10278 { -929, -929, -929, -929, -929}, 10279 { -359, -359, -359, -359, -359},
 10280
               \{ -789, -789, -789, -789, -789 \}
10281 { -549, -549, -549, -549, -549}},
10282 /* @.GG..GC */
10283 {{ DEF, DEF, DEF, DEF, DEF},
10284 { -609, -609, -609, -609, -609},
10285 { -359, -359, -359, -359, -359},
10286 { -669, -669, -669, -669, -669}, 10287 { -549, -549, -549, -549, -549, -549}}
10288 /* @.GU..GC */
10289 {{ DEF, DEF, DEF, DEF, DEF},
10290 { -929, -929, -929, -929, -929},
10291 { -439, -439, -439, -439, -439},
 10292 { -789, -789, -789, -789, -789},
10293 { -619, -619, -619, -619, -619}}},
10294 /* @.U@..GC */
10295 {{{ DEF, DEF, DEF, DEF, DEF}}, 10296 { -100, -100, -100, -100, -100}, 10297 { -100, -100, -100, -100, -100},
10298 { -100, -100, -100, -100, -100}, 10299 { -100, -100, -100, -100, -100}},
10300 /* @.UA..GC */
10301 {{ DEF, DEF, DEF, DEF, DEF},
10302 { -569, -569, -569, -569, -569},
10303 { -769, -769, -769, -769, -769},
10304 { -759, -759, -759, -759, -759},
 10305 { -549, -549, -549, -549, -549}},
10306 /* @.UC..GC */
10307 {{ DEF, DEF, DEF, DEF, DEF}, 10308 { -929, -929, -929, -929, -929}, 10309 { -359, -359, -359, -359, -359}, 10310 { -789, -789, -789, -789, -789, -789}, 10311 { -549, -549, -549, -549, -549},
10312 /* @.UG..GC */
10313 { DEF, DEF, DEF, DEF, DEF},
10314 { -609, -609, -609, -609, -609},
10315 { -359, -359, -359, -359, -359},
10316 { -669, -669, -669, -669, -669},
10316 { -669, -669, -669, -669, -669}, 10317 { -549, -549, -549, -549, -549}}, 10318 /* @.UU..GC */
10319 {{ DEF, DEF, DEF, DEF, DEF, DEF}, 10320 { -929, -929, -929, -929}, 10321 { -439, -439, -439, -439, -439}, 10322 { -789, -789, -789, -789, -789}, 10323 { -619, -619, -619, -619, -619}}},
10324 /* @.@@..GU */
10325 {{{ DEF, DEF, DEF, DEF, DEF}, DEF}, D326 { -100, -100, -100, -100, -100}, 10327 { -100, -100, -100, -100, -100}, 10328 { -100, -100, -100, -100, -100}, 10329 { -100, -100, -100, -100, -100},
10330 /* @.@A..GU */
10330 /* E.ER...GO */
10331 {{ DEF, DEF, DEF, DEF, DEF, DEF}, DS, -479, -479, -479}, 10332 { -479, -479, -479, -479, -3033 { -309, -309, -309, -309, -309, -309}, 10334 { -389, -389, -389, -389, -389, -389}, 10335 { -379, -379, -379, -379, -379}},
10336 /* @.@C..GU */
10337 {{ DEF, DEF, DEF, DEF},
10338 { -649, -649, -649, -649, -649},
10339 { -289, -289, -289, -289, -289}, 10340 { -739, -739, -739, -739, -739}, 10341 { -379, -379, -379, -379, -379}}
10342 /* @.@G..GU */
10343 {{ DEF, DEF, DEF, DEF, DEF},
10344 { -649, -649, -649, -649, -649},
10345 { -289, -289, -289, -289}, -289},
10346 { -739, -739, -739, -739}, 10347 { -379, -379, -379, -379, -379}}
 10348 /* @.@U..GU */
10349 {{ DEF, DEF, DEF, DEF, DEF}, 10350 { -649, -649, -649, -649, -649},
10351 { -289, -289, -289, -289}, 10352 { -739, -739, -739, -739, -739}, 10353 { -379, -379, -379, -379, -379}}},
 10354 /* @.A@..GU */
DEF, DEF},
10357 { -100, -100, -100, -100, -100},
10358 { -100, -100, -100, -100, -100}, 10359 { -100, -100, -100, -100, -100}},
```

```
10360 /* @.AA..GU */
10360 /* (G.AA..GU */
10361 {{ DEF, DEF, DEF, DEF, DEF},
10362 { -479, -479, -479, -479},
10363 { -309, -309, -309, -309, -309},
10364 { -389, -389, -389, -389, -389},
10365 { -379, -379, -379, -379, -379}},
 10366 /* @.AC..GU */
 10367 {{ DEF, DEF, DEF, DEF},
 10368 { -649, -649, -649, -649, -649},
 10369 { -289, -289, -289, -289}, -289}, 10370 { -739, -739, -739, -739, -739}, 10371 { -379, -379, -379, -379, -379}}
 10372 /* @.AG..GU */
10373 {{ DEF, DEF, DEF, DEF, DEF},
10374 { -649, -649, -649, -649, -649},
 10375 { -289, -289, -289, -289, -289}, 10376 { -739, -739, -739, -739, -739}, 10377 { -379, -379, -379, -379, -379}}
 10378 /* @.AU..GU */
 10379 {{ DEF, DEF, DEF, DEF, DEF}, 10380 { -649, -649, -649, -649, -649},
 10381 { -289, -289, -289, -289, -289},
 10382 { -739, -739, -739, -739, -739}, 10383 { -379, -379, -379, -379, -379}}, 10384 /* @.C@..GU */
 10385 {{ DEF, DEF, DEF, DEF, DEF}, 10386 { -100, -100, -100, -100, -100}, 10387 { -100, -100, -100, -100, -100},
10387 { -100, -100, -100, -100, -100}, 10388 { -100, -100, -100, -100, -100}, 10389 { -100, -100, -100, -100, -100}, 10390 /* @.CA..GU */
10391 {{ DEF, DEF, DEF, DEF, DEF}, D392 { -479, -479, -479, -479}, 10393 { -309, -309, -309, -309, -309}, 309}
 10394 { -389, -389, -389, -389, -389}, 10395 { -379, -379, -379, -379, -379}},
 10396 /* @.CC..GU */
10397 {{ DEF, DEF, DEF, DEF, DEF},
 10398
                      \{-649, -649, -649, -649, -649\},\
 10399
                           -289, -289, -289, -289, -289},
10400 { -739, -739, -739, -739, -739, 10401 { -379, -379, -379, -379, -379, -379}}, 10402 /* @.CG..GU */
10403 {{ DEF, DEF, DEF, DEF, DEF}, DEF}, 10404 { -649, -649, -649, -649, -649},
 10405 { -289, -289, -289, -289, -289},
 10406 { -739, -739, -739, -739}, 10407 { -379, -379, -379, -379, -379}}
 10408 /* @.CU..GU */
10408 { DEF, DEF, DEF, DEF, DEF},
10410 { -649, -649, -649, -649, -649},
 10411 {
                            -289, -289, -289, -289, -289},
                           -739, -739, -739, -739, -739}
 10412 {
 10413 { -379, -379, -379, -379, -379}}}
10414 /* @.G@..GU */
 DEF },
 10418 { -100, -100, -100, -100, -100}, 10419 { -100, -100, -100, -100, -100}},
 10420 /* @.GA..GU */
10421 {{ DEF, DEF, DEF, DEF, DEF},
10422 { -479, -479, -479, -479},
                            -309, -309, -309, -309, -309},
 1.0424 {
                           -389, -389, -389, -389, -389}
10424 { -309, -309, -309, -309, -309, -309}, 10425 { -379, -379, -379, -379}}, 10426 /* @.GC..GU */
10427 {{ DEF, DEF, DEF, DEF, DEF}, D428 { -649, -649, -649, -649, -649}, 10429 { -289, -289, -289, -289, -289},
10429 { -289, -289, -289, -289, -289, 10430 { -739, -739, -739, -739, -739}, 10431 { -379, -379, -379, -379, -379}}, 10432 /* @.GG..GU */
10433 {{ DEF, DEF, DEF, DEF, DEF, DEF}, 10434 { -649, -649, -649, -649, -649, -649}, 10435 { -289, -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289, -289}, 10435 { -289, -289, -289}, 10435 { -289, -289}, 10435 { -289, -289, -289}, 10435 { -289, -289, -289}, 10435 { -289, -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289, -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289}, 10435 { -289},
 10436 { -739, -739, -739, -739, -739},
10436 { -739, -739, -739, -739, -739, 10437 { -379, -379, -379, -379}}, 10438 /* @.GU..GU */
10439 {{ DEF, DEF, DEF, DEF, DEF}, 10440 { -649, -649, -649, -649, -649}, 10441 { -289, -289, -289, -289, -289},
 10442 { -739, -739, -739, -739}, 10443 { -379, -379, -379, -379, -379}}}
 10444 /* @.U@..GU */
 10444 /* e.0e..Go */
10445 {{{ DEF, DEF, DEF, DEF, DEF},
10446 { -100, -100, -100, -100, -100},
```

```
10447 { -100, -100, -100, -100, -100},
 10448 { -100, -100, -100, -100, -100},
10449 { -100, -100, -100, -100, -100}},
10450 /* @.UA..GU */
10451 {{ DEF, DEF, DEF, DEF, DEF},
10452 { -479, -479, -479, -479, -479},
10453 { -309, -309, -309, -309, -309},
  10454 { -389, -389, -389, -389, -389},
10455 { -379, -379, -379, -379}},
10456 /* @.UC..GU */
10457 {{ DEF, DEF, DEF, DEF, DEF},
10458 { -649, -649, -649, -649, -649},
10459 { -289, -289, -289, -289, -289},
 10460 { -739, -739, -739, -739}, 10461 { -379, -379, -379, -379, -379}}
10462 /* @.UG..GU */

10463 {{ DEF, DEF, DEF, DEF, DEF},

10464 { -649, -649, -649, -649, -649},

10465 { -289, -289, -289, -289, -289},
  10466 { -739, -739, -739, -739, -739},
10466 { -739, -739, -739, -739, -739}, 10467 { -379, -379, -379, -379, -379}}, 10468 /* @.UU..GU */
10469 {{ DEF, DEF, DEF, DEF, DEF, DEF}, 10470 { -649, -649, -649, -649, -649}, 10471 { -289, -289, -289, -289, -289, -289, -739}, 10472 { -739, -739, -739, -739, -739, -739, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -379, -3
  10473 { -379, -379, -379, -379, -379}}}}
 10474 /* @.@@..UG */
10475 {{{ DEF, DEF, DEF, DEF, DEF}, DEF}, D476 { -100, -100, -100, -100, -100}, 10477 { -100, -100, -100, -100, -100}, 10478 { -100, -100, -100, -100, -100},
  10479 { -100, -100, -100, -100, -100}},
 10480 /* @.@A..UG */
10481 {{ DEF, DEF, DEF, DEF, DEF}, 10482 { -769, -769, -769, -769, -769}, 10483 { -529, -529, -529, -529, -529}, 10484 { -709, -709, -709, -709, -709}, 10485 { -599, -599, -599, -599, -599}}
10486 /* @.@C..UG */
10486 /* @.@C..UG */
10487 {{ DEF, DEF, DEF, DEF, DEF},
10488 { -839, -839, -839, -839, -839},
10489 { -529, -529, -529, -529, -529},
10490 { -859, -859, -859, -859, -859},
  10491 { -489, -489, -489, -489, -489}},
 10492 /* @.@G..UG */
10493 {{ DEF, DEF, DEF, DEF, DEF}},
 10494 {-1009,-1009,-1009,-1009,-1009},
 10495 { -409, -409, -409, -409}, -409}, 10496 { -969, -969, -969, -969, -969}, 10497 { -599, -599, -599, -599, -599}}
10497 { -599, -599, -599, -599}, -599}, 10498 /* @.@U..UG */
10499 {{ DEF, DEF, DEF, DEF, DEF}, 10500 { -859, -859, -859, -859, -859}, 10501 { -529, -529, -529, -529, -529}, 10502 { -859, -859, -859, -859, -859, -859}, 10503 { -409, -409, -409, -409, -409}}},
  10504 /* @.A@..UG */
10505 {{ DEF, DEF, DEF, DEF, DEF}, 10506 { -100, -100, -100, -100, -100}, 10507 { -100, -100, -100, -100, -100}, 10508 { -100, -100, -100, -100, -100}, 10509 { -100, -100, -100, -100, -100},
 10510 /* @.AA..UG */
10511 {{ DEF, DEF, DEF, DEF, DEF},
10512 { -769, -769, -769, -769},
 10513 { -529, -529, -529, -529}, 10514 { -709, -709, -709, -709, -709}, 10515 { -599, -599, -599, -599}, -599}}
 10516 /* @.AC..UG */
10517 {{ DEF, DEF, DEF, DEF, DEF},
10518 { -839, -839, -839, -839},
 10519 { -529, -529, -529, -529, -529},
 10520 { -859, -859, -859, -859}, -859}, 10521 { -489, -489, -489, -489, -489}, -489}, 10522 /* @.AG..UG */
10523 {{ DEF, DEF, DEF, DEF, DEF, DEF}},
  10524 {-1009,-1009,-1009,-1009,-1009},
 10525 { -409, -409, -409, -409, -409},
10526 { -969, -969, -969, -969, -969},
10527 { -599, -599, -599, -599},
 10528 /* @.AU..UG */
10529 {{ DEF, DEF, DEF, DEF, DEF},
10530 { -859, -859, -859, -859, -859},
 10531 { -529, -529, -529, -529, -529},
 10532 { -859, -859, -859, -859, -859}, 10533 { -409, -409, -409, -409, -409}}},
```

```
10534 /* @.C@..UG */
10535 {{ DEF, DEF, DEF, DEF, DEF}, 10536 { -100, -100, -100, -100, -100}, 10537 { -100, -100, -100, -100, -100},
10538 { -100, -100, -100, -100, -100}, 10539 { -100, -100, -100, -100, -100}},
10540 /* @.CA..UG */
10541 {{ DEF, DEF, DEF, DEF, DEF}, 10542 { -769, -769, -769, -769},
10543 { -529, -529, -529, -529, -529},
10546 /* @.CC..UG */
10547 {{ DEF, DEF, DEF, DEF, DEF},
10548 { -839, -839, -839, -839, -839},
10549 {
             -529, -529, -529, -529, -529},
10550 { -859, -859, -859, -859, -859}, 10551 { -489, -489, -489, -489, -489}},
10552 /* @.CG..UG */
10553 {{ DEF, DEF, DEF, DEF, DEF},
10554 {-1009,-1009,-1009,-1009,-1009},
10555 { -409, -409, -409, -409, -409},
10555 { -409, -409, -409, -409, -409}, 10556 { -969, -969, -969, -969, -969}, 10557 { -599, -599, -599, -599, -599}}, 10558 /* @.CU..UG */
10559 {{ DEF, DEF, DEF, DEF, DEF}, D560 { -859, -859, -859, -859, -859}, 10561 { -529, -529, -529, -529, -529}, -529, -529}
10562 { -859, -859, -859, -859}, -859}, 10563 { -409, -409, -409, -409, -409}}}, 10564 /* @.G@..UG */
           {{{ DEF, DEF, DEF, DEF, DEF, DEF, } -100, -100, -100, -100},
10565 {{{
10566
10567 {
             -100, -100, -100, -100, -100},
             -100, -100, -100, -100, -100},
-100, -100, -100, -100, -100}}
10568
10569 {
10570 /* @.GA..UG */
10571 {{ DEF, DEF, DEF, DEF, DEF},
10572 { -769, -769, -769, -769},
10573
              -529, -529, -529, -529, -529},
10574 { -709, -709, -709, -709, -709}
10575 { -599, -599, -599, -599}},
10576 /* @.GC..UG */
10577 {{ DEF, DEF, DEF, DEF},
           { -839, -839, -839, -839, -839},
10579 { -529, -529, -529, -529, -529},
10580 { -859, -859, -859, -859, -859}, 10581 { -489, -489, -489, -489, -489, -489}}
10582 /* @.GG..UG */
10583 {{ DEF, DEF, DEF,
                                                 DEF. DEF1.
10584 {-1009, -1009, -1009, -1009, -1009},
10585 { -409, -409, -409, -409, -409},
10586 { -969, -969, -969, -969, -969},
10587 { -599, -599, -599, -599, -599}},
10588 /* @.GU..UG */
10589 {{ DEF, DEF, DEF, DEF, DEF} 10590 { -859, -859, -859, -859, -859, -859},
10591 { -529, -529, -529, -529, -529},
10592 {
              -859, -859, -859, -859, -859}
10593 { -409, -409, -409, -409, -409}}},
10594 /* @.U@..UG */
10595 {{ DEF, DEF, DEF, DEF, DEF, DEF}, 10596 { -100, -100, -100, -100, -100}, 10597 { -100, -100, -100, -100, -100},
10598
             -100, -100, -100, -100, -100}
10599 { -100, -100, -100, -100, -100},

10599 { -100, -100, -100, -100, -100}},

10600 /* @.UA..UG */

10601 {{ DEF, DEF, DEF, DEF, DEF},

10602 { -769, -769, -769, -769, -769},

10603 { -529, -529, -529, -529},
10604 { -709, -709, -709, -709, -709}, 10605 { -599, -599, -599, -599, -599}}
10605 { -599, -599, -599, -599, -599},

10606 /* @.UC..UG */

10607 {{ DEF, DEF, DEF, DEF, DEF,

10608 { -839, -839, -839, -839, -839},

10609 { -529, -529, -529, -529, -529},
           \{-859, -859, -859, -859, -859\},
10610
10611 { -489, -489, -489, -489, -489}},
10612 /* @.UG..UG */
10613 {{ DEF, DEF, DEF, DEF, DEF}},
10614 {-1009,-1009,-1009,-1009,-1009},
10615 { -409, -409, -409, -409, -409},
10616 { -969, -969, -969, -969, -969},
10617 { -599, -599, -599, -599, -599}}
10618 /* @.UU..UG */
10619 {{ DEF, DEF, DEF, DEF, DEF},
10620 { -859, -859, -859, -859, -859},
```

```
10621 { -529, -529, -529, -529, -529},
  10622 { -859, -859, -859, -859, -859}, 10623 { -409, -409, -409, -409, -409}}}},
  10624 /* @.@@..AU */
  10625 {{{{ DEF, DEF, DEF, DEF, DE
10626 { -100, -100, -100, -100, -100},
10627 { -100, -100, -100, -100, -100},
                                                                                                                                                                                                                                     DEF).
   10628 { -100, -100, -100, -100, -100}
 10629 { -100, -100, -100, -100, -100}},
10629 { -100, -100, -100, -100}},
10630 /* @.@A..AU */
10631 {{ DEF, DEF, DEF, DEF, DEF},
10632 { -479, -479, -479, -479, -479},
10633 { -309, -309, -309, -309, -309},
  10634 { -389, -389, -389, -389, -389},
10635 { -379, -379, -379, -379, -379}},
 10635 { -075, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375, -375
10649 { -289, -289, -289, -289, -289, 10640 { -739, -739, -739, -739, -739, 10641 { -379, -379, -379, -379, -379}}, 10642 /* @.@G..AU */
10643 {{ DEF, DEF, DEF, DEF, DEF}, D644 { -649, -649, -649, -649, -649, -649, -649, -649, -649, -649, -649, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -289, -
                                       { -739, -739, -739, -739, -739},
   10647 { -379, -379, -379, -379, -379}},
10647 { -379, -379, -379, -379, -379}},
10648 /* @.@U..AU */
10649 {{ DEF, DEF, DEF, DEF, DEF},
10650 { -649, -649, -649, -649, -649},
10651 { -289, -289, -289, -289, -289},
10652 { -739, -739, -739, -739, -739},
10653 { -379, -379, -379, -379, -379}}},
  10654 /* @.A@..AU */
  10655 {{{ DEF, DEF, DEF, DEF, DEF}}, 10656 { -100, -100, -100, -100, -100}, 10657 { -100, -100, -100, -100, -100},
  10658 { -100, -100, -100, -100, -100},
10659 { -100, -100, -100, -100, -100}},
10669 { -100, -100, -100, -100, -100},

10660 /* @.AA..AU */

10661 {{ DEF, DEF, DEF, DEF, DEF},

10662 { -479, -479, -479, -479, -479},

10663 { -309, -309, -309, -309, -309},

10664 { -389, -389, -389, -389, -389},

10665 { -379, -379, -379, -379, -379}},
10665 { -3/9, -3/9, -3/9, -3/9, -3/9}},
10666 /* @.AC..AU */
10667 {{ DEF, DEF, DEF, DEF, DEF},
10668 { -649, -649, -649, -649, -649},
10669 { -289, -289, -289, -289, -289},
10670 { -739, -739, -739, -739, -739},
10671 { -379, -379, -379, -379, -379}},
10671 { -3/9, -3/9, -3/9, -3/9, -3/9}},
10672 /* @.AG..AU */
10673 {{ DEF, DEF, DEF, DEF, DEF, DEF},
10674 { -649, -649, -649, -649, -649},
10675 { -289, -289, -289, -289, -289},
10676 { -739, -739, -739, -739, -739},
10677 { -379, -379, -379, -379, -379}},
  10678 /* @.AU..AU */
10679 {{ DEF, DEF, DEF, DEF, DEF},
10680 { -649, -649, -649, -649, -649},
  10681 { -289, -289, -289, -289}, -289}, 10682 { -739, -739, -739, -739, -739}, 10683 { -379, -379, -379, -379, -379}}},
  10684 /* @.C@..AU */
10685 {{ DEF, DEF, DEF, DEF, DEF},
 10686 { -100, -100, -100, -100, -100}, 10687 { -100, -100, -100, -100, -100}, 10688 { -100, -100, -100, -100, -100}, 10688 { -100, -100, -100, -100, -100}, 10689 { -100, -100, -100, -100, -100},
  10690 /* @.CA..AU */
10691 {{ DEF, DEF, DEF, DEF, DEF},
10692 { -479, -479, -479, -479},
 10693 { -309, -309, -309, -309}, -309}, 10694 { -389, -389, -389, -389, -389}, -379}, 10695 { -379, -379, -379, -379, -379}}, 10696 /* @.cc..AU */
  10697 {{ DEF, DEF, DEF, DEF, DEF}, 10698 { -649, -649, -649, -649, -649},
  10699 { -289, -289, -289, -289, -289},
10700 { -739, -739, -739, -739, -739},
10701 { -379, -379, -379, -379, -379}},
  10702 /* @.CG..AU */
10703 {{ DEF, DEF, DEF, DEF, DEF},
10704 { -649, -649, -649, -649, -649},
  10705 { -289, -289, -289, -289, -289},
  10706 { -739, -739, -739, -739}, 10707 { -379, -379, -379, -379, -379}}
```

```
10708 /* @.CU..AU */
10709 {{ DEF, DEF, DEF, DEF, DEF},
10710 { -649, -649, -649, -649, -649},
10711 { -289, -289, -289, -289, -289},
10712 { -739, -739, -739, -739}, 10713 { -379, -379, -379, -379, -379}}}
10716 { -100, -100, -100, -100, -100}, 10717 { -100, -100, -100, -100, -100},
10718 { -100, -100, -100, -100, -100}, 10719 { -100, -100, -100, -100, -100}}
10720 /* @.GA..AU */
10721 {{ DEF, DEF, DEF, DEF, DEF},
10722 { -479, -479, -479, -479},
 10723 {
                -309, -309, -309, -309, -309},
10724 { -389, -389, -389, -389, -389},
10725 { -379, -379, -379, -379, -379}},
10726 /* @.GC..AU */
10727 {{ DEF, DEF, DEF, DEF, DEF}, 10728 { -649, -649, -649, -649, -649},
10729 { -289, -289, -289, -289, -289},
10730 { -739, -739, -739, -739, -739}, 10731 { -379, -379, -379, -379, -379}, 10732 /* @.GG..AU */
10733 {{ DEF, DEF, DEF, DEF, DEF}, DEF}, 10734 { -649, -649, -649, -649, -649}, -649}
10735 { -289, -289, -289, -289}, -289}, 10736 { -739, -739, -739, -739, -739}, 10737 { -379, -379, -379, -379, -379}}
10738 /* @.GU..AU */
10739 {{ DEF, DEF, DEF, DEF, DEF},
10740 { -649, -649, -649, -649, -649},
10741 { -289, -289, -289, -289, -289},
10742 { -739, -739, -739, -739, -739}, 10743 { -379, -379, -379, -379, -379}}}
10744 /* @.U@..AU */
 10745 {{{ DEF, DEF, DEF, DEF, DEF},
 10746 { -100, -100, -100, -100, -100},
 10747 {
                -100, -100, -100, -100, -100},
10747 { -100, -100, -100, -100, -100},

10748 { -100, -100, -100, -100, -100},

10749 { -100, -100, -100, -100, -100}},

10750 /* @.UA..AU */

10751 {{ DEF, DEF, DEF, DEF, DEF},

10752 { -479, -479, -479, -479},

10753 { -309, -309, -309, -309, -309},
10754 { -389, -389, -389, -389}, 10755 { -379, -379, -379, -379, -379}}
10756 /* @.UC..AU */
10757 {{ DEF, DEF, DEF, DEF, DEF},
10758 {-649, -649, -649, -649, -649},
 10759 { -289, -289, -289, -289, -289},
10760 { -739, -739, -739, -739}
10761 { -379, -379, -379, -379, -379}}, 10762 /* @.UG..AU */
10763 {{ DEF, DEF, DEF, DEF, DEF}, 10764 { -649, -649, -649, -649, -649},
 10765
            \{-289, -289, -289, -289, -289\},
 10766
                -739, -739, -739, -739, -739},
10767 { -379, -379, -379, -379}}
10768 /* @.UU..AU */
10769 {{ DEF, DEF, DEF, DEF, DEF},
10770 { -649, -649, -649, -649, -649},
 10771
                -289, -289, -289, -289, -289},
 1.0772 {
                -739, -739, -739, -739, -739}
10772 { -739, -739, -739, -739, -739},

10773 { -379, -379, -379, -379, -379}}},

10774 /* @.@@..UA */

10775 {{{ DEF, DEF, DEF, DEF, DEF},

10776 { -100, -100, -100, -100, -100},

10777 { -100, -100, -100, -100},
10777 { -100, -100, -100, -100, -100},
10778 { -100, -100, -100, -100, -100},
10779 { -100, -100, -100, -100, -100}},
10780 /* @.@A..UA */
10781 {{ DEF, DEF, DEF, DEF, DEF},
10782 { -449, -449, -449, -449, -449},
10783 { -479, -479, -479, -479, -479},
 10784 { -429, -429, -429, -429, -429},
10785 { -329, -329, -329, -329},

10786 /* @.@C..UA */

10787 {{ DEF, DEF, DEF, DEF, DEF},

10788 { -679, -679, -679, -679, -679},

10789 { -559, -559, -559, -559, -559},
10790 { -729, -729, -729, -729, -729},
10791 { -189, -189, -189, -189, -189}}
10792 /* @.@G..UA */
10793 {{ DEF, DEF, DEF, DEF, DEF},
10794 { -939, -939, -939, -939},
```

```
10795 { -249, -249, -249, -249, -249},
  10796 { -939, -939, -939, -939}, 10797 { -329, -329, -329, -329, -329}},
 10798 /* @.@U..UA */
10799 {{ DEF, DEF, DEF, DEF, DEF},
10800 { -639, -639, -639, -639, -639},
10801 { -229, -229, -229, -229, -229},
   10802
                                    { -729, -729, -729, -729, -729},
 10803 { -190, -190, -190, -190, -190}},
10803 { -190, -190, -190, -190}},
10804 /* @.A@..UA */
10805 {{{ DEF, DEF, DEF, DEF, DEF},
10806 { -100, -100, -100, -100, -100},
10807 { -100, -100, -100, -100, -100},
  10808 { -100, -100, -100, -100, -100}, 10809 { -100, -100, -100, -100, -100}}
 10810 /* @.AA..UA */

10811 {{ DEF, DEF, DEF, DEF, DEF},

10812 { -449, -449, -449, -449, -449},

10813 { -479, -479, -479, -479},
   10814 { -429, -429, -429, -429, -429},
10814 { -429, -429, -429, -429, -429, 10815 { -329, -329, -329, -329, -329}}, 10816 /* @.AC..UA */
10817 {{ DEF, DEF, DEF, DEF, DEF, DEF}, 10818 { -679, -679, -679, -679, -679}, 10819 { -559, -559, -559, -559, -559}, 10820 { -729, -729, -729, -729, -729}, 10821 { 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 
   10821 { -189, -189, -189, -189, -189}},
10821 { -189, -189, -189, -189, -189}, 10822 /* @.AG..UA */
10823 {{ DEF, DEF, DEF, DEF, DEF, DEF}, 10824 { -939, -939, -939, -939, -939}, 10825 { -249, -249, -249, -249, -249, -249, -249, -249, -249, -249, -249, -249, -329, -329, -329, -329}, 10827 { -329, -329, -329, -329, -329}},
  10828 /* @.AU..UA */
 10829 {{ DEF, DEF, DEF, DEF}, DEF}, 10830 { -639, -639, -639, -639, -639}, 10831 { -229, -229, -229, -229, -229}, 10832 { -729, -729, -729, -729, -729}, 10833 { -190, -190, -190, -190, -190}}},
 10835 { -190, -190, -190, -190}, | 190}, | 190}, | 190}, | 190}, | 190}, | 190}, | 190}, | 190}, | 10834 /* @.C@..UA */
10835 { { DEF, DEF, DEF, DEF, DEF}, | 10836 { -100, -100, -100, -100, -100}, | 10837 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100}, | 10838 { -100, -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100, -100}, | 10838 { -100
  10839 { -100, -100, -100, -100, -100}},
10840 /* @.CA..UA */
10841 {{ DEF, DEF, DEF, DEF, DEF},
10842 { -449, -449, -449, -449, -449},
10843 { -479, -479, -479, -479, -479},
10844 { -429, -429, -429, -429, -429},
10845 { -329, -329, -329, -329, -329}},
10845 { -329, -329, -329, -329, -329}},
10846 /* @.CC..UA */
10847 {{ DEF, DEF, DEF, DEF, DEF, DEF},
10848 { -679, -679, -679, -679, -679},
10849 { -559, -559, -559, -559, -559},
10850 { -729, -729, -729, -729, -729},
10851 { -189, -189, -189, -189, -189}},
  10852 /* @.CG..UA */
 10852 /* E.CG. 104 */
10853 {{ DEF, DEF, DEF, DEF, DEF},
10854 { -939, -939, -939, -939, -939},
10855 { -249, -249, -249, -249, -249},
10856 { -939, -939, -939, -939, -939},
10857 { -329, -329, -329, -329, -329}},
  10858 /* @.CU..UA */
10859 {{ DEF, DEF, DEF, DEF},
  10860 { -639, -639, -639, -639, -639},
  10861 { -229, -229, -229, -229, -229},
10862 { -729, -729, -729, -729, -729},
10863 { -190, -190, -190, -190, -190}}},
   10864 /* @.G@..UA */
   10865 {{{ DEF, DEF, DEF, DEF, DEF},
  10866 { -100, -100, -100, -100, -100},
  10867 { -100, -100, -100, -100, -100}, 10868 { -100, -100, -100, -100, -100}, 10869 { -100, -100, -100, -100, -100},
  10870 /* @.GA..UA */
10871 {{ DEF, DEF, DEF, DEF, DEF},
10872 { -449, -449, -449, -449},
  10873 { -479, -479, -479, -479, -479},
10874 { -429, -429, -429, -429, -429},
10875 { -329, -329, -329, -329, -329}},
  10876 /* @.GC..UA */
10877 {{ DEF, DEF, DEF, DEF, DEF},
10878 { -679, -679, -679, -679},
  10879 { -559, -559, -559, -559, -559},
  10880 { -729, -729, -729, -729, -729},
10881 { -189, -189, -189, -189, -189}},
```

```
10882 /* @.GG..UA */
10883 {{ DEF, DEF, DEF, DEF, DEF},
10884 { -939, -939, -939, -939, -939},
10885 { -249, -249, -249, -249, -249},
10886 { -939, -939, -939, -939}, 10887 { -329, -329, -329, -329, -329}},
10888 /* @.GU..UA */
10889 {{ DEF, DEF, DEF, DEF, DEF},
10890 { -639, -639, -639, -639, -639},
10891 { -229, -229, -229, -229},
10892 { -729, -729, -729, -729, -729},
10893 { -190, -190, -190, -190, -190}}},
 10894 /* @.U@..UA */
10894 /* e.0e..oA */
10895 {{ DEF, DEF, DEF, DEF, DEF},
10896 { -100, -100, -100, -100, -100},
10897 {
               -100, -100, -100, -100, -100},
10898 { -100, -100, -100, -100, -100}, 10899 { -100, -100, -100, -100, -100}},
10900 /* @.UA..UA */
10901 {{ DEF, DEF, DEF, DEF, DEF},
10902 { -449, -449, -449, -449, -449},
              -479, -479, -479, -479, -479},
10903
10912 /* @.UG..UA */
10913 {{ DEF, DEF, DEF, DEF, DEF}
10914 { -939, -939, -939, -939},
 10915 { -249, -249, -249, -249, -249},
10916 { -939, -939, -939, -939}, 10917 { -329, -329, -329, -329, -329}},
10918 /* @.UU..UA */
10919 {{ DEF, DEF, DEF, DEF, DEF},
 10920 { -639, -639, -639, -639, -639},
 10921 {
               -229, -229, -229, -229, -229},
10922 { -729, -729, -729, -729}, 10923 { -190, -190, -190, -190, -190}}}, 10924 /* @.@@.. @ */
10925 {{{{ -100, -100, -100, -100, -100}, -100}},
            { -100, -100, -100, -100, -100}, 
{ -100, -100, -100, -100, -100},
10927 {
10928 { -100, -100, -100, -100, -100}, 10929 { -100, -100, -100, -100, -100}}
10930 /* @.@A.. @ */
10931 {{ -100, -100, -100, -100},
10932 { -100, -100, -100, -100, -100},
10932 { -100, -100, -100, -100, -100},
10933 { -100, -100, -100, -100, -100},
10934 {
               -100, -100, -100, -100, -100}
10935 { -100, -100, -100, -100, -100}},
10936 /* @.@C.. @ */
10937 {{ -100, -100, -100, -100, -100}},
            { -100, -100, -100, -100, -100}, 
{ -100, -100, -100, -100, -100},
 10939
10940 { -100, -100, -100, -100, -100},
10941 { -100, -100, -100, -100, -100}}
10942 /+ 0.0G.. 0 */
10943 {{ -100, -100, -100, -100, -100},
10944 {{ -100, -100, -100, -100, -100},
10944 { -100, -100, -100, -100, -100},
10945 { -100, -100, -100, -100, -100},
 1.0946 {
               -100, -100, -100, -100, -100}
10947 { -100, -100, -100, -100, -100}},
10948 /* @.@U.. @ */
10949 {{ -100, -100, -100, -100, -100},
10950 { -100, -100, -100, -100, -100}, 10951 { -100, -100, -100, -100, -100},
10952 { -100, -100, -100, -100, -100}, 10952 { -100, -100, -100, -100, -100}, 10953 { -100, -100, -100, -100, -100}}, 10954 /* @.A@.. @ */
10956 { -100, -100, -100, -100, -100}, 10957 { -100, -100, -100, -100, -100},
 10958
            \{-100, -100, -100, -100, -100\},\
10959 { -100, -100, -100, -100, -100}},
10960 /* @.AA.. @ */
10961 {{ -100, -100, -100, -100, -100}},
10962 { -100, -100, -100, -100, -100},
10963 { -100, -100, -100, -100, -100},
10964 { -100, -100, -100, -100, -100},
10965 { -100, -100, -100, -100, -100}}
10966 /* @.AC.. @ */
10967 {{ -100, -100, -100, -100, -100},
10968 { -100, -100, -100, -100, -100},
```

```
10969 { -100, -100, -100, -100, -100},
 10970 { -100, -100, -100, -100, -100},
10971 { -100, -100, -100, -100, -100}},
10972 /* @.AG.. @ */
10973 {{ -100, -100, -100, -100, -100},
10974 { -100, -100, -100, -100, -100},
10975 { -100, -100, -100, -100, -100},
 10976 { -100, -100, -100, -100, -100},
 10977 { -100, -100, -100, -100, -100}},
10978 /* @.AU.. @ */
10978 (* -100, -100, -100, -100),
10980 { -100, -100, -100, -100, -100},
10981 { -100, -100, -100, -100, -100},
 10982 { -100, -100, -100, -100, -100},
10983 { -100, -100, -100, -100, -100}}},
10983 { -100, -100, -100, -100, -100}},
10984 /* @.C@.. @ */
10985 {{{ -100, -100, -100, -100, -100},
10986 { -100, -100, -100, -100, -100},
10987 { -100, -100, -100, -100, -100},
10988 { -100, -100, -100, -100, -100},
10989 { -100, -100, -100, -100, -100},
10990 /* @.CA.. @ */
10991 {{ -100, -100, -100, -100, -100},
10992 { -100, -100, -100, -100, -100},
10993 { -100, -100, -100, -100, -100},
10994 { -100, -100, -100, -100, -100},
10994 { -100, -100, -100, -100, -100},
10994 { -100, -100, -100, -100, -100},
 10994 { -100, -100, -100, -100, -100},
10995 { -100, -100, -100, -100, -100}},
10995 { -100, -100, -100, -100, -100}},
10996 /* @.CC.. @ */
10997 {{ -100, -100, -100, -100, -100}},
10998 { -100, -100, -100, -100, -100},
10999 { -100, -100, -100, -100, -100},
11000 { -100, -100, -100, -100, -100},
11001 { -100, -100, -100, -100, -100}},
 11002 /* @.CG.. @ */
11003 {{ -100, -100, -100, -100, -100},

11004 { -100, -100, -100, -100, -100},

11005 { -100, -100, -100, -100, -100},

11006 { -100, -100, -100, -100, -100},

11007 { -100, -100, -100, -100, -100}},
 11008 /* @.CU.. @ */
11009 {{ -100, -100, -100, -100},
 11010 { -100, -100, -100, -100, -100}, 11011 { -100, -100, -100, -100, -100}, 11012 { -100, -100, -100, -100, -100}, -10012 { -100, -100, -100, -100, -100},
 11013 { -100, -100, -100, -100, -100}}},
 11014 /* @.G@.. @ */
 11015 {{{ -100, -100, -100, -100, -100},
11015 {{{-100, -100, -100, -100, -100}}

11016 { -100, -100, -100, -100, -100},

11017 { -100, -100, -100, -100, -100},

11018 { -100, -100, -100, -100, -100},

11019 { -100, -100, -100, -100, -100}},

11020 /* @.GA.. @ */

11021 {{ -100, -100, -100, -100, -100},

11022 -100, -100, -100, -100, -100}
11022 { -100, -100, -100, -100, -100},

11022 { -100, -100, -100, -100, -100},

11023 { -100, -100, -100, -100, -100},

11024 { -100, -100, -100, -100, -100},

11025 { -100, -100, -100, -100, -100}},
 11026 /* @.GC.. @ */
11020 /* (-100, -100, -100, -100), -100}, 11027 {{ -100, -100, -100, -100, -100}, 11028 { -100, -100, -100, -100, -100, -100}, 11030 { -100, -100, -100, -100, -100, -100}, 11031 { -100, -100, -100, -100, -100}, 11031 { -100, -100, -100, -100, -100}},
 11032 /* @.GG.. @ */
11033 {{ -100, -100, -100, -100},
11034 { -100, -100, -100, -100, -100},

11034 { -100, -100, -100, -100, -100},

11035 { -100, -100, -100, -100, -100},

11036 { -100, -100, -100, -100, -100},

11037 { -100, -100, -100, -100, -100}},
 11038 /* @.GU.. @ */
 11039 {{ -100, -100, -100, -100, -100},
11040 { -100, -100, -100, -100}, 

11041 { -100, -100, -100, -100, -100}, 

11042 { -100, -100, -100, -100, -100}, 

11043 { -100, -100, -100, -100, -100}, 

11043 { -100, -100, -100, -100, -100}},
 11043 { -100, -100, -100, -100, -100},

11044 /* @.U@.. @ */

11045 {{{ -100, -100, -100, -100, -100},
11046 { -100, -100, -100, -100}, 100}, 1004 { 100, -100, -100, -100}, 11047 { -100, -100, -100, -100, -100}, 11048 { -100, -100, -100, -100, -100}, 11049 { -100, -100, -100, -100, -100}},
 11050 /* @.UA.. @ */
11051 {{ -100, -100, -100, -100, -100},
11052 { -100, -100, -100, -100, -100},
 11053 { -100, -100, -100, -100, -100},
 11054 { -100, -100, -100, -100, -100},
11055 { -100, -100, -100, -100, -100}},
```

## 18.157 ViennaRNA/constraints/basic.h File Reference

Functions and data structures for constraining secondary structure predictions and evaluation. Include dependency graph for basic.h: This graph shows which files directly or indirectly include this file:

#### **Macros**

• #define VRNA CONSTRAINT FILE 0

Flag for vrna\_constraints\_add() to indicate that constraints are present in a text file.

• #define VRNA\_CONSTRAINT\_SOFT\_MFE 0

Indicate generation of constraints for MFE folding.

#define VRNA\_CONSTRAINT\_SOFT\_PF VRNA\_OPTION\_PF

Indicate generation of constraints for partition function computation.

#define VRNA\_DECOMP\_PAIR\_HP (unsigned char)1

Flag passed to generic softt constraints callback to indicate hairpin loop decomposition step.

• #define VRNA\_DECOMP\_PAIR\_IL (unsigned char)2

Indicator for interior loop decomposition step.

#define VRNA\_DECOMP\_PAIR\_ML (unsigned char)3

Indicator for multibranch loop decomposition step.

• #define VRNA\_DECOMP\_ML\_ML (unsigned char)5

Indicator for decomposition of multibranch loop part.

#define VRNA\_DECOMP\_ML\_STEM (unsigned char)6

Indicator for decomposition of multibranch loop part.

#define VRNA\_DECOMP\_ML\_ML (unsigned char)7

Indicator for decomposition of multibranch loop part.

#define VRNA\_DECOMP\_ML\_UP (unsigned char)8

Indicator for decomposition of multibranch loop part.

• #define VRNA DECOMP ML ML STEM (unsigned char)9

Indicator for decomposition of multibranch loop part.

#define VRNA\_DECOMP\_ML\_COAXIAL (unsigned char)10

Indicator for decomposition of multibranch loop part.

#define VRNA\_DECOMP\_ML\_COAXIAL\_ENC (unsigned char)11

Indicator for decomposition of multibranch loop part.

#define VRNA\_DECOMP\_EXT\_EXT (unsigned char)12

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_UP (unsigned char)13

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_STEM (unsigned char)14

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_EXT\_EXT (unsigned char)15

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_STEM\_EXT (unsigned char)16

Indicator for decomposition of exterior loop part.

#define VRNA\_DECOMP\_EXT\_STEM\_OUTSIDE (unsigned char)17

Indicator for decomposition of exterior loop part.

• #define VRNA\_DECOMP\_EXT\_EXT\_STEM (unsigned char)18

Indicator for decomposition of exterior loop part.

• #define VRNA\_DECOMP\_EXT\_EXT\_STEM1 (unsigned char)19

Indicator for decomposition of exterior loop part.

### **Functions**

void vrna\_constraints\_add (vrna\_fold\_compound\_t \*vc, const char \*constraint, unsigned int options)
 Add constraints to a vrna\_fold\_compound\_t data structure.

## 18.157.1 Detailed Description

Functions and data structures for constraining secondary structure predictions and evaluation.

# 18.158 basic.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_CONSTRAINTS_H
00002 #define VIENNA RNA PACKAGE CONSTRAINTS H
00003
00004 #include <ViennaRNA/fold_compound.h>
00005
00099 #define VRNA_CONSTRAINT_FILE
00100
00107 #define VRNA CONSTRAINT SOFT MFE 0
00108
00115 #define VRNA_CONSTRAINT_SOFT_PF VRNA_OPTION_PF
00116
00129 #define VRNA_DECOMP_PAIR_HP
                                       (unsigned char)1
00130
00144 #define VRNA_DECOMP_PAIR_IL
                                        (unsigned char) 2
00145
00159 #define VRNA_DECOMP_PAIR_ML
                                       (unsigned char)3
00160 #define VRNA_DECOMP_PAIR_ML_EXT
                                            (unsigned char)23
00161
00162 #define VRNA_DECOMP_PAIR_ML_OUTSIDE
                                                (unsigned char) 4
00176 #define VRNA_DECOMP_ML_ML_ML
                                      (unsigned char)5
00177
00191 #define VRNA_DECOMP_ML_STEM
                                        (unsigned char) 6
00192
00206 #define VRNA_DECOMP_ML_ML
                                        (unsigned char)7
00207
00222 #define VRNA_DECOMP_ML_UP
                                        (unsigned char) 8
00223
00238 #define VRNA_DECOMP_ML_ML_STEM (unsigned char) 9
00254 #define VRNA_DECOMP_ML_COAXIAL (unsigned char)10
00255
00270 #define VRNA_DECOMP_ML_COAXIAL_ENC (unsigned char)11
00271
00286 #define VRNA_DECOMP_EXT_EXT
                                        (unsigned char) 12
00287
00302 #define VRNA_DECOMP_EXT_UP
                                        (unsigned char) 13
00303
00317 #define VRNA_DECOMP_EXT_STEM (unsigned char)14
00318
00332 #define VRNA DECOMP EXT EXT EXT (unsigned char) 15
00333
00348 #define VRNA_DECOMP_EXT_STEM_EXT (unsigned char)16
00349
{\tt 00356~\#define~VRNA\_DECOMP\_EXT\_STEM\_OUTSIDE~(unsigned~char)\,17}
00357
00372 #define VRNA_DECOMP_EXT_EXT_STEM (unsigned char)18
00389 #define VRNA_DECOMP_EXT_EXT_STEM1 (unsigned char)19
```

```
00390
00391 #define VRNA_DECOMP_EXT_STEM_EXT1 (unsigned char)20
00392
00393 #define VRNA_DECOMP_EXT_L
                                (unsigned char) 21
00394 #define VRNA_DECOMP_EXT_EXT_L
                                (unsigned char) 22
00395
00398 \,\,\star\,\, This must be changed as soon as the above macros turn to values above 32
00399 */
00400 #define VRNA DECOMP TYPES MAX
00401
00402
00446 void
00447 vrna_constraints_add(vrna_fold_compound_t *vc,
                     const char
                     00448
00449
00450
00452 #endif
```

# 18.159 ViennaRNA/datastructures/basic.h File Reference

Various data structures and pre-processor macros.

Include dependency graph for basic.h: This graph shows which files directly or indirectly include this file:

### **Data Structures**

• struct vrna\_basepair\_s

Base pair data structure used in subopt.c. More...

struct vrna\_cpair\_s

this datastructure is used as input parameter in functions of PS\_dot.c More...

- · struct vrna color s
- · struct vrna data linear s
- · struct vrna\_sect\_s

Stack of partial structures for backtracking. More...

struct vrna\_bp\_stack\_s

Base pair stack element. More...

• struct pu\_contrib

contributions to p\_u More...

struct interact

interaction data structure for RNAup More...

• struct pu\_out

Collection of all free\_energy of beeing unpaired values for output. More...

struct constrain

constraints for cofolding More...

struct duplexT

Data structure for RNAduplex. More...

struct node

Data structure for RNAsnoop (fold energy list) More...

struct snoopT

Data structure for RNAsnoop. More...

struct dupVar

Data structure used in RNApkplex. More...

# **Typedefs**

• typedef struct vrna\_basepair\_s vrna\_basepair\_t

Typename for the base pair repesenting data structure vrna\_basepair\_s.

typedef struct vrna\_elem\_prob\_s vrna\_plist\_t

Typename for the base pair list repesenting data structure vrna\_elem\_prob\_s.

typedef struct vrna\_bp\_stack\_s vrna\_bp\_stack\_t

Typename for the base pair stack repesenting data structure vrna\_bp\_stack\_s.

• typedef struct vrna\_cpair\_s vrna\_cpair\_t

Typename for data structure vrna\_cpair\_s.

• typedef struct vrna\_sect\_s vrna\_sect\_t

Typename for stack of partial structures vrna\_sect\_s.

• typedef double FLT OR DBL

Typename for floating point number in partition function computations.

• typedef struct vrna\_basepair\_s PAIR

Old typename of vrna\_basepair\_s.

· typedef struct vrna elem prob s plist

Old typename of vrna\_elem\_prob\_s.

· typedef struct vrna\_cpair\_s cpair

Old typename of vrna\_cpair\_s.

• typedef struct vrna\_sect\_s sect

Old typename of vrna\_sect\_s.

typedef struct vrna\_bp\_stack\_s bondT

Old typename of vrna bp stack s.

• typedef struct pu contrib pu contrib

contributions to p\_u

typedef struct interact interact

interaction data structure for RNAup

typedef struct pu\_out pu\_out

Collection of all free\_energy of beeing unpaired values for output.

• typedef struct constrain constrain

constraints for cofolding

typedef struct node folden

Data structure for RNAsnoop (fold energy list)

• typedef struct dupVar dupVar

Data structure used in RNApkplex.

#### **Functions**

• void vrna\_C11\_features (void)

Dummy symbol to check whether the library was build using C11/C++11 features.

# 18.159.1 Detailed Description

Various data structures and pre-processor macros.

18.160 basic.h 919

### 18.160 basic.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_DATA_STRUCTURES_H
00002 #define VIENNA_RNA_PACKAGE_DATA_STRUCTURES_H
00003
00018 /* below are several convenience typedef's we use throughout the ViennaRNA library */
00019
00021 typedef struct vrna_basepair_s vrna_basepair_t;
00022
00024 typedef struct vrna_elem_prob_s vrna_plist_t;
00025
00027 typedef struct vrna_bp_stack_s vrna_bp_stack_t;
00028
00030 typedef struct vrna_cpair_s vrna_cpair_t;
00031
00033 typedef struct vrna_sect_s vrna_sect_t;
00034
00035 typedef struct vrna_data_linear_s vrna_data_lin_t;
00036
00037 typedef struct vrna_color_s vrna_color_t;
00038
00040 #ifdef USE_FLOAT_PF
00041 typedef float FLT_OR_DBL;
00042 #else
00043 typedef double FLT_OR_DBL;
00044 #endif
00045
00046
00047 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00048
00049 /\star the following typedefs are for backward compatibility only \star/
00050
00055 typedef struct vrna_basepair_s PAIR;
00061 typedef struct vrna_elem_prob_s plist;
00066 typedef struct vrna_cpair_s cpair;
00067
00072 typedef struct vrna_sect_s sect;
00073
00078 typedef struct vrna_bp_stack_s bondT;
00079
00080 #endif
00081
00082 #include <ViennaRNA/params/constants.h>
00083 #include <ViennaRNA/fold compound.h>
00084 #include <ViennaRNA/model.h>
00085 #include <ViennaRNA/params/basic.h>
00086 #include <ViennaRNA/dp_matrices.h>
00087 #include <ViennaRNA/constraints/hard.h>
00088 #include <ViennaRNA/constraints/soft.h>
00089 #include <ViennaRNA/grammar.h>
00090 #include "ViennaRNA/structured_domains.h'
00091 #include "ViennaRNA/unstructured_domains.h"
00092 #include "ViennaRNA/utils/structures.h"
00093
00094 /*
00097 * shared among the Vienna RNA Package
00099
00100
00104 struct vrna basepair s {
00105
      int i;
int j;
00106
00107 };
00108
00112 struct vrna_cpair_s {
00113
      int i, j, mfe;
float p, hue, sat;
00114
00115
       int
            type;
00116 };
00117
00118 struct vrna_color_s {
00119 float hue;
00120
       float sat;
00121
       float bri;
00122 };
00123
00124 struct vrna_data_linear_s {
00125
       unsigned int position;
00126
       float
                     value;
00127
       vrna color t color;
00128 };
00129
```

```
00130
00134 struct vrna_sect_s {
00135
      int i;
00136
      int j;
00137
      int ml;
00138 };
00139
00143 struct vrna_bp_stack_s {
00144 unsigned int i;
00145 unsigned int j;
00146 };
00147
00148
00149 /*
00153 */
00154
00158 typedef struct pu_contrib {
     double **H;
double **I;
00159
00160
      double **M;
00161
00162
      double **E:
00163
      int
             length;
00164
      int
00165 } pu_contrib;
00166
00170 typedef struct interact {
00171
      double *Pi;
double *Gi;
00172
00173
      double
             Gikjl;
00175
      double
             Gikjl_wo;
00176
      int
             i;
00177
      int
             k;
00178
      int
             i;
00179
      int
             1;
00180
      int
             length;
00181 } interact;
00182
00186 typedef struct pu_out {
00187
            len;
     int
00188
      int
             u vals:
00189
             contribs;
      int
      char **header;
double **u_values;
00190
00191
00192 } pu_out;
00193
00197 typedef struct constrain {
00198 int *indx;
00199 char *ptype;
00200 } constrain;
00201
00202 /*
00204 * RNAduplex data structures
00205
00206 */
00207
00211 typedef struct {
00212
      int
            i;
00213
      int
             j;
00214
      int
             end;
00215
      char
             *structure;
00216
      double
             energy;
      double
00217
             energy_backtrack;
00218
      double opening_backtrack_x;
00219
      double opening_backtrack_y;
00220
      int
             offset;
00221
      double dG1;
00222
      double
             dG2;
00223
      double
             ddG;
00224
      int
             tb;
00225
      int
             te;
00226
      int
             ab;
00227
      int
             qe;
00228 } duplexT;
00229
00230 /*
00234
00235
00239 typedef struct node {
00240
     int
           k;
00241
      int
                enerav:
```

```
00242
      struct node *next;
00243 } folden;
00244
00248 typedef struct {
00249
       int
           i;
00250
       int
            i:
00251
       int
            u;
00252
       char
            *structure;
      float energy;
00253
00254
       float Duplex_El;
00255
      float Duplex_Er;
00256
      float Loop_E;
00257
       float Loop D;
00258
      float pscd;
00259
       float psct;
00260
       float pscg;
00261
      float Duplex_O1;
00262
      float Duplex_Or;
00263
      float Duplex_Ot;
00264
      float fullStemEnergy;
00265 } snoopT;
00266
00267
00268 /*
00270 * PKplex data structures
00272 */
00273
00277 typedef struct dupVar {
00278
      int
             i;
00279
       int
              i;
00280
00281
       char
              *pk_helix;
00282
       char
              *structure;
00283
       double
              energy;
00284
       int
              offset;
00285
       double dG1;
00286
       double
00287
       double
              ddG;
00288
       int
              tb;
00289
       int
              te;
00290
      int
              ab;
00291
       int
              qe;
00292
      int
              inactive;
00293
       int
              processed;
00294 } dupVar;
00295
00326 #ifndef VRNA DISABLE C11 FEATURES
00327 void vrna_C11_features(void);
00328
00329
00330 #endif
00331
00337 #endif
```

# 18.161 ViennaRNA/params/basic.h File Reference

Functions to deal with sets of energy parameters.

Include dependency graph for basic.h: This graph shows which files directly or indirectly include this file:

### **Data Structures**

· struct vrna param s

The datastructure that contains temperature scaled energy parameters. More...

struct vrna\_exp\_param\_s

The data structure that contains temperature scaled Boltzmann weights of the energy parameters. More...

### **Typedefs**

• typedef struct vrna\_param\_s vrna\_param\_t

Typename for the free energy parameter data structure vrna\_params.

• typedef struct vrna\_exp\_param\_s vrna\_exp\_param\_t

Typename for the Boltzmann factor data structure vrna\_exp\_params.

typedef struct vrna\_param\_s paramT

Old typename of vrna param s.

typedef struct vrna\_exp\_param\_s pf\_paramT

Old typename of vrna\_exp\_param\_s.

### **Functions**

vrna\_param\_t \* vrna\_params (vrna\_md\_t \*md)

Get a data structure containing prescaled free energy parameters.

vrna\_param\_t \* vrna\_params\_copy (vrna\_param\_t \*par)

Get a copy of the provided free energy parameters.

vrna\_exp\_param\_t \* vrna\_exp\_params (vrna\_md\_t \*md)

Get a data structure containing prescaled free energy parameters already transformed to Boltzmann factors.

vrna\_exp\_param\_t \* vrna\_exp\_params\_comparative (unsigned int n\_seq, vrna\_md\_t \*md)

Get a data structure containing prescaled free energy parameters already transformed to Boltzmann factors (alifold version)

vrna exp param t \* vrna exp params copy (vrna exp param t \*par)

Get a copy of the provided free energy parameters (provided as Boltzmann factors)

void vrna\_params\_subst (vrna\_fold\_compound\_t \*vc, vrna\_param\_t \*par)

Update/Reset energy parameters data structure within a vrna fold compound t.

void vrna\_exp\_params\_subst (vrna\_fold\_compound\_t \*vc, vrna\_exp\_param\_t \*params)

Update the energy parameters for subsequent partition function computations.

void vrna\_exp\_params\_rescale (vrna\_fold\_compound\_t \*vc, double \*mfe)

Rescale Boltzmann factors for partition function computations.

void vrna params reset (vrna fold compound t \*vc, vrna md t \*md p)

Reset free energy parameters within a vrna\_fold\_compound\_t according to provided, or default model details.

void vrna\_exp\_params\_reset (vrna\_fold\_compound\_t \*vc, vrna\_md\_t \*md\_p)

Reset Boltzmann factors for partition function computations within a vrna\_fold\_compound\_t according to provided, or default model details.

- vrna\_exp\_param\_t \* get\_scaled\_pf\_parameters (void)
- vrna\_exp\_param\_t \* get\_boltzmann\_factors (double temperature, double betaScale, vrna\_md\_t md, double pf\_scale)

Get precomputed Boltzmann factors of the loop type dependent energy contributions with independent thermodynamic temperature.

vrna exp param t \* get boltzmann factor copy (vrna exp param t \*parameters)

Get a copy of already precomputed Boltzmann factors.

vrna\_exp\_param\_t \* get\_scaled\_alipf\_parameters (unsigned int n\_seq)

Get precomputed Boltzmann factors of the loop type dependent energy contributions (alifold variant)

 vrna\_exp\_param\_t \* get\_boltzmann\_factors\_ali (unsigned int n\_seq, double temperature, double betaScale, vrna\_md\_t md, double pf\_scale)

Get precomputed Boltzmann factors of the loop type dependent energy contributions (alifold variant) with independent thermodynamic temperature.

vrna\_param\_t \* scale\_parameters (void)

Get precomputed energy contributions for all the known loop types.

• vrna\_param\_t \* get\_scaled\_parameters (double temperature, vrna\_md\_t md)

Get precomputed energy contributions for all the known loop types.

### 18.161.1 Detailed Description

Functions to deal with sets of energy parameters.

18.162 basic.h 923

# 18.162 basic.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_PARAMS_H
00002 #define VIENNA_RNA_PACKAGE_PARAMS_H
00003
00004 #ifdef VRNA WARN DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC_
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00036 typedef struct vrna_param_s vrna_param_t;
00038 typedef struct vrna_exp_param_s vrna_exp_param_t;
00039
00040 #include <ViennaRNA/params/constants.h>
00041 #include <ViennaRNA/datastructures/basic.h>
00042 #include <ViennaRNA/fold_compound.h>
00043 #include <ViennaRNA/model.h>
00044
00045 #define
                 VRNA GOUAD MAX STACK SIZE
                 VRNA_GQUAD_MIN_STACK_SIZE
00046 #define
00047 #define
                 VRNA_GQUAD_MAX_LINKER_LENGTH
00048 #define
                 VRNA_GQUAD_MIN_LINKER_LENGTH 1
00049 #define
                 VRNA_GQUAD_MIN_BOX_SIZE
                                                   ((4 * VRNA_GQUAD_MIN_STACK_SIZE) + \
00050
                                                   (3 * VRNA_GQUAD_MIN_LINKER_LENGTH))
((4 * VRNA_GQUAD_MAX_STACK_SIZE) + \
00051 #define VRNA GOUAD MAX BOX SIZE
00052
                                                     (3 * VRNA_GQUAD_MAX_LINKER_LENGTH))
00053
00057 struct vrna_param_s {
00058
       int
                   id;
                    stack[NBPAIRS + 1][NBPAIRS + 1];
00059
        int
00060
        int
                    hairpin[31];
00061
                    bulge[MAXLOOP + 1];
        int
                    internal_loop[MAXLOOP + 1];
00062
        int
00063
                   mismatchExt[NBPAIRS + 1][5][5];
        int
00064
                    mismatchI[NBPAIRS + 1][5][5];
         int
                   mismatch1nI[NBPAIRS + 1][5][5];
mismatch23I[NBPAIRS + 1][5][5];
00065
        int
00066
        int
                   mismatchH[NBPAIRS + 1][5][5];
mismatchM[NBPAIRS + 1][5][5];
00067
        int
00068
        int
                   dangle5[NBPAIRS + 1][5];
dangle3[NBPAIRS + 1][5];
00069
         int
00070
        int
                   int11[NBPAIRS + 1][NBPAIRS + 1][5][5];
int21[NBPAIRS + 1][NBPAIRS + 1][5][5][5];
int22[NBPAIRS + 1][NBPAIRS + 1][5][5][5][5];
00071
        int
00072
        int
00073
        int
00074
                    ninio[5];
         int
00075
        double
                    lxc;
00076
         int
                    MLbase;
00077
        int
                    MLintern[NBPAIRS + 1];
00078
        int
                    MLclosing;
00079
        int
                    TerminalAU;
08000
        int
                    DuplexInit;
00081
                    Tetraloop_E[200];
         int
00082
                    Tetraloops[1401];
        char
00083
        int
                    Triloop_E[40];
00084
        char
                    Triloops[241];
00085
                    Hexaloop_E[40];
        int
00086
                    Hexaloops[1801];
        char
00087
                    TripleC;
        int
00088
                    MultipleCA;
00089
        int
                    MultipleCB;
00090
        int
                    gquad[VRNA_GQUAD_MAX_STACK_SIZE + 1][3 * VRNA_GQUAD_MAX_LINKER_LENGTH + 1];
00091
        int
                    gquadLayerMismatch;
00092
                    gquadLayerMismatchMax;
        int
00093
00094
        double
                   temperature;
00096
        vrna_md_t model_details;
00097
        char
                    param_file[256];
00098
        int
                    SaltStack;
00099
                    SaltLoop[MAXLOOP + 2];
        int
00100
                    SaltLoopDbl[MAXLOOP + 2];
        double
                    SaltMLbase;
00101
        int
00102
        int
                    SaltMLintern;
00103
        int
                    SaltMLclosing;
00104
        int
                   SaltDPXInit:
00105 };
00106
00110 struct vrna_exp_param_s {
00111
                 id:
```

```
double expstack[NBPAIRS + 1][NBPAIRS + 1];
00115
        double
                exphairpin[31];
                expbulge[MAXLOOP + 1];
00116
        double
                expinternal[MAXLOOP + 1];
00117
        double
                expmismatchExt[NBPAIRS + 1][5][5];
expmismatchI[NBPAIRS + 1][5][5];
00118
        double
00119
        double
                expmismatch23I[NBPAIRS + 1][5][5];
expmismatch1nI[NBPAIRS + 1][5][5];
00120
        double
00121
        double
                expmismatchH[NBPAIRS + 1][5][5];
expmismatchM[NBPAIRS + 1][5][5];
00122
        double
00123
        double
                expdangle5[NBPAIRS + 1][5];
00124
        double
                expdangle3[NBPAIRS + 1][5];
00125
        double
                expint11[NBPAIRS + 1][NBPAIRS + 1][5][5];
expint21[NBPAIRS + 1][NBPAIRS + 1][5][5][5];
00126
        double
00127
                expint22[NBPAIRS + 1][NBPAIRS + 1][5][5][5][5];
00128
        double
00129
        double
                expninio[5][MAXLOOP + 1];
00130
        double lxc;
                expMLbase;
00131
        double
                expMLintern[NBPAIRS + 1];
00132
        double
                expMLclosing;
00133
        double
                expTermAU;
00134
        double
00135
        double
                expDuplexInit;
00136
        double
                exptetra[40];
        double exptri[40];
00137
00138
        double exphex[40];
00139
        char
                Tetraloops[1401];
00140
        double
                expTriloop[40];
        char
00141
                Triloops[241];
00142
        char
                Hexaloops[1801];
00143
        double expTripleC;
        double expMultipleCA;
00144
00145
        double expMultipleCB;
00146
        double expgquad[VRNA_GQUAD_MAX_STACK_SIZE + 1][3 * VRNA_GQUAD_MAX_LINKER_LENGTH + 1];
00147
        double
                expgquadLayerMismatch;
00148
        int
                gquadLayerMismatchMax;
00149
        double kT;
00150
        double pf_scale;
00151
00153
        double temperature;
00154
        double alpha;
00161
        vrna_md_t model_details;
                  param_file[256];
00162
        char
                  expSaltStack:
00164
        double
                  expSaltLoop[MAXLOOP + 2];
00165
        double
00166
                  SaltLoopDbl[MAXLOOP + 2];
        double
00167
        int
                  SaltMLbase;
00168
       int
                  SaltMLintern:
00169
        int
                  SaltMLclosing;
00170
                  SaltDPXInit;
       int
00171 };
00172
00173
00185 vrna_param_t *
00186 vrna_params(vrna_md_t *md);
00187
00188
00200 vrna_param_t *
00201 vrna_params_copy(vrna_param_t *par);
00202
00203
00226 vrna_exp_param_t *
00227 vrna_exp_params(vrna_md_t *md);
00229
00243 vrna_exp_param_t *
00244 vrna_exp_params_comparative(unsigned int n_seq,
00245
                                   vrna_md_t
                                                   *md);
00246
00247
00259 vrna_exp_param_t *
00260 vrna_exp_params_copy(vrna_exp_param_t *par);
00261
00262
00275 void
00276 vrna_params_subst(vrna_fold_compound_t *vc,
                                                *par);
                        vrna_param_t
00278
00279
00297 void
00298 vrna_exp_params_subst(vrna_fold_compound_t *vc,
00299
                            vrna_exp_param_t
                                                    *params);
00300
00301
00339 void
00340 vrna_exp_params_rescale(vrna_fold_compound_t *vc,
00341
                               double
                                                       *mfe);
00342
```

```
00343
00357 void
00358 vrna_params_reset(vrna_fold_compound_t *vc,
00359
                                                   vrna_md_t
                                                                                                  *md_p);
00360
00361
00376 void
00377 vrna_exp_params_reset(vrna_fold_compound_t *vc,
00378
00379
00380
00381 void
00382 vrna_params_prepare(vrna_fold_compound_t *vc,
00383
                                                      unsigned int
00384
00385
00386 #ifndef VRNA DISABLE BACKWARD COMPATIBILITY
00387
00392 typedef struct vrna_param_s paramT;
00398 typedef struct vrna_exp_param_s pf_paramT;
00399
00400 DEPRECATED(vrna_param_t *get_parameter_copy(vrna_param_t *par),
00401
                                     "Use vrna_params_copy() instead");
00402
00412 DEPRECATED(vrna_exp_param_t *get_scaled_pf_parameters(void),
                                     "Use vrna_params() instead");
00413
00414
                                                                                                                                                temperature,
00440 DEPRECATED(vrna_exp_param_t *get_boltzmann_factors(double
00441
                                                                                                                          double
                                                                                                                                                betaScale,
00442
                                                                                                                          vrna_md_t md,
00443
                                                                                                                                           pf_scale),
                                                                                                                         double
00444
                                    "Use vrna_exp_params() instead");
00445
00456 DEPRECATED(vrna_exp_param_t *get_boltzmann_factor_copy(vrna_exp_param_t *parameters), 00457 "Use vrna_exp_params_copy() instead");
00458
00466 DEPRECATED(vrna_exp_param_t *get_scaled_alipf_parameters(unsigned int n_seq),
                                     "Use vrna_exp_params_comparative() instead");
00468
\texttt{00477 DEPRECATED(vrna\_exp\_param\_t *get\_boltzmann\_factors\_ali(unsigned int n\_seq, n_seq, n
                                                                                                                                   double
00478
                                                                                                                                                             temperature,
00479
                                                                                                                                  double
                                                                                                                                                              betaScale.
00480
                                                                                                                                   vrna_md_t
                                                                                                                                                             md,
                                                                                                                                                            pf_scale),
00481
                                                                                                                                  double
00482
                                    "Use vrna_exp_params_comparative() instead");
00483
00495 DEPRECATED(vrna_param_t *scale_parameters(void),
00496
                                     "Use vrna_params() instead");
00497
00514 DEPRECATED(vrna_param_t *get_scaled_parameters(double
                                                                                                                                         temperature,
00515
                                                                                                                 vrna_md_t md),
00516
                                    "Usee vrna_params() instead");
00517
00518 DEPRECATED(vrna_param_t *copy_parameters(void), "Use vrna_params_copy() instead");
00519 DEPRECATED(vrna_param_t *set_parameters(vrna_param_t *dest), "Use vrna_params_copy() instead");
00520 DEPRECATED(vrna_exp_param_t *scale_pf_parameters(void), "Use vrna_exp_params() instead");
00521 DEPRECATED(vrna_exp_param_t *copy_pf_param(void), "Use vrna_exp_params_copy() instead");
00522 DEPRECATED(vrna_exp_param_t *set_pf_param(vrna_param_t *dest),
00523 "Use vrna_exp_params_copy() instead");
00524
00525 #endif
00526
00532 #endif
```

# 18.163 ViennaRNA/utils/basic.h File Reference

General utility- and helper-functions used throughout the *ViennaRNA Package*. Include dependency graph for basic.h: This graph shows which files directly or indirectly include this file:

# Macros

• #define VRNA\_INPUT\_ERROR 1U

Output flag of get\_input\_line(): "An ERROR has occured, maybe EOF".

• #define VRNA\_INPUT\_QUIT 2U

Output flag of get\_input\_line(): "the user requested quitting the program".

• #define VRNA\_INPUT\_MISC 4U

Output flag of get\_input\_line(): "something was read".

• #define VRNA INPUT FASTA HEADER 8U

Input/Output flag of get input line():

if used as input option this tells get input line() that the data to be read should comply with the FASTA format.

#define VRNA INPUT CONSTRAINT 32U

Input flag for get\_input\_line():

Tell get\_input\_line() that we assume to read a structure constraint.

#define VRNA\_INPUT\_NO\_TRUNCATION 256U

Input switch for get input line(): "do not trunkate the line by eliminating white spaces at end of line".

#define VRNA INPUT NO REST 512U

Input switch for vrna\_file\_fasta\_read\_record(): "do fill rest array".

#define VRNA\_INPUT\_NO\_SPAN 1024U

Input switch for vrna\_file\_fasta\_read\_record(): "never allow data to span more than one line".

• #define VRNA INPUT NOSKIP BLANK LINES 2048U

Input switch for vrna\_file\_fasta\_read\_record(): "do not skip empty lines".

#define VRNA\_INPUT\_BLANK\_LINE 4096U

Output flag for vrna\_file\_fasta\_read\_record(): "read an empty line".

#define VRNA INPUT NOSKIP COMMENTS 128U

Input switch for get\_input\_line(): "do not skip comment lines".

#define VRNA INPUT COMMENT 8192U

Output flag for vrna\_file\_fasta\_read\_record(): "read a comment".

• #define **MIN2**(A, B) ((A) < (B) ? (A) : (B))

Get the minimum of two comparable values.

#define MAX2(A, B) ((A) > (B) ? (A) : (B))

Get the maximum of two comparable values.

#define MIN3(A, B, C) (MIN2((MIN2((A), (B))), (C)))

Get the minimum of three comparable values.

#define MAX3(A, B, C) (MAX2((MAX2((A), (B))), (C)))

Get the maximum of three comparable values.

### **Functions**

void \* vrna\_alloc (unsigned size)

Allocate space safely.

void \* vrna\_realloc (void \*p, unsigned size)

Reallocate space safely.

void vrna init rand (void)

Initialize seed for random number generator.

void vrna\_init\_rand\_seed (unsigned int seed)

Initialize the random number generator with a pre-defined seed.

• double vrna urn (void)

get a random number from [0..1]

int vrna\_int\_urn (int from, int to)

Generates a pseudo random integer in a specified range.

char \* vrna time stamp (void)

Get a timestamp.

- unsigned int get\_input\_line (char \*\*string, unsigned int options)
- int \* vrna idx row wise (unsigned int length)

Get an index mapper array (iindx) for accessing the energy matrices, e.g. in partition function related functions.

int \* vrna\_idx\_col\_wise (unsigned int length)

Get an index mapper array (indx) for accessing the energy matrices, e.g. in MFE related functions.

• void vrna\_message\_error (const char \*format,...)

Print an error message and die.

void vrna\_message\_verror (const char \*format, va\_list args)

Print an error message and die.

void vrna\_message\_warning (const char \*format,...)

Print a warning message.

• void vrna\_message\_vwarning (const char \*format, va\_list args)

Print a warning message.

void vrna message info (FILE \*fp, const char \*format,...)

Print an info message.

• void vrna\_message\_vinfo (FILE \*fp, const char \*format, va\_list args)

Print an info message.

void vrna\_message\_input\_seq\_simple (void)

Print a line to stdout that asks for an input sequence.

void vrna message input seq (const char \*s)

Print a line with a user defined string and a ruler to stdout.

char \* get line (FILE \*fp)

Read a line of arbitrary length from a stream.

void print\_tty\_input\_seq (void)

Print a line to stdout that asks for an input sequence.

void print\_tty\_input\_seq\_str (const char \*s)

Print a line with a user defined string and a ruler to stdout.

void warn\_user (const char message[])

Print a warning message.

void nrerror (const char message[])

Die with an error message.

void \* space (unsigned size)

Allocate space safely.

void \* xrealloc (void \*p, unsigned size)

Reallocate space safely.

void init\_rand (void)

Make random number seeds.

• double urn (void)

get a random number from [0..1]

• int int\_urn (int from, int to)

Generates a pseudo random integer in a specified range.

void filecopy (FILE \*from, FILE \*to)

Inefficient cp

char \* time\_stamp (void)

Get a timestamp.

### **Variables**

• unsigned short xsubi [3]

Current 48 bit random number.

# 18.163.1 Detailed Description

General utility- and helper-functions used throughout the ViennaRNA Package.

### 18.163.2 Function Documentation

### 18.163.2.1 get\_line()

Read a line of arbitrary length from a stream.

Returns a pointer to the resulting string. The necessary memory is allocated and should be released using *free()* when the string is no longer needed.

Deprecated Use vrna\_read\_line() as a substitute!

#### **Parameters**

fp A file pointer to the stream where the function should read from

Returns

A pointer to the resulting string

### 18.163.2.2 print\_tty\_input\_seq()

Print a line to stdout that asks for an input sequence.

There will also be a ruler (scale line) printed that helps orientation of the sequence positions

Deprecated Use vrna message input seq simple() instead!

#### 18.163.2.3 print tty input seq str()

Print a line with a user defined string and a ruler to stdout.

(usually this is used to ask for user input) There will also be a ruler (scale line) printed that helps orientation of the sequence positions

Deprecated Use vrna message input seq() instead!

#### 18.163.2.4 warn\_user()

Print a warning message.

Print a warning message to stderr

**Deprecated** Use vrna\_message\_warning() instead!

### 18.163.2.5 nrerror()

Die with an error message.

**Deprecated** Use vrna\_message\_error() instead!

### 18.163.2.6 space()

```
void * space ( unsigned size )
```

Allocate space safely.

**Deprecated** Use vrna\_alloc() instead!

# 18.163.2.7 xrealloc()

```
void * xrealloc ( \label{eq:void * p, unsigned } void * p, unsigned size )
```

Reallocate space safely.

Deprecated Use vrna\_realloc() instead!

### 18.163.2.8 init\_rand()

Make random number seeds.

**Deprecated** Use vrna\_init\_rand() instead!

# 18.163.2.9 urn()

```
double urn ( void ) get a random number from [0..1]
```

**Deprecated** Use vrna\_urn() instead!

# 18.163.2.10 int\_urn()

```
int int_urn (
          int from,
          int to )
```

Generates a pseudo random integer in a specified range.

Deprecated Use vrna\_int\_urn() instead!

### 18.163.2.11 filecopy()

```
void filecopy (
          FILE * from,
          FILE * to )
```

Inefficient  $\mathtt{cp}$ 

**Deprecated** Use vrna\_file\_copy() instead!

### 18.163.2.12 time\_stamp()

```
\begin{array}{c} \text{char} * \text{time\_stamp} \text{ (} \\ \text{void} \end{array}
```

Get a timestamp.

Deprecated Use vrna time stamp() instead!

## 18.164 basic.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_UTILS_H
00002 #define VIENNA_RNA_PACKAGE_UTILS_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(_clang_)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00027 /\star two helper macros to indicate whether a function should be exported in
00028 \star the library or stays hidden \star/
00029 #define PUBLIC
00030 #define PRIVATE static
00031
00035 #define VRNA_INPUT_ERROR
00039 #define VRNA_INPUT_QUIT
00043 #define VRNA_INPUT_MISC
                                                 411
00044
00052 #define VRNA INPUT FASTA HEADER
                                                 8U
00053
00054 /*
00055 * @brief Input flag for get_input_line():\n
00056 *
          Tell get_input_line() that we assume to read a nucleotide sequence
00057
00058 */
00059 #define VRNA INPUT SEQUENCE
                                                 16U
00060
00065 #define VRNA_INPUT_CONSTRAINT
00066
00071 #define VRNA_INPUT_NO_TRUNCATION
                                                 256U
00072
00076 #define VRNA INPUT NO REST
                                                 512U
00077
00081 #define VRNA_INPUT_NO_SPAN
00082
00086 #define VRNA_INPUT_NOSKIP_BLANK_LINES
                                                 2048U
00087
00091 #define VRNA INPUT BLANK LINE
                                                 4096U
00092
00096 #define VRNA_INPUT_NOSKIP_COMMENTS
                                                 128U
00097
00101 #define VRNA_INPUT_COMMENT
                                                 8192U
00102
00106 #define MIN2(A, B)
                              ((A) < (B) ? (A) : (B))
00107
00111 #define MAX2(A, B)
                              ((A) > (B) ? (A) : (B))
00116 #define MIN3(A, B, C)
                               (MIN2((MIN2((A), (B))), (C)))
00117
00121 #define MAX3(A, B, C)
                               (MAX2((MAX2((A), (B))), (C)))
00122
00123 #include <stdio.h>
00124 #include <stdarg.h>
00126 #include <ViennaRNA/datastructures/basic.h>
00127
00128
00129 #ifdef WITH_DMALLOC
00130 /* use dmalloc library to check for memory management bugs */
00131 #include "dmalloc.h"
00132 #define vrna_alloc(S)
                                  calloc(1, (S))
00133 #define vrna_realloc(p, S) xrealloc(p, S)
00134 #else
00135
00142 void *
```

18.164 basic.h 931

```
00143 vrna_alloc(unsigned size);
00144
00145
00153 void *
00154 vrna_realloc(void
                  unsigned size);
00155
00157
00158 #endif
00159
00165 void
00166 vrna_init_rand(void);
00167
00168
00176 void
00177 vrna_init_rand_seed(unsigned int seed);
00178
00179
00188 extern unsigned short xsubi[3];
00197 double
00198 vrna_urn(void);
00199
00200
00209 int
00210 vrna_int_urn(int from,
00211
00212
00213
00222 char *
00223 vrna_time_stamp(void);
00224
00225
00246 unsigned int
                                 **string,
00247 get_input_line(char
00248
                    unsigned int options);
00249
00264 int *
00265 vrna_idx_row_wise(unsigned int length);
00266
00267
00282 int *
00283 vrna_idx_col_wise(unsigned int length);
00284
00285
00308 void
00309 vrna_message_error(const char *format,
00310
                         ...);
00311
00312
00325 void
00326 vrna_message_verror(const char *format,
00327
                         va_list
00328
00329
00341 void
00342 vrna_message_warning(const char *format,
00343
00344
00345
00357 void
00358 vrna_message_vwarning(const char *format,
00359
                          va_list args);
00360
00361
00373 void
00374 vrna_message_info(FILE
                                   *fp,
00375
                      const char *format,
00376
                       ...);
00377
00378
00390 void
00391 vrna_message_vinfo(FILE
                                   *fp,
00392
                        const char *format,
00393
                         va_list args);
00394
00395
00401 void
00402 vrna_message_input_seq_simple(void);
00403
00413 void
00414 vrna_message_input_seq(const char *s);
00415
00416
00417 void
```

```
00418 vrna_message_input_msa(const char *s);
00420
00425 #ifndef VRNA DISABLE BACKWARD COMPATIBILITY
00426
00427 DEPRECATED(int *get_indx(unsigned int length), "Use vrna_idx_col_wise() instead");
00429 DEPRECATED(int *get_iindx(unsigned int length), "Use vrna_idx_row_wise() instead");
00430
00443 DEPRECATED(char *get_line(FILE *fp), "Use vrna_read_line() instead");
00444
00451 DEPRECATED(void print_tty_input_seq(void), "Use vrna_message_input_seq_simple() instead");
00452
00461 DEPRECATED(void print_tty_input_seq_str(const char *s), "Use vrna_message_input_seq() instead");
00462
00470 DEPRECATED(void warn_user(const char message[]), "Use vrna_message_warning() instead");
00471
00477 DEPRECATED(void nrerror(const char message[]), "Use vrna message error() instead()");
00484 DEPRECATED (void *space (unsigned size), "Use vrna_alloc() instead");
00485
00491 DEPRECATED (void *xrealloc (void
                                unsigned size), "Use vrna_realloc() instead");
00492
00493
00498 DEPRECATED(void init_rand(void), "Use vrna_init_rand() instead");
00505 DEPRECATED(double urn(void), "Use vrna_urn() instead");
00506
00512 DEPRECATED(int int_urn(int from, 00513 int to), "Use vrna_int_urn() instead()");
00514
00520 DEPRECATED (void filecopy (FILE *from,
00521
                               FILE *to), "Use vrna_file_copy() instead");
00522
00528 DEPRECATED (char *time_stamp (void), "Use vrna_time_stamp() instead");
00529
00530 #endif
00532 #endif
```

# 18.165 ViennaRNA/params/constants.h File Reference

Energy parameter constants.

Include dependency graph for constants.h: This graph shows which files directly or indirectly include this file:

#### **Macros**

- #define GASCONST 1.98717 /\* in [cal/K] \*/
- #define K0 273.15
- #define INF 10000000 /\* (INT MAX/10) \*/
- #define FORBIDDEN 9999
- #define BONUS 10000
- #define NBPAIRS 7
- #define TURN 3
- #define MAXLOOP 30

# 18.165.1 Detailed Description

Energy parameter constants.

#### 18.165.2 Macro Definition Documentation

### 18.165.2.1 GASCONST

```
\#define GASCONST 1.98717 /* in [cal/K] */ The gas constant
```

18.166 constants.h 933

#### 18.165.2.2 K0

#define K0 273.15
0 deg Celsius in Kelvin

### 18.165.2.3 INF

#define INF 10000000 /\* (INT\_MAX/10) \*/ Infinity as used in minimization routines

#### 18.165.2.4 FORBIDDEN

#define FORBIDDEN 9999
forbidden

# 18.165.2.5 BONUS

#define BONUS 10000 bonus contribution

#### 18.165.2.6 NBPAIRS

#define NBPAIRS 7

The number of distinguishable base pairs

### 18.165.2.7 TURN

#define TURN 3

The minimum loop length

## 18.165.2.8 MAXLOOP

#define MAXLOOP 30

The maximum loop length

### 18.166 constants.h

# Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_PARAMS_CONSTANTS_H
00002 #define VIENNA_RNA_PACKAGE_PARAMS_CONSTANTS_H
00003
00004 #include <limits.h>
00005
00013 #define GASCONST 1.98717 /* in [cal/K] */
00015 #define K0 273.15
00017 #define INF 10000000 /* (INT_MAX/10) */
00018
00019 #define EMAX (INF/10)
00021 #define FORBIDDEN 9999
00023 #define BONUS 10000
00025 #define NBPAIRS 7
00027 #define TURN 3
00029 #define MAXLOOP 30
00030
00031 #define UNIT 100
00032
00033 #define MINPSCORE -2 * UNIT
00034
00035 #endif
```

# 18.167 ViennaRNA/params/convert.h File Reference

Functions and definitions for energy parameter file format conversion.

This graph shows which files directly or indirectly include this file:

#### **Macros**

- #define VRNA\_CONVERT\_OUTPUT\_ALL 1U
- #define VRNA CONVERT OUTPUT HP 2U
- #define VRNA\_CONVERT\_OUTPUT\_STACK 4U
- #define VRNA CONVERT OUTPUT MM HP 8U
- #define VRNA\_CONVERT\_OUTPUT\_MM\_INT 16U
- #define VRNA CONVERT OUTPUT MM INT 1N 32U
- #define VRNA CONVERT OUTPUT MM INT 23 64U
- #define VRNA CONVERT OUTPUT MM MULTI 128U
- #define VRNA\_CONVERT\_OUTPUT\_MM\_EXT 256U
- #define VRNA\_CONVERT\_OUTPUT\_DANGLE5 512U
- #define VRNA\_CONVERT\_OUTPUT\_DANGLE3 1024U
- #define VRNA\_CONVERT\_OUTPUT\_INT\_11 2048U
- #define VRNA\_CONVERT\_OUTPUT\_INT\_21 4096U
- #define VRNA CONVERT OUTPUT INT 22 8192U
- #define VRNA CONVERT OUTPUT BULGE 16384U
- #define VRNA\_CONVERT\_OUTPUT\_INT 32768U
- #define VRNA\_CONVERT\_OUTPUT\_ML 65536U
- #define VRNA\_CONVERT\_OUTPUT\_MISC 131072U
- #define VRNA\_CONVERT\_OUTPUT\_SPECIAL HP 262144U
- #define VRNA CONVERT OUTPUT VANILLA 524288U
- #define VRNA CONVERT OUTPUT NINIO 1048576U
- #define VRNA\_CONVERT\_OUTPUT\_DUMP 2097152U

### **Functions**

void convert\_parameter\_file (const char \*iname, const char \*oname, unsigned int options)

# 18.167.1 Detailed Description

Functions and definitions for energy parameter file format conversion.

# 18.168 convert.h

# Go to the documentation of this file. 00001 #ifndef VIENNA\_RNA\_PACKAGE\_PARAMS\_CONVERT\_H

```
00002 #define VIENNA_RNA_PACKAGE_PARAMS_CONVERT_H
00003
00023 #define VRNA_CONVERT_OUTPUT_ALL
00025 #define VRNA_CONVERT_OUTPUT_HP
                                                 2U
00027 #define VRNA_CONVERT_OUTPUT_STACK
00029 #define VRNA_CONVERT_OUTPUT_MM_HP
00031 #define VRNA_CONVERT_OUTPUT_MM_INT
00033 #define VRNA_CONVERT_OUTPUT_MM_INT_1N
00035 #define VRNA_CONVERT_OUTPUT_MM_INT_23
                                                 64U
00037 #define VRNA_CONVERT_OUTPUT_MM_MULTI
                                                 128U
00039 #define VRNA_CONVERT_OUTPUT_MM_EXT
                                                 256U
00041 #define VRNA_CONVERT_OUTPUT_DANGLE5
00043 #define VRNA_CONVERT_OUTPUT_DANGLE3
                                                 1024U
00045 #define VRNA_CONVERT_OUTPUT_INT_11
                                                 2048U
00047 #define VRNA_CONVERT_OUTPUT_INT_21
                                                 40960
00049 #define VRNA_CONVERT_OUTPUT_INT_22
                                                 8192U
00051 #define VRNA_CONVERT_OUTPUT_BULGE
                                                 16384U
00053 #define VRNA_CONVERT_OUTPUT_INT
                                                 32768U
00055 #define VRNA_CONVERT_OUTPUT_ML
00057 #define VRNA_CONVERT_OUTPUT_MISC
00059 #define VRNA_CONVERT_OUTPUT_SPECIAL_HP
                                                 26214411
00061 #define VRNA_CONVERT_OUTPUT_VANILLA
                                                 524288U
00063 #define VRNA CONVERT OUTPUT NINIO
                                                 10485760
00065 #define VRNA_CONVERT_OUTPUT_DUMP
                                                 2097152U
00066
00089 void convert_parameter_file(const char
00090
                                   const char
                                                 *oname,
                                  unsigned int options);
00091
00092
00093
00097 #endif
```

18.169 default.h 935

# 18.169 default.h

```
00001 /*
00002 prototypes for energy_par.c
00003 */
00004
00005 #ifndef VIENNA_RNA_PACKAGE_PARAMS_DEFAULT_H
00006 #define VIENNA_RNA_PACKAGE_PARAMS_DEFAULT_H
00007
00008 #include <ViennaRNA/params/constants.h>
00009
00010 #define PUBLIC
00012
00013 extern double 1xc37; /* parameter for logarithmic loop
00014
                energy extrapolation
00015
00016 extern int stack37[NBPATRS+11[NBPATRS+11:
00017 extern int stackdH[NBPAIRS+1][NBPAIRS+1]; /* stack enthalpies */
00019 extern int hairpin37[31];
00020 extern int hairpindH[31];
00021 extern int bulge37[31];
00022 extern int bulgedH[31];
00023 extern int internal_loop37[31];
00024 extern int internal_loopdH[31];
00025 extern int mismatch137[NBPAIRS+1][5][5]; /* interior loop mismatches */
00026 extern int mismatchIdH[NBPAIRS+1][5][5]; /* interior loop mismatches */
00027 extern int mismatchlnI37[NBPAIRS+1][5][5]; /* interior loop mismatches */
00028 extern int mismatch23I37[NBPAIRS+1][5][5]; /* interior loop mismatches */
00029 extern int mismatchlnIdH[NBPAIRS+1][5][5]; /* interior loop mismatches */
00030 extern int mismatch23IdH[NBPAIRS+1][5][5]; /* interior loop mismatches */
00031 extern int mismatchH37[NBPAIRS+1][5][5]; /* same for hairpins */
00032 extern int mismatchM37[NBPAIRS+1][5][5]; /* same for multiloops */
00033 extern int mismatchHdH[NBPAIRS+1][5][5]; /* same for hairpins */ 00034 extern int mismatchMdH[NBPAIRS+1][5][5]; /* same for multiloops */
00035 extern int mismatchExt37[NBPAIRS+1][5][5];
00036 extern int mismatchExtdH[NBPAIRS+1][5][5];
00037
                                                        /* 5' dangle exterior of pair */
/* 3' dangle */
00038 extern int dangle5_37[NBPAIRS+1][5];
00039 extern int dangle3_37[NBPAIRS+1][5];
00040 extern int dangle3_dH[NBPAIRS+1][5];
                                                         /* corresponding enthalpies */
00041 extern int dangle5 dH[NBPAIRS+1][5];
00043 extern int int11_37[NBPAIRS+1][NBPAIRS+1][5][5]; /* 1x1 interior loops */
00044 extern int int11_dH[NBPAIRS+1][NBPAIRS+1][5][5];
00045
00046 extern int int21_37[NBPAIRS+1][NBPAIRS+1][5][5][5]; /* 2x1 interior loops */
00047 extern int int21_dH[NBPAIRS+1][NBPAIRS+1][5][5][5];
00048
00049 extern int int22_37[NBPAIRS+1][NBPAIRS+1][5][5][5]; /* 2x2 interior loops */
00050 extern int int22_dH[NBPAIRS+1][NBPAIRS+1][5][5][5][5];
00051
00052 /\star constants for linearly destabilizing contributions for multi-loops
         F = ML_closing + ML_intern*(k-1) + ML_BASE*u */
00053
00054 extern int ML_BASE37;
00055 extern int ML_BASEdH;
00056 extern int ML_closing37;
00057 extern int ML_closingdH;
00058 extern int ML_intern37;
00059 extern int ML_interndH;
00060
00061 extern int TripleC37;
00062 extern int TripleCdH;
00063 extern int MultipleCA37;
00064 extern int MultipleCAdH;
00065 extern int MultipleCB37;
00066 extern int MultipleCBdH;
00068 /\star Ninio-correction for asymmetric internal loops with branches n1 and n2 \star/
00069 /* ninio_energy = min{max_ninio, |n1-n2|*F_ninio[min{4.0, n1, n2}] } */
00070 extern int MAX_NINIO;
                                                       /* maximum correction */
00071 extern int ninio37:
00072 extern int niniodH;
00073 /* penalty for helices terminated by AU (actually not GC) */
00074 extern int TerminalAU37;
00075 extern int TerminalAUdH;
00076 /\star penalty for forming bi-molecular duplex \star/
00077 extern int DuplexInit37;
00078 extern int DuplexInitdH;
00079 /* stabilizing contribution due to special hairpins of size 4 (tetraloops) */
00080 extern char Tetraloops[281]; /* string containing the special tetraloops */
00081 extern int Tetraloop37[40]; /* Bonus energy for special tetraloops *, 00082 extern int TetraloopdH[40];
00083 extern char Triloops[241]; /* string containing the special tri 00084 extern int Triloop37[40]; /* Bonus energy for special Triloops */ 00085 extern int TriloopdH[40]; /* Bonus energy for special Triloops */
                                          /* string containing the special triloops */
```

```
00086 extern char Hexaloops[361];
                                    /* string containing the special triloops */
00087 extern int Hexaloop37[40]; /* Bonus energy for special Triloops */
00088 extern int HexaloopdH[40]; /* Bonus energy for special Triloops */
00089
00090 extern int GOuadAlpha37;
00091 extern int GQuadAlphadH;
00092 extern int GQuadBeta37;
00093 extern int GQuadBetadH;
00094 extern int GQuadLayerMismatch37; /* penalty per incompatible gquad layer in a sub-alignment (applied
     twice for inner layers) */
00095 extern int GQuadLayerMismatchH;
00096 extern int GQuadLayerMismatchMax; /* maximum number of mismatching sequences in the alignment when
     gquad should be formed */
00097
00098 extern double Tmeasure;
                                  /* temperature of param measurements */
00099
00100 #endif
```

# 18.170 intl11.h

```
00001 PUBLIC int int11_37[NBPAIRS+1][NBPAIRS+1][5][5] =
00002 {{{{
               INF,
                        INF,
                                INF,
                                         INF,
00003
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF)
00004
                INF,
                        INF.
                                 INF.
                                         INF.
                                                  TNF
                                         INF,
               INF,
00005
                        INF,
                                 INF,
                                                  TNF
00006
                INF.
                        INF.
                                 INF.
                                         INF.
                                                  INF }
00007
80000
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
        , { {
00009
               INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00010
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF
         , {
00011
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  TNF
00012
                INF.
                        INF,
                                INF.
                                         INF.
                                                  INF }
00013
00014
        , { {
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
                INF,
                                 INF,
00015
                        INF,
                                         INF.
                                                  INF }
00016
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
               INF,
                                         INF,
00017
                        INF,
                                 INF.
                                                  TNF
00018
                INF,
                        INF.
                                 INF.
                                         INF,
                                                  TNF
00019
00020
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
        , { {
00021
                                         INF,
                INF,
                        INF,
                                 INF,
                                                  INF }
00022
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF)
                                         INF,
               INF,
00023
                        INF,
                                 INF,
                                                  TNF
00024
                INF,
                        INF,
                                INF,
                                         INF,
                                                  INF }
00025
00026
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
        , { {
00027
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
         , {
00028
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00029
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00030
                INF,
                        INF,
                                INF,
                                         INF,
                                                  TNF
00031
00032
                INF,
        , { {
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00033
                INF,
                        INF,
                                         INF,
                                                  INF }
                                 INF,
         , {
00034
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00035
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00036
                INF.
                        INF.
                                 INF.
                                         INF.
                                                  INF }
00037
                                         INF,
00038
                INF,
                        INF,
                                 INF,
                                                  INF }
        , { {
00039
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
         , {
00040
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00041
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF)
                        INF,
                                 INF
00042
                INF,
                                         INF,
                                                  INF }
00043
00044
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
        . { {
00045
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
         , {
00046
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00047
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF
00048
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00049
00050
00051 ,{{{
                INF,
                        INF,
                                         INF,
                                                  INF }
                                 INF,
00052
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00053
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00054
                INF,
                        INF,
                                 INF,
                                         INF,
                                                  INF }
00055
                INF.
                        INF.
                                 TNF.
                                         TNF.
                                                  INF }
00056
00057
                 90,
                         90,
                                  50,
                                          50,
                                                   50}
        , { {
00058
                 90,
                         90,
                                  50,
                                          50,
                                                   50}
00059
                 50,
                         50,
                                  50,
                                          50,
                                                   50}
00060
                 50,
                         50,
                                  50,
                                        -140,
                                                   50}
                                          50,
00061
                 50,
                         50,
                                  50,
                                                   40}
00062
00063
                 90,
                         90,
                                  50,
                                          50.
                                                   60}
        . { {
00064
                 90,
                         90,
                                 -40,
                                          50,
                                                   50}
         , {
00065
                 60,
                         30,
                                  50,
                                          50,
                                                   60}
         , {
```

18.170 intl11.h 937

| 00066<br>00067 | , {        | 50,<br>50,   | -10,<br>50,  | 50,<br>0,    | -220,<br>50,  | 50}<br>-10}    |
|----------------|------------|--------------|--------------|--------------|---------------|----------------|
| 00068          | }          |              |              |              | 120,          | 120}           |
| 00069<br>00070 | ,{{<br>,{  | 120,<br>120, | 120,<br>60,  | 120,<br>50,  | 120,          | 120}           |
| 00071<br>00072 | , {<br>, { | 120,<br>120, | 120,<br>-20, | 120,<br>120, | 120,<br>-140, | 120}<br>120}   |
| 00073          | , {        | 120,         | 120,         | 100,         | 120,          | 110}           |
| 00074<br>00075 | }<br>,{{   | 220,         | 220,         | 170,         | 120,          | 120}           |
| 00076<br>00077 | , {<br>, { | 220,<br>170, | 220,<br>120, | 130,<br>170, | 120,<br>120,  | 120}<br>120}   |
| 00078          | , {        | 120,         | 120,         | 120,         | -140,         | 120}           |
| 00079<br>00080 | , {<br>}   | 120,         | 120,         | 120,         | 120,          | 110}           |
| 00081<br>00082 | ,{{<br>,{  | 120,<br>120, | 120,<br>120, | 120,<br>120, | 120,<br>120,  | 120}<br>120}   |
| 00083          | , {        | 120,         | 120,         | 120,         | 120,          | 120}           |
| 00084          | , {<br>, { | 120,<br>120, | 120,<br>120, | 120,<br>120, | -140,<br>120, | 120}<br>80}    |
| 00086<br>00087 | }<br>,{{   | 120,         | 120,         | 120,         | 120,          | 120}           |
| 00088          | , {        | 120,         | 120,         | 120,         | 120,          | 120}           |
| 00089<br>00090 | , {<br>, { | 120,<br>120, | 120,<br>120, | 120,<br>120, | 120,<br>-140, | 120}<br>120}   |
| 00091<br>00092 | , {<br>}   | 120,         | 120,         | 120,         | 120,          | 120}           |
| 00093          | , { {      | 220,         | 220,         | 170,         | 120,          | 120}           |
| 00094<br>00095 | , {<br>, { | 220,<br>170, | 220,<br>120, | 130,<br>170, | 120,<br>120,  | 120}<br>120}   |
| 00096<br>00097 | , {        | 120,<br>120, | 120,         | 120,         | -140,         | 120}           |
| 00097          | , {<br>}   | 120,         | 120,         | 120,         | 120,          | 120}           |
| 00099          | }<br>,{{{  | INF,         | INF,         | INF,         | INF,          | INF }          |
| 00101          | , {        | INF,         | INF,         | INF,         | INF,          | INF }          |
| 00102<br>00103 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,          | INF }<br>INF } |
| 00104          | , {        | INF,         | INF,         | INF,         | INF,          | INF}           |
| 00105<br>00106 | }<br>,{{   | 90,          | 90,          | 60,          | 50,           | 50}            |
| 00107<br>00108 | , {<br>, { | 90,<br>50,   | 90,<br>-40,  | 30,<br>50,   | -10,<br>50,   | 50}<br>0}      |
| 00109          | , {        | 50,          | 50,          | 50,          | -220,         | 50}            |
| 00110          | , {<br>}   | 60,          | 50,          | 60,          | 50,           | -10}           |
| 00112<br>00113 | , { {      | 80,          | 80,          | 50,<br>50,   | 50,<br>50,    | 50}<br>50}     |
| 00113          | , {<br>, { | 80,<br>50,   | 80,<br>50,   | 50,          | 50,           | 50}            |
| 00115<br>00116 | , {<br>, { | 50,<br>50,   | 50,<br>50,   | 50,<br>50,   | -230,<br>50,  | 50}<br>-60}    |
| 00117          | }          |              |              |              |               |                |
| 00118<br>00119 | ,{{<br>,{  | 190,<br>190, | 190,<br>190, | 120,<br>120, | 150,<br>150,  | 150}<br>120}   |
| 00120<br>00121 | , {<br>, { | 120,<br>120, | 120,<br>120, | 120,<br>120, | 120,<br>-140, | 120}<br>120}   |
| 00122          | , {        | 150,         | 120,         | 120,         | 120,          | 150}           |
| 00123<br>00124 | }<br>,{{   | 160,         | 160,         | 120,         | 120,          | 120}           |
| 00125          | , {        | 160,<br>120, | 160,<br>120, | 120,<br>120, | 100,<br>120,  | 120}<br>120}   |
| 00126<br>00127 | , {<br>, { | 120,         | 120,         | 120,         | -140,         | 120}           |
| 00128<br>00129 | , {<br>}   | 120,         | 120,         | 120,         | 120,          | 70}            |
| 00130          | , { {      | 120,         | 120,         | 120,         | 120,          | 120}           |
| 00131<br>00132 | , {<br>, { | 120,<br>120, | 120,<br>120, | 120,<br>120, | 120,<br>120,  | 120}<br>120}   |
| 00133<br>00134 | , {        | 120,         | 120,         | 120,         | -140,<br>120, | 120}           |
| 00134          | , {<br>}   | 120,         | 120,         | 120,         |               | 80}            |
| 00136<br>00137 | ,{{<br>,{  | 120,<br>120, | 120,<br>120, | 120,<br>120, | 120,<br>120,  | 120}<br>120}   |
| 00138          | , {        | 120,         | 120,         | 120,         | 120,          | 120}           |
| 00139<br>00140 | , {<br>, { | 120,<br>120, | 120,<br>120, | 120,<br>120, | -140,<br>120, | 120}<br>120}   |
| 00141<br>00142 | }<br>,{{   | 190,         | 190,         | 120,         | 150,          | 150}           |
| 00143          | , {        | 190,         | 190,         | 120,         | 150,          | 120}           |
| 00144<br>00145 | , {<br>, { | 120,<br>120, | 120,<br>120, | 120,<br>120, | 120,<br>-140, | 120}<br>120}   |
| 00146          | , {        | 150,         | 120,         | 120,         | 120,          | 150}           |
| 00147<br>00148 | }          |              |              |              |               |                |
| 00149<br>00150 | ,{{{       | INF,<br>INF, | INF,         | INF,         | INF,<br>INF,  | INF }<br>INF } |
| 00151          | , {        | INF,         | INF,         | INF,         | INF,          | INF }          |
| 00152          | , {        | INF,         | INF,         | INF,         | INF,          | INF }          |

| 00153          | , {      | INF,         | INF,         | INF,         | INF,          | INF}         |
|----------------|----------|--------------|--------------|--------------|---------------|--------------|
| 00154<br>00155 | }<br>,{{ | 120,         | 120,         | 120,         | 120,          | 120}         |
| 00156          | , (      | 120,         | 60,          | 120,         | -20,          | 120}         |
| 00157          | , {      | 120,         | 50,          | 120,         | 120,          | 100}         |
| 00158          | , {      | 120,         | 120,         | 120,         | -140,         | 120}         |
| 00159          | , {      | 120,         | 120,         | 120,         | 120,          | 110}         |
| 00160          | }        |              |              |              |               |              |
| 00161          | , { {    | 190,         | 190,         | 120,         | 120,          | 150}         |
| 00162          | },{      | 190,         | 190,         | 120,         | 120,          | 120}         |
| 00163<br>00164 | ,{<br>,{ | 120,<br>150, | 120,<br>150, | 120,<br>120, | 120,<br>-140, | 120}<br>120} |
| 00165          | , {      | 150,         | 120,         | 120,         | 120,          | 150}         |
| 00166          | }        | ,            | ·            | ·            | •             |              |
| 00167          | , { {    | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00168          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00169          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00170<br>00171 | ,{<br>,{ | 190,<br>190, | 190,<br>190, | 190,<br>190, | -70,<br>190,  | 190}<br>120} |
| 00172          | }        | 100,         | 100,         | 100,         | 130,          | 120)         |
| 00173          | , { {    | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00174          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00175          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00176          | , {      | 190,         | 190,         | 190,         | -70,          | 190}         |
| 00177          | , {      | 190,         | 190,         | 190,         | 190,          | 160}         |
| 00178<br>00179 | }<br>,{{ | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00179          | , 11     | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00181          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00182          | , {      | 190,         | 190,         | 190,         | -70,          | 190}         |
| 00183          | , {      | 190,         | 190,         | 190,         | 190,          | 120}         |
| 00184          | }        |              |              |              |               |              |
| 00185          | , { {    | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00186          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00187<br>00188 | ,{<br>,{ | 190,<br>190, | 190,<br>190, | 190,<br>190, | 190,<br>-70,  | 190}<br>190} |
| 00189          | , {      | 190,         | 190,         | 190,         | 190,          | 160}         |
| 00190          | }        | /            | /            | /            | /             | ,            |
| 00191          | , { {    | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00192          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00193          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00194          | , {      | 190,         | 190,         | 190,         | -70,          | 190}         |
| 00195<br>00196 | , {<br>} | 190,         | 190,         | 190,         | 190,          | 160}         |
| 00197          | }        |              |              |              |               |              |
| 00198          | ,{{{     | INF,         | INF,         | INF,         | INF,          | INF }        |
| 00199          | , {      | INF,         | INF,         | INF,         | INF,          | INF}         |
| 00200          | , {      | INF,         | INF,         | INF,         | INF,          | INF }        |
| 00201          | , {      | INF,         | INF,         | INF,         | INF,          | INF }        |
| 00202<br>00203 | , {<br>} | INF,         | INF,         | INF,         | INF,          | INF}         |
| 00203          | , { {    | 220,         | 220,         | 170,         | 120,          | 120}         |
| 00205          | , {      | 220,         | 220,         | 120,         | 120,          | 120}         |
| 00206          | , {      | 170,         | 130,         | 170,         | 120,          | 120}         |
| 00207          | , {      | 120,         | 120,         | 120,         | -140,         | 120}         |
| 00208          | , {      | 120,         | 120,         | 120,         | 120,          | 110}         |
| 00209<br>00210 | }<br>,{{ | 160,         | 160,         | 120,         | 120,          | 120}         |
| 00210          | , 11     | 160,         | 160,         | 120,         | 120,          | 120}         |
| 00212          | , {      | 120,         | 120,         | 120,         | 120,          | 120}         |
| 00213          | , {      | 120,         | 100,         | 120,         | -140,         | 120}         |
| 00214          | , {      | 120,         | 120,         | 120,         | 120,          | 70}          |
| 00215          | }        | 100          | 1.00         | 100          | 100           | 1001         |
| 00216          | , { {    | 190,         | 190,         | 190,         | 190,          | 190}<br>190} |
| 00217<br>00218 | ,{<br>,{ | 190,<br>190, | 190,<br>190, | 190,<br>190, | 190,<br>190,  | 190}         |
| 00219          | , {      | 190,         | 190,         | 190,         | -70,          | 190}         |
| 00220          | , {      | 190,         | 190,         | 190,         | 190,          | 160}         |
| 00221          | }        |              |              |              |               |              |
| 00222          | , { {    | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00223          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00224<br>00225 | , {      | 190,<br>190, | 190,<br>190, | 190,<br>190, | 190,<br>-70,  | 190}<br>190} |
| 00225          | ,{<br>,{ | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00227          | }        | 130,         | 130,         | 130,         | 130,          | 150,         |
| 00228          | ,{{      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00229          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00230          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00231          | , {      | 190,         | 190,         | 190,         | -70,          | 190}         |
| 00232<br>00233 | , {<br>\ | 190,         | 190,         | 190,         | 190,          | 160}         |
| 00233          | }<br>,{{ | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00234          | , (      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00236          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00237          | , {      | 190,         | 190,         | 190,         | -70,          | 190}         |
| 00238          | , {      | 190,         | 190,         | 190,         | 190,          | 190}         |
| 00239          | }        |              |              |              |               |              |
|                |          |              |              |              |               |              |

18.170 intl11.h 939

| 00040     |         | 220   | 220   | 100   | 1.00  | 1001   |
|-----------|---------|-------|-------|-------|-------|--------|
| 00240     | , { {   | 220,  | 220,  | 190,  | 190,  | 190}   |
| 00241     | , {     | 220,  | 220,  | 190,  | 190,  | 190}   |
| 00242     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00243     | , {     | 190,  | 190,  | 190,  | -70,  | 190}   |
| 00244     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00245     | }       |       |       |       |       |        |
| 00246     | }       |       |       |       |       |        |
| 00247     | ,{{{    | INF,  | INF,  | INF,  | INF,  | INF }  |
| 00248     |         | INF,  | INF,  | INF,  | INF,  | INF }  |
|           | , {     |       |       |       |       |        |
| 00249     | , {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 00250     | , {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 00251     | , {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 00252     | }       |       |       |       |       |        |
| 00253     | , { {   | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00254     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00255     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00256     |         | 120,  | 120,  | 120,  | -140, | 120}   |
|           | , {     |       |       |       |       |        |
| 00257     | , {     | 120,  | 120,  | 120,  | 120,  | 80}    |
| 00258     | }       |       |       |       |       |        |
| 00259     | , { {   | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00260     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00261     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00262     | , {     | 120,  | 120,  | 120,  | -140, | 120}   |
| 00263     | , {     | 120,  | 120,  | 120,  | 120,  | 80}    |
| 00264     | }       | 120,  | 120,  | 120,  | 120,  | 00)    |
|           |         | 1.00  | 1.00  | 100   | 1.00  | 1001   |
| 00265     | , { {   | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00266     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00267     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00268     | , {     | 190,  | 190,  | 190,  | -70,  | 190}   |
| 00269     | , {     | 190,  | 190,  | 190,  | 190,  | 120}   |
| 00270     | }       |       |       |       |       |        |
| 00271     | , { {   | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00272     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00272     |         |       |       |       |       |        |
|           | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00274     | , {     | 190,  | 190,  | 190,  | -70,  | 190}   |
| 00275     | , {     | 190,  | 190,  | 190,  | 190,  | 160}   |
| 00276     | }       |       |       |       |       |        |
| 00277     | , { {   | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00278     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00279     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00280     | , {     | 190,  | 190,  | 190,  | -70,  | 190}   |
| 00281     | , {     | 190,  | 190,  | 190,  | 190,  | 120}   |
|           |         | 100,  | 100,  | 100,  | 100,  | 120)   |
| 00282     | }       | 100   | 1.00  | 100   | 1.00  | 1001   |
| 00283     | , { {   | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00284     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00285     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00286     | , {     | 190,  | 190,  | 190,  | -70,  | 190}   |
| 00287     | , {     | 190,  | 190,  | 190,  | 190,  | 150}   |
| 00288     | }       |       |       |       |       |        |
| 00289     | , { {   | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00290     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
|           |         |       |       |       |       |        |
| 00291     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00292     | , {     | 190,  | 190,  | 190,  | -70,  | 190}   |
| 00293     | , {     | 190,  | 190,  | 190,  | 190,  | 160}   |
| 00294     | }       |       |       |       |       |        |
| 00295     | }       |       |       |       |       |        |
| 00296     | , { { { | INF,  | INF,  | INF,  | INF,  | INF }  |
| 00297     | , {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 00298     | , {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 00299     | , {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 00300     |         | INF,  | INF,  | INF,  | INF,  | INF }  |
|           | , {     | TIME, | TIME, | TIME, | TIME, | TIME } |
| 00301     | }       | 100   | 100   | 100   | 100   | 1001   |
| 00302     | , { {   | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00303     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00304     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00305     | , {     | 120,  | 120,  | 120,  | -140, | 120}   |
| 00306     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00307     | }       | •     | ,     | •     | •     |        |
| 00308     | , { {   | 120,  | 120,  | 120,  | 120,  | 120}   |
|           |         | 120,  |       |       | 120,  |        |
| 00309     | , {     |       | 120,  | 120,  |       | 120}   |
| 00310     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00311     | , {     | 120,  | 120,  | 120,  | -140, | 120}   |
| 00312     | , {     | 120,  | 120,  | 120,  | 120,  | 120}   |
| 00313     | }       |       |       |       |       |        |
| 00314     | , { {   | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00315     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00316     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00317     | , {     | 190,  | 190,  | 190,  | -70,  | 190}   |
|           |         |       |       |       |       |        |
| 00318     | , {     | 190,  | 190,  | 190,  | 190,  | 160}   |
| 00319     | }       |       |       |       |       |        |
| 00320     | , { {   | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00321     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00322     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00323     | , {     | 190,  | 190,  | 190,  | -70,  | 190}   |
| 00324     | , {     | 190,  | 190,  | 190,  | 190,  | 190}   |
| 00325     | }       | ,     | /     | /     | ,     | ,      |
| 00326     | , { {   | 190,  | 190,  | 190,  | 190,  | 190}   |
| J J J Z U | ,       | ±00,  | ,     | ,     | ,     | 1005   |

| 00327 | , {             | 190, | 190, | 190, | 190,  | 190}  |
|-------|-----------------|------|------|------|-------|-------|
|       |                 |      |      |      |       |       |
| 00328 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00329 | , {             | 190, | 190, | 190, | -70,  | 190}  |
| 00330 | , {             | 190, | 190, | 190, | 190,  | 150}  |
| 00331 | }               |      |      |      |       |       |
| 00332 | , { {           | 190, | 190, | 190, | 190,  | 190}  |
|       |                 |      |      |      |       |       |
| 00333 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00334 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00335 | , {             | 190, | 190, | 190, | -70,  | 190}  |
| 00336 | , {             | 190, | 190, | 190, | 190,  | 170}  |
|       |                 | 100, | 100, | 100, | 100,  | 1,01  |
| 00337 | }               |      |      |      |       |       |
| 00338 | , { {           | 190, | 190, | 190, | 190,  | 190}  |
| 00339 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00340 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00341 |                 |      |      |      | -70,  |       |
|       | , {             | 190, | 190, | 190, |       | 190}  |
| 00342 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00343 | }               |      |      |      |       |       |
| 00344 | }               |      |      |      |       |       |
| 00345 | , { { {         | INF, | INF, | INF, | INF,  | INF}  |
|       |                 |      |      |      |       |       |
| 00346 | , {             | INF, | INF, | INF, | INF,  | INF}  |
| 00347 | , {             | INF, | INF, | INF, | INF,  | INF } |
| 00348 | , {             | INF, | INF, | INF, | INF,  | INF } |
| 00349 | , {             | INF, | INF, | INF, | INF,  | INF } |
| 00350 |                 |      |      |      |       |       |
|       | }               |      |      |      |       |       |
| 00351 | , { {           | 220, | 220, | 170, | 120,  | 120}  |
| 00352 | , {             | 220, | 220, | 120, | 120,  | 120}  |
| 00353 | , {             | 170, | 130, | 170, | 120,  | 120}  |
| 00354 |                 | 120, |      | 120, | -140, |       |
|       | , {             |      | 120, |      |       | 120}  |
| 00355 | , {             | 120, | 120, | 120, | 120,  | 120}  |
| 00356 | }               |      |      |      |       |       |
| 00357 | , { {           | 190, | 190, | 120, | 120,  | 150}  |
| 00358 | , {             | 190, | 190, | 120, | 120,  | 120}  |
|       |                 |      |      | •    |       |       |
| 00359 | , {             | 120, | 120, | 120, | 120,  | 120}  |
| 00360 | , {             | 150, | 150, | 120, | -140, | 120}  |
| 00361 | , {             | 150, | 120, | 120, | 120,  | 150}  |
| 00362 | }               |      |      |      |       |       |
| 00363 | , { {           | 190, | 190, | 190, | 190,  | 190}  |
|       |                 |      |      |      |       |       |
| 00364 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00365 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00366 | , {             | 190, | 190, | 190, | -70,  | 190}  |
| 00367 | , {             | 190, | 190, | 190, | 190,  | 160}  |
| 00368 | }               | ,    | ,    | ,    | ,     | ,     |
|       |                 | 000  | 000  | 100  | 100   | 1001  |
| 00369 | , { {           | 220, | 220, | 190, | 190,  | 190}  |
| 00370 | , {             | 220, | 220, | 190, | 190,  | 190}  |
| 00371 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00372 | , {             | 190, | 190, | 190, | -70,  | 190}  |
|       |                 |      |      |      |       |       |
| 00373 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00374 | }               |      |      |      |       |       |
| 00375 | , { {           | 190, | 190, | 190, | 190,  | 190}  |
| 00376 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00377 |                 |      | 190, | 190, | 190,  | 190}  |
|       |                 | 190, |      |      |       |       |
| 00378 | , {             | 190, | 190, | 190, | -70,  | 190}  |
| 00379 | , {             | 190, | 190, | 190, | 190,  | 160}  |
| 00380 | }               |      |      |      |       |       |
| 00381 | , { {           | 190, | 190, | 190, | 190,  | 190}  |
|       | ,               |      |      |      |       |       |
| 00382 | , (             | 190, | 190, | 190, | 190,  | 190}  |
| 00383 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00384 | , {             | 190, | 190, | 190, | -70,  | 190}  |
| 00385 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00386 | }               | ,    | ,    | ,    | ,     | ,     |
|       |                 | 222  | 222  | 100  | 1.00  | 100:  |
| 00387 | , { {           | 220, | 220, | 190, | 190,  | 190}  |
| 00388 | , {             | 220, | 220, | 190, | 190,  | 190}  |
| 00389 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00390 | , {             | 190, | 190, | 190, | -70,  | 190}  |
|       |                 |      |      |      |       |       |
| 00391 | , {             | 190, | 190, | 190, | 190,  | 190}  |
| 00392 | }               |      |      |      |       |       |
| 00393 | <pre>} };</pre> |      |      |      |       |       |
|       |                 |      |      |      |       |       |

# 18.171 intl11dH.h

```
00001 PUBLIC int int11_dH[NBPAIRS+1][NBPAIRS+1][5][5] =
00001 1022
               INF,
                        INF,
                                INF,
                                        INF,
                                                 INF}
               INF,
                        INF,
                                INF,
                                         INF,
                                                 INF }
00004
00005
00006
               INF,
                        INF,
                                INF,
                                         INF,
                                                 INF }
               INF,
                                        INF,
                        INF,
                                INF,
                                                 INF }
                                                 INF }
               INF,
                        INF,
                                INF,
                                        INF,
00007
80000
               INF,
                        INF,
                                INF,
                                         INF,
                                                 INF}
        , { {
00009
               INF,
                        INF,
                                INF,
                                        INF,
                                                 INF }
00010
               INF,
                        INF,
                                INF,
                                         INF,
                                                 INF }
00011
00012
00013
                                        INF,
                                                 INF }
               INF,
                        INF,
                                INF,
               INF,
                        INF,
                                INF,
                                        INF,
                                                 INF }
        , { {
00014
               INF,
                        INF,
                                INF,
                                        INF,
                                                 INF}
00015
               INF,
                        INF,
                                INF,
                                        INF,
                                                 INF }
         , {
```

18.171 intl11dH.h 941

| 00016                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                      | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TNE                                                                                                                                                                     | TNIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TNE                                                                                                                                                                     | TME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TME                                                                                                                                                                                                          |
| 00016                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00017<br>00018                                                                                                                                                                                                       | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00018                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
|                                                                                                                                                                                                                      | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TNID                                                                                                                                                                    | TNID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TNID                                                                                                                                                                    | TND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATEL                                                                                                                                                                                                        |
| 00020                                                                                                                                                                                                                | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00021                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00022                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00023                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00024                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00025                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TNID                                                                                                                                                                    | TNID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TNID                                                                                                                                                                    | TND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATEL                                                                                                                                                                                                        |
| 00026                                                                                                                                                                                                                | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00027                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00028                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00029                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00030                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00031                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
| 00032                                                                                                                                                                                                                | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00033                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00034                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00035                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00036                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00037                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
| 00038                                                                                                                                                                                                                | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00039                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00040                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00041                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00042                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00043                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
| 00044                                                                                                                                                                                                                | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00045                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00046                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00047                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00048                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00049                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
| 00050                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
| 00051                                                                                                                                                                                                                | , { { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00052                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00053                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00054                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00055                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,                                                                                                                                                                    | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF }                                                                                                                                                                                                        |
| 00056                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
| 00057                                                                                                                                                                                                                | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}                                                                                                                                                                                                       |
| 00058                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}                                                                                                                                                                                                       |
| 00059                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}                                                                                                                                                                                                       |
| 00060                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1840,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}                                                                                                                                                                                                       |
| 00061                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}                                                                                                                                                                                                       |
| 00062                                                                                                                                                                                                                | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |
| 00063                                                                                                                                                                                                                | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}                                                                                                                                                                                                       |
| 00064                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}                                                                                                                                                                                                       |
| 00065                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}                                                                                                                                                                                                       |
| 00066                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1840,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              |
| 00067                                                                                                                                                                                                                | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1020}                                                                                                                                                                                                       |
| 00068                                                                                                                                                                                                                | , l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1050,                                                                                                                                                                  | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050}<br>-1390}                                                                                                                                                                                             |
|                                                                                                                                                                                                                      | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1050,                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050,                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1050}                                                                                                                                                                                                       |
|                                                                                                                                                                                                                      | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1050,<br>-550,                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1050,<br>-550,                                                                                                                                                         | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              |
| 00069                                                                                                                                                                                                                | }<br>,{{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -550,                                                                                                                                                                   | -1050,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -550,                                                                                                                                                                   | -1050,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1390}<br>-550}                                                                                                                                                                                              |
| 00069<br>00070                                                                                                                                                                                                       | }<br>,{{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -550,<br>-550,                                                                                                                                                          | -1050,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -550,<br>-550,                                                                                                                                                          | -1050,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1390}<br>-550}<br>-550}                                                                                                                                                                                     |
| 00069<br>00070<br>00071                                                                                                                                                                                              | }<br>,{{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -550,<br>-550,<br>-550,                                                                                                                                                 | -1050,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -550,<br>-550,<br>-550,                                                                                                                                                 | -1050,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1390}<br>-550}                                                                                                                                                                                              |
| 00069<br>00070<br>00071<br>00072                                                                                                                                                                                     | }<br>,{{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,                                                                                                                                                 | -1050,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -550,<br>-550,<br>-550,                                                                                                                                                 | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1390} -550} -550} -550} -550}                                                                                                                                                                               |
| 00069<br>00070<br>00071<br>00072<br>00073                                                                                                                                                                            | }<br>,{{<br>,{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -550,<br>-550,<br>-550,                                                                                                                                                 | -1050,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -550,<br>-550,<br>-550,                                                                                                                                                 | -1050,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1390}<br>-550}<br>-550}<br>-550}                                                                                                                                                                            |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074                                                                                                                                                                   | }<br>,{{<br>,{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -550,<br>-550,<br>-550,<br>-550,                                                                                                                                        | -1050,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -550,<br>-550,<br>-550,<br>-550,                                                                                                                                        | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1390} -550} -550} -550} -550} -890}                                                                                                                                                                         |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075                                                                                                                                                          | }<br>,{{<br>,{<br>,{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                               | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                               | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1390} -550} -550} -550} -550} -550} -550}                                                                                                                                                                   |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076                                                                                                                                                 | }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                               | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                      | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1390} -550} -550} -550} -550} -890} -550}                                                                                                                                                                   |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076                                                                                                                                                 | <pre>} ,{{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     .{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     .{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,</pre> | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                             | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                             | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1390} -550} -550} -550} -890} -550} -550} -550} -550}                                                                                                                                                       |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076                                                                                                                                                 | }, {{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                    | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                    | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-1340,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1390} -550} -550} -550} -890} -550} -550} -550} -550}                                                                                                                                                       |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078                                                                                                                               | }, {{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                             | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                             | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1390} -550} -550} -550} -890} -550} -550} -550} -550}                                                                                                                                                       |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00079                                                                                                                      | <pre>} ,{{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                    | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                    | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                                                                 |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00079<br>00080                                                                                                             | <pre>} ,{{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                           | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                           | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                                                           |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00079<br>00080<br>00081                                                                                                    | <pre>} ,{{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                  | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                  | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                                                           |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00079<br>00080<br>00081<br>00082                                                                                           | <pre>} ,{{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                         | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                         | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                                               |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00079<br>00081<br>00082                                                                                                    | <pre>} ,{{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-1340,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                                               |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085                                                                                  | <pre>} ,{{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                         | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                         | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                                               |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00079<br>00082<br>00081<br>00082<br>00083<br>00084                                                                         | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                       | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                       | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -890}                                                                                                                   |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00076<br>00077<br>00078<br>00079<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086                                                                | <pre>} ,{{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                       | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550, | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                       | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550, | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                       |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00079<br>00081<br>00081<br>00082<br>00083<br>00084<br>00085<br>00085                                                       | <pre>} ,{{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{ ,{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                              | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                              | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                           |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00077<br>00078<br>00079<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087                                                       | <pre>} {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                              | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                              | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                       |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087                                                       | <pre>} ;{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                     | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                     | -1050, -550, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -540, -550, -550, -550, -540, -550, -540, -550, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540, -540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                     |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087<br>00088<br>00089<br>00089                            | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                              | -1050,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                              | -1050,<br>-550,<br>-550,<br>-550,<br>-1340,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                                       |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087<br>00088<br>00088                                                       | <pre>} {{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                 |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00077<br>00078<br>00079<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087<br>00088                                              | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                                                     |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00089<br>00080<br>00081<br>00085<br>00086<br>00087<br>00088<br>00088<br>00089<br>00089<br>00090<br>00091                            | <pre>} { {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                   | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                                                             |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087<br>00088<br>00089<br>00090<br>00091                            | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550] -550] -550] -550] -550] -550]                                                                   |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085<br>00085<br>00086<br>00087<br>00088<br>00089<br>00090<br>00091<br>00092<br>00093 | <pre>} {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                   | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                   | -1050, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -1340, -550, -550, -1340, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00082<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087<br>00088<br>00089<br>00090<br>00091<br>00092                   | <pre>} { {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550] -550] -550] -550] -550] -550]                                                                   |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00080<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087<br>00089<br>00090<br>00091<br>00092<br>00093                   | <pre>} { {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                   | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                   | -1050, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -1340, -550, -550, -1340, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087<br>00088<br>00090<br>00090<br>00090<br>00091<br>00092<br>00093 | <pre>} { {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550, | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550, | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                               |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00076<br>00076<br>00077<br>00088<br>00081<br>00085<br>00086<br>00087<br>00088<br>00089<br>00091<br>00092<br>00093<br>00091<br>00095<br>00096<br>00097          | <pre>} {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                            | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,                   | -1050, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -1340, -550, -550, -1340, -550, -1340, -550, -1340, -550, -1340, -550, -1340, -550, -1340, -550, -1340, -550, -1340, -550, -1340, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550] -550} -550] -550] -550] -550] -550] -550]                                                             |
| 00069<br>00070<br>00071<br>00072<br>00073<br>00074<br>00075<br>00076<br>00077<br>00078<br>00081<br>00082<br>00083<br>00084<br>00085<br>00086<br>00087<br>00088<br>00090<br>00090<br>00090<br>00091<br>00092<br>00093 | <pre>} { {</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550, | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550,<br>-550, | -1050, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1390} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550} -550}                               |

| 00103 | , {     | INF,          | INF,          | INF,          | INF,          | INF}    |
|-------|---------|---------------|---------------|---------------|---------------|---------|
| 00104 | , {     | INF,          | INF,          | INF,          | INF,          | INF}    |
| 00105 | }       | ,             | ,             | ,             | ,             | ,       |
| 00106 | ,{{     | -1050,        | -1050,        | -1050,        | -1050,        | -1050}  |
| 00100 |         |               |               |               |               |         |
|       | , {     | -1050,        | -1050,        | -1050,        | -1050,        | -1050}  |
| 00108 | , {     | -1050,        | -1050,        | -1050,        | -1050,        | -1050}  |
| 00109 | , {     | -1050,        | -1050,        | -1050,        | -1840,        | -1050}  |
| 00110 | , {     | -1050,        | -1050,        | -1050,        | -1050,        | -1390}  |
| 00111 | }       |               |               |               |               |         |
| 00112 | , { {   | -1050,        | -1050,        | -1050,        | -1050,        | -1050}  |
| 00113 | , {     | -1050,        | -1050,        | -1050,        | -1050,        | -1050}  |
| 00114 | ,       | -1050,        | -1050,        | -1050,        | -1050,        | -1050}  |
| 00114 |         |               |               |               |               |         |
|       | , {     | -1050,        | -1050,        | -1050,        | -1840,        | -1050}  |
| 00116 | , {     | -1050,        | -1050,        | -1050,        | -1050,        | -1730}  |
| 00117 | }       |               |               |               |               |         |
| 00118 | , { {   | -550 <b>,</b> | -550 <b>,</b> | -550,         | -550 <b>,</b> | -550}   |
| 00119 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550}   |
| 00120 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550}   |
| 00121 | , {     | -550,         | -550 <b>,</b> | -550 <b>,</b> | -1340,        | -550}   |
| 00122 | , {     | -550,         | -550,         | -550,         | -550,         | -1230}  |
| 00123 | }       |               |               |               |               |         |
| 00124 | , { {   | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00121 | , (     | -550,         | -550,         | -550,         | -550,         | -550}   |
|       |         |               |               |               |               |         |
| 00126 | , {     | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00127 | , {     | -550,         | -550,         | -550,         | -1340,        | -550}   |
| 00128 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550,         | -890}   |
| 00129 | }       |               |               |               |               |         |
| 00130 | , { {   | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00131 | , {     | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00132 | , {     | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00133 | , {     | -550,         | -550,         | -550,         | -1340,        | -550}   |
| 00133 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550,         | -550,         | -1230}  |
|       |         | -330,         | -330,         | -550,         | -550,         | -1230}  |
| 00135 | }       | 550           | 550           |               |               | 5501    |
| 00136 | , { {   | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550}   |
| 00137 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550}   |
| 00138 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550}   |
| 00139 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -1340,        | -550}   |
| 00140 | , {     | -550,         | -550,         | -550,         | -550,         | -890}   |
| 00141 | }       |               |               |               |               |         |
| 00142 | , { {   | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00143 | , {     | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00144 |         | -550,         |               | -550,         | -550,         | -550}   |
|       |         |               | -550,         |               |               |         |
| 00145 | , {     | -550,         | -550,         | -550,         | -1340,        | -550}   |
| 00146 | , {     | -550,         | -550,         | -550,         | -550,         | -890}   |
| 00147 | }       |               |               |               |               |         |
| 00148 | }       |               |               |               |               |         |
| 00149 | , { { { | INF,          | INF,          | INF,          | INF,          | INF }   |
| 00150 | , {     | INF,          | INF,          | INF,          | INF,          | INF }   |
| 00151 | , {     | INF,          | INF,          | INF,          | INF,          | INF}    |
| 00152 | , {     | INF,          | INF,          | INF,          | INF,          | INF }   |
| 00153 | ,       | INF,          | INF,          | INF,          | INF,          | INF }   |
|       |         | INT,          | TIME,         | TIME,         | TIME,         | TIME }  |
| 00154 | }       | F.F.O.        | F.F.0         | F F O         | F F O         | F F O 1 |
| 00155 | , { {   | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00156 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550 <b>,</b> | -550,         | -550}   |
| 00157 | , {     | -550,         | -550 <b>,</b> | -550,         | -550 <b>,</b> | -550}   |
| 00158 | , {     | -550 <b>,</b> | -550 <b>,</b> | -550,         | -1340,        | -550}   |
| 00159 | , {     | -550 <b>,</b> | -550,         | -550,         | -550,         | -890}   |
| 00160 | }       |               |               |               |               |         |
| 00161 | , { {   | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00162 | , {     | -550,         | -550,         | -550,         | -550,         | -550}   |
| 00163 | , {     | -550,         | -550,         | -550,         | -550,         | -550}   |
|       |         | -550,         | -550,         | -550,         | -1340,        |         |
| 00164 | , {     |               |               |               |               | -550}   |
| 00165 | , {     | -550,         | -550,         | -550,         | -550,         | -1230}  |
| 00166 | }       |               |               |               |               |         |
| 00167 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00168 | , {     | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00169 | , {     | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00170 | , {     | -50,          | -50,          | -50,          | -830,         | -50}    |
| 00171 | , {     | -50,          | -50,          | -50,          | -50,          | -730}   |
| 00172 | }       |               |               |               |               | ,       |
| 00173 | ,{{     | -50,          | -50,          | -50,          | -50,          | -50}    |
|       |         |               |               |               |               |         |
| 00174 | , {     | -50,          | -50 <b>,</b>  | -50 <b>,</b>  | -50 <b>,</b>  | -50}    |
| 00175 | , {     | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00176 | , {     | -50,          | -50,          | -50,          | -830,         | -50}    |
| 00177 | , {     | -50,          | -50,          | -50,          | -50,          | -390}   |
| 00178 | }       |               |               |               |               |         |
| 00179 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00180 | , {     | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00181 | , {     | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00182 | , {     | -50,          | -50,          | -50,          | -830,         | -50}    |
| 00183 | , {     | -50,          | -50,          | -50,          | -50,          | -730}   |
| 00183 | }       | 50,           | 50,           | 50,           | 50,           | , 50 }  |
|       |         | _ = 0         | _ = 0         | _ = 0         | _ = 0         | _ 503   |
| 00185 | , { {   | -50 <b>,</b>  | -50,          | -50,          | -50,          | -50}    |
| 00186 | , {     | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00187 | , {     | -50,          | -50,          | -50,          | -50,          | -50}    |
| 00188 | , {     | -50,          | -50,          | -50,          | -830,         | -50}    |
| 00189 | , {     | -50,          | -50,          | -50,          | -50,          | -390}   |
|       |         |               |               |               |               |         |

18.171 intl11dH.h 943

| 00190 | }       |               |               |               |               |        |
|-------|---------|---------------|---------------|---------------|---------------|--------|
| 00191 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00192 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00193 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00194 | , {     | -50,          | -50,          | -50,          | -830,         | -50}   |
| 00195 | , {     | -50,          | -50,          | -50,          | -50,          | -390}  |
| 00196 | }       |               |               |               |               |        |
| 00197 | }       |               |               |               |               |        |
| 00198 | , { { { | INF,          | INF,          | INF,          | INF,          | INF }  |
| 00199 | , {     | INF,          | INF,          | INF,          | INF,          | INF}   |
| 00200 | , {     | INF,          | INF,          | INF,          | INF,          | INF)   |
| 00201 | , {     | INF,          | INF,          | INF,          | INF,          | INF }  |
| 00201 | , {     |               |               | INF,          | INF,          |        |
|       |         | INF,          | INF,          | INF,          | TIME,         | INF }  |
| 00203 | }       | EEO           | EEO           | EEO           | EEO           | EEO    |
| 00204 | , { {   | -550,         | -550,         | -550,         | -550,         | -550}  |
| 00205 | , {     | -550,         | -550,         | -550,         | -550,         | -550}  |
| 00206 | , {     | -550,         | -550,         | -550,         | -550 <b>,</b> | -550}  |
| 00207 | , {     | -550,         | -550,         | -550,         | -1340,        | -550}  |
| 00208 | , {     | -550 <b>,</b> | -550,         | -550 <b>,</b> | -550 <b>,</b> | -550}  |
| 00209 | }       |               |               |               |               |        |
| 00210 | , { {   | -550,         | -550,         | -550 <b>,</b> | -550 <b>,</b> | -550}  |
| 00211 | , {     | -550,         | -550 <b>,</b> | -550,         | -550,         | -550}  |
| 00212 | , {     | -550,         | -550,         | -550,         | -550,         | -550}  |
| 00213 | , {     | -550,         | -550,         | -550,         | -1340,        | -550}  |
| 00214 | , {     | -550,         | -550,         | -550,         | -550,         | -890}  |
| 00215 | }       | ,             | ,             | ,             | ,             | ,      |
| 00216 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00217 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00217 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
|       |         |               |               |               |               |        |
| 00219 | , {     | -50,          | -50,          | -50,          | -830,         | -50}   |
| 00220 | , {     | -50,          | -50,          | -50,          | -50,          | -390}  |
| 00221 | }       |               |               |               |               |        |
| 00222 | , { {   | -50,          | -50,          | -50,          | -50 <b>,</b>  | -50}   |
| 00223 | , {     | -50,          | -50,          | -50 <b>,</b>  | -50 <b>,</b>  | -50}   |
| 00224 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00225 | , {     | -50,          | -50,          | -50,          | -830,         | -50}   |
| 00226 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00227 | }       |               |               |               |               |        |
| 00228 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00229 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00230 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00230 | , {     | -50,          | -50,          | -50,          | -830,         | -50}   |
|       |         |               |               |               |               |        |
| 00232 | , {     | -50,          | -50,          | -50,          | -50,          | -390}  |
| 00233 | }       | F 0           | F 0           |               | F.0           | F 0 1  |
| 00234 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00235 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00236 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00237 | , {     | -50 <b>,</b>  | -50,          | -50 <b>,</b>  | -830 <b>,</b> | -50}   |
| 00238 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00239 | }       |               |               |               |               |        |
| 00240 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00241 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00242 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00243 | , {     | -50,          | -50,          | -50,          | -830,         | -50}   |
| 00244 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00245 | }       | ,             | ,             | ,             | ,             | ,      |
| 00246 | }       |               |               |               |               |        |
| 00247 | ,{{{    | INF,          | INF,          | INF,          | INF,          | INF }  |
| 00247 |         | INF,          | INF,          | INF,          | INF,          | INF }  |
|       | , {     |               |               | INF,          | INF,          | INF }  |
| 00249 | , {     | INF,          | INF,          |               |               |        |
| 00250 | , {     | INF,<br>INF,  | INF,          | INF,          | INF,          | INF }  |
| 00251 | , {     | INF,          | INF,          | INF,          | INF,          | INF }  |
| 00252 | }       |               |               |               |               | 5501   |
| 00253 | ,{{     | -550,         | -550,         | -550,         | -550,         | -550}  |
| 00254 | , {     | -550,         | -550,         | -550,         | -550 <b>,</b> | -550}  |
| 00255 | , {     | -550,         | -550,         | -550 <b>,</b> | -550 <b>,</b> | -550}  |
| 00256 | , {     | -550,         | -550 <b>,</b> | -550,         | -1340,        | -550}  |
| 00257 | , {     | -550,         | -550,         | -550 <b>,</b> | -550 <b>,</b> | -890}  |
| 00258 | }       |               |               |               |               |        |
| 00259 | , { {   | -550,         | -550,         | -550,         | -550,         | -550}  |
| 00260 | , {     | -550,         | -550,         | -550,         | -550,         | -550}  |
| 00261 | , {     | -550,         | -550,         | -550,         | -550 <b>,</b> | -550}  |
| 00262 | , {     | -550,         | -550,         | -550,         | -1340,        | -550}  |
| 00263 | , {     | -550,         | -550,         | -550,         | -550,         | -1230} |
| 00264 | }       | 200,          | 200,          | ,             | 000,          | _200)  |
| 00265 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}   |
|       |         |               | -50 <b>,</b>  | -50 <b>,</b>  | -50,<br>-50,  |        |
| 00266 | },      | -50,<br>-50   |               |               |               | -50}   |
| 00267 | , {     | -50,          | -50,          | -50,          | -50 <b>,</b>  | -50}   |
| 00268 | , {     | -50,          | -50,          | -50,          | -830,         | -50}   |
| 00269 | , {     | -50,          | -50,          | -50,          | -50,          | -730}  |
| 00270 | }       |               |               |               |               |        |
| 00271 | , { {   | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00272 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00273 | , {     | -50,          | -50,          | -50,          | -50,          | -50}   |
| 00274 | , {     | -50,          | -50,          | -50,          | -830,         | -50}   |
| 00275 | , {     | -50,          | -50,          | -50,          | -50,          | -390}  |
| 00276 | }       |               |               |               |               |        |
|       |         |               |               |               |               |        |

| 00277 , {{ -50, -50, -50, -50, -50, -50, 00278 , { -50, -50, -50, -50, -50, -50, -50, 00279 , { -50, -50, -50, -50, -50, -50, -50, 00280 , { -50, -50, -50, -50, -50, -50, -50, 00281 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00281 ,{ -50, -50, -50, -50, -730, 00282 } 00283 ,{ -50, -50, -50, -50, -50, -50, 00284 ,{ -50, -50, -50, -50, -50, -50, 00285 ,{ -50, -50, -50, -50, -50, -50, 00286 ,{ -50, -50, -50, -50, -50, -50, 00287 ,{ -50, -50, -50, -50, -50, -50, 00288 } 00287 ,{ -50, -50, -50, -50, -50, -50, -50, 00290 ,{ -50, -50, -50, -50, -50, -50, -50, 00291 ,{ -50, -50, -50, -50, -50, -50, -50, 00291 ,{ -50, -50, -50, -50, -50, -50, -50, 00292 ,{ -50, -50, -50, -50, -50, -50, -50, 00293 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00287         , {         -50,         -50,         -50,         -30,         -30,         -30,         -30,         -30,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50, <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00287         , {         -50,         -50,         -50,         -30,         -30,         -30,         -30,         -30,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50, <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00293         , {         -50,         -50,         -50,         -390           00294         }         00295         }           00296, {{{         INF,         INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00295 } 00296 ,{{{ INF, INF, INF, INF, INF, INF, O297 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00295 } 00296 ,{{{ INF, INF, INF, INF, INF, INF, O297 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00296 , {{{ INF, INF, INF, INF, INF, INF, O0297 , INF, INF, INF, INF, INF, INF, INF, IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 00297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00308         , { -550, -550, -550, -550, -550, -550, 00309         , -550, -550, -550, -550, -550, -550, -550, 00310         , -550, -550, -550, -550, -550, -550, -550, -550, 00311         , -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -50, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00314 , {{ -50, -50, -50, -50, -50, -50, 00315 } , { -50, -50, -50, -50, -50, -50, -50, 00316 } , { -50, -50, -50, -50, -50, -50, -50, 00317 } , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00318         , {         -50,         -50,         -50,         -30,         -390,           00319         )         00320         , {         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50,         -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00319 } 00320 ,{{ -50, -50, -50, -50, -50, -50, 00321 , { -50, -50, -50, -50, -50, -50, -50, 00322 , { -50, -50, -50, -50, -50, -50, -50, 00323 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00319 } 00320 ,{{ -50, -50, -50, -50, -50, -50, 00321 , { -50, -50, -50, -50, -50, -50, -50, 00322 , { -50, -50, -50, -50, -50, -50, -50, 00323 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00320 , {{ -50, -50, -50, -50, -50, -50, 00321 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00324 ,{ -50, -50, -50, -50, -50, -50, 0325 } 00326 ,{{ -50, -50, -50, -50, -50, -50, 0327 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00326 ,{{ -50, -50, -50, -50, -50, -50, 00327 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 00327 , { -50, -50, -50, -50, -50, -50, 00328 , { -50, -50, -50, -50, -50, -50, -50, 00329 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 00327 , { -50, -50, -50, -50, -50, -50, 00328 , { -50, -50, -50, -50, -50, -50, -50, 00329 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 00328 , { -50, -50, -50, -50, -50, -50, 00329 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 00329 , { -50, -50, -50, -830, -50, 0330 , { -50, -50, -50, -50, -50, -390, 0331 }  00332 , { -50, -50, -50, -50, -50, -50, 0333 , { -50, -50, -50, -50, -50, -50, -50, 0334 , { -50, -50, -50, -50, -50, -50, -50, 0336 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 00330 ,{ -50, -50, -50, -50, -390 00331 } 00332 ,{{ -50, -50, -50, -50, -50, -50 00332 , -50, -50, -50, -50, -50, -50, -50 00334 ,{ -50, -50, -50, -50, -50, -50, -50 00335 ,{ -50, -50, -50, -50, -50, -50, -50 00336 ,{ -50, -50, -50, -50, -50, -50 00337 } 00338 ,{{ -50, -50, -50, -50, -50, -50 00339 ,{ -50, -50, -50, -50, -50, -50 00340 ,{ -50, -50, -50, -50, -50, -50 00342 ,{ -50, -50, -50, -50, -50, -50 00342 ,{ -50, -50, -50, -50, -50, -50 00342 ,{ -50, -50, -50, -50, -50, -50, -50 00343 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00330 ,{ -50, -50, -50, -50, -390 00331 } 00332 ,{{ -50, -50, -50, -50, -50, -50 00332 , -50, -50, -50, -50, -50, -50, -50 00334 ,{ -50, -50, -50, -50, -50, -50, -50 00335 ,{ -50, -50, -50, -50, -50, -50, -50 00336 ,{ -50, -50, -50, -50, -50, -50 00337 } 00338 ,{{ -50, -50, -50, -50, -50, -50 00339 ,{ -50, -50, -50, -50, -50, -50 00340 ,{ -50, -50, -50, -50, -50, -50 00342 ,{ -50, -50, -50, -50, -50, -50 00342 ,{ -50, -50, -50, -50, -50, -50 00342 ,{ -50, -50, -50, -50, -50, -50, -50 00343 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00331 } 00332 ,{{ -50, -50, -50, -50, -50, -50, 00333 }, { -50, -50, -50, -50, -50, -50, -50, 00334 }, { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00332 , {{ -50, -50, -50, -50, -50, -50, 00333 , { -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00334 ,{ -50, -50, -50, -50, -50, -50, 00335 ,{ -50, -50, -50, -50, -50, -50, 00336 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 00335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00336 ,{ -50, -50, -50, -50, -50, -50, 00337 } 00338 ,{{ -50, -50, -50, -50, -50, -50, 00340 ,{ -50, -50, -50, -50, -50, -50, 00341 ,{ -50, -50, -50, -50, -50, -50, 00341 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00336 ,{ -50, -50, -50, -50, -50, -50, 00337 } 00338 ,{{ -50, -50, -50, -50, -50, -50, 00340 ,{ -50, -50, -50, -50, -50, -50, 00341 ,{ -50, -50, -50, -50, -50, -50, 00341 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00337 } 00338 ,{{ -50, -50, -50, -50, -50, -50, 00339 ,{ -50, -50, -50, -50, -50, -50, 00340 ,{ -50, -50, -50, -50, -50, -50, -50, 00341 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00338 , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 00339 ,{ -50, -50, -50, -50, -50, 00340 ,{ -50, -50, -50, -50, -50, -50, 00341 ,{ -50, -50, -50, -50, -50, -50, 00342 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00339 ,{ -50, -50, -50, -50, -50, 00340 ,{ -50, -50, -50, -50, -50, -50, 00341 ,{ -50, -50, -50, -50, -50, -50, 00342 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00340 ,{ -50, -50, -50, -50, -50, 00341 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00341 ,{ -50, -50, -50, -830, -50, 00342 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00341 ,{ -50, -50, -50, -830, -50, 00342 ,{ -50, -50, -50, -50, -50, -50, -50, -50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00342 ,{ -50, -50, -50, -50, -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00343 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00344 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00345 , { { INF, INF, INF, INF, INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00346 ,{ INF, INF, INF, INF, INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00347 ,{ INF, INF, INF, INF, INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00348 ,{ INF, INF, INF, INF, INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00349 ,{ INF, INF, INF, INF, INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00350 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 00351 ,{{ -550, -550, -550, -550, -550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 00352 ,{ -550, -550, -550, -550, -550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00353 ,{ -550, -550, -550, -550, -550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00353 ,{ -550, -550, -550, -550, -550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00353 ,{ -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -1340, -550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00353 ,{ -550, -550, -550, -550, -550, 00354 ,{ -550, -550, -550, -550, -1340, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, |
| 00353 ,{ -550, -550, -550, -550, -550, 00354 ,{ -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,  |
| 00353 ,{ -550, -550, -550, -550, -550, 00354 ,{ -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,  |
| 00353 ,{ -550, -550, -550, -550, -550, 00354 ,{ -550, -550, -550, -550, -550, 00355 ,{ -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -55 |
| 00353 ,{ -550, -550, -550, -550, -550, 00354 ,{ -550, -550, -550, -550, -550, 00355 ,{ -550, -550, -550, -550, -550, 00356 } 00356 } 00357 ,{{ -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, - |
| 00353 ,{ -550, -550, -550, -550, -550, 00354 ,{ -550, -550, -550, -550, -550, -550, -550, 00356 }  00357 ,{ -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550,  |
| 00353 ,{ -550, -550, -550, -550, -550, 00354 ,{ -550, -550, -550, -550, -550, -550, 00356 }  00356 }  00357 ,{ -550, -550, -550, -550, -550, -550, 00358 }  00357 ,{ -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -550, -55 |
| 00353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

18.172 intl21.h 945

```
-50}
00364
                -50,
                        -50,
                                -50,
                                         -50,
00365
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
00366
                -50,
                        -50,
                                -50,
                                        -830
                                                 -50}
         , {
00367
                -50,
                        -50,
                                -50,
                                         -50,
                                                -390}
00368
                -50,
                        -50,
                                 -50,
                                         -50,
                                                  -50}
00369
        . { {
00370
                -50,
                        -50,
                                 -50,
                                         -50,
                                                  -50}
00371
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
00372
                -50,
                        -50,
                                -50,
                                        -830,
                                                  -50}
00373
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
00374
00375
                -50,
                                 -50,
                                         -50.
                                                  -50}
        , { {
                        -50.
00376
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
00377
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
00378
                -50,
                        -50,
                                -50,
                                        -830,
                                                 -50}
00379
                -50,
                        -50,
                                -50,
                                         -50,
                                                -390}
00380
00381
                -50,
                                -50,
                                                  -50}
                        -50,
                                         -50,
        , { {
                -50,
                                                  -50}
00382
                        -50,
                                -50,
                                         -50,
         , {
00383
                -50,
                                -50,
                                         -50,
                                                  -50}
                        -50,
         , {
00384
                -50,
                        -50,
                                -50,
                                        -830,
                                                  -50}
00385
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
00386
                -50,
                        -50,
                                -50,
                                         -50,
00387
                                                  -501
        , { {
00388
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
         , {
00389
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
00390
                -50,
                        -50,
                                -50,
                                        -830,
                                                  -501
00391
                -50,
                        -50,
                                -50,
                                         -50,
                                                  -50}
00392
00393
        }};
```

# 18.172 intl21.h

```
00001 PUBLIC int int21_37[NBPAIRS+1][NBPAIRS+1][5][5][5] =
00002 {{{{{{
                 INF,
                          INF,
                                   INF,
                                            INF,
00003
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
                 INF,
00004
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00005
                 TNF.
                          INF,
                                   INF,
                                            INF.
                                                    TNF
00006
                 INF.
                          INF.
                                   TNF.
                                            INF.
                                                    TNF }
00007
00008
         , { {
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
                                   INF,
00009
                 INF,
                          INF,
                                            INF,
                                                    INF }
          , {
00010
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00011
                 TNF.
                          INF,
                                   INF,
                                            INF,
                                                    TNF
00012
                 INF.
                                                    INF }
                          INF.
                                   INF.
                                            INF.
00013
00014
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
         , { {
00015
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
          , {
00016
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
          , {
00017
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    TNF
00018
                 INF.
                          INF.
                                   INF.
                                            INF.
                                                    INF }
00019
00020
                 INF,
                          INF,
                                   INF,
                                                    INF }
         , { {
                                            INF,
                                   INF,
00021
                 INF,
                          INF,
                                            INF,
                                                     INF }
          , {
00022
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
                                   INF,
00023
                 TNF.
                          INF,
                                            INF.
                                                    TNF
00024
                 TNF.
                          INF.
                                   INF.
                                            INF.
                                                    TNF
00025
00026
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
         , { {
00027
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
          , {
00028
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                     INF
          , {
00029
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00030
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00031
00032
00033
                 INF,
        , { { {
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00034
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00035
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    TNF }
          , {
00036
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    TNF }
00037
                 INF.
                          INF.
                                   INF.
                                            INF.
                                                    INF }
00038
00039
         , { {
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00040
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                     INF }
          , {
00041
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00042
                 TNF.
                          INF.
                                   INF.
                                            INF.
                                                    TNF
00043
                 INF.
                          INF.
                                   INF.
                                            INF.
                                                    INF }
00044
00045
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
         , { {
00046
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
          , {
00047
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF
00048
                 INF
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00049
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
00050
00051
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
         , { {
00052
                 INF,
                          INF,
                                   INF,
                                            INF,
                                                    INF }
          , {
```

| 00050 | ,       | TNIE   | TNIE | TNIE   | TNIE   | T. 3. T. 3. |
|-------|---------|--------|------|--------|--------|-------------|
| 00053 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00054 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00055 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00056 | }       |        |      |        |        |             |
| 00057 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00058 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00059 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00060 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
|       |         |        |      |        |        |             |
| 00061 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00062 | }       |        |      |        |        |             |
| 00063 | }       |        |      |        |        |             |
| 00064 | , { { { | INF,   | INF, | INF,   | INF,   | INF }       |
| 00065 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00066 | , {     | INF,   | INF, | INF,   | INF,   | INF)        |
| 00067 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
|       |         |        |      |        |        |             |
| 00068 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00069 | }       |        |      |        |        |             |
| 00070 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00071 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00072 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00073 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00074 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00075 | }       | 1111,  | 1111 | 1111   | 1111,  | 1141 )      |
|       |         | TAIT   | TNIE | TAIF   | TNIE   | TAIR        |
| 00076 | ,{{     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00077 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00078 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00079 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 08000 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00081 | }       | ,      | ,    | ,      | ,      | ,           |
|       | , { {   | TNIE   | TNE  | TME    | TNE    | TNIE        |
| 00082 |         | INF,   | INF, | INF,   | INF,   | INF }       |
| 00083 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00084 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00085 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00086 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00087 | }       |        |      |        |        |             |
| 00088 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00089 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
|       |         |        |      |        |        |             |
| 00090 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00091 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00092 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00093 | }       |        |      |        |        |             |
| 00094 | }       |        |      |        |        |             |
| 00095 | , { { { | INF,   | INF, | INF,   | INF,   | INF }       |
| 00096 | , {     | INF,   | INF, | INF,   | INF,   | INF)        |
| 00097 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
|       |         |        |      |        |        |             |
| 00098 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00099 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00100 | }       |        |      |        |        |             |
| 00101 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00102 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00103 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00103 |         | INF,   | INF, | INF,   | INF,   | INF }       |
|       | , {     |        |      |        |        |             |
| 00105 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00106 | }       |        |      |        |        |             |
| 00107 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00108 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00109 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00110 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00111 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00111 |         | TINE , | INI, | TIVE , | TIVE , | TIME        |
|       | }       | TAIT   | TNIE | TAIF   | TNIE   | TAIR        |
| 00113 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00114 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00115 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00116 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00117 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00118 | }       |        |      |        |        |             |
| 00119 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00120 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00121 |         |        |      |        |        |             |
|       | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00122 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00123 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00124 | }       |        |      |        |        |             |
| 00125 | }       |        |      |        |        |             |
| 00126 | , { { { | INF,   | INF, | INF,   | INF,   | INF }       |
| 00127 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00127 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
|       |         |        |      |        |        |             |
| 00129 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00130 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00131 | }       |        |      |        |        |             |
| 00132 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00133 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00134 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00131 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
|       |         |        |      |        |        |             |
| 00136 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
| 00137 | }       |        |      |        |        |             |
| 00138 | , { {   | INF,   | INF, | INF,   | INF,   | INF }       |
| 00139 | , {     | INF,   | INF, | INF,   | INF,   | INF }       |
|       |         |        |      |        |        |             |

18.172 intl21.h 947

| 00140 | ſ          | TNIE         | TNE          | TME          | TME          | TNET           |
|-------|------------|--------------|--------------|--------------|--------------|----------------|
| 00140 | , {        | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00141 | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00142 | }          | TINE ,       | TINE ,       | TIME ,       | TIVE ,       | TIME           |
| 00143 |            | TNIE         | TME          | TME          | TME          | INF }          |
| 00144 | ,{{<br>,{  | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }          |
| 00145 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00140 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00147 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00148 | }          | TIME,        | TIME,        | TIME,        | TIME,        | TIME           |
| 00149 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00150 |            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00151 | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00152 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00153 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00154 | }          | TINE ,       | TINE ,       | TIME ,       | TIVE ,       | TIME           |
| 00156 | }          |              |              |              |              |                |
| 00157 | ,{{{       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00157 | , iii      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00159 | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00160 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00161 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00162 | }          | /            | 2232 /       | /            | /            |                |
| 00163 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00164 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00165 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00166 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00167 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00168 | }          |              |              | /            |              |                |
| 00169 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00170 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00171 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00172 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00173 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00174 | }          | ,            | ,            | ,            | ,            | ,              |
| 00175 | ,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00176 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00177 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00178 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00179 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00180 | }          | ,            | ,            | ,            | ,            | ,              |
| 00181 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00182 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00183 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00184 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00185 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00186 | }          |              |              |              |              |                |
| 00187 | }          |              |              |              |              |                |
| 00188 | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00189 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00190 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00191 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00192 | , {        |              | INF,         | INF,         | INF,         | INF }          |
| 00193 | }          |              |              |              |              |                |
| 00194 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00195 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00196 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00197 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00198 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00199 | }          |              |              |              |              |                |
| 00200 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00201 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00202 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00203 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00204 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00205 | }          |              |              |              |              |                |
| 00206 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00207 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00208 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00209 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00210 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00211 | }          |              |              |              |              |                |
| 00212 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00213 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00214 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00215 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00216 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00217 | }          |              |              |              |              |                |
| 00218 | }          |              |              |              |              |                |
| 00219 | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00220 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00221 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00222 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00223 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00224 | }          |              |              |              |              |                |
| 00225 | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00226 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|       |            |              |              |              |              |                |

| 00000 | ,           |         |       |       |       |         |
|-------|-------------|---------|-------|-------|-------|---------|
| 00227 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00228 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00229 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00230 | }           | ,       | ,     | ,     | ,     | ,       |
|       |             |         |       |       |       |         |
| 00231 | , { {       | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00232 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00233 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00234 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00235 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       | /     |         |
| 00236 | }           |         |       |       |       |         |
| 00237 | , { {       | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00238 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00239 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00240 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       | INF,  |       |         |
| 00241 | , {         | INF,    | INF,  | TIME, | INF,  | INF }   |
| 00242 | }           |         |       |       |       |         |
| 00243 | , { {       | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             | •       | INF,  |       |       |         |
| 00244 | , {         | INF,    |       | INF,  | INF,  | INF }   |
| 00245 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00246 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00247 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00248 | }           |         |       |       |       |         |
| 00249 | }           |         |       |       |       |         |
|       |             |         |       |       |       |         |
| 00250 | }           |         |       |       |       |         |
| 00251 | , { { { { { | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00252 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00253 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00254 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00255 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00256 | }           |         |       |       |       |         |
|       |             | TME     | TNIP  | TNIE  | TME   | TATE    |
| 00257 | , { {       | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00258 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00259 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00260 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00261 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00262 |             | ,       | ,     | ,     | /     | ,       |
|       | }           |         |       |       |       |         |
| 00263 | , { {       | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00264 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00265 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00266 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00267 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             | TIME,   | TIME, | TIME, | TIME, | TIME    |
| 00268 | }           |         |       |       |       |         |
| 00269 | , { {       | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00270 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00271 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00272 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00273 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00274 | }           |         |       |       |       |         |
|       |             | INF,    | TNE   | INF,  | INF,  | TMET    |
| 00275 | , { {       | INF,    | INF,  |       |       | INF }   |
| 00276 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00277 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
|       |             |         |       |       |       |         |
| 00278 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00279 | , {         | INF,    | INF,  | INF,  | INF,  | INF }   |
| 00280 | }           |         |       |       |       |         |
|       |             |         |       |       |       |         |
| 00281 | }           |         |       |       |       |         |
| 00282 | , { { {     | 230,    | 230,  | 230,  | 230,  | 230}    |
| 00283 |             | 230,    | 230,  | 230,  | 230,  | 230}    |
|       | , {         |         |       |       |       |         |
| 00284 | , {         | 230,    | 230,  | 230,  | 230,  | 230}    |
| 00285 | , {         | 230,    | 230,  | 230,  | 230,  | 230}    |
|       |             | 230,    |       |       |       |         |
| 00286 | , {         | 200,    | 230,  | 230,  | 230,  | 230}    |
| 00287 | }           |         |       |       |       |         |
| 00288 | , { {       | 230,    | 230,  | 230,  | 110,  | 230}    |
|       |             |         |       | 230,  |       | 230}    |
| 00289 | , {         | 230,    | 230,  |       | 110,  |         |
| 00290 | , {         | 230,    | 230,  | 230,  | 110,  | 230}    |
| 00291 | , {         | 110,    | 110,  | 110,  | 110,  | 110}    |
|       |             |         |       |       |       |         |
| 00292 | , {         | 230,    | 230,  | 230,  | 110,  | 230}    |
| 00293 | }           |         |       |       |       |         |
| 00294 | , { {       | 230,    | 230,  | 230,  | 230,  | 230}    |
|       |             |         |       |       |       |         |
| 00295 | , {         | 230,    | 230,  | 230,  | 230,  | 230}    |
| 00296 | , {         | 230,    | 230,  | 230,  | 230,  | 230}    |
|       |             |         |       |       |       |         |
| 00297 | , {         | 230,    | 230,  | 230,  | 230,  | 230}    |
| 00298 | , {         | 230,    | 230,  | 230,  | 230,  | 230}    |
| 00299 | }           | •       |       | -     | -     |         |
|       |             | 226     | 110   | 220   | 110   | 000     |
| 00300 | , { {       | 230,    | 110,  | 230,  | 110,  | 230}    |
| 00301 | , {         | 110,    | 110,  | 110,  | 110,  | 110}    |
|       |             |         |       |       |       |         |
| 00302 | , {         | 230,    | 110,  | 230,  | 110,  | 230}    |
| 00303 | , {         | 110,    | 110,  | 110,  | 110,  | 110}    |
| 00304 | , {         | 230,    | 110,  | 230,  | 110,  | 230}    |
|       |             | 200,    | ,     | 200,  | · ·   | 2001    |
| 00305 | }           |         |       |       |       |         |
| 00306 | , { {       | 230,    | 230,  | 230,  | 230,  | 150}    |
| 00307 | , {         | 230,    | 230,  | 230,  | 230,  | 150}    |
|       |             |         |       |       |       |         |
| 00308 | , {         | 230,    | 230,  | 230,  | 230,  | 150}    |
| 00309 | , {         | 230,    | 230,  | 230,  | 230,  | 150}    |
|       |             | 150,    | 150,  | 150,  | 150,  | 150}    |
| 00310 | , {         | ± J U , | ±00,  | 100,  | 100,  | T 2 0 } |
| 00311 | }           |         |       |       |       |         |
| 00312 | }           |         |       |       |       |         |
|       |             | 250     | 250,  | 250   | 220   | 2201    |
| 00313 | , { { {     | 250,    | 200,  | 250,  | 230,  | 230}    |
|       |             |         |       |       |       |         |

18.172 intl21.h 949

| 00214 | ſ       | 250  | 250  | 220  | 220  | 2201  |
|-------|---------|------|------|------|------|-------|
| 00314 | , {     | 250, | 250, | 230, | 230, | 230}  |
| 00315 | , {     | 250, | 230, | 250, | 230, | 230}  |
| 00316 | , {     | 230, | 230, | 230, | 230, | 230}  |
| 00317 | , {     | 250, | 250, | 230, | 230, | 230}  |
| 00318 | }       |      |      |      |      |       |
| 00319 | , { {   | 250, | 250, | 230, | 110, | 230}  |
| 00320 | , {     | 250, | 250, | 230, | 110, | 230}  |
| 00321 | , {     | 230, | 230, | 170, | 110, | 230}  |
| 00322 | , {     | 110, | 80,  | 110, | 110, | 110}  |
| 00322 |         |      |      |      |      |       |
|       | , {     | 230, | 230, | 230, | 110, | 230}  |
| 00324 | }       |      |      |      |      |       |
| 00325 | , { {   | 250, | 250, | 250, | 230, | 230}  |
| 00326 | , {     | 230, | 230, | 230, | 230, | 230}  |
| 00327 | , {     | 250, | 230, | 250, | 230, | 230}  |
| 00328 | , {     | 230, | 230, | 230, | 230, | 230}  |
| 00329 | , {     | 250, | 250, | 230, | 230, | 230}  |
| 00330 | }       | 200, | 200, | 200, | 200, | 200,  |
|       |         | 220  | 170  | 220  | 110  | 2201  |
| 00331 | , { {   | 230, | 170, | 230, | 110, | 230}  |
| 00332 | , {     | 230, | 170, | 230, | 80,  | 230}  |
| 00333 | , {     | 230, | 110, | 230, | 110, | 230}  |
| 00334 | , {     | 120, | 120, | 110, | 110, | 110}  |
| 00335 | , {     | 230, | 110, | 230, | 110, | 230}  |
| 00336 | }       |      |      |      |      |       |
| 00337 | , { {   | 230, | 230, | 230, | 230, | 150}  |
| 00338 | , {     | 230, | 230, | 230, | 230, | 150}  |
| 00339 | , {     |      | 230, |      | 230, |       |
|       |         | 230, |      | 220, |      | 150}  |
| 00340 | , {     | 230, | 230, | 230, | 230, | 150}  |
| 00341 | , {     | 170, | 150, | 170, | 150, | 140}  |
| 00342 | }       |      |      |      |      |       |
| 00343 | }       |      |      |      |      |       |
| 00344 | , { { { | 300, | 300, | 300, | 300, | 300}  |
| 00345 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00346 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00347 |         |      |      |      | 300, |       |
|       | , {     | 300, | 300, | 300, |      | 300}  |
| 00348 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00349 | }       |      |      |      |      |       |
| 00350 | , { {   | 300, | 300, | 300, | 190, | 300}  |
| 00351 | , {     | 300, | 300, | 300, | 190, | 300}  |
| 00352 | , {     | 300, | 300, | 300, | 190, | 300}  |
| 00353 | , {     | 190, | 190, | 190, | 190, | 190}  |
| 00354 | , {     | 300, | 300, | 300, | 190, | 300}  |
| 00351 | }       | 500, | 300, | 300, | 100, | 500)  |
|       |         | 200  | 200  | 200  | 200  | 2001  |
| 00356 | , { {   | 300, | 300, | 300, | 300, | 300}  |
| 00357 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00358 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00359 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00360 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00361 | }       |      |      |      |      |       |
| 00362 | , { {   | 300, | 190, | 300, | 190, | 300}  |
| 00363 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 00363 |         |      |      |      |      |       |
|       | , {     | 300, | 190, | 300, | 190, | 300}  |
| 00365 | , {     | 190, | 190, | 190, | 190, | 190}  |
| 00366 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 00367 | }       |      |      |      |      |       |
| 00368 | , { {   | 300, | 300, | 300, | 300, | 220}  |
| 00369 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 00370 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 00371 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 00372 |         | 220, | 220, | 220, | 220, | 220}  |
|       | , {     | 220, | 220, | 220, | 220, | 220 } |
| 00373 | }       |      |      |      |      |       |
| 00374 | }       |      |      |      |      |       |
| 00375 | , { { { | 300, | 300, | 300, | 300, | 300}  |
| 00376 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00377 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00378 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00379 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00380 | }       | ,    | ,    | ,    | ,    | . ,   |
| 00381 | ,{{     | 300, | 300, | 300, | 190, | 300}  |
|       |         |      |      |      |      | 300}  |
| 00382 | , {     | 300, | 300, | 300, | 190, |       |
| 00383 | , {     | 300, | 300, | 300, | 190, | 300}  |
| 00384 | , {     | 190, | 190, | 190, | 190, | 190}  |
| 00385 | , {     | 300, | 300, | 300, | 190, | 300}  |
| 00386 | }       |      |      |      |      |       |
| 00387 | , { {   | 300, | 300, | 300, | 300, | 300}  |
| 00388 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00389 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00303 |         | 300, | 300, | 300, | 300, | 300}  |
|       | , {     |      |      |      |      |       |
| 00391 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 00392 | }       | 0.00 |      | 0.00 |      |       |
| 00393 | , { {   | 300, | 190, | 300, | 190, | 300}  |
| 00394 | , {     | 190, | 190, | 190, | 190, | 190}  |
| 00395 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 00396 | , {     | 190, | 190, | 190, | 190, | 190}  |
| 00397 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 00398 | }       | . ,  | .,   | .,   | . ,  | ,     |
| 00399 | , { {   | 300, | 300, | 300, | 300, | 220}  |
| 00399 |         | 300, | 300, | 300, | 300, | 220}  |
| 00700 | , {     | JUU, | 500, | 500, | 500, | 220}  |
|       |         |      |      |      |      |       |

| 00401          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 00402          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00403          | , {<br>}   | 220,         | 220,         | 220,         | 220,         | 220}         |
| 00404          | }          |              |              |              |              |              |
| 00406          | , { { {    | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00407          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00408          | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00410          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00411          | }          | 200          | 200          | 200          | 100          | 2001         |
| 00412          | ,{{<br>,{  | 300,<br>300, | 300,<br>300, | 300,<br>300, | 190,<br>190, | 300}         |
| 00414          | , {        | 300,         | 300,         | 300,         | 190,         | 300}         |
| 00415          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 00416<br>00417 | , {<br>}   | 300,         | 300,         | 300,         | 190,         | 300}         |
| 00417          | ,{{        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00419          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00420<br>00421 | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00421          | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00423          | }          | ,            | ,            | ,            | ,            | ,            |
| 00424          | , { {      | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00425<br>00426 | , {<br>, { | 300,<br>300, | 190,<br>190, | 300,<br>300, | 190,<br>190, | 300}         |
| 00427          | , {<br>, { | 190,         | 190,         | 190,         | 190,         | 190}         |
| 00428          | , {        | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00429          | }          | 200          | 200          | 200          | 200          | 0001         |
| 00430          | ,{{<br>,{  | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 220}         |
| 00431          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00433          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00434          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 00435<br>00436 | }          |              |              |              |              |              |
| 00437          | , { { {    | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00438          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00439          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00440          | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00442          | }          | ,            | ,            | ,            | ,            | ,            |
| 00443          | , { {      | 300,         | 300,         | 300,         | 190,         | 300}         |
| 00444          | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 190,<br>190, | 300}         |
| 00446          | , {<br>, { | 190,         | 190,         | 190,         | 190,         | 190}         |
| 00447          | , {        | 300,         | 300,         | 300,         | 190,         | 300}         |
| 00448          | }          | 200          | 200          | 200          | 200          | 2001         |
| 00449          | ,{{<br>,{  | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00451          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00452          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00453          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00454          | , { {      | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00456          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 00457          | , {        | 300,<br>190, | 190,         | 300,<br>190, | 190,         | 300}         |
| 00458<br>00459 | , {<br>, { | 300,         | 190,<br>190, | 300,         | 190,<br>190, | 190}<br>300} |
| 00460          | }          | ,            |              | ,            |              | ,            |
| 00461          | , { {      | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00462          | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 220}<br>220} |
| 00464          | , {<br>, { | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00465          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 00466<br>00467 | }          |              |              |              |              |              |
| 00467          | }<br>,{{{  | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00469          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00470          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00471<br>00472 | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00473          | }          | 000,         | 000,         | 000,         | 000,         | 550,         |
| 00474          | , { {      | 300,         | 300,         | 300,         | 190,         | 300}         |
| 00475          | , {        | 300,         | 300,         | 300,         | 190,         | 300}         |
| 00476<br>00477 | , {<br>, { | 300,<br>190, | 300,<br>190, | 300,<br>190, | 190,<br>190, | 300}<br>190} |
| 00478          | , {        | 300,         | 300,         | 300,         | 190,         | 300}         |
| 00479          | }          | 200          | 200          | 200          | 200          | 200:         |
| 00480          | ,{{<br>,{  | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00481          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00483          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00484          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00485<br>00486 | }<br>,{{   | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00487          | , {        | 300,         | 190,         | 300,         | 190,         | 300}         |
|                |            |              |              |              |              |              |

18.172 intl21.h 951

| 00488          | , {        | 300,         | 190,         | 300,         | 190,         | 300}           |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 00489          | , {        | 190,         | 190,         | 190,         | 190,         | 190}           |
| 00490          | , {        | 300,         | 190,         | 300,         | 190,         | 300}           |
| 00491          | }          |              |              |              |              |                |
| 00492          | , { {      | 300,         | 300,         | 300,         | 300,         | 220}           |
| 00493          | , {        | 300,         | 300,         | 300,         | 300,         | 220}           |
| 00494          | , {        | 300,         | 300,         | 300,         | 300,         | 220}           |
| 00495          | , {        | 300,         | 300,         | 300,         | 300,         | 220}           |
| 00496<br>00497 | , {        | 220,         | 220,         | 220,         | 220,         | 220}           |
| 00497          | }          |              |              |              |              |                |
| 00499          | }          |              |              |              |              |                |
| 00500          | ,{{{{      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00501          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00502          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00503          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00504          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00505          | }          |              |              |              |              |                |
| 00506          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00507          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00508          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00509          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00510          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00511<br>00512 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00512          | , 11       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00513          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00515          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00516          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00517          | }          | ,            | ,            | ,            | /            | ,              |
| 00518          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00519          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00520          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00521          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00522          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00523          | }          |              |              |              |              |                |
| 00524          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00525          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00526          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00527<br>00528 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00528          | , l<br>}   | INT,         | TIME,        | TIME,        | TIME,        | TIME           |
| 00530          | }          |              |              |              |              |                |
| 00531          | ,{{{       | 250,         | 250,         | 230,         | 230,         | 230}           |
| 00532          | , {        | 250,         | 250,         | 230,         | 230,         | 230}           |
| 00533          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00534          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00535          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00536          | }          |              |              |              |              |                |
| 00537          | , { {      | 250,         | 250,         | 230,         | 230,         | 230}           |
| 00538          | , {        | 250,         | 250,         | 230,         | 210,         | 230}           |
| 00539          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00540          | , {        | 120,         | 120,         | 110,         | 110,         | 110}           |
| 00541<br>00542 | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00542          | }<br>,{{   | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00544          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00545          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00546          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00547          | , {        | 230,         | 230,         | 190,         | 230,         | 230}           |
| 00548          | }          |              |              |              |              |                |
| 00549          | , { {      | 230,         | 110,         | 230,         | 110,         | 230}           |
| 00550          | , {        | 110,         | 110,         | 110,         | 110,         | 110}           |
| 00551          | , {        | 230,         | 110,         | 230,         | 110,         | 230}           |
| 00552          | , {        | 110,         | 110,         | 110,         | 110,         | 110}           |
| 00553          | , {        | 230,         | 110,         | 230,         | 110,         | 230}           |
| 00554          | }          | 220          | 220          | 220          | 220          | 1 5 0 1        |
| 00555          | , { {      | 230,         | 230,         | 230,         | 230,         | 150}           |
| 00556<br>00557 | , {        | 230,<br>230, | 230,<br>230, | 230,<br>230, | 230,<br>230, | 150}<br>150}   |
| 00558          | , {<br>, { | 230,         | 230,         | 230,         | 230,         | 150}           |
| 00559          | , {        | 150,         | 150,         | 150,         | 150,         | 150}           |
| 00560          | }          | 100,         | 100,         | 100,         | 100,         | 100,           |
| 00561          | }          |              |              |              |              |                |
| 00562          | ,{{{       | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00563          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00564          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00565          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00566          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00567          | }          | 0.00         |              | 0.01         | 0.00         |                |
| 00568          | , { {      | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00569          | , {        | 230,         | 230,         | 230,         | 230,         | 230}           |
| 00570          | , {        | 230,         | 230,         | 230,         | 230,<br>110, | 230}           |
| 00571<br>00572 | , {<br>, { | 110,<br>230, | 110,<br>230, | 110,<br>230, | 230,         | 110}<br>230}   |
| 00572          | , t<br>}   | 200,         | 200,         | 200,         | 200,         | 200}           |
| 00574          | , { {      | 230,         | 230,         | 230,         | 230,         | 230}           |
|                |            | .,           | .,           | . ,          | . ,          | ,              |

| 00575 | 1       | 230, | 230,  | 230, | 230,    | 230} |
|-------|---------|------|-------|------|---------|------|
|       | , {     |      |       |      |         |      |
| 00576 | , {     | 230, | 230,  | 230, | 230,    | 230} |
| 00577 | , {     | 230, | 230,  | 230, | 230,    | 230} |
|       |         |      |       |      |         |      |
| 00578 | , {     | 230, | 230,  | 230, | 230,    | 230} |
| 00579 | }       |      |       |      |         |      |
| 00580 | , { {   | 230, | 110,  | 230, | 110,    | 230} |
|       |         |      |       |      |         |      |
| 00581 | , {     | 230, | 110,  | 230, | 110,    | 230} |
| 00582 | , {     | 230, | 110,  | 230, | 110,    | 230} |
|       | ,       |      |       |      |         |      |
| 00583 | , {     | 110, | 110,  | 110, | 110,    | 110} |
| 00584 | , {     | 230, | 110,  | 230, | 110,    | 230} |
| 00585 | }       |      |       |      |         |      |
|       |         |      |       |      |         |      |
| 00586 | , { {   | 230, | 230,  | 230, | 230,    | 150} |
| 00587 | , {     | 230, | 230,  | 230, | 230,    | 150} |
|       | ,       |      |       |      |         |      |
| 00588 | , {     | 230, | 230,  | 230, | 230,    | 150} |
| 00589 | , {     | 230, | 230,  | 230, | 230,    | 150} |
| 00590 |         | 150, | 150,  | 150, | 150,    | 150} |
|       | , {     | 130, | 150,  | 130, | 150,    | 130} |
| 00591 | }       |      |       |      |         |      |
| 00592 | }       |      |       |      |         |      |
|       |         | 200  | 200   | 200  | 200     | 2001 |
| 00593 | , { { { | 300, | 300,  | 300, | 300,    | 300} |
| 00594 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00595 | ,       |      | 300,  | 300, | 300,    | 300} |
|       |         | 300, |       |      |         |      |
| 00596 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00597 | , {     | 300, | 300,  | 300, | 300,    | 300} |
|       |         | 000, | 555,  | 000, | 000,    | 000, |
| 00598 | }       |      |       |      |         |      |
| 00599 | , { {   | 300, | 300,  | 300, | 300,    | 300} |
| 00600 |         |      |       | 300, |         |      |
|       | , {     | 300, | 300,  |      | 300,    | 300} |
| 00601 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00602 | , {     | 190, | 190,  | 190, | 190,    | 190} |
|       |         |      |       |      |         |      |
| 00603 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00604 | }       |      |       |      |         |      |
|       |         | 200  | 200   | 200  | 200     | 2001 |
| 00605 | , { {   | 300, | 300,  | 300, | 300,    | 300} |
| 00606 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00607 | , {     | 300, | 300,  | 300, | 300,    | 300} |
|       |         |      |       |      |         |      |
| 00608 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00609 | , {     | 300, | 300,  | 300, | 300,    | 300} |
|       |         | 300, | 300,  | 500, | 500,    | 500) |
| 00610 | }       |      |       |      |         |      |
| 00611 | , { {   | 300, | 190,  | 300, | 190,    | 300} |
| 00612 |         |      |       |      |         |      |
|       | , {     | 300, | 190,  | 300, | 190,    | 300} |
| 00613 | , {     | 300, | 190,  | 300, | 190,    | 300} |
| 00614 | ,       | 190, | 190,  | 190, | 190,    | 190} |
|       |         |      |       |      |         |      |
| 00615 | , {     | 300, | 190,  | 300, | 190,    | 300} |
| 00616 | }       |      |       |      |         |      |
|       |         | 200  | 200   | 200  | 200     | 2201 |
| 00617 | , { {   | 300, | 300,  | 300, | 300,    | 220} |
| 00618 | , {     | 300, | 300,  | 300, | 300,    | 220} |
| 00619 | , {     | 300, | 300,  | 300, | 300,    | 220} |
|       |         |      |       |      |         |      |
| 00620 | , {     | 300, | 300,  | 300, | 300,    | 220} |
| 00621 | , {     | 220, | 220,  | 220, | 220,    | 220} |
|       |         | 220, | 220,  | 220, | 220,    | 220) |
| 00622 | }       |      |       |      |         |      |
| 00623 | }       |      |       |      |         |      |
|       | , , , , | 200  | 200   | 200  | 200     | 2001 |
| 00624 | , { { { | 300, | 300,  | 300, | 300,    | 300} |
| 00625 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00626 | ,       | 300, | 300,  | 300, | 300,    | 300} |
|       |         |      |       |      |         |      |
| 00627 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00628 | , {     | 300, | 300,  | 300, | 300,    | 300} |
|       |         | ,    | ,     | ,    | ,       | ,    |
| 00629 | }       |      |       |      |         |      |
| 00630 | , { {   | 300, | 300,  | 300, | 300,    | 300} |
| 00631 | , {     | 300, | 250,  | 300, | 210,    | 300} |
|       |         |      |       |      |         |      |
| 00632 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00633 | , {     | 190, | 120,  | 190, | 190,    | 190} |
| 00634 |         |      | 300,  |      | 300,    |      |
|       | , {     | 300, | 500,  | 300, | 300,    | 300} |
| 00635 | }       |      |       |      |         |      |
| 00636 | , { {   | 300, | 300,  | 300, | 300,    | 300} |
|       |         |      |       |      |         |      |
| 00637 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00638 | , {     | 300, | 300,  | 300, | 300,    | 300} |
|       |         | 300  |       |      |         |      |
| 00639 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00640 | , {     | 300, | 300,  | 190, | 300,    | 300} |
| 00641 | }       |      |       | -    | -       |      |
|       |         | 200  | 100   | 200  | 1.00    | 200: |
| 00642 | , { {   | 300, | 190,  | 300, | 190,    | 300} |
| 00643 | , {     | 190, | 190,  | 190, | 190,    | 190} |
|       |         |      |       |      |         |      |
| 00644 | , {     | 300, | 190,  | 300, | 190,    | 300} |
| 00645 | , {     | 190, | 190,  | 190, | 190,    | 190} |
| 00646 | , {     | 300, | 190,  | 300, | 190,    | 300} |
|       |         | 500, | ± 20, | 500, | ± > 0 , | 500} |
| 00647 | }       |      |       |      |         |      |
| 00648 | , { {   | 300, | 300,  | 300, | 300,    | 220} |
|       |         |      |       |      |         |      |
| 00649 | , {     | 300, | 300,  | 300, | 300,    | 220} |
| 00650 | , {     | 300, | 300,  | 300, | 300,    | 220} |
|       |         |      |       |      |         |      |
| 00651 | , {     | 300, | 300,  | 300, | 300,    | 220} |
| 00652 | , {     | 220, | 220,  | 220, | 220,    | 220} |
| 00653 | }       |      |       | -    | -       |      |
|       |         |      |       |      |         |      |
| 00654 | }       |      |       |      |         |      |
| 00655 | , { { { | 300, | 300,  | 300, | 300,    | 300} |
|       |         |      |       |      |         |      |
| 00656 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00657 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00658 | , {     | 300, | 300,  | 300, | 300,    | 300} |
|       |         |      |       |      |         |      |
| 00659 | , {     | 300, | 300,  | 300, | 300,    | 300} |
| 00660 | }       |      |       |      |         |      |
| 00661 |         | 300, | 300,  | 300, | 300,    | 300} |
| 00001 | , { {   | 500, | 500,  | 500, | 500,    | 500} |
|       |         |      |       |      |         |      |

18.172 intl21.h 953

| 00662          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 00663<br>00664 | , {        | 300,<br>190, | 300,         | 300,<br>190, | 300,<br>190, | 300}<br>190} |
| 00665          | , {<br>, { | 300,         | 190,<br>300, | 300,         | 300,         | 300}         |
| 00666          | }          |              |              |              |              |              |
| 00667<br>00668 | ,{{<br>,{  | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00669          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00670          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00671<br>00672 | , {<br>}   | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00673          | , { {      | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00674          | , {        | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00675<br>00676 | , {<br>, { | 300,<br>190, | 190,<br>190, | 300,<br>190, | 190,<br>190, | 300}<br>190} |
| 00677          | , {        | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00678          | }          |              |              |              | •            |              |
| 00679<br>00680 | ,{{<br>,{  | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 220}<br>220} |
| 00681          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00682          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00683<br>00684 | , {<br>}   | 220,         | 220,         | 220,         | 220,         | 220}         |
| 00685          | }          |              |              |              |              |              |
| 00686          | , { { {    | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00687          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00688<br>00689 | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00690          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00691          | }          | 200          | 200          | 200          | 200          | 2001         |
| 00692<br>00693 | ,{{<br>,{  | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00694          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00695          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 00696<br>00697 | , {<br>}   | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00698          | , { {      | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00699          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00700<br>00701 | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00702          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00703          | }          | 200          | 100          | 200          | 100          | 2001         |
| 00704<br>00705 | ,{{<br>,{  | 300,<br>190, | 190,<br>190, | 300,<br>190, | 190,<br>190, | 300}<br>190} |
| 00706          | , {        | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00707          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 00708<br>00709 | , {<br>}   | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00710          | , { {      | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00711          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00712<br>00713 | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 220}<br>220} |
| 00714          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 00715          | }          |              |              |              |              |              |
| 00716<br>00717 | }<br>,{{{  | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00718          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00719          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00720<br>00721 | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}         |
| 00722          | }          | 555,         | 555,         | 555,         | 000,         | 000,         |
| 00723          | , { {      | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00724<br>00725 | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}<br>300} |
| 00726          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 00727          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00728<br>00729 | }<br>,{{   | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00730          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00731          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 00732<br>00733 | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300,<br>300, | 300}<br>300} |
| 00734          | }          | ,            | ,            | ,            | ,            | ,            |
| 00735          | , { {      | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00736<br>00737 | , {<br>, { | 300,<br>300, | 190,<br>190, | 300,<br>300, | 190,<br>190, | 300}         |
| 00737          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 00739          | , {        | 300,         | 190,         | 300,         | 190,         | 300}         |
| 00740<br>00741 | }<br>,{{   | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00742          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00743          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 00744<br>00745 | , {<br>, { | 300,<br>220, | 300,<br>220, | 300,<br>220, | 300,<br>220, | 220}<br>220} |
| 00746          | }          | • •          | • •          | -,           | • •          | - ,          |
| 00747          | }          |              |              |              |              |              |
| 00748          | }          |              |              |              |              |              |

| 00749 | , { { { { | INF, | INF, | INF, | INF,  | INF }  |
|-------|-----------|------|------|------|-------|--------|
|       |           |      |      |      |       |        |
| 00750 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00751 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           |      |      |      |       |        |
| 00752 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00753 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00754 |           |      | •    |      | •     |        |
| 00754 | }         |      |      |      |       |        |
| 00755 | , { {     | INF, | INF, | INF, | INF,  | INF }  |
|       |           |      | INF, |      |       |        |
| 00756 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00757 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           |      |      |      |       |        |
| 00758 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00759 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           | 1111 | 1111 | 1111 | 1111  | 1141 ) |
| 00760 | }         |      |      |      |       |        |
| 00761 | , { {     | TNIE | TNE  | INF, | TNE   | INF }  |
| 00701 |           | INF, | INF, |      | INF,  |        |
| 00762 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           |      | TNIE |      | INF,  |        |
| 00763 | , {       | INF, | INF, | INF, | TIME, | INF }  |
| 00764 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           |      |      |      |       |        |
| 00765 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00766 | }         |      |      |      |       |        |
|       |           | TAID | TAID | TAID | TAID  | TATE   |
| 00767 | , { {     | INF, | INF, | INF, | INF,  | INF }  |
| 00768 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           |      |      |      |       |        |
| 00769 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00770 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           |      |      |      |       |        |
| 00771 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00772 | }         |      |      |      |       |        |
|       |           |      |      |      |       |        |
| 00773 | , { {     | INF, | INF, | INF, | INF,  | INF }  |
| 00774 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           |      |      |      |       |        |
| 00775 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00776 |           | TNE  | TNE  | TNE  | TNE   | TNET   |
| 00776 | , {       | INF, | INF, | INF, | INF,  | INF }  |
| 00777 | , {       | INF, | INF, | INF, | INF,  | INF }  |
|       |           | ,    | ,    | •    | ,     | ,      |
| 00778 | }         |      |      |      |       |        |
| 00779 | }         |      |      |      |       |        |
|       |           | 200  | 200  | 200  | 200   | 200:   |
| 00780 | , { { {   | 300, | 300, | 300, | 300,  | 300}   |
| 00781 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00782 | , {       | 300, | 300, | 300, | 300,  | 300}   |
| 00783 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00784 | , {       | 300, | 300, | 300, | 300,  | 300}   |
| 00785 | }         |      |      |      |       |        |
|       |           |      |      |      |       |        |
| 00786 | , { {     | 300, | 300, | 300, | 300,  | 300}   |
| 00787 |           | 200  | 250, | 300, | 210,  |        |
|       | , {       | 300, |      |      |       | 300}   |
| 00788 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00789 | , {       | 190, | 120, | 190, | 190,  | 190}   |
| 00790 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           | ,    | ,    | ,    | ,     | ,      |
| 00791 | }         |      |      |      |       |        |
| 00792 | , { {     | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00793 | , {       | 300, | 300, | 300, | 300,  | 300}   |
| 00794 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00795 | , {       | 300, | 300, | 300, | 300,  | 300}   |
| 00796 | , {       | 300, | 300, | 190, | 300,  | 300}   |
|       |           | 300, | 300, | 190, | 300,  | 300,   |
| 00797 | }         |      |      |      |       |        |
|       |           | 200  | 100  | 200  | 100   | 2001   |
| 00798 | , { {     | 300, | 190, | 300, | 190,  | 300}   |
| 00799 | , {       | 190, | 190, | 190, | 190,  | 190}   |
| 00000 |           |      |      |      |       |        |
| 00800 | , {       | 300, | 190, | 300, | 190,  | 300}   |
| 00801 | , {       | 190, | 190, | 190, | 190,  | 190}   |
|       |           |      |      |      |       |        |
| 00802 | , {       | 300, | 190, | 300, | 190,  | 300}   |
| 00803 | }         |      |      |      |       |        |
|       |           | 200  | 0.00 | 200  | 200   | 0001   |
| 00804 | , { {     | 300, | 300, | 300, | 300,  | 220}   |
| 00805 | , {       | 300, | 300, | 300, | 300,  | 220}   |
|       |           |      |      |      |       |        |
| 00806 | , {       | 300, | 300, | 300, | 300,  | 220}   |
| 00807 | , {       | 300, | 300, | 300, | 300,  | 220}   |
|       |           |      |      |      |       |        |
| 80800 | , {       | 220, | 220, | 220, | 220,  | 220}   |
| 00809 | }         |      |      |      |       |        |
|       |           |      |      |      |       |        |
| 00810 | }         |      |      |      |       |        |
|       |           | 300  | 300  | 300  | 300   | 3001   |
| 00811 | , { { {   | 300, | 300, | 300, | 300,  | 300}   |
| 00812 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00813 | , {       | 300, | 300, | 300, | 300,  | 300}   |
| 00814 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00815 | , {       | 300, | 300, | 300, | 300,  | 300}   |
| 00816 | }         |      |      |      |       |        |
|       |           |      |      |      |       |        |
| 00817 | , { {     | 300, | 300, | 300, | 300,  | 300}   |
|       |           | 300, | 300, | 300, | 300,  |        |
| 00818 | , {       |      |      |      |       | 300}   |
| 00819 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00820 | , {       | 190, | 190, | 190, | 190,  | 190}   |
| 00821 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           | ,    | ,    | /    | /     | , ,    |
| 00822 | }         |      |      |      |       |        |
| 00823 | , { {     | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00824 | , {       | 300, | 300, | 300, | 300,  | 300}   |
| 00825 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           |      |      |      |       |        |
| 00826 | , {       | 300, | 300, | 300, | 300,  | 300}   |
| 00827 | , {       | 300, | 300, | 300, | 300,  | 300}   |
|       |           | 500, | 500, | 500, | 500,  | 200}   |
| 00828 | }         |      |      |      |       |        |
| 00829 | , { {     | 300, | 190, | 300, | 190,  | 300}   |
|       |           |      |      |      |       |        |
| 00830 | , {       | 300, | 190, | 300, | 190,  | 300}   |
| 00831 | , {       | 300, | 190, | 300, | 190,  | 300}   |
|       |           |      |      |      |       |        |
| 00832 | , {       | 190, | 190, | 190, | 190,  | 190}   |
|       |           |      |      |      | 190,  |        |
| 00833 | , {       | 300, | 190, | 300, | ⊥ JU, | 300}   |
| 00834 | }         |      |      |      |       |        |
|       |           | 300  | 300  | 300  | 300   | 2201   |
| 00835 | , { {     | 300, | 300, | 300, | 300,  | 220}   |
|       |           |      |      |      |       |        |

18.172 intl21.h 955

| 00836 | , {      | 300,    | 300, | 300,    | 300, | 220} |
|-------|----------|---------|------|---------|------|------|
| 00837 | , {      | 300,    | 300, | 300,    | 300, | 220} |
| 00838 |          | 300,    | 300, | 300,    | 300, | 220} |
|       | , {      |         |      |         |      |      |
| 00839 | , {      | 220,    | 220, | 220,    | 220, | 220} |
| 00840 | }        |         |      |         |      |      |
| 00841 | }        |         |      |         |      |      |
| 00842 | , { { {  | 370,    | 370, | 370,    | 370, | 370} |
| 00843 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00844 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00845 | , {      | 370,    | 370, | 370,    | 370, | 370} |
|       |          |         |      |         |      |      |
| 00846 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00847 | }        |         |      |         |      |      |
| 00848 | , { {    | 370,    | 370, | 370,    | 370, | 370} |
| 00849 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00850 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00851 | , {      | 260,    | 260, | 260,    | 260, | 260} |
| 00852 |          | 370,    |      | 370,    | 370, | 370} |
|       | , {      | 370,    | 370, | 370,    | 3/0, | 3/0} |
| 00853 | }        |         |      |         |      |      |
| 00854 | , { {    | 370,    | 370, | 370,    | 370, | 370} |
| 00855 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00856 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00857 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00858 | , {      | 370,    | 370, | 370,    | 370, | 370} |
|       |          | 370,    | 370, | 570,    | 370, | 370) |
| 00859 | }        |         |      |         |      |      |
| 00860 | , { {    | 370,    | 260, | 370,    | 260, | 370} |
| 00861 | , {      | 370,    | 260, | 370,    | 260, | 370} |
| 00862 | , {      | 370,    | 260, | 370,    | 260, | 370} |
| 00863 | , {      | 260,    | 260, | 260,    | 260, | 260} |
| 00864 | , {      | 370,    | 260, | 370,    | 260, | 370} |
| 00865 | , l<br>} | J , J , | ,    | J , J , | _00, | 5,05 |
|       |          |         |      |         |      |      |
| 00866 | , { {    | 370,    | 370, | 370,    | 370, | 300} |
| 00867 | , {      | 370,    | 370, | 370,    | 370, | 300} |
| 00868 | , {      | 370,    | 370, | 370,    | 370, | 300} |
| 00869 | , {      | 370,    | 370, | 370,    | 370, | 300} |
| 00870 | , {      | 300,    | 300, | 300,    | 300, | 300} |
| 00871 | }        | 000,    | 000, | 000,    | 000, | 000, |
|       |          |         |      |         |      |      |
| 00872 | }        | 0.70    | 270  | 0.70    | 0.70 | 0.70 |
| 00873 | , { { {  | 370,    | 370, | 370,    | 370, | 370} |
| 00874 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00875 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00876 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00877 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00878 | }        | 0,0,    | 0.0, | 0.0,    | 0,0, | 0,0, |
|       |          | 270     | 270  | 270     | 270  | 2701 |
| 00879 | , { {    | 370,    | 370, | 370,    | 370, | 370} |
| 00880 | , {      | 370,    | 250, | 370,    | 210, | 370} |
| 00881 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00882 | , {      | 260,    | 120, | 260,    | 260, | 260} |
| 00883 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00884 | }        | ,       |      |         | ,    | ,    |
| 00885 |          | 370,    | 370, | 370,    | 370, | 370} |
|       | , { {    |         |      |         |      |      |
| 00886 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00887 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00888 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00889 | , {      | 370,    | 370, | 190,    | 370, | 370} |
| 00890 | }        |         |      |         |      |      |
| 00891 | , { {    | 370,    | 260, | 370,    | 260, | 370} |
| 00892 |          | 260,    |      |         |      |      |
|       | , {      |         | 260, | 260,    | 260, | 260} |
| 00893 | , {      | 370,    | 260, | 370,    | 260, | 370} |
| 00894 | , {      | 260,    | 260, | 260,    | 260, | 260} |
| 00895 | , {      | 370,    | 260, | 370,    | 260, | 370} |
| 00896 | }        |         |      |         |      |      |
| 00897 | , { {    | 370,    | 370, | 370,    | 370, | 300} |
| 00898 | , {      | 370,    | 370, | 370,    | 370, | 300} |
| 00899 | , {      | 370,    | 370, | 370,    | 370, | 300} |
|       |          |         |      |         |      |      |
| 00900 | , {      | 370,    | 370, | 370,    | 370, | 300} |
| 00901 | , {      | 300,    | 300, | 300,    | 300, | 300} |
| 00902 | }        |         |      |         |      |      |
| 00903 | }        |         |      |         |      |      |
| 00904 | , { { {  | 370,    | 370, | 370,    | 370, | 370} |
| 00905 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00906 |          | 370,    | 370, | 370,    |      | 370} |
|       | , {      |         |      |         | 370, |      |
| 00907 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00908 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00909 | }        |         |      |         |      |      |
| 00910 | , { {    | 370,    | 370, | 370,    | 370, | 370} |
| 00911 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00912 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00913 | , {      | 260,    | 260, | 260,    | 260, | 260} |
|       |          |         |      |         |      |      |
| 00914 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00915 | }        |         |      |         |      |      |
| 00916 | , { {    | 370,    | 370, | 370,    | 370, | 370} |
| 00917 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00918 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00919 | , {      | 370,    | 370, | 370,    | 370, | 370} |
| 00919 |          | 370,    |      |         |      |      |
|       | , {      | J/U,    | 370, | 370,    | 370, | 370} |
| 00921 | }        | 272     | 0.00 | 270     | 0.00 | 272: |
| 00922 | , { {    | 370,    | 260, | 370,    | 260, | 370} |
|       |          |         |      |         |      |      |

| 00923 | , {       | 370, | 260, | 370,      | 260, | 370}   |
|-------|-----------|------|------|-----------|------|--------|
| 00924 | , {       | 370, | 260, | 370,      | 260, | 370}   |
| 00925 | , {       | 260, | 260, | 260,      | 260, | 260}   |
| 00926 |           |      |      |           | 260, |        |
|       | , {       | 370, | 260, | 370,      | 260, | 370}   |
| 00927 | }         |      |      |           |      |        |
| 00928 | , { {     | 370, | 370, | 370,      | 370, | 300}   |
| 00929 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00930 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00931 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00932 | , {       | 300, | 300, | 300,      | 300, | 300}   |
|       |           | 300, | 300, | 300,      | 300, | 300}   |
| 00933 | }         |      |      |           |      |        |
| 00934 | }         |      |      |           |      |        |
| 00935 | , { { {   | 370, | 370, | 370,      | 370, | 370}   |
| 00936 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00937 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00938 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00939 |           |      | 370, | 370,      | 370, | 370}   |
|       | , {       | 370, | 370, | 370,      | 370, | 3703   |
| 00940 | }         |      |      |           |      |        |
| 00941 | , { {     | 370, | 370, | 370,      | 370, | 370}   |
| 00942 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00943 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00944 | , {       | 260, | 260, | 260,      | 260, | 260}   |
| 00945 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00946 | }         | 0.0, | 0.0, | 0.0,      | 0.0, | 0,0,   |
|       |           | 270  | 270  | 270       | 270  | 2701   |
| 00947 | , { {     | 370, | 370, | 370,      | 370, | 370}   |
| 00948 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00949 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00950 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00951 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00952 | }         | 3,0, | 370, | 370,      | 370, | 370)   |
|       |           | 270  | 0.00 | 270       | 0.00 | 2701   |
| 00953 | , { {     | 370, | 260, | 370,      | 260, | 370}   |
| 00954 | , {       | 260, | 260, | 260,      | 260, | 260}   |
| 00955 | , {       | 370, | 260, | 370,      | 260, | 370}   |
| 00956 | , {       | 260, | 260, | 260,      | 260, | 260}   |
| 00957 | , {       | 370, | 260, | 370,      | 260, | 370}   |
| 00958 | }         | ,    | ,    | ,         | ,    | ,      |
| 00959 | , { {     | 370, | 370, | 370,      | 370, | 3001   |
|       |           |      |      |           |      | 300}   |
| 00960 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00961 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00962 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00963 | , {       | 300, | 300, | 300,      | 300, | 300}   |
| 00964 | }         |      |      |           |      |        |
| 00965 | }         |      |      |           |      |        |
| 00966 | ,{{{      | 370, | 370, | 370,      | 370, | 370}   |
|       |           |      |      |           |      |        |
| 00967 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00968 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00969 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00970 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00971 | }         |      |      |           |      |        |
| 00972 | , { {     | 370, | 370, | 370,      | 370, | 370}   |
| 00973 |           | •    | ,    |           |      |        |
|       | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00974 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00975 | , {       | 260, | 260, | 260,      | 260, | 260}   |
| 00976 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00977 | }         |      |      |           |      |        |
| 00978 | , { {     | 370, | 370, | 370,      | 370, | 370}   |
| 00979 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00980 |           | 370, | 370, | 370,      | 370, | 370}   |
|       | , {       |      |      |           |      |        |
| 00981 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00982 | , {       | 370, | 370, | 370,      | 370, | 370}   |
| 00983 | }         |      |      |           |      |        |
| 00984 | , { {     | 370, | 260, | 370,      | 260, | 370}   |
| 00985 | , {       | 370, | 260, | 370,      | 260, | 370}   |
| 00986 | , {       | 370, | 260, | 370,      | 260, | 370}   |
| 00987 | , {       | 260, | 260, | 260,      | 260, | 260}   |
| 00988 |           |      | 260, | 370,      | 260, | 370}   |
|       | , {       | 370, | 200, | 370,      | 200, | 3/0}   |
| 00989 | }         |      |      |           |      |        |
| 00990 | , { {     | 370, | 370, | 370,      | 370, | 300}   |
| 00991 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00992 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00993 | , {       | 370, | 370, | 370,      | 370, | 300}   |
| 00994 | , {       | 300, | 300, | 300,      | 300, | 300}   |
| 00995 | }         | ,    | ,    | ,         | /    | ,      |
| 00996 |           |      |      |           |      |        |
|       | }         |      |      |           |      |        |
| 00997 | }         |      |      |           |      |        |
| 00998 | , { { { { | INF, | INF, | INF,      | INF, | INF }  |
| 00999 | , {       | INF, | INF, | INF,      | INF, | INF }  |
| 01000 | , {       | INF, | INF, | INF,      | INF, | INF }  |
| 01001 | , {       | INF, | INF, | INF,      | INF, | INF }  |
| 01002 | , {       | INF, | INF, | INF,      | INF, | INF }  |
|       |           | /    | /    | /         | /    | TIME } |
| 01003 | }         | T    | T    | T. 3. 7 7 |      |        |
| 01004 | , { {     | INF, | INF, | INF,      | INF, | INF }  |
| 01005 | , {       | INF, | INF, | INF,      | INF, | INF }  |
| 01006 | , {       | INF, | INF, | INF,      | INF, | INF }  |
| 01007 | , {       | INF, | INF, | INF,      | INF, | INF }  |
| 01008 | , {       | INF, | INF, | INF,      | INF, | INF }  |
| 01009 | }         | ,    | ,    | ,         | •    | ,      |
|       | ,         |      |      |           |      |        |

18.172 intl21.h 957

| 01010 |         | TAIF | TNIE | TNIE    | TNIE    | T. 3. T. 3. |
|-------|---------|------|------|---------|---------|-------------|
| 01010 | , { {   | INF, | INF, | INF,    | INF,    | INF }       |
| 01011 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01012 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01013 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01014 |         |      |      | INF,    | INF,    | INF }       |
|       | , {     | INF, | INF, | INE,    | TNE,    | TIME        |
| 01015 | }       |      |      |         |         |             |
| 01016 | , { {   | INF, | INF, | INF,    | INF,    | INF }       |
| 01017 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
|       |         |      |      |         |         |             |
| 01018 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01019 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01020 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01021 | }       |      |      |         |         |             |
|       |         | TAIR | TNIE | TNIE    | TNIE    | T. 3. T. 3. |
| 01022 | , { {   | INF, | INF, | INF,    | INF,    | INF }       |
| 01023 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01024 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01025 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
|       |         |      |      |         |         |             |
| 01026 | , {     | INF, | INF, | INF,    | INF,    | INF }       |
| 01027 | }       |      |      |         |         |             |
| 01028 | }       |      |      |         |         |             |
| 01029 | , { { { | 300, | 300, | 300,    | 300,    | 300}        |
|       |         |      |      |         |         |             |
| 01030 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01031 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01032 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01033 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
|       |         | 500, | 500, | 500,    | 500,    | 500)        |
| 01034 | }       |      |      |         |         |             |
| 01035 | , { {   | 300, | 300, | 300,    | 190,    | 300}        |
| 01036 | , {     | 300, | 300, | 300,    | 190,    | 300}        |
| 01037 | , {     | 300, | 300, | 300,    | 190,    | 300}        |
|       |         |      |      |         |         |             |
| 01038 | , {     | 190, | 190, | 190,    | 190,    | 190}        |
| 01039 | , {     | 300, | 300, | 300,    | 190,    | 300}        |
| 01040 | }       |      |      |         |         |             |
| 01041 | , { {   | 300, | 300, | 300,    | 300,    | 300}        |
|       |         |      |      |         |         |             |
| 01042 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01043 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01044 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01045 |         |      | 300, | 300,    | 300,    |             |
|       | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01046 | }       |      |      |         |         |             |
| 01047 | , { {   | 300, | 190, | 300,    | 190,    | 300}        |
| 01048 | , {     | 190, | 190, | 190,    | 190,    | 190}        |
| 01049 | , {     | 300, | 190, | 300,    | 190,    | 300}        |
|       |         |      |      |         |         |             |
| 01050 | , {     | 190, | 190, | 190,    | 190,    | 190}        |
| 01051 | , {     | 300, | 190, | 300,    | 190,    | 300}        |
| 01052 | }       |      |      |         |         |             |
| 01053 | , { {   | 300, | 300, | 300,    | 300,    | 220}        |
|       |         |      |      |         |         |             |
| 01054 | , {     | 300, | 300, | 300,    | 300,    | 220}        |
| 01055 | , {     | 300, | 300, | 300,    | 300,    | 220}        |
| 01056 | , {     | 300, | 300, | 300,    | 300,    | 220}        |
| 01057 | , {     | 220, | 220, | 220,    | 220,    | 220}        |
|       |         | 220, | 220, | 220,    | 220,    | 220 }       |
| 01058 | }       |      |      |         |         |             |
| 01059 | }       |      |      |         |         |             |
| 01060 | , { { { | 300, | 300, | 300,    | 300,    | 300}        |
| 01061 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
|       |         |      |      |         |         |             |
| 01062 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01063 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01064 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01065 | }       |      |      |         |         |             |
| 01066 | , { {   | 300, | 300, | 300,    | 190,    | 300}        |
|       |         |      |      |         |         |             |
| 01067 | , {     | 300, | 300, | 300,    | 190,    | 300}        |
| 01068 | , {     | 300, | 300, | 300,    | 190,    | 300}        |
| 01069 | , {     | 190, | 190, | 190,    | 190,    | 190}        |
| 01070 | , {     | 300, | 300, | 300,    | 190,    | 300}        |
|       |         | 500, | 200, | J 0 0 , | ± > 0 , | 500}        |
| 01071 | }       |      |      |         |         |             |
| 01072 | , { {   | 300, | 300, | 300,    | 300,    | 300}        |
| 01073 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01074 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01075 |         | 300, | 300, | 300,    | 300,    |             |
|       | , {     |      |      |         |         | 300}        |
| 01076 | , {     | 300, | 300, | 300,    | 300,    | 300}        |
| 01077 | }       |      |      |         |         |             |
| 01078 | , { {   | 300, | 190, | 300,    | 190,    | 300}        |
| 01070 |         | 300, | 190, | 300,    | 190,    | 300}        |
|       | , {     |      |      |         |         |             |
| 01080 | , {     | 300, | 190, | 300,    | 190,    | 300}        |
| 01081 | , {     | 190, | 190, | 190,    | 190,    | 190}        |
| 01082 | , {     | 300, | 190, | 300,    | 190,    | 300}        |
| 01083 | }       |      | ,    | ,       | ,       | 1           |
|       |         | 300  | 300  | 300     | 300     | 2201        |
| 01084 | , { {   | 300, | 300, | 300,    | 300,    | 220}        |
| 01085 | , {     | 300, | 300, | 300,    | 300,    | 220}        |
| 01086 | , {     | 300, | 300, | 300,    | 300,    | 220}        |
| 01087 | ,       | 300, | 300, | 300,    | 300,    | 220}        |
|       |         |      |      |         |         |             |
| 01088 | , {     | 220, | 220, | 220,    | 220,    | 220}        |
| 01089 | }       |      |      |         |         |             |
| 01090 | }       |      |      |         |         |             |
| 01091 | , { { { | 370, | 370, | 370,    | 370,    | 370}        |
|       |         |      |      |         |         |             |
| 01092 | , {     | 370, | 370, | 370,    | 370,    | 370}        |
| 01093 | , {     | 370, | 370, | 370,    | 370,    | 370}        |
| 01094 | , {     | 370, | 370, | 370,    | 370,    | 370}        |
| 01095 | , {     | 370, | 370, | 370,    | 370,    | 370}        |
| 01096 | }       | . ,  | .,   | . ,     | .,      | . ,         |
|       | ,       |      |      |         |         |             |

| 01097 | , { {   | 370, | 370, | 370, | 260, | 370} |
|-------|---------|------|------|------|------|------|
|       |         |      |      |      |      |      |
| 01098 | , {     | 370, | 370, | 370, | 260, | 370} |
| 01099 | , {     | 370, | 370, | 370, | 260, | 370} |
| 01100 | , {     | 260, | 260, | 260, | 260, | 260} |
| 01101 | , {     | 370, | 370, | 370, | 260, | 370} |
| 01102 | }       |      |      |      |      |      |
| 01103 | , { {   | 370, | 370, | 370, | 370, | 370} |
|       |         |      | 370, |      |      |      |
| 01104 | , {     | 370, |      | 370, | 370, | 370} |
| 01105 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01106 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01107 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01108 | }       |      |      |      |      |      |
| 01109 |         | 270  | 260  | 270  | 260  | 370} |
|       | , { {   | 370, | 260, | 370, | 260, |      |
| 01110 | , {     | 370, | 260, | 370, | 260, | 370} |
| 01111 | , {     | 370, | 260, | 370, | 260, | 370} |
| 01112 | , {     | 260, | 260, | 260, | 260, | 260} |
| 01113 | , {     | 370, | 260, | 370, | 260, | 370} |
| 01114 | }       | ,    | ,    | ,    | ,    | ,    |
|       |         | 270  | 270  | 270  | 270  | 2001 |
| 01115 | , { {   | 370, | 370, | 370, | 370, | 300} |
| 01116 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01117 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01118 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01119 | , {     | 300, | 300, | 300, | 300, | 300} |
| 01120 | }       | ,    | ,    | ,    | ,    | ,    |
|       |         |      |      |      |      |      |
| 01121 | }       |      |      |      |      |      |
| 01122 | , { { { | 370, | 370, | 370, | 370, | 370} |
| 01123 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01124 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01125 | , {     | 370, | 370, | 370, | 370, | 370} |
|       |         |      |      |      |      |      |
| 01126 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01127 | }       |      |      |      |      |      |
| 01128 | , { {   | 370, | 370, | 370, | 260, | 370} |
| 01129 | , {     | 370, | 370, | 370, | 260, | 370} |
| 01130 | , {     | 370, | 370, | 370, | 260, | 370} |
|       |         |      |      |      |      |      |
| 01131 | , {     | 260, | 260, | 260, | 260, | 260} |
| 01132 | , {     | 370, | 370, | 370, | 260, | 370} |
| 01133 | }       |      |      |      |      |      |
| 01134 | , { {   | 370, | 370, | 370, | 370, | 370} |
| 01135 | , {     | 370, | 370, | 370, | 370, | 370} |
|       |         |      |      |      |      |      |
| 01136 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01137 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01138 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01139 | }       |      |      |      |      |      |
| 01140 | , { {   | 370, | 260, | 370, | 260, | 370} |
| 01141 | , {     | 260, | 260, | 260, | 260, | 260} |
|       |         |      |      |      |      |      |
| 01142 | , {     | 370, | 260, | 370, | 260, | 370} |
| 01143 | , {     | 260, | 260, | 260, | 260, | 260} |
| 01144 | , {     | 370, | 260, | 370, | 260, | 370} |
| 01145 | }       |      |      |      |      |      |
| 01146 | ,{{     | 370, | 370, | 370, | 370, | 300} |
|       |         |      |      |      |      |      |
| 01147 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01148 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01149 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01150 | , {     | 300, | 300, | 300, | 300, | 300} |
| 01151 | }       | •    | •    | ,    | •    |      |
| 01152 |         |      |      |      |      |      |
|       | }       | 270  | 270  | 270  | 270  | 2701 |
| 01153 | , { { { | 370, | 370, | 370, | 370, | 370} |
| 01154 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01155 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01156 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01157 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01158 | }       |      | •    |      | •    | ,    |
|       |         | 370  | 370, | 370  | 260, | 370} |
| 01159 | , { {   | 370, |      | 370, |      |      |
| 01160 | , {     | 370, | 370, | 370, | 260, | 370} |
| 01161 | , {     | 370, | 370, | 370, | 260, | 370} |
| 01162 | , {     | 260, | 260, | 260, | 260, | 260} |
| 01163 | , {     | 370, | 370, | 370, | 260, | 370} |
| 01164 | }       | ,    | ,    | ,    | /    | ,    |
| 01165 |         | 370  | 370  | 370  | 370  | 2701 |
|       | , { {   | 370, | 370, | 370, | 370, | 370} |
| 01166 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01167 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01168 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01169 | , {     | 370, | 370, | 370, | 370, | 370} |
| 01170 | }       | ,    | ,    | ,    | ,    | ,    |
|       |         | 370  | 260  | 370  | 260  | 3701 |
| 01171 | , { {   | 370, | 260, | 370, | 260, | 370} |
| 01172 | , {     | 370, | 260, | 370, | 260, | 370} |
| 01173 | , {     | 370, | 260, | 370, | 260, | 370} |
| 01174 | , {     | 260, | 260, | 260, | 260, | 260} |
| 01175 | , {     | 370, | 260, | 370, | 260, | 370} |
| 01176 | }       | ,    | ,    | ,    | /    | ,    |
|       |         | 370  | 370  | 370  | 370  | 300, |
| 01177 | , { {   | 370, | 370, | 370, | 370, | 300} |
| 01178 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01179 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01180 | , {     | 370, | 370, | 370, | 370, | 300} |
| 01181 | , {     | 300, | 300, | 300, | 300, | 300} |
| 01182 | }       | ,    | ,    | ,    | ,    | . ,  |
|       |         |      |      |      |      |      |
| 01183 | }       |      |      |      |      |      |

18.172 intl21.h 959

| 01184          | , { { {    | 370,         | 370,         | 370,         | 370,         | 370}           |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 01185          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01186          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01187          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01188          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01189<br>01190 | }<br>,{{   | 370,         | 370,         | 370,         | 260,         | 370}           |
| 01191          | , (        | 370,         | 370,         | 370,         | 260,         | 370}           |
| 01192          | , {        | 370,         | 370,         | 370,         | 260,         | 370}           |
| 01193          | , {        | 260,         | 260,         | 260,         | 260,         | 260}           |
| 01194          | , {        | 370,         | 370,         | 370,         | 260,         | 370}           |
| 01195          | }          |              |              |              |              |                |
| 01196          | , { {      | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01197          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01198          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01199          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01200          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01201          | }          | 270          | 0.00         | 270          | 0.00         | 2701           |
| 01202          | , { {      | 370,         | 260,         | 370,         | 260,         | 370}           |
| 01203<br>01204 | , {        | 260,<br>370, | 260,<br>260, | 260,<br>370, | 260,<br>260, | 260}<br>370}   |
| 01204          | , {<br>, { | 260,         | 260,         | 260,         | 260,         | 260}           |
| 01206          | , {        | 370,         | 260,         | 370,         | 260,         | 370}           |
| 01207          | }          | 0.0,         | 200,         | 0.07         | 200,         | 0,0,           |
| 01208          | , { {      | 370,         | 370,         | 370,         | 370,         | 300}           |
| 01209          | , {        | 370,         | 370,         | 370,         | 370,         | 300}           |
| 01210          | , {        | 370,         | 370,         | 370,         | 370,         | 300}           |
| 01211          | , {        | 370,         | 370,         | 370,         | 370,         | 300}           |
| 01212          | , {        | 300,         | 300,         | 300,         | 300,         | 300}           |
| 01213          | }          |              |              |              |              |                |
| 01214          | }          |              |              |              |              |                |
| 01215          | , { { {    | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01216          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01217          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01218          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01219<br>01220 | , {<br>}   | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01220          | ,{{        | 370,         | 370,         | 370,         | 260,         | 370}           |
| 01222          | , {        | 370,         | 370,         | 370,         | 260,         | 370}           |
| 01223          | , {        | 370,         | 370,         | 370,         | 260,         | 370}           |
| 01224          | , {        | 260,         | 260,         | 260,         | 260,         | 260}           |
| 01225          | , {        | 370,         | 370,         | 370,         | 260,         | 370}           |
| 01226          | }          |              |              |              |              |                |
| 01227          | , { {      | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01228          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01229          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01230          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01231          | , {        | 370,         | 370,         | 370,         | 370,         | 370}           |
| 01232          | }          | 270          | 200          | 270          | 200          | 2701           |
| 01233<br>01234 | ,{{<br>,{  | 370,<br>370, | 260,<br>260, | 370,<br>370, | 260,<br>260, | 370}<br>370}   |
| 01234          | , {        | 370,         | 260,         | 370,         | 260,         | 370}           |
| 01236          | , {        | 260,         | 260,         | 260,         | 260,         | 260}           |
| 01237          | , {        | 370,         | 260,         | 370,         | 260,         | 370}           |
| 01238          | }          |              |              | •            |              |                |
| 01239          | , { {      | 370,         | 370,         | 370,         | 370,         | 300}           |
| 01240          | , {        | 370,         | 370,         | 370,         | 370,         | 300}           |
| 01241          | , {        | 370,         | 370,         | 370,         | 370,         | 300}           |
| 01242          | , {        | 370,         | 370,         | 370,         | 370,         | 300}           |
| 01243          | , {        | 300,         | 300,         | 300,         | 300,         | 300}           |
| 01244          | }          |              |              |              |              |                |
| 01245<br>01246 | }          |              |              |              |              |                |
|                | }<br>,{{{{ | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01247          | , , , {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01249          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01250          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01251          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01252          | }          |              |              |              |              |                |
| 01253          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01254          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01255          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01256          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01257          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01258          | }          | TATE         | TATE         | T > 1 T      | T            |                |
| 01259          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01260          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01261<br>01262 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01262          | , (        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01264          | }          | /            | /            | /            | /            | )              |
| 01265          | ,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01266          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01267          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01268          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01269          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01270          | }          |              |              |              |              |                |
|                |            |              |              |              |              |                |

| 01271 | , { {   | INF, | INF, | INF, | INF, | INF } |
|-------|---------|------|------|------|------|-------|
|       |         |      |      |      |      |       |
| 01272 | , {     | INF, | INF, | INF, | INF, | INF } |
| 01273 | , {     | INF, | INF, | INF, | INF, | INF } |
| 01274 | , {     | INF, | INF, | INF, | INF, | INF } |
| 01275 | , {     | INF, | INF, | INF, | INF, | INF } |
| 01276 | }       | ,    | ,    | ,    | ,    | ,     |
|       |         |      |      |      |      |       |
| 01277 | }       |      |      |      |      |       |
| 01278 | , { { { | 300, | 300, | 300, | 300, | 300}  |
| 01279 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01280 | , {     | 300, | 300, | 300, | 300, | 300}  |
|       |         |      |      |      |      |       |
| 01281 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01282 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01283 | }       |      |      |      |      |       |
| 01284 | , { {   | 300, | 300, | 300, | 300, | 300}  |
|       |         |      |      |      |      |       |
| 01285 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01286 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01287 | , {     | 190, | 190, | 190, | 190, | 190}  |
| 01288 | , {     | 300, | 300, | 300, | 300, | 300}  |
|       |         | 500, | 300, | 500, | 300, | 500,  |
| 01289 | }       |      |      |      |      |       |
| 01290 | , { {   | 300, | 300, | 300, | 300, | 300}  |
| 01291 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01292 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01293 |         |      |      |      |      | 300}  |
|       | , {     | 300, | 300, | 300, | 300, |       |
| 01294 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01295 | }       |      |      |      |      |       |
| 01296 | , { {   | 300, | 190, | 300, | 190, | 300}  |
| 01297 | , {     | 190, | 190, | 190, | 190, | 190}  |
|       |         |      |      |      |      |       |
| 01298 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 01299 | , {     | 190, | 190, | 190, | 190, | 190}  |
| 01300 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 01301 | }       | •    | •    | •    |      | ,     |
|       |         | 300  | 300  | 300  | 300  | 2201  |
| 01302 | , { {   | 300, | 300, | 300, | 300, | 220}  |
| 01303 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 01304 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 01305 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 01306 |         |      | 220, |      |      | 220}  |
|       | , {     | 220, | 220, | 220, | 220, | 220}  |
| 01307 | }       |      |      |      |      |       |
| 01308 | }       |      |      |      |      |       |
| 01309 | , { { { | 300, | 300, | 300, | 300, | 300}  |
| 01310 | , {     | 300, | 300, | 300, | 300, | 300}  |
|       |         |      |      |      |      |       |
| 01311 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01312 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01313 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01314 | }       |      |      |      |      |       |
|       |         | 200  | 200  | 200  | 200  | 2001  |
| 01315 | , { {   | 300, | 300, | 300, | 300, | 300}  |
| 01316 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01317 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01318 | , {     | 190, | 190, | 190, | 190, | 190}  |
|       |         |      |      |      |      |       |
| 01319 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01320 | }       |      |      |      |      |       |
| 01321 | , { {   | 300, | 300, | 300, | 300, | 300}  |
| 01322 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01323 | , {     | 300, | 300, | 300, | 300, | 300}  |
|       |         |      |      |      |      |       |
| 01324 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01325 | , {     | 300, | 300, | 300, | 300, | 300}  |
| 01326 | }       |      |      |      |      |       |
| 01327 | , { {   | 300, | 190, | 300, | 190, | 300}  |
|       |         |      |      |      |      |       |
| 01328 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 01329 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 01330 | , {     | 190, | 190, | 190, | 190, | 190}  |
| 01331 | , {     | 300, | 190, | 300, | 190, | 300}  |
| 01332 | }       |      |      |      |      |       |
| 01333 | , { {   | 300, | 300, | 300, | 300, | 220}  |
|       |         |      |      |      |      |       |
| 01334 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 01335 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 01336 | , {     | 300, | 300, | 300, | 300, | 220}  |
| 01337 | , {     | 220, | 220, | 220, | 220, | 220}  |
|       |         | ,    | ,    | ,    | ,    |       |
| 01338 | }       |      |      |      |      |       |
| 01339 | }       |      |      |      |      |       |
| 01340 | , { { { | 370, | 370, | 370, | 370, | 370}  |
| 01341 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01342 | , {     | 370, | 370, | 370, | 370, | 370}  |
|       |         |      |      |      |      |       |
| 01343 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01344 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01345 | }       |      |      |      |      |       |
| 01346 | , { {   | 370, | 370, | 370, | 370, | 370}  |
|       |         |      |      |      |      |       |
| 01347 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01348 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01349 | , {     | 260, | 260, | 260, | 260, | 260}  |
| 01350 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01351 | }       | ,    | ,    | ,    | •    | . ,   |
|       |         | 370  | 370  | 370  | 370  | 2701  |
| 01352 | , { {   | 370, | 370, | 370, | 370, | 370}  |
| 01353 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01354 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01355 | , {     | 370, | 370, | 370, | 370, | 370}  |
| 01356 | , {     | 370, | 370, | 370, | 370, | 370}  |
|       |         | 5,0, | 5,0, | 5,0, | 5,0, | 5/0}  |
| 01357 | }       |      |      |      |      |       |

18.172 intl21.h 961

| 01358          | , { {      | 370,         | 260,         | 370,         | 260,         | 370}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 01359          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01360          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01361          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01362<br>01363 | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01364          | }<br>,{{   | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01365          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01366          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01367          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01368          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01369          | }          |              |              |              |              |              |
| 01370          | }          | 270          | 270          | 270          | 270          | 2701         |
| 01371<br>01372 | ,{{{       | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370}<br>370} |
| 01372          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01374          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01375          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01376          | }          |              |              |              |              |              |
| 01377          | , { {      | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01378          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01379          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01380<br>01381 | , {        | 260,         | 260,<br>370, | 260,<br>370, | 260,<br>370, | 260}<br>370} |
| 01381          | , {<br>}   | 370,         | 370,         | 370,         | 370,         | 3705         |
| 01383          | , { {      | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01384          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01385          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01386          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01387          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01388          | }          | 270          | 200          | 270          | 200          | 2701         |
| 01389<br>01390 | ,{{<br>,{  | 370,<br>260, | 260,<br>260, | 370,<br>260, | 260,<br>260, | 370}<br>260} |
| 01391          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01392          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01393          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01394          | }          |              |              |              |              |              |
| 01395          | , { {      | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01396          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01397<br>01398 | , {<br>, { | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 300}         |
| 01399          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01400          | }          | 000,         | 000,         | 000,         | 000,         | 000,         |
| 01401          | }          |              |              |              |              |              |
| 01402          | , { { {    | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01403          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01404          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01405          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01406<br>01407 | , {<br>}   | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01407          | , { {      | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01409          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01410          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01411          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01412          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01413          | }          | 270          | 270          | 270          | 270          | 2701         |
| 01414<br>01415 | ,{{<br>,{  | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370}<br>370} |
| 01416          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01417          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01418          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01419          | }          |              |              |              |              |              |
| 01420          | , { {      | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01421          | , {        | 370,<br>370, | 260,<br>260, | 370,         | 260,         | 370}<br>370} |
| 01422<br>01423 | , {<br>, { | 260,         | 260,         | 370,<br>260, | 260,<br>260, | 260}         |
| 01423          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01425          | }          | ,            | /            | ,            | ,            | ,            |
| 01426          | , { {      | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01427          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01428          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01429          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01430<br>01431 | , {<br>}   | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01431          | }          |              |              |              |              |              |
| 01433          | ,{{{       | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01434          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01435          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01436          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01437          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01438          | }          | 370          | 370          | 370          | 370          | 2701         |
| 01439<br>01440 | ,{{<br>,{  | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370}<br>370} |
| 01440          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01442          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01443          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01444          | }          |              |              |              |              |              |
|                |            |              |              |              |              |              |

| 01445 | , { {     | 370,   | 370,    | 370,   | 370,   | 370}      |
|-------|-----------|--------|---------|--------|--------|-----------|
| 01446 |           | 370,   | 370,    | 370,   | 370,   | 370}      |
|       | , {       |        |         |        |        |           |
| 01447 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01448 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01449 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01450 | }         |        |         |        |        |           |
| 01451 | , { {     | 370,   | 260,    | 370,   | 260,   | 370}      |
| 01452 | , {       | 260,   | 260,    | 260,   | 260,   | 260}      |
| 01453 | , {       | 370,   | 260,    | 370,   | 260,   | 370}      |
| 01454 | , {       | 260,   | 260,    | 260,   | 260,   | 260}      |
| 01455 | , {       | 370,   | 260,    | 370,   | 260,   | 370}      |
| 01456 | }         | 0.0,   | 200,    | 0.0,   | 200,   | 0,0,      |
|       |           | 270    | 270     | 270    | 270    | 2001      |
| 01457 | , { {     | 370,   | 370,    | 370,   | 370,   | 300}      |
| 01458 | , {       | 370,   | 370,    | 370,   | 370,   | 300}      |
| 01459 | , {       | 370,   | 370,    | 370,   | 370,   | 300}      |
| 01460 | , {       | 370,   | 370,    | 370,   | 370,   | 300}      |
| 01461 | , {       | 300,   | 300,    | 300,   | 300,   | 300}      |
| 01462 | }         |        |         |        |        |           |
| 01463 | }         |        |         |        |        |           |
| 01464 | , { { {   | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01465 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01466 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01467 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01468 |           |        | 370,    | 370,   | 370,   | 370}      |
|       | , {       | 370,   | 370,    | 370,   | 3/0,   | 3/0}      |
| 01469 | }         | 0.70   | 272     | 0.70   | 0.70   | 0.701     |
| 01470 | , { {     | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01471 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01472 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01473 | , {       | 260,   | 260,    | 260,   | 260,   | 260}      |
| 01474 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01475 | }         |        |         |        |        |           |
| 01476 | , { {     | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01477 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01478 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
|       |           |        |         | 370,   |        |           |
| 01479 | , {       | 370,   | 370,    |        | 370,   | 370}      |
| 01480 | , {       | 370,   | 370,    | 370,   | 370,   | 370}      |
| 01481 | }         |        |         |        |        |           |
| 01482 | , { {     | 370,   | 260,    | 370,   | 260,   | 370}      |
| 01483 | , {       | 370,   | 260,    | 370,   | 260,   | 370}      |
| 01484 | , {       | 370,   | 260,    | 370,   | 260,   | 370}      |
| 01485 | , {       | 260,   | 260,    | 260,   | 260,   | 260}      |
| 01486 | , {       | 370,   | 260,    | 370,   | 260,   | 370}      |
| 01487 | }         |        |         |        |        |           |
| 01488 | , { {     | 370,   | 370,    | 370,   | 370,   | 300}      |
| 01489 | , {       | 370,   | 370,    | 370,   | 370,   | 300}      |
|       |           |        |         |        |        |           |
| 01490 | , {       | 370,   | 370,    | 370,   | 370,   | 300}      |
| 01491 | , {       | 370,   | 370,    | 370,   | 370,   | 300}      |
| 01492 | , {       | 300,   | 300,    | 300,   | 300,   | 300}      |
| 01493 | }         |        |         |        |        |           |
| 01494 | }         |        |         |        |        |           |
| 01495 | }         |        |         |        |        |           |
| 01496 | , { { { { | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01497 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01498 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01499 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01500 | ,         |        |         |        |        |           |
|       | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01501 | }         | TNIE   | TAID    | TNE    | TNIE   | T. 1777 ) |
| 01502 | , { {     | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01503 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01504 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01505 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01506 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01507 | }         |        |         |        |        |           |
| 01508 | , { {     | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01509 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01510 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01511 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01512 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
|       |           | TIME , | TINE ,  | INI,   | TIME , | TIME      |
| 01513 | }         | TAIT   | TAIR    | TAIT   | TAIT   | T 3.7 T ' |
| 01514 | , { {     | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01515 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01516 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01517 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01518 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01519 | }         |        |         |        |        |           |
| 01520 | , { {     | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01521 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01522 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01523 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
| 01524 | , {       | INF,   | INF,    | INF,   | INF,   | INF }     |
|       |           | TIME,  | TTAT. 1 | TIAT 1 | TIME ! | TIAE }    |
| 01525 | }         |        |         |        |        |           |
| 01526 | }         | 0.00   |         | 0.00   | 0.00   |           |
| 01527 | ,{{{      | 300,   | 300,    | 300,   | 300,   | 300}      |
| 01528 | , {       | 300,   | 300,    | 300,   | 300,   | 300}      |
| 01529 | , {       | 300,   | 300,    | 300,   | 300,   | 300}      |
| 01530 | , {       | 300,   | 300,    | 300,   | 300,   | 300}      |
| 01531 | , {       | 300,   | 300,    | 300,   | 300,   | 300}      |
|       |           |        |         |        |        |           |

18.172 intl21.h 963

| 01532          | }          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 01533          | , { {      | 300,         | 300,         | 300,         | 190,         | 300}         |
| 01534<br>01535 | , {<br>, { | 300,<br>300, | 300,<br>300, | 300,<br>300, | 190,<br>190, | 300}         |
| 01536          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 01537          | , {        | 300,         | 300,         | 300,         | 190,         | 300}         |
| 01538          | }          |              |              |              |              | ,            |
| 01539          | , { {      | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01540          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01541          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01542          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01543          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01544          | }          | 200          | 100          | 200          | 100          | 2001         |
| 01545          | , { {      | 300,         | 190,         | 300,         | 190,         | 300}         |
| 01546          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 01547<br>01548 | , {        | 300,         | 190,         | 300,         | 190,<br>190, | 300}         |
| 01546          | , {<br>, { | 190,<br>300, | 190,<br>190, | 190,<br>300, | 190,         | 190}<br>300} |
| 01550          | }          | 300,         | 100,         | 300,         | 100,         | 300)         |
| 01551          | , { {      | 300,         | 300,         | 300,         | 300,         | 220}         |
| 01552          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 01553          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 01554          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 01555          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 01556          | }          |              |              |              |              |              |
| 01557          | }          |              |              |              |              |              |
| 01558          | , { { {    | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01559          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01560          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01561          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01562          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01563          | }          | 200          | 200          | 200          | 100          | 2001         |
| 01564<br>01565 | ,{{<br>,{  | 300,<br>300, | 300,<br>300, | 300,<br>300, | 190,<br>190, | 300}         |
| 01566          | , {        | 300,         | 300,         | 300,         | 190,         | 300}         |
| 01567          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 01568          | , {        | 300,         | 300,         | 300,         | 190,         | 300}         |
| 01569          | }          |              | ,            | ,            |              | ,            |
| 01570          | , { {      | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01571          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01572          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01573          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01574          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01575          | }          | 200          | 100          | 200          | 100          | 2001         |
| 01576          | , { {      | 300,         | 190,         | 300,         | 190,         | 300}         |
| 01577<br>01578 | , {<br>, { | 300,<br>300, | 190,<br>190, | 300,<br>300, | 190,<br>190, | 300}         |
| 01578          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 01580          | , {        | 300,         | 190,         | 300,         | 190,         | 300}         |
| 01581          | }          | ,            | ,            | ,            | /            | ,            |
| 01582          | , { {      | 300,         | 300,         | 300,         | 300,         | 220}         |
| 01583          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 01584          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 01585          | , {        | 300,         | 300,         | 300,         | 300,         | 220}         |
| 01586          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 01587          | }          |              |              |              |              |              |
| 01588          | }          | 270          | 270          | 270          | 270          | 2701         |
| 01589          | , { { {    | 370,         | 370,<br>370, | 370,<br>370, | 370,         | 370}<br>370} |
| 01590<br>01591 | , {<br>, { | 370,<br>370, | 370,         | 370,         | 370,<br>370, | 370}         |
| 01592          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01593          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01594          | }          |              |              |              |              | ,            |
| 01595          | , { {      | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01596          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01597          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01598          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01599          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01600          | }          |              |              |              |              |              |
| 01601          | , { {      | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01602          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01603<br>01604 | , {<br>, { | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370}<br>370} |
| 01604          | , {<br>, { | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01606          | }          | 370,         | 370,         | 370,         | 370,         | 370)         |
| 01607          | ,{{        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01608          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01609          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01610          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01611          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01612          | }          |              |              |              |              |              |
| 01613          | , { {      | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01614          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01615          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01616          | , {        | 370,<br>300, | 370,<br>300, | 370,<br>300, | 370,<br>300, | 300}         |
| 01617<br>01618 | , {<br>}   | JUU,         | 500,         | 500,         | 500,         | 300}         |
| 0 - 0 - 0      | J          |              |              |              |              |              |

| 01.61.0        | ,          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 01619<br>01620 | }          | 370,         | 370,         | 370,         | 270          | 2701         |
| 01621          | ,{{{<br>,{ | 370,         | 370,         | 370,         | 370,<br>370, | 370}<br>370} |
| 01622          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01623          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01624          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01625          | }          |              |              |              |              |              |
| 01626          | , { {      | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01627          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01628          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01629          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01630          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01631          | }          |              |              |              |              |              |
| 01632          | , { {      | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01633          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01634          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01635          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01636          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01637          | }          |              |              |              |              |              |
| 01638          | , { {      | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01639          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01640          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01641          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01642          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01643          | }          | 270          | 270          | 270          | 270          | 2001         |
| 01644          | , { {      | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01645          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01646          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01647          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01648          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01649          | }          |              |              |              |              |              |
| 01650<br>01651 | }<br>,{{{  | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01651          | , 111      | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01653          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01654          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01655          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01656          | }          | 370,         | 370,         | 370,         | 370,         | 370)         |
| 01657          | ,{{        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01658          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01659          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01660          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01661          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01662          | }          | ,            | ,            | ,            | /            | ,            |
| 01663          | , { {      | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01664          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01665          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01666          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01667          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01668          | }          |              |              |              |              |              |
| 01669          | , { {      | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01670          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01671          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01672          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01673          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01674          | }          |              |              |              |              |              |
| 01675          | , { {      | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01676          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01677          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01678          | , {        | 370,         | 370,         | 370,         | 370,         | 300}         |
| 01679          | , {        | 300,         | 300,         | 300,         | 300,         | 300}         |
| 01680          | }          |              |              |              |              |              |
| 01681          | }          | 270          | 270          | 270          | 270          | 2701         |
| 01682          | , { { {    | 370,         | 370,         | 370,         | 370,<br>370, | 370}         |
| 01683<br>01684 | , {        | 370,         | 370,         | 370,         |              | 370}         |
| 01685          | , {        | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370}<br>370} |
| 01686          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01687          | , {<br>}   | 370,         | 370,         | 370,         | 370,         | 3703         |
| 01688          | , { {      | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01689          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01690          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01691          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01692          | , {        | 370,         | 370,         | 370,         | 260,         | 370}         |
| 01693          | }          | ,            |              | ,            | ,            | . ,          |
| 01694          | ,{{        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01695          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01696          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01697          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01698          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 01699          | }          |              |              |              |              |              |
| 01700          | , { {      | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01701          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01702          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01703          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 01704          | , {        | 370,         | 260,         | 370,         | 260,         | 370}         |
| 01705          | }          |              |              |              |              |              |
|                |            |              |              |              |              |              |

18.172 intl21.h 965

| 01706                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                                                                               | 0.70                                                                                                       | 0.70                                                                                                       | 270                                                                                                | 2001                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01706                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 300}                                                                                                                                                                  |
| 01707                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 300}                                                                                                                                                                  |
| 01708                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 300}                                                                                                                                                                  |
| 01709                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 300}                                                                                                                                                                  |
| 01710                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300,                                                                                               | 300,                                                                                                       | 300,                                                                                                       | 300,                                                                                               | 300}                                                                                                                                                                  |
| 01711                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            | ,                                                                                                  | ,                                                                                                                                                                     |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01712                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.770                                                                                              | 270                                                                                                        | 270                                                                                                        | 0.77.0                                                                                             | 0.70                                                                                                                                                                  |
| 01713                                                                                                                                                                                     | , { { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
| 01714                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
| 01715                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    | 370,                                                                                                       | 370,                                                                                                       |                                                                                                    |                                                                                                                                                                       |
| 01716                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               |                                                                                                            |                                                                                                            | 370,                                                                                               | 370}                                                                                                                                                                  |
| 01717                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
| 01718                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01719                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 260,                                                                                               | 370}                                                                                                                                                                  |
| 01720                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 260,                                                                                               | 370}                                                                                                                                                                  |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01721                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 260,                                                                                               | 370}                                                                                                                                                                  |
| 01722                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260,                                                                                               | 260,                                                                                                       | 260,                                                                                                       | 260,                                                                                               | 260}                                                                                                                                                                  |
| 01723                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 260,                                                                                               | 370}                                                                                                                                                                  |
| 01724                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01725                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01726                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
| 01727                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
| 01728                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
| 01729                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 370}                                                                                                                                                                  |
| 01730                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0,                                                                                               | 0.0,                                                                                                       | 0.0,                                                                                                       | 0.0,                                                                                               | 0,0,                                                                                                                                                                  |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.770                                                                                              | 0.00                                                                                                       | 270                                                                                                        | 0.60                                                                                               | 0.00                                                                                                                                                                  |
| 01731                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370,                                                                                               | 260,                                                                                                       | 370,                                                                                                       | 260,                                                                                               | 370}                                                                                                                                                                  |
| 01732                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 260,                                                                                                       | 370,                                                                                                       | 260,                                                                                               | 370}                                                                                                                                                                  |
| 01733                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 260,                                                                                                       | 370,                                                                                                       | 260,                                                                                               | 370}                                                                                                                                                                  |
| 01734                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260,                                                                                               | 260,                                                                                                       | 260,                                                                                                       | 260,                                                                                               | 260}                                                                                                                                                                  |
| 01735                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370,                                                                                               | 260,                                                                                                       | 370,                                                                                                       | 260,                                                                                               | 370}                                                                                                                                                                  |
|                                                                                                                                                                                           | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 200,                                                                                                       | 370,                                                                                                       | 200,                                                                                               | 3/0;                                                                                                                                                                  |
| 01736                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01737                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 300}                                                                                                                                                                  |
| 01738                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 300}                                                                                                                                                                  |
| 01739                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               | 370,                                                                                                       | 370,                                                                                                       | 370,                                                                                               | 300}                                                                                                                                                                  |
| 01740                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    | 370,                                                                                                       |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
|                                                                                                                                                                                           | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370,                                                                                               |                                                                                                            | 370,                                                                                                       | 370,                                                                                               | 300}                                                                                                                                                                  |
| 01741                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300,                                                                                               | 300,                                                                                                       | 300,                                                                                                       | 300,                                                                                               | 300}                                                                                                                                                                  |
| 01742                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01743                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01744                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAID                                                                                               | TNIE                                                                                                       | TNE                                                                                                        | TNIE                                                                                               | TAID                                                                                                                                                                  |
| 01745                                                                                                                                                                                     | ,{{{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01746                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01747                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01748                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01749                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TINE ,                                                                                             | TINE ,                                                                                                     | TIME ,                                                                                                     | TINE ,                                                                                             | TIME                                                                                                                                                                  |
| 01750                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01751                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01752                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01753                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01754                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |                                                                                                            |                                                                                                            | INF,                                                                                               | INF }                                                                                                                                                                 |
|                                                                                                                                                                                           | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       |                                                                                                    |                                                                                                                                                                       |
| 01755                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01756                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01757                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01758                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01759                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
|                                                                                                                                                                                           | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01760                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01761                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01762                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01763                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01764                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
|                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01765                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               |                                                                                                            |                                                                                                            |                                                                                                    |                                                                                                                                                                       |
| 01766                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01767                                                                                                                                                                                     | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INF,                                                                                               |                                                                                                            |                                                                                                            | INF,                                                                                               |                                                                                                                                                                       |
| 01760                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    | INF,                                                                                                       | INF,                                                                                                       | /                                                                                                  | INF }                                                                                                                                                                 |
| 01768                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | INF,                                                                                                       | INF,                                                                                                       | /                                                                                                  | INF }                                                                                                                                                                 |
| 01768                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01769                                                                                                                                                                                     | }<br>,{{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                    | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF}                                                                                                                                                                  |
| 01769<br>01770                                                                                                                                                                            | }<br>,{{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INF,                                                                                               | INF,                                                                                                       | INF,                                                                                                       | INF,                                                                                               | INF }                                                                                                                                                                 |
| 01769<br>01770<br>01771                                                                                                                                                                   | }<br>,{{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INF,                                                                                               | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                               | INF }<br>INF }<br>INF }                                                                                                                                               |
| 01769<br>01770<br>01771<br>01772                                                                                                                                                          | }<br>,{{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,<br>INF,<br>INF,                                                                               | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                               | INF }<br>INF }<br>INF }                                                                                                                                               |
| 01769<br>01770<br>01771<br>01772<br>01773                                                                                                                                                 | }<br>,{{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INF,                                                                                               | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                               | INF }<br>INF }<br>INF }                                                                                                                                               |
| 01769<br>01770<br>01771<br>01772                                                                                                                                                          | }<br>,{{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,<br>INF,<br>INF,                                                                               | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                               | INF }<br>INF }<br>INF }                                                                                                                                               |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774                                                                                                                                        | <pre>} ,{{     ,{     ,,     ,, } </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INF,<br>INF,<br>INF,                                                                               | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                                       | INF,<br>INF,<br>INF,                                                                               | INF }<br>INF }<br>INF }                                                                                                                                               |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775                                                                                                                               | }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>}}<br>}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INF,<br>INF,<br>INF,                                                                               | INF,<br>INF,<br>INF,<br>INF,                                                                               | INF,<br>INF,<br>INF,<br>INF,                                                                               | INF,<br>INF,<br>INF,<br>INF,                                                                       | INF }<br>INF }<br>INF }<br>INF }                                                                                                                                      |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776                                                                                                                      | }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>}}<br>}<br>,{{{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,                                                                               | INF,<br>INF,<br>INF,<br>INF,                                                                               | INF,<br>INF,<br>INF,<br>INF,                                                                       | INF } INF } INF } INF } INF }                                                                                                                                         |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777                                                                                                             | }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>}}<br>}<br>,{{{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                               | INF }<br>INF }<br>INF }<br>INF }<br>INF }                                                                                                                             |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777                                                                                                             | <pre>} ,{{     ,{     ,{     ,{     ,{     ,{     ,{     ,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     .,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                               | INF } INF } INF } INF } INF } 300 } 300 }                                                                                                                             |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777                                                                                                             | }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>}}<br>}<br>,{{{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                               | INF }<br>INF }<br>INF }<br>INF }<br>INF }                                                                                                                             |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01779                                                                                           | <pre>} ,{{ ,,{ ,,{ ,,{ ,,{ ,,{ ,,{ ,,{ ,,{ ,,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,                                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,                                       | INF }                                                                                                     |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01779<br>01780                                                                                  | <pre>} ,{{     ,{     ,{     ,{     ,}     , } } ,{{{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     .,.{     .,.{     .,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,                                                               | INF } INF } INF } INF } INF } 300 } 300 }                                                                                                                             |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01779<br>01780<br>01781                                                                         | <pre>} ,{{     ,{     ,{     ,{     ,}     , } } ,{{{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{</pre> | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,                                       | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,                                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,                                       | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,                                       | INF } INF } INF } INF } INF } 300 } 300 } 300 }                                                                                                                       |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01779<br>01780<br>01781                                                                         | }<br>,{{<br>, {<br>, {<br>, {<br>, {<br>, {<br>, {<br>, {<br>, {<br>, {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                       | INF } INF INF INF INF } INF             |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01779<br>01780<br>01781<br>01782                                                                | }<br>;{{<br>;{<br>;,{<br>;,{<br>;,{<br>;,{<br>;,{<br>;,{<br>;,{<br>;,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                       | INF } INF } INF } INF } INF } 300 } 300 } 300 }                                                                                                                       |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01779<br>01780<br>01781                                                                         | }<br>,{{<br>, {<br>, {<br>, {<br>, {<br>, {<br>, {<br>, {<br>, {<br>, {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,                                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                       | INF } INF INF INF INF } INF             |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01779<br>01780<br>01781<br>01782                                                                | <pre>} ,{{      ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{       ,{</pre>   | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,                       | INF } INF                               |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01780<br>01781<br>01782<br>01783<br>01784<br>01784                                              | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,       | INF } 300 } 300 } 300 } 300 } 300 } 300 } 300 } 300 }                                                                 |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01778<br>01781<br>01782<br>01783<br>01784<br>01785                                              | <pre>}</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,                       | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,               | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,       | INF } 300 } 300 } 300 } 300 } 300 } 300 }                                                                                   |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01779<br>01780<br>01781<br>01782<br>01783<br>01784<br>01785<br>01786                            | <pre>}</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF } INF |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01778<br>01781<br>01782<br>01783<br>01784<br>01785<br>01785<br>01785                            | <pre>}</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF } 300 } 300 } 300 } 300 } 300 } 300 } 300 } 300 } 300 }                                                                 |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01778<br>01781<br>01782<br>01783<br>01784<br>01785<br>01786<br>01787<br>01788                   | <pre>} ;{{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF } INF |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01778<br>01781<br>01782<br>01783<br>01784<br>01785<br>01785<br>01785                            | <pre>}</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF } 300 } 300 } 300 } 300 } 300 } 300 } 300 } 300 } 300 }                                                                 |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01780<br>01781<br>01782<br>01783<br>01784<br>01785<br>01786<br>01787<br>01788<br>01789<br>01789 | <pre>}</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF } INF                                     |
| 01769<br>01770<br>01771<br>01772<br>01773<br>01774<br>01775<br>01776<br>01777<br>01778<br>01778<br>01781<br>01782<br>01783<br>01784<br>01785<br>01786<br>01787<br>01788                   | <pre>} ;{{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{ ;{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30         | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF,<br>INF,<br>INF,<br>INF,<br>INF,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>300,<br>30 | INF } INF |

| 01700 | ,       |       |       |      |      |      |
|-------|---------|-------|-------|------|------|------|
| 01793 | }       | 200   | 1.00  | 200  | 1.00 | 2001 |
| 01794 | , { {   | 300,  | 190,  | 300, | 190, | 300} |
| 01795 | , {     | 190,  | 190,  | 190, | 190, | 190} |
| 01796 | , {     | 300,  | 190,  | 300, | 190, | 300} |
| 01797 | , {     | 190,  | 190,  | 190, | 190, | 190} |
| 01798 | , {     | 300,  | 190,  | 300, | 190, | 300} |
| 01799 | }       | 200   | 200   | 200  | 200  | 2201 |
| 01800 | , { {   | 300,  | 300,  | 300, | 300, | 220} |
| 01801 | , {     | 300,  | 300,  | 300, | 300, | 220} |
| 01802 | , {     | 300,  | 300,  | 300, | 300, | 220} |
| 01803 | , {     | 300,  | 300,  | 300, | 300, | 220} |
| 01804 | , {     | 220,  | 220,  | 220, | 220, | 220} |
| 01805 | }       |       |       |      |      |      |
| 01806 | }       |       |       |      |      |      |
| 01807 | , { { { | 300,  | 300,  | 300, | 300, | 300} |
| 01808 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01809 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01810 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01811 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01812 | }       |       |       |      |      |      |
| 01813 | , { {   | 300,  | 300,  | 300, | 300, | 300} |
| 01814 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01815 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01816 | , {     | 190,  | 190,  | 190, | 190, | 190} |
| 01817 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01818 | }       | 0.00  | 0.01  | 0.00 | 0.00 |      |
| 01819 | , { {   | 300,  | 300,  | 300, | 300, | 300} |
| 01820 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01821 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01822 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01823 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01824 | }       |       |       |      |      |      |
| 01825 | , { {   | 300,  | 190,  | 300, | 190, | 300} |
| 01826 | , {     | 300,  | 190,  | 300, | 190, | 300} |
| 01827 | , {     | 300,  | 190,  | 300, | 190, | 300} |
| 01828 | , {     | 190,  | 190,  | 190, | 190, | 190} |
| 01829 | , {     | 300,  | 190,  | 300, | 190, | 300} |
| 01830 | }       |       |       |      |      |      |
| 01831 | , { {   | 300,  | 300,  | 300, | 300, | 220} |
| 01832 | , {     | 300,  | 300,  | 300, | 300, | 220} |
| 01833 | , {     | 300,  | 300,  | 300, | 300, | 220} |
| 01834 | , {     | 300,  | 300,  | 300, | 300, | 220} |
| 01835 | , {     | 220,  | 220,  | 220, | 220, | 220} |
| 01836 | }       |       |       |      |      |      |
| 01837 | }       |       |       |      |      |      |
| 01838 | , { { { | 370,  | 370,  | 370, | 370, | 370} |
| 01839 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01840 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01841 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01842 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01843 | }       |       |       |      |      |      |
| 01844 | , { {   | 370,  | 370,  | 370, | 370, | 370} |
| 01845 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01846 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01847 | , {     | 260,  | 260,  | 260, | 260, | 260} |
| 01848 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01849 | }       |       |       |      |      |      |
| 01850 | , { {   | 370,  | 370,  | 370, | 370, | 370} |
| 01851 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01852 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01853 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01854 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01855 | }       |       |       |      |      |      |
| 01856 | , { {   | 370,  | 260,  | 370, | 260, | 370} |
| 01857 | , {     | 370,  | 260,  | 370, | 260, | 370} |
| 01858 | , {     | 370,  | 260,  | 370, | 260, | 370} |
| 01859 | , {     | 260,  | 260,  | 260, | 260, | 260} |
| 01860 | , {     | 370,  | 260,  | 370, | 260, | 370} |
| 01861 | }       | 0 = 0 | 0 = 1 | 0-0  | 0=0  |      |
| 01862 | , { {   | 370,  | 370,  | 370, | 370, | 300} |
| 01863 | , {     | 370,  | 370,  | 370, | 370, | 300} |
| 01864 | , {     | 370,  | 370,  | 370, | 370, | 300} |
| 01865 | , {     | 370,  | 370,  | 370, | 370, | 300} |
| 01866 | , {     | 300,  | 300,  | 300, | 300, | 300} |
| 01867 | , }     |       |       |      |      |      |
| 01868 | }       | 0.7.0 | 0.77  | 0.77 | 0.77 | 0.50 |
| 01869 | , { { { | 370,  | 370,  | 370, | 370, | 370} |
| 01870 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01871 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01872 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01873 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01874 | }       | 270   | 270   | 270  | 270  | 2701 |
| 01875 | , { {   | 370,  | 370,  | 370, | 370, | 370} |
| 01876 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01877 | , {     | 370,  | 370,  | 370, | 370, | 370} |
| 01878 | , {     | 260,  | 260,  | 260, | 260, | 260} |
| 01879 | , {     | 370,  | 370,  | 370, | 370, | 370} |

18.172 intl21.h 967

| 01880 | }       |      |      |              |      |      |
|-------|---------|------|------|--------------|------|------|
| 01881 | , { {   | 370, | 370, | 370,         | 370, | 370} |
| 01882 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01883 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01884 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01885 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01886 | }       |      |      |              |      |      |
| 01887 | , { {   | 370, | 260, | 370,         | 260, | 370} |
| 01888 | , {     | 260, | 260, | 260,         | 260, | 260} |
| 01889 | , {     | 370, | 260, | 370,         | 260, | 370} |
| 01890 | , {     | 260, | 260, | 260,         | 260, | 260} |
| 01891 | , {     | 370, | 260, | 370,         | 260, | 370} |
| 01892 | }       | 370, | 200, | 370,         | 200, | 370) |
| 01893 |         | 370, | 370, | 370,         | 370, | 300} |
| 01894 | , { {   |      |      |              |      |      |
|       | , {     | 370, | 370, | 370,<br>370, | 370, | 300} |
| 01895 | , {     | 370, | 370, |              | 370, | 300} |
| 01896 | , {     | 370, | 370, | 370,         | 370, | 300} |
| 01897 | , {     | 300, | 300, | 300,         | 300, | 300} |
| 01898 | }       |      |      |              |      |      |
| 01899 | }       | 270  | 270  | 270          | 270  | 2701 |
| 01900 | , { { { | 370, | 370, | 370,         | 370, | 370} |
| 01901 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01902 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01903 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01904 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01905 | }       |      |      |              |      |      |
| 01906 | , { {   | 370, | 370, | 370,         | 370, | 370} |
| 01907 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01908 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01909 | , {     | 260, | 260, | 260,         | 260, | 260} |
| 01910 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01911 | }       |      |      |              |      |      |
| 01912 | , { {   | 370, | 370, | 370,         | 370, | 370} |
| 01913 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01914 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01915 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01916 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01917 | }       |      |      |              |      |      |
| 01918 | , { {   | 370, | 260, | 370,         | 260, | 370} |
| 01919 | , {     | 370, | 260, | 370,         | 260, | 370} |
| 01920 | , {     | 370, | 260, | 370,         | 260, | 370} |
| 01921 | , {     | 260, | 260, | 260,         | 260, | 260} |
| 01922 | , {     | 370, | 260, | 370,         | 260, | 370} |
| 01923 | }       |      |      |              |      |      |
| 01924 | , { {   | 370, | 370, | 370,         | 370, | 300} |
| 01925 | , {     | 370, | 370, | 370,         | 370, | 300} |
| 01926 | , {     | 370, | 370, | 370,         | 370, | 300} |
| 01927 | , {     | 370, | 370, | 370,         | 370, | 300} |
| 01928 | , {     | 300, | 300, | 300,         | 300, | 300} |
| 01929 | }       |      |      |              |      |      |
| 01930 | }       |      |      |              |      |      |
| 01931 | , { { { | 370, | 370, | 370,         | 370, | 370} |
| 01932 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01933 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01934 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01935 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01936 | }       |      |      |              |      |      |
| 01937 | , { {   | 370, | 370, | 370,         | 370, | 370} |
| 01938 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01939 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01940 | , {     | 260, | 260, | 260,         | 260, | 260} |
| 01941 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01942 | }       |      |      |              |      |      |
| 01943 | , { {   | 370, | 370, | 370,         | 370, | 370} |
| 01944 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01945 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01946 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01947 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01948 | }       |      |      |              |      |      |
| 01949 | ,{{     | 370, | 260, | 370,         | 260, | 370} |
| 01950 | , {     | 260, | 260, | 260,         | 260, | 260} |
| 01951 | , {     | 370, | 260, | 370,         | 260, | 370} |
| 01952 | , {     | 260, | 260, | 260,         | 260, | 260} |
| 01953 | , {     | 370, | 260, | 370,         | 260, | 370} |
| 01954 | }       |      |      |              |      |      |
| 01955 | , { {   | 370, | 370, | 370,         | 370, | 300} |
| 01956 | , {     | 370, | 370, | 370,         | 370, | 300} |
| 01957 | , {     | 370, | 370, | 370,         | 370, | 300} |
| 01958 | , {     | 370, | 370, | 370,         | 370, | 300} |
| 01959 | , {     | 300, | 300, | 300,         | 300, | 300} |
| 01960 | }       |      |      |              |      |      |
| 01961 | }       |      |      |              |      |      |
| 01962 | , { { { | 370, | 370, | 370,         | 370, | 370} |
| 01963 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01964 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01965 | , {     | 370, | 370, | 370,         | 370, | 370} |
| 01966 | , {     | 370, | 370, | 370,         | 370, | 370} |
|       |         | •    | •    | •            | •    | ,    |

```
01967
01968
                 370,
                         370,
                                  370,
                                           370,
                                                   370}
         , { {
01969
                 370,
                         370,
                                  370,
                                           370,
                                                   3701
          , {
                                           370,
                                                   3701
01970
                 370,
                         370,
                                  370,
                         260,
01971
                 260.
                                  260.
                                           260.
                                                   2601
01972
                 370,
                                  370,
                                           370,
                          370.
                                                   3701
01973
01974
                 370,
                          370,
                                  370,
                                           370,
                                                   370}
         , { {
01975
                 370,
                         370,
                                  370,
                                           370,
                                                   370}
01976
                 370,
                          370,
                                  370,
                                           370,
                                                   370}
                         370.
                                  370.
01977
                 370.
                                           370.
                                                   3701
01978
                 370.
                         370.
                                  370.
                                           370.
                                                   3701
01979
01980
                 370,
                         260,
                                  370,
                                           260,
                                                   370}
         , { {
01981
                 370,
                         260,
                                  370,
                                          260,
                                                   370}
          , {
01982
                 370,
                         260,
                                  370,
                                           260,
                                                   3701
01983
                 260.
                         260.
                                  260.
                                          260.
                                                   2601
01984
                 370,
                         260,
                                  370,
                                          260,
                                                   370}
01985
01986
                 370,
                          370,
                                  370,
                                           370,
                                                   300}
         , { {
01987
                 370,
                          370,
                                  370,
                                           370,
                                                   300}
          ,
01988
                 370,
                         370,
                                  370,
                                           370,
                                                   3001
                         370,
                                  370,
                                           370,
01989
                 370.
                                                   3001
01990
                 300.
                                           300.
          , {
}
                         300.
                                  300.
                                                   3001
01991
01992
01993
        } };
```

```
00001 PUBLIC int int21_dH[NBPAIRS+1][NBPAIRS+1][5][5][5] = 00002 {{{{{ ( INF, INF, INF, INF, INF, INF}}
00003
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00004
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                                    INF,
00005
                  INF,
                           INF,
                                             INF,
00006
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00007
          , { {
00008
                  TNF.
                           INF,
                                    INF.
                                             INF.
                                                      TNF
00009
                  TNF.
                           TNF.
                                    TNF.
                                             INF.
                                                      TNF
00010
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00011
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                           INF,
00012
                  INF,
                                    INF,
                                             INF,
                                                      INF }
00013
                  INF,
                           INF,
00014
          , { {
                                    INF,
                                             INF,
                                                      TNF }
00015
                  INF.
                                                      INF }
                           INF.
                                    INF.
                                             INF.
           , {
00016
                  INF,
                                             INF,
                                                      INF }
                           INF.
                                    INF.
00017
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00018
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00019
00020
                  TNF.
                           INF,
                                    INF,
                                             TNF.
                                                      TNF }
00021
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                      INF }
00022
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00023
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00024
                  INF,
                           INF,
                                             INF,
                                                      INF }
                                    INF,
00025
          , { {
00026
                  INF.
                           INF,
                                    INF.
                                             INF.
                                                      TNF
00027
                  INF.
                           INF,
                                    INF,
                                             INF,
                                                      TNF
00028
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00029
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00030
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00031
00032
                           INF,
00033
         , { { {
                  TNF.
                                    INF,
                                             INF,
                                                      TNF }
00034
                  INF.
                                                      INF }
                           INF.
                                    INF.
                                             INF.
00035
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , {
00036
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00037
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00038
          , { {
00039
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      TNF }
00040
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                      INF }
00041
                  INF,
                                    INF,
                                                      INF }
                           INF,
                                             INF,
00042
                  INF,
                           INF,
                                                      INF }
                                    INF,
                                             INF,
00043
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00044
                                             INF,
          , { {
                  INF.
                           INF,
                                    INF,
                                                      TNF
00045
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00046
                  INF.
00047
                  INF,
                           INF,
                                             INF,
                                                      INF }
                                    INF,
00048
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                                                      INF }
00049
                  INF,
                           INF,
                                    INF,
                                             INF,
00050
          , { {
00051
                  INF.
                           INF,
                                    INF.
                                             INF.
                                                      TNF
00052
                  INF.
                           INF,
                                    INF,
                                             INF,
                                                      TNF }
00053
                  INF.
                                    INF.
                                             INF.
                                                      INF }
                           INF.
00054
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00055
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
```

| 00056 | }          |          |         |          |         |          |
|-------|------------|----------|---------|----------|---------|----------|
| 00057 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00058 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00059 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00060 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00061 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00062 | }          | ,        | ,       | ,        | ,       | ,        |
| 00063 | }          |          |         |          |         |          |
| 00064 | ,{{{       | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00065 |            | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00066 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
|       | , {        |          |         |          |         |          |
| 00067 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00068 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00069 | }          |          |         |          |         |          |
| 00070 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00071 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00072 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00073 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00074 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00075 | }          |          |         |          |         |          |
| 00076 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00077 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00078 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00079 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 08000 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00081 | }          | 1111,    | 1111    | 1111     | 1111,   | 1111     |
| 00082 | ,{{        | INF,     | INF,    | INF,     | INF,    | INF }    |
|       |            |          |         |          |         |          |
| 00083 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00084 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00085 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00086 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00087 | }          |          |         |          |         |          |
| 88000 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00089 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00090 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00091 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00092 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00093 | }          |          |         |          |         | ,        |
| 00094 | }          |          |         |          |         |          |
|       |            | TNE      | TME     | TME      | TME     | TNET     |
| 00095 | , { { {    | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00096 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00097 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00098 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00099 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00100 | }          |          |         |          |         |          |
| 00101 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00102 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00103 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00104 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00105 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00106 | }          | ,        | ,       | ,        | ,       | ,        |
| 00107 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00108 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00100 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00103 |            |          | INF,    |          |         |          |
|       | , {        | INF,     |         | INF,     | INF,    | INF }    |
| 00111 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00112 | }          |          |         |          |         |          |
| 00113 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00114 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00115 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00116 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00117 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00118 | }          |          |         |          |         |          |
| 00119 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00120 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00121 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00122 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00123 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00124 | }          | ,        | ,       | ,        | ,       | ,        |
| 00125 | }          |          |         |          |         |          |
|       |            | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00126 | , { { {    |          |         |          |         |          |
| 00127 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00128 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00129 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00130 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00131 | }          |          |         |          |         |          |
| 00132 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00133 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00134 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00135 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00136 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00137 | }          |          |         | •        | •       | ,        |
| 00138 | , { {      | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00139 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00133 | , {        | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00140 | , \<br>, { | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00141 | , \<br>, { | INF,     | INF,    | INF,     | INF,    | INF }    |
| 00142 | , 1        | T TAT. 1 | TTAT. 1 | T 141, 1 | TTAT, 1 | T 14T. } |

| 00143          | }<br>,{{   | INF,         | TNE          | TME          | INF,         | INF }          |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 00144          | , (        | INF,         | INF,<br>INF, | INF,<br>INF, | INF,         | INF }          |
| 00146          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00147          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00148          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00149          | }          | INF,         | TNE          | INF,         | TNE          | TNE            |
| 00150          | ,{{<br>,{  | INF,         | INF,<br>INF, | INF,         | INF,<br>INF, | INF }<br>INF } |
| 00151          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00153          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00154          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00155          | }          |              |              |              |              |                |
| 00156          | }          | TNIE         | TATE         | TAID         | TNE          | TATE           |
| 00157          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00158          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00160          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00161          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00162          | }          |              |              |              |              |                |
| 00163          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00164          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00165          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00166<br>00167 | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }<br>INF } |
| 00167          | , 1<br>}   | INF,         | INF,         | INF,         | INF,         | INE }          |
| 00169          | ,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00170          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00171          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00172          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00173          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00174          | }          |              |              |              |              |                |
| 00175          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00176          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00177          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00178          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00179          | }          | TIME,        | TIME,        | INF,         | INF,         | TIME           |
| 00181          | ,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00182          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00183          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00184          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00185          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00186          | }          |              |              |              |              |                |
| 00187          | }          | TNIE         | TAID         | TNIE         | TNE          | T. 1777        |
| 00188          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00189          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00190          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00192          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00193          | }          | ,            | ,            | ,            | ,            | ,              |
| 00194          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00195          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00196          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00197          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00198<br>00199 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00200          | ,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00201          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00202          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00203          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00204          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00205          | }          |              |              |              |              |                |
| 00206          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00207          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00208          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00209          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00210          | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00211          | ,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00213          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00214          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00215          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00216          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00217          | }          |              |              |              |              |                |
| 00218          | }          |              |              | Tr 5 WW-     | 90.00        |                |
| 00219          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00220          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00221          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00222          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00223          | , 1<br>}   | T 1AT. 1     | T1/1, 1      | TIME,        | TINT, 1      | T14E }         |
| 00224          | ,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00226          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00227          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00228          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00229          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|                |            |              |              |              |              |                |

| 00230 | }         |       |       |       |               |         |
|-------|-----------|-------|-------|-------|---------------|---------|
| 00231 | , { {     | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00232 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
|       |           |       |       |       |               |         |
| 00233 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00234 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00235 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00236 | }         |       |       |       |               |         |
| 00237 | , { {     | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00238 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00239 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
|       |           |       |       |       |               |         |
| 00240 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00241 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00242 | }         |       |       |       |               |         |
| 00243 | , { {     | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00244 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00245 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00246 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00210 |           |       | INF,  |       |               |         |
|       | , {       | INF,  | INE,  | INF,  | TNE,          | INF }   |
| 00248 | }         |       |       |       |               |         |
| 00249 | }         |       |       |       |               |         |
| 00250 | }         |       |       |       |               |         |
| 00251 | , { { { { | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00252 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00253 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
|       |           |       |       | INF,  |               |         |
| 00254 | , {       | INF,  | INF,  |       | INF,          | INF }   |
| 00255 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00256 | }         |       |       |       |               |         |
| 00257 | , { {     | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00258 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00259 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00260 |           |       |       | INF,  |               |         |
|       | , {       | INF,  | INF,  |       | INF,          | INF }   |
| 00261 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00262 | }         |       |       |       |               |         |
| 00263 | , { {     | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00264 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00265 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00266 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
|       | , (       |       |       |       |               |         |
| 00267 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00268 | }         |       |       |       |               |         |
| 00269 | , { {     | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00270 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00271 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00272 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
|       | , (       |       |       |       |               |         |
| 00273 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00274 | }         |       |       |       |               |         |
| 00275 | , { {     | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00276 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00277 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00278 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
|       |           |       |       |       |               |         |
| 00279 | , {       | INF,  | INF,  | INF,  | INF,          | INF }   |
| 00280 | }         |       |       |       |               |         |
| 00281 | }         |       |       |       |               |         |
| 00282 | , { { {   | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00283 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00284 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00285 |           | 350,  | 350,  | 350,  | 350,          | 350}    |
|       |           |       |       |       |               |         |
| 00286 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00287 | }         |       |       |       |               |         |
| 00288 | , { {     | 350,  | 350,  | 350,  | -230 <b>,</b> | 350}    |
| 00289 | , {       | 350,  | 350,  | 350,  | -230 <b>,</b> | 350}    |
| 00290 | , {       | 350,  | 350,  | 350,  | -230,         | 350}    |
| 00291 | , {       | -230, | -230, | -230, | -230,         | -230}   |
| 00292 | , {       | 350,  | 350,  | 350,  | -230,         | 350}    |
| 00292 | , \<br>}  | 550,  | 550,  | 550,  | 200,          | 2201    |
|       |           | 250   | 250   | 250   | 250           | 2501    |
| 00294 | , { {     | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00295 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00296 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00297 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00298 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00299 | }         | ,     | ,     | ,     | ,             |         |
| 00299 |           | 350,  | -230, | 350   | -230,         | 3 = 0 1 |
|       | , { {     |       |       | 350,  |               | 350}    |
| 00301 | , {       | -230, | -230, | -230, | -230,         | -230}   |
| 00302 | , {       | 350,  | -230, | 350,  | -230,         | 350}    |
| 00303 | , {       | -230, | -230, | -230, | -230,         | -230}   |
| 00304 | , {       | 350,  | -230, | 350,  | -230,         | 350}    |
| 00305 | }         | . ,   | .,    | .,    | .,            | ,       |
| 00306 |           | 350,  | 350,  | 350,  | 350,          | -670}   |
|       | , { {     |       |       |       |               |         |
| 00307 | , {       | 350,  | 350,  | 350,  | 350,          | -670}   |
| 00308 | , {       | 350,  | 350,  | 350,  | 350,          | -670}   |
| 00309 | , {       | 350,  | 350,  | 350,  | 350,          | -670}   |
| 00310 | , {       | -670, | -670, | -670, | -670,         | -670}   |
| 00311 | }         | .,    | .,    | .,    | .,            | . ,     |
| 00312 | }         |       |       |       |               |         |
|       |           | 700   | 610   | 700   | 350           | 3 = 0 1 |
| 00313 | ,{{{      | 780,  | 640,  | 780,  | 350,          | 350}    |
| 00314 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
| 00315 | , {       | 780,  | 350,  | 780,  | 350,          | 350}    |
| 00316 | , {       | 350,  | 350,  | 350,  | 350,          | 350}    |
|       |           |       |       |       |               |         |

| 00317 | , {     | 640,          | 640,          | 350,          | 350,          | 350}    |
|-------|---------|---------------|---------------|---------------|---------------|---------|
| 00318 | }       |               | ,             | ,             | ,             | ,       |
| 00319 |         | 350,          | 350,          | 350,          | 250,          | 350}    |
|       |         |               |               |               |               |         |
| 00320 | , {     | 350,          | 260,          | 350,          | 250,          | 350}    |
| 00321 | , {     | 350,          | 350,          | -250,         | -230,         | 350}    |
| 00322 | , {     | -230,         | -230,         | -230,         | -230,         | -230}   |
| 00323 | , {     | 350,          | 350,          | 350,          | -230,         | 350}    |
| 00324 | }       |               |               |               |               |         |
| 00325 | , { {   | 780,          | 640,          | 780,          | 350,          | 350}    |
| 00326 | , {     | 350,          | 160,          | 350,          | 350,          | 350}    |
| 00327 | ,       | 780,          | 350,          | 780,          | 350,          | 350}    |
| 00327 |         | 350,          |               | 350,          | 350,          | 350}    |
|       | , {     |               | 350,          |               |               |         |
| 00329 | , {     | 640,          | 640,          | 350,          | 350,          | 350}    |
| 00330 | }       |               |               |               |               |         |
| 00331 | , { {   | 350,          | -160,         | 350,          | -230,         | 350}    |
| 00332 | , {     | 350,          | -160,         | 350,          | -410,         | 350}    |
| 00333 | , {     | 350,          | -230,         | 350,          | -230,         | 350}    |
| 00334 | , {     | -230,         | -310,         | -230,         | -230,         | -230}   |
| 00335 | , {     | 350,          | -230,         | 350,          | -230,         | 350}    |
| 00336 | }       |               | •             | •             | ,             |         |
| 00337 | , { {   | 580,          | 350,          | 580,          | 350,          | -580}   |
|       |         |               |               |               |               |         |
| 00338 | , {     | 350,          | 350,          | 350,          | 350,          | -670}   |
| 00339 | , {     | 580,          | 350,          | 580,          | 350,          | -580}   |
| 00340 | , {     | 350,          | 350,          | 350,          | 350,          | -670}   |
| 00341 | , {     | -670 <b>,</b> | -670 <b>,</b> | -690 <b>,</b> | -670 <b>,</b> | -700}   |
| 00342 | }       |               |               |               |               |         |
| 00343 | }       |               |               |               |               |         |
| 00344 | , { { { | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00345 |         | 850,          | 850,          | 850,          | 850,          | 850}    |
|       |         |               |               |               |               |         |
| 00346 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00347 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00348 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00349 | }       |               |               |               |               |         |
| 00350 | , { {   | 850,          | 850,          | 850,          | 280,          | 850}    |
| 00351 | , {     | 850,          | 850,          | 850,          | 280,          | 850}    |
| 00352 | , {     | 850,          | 850,          | 850,          | 280,          | 850}    |
| 00352 | ,       | 280,          | 280,          | 280,          | 280,          | 280}    |
|       | ,       |               |               |               |               |         |
| 00354 | , {     | 850,          | 850,          | 850,          | 280,          | 850}    |
| 00355 | }       |               |               |               |               |         |
| 00356 | , { {   | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00357 | , {     | 850,          | 850 <b>,</b>  | 850,          | 850 <b>,</b>  | 850}    |
| 00358 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00359 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00360 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00361 |         | 000,          | 000,          | 030,          | 000,          | 000,    |
|       | }       | 0.5.0         | 200           | 0.5.0         | 200           | 0.5.0.1 |
| 00362 | , { {   | 850,          | 280,          | 850,          | 280,          | 850}    |
| 00363 | , {     | 850,          | 280,          | 850,          | 280,          | 850}    |
| 00364 | , {     | 850,          | 280,          | 850,          | 280,          | 850}    |
| 00365 | , {     | 280,          | 280,          | 280,          | 280,          | 280}    |
| 00366 | , {     | 850,          | 280,          | 850,          | 280,          | 850}    |
| 00367 | }       |               | •             | •             | ,             |         |
| 00368 | , { {   | 850,          | 850,          | 850,          | 850,          | -160}   |
| 00369 |         | 850,          | 850,          | 850,          | 850,          | -160}   |
|       | , {     |               |               |               |               |         |
| 00370 | , {     | 850,          | 850,          | 850,          | 850,          | -160}   |
| 00371 | , {     | 850,          | 850,          | 850,          | 850,          | -160}   |
| 00372 | , {     | -160,         | -160,         | -160,         | -160,         | -160}   |
| 00373 | }       |               |               |               |               |         |
| 00374 | }       |               |               |               |               |         |
| 00375 | , { { { | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00376 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00377 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00378 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
|       |         | 850,          |               |               | 850,          |         |
| 00379 | , {     | 000,          | 850,          | 850,          | 000,          | 850}    |
| 00380 | }       |               |               |               |               |         |
| 00381 | , { {   | 850,          | 850,          | 850,          | 280,          | 850}    |
| 00382 | , {     | 850,          | 850,          | 850,          | 280,          | 850}    |
| 00383 | , {     | 850,          | 850,          | 850,          | 280,          | 850}    |
| 00384 | , {     | 280,          | 280,          | 280,          | 280,          | 280}    |
| 00385 | , {     | 850,          | 850,          | 850 <b>,</b>  | 280,          | 850}    |
| 00386 | }       | 000,          | 000,          | 000,          | 200,          | 000,    |
|       |         | 850,          | 0 5 0         | 0 = 0         | 850,          | 0 5 0 1 |
| 00387 | , { {   |               | 850 <b>,</b>  | 850,          |               | 850}    |
| 00388 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00389 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00390 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00391 | , {     | 850,          | 850,          | 850,          | 850,          | 850}    |
| 00392 | }       |               |               |               |               |         |
| 00393 | , { {   | 850,          | 280,          | 850,          | 280,          | 850}    |
| 00394 | , (     | 280,          | 280,          | 280,          | 280,          | 280}    |
|       |         |               |               |               |               |         |
| 00395 | , {     | 850,          | 280,          | 850,          | 280,          | 850}    |
| 00396 | , {     | 280,          | 280,          | 280,          | 280,          | 280}    |
| 00397 | , {     | 850,          | 280,          | 850,          | 280,          | 850}    |
| 00398 | }       |               |               |               |               |         |
| 00399 | , { {   | 850,          | 850,          | 850,          | 850,          | -160}   |
| 00400 | , {     | 850,          | 850,          | 850,          | 850,          | -160}   |
| 00401 | , {     | 850,          | 850,          | 850,          | 850,          | -160}   |
| 00402 | , {     | 850,          | 850,          | 850,          | 850,          | -160}   |
| 00402 | , {     | -160,         | -160,         | -160,         | -160,         | -160}   |
| 50105 | , 1     | 100,          | 100,          | 100,          | 100,          | 100}    |

| 00404 | }       |       |       |       |              |         |
|-------|---------|-------|-------|-------|--------------|---------|
| 00405 | }       |       |       |       |              |         |
| 00406 | , { { { | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00407 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00408 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00409 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00410 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00411 | }       |       | ,     | ,     |              | ,       |
| 00412 | ,{{     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00413 | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00414 | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00414 | ,       | 280,  | 280,  | 280,  | 280,         |         |
| 00415 |         |       |       |       |              | 280}    |
|       | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00417 | }       | 0.50  | 0.5.0 | 0.50  | 0.5.0        | 0.5.0.1 |
| 00418 | , { {   | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00419 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00420 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00421 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00422 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00423 | }       |       |       |       |              |         |
| 00424 | , { {   | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00425 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00426 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00427 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 00428 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00429 | }       |       |       |       |              |         |
| 00430 | , { {   | 850,  | 850,  | 850,  | 850,         | -160}   |
| 00431 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 00432 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 00433 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 00434 | , {     | -160, | -160, | -160, | -160,        | -160}   |
| 00435 | }       | 100,  | 100,  | 100,  | 100,         | 100,    |
| 00436 | }       |       |       |       |              |         |
| 00437 | ,{{{    | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00437 |         | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00438 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00433 | , {     |       |       | 850,  | 850,         |         |
|       | , {     | 850,  | 850,  |       |              | 850}    |
| 00441 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00442 | }       | 0.50  | 0.5.0 | 0.50  | 200          | 0.5.0.1 |
| 00443 | , { {   | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00444 | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00445 | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00446 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 00447 | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00448 | }       | 0.50  | 0.5.0 | 0.50  | 0.5.0        | 0.50    |
| 00449 | , { {   | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00450 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00451 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00452 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00453 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00454 | }       |       |       |       |              |         |
| 00455 | , { {   | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00456 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 00457 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00458 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 00459 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00460 | }       |       |       |       |              |         |
| 00461 | , { {   | 850,  | 850,  | 850,  | 850,         | -160}   |
| 00462 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 00463 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 00464 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 00465 | , {     | -160, | -160, | -160, | -160,        | -160}   |
| 00466 | }       |       |       |       |              |         |
| 00467 | }       |       |       |       |              |         |
| 00468 | , { { { | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00469 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00470 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00471 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00472 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00473 | }       | •     | ,     | •     | •            |         |
| 00474 | , { {   | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00475 | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00476 | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00477 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 00478 | , {     | 850,  | 850,  | 850,  | 280,         | 850}    |
| 00479 | }       |       | ,     | ,     | /            | ,       |
| 00480 | ,{{     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00481 | , (     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00482 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00483 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00484 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 00484 | }       | ,     | 550,  | JJ0,  | 550,         | 000 }   |
| 00486 | ,{{     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00487 | , 11    | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00487 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 00488 |         | 280,  | 280,  | 280,  | 280,         |         |
| 00489 | , {     |       |       |       | 280,<br>280, | 280}    |
| 00770 | , {     | 850,  | 280,  | 850,  | 200,         | 850}    |

| 00491<br>00492 | }<br>,{{   | 850,          | 850,          | 850,          | 850,          | -160}          |
|----------------|------------|---------------|---------------|---------------|---------------|----------------|
| 00493          | , {        | 850,          | 850,          | 850,          | 850,          | -160}          |
| 00494          | , {        | 850,          | 850,          | 850,          | 850,          | -160}          |
| 00495          | , {        | 850,          | 850,          | 850,          | 850,          | -160}          |
| 00496<br>00497 | , {<br>}   | -160,         | -160,         | -160,         | -160,         | -160}          |
| 00497          | }          |               |               |               |               |                |
| 00499          | }          |               |               |               |               |                |
| 00500          | ,{{{       | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00501          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00502<br>00503 | , {<br>, { | INF,<br>INF,  | INF,<br>INF,  | INF,<br>INF,  | INF,<br>INF,  | INF }<br>INF } |
| 00504          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00505          | }          | ,             |               | 1111          | 1111          | 1111,          |
| 00506          | , { {      | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00507          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00508          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00509          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00510<br>00511 | , {<br>}   | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00512          | , { {      | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00513          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00514          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00515          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00516          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00517<br>00518 | }<br>,{{   | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00519          | , (        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00520          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00521          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00522          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00523          | }          |               |               |               |               |                |
| 00524          | , { {      | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00525<br>00526 | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00527          | , {<br>, { | INF,<br>INF,  | INF,<br>INF,  | INF,<br>INF,  | INF,<br>INF,  | INF }<br>INF } |
| 00528          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 00529          | }          |               |               |               |               |                |
| 00530          | }          |               |               |               |               |                |
| 00531          | ,{{{       | 690,          | 690,          | 350,          | 350,          | 350}           |
| 00532          | , {        | 690 <b>,</b>  | 690 <b>,</b>  | 350,          | 350,          | 350}           |
| 00533<br>00534 | , {<br>, { | 350,<br>350,  | 350,<br>350,  | 350,<br>350,  | 350,<br>350,  | 350}<br>350}   |
| 00535          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00536          | }          | ,             | ,             | ,             | ,             | ,              |
| 00537          | , { {      | 690,          | 690,          | 350,          | 350,          | 350}           |
| 00538          | , {        | 690,          | 690,          | 350,          | 240,          | 350}           |
| 00539          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00540<br>00541 | , {<br>, { | -230,<br>350, | -500,<br>350, | -230,<br>350, | -230,<br>350, | -230}<br>350}  |
| 00541          | , l<br>}   | 330,          | 330,          | 330,          | 330,          | 330 }          |
| 00543          | , { {      | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00544          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00545          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00546          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00547<br>00548 | , {<br>}   | 350,          | 350,          | 130,          | 350,          | 350}           |
| 00549          | , { {      | 350,          | -230,         | 350,          | -230,         | 350}           |
| 00550          | , {        | -230,         | -230,         | -230,         | -230,         | -230}          |
| 00551          | , {        | 350,          | -230,         | 350,          | -230,         | 350}           |
| 00552          | , {        | -230,         | -230,         | -230,         | -230,         | -230}          |
| 00553          | , {        | 350,          | -230,         | 350,          | -230,         | 350}           |
| 00554<br>00555 | }<br>,{{   | 350,          | 350,          | 350,          | 350,          | -670}          |
| 00556          | , (        | 350,          | 350,          | 350,          | 350,          | -670}          |
| 00557          | , {        | 350,          | 350,          | 350,          | 350,          | -670}          |
| 00558          | , {        | 350,          | 350,          | 350,          | 350,          | -670}          |
| 00559          | , {        | -670,         | -670,         | -670,         | -670,         | -670}          |
| 00560          | }          |               |               |               |               |                |
| 00561          | }          | 250           | 250           | 350           | 250           | 2501           |
| 00562<br>00563 | }},<br>},  | 350,<br>350,  | 350,<br>350,  | 350,<br>350,  | 350,<br>350,  | 350}<br>350}   |
| 00564          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00565          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00566          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00567          | }          |               |               |               |               |                |
| 00568          | , { {      | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00569<br>00570 | , {        | 350,<br>350,  | 350,<br>350,  | 350,<br>350,  | 350,<br>350,  | 350}<br>350}   |
| 00570          | , {<br>, { | -230,         | -230,         | -230,         | -230,         | -230}          |
| 00571          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00573          | }          | •             | •             | •             | •             |                |
| 00574          | , { {      | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00575          | , {        | 350,          | 350,          | 350,          | 350,          | 350}           |
| 00576<br>00577 | , {<br>, { | 350,<br>350,  | 350,<br>350,  | 350,<br>350,  | 350,<br>350,  | 350}<br>350}   |
| 00011          | <i>,</i> 1 | 550,          | 550,          | 550,          | 550,          | 220}           |

| 00578          | , {        | 350,         | 350,           | 350,          | 350,           | 350}           |
|----------------|------------|--------------|----------------|---------------|----------------|----------------|
| 00579          | }          | 250          | 220            | 250           | 220            | 2501           |
| 00580<br>00581 | ,{{<br>,{  | 350,<br>350, | -230,<br>-230, | 350,<br>350,  | -230,<br>-230, | 350}<br>350}   |
| 00582          | , {        | 350,         | -230,          | 350,          | -230,          | 350}           |
| 00583          | , {        | -230,        | -230,          | -230,         | -230,          | -230}          |
| 00584          | , {        | 350,         | -230,          | 350,          | -230 <b>,</b>  | 350}           |
| 00585<br>00586 | }<br>,{{   | 350,         | 350,           | 350,          | 350,           | -670}          |
| 00587          | , (        | 350,         | 350,           | 350,          | 350,           | -670}          |
| 00588          | , {        | 350,         | 350,           | 350,          | 350,           | -670}          |
| 00589          | , {        | 350,         | 350,           | 350,          | 350,           | -670}          |
| 00590          | , {        | -670,        | -670,          | -670 <b>,</b> | -670,          | -670}          |
| 00591<br>00592 | }          |              |                |               |                |                |
| 00593          | ,{{{       | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00594          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00595          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00596<br>00597 | , {<br>, { | 850,<br>850, | 850,<br>850,   | 850,<br>850,  | 850,<br>850,   | 850}<br>850}   |
| 00598          | }          | 030,         | 030,           | 030,          | 030,           | 030)           |
| 00599          | ,{{        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00600          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00601<br>00602 | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00602          | , {<br>, { | 280,<br>850, | 280,<br>850,   | 280,<br>850,  | 280,<br>850,   | 280}<br>850}   |
| 00604          | }          | 000,         | 000,           | 000,          | 000,           | 000,           |
| 00605          | , { {      | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00606          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00607<br>00608 | , {        | 850,         | 850,           | 850,<br>850,  | 850,           | 850}           |
| 00609          | , {<br>, { | 850,<br>850, | 850,<br>850,   | 850,          | 850,<br>850,   | 850}<br>850}   |
| 00610          | }          | ,            | ,              | ,             | ,              | ,              |
| 00611          | , { {      | 850,         | 280,           | 850,          | 280,           | 850}           |
| 00612          | , {        | 850,         | 280,           | 850,          | 280,           | 850}           |
| 00613<br>00614 | , {<br>, { | 850,<br>280, | 280,<br>280,   | 850,<br>280,  | 280,<br>280,   | 850}<br>280}   |
| 00615          | , {        | 850,         | 280,           | 850,          | 280,           | 850}           |
| 00616          | }          |              |                |               |                |                |
| 00617          | , { {      | 850,         | 850,           | 850,          | 850,           | -160}          |
| 00618          | , {        | 850,         | 850,           | 850,          | 850,           | -160}          |
| 00619<br>00620 | , {<br>, { | 850,<br>850, | 850,<br>850,   | 850,<br>850,  | 850,<br>850,   | -160}<br>-160} |
| 00621          | , {        | -160,        | -160,          | -160,         | -160,          | -160}          |
| 00622          | }          |              |                |               |                |                |
| 00623          | }          |              |                |               |                |                |
| 00624<br>00625 | , { { {    | 850,<br>850, | 850,<br>850,   | 850,<br>850,  | 850,<br>850,   | 850}<br>850}   |
| 00626          | , {<br>, { | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00627          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00628          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00629          | }          | 0.5.0        | 0.50           | 0.50          | 0.5.0          | 0.501          |
| 00630<br>00631 | ,{{<br>,{  | 850,<br>850, | 850,<br>690,   | 850,<br>850,  | 850,<br>240,   | 850}<br>850}   |
| 00632          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00633          | , {        | 280,         | -500,          | 280,          | 280,           | 280}           |
| 00634          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00635          | }          | 0.5.0        | 850,           | 850,          | 850,           | 850}           |
| 00636<br>00637 | ,{{<br>,{  | 850,<br>850, | 850,           | 850,          | 850,           | 850}           |
| 00638          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00639          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00640          | , {        | 850,         | 850,           | 130,          | 850,           | 850}           |
| 00641<br>00642 | }<br>,{{   | 850,         | 280,           | 850,          | 280,           | 850}           |
| 00643          | , (        | 280,         | 280,           | 280,          | 280,           | 280}           |
| 00644          | , {        | 850,         | 280,           | 850,          | 280,           | 850}           |
| 00645          | , {        | 280,         | 280,           | 280,          | 280,           | 280}           |
| 00646          | , {        | 850,         | 280,           | 850,          | 280,           | 850}           |
| 00647<br>00648 | }<br>,{{   | 850,         | 850,           | 850,          | 850,           | -160}          |
| 00649          | , {        | 850,         | 850,           | 850,          | 850,           | -160}          |
| 00650          | , {        | 850,         | 850,           | 850,          | 850,           | -160}          |
| 00651          | , {        | 850,         | 850,           | 850,          | 850,           | -160}          |
| 00652<br>00653 | , {<br>}   | -160,        | -160,          | -160,         | -160,          | -160}          |
| 00654          | }          |              |                |               |                |                |
| 00655          | ,{{{       | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00656          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00657          | , {        | 850,         | 850 <b>,</b>   | 850,          | 850,           | 850}           |
| 00658<br>00659 | , {<br>, { | 850,<br>850, | 850,<br>850,   | 850,<br>850,  | 850,<br>850,   | 850}<br>850}   |
| 00660          | , t<br>}   | 550,         | 550,           | 550,          | 550,           | 000}           |
| 00661          | , { {      | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00662          | , {        | 850,         | 850,           | 850,          | 850,           | 850}           |
| 00663<br>00664 | , {<br>, { | 850,<br>280, | 850,<br>280,   | 850,<br>280,  | 850,<br>280,   | 850}<br>280}   |
| 00004          | , 1        | 200,         | 200,           | 200,          | 200,           | 200}           |

| 00665 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
|-------|-----------|-------|-------|--------------|--------------|---------|
| 00666 | }         |       |       |              |              |         |
|       |           | 0 5 0 | 850,  | 0 = 0        | 0 = 0        | 0 5 0 1 |
| 00667 | , { {     | 850,  |       | 850,         | 850,         | 850}    |
| 00668 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00669 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00670 | , {       | 850,  | 850,  | 850 <b>,</b> | 850,         | 850}    |
| 00671 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00672 | }         |       |       |              |              |         |
| 00673 |           | 950   | 200   | 950          | 280,         | 850}    |
|       | , { {     | 850,  | 280,  | 850,         |              |         |
| 00674 | , {       | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00675 | , {       | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00676 | , {       | 280,  | 280,  | 280,         | 280,         | 280}    |
| 00677 | , {       | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00678 | }         |       | ,     |              |              |         |
| 00679 | , { {     | 850,  | 850,  | 850,         | 850,         | -160}   |
|       |           |       |       |              |              |         |
| 00680 | , {       | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00681 | , {       | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00682 | , {       | 850,  | 850,  | 850 <b>,</b> | 850,         | -160}   |
| 00683 | , {       | -160, | -160, | -160,        | -160,        | -160}   |
| 00684 | }         |       |       |              |              |         |
| 00685 | }         |       |       |              |              |         |
|       |           | 0.5.0 | 0.5.0 | 0.50         | 0.5.0        | 0.5.0.1 |
| 00686 | , { { {   | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00687 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00688 | , {       | 850,  | 850,  | 850 <b>,</b> | 850,         | 850}    |
| 00689 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00690 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00691 | }         | /     | ,     | ,            | ,            | ,       |
| 00691 |           | 0 5 0 | 0 = 0 | 0 5 0        | 0 5 0        | 0 5 0 1 |
|       | , { {     | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00693 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00694 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00695 | , {       | 280,  | 280,  | 280,         | 280,         | 280}    |
| 00696 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00697 | }         |       | ,     |              |              |         |
|       | ,{{       | 950   | 950   | 950          | 950          | 9501    |
| 00698 |           | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00699 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00700 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00701 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00702 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00703 | }         |       |       |              |              |         |
| 00704 | ,{{       | 850,  | 280,  | 850,         | 280,         | 850}    |
|       |           |       |       |              |              |         |
| 00705 | , {       | 280,  | 280,  | 280,         | 280,         | 280}    |
| 00706 | , {       | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00707 | , {       | 280,  | 280,  | 280,         | 280,         | 280}    |
| 00708 | , {       | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00709 | }         |       |       |              |              |         |
| 00710 | , { {     | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00711 |           | 850,  | 850,  | 850,         | 850,         | -160}   |
|       |           |       |       |              |              |         |
| 00712 | , {       | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00713 | , {       | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00714 | , {       | -160, | -160, | -160,        | -160,        | -160}   |
| 00715 | }         |       |       |              |              |         |
| 00716 | }         |       |       |              |              |         |
| 00717 | , { { {   | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00718 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
|       |           |       |       |              |              |         |
| 00719 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00720 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00721 | , {       | 850,  | 850,  | 850,         | 850 <b>,</b> | 850}    |
| 00722 | }         |       |       |              |              |         |
| 00723 | , { {     | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00724 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00725 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
|       |           |       |       |              |              |         |
| 00726 | , {       | 280,  | 280,  | 280,         | 280,         | 280}    |
| 00727 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00728 | }         |       |       |              |              |         |
| 00729 | , { {     | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00730 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00731 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00731 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
|       |           |       |       |              |              |         |
| 00733 | , {       | 850,  | 850,  | 850,         | 850,         | 850}    |
| 00734 | }         |       |       |              |              |         |
| 00735 | , { {     | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00736 | , {       | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00737 | , {       | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00737 | , {       | 280,  | 280,  | 280,         | 280,         | 280}    |
|       |           |       |       |              |              |         |
| 00739 | , {       | 850,  | 280,  | 850,         | 280,         | 850}    |
| 00740 | }         |       |       |              |              |         |
| 00741 | , { {     | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00742 | , {       | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00743 | , {       | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00744 | , {       | 850,  | 850,  | 850,         | 850,         | -160}   |
| 00745 | , {       | -160, | -160, | -160,        | -160,        | -160}   |
|       |           | 100,  | 100,  | T00,         | 100,         | 100}    |
| 00746 | }         |       |       |              |              |         |
| 00747 | }         |       |       |              |              |         |
| 00748 | }         |       |       |              |              |         |
| 00749 | , { { { { | INF,  | INF,  | INF,         | INF,         | INF }   |
| 00750 | , {       | INF,  | INF,  | INF,         | INF,         | INF }   |
| 00751 | , {       | INF,  | INF,  | INF,         | INF,         | INF}    |
|       | , ,       | ,     | ,     | ,            | ,            | ,       |

| 00752          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
|----------------|------------|---------------|---------------|--------------|---------------|----------------|
| 00753          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00754          | }          |               |               |              |               |                |
| 00755          | , { {      | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00756          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00757          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00758          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00759          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00760          | }          | TAID          | TNIE          | TAID         | TNE           | TAIT           |
| 00761          | , { {      | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00762<br>00763 | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00764          | , {        | INF,<br>INF,  | INF,          | INF,<br>INF, | INF,<br>INF,  | INF }          |
| 00765          | , {<br>, { | INF,          | INF,<br>INF,  | INF,         | INF,          | INF }          |
| 00766          | }          | INI,          | TINE ,        | TIVE ,       | TINE ,        | TIME           |
| 00767          | ,{{        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00768          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00769          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00770          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00771          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00772          | }          |               |               |              |               |                |
| 00773          | , { {      | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00774          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00775          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00776          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00777          | , {        | INF,          | INF,          | INF,         | INF,          | INF }          |
| 00778          | }          |               |               |              |               |                |
| 00779          | }          |               |               |              |               |                |
| 00780          | , { { {    | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00781          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00782          | , {        | 850,          | 850 <b>,</b>  | 850,         | 850,          | 850}           |
| 00783          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00784<br>00785 | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00786          | }<br>,{{   | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00787          | , ( (      | 850,          | 690,          | 850,         | 240,          | 850}           |
| 00788          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00789          | , {        | 280,          | -500,         | 280,         | 280,          | 280}           |
| 00790          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00791          | }          | 000,          | 000,          | 000,         | 000,          | 000,           |
| 00792          | , { {      | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00793          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00794          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00795          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00796          | , {        | 850,          | 850,          | 130,         | 850,          | 850}           |
| 00797          | }          |               |               |              |               |                |
| 00798          | , { {      | 850,          | 280,          | 850,         | 280,          | 850}           |
| 00799          | , {        | 280,          | 280,          | 280,         | 280,          | 280}           |
| 00800          | , {        | 850,          | 280,          | 850,         | 280,          | 850}           |
| 00801          | , {        | 280,          | 280,          | 280,         | 280,          | 280}           |
| 00802          | , {        | 850,          | 280,          | 850,         | 280,          | 850}           |
| 00803          | }          | 0.5.0         | 0.5.0         | 0.5.0        | 0.5.0         | 1.60           |
| 00804          | , { {      | 850,          | 850,          | 850,         | 850,          | -160}          |
| 00805          | , {        | 850,          | 850,          | 850,         | 850,          | -160}          |
| 00806          | , {        | 850,          | 850,          | 850,<br>850, | 850,          | -160}<br>-160} |
| 00807<br>00808 | , {        | 850,<br>-160, | 850,<br>-160, | -160,        | 850,<br>-160, | -160}          |
| 00809          | , {<br>}   | 100,          | 100,          | 100,         | 100,          | 100)           |
| 00810          | }          |               |               |              |               |                |
| 00811          | ,{{{       | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00812          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00813          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00814          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00815          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00816          | }          |               |               |              |               |                |
| 00817          | , { {      | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00818          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00819          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00820          | , {        | 280,          | 280,          | 280,         | 280,          | 280}           |
| 00821          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00822          | }          |               |               |              |               |                |
| 00823          | , { {      | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00824          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00825          | , {        | 850,          | 850 <b>,</b>  | 850,         | 850,          | 850}           |
| 00826          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00827          | , {        | 850,          | 850,          | 850,         | 850,          | 850}           |
| 00828          | }          | 050           | 200           | 0.50         | 202           | 0.50           |
| 00829          | , { {      | 850,          | 280,          | 850,         | 280,          | 850}           |
| 00830<br>00831 | , {        | 850,<br>850,  | 280,<br>280,  | 850,<br>850, | 280,<br>280,  | 850}<br>850}   |
| 00831          | , {<br>, { | 280,          | 280,          | 280,         | 280,          | 280}           |
| 00832          | , {        | 850,          | 280,          | 850,         | 280,          | 850}           |
| 00833          | }          | 000,          | 200,          | 000,         | 200,          | 550}           |
| 00835          | , { {      | 850,          | 850,          | 850,         | 850,          | -160}          |
| 00836          | , {        | 850,          | 850,          | 850,         | 850,          | -160}          |
| 00837          | , {        | 850,          | 850,          | 850,         | 850,          | -160}          |
| 00838          | , {        | 850,          | 850,          | 850,         | 850,          | -160}          |
|                |            |               |               |              |               |                |

| 00839 | , {     | -160, | -160,         | -160, | -160, | -160} |
|-------|---------|-------|---------------|-------|-------|-------|
| 00840 | }       |       |               |       |       |       |
| 00841 | }       |       |               |       |       |       |
| 00842 | , { { { | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00843 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00844 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00845 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00846 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00847 | }       |       |               |       |       |       |
| 00848 | , { {   | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00849 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00850 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00851 | , {     | 780,  | 780,          | 780,  | 780,  | 780}  |
| 00852 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00853 | }       |       |               |       |       |       |
| 00854 | , { {   | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00855 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00856 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00857 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00858 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00859 | }       |       |               |       |       |       |
| 00860 | , { {   | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00861 | , {     | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00862 | , {     | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00863 | , {     | 780,  | 780,          | 780,  | 780,  | 780}  |
| 00864 | , {     | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00865 | }       | ,     |               | ,     |       |       |
| 00866 | , { {   | 1350, | 1350,         | 1350, | 1350, | 340}  |
| 00867 | , {     | 1350, | 1350,         | 1350, | 1350, | 340}  |
| 00868 | , {     | 1350, | 1350,         | 1350, | 1350, | 340}  |
| 00869 | , {     | 1350, | 1350,         | 1350, | 1350, | 340}  |
| 00870 | , {     | 340,  | 340,          | 340,  | 340,  | 340}  |
| 00871 | }       | 540,  | 540,          | 340,  | 340,  | 540)  |
| 00872 | }       |       |               |       |       |       |
| 00873 |         | 1350, | 1350          | 1350  | 1350, | 1350} |
|       | , { { { |       | 1350,         | 1350, | 1350, |       |
| 00874 | , {     | 1350, | 1350,         | 1350, |       | 1350} |
| 00875 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00876 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00877 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00878 | }       | 1250  | 1250          | 1250  | 1250  | 12501 |
| 00879 | , { {   | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00880 | , {     | 1350, | 690,          | 1350, | 240,  | 1350} |
| 00881 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00882 | , {     | 780,  | -500 <b>,</b> | 780,  | 780,  | 780}  |
| 00883 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00884 | }       |       |               |       |       |       |
| 00885 | , { {   | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00886 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00887 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00888 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00889 | , {     | 1350, | 1350,         | 130,  | 1350, | 1350} |
| 00890 | }       |       |               |       |       |       |
| 00891 | , { {   | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00892 | , {     | 780,  | 780,          | 780,  | 780,  | 780}  |
| 00893 | , {     | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00894 | , {     | 780,  | 780,          | 780,  | 780,  | 780}  |
| 00895 | , {     | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00896 | }       |       |               |       |       |       |
| 00897 | , { {   | 1350, | 1350,         | 1350, | 1350, | 340}  |
| 00898 | , {     | 1350, | 1350,         | 1350, | 1350, | 340}  |
| 00899 | , {     | 1350, | 1350,         | 1350, | 1350, | 340}  |
| 00900 | , {     | 1350, | 1350,         | 1350, | 1350, | 340}  |
| 00901 | , {     | 340,  | 340,          | 340,  | 340,  | 340}  |
| 00902 | }       |       |               |       |       |       |
| 00903 | }       |       |               |       |       |       |
| 00904 | , { { { | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00905 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00906 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00907 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00908 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00909 | }       |       |               |       |       |       |
| 00910 | , { {   | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00911 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00912 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00913 | , {     | 780,  | 780,          | 780,  | 780,  | 780}  |
| 00914 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00915 | }       |       |               |       |       |       |
| 00916 | , { {   | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00917 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00918 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00919 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00920 | , {     | 1350, | 1350,         | 1350, | 1350, | 1350} |
| 00921 | }       |       |               |       |       |       |
| 00922 | , { {   | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00923 | , {     | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00924 | , {     | 1350, | 780,          | 1350, | 780,  | 1350} |
| 00925 | , {     | 780,  | 780,          | 780,  | 780,  | 780}  |
|       |         |       |               |       |       |       |

| 00926          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 00927          | }          | 1250           | 1050           | 1250           | 1250           | 2401           |
| 00928<br>00929 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}<br>340}   |
| 00930          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 00931          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 00932          | , {        | 340,           | 340,           | 340,           | 340,           | 340}           |
| 00933<br>00934 | }          |                |                |                |                |                |
| 00934          | }<br>,{{{  | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00936          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00937          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00938          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00939          | , {<br>}   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00941          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00942          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00943          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00944          | , {        | 780,           | 780,<br>1350,  | 780,           | 780,<br>1350,  | 780}<br>1350}  |
| 00945          | , {<br>}   | 1350,          | 1330,          | 1350,          | 1330,          | 1330 }         |
| 00947          | ,{{        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00948          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00949          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00950<br>00951 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 00952          | }          | 1550,          | 1330,          | 1550,          | 1330,          | 1550)          |
| 00953          | ,{{        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 00954          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 00955          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 00956<br>00957 | , {<br>, { | 780,<br>1350,  | 780,<br>780,   | 780,<br>1350,  | 780,<br>780,   | 780}<br>1350}  |
| 00958          | }          | 1330,          | 700,           | 1000,          | 700,           | 1550)          |
| 00959          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 00960          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 00961          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 00962<br>00963 | , {<br>, { | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 340}<br>340}   |
| 00964          | }          |                | ,              | ,              |                | ,              |
| 00965          | }          |                |                |                |                |                |
| 00966          | , { { {    | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00967<br>00968 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 00969          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00970          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00971          | }          | 1050           | 1050           | 1050           | 1050           | 10501          |
| 00972<br>00973 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 00974          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00975          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 00976          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00977<br>00978 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00979          | , (        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00980          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00981          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00982<br>00983 | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 00984          | }<br>,{{   | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 00985          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 00986          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 00987          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 00988          | , {<br>}   | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 00990          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 00991          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 00992          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 00993<br>00994 | , {        | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 340}<br>340}   |
| 00995          | , {<br>}   | 340,           | 340,           | 340,           | 340,           | 340}           |
| 00996          | }          |                |                |                |                |                |
| 00997          | }          |                |                |                |                |                |
| 00998          | , { { { {  | INF,           | INF,           | INF,           | INF,           | INF }          |
| 00999<br>01000 | , {<br>, { | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF }<br>INF } |
| 01000          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01002          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01003          | }          | ***            | ***            | T 3.7          | ****           |                |
| 01004<br>01005 | , { {      | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF }<br>INF } |
| 01003          | , {<br>, { | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01007          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01008          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01009          | }          | TNI            | TNIP           | TAIT           | TNI            | T 81TT 1       |
| 01010<br>01011 | ,{{<br>,{  | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF }<br>INF } |
| 01012          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
|                |            |                |                |                |                |                |

| 01013          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
|----------------|------------|---------------|---------------|---------------|---------------|----------------|
| 01014          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 01015          | }          |               |               |               |               |                |
| 01016          | , { {      | INF,          | INF,          | INF,          | INF,          | INF }          |
| 01017          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 01018          | , {        | INF,          | INF,          | INF,<br>INF,  | INF,          | INF }          |
| 01019          | , {        | INF,          | INF,          |               | INF,          | INF }          |
| 01020          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 01021<br>01022 | }          | TNE           | TNE           | TNE           | INF,          | TNET           |
| 01022          | ,{{<br>,{  | INF,<br>INF,  | INF,          | INF,<br>INF,  | INF,          | INF }<br>INF } |
| 01023          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 01024          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 01026          | , {        | INF,          | INF,          | INF,          | INF,          | INF }          |
| 01027          | }          | ,             | ,             | ,             | ,             | ,              |
| 01028          | }          |               |               |               |               |                |
| 01029          | , { { {    | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01030          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01031          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01032          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01033          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01034          | }          |               |               |               |               |                |
| 01035          | , { {      | 850,          | 850,          | 850,          | 280,          | 850}           |
| 01036          | , {        | 850,          | 850,          | 850,          | 280,          | 850}           |
| 01037          | , {        | 850,          | 850,          | 850,          | 280,          | 850}           |
| 01038          | , {        | 280,          | 280,          | 280,          | 280,          | 280}           |
| 01039          | , {        | 850,          | 850,          | 850,          | 280,          | 850}           |
| 01040          | }          | 0.50          | 0.5.0         | 0.5.0         | 0.5.0         | 0.501          |
| 01041          | , { {      | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01042          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01043          | , {        | 850,<br>850,  | 850,          | 850,<br>850,  | 850,<br>850,  | 850}           |
| 01044          | , {        |               | 850,          |               |               | 850}           |
| 01045<br>01046 | , {<br>}   | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01040          | , { {      | 850,          | 280,          | 850,          | 280,          | 850}           |
| 01047          | , 11       | 280,          | 280,          | 280,          | 280,          | 280}           |
| 01049          | , {        | 850,          | 280,          | 850,          | 280,          | 850}           |
| 01050          | , {        | 280,          | 280,          | 280,          | 280,          | 280}           |
| 01051          | , {        | 850,          | 280,          | 850,          | 280,          | 850}           |
| 01052          | }          | ,             |               |               |               | ,              |
| 01053          | , { {      | 850,          | 850,          | 850,          | 850,          | -160}          |
| 01054          | , {        | 850,          | 850,          | 850,          | 850,          | -160}          |
| 01055          | , {        | 850,          | 850,          | 850,          | 850,          | -160}          |
| 01056          | , {        | 850,          | 850,          | 850,          | 850,          | -160}          |
| 01057          | , {        | -160,         | -160,         | -160,         | -160,         | -160}          |
| 01058          | }          |               |               |               |               |                |
| 01059          | }          |               |               |               |               |                |
| 01060          | , { { {    | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01061          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01062          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01063          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01064          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01065          | }          | 0.50          | 0.5.0         | 0.5.0         | 000           | 0.501          |
| 01066          | , { {      | 850,          | 850,          | 850,          | 280,          | 850}           |
| 01067          | , {        | 850,          | 850 <b>,</b>  | 850,          | 280,          | 850}           |
| 01068<br>01069 | , {<br>, { | 850,<br>280,  | 850,<br>280,  | 850,<br>280,  | 280,<br>280,  | 850}<br>280}   |
| 01003          | , {        | 850,          | 850,          | 850,          | 280,          | 850}           |
| 01070          | }          | 030,          | 030,          | 000,          | 200,          | 030)           |
| 01072          | , { {      | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01073          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01074          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01075          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01076          | , {        | 850,          | 850,          | 850,          | 850,          | 850}           |
| 01077          | }          |               |               |               |               |                |
| 01078          | , { {      | 850,          | 280,          | 850,          | 280,          | 850}           |
| 01079          | , {        | 850,          | 280,          | 850,          | 280,          | 850}           |
| 01080          | , {        | 850,          | 280,          | 850,          | 280,          | 850}           |
| 01081          | , {        | 280,          | 280,          | 280,          | 280,          | 280}           |
| 01082          | , {        | 850,          | 280,          | 850,          | 280,          | 850}           |
| 01083          | }          | 0.5.0         | 0.5.0         | 0.5.0         | 0.5.0         | 1.60           |
| 01084          | , { {      | 850,          | 850,          | 850,          | 850,          | -160}          |
| 01085          | , {        | 850,          | 850,          | 850,          | 850,          | -160}          |
| 01086          | , {        | 850,          | 850 <b>,</b>  | 850,          | 850 <b>,</b>  | -160}          |
| 01087<br>01088 | , {<br>, { | 850,<br>-160, | 850,<br>-160, | 850,<br>-160, | 850,<br>-160, | -160}<br>-160} |
| 01088          | , t<br>}   | ±00,          | 100,          | ±00,          | 100,          | 100}           |
| 01009          | }          |               |               |               |               |                |
| 01090          | ,{{{       | 1350,         | 1350,         | 1350,         | 1350,         | 1350}          |
| 01092          | , ( ( (    | 1350,         | 1350,         | 1350,         | 1350,         | 1350}          |
| 01093          | , {        | 1350,         | 1350,         | 1350,         | 1350,         | 1350}          |
| 01094          | , {        | 1350,         | 1350,         | 1350,         | 1350,         | 1350}          |
| 01095          | , {        | 1350,         | 1350,         | 1350,         | 1350,         | 1350}          |
| 01096          | }          |               |               |               |               |                |
| 01097          | , { {      | 1350,         | 1350,         | 1350,         | 780,          | 1350}          |
| 01098          | , {        | 1350,         | 1350,         | 1350,         | 780,          | 1350}          |
| 01099          | , {        | 1350,         | 1350,         | 1350,         | 780,          | 1350}          |
|                |            |               |               |               |               |                |

| 01100<br>01101 | , {<br>, { | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780,<br>780,   | 780}<br>1350}  |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 01102<br>01103 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01103          | , (        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01105          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01106<br>01107 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01108          | }          |                |                |                |                |                |
| 01109<br>01110 | ,{{<br>,{  | 1350,<br>1350, | 780,<br>780,   | 1350,<br>1350, | 780,<br>780,   | 1350}<br>1350} |
| 01111          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01112          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01113<br>01114 | , {<br>}   | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01115          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01116          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01117<br>01118 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}<br>340}   |
| 01119          | , {        | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01120          | }          |                |                |                |                |                |
| 01121<br>01122 | , { { {    | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01123          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01124          | , {        | 1350,          | 1350,          | 1350,          | 1350,<br>1350, | 1350}          |
| 01125<br>01126 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,          | 1350}<br>1350} |
| 01127          | }          |                |                |                |                |                |
| 01128<br>01129 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 780,<br>780,   | 1350}<br>1350} |
| 01123          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01131          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01132<br>01133 | , {<br>}   | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01134          | ,{{        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01135          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01136<br>01137 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01138          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01139          | }          | 1250           | 700            | 1350,          | 700            | 12501          |
| 01140<br>01141 | ,{{<br>,{  | 1350,<br>780,  | 780,<br>780,   | 780,           | 780,<br>780,   | 1350}<br>780}  |
| 01142          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01143<br>01144 | , {<br>, { | 780,<br>1350,  | 780,<br>780,   | 780,<br>1350,  | 780,<br>780,   | 780}<br>1350}  |
| 01145          | }          | 1330,          | 7007           | 1330,          | 7007           | 1000,          |
| 01146          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01147<br>01148 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}           |
| 01149          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01150          | , {        | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01151<br>01152 | }          |                |                |                |                |                |
| 01153          | , { { {    | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01154<br>01155 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01156          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01157          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01158<br>01159 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01160          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01161          | , {        | 1350,          | 1350,<br>780,  | 1350,          | 780,           | 1350}          |
| 01162<br>01163 | , {<br>, { | 780,<br>1350,  | 1350,          | 780,<br>1350,  | 780,<br>780,   | 780}<br>1350}  |
| 01164          | }          |                |                |                |                |                |
| 01165<br>01166 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01167          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01168          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01169<br>01170 | , {<br>}   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01171          | ,{{        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01172          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01173<br>01174 | , {<br>, { | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01175          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01176          | }          | 1350           | 1350           | 1350           | 1350           | 3401           |
| 01177<br>01178 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}<br>340}   |
| 01179          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01180<br>01181 | , {<br>, { | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 340}<br>340}   |
| 01181          | }          | J 10,          | 510,           | 510,           | 010,           | 210)           |
| 01183          | }          | 1250           | 1250           | 1250           | 1250           | 1050           |
| 01184<br>01185 | }}},<br>}, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01186          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
|                |            |                |                |                |                |                |

| 01187          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 01188          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01189<br>01190 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01191          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01192          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01193          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01194          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01195<br>01196 | }          | 1350,          | 1350           | 1350,          | 1350,          | 1350}          |
| 01190          | ,{{<br>,{  | 1350,          | 1350,<br>1350, | 1350,          | 1350,          | 1350}          |
| 01198          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01199          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01200          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01201          | }          |                |                |                |                |                |
| 01202          | , { {      | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01203          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01204<br>01205 | , {<br>, { | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01206          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01207          | }          | ,              | ,              | ,              | ,              | ,              |
| 01208          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01209          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01210          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01211          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01212<br>01213 | , {<br>}   | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01213          | }          |                |                |                |                |                |
| 01214          | ,{{{       | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01216          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01217          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01218          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01219          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01220          | }          | 1050           | 1050           | 1050           | 700            | 10501          |
| 01221<br>01222 | , { {      | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01222          | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 780,<br>780,   | 1350}<br>1350} |
| 01224          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01225          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01226          | }          |                |                |                |                |                |
| 01227          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01228          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01229          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01230<br>01231 | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01231          | , {<br>}   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01233          | , { {      | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01234          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01235          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01236          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01237          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01238          | }          | 1250           | 1250           | 1250           | 1250           | 2401           |
| 01239          | , { {      | 1350,          | 1350,<br>1350, | 1350,          | 1350,          | 340}           |
| 01240<br>01241 | , {<br>, { | 1350,<br>1350, | 1350,          | 1350,<br>1350, | 1350,<br>1350, | 340}           |
| 01242          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01243          | , {        |                |                | 340,           |                | 340}           |
| 01244          | }          |                |                |                |                |                |
| 01245          | }          |                |                |                |                |                |
| 01246          | }          |                |                |                |                |                |
| 01247          |            | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01248<br>01249 | , {        | INF,           | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF }<br>INF } |
| 01249          | , {<br>, { | INF,<br>INF,   | INF,           | INF,           | INF,           | INF }          |
| 01251          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01252          | }          | ,              | ,              | ,              | ,              | ,              |
| 01253          | , { {      | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01254          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01255          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01256          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01257          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01258<br>01259 | }<br>,{{   | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01260          | , (        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01261          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01262          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01263          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01264          | }          |                |                |                |                |                |
| 01265          | , { {      | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01266          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01267<br>01268 | , {<br>, { | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,   | INF }<br>INF } |
| 01269          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01270          | }          | /              |                | ,              | /              |                |
| 01271          | , { {      | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01272          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
| 01273          | , {        | INF,           | INF,           | INF,           | INF,           | INF }          |
|                |            |                |                |                |                |                |

| 01274 | 1       | INF,  | INF,  | INF,  | INF,         | INF }   |
|-------|---------|-------|-------|-------|--------------|---------|
|       | , {     |       |       |       |              |         |
| 01275 | , {     | INF,  | INF,  | INF,  | INF,         | INF }   |
| 01276 | }       |       |       |       |              |         |
| 01277 | }       |       |       |       |              |         |
| 01278 | , { { { | 850,  | 850,  | 850,  | 850 <b>,</b> | 850}    |
| 01279 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01280 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01281 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
|       |         |       |       |       |              |         |
| 01282 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01283 | }       |       |       |       |              |         |
| 01284 | , { {   | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01285 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01286 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01287 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 01288 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
|       |         | 030,  | 030,  | 030,  | 050,         | 050)    |
| 01289 | }       | 0.50  | 0.50  | 0.50  | 0.5.0        | 0.50    |
| 01290 | , { {   | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01291 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01292 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01293 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01294 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01295 |         | 000,  | 000,  | 000,  | 000,         | 000)    |
|       | }       | 0.5.0 | 200   | 0.5.0 | 200          | 0.5.0.1 |
| 01296 | , { {   | 850,  | 280,  | 850,  | 280,         | 850}    |
| 01297 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 01298 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 01299 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 01300 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 01301 | }       | ,     | ,     | ,     | ,            | ,       |
|       |         | 0.5.0 | 0.50  | 0.5.0 | 0.5.0        | 1.001   |
| 01302 | , { {   | 850,  | 850,  | 850,  | 850,         | -160}   |
| 01303 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 01304 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 01305 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 01306 | , {     | -160, | -160, | -160, | -160,        | -160}   |
| 01307 | }       | •     | •     | •     | •            |         |
| 01308 | }       |       |       |       |              |         |
|       |         | 0.50  | 0.5.0 | 0.50  | 0.5.0        | 0.503   |
| 01309 | , { { { | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01310 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01311 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01312 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01313 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01314 | }       | ,     | ,     | ,     | ,            | ,       |
|       |         | 0 5 0 | 0.5.0 | 0 = 0 | 0 5 0        | 0 5 0 1 |
| 01315 | , { {   | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01316 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01317 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01318 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 01319 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01320 | }       | •     | •     | •     | •            |         |
| 01321 |         | 850,  | 850,  | 850,  | 850,         | 850}    |
|       | , { {   |       |       |       |              |         |
| 01322 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01323 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01324 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01325 | , {     | 850,  | 850,  | 850,  | 850,         | 850}    |
| 01326 | }       |       |       |       |              |         |
| 01327 | ,{{     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 01327 |         |       |       |       |              |         |
|       | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 01329 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 01330 | , {     | 280,  | 280,  | 280,  | 280,         | 280}    |
| 01331 | , {     | 850,  | 280,  | 850,  | 280,         | 850}    |
| 01332 | }       |       |       |       |              |         |
| 01333 | , { {   | 850,  | 850,  | 850,  | 850,         | -160}   |
| 01334 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 01335 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
|       |         |       |       |       |              |         |
| 01336 | , {     | 850,  | 850,  | 850,  | 850,         | -160}   |
| 01337 | , {     | -160, | -160, | -160, | -160,        | -160}   |
| 01338 | }       |       |       |       |              |         |
| 01339 | }       |       |       |       |              |         |
| 01340 | , { { { | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01341 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
|       |         |       |       |       | 1350,        |         |
| 01342 | , {     | 1350, | 1350, | 1350, |              | 1350}   |
| 01343 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01344 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01345 | }       |       |       |       |              |         |
| 01346 | , { {   | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01347 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01348 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
|       |         |       |       |       |              |         |
| 01349 | , {     | 780,  | 780,  | 780,  | 780,         | 780}    |
| 01350 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01351 | }       |       |       |       |              |         |
| 01352 | , { {   | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01353 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01354 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01354 |         | 1350, | 1350, | 1350, | 1350,        | 1350}   |
|       | , {     |       |       |       |              |         |
| 01356 | , {     | 1350, | 1350, | 1350, | 1350,        | 1350}   |
| 01357 | }       | 10=-  |       |       |              |         |
| 01358 | , { {   | 1350, | 780,  | 1350, | 780,         | 1350}   |
| 01359 | , {     | 1350, | 780,  | 1350, | 780,         | 1350}   |
| 01360 | , {     | 1350, | 780,  | 1350, | 780,         | 1350}   |
|       |         |       |       |       |              |         |

| 01361          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 01362<br>01363 | , {<br>}   | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01364          | ,{{        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01365          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01366<br>01367 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}<br>340}   |
| 01367          | , {        | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01369          | }          |                |                |                |                |                |
| 01370          | }          | 1250           | 1250           | 1250           | 1250           | 12501          |
| 01371<br>01372 | ,{{{<br>,{ | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01373          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01374          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01375          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01376<br>01377 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01378          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01379          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01380<br>01381 | , {<br>, { | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780}<br>1350}  |
| 01381          | }          | 1550,          | 1330,          | 1330,          | 1330,          | 1330)          |
| 01383          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01384          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01385<br>01386 | , {        | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01387          | , {<br>, { | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01388          | }          | ,              | ,              | •              | ,              |                |
| 01389          | , { {      | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01390          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01391<br>01392 | , {<br>, { | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01393          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01394          | }          |                |                |                |                |                |
| 01395          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01396<br>01397 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}           |
| 01398          | , {<br>, { | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01399          | , {        | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01400          | }          |                |                |                |                |                |
| 01401<br>01402 | }<br>,{{{  | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01403          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01404          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01405          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01406<br>01407 | , {<br>}   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01408          | ,{{        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01409          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01410          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01411<br>01412 | , {<br>, { | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780}<br>1350}  |
| 01413          | }          | 1000,          | 1000,          | 1000,          | 1000,          | 1000,          |
| 01414          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01415          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01416<br>01417 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01418          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01419          | }          |                |                |                |                |                |
| 01420<br>01421 | ,{{<br>,{  | 1350,<br>1350, | 780,<br>780,   | 1350,<br>1350, | 780,<br>780,   | 1350}<br>1350} |
| 01421          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01423          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01424          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01425<br>01426 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01427          | , (        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01428          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01429          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01430<br>01431 | , {<br>}   | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01431          | }          |                |                |                |                |                |
| 01433          | ,{{{       | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01434          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01435<br>01436 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01436          | , t<br>, { | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01438          | }          |                |                |                |                |                |
| 01439          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01440<br>01441 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01441          | , t<br>, { | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01443          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01444          | }          | 1250           | 1250           | 1250           | 1250           | 1250:          |
| 01445<br>01446 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01447          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
|                |            |                |                |                |                |                |

| 01448                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
|-------------------------------------------|--------------------------|----------------|----------------|----------------------|----------------------|----------------|
| 01449                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01450<br>01451                            | }<br>,{{                 | 1350,          | 780,           | 1350,                | 780,                 | 1350}          |
| 01452                                     | , {                      | 780,           | 780,           | 780,                 | 780,                 | 780}           |
| 01453                                     | , {                      | 1350,          | 780,           | 1350,                | 780,                 | 1350}          |
| 01454<br>01455                            | , {<br>, {               | 780,<br>1350,  | 780,<br>780,   | 780,<br>1350,        | 780,<br>780,         | 780}<br>1350}  |
| 01456                                     | }                        | 1330,          | 700,           | 1330,                | 700,                 | 1330)          |
| 01457                                     | , { {                    | 1350,          | 1350,          | 1350,                | 1350,                | 340}           |
| 01458<br>01459                            | , {                      | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350,       | 1350,<br>1350,       | 340}           |
| 01459                                     | , {<br>, {               | 1350,          | 1350,          | 1350,                | 1350,                | 340}           |
| 01461                                     | , {                      | 340,           | 340,           | 340,                 | 340,                 | 340}           |
| 01462                                     | }                        |                |                |                      |                      |                |
| 01463<br>01464                            | }<br>,{{{                | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01465                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01466                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01467<br>01468                            | , {<br>, {               | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350,       | 1350,<br>1350,       | 1350}<br>1350} |
| 01469                                     | }                        | 1330,          | 1000,          | 1550,                | 1330,                | 1000,          |
| 01470                                     | , { {                    | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01471<br>01472                            | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01472                                     | , {<br>, {               | 1350,<br>780,  | 1350,<br>780,  | 1350,<br>780,        | 1350,<br>780,        | 1350}<br>780}  |
| 01474                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01475                                     | }                        |                |                |                      |                      |                |
| 01476<br>01477                            | , { {                    | 1350,          | 1350,          | 1350,<br>1350,       | 1350,<br>1350,       | 1350}          |
| 01477                                     | , {<br>, {               | 1350,<br>1350, | 1350,<br>1350, | 1350,                | 1350,                | 1350}<br>1350} |
| 01479                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01480                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 1350}          |
| 01481                                     | }                        | 1250           | 700            | 1250                 | 700                  | 12501          |
| 01482<br>01483                            | ,{{<br>,{                | 1350,<br>1350, | 780,<br>780,   | 1350,<br>1350,       | 780,<br>780,         | 1350}<br>1350} |
| 01484                                     | , {                      | 1350,          | 780,           | 1350,                | 780,                 | 1350}          |
| 01485                                     | , {                      | 780,           | 780,           | 780,                 | 780,                 | 780}           |
| 01486<br>01487                            | , {<br>}                 | 1350,          | 780,           | 1350,                | 780,                 | 1350}          |
| 01488                                     | , { {                    | 1350,          | 1350,          | 1350,                | 1350,                | 340}           |
| 01489                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 340}           |
| 01490                                     | , {                      | 1350,          | 1350,          | 1350,                | 1350,                | 340}           |
| 01491<br>01492                            | , {                      | 1350,          | 1350,<br>340,  | 1350,<br>340,        | 1350,<br>340,        | 340}<br>340}   |
| 01492                                     | , {<br>}                 | 340,           | 340,           | 340,                 | 340,                 | 340}           |
| 01494                                     | }                        |                |                |                      |                      |                |
| 01495                                     | }                        |                |                |                      |                      |                |
| 01496<br>01497                            | ,{{{                     | INF,           | INF,           | INF,                 | INF,                 | INF }<br>INF } |
| 01497                                     | , {<br>, {               | INF,<br>INF,   | INF,           | INF,                 | INF,<br>INF,         | INF }          |
| 01499                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01500                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01501<br>01502                            | }<br>,{{                 | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01502                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01504                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01505                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01506<br>01507                            | , {<br>}                 | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01508                                     | ,{{                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01509                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01510<br>01511                            | , {                      | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,         | INF,<br>INF,         | INF }<br>INF } |
| 01511                                     | , {<br>, {               | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01513                                     | }                        | ,              | ,              | ,                    | ,                    | ,              |
| 01514                                     | , { {                    | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01515<br>01516                            | , {<br>, {               | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,         | INF,<br>INF,         | INF }<br>INF } |
| 01517                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01518                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01519                                     | }                        |                |                |                      |                      |                |
| 01520<br>01521                            | ,{{<br>,{                | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,         | INF,<br>INF,         | INF }<br>INF } |
| 01521                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01523                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01524                                     | , {                      | INF,           | INF,           | INF,                 | INF,                 | INF }          |
| 01525<br>01526                            | }                        |                |                |                      |                      |                |
| 01527                                     | ,{{{                     | 850,           | 850,           | 850,                 | 850,                 | 850}           |
|                                           |                          | 850,           | 850,           | 850,                 | 850,                 | 850}           |
| 01528                                     | , {                      |                |                |                      | c =                  |                |
| 01528<br>01529                            | , {<br>, {               | 850,           | 850,           | 850,                 | 850,                 | 850}           |
| 01528<br>01529<br>01530                   | , {<br>, {<br>, {        | 850,<br>850,   |                | 850,<br>850,<br>850, | 850,<br>850,<br>850, | 850}           |
| 01528<br>01529<br>01530<br>01531<br>01532 | , {<br>, {               | 850,           | 850,<br>850,   | 850,                 | 850,                 | 850}<br>850}   |
| 01528<br>01529<br>01530<br>01531          | , {<br>, {<br>, {<br>, { | 850,<br>850,   | 850,<br>850,   | 850,                 | 850,                 | 850}           |

| 01535          | , {        | 850,           | 850,           | 850,           | 280,           | 850}           |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 01536<br>01537 | , {<br>, { | 280,<br>850,   | 280,<br>850,   | 280,<br>850,   | 280,<br>280,   | 280}<br>850}   |
| 01538          | }          |                |                |                |                |                |
| 01539<br>01540 | ,{{<br>,{  | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850}<br>850}   |
| 01541<br>01542 | , {<br>, { | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850}<br>850}   |
| 01543          | , {        | 850,           | 850,           | 850,           | 850,           | 850}           |
| 01544<br>01545 | }<br>,{{   | 850,           | 280,           | 850,           | 280,           | 850}           |
| 01546<br>01547 | , {<br>, { | 280,<br>850,   | 280,<br>280,   | 280,<br>850,   | 280,<br>280,   | 280}<br>850}   |
| 01548          | , {        | 280,           | 280,           | 280,           | 280,           | 280}           |
| 01549<br>01550 | , {<br>}   | 850,           | 280,           | 850,           | 280,           | 850}           |
| 01551          | , { {      | 850,           | 850,           | 850,           | 850,           | -160}          |
| 01552<br>01553 | , {<br>, { | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | -160}<br>-160} |
| 01554<br>01555 | , {<br>, { | 850,<br>-160,  | 850,<br>-160,  | 850,<br>-160,  | 850,<br>-160,  | -160}<br>-160} |
| 01556          | }          | 100,           | 100,           | 100,           | 100,           | 100)           |
| 01557<br>01558 | }<br>,{{{  | 850,           | 850,           | 850,           | 850,           | 850}           |
| 01559          | , {        | 850,           | 850,           | 850,           | 850,           | 850}           |
| 01560<br>01561 | , {<br>, { | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850}<br>850}   |
| 01562          | , {        | 850,           | 850,           | 850,           | 850,           | 850}           |
| 01563<br>01564 | }<br>,{{   | 850,           | 850,           | 850,           | 280,           | 850}           |
| 01565<br>01566 | , {<br>, { | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 280,<br>280,   | 850}<br>850}   |
| 01567          | , {        | 280,           | 280,           | 280,           | 280,           | 280}           |
| 01568<br>01569 | , {<br>}   | 850,           | 850,           | 850,           | 280,           | 850}           |
| 01570          | , { {      | 850,           | 850,           | 850,           | 850,           | 850}           |
| 01571<br>01572 | , {<br>, { | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850}<br>850}   |
| 01573          | , {        | 850,           | 850,           | 850,           | 850,           | 850}           |
| 01574<br>01575 | , {<br>}   | 850,           | 850,           | 850,           | 850,           | 850}           |
| 01576<br>01577 | , { {      | 850,<br>850,   | 280,<br>280,   | 850,<br>850,   | 280,<br>280,   | 850}           |
| 01578          | , {<br>, { | 850,           | 280,           | 850,           | 280,           | 850}<br>850}   |
| 01579<br>01580 | , {<br>, { | 280,<br>850,   | 280,<br>280,   | 280,<br>850,   | 280,<br>280,   | 280}<br>850}   |
| 01581          | }          |                |                |                |                |                |
| 01582<br>01583 | ,{{<br>,{  | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | 850,<br>850,   | -160}<br>-160} |
| 01584          | , {        | 850,           | 850,           | 850,           | 850,           | -160}          |
| 01585<br>01586 | , {<br>, { | 850,<br>-160,  | 850,<br>-160,  | 850,<br>-160,  | 850,<br>-160,  | -160}<br>-160} |
| 01587<br>01588 | }          |                |                |                |                |                |
| 01589          | , { { {    | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01590<br>01591 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01592          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01593<br>01594 | , {<br>}   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01595          | , { {      | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01596<br>01597 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 780,<br>780,   | 1350}<br>1350} |
| 01598<br>01599 | , {<br>, { | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780,<br>780,   | 780}<br>1350}  |
| 01600          | }          |                |                |                |                |                |
| 01601<br>01602 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01603          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01604<br>01605 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01606          | }          |                |                | 1250           |                |                |
| 01607<br>01608 | ,{{<br>,{  | 1350,<br>1350, | 780,<br>780,   | 1350,<br>1350, | 780,<br>780,   | 1350}<br>1350} |
| 01609<br>01610 | , {        | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01611          | , {<br>, { | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01612<br>01613 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01614          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01615<br>01616 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}<br>340}   |
| 01617          | , {        | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01618<br>01619 | }          |                |                |                |                |                |
| 01620<br>01621 | ,{{{<br>,{ | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
|                | , (        | ,              | ,              | ,              | ,              |                |

| 01622          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 01623          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01624<br>01625 | , {<br>}   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01626          | ,{{        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01627          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01628          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01629          | , {        | 780,           | 780,<br>1350,  | 780,           | 780,           | 780}           |
| 01630<br>01631 | , {<br>}   | 1350,          | 1330,          | 1350,          | 780,           | 1350}          |
| 01632          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01633          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01634          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01635<br>01636 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01637          | }          | 1550,          | 1000,          | 1000,          | 1330,          | 1550)          |
| 01638          | ,{{        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01639          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01640          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01641<br>01642 | , {<br>, { | 780,<br>1350,  | 780,<br>780,   | 780,<br>1350,  | 780,<br>780,   | 780}<br>1350}  |
| 01643          | }          | ,              | ,              |                | ,              | ,              |
| 01644          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01645          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01646<br>01647 | , {        | 1350,          | 1350,<br>1350, | 1350,          | 1350,<br>1350, | 340}           |
| 01648          | , {<br>, { | 1350,<br>340,  | 340,           | 1350,<br>340,  | 340,           | 340}<br>340}   |
| 01649          | }          | ,              | ,              | ,              |                | ,              |
| 01650          | }          |                |                |                |                |                |
| 01651          | , { { {    | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01652          | , {        | 1350,          | 1350,          | 1350,          | 1350,<br>1350, | 1350}          |
| 01653<br>01654 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,          | 1350}<br>1350} |
| 01655          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01656          | }          |                |                |                |                |                |
| 01657          | , { {      | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01658          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01659<br>01660 | , {<br>, { | 1350,<br>780,  | 1350,<br>780,  | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01661          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01662          | }          |                |                |                |                |                |
| 01663          | ,{{        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01664          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01665<br>01666 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01667          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01668          | }          |                |                |                |                |                |
| 01669          | , { {      | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01670          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01671<br>01672 | , {<br>, { | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01673          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01674          | }          |                |                |                |                |                |
| 01675          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01676          | , {        | 1350,          | 1350,          | 1350,<br>1350, | 1350,          | 340}           |
| 01677<br>01678 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,          | 1350,<br>1350, | 340}<br>340}   |
| 01679          | , {        | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01680          | }          |                |                |                |                |                |
| 01681          | }          | 1050           | 1050           | 1250           | 1050           | 10501          |
| 01682<br>01683 | , { { {    | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01684          | , {<br>, { | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01685          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01686          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01687          | }          | 1050           | 1050           | 1250           | 700            | 10501          |
| 01688<br>01689 | , { {      | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 780,<br>780,   | 1350}<br>1350} |
| 01690          | , {<br>, { | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01691          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01692          | , {        | 1350,          | 1350,          | 1350,          | 780,           | 1350}          |
| 01693          | }          | 1050           | 1050           | 1050           | 1050           | 10501          |
| 01694<br>01695 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01696          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01697          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01698          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01699          | }          | 1250           | 700            | 1250           | 700            | 1250           |
| 01700<br>01701 | ,{{<br>,{  | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01701          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01703          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01704          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01705          | }          | 1250           | 1250           | 1250           | 1250           | 240:           |
| 01706<br>01707 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}<br>340}   |
| 01708          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
|                |            |                |                |                |                |                |

| 01700 | ,         | 1250  | 1250  | 1250  | 1250  | 2401   |
|-------|-----------|-------|-------|-------|-------|--------|
| 01709 | , {       | 1350, | 1350, | 1350, | 1350, | 340}   |
| 01710 | , {       | 340,  | 340,  | 340,  | 340,  | 340}   |
| 01711 | }         |       |       |       |       |        |
| 01712 | }         |       |       |       |       |        |
| 01713 | , { { {   | 1350, | 1350, | 1350, | 1350, | 1350}  |
|       |           |       |       |       |       |        |
| 01714 | , {       | 1350, | 1350, | 1350, | 1350, | 1350}  |
| 01715 | , {       | 1350, | 1350, | 1350, | 1350, | 1350}  |
| 01716 | , {       | 1350, | 1350, | 1350, | 1350, | 1350}  |
| 01717 | , {       | 1350, | 1350, | 1350, | 1350, | 1350}  |
|       |           | 1330, | 1330, | 1330, | 1330, | 1330 } |
| 01718 | }         |       |       |       |       |        |
| 01719 | , { {     | 1350, | 1350, | 1350, | 780,  | 1350}  |
| 01720 | , {       | 1350, | 1350, | 1350, | 780,  | 1350}  |
| 01721 | , {       | 1350, | 1350, | 1350, | 780,  | 1350}  |
|       |           |       |       |       |       |        |
| 01722 | , {       | 780,  | 780,  | 780,  | 780,  | 780}   |
| 01723 | , {       | 1350, | 1350, | 1350, | 780,  | 1350}  |
| 01724 | }         |       |       |       |       |        |
| 01725 | , { {     | 1350, | 1350, | 1350, | 1350, | 1350}  |
| 01726 |           |       |       |       | 1350, |        |
|       | , {       | 1350, | 1350, | 1350, |       | 1350}  |
| 01727 | , {       | 1350, | 1350, | 1350, | 1350, | 1350}  |
| 01728 | , {       | 1350, | 1350, | 1350, | 1350, | 1350}  |
| 01729 | , {       | 1350, | 1350, | 1350, | 1350, | 1350}  |
| 01730 | }         | ,     | ,     | ,     | ,     | ,      |
|       |           | 1050  | 700   | 1050  | 700   | 1050   |
| 01731 | , { {     | 1350, | 780,  | 1350, | 780,  | 1350}  |
| 01732 | , {       | 1350, | 780,  | 1350, | 780,  | 1350}  |
| 01733 | , {       | 1350, | 780,  | 1350, | 780,  | 1350}  |
| 01734 | , {       | 780,  | 780,  | 780,  | 780,  | 780}   |
|       |           |       |       |       |       |        |
| 01735 | , {       | 1350, | 780,  | 1350, | 780,  | 1350}  |
| 01736 | }         |       |       |       |       |        |
| 01737 | , { {     | 1350, | 1350, | 1350, | 1350, | 340}   |
| 01738 | , {       | 1350, | 1350, | 1350, | 1350, | 340}   |
|       |           |       |       |       |       |        |
| 01739 | , {       | 1350, | 1350, | 1350, | 1350, | 340}   |
| 01740 | , {       | 1350, | 1350, | 1350, | 1350, | 340}   |
| 01741 | , {       | 340,  | 340,  | 340,  | 340,  | 340}   |
| 01742 | }         | ,     |       |       |       | ,      |
|       |           |       |       |       |       |        |
| 01743 | }         |       |       |       |       |        |
| 01744 | }         |       |       |       |       |        |
| 01745 | , { { { { | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01746 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |           |       |       |       |       |        |
| 01747 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01748 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01749 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01750 | }         |       |       |       |       |        |
| 01751 | , { {     | TNE   | TNE   | TME   | TNE   | TNET   |
|       |           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01752 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01753 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01754 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01755 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |           | TIME, | TIME, | TIME, | TIME, | TIME   |
| 01756 | }         |       |       |       |       |        |
| 01757 | , { {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01758 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01759 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |           |       |       |       |       |        |
| 01760 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01761 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01762 | }         |       |       |       |       |        |
| 01763 | , { {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01764 |           | TATE  |       | TATE  |       | INF }  |
|       | , (       | INF,  | INF,  | INF,  | INF,  |        |
| 01765 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01766 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01767 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01768 | }         |       |       |       |       |        |
| 01769 | ,{{       | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |           |       |       |       |       |        |
| 01770 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01771 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01772 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01773 | , {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 01774 | }         | ,     | ,     | ,     | ,     | ,      |
|       |           |       |       |       |       |        |
| 01775 | }         |       |       |       |       |        |
| 01776 | , { { {   | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01777 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01778 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01779 |           | 850,  | 850,  | 850,  | 850,  |        |
|       | , {       |       |       |       |       | 850}   |
| 01780 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01781 | }         |       |       |       |       |        |
| 01782 | , { {     | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01783 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
|       |           |       |       |       |       |        |
| 01784 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01785 | , {       | 280,  | 280,  | 280,  | 280,  | 280}   |
| 01786 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01787 | }         |       |       |       |       |        |
| 01788 | , { {     | 850,  | 850,  | 850,  | 850,  | 850}   |
|       |           |       |       |       |       |        |
| 01789 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01790 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01791 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01792 | , {       | 850,  | 850,  | 850,  | 850,  | 850}   |
| 01793 |           | /     | ,     | ,     | /     | 2001   |
|       | }         | 0.5.0 | 000   | 0.50  | 000   | 0.50   |
| 01794 | , { {     | 850,  | 280,  | 850,  | 280,  | 850}   |
| 01795 | , {       | 280,  | 280,  | 280,  | 280,  | 280}   |
|       |           |       |       |       |       |        |

| 01796          | , {        | 850,           | 280,          | 850,           | 280,          | 850}           |
|----------------|------------|----------------|---------------|----------------|---------------|----------------|
| 01797          | , {        | 280,           | 280,          | 280,           | 280,          | 280}           |
| 01798          | , {        | 850,           | 280,          | 850,           | 280,          | 850}           |
| 01799          | }          |                |               |                |               |                |
| 01800          | , { {      | 850,           | 850,          | 850,           | 850,          | -160}          |
| 01801          | , {        | 850,           | 850,          | 850,           | 850,          | -160}          |
| 01802          | , {        | 850,           | 850,          | 850,           | 850,          | -160}          |
| 01803          | , {        | 850,           | 850,          | 850,           | 850,          | -160}          |
| 01804          | , {        | -160,          | -160,         | -160,          | -160,         | -160}          |
| 01805          | }          |                |               |                |               |                |
| 01806          | }          |                |               |                |               |                |
| 01807          | ,{{{       | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01808          | , {        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01809          | , {        | 850,           | 850,          | 850,           | 850 <b>,</b>  | 850}           |
| 01810          | , {        | 850,           | 850,<br>850,  | 850,           | 850,          | 850}<br>850}   |
| 01811<br>01812 | , {<br>}   | 850,           | 030,          | 850,           | 850,          | 030}           |
| 01813          | ,{{        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01814          | , {        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01815          | , {        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01816          | , {        | 280,           | 280,          | 280,           | 280,          | 280}           |
| 01817          | , {        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01818          | }          |                |               |                |               |                |
| 01819          | , { {      | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01820          | , {        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01821          | , {        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01822          | , {        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01823          | , {        | 850,           | 850,          | 850,           | 850,          | 850}           |
| 01824          | }          |                |               |                |               |                |
| 01825          | , { {      | 850,           | 280,          | 850,           | 280,          | 850}           |
| 01826          | , {        | 850,           | 280,          | 850,           | 280,          | 850}           |
| 01827          | , {        | 850,           | 280,          | 850,           | 280,          | 850}           |
| 01828          | , {        | 280,           | 280,          | 280,           | 280,          | 280}           |
| 01829          | , {        | 850,           | 280,          | 850,           | 280,          | 850}           |
| 01830          | }          | 0.50           | 0.5.0         | 0.50           | 0.5.0         | 1.001          |
| 01831          | , { {      | 850,           | 850,          | 850,           | 850 <b>,</b>  | -160}          |
| 01832          | , {        | 850,           | 850,          | 850,           | 850 <b>,</b>  | -160}          |
| 01833<br>01834 | , {        | 850,           | 850 <b>,</b>  | 850,           | 850,<br>850,  | -160}          |
| 01835          | , {<br>, { | 850,<br>-160,  | 850,<br>-160, | 850,<br>-160,  | -160,         | -160}<br>-160} |
| 01836          | }          | 100,           | 100,          | 100,           | 100,          | 100)           |
| 01837          | }          |                |               |                |               |                |
| 01838          | , { { {    | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01839          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01840          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01841          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01842          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01843          | }          |                |               |                |               |                |
| 01844          | , { {      | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01845          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01846          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01847          | , {        | 780,           | 780,          | 780,           | 780,          | 780}           |
| 01848          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01849          | }          |                |               |                |               |                |
| 01850          | , { {      | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01851          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01852          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01853          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01854          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01855          | }          | 1350           | 780,          | 1350           | 700           | 13501          |
| 01856<br>01857 | ,{{<br>,{  | 1350,<br>1350, | 780,          | 1350,<br>1350, | 780,<br>780,  | 1350}<br>1350} |
| 01858          | , {        | 1350,          | 780,          | 1350,          | 780,          | 1350}          |
| 01859          | , {        | 780,           | 780,          | 780,           | 780,          | 780}           |
| 01860          | , {        | 1350,          | 780,          | 1350,          | 780,          | 1350}          |
| 01861          | }          | ,              | ,             | ,              | ,             | ,              |
| 01862          | ,{{        | 1350,          | 1350,         | 1350,          | 1350,         | 340}           |
| 01863          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 340}           |
| 01864          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 340}           |
| 01865          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 340}           |
| 01866          | , {        | 340,           | 340,          | 340,           | 340,          | 340}           |
| 01867          | }          |                |               |                |               |                |
| 01868          | }          |                |               |                |               |                |
| 01869          | , { { {    | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01870          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01871          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01872          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01873          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01874          | }          | 1050           | 1050          | 1050           | 1050          | 1050.          |
| 01875          | , { {      | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01876          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01877          | , {        | 1350,          | 1350,<br>780, | 1350,<br>780,  | 1350,<br>780, | 1350}<br>780}  |
| 01878<br>01879 | , {        | 780,<br>1350,  | 1350,         | 1350,          | 1350,         | 1350}          |
| 01879          | , {<br>}   | 1000,          | 1000,         | 1000,          | ±000,         | 1000}          |
| 01881          | , { {      | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
| 01882          | , {        | 1350,          | 1350,         | 1350,          | 1350,         | 1350}          |
|                | , ,        | /              | ,             | ,              | /             | ,              |

| 01883<br>01884 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 01885          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01886<br>01887 | }<br>,{{   | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01888          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01889<br>01890 | , {<br>, { | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01891          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01892<br>01893 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01894          | , (        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01895          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01896<br>01897 | , {<br>, { | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 340}<br>340}   |
| 01898          | }          |                |                |                |                |                |
| 01899<br>01900 | }<br>,{{{  | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01901          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01902<br>01903 | , {        | 1350,          | 1350,          | 1350,          | 1350,<br>1350, | 1350}          |
| 01903          | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,          | 1350}<br>1350} |
| 01905          | }          | 1050           | 1050           | 1050           | 1050           | 10501          |
| 01906<br>01907 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01908          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01909<br>01910 | },         | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780}<br>1350}  |
| 01910          | , {<br>}   | 1330,          | 1330,          | 1330,          | 1330,          | 1330}          |
| 01912          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01913<br>01914 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01915          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01916          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01917<br>01918 | }<br>,{{   | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01919          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01920<br>01921 | , {<br>, { | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01922          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01923<br>01924 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01925          | , (        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01926          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01927<br>01928 | , {<br>, { | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 1350,<br>340,  | 340}<br>340}   |
| 01929          | }          | ,              | ,              | ·              |                | ,              |
| 01930<br>01931 | }<br>,{{{  | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01932          | , ( ( (    | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01933          | , {        | 1350,          | 1350,          | 1350,<br>1350, | 1350,          | 1350}          |
| 01934<br>01935 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,          | 1350,<br>1350, | 1350}<br>1350} |
| 01936          | }          |                |                |                |                |                |
| 01937<br>01938 | ,{{<br>,{  | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01939          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01940<br>01941 | , {<br>, { | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780,<br>1350,  | 780}<br>1350}  |
| 01942          | }          | 1330,          | 1330,          | 1330,          | 1330,          | 1550)          |
| 01943          | , { {      | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01944<br>01945 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01946          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01947<br>01948 | , {<br>}   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01949          | , { {      | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01950          | , {        | 780,           | 780,           | 780,           | 780,           | 780}           |
| 01951<br>01952 | , {<br>, { | 1350,<br>780,  | 780,<br>780,   | 1350,<br>780,  | 780,<br>780,   | 1350}<br>780}  |
| 01953          | , {        | 1350,          | 780,           | 1350,          | 780,           | 1350}          |
| 01954<br>01955 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01956          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 340}           |
| 01957<br>01958 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 340}<br>340}   |
| 01950          | , {        | 340,           | 340,           | 340,           | 340,           | 340}           |
| 01960          | }          |                |                |                |                |                |
| 01961<br>01962 | }<br>,{{{  | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01963          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01964<br>01965 | , {<br>, { | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350,<br>1350, | 1350}<br>1350} |
| 01966          | , {        | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01967<br>01968 | }<br>,{{   | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
| 01969          | , 11       | 1350,          | 1350,          | 1350,          | 1350,          | 1350}          |
|                |            |                |                |                |                |                |

18.174 intl22.h 991

```
1350,
                       1350,
                               1350,
                                       1350,
          , {
01971
                780,
                        780,
                                780,
                                         780,
                                                 780}
                                       1350,
01972
               1350
                       1350,
                               1350,
                                                1350}
01973
         , { {
01974
               1350.
                       1350.
                               1350.
                                       1350.
                                                13501
01975
                                       1350,
               1350.
                       1350.
                               1350.
                                                1350}
01976
               1350,
                       1350,
                               1350,
                                       1350,
                                                1350}
01977
               1350,
                       1350,
                               1350,
                                       1350,
                                                1350}
01978
               1350,
                       1350,
                               1350,
                                       1350,
                                                1350}
01979
               1350.
                        780.
01980
                               1350.
                                         780.
                                                1350}
         , { {
                               1350,
01981
               1350.
                        780.
                                         780.
                                                1350}
          , {
01982
               1350,
                         780,
                               1350,
                                         780,
                                                1350}
01983
                780,
                        780,
                                780,
                                         780,
                                                 780}
01984
               1350,
                        780,
                               1350,
                                         780,
                                                1350}
01985
         , { {
               1350,
                               1350,
                                       1350,
                       1350.
                                                 3401
01986
                                                 340}
               1350,
                       1350,
                               1350,
                                       1350,
01987
                       1350,
                                                 340}
01988
               1350,
                               1350,
                                        1350,
01989
               1350,
                       1350,
                               1350,
                                       1350,
                                                 340}
01990
                340,
                        340,
                                340,
                                         340,
                                                 340}
01991
01992
01993
        }};
```

## 18.174 intl22.h

```
00001 PUBLIC int int22_37[NBPAIRS+1][NBPAIRS+1][5][5][5][5] =
00002 {{{{{{{{{}}
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                     INF }
00003
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF
00004
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      TNF }
00005
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                      INF
00006
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                     INF }
00007
00008
           , { {
                  INF,
                           INF.
                                    INF.
                                             INF,
                                                      INF }
00009
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00010
                  INF,
                           INF,
                                    INF
                                             INF,
                                                      INF }
00011
                  INF,
                           INF,
                                    INF
                                             INF,
                                                      TNF
00012
                  INF.
                           TNF.
                                    INF.
                                             INF.
                                                     TNF }
00013
                  INF,
                                             INF,
00014
                           INF,
                                    INF,
                                                      INF }
           , { {
00015
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , {
00016
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                  INF,
00017
                           INF,
                                    INF
                                             INF,
                                                      TNF
00018
                  INF.
                           INF.
                                                      INF }
                                    INF.
                                             INF.
00019
                  INF,
00020
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , { {
00021
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00022
            , {
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF
00023
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      TNF }
00024
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                     INF }
00025
00026
           , { {
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                  INF,
00027
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , {
00028
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                  INF,
                                    INF,
00029
                           INF,
                                             INF,
                                                      TNF!
00030
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                     TNF
00031
00032
00033
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
         , { { {
00034
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF)
           , {
00035
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                  INF,
00036
                           INF,
                                    INF.
                                             INF,
                                                      TNF
00037
                           INF.
                  INF.
                                    INF.
                                             INF.
                                                      INF }
00038
00039
           , { {
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00040
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00041
                  INF,
                           INF,
                                    INF
                                             INF,
                                                      TNF }
            , {
00042
                  INF,
                           INF,
                                    INF
                                             INF,
                                                      TNF }
00043
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                     INF }
00044
00045
           , { {
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                           INF,
00046
                  INF,
                                    INF,
                                             INF,
                                                      INF }
           , {
00047
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                                             INF,
00048
                  INF.
                           INF.
                                    INF.
                                                      TNF!
00049
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                      INF }
00050
                  INF,
00051
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , { {
                                             INF,
00052
                  INF,
                           INF,
                                    INF,
                                                      INF }
           , {
00053
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF)
            , {
00054
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      TNF
00055
                  INF,
                           INF,
                                    INF.
                                             INF,
                                                     INF }
00056
00057
                  INF,
                           INF.
                                    INF,
                                             INF,
                                                      INF }
           , { {
00058
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , {
```

| 00059  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
|--------|------------|--------|--------|--------|--------|--------|
| 00060  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00061  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00062  | }          | 1111,  | 1111   | 1111,  | 1111,  | 1111   |
| 00063  | }          |        |        |        |        |        |
| 00064  | , { { {    | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00065  | , ( ( (    | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00066  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00067  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00068  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00069  | }          | TIVE , | TIVE , | TINE , | TINE , | TIME   |
| 00070  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00070  | , (        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00071  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00072  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00073  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00075  | }          | 1111,  | 1111   | 1111,  | 1111,  | 1111   |
| 00076  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00077  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00078  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00079  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00080  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00081  | }          | 1111,  | 1111   | 1111,  | 1111,  | 1111   |
| 00082  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00083  | , (        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00084  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00085  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00086  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00087  | }          | TIVE , | TIVE , | TINE , | TINE , | TIME   |
| 00088  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00089  | , (        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 000090 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00091  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00092  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00093  | }          | TIVE , | TIVE , | TIME , | TINE , | TIME   |
| 00093  | }          |        |        |        |        |        |
| 00095  | ,{{{       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00096  | , ( (      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00097  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00098  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00099  | , \<br>, { | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00100  | }          | TIVE , | TIVE , | TIME , | TINE , | TIME   |
| 00100  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00101  | , (        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00102  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00103  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00104  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00103  | , \<br>}   | TIME,  | TIME,  | TIME,  | TIME,  | TIME } |
| 00100  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00107  | , 11       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00100  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00103  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00111  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00111  | }          | 1111,  | 1111   | 1111,  | 1111,  | 1111   |
| 00112  | ,{{        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00114  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00115  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00116  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00117  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00118  | }          | /      |        | 1111   | 1111   |        |
| 00119  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00120  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00121  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00122  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00123  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00124  | }          | ,      | ,      | ,      | ,      | ,      |
| 00125  | }          |        |        |        |        |        |
| 00126  | ,{{{       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00127  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00128  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00129  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00130  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00131  | }          | ,      | .,     | ,      | ,      | ,      |
| 00131  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00133  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00134  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00135  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00136  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00137  | }          | /      | ,      |        | ,      | ,      |
| 00137  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00130  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00140  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00141  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00142  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00143  | }          | /      | ,      | ,      | ,      |        |
| 00143  | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00145  | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
|        | , (        | ,      | ,      | ,      | ,      | ,      |

18.174 intl22.h 993

| 00146 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
|-------|-----------|--------|--------|--------|--------|--------|
| 00140 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00147 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00140 | }         | TIVE , | TIVE , | TIME , | TIME , | TIME   |
| 00149 | , { {     | TNE    | TME    | TME    | TNE    | INF }  |
| 00150 |           | INF,   | INF,   | INF,   | INF,   |        |
|       | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00152 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00153 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00154 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00155 | }         |        |        |        |        |        |
| 00156 | }         |        |        |        |        |        |
| 00157 | }         |        |        |        |        |        |
| 00158 | , { { { { | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00159 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00160 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00161 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00162 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00163 | }         |        |        |        |        |        |
| 00164 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00165 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00166 | , {       | INF,   | INF,   | INF,   | INF,   | INF)   |
| 00167 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00168 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00169 | }         | 1111   | 1111   | 1111,  | 1111   | 1111   |
| 00103 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
|       |           | INF,   |        | INF,   |        | INF }  |
| 00171 | , {       |        | INF,   |        | INF,   |        |
| 00172 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00173 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00174 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00175 | }         |        |        |        |        |        |
| 00176 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00177 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00178 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00179 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00180 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00181 | }         | ,      | ,      |        | ,      |        |
| 00182 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00183 | , {       | INF,   | INF,   | INF,   | INF,   | INF)   |
| 00184 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00185 | , {       |        |        |        | INF,   | INF }  |
|       |           | INF,   | INF,   | INF,   |        |        |
| 00186 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00187 | }         |        |        |        |        |        |
| 00188 | }         |        |        |        |        |        |
| 00189 | , { { {   | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00190 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00191 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00192 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00193 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00194 | }         |        |        |        |        |        |
| 00195 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00196 | , {       | INF,   | INF,   | INF,   | INF,   | INF)   |
| 00197 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00198 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00199 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00200 | }         | TIVE , | INI,   | TIME , | TIME , | TIME   |
| 00200 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
|       |           |        |        | INF,   |        |        |
| 00202 | , {       | INF,   | INF,   |        | INF,   | INF }  |
| 00203 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00204 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00205 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00206 | }         |        | ****   |        |        |        |
| 00207 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00208 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00209 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00210 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00211 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00212 | }         |        |        |        |        |        |
| 00213 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00214 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00215 | , {       | INF,   | INF,   | INF,   | INF,   | INF)   |
| 00216 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00217 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00217 | }         | /      | /      | /      | /      | +- J   |
| 00218 | }         |        |        |        |        |        |
|       |           | TNE    | INF,   | INF,   | INF,   | INF }  |
| 00220 | , { { {   | INF,   |        |        |        |        |
| 00221 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00222 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00223 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00224 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00225 | }         |        |        |        |        |        |
| 00226 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00227 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00228 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00229 | , {       | INF,   | INF,   | INF,   | INF,   | INF)   |
| 00230 | , {       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00230 | }         | /      | /      | /      | /      | +- J   |
| 00231 | , { {     | INF,   | INF,   | INF,   | INF,   | INF }  |
| JULUL | ,         | /      | /      | /      | /      | -141 J |

| 00233 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|-------|-----------|-------|-------|-------|-------|-------|
| 00233 |           |       |       |       |       |       |
|       | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00235 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00236 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00237 | }         |       |       |       |       |       |
| 00238 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00239 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00240 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00241 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00242 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00243 | }         |       |       |       |       |       |
| 00244 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00245 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00246 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00247 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00248 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00249 | }         |       |       |       |       |       |
| 00250 | ,         |       |       |       |       |       |
|       | }         |       |       |       |       |       |
| 00251 | , { { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00252 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00253 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00254 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00255 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00256 | }         |       |       |       |       |       |
| 00257 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00258 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00259 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00260 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00261 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00262 | }         | ,     | ,     | ,     | ,     | ,     |
|       | ,         |       |       |       |       |       |
| 00263 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00264 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00265 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00266 | , {       | INF,  | INF,  |       |       | INF } |
|       |           |       |       | INF,  | INF,  |       |
| 00267 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00268 | }         |       |       |       |       |       |
| 00269 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00270 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00271 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00272 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00273 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00274 | }         | ,     | ,     | ,     | ,     | ,     |
|       |           | TAID  | TNIE  | TNIE  | TNIE  | TATEL |
| 00275 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00276 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00277 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00278 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00279 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00280 | }         |       |       |       |       |       |
| 00281 | }         |       |       |       |       |       |
| 00282 |           | TNE   | TNE   | TME   | TNIE  | TNIE  |
|       | ,{{       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00283 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00284 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00285 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00286 | , {       | INF,  | INF,  | INF,  | INF,  | INF)  |
|       |           | TIME, | TIME, | TIME, | TIME, | TIME  |
| 00287 | }         |       |       |       |       |       |
| 00288 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00289 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00290 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00291 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00292 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00293 | }         |       |       |       |       |       |
| 00294 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00295 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00296 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00297 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00298 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00299 | }         |       |       | •     | •     | ,     |
|       |           | TNE   | TAID  | TNIE  | TAID  | TATEL |
| 00300 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00301 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00302 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00303 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00304 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00305 | }         |       |       |       |       |       |
| 00306 | , { {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00307 | , {       | INF,  | INF,  | INF,  | INF,  | INF)  |
|       |           |       |       |       |       |       |
| 00308 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00309 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00310 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00311 | }         | ,     | ,     | ,     | ,     | ,     |
|       |           |       |       |       |       |       |
| 00312 | }         |       |       |       |       |       |
| 00313 | }         |       |       |       |       |       |
| 00314 | , { { { { | INF,  | INF,  | INF,  | INF,  | INF } |
| 00315 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
|       |           |       |       |       |       |       |
| 00316 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00317 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00318 | , {       | INF,  | INF,  | INF,  | INF,  | INF } |
| 00319 | }         | ,     | ,     | ,     | ,     | ,     |
| 20017 | J         |       |       |       |       |       |
|       |           |       |       |       |       |       |

| 00320 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
|-------|------------|------|---------|--------------|--------------|--------|
| 00320 | , (        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00321 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00323 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00324 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00325 | }          | ,    | ,       | ,            | ,            | ,      |
| 00326 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00327 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00328 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00329 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00330 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00331 | }          | ,    | ,       | ,            | ,            | ,      |
| 00332 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00333 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00334 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00335 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00336 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00337 | }          |      |         |              |              |        |
| 00338 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00339 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00340 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00341 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00342 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00343 | }          |      |         |              |              |        |
| 00344 | }          |      |         |              |              |        |
| 00345 | , { { {    | INF, | INF,    | INF,         | INF,         | INF }  |
| 00346 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00347 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00348 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00349 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00350 | }          |      |         |              |              |        |
| 00351 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00352 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00353 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00354 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00355 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00356 | }          |      |         |              |              |        |
| 00357 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00358 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00359 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00360 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00361 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00362 | }          |      |         |              |              |        |
| 00363 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00364 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00365 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00366 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00367 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00368 | }          |      |         |              |              |        |
| 00369 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00370 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00371 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00372 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00373 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00374 | }          |      |         |              |              |        |
| 00375 | }          |      |         |              |              |        |
| 00376 | , { { {    | INF, | INF,    | INF,         | INF,         | INF }  |
| 00377 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00378 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00379 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00380 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00381 | }          |      |         |              |              |        |
| 00382 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00383 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00384 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00385 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00386 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00387 | }          |      |         |              |              |        |
| 00388 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00389 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00390 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00391 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00392 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00393 | }          | TNIE | TAIL    | TNIP         | TNIE         | TATT   |
| 00394 | , { {      | INF, | INF,    | INF,         | INF,         | INF }  |
| 00395 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00396 | , {        | INF, | INF,    | INF,<br>INF, | INF,<br>INF, | INF )  |
| 00397 | , {        | INF, | INF,    |              |              | INF )  |
| 00398 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00399 | }<br>,{{   | INF, | INF,    | INF,         | INF,         | INF }  |
| 00400 | , 11       | INF, | INF,    | INF,         | INF,         | INF }  |
| 00401 | , t<br>, { | INF, | INF,    | INF,         | INF,         | INF }  |
| 00402 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00403 | , {        | INF, | INF,    | INF,         | INF,         | INF }  |
| 00404 | }          | /    | -1112 / | -111.        | -111 /       | T14T } |
| 00405 | }          |      |         |              |              |        |
|       | ,          |      |         |              |              |        |

| 00407 | , { { {   | INF,  | INF,   | INF,  | INF,  | INF } |
|-------|-----------|-------|--------|-------|-------|-------|
| 00408 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00409 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00410 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00411 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00412 | }         | 1111, | 1111 / | 1111, | 1111, | 1111  |
| 00413 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00414 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00414 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00415 |           | INF,  | INF,   | INF,  | INF,  | INF } |
|       | , {       |       |        |       |       |       |
| 00417 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00418 | }         | ****  |        |       |       |       |
| 00419 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00420 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00421 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00422 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00423 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00424 | }         |       |        |       |       |       |
| 00425 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00426 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00427 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00428 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00429 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00430 | }         |       |        |       |       |       |
| 00431 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00432 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00433 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00434 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00435 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00436 | }         | ,     | ,      | ,     | /     | ,     |
| 00437 | }         |       |        |       |       |       |
| 00438 | ,{{{      | INF,  | INF,   | INF,  | INF,  | INF } |
| 00430 | , i i i   | INF,  | INF,   | INF,  | INF,  | INF } |
| 00433 | , {       |       |        | INF,  | INF,  | INF } |
|       | , {       | INF,  | INF,   |       |       |       |
| 00441 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00442 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00443 | }         |       |        |       |       |       |
| 00444 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00445 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00446 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00447 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00448 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00449 | }         |       |        |       |       |       |
| 00450 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00451 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00452 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00453 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00454 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00455 | }         |       |        |       |       |       |
| 00456 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00457 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00458 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00459 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00460 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00461 | }         | ,     | ,      |       | ,     |       |
| 00462 | , { {     | INF,  | INF.   | INF,  | INF,  | INF } |
| 00463 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00464 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00465 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00466 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00467 | }         | /     |        | /     | /     |       |
| 00468 | }         |       |        |       |       |       |
| 00469 | }         |       |        |       |       |       |
| 00470 | ,{{{{     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00471 | , ( ( ( ( | INF,  | INF,   | INF,  | INF,  | INF } |
| 00471 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00472 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00473 |           | INF,  | INF,   | INF,  | INF,  | INF } |
|       | , {       | TIME, | TIME,  | TIME, | TIME, | TIME  |
| 00475 | }         | TNIE  | TAID   | T.110 | TAID  | TAIT  |
| 00476 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00477 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00478 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00479 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00480 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00481 | }         |       | ****   |       |       |       |
| 00482 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00483 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00484 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00485 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00486 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00487 | }         |       |        |       |       |       |
| 00488 | , { {     | INF,  | INF,   | INF,  | INF,  | INF } |
| 00489 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00490 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00491 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00492 | , {       | INF,  | INF,   | INF,  | INF,  | INF } |
| 00493 | }         |       |        |       |       |       |
|       | -         |       |        |       |       |       |

| 00494          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 00495          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00496          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00497          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00498          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00499          | }          |              |              |              |              |                |
| 00500<br>00501 | }          | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00501          | }}},<br>}, | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00503          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00504          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00505          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00506          | }          |              |              |              |              |                |
| 00507          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00508          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00509          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00510          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00511<br>00512 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00512          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00514          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00515          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00516          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00517          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00518          | }          |              |              |              |              |                |
| 00519          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00520          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00521          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00522<br>00523 | , {        | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00524          | , {<br>}   | INF,         | TIME,        | TIME,        | INT,         | TIME           |
| 00524          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00526          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00527          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00528          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00529          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00530          | }          |              |              |              |              |                |
| 00531          | }          |              |              |              |              |                |
| 00532          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00533          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00534<br>00535 | , {        | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00536          | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00537          | }          |              |              |              | 1111,        | ,              |
| 00538          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00539          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00540          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00541          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00542          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00543          | }          | TNIE         | TAID         | TAID         | TAID         | TAITI          |
| 00544<br>00545 | , { {      | INF,<br>INF, | INF,         | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00546          | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00547          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00548          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00549          | }          |              |              |              |              |                |
| 00550          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00551          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00552          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00553          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00554<br>00555 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00556          | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00557          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00558          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00559          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00560          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00561          | }          |              |              |              |              |                |
| 00562          | }          |              |              |              |              |                |
| 00563          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00564          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00565          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00566<br>00567 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00568          | , 1<br>}   | TTAT, 1      | T147, 1      | T145 1       | TIME .       | T141. }        |
| 00569          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00570          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00571          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00572          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00573          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00574          | }          |              |              |              |              | _              |
| 00575          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00576          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00577<br>00578 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00578          | , t<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00580          | }          | ,            | /            | /            | /            |                |
|                | -          |              |              |              |              |                |

| 00581          |           | TNIE         | TNE  | TME          | TME          | TNIE           |
|----------------|-----------|--------------|------|--------------|--------------|----------------|
| 00582          | , { {     | INF,<br>INF, | INF, | INF,         | INF,         | INF }<br>INF } |
| 00583          | , {       | INF,         | INF, | INF,<br>INF, | INF,<br>INF, | INF }          |
| 00584          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00585          | , 1       |              |      |              |              | INF }          |
| 00586          | , {<br>}  | INF,         | INF, | INF,         | INF,         | TIME }         |
| 00587          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00588          |           | INF,         |      | INF,         |              | INF }          |
|                | , {       |              | INF, |              | INF,         |                |
| 00589          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00590          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00591          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00592          | }         |              |      |              |              |                |
| 00593          | }         |              |      |              |              |                |
| 00594          | , { { {   | INF,         | INF, | INF,         | INF,         | INF }          |
| 00595          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00596          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00597          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00598          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00599          | }         |              |      |              |              |                |
| 00600          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00601          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00602          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00603          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00604          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00605          | }         |              |      |              |              |                |
| 00606          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00607          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00608          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00609          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00610          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00611          | }         |              |      |              |              |                |
| 00612          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00613          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00614          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00615          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00616          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00617          | }         | ,            | ,    | ,            | ,            | ,              |
| 00618          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00619          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00620          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00621          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00622          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00623          | }         | /            |      | /            | 1111         |                |
| 00624          | }         |              |      |              |              |                |
| 00625          | }         |              |      |              |              |                |
| 00626          | ,{{{{     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00627          | , ( ( ( ( | INF,         | INF, | INF,         | INF,         | INF }          |
| 00627          |           | INF,         | INF, | INF,         | INF,         | INF }          |
|                | , {       |              |      |              |              | INF }          |
| 00629          | , {       | INF,         | INF, | INF,         | INF,         |                |
| 00630          | , {<br>}  | INF,         | INF, | INF,         | INF,         | INF }          |
| 00631          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00632          | , 11      |              |      |              |              |                |
| 00633          |           | INF,         | INF, | INF,         | INF,         | INF }          |
|                | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00635          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00636<br>00637 | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
|                | }         | TNIE         | TND  | TNE          | TAIR         | TATEL          |
| 00638          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00639          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00640          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00641          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00642          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00643          | }         | TNIE         | TATE | TNIE         | T.110        | TATEL          |
| 00644          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00645          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00646          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00647          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00648          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00649          | }         |              |      |              |              |                |
| 00650          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00651          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00652          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00653          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00654          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00655          | }         |              |      |              |              |                |
| 00656          | }         |              |      |              |              |                |
| 00657          | , { { {   | INF,         | INF, | INF,         | INF,         | INF }          |
| 00658          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00659          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00660          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00661          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00662          | }         |              |      |              |              |                |
| 00663          | , { {     | INF,         | INF, | INF,         | INF,         | INF }          |
| 00664          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00665          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00666          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
| 00667          | , {       | INF,         | INF, | INF,         | INF,         | INF }          |
|                |           |              |      | ,            |              | ,              |

| 00668          | }          |              |              |              |              |                |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 00669          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00670          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00671          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00672          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00673          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00674          | }          |              |              |              |              |                |
| 00675          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00676          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00677          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00678          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00679<br>00680 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00681          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00682          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00683          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00684          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00685          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00686          | }          |              |              |              |              |                |
| 00687          | }          |              |              |              |              |                |
| 00688          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00689          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00690          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00691          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00692          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00693          | }          |              |              |              |              |                |
| 00694          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00695          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00696          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00697          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00698          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00699          | }          | TNE          | TND          | TNE          | TNIE         | TAITI          |
| 00700          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00701          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00702<br>00703 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00703          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 00704          | }          | TIME,        | TIME,        | TIME,        | TIME,        | TIME }         |
| 00706          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00707          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00708          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00709          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00710          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00711          | }          | ,            | ,            | ,            | ,            | ,              |
| 00712          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00713          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00714          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00715          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00716          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00717          | }          |              |              |              |              |                |
| 00718          | }          |              |              |              |              |                |
| 00719          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00720          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00721          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00722          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00723          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00724          | }          |              |              |              |              |                |
| 00725          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00726          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00727          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00728          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00729<br>00730 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00730          | }          | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00731          | ,{{<br>,{  | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00732          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00733          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00735          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00736          | }          | ,            | ,            | /            | ,            | ,              |
| 00737          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00738          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00739          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00740          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00741          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00742          | }          |              |              |              |              |                |
| 00743          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00744          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00745          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00746          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00747          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00748          | }          |              |              |              |              |                |
| 00749          | }          | _            |              |              |              |                |
| 00750          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00751          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00752          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00753          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00754          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |

| 00755          | }         |              |      |      |              |       |
|----------------|-----------|--------------|------|------|--------------|-------|
| 00756          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00757          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00758          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00759          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00760<br>00761 | , {<br>}  | INF,         | INF, | INF, | INF,         | INF } |
| 00761          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00763          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00764          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00765          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00766          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00767          | }         |              |      |      |              |       |
| 00768          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00769          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00770          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00771          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00772<br>00773 | , {<br>}  | INF,         | INF, | INF, | INF,         | INF } |
| 00773          | ,{{       | INF,         | INF, | INF, | INF,         | INF } |
| 00775          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00776          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00777          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00778          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00779          | }         |              |      |      |              |       |
| 00780          | }         |              |      |      |              |       |
| 00781          | }         |              |      |      |              |       |
| 00782          | , { { { { | INF,         |      | INF, | INF,         | INF } |
| 00783          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00784          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00785<br>00786 | , {       | INF,<br>INF, | INF, | INF, | INF,         | INF } |
| 00787          | , {<br>}  | INF,         | INF, | INF, | INF,         | INF } |
| 00788          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00789          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00790          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00791          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00792          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00793          | }         |              |      |      |              |       |
| 00794          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00795          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00796          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00797          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00798<br>00799 | , {<br>}  | INF,         | INF, | INF, | INF,         | INF } |
| 00800          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00801          | , (       | INF,         | INF, | INF, | INF,         | INF } |
| 00802          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00803          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00804          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00805          | }         |              |      |      |              |       |
| 00806          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00807          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 80800          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00809          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00810<br>00811 | , {<br>}  | INF,         | INF, | INF, | INF,         | INF } |
| 00812          | }         |              |      |      |              |       |
| 00813          | ,{{{      | INF,         | INF, | INF, | INF,         | INF } |
| 00814          | , {       | INF,         | INF, | INF, | INF,         | INF)  |
| 00815          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00816          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00817          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00818          | }         |              |      |      |              |       |
| 00819          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00820          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00821          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00822<br>00823 | , {       | INF,         | INF, | INF, | INF,<br>INF, | INF } |
| 00823          | , t<br>}  | INF,         | INF, | INF, | INE,         | INF } |
| 00825          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00826          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00827          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00828          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00829          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00830          | }         |              |      |      |              |       |
| 00831          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00832          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00833          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00834          | },        | INF,         | INF, | INF, | INF,         | INF } |
| 00835<br>00836 | , {<br>}  | INF,         | INF, | INF, | INF,         | INF } |
| 00837          | , { {     | INF,         | INF, | INF, | INF,         | INF } |
| 00838          | , (       | INF,         | INF, | INF, | INF,         | INF } |
| 00839          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00840          | , {       | INF,         | INF, | INF, | INF,         | INF } |
| 00841          | , {       | INF,         | INF, | INF, | INF,         | INF } |
|                |           |              |      |      |              |       |

| 00040          | 1          |              |       |              |              |                |
|----------------|------------|--------------|-------|--------------|--------------|----------------|
| 00842<br>00843 | }          |              |       |              |              |                |
| 00844          | 111        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00845          | , 111      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00846          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00847          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00848          |            | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00849          | }          |              |       |              |              |                |
| 00850          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00851          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00852          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00853          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00854          |            | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00855          | }          |              |       |              |              |                |
| 00856          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00857          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00858          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00859<br>00860 | , {<br>, { | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00861          | , l<br>}   | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00862          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00863          | , (        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00864          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00865          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00866          |            | INF,         | INF,  | INF,         |              | INF }          |
| 00867          | }          | ,            | ,     | /            | ,            | ,              |
| 00868          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00869          | , {        |              | INF,  | INF,         | INF,         | INF }          |
| 00870          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00871          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00872          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00873          | }          |              |       |              |              |                |
| 00874          | }          |              |       |              |              |                |
| 00875          | , { { {    | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00876          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00877          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00878          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00879          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00880          | }          |              |       |              |              |                |
| 00881          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00882          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00883          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00884          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00885<br>00886 | , {<br>}   | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00887          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00888          | , (        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00889          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00890          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00891          | , {        | INF,         |       | INF,         | INF,         | INF }          |
| 00892          | }          | ,            | ,     | /            | ,            | ,              |
| 00893          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00894          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00895          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00896          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00897          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00898          | }          |              |       |              |              |                |
| 00899          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00900          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00901          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00902          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00903          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00904          | }          |              |       |              |              |                |
| 00905          | }          | TNE          | TND   | TNE          | TNIE         | TAITI          |
| 00906          | , { { {    | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00907          | , {        | INF,         | INF,  | INF,<br>INF, | INF,         | INF }          |
| 00908          | , {        | INF,<br>INF, | INF,  | INF,         | INF,<br>INF, | INF }          |
| 00909<br>00910 | , {<br>, { | INF,         | INF,  | INF,         | INF,         | INF }<br>INF } |
| 00910          | }          | TIME,        | TIME, | TIME,        | TIME,        | TIME           |
| 00912          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00913          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00914          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00915          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00916          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00917          | }          | ,            | •     | ,            | ,            | ,              |
| 00918          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00919          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00920          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00921          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00922          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00923          | }          |              |       |              |              |                |
| 00924          | , { {      | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00925          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00926          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00927          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
| 00928          | , {        | INF,         | INF,  | INF,         | INF,         | INF }          |
|                |            |              |       |              |              |                |

| 00929          | }          |              |              |              |              |                |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 00930          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00931          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00932          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00933          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00934          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00935          | }          |              |              |              |              |                |
| 00936          | }          |              |              |              |              |                |
| 00937          | }          |              |              |              |              |                |
| 00938          | , { { { {  | INF,         |              | INF,         | INF,         | INF }          |
| 00939          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00940          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00941          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00942          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00943          | }          |              |              |              |              |                |
| 00944          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00945          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00946          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00947          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00948          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00949          | }          | TNE          | TME          | TME          | TNE          | TNIP           |
| 00950          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00951          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00952          | , {        | INF,<br>INF, | INF,         | INF,<br>INF, | INF,         | INF }          |
| 00953          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00954<br>00955 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00956          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00957          | , (        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00958          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00959          |            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00960          | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00961          | }          | TIME ,       | TINE ,       | TIME ,       | TIME ,       | TIME           |
| 00962          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00963          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00964          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00965          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00966          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00967          | }          | 1111,        | 1111,        | 1111,        | 1111,        | 1111           |
| 00968          | }          |              |              |              |              |                |
| 00969          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00970          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00971          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00972          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00973          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00974          | }          | ,            | ,            | ,            | ,            | ,              |
| 00975          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00976          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00977          | , {        | INF,         | INF,         | INF,         | INF,         | INF)           |
| 00978          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00979          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00980          | }          |              |              |              |              |                |
| 00981          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00982          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00983          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00984          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00985          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00986          | }          |              |              |              |              |                |
| 00987          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00988          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00989          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00990          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00991          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00992          | }          |              |              |              |              |                |
| 00993          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00994          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00995          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00996          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00997          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 00998          | }          |              |              |              |              |                |
| 00999          | }          | TNIE         | TNE          | TNE          | TAIR         | TNID           |
| 01000          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01001          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01002<br>01003 | , {        | INF,         | INF,         | INF,<br>INF, | INF,<br>INF, | INF }          |
| 01003          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,         | INF,         | INF }<br>INF } |
| 01004          | , t<br>}   | TINT, 1      | T 1/1, 1     | TINT, 1      | TINT, 1      | TINE }         |
| 01005          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01006          | , 11       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01007          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01008          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01009          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01010          | , \<br>}   | /            | /            | /            | /            | T141 }         |
| 01011          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01012          | , (        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01013          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01015          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|                | , ,        | ,            | /            | /            | ,            |                |

| 01016          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
|----------------|-------------|--------------|--------------|--------------|--------------|-------------------------------------------|
| 01017<br>01018 | }<br>,{{    | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01010          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01020          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01021          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01022          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01023          | }           | TNIE         | TAIF         | TNE          | TAID         | TATEL                                     |
| 01024<br>01025 | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01025          | ,{<br>,{    | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF }                            |
| 01027          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01028          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01029          | }           |              |              |              |              |                                           |
| 01030          | }           |              |              |              |              |                                           |
| 01031          | , { { {     | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01032          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01033          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01034          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01035<br>01036 | , {<br>}    | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01030          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01038          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01039          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01040          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01041          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01042          | }           |              |              |              |              |                                           |
| 01043          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01044<br>01045 | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01045          | , {         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF }                            |
| 01040          | , {<br>, {  | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01048          | }           | 1111,        | 1111,        | 1111/        | 1111 /       | 1111                                      |
| 01049          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01050          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01051          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01052          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01053          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01054          | }           |              |              |              |              |                                           |
| 01055          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01056<br>01057 | , {<br>, {  | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF }                            |
| 01057          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01059          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01060          | }           | ,            | ,            | /            | /            | ,                                         |
| 01061          | }           |              |              |              |              |                                           |
| 01062          | , { { {     | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01063          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01064          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01065          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01066<br>01067 | , {<br>}    | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01068          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01069          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01070          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01071          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01072          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01073          | }           |              |              |              |              |                                           |
| 01074          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01075<br>01076 | ,{<br>,{    | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }                                     |
| 01077          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01078          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01079          | }           | ·            | •            |              | ,            |                                           |
| 01080          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01081          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01082          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01083          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01084          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01085<br>01086 | }<br>,{{    | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01087          | , (         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01088          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01089          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01090          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01091          | }           |              |              |              |              |                                           |
| 01092          | }           |              |              |              |              |                                           |
| 01093          | }           | TNIP         | TAIT         | TNIP         | TNIP         | T. 3. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |
|                | , { { { { { | INF,         | INF,<br>INF, | INF,         | INF,<br>INF, | INF }<br>INF }                            |
| 01095<br>01096 | , {<br>, {  | INF,<br>INF, | INF,         | INF,<br>INF, | INF,         | INF }                                     |
| 01096          | , t<br>, {  | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01097          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01099          | }           | ,            | .,           | ,            | ,            | ,                                         |
| 01100          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01101          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
| 01102          | , {         | INF,         | INF,         | INF,         | INF,         | INF }                                     |
|                |             |              |              |              |              |                                           |

| 01103          | , {             | INF,         |              |              | INF,         |                |
|----------------|-----------------|--------------|--------------|--------------|--------------|----------------|
| 01104<br>01105 | , {<br>}        | INF,         | INF,         | INE,         | INF,         | INF }          |
| 01106          | , { {           | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01107          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01108<br>01109 | , {<br>, {      | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01110          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01111          | }               |              |              |              |              |                |
| 01112<br>01113 | ,{{<br>,{       | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01113          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01115          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01116          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01117<br>01118 | }<br>,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01119          | , (             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01120          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01121          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01122<br>01123 | , {<br>}        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01123          | }               |              |              |              |              |                |
| 01125          | , { { {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01126          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01127<br>01128 | , {<br>, {      | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01129          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01130          | }               |              |              |              |              |                |
| 01131          | , { {           | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01132<br>01133 | , {<br>, {      | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01133          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01135          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01136          | }               |              |              |              |              |                |
| 01137<br>01138 | ,{{<br>,{       | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01130          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01140          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01141          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01142<br>01143 | }<br>,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01144          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01145          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01146<br>01147 | , {             | INF,         | INF,<br>INF, | INF,         | INF,<br>INF, | INF }          |
| 01147          | , {<br>}        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01149          | , { {           | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01150          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01151<br>01152 | , {<br>, {      | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01152          | , {<br>, {<br>} | INF,<br>INF, | INF,         | INF,         | INF,         | INF }          |
| 01154          | }               | ,            | ,            | ,            | ·            | ,              |
| 01155          | }               |              |              |              |              |                |
| 01156<br>01157 | ,{{{<br>,{      | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01158          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01159          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01160          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01161<br>01162 | }<br>,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01163          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01164          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01165<br>01166 | , {             | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01167          | , {<br>}        | INF,         | TIME,        | INF,         | INF,         | TIME           |
| 01168          | , { {           | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01169          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01170<br>01171 | , {<br>, {      | INF,         | INF,<br>INF, | INF,         | INF,<br>INF, | INF }<br>INF } |
| 01171          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01173          | }               | ,            | ,            | ,            | ,            | ,              |
| 01174          | , { {           | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01175<br>01176 | , {<br>, {      | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01177          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01178          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01179          | }               | TNE          | TATE         | T            | T            |                |
| 01180<br>01181 | ,{{<br>,{       | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01181          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01183          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01184          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01185<br>01186 | }               |              |              |              |              |                |
| 01187          | ,{{{            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01188          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01189          | , {             | INF,         | INF,         | INF,         | INF,         | INF }          |
|                |                 |              |              |              |              |                |

| 01190          | , {        | INF,         | INF,         | INF,         | INF,         |                |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 01191<br>01192 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01193          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01194          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01195<br>01196 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01197          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01198          | }          |              |              |              |              |                |
| 01199          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01200<br>01201 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01202          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01203          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01204<br>01205 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01205          | , 11       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01207          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01208          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01209<br>01210 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01211          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01212          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01213<br>01214 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01214          | , {<br>, { | INF,<br>INF, | INF,         | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01216          | }          | ,            | ,            | ,            | ,            | ,              |
| 01217          | }          |              |              |              |              |                |
| 01218<br>01219 | , { { {    | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01219          | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01221          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01222          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01223<br>01224 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01224          | , i i      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01226          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01227          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01228<br>01229 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01230          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01231          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01232          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01233<br>01234 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01235          | }          | ,            | ,            | ,            | ,            | ,              |
| 01236          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01237<br>01238 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01239          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01240          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01241          | }          | TNE          | TAIT         | TNE          | T.170        | TATEL          |
| 01242<br>01243 | ,{{<br>,{  | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01244          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01245          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01246<br>01247 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01247          | }          |              |              |              |              |                |
| 01249          | }          |              |              |              |              |                |
| 01250          | }          | INF,         | TNE          | TNE          | TNE          | INF }          |
| 01251<br>01252 | }}}}},,    | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }          |
| 01253          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01254          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01255<br>01256 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01257          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01258          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01259          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01260<br>01261 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01262          | }          | 11112 /      | /            | /            | /            |                |
| 01263          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01264          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01265<br>01266 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01267          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01268          | }          |              |              |              |              |                |
| 01269<br>01270 | ,{{<br>,{  | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 01270          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01272          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01273          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01274<br>01275 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01276          | , (        | INF,         | INF,         | INF,         | INF,         | INF }          |
|                |            |              |              |              |              |                |

| 01277 | ſ       | INF,         | TME  | TME  | TNE  | TNIE  |
|-------|---------|--------------|------|------|------|-------|
| 01277 | , {     |              |      | INF, | INF, | INF } |
|       | , {     | INF,         | INF, | INF, | INF, |       |
| 01279 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01280 | }       |              |      |      |      |       |
| 01281 | }       |              |      |      |      |       |
| 01282 | ,{{     | INF,         | INF, | INF, | INF, | INF } |
| 01283 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01284 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01285 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01286 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01287 | }       |              |      |      |      |       |
| 01288 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01289 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01290 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01291 |         |              |      |      |      | INF } |
| 01291 | , {     | INF,         | INF, | INF, | INF, |       |
|       | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01293 | }       |              |      |      |      |       |
| 01294 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01295 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01296 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01297 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01298 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01299 | }       |              |      |      |      |       |
| 01300 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01301 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01302 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01302 | , {     | INF,         | INF, | INF, | INF, | INF } |
|       |         |              |      |      |      |       |
| 01304 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01305 | }       |              |      |      |      |       |
| 01306 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01307 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01308 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01309 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01310 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01311 | }       |              |      |      |      |       |
| 01312 | }       |              |      |      |      |       |
| 01313 | ,{{{    | INF,         | INF, | INF, | INF, | INF } |
| 01314 | , ( (   | INF,         | INF, | INF, | INF, | INF } |
| 01314 |         |              |      |      |      |       |
|       | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01316 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01317 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01318 | }       |              |      |      |      |       |
| 01319 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01320 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01321 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01322 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01323 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01324 | }       | ,            | ,    | ,    | ,    | ,     |
| 01325 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01326 |         |              | INF, | INF, | INF, | INF } |
| 01327 | , {     | INF,<br>INF, |      |      |      |       |
|       | , {     |              | INF, | INF, | INF, | INF } |
| 01328 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01329 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01330 | }       |              |      |      |      |       |
| 01331 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01332 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01333 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01334 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01335 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01336 | }       |              |      |      |      |       |
| 01337 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01338 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01339 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01340 |         | INF,         | INF, | INF, | INF, | INF } |
|       | , {     | INF,         |      |      |      |       |
| 01341 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01342 | }       |              |      |      |      |       |
| 01343 | }       |              |      |      |      |       |
| 01344 | , { { { | INF,         | INF, | INF, | INF, | INF } |
| 01345 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01346 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01347 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01348 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01349 | }       | ,            | ,    | ,    | ,    | ,     |
| 01349 | , { {   | INF,         | INF, | INF, | INF, | INF } |
|       |         |              |      |      |      |       |
| 01351 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01352 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01353 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01354 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01355 | }       |              |      |      |      |       |
| 01356 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01357 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01358 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01359 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01360 | , {     | INF,         | INF, | INF, | INF, | INF } |
| 01361 | }       | •            | •    | •    | •    | ,     |
| 01362 | , { {   | INF,         | INF, | INF, | INF, | INF } |
| 01363 | , {     | INF,         | INF, | INF, | INF, | INF } |
|       | , (     | ,            | ,    | /    | /    | )     |

| , {<br>, {<br>, {                                                                                              | INF,                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , {                                                                                                            | TIME,                                                                                                                                                                                        | TAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAIL                                                                                                                                                                         | TAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAIRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ſ                                                                                                              | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| }                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , { {                                                                                                          | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| , {                                                                                                            | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                | INF,                                                                                                                                                                                         | INE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| }                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , { { {                                                                                                        | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| , {                                                                                                            | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                | INF.,                                                                                                                                                                                        | INE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , { {                                                                                                          | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| , {                                                                                                            | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | INF.                                                                                                                                                                                         | TNF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TNF.                                                                                                                                                                         | INF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , { {                                                                                                          | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| , {                                                                                                            | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                | INF.,                                                                                                                                                                                        | INE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| }                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , { {                                                                                                          | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | INF.                                                                                                                                                                                         | TNF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TNF.                                                                                                                                                                         | INF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| , {                                                                                                            | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| }                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , { {                                                                                                          | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TNF.                                                                                                                                                                         | TNF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| , {                                                                                                            | INF,                                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INF,                                                                                                                                                                         | INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INF }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| }                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| }                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| }                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                | 200                                                                                                                                                                                          | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                                                                                                                                          | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , {                                                                                                            | 180,                                                                                                                                                                                         | 140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180,                                                                                                                                                                         | 140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , {                                                                                                            | 200,                                                                                                                                                                                         | 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200,                                                                                                                                                                         | 150,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , 1                                                                                                            | 170,                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , {                                                                                                            | 170,                                                                                                                                                                                         | 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170,                                                                                                                                                                         | 120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }                                                                                                              |                                                                                                                                                                                              | 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170,                                                                                                                                                                         | 120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }<br>,{{                                                                                                       | 160,                                                                                                                                                                                         | 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170,<br>160,                                                                                                                                                                 | 120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }<br>,{{<br>,{                                                                                                 | 160,<br>160,                                                                                                                                                                                 | 130,<br>120,<br>120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170,<br>160,<br>160,                                                                                                                                                         | 120,<br>110,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170}<br>160}<br>160}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }<br>,{{<br>,{                                                                                                 | 160,                                                                                                                                                                                         | 130,<br>120,<br>120,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170,<br>160,                                                                                                                                                                 | 120,<br>110,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }<br>,{{<br>,{                                                                                                 | 160,<br>160,                                                                                                                                                                                 | 130,<br>120,<br>120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170,<br>160,<br>160,                                                                                                                                                         | 120,<br>110,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170}<br>160}<br>160}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| }<br>,{{<br>,{<br>,{                                                                                           | 160,<br>160,<br>150,<br>110,                                                                                                                                                                 | 130,<br>120,<br>120,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170,<br>160,<br>160,<br>150,<br>110,                                                                                                                                         | 120,<br>110,<br>110,<br>110,<br>20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170} 160} 160} 150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| }<br>,{{<br>,{<br>,{                                                                                           | 160,<br>160,<br>150,                                                                                                                                                                         | 130,<br>120,<br>120,<br>110,<br>20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170,<br>160,<br>160,<br>150,                                                                                                                                                 | 120,<br>110,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170}<br>160}<br>160}<br>150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| }<br>,{{<br>,{<br>,{<br>,{                                                                                     | 160,<br>160,<br>150,<br>110,                                                                                                                                                                 | 130,<br>120,<br>120,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170,<br>160,<br>160,<br>150,<br>110,                                                                                                                                         | 120,<br>110,<br>110,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170} 160} 160} 150} 150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| }<br>,{{<br>,{<br>,{<br>,{<br>,{                                                                               | 160,<br>160,<br>150,<br>110,<br>150,                                                                                                                                                         | 130,<br>120,<br>120,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170,<br>160,<br>160,<br>150,<br>110,<br>150,                                                                                                                                 | 120,<br>110,<br>110,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170} 160} 160} 150} 150} 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>}}<br>,{{                                                                  | 160,<br>160,<br>150,<br>110,<br>150,                                                                                                                                                         | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170,<br>160,<br>160,<br>150,<br>110,<br>150,                                                                                                                                 | 120,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170} 160} 160} 150} 150} 200} 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>}}<br>,{{<br>,{                                                            | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,                                                                                                                                         | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170, 160, 160, 150, 110, 150, 200, 200, 180,                                                                                                                                 | 120,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170} 160} 160} 150} 150} 200} 200} 180}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>}}<br>,{{                                                                  | 160,<br>160,<br>150,<br>110,<br>150,                                                                                                                                                         | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170,<br>160,<br>160,<br>150,<br>110,<br>150,                                                                                                                                 | 120,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170} 160} 160} 150} 150} 200} 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| }<br>,{{<br>,{<br>,{<br>,{<br>},<br>}<br>,{{<br>,{                                                             | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,                                                                                                                                         | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170, 160, 160, 150, 110, 150, 200, 200, 180,                                                                                                                                 | 120,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170} 160} 160} 150} 150} 200} 200} 180}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>}}<br>,{{<br>,{                                                            | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,                                                                                                                         | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170, 160, 160, 150, 110, 150, 200, 200, 200,                                                                                                                                 | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>140,<br>150,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170} 160} 160} 150} 150} 200} 200} 180} 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| }<br>,{{<br>,{<br>,{<br>,{<br>}<br>,{<br>,{<br>,{<br>,{                                                        | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,                                                                                                                         | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170, 160, 150, 150, 200, 200, 180, 200, 170,                                                                                                                                 | 120,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>140,<br>120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170} 160} 160} 150} 200} 200} 180} 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| }<br>,{{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{                                           | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,                                                                                                                 | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>160,<br>130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170,                                                                                                                       | 120,<br>110,<br>110,<br>120,<br>110,<br>150,<br>150,<br>140,<br>150,<br>120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170} 160} 160} 150} 90} 150} 200} 200} 180} 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| }<br>,{{<br>,{<br>,{<br>,{<br>},<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{<br>,{ | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,                                                                                                                 | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>160,<br>130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170,                                                                                                                       | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>120,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170} 160} 160} 150} 200} 200} 180} 270} 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| }<br>,{{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,                                         | 160,<br>160,<br>150,<br>150,<br>200,<br>200,<br>200,<br>170,                                                                                                                                 | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>160,<br>130,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170,                                                                                                                       | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>120,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170} 160} 160} 150} 90} 150} 200} 200} 170} 150} 150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,                                                                                                                 | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>160,<br>130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170,                                                                                                                       | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>120,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170} 160} 160} 150} 200} 200} 180} 200} 170} 150} 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>150,<br>200,<br>200,<br>200,<br>170,                                                                                                                                 | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>160,<br>130,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170,                                                                                                                       | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>120,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170} 160} 160} 150} 90} 150} 200} 200} 170} 150} 150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| }<br>,{{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,{<br>,,                                         | 160,<br>160,<br>150,<br>150,<br>10,<br>150,<br>200,<br>200,<br>200,<br>170,<br>150,<br>150,<br>80,                                                                                           | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>160,<br>130,<br>110,<br>20,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 110,                                                                                                             | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>140,<br>150,<br>120,<br>110,<br>20,<br>110,<br>80,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170} 160} 160} 150} 200} 200} 180} 200} 170} 150} 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>} ,{{ , { , { , { , { , { , { , { , { , {</pre>                                                           | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>80,                                                                                                          | 130,<br>120,<br>120,<br>110,<br>20,<br>110,<br>160,<br>140,<br>160,<br>130,<br>110,<br>20,<br>110,<br>0,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 150, 150,                                                                                                        | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>120,<br>110,<br>20,<br>110,<br>80,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170} 160} 160} 150} 200} 200} 150} 150} 150} 250} 150} 150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <pre>}</pre>                                                                                                   | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>80,<br>150,                                                                                                          | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 0, 110, 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200,                                                                                                    | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>150,<br>140,<br>150,<br>120,<br>110,<br>80,<br>110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170} 160} 160} 150} 200} 200} 150} 200} 150} 200} 150} 200} 150} 200} 200}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>80,<br>150,<br>200,<br>200,                                                                                  | 130, 120, 120, 110, 20, 110, 160, 140, 130, 110, 0, 110, 160, 160, 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 200,                                                                                          | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>140,<br>150,<br>120,<br>110,<br>80,<br>110,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>150,<br>15 | 170} 160} 160} 150} 200} 200} 180} 200} 150} 150} 200} 150] 200} 200]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>170,                                                                                                 | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 170,                                                                                          | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>140,<br>150,<br>120,<br>110,<br>80,<br>110,<br>150,<br>120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170} 160} 160} 150} 200} 150} 200} 170} 150} 201 150} 201 150} 201 150} 200} 1707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>200,<br>150,<br>200,<br>200,<br>200,<br>200,<br>200,                                                         | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 200, 200, 200, 200, 200,                                                                      | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 20, 110, 20, 110, 20, 110, 150, 150, 150, 150,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170} 160} 160} 150} 200} 200} 150} 150} 200} 150} 200] 150} 200} 150} 200} 200} 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>170,                                                                                                 | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 170,                                                                                          | 120,<br>110,<br>110,<br>110,<br>20,<br>110,<br>150,<br>140,<br>150,<br>120,<br>110,<br>80,<br>110,<br>150,<br>120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170} 160} 160} 150} 200} 150} 200} 170} 150} 201 150} 201 150} 201 150} 200} 1707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>200,<br>150,<br>200,<br>200,<br>200,<br>200,<br>200,                                                         | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 200, 200, 200, 200, 200,                                                                      | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 20, 110, 20, 110, 20, 110, 150, 150, 150, 150,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170} 160} 160} 150} 200} 200} 150} 150} 200} 150} 200] 150} 200} 150} 200} 200} 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>} {</pre>                                                                                                 | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>200,<br>150,<br>200,<br>200,<br>200,<br>200,<br>200,                                                         | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 200, 200, 200, 200, 200,                                                                      | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 20, 110, 20, 110, 20, 110, 150, 150, 150, 150,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170} 160} 160} 150} 200} 200} 150} 150} 200} 150} 200] 150} 200} 150} 200} 200} 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170,                                                                 | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 0, 110, 160, 130, 160, 100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 170, 200, 80,                                                                                 | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 20, 110, 30, 150, 30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170} 160} 160} 150} 200} 150} 200} 170} 150} 201 170} 203 150} 200} 200} 200} 80}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>170,<br>200,<br>170,<br>200,<br>200,                                                                 | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 160, 100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 200, 200, 200, 200, 200, 2                                                                    | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 20, 110, 30, 110, 150, 110, 150, 110, 150, 110, 150, 110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170} 160} 160} 150} 200} 150} 200} 170} 150} 200} 150} 200} 150} 200} 200} 200} 80}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <pre>} ,{{</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>150,<br>80,<br>150,<br>200,<br>200,<br>200,<br>200,<br>200,                                                  | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 160, 160, 160, 160, 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 200, 200, 200, 200, 200, 2                                                                    | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 20, 110, 30, 110, 150, 120, 150, 30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170} 160} 160} 150} 200} 200} 150} 200} 150} 200} 150} 200} 150} 200} 200} 200} 200 200} 200 200 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>}</pre>                                                                                                   | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>200,<br>170,<br>200,<br>200,<br>170,                                                                 | 130, 120, 120, 110, 20, 110, 160, 160, 130, 110, 0, 110, 160, 130, 160, 160, 140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170, 160, 160, 150, 110, 150, 200, 200, 180, 170, 150, 10, 150, 200, 200, 170, 200, 200, 170, 200, 80,                                                                       | 120, 110, 110, 20, 110, 150, 150, 140, 150, 120, 110, 80, 110, 150, 120, 150, 150, 110, 150, 150, 110, 150, 110, 150, 110, 150, 110, 150, 110, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170} 160} 160} 150} 200} 150} 200} 150} 200} 150} 200} 150} 200} 150} 200} 200} 200} 200} 200} 200} 200] 170} 200] 200] 200] 180}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>}</pre>                                                                                                   | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>150,<br>80,<br>150,<br>200,<br>200,<br>200,<br>200,<br>200,                                                  | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 160, 160, 160, 160, 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 150, 200, 200, 200, 200, 200, 200, 200, 2                                                                    | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 20, 110, 30, 110, 150, 120, 150, 30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170} 160} 160} 150} 200} 200} 150} 200} 150} 200} 150} 200} 150} 200} 200} 200} 200 200} 200 200 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>200,<br>150,<br>200,<br>200,<br>170,<br>200,<br>100,                                                         | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 160, 130, 160, 100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 200, 200, 170, 200, 200, 200, 170, 200, 80,                                                                           | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 80, 110, 150, 150, 10, 110, 110, 110, 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170} 160} 160} 150} 200} 150} 200} 170} 150} 200] 150] 200] 200] 200] 200] 200] 200] 200] 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>200,<br>170,<br>200,<br>200,<br>170,                                                                 | 130, 120, 120, 110, 20, 110, 160, 160, 130, 110, 0, 110, 160, 130, 160, 160, 140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170, 160, 160, 150, 110, 150, 200, 200, 180, 170, 150, 10, 150, 200, 200, 170, 200, 200, 170, 200, 80,                                                                       | 120, 110, 110, 20, 110, 150, 150, 140, 150, 120, 110, 80, 110, 150, 120, 150, 150, 110, 150, 150, 110, 150, 110, 150, 110, 150, 110, 150, 110, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170} 160} 160} 150} 200} 150} 200} 150} 200} 150} 200} 150} 200} 150} 200} 200} 200} 200} 200} 200} 200] 170} 200] 200] 200] 180}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>200,<br>200,<br>200,<br>200,<br>200,<br>200,<br>170,                                                         | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 160, 130, 160, 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 200, 200, 200, 200, 200, 170, 200, 200, 200, 200, 200, 180, 200, 200, 170,                                            | 120, 110, 110, 110, 20, 110, 150, 140, 150, 120, 110, 20, 110, 30, 110, 60, 110, 60, 90,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170} 160} 160} 150} 200} 150} 200} 150} 150} 200} 150} 200} 150} 200} 200} 170} 200} 200} 1707 200} 200} 1707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>200,<br>170,<br>200,<br>200,<br>170,                                                                 | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 0, 110, 160, 130, 160, 130, 160, 130, 160, 140, 160, 140, 160, 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 200, 200, 200, 200, 170, 200, 200, 170, 160,                                                                 | 120, 110, 110, 110, 120, 150, 140, 150, 120, 110, 20, 110, 30, 110, 60, 110, 60, 90, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170} 160} 160} 150} 200} 200} 150} 200} 150} 200} 150} 200} 150} 200} 200} 170} 200} 200} 1707 300 200} 1707 400 180} 200} 160}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>80,<br>150,<br>200,<br>170,<br>200,<br>200,<br>170,<br>200,<br>170,                                                  | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 160, 130, 160, 130, 160, 130, 160, 120, 120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 200, 200, 170, 200, 200, 170, 200, 200, 170, 200, 200, 170, 200, 200, 180, 200, 170,                                  | 120, 110, 110, 20, 110, 150, 140, 150, 120, 110, 80, 110, 150, 150, 30, 110, 60, 90, 20, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170} 160} 160] 150} 200} 150] 200] 180] 200] 170] 150] 200] 150] 200] 170] 200] 170] 200] 170] 180] 170]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>200,<br>170,<br>200,<br>200,<br>170,                                                                 | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 0, 110, 160, 130, 160, 130, 160, 130, 160, 140, 160, 140, 160, 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 10, 200, 200, 200, 200, 170, 200, 200, 170, 160,                                                                 | 120, 110, 110, 110, 150, 150, 140, 150, 120, 110, 20, 110, 20, 110, 60, 110, 60, 110, 60, 20, 20, 20, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170} 160} 160} 150} 200} 200} 150} 200} 150} 200} 150} 200} 150} 200} 200} 170} 200} 200} 1707 300 200} 1707 400 180} 200} 160}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>80,<br>150,<br>200,<br>170,<br>200,<br>200,<br>170,<br>200,<br>170,                                                  | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 160, 130, 160, 130, 160, 130, 160, 120, 120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 200, 200, 170, 200, 200, 170, 200, 200, 170, 200, 200, 170, 200, 200, 180, 200, 170,                                  | 120, 110, 110, 20, 110, 150, 140, 150, 120, 110, 80, 110, 150, 150, 30, 110, 60, 90, 20, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170} 160} 160] 150} 200} 150] 200] 180] 200] 170] 150] 200] 150] 200] 170] 200] 170] 200] 170] 180] 170]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>200,<br>200,<br>200,<br>200,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170, | 130, 120, 120, 110, 20, 110, 160, 140, 160, 110, 20, 110, 160, 160, 130, 160, 120, 120, 120, 120, 120, 120, 120, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 200, 200, 170, 200, 200, 170, 200, 80, 200, 170, 200, 80,                                                        | 120, 110, 110, 110, 120, 110, 150, 120, 110, 20, 110, 20, 110, 30, 110, 60, 110, 60, 110, 60, 70,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170} 160} 160] 160] 150] 200] 150] 200] 170] 150] 200] 150] 200] 170] 200] 170] 160] 160] 160]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>170,<br>150,<br>150,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170,                                                 | 130, 120, 120, 110, 20, 110, 160, 140, 160, 130, 110, 20, 110, 160, 130, 160, 130, 160, 120, 120, 110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170, 160, 160, 150, 110, 150, 200, 200, 170, 150, 10, 150, 200, 200, 200, 170, 200, 80, 200, 170, 200, 170, 200, 180, 200, 170, 200, 180, 200, 170, 200, 180, 170, 160, 150, | 120, 110, 110, 110, 150, 150, 140, 150, 120, 110, 20, 110, 20, 110, 60, 110, 60, 110, 60, 20, 20, 20, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170} 160} 160] 160] 150] 200] 180] 200] 170] 150] 200] 150] 200] 170] 200] 170] 200] 170] 200] 170] 160] 160] 150]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <pre>} { {</pre>                                                                                               | 160,<br>160,<br>150,<br>110,<br>150,<br>200,<br>200,<br>180,<br>200,<br>170,<br>200,<br>200,<br>200,<br>200,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170,<br>200,<br>170, | 130, 120, 120, 110, 20, 110, 160, 140, 160, 110, 20, 110, 160, 160, 130, 160, 120, 120, 120, 120, 120, 120, 120, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170, 160, 160, 150, 110, 150, 200, 200, 180, 200, 170, 150, 200, 200, 170, 200, 200, 170, 200, 80, 200, 170, 200, 80,                                                        | 120, 110, 110, 110, 120, 110, 150, 120, 110, 20, 110, 20, 110, 30, 110, 60, 110, 60, 110, 60, 70,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170} 160} 160] 160] 150] 200] 150] 200] 170] 150] 200] 150] 200] 170] 200] 170] 160] 160] 160]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                | <pre></pre>                                                                                                                                                                                  | , { INF, , { | , { INF, INF, INF, } } , { { INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                         | <pre>,{ INF, INF, INF, ,{ INF, ,{ INF, INF, ,{ INF, ,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>,{ INF, INF, INF, INF, ,{ INF, INF, INF, INF, ,} }  ,{{{ INF, INF, INF, INF, INF, ,{ INF, INF, INF, INF, ,} } } } } } } {{{{ 200, 160, 200, 150, ,{ 200, 160, 200, 150, ,{ 180, 140, 180, 140, } }</pre> |

| 01451          | , {        | 200,         | 160,         | 200,         | 60,          | 200}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 01452<br>01453 | , {<br>, { | 180,<br>200, | 140,<br>160, | 180,<br>200, | 110,<br>60,  | 180}<br>200} |
| 01454          | , {        | 170,         | 130,         | 170,         | 90,          | 170}         |
| 01455          | }          | 150          | 110          | 150          | 20           | 1501         |
| 01456<br>01457 | ,{{<br>,{  | 150,<br>60,  | 110,<br>20,  | 150,<br>60,  | 20,<br>-70,  | 150}<br>60}  |
| 01458          | , {        | 150,         | 110,         | 150,         | 20,          | 150}         |
| 01459          | , {        | 10,          | -30,         | 10,          | 0,           | 10}          |
| 01460<br>01461 | , {<br>}   | 150,         | 110,         | 150,         | 20,          | 150}         |
| 01462          | , { {      | 200,         | 160,         | 200,         | 90,          | 200}         |
| 01463          | , {        | 200,         | 160,         | 200,         | 60,          | 200}         |
| 01464<br>01465 | , {<br>, { | 170,<br>200, | 130,<br>160, | 170,<br>200, | 90,<br>60,   | 170}<br>200} |
| 01466          | , {        | 100,         | 100,         | 80,          | -50,         | 80}          |
| 01467          | }          |              |              |              |              |              |
| 01468<br>01469 | }<br>,{{{  | 180,         | 150,         | 180,         | 150,         | 170}         |
| 01470          | , {        | 180,         | 150,         | 180,         | 150,         | 170}         |
| 01471          | , {        | 170,         | 140,         | 170,         | 140,         | 150}         |
| 01472<br>01473 | , {<br>, { | 180,<br>150, | 150,<br>120, | 180,<br>150, | 150,<br>120, | 170}<br>140} |
| 01474          | }          | ,            | ,            | ,            | ,            |              |
| 01475          | , { {      | 140,         | 110,         | 140,         | 110,         | 130}         |
| 01476<br>01477 | , {<br>, { | 140,<br>140, | 110,<br>110, | 140,<br>140, | 110,<br>110, | 130}<br>120} |
| 01478          | , {        | 110,         | 20,          | 110,         | 20,          | 90}          |
| 01479          | , {        | 140,         | 110,         | 140,         | 110,         | 120}         |
| 01480<br>01481 | }<br>,{{   | 180,         | 150,         | 180,         | 150,         | 170}         |
| 01482          | , (        | 180,         | 150,         | 180,         | 150,         | 170}         |
| 01483          | , {        | 170,         | 140,         | 170,         | 140,         | 150}         |
| 01484<br>01485 | , {        | 180,<br>150, | 150,<br>120, | 180,<br>150, | 150,<br>120, | 170}<br>140} |
| 01485          | , {<br>}   | 130,         | 120,         | 130,         | 120,         | 140)         |
| 01487          | , { {      | 140,         | 110,         | 140,         | 110,         | 120}         |
| 01488<br>01489 | , {        | 110,<br>140, | 20,<br>110,  | 110,<br>140, | 20,<br>110,  | 90}<br>120}  |
| 01409          | , {<br>, { | -10,         | -40,         | -10,         | -40,         | -20}         |
| 01491          | , {        | 140,         | 110,         | 140,         | 110,         | 120}         |
| 01492<br>01493 | }<br>,{{   | 100          | 150,         | 180,         | 150,         | 170}         |
| 01493          | , 11       | 180,<br>180, | 150,         | 180,         | 150,         | 170}         |
| 01495          | , {        | 150,         | 120,         | 150,         | 120,         | 140}         |
| 01496          | , {        | 180,         | 150,         | 180,         | 150,         | 170}         |
| 01497<br>01498 | , {<br>}   | 60,          | 30,          | 60,          | 30,          | 50}          |
| 01499          | }          |              |              |              |              |              |
| 01500          | , { { {    | 200,         | 110,         | 200,         | 80,          | 200}         |
| 01501<br>01502 | , {<br>, { | 200,<br>180, | 60,<br>110,  | 200,<br>180, | 10,<br>-10,  | 200}<br>180} |
| 01503          | , {        | 200,         | 60,          | 200,         | 80,          | 200}         |
| 01504          | , {        | 170,         | 90,          | 170,         | 20,          | 170}         |
| 01505<br>01506 | }<br>,{{   | 160,         | 20,          | 160,         | 0,           | 160}         |
| 01507          | , {        | 160,         | 20,          | 160,         | -30,         | 160}         |
| 01508          | , {        | 150,         | 20,          | 150,         | -40,         | 150}         |
| 01509<br>01510 | , {<br>, { | 60,<br>150,  | -70,<br>20,  | 60,<br>150,  | 0,<br>-40,   | 60}<br>150}  |
| 01511          | }          | ,            | •            | •            | •            |              |
| 01512          | , { {      | 200,         | 110,         | 200,         | 10,          | 200}         |
| 01513<br>01514 | , {<br>, { | 200,<br>180, | 60,<br>110,  | 200,<br>180, | 10,<br>-10,  | 200}<br>180} |
| 01515          | , {        | 200,         | 60,          | 200,         | 10,          | 200}         |
| 01516          | , {        | 170,         | 90,          | 170,         | -20,         | 170}         |
| 01517<br>01518 | }<br>,{{   | 150,         | 20,          | 150,         | 80,          | 150}         |
| 01519          | , {        | 60,          | -70,         | 60,          | 0,           | 60}          |
| 01520          | , {        | 150,         | 20,          | 150,         | -40,         | 150}         |
| 01521<br>01522 | , {<br>, { | 80,<br>150,  | 0,<br>20,    | 10,<br>150,  | 80,<br>-40,  | 10}<br>150}  |
| 01523          | }          | 100,         | 20,          | 100,         | 10,          | 100,         |
| 01524          | , { {      | 200,         | 90,          | 200,         | 20,          | 200}         |
| 01525<br>01526 | , {<br>, { | 200,<br>170, | 60,<br>90,   | 200,<br>170, | 10,<br>-20,  | 200}<br>170} |
| 01527          | , {        | 200,         | 60,          | 200,         | 10,          | 200}         |
| 01528          | , {        | 80,          | -50,         | 80,          | 20,          | 80}          |
| 01529<br>01530 | }          |              |              |              |              |              |
| 01530          | ,{{{       | 170,         | 150,         | 170,         | 150,         | 100}         |
| 01532          | , {        | 170,         | 150,         | 170,         | 150,         | 100}         |
| 01533<br>01534 | , {<br>, { | 150,<br>170, | 140,<br>150, | 150,<br>170, | 140,<br>150, | 60}<br>80}   |
| 01534          | , t<br>, { | 140,         | 120,         | 140,         | 120,         | 50}          |
| 01536          | }          |              |              |              |              |              |
| 01537          | , { {      | 130,         | 110,         | 130,         | 110,         | 100}         |

| 01538          | , {         | 130,         | 110,         | 130,         | 110,          | 100}         |
|----------------|-------------|--------------|--------------|--------------|---------------|--------------|
| 01539<br>01540 | , {<br>, {  | 120,<br>90,  | 110,<br>20,  | 120,<br>90,  | 110,<br>20,   | 30}<br>-50}  |
| 01541<br>01542 | , {<br>}    | 120,         | 110,         | 120,         | 110,          | 30}          |
| 01543          | , { {       | 170,         | 150,         | 170,         | 150,          | 80}          |
| 01544<br>01545 | , {<br>, {  | 170,<br>150, | 150,<br>140, | 170,<br>150, | 150,<br>140,  | 80}<br>60}   |
| 01546<br>01547 | , {         | 170,<br>140, | 150,<br>120, | 170,<br>140, | 150,<br>120,  | 80}<br>50}   |
| 01547          | , {<br>}    | 140,         | 120,         | 140,         | 120,          | 20}          |
| 01549<br>01550 | ,{{<br>,{   | 120,<br>90,  | 110,<br>20,  | 120,<br>90,  | 110,<br>20,   | 30}<br>-50}  |
| 01551          | , {         | 120,         | 110,         | 120,         | 110,          | 30}          |
| 01552<br>01553 | , {<br>, {  | 20,<br>120,  | -40,<br>110, | -20,<br>120, | -40,<br>110,  | 20}<br>30}   |
| 01554          | }           |              |              | 170          | 150           | 0.01         |
| 01555<br>01556 | ,{{<br>,{   | 170,<br>170, | 150,<br>150, | 170,<br>170, | 150,<br>150,  | 80}<br>80}   |
| 01557<br>01558 | ,{<br>,{    | 140,<br>170, | 120,<br>150, | 140,<br>170, | 120,<br>150,  | 50}<br>80}   |
| 01559          | , {         | 50,          | 30,          | 50,          | 30,           | -40}         |
| 01560<br>01561 | }           |              |              |              |               |              |
| 01562          | }           | 000          | 1.50         | 000          | 1.40          | 170)         |
| 01563<br>01564 | }}}},<br>}, | 220,<br>220, | 150,<br>130, | 220,<br>220, | 140,<br>130,  | 170}<br>170} |
| 01565<br>01566 | , {         | 150,<br>140, | 110,<br>100, | 150,<br>140, | 110,<br>100,  | 150}<br>140} |
| 01567          | , {<br>, {  | 170,         | 150,         | 150,         | 140,          | 170}         |
| 01568<br>01569 | }<br>,{{    | 220,         | 130,         | 220,         | 130,          | 170}         |
| 01570          | , {         | 220,         | 130,         | 220,         | 130,          | 170}         |
| 01571<br>01572 | , {<br>, {  | 150,<br>70,  | 110,<br>-30, | 150,<br>70,  | 100,<br>-70,  | 150}<br>50}  |
| 01573          | , {         | 150,         | 110,         | 150,         | 100,          | 150}         |
| 01574<br>01575 | }<br>,{{    | 190,         | 110,         | 190,         | 100,          | 170}         |
| 01576          | , {         | 190,         | 110,         | 190,         | 100,          | 140}         |
| 01577<br>01578 | , {<br>, {  | 150,<br>140, | 110,<br>100, | 150,<br>140, | 100,<br>100,  | 150}<br>140} |
| 01579<br>01580 | , {<br>}    | 170,         | 110,         | 150,         | 100,          | 170}         |
| 01581          | , { {       | 150,         | 110,         | 150,         | 100,          | 150}         |
| 01582<br>01583 | , {<br>, {  | 140,<br>150, | 70,<br>110,  | 70,<br>150,  | -10,<br>100,  | 140}<br>150} |
| 01584          | , {         | 80,          | -30,         | 10,          | 80,           | 70}          |
| 01585<br>01586 | , {<br>}    | 150,         | 110,         | 150,         | 100,          | 150}         |
| 01587          | , { {       | 150,         | 150,         | 150,         | 140,          | 150}         |
| 01588<br>01589 | , {<br>, {  | 140,<br>150, | 100,<br>110, | 140,<br>150, | 100,<br>110,  | 140}<br>150} |
| 01590<br>01591 | , {         | 140,<br>150, | 100,<br>150, | 140,<br>70,  | 100,<br>140,  | 140}<br>70}  |
| 01592          | , {<br>}    | 130,         | 130,         | 70,          | 140,          | 70;          |
| 01593<br>01594 | }<br>,{{{   | 170,         | 150,         | 150,         | 90,           | 170}         |
| 01595          | , {         | 170,         | 130,         | 140,         | 10,           | 170}         |
| 01596<br>01597 | , {<br>, {  | 150,<br>140, | 110,<br>100, | 150,<br>140, | 80,<br>10,    | 150}<br>140} |
| 01598          | , {         | 150,         | 150,         | 150,         | 90,           | 150}         |
| 01599<br>01600 | }<br>,{{    | 170,         | 130,         | 150,         | 10,           | 170}         |
| 01601<br>01602 | , {<br>, {  | 170,<br>150, | 130,<br>110, | 60,<br>150,  | 0,<br>-70,    | 170}<br>150} |
| 01603          | , {         | 10,          | -30,         | 10,          | -160,         | -30}         |
| 01604<br>01605 | , {<br>}    | 150,         | 110,         | 150,         | 10,           | 150}         |
| 01606          | , { {       | 150,         | 110,         | 150,         | 70,           | 150}         |
| 01607<br>01608 | , {<br>, {  | 140,<br>150, | 100,<br>110, | 50,<br>150,  | -100,<br>-60, | 140}<br>150} |
| 01609          | , {         | 140,         | 100,         | 140,         | 10,           | 140}         |
| 01610<br>01611 | , {<br>}    | 150,         | 110,         | 150,         | 70,           | 150}         |
| 01612<br>01613 | , { {       | 150,<br>40,  | 110,<br>40,  | 150,<br>30,  | 10,<br>-70,   | 150}<br>30}  |
| 01614          | , {<br>, {  | 150,         | 110,         | 150,         | 10,           | 150}         |
| 01615<br>01616 | , {<br>, {  | 10,<br>150,  | -30,<br>110, | -30,<br>150, | 0,<br>10,     | 10}<br>150}  |
| 01617          | }           |              |              |              |               |              |
| 01618<br>01619 | ,{{<br>,{   | 150,<br>140, | 150,<br>100, | 150,<br>140, | 90,<br>10,    | 150}<br>140} |
| 01620          | , {         | 150,         | 110,         | 150,         | 80,           | 150}         |
| 01621<br>01622 | , {<br>, {  | 140,<br>150, | 100,<br>150, | 140,<br>0,   | 10,<br>90,    | 140}<br>70}  |
| 01623<br>01624 | }           |              |              |              |               |              |
|                | ,           |              |              |              |               |              |

| 01625          | , { { {    | 220,         | 130,          | 220,         | 130,         | 170}         |
|----------------|------------|--------------|---------------|--------------|--------------|--------------|
| 01626          | , {        | 220,         | 130,          | 220,         | 130,         | 140}         |
| 01627<br>01628 | , {<br>, { | 140,<br>130, | 110,<br>100,  | 140,<br>130, | 110,<br>100, | 120}<br>110} |
| 01629          | , {        | 170,         | 100,          | 130,         | 100,         | 170}         |
| 01630          | }          | 220          | 120           | 220          | 120          | 1.401        |
| 01631<br>01632 | ,{{<br>,{  | 220,<br>220, | 130,<br>130,  | 220,<br>220, | 130,<br>130, | 140}<br>140} |
| 01633          | , {        | 130,         | 100,          | 130,         | 100,         | 120}         |
| 01634          | , {        | 70,          | -70,          | 70,          | -70,         | 0}           |
| 01635<br>01636 | , {<br>}   | 130,         | 100,          | 130,         | 100,         | 120}         |
| 01637          | , { {      | 190,         | 110,          | 190,         | 100,         | 170}         |
| 01638          | , {        | 190,         | 110,          | 190,         | 100,         | 110}         |
| 01639<br>01640 | , {<br>, { | 130,<br>130, | 100,<br>100,  | 130,<br>130, | 100,<br>100, | 120}<br>110} |
| 01641          | , {        | 170,         | 100,          | 130,         | 100,         | 170}         |
| 01642          | }          |              | 100           | 100          | 100          | 1001         |
| 01643<br>01644 | ,{{<br>,{  | 130,<br>70,  | 100,<br>70,   | 130,<br>70,  | 100,<br>-10, | 120}<br>60}  |
| 01645          | , {        | 130,         | 100,          | 130,         | 100,         | 120}         |
| 01646          | , {        | 20,          | -40,          | -10,         | -40,         | 20}          |
| 01647<br>01648 | , {<br>}   | 130,         | 100,          | 130,         | 100,         | 120}         |
| 01649          | , { {      | 140,         | 110,          | 140,         | 110,         | 120}         |
| 01650          | , {        | 130,         | 100,          | 130,         | 100,         | 110}         |
| 01651          | , {        | 140,         | 110,          | 140,         | 110,         | 120}         |
| 01652<br>01653 | , {<br>, { | 130,<br>30,  | 100,<br>-20,  | 130,<br>-10, | 100,<br>30,  | 110}<br>20}  |
| 01654          | }          |              | •             |              |              |              |
| 01655          | }          |              |               |              | 1.40         | 1.70         |
| 01656<br>01657 | ,{{{<br>,{ | 170,<br>170, | 90,<br>70,    | 170,<br>170, | 140,<br>-10, | 170}<br>170} |
| 01658          | , {        | 150,         | 80,           | 150,         | -40,         | 150}         |
| 01659          | , {        | 140,         | 10,           | 140,         | 80,          | 140}         |
| 01660<br>01661 | , {<br>}   | 150,         | 90,           | 150,         | 140,         | 150}         |
| 01662          | , { {      | 170,         | 10,           | 170,         | -10,         | 170}         |
| 01663          | , {        | 170,         | -20,          | 170,         | -10,         | 170}         |
| 01664<br>01665 | , {<br>, { | 150,<br>-30, | -40,<br>-170, | 150,<br>-30, | -40,<br>-90, | 150}<br>-30} |
| 01666          | , {        | 150,         | 10,           | 150,         | -40,         | 150}         |
| 01667          | }          |              |               |              |              |              |
| 01668          | , { {      | 150,         | 70,           | 150,         | 20,<br>-50,  | 150}         |
| 01669<br>01670 | , {<br>, { | 140,<br>150, | 70,<br>70,    | 140,<br>150, | -40,         | 140}<br>150} |
| 01671          | , {        | 140,         | 10,           | 140,         | -50,         | 140}         |
| 01672          | , {        | 150,         | 70,           | 150,         | 20,          | 150}         |
| 01673<br>01674 | }<br>,{{   | 150,         | 10,           | 150,         | 80,          | 150}         |
| 01675          | , {        | 30,          | -50,          | 30,          | -30,         | 30}          |
| 01676          | , {        | 150,         | 10,           | 150,         | -40,         | 150}         |
| 01677<br>01678 | , {<br>, { | 80,<br>150,  | -30,<br>10,   | 10,<br>150,  | 80,<br>-40,  | 10}<br>150}  |
| 01679          | }          | 100,         | 10,           | 100,         | 10,          | 150)         |
| 01680          | , { {      | 150,         | 90,           | 150,         | 140,         | 150}         |
| 01681<br>01682 | , {        | 140,<br>150, | 10,<br>80,    | 140,<br>150, | -50,<br>-50, | 140}<br>150} |
| 01683          | , {<br>, { | 140,         | 10,           | 140,         | -50,         | 140}         |
| 01684          | , {        | 140,         | 90,           | 70,          | 140,         | 70}          |
| 01685<br>01686 | }          |              |               |              |              |              |
| 01687          | }<br>,{{{  | 140,         | 130,          | 140,         | 130,         | 140}         |
| 01688          | , {        | 140,         | 130,          | 140,         | 130,         | 140}         |
| 01689          | , {        | 120,         | 110,          | 120,         | 110,         | 30}          |
| 01690<br>01691 | , {<br>, { | 110,<br>120, | 100,<br>100,  | 110,<br>120, | 100,<br>100, | 70}<br>30}   |
| 01692          | }          | ,            | ,             | ,            | ,            | ,            |
| 01693          | , { {      | 140,         | 130,          | 140,         | 130,         | 140}         |
| 01694<br>01695 | , {<br>, { | 140,<br>120, | 130,<br>100,  | 140,<br>120, | 130,<br>100, | 140}<br>30}  |
| 01696          | , {        | 50,          | -70,          | 0,           | -70,         | 50}          |
| 01697          | , {        | 120,         | 100,          | 120,         | 100,         | 30}          |
| 01698<br>01699 | }<br>,{{   | 120,         | 100,          | 120,         | 100,         | 30}          |
| 01700          | , 11       | 110,         | 100,          | 110,         | 100,         | 30}          |
| 01701          | , {        | 120,         | 100,          | 120,         | 100,         | 30}          |
| 01702          | , {        | 110,         | 100,          | 110,         | 100,         | 20}          |
| 01703<br>01704 | , {<br>}   | 120,         | 100,          | 120,         | 100,         | 30}          |
| 01705          | , { {      | 140,         | 100,          | 120,         | 100,         | 140}         |
| 01706          | , {        | 140,         | -10,          | 50,          | -10,         | 140}         |
| 01707<br>01708 | , {<br>, { | 120,<br>70,  | 100,<br>-40,  | 120,<br>-60, | 100,<br>-40, | 30}<br>70}   |
| 01709          | , {        | 120,         | 100,          | 120,         | 100,         | 30}          |
| 01710          | }          |              |               | 100          |              | 201          |
| 01711          | , { {      | 120,         | 110,          | 120,         | 110,         | 30}          |
|                |            |              |               |              |              |              |

| 01712          | , {        | 110,         | 100,         | 110,         | 100,         | 20}          |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 01713          | , {        | 120,         | 110,         | 120,         | 110,         | 30}          |
| 01714<br>01715 | , {<br>, { | 110,<br>40,  | 100,<br>30,  | 110,<br>40,  | 100,<br>30,  | 20}<br>-60}  |
| 01716          | }          |              |              |              |              |              |
| 01717<br>01718 | }          |              |              |              |              |              |
| 01719          | , { { { {  | 300,         | 290,         | 300,         | 260,         | 300}         |
| 01720<br>01721 | , {<br>, { | 300,<br>270, | 270,<br>230, | 300,<br>270, | 260,<br>220, | 300}<br>270} |
| 01722          | , {        | 270,         | 230,         | 270,         | 220,         | 270}         |
| 01723<br>01724 | , {<br>}   | 290,         | 290,         | 270,         | 220,         | 270}         |
| 01725          | , { {      | 300,         | 270,         | 300,         | 260,         | 300}         |
| 01726<br>01727 | , {<br>, { | 300,<br>270, | 270,<br>230, | 300,<br>270, | 260,<br>220, | 300}<br>270} |
| 01728          | , {        | 230,         | 150,         | 230,         | 140,         | 220}         |
| 01729<br>01730 | , {<br>}   | 270,         | 230,         | 270,         | 220,         | 270}         |
| 01731<br>01732 | , { {      | 270,         | 230,<br>230, | 270,<br>270, | 220,<br>220, | 270}         |
| 01732          | , {<br>, { | 270,<br>270, | 230,         | 270,         | 220,         | 270}<br>270} |
| 01734<br>01735 | , {        | 270,         | 230,         | 270,<br>270, | 220,<br>220, | 270}<br>270} |
| 01736          | , {<br>}   | 270,         | 230,         | 270,         | 220,         | 2/0}         |
| 01737<br>01738 | ,{{<br>,{  | 270,<br>270, | 230,<br>190, | 270,<br>270, | 220,<br>180, | 270}<br>260} |
| 01739          | , {        | 270,         | 230,         | 270,         | 220,         | 270}         |
| 01740<br>01741 | , {<br>, { | 210,<br>270, | 130,<br>230, | 140,<br>270, | 210,<br>220, | 150}<br>270} |
| 01741          | }          | 270,         | 230,         | 270,         | 220,         | 2705         |
| 01743<br>01744 | ,{{<br>,{  | 290,<br>270, | 290,<br>230, | 270,<br>270, | 220,<br>220, | 270}<br>270} |
| 01745          | , {        | 270,         | 230,         | 270,         | 220,         | 270}         |
| 01746<br>01747 | , {<br>, { | 270,<br>290, | 230,<br>290, | 270,<br>270, | 220,<br>220, | 270}<br>270} |
| 01748          | }          | 290,         | 290,         | 270,         | 220,         | 2703         |
| 01749<br>01750 | }<br>,{{{  | 300,         | 290,         | 300,         | 190,         | 300}         |
| 01751          | , 111      | 300,         | 270,         | 300,         | 170,         | 300}         |
| 01752<br>01753 | , {<br>, { | 270,<br>270, | 230,<br>230, | 270,<br>270, | 190,<br>130, | 270}<br>270} |
| 01754          | , {        | 290,         | 290,         | 270,         | 190,         | 270}         |
| 01755<br>01756 | }<br>,{{   | 300,         | 270,         | 300,         | 170,         | 300}         |
| 01757          | , {        | 300,         | 270,         | 300,         | 170,         | 300}         |
| 01758<br>01759 | , {<br>, { | 270,<br>190, | 230,<br>150, | 270,<br>190, | 130,<br>50,  | 270}<br>190} |
| 01760          | , {        | 270,         | 230,         | 270,         | 130,         | 270}         |
| 01761<br>01762 | }<br>,{{   | 270,         | 230,         | 270,         | 190,         | 270}         |
| 01763          | , {        | 270,         | 230,         | 270,         | 130,         | 270}         |
| 01764<br>01765 | , {<br>, { | 270,<br>270, | 230,<br>230, | 270,<br>270, | 190,<br>130, | 270}<br>270} |
| 01766          | , (        | 270,         | 230,         | 270,         | 190,         | 270}         |
| 01767<br>01768 | }<br>,{{   | 270,         | 230,         | 270,         | 130,         | 270}         |
| 01769          | , {        | 230,         | 190,         | 230,         | 90,          | 230}         |
| 01770<br>01771 | , {<br>, { | 270,<br>140, | 230,<br>100, | 270,<br>140, | 130,<br>130, | 270}<br>140} |
| 01772          | , {        | 270,         | 230,         | 270,         | 130,         | 270}         |
| 01773<br>01774 | }<br>,{{   | 290,         | 290,         | 270,         | 190,         | 270}         |
| 01775          | , {        | 270,         | 230,         | 270,         | 130,         | 270}         |
| 01776<br>01777 | , {<br>, { | 270,<br>270, | 230,<br>230, | 270,<br>270, | 190,<br>130, | 270}<br>270} |
| 01778<br>01779 | , {        | 290,         | 290,         | 270,         | 130,         | 270}         |
| 01779          | }          |              |              |              |              |              |
| 01781<br>01782 | , { { {    | 290,         | 260,<br>260, | 290,         | 260,<br>260, | 270}<br>270} |
| 01783          | , {<br>, { | 290,<br>250, | 220,         | 290,<br>250, | 220,         | 240}         |
| 01784<br>01785 | , {        | 250,<br>250, | 220,<br>220, | 250,<br>250, | 220,<br>220, | 240}         |
| 01786          | , {<br>}   | 250,         | 220,         | 250,         | 220,         | 240)         |
| 01787<br>01788 | ,{{<br>,{  | 290,<br>290, | 260,<br>260, | 290,<br>290, | 260,<br>260, | 270}<br>270} |
| 01789          | , {        | 250,         | 220,         | 250,         | 220,         | 240}         |
| 01790<br>01791 | , {<br>, { | 230,<br>250, | 140,<br>220, | 230,<br>250, | 140,<br>220, | 220}         |
| 01792          | }          |              |              |              |              |              |
| 01793<br>01794 | ,{{<br>,{  | 250,<br>250, | 220,<br>220, | 250,<br>250, | 220,<br>220, | 240}         |
| 01795          | , {        | 250,         | 220,         | 250,         | 220,         | 240}         |
| 01796<br>01797 | , {<br>, { | 250,<br>250, | 220,<br>220, | 250,<br>250, | 220,<br>220, | 240}         |
| 01798          | }          | ,            | ,            | ,            | ,            | _ 10 )       |
|                |            |              |              |              |              |              |

| 01799          | , { {      | 270,         | 220,         | 270,         | 220,         | 260}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 01800          | , {        | 270,         | 180,         | 270,         | 180,         | 260}         |
| 01801<br>01802 | , {<br>, { | 250,<br>120, | 220,<br>90,  | 250,<br>120, | 220,<br>90,  | 240}<br>110} |
| 01803<br>01804 | , {<br>}   | 250,         | 220,         | 250,         | 220,         | 240}         |
| 01805          | , { {      | 250,         | 220,         | 250,         | 220,         | 240}         |
| 01806<br>01807 | , {<br>, { | 250,<br>250, | 220,<br>220, | 250,<br>250, | 220,<br>220, | 240}         |
| 01808          | , {        | 250,         | 220,         | 250,         | 220,         | 240}         |
| 01809<br>01810 | , {<br>}   | 250,         | 220,         | 250,         | 220,         | 240}         |
| 01811          | }          | 200          | 100          | 200          | 010          | 2001         |
| 01812<br>01813 | ,{{{<br>,{ | 300,<br>300, | 190,<br>170, | 300,<br>300, | 210,<br>170, | 300}<br>300} |
| 01814<br>01815 | , {        | 270,<br>270, | 190,<br>130, | 270,<br>270, | 80,<br>210,  | 270}<br>270} |
| 01816          | , {<br>, { | 270,         | 190,         | 270,         | 210,         | 270}         |
| 01817<br>01818 | }<br>,{{   | 300,         | 170,         | 300,         | 130,         | 300}         |
| 01819          | , {        | 300,         | 170,         | 300,         | 110,         | 300}         |
| 01820<br>01821 | , {<br>, { | 270,<br>190, | 130,<br>50,  | 270,<br>190, | 80,<br>130,  | 270}<br>190} |
| 01822          | , {        | 270,         | 130,         | 270,         | 80,          | 270}         |
| 01823<br>01824 | }<br>,{{   | 270,         | 190,         | 270,         | 80,          | 270}         |
| 01825<br>01826 | , {<br>, { | 270,<br>270, | 130,<br>190, | 270,<br>270, | 80,<br>80,   | 270}<br>270} |
| 01827          | , {        | 270,         | 130,         | 270,         | 80,          | 270}         |
| 01828<br>01829 | , {<br>}   | 270,         | 190,         | 270,         | 80,          | 270}         |
| 01830          | , { {      | 270,         | 130,         | 270,         | 210,         | 270}         |
| 01831<br>01832 | , {<br>, { | 230,<br>270, | 90,<br>130,  | 230,<br>270, | 170,<br>80,  | 230}<br>270} |
| 01833          | , {        | 210,         | 130,         | 140,         | 210,         | 140}         |
| 01834<br>01835 | , {<br>}   | 270,         | 130,         | 270,         | 80,          | 270}         |
| 01836<br>01837 | , { {      | 270,<br>270, | 190,<br>130, | 270,<br>270, | 210,<br>80,  | 270}<br>270} |
| 01838          | , {<br>, { | 270,         | 190,         | 270,         | 80,          | 270}         |
| 01839<br>01840 | , {<br>, { | 270,<br>270, | 130,<br>130, | 270,<br>270, | 80,<br>210,  | 270}<br>270} |
| 01841          | }          | 2.0,         | 100,         | 2,0,         | 210,         | 2,0,         |
| 01842<br>01843 | }<br>,{{{  | 270,         | 260,         | 270,         | 260,         | 240}         |
| 01844          | , {        | 270,         | 260,         | 270,         | 260,         | 240}         |
| 01845<br>01846 | , {<br>, { | 240,<br>240, | 220,<br>220, | 240,<br>240, | 220,<br>220, | 150}<br>150} |
| 01847<br>01848 | , {<br>}   | 240,         | 220,         | 240,         | 220,         | 150}         |
| 01849          | , { {      | 270,         | 260,         | 270,         | 260,         | 240}         |
| 01850<br>01851 | , {<br>, { | 270,<br>240, | 260,<br>220, | 270,<br>240, | 260,<br>220, | 240}<br>150} |
| 01852          | , {        | 220,         | 140,         | 220,         | 140,         | 70}          |
| 01853<br>01854 | , {<br>}   | 240,         | 220,         | 240,         | 220,         | 150}         |
| 01855<br>01856 | , { {      | 240,<br>240, | 220,<br>220, | 240,<br>240, | 220,<br>220, | 150}<br>150} |
| 01857          | , {<br>, { | 240,         | 220,         | 240,         | 220,         | 150}         |
| 01858<br>01859 | , {<br>, { | 240,<br>240, | 220,<br>220, | 240,<br>240, | 220,<br>220, | 150}<br>150} |
| 01860          | }          |              |              |              |              |              |
| 01861<br>01862 | ,{{<br>,{  | 260,<br>260, | 220,<br>180, | 260,<br>260, | 220,<br>180, | 150}<br>110} |
| 01863          | , {        | 240,         | 220,         | 240,         | 220,<br>90,  | 150}         |
| 01864<br>01865 | , {<br>, { | 150,<br>240, | 90,<br>220,  | 110,<br>240, | 220,         | 150}<br>150} |
| 01866<br>01867 | }<br>,{{   | 240,         | 220,         | 240,         | 220,         | 150}         |
| 01868          | , {        | 240,         | 220,         | 240,         | 220,         | 150}         |
| 01869<br>01870 | , {<br>, { | 240,<br>240, | 220,<br>220, | 240,<br>240, | 220,<br>220, | 150}<br>150} |
| 01871          | , {        | 240,         | 220,         | 240,         | 220,         | 150}         |
| 01872<br>01873 | }          |              |              |              |              |              |
| 01874          | }          | 210          | 260          | 210          | 220          | 2001         |
| 01875<br>01876 | ,{{{       | 310,<br>310, | 260,<br>230, | 310,<br>310, | 220,<br>220, | 300}<br>300} |
| 01877<br>01878 | , {<br>, { | 240,<br>240, | 200,         | 240,<br>240, | 190,<br>190, | 240}<br>240} |
| 01879          | , {        | 260,         | 260,         | 240,         | 190,         | 240}         |
| 01880<br>01881 | }<br>,{{   | 240,         | 200,         | 240,         | 190,         | 240}         |
| 01882          | , {        | 200,         | 160,         | 200,         | 160,         | 200}         |
| 01883<br>01884 | , {<br>, { | 240,<br>150, | 200,<br>60,  | 240,<br>150, | 190,<br>60,  | 240}<br>130} |
| 01885          | , {        | 240,         | 200,         | 240,         | 190,         | 240}         |

| 01886          | }          | 240          | 200          | 240          | 1.00         | 2401         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 01887<br>01888 | ,{{<br>,{  | 240,<br>240, | 200,<br>200, | 240,<br>240, | 190,<br>190, | 240}<br>240} |
| 01889          | , {        | 240,         | 200,         | 240,         | 190,         | 240}         |
| 01890<br>01891 | , {<br>, { | 240,<br>240, | 200,<br>200, | 240,<br>240, | 190,<br>190, | 240}         |
| 01892          | }          |              |              |              |              |              |
| 01893<br>01894 | ,{{<br>,{  | 310,<br>310, | 230,<br>230, | 310,<br>310, | 220,<br>220, | 300}         |
| 01895          | , {        | 240,         | 200,         | 240,         | 190,         | 240}         |
| 01896          | , {        | 180,         | 100,         | 110,         | 180,         | 120}         |
| 01897<br>01898 | , {<br>}   | 240,         | 200,         | 240,         | 190,         | 240}         |
| 01899          | , { {      | 260,         | 260,         | 240,         | 190,         | 240}         |
| 01900<br>01901 | , {<br>, { | 240,<br>240, | 200,<br>200, | 240,<br>240, | 190,<br>190, | 240}         |
| 01902          | , {        | 240,         | 200,         | 240,         | 190,         | 240)         |
| 01903<br>01904 | , {        | 260,         | 260,         | 240,         | 190,         | 240}         |
| 01904          | }          |              |              |              |              |              |
| 01906          | , { { {    | 270,         | 260,         | 270,         | 160,         | 270}         |
| 01907<br>01908 | , {<br>, { | 270,<br>240, | 230,<br>200, | 270,<br>240, | 130,<br>160, | 270}<br>240} |
| 01909          | , {        | 240,         | 200,         | 240,         | 100,         | 240}         |
| 01910          | , {        | 260,         | 260,         | 240,         | 160,         | 240}         |
| 01911<br>01912 | }<br>,{{   | 240,         | 200,         | 240,         | 100,         | 240}         |
| 01913          | , {        | 200,         | 160,         | 200,         | 70,          | 200}         |
| 01914<br>01915 | , {<br>, { | 240,<br>100, | 200,<br>60,  | 240,<br>100, | 100,<br>-30, | 240}<br>100} |
| 01916          | , {        | 240,         | 200,         | 240,         | 100,         | 240}         |
| 01917          | }          | 0.40         | 200          | 0.40         | 1.00         | 0.401        |
| 01918<br>01919 | ,{{<br>,{  | 240,<br>240, | 200,<br>200, | 240,<br>240, | 160,<br>100, | 240}         |
| 01920          | , {        | 240,         | 200,         | 240,         | 160,         | 240}         |
| 01921<br>01922 | , {<br>, { | 240,<br>240, | 200,<br>200, | 240,<br>240, | 100,<br>160, | 240}         |
| 01923          | , \<br>}   | 240,         | 200,         | 240,         | 100,         | 240)         |
| 01924          | , { {      | 270,         | 230,         | 270,         | 130,         | 270}         |
| 01925<br>01926 | , {<br>, { | 270,<br>240, | 230,<br>200, | 270,<br>240, | 130,<br>100, | 270}<br>240} |
| 01927          | , {        | 110,         | 70,          | 110,         | 100,         | 110}         |
| 01928<br>01929 | , {<br>}   | 240,         | 200,         | 240,         | 100,         | 240}         |
| 01929          | , { {      | 260,         | 260,         | 240,         | 160,         | 240}         |
| 01931          | , {        | 240,         | 200,         | 240,         | 100,         | 240}         |
| 01932<br>01933 | , {<br>, { | 240,<br>240, | 200,<br>200, | 240,<br>240, | 160,<br>100, | 240}         |
| 01934          | , {        | 260,         | 260,         | 240,         | 100,         | 240}         |
| 01935<br>01936 | }          |              |              |              |              |              |
| 01937          | , { { {    | 310,         | 220,         | 310,         | 220,         | 300}         |
| 01938          | , {        | 310,         | 220,         | 310,         | 220,         | 300}         |
| 01939<br>01940 | , {<br>, { | 220,<br>220, | 190,<br>190, | 220,<br>220, | 190,<br>190, | 210}         |
| 01941          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01942<br>01943 | }<br>,{{   | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01944          | , (        | 190,         | 160,         | 190,         | 160,         | 170}         |
| 01945          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01946<br>01947 | , {<br>, { | 150,<br>220, | 60,<br>190,  | 150,<br>220, | 60,<br>190,  | 130}<br>210} |
| 01948          | }          |              |              |              |              |              |
| 01949<br>01950 | ,{{<br>,{  | 220,<br>220, | 190,<br>190, | 220,<br>220, | 190,<br>190, | 210}         |
| 01951          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01952          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01953<br>01954 | , {<br>}   | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01955          | , { {      | 310,         | 220,         | 310,         | 220,         | 300}         |
| 01956<br>01957 | , {<br>, { | 310,<br>220, | 220,<br>190, | 310,<br>220, | 220,<br>190, | 300}<br>210} |
| 01958          | , {        | 90,          | 60,          | 90,          | 60,          | 80}          |
| 01959          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01960<br>01961 | }<br>,{{   | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01962          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01963          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 01964<br>01965 | , {<br>, { | 220,<br>220, | 190,<br>190, | 220,<br>220, | 190,<br>190, | 210}         |
| 01966          | }          | •            | •            | -            | •            | ,            |
| 01967<br>01968 | }<br>,{{{  | 270,         | 160,         | 270,         | 210,         | 270}         |
| 01969          | , {        | 270,         | 130,         | 270,         | 210,         | 270}         |
| 01970<br>01971 | , {        | 240,<br>240, | 160,<br>100, | 240,<br>240, | 50,<br>180,  | 240}         |
| 01971          | , {<br>, { | 240,         | 160,         | 240,         | 180,         | 240}         |
|                |            |              |              |              |              |              |

| 01973<br>01974 | }<br>,{{    | 240,         | 100,         | 240,         | 50,          | 240}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 01975          | , {         | 200,         | 70,          | 200,         | 10,          | 200}         |
| 01976<br>01977 | , {<br>, {  | 240,<br>100, | 100,<br>-30, | 240,<br>100, | 50,<br>40,   | 240}         |
| 01978          | , {         | 240,         | 100,         | 240,         | 50,          | 240}         |
| 01979<br>01980 | }<br>,{{    | 240,         | 160,         | 240,         | 50,          | 240}         |
| 01981          | , {         | 240,         | 100,         | 240,         | 50,          | 240}         |
| 01982          | , {         | 240,         | 160,         | 240,         | 50,          | 240}         |
| 01983<br>01984 | , {<br>, {  | 240,<br>240, | 100,<br>160, | 240,<br>240, | 50,<br>50,   | 240}         |
| 01985          | }           |              |              |              |              |              |
| 01986<br>01987 | ,{{<br>,{   | 270,<br>270, | 130,<br>130, | 270,<br>270, | 210,<br>210, | 270}<br>270} |
| 01988          | , {         | 240,         | 100,         | 240,         | 50,          | 240}         |
| 01989<br>01990 | , {<br>, {  | 180,<br>240, | 100,<br>100, | 110,<br>240, | 180,<br>50,  | 110}<br>240} |
| 01991          | }           | 210,         | 100,         | 210,         | 30,          | 210)         |
| 01992<br>01993 | , { {       | 240,         | 160,         | 240,<br>240, | 180,<br>50,  | 240}         |
| 01993          | ,{<br>,{    | 240,<br>240, | 100,<br>160, | 240,         | 50,          | 240}         |
| 01995          | , {         | 240,         | 100,         | 240,         | 50,          | 240}         |
| 01996<br>01997 | , {<br>}    | 240,         | 100,         | 240,         | 180,         | 240}         |
| 01998          | }           |              |              |              |              |              |
| 01999<br>02000 | ,{{{<br>,{  | 300,<br>300, | 220,<br>220, | 300,<br>300, | 220,<br>220, | 150}<br>150} |
| 02001          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02002          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02003<br>02004 | , {<br>}    | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02005          | , { {       | 210,         | 190,         | 210,         | 190,         | 140}         |
| 02006<br>02007 | , {<br>, {  | 170,<br>210, | 160,<br>190, | 170,<br>210, | 160,<br>190, | 140}<br>120} |
| 02008          | , {         | 130,         | 60,          | 130,         | 60,          | -10}         |
| 02009<br>02010 | , {<br>}    | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02011          | , { {       | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02012<br>02013 | ,{<br>,{    | 210,         | 190,<br>190, | 210,<br>210, | 190,<br>190, | 120}<br>120} |
| 02013          | , {         | 210,<br>210, | 190,         | 210,         | 190,         | 120}         |
| 02015          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02016<br>02017 | }<br>,{{    | 300,         | 220,         | 300,         | 220,         | 150}         |
| 02018          | , {         | 300,         | 220,         | 300,         | 220,         | 150}         |
| 02019<br>02020 | , {<br>, {  | 210,<br>120, | 190,<br>60,  | 210,<br>80,  | 190,<br>60,  | 120}<br>120} |
| 02021          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02022<br>02023 | }<br>,{{    | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02024          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02025<br>02026 | , {<br>, {  | 210,<br>210, | 190,<br>190, | 210,<br>210, | 190,<br>190, | 120}<br>120} |
| 02027          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02028          | }           |              |              |              |              |              |
| 02029<br>02030 | }           |              |              |              |              |              |
| 02031          | , { { { { { | 240,         | 200,         | 240,         | 190,         | 240}         |
| 02032<br>02033 | , {<br>, {  | 240,<br>220, | 200,<br>180, | 240,<br>220, | 190,<br>170, | 240}         |
| 02034          | , {         | 220,         | 180,         | 220,         | 180,         | 220}         |
| 02035<br>02036 | , {<br>}    | 220,         | 180,         | 220,         | 170,         | 220}         |
| 02037          | , { {       | 240,         | 200,         | 240,         | 190,         | 240}         |
| 02038<br>02039 | , {<br>, {  | 240,<br>210, | 200,<br>170, | 240,<br>210, | 190,<br>170, | 240}         |
| 02040          | , {         | 160,         | 70,          | 160,         | 70,          | 140}         |
| 02041          | , {<br>}    | 210,         | 170,         | 210,         | 170,         | 210}         |
| 02042<br>02043 | , { {       | 220,         | 180,         | 220,         | 180,         | 220}         |
| 02044          | , {         | 220,         | 180,         | 220,         | 180,         | 220}         |
| 02045<br>02046 | , {<br>, {  | 220,<br>220, | 180,<br>180, | 220,<br>220, | 170,<br>180, | 220}         |
| 02047          | , {         | 220,         | 180,         | 220,         | 170,         | 220}         |
| 02048          | }<br>,{{    | 230,         | 170,         | 230,         | 170,         | 210}         |
| 02050          | , {         | 230,         | 140,         | 230,         | 140,         | 210}         |
| 02051<br>02052 | ,{<br>,{    | 210,<br>130, | 170,<br>60,  | 210,<br>60,  | 170,<br>130, | 210}         |
| 02052          | , {         | 210,         | 170,         | 210,         | 170,         | 210}         |
| 02054          | }           |              |              |              |              |              |
| 02055<br>02056 | ,{{<br>,{   | 220,<br>220, | 180,<br>180, | 220,<br>220, | 180,<br>180, | 220}<br>220} |
| 02057          | , {         | 220,         | 180,         | 220,         | 170,         | 220}         |
| 02058<br>02059 | ,{<br>,{    | 220,<br>150, | 180,<br>150, | 220,<br>130, | 180,<br>80,  | 220}<br>130} |
|                |             | ,            |              |              |              | . ,          |

| 02060          | }          |              |              |              |             |              |
|----------------|------------|--------------|--------------|--------------|-------------|--------------|
| 02061          | }          |              |              |              |             |              |
| 02062          | , { { {    | 240,         | 200,         | 240,         | 140,        | 240}         |
| 02063          | , {        | 240,         | 200,         | 240,         | 100,        | 240}         |
| 02064          | , {        | 220,         | 180,         | 220,         | 140,        | 220}         |
| 02065          | , {        | 220,         | 180,         | 220,         | 90,         | 220}         |
| 02066          | , {        | 220,         | 180,         | 220,         | 140,        | 220}         |
| 02067          | }          | 0.4.0        | 000          | 0.40         | 1.00        | 0.403        |
| 02068          | , { {      | 240,         | 200,         | 240,         | 100,        | 240}         |
| 02069          | , {        | 240,         | 200,         | 240,         | 100,        | 240}         |
| 02070          | , {        | 210,         | 170,         | 210,         | 80,         | 210}         |
| 02071<br>02072 | , {        | 110,         | 70,          | 110,         | -20,<br>80, | 110}<br>210} |
| 02072          | , {<br>}   | 210,         | 170,         | 210,         | 00,         | 210;         |
| 02073          | , { {      | 220,         | 180,         | 220,         | 140,        | 220}         |
| 02075          | , (        | 220,         | 180,         | 220,         | 90,         | 220}         |
| 02076          | , {        | 220,         | 180,         | 220,         | 140,        | 220}         |
| 02077          | , {        | 220,         | 180,         | 220,         | 90,         | 220}         |
| 02078          | , {        | 220,         | 180,         | 220,         | 140,        | 220}         |
| 02079          | }          |              | ,            |              |             |              |
| 02080          | , { {      | 210,         | 170,         | 210,         | 80,         | 210}         |
| 02081          | , {        | 180,         | 140,         | 180,         | 50,         | 180}         |
| 02082          | , {        | 210,         | 170,         | 210,         | 80,         | 210}         |
| 02083          | , {        | 60,          | 20,          | 60,          | 60,         | 60}          |
| 02084          | , {        | 210,         | 170,         | 210,         | 80,         | 210}         |
| 02085          | }          |              |              |              |             |              |
| 02086          | , { {      | 220,         | 180,         | 220,         | 140,        | 220}         |
| 02087          | , {        | 220,         | 180,         | 220,         | 90,         | 220}         |
| 02088          | , {        | 220,         | 180,         | 220,         | 140,        | 220}         |
| 02089          | , {        | 220,         | 180,         | 220,         | 90,         | 220}         |
| 02090          | , {        | 150,         | 150,         | 130,         | 0,          | 130}         |
| 02091          | }          |              |              |              |             |              |
| 02092          | }          |              |              |              |             |              |
| 02093          | , { { {    | 230,         | 190,         | 230,         | 190,        | 210}         |
| 02094          | , {        | 230,         | 190,         | 230,         | 190,        | 210}         |
| 02095          | , {        | 200,         | 170,         | 200,         | 170,        | 190}         |
| 02096          | , {        | 210,         | 180,         | 210,         | 180,        | 190}         |
| 02097          | , {        | 200,         | 170,         | 200,         | 170,        | 190}         |
| 02098<br>02099 | }<br>, { { | 220          | 190,         | 220          | 190,        | 2101         |
| 02100          | , 11       | 220,<br>220, | 190,         | 220,<br>220, | 190,        | 210}         |
| 02100          | , {        | 200,         | 170,         | 200,         | 170,        | 180}         |
| 02101          | , {        | 160,         | 70,          | 160,         | 70,         | 140}         |
| 02102          | , {        | 200,         | 170,         | 200,         | 170,        | 180}         |
| 02104          | }          | 200,         | - / · · /    | 200,         | 1,0,        | 100,         |
| 02105          | , { {      | 210,         | 180,         | 210,         | 180,        | 190}         |
| 02106          | , {        | 210,         | 180,         | 210,         | 180,        | 190}         |
| 02107          | , {        | 200,         | 170,         | 200,         | 170,        | 190}         |
| 02108          | , {        | 210,         | 180,         | 210,         | 180,        | 190}         |
| 02109          | , {        | 200,         | 170,         | 200,         | 170,        | 190}         |
| 02110          | }          |              |              |              |             |              |
| 02111          | , { {      | 230,         | 170,         | 230,         | 170,        | 210}         |
| 02112          | , {        | 230,         | 140,         | 230,         | 140,        | 210}         |
| 02113          | , {        | 200,         | 170,         | 200,         | 170,        | 180}         |
| 02114          | , {        | 50,          | 20,          | 50,          | 20,         | 30}          |
| 02115          | , {        | 200,         | 170,         | 200,         | 170,        | 180}         |
| 02116          | }          |              |              |              |             |              |
| 02117          | , { {      | 210,         | 180,         | 210,         | 180,        | 190}         |
| 02118          | , {        | 210,         | 180,         | 210,         | 180,        | 190}         |
| 02119          | , {        | 200,         | 170,         | 200,         | 170,        | 190}         |
| 02120          | , {        | 210,         | 180,         | 210,         | 180,        | 190}         |
| 02121          | , {        | 110,         | 80,          | 110,         | 80,         | 100}         |
| 02122          | }          |              |              |              |             |              |
| 02123          | }          | 240          | 1.40         | 240          | 120         | 2401         |
| 02124          | , { { {    | 240,         | 140,         | 240,         | 130,        | 240}         |
| 02125<br>02126 | , {        | 240,         | 100,<br>140, | 240,<br>220, | 120,<br>30, | 240}         |
| 02126          | , {        | 220,<br>220, | 90,          | 220,         | 130,        | 220}         |
| 02128          | , {<br>, { | 220,         | 140,         | 220,         | 70,         | 220}         |
| 02120          | }          | 220,         | 140,         | 220,         | , 0,        | 220)         |
| 02130          | , { {      | 240,         | 100,         | 240,         | 50,         | 240}         |
| 02131          | , {        | 240,         | 100,         | 240,         | 50,         | 240}         |
| 02132          | , {        | 210,         | 80,          | 210,         | 20,         | 210}         |
| 02133          | , {        | 110,         | -20,         | 110,         | 50,         | 110}         |
| 02133          | , {        | 210,         | 80,          | 210,         | 20,         | 210}         |
| 02135          | }          | •            |              | . ,          | .,          | ,            |
| 02136          | , { {      | 220,         | 140,         | 220,         | 30,         | 220}         |
| 02137          | , {        | 220,         | 90,          | 220,         | 30,         | 220}         |
| 02138          | , {        | 220,         | 140,         | 220,         | 30,         | 220}         |
| 02139          | , {        | 220,         | 90,          | 220,         | 30,         | 220}         |
| 02140          | , {        | 220,         | 140,         | 220,         | 30,         | 220}         |
| 02141          | }          |              |              |              |             |              |
|                | , { {      | 210,         | 80,          | 210,         | 130,        | 210}         |
| 02142          |            |              |              |              | 100         | 1001         |
| 02143          | , {        | 180,         | 50,          | 180,         | 120,        | 180}         |
| 02143<br>02144 | , {<br>, { | 210,         | 80,          | 210,         | 20,         | 210}         |
| 02143          | , {        |              |              |              |             |              |

| 02147          | }           |              |             |              |              |              |
|----------------|-------------|--------------|-------------|--------------|--------------|--------------|
| 02148          | , { {       | 220,         | 140,        | 220,         | 70,          | 220}         |
| 02149          | , {         | 220,         | 90,         | 220,         | 30,          | 220}         |
| 02150<br>02151 | , {         | 220,<br>220, | 140,<br>90, | 220,<br>220, | 30,<br>30,   | 220}         |
| 02151          | , {<br>, {  | 130,         | 0,          | 130,         | 70,          | 130}         |
| 02153          | }           | 100,         | ٠,          | 130,         | 70,          | 130)         |
| 02154          | }           |              |             |              |              |              |
| 02155          | ,{{{        | 210,         | 190,        | 210,         | 190,         | 180}         |
| 02156          | , {         | 210,         | 190,        | 210,         | 190,         | 180}         |
| 02157          | , {         | 190,         | 170,        | 190,         | 170,         | 100}         |
| 02158          | , {         | 190,         | 180,        | 190,         | 180,         | 100}         |
| 02159          | , {         | 190,         | 170,        | 190,         | 170,         | 100}         |
| 02160          | }           | ,            |             |              | ,            |              |
| 02161          | , { {       | 210,         | 190,        | 210,         | 190,         | 180}         |
| 02162          | , {         | 210,         | 190,        | 210,         | 190,         | 180}         |
| 02163          | , {         | 180,         | 170,        | 180,         | 170,         | 90}          |
| 02164          | , {         | 140,         | 70,         | 140,         | 70,          | 0 }          |
| 02165          | , {         | 180,         | 170,        | 180,         | 170,         | 90}          |
| 02166          | }           |              |             |              |              |              |
| 02167          | , { {       | 190,         | 180,        | 190,         | 180,         | 100}         |
| 02168          | , {         | 190,         | 180,        | 190,         | 180,         | 100}         |
| 02169          | , {         | 190,         | 170,        | 190,         | 170,         | 100}         |
| 02170          | , {         | 190,         | 180,        | 190,         | 180,         | 100}         |
| 02171          | , {         | 190,         | 170,        | 190,         | 170,         | 100}         |
| 02172          | }           | 010          | 1.00        | 010          | 1.70         | 001          |
| 02173          | , { {       | 210,         | 170,        | 210,         | 170,         | 90}          |
| 02174          | , {         | 210,         | 140,        | 210,         | 140,         | 60}          |
| 02175          | , {         | 180,         | 170,        | 180,         | 170,         | 90}          |
| 02176          | , {         | 70,          | 20,         | 30,          | 20,          | 70}          |
| 02177<br>02178 | , {<br>}    | 180,         | 170,        | 180,         | 170,         | 90}          |
| 02178          | , { {       | 190,         | 180,        | 190,         | 180,         | 100}         |
| 02179          | , 11        | 190,         | 180,        | 190,         | 180,         | 100}         |
| 02181          | , {         | 190,         | 170,        | 190,         | 170,         | 100}         |
| 02182          | , {         | 190,         | 180,        | 190,         | 180,         | 100}         |
| 02183          | , {         | 100,         | 80,         | 100,         | 80,          | 100)         |
| 02184          | }           | 100,         | 00,         | 100,         | 00,          | 10,          |
| 02185          | }           |              |             |              |              |              |
| 02186          | }           |              |             |              |              |              |
| 02187          | , { { { { { | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02188          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02189          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02190          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02191          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02192          | }           |              |             |              |              |              |
| 02193          | , { {       | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02194          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02195          | , {         | 190,         | 150,        | 190,         | 150,         | 190}         |
| 02196          | , {         | 180,         | 90,         | 180,         | 90,          | 160}         |
| 02197          | , {         | 190,         | 150,        | 190,         | 150,         | 190}         |
| 02198          | }           |              |             |              |              |              |
| 02199          | , { {       | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02200          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02201          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02202<br>02203 | },          | 240,<br>240, | 200,        | 240,<br>240, | 190,<br>190, | 240}         |
| 02203          | , {<br>}    | 240,         | 200,        | 240,         | 100,         | 240)         |
| 02205          | , { {       | 190,         | 150,        | 190,         | 150,         | 190}         |
| 02206          | , {         | 190,         | 100,        | 190,         | 100,         | 170}         |
| 02207          | , {         | 190,         | 150,        | 190,         | 150,         | 190}         |
| 02208          | , {         | 150,         | 80,         | 80,          | 150,         | 90}          |
| 02209          | , {         | 190,         | 150,        | 190,         | 150,         | 190}         |
| 02210          | }           |              | ,           | ,            |              |              |
| 02211          | , { {       | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02212          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02213          | , {         | 210,         | 170,        | 210,         | 160,         | 210}         |
| 02214          | , {         | 240,         | 200,        | 240,         | 190,         | 240}         |
| 02215          | , {         | 170,         | 170,        | 150,         | 110,         | 150}         |
| 02216          | }           |              |             |              |              |              |
| 02217          | }           |              |             |              |              |              |
| 02218          | , { { {     | 240,         | 200,        | 240,         | 160,         | 240}         |
| 02219          | , {         | 240,         | 200,        | 240,         | 100,         | 240}         |
| 02220          | , {         | 240,         | 200,        | 240,         | 160,         | 240}         |
| 02221          | , {         | 240,         | 200,        | 240,         | 100,         | 240}         |
| 02222          | , {         | 240,         | 200,        | 240,         | 160,         | 240}         |
| 02223          | }           | 0.46         | 000         | 0.46         | 100          | 0.4.5        |
| 02224          | , { {       | 240,         | 200,        | 240,         | 100,         | 240}         |
| 02225          | , {         | 240,         | 200,        | 240,         | 100,         | 240}         |
| 02226          | , {         | 190,         | 150,        | 190,         | 60,          | 190}         |
| 02227<br>02228 | , {         | 130,<br>190, | 90,<br>150, | 130,<br>190, | 0,<br>60,    | 130}<br>190} |
| 02228          | , {<br>}    | ⊥ J∪,        | 100,        | ⊥ J ∪ ,      | υυ,          | 120}         |
| 02229          | , { {       | 240,         | 200,        | 240,         | 160,         | 240}         |
| 02231          | , (         | 240,         | 200,        | 240,         | 100,         | 240)         |
| 02232          | , {         | 240,         | 200,        | 240,         | 160,         | 240}         |
| 02233          | , {         | 240,         | 200,        | 240,         | 100,         | 240}         |
|                |             | •            | •           | •            | •            | ,            |
|                |             |              |             |              |              |              |

| 02234          | , {        | 240,         | 200,         | 240,         | 160,         | 240}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 02235<br>02236 | }<br>,{{   | 190,         | 150,         | 190,         | 80,          | 190}         |
| 02237          | , {        | 140,         | 100,         | 140,         | 10,          | 140}         |
| 02238          | , {        | 190,         | 150,         | 190,         | 60,          | 190}         |
| 02239<br>02240 | , {<br>, { | 80,<br>190,  | 40,<br>150,  | 80,<br>190,  | 80,<br>60,   | 80}<br>190}  |
| 02241          | }          | ,            | ,            | ,            | ,            | ,            |
| 02242          | , { {      | 240,         | 200,         | 240,         | 130,         | 240}         |
| 02243<br>02244 | , {<br>, { | 240,<br>210, | 200,<br>170, | 240,<br>210, | 100,<br>130, | 240}         |
| 02245          | , {        | 240,         | 200,         | 240,         | 100,         | 240}         |
| 02246          | , {        | 170,         | 170,         | 150,         | 20,          | 150}         |
| 02247<br>02248 | }          |              |              |              |              |              |
| 02249          | ,{{{       | 220,         | 190,         | 220,         | 190,         | 210}         |
| 02250          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 02251<br>02252 | , {<br>, { | 220,<br>220, | 190,<br>190, | 220,<br>220, | 190,<br>190, | 210}         |
| 02252          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 02254          | }          |              |              |              |              |              |
| 02255<br>02256 | , { {      | 220,<br>220, | 190,<br>190, | 220,<br>220, | 190,<br>190, | 210}         |
| 02250          | , {<br>, { | 180,         | 150,         | 180,         | 150,         | 160}         |
| 02258          | , {        | 180,         | 90,          | 180,         | 90,          | 160}         |
| 02259          | , {        | 180,         | 150,         | 180,         | 150,         | 160}         |
| 02260<br>02261 | }<br>,{{   | 220,         | 190,         | 220,         | 190,         | 210}         |
| 02262          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 02263<br>02264 | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 02264          | , {<br>, { | 220,<br>220, | 190,<br>190, | 220,<br>220, | 190,<br>190, | 210}         |
| 02266          | }          | ,            | ,            | ,            | ,            | ,            |
| 02267          | , { {      | 190,         | 150,         | 190,         | 150,         | 170}         |
| 02268<br>02269 | , {<br>, { | 190,<br>180, | 100,<br>150, | 190,<br>180, | 100,<br>150, | 170}<br>160} |
| 02270          | , {        | 70,          | 40,          | 70,          | 40,          | 50}          |
| 02271          | , {        | 180,         | 150,         | 180,         | 150,         | 160}         |
| 02272<br>02273 | }<br>,{{   | 220,         | 190,         | 220,         | 190,         | 210}         |
| 02274          | , {        | 220,         | 190,         | 220,         | 190,         | 210}         |
| 02275          | , {        | 190,         | 160,         | 190,         | 160,         | 180}         |
| 02276<br>02277 | , {<br>, { | 220,<br>140, | 190,<br>110, | 220,<br>140, | 190,<br>110, | 210}<br>120} |
| 02278          | }          | 110,         | 110,         | 110,         | 110,         | 120)         |
| 02279          | }          |              |              |              |              |              |
| 02280<br>02281 | ,{{{<br>,{ | 240,<br>240, | 160,<br>100, | 240,<br>240, | 150,<br>80,  | 240}         |
| 02282          | , {        | 240,         | 160,         | 240,         | 50,          | 240}         |
| 02283          | , {        | 240,         | 100,         | 240,         | 150,         | 240}         |
| 02284<br>02285 | , {<br>}   | 240,         | 160,         | 240,         | 90,          | 240}         |
| 02286          | , { {      | 240,         | 100,         | 240,         | 70,          | 240}         |
| 02287          | , {        | 240,         | 100,         | 240,         | 50,          | 240}         |
| 02288<br>02289 | , {<br>, { | 190,<br>130, | 60,<br>0,    | 190,<br>130, | 0,<br>70,    | 190}<br>130} |
| 02290          | , {        | 190,         | 60,          | 190,         | 0,           | 190}         |
| 02291          | }          | 0.4.0        | 1.00         | 0.4.0        |              | 0.401        |
| 02292<br>02293 | ,{{<br>,{  | 240,<br>240, | 160,<br>100, | 240,<br>240, | 50,<br>50,   | 240}         |
| 02294          | , {        | 240,         | 160,         | 240,         | 50,          | 240}         |
| 02295          | , {        | 240,         | 100,         | 240,         | 50,          | 240}         |
| 02296<br>02297 | , {<br>}   | 240,         | 160,         | 240,         | 50,          | 240}         |
| 02298          | , { {      | 190,         | 80,          | 190,         | 150,         | 190}         |
| 02299          | , {        | 140,         | 10,          | 140,         | 80,          | 140}         |
| 02300<br>02301 | , {<br>, { | 190,<br>150, | 60,<br>80,   | 190,<br>80,  | 0,<br>150,   | 190}<br>80}  |
| 02302          | , {        | 190,         | 60,          | 190,         | 0,           | 190}         |
| 02303          | }          | 0.4.0        | 100          | 0.4.0        | 0.0          | 0.401        |
| 02304<br>02305 | ,{{<br>,{  | 240,<br>240, | 130,<br>100, | 240,<br>240, | 90,<br>50,   | 240}         |
| 02306          | , {        | 210,         | 130,         | 210,         | 20,          | 210}         |
| 02307          | , {        | 240,         | 100,         | 240,         | 50,          | 240}         |
| 02308<br>02309 | , {<br>}   | 150,         | 20,          | 150,         | 90,          | 150}         |
| 02309          | }          |              |              |              |              |              |
| 02311          | , { { {    | 210,         | 190,         | 210,         | 190,         | 180}         |
| 02312<br>02313 | , {        | 210,         | 190,<br>190, | 210,<br>210, | 190,<br>190, | 180}         |
| 02313          | , {<br>, { | 210,<br>210, | 190,         | 210,         | 190,         | 120}<br>120} |
| 02315          | , {        | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02316          | }          | 210          | 100          | 210          | 100          | 1001         |
| 02317<br>02318 | ,{{<br>,{  | 210,<br>210, | 190,<br>190, | 210,<br>210, | 190,<br>190, | 180}<br>180} |
| 02319          | , {        | 160,         | 150,         | 160,         | 150,         | 70}          |
| 02320          | , {        | 160,         | 90,          | 160,         | 90,          | 10}          |
|                |            |              |              |              |              |              |

| 02321          | , {         | 160,         | 150,         | 160,         | 150,         | 70}          |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 02322<br>02323 | }<br>,{{    | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02324          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02325<br>02326 | , {<br>, {  | 210,<br>210, | 190,<br>190, | 210,<br>210, | 190,<br>190, | 120}<br>120} |
| 02327          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02328<br>02329 | }<br>,{{    | 170,         | 150,         | 170,         | 150,         | 90}          |
| 02330          | , {         | 170,         | 100,         | 170,         | 100,         | 20}          |
| 02331          | , {<br>, {  | 160,<br>90,  | 150,<br>40,  | 160,<br>50,  | 150,<br>40,  | 70}<br>90}   |
| 02333          | , {         | 160,         | 150,         | 160,         | 150,         | 70}          |
| 02334<br>02335 | }<br>,{{    | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02336          | , {         | 210,         | 190,         | 210,         | 190,         | 120}         |
| 02337<br>02338 | , {         | 180,         | 160,         | 180,         | 160,         | 90}<br>120}  |
| 02339          | , {<br>, {  | 210,<br>120, | 190,<br>110, | 210,<br>120, | 190,<br>110, | 30}          |
| 02340          | }           |              |              |              |              |              |
| 02341<br>02342 | }           |              |              |              |              |              |
| 02343          | , { { { { { | 310,         | 290,         | 310,         | 260,         | 300}         |
| 02344<br>02345 | , {<br>, {  | 310,<br>270, | 270,<br>230, | 310,<br>270, | 260,<br>220, | 300}<br>270} |
| 02346          | , {         | 270,         | 230,         | 270,         | 220,         | 270}         |
| 02347<br>02348 | , {<br>}    | 290,         | 290,         | 270,         | 220,         | 270}         |
| 02349          | , { {       | 300,         | 270,         | 300,         | 260,         | 300}         |
| 02350          | , {         | 300,         | 270,         | 300,         | 260,         | 300}         |
| 02351<br>02352 | , {<br>, {  | 270,<br>230, | 230,<br>150, | 270,<br>230, | 220,<br>140, | 270}<br>220} |
| 02353          | , {         | 270,         | 230,         | 270,         | 220,         | 270}         |
| 02354<br>02355 | }<br>,{{    | 270,         | 230,         | 270,         | 220,         | 270}         |
| 02356          | , {         | 270,         | 230,         | 270,         | 220,         | 270}         |
| 02357<br>02358 | , {<br>, {  | 270,<br>270, | 230,<br>230, | 270,<br>270, | 220,<br>220, | 270}<br>270} |
| 02359          | , {         | 270,         | 230,         | 270,         | 220,         | 270}         |
| 02360<br>02361 | }<br>,{{    | 310,         | 230,         | 310,         | 220,         | 300}         |
| 02362          | , ; ;       | 310,         | 230,         | 310,         | 220,         | 300}         |
| 02363          | , {         | 270,         | 230,         | 270,         | 220,         | 270}         |
| 02364<br>02365 | , {<br>, {  | 210,<br>270, | 130,<br>230, | 140,<br>270, | 210,<br>220, | 150}<br>270} |
| 02366          | }           |              |              |              |              |              |
| 02367<br>02368 | ,{{<br>,{   | 290,<br>270, | 290,<br>230, | 270,<br>270, | 220,<br>220, | 270}<br>270} |
| 02369          | , {         | 270,         | 230,         | 270,         | 220,         | 270}         |
| 02370<br>02371 | , {<br>, {  | 270,<br>290, | 230,<br>290, | 270,<br>270, | 220,<br>220, | 270}<br>270} |
| 02372          | }           | 230,         | 230,         | 2.0,         | 220,         | 2,0,         |
| 02373<br>02374 | }<br>,{{{   | 300,         | 290,         | 300,         | 190,         | 300}         |
| 02375          | , ( ( (     | 300,         | 270,         | 300,         | 170,         | 300}         |
| 02376<br>02377 | , {         | 270,<br>270, | 230,<br>230, | 270,         | 190,<br>130, | 270}<br>270} |
| 02378          | , {<br>, {  | 290,         | 290,         | 270,<br>270, | 190,         | 270}         |
| 02379          | }           | 200          | 070          | 200          | 170          | 2001         |
| 02380<br>02381 | ,{{<br>,{   | 300,<br>300, | 270,<br>270, | 300,<br>300, | 170,<br>170, | 300}         |
| 02382          | , {         | 270,         | 230,         | 270,         | 130,         | 270}         |
| 02383<br>02384 | , {<br>, {  | 190,<br>270, | 150,<br>230, | 190,<br>270, | 50,<br>130,  | 190}<br>270} |
| 02385          | }           |              |              |              |              |              |
| 02386<br>02387 | ,{{<br>,{   | 270,<br>270, | 230,<br>230, | 270,<br>270, | 190,<br>130, | 270}<br>270} |
| 02388          | , {         | 270,         | 230,         | 270,         | 190,         | 270}         |
| 02389<br>02390 | , {<br>, {  | 270,<br>270, | 230,<br>230, | 270,<br>270, | 130,<br>190, | 270}<br>270} |
| 02391          | }           | 270,         | 230,         | 2701         | 130,         | 270)         |
| 02392          | , { {       | 270,         | 230,         | 270,         | 130,         | 270}         |
| 02393<br>02394 | , {<br>, {  | 270,<br>270, | 230,<br>230, | 270,<br>270, | 130,<br>130, | 270}<br>270} |
| 02395          | , {         | 140,         | 100,         | 140,         | 130,         | 140}         |
| 02396<br>02397 | , {<br>}    | 270,         | 230,         | 270,         | 130,         | 270}         |
| 02398          | , { {       | 290,         | 290,         | 270,         | 190,         | 270}         |
| 02399<br>02400 | , {<br>, {  | 270,<br>270, | 230,<br>230, | 270,<br>270, | 130,<br>190, | 270}<br>270} |
| 02401          | , {         | 270,         | 230,         | 270,         | 130,         | 270}         |
| 02402<br>02403 | , {<br>}    | 290,         | 290,         | 270,         | 130,         | 270}         |
| 02404          | }           |              |              |              |              |              |
| 02405<br>02406 | ,{{{<br>,{  | 310,<br>310, | 260,<br>260, | 310,<br>310, | 260,<br>260, | 300}         |
| 02400          | , t         | 250,         | 220,         | 250,         | 220,         | 240}         |
|                |             |              |              |              |              |              |

| 02408          | , {     | 250, | 220, | 250,  | 220, | 240} |
|----------------|---------|------|------|-------|------|------|
| 02409          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02410          | }       | ,    | ,    | ,     | ,    | ,    |
| 02411          | , { {   | 290, | 260, | 290,  | 260, | 270} |
| 02412          | , {     | 290, | 260, | 290,  | 260, | 270} |
| 02412          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02413          |         | 230, | 140, | 230,  | 140, | 220} |
| 02414          | , {     |      |      | 250,  |      | 240} |
|                | , {     | 250, | 220, | 230,  | 220, | 240) |
| 02416          | }       | 250  | 220  | 250   | 220  | 2401 |
| 02417          | , { {   | 250, | 220, | 250,  | 220, | 240} |
| 02418          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02419          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02420          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02421          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02422          | }       |      |      |       |      |      |
| 02423          | , { {   | 310, | 220, | 310,  | 220, | 300} |
| 02424          | , {     | 310, | 220, | 310,  | 220, | 300} |
| 02425          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02426          | , {     | 120, | 90,  | 120,  | 90,  | 110} |
| 02427          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02428          | }       |      |      |       | •    |      |
| 02429          | , { {   | 250, | 220, | 250,  | 220, | 240} |
| 02430          | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02431          |         | 250, | 220, | 250,  | 220, | 240} |
|                | , {     |      | 220, |       |      |      |
| 02432<br>02433 | , {     | 250, |      | 250,  | 220, | 240} |
|                | , {     | 250, | 220, | 250,  | 220, | 240} |
| 02434          | }       |      |      |       |      |      |
| 02435          | }       |      |      |       |      |      |
| 02436          | , { { { | 300, | 190, | 300,  | 210, | 300} |
| 02437          | , {     | 300, | 170, | 300,  | 210, | 300} |
| 02438          | , {     | 270, | 190, | 270,  | 80,  | 270} |
| 02439          | , {     | 270, | 130, | 270,  | 210, | 270} |
| 02440          | , {     | 270, | 190, | 270,  | 210, | 270} |
| 02441          | }       |      |      |       |      |      |
| 02442          | , { {   | 300, | 170, | 300,  | 130, | 300} |
| 02443          | , {     | 300, | 170, | 300,  | 110, | 300} |
| 02444          | , {     | 270, | 130, | 270,  | 80,  | 270} |
| 02445          | , {     | 190, | 50,  | 190,  | 130, | 190} |
| 02446          | , {     | 270, | 130, | 270,  | 80,  | 270} |
| 02447          | }       | 210, | 130, | 270,  | 00,  | 2/0) |
|                |         | 270  | 100  | 270   | 0.0  | 2701 |
| 02448          | , { {   | 270, | 190, | 270,  | 80,  | 270} |
| 02449          | , {     | 270, | 130, | 270,  | 80,  | 270} |
| 02450          | , {     | 270, | 190, | 270,  | 80,  | 270} |
| 02451          | , {     | 270, | 130, | 270,  | 80,  | 270} |
| 02452          | , {     | 270, | 190, | 270,  | 80,  | 270} |
| 02453          | }       |      |      |       |      |      |
| 02454          | , { {   | 270, | 130, | 270,  | 210, | 270} |
| 02455          | , {     | 270, | 130, | 270,  | 210, | 270} |
| 02456          | , {     | 270, | 130, | 270,  | 80,  | 270} |
| 02457          | , {     | 210, | 130, | 140,  | 210, | 140} |
| 02458          | , {     | 270, | 130, | 270,  | 80,  | 270} |
| 02459          | }       |      |      |       |      |      |
| 02460          | , { {   | 270, | 190, | 270,  | 210, | 270} |
| 02461          | , {     | 270, | 130, | 270,  | 80,  | 270} |
| 02462          | , {     | 270, | 190, | 270,  | 80,  | 270} |
| 02463          | , {     | 270, | 130, | 270,  | 80,  | 270} |
| 02464          | , {     | 270, | 130, | 270,  | 210, | 270} |
| 02465          | }       | 2,0, | 100, | 2,0,  | 210, | 2,0, |
| 02466          | }       |      |      |       |      |      |
| 02467          |         | 300, | 260, | 300,  | 260, | 240} |
| 02468          | , { { { |      | 260, |       | 260, | 240} |
|                | , {     | 300, |      | 300,  |      |      |
| 02469          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02470          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02471          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02472          | }       |      |      |       |      |      |
| 02473          | , { {   | 270, | 260, | 270,  | 260, | 240} |
| 02474          | , {     | 270, | 260, | 270,  | 260, | 240} |
| 02475          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02476          | , {     | 220, | 140, | 220,  | 140, | 70}  |
| 02477          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02478          | }       |      |      |       |      |      |
| 02479          | , { {   | 240, | 220, | 240,  | 220, | 150} |
| 02480          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02481          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02482          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02483          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02484          | }       | ,    | ,    | - 10, | ,    | 1001 |
| 02485          | , { {   | 300, | 220, | 300,  | 220, | 150} |
|                |         | 300, |      | 300,  |      |      |
| 02486          | , {     |      | 220, |       | 220, | 150} |
| 02487          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02488          | , {     | 150, | 90,  | 110,  | 90,  | 150} |
| 02489          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02490          | }       |      |      |       |      |      |
| 02491          | , { {   | 240, | 220, | 240,  | 220, | 150} |
| 02492          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02493          | , {     | 240, | 220, | 240,  | 220, | 150} |
| 02494          | , {     | 240, | 220, | 240,  | 220, | 150} |
|                |         |      |      |       |      |      |

| 02495          | , {        | 240,         | 220,         | 240,         | 220,         | 150}           |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 02496          | }          |              |              |              |              |                |
| 02497<br>02498 | }          |              |              |              |              |                |
| 02490          | }          |              |              |              |              |                |
| 02500          | ,{{{{{{    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02501          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02502          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02503<br>02504 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 02505          | }          | 1111,        | 1111         | 1111         | 1111 /       | 1111           |
| 02506          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02507          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02508          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02509<br>02510 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 02511          | }          | 1111,        | 1111         | 1111         | 1111 /       | 1111           |
| 02512          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02513          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02514<br>02515 | , {        | INF,         | INF,         | INF,<br>INF, | INF,         | INF }          |
| 02516          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,         | INF,<br>INF, | INF }<br>INF } |
| 02517          | }          |              | /            | /            | /            |                |
| 02518          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02519          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02520          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02521<br>02522 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 02523          | }          | INI,         | INI,         | INI,         | INI,         | TIVE J         |
| 02524          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02525          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02526          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02527<br>02528 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02529          | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02525          | }          |              |              |              |              |                |
| 02531          | ,{{{       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02532          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02533          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02534<br>02535 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 02536          | }          | INI,         | INI,         | INI,         | INI,         | TIVE J         |
| 02537          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02538          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02539          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02540          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02541<br>02542 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02543          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02544          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02545          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02546          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02547<br>02548 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02549          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02550          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02551          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02552          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02553<br>02554 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02555          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02556          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02557          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02558          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02559<br>02560 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02561          | }          |              |              |              |              |                |
| 02562          | ,{{{       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02563          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02564          |            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02565          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02566<br>02567 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02568          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02569          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02570          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02571          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02572          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02573<br>02574 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02574          | , 11       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02576          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02577          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02578          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02579<br>02580 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 02581          | , 11       | INF,         | INF,         | INF,         | INF,         | INF }          |
|                | , ,        | ,            | ,            | ,            | ,            | ,              |

| 02502 | ſ           | TNE   | TNE   | TNE   | TNE   | TNET   |
|-------|-------------|-------|-------|-------|-------|--------|
| 02582 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02583 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02584 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02585 | }           |       |       |       |       |        |
| 02586 | , { {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02587 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02588 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02589 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |             |       |       |       | •     |        |
| 02590 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02591 | }           |       |       |       |       |        |
| 02592 | }           |       |       |       |       |        |
| 02593 | , { { {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02594 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02595 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02596 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02597 |             |       |       |       |       |        |
|       | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02598 | }           |       |       |       |       |        |
| 02599 | , { {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02600 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02601 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02602 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02603 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02604 | }           | ,     | ,     | ,     | ,     | ,      |
|       |             | TAID  | TND   | TNE   | TNIE  | TATEL  |
| 02605 | , { {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02606 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02607 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02608 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02609 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02610 | }           | ,     | ,     | ,     | ,     | ,      |
|       |             | INF,  | TME   | TNE   | TNE   | TME    |
| 02611 | , { {       |       | INF,  | INF,  | INF,  | INF }  |
| 02612 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02613 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02614 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02615 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02616 | }           |       |       |       |       |        |
| 02617 | , { {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02618 |             | INF,  | INF,  | INF,  | INF,  | INF }  |
|       | , {         |       |       |       |       |        |
| 02619 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02620 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02621 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02622 | }           |       |       |       |       |        |
| 02623 | }           |       |       |       |       |        |
| 02624 | , { { {     | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02625 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02626 |             | INF,  | INF,  | INF,  | INF,  | INF }  |
|       | , {         |       |       |       |       |        |
| 02627 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02628 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02629 | }           |       |       |       |       |        |
| 02630 | , { {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02631 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02632 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
|       | , (         |       |       |       |       |        |
| 02633 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02634 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02635 | }           |       |       |       |       |        |
| 02636 | , { {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02637 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02638 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02639 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02640 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |             | TIME, | TIME, | TIME, | TIME, | TIME } |
| 02641 | }           | ****  |       |       |       |        |
| 02642 | , { {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02643 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02644 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02645 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02646 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02647 | }           | ,     |       |       | •     |        |
| 02648 | , { {       | TNE   | TNE   | TNE   | TNE   | INF }  |
|       |             | INF,  | INF,  | INF,  | INF,  |        |
| 02649 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02650 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02651 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02652 | , {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 02653 | }           |       |       |       |       |        |
| 02654 | }           |       |       |       |       |        |
| 02655 | }           |       |       |       |       |        |
|       |             | 220,  | 220,  | 190,  | 150,  | 150}   |
| 02656 | , { { { { { |       |       |       |       |        |
| 02657 | , {         | 170,  | 170,  | 150,  | 150,  | 150}   |
| 02658 | , {         | 220,  | 220,  | 190,  | 130,  | 140}   |
| 02659 | , {         | 170,  | 170,  | 150,  | 150,  | 150}   |
| 02660 | , {         | 140,  | 140,  | 120,  | 140,  | 120}   |
| 02661 | }           | •     |       |       | •     | ,      |
| 02662 | , { {       | 150,  | 130,  | 110,  | 110,  | 150}   |
|       |             |       |       | 110,  | 110,  |        |
| 02663 | , {         | 150,  | 130,  |       |       | 150}   |
| 02664 | , {         | 130,  | 130,  | 110,  | 100,  | 110}   |
| 02665 | , {         | 90,   | 10,   | 70,   | 10,   | 90}    |
| 02666 | , {         | 130,  | 130,  | 100,  | 100,  | 110}   |
| 02667 | }           |       |       |       |       |        |
| 02668 | , { {       | 220,  | 220,  | 190,  | 150,  | 150}   |
|       |             |       |       |       |       |        |

| 02669<br>02670 | , {<br>, { | 150,<br>220, | 150,<br>220, | 150,<br>190,  | 150,<br>130, | 150}<br>140} |
|----------------|------------|--------------|--------------|---------------|--------------|--------------|
| 02671<br>02672 | , {<br>, { | 170,<br>140, | 170,<br>140, | 150,<br>120,  | 150,<br>120, | 150}<br>120} |
| 02673          | }          |              |              |               |              |              |
| 02674<br>02675 | ,{{<br>,{  | 140,<br>90,  | 130,<br>10,  | 100,<br>70,   | 100,<br>10,  | 140}<br>90}  |
| 02676<br>02677 | , {        | 130,         | 130,         | 100,          | 100,         | 110}         |
| 02678          | , {<br>, { | 140,<br>130, | -10,<br>130, | 20,<br>100,   | 80,<br>100,  | 140}<br>110} |
| 02679<br>02680 | }<br>,{{   | 170,         | 170,         | 170,          | 150,         | 150}         |
| 02681          | , {        | 170,         | 170,         | 150,          | 150,         | 150}         |
| 02682<br>02683 | , {<br>, { | 170,<br>170, | 140,<br>170, | 170,<br>150,  | 120,<br>150, | 120}<br>150} |
| 02684<br>02685 | , {        | 140,         | 140,         | 30,           | 140,         | 30}          |
| 02686          | }          |              |              |               |              |              |
| 02687<br>02688 | ,{{{<br>,{ | 220,<br>170, | 220,<br>170, | 190,<br>140,  | 140,<br>40,  | 140}<br>140} |
| 02689          | , {        | 220,         | 220,         | 190,          | 70,          | 130}         |
| 02690<br>02691 | , {<br>, { | 170,<br>140, | 170,<br>140, | 140,<br>110,  | 30,<br>140,  | 140}         |
| 02692          | }          |              |              |               |              |              |
| 02693<br>02694 | ,{{<br>,{  | 130,<br>130, | 130,<br>130, | 110,<br>100,  | 70,<br>40,   | 100}<br>100} |
| 02695<br>02696 | , {<br>, { | 130,<br>70,  | 130,<br>-20, | 110,<br>70,   | 70,<br>-50,  | 100}         |
| 02697          | , {        | 130,         | 130,         | 100,          | -10,         | 100}         |
| 02698<br>02699 | }<br>,{{   | 220,         | 220,         | 190,          | 70,          | 140}         |
| 02700          | , {        | 140,         | 60,          | 50,           | 30,          | 140}         |
| 02701<br>02702 | , {<br>, { | 220,<br>170, | 220,<br>170, | 190,<br>140,  | 70,<br>30,   | 130}<br>140} |
| 02703<br>02704 | , {        | 140,         | 140,         | 110,          | 50,          | 110}         |
| 02705          | }<br>,{{   | 130,         | 130,         | 100,          | -10,         | 100}         |
| 02706<br>02707 | , {<br>, { | 10,<br>130,  | 0,<br>130,   | -100,<br>100, | -70,<br>-10, | 10}<br>100}  |
| 02708          | , {        | -10,         | -10,         | -50,          | -30,         | -50}         |
| 02709<br>02710 | , {<br>}   | 130,         | 130,         | 100,          | -10,         | 100}         |
| 02711          | , { {      | 170,         | 170,         | 140,          | 140,         | 140}         |
| 02712<br>02713 | , {<br>, { | 170,<br>140, | 170,<br>140, | 140,<br>110,  | 30,<br>60,   | 140}<br>110} |
| 02714<br>02715 | , {<br>, { | 170,<br>140, | 170,<br>140, | 140,<br>30,   | 30,<br>140,  | 140}<br>20}  |
| 02716          | }          | 110,         | 110,         | 33,           | 110,         | 20,          |
| 02717<br>02718 | }<br>,{{{  | 150,         | 150,         | 150,          | 150,         | 150}         |
| 02719<br>02720 | , {<br>, { | 150,<br>140, | 150,<br>130, | 150,<br>130,  | 150,<br>130, | 150}<br>140} |
| 02721          | , {        | 150,         | 150,         | 150,          | 150,         | 150}         |
| 02722<br>02723 | , {<br>}   | 120,         | 120,         | 120,          | 120,         | 120}         |
| 02724          | , { {      | 110,         | 110,         | 110,          | 110,         | 110}         |
| 02725<br>02726 | , {<br>, { | 110,<br>110, | 110,<br>100, | 110,<br>100,  | 110,<br>100, | 110}<br>110} |
| 02727<br>02728 | , {<br>, { | 80,<br>110,  | -40,<br>100, | 70,<br>100,   | 10,<br>100,  | 80}<br>110}  |
| 02729          | }          |              |              |               |              |              |
| 02730<br>02731 | ,{{<br>,{  | 150,<br>150, | 150,<br>150, | 150,<br>150,  | 150,<br>150, | 150}<br>150} |
| 02732          | , {        | 140,         | 130,         | 130,          | 130,         | 140}         |
| 02733<br>02734 | , {<br>, { | 150,<br>120, | 150,<br>120, | 150,<br>120,  | 150,<br>120, | 150}<br>120} |
| 02735<br>02736 | }<br>,{{   | 110,         | 100,         | 100,          | 100,         | 110}         |
| 02737          | , {        | 80,          | -70,         | -60,          | 10,          | 80}          |
| 02738<br>02739 | , {<br>, { | 110,<br>-40, | 100,<br>-40, | 100,<br>-40,  | 100,<br>-40, | 110}<br>-50} |
| 02740          | , {        | 110,         | 100,         | 100,          | 100,         | 110}         |
| 02741<br>02742 | }<br>,{{   | 150,         | 150,         | 150,          | 150,         | 150}         |
| 02743<br>02744 | , {<br>, { | 150,<br>120, | 150,<br>120, | 150,<br>120,  | 150,<br>120, | 150}<br>120} |
| 02745          | , {        | 150,         | 150,         | 150,          | 150,         | 150}         |
| 02746<br>02747 | , {<br>}   | 30,          | 30,          | 30,           | 30,          | 30}          |
| 02748          | }          | 1 4 0        | 7.0          | 1.40          | 0.0          | 140:         |
| 02749<br>02750 | ,{{{<br>,{ | 140,<br>140, | 70,<br>10,   | 140,<br>140,  | 80,<br>10,   | 140}<br>140} |
| 02751<br>02752 | , {<br>, { | 130,<br>140, | 70,<br>-30,  | 130,<br>140,  | 20,<br>80,   | 130}<br>140} |
| 02753          | , {        | 110,         | 50,          | 110,          | 70,          | 110}         |
| 02754<br>02755 | }<br>,{{   | 100,         | -30,         | 100,          | -30,         | 100}         |
|                |            |              |              |               |              |              |

| 02756<br>02757 | , {         | 100,         | -30,<br>-70,  | 100,         | -30,<br>-40, | 100}         |
|----------------|-------------|--------------|---------------|--------------|--------------|--------------|
| 02758          | , {<br>, {  | 100,         | -170,         | 100,<br>10,  | -30,         | 100}         |
| 02759<br>02760 | , {<br>}    | 100,         | -70,          | 100,         | -40,         | 100}         |
| 02761          | , { {       | 140,         | 70,           | 140,         | 10,          | 140}         |
| 02762<br>02763 | , {<br>, {  | 140,<br>130, | 10,<br>70,    | 140,<br>130, | -30,<br>-10, | 140}<br>130} |
| 02764<br>02765 | , {         | 140,<br>110, | -30,<br>0,    | 140,<br>110, | 10,<br>-60,  | 140}<br>110} |
| 02766          | , {<br>}    | 110,         | 0,            | 110,         | -80,         | 110}         |
| 02767<br>02768 | ,{{<br>,{   | 100,<br>10,  | -70,<br>-160, | 100,<br>10,  | 80,<br>0,    | 100}         |
| 02769          | , {         | 100,         | -70,          | 100,         | -40,         | 100}         |
| 02770<br>02771 | , {<br>, {  | 80,<br>100,  | -90,<br>-70,  | -50,<br>100, | 80,<br>-40,  | -50}<br>100} |
| 02772          | }           |              |               | •            |              |              |
| 02773<br>02774 | ,{{<br>,{   | 140,<br>140, | 50,<br>-30,   | 140,<br>140, | 70,<br>10,   | 140}<br>140} |
| 02775          | , {         | 110,         | 0,            | 110,         | 20,          | 110}         |
| 02776<br>02777 | , {<br>, {  | 140,<br>70,  | -30,<br>50,   | 140,<br>20,  | 10,<br>70,   | 140}<br>20}  |
| 02778<br>02779 | }           |              |               |              |              |              |
| 02779          | }<br>,{{{   | 170,         | 150,          | 170,         | 150,         | 150}         |
| 02781<br>02782 | , {<br>, {  | 150,<br>170, | 150,<br>130,  | 150,<br>170, | 150,<br>130, | 150}<br>30}  |
| 02783          | , {         | 150,         | 150,          | 150,         | 150,         | 140}         |
| 02784<br>02785 | , {<br>}    | 120,         | 120,          | 120,         | 120,         | 40}          |
| 02786          | , { {       | 150,         | 110,          | 110,         | 110,         | 150}         |
| 02787<br>02788 | , {<br>, {  | 150,<br>100, | 110,<br>100,  | 110,<br>100, | 110,<br>100, | 150}<br>-20} |
| 02789          | , {         | 90,          | 10,           | 70,          | 10,          | 90}          |
| 02790<br>02791 | , {<br>}    | 100,         | 100,          | 100,         | 100,         | 30}          |
| 02792<br>02793 | ,{{<br>,{   | 150,<br>150, | 150,<br>150,  | 150,<br>150, | 150,<br>150, | 70}<br>0}    |
| 02794          | , {         | 130,         | 130,          | 130,         | 130,         | -10}         |
| 02795<br>02796 | , {<br>, {  | 150,<br>120, | 150,<br>120,  | 150,<br>120, | 150,<br>120, | 70}<br>40}   |
| 02797          | }           |              |               |              |              |              |
| 02798<br>02799 | ,{{<br>,{   | 140,<br>90,  | 100,<br>10,   | 100,<br>70,  | 100,<br>10,  | 140}<br>90}  |
| 02800<br>02801 | , {<br>, {  | 100,<br>140, | 100,<br>-40,  | 100,<br>20,  | 100,<br>-40, | 30}<br>140}  |
| 02802          | , {         | 100,         | 100,          | 100,         | 100,         | 30}          |
| 02803<br>02804 | }<br>,{{    | 170,         | 150,          | 170,         | 150,         | 70}          |
| 02805          | , {         | 150,         | 150,          | 150,         | 150,         | 70}          |
| 02806<br>02807 | , {<br>, {  | 170,<br>150, | 120,<br>150,  | 170,<br>150, | 120,<br>150, | 20}<br>70}   |
| 02808          | , {         | 30,          | 30,           | 30,          | 30,          | -60}         |
| 02809<br>02810 | }           |              |               |              |              |              |
| 02811<br>02812 | }           | 150,         | 150,          | 120,         | 120,         | 130}         |
| 02813          | }}}},<br>}, | 150,         | 150,          | 120,         | 120,         | 130}         |
| 02814<br>02815 | , {<br>, {  | 130,<br>120, | 130,<br>120,  | 100,<br>90,  | 100,<br>90,  | 110}<br>100} |
| 02816          | , {         | 120,         | 120,          | 100,         | 100,         | 100}         |
| 02817<br>02818 | }<br>,{{    | 150,         | 150,          | 120,         | 120,         | 130}         |
| 02819<br>02820 | , {         | 150,<br>120, | 150,<br>120,  | 120,         | 120,<br>100, | 130}<br>100} |
| 02821          | , {<br>, {  | -10,         | -50,          | 100,<br>-20, | -80,         | -10}         |
| 02822<br>02823 | , {<br>}    | 120,         | 120,          | 100,         | 100,         | 100}         |
| 02824          | , { {       | 120,         | 120,          | 100,         | 100,         | 100}         |
| 02825<br>02826 | , {<br>, {  | 120,<br>120, | 120,<br>120,  | 90,<br>100,  | 90,<br>100,  | 100}         |
| 02827          | , {         | 120,         | 120,          | 90,          | 90,          | 100}         |
| 02828<br>02829 | , {<br>}    | 120,         | 120,          | 100,         | 100,         | 100}         |
| 02830<br>02831 | ,{{<br>,{   | 120,<br>50,  | 120,<br>10,   | 100,<br>50,  | 100,<br>-10, | 100}<br>50}  |
| 02832          | , {         | 120,         | 120,          | 100,         | 100,         | 100}         |
| 02833<br>02834 | , {<br>, {  | 80,<br>120,  | -20,<br>120,  | -40,<br>100, | 80,<br>100,  | 10}<br>100}  |
| 02835          | }           |              |               |              |              |              |
| 02836<br>02837 | ,{{<br>,{   | 130,<br>120, | 130,<br>120,  | 100,<br>90,  | 100,<br>90,  | 110}<br>100} |
| 02838<br>02839 | , {<br>, {  | 130,<br>120, | 130,<br>120,  | 100,<br>90,  | 100,<br>90,  | 110}<br>100} |
| 02840          | , {         | 110,         | 110,          | 20,          | 20,          | 30}          |
| 02841<br>02842 | }           |              |               |              |              |              |
|                |             |              |               |              |              |              |

| 02843<br>02844 | ,{{{<br>,{ | 150,<br>150, | 150,<br>150,  | 120,<br>120, | 50,<br>10,                  | 120}<br>120} |
|----------------|------------|--------------|---------------|--------------|-----------------------------|--------------|
| 02845<br>02846 | , {<br>, { | 130,<br>120, | 130,<br>120,  | 100,<br>90,  | 50,<br>-20,                 | 100}<br>90}  |
| 02847          | , {        | 120,         | 120,          | 90,          | 50,                         | 90}          |
| 02848<br>02849 | }<br>,{{   | 150,         | 150,          | 120,         | 10,                         | 120}         |
| 02850          | , {        | 150,         | 150,          | 120,         | 10,                         | 120}         |
| 02851<br>02852 | , {<br>, { | 120,<br>-50, | 120,<br>-50,  | 90,<br>-80,  | -10,<br>-190,               | 90}<br>-80}  |
| 02853          | , {        | 120,         | 120,          | 90,          | -10,                        | 90}          |
| 02854<br>02855 | }<br>,{{   | 120,         | 120,          | 90,          | 50,                         | 90}          |
| 02856          | , 11       | 120,         | 120,          | 90,          | -20,                        | 90}          |
| 02857<br>02858 | , {        | 120,<br>120, | 120,          | 90,          | 50,<br>-20,                 | 90}          |
| 02859          | , {<br>, { | 120,         | 120,<br>120,  | 90,<br>90,   | -20 <b>,</b><br>50 <b>,</b> | 90}<br>90}   |
| 02860          | }          | 100          | 100           | 0.0          | 1.0                         | 001          |
| 02861<br>02862 | ,{{<br>,{  | 120,<br>10,  | 120,<br>10,   | 90,<br>-20,  | -10,<br>-130,               | 90}<br>-20}  |
| 02863          | , {        | 120,         | 120,          | 90,          | -10,                        | 90}          |
| 02864<br>02865 | , {<br>, { | -20,<br>120, | -20,<br>120,  | -50,<br>90,  | -20,<br>-10,                | -50}<br>90}  |
| 02866          | }          |              |               |              |                             |              |
| 02867<br>02868 | ,{{<br>,{  | 130,<br>120, | 130,<br>120,  | 100,<br>90,  | 50,<br>-20,                 | 100}<br>90}  |
| 02869          | , {        | 130,         | 130,          | 100,         | 50,                         | 100}         |
| 02870<br>02871 | , {<br>, { | 120,<br>110, | 120,<br>110,  | 90,<br>20,   | -20,<br>-90,                | 90}<br>20}   |
| 02872          | }          | 110,         | 110,          | 20,          | 50,                         | 20)          |
| 02873<br>02874 | }<br>,{{{  | 130,         | 120,          | 120,         | 120,                        | 130}         |
| 02875          | , , , , ,  | 130,         | 120,          | 120,         | 120,                        | 130}         |
| 02876          | , {        | 110,         | 100,          | 100,         | 100,                        | 110}         |
| 02877<br>02878 | , {<br>, { | 100,<br>100, | 90,<br>100,   | 90,<br>100,  | 90,<br>100,                 | 100}<br>100} |
| 02879          | }          | 120          | 100           | 100          | 100                         | 1201         |
| 02880<br>02881 | ,{{<br>,{  | 130,<br>130, | 120,<br>120,  | 120,<br>120, | 120,<br>120,                | 130}<br>130} |
| 02882          | , {        | 100,         | 100,          | 100,         | 100,                        | 100}         |
| 02883<br>02884 | , {<br>, { | -10,<br>100, | -80,<br>100,  | -20,<br>100, | -80,<br>100,                | -10}<br>100} |
| 02885          | }          |              |               |              |                             |              |
| 02886<br>02887 | ,{{<br>,{  | 100,<br>100, | 100,<br>90,   | 100,<br>90,  | 100,<br>90,                 | 100}<br>100} |
| 02888          | , {        | 100,         | 100,          | 100,         | 100,                        | 100}         |
| 02889<br>02890 | , {<br>, { | 100,<br>100, | 90,<br>100,   | 90,<br>100,  | 90,<br>100,                 | 100}<br>100} |
| 02891          | }          | ,            |               |              |                             | ,            |
| 02892<br>02893 | ,{{<br>,{  | 100,<br>50,  | 100,<br>-10,  | 100,<br>50,  | 100,<br>-10,                | 100}<br>50}  |
| 02894          | , {        | 100,         | 100,          | 100,         | 100,                        | 100}         |
| 02895<br>02896 | , {<br>, { | -40,<br>100, | -40,<br>100,  | -40,<br>100, | -40,<br>100,                | -40}<br>100} |
| 02897          | }          |              | 100,          | 100,         | 100,                        | 100)         |
| 02898<br>02899 | , { {      | 110,<br>100, | 100,<br>90,   | 100,<br>90,  | 100,<br>90,                 | 110}<br>100} |
| 02900          | , {<br>, { | 110,         | 100,          | 100,         | 100,                        | 110}         |
| 02901<br>02902 | , {        | 100,<br>30,  | 90,<br>20,    | 90,<br>20,   | 90,<br>20,                  | 100}         |
| 02903          | , {<br>}   | 50,          | 20,           | 20,          | 20,                         | 30 }         |
| 02904<br>02905 | }<br>,{{{  | 120,         | -10,          | 120,         | 80,                         | 120}         |
| 02906          | , , , , ,  | 120,         | -50,          | 120,         | -20,                        | 120}         |
| 02907          | , {        | 100,<br>90,  | -10,<br>-80,  | 100,<br>90,  | -40,<br>80,                 | 100}         |
| 02908<br>02909 | , {<br>, { | 90,          | -20,          | 90,          | 10,                         | 90}<br>90}   |
| 02910          | }          | 100          | F.0           | 100          | 0.0                         | 1001         |
| 02911<br>02912 | ,{{<br>,{  | 120,<br>120, | -50,<br>-50,  | 120,<br>120, | -20,<br>-20,                | 120}<br>120} |
| 02913          | , {        | 90,          | -80,          | 90,          | -40,                        | 90}          |
| 02914<br>02915 | , {<br>, { | -80,<br>90,  | -260,<br>-80, | -80,<br>90,  | -90,<br>-40,                | -80}<br>90}  |
| 02916          | }          |              |               |              |                             |              |
| 02917<br>02918 | ,{{<br>,{  | 90,<br>90,   | -20,<br>-80,  | 90,<br>90,   | -40,<br>-50,                | 90}<br>90}   |
| 02919          | , {        | 90,          | -20,          | 90,          | -40,                        | 90}          |
| 02920<br>02921 | , {<br>, { | 90,<br>90,   | -80,<br>-20,  | 90,<br>90,   | -50,<br>-40,                | 90}<br>90}   |
| 02922          | }          |              |               |              |                             |              |
| 02923<br>02924 | ,{{<br>,{  | 90,<br>-20,  | -80,<br>-190, | 90,<br>-20,  | 80,<br>-20,                 | 90}<br>-20}  |
| 02925          | , {        | 90,          | -80,          | 90,          | -40,                        | 90}          |
| 02926<br>02927 | , {<br>, { | 80,<br>90,   | -90,<br>-80,  | -50,<br>90,  | 80,<br>-40,                 | -50}<br>90}  |
| 02928          | }          |              |               |              |                             |              |
| 02929          | , { {      | 100,         | -10,          | 100,         | 10,                         | 100}         |

| 02930          | , {        | 90,          | -80,         | 90,          | -50,         | 90}          |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 02931          | , {        | 100,         | -10,         | 100,         | -40,         | 100}         |
| 02932          | , {        | 90,          | -80,         | 90,          | -50,         | 90}          |
| 02933          | , {        | 20,          | -150,        | 20,          | 10,          | 20}          |
| 02934          | }          |              |              |              |              |              |
| 02935          | }          |              |              |              |              |              |
| 02936          | , { { {    | 120,         | 120,         | 120,         | 120,         | 110}         |
| 02937          | , {        | 120,         | 120,         | 120,         | 120,         | 110}         |
| 02938          | , {        | 100,         | 100,         | 100,         | 100,         | 30}          |
| 02939          | , {        | 90,          | 90,          | 90,          | 90,          | 20}          |
| 02940<br>02941 | , {        | 100,         | 100,         | 100,         | 100,         | 20}          |
| 02941          | }<br>,{{   | 120,         | 120          | 120,         | 120          | 110}         |
| 02942          | , 11       | 120,         | 120,<br>120, | 120,         | 120,<br>120, | 110}         |
| 02944          | , {        | 100,         | 100,         | 100,         | 100,         | 20}          |
| 02945          | , {        | -20,         | -80,         | -20,         | -80,         | -150}        |
| 02946          | , {        | 100,         | 100,         | 100,         | 100,         | 20}          |
| 02947          | }          |              |              |              |              |              |
| 02948          | , { {      | 100,         | 100,         | 100,         | 100,         | 20}          |
| 02949          | , {        | 90,          | 90,          | 90,          | 90,          | 20}          |
| 02950          | , {        | 100,         | 100,         | 100,         | 100,         | 20}          |
| 02951          | , {        | 90,          | 90,          | 90,          | 90,          | 20}          |
| 02952          | , {        | 100,         | 100,         | 100,         | 100,         | 20}          |
| 02953          | }          |              |              |              |              |              |
| 02954          | , { {      | 100,         | 100,         | 100,         | 100,         | 20}          |
| 02955          | , {        | 50,          | -10,         | 50,          | -10,         | -90}         |
| 02956          | , {        | 100,         | 100,         | 100,         | 100,         | 20}          |
| 02957<br>02958 | , {<br>, { | 10,<br>100,  | -40,<br>100, | -40,<br>100, | -40,<br>100, | 10}<br>20}   |
| 02959          | , \<br>}   | 100,         | 100,         | 100,         | 100,         | 20;          |
| 02960          | , { {      | 100,         | 100,         | 100,         | 100,         | 30}          |
| 02961          | , {        | 90,          | 90,          | 90,          | 90,          | 20}          |
| 02962          | , {        | 100,         | 100,         | 100,         | 100,         | 30}          |
| 02963          | , {        | 90,          | 90,          | 90,          | 90,          | 20}          |
| 02964          | , {        | 20,          | 20,          | 20,          | 20,          | -50}         |
| 02965          | }          |              |              |              |              |              |
| 02966          | }          |              |              |              |              |              |
| 02967          | }          |              |              |              |              |              |
| 02968          | , { { { {  | 300,         | 300,         | 250,         | 250,         | 260}         |
| 02969          | , {        | 280,         | 280,         | 250,         | 250,         | 260}         |
| 02970          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02971          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02972<br>02973 | , {        | 300,         | 300,         | 220,         | 220,         | 220}         |
| 02973          | }<br>,{{   | 280,         | 280,         | 250,         | 250,         | 260}         |
| 02975          | , (        | 280,         | 280,         | 250,         | 250,         | 260}         |
| 02976          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02977          | , {        | 200,         | 160,         | 200,         | 140,         | 200}         |
| 02978          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02979          | }          |              |              |              |              |              |
| 02980          | , { {      | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02981          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02982          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02983          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02984          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02985          | }          | 240          | 240          | 240          | 220          | 240}         |
| 02986<br>02987 | , { {      | 240,<br>240, | 240,<br>200, | 240,<br>240, | 220,<br>180, | 240}         |
| 02988          | , {<br>, { | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02989          | , {        | 210,         | 110,         | 90,          | 210,         | 140}         |
| 02990          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02991          | }          |              |              |              | •            |              |
| 02992          | , { {      | 300,         | 300,         | 220,         | 220,         | 220}         |
| 02993          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02994          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02995          | , {        | 240,         | 240,         | 220,         | 220,         | 220}         |
| 02996          | , {        | 300,         | 300,         | 220,         | 220,         | 220}         |
| 02997          | }          |              |              |              |              |              |
| 02998          | }          | 200          | 200          | 0.5.0        | 1.00         | 0.5.0.1      |
| 02999          | , { { {    | 300,         | 300,         | 250,         | 160,         | 250}         |
| 03000          | , {        | 280,         | 280,         | 250,         | 140,         | 250}<br>210} |
| 03001          | , {<br>, { | 240,<br>240, | 240,<br>240, | 210,<br>210, | 160,<br>100, | 210}         |
| 03002          | , {        | 300,         | 300,         | 210,         | 160,         | 210}         |
| 03003          | }          | 200,         | 200,         | ,            | _ ~ ~ ,      | 2101         |
| 03005          | , { {      | 280,         | 280,         | 250,         | 140,         | 250}         |
| 03006          | , {        | 280,         | 280,         | 250,         | 140,         | 250}         |
| 03007          | , {        | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03008          | , {        | 160,         | 160,         | 130,         | 20,          | 130}         |
| 03009          | , {        | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03010          | }          |              |              |              |              |              |
| 03011          | , { {      | 240,         | 240,         | 210,         | 160,         | 210}         |
| 03012          | , {        | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03013          | , {        | 240,<br>240, | 240,<br>240, | 210,<br>210, | 160,<br>100, | 210}         |
| 03014          | , {<br>, { | 240,         | 240,         | 210,         | 160,         | 210}         |
| 03015          | , 1<br>}   | 270,         | 270,         | 210,         | ±00,         | 210}         |
|                | ,          |              |              |              |              |              |

| 03017<br>03018 | ,{{<br>,{  | 240,<br>200, | 240,<br>200, | 210,<br>170, | 100,<br>60,  | 210}<br>170} |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 03019<br>03020 | , {<br>, { | 240,<br>110, | 240,<br>110, | 210,<br>80,  | 100,<br>100, | 210}         |
| 03021<br>03022 | , {<br>}   | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03023          | , { {      | 300,         | 300,         | 210,         | 160,         | 210}         |
| 03024<br>03025 | , {<br>, { | 240,<br>240, | 240,<br>240, | 210,<br>210, | 100,<br>160, | 210}<br>210} |
| 03026<br>03027 | , {<br>, { | 240,<br>300, | 240,<br>300, | 210,<br>210, | 100,<br>100, | 210}<br>210} |
| 03028          | }          | 000,         | 555,         | 210,         | 100,         | 210,         |
| 03029<br>03030 | }<br>,{{{  | 260,         | 250,         | 250,         | 250,         | 260}         |
| 03031<br>03032 | , {<br>, { | 260,<br>220, | 250,<br>220, | 250,<br>220, | 250,<br>220, | 260}<br>220} |
| 03033          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03034<br>03035 | , {<br>}   | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03036<br>03037 | ,{{<br>,{  | 260,<br>260, | 250,<br>250, | 250,<br>250, | 250,<br>250, | 260}<br>260} |
| 03038          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03039<br>03040 | , {<br>, { | 200,<br>220, | 140,<br>220, | 200,<br>220, | 140,<br>220, | 200}         |
| 03041<br>03042 | }<br>,{{   | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03043          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03044<br>03045 | , {<br>, { | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220}<br>220} |
| 03046          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03047<br>03048 | }<br>,{{   | 240,         | 220,         | 240,         | 220,         | 240}         |
| 03049<br>03050 | , {<br>, { | 240,<br>220, | 180,<br>220, | 240,<br>220, | 180,<br>220, | 240}<br>220} |
| 03051          | , {        | 90,          | 90,          | 90,          | 90,          | 90}          |
| 03052<br>03053 | , {<br>}   | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03054<br>03055 | ,{{<br>,{  | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220}<br>220} |
| 03056          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03057<br>03058 | , {<br>, { | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220}<br>220} |
| 03059<br>03060 | }          |              |              |              |              |              |
| 03061          | , { { {    | 250,         | 100,         | 250,         | 210,         | 250}         |
| 03062<br>03063 | , {<br>, { | 250,<br>210, | 70,<br>100,  | 250,<br>210, | 170,<br>80,  | 250}<br>210} |
| 03064<br>03065 | , {<br>, { | 210,<br>210, | 40,<br>100,  | 210,<br>210, | 210,<br>210, | 210}         |
| 03066          | }          |              |              |              |              |              |
| 03067<br>03068 | ,{{<br>,{  | 250,<br>250, | 70,<br>70,   | 250,<br>250, | 130,<br>110, | 250}<br>250} |
| 03069<br>03070 | , {<br>, { | 210,<br>130, | 40,<br>-40,  | 210,<br>130, | 80,<br>130,  | 210}<br>130} |
| 03071          | , {        | 210,         | 40,          | 210,         | 80,          | 210}         |
| 03072<br>03073 | , { {      | 210,         | 100,         | 210,         | 80,          | 210}         |
| 03074<br>03075 | , {<br>, { | 210,<br>210, | 40,<br>100,  | 210,<br>210, | 80,<br>80,   | 210}         |
| 03076          | , {        | 210,         | 40,          | 210,         | 80,          | 210}         |
| 03077<br>03078 | , {<br>}   | 210,         | 100,         | 210,         | 80,          | 210}         |
| 03079<br>03080 | ,{{<br>,{  | 210,<br>170, | 40,<br>0,    | 210,<br>170, | 210,<br>170, | 210}<br>170} |
| 03081          | , {        | 210,         | 40,          | 210,         | 80,          | 210}         |
| 03082<br>03083 | , {<br>, { | 210,<br>210, | 40,<br>40,   | 80,<br>210,  | 210,<br>80,  | 80}<br>210}  |
| 03084<br>03085 | }<br>,{{   | 210,         | 100,         | 210,         | 210,         | 210}         |
| 03086          | , {        | 210,         | 40,          | 210,         | 80,          | 210}         |
| 03087<br>03088 | , {<br>, { | 210,<br>210, | 100,<br>40,  | 210,<br>210, | 80,<br>80,   | 210}<br>210} |
| 03089<br>03090 | , {<br>}   | 210,         | 40,          | 210,         | 210,         | 210}         |
| 03091          | }          |              |              |              |              |              |
| 03092<br>03093 | ,{{{<br>,{ | 250,<br>250, | 250,<br>250, | 250,<br>250, | 250,<br>250, | 240}<br>240} |
| 03094<br>03095 | , {        | 220,         | 220,         | 220,         | 220,         | 140}         |
| 03096          | , {<br>, { | 220,<br>220, | 220,         | 220,         | 220,         | 140}<br>140} |
| 03097<br>03098 | }<br>,{{   | 250,         | 250,         | 250,         | 250,         | 240}         |
| 03099          | , {        | 250,         | 250,         | 250,         | 250,         | 240}         |
| 03100<br>03101 | , {<br>, { | 220,<br>200, | 220,<br>140, | 220,<br>200, | 220,<br>140, | 140}<br>60}  |
| 03102<br>03103 | , {<br>}   | 220,         | 220,         | 220,         | 220,         | 140}         |
| -              | •          |              |              |              |              |              |

| 03104          | , { {       | 220,         | 220,         | 220,         | 220,         | 140}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 03105          | , {         | 220,         | 220,         | 220,         | 220,         | 140}         |
| 03106<br>03107 | , {         | 220,         | 220,<br>220, | 220,         | 220,<br>220, | 140}         |
| 03107          | , {<br>, {  | 220,<br>220, | 220,         | 220,<br>220, | 220,         | 140}         |
| 03109          | }           | ,            | ,            | ,            | ,            | ,            |
| 03110          | , { {       | 240,         | 220,         | 240,         | 220,         | 140}         |
| 03111          | , {         | 240,         | 180,         | 240,         | 180,         | 100}         |
| 03112<br>03113 | , {<br>, {  | 220,<br>140, | 220,<br>90,  | 220,<br>90,  | 220,<br>90,  | 140}<br>140} |
| 03114          | , {         | 220,         | 220,         | 220,         | 220,         | 140}         |
| 03115          | }           |              |              |              |              |              |
| 03116          | , { {       | 220,         | 220,         | 220,         | 220,         | 140}         |
| 03117<br>03118 | , {<br>, {  | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220,<br>220, | 140}<br>140} |
| 03110          | , {         | 220,         | 220,         | 220,         | 220,         | 140}         |
| 03120          | , {         | 220,         | 220,         | 220,         | 220,         | 140}         |
| 03121          | }           |              |              |              |              |              |
| 03122          | }           |              |              |              |              |              |
| 03123<br>03124 | ,{{{{       | 280,         | 270,         | 280,         | 220,         | 280}         |
| 03125          | , {         | 280,         | 240,         | 280,         | 220,         | 280}         |
| 03126          | , {         | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03127          | , {         | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03128<br>03129 | , {<br>}    | 270,         | 270,         | 190,         | 190,         | 190}         |
| 03120          | , { {       | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03131          | , {         | 190,         | 190,         | 150,         | 150,         | 160}         |
| 03132          | , {         | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03133<br>03134 | , {         | 120,         | 80,          | 110,<br>190, | 50,          | 120}<br>190} |
| 03134          | , {<br>}    | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03136          | , { {       | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03137          | , {         | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03138          | , {         | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03139<br>03140 | , {<br>, {  | 210,<br>210, | 210,<br>210, | 190,<br>190, | 190,<br>190, | 190}<br>190} |
| 03141          | }           | 210,         | 210,         | 130,         | 100,         | 150)         |
| 03142          | , { {       | 280,         | 240,         | 280,         | 220,         | 280}         |
| 03143          | , {         | 280,         | 240,         | 280,         | 220,         | 280}         |
| 03144<br>03145 | , {<br>, {  | 210,<br>180, | 210,<br>80,  | 190,<br>60,  | 190,<br>180, | 190}<br>110} |
| 03146          | , {         | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03147          | }           |              |              |              |              |              |
| 03148          | , { {       | 270,         | 270,         | 190,         | 190,         | 190}         |
| 03149          | , {         | 210,         | 210,<br>210, | 190,<br>190, | 190,<br>190, | 190}<br>190} |
| 03150          | , {<br>, {  | 210,<br>210, | 210,         | 190,         | 190,         | 190}         |
| 03152          | , {         | 270,         | 270,         | 190,         | 190,         | 190}         |
| 03153          | }           |              |              |              |              |              |
| 03154          | }           | 270          | 270          | 210          | 120          | 2101         |
| 03155<br>03156 | ,{{{<br>,{  | 270,<br>240, | 270,<br>240, | 210,<br>210, | 130,<br>100, | 210}         |
| 03157          | , {         | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03158          | , {         | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03159          | , {         | 270,         | 270,         | 180,         | 130,         | 180}         |
| 03160<br>03161 | }<br>,{{    | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03162          | , {         | 190,         | 190,         | 150,         | 40,          | 150}         |
| 03163          | , {         | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03164          | , {         | 80,          | 80,          | 50,          | -60,         | 50}          |
| 03165<br>03166 | , {<br>}    | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03167          | , { {       | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03168          | , {         | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03169          | , {         | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03170<br>03171 | , {<br>, {  | 210,<br>210, | 210,<br>210, | 180,<br>180, | 70,<br>130,  | 180}<br>180} |
| 03171          | }           | 210,         | 210,         | 100,         | 130,         | 100)         |
| 03173          | , { {       | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03174          | , {         | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03175<br>03176 | , {         | 210,<br>80,  | 210,<br>80,  | 180,<br>50,  | 70,<br>70,   | 180}         |
| 03176          | , {<br>, {  | 210,         | 210,         | 180,         | 70,          | 50}<br>180}  |
| 03178          | }           |              | ,            |              |              |              |
| 03179          | , { {       | 270,         | 270,         | 180,         | 130,         | 180}         |
| 03180          | , {         | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03181<br>03182 | , {<br>, {  | 210,<br>210, | 210,<br>210, | 180,<br>180, | 130,<br>70,  | 180}<br>180} |
| 03183          | , {         | 270,         | 270,         | 180,         | 70,          | 180}         |
| 03184          | }           | •            | •            | •            | •            |              |
| 03185          | }           | 000          | 000          | 000          | 000          | 000:         |
| 03186<br>03187 | }}},<br>},{ | 280,<br>280, | 220,<br>220, | 280,<br>280, | 220,<br>220, | 280}<br>280} |
| 03188          | , t<br>, {  | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03189          | , {         | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03190          | , {         | 190,         | 190,         | 190,         | 190,         | 190}         |
|                |             |              |              |              |              |              |

| 190,<br>150,<br>190,<br>190,<br>190,<br>190,<br>190,<br>190,<br>190,<br>19                         | 190}<br>160}<br>190}<br>120}<br>190}<br>190}<br>190}<br>190}<br>280}<br>280}<br>60}       |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 150,<br>190,<br>50,<br>190,<br>190,<br>190,<br>190,<br>190,<br>220,<br>220,<br>60,<br>190,<br>190, | 160} 190} 120} 190} 190} 190} 190} 190} 280} 280} 280} 60}                                |
| 50,<br>190,<br>190,<br>190,<br>190,<br>190,<br>220,<br>220,<br>60,<br>190,<br>190,                 | 120}<br>190}<br>190}<br>190}<br>190}<br>190}<br>280}<br>280}<br>190}                      |
| 190,<br>190,<br>190,<br>190,<br>190,<br>220,<br>220,<br>190,<br>60,<br>190,<br>190,<br>190,        | 190} 190} 190} 190} 190} 190} 280} 280} 190}                                              |
| 190,<br>190,<br>190,<br>190,<br>190,<br>220,<br>220,<br>190,<br>60,<br>190,                        | 190}<br>190}<br>190}<br>190}<br>190}<br>280}<br>280}<br>190}                              |
| 190,<br>190,<br>190,<br>190,<br>220,<br>220,<br>190,<br>60,<br>190,<br>190,                        | 190}<br>190}<br>190}<br>190}<br>280}<br>280}<br>190}                                      |
| 190,<br>190,<br>190,<br>220,<br>220,<br>190,<br>60,<br>190,<br>190,                                | 190}<br>190}<br>190}<br>280}<br>280}<br>190}<br>60}                                       |
| 190,<br>190,<br>220,<br>220,<br>190,<br>60,<br>190,<br>190,                                        | 190}<br>190}<br>280}<br>280}<br>190}<br>60}                                               |
| 220,<br>220,<br>190,<br>60,<br>190,<br>190,                                                        | 280}<br>280}<br>190}<br>60}                                                               |
| 220,<br>190,<br>60,<br>190,<br>190,<br>190,                                                        | 280}<br>190}<br>60}                                                                       |
| 220,<br>190,<br>60,<br>190,<br>190,<br>190,                                                        | 280}<br>190}<br>60}                                                                       |
| 60,<br>190,<br>190,<br>190,                                                                        | 60}                                                                                       |
| 190,<br>190,<br>190,                                                                               |                                                                                           |
| 190,<br>190,                                                                                       | 190}                                                                                      |
| 190,<br>190,                                                                                       | 130,                                                                                      |
| 190,                                                                                               | 190}                                                                                      |
|                                                                                                    | 190}<br>190}                                                                              |
| ,                                                                                                  | 190}                                                                                      |
| 190,                                                                                               | 190}                                                                                      |
|                                                                                                    |                                                                                           |
| 210,                                                                                               | 210}                                                                                      |
| 210,                                                                                               | 210}                                                                                      |
|                                                                                                    | 180}<br>180}                                                                              |
| 180,                                                                                               | 180}                                                                                      |
| F.0                                                                                                | 100)                                                                                      |
|                                                                                                    | 180}<br>150}                                                                              |
| 50,                                                                                                | 180}                                                                                      |
| 40,                                                                                                | 50}                                                                                       |
| 50,                                                                                                | 180}                                                                                      |
| 50,                                                                                                | 180}                                                                                      |
|                                                                                                    | 180}                                                                                      |
|                                                                                                    | 180}<br>180}                                                                              |
| 50,                                                                                                | 180}                                                                                      |
| 210                                                                                                | 210}                                                                                      |
|                                                                                                    | 210}                                                                                      |
| 50,                                                                                                | 180}                                                                                      |
|                                                                                                    | 50}<br>180}                                                                               |
| 50,                                                                                                | 100}                                                                                      |
| 180,                                                                                               | 180}                                                                                      |
|                                                                                                    | 180}<br>180}                                                                              |
| 50,                                                                                                | 180}                                                                                      |
| 180,                                                                                               | 180}                                                                                      |
|                                                                                                    |                                                                                           |
| 220,                                                                                               | 140}                                                                                      |
| 220,                                                                                               | 140}                                                                                      |
|                                                                                                    | 110}<br>110}                                                                              |
| 190,                                                                                               | 110}                                                                                      |
| 100                                                                                                | 1401                                                                                      |
|                                                                                                    | 140}<br>140}                                                                              |
| 190,                                                                                               | 110}                                                                                      |
|                                                                                                    | -20}                                                                                      |
| 190,                                                                                               | 110}                                                                                      |
| 190,                                                                                               | 110}                                                                                      |
| 190,                                                                                               | 110}                                                                                      |
|                                                                                                    | 110}<br>110}                                                                              |
| 190,                                                                                               | 110}                                                                                      |
| 220                                                                                                | 1401                                                                                      |
| 220,                                                                                               | 140}<br>140}                                                                              |
| 190,                                                                                               | 110}                                                                                      |
| 60,                                                                                                | 110}                                                                                      |
| 190,                                                                                               | 110}                                                                                      |
|                                                                                                    | 110}                                                                                      |
| 190,                                                                                               |                                                                                           |
| 190,                                                                                               | 110}                                                                                      |
|                                                                                                    |                                                                                           |
| 190,<br>190,                                                                                       | 110}<br>110}                                                                              |
|                                                                                                    | 210, 50, 180, 180, 50, 50, 50, 50, 50, 50, 180, 50, 190, 190, 190, 190, 190, 190, 190, 19 |

| 03278          | }          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 03279<br>03280 | }<br>,{{{{ | 210,         | 210,         | 190,         | 190,         | 200}         |
| 03281          | , {        | 210,         | 210,         | 190,         | 190,         | 200}         |
| 03282          | , {<br>, { | 190,<br>200, | 190,<br>200, | 170,<br>170, | 170,<br>170, | 170}<br>180} |
| 03284          | , {        | 190,         | 190,         | 170,         | 170,         | 170}         |
| 03285          | }          | 010          | 010          | 100          | 100          |              |
| 03286<br>03287 | ,{{<br>,{  | 210,<br>210, | 210,<br>210, | 190,<br>190, | 190,<br>190, | 190}<br>190} |
| 03288          | , {        | 190,         | 190,         | 160,         | 160,         | 170}         |
| 03289          | , {        | 130,         | 90,          | 120,         | 60,<br>160,  | 130}         |
| 03290          | , {<br>}   | 190,         | 190,         | 160,         | 100,         | 170}         |
| 03292          | , { {      | 200,         | 200,         | 170,         | 170,         | 180}         |
| 03293<br>03294 | , {<br>, { | 200,<br>190, | 200,<br>190, | 170,<br>170, | 170,<br>170, | 180}<br>170} |
| 03295          | , {        | 200,         | 200,         | 170,         | 170,         | 180}         |
| 03296          | , {        | 190,         | 190,         | 170,         | 170,         | 170}         |
| 03297<br>03298 | }<br>,{{   | 200,         | 190,         | 190,         | 160,         | 200}         |
| 03299          | , {        | 200,         | 160,         | 190,         | 130,         | 200}         |
| 03300          | , {<br>, { | 190,<br>130, | 190,<br>40,  | 160,<br>10,  | 160,<br>130, | 170}<br>70}  |
| 03301          | , {        | 190,         | 190,         | 160,         | 160,         | 170}         |
| 03303          | }          | 000          | 000          | 170          | 170          | 1001         |
| 03304          | ,{{<br>,{  | 200,<br>200, | 200,<br>200, | 170,<br>170, | 170,<br>170, | 180}<br>180} |
| 03306          | , {        | 190,         | 190,         | 170,         | 170,         | 170}         |
| 03307          | , {        | 200,         | 200,         | 170,<br>80,  | 170,<br>80,  | 180}         |
| 03308          | , {<br>}   | 160,         | 160,         | ٥٠,          | ۰۰,          | 80}          |
| 03310          | }          |              |              |              |              |              |
| 03311          | ,{{{<br>,{ | 210,<br>210, | 210,<br>210, | 180,<br>180, | 110,<br>70,  | 180}<br>180} |
| 03313          | , {        | 190,         | 190,         | 160,         | 110,         | 160}         |
| 03314          | , {        | 200,         | 200,         | 170,         | 60,          | 170}         |
| 03315          | , {<br>}   | 190,         | 190,         | 160,         | 110,         | 160}         |
| 03317          | , { {      | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03318          | , {<br>, { | 210,<br>190, | 210,<br>190, | 180,<br>160, | 70,<br>50,   | 180}<br>160} |
| 03320          | , {        | 90,          | 90,          | 60,          | -50,         | 60}          |
| 03321          | , {        | 190,         | 190,         | 160,         | 50,          | 160}         |
| 03322          | }<br>,{{   | 200,         | 200,         | 170,         | 110,         | 170}         |
| 03324          | , {        | 200,         | 200,         | 170,         | 60,          | 170}         |
| 03325<br>03326 | , {<br>, { | 190,<br>200, | 190,<br>200, | 160,<br>170, | 110,<br>60,  | 160}<br>170} |
| 03327          | , {        | 190,         | 190,         | 160,         | 110,         | 160}         |
| 03328          | }          | 100          | 100          | 1.00         |              | 1.601        |
| 03329          | ,{{<br>,{  | 190,<br>160, | 190,<br>160, | 160,<br>130, | 50,<br>20,   | 160}<br>130} |
| 03331          | , {        | 190,         | 190,         | 160,         | 50,          | 160}         |
| 03332          | , {        | 40,<br>190,  | 40,<br>190,  | 10,          | 30,          | 10}          |
| 03333          | , {<br>}   | 190,         | 190,         | 160,         | 50,          | 160}         |
| 03335          | , { {      | 200,         | 200,         | 170,         | 110,         | 170}         |
| 03336<br>03337 | , {<br>, { | 200,<br>190, | 200,<br>190, | 170,<br>160, | 60,<br>110,  | 170}<br>160} |
| 03338          | , {        | 200,         | 200,         | 170,         | 60,          | 170}         |
| 03339          | , {        | 160,         | 160,         | 70,          | -30,         | 70}          |
| 03340          | }          |              |              |              |              |              |
| 03342          | , { { {    | 200,         | 190,         | 190,         | 190,         | 200}         |
| 03343          | , {<br>, { | 200,<br>170, | 190,<br>170, | 190,<br>170, | 190,<br>170, | 200}<br>170} |
| 03345          | , {        | 180,         | 170,         | 170,         | 170,         | 180}         |
| 03346          | , {        | 170,         | 170,         | 170,         | 170,         | 170}         |
| 03347<br>03348 | }<br>,{{   | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03349          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03350          | , {        | 170,<br>130, | 160,<br>60,  | 160,<br>120, | 160,<br>60,  | 170}<br>130} |
| 03351<br>03352 | , {        | 170,         | 160,         | 160,         | 160,         | 170}         |
| 03353          | }          |              |              |              |              |              |
| 03354<br>03355 | ,{{<br>,{  | 180,<br>180, | 170,<br>170, | 170,<br>170, | 170,<br>170, | 180}<br>180} |
| 03356          | , {        | 170,         | 170,         | 170,         | 170,         | 170}         |
| 03357          | , {        | 180,         | 170,         | 170,         | 170,         | 180}         |
| 03358<br>03359 | , {<br>}   | 170,         | 170,         | 170,         | 170,         | 170}         |
| 03360          | , { {      | 200,         | 160,         | 190,         | 160,         | 200}         |
| 03361          | , {<br>, { | 200,<br>170, | 130,<br>160, | 190,<br>160, | 130,<br>160, | 200}<br>170} |
| 03363          | , {        | 20,          | 10,          | 10,          | 10,          | 20}          |
| 03364          | , {        | 170,         | 160,         | 160,         | 160,         | 170}         |

| 03365          | }          | 100          | 170          | 170          | 170          | 1001         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 03366<br>03367 | ,{{<br>,{  | 180,<br>180, | 170,<br>170, | 170,<br>170, | 170,<br>170, | 180}<br>180} |
| 03368          | , {        | 170,         | 170,         | 170,         | 170,         | 170}         |
| 03369          | , {        | 180,         | 170,         | 170,         | 170,         | 180}         |
| 03370<br>03371 | , {<br>}   | 80,          | 80,          | 80,          | 80,          | 80}          |
| 03372          | }          |              |              |              |              |              |
| 03373          | , { { {    | 180,         | 50,          | 180,         | 130,         | 180}         |
| 03374<br>03375 | ,{<br>,{   | 180,<br>160, | 10,<br>50,   | 180,<br>160, | 120,<br>30,  | 180}<br>160} |
| 03376          | , {        | 170,         | 0,           | 170,         | 130,         | 170}         |
| 03377          | , {        | 160,         | 50,          | 160,         | 70,          | 160}         |
| 03378<br>03379 | }          | 100          | 10,          | 100          | 50,          | 1001         |
| 03379          | ,{{<br>,{  | 180,<br>180, | 10,          | 180,<br>180, | 50,          | 180}<br>180} |
| 03381          | , {        | 160,         | -10,         | 160,         | 20,          | 160}         |
| 03382          | , {        | 60,          | -110,        | 60,          | 50,          | 60}          |
| 03383          | , {<br>}   | 160,         | -10,         | 160,         | 20,          | 160}         |
| 03385          | , { {      | 170,         | 50,          | 170,         | 30,          | 170}         |
| 03386          | , {        | 170,         | 0,           | 170,         | 30,          | 170}         |
| 03387<br>03388 | , {<br>, { | 160,<br>170, | 50,<br>0,    | 160,<br>170, | 30,<br>30,   | 160}<br>170} |
| 03389          | , {        | 160,         | 50,          | 160,         | 30,          | 160}         |
| 03390          | }          |              |              |              |              |              |
| 03391<br>03392 | ,{{<br>,{  | 160,<br>130, | -10,<br>-40, | 160,<br>130, | 130,<br>120, | 160}<br>130} |
| 03392          | , {        | 160,         | -10,         | 160,         | 20,          | 160}         |
| 03394          | , {        | 130,         | -30,         | 10,          | 130,         | 10}          |
| 03395          | , {        | 160,         | -10,         | 160,         | 20,          | 160}         |
| 03396<br>03397 | }<br>,{{   | 170,         | 50,          | 170,         | 70,          | 170}         |
| 03398          | , {        | 170,         | 0,           | 170,         | 30,          | 170}         |
| 03399          | , {        | 160,         | 50,          | 160,         | 30,          | 160}         |
| 03400          | ,{<br>,{   | 170,<br>70,  | 0,<br>-100,  | 170,<br>70,  | 30,<br>70,   | 170}<br>70}  |
| 03402          | }          | , 0,         | 100,         | , 0,         | , ,          | 70)          |
| 03403          | }          |              |              |              |              |              |
| 03404<br>03405 | ,{{{<br>,{ | 190,<br>190, | 190,<br>190, | 190,<br>190, | 190,<br>190, | 170}<br>170} |
| 03405          | , {        | 170,         | 170,         | 170,         | 170,         | 90}          |
| 03407          | , {        | 170,         | 170,         | 170,         | 170,         | 100}         |
| 03408          | , {        | 170,         | 170,         | 170,         | 170,         | 90}          |
| 03409<br>03410 | }<br>,{{   | 190,         | 190,         | 190,         | 190,         | 170}         |
| 03411          | , {        | 190,         | 190,         | 190,         | 190,         | 170}         |
| 03412          | , {        | 160,         | 160,         | 160,         | 160,         | 90}          |
| 03413          | , {<br>, { | 120,<br>160, | 60,<br>160,  | 120,<br>160, | 60,<br>160,  | -10}<br>90}  |
| 03415          | }          | 100,         | 200,         | 100,         | 100,         | ,            |
| 03416          | , { {      | 170,         | 170,         | 170,         | 170,         | 100}         |
| 03417<br>03418 | , {<br>, { | 170,<br>170, | 170,<br>170, | 170,<br>170, | 170,<br>170, | 100}         |
| 03419          | , {        | 170,         | 170,         | 170,         | 170,         | 100}         |
| 03420          | , {        | 170,         | 170,         | 170,         | 170,         | 90}          |
| 03421<br>03422 | }<br>,{{   | 190,         | 160,         | 190,         | 160,         | 90}          |
| 03423          | , {        | 190,         | 130,         | 190,         | 130,         | 60}          |
| 03424          | , {        | 160,         | 160,         | 160,         | 160,         | 90}          |
| 03425<br>03426 | ,{<br>,{   | 70,<br>160,  | 10,<br>160,  | 10,<br>160,  | 10,<br>160,  | 70}<br>90}   |
| 03427          | }          | 100,         | 100,         | 100,         | 100,         | 50)          |
| 03428          | , { {      | 170,         | 170,         | 170,         | 170,         | 100}         |
| 03429          | , {<br>, { | 170,<br>170, | 170,<br>170, | 170,<br>170, | 170,<br>170, | 100}<br>90}  |
| 03430          | , {        | 170,         | 170,         | 170,         | 170,         | 100}         |
| 03432          | , {        | 80,          | 80,          | 80,          | 80,          | 0 }          |
| 03433          | }          |              |              |              |              |              |
| 03434<br>03435 | }          |              |              |              |              |              |
| 03436          | ,{{{{      | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03437          | , {        | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03438          | , {        | 210,<br>210, | 210,<br>210, | 190,<br>190, | 190,<br>190, | 190}<br>190} |
| 03440          | , {<br>, { | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03441          | }          |              |              |              |              |              |
| 03442          | , { {      | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03443<br>03444 | , {<br>, { | 210,<br>170, | 210,<br>170, | 190,<br>140, | 190,<br>140, | 190}<br>150} |
| 03445          | , {        | 150,         | 110,         | 140,         | 80,          | 150}         |
| 03446          | , {        | 170,         | 170,         | 140,         | 140,         | 150}         |
| 03447<br>03448 | }<br>,{{   | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03449          | , {        | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03450          | , {        | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03451          | , {        | 210,         | 210,         | 190,         | 190,         | 190}         |

| 03452          | , {        | 210,         | 210,         | 190,         | 190,         | 190}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 03453          | }          |              |              |              |              |              |
| 03454          | , { {      | 170,         | 170,         | 150,         | 150,         | 160}         |
| 03455          | , {        | 160,         | 120,         | 150,         | 90,          | 160}         |
| 03456<br>03457 | , {        | 170,         | 170,         | 140,         | 140,<br>150, | 150}         |
| 03457          | , {        | 150,         | 60,<br>170,  | 30,<br>140,  | 140,         | 90}<br>150}  |
| 03459          | , {<br>}   | 170,         | 170,         | 140,         | 140,         | 130}         |
| 03460          | , { {      | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03461          | , {        | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03462          | , {        | 180,         | 180,         | 160,         | 160,         | 160}         |
| 03463          | , {        | 210,         | 210,         | 190,         | 190,         | 190}         |
| 03464          | , {        | 190,         | 190,         | 100,         | 100,         | 110}         |
| 03465          | }          |              |              |              |              |              |
| 03466          | }          |              |              |              |              |              |
| 03467          | , { { {    | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03468          | , {        | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03469          | , {        | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03470          | , {        | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03471          | , {        | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03472          | }          | 210          | 210          | 100          | 7.0          | 1001         |
| 03473          | , { {      | 210,         | 210,         | 180,         | 70,<br>70,   | 180}         |
| 03474<br>03475 | , {<br>, { | 210,<br>170, | 210,<br>170, | 180,<br>140, | 30,          | 180}<br>140} |
| 03475          | , {        | 110,         | 110,         | 80,          | -30,         | 80}          |
| 03477          | , {        | 170,         | 170,         | 140,         | 30,          | 140}         |
| 03478          | }          | /            | /            | ,            | ,            | ,            |
| 03479          | , { {      | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03480          | , {        | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03481          | , {        | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03482          | , {        | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03483          | , {        | 210,         | 210,         | 180,         | 130,         | 180}         |
| 03484          | }          |              |              |              |              |              |
| 03485          | , { {      | 170,         | 170,         | 140,         | 50,          | 140}         |
| 03486          | , {        | 120,         | 120,         | 90,          | -20,         | 90}          |
| 03487          | , {        | 170,         | 170,         | 140,         | 30,          | 140}         |
| 03488          | , {        | 60,          | 60,          | 30,          | 50,          | 30}          |
| 03489          | , {        | 170,         | 170,         | 140,         | 30,          | 140}         |
| 03490<br>03491 | }<br>,{{   | 210,         | 210,         | 180,         | 100,         | 180}         |
| 03492          | , ( (      | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03493          | , {        | 180,         | 180,         | 150,         | 100,         | 150}         |
| 03494          | , {        | 210,         | 210,         | 180,         | 70,          | 180}         |
| 03495          | , {        | 190,         | 190,         | 100,         | -10,         | 100}         |
| 03496          | }          |              |              |              |              |              |
| 03497          | }          |              |              |              |              |              |
| 03498          | , { { {    | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03499          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03500          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03501          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03502          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03503          | }          | 100          | 100          | 100          | 100          | 1001         |
| 03504<br>03505 | , { {      | 190,<br>190, | 190,<br>190, | 190,<br>190, | 190,<br>190, | 190}<br>190} |
| 03506          | , {<br>, { | 150,         | 140,         | 140,         | 140,         | 150}         |
| 03507          | , {        | 150,         | 80,          | 140,         | 80,          | 150}         |
| 03508          | , {        | 150,         | 140,         | 140,         | 140,         | 150}         |
| 03509          | }          |              |              | •            | •            |              |
| 03510          | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03511          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03512          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03513          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03514          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03515          | }          | 1.00         | 1.40         | 1.50         | 1.10         | 1.00         |
| 03516          | , { {      | 160,         | 140,         | 150,         | 140,         | 160}         |
| 03517          | , {        | 160,         | 90,          | 150,         | 90,          | 160}         |
| 03518<br>03519 | , {<br>, { | 150,<br>40,  | 140,<br>30,  | 140,<br>30,  | 140,<br>30,  | 150}<br>40}  |
| 03510          | , {        | 150,         | 140,         | 140,         | 140,         | 150}         |
| 03521          | }          | 100,         | 110,         | 110,         | 110,         | 100)         |
| 03522          | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03523          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03524          | , {        | 160,         | 160,         | 160,         | 160,         | 160}         |
| 03525          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 03526          | , {        | 110,         | 100,         | 100,         | 100,         | 110}         |
| 03527          | }          |              |              |              |              |              |
| 03528          | }          |              |              |              |              |              |
| 03529          | , { { {    | 180,         | 70,          | 180,         | 150,         | 180}         |
| 03530          | , {        | 180,         | 10,          | 180,         | 80,          | 180}         |
| 03531          | , {        | 180,         | 70,          | 180,         | 50,          | 180}         |
| 03532          | , {        | 180,<br>180, | 10,          | 180,<br>180, | 150,<br>90,  | 180}         |
| 03533<br>03534 | , {<br>}   | 100,         | 70,          | 100,         | <i>3</i> ∪,  | 180}         |
| 03535          | , { {      | 180,         | 10,          | 180,         | 70,          | 180}         |
| 03536          | , (        | 180,         | 10,          | 180,         | 50,          | 180}         |
| 03537          | , {        | 140,         | -30,         | 140,         | 0,           | 140}         |
| 03538          | , {        | 80,          | -90,         | 80,          | 70,          | 80}          |
|                |            |              |              |              |              |              |

| 03539 | , {     | 140, | -30,  | 140,  | 0,   | 140}  |
|-------|---------|------|-------|-------|------|-------|
| 03540 | }       | 110, | 00,   | 1.107 | ٠,   | 110,  |
| 03541 | , { {   | 180, | 70,   | 180,  | 50,  | 180}  |
| 03542 | , {     | 180, | 10,   | 180,  | 50,  | 180}  |
| 03543 | , {     | 180, | 70,   | 180,  | 50,  | 180}  |
| 03544 | , {     | 180, | 10,   | 180,  | 50,  | 180}  |
| 03545 | , {     | 180, | 70,   | 180,  | 50,  | 180}  |
| 03546 | }       | 100, | , , , | 100,  | 00,  | 100,  |
| 03547 | , { {   | 150, | -10,  | 140,  | 150, | 140}  |
| 03547 |         | 90,  | -80,  | 90,   | 80,  | 90}   |
|       | , {     |      |       |       |      |       |
| 03549 | , {     | 140, | -30,  | 140,  | 0,   | 140}  |
| 03550 | , {     | 150, | -10,  | 30,   | 150, | 30}   |
| 03551 | , {     | 140, | -30,  | 140,  | 0,   | 140}  |
| 03552 | }       |      |       |       |      |       |
| 03553 | , { {   | 180, | 40,   | 180,  | 90,  | 180}  |
| 03554 | , {     | 180, | 10,   | 180,  | 50,  | 180}  |
| 03555 | , {     | 150, | 40,   | 150,  | 20,  | 150}  |
| 03556 | , {     | 180, | 10,   | 180,  | 50,  | 180}  |
| 03557 | , {     | 100, | -70,  | 100,  | 90,  | 100}  |
| 03558 | }       |      |       |       |      |       |
| 03559 | }       |      |       |       |      |       |
| 03560 | , { { { | 190, | 190,  | 190,  | 190, | 170}  |
| 03561 | , {     | 190, | 190,  | 190,  | 190, | 170}  |
| 03562 | , {     | 190, | 190,  | 190,  | 190, | 110}  |
| 03563 | , {     | 190, | 190,  | 190,  | 190, | 110}  |
| 03564 | , {     | 190, | 190,  | 190,  | 190, | 110}  |
| 03565 | }       |      |       |       |      |       |
| 03566 | , { {   | 190, | 190,  | 190,  | 190, | 170}  |
| 03567 | , {     | 190, | 190,  | 190,  | 190, | 170}  |
| 03568 | , {     | 140, | 140,  | 140,  | 140, | 70}   |
| 03569 | , {     | 140, | 80,   | 140,  | 80,  | 10}   |
| 03570 | , {     | 140, | 140,  | 140,  | 140, | 70}   |
| 03570 | }       | 110, | 110,  | 110,  | 110, | , 0 , |
| 03571 | , { {   | 190, | 190,  | 190,  | 190, | 110}  |
| 03572 |         |      | 190,  | 190,  | 190, |       |
|       | , {     | 190, |       |       |      | 110}  |
| 03574 | , {     | 190, | 190,  | 190,  | 190, | 110}  |
| 03575 | , {     | 190, | 190,  | 190,  | 190, | 110}  |
| 03576 | , {     | 190, | 190,  | 190,  | 190, | 110}  |
| 03577 | }       |      |       |       |      |       |
| 03578 | , { {   | 150, | 140,  | 150,  | 140, | 90}   |
| 03579 | , {     | 150, | 90,   | 150,  | 90,  | 20}   |
| 03580 | , {     | 140, | 140,  | 140,  | 140, | 70}   |
| 03581 | , {     | 90,  | 30,   | 30,   | 30,  | 90}   |
| 03582 | , {     | 140, | 140,  | 140,  | 140, | 70}   |
| 03583 | }       |      |       |       |      |       |
| 03584 | , { {   | 190, | 190,  | 190,  | 190, | 110}  |
| 03585 | , {     | 190, | 190,  | 190,  | 190, | 110}  |
| 03586 | , {     | 160, | 160,  | 160,  | 160, | 80}   |
| 03587 | , {     | 190, | 190,  | 190,  | 190, | 110}  |
| 03588 | , {     | 100, | 100,  | 100,  | 100, | 30}   |
| 03589 | }       | •    | ,     |       | ,    |       |
| 03590 | }       |      |       |       |      |       |
| 03591 | }       |      |       |       |      |       |
| 03592 | , {{{{  | 300, | 300,  | 280,  | 250, | 280}  |
| 03593 | , {     | 280, | 280,  | 280,  | 250, | 280}  |
| 03594 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03595 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03596 | , {     | 300, | 300,  | 220,  | 220, | 220}  |
| 03597 | }       | 300, | 300,  | 220,  | 220, | 220)  |
| 03598 | , { {   | 280, | 280,  | 250,  | 250, | 260}  |
| 03599 | , (     | 280, | 280,  | 250,  | 250, | 260}  |
| 03600 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03601 | , {     | 200, | 160,  | 200,  | 140, | 200}  |
| 03602 |         | 240, | 240,  | 220,  | 220, | 220}  |
|       | , {     | 240, | 240,  | 220,  | 220, | 2205  |
| 03603 | }       | 240  | 240   | 220   | 220  | 2201  |
| 03604 | , { {   | 240, | 240,  | 220,  | 220, | 220}  |
| 03605 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03606 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03607 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03608 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03609 | }       | 0.01 |       |       | 0.01 |       |
| 03610 | , { {   | 280, | 240,  | 280,  | 220, | 280}  |
| 03611 | , {     | 280, | 240,  | 280,  | 220, | 280}  |
| 03612 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03613 | , {     | 210, | 110,  | 90,   | 210, | 140}  |
| 03614 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03615 | }       |      |       |       |      |       |
| 03616 | , { {   | 300, | 300,  | 220,  | 220, | 220}  |
| 03617 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03618 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03619 | , {     | 240, | 240,  | 220,  | 220, | 220}  |
| 03620 | , {     | 300, | 300,  | 220,  | 220, | 220}  |
| 03621 | }       | ,    | ,     | -,    | .,   | - ,   |
| 03622 | }       |      |       |       |      |       |
| 03623 | , { { { | 300, | 300,  | 250,  | 160, | 250}  |
| 03624 | , ( (   | 280, | 280,  | 250,  | 140, | 250}  |
|       |         |      | 240,  | 210,  | 160, | 210}  |
| 03625 | , {     | 240, | 240.  |       | TOU. |       |

| 03626<br>03627 | , {<br>, { | 240,<br>300, | 240,<br>300, | 210,<br>210, | 100,<br>160, | 210}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 03628          | }          |              |              |              |              |              |
| 03629<br>03630 | , { {      | 280,         | 280,         | 250,<br>250, | 140,<br>140, | 250}         |
| 03631          | , {<br>, { | 280,<br>240, | 280,<br>240, | 210,         | 100,         | 250}<br>210} |
| 03632          | , {        | 160,         | 160,         | 130,         | 20,          | 130}         |
| 03633          | , {        | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03634<br>03635 | }<br>,{{   | 240,         | 240,         | 210,         | 160,         | 210}         |
| 03636          | , ( (      | 240,         | 240,         | 210,         | 100,         | 210)         |
| 03637          | , {        | 240,         | 240,         | 210,         | 160,         | 210}         |
| 03638          | , {        | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03639<br>03640 | , {<br>}   | 240,         | 240,         | 210,         | 160,         | 210}         |
| 03641          | , { {      | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03642          | , {        | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03643          | , {        | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03644<br>03645 | , {<br>, { | 110,<br>240, | 110,<br>240, | 80,<br>210,  | 100,<br>100, | 80}<br>210}  |
| 03646          | }          | 210,         | 210,         | 210,         | 100,         | 210)         |
| 03647          | , { {      | 300,         | 300,         | 210,         | 160,         | 210}         |
| 03648          | , {        | 240,         | 240,         | 210,         | 100,         | 210}         |
| 03649<br>03650 | , {<br>, { | 240,<br>240, | 240,<br>240, | 210,<br>210, | 160,<br>100, | 210}         |
| 03651          | , {        | 300,         | 300,         | 210,         | 140,         | 210}         |
| 03652          | }          |              |              |              |              |              |
| 03653<br>03654 | }          | 280,         | 250,         | 200          | 250          | 2001         |
| 03655          | ,{{{<br>,{ | 280,         | 250,         | 280,<br>280, | 250,<br>250, | 280}         |
| 03656          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03657          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03658          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03659          | }<br>,{{   | 260,         | 250,         | 250,         | 250,         | 260}         |
| 03661          | , {        | 260,         | 250,         | 250,         | 250,         | 260}         |
| 03662          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03663<br>03664 | , {<br>, { | 200,<br>220, | 140,<br>220, | 200,<br>220, | 140,<br>220, | 200}         |
| 03665          | }          | 220,         | 220,         | 220,         | 220,         | 220;         |
| 03666          | , { {      | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03667          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03668<br>03669 | , {<br>, { | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220}         |
| 03670          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03671          | }          |              |              |              |              |              |
| 03672          | , { {      | 280,         | 220,         | 280,         | 220,         | 280}         |
| 03673<br>03674 | , {<br>, { | 280,<br>220, | 220,<br>220, | 280,<br>220, | 220,<br>220, | 280}<br>220} |
| 03675          | , {        | 90,          | 90,          | 90,          | 90,          | 90}          |
| 03676          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03677<br>03678 | }<br>,{{   | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03679          | , ; ;      | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03680          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03681          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03682<br>03683 | , {<br>}   | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03684          | }          |              |              |              |              |              |
| 03685          | , { { {    | 250,         | 100,         | 250,         | 210,         | 250}         |
| 03686          | , {        | 250,         | 70,          | 250,         | 210,         | 250}         |
| 03687<br>03688 | , {<br>, { | 210,<br>210, | 100,<br>40,  | 210,<br>210, | 80,<br>210,  | 210}         |
| 03689          | , {        | 210,         | 100,         | 210,         | 210,         | 210}         |
| 03690          | }          |              |              |              |              |              |
| 03691<br>03692 | , { {      | 250,<br>250, | 70,<br>70,   | 250,<br>250, | 130,<br>110, | 250}<br>250} |
| 03693          | , {<br>, { | 210,         | 40,          | 210,         | 80,          | 210}         |
| 03694          | , {        | 130,         | -40,         | 130,         | 130,         | 130}         |
| 03695          | , {        | 210,         | 40,          | 210,         | 80,          | 210}         |
| 03696<br>03697 | }<br>,{{   | 210,         | 100,         | 210,         | 80,          | 210}         |
| 03698          | , (        | 210,         | 40,          | 210,         | 80,          | 210)         |
| 03699          | , {        | 210,         | 100,         | 210,         | 80,          | 210}         |
| 03700          | , {        | 210,         | 40,          | 210,         | 80,          | 210}         |
| 03701<br>03702 | , {<br>}   | 210,         | 100,         | 210,         | 80,          | 210}         |
| 03702          | , { {      | 210,         | 40,          | 210,         | 210,         | 210}         |
| 03704          | , {        | 210,         | 40,          | 210,         | 210,         | 210}         |
| 03705          | , {        | 210,         | 40,          | 210,         | 80,          | 210}         |
| 03706<br>03707 | , {<br>, { | 210,<br>210, | 40,<br>40,   | 80,<br>210,  | 210,<br>80,  | 80}<br>210}  |
| 03707          | }          | ,            | 10,          | ,            | 00,          | 210}         |
| 03709          | , { {      | 210,         | 100,         | 210,         | 210,         | 210}         |
| 03710<br>03711 | , {        | 210,<br>210, | 40,<br>100,  | 210,<br>210, | 80,<br>80,   | 210}         |
| 03711          | , {<br>, { | 210,         | 40,          | 210,         | 80,<br>80,   | 210}         |
|                | , (        | ,            | ,            |              | ,            | ,            |

| 03713<br>03714 | , {<br>}         | 210,         | 50,          | 210,         | 210,         | 210}           |
|----------------|------------------|--------------|--------------|--------------|--------------|----------------|
| 03714          | }                |              |              |              |              |                |
| 03716          | ,{{              | 280,         | 250,         | 280,         | 250,         | 240}           |
| 03717<br>03718 | , {<br>, {       | 280,<br>220, | 250,<br>220, | 280,<br>220, | 250,<br>220, | 240}           |
| 03719          | , {              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03720          | , {              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03721          | }<br>,{{         | 250,         | 250,         | 250,         | 250,         | 240}           |
| 03722          | , i i            | 250,         | 250,         | 250,         | 250,         | 240}           |
| 03724          | , {              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03725          | , {              | 200,         | 140,         | 200,         | 140,         | 90}            |
| 03726<br>03727 | , {<br>}         | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03728          | , { {            | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03729          | , {              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03730<br>03731 | , {<br>, {       | 220,<br>220, | 220,<br>220, | 220,<br>220, | 220,<br>220, | 140}<br>140}   |
| 03732          | , {              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03733          | }                |              |              |              |              |                |
| 03734<br>03735 | , { {            | 280,         | 220,<br>220, | 280,<br>280, | 220,<br>220, | 140}           |
| 03736          | , {<br>, {       | 280,<br>220, | 220,         | 220,         | 220,         | 140}           |
| 03737          | , {              | 140,         | 90,          | 90,          | 90,          | 140}           |
| 03738          | , {              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03739<br>03740 | }<br>,{{         | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03740          | , (              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03742          | , {              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03743          | , {              | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03744          | , {<br>}         | 220,         | 220,         | 220,         | 220,         | 140}           |
| 03746          | }                |              |              |              |              |                |
| 03747          | }                |              |              |              |              |                |
| 03748<br>03749 | }                | TNE          | INF,         | INF,         | TNE          | TNET           |
| 03749          | }}}}},<br>},{{{{ | INF,<br>INF, | INF,         | INF,         | INF,<br>INF, | INF }<br>INF } |
| 03751          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03752          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03753<br>03754 | , {<br>}         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03755          | , { {            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03756          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03757<br>03758 | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03759          | , {<br>, {       | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 03760          | }                | ,            | ,            | ,            | ,            | ,              |
| 03761          | , { {            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03762<br>03763 | , {<br>, {       | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 03764          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03765          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03766<br>03767 | }                | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03767          | ,{{<br>,{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03769          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03770          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03771<br>03772 | , {<br>}         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03773          | , { {            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03774          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03775<br>03776 | , {<br>, {       | INF,<br>INF, | INF,         | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 03777          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03778          | }                |              |              |              |              |                |
| 03779<br>03780 | }                | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03780          | ,{{{<br>,{       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03782          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03783          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03784<br>03785 | , {<br>}         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03786          | , { {            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03787          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03788          | , {              | INF,         | INF,         | INF,<br>INF, | INF,         | INF }          |
| 03789<br>03790 | , {<br>, {       | INF,<br>INF, | INF,<br>INF, | INF,         | INF,<br>INF, | INF }<br>INF } |
| 03791          | }                |              |              |              |              |                |
| 03792          | , { {            | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03793<br>03794 | , {<br>, {       | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 03795          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03796          | , {              | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03797          | }                | TMP          | TNIP         | TNE          | TNE          | TNIE           |
| 03798<br>03799 | ,{{<br>,{        | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
|                | , ,              | ,            | ,            | ,            | ,            | ,              |

| 02000 | ſ       | TNE  | TNE   | TME  | TME  | TME   |
|-------|---------|------|-------|------|------|-------|
| 03800 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03801 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03802 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03803 | }       |      |       |      |      |       |
| 03804 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 03805 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03806 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03807 | , {     | INF, | INF,  | INF, | INF, | INF } |
|       |         |      |       |      |      |       |
| 03808 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03809 | }       |      |       |      |      |       |
| 03810 | }       |      |       |      |      |       |
| 03811 | , { { { | INF, | INF,  | INF, | INF, | INF } |
| 03812 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03813 | , {     | INF, | INF,  | INF, | INF, | INF)  |
| 03814 |         | INF, | INF,  | INF, | INF, | INF } |
|       | , {     |      |       |      |      |       |
| 03815 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03816 | }       |      |       |      |      |       |
| 03817 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 03818 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03819 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03820 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03821 | , {     | INF, | INF,  | INF, | INF, | INF)  |
| 03822 | }       | 1111 | 1111, | 1111 | 1111 | 1111  |
|       |         | TAIT | TAID  | TNIE | TNIE | TAIT  |
| 03823 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 03824 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03825 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03826 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03827 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03828 | }       | ,    | ,     | ,    | ,    | ,     |
| 03829 |         | INF, | TNE   | TME  | TNE  | TNIE  |
|       | , { {   |      | INF,  | INF, | INF, | INF } |
| 03830 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03831 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03832 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03833 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03834 | }       |      |       |      |      |       |
| 03835 | , { {   | INF, | INF,  | INF, | INF, | INF } |
|       |         |      |       |      |      |       |
| 03836 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03837 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03838 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03839 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03840 | }       |      |       |      |      |       |
| 03841 | }       |      |       |      |      |       |
| 03842 | , { { { | INF, | INF,  | INF, | INF, | INF } |
| 03843 | , {     | INF, | INF,  | INF, | INF, | INF } |
|       |         |      |       |      |      |       |
| 03844 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03845 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03846 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03847 | }       |      |       |      |      |       |
| 03848 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 03849 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03850 |         |      | INF,  | INF, | INF, |       |
|       | , {     | INF, |       |      |      | INF } |
| 03851 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03852 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03853 | }       |      |       |      |      |       |
| 03854 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 03855 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03856 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03857 | , (     |      |       |      |      |       |
|       | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03858 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03859 | }       |      |       |      |      |       |
| 03860 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 03861 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03862 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03863 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03864 | , {     | INF, | INF,  | INF, | INF, | INF)  |
| 03865 | }       | /    | 1111, |      |      |       |
|       |         | TAIT | TAID  | TNIE | TNIE | TAIT  |
| 03866 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 03867 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03868 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03869 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03870 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03871 | }       | •    | •     |      | •    | ,     |
| 03872 | }       |      |       |      |      |       |
|       |         | TNIP | TME   | TNE  | TNT  | TAIR  |
| 03873 | , { { { | INF, | INF,  | INF, | INF, | INF } |
| 03874 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03875 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03876 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03877 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03878 | }       | ,    | ,     | ,    | ,    | ,     |
| 03879 | , { {   | INF, | INF,  | INF, | INF, | INF } |
|       |         |      |       |      |      |       |
| 03880 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03881 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03882 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03883 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 03884 | }       |      |       |      |      |       |
| 03885 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 03886 | , {     | INF, | INF,  | INF, | INF, | INF } |
|       | , (     | /    | ,     | ,    | ,    |       |

| 02007 | ,       | TNID    | TND  | TNE   | TNIE  | TATEL  |
|-------|---------|---------|------|-------|-------|--------|
| 03887 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
| 03888 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
| 03889 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
| 03890 | }       |         |      |       |       |        |
|       |         | TNID    | TND  | TNE   | TNIE  | TATEL  |
| 03891 | , { {   | INF,    | INF, | INF,  | INF,  | INF }  |
| 03892 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
| 03893 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
| 03894 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
|       |         |         |      |       |       |        |
| 03895 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
| 03896 | }       |         |      |       |       |        |
| 03897 | , { {   | INF,    | INF, | INF,  | INF,  | INF }  |
| 03898 |         |         | INF, | INF,  | INF,  |        |
|       | , {     | INF,    |      |       |       | INF }  |
| 03899 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
| 03900 | , {     | INF,    | INF, | INF,  | INF,  | INF }  |
| 03901 | , {     | INF,    | INF, | INF,  | INF,  | INF}   |
|       |         | 1111,   | 1111 | 1111  | 1111  | 1141 ) |
| 03902 | }       |         |      |       |       |        |
| 03903 | }       |         |      |       |       |        |
| 03904 | }       |         |      |       |       |        |
| 03905 | , {{{{  | 300,    | 300, | 270,  | 270,  | 290}   |
|       |         |         |      |       |       |        |
| 03906 | , {     | 300,    | 300, | 270,  | 270,  | 290}   |
| 03907 | , {     | 290,    | 290, | 250,  | 270,  | 250}   |
| 03908 | , {     | 300,    | 300, | 270,  | 270,  | 270}   |
| 03909 | , {     | 270,    | 270, | 240,  | 260,  | 240}   |
|       |         | 210,    | 270, | 240,  | 200,  | 240)   |
| 03910 | }       |         |      |       |       |        |
| 03911 | , { {   | 290,    | 270, | 230,  | 230,  | 290}   |
| 03912 | , {     | 290,    | 270, | 230,  | 230,  | 290}   |
|       |         |         |      |       |       |        |
| 03913 | , {     | 260,    | 260, | 220,  | 220,  | 220}   |
| 03914 | , {     | 190,    | 170, | 190,  | 130,  | 190}   |
| 03915 | , {     | 260,    | 260, | 220,  | 220,  | 220}   |
| 03916 | }       | /       | ,    | ,     | ,     |        |
|       |         | 000     |      | 0 = 1 | 0 = 1 |        |
| 03917 | , { {   | 300,    | 300, | 270,  | 270,  | 270}   |
| 03918 | , {     | 300,    | 300, | 270,  | 270,  | 270}   |
| 03919 | , {     | 290,    | 290, | 250,  | 270,  | 250}   |
|       |         |         |      |       |       |        |
| 03920 | , {     | 300,    | 300, | 270,  | 270,  | 270}   |
| 03921 | , {     | 270,    | 270, | 240,  | 260,  | 240}   |
| 03922 | }       |         |      |       |       |        |
| 03923 | , { {   | 260,    | 260, | 220,  | 220,  | 220}   |
|       |         |         |      |       |       |        |
| 03924 | , {     | 190,    | 170, | 190,  | 130,  | 190}   |
| 03925 | , {     | 260,    | 260, | 220,  | 220,  | 220}   |
| 03926 | , {     | 210,    | 130, | 80,   | 210,  | 210}   |
| 03927 | , {     | 260,    | 260, | 220,  | 220,  | 220}   |
|       |         | 200,    | 200, | 220,  | 220,  | 220)   |
| 03928 | }       |         |      |       |       |        |
| 03929 | , { {   | 300,    | 300, | 270,  | 270,  | 270}   |
| 03930 | , {     | 300,    | 300, | 270,  | 270,  | 270}   |
| 03931 |         | 270,    | 270, | 240,  | 260,  | 240}   |
|       | , {     |         |      |       |       |        |
| 03932 | , {     | 300,    | 300, | 270,  | 270,  | 270}   |
| 03933 | , {     | 240,    | 240, | 150,  | 150,  | 150}   |
| 03934 | }       |         |      |       |       |        |
|       |         |         |      |       |       |        |
| 03935 | }       |         |      |       |       |        |
| 03936 | , { { { | 300,    | 300, | 270,  | 270,  | 270}   |
| 03937 | , {     | 300,    | 300, | 270,  | 230,  | 270}   |
| 03938 | , {     | 290,    | 290, | 250,  | 270,  | 250}   |
| 03939 |         |         |      |       |       |        |
|       | , {     | 300,    | 300, | 270,  | 230,  | 270}   |
| 03940 | , {     | 270,    | 270, | 240,  | 260,  | 240}   |
| 03941 | }       |         |      |       |       |        |
| 03942 | , { {   | 270,    | 270, | 230,  | 190,  | 230}   |
|       |         |         |      |       |       |        |
| 03943 | , {     | 270,    | 270, | 230,  | 190,  | 230}   |
| 03944 | , {     | 260,    | 260, | 220,  | 180,  | 220}   |
| 03945 | , {     | 170,    | 170, | 130,  | 90,   | 130}   |
| 03946 | , {     | 260,    | 260, | 220,  | 180,  | 220}   |
|       |         | _ ~ ~ , | ,    | ,     | ,     |        |
| 03947 | }       | 000     |      | 0 = 1 | 0 = 1 |        |
| 03948 | , { {   | 300,    | 300, | 270,  | 270,  | 270}   |
| 03949 | , {     | 300,    | 300, | 270,  | 230,  | 270}   |
| 03950 | , {     | 290,    | 290, | 250,  | 270,  | 250}   |
|       |         |         |      |       |       |        |
| 03951 | , {     | 300,    | 300, | 270,  | 230,  | 270}   |
| 03952 | , {     | 270,    | 270, | 240,  | 260,  | 240}   |
| 03953 | }       |         |      |       |       |        |
| 03954 |         | 260     | 260  | 220   | 100   | 2201   |
|       | , { {   | 260,    | 260, | 220,  | 180,  | 220}   |
| 03955 | , {     | 170,    | 170, | 130,  | 90,   | 130}   |
| 03956 | , {     | 260,    | 260, | 220,  | 180,  | 220}   |
| 03957 | , {     | 170,    | 110, | 80,   | 170,  | 80}    |
|       |         |         |      |       |       |        |
| 03958 | , {     | 260,    | 260, | 220,  | 180,  | 220}   |
| 03959 | }       |         |      |       |       |        |
| 03960 | , { {   | 300,    | 300, | 270,  | 260,  | 270}   |
| 03961 |         | 300,    | 300, | 270,  | 230,  | 270}   |
|       | , {     |         |      |       |       |        |
| 03962 | , {     | 270,    | 270, | 240,  | 260,  | 240}   |
| 03963 | , {     | 300,    | 300, | 270,  | 230,  | 270}   |
| 03964 | , {     | 240,    | 240, | 150,  | 110,  | 150}   |
|       | , (     | ,       | /    | ,     | ,     | 1001   |
| 03965 | }       |         |      |       |       |        |
| 03966 | }       |         |      |       |       |        |
| 03967 | , { { { | 270,    | 270, | 270,  | 270,  | 270}   |
| 03968 | , {     | 270,    | 270, | 270,  | 270,  | 270}   |
|       |         |         |      |       |       |        |
| 03969 | , {     | 250,    | 250, | 250,  | 250,  | 250}   |
| 03970 | , {     | 270,    | 270, | 270,  | 270,  | 270}   |
| 03971 | , {     | 240,    | 240, | 240,  | 240,  | 240}   |
| 03972 | }       | ,       | .,   |       |       | . ,    |
|       |         | 230     | 220  | 220   | 220   | 2201   |
| 03973 | , { {   | 230,    | 230, | 230,  | 230,  | 230}   |
|       |         |         |      |       |       |        |

| 03974          | , {        | 230,         | 230,         | 230,         | 230,         | 230}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 03975          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03976          | , {        | 190,         | 130,         | 190,         | 130,         | 190}         |
| 03977          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03978          | }          | 070          | 070          | 070          | 070          | 0701         |
| 03979<br>03980 | , { {      | 270,<br>270, | 270,<br>270, | 270,<br>270, | 270,<br>270, | 270}         |
| 03981          | , {<br>, { | 250,         | 250,         | 250,         | 250,         | 270}<br>250} |
| 03982          | , \<br>, { | 270,         | 270,         | 270,         | 270,         | 270}         |
| 03983          | , {        | 240,         | 240,         | 240,         | 240,         | 240}         |
| 03984          | }          | 210,         | 210,         | 210,         | 210,         | 210,         |
| 03985          | , { {      | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03986          | , {        | 190,         | 130,         | 190,         | 130,         | 190}         |
| 03987          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03988          | , {        | 80,          | 80,          | 80,          | 80,          | 80}          |
| 03989          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 03990          | }          |              |              |              |              |              |
| 03991          | , { {      | 270,         | 270,         | 270,         | 270,         | 270}         |
| 03992          | , {        | 270,         | 270,         | 270,         | 270,         | 270}         |
| 03993          | , {        | 240,         | 240,         | 240,         | 240,         | 240}         |
| 03994          | , {        | 270,         | 270,         | 270,         | 270,         | 270}         |
| 03995<br>03996 | , {<br>}   | 150,         | 150,         | 150,         | 150,         | 150}         |
| 03997          | }          |              |              |              |              |              |
| 03998          | ,{{{       | 270,         | 230,         | 270,         | 210,         | 270}         |
| 03999          | , ( (      | 270,         | 190,         | 270,         | 140,         | 270}         |
| 04000          | , {        | 250,         | 230,         | 250,         | 120,         | 250}         |
| 04001          | , {        | 270,         | 190,         | 270,         | 210,         | 270}         |
| 04002          | , {        | 240,         | 220,         | 240,         | 150,         | 240}         |
| 04003          | }          |              |              |              |              |              |
| 04004          | , { {      | 230,         | 150,         | 230,         | 130,         | 230}         |
| 04005          | , {        | 230,         | 150,         | 230,         | 100,         | 230}         |
| 04006          | , {        | 220,         | 140,         | 220,         | 90,          | 220}         |
| 04007          | , {        | 130,         | 50,          | 130,         | 130,         | 130}         |
| 04008          | , {        | 220,         | 140,         | 220,         | 90,          | 220}         |
| 04009          | }          |              |              |              |              |              |
| 04010          | , { {      | 270,         | 230,         | 270,         | 140,         | 270}         |
| 04011          | , {        | 270,         | 190,         | 270,         | 140,         | 270}         |
| 04012<br>04013 | , {        | 250,<br>270, | 230,         | 250,<br>270, | 120,         | 250}         |
| 04013          | , {<br>, { | 240,         | 190,<br>220, | 240,         | 140,<br>110, | 270}         |
| 04014          | , l<br>}   | 240,         | 220,         | 240,         | 110,         | 240;         |
| 04016          | , { {      | 220,         | 140,         | 220,         | 210,         | 220}         |
| 04017          | , {        | 130,         | 50,          | 130,         | 130,         | 130}         |
| 04018          | , {        | 220,         | 140,         | 220,         | 90,          | 220}         |
| 04019          | , {        | 210,         | 130,         | 80,          | 210,         | 80}          |
| 04020          | , {        | 220,         | 140,         | 220,         | 90,          | 220}         |
| 04021          | }          |              |              |              |              |              |
| 04022          | , { {      | 270,         | 220,         | 270,         | 150,         | 270}         |
| 04023          | , {        | 270,         | 190,         | 270,         | 140,         | 270}         |
| 04024          | , {        | 240,         | 220,         | 240,         | 110,         | 240}         |
| 04025          | , {        | 270,         | 190,         | 270,         | 140,         | 270}         |
| 04026          | , {        | 150,         | 70,          | 150,         | 150,         | 150}         |
| 04027<br>04028 | }          |              |              |              |              |              |
| 04028          | }          | 290,         | 270,         | 270,         | 270,         | 290}         |
| 04029          | , { { {    | 290,         | 270,         | 270,         | 270,         | 290}         |
| 04031          | , {        | 250,         | 250,         | 250,         | 250,         | 250}         |
| 04032          | , {        | 270,         | 270,         | 270,         | 270,         | 270}         |
| 04033          | , {        | 240,         | 240,         | 240,         | 240,         | 240}         |
| 04034          | }          |              |              |              |              |              |
| 04035          | , { {      | 290,         | 230,         | 230,         | 230,         | 290}         |
| 04036          | , {        | 290,         | 230,         | 230,         | 230,         | 290}         |
| 04037          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04038          | , {        | 190,         | 130,         | 190,         | 130,         | 130}         |
| 04039          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04040          | }          | 070          | 0.70         | 0.70         | 0.70         | 0.70         |
| 04041          | , { {      | 270,         | 270,         | 270,         | 270,         | 270}         |
| 04042          | , {        | 270,         | 270,         | 270,         | 270,         | 270}         |
|                | , {        | 250,         | 250,<br>270, | 250,         | 250,         | 250}         |
| 04044<br>04045 | , {<br>, { | 270,<br>240, | 240,         | 270,<br>240, | 270,<br>240, | 270}<br>240} |
| 04045          | , \<br>}   | 210,         | 210,         | 210,         | 210,         | 2301         |
| 04047          | , { {      | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04048          | , {        | 190,         | 130,         | 190,         | 130,         | 130}         |
| 04049          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04050          | , {        | 210,         | 80,          | 80,          | 80,          | 210}         |
| 04051          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04052          | }          |              |              |              |              |              |
| 04053          | , { {      | 270,         | 270,         | 270,         | 270,         | 270}         |
| 04054          | , {        | 270,         | 270,         | 270,         | 270,         | 270}         |
| 04055          | , {        | 240,         | 240,         | 240,         | 240,         | 240}         |
| 04056          | , {        | 270,         | 270,         | 270,         | 270,         | 270}         |
| 04057<br>04058 | , {<br>`   | 150,         | 150,         | 150,         | 150,         | 150}         |
| 04058          | }          |              |              |              |              |              |
| 04059          | }          |              |              |              |              |              |
|                | ,          |              |              |              |              |              |

| 04061          | , { { { { { | 300,         | 280,         | 240,         | 240,         | 300}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 04062          | , {         | 300,         | 280,         | 240,         | 240,         | 300}         |
| 04063          | , {         | 260,         | 260,         | 220,         | 240,         | 220}         |
| 04064          | , {         | 250,         | 250,         | 210,         | 210,         | 210}         |
| 04065<br>04066 | , {<br>}    | 250,         | 250,         | 220,         | 240,         | 220}         |
| 04067          | , { {       | 300,         | 280,         | 240,         | 240,         | 300}         |
| 04068          | , {         | 300,         | 280,         | 240,         | 240,         | 300}         |
| 04069          | , {         | 250,         | 250,         | 220,         | 220,         | 220}         |
| 04070          | , {         | 100,         | 70,          | 100,         | 40,          | 100}         |
| 04071          | , {         | 250,         | 250,         | 220,         | 220,         | 220}         |
| 04072          | }           |              |              |              |              |              |
| 04073          | , { {       | 250,         | 250,         | 220,         | 240,         | 220}         |
| 04074          | , {         | 250,         | 250,         | 210,         | 210,         | 210}         |
| 04075          | , {         | 250,         | 250,         | 220,         | 240,         | 220}         |
| 04076          | , {         | 250,         | 250,         | 210,         | 210,         | 210}         |
| 04077          | , {         | 250,         | 250,         | 220,         | 240,         | 220}         |
| 04078          | }           | 250          | 250          | 220          | 220          | 2201         |
| 04079<br>04080 | , { {       | 250,         | 250,         | 220,         | 220,         | 220}         |
| 04080          | , {         | 160,<br>250, | 140,<br>250, | 160,<br>220, | 100,<br>220, | 160}         |
| 04081          | , {<br>, {  | 210,         | 130,         | 80,          | 210,         | 220}         |
| 04083          | , {         | 250,         | 250,         | 220,         | 220,         | 220}         |
| 04084          | }           | /            | ,            | ,            | ,            | ,            |
| 04085          | , { {       | 260,         | 260,         | 220,         | 240,         | 220}         |
| 04086          | , {         | 250,         | 250,         | 210,         | 210,         | 210}         |
| 04087          | , {         | 260,         | 260,         | 220,         | 240,         | 220}         |
| 04088          | , {         | 250,         | 250,         | 210,         | 210,         | 210}         |
| 04089          | , {         | 240,         | 240,         | 140,         | 140,         | 140}         |
| 04090          | }           |              |              |              |              |              |
| 04091          | }           |              |              |              |              |              |
| 04092          | , { { {     | 280,         | 280,         | 240,         | 240,         | 240}         |
| 04093          | , {         | 280,         | 280,         | 240,         | 200,         | 240}         |
| 04094          | , {         | 260,         | 260,         | 220,         | 240,         | 220}         |
| 04095          | , {         | 250,         | 250,         | 210,         | 170,         | 210}         |
| 04096<br>04097 | , {<br>}    | 250,         | 250,         | 220,         | 240,         | 220}         |
| 04097          | , { {       | 280,         | 280,         | 240,         | 200,         | 240}         |
| 04099          | , (         | 280,         | 280,         | 240,         | 200,         | 240)         |
| 04100          | , {         | 250,         | 250,         | 220,         | 180,         | 220}         |
| 04101          | , {         | 70,          | 70,          | 40,          | 0,           | 40}          |
| 04102          | , {         | 250,         | 250,         | 220,         | 180,         | 220}         |
| 04103          | }           |              |              |              |              |              |
| 04104          | , { {       | 250,         | 250,         | 220,         | 240,         | 220}         |
| 04105          | , {         | 250,         | 250,         | 210,         | 170,         | 210}         |
| 04106          | , {         | 250,         | 250,         | 220,         | 240,         | 220}         |
| 04107          | , {         | 250,         | 250,         | 210,         | 170,         | 210}         |
| 04108          | , {         | 250,         | 250,         | 220,         | 240,         | 220}         |
| 04109          | }           | 0.5.0        | 0.50         | 000          | 1.00         | 0001         |
| 04110<br>04111 | , { {       | 250,         | 250,         | 220,<br>100, | 180,<br>60,  | 220}         |
| 04111          | , {<br>, {  | 140,<br>250, | 140,<br>250, | 220,         | 180,         | 100}<br>220} |
| 04113          | , {         | 170,         | 110,         | 80,          | 170,         | 80}          |
| 04114          | , {         | 250,         | 250,         | 220,         | 180,         | 220}         |
| 04115          | }           | /            | ,            | ,            | ,            | ,            |
| 04116          | , { {       | 260,         | 260,         | 220,         | 240,         | 220}         |
| 04117          | , {         | 250,         | 250,         | 210,         | 170,         | 210}         |
| 04118          | , {         | 260,         | 260,         | 220,         | 240,         | 220}         |
| 04119          | , {         | 250,         | 250,         | 210,         | 170,         | 210}         |
| 04120          | , {         | 240,         | 240,         | 140,         | 100,         | 140}         |
| 04121          | }           |              |              |              |              |              |
| 04122          | }           | 0.40         | 0.40         | 0.40         | 0.40         | 0.401        |
| 04123          | , { { {     | 240,         | 240,         | 240,         | 240,         | 240}         |
| 04124<br>04125 | , {         | 240,         | 240,<br>220, | 240,<br>220, | 240,<br>220, | 240}         |
| 04125          | , {<br>, {  | 220,<br>210, | 210,         | 210,         | 210,         | 210}         |
| 04120          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04128          | }           | 220,         | 220,         | 220,         | 220,         | 220)         |
| 04129          | , { {       | 240,         | 240,         | 240,         | 240,         | 240}         |
| 04130          | , {         | 240,         | 240,         | 240,         | 240,         | 240}         |
| 04131          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04132          | , {         | 100,         | 40,          | 100,         | 40,          | 100}         |
| 04133          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04134          | }           |              |              |              |              |              |
| 04135          | , { {       | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04136          | , {         | 210,         | 210,         | 210,         | 210,         | 210}         |
| 04137          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04138          | , {         | 210,         | 210,         | 210,         | 210,         | 210}         |
| 04139<br>04140 | , {<br>}    | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04140          | , { {       | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04142          | , (         | 160,         | 100,         | 160,         | 100,         | 160}         |
| 04143          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04144          | , {         | 80,          | 80,          | 80,          | 80,          | 80}          |
| 04145          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04146          | }           |              |              |              |              |              |
| 04147          | , { {       | 220,         | 220,         | 220,         | 220,         | 220}         |
|                |             |              |              |              |              |              |

| 04148 | , {        | 210,  | 210,  | 210,  | 210,  | 210}   |
|-------|------------|-------|-------|-------|-------|--------|
| 04149 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04150 | , {        | 210,  | 210,  | 210,  | 210,  | 210}   |
| 04151 | , {        | 140,  | 140,  | 140,  | 140,  | 140}   |
| 04152 | }          | 110,  | 1.10, | 1.107 | 110,  | 110,   |
| 04153 | }          |       |       |       |       |        |
| 04154 | ,{{{       | 240,  | 200,  | 240,  | 210,  | 240}   |
| 04155 | , ( ( (    | 240,  | 160,  | 240,  | 110,  | 240}   |
| 04156 | , {        | 220,  | 200,  | 220,  | 90,   | 220}   |
| 04150 |            |       |       |       | 210,  |        |
|       | , {        | 210,  | 130,  | 210,  |       | 210}   |
| 04158 | , {        | 220,  | 200,  | 220,  | 140,  | 220}   |
| 04159 | }          | 0.40  | 1.00  | 0.40  | 110   | 0.403  |
| 04160 | , { {      | 240,  | 160,  | 240,  | 110,  | 240}   |
| 04161 | , {        | 240,  | 160,  | 240,  | 110,  | 240}   |
| 04162 | , {        | 220,  | 140,  | 220,  | 90,   | 220}   |
| 04163 | , {        | 40,   | -40,  | 40,   | 40,   | 40}    |
| 04164 | , {        | 220,  | 140,  | 220,  | 90,   | 220}   |
| 04165 | }          |       |       |       |       |        |
| 04166 | , { {      | 220,  | 200,  | 220,  | 90,   | 220}   |
| 04167 | , {        | 210,  | 130,  | 210,  | 80,   | 210}   |
| 04168 | , {        | 220,  | 200,  | 220,  | 90,   | 220}   |
| 04169 | , {        | 210,  | 130,  | 210,  | 80,   | 210}   |
| 04170 | , {        | 220,  | 200,  | 220,  | 90,   | 220}   |
| 04171 | }          |       |       |       |       |        |
| 04172 | , { {      | 220,  | 140,  | 220,  | 210,  | 220}   |
| 04173 | , {        | 100,  | 20,   | 100,  | 100,  | 100}   |
| 04174 | , {        | 220,  | 140,  | 220,  | 90,   | 220}   |
| 04175 | , {        | 210,  | 130,  | 80,   | 210,  | 80}    |
| 04176 | , {        | 220,  | 140,  | 220,  | 90,   | 220}   |
| 04177 | }          |       |       |       |       |        |
| 04178 | , { {      | 220,  | 200,  | 220,  | 140,  | 220}   |
| 04179 | , {        | 210,  | 130,  | 210,  | 80,   | 210}   |
| 04180 | , {        | 220,  | 200,  | 220,  | 90,   | 220}   |
| 04181 | , {        | 210,  | 130,  | 210,  | 80,   | 210}   |
| 04182 | , {        | 140,  | 60,   | 140,  | 140,  | 140}   |
| 04183 | }          |       |       |       |       |        |
| 04184 | }          |       |       |       |       |        |
| 04185 | , { { {    | 300,  | 240,  | 240,  | 240,  | 300}   |
| 04186 | , {        | 300,  | 240,  | 240,  | 240,  | 300}   |
| 04187 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04188 | , {        | 210,  | 210,  | 210,  | 210,  | 210}   |
| 04189 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04190 | }          |       |       |       |       |        |
| 04191 | , { {      | 300,  | 240,  | 240,  | 240,  | 300}   |
| 04192 | , {        | 300,  | 240,  | 240,  | 240,  | 300}   |
| 04193 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04194 | , {        | 100,  | 40,   | 100,  | 40,   | 40}    |
| 04195 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04196 | }          |       |       |       |       |        |
| 04197 | , { {      | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04198 | , {        | 210,  | 210,  | 210,  | 210,  | 210}   |
| 04199 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04200 | , {        | 210,  | 210,  | 210,  | 210,  | 210}   |
| 04201 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04202 | }          | ,     | ,     | ,     | ,     | ,      |
| 04203 | , { {      | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04204 | , {        | 160,  | 100,  | 160,  | 100,  | 100}   |
| 04205 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04206 | , {        | 210,  | 80,   | 80,   | 80,   | 210}   |
| 04207 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04208 | }          |       |       |       |       |        |
| 04209 | , { {      | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04210 | , {        | 210,  | 210,  | 210,  | 210,  | 210}   |
| 04211 | , {        | 220,  | 220,  | 220,  | 220,  | 220}   |
| 04212 | , {        | 210,  | 210,  | 210,  | 210,  | 210}   |
| 04213 | , {        | 140,  | 140,  | 140,  | 140,  | 140}   |
| 04214 | }          | 110,  | 1.10, | 1.07  | 110,  | 110,   |
| 04215 | }          |       |       |       |       |        |
| 04216 | }          |       |       |       |       |        |
| 04217 | ,{{{{      | 430,  | 430,  | 370,  | 370,  | 430}   |
| 04218 | , ( ( ( (  | 430,  | 410,  | 370,  | 370,  | 430}   |
| 04219 | , {        | 370,  | 370,  | 340,  | 360,  | 340}   |
| 04210 | , {        | 370,  | 370,  | 340,  | 340,  | 340}   |
| 04220 | , {        | 430,  | 430,  | 340,  | 360,  | 340}   |
| 04222 | }          | ,     | ,     | 010,  | ·     | 5 10 ) |
| 04222 | , { {      | 430,  | 410,  | 370,  | 370,  | 430}   |
| 04223 | , 11       | 430,  | 410,  | 370,  | 370,  | 430}   |
| 04224 | , {        | 370,  | 370,  | 340,  | 340,  | 340}   |
| 04225 | , t<br>, { | 320,  | 290,  | 320,  | 260,  | 320}   |
| 04226 | , (        | 370,  | 370,  | 340,  | 340,  | 340}   |
| 04227 | }          | J. 0, | 5,0,  | 5 10, | 5 10, | 240}   |
| 04220 | , { {      | 370,  | 370,  | 340,  | 360,  | 340}   |
| 04229 | , 11       | 370,  | 370,  | 340,  | 340,  | 340}   |
| 04230 | , t<br>, { | 370,  | 370,  | 340,  | 360,  | 340}   |
| 04231 |            | 370,  | 370,  | 340,  | 340,  | 340}   |
| 04232 | , {        | 370,  | 370,  | 340,  | 360,  | 340}   |
|       | , {        | 510,  | 5/0,  | 240,  | 500,  | J4U}   |
| 04234 | }          |       |       |       |       |        |
|       |            |       |       |       |       |        |

| 04235          | , { {      | 370,         | 370,         | 360,         | 340,         | 360}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 04236<br>04237 | , {<br>, { | 360,<br>370, | 330,<br>370, | 360,<br>340, | 300,<br>340, | 360}<br>340} |
| 04238          | , {        | 340,         | 260,         | 210,         | 340,         | 340}         |
| 04239          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
| 04240<br>04241 | }<br>,{{   | 430,         | 430,         | 340,         | 360,         | 340}         |
| 04242          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
| 04243          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04244<br>04245 | , {<br>, { | 370,<br>430, | 370,<br>430, | 340,<br>340, | 340,<br>340, | 340}<br>340} |
| 04246          | }          | 100,         | 100,         | 010,         | 010,         | 010,         |
| 04247          | }          | 400          | 400          | 070          | 2.60         | 0.70         |
| 04248<br>04249 | ,{{{       | 430,<br>410, | 430,<br>410, | 370,<br>370, | 360,<br>330, | 370}<br>370} |
| 04250          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04251          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04252<br>04253 | , {<br>}   | 430,         | 430,         | 340,         | 360,         | 340}         |
| 04254          | , { {      | 410,         | 410,         | 370,         | 330,         | 370}         |
| 04255          | , {        | 410,         | 410,         | 370,         | 330,         | 370}         |
| 04256<br>04257 | , {<br>, { | 370,<br>290, | 370,<br>290, | 340,<br>260, | 300,<br>220, | 340}<br>260} |
| 04258          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04259          | }          | 272          | 0.70         | 0.40         | 2.60         | 2.401        |
| 04260<br>04261 | ,{{<br>,{  | 370,<br>370, | 370,<br>370, | 340,<br>340, | 360,<br>300, | 340}<br>340} |
| 04262          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04263          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04264<br>04265 | , {<br>}   | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04266          | , { {      | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04267          | , {        | 330,         | 330,         | 300,         | 260,         | 300}         |
| 04268<br>04269 | , {<br>, { | 370,<br>300, | 370,<br>240, | 340,<br>210, | 300,<br>300, | 340}<br>210} |
| 04270          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04271          | }          |              |              |              |              |              |
| 04272<br>04273 | ,{{<br>,{  | 430,<br>370, | 430,<br>370, | 340,<br>340, | 360,<br>300, | 340}<br>340} |
| 04274          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04275          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04276<br>04277 | , {<br>}   | 430,         | 430,         | 340,         | 300,         | 340}         |
| 04278          | }          |              |              |              |              |              |
| 04279          | , { { {    | 370,         | 370,         | 370,         | 370,         | 370}         |
| 04280<br>04281 | , {<br>, { | 370,<br>340, | 370,<br>340, | 370,<br>340, | 370,<br>340, | 370}<br>340} |
| 04282          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04283          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04284<br>04285 | }<br>,{{   | 370,         | 370,         | 370,         | 370,         | 370}         |
| 04286          | , {        | 370,         | 370,         | 370,         | 370,         | 370}         |
| 04287          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04288<br>04289 | , {<br>, { | 320,<br>340, | 260,<br>340, | 320,<br>340, | 260,<br>340, | 320}<br>340} |
| 04290          | }          |              | ,            |              |              |              |
| 04291          | , { {      | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04292<br>04293 | , {<br>, { | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}<br>340} |
| 04294          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04295<br>04296 | , {<br>}   | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04290          | , { {      | 360,         | 340,         | 360,         | 340,         | 360}         |
| 04298          | , {        | 360,         | 300,         | 360,         | 300,         | 360}         |
| 04299<br>04300 | , {<br>, { | 340,         | 340,<br>210, | 340,<br>210, | 340,<br>210, | 340}         |
| 04300          | , {        | 210,<br>340, | 340,         | 340,         | 340,         | 210}         |
| 04302          | }          |              |              |              |              |              |
| 04303<br>04304 | , { {      | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}<br>340} |
| 04304          | , {<br>, { | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04306          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04307<br>04308 | , {<br>`   | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04309          | }          |              |              |              |              |              |
| 04310          | , { { {    | 370,         | 320,         | 370,         | 340,         | 370}         |
| 04311<br>04312 | , {<br>, { | 370,<br>340, | 290,<br>320, | 370,<br>340, | 300,<br>210, | 370}<br>340} |
| 04312          | , t        | 340,         | 260,         | 340,         | 340,         | 340}         |
| 04314          | , {        | 340,         | 320,         | 340,         | 340,         | 340}         |
| 04315<br>04316 | }<br>,{{   | 370,         | 290,         | 370,         | 260,         | 370}         |
| 04317          | , ; ;      | 370,         | 290,         | 370,         | 240,         | 370}         |
| 04318          | , {        | 340,         | 260,         | 340,         | 210,         | 340}         |
| 04319<br>04320 | , {<br>, { | 260,<br>340, | 180,<br>260, | 260,<br>340, | 260,<br>210, | 260}<br>340} |
| 04321          | }          | ,            | ,            | ,            | ~,           | - 10)        |
|                |            |              |              |              |              |              |

| 04322          | , { {      | 340,         | 320,         | 340,         | 210,         | 340}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 04323          | , {        | 340,         | 260,         | 340,         | 210,         | 340}         |
| 04324<br>04325 | , {        | 340,         | 320,         | 340,<br>340, | 210,         | 340}<br>340} |
| 04325          | , {<br>, { | 340,<br>340, | 260,<br>320, | 340,         | 210,<br>210, | 340}         |
| 04327          | }          | ,            | ,            | ,            | ,            | ,            |
| 04328          | , { {      | 340,         | 260,         | 340,         | 340,         | 340}         |
| 04329          | , {        | 300,         | 220,         | 300,         | 300,         | 300}         |
| 04330          | , {        | 340,         | 260,         | 340,         | 210,         | 340}         |
| 04331<br>04332 | , {<br>, { | 340,<br>340, | 260,<br>260, | 210,<br>340, | 340,<br>210, | 210}         |
| 04333          | }          | 310,         | 200,         | 310,         | 210,         | 510)         |
| 04334          | , { {      | 340,         | 320,         | 340,         | 340,         | 340}         |
| 04335          | , {        | 340,         | 260,         | 340,         | 210,         | 340}         |
| 04336          | , {        | 340,         | 320,         | 340,         | 210,         | 340}         |
| 04337<br>04338 | , {        | 340,<br>340, | 260,         | 340,         | 210,         | 340}<br>340} |
| 04336          | , {<br>}   | 340,         | 260,         | 340,         | 340,         | 340}         |
| 04340          | }          |              |              |              |              |              |
| 04341          | , { { {    | 430,         | 370,         | 370,         | 370,         | 430}         |
| 04342          | , {        | 430,         | 370,         | 370,         | 370,         | 430}         |
| 04343          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04344          | , {<br>, { | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}         |
| 04346          | }          | 540,         | 340,         | 340,         | 340,         | 540)         |
| 04347          | , { {      | 430,         | 370,         | 370,         | 370,         | 430}         |
| 04348          | , {        | 430,         | 370,         | 370,         | 370,         | 430}         |
| 04349          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04350<br>04351 | , {        | 320,<br>340, | 260,         | 320,<br>340, | 260,<br>340, | 260}<br>340} |
| 04351          | , {<br>}   | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04353          | , { {      | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04354          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04355          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04356          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04357<br>04358 | , {<br>}   | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04359          | , { {      | 360,         | 340,         | 360,         | 340,         | 340}         |
| 04360          | , {        | 360,         | 300,         | 360,         | 300,         | 300}         |
| 04361          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04362          | , {        | 340,         | 210,         | 210,         | 210,         | 340}         |
| 04363<br>04364 | , {<br>}   | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04365          | , { {      | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04366          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04367          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04368          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04369<br>04370 | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04370          | }          |              |              |              |              |              |
| 04372          | }          |              |              |              |              |              |
| 04373          | ,{{{{      | 400,         | 400,         | 400,         | 360,         | 400}         |
| 04374          | , {        | 400,         | 370,         | 400,         | 360,         | 400}         |
| 04375          | , {        | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04376<br>04377 | , {<br>, { | 340,<br>400, | 340,<br>400, | 310,<br>310, | 310,<br>330, | 310}<br>310} |
| 04378          | }          | 100,         | 100,         | 010,         | 000,         | 010,         |
| 04379          | , { {      | 360,         | 360,         | 310,         | 360,         | 330}         |
| 04380          | , {        | 360,         | 360,         | 270,         | 360,         | 330}         |
| 04381          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 04382<br>04383 | , {<br>, { | 230,<br>340, | 220,<br>340, | 230,<br>310, | 170,<br>310, | 230}         |
| 04384          | }          | 310,         | 310,         | 310,         | 310,         | 310)         |
| 04385          | , { {      | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04386          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 04387          | , {        | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04388<br>04389 | , {<br>, { | 340,<br>340, | 340,<br>340, | 310,<br>310, | 310,<br>330, | 310}<br>310} |
| 04390          | }          | 310,         | 310,         | 310,         | 330,         | 310)         |
| 04391          | , { {      | 400,         | 370,         | 400,         | 340,         | 400}         |
| 04392          | , {        | 400,         | 370,         | 400,         | 340,         | 400}         |
| 04393          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 04394          | , {        | 310,         | 230,         | 180,         | 310,         | 310}         |
| 04395<br>04396 | , {<br>}   | 340,         | 340,         | 310,         | 310,         | 310}         |
| 04397          | , { {      | 400,         | 400,         | 310,         | 330,         | 310}         |
| 04398          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 04399          | , {        | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04400<br>04401 | , {<br>, { | 340,         | 340,<br>400, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 04401          | , t<br>}   | 400,         | 400,         | J10,         | J1U,         | 210}         |
| 04403          | }          |              |              |              |              |              |
| 04404          | , { { {    | 400,         | 400,         | 340,         | 360,         | 340}         |
| 04405          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04406          | , {        | 340,         | 340,         | 310,<br>310, | 330,<br>270, | 310}         |
| 04407<br>04408 | , {<br>, { | 340,<br>400, | 340,<br>400, | 310,         | 330,         | 310}<br>310} |
|                | , (        | /            | ,            | /            | /            | ,            |

| 04409 | }       |      |      |      |      |      |
|-------|---------|------|------|------|------|------|
| 04410 | , { {   | 360, | 360, | 310, | 360, | 310} |
| 04411 | , {     | 360, | 360, | 270, | 360, | 270} |
| 04412 | , {     | 340, | 340, | 310, | 270, | 310} |
| 04413 | , {     | 220, | 220, | 170, | 130, | 170} |
| 04414 | , {     | 340, | 340, | 310, | 270, | 310} |
| 04415 | }       | 0.40 | 2.40 | 210  | 222  | 0101 |
| 04416 | , { {   | 340, | 340, | 310, | 330, | 310} |
| 04417 | , {     | 340, | 340, | 310, | 270, | 310} |
| 04418 | , {     | 340, | 340, | 310, | 330, | 310} |
| 04419 | , {     | 340, | 340, | 310, | 270, | 310} |
| 04420 | , {     | 340, | 340, | 310, | 330, | 310} |
| 04421 | }       |      |      |      |      |      |
| 04422 | , { {   | 370, | 370, | 340, | 300, | 340} |
| 04423 | , {     | 370, | 370, | 340, | 300, | 340} |
| 04424 | , {     | 340, | 340, | 310, | 270, | 310} |
| 04425 | , {     | 270, | 210, | 180, | 270, | 180} |
| 04426 | , {     | 340, | 340, | 310, | 270, | 310} |
| 04427 | }       |      |      |      |      |      |
| 04428 | , { {   | 400, | 400, | 310, | 330, | 310} |
| 04429 | , {     | 340, | 340, | 310, | 270, | 310} |
| 04430 | , {     | 340, | 340, | 310, | 330, | 310} |
| 04431 | , {     | 340, | 340, | 310, | 270, | 310} |
| 04432 | , {     | 400, | 400, | 310, | 270, | 310} |
| 04433 | }       |      |      |      |      |      |
| 04434 | }       |      |      |      |      |      |
| 04435 | , { { { | 400, | 340, | 400, | 340, | 400} |
| 04436 | , {     | 400, | 340, | 400, | 340, | 400} |
| 04437 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04438 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04439 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04440 | }       |      |      |      |      |      |
| 04441 | , { {   | 310, | 310, | 310, | 310, | 310} |
| 04442 | , {     | 270, | 270, | 270, | 270, | 270} |
| 04443 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04444 | , {     | 230, | 170, | 230, | 170, | 230} |
| 04445 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04446 | }       |      |      |      |      |      |
| 04447 | , { {   | 310, | 310, | 310, | 310, | 310} |
| 04448 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04449 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04450 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04451 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04452 | }       |      |      |      |      |      |
| 04453 | , { {   | 400, | 340, | 400, | 340, | 400} |
| 04454 | , {     | 400, | 340, | 400, | 340, | 400} |
| 04455 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04456 | , {     | 180, | 180, | 180, | 180, | 180} |
| 04457 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04458 | }       |      |      |      |      |      |
| 04459 | , { {   | 310, | 310, | 310, | 310, | 310} |
| 04460 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04461 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04462 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04463 | , {     | 310, | 310, | 310, | 310, | 310} |
| 04464 | }       |      |      |      |      |      |
| 04465 | }       |      |      |      |      |      |
| 04466 | , { { { | 340, | 290, | 340, | 340, | 340} |
| 04467 | , {     | 340, | 260, | 340, | 340, | 340} |
| 04468 | , {     | 310, | 290, | 310, | 180, | 310} |
| 04469 | , {     | 310, | 230, | 310, | 310, | 310} |
| 04470 | , {     | 310, | 290, | 310, | 310, | 310} |
| 04471 | }       |      |      |      |      |      |
| 04472 | , { {   | 310, | 230, | 310, | 180, | 310} |
| 04473 | , {     | 270, | 190, | 270, | 140, | 270} |
| 04474 | , {     | 310, | 230, | 310, | 180, | 310} |
| 04475 | , {     | 170, | 20,  | 170, | 170, | 170} |
| 04476 | , {     | 310, | 230, | 310, | 180, | 310} |
| 04477 | }       |      |      |      |      |      |
| 04478 | , { {   | 310, | 290, | 310, | 180, | 310} |
| 04479 | , {     | 310, | 230, | 310, | 180, | 310} |
| 04480 | , {     | 310, | 290, | 310, | 180, | 310} |
| 04481 | , {     | 310, | 230, | 310, | 180, | 310} |
| 04482 | , {     | 310, | 290, | 310, | 180, | 310} |
| 04483 | }       |      |      |      |      |      |
| 04484 | , { {   | 340, | 260, | 340, | 340, | 340} |
| 04485 | , {     | 340, | 260, | 340, | 340, | 340} |
| 04486 | , {     | 310, | 230, | 310, | 180, | 310} |
| 04487 | , {     | 310, | 230, | 180, | 310, | 180} |
| 04488 | , {     | 310, | 230, | 310, | 180, | 310} |
| 04489 | }       |      |      |      |      |      |
| 04490 | , { {   | 310, | 290, | 310, | 310, | 310} |
| 04491 | , {     | 310, | 230, | 310, | 180, | 310} |
| 04492 | , {     | 310, | 290, | 310, | 180, | 310} |
| 04493 | , {     | 310, | 230, | 310, | 180, | 310} |
| 04494 | , {     | 310, | 230, | 310, | 310, | 310} |
| 04495 | }       |      |      |      |      |      |
|       |         |      |      |      |      |      |

| 04496          | }           |              |              |              |              |              |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 04497<br>04498 | ,{{{<br>,{  | 400,<br>400, | 340,<br>340, | 400,<br>400, | 340,<br>340, | 340}<br>340} |
| 04499          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04500          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04501<br>04502 | , {<br>}    | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04502          | , { {       | 330,         | 310,         | 310,         | 310,         | 330}         |
| 04504          | , {         | 330,         | 270,         | 270,         | 270,         | 330}         |
| 04505          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04506<br>04507 | , {<br>, {  | 230,<br>310, | 170,<br>310, | 230,<br>310, | 170,<br>310, | 170}<br>310} |
| 04508          | }           | 310,         | 310,         | 310,         | 310,         | 310)         |
| 04509          | , { {       | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04510          | , {         | 310,         | 310,         | 310,         | 310,<br>310, | 310}         |
| 04511<br>04512 | , {<br>, {  | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,         | 310}<br>310} |
| 04513          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04514          | }           | 400          | 2.40         | 400          | 240          | 0.403        |
| 04515<br>04516 | ,{{<br>,{   | 400,<br>400, | 340,<br>340, | 400,<br>400, | 340,<br>340, | 340}<br>340} |
| 04517          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04518          | , {         | 310,         | 180,         | 180,         | 180,         | 310}         |
| 04519          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04520<br>04521 | }<br>,{{    | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04522          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04523          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04524<br>04525 | , {<br>, {  | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 04525          | }           | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04527          | }           |              |              |              |              |              |
| 04528          | }           | 270          | 240          | 210          | 210          | 2701         |
| 04529<br>04530 | }}}},<br>}, | 370,<br>370, | 340,<br>340, | 310,<br>310, | 310,<br>310, | 370}<br>370} |
| 04531          | , {         | 320,         | 320,         | 290,         | 310,         | 290}         |
| 04532          | , {         | 330,         | 330,         | 290,         | 290,         | 290}         |
| 04533<br>04534 | , {<br>}    | 320,         | 320,         | 290,         | 310,         | 290}         |
| 04534          | , { {       | 370,         | 340,         | 310,         | 310,         | 370}         |
| 04536          | , {         | 370,         | 340,         | 310,         | 310,         | 370}         |
| 04537          | , {         | 320,         | 320,         | 280,         | 280,         | 280}         |
| 04538<br>04539 | , {<br>, {  | 240,<br>320, | 220,<br>320, | 240,<br>280, | 180,<br>280, | 240}         |
| 04540          | }           | 020,         | 020,         | 200,         | 200,         | 200,         |
| 04541          | , { {       | 330,         | 330,         | 290,         | 310,         | 290}         |
| 04542<br>04543 | , {         | 330,<br>320, | 330,<br>320, | 290,<br>290, | 290,<br>310, | 290}<br>290} |
| 04544          | , {<br>, {  | 330,         | 330,         | 290,         | 290,         | 290}         |
| 04545          | , {         | 320,         | 320,         | 290,         | 310,         | 290}         |
| 04546          | }           | 220          | 220          | 210          | 200          | 2101         |
| 04547<br>04548 | ,{{<br>,{   | 320,<br>310, | 320,<br>290, | 310,<br>310, | 280,<br>250, | 310}<br>310} |
| 04549          | , {         | 320,         | 320,         | 280,         | 280,         | 280}         |
| 04550          | , {         | 260,         | 180,         | 130,         | 260,         | 260}         |
| 04551<br>04552 | , {<br>}    | 320,         | 320,         | 280,         | 280,         | 280}         |
| 04553          | , { {       | 330,         | 330,         | 290,         | 310,         | 290}         |
| 04554          | , {         | 330,         | 330,         | 290,         | 290,         | 290}         |
| 04555<br>04556 | , {<br>, {  | 320,<br>330, | 320,<br>330, | 290,<br>290, | 310,<br>290, | 290}<br>290} |
| 04557          | , {         | 290,         | 290,         | 200,         | 200,         | 200}         |
| 04558          | }           |              |              |              |              |              |
| 04559          | }           | 240          | 240          | 310,         | 210          | 2101         |
| 04560<br>04561 | ,{{{<br>,{  | 340,<br>340, | 340,<br>340, | 310,         | 310,<br>270, | 310}<br>310} |
| 04562          | , {         | 320,         | 320,         | 290,         | 310,         | 290}         |
| 04563          | , {         | 330,         | 330,         | 290,         | 250,         | 290}         |
| 04564<br>04565 | , {<br>}    | 320,         | 320,         | 290,         | 310,         | 290}         |
| 04566          | , { {       | 340,         | 340,         | 310,         | 270,         | 310}         |
| 04567          | , {         | 340,         | 340,         | 310,         | 270,         | 310}         |
| 04568          | , {         | 320,         | 320,         | 280,         | 240,         | 280}         |
| 04569<br>04570 | , {<br>, {  | 220,<br>320, | 220,<br>320, | 180,<br>280, | 140,<br>240, | 180}<br>280} |
| 04571          | }           | ,            |              |              | ,            |              |
| 04572          | , { {       | 330,         | 330,         | 290,         | 310,         | 290}         |
| 04573<br>04574 | , {<br>, {  | 330,<br>320, | 330,<br>320, | 290,<br>290, | 250,<br>310, | 290}<br>290} |
| 04574          | , {         | 330,         | 330,         | 290,         | 250,         | 290}         |
| 04576          | , {         | 320,         | 320,         | 290,         | 310,         | 290}         |
| 04577          | }           | 320          | 320          | 200          | 240          | 2001         |
| 04578<br>04579 | ,{{<br>,{   | 320,<br>290, | 320,<br>290, | 280,<br>250, | 240,<br>210, | 280}<br>250} |
| 04580          | , {         | 320,         | 320,         | 280,         | 240,         | 280}         |
| 04581          | , {         | 220,         | 170,         | 130,         | 220,         | 130}         |
| 04582          | , {         | 320,         | 320,         | 280,         | 240,         | 280}         |

| 04583     | }       |      |      |      |      |      |
|-----------|---------|------|------|------|------|------|
| 04584     | , { {   | 330, | 330, | 290, | 310, | 290} |
| 04585     | , {     | 330, | 330, | 290, | 250, | 290} |
|           |         |      |      |      |      |      |
| 04586     | , {     | 320, | 320, | 290, | 310, | 290} |
| 04587     | , {     | 330, | 330, | 290, | 250, | 290} |
| 04588     | , {     | 290, | 290, | 200, | 160, | 200} |
| 04589     | }       |      |      |      |      |      |
| 04590     | }       |      |      |      |      |      |
|           |         | 210  | 210  | 210  | 210  | 2101 |
| 04591     | , { { { | 310, | 310, | 310, | 310, | 310} |
| 04592     | , {     | 310, | 310, | 310, | 310, | 310} |
| 04593     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04594     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04595     |         | 290, |      |      |      |      |
|           | , {     | 290, | 290, | 290, | 290, | 290} |
| 04596     | }       |      |      |      |      |      |
| 04597     | , { {   | 310, | 310, | 310, | 310, | 310} |
| 04598     | , {     | 310, | 310, | 310, | 310, | 310} |
| 04599     | , {     | 280, | 280, | 280, | 280, | 280} |
|           |         |      |      |      |      |      |
| 04600     | , {     | 240, | 180, | 240, | 180, | 240} |
| 04601     | , {     | 280, | 280, | 280, | 280, | 280} |
| 04602     | }       |      |      |      |      |      |
| 04603     | , { {   | 290, | 290, | 290, | 290, | 290} |
| 04604     | , {     | 290, | 290, | 290, | 290, | 290} |
|           |         |      |      |      |      |      |
| 04605     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04606     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04607     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04608     | }       |      |      |      |      |      |
| 04609     | , { {   | 310, | 280, | 310, | 280, | 310} |
|           |         |      |      |      |      |      |
| 04610     | , {     | 310, | 250, | 310, | 250, | 310} |
| 04611     | , {     | 280, | 280, | 280, | 280, | 280} |
| 04612     | , {     | 130, | 130, | 130, | 130, | 130} |
| 04613     | , {     | 280, | 280, | 280, | 280, | 280} |
|           |         | 200, | 200, | 200, | 200, | 200) |
| 04614     | }       | 000  | 000  | 000  | 0.00 | 0001 |
| 04615     | , { {   | 290, | 290, | 290, | 290, | 290} |
| 04616     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04617     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04618     | , {     | 290, | 290, | 290, | 290, | 290} |
|           |         |      |      |      |      |      |
| 04619     | , {     | 200, | 200, | 200, | 200, | 200} |
| 04620     | }       |      |      |      |      |      |
| 04621     | }       |      |      |      |      |      |
| 04622     | , { { { | 310, | 270, | 310, | 260, | 310} |
| 04623     | , {     | 310, | 230, | 310, | 250, | 310} |
|           |         |      |      |      |      |      |
| 04624     | , {     | 290, | 270, | 290, | 160, | 290} |
| 04625     | , {     | 290, | 210, | 290, | 260, | 290} |
| 04626     | , {     | 290, | 270, | 290, | 200, | 290} |
| 04627     | }       |      |      |      |      |      |
| 04628     | , { {   | 310, | 230, | 310, | 180, | 310} |
|           |         |      |      |      |      |      |
| 04629     | , {     | 310, | 230, | 310, | 180, | 310} |
| 04630     | , {     | 280, | 200, | 280, | 150, | 280} |
| 04631     | , {     | 180, | 100, | 180, | 180, | 180} |
| 04632     | , {     | 280, | 200, | 280, | 150, | 280} |
| 04633     |         | 200, | 200, | 200, | 100, | 200, |
|           | }       | 000  | 0.70 | 000  | 1.00 | 0001 |
| 04634     | , { {   | 290, | 270, | 290, | 160, | 290} |
| 04635     | , {     | 290, | 210, | 290, | 160, | 290} |
| 04636     | , {     | 290, | 270, | 290, | 160, | 290} |
| 04637     | , {     | 290, | 210, | 290, | 160, | 290} |
| 04638     | , {     | 290, | 270, | 290, |      | 290} |
|           |         | 200, | 270, | 200, | 160, | 2001 |
| 04639     | }       |      |      |      |      |      |
| 04640     | , { {   | 280, | 200, | 280, | 260, | 280} |
| 04641     | , {     | 250, | 170, | 250, | 250, | 250} |
| 04642     | , {     | 280, | 200, | 280, | 150, | 280} |
| 04643     | , {     | 260, | 180, | 130, | 260, | 130} |
|           |         |      |      |      |      |      |
| 04644     | , {     | 280, | 200, | 280, | 150, | 280} |
| 04645     | }       |      |      |      |      |      |
| 04646     | , { {   | 290, | 270, | 290, | 200, | 290} |
| 04647     | , {     | 290, | 210, | 290, | 160, | 290} |
| 04648     | , {     | 290, | 270, | 290, | 160, | 290} |
| 04649     |         | 290, | 210, | 290, | 160, | 290} |
|           | , {     |      |      |      |      |      |
| 04650     | , {     | 200, | 120, | 200, | 200, | 200} |
| 04651     | }       |      |      |      |      |      |
| 04652     | }       |      |      |      |      |      |
| 04653     | ,{{{    | 370, | 310, | 310, | 310, | 370} |
|           |         |      |      |      |      |      |
| 04654     | , {     | 370, | 310, | 310, | 310, | 370} |
| 04655     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04656     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04657     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04658     | }       | ,    |      | /    | /    | ,    |
|           |         | 270  | 210  | 210  | 210  | 270: |
| 04659     | , { {   | 370, | 310, | 310, | 310, | 370} |
| 04660     | , {     | 370, | 310, | 310, | 310, | 370} |
| 04661     | , {     | 280, | 280, | 280, | 280, | 280} |
| 04662     | , {     | 240, | 180, | 240, | 180, | 180} |
| 04663     |         |      | 280, | 280, | 280, | 280} |
|           | , {     | 280, | 200, | 200, | 200, | 200} |
| 04664     | }       | 0.01 |      |      | 0.01 |      |
| 04665     | , { {   | 290, | 290, | 290, | 290, | 290} |
| 04666     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04667     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04668     | , {     | 290, | 290, | 290, | 290, | 290} |
| 04669     |         |      |      |      |      |      |
| C 4 0 0 7 | , {     | 290, | 290, | 290, | 290, | 290} |
|           |         |      |      |      |      |      |

| 04670<br>04671 | }          | 210          | 200          | 210          | 200          | 2001         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 04671          | ,{{<br>,{  | 310,<br>310, | 280,<br>250, | 310,<br>310, | 280,<br>250, | 280}<br>250} |
| 04673          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 04674          | , {        | 260,         | 130,         | 130,         | 130,         | 260}         |
| 04675<br>04676 | , {<br>}   | 280,         | 280,         | 280,         | 280,         | 280}         |
| 04677          | , { {      | 290,         | 290,         | 290,         | 290,         | 290}         |
| 04678          | , {        | 290,         | 290,         | 290,         | 290,         | 290}         |
| 04679<br>04680 | , {<br>, { | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290}<br>290} |
| 04681          | , {        | 200,         | 200,         | 200,         | 200,         | 200}         |
| 04682          | }          |              |              |              |              |              |
| 04683<br>04684 | }          |              |              |              |              |              |
| 04685          | ,{{{{      | 370,         | 340,         | 310,         | 330,         | 370}         |
| 04686          | , {        | 370,         | 340,         | 310,         | 310,         | 370}         |
| 04687<br>04688 | , {        | 340,         | 340,<br>340, | 310,<br>310, | 330,<br>310, | 310}         |
| 04689          | , {<br>, { | 340,<br>340, | 340,         | 310,         | 330,         | 310}<br>310} |
| 04690          | }          |              |              |              |              |              |
| 04691          | , { {      | 370,         | 340,         | 310,         | 310,         | 370}         |
| 04692<br>04693 | , {<br>, { | 370,<br>300, | 340,<br>300, | 310,<br>260, | 310,<br>260, | 370}<br>260} |
| 04694          | , {        | 260,         | 240,         | 260,         | 200,         | 260}         |
| 04695          | , {        | 300,         | 300,         | 260,         | 260,         | 260}         |
| 04696<br>04697 | }<br>,{{   | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04698          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 04699          | , {        | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04700          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 04701<br>04702 | , {<br>}   | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04703          | , { {      | 300,         | 300,         | 270,         | 280,         | 280}         |
| 04704          | , {        | 270,         | 250,         | 270,         | 210,         | 270}         |
| 04705<br>04706 | , {<br>, { | 300,<br>280, | 300,<br>200, | 260,<br>150, | 260,<br>280, | 260}<br>280} |
| 04707          | , {        | 300,         | 300,         | 260,         | 260,         | 260}         |
| 04708          | }          |              |              |              |              |              |
| 04709<br>04710 | ,{{<br>,{  | 340,<br>340, | 340,<br>340, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 04711          | , {        | 310,         | 310,         | 280,         | 300,         | 280}         |
| 04712          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 04713<br>04714 | , {<br>}   | 320,         | 320,         | 220,         | 220,         | 220}         |
| 04715          | }          |              |              |              |              |              |
| 04716          | , { { {    | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04717<br>04718 | , {        | 340,         | 340,         | 310,         | 270,         | 310}         |
| 04718          | , {<br>, { | 340,<br>340, | 340,<br>340, | 310,<br>310, | 330,<br>270, | 310}<br>310} |
| 04720          | , {        | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04721<br>04722 | }          | 340,         | 240          | 210          | 270          | 2101         |
| 04722          | ,{{<br>,{  | 340,         | 340,<br>340, | 310,<br>310, | 270,<br>270, | 310}         |
| 04724          | , {        | 300,         | 300,         | 260,         | 220,         | 260}         |
| 04725          | , {        | 240,         | 240,         | 200,         | 160,         | 200}         |
| 04726<br>04727 | , {<br>}   | 300,         | 300,         | 260,         | 220,         | 260}         |
| 04728          | , { {      | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04729<br>04730 | , {        | 340,         | 340,         | 310,         | 270,         | 310}         |
| 04730          | , {<br>, { | 340,<br>340, | 340,<br>340, | 310,<br>310, | 330,<br>270, | 310}<br>310} |
| 04732          | , {        | 340,         | 340,         | 310,         | 330,         | 310}         |
| 04733          | }          | 200          | 200          | 0.00         | 0.40         | 0.00         |
| 04734<br>04735 | ,{{<br>,{  | 300,<br>250, | 300,<br>250, | 260,<br>210, | 240,<br>170, | 260}<br>210} |
| 04736          | , {        | 300,         | 300,         | 260,         | 220,         | 260}         |
| 04737          | , {        | 240,         | 190,         | 150,         | 240,         | 150}         |
| 04738<br>04739 | , {        | 300,         | 300,         | 260,         | 220,         | 260}         |
| 04739          | }<br>,{{   | 340,         | 340,         | 310,         | 300,         | 310}         |
| 04741          | , {        | 340,         | 340,         | 310,         | 270,         | 310}         |
| 04742          | , {        | 310,         | 310,         | 280,         | 300,         | 280}         |
| 04743<br>04744 | , {<br>, { | 340,<br>320, | 340,<br>320, | 310,<br>220, | 270,<br>180, | 310}<br>220} |
| 04745          | }          | 320,         | 320,         | 220,         | 100,         | 220)         |
| 04746          | }          |              |              |              |              |              |
| 04747<br>04748 | , { { {    | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 04748          | , {<br>, { | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04750          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04751          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04752<br>04753 | }<br>,{{   | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04754          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04755          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 04756          | , {        | 260,         | 200,         | 260,         | 200,         | 260}         |

| 04757          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 04758<br>04759 | }<br>,{{   | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04760          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04761          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04762<br>04763 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 04763          | }          | 310,         | 310,         | 310,         | 310,         | 210}         |
| 04765          | , { {      | 270,         | 260,         | 270,         | 260,         | 270}         |
| 04766          | , {        | 270,         | 210,         | 270,         | 210,         | 270}         |
| 04767<br>04768 | , {<br>, { | 260,<br>150, | 260,<br>150, | 260,<br>150, | 260,<br>150, | 260}<br>150} |
| 04769          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 04770          | }          |              |              |              |              |              |
| 04771          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04772<br>04773 | , {<br>, { | 310,<br>280, | 310,<br>280, | 310,<br>280, | 310,<br>280, | 310}<br>280} |
| 04774          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04775          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04776          | }          |              |              |              |              |              |
| 04777<br>04778 | }<br>,{{{  | 310,         | 290,         | 310,         | 280,         | 310}         |
| 04779          | , {        | 310,         | 230,         | 310,         | 210,         | 310}         |
| 04780          | , {        | 310,         | 290,         | 310,         | 180,         | 310}         |
| 04781<br>04782 | , {        | 310,<br>310, | 230,         | 310,         | 280,         | 310}         |
| 04782          | , {<br>}   | 310,         | 290,         | 310,         | 220,         | 310}         |
| 04784          | , { {      | 310,         | 230,         | 310,         | 200,         | 310}         |
| 04785          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 04786<br>04787 | , {        | 260,         | 180,         | 260,         | 130,         | 260}         |
| 04787          | , {<br>, { | 200,<br>260, | 120,<br>180, | 200,<br>260, | 200,<br>130, | 200}         |
| 04789          | }          | ,            | ,            | ,            | ,            | ,            |
| 04790          | , { {      | 310,         | 290,         | 310,         | 180,         | 310}         |
| 04791<br>04792 | , {        | 310,         | 230,<br>290, | 310,<br>310, | 180,         | 310}         |
| 04792          | , {<br>, { | 310,<br>310, | 230,         | 310,         | 180,<br>180, | 310}         |
| 04794          | , {        | 310,         | 290,         | 310,         | 180,         | 310}         |
| 04795          | }          |              |              |              |              |              |
| 04796<br>04797 | ,{{<br>,{  | 280,<br>210, | 200,<br>130, | 260,<br>210, | 280,<br>210, | 260}<br>210} |
| 04798          | , {        | 260,         | 180,         | 260,         | 130,         | 260}         |
| 04799          | , {        | 280,         | 200,         | 150,         | 280,         | 150}         |
| 04800          | , {        | 260,         | 180,         | 260,         | 130,         | 260}         |
| 04801<br>04802 | }<br>,{{   | 310,         | 260,         | 310,         | 220,         | 310}         |
| 04803          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 04804          | , {        | 280,         | 260,         | 280,         | 150,         | 280}         |
| 04805          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 04806<br>04807 | , {<br>}   | 220,         | 140,         | 220,         | 220,         | 220}         |
| 04808          | }          |              |              |              |              |              |
| 04809          | , { { {    | 370,         | 310,         | 310,         | 310,         | 370}         |
| 04810<br>04811 | , {        | 370,         | 310,         | 310,<br>310, | 310,         | 370}<br>310} |
| 04811          | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,         | 310,<br>310, | 310}         |
| 04813          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04814          | }          | 270          | 210          | 210          | 210          | 2701         |
| 04815<br>04816 | ,{{<br>,{  | 370,<br>370, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 370}<br>370} |
| 04817          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 04818          | , {        | 260,         | 200,         | 260,         | 200,         | 200}         |
| 04819<br>04820 | , {<br>}   | 260,         | 260,         | 260,         | 260,         | 260}         |
| 04821          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04822          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04823          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04824<br>04825 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}         |
| 04826          | }          | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04827          | , { {      | 280,         | 260,         | 270,         | 260,         | 280}         |
| 04828          | , {        | 270,         | 210,         | 270,         | 210,         | 210}         |
| 04829<br>04830 | , {        | 260,<br>280, | 260,<br>150, | 260,<br>150, | 260,<br>150, | 260}<br>280} |
| 04831          | , {<br>, { | 260,         | 260,         | 260,         | 260,         | 260}         |
| 04832          | }          |              |              |              |              |              |
| 04833          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04834<br>04835 | , {<br>, { | 310,<br>280, | 310,<br>280, | 310,<br>280, | 310,<br>280, | 310}<br>280} |
| 04836          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 04837          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 04838          | }          |              |              |              |              |              |
| 04839<br>04840 | }          |              |              |              |              |              |
| 04841          | ,{{{{      | 430,         | 430,         | 400,         | 370,         | 430}         |
| 04842          | , {        | 430,         | 410,         | 400,         | 370,         | 430}         |
| 04843          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |

| 04844          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 04845<br>04846 | , {<br>}   | 430,         | 430,         | 340,         | 360,         | 340}         |
| 04847          | , { {      | 430,         | 410,         | 370,         | 370,         | 430}         |
| 04848          | , {        | 430,         | 410,         | 370,         | 370,         | 430}         |
| 04849<br>04850 | , {<br>, { | 370,<br>320, | 370,<br>290, | 340,<br>320, | 340,<br>260, | 340}<br>320} |
| 04851          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
| 04852          | }          |              |              |              |              | ,            |
| 04853          | , { {      | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04854          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
| 04855<br>04856 | , {<br>, { | 370,<br>370, | 370,<br>370, | 340,<br>340, | 360,<br>340, | 340}<br>340} |
| 04857          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04858          | }          |              |              |              |              |              |
| 04859          | , { {      | 400,         | 370,         | 400,         | 340,         | 400}         |
| 04860<br>04861 | , {<br>, { | 400,<br>370, | 370,<br>370, | 400,<br>340, | 340,<br>340, | 400}<br>340} |
| 04862          | , {        | 340,         | 260,         | 210,         | 340,         | 340}         |
| 04863          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
| 04864          | }          |              |              |              |              |              |
| 04865          | , { {      | 430,         | 430,         | 340,         | 360,         | 340}         |
| 04866<br>04867 | , {<br>, { | 370,<br>370, | 370,<br>370, | 340,<br>340, | 340,<br>360, | 340}         |
| 04868          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
| 04869          | , {        | 430,         | 430,         | 340,         | 340,         | 340}         |
| 04870          | }          |              |              |              |              |              |
| 04871<br>04872 | }<br>,{{{  | 430,         | 430,         | 370,         | 360,         | 370}         |
| 04873          | , ( ( (    | 410,         | 410,         | 370,         | 360,         | 370}         |
| 04874          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04875          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04876          | , {        | 430,         | 430,         | 340,         | 360,         | 340}         |
| 04877<br>04878 | }<br>,{{   | 410,         | 410,         | 370,         | 360,         | 370}         |
| 04879          | , {        | 410,         | 410,         | 370,         | 360,         | 370}         |
| 04880          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04881          | , {        | 290,         | 290,         | 260,         | 220,         | 260}         |
| 04882          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04883<br>04884 | }<br>,{{   | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04885          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04886          | , {        | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04887          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04888<br>04889 | , {<br>}   | 370,         | 370,         | 340,         | 360,         | 340}         |
| 04890          | , { {      | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04891          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04892          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04893<br>04894 | , {<br>, { | 300,<br>370, | 240,<br>370, | 210,<br>340, | 300,<br>300, | 210}         |
| 04895          | , l<br>}   | 370,         | 370,         | 340,         | 300,         | 240)         |
| 04896          | , {{       | 430,         | 430,         | 340,         | 360,         | 340}         |
| 04897          | , {        | 370,         | 370,         | 340,         | 300,         | 340}         |
| 04898<br>04899 | , {        | 370,<br>370, | 370,<br>370, | 340,<br>340, | 360,         | 340}<br>340} |
| 04900          | , t<br>, { | 430,         | 430,         | 340,         | 300,<br>300, | 340}         |
| 04901          | }          |              |              |              | ,            | ,            |
| 04902          | }          |              |              |              |              |              |
| 04903<br>04904 | , { { {    | 400,<br>400, | 370,<br>370, | 400,<br>400, | 370,<br>370, | 400}         |
| 04905          | , {<br>, { | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04906          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04907          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04908          | }          | 270          | 270          | 270          | 270          | 2701         |
| 04909<br>04910 | ,{{<br>,{  | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370}<br>370} |
| 04911          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04912          | , {        | 320,         | 260,         | 320,         | 260,         | 320}         |
| 04913          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04914          | }          | 240          | 240          | 240          | 2.40         | 2401         |
| 04915<br>04916 | ,{{<br>,{  | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}<br>340} |
| 04917          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04918          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04919          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04920<br>04921 | 1 1<br>}   | 400,         | 340,         | 400,         | 340,         | 400}         |
| 04921          | ,{{<br>,{  | 400,         | 340,         | 400,         | 340,         | 400}         |
| 04923          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04924          | , {        | 210,         | 210,         | 210,         | 210,         | 210}         |
| 04925          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04926<br>04927 | }<br>,{{   | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04927          | , 11       | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04929          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 04930          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
|                |            |              |              |              |              |              |

| 04931<br>04932 | , {<br>}          | 340,         | 340,         | 340,         | 340,         | 340}           |
|----------------|-------------------|--------------|--------------|--------------|--------------|----------------|
| 04933          | }                 |              |              |              |              |                |
| 04934          | , { { {           | 370,         | 320,         | 370,         | 340,         | 370}           |
| 04935          | , {               | 370,         | 290,         | 370,         | 340,         | 370}           |
| 04936<br>04937 | , {<br>, {        | 340,<br>340, | 320,<br>260, | 340,<br>340, | 210,<br>340, | 340}<br>340}   |
| 04938          | , {               | 340,         | 320,         | 340,         | 340,         | 340}           |
| 04939          | }                 |              |              |              |              |                |
| 04940          | , { {             | 370,         | 290,         | 370,         | 260,         | 370}           |
| 04941          | , {               | 370,         | 290,         | 370,         | 240,<br>210, | 370}           |
| 04942          | , {<br>, {        | 340,<br>260, | 260,<br>180, | 340,<br>260, | 260,         | 340}<br>260}   |
| 04944          | , {               | 340,         | 260,         | 340,         | 210,         | 340}           |
| 04945          | }                 |              |              |              |              |                |
| 04946          | , { {             | 340,         | 320,         | 340,         | 210,         | 340}           |
| 04947<br>04948 | , {<br>, {        | 340,<br>340, | 260,<br>320, | 340,<br>340, | 210,<br>210, | 340}<br>340}   |
| 04949          | , {               | 340,         | 260,         | 340,         | 210,         | 340}           |
| 04950          | , {               | 340,         | 320,         | 340,         | 210,         | 340}           |
| 04951          | }                 |              |              |              |              |                |
| 04952          | , { {             | 340,         | 260,         | 340,         | 340,         | 340}           |
| 04953<br>04954 | , {<br>, {        | 340,<br>340, | 260,<br>260, | 340,<br>340, | 340,<br>210, | 340}           |
| 04955          | , {               | 340,         | 260,         | 210,         | 340,         | 210}           |
| 04956          | , {               | 340,         | 260,         | 340,         | 210,         | 340}           |
| 04957          | }                 |              |              |              |              |                |
| 04958          | , { {             | 340,         | 320,         | 340,         | 340,         | 340}           |
| 04959<br>04960 | , {<br>, {        | 340,<br>340, | 260,<br>320, | 340,<br>340, | 210,<br>210, | 340}<br>340}   |
| 04961          | , {               | 340,         | 260,         | 340,         | 210,         | 340}           |
| 04962          | , {               | 340,         | 260,         | 340,         | 340,         | 340}           |
| 04963          | }                 |              |              |              |              |                |
| 04964          | }                 |              |              |              |              |                |
| 04965<br>04966 | , { { {           | 430,<br>430, | 370,<br>370, | 400,<br>400, | 370,<br>370, | 430}           |
| 04967          | , {<br>, {        | 340,         | 340,         | 340,         | 340,         | 430}<br>340}   |
| 04968          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04969          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04970          | }                 | 400          | 0.770        | 0.77.0       | 0.70         | 4001           |
| 04971<br>04972 | , { {             | 430,         | 370,<br>370, | 370,<br>370, | 370,<br>370, | 430}           |
| 04972          | , {<br>, {        | 430,<br>340, | 340,         | 340,         | 340,         | 430}<br>340}   |
| 04974          | , {               | 320,         | 260,         | 320,         | 260,         | 260}           |
| 04975          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04976          | }                 |              |              |              |              |                |
| 04977<br>04978 | , { {             | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04978          | , {<br>, {        | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}<br>340}   |
| 04980          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04981          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04982          | }                 | 400          | 2.40         | 400          | 0.40         | 0.403          |
| 04983<br>04984 | , { {             | 400,<br>400, | 340,<br>340, | 400,<br>400, | 340,<br>340, | 340}<br>340}   |
| 04985          | , {<br>, {        | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04986          | , {               | 340,         | 210,         | 210,         | 210,         | 340}           |
| 04987          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04988<br>04989 | }                 | 240          | 240          | 240          | 240          | 2401           |
| 04989          | ,{{<br>,{         | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}<br>340}   |
| 04991          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04992          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04993          | , {               | 340,         | 340,         | 340,         | 340,         | 340}           |
| 04994<br>04995 | }                 |              |              |              |              |                |
| 04996          | }                 |              |              |              |              |                |
| 04997          | }                 |              |              |              |              |                |
| 04998          | , { { { { { { { } | INF,         | INF,         | INF,         | INF,         | INF }          |
| 04999          | , {               | INF,         | INF,         | INF,         | INF,         | INF }          |
| 05000          | , {               | INF,         | INF,         | INF,         | INF,<br>INF, | INF }          |
| 05001<br>05002 | , {<br>, {        | INF,         | INF,<br>INF, | INF,<br>INF, | INF,         | INF }<br>INF } |
| 05002          | }                 | 1111,        | 1111         | 1111         | 1111         | 1111           |
| 05004          | , { {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 05005          | , {               | INF,         | INF,         | INF,         | INF,         | INF }          |
| 05006          | , {               | INF,         | INF,         | INF,         | INF,         | INF }          |
| 05007<br>05008 | , {<br>, {        | INF,         | INF,<br>INF, | INF,         | INF,         | INF }<br>INF } |
| 05000          | }                 | /            | /            | /            | ,            | +- J           |
| 05010          | , { {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 05011          | , {               | INF,         | INF,         | INF,         | INF,         | INF }          |
| 05012<br>05013 | , {<br>, {        | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 05013          | , {               | INF,         | INF,         | INF,         | INF,         | INF }          |
| 05015          | }                 | ,            | ,            | ,            | ,            | ,              |
| 05016          | , { {             | INF,         | INF,         | INF,         | INF,         | INF }          |
| 05017          | , {               | INF,         | INF,         | INF,         | INF,         | INF }          |
|                |                   |              |              |              |              |                |

| 05018 | ſ          | INF, | TME    | TME  | TNE   | TNIE   |
|-------|------------|------|--------|------|-------|--------|
| 05018 | , {        |      | INF,   | INF, | INF,  | INF }  |
|       | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05020 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05021 | }          |      |        |      |       |        |
| 05022 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05023 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05024 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05025 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05026 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05027 | }          |      |        |      |       |        |
| 05028 | }          |      |        |      |       |        |
| 05029 | , { { {    | INF, | INF,   | INF, | INF,  | INF }  |
| 05030 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05031 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05032 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05033 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05034 | }          | ,    | ,      | ,    | ,     | ,      |
| 05035 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05036 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05037 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05037 |            |      |        |      |       |        |
|       | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05039 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05040 | }          |      |        |      |       |        |
| 05041 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05042 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05043 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05044 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05045 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05046 | }          |      |        |      |       |        |
| 05047 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05048 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05049 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
|       |            |      |        |      |       |        |
| 05050 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05051 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05052 | }          |      |        |      |       |        |
| 05053 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05054 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05055 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05056 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05057 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05058 | }          | ,    |        |      | •     |        |
| 05059 | }          |      |        |      |       |        |
| 05060 | ,{{{       | INF, | INF,   | INF, | INF,  | INF }  |
| 05061 |            | INF, | INF,   | INF, | INF,  | INF }  |
|       | , {        |      |        |      |       |        |
| 05062 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05063 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05064 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05065 | }          |      |        |      |       |        |
| 05066 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05067 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05068 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05069 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05070 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05071 | }          | ,    |        |      | •     |        |
| 05072 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05073 | ,          | INF, | INF,   | INF, | INF,  | INF }  |
| 05073 | , t<br>, { | INF, | INF,   | INF, | INF,  | INF }  |
| 05074 |            |      |        | INF, |       |        |
|       | , {        | INF, | INF,   |      | INF,  | INF }  |
| 05076 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05077 | }          |      |        |      |       |        |
| 05078 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05079 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05080 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05081 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05082 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05083 | }          |      |        |      |       |        |
| 05084 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05085 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05086 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05087 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05088 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05089 | }          | /    | ,      | ,    | /     | )      |
| 05099 | }          |      |        |      |       |        |
|       |            | TAID | TAIL   | TME  | TME   | TATELY |
| 05091 | , { { {    | INF, | INF,   | INF, | INF,  | INF }  |
| 05092 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05093 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05094 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05095 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05096 | }          |      |        |      |       |        |
| 05097 | , { {      | INF, | INF,   | INF, | INF,  | INF }  |
| 05098 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05099 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05100 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05100 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
| 05101 | , \<br>}   | /    | -111 / | /    | -111. | T14T } |
|       |            | INF, | TNE    | INF, | TNE   | INF }  |
| 05103 | , { {      |      | INF,   |      | INF,  |        |
| 05104 | , {        | INF, | INF,   | INF, | INF,  | INF }  |
|       |            |      |        |      |       |        |

| 05105 | 1          | INF,  | TNE  | TNE  | TNE  | INF }  |
|-------|------------|-------|------|------|------|--------|
|       | , {        |       | INF, | INF, | INF, |        |
| 05106 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05107 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05108 | }          |       |      |      |      |        |
| 05109 | , { {      | INF,  | INF, | INF, | INF, | INF }  |
| 05110 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05111 | , {        | INF,  | INF, | INF, | INF, | INF }  |
|       |            |       |      |      |      |        |
| 05112 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05113 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05114 | }          |       |      |      |      |        |
| 05115 | , { {      | INF,  | INF, | INF, | INF, | INF }  |
| 05116 |            |       | INF, |      | INF, | INF }  |
|       | , {        | INF,  |      | INF, |      |        |
| 05117 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05118 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05119 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05120 | }          |       |      |      |      |        |
| 05121 | }          |       |      |      |      |        |
|       |            | TNID  | TND  | TNE  | TAID | TAITI  |
| 05122 | , { { {    | INF,  | INF, | INF, | INF, | INF }  |
| 05123 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05124 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05125 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05126 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05127 | }          |       |      | 1111 |      |        |
|       |            | TNIE  | TAID | TAID | TAID | TATEL  |
| 05128 | , { {      | INF,  | INF, | INF, | INF, | INF }  |
| 05129 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05130 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05131 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05132 | , {        | INF,  | INF, | INF, | INF, | INF }  |
|       |            | 1111, | 1111 | 1111 | 1111 | 1141 ) |
| 05133 | }          |       |      |      |      |        |
| 05134 | , { {      | INF,  | INF, | INF, | INF, | INF }  |
| 05135 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05136 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05137 | , {        | INF,  | INF, | INF, | INF, | INF)   |
|       |            |       |      |      |      |        |
| 05138 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05139 | }          |       |      |      |      |        |
| 05140 | , { {      | INF,  | INF, | INF, | INF, | INF }  |
| 05141 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05142 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05143 |            |       |      |      | INF, |        |
|       | , {        | INF,  | INF, | INF, |      | INF }  |
| 05144 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05145 | }          |       |      |      |      |        |
| 05146 | , { {      | INF,  | INF, | INF, | INF, | INF }  |
| 05147 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05148 | , {        | INF,  | INF, | INF, | INF, | INF)   |
|       |            |       |      |      |      |        |
| 05149 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05150 | , {        | INF,  | INF, | INF, | INF, | INF }  |
| 05151 | }          |       |      |      |      |        |
| 05152 | }          |       |      |      |      |        |
| 05153 | }          |       |      |      |      |        |
|       | ,{{{{      | 210   | 240  | 240  | 210  | 2001   |
| 05154 |            | 310,  | 240, | 240, | 310, | 260}   |
| 05155 | , {        | 270,  | 240, | 240, | 270, | 260}   |
| 05156 | , {        | 310,  | 220, | 220, | 310, | 220}   |
| 05157 | , {        | 270,  | 240, | 240, | 270, | 240}   |
| 05158 | , {        | 300,  | 210, | 210, | 300, | 210}   |
| 05159 | }          | ,     | ,    | ,    | ,    | ,      |
|       |            | 260,  | 200, | 200, | 230, | 260}   |
| 05160 | , { {      |       |      |      |      |        |
| 05161 | , {        | 260,  | 200, | 200, | 230, | 260}   |
| 05162 | , {        | 220,  | 190, | 190, | 220, | 190}   |
| 05163 | , {        | 160,  | 100, | 160, | 130, | 160}   |
| 05164 | , {        | 220,  | 190, | 190, | 220, | 190}   |
| 05165 | }          |       |      |      |      |        |
| 05166 |            | 310   | 240  | 240  | 310  | 2401   |
|       | , { {      | 310,  | 240, | 240, | 310, | 240}   |
| 05167 | , {        | 270,  | 240, | 240, | 270, | 240}   |
| 05168 | , {        | 310,  | 220, | 220, | 310, | 220}   |
| 05169 | , {        | 270,  | 240, | 240, | 270, | 240}   |
| 05170 | , {        | 300,  | 210, | 210, | 300, | 210}   |
| 05171 | }          |       |      |      | ,    | . ,    |
| 05171 | , { {      | 220,  | 190, | 190, | 220, | 190}   |
|       |            |       |      |      |      |        |
| 05173 | , {        | 160,  | 100, | 160, | 130, | 160}   |
| 05174 | , {        | 220,  | 190, | 190, | 220, | 190}   |
| 05175 | , {        | 210,  | 50,  | 50,  | 210, | 180}   |
| 05176 | , {        | 220,  | 190, | 190, | 220, | 190}   |
| 05177 | }          | /     | ,    | ,    | ,    |        |
|       |            | 200   | 240  | 240  | 200  | 040:   |
| 05178 | , { {      | 300,  | 240, | 240, | 300, | 240}   |
| 05179 | , {        | 270,  | 240, | 240, | 270, | 240}   |
| 05180 | , {        | 300,  | 210, | 210, | 300, | 210}   |
| 05181 | , {        | 270,  | 240, | 240, | 270, | 240}   |
| 05182 | , {        | 150,  | 140, | 120, | 150, | 120}   |
|       | <i>,</i> l | ±00,  | 170, | 120, | ±00, | 120}   |
| 05183 | , }        |       |      |      |      |        |
| 05184 | }          |       |      |      |      |        |
| 05185 | , { { {    | 310,  | 200, | 240, | 310, | 240}   |
| 05186 | , {        | 270,  | 200, | 240, | 270, | 240}   |
| 05187 | , {        | 310,  | 190, | 220, | 310, | 220}   |
| 05188 |            | 270,  | 200, | 240, | 270, |        |
|       | , {        |       |      |      |      | 240}   |
| 05189 | , {        | 300,  | 170, | 210, | 300, | 210}   |
| 05190 | }          |       |      |      |      |        |
| 05191 | , { {      | 230,  | 160, | 200, | 230, | 200}   |
|       |            |       |      |      |      |        |

| 05192<br>05193 | , {<br>, { | 230,<br>220, | 160,<br>160, | 200,<br>190, | 230,<br>220, | 200}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 05194          | , {        | 130,         | 70,          | 100,         | 130,         | 100}         |
| 05195<br>05196 | , {<br>}   | 220,         | 160,         | 190,         | 220,         | 190}         |
| 05197          | , { {      | 310,         | 200,         | 240,         | 310,         | 240}         |
| 05198<br>05199 | , {<br>, { | 270,<br>310, | 200,<br>190, | 240,<br>220, | 270,<br>310, | 240}         |
| 05200          | , {        | 270,         | 200,         | 240,         | 270,         | 240}         |
| 05201          | , {        | 300,         | 170,         | 210,         | 300,         | 210}         |
| 05202<br>05203 | }<br>,{{   | 220,         | 160,         | 190,         | 220,         | 190}         |
| 05204          | , {        | 130,         | 70,          | 100,         | 130,         | 100}         |
| 05205<br>05206 | , {<br>, { | 220,<br>210, | 160,<br>10,  | 190,<br>50,  | 220,<br>210, | 190}<br>50}  |
| 05207          | , {        | 220,         | 160,         | 190,         | 220,         | 190}         |
| 05208<br>05209 | }<br>,{{   | 300,         | 200,         | 240,         | 300,         | 240}         |
| 05210          | , (        | 270,         | 200,         | 240,         | 270,         | 240}         |
| 05211          | , {        | 300,         | 170,         | 210,         | 300,         | 210}         |
| 05212<br>05213 | , {<br>, { | 270,<br>150, | 200,<br>140, | 240,<br>120, | 270,<br>150, | 240}<br>120} |
| 05214          | }          |              |              |              |              |              |
| 05215<br>05216 | }<br>,{{{  | 240,         | 240,         | 240,         | 240,         | 240}         |
| 05217          | , {        | 240,         | 240,         | 240,         | 240,         | 240}         |
| 05218<br>05219 | , {<br>, { | 220,<br>240, | 220,<br>240, | 220,<br>240, | 220,<br>240, | 220}<br>240} |
| 05220          | , {        | 210,         | 210,         | 210,         | 210,         | 210}         |
| 05221          | }          | 000          | 000          | 200          | 200          | 0001         |
| 05222<br>05223 | ,{{<br>,{  | 200,<br>200, | 200,<br>200, | 200,<br>200, | 200,<br>200, | 200}         |
| 05224          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05225<br>05226 | , {<br>, { | 160,<br>190, | 100,<br>190, | 160,<br>190, | 100,<br>190, | 160}<br>190} |
| 05227          | }          | ,            | ,            |              |              | ,            |
| 05228<br>05229 | ,{{<br>,{  | 240,<br>240, | 240,<br>240, | 240,<br>240, | 240,<br>240, | 240}<br>240} |
| 05230          | , {        | 220,         | 220,         | 220,         | 220,         | 220}         |
| 05231          | , {        | 240,         | 240,         | 240,         | 240,         | 240}         |
| 05232<br>05233 | , {<br>}   | 210,         | 210,         | 210,         | 210,         | 210}         |
| 05234          | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05235<br>05236 | , {<br>, { | 160,<br>190, | 100,<br>190, | 160,<br>190, | 100,<br>190, | 160}<br>190} |
| 05237          | , {        | 50,          | 50,          | 50,          | 50,          | 50}          |
| 05238<br>05239 | , {<br>}   | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05240          | , { {      | 240,         | 240,         | 240,         | 240,         | 240}         |
| 05241<br>05242 | , {        | 240,<br>210, | 240,         | 240,         | 240,         | 240}         |
| 05242          | , {<br>, { | 240,         | 210,<br>240, | 210,<br>240, | 210,<br>240, | 210}         |
| 05244          | , {        | 120,         | 120,         | 120,         | 120,         | 120}         |
| 05245<br>05246 | }          |              |              |              |              |              |
| 05247          | , { { {    | 240,         | 150,         | 240,         | 180,         | 240}         |
| 05248<br>05249 | , {<br>, { | 240,<br>220, | 100,<br>150, | 240,<br>220, | 110,<br>90,  | 240}         |
| 05250          | , {        | 240,         | 100,         | 240,         | 180,         | 240}         |
| 05251<br>05252 | , {<br>}   | 210,         | 130,         | 210,         | 120,         | 210}         |
| 05252          | , { {      | 200,         | 60,          | 200,         | 100,         | 200}         |
| 05254          | , {        | 200,         | 60,          | 200,         | 70,          | 200}         |
| 05255<br>05256 | , {<br>, { | 190,<br>100, | 60,<br>-30,  | 190,<br>100, | 60,<br>100,  | 190}<br>100} |
| 05257          | , {        | 190,         | 60,          | 190,         | 60,          | 190}         |
| 05258<br>05259 | }<br>,{{   | 240,         | 150,         | 240,         | 110,         | 240}         |
| 05260          | , {        | 240,         | 100,         | 240,         | 110,         | 240}         |
| 05261<br>05262 | , {<br>, { | 220,<br>240, | 150,<br>100, | 220,<br>240, | 90,<br>110,  | 220}<br>240} |
| 05263          | , {        | 210,         | 130,         | 210,         | 80,          | 210}         |
| 05264          | }          | 100          | 60           | 1.00         | 1.00         | 1001         |
| 05265<br>05266 | ,{{<br>,{  | 190,<br>100, | 60,<br>-30,  | 190,<br>100, | 180,<br>100, | 190}<br>100} |
| 05267          | , {        | 190,         | 60,          | 190,         | 60,          | 190}         |
| 05268<br>05269 | , {<br>, { | 180,<br>190, | 40,<br>60,   | 50,<br>190,  | 180,<br>60,  | 50}<br>190}  |
| 05270          | }          |              |              |              |              |              |
| 05271<br>05272 | ,{{<br>,{  | 240,<br>240, | 130,<br>100, | 240,<br>240, | 120,<br>110, | 240}<br>240} |
| 05272          | , {        | 210,         | 130,         | 210,         | 80,          | 210}         |
| 05274          | , {        | 240,         | 100,         | 240,         | 110,         | 240}         |
| 05275<br>05276 | , {<br>}   | 120,         | -10,         | 120,         | 120,         | 120}         |
| 05277          | }          | 200          | 240          | 240          | 240          | 200          |
| 05278          | , { { {    | 260,         | 240,         | 240,         | 240,         | 260}         |

| 05279<br>05280 | , {<br>, {  | 260,<br>220, | 240,<br>220, | 240,<br>220, | 240,<br>220, | 260}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 05281<br>05282 | , {<br>, {  | 240,         | 240,         | 240,         | 240,         | 240}         |
| 05283          | }           | 210,         | 210,         | 210,         | 210,         | 210}         |
| 05284<br>05285 | ,{{<br>,{   | 260,<br>260, | 200,<br>200, | 200,<br>200, | 200,<br>200, | 260}<br>260} |
| 05286          | , {         | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05287<br>05288 | , {<br>, {  | 160,<br>190, | 100,<br>190, | 160,<br>190, | 100,<br>190, | 100}<br>190} |
| 05289          | }           | 130,         | 130,         | 130,         | 130,         | 150)         |
| 05290<br>05291 | ,{{<br>,{   | 240,<br>240, | 240,<br>240, | 240,<br>240, | 240,<br>240, | 240}         |
| 05292          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 05293<br>05294 | , {<br>, {  | 240,<br>210, | 240,<br>210, | 240,<br>210, | 240,<br>210, | 240}         |
| 05295          | }           |              |              |              |              |              |
| 05296<br>05297 | ,{{<br>,{   | 190,<br>160, | 190,<br>100, | 190,<br>160, | 190,<br>100, | 190}<br>100} |
| 05298          | , {         | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05299<br>05300 | , {<br>, {  | 180,<br>190, | 50,<br>190,  | 50,<br>190,  | 50,<br>190,  | 180}<br>190} |
| 05301          | }           | 240          | 240          | 240          | 240          | 2401         |
| 05302<br>05303 | ,{{<br>,{   | 240,<br>240, | 240,<br>240, | 240,<br>240, | 240,<br>240, | 240}<br>240} |
| 05304<br>05305 | , {<br>, {  | 210,<br>240, | 210,<br>240, | 210,<br>240, | 210,<br>240, | 210}         |
| 05306          | , {         | 120,         | 120,         | 120,         | 120,         | 120}         |
| 05307<br>05308 | }           |              |              |              |              |              |
| 05309          | }           |              |              |              |              |              |
| 05310<br>05311 | }}}},<br>}, | 280,<br>270, | 210,<br>210, | 210,<br>210, | 280,<br>240, | 270}<br>270} |
| 05312          | , {         | 280,         | 190,         | 190,         | 280,         | 190}         |
| 05313<br>05314 | , {<br>, {  | 210,<br>280, | 180,<br>190, | 180,<br>190, | 210,<br>280, | 180}<br>190} |
| 05315<br>05316 | }<br>,{{    | 270,         | 210,         | 210,         | 240,         | 270}         |
| 05317          | , ; ;       | 270,         | 210,         | 210,         | 240,         | 270}         |
| 05318<br>05319 | , {<br>, {  | 220,<br>70,  | 190,<br>10,  | 190,<br>70,  | 220,<br>40,  | 190}<br>70}  |
| 05320          | , {         | 220,         | 190,         | 190,         | 220,         | 190}         |
| 05321<br>05322 | }<br>,{{    | 280,         | 190,         | 190,         | 280,         | 190}         |
| 05323          | , {         | 210,         | 180,         | 180,         | 210,         | 180}         |
| 05324<br>05325 | , {<br>, {  | 280,<br>210, | 190,<br>180, | 190,<br>180, | 280,<br>210, | 190}<br>180} |
| 05326<br>05327 | , {<br>}    | 280,         | 190,         | 190,         | 280,         | 190}         |
| 05327          | , { {       | 220,         | 190,         | 190,         | 220,         | 190}         |
| 05329<br>05330 | , {<br>, {  | 130,<br>220, | 70,<br>190,  | 130,<br>190, | 100,<br>220, | 130}<br>190} |
| 05331          | , {         | 210,         | 50,          | 50,          | 210,         | 180}         |
| 05332<br>05333 | , {<br>}    | 220,         | 190,         | 190,         | 220,         | 190}         |
| 05334          | , { {       | 280,         | 190,         | 190,         | 280,         | 190}         |
| 05335<br>05336 | , {<br>, {  | 210,<br>280, | 180,<br>190, | 180,<br>190, | 210,<br>280, | 180}<br>190} |
| 05337          | , {         | 210,<br>140, | 180,         | 180,         | 210,         | 180}         |
| 05338<br>05339 | , {<br>}    | 140,         | 140,         | 110,         | 140,         | 110}         |
| 05340<br>05341 | }<br>,{{{   | 280,         | 190,         | 210,         | 280,         | 210}         |
| 05342          | , {         | 240,         | 190,         | 210,         | 240,         | 210}         |
| 05343<br>05344 | , {<br>, {  | 280,<br>210, | 160,<br>150, | 190,<br>180, | 280,<br>210, | 190}<br>180} |
| 05345          | , {         | 280,         | 150,         | 190,         | 280,         | 190}         |
| 05346<br>05347 | }<br>,{{    | 240,         | 190,         | 210,         | 240,         | 210}         |
| 05348<br>05349 | , {         | 240,         | 190,<br>150, | 210,<br>190, | 240,<br>220, | 210}<br>190} |
| 05350          | , {<br>, {  | 220,<br>40,  | -20,         | 10,          | 40,          | 10}          |
| 05351<br>05352 | , {<br>}    | 220,         | 150,         | 190,         | 220,         | 190}         |
| 05353          | , { {       | 280,         | 150,         | 190,         | 280,         | 190}         |
| 05354<br>05355 | , {<br>, {  | 210,<br>280, | 150,<br>150, | 180,<br>190, | 210,<br>280, | 180}<br>190} |
| 05356          | , {         | 210,         | 150,         | 180,         | 210,         | 180}         |
| 05357<br>05358 | , {<br>}    | 280,         | 150,         | 190,         | 280,         | 190}         |
| 05359          | , { {       | 220,         | 150,         | 190,         | 220,         | 190}         |
| 05360<br>05361 | , {<br>, {  | 100,<br>220, | 40,<br>150,  | 70,<br>190,  | 100,<br>220, | 70}<br>190}  |
| 05362<br>05363 | , {<br>, {  | 210,<br>220, | 10,<br>150,  | 50,<br>190,  | 210,<br>220, | 50}<br>190}  |
| 05364          | }           |              |              |              |              |              |
| 05365          | , { {       | 280,         | 160,         | 190,         | 280,         | 190}         |

| 05366          | , {        | 210,         | 150,         | 180,         | 210,         | 180}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 05367          | , {        | 280,         | 160,         | 190,         | 280,         | 190}         |
| 05368          | , {        | 210,         | 150,         | 180,         | 210,         | 180}         |
| 05369          | , {        | 140,         | 140,         | 110,         | 140,         | 110}         |
| 05370          | }          |              |              |              |              |              |
| 05371          | }          |              |              |              |              |              |
| 05372          | , { { {    | 210,         | 210,         | 210,         | 210,         | 210}         |
| 05373          | , {        | 210,         | 210,         | 210,         | 210,         | 210}         |
| 05374          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05375          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05376          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05377          | }          |              |              |              |              |              |
| 05378          | , { {      | 210,         | 210,         | 210,         | 210,         | 210}         |
| 05379          | , {        | 210,         | 210,         | 210,         | 210,         | 210}         |
| 05380          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05381          | , {        | 70,          | 10,          | 70,          | 10,          | 70}          |
| 05382          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05383          | }          |              |              |              |              |              |
| 05384          | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05385          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05386          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05387          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05388          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05389          | }          |              |              |              |              |              |
| 05390          | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05391          | , {        | 130,         | 70,          | 130,         | 70,          | 130}         |
| 05392          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05393          | , {        | 50,          | 50,          | 50,          | 50,          | 50}          |
| 05394          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05395          | }          |              |              |              |              |              |
| 05396          | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05397          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05398          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05399          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05400          | , {        | 110,         | 110,         | 110,         | 110,         | 110}         |
| 05401          | }          |              |              |              |              |              |
| 05402          | }          | 010          |              | 0.1.0        | 1.00         | 0101         |
| 05403          | , { { {    | 210,         | 120,         | 210,         | 180,         | 210}         |
| 05404          | , {        | 210,         | 80,          | 210,         | 80,          | 210}         |
| 05405          | , {        | 190,         | 120,         | 190,         | 60,          | 190}         |
| 05406          | , {        | 180,         | 50,          | 180,         | 180,         | 180}         |
| 05407          | , {        | 190,         | 110,         | 190,         | 110,         | 190}         |
| 05408          | }          | 210          | 0.0          | 210          | 0.0          | 2101         |
| 05409<br>05410 | , { {      | 210,         | 80,<br>80,   | 210,<br>210, | 80,<br>80,   | 210}         |
| 05410          | , {        | 210,         |              |              |              |              |
|                | , {        | 190,         | 50,          | 190,         | 60,          | 190}         |
| 05412<br>05413 | , {        | 10,<br>190,  | -120,<br>50, | 10,<br>190,  | 10,<br>60,   | 10}<br>190}  |
| 05413          | , {<br>}   | 190,         | 50,          | 190,         | 00,          | 190}         |
| 05414          | , { {      | 190,         | 110,         | 190,         | 60,          | 190}         |
| 05415          | , 11       | 180,         | 50,          | 180,         | 50,          | 180}         |
| 05417          | , {        | 190,         | 110,         | 190,         | 60,          | 190}         |
| 05417          | , {        | 180,         | 50,          | 180,         | 50,          | 180}         |
| 05419          | , {        | 190,         | 110,         | 190,         | 60,          | 190}         |
| 05420          | }          | 130,         | 110,         | 130,         | 00,          | 100)         |
| 05421          | , { {      | 190,         | 50,          | 190,         | 180,         | 190}         |
| 05422          | , {        | 70,          | -60,         | 70,          | 70,          | 70}          |
| 05423          | , {        | 190,         | 50,          | 190,         | 60,          | 190}         |
| 05424          | , {        | 180,         | 40,          | 50,          | 180,         | 50}          |
| 05425          | , {        | 190,         | 50,          | 190,         | 60,          | 190}         |
| 05426          | }          |              |              |              |              |              |
| 05427          | , { {      | 190,         | 120,         | 190,         | 110,         | 190}         |
| 05428          | , {        | 180,         | 50,          | 180,         | 50,          | 180}         |
| 05429          | , {        | 190,         | 120,         | 190,         | 60,          | 190}         |
| 05430          | , {        | 180,         | 50,          | 180,         | 50,          | 180}         |
| 05431          | , {        | 110,         | -20,         | 110,         | 110,         | 110}         |
| 05432          | }          |              |              |              |              |              |
| 05433          | }          |              |              |              |              |              |
| 05434          | , { { {    | 270,         | 210,         | 210,         | 210,         | 270}         |
| 05435          | , {        | 270,         | 210,         | 210,         | 210,         | 270}         |
| 05436          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05437          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05438          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05439          | }          | 070          | 010          | 010          | 010          | 070:         |
| 05440          | , { {      | 270,         | 210,         | 210,         | 210,         | 270}         |
| 05441          | , {        | 270,         | 210,         | 210,         | 210,         | 270}         |
| 05442          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05443          | , {        | 70,          | 10,          | 70,          | 10,          | 10}          |
| 05444          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05445          | }          | 100          | 100          | 100          | 100          | 1003         |
| 05446<br>05447 | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05447          | , {        | 180,<br>190, | 180,<br>190, | 180,<br>190, | 180,<br>190, | 180}<br>190} |
| 05448          | , {<br>, { | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05450          | , \<br>, { | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05451          | }          | ± 20 ,       | 100,         | 100,         | 100,         | 100          |
| 05451          | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
|                | ,          | /            | ,            | ,            | ,            |              |

| 05453          | , {        | 130,         | 70,          | 130,         | 70,          | 70}          |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 05454          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05455          | , {        | 180,         | 50,          | 50,          | 50,          | 180}         |
| 05456          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05457          | }          |              |              |              |              |              |
| 05458          | , { {      | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05459          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05460          | , {        | 190,         | 190,         | 190,         | 190,         | 190}         |
| 05461          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05462          | , {        | 110,         | 110,         | 110,         | 110,         | 110}         |
| 05463          | }          |              |              |              |              |              |
| 05464          | }          |              |              |              |              |              |
| 05465<br>05466 | }          | 400          | 260          | 240          | 400          | 4001         |
| 05467          | , { { { {  | 400,<br>400, | 360,<br>360, | 340,<br>340, | 400,<br>370, | 400}         |
| 05468          | , {<br>, { | 400,         | 310,         | 310,         | 400,         | 310}         |
| 05469          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05470          | , {        | 400,         | 330,         | 310,         | 400,         | 310}         |
| 05471          | }          |              | ,            |              | ,            | ,            |
| 05472          | , { {      | 400,         | 360,         | 340,         | 370,         | 400}         |
| 05473          | , {        | 400,         | 360,         | 340,         | 370,         | 400}         |
| 05474          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05475          | , {        | 290,         | 230,         | 290,         | 260,         | 290}         |
| 05476          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05477          | }          |              |              |              |              |              |
| 05478          | , { {      | 400,         | 310,         | 310,         | 400,         | 310}         |
| 05479          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05480          | , {        | 400,         | 310,         | 310,         | 400,         | 310}         |
| 05481          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05482          | , {        | 400,         | 310,         | 310,         | 400,         | 310}         |
| 05483<br>05484 | }<br>,{{   | 360,         | 360,         | 330,         | 340,         | 330}         |
| 05485          | , (        | 360,         | 360,         | 330,         | 300,         | 330}         |
| 05486          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05487          | , {        | 340,         | 180,         | 180,         | 340,         | 310}         |
| 05488          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05489          | }          |              |              |              |              | ,            |
| 05490          | , { {      | 400,         | 330,         | 310,         | 400,         | 310}         |
| 05491          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05492          | , {        | 400,         | 310,         | 310,         | 400,         | 310}         |
| 05493          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 05494          | , {        | 340,         | 330,         | 310,         | 340,         | 310}         |
| 05495          | }          |              |              |              |              |              |
| 05496          | }          | 400          | 200          | 240          | 400          | 2401         |
| 05497          | , { { {    | 400,         | 360,         | 340,         | 400,         | 340}         |
| 05498          | , {        | 370,         | 360,         | 340,         | 370,         | 340}         |
| 05499<br>05500 | , {<br>, { | 400,<br>340, | 270,<br>270, | 310,<br>310, | 400,<br>340, | 310}         |
| 05501          | , {        | 400,         | 330,         | 310,         | 400,         | 310}         |
| 05502          | }          | 100,         | 000,         | 010,         | 100,         | 010,         |
| 05503          | , { {      | 370,         | 360,         | 340,         | 370,         | 340}         |
| 05504          | , {        | 370,         | 360,         | 340,         | 370,         | 340}         |
| 05505          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 05506          | , {        | 260,         | 190,         | 230,         | 260,         | 230}         |
| 05507          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 05508          | }          |              |              |              |              |              |
| 05509          | , { {      | 400,         | 270,         | 310,         | 400,         | 310}         |
| 05510          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 05511          | , {        | 400,         | 270,         | 310,         | 400,         | 310}         |
| 05512<br>05513 | , {        | 340,<br>400, | 270,<br>270, | 310,<br>310, | 340,<br>400, | 310}<br>310} |
| 05514          | , {<br>}   | 400,         | 270,         | 310,         | 400,         | 210}         |
| 05515          | , { {      | 360,         | 360,         | 310,         | 340,         | 310}         |
| 05516          | , {        | 360,         | 360,         | 270,         | 300,         | 270}         |
| 05517          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 05518          | , {        | 340,         | 140,         | 180,         | 340,         | 180}         |
| 05519          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 05520          | }          |              |              |              |              |              |
| 05521          | , { {      | 400,         | 330,         | 310,         | 400,         | 310}         |
| 05522          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 05523          | , {        | 400,         | 270,         | 310,         | 400,         | 310}         |
| 05524          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 05525          | , {        | 340,         | 330,         | 310,         | 340,         | 310}         |
| 05526          | }          |              |              |              |              |              |
| 05527          | 111<br>}   | 310          | 340          | 340          | 310          | 310,         |
| 05528          | , { { {    | 340,         | 340,<br>340, | 340,         | 340,<br>340, | 340}         |
| 05529<br>05530 | , {<br>, { | 340,<br>310, | 340,         | 340,<br>310, | 340,         | 340}<br>310} |
| 05531          | , (        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05532          | , {        | 310,         | 310,         | 310,         | 310,         | 310)         |
| 05533          | }          | .,           | .,           | .,           | .,           | )            |
| 05534          | , { {      | 340,         | 340,         | 340,         | 340,         | 340}         |
| 05535          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 05536          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05537          | , {        | 290,         | 230,         | 290,         | 230,         | 290}         |
| 05538          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05539          | }          |              |              |              |              |              |
|                |            |              |              |              |              |              |

| 05540          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 05541<br>05542 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}         |
| 05542          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05544          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05545<br>05546 | }          | 330          | 310          | 330          | 310,         | 3301         |
| 05547          | ,{{<br>,{  | 330,<br>330, | 310,<br>270, | 330,<br>330, | 270,         | 330}         |
| 05548          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05549          | , {        | 180,         | 180,         | 180,         | 180,         | 180}         |
| 05550<br>05551 | , {<br>}   | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05552          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05553          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05554          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05555<br>05556 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 05557          | }          | 310,         | 310,         | 310,         | 310,         | 310)         |
| 05558          | }          |              |              |              |              |              |
| 05559          | , { { {    | 340,         | 230,         | 340,         | 310,         | 340}         |
| 05560<br>05561 | , {<br>, { | 340,<br>310, | 220,<br>230, | 340,<br>310, | 270,<br>180, | 340}<br>310} |
| 05562          | , {        | 310,         | 170,         | 310,         | 310,         | 310}         |
| 05563          | , {        | 310,         | 230,         | 310,         | 310,         | 310}         |
| 05564<br>05565 | }          | 340,         | 220,         | 340,         | 230,         | 340}         |
| 05566          | ,{{<br>,{  | 340,         | 220,         | 340,         | 210,         | 340}         |
| 05567          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 05568          | , {        | 230,         | 20,          | 230,         | 230,         | 230}         |
| 05569<br>05570 | , {<br>}   | 310,         | 170,         | 310,         | 180,         | 310}         |
| 05570          | , { {      | 310,         | 230,         | 310,         | 180,         | 310}         |
| 05572          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 05573          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 05574<br>05575 | , {<br>, { | 310,<br>310, | 170,<br>230, | 310,<br>310, | 180,<br>180, | 310}         |
| 05576          | }          | 310,         | 230,         | 310,         | 100,         | 510)         |
| 05577          | , { {      | 310,         | 170,         | 310,         | 310,         | 310}         |
| 05578          | , {        | 270,         | 130,         | 270,         | 270,         | 270}         |
| 05579<br>05580 | , {<br>, { | 310,<br>310, | 170,<br>170, | 310,<br>180, | 180,<br>310, | 310}<br>180} |
| 05581          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 05582          | }          |              |              |              |              |              |
| 05583<br>05584 | , { {      | 310,<br>310, | 230,         | 310,<br>310, | 310,         | 310}         |
| 05585          | , {<br>, { | 310,         | 170,<br>230, | 310,         | 180,<br>180, | 310}<br>310} |
| 05586          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 05587          | , {        | 310,         | 170,         | 310,         | 310,         | 310}         |
| 05588<br>05589 | }          |              |              |              |              |              |
| 05590          | ,{{{       | 400,         | 340,         | 340,         | 340,         | 400}         |
| 05591          | , {        | 400,         | 340,         | 340,         | 340,         | 400}         |
| 05592          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05593<br>05594 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 05595          | }          | ,            | ,            | ,            | ,            | ,            |
| 05596          | , { {      | 400,         | 340,         | 340,         | 340,         | 400}         |
| 05597<br>05598 | , {<br>, { | 400,<br>310, | 340,<br>310, | 340,<br>310, | 340,<br>310, | 400}<br>310} |
| 05599          | , {        | 290,         | 230,         | 290,         | 230,         | 230}         |
| 05600          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05601          | }          | 210          | 210          | 210          | 210          | 2101         |
| 05602<br>05603 | ,{{<br>,{  | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 05604          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05605          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05606<br>05607 | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05608          | }<br>,{{   | 330,         | 310,         | 330,         | 310,         | 310}         |
| 05609          | , {        | 330,         | 270,         | 330,         | 270,         | 270}         |
| 05610          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05611<br>05612 | , {<br>, { | 310,<br>310, | 180,<br>310, | 180,<br>310, | 180,<br>310, | 310}         |
| 05613          | }          | 310,         | 310,         | 310,         | 310,         | 310)         |
| 05614          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05615          | , {        | 310,         | 310,<br>310, | 310,         | 310,<br>310, | 310}         |
| 05616<br>05617 | , {<br>, { | 310,<br>310, | 310,         | 310,<br>310, | 310,         | 310}<br>310} |
| 05618          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 05619          | }          |              |              |              |              |              |
| 05620<br>05621 | }          |              |              |              |              |              |
| 05622          | ,{{{{      | 370,         | 310,         | 370,         | 370,         | 370}         |
| 05623          | , {        | 370,         | 310,         | 370,         | 340,         | 370}         |
| 05624<br>05625 | , {        | 370,         | 280,<br>280, | 280,<br>280, | 370,<br>310, | 280}         |
| 05625          | , {<br>, { | 310,<br>370, | 280,<br>300, | 280,<br>280, | 310,         | 280}<br>280} |
|                | , .        | .,           | .,           | . ,          | . ,          | ,            |

| 05627 | }       |      |      |      |      |      |
|-------|---------|------|------|------|------|------|
| 05628 | , { {   | 310, | 280, | 280, | 310, | 300} |
| 05629 | , {     | 300, | 240, | 240, | 270, | 300} |
|       |         |      |      |      |      |      |
| 05630 | , {     | 310, | 280, | 280, | 310, | 280} |
| 05631 | , {     | 200, | 140, | 200, | 170, | 200} |
| 05632 | , {     | 310, | 280, | 280, | 310, | 280} |
| 05633 | }       |      |      |      |      |      |
| 05634 | , { {   | 370, | 280, | 280, | 370, | 280} |
|       |         |      |      |      |      |      |
| 05635 | , {     | 310, | 280, | 280, | 310, | 280} |
| 05636 | , {     | 370, | 280, | 280, | 370, | 280} |
| 05637 | , {     | 310, | 280, | 280, | 310, | 280} |
| 05638 | , {     | 370, | 280, | 280, | 370, | 280} |
|       |         | 3,0, | 200, | 200, | 370, | 200) |
| 05639 | }       |      |      |      |      |      |
| 05640 | , { {   | 370, | 310, | 370, | 340, | 370} |
| 05641 | , {     | 370, | 310, | 370, | 340, | 370} |
| 05642 | , {     | 310, | 280, | 280, | 310, | 280} |
| 05643 |         | 310, | 150, | 150, | 310, | 280} |
|       | , {     |      |      |      |      |      |
| 05644 | , {     | 310, | 280, | 280, | 310, | 280} |
| 05645 | }       |      |      |      |      |      |
| 05646 | , { {   | 370, | 300, | 280, | 370, | 280} |
| 05647 | , {     | 310, | 280, | 280, | 310, | 280} |
| 05648 |         | 370, |      |      | 370, |      |
|       | , {     |      | 280, | 280, |      | 280} |
| 05649 | , {     | 310, | 280, | 280, | 310, | 280} |
| 05650 | , {     | 310, | 300, | 280, | 310, | 280} |
| 05651 | }       |      |      |      |      |      |
| 05652 | }       |      |      |      |      |      |
|       |         | 370  | 300  | 310, | 370, | 3101 |
| 05653 | , { { { | 370, | 300, |      |      | 310} |
| 05654 | , {     | 340, | 270, | 310, | 340, | 310} |
| 05655 | , {     | 370, | 240, | 280, | 370, | 280} |
| 05656 | , {     | 310, | 240, | 280, | 310, | 280} |
| 05657 | , {     | 370, | 300, | 280, | 370, | 280} |
|       |         | 370, | 300, | 200, | 370, | 2007 |
| 05658 | }       |      |      |      |      |      |
| 05659 | , { {   | 310, | 240, | 280, | 310, | 280} |
| 05660 | , {     | 270, | 210, | 240, | 270, | 240} |
| 05661 | , {     | 310, | 240, | 280, | 310, | 280} |
|       |         |      | 110, |      |      |      |
| 05662 | , {     | 170, |      | 140, | 170, | 140} |
| 05663 | , {     | 310, | 240, | 280, | 310, | 280} |
| 05664 | }       |      |      |      |      |      |
| 05665 | , { {   | 370, | 240, | 280, | 370, | 280} |
| 05666 | , {     | 310, | 240, | 280, | 310, | 280} |
|       |         |      |      |      |      |      |
| 05667 | , {     | 370, | 240, | 280, | 370, | 280} |
| 05668 | , {     | 310, | 240, | 280, | 310, | 280} |
| 05669 | , {     | 370, | 240, | 280, | 370, | 280} |
| 05670 | }       |      |      |      |      |      |
| 05671 | , { {   | 340, | 270, | 310, | 340, | 310} |
|       |         |      |      |      |      |      |
| 05672 | , {     | 340, | 270, | 310, | 340, | 310} |
| 05673 | , {     | 310, | 240, | 280, | 310, | 280} |
| 05674 | , {     | 310, | 110, | 150, | 310, | 150} |
| 05675 | , {     | 310, | 240, | 280, | 310, | 280} |
|       |         | 010, | 210, | 200, | 010, | 200) |
| 05676 | }       | 272  | 200  | 000  | 0.70 | 0001 |
| 05677 | , { {   | 370, | 300, | 280, | 370, | 280} |
| 05678 | , {     | 310, | 240, | 280, | 310, | 280} |
| 05679 | , {     | 370, | 240, | 280, | 370, | 280} |
| 05680 | , {     | 310, | 240, | 280, | 310, | 280} |
| 05681 | ,       |      | 300, | 280, | 310, | 280} |
|       | , {     | 310, | 300, | 200, | 310, | 2007 |
| 05682 | }       |      |      |      |      |      |
| 05683 | }       |      |      |      |      |      |
| 05684 | , { { { | 370, | 310, | 370, | 310, | 370} |
| 05685 | , {     | 370, | 310, | 370, | 310, | 370} |
| 05686 | , {     | 280, | 280, | 280, | 280, | 280} |
|       |         |      |      |      |      |      |
| 05687 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05688 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05689 | }       |      |      |      |      |      |
| 05690 | , { {   | 280, | 280, | 280, | 280, | 280} |
| 05691 | , {     | 240, | 240, | 240, | 240, | 240} |
|       |         |      |      |      |      |      |
| 05692 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05693 | , {     | 200, | 140, | 200, | 140, | 200} |
| 05694 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05695 | }       |      |      |      |      |      |
|       | , { {   | 200  | 200  | 200  | 200  | 2001 |
| 05696 |         | 280, | 280, | 280, | 280, | 280} |
| 05697 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05698 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05699 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05700 | , {     | 280, | 280, | 280, | 280, | 280} |
|       |         | 200, | 200, | 200, | 200, | 2001 |
| 05701 | }       | 272  | 212  | 272  | 210  | 272  |
| 05702 | , { {   | 370, | 310, | 370, | 310, | 370} |
| 05703 | , {     | 370, | 310, | 370, | 310, | 370} |
| 05704 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05705 |         | 150, | 150, | 150, | 150, | 150} |
|       |         |      |      |      |      |      |
| 05706 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05707 | }       |      |      |      |      |      |
| 05708 | , { {   | 280, | 280, | 280, | 280, | 280} |
| 05709 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05710 | , {     | 280, | 280, | 280, | 280, | 280} |
|       |         |      |      |      |      |      |
| 05711 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05712 | , {     | 280, | 280, | 280, | 280, | 280} |
| 05713 | }       |      |      |      |      |      |
|       |         |      |      |      |      |      |

| 05714          | }          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 05715          | , { { {    | 310,         | 200,         | 310,         | 310,         | 310}         |
| 05716<br>05717 | , {<br>, { | 310,<br>280, | 170,<br>200, | 310,<br>280, | 310,<br>150, | 310}<br>280} |
| 05718          | , {        | 280,         | 140,         | 280,         | 280,         | 280}         |
| 05719          | , {        | 280,         | 200,         | 280,         | 280,         | 280}         |
| 05720          | }          | 200          | 1.40         | 200          | 150          | 2001         |
| 05721<br>05722 | ,{{<br>,{  | 280,<br>240, | 140,<br>110, | 280,<br>240, | 150,<br>110, | 280}         |
| 05723          | , {        | 280,         | 140,         | 280,         | 150,         | 280}         |
| 05724          | , {        | 140,         | 10,          | 140,         | 140,         | 140}         |
| 05725          | , {        | 280,         | 140,         | 280,         | 150,         | 280}         |
| 05726          | }          | 200          | 200,         | 200          | 1 5 0        | 2001         |
| 05727<br>05728 | ,{{<br>,{  | 280,<br>280, | 140,         | 280,<br>280, | 150,<br>150, | 280}<br>280} |
| 05729          | , {        | 280,         | 200,         | 280,         | 150,         | 280}         |
| 05730          | , {        | 280,         | 140,         | 280,         | 150,         | 280}         |
| 05731          | , {        | 280,         | 200,         | 280,         | 150,         | 280}         |
| 05732<br>05733 | }<br>,{{   | 310,         | 170,         | 310,         | 310,         | 310}         |
| 05734          | , {        | 310,         | 170,         | 310,         | 310,         | 310}         |
| 05735          | , {        | 280,         | 140,         | 280,         | 150,         | 280}         |
| 05736          | , {        | 280,         | 140,         | 150,         | 280,         | 150}         |
| 05737<br>05738 | , {<br>}   | 280,         | 140,         | 280,         | 150,         | 280}         |
| 05739          | ,{{        | 280,         | 200,         | 280,         | 280,         | 280}         |
| 05740          | , {        | 280,         | 140,         | 280,         | 150,         | 280}         |
| 05741          | , {        | 280,         | 200,         | 280,         | 150,         | 280}         |
| 05742          | , {        | 280,         | 140,         | 280,         | 150,         | 280}         |
| 05743<br>05744 | , {<br>}   | 280,         | 140,         | 280,         | 280,         | 280}         |
| 05744          | }          |              |              |              |              |              |
| 05746          | ,{{{       | 370,         | 310,         | 370,         | 310,         | 310}         |
| 05747          | , {        | 370,         | 310,         | 370,         | 310,         | 310}         |
| 05748          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05749<br>05750 | , {<br>, { | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280}<br>280} |
| 05751          | }          | 200,         | 200,         | 200,         | 200,         | 200)         |
| 05752          | , { {      | 300,         | 280,         | 280,         | 280,         | 300}         |
| 05753          | , {        | 300,         | 240,         | 240,         | 240,         | 300}         |
| 05754<br>05755 | , {        | 280,<br>200, | 280,<br>140, | 280,<br>200, | 280,<br>140, | 280}<br>140} |
| 05756          | , {<br>, { | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05757          | }          |              | ,            |              |              |              |
| 05758          | , { {      | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05759          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05760<br>05761 | , {<br>, { | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280}<br>280} |
| 05762          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05763          | }          |              |              |              |              |              |
| 05764          | , { {      | 370,         | 310,         | 370,         | 310,         | 310}         |
| 05765<br>05766 | , {        | 370,         | 310,         | 370,         | 310,         | 310}         |
| 05767          | , {<br>, { | 280,<br>280, | 280,<br>150, | 280,<br>150, | 280,<br>150, | 280}<br>280} |
| 05768          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05769          | }          |              |              |              |              |              |
| 05770          | , { {      | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05771<br>05772 | , {<br>, { | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280}<br>280} |
| 05773          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05774          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05775          | }          |              |              |              |              |              |
| 05776<br>05777 | }          |              |              |              |              |              |
| 05778          | ,{{{       | 350,         | 280,         | 280,         | 350,         | 340}         |
| 05779          | , {        | 340,         | 280,         | 280,         | 310,         | 340}         |
| 05780          | , {        | 350,         | 260,         | 260,         | 350,         | 260}         |
| 05781          | , {        | 290,         | 260,         | 260,         | 290,         | 260}         |
| 05782<br>05783 | , {<br>}   | 350,         | 260,         | 260,         | 350,         | 260}         |
| 05784          | , { {      | 340,         | 280,         | 280,         | 310,         | 340}         |
| 05785          | , {        | 340,         | 280,         | 280,         | 310,         | 340}         |
| 05786          | , {        | 280,         | 250,         | 250,         | 280,         | 250}         |
| 05787<br>05788 | , {        | 210,         | 150,         | 210,         | 180,         | 210}         |
| 05789          | , {<br>}   | 280,         | 250,         | 250,         | 280,         | 250}         |
| 05790          | , { {      | 350,         | 260,         | 260,         | 350,         | 260}         |
| 05791          | , {        | 290,         | 260,         | 260,         | 290,         | 260}         |
| 05792          | , {        | 350,         | 260,         | 260,         | 350,         | 260}         |
| 05793<br>05794 | , {        | 290,<br>350, | 260,<br>260, | 260,<br>260, | 290,<br>350, | 260}<br>260} |
| 05794          | , {<br>}   | JJU,         | 200,         | ۷00,         | JJU,         | 200}         |
| 05796          | , { {      | 280,         | 250,         | 280,         | 280,         | 280}         |
| 05797          | , {        | 280,         | 220,         | 280,         | 250,         | 280}         |
| 05798          | , {        | 280,         | 250,         | 250,         | 280,         | 250}         |
| 05799<br>05800 | , {<br>, { | 260,<br>280, | 100,<br>250, | 100,<br>250, | 260,<br>280, | 230}<br>250} |
|                | , .        | ,            | ,            | ,            | ,            | _00,         |

| 05801          | }          |                     |              |                     |              |              |
|----------------|------------|---------------------|--------------|---------------------|--------------|--------------|
| 05802          | , { {      | 350,                | 260,         | 260,                | 350,         | 260}         |
| 05803<br>05804 | , {        | 290,<br>350,        | 260,<br>260, | 260,<br>260,        | 290,<br>350, | 260}         |
| 05805          | , {<br>, { | 290,                | 260,         | 260,                | 290,         | 260}<br>260} |
| 05806          | , {        | 200,                | 190,         | 170,                | 200,         | 170}         |
| 05807          | }          | ·                   |              |                     | •            |              |
| 05808          | }          |                     |              |                     |              |              |
| 05809          | , { { {    | 350,                | 240,         | 280,                | 350,         | 280}         |
| 05810          | , {        | 310,                | 240,         | 280,                | 310,         | 280}         |
| 05811          | , {        | 350,                | 220,         | 260,                | 350,         | 260}         |
| 05812          | , {        | 290,                | 230,         | 260,                | 290,         | 260}         |
| 05813          | , {        | 350,                | 220,         | 260,                | 350,         | 260}         |
| 05814          | }          |                     |              |                     |              |              |
| 05815          | , { {      | 310,                | 240,         | 280,                | 310,         | 280}         |
| 05816          | , {        | 310,                | 240,         | 280,                | 310,         | 280}         |
| 05817          | , {        | 280,                | 220,         | 250,                | 280,         | 250}         |
| 05818<br>05819 | , {<br>, { | 180,<br>280,        | 120,<br>220, | 150,<br>250,        | 180,<br>280, | 150}<br>250} |
| 05820          | }          | 200,                | 220,         | 230,                | 200,         | 230)         |
| 05821          | , { {      | 350,                | 230,         | 260,                | 350,         | 260}         |
| 05822          | , {        | 290,                | 230,         | 260,                | 290,         | 260}         |
| 05823          | , {        | 350,                | 220,         | 260,                | 350,         | 260}         |
| 05824          | , {        | 290,                | 230,         | 260,                | 290,         | 260}         |
| 05825          | , {        | 350,                | 220,         | 260,                | 350,         | 260}         |
| 05826          | }          |                     |              |                     |              |              |
| 05827          | , { {      | 280,                | 220,         | 250,                | 280,         | 250}         |
| 05828          | , {        | 250,                | 190,         | 220,                | 250,         | 220}         |
| 05829          | , {        | 280,                | 220,         | 250,                | 280,         | 250}         |
| 05830          | , {        | 260,                | 70,          | 100,                | 260,         | 100}         |
| 05831          | , {        | 280,                | 220,         | 250,                | 280,         | 250}         |
| 05832          | }          | 250                 | 0.00         | 0.00                | 250          | 0.00         |
| 05833          | , { {      | 350,                | 230,         | 260,                | 350,         | 260}         |
| 05834          | , {        | 290,                | 230,         | 260,                | 290,         | 260}         |
| 05835<br>05836 | , {        | 350,                | 220,         | 260,<br>260,        | 350,         | 260}         |
| 05837          | , {<br>, { | 290,<br>200,        | 230,<br>190, | 170,                | 290,<br>200, | 260}<br>170} |
| 05838          | }          | 200,                | 100,         | 170,                | 200,         | 1/0)         |
| 05839          | }          |                     |              |                     |              |              |
| 05840          | ,{{{       | 280,                | 280,         | 280,                | 280,         | 280}         |
| 05841          | , {        | 280,                | 280,         | 280,                | 280,         | 280}         |
| 05842          | , {        | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05843          | , {        | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05844          | , {        | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05845          | }          |                     |              |                     |              |              |
| 05846          | , { {      | 280,                | 280,         | 280,                | 280,         | 280}         |
| 05847          | , {        | 280,                | 280,         | 280,                | 280,         | 280}         |
| 05848          | , {        | 250,                | 250,         | 250,                | 250,         | 250}         |
| 05849          | , {        | 210,                | 150,         | 210,                | 150,         | 210}         |
| 05850          | , {        | 250,                | 250,         | 250,                | 250,         | 250}         |
| 05851<br>05852 | }<br>,{{   | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05853          | , ( (      | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05854          | , {        | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05855          | , {        | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05856          | , {        | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05857          | }          |                     |              |                     |              |              |
| 05858          | , { {      | 280,                | 250,         | 280,                | 250,         | 280}         |
| 05859          | , {        | 280,                | 220,         | 280,                | 220,         | 280}         |
| 05860          | , {        | 250,                | 250,         | 250,                | 250,         | 250}         |
| 05861          | , {        | 100,                | 100,         | 100,                | 100,         | 100}         |
| 05862          | , {        | 250,                | 250,         | 250,                | 250,         | 250}         |
| 05863          | }          | 200                 | 2.00         | 200                 | 200          | 2601         |
| 05864          | , { {      | 260,                | 260,         | 260,                | 260,         | 260}         |
| 05865          | , {        | 260,                | 260,<br>260, | 260,<br>260,        | 260,<br>260, | 260}         |
| 05866<br>05867 | , {<br>, { | 260,<br>260,        | 260,         | 260,                | 260,         | 260}<br>260} |
| 05868          | , t<br>, { | 170,                | 170,         | 170,                | 170,         | 170}         |
| 05869          | }          | 170,                | 170,         | 170,                | 170,         | 1/0)         |
| 05870          | }          |                     |              |                     |              |              |
| 05871          | ,{{{       | 280,                | 180,         | 280,                | 230,         | 280}         |
| 05872          | , {        | 280,                | 140,         | 280,                | 220,         | 280}         |
| 05873          | , {        | 260,                | 180,         | 260,                | 130,         | 260}         |
| 05874          | , {        | 260,                | 130,         | 260,                | 230,         | 260}         |
| 05875          | , {        | 260,                | 180,         | 260,                | 170,         | 260}         |
| 05876          | }          |                     |              |                     |              |              |
| 05877          | , { {      | 280,                | 140,         | 280,                | 150,         | 280}         |
| 05878          | , {        | 280,                | 140,         | 280,                | 150,         | 280}         |
| 05879          | , {        | 250,                | 120,         | 250,                | 120,         | 250}         |
| 05880          | , {        | 150,                | 20,          | 150,                | 150,         | 150}         |
| 05881          | , {        | 250,                | 120,         | 250,                | 120,         | 250}         |
| 05882          | }          | 260                 | 100          | 260                 | 120          | 2601         |
| 05883          | , { {      | 260 <b>,</b><br>260 | 180,         | 260 <b>,</b><br>260 | 130,<br>130, | 260}         |
| 05884<br>05885 | , {<br>, { | 260,<br>260,        | 130,<br>180, | 260,<br>260,        | 130,         | 260}<br>260} |
| 05886          | , {        | 260,                | 130,         | 260,                | 130,         | 260}         |
| 05887          | , {        | 260,                | 180,         | 260,                | 130,         | 260}         |
|                | , (        | ,                   | ,            | ,                   | ,            | _ 50 )       |

| 05888          | }          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 05889<br>05890 | , { {      | 250,<br>220, | 120,<br>90,  | 250,<br>220, | 230,<br>220, | 250}<br>220} |
| 05891          | , {<br>, { | 250,         | 120,         | 250,         | 120,         | 250}         |
| 05892          | , {        | 230,         | 100,         | 100,         | 230,         | 100}         |
| 05893          | , {        | 250,         | 120,         | 250,         | 120,         | 250}         |
| 05894          | }<br>,{{   | 260          | 180,         | 260          | 170,         | 2601         |
| 05895<br>05896 | , 11       | 260,<br>260, | 130,         | 260,<br>260, | 130,         | 260}<br>260} |
| 05897          | , {        | 260,         | 180,         | 260,         | 130,         | 260}         |
| 05898          | , {        | 260,         | 130,         | 260,         | 130,         | 260}         |
| 05899          | , {        | 170,         | 30,          | 170,         | 170,         | 170}         |
| 05900<br>05901 | }          |              |              |              |              |              |
| 05902          | ,{{{       | 340,         | 280,         | 280,         | 280,         | 340}         |
| 05903          | , {        | 340,         | 280,         | 280,         | 280,         | 340}         |
| 05904          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 05905<br>05906 | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 05907          | , {<br>}   | 260,         | 260,         | 260,         | 260,         | 260}         |
| 05908          | , { {      | 340,         | 280,         | 280,         | 280,         | 340}         |
| 05909          | , {        | 340,         | 280,         | 280,         | 280,         | 340}         |
| 05910          | , {        | 250,         | 250,         | 250,         | 250,         | 250}         |
| 05911<br>05912 | , {<br>, { | 210,<br>250, | 150,<br>250, | 210,<br>250, | 150,<br>250, | 150}<br>250} |
| 05913          | }          | ,            | ,            | ,            | ,            | ,            |
| 05914          | , { {      | 260,         | 260,         | 260,         | 260,         | 260}         |
| 05915          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 05916<br>05917 | , {<br>, { | 260,<br>260, | 260,<br>260, | 260,<br>260, | 260,<br>260, | 260}<br>260} |
| 05918          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 05919          | }          |              |              |              |              | ,            |
| 05920          | , { {      | 280,         | 250,         | 280,         | 250,         | 250}         |
| 05921          | , {        | 280,         | 220,         | 280,         | 220,         | 220}         |
| 05922<br>05923 | , {<br>, { | 250,<br>230, | 250,<br>100, | 250,<br>100, | 250,<br>100, | 250}<br>230} |
| 05924          | , {        | 250,         | 250,         | 250,         | 250,         | 250}         |
| 05925          | }          |              |              |              |              |              |
| 05926          | , { {      | 260,         | 260,         | 260,         | 260,         | 260}         |
| 05927<br>05928 | , {<br>, { | 260,<br>260, | 260,<br>260, | 260,<br>260, | 260,<br>260, | 260}<br>260} |
| 05929          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 05930          | , {        | 170,         | 170,         | 170,         | 170,         | 170}         |
| 05931          | }          |              |              |              |              |              |
| 05932<br>05933 | }          |              |              |              |              |              |
| 05934          | ,{{{{      | 370,         | 280,         | 280,         | 370,         | 340}         |
| 05935          | , {        | 340,         | 280,         | 280,         | 310,         | 340}         |
| 05936          | , {        | 370,         | 280,         | 280,         | 370,         | 280}         |
| 05937<br>05938 | , {<br>, { | 310,<br>370, | 280,<br>280, | 280,<br>280, | 310,<br>370, | 280}<br>280} |
| 05939          | }          | 370,         | 200,         | 200,         | 370,         | 200 }        |
| 05940          | , { {      | 340,         | 280,         | 280,         | 310,         | 340}         |
| 05941          | , {        | 340,         | 280,         | 280,         | 310,         | 340}         |
| 05942<br>05943 | , {        | 260,         | 230,<br>170, | 230,<br>230, | 260,<br>200, | 230}         |
| 05943          | , {<br>, { | 230,<br>260, | 230,         | 230,         | 260,         | 230}         |
| 05945          | }          |              |              |              |              |              |
| 05946          | , { {      | 370,         | 280,         | 280,         | 370,         | 280}         |
| 05947<br>05948 | , {        | 310,<br>370, | 280,<br>280, | 280,<br>280, | 310,         | 280}<br>280} |
| 05948          | , {<br>, { | 310,         | 280,         | 280,         | 370,<br>310, | 280}         |
| 05950          | , {        | 370,         | 280,         | 280,         | 370,         | 280}         |
| 05951          | }          |              |              |              |              |              |
| 05952<br>05953 | , { {      | 280,         | 230,         | 240,         | 280,         | 250}         |
| 05954          | , {<br>, { | 240,<br>260, | 180,<br>230, | 240,<br>230, | 210,<br>260, | 240}         |
| 05955          | , {        | 280,         | 120,         | 120,         | 280,         | 250}         |
| 05956          | , {        | 260,         | 230,         | 230,         | 260,         | 230}         |
| 05957          | }          | 0.40         | 000          | 000          | 2.40         | 0001         |
| 05958<br>05959 | ,{{<br>,{  | 340,<br>310, | 280,<br>280, | 280,<br>280, | 340,<br>310, | 280}<br>280} |
| 05960          | , {        | 340,         | 250,         | 250,         | 340,         | 250}         |
| 05961          | , {        | 310,         | 280,         | 280,         | 310,         | 280}         |
| 05962          | , {        | 220,         | 220,         | 190,         | 220,         | 190}         |
| 05963          | }          |              |              |              |              |              |
| 05964<br>05965 | }<br>,{{{  | 370,         | 240,         | 280,         | 370,         | 280}         |
| 05966          | , 111      | 310,         | 240,         | 280,         | 310,         | 280}         |
| 05967          | , {        | 370,         | 240,         | 280,         | 370,         | 280}         |
| 05968          | , {        | 310,         | 240,         | 280,         | 310,         | 280}         |
| 05969<br>05970 | , {<br>}   | 370,         | 240,         | 280,         | 370,         | 280}         |
| 05970          | , { {      | 310,         | 240,         | 280,         | 310,         | 280}         |
| 05972          | , {        | 310,         | 240,         | 280,         | 310,         | 280}         |
| 05973          | , {        | 260,         | 200,         | 230,         | 260,         | 230}         |
| 05974          | , {        | 200,         | 140,         | 170,         | 200,         | 170}         |
|                |            |              |              |              |              |              |

| 05975          | , {        | 260,         | 200,         | 230,         | 260,         | 230}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 05976<br>05977 | }<br>,{{   | 370,         | 240,         | 280,         | 370,         | 280}         |
| 05978          | , {        | 310,         | 240,         | 280,         | 310,         | 280}         |
| 05979          | , {        | 370,         | 240,         | 280,         | 370,         | 280}         |
| 05980<br>05981 | , {<br>, { | 310,<br>370, | 240,<br>240, | 280,<br>280, | 310,<br>370, | 280}<br>280} |
| 05982          | }          | 370,         | 240,         | 200,         | 370,         | 200 }        |
| 05983          | , { {      | 280,         | 200,         | 230,         | 280,         | 230}         |
| 05984          | , {        | 210,         | 150,         | 180,         | 210,         | 180}         |
| 05985<br>05986 | , {<br>, { | 260,<br>280, | 200,<br>90,  | 230,<br>120, | 260,<br>280, | 230}<br>120} |
| 05987          | , {        | 260,         | 200,         | 230,         | 260,         | 230}         |
| 05988          | }          |              |              |              |              |              |
| 05989<br>05990 | ,{{<br>,{  | 340,<br>310, | 240,<br>240, | 280,<br>280, | 340,<br>310, | 280}<br>280} |
| 05991          | , {        | 340,         | 210,         | 250,         | 340,         | 250}         |
| 05992          | , {        | 310,         | 240,         | 280,         | 310,         | 280}         |
| 05993          | , {        | 220,         | 220,         | 190,         | 220,         | 190}         |
| 05994<br>05995 | }          |              |              |              |              |              |
| 05996          | ,{{{       | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05997          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 05998<br>05999 | , {<br>, { | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280}<br>280} |
| 06000          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06001          | }          |              |              |              |              |              |
| 06002<br>06003 | ,{{<br>,{  | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280}<br>280} |
| 06003          | , {        | 230,         | 230,         | 230,         | 230,         | 230}         |
| 06005          | , {        | 230,         | 170,         | 230,         | 170,         | 230}         |
| 06006          | , {        | 230,         | 230,         | 230,         | 230,         | 230}         |
| 06007<br>06008 | }<br>,{{   | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06009          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06010          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06011<br>06012 | , {<br>, { | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280}<br>280} |
| 06013          | }          | ,            | ,            | ,            | ,            | ,            |
| 06014          | , { {      | 240,         | 230,         | 240,         | 230,         | 240}         |
| 06015<br>06016 | , {<br>, { | 240,<br>230, | 180,<br>230, | 240,<br>230, | 180,<br>230, | 240}         |
| 06017          | , {        | 120,         | 120,         | 120,         | 120,         | 120}         |
| 06018          | , {        | 230,         | 230,         | 230,         | 230,         | 230}         |
| 06019<br>06020 | }<br>,{{   | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06020          | , (        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06022          | , {        | 250,         | 250,         | 250,         | 250,         | 250}         |
| 06023<br>06024 | , {<br>, { | 280,<br>190, | 280,<br>190, | 280,<br>190, | 280,<br>190, | 280}<br>190} |
| 06024          | }          | 100,         | 100,         | 100,         | 100,         | 100)         |
| 06026          | }          |              |              |              |              |              |
| 06027<br>06028 | ,{{{<br>,{ | 280,<br>280, | 200,<br>140, | 280,<br>280, | 250,<br>180, | 280}<br>280} |
| 06029          | , {        | 280,         | 200,         | 280,         | 150,         | 280}         |
| 06030          | , {        | 280,         | 140,         | 280,         | 250,         | 280}         |
| 06031<br>06032 | , {<br>}   | 280,         | 200,         | 280,         | 190,         | 280}         |
| 06032          | , { {      | 280,         | 140,         | 280,         | 170,         | 280}         |
| 06034          | , {        | 280,         | 140,         | 280,         | 150,         | 280}         |
| 06035          | , {        | 230,         | 100,         | 230,         | 100,         | 230}         |
| 06036<br>06037 | , {<br>, { | 170,<br>230, | 40,<br>100,  | 170,<br>230, | 170,<br>100, | 170}<br>230} |
| 06038          | }          | ,            | ,            |              |              |              |
| 06039          | , { {      | 280,         | 200,         | 280,         | 150,         | 280}         |
| 06040<br>06041 | , {<br>, { | 280,<br>280, | 140,<br>200, | 280,<br>280, | 150,<br>150, | 280}         |
| 06042          | , {        | 280,         | 140,         | 280,         | 150,         | 280}         |
| 06043          | , {        | 280,         | 200,         | 280,         | 150,         | 280}         |
| 06044<br>06045 | }<br>,{{   | 250,         | 120,         | 230,         | 250,         | 230}         |
| 06046          | , {        | 180,         | 50,          | 180,         | 180,         | 180}         |
| 06047          | , {        | 230,         | 100,         | 230,         | 100,         | 230}         |
| 06048<br>06049 | , {<br>, { | 250,<br>230, | 120,<br>100, | 120,<br>230, | 250,<br>100, | 120}<br>230} |
| 06050          | }          | 200,         | ,            | 200,         | ±00,         | 200}         |
| 06051          | , { {      | 280,         | 170,         | 280,         | 190,         | 280}         |
| 06052<br>06053 | , {<br>, { | 280,<br>250, | 140,<br>170, | 280,<br>250, | 150,<br>120, | 280}<br>250} |
| 06053          | , t<br>, { | 280,         | 140,         | 280,         | 150,         | 280}         |
| 06055          | , {        | 190,         | 60,          | 190,         | 190,         | 190}         |
| 06056          | }          |              |              |              |              |              |
| 06057<br>06058 | }<br>,{{{  | 340,         | 280,         | 280,         | 280,         | 340}         |
| 06059          | , {        | 340,         | 280,         | 280,         | 280,         | 340}         |
| 06060<br>06061 | , {        | 280,<br>280, | 280,         | 280,         | 280,         | 280}<br>280} |
| TOUGO          | , {        | 20U,         | 280,         | 280,         | 280,         | 20U}         |

| 06062          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 06063<br>06064 | }<br>,{{   | 340,         | 280,         | 280,         | 280,         | 340}         |
| 06065          | , {        | 340,         | 280,         | 280,         | 280,         | 340}         |
| 06066          | , {        | 230,         | 230,         | 230,         | 230,         | 230}         |
| 06067<br>06068 | , {<br>, { | 230,<br>230, | 170,<br>230, | 230,<br>230, | 170,<br>230, | 170}<br>230} |
| 06069          | }          | 200,         | 230,         | 230,         | 230,         | 250)         |
| 06070          | , { {      | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06071          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06072<br>06073 | , {<br>, { | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280,<br>280, | 280}<br>280} |
| 06074          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06075          | }          |              |              |              |              |              |
| 06076          | , { {      | 250,         | 230,         | 240,         | 230,         | 250}         |
| 06077<br>06078 | , {<br>, { | 240,<br>230, | 180,<br>230, | 240,<br>230, | 180,<br>230, | 180}<br>230} |
| 06079          | , {        | 250,         | 120,         | 120,         | 120,         | 250}         |
| 06080          | , {        | 230,         | 230,         | 230,         | 230,         | 230}         |
| 06081<br>06082 | }<br>,{{   | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06083          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06084          | , {        | 250,         | 250,         | 250,         | 250,         | 250}         |
| 06085          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 06086<br>06087 | , {<br>}   | 190,         | 190,         | 190,         | 190,         | 190}         |
| 06088          | }          |              |              |              |              |              |
| 06089          | }          | 400          | 2.60         | 270          | 400          | 4001         |
| 06090<br>06091 | ,{{{<br>,{ | 400,<br>400, | 360,<br>360, | 370,<br>370, | 400,<br>370, | 400}         |
| 06092          | , {        | 400,         | 310,         | 310,         | 400,         | 310}         |
| 06093          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 06094<br>06095 | , {<br>}   | 400,         | 330,         | 310,         | 400,         | 310}         |
| 06095          | , { {      | 400,         | 360,         | 340,         | 370,         | 400}         |
| 06097          | , {        | 400,         | 360,         | 340,         | 370,         | 400}         |
| 06098          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 06099<br>06100 | , {<br>, { | 290,<br>340, | 230,<br>310, | 290,<br>310, | 260,<br>340, | 290}<br>310} |
| 06101          | }          | 010,         | 010,         | 010,         | 010,         | 010,         |
| 06102          | , { {      | 400,         | 310,         | 310,         | 400,         | 310}         |
| 06103<br>06104 | , {<br>, { | 340,<br>400, | 310,<br>310, | 310,<br>310, | 340,<br>400, | 310}<br>310} |
| 06104          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 06106          | , {        | 400,         | 310,         | 310,         | 400,         | 310}         |
| 06107<br>06108 | }          | 270          | 260          | 270          | 340,         | 2701         |
| 06108          | ,{{<br>,{  | 370,<br>370, | 360,<br>360, | 370,<br>370, | 340,         | 370}<br>370} |
| 06110          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 06111          | , {        | 340,         | 180,         | 180,         | 340,         | 310}         |
| 06112<br>06113 | , {<br>}   | 340,         | 310,         | 310,         | 340,         | 310}         |
| 06114          | , { {      | 400,         | 330,         | 310,         | 400,         | 310}         |
| 06115          | , {        | 340,         | 310,         | 310,         | 340,         | 310}         |
| 06116<br>06117 | , {        | 400,<br>340, | 310,<br>310, | 310,<br>310, | 400,<br>340, | 310}<br>310} |
| 06118          | , t<br>, { | 340,         | 330,         | 310,         | 340,         | 310}         |
| 06119          | }          |              |              |              |              |              |
| 06120<br>06121 | }<br>,{{{  | 400,         | 360,         | 340,         | 400,         | 340}         |
| 06121          | , ( ( (    | 370,         | 360,         | 340,         | 370,         | 340}         |
| 06123          | , {        | 400,         | 270,         | 310,         | 400,         | 310}         |
| 06124          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 06125<br>06126 | , {<br>}   | 400,         | 330,         | 310,         | 400,         | 310}         |
| 06127          | , { {      | 370,         | 360,         | 340,         | 370,         | 340}         |
| 06128          | , {        | 370,         | 360,         | 340,         | 370,         | 340}         |
| 06129<br>06130 | , {<br>, { | 340,<br>260, | 270,<br>190, | 310,<br>230, | 340,<br>260, | 310}<br>230} |
| 06131          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 06132          | }          |              |              |              |              |              |
| 06133<br>06134 | , { {      | 400,<br>340, | 270,<br>270, | 310,<br>310, | 400,<br>340, | 310}<br>310} |
| 06134          | , {<br>, { | 400,         | 270,         | 310,         | 400,         | 310}         |
| 06136          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 06137          | , {        | 400,         | 270,         | 310,         | 400,         | 310}         |
| 06138<br>06139 | }<br>,{{   | 360,         | 360,         | 310,         | 340,         | 310}         |
| 06140          | , {        | 360,         | 360,         | 310,         | 340,         | 310}         |
| 06141          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
| 06142<br>06143 | , {<br>, { | 340,<br>340, | 140,<br>270, | 180,<br>310, | 340,<br>340, | 180}<br>310} |
| 06143          | }          | 010,         | 2,0,         | 010,         | J 10,        | 010}         |
| 06145          | , { {      | 400,         | 330,         | 310,         | 400,         | 310}         |
| 06146<br>06147 | , {<br>, { | 340,<br>400, | 270,<br>270, | 310,<br>310, | 340,<br>400, | 310}<br>310} |
| 06148          | , {        | 340,         | 270,         | 310,         | 340,         | 310}         |
|                |            |              |              |              |              |              |

| 06149          | , {        | 340,         | 330,         | 310,         | 340,         | 310}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 06150<br>06151 | }          |              |              |              |              |              |
| 06152          | ,{{{       | 370,         | 340,         | 370,         | 340,         | 370}         |
| 06153          | , {        | 370,         | 340,         | 370,         | 340,         | 370}         |
| 06154<br>06155 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 06156          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06157          | }          |              |              |              |              |              |
| 06158          | , { {      | 340,         | 340,         | 340,         | 340,         | 340}         |
| 06159<br>06160 | , {<br>, { | 340,<br>310, | 340,<br>310, | 340,<br>310, | 340,<br>310, | 340}<br>310} |
| 06161          | , {        | 290,         | 230,         | 290,         | 230,         | 290}         |
| 06162          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06163          | }          | 210          | 210          | 210          | 210          | 2101         |
| 06164<br>06165 | ,{{<br>,{  | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 06166          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06167          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06168          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06169<br>06170 | }<br>,{{   | 370,         | 310,         | 370,         | 310,         | 370}         |
| 06171          | , {        | 370,         | 310,         | 370,         | 310,         | 370}         |
| 06172          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06173          | , {        | 180,         | 180,<br>310, | 180,         | 180,         | 180}         |
| 06174<br>06175 | , {<br>}   | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06176          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06177          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06178          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06179<br>06180 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 06181          | }          | 310,         | 310,         | 310,         | 310,         | 310)         |
| 06182          | }          |              |              |              |              |              |
| 06183          | , { { {    | 340,         | 230,         | 340,         | 310,         | 340}         |
| 06184<br>06185 | , {<br>, { | 340,<br>310, | 220,<br>230, | 340,<br>310, | 310,<br>180, | 340}<br>310} |
| 06186          | , {        | 310,         | 170,         | 310,         | 310,         | 310}         |
| 06187          | , {        | 310,         | 230,         | 310,         | 310,         | 310}         |
| 06188          | }          |              |              |              |              |              |
| 06189<br>06190 | ,{{<br>,{  | 340,<br>340, | 220,<br>220, | 340,<br>340, | 230,<br>210, | 340}<br>340} |
| 06191          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 06192          | , {        | 230,         | 40,          | 230,         | 230,         | 230}         |
| 06193          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 06194<br>06195 | }          | 210          | 220          | 210          | 100          | 2101         |
| 06195          | ,{{<br>,{  | 310,<br>310, | 230,<br>170, | 310,<br>310, | 180,<br>180, | 310}<br>310} |
| 06197          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 06198          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 06199<br>06200 | , {<br>}   | 310,         | 230,         | 310,         | 180,         | 310}         |
| 06200          | , { {      | 310,         | 170,         | 310,         | 310,         | 310}         |
| 06202          | , {        | 310,         | 170,         | 310,         | 310,         | 310}         |
| 06203          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 06204<br>06205 | , {        | 310,<br>310, | 170,<br>170, | 180,<br>310, | 310,<br>180, | 180}<br>310} |
| 06205          | , {<br>}   | 310,         | 170,         | 310,         | 100,         | 310)         |
| 06207          | , {{       | 310,         | 230,         | 310,         | 310,         | 310}         |
| 06208          | , {        | 310,         | 170,         | 310,         | 180,         | 310}         |
| 06209<br>06210 | , {        | 310,<br>310, | 230,<br>170, | 310,<br>310, | 180,<br>180, | 310}<br>310} |
| 06210          | , {<br>, { | 310,         | 170,         | 310,         | 310,         | 310}         |
| 06212          | }          | ,            |              |              |              |              |
| 06213          | }          |              |              |              |              |              |
| 06214<br>06215 | , { { {    | 400,<br>400, | 340,<br>340, | 370,<br>370, | 340,<br>340, | 400}<br>400} |
| 06215          | , {<br>, { | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06217          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06218          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06219<br>06220 | }          | 400,         | 340,         | 340,         | 340,         | 400}         |
| 06220          | ,{{<br>,{  | 400,         | 340,         | 340,         | 340,         | 400}         |
| 06222          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06223          | , {        | 290,         | 230,         | 290,         | 230,         | 230}         |
| 06224          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06225<br>06226 | }<br>,{{   | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06227          | , (        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06228          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06229          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06230<br>06231 | , {<br>}   | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06232          | , { {      | 370,         | 310,         | 370,         | 310,         | 310}         |
| 06233          | , {        | 370,         | 310,         | 370,         | 310,         | 310}         |
| 06234          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 06235          | , {        | 310,         | 180,         | 180,         | 180,         | 310}         |

| 06236          | , {        | 310,         | 310,         | 310,         | 310,         | 310}           |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 06237<br>06238 | }<br>,{{   | 310,         | 310,         | 310,         | 310,         | 310}           |
| 06239          | , {        | 310,         | 310,         | 310,         | 310,         | 310}           |
| 06240<br>06241 | , {        | 310,         | 310,<br>310, | 310,         | 310,         | 310}           |
| 06241          | , {<br>, { | 310,<br>310, | 310,         | 310,<br>310, | 310,<br>310, | 310}<br>310}   |
| 06243          | }          |              |              |              |              |                |
| 06244<br>06245 | }          |              |              |              |              |                |
| 06246          | }          |              |              |              |              |                |
| 06247          | ,{{{{{     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06248<br>06249 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06250          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06251<br>06252 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06253          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06254          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06255<br>06256 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06257          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06258<br>06259 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06260          | , (        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06261          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06262<br>06263 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06264          | }          | ,            | ,            | ,            |              | ,              |
| 06265<br>06266 | , { {      | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06267          | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06268          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06269<br>06270 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06271          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06272<br>06273 | , {        | INF,         | INF,         | INF,         | INF,<br>INF, | INF }<br>INF } |
| 06273          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,         | INF }          |
| 06275          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06276<br>06277 | }          |              |              |              |              |                |
| 06278          | ,{{{       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06279          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06280<br>06281 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06282          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06283<br>06284 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06285          | , (        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06286          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06287<br>06288 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06289          | }          | ,            | ,            | ,            |              |                |
| 06290<br>06291 | , { {      | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06292          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06293          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06294<br>06295 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06296          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06297<br>06298 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06299          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06300          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06301<br>06302 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06303          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06304          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06305<br>06306 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06307          | }          |              |              |              |              |                |
| 06308<br>06309 | }<br>,{{{  | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06310          | , ( ( (    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06311          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06312<br>06313 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 06314          | }          |              |              |              |              |                |
| 06315<br>06316 | ,{{<br>,{  | INF,         | INF,         | INF,         | INF,         | INF }<br>INF } |
| 06316          | , t<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06318          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06319<br>06320 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06321          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 06322          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|                |            |              |              |              |              |                |

| 06222 | ſ         | TNIE  | TME  | TME  | TME  | TNIE  |
|-------|-----------|-------|------|------|------|-------|
| 06323 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06324 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06325 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06326 | }         |       |      |      |      |       |
| 06327 | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06328 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06329 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06330 | , {       | INF,  | INF, | INF, | INF, | INF } |
|       |           |       |      |      | •    |       |
| 06331 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06332 | }         |       |      |      |      |       |
| 06333 | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06334 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06335 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06336 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06337 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06338 |           | 1111, | 1111 | 1111 | 1111 | 1111  |
|       | }         |       |      |      |      |       |
| 06339 | }         |       |      |      |      |       |
| 06340 | , { { {   | INF,  | INF, | INF, | INF, | INF } |
| 06341 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06342 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06343 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06344 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06345 | }         | ,     | ,    | ,    | ,    | ,     |
| 06346 |           | TME   | TME  | TME  | TNE  | TNIE  |
|       | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06347 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06348 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06349 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06350 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06351 | }         |       |      |      |      |       |
| 06352 | , { {     | INF,  | INF, | INF, | INF, | INF } |
|       |           |       |      |      |      |       |
| 06353 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06354 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06355 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06356 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06357 | }         |       |      |      |      |       |
| 06358 | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06359 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06360 |           |       |      |      |      |       |
|       | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06361 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06362 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06363 | }         |       |      |      |      |       |
| 06364 | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06365 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06366 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06367 | , {       | INF,  | INF, | INF, | INF, | INF } |
|       | , (       |       |      |      |      |       |
| 06368 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06369 | }         |       |      |      |      |       |
| 06370 | }         |       |      |      |      |       |
| 06371 | , { { {   | INF,  | INF, | INF, | INF, | INF } |
| 06372 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06373 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06374 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06375 | , (       |       |      |      |      |       |
|       | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06376 | }         |       |      |      |      |       |
| 06377 | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06378 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06379 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06380 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06381 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06382 | }         | /     |      |      |      |       |
|       |           | TNIE  | TME  | TME  | TNE  | TNIE  |
| 06383 | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06384 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06385 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06386 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06387 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06388 | }         |       |      |      |      |       |
| 06389 | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06390 | , {       | INF,  | INF, | INF, | INF, | INF } |
|       |           |       |      |      | INF, | INF } |
| 06391 | , {       | INF,  | INF, | INF, |      |       |
| 06392 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06393 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06394 | }         |       |      |      |      |       |
| 06395 | , { {     | INF,  | INF, | INF, | INF, | INF } |
| 06396 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06397 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06398 |           | INF,  | INF, | INF, | INF, | INF } |
|       | , {       |       |      |      |      |       |
| 06399 | , {       | INF,  | INF, | INF, | INF, | INF } |
| 06400 | }         |       |      |      |      |       |
| 06401 | }         |       |      |      |      |       |
| 06402 | }         |       |      |      |      |       |
| 06403 | ,{{{{     | 240,  | 240, | 220, | 230, | 220}  |
| 06404 | , ( ( ( ( | 240,  | 240, | 220, | 210, | 220}  |
| 06404 |           | 230,  | 220, |      | 230, |       |
|       | , {       |       |      | 210, |      | 210}  |
| 06406 | , {       | 240,  | 240, | 220, | 210, | 220}  |
| 06407 | , {       | 210,  | 210, | 190, | 210, | 190}  |
| 06408 | }         |       |      |      |      |       |
| 06409 | , { {     | 200,  | 200, | 180, | 170, | 180}  |
|       |           |       |      |      |      |       |

| 06410          | , {         | 200,         | 200,         | 180,         | 170,         | 180}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 06411          | , {         | 190,         | 190,         | 180,         | 170,         | 180}         |
| 06412<br>06413 | , {<br>, {  | 140,<br>190, | 100,<br>190, | 140,<br>180, | 80,<br>170,  | 140}<br>180} |
| 06414          | }           |              |              |              |              |              |
| 06415          | , { {       | 240,         | 240,         | 220,         | 230,         | 220}         |
| 06416<br>06417 | , {<br>, {  | 240,<br>230, | 240,<br>220, | 220,<br>210, | 210,<br>230, | 220}         |
| 06418          | , {         | 240,         | 240,         | 220,         | 210,         | 220}         |
| 06419          | , {         | 210,         | 210,         | 190,         | 210,         | 190}         |
| 06420<br>06421 | }<br>,{{    | 190,         | 190,         | 180,         | 170,         | 180}         |
| 06422          | , (         | 140,         | 100,         | 140,         | 80,          | 140}         |
| 06423          | , {         | 190,         | 190,         | 180,         | 170,         | 180}         |
| 06424<br>06425 | , {         | 130,         | 50,          | 30,          | 130,         | 70}          |
| 06425          | , {<br>}    | 190,         | 190,         | 180,         | 170,         | 180}         |
| 06427          | , { {       | 240,         | 240,         | 220,         | 210,         | 220}         |
| 06428          | , {         | 240,         | 240,         | 220,         | 210,         | 220}         |
| 06429<br>06430 | , {<br>, {  | 210,<br>240, | 210,<br>240, | 190,<br>220, | 210,<br>210, | 190}<br>220} |
| 06431          | , {         | 180,         | 180,         | 100,         | 90,          | 100}         |
| 06432          | }           |              |              |              |              |              |
| 06433          | }           | 240          | 240          | 220          | 220          | 2201         |
| 06434<br>06435 | }}},<br>},{ | 240,<br>240, | 240,<br>240, | 220,<br>220, | 230,<br>180, | 220}         |
| 06436          | , {         | 230,         | 220,         | 210,         | 230,         | 210}         |
| 06437          | , {         | 240,         | 240,         | 220,         | 180,         | 220}         |
| 06438          | , {         | 210,         | 210,         | 190,         | 210,         | 190}         |
| 06439<br>06440 | }<br>,{{    | 200,         | 200,         | 180,         | 140,         | 180}         |
| 06441          | , {         | 200,         | 200,         | 180,         | 140,         | 180}         |
| 06442          | , {         | 190,         | 190,         | 180,         | 140,         | 180}         |
| 06443<br>06444 | , {         | 100,         | 100,         | 90,          | 50,          | 90}          |
| 06444          | , {<br>}    | 190,         | 190,         | 180,         | 140,         | 180}         |
| 06446          | , { {       | 240,         | 240,         | 220,         | 230,         | 220}         |
| 06447          | , {         | 240,         | 240,         | 220,         | 180,         | 220}         |
| 06448<br>06449 | , {<br>, {  | 230,<br>240, | 220,<br>240, | 210,<br>220, | 230,<br>180, | 210}         |
| 06450          | , {         | 210,         | 210,         | 190,         | 210,         | 190}         |
| 06451          | }           | ,            |              | ,            | ,            | ,            |
| 06452          | , { {       | 190,         | 190,         | 180,         | 140,         | 180}         |
| 06453<br>06454 | , {<br>, {  | 100,<br>190, | 100,<br>190, | 90,<br>180,  | 50,<br>140,  | 90}<br>180}  |
| 06455          | , {         | 120,         | 50,          | 30,          | 120,         | 30}          |
| 06456          | , {         | 190,         | 190,         | 180,         | 140,         | 180}         |
| 06457          | }           | 0.4.0        | 0.40         | 000          | 010          | 0001         |
| 06458<br>06459 | ,{{<br>,{   | 240,<br>240, | 240,<br>240, | 220,<br>220, | 210,<br>180, | 220}         |
| 06460          | , {         | 210,         | 210,         | 190,         | 210,         | 190}         |
| 06461          | , {         | 240,         | 240,         | 220,         | 180,         | 220}         |
| 06462<br>06463 | , {<br>}    | 180,         | 180,         | 100,         | 60,          | 100}         |
| 06464          | }           |              |              |              |              |              |
| 06465          | ,{{{        | 220,         | 210,         | 220,         | 210,         | 220}         |
| 06466          | , {         | 220,         | 210,         | 220,         | 210,         | 220}         |
| 06467<br>06468 | , {<br>, {  | 200,<br>220, | 200,<br>210, | 200,<br>220, | 200,<br>210, | 200}         |
| 06469          | , {         | 190,         | 180,         | 190,         | 180,         | 190}         |
| 06470          | }           |              |              |              |              |              |
| 06471          | , { {       | 180,         | 170,         | 180,         | 170,         | 180}         |
| 06472<br>06473 | , {<br>, {  | 180,<br>170, | 170,<br>170, | 180,<br>170, | 170,<br>170, | 180}<br>170} |
| 06474          | , {         | 140,         | 80,          | 140,         | 80,          | 140}         |
| 06475          | , {         | 170,         | 170,         | 170,         | 170,         | 170}         |
| 06476          | }           | 220          | 210          | 220          | 210          | 2201         |
| 06477<br>06478 | ,{{<br>,{   | 220,<br>220, | 210,<br>210, | 220,<br>220, | 210,<br>210, | 220}         |
| 06479          | , {         | 200,         | 200,         | 200,         | 200,         | 200}         |
| 06480          | , {         | 220,         | 210,         | 220,         | 210,         | 220}         |
| 06481<br>06482 | , {         | 190,         | 180,         | 190,         | 180,         | 190}         |
| 06483          | }<br>,{{    | 170,         | 170,         | 170,         | 170,         | 170}         |
| 06484          | , {         | 140,         | 80,          | 140,         | 80,          | 140}         |
| 06485          | , {         | 170,         | 170,         | 170,         | 170,         | 170}         |
| 06486<br>06487 | , {         | 30,<br>170,  | 20,<br>170,  | 30,<br>170,  | 20,<br>170,  | 30}<br>170}  |
| 06487          | , {<br>}    | 110,         | ± / U ,      | ± / U ,      | ± / U ,      | 1/0}         |
| 06489          | , { {       | 220,         | 210,         | 220,         | 210,         | 220}         |
| 06490          | , {         | 220,         | 210,         | 220,         | 210,         | 220}         |
| 06491<br>06492 | , {<br>, {  | 190,<br>220, | 180,<br>210, | 190,<br>220, | 180,<br>210, | 190}<br>220} |
| 06492          | , t<br>, {  | 100,         | 90,          | 100,         | 90,          | 100}         |
| 06494          | }           | •            | •            | •            | •            | . ,          |
| 06495          | }           | 220          | 1.00         | 220          | 120          | 222          |
| 06496          | , { { {     | 220,         | 160,         | 220,         | 130,         | 220}         |

| 06497 | , {     | 220, | 110,    | 220,  | 60,  | 220} |
|-------|---------|------|---------|-------|------|------|
|       |         |      |         |       |      |      |
| 06498 | , {     | 210, | 160,    | 210,  | 50,  | 210} |
| 06499 | , {     | 220, | 110,    | 220,  | 130, | 220} |
| 06500 | , {     | 190, | 140,    | 190,  | 70,  | 190} |
| 06501 | }       |      |         |       |      |      |
| 06502 | , { {   | 100  | 70,     | 180,  | 60   | 1001 |
|       |         | 180, |         |       | 60,  | 180} |
| 06503 | , {     | 180, | 70,     | 180,  | 20,  | 180} |
| 06504 | , {     | 180, | 70,     | 180,  | 20,  | 180} |
| 06505 | , {     | 90,  | -20,    | 90,   | 60,  | 90}  |
|       |         |      |         |       |      |      |
| 06506 | , {     | 180, | 70,     | 180,  | 20,  | 180} |
| 06507 | }       |      |         |       |      |      |
| 06508 | , { {   | 220, | 160,    | 220,  | 60,  | 220} |
| 06509 |         |      |         | 220,  | 60,  | 220} |
|       | , {     | 220, | 110,    |       |      |      |
| 06510 | , {     | 210, | 160,    | 210,  | 50,  | 210} |
| 06511 | , {     | 220, | 110,    | 220,  | 60,  | 220} |
| 06512 | , {     | 190, | 140,    | 190,  | 30,  | 190} |
|       |         | 100, | 110,    | 130,  | 50,  | 100, |
| 06513 | }       |      |         |       |      |      |
| 06514 | , { {   | 180, | 70,     | 180,  | 130, | 180} |
| 06515 | , {     | 90,  | -20,    | 90,   | 60,  | 90}  |
| 06516 | , {     | 180, | 70,     | 180,  | 20,  | 180} |
|       |         |      |         |       |      |      |
| 06517 | , {     | 130, | 50,     | 30,   | 130, | 30}  |
| 06518 | , {     | 180, | 70,     | 180,  | 20,  | 180} |
| 06519 | }       |      |         |       |      |      |
|       |         | 220  | 1.40    | 220   | 7.0  | 2201 |
| 06520 | , { {   | 220, | 140,    | 220,  | 70,  | 220} |
| 06521 | , {     | 220, | 110,    | 220,  | 60,  | 220} |
| 06522 | , {     | 190, | 140,    | 190,  | 30,  | 190} |
| 06523 | , {     | 220, | 110,    | 220,  | 60,  | 220} |
|       |         |      |         |       |      |      |
| 06524 | , {     | 100, | Ο,      | 100,  | 70,  | 100} |
| 06525 | }       |      |         |       |      |      |
| 06526 | }       |      |         |       |      |      |
|       |         | 220  | 210     | 220   | 210  | 1501 |
| 06527 | , { { { | 220, | 210,    | 220,  | 210, | 150} |
| 06528 | , {     | 220, | 210,    | 220,  | 210, | 150} |
| 06529 | , {     | 200, | 200,    | 200,  | 200, | 110} |
| 06530 | , {     | 220, | 210,    | 220,  | 210, | 130} |
|       |         |      |         |       |      |      |
| 06531 | , {     | 190, | 180,    | 190,  | 180, | 100} |
| 06532 | }       |      |         |       |      |      |
| 06533 | , { {   | 180, | 170,    | 180,  | 170, | 150} |
|       |         |      |         |       |      |      |
| 06534 | , {     | 180, | 170,    | 180,  | 170, | 150} |
| 06535 | , {     | 170, | 170,    | 170,  | 170, | 80}  |
| 06536 | , {     | 140, | 80,     | 140,  | 80,  | 0 }  |
| 06537 | , {     | 170, | 170,    | 170,  | 170, | 80}  |
|       |         | 170, | 1,0,    | 170,  | 170, | 00)  |
| 06538 | }       |      |         |       |      |      |
| 06539 | , { {   | 220, | 210,    | 220,  | 210, | 130} |
| 06540 | , {     | 220, | 210,    | 220,  | 210, | 130} |
| 06541 |         | 200, |         |       |      |      |
|       | , {     |      | 200,    | 200,  | 200, | 110} |
| 06542 | , {     | 220, | 210,    | 220,  | 210, | 130} |
| 06543 | , {     | 190, | 180,    | 190,  | 180, | 100} |
| 06544 | }       |      |         |       |      |      |
|       |         | 170  | 170     | 170   | 170  | 0.01 |
| 06545 | , { {   | 170, | 170,    | 170,  | 170, | 80}  |
| 06546 | , {     | 140, | 80,     | 140,  | 80,  | 0 }  |
| 06547 | , {     | 170, | 170,    | 170,  | 170, | 80}  |
| 06548 | , {     | 70,  | 20,     | 30,   | 20,  | 70}  |
|       |         |      |         |       |      |      |
| 06549 | , {     | 170, | 170,    | 170,  | 170, | 80}  |
| 06550 | }       |      |         |       |      |      |
| 06551 | , { {   | 220, | 210,    | 220,  | 210, | 130} |
|       |         |      |         |       |      |      |
| 06552 | , {     | 220, | 210,    | 220,  | 210, | 130} |
| 06553 | , {     | 190, | 180,    | 190,  | 180, | 100} |
| 06554 | , {     | 220, | 210,    | 220,  | 210, | 130} |
| 06555 | , {     | 100, | 90,     | 100,  | 90,  | 10}  |
|       |         | 100, | 50,     | 100,  | 30,  | 10)  |
| 06556 | }       |      |         |       |      |      |
| 06557 | }       |      |         |       |      |      |
| 06558 | }       |      |         |       |      |      |
| 06559 | ,{{{{   | 210, | 210,    | 200,  | 200, | 200} |
|       |         |      |         |       |      |      |
| 06560 | , {     | 210, | 210,    | 200,  | 190, | 200} |
| 06561 | , {     | 200, | 190,    | 180,  | 200, | 180} |
| 06562 | , {     | 180, | 180,    | 170,  | 160, | 170} |
| 06563 | , {     | 190, | 190,    | 170,  | 190, | 170} |
|       |         | 190, | 190,    | 170,  | 190, | 1/0/ |
| 06564 | }       |      |         |       |      |      |
| 06565 | , { {   | 210, | 210,    | 200,  | 190, | 200} |
| 06566 | , {     | 210, | 210,    | 200,  | 190, | 200} |
|       |         |      |         |       |      |      |
| 06567 | , {     | 190, | 190,    | 170,  | 160, | 170} |
| 06568 | , {     | 50,  | 10,     | 50,   | -10, | 50}  |
| 06569 | , {     | 190, | 190,    | 170,  | 160, | 170} |
| 06570 | }       | ,    | ,       | -,    | ,    | ,    |
|       |         | 100  | 100     | 170   | 100  | 170. |
| 06571 | , { {   | 190, | 190,    | 170,  | 190, | 170} |
| 06572 | , {     | 180, | 180,    | 170,  | 160, | 170} |
| 06573 | , {     | 190, | 190,    | 170,  | 190, | 170} |
|       |         |      |         |       |      |      |
| 06574 | , {     | 180, | 180,    | 170,  | 160, | 170} |
| 06575 | , {     | 190, | 190,    | 170,  | 190, | 170} |
| 06576 | }       |      |         |       |      |      |
| 06577 | , { {   | 190, | 190,    | 170,  | 160, | 170} |
|       |         |      |         |       |      |      |
| 06578 | , {     | 110, | 70,     | 110,  | 50,  | 110} |
| 06579 | , {     | 190, | 190,    | 170,  | 160, | 170} |
| 06580 | , {     | 130, | 50,     | 30,   | 130, | 70}  |
| 06581 | , {     | 190, | 190,    | 170,  | 160, | 170} |
|       |         | ,    | ± > 0 , | ±, 0, | ±00, | ±,0} |
| 06582 | }       | 0.00 | 1.00    | 1.00  | 0.00 |      |
| 06583 | , { {   | 200, | 190,    | 180,  | 200, | 180} |
|       |         |      |         |       |      |      |

| 06584          | , {        | 180,        | 180,        | 170,       | 160,         | 170}         |
|----------------|------------|-------------|-------------|------------|--------------|--------------|
| 06585          | , {        | 200,        | 190,        | 180,       | 200,         | 180}         |
| 06586          | , {        | 180,        | 180,        | 170,       | 160,         | 170}         |
| 06587          | , {        | 170,        | 170,        | 100,       | 90,          | 100}         |
| 06588          | }          |             |             |            |              |              |
| 06589          | }          |             |             |            |              |              |
| 06590          | , { { {    | 210,        | 210,        | 200,       | 200,         | 200}         |
| 06591          | , {        | 210,        | 210,        | 200,       | 160,         | 200}         |
| 06592          | , {        | 200,        | 190,        | 180,       | 200,         | 180}         |
| 06593          | , {        | 180,        | 180,        | 170,       | 130,         | 170}         |
| 06594          | , {        | 190,        | 190,        | 170,       | 190,         | 170}         |
| 06595          | }          | 010         | 0.1.0       | 000        | 1.60         | 0001         |
| 06596          | , { {      | 210,        | 210,        | 200,       | 160,         | 200}         |
| 06597          | , {        | 210,        | 210,        | 200,       | 160,         | 200}         |
| 06598<br>06599 | , {        | 190,<br>10, | 190,<br>10, | 170,       | 130,<br>-40, | 170}         |
| 06600          | , {<br>, { | 190,        | 190,        | 0,<br>170, | 130,         | 0}<br>170}   |
| 06601          | }          | 100,        | 100,        | 170,       | 130,         | 1/0)         |
| 06602          | , { {      | 190,        | 190,        | 170,       | 190,         | 170}         |
| 06603          | , {        | 180,        | 180,        | 170,       | 130,         | 170}         |
| 06604          | , {        | 190,        | 190,        | 170,       | 190,         | 170}         |
| 06605          | , {        | 180,        | 180,        | 170,       | 130,         | 170}         |
| 06606          | , {        | 190,        | 190,        | 170,       | 190,         | 170}         |
| 06607          | }          |             |             |            |              |              |
| 06608          | , { {      | 190,        | 190,        | 170,       | 130,         | 170}         |
| 06609          | , {        | 70,         | 70,         | 60,        | 20,          | 60}          |
| 06610          | , {        | 190,        | 190,        | 170,       | 130,         | 170}         |
| 06611          | , {        | 120,        | 50,         | 30,        | 120,         | 30}          |
| 06612          | , {        | 190,        | 190,        | 170,       | 130,         | 170}         |
| 06613          | }          |             |             |            |              |              |
| 06614          | , { {      | 200,        | 190,        | 180,       | 200,         | 180}         |
| 06615          | , {        | 180,        | 180,        | 170,       | 130,         | 170}         |
| 06616          | , {        | 200,        | 190,        | 180,       | 200,         | 180}         |
| 06617          | , {        | 180,        | 180,        | 170,       | 130,         | 170}         |
| 06618          | , {        | 170,        | 170,        | 100,       | 60,          | 100}         |
| 06619          | }          |             |             |            |              |              |
| 06620<br>06621 | }<br>,{{{  | 190,        | 190,        | 190,       | 190,         | 1001         |
| 06622          |            | 190,        | 190,        | 190,       | 190,         | 190}<br>190} |
| 06623          | , {<br>, { | 170,        | 170,        | 170,       | 170,         | 170}         |
| 06624          | , {        | 160,        | 160,        | 160,       | 160,         | 160}         |
| 06625          | , {        | 170,        | 160,        | 170,       | 160,         | 170}         |
| 06626          | }          |             | ,           |            |              |              |
| 06627          | , { {      | 190,        | 190,        | 190,       | 190,         | 190}         |
| 06628          | , {        | 190,        | 190,        | 190,       | 190,         | 190}         |
| 06629          | , {        | 170,        | 160,        | 170,       | 160,         | 170}         |
| 06630          | , {        | 50,         | -10,        | 50,        | -10,         | 50}          |
| 06631          | , {        | 170,        | 160,        | 170,       | 160,         | 170}         |
| 06632          | }          |             |             |            |              |              |
| 06633          | , { {      | 170,        | 160,        | 170,       | 160,         | 170}         |
| 06634          | , {        | 160,        | 160,        | 160,       | 160,         | 160}         |
| 06635          | , {        | 170,        | 160,        | 170,       | 160,         | 170}         |
| 06636          | , {        | 160,        | 160,        | 160,       | 160,         | 160}         |
| 06637          | , {        | 170,        | 160,        | 170,       | 160,         | 170}         |
| 06638          | }          | 170,        | 160         | 170,       | 160          | 170}         |
| 06639<br>06640 | , { {      | 110,        | 160,<br>50, | 110,       | 160,<br>50,  | 110}         |
| 06641          | , {<br>, { | 170,        | 160,        | 170,       | 160,         | 170}         |
| 06642          | , {        | 30,         | 20,         | 30,        | 20,          | 30}          |
| 06643          | , {        | 170,        | 160,        | 170,       | 160,         | 170}         |
| 06644          | }          | ,           | /           | /          | ,            | ,            |
| 06645          | , { {      | 170,        | 170,        | 170,       | 170,         | 170}         |
| 06646          | , {        | 160,        | 160,        | 160,       | 160,         | 160}         |
| 06647          | , {        | 170,        | 170,        | 170,       | 170,         | 170}         |
| 06648          | , {        | 160,        | 160,        | 160,       | 160,         | 160}         |
| 06649          | , {        | 90,         | 90,         | 90,        | 90,          | 90}          |
| 06650          | }          |             |             |            |              |              |
| 06651          | }          |             |             |            |              |              |
| 06652          | , { { {    | 200,        | 130,        | 200,       | 130,         | 200}         |
| 06653          | , {        | 200,        | 90,         | 200,       | 40,          | 200}         |
| 06654          | , {        | 180,        | 130,        | 180,       | 20,          | 180}         |
| 06655          | , {        | 170,        | 60,         | 170,       | 130,         | 170}         |
| 06656          | , {        | 170,        | 120,        | 170,       | 70,          | 170}         |
| 06657          | }          | 200         | 0.0         | 000        | 4.0          | 000          |
| 06658          | , { {      | 200,        | 90,         | 200,       | 40,          | 200}         |
| 06659          | , {        | 200,        | 90,         | 200,       | 40,          | 200}         |
| 06660          | , {        | 170,        | 60,<br>-110 | 170,       | 10,          | 170}         |
| 06661          | , {        | 0,<br>170   | -110,       | 0,<br>170  | -30,<br>10,  | 1701         |
| 06662<br>06663 | , {<br>}   | 170,        | 60,         | 170,       | ⊥∪,          | 170}         |
| 06664          | , { {      | 170,        | 120,        | 170,       | 10,          | 170}         |
| 06665          | , 11       | 170,        | 60,         | 170,       | 10,          | 170}         |
| 06666          | , {        | 170,        | 120,        | 170,       | 10,          | 170}         |
| 06667          | , {        | 170,        | 60,         | 170,       | 10,          | 170}         |
| 06668          | , {        | 170,        | 120,        | 170,       | 10,          | 170}         |
| 06669          | }          | -,          | -,          | -,         | - ,          | - ,          |
| 06670          | , { {      | 170,        | 60,         | 170,       | 130,         | 170}         |
|                |            |             |             |            |              |              |

| 06671          | , {        | 60,          | -50,         | 60,          | 30,          | 60}          |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 06672          | , {        | 170,         | 60,          | 170,         | 10,          | 170}         |
| 06673          | , {        | 130,         | 50,          | 30,<br>170,  | 130,         | 30}          |
| 06674<br>06675 | , {<br>}   | 170,         | 60,          | 1/0,         | 10,          | 170}         |
| 06676          | , { {      | 180,         | 130,         | 180,         | 70,          | 180}         |
| 06677          | , {        | 170,         | 60,          | 170,         | 10,          | 170}         |
| 06678          | , {        | 180,         | 130,         | 180,         | 20,          | 180}         |
| 06679<br>06680 | , {<br>, { | 170,<br>100, | 60,<br>-10,  | 170,<br>100, | 10,<br>70,   | 170}<br>100} |
| 06681          | }          | 100,         | /            | 100,         | , , ,        | 100,         |
| 06682          | }          |              |              |              |              |              |
| 06683          | ,{{{       | 190,         | 190,         | 190,         | 190,         | 160}         |
| 06684<br>06685 | , {<br>, { | 190,<br>170, | 190,<br>170, | 190,<br>170, | 190,<br>170, | 160}<br>80}  |
| 06686          | , {        | 160,         | 160,         | 160,         | 160,         | 70}          |
| 06687          | , {        | 170,         | 160,         | 170,         | 160,         | 80}          |
| 06688          | }          |              |              |              |              |              |
| 06689<br>06690 | , { {      | 190,         | 190,         | 190,         | 190,         | 160}         |
| 06691          | , {<br>, { | 190,<br>170, | 190,<br>160, | 190,<br>170, | 190,<br>160, | 160}<br>80}  |
| 06692          | , {        | 50,          | -10,         | 50,          | -10,         | -100}        |
| 06693          | , {        | 170,         | 160,         | 170,         | 160,         | 80}          |
| 06694          | }          | 170          | 1.00         | 170          | 1.00         | 0.01         |
| 06695<br>06696 | ,{{<br>,{  | 170,<br>160, | 160,<br>160, | 170,<br>160, | 160,<br>160, | 80}<br>70}   |
| 06697          | , {        | 170,         | 160,         | 170,         | 160,         | 80}          |
| 06698          | , {        | 160,         | 160,         | 160,         | 160,         | 70}          |
| 06699          | , {        | 170,         | 160,         | 170,         | 160,         | 80}          |
| 06700<br>06701 | }<br>,{{   | 170,         | 160,         | 170,         | 160,         | 80}          |
| 06701          | , 11       | 110,         | 50,          | 110,         | 50,          | -30}         |
| 06703          | , {        | 170,         | 160,         | 170,         | 160,         | 80}          |
| 06704          | , {        | 70,          | 20,          | 30,          | 20,          | 70}          |
| 06705          | , {        | 170,         | 160,         | 170,         | 160,         | 80}          |
| 06706<br>06707 | }<br>,{{   | 170,         | 170,         | 170,         | 170,         | 80}          |
| 06708          | , {        | 160,         | 160,         | 160,         | 160,         | 70}          |
| 06709          | , {        | 170,         | 170,         | 170,         | 170,         | 80}          |
| 06710          | , {        | 160,         | 160,         | 160,         | 160,         | 70}          |
| 06711<br>06712 | , {<br>}   | 90,          | 90,          | 90,          | 90,          | 0 }          |
| 06713          | }          |              |              |              |              |              |
| 06714          | }          |              |              |              |              |              |
| 06715          | , { { { {  | 370,         | 370,         | 330,         | 320,         | 330}         |
| 06716<br>06717 | , {<br>, { | 340,<br>310, | 340,<br>310, | 330,<br>290, | 320,<br>310, | 330}<br>290} |
| 06718          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |
| 06719          | , {        | 370,         | 370,         | 290,         | 310,         | 290}         |
| 06720          | }          | 240          | 2.40         | 222          | 200          | 222          |
| 06721<br>06722 | ,{{<br>,{  | 340,<br>340, | 340,<br>340, | 330,<br>330, | 320,<br>320, | 330}         |
| 06723          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |
| 06724          | , {        | 270,         | 230,         | 270,         | 200,         | 270}         |
| 06725          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |
| 06726<br>06727 | , { {      | 310,         | 310,         | 290,         | 310,         | 290}         |
| 06728          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |
| 06729          | , {        | 310,         | 310,         | 290,         | 310,         | 290}         |
| 06730          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |
| 06731<br>06732 | , {<br>}   | 310,         | 310,         | 290,         | 310,         | 290}         |
| 06732          | , { {      | 310,         | 310,         | 310,         | 280,         | 310}         |
| 06734          | , {        | 310,         | 270,         | 310,         | 240,         | 310}         |
| 06735          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |
| 06736<br>06737 | , {        | 260,<br>310, | 180,<br>310, | 160,<br>290, | 260,<br>280, | 200}         |
| 06738          | , {<br>}   | 310,         | 310,         | 230,         | 200,         | 230 }        |
| 06739          | , { {      | 370,         | 370,         | 290,         | 310,         | 290}         |
| 06740          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |
| 06741          | , {        | 310,         | 310,         | 290,         | 310,         | 290}         |
| 06742<br>06743 | , {<br>, { | 310,<br>370, | 310,<br>370, | 290,<br>290, | 280,<br>280, | 290}<br>290} |
| 06744          | }          | 0.0,         | 0,0,         | 230,         | 200,         | 250,         |
| 06745          | }          |              |              |              |              |              |
| 06746          | , { { {    | 370,         | 370,         | 330,         | 310,         | 330}         |
| 06747<br>06748 | , {<br>, { | 340,<br>310, | 340,<br>310, | 330,<br>290, | 290,<br>310, | 330}<br>290} |
| 06749          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06750          | , {        | 370,         | 370,         | 290,         | 310,         | 290}         |
| 06751          | }          | 240          | 240          | 220          | 200          | 222          |
| 06752<br>06753 | ,{{<br>,{  | 340,<br>340, | 340,<br>340, | 330,<br>330, | 290,<br>290, | 330}         |
| 06753          | , t<br>, { | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06755          | , {        | 230,         | 230,         | 210,         | 170,         | 210}         |
| 06756          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06757          | }          |              |              |              |              |              |
|                |            |              |              |              |              |              |

| 06758          | , { {      | 310,         | 310,         | 290,         | 310,         | 290}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 06759          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06760<br>06761 | , {<br>, { | 310,<br>310, | 310,<br>310, | 290,<br>290, | 310,<br>250, | 290}<br>290} |
| 06762          | , {        | 310,         | 310,         | 290,         | 310,         | 290}         |
| 06763          | }          |              |              |              |              |              |
| 06764<br>06765 | ,{{<br>,{  | 310,<br>270, | 310,<br>270, | 290,<br>250, | 250,<br>210, | 290}<br>250} |
| 06766          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06767          | , {        | 250,         | 180,         | 160,         | 250,         | 160}         |
| 06768<br>06769 | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06770          | }<br>,{{   | 370,         | 370,         | 290,         | 310,         | 290}         |
| 06771          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06772          | , {        | 310,         | 310,         | 290,         | 310,         | 290}         |
| 06773<br>06774 | , {<br>, { | 310,<br>370, | 310,<br>370, | 290,<br>290, | 250,<br>250, | 290}<br>290} |
| 06775          | }          | ,            | ,            | ,            | ,            | ,            |
| 06776          | }          | 200          | 200          | 200          | 200          | 2001         |
| 06777<br>06778 | ,{{{       | 320,<br>320, | 320,<br>320, | 320,<br>320, | 320,<br>320, | 320}<br>320} |
| 06779          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06780          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06781<br>06782 | , {<br>}   | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06782          | , { {      | 320,         | 320,         | 320,         | 320,         | 320}         |
| 06784          | , {        | 320,         | 320,         | 320,         | 320,         | 320}         |
| 06785          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06786<br>06787 | , {<br>, { | 270,<br>290, | 200,<br>280, | 270,<br>290, | 200,<br>280, | 270}         |
| 06788          | }          | 230,         | 200,         | 230,         | 200,         | 230)         |
| 06789          | , { {      | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06790          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06791<br>06792 | , {<br>, { | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 290}         |
| 06792          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06794          | }          |              |              |              |              |              |
| 06795          | , { {      | 310,         | 280,         | 310,         | 280,         | 310}         |
| 06796<br>06797 | , {<br>, { | 310,<br>290, | 240,<br>280, | 310,<br>290, | 240,<br>280, | 310}<br>290} |
| 06798          | , {        | 160,         | 150,         | 160,         | 150,         | 160}         |
| 06799          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06800          | }          | 000          | 000          | 000          | 0.00         | 0001         |
| 06801<br>06802 | ,{{<br>,{  | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 290}<br>290} |
| 06803          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06804          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06805          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 06806<br>06807 | }          |              |              |              |              |              |
| 06808          | ,{{{       | 330,         | 240,         | 330,         | 260,         | 330}         |
| 06809          | , {        | 330,         | 220,         | 330,         | 220,         | 330}         |
| 06810          | , {        | 290,         | 240,         | 290,         | 130,         | 290}         |
| 06811<br>06812 | , {<br>, { | 290,<br>290, | 180,<br>240, | 290,<br>290, | 260,<br>260, | 290}<br>290} |
| 06813          | }          | 230,         | 210,         | 230,         | 200,         | 200,         |
| 06814          | , { {      | 330,         | 220,         | 330,         | 180,         | 330}         |
| 06815          | , {        | 330,         | 220,<br>180, | 330,         | 170,         | 330}         |
| 06816<br>06817 | , {        | 290,<br>210, | 100,         | 290,<br>210, | 130,<br>180, | 290}<br>210} |
| 06818          | , {        | 290,         | 180,         | 290,         | 130,         | 290}         |
| 06819          | }          |              |              |              |              |              |
| 06820<br>06821 | ,{{<br>,{  | 290,<br>290, | 240,<br>180, | 290,<br>290, | 130,<br>130, | 290}         |
| 06822          | , {        | 290,         | 240,         | 290,         | 130,         | 290}         |
| 06823          | , {        | 290,         | 180,         | 290,         | 130,         | 290}         |
| 06824          | , {        | 290,         | 240,         | 290,         | 130,         | 290}         |
| 06825<br>06826 | }<br>,{{   | 290,         | 180,         | 290,         | 260,         | 290}         |
| 06827          | , (        | 250,         | 140,         | 250,         | 220,         | 250}         |
| 06828          | , {        | 290,         | 180,         | 290,         | 130,         | 290}         |
| 06829          | , {        | 260,         | 180,         | 160,         | 260,         | 160}         |
| 06830<br>06831 | , {<br>}   | 290,         | 180,         | 290,         | 130,         | 290}         |
| 06832          | , { {      | 290,         | 240,         | 290,         | 260,         | 290}         |
| 06833          | , {        | 290,         | 180,         | 290,         | 130,         | 290}         |
| 06834          | , {        | 290,         | 240,         | 290,         | 130,         | 290}         |
| 06835<br>06836 | , {<br>, { | 290,<br>290, | 180,<br>180, | 290,<br>290, | 130,<br>260, | 290}<br>290} |
| 06837          | , \<br>}   | ,            | ±00,         | 200,         |              | 2005         |
| 06838          | }          |              |              |              |              |              |
| 06839          | , { { {    | 320,         | 320,         | 320,         | 320,         | 290}         |
| 06840<br>06841 | , {<br>, { | 320,<br>290, | 320,<br>280, | 320,<br>290, | 320,<br>280, | 290}         |
| 06842          | , \<br>, { | 290,         | 280,         | 290,         | 280,         | 200}         |
| 06843          | , {        | 290,         | 280,         | 290,         | 280,         | 200}         |
| 06844          | }          |              |              |              |              |              |
|                |            |              |              |              |              |              |

| 06845          | , { {       | 320,         | 320,         | 320,         | 320,         | 290}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 06846<br>06847 | , {<br>, {  | 320,<br>290, | 320,<br>280, | 320,<br>290, | 320,<br>280, | 290}<br>200} |
| 06848<br>06849 | , {<br>, {  | 270,<br>290, | 200,<br>280, | 270,<br>290, | 200,<br>280, | 120}<br>200} |
| 06850<br>06851 | }           |              |              |              |              |              |
| 06852          | ,{{<br>,{   | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 200}         |
| 06853<br>06854 | , {<br>, {  | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 200}         |
| 06855          | , {         | 290,         | 280,         | 290,         | 280,         | 200}         |
| 06856<br>06857 | }<br>,{{    | 310,         | 280,         | 310,         | 280,         | 200}         |
| 06858<br>06859 | , {<br>, {  | 310,<br>290, | 240,<br>280, | 310,<br>290, | 240,<br>280, | 160}<br>200} |
| 06860          | , {         | 200,         | 150,         | 160,         | 150,         | 200}         |
| 06861<br>06862 | , {<br>}    | 290,         | 280,         | 290,         | 280,         | 200}         |
| 06863<br>06864 | ,{{<br>,{   | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 200}         |
| 06865          | , {         | 290,         | 280,         | 290,         | 280,         | 200}         |
| 06866<br>06867 | , {<br>, {  | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 200}         |
| 06868          | }           | ,            |              |              |              |              |
| 06869<br>06870 | }           |              |              |              |              |              |
| 06871<br>06872 | }}}},<br>}, | 350,<br>350, | 340,<br>310, | 350,<br>350, | 280,<br>280, | 350}<br>350} |
| 06873          | , {         | 280,         | 280,         | 260,         | 280,         | 260}         |
| 06874<br>06875 | , {<br>, {  | 280,<br>340, | 280,<br>340, | 260,<br>260, | 250,<br>280, | 260}<br>260} |
| 06876          | }           |              |              |              |              |              |
| 06877<br>06878 | ,{{<br>,{   | 280,<br>240, | 280,<br>240, | 260,<br>230, | 250,<br>220, | 260}<br>230} |
| 06879          | , {         | 280,<br>180, | 280,         | 260,         | 250,         | 260}<br>180} |
| 06880<br>06881 | , {<br>, {  | 280,         | 140,<br>280, | 180,<br>260, | 120,<br>250, | 260}         |
| 06882<br>06883 | }<br>,{{    | 280,         | 280,         | 260,         | 280,         | 260}         |
| 06884          | , {         | 280,         | 280,         | 260,         | 250,         | 260}         |
| 06885<br>06886 | , {<br>, {  | 280,<br>280, | 280,<br>280, | 260,<br>260, | 280,<br>250, | 260}<br>260} |
| 06887<br>06888 | , {         | 280,         | 280,         | 260,         | 280,         | 260}         |
| 06889          | }<br>,{{    | 350,         | 310,         | 350,         | 280,         | 350}         |
| 06890<br>06891 | , {<br>, {  | 350,<br>280, | 310,<br>280, | 350,<br>260, | 280,<br>250, | 350}<br>260} |
| 06892          | , {         | 230,         | 150,         | 130,         | 230,         | 170}         |
| 06893<br>06894 | , {<br>}    | 280,         | 280,         | 260,         | 250,         | 260}         |
| 06895<br>06896 | ,{{<br>,{   | 340,<br>280, | 340,<br>280, | 260,<br>260, | 280,<br>250, | 260}<br>260} |
| 06897          | , {         | 280,         | 280,         | 260,         | 280,         | 260}         |
| 06898<br>06899 | , {<br>, {  | 280,<br>340, | 280,<br>340, | 260,<br>260, | 250,<br>250, | 260}<br>260} |
| 06900          | }           | ,            | ,            | ,            |              | ,            |
| 06901<br>06902 | }<br>,{{{   | 340,         | 340,         | 290,         | 280,         | 290}         |
| 06903<br>06904 | , {<br>, {  | 310,<br>280, | 310,<br>280, | 290,<br>260, | 250,<br>280, | 290}<br>260} |
| 06905          | , {         | 280,         | 280,         | 260,         | 220,         | 260}         |
| 06906<br>06907 | , {<br>}    | 340,         | 340,         | 260,         | 280,         | 260}         |
| 06908          | , { {       | 280,         | 280,         | 260,         | 220,         | 260}         |
| 06909<br>06910 | , {<br>, {  | 240,<br>280, | 240,<br>280, | 230,<br>260, | 190,<br>220, | 230}<br>260} |
| 06911<br>06912 | , {<br>, {  | 140,<br>280, | 140,<br>280, | 130,<br>260, | 90,<br>220,  | 130}<br>260} |
| 06913          | }           |              |              |              |              |              |
| 06914<br>06915 | ,{{<br>,{   | 280,<br>280, | 280,<br>280, | 260,<br>260, | 280,<br>220, | 260}<br>260} |
| 06916          | , {         | 280,         | 280,         | 260,         | 280,<br>220, | 260}         |
| 06917<br>06918 | , {<br>, {  | 280,<br>280, | 280,<br>280, | 260,<br>260, | 280,         | 260}<br>260} |
| 06919<br>06920 | }<br>,{{    | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06921          | , {         | 310,         | 310,         | 290,         | 250,         | 290}         |
| 06922<br>06923 | , {<br>, {  | 280,<br>220, | 280,<br>150, | 260,<br>130, | 220,<br>220, | 260}<br>130} |
| 06924<br>06925 | , {<br>}    | 280,         | 280,         | 260,         | 220,         | 260}         |
| 06926          | , { {       | 340,         | 340,         | 260,         | 280,         | 260}         |
| 06927<br>06928 | , {<br>, {  | 280,<br>280, | 280,<br>280, | 260,<br>260, | 220,<br>280, | 260}<br>260} |
| 06929          | , {         | 280,         | 280,         | 260,         | 220,         | 260}         |
| 06930<br>06931 | , {<br>}    | 340,         | 340,         | 260,         | 220,         | 260}         |
|                |             |              |              |              |              |              |

| 06932          | }          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 06933<br>06934 | ,{{{<br>,{ | 350,<br>350, | 280,<br>280, | 350,<br>350, | 280,<br>280, | 350}<br>350} |
| 06935          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06936          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06937          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06938          | }          | 260          | 250          | 260          | 250          | 2601         |
| 06939<br>06940 | ,{{<br>,{  | 260,<br>220, | 250,<br>220, | 260,<br>220, | 250,<br>220, | 260}<br>220} |
| 06941          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06942          | , {        | 180,         | 120,         | 180,         | 120,         | 180}         |
| 06943          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06944<br>06945 | }          | 260,         | 250          | 260,         | 250          | 2601         |
| 06946          | ,{{<br>,{  | 260,         | 250,<br>250, | 260,         | 250,<br>250, | 260}<br>260} |
| 06947          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06948          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06949          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06950<br>06951 | }<br>,{{   | 350,         | 280,         | 350,         | 280,         | 350}         |
| 06952          | , {        | 350,         | 280,         | 350,         | 280,         | 350}         |
| 06953          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06954          | , {        | 130,         | 120,         | 130,         | 120,         | 130}         |
| 06955<br>06956 | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06956          | }<br>,{{   | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06958          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06959          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06960          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06961<br>06962 | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 06962          | }          |              |              |              |              |              |
| 06964          | ,{{{       | 290,         | 210,         | 290,         | 260,         | 290}         |
| 06965          | , {        | 290,         | 180,         | 290,         | 260,         | 290}         |
| 06966          | , {        | 260,         | 210,         | 260,         | 100,         | 260}         |
| 06967<br>06968 | , {        | 260,<br>260, | 150,<br>210, | 260,<br>260, | 230,<br>230, | 260}<br>260} |
| 06969          | , {<br>}   | 200,         | 210,         | 200,         | 230,         | 200)         |
| 06970          | , { {      | 260,         | 150,         | 260,         | 100,         | 260}         |
| 06971          | , {        | 230,         | 120,         | 230,         | 70,          | 230}         |
| 06972          | , {        | 260,         | 150,         | 260,         | 100,         | 260}         |
| 06973<br>06974 | , {<br>, { | 130,<br>260, | 20,<br>150,  | 130,<br>260, | 100,<br>100, | 130}<br>260} |
| 06975          | }          | 200,         | 130,         | 200,         | 100,         | 200)         |
| 06976          | , { {      | 260,         | 210,         | 260,         | 100,         | 260}         |
| 06977          | , {        | 260,         | 150,         | 260,         | 100,         | 260}         |
| 06978          | , {        | 260,         | 210,         | 260,         | 100,         | 260}         |
| 06979<br>06980 | , {<br>, { | 260,<br>260, | 150,<br>210, | 260,<br>260, | 100,<br>100, | 260}<br>260} |
| 06981          | }          | 200,         | 210,         | 200,         | 100,         | 200)         |
| 06982          | , { {      | 290,         | 180,         | 290,         | 260,         | 290}         |
| 06983          | , {        | 290,         | 180,         | 290,         | 260,         | 290}         |
| 06984<br>06985 | , {        | 260,         | 150,         | 260,         | 100,         | 260}         |
| 06985          | , {<br>, { | 230,<br>260, | 150,<br>150, | 130,<br>260, | 230,<br>100, | 130}<br>260} |
| 06987          | }          | ,            | ,            | ,            | ,            | ,            |
| 06988          | , { {      | 260,         | 210,         | 260,         | 230,         | 260}         |
| 06989          | , {        | 260,         | 150,         | 260,         | 100,         | 260}         |
| 06990<br>06991 | , {<br>, { | 260,<br>260, | 210,<br>150, | 260,<br>260, | 100,<br>100, | 260}<br>260} |
| 06992          | , {        | 260,         | 150,         | 260,         | 230,         | 260}         |
| 06993          | }          |              |              |              |              |              |
| 06994          | }          |              |              |              |              |              |
| 06995          | , { { {    | 350,         | 280,         | 350,         | 280,         | 200}         |
| 06996<br>06997 | , {<br>, { | 350,<br>260, | 280,<br>250, | 350,<br>260, | 280,<br>250, | 200}<br>170} |
| 06998          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 06999          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07000          | }          |              |              |              |              |              |
| 07001<br>07002 | , { {      | 260,         | 250,         | 260,         | 250,         | 190}         |
| 07002          | , {<br>, { | 220,<br>260, | 220,<br>250, | 220,<br>260, | 220,<br>250, | 190}<br>170} |
| 07004          | , {        | 180,         | 120,         | 180,         | 120,         | 30}          |
| 07005          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07006          | }          |              |              |              |              |              |
| 07007          | , { {      | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07008<br>07009 | , {<br>, { | 260,<br>260, | 250,<br>250, | 260,<br>260, | 250,<br>250, | 170}<br>170} |
| 07010          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07011          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07012          | }          | 0.5.0        | 000          | 0.5.0        | 0.00         | 0.00         |
| 07013          | , { {      | 350 <b>,</b> | 280,         | 350,         | 280,         | 200}         |
| 07014<br>07015 | , {<br>, { | 350,<br>260, | 280,<br>250, | 350,<br>260, | 280,<br>250, | 200}<br>170} |
| 07016          | , {        | 170,         | 120,         | 130,         | 120,         | 170}         |
| 07017          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07018          | }          |              |              |              |              |              |

| 07010 | 1.1     | 260  | 250  | 260  | 250  | 1701 |
|-------|---------|------|------|------|------|------|
| 07019 | , { {   | 260, | 250, | 260, | 250, | 170} |
| 07020 | , {     | 260, | 250, | 260, | 250, | 170} |
| 07021 | , {     | 260, | 250, | 260, | 250, | 170} |
| 07022 | , {     | 260, | 250, | 260, | 250, | 170} |
| 07023 | , {     | 260, | 250, | 260, | 250, | 170} |
|       |         | 200, | 230, | 200, | 250, | 1/0) |
| 07024 | }       |      |      |      |      |      |
| 07025 | }       |      |      |      |      |      |
| 07026 | }       |      |      |      |      |      |
| 07027 | , {{{{  | 280, | 280, | 260, | 260, | 260} |
|       |         |      |      |      |      |      |
| 07028 | , {     | 280, | 280, | 260, | 250, | 260} |
| 07029 | , {     | 260, | 260, | 240, | 260, | 240} |
| 07030 | , {     | 260, | 260, | 250, | 240, | 250} |
| 07031 |         |      | 260, | 240, | 260, | 240} |
|       | , {     | 260, | 200, | 240, | 200, | 240) |
| 07032 | }       |      |      |      |      |      |
| 07033 | , { {   | 280, | 280, | 260, | 250, | 260} |
| 07034 | , {     | 280, | 280, | 260, | 250, | 260} |
| 07035 | , {     | 250, | 250, | 240, | 230, | 240} |
|       |         |      |      |      |      |      |
| 07036 | , {     | 190, | 150, | 190, | 130, | 190} |
| 07037 | , {     | 250, | 250, | 240, | 230, | 240} |
| 07038 | }       |      |      |      |      |      |
| 07039 | , { {   | 260, | 260, | 250, | 260, | 250} |
|       |         |      |      |      |      |      |
| 07040 | , {     | 260, | 260, | 250, | 240, | 250} |
| 07041 | , {     | 260, | 260, | 240, | 260, | 240} |
| 07042 | , {     | 260, | 260, | 250, | 240, | 250} |
| 07043 |         |      | 260, | 240, | 260, |      |
|       | , {     | 260, | 200, | 240, | 200, | 240} |
| 07044 | }       |      |      |      |      |      |
| 07045 | , { {   | 260, | 250, | 260, | 230, | 260} |
| 07046 | , {     | 260, | 220, | 260, | 200, | 260} |
| 07047 |         | 250, | 250, | 240, | 230, | 240} |
|       | , {     |      |      |      | •    |      |
| 07048 | , {     | 190, | 110, | 90,  | 190, | 120} |
| 07049 | , {     | 250, | 250, | 240, | 230, | 240} |
| 07050 | }       |      | •    |      | •    | ,    |
|       |         | 200  | 200  | 250  | 200  | 2501 |
| 07051 | , { {   | 260, | 260, | 250, | 260, | 250} |
| 07052 | , {     | 260, | 260, | 250, | 240, | 250} |
| 07053 | , {     | 260, | 260, | 240, | 260, | 240} |
| 07054 | , {     | 260, | 260, | 250, | 240, | 250} |
|       |         |      |      |      |      |      |
| 07055 | , {     | 230, | 230, | 150, | 140, | 150} |
| 07056 | }       |      |      |      |      |      |
| 07057 | }       |      |      |      |      |      |
| 07058 | ,{{{    | 280, | 280, | 260, | 260, | 260} |
|       |         |      |      |      |      |      |
| 07059 | , {     | 280, | 280, | 260, | 220, | 260} |
| 07060 | , {     | 260, | 260, | 240, | 260, | 240} |
| 07061 | , {     | 260, | 260, | 250, | 210, | 250} |
| 07062 | , {     | 260, | 260, | 240, | 260, | 240} |
|       |         | 200, | 200, | 240, | 200, | 240) |
| 07063 | }       |      |      |      |      |      |
| 07064 | , { {   | 280, | 280, | 260, | 220, | 260} |
| 07065 | , {     | 280, | 280, | 260, | 220, | 260} |
| 07066 |         |      |      | 240, | 200, | 240} |
|       | , {     | 250, | 250, |      |      |      |
| 07067 | , {     | 150, | 150, | 140, | 100, | 140} |
| 07068 | , {     | 250, | 250, | 240, | 200, | 240} |
| 07069 | }       |      |      |      |      |      |
| 07070 |         | 260  | 260  | 250  | 260  | 2501 |
|       | , { {   | 260, | 260, | 250, | 260, | 250} |
| 07071 | , {     | 260, | 260, | 250, | 210, | 250} |
| 07072 | , {     | 260, | 260, | 240, | 260, | 240} |
| 07073 | , {     | 260, | 260, | 250, | 210, | 250} |
| 07074 | ,       |      | 260, |      |      |      |
|       | , (     | 260, | 200, | 240, | 260, | 240} |
| 07075 | }       |      |      |      |      |      |
| 07076 | , { {   | 250, | 250, | 240, | 200, | 240} |
| 07077 | , {     | 220, | 220, | 210, | 170, | 210} |
| 07078 | , {     | 250, | 250, | 240, | 200, | 240} |
|       |         |      |      |      |      |      |
| 07079 | , {     | 180, | 100, | 90,  | 180, | 90}  |
| 07080 | , {     | 250, | 250, | 240, | 200, | 240} |
| 07081 | }       |      |      |      |      |      |
| 07082 | , { {   | 260, | 260, | 250, | 260, | 250} |
| 07083 |         | 260, | 260, | 250, | 210, | 250} |
|       | , {     |      |      |      |      |      |
| 07084 | , {     | 260, | 260, | 240, | 260, | 240} |
| 07085 | , {     | 260, | 260, | 250, | 210, | 250} |
| 07086 | , {     | 230, | 230, | 150, | 110, | 150} |
|       |         | 200, | 200, | 100, | 110, | 100, |
| 07087 | }       |      |      |      |      |      |
| 07088 | }       |      |      |      |      |      |
| 07089 | , { { { | 260, | 250, | 260, | 250, | 260} |
| 07090 | , {     | 260, | 250, | 260, | 250, | 260} |
|       |         |      |      |      |      |      |
| 07091 | , {     | 240, | 230, | 240, | 230, | 240} |
| 07092 | , {     | 240, | 240, | 240, | 240, | 240} |
| 07093 | , {     | 240, | 230, | 240, | 230, | 240} |
| 07094 | }       | ,    | .,   | .,   | ,    | . ,  |
|       |         | 200  | 250  | 200  | 250  | 200  |
| 07095 | , { {   | 260, | 250, | 260, | 250, | 260} |
| 07096 | , {     | 260, | 250, | 260, | 250, | 260} |
| 07097 | , {     | 230, | 230, | 230, | 230, | 230} |
| 07098 | , {     | 190, | 130, | 190, | 130, | 190} |
|       |         |      |      |      |      |      |
| 07099 | , {     | 230, | 230, | 230, | 230, | 230} |
| 07100 | }       |      |      |      |      |      |
| 07101 | , { {   | 240, | 240, | 240, | 240, | 240} |
| 07102 | , {     | 240, | 240, | 240, | 240, | 240} |
| 07103 | , {     | 240, | 230, | 240, | 230, | 240} |
|       |         |      |      |      |      |      |
| 07104 | , {     | 240, | 240, | 240, | 240, | 240} |
| 07105 | , {     | 240, | 230, | 240, | 230, | 240} |
|       |         |      |      |      |      |      |

| 07106          | }          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 07107<br>07108 | ,{{<br>,{  | 260,<br>260, | 230,<br>200, | 260,<br>260, | 230,<br>200, | 260}<br>260} |
| 07108          | , {        | 230,         | 230,         | 230,         | 230,         | 230}         |
| 07110          | , {        | 80,          | 80,          | 80,          | 80,          | 80}          |
| 07111          | , {        | 230,         | 230,         | 230,         | 230,         | 230}         |
| 07112          | }          | 0.40         | 0.40         | 0.40         | 0.40         | 0.401        |
| 07113<br>07114 | ,{{<br>,{  | 240,<br>240, | 240,<br>240, | 240,<br>240, | 240,<br>240, | 240}         |
| 07114          | , {        | 240,         | 230,         | 240,         | 230,         | 240}         |
| 07116          | , {        | 240,         | 240,         | 240,         | 240,         | 240}         |
| 07117          | , {        | 150,         | 140,         | 150,         | 140,         | 150}         |
| 07118          | }          |              |              |              |              |              |
| 07119          | }          |              |              |              |              |              |
| 07120          | , { { {    | 260,         | 190,         | 260,<br>260, | 190,         | 260}         |
| 07121<br>07122 | , {<br>, { | 260,<br>240, | 150,<br>190, | 240,         | 180,<br>80,  | 260}<br>240} |
| 07123          | , {        | 250,         | 140,         | 250,         | 190,         | 250}         |
| 07124          | , {        | 240,         | 190,         | 240,         | 120,         | 240}         |
| 07125          | }          |              |              |              |              |              |
| 07126          | , { {      | 260,         | 150,         | 260,         | 110,         | 260}         |
| 07127<br>07128 | , {        | 260,         | 150,         | 260,         | 100,         | 260}         |
| 07128          | , {<br>, { | 240,<br>140, | 130,<br>30,  | 240,<br>140, | 80,<br>110,  | 240}<br>140} |
| 07130          | , {        | 240,         | 130,         | 240,         | 80,          | 240}         |
| 07131          | }          |              |              |              |              |              |
| 07132          | , { {      | 250,         | 190,         | 250,         | 90,          | 250}         |
| 07133          | , {        | 250,         | 140,         | 250,         | 90,          | 250}         |
| 07134          | , {        | 240,         | 190,         | 240,         | 80,          | 240}         |
| 07135<br>07136 | , {<br>, { | 250,<br>240, | 140,<br>190, | 250,<br>240, | 90,<br>80,   | 250}<br>240} |
| 07137          | }          | 240,         | 100,         | 240,         | 00,          | 240)         |
| 07138          | , { {      | 240,         | 130,         | 240,         | 190,         | 240}         |
| 07139          | , {        | 210,         | 100,         | 210,         | 180,         | 210}         |
| 07140          | , {        | 240,         | 130,         | 240,         | 80,          | 240}         |
| 07141          | , {        | 190,         | 110,         | 90,          | 190,         | 90}          |
| 07142<br>07143 | , {<br>}   | 240,         | 130,         | 240,         | 80,          | 240}         |
| 07144          | , { {      | 250,         | 190,         | 250,         | 120,         | 250}         |
| 07145          | , {        | 250,         | 140,         | 250,         | 90,          | 250}         |
| 07146          | , {        | 240,         | 190,         | 240,         | 80,          | 240}         |
| 07147          | , {        | 250,         | 140,         | 250,         | 90,          | 250}         |
| 07148          | , {        | 150,         | 40,          | 150,         | 120,         | 150}         |
| 07149<br>07150 | }          |              |              |              |              |              |
| 07151          | ,{{{       | 260,         | 250,         | 260,         | 250,         | 230}         |
| 07152          | , {        | 260,         | 250,         | 260,         | 250,         | 230}         |
| 07153          | , {        | 240,         | 230,         | 240,         | 230,         | 150}         |
| 07154          | , {        | 240,         | 240,         | 240,         | 240,         | 150}         |
| 07155<br>07156 | , {<br>}   | 240,         | 230,         | 240,         | 230,         | 150}         |
| 07157          | , { {      | 260,         | 250,         | 260,         | 250,         | 230}         |
| 07158          | , {        | 260,         | 250,         | 260,         | 250,         | 230}         |
| 07159          | , {        | 230,         | 230,         | 230,         | 230,         | 140}         |
| 07160          | , {        | 190,         | 130,         | 190,         | 130,         | 40}          |
| 07161<br>07162 | , {        | 230,         | 230,         | 230,         | 230,         | 140}         |
| 07162          | }<br>,{{   | 240,         | 240,         | 240,         | 240,         | 150}         |
| 07164          | , {        | 240,         | 240,         | 240,         | 240,         | 150}         |
| 07165          | , {        | 240,         | 230,         | 240,         | 230,         | 150}         |
| 07166          | , {        | 240,         | 240,         | 240,         | 240,         | 150}         |
| 07167          | , {        | 240,         | 230,         | 240,         | 230,         | 150}         |
| 07168<br>07169 | }<br>,{{   | 260,         | 230,         | 260,         | 230,         | 140}         |
| 07170          | , (        | 260,         | 200,         | 260,         | 200,         | 110}         |
| 07171          | , {        | 230,         | 230,         | 230,         | 230,         | 140}         |
| 07172          | , {        | 120,         | 80,          | 80,          | 80,          | 120}         |
| 07173          | , {        | 230,         | 230,         | 230,         | 230,         | 140}         |
| 07174          | }          | 0.40         | 0.40         | 0.40         | 0.40         | 1501         |
| 07175<br>07176 | , { {      | 240,         | 240,<br>240, | 240,<br>240, | 240,<br>240, | 150}         |
| 07170          | , {<br>, { | 240,<br>240, | 230,         | 240,         | 230,         | 150}<br>150} |
| 07178          | , {        | 240,         | 240,         | 240,         | 240,         | 150}         |
| 07179          | , {        | 150,         | 140,         | 150,         | 140,         | 60}          |
| 07180          | }          |              |              |              |              |              |
| 07181          | }          |              |              |              |              |              |
| 07182<br>07183 | }<br>,{{{{ | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07183          | ,1111      | 280,         | 280,         | 260,         | 250,         | 260}         |
| 07185          | , {        | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07186          | , {        | 280,         | 280,         | 260,         | 250,         | 260}         |
| 07187          | , {        | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07188          | }          | 200          | 200          | 260          | 250          | 2001         |
| 07189<br>07190 | ,{{<br>,{  | 280,<br>280, | 280,<br>280, | 260,<br>260, | 250,<br>250, | 260}<br>260} |
| 07190          | , {        | 230,         | 230,         | 220,         | 210,         | 220}         |
| 07192          | , {        | 210,         | 170,         | 210,         | 150,         | 210}         |
|                |            |              |              |              |              |              |

| 07193          | , {        | 230,         | 230,         | 220,         | 210,         | 220}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 07194<br>07195 | }<br>,{{   | 200          | 200          | 260          | 280,         | 260}         |
| 07196          | , 11       | 280,<br>280, | 280,<br>280, | 260,<br>260, | 250,         | 260}         |
| 07197          | , {        | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07198          | , {        | 280,         | 280,         | 260,         | 250,         | 260}         |
| 07199<br>07200 | , {        | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07200          | }<br>,{{   | 230,         | 230,         | 220,         | 210,         | 220}         |
| 07202          | , {        | 220,         | 180,         | 220,         | 160,         | 220}         |
| 07203          | , {        | 230,         | 230,         | 220,         | 210,         | 220}         |
| 07204          | , {        | 210,         | 130,         | 110,         | 210,         | 140}         |
| 07205<br>07206 | , {<br>}   | 230,         | 230,         | 220,         | 210,         | 220}         |
| 07207          | , {{       | 280,         | 280,         | 260,         | 250,         | 260}         |
| 07208          | , {        | 280,         | 280,         | 260,         | 250,         | 260}         |
| 07209<br>07210 | , {        | 250,         | 250,         | 230,         | 250,         | 230}         |
| 07210          | , {<br>, { | 280,<br>250, | 280,<br>250, | 260,<br>180, | 250,<br>170, | 260}<br>180} |
| 07212          | }          | ,            |              |              |              |              |
| 07213          | }          |              |              |              |              |              |
| 07214<br>07215 | , { { {    | 280,<br>280, | 280,<br>280, | 260,<br>260, | 280,<br>220, | 260}<br>260} |
| 07216          | , {<br>, { | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07217          | , {        | 280,         | 280,         | 260,         | 220,         | 260}         |
| 07218          | , {        | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07219<br>07220 | }<br>,{{   | 280,         | 280,         | 260,         | 220,         | 260}         |
| 07221          | , (        | 280,         | 280,         | 260,         | 220,         | 260}         |
| 07222          | , {        | 230,         | 230,         | 220,         | 180,         | 220}         |
| 07223          | , {        | 170,         | 170,         | 160,         | 120,         | 160}         |
| 07224<br>07225 | , {<br>}   | 230,         | 230,         | 220,         | 180,         | 220}         |
| 07226          | , { {      | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07227          | , {        | 280,         | 280,         | 260,         | 220,         | 260}         |
| 07228          | , {        | 280,         | 280,         | 260,         | 280,         | 260}         |
| 07229<br>07230 | , {<br>, { | 280,<br>280, | 280,<br>280, | 260,<br>260, | 220,<br>280, | 260}<br>260} |
| 07231          | }          | 200,         | 200,         | 200,         | 200,         | 200,         |
| 07232          | , { {      | 230,         | 230,         | 220,         | 200,         | 220}         |
| 07233          | , {        | 180,         | 180,         | 170,         | 130,         | 170}         |
| 07234<br>07235 | , {<br>, { | 230,<br>200, | 230,<br>120, | 220,<br>110, | 180,<br>200, | 220}<br>110} |
| 07236          | , {        | 230,         | 230,         | 220,         | 180,         | 220}         |
| 07237          | }          |              |              |              |              |              |
| 07238          | , { {      | 280,         | 280,         | 260,         | 250,         | 260}         |
| 07239<br>07240 | , {<br>, { | 280,<br>250, | 280,<br>250, | 260,<br>230, | 220,<br>250, | 260}<br>230} |
| 07241          | , {        | 280,         | 280,         | 260,         | 220,         | 260}         |
| 07242          | , {        | 250,         | 250,         | 180,         | 140,         | 180}         |
| 07243<br>07244 | }          |              |              |              |              |              |
| 07245          | ,{{{       | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07246          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07247          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07248<br>07249 | , {<br>, { | 260,<br>260, | 250,<br>250, | 260,<br>260, | 250,<br>250, | 260}<br>260} |
| 07250          | }          |              |              |              |              | ,            |
| 07251          | , { {      | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07252<br>07253 | , {<br>, { | 260,<br>210, | 250,<br>210, | 260,<br>210, | 250,<br>210, | 260}<br>210} |
| 07254          | , {        | 210,         | 150,         | 210,         | 150,         | 210)         |
| 07255          | , {        | 210,         | 210,         | 210,         | 210,         | 210}         |
| 07256          | }          | 0.00         | 0.50         | 0.60         | 0.5.0        | 0.601        |
| 07257<br>07258 | ,{{<br>,{  | 260,<br>260, | 250,<br>250, | 260,<br>260, | 250,<br>250, | 260}<br>260} |
| 07259          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07260          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07261          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07262<br>07263 | }<br>,{{   | 220,         | 210,         | 220,         | 210,         | 220}         |
| 07264          | , {        | 220,         | 160,         | 220,         | 160,         | 220}         |
| 07265          | , {        | 210,         | 210,         | 210,         | 210,         | 210}         |
| 07266          | , {        | 100,         | 100,         | 100,         | 100,         | 100}         |
| 07267<br>07268 | , {<br>}   | 210,         | 210,         | 210,         | 210,         | 210}         |
| 07269          | , { {      | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07270          | , {        | 260,         | 250,         | 260,         | 250,         | 260}         |
| 07271<br>07272 | , {        | 230 <b>,</b> | 220,<br>250  | 230,<br>260, | 220,<br>250, | 230}         |
| 07272          | , {<br>, { | 260,<br>170, | 250,<br>170, | 260,<br>170, | 170,         | 260}<br>170} |
| 07274          | }          | • ,          | - /          | - ,          | - ,          | - ,          |
| 07275          | }          | 0.55         | 0.7.6        | 0.00         | 0.7.6        | 0.00         |
| 07276<br>07277 | ,{{{<br>,{ | 260,<br>260, | 210,<br>150, | 260,<br>260, | 210,<br>140, | 260}<br>260} |
| 07277          | , {        | 260,         | 210,         | 260,         | 100,         | 260}         |
| 07279          | , {        | 260,         | 150,         | 260,         | 210,         | 260}         |
|                |            |              |              |              |              |              |

| 07280          | , {        | 260,         | 210,         | 260,         | 150,         | 260}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 07281<br>07282 | }<br>,{{   | 260,         | 150,         | 260,         | 130,         | 260}         |
| 07283          | , {        | 260,         | 150,         | 260,         | 100,         | 260}         |
| 07284<br>07285 | , {<br>, { | 220,<br>160, | 110,<br>50,  | 220,<br>160, | 60,<br>130,  | 220}<br>160} |
| 07286          | , {        | 220,         | 110,         | 220,         | 60,          | 220}         |
| 07287<br>07288 | }<br>,{{   | 260,         | 210,         | 260,         | 100,         | 260}         |
| 07289          | , {        | 260,         | 150,         | 260,         | 100,         | 260}         |
| 07290<br>07291 | , {<br>, { | 260,<br>260, | 210,<br>150, | 260,<br>260, | 100,<br>100, | 260}<br>260} |
| 07292          | , {        | 260,         | 210,         | 260,         | 100,         | 260}         |
| 07293<br>07294 | }          | 220          | 120          | 220          | 210          | 2201         |
| 07294          | ,{{<br>,{  | 220,<br>170, | 130,<br>60,  | 220,<br>170, | 210,<br>140, | 220}<br>170} |
| 07296          | , {        | 220,         | 110,         | 220,         | 60,          | 220}         |
| 07297<br>07298 | , {<br>, { | 210,<br>220, | 130,<br>110, | 110,<br>220, | 210,<br>60,  | 110}<br>220} |
| 07299          | }          |              |              |              |              |              |
| 07300<br>07301 | ,{{<br>,{  | 260,<br>260, | 180,<br>150, | 260,<br>260, | 150,<br>100, | 260}<br>260} |
| 07302          | , {        | 230,         | 180,         | 230,         | 70,          | 230}         |
| 07303<br>07304 | , {<br>, { | 260,<br>180, | 150,<br>70,  | 260,<br>180, | 100,<br>150, | 260}<br>180} |
| 07305          | }          | 100,         | , , ,        | 200,         | 100,         | 100,         |
| 07306<br>07307 | }<br>,{{{  | 260,         | 250,         | 260,         | 250,         | 230}         |
| 07307          | ,111       | 260,         | 250,         | 260,         | 250,         | 230}         |
| 07309          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07310<br>07311 | , {<br>, { | 260,<br>260, | 250,<br>250, | 260,<br>260, | 250,<br>250, | 170}<br>170} |
| 07312          | }          | 0.60         | 0.50         | 260          | 0.50         | 0001         |
| 07313<br>07314 | ,{{<br>,{  | 260,<br>260, | 250,<br>250, | 260,<br>260, | 250,<br>250, | 230}         |
| 07315          | , {        | 210,         | 210,         | 210,         | 210,         | 120}         |
| 07316<br>07317 | , {<br>, { | 210,<br>210, | 150,<br>210, | 210,<br>210, | 150,<br>210, | 60}<br>120}  |
| 07318          | }          | ,            |              |              |              | ,            |
| 07319<br>07320 | ,{{<br>,{  | 260,<br>260, | 250,<br>250, | 260,<br>260, | 250,<br>250, | 170}<br>170} |
| 07321          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07322<br>07323 | , {<br>, { | 260,         | 250,<br>250, | 260,         | 250,<br>250, | 170}<br>170} |
| 07323          | , \<br>}   | 260,         | 230,         | 260,         | 230,         | 1/0}         |
| 07325          | , { {      | 220,         | 210,         | 220,         | 210,         | 140}         |
| 07326<br>07327 | , {<br>, { | 220,<br>210, | 160,<br>210, | 220,<br>210, | 160,<br>210, | 70}<br>120}  |
| 07328          | , {        | 140,         | 100,         | 100,         | 100,         | 140}         |
| 07329<br>07330 | , {<br>}   | 210,         | 210,         | 210,         | 210,         | 120}         |
| 07331          | , { {      | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07332<br>07333 | , {<br>, { | 260,<br>230, | 250,<br>220, | 260,<br>230, | 250,<br>220, | 170}<br>140} |
| 07334          | , {        | 260,         | 250,         | 260,         | 250,         | 170}         |
| 07335<br>07336 | , {<br>}   | 170,         | 170,         | 170,         | 170,         | 80}          |
| 07337          | }          |              |              |              |              |              |
| 07338<br>07339 | }<br>,{{{{ | 370,         | 370,         | 350,         | 320,         | 350}         |
| 07340          | , {        | 350,         | 340,         | 350,         | 320,         | 350}         |
| 07341<br>07342 | , {<br>, { | 310,<br>310, | 310,<br>310, | 290,<br>290, | 310,<br>280, | 290}<br>290} |
| 07343          | , {        | 370,         | 370,         | 290,         | 310,         | 290}         |
| 07344<br>07345 | }<br>,{{   | 340,         | 340,         | 330,         | 320,         | 330}         |
| 07346          | , {        | 340,         | 340,         | 330,         | 320,         | 330}         |
| 07347<br>07348 | , {        | 310,<br>270, | 310,<br>230, | 290,<br>270, | 280,<br>200, | 290}<br>270} |
| 07349          | , {<br>, { | 310,         | 310,         | 290,         | 280,         | 290}         |
| 07350          | }          | 210          | 310,         | 200          | 310,         | 2001         |
| 07351<br>07352 | ,{{<br>,{  | 310,<br>310, | 310,         | 290,<br>290, | 280,         | 290}<br>290} |
| 07353          | , {        | 310,         | 310,         | 290,         | 310,         | 290}         |
| 07354<br>07355 | , {<br>, { | 310,<br>310, | 310,<br>310, | 290,<br>290, | 280,<br>310, | 290}<br>290} |
| 07356          | }          |              |              |              |              |              |
| 07357<br>07358 | ,{{<br>,{  | 350,<br>350, | 310,<br>310, | 350,<br>350, | 280,<br>280, | 350}<br>350} |
| 07359          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |
| 07360<br>07361 | , {<br>, { | 260,<br>310, | 180,<br>310, | 160,<br>290, | 260,<br>280, | 200}         |
| 07362          | }          |              |              |              |              |              |
| 07363<br>07364 | ,{{<br>,{  | 370,<br>310, | 370,<br>310, | 290,<br>290, | 310,<br>280, | 290}<br>290} |
| 07365          | , {        | 310,         | 310,         | 290,         | 310,         | 290}         |
| 07366          | , {        | 310,         | 310,         | 290,         | 280,         | 290}         |

| 07367<br>07368 | , {<br>}   | 370,         | 370,         | 290,         | 280,         | 290}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 07369          | }          |              |              |              |              |              |
| 07370          | ,{{{       | 370,         | 370,         | 330,         | 310,         | 330}         |
| 07371<br>07372 | , {<br>, { | 340,<br>310, | 340,<br>310, | 330,<br>290, | 290,<br>310, | 330}<br>290} |
| 07373          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 07374          | , {        | 370,         | 370,         | 290,         | 310,         | 290}         |
| 07375<br>07376 | }          | 240          | 2.40         | 220          | 200          | 2201         |
| 07376          | ,{{<br>,{  | 340,<br>340, | 340,<br>340, | 330,<br>330, | 290,<br>290, | 330}         |
| 07378          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 07379          | , {        | 230,         | 230,         | 210,         | 170,         | 210}         |
| 07380<br>07381 | , {<br>}   | 310,         | 310,         | 290,         | 250,         | 290}         |
| 07382          | , { {      | 310,         | 310,         | 290,         | 310,         | 290}         |
| 07383          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 07384          | , {        | 310,         | 310,         | 290,         | 310,         | 290}         |
| 07385<br>07386 | , {<br>, { | 310,<br>310, | 310,<br>310, | 290,<br>290, | 250,<br>310, | 290}<br>290} |
| 07387          | }          | ,            | ,            | ,            | ,            | ,            |
| 07388          | , { {      | 310,         | 310,         | 290,         | 250,         | 290}         |
| 07389<br>07390 | , {<br>, { | 310,<br>310, | 310,<br>310, | 290,<br>290, | 250,<br>250, | 290}<br>290} |
| 07390          | , {        | 250,         | 180,         | 160,         | 250,         | 160}         |
| 07392          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 07393          | }          | 270          | 270          | 000          | 210          | 0001         |
| 07394<br>07395 | ,{{<br>,{  | 370,<br>310, | 370,<br>310, | 290,<br>290, | 310,<br>250, | 290}<br>290} |
| 07396          | , {        | 310,         | 310,         | 290,         | 310,         | 290}         |
| 07397          | , {        | 310,         | 310,         | 290,         | 250,         | 290}         |
| 07398          | , {        | 370,         | 370,         | 290,         | 250,         | 290}         |
| 07399<br>07400 | }          |              |              |              |              |              |
| 07401          | ,{{{       | 350,         | 320,         | 350,         | 320,         | 350}         |
| 07402          | , {        | 350,         | 320,         | 350,         | 320,         | 350}         |
| 07403<br>07404 | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07404          | , {<br>, { | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 290}         |
| 07406          | }          | ,            | ,            |              |              |              |
| 07407          | , { {      | 320,         | 320,         | 320,         | 320,         | 320}         |
| 07408<br>07409 | , {<br>, { | 320,<br>290, | 320,<br>280, | 320,<br>290, | 320,<br>280, | 320}<br>290} |
| 07410          | , {        | 270,         | 200,         | 270,         | 200,         | 270}         |
| 07411          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07412<br>07413 | }          | 200          | 200          | 200          | 200          | 2001         |
| 07413          | ,{{<br>,{  | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 290}<br>290} |
| 07415          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07416          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07417<br>07418 | , {<br>}   | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07419          | , { {      | 350,         | 280,         | 350,         | 280,         | 350}         |
| 07420          | , {        | 350,         | 280,         | 350,         | 280,         | 350}         |
| 07421<br>07422 | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07422          | , {        | 160,<br>290, | 150,<br>280, | 160,<br>290, | 150,<br>280, | 160}<br>290} |
| 07424          | }          |              |              |              |              |              |
| 07425          | , { {      | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07426<br>07427 | , {<br>, { | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 290}<br>290} |
| 07428          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07429          | , {        | 290,         | 280,         | 290,         | 280,         | 290}         |
| 07430<br>07431 | }          |              |              |              |              |              |
| 07432          | ,{{{       | 330,         | 240,         | 330,         | 260,         | 330}         |
| 07433          | , {        | 330,         | 220,         | 330,         | 260,         | 330}         |
| 07434          | , {        | 290,         | 240,         | 290,         | 130,         | 290}         |
| 07435<br>07436 | , {<br>, { | 290,<br>290, | 180,<br>240, | 290,<br>290, | 260,<br>260, | 290}<br>290} |
| 07437          | }          | ,            | ,            | ,            | ,            | ,            |
| 07438          | , { {      | 330,         | 220,         | 330,         | 180,         | 330}         |
| 07439<br>07440 | , {        | 330,<br>290, | 220,<br>180, | 330,<br>290, | 170,<br>130, | 330}<br>290} |
| 07441          | , {<br>, { | 210,         | 100,         | 210,         | 180,         | 210}         |
| 07442          | , {        | 290,         | 180,         | 290,         | 130,         | 290}         |
| 07443          | }          | 200          | 240          | 200          | 120          | 2001         |
| 07444<br>07445 | ,{{<br>,{  | 290,<br>290, | 240,<br>180, | 290,<br>290, | 130,<br>130, | 290}<br>290} |
| 07446          | , {        | 290,         | 240,         | 290,         | 130,         | 290}         |
| 07447          | , {        | 290,         | 180,         | 290,         | 130,         | 290}         |
| 07448          | , {        | 290,         | 240,         | 290,         | 130,         | 290}         |
| 07449<br>07450 | }<br>,{{   | 290,         | 180,         | 290,         | 260,         | 290}         |
| 07451          | , {        | 290,         | 180,         | 290,         | 260,         | 290}         |
| 07452          | , {        | 290,         | 180,         | 290,         | 130,         | 290}         |
| 07453          | , {        | 260,         | 180,         | 160,         | 260,         | 160}         |

| 07454          | , {        | 290,         | 180,         | 290,         | 130,         | 290}           |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 07455<br>07456 | }<br>,{{   | 290,         | 240,         | 290,         | 260,         | 290}           |
| 07457          | , (        | 290,         | 180,         | 290,         | 130,         | 290}           |
| 07458          | , {        | 290,         | 240,         | 290,         | 130,         | 290}           |
| 07459<br>07460 | , {<br>, { | 290,<br>290, | 180,<br>180, | 290,<br>290, | 130,<br>260, | 290}           |
| 07461          | }          | 230,         | 100,         | 230,         | 200,         | 230)           |
| 07462          | }          |              |              |              |              |                |
| 07463<br>07464 | , { { {    | 350,         | 320,         | 350 <b>,</b> | 320,         | 290}           |
| 07464          | , {<br>, { | 350,<br>290, | 320,<br>280, | 350,<br>290, | 320,<br>280, | 290}           |
| 07466          | , {        | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07467          | , {        | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07468<br>07469 | }<br>,{{   | 320,         | 320,         | 320,         | 320,         | 290}           |
| 07470          | , {        | 320,         | 320,         | 320,         | 320,         | 290}           |
| 07471          | , {        | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07472<br>07473 | , {        | 270,<br>290, | 200,<br>280, | 270,<br>290, | 200,<br>280, | 120}<br>200}   |
| 07473          | , {<br>}   | 230,         | 200,         | 230,         | 200,         | 200 }          |
| 07475          | , { {      | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07476          | , {        | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07477<br>07478 | , {<br>, { | 290,<br>290, | 280,<br>280, | 290,<br>290, | 280,<br>280, | 200}           |
| 07479          | , {        | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07480          | }          |              |              |              |              |                |
| 07481          | , { {      | 350,         | 280,         | 350,         | 280,         | 200}           |
| 07482<br>07483 | , {<br>, { | 350,<br>290, | 280,<br>280, | 350,<br>290, | 280,<br>280, | 200}           |
| 07484          | , {        | 200,         | 150,         | 160,         | 150,         | 200}           |
| 07485          | , {        | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07486<br>07487 | }<br>,{{   | 290          | 290          | 290,         | 280,         | 2001           |
| 07488          | , 11       | 290,<br>290, | 280,<br>280, | 290,         | 280,         | 200}           |
| 07489          | , {        | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07490          | , {        | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07491<br>07492 | , {<br>}   | 290,         | 280,         | 290,         | 280,         | 200}           |
| 07492          | }          |              |              |              |              |                |
| 07494          | }          |              |              |              |              |                |
| 07495          | }          | TNE          | TAIT         | T.1.         | T.170        | TATEL          |
| 07496<br>07497 | }}}}},,    | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07498          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07499          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07500<br>07501 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07501          | ,{{        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07503          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07504          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07505<br>07506 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07507          | }          | ,            | ,            | ,            | ,            | ,              |
| 07508          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07509<br>07510 | , {        | INF,         | INF,         | INF,         | INF,         | INF }<br>INF } |
| 07511          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07512          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07513<br>07514 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07515          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07516          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07517          | , {        | INF,         | INF,         | INF,<br>INF, | INF,         | INF }<br>INF } |
| 07518<br>07519 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | TIME }         |
| 07520          | , {{       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07521          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07522<br>07523 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07524          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07525          | }          |              |              |              |              |                |
| 07526          | }          |              |              |              |              |                |
| 07527<br>07528 | ,{{{<br>,{ | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07529          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07530          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07531<br>07532 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07532          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07534          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07535          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07536<br>07537 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07538          | }          | /            | /            | -mr,         | - THE /      | T141 }         |
| 07539          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07540          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|                |            |              |              |              |              |                |

| 07541          | ,         | TNID         | TNE          | TNE          | TAIR         | TATEL          |
|----------------|-----------|--------------|--------------|--------------|--------------|----------------|
| 07541<br>07542 | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07542          | , {       | INF,         | INF,<br>INF, | INF,         | INF,<br>INF, | INF }<br>INF } |
| 07544          | , {<br>}  | INF,         | TIME,        | INF,         | TIME,        | TIME           |
| 07545          |           | TNE          | TME          | TME          | TNE          | INF }          |
| 07546          | ,{{<br>,{ | INF,<br>INF, | INF,         | INF,<br>INF, | INF,<br>INF, | INF }          |
| 07547          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07548          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07549          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07550          | , \<br>}  | TIME,        | TIME ,       | TIME,        | TIME,        | TIME }         |
| 07551          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07552          | , (       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07553          |           | INF,         | INF,         | INF,         | INF,         |                |
| 07554          | , {       | INF,         | INF,         | INF,         | INF,         | INF }<br>INF } |
| 07555          | , {       | INF,         |              |              |              |                |
| 07556          | , {<br>}  | TIME,        | INF,         | INF,         | INF,         | INF }          |
| 07557          | }         |              |              |              |              |                |
| 07558          | ,{{{      | TNE          | TNE          | TNE          | TNE          | INF }          |
| 07559          |           | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }          |
| 07560          | , {       |              |              |              |              |                |
| 07561          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
|                | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07562          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07563          | }         | TNID         | TNE          | TNE          | TAIR         | TATEL          |
| 07564          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07565<br>07566 | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07567          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
|                | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07568<br>07569 | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
|                | }         | TNID         | TNE          | TNE          | TAIR         | TATEL          |
| 07570          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07571          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07572          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07573          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07574          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07575          | }         |              |              |              |              |                |
| 07576          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07577          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07578          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07579          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07580          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07581          | }         |              |              |              |              |                |
| 07582          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07583          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07584          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07585          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07586          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07587          | }         |              |              |              |              |                |
| 07588          | }         |              |              |              |              |                |
| 07589          | , { { {   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07590          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07591          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07592          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07593          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07594          | }         |              |              |              |              |                |
| 07595          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07596          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07597          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07598          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07599          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07600          | }         | TAIT         | TAID         | TNIE         | T.110        | TATEL          |
| 07601<br>07602 | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
|                | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07603          | , {       | INF,         | INF,         | INF,<br>INF, | INF,         | INF }          |
| 07604<br>07605 | , {       | INF,         | INF,         |              | INF,<br>INF, | INF }          |
|                | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07606          | }         | TNID         | TNE          | TNE          | TAIR         | TATEL          |
| 07607          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07608          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07609          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07610          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07611          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07612          | }         | TAIT         | TAIT         | TNIP         | TNIP         | T 3. T T .     |
| 07613          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07614          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07615          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07616          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07617          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07618          | }         |              |              |              |              |                |
| 07619          | 111<br>}  | TNE          | TME          | TME          | TME          | י יידא ד       |
| 07620          | , { { {   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07621          | , {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07622<br>07623 | , {       | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07623          | , {       |              |              |              |              |                |
| 07624          | , {<br>}  | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07625          | , { {     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07627          |           | INF,         | INF,         | INF,         | INF,         | INF }          |
| 01021          | , {       | TIME,        | TIME !       | TIME,        | TIME ,       | TIME }         |
|                |           |              |              |              |              |                |

| 07628          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
|----------------|-------------|--------------|--------------|--------------|--------------|----------------|
| 07629          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07630          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07631<br>07632 | }<br>,{{    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07632          | , i i       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07634          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07635          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07636<br>07637 | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07638          | }<br>,{{    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07639          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07640          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07641          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07642<br>07643 | , {<br>}    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07644          | , { {       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07645          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07646          | , {         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07647<br>07648 | , {<br>, {  | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07649          | }           | 1111         | ,            | /            | ,            |                |
| 07650          | }           |              |              |              |              |                |
| 07651          | }           | 0.40         | 0.40         | 0.40         | 1.00         | 0.401          |
| 07652<br>07653 | ,{{{{<br>,{ | 240,<br>240, | 240,<br>240, | 240,<br>240, | 190,<br>190, | 240}           |
| 07654          | , {         | 220,         | 220,         | 220,         | 190,         | 220}           |
| 07655          | , {         | 240,         | 240,         | 240,         | 190,         | 240}           |
| 07656          | , {         | 210,         | 210,         | 210,         | 170,         | 210}           |
| 07657          | }           | 200          | 200          | 200          | 150          | 2001           |
| 07658<br>07659 | ,{{<br>,{   | 200,<br>200, | 200,<br>200, | 200,<br>200, | 150,<br>150, | 200}           |
| 07660          | , {         | 190,         | 190,         | 190,         | 150,         | 190}           |
| 07661          | , {         | 160,         | 100,         | 160,         | 80,          | 130}           |
| 07662          | , {         | 190,         | 190,         | 190,         | 150,         | 190}           |
| 07663<br>07664 | }<br>,{{    | 240,         | 240,         | 240,         | 190,         | 240}           |
| 07665          | , i i       | 240,         | 240,         | 240,         | 190,         | 240}           |
| 07666          | , {         | 220,         | 220,         | 220,         | 190,         | 220}           |
| 07667          | , {         | 240,         | 240,         | 240,         | 190,         | 240}           |
| 07668<br>07669 | , {<br>}    | 210,         | 210,         | 210,         | 170,         | 210}           |
| 07670          | , { {       | 190,         | 190,         | 190,         | 150,         | 190}           |
| 07671          | , {         | 160,         | 100,         | 160,         | 80,          | 130}           |
| 07672          | , {         | 190,         | 190,         | 190,         | 150,         | 190}           |
| 07673          | , {         | 150,         | 70,          | 50,          | 150,         | 90}            |
| 07674<br>07675 | , {<br>}    | 190,         | 190,         | 190,         | 150,         | 190}           |
| 07676          | , { {       | 240,         | 240,         | 240,         | 190,         | 240}           |
| 07677          | , {         | 240,         | 240,         | 240,         | 190,         | 240}           |
| 07678          | , {         | 210,         | 210,         | 210,         | 170,         | 210}           |
| 07679<br>07680 | , {<br>, {  | 240,<br>180, | 240,<br>180, | 240,<br>120, | 190,<br>90,  | 240}<br>120}   |
| 07681          | }           | 100,         | 100,         | 120,         | 30,          | 120,           |
| 07682          | }           |              |              |              |              |                |
| 07683          | , { { {     | 240,         | 240,         | 240,         | 190,         | 240}           |
| 07684<br>07685 | , {<br>, {  | 240,<br>220, | 240,<br>220, | 240,<br>220, | 140,<br>190, | 240}           |
| 07686          | , {         | 240,         | 240,         | 240,         | 140,         | 240}           |
| 07687          | , {         | 210,         | 210,         | 210,         | 170,         | 210}           |
| 07688          | }           |              |              |              |              |                |
| 07689<br>07690 | , { {       | 200,<br>200, | 200,<br>200, | 200,<br>200, | 100,<br>100, | 200}           |
| 07691          | , {<br>, {  | 190,         | 190,         | 190,         | 100,         | 190}           |
| 07692          | , {         | 100,         | 100,         | 100,         | 10,          | 100}           |
| 07693          | , {         | 190,         | 190,         | 190,         | 100,         | 190}           |
| 07694          | }           | 0.40         | 0.40         | 0.40         | 1.00         | 0.401          |
| 07695<br>07696 | ,{{<br>,{   | 240,<br>240, | 240,<br>240, | 240,<br>240, | 190,<br>140, | 240}           |
| 07697          | , {         | 220,         | 220,         | 220,         | 190,         | 220}           |
| 07698          | , {         | 240,         | 240,         | 240,         | 140,         | 240}           |
| 07699          | , {         | 210,         | 210,         | 210,         | 170,         | 210}           |
| 07700          | }           | 100          | 1.00         | 1.00         | 1.00         | 1001           |
| 07701<br>07702 | ,{{<br>,{   | 190,<br>100, | 190,<br>100, | 190,<br>100, | 100,<br>10,  | 190}<br>100}   |
| 07703          | , {         | 190,         | 190,         | 190,         | 100,         | 190}           |
| 07704          | , {         | 80,          | 50,          | 50,          | 80,          | 50}            |
| 07705          | , {         | 190,         | 190,         | 190,         | 100,         | 190}           |
| 07706<br>07707 | }<br>,{{    | 240,         | 240,         | 240,         | 170,         | 240}           |
| 07708          | , 11        | 240,         | 240,         | 240,         | 140,         | 240}           |
| 07709          | , {         | 210,         | 210,         | 210,         | 170,         | 210}           |
| 07710          | , {         | 240,         | 240,         | 240,         | 140,         | 240}           |
| 07711          | , {         | 180,         | 180,         | 120,         | 20,          | 120}           |
| 07712<br>07713 | }           |              |              |              |              |                |
| 07714          | , { { {     | 240,         | 190,         | 240,         | 190,         | 210}           |
|                |             |              |              |              |              |                |

| 07715<br>07716 | , {<br>, { | 240,<br>220, | 190,<br>180, | 240,<br>220, | 190,<br>180, | 210}<br>190} |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 07717<br>07718 | ,{<br>,{   | 240,<br>210, | 190,<br>160, | 240,<br>210, | 190,<br>160, | 210}<br>180} |
| 07719          | }          |              |              |              |              |              |
| 07720<br>07721 | ,{{<br>,{  | 200,<br>200, | 150,<br>150, | 200,<br>200, | 150,<br>150, | 170}<br>170} |
| 07722<br>07723 | ,{<br>,{   | 190,<br>160, | 150,<br>60,  | 190,<br>160, | 150,<br>60,  | 160}<br>130} |
| 07724          | , {        | 190,         | 150,         | 190,         | 150,         | 160}         |
| 07725<br>07726 | }<br>,{{   | 240,         | 190,         | 240,         | 190,         | 210}         |
| 07727          | , {        | 240,         | 190,         | 240,         | 190,         | 210}         |
| 07728<br>07729 | , {<br>, { | 220,<br>240, | 180,<br>190, | 220,<br>240, | 180,<br>190, | 190}<br>210} |
| 07730<br>07731 | , {        | 210,         | 160,         | 210,         | 160,         | 180}         |
| 07732          | }<br>,{{   | 190,         | 150,         | 190,         | 150,         | 160}         |
| 07733<br>07734 | ,{<br>,{   | 160,<br>190, | 60,<br>150,  | 160,<br>190, | 60,<br>150,  | 130}<br>160} |
| 07735          | , {        | 50,          | 0,           | 50,          | 0,           | 20}          |
| 07736<br>07737 | , {<br>}   | 190,         | 150,         | 190,         | 150,         | 160}         |
| 07738          | , { {      | 240,         | 190,         | 240,         | 190,         | 210}         |
| 07739<br>07740 | , {<br>, { | 240,<br>210, | 190,<br>160, | 240,<br>210, | 190,<br>160, | 210}<br>180} |
| 07741<br>07742 | , {<br>, { | 240,<br>120, | 190,<br>70,  | 240,<br>120, | 190,<br>70,  | 210}<br>90}  |
| 07743          | , t<br>}   | 120,         | 70,          | 120,         | 70,          | 90}          |
| 07744<br>07745 | }<br>,{{{  | 240,         | 180,         | 240,         | 150,         | 240}         |
| 07746          | , {        | 240,         | 130,         | 240,         | 80,          | 240}         |
| 07747<br>07748 | , {<br>, { | 220,<br>240, | 180,<br>130, | 220,<br>240, | 70,<br>150,  | 220}<br>240} |
| 07749          | , {        | 210,         | 160,         | 210,         | 90,          | 210}         |
| 07750<br>07751 | }<br>,{{   | 200,         | 90,          | 200,         | 80,          | 200}         |
| 07752          | , {        | 200,         | 90,          | 200,         | 40,          | 200}         |
| 07753<br>07754 | , {<br>, { | 190,<br>100, | 90,<br>0,    | 190,<br>100, | 40,<br>80,   | 190}<br>100} |
| 07755<br>07756 | , {<br>}   | 190,         | 90,          | 190,         | 40,          | 190}         |
| 07757          | , { {      | 240,         | 180,         | 240,         | 80,          | 240}         |
| 07758<br>07759 | , {<br>, { | 240,<br>220, | 130,<br>180, | 240,<br>220, | 80,<br>70,   | 240}         |
| 07760          | , {        | 240,         | 130,         | 240,         | 80,          | 240}         |
| 07761<br>07762 | , {<br>}   | 210,         | 160,         | 210,         | 50,          | 210}         |
| 07763<br>07764 | , { {      | 190,         | 90,          | 190,         | 150,<br>80,  | 190}         |
| 07765          | , {<br>, { | 100,<br>190, | 0,<br>90,    | 100,<br>190, | 40,          | 100}<br>190} |
| 07766<br>07767 | , {<br>, { | 150,<br>190, | 70,<br>90,   | 50,<br>190,  | 150,<br>40,  | 50}<br>190}  |
| 07768          | }          |              |              |              |              |              |
| 07769<br>07770 | ,{{<br>,{  | 240,<br>240, | 160,<br>130, | 240,<br>240, | 90,<br>80,   | 240}         |
| 07771          | , {        | 210,         | 160,         | 210,         | 50,          | 210}         |
| 07772<br>07773 | , {<br>, { | 240,<br>120, | 130,<br>10,  | 240,<br>120, | 80,<br>90,   | 240}<br>120} |
| 07774<br>07775 | }          |              |              |              |              |              |
| 07776          | , { { {    | 240,         | 190,         | 240,         | 190,         | 170}         |
| 07777<br>07778 | , {<br>, { | 240,<br>220, | 190,<br>180, | 240,<br>220, | 190,<br>180, | 170}<br>140} |
| 07779          | , {        | 240,         | 190,         | 240,         | 190,         | 150}         |
| 07780<br>07781 | , {<br>}   | 210,         | 160,         | 210,         | 160,         | 120}         |
| 07782          | , { {      | 200,         | 150,         | 200,         | 150,         | 170}         |
| 07783<br>07784 | , {<br>, { | 200,<br>190, | 150,<br>150, | 200,<br>190, | 150,<br>150, | 170}<br>110} |
| 07785<br>07786 | ,{<br>,{   | 160,<br>190, | 60,<br>150,  | 160,<br>190, | 60,<br>150,  | 20}<br>110}  |
| 07787          | }          | 100,         | 130,         | 100,         | 130,         | 110)         |
| 07788<br>07789 | ,{{<br>,{  | 240,<br>240, | 190,<br>190, | 240,<br>240, | 190,<br>190, | 150}<br>150} |
| 07790          | , {        | 220,         | 180,         | 220,         | 180,         | 140}         |
| 07791<br>07792 | ,{<br>,{   | 240,<br>210, | 190,<br>160, | 240,<br>210, | 190,<br>160, | 150}<br>120} |
| 07793          | }          |              |              |              |              |              |
| 07794<br>07795 | ,{{<br>,{  | 190,<br>160, | 150,<br>60,  | 190,<br>160, | 150,<br>60,  | 110}<br>20}  |
| 07796<br>07797 | , {        | 190,<br>90,  | 150,         | 190,<br>50,  | 150,<br>0,   | 110}         |
| 07798          | , {        | 190,         | 150,         | 190,         | 150,         | 110}         |
| 07799<br>07800 | }<br>,{{   | 240,         | 190,         | 240,         | 190,         | 150}         |
| 07801          | , {        | 240,         | 190,         | 240,         | 190,         | 150}         |
|                |            |              |              |              |              |              |

| 07802<br>07803          | , {<br>, {    | 210,<br>240, | 160,<br>190, | 210,<br>240, | 160,<br>190, | 120}<br>150} |
|-------------------------|---------------|--------------|--------------|--------------|--------------|--------------|
| 07804<br>07805<br>07806 | , {<br>}<br>} | 120,         | 70,          | 120,         | 70,          | 30}          |
| 07807<br>07808          | ,{{{{         | 210,         | 210,         | 210,         | 170,         | 210}         |
| 07809<br>07810          | , {<br>, {    | 210,<br>190, | 210,<br>190, | 210,<br>190, | 170,<br>160, | 210}<br>190} |
| 07811<br>07812          | , {           | 180,<br>190, | 180,<br>190, | 180,<br>190, | 150,<br>150, | 180}         |
| 07813<br>07814          | }<br>,{{      | 210,         | 210,         | 210,         | 170,         | 210}         |
| 07815<br>07816          | , {<br>, {    | 210,<br>190, | 210,<br>190, | 210,<br>190, | 170,<br>140, | 210}<br>190} |
| 07817                   | , {           | 70,          | 10,          | 70,          | -10,         | 40}          |
| 07818<br>07819          | , {<br>}      | 190,         | 190,         | 190,         | 140,         | 190}         |
| 07820<br>07821          | ,{{<br>,{     | 190,<br>180, | 190,<br>180, | 190,<br>180, | 150,<br>140, | 190}<br>180} |
| 07822                   | , {           | 190,         | 190,         | 190,         | 150,         | 190}         |
| 07823<br>07824          | , {<br>, {    | 180,<br>190, | 180,<br>190, | 180,<br>190, | 140,<br>150, | 180}<br>190} |
| 07825                   | }             |              |              | 100          |              | 1001         |
| 07826<br>07827          | ,{{<br>,{     | 190,<br>130, | 190,<br>70,  | 190,<br>130, | 150,<br>50,  | 190}<br>100} |
| 07828<br>07829          | , {<br>, {    | 190,<br>150, | 190,<br>70,  | 190,<br>50,  | 140,<br>150, | 190}<br>90}  |
| 07830                   | , {           | 190,         | 190,         | 190,         | 140,         | 190}         |
| 07831<br>07832          | }<br>,{{      | 190,         | 190,         | 190,         | 160,         | 190}         |
| 07833<br>07834          | , {<br>, {    | 180,<br>190, | 180,<br>190, | 180,<br>190, | 140,<br>160, | 180}<br>190} |
| 07835                   | , {           | 180,         | 180,         | 180,         | 140,         | 180}         |
| 07836<br>07837          | , {<br>}      | 170,         | 170,         | 110,         | 90,          | 110}         |
| 07838<br>07839          | }<br>,{{{     | 210,         | 210          | 210,         | 160,         | 2101         |
| 07840                   | , , , , ,     | 210,         | 210,<br>210, | 210,         | 120,         | 210}         |
| 07841<br>07842          | , {<br>, {    | 190,<br>180, | 190,<br>180, | 190,<br>180, | 160,<br>90,  | 190}<br>180} |
| 07843                   | , {           | 190,         | 190,         | 190,         | 150,         | 190}         |
| 07844<br>07845          | }<br>,{{      | 210,         | 210,         | 210,         | 120,         | 210}         |
| 07846<br>07847          | , {<br>, {    | 210,<br>190, | 210,<br>190, | 210,<br>190, | 120,<br>90,  | 210}<br>190} |
| 07848                   | , {           | 10,          | 10,          | 10,          | -80,         | 10}          |
| 07849<br>07850          | , {<br>}      | 190,         | 190,         | 190,         | 90,          | 190}         |
| 07851<br>07852          | ,{{<br>,{     | 190,<br>180, | 190,<br>180, | 190,<br>180, | 150,<br>90,  | 190}<br>180} |
| 07853                   | , {           | 190,         | 190,         | 190,         | 150,         | 190}         |
| 07854<br>07855          | , {<br>, {    | 180,<br>190, | 180,<br>190, | 180,<br>190, | 90,<br>150,  | 180}<br>190} |
| 07856<br>07857          | }<br>,{{      | 190,         | 190,         | 190,         | 90,          | 190}         |
| 07858                   | , {           | 70,          | 70,          | 70,          | -20,         | 70}          |
| 07859<br>07860          | , {           | 190,<br>80,  | 190,<br>50,  | 190,<br>50,  | 90,<br>80,   | 190}<br>50}  |
| 07861<br>07862          | , {<br>}      | 190,         | 190,         | 190,         | 90,          | 190}         |
| 07863                   | , { {         | 190,         | 190,         | 190,         | 160,         | 190}         |
| 07864<br>07865          | , {<br>, {    | 180,<br>190, | 180,<br>190, | 180,<br>190, | 90,<br>160,  | 180}<br>190} |
| 07866<br>07867          | , {           | 180,         | 180,         | 180,         | 90,          | 180}<br>110} |
| 07868                   | , {<br>}      | 170,         | 170,         | 110,         | 20,          | 110}         |
| 07869<br>07870          | }<br>,{{{     | 210,         | 170,         | 210,         | 170,         | 180}         |
| 07871                   | , {           | 210,         | 170,         | 210,         | 170,         | 180}         |
| 07872<br>07873          | , {<br>, {    | 190,<br>180, | 150,<br>140, | 190,<br>180, | 150,<br>140, | 160}<br>150} |
| 07874<br>07875          | , {<br>}      | 190,         | 140,         | 190,         | 140,         | 160}         |
| 07876                   | , { {         | 210,         | 170,         | 210,         | 170,         | 180}         |
| 07877<br>07878          | , {<br>, {    | 210,<br>190, | 170,<br>140, | 210,<br>190, | 170,<br>140, | 180}<br>160} |
| 07879<br>07880          | , {<br>, {    | 70,<br>190,  | -30,<br>140, | 70,<br>190,  | -30,<br>140, | 40}<br>160}  |
| 07881                   | }             |              |              |              |              |              |
| 07882<br>07883          | ,{{<br>,{     | 190,<br>180, | 140,<br>140, | 190,<br>180, | 140,<br>140, | 160}<br>150} |
| 07884<br>07885          | , {<br>, {    | 190,<br>180, | 140,<br>140, | 190,<br>180, | 140,<br>140, | 160}<br>150} |
| 07886                   | , {           | 190,         | 140,         | 190,         | 140,         | 160}         |
| 07887<br>07888          | }<br>,{{      | 190,         | 140,         | 190,         | 140,         | 160}         |
|                         |               |              |              |              |              |              |

| 07889          | , {         | 130,         | 30,          | 130,         | 30,          | 100}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 07890          | , {         | 190,         | 140,         | 190,         | 140,         | 160}         |
| 07891          | , {         | 50,          | 0,           | 50,          | 0,           | 20}          |
| 07892          | , {         | 190,         | 140,         | 190,         | 140,         | 160}         |
| 07893          | }           |              |              |              |              |              |
| 07894          | , { {       | 190,         | 150,         | 190,         | 150,         | 160}         |
| 07895          | , {         | 180,         | 140,         | 180,         | 140,         | 150}         |
| 07896          | , {         | 190,         | 150,         | 190,         | 150,         | 160}         |
| 07897          | , {         | 180,         | 140,         | 180,         | 140,         | 150}         |
| 07898          | , {         | 110,         | 70,          | 110,         | 70,          | 80}          |
| 07899          | }           |              |              |              |              |              |
| 07900          | }           | 010          | 1.50         | 010          | 1.50         | 0101         |
| 07901          | , { { {     | 210,         | 150,         | 210,         | 150,         | 210}         |
| 07902          | , {         | 210,         | 110,         | 210,         | 60,          | 210}         |
| 07903<br>07904 | , {         | 190,<br>180, | 150,<br>80,  | 190,<br>180, | 40,<br>150,  | 190}         |
| 07905          | ,{<br>,{    | 190,         | 140,         | 190,         | 90,          | 180}<br>190} |
| 07906          | }           | 100,         | 140,         | 100,         | 50,          | 100)         |
| 07907          | , { {       | 210,         | 110,         | 210,         | 60,          | 210}         |
| 07908          | , {         | 210,         | 110,         | 210,         | 60,          | 210}         |
| 07909          | , {         | 190,         | 80,          | 190,         | 30,          | 190}         |
| 07910          | , {         | 10,          | -90,         | 10,          | -10,         | 10}          |
| 07911          | , {         | 190,         | 80,          | 190,         | 30,          | 190}         |
| 07912          | }           |              |              |              |              |              |
| 07913          | , { {       | 190,         | 140,         | 190,         | 30,          | 190}         |
| 07914          | , {         | 180,         | 80,          | 180,         | 30,          | 180}         |
| 07915          | , {         | 190,         | 140,         | 190,         | 30,          | 190}         |
| 07916          | , {         | 180,         | 80,          | 180,         | 30,          | 180}         |
| 07917          | , {         | 190,         | 140,         | 190,         | 30,          | 190}         |
| 07918          | }           |              |              |              |              |              |
| 07919          | , { {       | 190,         | 80,          | 190,         | 150,         | 190}         |
| 07920          | , {         | 70,          | -30,         | 70,          | 50,          | 70}          |
| 07921<br>07922 | , {         | 190,         | 80,          | 190,         | 30,          | 190}         |
| 07922          | , {<br>, {  | 150,<br>190, | 70,          | 50,<br>190,  | 150,<br>30,  | 50}<br>190}  |
| 07923          | }           | 190,         | 80,          | 190,         | 50,          | 130 }        |
| 07925          | , { {       | 190,         | 150,         | 190,         | 90,          | 190}         |
| 07926          | , {         | 180,         | 80,          | 180,         | 30,          | 180}         |
| 07927          | , {         | 190,         | 150,         | 190,         | 40,          | 190}         |
| 07928          | , {         | 180,         | 80,          | 180,         | 30,          | 180}         |
| 07929          | , {         | 110,         | 10,          | 110,         | 90,          | 110}         |
| 07930          | }           |              |              |              |              |              |
| 07931          | }           |              |              |              |              |              |
| 07932          | , { { {     | 210,         | 170,         | 210,         | 170,         | 190}         |
| 07933          | , {         | 210,         | 170,         | 210,         | 170,         | 190}         |
| 07934          | , {         | 190,         | 150,         | 190,         | 150,         | 110}         |
| 07935          | , {         | 180,         | 140,         | 180,         | 140,         | 100}         |
| 07936          | , {         | 190,         | 140,         | 190,         | 140,         | 100}         |
| 07937          | }           | 010          | 1.00         | 010          | 1.00         | 1001         |
| 07938<br>07939 | , { {       | 210,         | 170,         | 210,         | 170,         | 190}         |
| 07939          | , {<br>, {  | 210,<br>190, | 170,<br>140, | 210,<br>190, | 170,<br>140, | 190}<br>100} |
| 07941          | , {         | 70,          | -30,         | 70,          | -30,         | -70}         |
| 07942          | , {         | 190,         | 140,         | 190,         | 140,         | 100}         |
| 07943          | }           | ,            | ,            | ,            | ,            | ,            |
| 07944          | , { {       | 190,         | 140,         | 190,         | 140,         | 100}         |
| 07945          | , {         | 180,         | 140,         | 180,         | 140,         | 100}         |
| 07946          | , {         | 190,         | 140,         | 190,         | 140,         | 100}         |
| 07947          | , {         | 180,         | 140,         | 180,         | 140,         | 100}         |
| 07948          | , {         | 190,         | 140,         | 190,         | 140,         | 100}         |
| 07949          | }           |              |              |              |              |              |
| 07950          | , { {       | 190,         | 140,         | 190,         | 140,         | 100}         |
| 07951          | , {         | 130,         | 30,          | 130,         | 30,          | -10}         |
| 07952          | , {         | 190,         | 140,         | 190,         | 140,         | 100}         |
| 07953<br>07954 | , {         | 90,          | 0,           | 50,          | 0,           | 90}          |
| 07955          | , {<br>}    | 190,         | 140,         | 190,         | 140,         | 100}         |
| 07956          | , { {       | 190,         | 150,         | 190,         | 150,         | 110}         |
| 07957          | , {         | 180,         | 140,         | 180,         | 140,         | 100}         |
| 07958          | , {         | 190,         | 150,         | 190,         | 150,         | 110}         |
| 07959          | , {         | 180,         | 140,         | 180,         | 140,         | 100}         |
| 07960          | , {         | 110,         | 70,          | 110,         | 70,          | 30}          |
| 07961          | }           |              |              |              |              |              |
| 07962          | }           |              |              |              |              |              |
| 07963          | }           |              |              |              |              |              |
| 07964          | , { { { { { | 370,         | 370,         | 340,         | 300,         | 340}         |
| 07965          | , {         | 340,         | 340,         | 340,         | 300,         | 340}         |
| 07966          | , {         | 310,         | 310,         | 310,         | 270,         | 310}         |
| 07967          | , {         | 310,         | 310,         | 310,         | 280,         | 310}         |
| 07968          | , {         | 370,         | 370,         | 310,         | 280,         | 310}         |
| 07969          | }           | 240          | 240          | 240          | 200          | 040:         |
| 07970          | , { {       | 340,         | 340,         | 340,         | 300,         | 340}         |
| 07971          | , {         | 340,         | 340,         | 340,         | 300,         | 340}         |
| 07972<br>07973 | , {<br>, {  | 310,<br>290, | 310,<br>230, | 310,<br>290, | 260,<br>200, | 310}<br>260} |
| 07973          | , {         | 310,         | 310,         | 310,         | 260,         | 310}         |
| 07975          | }           | 010,         | 010,         | 010,         | ,            | 0101         |
| -              | ,           |              |              |              |              |              |

| 07977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|------|------|------|------|------|
| 07978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | , { {   | 310, | 310, | 310, | 270, | 310} |
| 079799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |         |      |      |      |      | 310} |
| 07980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      |      |
| 07982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 310} |
| 07983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 220  | 210  | 220  | 0.00 | 2101 |
| 07984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      |      |
| 07986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 310} |
| 07987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 220} |
| 07988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 310, | 310, | 310, | 260, | 310} |
| 07990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 370, | 370, | 310, | 280, | 310} |
| 0.7991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | , {     |      |      |      |      | 310} |
| 07992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      |      |
| 07993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | , 1     |      |      |      |      |      |
| 07995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07993 |         | ,    | ,    | ,    | ·    | ,    |
| 07996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 270  | 270  | 240  | 0.70 | 2401 |
| 07997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      |      |
| 07999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 310} |
| 08000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 310} |
| 08001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 370, | 370, | 310, | 270, | 310} |
| 08002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 340, | 340, | 340, | 250, | 340} |
| 08004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | , {     |      |      |      |      | 340} |
| 08005         , {         310,         310,         210,         310,           08006         }           08007         , {         310,         310,         310,         270,         310,           08008         , {         310,         310,         310,         210,         310,           08010         , {         310,         310,         310,         270,         310,           08011         , {         310,         310,         310,         210,         310,           08012         }         08013         , {         310,         310,         210,         310,           08012         }         08013         , {         310,         310,         210,         310,           08012         ,         310,         310,         310,         210,         310,           08015         , {         310,         310,         310,         210,         310,           08015         , {         310,         310,         310,         210,         310,           08016         , {         210,         310,         310,         210,         310,           08018         ,         3                                                                                                                                                                                                                  |       |         |      |      |      |      |      |
| 08006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 310} |
| 08008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | ,    |      |      | ,    |      |
| 08009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 310} |
| 08010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      |      |
| 08011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 310} |
| 08013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | , {     | 310, | 310, | 310, | 270, | 310} |
| 08014       ,{       270,       270,       270,       170,       270,         08015       ,{       310,       310,       310,       210,       310,         08016       ,{       210,       180,       180,       210,       180,         08017       ,{       310,       310,       310,       210,       310,         08018       }       370,       370,       310,       210,       310,         08020       ,{       310,       310,       310,       210,       310,         08021       ,{       310,       310,       310,       270,       310,         08022       ,{       310,       310,       310,       270,       310,         08023       ,{       310,       310,       210,       310,         08024       }       80225       }       80826       ,{       4       300,       340,       300,       310,       260,       280,         08027       ,{       340,       300,       340,       300,       310,       260,       280,         08029       ,{       310,       260,       310,       260,       280, <t< td=""><td></td><td></td><td>310</td><td>310</td><td>310</td><td>210</td><td>3101</td></t<>                                                                                                                                                                                                        |       |         | 310  | 310  | 310  | 210  | 3101 |
| 08015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 270} |
| 08017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | , {     |      |      |      |      | 310} |
| 08018         }           08019         , { 370, 370, 310, 270, 310, 310, 200, 310, 310, 310, 210, 310, 310, 310, 270, 310, 310, 310, 270, 310, 310, 310, 210, 310, 310, 310, 210, 310, 310, 310, 210, 310, 310, 310, 210, 310, 310, 310, 210, 310, 310, 310, 210, 310, 310, 310, 280, 310, 380, 370, 370, 310, 210, 310, 380, 310, 380, 340, 300, 310, 380, 340, 300, 310, 380, 340, 300, 310, 380, 310, 260, 280, 310, 260, 280, 310, 260, 280, 310, 260, 280, 310, 260, 280, 310, 260, 310, 260, 280, 380, 310, 340, 300, 340, 300, 310, 380, 340, 300, 340, 300, 310, 380, 340, 300, 310, 380, 340, 300, 310, 380, 340, 300, 310, 380, 340, 300, 310, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 300, 310, 260, 280, 380, 340, 340, 340, 340, 340, 340, 340, 34                                                                                                                                                                                                                                 |       |         |      |      |      |      |      |
| 08019         , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         | 310, | 310, | 310, | 210, | 210} |
| 08021         ,{         310,         310,         270,         310,           08022         ,{         310,         310,         310,         210,         310,           08023         ,{         370,         370,         310,         210,         310,           08024         }         370,         370,         310,         210,         310,           08025         }         80026         ,{{{{340, 300, 340, 300, 340, 260, 280},         310,         260,         280,           08028         ,{         310, 260, 310, 260, 280,         260,         280,         280,           08030         ,{         310, 260, 310, 260, 280,         280,         280,         280,           08031         }         8032         ,{{{340, 300, 340, 300, 340, 260, 280,         280,         280,           08031         }         8033         ,{{340, 300, 340, 300, 310, 260, 280,         280,         280,           08032         ,{{{340, 300, 340, 300, 340, 300, 310, 260, 280,         280,         280,         280,           08033         ,{{340, 300, 340, 300, 340, 300, 310, 260, 280,         280,         280,         280,           08034         ,{{310, 260, 310, 260, 310, 260, 280,         280, <t< td=""><td></td><td>, { {</td><td></td><td>370,</td><td>310,</td><td>270,</td><td>310}</td></t<> |       | , { {   |      | 370, | 310, | 270, | 310} |
| 08022         ,{         310,         310,         210,         310,           08023         ,{         370,         370,         310,         210,         310,           08024         }         370,         370,         310,         210,         310,           08025         }         340,         300,         340,         300,         310,           08026         ,{         {         340,         300,         340,         300,         310,           08028         ,{         310,         260,         310,         260,         280,           08030         ,{         310,         260,         310,         260,         280,           08031         }         310,         260,         310,         260,         280,           08031         }         340,         300,         340,         300,         310,           08031         }         340,         300,         340,         300,         310,           08032         ,{         340,         300,         340,         300,         310,           08033         ,{         340,         300,         340,         300,         310, <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>310}</td>                                                                                                                                    |       |         |      |      |      |      | 310} |
| 08023         ,{         370,         370,         310,         210,         310}           08024         }         08025         }           08026         ,{{{{340, 300, 340, 300, 310}}}         300, 310, 260, 280}           08027         ,{         340, 300, 340, 300, 310, 260, 280}           08028         ,{         310, 260, 310, 260, 280}           08030         ,{         310, 260, 310, 260, 280}           08031         }         300, 340, 300, 340, 300, 310}           08033         ,{         340, 300, 340, 300, 310}           08034         ,{         310, 260, 310, 260, 280}           08035         ,{         290, 180, 290, 180, 260, 280}           08036         ,{         310, 260, 310, 260, 280}           08037          8           08038         ,{         310, 260, 310, 260, 280}           08040         ,{         310, 260, 310, 260, 280}           08041         ,{         310, 260, 310, 260, 280}           08042         ,{         310, 260, 310, 260, 280}           08043         ,{         30, 260, 310, 260, 280}           08044         ,{         30, 260, 310, 260, 280}           08045         ,{         310, 260, 310, 260, 280}<                                                                                                                                   |       |         |      |      |      |      |      |
| 08024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 310} |
| 08026         ,{{{ 340, 300, 340, 300, 310}}           08027         ,{ 340, 300, 340, 300, 310}           08028         ,{ 310, 260, 310, 260, 280}           08029         ,{ 310, 260, 310, 260, 280}           08030         ,{ 310, 260, 310, 260, 280}           08031         }           08032         ,{ 340, 300, 340, 300, 310}           08033         ,{ 340, 300, 340, 300, 310}           08034         ,{ 310, 260, 310, 260, 280}           08035         ,{ 290, 180, 290, 180, 260, 280}           08036         ,{ 310, 260, 310, 260, 280}           08037         }           08038         ,{ 310, 260, 310, 260, 280}           08039         ,{ 310, 260, 310, 260, 280}           08040         ,{ 310, 260, 310, 260, 280}           08041         ,{ 310, 260, 310, 260, 280}           08043         }           08044         ,{ 330, 260, 310, 260, 280}           08045         ,{ 330, 260, 310, 260, 280}           08046         ,{ 310, 260, 310, 260, 280}           08047         ,{ 180, 130, 180, 130, 150}           08048         ,{ 310, 260, 310, 260, 280}           08050         ,{ 310, 260, 310, 260, 280}           08051         ,{ 310, 260, 310, 260, 280}           08052                                                                                                            |       | }       |      |      |      |      |      |
| 08027         ,{         340,         300,         340,         200,         280,           08028         ,{         310,         260,         310,         260,         280,           08029         ,{         310,         260,         310,         260,         280,           08031         ,         310,         260,         310,         260,         280,           08031         ,         340,         300,         340,         300,         310,           08033         ,{         340,         300,         340,         300,         310,           08034         ,{         310,         260,         310,         260,         280,           08035         ,{         310,         260,         310,         260,         280,           08036         ,{         310,         260,         310,         260,         280,           08037          8038         ,{         310,         260,         310,         260,         280,           08039         ,{         310,         260,         310,         260,         280,           08040         ,{         310,         260,         310, </td <td></td> <td></td> <td>340.</td> <td>300.</td> <td>340.</td> <td>300.</td> <td>3101</td>                                                                                                                     |       |         | 340. | 300. | 340. | 300. | 3101 |
| 08029         ,{         310,         260,         310,         260,         280,           08030         ,{         310,         260,         310,         260,         280,           08031         }         340,         300,         340,         300,         310,           08032         ,{         340,         300,         340,         300,         310,           08033         ,{         310,         260,         310,         260,         280,           08034         ,{         310,         260,         310,         260,         280,           08035         ,{         290,         180,         290,         180,         260,           08036         ,{         310,         260,         310,         260,         280,           08037         ,         310,         260,         310,         260,         280,           08038         ,{         310,         260,         310,         260,         280,           08039         ,{         310,         260,         310,         260,         280,           08040         ,{         310,         260,         310,         260,         28                                                                                                                                                                                                          |       |         |      |      |      |      | 310} |
| 08030         ,{         310,         260,         310,         260,         280)           08031         }         340,         300,         340,         300,         310)           08032         ,{         340,         300,         340,         300,         310,           08033         ,{         340,         300,         340,         300,         310,           08034         ,{         310,         260,         310,         260,         280,           08035         ,{         290,         180,         290,         180,         260,         280,           08036         ,{         310,         260,         310,         260,         280,           08037         >         08038         ,{         310,         260,         310,         260,         280,           08039         ,{         310,         260,         310,         260,         280,           08040         ,{         310,         260,         310,         260,         280,           08041         ,{         310,         260,         310,         260,         280,           08043         }         310,         260,                                                                                                                                                                                                          |       |         |      |      |      |      | 280} |
| 08031         }           08032         , { 340, 300, 340, 300, 310}           08033         , { 310, 260, 310, 260, 280}           08034         , { 310, 260, 310, 260, 280}           08035         , { 290, 180, 290, 180, 260, 280}           08036         , { 310, 260, 310, 260, 280}           08037         }           08038         , { 310, 260, 310, 260, 280}           08039         , { 310, 260, 310, 260, 280}           08040         , { 310, 260, 310, 260, 280}           08042         , { 310, 260, 310, 260, 280}           08043         }           08044         , { 330, 260, 310, 260, 280}           08045         , { 330, 260, 310, 260, 280}           08046         , { 310, 260, 310, 260, 280}           08047         , { 180, 130, 180, 130, 150}           08048         , { 310, 260, 310, 260, 280}           08049         }           08050         , { 310, 260, 310, 260, 280}           08051         , { 310, 260, 310, 260, 280}           08052         , { 310, 260, 310, 260, 280}           08053         , { 310, 260, 310, 260, 280}           08054         , { 310, 260, 310, 260, 280}           08055         , { 310, 260, 310, 260, 280}           08056                                                                                                                     |       |         |      |      |      |      |      |
| 08032         , { 340, 300, 340, 300, 310}           08033         , 340, 300, 340, 300, 310}           08034         , 310, 260, 310, 260, 280}           08035         , 290, 180, 290, 180, 260, 280}           08036         , 310, 260, 310, 260, 280}           08037         )           08038         , 310, 260, 310, 260, 280}           08040         , 310, 260, 310, 260, 280}           08041         , 310, 260, 310, 260, 280}           08042         , 310, 260, 310, 260, 280}           08045         , 330, 260, 310, 260, 280}           08046         , 330, 260, 310, 260, 280}           08047         , 180, 130, 260, 310, 260, 280}           08048         , 310, 260, 310, 260, 300, 200, 300}           08049         , 310, 260, 310, 260, 280}           08049         , 310, 260, 310, 260, 280}           08050         , 310, 260, 310, 260, 280}           08051         , 310, 260, 310, 260, 280}           08052         , 310, 260, 310, 260, 280}           08053         , 310, 260, 310, 260, 280}           08054         , 310, 260, 310, 260, 280}           08055         , 310, 260, 310, 260, 280}           08056         , 310, 260, 310, 260, 280}           08057         , {{ 340, 240, 340, 240,                                                                                   |       | ,       | 310, | 200, | 310, | 200, | 200) |
| 08034         ,{         310,         260,         310,         260,         280,           08035         ,{         290,         180,         290,         180,         260,           08036         ,{         310,         260,         310,         260,         280,           08037         }         800,         310,         260,         280,         280,           08038         ,{         310,         260,         310,         260,         280,           08040         ,{         310,         260,         310,         260,         280,           08041         ,{         310,         260,         310,         260,         280,           08042         ,{         310,         260,         310,         260,         280,           08043         }         310,         260,         310,         260,         300,           08043         }         330,         220,         330,         260,         300,           08043         ,{         310,         260,         310,         260,         300,           08044         ,{         310,         260,         310,         260,         380                                                                                                                                                                                                          |       |         |      |      |      |      | 310} |
| 08035         ,{         290,         180,         290,         180,         260,         280,           08036         ,{         310,         260,         310,         260,         280,           08037         >         8038         ,{         310,         260,         310,         260,         280,           08039         ,{         310,         260,         310,         260,         280,           08040         ,{         310,         260,         310,         260,         280,           08041         ,{         310,         260,         310,         260,         280,           08042         ,{         310,         260,         310,         260,         280,           08043         }         310,         260,         310,         260,         280,           08043         }         330,         260,         330,         260,         300,           08045         ,{         310,         260,         310,         260,         300,           08046         ,{         310,         260,         310,         260,         280,           08048         ,{         310,         260,<                                                                                                                                                                                                          |       |         |      |      |      |      |      |
| 08036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 260} |
| 08038         , {{         310,         260,         310,         260,         280,           08039         , {         310,         260,         310,         260,         280,           08040         , {         310,         260,         310,         260,         280,           08041         , {         310,         260,         310,         260,         280,           08043         }         310,         260,         330,         260,         300,           08043         }         330,         220,         330,         220,         300,           08043         , {         310,         260,         310,         260,         300,           08045         , {         310,         260,         310,         260,         300,           08046         , {         310,         260,         310,         260,         280,           08047         , {         180,         130,         180,         130,         150,           08048         , {         310,         260,         310,         260,         280,           08050         , {         310,         260,         310,         260,                                                                                                                                                                                                          |       | , {     | 310, | 260, | 310, | 260, | 280} |
| 08039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 310  | 260  | 310  | 260  | 2001 |
| 08040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      |      |
| 08042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08040 | , {     | 310, |      | 310, |      | 280} |
| 08043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      |      |
| 08044         , { 330, 260, 330, 260, 300}           08045         , 330, 220, 330, 220, 300}           08046         , 310, 260, 310, 260, 280}           08047         , 180, 130, 180, 130, 150}           08048         , 310, 260, 310, 260, 280}           08049         }           08050         , 310, 260, 310, 260, 280}           08051         , 310, 260, 310, 260, 280}           08052         , 310, 260, 310, 260, 280}           08053         , 310, 260, 310, 260, 280}           08055         }           08056         }           08057         , { 340, 260, 340, 280, 340}           08058         , 340, 240, 340, 240, 340, 240, 340}           08059         , 310, 260, 310, 280, 310, 310, 310, 380, 310, 310, 310, 310, 310, 310, 310, 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         | 310, | 200, | 310, | 200, | 200} |
| 08046       ,{       310,       260,       310,       260,       280,         08047       ,{       180,       130,       180,       130,       150,         08048       ,{       310,       260,       310,       260,       280,         08049       }         08050       ,{       310,       260,       310,       260,       280,         08051       ,{       310,       260,       310,       260,       280,         08052       ,{       310,       260,       310,       260,       280,         08053       ,{       310,       260,       310,       260,       280,         08055       }         08056       }         08057       ,{{       340,       260,       340,       280,       340,         08059       ,{       310,       260,       310,       240,       340,         08060       ,{       310,       260,       310,       280,       310,         08061       ,{       310,       260,       310,       280,       310,                                                                                                                                                                                                                                                                                                                                                                                       |       |         | 330, | 260, | 330, | 260, | 300} |
| 08047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 300} |
| 08048       ,{       310,       260,       310,       260,       280,         08050       ,{       310,       260,       310,       260,       280,         08051       ,{       310,       260,       310,       260,       280,         08052       ,{       310,       260,       310,       260,       280,         08053       ,{       310,       260,       310,       260,       280,         08054       ,{       310,       260,       310,       260,       280,         08055       }         08056       }         08057       ,{{{{340,       260,       340,       280,       340,         08058       ,{       340,       240,       340,       240,       340,         08059       ,{       310,       260,       310,       280,       310,         08060       ,{       310,       260,       310,       280,       310,         08061       ,{       310,       260,       310,       280,       310,                                                                                                                                                                                                                                                                                                                                                                                                                  |       |         |      |      |      |      |      |
| 08049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 280} |
| 08051 ,{ 310, 260, 310, 260, 280} 08052 ,{ 310, 260, 310, 260, 280} 08053 ,{ 310, 260, 310, 260, 280} 08055 ,{ 310, 260, 310, 260, 280} 08055 } 08056 } 08057 ,{{{ 340, 260, 340, 280, 340} 08058 ,{ 340, 240, 340, 240, 340} 08059 ,{ 310, 260, 310, 280, 310} 08061 ,{ 310, 260, 310, 280, 310} 08061 ,{ 310, 260, 310, 280, 310}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | }       |      |      |      |      |      |
| 08052 ,{ 310, 260, 310, 260, 280} 08053 ,{ 310, 260, 310, 260, 280} 08054 ,{ 310, 260, 310, 260, 280} 08055 }  08056 }  08057 ,{{{ 340, 260, 340, 280, 340} 08058 ,{ 340, 240, 340, 240, 340} 08059 ,{ 310, 260, 310, 150, 310} 08061 ,{ 310, 260, 310, 280, 310} 08061 ,{ 310, 260, 310, 280, 310}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |         |      |      |      |      |      |
| 08053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         |      |      |      |      | 280} |
| 08055 } 08056 } 08057 ,{{{ 340, 260, 340, 280, 340}, 08058 ,{ 340, 240, 340, 240, 340}, 08059 ,{ 310, 260, 310, 150, 310}, 08060 ,{ 310, 200, 310, 280, 310}, 08061 ,{ 310, 260, 310, 280, 310}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08053 | , {     | 310, | 260, | 310, | 260, | 280} |
| 08056 } 08057 ,{{{ 340, 260, 340, 280, 340}} 08058 ,{ 340, 240, 340, 240, 340} 08059 ,{ 310, 260, 310, 150, 310} 08060 ,{ 310, 200, 310, 280, 310} 08061 ,{ 310, 260, 310, 280, 310}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |         | 310, | 260, | 310, | 260, | 280} |
| 08057 ,{{{ 340, 260, 340, 280, 340} }<br>08058 ,{ 340, 240, 340, 240, 340}<br>08059 ,{ 310, 260, 310, 150, 310}<br>08060 ,{ 310, 200, 310, 280, 310}<br>08061 ,{ 310, 260, 310, 280, 310}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |         |      |      |      |      |      |
| 08059 ,{ 310, 260, 310, 150, 310}<br>08060 ,{ 310, 200, 310, 280, 310}<br>08061 ,{ 310, 260, 310, 280, 310}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08057 | , { { { |      |      |      |      | 340} |
| 08060 ,{ 310, 200, 310, 280, 310}<br>08061 ,{ 310, 260, 310, 280, 310}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |         |      |      |      |      | 340} |
| 08061 ,{ 310, 260, 310, 280, 310}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |      |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08061 |         |      |      |      |      | 310} |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08062 | }       |      |      |      |      |      |

| 08063 | , { {     | 340,  | 240, | 340, | 200, | 340} |
|-------|-----------|-------|------|------|------|------|
| 08064 | , {       | 340,  | 240, | 340, | 190, | 340} |
| 08065 | , {       | 310,  | 200, | 310, | 150, | 310} |
|       |           |       |      |      |      |      |
| 08066 | , {       | 230,  | 120, | 230, | 200, | 230} |
| 08067 | , {       | 310,  | 200, | 310, | 150, | 310} |
| 08068 | }         |       |      |      |      |      |
| 08069 | , { {     | 310,  | 260, | 310, | 150, | 310} |
| 08070 | , {       | 310,  | 200, | 310, | 150, | 310} |
| 08071 | , {       | 310,  | 260, | 310, | 150, | 310} |
| 08072 | , {       | 310,  | 200, | 310, | 150, | 310} |
| 08073 | , {       | 310,  | 260, | 310, | 150, | 310} |
| 08074 | }         | 310,  | 200, | 310, | 130, | 310) |
|       |           | 210   | 000  | 210  | 000  | 2101 |
| 08075 | , { {     | 310,  | 200, | 310, | 280, | 310} |
| 08076 | , {       | 270,  | 160, | 270, | 240, | 270} |
| 08077 | , {       | 310,  | 200, | 310, | 150, | 310} |
| 08078 | , {       | 280,  | 200, | 180, | 280, | 180} |
| 08079 | , {       | 310,  | 200, | 310, | 150, | 310} |
| 08080 | }         |       |      |      |      | ,    |
| 08081 | , { {     | 310,  | 260, | 310, | 280, | 310} |
|       |           |       |      |      |      |      |
| 08082 | , {       | 310,  | 200, | 310, | 150, | 310} |
| 08083 | , {       | 310,  | 260, | 310, | 150, | 310} |
| 08084 | , {       | 310,  | 200, | 310, | 150, | 310} |
| 08085 | , {       | 310,  | 200, | 310, | 280, | 310} |
| 08086 | }         |       |      |      |      |      |
| 08087 | }         |       |      |      |      |      |
| 08088 | , { { {   | 340,  | 300, | 340, | 300, | 320} |
| 08089 |           | 340,  | 300, | 340, | 300, | 320} |
|       | , {       |       |      |      |      |      |
| 08090 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08091 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08092 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08093 | }         |       |      |      |      |      |
| 08094 | , { {     | 340,  | 300, | 340, | 300, | 320} |
| 08095 | , {       | 340,  | 300, | 340, | 300, | 320} |
|       |           |       |      |      |      |      |
| 08096 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08097 | , {       | 290,  | 180, | 290, | 180, | 140} |
| 08098 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08099 | }         |       |      |      |      |      |
| 08100 | , { {     | 310,  | 260, | 310, | 260, | 220} |
| 08101 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08102 | , {       | 310,  | 260, | 310, | 260, | 220} |
|       |           |       |      |      |      |      |
| 08103 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08104 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08105 | }         |       |      |      |      |      |
| 08106 | , { {     | 330,  | 260, | 330, | 260, | 220} |
| 08107 | , {       | 330,  | 220, | 330, | 220, | 180} |
| 08108 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08109 | , {       | 220,  | 130, | 180, | 130, | 220} |
| 08110 |           |       | 260, | 310, | 260, | 220} |
|       | , {       | 310,  | 200, | 310, | 200, | 2205 |
| 08111 | }         |       |      |      |      |      |
| 08112 | , { {     | 310,  | 260, | 310, | 260, | 220} |
| 08113 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08114 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08115 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08116 | , {       | 310,  | 260, | 310, | 260, | 220} |
| 08117 | }         | ,     | ,    | ,    | ,    | ,    |
| 08118 | 1         |       |      |      |      |      |
|       | ,         |       |      |      |      |      |
| 08119 | }         |       |      |      |      |      |
| 08120 | , { { { { | 370,  | 340, | 370, | 280, | 340} |
| 08121 | , {       | 370,  | 310, | 370, | 280, | 340} |
| 08122 | , {       | 280,  | 280, | 280, | 240, | 280} |
| 08123 | , {       | 280,  | 280, | 280, | 250, | 280} |
| 08124 | , {       | 340,  | 340, | 280, | 250, | 280} |
| 08125 | }         |       |      |      |      |      |
| 08126 | , { {     | 280,  | 280, | 280, | 230, | 280} |
|       |           |       | 240, |      |      |      |
| 08127 | , {       | 240,  |      | 240, | 200, | 240} |
| 08128 | , {       | 280,  | 280, | 280, | 230, | 280} |
| 08129 | , {       | 200,  | 140, | 200, | 120, | 170} |
| 08130 | , {       | 280,  | 280, | 280, | 230, | 280} |
| 08131 | }         |       |      |      |      |      |
| 08132 | , { {     | 280,  | 280, | 280, | 240, | 280} |
| 08133 | , {       | 280,  | 280, | 280, | 230, | 280} |
| 08134 | , {       | 280,  | 280, | 280, | 240, | 280} |
|       |           |       |      |      |      |      |
| 08135 | , {       | 280,  | 280, | 280, | 230, | 280} |
| 08136 | , {       | 280,  | 280, | 280, | 240, | 280} |
| 08137 | }         |       |      |      |      |      |
| 08138 | , { {     | 370,  | 310, | 370, | 280, | 340} |
| 08139 | , {       | 370,  | 310, | 370, | 280, | 340} |
| 08140 | , {       | 280,  | 280, | 280, | 230, | 280} |
| 08141 | , {       | 250,  | 170, | 150, | 250, | 190} |
| 08142 |           | 280,  | 280, | 280, | 230, | 280} |
|       | , {       | 200,  | 200, | 200, | 200, | 200} |
| 08143 | }         | 2 4 6 | 0.46 | 000  | 0.50 | 000  |
| 08144 | , { {     | 340,  | 340, | 280, | 250, | 280} |
| 08145 | , {       | 280,  | 280, | 280, | 230, | 280} |
| 08146 | , {       | 280,  | 280, | 280, | 240, | 280} |
| 08147 | , {       | 280,  | 280, | 280, | 230, | 280} |
| 08148 | , {       | 340,  | 340, | 280, | 250, | 280} |
| 08149 | }         | .,    | - ,  | ,    | ,    | ,    |
|       | ,         |       |      |      |      |      |

| 08150<br>08151 | }<br>,{{{   | 340,         | 340,         | 310,         | 240,         | 310}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 08152          | , ( ( (     | 310,         | 310,         | 310,         | 210,         | 310)         |
| 08153          | , {         | 280,         | 280,         | 280,         | 240,         | 280}         |
| 08154<br>08155 | , {<br>, {  | 280,<br>340, | 280,<br>340, | 280,<br>280, | 180,<br>240, | 280}         |
| 08156          | }           | ,            | ,            | ,            | ,            | ,            |
| 08157          | , { {       | 280,         | 280,         | 280,         | 180,         | 280}         |
| 08158<br>08159 | , {<br>, {  | 240,<br>280, | 240,<br>280, | 240,<br>280, | 150,<br>180, | 240}         |
| 08160          | , {         | 140,         | 140,         | 140,         | 50,          | 140}         |
| 08161          | , {         | 280,         | 280,         | 280,         | 180,         | 280}         |
| 08162<br>08163 | }<br>,{{    | 280,         | 280,         | 280,         | 240,         | 280}         |
| 08164          | , {         | 280,         | 280,         | 280,         | 180,         | 280}         |
| 08165          | , {         | 280,         | 280,         | 280,         | 240,         | 280}         |
| 08166<br>08167 | , {<br>, {  | 280,<br>280, | 280,<br>280, | 280,<br>280, | 180,<br>240, | 280}<br>280} |
| 08168          | }           | ,            | ,            | ,            | ,            | ,            |
| 08169          | , { {       | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08170<br>08171 | , {<br>, {  | 310,<br>280, | 310,<br>280, | 310,<br>280, | 210,<br>180, | 310}<br>280} |
| 08172          | , {         | 180,         | 150,         | 150,         | 180,         | 150}         |
| 08173          | , {         | 280,         | 280,         | 280,         | 180,         | 280}         |
| 08174<br>08175 | }<br>, { {  | 340,         | 340,         | 280,         | 240,         | 280}         |
| 08176          | , {         | 280,         | 280,         | 280,         | 180,         | 280}         |
| 08177          | , {         | 280,         | 280,         | 280,         | 240,         | 280}         |
| 08178<br>08179 | , {<br>, {  | 280,<br>340, | 280,<br>340, | 280,<br>280, | 180,<br>180, | 280}<br>280} |
| 08180          | }           | ,            | •            | •            | •            | ,            |
| 08181<br>08182 | }           | 270          | 260          | 270          | 260          | 2401         |
| 08183          | ,{{{<br>,{  | 370,<br>370, | 260,<br>260, | 370,<br>370, | 260,<br>260, | 340}<br>340} |
| 08184          | , {         | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08185          | , {         | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08186<br>08187 | , {<br>}    | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08188          | , { {       | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08189<br>08190 | , {         | 240,         | 200,         | 240,<br>280, | 200,<br>230, | 210}         |
| 08190          | , {<br>, {  | 280,<br>200, | 230,<br>100, | 200,         | 100,         | 250}<br>170} |
| 08192          | , {         | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08193<br>08194 | 1 1<br>}    | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08195          | ,{{<br>,{   | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08196          | , {         | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08197<br>08198 | , {         | 280,<br>280, | 230,<br>230, | 280,<br>280, | 230,<br>230, | 250}<br>250} |
| 08199          | , {<br>}    | 200,         | 230,         | 200,         | 230,         | 230 }        |
| 08200          | , { {       | 370,         | 260,         | 370,         | 260,         | 340}         |
| 08201<br>08202 | , {<br>, {  | 370,<br>280, | 260,<br>230, | 370,<br>280, | 260,<br>230, | 340}<br>250} |
| 08203          | , {         | 150,         | 100,         | 150,         | 100,         | 120}         |
| 08204          | , {         | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08205<br>08206 | }<br>,{{    | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08207          | , {         | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08208          | , {         | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08209<br>08210 | , {<br>, {  | 280,<br>280, | 230,<br>230, | 280,<br>280, | 230,<br>230, | 250}<br>250} |
| 08211          | }           | 200,         | 200,         | 200,         | 200,         | 200,         |
| 08212          | }           | 210          | 0.00         | 210          | 0.00         | 0101         |
| 08213<br>08214 | }}},<br>},{ | 310,<br>310, | 230,<br>200, | 310,<br>310, | 280,<br>280, | 310}<br>310} |
| 08215          | , {         | 280,         | 230,         | 280,         | 120,         | 280}         |
| 08216          | , {         | 280,         | 170,         | 280,         | 250,         | 280}         |
| 08217<br>08218 | , {<br>}    | 280,         | 230,         | 280,         | 250,         | 280}         |
| 08219          | , { {       | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08220          | , {         | 240,         | 140,         | 240,         | 90,          | 240}         |
| 08221<br>08222 | , {<br>, {  | 280,<br>140, | 170,<br>40,  | 280,<br>140, | 120,<br>120, | 280}<br>140} |
| 08223          | , {         | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08224          | }           | 000          | 0.20         | 000          | 100          | 2001         |
| 08225<br>08226 | ,{{<br>,{   | 280,<br>280, | 230,<br>170, | 280,<br>280, | 120,<br>120, | 280}<br>280} |
| 08227          | , {         | 280,         | 230,         | 280,         | 120,         | 280}         |
| 08228          | , {         | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08229<br>08230 | , {<br>}    | 280,         | 230,         | 280,         | 120,         | 280}         |
| 08231          | , { {       | 310,         | 200,         | 310,         | 280,         | 310}         |
| 08232          | , {         | 310,         | 200,         | 310,         | 280,         | 310}         |
| 08233<br>08234 | , {<br>, {  | 280,<br>250, | 170,<br>170, | 280,<br>150, | 120,<br>250, | 280}<br>150} |
| 08235          | , {         | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08236          | }           |              |              |              |              |              |

| 00007 |           | 200  | 220  | 200  | 250   | 2001  |
|-------|-----------|------|------|------|-------|-------|
| 08237 | , { {     | 280, | 230, | 280, | 250,  | 280}  |
| 08238 | , {       | 280, | 170, | 280, | 120,  | 280}  |
| 08239 | , {       | 280, | 230, | 280, | 120,  | 280}  |
| 08240 | , {       | 280, | 170, | 280, | 120,  | 280}  |
| 08241 |           |      |      |      |       | 280}  |
|       | , {       | 280, | 170, | 280, | 250,  | 2007  |
| 08242 | }         |      |      |      |       |       |
| 08243 | }         |      |      |      |       |       |
| 08244 | , { { {   | 370, | 260, | 370, | 260,  | 220}  |
| 08245 |           | 370, | 260, | 370, | 260,  | 220}  |
|       | , {       |      |      |      |       |       |
| 08246 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08247 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08248 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08249 | }         |      |      |      |       | ,     |
|       |           | 000  | 0.00 | 000  | 0.00  | 0001  |
| 08250 | , { {     | 280, | 230, | 280, | 230,  | 220}  |
| 08251 | , {       | 240, | 200, | 240, | 200,  | 220}  |
| 08252 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08253 | , {       | 200, | 100, | 200, | 100,  | 60}   |
|       |           |      |      |      |       |       |
| 08254 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08255 | }         |      |      |      |       |       |
| 08256 | , { {     | 280, | 230, | 280, | 230,  | 190}  |
| 08257 | , {       | 280, | 230, | 280, | 230,  | 190}  |
|       |           |      |      |      |       |       |
| 08258 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08259 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08260 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08261 | }         |      |      |      |       |       |
| 08262 |           | 370, | 260, | 370, | 260,  | 220}  |
|       | , { {     |      |      |      |       |       |
| 08263 | , {       | 370, | 260, | 370, | 260,  | 220}  |
| 08264 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08265 | , {       | 190, | 100, | 150, | 100,  | 190}  |
| 08266 | , {       | 280, | 230, | 280, | 230,  | 190}  |
|       |           | 200, | 230, | 200, | 230,  | 100)  |
| 08267 | }         |      |      |      |       |       |
| 08268 | , { {     | 280, | 230, | 280, | 230,  | 190}  |
| 08269 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08270 |           | 280, |      | 280, |       | 190}  |
|       | , {       |      | 230, |      | 230,  |       |
| 08271 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08272 | , {       | 280, | 230, | 280, | 230,  | 190}  |
| 08273 | }         |      |      |      |       |       |
| 08274 | }         |      |      |      |       |       |
|       | ,         |      |      |      |       |       |
| 08275 | }         |      |      |      |       |       |
| 08276 | , { { { { | 280, | 280, | 280, | 230,  | 280}  |
| 08277 | , {       | 280, | 280, | 280, | 230,  | 280}  |
| 08278 | , {       | 260, | 260, | 260, | 220,  | 260}  |
|       |           |      |      |      |       |       |
| 08279 | , {       | 260, | 260, | 260, | 220,  | 260}  |
| 08280 | , {       | 260, | 260, | 260, | 220,  | 260}  |
| 08281 | }         |      |      |      |       |       |
| 08282 | , { {     | 280, | 280, | 280, | 230,  | 280}  |
|       |           |      |      |      |       |       |
| 08283 | , {       | 280, | 280, | 280, | 230,  | 280}  |
| 08284 | , {       | 250, | 250, | 250, | 210,  | 250}  |
| 08285 | , {       | 210, | 150, | 210, | 130,  | 180}  |
| 08286 | , {       | 250, | 250, | 250, | 210,  | 250}  |
| 08287 |           | 200, | 200, | 200, | 210,  | 200,  |
|       | }         | 0.60 | 0.60 | 0.00 | 000   | 0.001 |
| 08288 | , { {     | 260, | 260, | 260, | 220,  | 260}  |
| 08289 | , {       | 260, | 260, | 260, | 220,  | 260}  |
| 08290 | , {       | 260, | 260, | 260, | 220,  | 260}  |
| 08291 |           | 260, | 260, | 260, | 220,  | 260}  |
|       | , {       |      |      |      |       |       |
| 08292 | , (       | 260, | 260, | 260, | 220,  | 260}  |
| 08293 | }         |      |      |      |       |       |
| 08294 | , { {     | 280, | 250, | 280, | 210,  | 250}  |
| 08295 | , {       | 280, | 220, | 280, | 200,  | 250}  |
| 08296 |           | 250, | 250, | 250, | 210,  | 250}  |
|       | , {       |      |      |      |       |       |
| 08297 | , {       | 210, | 130, | 100, | 210,  | 150}  |
| 08298 | , {       | 250, | 250, | 250, | 210,  | 250}  |
| 08299 | }         |      |      |      |       |       |
| 08300 | , { {     | 260, | 260, | 260, | 220,  | 260}  |
| 08300 |           | 260, | 260, | 260, | 220,  | 260}  |
|       | , {       |      |      |      |       |       |
| 08302 | , {       | 260, | 260, | 260, | 220,  | 260}  |
| 08303 | , {       | 260, | 260, | 260, | 220,  | 260}  |
| 08304 | , {       | 230, | 230, | 170, | 140,  | 170}  |
|       |           | 200, | 200, | 1,0, | 110,  | 1,0,  |
| 08305 | }         |      |      |      |       |       |
| 08306 | }         |      |      |      |       |       |
| 08307 | , { { {   | 280, | 280, | 280, | 220,  | 280}  |
| 08308 | , {       | 280, | 280, | 280, | 180,  | 280}  |
| 08309 |           | 260, | 260, | 260, | 220,  | 260}  |
|       | , {       |      |      |      |       |       |
| 08310 | , {       | 260, | 260, | 260, | 170,  | 260}  |
| 08311 | , {       | 260, | 260, | 260, | 220,  | 260}  |
| 08312 | }         |      |      |      |       |       |
| 08313 | , { {     | 280, | 280, | 280, | 180,  | 280}  |
|       |           |      |      |      |       |       |
| 08314 | , {       | 280, | 280, | 280, | 180,  | 280}  |
| 08315 | , {       | 250, | 250, | 250, | 160,  | 250}  |
| 08316 | , {       | 150, | 150, | 150, | 60,   | 150}  |
| 08317 | , {       | 250, | 250, | 250, | 160,  | 250}  |
|       |           | _00, | ,    | ,    | _ ~ , |       |
| 08318 | }         | 0.00 | 0.65 | 0.65 | 0.00  | 0.00  |
| 08319 | , { {     | 260, | 260, | 260, | 220,  | 260}  |
| 08320 | , {       | 260, | 260, | 260, | 170,  | 260}  |
| 08321 | , {       | 260, | 260, | 260, | 220,  | 260}  |
| 08322 | , {       | 260, | 260, | 260, | 170,  | 260}  |
|       |           |      |      |      |       |       |
| 08323 | , {       | 260, | 260, | 260, | 220,  | 260}  |
|       |           |      |      |      |       |       |

| 08324          | }          | 0.50         | 0.50         | 0.5.0        | 1.00         | 0.5.0.1      |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 08325<br>08326 | ,{{<br>,{  | 250,<br>220, | 250,<br>220, | 250,<br>220, | 160,<br>130, | 250}<br>220} |
| 08327          | , {        | 250,         | 250,         | 250,         | 160,         | 250}         |
| 08328          | , {        | 140,         | 100,         | 100,         | 140,         | 100}         |
| 08329<br>08330 | , {<br>}   | 250,         | 250,         | 250,         | 160,         | 250}         |
| 08331          | , { {      | 260,         | 260,         | 260,         | 220,         | 260}         |
| 08332          | , {        | 260,         | 260,         | 260,         | 170,         | 260}         |
| 08333          | , {        | 260,         | 260,         | 260,         | 220,         | 260}         |
| 08334<br>08335 | , {<br>, { | 260,<br>230, | 260,<br>230, | 260,<br>170, | 170,<br>70,  | 260}<br>170} |
| 08336          | }          | 250,         | 230,         | 170,         | , ,          | 1,0,         |
| 08337          | }          |              |              |              |              |              |
| 08338          | , { { {    | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08339<br>08340 | , {<br>, { | 280,<br>260, | 230,<br>210, | 280,<br>260, | 230,<br>210, | 250}<br>230} |
| 08341          | , {        | 260,         | 220,         | 260,         | 220,         | 230}         |
| 08342          | , {        | 260,         | 210,         | 260,         | 210,         | 230}         |
| 08343          | }          | 200          | 220          | 200          | 220          | 2501         |
| 08344<br>08345 | ,{{<br>,{  | 280,<br>280, | 230,<br>230, | 280,<br>280, | 230,<br>230, | 250}<br>250} |
| 08346          | , {        | 250,         | 210,         | 250,         | 210,         | 220}         |
| 08347          | , {        | 210,         | 110,         | 210,         | 110,         | 180}         |
| 08348          | , {        | 250,         | 210,         | 250,         | 210,         | 220}         |
| 08349<br>08350 | }<br>,{{   | 260,         | 220,         | 260,         | 220,         | 230}         |
| 08351          | , {        | 260,         | 220,         | 260,         | 220,         | 230}         |
| 08352          | , {        | 260,         | 210,         | 260,         | 210,         | 230}         |
| 08353<br>08354 | , {        | 260,         | 220,         | 260,         | 220,         | 230}         |
| 08354          | , {<br>}   | 260,         | 210,         | 260,         | 210,         | 230}         |
| 08356          | , { {      | 280,         | 210,         | 280,         | 210,         | 250}         |
| 08357          | , {        | 280,         | 180,         | 280,         | 180,         | 250}         |
| 08358<br>08359 | , {        | 250,         | 210,         | 250,         | 210,         | 220}         |
| 08360          | , {<br>, { | 100,<br>250, | 60,<br>210,  | 100,<br>250, | 60,<br>210,  | 70}<br>220}  |
| 08361          | }          |              | ,            |              | ,            |              |
| 08362          | , { {      | 260,         | 220,         | 260,         | 220,         | 230}         |
| 08363<br>08364 | , {<br>, { | 260,<br>260, | 220,<br>210, | 260,<br>260, | 220,<br>210, | 230}         |
| 08365          | , {        | 260,         | 220,         | 260,         | 220,         | 230}         |
| 08366          | , {        | 170,         | 120,         | 170,         | 120,         | 140}         |
| 08367          | }          |              |              |              |              |              |
| 08368<br>08369 | }<br>,{{{  | 280,         | 210,         | 280,         | 210,         | 280}         |
| 08370          | , {        | 280,         | 170,         | 280,         | 200,         | 280}         |
| 08371          | , {        | 260,         | 210,         | 260,         | 100,         | 260}         |
| 08372          | , {        | 260,         | 160,         | 260,         | 210,         | 260}         |
| 08373<br>08374 | , {<br>}   | 260,         | 210,         | 260,         | 140,         | 260}         |
| 08375          | , { {      | 280,         | 170,         | 280,         | 130,         | 280}         |
| 08376          | , {        | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08377<br>08378 | , {<br>, { | 250,<br>150, | 150,<br>50,  | 250,<br>150, | 100,<br>130, | 250}<br>150} |
| 08379          | , {        | 250,         | 150,         | 250,         | 100,         | 250}         |
| 08380          | }          |              |              |              |              |              |
| 08381          | , { {      | 260,         | 210,         | 260,         | 110,         | 260}         |
| 08382<br>08383 | , {<br>, { | 260,<br>260, | 160,<br>210, | 260,<br>260, | 110,<br>100, | 260}<br>260} |
| 08384          | , {        | 260,         | 160,         | 260,         | 110,         | 260}         |
| 08385          | , {        | 260,         | 210,         | 260,         | 100,         | 260}         |
| 08386          | }          | 250          | 150,         | 250          | 210          | 2501         |
| 08387<br>08388 | ,{{<br>,{  | 250,<br>220, | 120,         | 250,<br>220, | 210,<br>200, | 250}<br>220} |
| 08389          | , {        | 250,         | 150,         | 250,         | 100,         | 250}         |
| 08390          | , {        | 210,         | 130,         | 100,         | 210,         | 100}         |
| 08391          | , {        | 250,         | 150,         | 250,         | 100,         | 250}         |
| 08392<br>08393 | }<br>,{{   | 260,         | 210,         | 260,         | 140,         | 260}         |
| 08394          | , {        | 260,         | 160,         | 260,         | 110,         | 260}         |
| 08395          | , {        | 260,         | 210,         | 260,         | 100,         | 260}         |
| 08396          | , {        | 260,         | 160,<br>60,  | 260,         | 110,<br>140, | 260}         |
| 08397<br>08398 | , {<br>}   | 170,         | 00,          | 170,         | 140,         | 170}         |
| 08399          | }          |              |              |              |              |              |
| 08400          | ,{{{       | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08401<br>08402 | , {        | 280,<br>260, | 230,<br>210, | 280,<br>260, | 230,<br>210, | 250}<br>170} |
| 08402          | , {<br>, { | 260,         | 220,         | 260,         | 220,         | 180}         |
| 08404          | , {        | 260,         | 210,         | 260,         | 210,         | 170}         |
| 08405          | }          | 000          | 000          | 000          | 0.00         | 0.5.0        |
| 08406<br>08407 | ,{{<br>,{  | 280,<br>280, | 230,<br>230, | 280,<br>280, | 230,<br>230, | 250}<br>250} |
| 08408          | , {        | 250,         | 210,         | 250,         | 210,         | 170}         |
| 08409          | , {        | 210,         | 110,         | 210,         | 110,         | 70}          |
| 08410          | , {        | 250,         | 210,         | 250,         | 210,         | 170}         |

| 08411 | }          |      |      |      |      |      |
|-------|------------|------|------|------|------|------|
| 08412 | , { {      | 260, | 220, | 260, | 220, | 180} |
| 08413 |            | 260, | 220, | 260, | 220, | 180} |
|       | , {        |      |      |      |      |      |
| 08414 | , {        | 260, | 210, | 260, | 210, | 170} |
| 08415 | , {        | 260, | 220, | 260, | 220, | 180} |
| 08416 | , {        | 260, | 210, | 260, | 210, | 170} |
| 08417 | }          |      |      |      |      |      |
| 08418 | , { {      | 280, | 210, | 280, | 210, | 170} |
| 08419 | , {        | 280, | 180, | 280, | 180, | 140} |
|       |            |      |      |      |      |      |
| 08420 | , {        | 250, | 210, | 250, | 210, | 170} |
| 08421 | , {        | 150, | 60,  | 100, | 60,  | 150} |
| 08422 | , {        | 250, | 210, | 250, | 210, | 170} |
| 08423 | }          |      |      |      |      |      |
| 08424 | , { {      | 260, | 220, | 260, | 220, | 180} |
|       |            |      |      |      |      |      |
| 08425 | , {        | 260, | 220, | 260, | 220, | 180} |
| 08426 | , {        | 260, | 210, | 260, | 210, | 170} |
| 08427 | , {        | 260, | 220, | 260, | 220, | 180} |
| 08428 | , {        | 170, | 120, | 170, | 120, | 80}  |
| 08429 | }          |      | •    |      | •    |      |
|       |            |      |      |      |      |      |
| 08430 | }          |      |      |      |      |      |
| 08431 | }          |      |      |      |      |      |
| 08432 | , { { { {  | 280, | 280, | 280, | 240, | 280} |
| 08433 | , {        | 280, | 280, | 280, | 230, | 280} |
| 08434 | , {        | 280, | 280, | 280, | 240, | 280} |
| 08435 |            | 280, | 280, | 280, | 230, | 280} |
|       | , {        |      |      |      |      |      |
| 08436 | , {        | 280, | 280, | 280, | 240, | 280} |
| 08437 | }          |      |      |      |      |      |
| 08438 | , { {      | 280, | 280, | 280, | 230, | 280} |
| 08439 | , {        | 280, | 280, | 280, | 230, | 280} |
| 08440 | , {        | 230, | 230, | 230, | 190, | 230} |
|       |            |      |      |      |      |      |
| 08441 | , {        | 230, | 170, | 230, | 150, | 200} |
| 08442 | , {        | 230, | 230, | 230, | 190, | 230} |
| 08443 | }          |      |      |      |      |      |
| 08444 | , { {      | 280, | 280, | 280, | 240, | 280} |
| 08445 | , {        | 280, | 280, | 280, | 230, | 280} |
|       |            |      |      |      |      |      |
| 08446 | , {        | 280, | 280, | 280, | 240, | 280} |
| 08447 | , {        | 280, | 280, | 280, | 230, | 280} |
| 08448 | , {        | 280, | 280, | 280, | 240, | 280} |
| 08449 | }          |      |      |      |      |      |
| 08450 | , { {      | 240, | 230, | 240, | 230, | 230} |
|       |            |      |      |      |      |      |
| 08451 | , {        | 240, | 180, | 240, | 160, | 210} |
| 08452 | , {        | 230, | 230, | 230, | 190, | 230} |
| 08453 | , {        | 230, | 150, | 120, | 230, | 170} |
| 08454 | , {        | 230, | 230, | 230, | 190, | 230} |
| 08455 | }          |      |      |      | ,    |      |
|       |            | 200  | 200  | 200  | 220  | 2001 |
| 08456 | , { {      | 280, | 280, | 280, | 230, | 280} |
| 08457 | , {        | 280, | 280, | 280, | 230, | 280} |
| 08458 | , {        | 250, | 250, | 250, | 210, | 250} |
| 08459 | , {        | 280, | 280, | 280, | 230, | 280} |
| 08460 | , {        | 250, | 250, | 190, | 170, | 190} |
| 08461 |            | 200, | 200, | 130, | 1,0, | 100, |
|       | }          |      |      |      |      |      |
| 08462 | }          |      |      |      |      |      |
| 08463 | , { { {    | 280, | 280, | 280, | 240, | 280} |
| 08464 | , {        | 280, | 280, | 280, | 180, | 280} |
| 08465 | , {        | 280, | 280, | 280, | 240, | 280} |
| 08466 | ſ          | 280, | 280, | 280, | 180, | 280} |
|       |            |      |      |      |      |      |
| 08467 | , {        | 280, | 280, | 280, | 240, | 280} |
| 08468 | }          |      |      |      |      |      |
| 08469 | , { {      | 280, | 280, | 280, | 180, | 280} |
| 08470 | , {        | 280, | 280, | 280, | 180, | 280} |
| 08471 | , {        | 230, | 230, | 230, | 140, | 230} |
| 08472 | , {        | 170, | 170, | 170, | 80,  | 170} |
| 08472 | , \<br>, { | 230, | 230, | 230, | 140, | 230} |
|       |            | 230, | 230, | 230, | 140, | 2307 |
| 08474 | }          |      |      |      |      |      |
| 08475 | , { {      | 280, | 280, | 280, | 240, | 280} |
| 08476 | , {        | 280, | 280, | 280, | 180, | 280} |
| 08477 | , {        | 280, | 280, | 280, | 240, | 280} |
| 08478 | , {        | 280, | 280, | 280, | 180, | 280} |
|       |            |      |      |      |      |      |
| 08479 | , {        | 280, | 280, | 280, | 240, | 280} |
| 08480 | }          |      |      |      |      |      |
| 08481 | , { {      | 230, | 230, | 230, | 160, | 230} |
| 08482 | , {        | 180, | 180, | 180, | 90,  | 180} |
| 08483 | , {        | 230, | 230, | 230, | 140, | 230} |
| 08484 |            | 160, | 120, | 120, | 160, | 120} |
|       | , {        |      |      |      |      |      |
| 08485 | , {        | 230, | 230, | 230, | 140, | 230} |
| 08486 | }          |      |      |      |      |      |
| 08487 | , { {      | 280, | 280, | 280, | 210, | 280} |
| 08488 | , {        | 280, | 280, | 280, | 180, | 280} |
| 08489 | , {        | 250, | 250, | 250, | 210, | 250} |
|       |            |      |      |      |      |      |
| 08490 | , {        | 280, | 280, | 280, | 180, | 280} |
| 08491 | , {        | 250, | 250, | 190, | 100, | 190} |
| 08492 | }          |      |      |      |      |      |
| 08493 | }          |      |      |      |      |      |
| 08494 | , { { {    | 280, | 230, | 280, | 230, | 250} |
| 08495 | , ( (      | 280, | 230, | 280, | 230, | 250} |
|       |            |      |      |      |      |      |
| 08496 | , {        | 280, | 230, | 280, | 230, | 250} |
| 08497 | , {        | 280, | 230, | 280, | 230, | 250} |
|       |            |      |      |      |      |      |

| 08498          | , {        | 280,         | 230,         | 280,         | 230,         | 250}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 08499          | }          |              |              |              |              |              |
| 08500          | , { {      | 280,         | 230,         | 280,<br>280, | 230,         | 250}         |
| 08501<br>08502 | , {<br>, { | 280,<br>230, | 230,<br>190, | 230,         | 230,<br>190, | 250}<br>200} |
| 08503          | , {        | 230,         | 130,         | 230,         | 130,         | 200}         |
| 08504          | , {        | 230,         | 190,         | 230,         | 190,         | 200}         |
| 08505          | }          |              |              |              |              |              |
| 08506          | , { {      | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08507          | , {        | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08508          | , {        | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08509<br>08510 | , {<br>, { | 280,<br>280, | 230,<br>230, | 280,<br>280, | 230,<br>230, | 250}<br>250} |
| 08511          | }          | 200,         | 230,         | 200,         | 230,         | 250)         |
| 08512          | , { {      | 240,         | 190,         | 240,         | 190,         | 210}         |
| 08513          | , {        | 240,         | 140,         | 240,         | 140,         | 210}         |
| 08514          | , {        | 230,         | 190,         | 230,         | 190,         | 200}         |
| 08515          | , {        | 120,         | 80,          | 120,         | 80,          | 90}          |
| 08516<br>08517 | , {        | 230,         | 190,         | 230,         | 190,         | 200}         |
| 08517          | }<br>,{{   | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08519          | , (        | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08520          | , {        | 250,         | 200,         | 250,         | 200,         | 220}         |
| 08521          | , {        | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08522          | , {        | 190,         | 150,         | 190,         | 150,         | 160}         |
| 08523          | }          |              |              |              |              |              |
| 08524<br>08525 | }          | 280,         | 220          | 280,         | 220          | 280}         |
| 08526          | ,{{{       | 280,         | 230,<br>170, | 280,         | 230,<br>160, | 280}         |
| 08527          | , {        | 280,         | 230,         | 280,         | 120,         | 280}         |
| 08528          | , {        | 280,         | 170,         | 280,         | 230,         | 280}         |
| 08529          | , {        | 280,         | 230,         | 280,         | 170,         | 280}         |
| 08530          | }          |              |              |              |              |              |
| 08531          | , { {      | 280,         | 170,         | 280,         | 150,         | 280}         |
| 08532          | , {        | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08533<br>08534 | , {<br>, { | 230,<br>170, | 130,<br>70,  | 230,<br>170, | 80,<br>150,  | 230}<br>170} |
| 08535          | , {        | 230,         | 130,         | 230,         | 80,          | 230}         |
| 08536          | }          |              |              |              |              |              |
| 08537          | , { {      | 280,         | 230,         | 280,         | 120,         | 280}         |
| 08538          | , {        | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08539          | , {        | 280,         | 230,         | 280,         | 120,         | 280}         |
| 08540          | , {        | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08541<br>08542 | , {<br>}   | 280,         | 230,         | 280,         | 120,         | 280}         |
| 08543          | , { {      | 230,         | 150,         | 230,         | 230,         | 230}         |
| 08544          | , {        | 180,         | 80,          | 180,         | 160,         | 180}         |
| 08545          | , {        | 230,         | 130,         | 230,         | 80,          | 230}         |
| 08546          | , {        | 230,         | 150,         | 120,         | 230,         | 120}         |
| 08547          | , {        | 230,         | 130,         | 230,         | 80,          | 230}         |
| 08548<br>08549 | }<br>,{{   | 280,         | 200,         | 280,         | 170,         | 280}         |
| 08550          | , (        | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08551          | , {        | 250,         | 200,         | 250,         | 90,          | 250}         |
| 08552          | , {        | 280,         | 170,         | 280,         | 120,         | 280}         |
| 08553          | , {        | 190,         | 90,          | 190,         | 170,         | 190}         |
| 08554          | }          |              |              |              |              |              |
| 08555          | }          | 200          | 230,         | 200          | 230,         | 2501         |
| 08556<br>08557 | ,{{{<br>,{ | 280,<br>280, | 230,         | 280,<br>280, | 230,         | 250}<br>250} |
| 08558          | , {        | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08559          | , {        | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08560          | , {        | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08561          | }          |              |              |              |              |              |
| 08562          | , { {      | 280,         | 230,         | 280,         | 230,         | 250}         |
| 08563<br>08564 | , {        | 280,<br>230, | 230,<br>190, | 280,<br>230, | 230,<br>190, | 250}<br>150} |
| 08565          | , {<br>, { | 230,         | 130,         | 230,         | 130,         | 90}          |
| 08566          | , {        | 230,         | 190,         | 230,         | 190,         | 150}         |
| 08567          | }          |              |              |              |              |              |
| 08568          | , { {      | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08569          | , {        | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08570          | , {        | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08571<br>08572 | , {        | 280,         | 230,<br>230, | 280,<br>280, | 230,<br>230, | 190}<br>190} |
| 08572          | , {<br>}   | 280,         | 200,         | 200,         | 200,         | 170}         |
| 08574          | , { {      | 240,         | 190,         | 240,         | 190,         | 170}         |
| 08575          | , {        | 240,         | 140,         | 240,         | 140,         | 100}         |
| 08576          | , {        | 230,         | 190,         | 230,         | 190,         | 150}         |
| 08577          | , {        | 170,         | 80,          | 120,         | 80,          | 170}         |
| 08578          | , {        | 230,         | 190,         | 230,         | 190,         | 150}         |
| 08579<br>08580 | }<br>,{{   | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08581          | , (        | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08582          | , {        | 250,         | 200,         | 250,         | 200,         | 160}         |
| 08583          | , {        | 280,         | 230,         | 280,         | 230,         | 190}         |
| 08584          | , {        | 190,         | 150,         | 190,         | 150,         | 110}         |
|                |            |              |              |              |              |              |

| 08585          | }          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 08586          | }          |              |              |              |              |              |
| 08587          | }          |              |              |              |              |              |
| 08588          | , { { { {  | 370,         | 370,         | 370,         | 300,         | 340}         |
| 08589          | , {        | 370,         | 340,<br>310, | 370,         | 300,         | 340}         |
| 08590<br>08591 | , {<br>, { | 310,<br>310, | 310,         | 310,<br>310, | 270,<br>280, | 310}<br>310} |
| 08592          | , {        | 370,         | 370,         | 310,         | 280,         | 310}         |
| 08593          | }          | 3707         | 370,         | 310,         | 200,         | 310)         |
| 08594          | , { {      | 340,         | 340,         | 340,         | 300,         | 340}         |
| 08595          | , {        | 340,         | 340,         | 340,         | 300,         | 340}         |
| 08596          | , {        | 310,         | 310,         | 310,         | 260,         | 310}         |
| 08597          | , {        | 290,         | 230,         | 290,         | 200,         | 260}         |
| 08598          | , {        | 310,         | 310,         | 310,         | 260,         | 310}         |
| 08599          | }          |              |              |              |              |              |
| 08600          | , { {      | 310,         | 310,         | 310,         | 270,         | 310}         |
| 08601          | , {        | 310,         | 310,         | 310,         | 260,         | 310}         |
| 08602          | , {        | 310,         | 310,         | 310,         | 270,         | 310}         |
| 08603          | , {        | 310,         | 310,         | 310,         | 260,         | 310}         |
| 08604          | , {        | 310,         | 310,         | 310,         | 270,         | 310}         |
| 08605          | }          | 270          | 210          | 270          | 200          | 2401         |
| 08606<br>08607 | ,{{<br>,{  | 370,<br>370, | 310,<br>310, | 370,<br>370, | 280,<br>280, | 340}<br>340} |
| 08608          | , {        | 310,         | 310,         | 310,         | 260,         | 310}         |
| 08609          | , {        | 280,         | 200,         | 180,         | 280,         | 220}         |
| 08610          | , {        | 310,         | 310,         | 310,         | 260,         | 310}         |
| 08611          | }          |              |              |              | ,            |              |
| 08612          | , { {      | 370,         | 370,         | 310,         | 280,         | 310}         |
| 08613          | , {        | 310,         | 310,         | 310,         | 260,         | 310}         |
| 08614          | , {        | 310,         | 310,         | 310,         | 270,         | 310}         |
| 08615          | , {        | 310,         | 310,         | 310,         | 260,         | 310}         |
| 08616          | , {        | 370,         | 370,         | 310,         | 280,         | 310}         |
| 08617          | }          |              |              |              |              |              |
| 08618          | }          | 27.0         | 270          | 2.40         | 0.70         | 0401         |
| 08619          | , { { {    | 370,         | 370,         | 340,         | 270,         | 340}         |
| 08620          | , {        | 340,         | 340,         | 340,         | 250,         | 340}         |
| 08621<br>08622 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 270,<br>210, | 310}<br>310} |
| 08623          | , {        | 370,         | 370,         | 310,         | 270,         | 310}         |
| 08624          | }          | 3707         | 370,         | 310,         | 270,         | 310)         |
| 08625          | , { {      | 340,         | 340,         | 340,         | 250,         | 340}         |
| 08626          | , {        | 340,         | 340,         | 340,         | 250,         | 340}         |
| 08627          | , {        | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08628          | , {        | 230,         | 230,         | 230,         | 130,         | 230}         |
| 08629          | , {        | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08630          | }          |              |              |              |              |              |
| 08631          | , { {      | 310,         | 310,         | 310,         | 270,         | 310}         |
| 08632          | , {        | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08633          | , {        | 310,         | 310,         | 310,         | 270,         | 310}         |
| 08634          | , {        | 310,         | 310,<br>310, | 310,         | 210,         | 310}         |
| 08635<br>08636 | , {<br>}   | 310,         | 310,         | 310,         | 270,         | 310}         |
| 08637          | , { {      | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08638          | , {        | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08639          | , {        | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08640          | , {        | 210,         | 180,         | 180,         | 210,         | 180}         |
| 08641          | , {        | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08642          | }          |              |              |              |              |              |
| 08643          | , { {      | 370,         | 370,         | 310,         | 270,         | 310}         |
| 08644          | , {        | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08645          | , {        | 310,         | 310,         | 310,         | 270,         | 310}         |
| 08646          | , {        | 310,         | 310,         | 310,         | 210,         | 310}         |
| 08647<br>08648 | , {<br>}   | 370,         | 370,         | 310,         | 210,         | 310}         |
| 08649          | }          |              |              |              |              |              |
| 08650          | ,{{{       | 370,         | 300,         | 370,         | 300,         | 340}         |
| 08651          | , ( (      | 370,         | 300,         | 370,         | 300,         | 340}         |
| 08652          | , {        | 310,         | 260,         | 310,         | 260,         | 280}         |
| 08653          | , {        | 310,         | 260,         | 310,         | 260,         | 280}         |
| 08654          | , {        | 310,         | 260,         | 310,         | 260,         | 280}         |
| 08655          | }          |              |              |              |              |              |
| 08656          | , { {      | 340,         | 300,         | 340,         | 300,         | 310}         |
| 08657          | , {        | 340,         | 300,         | 340,         | 300,         | 310}         |
| 08658          | , {        | 310,         | 260,         | 310,         | 260,         | 280}         |
| 08659          | , {        | 290,         | 180,         | 290,         | 180,         | 260}         |
| 08660          | , {        | 310,         | 260,         | 310,         | 260,         | 280}         |
| 08661          | }          | 210          | 200          | 210          | 200          | 200:         |
| 08662          | , { {      | 310,         | 260 <b>,</b> | 310,         | 260 <b>,</b> | 280}         |
| 08663<br>08664 | , {<br>, { | 310,<br>310, | 260,<br>260, | 310,<br>310, | 260,<br>260, | 280}<br>280} |
| 08665          | , {        | 310,         | 260,         | 310,         | 260,         | 280}         |
| 08666          | , {        | 310,         | 260,         | 310,         | 260,         | 280}         |
| 08667          | }          | /            | ,            | /            | ,            | ,            |
| 08668          | , { {      | 370,         | 260,         | 370,         | 260,         | 340}         |
| 08669          | , {        | 370,         | 260,         | 370,         | 260,         | 340}         |
| 08670          | , {        | 310,         | 260,         | 310,         | 260,         | 280}         |
| 08671          | , {        | 180,         | 130,         | 180,         | 130,         | 150}         |
|                |            |              |              |              |              |              |

| 08672          | , {          | 310,         | 260,         | 310,         | 260,         | 280}           |
|----------------|--------------|--------------|--------------|--------------|--------------|----------------|
| 08673<br>08674 | }<br>,{{     | 310,         | 260,         | 310,         | 260,         | 280}           |
| 08675          | , {          | 310,         | 260,         | 310,         | 260,         | 280}           |
| 08676          | , {          | 310,         | 260,         | 310,         | 260,         | 280}           |
| 08677<br>08678 | , {<br>, {   | 310,<br>310, | 260,<br>260, | 310,<br>310, | 260,<br>260, | 280}<br>280}   |
| 08679          | }            |              |              |              |              |                |
| 08680<br>08681 | }            | 340,         | 260,         | 340,         | 280,         | 340}           |
| 08682          | }},<br>{     | 340,         | 240,         | 340,         | 280,         | 340}           |
| 08683          | , {          | 310,         | 260,         | 310,         | 150,         | 310}           |
| 08684<br>08685 | , {<br>, {   | 310,<br>310, | 200,<br>260, | 310,<br>310, | 280,<br>280, | 310}           |
| 08686          | }            | 510,         | 200,         | 310,         | 200,         | 310)           |
| 08687          | , { {        | 340,         | 240,         | 340,         | 200,         | 340}           |
| 08688<br>08689 | , {<br>, {   | 340,<br>310, | 240,<br>200, | 340,<br>310, | 190,<br>150, | 340}<br>310}   |
| 08690          | , {          | 230,         | 120,         | 230,         | 200,         | 230}           |
| 08691<br>08692 | , {<br>}     | 310,         | 200,         | 310,         | 150,         | 310}           |
| 08693          | , { {        | 310,         | 260,         | 310,         | 150,         | 310}           |
| 08694          | , {          | 310,         | 200,         | 310,         | 150,         | 310}           |
| 08695<br>08696 | , {<br>, {   | 310,<br>310, | 260,<br>200, | 310,<br>310, | 150,<br>150, | 310}<br>310}   |
| 08697          | , {          | 310,         | 260,         | 310,         | 150,         | 310}           |
| 08698          | }            | 210          | 200          | 210          | 200          | 2101           |
| 08699<br>08700 | ,{{<br>,{    | 310,<br>310, | 200,<br>200, | 310,<br>310, | 280,<br>280, | 310}<br>310}   |
| 08701          | , {          | 310,         | 200,         | 310,         | 150,         | 310}           |
| 08702<br>08703 | , {<br>, {   | 280,<br>310, | 200,<br>200, | 180,<br>310, | 280,<br>150, | 180}<br>310}   |
| 08704          | }            | 510,         | 200,         | 310,         | 130,         | 310)           |
| 08705          | , { {        | 310,         | 260,         | 310,         | 280,         | 310}           |
| 08706<br>08707 | , {<br>, {   | 310,<br>310, | 200,<br>260, | 310,<br>310, | 150,<br>150, | 310}           |
| 08708          | , {          | 310,         | 200,         | 310,         | 150,         | 310}           |
| 08709<br>08710 | , {<br>}     | 310,         | 200,         | 310,         | 280,         | 310}           |
| 08711          | }            |              |              |              |              |                |
| 08712          | , { { {      | 370,         | 300,         | 370,         | 300,         | 320}           |
| 08713<br>08714 | , {<br>, {   | 370,<br>310, | 300,<br>260, | 370,<br>310, | 300,<br>260, | 320}<br>220}   |
| 08715          | , {          | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08716<br>08717 | , {<br>}     | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08717          | ,{{          | 340,         | 300,         | 340,         | 300,         | 320}           |
| 08719          | , {          | 340,         | 300,         | 340,         | 300,         | 320}           |
| 08720<br>08721 | , {<br>, {   | 310,<br>290, | 260,<br>180, | 310,<br>290, | 260,<br>180, | 220}           |
| 08722          | , {          | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08723<br>08724 | }<br>,{{     | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08725          | , ( (        | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08726          | , {          | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08727<br>08728 | , {<br>, {   | 310,<br>310, | 260,<br>260, | 310,<br>310, | 260,<br>260, | 220}           |
| 08729          | }            |              |              |              |              |                |
| 08730<br>08731 | ,{{<br>,{    | 370,<br>370, | 260,<br>260, | 370,<br>370, | 260,<br>260, | 220}           |
| 08732          | , {          | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08733          | , {          | 220,         | 130,         | 180,         | 130,         | 220}           |
| 08734<br>08735 | , {<br>}     | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08736          | , { {        | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08737<br>08738 | , {<br>, {   | 310,<br>310, | 260,<br>260, | 310,<br>310, | 260,<br>260, | 220}           |
| 08739          | , {          | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08740          | , {          | 310,         | 260,         | 310,         | 260,         | 220}           |
| 08741<br>08742 | }            |              |              |              |              |                |
| 08743          | }            |              |              |              |              |                |
| 08744<br>08745 | !!!!!<br>}   | INF,         | TNE          | INF,         | TNE          | INF }          |
| 08745          | }}}}},<br>}, | INF,         | INF,         | INF,         | INF,<br>INF, | INF }          |
| 08747          | , {          | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08748<br>08749 | , {<br>, {   | INF,         | INF,<br>INF, | INF,         | INF,<br>INF, | INF }<br>INF } |
| 08750          | }            |              |              |              |              |                |
| 08751<br>08752 | ,{{<br>,{    | INF,         | INF,         | INF,         | INF,         | INF }<br>INF } |
| 08753          | , {          | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08754          | , {          | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08755<br>08756 | , {<br>}     | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08757          | , {{         | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08758          | , {          | INF,         | INF,         | INF,         | INF,         | INF }          |

| 08759 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
|-------|---------|--------------|--------------|--------------|--------------|-------|
| 08760 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08761 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08762 | }       | ,            | ,            | ,            | ,            | ,     |
| 08763 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08764 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08765 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08766 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08767 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08768 | }       | /            |              | /            | /            | ,     |
| 08769 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08770 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08771 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08772 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08773 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08774 | }       | /            |              | /            | /            |       |
| 08775 | }       |              |              |              |              |       |
| 08776 | ,{{{    | INF,         | INF,         | INF,         | INF,         | INF } |
| 08777 | , ( ( ( | INF,         | INF,         | INF,         | INF,         | INF } |
| 08778 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08779 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08780 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08781 | }       | TIVE ,       | TINE ,       | TIME ,       | TIME ,       | TIME  |
| 08782 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08783 |         |              |              |              | INF,         |       |
| 08784 | , {     | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, |              | INF } |
| 08785 | , {     |              |              | INF,         | INF,<br>INF, | INF } |
|       | , {     | INF,         | INF,         |              |              | INF } |
| 08786 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08787 | }       | TNE          | TME          | TME          | TNE          | TNE   |
| 08788 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08789 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08790 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08791 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08792 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08793 | }       |              |              |              |              |       |
| 08794 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08795 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08796 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08797 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08798 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08799 | }       |              |              |              |              |       |
| 08800 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08801 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08802 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08803 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08804 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08805 | }       |              |              |              |              |       |
| 08806 | }       |              |              |              |              |       |
| 08807 | , { { { | INF,         | INF,         | INF,         | INF,         | INF } |
| 80880 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08809 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08810 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08811 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08812 | }       |              |              |              |              |       |
| 08813 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08814 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08815 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08816 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08817 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08818 | }       |              |              |              |              |       |
| 08819 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08820 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08821 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08822 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08823 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08824 | }       |              |              |              |              |       |
| 08825 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08826 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08827 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08828 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08829 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08830 | }       |              |              |              |              |       |
| 08831 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08832 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08833 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08834 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08835 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08836 | }       | ,            | ,            | ,            | ,            | ,     |
| 08837 | }       |              |              |              |              |       |
| 08838 | ,{{{    | INF,         | INF,         | INF,         | INF,         | INF } |
| 08839 | , ( (   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08840 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08841 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08842 | , {     | INF,         | INF,         | INF,         | INF,         | INF } |
| 08843 | }       | /            | /            |              | /            |       |
| 08844 | , { {   | INF,         | INF,         | INF,         | INF,         | INF } |
| 08845 | , ( (   | INF,         | INF,         | INF,         | INF,         | INF } |
|       | , (     | /            | ,            | /            | /            | ,     |

| 00016          | r         | TNIE | TME  | TME  | TNE   | TNIE  |
|----------------|-----------|------|------|------|-------|-------|
| 08846          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08847<br>08848 | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08849          | , {       | INF, | INF, | INF, | INF,  | INF } |
|                | }         | TNIE | TATE | TATE | T.110 | TATEL |
| 08850<br>08851 | , { {     | INF, | INF, | INF, | INF,  | INF } |
|                | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08852          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08853          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08854          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08855          | }         |      |      |      |       |       |
| 08856          | , { {     | INF, | INF, | INF, | INF,  | INF } |
| 08857          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08858          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08859          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08860          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08861          | }         |      |      |      |       |       |
| 08862          | , { {     | INF, | INF, | INF, | INF,  | INF } |
| 08863          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08864          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08865          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08866          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08867          | }         |      |      |      |       |       |
| 08868          | }         |      |      |      |       |       |
| 08869          | ,{{       | INF, | INF, | INF, | INF,  | INF } |
| 08870          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08871          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08872          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08873          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08874          | }         |      |      |      |       |       |
| 08875          | , { {     | INF, | INF, | INF, | INF,  | INF } |
| 08876          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08877          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08878          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08879          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08880          | }         |      |      |      |       |       |
| 08881          | , { {     | INF, | INF, | INF, | INF,  | INF } |
| 08882          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08883          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08884          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08885          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08886          | }         |      |      |      |       |       |
| 08887          | , { {     | INF, | INF, | INF, | INF,  | INF } |
| 08888          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08889          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08890          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08891          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08892          | }         |      |      |      |       |       |
| 08893          | , { {     | INF, | INF, | INF, | INF,  | INF } |
| 08894          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08895          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08896          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08897          | , {       | INF, | INF, | INF, | INF,  | INF } |
| 08898          | }         |      |      |      |       |       |
| 08899          | }         |      |      |      |       |       |
| 08900          | }         |      |      |      |       |       |
| 08901          | , { { { { | 310, | 300, | 270, | 310,  | 290}  |
| 08902          | , {       | 300, | 300, | 270, | 270,  | 290}  |
| 08903          | , {       | 310, | 290, | 250, | 310,  | 250}  |
| 08904          | , {       | 300, | 300, | 270, | 270,  | 270}  |
| 08905          | , {       | 300, | 270, | 240, | 300,  | 240}  |
| 08906          | }         |      |      |      |       |       |
| 08907          | , { {     | 290, | 270, | 230, | 230,  | 290}  |
| 08908          | , {       | 290, | 270, | 230, | 230,  | 290}  |
| 08909          | , {       | 260, | 260, | 220, | 220,  | 220}  |
| 08910          | , {       | 190, | 170, | 190, | 130,  | 190}  |
| 08911          | , {       | 260, | 260, | 220, | 220,  | 220}  |
| 08912          | }         |      |      |      |       |       |
| 08913          | , { {     | 310, | 300, | 270, | 310,  | 270}  |
| 08914          | , {       | 300, | 300, | 270, | 270,  | 270}  |
| 08915          | , {       | 310, | 290, | 250, | 310,  | 250}  |
| 08916          | , {       | 300, | 300, | 270, | 270,  | 270}  |
| 08917          | , {       | 300, | 270, | 240, | 300,  | 240}  |
| 08918          | }         |      |      |      |       |       |
| 08919          | , { {     | 260, | 260, | 220, | 220,  | 220}  |
| 08920          | , {       | 190, | 170, | 190, | 130,  | 190}  |
| 08921          | , {       | 260, | 260, | 220, | 220,  | 220}  |
| 08922          | , {       | 210, | 130, | 80,  | 210,  | 210}  |
| 08923          | , {       | 260, | 260, | 220, | 220,  | 220}  |
| 08924          | }         |      |      |      |       |       |
| 08925          | , { {     | 300, | 300, | 270, | 300,  | 270}  |
| 08926          | , {       | 300, | 300, | 270, | 270,  | 270}  |
| 08927          | , {       | 300, | 270, | 240, | 300,  | 240}  |
| 08928          | , {       | 300, | 300, | 270, | 270,  | 270}  |
| 08929          | , {       | 240, | 240, | 150, | 150,  | 150}  |
| 08930          | }         |      |      |      |       |       |
| 08931          | }         |      |      |      |       |       |
| 08932          | , { { {   | 310, | 300, | 270, | 310,  | 270}  |
|                |           |      |      |      |       |       |

| 08933          | , {        | 300,         | 300,         | 270,         | 270,         | 270}        |
|----------------|------------|--------------|--------------|--------------|--------------|-------------|
| 08934          | , {        | 310,         | 290,         | 250,         | 310,         | 250}        |
| 08935          | , {        | 300,         | 300,         | 270,         | 270,         | 270}        |
| 08936          | , {        | 300,         | 270,         | 240,         | 300,         | 240}        |
| 08937          | }          | 270          | 270          | 220          | 220          | 2201        |
| 08938<br>08939 | ,{{<br>,{  | 270,<br>270, | 270,<br>270, | 230,<br>230, | 230,<br>230, | 230}        |
| 08940          | , t<br>, { | 260,         | 260,         | 220,         | 220,         | 220}        |
| 08941          | , {        | 170,         | 170,         | 130,         | 130,         | 130}        |
| 08942          | , {        | 260,         | 260,         | 220,         | 220,         | 220}        |
| 08943          | }          | 200,         | 200,         | 220,         | 220,         | 220,        |
| 08944          | , { {      | 310,         | 300,         | 270,         | 310,         | 270}        |
| 08945          | , {        | 300,         | 300,         | 270,         | 270,         | 270}        |
| 08946          | , {        | 310,         | 290,         | 250,         | 310,         | 250}        |
| 08947          | , {        | 300,         | 300,         | 270,         | 270,         | 270}        |
| 08948          | , {        | 300,         | 270,         | 240,         | 300,         | 240}        |
| 08949          | }          |              |              |              |              |             |
| 08950          | , { {      | 260,         | 260,         | 220,         | 220,         | 220}        |
| 08951          | , {        | 170,         | 170,         | 130,         | 130,         | 130}        |
| 08952          | , {        | 260,         | 260,         | 220,         | 220,         | 220}        |
| 08953          | , {        | 210,         | 110,         | 80,          | 210,         | 80}         |
| 08954<br>08955 | , {<br>}   | 260,         | 260,         | 220,         | 220,         | 220}        |
| 08956          | , { {      | 300,         | 300,         | 270,         | 300,         | 270}        |
| 08957          | , (        | 300,         | 300,         | 270,         | 270,         | 270}        |
| 08958          | , {        | 300,         | 270,         | 240,         | 300,         | 240}        |
| 08959          | , {        | 300,         | 300,         | 270,         | 270,         | 270}        |
| 08960          | , {        | 240,         | 240,         | 150,         | 150,         | 150}        |
| 08961          | }          |              |              |              |              |             |
| 08962          | }          |              |              |              |              |             |
| 08963          | , { { {    | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08964          | , {        | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08965          | , {        | 250,         | 250,         | 250,         | 250,         | 250}        |
| 08966          | , {        | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08967          | , {        | 240,         | 240,         | 240,         | 240,         | 240}        |
| 08968          | }          | 000          | 0.00         | 000          | 0.00         | 0001        |
| 08969<br>08970 | ,{{<br>,{  | 230,         | 230,<br>230, | 230,<br>230, | 230,<br>230, | 230}        |
| 08970          | , {        | 230,<br>220, | 220,         | 220,         | 220,         | 230}        |
| 08972          | , {        | 190,         | 130,         | 190,         | 130,         | 190}        |
| 08973          | , {        | 220,         | 220,         | 220,         | 220,         | 220}        |
| 08974          | }          | /            | ,            | ,            | ,            | ,           |
| 08975          | , { {      | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08976          | , {        | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08977          | , {        | 250,         | 250,         | 250,         | 250,         | 250}        |
| 08978          | , {        | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08979          | , {        | 240,         | 240,         | 240,         | 240,         | 240}        |
| 08980          | }          |              |              |              |              |             |
| 08981          | , { {      | 220,         | 220,         | 220,         | 220,         | 220}        |
| 08982          | , {        | 190,         | 130,         | 190,         | 130,         | 190}        |
| 08983          | , {        | 220,<br>80,  | 220,         | 220,<br>80,  | 220,         | 220}        |
| 08984<br>08985 | , {<br>, { | 220,         | 80,<br>220,  | 220,         | 80,<br>220,  | 80}<br>220} |
| 08986          | }          | 220,         | 220,         | 220,         | 220,         | 220)        |
| 08987          | , { {      | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08988          | , {        | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08989          | , {        | 240,         | 240,         | 240,         | 240,         | 240}        |
| 08990          | , {        | 270,         | 270,         | 270,         | 270,         | 270}        |
| 08991          | , {        | 150,         | 150,         | 150,         | 150,         | 150}        |
| 08992          | }          |              |              |              |              |             |
| 08993          | }          |              |              |              |              |             |
| 08994          | ,{{{       | 270,         | 230,         | 270,         | 210,         | 270}        |
| 08995          | , {        | 270,         | 190,         | 270,         | 140,         | 270}        |
| 08996          | , {        | 250,         | 230,         | 250,         | 120,         | 250}        |
| 08997          | , {        | 270,         | 190,         | 270,         | 210,         | 270}        |
| 08998<br>08999 | , {<br>}   | 240,         | 220,         | 240,         | 150,         | 240}        |
| 09000          | , { {      | 230,         | 150,         | 230,         | 130,         | 230}        |
| 09001          | , {        | 230,         | 150,         | 230,         | 100,         | 230}        |
| 09002          | , {        | 220,         | 140,         | 220,         | 90,          | 220}        |
| 09003          | , {        | 130,         | 50,          | 130,         | 130,         | 130}        |
| 09004          | , {        | 220,         | 140,         | 220,         | 90,          | 220}        |
| 09005          | }          | •            | •            | •            | •            | ,           |
| 09006          | , { {      | 270,         | 230,         | 270,         | 140,         | 270}        |
| 09007          | , {        | 270,         | 190,         | 270,         | 140,         | 270}        |
| 09008          | , {        | 250,         | 230,         | 250,         | 120,         | 250}        |
| 09009          | , {        | 270,         | 190,         | 270,         | 140,         | 270}        |
| 09010          | , {        | 240,         | 220,         | 240,         | 110,         | 240}        |
| 09011          | }          | 200          | 1 40         | 000          | 010          | 000         |
| 09012          | , { {      | 220,         | 140,         | 220,         | 210,         | 220}        |
| 09013<br>09014 | , {        | 130,<br>220, | 50,          | 130,<br>220, | 130,<br>90,  | 130}        |
| 09014          | , {<br>, { | 210,         | 140,<br>130, | 80,          | 210,         | 220}        |
| 09015          | , {        | 220,         | 140,         | 220,         | 90,          | 220}        |
| 09017          | }          | ,            | - 10,        | ,            | 50,          |             |
| 09018          | , { {      | 270,         | 220,         | 270,         | 150,         | 270}        |
| 09019          | , {        | 270,         | 190,         | 270,         | 140,         | 270}        |
|                |            |              |              |              |              |             |

| 09020          | , {         | 240,         | 220,         | 240,         | 110,         | 240}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 09021<br>09022 | , {<br>, {  | 270,<br>150, | 190,<br>70,  | 270,<br>150, | 140,<br>150, | 270}         |
| 09023          | }           | 150,         | , ,          | 130,         | 130,         | 150}         |
| 09024          | }           | 000          | 070          | 070          | 070          | 0001         |
| 09025<br>09026 | }}},<br>},{ | 290,<br>290, | 270,<br>270, | 270,<br>270, | 270,<br>270, | 290}<br>290} |
| 09027          | , {         | 250,         | 250,         | 250,         | 250,         | 250}         |
| 09028<br>09029 | , {         | 270,         | 270,<br>240, | 270,         | 270,<br>240, | 270}         |
| 09029          | , {<br>}    | 240,         | 240,         | 240,         | 240,         | 240}         |
| 09031          | , { {       | 290,         | 230,         | 230,         | 230,         | 290}         |
| 09032<br>09033 | , {<br>, {  | 290,<br>220, | 230,<br>220, | 230,<br>220, | 230,<br>220, | 290}<br>220} |
| 09034          | , {         | 190,         | 130,         | 190,         | 130,         | 130}         |
| 09035          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09036<br>09037 | }<br>,{{    | 270,         | 270,         | 270,         | 270,         | 270}         |
| 09038          | , {         | 270,         | 270,         | 270,         | 270,         | 270}         |
| 09039<br>09040 | , {<br>, {  | 250,<br>270, | 250,<br>270, | 250,<br>270, | 250,<br>270, | 250}<br>270} |
| 09041          | , {         | 240,         | 240,         | 240,         | 240,         | 240}         |
| 09042          | }           |              |              |              |              |              |
| 09043          | ,{{<br>,{   | 220,<br>190, | 220,<br>130, | 220,<br>190, | 220,<br>130, | 220}<br>130} |
| 09045          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09046          | , {         | 210,         | 80,          | 80,          | 80,          | 210}         |
| 09047<br>09048 | , {<br>}    | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09049          | , { {       | 270,         | 270,         | 270,         | 270,         | 270}         |
| 09050<br>09051 | , {         | 270,<br>240, | 270,<br>240, | 270,<br>240, | 270,<br>240, | 270}         |
| 09052          | , {<br>, {  | 270,         | 270,         | 270,         | 270,         | 270}         |
| 09053          | , {         | 150,         | 150,         | 150,         | 150,         | 150}         |
| 09054<br>09055 | }           |              |              |              |              |              |
| 09056          | }           |              |              |              |              |              |
| 09057          | , { { { {   | 300,         | 280,         | 240,         | 280,         | 300}         |
| 09058<br>09059 | , {<br>, {  | 300,<br>280, | 280,<br>260, | 240,<br>220, | 240,<br>280, | 300}<br>220} |
| 09060          | , {         | 250,         | 250,         | 210,         | 210,         | 210}         |
| 09061<br>09062 | , {<br>}    | 280,         | 250,         | 220,         | 280,         | 220}         |
| 09063          | , { {       | 300,         | 280,         | 240,         | 240,         | 300}         |
| 09064          | , {         | 300,         | 280,         | 240,         | 240,         | 300}         |
| 09065<br>09066 | , {<br>, {  | 250,<br>100, | 250,<br>70,  | 220,<br>100, | 220,<br>40,  | 220}<br>100} |
| 09067          | , {         | 250,         | 250,         | 220,         | 220,         | 220}         |
| 09068<br>09069 | }<br>,{{    | 280,         | 250,         | 220,         | 280,         | 220}         |
| 09070          | , { {       | 250,         | 250,         | 210,         | 210,         | 210}         |
| 09071          | , {         | 280,         | 250,         | 220,         | 280,         | 220}         |
| 09072<br>09073 | , {<br>, {  | 250,<br>280, | 250,<br>250, | 210,<br>220, | 210,<br>280, | 210}         |
| 09074          | }           |              |              |              |              |              |
| 09075<br>09076 | , { {       | 250,<br>160, | 250,<br>140, | 220,<br>160, | 220,<br>100, | 220}<br>160} |
| 09077          | , {<br>, {  | 250,         | 250,         | 220,         | 220,         | 220}         |
| 09078          | , {         | 210,         | 130,         | 80,          | 210,         | 210}         |
| 09079<br>09080 | , {<br>}    | 250,         | 250,         | 220,         | 220,         | 220}         |
| 09081          | , { {       | 280,         | 260,         | 220,         | 280,         | 220}         |
| 09082<br>09083 | , {         | 250,         | 250,         | 210,         | 210,         | 210}         |
| 09083          | , {<br>, {  | 280,<br>250, | 260,<br>250, | 220,<br>210, | 280,<br>210, | 220}         |
| 09085          | , {         | 240,         | 240,         | 140,         | 140,         | 140}         |
| 09086<br>09087 | }           |              |              |              |              |              |
| 09088          | ,{{{        | 280,         | 280,         | 240,         | 280,         | 240}         |
| 09089          | , {         | 280,         | 280,         | 240,         | 240,         | 240}         |
| 09090<br>09091 | , {<br>, {  | 280,<br>250, | 260,<br>250, | 220,<br>210, | 280,<br>210, | 220}         |
| 09092          | , {         | 280,         | 250,         | 220,         | 280,         | 220}         |
| 09093          | }           | 280,         | 200          | 240,         | 240          | 2401         |
| 09094<br>09095 | ,{{<br>,{   | 280,         | 280,<br>280, | 240,         | 240,<br>240, | 240}<br>240} |
| 09096          | , {         | 250,         | 250,         | 220,         | 220,         | 220}         |
| 09097<br>09098 | , {<br>, {  | 70,<br>250,  | 70,<br>250,  | 40,<br>220,  | 40,<br>220,  | 40}<br>220}  |
| 09099          | }           |              |              |              |              |              |
| 09100          | , { {       | 280,         | 250,         | 220,         | 280,         | 220}         |
| 09101<br>09102 | , {<br>, {  | 250,<br>280, | 250,<br>250, | 210,<br>220, | 210,<br>280, | 210}         |
| 09103          | , {         | 250,         | 250,         | 210,         | 210,         | 210}         |
| 09104<br>09105 | , {<br>}    | 280,         | 250,         | 220,         | 280,         | 220}         |
| 09106          | , { {       | 250,         | 250,         | 220,         | 220,         | 220}         |
|                |             |              |              |              |              |              |

| 09107          | , {      | 140,        | 140,         | 100,        | 100, | 100}  |
|----------------|----------|-------------|--------------|-------------|------|-------|
| 09108          | , {      | 250,        | 250,         | 220,        | 220, | 220}  |
| 09109          | , {      | 210,        | 110,         | 80,         | 210, | 80}   |
| 09110          | , {      | 250,        | 250,         | 220,        | 220, | 220}  |
| 09111          | }        |             |              |             |      |       |
| 09112          | , { {    | 280,        | 260,         | 220,        | 280, | 220}  |
| 09113          | , {      | 250,        | 250,         | 210,        | 210, | 210}  |
| 09114          | , {      | 280,        | 260,         | 220,        | 280, | 220}  |
| 09115          | , {      | 250,        | 250,         | 210,        | 210, | 210}  |
| 09116          | , {      | 240,        | 240,         | 140,        | 140, | 140}  |
| 09117          | }        |             |              |             |      |       |
| 09118          | }        |             |              |             |      |       |
| 09119          | , { { {  | 240,        | 240,         | 240,        | 240, | 240}  |
| 09120          | , {      | 240,        | 240,         | 240,        | 240, | 240}  |
| 09121          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09122          | , {      | 210,        | 210,         | 210,        | 210, | 210}  |
| 09123          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09124          | }        |             |              |             |      |       |
| 09125          | , { {    | 240,        | 240,         | 240,        | 240, | 240}  |
| 09126          | , {      | 240,        | 240,         | 240,        | 240, | 240}  |
| 09127          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09128          | , {      | 100,        | 40,          | 100,        | 40,  | 100}  |
| 09129          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09130          | }        |             |              |             |      |       |
| 09131          | , { {    | 220,        | 220,         | 220,        | 220, | 220}  |
| 09132          | , {      | 210,        | 210,         | 210,        | 210, | 210}  |
| 09133          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09134          | , {      | 210,        | 210,         | 210,        | 210, | 210}  |
| 09135          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09136          | }        |             |              |             |      |       |
| 09137          | , { {    | 220,        | 220,         | 220,        | 220, | 220}  |
| 09138          | , {      | 160,        | 100,         | 160,        | 100, | 160}  |
| 09139          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09140          | , {      | 80,         | 80,          | 80,         | 80,  | 80}   |
| 09141          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09142          | }        |             |              |             |      |       |
| 09143          | , { {    | 220,        | 220,         | 220,        | 220, | 220}  |
| 09144          | , {      | 210,        | 210,         | 210,        | 210, | 210}  |
| 09145          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09146          | , {      | 210,        | 210,         | 210,        | 210, | 210}  |
| 09147          | , {      | 140,        | 140,         | 140,        | 140, | 140}  |
| 09148          | }        |             |              |             |      |       |
| 09149          | }        |             |              |             |      |       |
| 09150          | , { { {  | 240,        | 200,         | 240,        | 210, | 240}  |
| 09151          | , {      | 240,        | 160,         | 240,        | 110, | 240}  |
| 09152          | , {      | 220,        | 200,         | 220,        | 90,  | 220}  |
| 09153          | , {      | 210,        | 130,         | 210,        | 210, | 210}  |
| 09154          | , {      | 220,        | 200,         | 220,        | 140, | 220}  |
| 09155          | }        | 0.40        | 1.00         | 0.40        | 110  | 0.403 |
| 09156          | , { {    | 240,        | 160,         | 240,        | 110, | 240}  |
| 09157          | , {      | 240,        | 160,         | 240,        | 110, | 240}  |
| 09158<br>09159 | , {      | 220,        | 140,         | 220,        | 90,  | 220}  |
| 09160          | , {      | 40,<br>220, | -40,<br>140, | 40,<br>220, | 40,  |       |
| 09161          | , {<br>} | 220,        | 140,         | 220,        | 90,  | 220}  |
| 09162          | , { {    | 220,        | 200,         | 220,        | 90,  | 220}  |
| 09163          | , {      | 210,        | 130,         | 210,        | 80,  | 210}  |
| 09164          | , {      | 220,        | 200,         | 220,        | 90,  | 220}  |
| 09165          | , {      | 210,        | 130,         | 210,        | 80,  | 210}  |
| 09166          | , {      | 220,        | 200,         | 220,        | 90,  | 220}  |
| 09167          | }        | ,           | ,            | ,           | ,    | ,     |
| 09168          | , { {    | 220,        | 140,         | 220,        | 210, | 220}  |
| 09169          | , {      | 100,        | 20,          | 100,        | 100, | 100}  |
| 09170          | , {      | 220,        | 140,         | 220,        | 90,  | 220}  |
| 09171          | , {      | 210,        | 130,         | 80,         | 210, | 80}   |
| 09172          | , {      | 220,        | 140,         | 220,        | 90,  | 220}  |
| 09173          | }        | ,           | ,            | ,           | ,    | ,     |
| 09174          | , { {    | 220,        | 200,         | 220,        | 140, | 220}  |
| 09175          | , {      | 210,        | 130,         | 210,        | 80,  | 210}  |
| 09176          | , {      | 220,        | 200,         | 220,        | 90,  | 220}  |
| 09177          | , {      | 210,        | 130,         | 210,        | 80,  | 210}  |
| 09178          | , {      | 140,        | 90,          | 140,        | 140, | 140}  |
| 09179          | }        |             |              |             |      |       |
| 09180          | }        |             |              |             |      |       |
| 09181          | , { { {  | 300,        | 240,         | 240,        | 240, | 300}  |
| 09182          | , {      | 300,        | 240,         | 240,        | 240, | 300}  |
| 09183          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09184          | , {      | 210,        | 210,         | 210,        | 210, | 210}  |
| 09185          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09186          | }        |             |              |             |      |       |
| 09187          | , { {    | 300,        | 240,         | 240,        | 240, | 300}  |
| 09188          | , {      | 300,        | 240,         | 240,        | 240, | 300}  |
| 09189          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09190          | , {      | 100,        | 40,          | 100,        | 40,  | 50}   |
| 09191          | , {      | 220,        | 220,         | 220,        | 220, | 220}  |
| 09192          | }        |             |              |             |      |       |
| 09193          | , { {    | 220,        | 220,         | 220,        | 220, | 220}  |
|                |          |             |              |             |      |       |

| 09194          | , {         | 210,         | 210,         | 210,         | 210,         | 210}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 09195          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09196          | , {         | 210,         | 210,         | 210,         | 210,         | 210}         |
| 09197          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09198<br>09199 | }<br>,{{    | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09200          | , {         | 160,         | 100,         | 160,         | 100,         | 140}         |
| 09201          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09202          | , {         | 210,         | 80,          | 80,          | 80,          | 210}         |
| 09203          | , {         | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09204          | }           | 000          | 000          | 000          | 000          | 0001         |
| 09205          | , { {       | 220,         | 220,         | 220,         | 220,         | 220}         |
| 09206<br>09207 | , {<br>, {  | 210,<br>220, | 210,<br>220, | 210,<br>220, | 210,<br>220, | 210}         |
| 09208          | , {         | 210,         | 210,         | 210,         | 210,         | 210}         |
| 09209          | , {         | 140,         | 140,         | 140,         | 140,         | 140}         |
| 09210          | }           |              |              |              |              |              |
| 09211          | }           |              |              |              |              |              |
| 09212          | }           | 420          | 120          | 270          | 400          | 4201         |
| 09213<br>09214 | , { { { { { | 430,<br>430, | 430,<br>410, | 370,<br>370, | 400,<br>370, | 430}<br>430} |
| 09214          | , {<br>, {  | 400,         | 370,         | 340,         | 400,         | 340}         |
| 09216          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09217          | , {         | 430,         | 430,         | 340,         | 400,         | 340}         |
| 09218          | }           |              |              |              |              |              |
| 09219          | , { {       | 430,         | 410,         | 370,         | 370,         | 430}         |
| 09220          | , {         | 430,         | 410,         | 370,         | 370,         | 430}         |
| 09221<br>09222 | , {         | 370,<br>320, | 370,<br>290, | 340,<br>320, | 340,<br>260, | 340}         |
| 09223          | , {<br>, {  | 370,         | 370,         | 340,         | 340,         | 320}         |
| 09224          | }           | 0.07         | 0,0,         | 010,         | 010,         | 010,         |
| 09225          | , { {       | 400,         | 370,         | 340,         | 400,         | 340}         |
| 09226          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09227          | , {         | 400,         | 370,         | 340,         | 400,         | 340}         |
| 09228          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09229<br>09230 | , {<br>}    | 400,         | 370,         | 340,         | 400,         | 340}         |
| 09231          | , { {       | 370,         | 370,         | 360,         | 340,         | 360}         |
| 09232          | , {         | 360,         | 360,         | 360,         | 300,         | 360}         |
| 09233          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09234          | , {         | 340,         | 260,         | 210,         | 340,         | 340}         |
| 09235          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09236          | }           | 420          | 120          | 240          | 400          | 2401         |
| 09237<br>09238 | ,{{<br>,{   | 430,<br>370, | 430,<br>370, | 340,<br>340, | 400,<br>340, | 340}<br>340} |
| 09239          | , {         | 400,         | 370,         | 340,         | 400,         | 340}         |
| 09240          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09241          | , {         | 430,         | 430,         | 340,         | 340,         | 340}         |
| 09242          | }           |              |              |              |              |              |
| 09243          | }           |              |              |              |              |              |
| 09244<br>09245 | , { { {     | 430,         | 430,         | 370,         | 400,         | 370}         |
| 09245          | , {<br>, {  | 410,<br>400, | 410,<br>370, | 370,<br>340, | 370,<br>400, | 370}<br>340} |
| 09247          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09248          | , {         | 430,         | 430,         | 340,         | 400,         | 340}         |
| 09249          | }           |              |              |              |              |              |
| 09250          | , { {       | 410,         | 410,         | 370,         | 370,         | 370}         |
| 09251          | , {         | 410,         | 410,         | 370,         | 370,<br>340, | 370}         |
| 09252<br>09253 | , {<br>, {  | 370,<br>290, | 370,<br>290, | 340,<br>260, | 260,         | 340}<br>260} |
| 09254          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09255          | }           |              |              |              |              |              |
| 09256          | , { {       | 400,         | 370,         | 340,         | 400,         | 340}         |
| 09257          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09258          | , {         | 400,         | 370,         | 340,         | 400,         | 340}         |
| 09259<br>09260 | , {<br>, {  | 370,<br>400, | 370,<br>370, | 340,<br>340, | 340,<br>400, | 340}         |
| 09261          | }           | 400,         | 370,         | 340,         | 400,         | 540)         |
| 09262          | , { {       | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09263          | , {         | 360,         | 360,         | 300,         | 300,         | 300}         |
| 09264          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09265          | , {         | 340,         | 240,         | 210,         | 340,         | 210}         |
| 09266          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09267<br>09268 | }<br>,{{    | 430,         | 430,         | 340,         | 400,         | 340}         |
| 09269          | , (         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09270          | , {         | 400,         | 370,         | 340,         | 400,         | 340}         |
| 09271          | , {         | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09272          | , {         | 430,         | 430,         | 340,         | 340,         | 340}         |
| 09273          | }           |              |              |              |              |              |
| 09274<br>09275 | 111<br>}    | 370,         | 370,         | 370,         | 370,         | 370}         |
| 09275          | }}},<br>},{ | 370,         | 370,         | 370,         | 370,         | 370}         |
| 09277          | , {         | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09278          | , {         | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09279          | , {         | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09280          | }           |              |              |              |              |              |
|                |             |              |              |              |              |              |

| 09281     | 1.1     | 370,         | 370, | 370, | 370, | 370}  |
|-----------|---------|--------------|------|------|------|-------|
|           | , { {   |              |      |      |      |       |
| 09282     | , {     | 370,         | 370, | 370, | 370, | 370}  |
| 09283     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09284     | , {     | 320,         | 260, | 320, | 260, | 320}  |
| 09285     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09286     | }       | 010,         | 010, | 010, | 010, | 010,  |
|           |         | 240          | 2.40 | 240  | 240  | 2401  |
| 09287     | , { {   | 340,         | 340, | 340, | 340, | 340}  |
| 09288     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09289     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09290     |         | 340,         | 340, | 340, | 340, | 340}  |
|           | , {     |              |      |      |      |       |
| 09291     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09292     | }       |              |      |      |      |       |
| 09293     | , { {   | 360,         | 340, | 360, | 340, | 360}  |
|           |         |              |      |      | •    |       |
| 09294     | , {     | 360,         | 300, | 360, | 300, | 360}  |
| 09295     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09296     | , {     | 210,         | 210, | 210, | 210, | 210}  |
| 09297     | , {     | 340,         | 340, | 340, | 340, | 340}  |
|           |         | 340,         | 540, | 340, | 340, | 340)  |
| 09298     | }       |              |      |      |      |       |
| 09299     | , { {   | 340,         | 340, | 340, | 340, | 340}  |
| 09300     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09301     | , {     | 340,         | 340, | 340, | 340, | 340}  |
|           |         |              |      |      |      |       |
| 09302     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09303     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09304     | }       |              |      |      |      |       |
| 09305     |         |              |      |      |      |       |
|           | }       | 0.77.0       | 200  | 0.70 | 0.40 | 0701  |
| 09306     | , { { { | 370,         | 320, | 370, | 340, | 370}  |
| 09307     | , {     | 370 <b>,</b> | 290, | 370, | 300, | 370}  |
| 09308     | , {     | 340,         | 320, | 340, | 210, | 340}  |
|           |         |              | 260, | 340, | 340, | 340}  |
| 09309     | , {     | 340,         |      |      |      |       |
| 09310     | , {     | 340,         | 320, | 340, | 340, | 340}  |
| 09311     | }       |              |      |      |      |       |
| 09312     | , { {   | 370,         | 290, | 370, | 260, | 370}  |
|           |         |              |      |      |      |       |
| 09313     | , {     | 370,         | 290, | 370, | 240, | 370}  |
| 09314     | , {     | 340,         | 260, | 340, | 210, | 340}  |
| 09315     | , {     | 260,         | 180, | 260, | 260, | 260}  |
|           |         |              | 260, |      |      | 340}  |
| 09316     | , {     | 340,         | 200, | 340, | 210, | 340}  |
| 09317     | }       |              |      |      |      |       |
| 09318     | , { {   | 340,         | 320, | 340, | 210, | 340}  |
| 09319     | , {     | 340,         | 260, | 340, | 210, | 340}  |
|           |         |              |      |      |      |       |
| 09320     | , {     | 340,         | 320, | 340, | 210, | 340}  |
| 09321     | , {     | 340,         | 260, | 340, | 210, | 340}  |
| 09322     | , {     | 340,         | 320, | 340, | 210, | 340}  |
| 09323     | }       |              |      |      |      |       |
|           |         | 240          | 0.00 | 240  | 240  | 2401  |
| 09324     | , { {   | 340,         | 260, | 340, | 340, | 340}  |
| 09325     | , {     | 300,         | 220, | 300, | 300, | 300}  |
| 09326     | , {     | 340,         | 260, | 340, | 210, | 340}  |
| 09327     |         | 340,         | 260, | 210, | 340, | 210}  |
|           | , {     |              |      |      |      |       |
| 09328     | , {     | 340,         | 260, | 340, | 210, | 340}  |
| 09329     | }       |              |      |      |      |       |
| 09330     | , { {   | 340,         | 320, | 340, | 340, | 340}  |
| 09331     |         | 340,         |      | 340, |      |       |
|           | , {     |              | 260, |      | 210, | 340}  |
| 09332     | , {     | 340,         | 320, | 340, | 210, | 340}  |
| 09333     | , {     | 340,         | 260, | 340, | 210, | 340}  |
| 09334     | , {     | 340,         | 260, | 340, | 340, | 340}  |
|           |         | 010,         | 200, | 010, | 010, | 010,  |
| 09335     | }       |              |      |      |      |       |
| 09336     | }       |              |      |      |      |       |
| 09337     | ,{{{    | 430,         | 370, | 370, | 370, | 430}  |
| 09338     | , {     | 430,         | 370, | 370, | 370, | 430}  |
|           |         |              | 340, |      | 340, |       |
| 09339     | , {     | 340,         |      | 340, |      | 340}  |
| 09340     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09341     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09342     | }       |              |      |      |      |       |
| 09343     | , { {   | 430,         | 370, | 370, | 370, | 430}  |
|           |         |              |      |      |      |       |
| 09344     | , {     | 430,         | 370, | 370, | 370, | 430}  |
| 09345     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09346     | , {     | 320,         | 260, | 320, | 260, | 260}  |
| 09347     |         | 340,         | 340, | 340, | 340, | 340}  |
|           | , {     | 340,         | 340, | 340, | 340, | 240)  |
| 09348     | }       |              |      |      |      |       |
| 09349     | , { {   | 340,         | 340, | 340, | 340, | 340}  |
| 09350     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09351     |         |              | 340, | 340, | 340, | 340}  |
|           | , {     | 340,         |      |      |      |       |
| 09352     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09353     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09354     | }       |              |      |      |      |       |
|           |         | 360,         | 3/10 | 360, | 3/10 | 3/101 |
| 09355     | , { {   |              | 340, |      | 340, | 340}  |
| 09356     | , {     | 360,         | 300, | 360, | 300, | 300}  |
| 09357     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09358     | , {     | 340,         | 210, | 210, | 210, | 340}  |
|           |         | 340,         | 340, |      | 340, |       |
| 09359     | , {     | J4U,         | J4U, | 340, | J4U, | 340}  |
| 09360     | }       |              |      |      |      |       |
| 09361     | , { {   | 340,         | 340, | 340, | 340, | 340}  |
| 09362     | , {     | 340,         | 340, | 340, | 340, | 340}  |
|           |         |              |      |      |      |       |
| 09363     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09364     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09365     | , {     | 340,         | 340, | 340, | 340, | 340}  |
| 09366     | }       | •            | •    |      | •    | ,     |
| 09367     |         |              |      |      |      |       |
| 0 2 3 0 1 | }       |              |      |      |      |       |

| 09368          | }           | 400          | 400          | 400          | 270          | 4001         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 09369<br>09370 | ,{{{{<br>,{ | 400,<br>400, | 400,<br>370, | 400,<br>400, | 370,<br>360, | 400}         |
| 09371          | , {         | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09372          | , {         | 340,         | 340,         | 310,         | 310,<br>370, | 310}         |
| 09373<br>09374 | , {<br>}    | 400,         | 400,         | 310,         | 3/0,         | 310}         |
| 09375          | , { {       | 360,         | 360,         | 310,         | 360,         | 330}         |
| 09376          | , {         | 360,         | 360,         | 270,         | 360,         | 330}         |
| 09377<br>09378 | , {         | 340,<br>230, | 340,<br>220, | 310,<br>230, | 310,<br>170, | 310}<br>230} |
| 09379          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09380          | }           |              |              |              |              |              |
| 09381          | , { {       | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09382<br>09383 | , {         | 340,<br>370, | 340,<br>340, | 310,<br>310, | 310,<br>370, | 310}         |
| 09384          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09385          | , {         | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09386<br>09387 | }<br>,{{    | 400,         | 370,         | 400,         | 340,         | 400}         |
| 09388          | , i i       | 400,         | 370,         | 400,         | 340,         | 400}         |
| 09389          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09390          | , {         | 310,         | 230,         | 180,         | 310,         | 310}         |
| 09391<br>09392 | , {<br>}    | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09393          | , { {       | 400,         | 400,         | 310,         | 370,         | 310}         |
| 09394          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09395<br>09396 | , {         | 370,<br>340, | 340,<br>340, | 310,<br>310, | 370,<br>310, | 310}<br>310} |
| 09396          | , {<br>, {  | 400,         | 400,         | 310,         | 310,         | 310}         |
| 09398          | }           | ,            |              |              | ,            |              |
| 09399          | }           |              |              |              |              |              |
| 09400<br>09401 | ,{{{<br>,{  | 400,<br>370, | 400,<br>370, | 340,<br>340, | 370,<br>360, | 340}<br>340} |
| 09402          | , {         | 370,         | 340,         | 310,         | 370,         | 310)         |
| 09403          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09404          | , {         | 400,         | 400,         | 310,         | 370,         | 310}         |
| 09405<br>09406 | }<br>,{{    | 360,         | 360,         | 310,         | 360,         | 310}         |
| 09407          | , {         | 360,         | 360,         | 270,         | 360,         | 270}         |
| 09408          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09409<br>09410 | , {<br>, {  | 220,<br>340, | 220,<br>340, | 170,<br>310, | 170,<br>310, | 170}<br>310} |
| 09411          | }           | 310,         | 310,         | 310,         | 310,         | 310,         |
| 09412          | , { {       | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09413          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09414<br>09415 | , {<br>, {  | 370,<br>340, | 340,<br>340, | 310,<br>310, | 370,<br>310, | 310}<br>310} |
| 09416          | , {         | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09417          | }           | 272          | 272          | 2.4.0        | 2.40         | 0.401        |
| 09418<br>09419 | ,{{<br>,{   | 370,<br>370, | 370,<br>370, | 340,<br>340, | 340,<br>340, | 340}         |
| 09420          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09421          | , {         | 310,         | 210,         | 180,         | 310,         | 180}         |
| 09422<br>09423 | , {<br>}    | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09424          | , { {       | 400,         | 400,         | 310,         | 370,         | 310}         |
| 09425          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09426<br>09427 | , {         | 370,<br>340, | 340,<br>340, | 310,<br>310, | 370,<br>310, | 310}<br>310} |
| 09427          | , {<br>, {  | 400,         | 400,         | 310,         | 310,         | 310}         |
| 09429          | }           |              |              |              |              |              |
| 09430          | }           | 400          | 240          | 400,         | 340,         | 4001         |
| 09431<br>09432 | ,{{{<br>,{  | 400,<br>400, | 340,<br>340, | 400,         | 340,         | 400}         |
| 09433          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09434          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09435<br>09436 | , {<br>}    | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09437          | , { {       | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09438          | , {         | 270,         | 270,         | 270,         | 270,         | 270}         |
| 09439          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09440<br>09441 | , {<br>, {  | 230,<br>310, | 170,<br>310, | 230,<br>310, | 170,<br>310, | 230}<br>310} |
| 09442          | }           | ,            | ,            | ,            | ,            | ,            |
| 09443          | , { {       | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09444<br>09445 | , {<br>, {  | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 09445          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09447          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09448          | }           | 400          | 240          | 400          | 3.40         | 4001         |
| 09449<br>09450 | ,{{<br>,{   | 400,<br>400, | 340,<br>340, | 400,<br>400, | 340,<br>340, | 400}         |
| 09451          | , {         | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09452          | , {         | 180,         | 180,         | 180,         | 180,         | 180}         |
| 09453<br>09454 | , {<br>}    | 310,         | 310,         | 310,         | 310,         | 310}         |
| 0,101          | ,           |              |              |              |              |              |

| 09455          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 09456          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09457          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09458          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09459          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09460          | }          |              |              |              |              |              |
| 09461          | }          |              |              |              |              |              |
| 09462          | , { { {    | 340,         | 290,         | 340,         | 340,         | 340}         |
| 09463          | , {        | 340,         | 260,         | 340,         | 340,         | 340}         |
| 09464          | , {        | 310,         | 290,         | 310,         | 180,         | 310}         |
| 09465          | , {        | 310,         | 230,         | 310,         | 310,         | 310}         |
| 09466<br>09467 | , {<br>}   | 310,         | 290,         | 310,         | 310,         | 310}         |
| 09468          | , { {      | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09469          | , (        | 270,         | 190,         | 270,         | 140,         | 270}         |
| 09470          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09471          | , {        | 170,         | 40,          | 170,         | 170,         | 170}         |
| 09472          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09473          | }          |              |              |              |              |              |
| 09474          | , { {      | 310,         | 290,         | 310,         | 180,         | 310}         |
| 09475          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09476          | , {        | 310,         | 290,         | 310,         | 180,         | 310}         |
| 09477          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09478          | , {        | 310,         | 290,         | 310,         | 180,         | 310}         |
| 09479<br>09480 | }          | 240          | 200          | 240          | 240          | 2401         |
| 09480          | , { {      | 340,<br>340, | 260,<br>260, | 340,<br>340, | 340,<br>340, | 340}<br>340} |
| 09482          | , {<br>, { | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09483          | , {        | 310,         | 230,         | 180,         | 310,         | 180}         |
| 09484          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09485          | }          | ,            | ,            | ,            | ,            | ,            |
| 09486          | , { {      | 310,         | 290,         | 310,         | 310,         | 310}         |
| 09487          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09488          | , {        | 310,         | 290,         | 310,         | 180,         | 310}         |
| 09489          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09490          | , {        | 310,         | 230,         | 310,         | 310,         | 310}         |
| 09491          | }          |              |              |              |              |              |
| 09492          | }          |              |              |              |              |              |
| 09493          | , { { {    | 400,         | 340,         | 400,         | 340,         | 340}         |
| 09494          | , {        | 400,         | 340,         | 400,         | 340,         | 340}         |
| 09495          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09496<br>09497 | , {        | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 09497          | , {<br>}   | 310,         | 310,         | 310,         | 310,         | 210}         |
| 09499          | , { {      | 330,         | 310,         | 310,         | 310,         | 330}         |
| 09500          | , {        | 330,         | 270,         | 270,         | 270,         | 330}         |
| 09501          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09502          | , {        | 230,         | 170,         | 230,         | 170,         | 170}         |
| 09503          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09504          | }          |              |              |              |              |              |
| 09505          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09506          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09507          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09508          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09509          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09510<br>09511 | , { {      | 400,         | 340,         | 400,         | 340,         | 340}         |
| 09512          | , ( (      | 400,         | 340,         | 400,         | 340,         | 340}         |
| 09513          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09514          | , {        | 310,         | 180,         | 180,         | 180,         | 310}         |
| 09515          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09516          | }          |              |              |              |              |              |
| 09517          | , { {      | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09518          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09519          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09520          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09521          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09522<br>09523 | }          |              |              |              |              |              |
| 09524          | }          |              |              |              |              |              |
| 09525          | ,{{{{      | 370,         | 340,         | 310,         | 350,         | 370}         |
| 09526          | , {        | 370,         | 340,         | 310,         | 310,         | 370}         |
| 09527          | , {        | 350,         | 320,         | 290,         | 350,         | 290}         |
| 09528          | , {        | 330,         | 330,         | 290,         | 290,         | 290}         |
| 09529          | , {        | 350,         | 320,         | 290,         | 350,         | 290}         |
| 09530          | }          |              |              |              |              |              |
| 09531          | , { {      | 370,         | 340,         | 310,         | 310,         | 370}         |
| 09532          | , {        | 370,         | 340,         | 310,         | 310,         | 370}         |
| 09533          | , {        | 320,         | 320,         | 280,         | 280,         | 280}         |
| 09534          | , {        | 240,         | 220,         | 240,         | 180,         | 240}         |
| 09535<br>09536 | , {        | 320,         | 320,         | 280,         | 280,         | 280}         |
| 09536          | }<br>,{{   | 350,         | 330,         | 290,         | 350,         | 290}         |
| 09538          | , (        | 330,         | 330,         | 290,         | 290,         | 290}         |
| 09539          | , {        | 350,         | 320,         | 290,         | 350,         | 290}         |
| 09540          | , {        | 330,         | 330,         | 290,         | 290,         | 290}         |
| 09541          | , {        | 350,         | 320,         | 290,         | 350,         | 290}         |
|                |            |              |              |              |              |              |

| 09542          | }          |              |              |              |              |              |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 09543<br>09544 | ,{{<br>,{  | 320,<br>310, | 320,<br>290, | 310,<br>310, | 280,<br>250, | 310}<br>310} |
| 09545          | , {        | 320,         | 320,         | 280,         | 280,         | 280}         |
| 09546          | , {        | 260,         | 180,         | 130,         | 260,         | 260}         |
| 09547<br>09548 | , {        | 320,         | 320,         | 280,         | 280,         | 280}         |
| 09549          | }<br>,{{   | 350,         | 330,         | 290,         | 350,         | 290}         |
| 09550          | , {        | 330,         | 330,         | 290,         | 290,         | 290}         |
| 09551          | , {        | 350,         | 320,         | 290,         | 350,         | 290}         |
| 09552          | , {        | 330,         | 330,         | 290,         | 290,         | 290}         |
| 09553<br>09554 | , {<br>}   | 290,         | 290,         | 200,         | 200,         | 200}         |
| 09555          | }          |              |              |              |              |              |
| 09556          | , { { {    | 350,         | 340,         | 310,         | 350,         | 310}         |
| 09557<br>09558 | , {        | 340,<br>350, | 340,<br>320, | 310,<br>290, | 310,<br>350, | 310}         |
| 09559          | , {<br>, { | 330,         | 330,         | 290,         | 290,         | 290}<br>290} |
| 09560          | , {        | 350,         | 320,         | 290,         | 350,         | 290}         |
| 09561          | }          |              |              |              |              |              |
| 09562<br>09563 | ,{{<br>,{  | 340,         | 340,<br>340, | 310,<br>310, | 310,<br>310, | 310}         |
| 09564          | , {        | 340,<br>320, | 320,         | 280,         | 280,         | 310}<br>280} |
| 09565          | , {        | 220,         | 220,         | 180,         | 180,         | 180}         |
| 09566          | , {        | 320,         | 320,         | 280,         | 280,         | 280}         |
| 09567<br>09568 | }          | 350          | 330          | 290          | 350          | 2901         |
| 09569          | ,{{<br>,{  | 350,<br>330, | 330,<br>330, | 290,<br>290, | 350,<br>290, | 290}<br>290} |
| 09570          | , {        | 350,         | 320,         | 290,         | 350,         | 290}         |
| 09571          | , {        | 330,         | 330,         | 290,         | 290,         | 290}         |
| 09572          | , {        | 350,         | 320,         | 290,         | 350,         | 290}         |
| 09573<br>09574 | }<br>,{{   | 320,         | 320,         | 280,         | 280,         | 280}         |
| 09575          | , {        | 290,         | 290,         | 250,         | 250,         | 250}         |
| 09576          | , {        | 320,         | 320,         | 280,         | 280,         | 280}         |
| 09577          | , {        | 260,         | 170,         | 130,         | 260,         | 130}         |
| 09578<br>09579 | , {<br>}   | 320,         | 320,         | 280,         | 280,         | 280}         |
| 09580          | , { {      | 350,         | 330,         | 290,         | 350,         | 290}         |
| 09581          | , {        | 330,         | 330,         | 290,         | 290,         | 290}         |
| 09582<br>09583 | , {<br>, { | 350,<br>330, | 320,<br>330, | 290,<br>290, | 350,<br>290, | 290}<br>290} |
| 09584          | , {        | 290,         | 290,         | 200,         | 200,         | 200}         |
| 09585          | }          | ,            | ,            |              |              |              |
| 09586          | }          |              |              |              |              |              |
| 09587<br>09588 | , { { {    | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09589          | , {<br>, { | 310,<br>290, | 310,<br>290, | 310,<br>290, | 310,<br>290, | 310}<br>290} |
| 09590          | , {        | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09591          | , {        | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09592<br>09593 | }<br>,{{   | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09594          | , (        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09595          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 09596          | , {        | 240,         | 180,         | 240,         | 180,         | 240}         |
| 09597<br>09598 | , {<br>}   | 280,         | 280,         | 280,         | 280,         | 280}         |
| 09599          | , { {      | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09600          | , {        | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09601          | , {        | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09602<br>09603 | , {<br>, { | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290}<br>290} |
| 09604          | }          | 230,         | 230,         | 230,         | 230,         | 200,         |
| 09605          | , { {      | 310,         | 280,         | 310,         | 280,         | 310}         |
| 09606<br>09607 | , {        | 310,<br>280, | 250,<br>280, | 310,<br>280, | 250,<br>280, | 310}         |
| 09608          | , {<br>, { | 130,         | 130,         | 130,         | 130,         | 280}<br>130} |
| 09609          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 09610          | }          |              |              |              |              |              |
| 09611<br>09612 | ,{{<br>,{  | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290}<br>290} |
| 09613          | , {        | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09614          | , {        | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09615          | , {        | 200,         | 200,         | 200,         | 200,         | 200}         |
| 09616          | }          |              |              |              |              |              |
| 09617<br>09618 | }<br>,{{{  | 310,         | 270,         | 310,         | 260,         | 310}         |
| 09619          | , {        | 310,         | 230,         | 310,         | 250,         | 310}         |
| 09620          | , {        | 290,         | 270,         | 290,         | 160,         | 290}         |
| 09621<br>09622 | , {        | 290,<br>290, | 210,<br>270, | 290,<br>290, | 260,<br>200, | 290}<br>290} |
| 09622          | , {<br>}   | 200,         | 21U,         | ∠ J ∪ ,      | 200,         | 2 J U }      |
| 09624          | , { {      | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09625          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09626<br>09627 | , {<br>, { | 280,<br>180, | 200,<br>100, | 280,<br>180, | 150,<br>180, | 280}<br>180} |
| 09628          | , {        | 280,         | 200,         | 280,         | 150,         | 280}         |
|                |            |              |              |              |              |              |

| 09629<br>09630 | }<br>,{{    | 290,         | 270,         | 290,         | 160,         | 290}         |
|----------------|-------------|--------------|--------------|--------------|--------------|--------------|
| 09631          | , {         | 290,         | 210,         | 290,         | 160,         | 290}         |
| 09632<br>09633 | , {<br>, {  | 290,<br>290, | 270,<br>210, | 290,<br>290, | 160,<br>160, | 290}<br>290} |
| 09634          | , {         | 290,         | 270,         | 290,         | 160,         | 290}         |
| 09635<br>09636 | }<br>,{{    | 280,         | 200,         | 280,         | 260,         | 280}         |
| 09637          | , {         | 250,         | 170,         | 250,         | 250,         | 250}         |
| 09638          | , {         | 280,         | 200,         | 280,         | 150,         | 280}         |
| 09639<br>09640 | , {<br>, {  | 260,<br>280, | 180,<br>200, | 130,<br>280, | 260,<br>150, | 130}<br>280} |
| 09641          | }           |              |              |              |              |              |
| 09642<br>09643 | ,{{<br>,{   | 290,<br>290, | 270,<br>210, | 290,<br>290, | 200,<br>160, | 290}<br>290} |
| 09644          | , {         | 290,         | 270,         | 290,         | 160,         | 290}         |
| 09645<br>09646 | , {<br>, {  | 290,<br>200, | 210,<br>120, | 290,<br>200, | 160,<br>200, | 290}<br>200} |
| 09647          | }           | 200,         | 120,         | 200,         | 200,         | 200)         |
| 09648          | }           | 270          | 210          | 210          | 210          | 2701         |
| 09649<br>09650 | ,{{{<br>,{  | 370,<br>370, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 370}<br>370} |
| 09651          | , {         | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09652<br>09653 | , {<br>, {  | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290}<br>290} |
| 09654          | }           | 230,         | 230,         |              | 230,         |              |
| 09655<br>09656 | , { {       | 370,<br>370, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 370}<br>370} |
| 09657          | , {<br>, {  | 280,         | 280,         | 280,         | 280,         | 280}         |
| 09658          | , {         | 240,         | 180,         | 240,         | 180,         | 180}         |
| 09659<br>09660 | , {<br>}    | 280,         | 280,         | 280,         | 280,         | 280}         |
| 09661          | , { {       | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09662<br>09663 | , {<br>, {  | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290,<br>290, | 290}<br>290} |
| 09664          | , {         | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09665          | , {         | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09666<br>09667 | }<br>,{{    | 310,         | 280,         | 310,         | 280,         | 280}         |
| 09668          | , {         | 310,         | 250,         | 310,         | 250,         | 250}         |
| 09669<br>09670 | , {<br>, {  | 280,<br>260, | 280,<br>130, | 280,<br>130, | 280,<br>130, | 280}<br>260} |
| 09671          | , {         | 280,         | 280,         | 280,         | 280,         | 280}         |
| 09672<br>09673 | }<br>,{{    | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09674          | , (         | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09675          | , {         | 290,         | 290,         | 290,         | 290,         | 290}         |
| 09676<br>09677 | , {<br>, {  | 290,<br>200, | 290,<br>200, | 290,<br>200, | 290,<br>200, | 290}<br>200} |
| 09678          | }           |              |              |              |              |              |
| 09679<br>09680 | }           |              |              |              |              |              |
| 09681          | , { { { { { | 370,         | 340,         | 310,         | 370,         | 370}         |
| 09682<br>09683 | , {<br>, {  | 370,<br>370, | 340,<br>340, | 310,<br>310, | 310,<br>370, | 370}<br>310} |
| 09684          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09685<br>09686 | , {<br>}    | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09687          | , { {       | 370,         | 340,         | 310,         | 310,         | 370}         |
| 09688          | , {         | 370,         | 340,         | 310,         | 310,         | 370}         |
| 09689<br>09690 | , {<br>, {  | 300,<br>260, | 300,<br>240, | 260,<br>260, | 260,<br>200, | 260}<br>260} |
| 09691          | , {         | 300,         | 300,         | 260,         | 260,         | 260}         |
| 09692<br>09693 | }<br>,{{    | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09694          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09695<br>09696 | , {<br>, {  | 370,<br>340, | 340,<br>340, | 310,<br>310, | 370,<br>310, | 310}<br>310} |
| 09697          | , {<br>, {  | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09698          | }           | 200          | 200          | 070          | 200          | 0001         |
| 09699<br>09700 | ,{{<br>,{   | 300,<br>270, | 300,<br>250, | 270,<br>270, | 280,<br>210, | 280}<br>270} |
| 09701          | , {         | 300,         | 300,         | 260,         | 260,         | 260}         |
| 09702<br>09703 | , {<br>, {  | 280,<br>300, | 200,<br>300, | 150,<br>260, | 280,<br>260, | 280}<br>260} |
| 09704          | }           |              |              |              |              |              |
| 09705          | , { {       | 340,         | 340,         | 310,         | 340,         | 310}         |
| 09706<br>09707 | , {<br>, {  | 340,<br>340, | 340,<br>310, | 310,<br>280, | 310,<br>340, | 310}<br>280} |
| 09708          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09709<br>09710 | , {<br>}    | 320,         | 320,         | 220,         | 220,         | 220}         |
| 09711          | }           |              |              |              |              |              |
| 09712<br>09713 | }},<br>},   | 370,<br>340, | 340,<br>340, | 310,<br>310, | 370,<br>310, | 310}<br>310} |
| 09714          | , {         | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09715          | , {         | 340,         | 340,         | 310,         | 310,         | 310}         |
|                |             |              |              |              |              |              |

18.174 intl22.h 1103

| 09716          | , {        | 370,         | 340,         | 310,         | 370,         | 310}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 09717<br>09718 | }<br>,{{   | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09719          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09720<br>09721 | , {<br>, { | 300,<br>240, | 300,<br>240, | 260,<br>200, | 260,<br>200, | 260}         |
| 09722          | , {        | 300,         | 300,         | 260,         | 260,         | 260}         |
| 09723<br>09724 | }<br>,{{   | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09725          | , {        | 340,         | 340,         | 310,         | 310,         | 310}         |
| 09726<br>09727 | , {<br>, { | 370,<br>340, | 340,<br>340, | 310,<br>310, | 370,<br>310, | 310}<br>310} |
| 09728          | , {        | 370,         | 340,         | 310,         | 370,         | 310}         |
| 09729<br>09730 | }<br>,{{   | 300,         | 300,         | 260,         | 280,         | 260}         |
| 09731          | , {        | 250,         | 250,         | 210,         | 210,         | 210}         |
| 09732<br>09733 | , {        | 300,         | 300,<br>190, | 260,<br>150, | 260,<br>280, | 260}         |
| 09734          | , {<br>, { | 280,<br>300, | 300,         | 260,         | 260,         | 150}<br>260} |
| 09735          | }          | 240          | 240          | 210          | 240          | 2101         |
| 09736<br>09737 | ,{{<br>,{  | 340,<br>340, | 340,<br>340, | 310,<br>310, | 340,<br>310, | 310}<br>310} |
| 09738          | , {        | 340,         | 310,         | 280,         | 340,         | 280}         |
| 09739<br>09740 | , {<br>, { | 340,<br>320, | 340,<br>320, | 310,<br>220, | 310,<br>220, | 310}<br>220} |
| 09741          | }          | ,            |              | •            | ,            | ,            |
| 09742<br>09743 | }<br>,{{{  | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09744          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09745<br>09746 | , {        | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 09747          | , {<br>, { | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09748<br>09749 | }          | 210          | 210          | 210          | 210          | 2101         |
| 09750          | ,{{<br>,{  | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 09751          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 09752<br>09753 | , {<br>, { | 260,<br>260, | 200,<br>260, | 260,<br>260, | 200,<br>260, | 260}<br>260} |
| 09754          | }          |              |              |              |              |              |
| 09755<br>09756 | ,{{<br>,{  | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 09757          | , {        | 310,         | 310,         | 310,         | 310,         | 310}         |
| 09758<br>09759 | , {<br>, { | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 09760          | }          |              |              |              |              |              |
| 09761<br>09762 | ,{{<br>,{  | 270,<br>270, | 260,<br>210, | 270,<br>270, | 260,<br>210, | 270}<br>270} |
| 09763          | , {        | 260,         | 260,         | 260,         | 260,         | 260}         |
| 09764<br>09765 | , {<br>, { | 150,<br>260, | 150,<br>260, | 150,<br>260, | 150,<br>260, | 150}<br>260} |
| 09766          | }          | 200,         | 200,         | 200,         | 200,         | 200)         |
| 09767<br>09768 | ,{{<br>,{  | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310,<br>310, | 310}<br>310} |
| 09769          | , {        | 280,         | 280,         | 280,         | 280,         | 280}         |
| 09770<br>09771 | , {        | 310,<br>220, | 310,<br>220, | 310,<br>220, | 310,<br>220, | 310}<br>220} |
| 09772          | , {<br>}   | 220,         | 220,         | 220,         | 220,         | 220)         |
| 09773          | }<br>,{{{  | 310,         | 290,         | 310,         | 280,         | 310}         |
| 09774<br>09775 | , 111      | 310,         | 230,         | 310,         | 210,         | 310}         |
| 09776<br>09777 | , {        | 310,         | 290,         | 310,         | 180,         | 310}         |
| 09777          | , {<br>, { | 310,<br>310, | 230,<br>290, | 310,<br>310, | 280,<br>220, | 310}<br>310} |
| 09779          | }          |              |              |              |              |              |
| 09780<br>09781 | ,{{<br>,{  | 310,<br>310, | 230,<br>230, | 310,<br>310, | 200,<br>180, | 310}<br>310} |
| 09782          | , {        | 260,         | 180,         | 260,         | 130,         | 260}         |
| 09783<br>09784 | , {<br>, { | 200,<br>260, | 120,<br>180, | 200,<br>260, | 200,<br>130, | 200}         |
| 09785          | }          |              |              |              |              |              |
| 09786<br>09787 | ,{{<br>,{  | 310,<br>310, | 290,<br>230, | 310,<br>310, | 180,<br>180, | 310}<br>310} |
| 09788          | , {        | 310,         | 290,         | 310,         | 180,         | 310}         |
| 09789<br>09790 | , {<br>, { | 310,<br>310, | 230,<br>290, | 310,<br>310, | 180,<br>180, | 310}<br>310} |
| 09791          | }          | 010,         | 230,         |              |              |              |
| 09792<br>09793 | ,{{<br>,{  | 280,<br>210, | 200,<br>130, | 260,<br>210, | 280,<br>210, | 260}<br>210} |
| 09794          | , {        | 260,         | 180,         | 260,         | 130,         | 260}         |
| 09795<br>09796 | , {        | 280,         | 200,         | 150,<br>260, | 280,         | 150}         |
| 09796          | , {<br>}   | 260,         | 180,         | ∠0U,         | 130,         | 260}         |
| 09798          | , { {      | 310,         | 260,         | 310,         | 220,         | 310}         |
| 09799<br>09800 | , {<br>, { | 310,<br>280, | 230,<br>260, | 310,<br>280, | 180,<br>150, | 310}<br>280} |
| 09801          | , {        | 310,         | 230,         | 310,         | 180,         | 310}         |
| 09802          | , {        | 220,         | 140,         | 220,         | 220,         | 220}         |

| 09803 | }           |      |      |       |      |       |
|-------|-------------|------|------|-------|------|-------|
|       |             |      |      |       |      |       |
| 09804 | }           |      |      |       |      |       |
| 09805 | , { { {     | 370, | 310, | 310,  | 310, | 370}  |
| 09806 | , {         | 370, | 310, | 310,  | 310, | 370}  |
| 09807 | , {         | 310, | 310, | 310,  | 310, | 310}  |
| 09808 |             | 310, | 310, | 310,  | 310, |       |
|       | , {         |      |      |       |      | 310}  |
| 09809 | , {         | 310, | 310, | 310,  | 310, | 310}  |
| 09810 | }           |      |      |       |      |       |
|       |             | 270  | 210  | 210   | 210  | 2701  |
| 09811 | , { {       | 370, | 310, | 310,  | 310, | 370}  |
| 09812 | , {         | 370, | 310, | 310,  | 310, | 370}  |
| 09813 | , {         | 260, | 260, | 260,  | 260, | 260}  |
|       |             |      |      |       |      |       |
| 09814 | , {         | 260, | 200, | 260,  | 200, | 200}  |
| 09815 | , {         | 260, | 260, | 260,  | 260, | 260}  |
|       |             | ,    | ,    | ,     | ,    | ,     |
| 09816 | }           |      |      |       |      |       |
| 09817 | , { {       | 310, | 310, | 310,  | 310, | 310}  |
| 09818 | , {         | 310, | 310, | 310,  | 310, | 310}  |
|       |             |      |      |       |      |       |
| 09819 | , {         | 310, | 310, | 310,  | 310, | 310}  |
| 09820 | , {         | 310, | 310, | 310,  | 310, | 310}  |
| 09821 |             | 310, | 310, | 310,  | 310, |       |
|       | , {         | 310, | 310, | J10,  | 310, | 310}  |
| 09822 | }           |      |      |       |      |       |
| 09823 | , { {       | 280, | 260, | 270,  | 260, | 280}  |
|       |             |      |      |       |      |       |
| 09824 | , {         | 270, | 210, | 270,  | 210, | 210}  |
| 09825 | , {         | 260, | 260, | 260,  | 260, | 260}  |
| 09826 | , {         | 280, | 150, | 150,  | 150, | 280}  |
|       |             |      |      |       |      |       |
| 09827 | , {         | 260, | 260, | 260,  | 260, | 260}  |
| 09828 | }           |      |      |       |      |       |
| 09829 | , { {       | 310, | 310, | 310,  | 310, | 310}  |
|       |             |      |      |       |      |       |
| 09830 | , {         | 310, | 310, | 310,  | 310, | 310}  |
| 09831 | , {         | 280, | 280, | 280,  | 280, | 280}  |
|       |             |      |      |       | 310, |       |
| 09832 | , {         | 310, | 310, | 310,  |      | 310}  |
| 09833 | , {         | 220, | 220, | 220,  | 220, | 220}  |
| 09834 | }           |      |      |       |      |       |
|       |             |      |      |       |      |       |
| 09835 | }           |      |      |       |      |       |
| 09836 | }           |      |      |       |      |       |
| 09837 | , { { { { { | 430, | 430, | 400,  | 400, | 430}  |
|       |             |      |      |       |      |       |
| 09838 | , {         | 430, | 410, | 400,  | 370, | 430}  |
| 09839 | , {         | 400, | 370, | 340,  | 400, | 340}  |
| 09840 |             |      |      | 340,  |      |       |
|       | , {         | 370, | 370, |       | 340, | 340}  |
| 09841 | , {         | 430, | 430, | 340,  | 400, | 340}  |
| 09842 | }           |      |      |       |      |       |
|       |             | 420  | 410  | 270   | 270  | 4201  |
| 09843 | , { {       | 430, | 410, | 370,  | 370, | 430}  |
| 09844 | , {         | 430, | 410, | 370,  | 370, | 430}  |
| 09845 | , {         | 370, | 370, | 340,  | 340, | 340}  |
|       |             |      |      |       |      |       |
| 09846 | , {         | 320, | 290, | 320,  | 260, | 320}  |
| 09847 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09848 | }           |      |      |       | ,    |       |
|       |             |      |      |       |      |       |
| 09849 | , { {       | 400, | 370, | 340,  | 400, | 340}  |
| 09850 | , {         | 370, | 370, | 340,  | 340, | 340}  |
|       |             |      |      |       |      |       |
| 09851 | , {         | 400, | 370, | 340,  | 400, | 340}  |
| 09852 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09853 | , {         | 400, | 370, | 340,  | 400, | 340}  |
|       |             | 100, | 3,0, | 510,  | 100, | 510)  |
| 09854 | }           |      |      |       |      |       |
| 09855 | , { {       | 400, | 370, | 400,  | 340, | 400}  |
| 09856 |             | 400, | 370, | 400,  | 340, |       |
|       | , {         |      |      |       |      | 400}  |
| 09857 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09858 | , {         | 340, | 260, | 210,  | 340, | 340}  |
|       |             |      |      | 340,  |      |       |
| 09859 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09860 | }           |      |      |       |      |       |
| 09861 | , { {       | 430, | 430, | 340,  | 400, | 340}  |
|       |             |      |      |       |      |       |
| 09862 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09863 | , {         | 400, | 370, | 340,  | 400, | 340}  |
| 09864 | , {         | 370, | 370, | 340,  | 340, | 340}  |
|       |             |      |      |       |      |       |
| 09865 | , {         | 430, | 430, | 340,  | 340, | 340}  |
| 09866 | }           |      |      |       |      |       |
| 09867 | }           |      |      |       |      |       |
|       |             | 400  | 400  | 0.7.0 | 400  | 0.703 |
| 09868 | , { { {     | 430, | 430, | 370,  | 400, | 370}  |
| 09869 | , {         | 410, | 410, | 370,  | 370, | 370}  |
| 09870 |             | 400, |      |       |      |       |
|       | , {         |      | 370, | 340,  | 400, | 340}  |
| 09871 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09872 | , {         | 430, | 430, | 340,  | 400, | 340}  |
|       |             | ,    | 100, | 010,  | .00, | 0105  |
| 09873 | }           |      |      |       |      |       |
| 09874 | , { {       | 410, | 410, | 370,  | 370, | 370}  |
|       |             |      | 410, |       | 370, |       |
| 09875 | , {         | 410, |      | 370,  |      | 370}  |
| 09876 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09877 | , {         | 290, | 290, | 260,  | 260, | 260}  |
|       |             |      |      |       |      |       |
| 09878 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09879 | }           |      |      |       |      |       |
| 09880 | , { {       | 400, | 370, | 340,  | 400, | 340}  |
|       |             |      |      |       |      |       |
| 09881 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09882 | , {         | 400, | 370, | 340,  | 400, | 340}  |
| 09883 |             |      | 370, |       |      |       |
|       | , {         | 370, |      | 340,  | 340, | 340}  |
| 09884 | , {         | 400, | 370, | 340,  | 400, | 340}  |
| 09885 | }           |      |      |       |      |       |
|       |             | 370  | 370  | 310   | 3 10 | 2101  |
| 09886 | , { {       | 370, | 370, | 340,  | 340, | 340}  |
| 09887 | , {         | 370, | 370, | 340,  | 340, | 340}  |
| 09888 | , {         | 370, | 370, | 340,  | 340, | 340}  |
|       |             |      |      |       |      |       |
| 09889 | , {         | 340, | 240, | 210,  | 340, | 210}  |
|       |             |      |      |       |      |       |

18.174 intl22.h 1105

| 09890          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
|----------------|------------|--------------|--------------|--------------|--------------|--------------|
| 09891<br>09892 | }<br>,{{   | 430,         | 430,         | 340,         | 400,         | 340}         |
| 09893          | , {        | 370,         | 370,         | 340,         | 340,         | 340}         |
| 09894<br>09895 | , {<br>, { | 400,<br>370, | 370,<br>370, | 340,<br>340, | 400,<br>340, | 340}<br>340} |
| 09896          | , {        | 430,         | 430,         | 340,         | 340,         | 340}         |
| 09897          | }          |              |              |              |              |              |
| 09898<br>09899 | }<br>,{{{  | 400,         | 370,         | 400,         | 370,         | 400}         |
| 09900          | , {        | 400,         | 370,         | 400,         | 370,         | 400}         |
| 09901<br>09902 | , {        | 340,         | 340,<br>340, | 340,         | 340,<br>340, | 340}         |
| 09903          | , {<br>, { | 340,<br>340, | 340,         | 340,<br>340, | 340,         | 340}<br>340} |
| 09904          | }          |              |              |              |              |              |
| 09905<br>09906 | ,{{<br>,{  | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 370}<br>370} |
| 09907          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09908          | , {        | 320,         | 260,         | 320,         | 260,         | 320}         |
| 09909<br>09910 | , {<br>}   | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09911          | , { {      | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09912          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09913<br>09914 | , {<br>, { | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}         |
| 09915          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09916<br>09917 | }<br>, { { | 400,         | 340,         | 400,         | 340,         | 400}         |
| 09918          | , 11       | 400,         | 340,         | 400,         | 340,         | 400}         |
| 09919          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09920<br>09921 | , {<br>, { | 210,<br>340, | 210,<br>340, | 210,<br>340, | 210,<br>340, | 210}         |
| 09922          | }          | 310,         | 310,         | 310,         | 310,         | 510)         |
| 09923          | , { {      | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09924<br>09925 | , {<br>, { | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}<br>340} |
| 09926          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09927          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09928<br>09929 | }          |              |              |              |              |              |
| 09930          | , { { {    | 370,         | 320,         | 370,         | 340,         | 370}         |
| 09931<br>09932 | , {<br>, { | 370,<br>340, | 290,<br>320, | 370,<br>340, | 340,<br>210, | 370}<br>340} |
| 09933          | , {        | 340,         | 260,         | 340,         | 340,         | 340}         |
| 09934          | , {        | 340,         | 320,         | 340,         | 340,         | 340}         |
| 09935<br>09936 | }<br>,{{   | 370,         | 290,         | 370,         | 260,         | 370}         |
| 09937          | , {        | 370,         | 290,         | 370,         | 240,         | 370}         |
| 09938<br>09939 | , {        | 340,         | 260,         | 340,         | 210,         | 340}         |
| 09940          | , {<br>, { | 260,<br>340, | 180,<br>260, | 260,<br>340, | 260,<br>210, | 260}<br>340} |
| 09941          | }          |              |              |              |              |              |
| 09942<br>09943 | ,{{<br>,{  | 340,<br>340, | 320,<br>260, | 340,<br>340, | 210,<br>210, | 340}<br>340} |
| 09944          | , {        | 340,         | 320,         | 340,         | 210,         | 340}         |
| 09945          | , {        | 340,         | 260,         | 340,         | 210,         | 340}         |
| 09946<br>09947 | , {<br>}   | 340,         | 320,         | 340,         | 210,         | 340}         |
| 09948          | , { {      | 340,         | 260,         | 340,         | 340,         | 340}         |
| 09949<br>09950 | , {<br>, { | 340,<br>340, | 260,<br>260, | 340,<br>340, | 340,<br>210, | 340}<br>340} |
| 09951          | , {        | 340,         | 260,         | 210,         | 340,         | 210}         |
| 09952          | , {        | 340,         | 260,         | 340,         | 210,         | 340}         |
| 09953<br>09954 | }<br>,{{   | 340,         | 320,         | 340,         | 340,         | 340}         |
| 09955          | , {        | 340,         | 260,         | 340,         | 210,         | 340}         |
| 09956<br>09957 | , {        | 340,<br>340, | 320,<br>260, | 340,<br>340, | 210,<br>210, | 340}         |
| 09958          | , {<br>, { | 340,         | 260,         | 340,         | 340,         | 340}<br>340} |
| 09959          | }          |              |              |              |              |              |
| 09960<br>09961 | }<br>,{{{  | 430,         | 370,         | 400,         | 370,         | 430}         |
| 09962          | , {        | 430,         | 370,         | 400,         | 370,         | 430}         |
| 09963          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09964<br>09965 | , {<br>, { | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}<br>340} |
| 09966          | }          |              |              |              |              |              |
| 09967<br>09968 | ,{{<br>,{  | 430,<br>430, | 370,<br>370, | 370,<br>370, | 370,<br>370, | 430}<br>430} |
| 09969          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09970          | , {        | 320,         | 260,         | 320,         | 260,         | 260}         |
| 09971<br>09972 | , {<br>}   | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09973          | , { {      | 340,         | 340,         | 340,         | 340,         | 340}         |
| 09974<br>09975 | , {<br>, { | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340,<br>340, | 340}<br>340} |
| 09976          | , {        | 340,         | 340,         | 340,         | 340,         | 340}         |
|                |            |              |              |              |              |              |

```
09977
                  340,
                                           340,
                                                    340}
            , {
                          340,
                                   340,
09978
                  400,
09979
                          340,
                                   400,
                                           340,
                                                    3401
09980
                  400,
                          340,
                                   400,
                                           340,
                                                   340}
                  340,
09981
                          340,
                                   340,
                                           340,
                                                   3401
09982
                                           210,
                                                    340}
                  340.
                          210.
                                   210.
09983
                  340,
                          340,
                                   340,
                                           340,
                                                    340}
09984
09985
                  340.
                          340,
                                   340,
                                           340,
                                                    3401
           , { {
09986
                  340,
                          340,
                                   340,
                                           340,
                                                   340}
09987
                  340.
                          340.
                                   340.
                                           340.
                                                   3401
09988
                  340.
                                   340.
                                           340.
                                                   340}
                          340.
09989
                  340,
                          340,
                                   340,
                                           340,
                                                    340}
09990
09991
09992
09993
        }};
```

```
00001 PUBLIC int int22_dH[NBPAIRS+1][NBPAIRS+1][5][5][5][5] =
00002 {{{{{{{{{{{}
                  INF,
                           INF,
                                    INF,
                                             INF,
00003
                  INF,
                            INF,
                                    INF,
                                             INF,
                                                      INF)
00004
                  INF,
                           INF,
                                    INF,
                                             INF
                                                      TNF!
                  INF,
00005
                           INF,
                                    INF
                                             INF,
                                                      TNF
00006
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                      INF }
00007
00008
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , { {
00009
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00010
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
            , {
00011
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      TNF
00012
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                     INF
00013
00014
           , { {
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00015
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00016
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00017
                  INF,
                           INF,
                                    INF
                                             INF,
                                                      TNF!
00018
                  INF,
                           INF.
                                    INF.
                                             INF,
                                                      INF }
00019
                  INF,
                                             INF,
                                                      INF }
00020
                           INF,
                                    INF,
           , { {
00021
                  INF,
                           INF,
                                    INF,
                                                      INF }
                                             INF,
00022
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF)
00023
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00024
                  INF,
                           INF,
                                    INF
                                             INF,
                                                     INF }
00025
00026
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , { {
00027
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00028
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00029
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF
00030
                  INF,
                           INF,
                                    INF
                                             INF,
                                                     INF }
00031
00032
00033
          , { { {
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                  INF,
00034
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00035
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                  INF,
00036
                           INF.
                                    INF.
                                             INF,
                                                      TNF!
00037
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                     TNF
00038
00039
           , { {
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00040
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00041
                  INF,
                            INF,
                                    INF,
                                             INF,
                                                      INF)
00042
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      TNF
00043
                  INF,
                           INF,
                                    INF
                                             INF,
                                                     INF
00044
                  INF,
00045
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , { {
00046
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00047
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00048
                  INF,
                           INF,
                                    INF
                                             INF,
                                                      TNF
00049
                  INF,
                           INF,
                                    INF
                                             INF,
                                                     INF }
00050
00051
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , { {
00052
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00053
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00054
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00055
                  INF.
                           INF.
                                    INF.
                                             INF.
                                                     INF }
00056
                  INF,
00057
                           INF,
                                    INF,
                                             INF,
                                                      INF }
           , { {
00058
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
                  INF,
00059
                           INF,
                                    INF,
                                             INF,
                                                      INF }
00060
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF)
00061
                  INF,
                           INF,
                                    INF
                                             INF,
                                                     INF }
00062
00063
00064
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
          , { { {
00065
                  INF,
                           INF,
                                    INF,
                                             INF,
                                                      INF }
```

| 00066                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00067                                                                                                                                                                                                                                                                                                           |
| 00068                                                                                                                                                                                                                                                                                                           |
| 00069                                                                                                                                                                                                                                                                                                           |
| 00070                                                                                                                                                                                                                                                                                                           |
| 00071                                                                                                                                                                                                                                                                                                           |
| 00071                                                                                                                                                                                                                                                                                                           |
| 00072                                                                                                                                                                                                                                                                                                           |
| 00073                                                                                                                                                                                                                                                                                                           |
| 00074                                                                                                                                                                                                                                                                                                           |
| 00075                                                                                                                                                                                                                                                                                                           |
| 00076                                                                                                                                                                                                                                                                                                           |
| 00077                                                                                                                                                                                                                                                                                                           |
| 00078                                                                                                                                                                                                                                                                                                           |
| 00078                                                                                                                                                                                                                                                                                                           |
| 00079                                                                                                                                                                                                                                                                                                           |
| 00080                                                                                                                                                                                                                                                                                                           |
| 00081                                                                                                                                                                                                                                                                                                           |
| 00082                                                                                                                                                                                                                                                                                                           |
| O0083                                                                                                                                                                                                                                                                                                           |
| 00084                                                                                                                                                                                                                                                                                                           |
| 00085                                                                                                                                                                                                                                                                                                           |
| 00086                                                                                                                                                                                                                                                                                                           |
| 00086                                                                                                                                                                                                                                                                                                           |
| 00088                                                                                                                                                                                                                                                                                                           |
| 00088                                                                                                                                                                                                                                                                                                           |
| 00089                                                                                                                                                                                                                                                                                                           |
| O0090                                                                                                                                                                                                                                                                                                           |
| 00091                                                                                                                                                                                                                                                                                                           |
| O0092                                                                                                                                                                                                                                                                                                           |
| 00093                                                                                                                                                                                                                                                                                                           |
| 00093                                                                                                                                                                                                                                                                                                           |
| 00094                                                                                                                                                                                                                                                                                                           |
| 00095                                                                                                                                                                                                                                                                                                           |
| 00096                                                                                                                                                                                                                                                                                                           |
| 00097                                                                                                                                                                                                                                                                                                           |
| O0098                                                                                                                                                                                                                                                                                                           |
| O0099                                                                                                                                                                                                                                                                                                           |
| O0099                                                                                                                                                                                                                                                                                                           |
| 00100                                                                                                                                                                                                                                                                                                           |
| 00101                                                                                                                                                                                                                                                                                                           |
| 00102                                                                                                                                                                                                                                                                                                           |
| 00103                                                                                                                                                                                                                                                                                                           |
| 00104                                                                                                                                                                                                                                                                                                           |
| 00105                                                                                                                                                                                                                                                                                                           |
| 00106                                                                                                                                                                                                                                                                                                           |
| 00107                                                                                                                                                                                                                                                                                                           |
| 00108                                                                                                                                                                                                                                                                                                           |
| 00108                                                                                                                                                                                                                                                                                                           |
| 00109                                                                                                                                                                                                                                                                                                           |
| 00110                                                                                                                                                                                                                                                                                                           |
| 00111                                                                                                                                                                                                                                                                                                           |
| 00112                                                                                                                                                                                                                                                                                                           |
| 00113 , {{ INF, INF, INF, INF, O0114 , { INF, INF, INF, INF, INF, O0115 , { INF, INF, INF, INF, INF, O0115 , { INF, INF, INF, INF, INF, O0116 , { INF, INF, INF, INF, INF, INF, O0117 , { INF, INF, INF, INF, INF, INF, INF, INF,                                                                               |
| 00114                                                                                                                                                                                                                                                                                                           |
| 00114                                                                                                                                                                                                                                                                                                           |
| 00115                                                                                                                                                                                                                                                                                                           |
| 00116                                                                                                                                                                                                                                                                                                           |
| 00117                                                                                                                                                                                                                                                                                                           |
| 00118                                                                                                                                                                                                                                                                                                           |
| 00119 , {{ INF, INF, INF, INF, INF, O0120 , { INF, INF, INF, INF, INF, O0121 , { INF, INF, INF, INF, INF, O0122 , { INF, INF, INF, INF, INF, O0123 , { INF, INF, INF, INF, INF, INF, O0124 } } 00125 } 00126 , {{ INF, INF, INF, INF, INF, INF, INF, INF,                                                       |
| 00120                                                                                                                                                                                                                                                                                                           |
| 00121 ,{ INF, INF, INF, INF, O0122 ,{ INF, INF, INF, INF, INF, O0123 ,{ INF, INF, INF, INF, INF, O0124 } 00125 } 00126 ,{{ INF, INF, INF, INF, INF, INF, O0127 ,{ INF, INF, INF, INF, INF, INF, O0128 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                |
| 00121 ,{ INF, INF, INF, INF, O0122 ,{ INF, INF, INF, INF, INF, INF, O0123 ,{ INF, INF, INF, INF, INF, INF, O0124 } 00125 } 00126 ,{{{ INF, INF, INF, INF, INF, O0127 ,{ INF, INF, INF, INF, INF, INF, O0129 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                          |
| 00122 ,{ INF, INF, INF, INF, O0123 ,{ INF, INF, INF, INF, INF, O0124 } } 00125 } 00126 ,{{ INF, INF, INF, INF, INF, INF, O0127 ,{ INF, INF, INF, INF, INF, INF, O0128 ,{ INF, INF, INF, INF, INF, INF, O0130 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                         |
| 00123                                                                                                                                                                                                                                                                                                           |
| 00124                                                                                                                                                                                                                                                                                                           |
| 00125 } 00126 ,{{{ INF, INF, INF, INF, INF, O0127 ,{ INF, INF, INF, INF, INF, INF, O0128 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                             |
| 00126 ,{{{ INF, INF, INF, INF, INF, O0127 ,{ INF, INF, INF, INF, INF, O0128 ,{ INF, INF, INF, INF, INF, O0129 ,{ INF, INF, INF, INF, INF, INF, O0130 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                 |
| 00127 ,{ INF, INF, INF, INF, O0128 ,{ INF, INF, INF, INF, INF, O0129 ,{ INF, INF, INF, INF, INF, O0130 ,{ INF, INF, INF, INF, INF, O0131 } 00132 ,{{ INF, INF, INF, INF, INF, O0133 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                  |
| 00128                                                                                                                                                                                                                                                                                                           |
| 00128                                                                                                                                                                                                                                                                                                           |
| 00129 ,{ INF, INF, INF, INF, O0130 ,{ INF, INF, INF, INF, INF, INF, O0131 } 00132 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                    |
| 00130 ,{ INF, INF, INF, INF, O0131 } 00132 ,{{ INF, INF, INF, INF, INF, O0133 ,{ INF, INF, INF, INF, INF, O0134 ,{ INF, INF, INF, INF, INF, O0135 ,{ INF, INF, INF, INF, INF, O0136 ,{ INF, INF, INF, INF, INF, O0137 } 00138 ,{ INF, INF, INF, INF, INF, INF, O0149 ,{ INF, INF, INF, INF, INF, INF, INF, INF, |
| 00131 } 00132 ,{{ INF, INF, INF, INF, INF, O0133 ,{ INF, INF, INF, INF, INF, O0134 ,{ INF, INF, INF, INF, INF, INF, O0135 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                            |
| 00132 ,{{ INF, INF, INF, INF, O0133 ,{ INF, INF, INF, INF, INF, O0134 ,{ INF, INF, INF, INF, INF, O0135 ,{ INF, INF, INF, INF, INF, O0136 ,{ INF, INF, INF, INF, INF, O0137 } 00138 ,{ INF, INF, INF, INF, INF, O0140 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                |
| 00133 ,{ INF, INF, INF, INF, O0134 ,{ INF, INF, INF, INF, O0135 ,{ INF, INF, INF, INF, INF, O0136 ,{ INF, INF, INF, INF, INF, INF, O0137 } 00138 ,{ INF, INF, INF, INF, INF, O0140 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                   |
| 00134 ,{ INF, INF, INF, INF, O0135 ,{ INF, INF, INF, INF, INF, O0136 ,{ INF, INF, INF, INF, INF, O0137 }                                                                                                                                                                                                        |
| 00135 ,{ INF, INF, INF, INF, 00136 ,{ INF, INF, INF, INF, INF, 00137 } 00138 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                         |
| 00136 ,{ INF, INF, INF, INF, O0137 } 00138 ,{ INF, INF, INF, INF, INF, O0140 ,{ INF, INF, INF, INF, INF, O0141 ,{ INF, INF, INF, INF, INF, O0142 ,{ INF, INF, INF, INF, INF, O0143 } 00144 ,{ INF, INF, INF, INF, INF, O0145 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                         |
| 00136 ,{ INF, INF, INF, INF, 00137 } 00138 ,{ INF, INF, INF, INF, INF, 00139 ,{ INF, INF, INF, INF, INF, 00140 ,{ INF, INF, INF, INF, INF, 00141 ,{ INF, INF, INF, INF, INF, 00142 ,{ INF, INF, INF, INF, INF, 00143 } 00144 ,{{ INF, INF, INF, INF, INF, 00145 ,{ INF, INF, INF, INF, INF, INF, INF, INF,      |
| 00137 } 00138 ,{{ INF, INF, INF, INF, INF, O0140 ,{ INF, INF, INF, INF, INF, INF, O0141 ,{ INF, INF, INF, INF, INF, O0142 ,{ INF, INF, INF, INF, INF, O0143 } 00144 ,{{ INF, INF, INF, INF, INF, O0145 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                               |
| 00138 ,{{ INF, INF, INF, INF, O0139 ,{ INF, INF, INF, INF, INF, O0140 ,{ INF, INF, INF, INF, INF, INF, O0141 ,{ INF, INF, INF, INF, INF, O0142 ,{ INF, INF, INF, INF, INF, O0143 } 00144 ,{{ INF, INF, INF, INF, INF, O0145 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                          |
| 00139 ,{ INF, INF, INF, INF, 00140 ,{ INF, INF, INF, INF, INF, 00141 ,{ INF, INF, INF, INF, INF, 00142 ,{ INF, INF, INF, INF, INF, 00143 } 00144 ,{{ INF, INF, INF, INF, INF, 00145 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                  |
| 00140 ,{ INF, INF, INF, INF, 00141 ,{ INF, INF, INF, INF, INF, INF, 00142 ,{ INF, INF, INF, INF, INF, 00143 } 00144 ,{{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                 |
| 00141 ,{ INF, INF, INF, INF, 00142 ,{ INF, INF, INF, INF, 00143 } 00144 ,{{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                             |
| 00142 ,{ INF, INF, INF, INF, 00143 }                                                                                                                                                                                                                                                                            |
| 00143 }<br>00144 ,{{ INF, INF, INF, INF,<br>00145 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                        |
| 00143 }<br>00144 ,{{ INF, INF, INF, INF,<br>00145 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                        |
| 00144 ,{{ INF, INF, INF, INF, 00145 ,{ INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                            |
| 00145 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                 |
| 00146 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                    |
| 00147 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                    |
| 00148 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                    |
| 00149 }                                                                                                                                                                                                                                                                                                         |
| 00150 , {{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                  |
| 00151 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                    |
| 00152 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                 |

| 00153          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
|----------------|-------------|----------------|------|--------------|--------------|-------|
| 00154          | , {         | INF,           |      | INF,         |              |       |
| 00155          | }           |                |      |              |              |       |
| 00156          | }           |                |      |              |              |       |
| 00157          | }           |                |      |              |              |       |
| 00158          | , { { { { { | INF,           | INF, | INF,         | INF,         | INF } |
| 00159          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00160          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00161          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00162          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00163          | }           |                |      |              |              |       |
| 00164          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00165          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00166          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00167          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00168          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00169          | }           |                |      |              |              |       |
| 00170          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00171          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00172          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00173          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00174          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00175          | }           |                |      |              |              |       |
| 00176          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00177          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00178          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00179          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00180          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00181          | }           |                |      |              |              |       |
| 00182          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00183          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00184          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00185          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00186          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00187          | }           |                |      |              |              |       |
| 00188          | }           |                |      |              |              |       |
| 00189          | , { { {     | INF,           | INF, | INF,         | INF,         | INF } |
| 00190          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00191          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00192          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00193          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00194          | }           |                |      |              |              |       |
| 00195          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00196          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00197          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00198          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00199          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00200          | }           |                |      |              |              |       |
| 00201          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00202          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00203          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00204          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00205          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00206          | }           |                |      |              |              |       |
| 00207          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00208          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00209          | , {         | INF,           | INF, | INF,<br>INF, | INF,<br>INF, | INF } |
|                | , {         | INF,           | INF, |              |              |       |
| 00211<br>00212 | , {<br>}    | INF,           | INF, | INF,         | INF,         | INF } |
| 00212          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00213          | , 11        | INF,           | INF, | INF,         | INF,         | INF } |
| 00214          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00213          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00210          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00217          | }           | -1111 <b>,</b> | 1111 | 1111,        | 1111,        | 1111  |
| 00210          | }           |                |      |              |              |       |
| 00213          | , { { {     | INF,           | INF, | INF,         | INF,         | INF } |
| 00221          | , ( ( (     | INF,           | INF, | INF,         | INF,         | INF } |
| 00222          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00223          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00224          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00224          | }           | /              | /    | /            | /            | J     |
| 00226          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00227          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00228          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00229          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00223          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00231          | }           | /              | /    |              | ,            |       |
| 00232          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00233          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00234          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00235          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00236          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
| 00237          | }           | •              | •    | •            | •            | ,     |
| 00238          | , { {       | INF,           | INF, | INF,         | INF,         | INF } |
| 00239          | , {         | INF,           | INF, | INF,         | INF,         | INF } |
|                |             |                | -    |              | •            | ,     |

| 00240 | 1       | TNE  | TNE   | TNE  | TNE  | TNET  |
|-------|---------|------|-------|------|------|-------|
| 00240 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00241 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00242 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00243 | }       |      |       |      |      |       |
| 00244 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 00245 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00246 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00247 | , {     | INF, | INF,  | INF, | INF, | INF } |
|       |         |      |       |      | •    |       |
| 00248 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00249 | }       |      |       |      |      |       |
| 00250 | }       |      |       |      |      |       |
| 00251 | , { { { | INF, | INF,  | INF, | INF, | INF } |
| 00252 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00253 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00254 | , {     | INF, | INF,  | INF, | INF, | INF } |
|       |         |      |       |      |      |       |
| 00255 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00256 | }       |      |       |      |      |       |
| 00257 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 00258 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00259 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00260 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00261 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00262 | }       | ,    | ,     | ,    | ,    | ,     |
|       |         | TAID | TND   | TNE  | TNIE | TATEL |
| 00263 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 00264 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00265 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00266 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00267 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00268 | }       | ,    |       |      | •    |       |
| 00269 | , { {   | INF, | INF,  | INF, | INF, | INF } |
|       |         |      |       |      |      |       |
| 00270 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00271 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00272 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00273 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00274 | }       |      |       |      |      |       |
| 00275 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 00276 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00277 | , {     |      | INF,  | INF, | INF, | INF } |
|       |         | INF, |       |      |      |       |
| 00278 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00279 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00280 | }       |      |       |      |      |       |
| 00281 | }       |      |       |      |      |       |
| 00282 | , { { { | INF, | INF,  | INF, | INF, | INF } |
| 00283 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00284 | , {     | INF, | INF,  | INF, | INF, | INF } |
|       | , (     |      |       |      |      |       |
| 00285 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00286 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00287 | }       |      |       |      |      |       |
| 00288 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 00289 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00290 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00291 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00291 | , (     |      |       |      |      |       |
|       | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00293 | }       |      |       |      |      |       |
| 00294 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 00295 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00296 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00297 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00298 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00299 | }       | /    | 1111, | 1111 |      |       |
|       |         | TNE  | TNE   | TNE  | INF, | TNIE  |
| 00300 | , { {   | INF, | INF,  | INF, |      | INF } |
| 00301 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00302 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00303 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00304 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00305 | }       |      |       |      |      |       |
| 00306 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 00307 | , {     | INF, | INF,  | INF, | INF, | INF } |
|       |         |      | INF,  | INF, | INF, |       |
| 00308 | , {     | INF, |       |      |      | INF } |
| 00309 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00310 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00311 | }       |      |       |      |      |       |
| 00312 | }       |      |       |      |      |       |
| 00313 | }       |      |       |      |      |       |
| 00313 | ,{{{{   | INF, | INF,  | INF, | INF, | INF } |
|       |         | INF, | INF,  | INF, | INF, |       |
| 00315 | , {     |      |       |      |      | INF } |
| 00316 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00317 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00318 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00319 | }       |      |       |      |      |       |
| 00320 | , { {   | INF, | INF,  | INF, | INF, | INF } |
| 00321 | , {     | INF, | INF,  | INF, | INF, | INF } |
|       |         | INF, | INF,  | INF, | INF, | INF } |
| 00322 | , {     |      |       |      |      |       |
| 00323 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00324 | , {     | INF, | INF,  | INF, | INF, | INF } |
| 00325 | }       |      |       |      |      |       |
| 00326 | , { {   | INF, | INF,  | INF, | INF, | INF } |
|       |         |      |       |      |      |       |

| 00327 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
|-------|---------|---------|-------|--------|---------|-------|
| 00328 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00329 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00330 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00330 | }       | ±111± , | 1111  | 1111,  | 1111,   | 1111  |
| 00331 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00332 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00333 | , {     |         | INF,  | INF,   | INF,    | INF } |
|       |         | INF,    |       |        |         |       |
| 00335 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00336 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00337 | }       |         |       |        |         |       |
| 00338 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00339 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00340 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00341 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00342 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00343 | }       |         |       |        |         |       |
| 00344 | }       |         |       |        |         |       |
| 00345 | , { { { | INF,    | INF,  | INF,   | INF,    | INF } |
| 00346 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00347 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00348 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00349 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00350 | }       |         |       |        |         |       |
| 00351 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00352 | , {     | INF,    | INF,  | INF,   | INF,    | INF)  |
| 00353 | , {     | INF,    | INF,  | INF,   | INF,    | INF)  |
| 00354 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00355 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00356 | }       | TIVE ,  | INI,  | TIME , | TIME ,  | TIME  |
|       |         | TNIE    | TND   | TNE    | TNIE    | TAITI |
| 00357 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00358 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00359 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00360 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00361 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00362 | }       |         |       |        |         |       |
| 00363 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00364 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00365 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00366 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00367 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00368 | }       |         |       |        |         |       |
| 00369 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00370 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00371 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00372 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00373 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00374 | }       | ,       | ,     | ,      | ,       | ,     |
| 00375 | }       |         |       |        |         |       |
| 00376 | ,{{{    | INF,    | INF,  | INF,   | INF,    | INF } |
| 00377 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00377 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00379 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00379 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00380 |         | TIME,   | TIME, | TIME,  | TIME,   | TIME  |
|       | }       | INF,    | INF,  | TME    | INF,    | TME   |
| 00382 | , { {   |         |       |        |         | INF } |
| 00383 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00384 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00385 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00386 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00387 | }       | T.N.T.  | TATE  | TATE   | T > 2 T |       |
| 00388 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00389 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00390 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00391 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00392 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00393 | }       |         |       |        |         |       |
| 00394 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00395 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00396 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00397 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00398 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00399 | }       |         |       |        |         |       |
| 00400 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
| 00401 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00402 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00403 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00404 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00404 | }       | /       | /     | /      | /       | J     |
| 00406 | }       |         |       |        |         |       |
|       |         | TNE     | TME   | TME    | TNE     | ייואד |
| 00407 | , { { { | INF,    | INF,  | INF,   | INF,    | INF } |
| 00408 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00409 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00410 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00411 | , {     | INF,    | INF,  | INF,   | INF,    | INF } |
| 00412 | }       | T-1     | T     |        |         |       |
| 00413 | , { {   | INF,    | INF,  | INF,   | INF,    | INF } |
|       |         |         |       |        |         |       |

| 00414 | ſ           | INF, | TNE  | INF, | TNE  | INF } |
|-------|-------------|------|------|------|------|-------|
|       | , {         |      | INF, |      | INF, |       |
| 00415 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00416 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00417 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00418 | }           |      |      |      |      |       |
| 00419 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00420 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00421 | , {         | INF, | INF, | INF, | INF, | INF } |
|       |             |      |      |      |      |       |
| 00422 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00423 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00424 | }           |      |      |      |      |       |
| 00425 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00426 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00427 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00428 |             |      |      | INF, | INF, | INF } |
|       | , {         | INF, | INF, |      |      |       |
| 00429 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00430 | }           |      |      |      |      |       |
| 00431 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00432 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00433 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00434 |             |      |      | INF, | INF, | INF } |
|       | , {         | INF, | INF, |      |      |       |
| 00435 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00436 | }           |      |      |      |      |       |
| 00437 | }           |      |      |      |      |       |
| 00438 | , { { {     | INF, | INF, | INF, | INF, | INF } |
| 00439 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00440 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00441 |             |      |      |      | INF, |       |
|       | , {         | INF, | INF, | INF, |      | INF } |
| 00442 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00443 | }           |      |      |      |      |       |
| 00444 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00445 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00446 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00447 |             |      |      |      |      |       |
|       | , {         | INF, | INF, | INF, | INF, | INF } |
| 00448 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00449 | }           |      |      |      |      |       |
| 00450 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00451 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00452 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00453 |             |      |      |      | INF, |       |
|       | , {         | INF, | INF, | INF, |      | INF } |
| 00454 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00455 | }           |      |      |      |      |       |
| 00456 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00457 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00458 | , {         | INF, | INF, | INF, | INF, | INF)  |
| 00459 |             | INF, | INF, | INF, | INF, | INF } |
|       | , {         |      |      |      |      |       |
| 00460 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00461 | }           |      |      |      |      |       |
| 00462 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00463 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00464 | , {         | INF, | INF, | INF, | INF, | INF)  |
| 00465 |             | INF, | INF, | INF, | INF, | INF } |
|       | , {         |      |      |      |      |       |
| 00466 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00467 | }           |      |      |      |      |       |
| 00468 | }           |      |      |      |      |       |
| 00469 | }           |      |      |      |      |       |
| 00470 | , { { { { { | INF, | INF, | INF, | INF, | INF } |
| 00471 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00472 | , {         | INF, | INF, | INF, | INF, | INF } |
|       |             |      |      |      |      |       |
| 00473 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00474 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00475 | }           |      |      |      |      |       |
| 00476 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00477 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00478 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00479 |             |      |      |      | INF, |       |
|       | , {         | INF, | INF, | INF, |      | INF } |
| 00480 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00481 | }           |      |      |      |      |       |
| 00482 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00483 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00484 | , {         | INF, | INF, | INF, | INF, | INF } |
|       |             |      |      |      |      |       |
| 00485 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00486 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00487 | }           |      |      |      |      |       |
| 00488 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00489 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00490 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00491 | , {         | INF, | INF, | INF, | INF, | INF } |
|       |             |      |      |      |      |       |
| 00492 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00493 | }           |      |      |      |      |       |
| 00494 | , { {       | INF, | INF, | INF, | INF, | INF } |
| 00495 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00496 | , {         | INF, | INF, | INF, | INF, | INF)  |
| 00497 | , {         | INF, | INF, | INF, | INF, | INF } |
|       |             |      |      |      |      |       |
| 00498 | , {         | INF, | INF, | INF, | INF, | INF } |
| 00499 | }           |      |      |      |      |       |
| 00500 | }           |      |      |      |      |       |
|       |             |      |      |      |      |       |

| 00501 | 111     | INF,  | INF,  | INF,  | INF,  | INF } |
|-------|---------|-------|-------|-------|-------|-------|
| 00501 | , { { { |       |       |       |       |       |
|       | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00503 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00504 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00505 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00506 | }       |       |       |       |       |       |
| 00507 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00508 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00509 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00510 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00510 |         |       |       |       |       |       |
|       | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00512 | }       |       |       |       |       |       |
| 00513 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00514 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00515 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00516 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00517 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00518 | }       |       | •     | •     | •     |       |
| 00519 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00520 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
|       |         |       |       |       |       |       |
| 00521 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00522 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00523 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00524 | }       |       |       |       |       |       |
| 00525 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00526 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00527 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00528 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00529 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00530 | }       | 1111, | 1111, | 1111  | 1111  | 1111  |
|       |         |       |       |       |       |       |
| 00531 | }       |       |       |       |       |       |
| 00532 | , { { { | INF,  | INF,  | INF,  | INF,  | INF } |
| 00533 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00534 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00535 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00536 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00537 | }       |       |       |       |       |       |
| 00538 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00539 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00540 |         |       |       | INF,  | INF,  |       |
|       | , {     | INF,  | INF,  |       |       | INF } |
| 00541 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00542 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00543 | }       |       |       |       |       |       |
| 00544 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00545 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00546 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00547 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00548 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00549 | }       | /     | 1111  |       |       |       |
|       |         | TAID  | TNID  | TNIE  | TNIE  | TAITI |
| 00550 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00551 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00552 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00553 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00554 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00555 | }       |       |       |       |       |       |
| 00556 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00557 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00558 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00559 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00560 |         | INF,  | INF,  | INF,  | INF,  | INF } |
|       | , {     | INF,  | INF,  | TIME, | TIME, | TIME  |
| 00561 | }       |       |       |       |       |       |
| 00562 | }       | T     | T     |       |       |       |
| 00563 | ,{{{    | INF,  | INF,  | INF,  | INF,  | INF } |
| 00564 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00565 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00566 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00567 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00568 | }       |       |       |       |       |       |
| 00569 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00570 | , (     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00570 |         | INF,  | INF,  | INF,  | INF,  | INF } |
|       | , {     |       |       |       |       |       |
| 00572 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00573 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00574 | }       |       |       |       |       |       |
| 00575 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00576 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00577 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00578 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00579 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00580 | }       | ,     | ,     | ,     | ,     |       |
|       |         | TNE   | TME   | TME   | TNE   | ייואד |
| 00581 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
| 00582 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00583 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00584 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00585 | , {     | INF,  | INF,  | INF,  | INF,  | INF } |
| 00586 | }       |       |       |       |       |       |
| 00587 | , { {   | INF,  | INF,  | INF,  | INF,  | INF } |
|       |         |       |       |       |       |       |

| 00588 | , {        | INF,         | INF,         | INF,         | INF,         | INF    |
|-------|------------|--------------|--------------|--------------|--------------|--------|
| 00589 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00590 | , {        | INF,         | INF,         | INF,         | INF,         | INF    |
| 00591 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00592 | }          |              |              |              |              |        |
| 00593 | }          |              |              |              |              |        |
| 00594 | , { { {    | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00595 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00596 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00597 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00598 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00599 | }          |              |              |              |              |        |
| 00600 | , { {      | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00601 | , {        | INF,         | INF,         | INF,<br>INF, | INF,         | INF ]  |
| 00602 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,         | INF,<br>INF, | INF)   |
| 00603 | , \<br>, { | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00605 | }          | TINE ,       | TIVE ,       | TINE ,       | INI,         | IIVI ) |
| 00606 | , { {      | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00607 | , {        | INF,         | INF,         | INF,         | INF,         | INF    |
| 00608 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00609 | , {        | INF,         | INF,         | INF,         | INF,         | INF]   |
| 00610 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00611 | }          |              |              |              |              |        |
| 00612 | , { {      | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00613 | , {        | INF,         | INF,         | INF,         | INF,         | INF]   |
| 00614 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00615 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00616 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00617 | }          |              |              |              |              |        |
| 00618 | , { {      | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00619 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00620 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00621 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00622 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00623 | }          |              |              |              |              |        |
| 00624 | }          |              |              |              |              |        |
| 00625 | ,{{{       | INF,         | TNE          | INF,         | TNE          | INF    |
| 00627 | , 1111     | INF,         | INF,<br>INF, | INF,         | INF,<br>INF, | INF)   |
| 00627 | , \<br>, { | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00629 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00630 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00631 | }          |              |              |              |              |        |
| 00632 | , { {      | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00633 | , {        | INF,         | INF,         | INF,         | INF,         | INF    |
| 00634 | , {        | INF,         | INF,         | INF,         | INF,         | INF    |
| 00635 | , {        | INF,         | INF,         | INF,         | INF,         | INF    |
| 00636 | , {        | INF,         | INF,         | INF,         | INF,         | INF]   |
| 00637 | }          |              |              |              |              |        |
| 00638 | , { {      | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00639 | , {        | INF,         | INF,         | INF,         | INF,         | INF]   |
| 00640 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00641 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00642 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00643 | }          |              |              |              |              |        |
| 00644 | , { {      | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00645 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00646 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00647 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00648 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00649 | }          | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00651 | ,{{<br>,{  | INF,         | INF,         | INF,         | INF,         | INF ]  |
| 00652 | , \<br>, { | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00653 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00654 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00655 | }          |              |              | 1111         | 1111,        |        |
| 00656 | }          |              |              |              |              |        |
| 00657 | , { { {    | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00658 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00659 | , {        | INF,         | INF,         | INF,         | INF,         | INF]   |
| 00660 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00661 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00662 | }          |              |              |              |              |        |
| 00663 | , { {      | INF,         | INF,         | INF,         | INF,         | INF]   |
| 00664 | , {        | INF,         | INF,         | INF,         | INF,         | INF ]  |
| 00665 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00666 | , {        | INF,         | INF,         | INF,         | INF,         | INF]   |
| 00667 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00668 | }          |              |              |              |              |        |
| 00669 | , { {      | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00670 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00671 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00672 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00673 | , {        | INF,         | INF,         | INF,         | INF,         | INF)   |
| 00674 | }          |              |              |              |              |        |

| 00675 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
|-------|---------|--------|--------|--------|--------|-------|
| 00676 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00677 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00678 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00679 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00680 | }       | 1111   |        | 1111   | 1111,  | ,     |
| 00681 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00682 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00683 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00684 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00685 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00686 | }       | /      |        | 1111   | 1111   |       |
| 00687 | }       |        |        |        |        |       |
| 00688 | ,{{{    | INF,   | INF,   | INF,   | INF,   | INF } |
| 00689 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00690 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00691 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00692 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00693 | }       | ,      | ,      | ,      | ,      | ,     |
| 00694 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00695 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00696 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00697 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00698 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00699 | }       | 1111,  | 1111   | 1111,  | 1111,  | 1111  |
| 00700 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00701 | , (     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00702 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00702 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00703 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00704 | }       | TINE , | TINE , | TIME , | TINE , | TIME  |
| 00703 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00700 | , 11    | INF,   | INF,   | INF,   | INF,   | INF } |
| 00707 |         |        |        | INF,   |        |       |
|       | , {     | INF,   | INF,   |        | INF,   | INF } |
| 00709 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00710 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00711 | }       | TNIE   | TNE    | TNE    | TAID   | TATEL |
| 00712 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00713 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00714 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00715 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00716 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00717 | }       |        |        |        |        |       |
| 00718 | }       | TNIE   | TAID   | TATE   | T.110  | TATEL |
| 00719 | , { { { | INF,   | INF,   | INF,   | INF,   | INF } |
| 00720 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00721 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00722 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00723 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00724 | }       |        |        |        |        |       |
| 00725 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00726 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00727 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00728 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00729 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00730 | }       |        |        |        |        |       |
| 00731 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00732 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00733 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00734 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00735 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00736 | }       | TATE   | T 3.77 | T      | T      |       |
| 00737 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00738 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00739 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00740 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00741 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00742 | }       |        |        |        |        |       |
| 00743 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00744 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00745 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00746 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00747 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00748 | , }     |        |        |        |        |       |
| 00749 | }       |        |        |        |        |       |
| 00750 | , { { { | INF,   | INF,   | INF,   | INF,   | INF } |
| 00751 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00752 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00753 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00754 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00755 | }       | _      | _      | _      | _      |       |
| 00756 | , { {   | INF,   | INF,   | INF,   | INF,   | INF } |
| 00757 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00758 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00759 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00760 | , {     | INF,   | INF,   | INF,   | INF,   | INF } |
| 00761 | }       |        |        |        |        |       |
|       |         |        |        |        |        |       |

| 00762 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
|-------|------------|--------|--------|--------|--------|--------|
| 00763 | , (        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00764 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00765 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00766 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00767 | , \<br>}   | TIME,  | TIME,  | TIME,  | TIME,  | TIME } |
| 00768 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00769 | , (        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00770 |            |        |        |        | INF,   | INF }  |
| 00770 | , {        | INF,   | INF,   | INF,   |        |        |
|       | , {        | INF,   |        | INF,   | INF,   | INF }  |
| 00772 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00773 | }          | TNIE   | TATE   | TNIE   | T.110  | TATEL  |
| 00774 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00775 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00776 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00777 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00778 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00779 | }          |        |        |        |        |        |
| 00780 | }          |        |        |        |        |        |
| 00781 | }          | TNIE   | TATE   | TNIE   | T.110  | TATEL  |
| 00782 | , { { { {  | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00783 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00784 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00785 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00786 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00787 | }          |        |        |        |        |        |
| 00788 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00789 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00790 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00791 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00792 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00793 | }          |        |        |        |        |        |
| 00794 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00795 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00796 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00797 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00798 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00799 | }          |        |        |        |        |        |
| 00800 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00801 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00802 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00803 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00804 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00805 | }          | ,      | ,      | ,      | ,      | ,      |
| 00806 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00807 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00808 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00809 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00810 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00811 | }          | /      |        | /      | 1111   |        |
| 00812 | }          |        |        |        |        |        |
| 00813 | ,{{{       | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00814 | , ( ( (    | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00815 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00816 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00817 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00818 | }          | TINE , | TIVE , | TIME , | TIME , | TIME   |
| 00819 |            | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00819 | ,{{<br>,{  | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00820 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00821 |            | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00822 | , {<br>, { | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00823 | }          | TIME,  | TIME,  | TIME,  | TIME,  | TIME } |
| 00825 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00825 |            | INF,   | INF,   | INF,   | INF,   | INF }  |
|       | , {        |        |        |        |        |        |
| 00827 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00828 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00829 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00830 | }          |        |        |        |        |        |
| 00831 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00832 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00833 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00834 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00835 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00836 | }          | _      |        | _      | _      |        |
| 00837 | , { {      | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00838 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00839 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00840 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00841 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00842 | }          |        |        |        |        |        |
| 00843 | }          |        |        |        |        |        |
| 00844 | , { { {    | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00845 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00846 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00847 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
| 00848 | , {        | INF,   | INF,   | INF,   | INF,   | INF }  |
|       |            |        |        |        |        |        |

| 00849 | }       |      |      |      |      |       |
|-------|---------|------|------|------|------|-------|
| 00850 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00851 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00852 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00853 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00854 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00855 | }       |      |      |      |      |       |
| 00856 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00857 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00858 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00859 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00860 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00861 | }       |      |      |      |      |       |
| 00862 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00863 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00864 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00865 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00866 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00867 | }       |      |      |      |      |       |
| 00868 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00869 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00870 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00871 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00872 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00873 | }       |      |      |      |      |       |
| 00874 | }       |      |      |      |      |       |
| 00875 | , { { { | INF, | INF, | INF, | INF, | INF } |
| 00876 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00877 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00878 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00879 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00880 | }       | ,    |      | •    | •    |       |
| 00881 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00882 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00883 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00884 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00885 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00886 | }       | ,    |      | •    | •    |       |
| 00887 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00888 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00889 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00890 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00891 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00892 | }       |      |      |      |      |       |
| 00893 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00894 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00895 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00896 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00897 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00898 | }       | ,    |      | •    | •    |       |
| 00899 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00900 | , {     | INF, | INF, | INF, | INF, | INF)  |
| 00901 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00902 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00903 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00904 | }       |      |      |      |      |       |
| 00905 | }       |      |      |      |      |       |
| 00906 | , { { { | INF, | INF, | INF, | INF, | INF } |
| 00907 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00908 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00909 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00910 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00911 | }       |      |      |      |      |       |
| 00912 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00913 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00914 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00915 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00916 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00917 | }       |      |      |      |      |       |
| 00918 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00919 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00920 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00921 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00922 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00923 | }       |      |      |      |      |       |
| 00924 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00925 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00926 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00927 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00928 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00929 | }       | •    | •    |      | •    | ,     |
| 00930 | , { {   | INF, | INF, | INF, | INF, | INF } |
| 00931 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00932 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00933 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00934 | , {     | INF, | INF, | INF, | INF, | INF } |
| 00935 | }       |      | •    |      | •    |       |
|       |         |      |      |      |      |       |

| 00936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--------|--------|-------|--------|----------------|
| 00937   00938   {{{{  INF, INF, INF, INF, INF, O0940   00941   { INF, INF, INF, INF, INF, O0941   00941   { INF, INF, INF, INF, INF, O0942   00942   { INF, INF, INF, INF, INF, O0942   00943   00944   { INF, INF, INF, INF, INF, O0945   00946   { INF, INF, INF, INF, INF, INF, O0946   00947   { INF, INF, INF, INF, INF, INF, O0947   00948   { INF, INF, INF, INF, INF, INF, O0949   00950   { INF, INF, INF, INF, INF, INF, O0951   00951   { INF, INF, INF, INF, INF, O0952   00952   { INF, INF, INF, INF, INF, INF, O0955   00953   { INF, INF, INF, INF, INF, INF, O0955   00954   { INF, INF, INF, INF, INF, INF, O0956   00956   { INF, INF, INF, INF, INF, INF, O0956   00957   { INF, INF, INF, INF, INF, INF, O0956   00968   { INF, INF, INF, INF, INF, INF, O0966   00969   { INF, INF, INF, INF, INF, INF, O0966   00961   { INF, INF, INF, INF, INF, INF, O0966   00962   { INF, INF, INF, INF, INF, INF, O0966   00963   { INF, INF, INF, INF, INF, INF, O0966   00964   { INF, INF, INF, INF, INF, INF, O0966   00965   { INF, INF, INF, INF, INF, INF, O0966   00966   { INF, INF, INF, INF, INF, INF, O0966   00967   } 00969   { INF, INF, INF, INF, INF, INF, O0966   00969   { INF, INF, INF, INF, INF, INF, O0966   00970   { INF, INF, INF, INF, INF, INF, O0971   00971   { INF, INF, INF, INF, INF, INF, O0972   00972   { INF, INF, INF, INF, INF, INF, O0973   00974   { INF, INF, INF, INF, INF, INF, O0997   00975   { INF, INF, INF, INF, INF, INF, O0999   00976   { INF, INF, INF, INF, INF, INF, O0999   00977   { INF, INF, INF, INF, INF, INF, O0999   00978   { INF, INF, INF, INF, INF, INF, O0999   00979   { INF, INF, INF, INF, INF, INF, INF, O0999   00980   { INF, INF, INF, INF, INF, INF, INF, INF, | 00936 | 1   |        |        |       |        |                |
| 00938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        |                |
| 00940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | ,   | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00939 |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | , { |        |        |       |        | INF }          |
| 00944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | TNF    | TNF    | INF   | INF    | INF }          |
| 00946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00947 |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00948 | , { | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        |                |
| 00952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       | •      | INF }          |
| 00954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }<br>INF } |
| 00955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | ,      | ,      | ,     | ,      | ,              |
| 00958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00956 |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00957 | , { | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00958 |     | INF,   | INF,   | INF,  |        | INF }          |
| 00961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | TNID   | TNE    | TNE   | TND    | TAITI          |
| 00964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }<br>INF } |
| 00965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | ,      | ,      | ,     | ,      | ,              |
| 00970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00968 | }   |        |        |       |        |                |
| 00971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| O0973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | TNF    | TNF    | INF   | INF    | INF }          |
| 00977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | , { |        |        |       |        | INF }          |
| 00979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00978 | , { | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00979 |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00980 |     |        |        |       |        |                |
| 00983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00985         , { INF, INF, INF, INF, INF, 00986 }           00987         , { INF, INF, INF, INF, INF, INF, 00988 , { INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | , ( |        |        |       |        | INF }          |
| 00986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        | ,     |        | INF }          |
| 00987 , {{ INF, INF, INF, INF, O0988 , { INF, INF, INF, INF, INF, O0989 , { INF, INF, INF, INF, INF, O0990 , { INF, INF, INF, INF, INF, INF, O0990 , { INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |     | TINE , | TIVE , | INI,  | INI,   | TIME )         |
| 00988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00988 |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00989 | , { | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 00994 ,{ INF, INF, INF, INF, O0995 ,{ INF, INF, INF, INF, INF, INF, O0996 ,{ INF, INF, INF, INF, INF, INF, O0997 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     | TNE    | TNE    | TNE   | TNE    | INF }          |
| 00995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 00999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00997 |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 01000 ,{{{ INF, INF, INF, INF, INF, 01001 ,{ INF, INF, INF, INF, INF, 01002 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | }   |        |        |       |        |                |
| 01001 ,{ INF, INF, INF, INF, INF, 01002 ,{ INF, INF, INF, INF, INF, 01003 ,{ INF, INF, INF, INF, INF, INF, 01004 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     |        |        |       |        |                |
| 01002 ,{ INF, INF, INF, INF, INF, 01003 ,{ INF, INF, INF, INF, INF, INF, 01004 ,{ INF, INF, INF, INF, INF, INF, 01005 } 01006 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |        |        |       |        | INF }          |
| 01003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 01004 ,{ INF, INF, INF, INF, 01005 } 01006 ,{{ INF, INF, INF, INF, INF, 01007 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |        |        |       |        | INF }<br>INF } |
| 01005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |        |        |       |        | INF }          |
| 01006 , {{ INF, INF, INF, INF, O1007 , { INF, INF, INF, INF, INF, O1008 , { INF, INF, INF, INF, INF, O1009 , { INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |     | 1111   |        |       | ,      | ,              |
| 01008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01006 |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 01009 ,{ INF, INF, INF, INF, O1010 ,{ INF, INF, INF, INF, INF, INF, O1011 } 01012 ,{{ INF, INF, INF, INF, INF, INF, O1013 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01007 |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 01010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01008 | , { |        |        |       |        | INF }          |
| 01011 } 01012 ,{{ INF, INF, INF, INF, INF, 01013 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     |        |        |       |        | INF }          |
| 01012 ,{{ INF, INF, INF, INF, 1NF, 01013 ,{ INF, INF, INF, INF, INF, 01014 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     | INF,   | INF,   | INF,  | INF,   | INF }          |
| 01013 ,{ INF, INF, INF, INF, 1NF, 01014 ,{ INF, INF, INF, INF, INF, 1NF, INF, 1NF, INF, INF, INF, INF, INF, INF, INF, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     | TNT    | TNIE   | TNE   | TNIE   | TAIR           |
| 01014 ,{ INF, INF, INF, INF, O1015 ,{ INF, INF, INF, INF, INF, INF, O1016 ,{ INF, INF, INF, INF, INF, O1017 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |     |        |        |       |        | INF }<br>INF } |
| 01015 ,{ INF, INF, INF, INF, 01016 ,{ INF, INF, INF, INF, 01017 } 01018 ,{{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |     |        |        |       |        | INF }          |
| 01016 ,{ INF, INF, INF, INF, 01017 } 01018 ,{ INF, INF, INF, INF, 01019 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |     |        |        |       |        | INF }          |
| 01017 } 01018 ,{{ INF, INF, INF, INF, 01019 ,{ INF, INF, INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |     |        |        |       |        | INF }          |
| 01019 ,{ INF, INF, INF, INF, 01020 ,{ INF, INF, INF, INF, 01021 ,{ INF, INF, INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01017 |     | •      | •      | •     | •      | ,              |
| 01020 ,{ INF, INF, INF, INF, 01021 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |     |        |        |       |        | INF }          |
| 01021 ,{ INF, INF, INF, INF,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |     |        |        |       |        | INF }          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |     |        |        |       |        | INF }          |
| OTOSS , I THE, THE, THE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |        |        |       |        | INF )          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01022 | , 1 | TINE,  | TINE,  | TINE, | TINE , | INF }          |

| 01023 | }         |       |      |      |      |        |
|-------|-----------|-------|------|------|------|--------|
| 01024 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01025 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01026 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01027 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01028 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01029 | }         |       |      |      |      |        |
| 01030 | }         |       |      |      |      |        |
| 01031 | , { { {   | INF,  | INF, | INF, | INF, | INF }  |
| 01032 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01033 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01034 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01035 | , {       | INF,  | INF, | INF, | INF, | INF}   |
| 01036 | }         | ,     | ,    | ,    | ,    | ,      |
| 01037 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01038 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01039 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01040 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01041 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01042 | }         | 1111, | 1111 | 1111 | 1111 | 1141 ) |
| 01042 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01043 |           | INF,  | INF, | INF, | INF, | INF }  |
|       | , {       |       |      |      |      |        |
| 01045 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01046 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01047 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01048 | }         |       |      |      |      |        |
| 01049 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01050 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01051 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01052 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01053 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01054 | }         |       |      |      |      |        |
| 01055 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01056 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01057 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01058 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01059 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01060 | }         | /     |      | /    | /    | 1111   |
| 01061 | }         |       |      |      |      |        |
| 01062 | ,{{{      | INF,  | INF, | INF, | INF, | INF }  |
|       |           | INF,  | INF, | INF, | INF, |        |
| 01063 | , {       |       |      |      |      | INF }  |
| 01064 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01065 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01066 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01067 | }         |       |      |      |      |        |
| 01068 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01069 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01070 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01071 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01072 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01073 | }         |       |      |      |      |        |
| 01074 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01075 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01076 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01077 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01078 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01079 | }         |       |      |      |      |        |
| 01080 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01081 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01082 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01083 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01084 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01085 | }         | /     | /    | /    | /    |        |
| 01086 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01087 | , (       | INF,  | INF, | INF, | INF, | INF }  |
|       |           |       |      |      |      |        |
| 01088 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01089 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01090 | , {       | INF,  | INF, | INF, | INF, | INF}   |
| 01091 | }         |       |      |      |      |        |
| 01092 | }         |       |      |      |      |        |
| 01093 | }         | T     | T    |      | T    |        |
| 01094 | , { { { { | INF,  | INF, | INF, | INF, | INF }  |
| 01095 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01096 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01097 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01098 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01099 | }         |       |      |      |      |        |
| 01100 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01101 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01102 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01103 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01104 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01105 | }         | ,     | ,    | ,    | ,    | ,      |
| 01106 | , { {     | INF,  | INF, | INF, | INF, | INF }  |
| 01107 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01108 | , {       | INF,  | INF, | INF, | INF, | INF }  |
| 01109 | , {       | INF,  | INF, | INF, | INF, | INF }  |
|       | , .       | ,     | /    | /    | /    |        |

| 01110          |          | INF, | INF,    | INF,  | INF,   | INF }  |
|----------------|----------|------|---------|-------|--------|--------|
| 01111          | }        | TME  | TNE     | TNE   | TNE    | TNE    |
| 01112          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
| 01113          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01114          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01115          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01116          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01117<br>01118 | }<br>,{{ | INF, | INF,    | INF,  | INF,   | INF }  |
| 01119          | , (      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01120          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
|                |          |      |         |       |        |        |
| 01121          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01122          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01123          | }        |      |         |       |        |        |
| 01124          | }        |      |         |       |        |        |
| 01125          | ,{{{     | INF, | INF,    | INF,  | INF,   | INF }  |
| 01126          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01127          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01128          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01129          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01130          | }        |      | ,       | ,     | ,      | ,      |
| 01131          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
|                |          |      |         |       |        |        |
| 01132          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01133          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01134          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01135          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01136          | }        |      |         |       |        |        |
| 01137          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
| 01138          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01139          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01140          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01141          | , {      | INF, | INF,    | INF,  | INF,   | INF)   |
| 01142          | }        | /    | 1111    | /     | /      |        |
|                | , { {    | TNE  | INF,    | INF,  | TNE    | TNE    |
| 01143          |          | INF, |         |       | INF,   | INF }  |
| 01144          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01145          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01146          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01147          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01148          | }        |      |         |       |        |        |
| 01149          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
| 01150          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01151          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01152          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01153          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01154          | }        | /    | 1111    | /     | /      |        |
| 01155          | }        |      |         |       |        |        |
| 01156          |          | TNE  | TNE     | TME   | TME    | TME    |
|                | , { { {  | INF, | INF,    | INF,  | INF,   | INF }  |
| 01157          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01158          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01159          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01160          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01161          | }        |      |         |       |        |        |
| 01162          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
| 01163          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01164          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01165          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01166          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01167          | }        | ,    | •       | •     | •      |        |
| 01168          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
| 01169          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01170          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
|                |          |      |         |       |        |        |
| 01171          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01172          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01173          | }        | TNIT | T > 177 | TATE  | TATE   |        |
| 01174          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
| 01175          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01176          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01177          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01178          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01179          | }        |      |         |       |        |        |
| 01180          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
| 01181          | , {      | INF, | INF,    | INF,  | INF,   | INF)   |
| 01182          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01183          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01184          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01185          | }        | /    | /       | -111. | -111 / | T141 } |
|                |          |      |         |       |        |        |
| 01186          | }        | T    | T > T = | T     | T      |        |
| 01187          | , { { {  | INF, | INF,    | INF,  | INF,   | INF }  |
| 01188          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01189          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01190          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01191          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01192          | }        |      |         |       |        |        |
| 01193          | , { {    | INF, | INF,    | INF,  | INF,   | INF }  |
| 01194          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01195          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
| 01196          | , {      | INF, | INF,    | INF,  | INF,   | INF }  |
|                | , ,      | /    | ,       | /     | /      |        |

| 01197 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
|-------|---------------|--------|------|--------|--------|----------|
| 01198 | }             | TNIE   | TAIT | TNE    | TNE    | TATEL    |
| 01199 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01200 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01201 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01202 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01203 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01204 | }             |        |      |        |        |          |
| 01205 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01206 | , {           | INF,   | INF, | INF,   | INF,   | INF)     |
| 01207 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01207 |               |        | INF, | INF,   | INF,   | INF }    |
| 01208 | , {           | INF,   |      |        |        |          |
|       | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01210 | }             |        |      |        |        |          |
| 01211 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01212 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01213 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01214 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01215 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01216 | }             |        |      |        |        |          |
| 01217 | }             |        |      |        |        |          |
| 01218 | , { { {       | INF,   | INF, | INF,   | INF,   | INF }    |
| 01219 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01220 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01221 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01222 | , {           | INF,   | INF, | INF,   | INF,   | INF)     |
| 01223 | }             | ,      | ,    | ,      | ,      | ,        |
| 01224 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01225 | , (           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01226 |               |        |      |        | INF,   |          |
|       | , {           | INF,   | INF, | INF,   |        | INF }    |
| 01227 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01228 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01229 | }             |        |      |        |        |          |
| 01230 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01231 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01232 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01233 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01234 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01235 | }             |        |      |        |        |          |
| 01236 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01237 | , {           | INF,   | INF, | INF,   | INF,   | INF)     |
| 01238 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01239 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01240 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01240 | }             | TIME,  | INF, | TIME,  | TIME,  | TIME     |
|       |               | TNE    | TNE  | TME    | TME    | TME      |
| 01242 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01243 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01244 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01245 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01246 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01247 | }             |        |      |        |        |          |
| 01248 | }             |        |      |        |        |          |
| 01249 | }             |        |      |        |        |          |
| 01250 | }             |        |      |        |        |          |
| 01251 | , { { { { { { | INF,   | INF, | INF,   | INF,   | INF }    |
| 01252 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01253 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01254 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01255 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01256 | }             |        |      |        |        |          |
| 01257 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01258 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01259 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01260 |               | INF,   | INF, | INF,   | INF,   | INF }    |
| 01261 | , {<br>, {    | INF,   | INF, | INF,   | INF,   | INF }    |
|       |               | TIVE , | INI, | TIME , | TIME , | TIME     |
| 01262 | }             | TAID   | TME  | TME    | TNIE   | T N1TT 1 |
| 01263 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01264 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01265 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01266 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01267 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01268 | }             |        |      |        |        |          |
| 01269 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01270 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01271 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01272 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01273 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01274 | }             | ,      | ,    | ,      | ,      | ,        |
| 01274 | , { {         | INF,   | INF, | INF,   | INF,   | INF }    |
| 01275 | , 11          | INF,   | INF, | INF,   | INF,   | INF }    |
|       |               |        | INF, | INF,   |        |          |
| 01277 | , {           | INF,   |      |        | INF,   | INF }    |
| 01278 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01279 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
| 01280 | }             |        |      |        |        |          |
| 01281 | }             |        |      |        |        |          |
| 01282 | ,{{{          | INF,   | INF, | INF,   | INF,   | INF }    |
| 01283 | , {           | INF,   | INF, | INF,   | INF,   | INF }    |
|       |               |        |      |        |        |          |

| 01201 | r     | TNE  | TME  | TME   | TNE   | TME    |
|-------|-------|------|------|-------|-------|--------|
| 01284 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01285 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01286 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01287 | }     |      |      |       |       |        |
| 01288 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01289 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01290 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01291 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
|       |       |      |      |       |       |        |
| 01292 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01293 | }     |      |      |       |       |        |
| 01294 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01295 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01296 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01297 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01298 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
|       | }     | 1111 | 1111 | 1111  | 1111  | 1141 ) |
| 01299 |       |      |      |       |       |        |
| 01300 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01301 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01302 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01303 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01304 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01305 | }     |      |      |       |       |        |
| 01306 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
|       |       | INF, |      |       | INF,  | INF }  |
| 01307 | , {   |      | INF, | INF,  |       |        |
| 01308 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01309 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01310 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01311 | }     |      |      |       |       |        |
| 01312 | }     |      |      |       |       |        |
| 01313 | ,{{{  | INF, | INF, | INF,  | INF,  | INF }  |
|       |       |      |      |       |       |        |
| 01314 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01315 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01316 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01317 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01318 | }     |      |      |       |       |        |
| 01319 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01320 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01321 |       |      | INF, |       | INF,  | INF }  |
|       | , {   | INF, |      | INF,  |       |        |
| 01322 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01323 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01324 | }     |      |      |       |       |        |
| 01325 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01326 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01327 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01328 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
|       |       |      |      | INF,  | INF,  |        |
| 01329 | , {   | INF, | INF, | TIME, | TIME, | INF }  |
| 01330 | }     |      |      |       |       |        |
| 01331 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01332 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01333 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01334 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01335 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01336 | }     | /    |      |       |       |        |
|       |       | TNID | TND  | TNIE  | TNE   | TAITI  |
| 01337 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01338 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01339 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01340 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01341 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01342 | }     |      |      |       |       |        |
| 01343 | }     |      |      |       |       |        |
| 01344 | ,{{{  | INF, | INF, | INF,  | INF,  | INF }  |
|       |       | INF, |      |       |       |        |
| 01345 | , {   |      | INF, | INF,  | INF,  | INF }  |
| 01346 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01347 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01348 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01349 | }     |      |      |       |       |        |
| 01350 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01351 | , {   | INF, | INF, | INF,  | INF,  | INF)   |
| 01352 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
|       |       |      |      |       |       |        |
| 01353 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01354 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01355 | }     |      |      |       |       |        |
| 01356 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01357 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01358 | , {   | INF, | INF, | INF,  | INF,  | INF)   |
| 01359 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01360 |       |      |      |       |       |        |
|       | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01361 | }     |      |      |       |       |        |
| 01362 | , { { | INF, | INF, | INF,  | INF,  | INF }  |
| 01363 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01364 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01365 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01366 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01367 | }     | /    | /    | ,     | ,     |        |
| 01368 |       | TNE  | TME  | INF,  | INF,  | INF }  |
|       | , { { | INF, | INF, |       |       |        |
| 01369 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
| 01370 | , {   | INF, | INF, | INF,  | INF,  | INF }  |
|       |       |      |      |       |       |        |

| 01371 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
|-------|---------|---------|---------------|---------------|--------|---------|
|       |         |         |               |               |        | INF }   |
| 01372 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01373 | }       |         |               |               |        |         |
| 01374 | }       |         |               |               |        |         |
| 01375 | , { { { | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01376 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01377 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
|       |         |         |               |               |        |         |
| 01378 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01379 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01380 | }       |         |               |               |        |         |
| 01381 |         | TNE     | TME           | TNE           | TNE    | TNET    |
|       | , { {   | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01382 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01383 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01384 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01385 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
|       |         | TIME ,  | TINE ,        | INI,          | TINE , | TIME    |
| 01386 | }       |         |               |               |        |         |
| 01387 | , { {   | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01388 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01389 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01390 |         |         |               |               |        |         |
|       | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01391 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01392 | }       |         |               |               |        |         |
| 01393 | , { {   | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01394 |         |         |               |               |        |         |
|       | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01395 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01396 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01397 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01398 | }       | ,       | ,             | ,             | ,      |         |
|       |         |         |               |               |        |         |
| 01399 | , { {   | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01400 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01401 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01402 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
|       |         |         |               |               |        |         |
| 01403 | , {     | INF,    | INF,          | INF,          | INF,   | INF }   |
| 01404 | }       |         |               |               |        |         |
| 01405 | }       |         |               |               |        |         |
| 01406 | }       |         |               |               |        |         |
|       |         | 0.0     | 100           | 2.0           | 0.0    | 0.01    |
| 01407 | ,{{{    | 80,     | -120,         | 30,           | 80,    | 80}     |
| 01408 | , {     | 30,     | -310,         | -170,         | 30,    | -110}   |
| 01409 | , {     | 80,     | -230,         | -110,         | 80,    | -60}    |
| 01410 | , {     | 80,     | -120,         | 30,           | 30,    | 80}     |
| 01411 | , {     | -30,    | -340,         | -220,         | -30,   | -170}   |
|       |         | -30,    | -340,         | -220,         | -30,   | -1703   |
| 01412 | }       |         |               |               |        |         |
| 01413 | , { {   | -120,   | -460,         | -290 <b>,</b> | -120,  | -230}   |
| 01414 | , {     | -120,   | -460,         | -310,         | -120,  | -260}   |
| 01415 | , {     | -430,   | -770,         | -620,         | -430,  | -570}   |
|       |         |         |               |               |        |         |
| 01416 | , {     | -230,   | -670,         | -290,         | -980,  | -230}   |
| 01417 | , {     | -430,   | -770 <b>,</b> | -620 <b>,</b> | -430,  | -570}   |
| 01418 | }       |         |               |               |        |         |
| 01419 | , { {   | 30,     | -290,         | -170,         | 30,    | -110}   |
|       |         |         | -310,         |               |        |         |
| 01420 | , {     | 30,     |               | -170,         | 30,    | -110}   |
| 01421 | , {     | 20,     | -290 <b>,</b> | -170,         | 20,    | -120}   |
| 01422 | , {     | 30,     | -310,         | -170,         | 30,    | -110}   |
| 01423 | , {     | -30,    | -340,         | -220,         | -30,   | -170}   |
| 01424 | }       |         |               |               |        |         |
|       |         | 0.0     | 100           | 2.0           | 420    | 001     |
| 01425 | , { {   | 80,     | -120,         | 30,           | -430,  | 80}     |
| 01426 | , {     | -520,   | -960,         | -580 <b>,</b> | -1270, | -520}   |
| 01427 | , {     | -430,   | -770,         | -620,         | -430,  | -570}   |
| 01428 | , {     | 80,     | -120,         | 30,           | -430,  | 80}     |
|       |         |         |               | -620,         |        | -570}   |
| 01429 | , {     | -430,   | -770 <b>,</b> | -620,         | -430,  | -3/0}   |
| 01430 | }       |         |               |               |        |         |
| 01431 | , { {   | 80,     | -230,         | -110,         | 80,    | -60}    |
| 01432 | , {     | 30,     | -310,         | -170,         | 30,    | -110}   |
| 01433 | , {     | 80,     | -230,         | -110,         | 80,    | -60}    |
| 01434 | , {     | 30,     | -310,         | -170,         | 30,    | -110}   |
|       |         |         |               |               |        |         |
| 01435 | , {     | -860,   | -860,         | -960,         | -1410, | -900}   |
| 01436 | }       |         |               |               |        |         |
| 01437 | }       |         |               |               |        |         |
| 01438 | ,{{{    | 30,     | -120,         | 30,           | -520,  | 30}     |
|       |         |         |               | -170,         | -810,  |         |
| 01439 | , {     | -170,   | -310,         |               |        | -170}   |
| 01440 | , {     | -110,   | -260,         | -110,         | -520,  | -110}   |
| 01441 | , {     | 30,     | -120,         | 30,           | -810,  | 30}     |
| 01442 | , {     | -220,   | -370,         | -220,         | -630,  | -220}   |
| 01443 | }       | /       | ,             | /             | /      | ,       |
|       |         | 212     | 4.00          | 212           | 0.00   | 212     |
| 01444 | , { {   | -310,   | -460,         | -310,         | -960,  | -310}   |
| 01445 | , {     | -310,   | -460,         | -310,         | -960,  | -310}   |
| 01446 | , {     | -620,   | -770,         | -620,         | -1270, | -620}   |
| 01447 | , {     | -530,   | -670,         | -530,         | -1170, | -530}   |
|       |         |         |               |               |        |         |
| 01448 | , {     | -620,   | -770 <b>,</b> | -620,         | -1270, | -620}   |
| 01449 | }       |         |               |               |        |         |
| 01450 | , { {   | -170,   | -310,         | -170,         | -580,  | -170}   |
| 01451 | , {     | -170,   | -310,         | -170,         | -810,  | -170}   |
| 01452 | , {     | -170,   | -320,         | -170,         | -580,  | -170}   |
|       |         |         |               |               |        |         |
| 01453 | , {     | -170,   | -310,         | -170,         | -810,  | -170}   |
| 01454 | , {     | -220,   | -370 <b>,</b> | -220,         | -630,  | -220}   |
| 01455 | }       |         |               |               |        |         |
| 01456 | , { {   | 30,     | -120,         | 30,           | -1270, | 30}     |
|       | , {     | -810,   | -960,         | -810,         | -1460, | -810}   |
| 01457 |         | U + U , | J U U ,       | U 1 U ,       | ± 100, | 0 + 0 } |

```
-770,
01458
          , { -620,
                               -620, -1270,
01459
                  30,
                       -120,
                                  30, -1870,
                                                  30}
01460
               -620
                       -770,
                               -620,
                                      -1270,
                                               -6201
01461
01462
          , { {
               -110.
                        -260.
                                -110.
                                        -520.
                                               -1101
01463
               -170.
                        -310.
                               -170.
                                       -810.
                                               -170}
          , {
               -110,
                        -260,
                               -110,
01464
                                       -520,
                                               -110}
01465
               -170,
                       -310,
                               -170,
                                       -810,
                                               -1701
01466
               -860,
                       -860,
                               -960,
                                      -1600,
                                               -9601
01467
01468
         , { { {
                 80,
                       -430.
                                  20.
                                       -430.
                                                  801
01469
01470
               -110,
                       -620,
                               -170,
                                       -620,
                                                -110}
01471
                -60,
                       -570,
                               -120,
                                       -570,
                                                -60}
01472
                 80,
                       -430,
                                 20,
                                       -430,
                                                  80}
01473
               -170,
                       -680,
                                -230,
                                       -680,
                                               -170}
01474
01475
               -230,
                       -770,
                                -290,
                                       -770,
                                               -230}
          , { {
                                       -770,
                       -770,
01476
               -260,
                               -320,
                                               -260}
          , {
               -570, -1080,
                                      -1080,
                                               -570}
01477
                               -630,
          , {
01478
               -230,
                       -980,
                               -290,
                                       -980,
                                               -230}
01479
               -570,
                      -1080,
                               -630,
                                      -1080,
                                               -570}
01480
                                       -620,
               -110.
                       -620.
                               -170.
01481
          , { {
                                               -1101
               -110,
                       -620,
                               -170,
                                       -620,
                                               -110}
01482
          , {
                               -180,
                                               -120}
01483
               -120,
                       -630,
                                       -630,
01484
               -110,
                       -620,
                               -170,
                                       -620,
                                               -1101
01485
               -170,
                       -680,
                               -230,
                                       -680,
                                               -170}
01486
01487
          , { {
                  80.
                       -430.
                                  20.
                                       -430.
                                                  801
01488
               -520, -1270,
                                -580, -1270,
                                                -5201
          , {
01489
               -570, -1080,
                                -630,
                                      -1080,
                                               -570}
01490
                  80,
                       -430,
                                 20,
                                       -430,
                                                  80}
01491
               -570, -1080,
                                -630,
                                      -1080,
                                               -5701
01492
          , { {
                -60,
                       -570.
                                -120.
                                       -570.
01493
                                                 -60}
01494
               -110,
                       -620,
                               -170,
                                       -620,
                                                -110}
          , {
                       -570,
                               -120,
                                       -570,
01495
                -60,
                                                -60}
          , {
01496
               -110,
                       -620,
                               -170,
                                       -620,
                                                -110}
01497
               -900, -1410,
                               -960,
                                      -1410,
                                               -900}
01498
01499
                 80,
         , { { {
                       -230.
                                  30.
                                          80,
                                                  301
01500
01501
                  30,
                       -530,
                                -170,
                                          30,
                                                -170}
          , {
                                               -110}
01502
                  80,
                       -230,
                                          80,
                               -110,
01503
                  30,
                       -530,
                                 30,
                                          30,
                                                  301
01504
                 -30,
                       -340,
                                -220,
                                         -30,
                                               -2201
01505
          , { {
               -120.
                       -670.
                               -310.
                                       -120.
                                               -310}
01506
01507
               -120,
                       -670,
                                       -120,
                               -310.
                                               -310}
          , {
01508
               -430,
                       -980,
                               -620,
                                       -430,
                                               -620}
01509
               -530,
                       -890,
                               -530,
                                      -1580,
                                               -530}
01510
               -430,
                       -980,
                               -620,
                                       -430,
                                               -620}
01511
                  30.
                       -290.
                               -170.
                                          30,
                                               -170}
01512
          , { {
                  30,
                       -530,
                               -170,
                                               -170}
01513
                                          30,
          , {
                  20,
                       -290,
                               -170,
                                          20,
                                               -170}
01514
01515
                  30,
                       -530,
                               -170,
                                          30,
                                               -170}
                                               -220}
01516
                 -30,
                       -340,
                               -220,
                                         -30,
01517
          , { {
                                  30,
                 30.
                       -980.
                                       -430.
01518
                                                  301
               -810, -1170,
01519
                                -810, -1870,
                                                -810}
          , {
01520
               -430,
                       -980,
                                -620,
                                       -430,
                                               -620}
          , {
01521
                  30, -1580,
                                  30,
                                      -2280,
                                                  30}
01522
               -430,
                       -980,
                                -620,
                                       -430,
                                               -6201
01523
          , { {
                  80,
01524
                       -230.
                                -110.
                                          80,
                                               -1103
01525
                  30,
          , {
                       -530,
                               -170.
                                          30.
                                               -170
01526
                  80,
                       -230,
                               -110,
                                          80,
                                               -110}
          , {
                       -530,
                  30,
                               -170,
                                          30,
                                      -2010,
01528
               -960,
                      -1320,
                               -960,
                                               -960}
01529
01530
         , { { {
                -30.
                       -430.
                                 -30,
                                       -430,
                                               -860}
01531
               -220,
                       -620,
                               -220,
                                       -620,
                                               -860}
01532
                                       -570,
01533
               -170,
                       -570,
                                -170,
                                               -900}
01534
                -30,
                       -430,
                                -30,
                                       -430,
                                               -960}
01535
               -280,
                       -680,
                               -280,
                                       -680,
                                              -1010}
01536
                       -770.
                                       -770.
01537
               -340.
                                -340.
                                               -8601
          , { {
               -370,
                       -770,
                               -370,
                                       -770,
                                               -860}
01538
          , {
01539
               -680, -1080,
                               -680,
                                      -1080, -1410}
01540
               -340,
                       -980,
                               -340,
                                       -980, -1320]
01541
               -680,
                      -1080,
                               -680,
                                      -1080,
                                              -14101
01542
                                       -620,
          , { {
               -220,
                       -620,
                               -220,
01543
                                               -9601
01544
               -220,
                       -620,
                               -220,
                                       -620,
                                               -9601
```

```
-230,
                        -630,
                                -230,
                                        -630,
           , {
01546
               -220,
                        -620,
                                -220,
                                        -620,
                                               -960}
01547
               -280,
                        -680,
                                -280,
                                        -680, -1010]
01548
                                        -430, -1410]
01549
          , { {
                 -30.
                        -430.
                                 -30.
01550
               -630, -1270,
                                -630,
                                      -1270, -1600}
          , {
               -680, -1080,
                                      -1080, -1410}
01551
                                -680,
01552
                 -30,
                       -430,
                                 -30,
                                        -430, -2010]
01553
                -680, -1080,
                                -680,
                                      -1080, -1410}
01554
               -170.
                        -570.
                                -170.
                                        -570,
01555
                                                -9001
          , { {
                                                -960}
01556
               -220.
                        -620.
                                -220.
                                        -620,
          , {
               -170,
                                -170,
                                        -570,
01557
                        -570,
                                                -900}
01558
               -220,
                        -620,
                                -220,
                                        -620,
                                                -960}
01559
               -1010,
                       -1410,
                               -1010,
                                       -1410,
                                               -1750}
01560
01561
          }
01562
                         180,
01563
        , { { { {
                 540,
                                  30,
                                         540,
                                                 180}
                  10,
                        -580,
                                          10,
                                                 -90}
01564
                                -150,
          , {
01565
                 540,
                        -350,
                                -600,
                                         540,
                                                -540}
                                  30,
                180,
01566
                        180.
                                        -320,
                                                 1801
01567
                 -90,
                        -740,
                                 -90,
                                        -260,
                                                -540}
01568
                 -90,
                        -350,
                                -150,
                                        -100,
                                                 -90}
01569
          , { {
01570
                -90,
                        -580,
                                -150,
                                                 -90}
                                        -200,
01571
               -100,
                        -350,
                                -600,
                                        -100,
                                                -5401
          , {
01572
               -630,
                       -1790,
                                -630,
                                       -1790,
                                               -1040}
01573
               -400,
                       -740,
                                -600,
                                        -400,
                                                -540]
01574
01575
          , { {
                 540.
                        -660,
                                -510.
                                         540,
                                                -400}
01576
                  10,
                        -660,
                                -510,
                                          10,
                                                -400}
          , {
01577
                 540,
                        -940,
                                -820,
                                         540,
                                                -760}
01578
               -320,
                        -660,
                                -510,
                                        -320,
                                                -4601
               -260,
01579
                        -940,
                                -820,
                                        -260,
                                                -550}
01580
                 180,
                         180,
                                  30,
                                        -400,
01581
                                                 180}
          , { {
                -500,
                       -1070,
                                -500,
                                                -570}
01582
                                       -1080,
01583
                -400,
                        -740,
                                -600,
                                        -400,
                                                -540}
01584
                 180,
                        180,
                                  30,
                                        -430,
                                                 180}
01585
                -400,
                        -740,
                                -600,
                                        -400,
                                                -540}
01586
                 -90,
                        -660,
          , { {
                                 -90.
                                        -210.
01587
                                                -4603
01588
                -320,
                        -660,
                                -510,
                                        -320,
                                                -460}
          , {
                                               -1070}
01589
                -210, -1250,
                               -1130,
                                        -210,
01590
                -320,
                       -660,
                                -510,
                                        -320,
                                                -4601
01591
                -90,
                        -830,
                                 -90,
                                        -810,
                                                -800}
01592
01593
01594
                 540,
                         180,
                                 -90,
                                         540,
         , { { {
                                                  301
01595
                  10,
                        -580,
                                -220,
                                          10,
                                                -150}
          , {
01596
                 540,
                        -740,
                                -600,
                                         540,
                                                -600}
01597
                 180,
                         180,
                                -390,
                                       -1160,
                                                  301
01598
                 -90,
                        -740,
                                 -90,
                                        -810,
                                                -6003
01599
01600
               -100,
                                -220,
          , { {
                        -580,
                                        -100,
                                                -150}
01601
               -150,
                        -580,
                                -220,
                                        -970,
                                                -150}
01602
               -100,
                        -740,
                                -600,
                                        -100,
                                                -600}
          , {
01603
              -1340,
                       -2010,
                               -1650,
                                       -1980,
                                               -1340}
01604
               -600,
                        -740,
                                -600,
                                      -1240,
                                                -6001
01605
                        -660,
01606
          , { {
                 540,
                                -510,
                                         540,
                                                -510}
01607
                  10,
                        -660, -1150,
                                          10,
                                                -510}
          , {
01608
                 540,
                        -960,
                                -820,
                                         540,
                                                -820}
               -510,
                                      -1160,
01609
                        -660,
                                -510,
                                                -5101
01610
               -820,
                        -960,
                                -820, -1220,
                                                -8201
01611
                 180,
                         180,
                                -390, -1240,
01612
          , { {
                                                  301
01613
                -860,
                       -1340,
                                -860, -2450,
                                                -860}
          , {
                -600,
                        -740,
                                -600, -1240,
                                                -600}
01614
01615
                 180,
                        180,
                                -390, -1870,
                                                  301
01616
               -600,
                        -740,
                                -600,
                                      -1240,
                                                -600}
01617
                 -90.
                        -660.
                                 -90.
                                        -810,
01618
          , { {
                                                -510}
                -510,
                        -660,
                                -510, -1160,
01619
                                                -510}
01620
               -1130, -1270,
                               -1130, -1530,
                                               -1130}
               -510,
01621
                       -660,
                                -510, -1160,
                                                -510}
01622
                -90, -1240,
                                 -90,
                                       -810,
                                                -800}
01623
01624
         , { { {
                 180,
                        -430,
                                  20,
                                        -430,
                                                 180}
01625
                                -500,
01626
                 -90,
                        -600,
                                        -600,
                                                 -90}
          , {
01627
                -540,
                       -1050,
                                -600,
                                       -1050,
                                                -540}
01628
                 180,
                       -430,
                                  20,
                                       -430,
                                                 1801
01629
               -540,
                        -830,
                                -600,
                                      -1050,
                                                -540}
01630
01631
                 -90,
                        -600,
                                -600,
                                        -600,
                                                 -90}
          . { {
```

```
01632
          , {
                -90, -600, -1070,
01633
              -540, -1050,
                              -600, -1050,
                                             -540}
01634
              -630, -1790,
                              -630, -1790,
                                            -10401
01635
               -540, -1050,
                              -600, -1050,
                                             -540}
01636
              -460,
                      -970,
                              -520,
                                     -970,
                                             -460}
01637
         , { {
                              -750,
               -460, -970,
                                     -970,
                                             -460}
01638
          , {
01639
              -760, -1270,
                              -820, -1270,
                                             -760}
                                     -970,
01640
               -460,
                      -970,
                              -520,
                                             -460}
01641
              -550, -1270,
                              -820,
                                    -1270,
                                             -550}
01642
         , { {
               180, -430,
                                20.
                                     -430.
01643
                                              180}
              -500, -1070,
                              -500, -1320,
                                             -570}
01644
          , {
01645
               -540, -1050,
                              -600,
                                    -1050,
                                             -540}
01646
               180,
                      -430,
                               20,
                                     -430,
                                              180
01647
              -540, -1050,
                              -600,
                                    -1050,
                                             -540}
01648
              -460,
                                      -970,
01649
         , { {
                      -830,
                              -520,
                                             -460}
                             -520,
                                             -460}
              -460, -970,
01650
                                     -970,
          , {
              -1070, -1580, -1130, -1580, -1070}
01651
          , {
01652
               -460, -970,
                            -520,
                                     -970,
                                             -4601
01653
               -830,
                      -830, -1710,
                                    -1260,
                                            -14601
01654
01655
01656
        , { { {
                 30,
                       -350,
                                30,
                                      -200,
                                               30}
               -150,
                      -870,
                              -150,
                                      -200,
                                             -150}
01657
         , {
01658
               -210,
                      -350,
                              -600,
                                     -210,
                                             -600}
                30,
01659
                      -870,
                                30,
                                      -320,
                                               303
               -260,
01660
                      -940,
                              -600,
                                      -260,
                                             -600}
01661
01662
         , { {
              -150.
                       -350.
                              -150.
                                      -200.
                                             -150}
01663
              -150, -1600,
                              -150,
                                      -200,
                                             -150}
          , {
01664
              -350,
                      -350,
                              -600,
                                      -440,
                                             -6001
01665
             -1340, -3070,
                             -1340,
                                     -2390,
                                            -1340}
                                             -600}
01666
              -400,
                      -960,
                              -600,
                                     -400,
01667
              -260, -870,
                              -510,
                                     -260,
                                             -510}
01668
         , { {
              -320, -1110,
01669
                              -510,
                                      -320,
                                             -510}
          , {
              -620,
01670
                      -940,
                              -820,
                                     -620,
                                             -820}
01671
               -320,
                      -870,
                              -510,
                                      -320,
                                             -510}
                                             -820}
01672
              -260,
                      -940,
                              -820,
                                     -260,
01673
01674
         , { {
                 30.
                      -960.
                                30.
                                      -400.
                                               301
01675
               -860, -1880,
                              -860,
                                    -1080,
                                             -860}
         , {
                                             -600}
01676
               -400, -960,
                              -600,
                                     -400,
01677
                30, -1370,
                                30,
                                     -2280,
                                               301
               -400,
                                     -400,
01678
                      -960,
                              -600,
                                             -600}
01679
         , { {
              -210.
                      -870,
                              -510,
                                      -210,
01680
                                             -510}
               -320, -870,
                              -510,
                                             -510}
01681
                                     -320,
          , {
01682
               -210, -1250,
                            -1130,
                                      -210, -1130}
                                            -510}
01683
               -320, -870,
                              -510,
                                     -320,
01684
               -800, -1360,
                              -800,
                                    -1550,
                                             -8001
01685
01686
        , { { {
01687
               -200,
                      -430,
                              -200,
                                      -430,
                                             -230}
              -200,
                      -600,
                              -200,
                                     -600, -400}
01688
01689
               -650, -1050,
                              -650, -1050, -1390}
01690
               -230,
                     -430,
                              -570,
                                     -430, -230}
01691
               -650, -1050,
                              -650,
                                    -1050, -1390]
01692
                                     -600, -1390}
-600, -1490}
              -200,
01693
         , { {
                      -600,
                              -200,
01694
         , {
              -200,
                      -600,
                              -200,
01695
              -650, -1050,
                              -650, -1050, -1390}
                             -1150, -1790, -1520}
01696
             -1150, -1790,
01697
             -650, -1050,
                              -650,
                                    -1050, -1390}
01698
         , { { -400,
                      -970,
                              -570,
                                     -970, -400}
01699
                                     -970, -400}
01700
              -400, -970,
                              -570,
          , {
              -870, -1270,
                                    -1270, -1610}
01701
                              -870,
01702
               -570,
                      -970,
                              -570,
                                     -970, -1300}
01703
              -870, -1270,
                              -870,
                                    -1270, -16101
01704
         , { { -230, -430,
                                     -430, -230}
01705
                              -650.
01706
              -1300, -1320,
                             -1750, -1320, -1300}
         , {
01707
              -650, -1050,
                              -650, -1050, -1390}
01708
               -230,
                     -430,
                              -880,
                                     -430, -230}
01709
              -650, -1050,
                              -650, -1050, -1390}
01710
         , { {
              -570.
                      -970.
                              -570.
                                     -970. -1300}
01711
              -570, -970,
                              -570,
                                     -970, -1300}
01712
          , {
              -1180, -1580, -1180, -1580, -1920}
                             -570,
01714
              -570,
                      -970,
                                     -970, -1300}
01715
               -860, -1260,
                             -860, -1260, -2350}
01716
01717
01718
        }
```

```
, { { { {
               240,
                        40,
                               190,
                                      -870, -590}
01720
              -590, -1030, -650,
         , {
01721
              -870, -1180, -1060,
                                      -870, -1010}
01722
               240,
                       40,
                              190,
                                      -270,
                                             2401
01723
               -870,
                       -970, -1060,
                                      -870, -1010}
01724
01725
         , { {
              -780, -1210,
                               -840,
                                      -870, -780}
01726
              -1050, -1370, -1240, -1050, -1190}
              -870, -1210, -1060,
-780, -1220, -840,
                                     -870, -1010}
-1530, -780}
01727
01728
              -870, -1210, -1060,
                                      -870, -1010}
01729
01730
01731
         , { {
              -870, -1180, -1060,
                                      -870, -1010}
01732
              -870, -1210, -1060,
                                      -870, -1010}
01733
              -870, -1180, -1060,
                                      -870, -1010}
01734
              -870, -1210, -1060,
                                      -870, -1010}
                                      -870, -10101
              -870, -1180, -1060,
01735
01736
                              190, -270, 240}
-650, -1340, -590}
         , { {
                         40.
              -590, -1030,
01738
          , {
                                     -870, -1010}
-270, 240}
01739
              -870, -1210, -1060,
                        40,
01740
               240,
                             190,
              -870, -1210, -1060,
                                      -870, -1010}
01741
01742
01743
         ,{{ -870, -970, -1060,
                                      -870, -1010
01744
              -870, -1210, -1060,
-870, -1180, -1060,
                                      -870, -1010}
          , {
01745
                                      -870, -1010}
01746
              -870, -1210, -1060,
                                      -870, -1010}
              -970, -970, -1060,
01747
                                    -1520, -1010]
01748
01749
01750
        , { { {
                190,
                         40,
                               190, -1470,
01751
              -890, -1030, -890, -1530, -890}
01752
              -1060, -1210, -1060, -1470, -1060}
               190,
01753
                       40,
                             190, -1710,
                                             1901
                      -970, -1060, -1470, -1060}
01754
              -970,
01755
         ,{{ -1060, -1210, -1060, -1710, -1060}
01756
         ,{ -1240, -1370, -1240, -1890, -1240}
01757
01758
             -1060, -1210, -1060, -1710, -1060}
01759
          ,{ -1080, -1220, -1080, -1720, -1080}
          ,{ -1060, -1210, -1060, -1710, -1060}
01760
01761
         ,{{ -1060, -1210, -1060, -1470, -1060}
01762
         ,{ -1060, -1210, -1060, -1710, -1060}
,{ -1060, -1210, -1060, -1470, -1060}
01763
01764
01765
          ,{ -1060, -1210, -1060, -1710, -1060}
           ,{ -1060, -1210, -1060, -1470, -1060}
01766
01767
         ,{{ 190,
01768
                         40,
                               190, -1530,
              -890, -1030,
                              -890, -1530,
01769
                                             -890}
         , {
01770
             -1060, -1210, -1060, -1710, -1060}
                              190, -1710,
01771
               190,
                        40,
                                              1901
01772
          ,{ -1060, -1210, -1060, -1710, -1060}
01773
         ,{{ -970, -970, -1060, -1470, -1060}
01774
01775
          ,{ -1060, -1210, -1060, -1710, -1060}
01776
          ,{ -1060, -1210, -1060, -1470, -1060}
01777
             -1060, -1210, -1060, -1710, -1060}
             -970, -970, -1060, -1710, -1060}
01778
01779
01780
01781
        ,{{{
               240, -270,
                               180, -270,
01782
              -590, -1340, -650, -1340, -590}
             -1010, -1520, -1070, -1520, -1010}
240, -270, 180, -270, 240}
01783
          ,{ 240, -270, 180, -270, 240}
,, -1010, -1520, -1070, -1520, -1010}
01784
01785
01786
         ,{{ -780, -1520, -840, -1520, -780}
01787
         ,{ -1190, -1700, -1250, -1700, -1190}
01788
          ,{ -1010, -1520, -1070, -1520, -1010}
,{ -780, -1530, -840, -1530, -780}
01789
01790
          ,{ -1010, -1520, -1070, -1520, -1010}
01791
01792
         ,{{ -1010, -1520, -1070, -1520, -1010}
01793
          ,{ -1010, -1520, -1070, -1520, -1010}
01794
01795
          ,{ -1010, -1520, -1070, -1520, -1010}
01796
             -1010, -1520, -1070, -1520, -1010}
           ,{ -1010, -1520, -1070, -1520, -1010}
01797
01798
                               180, -270,
01799
         , { {
               240, -270,
                                               2401
                              -650, -1340, -590}
01800
              -590, -1340,
          , {
             -1010, -1520, -1070, -1520, -1010}
240, -270, 180, -270, 240}
01801
01802
             -1010, -1520, -1070, -1520, -1010}
01803
01804
01805
         , {{ -1010, -1520, -1070, -1520, -1010}}
```

```
,{ -1010, -1520, -1070, -1520, -1010}
          ,{ -1010, -1520, -1070, -1520, -1010}
,{ -1010, -1520, -1070, -1520, -1010}
01807
01808
           ,{ -1010, -1520, -1070, -1520, -1010}
01809
01810
01811
                                190, -870, 190}
-890, -870, -890}
01812
        ,{{{ 190, -1180,
01813
          , {
               -870, -1250, -890,
                                        -870, -1060}
-870, 190}
01814
               -870, -1180, -1060,
01815
                190, -1420,
                               190,
                                        -870,
              -870, -1180, -1060,
                                       -870, -1060}
01816
01817
          ,{{ -870, -1420, -1060,
01818
                                        -870, -1060}
              -1050, -1600, -1240, -1050, -1240}
01819
          , {
01820
              -870, -1420, -1060,
                                       -870, -1060}
              -1080, -1440, -1080, -2130, -1080}
01821
                                       -870, -10601
              -870, -1420, -1060,
01822
01823
          ,{{ -870, -1180, -1060, -870, -1060}
01824
                                       -870, -1060}
               -870, -1420, -1060,
01825
          , {
               -870, -1180, -1060,
-870, -1420, -1060,
                                       -870, -1060}
01826
01827
                                       -870, -1060}
01828
              -870, -1180, -1060,
01829
                190, -1250,
                                 190,
                                        -870,
01830
          , { {
               -890, -1250, -890, -1940, -890,
-870, -1420, -1060, -870, -1060,
190, -1420, 190, -2120, 190,
01831
          , {
01832
01833
               -870, -1420, -1060,
01834
                                       -870, -1060]
01835
          ,{{ -870, -1180, -1060, -870, -1060}, { -870, -1420, -1060, -870, -1060}
01836
01837
          , {
01838
               -870, -1180, -1060,
                                        -870, -1060}
01839
               -870, -1420, -1060,
                                       -870, -1060}
01840
              -1060, -1420, -1060, -2120, -1060}
01841
01842
        ,{{{ 130, -270, , { -700, -1340,
                               130, -270, -1680}
-700, -1340, -1680}
01843
01844
01845
              -1120, -1520, -1120, -1520, -1850}
                              130, -270, -1850}
01846
               130, -270,
          ,{ -1120, -1520, -1120, -1520, -1850}
01847
01848
          ,{{ -890, -1520, -890, -1520, -1790}
01849
          ,{ -1300, -1700, -1300, -1700, -1790}
01850
          ,{ -1120, -1520, -1120, -1520, -1850}
01851
           ,{ -890, -1530, -890, -1530, -1870}
,{ -1120, -1520, -1120, -1520, -1850}
01852
01853
01854
          ,{{ -1120, -1520, -1120, -1520, -1850}
01855
          ,{ -1120, -1520, -1120, -1520, -1850}
          ,{ -1120, -1520, -1120, -1520, -1850}
,{ -1120, -1520, -1120, -1520, -1850}
01857
01858
           ,{ -1120, -1520, -1120, -1520, -1850}
01859
01860
         , { {
01861
               130, -270,
                                 130, -270, -1680}
          ,{ -700, -1340, -700, -1340, -1680}
          ,{ -1120, -1520, -1120, -1520, -1850}
,{ 130, -270, 130, -270, -1850}
01863
01864
           ,{ -1120, -1520, -1120, -1520, -1850}
01865
01866
         01867
01868
          ,{ -1120, -1520, -1120, -1520, -1850}
,{ -1120, -1520, -1120, -1520, -1850}
01869
01870
           ,{ -1120, -1520, -1120, -1520, -1850}
01871
01872
01873
          }
01874
01875
        ,{{{{
                 800,
                         600,
                                 740,
01876
                 200,
                        -140,
                                  Ο,
                                         200,
                                                  50}
         , {
               -310,
                       -630,
01877
                                -510,
                                        -310,
                                                -450}
               800,
01878
                        600,
                                740,
                                         290,
                                                8003
01879
                -310.
                        -410.
                                -510.
                                        -310,
                                                -450}
01880
                                                  50}
                 200,
                        -140,
                                  Ο,
                                         200,
01881
          , { {
01882
                 200,
                       -140,
                                  0,
                                         200,
                                                  50}
          , {
                                       -310,
01883
               -310,
                       -650,
                                -510,
                                                -450}
01884
               -550,
                        -990.
                                -610.
                                       -1300.
                                                -5503
01885
               -310.
                        -650.
                                -510.
                                                -450}
           , {
                                       -310.
01886
01887
               -310,
                        -630,
                                -510,
                                        -310,
                                                -450}
          , { {
                       -650,
01888
                -310,
                                -510,
                                        -310,
                                                -450}
          , {
               -310,
01889
                       -630,
                                -510,
                                        -310,
                                                -450}
01890
               -310,
                       -650,
                               -510,
                                        -310,
                                                -4501
                       -630. -510.
                                                -450}
01891
              -310,
                                       -310.
01892
```

```
01893
          , { {
                 800,
                         600,
                                  740,
                                          290.
                                                  8001
01894
                -720,
                       -1160,
                                 -780,
                                        -1470,
                                                 -720}
           , {
                -310,
01895
                        -650
                                -510,
                                        -310,
                                                 -4501
                                 740,
01896
                 800,
                         600,
                                         290,
                                                 8003
01897
                -310,
                        -650,
                                 -510,
                                         -310,
                                                 -450
01898
01899
          , { {
                -310,
                        -410,
                                 -510,
                                         -310,
                                                 -450}
01900
                -310,
                        -650,
                                -510,
                                        -310,
                                                 -450}
          , {
01901
                -310,
                        -630,
                                -510,
                                         -310,
                                                 -450}
01902
                -310,
                        -650,
                                -510,
                                        -310,
                                                 -4501
01903
                -410.
                        -410.
                                         -960,
                                -510,
                                                 -450
01904
01905
01906
                 740,
                         600,
                                  740,
                                         -640,
                                                  740}
         , { { {
01907
                  0,
                        -140,
                                   0,
                                        -640,
                                                    0 }
           , {
01908
                -510,
                        -650,
                                 -510,
                                        -910,
                                                 -510}
                 740.
                                 740.
01909
                         600.
                                        -1150.
                                                  7403
01910
                -410,
                        -410,
                                 -510,
                                        -910,
                                                 -510}
01911
01912
                   Ο,
                        -140,
                                    Ο,
                                        -640,
                                                    0 }
          , { {
01913
                   0,
                        -140,
                                    0,
                                        -640,
                                                    0 }
01914
                -510,
                        -650,
                                -510, -1150,
                                                 -510}
                -850.
01915
                        -990,
                                -850,
                                       -1490,
                                                 -8501
                -510,
01916
                        -650,
                                -510, -1150,
                                                 -510}
01917
01918
                -510,
                        -650,
                                 -510,
                                        -910,
          , { {
01919
                -510,
                        -650,
                                -510, -1150,
                                                 -510}
           , {
01920
                -510,
                        -650,
                                -510,
                                        -910,
                                                 -510}
01921
                -510,
                        -650.
                                -510,
                                       -1150,
                                                 -5101
01922
                -510.
                        -650,
                                -510.
                                        -910,
                                                 -510}
01923
01924
                 740,
                         600,
                                  740, -1150,
                                                  740}
          , {{
01925
               -1020,
                       -1160,
                               -1020, -1660,
                                                -1020}
01926
                -510,
                        -650,
                                -510, -1150,
                                                 -510}
           , {
01927
                 740,
                         600,
                                 740, -1150,
                                                 7403
01928
                -510,
                        -650.
                                 -510, -1150,
                                                 -510}
01929
                        -410,
01930
          , { {
                -410.
                                 -510,
                                         -910.
                                                 -510}
01931
                -510,
                        -650,
                                -510, -1150,
                                                 -510}
           , {
01932
                -510,
                        -650,
                                -510,
                                        -910,
                                                 -510}
                        -650,
01933
                -510,
                                -510, -1150,
                                                 -5101
                                -510, -1150,
01934
                -410,
                        -410,
                                                 -5101
01935
01936
01937
                 800,
                         290,
                                          290,
         , { { {
                                  740,
                                                  800}
01938
                  50,
                        -450,
                                   Ο,
                                         -450,
                                                   50}
           , {
01939
                -450,
                        -960.
                                 -510,
                                         -960,
                                                 -450}
                 800,
                                 740,
01940
                         290.
                                         290,
                                                  8001
01941
                -450.
                        -960.
                                 -510.
                                         -960.
                                                 -450
01942
                  50,
                        -450,
                                    Ο,
01943
                                         -450,
                                                   50}
          , { {
01944
                  50,
                        -450,
                                    Ο,
                                         -450,
                                                   50}
01945
                -450,
                        -960,
                                -510,
                                        -960,
                                                 -450}
01946
                -550,
                       -1300,
                                -610,
                                       -1300,
                                                 -5503
01947
                -450.
                        -960,
                                -510,
                                        -960,
                                                 -450
01948
01949
                -450,
                        -960,
                                 -510,
                                         -960,
                                                 -450}
          , { {
01950
                -450,
                        -960,
                                -510,
                                         -960,
                                                 -450}
          , {
01951
                -450,
                        -960,
                                -510,
                                         -960,
                                                 -450}
                -450,
01952
                        -960.
                                -510.
                                        -960,
                                                 -4503
                        -960,
                                         -960,
01953
                -450.
                                -510.
                                                 -450}
01954
01955
          , { {
                 800,
                         290,
                                  740,
                                          290,
                                                  800}
01956
                -720,
                       -1470,
                                 -780,
                                        -1470,
                                                 -720}
                -450,
01957
                        -960.
                                 -510,
                                        -960,
                                                 -4501
           , {
01958
                 800,
                         290,
                                 740,
                                         290,
                                                 8001
01959
                -450,
                        -960,
                                 -510,
                                         -960,
                                                 -450}
01960
01961
                -450,
                        -960,
                                 -510,
                                         -960,
                                                 -450}
          , { {
                -450,
                        -960,
                                        -960,
                                                 -450}
01962
                                -510,
           , {
01963
                -450,
                        -960,
                                -510,
                                         -960,
                                                 -4501
01964
                -450,
                        -960,
                                -510,
                                        -960,
                                                 -4501
01965
                -450,
                        -960,
                                -510,
                                         -960,
                                                 -450}
01966
01967
01968
                 740,
                        -360,
                                  740,
                                          200,
                                                  740}
         , { { {
01969
                 200,
                        -360,
                                   0,
                                          200,
                                                    0 }
           , {
01970
                -310,
                        -630,
                                 -510,
                                         -310,
                                                 -510}
01971
                 740.
                        -870.
                                 740.
                                         -310.
                                                  7401
01972
                -310.
                        -630.
                                 -510.
                                         -310.
                                                 -5101
01973
01974
                                    Ο,
                                                    0 }
                 200,
                        -360,
                                          200,
          , { {
                 200,
01975
                        -360,
                                    Ο,
                                          200,
                                                    0 }
          , {
                -310,
01976
                        -870,
                                -510,
                                         -310,
                                                 -510}
01977
                -850, -1210,
                                -850,
                                       -1900,
                                                 -850}
01978
                                -510,
                                                 -510}
                -310,
                       -870,
                                        -310,
01979
```

```
-310,
                        -630,
                                -510,
                                         -310,
          , { {
01981
                -310,
                        -870,
                                -510,
                                         -310,
                                                 -510}
          , {
                -310,
                        -630,
                                        -310,
01982
                                -510,
                                                 -5101
01983
                -310,
                        -870,
                                -510,
                                        -310,
                                                 -510}
01984
                -310,
                        -630,
                                -510,
                                         -310,
                                                 -510}
01985
                        -870,
                 740,
                                 740,
01986
          , { {
                                         -310,
01987
               -1020,
                       -1380,
                               -1020,
                                       -2070,
                                                -1020}
          , {
                                        -310,
01988
                -310,
                        -870,
                                 -510,
                                                 -510}
                 740,
01989
                        -870,
                                 740,
                                        -1560,
                                                  7401
                -310.
                        -870.
                                 -510.
01990
                                        -310.
                                                 -510}
01991
01992
                -310,
                        -630,
                                 -510,
                                         -310,
                                                 -510}
          , { {
01993
                -310,
                        -870,
                                -510,
                                         -310,
                                                 -510}
          , {
01994
           , {
                -310,
                        -630,
                                -510,
                                        -310,
                                                 -510}
01995
                -310,
                        -870,
                                -510,
                                        -310,
                                                 -510}
01996
                -510.
                        -870.
                                -510,
                                       -1560.
                                                 -5103
01997
01998
                 690,
                         290,
                                          290,
01999
         , { { {
                                 690,
02000
                 -50,
                        -450,
                                 -50,
                                         -450,
                                                -550}
          , {
                                        -960, -1300}
                        -960,
02001
                -560,
                                 -560,
                                         290, -1300}
02002
                 690.
                         290,
                                 690,
                                         -960, -1300}
02003
                -560,
                        -960,
                                 -560,
02004
02005
                 -50,
                        -450,
                                  -50,
                                         -450,
          , { {
                                                 -550}
02006
                 -50,
                        -450,
                                 -50,
                                         -450,
                                                -5501
          , {
02007
                -560,
                        -960,
                                -560,
                                        -960, -1300}
                                        -1300, -1640}
                -660,
02008
                       -1300.
                                -660,
                                        -960, -1300}
02009
                -560.
                        -960.
                                -560,
02010
02011
                -560,
                        -960,
                                 -560,
                                         -960, -1300}
          , { {
02012
                -560,
                        -960,
                                -560,
                                         -960, -1300}
02013
                -560,
                        -960,
                                -560,
                                        -960, -1300}
           , {
                                        -960, -1300}
02014
                -560,
                        -960,
                                -560,
                -560,
02015
                        -960.
                                -560,
02016
                                  690,
                 690,
          , { {
                         290,
                                          290, -1300}
02018
                -830,
                       -1470,
                                 -830,
                                        -1470, -1810}
          , {
02019
                -560,
                        -960,
                                -560,
                                         -960, -1300}
                 690,
02020
                         290.
                                 690,
                                          290, -1300}
                                         -960, -1300}
02021
                -560.
                        -960,
                                 -560,
02022
02023
                -560,
                        -960,
                                 -560,
                                         -960, -1300}
          , { {
                                -560,
02024
                -560,
                        -960,
                                         -960, -1300}
          , {
                                         -960, -1300}
02025
                -560,
                        -960,
                                -560,
02026
                -560,
                        -960,
                                -560,
                                         -960, -1300}
                                         -960, -1300}
02027
                -560,
                        -960,
                                -560,
02028
02029
          }
02030
02031
        , {{{{
                1170,
                         970,
                                1120,
                                          780,
                                                 1170}
02032
           , {
                 780,
                         440,
                                 580,
                                          780,
                                                  640}
02033
                 480,
                         170,
                                 280,
                                          480,
                                                  3401
                         970,
02034
                1170.
                                 1120.
                                          660.
                                                 1170}
02035
                         170,
                 480,
                                 280,
                                          480,
                                                  340}
02036
02037
                 780,
                         440,
                                  580,
                                          780,
                                                  640}
          , { {
02038
                 780,
                         440,
                                  580,
                                          780,
                                                  640}
          , {
02039
                 470.
                         130.
                                 270.
                                          470.
                                                  3301
02040
                -510.
                        -950.
                                 -570.
                                        -1260.
                                                 -5101
02041
                         130,
                                 270,
           , {
                 470,
                                          470,
                                                  330}
02042
02043
                 490,
                         170,
                                  290,
                                          490,
                                                  340}
          , { {
02044
                 490,
                         140,
                                  290,
                                          490,
                                                  340}
          , {
02045
                 480,
                         170,
                                 280,
                                          480,
                                                  340}
02046
                 490,
                         140.
                                 290.
                                          490,
                                                  3401
02047
                 480.
                         170.
                                                  340}
                                 280.
                                          480.
02048
02049
          , { {
                1170,
                         970,
                                 1120,
                                                 1170}
02050
                -330,
                        -770,
                                 -390,
                                         1080,
                                                 -330}
02051
                 470,
                         130,
                                 270,
                                          470,
                                                  3301
02052
                1170,
                         970,
                                 1120,
                                          660,
                                                 1170}
02053
                 470.
                         130.
                                 270.
                                          470,
                                                  3301
02054
02055
                 490,
                         170,
                                  290,
                                          490,
                                                  340}
          , { {
02056
                 490,
                         140,
                                 290,
                                          490,
                                                  340}
          , {
02057
                 480,
                         170,
                                  280,
                                          480,
                                                  340}
02058
                 490.
                         140.
                                 290.
                                          490.
                                                  3401
02059
                -600.
                        -600.
                                 -690.
                                        -1150.
                                                 -640}
02060
02061
         , { { {
02062
                1120,
                         970,
                                 1120,
                                          -60,
                                                 1120}
02063
                 580,
                         440,
                                 580,
                                          -60,
                                                  580}
          , {
02064
                 280,
                         140,
                                 280,
                                         -120,
                                                  2801
02065
                1120,
                         970.
                                 1120,
                                         -350,
                                                 11201
02066
                 280.
                         140.
                                         -120.
                                 280.
                                                  2801
```

```
02067
02068
                  580,
                          440,
                                   580,
                                           -60,
                                                    580}
           , { {
02069
                  580,
                          440,
                                   580,
                                           -60,
                                                   580}
           , {
                                          -370,
                                                   2701
02070
                  270,
                          130,
                                   270,
                                         -1450,
02071
                  -800.
                         -950.
                                  -800.
                                                   -8003
02072
                  270.
                          130.
                                   270.
                                          -370.
                                                   2701
02073
02074
                  290,
                          140,
                                   290,
                                          -120,
                                                   290}
           , { {
02075
                  290,
                          140,
                                   290,
                                          -350,
                                                   290}
02076
                  280,
                          140,
                                   280,
                                          -120,
                                                   280}
02077
                  290.
                                   290.
                                          -350,
                                                   2901
                          140.
02078
                  280.
                          140.
                                   280.
                                          -120.
                                                   2801
02079
02080
                1120,
                          970,
                                  1120,
                                          -370,
                                                  1120}
           , { {
02081
                -620,
                         -770,
                                  -620,
                                         -1270,
                                                  -620}
           , {
02082
                  270,
                          130,
                                   270,
                                          -370,
                                                   270}
                          970.
                                          -780.
02083
                1120.
                                  1120.
                                                  11201
02084
                  270,
                          130,
                                   270,
                                          -370,
                                                   270}
02085
02086
                  290,
                          140,
                                   290,
                                          -120,
                                                   290}
          , { {
02087
                  290,
                          140,
                                   290,
                                          -350,
                                                   290}
           , ∤
02088
                  280,
                          140,
                                   280,
                                          -120,
                                                   2801
02089
                  290,
                          140,
                                   290,
                                          -350,
                                                   2901
02090
                 -600,
                         -600,
                                  -690,
                                         -1340,
                                                   -6901
02091
02092
02093
         , { { {
                1170,
                          660,
                                  1110,
                                           660,
                                                  1170}
02094
                  640,
                          130,
                                   580,
                                           130,
                                                   640}
02095
                  340,
                         -170,
                                   280,
                                          -170,
                                                   340}
02096
                1170.
                         660.
                                  1110.
                                           660.
                                                  1170}
02097
                         -170.
                  340.
                                          -170.
           , {
                                   280.
                                                   3401
02098
02099
                  640,
                          130,
                                   580,
                                           130,
                                                    640}
          , { {
02100
                  640,
                          130,
                                   580,
                                           130,
                                                    640}
           , {
02101
                  330,
                         -180,
                                   270,
                                          -180,
                                                   330}
                                  -570.
02102
                 -510.
                        -1260.
                                         -1260.
                                                   -510}
02103
                  330,
                         -180,
                                   270,
                                          -180,
                                                   330}
02104
02105
          , { {
                  340,
                         -160,
                                   280,
                                          -160.
                                                    3401
02106
                  340,
                         -160,
                                   280,
                                          -160,
                                                    340}
           -, ⊦
02107
                  340,
                         -170.
                                   280.
                                          -170,
                                                   340}
                         -160,
                                                   3401
02108
                  340.
                                   280,
                                          -160,
                  340,
02109
                         -170.
                                          -170,
                                   280,
                                                   3401
02110
                                                  1170}
02111
                1170,
                          660,
                                  1110,
                                           660,
           , { {
02112
                 -330,
                        -1080,
                                  -390,
                                         -1080,
                                                   -330}
           , {
02113
                  330.
                         -180,
                                  270,
                                          -180,
                                                   3301
02114
                1170,
                          660.
                                  1110,
                                           660,
                                                  1170
02115
                  330.
                         -180.
                                          -180.
                                                   3301
                                   270.
02116
                  340,
                         -160,
                                   280,
                                          -160,
02117
                                                    340}
          , { {
02118
                  340,
                         -160,
                                   280,
                                          -160,
                                                    340}
           , {
02119
                  340,
                         -170,
                                   280,
                                          -170,
                                                   340}
02120
                  340,
                         -160,
                                   280,
                                          -160,
                                                   3401
02121
                        -1150,
                                  -700,
                -640.
                                         -1150.
                                                   -640}
02122
02123
02124
                1120,
                          220,
                                  1120,
                                           780,
                                                  1120}
         ,{{{
02125
                  780,
                          220,
                                   580,
                                           780,
                                                   580}
02126
                  480.
                          170.
                                   280.
                                           480.
                                                   2801
02127
                1120.
                          -70.
                                  1120.
                                           490.
                                                  11201
02128
                          170,
            , {
                  480,
                                   280,
                                           480,
                                                   280}
02129
02130
                  780,
                          220,
                                   580,
                                           780,
                                                    580}
          , { {
02131
                  780,
                          220,
                                   580,
                                           780,
                                                   580}
           , {
02132
                  470,
                          -80,
                                   270,
                                           470,
                                                   2701
02133
                 -800,
                        -1160,
                                  -800.
                                          1860,
                                                   -8003
02134
                  470.
                          -80.
                                   270.
                                           470.
                                                   2701
02135
02136
          , { {
                  490,
                          170,
                                   290,
                                           490,
                                                    290}
02137
                  490,
                          -70,
                                   290,
                                           490,
                                                   290}
           , {
02138
                  480,
                          170,
                                   280,
                                           480,
                                                   280}
           , {
02139
                  490,
                          -70,
                                   290,
                                           490,
                                                   2901
                          170.
02140
                                   280.
                  480.
                                           480,
                                                   2801
02141
02142
                1120,
                          -80,
                                  1120,
                                           470,
                                                  1120}
           , { {
02143
                 -620,
                         -980,
                                  -620,
                                          1680,
                                                  -620}
02144
                  470,
                          -80,
                                   270,
                                           470,
                                                   270}
02145
                1120.
                         -490.
                                  1120.
                                         -1190,
                                                  11201
                          -80,
                                           470,
02146
                  470.
                                   270.
                                                   2701
02147
                  490,
                          170,
02148
                                   290,
                                           490,
                                                   290}
           , { {
02149
                  490,
                          -70,
                                   290,
                                           490,
                                                   290}
           , {
02150
                  480,
                          170,
                                   280,
                                           480,
                                                   2801
02151
                  490,
                          -70,
                                   290,
                                           490,
                                                   2901
                 -690, -1050,
02152
                                  -690,
                                        -1750,
                                                  -690}
02153
```

```
02154
02155
         , { { {
                1060,
                          660,
                                 1060,
                                           660,
                                                    40}
02156
                 530,
                          130,
                                  530,
                                          130,
                                                    40}
           , {
02157
                 230,
                         -170,
                                  230,
                                          -170,
                                                  -5001
                                          660,
02158
                1060.
                          660.
                                 1060.
                                                  -5001
02159
                 230.
                         -170.
                                  230.
                                          -170.
                                                  -500}
02160
02161
                 530,
                          130,
                                  530,
                                           130,
                                                    40}
          , { {
02162
                 530,
                          130,
                                  530,
                                          130,
                                                    40}
          , {
02163
                 220,
                         -180,
                                  220,
                                          -180,
                                                  -510}
                        -1260.
                                                 -1590}
02164
                -620.
                                 -620.
                                        -1260.
02165
            , {
                 220.
                        -180.
                                  220.
                                         -180,
                                                  -510}
02166
02167
                 230,
                         -160,
                                  230,
                                          -160,
                                                  -500}
          , { {
02168
           , {
                 230,
                        -160,
                                  230,
                                         -160,
                                                  -500}
02169
                 230,
                        -170,
                                  230,
                                         -170,
                                                  -500}
02170
                 230.
                        -160.
                                  230.
                                         -160.
                                                  -5003
02171
                 230,
                         -170,
                                                  -500}
                                  230,
                                         -170,
02172
02173
                1060,
                          660,
                                 1060,
                                           660,
          , { {
02174
                -440,
                       -1080,
                                 -440,
                                        -1080,
                                                -1410}
                        -180,
                 220,
02175
                                  220,
                                         -180,
                                                 -510}
02176
                1060.
                         660,
                                 1060,
                                          660,
                                                  -9201
02177
                 220,
                         -180,
                                  220,
                                          -180,
                                                  -510}
02178
02179
                 230,
                         -160,
                                  230,
                                          -160,
                                                  -500}
          , { {
02180
                 230,
                        -160,
                                  230,
                                         -160,
                                                  -500}
           , {
02181
                 230,
                        -170,
                                  230,
                                         -170,
                                                  -500}
02182
                 230,
                        -160,
                                  230,
                                         -160,
                                                  -5001
                -750, -1150,
02183
                                 -750.
                                        -1150,
                                                -1480}
02184
02185
          }
02186
02187
        , { { { {
                1350,
                         1160,
                                 1300,
                                           850,
                                                  1350}
02188
                 850,
                          500,
                                  650,
                                           850,
                                                   7003
                 720.
                          400.
                                                   570}
02189
                                  520.
                                           720.
02190
                1350,
                         1160,
                                 1300,
                                           850,
                                                  1350}
                          270,
02191
                 590,
                                  390,
                                           590,
02192
02193
                 850,
                          500,
                                  650,
                                           850,
                                                   700}
          , { {
02194
                 850,
                          500.
                                  650.
                                          850.
                                                   7003
                          220,
                                  370,
                                          570,
                 570.
                                                   4201
02195
02196
                 -460.
                         -900.
                                  -520.
                                          1210.
                                                  -460}
02197
                 570,
                          220,
                                  370,
                                                   420}
                                          570,
           , {
02198
02199
          , { {
                  720,
                          400,
                                  520,
                                           720,
                                                   570}
02200
                 720,
                          370,
                                  520,
                                           720,
                                                   570}
                                                   570}
02201
                  720,
                          400,
                                  520,
                                           720,
                  720.
                                           720.
                                                   570}
02202
                          370.
                                  520.
02203
                          270,
                 590.
                                  390.
                                          590.
                                                   440}
           . {
02204
02205
                1350,
                         1160,
                                 1300,
                                           850,
                                                  1350}
          , { {
02206
           , {
                -760,
                        -1200,
                                 -820,
                                          1510,
                                                  -760}
02207
                 570,
                          220,
                                  370,
                                          570,
                                                   4201
02208
                1350.
                                 1300.
                         1160.
                                           850.
                                                  1350}
02209
                 570,
                          220,
                                  370,
                                          570,
                                                   420}
02210
02211
                  720,
                          370,
                                  520,
                                           720,
                                                   570}
          , { {
02212
                 720,
                          370,
                                  520,
                                           720,
                                                   570}
          , {
02213
                 280.
                          -40.
                                   80.
                                          280.
                                                   1303
                          370.
02214
                  720.
                                  520.
                                           720.
                                                   5701
02215
                         -320,
                                                  -360}
           , {
                -320,
                                 -420,
                                          -870,
02216
02217
02218
         , { { {
                1300,
                         1160,
                                 1300.
                                          120,
                                                  13003
02219
                 650,
                          500,
                                  650,
                                            0,
                                                   650}
02220
                 520,
                          370.
                                  520,
                                          120,
                                                   5201
                         1160,
02221
                1300.
                                 1300.
                                                  1300}
                                          -120.
02222
                 390,
                         240,
                                          -10,
                                  390.
                                                   3901
           . {
02223
02224
                 650.
                          500,
                                  650,
                                             Ο,
                                                   650}
          , { {
02225
                 650,
                          500,
                                  650,
                                             Ο,
                                                   6501
           , {
                                         -270,
02226
                 370,
                          220,
                                  370,
                                                   3701
                -750.
                                 -750.
02227
                         -900.
                                        -1400.
                                                  -750}
02228
                 370,
                                  370,
                          220,
                                          -270,
                                                   370}
02229
02230
                 520,
                          370,
                                  520,
                                          120,
                                                   520}
          , { {
02231
                 520,
                          370,
                                  520,
                                          -120,
                                                   520}
                          370,
02232
                 520.
                                  520.
                                          120.
                                                   5201
                          370,
02233
                 520.
                                  520.
                                          -120.
                                                   5201
02234
                          240,
                 390,
                                  390,
                                          -10,
                                                   390}
            , {
02235
02236
                1300,
                         1160,
                                 1300,
                                          -270,
                                                  1300}
          , { {
02237
               -1050,
                        -1200,
                                 1050,
                                        -1700,
                                                 -1050}
           , {
02238
                 370,
                         220,
                                  370,
                                         -270,
                                                   3701
02239
                1300,
                         1160.
                                 1300,
                                         -590,
                                                  13001
02240
                 370.
                          220.
                                  370.
                                          -270.
                                                   3701
```

| 02241          | }            | E20                          | 270           | E20             | 120            | E201            |
|----------------|--------------|------------------------------|---------------|-----------------|----------------|-----------------|
| 02242<br>02243 | ,{{<br>,{    | 520 <b>,</b><br>520 <b>,</b> | 370,<br>370,  | 520,<br>520,    | -120,<br>-120, | 520}<br>520}    |
| 02244          | , {          | 80,                          | -60,          | 80,             | -320,          | 80}             |
| 02245          | , {          | 520,                         | 370,          | 520,            | -120,          | 520}            |
| 02246<br>02247 | , {<br>}     | -320,                        | -320,         | -420,           | -1060,         | -420}           |
| 02248          | }            |                              |               |                 |                |                 |
| 02249          | , { { {      | 1350,                        | 850,          | 1290,           | 850,           | 1350}           |
| 02250          | , {          | 700,                         | 190,          | 640,            | 190,           | 700}            |
| 02251<br>02252 | , {<br>, {   | 570,<br>1350,                | 60,<br>850,   | 510,<br>1290,   | 60,<br>850,    | 570}<br>1350}   |
| 02252          | , {          | 440,                         | -60,          | 380,            | -60,           | 440}            |
| 02254          | }            |                              |               |                 |                |                 |
| 02255          | , { {        | 700,                         | 190,          | 640,            | 190,           | 700}            |
| 02256<br>02257 | , {<br>, {   | 700,<br>420,                 | 190,<br>-80,  | 640,<br>360,    | 190,<br>-80,   | 700}<br>420}    |
| 02258          | , {          | -460,                        | -1210,        | -520,           | -1210,         | -460}           |
| 02259          | , {          | 420,                         | -80,          | 360,            | -80,           | 420}            |
| 02260<br>02261 | }            | 570,                         | 60            | E10             | 60             | 570}            |
| 02262          | , { {<br>, { | 570,                         | 60,<br>60,    | 510,<br>510,    | 60,<br>60,     | 570}            |
| 02263          | , {          | 570,                         | 60,           | 510,            | 60,            | 570}            |
| 02264          | , {          | 570,                         | 60,           | 510,            | 60,            | 570}            |
| 02265<br>02266 | , {<br>}     | 440,                         | -60,          | 380,            | -60,           | 440}            |
| 02267          | , { {        | 1350,                        | 850,          | 1290,           | 850,           | 1350}           |
| 02268          | , {          | -760,                        | -1510,        | -820,           | -1510,         | -760}           |
| 02269          | , {          | 420,                         | -80,          | 360,            | -80,           | 420}            |
| 02270<br>02271 | , {<br>, {   | 1350,<br>420,                | 850,<br>-80,  | 1290,<br>360,   | 850,<br>-80,   | 1350}<br>420}   |
| 02271          | }            | 420,                         | -80,          | 300,            | -80,           | 420)            |
| 02273          | , { {        | 570,                         | 60,           | 510,            | 60,            | 570}            |
| 02274          | , {          | 570,                         | 60,           | 510,            | 60,            | 570}            |
| 02275<br>02276 | , {<br>, {   | 130,<br>570,                 | -370,<br>60,  | 70,<br>510,     | -370,<br>60,   | 130}<br>570}    |
| 02277          | , {          | -360,                        | -870,         | -420,           | -870,          | -360}           |
| 02278          | }            |                              |               |                 |                |                 |
| 02279          | }            | 1200                         | 400           | 1200            | 0.50           | 12001           |
| 02280<br>02281 | }}},<br>},   | 1300,<br>850,                | 400,<br>290,  | 1300,<br>650,   | 850,<br>850,   | 1300}<br>650}   |
| 02282          | , {          | 720,                         | 400,          | 520,            | 720,           | 520}            |
| 02283          | , {          | 1300,                        | 160,          | 1300,           | 720,           | 1300}           |
| 02284          | , {          | 590,                         | 270,          | 390,            | 590,           | 390}            |
| 02285<br>02286 | }<br>,{{     | 850,                         | 290,          | 650,            | 850,           | 650}            |
| 02287          | , {          | 850,                         | 290,          | 650,            | 850,           | 650}            |
| 02288          | , {          | 570,                         | 10,           | 370,            | 570,           | 370}            |
| 02289<br>02290 | , {<br>, {   | -750,<br>570,                | -1110,<br>10, | -750,<br>370,   | -1810,<br>570, | -750}<br>370}   |
| 02291          | }            | 370,                         | 10,           | 370,            | 370,           | 370)            |
| 02292          | , { {        | 720,                         | 400,          | 520,            | 720,           | 520}            |
| 02293<br>02294 | , {          | 720,                         | 160,          | 520,            | 720,           | 520}            |
| 02294          | , {<br>, {   | 720,<br>720,                 | 400,<br>160,  | 520,<br>520,    | 720,<br>720,   | 520}<br>520}    |
| 02296          | , {          | 590,                         | 270,          | 390,            | 590,           | 390}            |
| 02297          | }            |                              |               |                 |                |                 |
| 02298<br>02299 | ,{{<br>,{    | 1300,<br>-1050,              | 10,<br>-1410, | 1300,<br>-1050, | 570,<br>-2110, | 1300}<br>-1050} |
| 02300          | , {          | 570,                         | 10,           |                 | 570,           | 370}            |
| 02301          | , {          | 1300,                        | -310,         |                 |                | 1300}           |
| 02302          | , {          | 570,                         | 10,           | 370,            | 570,           | 370}            |
| 02303<br>02304 | }<br>,{{     | 720,                         | 160,          | 520,            | 720,           | 520}            |
| 02305          | , {          | 720,                         | 160,          | 520,            | 720,           | 520}            |
| 02306          | , {          | 280,                         | -40,          | 80,             | 280,           | 80}             |
| 02307<br>02308 | , {<br>, {   | 720,<br>-420,                | 160,<br>-780, | 520 <b>,</b>    | 720,<br>-1470, | 520}<br>-420}   |
| 02309          | }            | 420,                         | 700,          | 420,            | 1470,          | 420)            |
| 02310          | }            |                              |               |                 |                |                 |
| 02311          | ,{{{         | 1250,                        | 850,          | 1250,           | 850,           | 100}            |
| 02312<br>02313 | , {<br>, {   | 590,<br>460,                 | 190,<br>60,   | 590,<br>460,    | 190,<br>60,    | 100}<br>-270}   |
| 02313          | , {          | 1250,                        | 850,          | 1250,           | 850,           | -270}           |
| 02315          | , {          | 330,                         | -60,          | 330,            | -60,           | -400}           |
| 02316          | }            | E00                          | 100           | E00             | 100            | 1001            |
| 02317<br>02318 | , { {<br>, { | 590,<br>590,                 | 190,<br>190,  | 590,<br>590,    | 190,<br>190,   | 100}<br>100}    |
| 02319          | , {          | 310,                         | -80,          | 310,            | -80,           | -420}           |
| 02320          | , {          |                              | -1210,        |                 | -1210,         | -1540}          |
| 02321<br>02322 | , {<br>}     | 310,                         | -80,          | 310,            | -80,           | -420}           |
| 02322          | , { {        | 460,                         | 60,           | 460,            | 60,            | -270}           |
| 02324          | , {          | 460,                         | 60,           | 460,            | 60,            | -270}           |
| 02325<br>02326 | , {          | 460,<br>460,                 | 60,           | 460,<br>460,    | 60,<br>60,     | -270}<br>-270}  |
| 02326          | , {<br>, {   | 330,                         | 60,<br>-60,   | 330,            | -60,           | -270}<br>-400}  |
|                | , ,          | /                            | /             | /               | /              | ,               |

| 02328 | }         |               |               |               |               |        |
|-------|-----------|---------------|---------------|---------------|---------------|--------|
| 02329 |           | 1250,         | 950           | 1250,         | 950           | -420}  |
|       | , { {     |               | 850,          |               | 850,          |        |
| 02330 | , {       | -870,         | -1510,        | -870,         | -1510,        | -1840} |
| 02331 | , {       | 310,          | -80,          | 310,          | -80,          | -420}  |
| 02332 | , {       | 1250,         | 850,          | 1250,         | 850,          | -740}  |
| 02333 | , {       | 310,          | -80,          | 310,          | -80,          | -420}  |
| 02334 | }         |               |               |               | ,             | . ,    |
|       |           | 160           | 60            | 460           | 60,           | -2701  |
| 02335 | , { {     | 460,          | 60,           | 460,          |               | -270}  |
| 02336 | , {       | 460,          | 60,           | 460,          | 60,           | -270}  |
| 02337 | , {       | 20,           | -370,         | 20,           | -370,         | -710}  |
| 02338 | , {       | 460,          | 60,           | 460,          | 60,           | -270}  |
|       |           |               |               |               |               |        |
| 02339 | , {       | -470 <b>,</b> | -870 <b>,</b> | -470,         | -870 <b>,</b> | -1210} |
| 02340 | }         |               |               |               |               |        |
| 02341 | }         |               |               |               |               |        |
| 02342 | 1         |               |               |               |               |        |
|       | , , , , , | 1350,         | 11.00         | 1 200         | 0.50          | 12501  |
| 02343 | ,{{{      |               | 1160,         | 1300,         | 850,          | 1350}  |
| 02344 | , {       | 850,          | 500,          | 650 <b>,</b>  | 850,          | 700}   |
| 02345 | , {       | 720,          | 400,          | 520,          | 720,          | 570}   |
| 02346 | , {       | 1350,         | 1160,         | 1300,         | 850,          | 1350}  |
| 02347 | , {       | 590,          | 270,          | 390,          | 590,          | 440}   |
|       |           | 550,          | 270,          | 330,          | 330,          | 440)   |
| 02348 | }         |               |               |               |               |        |
| 02349 | , { {     | 850 <b>,</b>  | 500,          | 650,          | 850,          | 700}   |
| 02350 | , {       | 850,          | 500,          | 650,          | 850,          | 700}   |
| 02351 | , {       | 570,          | 220,          | 370,          | 570,          | 420}   |
| 02352 | , {       | -230,         | -670,         | -290,         | -980,         | -230}  |
|       |           |               |               |               |               |        |
| 02353 | , {       | 570,          | 220,          | 370,          | 570,          | 420}   |
| 02354 | }         |               |               |               |               |        |
| 02355 | , { {     | 720,          | 400,          | 520,          | 720,          | 570}   |
| 02356 | , {       | 720,          | 370,          | 520,          | 720,          | 570}   |
| 02357 |           |               |               |               |               |        |
|       | , {       | 720,          | 400,          | 520,          | 720,          | 570}   |
| 02358 | , {       | 720,          | 370,          | 520,          | 720,          | 570}   |
| 02359 | , {       | 590,          | 270,          | 390,          | 590,          | 440}   |
| 02360 | }         |               |               |               |               |        |
| 02361 | , { {     | 1350,         | 1160,         | 1300,         | 850,          | 1350}  |
|       |           |               |               |               |               |        |
| 02362 | , {       | -330,         | -770 <b>,</b> | -390 <b>,</b> | -1080,        | -330}  |
| 02363 | , {       | 570,          | 220,          | 370,          | 570,          | 420}   |
| 02364 | , {       | 1350,         | 1160,         | 1300,         | 850,          | 1350}  |
| 02365 | , {       | 570,          | 220,          | 370,          | 570,          | 420}   |
|       |           | 370,          | 220,          | 370,          | 370,          | 120)   |
| 02366 | }         |               |               |               |               |        |
| 02367 | , { {     | 720,          | 370,          | 520,          | 720,          | 570}   |
| 02368 | , {       | 720,          | 370,          | 520,          | 720,          | 570}   |
| 02369 | , {       | 480,          | 170,          | 280,          | 480,          | 340}   |
| 02370 |           |               | 370,          | 520,          | 720,          | 570}   |
|       | , {       | 720,          |               |               |               |        |
| 02371 | , {       | -90,          | -320,         | -90,          | -810,         | -360}  |
| 02372 | }         |               |               |               |               |        |
| 02373 | }         |               |               |               |               |        |
| 02374 | , { { {   | 1300,         | 1160,         | 1300,         | 540,          | 1300}  |
|       |           | 650,          |               |               |               |        |
| 02375 | , {       | ,             | 500,          | 650,          | 10,           | 650}   |
| 02376 | , {       | 540,          | 370,          | 520,          | 540,          | 520}   |
| 02377 | , {       | 1300,         | 1160,         | 1300,         | -120,         | 1300}  |
| 02378 | , {       | 390,          | 240,          | 390,          | -10,          | 390}   |
| 02379 | }         | ,             | . ,           | ,             |               |        |
|       |           | CEO           | F 0 0         | CEO           | 0             | CEOL   |
| 02380 | , { {     | 650,          | 500,          | 650,          | 0,            | 650}   |
| 02381 | , {       | 650 <b>,</b>  | 500,          | 650,          | 0,            | 650}   |
| 02382 | , {       | 370,          | 220,          | 370,          | -100,         | 370}   |
| 02383 | , {       | -530,         | -670,         | -530,         | -1170,        | -530}  |
| 02384 |           | 370,          | 220,          | 370,          | -270,         | 370}   |
|       | , {       | 570,          | 220,          | 370,          | 270,          | 370)   |
| 02385 | }         |               |               |               |               |        |
| 02386 | , { {     | 540,          | 370,          | 520,          | 540,          | 520}   |
| 02387 | , {       | 520,          | 370,          | 520,          | 10,           | 520}   |
| 02388 | , {       | 540,          | 370,          | 520,          | 540,          | 520}   |
| 02389 | , {       | 520,          | 370,          | 520,          | -120,         | 520}   |
|       |           |               |               |               |               |        |
| 02390 | , {       | 390,          | 240,          | 390,          | -10,          | 390}   |
| 02391 | }         |               |               |               |               |        |
| 02392 | , { {     | 1300,         | 1160,         | 1300,         | -270,         | 1300}  |
| 02393 | , {       | -620,         | -770,         | -620,         | -1270,        | -620}  |
| 02394 |           | 370,          | 220,          | 370,          | -270,         | 370}   |
|       | , {       |               |               |               | ,             |        |
| 02395 | , {       | 1300,         | 1160,         | 1300,         | -590 <b>,</b> | 1300}  |
| 02396 | , {       | 370,          | 220,          | 370,          | -270 <b>,</b> | 370}   |
| 02397 | }         |               |               |               |               |        |
| 02398 | , { {     | 520,          | 370,          | 520,          | -120,         | 520}   |
|       |           |               |               |               |               |        |
| 02399 | , {       | 520,          | 370,          | 520,          | -120,         | 520}   |
| 02400 | , {       | 280,          | 140,          | 280,          | -120,         | 280}   |
| 02401 | , {       | 520,          | 370,          | 520,          | -120,         | 520}   |
| 02402 | , {       | -90,          | -320,         | -90,          | -810,         | -420}  |
| 02403 | }         | /             | /             | /             | /             | ,      |
|       |           |               |               |               |               |        |
| 02404 | }         |               |               |               |               |        |
| 02405 | , { { {   | 1350,         | 850,          | 1290,         | 850,          | 1350}  |
| 02406 | , {       | 700,          | 190,          | 640,          | 190,          | 700}   |
| 02407 | , {       | 570,          | 60,           | 510,          | 60,           | 570}   |
| 02408 |           | 1350,         | 850,          | 1290,         | 850,          | 1350}  |
|       | , {       |               |               |               |               |        |
| 02409 | , {       | 440,          | -60,          | 380,          | -60,          | 440}   |
| 02410 | }         |               |               |               |               |        |
| 02411 | , { {     | 700,          | 190,          | 640,          | 190,          | 700}   |
| 02412 | , {       | 700,          | 190,          | 640,          | 190,          | 700}   |
| 02413 | , {       | 420,          | -80,          | 360,          | -80,          | 420}   |
|       |           |               |               |               |               |        |
| 02414 | , {       | -230,         | -980,         | -290,         | -980 <b>,</b> | -230}  |
|       |           |               |               |               |               |        |

```
02415
                  420,
                                                    420}
            , {
                           -80,
                                   360,
                                            -80,
02416
02417
           , { {
                  570,
                            60,
                                   510,
                                             60,
                                                    570}
                                                    570}
02418
                  570,
                            60,
                                   510,
                                             60,
                                                    570}
                  570,
02419
                            60,
                                   510,
                                             60,
02420
                  570,
                                                    570}
                           60.
                                   510.
                                             60.
02421
                  440,
                           -60,
                                   380,
                                            -60,
                                                     440}
02422
02423
                 1350.
                           850,
                                  1290,
                                            850,
                                                   1350}
           , { {
02424
                 -330,
                        -1070,
                                  -390,
                                           1080,
                                                   -3301
02425
                  420.
                           -80.
                                   360.
                                                    420}
                                            -80,
02426
                 1350.
                                  1290.
                                                   1350}
                          850.
                                            850.
02427
                  420,
                           -80,
                                   360,
                                            -80,
                                                    420}
02428
02429
           , { {
                  570,
                            60,
                                   510,
                                             60,
                                                    570}
02430
                  570,
                            60,
                                   510,
                                             60,
                                                    570}
                         -170.
                                                    3403
02431
                  340.
                                   280.
                                           -170.
                  570,
                           60,
                                                    570}
02432
                                             60,
                                   510,
02433
                         -830,
                 -360,
                                  -420,
                                           -870,
                                                   -360}
02434
02435
         , { { {
02436
                 1300,
                           400,
                                  1300,
                                            850,
                                                   1300}
                          290,
                                                    650}
02437
                  850,
                                   650,
                                            850,
                  720.
                                            720,
                                                    5201
02438
                           400.
                                   520.
02439
                 1300,
                           160,
                                  1300,
                                            720,
                                                   1300}
02440
                  590,
                           270,
                                   390,
                                            590,
                                                    390}
02441
02442
                  850,
                          290,
                                   650,
                                            850.
                                                     650}
           , { {
02443
                  850,
                          290,
                                   650,
                                            850,
                                                    650}
02444
                  570.
                           10.
                                   370.
                                            570.
                                                    3701
02445
                  -530,
                         -890.
                                   -530,
                                                    -530}
                                           1580.
02446
                  570,
                           10,
                                   370,
                                            570,
                                                    370}
02447
02448
                  720,
                           400,
                                   520,
                                            720,
                                                    520}
           , { {
02449
                  720,
                          160,
                                   520,
                                            720,
                                                    520}
                  720.
                                            720,
                                                    5201
02450
                           400.
                                   520.
                  720,
                                            720,
02451
                          160,
                                   520,
                                                    520}
                           270,
02452
                  590,
                                   390,
                                            590,
                                                    390}
02453
02454
                 1300,
                           10,
                                  1300,
                                            570,
                                                   1300}
           , { {
02455
                 -620,
                         -980.
                                  -620.
                                         -1080,
                                                   -620}
                  570,
                                           570,
02456
                                                    3701
                           10,
                                   370,
                                                   13001
02457
                 1300.
                                  1300.
                                           1000.
                         -310.
02458
                  570,
                           10,
                                   370,
                                            570,
                                                    370}
02459
02460
           , { {
                  720,
                          170,
                                   520,
                                            720,
                                                    5201
02461
                  720,
                          160,
                                   520,
                                            720,
                                                    520}
           , {
02462
                  480,
                          170,
                                   280,
                                            480,
                                                    2801
                          160.
                                            720.
                                                    5201
02463
                  720.
                                   520.
02464
                         -780,
                                  -420,
                                           1470,
                 -420.
                                                   -4201
02465
02466
02467
         , { { {
                 1250,
                           850,
                                  1250,
                                            850,
                                                    100}
02468
                  590,
                          190,
                                   590,
                                            190,
                                                    100}
02469
                  460.
                           60.
                                                   -270}
                                   460.
                                             60,
02470
                                                   -230}
                 1250,
                          850,
                                  1250,
                                            850,
02471
                  330,
                           -60,
                                   330,
                                            -60,
                                                   -400}
02472
02473
                  590,
                           190,
                                   590,
                                            190,
                                                    100}
           , { {
02474
                  590,
                          190.
                                   590,
                                            190,
                                                    100}
                                   310,
02475
                  310.
                           -80.
                                            -80.
                                                   -4201
02476
                 -340,
                         -980,
                                   340,
                                           -980,
                                                  -13201
02477
                  310,
                           -80,
                                   310,
                                            -80,
                                                   -420}
02478
02479
                  460,
                            60,
                                   460,
                                             60,
                                                   -270}
           , { {
02480
                  460,
                            60,
                                   460,
                                             60,
                                                   -270}
02481
                  460,
                            60,
                                   460,
                                             60,
                                                   -2701
                                                   -270}
02482
                  460.
                           60.
                                   460.
                                             60.
02483
                  330.
                           -60.
                                   330.
                                            -60,
                                                   -400}
            . {
02484
02485
                1250,
                          850,
                                  1250,
                                            850,
                                                   -2301
           , { {
02486
                 -440,
                        -1080,
                                  -440,
                                          -1080,
                                                  -1300}
           , {
02487
                  310,
                           -80,
                                   310,
                                            -80,
                                                   -420}
02488
                 1250.
                          850.
                                  1250.
                                            850.
                                                   -2301
02489
                  310,
                           -80,
                                   310,
                                            -80,
                                                   -420}
02490
02491
                  460,
                            60,
                                   460,
                                             60,
                                                   -270}
           , { {
02492
                  460,
                           60,
                                   460,
                                             60,
                                                   -270}
02493
                  230,
                         -170.
                                   230.
                                           -170.
                                                   -5003
                           60,
                                             60.
                                                   -2701
02494
                  460.
                                   460.
                         -870,
02495
                                  -470,
                                           -870,
                                                  -1210}
                 -470,
02496
02497
02498
02499
02500
       , { { { { { {
                  INF,
                           INF,
                                   INF.
                                            INF,
                                                     TNF }
02501
                  INF.
                           INF.
                                   INF.
                                            INF.
                                                     INF }
```

| 00500 | ,       | TNID   | TND      | TNIE   | TNIE   | TNID   |
|-------|---------|--------|----------|--------|--------|--------|
| 02502 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02503 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02504 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02505 | }       |        |          |        |        |        |
| 02506 |         | TNIE   | TNE      | TME    | TNE    | TNE    |
|       | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02507 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02508 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02509 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02510 | , {     | INF,   | INF,     | INF,   | INF,   | INF}   |
|       |         | TINE , | TINE ,   | TIME , | TIME , | TIVE   |
| 02511 | }       |        |          |        |        |        |
| 02512 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02513 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02514 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
|       |         |        |          |        |        |        |
| 02515 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02516 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02517 | }       |        |          |        |        |        |
| 02518 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02519 |         | INF,   |          | INF,   | INF,   | INF }  |
|       | , {     |        | INF,     |        |        |        |
| 02520 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02521 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02522 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02523 | }       | ,      | ,        | ,      | ,      | ,      |
|       |         | TNID   | TAID     | TNIE   | TAID   | TNID   |
| 02524 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02525 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02526 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02527 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02528 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
|       |         | TIME,  | TIME,    | TIME,  | TIME,  | TIME } |
| 02529 | }       |        |          |        |        |        |
| 02530 | }       |        |          |        |        |        |
| 02531 | , { { { | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02532 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
|       |         |        |          |        |        |        |
| 02533 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02534 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02535 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02536 | }       |        |          |        |        |        |
|       |         | TNID   | TND      | TNIE   | TNIE   | TNID   |
| 02537 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02538 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02539 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02540 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02541 |         | INF,   | INF,     | INF,   | INF,   | INF }  |
|       | , {     | TIME,  | TIME,    | TIME,  | TIME,  | TIME } |
| 02542 | }       |        |          |        |        |        |
| 02543 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02544 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02545 | , {     | INF,   | INF,     | INF,   | INF,   | INF}   |
| 02546 |         |        |          | INF,   | INF,   |        |
|       | , {     | INF,   | INF,     |        |        | INF }  |
| 02547 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02548 | }       |        |          |        |        |        |
| 02549 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02550 |         | INF,   | INF,     | INF,   | INF,   | INF }  |
|       | , {     |        |          |        |        |        |
| 02551 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02552 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02553 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02554 | }       | •      | •        |        | •      |        |
|       |         | TNID   | TND      | TNIE   | TNIE   | TNID   |
| 02555 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02556 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02557 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02558 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02559 |         | INF,   | INF,     | INF,   | INF,   | INF }  |
|       | , {     | TIME,  | TIME,    | TIME,  | TIME,  | TIME } |
| 02560 | }       |        |          |        |        |        |
| 02561 | }       |        |          |        |        |        |
| 02562 | , { { { | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02563 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02564 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02565 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
|       |         |        |          |        |        |        |
| 02566 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02567 | }       |        |          |        |        |        |
| 02568 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02569 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
|       |         |        |          |        |        |        |
| 02570 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02571 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02572 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02573 | }       | •      | •        | •      | •      | ,      |
| 02574 |         | TNIE   | TME      | TNE    | TATE   | TAITE  |
|       | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02575 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02576 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02577 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02578 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
|       |         | TIAT,  | T 14T. 1 | TIME,  | TIME ! | TIAL } |
| 02579 | }       | _      | _        | _      |        |        |
| 02580 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02581 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02582 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02583 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
|       |         |        |          |        |        |        |
| 02584 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02585 | }       |        |          |        |        |        |
| 02586 | , { {   | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02587 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02588 | , {     | INF,   | INF,     | INF,   | INF,   | INF }  |
| 02000 | , ι     | /      | -111 /   | -111.  | -111 / | TT4T } |
|       |         |        |          |        |        |        |

| 02589 | 1         | INF,   | INF,          | INF,          | INF,          | INF }  |
|-------|-----------|--------|---------------|---------------|---------------|--------|
|       | , {       |        |               |               |               |        |
| 02590 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02591 | }         |        |               |               |               |        |
|       |           |        |               |               |               |        |
| 02592 | }         |        |               |               |               |        |
| 02593 | , { { {   | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02594 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       | , ,       |        |               |               |               |        |
| 02595 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02596 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02597 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02598 | }         |        |               |               |               |        |
|       | , { {     | TNE    | TNE           | TNE           | TNE           | TNE    |
| 02599 |           | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02600 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02601 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02602 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02603 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           | /      | /             |               | /             | 2212 ) |
| 02604 | }         |        |               |               |               |        |
| 02605 | , { {     | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02606 |           |        | INF,          | INF,          | INF,          |        |
| 02606 | , {       | INF,   |               |               |               | INF }  |
| 02607 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02608 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02609 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02610 | }         |        |               |               |               |        |
|       |           | TNIE   | TNE           | TME           | TNE           | TNIP   |
| 02611 | , { {     | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02612 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02613 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       | , t       |        |               |               |               |        |
| 02614 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02615 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           | 1111   | 1111          | 1111          | 1111          | 1141 ) |
| 02616 | }         |        |               |               |               |        |
| 02617 | , { {     | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02618 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02619 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02620 |           |        |               |               | INF,          |        |
| 02620 | , {       | INF,   | INF,          | INF,          |               | INF }  |
| 02621 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02622 | }         |        |               |               |               |        |
|       |           |        |               |               |               |        |
| 02623 | }         |        |               |               |               |        |
| 02624 | , { { {   | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02625 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02626 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02627 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02628 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02629 | }         |        |               |               |               |        |
|       |           | TAID   | TAIT          | TAID          | T. 3. T. 7.   | TATE ) |
| 02630 | , { {     | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02631 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02632 | , {       |        | INF,          | INF,          | INF,          |        |
|       |           | INF,   |               |               |               | INF }  |
| 02633 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02634 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           | 1111   | 1111          | 1111          | 1111          | 1141 ) |
| 02635 | }         |        |               |               |               |        |
| 02636 | , { {     | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02637 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02638 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02639 |           |        | INF,          | INF,          | INF,          | INF }  |
|       | , {       | INF,   |               |               |               |        |
| 02640 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02641 | }         |        |               |               |               |        |
|       |           |        |               |               |               |        |
| 02642 | , { {     | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02643 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02644 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02645 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02646 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           | TIME , | TINE ,        | TIME ,        | TIME ,        | TIME   |
| 02647 | }         |        |               |               |               |        |
| 02648 | , { {     | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02649 |           | INF,   | INF,          | INF,          | INF,          | INF}   |
|       | , {       |        |               |               |               |        |
| 02650 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02651 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
|       |           |        |               |               |               |        |
| 02652 | , {       | INF,   | INF,          | INF,          | INF,          | INF }  |
| 02653 | }         |        |               |               |               |        |
| 02654 | }         |        |               |               |               |        |
|       |           |        |               |               |               |        |
| 02655 | }         |        |               |               |               |        |
| 02656 | , { { { { | 540,   | -90,          | 540,          | 180,          | -90}   |
|       |           |        |               |               |               |        |
| 02657 | , {       | 540,   | -100,         | 540,          | 180,          | -90}   |
| 02658 | , {       | 180,   | -90,          | -460,         | 180,          | -460}  |
| 02659 |           | 30,    | -150,         | -260,         | 30,           | -210}  |
|       | , {       |        |               |               |               |        |
| 02660 | , {       | -200,  | -200 <b>,</b> | -400,         | -230 <b>,</b> | -570}  |
| 02661 | }         |        |               |               |               |        |
|       |           | 100    | 252           | ~~~           | 100           |        |
| 02662 | , { {     | 180,   | -350 <b>,</b> | -660,         | 180,          | -660}  |
| 02663 | , {       | 180,   | -580,         | -660,         | 180,          | -660}  |
|       |           |        |               | -970,         | -430,         |        |
| 02664 | , {       | -430,  | -600,         |               |               | -830}  |
| 02665 | , {       | -350,  | -350 <b>,</b> | -870 <b>,</b> | -960 <b>,</b> | -870}  |
| 02666 | , {       | -430,  | -600,         | -970,         | -430,         | -970}  |
|       |           | 100,   | 000,          | 5,0,          | 100,          | 5105   |
| 02667 | }         |        |               |               |               |        |
| 02668 | , { {     | 30,    | -150,         | -510,         | 30,           | -90}   |
| 02669 |           | -90,   | -220,         | -510,         |               | -90}   |
|       | , {       |        |               |               | -390,         |        |
| 02670 | , {       | 20,    | -600 <b>,</b> | -520,         | 20,           | -520}  |
| 02671 |           | 30,    | -150,         | -510,         | 30,           | -510}  |
|       | , {       |        |               |               |               |        |
| 02672 | , {       | -200,  | -200,         | -570 <b>,</b> | -650 <b>,</b> | -570}  |
| 02673 | }         |        |               |               |               |        |
| 02674 |           | 540,   | -100,         | 540,          | -400,         | -210}  |
|       | , { {     |        |               |               |               |        |
| 02675 | , {       | 540,   | -100,         | 540,          | -1240,        | -810}  |
|       |           |        |               |               |               |        |

```
02676
               -430,
                       -600,
                               -970,
                                       -430,
02677
               -200,
                       -200,
                               -260,
                                       -400,
                                              -210}
                                       -430,
                                              -970]
02678
               -430,
                       -600,
                               -970,
02679
02680
         , { {
                180.
                        -90.
                               -400.
                                        180.
                                               -4601
                       -150,
02681
                 30.
                               -510.
                                         30.
                                               -510}
          , {
                       -90,
02682
                180,
                               -460,
                                        180,
                                              -460}
          , {
02683
                 30,
                       -150,
                               -510,
                                         30,
                                              -5101
02684
               -230,
                      -1390,
                               -400,
                                       -230,
                                             -13001
02685
02686
        , { { {
                        -90,
02687
                10.
                                 10,
                                       -500,
                                              -3201
02688
                 10,
                       -150,
                                       -860,
                                              -510}
                                 10,
          , {
02689
               -90,
                       -90,
                               -460,
                                       -500,
                                              -460}
02690
               -150,
                       -150,
                               -320,
                                       -860,
                                              -3201
02691
               -200,
                       -200,
                               -400,
                                     -1300,
                                              -570}
02692
02693
               -580,
                       -580,
                               -660, -1070,
         , { {
                                              -660}
02694
               -580,
                       -580,
                               -660, -1340,
                                              -660}
          , {
               -600,
                               -970, -1070,
                                               -970}
02695
                       -600,
          , {
02696
               -870,
                      -1600,
                             -1110, -1880,
                                              -870}
02697
               -600,
                      -600,
                              -970,
                                     -1320,
                                              -970}
02698
               -150,
                       -150,
                                       -500,
02699
                               -510.
                                               -510}
         , { {
02700
               -220,
                       -220, -1150,
                                       -860,
                                              -510}
          , {
02701
               -500, -1070,
                              -750,
                                              -520}
                                       -500,
02702
               -150,
                       -150,
                               -510,
                                      -860,
                                              -5101
02703
               -200.
                       -200,
                               -570, -1750,
                                              -570}
02704
02705
          , { {
                 10,
                       -200.
                                 10, -1080,
                                              -3201
02706
                       -970,
                                 10, -2450, -1160}
                 10.
          , {
02707
               -600,
                       -600,
                               -970, -1320,
                                              -970}
02708
               -200,
                       -200,
                               -320, -1080,
                                              -320}
02709
               -600,
                       -600,
                               -970,
                                     -1320,
                                              -9701
02710
                -90.
                        -90.
                               -400.
                                       -570.
02711
         , { {
                                              -460}
02712
               -150,
                       -150,
                               -510,
                                       -860,
                                              -510}
          , {
               -90,
                       -90,
                                       -570,
02713
                               -460,
                                              -460}
          , {
                       -150,
02714
               -150,
                               -510,
                                       -860,
                                              -5101
02715
               -400, -1490,
                               -400,
                                     -1300, -1300}
02716
02717
                                      -400, -210}
-600, -1130}
        , { { {
                540.
                       -100.
                                540.
02718
02719
                540,
                       -100,
                                540,
         , {
                               -760,
                                       -540, -1070}
-400, -210}
                       -540,
02720
               -540,
               -210,
02721
                       -350,
                               -620,
                                       -650, -1180}
02722
               -650,
                       -650,
                               -870,
02723
                                       -740, -1250}
         , { {
               -350,
                       -350,
                               -940,
02724
              -740,
02725
                       -740,
                               -960,
                                       -740, -1270}
          , {
                                     -1050, -1580}
02726
              -1050, -1050, -1270,
          , {
02727
              -350,
                      -350,
                             -940,
                                      -960, -1250}
                                     -1050, -1580}
02728
              -1050, -1050, -1270,
02729
02730
               -600,
                       -600.
                               -820,
                                       -600, -1130}
         , { {
          , {
               -600,
                       -600,
                               -820,
                                       -600, -1130}
02731
               -600,
                               -820,
                                       -600, -1130}
                       -600,
02733
               -600,
                       -600,
                               -820,
                                       -600, -1130}
02734
               -650,
                       -650,
                               -870,
                                       -650, -1180}
02735
         , { {
                                540.
                                       -400. -210}
02736
                540.
                       -100.
                                540, -1240, -1530}
02737
                540,
                       -100,
          , {
02738
             -1050, -1050, -1270,
                                     -1050, -1580}
          , {
                               -620,
02739
               -210,
                       -440,
                                       -400, -210}
02740
             -1050, -1050, -1270,
                                     -1050, -1580}
02741
         , { {
02742
               -540.
                       -540.
                               -760.
                                       -540, -1070
                                       -600, -1130}
02743
               -600.
                               -820.
          , {
                       -600.
                                       -540, -1070}
02744
               -540,
                      -540,
                              -760,
          , {
                                       -600, -1130}
02745
               -600,
                      -600,
                              -820,
02746
              -1390, -1390,
                             -1610,
                                     -1390, -1920}
02747
02748
        , { { {
                180, -630,
                               -320,
                                        180.
02749
                                              -3201
02750
                180, -1340,
                                              -510}
                               -510,
                                        180,
                180, -630,
02751
                               -460,
                                        180,
                                              -460}
02752
                 30, -1340,
                               -320,
                                         30,
                                              -320}
02753
               -230, -1150,
                               -570,
                                       -230,
                                              -570}
02754
02755
                180. -1790.
                               -660.
                                        180.
                                              -6601
          , { {
                180, -2010,
02756
                               -660,
                                              -660}
                                        180,
          , {
               -430, -1790,
02757
                               -970,
                                        430,
                                              -970}
          , {
02758
               -870, -3070,
                               -870,
                                     -1370,
                                              -870}
02759
               -430, -1790,
                               -970,
                                      -430,
                                              -970]
02760
         , { {
               30, -630,
-390, -1650,
                               -510,
                                         30,
02761
                                              -510
                              -510,
02762
                                       -390,
                                              -510}
```

```
20, -630,
                               -520,
                                          20,
                                               -520}
           , {
02764
                 30, -1340,
                               -510,
                                          30,
                                               -510}
02765
               -570, -1150,
                               -570,
                                       -880,
                                               -5701
02766
          , { {
02767
               -320, -1790,
                                -320.
                                        -430.
                                               -3201
02768
              -1160, -1980,
                              -1160,
                                      -1870,
                                              -1160}
          , {
02769
               -430, -1790,
                               -970,
                                               -970}
                                       -430,
02770
               -320, -2390,
                               -320,
                                      -2280,
                                               -3201
02771
               -430, -1790,
                               -970,
                                       -430,
                                               -970}
02772
02773
                180, -1040,
                               -460.
                                        180.
                                               -460}
          , { {
                30, -1340,
180, -1040,
02774
                               -510,
                                               -510}
          , {
                                         30.
02775
                               -460,
                                        180,
                                               -460}
02776
                 30, -1340,
                               -510,
                                         30,
                                               -510}
02777
               -230, -1520,
                              -1300,
                                        -230,
                                              -1300}
02778
02779
        , { { {
02780
                -90,
                       -400,
                               -260,
                                       -400,
                                                -90}
                -90,
                                                -90}
02781
                       -600,
                               -820,
                                       -600,
          , {
02782
               -540,
                       -540,
                                       -540,
                                               -830}
                               -550,
02783
               -260,
                       -400,
                               -260,
                                       -400,
                                               -800}
                                               -860}
02784
               -650,
                       -650,
                               -870
                                       -650,
02785
                                       -740,
          , { {
               -740,
                       -740,
02786
                               -940.
                                               -8301
02787
               -740,
                       -740,
                               -960,
                                       -740, -1240}
          , {
02788
               -830, -1050, -1270,
                                      -1050,
                                              -8301
02789
               -940,
                       -960,
                               -940,
                                       -960, -1360]
02790
              -1050,
                      -1050,
                              -1270,
                                      -1050, -1260}
02791
02792
          , { {
                -90.
                       -600.
                               -820,
                                       -600.
                                                -901
                                                -90}
02793
                -90,
                       -600.
                               -820.
                                       -600.
          , {
02794
               -600,
                       -600,
                               -820,
                                       -600, -1710}
02795
               -600,
                       -600,
                               -820,
                                        -600,
                                               -800}
02796
               -650,
                       -650,
                               -870,
                                       -650,
                                               -8601
02797
          , { {
02798
               -260.
                       -400.
                               -260,
                                       -400.
                                               -810}
02799
               -810, -1240, -1220,
                                      -1240,
                                              -810}
          , {
              -1050, -1050, -1270,
                                      -1050, -1260}
          , {
                               -260,
02801
               -260,
                       -400,
                                       -400, -1550}
02802
              -1050, -1050, -1270,
                                      -1050, -1260}
02803
          , { {
               -540.
                       -540.
                               -550.
                                               -8003
02804
                                       -540.
               -600.
                               -820.
                                       -600,
                                               -8003
02805
                       -600.
          , {
02806
               -540,
                       -540,
                               -550,
                                       -540, -1460}
               -600,
                       -600,
                               -820,
                                               -800}
02807
                                       -600,
02808
              -1390,
                      -1390,
                              -1610,
                                      -1390,
                                              -23501
02809
02810
          }
02811
02812
       , { { { {
                 50,
                         50,
                               -320,
                                          50,
                                               -320}
                 50,
02813
                        -130,
                               -490,
                                          50,
                                               -490}
02814
               -400,
                       -580,
                               -940,
                                        -400,
                                               -940}
                 50,
02815
                         50,
                               -320,
                                       -320,
                                               -3201
02816
               -400,
                       -540,
                               -940,
                                       -400,
                                               -940}
02817
02818
          , { {
                 50,
                        -130,
                                -490,
                                          50,
                                               -490}
                 50,
                       -130,
                               -490,
                                               -490}
02819
                                          50,
          , {
02820
               -400,
                       -580,
                               -940,
                                       -400,
                                               -940}
          , {
02821
              -1320,
                      -1320,
                              -1680,
                                      -1770,
                                              -1680}
02822
               -400,
                       -580,
                               -940,
                                       -400,
                                               -9401
02823
02824
          , { {
               -320,
                       -490,
                               -860,
                                        -320,
                                               -860}
02825
               -320,
                       -490,
                               -860,
                                       -320,
                                               -860}
          , {
                                       -620, -1160}
-320, -860}
02826
               -620,
                       -800, -1160,
02827
               -320,
                       -490,
                              -860,
                                       -320,
02828
               -620,
                       -800, -1160,
                                       -620, -1160}
02829
                 50,
                         50,
                               -320,
                                       -400,
02830
          , { {
                                               -3201
02831
               -840,
                        -840, -1210,
                                      -1290, -1210}
          , {
               -400,
02832
                        -580,
                               -940,
                                       -400,
                                               -940}
02833
                 50,
                         50,
                               -320,
                                       -400,
                                               -3201
02834
               -400,
                        -580,
                               -940,
                                       -400,
                                               -940}
02835
               -320.
                       -490.
                                       -320,
02836
          , { {
                               -860.
                                               -860}
02837
               -320,
                       -490,
                               -860,
                                       -320,
                                               -860}
02838
               -930, -1110, -1470,
                                       -930, -1470}
02839
               -320,
                       -490,
                               -860,
                                       -320,
                                               -860}
02840
               -540,
                       -540, -1150,
                                      -1230, -1150}
02841
02842
        , { { {
                 50,
                         50,
                                -320,
                                       -840,
                                               -320}
02843
02844
                -130,
                        -130,
                               -490,
                                       -840,
                                               -490}
          , {
02845
               -580,
                       -580,
                               -940, -1270,
                                               -940}
                 50,
02846
                         50,
                               -320, -1210,
                                               -3201
02847
               -540,
                       -540,
                               -940, -1270,
                                               -940}
02848
02849
               -130,
                       -130,
                               -490,
                                       -840,
                                               -490}
          . { {
```

```
,{ -130,
,{ -580,
                       -130,
                               -490, -840,
02851
                       -580, -940, -1290,
                                               -940}
02852
          ,{ -1320, -1320, -1680, -2030, -1680}
              -580,
02853
                       -580,
                               -940, -1290,
                                               -9401
02854
          , {{ -490,
                       -490,
                               -860, -1210,
                                               -860}
02855
                       -490, -860, -1210,
               -490,
          , {
02857
               -800,
                       -800, -1160, -1270, -1160}
               -490,
02858
                       -490,
                              -860, -1210,
                                               -8603
02859
               -800,
                       -800, -1160, -1270, -1160}
02860
02861
          , { {
                 50,
                          50, -320, -1290, -320}
02862
               -840,
                       -840, -1210, -1560, -1210}
          , {
02863
               -580,
                       -580,
                              -940, -1290, -940}
02864
                 50,
                         50,
                               -320, -1920,
                                               -3201
02865
               -580,
                       -580,
                               -940, -1290,
                                               -940}
02866
          , { { -490,
                       -490,
                               -860, -1210,
02867
                                               -860}
              -490,
                       -490, -860, -1210, -860}
02868
          , {
              -1110, -1110, -1470, -1580, -1470}
02869
          , {
                      -490, -860, -1210, -860}
-540, -1150, -1500, -1150}
02870
               -490,
02871
               -540,
02872
02873
02874
        , { { { -400,
                       -400,
                               -620,
                                       -400, -930}
               -580, -580, -800,
                                       -580, -1110}
02875
           ,{ -1030, -1030, -1250, -1030, -1560},
,{ -400, -400, -620, -400, -930},
,{ -1030, -1030, -1250, -1030, -1560}
02876
02877
02878
02879
          , { { -580,
02880
                       -580, -800,
                                       -580, -1110}
02881
               -580, -580, -800, -580, -1110}
          , {
02882
              -1030, -1030, -1250, -1030, -1560}
          ,{ -1750, -1770, -1750, -1770, -2060}
02883
          ,{ -1030, -1030, -1250, -1030, -1560}
02884
02885
          , { { -940,
                       -940, -1160,
02886
                                       -940, -1470}
          ,{ -940, -940, -1160, -940, -1470}
,{ -1250, -1250, -1470, -1250, -1780}
02888
02889
               -940,
                       -940, -1160,
                                       -940, -1470}
           ,{ -1250, -1250, -1470, -1250, -1780}
02890
02891
         ,{{ -400, -400, -620, -400, -930}, { -1270, -1290, -1270, -1290, -1580}
02892
02893
              -1030, -1030, -1250, -1030, -1560}
-400, -400, -620, -400, -930}
02894
02895
02896
              -1030, -1030, -1250, -1030, -1560}
02897
          , { { -940,
                       -940, -1160,
                                       -940, -1470}
02898
          ,{ -940, -940, -1160, -940, -1470}
,{ -1560, -1560, -1780, -1560, -2090}
02899
          , {
           ,{ -940, -940, -1160, -940, -1470}
,{ -1230, -1230, -1450, -1230, -1760}
02901
02902
02903
02904
        , { { {
02905
                 50, -1320,
                                -320,
                                          50,
                                                -320}
                50, -1320,
                               -490,
                                               -490}
02906
                                          50,
          , {
02907
               -400, -1750,
                               -940,
                                        -400,
                                               -940}
          , {
02908
               -320, -1680,
                               -320,
                                        -320,
                                               -3201
02909
               -400, -1750,
                               -940,
                                        -400,
                                               -940}
02910
               50, -1320,
50, -1320,
02911
         , { {
                                -490,
                                          50,
                                                -490}
02912
                               -490,
                                          50,
                                               -490}
          , {
02913
               -400, -1770,
                               -940,
                                        -400,
                                               -940}
02914
              -1680, -2510, -1680,
                                      -2390,
                                               -16801
                                       -400,
02915
              -400, -1770,
                              -940,
                                               -940}
02916
          ,{{ -320, -1680,
                               -860,
                                        -320,
                                               -860}
02917
               -320, -1680, -860,
02918
                                        -320, -860
          , {
               -620, -1750, -1160,
                                        -620, -1160}
02920
               -320, -1680,
                               -860,
                                        -320,
                                               -8601
02921
               -620, -1750, -1160,
                                        -620, -1160}
02922
          ,{{ -320, -1770,
                                       -400, -320}
02923
                               -320,
              -1210, -2030, -1210,
                                      -1920, -1210}
02924
          , {
                                      -400, -940}
02925
               -400, -1770,
                              -940,
02926
               -320, -2390,
                               -320, -2280,
                                                -320}
02927
               -400, -1770,
                               -940,
                                       -400,
                                               -940}
02928
          , { {
02929
               -320. -1680.
                               -860.
                                        -320.
                                               -8601
                                        -320, -860}
02930
               -320, -1680,
                               -860,
          , {
               -930, -2060, -1470,
                                        -930, -1470}
          , {
              -320, -1680, -860,
-1150, -1970, -1150,
02932
                                       -320, -860]
02933
                                      -1860, -1150]
02934
02935
        ,{{{ -400, -400, -620, -400, -540}}
02936
```

```
-540,
                        -580, -800,
           , {
           ,{ -1030, -1030, -1250, -1030, -1230}
,{ -400, -400, -620, -400, -1150}
02938
                                        -400, -1150}
02939
           ,{ -1030, -1030, -1250, -1030, -1230}
02940
02941
          , { { -540,
                        -580, -800,
                                         -580, -540}
02942
          ,{ -540, -580, -800, -580, -540}
,{ -1030, -1030, -1250, -1030, -1230}
02943
02944
02945
           ,{ -1750, -1770, -1750, -1770, -1970}
           ,{ -1030, -1030, -1250, -1030, -1230}
02946
02947
          ,{{ -940, -940, -1160, -940, -1150},
,{ -940, -940, -1160, -940, -1150},
,{ -1250, -1250, -1470, -1250, -1450}
02948
02949
02950
02951
              -940, -940, -1160,
                                        -940, -1150}
02952
              -1250, -1250, -1470, -1250, -1450}
02953
          ,{{ -400, -400, -620, -400, -1230}
02954
          ,{ -1270, -1290, -1270, -1290, -1500}
           ,{ -1030, -1030, -1250, -1030, -1230}
02956
           ,{ -400, -400, -620, -400, -1860}
,{ -1030, -1030, -1250, -1030, -1230}
02957
02958
02959
          , { { -940,
                        -940, -1160,
-940, -1160,
02960
                                         -940, -1150}
-940, -1150}
          , { -940,
02961
               -1560, -1560, -1780, -1560, -1760}
02962
          , {
02963
              -940, -940, -1160, -940, -1150}
02964
              -1230, -1230, -1450, -1230, -1440}
02965
02966
          }
02967
                210, 210, -160,
-870, -870, -1230,
02968
        , { { { { {
                                         -240, -160}
02969
                                         -870, -1230}
          , {
02970
                -870, -1040, -1410,
                                         -870, -1410}
                                        -240, -160}
-870, -1410}
                        210, -160,
-800, -1410,
02971
                210,
                -800,
02972
02973
          ,{{ -870, -1040, -1410,
02974
                                        -870, -1410}
02975
          ,{ -1050, -1220, -1590, -1050, -1590}
02976
               -870, -1040, -1410,
                                        -870, -1410}
02977
           ,{ -1060, -1060, -1420, -1510, -1420}
           ,{ -870, -1040, -1410,
                                         -870, -1410}
02978
02979
02980
          ,{{ -870, -1040, -1410,
                                         -870, -1410}
               -870, -1040, -1410,
-870, -1040, -1410,
                                         -870, -1410}
02981
          , {
02982
                                         -870, -1410}
02983
                -870, -1040, -1410,
                                         -870, -1410}
               -870, -1040, -1410,
                                         -870, -1410}
02984
02985
                        210, -160, -240, -160}
-870, -1230, -1320, -1230}
02986
          , { {
                210.
02987
                -870,
          , {
               -870, -1040, -1410, -870, -1410}
210, 210, -160, -240, -160}
02988
02989
02990
               -870, -1040, -1410,
                                         -870, -1410}
02991
          , { {
                                         -870, -1410}
02992
               -800,
                       -800, -1410,
                -870, -1040, -1410,
                                         -870, -1410}
02993
          , {
02994
                -870, -1040, -1410,
                                         -870, -1410}
           , {
02995
                -870, -1040, -1410,
                                         -870, -1410}
02996
                -800.
                       -800, -1410, -1490, -1410]
02997
02998
02999
         ,{{{
                210.
                        210, -160, -1520, -160}
               -870,
03000
                       -870, -1230, -1580, -1230}
              -1040, -1040, -1410, -1520, -1410}
210, 210, -160, -1760, -160}
-800, -800, -1410, -1520, -1410}
03001
03002
              -800,
03003
03004
          03005
03006
          ,{ -1040, -1040, -1410, -1760, -1410}, { -1060, -1060, -1420, -1770, -1420}
03007
03008
           ,{ -1040, -1040, -1410, -1760, -1410}
03009
03010
          ,{{ -1040, -1040, -1410, -1520, -1410}
03011
          ,{ -1040, -1040, -1410, -1760, -1410}
03012
03013
           ,{ -1040, -1040, -1410, -1520, -1410}
03014
              -1040, -1040, -1410, -1760, -1410}
            ,{ -1040, -1040, -1410, -1520, -1410}
03015
03016
                210,
                        210, -160, -1580, -160}
-870, -1230, -1580, -1230}
03017
          , { {
03018
                -870,
          , {
              -1040, -1040, -1410, -1760, -1410}
210, 210, -160, -1760, -160}
03019
                210,
03020
03021
              -1040, -1040, -1410, -1760, -1410}
03022
03023
          ,{{ -800, -800, -1410, -1520, -1410}}
```

```
,{ -1040, -1040, -1410, -1760, -1410}
             ,{ -1040, -1040, -1410, -1520, -1410}
,{ -1040, -1040, -1410, -1760, -1410}
03025
03026
             ,{ -800, -800, -1410, -1760, -1410}
03027
03028
03029
          ,{{{ -240, -240, -460, -240, -770}}, { -1300, -1320, -1300, -1320, -1610}
03031
             ,{ -1490, -1490, -1710, -1490, -2020},  
,{ -240, -240, -460, -240, -770},  
,{ -1490, -1490, -1710, -1490, -2020}
03032
03033
03034
03035
            ,{{ -1490, -1490, -1490, -1490, -1800}
03036
            ,{ -1670, -1670, -1890, -1670, -2200}
03037
03038
             ,{ -1490, -1490, -1710, -1490, -2020}
             ,{ -1490, -1510, -1490, -1510, -1800}
,{ -1490, -1490, -1710, -1490, -2020}
03039
03040
03041
            ,{{ -1490, -1490, -1710, -1490, -2020}
03042
            ,{ -1490, -1490, -1710, -1490, -2020}
03043
             ,{ -1490, -1490, -1710, -1490, -2020}
,{ -1490, -1490, -1710, -1490, -2020}
03044
03045
              ,{ -1490, -1490, -1710, -1490, -2020}
03046
03047
            ,{{ -240, -240, -460, -240, -770}
03048
            ,{ -1300, -1320, -1300, -1320, -1610}, { -1490, -1490, -1710, -1490, -2020}, { -240, -240, -460, -240, -770}, { -1490, -1490, -1710, -1490, -2020}
03049
03050
03051
03052
03053
            ,{{ -1490, -1490, -1710, -1490, -2020}, { -1490, -1490, -1710, -1490, -2020}
03054
03055
03056
             ,{ -1490, -1490, -1710, -1490, -2020}
             ,{ -1490, -1490, -1710, -1490, -2020}
03057
             ,{ -1490, -1490, -1710, -1490, -2020}
03058
03059
03060
          ,{{{ -160, -1990, -160, -870, -160}}, { -870, -2060, -1230, -870, -1230}
03061
03062
           , {
                  -870, -1990, -1410,
-160, -2230, -160,
                                                -870, -1410}
-870, -160}
-870, -1410}
03063
03064
             ,{ -870, -1990, -1410,
03065
03066
            ,{{ -870, -2230, -1410, -870, -1410}
03067
              11 -870, -2230, -1410, -870, -1410}
,{ -1050, -2410, -1590, -1050, -1590}
,{ -870, -2230, -1410, -870, -1410}
,{ -1420, -2250, -1420, -2130, -1420}
,{ -870, -2230, -1410, -870, -1410}
03068
            , {
03069
03070
03071
03072
            ,{{ -870, -1990, -1410, -870, -1410}
03073
                  -870, -2230, -1410,
03074
                                                -870, -1410}
            , {
                  -870, -1990, -1410, -870, -1410}
-870, -2230, -1410, -870, -1410}
03075
03076
03077
                 -870, -1990, -1410,
                                               -870, -1410}
03078
            ,{{ -160, -2060, -160,
03079
                                                -870, -160}
                 -1230, -2060, -1230, -1940, -1230}
03080
             , {
                  -870, -2230, -1410, -870, -1410)
-160, -2230, -160, -2120, -160)
-870, -2230, -1410, -870, -1410}
03081
             , {
03082
03083
03084
            ,{{ -870, -1990, -1410, -870, -1410}, 
,{ -870, -2230, -1410, -870, -1410}
03085
03086
            , {
                  -870, -1990, -1410,
-870, -2230, -1410,
                                                 -870, -1410}
03087
03088
                                                 -870, -1410}
                 -1410, -2230, -1410, -2120, -1410}
03089
03090
03091
          ,{{{ -240, -240, -460, -240, -1520} , { -1300, -1320, -1300, -1320, -1520} }
03092
03093
             ,{ -1490, -1490, -1710, -1490, -1700}
,{ -240, -240, -460, -240, -1700}
03094
03095
             ,{ -1490, -1490, -1710, -1490, -1700}
03096
03097
            ,{{ -1490, -1490, -1490, -1490, -1640}
03098
            ,{ -1640, -1670, -1890, -1670, -1640}
03099
03100
             ,{ -1490, -1490, -1710, -1490, -1700}
             ,{ -1490, -1510, -1490, -1510, -1710}
,{ -1490, -1490, -1710, -1490, -1700}
03101
03102
03103
            ,{{ -1490, -1490, -1710, -1490, -1700}
03104
             ,{ -1490, -1490, -1710, -1490, -1700}
03105
             ,{ -1490, -1490, -1710, -1490, -1700}
,{ -1490, -1490, -1710, -1490, -1700}
03106
03107
03108
             ,{ -1490, -1490, -1710, -1490, -1700}
03109
            , {{ -240, -240, -460, -240, -1520}}
03110
```

```
,{ -1300, -1320, -1300, -1320, -1520}
          ,{ -1490, -1490, -1710, -1490, -1700}
,{ -240, -240, -460, -240, -1700}
03112
03113
           ,{ -1490, -1490, -1710, -1490, -1700}
03114
03115
         ,{{ -1490, -1490, -1710, -1490, -1700}
03116
          ,{ -1490, -1490, -1710, -1490, -1700}
03117
03118
          ,{ -1490, -1490, -1710, -1490, -1700}
03119
              -1490, -1490, -1710, -1490, -1700}
0.3120
              -1490, -1490, -1710, -1490, -1700
03121
03122
         }
03123
03124
       ,{{{{
                760,
                        760,
                                400,
                                         310,
                                                400}
03125
                200,
                       -430,
                                -340,
                                        200,
                                               -340}
          , {
03126
               -310,
                       -490,
                               -850,
                                       -310,
                                               -8501
                760.
                        760.
03127
                                400.
                                        310.
                                                4001
                                -850,
03128
               -250,
                       -250,
                                       -310,
                                               -850}
03129
                200,
                       -430,
                               -340,
                                        200,
03130
                                               -340}
         , { {
03131
                200,
                       -430,
                               -340,
                                        200,
                                               -340}
               -310,
03132
                       -490,
                               -850,
                                       -310,
                                               -8501
               -830.
03133
                       -830,
                              -1190,
                                      -1280,
                                              -11901
03134
               -310,
                       -490,
                               -850,
                                       -310,
                                               -850}
03135
03136
               -310,
                       -490,
                                -850,
                                       -310,
         , { {
03137
               -310,
                       -490,
                               -850,
                                       -310,
                                               -8501
          , {
03138
               -310,
                       -490,
                               -850,
                                       -310,
                                               -850}
               -310,
03139
                       -490.
                               -850,
                                       -310,
                                               -8501
03140
               -310,
                       -490.
                               -850,
                                       -310.
                                               -850}
03141
03142
                760,
                        760,
                                 400,
                                         310,
                                                 400}
         , { {
03143
              -1000,
                      -1000,
                              -1360,
                                      -1450,
                                              -1360}
03144
               -310,
                       -490,
                               -850,
                                       -310,
                                               -850}
          , {
03145
                760,
                        760,
                                400,
                                        310,
                                                4003
03146
               -310.
                        -490.
                                -850,
                                       -310,
                                               -850}
03147
                                       -310,
03148
         , { {
               -250,
                        -250,
                                -850,
                                               -850}
03149
               -310,
                       -490,
                               -850,
                                       -310,
                                               -850}
          , {
03150
               -310,
                       -490,
                               -850,
                                       -310,
                                               -850}
               -310,
                       -490,
03151
                               -850,
                                       -310,
                                               -8501
                       -250,
03152
               -250.
                               -850,
                                       -940,
                                               -8501
03153
03154
                760,
                        760,
                                 400,
03155
        , { { {
                                       -690,
                                                400}
03156
               -340,
                        -490,
                                -340,
                                       -690,
                                               -340}
          , {
03157
               -490.
                       -490.
                               -850,
                                       -960,
                                               -850}
                        760.
03158
                760,
                                400,
                                      -1200,
                                                4001
               -250,
03159
                       -250.
                                -850,
                                       -960,
                                               -850}
03160
               -340,
                       -490,
03161
                               -340,
                                       -690,
                                               -340}
         , { {
03162
               -340,
                      -2040,
                               -340,
                                       -690,
                                               -340}
03163
               -490,
                       -490,
                               -850,
                                      -1200,
                                               -8501
               -830,
                                      -1540,
03164
                       -830,
                              -1190,
                                              -11901
               -490.
03165
                       -490,
                               -850, -1200,
                                               -850}
03166
03167
               -490,
                        -490,
                                -850,
                                       -960,
         , { {
                                               -850}
03168
               -490,
                       -490,
                               -850, -1200,
                                               -850}
          , {
03169
               -490,
                       -490,
                               -850,
                                     -960,
                                               -850}
03170
               -490.
                       -490.
                               -850,
                                     -1200.
                                               -8503
                       -490,
                               -850,
03171
               -490.
                                       -960.
                                               -8501
03172
03173
         , { {
                760,
                        760,
                                 400, -1200,
                                                400}
03174
              -1000,
                      -1000,
                              -1360, -1710,
                                              -1360}
                       -490,
03175
               -490.
                               -850, -1200,
                                               -8501
03176
                760,
                        760,
                                400, -1200,
                                                400}
                                -850, -1200,
03177
               -490,
                       -490,
                                               -850}
03178
03179
               -250,
                        -250,
                                -850,
                                       -960,
                                               -850}
          , { {
               -490,
                       -490,
                               -850, -1200,
                                               -850}
03180
          , {
03181
               -490,
                       -490,
                               -850,
                                       -960,
                                               -8501
03182
               -490,
                       -490,
                               -850, -1200,
                                               -8501
03183
               -250,
                       -250,
                               -850, -1200,
                                               -850}
03184
03185
03186
                310,
                        310,
                                  90,
                                        310,
                                               -220}
        , { { {
03187
               -430,
                        -430,
                                -650,
                                       -430,
                                               -960}
          , {
03188
               -940,
                       -940, -1160,
                                       -940, -1470}
310, -220}
03189
                310.
                        310.
                                90.
                                        310,
                       -940, -1160,
                                       -940, -1470}
0.3190
               -940.
03191
03192
               -430,
                       -430,
                               -650,
                                       -430, -960}
         , { {
03193
               -430,
                       -430,
                               -650,
                                       -430, -960}
          , {
               -940,
03194
                       -940, -1160,
                                       -940, -1470}
03195
              -1260, -1280, -1260,
                                     -1280, -1570}
                      -940, -1160,
                                      -940, -1470}
03196
               -940.
03197
```

```
, { { -940,
                       -940, -1160,
                                      -940, -1470}
                       -940, -1160,
-940, -1160,
03199
               -940,
                                      -940, -1470}
          , {
               -940,
                                      -940, -1470}
03200
                                      -940, -1470}
03201
               -940,
                       -940, -1160,
                                      -940, -1470}
03202
               -940.
                       -940, -1160,
03203
                                     310, -220}
-1450, -1740}
03204
         , { {
                310,
                        310,
                                 90,
03205
              -1430,
                      -1450, -1430,
          , {
                                      -940, -1470}
310, -220}
03206
               -940,
                       -940, -1160,
03207
                310,
                        310,
                              90,
                       -940, -1160,
                                      -940, -1470}
03208
               -940,
03209
03210
               -940,
                       -940, -1160,
                                       -940, -1470}
         , { {
03211
               -940,
                       -940, -1160,
                                       -940, -1470}
          , {
03212
          , {
               -940,
                       -940, -1160,
                                      -940, -1470}
03213
               -940,
                       -940, -1160,
                                      -940, -1470}
                                      -940, -1470
                       -940, -1160,
03214
               -940.
03215
03216
03217
        , { { {
                400, -1170,
                                400.
                                        200.
                                               400}
03218
                200, -1170,
                               -340,
                                        200,
                                              -340}
03219
               -310, -1440,
                               -850,
                                      -310,
                                              -8501
03220
               400, -1680,
                               400,
                                      -310,
                                               4003
               -310, -1440,
03221
           , {
                               -850,
                                       -310,
                                              -850}
03222
                200, -1170,
                                        200,
03223
         , { {
                               -340,
                                              -340}
03224
                200, -1170,
                               -340,
                                        200,
                                              -3401
          , {
              -310, -1680,
03225
                              -850,
                                      -310,
                                              -8501
              -1190, -2020,
03226
                             -1190,
                                     -1900,
                                             -1190}
03227
           . {
              -310, -1680,
                              -850,
                                      -310,
                                              -850}
03228
03229
               -310, -1440,
                               -850,
                                       -310,
                                              -850}
         , { {
03230
               -310, -1680,
                               -850,
                                      -310,
                                              -850}
03231
               -310, -1440,
                               -850,
                                      -310,
                                              -850}
          , {
03232
               -310, -1680,
                               -850,
                                      -310,
                                              -8501
               -310, -1440,
03233
                               -850,
                                      -310.
                                              -850}
03234
03235
         , { {
                400, -1680,
                                400,
                                       -310.
                             -1360,
03236
              -1360, -2190,
                                     -2070,
                                             -1360}
          , {
03237
               -310, -1680,
                               -850,
                                      -310,
                                              -850}
03238
                400, -1680,
                               400,
                                     -1560,
                                               4001
03239
               -310, -1680,
                               -850,
                                      -310,
                                              -8501
03240
03241
               -310, -1440,
                               -850,
                                      -310,
                                              -850}
         , { {
03242
                               -850,
                                      -310,
                                              -850}
               -310, -1680,
          , {
                                      -310,
03243
               -310, -1440,
                               -850,
                                              -8501
03244
               -310, -1680,
                              -850,
                                      -310,
                                              -850}
               -850, -1680,
03245
                              -850, -1560,
                                              -850}
03246
03247
                                              -390}
03248
        , { { {
                310,
                        310,
                                 90,
                                        310,
03249
               -390,
                       -430, -650,
                                       -430, -390}
03250
               -940,
                       -940, -1160,
                                      -940, -1140}
03251
                310,
                       310,
                                90,
                                       310, -1140}
               -940,
                       -940, -1160,
                                       -940, -1140}
03252
03253
         , { {
               -390,
                       -430,
                               -650,
                                       -430, -390}
03254
03255
               -390,
                       -430, -650,
                                      -430, -390}
          , {
                                      -940, -1140}
03256
              -940,
                       -940, -1160,
                                     -1280, -1480}
03257
              -1260, -1280, -1260,
                       -940, -1160.
03258
              -940.
                                      -940, -1140}
03259
03260
         , { {
               -940,
                       -940, -1160,
                                      -940, -1140}
                       -940, -1160,
-940, -1160,
03261
               -940,
                                      -940, -1140}
              -940,
03262
                                      -940, -1140}
          , {
                                      -940, -1140}
                       -940, -1160,
-940, -1160,
03263
               -940,
              -940,
03264
03265
03266
         , { {
                310,
                        310,
                                 90,
                                        310, -1140}
                      -1450, -1430,
                                      -1450, -1650}
03267
          , {
              -1430,
03268
              -940,
                       -940, -1160,
                                      -940, -1140}
                310,
                                       310, -1140}
03269
                        310,
                              90,
                                      -940, -1140}
03270
               -940,
                       -940, -1160,
03271
03272
               -940,
                       -940, -1160,
                                       -940, -1140}
         , { {
03273
               -940,
                       -940, -1160,
                                       -940, -1140}
          , {
03274
               -940,
                       -940, -1160,
                                      -940, -1140}
03275
               -940,
                       -940, -1160,
                                      -940, -1140}
                                      -940, -1140}
03276
               -940.
                       -940, -1160,
03277
03278
         }
03279
03280
       , {{{{
               1140,
                       1140,
                                770,
                                        780,
                                               770}
03281
                780,
                        600,
                                240,
                                        780,
                                               240}
          , {
                480,
03282
                        300,
                                -60,
                                        480,
                                               -60}
                                770.
                                               770}
03283
               1140,
                       1140.
                                        690,
03284
                480.
                        300.
                                -60.
                                        480.
                                               -60}
```

```
03285
03286
                 780,
                          600,
                                  240,
                                           780,
                                                   240}
           , { {
03287
                 780,
                          600,
                                  240,
                                           780,
                                                   240}
           , {
03288
                 470,
                          290,
                                  -70,
                                           470,
                                                   -701
03289
                 -780.
                          -780.
                                 1150.
                                          1230.
                                                  -1150}
03290
                 470,
                          290.
                                  -70.
                                           470.
                                                   -701
03291
03292
                  490,
                          310,
                                   -50,
                                           490,
                                                    -50}
           , { {
03293
                 490,
                          310,
                                  -50,
                                           490,
                                                   -50}
           , {
03294
                 480,
                          300,
                                  -60,
                                           480,
                                                   -60}
03295
                          310.
                                  -50,
                                           490.
                                                   -50}
                 490.
03296
                 480.
                          300.
                                  -60.
                                           480.
                                                   -60}
03297
03298
                1140,
                         1140,
                                  770,
                                           690,
                                                   770}
           , { {
03299
                -600,
                         -600,
                                  -970,
                                          1050,
                                                  -970}
           , {
03300
                 470,
                          290,
                                  -70,
                                           470,
                                                   -701
                                  770
                                                   7701
03301
                1140.
                         1140.
                                           690.
                                   -70,
03302
                 470,
                                           470,
                                                   -70}
                          290,
03303
03304
                  490,
                          310,
                                   -50,
                                           490,
                                                   -50}
          , { {
03305
                  490,
                          310,
                                  -50,
                                           490,
                                                   -50}
           , {
03306
                 480,
                          300
                                  -60,
                                           480,
                                                   -60}
                                  -50,
03307
                 490,
                          310,
                                           490,
                                                   -501
                                 1040,
03308
                                                 -10403
                 -430,
                         -430,
                                         -1120,
03309
03310
03311
         , { { {
                1140,
                         1140,
                                  770,
                                          -110,
                                                   770}
03312
          , {
                 600,
                          600,
                                  240,
                                         -110,
                                                   240}
                 300,
03313
                          300,
                                  -60,
                                         -170,
                                                   -601
03314
                1140.
                         1140.
                                  770.
                                          -400.
                                                   770}
03315
                                          -170.
                 300.
                          300.
                                  -60.
                                                   -60}
           . {
03316
03317
                  600,
                          600,
                                  240,
                                          -110,
                                                   240}
          , { {
03318
                 600,
                          600,
                                  240,
                                          -110,
                                                   240}
           , {
                290,
-780,
03319
                          290,
                                  -70,
                                         -420,
                                                   -701
                         -780.
                                 1150.
                                                 -1150}
03320
                                         -1500.
03321
                 290,
                          290,
                                  -70,
                                          -420,
                                                   -70}
03322
03323
          , { {
                  310,
                          310,
                                   -50,
                                          -170,
                                                    -50}
03324
                 310,
                          310,
                                  -50,
                                          -400,
                                                   -50}
           -, ⊦
03325
                 300,
                          300.
                                  -60,
                                         -170,
                                                   -60}
                                          -400,
                                                   -501
03326
                 310.
                          310,
                                  -50,
03327
                 300.
                                          -170.
                          300,
                                  -60,
                                                   -60}
03328
03329
                1140,
                         1140,
                                  770,
                                          -420,
                                                   770}
           , { {
03330
                 -600,
                         -600,
                                  -970,
                                         -1320,
                                                  -970}
           , {
03331
                 290.
                          290.
                                  -70,
                                          -420.
                                                   -70}
                                  770,
03332
                1140,
                         1140.
                                          -830,
                                                   7701
                                  -70.
03333
                 290.
                          290.
                                          -420.
                                                   -701
03334
                  310,
                          310,
                                  -50,
                                          -170,
03335
                                                   -50}
          , { {
03336
                  310,
                          310,
                                  -50,
                                          -400,
                                                   -50}
           , {
03337
                 300,
                          300,
                                  -60,
                                          -170,
                                                   -60}
03338
                 310,
                          310,
                                  -50,
                                          -400,
                                                   -503
                                -1040,
                                                 -1040}
03339
                 -430.
                         -430.
                                        -1390,
03340
03341
03342
                 690,
                          690,
                                  470,
                                           690,
                                                   160}
         ,{{{
03343
                 150,
                          150,
                                  -60,
                                           150,
                                                  -370}
03344
                 -140.
                         -140.
                                 -360.
                                          -140.
                                                  -670}
03345
                 690.
                         690.
                                  470.
                                           690.
                                                   1603
03346
                 -140,
                         -140,
                                 -360,
                                          -140,
            , {
                                                  -670
03347
03348
                 150,
                          150,
                                  -60,
                                           150,
          , { {
03349
                 150,
                          150,
                                  -60,
                                           150,
                                                  -3701
           , {
03350
                -150,
                         -150,
                                 -370,
                                          -150,
                                                  -680}
03351
               -1210,
                        -1230.
                                -1210,
                                         -1230,
                                                 -15201
03352
                -150.
                         -150.
                                 -370.
                                          -150.
                                                  -6801
03353
03354
          , { {
                -140,
                         -140,
                                 -360,
                                          -140,
03355
                -140,
                         -140,
                                 -360,
                                          -140,
                                                  -670}
03356
                -140,
                         -140,
                                 -360,
                                         -140,
                                                  -670}
                -140,
03357
                         -140,
                                 -360,
                                          -140,
                                                  -670}
03358
                -140,
                         -140.
                                 -360.
                                          -140,
                                                  -6701
03359
03360
                 690,
                          690,
                                  470,
                                           690,
                                                   160}
          , { {
03361
               -1030,
                        -1050,
                                -1030,
                                         -1050,
                                                 -1340}
03362
                -150,
                         -150,
                                 -370,
                                          -150,
                                                  -680}
03363
                 690.
                          690.
                                  470.
                                           690.
                                                   1601
03364
                -150.
                         -150.
                                 -370.
                                          -150.
                                                  -6803
03365
                -140,
                         -140,
03366
                                 -360,
                                          -140,
                                                  -670}
          , { {
03367
                -140,
                         -140,
                                 -360,
                                          -140,
                                                  -670}
03368
                -140,
                         -140,
                                 -360,
                                         -140,
                                                  -670]
03369
                -140,
                        -140,
                                 -360,
                                         -140,
                                                  -6703
               -1120, -1120, -1340, -1120, -1650
03370
03371
```

```
03372
03373
         , { { {
                 780,
                        -580,
                                  770,
                                          780,
                                                  770}
03374
                 780,
                        -580,
                                  240,
                                           780,
                                                  240}
           , {
03375
                 480,
                        -640,
                                  -60,
                                          480,
                                                   -601
                                  770.
                                                   770}
03376
                 770.
                        -880.
                                           490.
03377
                 480.
                        -640.
                                  -60.
                                          480.
                                                   -60}
03378
03379
                 780,
                         -580,
                                  240,
                                           780,
                                                  240}
          , { {
03380
                 780,
                        -580,
                                  240,
                                          780,
                                                  240}
03381
                 470,
                        -890,
                                  -70,
                                           470,
                                                   -701
                       -1970.
               -1150,
                                 1150.
                                        -1860.
                                                -1150}
03382
03383
           , {
                 470.
                        -890.
                                  -70.
                                          470.
                                                  -701
03384
03385
                 490,
                         -640,
                                  -50,
                                           490,
                                                   -50}
          , { {
03386
           , {
                 490,
                        -880,
                                  -50,
                                          490,
                                                  -50}
03387
                 480,
                        -640,
                                  -60,
                                           480,
                                                  -60}
                                  -50.
03388
                 490.
                        -880.
                                          490.
                                                  -503
03389
                 480,
                                                   -60}
                        -640,
                                  -60,
                                          480,
03390
03391
                 770,
                        -890,
                                  770,
                                          470,
                                                   770}
          , { {
03392
                -970, -1790,
                                 -970,
                                        -1680,
                                                 -970}
03393
                 470,
                       -890.
                                  -70,
                                          470,
                                                  -703
                                  770,
                                                  7703
03394
                 770, -1300,
                                        -1190,
                 470,
                                  -70,
03395
           , {
                        -890,
                                          470,
                                                   -70
03396
03397
                 490,
                        -640,
                                  -50,
                                           490,
                                                   -50}
          , { {
03398
                 490,
                        -880,
                                  -50,
                                          490,
                                                  -50}
           , {
03399
                 480,
                        -640,
                                  -60,
                                          480,
                                                  -60}
                 490,
                                  -50,
03400
                        -880,
                                          490,
                                                  -501
               -1040, -1860,
03401
                               -1040.
                                        -1750.
                                                -1040}
03402
03403
03404
         , { { {
                 690,
                         690,
                                  470,
                                          690,
                                                  190}
03405
                 190,
                         150,
                                  -60,
                                          150,
                                                  190}
           , {
                -140,
03406
                        -140,
                                 -360,
                                         -140,
                                                 -3501
03407
                 690.
                         690.
                                 470.
                                          690.
                                                 -340}
03408
                -140,
                                 -360,
                                         -140,
                                                 -350}
                        -140,
03409
03410
          , { {
                 190,
                         150,
                                  -60,
                                          150.
                                                   190}
03411
                 190,
                         150,
                                  -60,
                                          150,
                                                  190}
          , {
03412
                -150,
                        -150,
                                 -370,
                                         -150,
                                                 -3601
               -1210,
                               -1210,
                       -1230,
                                                -1440}
03413
                                        -1230,
03414
               -150.
                        -150,
                                 -370,
                                         -150,
                                                 -3601
03415
                                 -360,
03416
                -140,
                         -140,
                                         -140,
          , { {
                                                  -340}
03417
           , {
                -140,
                        -140,
                                 -360,
                                         -140,
                                                 -340}
03418
                -140,
                        -140,
                                 -360,
                                         -140,
                                                 -350}
03419
                -140,
                        -140.
                                 -360,
                                         -140,
                                                 -3401
                -140,
                        -140.
03420
                                 -360.
                                         -140.
                                                 -3501
           . {
03421
                 690,
                          690,
                                  470,
03422
          , { {
                                           690,
                                                 -360}
03423
               -1030,
                       -1050,
                                -1030,
                                        -1050,
                                                -1260}
03424
                -150,
                        -150,
                                 -370,
                                         -150,
                                                 -360}
03425
                 690,
                         690,
                                  470,
                                          690,
                                                 -7703
03426
                -150,
                        -150.
                                 -370,
                                         -150.
                                                 -3601
03427
03428
                -140,
                        -140,
                                 -360,
                                         -140,
                                                  -340}
          , { {
03429
                -140,
                        -140,
                                 -360,
                                         -140,
                                                 -340}
          , {
03430
                -140,
                        -140,
                                 -360,
                                         -140,
                                                 -350}
03431
               -140,
                        -140,
                                -360,
                                         -140,
                                                 -3403
               -1120, -1120, -1340,
                                       -1120,
03432
                                                -13301
03433
03434
          }
03435
03436
        , { { { {
                1320,
                        1320,
                                  960,
                                          870,
                                                   9601
03437
                 850,
                         670,
                                  300,
                                          850,
                                                  300}
03438
                 720,
                         540.
                                  170,
                                           720,
                                                   1703
                1320,
                        1320.
                                  960.
                                          870.
03439
                                                   9601
03440
                         410,
                 590.
                                   40.
                                          590.
                                                   40}
           . {
03441
03442
                 850,
                          670,
                                  300,
                                          850,
                                                   3001
          , { {
03443
                 850,
                         670,
                                  300,
                                          850,
                                                  300}
           , {
03444
                 570,
                         390,
                                   20,
                                          570,
                                                   201
                -730,
                         -730,
03445
                                 1100.
                                                 -1100}
                                         1180.
03446
                 570,
                         390,
                                          570,
                                                   20}
                                   20,
03447
03448
                 720,
                          540,
                                  170,
                                           720,
                                                   170}
          , { {
03449
                 720,
                         540,
                                  170,
                                           720,
                                                  170}
           , {
03450
                 720.
                         540.
                                  170.
                                           720.
                                                  1703
03451
                 720.
                         540.
                                  170.
                                           720.
                                                  1703
03452
                 590,
                         410,
                                   40,
                                          590,
                                                   40}
           , {
03453
03454
                1320,
                         1320,
                                  960,
                                          870,
                                                   960}
          , { {
03455
               -1030,
                        -1030,
                                 1400,
                                          1480,
                                                 -1400}
           , {
03456
                 570,
                         390,
                                   20,
                                          570,
                                                   201
03457
                1320,
                        1320.
                                  960,
                                          870,
                                                   9601
03458
                 570.
                         390.
                                   20.
                                          570.
                                                    201
```

| 03459                   | }          |              |                |               |               |              |
|-------------------------|------------|--------------|----------------|---------------|---------------|--------------|
| 03460                   | , { {      | 720,         | 540,           | 170,          | 720,          | 170}         |
| 03461                   | , {        | 720,         | 540,           | 170,          | 720,          | 170}         |
| 03462                   | , {        | 280,         | 100,           | -260 <b>,</b> | 280,          | -260}        |
| 03463                   | , {        | 720,         | 540,           | 170,          | 720,          | 170}         |
| 03464                   | , {        | -160,        | -160,          | -760,         | -850,         | -760}        |
| 03465                   | }          |              |                |               |               |              |
| 03466                   | }          |              |                |               |               |              |
| 03467                   | ,{{{       | 1320,        | 1320,          | 960,          | 70,           | 960}         |
| 03468                   | , ( (      | 670,         | 670,           | 300,          | -40,          | 300}         |
|                         |            |              |                |               | 70,           |              |
| 03469                   | , {        | 540,         | 540,           | 170,          |               | 170}         |
| 03470                   | , {        | 1320,        | 1320,          | 960,          | -170,         | 960}         |
| 03471                   | , {        | 410,         | 410,           | 40,           | -60,          | 40}          |
| 03472                   | }          |              |                |               |               |              |
| 03473                   | , { {      | 670 <b>,</b> | 670,           | 300,          | -40,          | 300}         |
| 03474                   | , {        | 670,         | 670,           | 300,          | -40,          | 300}         |
| 03475                   | , {        | 390,         | 390,           | 20,           | -320,         | 20}          |
| 03476                   | , {        | -730,        | -730,          | -1100,        | -1450,        | -1100}       |
| 03477                   | , {        | 390,         | 390,           | 20,           | -320,         | 20}          |
| 03478                   |            | 550,         | 330,           | 20,           | 320,          | 20)          |
|                         | }          | E 4.0        | E 4.0          | 170           | 7.0           | 1701         |
| 03479                   | , { {      | 540,         | 540,           | 170,          | 70,           | 170}         |
| 03480                   | , {        | 540,         | 540,           | 170,          | -170,         | 170}         |
| 03481                   | , {        | 540,         | 540,           | 170,          | 70,           | 170}         |
| 03482                   | , {        | 540,         | 540,           | 170,          | -170,         | 170}         |
| 03483                   | , {        | 410,         | 410,           | 40,           | -60,          | 40}          |
| 03484                   | }          |              |                |               |               |              |
| 03485                   | , { {      | 1320,        | 1320,          | 960,          | -320,         | 960}         |
| 03486                   | , {        | -1030,       | -1030,         | -1400,        | -1750,        | -1400}       |
| 03487                   | , {        | 390,         | 390,           | 20,           | -320,         | 20}          |
|                         |            |              | 1320,          | 960,          |               |              |
| 03488                   | , {        | 1320,        |                |               | -640,         | 960}         |
| 03489                   | , {        | 390,         | 390,           | 20,           | -320,         | 20}          |
| 03490                   | }          |              |                |               |               |              |
| 03491                   | , { {      | 540,         | 540,           | 170,          | -170 <b>,</b> | 170}         |
| 03492                   | , {        | 540,         | 540,           | 170,          | -170,         | 170}         |
| 03493                   | , {        | 100,         | 100,           | -260,         | -370,         | -260}        |
| 03494                   | , {        | 540,         | 540,           | 170,          | -170,         | 170}         |
| 03495                   | , {        | -160,        | -160,          | -760 <b>,</b> | -1110,        | -760}        |
| 03496                   | }          | ,            | ,              | ,             | ,             | ,            |
| 03497                   |            |              |                |               |               |              |
|                         | }          | 070          | 070            | CEO           | 070           | 2401         |
| 03498                   | , { { {    | 870,         | 870,           | 650,          | 870,          | 340}         |
| 03499                   | , {        | 220,         | 220,           | 0,            | 220,          | -310}        |
| 03500                   | , {        | 90,          | 90,            | -130,         | 90,           | -440}        |
| 03501                   | , {        | 870,         | 870,           | 650 <b>,</b>  | 870,          | 340}         |
| 03502                   | , {        | -40,         | -40,           | -260,         | -40,          | -570}        |
| 03503                   | }          |              |                |               |               |              |
| 03504                   | , { {      | 220,         | 220,           | 0,            | 220,          | -310}        |
| 03505                   | , {        | 220,         | 220,           | 0,            | 220,          | -310}        |
| 03506                   | , {        | -60,         | -60,           | -280,         | -60,          | -590}        |
|                         |            | -1160,       | -1180,         |               | -1180,        | -1470}       |
| 03507                   | , {        |              |                | -1160,        |               |              |
| 03508                   | , {        | -60,         | -60,           | -280,         | -60,          | -590}        |
| 03509                   | }          |              |                |               |               |              |
| 03510                   | , { {      | 90,          | 90,            | -130,         | 90,           | -440}        |
| 03511                   | , {        | 90,          | 90,            | -130,         | 90,           | -440}        |
| 03512                   | , {        | 90,          | 90,            | -130,         | 90,           | -440}        |
| 03513                   | , {        | 90,          | 90,            | -130,         | 90,           | -440}        |
| 03514                   | , {        | -40,         | -40,           | -260,         | -40,          | -570}        |
| 03515                   | }          |              |                |               | •             | ,            |
| 03516                   | , { {      | 870,         | 870,           | 650,          | 870,          | 340}         |
| 03510                   |            | -1460,       | -1480,         | -1460,        |               | -1770}       |
|                         | , {        | -60,         |                |               |               |              |
| 03518                   | , {        | ,            | -60,           | -280,         | -60,          | -590}        |
| 03519                   | , {        | 870,         | 870,           | 650,          | 870,          | 340}         |
| 03520                   | , {        | -60,         | -60,           | -280,         | -60,          | -590}        |
| 03521                   | }          |              |                |               |               |              |
| 03522                   | , { {      | 90,          | 90,            | -130,         | 90,           | -440}        |
| 03523                   | , {        | 90,          | 90,            | -130,         | 90,           | -440}        |
| 03524                   | , {        | -350,        | -350,          | -570,         | -350,         | -880}        |
| 03525                   | , {        | 90,          | 90,            | -130,         | 90,           | -440}        |
| 03526                   | , {        | -850,        | -850,          | -1070,        | -850,         | -1380}       |
| 03527                   |            | 000,         | 000,           | 1070,         | 000,          | 1000,        |
|                         | , }        |              |                |               |               |              |
| 03528                   | }          | 0.00         | 410            | 0.00          | 0.50          | 0.001        |
| 03529                   | , { { {    | 960,         | -410,          | 960,          | 850,          | 960}         |
| 03530                   | , {        | 850,         | -520,          | 300,          | 850,          | 300}         |
| 03531                   | , {        | 720,         | -410,          | 170,          | 720,          | 170}         |
| 03532                   | , {        | 960,         | -650,          | 960,          | 720,          | 960}         |
| 03533                   | , {        | 590,         | -540,          | 40,           | 590,          | 40}          |
| 03534                   | }          |              | ·              | ·             | •             |              |
| 03535                   | , { {      | 850,         | -520,          | 300,          | 850,          | 300}         |
| 03536                   | , (        | 850,         | -520,          | 300,          | 850,          | 300}         |
|                         |            |              |                |               |               |              |
| 03537                   | , {        | 570,         | -800,          | 20,           | 570,          | 20}          |
| 03538                   | , {        | -1100,       | -1920,         | -1100,        | -1810,        | -1100}       |
| 03539                   | , {        | 570,         | -800,          | 20,           | 570,          | 20}          |
|                         | }          |              |                |               |               |              |
| 03540                   |            | 720          | -410,          | 170,          | 720,          | 170}         |
| 03540<br>03541          | , { {      | 720,         | 110,           |               |               |              |
|                         | ,{{<br>,{  | 720,         | -650,          | 170,          | 720,          | 170}         |
| 03541                   | , {        | 720,         |                |               | 720,<br>720,  | 170}         |
| 03541<br>03542<br>03543 | , {<br>, { | 720,<br>720, | -650,<br>-410, | 170,<br>170,  | 720,          | 170}<br>170} |
| 03541<br>03542          | , {        | 720,         | -650,          | 170,          |               | 170}         |

```
03546
03547
                 960,
                        -800,
                                  960,
                                          570,
                                                   960}
          , { {
03548
               -1400, -2220,
                                -1400,
                                        -2110,
                                                -1400}
           , {
03549
                 570,
                        -800,
                                   20,
                                          570,
                                                    201
03550
                 960.
                       -1120.
                                  960.
                                         1000.
                                                   9601
03551
                                                    20}
                 570.
                        -800.
                                   20.
                                          570.
03552
03553
                 720,
                         -650,
                                  170,
                                           720,
                                                   170}
          , { {
03554
                 720,
                         -650,
                                  170,
                                          720,
                                                   170}
          , {
03555
                 280,
                        -850,
                                 -260,
                                          280,
                                                  -260}
                                          720.
03556
                 720.
                        -650,
                                 170.
                                                  170}
03557
           , {
                -760.
                       -1590.
                                 -760.
                                         1470.
                                                  -7601
03558
03559
03560
         , { { {
                 870,
                          870,
                                  650,
                                          870,
                                                   250}
03561
                 250,
                          220,
                                    Ο,
                                          220,
                                                  250}
          , {
                                 -130,
                           90.
03562
                  90.
                                           90.
                                                 -1103
                 870,
                                 650,
03563
                          870,
                                          870,
                                                 -110}
03564
                 -40,
                          -40,
                                 -260,
                                           -40,
                                                  -240}
           , {
03565
03566
                 250,
                          220,
                                    Ο,
                                          220,
                                                   250}
          , { {
03567
           , {
                 250,
                          220,
                                    Ο,
                                          220,
                                                   250}
                                 -280,
                                                 -2601
03568
                 -60,
                          -60,
                                           -60,
03569
               -1160.
                        -1180.
                                -1160.
                                                 -13901
                                         1180.
03570
                 -60,
                          -60,
                                 -280,
                                          -60,
                                                  -260}
           , {
03571
03572
                  90,
                           90,
                                 -130,
                                            90,
                                                  -110}
          , { {
03573
                  90,
                           90,
                                 -130,
                                            90,
                                                 -110}
          , {
03574
                  90,
                           90,
                                -130,
                                            90,
                                                 -110}
03575
                  90.
                           90.
                                 -130,
                                           90.
                                                 -110}
03576
                 -40.
                          -40.
                                 -260.
                                           -40.
                                                  -2401
           . {
03577
03578
                 870,
                          870,
                                  650,
                                          870,
                                                 -260}
          , { {
03579
               -1460,
                       -1480,
                                -1460,
                                        -1480,
                                                -1690}
           , {
03580
                 -60,
                          -60,
                                 -280,
                                          -60,
                                                 -260}
                 870.
                          870.
                                                 -580}
03581
                                  650.
                                          870.
03582
                 -60,
                          -60,
                                 -280,
                                                 -260}
                                          -60,
03583
03584
          , { {
                   90,
                           90,
                                 -130,
                                            90,
                                                  -110}
03585
                  90,
                           90,
                                 -130,
                                            90,
                                                 -110}
          , {
03586
                -350,
                         -350.
                                -570,
                                         -350,
                                                 -5503
                           90,
                                -130,
                                           90,
                  90.
03587
                                                 -1101
                         -850.
03588
                -850.
                               -1070,
                                          -850.
                                                -10501
03589
03590
          }
03591
03592
        ,{{{{
                1320.
                        1320.
                                  960.
                                          870.
                                                   9601
03593
                 850,
                          670,
                                  540,
                                          850,
                                                   3001
          , {
                 720.
                          540.
                                           720.
                                                   170}
03594
                                  170.
03595
                1320,
                         1320,
                                          870,
                                                   960}
                                  960.
03596
                 590,
                          410,
                                   40,
                                          590,
                                                    40}
03597
03598
          , { {
                 850,
                          670,
                                  300,
                                          850,
                                                   3001
03599
                 850,
                          670,
                                  300,
                                          850,
                                                   3001
03600
                 570,
                          390.
                                          570,
                                                   201
                                   20.
                                 -870,
                                                  -870}
03601
                 -350,
                         -350,
                                          -960,
03602
                 570,
                          390,
                                   20,
                                          570,
03603
03604
                 720,
                          540,
                                  170,
                                           720,
                                                   170}
          , { {
03605
           , {
                 720,
                          540.
                                  170.
                                           720,
                                                   1703
                                          720,
03606
                 720.
                          540.
                                  170.
                                                   1703
03607
                 720,
                          540,
                                  170,
                                           720,
                                                   170}
03608
                 590,
                          410,
                                   40,
                                          590,
                                                    40}
           , {
03609
          , { {
03610
                1320,
                         1320,
                                  960,
                                          870,
                                                   9603
03611
                 540,
                         -100,
                                  540,
                                        -1050,
                                                  -810}
03612
                 570,
                          390.
                                   20,
                                          570,
                                                   201
                1320.
                         1320.
                                  960.
                                          870.
                                                   9601
03613
03614
                 570,
                          390.
                                   20.
                                          570.
                                                    201
           . {
03615
03616
                 720,
                          540,
                                  170,
                                          720,
                                                   170}
          , { {
03617
                 720,
                          540,
                                  170,
                                          720,
                                                   170}
           , {
03618
                 480,
                          300,
                                  -60,
                                          480,
                                                   -60}
                                  170.
03619
                 720.
                          540.
                                          720.
                                                   170}
                -160,
                                 -400,
                                          -230,
                                                  -760}
03620
                         -160,
03621
03622
03623
         , { { {
                1320,
                         1320,
                                  960,
                                           70,
                                                   960}
03624
                 670.
                          670.
                                  300.
                                           -40.
                                                   3003
                          540.
                                           70,
                                                   170}
03625
                 540.
                                  170.
                                          -170,
03626
                1320,
                         1320,
                                  960,
                                                   960}
03627
                 410,
                          410,
                                   40,
                                          -60,
                                                    40}
03628
03629
          , { {
                 670,
                          670,
                                  300,
                                          -40,
                                                   3001
03630
                 670,
                          670,
                                  300,
                                          -40,
                                                   3001
                          390,
                                         -320,
03631
                 390,
                                   20,
                                                    201
03632
                -730.
                         -730.
                               -1100,
                                        -1450,
                                                  -870}
```

| 03633<br>03634                                                                                                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 03634                                                                                                                                                                                                                                                             | , {                                       | 390,                                                                                                                                                                                                                                 | 390,                                                                                                                                                                                                                                      | 20,                                                                                                                                                                      | -320,                                                                                                                                                                                                                                 | 20}                                                                                                                               |
|                                                                                                                                                                                                                                                                   | }                                         | 030,                                                                                                                                                                                                                                 | 030,                                                                                                                                                                                                                                      | 201                                                                                                                                                                      | 020,                                                                                                                                                                                                                                  | 20,                                                                                                                               |
| 03635                                                                                                                                                                                                                                                             | , { {                                     | 540,                                                                                                                                                                                                                                 | 540,                                                                                                                                                                                                                                      | 170,                                                                                                                                                                     | 70,                                                                                                                                                                                                                                   | 170}                                                                                                                              |
| 03636                                                                                                                                                                                                                                                             | , {                                       | 540,                                                                                                                                                                                                                                 | 540,                                                                                                                                                                                                                                      | 170,                                                                                                                                                                     | -170,                                                                                                                                                                                                                                 | 170}                                                                                                                              |
| 03637                                                                                                                                                                                                                                                             | , {                                       | 540,                                                                                                                                                                                                                                 | 540,                                                                                                                                                                                                                                      | 170,                                                                                                                                                                     | 70,                                                                                                                                                                                                                                   | 170}                                                                                                                              |
| 03638                                                                                                                                                                                                                                                             | , {                                       | 540,                                                                                                                                                                                                                                 | 540,                                                                                                                                                                                                                                      | 170,                                                                                                                                                                     | -170,                                                                                                                                                                                                                                 | 170}                                                                                                                              |
| 03639                                                                                                                                                                                                                                                             | , {                                       | 410,                                                                                                                                                                                                                                 | 410,                                                                                                                                                                                                                                      | 40,                                                                                                                                                                      | -60,                                                                                                                                                                                                                                  | 40}                                                                                                                               |
| 03640                                                                                                                                                                                                                                                             | }                                         | ,                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                         | ,                                                                                                                                                                        | ,                                                                                                                                                                                                                                     | ,                                                                                                                                 |
| 03641                                                                                                                                                                                                                                                             | , { {                                     | 1320,                                                                                                                                                                                                                                | 1320,                                                                                                                                                                                                                                     | 960,                                                                                                                                                                     | -320,                                                                                                                                                                                                                                 | 960}                                                                                                                              |
| 03642                                                                                                                                                                                                                                                             | , {                                       | 10,                                                                                                                                                                                                                                  | -600,                                                                                                                                                                                                                                     | 10,                                                                                                                                                                      | -1320,                                                                                                                                                                                                                                | -970}                                                                                                                             |
| 03643                                                                                                                                                                                                                                                             | , {                                       | 390,                                                                                                                                                                                                                                 | 390,                                                                                                                                                                                                                                      | 20,                                                                                                                                                                      | -320,                                                                                                                                                                                                                                 | 20}                                                                                                                               |
| 03644                                                                                                                                                                                                                                                             |                                           | 1320,                                                                                                                                                                                                                                | 1320,                                                                                                                                                                                                                                     | 960,                                                                                                                                                                     | -640,                                                                                                                                                                                                                                 | 960}                                                                                                                              |
|                                                                                                                                                                                                                                                                   | , {                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                   |
| 03645                                                                                                                                                                                                                                                             | , {                                       | 390,                                                                                                                                                                                                                                 | 390,                                                                                                                                                                                                                                      | 20,                                                                                                                                                                      | -320,                                                                                                                                                                                                                                 | 20}                                                                                                                               |
| 03646                                                                                                                                                                                                                                                             | }                                         | F 4.0                                                                                                                                                                                                                                | F 40                                                                                                                                                                                                                                      | 170                                                                                                                                                                      | 170                                                                                                                                                                                                                                   | 1701                                                                                                                              |
| 03647                                                                                                                                                                                                                                                             | , { {                                     | 540,                                                                                                                                                                                                                                 | 540,                                                                                                                                                                                                                                      | 170,                                                                                                                                                                     | -170,                                                                                                                                                                                                                                 | 170}                                                                                                                              |
| 03648                                                                                                                                                                                                                                                             | , {                                       | 540,                                                                                                                                                                                                                                 | 540,                                                                                                                                                                                                                                      | 170,                                                                                                                                                                     | -170,                                                                                                                                                                                                                                 | 170}                                                                                                                              |
| 03649                                                                                                                                                                                                                                                             | , {                                       | 300,                                                                                                                                                                                                                                 | 300,                                                                                                                                                                                                                                      | -60,                                                                                                                                                                     | -170,                                                                                                                                                                                                                                 | -60}                                                                                                                              |
| 03650                                                                                                                                                                                                                                                             | , {                                       | 540,                                                                                                                                                                                                                                 | 540,                                                                                                                                                                                                                                      | 170,                                                                                                                                                                     | -170,                                                                                                                                                                                                                                 | 170}                                                                                                                              |
| 03651                                                                                                                                                                                                                                                             | , {                                       | -160,                                                                                                                                                                                                                                | -160,                                                                                                                                                                                                                                     | -400,                                                                                                                                                                    | -1110,                                                                                                                                                                                                                                | -760}                                                                                                                             |
| 03652                                                                                                                                                                                                                                                             | }                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                   |
| 03653                                                                                                                                                                                                                                                             | }                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                   |
| 03654                                                                                                                                                                                                                                                             | , { { {                                   | 870,                                                                                                                                                                                                                                 | 870,                                                                                                                                                                                                                                      | 650,                                                                                                                                                                     | 870,                                                                                                                                                                                                                                  | 340}                                                                                                                              |
| 03655                                                                                                                                                                                                                                                             | , {                                       | 540,                                                                                                                                                                                                                                 | 220,                                                                                                                                                                                                                                      | 540,                                                                                                                                                                     | 220,                                                                                                                                                                                                                                  | -310}                                                                                                                             |
| 03656                                                                                                                                                                                                                                                             | , {                                       | 90,                                                                                                                                                                                                                                  | 90,                                                                                                                                                                                                                                       | -130,                                                                                                                                                                    | 90,                                                                                                                                                                                                                                   | -440}                                                                                                                             |
| 03657                                                                                                                                                                                                                                                             | , {                                       | 870,                                                                                                                                                                                                                                 | 870,                                                                                                                                                                                                                                      | 650 <b>,</b>                                                                                                                                                             | 870,                                                                                                                                                                                                                                  | 340}                                                                                                                              |
| 03658                                                                                                                                                                                                                                                             | , {                                       | -40,                                                                                                                                                                                                                                 | -40,                                                                                                                                                                                                                                      | -260 <b>,</b>                                                                                                                                                            | -40,                                                                                                                                                                                                                                  | -570}                                                                                                                             |
| 03659                                                                                                                                                                                                                                                             | }                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                   |
| 03660                                                                                                                                                                                                                                                             | , { {                                     | 220,                                                                                                                                                                                                                                 | 220,                                                                                                                                                                                                                                      | 0,                                                                                                                                                                       | 220,                                                                                                                                                                                                                                  | -310}                                                                                                                             |
| 03661                                                                                                                                                                                                                                                             | , {                                       | 220,                                                                                                                                                                                                                                 | 220,                                                                                                                                                                                                                                      | 0,                                                                                                                                                                       | 220,                                                                                                                                                                                                                                  | -310}                                                                                                                             |
| 03662                                                                                                                                                                                                                                                             | , {                                       | -60,                                                                                                                                                                                                                                 | -60,                                                                                                                                                                                                                                      | -280,                                                                                                                                                                    | -60,                                                                                                                                                                                                                                  | -590}                                                                                                                             |
| 03663                                                                                                                                                                                                                                                             | , {                                       | -350,                                                                                                                                                                                                                                | -350,                                                                                                                                                                                                                                     | -940,                                                                                                                                                                    | -960,                                                                                                                                                                                                                                 | -1250}                                                                                                                            |
| 03664                                                                                                                                                                                                                                                             | , {                                       | -60,                                                                                                                                                                                                                                 | -60,                                                                                                                                                                                                                                      | -280,                                                                                                                                                                    | -60,                                                                                                                                                                                                                                  | -590}                                                                                                                             |
| 03665                                                                                                                                                                                                                                                             | }                                         | ,                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                         | ,                                                                                                                                                                        | ,                                                                                                                                                                                                                                     | ,                                                                                                                                 |
| 03666                                                                                                                                                                                                                                                             | , { {                                     | 90,                                                                                                                                                                                                                                  | 90,                                                                                                                                                                                                                                       | -130,                                                                                                                                                                    | 90,                                                                                                                                                                                                                                   | -440}                                                                                                                             |
| 03667                                                                                                                                                                                                                                                             | , {                                       | 90,                                                                                                                                                                                                                                  | 90,                                                                                                                                                                                                                                       | -130,                                                                                                                                                                    | 90,                                                                                                                                                                                                                                   | -440}                                                                                                                             |
| 03668                                                                                                                                                                                                                                                             | , {                                       | 90,                                                                                                                                                                                                                                  | 90,                                                                                                                                                                                                                                       | -130,                                                                                                                                                                    | 90,                                                                                                                                                                                                                                   | -440}                                                                                                                             |
| 03669                                                                                                                                                                                                                                                             | , {                                       | 90,                                                                                                                                                                                                                                  | 90,                                                                                                                                                                                                                                       | -130,                                                                                                                                                                    | 90,                                                                                                                                                                                                                                   | -440}                                                                                                                             |
| 03670                                                                                                                                                                                                                                                             | , {                                       | -40,                                                                                                                                                                                                                                 | -40,                                                                                                                                                                                                                                      | -260,                                                                                                                                                                    | -40,                                                                                                                                                                                                                                  | -570}                                                                                                                             |
| 03671                                                                                                                                                                                                                                                             | }                                         | ,                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                         | ,                                                                                                                                                                        | ,                                                                                                                                                                                                                                     | ,                                                                                                                                 |
| 03672                                                                                                                                                                                                                                                             | , { {                                     | 870,                                                                                                                                                                                                                                 | 870,                                                                                                                                                                                                                                      | 650,                                                                                                                                                                     | 870,                                                                                                                                                                                                                                  | 340}                                                                                                                              |
| 03673                                                                                                                                                                                                                                                             | , {                                       | 540,                                                                                                                                                                                                                                 | -100,                                                                                                                                                                                                                                     | 540,                                                                                                                                                                     | -1050,                                                                                                                                                                                                                                | -1340}                                                                                                                            |
| 03674                                                                                                                                                                                                                                                             | , {                                       | -60,                                                                                                                                                                                                                                 | -60,                                                                                                                                                                                                                                      | -280,                                                                                                                                                                    | -60,                                                                                                                                                                                                                                  | -590}                                                                                                                             |
| 03675                                                                                                                                                                                                                                                             | , {                                       | 870,                                                                                                                                                                                                                                 | 870,                                                                                                                                                                                                                                      | 650,                                                                                                                                                                     | 870,                                                                                                                                                                                                                                  | 340}                                                                                                                              |
| 03676                                                                                                                                                                                                                                                             | , {                                       | -60,                                                                                                                                                                                                                                 | -60,                                                                                                                                                                                                                                      | -280,                                                                                                                                                                    | -60,                                                                                                                                                                                                                                  | -590}                                                                                                                             |
| 03677                                                                                                                                                                                                                                                             | }                                         | -00,                                                                                                                                                                                                                                 | -00,                                                                                                                                                                                                                                      | -200,                                                                                                                                                                    | -00,                                                                                                                                                                                                                                  | -390}                                                                                                                             |
|                                                                                                                                                                                                                                                                   |                                           | 0.0                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                       | 120                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                   | 4401                                                                                                                              |
| 03678                                                                                                                                                                                                                                                             | , { {                                     | 90,                                                                                                                                                                                                                                  | 90,                                                                                                                                                                                                                                       | -130,                                                                                                                                                                    | 90,                                                                                                                                                                                                                                   | -440}                                                                                                                             |
| 03679                                                                                                                                                                                                                                                             | , {                                       | 90,                                                                                                                                                                                                                                  | 90,                                                                                                                                                                                                                                       | -130,                                                                                                                                                                    | 90,                                                                                                                                                                                                                                   | -440}                                                                                                                             |
| 03680                                                                                                                                                                                                                                                             | , {                                       | -140,                                                                                                                                                                                                                                | -140,                                                                                                                                                                                                                                     | -360,                                                                                                                                                                    | -140,                                                                                                                                                                                                                                 | -670}                                                                                                                             |
| 03681                                                                                                                                                                                                                                                             | , {                                       | 90,                                                                                                                                                                                                                                  | 90,                                                                                                                                                                                                                                       | -130,                                                                                                                                                                    | 90,                                                                                                                                                                                                                                   | -440}                                                                                                                             |
| 03682                                                                                                                                                                                                                                                             | , {                                       | -850 <b>,</b>                                                                                                                                                                                                                        | -850,                                                                                                                                                                                                                                     | -1070,                                                                                                                                                                   | -850,                                                                                                                                                                                                                                 | -1380}                                                                                                                            |
| 03683                                                                                                                                                                                                                                                             | }                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                   |
| 03684                                                                                                                                                                                                                                                             | }                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                   |
|                                                                                                                                                                                                                                                                   | •                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                   |
| 03685                                                                                                                                                                                                                                                             | ,{{{                                      | 960,                                                                                                                                                                                                                                 | -410,                                                                                                                                                                                                                                     | 960,                                                                                                                                                                     | 850,                                                                                                                                                                                                                                  | 960}                                                                                                                              |
| 03686                                                                                                                                                                                                                                                             | }},<br>},                                 | 850,                                                                                                                                                                                                                                 | -520,                                                                                                                                                                                                                                     | 300,                                                                                                                                                                     | 850,                                                                                                                                                                                                                                  | 300}                                                                                                                              |
| 03686<br>03687                                                                                                                                                                                                                                                    | ,{{{                                      | 850,<br>720,                                                                                                                                                                                                                         | -520,<br>-410,                                                                                                                                                                                                                            | 300,<br>170,                                                                                                                                                             |                                                                                                                                                                                                                                       | 300}<br>170}                                                                                                                      |
| 03686<br>03687<br>03688                                                                                                                                                                                                                                           | }},<br>},<br>},<br>},                     | 850,<br>720,<br>960,                                                                                                                                                                                                                 | -520,<br>-410,<br>-650,                                                                                                                                                                                                                   | 300,<br>170,<br>960,                                                                                                                                                     | 850,<br>720,<br>720,                                                                                                                                                                                                                  | 300}<br>170}<br>960}                                                                                                              |
| 03686<br>03687<br>03688<br>03689                                                                                                                                                                                                                                  | }},<br>},<br>},                           | 850,<br>720,                                                                                                                                                                                                                         | -520,<br>-410,                                                                                                                                                                                                                            | 300,<br>170,                                                                                                                                                             | 850,<br>720,                                                                                                                                                                                                                          | 300}<br>170}                                                                                                                      |
| 03686<br>03687<br>03688<br>03689<br>03690                                                                                                                                                                                                                         | , { { { { , { , { , { , { , { , { , { ,   | 850,<br>720,<br>960,<br>590,                                                                                                                                                                                                         | -520,<br>-410,<br>-650,<br>-540,                                                                                                                                                                                                          | 300,<br>170,<br>960,<br>40,                                                                                                                                              | 850,<br>720,<br>720,<br>590,                                                                                                                                                                                                          | 300}<br>170}<br>960}<br>40}                                                                                                       |
| 03686<br>03687<br>03688<br>03689                                                                                                                                                                                                                                  | ,{{{<br>,{<br>,{<br>,{<br>,{<br>,{<br>},{ | 850,<br>720,<br>960,<br>590,                                                                                                                                                                                                         | -520,<br>-410,<br>-650,                                                                                                                                                                                                                   | 300,<br>170,<br>960,<br>40,                                                                                                                                              | 850,<br>720,<br>720,                                                                                                                                                                                                                  | 300}<br>170}<br>960}<br>40}                                                                                                       |
| 03686<br>03687<br>03688<br>03689<br>03690                                                                                                                                                                                                                         | , { { { { , { , { , { , { , { , { , { ,   | 850,<br>720,<br>960,<br>590,<br>850,                                                                                                                                                                                                 | -520,<br>-410,<br>-650,<br>-540,                                                                                                                                                                                                          | 300,<br>170,<br>960,<br>40,                                                                                                                                              | 850,<br>720,<br>720,<br>590,<br>850,<br>850,                                                                                                                                                                                          | 300}<br>170}<br>960}<br>40}<br>300}<br>300}                                                                                       |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691                                                                                                                                                                                                                | ,{{{<br>,{<br>,{<br>,{<br>,{<br>,{<br>},{ | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,                                                                                                                                                                                 | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,                                                                                                                                                                                        | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,                                                                                                                       | 850,<br>720,<br>720,<br>590,                                                                                                                                                                                                          | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}                                                                                |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692                                                                                                                                                                                                       | \{\{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\      | 850,<br>720,<br>960,<br>590,<br>850,                                                                                                                                                                                                 | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,                                                                                                                                                                              | 300,<br>170,<br>960,<br>40,<br>300,<br>300,                                                                                                                              | 850,<br>720,<br>720,<br>590,<br>850,<br>850,                                                                                                                                                                                          | 300}<br>170}<br>960}<br>40}<br>300}<br>300}                                                                                       |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695                                                                                                                                                                            | , { { { , , { , , , } , } , } , } , } ,   | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,                                                                                                                                                                                 | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,                                                                                                                                                                                        | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,                                                                                                                       | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,                                                                                                                                                                                  | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}                                                                                |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694                                                                                                                                                                                     | \{\{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\      | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,                                                                                                                                                                                 | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,                                                                                                                                                                              | 300,<br>170,<br>960,<br>40,<br>300,<br>20,<br>-870,                                                                                                                      | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,                                                                                                                                                                                  | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}                                                                                |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695                                                                                                                                                                            | , { { { , , { , , , } , } , } , } , } ,   | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,                                                                                                                                                                                 | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,                                                                                                                                                                              | 300,<br>170,<br>960,<br>40,<br>300,<br>20,<br>-870,                                                                                                                      | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,                                                                                                                                                                                  | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}                                                                                |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696                                                                                                                                                                   | , { { { , { , { , { , { , { , { , { , {   | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>-870,                                                                                                                                                                        | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,<br>-800,                                                                                                                                                                     | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,                                                                                                       | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,                                                                                                                                                                        | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}<br>-870}<br>20}                                                                |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697                                                                                                                                                          | , { { { , { , { , { , { , { , { , { , {   | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>-870,<br>570,                                                                                                                                                                | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,                                                                                                                                                            | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,                                                                                                       | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,                                                                                                                                                                | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}<br>-870}<br>20}                                                                |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03698                                                                                                                                                 | , { { { , { , { , { , { , { , { , { , {   | 850,<br>720,<br>960,<br>590,<br>850,<br>570,<br>-870,<br>570,<br>720,                                                                                                                                                                | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,                                                                                                                                                   | 300,<br>170,<br>960,<br>40,<br>300,<br>20,<br>-870,<br>20,<br>170,                                                                                                       | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,                                                                                                                                                                | 300}<br>170}<br>960}<br>40}<br>300}<br>20}<br>-870}<br>20}                                                                        |
| 03686<br>03687<br>03688<br>03689<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03698                                                                                                                                                          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>-870,<br>570,<br>720,<br>720,                                                                                                                                                | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-410,                                                                                                                                          | 300,<br>170,<br>960,<br>40,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,                                                                                               | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,<br>720,<br>720,                                                                                                                                                | 300}<br>170}<br>960}<br>40}<br>300}<br>20}<br>-870}<br>20}<br>170}<br>170}                                                        |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03698                                                                                                                                                 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>-870,<br>570,<br>720,<br>720,<br>720,                                                                                                                                        | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-410,<br>-650,                                                                                                                                 | 300,<br>170,<br>960,<br>40,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,                                                                                       | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,<br>720,<br>720,<br>720,                                                                                                                                        | 300}<br>170}<br>960}<br>40}<br>300}<br>20}<br>-870}<br>20}<br>170}<br>170}<br>170}                                                |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03698<br>03699<br>03700                                                                                                                               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>-870,<br>570,<br>720,<br>720,<br>720,                                                                                                                                        | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-410,<br>-650,                                                                                                                                 | 300,<br>170,<br>960,<br>40,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,                                                                                       | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,<br>720,<br>720,<br>720,                                                                                                                                        | 300}<br>170}<br>960}<br>40}<br>300}<br>20}<br>-870}<br>20}<br>170}<br>170}<br>170}                                                |
| 03686<br>03687<br>03688<br>03689<br>03699<br>03691<br>03693<br>03693<br>03695<br>03696<br>03698<br>03699<br>03700<br>03701<br>03702<br>03703                                                                                                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>-870,<br>720,<br>720,<br>720,<br>720,<br>590,                                                                                                                                | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-410,<br>-650,<br>-540,                                                                                                               | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>40,                                                                        | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,                                                                                                                | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>-870}<br>20}<br>170}<br>170}<br>170}<br>40}                                        |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03698<br>03699<br>03700<br>03701                                                                                                                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>-870,<br>570,<br>720,<br>720,<br>720,<br>590,                                                                                                                                | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-410,<br>-540,                                                                                                                                 | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>170,<br>40,                                                                | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,                                                                                                                        | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}<br>-870}<br>20}<br>170}<br>170}<br>170}<br>40}                                 |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03700<br>03701<br>03701<br>03702<br>03703<br>03704                                                                                                             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,                                                                                                                                         | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-410,<br>-650,<br>-540,                                                                                                               | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>170,<br>170,<br>170,<br>40,<br>960,<br>-970,                                                                       | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>720,<br>590,                                                                                                                                | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}<br>-870}<br>20]<br>170}<br>170}<br>170}<br>40}                                 |
| 03686<br>03687<br>03688<br>03689<br>03690<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03698<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705                                                                                           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>720,<br>960,<br>960,                                                                                                                         | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-450,<br>-540,<br>-800,<br>-1790,<br>-800,                                                                                            | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>40,                                                                        | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>720,<br>590,                                                                                                                                | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>20}<br>-870}<br>170}<br>170}<br>170}<br>40}                                        |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03709<br>03701<br>03702<br>03703<br>03704<br>03705<br>03706                                                                                                    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>970,<br>570,<br>960,                                                                                                         | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-540,<br>-800,<br>-1790,<br>-800,<br>-120,                                                                                                     | 300,<br>170,<br>960,<br>40,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>170,<br>960,<br>-970,<br>20,<br>960,                                               | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1680,<br>570,<br>-1000,                                                                                                      | 300}<br>170}<br>960}<br>40}<br>300}<br>20}<br>-870}<br>20}<br>170}<br>170}<br>170}<br>40}<br>960}<br>-970}<br>20}                 |
| 03686<br>03687<br>03688<br>03689<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705<br>03706<br>03707                                                                                           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>970,<br>570,<br>960,                                                                                                         | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-540,<br>-800,<br>-1790,<br>-800,<br>-120,                                                                                                     | 300,<br>170,<br>960,<br>40,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>170,<br>960,<br>-970,<br>20,<br>960,                                               | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1680,<br>570,<br>-1000,                                                                                                      | 300}<br>170}<br>960}<br>40}<br>300}<br>20}<br>-870}<br>20}<br>170}<br>170}<br>170}<br>40}<br>960}<br>-970}<br>20}                 |
| 03686<br>03687<br>03688<br>03689<br>03699<br>03691<br>03693<br>03693<br>03695<br>03696<br>03697<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705<br>03705<br>03707<br>03708                                                                                  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>-870,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>-970,<br>570,                                                                                                       | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-540,<br>-800,<br>-1790,<br>-800,<br>-120,<br>-800,                                                                                   | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>170,<br>170,<br>170,<br>40,<br>960,<br>-970,<br>20,<br>960,<br>20,                                        | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1680,<br>570,<br>-1000,<br>570,                                                                                    | 300} 170} 960} 40} 300} 300} 20} -870} 170} 170} 170} 40} 960} -970} 20} 960} 20}                                                 |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03692<br>03693<br>03693<br>03695<br>03696<br>03697<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705<br>03706<br>03707<br>03708                                                                                  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>970,<br>570,                                                                                                         | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-540,<br>-800,<br>-1790,<br>-800,<br>-1120,<br>-800,                                                                                  | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>870,<br>20,<br>170,<br>170,<br>170,<br>40,<br>960,<br>-970,<br>20,<br>960,<br>20,                                  | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1680,<br>570,<br>-1000,<br>570,                                                                            | 300}<br>170}<br>960}<br>40}<br>300}<br>20}<br>-870}<br>170}<br>170}<br>170}<br>40}<br>960}<br>-970}<br>20}<br>960}                |
| 03686<br>03687<br>03688<br>03689<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705<br>03706<br>03707<br>03708<br>03709<br>03710                                                                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>-970,<br>570,<br>720,<br>480,                                                                                                | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-540,<br>-800,<br>-1790,<br>-800,<br>-1120,<br>-800,<br>-650,<br>-640,                                                                | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>40,<br>960,<br>-970,<br>20,<br>960,<br>170,<br>170,<br>170,                | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,<br>720,<br>720,<br>720,<br>590,<br>-1680,<br>570,<br>-1000,<br>570,                                                                                    | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>-870}<br>20}<br>170}<br>170}<br>170}<br>40}<br>960}<br>-970}<br>20}<br>960}<br>20} |
| 03686 03687 03688 03699 03691 03692 03693 03694 03695 03698 03697 03700 03701 03702 03703 03704 03705 03708 03707 03708 03701                                                                                                                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>570,<br>960,<br>570,                                                                                                         | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-650,<br>-410,<br>-650,<br>-540,<br>-800,<br>-1790,<br>-800,<br>-1120,<br>-800,<br>-650,<br>-640,<br>-650,<br>-650,                                              | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>170,<br>170,<br>170,<br>40,<br>960,<br>-970,<br>20,<br>960,<br>20,<br>170,<br>170,                                 | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1000,<br>570,<br>-20,<br>720,<br>570,<br>-20,<br>720,<br>720,<br>720,<br>720,<br>720,<br>720,<br>720,<br>7 | 300} 170} 960} 40} 300} 300} 20} 170} 170} 170} 170} 20} 960} 20} 960} 20} 170} 1707 1707 1707 1707 1707 1707 17                  |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03692<br>03693<br>03693<br>03695<br>03696<br>03697<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705<br>03706<br>03707<br>03708<br>03708<br>03710<br>03711<br>03712<br>03711                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>-970,<br>570,<br>720,<br>480,                                                                                                | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-540,<br>-800,<br>-1790,<br>-800,<br>-1120,<br>-800,<br>-650,<br>-640,                                                                | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>40,<br>960,<br>-970,<br>20,<br>960,<br>170,<br>170,<br>170,                | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>570,<br>720,<br>720,<br>720,<br>590,<br>-1680,<br>570,<br>-1000,<br>570,                                                                                    | 300}<br>170}<br>960}<br>40}<br>300}<br>300}<br>-870}<br>20}<br>170}<br>170}<br>170}<br>40}<br>960}<br>-970}<br>20}<br>960}<br>20} |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03692<br>03693<br>03693<br>03695<br>03696<br>03699<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705<br>03707<br>03708<br>03707<br>03708<br>03707<br>03711<br>03712                                              | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>570,<br>960,<br>570,                                                                                                         | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-650,<br>-410,<br>-650,<br>-540,<br>-800,<br>-1790,<br>-800,<br>-1120,<br>-800,<br>-650,<br>-640,<br>-650,<br>-650,                                              | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>170,<br>170,<br>170,<br>40,<br>960,<br>-970,<br>20,<br>960,<br>20,<br>170,<br>170,                                 | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1000,<br>570,<br>-20,<br>720,<br>570,<br>-20,<br>720,<br>720,<br>720,<br>720,<br>720,<br>720,<br>720,<br>7 | 300} 170} 960} 40} 300} 300} 20} 170} 170} 170} 170} 20} 960} 20} 960} 20} 170} 1707 1707 1707 1707 1707 1707 17                  |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03692<br>03693<br>03694<br>03695<br>03696<br>03697<br>03701<br>03702<br>03703<br>03701<br>03705<br>03706<br>03707<br>03708<br>03707<br>03708<br>03707<br>03711<br>03711<br>03711<br>03711                            | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>590,<br>960,<br>-970,<br>570,<br>720,<br>480,<br>720,<br>720,<br>720,                                                                                | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-410,<br>-650,<br>-120,<br>-800,<br>-1790,<br>-800,<br>-650,<br>-640,<br>-650,<br>-650,<br>-650,                                      | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>20,<br>960,<br>-970,<br>20,<br>170,<br>170,<br>170,                        | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>850,<br>770,<br>-1370,<br>720,<br>720,<br>720,<br>590,<br>-1680,<br>570,<br>-1000,<br>570,<br>720,<br>480,<br>720,<br>720,                                                    | 300} 170} 960} 40} 300} 300} -870} 20} 170} 170} 170} 40} 960} -970} 20} 960} -60} 170} -760}                                     |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03693<br>03693<br>03695<br>03696<br>03697<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705<br>03707<br>03708<br>03707<br>03708<br>03711<br>03712<br>03713<br>03715<br>03715                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>-970,<br>570,<br>960,<br>20,<br>20,<br>20,<br>20,<br>30,<br>80,<br>80,<br>80,<br>80,<br>80,<br>80,<br>80,<br>80,<br>80,<br>8 | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-410,<br>-650,<br>-410,<br>-650,<br>-410,<br>-650,<br>-1790,<br>-800,<br>-1120,<br>-800,<br>-650,<br>-650,<br>-650,<br>-650,<br>-650,<br>-650,<br>-650,<br>-800, | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>20,<br>960,<br>-970,<br>20,<br>170,<br>170,<br>170,<br>60,<br>170,<br>170, | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1680,<br>570,<br>-1000,<br>570,<br>720,<br>720,<br>340,<br>570,                                                    | 300} 170} 960} 40} 300} 300} 20} 170} 170} 170} 170} 20] 960} 20] 960} 20] 170} 170] -60] 170]                                    |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03692<br>03693<br>03693<br>03695<br>03696<br>03697<br>03701<br>03702<br>03703<br>03704<br>03705<br>03706<br>03707<br>03708<br>03707<br>03708<br>03709<br>03711<br>03712<br>03713<br>03714<br>03715<br>03716<br>03716 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>570,<br>960,<br>570,<br>720,<br>720,<br>230,<br>570,                                                                         | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-800,<br>-410,<br>-650,<br>-410,<br>-650,<br>-1790,<br>-800,<br>-1120,<br>-800,<br>-120,<br>-640,<br>-650,<br>-640,<br>-650,<br>-540,                            | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>170,<br>170,<br>170,<br>40,<br>960,<br>-970,<br>20,<br>960,<br>20,<br>170,<br>-760,                                | 850,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1000,<br>570,<br>-20,<br>720,<br>480,<br>220,                                                                              | 300} 170} 960} 40} 300} 300] 20} -870} 170} 170} 170} 40} 960} -970} 20} 960} 20} 170} 1707 -60}                                  |
| 03686<br>03687<br>03688<br>03699<br>03691<br>03693<br>03693<br>03695<br>03696<br>03697<br>03700<br>03701<br>03702<br>03703<br>03704<br>03705<br>03707<br>03708<br>03707<br>03708<br>03711<br>03712<br>03713<br>03715<br>03715                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | 850,<br>720,<br>960,<br>590,<br>850,<br>850,<br>570,<br>720,<br>720,<br>720,<br>720,<br>590,<br>960,<br>-970,<br>570,<br>960,<br>20,<br>20,<br>20,<br>20,<br>30,<br>80,<br>80,<br>80,<br>80,<br>80,<br>80,<br>80,<br>80,<br>80,<br>8 | -520,<br>-410,<br>-650,<br>-540,<br>-520,<br>-520,<br>-800,<br>-1920,<br>-410,<br>-650,<br>-410,<br>-650,<br>-410,<br>-650,<br>-1790,<br>-800,<br>-1120,<br>-800,<br>-650,<br>-650,<br>-650,<br>-650,<br>-650,<br>-650,<br>-650,<br>-800, | 300,<br>170,<br>960,<br>40,<br>300,<br>300,<br>20,<br>-870,<br>20,<br>170,<br>170,<br>170,<br>20,<br>960,<br>-970,<br>20,<br>170,<br>170,<br>170,<br>60,<br>170,<br>170, | 850,<br>720,<br>720,<br>720,<br>590,<br>850,<br>850,<br>570,<br>-1370,<br>720,<br>720,<br>720,<br>590,<br>570,<br>-1680,<br>570,<br>-1000,<br>570,<br>720,<br>720,<br>340,<br>570,                                                    | 300} 170} 960} 40} 300} 300} 20} 170} 170} 170} 170} 20] 960} 20] 960} 20] 170} 170] -60] 170]                                    |

| 03720          | , {        | -40,         | -40,         | -260,          | -40,         | -240}          |
|----------------|------------|--------------|--------------|----------------|--------------|----------------|
| 03721          | }          | 0.50         | 000          | 0              | 222          | 0501           |
| 03722          | ,{{<br>,{  | 250,<br>250, | 220,<br>220, | 0,<br>0,       | 220,<br>220, | 250}<br>250}   |
| 03723          | , {        | -60 <b>,</b> | -60 <b>,</b> | -280,          | -60 <b>,</b> | -260}          |
| 03725          | , {        | -940,        | -960,        | -940,          | -960,        | -1360}         |
| 03726          | , {        | -60,         | -60,         | -280,          | -60,         | -260}          |
| 03727          | }          |              |              |                |              |                |
| 03728          | , { {      | 90,          | 90,          | -130,          | 90,          | -90}           |
| 03729          | , {        | 90,          | 90,          | -130,          | 90,          | -90}           |
| 03730<br>03731 | , {<br>, { | 90,<br>90,   | 90,<br>90,   | -130,<br>-130, | 90,<br>90,   | -110}<br>-110} |
| 03731          | , {        | -40,         | -40,         | -260,          | -40,         | -240}          |
| 03733          | }          | 10,          | 10,          | 200,           | 10,          | 210,           |
| 03734          | , { {      | 870,         | 870,         | 650,           | 870,         | -260}          |
| 03735          | , {        | -810,        | -1050,       | -1030,         | -1050,       | -810}          |
| 03736          | , {        | -60,         | -60,         | -280,          | -60,         | -260}          |
| 03737          | , {        | 870,         | 870,         | 650,           | 870,         | -580}          |
| 03738          | , {<br>}   | -60,         | -60,         | -280,          | -60,         | -260}          |
| 03740          | , { {      | 90,          | 90,          | -130,          | 90,          | -110}          |
| 03741          | , {        | 90,          | 90,          | -130,          | 90,          | -110}          |
| 03742          | , {        | -140,        | -140,        | -360,          | -140,        | -350}          |
| 03743          | , {        | 90,          | 90,          | -130,          | 90,          | -110}          |
| 03744          | , {        | -850,        | -850,        | -1070,         | -850,        | -1050}         |
| 03745<br>03746 | }          |              |              |                |              |                |
| 03747          | }          |              |              |                |              |                |
| 03748          | }          |              |              |                |              |                |
| 03749          | ,{{{{{     | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03750          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03751          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03752          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03753          | , {<br>}   | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03755          | , { {      | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03756          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03757          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03758          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03759          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03760          | }          | TNE          | TNE          | TNE            | TNE          | TNE            |
| 03761<br>03762 | ,{{<br>,{  | INF,         | INF,<br>INF, | INF,<br>INF,   | INF,         | INF }<br>INF } |
| 03762          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03764          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03765          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03766          | }          |              |              |                |              |                |
| 03767          | , { {      | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03768          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03769          | , {<br>, { | INF,         | INF,         | INF,<br>INF,   | INF,         | INF }<br>INF } |
| 03771          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03772          | }          |              |              |                |              |                |
| 03773          | , { {      | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03774          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03775<br>03776 | , {        | INF,         | INF,         | INF,<br>INF,   | INF,<br>INF, | INF }<br>INF } |
| 03777          | , {<br>, { | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03778          | }          |              | ,            | /              | ,            | 1111           |
| 03779          | }          |              |              |                |              |                |
| 03780          | , { { {    | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03781          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03782<br>03783 | , {        | INF,         | INF,         | INF,<br>INF,   | INF,         | INF }<br>INF } |
| 03783          | , {<br>, { | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03785          | }          |              |              | /              | ,            | 1111           |
| 03786          | , { {      | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03787          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03788          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03789          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03790          | , {<br>1   | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03791<br>03792 | }<br>,{{   | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03792          | , i i      | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03794          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03795          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03796          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03797          | }          | TATE         | TATE         | TATE           | T.100        | T.T.           |
| 03798<br>03799 | ,{{<br>,{  | INF,         | INF,<br>INF, | INF,<br>INF,   | INF,         | INF }<br>INF } |
| 03799          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03801          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03802          | , {        | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03803          | }          |              |              |                |              |                |
| 03804          | , { {      | INF,         | INF,         | INF,           | INF,         | INF }          |
| 03805<br>03806 | , {        | INF,         | INF,         | INF,<br>INF,   | INF,         | INF }<br>INF } |
| 00000          | , {        | INF,         | INF,         | TINE,          | TINE ,       | TINE }         |

| 03807          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 03808          | , {        | INF,         |              | INF,         |              |                |
| 03809          | }          | ,            | ,            | ,            | ,            | ,              |
| 03810          | }          |              |              |              |              |                |
| 03811          | ,{{{       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03812          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03813          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03814          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03815          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03816          | }          |              |              |              |              |                |
| 03817          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03818          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03819          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03820          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03821          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03822          | }          | TNE          | TME          | INF,         | TNE          | INF }          |
| 03823          | , { {      | INF,         | INF,         | INF,         | INF,<br>INF, | INF }          |
| 03825          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,         | INF,         | INF }          |
| 03826          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03827          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03828          | }          | TIVE ,       | TIVE ,       | TIVE ,       | TINE ,       | TIME           |
| 03829          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03830          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03831          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03832          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03833          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03834          | }          | ,            | ,            | ,            | ,            | ,              |
| 03835          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03836          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03837          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03838          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03839          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03840          | }          |              |              |              |              |                |
| 03841          | }          |              |              |              |              |                |
| 03842          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03843          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03844          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03845          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03846          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03847          | }          |              |              |              |              |                |
| 03848          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03849          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03850          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03851          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03852          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03853          | }          |              |              |              |              |                |
| 03854          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03855          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03856          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03857<br>03858 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03859          | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03860          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03861          | , 11       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03862          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03863          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03864          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03865          | }          | ,            | ,            | ,            | ,            | ,              |
| 03866          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03867          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03868          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03869          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03870          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03871          | }          |              |              |              |              |                |
| 03872          | }          |              |              |              |              |                |
| 03873          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03874          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03875          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03876          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03877          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03878          | }          |              |              |              |              |                |
| 03879          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03880          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03881          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03882          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03883          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03884          | }          | TAIT         | TAIR         | TNIP         | TNIP         | T 3. T T .     |
| 03885          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03886          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03887          | , {        | INF,         | INF,<br>INF, | INF,         | INF,<br>INF, | INF )          |
| 03888          | , {        | INF,<br>INF, | INF,         | INF,<br>INF, | INF,         | INF }<br>INF } |
| 03889          | , {<br>}   | TIME,        | T 1AT, 1     | T INT, 1     | TINT, 1      | TIME }         |
| 03891          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03892          | , 11       | INF,         | INF,         | INF,         | INF,         | INF }          |
| 03893          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|                | , ,        | ,            | ,            | ,            | ,            | ,              |

```
, {
                                   INF.
                                                   INF,
                                                                    INF.
                                                                                    INF.
                                                                                                     INF }
03895
                                   INF,
                                                   INF,
                                                                   INF,
                                                                                    INF,
                                                                                                     INF }
                     , {
03896
                    , { {
03897
                                   TNF.
                                                   INF,
                                                                    TNF.
                                                                                    INF,
                                                                                                     TNF }
03898
                                   INF,
                                                   INF,
                                                                    INF,
                                                                                    INF,
                                                                                                     TNF }
03899
                                   INF.
                                                   INF.
                                                                    INF.
                                                                                     INF.
                                                                                                     INF }
                                                                                    INF,
03900
                                   INF,
                                                   INF,
                                                                    INF,
                                                                                                     INF
03901
                                   INF,
                                                   INF,
                                                                    INF,
                                                                                     INF,
                                                                                                     INF }
03902
03903
03904
                                   240, -780, -870,
03905
                ,{{{
                                                                                    240.
                                                                                                 -870}
                   , {
                                   190, -1060, -1060,
03906
                                                                                    190, -970}
                                   240, -780, -1010,
190, -870, -870,
03907
                                                                                    240, -1010}
03908
                                                                                    190,
                                                                                                -8701
03909
                                  130,
                                               -890, -1120,
                                                                                    130, -1120}
03910
03911
                    , { {
                                                                                                 -970}
                                   40, -1210, -1180,
                                                                                      40,
                                   40, -1210, -1210,
                                                                                      40, -970}
03912
                     , {
                               -270, -1520, -1520,
                                                                                  -270, -1520}
03913
                     , {
03914
                              -1180, -1420, -1180,
                                                                               -1250, -1180}
                       ,{ -270, -1520, -1520,
03915
                                                                                 -270, -1520]
03916
                                  190, -840, -1060,
190, -1060, -1060,
                                                                                    190, -1060}
190, -1060}
03917
                    , { {
03918
                     , {
                                   180, -840, -1070,
                                                                                    180, -1070}
03919
03920
                                   190, -1060, -1060,
                                                                                    190, -1060}
03921
                                 130,
                                              -890, -1120,
                                                                                    130, -1120}
03922
                    ,{{ -270, -870, -870,
03923
                                                                                 -270, -870
                     ,{ -1470, -1710, -1470, -1530, -1470}
,{ -270, -1520, -1520, -270, -1520}
03924
03925
03926
                                -870, -870, -870,
                                                                                  -870, -870}
                              -270, -1520, -1520,
03927
                                                                                  -270, -1520}
03928
                    , { {
                                  240, -780, -1010,
                                                                                    240, -1010}
03929
03930
                                  190, -1060, -1060,
                                                                                    190, -1060}
                    , {
                                  240, -780, -1010,
190, -1060, -1060,
                                                                                    240, -1010}
03931
                     , {
03932
                                                                                    190, -1060}
03933
                             -1680, -1790, -1850, -1680, -1850}
03934
03935
                             -590, -1050, -870, -590, -870}
-890, -1240, -1060, -890, -1060}
                  , { { {
03936
03937
                   , {
                               -590, -1190, -1010,
-870, -1050, -870,
                                                                                 -590, -1010}
-890, -870}
03938
03939
03940
                              -700, -1300, -1120,
                                                                                 -700, -1120}
03941
                    ,{{ -1030, -1370, -1210, -1030, -1210}, { -1030, -1370, -1210, -1030, -1210}, { -1340, -1700, -1520, -1340, -1520}
03942
03943
03944
                     ,{ -1250, -1600, -1420, -1250, -1420}
,{ -1340, -1700, -1520, -1340, -1520}
03945
03946
03947
                    ,{{ -650, -1240, -1060, -650, -1060}, { -890, -1240, -1060, -890, -1060}
03948
03949
                    , {
                               -650, -1250, -1070,
                                                                                 -650, -1070}
03950
03951
                               -890, -1240, -1060,
                                                                                 -890, -1060}
03952
                              -700, -1300, -1120,
                                                                                 -700, -1120}
03953
                    ,{{ -870, -1050, -870, -1340, -870}
03954
                    ,{\ -870, -1030, -870, -1340, -870},

,{\ -1530, -1890, -1710, -1530, -1710},

,{\ -1340, -1700, -1520, -1340, -1520},

,{\ -870, -1050, -870, -1940, -870},

,{\ -1340, -1700, -1520, -1340, -1520}
03955
03956
03957
03958
03959
                   ,{{ -590, -1190, -1010, , { -890, -1240, -1060, , { -590, -1190, -1010, , { -890, -1240, -1060,
03960
                                                                                  -590, -1010}
                                                                                 -890, -1060}
03961
                                                                                -590, -1010}
-890, -1060}
03962
03963
03964
                              -1680, -1790, -1850, -1680, -1850}
03965
03966
                  ,{{{ -870, -870, -870, -870, -870, -870}}, { -1060, -1060, -1060, -1060, -1060}
03967
03968
                      ,{ -1010, -1010, -1010, -1010, -1010, , , , -1010, -870, -870, -870, -870, -870, -870, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120, -1120,
03969
03970
03971
03972
03973
                    \{\{-1180, -1210, -1180, -1210, -1180\}
                     ,{ -1210, -1210, -1210, -1210, -1210}
,{ -1520, -1520, -1520, -1520, -1520}
03974
03975
                      ,{ -1180, -1420, -1180, -1420, -1180}
,{ -1520, -1520, -1520, -1520, -1520}
03976
03977
03978
03979
                   ,{{ -1060, -1060, -1060, -1060, -1060}, ,{ -1060, -1060, -1060, -1060, -1060, -1060}
03980
```

```
,{ -1070, -1070, -1070, -1070, -1070}
             ,{ -1060, -1060, -1060, -1060, -1060}
,{ -1120, -1120, -1120, -1120, -1120}
03982
03983
03984
            ,{{ -870, -870, -870, -870, -870, -870}, ,{ -1470, -1710, -1470, -1710, -1470}
03985
03986
             ,{ -1520, -1520, -1520, -1520, -1520}
,{ -870, -870, -870, -870, -870, -870}
03988
03989
             ,{ -1520, -1520, -1520, -1520, -1520}
03990
            ,{{ -1010, -1010, -1010, -1010, -1010}
03991
             ,{ -1060, -1060, -1060, -1060, -1060}
,{ -1010, -1010, -1010, -1010, -1010}
03992
03993
03994
                  -1060, -1060, -1060, -1060, -1060}
              ,{ -1850, -1850, -1850, -1850, -1850}
03995
03996
03997
                     240, -780, -870,
190, -1080, -1060,
           , { { {
03998
                                                    240, -870}
                                                    190, -1060}
03999
             , {
                     240, -780, -1010,
04000
                                                    240, -1010}
04001
                     190, -1080, -870,
                                                    190, -870}
                     130, -890, -1120,
04002
                                                    130, -1120}
04003
            , { {
                     40, -1220, -1210,
40, -1220, -1210,
04004
                                                     40, -1210}
40, -1210}
04005
            , {
                  -270, -1530, -1520, -270, -1520}
-1420, -1440, -1420, -1420, -1420}
04006
             , {
04007
04008
             ,{ -270, -1530, -1520,
                                                  -270, -1520}
04009
04010
            , { {
                     190, -840, -1060,
                                                    190, -1060}
                     190, -1080, -1060,
180, -840, -1070,
                                                    190, -1060}
180, -1070}
04011
             , {
04012
             , {
04013
                     190, -1080, -1060,
                                                    190, -1060}
04014
                     130,
                             -890, -1120,
                                                    130, -1120}
04015
            ,{{ -270, -1530, -870, -270, -870},
 ,{ -1710, -1720, -1710, -1710, -1710},
 ,{ -270, -1530, -1520, -270, -1520},
 ,{ -870, -2130, -870, -2120, -870}
04016
04017
04018
04019
04020
                   -270, -1530, -1520,
                                                 -270, -1520}
04021
            , { {
                    240, -780, -1010,
                                                    240. -10103
04022
                     190, -1080, -1060,
240, -780, -1010,
                                                    190, -1060}
240, -1010}
04023
             , {
04024
             , {
                     190, -1080, -1060,
                                                    190, -1060}
04025
04026
                  -1850, -1870, -1850, -1850, -1850}
04027
04028
           ,{{{ -870, -870, -870, -870, -970}}, { -970, -1060, -1060, -1060, -970}}, { -1010, -1010, -1010, -1010, -1010}, { -870, -870, -870, -870, -1060}, { -1120, -1120, -1120, -1120, -1120}
04029
04030
04032
04033
04034
            ,{{ -970, -1210, -1180, -1210, -970}},{ -970, -1210, -1210, -1210, -970}
04035
04036
             ,{ -1520, -1520, -1520, -1520, -1520}
04037
04038
             ,{ -1180, -1420, -1180, -1420, -1420}
04039
             ,{ -1520, -1520, -1520, -1520, -1520}
04040
            ,{{ -1060, -1060, -1060, -1060, -1060}
04041
            ,{ -1060, -1060, -1060, -1060, -1060}
,{ -1070, -1070, -1070, -1070, -1070}
04042
04043
             ,{ -1060, -1060, -1060, -1060, -1060}
,{ -1120, -1120, -1120, -1120, -1120}
04044
04045
04046
            ,{{ -870, -870, -870, -870, -1520}, 
,{ -1470, -1710, -1470, -1710, -1710}, 
,{ -1520, -1520, -1520, -1520, -1520}, 
,{ -870, -870, -870, -870, -2120}
04047
04048
04049
04051
             ,{ -1520, -1520, -1520, -1520, -1520}
04052
            ,{{ -1010, -1010, -1010, -1010, -1010}, 
,{ -1060, -1060, -1060, -1060, -1060}, 
,{ -1010, -1010, -1010, -1010, -1010}
04053
04054
04055
              ,{ -1060, -1060, -1060, -1060, -1060}
04056
04057
              ,{ -1850, -1850, -1850, -1850, -1850}
04058
04059
04060
         ,{{{
                     210, -870, -870,
                                                    210, -800}
04061
                                                    210, -800}
                     210, -1040, -1040,
04062
            , {
                   -240, -1490, -1490,
-160, -870, -870,
                                                  -240, -1490}
-160, -870}
04063
04064
                   -240, -1490, -1490,
                                                  -240, -1490}
04065
04066
04067
            . { {
                    210, -1040, -1040,
                                                    210, -800}
```

```
04069
04070
04071
                     ,{ -240, -1490, -1490,
                                                                             -240, -1490}
04072
04073
                    ,{{ -160, -1410, -1410,
                                                                               -160, -1410}
                             -160, -1410, -1410,
-460, -1490, -1710,
                                                                               -160, -1410}
                    , {
04075
                                                                              -460, -1710}
04076
                              -160, -1410, -1410,
                                                                               -160, -1410}
04077
                            -460, -1490, -1710,
                                                                               -460, -17101
04078
                    ,{{ -240, -870, -870, -240, -870}, -1520, -1520, -1520, -1520, -1520}
04079
04080
                            -240, -1490, -1490,
-870, -870, -870,
                                                                           -240, -1490}
-870, -870}
04081
04082
                            -240, -1490, -1490,
04083
                                                                              -240, -1490}
04084
04085
                    ,{{ -160, -1410, -1410,
                                                                              -160, -1410}
                             -160, -1410, -1410,
                                                                              -160, -1410}
                    , {
                              -770, -1800, -2020,
                                                                              -770, -2020}
04087
                     , {
04088
                              -160, -1410, -1410,
                                                                              -160, -1410}
                            -1520, -1640, -1700, -1520, -1700}
04089
04090
04091
                 ,{{{ -870, -1050, -870, -870, -870, } , { -870, -1220, -1040, -870, -1040} , { -1300, -1670, -1490, -1300, -1490} , { -870, -1050, -870, -1230, -870} , { -1300, -1640, -1490, -1300, -1490}
04092
04093
04094
04095
04096
04097
                   ,{{ -870, -1220, -1040, -870, -1040}, -870, -1040}
04098
04099
04100
                            -1320, -1670, -1490, -1320, -1490}
                     ,{ -2060, -2410, -2230, -2060, -2230}
04101
04102
                     ,{ -1320, -1670, -1490, -1320, -1490}
04103
                    ,{{ -1230, -1590, -1410, -1230, -1410}
04104
                    ,{ -1230, -1590, -1410, -1230, -1410}
,{ -1300, -1890, -1710, -1300, -1710}
04106
04107
                            -1230, -1590, -1410, -1230, -1410}
                      ,{ -1300, -1890, -1710, -1300, -1710}
04108
04109
                   ,{{ -870, -1050, -870, -1320, -870}, ,{ -1580, -1940, -1760, -1580, -1760}
04110
04111
                    ,{ -1320, -1670, -1490, -1320, -1490}
,{ -870, -1050, -870, -1940, -870}
04112
04113
04114
                     ,{ -1320, -1670, -1490, -1320, -1490}
04115
                   ,{{ -1230, -1590, -1410, -1230, -1410}, { -1230, -1590, -1410, -1230, -1410}, { -1610, -2200, -2020, -1610, -2020}
04116
04117
04118
                     ,{ -1230, -1590, -1410, -1230, -1410}
,{ -1520, -1640, -1700, -1520, -1700}
04119
04120
04121
04122
                 ,{{{ -870, -870, -870, -870, -870}}
04123
                   ,{ -1040, -1040, -1040, -1040, -1040}
                    ,{ -1490, -1490, -1490, -1490, -1490,
,{ -870, -870, -870, -870, -870,
,{ -1490, -1490, -1490, -1490, -1490}
04125
04126
04127
04128
                   ,{{ -1040, -1040, -1040, -1040, -1040}, , -1040, -1040}
04129
04130
                    ,{ -1490, -1490, -1490, -1490, -1490}
,{ -1990, -2230, -1990, -2230, -1990}
04131
04132
                     ,{ -1490, -1490, -1490, -1490, -1490}
04133
04134
                    ,{{ -1410, -1410, -1410, -1410, -1410}
04135
                    ,{ -1410, -1410, -1410, -1410, -1410}
,{ -1710, -1710, -1710, -1710, -1710}
04136
04137
04138
                            -1410, -1410, -1410, -1410, -1410}
                      ,{ -1710, -1710, -1710, -1710, -1710}
04139
04140
                    ,{{ -870, -870, -870, -870, -870,
04141
                    ,{ -1520, -1760, -1520, -1760, -1520}
04142
                     ,{ -1490, -1490, -1490, -1490, -1490, -1490, ,{ -870, -870, -870, -870, -870, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -1490, -
04143
04144
04145
04146
04147
                    , { { -1410, -1410, -1410, -1410, -1410 }
                    ,{ -1410, -1410, -1410, -1410, -1410}
,{ -2020, -2020, -2020, -2020, -2020}
04148
04149
                           -1410, -1410, -1410, -1410, -1410}
-1700, -1700, -1700, -1700, -1700}
04150
04151
04152
04153
                 ,{{{ 210, -1060, -870,
04154
                                                                              210, -870}
```

```
, {
                  210, -1060, -1040,
                                              210, -1040}
            ,{ -240, -1490, -1490, ,{ -160, -1420, -870,
                                             -240, -1490}
-160, -870}
04156
04157
04158
                -240, -1490, -1490,
                                             -240, -1490}
04159
                  210, -1060, -1040,
                                               210, -1040}
04160
           , { {
                  210, -1060, -1040,
                                               210, -1040}
04161
            , {
04162
                -240, -1510, -1490,
                                             -240, -1490]
04163
                -2230, -2250, -2230,
                                            -2230, -2230}
                -240, -1510, -1490,
04164
                                             -240, -14901
04165
           , {{ -160, -1420, -1410, , { -160, -1420, -1410,
                                             -160, -1410}
-160, -1410}
04166
04167
            , {
04168
                 -460, -1490, -1710,
                                             -460, -1710}
04169
                 -160, -1420, -1410,
                                             -160, -1410}
04170
                 -460, -1490, -1710,
                                             -460, -1710}
04171
           ,{{ -240, -1510,
                                   -870,
04172
                                             -240, -870
                -1760, -1770, -1760, -1760, -1760}
            , {
                 -240, -1510, -1490,
04174
                                             -240, -1490}
            , {
                 -870, -2130, -870,
-240, -1510, -1490,
04175
                                            -2120, -870]
04176
                                             -240, -1490]
04177
           , { { -160, -1420, -1410, } , { -160, -1420, -1410, }
04178
                                             -160, -1410}
-160, -1410}
04179
           , {
                 -770, -1800, -2020,
                                             -770, -2020}
04180
04181
                 -160, -1420, -1410,
                                             -160, -1410}
04182
                -1700, -1710, -1700, -1700, -1700}
04183
04184
          ,{{{ -800, -870, -870, -870, -800}
,{ -800, -1040, -1040, -1040, -800}
04185
04186
                -1490, -1490, -1490, -1490, -1490}
-870, -870, -870, -870, -1410}
04187
04188
04189
            ,{ -1490, -1490, -1490, -1490, -1490}
04190
           ,{{ -800, -1040, -1040, -1040, -800}, { -800, -1040, -1040, -1040, -800}
04191
04192
04193
            ,{ -1490, -1490, -1490, -1490, -1490}
04194
                -1990, -2230, -1990, -2230, -2230}
             ,{ -1490, -1490, -1490, -1490, -1490}
04195
04196
           ,{{ -1410, -1410, -1410, -1410, -1410, -1410}, ,{ -1410, -1410, -1410, -1410, -1410}
04197
04198
            ,{ -1710, -1710, -1710, -1710, -1710}
,{ -1410, -1410, -1410, -1410, -1410}
04199
04200
04201
            ,{ -1710, -1710, -1710, -1710, -1710}
04202
           ,{{ -870, -870, -870, -870, -1490}
04203
           ,{{ -870, -870, -870, -1490}},

,{ -1520, -1760, -1520, -1760, -1760},

,{ -1490, -1490, -1490, -1490, -1490},

,{ -870, -870, -870, -870, -2120},

,{ -1490, -1490, -1490, -1490, -1490}
04204
04205
04206
04207
04208
           ,{{ -1410, -1410, -1410, -1410, -1410}, ,{ -1410, -1410, -1410, -1410}
04209
04210
            ,{ -2020, -2020, -2020, -2020, -2020}
04211
04212
            ,{ -1410, -1410, -1410, -1410, -1410}
04213
                -1700, -1700, -1700, -1700, -1700}
04214
04215
           }
04216
04217
        ,{{{{
                 -710, -710, -710,
                                             -710, -710}
                -710, -710, -710,
-710, -1780, -1540,
-710, -1730, -1960,
-710, -710, -710,
-710, -1730, -1960,
                                             -710, -1540}
04218
           , {
                                             -710, -1960}
-710, -710}
-710, -1960}
04219
04220
04221
04222
           ,{{ -710, -1960, -1730, ,{ -890, -2140, -2140,
04223
                                             -710, -1730}
                                             -890, -1900}
04224
04225
                 -710, -1960, -1960,
                                             -710, -1960}
                -1730, -1970, -1730,
                                            -1800, -1730}
04226
04227
                -710, -1960, -1960,
                                             -710, -1960}
04228
04229
                 -710, -1730, -1960,
           , { {
                                             -710, -1960}
                 -710, -1960, -1960,
                                             -710, -1960}
04230
            , {
04231
                 -710, -1730, -1960,
                                             -710, -1960}
            , {
04232
                 -710, -1960, -1960,
                                             -710, -1960}
                                             -710, -19601
04233
                 -710, -1730, -1960,
04234
                -710, -710, -710, -710, -710}
-1540, -1780, -1540, -1610, -1540}
           ,{{ -710, -710, -710,
04235
04236
            , {
                -710, -1960, -1960,
-710, -710, -710,
                                            -710, -1960}
-710, -710}
04237
04238
04239
                -710, -1960, -1960,
                                             -710, -1960}
04240
04241
           ,{{ -710, -1730, -1960, -710, -1960}
```

```
,{ -710, -1960, -1960, -710, -1960}
,{ -710, -1730, -1960, -710, -1960}
,{ -710, -1960, -1960, -710, -1960}
04243
04244
           ,{ -1780, -1900, -1960, -1780, -1960}
04245
04246
04247
         ,{{{ -710, -890, -710, -1540, -710}}, { -1610, -1960, -1780, -1610, -1780}
04248
04249
           ,{ -1540, -2140, -1960, -1540, -1960}
,{ -710, -890, -710, -1780, -710}
04250
04251
           ,{ -1540, -1900, -1960, -1540, -1960}
04252
04253
          ,{{ -1780, -2140, -1960, -1780, -1960}
04254
          ,{ -1960, -2320, -2140, -1960, -2140}
04255
04256
           ,{ -1780, -2140, -1960, -1780, -1960}
04257
           ,{ -1800, -2150, -1970, -1800, -1970}
            ,{ -1780, -2140, -1960, -1780, -1960}
04258
04259
          ,{{ -1540, -2140, -1960, -1540, -1960}
04260
           ,{ -1780, -2140, -1960, -1780, -1960}
04261
           ,{ -1540, -2140, -1960, -1540, -1960}
,{ -1780, -2140, -1960, -1780, -1960}
04262
04263
           ,{ -1540, -2140, -1960, -1540, -1960}
04264
04265
          ,{{ -710, -890, -710, -1610, -710}
04266
          04267
04268
04269
04270
04271
          04272
04273
04274
           ,{ -1540, -2140, -1960, -1540, -1960}
04275
           ,{ -1780, -2140, -1960, -1780, -1960}
           ,{ -1780, -1900, -1960, -1780, -1960}
04276
04277
04278
         ,{{{ -710, -710, -710, -710, -710}}, { -1540, -1780, -1540, -1780, -1540}
04280
           ,{ -1960, -1960, -1960, -1960, -1960}
,{ -710, -710, -710, -710, -710}
04281
04282
           ,{ -1960, -1960, -1960, -1960, -1960}
04283
04284
          ,{{ -1730, -1960, -1730, -1960, -1730}
04285
          ,{ -2140, -2140, -2140, -2140, -2140}
,{ -1960, -1960, -1960, -1960, -1960}
04286
04287
04288
           ,{ -1730, -1970, -1730, -1970, -1730}
            ,{ -1960, -1960, -1960, -1960, -1960}
04289
04290
          ,{{ -1960, -1960, -1960, -1960, -1960}
04291
          ,{ -1960, -1960, -1960, -1960, -1960}
04292
           ,{ -1960, -1960, -1960, -1960, -1960}
,{ -1960, -1960, -1960, -1960, -1960}
04293
04294
04295
           ,{ -1960, -1960, -1960, -1960, -1960}
04296
          ,{{ -710, -710, -710, -710,
04297
           ,{ -1540, -1780, -1540, -1780, -1540}
04298
           ,{ -1960, -1960, -1960, -1960, -1960}
,{ -710, -710, -710, -710, -710}
04299
04300
            ,{ -1960, -1960, -1960, -1960, -1960}
04301
04302
          ,{{ -1960, -1960, -1960, -1960, -1960}, ,{ -1960, -1960, -1960, -1960, -1960}
04303
04304
           ,{ -1960, -1960, -1960, -1960, -1960}
,{ -1960, -1960, -1960, -1960, -1960}
04305
04306
04307
           ,{ -1960, -1960, -1960, -1960, -1960}
04308
04309
         ,{{{ -710, -1730, -710, -710, -710}}, { -710, -1800, -1780, -710, -1780}
04310
04311
                -710, -1730, -1960,
-710, -1970, -710,
                                         -710, -1960}
-710, -710}
04312
04313
                                         -710, -1960}
04314
               -710, -1730, -1960,
04315
          ,{{ -710, -1970, -1960,
                                          -710, -1960}
04316
                                          -890, -2140}
                -890, -2150, -2140,
04317
           , {
04318
                -710, -1970, -1960,
                                         -710, -1960}
           , {
04319
               -1970, -1990, -1970, -1970, -1970}
               -710, -1970, -1960,
                                         -710, -19601
04320
04321
                -710, -1730, -1960,
                                          -710, -1960}
04322
          , { {
                -710, -1970, -1960,
                                         -710, -1960}
04323
           , {
                -710, -1730, -1960,
-710, -1970, -1960,
                                         -710, -1960}
-710, -1960}
04324
04325
04326
               -710, -1730, -1960,
                                         -710, -1960}
04327
04328
          ,{{ -710, -1800, -710, -710, -710}
```

```
,{ -1780, -1800, -1780, -1780, -1780}
           ,{ -710, -1970, -1960, -710, -1960}
,{ -710, -1970, -710, -1960, -710}
04330
04331
04332
               -710, -1970, -1960,
                                        -710, -1960}
04333
          ,{{ -710, -1730, -1960,
                                         -710, -1960}
04334
                -710, -1970, -1960,
                                         -710, -1960}
          , {
04336
               -710, -1730, -1960,
                                         -710, -1960]
04337
                -710, -1970, -1960,
                                         -710, -1960}
               -1960, -1970, -1960, -1960, -1960}
04338
04339
04340
         ,{{{ -710, -710, -710, -710, -1780}
04341
          ,{ -1540, -1780, -1540, -1780, -1780}
04342
04343
           ,{ -1960, -1960, -1960, -1960, -1960}
           ,{ -710, -710, -710, -710, -1960}
,{ -1960, -1960, -1960, -1960, -1960}
04344
04345
04346
          ,{{ -1730, -1960, -1730, -1960, -1900}
          ,{ -1900, -2140, -2140, -2140, -1900}
04348
          ,{ -1960, -1960, -1960, -1960, -1960}
,{ -1730, -1970, -1730, -1970, -1970}
04349
04350
           ,{ -1960, -1960, -1960, -1960, -1960}
04351
04352
04353
          ,{{ -1960, -1960, -1960, -1960, -1960}
          ,{ -1960, -1960, -1960, -1960, -1960}
,{ -1960, -1960, -1960, -1960, -1960}
04354
04355
           ,{ -1960, -1960, -1960, -1960, -1960}
,{ -1960, -1960, -1960, -1960, -1960}
04356
04357
04358
          ,{{ -710, -710, -710, -710, -1780}
,{ -1540, -1780, -1540, -1780, -1780}
04359
04360
          ,{ -1960, -1960, -1960, -1960, -1960}
,{ -710, -710, -710, -710, -1960}
04361
04362
           ,{ -1960, -1960, -1960, -1960, -1960}
04363
04364
          ,{{ -1960, -1960, -1960, -1960, -1960}
04365
          ,{ -1960, -1960, -1960, -1960, -1960}
04366
04367
           ,{ -1960, -1960, -1960, -1960, -1960}
04368
              -1960, -1960, -1960, -1960, -1960}
            ,{ -1960, -1960, -1960, -1960, -1960}
04369
04370
04371
          }
04372
                                          360, -150}
360, -650}
04373
        , { { { {
                360,
                          -70, -150,
04374
                 360,
                         -70, -890,
          , {
04375
                -150, -1180, -1400,
                                         -150, -1400}
                                         -150, -150}
04376
                -150,
                       -150, -150,
               -150, -1180, -1400,
                                         -150, -1400}
04377
           . {
04378
                                          360, -650}
360, -650}
04379
          , { {
                 360,
                         -70, -890,
04380
                360,
                        -70, -890,
                                         -150, -1400}
04381
               -150, -1400, -1400,
           ,{ -1500, -1600, -1500, ,{ -150, -1400, -1400,
04382
                                        -1570, -1500}
                                         -150, -14001
04383
04384
          ,{{ -150, -1180, -1400,
04385
                                         -150, -1400}
04386
                -150, -1400, -1400,
                                         -150, -1400}
          , {
04387
                -150, -1180, -1400,
                                         -150, -1400}
                                         -150, -1400}
04388
                -150, -1400, -1400,
                                         -150, -1400}
04389
               -150, -1180, -1400,
04390
04391
          , { {
                -150, -150, -150,
                                         -150, -150}
04392
               -1670, -1910, -1670, -1740, -1670}
               -150, -1400, -1400,
-150, -150, -150,
-150, -1400, -1400,
                                         -150, -1400}
-150, -150}
-150, -1400}
04393
04394
04395
04396
04397
          ,{{ -150, -1180, -1400,
                                         -150, -1400}
                -150, -1400, -1400,
                                         -150, -1400}
04398
          , {
04399
                -150, -1180, -1400,
                                         -150, -1400}
                                         -150, -1400}
04400
               -150, -1400, -1400,
04401
              -1230, -1340, -1400, -1230, -1400}
04402
04403
                                -150,
                                          -30, -150}
-30, -890}
04404
                          -70,
         , { { {
                -30,
04405
                 -30,
                         -70,
                                -890,
          , {
                                        -990, -1400}
-1230, -150}
04406
                -990, -1580, -1400,
                -150, -330, -150,
04407
               -990. -1340. -1400.
                                         -990. -1400}
04408
           , {
04409
                                          -30, -890}
                                -890,
04410
                -30,
                          -70,
          , { {
                -30,
04411
                         -70, -890,
          , {
           ,{ -1230, -1580, -1400, -1230, -1400}
04412
           ,{ -1570, -1600, -1740, -1570, -1740}
,{ -1230, -1580, -1400, -1230, -1400}
04413
04414
04415
```

```
, { {
                 -990, -1580, -1400, -990, -1400}
           ,{ -1230, -1580, -1400, -1230, -1400}
,{ -990, -1580, -1400, -990, -1400}
04417
04418
            ,{ -1230, -1580, -1400, -1230, -1400}
04419
            ,{ -990, -1580, -1400, -990, -1400}
04420
04421
           ,{{ -150, -330, -150, -1230, -150}, { -1740, -2090, -1910, -1740, -1910}
04423
           ,{ -1230, -1580, -1400, -1230, -1400}, { -150, -330, -150, -1230, -150}
04424
04425
            ,{ -1230, -1580, -1400, -1230, -1400}
04426
04427
           ,{{ -990, -1340, -1400,
04428
                                           -990, -1400}
           ,{ -1230, -1580, -1400, -1230, -1400}
04429
04430
           ,{ -990, -1580, -1400, -990, -1400}
           ,{ -1230, -1580, -1400, -1230, -1400}
,{ -1230, -1340, -1400, -1230, -1400}
04431
04432
04433
04434
                                           -150, -150}
-890, -890}
04435
         ,{{{ -150, -150, -150,
                -890, -890, -890,
04436
           , {
           ,{ -1400, -1400, -1400, -1400, -1400}
04437
04438
               -150,
                         -150,
                                 -150,
                                           -150,
                                                   -1501
            ,{ -1400, -1400, -1400, -1400, -1400}
04439
04440
           ,{{ -890,
                                  -890,
                                           -890, -890}
-890, -890}
04441
                         -890,
04442
           ,{ -890, -890, -890,
           ,{ -1400, -1400, -1400, -1400, -1400}
04443
            ,{ -1500, -1740, -1500, -1740, -1500}
,{ -1400, -1400, -1400, -1400, -1400}
04444
04445
04446
04447
           ,{{ -1400, -1400, -1400, -1400, -1400}
04448
           ,{ -1400, -1400, -1400, -1400, -1400}
            ,{ -1400, -1400, -1400, -1400, -1400}
04449
            ,{ -1400, -1400, -1400, -1400, -1400}
,{ -1400, -1400, -1400, -1400, -1400}
04450
04451
04452
          ,{{ -150, -150, -150, -150, -150}, ,{ -1670, -1910, -1670}
04454
           ,{ -1400, -1400, -1400, -1400, -1400}
,{ -150, -150, -150, -150, -150}
04455
04456
            ,{ -1400, -1400, -1400, -1400, -1400}
04457
04458
04459
           ,{{ -1400, -1400, -1400, -1400, -1400}
           ,{ -1400, -1400, -1400, -1400, -1400}
,{ -1400, -1400, -1400, -1400, -1400}
04460
04461
            ,{ -1400, -1400, -1400, -1400, -1400}
,{ -1400, -1400, -1400, -1400, -1400}
04462
04463
04464
04465
                 360, -910, -150,
360, -910, -890,
                                             360, -150}
360, -890}
04466
         , { { {
04467
           , {
04468
                 -150, -1180, -1400,
                                            -150, -1400}
                                           -150,
04469
                 -150, -1420,
                                 -150,
                                                   -1503
               -150, -1180, -1400,
                                            -150, -1400}
04470
            , {
04471
                  360, -910,
                                             360, -890}
360, -890}
04472
           , { {
                                  -890.
04473
                  360, -910, -890,
           , {
                -150, -1420, -1400,
                                           -150, -1400}
04474
04475
               -1740, -3040, -1740,
                                          -1740, -1740}
                                           -150, -1400}
04476
            , {
               -150, -1420, -1400,
04477
04478
           ,{{ -150, -1180, -1400,
                                            -150, -1400}
                -150, -1420, -1400,
-150, -1180, -1400,
04479
                                            -150, -1400}
04480
                                            -150, -1400}
               -150, -1420, -1400,
-150, -1180, -1400,
                                           -150, -1400}
-150, -1400}
04481
04482
04483
           ,{{ -150, -1420, -150, ,{ -1910, -1930, -1910,
                                          -150, -150}
-1910, -1910}
04484
04485
                -150, -1420, -1400, -150, -1400}
-150, -1420, -150, -1400, -150}
04486
04487
                                           -150, -1400}
                -150, -1420, -1400,
04488
04489
           ,{{ -150, -1180, -1400,
04490
                                            -150, -1400}
                 -150, -1420, -1400,
                                            -150, -1400}
04491
           , {
04492
                 -150, -1180, -1400,
                                           -150, -1400}
           , {
04493
               -150, -1420, -1400, -150, -1400}
-1400, -1420, -1400, -1400, -1400}
04494
04495
            }
04496
                                           -150, -650}
-890, -650}
04497
         ,{{{ -150, -150, -150,
04498
                -650, -890, -890,
               -1400, -1400, -1400, -1400, -1400}
04499
            ,{ -150, -150, -150, -150, -1400}
,{ -1400, -1400, -1400, -1400, -1400}
04500
04501
04502
```

```
, { { -650, -890, 
, { -650, -890,
                              -890,
04504
                              -890,
                                      -890, -650}
          ,{ -1400, -1400, -1400, -1400, -1400}
04505
             -1500, -1740, -1500, -1740, -1740}
04506
04507
           ,{ -1400, -1400, -1400, -1400, -1400}
04508
04509
         , { { -1400, -1400, -1400, -1400, -1400}
04510
          ,{ -1400, -1400, -1400, -1400, -1400}
04511
             -1400, -1400, -1400, -1400, -1400}
          ,{ -1400, -1400, -1400, -1400, -1400}
04512
          ,{ -1400, -1400, -1400, -1400, -1400}
04513
04514
         ,{{ -150, -150,
04515
                             -150,
                                      -150, -1400}
04516
          ,{ -1670, -1910, -1670, -1910, -1910}
04517
          ,{ -1400, -1400, -1400, -1400, -1400}
04518
              -150,
                      -150,
                              -150,
                                      -150, -1400}
           ,{ -1400, -1400, -1400, -1400, -1400}
04519
04520
         ,{{ -1400, -1400, -1400, -1400, -1400}
04521
          ,{ -1400, -1400, -1400, -1400, -1400}
04522
04523
          ,{ -1400, -1400, -1400, -1400, -1400}
          ,{ -1400, -1400, -1400, -1400, -1400}
04524
           ,{ -1400, -1400, -1400, -1400, -1400}
04525
04526
04527
         }
04528
04529
       , { { { {
                940,
                        220,
                               220,
                                       940,
                                               220}
04530
                940,
                       -310,
                              -310,
                                       940,
                                               -70}
04531
                640,
                       -380,
                              -610,
                                        640,
                                              -610}
04532
                650.
                       220.
                               220.
                                        650.
                                              2201
04533
                640.
                       -380.
                                       640.
          . {
                               -610,
                                              -610}
04534
04535
                940,
                       -310,
                               -310,
                                        940,
                                               -70}
         , { {
04536
                940,
                       -310,
                              -310,
                                        940,
                                               -70}
          , {
04537
                630,
                      -620,
                              -620,
                                        630,
                                             -6201
             -1460, -1700, -1460,
                                       1520, -1460}
04538
04539
          , {
                630,
                       -620,
                              -620,
                                       630,
                                              -620}
04541
         , { {
                650.
                       -380,
                                -600.
                                        650.
                                              -600}
04542
                650,
                       -600,
                              -600,
                                        650,
                                              -600}
          , {
04543
                640,
                      -380,
                              -610,
                                        640,
                                              -6103
04544
                650.
                       -600,
                              -600,
                                        650,
                                              -600}
04545
                640.
                       -380,
                                              -610}
           , {
                               -610.
                                       640,
04546
04547
                630,
                        220,
                                220,
                                        630,
         , { {
                                               220}
          ,{ -1280,
04548
                      -1520,
                             -1280,
                                       1340,
                                             -1280}
04549
                630.
                       -620,
                               -620,
                                        630.
                                              -6201
04550
                220,
                       220.
                               220.
                                       220,
                                               2201
04551
                630.
                       -620.
                               -620.
                                              -6201
          . {
                                       630.
04552
                650,
                       -380,
04553
                               -600,
                                        650,
                                              -600}
         , { {
04554
                650,
                       -600,
                              -600,
                                        650,
                                              -600}
          , {
04555
                640,
                       -380,
                              -610,
                                        640,
                                              -610}
                      -600,
04556
                650,
                              -600,
                                       650,
                                              -6003
              -1410, -1530, -1590,
                                     -1410, -1590}
04557
04558
04559
04560
                220,
                         40,
                                220,
                                      -130,
                                               220}
        , { { {
04561
               -130,
                       -490,
                              -310,
                                      -130,
                                              -310}
04562
               -190,
                       -790.
                              -610,
                                      -190.
                                              -6103
04563
               220.
                         40.
                               220.
                                      -430.
                                              2201
                       -790,
04564
               -190,
                                      -190,
                                              -610}
          , {
                               -610,
04565
04566
              -130,
                       -490,
                               -310,
                                       -130,
         , { {
                                              -310}
04567
              -130,
                       -490,
                              -310,
                                      -130,
                                              -3101
          , {
04568
              -440,
                      -800,
                              -620,
                                      -440,
                                              -6201
04569
              -1520.
                      -1880. -1700.
                                     -1520,
                                             -17001
04570
          . {
              -440.
                       -800.
                              -620.
                                      -440,
                                              -6201
04571
04572
         , { {
               -190,
                       -780,
                                -600,
                                       -190,
04573
               -430,
                       -780,
                              -600,
                                      -430,
                                              -600}
04574
              -190,
                       -790,
                              -610,
                                      -190,
                                              -610}
          , {
04575
               -430,
                       -780,
                              -600,
                                      -430,
                                              -6003
                       -790.
04576
               -190.
                                      -190.
                               -610.
                                              -610}
04577
04578
                220,
                         40,
                                220,
                                       -440,
                                               220}
         , { {
04579
              -1340,
                      -1700,
                             -1520,
                                     -1340,
                                             -1520}
          , {
04580
               -440,
                       -800,
                              -620,
                                      -440,
                                              -620}
04581
                220.
                        40.
                               220.
                                      -850,
                                               2201
                       -800.
04582
               -440.
                                      -440.
                               -620.
                                              -6201
04583
04584
              -190,
                       -780,
                              -600,
                                      -190,
                                              -600}
         , { {
04585
               -430,
                       -780,
                              -600,
                                      -430,
                                              -600}
         , {
               -190,
04586
                       -790,
                              -610,
                                      -190,
                                              -6101
                      -780,
04587
              -430,
                              -600,
                                      -430,
                                             -600}
              -1410, -1530, -1590, -1410, -1590}
04588
04589
```

```
04591
         , { { {
                 220,
                         220,
                                 220,
                                         220,
                                                 220}
04592
                -310,
                        -310,
                                -310,
                                        -310,
                                                -310}
          , {
04593
                -610,
                        -610,
                                -610,
                                        -610,
                                                -610}
04594
                 220.
                        220.
                                 220.
                                         220.
                                                 2201
04595
                -610,
                        -610.
                                -610.
                                        -610.
                                                -610}
04596
04597
                -310,
                        -310,
                                -310,
                                        -310,
                                                -310}
          , { {
04598
                -310,
                        -310,
                                -310,
                                        -310,
                                                -310}
                       -620,
                                -620,
               -620,
04599
                                        -620,
                                                -6201
              -1460,
                       -1700.
                              -1460.
04600
                                       -1700.
                                               -1460}
04601
           , {
               -620,
                        -620.
                                -620.
                                        -620,
                                                -6201
04602
04603
                -600,
                        -600,
                                -600,
                                        -600,
                                                -600}
          , { {
04604
          , {
                -600,
                        -600,
                                -600,
                                        -600,
                                                -600}
04605
               -610,
                        -610,
                                -610,
                                        -610,
                                                -610}
04606
                -600.
                        -600.
                                -600.
                                        -600.
                                                -6001
04607
                -610,
                        -610,
                                -610,
                                        -610,
                                                -610}
04608
                                 220,
                 220,
                         220,
                                         220,
04609
          , { {
                                                 2201
04610
              -1280,
                       -1520,
                               -1280,
                                       -1520,
                                               -1280}
               -620,
04611
                       -620,
                                -620,
                                        -620,
                                                -6201
04612
                 220.
                        220,
                                 220,
                                         220,
                                                 2201
04613
                -620,
                        -620,
                                -620,
                                        -620,
                                                -6201
04614
                -600,
                        -600,
                                -600,
                                        -600,
                                                -600}
04615
          , { {
04616
                -600,
                        -600,
                                -600,
                                        -600,
                                                -600}
          , {
               -610,
04617
                        -610,
                                -610,
                                        -610,
                                                -610}
               -600,
04618
                        -600,
                                -600,
                                        -600,
                                                -6003
              -1590, -1590, -1590,
04619
                                       -1590,
                                               -1590}
04620
04621
04622
         , { { {
                 940,
                        -320,
                                 220,
                                         940,
                                                 220}
04623
                 940,
                        -320,
                                -310,
                                         940,
                                                -310}
          , {
04624
                 640,
                        -380,
                                -610,
                                         640,
                                                -610}
04625
                 650.
                        -620.
                                220.
                                         650.
                                                 2201
04626
                 640,
                        -380,
                                -610,
                                         640,
                                                -610}
04627
04628
          , { {
                 940,
                        -320,
                                -310,
                                         940,
                                                -310}
04629
                 940,
                        -320,
                                -310,
                                         940,
                                                -310}
                 630,
04630
                       -630,
                                -620,
                                         630,
                                                -6201
                              -1700,
                       -1710.
                                               -17001
04631
              -1700.
                                       -1700,
04632
           , {
                 630.
                        -630,
                                -620.
                                         630,
                                                -6201
04633
04634
                 650,
                        -380,
                                -600,
                                         650,
                                                -600}
          , { {
04635
           , {
                 650,
                        -620,
                                -600,
                                         650,
                                                -6001
04636
                 640.
                        -380,
                                -610,
                                         640.
                                                -610}
04637
                 650,
                        -620.
                                -600.
                                         650,
                                                -6001
04638
                 640.
                        -380.
                                         640.
                                                -610}
                                -610.
04639
                                 220,
04640
                 630,
                        -630,
                                         630,
                                                 220}
          , { {
04641
              -1520, -1530,
                              -1520,
                                       -1520,
                                               -1520}
04642
                 630,
                       -630,
                                -620,
                                         630,
                                                -620}
04643
                 220, -1040,
                                 220,
                                       -1030.
                                                 2201
04644
                 630.
                       -630,
                                -620.
                                         630.
                                                -6201
04645
04646
                 650,
                        -380,
                                -600,
                                         650,
                                                -600}
          , { {
04647
                 650,
                        -620,
                                -600,
                                         650,
                                                -600}
          , {
04648
                 640,
                        -380,
                                -610,
                                         640,
                                                -610}
                       -620,
04649
                 650,
                                -600.
                                         650,
                                                -6003
              -1590, -1600, -1590,
                                       -1590,
04650
                                               -15901
04651
04652
04653
                 220,
                         220,
                                 220,
                                         220,
         , { { {
                                                 -70
04654
                 -70,
                        -310,
                                -310,
                                        -310,
                                                 -703
          , {
04655
                -610,
                        -610,
                                -610,
                                        -610,
                                                -610}
04656
                 220.
                        220.
                                 220.
                                         220,
                                                -6003
                                                -610}
04657
                -610,
                        -610.
                                -610.
                                        -610.
04658
04659
          , { {
                 -70,
                        -310,
                                -310,
                                        -310,
04660
                -70,
                        -310,
                                -310,
                                        -310,
                                                 -70}
04661
               -620,
                        -620,
                                -620,
                                        -620,
                                                -6201
           , {
                       -1700,
              -1460,
04662
                              -1460,
                                       -1700,
                                               -1700}
04663
               -620,
                        -620,
                                -620.
                                        -620,
                                                -6201
04664
04665
                -600,
                        -600,
                                -600,
                                        -600,
                                                -600}
          , { {
04666
                -600,
                        -600,
                                -600,
                                        -600,
                                                -600}
          , {
04667
                -610,
                        -610,
                                -610,
                                        -610,
                                                -610}
04668
                -600,
                        -600.
                                -600.
                                        -600,
                                                -6001
04669
                -610.
                        -610.
                                -610.
                                                -610}
                                        -610.
04670
04671
                 220,
                         220,
                                 220,
                                         220,
                                                -620}
          , { {
                               -1280,
04672
               -1280,
                       -1520,
                                       -1520, -1520}
               -620,
04673
                        -620,
                                -620,
                                        -620,
                                               -6201
                 220,
04674
                        220,
                                220,
                                         220, -1030}
04675
                -620.
                        -620.
                                -620,
                                        -620,
                                               -6201
04676
```

```
, { {
04677
               -600,
                        -600,
                                -600,
                                        -600,
04678
                -600,
                        -600,
                                -600,
                                        -600,
                                                -600}
          , {
               -610,
04679
                        -610,
                                -610,
                                        -610,
                                                -6101
                                                -6001
04680
               -600,
                       -600,
                               -600,
                                        -600,
04681
               -1590, -1590, -1590,
                                       -1590,
                                               -15901
04682
04683
          }
04684
04685
        , { { { {
                1010.
                         410,
                                 410,
                                        1010.
                                                 410}
04686
                1010,
                        -240,
                                -240,
                                        1010,
                                                   0.1
          , {
                        -150,
                                                -370}
                                -370.
04687
                 880.
                                         880.
                 880.
                                                 410}
04688
                        410.
                                 410.
                                         880.
04689
                 750,
                        -280,
                                         750,
                                                -500}
                                -500,
04690
04691
          , { {
                1010,
                        -240,
                                -240,
                                        1010,
                                                    0 }
04692
                1010,
                        -240,
                                -240,
                                        1010,
                                                    0 }
                                                -5201
04693
                 730.
                        -520.
                                -520.
                                         730,
                                               -1410}
04694
                       -1650,
               -1410,
                               -1410,
                                        -1470,
04695
                 730,
                        -520,
                                -520,
                                         730,
                                                -520}
           , {
04696
04697
                 880,
                        -150,
                                -370,
                                          880,
                                                -370}
          , { {
04698
           , {
                 880,
                        -370,
                                -370,
                                          880,
                                                -370}
                        -150,
                                                -3701
04699
                 880,
                                -370,
                                         880,
04700
                                                -3701
                 880.
                        -370.
                                -370.
                                          880.
04701
                 750,
                        -280,
                                          750,
                                -500,
                                                -500}
04702
04703
                 730,
                         410,
                                 410,
                                          730,
                                                 410}
          , { {
04704
              -1710,
                       -1950,
                               -1710,
                                       -1770,
                                               -1710}
                 730,
04705
                        -520,
                                -520,
                                         730,
                                                -5201
04706
                 410.
                        410.
                                 410.
                                          410.
                                                 410}
04707
                 730.
                        -520.
                                -520,
                                          730.
                                                 -5201
           . {
04708
04709
                 880,
                        -370,
                                -370,
                                          880,
                                                -370}
          , { {
04710
                 880,
                        -370,
                                -370,
                                          880,
                                                -370}
          , {
04711
                 440,
                        -590,
                                -810,
                                          440,
                                                -810}
04712
                        -370,
                                -370,
                 880,
                                         880.
                                                -370}
04713
              -1140, -1250, -1310,
                                       -1140,
                                               -1310}
04714
04715
04716
         , { { {
                 410,
                         230,
                                 410,
                                          40,
                                                 410}
04717
                 -70,
                        -420.
                                -240.
                                         -70,
                                                -240}
           , {
                        -550,
                 40,
                                -370,
                                          40,
04718
                                                -3701
04719
                         230.
                 410.
                                 410.
                                         -200.
                                                 410}
04720
                 -90,
                        -680,
                                          -90,
                                -500,
                                                -500}
04721
04722
          , { {
                 -70,
                        -420,
                                -240,
                                          -70,
                                                 -240}
04723
                -70,
                        -420,
                                -240,
                                         -70,
                                                -240}
                -350,
                        -700.
                                        -350,
04724
                                -520,
                                                -5201
04725
               -1470,
                       -1830.
                               -1650.
                                       -1470,
                                               -1650}
04726
               -350,
                        -700.
                                                -5201
                                -520.
                                        -350.
           . {
04727
04728
                  40,
                        -550,
                                -370,
                                           40,
                                                -370}
          , { {
04729
          , {
                -200,
                        -550,
                                -370,
                                        -200,
                                                -370}
04730
                 40,
                        -550,
                                -370,
                                          40,
                                                -3701
04731
                -200.
                        -550,
                                -370,
                                         -200.
                                                -3701
04732
                 -90,
                        -680,
                                -500,
                                          -90,
                                                -500}
04733
04734
                 410,
                         230,
                                 410,
                                        -350,
                                                  410}
          , { {
04735
              -1770,
                       -2130,
                               -1950,
                                       -1770,
                                               -1950}
04736
               -350,
                        -700,
                                -520.
                                        -350,
                                                -5201
04737
                 410.
                         230.
                                 410.
                                        -670.
                                                 410}
04738
                -350,
                        -700,
           , {
                                -520,
                                        -350,
                                                -520
04739
04740
                -200,
                        -550,
                                -370,
                                         -200,
          , { {
                                                 -3701
04741
                -200,
                        -550,
                                -370,
                                        -200,
                                                -3701
          , {
04742
               -400,
                        -990,
                                -810,
                                        -400,
                                                -810}
04743
                -200,
                        -550,
                                -370,
                                        -200,
                                                -3701
04744
              -1140, -1250, -1310,
                                               -1310}
                                       -1140,
04745
04746
04747
         , { { {
                410,
                         410,
                                 410,
                                         410,
                                                 410}
04748
                -240,
                        -240,
                                -240,
                                        -240,
                                                -240}
           , {
04749
                -370,
                        -370,
                                -370,
                                        -370,
                                                -370}
04750
                 410.
                        410.
                                 410.
                                         410.
                                                 410}
04751
                -500,
                        -500,
                                -500,
                                        -500,
                                                -500}
04752
04753
                -240,
                        -240,
                                -240,
                                        -240,
                                                -240}
          , { {
04754
                -240,
                        -240,
                                -240,
                                        -240,
                                                -240}
04755
               -520,
                        -520.
                                -520.
                                        -520,
                                                -5201
04756
               -1410.
                       -1650.
                               -1410.
                                       -1650.
                                               -1410}
04757
                -520,
                        -520,
                                -520,
                                        -520,
                                                -520}
04758
04759
                -370,
                        -370,
                                -370,
                                        -370,
                                                 -370}
          , { {
04760
                -370,
                        -370,
                                -370,
                                        -370,
                                                -370}
          , {
04761
                -370,
                        -370,
                                -370,
                                        -370,
                                                -370}
04762
                        -370.
                                        -370,
                -370.
                                -370,
                                                -3701
04763
                -500.
                        -500.
                                -500.
                                        -500.
                                                -500}
```

```
04764
                                        410,
04765
                410,
                        410,
                                410,
         , { {
                                                410}
04766
              -1710,
                      -1950, -1710,
                                      -1950, -1710}
04767
               -520,
                       -520,
                               -520,
                                       -520,
                                              -520}
04768
                410.
                        410.
                                410.
                                        410,
                                                410}
04769
               -520.
                       -520.
                               -520.
                                       -520.
                                               -520}
04770
04771
               -370,
                       -370,
                               -370,
                                       -370,
                                               -370}
         , { {
04772
               -370,
                       -370,
                               -370,
                                       -370,
                                               -370}
          , {
04773
               -810,
                       -810,
                               -810,
                                       -810,
                                               -810}
04774
                       -370,
                               -370,
                                       -370,
                                               -370}
              -370.
04775
              -1310.
                      -1310.
                              -1310.
                                      -1310.
                                              -1310
04776
04777
04778
        , { { {
               1010,
                       -150,
                                410,
                                       1010,
                                                410}
04779
               1010,
                       -260,
                               -240,
                                       1010,
                                               -240}
                                               -3701
04780
                880.
                       -150.
                               -370.
                                        880.
04781
                880,
                       -390,
                                410,
                                        880,
                                               410}
                750,
                       -280,
                               -500,
                                        750,
                                               -500}
04783
04784
               1010,
                       -260,
                               -240,
                                       1010,
                                               -240}
         , { {
04785
               1010,
                       -260,
                               -240,
                                       1010,
                                               -2401
04786
                730,
                       -540,
                               -520,
                                        730,
                                              -5201
04787
              -1650.
                                       1650.
                      -1660.
                              -1650.
                                              -1650
04788
                730,
                       -540,
                               -520,
                                        730,
                                               -520}
          , {
04789
                                               -370}
04790
                880,
                       -150,
                               -370,
                                        880,
          , { {
04791
                880,
                       -390,
                               -370,
                                        880,
                                               -370}
          , {
04792
                880,
                       -150,
                               -370,
                                        880,
                                               -3701
04793
                880.
                       -390,
                               -370,
                                        880.
                                               -370}
04794
                750.
                       -280.
                                        750.
                                               -500}
           . {
                               -500.
04795
04796
                730,
                       -540,
                                410,
                                        730,
                                                410}
         , { {
          ,{ -1950,
04797
                      -1960, -1950,
                                      -1950,
                                              -1950}
04798
                730,
                       -540,
                               -520,
                                        730,
                                              -520}
04799
                410.
                       -860,
                                410.
                                       -840,
                                               410}
04800
                730,
                       -540,
                               -520,
                                        730,
                                               -520}
04801
04802
         , { {
                880,
                       -390,
                               -370,
                                        880,
04803
                880,
                       -390,
                               -370,
                                        880,
                                               -370}
          , {
04804
                440,
                       -590.
                               -810,
                                        440,
                                              -8103
                       -390,
                               -370,
04805
                880,
                                        880,
                                              -3701
           ,{ -1310, -1330, -1310.
04806
                                      -1310. -1310
04807
04808
04809
        , { { {
                410,
                        410,
                                410,
                                        410,
                                                  0 }
04810
                 0,
                       -240,
                               -240,
                                       -240,
                                                  0 }
               -370,
                                               -370}
04811
                       -370,
                               -370,
                                       -370,
                                               -370}
                410.
                       410.
                               410.
                                        410.
04812
04813
                       -500,
               -500.
                               -500.
                                               -500}
                                       -500.
           . {
04814
04815
                  Ο,
                       -240,
                               -240,
                                       -240,
                                                  0 }
         , { {
04816
          , {
                  0,
                       -240,
                               -240,
                                       -240,
                                                  0 }
               -520,
04817
                       -520,
                               -520,
                                       -520,
                                               -5201
              -1410,
                      -1650, -1410,
                                              -1650}
04818
                                      -1650.
04819
              -520,
                       -520,
                               -520,
                                       -520,
                                               -520}
           , {
04820
04821
               -370,
                       -370,
                               -370,
                                       -370,
                                               -370}
         , { {
04822
               -370,
                       -370,
                               -370,
                                       -370,
                                               -370}
          , {
04823
               -370,
                       -370.
                               -370.
                                       -370,
                                               -3701
04824
               -370.
                       -370.
                               -370.
                                       -370.
                                               -3701
04825
               -500,
                       -500,
                               -500,
                                       -500,
                                               -500}
           , {
04826
04827
                410,
                        410,
                                410,
                                        410,
         , { {
04828
              -1710,
                      -1950,
                              -1710,
                                      -1950,
                                              -19501
          , {
04829
              -520,
                       -520,
                               -520,
                                       -520,
                                              -520}
04830
                410,
                        410.
                                410,
                                        410,
                                               -840}
               -520,
04831
           . {
                       -520.
                               -520.
                                       -520.
                                               -5201
04832
04833
         , { {
               -370,
                       -370,
                               -370,
04834
               -370,
                       -370,
                               -370,
                                       -370,
                                               -370}
               -810,
04835
                       -810,
                               -810,
                                       -810,
                                               -810}
               -370,
04836
                       -370,
                               -370,
                                       -370,
                                               -3701
04837
              -1310, -1310, -1310,
                                      -1310, -1310}
04838
04839
          }
04840
04841
       , { { { {
               1010,
                        410,
                                410,
                                       1010,
                                                410}
04842
               1010,
                        -70.
                               -240.
                                       1010.
                                                  0.3
                       -150,
                               -370.
                                               -370}
04843
                880.
                                        880.
04844
                880,
                       410,
                                                410}
                                410,
                                        880,
04845
                750,
                       -280,
                               -500,
                                        750,
                                               -500}
           , {
04846
         , { {
04847
               1010,
                        -70,
                               -240,
                                       1010,
                                                  0 }
                        -70,
04848
               1010,
                               -240,
                                       1010,
                                                  0 }
                       -520,
                              -520,
                                               -5201
04849
                730,
                                        730,
04850
           , { -1180, -1420, -1180, -1250, -1180}
```

```
-520,
04851
           , {
                 730,
                                -520,
                                          730.
                                                 -520}
04852
          , { {
04853
                 880,
                        -150,
                                 -370,
                                          880,
                                                 -370}
                        -370,
                                                 -370}
04854
                 880,
                                -370,
                                          880,
04855
                 880.
                        -150.
                                -370.
                                          880,
                                                 -3701
04856
                 880,
                        -370,
                                -370,
                                                 -370}
                                          880.
04857
                 750,
                        -280,
                                 -500,
                                          750,
                                                 -500}
04858
04859
          , { {
                 730.
                         410,
                                  410,
                                          730,
                                                  410}
               -1280,
730,
04860
                       -1520,
                               -1280,
                                         1340,
                                                -1280}
04861
                        -520,
                                 -520.
                                          730.
                                                 -5201
04862
                 410.
                         410.
                                  410.
                                          410.
                                                  410}
04863
                 730,
                        -520,
                                 -520,
                                          730,
                                                 -520}
04864
04865
          , { {
                 880,
                        -370,
                                 -370,
                                          880,
                                                 -370}
04866
                 880,
                        -370,
                                -370,
                                          880,
                                                 -370}
           , {
                        -380.
                                                 -6103
04867
                 640.
                                -610.
                                          640.
                                -370,
                                                 -370}
04868
                 880,
                        -370,
                                          880,
04869
               -1140,
                       -1250,
                               -1310,
                                         1140,
                                                -1310}
04870
04871
         , { { {
04872
                 410,
                         230,
                                  410,
                                           40,
                                                  410}
                         -70,
                                                 -240}
04873
                 -30,
                                 -240,
                                          -30,
                        -550,
                                 -370.
                                           40,
                                                 -370}
04874
                  40.
04875
                 410,
                         230,
                                  410,
                                         -200,
                                                  410}
04876
                 -90,
                        -680,
                                 -500,
                                          -90,
                                                 -500}
04877
04878
                 -30,
                         -70,
                                 -240.
                                          -30,
                                                 -2403
          , { {
                         -70,
                 -30,
04879
                                -240,
                                          -30,
                                                 -240}
                        -700,
04880
           , {
                -350,
                                -520,
                                         -350,
                                                 -5201
04881
               -1250,
                       -1600.
                               -1420.
                                        -1250.
                                                -14201
04882
                -350,
                        -700,
                                 -520,
                                         -350,
                                                 -520}
04883
04884
          , { {
                  40,
                        -550,
                                 -370,
                                           40,
                                                 -370}
04885
                -200,
                        -550,
                                -370,
                                         -200,
                                                 -370}
                        -550.
                                -370,
                                                 -370}
04886
                 40.
                                          40,
                -200,
                                -370,
                                                 -370}
04887
                        -550,
                                         -200,
04888
                 -90,
                        -680,
                                 -500,
                                          -90,
                                                 -500}
04889
04890
          , { {
                 410,
                         230,
                                  410,
                                         -350,
                                                  410}
04891
               -1340,
                       -1700.
                               -1520.
                                        -1340,
                                                -1520}
                        -700,
04892
                -350.
                                                 -520}
                                 -520,
                                         -350,
04893
                 410.
                         230.
                                  410.
                                         -670.
                                                  410}
04894
                -350,
                        -700,
                                 -520,
                                         -350,
                                                 -520}
04895
04896
          , { {
                -190,
                        -550,
                                 -370,
                                         -190,
                                                 -370}
04897
                -200,
                        -550,
                                -370,
                                         -200,
                                                 -370}
                        -790,
04898
                -190,
                                -610,
                                         -190,
                                                 -610}
04899
                        -550,
                                -370,
                                         -200.
                                                 -370}
                -200.
04900
               -1140,
                       -1250, -1310,
                                                -1310}
                                        -1140,
04901
04902
04903
         , { { {
                 410,
                         410,
                                  410,
                                          410,
                                                  410}
04904
                -240,
                        -240,
-370,
                                 -240,
                                         -240,
                                                 -240}
04905
                -370,
                                 -370.
                                         -370,
04906
                 410,
                         410,
                                  410,
                                          410,
                                                  410}
04907
                -500,
                        -500,
                                 -500,
                                         -500,
                                                 -5001
04908
04909
                -240,
                        -240,
                                 -240,
                                         -240,
                                                 -240}
          , { {
04910
                -240.
                        -240.
                                -240.
                                         -240,
                                                 -240}
04911
                -520.
                        -520.
                                -520.
                                         -520.
                                                 -5201
04912
               -1180,
                       -1420,
                               -1180,
                                        -1420,
                                                -11801
04913
                -520,
                        -520,
                                 -520,
                                         -520,
                                                 -520}
           , {
04914
          , { {
04915
                -370,
                        -370,
                                 -370,
                                         -370,
                                                 -370}
04916
                -370,
                        -370,
                                -370,
                                         -370,
                                                 -370}
04917
                -370.
                        -370.
                                -370,
                                         -370,
                                                 -3701
                -370,
                        -370,
                                -370,
                                         -370,
                                                 -370}
04918
04919
                -500,
                        -500,
                                 -500.
                                         -500.
                                                 -500}
           . {
04920
04921
          , { {
                 410.
                         410,
                                  410,
                                          410,
                                                  410}
04922
               -1280,
                       -1520,
                               -1280,
                                        -1520,
                                                -1280}
           , {
04923
                -520,
                        -520,
                                 -520,
                                         -520,
                                                 -520}
04924
                 410.
                         410.
                                 410.
                                                  410}
                                          410.
04925
                -520,
                        -520,
                                 -520,
                                         -520,
                                                 -520
04926
04927
                -370,
                        -370,
                                 -370,
                                         -370,
                                                 -370}
          , { {
04928
                -370,
                        -370,
                                -370,
                                         -370,
                                                 -370}
04929
                -610,
                        -610,
                                -610,
                                         -610,
                                                 -6103
                        -370.
                                -370.
                                                 -370}
04930
                -370.
                                         -370.
04931
               -1310, -1310, -1310,
                                                -1310}
                                        -1310,
04932
04933
         , { { {
04934
                1010,
                        -150,
                                  410,
                                         1010,
                                                  410}
04935
           , {
                1010,
                        -260,
                                -240,
                                         1010,
                                                 -240}
                                 -370.
                                                 -3701
04936
                 880.
                        -150.
                                          880,
04937
                 880.
                        -390.
                                  410,
                                          880.
                                                  410}
```

```
-280,
                 750,
                                 -500,
                                           750,
                                                  -500}
           , {
04939
          , { {
04940
                1010,
                         -260,
                                 -240,
                                         1010,
                                                  -240}
                                                  -240}
04941
                1010,
                         -260,
                                 -240,
                                         1010,
04942
                 730,
                         -540,
                                 -520,
                                           730,
                                                  -5201
               -1420,
                        -1440,
                                -1420,
                                                 -1420}
04943
                                        -1420.
04944
                 730,
                         -540,
                                 -520,
                                           730,
           , {
04945
04946
                 880.
                         -150,
                                 -370,
                                           880,
                                                  -3701
          , { {
04947
                 880,
                        -390,
                                 -370,
                                           880,
                                                  -3701
           , {
                        -150.
                                                  -370}
04948
                 880.
                                 -370,
                                           880.
           , {
                                                  -370}
04949
                 880.
                         -390.
                                 -370.
           , {
                                           880.
04950
                 750,
                         -280,
                                 -500,
                                           750,
                                                  -500}
            , {
04951
04952
          , { {
                 730,
                         -540,
                                  410,
                                           730,
                                                   410}
04953
               -1520,
                        -1530,
                                -1520,
                                        -1520,
                                                 -1520}
                 730,
04954
                        -540.
                                 -520.
                                           730.
                                                 -5201
04955
                         -860,
                                  410,
                                                   410}
                 410,
                                          -840,
04956
                  730,
                         -540,
                                 -520,
                                           730,
                                                  -520}
           , {
04957
04958
                 880,
                         -380,
                                 -370,
                                           880,
                                                  -3701
          , { {
04959
           , {
                 880,
                        -390,
                                 -370,
                                           880,
                                                 -3701
04960
                 640,
                        -380,
                                 -610,
                                           640,
                                                  -610}
                 880,
                                           880,
04961
                        -390.
                                 -370.
                                                  -3701
04962
               -1310,
                       -1330, -1310,
                                        -1310,
                                                 -1310}
04963
04964
04965
         , { { {
                 410,
                          410,
                                  410.
                                           410.
                                                     0 }
04966
           , {
                  0,
                         -240,
                                 -240,
                                          -240,
                                                     0.1
                -370,
                                                  -370}
04967
                         -370.
                                 -370.
                                          -370.
04968
                 410.
                         410.
                                  410.
                                          410.
                                                  -370}
04969
                -500,
                         -500,
                                 -500,
                                          -500,
                                                  -500}
04970
04971
          , { {
                    Ο,
                         -240,
                                 -240,
                                          -240,
                                                     0 }
04972
                    Ο,
                         -240,
                                 -240,
                                         -240,
                                                     0 }
          , {
                -520.
                                                  -520}
04973
                         -520.
                                 -520.
                                         -520,
04974
               -1180,
                                -1180,
                                         -1420,
                                                 -1420}
                        -1420,
04975
                -520,
                         -520,
                                 -520,
                                         -520,
                                                  -520}
           , {
04976
04977
                -370,
                         -370,
                                 -370,
                                          -370,
                                                  -370}
          , { {
04978
                -370,
                        -370,
                                 -370,
                                         -370,
                                                  -3701
                        -370,
                                 -370,
                                         -370,
04979
                -370.
                                                  -3701
04980
                -370.
                         -370.
                                         -370.
                                                  -3701
                                 -370.
04981
                -500,
                         -500,
                                 -500,
                                          -500,
                                                  -500}
04982
04983
          , { {
                 410,
                          410,
                                  410,
                                           410,
                                                  -5201
04984
               -1280,
                        -1520,
                                -1280,
                                        -1520,
                                                 -1520}
04985
                -520,
                        -520,
                                 -520,
                                         -520,
                                                 -5201
                         410.
04986
                 410.
                                 410.
                                          410.
                                                  -840}
04987
                -520.
                         -520.
                                 -520.
                                                  -520}
                                          -520.
            . {
04988
04989
                -370,
                         -370,
                                 -370,
                                          -370,
                                                  -370}
          , { {
04990
          , {
                -370,
                        -370,
                                 -370,
                                         -370,
                                                  -370}
04991
                -610,
                        -610,
                                 -610,
                                         -610,
                                                  -610}
04992
                -370.
                        -370,
                                 -370,
                                         -370,
                                                  -370}
04993
               -1310, -1310, -1310,
                                        -1310,
                                                 -1310}
04994
04995
04996
         }
04997
04998 ,
                                           INF,
        {{{{{}
                 TNF.
                          TNF.
                                  INF.
                                                   TNF }
04999
                 INF,
                          INF,
                                  INF,
                                           INF,
                                                   INF }
           , {
05000
                  INF,
                          INF,
                                   INF,
                                           INF,
                                                   INF }
05001
                  INF,
                          INF,
                                                   INF]
                                   INF,
                                           INF,
05002
                 INF.
                          INF.
                                  INF.
                                           INF,
                                                   INF
05003
          , { {
05004
                 TNF.
                          TNF.
                                   INF.
                                           INF,
                                                   TNF
05005
                 INF.
           , {
                          INF.
                                  INF.
                                           INF.
                                                   INF }
05006
                 INF,
                          INF,
                                  INF,
                                           INF,
                                                   INF }
           , {
05007
                  INF,
                          INF,
                                   INF,
                                           INF,
                                                   INF }
05008
                 INF,
                          INF,
                                                   INF }
                                  INF,
                                           INF,
05009
          , { {
05010
                 INF,
                          INF,
                                  INF,
                                           INF,
                                                   TNF }
05011
                 INF.
                          INF.
                                  INF.
                                                   INF }
           , {
                                           INF,
05012
                                                   INF }
                 INF,
                          INF,
                                   INF,
                                           INF,
05013
                                                   INF]
                  INF.
                          INF.
05014
                 INF,
                          INF,
                                   INF,
                                           INF,
                                                   INF }
05015
                 INF,
                                  INF,
05016
          , { {
                          INF,
                                           INF,
                                                   TNF
                 TNF.
                          TNF.
                                                   TNF
05017
                                  INF.
                                           TNF.
           , {
05018
                 INF,
                                                   INF }
                          INF,
                                  INF,
                                           INF,
05019
                  INF,
                          INF,
                                   INF,
                                           INF,
                                                   INF }
05020
                                                   INF }
                  INF,
                          INF,
                                   INF,
                                           INF,
05021
05022
          , { {
                  INF.
                          INF.
                                  INF,
                                           INF,
                                                   TNF
05023
                 INF,
                          INF,
                                  INF,
                                           INF,
                                                   TNF!
05024
                  INF.
                          INF.
                                  INF.
                                           INF.
                                                   INF }
           . {
```

| 05025 | 1        | INF,  | INF,  | INF,  | INF,  | INF } |
|-------|----------|-------|-------|-------|-------|-------|
| 05026 | , {      | INF,  |       | INF,  |       |       |
| 05020 | , {<br>} | TIME, | TIME, | TIME, | TIME, | TIME  |
| 05027 | }        |       |       |       |       |       |
|       |          | TNIE  | TND   | TNE   | TAID  | TNID  |
| 05029 | , { { {  | INF,  | INF,  | INF,  | INF,  | INF } |
| 05030 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05031 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05032 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05033 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05034 | }        |       |       |       |       |       |
| 05035 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05036 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05037 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05038 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05039 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05040 | }        |       |       |       |       |       |
| 05041 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05042 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05043 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05044 |          |       |       |       |       |       |
|       | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05045 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05046 | }        |       |       |       |       |       |
| 05047 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05048 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05049 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05050 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05051 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05052 | }        |       |       |       |       |       |
| 05053 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05054 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05055 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05056 |          |       |       |       |       |       |
|       | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05057 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05058 | }        |       |       |       |       |       |
| 05059 | }        |       |       |       |       |       |
| 05060 | , { { {  | INF,  | INF,  | INF,  | INF,  | INF } |
| 05061 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05062 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05063 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05064 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05065 | }        | ,     | ,     | ,     | ,     | ,     |
| 05066 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05067 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05068 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
|       |          |       |       |       |       |       |
| 05069 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05070 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05071 | }        |       |       |       |       |       |
| 05072 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05073 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05074 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05075 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05076 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05077 | }        |       |       |       |       |       |
| 05078 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05079 | , {      | INF,  | INF,  | INF,  | INF,  | INF)  |
| 05080 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05081 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05082 |          | INF,  | INF,  | INF,  | INF,  | INF } |
|       | , {      | INF,  | INE,  | INF,  | INF,  | TINE  |
| 05083 | }        | TAIF  | TAID  | TATE  | TAID  | TAIT  |
| 05084 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05085 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05086 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05087 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05088 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05089 | }        |       |       |       |       |       |
| 05090 | }        |       |       |       |       |       |
| 05091 | , { { {  | INF,  | INF,  | INF,  | INF,  | INF } |
| 05092 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05093 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05094 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05095 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05096 | }        | ,     | /     | ,     | ,     |       |
| 05090 | , { {    | TNE   | TNE   | INF,  | INF,  | INF } |
|       |          | INF,  | INF,  |       |       |       |
| 05098 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05099 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05100 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05101 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05102 | }        |       |       |       |       |       |
| 05103 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05104 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05105 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05106 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05107 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05108 | }        |       | •     | •     | •     | ,     |
| 05109 | , { {    | INF,  | INF,  | INF,  | INF,  | INF } |
| 05110 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
| 05111 | , {      | INF,  | INF,  | INF,  | INF,  | INF } |
|       | , (      | ,     | ,     | /     | ,     |       |

| 05112          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
|----------------|-------------|---------------|----------------|----------------|-----------------|----------------|
| 05113          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05114<br>05115 | }<br>,{{    | TNE           | TME            | TNE            | TNE             | TME            |
| 05115          | , 11        | INF,<br>INF,  | INF,<br>INF,   | INF,           | INF,<br>INF,    | INF }<br>INF } |
| 05117          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05118          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05119          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05120          | }           |               |                |                |                 |                |
| 05121          | }           | TNE           | TND            | TNE            | TNE             | TNE            |
| 05122<br>05123 | , { { {     | INF,<br>INF,  | INF,<br>INF,   | INF,           | INF,            | INF }          |
| 05123          | , {<br>, {  | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05125          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05126          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05127          | }           |               |                |                |                 |                |
| 05128          | , { {       | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05129<br>05130 | , {<br>, {  | INF,<br>INF,  | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,    | INF }<br>INF } |
| 05130          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05132          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05133          | }           | •             |                |                | ·               |                |
| 05134          | , { {       | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05135          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05136          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05137<br>05138 | , {<br>, {  | INF,<br>INF,  | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,    | INF }<br>INF } |
| 05138          | }           | TIME,         | TIME,          | INF,           | INF,            | TIME           |
| 05140          | , { {       | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05141          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05142          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05143          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05144          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05145          | }           | TNE           | TND            | TND            | TNE             | TNE            |
| 05146<br>05147 | ,{{<br>,{   | INF,<br>INF,  | INF,<br>INF,   | INF,<br>INF,   | INF,<br>INF,    | INF }<br>INF } |
| 05147          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05149          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05150          | , {         | INF,          | INF,           | INF,           | INF,            | INF }          |
| 05151          | }           |               |                |                |                 |                |
| 05152          | }           |               |                |                |                 |                |
| 05153          | }           | 000           | 000            | 210            | 000             | 2101           |
| 05154<br>05155 | }}}},<br>}, | 800,<br>740,  | 200,           | -310,<br>-510, | 800,<br>740,    | -310}<br>-410} |
| 05156          | , {         | 800,          | 50,            | -450,          | 800,            | -450}          |
| 05157          | , {         | 740,          | 200,           | -310,          | 740,            | -310}          |
| 05158          | , {         | 690,          | -50,           | -560,          | 690,            | -560}          |
| 05159          | }           |               |                |                |                 |                |
| 05160          | , { {       | 600,          | -140,          | -630,          | 600,            | -410}          |
| 05161          | , {         | 600,          | -140,          | -650,          | 600,            | -410}          |
| 05162<br>05163 | ,{<br>,{    | 290,<br>-360, | -450,<br>-360, | -960,<br>-630, | 290,<br>-870,   | -960}<br>-630} |
| 05164          | , {         | 290,          | -450,          | -960,          | 290,            | -960}          |
| 05165          | }           | /             | ,              | ,              | /               | ,              |
| 05166          | , { {       | 740,          | 0,             | -510,          | 740,            | -510}          |
| 05167          | , {         | 740,          | 0,             | -510,          | 740,            | -510}          |
| 05168          | , {         | 740,          | 0,             | -510,          | 740,            | -510}          |
| 05169          | , {         | 740,          | 0,             | -510,          | 740,            | -510}          |
| 05170<br>05171 | , {<br>}    | 690,          | -50,           | -560,          | 690,            | -560}          |
| 05172          | , { {       | 290,          | 200,           | -310,          | 290,            | -310}          |
| 05173          | , {         | -640,         | -640,          | -910,          | -1150,          | -910}          |
| 05174          | , {         | 290,          | -450,          | -960,          | 290,            | -960}          |
| 05175          | , {         | 200,          | 200,           | -310,          | -310,           | -310}          |
| 05176          | , {         | 290,          | -450,          | -960,          | 290,            | -960}          |
| 05177          | }           | 000           | F 0            | 450            | 000             | 450)           |
| 05178<br>05179 | , { {       | 800,<br>740,  | 50,<br>0,      | -450,<br>-510, | 800,<br>740,    | -450}<br>-510} |
| 05179          | , {<br>, {  | 800,          | 50,            | -450,          | 800,            | -450}          |
| 05181          | , {         | 740,          | 0,             | -510,          | 740,            | -510}          |
| 05182          | , {         | -550,         | -550,          | -1300,         | -1300,          | -1300}         |
| 05183          | }           |               |                |                |                 |                |
| 05184          | }           |               |                |                |                 |                |
| 05185          | , { { {     | 200,          | 200,           | -310,          | -720,           | -310}          |
| 05186          | , {         | 0,            | 0,             | -510,          | -1020,          | -510}          |
| 05187<br>05188 | , {         | 50,<br>200,   | 50,<br>200,    | -450,<br>-310, | -720,<br>-1020, | -450}<br>-310} |
| 05188          | , {<br>, {  | -50 <b>,</b>  | -50,           | -510 <b>,</b>  | -1020 <b>,</b>  | -560}          |
| 05190          | }           | ٠٠,           | 50,            | 000,           | 550 <b>,</b>    | 2001           |
| 05191          | , { {       | -140,         | -140,          | -650,          | -1160,          | -650}          |
| 05192          | , {         | -140,         | -140,          |                | -1160,          | -650}          |
| 05193          | , {         | -450,         | -450,          |                | -1470,          | -960}          |
| 05194          | , {         | -360,         | -360,          | -870,          | -1380,          | -870}          |
| 05195          | , {         | -450,         | -450,          | -960,          | -1470,          | -960}          |
| 05196<br>05197 | }<br>,{{    | 0,            | 0,             | -510,          | -780,           | -510}          |
| 05197          | , (         | 0,            | 0,             | -510,          | -1020,          | -510}          |
|                | , ,         | .,            | .,             | .,             | .,              | ,              |

```
05199
           , {
                   Ο,
                           Ο,
                                -510,
                                        -780.
05200
                   0,
                           Ο,
                                -510, -1020,
                                                -510}
05201
                 -50,
                         -50,
                                -560,
                                       -830,
                                                -560]
05202
                 200.
                                -310, -1470,
05203
          , { {
                         200.
                                                -3101
05204
                -640,
                              -1150, -1660,
                                               -1150}
           , {
                        -640.
                                -960, -1470,
05205
                -450,
                        -450,
05206
                 200,
                         200,
                                -310, -2070,
                                                -3101
05207
                -450,
                        -450,
                                -960, -1470,
                                                -960}
05208
05209
          , { {
                  50,
                          50.
                                -450,
                                        -720.
                                                -450}
05210
                                -510, -1020,
                                                -510}
           , {
                   0.
                           0.
05211
                  50,
                          50,
                                -450,
                                        -720,
                                                -450}
05212
                   Ο,
                           Ο,
                                -510,
                                       -1020,
                                                -510]
05213
                -550,
                        -550,
                               -1300,
                                       -1810,
                                               -1300}
05214
05215
         , { { {
05216
               -310,
                        -310,
                                -310,
                                        -310,
                                                -310}
                                                -510}
                        -510,
05217
               -510,
                                -510,
                                        -510,
               -450,
                        -450,
05218
                                -450,
                                                -450}
                                        -450,
05219
               -310,
                        -310,
                                -310,
                                        -310,
                                                -310}
05220
               -560,
                        -560,
                                -560,
                                        -560,
                                                -560}
05221
               -630.
                                        -650,
05222
                        -650.
                                -630.
                                                -6301
          , { {
05223
               -650,
                        -650,
                                -650,
                                        -650,
                                                -650}
          , {
                -960,
                        -960,
                                -960,
                                                -960}
05224
                                        -960,
05225
               -630,
                        -870,
                                -630,
                                        -870,
                                                -6301
05226
               -960,
                        -960,
                                -960,
                                        -960,
                                                -9601
05227
05228
          , { {
               -510.
                        -510.
                                -510.
                                        -510.
                                                -510}
05229
               -510.
                        -510.
                                -510.
                                        -510.
                                                -510}
           , {
05230
               -510,
                        -510,
                                -510,
                                        -510,
                                                -510}
05231
                -510,
                        -510,
                                -510,
                                        -510,
                                                -510}
05232
               -560,
                        -560,
                                -560,
                                        -560,
                                                -560}
05233
               -310.
                        -310.
                                -310.
                                        -310.
                                                -310}
05234
          , { {
05235
               -910,
                       -1150,
                                -910,
                                                -910}
          , {
                                       -1150,
               -960,
                       -960,
                                -960,
                                                -960}
05236
                                        -960,
05237
               -310,
                        -310,
                                -310,
                                        -310,
                                                -310}
05238
               -960,
                        -960,
                                -960,
                                        -960,
                                                -960}
05239
          , { {
05240
               -450.
                        -450.
                                -450.
                                        -450.
                                                -450
               -510.
                        -510.
                                -510.
                                        -510.
                                                -510}
05241
05242
               -450,
                        -450,
                                -450,
                                        -450,
                                                -450}
                        -510,
                                -510,
05243
               -510,
                                                -510}
                                        -510,
05244
               -1300,
                       -1300,
                               -1300,
                                       -1300,
                                               -13001
05245
05246
         , { { {
                 800.
                        -550,
                                -310,
                                         800.
                                                -310}
05247
05248
                 740,
                        -850,
                                -510,
                                         740,
                                                -510}
           , {
05249
                 800,
                        -550,
                                -450,
                                         800,
                                                -450}
05250
                 740,
                        -850,
                                -310,
                                         740,
                                                -310}
05251
                 690,
                        -660,
                                -560,
                                         690,
                                                -560}
05252
                 600,
                        -990.
                                -650.
                                         600,
                                                -650}
05253
          , { {
05254
                 600,
                       -990,
                                -650,
                                         600,
                                                -650}
          , {
                 290, -1300,
                                -960,
                                         290,
                                                -960}
05256
                 870, -1210,
                                -870,
                                         -870,
                                                -870}
05257
                 290, -1300,
                                -960,
                                         290,
                                                -960}
05258
          , { {
                        -610.
                                         740.
05259
                 740.
                                -510.
                                                -510}
05260
                 740,
                        -850,
                                -510,
                                         740,
                                                -510}
          , {
05261
                 740,
                        -610,
                                -510,
                                         740,
                                                -510}
           , {
05262
                 740,
                        -850,
                                -510,
                                         740,
                                                -510}
05263
                 690,
                        -660,
                                -560,
                                         690,
                                                -5601
05264
                 290, -1300,
                                         290,
05265
          , { {
                                -310,
                                                -3101
                               -1150,
                                               -1150}
05266
              -1150, -1490,
                                        1150.
          , {
05267
                 290, -1300,
                                -960,
                                         290,
                                               -960}
           , {
05268
                -310, -1900,
                                -310,
                                        1560,
                                                -310}
05269
                 290, -1300,
                                -960,
                                         290,
                                                -960}
05270
05271
          , { {
                 800,
                        -550,
                                -450,
                                         800,
                                                -450}
                        -850,
05272
                 740.
                                -510,
                                         740,
                                                -510}
           , {
05273
                 800,
                        -550,
                                         800,
                                -450,
                                                -450}
05274
                 740,
                        -850,
                                -510,
                                         740,
                                                -510}
05275
               -1300,
                       -1640,
                              -1300,
                                       -1300,
                                               -1300}
05276
05277
05278
         , { { {
                        -310.
               -310.
                                -310.
                                        -310.
                                                -4101
                        -510,
                                                -410}
05279
               -410,
                                -510,
                                        -510,
05280
                -450,
                        -450,
                                -450,
                                        -450,
                                                -450}
05281
                -310,
                        -310,
                                -310,
                                        -310,
                                                -510}
05282
                -560,
                        -560,
                                -560,
                                        -560,
                                                -560]
05283
          , { {
                        -650,
                                -630.
                                        -650,
05284
               -410,
                                                -410}
05285
                -410.
                        -650,
                                -650,
                                        -650,
                                                -410}
```

```
-960,
                       -960,
                               -960,
                                       -960,
                                               -9601
05287
               -630,
                       -870,
                               -630,
                                       -870,
                                              -870}
05288
               -960.
                       -960,
                               -960,
                                      -960,
                                              -9601
05289
05290
         , { {
               -510.
                       -510.
                               -510.
                                       -510.
                                               -5101
05291
               -510,
                       -510.
                               -510,
                                       -510.
                                               -510}
                       -510,
                               -510,
                                              -510}
05292
               -510,
                                       -510,
05293
               -510,
                       -510,
                               -510,
                                      -510,
                                              -5101
05294
               -560,
                       -560,
                               -560,
                                       -560,
                                              -560}
05295
                       -310,
                                      -310,
05296
               -310.
                               -310.
                                              -9601
          , { {
05297
               -910, -1150,
                               -910.
                                     -1150, -1150}
          , {
05298
               -960,
                       -960,
                               -960,
                                      -960,
                                               -960}
05299
               -310,
                       -310,
                               -310,
                                       -310,
                                              -1560}
                                              -960}
05300
               -960,
                       -960,
                               -960,
                                      -960,
05301
               -450,
                               -450,
                                       -450,
                       -450.
                                              -4503
05302
         , { {
               -510,
                       -510,
                               -510,
                                              -510}
05303
                                      -510,
          , {
                       -450,
05304
               -450,
                               -450,
                                      -450,
                                              -450}
                                       -510,
05305
               -510,
                       -510,
                               -510,
05306
                      -1300,
                             -1300,
                                     -1300,
              -1300,
05307
05308
         }
05309
05310
       ,{{{{
                760,
                        200,
                               -310,
                                        760,
                                              -250}
                760,
                       -340,
                               -490,
                                              -250}
05311
                                        760,
          , {
05312
                310,
                       -430,
                               -940,
                                        310,
                                              -9401
05313
                400,
                       200,
                               -310,
                                        400,
                                              -3103
05314
                310,
                       -390,
                               -940,
                                        310,
                                              -940}
05315
05316
          , { {
                760,
                       -430.
                               -490.
                                        760,
                                              -250}
05317
                760,
                       -490,
                               -490,
                                        760,
                                              -250}
          , {
05318
                310,
                       -430,
                              -940,
                                        310,
                                              -9401
05319
              -1170,
                      -1170,
                             -1440,
                                      -1680,
                                              -1440}
05320
                310,
                       -430,
                              -940,
                                        310,
                                              -940}
05321
                400,
                       -340,
                              -850,
                                        400,
                                              -850}
05322
          , { {
                                              -850}
05323
                400,
                       -340,
                              -850,
                                        400,
          , {
                 90,
05324
                       -650,
                             -1160,
                                         90, -1160}
05325
                400,
                       -340,
                              -850,
                                        400,
                                              -8501
05326
                 90,
                       -650, -1160,
                                        90, -1160}
05327
         , { {
                        200.
                                        310.
05328
                310.
                               -310.
                                              -3101
05329
               -690,
                       -690,
                               -960, -1200,
                                              -960}
          , {
                               -940,
                       -430,
05330
                                       310,
                                              -940}
                310,
05331
                200,
                        200,
                               -310,
                                       -310,
                                              -3101
05332
                310.
                       -430,
                               -940,
                                       310,
                                              -940}
05333
         , { {
                400.
                       -340.
                               -850,
                                        400.
05334
                                              -8501
                400,
                       -340,
                               -850,
                                              -850}
05335
                                        400.
          , {
05336
                -220,
                       -960, -1470,
                                       -220, -1470}
05337
                400,
                       -340,
                             -850,
                                       400,
                                              -850}
05338
               -390,
                       -390, -1140, -1140, -1140}
05339
05340
        , { { {
05341
                200,
                        200,
                               -310, -1000,
                                               -310}
05342
               -340,
                       -340,
                               -490, -1000,
                                              -490}
05343
               -430,
                       -430,
                               -940, -1430,
                                              -940}
05344
                200,
                       200,
                               -310, -1360,
                                              -3101
05345
               -390,
                       -390,
                               -940, -1430,
                                              -940}
05346
                               -490, -1000,
-490, -1000,
05347
         , { {
               -430,
                       -430,
                                              -490}
05348
               -490, -2040,
                                              -490}
          , {
05349
               -430,
                       -430,
                              -940, -1450,
                                              -940}
05350
              -1170,
                      -1170,
                             -1680, -2190,
                                              -16801
05351
              -430,
                      -430,
                              -940, -1450,
                                              -940}
05352
               -340,
                       -340,
                              -850, -1360,
05353
          , { {
                                              -850}
                              -850, -1360,
05354
               -340,
                       -340,
                                              -850}
          , {
                             -1160, -1430,
05355
               -650,
                       -650,
                                             -1160}
05356
               -340,
                       -340,
                              -850, -1360,
                                              -8501
05357
               -650,
                       -650, -1160, -1430, -1160}
05358
                200.
                        200.
                              -310, -1450,
05359
         , { {
                                              -310}
05360
               -690,
                       -690, -1200, -1710, -1200}
          , {
05361
               -430,
                       -430,
                              -940, -1450,
                                              -940}
05362
                200,
                        200,
                               -310, -2070,
                                              -310}
05363
               -430,
                       -430,
                              -940, -1450,
                                              -940}
05364
                       -340.
05365
               -340.
                               -850. -1360.
                                              -8501
          , { {
                              -850, -1360,
                                              -850}
05366
               -340,
                       -340,
          , {
05367
               -960,
                       -960, -1470, -1740, -1470}
                       -340,
05368
               -340,
                             -850, -1360,
                                              -850]
               -390,
                       -390, -1140, -1650, -1140}
05369
05370
05371
05372
        , { { { -310, -310, -310, -310, -310} }
```

```
, { -490,
                       -490,
                              -490,
                                      -490.
                                              -490}
05374
              -940,
                       -940,
                              -940,
                                      -940,
                                              -940}
               -310,
05375
                       -310,
                              -310,
                                      -310,
                                              -3101
05376
               -940.
                       -940,
                              -940,
                                      -940,
                                              -940}
05377
05378
              -490,
                       -490,
                              -490,
                                      -490,
                                              -490}
         , { {
               -490,
                       -490,
                                              -490}
05379
                              -490,
                                      -490,
          , {
05380
              -940,
                       -940,
                              -940,
                                      -940,
                                              -9401
05381
              -1440,
                      -1680,
                              -1440,
                                     -1680,
                                             -1440}
05382
              -940,
                      -940,
                              -940,
                                      -940,
                                              -940}
05383
         , { { -850,
05384
                       -850,
                              -850,
                                      -850,
                                              -850}
05385
              -850,
                       -850,
                              -850,
                                      -850,
                                              -850}
          , {
05386
              -1160, -1160,
                             -1160,
                                     -1160,
                                             -1160}
05387
              -850,
                      -850,
                              -850,
                                      -850,
                                              -8501
05388
              -1160, -1160,
                             -1160,
                                     -1160,
                                             -1160}
05389
05390
                       -310,
              -310,
                              -310,
                                      -310,
                                              -310}
         , { {
               -960, -1200,
05391
                              -960, -1200,
                                              -960}
          , {
05392
               -940,
                              -940,
                      -940,
                                      -940,
                                              -940}
          , {
05393
               -310,
                       -310,
                              -310,
                                      -310,
                                              -310}
05394
               -940,
                       -940,
                              -940,
                                      -940,
                                              -940}
05395
         , { {
              -850,
                                      -850,
05396
                       -850.
                               -850.
                                              -8501
05397
               -850,
                       -850,
                              -850,
                                      -850,
                                              -850}
          , {
              -1470, -1470, -1470,
                                     -1470, -1470}
05398
05399
              -850, -850,
                              -850,
                                      -850,
                                             -8501
05400
              -1140, -1140, -1140,
                                     -1140, -1140
05401
05402
05403
        , { { {
                760. -830.
                               -310.
                                        760.
                                              -310}
05404
                760, -830,
                              -490,
                                        760,
                                              -490}
          , {
05405
                310, -1260,
                              -940,
                                        310,
                                              -940}
05406
                400, -1190,
                              -310,
                                        400,
                                              -3101
                              -940,
05407
                310, -1260,
                                        310,
                                              -940}
05408
                760,
                      -830,
                               -490,
                                        760,
05409
                                              -490}
         , { {
                760, -830,
05410
                              -490,
                                        760,
                                              -490}
          , {
05411
                310, -1280,
                              -940,
                                        310,
                                              -940}
          , {
05412
              -1680, -2020,
                             -1680,
                                      -1680,
                                             -1680}
05413
                310, -1280,
                              -940,
                                       310,
                                              -940}
05414
                400, -1190,
400, -1190,
         , { {
                              -850.
                                        400.
                                              -850}
05415
05416
                              -850,
                                       400,
                                              -850}
          , {
                 90, -1260, -1160,
                                        90, -1160}
05417
05418
                400, -1190,
                              -850,
                                        400,
                                             -8501
05419
                 90, -1260, -1160,
                                        90, -1160}
05420
         , { {
                310, -1280,
                                       310.
05421
                              -310.
                                              -310}
              -1200, -1540, -1200,
                                       1200, -1200}
05422
          , {
                310, -1280,
05423
                              -940,
                                        310,
          , {
05424
               -310, -1900,
                              -310,
                                     -1560,
                                              -310}
05425
                310, -1280,
                              -940,
                                       310,
                                              -9401
05426
05427
         , { {
                400, -1190,
                              -850,
                                       400,
                                              -850}
                400, -1190,
                              -850,
                                       400,
                                              -850}
05428
         , {
               -220, -1570, -1470,
                                       -220, -1470}
05429
05430
                400, -1190,
                              -850,
                                       400,
                                             -850}
05431
             -1140, -1480, -1140,
                                     -1140, -1140}
05432
05433
05434
        , { { {
              -250,
                       -310,
                               -310,
                                      -310,
                                              -250}
05435
               -250,
                       -490,
                              -490,
                                      -490,
                                              -250}
          , {
05436
               -940,
                       -940,
                              -940,
                                      -940,
                                              -940}
               -310,
                                      -310,
05437
                       -310,
                              -310,
                                              -8501
05438
               -940,
                       -940,
                              -940,
                                      -940,
                                              -940}
05439
              -250,
                       -490,
                              -490,
                                      -490,
05440
         , { {
                                              -250}
05441
               -250,
                       -490,
                              -490,
                                      -490,
                                              -250}
          , {
                              -940,
                      -940,
               -940,
                                      -940,
                                              -940}
05443
              -1440,
                      -1680,
                             -1440,
                                     -1680,
                                             -1680}
05444
              -940,
                      -940,
                              -940,
                                      -940,
                                              -940}
05445
         , { { -850,
                       -850,
                              -850,
                                      -850,
05446
                                              -850}
05447
              -850,
                       -850,
                              -850,
                                       -850,
                                              -850}
          , {
                             -1160,
05448
              -1160, -1160,
                                     -1160,
                                             -1160}
05449
              -850,
                      -850,
                              -850,
                                      -850,
                                             -850}
05450
              -1160, -1160,
                             -1160,
                                     -1160, -1160}
05451
         , { {
05452
               -310.
                       -310.
                              -310.
                                      -310.
                                              -9401
               -960, -1200,
                              -960, -1200, -1200}
05453
          , {
05454
               -940,
                       -940,
                              -940,
                                      -940, -940}
05455
               -310,
                       -310,
                              -310,
                                      -310, -1560}
05456
               -940,
                       -940,
                              -940,
                                      -940,
                                             -940]
05457
         , { {
               -850,
                       -850.
                              -850.
                                      -850,
                                              -8501
05458
05459
          , {
               -850,
                       -850,
                              -850,
                                      -850,
                                              -850}
```

```
,{ -1470, -1470, -1470, -1470, -1470}
            ,{ -850, -850, -850, -850, -850}
,{ -1140, -1140, -1140, -1140, -1140}
05461
05462
05463
05464
           }
05465
                           360, -150, -150, -150}
-30, -990, -150, -990}
05466
        ,{{{{
                 360,
05467
                  -30,
           , {
                                            -150, -1400}
-150, -150}
05468
                 -150,
                          -890, -1400,
05469
                  360,
                           360, -150,
                          -650, -1400,
                                            -150, -1400}
05470
                 -150,
05471
05472
                  -70,
                            -70, -1180,
                                            -150, -1180}
           , { {
05473
                 -70,
                           -70, -1580,
                                            -330, -1340}
05474
                 -150,
                          -890, -1400,
                                            -150, -1400}
                 -910,
                          -910, -1180, -1420, -1180}
-890, -1400, -150, -1400}
05475
05476
                 -150,
05477
           , { {
05478
                 -150,
                          -890, -1400,
                                            -150, -1400}
                          -890, -1400,
05479
                 -150,
                                            -150, -1400}
           , {
                          -890, -1400,
-890, -1400,
                                            -150, -1400}
-150, -1400}
05480
                 -150,
                 -150,
05481
                -150.
                          -890, -1400,
                                            -150, -1400}
05482
                         360, -150, -150, -150}
-30, -990, -1230, -990}
-890, -1400, -150, -1400}
360, -150, -150, -150}
-890, -1400, -150, -1400
05483
           , { {
                  360,
05484
05485
                  -30,
           , {
05486
                 -150,
           , {
05/87
                 360,
05488
                 -150,
05489
                          -650, -1400,
-890, -1400,
05490
           , { {
                 -150,
                                            -150, -1400}
05491
                 -150,
                                            -150, -1400}
           , {
05492
                 -150,
                          -890, -1400,
                                            -150, -1400}
05493
                 -150,
                          -890, -1400,
                                            -150, -1400}
05494
                 -650,
                          -650, -1400, -1400, -1400}
05495
05496
                           360, -150, -1670, -150}
-30, -1230, -1740, -1230}
         , { { {
                 360,
05498
                  -30,
           , {
                          -890, -1400, -1670, -1400}
360, -150, -1910, -150}
05499
                 -890,
                 360,
05500
                -650,
                          -650, -1400, -1670, -1400}
05501
05502
05503
                  -70,
                            -70, -1400, -1910, -1400}
           , { {
                          -70, -1580, -2090, -1580}
-890, -1400, -1910, -1400}
                 -70,
05504
           , {
05505
                 -890,
                          -910, -1420, -1930, -1420}
-890, -1400, -1910, -1400}
05506
                 -910,
05507
                -890,
05508
           , { { -890,
05509
                          -890, -1400, -1670, -1400}
                          -890, -1400, -1910, -1400}
05510
                 -890,
           , {
                          -890, -1400, -1670, -1400}
-890, -1400, -1910, -1400}
05511
                 -890,
                 -890,
05512
                          -890, -1400, -1670, -1400}
05513
                -890,
05514
           , { {
                 360,
-30,
05515
                            360, -150, -1740, -150}
                            -30, -1230, -1740, -1230}
           , {
05517
                 -890,
                          -890, -1400, -1910, -1400}
           , {
                          360, -150, -1910, -150}
-890, -1400, -1910, -1400}
05518
                 360,
                 -890,
05519
05520
                          -650, -1400, -1670, -1400}
-890, -1400, -1910, -1400}
           , { { -650,
05521
                 -890,
           , {
05523
                 -890,
                          -890, -1400, -1670, -1400}
                          -890, -1400, -1910, -1400}
05524
                 -890,
                          -650, -1400, -1910, -1400}
05525
                -650,
05526
05527
         ,{{{ -150, -150, -150, -150, -150}, ,{ -990, -1230, -990, -1230, -990}}
05528
          , {
               -1400, -1400, -1400, -1400, -1400}
-150, -150, -150, -150, -150}
05530
05531
            ,{ -1400, -1400, -1400, -1400, -1400}
05532
05533
           ,{{ -1180, -1400, -1180, -1400, -1180}
05534
           ,{ -1580, -1580, -1580, -1580, -1580}
05535
05536
           ,{ -1400, -1400, -1400, -1400, -1400}
            ,{ -1180, -1420, -1180, -1420, -1180}
,{ -1400, -1400, -1400, -1400, -1400}
05537
05538
05539
           ,{{ -1400, -1400, -1400, -1400, -1400}
05540
           ,{ -1400, -1400, -1400, -1400, -1400}
            ,{ -1400, -1400, -1400, -1400, -1400}
,{ -1400, -1400, -1400, -1400, -1400}
05542
05543
05544
            ,{ -1400, -1400, -1400, -1400, -1400}
05545
05546
           ,{{ -150, -150, -150, -150, -150}
```

```
-990, -1230, -990, -1230,
           , {
           ,{ -1400, -1400, -1400, -1400, -1400}
,{ -150, -150, -150, -150, -150}
05548
05549
           ,{ -1400, -1400, -1400, -1400, -1400}
05550
05551
          , {{ -1400, -1400, -1400, -1400, -1400}
05552
          ,{ -1400, -1400, -1400, -1400, -1400}
05554
           ,{ -1400, -1400, -1400, -1400, -1400}
05555
              -1400, -1400, -1400, -1400, -1400}
            ,{ -1400, -1400, -1400, -1400, -1400}
05556
05557
05558
05559
         , { { {
               -150, -1500, -150,
                                         -150, -150
05560
               -150, -1570, -1230,
                                         -150, -1230}
05561
               -150, -1500, -1400,
                                         -150, -1400}
                                        -150, -150}
-150, -1400}
05562
               -150, -1740, -150,
               -150, -1500, -1400,
05563
05564
          ,{{ -150, -1600, -1400,
05565
                                         -150, -1400}
                                         -330, -1580}
               -330, -1600, -1580,
05566
          , {
              -150, -1740, -1400, -150, -1400}
-1420, -3040, -1420, -1420, -1420}
05567
05568
               -150, -1740, -1400,
                                        -150, -1400}
05569
05570
05571
          ,{{ -150, -1500, -1400,
                                         -150, -1400}
               -150, -1740, -1400,
-150, -1500, -1400,
05572
                                         -150, -1400}
05573
                                        -150, -1400}
                                        -150, -1400}
-150, -1400}
               -150, -1740, -1400,
-150, -1500, -1400,
05574
05575
05576
          ,{{ -150, -1570, -150, ,{ -1230, -1570, -1230,
                                       -150, -150}
-1230, -1230}
05577
05578
          , {
               -150, -1740, -1400,
-150, -1740, -150,
                                        -150, -1400}
-1400, -150}
05579
05580
05581
               -150, -1740, -1400,
                                        -150, -1400}
05582
          ,{{ -150, -1500, -1400,
05583
                                        -150, -1400}
               -150, -1740, -1400,
                                         -150, -1400}
          , {
05585
               -150, -1500, -1400,
                                         -150, -1400}
05586
               -150, -1740, -1400,
                                        -150, -1400}
05587
              -1400, -1740, -1400, -1400, -1400}
05588
05589
05590
         ,{{{ -150, -150,
                                -150, -150, -1230}
               -990, -1230, -990, -1230, -1230}
05591
          , {
05592
              -1400, -1400, -1400, -1400, -1400}
           ,{ -150, -150, -150, -150, -1400}
,{ -1400, -1400, -1400, -1400, -1400}
05593
05594
05595
          ,{{ -1180, -1400, -1180, -1400, -1340}
05596
          ,{ -1340, -1580, -1580, -1580, -1340}
05597
          ,{ -1400, -1400, -1400, -1400, -1400}
,{ -1180, -1420, -1180, -1420, -1420}
05598
05599
           ,{ -1400, -1400, -1400, -1400, -1400}
05600
05601
          ,{{ -1400, -1400, -1400, -1400, -1400}
05602
          ,{ -1400, -1400, -1400, -1400, -1400}
05604
           ,{ -1400, -1400, -1400, -1400, -1400}
05605
              -1400, -1400, -1400, -1400, -1400}
            ,{ -1400, -1400, -1400, -1400, -1400}
05606
05607
          ,{{ -150, -150, -150, -150, -1230}
,{ -990, -1230, -990, -1230, -1230}
05608
05609
          , {
              -1400, -1400, -1400, -1400, -1400}
-150, -150, -150, -150, -1400}
05610
05611
           ,{ -1400, -1400, -1400, -1400, -1400}
05612
05613
          ,{{ -1400, -1400, -1400, -1400, -1400}
05614
          ,{ -1400, -1400, -1400, -1400, -1400}
05615
           ,{ -1400, -1400, -1400, -1400, -1400}
           ,{ -1400, -1400, -1400, -1400, -1400}
,{ -1400, -1400, -1400, -1400, -1400}
05617
05618
05619
05620
          }
05621
        ,{{{{
                 910,
                          910,
                                  400,
                                          910,
                                                  400}
05622
05623
                 910,
                          170,
                                 -340,
                                          910,
                                                 -100}
          , {
05624
                 400,
                        -340,
                                 -850,
                                          400,
                                                 -850}
05625
                 910.
                         910.
                                 400.
                                          400.
                                                 4001
05626
                        -100.
                                 -850.
                                          400.
                                                 -8501
                 400.
05627
05628
                 910,
                          170,
                                 -340,
                                          910,
                                                 -100}
          , { {
05629
                         170,
                                 -340,
                                          910,
                                                 -100}
                 910,
          , {
                 400,
                                          400,
05630
                        -340,
                                 -850,
                                                 -8501
05631
                -680,
                        -680,
                                -950, -1190,
                                                 -9501
                        -340.
                                -850.
                                                 -8501
05632
                 400.
                                          400.
05633
```

```
05634
                 400,
                        -340,
                                -850,
                                          400,
                                                 -850}
          , { {
05635
                 400,
                        -340,
                                -850,
                                          400,
                                                 -850}
          , {
05636
                 400,
                        -340,
                                -850.
                                          400,
                                                 -8501
           , {
05637
                 400,
                        -340,
                                -850,
                                          400,
                                                 -8501
05638
                 400,
                        -340,
                                -850,
                                          400,
                                                 -8501
05639
                 910,
                         910,
05640
          , { {
                                  400,
                                          400,
05641
                -850,
                        -850,
                               -1120,
                                         1360,
                                                -1120}
           , {
05642
                 400,
                        -340,
                                -850,
                                          400,
                                                 -850}
05643
                 910,
                         910,
                                 400
                                          400,
                                                  4001
05644
                                 -850,
                 400.
                        -340.
                                          400.
                                                 -850}
05645
05646
                 400,
                        -100,
                                 -850,
                                          400,
                                                 -850}
          , { {
05647
                 400,
                        -340,
                                -850,
                                          400,
                                                 -850}
          , {
05648
           , {
                 400,
                        -340,
                                -850,
                                          400,
                                                 -8501
05649
                 400,
                        -340,
                                -850,
                                          400,
                                                 -8501
05650
                -100.
                        -100.
                                -850.
                                         -850,
                                                 -8503
05651
05652
                 910,
05653
         , { { {
                         910,
                                  400,
                                         -850,
                                                  400}
05654
                 170,
                         170,
                                 -340,
                                        -850,
                                                 -340}
          -, {
                -340,
05655
                        -340,
                                -850, -1120,
                                                 -8501
05656
                 910.
                         910,
                                 400,
                                       -1360,
                                                  4003
05657
                -100,
                        -100,
                                 -850,
                                       -1120,
                                                 -850
05658
                 170,
                         170,
                                 -340,
                                         -850,
05659
          , { {
                                                 -340}
05660
                 170,
                         170,
                                -340,
                                        -850,
                                                 -3401
           , {
05661
                -340,
                        -340,
                                -850, -1360,
                                                 -850}
                -680,
05662
                        -680.
                               -1190, -1700,
                                                -1190}
05663
                -340,
                        -340.
                                -850, -1360,
                                                 -850}
05664
05665
                -340,
                        -340,
                                -850, -1120,
                                                 -850}
          , { {
05666
                -340,
                        -340,
                                -850, -1360,
                                                 -850}
                -340,
05667
                        -340,
                                -850, -1120,
                                                 -850}
           , {
05668
                -340,
                        -340,
                                -850, -1360,
                                                 -8501
05669
                -340.
                        -340.
                                -850, -1120,
                                                 -850}
05670
05671
                 910,
                         910,
          , { {
                                  400, -1360,
05672
                -850,
                        -850,
                               -1360, -1870,
                                                -1360}
           , {
05673
                -340,
                        -340,
                                -850, -1360,
                                                 -8501
                 910,
05674
                         910.
                                 400, -1360,
                                                  4001
05675
                                -850, -1360,
                -340.
                        -340,
                                                 -8501
05676
05677
                -100,
                        -100,
                                -850, -1120,
                                                 -850}
          , { {
05678
                -340,
                        -340,
                                -850, -1360,
                                                 -850}
          , {
05679
                -340,
                        -340,
                                -850, -1120,
                                                 -8501
05680
                -340,
                        -340,
                                -850, -1360,
                                                 -850}
                        -100,
                                -850, -1360,
05681
                -100,
                                                 -850}
05682
05683
05684
         , { { {
                 400,
                         400,
                                  400,
                                          400,
                                                  400}
05685
                -340,
                        -340,
                                 -340,
                                         -340,
                                                 -340}
05686
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
05687
                 400,
                         400,
                                 400,
                                          400,
                                                  4003
05688
                -850.
                        -850,
                                 -850.
                                         -850,
                                                 -850}
05689
                -340,
                        -340,
                                 -340,
                                         -340,
                                                 -340}
05690
          , { {
05691
                -340,
                        -340,
                                -340,
                                         -340,
                                                 -340}
          , {
05692
                -850,
                        -850,
                                -850,
                                        -850,
                                                 -850}
05693
                -950.
                       -1190.
                                -950,
                                        -1190.
                                                 -9503
05694
                -850.
                        -850.
                                -850.
                                        -850.
                                                 -8501
05695
05696
          , { {
                -850,
                        -850,
                                 -850,
                                         -850,
                                                 -850}
05697
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
                -850,
05698
                        -850,
                                -850,
                                         -850,
                                                 -8501
           , {
05699
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
05700
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
05701
05702
                 400,
                         400,
                                  400,
                                          400,
                                                  400}
          , { {
               -1120,
                       -1360,
                                -1120,
                                                -1120}
05703
                                        -1360,
           , {
05704
                -850,
                        -850,
                                 -850,
                                         -850,
                                                 -850}
05705
                 400,
                         400,
                                 400,
                                          400,
                                                  4001
05706
                -850,
                        -850,
                                 -850,
                                         -850,
                                                 -850}
05707
05708
                -850,
                        -850,
                                 -850,
                                         -850,
                                                 -850}
          , { {
                -850,
                                         -850,
05709
                        -850,
                                 -850,
                                                 -850}
          , {
05710
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
           , {
05711
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
05712
                -850.
                        -850,
                                -850,
                                         -850,
                                                 -850}
05713
05714
05715
                 910,
                        -680,
                                  400,
                                          910,
                                                  400}
         , { { {
05716
                                          910,
                 910,
                        -680,
                                 -340,
                                                 -340}
          -, 1
05717
                 400,
                        -950,
                                -850
                                          400,
                                                 -8501
05718
                 400, -1190,
                                 400,
                                          400,
                                                  4003
0.5719
                 400.
                       -950,
                                 -850.
                                          400,
                                                 -8501
05720
```

```
05721
          , { {
                 910,
                        -680,
                                -340,
                                          910,
                                                 -340}
05722
                 910,
                       -680,
                                -340,
                                          910,
                                                 -340}
          , {
05723
                 400, -1190,
                                -850,
                                          400,
                                                 -8501
05724
               -1190, -1530,
                               -1190,
                                       -1190,
                                                -11901
05725
                 400, -1190,
                                -850,
                                          400,
                                                 -850}
05726
05727
                        -950,
          , { {
                 400,
                                 -850,
                                          400,
05728
                 400, -1190,
                                -850,
                                          400,
                                                 -850}
           , {
05729
                 400,
                       -950,
                                -850,
                                          400,
                                                 -850}
05730
                 400, -1190,
                                -850
                                          400,
                                                 -8501
05731
                 400.
                       -950,
                                -850,
                                          400.
                                                 -850}
05732
05733
                 400, -1190,
                                  400,
                                          400,
                                                  400}
          , { {
05734
               -1360, -1700,
                               -1360,
                                        -1360,
                                                -1360}
05735
           , {
                 400, -1190,
                                -850,
                                          400,
                                                 -850}
05736
                 400, -1190,
                                 400,
                                         -850,
                                                  4003
05737
                 400, -1190,
                                 -850,
                                          400.
                                                 -850}
05738
                 400, -950,
05739
          , { {
                                 -850,
                                          400.
                                -850,
05740
                 400, -1190,
                                          400,
                                                 -850}
          , {
05741
                 400, -950,
                                -850,
                                          400,
                                                 -850}
                 400, -1190,
05742
                                -850,
                                          400,
                                                 -8501
05743
                -850, -1190,
                                                 -850}
                                -850,
                                         -850,
05744
05745
05746
                 400,
                         400,
                                 400,
                                          400,
                                                 -100}
         , { { {
05747
                -100,
                        -340,
                                 -340,
                                         -340,
                                                 -1001
           , {
05748
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
05749
                 400,
                         400.
                                 400,
                                          400,
                                                 -8501
05750
                -850,
                        -850.
                                 -850.
                                         -850.
                                                 -850}
05751
05752
                -100,
                        -340,
                                 -340,
                                         -340,
                                                 -100}
          , { {
05753
                -100,
                        -340,
                                -340,
                                         -340,
                                                 -100}
05754
                -850,
                        -850,
                                -850,
                                        -850,
                                                 -850}
           , {
05755
                -950,
                       -1190,
                                -950,
                                       -1190,
                                                -1190}
05756
                -850,
                        -850,
                                -850,
                                        -850,
                                                 -850}
05757
                -850,
05758
          , { {
                        -850,
                                 -850,
                                         -850.
05759
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
           , {
05760
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
05761
                -850,
                        -850,
                                -850,
                                        -850,
                                                 -8501
                        -850,
05762
                -850.
                                -850,
                                         -850,
                                                 -8501
05763
05764
                 400,
                         400,
                                  400,
                                          400,
                                                 -850}
          , { {
                                        -1360,
05765
               -1120,
                       -1360,
                               -1120,
                                                -1360}
05766
                -850,
                        -850,
                                -850,
                                        -850,
                                                 -8501
05767
                 400,
                         400,
                                 400,
                                          400.
                                                 -850}
05768
                -850,
                        -850,
                                 -850,
                                         -850,
                                                 -850}
05769
05770
                -850,
                        -850,
                                 -850,
                                         -850,
          , { {
                                                 -850}
05771
                -850,
                        -850,
                                 -850,
                                         -850,
                                                 -850}
          , {
05772
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
05773
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -8501
05774
                -850,
                        -850,
                                -850,
                                         -850,
                                                 -850}
05775
05776
          }
05777
05778
                1490,
                        1280,
                                  780,
                                         1490,
                                                  780}
        ,{{{{
05779
                1490,
                         750,
                                  240,
                                        1490,
                                                  480}
05780
                1200.
                         450.
                                  -50.
                                        1200.
                                                  -503
05781
                1280.
                        1280.
                                 780.
                                         1200.
                                                  7801
05782
                1200,
                         450,
                                  -50,
                                        1200,
                                                  -50
05783
05784
                1490,
                         750,
                                  240,
                                         1490,
                                                  480}
          , { {
05785
                1490,
                         750,
                                  240,
                                         1490.
                                                  480}
           , {
05786
                1190,
                         440,
                                 -60,
                                        1190,
                                                  -60}
05787
                -630.
                        -630.
                                 -900.
                                        -1140,
                                                 -9003
05788
                1190,
                         440.
                                 -60.
                                        1190.
                                                  -60}
05789
05790
          , { {
                1200,
                         460,
                                  -50,
                                         1200,
                                                  -50}
05791
                1200,
                         460,
                                 -50,
                                         1200,
                                                  -50}
05792
                1200,
                         450,
                                 -50,
                                         1200,
                                                  -501
05793
                1200,
                         460,
                                 -50,
                                         1200,
                                                  -501
05794
                1200.
                         450.
                                  -50.
                                         1200.
                                                  -50}
05795
05796
                1280,
                        1280,
                                  780,
                                         1190,
                                                  780}
          , { {
05797
                -450,
                        -450,
                                 -720,
                                         -960,
                                                 -720}
           , {
05798
                1190,
                         440,
                                  -60,
                                         1190,
                                                  -60}
05799
                1280.
                        1280.
                                  780.
                                          780.
                                                  7801
05800
                1190.
                         440.
                                        1190.
                                                  -601
                                  -60.
05801
                         460,
05802
                1200,
                                  -50,
                                         1200,
                                                  -50}
          , { {
05803
                1200,
                         460,
                                 -50,
                                         1200,
                                                  -50}
          -, 1
05804
                1200,
                         450,
                                 -50,
                                        1200,
                                                  -50}
05805
                1200,
                         460,
                                 -50,
                                        1200,
                                                  -50}
05806
                -280,
                        -280,
                               -1030,
                                       -1030, -1030
05807
```

```
05808
05809
                1280,
                         1280,
                                   780,
                                          -260,
                                                   780}
         , { { {
05810
                 750,
                          750,
                                   240,
                                          -260,
                                                   240}
           , {
05811
                 450,
                          450,
                                   -50,
                                          -320,
                                                    -501
05812
                1280.
                         1280.
                                   780.
                                          -560,
                                                    7801
05813
                 450,
                          450.
                                   -50.
                                          -320.
                                                    -50}
05814
05815
                  750,
                          750,
                                   240,
                                          -260,
                                                    240}
          , { {
05816
                 750,
                          750,
                                   240,
                                          -260,
                                                   240}
                 440,
05817
                          440,
                                   -60,
                                          -570,
                                                   -601
05818
                         -630.
                                  1140.
                                         -1650.
                                                 -1140}
                -630,
05819
            , {
                 440.
                          440.
                                  -60.
                                          -570.
                                                   -60}
05820
05821
                  460,
                          460,
                                   -50,
                                          -320,
                                                    -50}
          , { {
05822
                 460,
                          460,
                                  -50,
                                          -560,
                                                   -50}
           , {
05823
                 450,
                          450,
                                  -50,
                                          -320,
                                                   -50}
                                  -50.
05824
                 460.
                          460.
                                          -560.
                                                   -503
05825
                                   -50,
                 450,
                          450,
                                          -320,
                                                    -50}
05826
05827
                1280,
                         1280,
                                   780,
                                          -570,
                                                   780}
          , { {
05828
                 -450,
                         -450,
                                  -960,
                                        -1470,
                                                  -960}
                 440,
05829
                          440.
                                  -60,
                                         -570,
                                                   -60}
                                  780,
                                                   7801
05830
                1280,
                         1280,
                                          -980,
05831
                 440,
                          440,
                                   -60,
                                          -570,
                                                    -60}
05832
                  460,
                          460,
                                   -50,
                                          -320,
                                                    -50}
05833
          , { {
05834
                 460,
                          460,
                                  -50,
                                          -560,
                                                   -50}
           , {
05835
                 450,
                          450,
                                  -50,
                                          -320,
                                                   -50}
                                  -50,
05836
                 460,
                          460,
                                          -560,
                                                   -501
05837
                 -280,
                         -280.
                                -1030.
                                        -1540,
                                                 -1030}
05838
05839
05840
         , { { {
                 780,
                          780,
                                   780,
                                           780,
                                                   780}
05841
                 240,
                          240,
                                   240,
                                           240,
                                                   240}
           , {
05842
                  -50,
                          -50,
                                   -50,
                                           -50,
                                                    -501
                          780,
                  780.
                                   780.
                                           780.
                                                    7801
05843
05844
                  -50,
                          -50,
                                   -50,
                                           -50,
                                                    -50}
05845
05846
          , { {
                 240,
                          240,
                                   240,
                                           240,
                                                    240}
05847
                 240,
                          240,
                                   240,
                                           240,
                                                   240}
05848
                 -60,
                          -60.
                                  -60,
                                           -60,
                                                   -603
                -900,
                                  -900,
05849
                                                  -9003
                        -1140.
                                          1140,
05850
                 -60.
                          -60.
                                  -60.
                                           -60,
                                                   -601
05851
05852
                  -50,
                          -50,
                                   -50,
                                                    -50}
           , { {
05853
                 -50,
                          -50,
                                  -50,
                                           -50,
                                                   -50}
           , {
05854
                 -50,
                          -50,
                                  -50,
                                           -50,
                                                   -50}
                          -50.
05855
                 -50,
                                  -50,
                                           -50,
                                                   -501
                  -50,
                          -50.
05856
                                   -50.
                                           -50.
                                                    -50
05857
                 780,
                          780,
                                   780,
                                           780,
05858
                                                   780}
          , { {
05859
                 -720,
                         -960,
                                  -720,
                                          -960,
                                                  -720}
05860
           , {
                 -60,
                          -60,
                                  -60,
                                           -60,
                                                   -601
05861
                 780,
                          780,
                                  780,
                                           780,
                                                   7801
05862
                 -60.
                          -60.
                                   -60,
                                           -60,
                                                   -60}
05863
05864
                  -50,
                          -50,
                                   -50,
                                           -50,
                                                    -50}
          , { {
05865
                 -50,
                          -50,
                                   -50,
                                           -50,
                                                   -50}
           , {
05866
                 -50,
                          -50,
                                  -50,
                                           -50,
                                                   -50}
05867
                 -50,
                          -50.
                                  -50.
                                           -50,
                                                   -503
                        -1030,
                                -1030,
                                        -1030,
               -1030.
                                                 -1030}
05868
05869
05870
05871
                1490,
                          -90,
                                   780,
                                          1490,
                                                    780}
         , { { {
05872
                1490,
                          -90,
                                   240,
                                          1490.
                                                   240}
           , {
                         -150,
05873
                1200,
                                   -50,
                                          1200,
                                                   -50}
05874
                1200,
                         -390.
                                   780.
                                          1200,
                                                    7801
05875
                1200.
                         -150.
                                          1200.
                                   -50.
                                                    -50
05876
05877
          , { {
                1490,
                          -90,
                                   240,
                                                    240}
05878
                1490,
                          -90,
                                   240,
                                          1490,
                                                   240}
05879
                1190,
                         -400,
                                  -60,
                                          1190,
                                                   -601
                        -1480,
05880
               -1140,
                                 1140,
                                         -1140,
                                                 -1140}
05881
                1190.
                         -400.
                                  -60,
                                          1190,
                                                   -60}
05882
05883
                1200,
                         -150,
                                   -50,
                                          1200,
                                                    -50}
          , { {
05884
                1200,
                         -390,
                                  -50,
                                          1200,
                                                   -50}
           , {
05885
                1200,
                         -150,
                                  -50,
                                          1200,
                                                   -50}
05886
                1200.
                         -390.
                                  -50,
                                          1200.
                                                   -503
05887
                1200.
                         -150.
                                   -50.
                                          1200.
                                                    -501
05888
05889
                1190,
                         -400,
                                   780,
                                          1190,
                                                    780}
          , { {
05890
                 -960,
                        -1300,
                                  -960,
                                          -960,
                                                  -960}
           -, 1
05891
                1190,
                        -400
                                  -60,
                                          1190,
                                                   -60}
                                  780,
05892
                 780,
                         -810,
                                          -470,
                                                   780}
05893
                1190,
                         -400.
                                  -60,
                                          1190,
                                                   -60}
05894
```

```
05895
          , { {
                1200,
                         -150,
                                   -50,
                                          1200,
                                                    -50}
05896
                1200,
                         -390,
                                  -50,
                                          1200,
                                                   -50}
           , {
05897
                1200,
                         -150,
                                  -50,
                                          1200,
                                                   -50}
                                  -50,
                                                   -50}
05898
                1200,
                        -390,
                                          1200,
05899
               -1030,
                        -1370,
                                -1030,
                                         -1030,
                                                  -10301
05900
05901
05902
         , { { {
                  780,
                          780,
                                   780,
                                           780,
                                                    480}
05903
                  480,
                          240,
                                   240,
                                           240,
                                                   480}
           , {
05904
                  -50,
                          -50,
                                   -50,
                                           -50,
                                                   -501
                          780,
                  780.
                                   780.
                                           780.
05905
                                                   -50}
05906
                  -50.
                          -50.
                                   -50.
                                           -50.
                                                   -50}
05907
05908
                  480,
                          240,
                                   240,
                                           240,
                                                    480}
           , { {
05909
                  480,
                          240,
                                   240,
                                           240,
                                                    480}
           , {
05910
                  -60,
                          -60,
                                   -60,
                                           -60,
                                                    -60}
                 -900.
                                  -900.
05911
                        -1140.
                                          1140.
                                                  -11401
05912
                  -60,
                          -60,
                                   -60,
                                           -60,
                                                   -60}
05913
05914
                  -50,
                          -50,
                                           -50,
                                                    -50}
                                   -50,
          , { {
05915
                  -50,
                          -50,
                                  -50,
                                           -50,
                                                   -50}
           , {
05916
                  -50,
                          -50
                                  -50,
                                           -50,
                                                   -50}
                  -50,
                          -50,
                                           -50,
0.5917
                                  -50,
                                                   -501
05918
                  -50,
                          -50,
                                   -50,
                                           -50,
                                                   -50
05919
05920
                  780,
                          780,
                                   780,
                                           780,
                                                    -60}
           , { {
05921
                 -720,
                         -960,
                                  -720,
                                           -960,
                                                   -960}
           , {
05922
                  -60,
                          -60,
                                   -60,
                                           -60,
                                                   -60}
05923
                  780,
                          780.
                                   780,
                                           780,
                                                   -470}
05924
                  -60.
                          -60.
                                   -60.
                                           -60.
                                                   -60}
05925
05926
                  -50,
                          -50,
                                   -50,
                                           -50,
                                                    -50}
          , { {
05927
                  -50,
                          -50,
                                  -50,
                                           -50,
                                                   -50}
           , {
05928
                  -50,
                          -50,
                                  -50,
                                           -50,
                                                   -50}
           , {
05929
                  -50,
                          -50,
                                  -50,
                                           -50,
                                                   -501
                                -1030,
               -1030,
                        -1030.
05930
                                         -1030.
                                                 -1030
05931
05932
          }
05933
05934
        , {{{{
                1560,
                         1470,
                                   960,
                                          1560,
                                                    960}
05935
                1560,
                          820,
                                   310,
                                          1560,
                                                   550}
           , {
                1430.
                          690,
                                                   1803
05936
                                   180,
                                          1430,
                         1470,
05937
                1470.
                                   960.
                                          1430.
                                                    9601
05938
                1300,
                          560,
                                   50,
                                          1300,
                                                     50}
05939
05940
          , { {
                1560,
                          820,
                                   310,
                                          1560,
                                                    550}
05941
                1560,
                          820,
                                   310,
                                          1560,
                                                   550}
05942
                1280,
                          540,
                                   30,
                                          1280,
                                                     301
05943
                -580,
                                  -850.
                                         -1090.
                                                   -850}
                         -580.
05944
                1280,
                          540.
                                          1280.
                                                     301
                                   30.
05945
05946
                1430,
                          690,
                                   180,
                                          1430,
                                                    180}
           , { {
05947
           , {
                1430,
                          690,
                                   180,
                                          1430,
                                                   180}
05948
                1430,
                          690,
                                   180,
                                          1430,
                                                   1803
05949
                          690.
                                          1430.
                1430.
                                   180.
                                                   180}
05950
                          560,
                                          1300,
                1300,
                                    50,
                                                     50}
05951
05952
                1470,
                         1470,
                                   960,
                                          1280,
                                                    960}
          , { {
05953
                -880,
                         -880,
                                 1150,
                                         -1390,
                                                 -1150}
           , ∤
05954
                1280.
                          540.
                                    30.
                                          1280.
                                                     301
                                   960,
05955
                1470.
                         1470.
                                           960.
                                                   9601
05956
                1280,
                          540,
                                          1280,
            , {
                                    30,
                                                     30}
05957
05958
                1430,
                          690,
                                   180,
                                          1430,
                                                    180}
          , { {
05959
                1430,
                          690,
                                   180,
                                          1430,
                                                   180}
           , {
05960
                  990,
                          250,
                                  -260,
                                           990,
                                                  -260}
05961
                1430,
                          690,
                                  180,
                                          1430,
                                                   1803
05962
                                          -760.
                  -10.
                          -10.
                                  -760.
                                                   -7601
05963
05964
05965
         , { { {
                1470,
                         1470,
                                   960,
                                           -90,
                                                    960}
05966
                  820,
                          820,
                                   310,
                                          -200,
                                                    3101
           , {
05967
                  690,
                          690,
                                   180,
                                           -90,
                                                   180}
                         1470,
05968
                1470.
                                          -330,
                                                    9601
                                   960.
05969
                  560,
                          560,
                                    50,
                                          -220,
                                                     50}
05970
05971
                  820,
                          820,
                                   310,
                                          -200,
                                                    310}
          , { {
05972
                  820,
                          820,
                                   310,
                                          -200,
                                                   310}
05973
                  540.
                          540.
                                    30.
                                          -480,
                                                     301
05974
                                 1090.
                                                 -1090}
                 -580.
                         -580.
                                         -1600.
05975
                  540,
                          540,
                                    30,
                                          -480,
                                                     30}
05976
05977
                  690,
                          690,
                                   180,
                                           -90,
                                                    180}
           , { {
05978
                  690,
                          690,
                                   180,
                                          -330,
                                                   180}
           , {
05979
                  690,
                          690,
                                   180,
                                           -90,
                                                   180}
05980
                          690,
                                          -330,
                  690,
                                   180,
                                                   1801
05981
                  560.
                          560,
                                          -220.
                                    50.
                                                     50}
```

| 05982<br>05983 | }<br>,{{   | 1470,           | 1470,           | 960,          | -480,           | 960}          |
|----------------|------------|-----------------|-----------------|---------------|-----------------|---------------|
| 05984          | , 11       | -880,           | -880,           | -1390,        | -1900,          | -1390}        |
| 05985          | , {        | 540,            | 540,            | 30,           | -480,           | 30}           |
| 05986<br>05987 | , {<br>, { | 1470,<br>540,   | 1470,<br>540,   | 960,<br>30,   | -800,<br>-480,  | 960}<br>30}   |
| 05988          | }          |                 |                 |               |                 |               |
| 05989<br>05990 | , { {      | 690,<br>690,    | 690,<br>690,    | 180,<br>180,  | -330,<br>-330,  | 180}<br>180}  |
| 05990          | , {<br>, { | 250,            | 250,            | -260,         | -530 <b>,</b>   | -260}         |
| 05992          | , {        | 690,            | 690,            | 180,          | -330,           | 180}          |
| 05993          | , {        | -10,            | -10,            | -760,         | -1270,          | -760}         |
| 05994<br>05995 | }          |                 |                 |               |                 |               |
| 05996          | , { { {    | 960,            | 960,            | 960,          | 960,            | 960}          |
| 05997<br>05998 | , {<br>, { | 310,<br>180,    | 310,<br>180,    | 310,<br>180,  | 310,<br>180,    | 310}<br>180}  |
| 05999          | , {        | 960,            | 960,            | 960,          | 960,            | 960}          |
| 06000          | , {        | 50,             | 50,             | 50,           | 50,             | 50}           |
| 06001<br>06002 | }<br>,{{   | 310,            | 310,            | 310,          | 310,            | 310}          |
| 06003          | , {        | 310,            | 310,            | 310,          | 310,            | 310}          |
| 06004          | , {        | 30,             | 30,             | 30,           | 30,             | 30}           |
| 06005<br>06006 | , {<br>, { | -850,<br>30,    | -1090,<br>30,   | -850,<br>30,  | -1090,<br>30,   | -850}<br>30}  |
| 06007          | }          | ,               | ,               | ,             | ,               | ,             |
| 06008          | , { {      | 180,            | 180,            | 180,<br>180,  | 180,            | 180}          |
| 06009<br>06010 | , {<br>, { | 180,<br>180,    | 180,<br>180,    | 180,          | 180,<br>180,    | 180}<br>180}  |
| 06011          | , {        | 180,            | 180,            | 180,          | 180,            | 180}          |
| 06012<br>06013 | , {        | 50,             | 50,             | 50,           | 50,             | 50}           |
| 06013          | }<br>,{{   | 960,            | 960,            | 960,          | 960,            | 960}          |
| 06015          | , {        | -1150,          | -1390,          | -1150,        | -1390,          | -1150}        |
| 06016<br>06017 | , {<br>, { | 30,<br>960,     | 30,<br>960,     | 30,<br>960,   | 30,<br>960,     | 30}<br>960}   |
| 06017          | , {        | 30,             | 30,             | 30,           | 30,             | 30}           |
| 06019          | }          |                 |                 |               |                 |               |
| 06020<br>06021 | ,{{<br>,{  | 180,<br>180,    | 180,<br>180,    | 180,<br>180,  | 180,<br>180,    | 180}<br>180}  |
| 06022          | , {        | -260,           | -260,           | -260,         | -260,           | -260}         |
| 06023          | , {        | 180,            | 180,            | 180,          | 180,            | 180}          |
| 06024<br>06025 | , {<br>}   | -760,           | -760,           | -760,         | -760,           | -760}         |
| 06026          | }          |                 |                 |               |                 |               |
| 06027          | , { { {    | 1560,           | 80,             | 960,          | 1560,           | 960}          |
| 06028<br>06029 | , {<br>, { | 1560,<br>1430,  | -30,<br>80,     | 310,<br>180,  | 1560,<br>1430,  | 310}<br>180}  |
| 06030          | , {        | 1430,           | -160,           | 960,          | 1430,           | 960}          |
| 06031<br>06032 | , {<br>}   | 1300,           | -50,            | 50,           | 1300,           | 50}           |
| 06032          | , { {      | 1560,           | -30,            | 310,          | 1560,           | 310}          |
| 06034          | , {        | 1560,           | -30,            | 310,          | 1560,           | 310}          |
| 06035<br>06036 | , {<br>, { | 1280,<br>-1090, | -310,<br>-1430, | 30,<br>-1090, | 1280,<br>-1090, | 30}<br>-1090} |
| 06037          | , {        | 1280,           | -310,           | 30,           | 1280,           | 30}           |
| 06038          | }          | 1.420           | 0.0             | 100           | 1.420           | 1001          |
| 06039<br>06040 | ,{{<br>,{  | 1430,<br>1430,  | 80,<br>-160,    | 180,<br>180,  | 1430,<br>1430,  | 180}<br>180}  |
| 06041          | , {        | 1430,           | 80,             | 180,          | 1430,           | 180}          |
| 06042<br>06043 | , {<br>, { | 1430,<br>1300,  | -160,<br>-50,   | 180,<br>50,   | 1430,<br>1300,  | 180}<br>50}   |
| 06043          | }          | 1300,           | -30,            | 50,           | 1300,           | 30 }          |
| 06045          | , { {      | 1280,           | -310,           | 960,          | 1280,           | 960}          |
| 06046<br>06047 | , {<br>, { | -1390,<br>1280, | -1730,<br>-310, | -1390,<br>30, | -1390,<br>1280, | -1390}<br>30} |
| 06048          | , {        | 960,            | -630,           | 960,          | -290,           | 960}          |
| 06049          | , {        | 1280,           | -310,           | 30,           | 1280,           | 30}           |
| 06050<br>06051 | }<br>,{{   | 1430,           | -160,           | 180,          | 1430,           | 180}          |
| 06052          | , {        | 1430,           | -160,           | 180,          | 1430,           | 180}          |
| 06053          | , {        | 990,            | -360,           | -260,         | 990,            | -260}         |
| 06054<br>06055 | , {<br>, { | 1430,<br>-760,  | -160,<br>-1100, | 180,<br>-760, | 1430,<br>-760,  | 180}<br>-760} |
| 06056          | }          |                 |                 |               | ,               | ,             |
| 06057<br>06058 | 111<br>}   | 960,            | 960,            | 960,          | 960,            | 550}          |
| 06058          | }}},<br>}, | 550,            | 310,            | 310,          | 310,            | 550}          |
| 06060          | , {        | 180,            | 180,            | 180,          | 180,            | 180}          |
| 06061<br>06062 | , {<br>, { | 960,<br>50,     | 960,<br>50,     | 960,<br>50,   | 960,<br>50,     | 180}<br>50}   |
| 06063          | }          | 50,             | 50,             | 50,           | 50,             | 50}           |
| 06064          | , { {      | 550 <b>,</b>    | 310,            | 310,          | 310,            | 550}          |
| 06065<br>06066 | , {<br>, { | 550,<br>30,     | 310,<br>30,     | 310,<br>30,   | 310,<br>30,     | 550}<br>30}   |
| 06067          | , {        | -850,           | -1090,          | -850,         | -1090,          | -1090}        |
| 06068          | , {        | 30,             | 30,             | 30,           | 30,             | 30}           |
|                |            |                 |                 |               |                 |               |

| 06069<br>06070 | }          | 180,           | 100           | 100           | 100             | 180}          |
|----------------|------------|----------------|---------------|---------------|-----------------|---------------|
| 06070          | ,{{<br>,{  | 180,           | 180,<br>180,  | 180,<br>180,  | 180,<br>180,    | 180}          |
| 06072          | , {        | 180,           | 180,          | 180,          | 180,            | 180}          |
| 06073          | , {        | 180,           | 180,          | 180,          | 180,            | 180}          |
| 06074<br>06075 | , {<br>}   | 50,            | 50,           | 50,           | 50,             | 50}           |
| 06075          | , { {      | 960,           | 960,          | 960,          | 960,            | 30}           |
| 06077          | , {        | -1150,         | -1390,        | -1150,        | -1390,          | -1390}        |
| 06078          | , {        | 30,            | 30,           | 30,           | 30,             | 30}           |
| 06079          | , {        | 960,           | 960,          | 960,          | 960,            | -290}         |
| 06080<br>06081 | , {<br>}   | 30,            | 30,           | 30,           | 30,             | 30}           |
| 06082          | , { {      | 180,           | 180,          | 180,          | 180,            | 180}          |
| 06083          | , {        | 180,           | 180,          | 180,          | 180,            | 180}          |
| 06084          | , {        | -260,          | -260,         | -260,         | -260,           | -260}         |
| 06085<br>06086 | , {        | 180,<br>-760,  | 180,<br>-760, | 180,<br>-760, | 180,<br>-760,   | 180}<br>-760} |
| 06087          | , {<br>}   | -700,          | -760,         | -700,         | -700,           | -7007         |
| 06088          | }          |                |               |               |                 |               |
| 06089          | }          |                |               |               |                 |               |
| 06090          | ,{{{       | 1560,          | 1470,         | 960,          | 1560,           | 960}          |
| 06091<br>06092 | , {        | 1560,<br>1430, | 820,<br>690,  | 310,<br>180,  | 1560,<br>1430,  | 550}<br>180}  |
| 06092          | , {<br>, { | 1470,          | 1470,         | 960,          | 1430,           | 960}          |
| 06094          | , {        | 1300,          | 560,          | 50,           | 1300,           | 50}           |
| 06095          | }          |                |               |               |                 |               |
| 06096          | , { {      | 1560,          | 820,          | 310,          | 1560,           | 550}          |
| 06097<br>06098 | , {        | 1560,<br>1280, | 820,<br>540,  | 310,<br>30,   | 1560,<br>1280,  | 550}<br>30}   |
| 06099          | , {<br>, { | -360,          | -360,         | -630,         | -870,           | -630}         |
| 06100          | , {        | 1280,          | 540,          | 30,           | 1280,           | 30}           |
| 06101          | }          |                |               |               |                 |               |
| 06102          | , { {      | 1430,          | 690,          | 180,          | 1430,           | 180}          |
| 06103<br>06104 | , {        | 1430,<br>1430, | 690,<br>690,  | 180,<br>180,  | 1430,<br>1430,  | 180}<br>180}  |
| 06104          | , {<br>, { | 1430,          | 690,          | 180,          | 1430,           | 180}          |
| 06106          | , {        | 1300,          | 560,          | 50,           | 1300,           | 50}           |
| 06107          | }          |                |               |               |                 |               |
| 06108          | , { {      | 1470,          | 1470,         | 960,          | 1280,           | 960}          |
| 06109<br>06110 | , {        | -30,<br>1280,  | -30,<br>540,  | -720,<br>30,  | -960,<br>1280,  | -720}<br>30}  |
| 06111          | , {<br>, { | 1470,          | 1470,         | 960,          | 960,            | 960}          |
| 06112          | , {        | 1280,          | 540,          | 30,           | 1280,           | 30}           |
| 06113          | }          |                |               |               |                 |               |
| 06114          | , { {      | 1430,          | 690,          | 180,          | 1430,           | 180}          |
| 06115          | , {        | 1430,          | 690,          | 180,          | 1430,           | 180}          |
| 06116<br>06117 | , {<br>, { | 1200,<br>1430, | 450,<br>690,  | -50,<br>180,  | 1200,<br>1430,  | -50}<br>180}  |
| 06118          | , {        | -10,           | -10,          | -760,         | -760,           | -760}         |
| 06119          | }          |                |               |               |                 |               |
| 06120          | }          |                |               |               |                 |               |
| 06121<br>06122 | ,{{{       | 1470,<br>820,  | 1470,<br>820, | 960,          | -90,<br>-200,   | 960}          |
| 06122          | , {<br>, { | 690,           | 690,          | 310,<br>180,  | -200 <b>,</b>   | 310}<br>180}  |
| 06124          | , {        | 1470,          | 1470,         | 960,          | -330,           | 960}          |
| 06125          | , {        | 560,           | 560,          | 50,           | -220,           | 50}           |
| 06126          | }          |                |               |               |                 |               |
| 06127<br>06128 | , { {      | 820,<br>820,   | 820,<br>820,  | 310,<br>310,  | -200,<br>-200,  | 310}<br>310}  |
| 06128          | , {<br>, { | 540,           | 540,          | 30,           | -480,           | 30}           |
| 06130          | , {        | -360,          | -360,         | -870,         | -1380,          | -870}         |
| 06131          | , {        | 540,           | 540,          | 30,           | -480,           | 30}           |
| 06132          | }          | 600            |               |               | 0.0             | 1001          |
| 06133<br>06134 | , { {      | 690,           | 690,          | 180,          | -90,            | 180}          |
| 06134          | , {<br>, { | 690,<br>690,   | 690,<br>690,  | 180,<br>180,  | -330,<br>-90,   | 180}<br>180}  |
| 06136          | , {        | 690,           | 690,          | 180,          | -330,           | 180}          |
| 06137          | , {        | 560,           | 560,          | 50,           | -220,           | 50}           |
| 06138          | }          |                |               |               |                 |               |
| 06139          | , { {      | 1470,          | 1470,         | 960,          | -480,           | 960}          |
| 06140<br>06141 | , {<br>, { | -30,<br>540,   | -30,<br>540,  | -960,<br>30,  | -1470,<br>-480, | -960}<br>30}  |
| 06142          | , {        | 1470,          | 1470,         | 960,          | -800,           | 960}          |
| 06143          | , {        | 540,           | 540,          | 30,           | -480,           | 30}           |
| 06144          | }          |                |               |               |                 |               |
| 06145          | , { {      | 690,           | 690,          | 180,          | -320,           | 180}          |
| 06146<br>06147 | , {        | 690,<br>450,   | 690,<br>450,  | 180,<br>-50,  | -330,<br>-320,  | 180}          |
| 06147          | , {<br>, { | 690,           | 690,          | 180,          | -320 <b>,</b>   | -50}<br>180}  |
| 06149          | , {        | -10,           | -10,          | -760,         | -1270,          | -760}         |
| 06150          | }          |                |               |               |                 |               |
| 06151          | }          | 0.00           | 0.00          | 0.00          | 0.00            | 0.00          |
| 06152<br>06153 | , { { {    | 960,<br>310,   | 960,<br>310,  | 960,<br>310,  | 960,<br>310,    | 960}<br>310}  |
| 06153          | , {<br>, { | 180,           | 180,          | 180,          | 180,            | 180}          |
| 06155          | , {        | 960,           | 960,          | 960,          | 960,            | 960}          |
|                |            |                |               |               |                 |               |

| 06156          | , {        | 50,            | 50,             | 50,           | 50,            | 50}           |
|----------------|------------|----------------|-----------------|---------------|----------------|---------------|
| 06157<br>06158 | }<br>,{{   | 310,           | 310,            | 310,          | 310,           | 310}          |
| 06159          | , {        | 310,           | 310,            | 310,          | 310,           | 310}          |
| 06160          | , {        | 30,            | 30,             | 30,           | 30,            | 30}           |
| 06161<br>06162 | , {<br>, { | -630,<br>30,   | -870,<br>30,    | -630,<br>30,  | -870,<br>30,   | -630}<br>30}  |
| 06163          | }          |                |                 |               |                |               |
| 06164<br>06165 | ,{{<br>,{  | 180,<br>180,   | 180,<br>180,    | 180,<br>180,  | 180,<br>180,   | 180}<br>180}  |
| 06166          | , {        | 180,           | 180,            | 180,          | 180,           | 180}          |
| 06167          | , {        | 180,           | 180,            | 180,          | 180,           | 180}          |
| 06168<br>06169 | , {<br>}   | 50,            | 50,             | 50,           | 50,            | 50}           |
| 06170          | , { {      | 960,           | 960,            | 960,          | 960,           | 960}          |
| 06171          | , {        | -720,          | -960 <b>,</b>   | -720,         | -960,          | -720}         |
| 06172<br>06173 | , {<br>, { | 30,<br>960,    | 30,<br>960,     | 30,<br>960,   | 30,<br>960,    | 30}<br>960}   |
| 06174          | , {        | 30,            | 30,             | 30,           | 30,            | 30}           |
| 06175<br>06176 | }<br>,{{   | 100            | 100             | 100           | 100            | 180}          |
| 06170          | , 11       | 180,<br>180,   | 180,<br>180,    | 180,<br>180,  | 180,<br>180,   | 180}          |
| 06178          | , {        | -50,           | -50,            | -50,          | -50,           | -50}          |
| 06179<br>06180 | , {<br>, { | 180,<br>-760,  | 180,<br>-760,   | 180,<br>-760, | 180,<br>-760,  | 180}<br>-760} |
| 06181          | }          | , 00,          | , 00,           | 700,          | 7007           | 700)          |
| 06182          | }          | 1560           | 0.0             | 0.00          | 1560           | 0.001         |
| 06183<br>06184 | }}},<br>}, | 1560,<br>1560, | 80,<br>-30,     | 960,<br>310,  | 1560,<br>1560, | 960}<br>310}  |
| 06185          | , {        | 1430,          | 80,             | 180,          | 1430,          | 180}          |
| 06186          | , {        | 1430,          | -160,           | 960,          | 1430,          | 960}          |
| 06187<br>06188 | , {<br>}   | 1300,          | -50,            | 50,           | 1300,          | 50}           |
| 06189          | , { {      | 1560,          | -30,            | 310,          | 1560,          | 310}          |
| 06190          | , {        | 1560,          | -30,            | 310,          | 1560,          | 310}          |
| 06191<br>06192 | , {<br>, { | 1280,<br>-870, | -310,<br>-1210, | 30,<br>-870,  | 1280,<br>-870, | 30}<br>-870}  |
| 06193          | , {        | 1280,          | -310,           | 30,           | 1280,          | 30}           |
| 06194<br>06195 | }<br>,{{   | 1430,          | 80,             | 180,          | 1430,          | 180}          |
| 06196          | , ( (      | 1430,          | -160,           | 180,          | 1430,          | 180}          |
| 06197          | , {        | 1430,          | 80,             | 180,          | 1430,          | 180}          |
| 06198<br>06199 | , {<br>, { | 1430,<br>1300, | -160,<br>-50,   | 180,<br>50,   | 1430,<br>1300, | 180}<br>50}   |
| 06200          | }          | 1000,          | 00,             | 00,           | 1000,          | 00,           |
| 06201          | , { {      | 1280,          | -310,           | 960,          | 1280,          | 960}          |
| 06202<br>06203 | , {<br>, { | -960,<br>1280, | -1300,<br>-310, | -960,<br>30,  | -960,<br>1280, | -960}<br>30}  |
| 06204          | , {        | 960,           | -630,           | 960,          | -290,          | 960}          |
| 06205<br>06206 | , {<br>}   | 1280,          | -310,           | 30,           | 1280,          | 30}           |
| 06207          | , { {      | 1430,          | -150,           | 180,          | 1430,          | 180}          |
| 06208          | , {        | 1430,          | -160,           | 180,          | 1430,          | 180}          |
| 06209<br>06210 | , {<br>, { | 1200,<br>1430, | -150,<br>-160,  | -50,<br>180,  | 1200,<br>1430, | -50}<br>180}  |
| 06211          | , {        | -760,          | -1100,          | -760,         | -760,          | -760}         |
| 06212<br>06213 | }          |                |                 |               |                |               |
| 06213          | ,{{{       | 960,           | 960,            | 960,          | 960,           | 550}          |
| 06215          | , {        | 550,           | 310,            | 310,          | 310,           | 550}          |
| 06216<br>06217 | , {<br>, { | 180,<br>960,   | 180,<br>960,    | 180,<br>960,  | 180,<br>960,   | 180}<br>180}  |
| 06218          | , {        | 50,            | 50,             | 50,           | 50,            | 50}           |
| 06219<br>06220 | }          | 550,           | 310,            | 210           | 310,           | 550}          |
| 06220          | ,{{<br>,{  | 550,           | 310,            | 310,<br>310,  | 310,           | 550}          |
| 06222          | , {        | 30,            | 30,             | 30,           | 30,            | 30}           |
| 06223<br>06224 | , {<br>, { | -630,<br>30,   | -870,<br>30,    | -630,<br>30,  | -870,<br>30,   | -870}<br>30}  |
| 06225          | }          | 30,            | 30,             | 30,           | 30,            | 30)           |
| 06226          | , { {      | 180,           | 180,            | 180,          | 180,           | 180}          |
| 06227<br>06228 | , {<br>, { | 180,<br>180,   | 180,<br>180,    | 180,<br>180,  | 180,<br>180,   | 180}<br>180}  |
| 06229          | , {        | 180,           | 180,            | 180,          | 180,           | 180}          |
| 06230<br>06231 | , {<br>}   | 50,            | 50,             | 50,           | 50,            | 50}           |
| 06231          | , { {      | 960,           | 960,            | 960,          | 960,           | 30}           |
| 06233          | , {        | -720,          | -960,           | -720,         | -960,          | -960}         |
| 06234<br>06235 | , {<br>, { | 30,<br>960,    | 30,<br>960,     | 30,<br>960,   | 30,<br>960,    | 30}<br>-290}  |
| 06236          | , {        | 30,            | 30,             | 30,           | 30,            | 30}           |
| 06237          | }          | 100            | 100             | 100           | 100            | 1001          |
| 06238<br>06239 | ,{{<br>,{  | 180,<br>180,   | 180,<br>180,    | 180,<br>180,  | 180,<br>180,   | 180}<br>180}  |
| 06240          | , {        | -50,           | -50,            | -50,          | -50,           | -50}          |
| 06241<br>06242 | , {<br>, { | 180,<br>-760,  | 180,<br>-760,   | 180,<br>-760, | 180,<br>-760,  | 180}<br>-760} |
| V V & 1 &      | , ι        | , 50,          | , 50,           | , 50,         | , 50,          | , 50 }        |

| 06243 | 1     |        |       |        |       |        |
|-------|-------|--------|-------|--------|-------|--------|
| 06243 | }     |        |       |        |       |        |
|       | }     |        |       |        |       |        |
| 06245 |       |        |       |        |       |        |
| 06246 | }     |        |       |        |       |        |
| 06247 | ,{{{{ | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06248 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06249 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06250 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06251 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06252 | }     |        |       |        |       |        |
| 06253 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06254 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06255 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06256 |       |        |       |        |       |        |
|       | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06257 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06258 | }     |        |       |        |       |        |
| 06259 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06260 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06261 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06262 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06263 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06264 | }     |        |       |        |       |        |
| 06265 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06266 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06267 |       | INF,   |       | INF,   | INF,  | INF }  |
|       | , {   |        | INF,  |        |       |        |
| 06268 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06269 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06270 | }     |        |       |        |       |        |
| 06271 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06272 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06273 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06274 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06275 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06276 | }     | 1111,  | 1111, | 1111   | 1111, | 1111   |
| 06277 |       |        |       |        |       |        |
|       | }     | TNIE   | TNIE  | TNIE   | TNIE  | TATEL  |
| 06278 | ,{{{  | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06279 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06280 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06281 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06282 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06283 | }     |        |       |        |       |        |
| 06284 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06285 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06286 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06287 |       | INF,   | INF,  | INF,   | INF,  | INF }  |
|       | , {   |        |       |        |       |        |
| 06288 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06289 | }     |        |       |        |       |        |
| 06290 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06291 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06292 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06293 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06294 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06295 | }     |        |       |        |       |        |
| 06296 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06297 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06298 |       | INF,   | INF,  | INF,   | INF,  | INF }  |
|       | , {   |        |       |        |       |        |
| 06299 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06300 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06301 | }     |        |       |        |       |        |
| 06302 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06303 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06304 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06305 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06306 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06307 | }     |        |       |        |       |        |
| 06308 | }     |        |       |        |       |        |
| 06309 | ,{{{  | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06310 |       | INF,   | INF,  | INF,   | INF,  | INF }  |
|       | , {   |        |       |        |       |        |
| 06311 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06312 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06313 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06314 | }     |        |       |        |       |        |
| 06315 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06316 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06317 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06318 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06319 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06320 | }     | -111 / | /     | -111 / | -111  | T14T } |
|       |       | TNIE   | TME   | TNIE   | TME   | TATELY |
| 06321 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06322 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06323 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06324 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06325 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06326 | }     |        |       |        |       |        |
| 06327 | , { { | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06328 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
| 06329 | , {   | INF,   | INF,  | INF,   | INF,  | INF }  |
|       | , ,   | /      | /     | /      | /     | )      |

| 06330          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
|----------------|------------|--------------|--------------|---------------|--------------|----------------|
| 06331<br>06332 | , {<br>}   | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06333          | , { {      | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06334          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06335          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06336<br>06337 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF, | INF }<br>INF } |
| 06338          | }          | /            | /            | /             | /            |                |
| 06339          | }          |              |              |               |              |                |
| 06340          | , { { {    | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06341<br>06342 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF,  | INF,         | INF }<br>INF } |
| 06343          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06344          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06345          | }          | TAIT         | T.11         | T.110         | T.17         | TATE           |
| 06346<br>06347 | ,{{<br>,{  | INF,<br>INF, | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF, | INF }<br>INF } |
| 06348          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06349          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06350          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06351<br>06352 | }<br>,{{   | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06353          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06354          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06355          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06356<br>06357 | , {<br>}   | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06358          | , { {      | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06359          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06360          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06361          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06362<br>06363 | , {<br>}   | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06364          | , { {      | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06365          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06366          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06367<br>06368 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF,  | INF,         | INF }<br>INF } |
| 06369          | }          | ,            | ,            | ,             | ,            | ,              |
| 06370          | }          |              |              |               |              |                |
| 06371          | , { { {    | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06372<br>06373 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF, | INF }<br>INF } |
| 06374          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06375          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06376          | }          | TNE          | TNE          | TME           | TNE          | TNE            |
| 06377<br>06378 | ,{{<br>,{  | INF,<br>INF, | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF, | INF }<br>INF } |
| 06379          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06380          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06381<br>06382 | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06383          | }<br>,{{   | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06384          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06385          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06386          | , {        | INF,         | INF,         | INF,          | INF,<br>INF, | INF }          |
| 06387<br>06388 | , {<br>}   | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06389          | , { {      | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06390          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06391<br>06392 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF, | INF }<br>INF } |
| 06392          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06394          | }          | ,            | ,            | ,             | ,            | ,              |
| 06395          | , { {      | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06396          | , {        | INF,<br>INF, | INF,         | INF,          | INF,         | INF }          |
| 06397<br>06398 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF, | INF }<br>INF } |
| 06399          | , {        | INF,         | INF,         | INF,          | INF,         | INF }          |
| 06400          | }          |              |              |               |              |                |
| 06401          | }          |              |              |               |              |                |
| 06402<br>06403 | }<br>,{{{{ | 1170,        | 780,         | 490,          | 1170,        | 490}           |
| 06404          | , { ( ( (  | 1120,        | 580,         | 290,          | 1120,        | 290}           |
| 06405          | , {        | 1170,        | 640,         | 340,          | 1170,        | 340}           |
| 06406          | , {        | 1120,        | 780,         | 490,          | 1120,        | 490}           |
| 06407<br>06408 | , {<br>}   | 1060,        | 530,         | 230,          | 1060,        | 230}           |
| 06409          | , { {      | 970,         | 440,         | 170,          | 970,         | 170}           |
| 06410          | , {        | 970,         | 440,         | 140,          | 970,         | 140}           |
| 06411          | , {        | 660,         | 130,         | -160,         | 660,         | -160}          |
| 06412<br>06413 | , {<br>, { | 220,<br>660, | 220,<br>130, | 170,<br>-160, | -80,<br>660, | 170}<br>-160}  |
| 06414          | }          | 000,         | 200,         | ±00,          | 000,         | 1001           |
| 06415          | , { {      | 1120,        | 580,         | 290,          | 1120,        | 290}           |
| 06416          | , {        | 1120,        | 580,         | 290,          | 1120,        | 290}           |
|                |            |              |              |               |              |                |

| 06417          | , {        | 1110,          | 580,           | 280,           | 1110,            | 280}           |
|----------------|------------|----------------|----------------|----------------|------------------|----------------|
| 06418<br>06419 | , {<br>, { | 1120,<br>1060, | 580,<br>530,   | 290,<br>230,   | 1120,<br>1060,   | 290}<br>230}   |
| 06420          | }          |                |                |                |                  |                |
| 06421<br>06422 | ,{{<br>,{  | 780,<br>-60,   | 780,<br>-60,   | 490,<br>-120,  | 660,<br>-370,    | 490}<br>-120}  |
| 06423          | , {        | 660,           | 130,           | -160,          | 660,             | -160}          |
| 06424<br>06425 | , {<br>, { | 780,<br>660,   | 780,<br>130,   | 490,<br>-160,  | 470,<br>660,     | 490}<br>-160}  |
| 06426          | }          | 000,           | 130,           | 100,           | 000,             | 100)           |
| 06427          | , { {      | 1170,          | 640,           | 340,           | 1170,            | 340}           |
| 06428<br>06429 | , {<br>, { | 1120,<br>1170, | 580,<br>640,   | 290,<br>340,   | 1120,<br>1170,   | 290}<br>340}   |
| 06430          | , {        | 1120,          | 580,           | 290,           | 1120,            | 290}           |
| 06431<br>06432 | , {<br>}   | 40,            | 40,            | -500,          | -510,            | -500}          |
| 06433          | }          |                |                |                |                  |                |
| 06434          | , { { {    | 780,           | 780,           | 490,<br>290,   | -330,            | 490}           |
| 06435<br>06436 | , {<br>, { | 580,<br>640,   | 580,<br>640,   | 340,           | -620,<br>-330,   | 290}<br>340}   |
| 06437          | , {        | 780,           | 780,           | 490,           | -620,            | 490}           |
| 06438<br>06439 | , {<br>}   | 530,           | 530,           | 230,           | -440,            | 230}           |
| 06440          | , { {      | 440,           | 440,           | 140,           | -770,            | 140}           |
| 06441<br>06442 | , {        | 440,<br>130,   | 440,           | 140,<br>-160,  | -770,<br>-1080,  | 140}<br>-160}  |
| 06443          | , {<br>, { | 220,           | 130,<br>220,   | -70,           | -980,            | -70}           |
| 06444          | , {        | 130,           | 130,           | -160,          | -1080,           | -160}          |
| 06445<br>06446 | }<br>,{{   | 580,           | 580,           | 290,           | -390,            | 290}           |
| 06447          | , {        | 580,           | 580,           | 290,           | -620,            | 290}           |
| 06448<br>06449 | , {        | 580,           | 580,           | 280,           | -390 <b>,</b>    | 280}           |
| 06450          | , {<br>, { | 580,<br>530,   | 580,<br>530,   | 290,<br>230,   | -620,<br>-440,   | 290}<br>230}   |
| 06451          | }          |                |                |                |                  |                |
| 06452<br>06453 | ,{{<br>,{  | 780,<br>-60,   | 780,<br>-60,   | 490,<br>-350,  | -1080,<br>-1270, | 490}<br>-350}  |
| 06454          | , {        | 130,           | 130,           | -160,          | -1080,           | -160}          |
| 06455          | , {        | 780,           | 780,           | 490,           | -1680,           | 490}           |
| 06456<br>06457 | , {<br>}   | 130,           | 130,           | -160,          | -1080,           | -160}          |
| 06458          | , { {      | 640,           | 640,           | 340,           | -330,            | 340}           |
| 06459<br>06460 | , {<br>, { | 580,<br>640,   | 580,<br>640,   | 290,<br>340,   | -620,<br>-330,   | 290}<br>340}   |
| 06461          | , {        | 580,           | 580,           | 290,           | -620,            | 290}           |
| 06462          | , {        | 40,            | 40,            | -500,          | -1410,           | -500}          |
| 06463<br>06464 | }          |                |                |                |                  |                |
| 06465          | ,{{{       | 480,           | 470,           | 480,           | 470,             | 480}           |
| 06466<br>06467 | , {        | 280,<br>340,   | 270,<br>330,   | 280,<br>340,   | 270,<br>330,     | 280}<br>340}   |
| 06468          | ,{<br>,{   | 480,           | 470,           | 480,           | 470,             | 480}           |
| 06469          | , {        | 230,           | 220,           | 230,           | 220,             | 230}           |
| 06470<br>06471 | }<br>,{{   | 170,           | 130,           | 170,           | 130,             | 170}           |
| 06472          | , {        | 140,           | 130,           | 140,           | 130,             | 140}           |
| 06473<br>06474 | ,{<br>,{   | -170,<br>170,  | -180,<br>-80,  | -170,<br>170,  | -180,<br>-80,    | -170}<br>170}  |
| 06475          | , {        | -170,          | -180,          | -170,          | -180,            | -170}          |
| 06476          | }          | 200            | 270            | 200            | 270              | 2001           |
| 06477<br>06478 | ,{{<br>,{  | 280,<br>280,   | 270,<br>270,   | 280,<br>280,   | 270,<br>270,     | 280}<br>280}   |
| 06479          | , {        | 280,           | 270,           | 280,           | 270,             | 280}           |
| 06480<br>06481 | , {<br>, { | 280,<br>230,   | 270,<br>220,   | 280,<br>230,   | 270,<br>220,     | 280}<br>230}   |
| 06482          | }          | 230,           | 220,           | 230,           | 220,             | 230)           |
| 06483          | , { {      | 480,           | 470,           | 480,           | 470,             | 480}           |
| 06484<br>06485 | , {<br>, { | -120,<br>-170, | -370,<br>-180, | -120,<br>-170, | -370,<br>-180,   | -120}<br>-170} |
| 06486          | , {        | 480,           | 470,           | 480,           | 470,             | 480}           |
| 06487<br>06488 | , {<br>}   | -170,          | -180,          | -170,          | -180,            | -170}          |
| 06489          | , { {      | 340,           | 330,           | 340,           | 330,             | 340}           |
| 06490          | , {        | 280,           | 270,           | 280,           | 270,             | 280}           |
| 06491<br>06492 | , {<br>, { | 340,<br>280,   | 330,<br>270,   | 340,<br>280,   | 330,<br>270,     | 340}<br>280}   |
| 06493          | , {        | -500,          | -510,          | -500,          | -510,            | -500}          |
| 06494<br>06495 | }          |                |                |                |                  |                |
| 06496          | ,{{{       | 1170,          | -510,          | 490,           | 1170,            | 490}           |
| 06497          | , {        | 1120,          | -800,          | 290,           | 1120,            | 290}           |
| 06498<br>06499 | , {<br>, { | 1170,<br>1120, | -510,<br>-800, | 340,<br>490,   | 1170,<br>1120,   | 340}<br>490}   |
| 06500          | , {        | 1060,          | -620,          | 230,           | 1060,            | 230}           |
| 06501<br>06502 | }<br>,{{   | 970,           | -950,          | 140,           | 970,             | 140}           |
| 06503          | , 11       | 970,           | -950,          | 140,           | 970,             | 140}           |
|                |            |                |                |                |                  |                |

```
660, -1260,
                                 -160,
                                          660,
                                                  -160}
           , {
06505
                 -70, -1160,
                                  -70,
                                         -490,
                                                  -70}
06506
                 660, -1260,
                                 -160
                                          660,
                                                 -160}
06507
06508
          , { {
                1120.
                         -570.
                                  290.
                                         1120.
                                                  2901
06509
                1120,
                                                  290}
          , {
                        -800.
                                  290.
                                         1120.
                        -570,
                                  280,
                                                  280}
06510
                1110,
                                         1110,
06511
                1120,
                        -800,
                                  290,
                                         1120,
                                                  290}
06512
                1060,
                        -620,
                                  230,
                                         1060,
                                                  230}
06513
                 660, -1260,
06514
          , { {
                                  490.
                                          660.
                                                  4901
                                                  -350}
06515
                -350, -1450,
                                 -350.
                                         -780.
           , {
06516
                 660, -1260,
                                 -160,
                                          660,
                                                  -160}
           , {
06517
                 490, -1860,
                                  490,
                                        -1190,
                                                  490}
06518
                 660, -1260,
                                 -160,
                                          660,
                                                  -160}
06519
                1170,
                                         1170,
                        -510,
                                  340.
                                                  3403
06520
          , { {
                1120,
                        -800,
                                  290,
                                                  290}
06521
                                         1120,
          , {
                1170,
                                         1170,
                                                  340}
06522
                        -510,
                                  340,
                1120,
                        -800,
                                  290,
                                                  290}
06523
                                         1120,
06524
                -500,
                       -1590,
                                 -500,
                                         -920,
                                                 -500}
06525
06526
                                          470,
                         470,
06527
         , { { {
                 480.
                                  480,
                                                 -6003
06528
                 280,
                         270,
                                  280,
                                          270,
                                                 -600}
           , {
                          330,
                                  340,
                                           330,
                                                 -640}
                 340,
06530
                 480,
                          470,
                                  480,
                                           470,
                                                 -6901
06531
                 230,
                         220,
                                  230,
                                          220,
                                                 -750}
06532
                 170,
06533
          , { {
                         130.
                                  170.
                                          130.
                                                 -600}
                                                 -600}
06534
                 140.
                         130.
                                  140.
                                          130.
           , {
06535
                -170,
                         -180,
                                 -170,
                                          -180, -1150}
06536
                 170,
                         -80,
                                  170,
                                          -80, -1050}
06537
                -170,
                         -180,
                                 -170,
                                         -180, -1150}
06538
                                          270.
                 280.
                          270.
                                  280.
                                                 -6901
06539
          , { {
                 280,
                          270,
                                                 -690}
06540
                                  280,
                                          270,
           , {
                 280,
06541
                          270,
                                          270,
                                                 -700}
                                  280,
           , {
06542
                 280,
                          270,
                                  280,
                                          270,
                                                 -690}
06543
                 230,
                         220,
                                  230,
                                          220,
                                                 -750}
06544
          , { {
06545
                 480.
                         470.
                                  480.
                                          470. -11503
                                         -370, -1340}
-180, -1150}
                         -370,
                -120.
06546
                                 -120.
06547
                -170,
                         -180,
                                 -170,
                         470,
                                  480,
06548
                                          470, -1750}
                 480,
06549
                -170,
                         -180,
                                 -170,
                                         -180,
                                                -11501
06550
          , { {
                                          330,
06551
                 340,
                          330,
                                  340,
                                                 -640}
                 280,
                         270,
                                                 -690}
                                  280.
                                          270.
06552
          , {
06553
                         330,
                                          330,
                                                 -640}
                 340.
                                  340.
                                          270,
06554
                 280,
                         270,
                                  280,
                                                 -690}
06555
                -500,
                         -510,
                                 -500,
                                         -510,
                                                -1480}
06556
06557
          }
06558
        ,{{{
06559
                1140,
                          780,
                                  490,
                                         1140,
                                                   490}
                1140,
                          600,
                                  310,
                                         1140,
                                                  310}
           , {
06561
                 690,
                          150,
                                 -140,
                                          690,
                                                  -140}
06562
                 780,
                         780,
                                  490,
                                          770,
                                                  490}
                 690,
06563
                         190,
                                 -140,
                                          690,
                                                 -140}
06564
                          600,
06565
          , { {
                1140,
                                  310,
                                         1140,
                                                  310}
06566
                1140,
                         600,
                                  310,
                                         1140,
                                                  310}
           , {
06567
                 690,
                         150,
                                 -140,
                                          690,
                                                 -140}
06568
                -580,
                         -580,
                                -640
                                         -890,
                                                 -6401
06569
                 690,
                         150,
                                 -140
                                          690,
                                                 -140}
06570
06571
                 770,
                         240,
                                  -50,
                                           770,
                                                  -50}
          , { {
06572
                 770,
                         240,
                                  -50,
                                           770,
                                                  -50}
           , {
06573
                 470,
                                           470,
                          -60,
                                 -360,
                                                  -360}
06574
                 770,
                         240,
                                  -50,
                                          770,
                                                  -501
06575
                 470,
                         -60,
                                 -360
                                          470,
                                                 -360}
06576
06577
                 780,
                         780,
                                          690.
          , { {
                                  490.
                                                  490}
06578
                                 -170,
                                          420,
                                                 -170}
                 -110,
                         -110,
06579
                 690,
                         150,
                                 -140,
                                           690,
                                                 -140}
06580
                 780,
                          780,
                                  490,
                                           470,
                                                  490}
06581
                 690,
                         150,
                                 -140,
                                          690,
                                                 -140}
06582
                 770.
                                  -50.
                                           770.
06583
                         240.
                                                  -501
          , { {
                 770,
                                  -50,
                                           770,
                                                  -50}
06584
                         240,
           , {
                         -370,
                                 -670,
06585
                 160,
                                          160,
                                                 -670}
           , {
06586
                 770,
                         240,
                                  -50,
                                          770,
                                                  -50}
06587
                 190,
                         190,
                                 -340
                                         -360,
                                                 -340}
06588
06589
06590
         . { { {
                 780,
                         780,
                                  490,
                                         -600,
                                                  490}
```

```
, {
                 600,
                          600,
                                  310,
06592
                 150,
                          150,
                                 -140, -1030,
                                                 -140}
                                        -970,
                          780,
06593
                 780,
                                  490,
                                                  4901
06594
                 190,
                         190,
                                 -140,
                                        -1030,
                                                 -140}
06595
06596
                 600,
                          600,
                                  310,
                                         -600,
                                                  310}
          , { {
06597
                 600,
                          600,
                                                  310}
                                  310,
                                         -600,
06598
                 150,
                         150,
                                 -140,
                                       -1050,
                                                  -140}
                                        -1790,
06599
                 -580,
                         -580,
                                 -880,
                                                 -880}
06600
                 150,
                         150,
                                 -140,
                                        -1050,
                                                 -140}
06601
                                         -970,
          , { {
                 240.
                          240.
                                  -50.
06602
                                                   -50
06603
                 240,
                         240,
                                  -50,
                                         -970,
                                                  -50}
           , {
06604
                 -60,
                          -60,
                                 -360,
                                        -1030,
                                                 -360}
06605
                 240,
                         240,
                                  -50,
                                        -970,
                                                  -501
06606
                 -60,
                         -60,
                                 -360,
                                        -1030,
                                                 -360}
06607
                 780,
06608
                         780,
                                  490, -1050,
                                                  490}
          , { {
                         -110,
                                                  -400}
06609
           , {
                -110,
                                 -400, -1320,
06610
                                 -140, -1050,
                                                  -140}
                 150,
                         150,
           , {
06611
                 780,
                         780,
                                  490,
                                        -1680,
                                                  490}
06612
                 150,
                         150
                                 -140,
                                        -1050,
                                                  -140}
06613
          , { {
                 240,
                                  -50,
                                         -970,
06614
                         240.
                                                   -501
06615
                 240,
                         240,
                                  -50,
                                         -970,
                                                  -50}
           , {
                 -370,
                         370,
                                 -670,
                                                  -670}
06616
                                       -1340,
06617
                 240,
                         240,
                                  -50,
                                        -970,
                                                  -501
                                        -1260,
06618
                 190.
                         190,
                                 -340,
                                                 -340}
06619
06620
06621
         , { { {
                 480,
                         470,
                                  480.
                                          470,
                                                  480}
06622
                 300,
                         290,
                                  300,
                                          290,
                                                  300}
           , {
06623
                -140,
                         -150,
                                 -140,
                                         -150,
                                                  -140}
06624
                 480,
                         470,
                                  480,
                                          470,
                                                  4801
06625
                -140,
                         -150,
                                 -140,
                                         -150,
                                                 -140}
06626
                 300,
                         290,
                                  300,
                                          290,
06627
                                                  300}
          , { {
                 300,
                         290,
                                                  300}
06628
                                  300,
                                          290,
           , {
                                 -140,
06629
                -140,
                         -150,
                                         -150,
                                                  -140}
06630
                -640,
                        -890,
                                 -640,
                                         -890,
                                                 -640}
06631
                -140,
                        -150,
                                 -140,
                                         -150,
                                                 -140}
06632
          , { {
                 -60.
                          -70.
                                          -70.
06633
                                  -60.
                                                  -601
                         -70,
06634
                 -60,
                                  -60,
                                          -70,
                                                  -60}
           , {
06635
                -360,
                         -370,
                                 -360,
                                         -370,
                                                  -360}
06636
                 -60,
                         -70,
                                  -60,
                                          -70,
                                                  -601
06637
                -360,
                        -370,
                                 -360,
                                         -370,
                                                 -3601
06638
                                          470,
          , { {
                 480.
                         470.
                                  480.
                                                  4801
06639
                -170,
                         -420,
                                 -170,
                                         -420,
                                                  -170}
06640
           , {
06641
                -140,
                         -150,
                                 -140,
                                         -150,
                                                 -140}
06642
                 480,
                         470,
                                  480,
                                          470,
                                                  480}
06643
                -140,
                         -150,
                                 -140,
                                         -150,
                                                  -140}
06644
06645
                 -60,
                          -70.
                                  -60.
                                          -70,
                                                  -60}
          , { {
                 -60,
                          -70,
                                  -60,
                                          -70,
                                                  -60}
06646
           , {
06647
                -670,
                         -680,
                                 -670,
                                                  -670}
                                          -680,
06648
                 -60,
                         -70,
                                  -60,
                                          -70,
                                                  -60}
06649
                -350,
                        -360,
                                 -350,
                                         -360,
                                                 -350}
06650
06651
                        -780,
06652
         , { { {
                1140,
                                  490,
                                         1140,
                                                  490}
06653
                1140,
                        -780,
                                  310,
                                         1140,
                                                  310}
           , {
06654
                 690, -1210,
                                 -140,
                                          690,
                                                  -140}
06655
                 770, -1150,
                                  490.
                                          770,
                                                  4901
06656
                 690, -1210,
                                 -140
                                          690,
                                                 -140}
06657
                1140,
                        -780,
                                  310,
                                         1140,
                                                  310}
06658
          , { {
                1140, -780,
06659
                                  310,
                                         1140,
                                                  310}
           , {
06660
                 690, -1230,
                                 -140,
                                          690,
                                                  -140}
06661
                -880, -1970,
                                 -880,
                                        -1300,
                                                 -880}
06662
                 690, -1230,
                                 -140,
                                          690,
                                                 -140}
06663
                 770, -1150,
                                          770,
06664
          , { {
                                  -50.
                                                  -50}
                 770, -1150,
                                  -50,
                                          770,
                                                  -50}
06665
           , {
                 470, -1210,
                                 -360,
                                          470,
                                                 -360}
06666
06667
                 770, -1150,
                                  -50,
                                          770,
                                                  -50}
06668
                 470, -1210,
                                 -360,
                                          470,
                                                 -360}
06669
06670
          , { {
                                          690.
                 690. -1230.
                                  490.
                                                  4901
06671
                                                  -400}
                 -400, -1500,
                                 -400,
                                          -830,
           , {
06672
                 690, -1230,
                                 -140,
                                          690,
                                                  -140}
           , {
06673
                 490, -1860,
                                  490,
                                         1190,
                                                  490}
06674
                 690, -1230,
                                 -140
                                          690,
                                                  -140]
06675
                                          770,
06676
                 770, -1150,
770, -1150,
                                  -50,
          , { {
                                                   -50 
06677
                                  -50.
                                          770.
                                                  -50}
           , {
```

```
06678
                 160, -1520,
                                -670,
                                         160,
           , {
06679
                 770, -1150,
                                 -50,
                                         770,
                                                 -50}
                -340, -1440,
06680
                                -340,
                                        -770,
                                                -3401
06681
           }
06682
         , { { {
                 480,
                         470,
                                 480,
                                         470,
                                                -430}
06683
                 300,
                         290,
                                         290, -430}
06684
                                 300,
          , {
06685
                -140,
                        -150,
                                -140,
                                        -150, -1120}
06686
                 480,
                        470,
                                 480,
                                         470, -1040}
06687
                -140,
                        -150,
                                -140,
                                        -150, -1120}
06688
06689
          , { {
                 300.
                         290.
                                 300.
                                         290, -430}
06690
                 300,
                         290,
                                 300,
                                         290, -430}
          , {
06691
                -140,
                        -150,
                                -140,
                                        -150, -1120}
06692
                -640,
                        -890,
                                -640,
                                        -890, -1860}
06693
                -140,
                        -150,
                                -140,
                                        -150, -1120}
06694
06695
                 -60,
                         -70,
                                         -70, -1040}
          , { {
                                 -60,
                         -70,
                                         -70, -1040}
06696
                 -60,
                                 -60,
          , {
06697
                -360,
                        -370,
                                        -370, -1340}
                                -360,
           , {
06698
                 -60,
                        -70,
                                 -60,
                                         -70, -1040}
                                        -370, -1340}
06699
                -360,
                        -370,
                                -360
06700
06701
                                        470, -1120}
-420, -1390}
                 480.
                         470.
                                 480.
          , { {
06702
                -170,
                        -420,
                                -170,
          , {
06703
                        -150,
                                        -150, -1120}
                -140,
                                -140,
06704
                 480,
                        470,
                                 480,
                                         470, -1750}
                -140,
06705
                        -150,
                                -140,
                                        -150, -1120}
06706
06707
          , { {
                 -60,
                         -70.
                                 -60.
                                         -70, -1040}
                                        -70, -1040}
-680, -1650}
06708
                 -60,
                         -70,
                                 -60.
          , {
06709
                -670,
                        -680,
                                -670,
06710
                 -60,
                         -70,
                                 -60,
                                         -70, -1040}
06711
                -350,
                        -360,
                                -350,
                                        -360, -1330}
06712
06713
          }
06714
        ,{{{{
                 940,
06715
                         940,
                                 650,
                                         630.
                                                 650}
06716
                 220,
                        -130,
                                -190,
                                         220,
                                                -190}
           , {
06717
                 220,
                        -310,
                                -600,
                                         220,
                                                -600}
                 940,
06718
                         940.
                                650,
                                         630,
                                                6503
06719
                 220.
                         -70,
                                -600,
                                         220,
                                                -600}
06720
06721
                 220,
                        -310,
                                -380,
                                         220,
                                                -380}
          , { {
                                -780,
                                          40,
06722
                  40,
                        -490,
                                                -780}
          , {
06723
                 220,
                        -310,
                                -600,
                                         220,
                                                -6001
06724
                -320.
                        -320,
                                -380,
                                        -630.
                                                -3801
06725
                 220,
                        -310,
                                -600,
                                         220,
                                                -600}
06726
06727
                 220,
                        -310,
                                         220,
          , { {
                                -600.
                                                -600}
06728
                 220,
                        -310,
                                -600,
                                         220,
                                                -600}
          , {
06729
                 220,
                        -310,
                                -600,
                                         220,
                                                -600}
06730
                 220,
                        -310,
                                -600,
                                         220,
                                                -6001
06731
                 220,
                        -310,
                                -600,
                                         220,
                                                -6003
06732
06733
                                         630,
          , { {
                 940,
                         940,
                                 650,
                                                 650}
06734
                -130,
                        -130,
                                -190,
                                         -440,
                                                -190}
06735
                 220,
                        -310,
                                -600,
                                         220,
                                                -600}
           , {
06736
                 940,
                        940,
                                 650,
                                          630,
                                                 6501
06737
                 220,
                        -310.
                                -600,
                                         220,
                                                -600}
06738
                         -70,
                                         220,
06739
          , { {
                 220,
                                -600,
                                                -600}
06740
                 220,
                        -310,
                                -600,
                                         220,
                                                -600}
           , {
06741
                 220,
                        -310,
                                -600,
                                         220,
                                                -600}
06742
                 220,
                        -310,
                                -600,
                                         220,
                                                -6001
06743
                 -70,
                        -70,
                                -600,
                                        -620,
                                                -600}
06744
06745
06746
         , { { {
                 940,
                         940,
                                 650, -1280,
                                                 650}
                -130,
                        -130,
                                -430, -1340,
                                                -430}
06747
           , {
06748
                -310,
                        -310,
                                -600, -1280,
                                                -600}
06749
                 940,
                         940,
                                 650, -1520,
                                                 6503
                 -70,
06750
                         -70,
                                -600, -1280,
                                                -600}
06751
06752
                -310,
                        -310,
                                -600, -1520,
                                                -600}
          , { {
                -490,
                        -490,
06753
                                -780, -1700,
                                                -780}
06754
                -310,
                        -310,
                                -600, -1520,
                                                -600}
06755
                -320,
                        -320,
                                -620, -1530,
                                                -620}
06756
                -310.
                        -310.
                                -600, -1520,
                                                -600}
06757
06758
                -310,
                        -310,
                                -600, -1280,
                                                -600}
          , { {
                                -600, -1520,
06759
                -310,
                        -310,
                                                -600}
          , {
06760
                -310,
                        -310,
                                -600, -1280,
                                                -600}
                -310,
                                -600, -1520,
06761
                        -310,
                                                -6001
06762
                -310,
                        -310,
                                -600, -1280,
                                                -600}
06763
06764
                 940,
                        940,
                                 650, -1340,
                                                 650}
          . { {
```

```
-130,
                        -130,
                                -430, -1340,
                                                 -430}
           , {
06766
                -310,
                        -310,
                                -600, -1520,
                                                 -600}
                 940,
                                 650, -1520,
06767
                         940.
                                                  6501
06768
                -310,
                        -310,
                                -600, -1520,
                                                 -6003
06769
06770
                 -70,
                         -70,
                                -600, -1280,
                                                 -600}
          , { {
06771
                -310,
                        -310,
                                -600, -1520,
                                                 -600}
06772
                -310,
                        -310,
                                -600, -1280,
                                                 -600}
06773
                -310,
                        -310,
                                -600, -1520,
                                                 -600}
06774
                 -70,
                         -70,
                                -600,
                                       -1520,
                                                 -600}
06775
06776
06777
         , { { {
                 640,
                         630,
                                 640,
                                          630,
                                                  640}
06778
                -190,
                        -440,
                                -190,
                                         -440,
                                                 -190}
06779
                -610,
                        -620,
                                -610,
                                        -620,
                                                 -610}
06780
                 640,
                         630,
                                 640,
                                          630,
                                                  640}
06781
                -610,
                        -620.
                                -610.
                                         -620.
                                                 -610}
06782
06783
          , { {
                -380.
                        -620,
                                -380,
                                         -620.
06784
                -790,
                                -790,
                                                 -790}
                        -800,
                                         -800.
          , {
06785
                -610,
                        -620,
                                -610,
                                        -620,
                                                -610}
06786
                -380,
                        -630,
                                -380,
                                        -630,
                                                -3801
               -610,
06787
                        -620,
                                -610,
                                        -620,
                                                -610}
06788
06789
                -610,
                        -620,
                                -610,
                                        -620,
                                                 -610}
          , { {
06790
                -610,
                        -620,
                                -610,
                                        -620,
                                                -610}
06791
                -610,
                        -620,
                                -610,
                                        -620,
                                                -6101
           , {
06792
                -610,
                        -620,
                                -610,
                                         -620,
                                                 -610}
06793
                -610,
                        -620,
                                -610,
                                        -620,
                                                 -610}
06794
06795
          , { {
                 640.
                         630.
                                 640.
                                          630,
                                                  640}
06796
                -190,
                        -440,
                                -190,
                                         -440,
                                                 -190}
06797
                -610,
                        -620,
                                -610,
                                         -620,
                                                 -610}
06798
                 640,
                         630,
                                 640,
                                          630,
                                                  640}
06799
                -610,
                        -620,
                                -610,
                                         -620,
                                                 -610}
06800
                -610,
                        -620,
                                -610,
                                        -620,
06801
                                                -610}
          , { {
                        -620,
06802
                -610,
                                -610,
                                         -620,
                                                 -610}
           , {
                -610,
06803
                        -620,
                                -610,
                                        -620,
                                                 -610}
06804
                -610,
                        -620,
                                -610,
                                         -620,
                                                 -610}
06805
                -610,
                        -620,
                                -610,
                                        -620,
                                                -610}
06806
06807
06808
                 650, -1460,
                                 650,
                                          220,
                                                  650}
         , { { {
                 220, -1520,
                                -430,
                                          220,
                                                 -430}
06809
          , {
06810
                 220, -1460,
                                -600,
                                          220,
                                                 -6001
06811
                 650, -1700,
                                 650,
                                          220.
                                                  650}
                 220, -1460,
06812
                                -600,
                                          220,
                                                 -600}
06813
06814
                 220, -1700,
                                -600,
                                          220,
          , { {
                                                 -600}
06815
                  40, -1880,
                                -780,
                                          40,
                                                 -780}
          , {
06816
                 220, -1700,
                                -600,
                                          220,
                                                -600}
06817
                -620, -1710,
                                -620,
                                         1040,
                                                -6201
06818
                 220, -1700,
                                -600,
                                          220,
                                                -600}
06819
06820
          , { {
                 220, -1460,
                                -600,
                                          220,
                                                 -600}
                 220, -1700,
                                -600,
                                          220,
                                                 -600}
06821
           , {
06822
                 220, -1460,
                                -600,
                                          220,
                                                -600}
           , {
06823
                 220, -1700,
                                -600,
                                          220,
                                                 -600}
06824
                 220, -1460,
                                -600
                                          220,
                                                 -6001
06825
                650, -1520,
-430, -1520,
06826
          , { {
                                  650,
                                          220,
                                                  650}
06827
                                -430,
                                         -850,
                                                 -430}
           , {
06828
                 220, -1700,
                                -600,
                                          220,
                                                 -600}
06829
                 650, -1700,
                                 650,
                                        -1030,
                                                  6501
06830
                 220, -1700,
                                -600,
                                          220,
                                                 -600}
06831
                 220, -1460,
                                          220,
                                                 -600}
06832
          , { {
                                -600.
06833
                 220, -1700,
                                -600,
                                          220,
                                                 -600}
           , {
06834
                 220, -1460,
                                -600,
                                          220,
                                                 -600}
06835
                 220, -1700,
                                -600,
                                          220,
                                                 -600}
                -600, -1700,
06836
                                -600,
                                       -1030,
                                                -600}
06837
06838
         , { { {
                 640,
                                          630, -1410}
06839
                         630,
                                 640,
06840
                -190,
                        -440,
                                -190,
                                         -440, -1410}
          , {
06841
                -610,
                        -620,
                                -610,
                                        -620, -1590}
06842
                 640,
                         630,
                                 640,
                                          630, -1590}
                                         -620, -15901
06843
                -610,
                        -620.
                                -610,
06844
                                         -620, -1530}
06845
          , { {
                -380,
                        -620,
                                -380,
                -790,
                                        -800, -1530}
06846
                        -800,
                                -790,
           , {
                                        -620, -1590}
-630, -1600}
06847
                -610,
                        -620,
                                -610,
                -380,
06848
                        -630,
                                -380,
06849
                -610,
                        -620,
                                -610,
                                        -620, -1590}
06850
06851
          . { {
                -610,
                        -620,
                                -610,
                                        -620, -1590}
```

```
-620,
                -610,
                                 -610,
                                         -620, -1590}
           , {
                                         -620, -1590}
06853
                -610,
                         -620,
                                 -610,
                -610,
06854
                         -620,
                                 -610.
                                         -620, -1590}
06855
                -610,
                         -620,
                                 -610,
06856
                 640,
                          630,
                                  640,
                                          630, -1410}
06857
          , { {
                -190,
                                 -190,
                                          -440, -1410}
06858
                         -440,
06859
                -610,
                         -620,
                                 -610,
                                         -620, -1590}
06860
                 640,
                          630,
                                  640,
                                          630, -1590}
                                         -620, -1590}
06861
                -610,
                         -620,
                                 -610,
06862
06863
          , { {
                -610,
                         -620.
                                 -610.
                                         -620, -1590}
                                         -620, -1590}
06864
                -610,
                         -620,
                                 -610,
           , {
06865
                -610,
                         -620,
                                 -610,
                                         -620, -1590}
06866
                -610,
                        -620,
                                 -610,
                                         -620, -1590}
06867
                -610,
                        -620,
                                 -610,
                                         -620, -1590}
06868
06869
          }
06870
                                 1200,
06871
                1490,
                         1490,
                                         1280,
                                                  1200}
        ,{{{{
06872
                1280,
                          750,
                                  460,
                                         1280,
                                                   460}
                                          780,
06873
                 780,
                          240.
                                  -50,
                                                   -503
06874
                1490,
                         1490,
                                 1200,
                                         1190,
                                                  12001
06875
                 780,
                          480,
                                  -50,
                                          780,
                                                   -501
06876
06877
                1280,
                          750,
                                  460,
                                         1280,
          , { {
                                                   460}
06878
                1280,
                          750,
                                  460,
                                         1280,
                                                   460}
           , {
06879
                 780,
                          240,
                                  -50,
                                          780,
                                                   -50}
06880
                 -90,
                          -90.
                                 -150,
                                          -400,
                                                  -150}
                 780,
06881
                          240.
                                  -50.
                                          780.
                                                   -50}
06882
06883
                 780,
                          240,
                                  -50,
                                           780,
                                                   -50}
          , { {
06884
                 780,
                          240,
                                  -50,
                                           780,
                                                   -50}
           , {
06885
                 780,
                          240,
                                  -50,
                                           780,
                                                   -50}
           , {
06886
                 780,
                          240,
                                  -50,
                                          780,
                                                   -501
06887
                 780.
                          240.
                                  -50,
                                           780,
                                                   -50}
06888
                                 1200,
                1490,
                         1490,
                                         1190,
06889
          , { {
                                                  1200}
06890
                -260,
                         -260,
                                 -320,
                                          -570,
                                                  -320}
           , {
06891
                 780,
                          240,
                                  -50,
                                          780,
                                                   -50}
                1490,
06892
                         1490.
                                 1200.
                                         1190.
                                                  1200}
06893
                 780.
                          240.
                                  -50,
                                          780,
                                                   -501
06894
06895
                 780,
                          480,
                                  -50,
                                           780,
                                                   -50}
          , { {
06896
                 780,
                          240,
                                  -50,
                                           780,
                                                   -50}
           , {
06897
           , {
                 780,
                          240,
                                  -50,
                                           780,
                                                   -50}
06898
                 780.
                          240.
                                  -50,
                                          780.
                                                   -50}
06899
                 480,
                          480,
                                  -50,
                                          -60,
                                                   -50}
06900
06901
                1490,
06902
         , { { {
                         1490,
                                 1200,
                                         -450,
                                                  1200}
06903
                 750,
                          750,
                                  460,
                                         -450,
                                                   460}
06904
                 240,
                          240,
                                  -50,
                                         -720,
                                                   -501
06905
                1490,
                         1490,
                                 1200,
                                         -960,
                                                  12001
06906
                                         -720,
                 480.
                          480.
                                  -50,
                                                   -50}
06907
06908
                 750,
                          750,
                                  460,
                                          -450,
                                                   460}
          , { {
06909
                 750,
                          750,
                                  460,
                                         -450,
                                                   460}
           , {
06910
                 240,
                          240,
                                  -50,
                                         -960,
                                                   -50}
06911
                 -90.
                          -90.
                                 -390.
                                        -1300.
                                                  -3901
                 240.
06912
                          240.
                                  -50.
                                         -960.
                                                   -501
06913
06914
          , { {
                 240,
                          240,
                                  -50,
                                         -720,
                                                   -50}
                                         -960,
06915
                 240,
                          240,
                                  -50,
                                                   -50}
06916
                 240,
                          240,
                                  -50,
                                         -720,
                                                   -503
           , {
06917
                 240,
                          240,
                                  -50,
                                         -960,
                                                   -50}
                                         -720,
06918
                 240,
                          240,
                                  -50,
                                                   -50}
06919
06920
          , { {
                1490,
                         1490,
                                 1200,
                                         -960,
                                                  1200}
                -260,
                         -260,
                                        -1470,
                                                  -560}
06921
                                 -560,
06922
                 240,
                          240,
                                  -50,
                                         -960,
                                                   -50}
06923
                1490,
                         1490,
                                 1200,
                                         -960,
                                                  1200}
06924
                 240,
                          240,
                                  -50,
                                         -960,
                                                   -50}
06925
06926
                 480,
                          480,
                                  -50,
                                         -720,
                                                   -50}
          , { {
06927
                 240,
                          240,
                                  -50,
                                         -960,
                                                   -50}
           , {
06928
                 240,
                          240,
                                  -50,
                                         -720,
                                                   -50}
           , {
06929
                 240,
                          240,
                                  -50,
                                         -960,
                                                   -50}
06930
                 480.
                          480.
                                  -50,
                                         -960,
                                                   -50}
06931
06932
                         1190,
06933
         ,{{{
                1200,
                                 1200,
                                         1190,
                                                  1200}
06934
                 450,
                          440,
                                  450,
                                          440,
                                                   450}
          -, -
06935
                 -50,
                          -60,
                                  -50,
                                          -60,
                                                   -50}
06936
                1200,
                        1190,
                                 1200,
                                         1190,
                                                 1200}
06937
                 -50,
                         -60.
                                 -50,
                                          -60,
                                                   -501
06938
```

```
06939
          , { {
                 450,
                          440,
                                  450,
                                           440,
                                                   450}
06940
                 450,
                          440,
                                  450,
                                          440,
                                                   450}
           , {
06941
                 -50,
                          -60,
                                  -50,
                                          -60,
                                                   -50}
                         -400,
06942
                -150,
                                 -150,
                                          -400,
                                                  -1503
06943
                 -50,
                          -60,
                                  -50,
                                          -60,
                                                   -50
06944
06945
          , { {
                 -50,
                          -60,
                                  -50,
                                           -60,
06946
                 -50,
                          -60,
                                  -50,
                                          -60,
                                                   -50}
           , {
06947
                 -50,
                          -60,
                                  -50,
                                          -60,
                                                   -50}
06948
                 -50,
                          -60,
                                  -50,
                                          -60,
                                                   -501
06949
                 -50,
                          -60.
                                  -50,
                                                   -50}
                                          -60.
06950
06951
                1200,
                        1190,
                                 1200,
                                         1190,
                                                 1200}
          , { {
06952
                -320,
                         -570,
                                 -320,
                                         -570,
                                                  -320}
          , {
06953
                 -50,
                         -60,
                                  -50,
                                          -60,
                                                   -501
06954
                1200,
                        1190,
                                 1200,
                                         1190,
                                                 1200}
06955
                 -50.
                         -60.
                                  -50,
                                          -60.
                                                   -50}
06956
06957
          , { {
                 -50,
                          -60,
                                  -50,
                                           -60.
06958
                 -50,
                          -60,
                                  -50,
                                                   -50}
                                           -60,
           , {
                 -50,
06959
                          -60,
                                  -50,
                                          -60,
                                                   -50}
06960
                 -50,
                          -60,
                                  -50,
                                          -60,
                                                   -503
06961
                 -50.
                          -60,
                                  -50,
                                          -60,
                                                   -501
06962
06963
                1280,
                        -630,
                                 1200,
                                                 1200}
06964
         , { { {
                                         1280,
06965
                1280,
                        -630,
                                  460,
                                         1280,
                                                   460}
           , {
06966
                 780,
                        -900,
                                  -50,
                                          780,
                                                   -50}
06967
                1200,
                       -1140.
                                 1200,
                                           780,
                                                 1200}
06968
                 780.
                        -900.
                                  -50.
                                          780.
                                                   -50}
06969
06970
          , { {
                1280,
                        -630,
                                  460,
                                         1280,
                                                   460}
06971
                1280,
                        -630,
                                  460,
                                         1280,
                                                   460}
06972
                 780, -1140,
                                  -50,
                                          780,
                                                   -50}
           , {
06973
                -390, -1480,
                                 -390,
                                          -810,
                                                  -3901
06974
                 780, -1140,
                                  -50,
                                          780,
                                                   -50}
06975
                 780,
                        -900,
06976
                                           780,
          , { {
                                  -50,
                                                   -50}
06977
                 780, -1140,
                                  -50,
                                           780,
                                                   -50}
           , {
06978
                 780,
                       -900,
                                  -50,
                                           780,
                                                   -50}
06979
                 780, -1140,
                                  -50,
                                           780.
                                                   -503
                 780,
06980
                       -900,
                                  -50,
                                          780,
                                                   -501
06981
06982
                1200, -1140,
                                 1200,
                                           780,
                                                 1200}
          , { {
06983
                -560, -1650,
                                                  -560}
                                 -560,
                                          -980,
          , {
06984
                 780, -1140,
                                  -50,
                                          780,
                                                   -501
06985
                1200, -1140,
                                 1200,
                                          -470.
                                                 1200}
                 780, -1140,
06986
                                  -50,
                                          780,
                                                   -50}
06987
06988
                 780,
                        -900,
                                           780,
          , { {
                                  -50.
                                                   -50}
                 780, -1140,
                                  -50,
06989
                                           780,
                                                   -50}
           , {
06990
                 780, -900,
                                  -50,
                                          780,
                                                   -50}
06991
                 780, -1140,
                                  -50,
                                          780,
                                                   -501
06992
                 -50, -1140,
                                  -50,
                                         -470,
                                                   -501
06993
06994
06995
                1200,
                        1190,
                                 1200,
                                         1190,
                                                 -280}
         , { { {
06996
                 450,
                          440,
                                  450,
                                          440,
                                                 -280}
06997
                 -50,
                          -60,
                                  -50,
                                          -60, -1030}
06998
                1200.
                        1190.
                                 1200.
                                         1190, -1030}
                                          -60, -1030}
06999
                 -50.
                          -60,
                                  -50.
07000
07001
          , { {
                 450,
                          440,
                                  450,
                                           440,
                                                 -280}
07002
                 450,
                          440,
                                  450,
                                          440, -280}
                                          -60, -1030}
07003
                 -50,
                          -60.
                                  -50,
                                         -400, -1370}
-60, -1030}
07004
                -150,
                         -400,
                                 -150,
07005
                 -50,
                         -60,
                                  -50,
07006
07007
                 -50,
                          -60,
                                  -50,
                                           -60, -1030}
          , { {
07008
                 -50,
                          -60,
                                  -50,
                                          -60, -1030}
07009
                 -50,
                          -60,
                                  -50,
                                           -60, -1030}
                                          -60, -1030}
07010
                 -50,
                          -60,
                                  -50,
                                          -60, -1030}
07011
                 -50,
                          -60,
                                  -50,
07012
07013
                1200,
                        1190,
                                 1200,
                                         1190, -1030}
          , { {
07014
                -320,
                         -570,
                                 -320,
                                          -570, -1540}
           , {
07015
                 -50,
                          -60,
                                  -50,
                                          -60, -1030}
                                         1190, -1030}
-60, -1030}
07016
                1200,
                        1190,
                                 1200,
07017
                 -50,
                         -60
                                  -50,
07018
07019
                 -50,
                          -60,
                                  -50,
                                           -60, -1030}
          , { {
07020
                 -50,
                                           -60, -1030}
                          -60,
                                  -50,
           , {
                                          -60, -1030}
07021
                 -50,
                          -60,
                                  -50,
07022
                 -50,
                          -60,
                                  -50,
                                          -60, -1030}
07023
                 -50,
                          -60,
                                  -50,
07024
07025
```

| 07026<br>07027 | }           | 1070           | 1070           | 1 5 7 0        | 1070            | 1570}          |
|----------------|-------------|----------------|----------------|----------------|-----------------|----------------|
| 07027          | }}}},<br>}, | 1870,<br>1870, | 1870,<br>1340, | 1570,<br>1040, | 1870,<br>1870,  | 1040}          |
| 07029          | , {         | 1570,          | 1040,          | 740,           | 1570,           | 740}           |
| 07030          | , {         | 1870,          | 1870,          | 1570,          | 1570,           | 1570}          |
| 07031<br>07032 | , {<br>}    | 1570,          | 1040,          | 740,           | 1570,           | 740}           |
| 07033          | , { {       | 1870,          | 1340,          | 1040,          | 1870,           | 1040}          |
| 07034          | , {         | 1870,          | 1340,          | 1040,          | 1870,           | 1040}          |
| 07035          | , {         | 1560,          | 1030,          | 730,           | 1560,           | 730}           |
| 07036<br>07037 | , {<br>, {  | -50,<br>1560,  | -50,<br>1030,  | -110,<br>730,  | -360,<br>1560,  | -110}<br>730}  |
| 07037          | , t<br>}    | 1300,          | 1030,          | 730,           | 1300,           | 730}           |
| 07039          | , { {       | 1570,          | 1040,          | 750,           | 1570,           | 750}           |
| 07040          | , {         | 1570,          | 1040,          | 750,           | 1570,           | 750}           |
| 07041          | , {         | 1570,          | 1040,          | 740,           | 1570,           | 740}           |
| 07042<br>07043 | , {<br>, {  | 1570,<br>1570, | 1040,<br>1040, | 750,<br>740,   | 1570,<br>1570,  | 750}<br>740}   |
| 07044          | }           | ,              | ,              | ,              | ,               | ,              |
| 07045          | , { {       | 1870,          | 1870,          | 1570,          | 1560,           | 1570}          |
| 07046          | , {         | 130,           | 130,           | 70,            | -180,           | 70}            |
| 07047<br>07048 | , {<br>, {  | 1560,<br>1870, | 1030,<br>1870, | 730,<br>1570,  | 1560,<br>1560,  | 730}<br>1570}  |
| 07049          | , {         | 1560,          | 1030,          | 730,           | 1560,           | 730}           |
| 07050          | }           |                |                |                |                 |                |
| 07051          | , { {       | 1570,          | 1040,          | 750,           | 1570,           | 750}           |
| 07052<br>07053 | , {         | 1570,<br>1570, | 1040,<br>1040, | 750,<br>740,   | 1570,<br>1570,  | 750}<br>740}   |
| 07054          | , {<br>, {  | 1570,          | 1040,          | 750,           | 1570,           | 750}           |
| 07055          | , {         | 300,           | 300,           | -230,          | -250,           | -230}          |
| 07056          | }           |                |                |                |                 |                |
| 07057          | }           | 1000           | 1000           | 1.550          | 100             | 1.500          |
| 07058<br>07059 | }}},<br>},  | 1870,<br>1340, | 1870,<br>1340, | 1570,<br>1040, | 130,<br>130,    | 1570}<br>1040} |
| 07060          | , {         | 1040,          | 1040,          | 740,           | 70,             | 740}           |
| 07061          | , {         | 1870,          | 1870,          | 1570,          | -160,           | 1570}          |
| 07062          | , {         | 1040,          | 1040,          | 740,           | 70,             | 740}           |
| 07063          | }           | 1040           | 1040           | 1040           | 1.20            | 1040)          |
| 07064<br>07065 | ,{{<br>,{   | 1340,<br>1340, | 1340,<br>1340, | 1040,          | 130,<br>130,    | 1040}          |
| 07066          | , {         | 1030,          | 1030,          | 730,           | -180,           | 730}           |
| 07067          | , {         | -50,           | -50,           | -340,          | -1260,          | -340}          |
| 07068          | , {         | 1030,          | 1030,          | 730,           | -180,           | 730}           |
| 07069<br>07070 | }<br>,{{    | 1040,          | 1040,          | 750,           | 70,             | 750}           |
| 07070          | , {         | 1040,          | 1040,          | 750,           | -160,           | 750}           |
| 07072          | , {         | 1040,          | 1040,          | 740,           | 70,             | 740}           |
| 07073          | , {         | 1040,          | 1040,          | 750,           | -160,           | 750}           |
| 07074<br>07075 | , {         | 1040,          | 1040,          | 740,           | 70,             | 740}           |
| 07076          | }<br>,{{    | 1870,          | 1870,          | 1570,          | -180,           | 1570}          |
| 07077          | , {         | 130,           | 130,           | -160,          | -1080,          | -160}          |
| 07078          | , {         | 1030,          | 1030,          | 730,           | -180,           | 730}           |
| 07079<br>07080 | , {         | 1870,          | 1870,          | 1570,          | -590 <b>,</b>   | 1570}          |
| 07080          | , {<br>}    | 1030,          | 1030,          | 730,           | -180,           | 730}           |
| 07082          | , { {       | 1040,          | 1040,          | 750,           | 70,             | 750}           |
| 07083          | , {         | 1040,          | 1040,          | 750,           | -160,           | 750}           |
| 07084<br>07085 | , {         | 1040,          | 1040,          | 740,           | 70,             | 740}           |
| 07085          | , {<br>, {  | 1040,<br>300,  | 1040,<br>300,  | 750,<br>-230,  | -160,<br>-1150, | 750}<br>-230}  |
| 07087          | }           | 5557           | 000,           | 200,           | 1100,           | 200,           |
| 07088          | }           |                |                |                |                 |                |
| 07089          | , { { {     | 1570,          | 1560,          | 1570,          | 1560,           | 1570}          |
| 07090<br>07091 | , {<br>, {  | 1040,<br>740,  | 1030,<br>730,  | 1040,<br>740,  | 1030,<br>730,   | 1040}          |
| 07091          | , {         | 1570,          | 1560,          | 1570,          | 1560,           | 1570}          |
| 07093          | , {         | 740,           | 730,           | 740,           | 730,            | 740}           |
| 07094          | }           |                |                |                |                 |                |
| 07095          | , { {       | 1040,          | 1030,          | 1040,          | 1030,           | 1040}          |
| 07096<br>07097 | , {<br>, {  | 1040,<br>730,  | 1030,<br>720,  | 1040,<br>730,  | 1030,<br>720,   | 1040}<br>730}  |
| 07098          | , {         | -110,          | -360,          | -110,          | -360,           | -110}          |
| 07099          | , {         | 730,           | 720,           | 730,           | 720,            | 730}           |
| 07100          | }           |                |                |                |                 | - 2 -          |
| 07101          | , { {       | 740,           | 730,           | 740,           | 730,            | 740}           |
| 07102<br>07103 | , {<br>, {  | 740,<br>740,   | 730,<br>730,   | 740,<br>740,   | 730,<br>730,    | 740}<br>740}   |
| 07103          | , {         | 740,           | 730,           | 740,           | 730,            | 740}           |
| 07105          | , {         | 740,           | 730,           | 740,           | 730,            | 740}           |
| 07106          | }           | 1 5 7 0        | 1500           | 1 5 7 0        | 15.00           | 1 5 7 0 1      |
| 07107<br>07108 | ,{{<br>,{   | 1570,<br>70,   | 1560,<br>-180, | 1570,<br>70,   | 1560,<br>-180,  | 1570}<br>70}   |
| 07100          | , {         | 730,           | 720,           | 730,           | 720,            | 730}           |
| 07110          | , {         | 1570,          | 1560,          | 1570,          | 1560,           | 1570}          |
| 07111          | , {         | 730,           | 720,           | 730,           | 720,            | 730}           |
| 07112          | }           |                |                |                |                 |                |

| 07113          | , { {      | 740,         | 730,          | 740,          | 730,          | 740}   |
|----------------|------------|--------------|---------------|---------------|---------------|--------|
| 07114          | , {        | 740,         | 730,          | 740,          | 730,          | 740}   |
| 07115          | , {        | 740,         | 730,          | 740,          | 730,          | 740}   |
| 07116          | , {        | 740,         | 730,          | 740,          | 730,          | 740}   |
| 07117          | , {        | -240,        | -250 <b>,</b> | -240,         | -250,         | -240}  |
| 07118          | }          |              |               |               |               |        |
| 07119          | }          |              |               |               |               |        |
| 07120          | ,{{{       | 1870,        | -50,          | 1570,         | 1870,         | 1570}  |
| 07121          | , {        | 1870,        | -50,          | 1040,         | 1870,         | 1040}  |
| 07122          | , {        | 1570,        | -110,         | 740,          | 1570,         | 740}   |
| 07123          | , {        | 1570,        | -340,         | 1570,         | 1570,         | 1570}  |
| 07124          | , {        | 1570,        | -110,         | 740,          | 1570,         | 740}   |
| 07125          | }          |              | . ,           |               |               |        |
| 07126          | , { {      | 1870,        | -50,          | 1040,         | 1870,         | 1040}  |
| 07127          | , {        | 1870,        | -50,          | 1040,         | 1870,         | 1040}  |
| 07128          | , {        | 1560,        | -360,         | 730,          | 1560,         | 730}   |
| 07129          | , {        | -340,        | -1440,        | -340,         | -770,         | -340}  |
| 07130          | , {        | 1560,        | -360,         | 730,          | 1560,         | 730}   |
| 07131          | }          |              |               |               |               |        |
| 07132          | , { {      | 1570,        | -110,         | 750,          | 1570,         | 750}   |
| 07133          | , {        | 1570,        | -340,         | 750,          | 1570,         | 750}   |
| 07134          | , {        | 1570,        | -110,         | 740,          | 1570,         | 740}   |
| 07135          | , {        | 1570,        | -340,         | 750,          | 1570,         | 750}   |
| 07136          | , {        | 1570,        | -110,         | 740,          | 1570,         | 740}   |
| 07137          | }          |              |               |               |               |        |
| 07138          | , { {      | 1570,        | -360,         | 1570,         | 1560,         | 1570}  |
| 07139          | , {        | -160,        | -1260,        | -160,         | -590,         | -160}  |
| 07140          | , {        | 1560,        | -360,         | 730,          | 1560,         | 730}   |
| 07141          | , {        | 1570,        | -770,         | 1570,         | -100,         | 1570}  |
| 07142          | , {        | 1560,        | -360,         | 730,          | 1560,         | 730}   |
| 07143          | }          |              |               | •             | •             | ,      |
| 07144          | , { {      | 1570,        | -110,         | 750,          | 1570,         | 750}   |
| 07145          | , {        | 1570,        | -340,         | 750,          | 1570,         | 750}   |
| 07146          | , {        | 1570,        | -110,         | 740,          | 1570,         | 740}   |
| 07147          | , {        | 1570,        | -340,         | 750,          | 1570,         | 750}   |
| 07148          | , {        | -230,        | -1330,        | -230,         | -660,         | -230}  |
| 07149          | }          |              |               |               |               |        |
| 07150          | }          |              |               |               |               |        |
| 07151          | , { { {    | 1570,        | 1560,         | 1570,         | 1560,         | 300}   |
| 07152          | , {        | 1040,        | 1030,         | 1040,         | 1030,         | 300}   |
| 07153          | , {        | 740,         | 730,          | 740,          | 730,          | -240}  |
| 07154          | , {        | 1570,        | 1560,         | 1570,         | 1560,         | -230}  |
| 07155          | , {        | 740,         | 730,          | 740,          | 730,          | -240}  |
| 07156          | }          |              |               |               |               |        |
| 07157          | , { {      | 1040,        | 1030,         | 1040,         | 1030,         | 300}   |
| 07158          | , {        | 1040,        | 1030,         | 1040,         | 1030,         | 300}   |
| 07159          | , {        | 730,         | 720,          | 730,          | 720,          | -250}  |
| 07160          | , {        | -110,        | -360,         | -110,         | -360 <b>,</b> | -1330} |
| 07161          | , {        | 730,         | 720,          | 730,          | 720,          | -250}  |
| 07162          | }          |              |               |               |               |        |
| 07163          | , { {      | 740,         | 730,          | 740,          | 730,          | -230}  |
| 07164          | , {        | 740,         | 730,          | 740,          | 730,          | -230}  |
| 07165          | , {        | 740,         | 730,          | 740,          | 730,          | -240}  |
| 07166          | , {        | 740,         | 730,          | 740,          | 730,          | -230}  |
| 07167          | , {        | 740,         | 730,          | 740,          | 730,          | -240}  |
| 07168          | }          |              |               |               |               |        |
| 07169          | , { {      | 1570,        | 1560,         | 1570,         | 1560,         | -250}  |
| 07170          | , {        | 70,          | -180,         | 70,           | -180,         | -1150} |
| 07171          | , {        | 730,         | 720,          | 730,          | 720,          | -250}  |
| 07172          | , {        | 1570,        | 1560,         | 1570,         | 1560,<br>720, | -660}  |
| 07173          | , {        | 730,         | 720,          | 730,          | 120,          | -250}  |
| 07174<br>07175 | }<br>,{{   | 740,         | 730,          | 740,          | 730,          | -230}  |
|                |            |              |               |               |               |        |
| 07176          | , {        | 740,<br>740, | 730,<br>730,  | 740,<br>740,  | 730,<br>730,  | -230}  |
| 07177          | , {        |              |               |               |               | -240}  |
| 07178<br>07179 | , {        | 740,         | 730,          | 740,<br>-240, | 730,          | -230}  |
| 07179          | , {<br>}   | -240,        | -250,         | -240,         | -250,         | -1220} |
| 07180          |            |              |               |               |               |        |
| 07181          | }          |              |               |               |               |        |
| 07182          | }<br>,{{{{ | 2050,        | 2050,         | 1760,         | 1930,         | 1760}  |
| 07183          | , 1111     | 1930,        | 1400,         | 1110,         | 1930,         | 1110}  |
| 07184          | , (        | 1800,        | 1270,         | 980,          | 1800,         | 980}   |
| 07186          | , {        | 2050,        | 2050,         | 1760,         | 1800,         | 1760}  |
| 07180          | , {        | 1670,        | 1140,         | 850,          | 1670,         | 850}   |
| 07188          | }          | ±0,0,        | 10,           | 230,          | ±0,0 <b>,</b> | 550)   |
| 07189          | , { {      | 1930,        | 1400,         | 1110,         | 1930,         | 1110}  |
| 07190          | , {        | 1930,        | 1400,         | 1110,         | 1930,         | 1110}  |
| 07191          | , {        | 1650,        | 1120,         | 830,          | 1650,         | 830}   |
| 07192          | , {        | 0,           | 0,            | -60,          | -310,         | -60}   |
| 07193          | , {        | 1650,        | 1120,         | 830,          | 1650,         | 830}   |
| 07194          | }          | •            | ,             | ,             | •             | ,      |
| 07195          | , { {      | 1800,        | 1270,         | 980,          | 1800,         | 980}   |
| 07196          | , {        | 1800,        | 1270,         | 980,          | 1800,         | 980}   |
| 07197          | , {        | 1800,        | 1270,         | 980,          | 1800,         | 980}   |
| 07198          | , {        | 1800,        | 1270,         | 980,          | 1800,         | 980}   |
| 07199          | , {        | 1670,        | 1140,         | 850,          | 1670,         | 850}   |
|                |            |              |               |               |               |        |

| 07200          | }          |                |                 |                |                |                |
|----------------|------------|----------------|-----------------|----------------|----------------|----------------|
| 07201<br>07202 | ,{{<br>,{  | 2050,<br>-300, | 2050,<br>-300,  | 1760,<br>-360, | 1740,<br>-610, | 1760}<br>-360} |
| 07203          | , {        | 1650,          | 1120,           | 830,           | 1650,          | 830}           |
| 07204          | , {        | 2050,          | 2050,           | 1760,          | 1740,          | 1760}          |
| 07205<br>07206 | , {<br>}   | 1650,          | 1120,           | 830,           | 1650,          | 830}           |
| 07207          | , { {      | 1800,          | 1270,           | 980,           | 1800,          | 980}           |
| 07208          | , {        | 1800,          | 1270,           | 980,           | 1800,          | 980}           |
| 07209<br>07210 | , {<br>, { | 1360,<br>1800, | 830,<br>1270,   | 540,<br>980,   | 1360,<br>1800, | 540}<br>980}   |
| 07211          | , {        | 570,           | 570,            | 40,            | 20,            | 40}            |
| 07212          | }          |                |                 |                |                |                |
| 07213<br>07214 | }<br>,{{{  | 2050,          | 2050,           | 1760,          | 300,           | 1760}          |
| 07214          | , , , {    | 1400,          | 1400,           | 1110,          | 190,           | 1110}          |
| 07216          | , {        | 1270,          | 1270,           | 980,           | 300,           | 980}           |
| 07217<br>07218 | , {<br>, { | 2050,<br>1140, | 2050,<br>1140,  | 1760,<br>850,  | 60,<br>180,    | 1760}<br>850}  |
| 07219          | }          | 1140,          | 1140,           | 050,           | 100,           | 030)           |
| 07220          | , { {      | 1400,          | 1400,           | 1110,          | 190,           | 1110}          |
| 07221          | , {        | 1400,          | 1400,           | 1110,          | 190,           | 1110}          |
| 07222<br>07223 | , {<br>, { | 1120,          | 1120,           | 830,<br>-290,  | -80,<br>-1210, | 830}<br>-290}  |
| 07224          | , {        | 1120,          | 1120,           | 830,           | -80,           | 830}           |
| 07225          | }          | 1070           | 1070            | 000            | 200            | 0001           |
| 07226<br>07227 | ,{{<br>,{  | 1270,<br>1270, | 1270,<br>1270,  | 980,<br>980,   | 300,<br>60,    | 980}<br>980}   |
| 07228          | , {        | 1270,          | 1270,           | 980,           | 300,           | 980}           |
| 07229          | , {        | 1270,          | 1270,           | 980,           | 60,            | 980}           |
| 07230<br>07231 | , {<br>}   | 1140,          | 1140,           | 850,           | 180,           | 850}           |
| 07231          | , { {      | 2050,          | 2050,           | 1760,          | -80,           | 1760}          |
| 07233          | , {        | -300,          | -300,           | -590,          | -1510,         | -590}          |
| 07234          | , {        | 1120,          | 1120,           | 830,           | -80,           | 830}           |
| 07235<br>07236 | , {<br>, { | 2050,<br>1120, | 2050,<br>1120,  | 1760,<br>830,  | -400,<br>-80,  | 1760}<br>830}  |
| 07237          | }          | ,              |                 | ,              | ,              | ,              |
| 07238          | , { {      | 1270,          | 1270,           | 980,           | 60,            | 980}           |
| 07239<br>07240 | , {<br>, { | 1270,<br>830,  | 1270,<br>830,   | 980,<br>540,   | 60,<br>-130,   | 980}<br>540}   |
| 07241          | , {        | 1270,          | 1270,           | 980,           | 60,            | 980}           |
| 07242          | , {        | 570,           | 570,            | 40,            | -870,          | 40}            |
| 07243<br>07244 | }          |                |                 |                |                |                |
| 07244          | ,{{{       | 1750,          | 1740,           | 1750,          | 1740,          | 1750}          |
| 07246          | , {        | 1100,          | 1090,           | 1100,          | 1090,          | 1100}          |
| 07247<br>07248 | , {<br>, { | 970,<br>1750,  | 960,<br>1740,   | 970,<br>1750,  | 960,<br>1740,  | 970}<br>1750}  |
| 07240          | , {        | 840,           | 830,            | 840,           | 830,           | 840}           |
| 07250          | }          |                |                 |                |                |                |
| 07251<br>07252 | ,{{<br>,{  | 1100,<br>1100, | 1090,<br>1090,  | 1100,<br>1100, | 1090,<br>1090, | 1100}<br>1100} |
| 07252          | , {        | 820,           | 810,            | 820,           | 810,           | 820}           |
| 07254          | , {        | -60,           | -310,           | -60,           | -310,          | -60}           |
| 07255<br>07256 | , {        | 820,           | 810,            | 820,           | 810,           | 820}           |
| 07257          | }<br>,{{   | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07258          | , {        | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07259          | , {        | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07260<br>07261 | , {<br>, { | 970,<br>840,   | 960,<br>830,    | 970,<br>840,   | 960,<br>830,   | 970}<br>840}   |
| 07262          | }          | ,              | ,               | ,              | ,              | ,              |
| 07263          | , { {      | 1750,          | 1740,           | 1750,          | 1740,          | 1750}          |
| 07264<br>07265 | , {<br>, { | -360,<br>820,  | -610,<br>810,   | -360,<br>820,  | -610,<br>810,  | -360}<br>820}  |
| 07266          | , {        | 1750,          | 1740,           | 1750,          | 1740,          | 1750}          |
| 07267          | , {        | 820,           | 810,            | 820,           | 810,           | 820}           |
| 07268<br>07269 | }<br>,{{   | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07270          | , (        | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07271          | , {        | 530,           | 520,            | 530,           | 520,           | 530}           |
| 07272          | , {        | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07273<br>07274 | , {<br>}   | 30,            | 20,             | 30,            | 20,            | 30}            |
| 07275          | }          |                |                 |                |                |                |
| 07276          | , { { {    | 1930,          | 130,            | 1760,          | 1930,          | 1760}          |
| 07277<br>07278 | , {<br>, { | 1930,<br>1800, | 10,<br>130,     | 1110,<br>980,  | 1930,<br>1800, | 1110}<br>980}  |
| 07279          | , {        | 1800,          | -110,           | 1760,          | 1800,          | 1760}          |
| 07280          | , {        | 1670,          | 0,              | 850,           | 1670,          | 850}           |
| 07281<br>07282 | }<br>,{{   | 1930,          | 10,             | 1110,          | 1930,          | 1110}          |
| 07283          | , 11       | 1930,          | 10,             | 1110,          | 1930,          | 1110}          |
| 07284          | , {        | 1650,          | -260,           | 830,           | 1650,          | 830}           |
| 07285<br>07286 | , {<br>, { | -290,<br>1650, | -1390,<br>-260, | -290,<br>830,  | -720,<br>1650, | -290}<br>830}  |
| 5.200          | , 1        | ,              | 200,            | 000,           | 1000,          | 000}           |

| 07287                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07288                                                                                                                                                                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 980,                                                                                                                                                                 | 1800,                                                                                                                                                                                                  | 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07289                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 980,                                                                                                                                                                 | 1800,                                                                                                                                                                                                  | 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07290                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 980,                                                                                                                                                                 | 1800,                                                                                                                                                                                                  | 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07291                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 980,                                                                                                                                                                 | 1800,                                                                                                                                                                                                  | 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07292                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1670,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 850,                                                                                                                                                                 | 1670,                                                                                                                                                                                                  | 850}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07293                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07294                                                                                                                                                                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1760,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -260,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1760,                                                                                                                                                                | 1650,                                                                                                                                                                                                  | 1760}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07295                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -590,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1690,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -590,                                                                                                                                                                | -1020,                                                                                                                                                                                                 | -590}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07296                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -260,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 830,                                                                                                                                                                 | 1650,                                                                                                                                                                                                  | 830}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07297                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1760,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -580,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1760,                                                                                                                                                                | 80,                                                                                                                                                                                                    | 1760}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07298                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -260,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 830,                                                                                                                                                                 | 1650,                                                                                                                                                                                                  | 830}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07299                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07300                                                                                                                                                                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 980,                                                                                                                                                                 | 1800,                                                                                                                                                                                                  | 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07301                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 980,                                                                                                                                                                 | 1800,                                                                                                                                                                                                  | 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07302                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1360,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -310,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 540,                                                                                                                                                                 | 1360,                                                                                                                                                                                                  | 540}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07303                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -110,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 980,                                                                                                                                                                 | 1800,                                                                                                                                                                                                  | 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07304                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40,                                                                                                                                                                  | -380,                                                                                                                                                                                                  | 40}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07305                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,                                                                                                                                                                  | 000,                                                                                                                                                                                                   | 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07306                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.750                                                                                                                                                                |                                                                                                                                                                                                        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07307                                                                                                                                                                                                                                                                                                                                     | ,{{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1750,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1740,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1750,                                                                                                                                                                | 1740,                                                                                                                                                                                                  | 360}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07308                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1090,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100,                                                                                                                                                                | 1090,                                                                                                                                                                                                  | 360}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07309                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,                                                                                                                                                                 | 960,                                                                                                                                                                                                   | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07310                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1750,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1740,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1750,                                                                                                                                                                | 1740,                                                                                                                                                                                                  | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07311                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 840,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 830,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 840,                                                                                                                                                                 | 830,                                                                                                                                                                                                   | -130}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07312                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07313                                                                                                                                                                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1090,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100,                                                                                                                                                                | 1090,                                                                                                                                                                                                  | 360}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07314                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1090,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100,                                                                                                                                                                | 1090,                                                                                                                                                                                                  | 360}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07315                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 820,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 820,                                                                                                                                                                 | 810,                                                                                                                                                                                                   | -150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07316                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -60,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -310,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -60,                                                                                                                                                                 | -310,                                                                                                                                                                                                  | -1280}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07317                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 820,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 820,                                                                                                                                                                 | 810,                                                                                                                                                                                                   | -150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07318                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07319                                                                                                                                                                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,                                                                                                                                                                 | 960,                                                                                                                                                                                                   | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07320                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,                                                                                                                                                                 | 960,                                                                                                                                                                                                   | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07321                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,                                                                                                                                                                 | 960,                                                                                                                                                                                                   | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07322                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,                                                                                                                                                                 | 960,                                                                                                                                                                                                   | 0}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 07323                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 840,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 830,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 840,                                                                                                                                                                 | 830,                                                                                                                                                                                                   | -130}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07324                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 040,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 030,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 040,                                                                                                                                                                 | 030,                                                                                                                                                                                                   | 130)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1750                                                                                                                                                                 | 1740                                                                                                                                                                                                   | 1.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07325                                                                                                                                                                                                                                                                                                                                     | , { {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1750,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1740,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1750,                                                                                                                                                                | 1740,                                                                                                                                                                                                  | -150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07326                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -360,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -610,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -360,                                                                                                                                                                | -610,                                                                                                                                                                                                  | -1580}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07327                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 820,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 820,                                                                                                                                                                 | 810,                                                                                                                                                                                                   | -150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07328                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1750,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1740,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1750,                                                                                                                                                                | 1740,                                                                                                                                                                                                  | -470}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07329                                                                                                                                                                                                                                                                                                                                     | , {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 / 52 5                                                                                                                                                                                                                                                                                                                                  | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 820,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 820,                                                                                                                                                                 | 810,                                                                                                                                                                                                   | -150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 820,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 820,                                                                                                                                                                 | 810,                                                                                                                                                                                                   | -150}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07330                                                                                                                                                                                                                                                                                                                                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07330<br>07331                                                                                                                                                                                                                                                                                                                            | }<br>,{{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,                                                                                                                                                                 | 960,                                                                                                                                                                                                   | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07330<br>07331<br>07332                                                                                                                                                                                                                                                                                                                   | }<br>,{{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 970,<br>970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960,<br>960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,                                                                                                                                                         | 960,<br>960,                                                                                                                                                                                           | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07330<br>07331<br>07332<br>07333                                                                                                                                                                                                                                                                                                          | }<br>,{{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 970,<br>970,<br>530,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960,<br>960,<br>520,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,<br>970,<br>530,                                                                                                                                                 | 960,<br>960,<br>520,                                                                                                                                                                                   | 0 }<br>0 }<br>-440 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07330<br>07331<br>07332<br>07333<br>07334                                                                                                                                                                                                                                                                                                 | }<br>,{{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 970,<br>970,<br>530,<br>970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960,<br>960,<br>520,<br>960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,                                                                                                                                         | 960,<br>960,<br>520,<br>960,                                                                                                                                                                           | 0 }<br>0 }<br>-440 }<br>0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335                                                                                                                                                                                                                                                                                        | }<br>,{{<br>,{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 970,<br>970,<br>530,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960,<br>960,<br>520,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,<br>970,<br>530,                                                                                                                                                 | 960,<br>960,<br>520,                                                                                                                                                                                   | 0 }<br>0 }<br>-440 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336                                                                                                                                                                                                                                                                               | }<br>,{{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 970,<br>970,<br>530,<br>970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960,<br>960,<br>520,<br>960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,                                                                                                                                         | 960,<br>960,<br>520,<br>960,                                                                                                                                                                           | 0 }<br>0 }<br>-440 }<br>0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335                                                                                                                                                                                                                                                                                        | }<br>,{{<br>,{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 970,<br>970,<br>530,<br>970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960,<br>960,<br>520,<br>960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,                                                                                                                                         | 960,<br>960,<br>520,<br>960,                                                                                                                                                                           | 0 }<br>0 }<br>-440 }<br>0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336                                                                                                                                                                                                                                                                               | }<br>,{{<br>,{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 970,<br>970,<br>530,<br>970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960,<br>960,<br>520,<br>960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,                                                                                                                                         | 960,<br>960,<br>520,<br>960,                                                                                                                                                                           | 0 }<br>0 }<br>-440 }<br>0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337                                                                                                                                                                                                                                                                      | }<br>,{{<br>,{<br>,{<br>,{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 970,<br>970,<br>530,<br>970,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960,<br>960,<br>520,<br>960,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,                                                                                                                                         | 960,<br>960,<br>520,<br>960,                                                                                                                                                                           | 0 }<br>0 }<br>-440 }<br>0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07338<br>07339                                                                                                                                                                                                                                                    | <pre>} ,{{     ,{     ,{     ,}     , } } ,{{{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 970,<br>970,<br>530,<br>970,<br>30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970,<br>970,<br>530,<br>970,<br>30,                                                                                                                                  | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                    | 0 } 0 } -440 } -940 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07338<br>07339<br>07340                                                                                                                                                                                                                                           | <pre>} ,{{     ,{     ,{     ,{     ,}     } } ,{{{{     ,}     ,}     , } ,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 970,<br>970,<br>530,<br>970,<br>30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970,<br>970,<br>530,<br>970,<br>30,                                                                                                                                  | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                    | 0}<br>0}<br>-440}<br>0}<br>-940}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07338<br>07339<br>07340                                                                                                                                                                                                                                           | <pre>} ,{{     ,{     ,{     ,{     ,}     } } ,{{{{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{</pre>   | 970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970,<br>970,<br>530,<br>970,<br>30,                                                                                                                                  | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                    | 0}<br>0}<br>-440}<br>-940}<br>1760}<br>1110}<br>980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07338<br>07339<br>07340<br>07341                                                                                                                                                                                                                                  | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1800,<br>2050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,                                                                                               | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                    | 0}<br>0}<br>-440}<br>-940}<br>1760}<br>1110}<br>980}<br>1760}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07338<br>07339<br>07340<br>07342<br>07343                                                                                                                                                                                                                         | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970,<br>970,<br>530,<br>970,<br>30,                                                                                                                                  | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                    | 0}<br>0}<br>-440}<br>-940}<br>1760}<br>1110}<br>980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07338<br>07339<br>07340<br>07341<br>07342                                                                                                                                                                                                                         | <pre>} ,{{     ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{</pre>      | 970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1800,<br>2050,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>850,                                                                                       | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                    | 0}<br>0}<br>-440}<br>0}<br>-940}<br>1760}<br>1110}<br>980}<br>1760}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07344                                                                                                                                                                                                                         | <pre>} ,{{     ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      ,{      .{      ,{      ,{      ,{      ,{      ,{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{      .{           }</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1800,<br>2050,<br>1670,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>2050,<br>1140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 970,<br>970,<br>970,<br>30,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>850,                                                                                        | 960,<br>960,<br>520,<br>960,<br>20,                                                                                                                                                                    | 0}<br>0}<br>-440}<br>0}<br>-940}<br>1760}<br>1110}<br>850}<br>1110}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07338<br>07339<br>07340<br>07341<br>07342<br>07343<br>07343                                                                                                                                                                                                       | <pre>} ,{{     ,{     ,{     ,{     ,}     , } } ,{{{     ,}     , } ,{{{     ,}     , } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{     ,} } ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{</pre>     | 970,<br>970,<br>530,<br>970,<br>30,<br>30,<br>2050,<br>1930,<br>1800,<br>2050,<br>1670,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>2050,<br>1140,<br>1400,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 970,<br>970,<br>970,<br>30,<br>970,<br>30,<br>1760,<br>1110,<br>850,<br>1110,                                                                                        | 960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1930,<br>1800,<br>1870,<br>1930,<br>1930,                                                                                                              | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07344                                                                                                                                                                                                                         | <pre>} ,{{     ,{     ,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     .,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     .,.{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     .,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1800,<br>2050,<br>1670,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>1400,<br>1400,<br>1400,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 970,<br>970,<br>970,<br>30,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>850,                                                                                        | 960,<br>960,<br>960,<br>20,<br>960,<br>20,<br>1930,<br>1800,<br>1870,<br>1800,<br>1670,                                                                                                                | 0}<br>0}<br>-440}<br>-940}<br>1760}<br>1110}<br>980}<br>1760}<br>850}<br>1110}<br>830}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07338<br>07339<br>07340<br>07341<br>07342<br>07343<br>07343                                                                                                                                                                                                       | <pre>} ,{{     ,{     ,{     ,{     ,}     , } } ,{{{     ,}     , } ,{{{     ,}     , } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{{     ,} } ,{     ,} } ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{     ,}  ,{</pre>     | 970,<br>970,<br>530,<br>970,<br>30,<br>30,<br>2050,<br>1930,<br>1800,<br>2050,<br>1670,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>2050,<br>1140,<br>1400,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 970,<br>970,<br>970,<br>30,<br>970,<br>30,<br>1760,<br>1110,<br>850,<br>1110,                                                                                        | 960,<br>960,<br>520,<br>960,<br>520,<br>20,<br>1930,<br>1800,<br>1800,<br>1670,<br>1930,<br>1930,                                                                                                      | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07338<br>07340<br>07341<br>07341<br>07342<br>07343<br>07344<br>07345<br>07345                                                                                                                                                                                     | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>2050,<br>1670,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>1400,<br>1400,<br>1400,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>850,                                                                                       | 960,<br>960,<br>960,<br>20,<br>960,<br>20,<br>1930,<br>1800,<br>1870,<br>1800,<br>1670,                                                                                                                | 0}<br>0}<br>-440}<br>-940}<br>1760}<br>1110}<br>980}<br>1760}<br>850}<br>1110}<br>830}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07343<br>07344<br>07345<br>07346<br>07347<br>07348                                                                                                                                                                            | <pre>} ,{{     ,{      ,{      ,{      ,}     } } ,{{{{     ,}     ,}     ,{     ,,     ,,     ,,     ,,     ,,     ,,     ,, }</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1930,<br>1930,<br>1650,<br>220,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1140,<br>1400,<br>1400,<br>1120,<br>220,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>850,                                                                                       | 960,<br>960,<br>520,<br>520,<br>20,<br>1930,<br>1800,<br>1870,<br>1930,<br>1930,<br>1930,<br>1930,                                                                                                     | 0} -440} -940}  1760} 1110} 980} 1110} 1110} 8309 170}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07346<br>07347<br>07348                                                                                                                                                                                     | <pre>} ,{{     ,{      ,{      ,{      ,{      ,}     } } ,{{{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{     ,,{</pre> | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1650,<br>220,<br>1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 960,<br>960,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>2050,<br>1140,<br>1400,<br>1120,<br>220,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 970,<br>970,<br>970,<br>30,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>850,<br>1110,<br>130,<br>170,<br>830,                                                       | 960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1800,<br>1870,<br>1930,<br>1930,<br>1650,<br>-80,                                                                                                      | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07345<br>07347<br>07348<br>07349<br>07349                                                                                                                                                                   | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1800,<br>2050,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>2050,<br>1140,<br>120,<br>220,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>1760,<br>850,<br>1110,<br>830,<br>170,<br>830,                                                              | 960,<br>960,<br>960,<br>20,<br>1930,<br>1930,<br>1800,<br>1670,<br>1930,<br>1650,<br>-80,<br>1650,                                                                                                     | 0}<br>-440}<br>-940}<br>1760}<br>1110}<br>980}<br>1760}<br>850}<br>1110}<br>110}<br>830}<br>170}<br>830}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07338<br>07340<br>07341<br>07342<br>07342<br>07344<br>07345<br>07346<br>07346<br>07347<br>07348                                                                                                                                                                   | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>30,<br>970,<br>30,<br>1800,<br>2050,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 960,<br>960,<br>960,<br>20,<br>20,<br>2050,<br>1400,<br>1270,<br>2050,<br>1140,<br>1400,<br>1120,<br>220,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>850,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,                                      | 960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1800,<br>1870,<br>1800,<br>1650,<br>1800,<br>1800,                                                                                                     | 0} -440} -940}  1760} 1110} 980} 1110} 1110} 830} 170} 830} 980} 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07344<br>07345<br>07346<br>07347<br>07348<br>07348<br>07349<br>07350<br>07352                                                                                                                                                          | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1930,<br>1650,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>12050,<br>1140,<br>1120,<br>1220,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>980,<br>1110,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,                                               | 960,<br>960,<br>520,<br>20,<br>1930,<br>1800,<br>1800,<br>1650,<br>1800,<br>1650,                                                                                                                      | 0} -440} -940}  1760} 1110} 980} 1110} 1110} 830} 980} 980} 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07346<br>07347<br>07348<br>07349<br>07350<br>07351                                                                                                                                                          | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>2050,<br>1140,<br>1400,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,                                       | 960,<br>960,<br>520,<br>20,<br>1930,<br>1800,<br>1800,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                           | 0} -440} -940}  1760} 1110} 980} 1110} 830} 1110} 830} 980} 980} 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07345<br>07347<br>07348<br>07349<br>07352<br>07351                                                                                                                                                          | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1930,<br>1650,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>12050,<br>1140,<br>1120,<br>1220,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>980,<br>1110,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,                                               | 960,<br>960,<br>520,<br>20,<br>1930,<br>1800,<br>1800,<br>1650,<br>1800,<br>1650,                                                                                                                      | 0} -440} -940}  1760} 1110} 980} 1110} 1110} 830} 980} 980} 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07346<br>07347<br>07348<br>07349<br>07350<br>07351                                                                                                                                                          | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1140,<br>120,<br>220,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,                                       | 960,<br>960,<br>520,<br>20,<br>1930,<br>1800,<br>1800,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                           | 0} -440} -940}  1760} 1110} 980} 1110} 830} 1110} 830} 980} 980} 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07344<br>07345<br>07347<br>07348<br>07349<br>07350<br>07351<br>07352<br>07353                                                                                                                                                 | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1140,<br>1400,<br>1120,<br>220,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>980,<br>1760,<br>850,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,                               | 960,<br>960,<br>960,<br>20,<br>1930,<br>1930,<br>1800,<br>1670,<br>1930,<br>1650,<br>-80,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,                                                                 | 0} -440} -940}  1760} 1110} 980} 1110} 1110} 980} 1770} 980} 980} 980} 980} 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07344<br>07345<br>07346<br>07347<br>07348<br>07349<br>07351<br>07352                                                                                                                                                                   | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1800,<br>2050,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1140,<br>120,<br>220,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1140,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>1760,<br>850,<br>1110,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,                              | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,                                                                           | 0} -440} -940}  1760} 1110} 980} 1710} 850}  1110} 980} 980} 980} 980} 980} 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07344<br>07345<br>07347<br>07348<br>07349<br>07350<br>07351<br>07352<br>07353                                                                                                                                                 | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1140,<br>1400,<br>1120,<br>220,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>980,<br>1760,<br>850,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,                               | 960,<br>960,<br>960,<br>20,<br>1930,<br>1930,<br>1800,<br>1670,<br>1930,<br>1650,<br>-80,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,                                                                 | 0} -440} -940}  1760} 1110} 980} 1110} 1110} 980} 1770} 980} 980} 980} 980} 980}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07341<br>07342<br>07345<br>07345<br>07345<br>07345<br>07345<br>07345<br>07345<br>07355<br>07355                                                                                                                                                                   | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>120,<br>120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,                                       | 960,<br>960,<br>960,<br>20,<br>960,<br>20,<br>1930,<br>1800,<br>1670,<br>1930,<br>1650,<br>800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                         | 0} -440} 07 -440} 1760} 1110} 1760} 1110} 170} 830} 170} 980} 980} 980} 980} 1760} 850}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07346<br>07347<br>07352<br>07353<br>07355<br>07355                                                                                                                                                          | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1800,<br>1670,<br>1930,<br>1650,<br>220,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>1270,<br>120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>1850,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,<br>70,<br>850,               | 960,<br>960,<br>960,<br>20,<br>1930,<br>1930,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1800,<br>1670,<br>1740,<br>1740,                                                                         | 0} -440} -940}  1760} 1110} 980} 1760} 850}  1110} 980} 170} 980} 980} 980} 980} 70} 850}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07344<br>07345<br>07346<br>07347<br>07348<br>07351<br>07352<br>07353<br>07354<br>07353<br>07354<br>07356<br>07356<br>07357                                                                                                             | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1930,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>120,<br>120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,                                       | 960,<br>960,<br>960,<br>20,<br>960,<br>20,<br>1930,<br>1800,<br>1670,<br>1930,<br>1650,<br>800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                         | 0} -440} 07 -440} 1760} 1110} 1760} 1110} 170} 830} 170} 980} 980} 980} 980} 1760} 850}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07344<br>07345<br>07346<br>07347<br>07348<br>07349<br>07350<br>07351<br>07350<br>07350<br>07350<br>07351<br>07352                                                                                                             | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1210,<br>1220,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>130,<br>130,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>1110,<br>850,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,<br>850,                       | 960,<br>960,<br>960,<br>520,<br>20,<br>1930,<br>1800,<br>1800,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,           | 0} -440} -940}  1760} 1110} 980} 1110} 1110} 830} 980} 980} 980} 980} 980} 1760} 830} 1760} 830}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07346<br>07347<br>07348<br>07349<br>07350<br>07351<br>07352<br>07353<br>07354<br>07355<br>07354<br>07355<br>07356<br>07357                                                                                  | <pre>} ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>2250,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>850,<br>1110,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>70,<br>830,<br>1760,<br>830,       | 960,<br>960,<br>520,<br>20,<br>1930,<br>1800,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1670,<br>1740,<br>1650,<br>1740,<br>1650,                                                                | 0} -440} -940}  1760} 1110} 980} 1760} 850}  1110} 980} 980} 980} 980} 980} 1760} 850}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07345<br>07345<br>07355<br>07355<br>07355<br>07355<br>07356<br>07357<br>07358<br>07359<br>07359                                                                                                             | <pre>}</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1800,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1800,<br>1670,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>850,<br>1110,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>70,<br>830,<br>1760,<br>830,       | 960,<br>960,<br>960,<br>20,<br>960,<br>20,<br>1930,<br>1800,<br>1800,<br>1650,<br>-80,<br>1650,<br>1800,<br>1800,<br>1670,                                                                             | 0} -440} -940}  1760} 1110} 980} 1760} 850}  1110} 980} 980} 980} 980} 70} 830} 1760} 830}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07337<br>07338<br>07339<br>07341<br>07342<br>07342<br>07343<br>07344<br>07345<br>07345<br>07351<br>07352<br>07353<br>07355<br>07356<br>07357<br>07358<br>07356<br>07357<br>07358<br>07356<br>07360<br>07361<br>07362<br>07362                                                       | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1800,<br>12050,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1650,<br>2050,<br>1800,<br>1800,<br>1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>980,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>700,<br>830,                                | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1800,<br>1670,<br>1740,<br>1650,                                                                  | 0} -440} -440} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -74 |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07345<br>07345<br>07355<br>07355<br>07355<br>07355<br>07356<br>07357<br>07358<br>07359<br>07359                                                                                                             | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>2050,<br>1800,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1800,<br>1670,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1140,<br>1400,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>130,<br>1120,<br>2050,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>850,<br>1110,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>70,<br>830,<br>1760,<br>830,       | 960,<br>960,<br>960,<br>20,<br>960,<br>20,<br>1930,<br>1800,<br>1800,<br>1650,<br>-80,<br>1650,<br>1800,<br>1800,<br>1670,                                                                             | 0} -440} -940}  1760} 1110} 1760} 1110} 1110} 1110} 1760} 850}  1760} 980} 980} 980} 980} 1760} 830} 1760} 830} 1760} 830} 1760} 830} 1760} 830} 1760} 980} 980} 980} 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07337<br>07338<br>07339<br>07341<br>07342<br>07342<br>07343<br>07344<br>07345<br>07345<br>07351<br>07352<br>07353<br>07355<br>07356<br>07357<br>07358<br>07356<br>07357<br>07358<br>07356<br>07360<br>07361<br>07362<br>07362                                                       | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1800,<br>12050,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1650,<br>2050,<br>1800,<br>1800,<br>1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>980,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>700,<br>830,                                | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1800,<br>1670,<br>1740,<br>1650,                                                                  | 0} -440} -440} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -740} -74 |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07343<br>07344<br>07345<br>07346<br>07347<br>07351<br>07352<br>07353<br>07354<br>07355<br>07356<br>07357<br>07358<br>07357<br>07358<br>07359<br>07350                                                                         | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1800,<br>1800,<br>1800,<br>130,<br>1650,<br>2050,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1140,<br>1400,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>130,<br>1120,<br>2050,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>98 | 960,<br>960,<br>520,<br>20,<br>1930,<br>1930,<br>1800,<br>1870,<br>1800,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,          | 0} -440} -940}  1760} 1110} 1760} 1110} 1110} 1110} 1760} 850}  1760} 980} 980} 980} 980} 1760} 830} 1760} 830} 1760} 830} 1760} 830} 1760} 830} 1760} 980} 980} 980} 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07344<br>07345<br>07346<br>07347<br>07350<br>07351<br>07350<br>07351<br>07352<br>07353<br>07354<br>07355<br>07356<br>07357<br>07358<br>07359<br>07361<br>07362<br>07366<br>07366<br>07366                                              | <pre>}</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1800,<br>1800,<br>1800,<br>130,<br>1650,<br>2050,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1140,<br>1400,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>130,<br>1120,<br>2050,<br>1120,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>98 | 960,<br>960,<br>520,<br>20,<br>1930,<br>1930,<br>1800,<br>1870,<br>1800,<br>1650,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,          | 0} -440} -940}  1760} 1110} 1760} 1110} 1110} 1110} 1760} 850}  1760} 980} 980} 980} 980} 1760} 830} 1760} 830} 1760} 830} 1760} 830} 1760} 830} 1760} 980} 980} 980} 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 07330<br>07331<br>07332<br>07333<br>07334<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07343<br>07344<br>07345<br>07345<br>07351<br>07352<br>07353<br>07355<br>07356<br>07357<br>07358<br>07357<br>07358<br>07357<br>07356<br>07360<br>07361<br>07362<br>07362<br>07366<br>07363                                              | <pre>}</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1800,<br>12050,<br>1670,<br>1930,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1670,<br>2050,<br>1800,<br>1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>2050,<br>1400,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1 | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1110,<br>1760,<br>850,<br>1110,<br>1110,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>780,<br>1760,<br>830,     | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1650,<br>1800,<br>1650,<br>1740,<br>1650,<br>1740,<br>1650,                                       | 0} -440} -940}  1760} 1110} 980} 1760} 850}  1110} 980} 1760} 980} 980} 980} 980} 1760} 830} 1760} 980 1760} 980 1760} 980 1740} 980} 40}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07343<br>07344<br>07345<br>07346<br>07346<br>07350<br>07351<br>07352<br>07353<br>07354<br>07355<br>07356<br>07357<br>07358<br>07357<br>07358<br>07357<br>07366<br>07361                                                       | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1800,<br>12050,<br>1670,<br>1800,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1670,<br>1800,<br>1650,<br>2050,<br>1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>2050,<br>1140,<br>120,<br>220,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>127 | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>98 | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1670,<br>1740,<br>-180,<br>1650,<br>1800,<br>1650,<br>1800,<br>1670,                              | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07344<br>07345<br>07347<br>07348<br>07347<br>07350<br>07351<br>07352<br>07353<br>07354<br>07355<br>07356<br>07357<br>07358<br>07359<br>07359<br>07361<br>07362<br>07363<br>07361<br>07362<br>07363<br>07366<br>07367<br>07368 | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1930,<br>1800,<br>2050,<br>1670,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1800,<br>1 | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>1210,<br>1220,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1 | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>98 | 960,<br>960,<br>520,<br>20,<br>1930,<br>1800,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1800,<br>1650,<br>1800,<br>1650,<br>1800,<br>1650,<br>1740,<br>1650,<br>1740,<br>1650,<br>1800,<br>1650, | 0} -440} -940}  1760} 1110} 980} 1110} 1110} 830} 980} 980} 980} 980} 980} 980} 1760} 8308 1760} 8308 1760} 8308 1760} 980 980 980 1760 980 980 1760 980 980 1760 980 1760 981 1760 981 1760 981 1760 981 1760 981 1760 981 1760 981 1760 981 1760 981 1760 981 1760 981 1760 981 1760 981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 07330<br>07331<br>07332<br>07333<br>07333<br>07335<br>07336<br>07337<br>07340<br>07341<br>07342<br>07342<br>07343<br>07344<br>07345<br>07346<br>07346<br>07350<br>07351<br>07352<br>07353<br>07354<br>07355<br>07356<br>07357<br>07358<br>07357<br>07358<br>07357<br>07366<br>07361                                                       | <pre>} ,{{</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1800,<br>12050,<br>1670,<br>1800,<br>1650,<br>220,<br>1650,<br>1800,<br>1800,<br>1670,<br>1800,<br>1650,<br>2050,<br>1650,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1400,<br>1270,<br>2050,<br>1140,<br>120,<br>220,<br>1120,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>1270,<br>127 | 970,<br>970,<br>970,<br>530,<br>970,<br>30,<br>1760,<br>1110,<br>980,<br>1760,<br>830,<br>170,<br>830,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>980,<br>98 | 960,<br>960,<br>960,<br>520,<br>960,<br>20,<br>1930,<br>1800,<br>1670,<br>1800,<br>1650,<br>1800,<br>1670,<br>1740,<br>-180,<br>1650,<br>1800,<br>1650,<br>1800,<br>1670,                              | 0 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 07374          | , {               | 1140,          | 1140,           | 850,           | 180,           | 850}           |
|----------------|-------------------|----------------|-----------------|----------------|----------------|----------------|
| 07375<br>07376 | }<br><b>,</b> { { | 1400,          | 1400,           | 1110,          | 190,           | 1110}          |
| 07377          | , {               | 1400,          | 1400,           | 1110,          | 190,           | 1110}          |
| 07378<br>07379 | , {<br>, {        | 1120,<br>220,  | 1120,<br>220,   | 830,<br>-70,   | -80,<br>-980,  | 830}<br>-70}   |
| 07380          | , {               | 1120,          | 1120,           | 830,           | -80,           | 830}           |
| 07381          | }                 | 1070           | 1070            | 000            | 200            | 0001           |
| 07382<br>07383 | ,{{<br>,{         | 1270,<br>1270, | 1270,<br>1270,  | 980,<br>980,   | 300,<br>60,    | 980}<br>980}   |
| 07384          | , {               | 1270,          | 1270,           | 980,           | 300,           | 980}           |
| 07385<br>07386 | , {<br>, {        | 1270,<br>1140, | 1270,<br>1140,  | 980,<br>850,   | 60,<br>180,    | 980}<br>850}   |
| 07387          | }                 | 1140,          | 1140,           | 030,           | 100,           | 050)           |
| 07388<br>07389 | , { {             | 2050,          | 2050,           | 1760,<br>-160, | -80,           | 1760}          |
| 07389          | , {<br>, {        | 130,<br>1120,  | 130,<br>1120,   | 830,           | -1080,<br>-80, | -160}<br>830}  |
| 07391          | , {               | 2050,          | 2050,           | 1760,          | -400,          | 1760}          |
| 07392<br>07393 | , {<br>}          | 1120,          | 1120,           | 830,           | -80,           | 830}           |
| 07394          | , { {             | 1270,          | 1270,           | 980,           | 70,            | 980}           |
| 07395<br>07396 | , {<br>, {        | 1270,<br>1040, | 1270,<br>1040,  | 980,<br>740,   | 60,<br>70,     | 980}<br>740}   |
| 07397          | , {               | 1270,          | 1270,           | 980,           | 60,            | 980}           |
| 07398          | , {               | 570,           | 570,            | 40,            | -870,          | 40}            |
| 07399<br>07400 | }                 |                |                 |                |                |                |
| 07401          | , { { {           | 1750,          | 1740,           | 1750,          | 1740,          | 1750}          |
| 07402<br>07403 | , {               | 1100,          | 1090,           | 1100,          | 1090,          | 1100}          |
| 07403          | , {<br>, {        | 970,<br>1750,  | 960,<br>1740,   | 970,<br>1750,  | 960,<br>1740,  | 970}<br>1750}  |
| 07405          | , {               | 840,           | 830,            | 840,           | 830,           | 840}           |
| 07406<br>07407 | }<br>,{{          | 1100,          | 1090,           | 1100,          | 1090,          | 1100}          |
| 07408          | , {               | 1100,          | 1090,           | 1100,          | 1090,          | 1100}          |
| 07409<br>07410 | , {               | 820,           | 810,<br>-80,    | 820,<br>170,   | 810,<br>-80,   | 820}<br>170}   |
| 07410          | , {<br>, {        | 170,<br>820,   | 810,            | 820,           | 810,           | 820}           |
| 07412          | }                 | 070            | 0.60            | 070            | 0.00           | 0701           |
| 07413<br>07414 | ,{{<br>,{         | 970,<br>970,   | 960,<br>960,    | 970,<br>970,   | 960,<br>960,   | 970}<br>970}   |
| 07415          | , {               | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07416<br>07417 | , {<br>, {        | 970,<br>840,   | 960,<br>830,    | 970,<br>840,   | 960,<br>830,   | 970}<br>840}   |
| 07417          | }                 | 040,           | 030,            | 040,           | 030,           | 040)           |
| 07419          | , { {             | 1750,          | 1740,           | 1750,          | 1740,          | 1750}          |
| 07420<br>07421 | , {<br>, {        | 70,<br>820,    | -180,<br>810,   | 70,<br>820,    | -180,<br>810,  | 70}<br>820}    |
| 07422          | , {               | 1750,          | 1740,           | 1750,          | 1740,          | 1750}          |
| 07423<br>07424 | , {<br>}          | 820,           | 810,            | 820,           | 810,           | 820}           |
| 07425          | , { {             | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07426<br>07427 | , {<br>, {        | 970,<br>740,   | 960,<br>730,    | 970,<br>740,   | 960,<br>730,   | 970}<br>740}   |
| 07428          | , {               | 970,           | 960,            | 970,           | 960,           | 970}           |
| 07429<br>07430 | , {<br>}          | 30,            | 20,             | 30,            | 20,            | 30}            |
| 07430          | }                 |                |                 |                |                |                |
| 07432          | , { { {           | 1930,          | 130,            | 1760,          | 1930,          | 1760}          |
| 07433<br>07434 | , {<br>, {        | 1930,<br>1800, | 10,<br>130,     | 1110,<br>980,  | 1930,<br>1800, | 1110}<br>980}  |
| 07435          | , {               | 1800,          | -110,           | 1760,          | 1800,          | 1760}          |
| 07436<br>07437 | , {<br>}          | 1670,          | 0,              | 850,           | 1670,          | 850}           |
| 07437          | , { {             | 1930,          | 10,             | 1110,          | 1930,          | 1110}          |
| 07439          | , {               | 1930,          | 10,             | 1110,          | 1930,          | 1110}          |
| 07440<br>07441 | , {<br>, {        | 1650,<br>-70,  | -260,<br>-1160, | 830,<br>-70,   | 1650,<br>-490, | 830}<br>-70}   |
| 07442          | , {               | 1650,          | -260,           | 830,           | 1650,          | 830}           |
| 07443<br>07444 | }<br>,{{          | 1800,          | 130,            | 980,           | 1800,          | 980}           |
| 07445          | , {               | 1800,          | -110,           | 980,           | 1800,          | 980}           |
| 07446          | , {               | 1800,          | 130,            | 980,           | 1800,          | 980}           |
| 07447<br>07448 | , {<br>, {        | 1800,<br>1670, | -110,<br>0,     | 980,<br>850,   | 1800,<br>1670, | 980}<br>850}   |
| 07449          | }                 |                |                 |                |                |                |
| 07450<br>07451 | ,{{<br>,{         | 1760,<br>-160, | -260,<br>-1260, | 1760,<br>-160, | 1650,<br>-590, | 1760}<br>-160} |
| 07452          | , {               | 1650,          | -260,           | 830,           | 1650,          | 830}           |
| 07453<br>07454 | , {<br>, {        | 1760,<br>1650, | -580,<br>-260,  | 1760,<br>830,  | 80,<br>1650,   | 1760}<br>830}  |
| 07454          | , t<br>}          | ±000,          | 200,            | 0.50,          | 1000,          | 030}           |
| 07456          | , { {             | 1800,          | -110,           | 980,           | 1800,          | 980}           |
| 07457<br>07458 | , {<br>, {        | 1800,<br>1570, | -110,<br>-110,  | 980,<br>740,   | 1800,<br>1570, | 980}<br>740}   |
| 07459          | , {               | 1800,          | -110,           | 980,           | 1800,          | 980}           |
| 07460          | , {               | 40,            | -1050,          | 40,            | -380,          | 40}            |
|                |                   |                |                 |                |                |                |

| 07461 | }             |       |       |       |       |        |
|-------|---------------|-------|-------|-------|-------|--------|
| 07462 | }             |       |       |       |       |        |
| 07463 | ,{{{          | 1750, | 1740, | 1750, | 1740, | 360}   |
| 07464 | , {           | 1100, | 1090, | 1100, | 1090, | 360}   |
|       |               |       |       |       | 960,  |        |
| 07465 | , {           | 970,  | 960,  | 970,  |       | 0 }    |
| 07466 | , {           | 1750, | 1740, | 1750, | 1740, | 0 }    |
| 07467 | , {           | 840,  | 830,  | 840,  | 830,  | -130}  |
| 07468 | }             |       |       |       |       |        |
| 07469 | , { {         | 1100, | 1090, | 1100, | 1090, | 360}   |
| 07470 |               |       |       |       |       |        |
|       | , {           | 1100, | 1090, | 1100, | 1090, | 360}   |
| 07471 | , {           | 820,  | 810,  | 820,  | 810,  | -150}  |
| 07472 | , {           | 170,  | -80,  | 170,  | -80,  | -1050} |
| 07473 | , {           | 820,  | 810,  | 820,  | 810,  | -150}  |
| 07474 | }             |       |       |       |       |        |
| 07475 | , { {         | 970,  | 960,  | 970,  | 960,  | 0 }    |
|       |               |       |       |       |       |        |
| 07476 | , {           | 970,  | 960,  | 970,  | 960,  | 0 }    |
| 07477 | , {           | 970,  | 960,  | 970,  | 960,  | 0 }    |
| 07478 | , {           | 970,  | 960,  | 970,  | 960,  | 0 }    |
| 07479 | , {           | 840,  | 830,  | 840,  | 830,  | -130}  |
| 07480 |               | 010,  | 000,  | 010,  | 000,  | 100,   |
|       | }             |       |       |       |       |        |
| 07481 | , { {         | 1750, | 1740, | 1750, | 1740, | -150}  |
| 07482 | , {           | 70,   | -180, | 70,   | -180, | -1150} |
| 07483 | , {           | 820,  | 810,  | 820,  | 810,  | -150}  |
| 07484 | , {           | 1750, | 1740, | 1750, | 1740, | -470}  |
| 07485 |               |       | 810,  | 820,  | 810,  | -150}  |
|       | , {           | 820,  | 010,  | 020,  | 010,  | -130}  |
| 07486 | }             |       |       |       |       |        |
| 07487 | , { {         | 970,  | 960,  | 970,  | 960,  | 0 }    |
| 07488 | , {           | 970,  | 960,  | 970,  | 960,  | 0 }    |
| 07489 | , {           | 740,  | 730,  | 740,  | 730,  | -240}  |
| 07490 |               | 970,  |       | 970,  | 960,  |        |
|       | , {           |       | 960,  |       |       | 0 }    |
| 07491 | , {           | 30,   | 20,   | 30,   | 20,   | -940}  |
| 07492 | }             |       |       |       |       |        |
| 07493 | }             |       |       |       |       |        |
| 07494 | }             |       |       |       |       |        |
|       |               |       |       |       |       |        |
| 07495 | }             |       |       |       |       |        |
| 07496 | , { { { { { { | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07497 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07498 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07499 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |               |       |       |       |       |        |
| 07500 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07501 | }             |       |       |       |       |        |
| 07502 | , { {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07503 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07504 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |               |       |       |       |       |        |
| 07505 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07506 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07507 | }             |       |       |       |       |        |
| 07508 | , { {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07509 |               |       | INF,  |       |       |        |
|       | , {           | INF,  |       | INF,  | INF,  | INF }  |
| 07510 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07511 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07512 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07513 | }             |       |       |       |       | ·      |
| 07514 |               | TNID  | TND   | TNE   | TAID  | TNID   |
|       | , { {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07515 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07516 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07517 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07518 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07519 | }             |       |       | 11117 | 1111  |        |
|       |               | TATE  | TAID  | TAID  | TNIE  | TAIR   |
| 07520 | , { {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07521 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07522 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07523 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07524 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07525 | }             | /     | /     | /     | /     | ,      |
|       |               |       |       |       |       |        |
| 07526 | }             |       |       |       |       |        |
| 07527 | , { { {       | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07528 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07529 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07530 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |               |       |       |       |       |        |
| 07531 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07532 | }             |       |       |       |       |        |
| 07533 | , { {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07534 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07535 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |               |       |       |       |       |        |
| 07536 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07537 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07538 | }             |       |       |       |       |        |
| 07539 | , { {         | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07540 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |               |       |       |       |       |        |
| 07541 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07542 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07543 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07544 | }             |       |       |       | •     |        |
| 07545 | , { {         | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |               |       |       |       |       |        |
| 07546 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
| 07547 | , {           | INF,  | INF,  | INF,  | INF,  | INF }  |
|       |               |       |       |       |       |        |

| 07548          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 07549<br>07550 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07551          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07552          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07553<br>07554 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07555          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07556          | }          |              |              |              |              |                |
| 07557<br>07558 | }<br>,{{{  | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07559          | , ( ( (    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07560          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07561<br>07562 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07563          | }          | 11112 /      | ,            | /            | /            |                |
| 07564          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07565<br>07566 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07567          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07568          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07569<br>07570 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07571          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07572          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07573<br>07574 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07575          | }          | 1111,        | 1111 /       | 1111,        | 1111 /       | 1141 )         |
| 07576          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07577<br>07578 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07579          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07580          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07581<br>07582 | }<br>,{{   | TNE          | INF,         | INF,         | INF,         | INF }          |
| 07583          | , 11       | INF,<br>INF, | INF,         | INF,         | INF,         | INF }          |
| 07584          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07585<br>07586 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07587          | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07588          | }          |              |              |              |              |                |
| 07589<br>07590 | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07590          | , {<br>, { | INF,<br>INF, | INF,         | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07592          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07593          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07594<br>07595 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07596          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07597<br>07598 | , {        | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }          |
| 07599          | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }<br>INF } |
| 07600          | }          |              |              |              |              |                |
| 07601<br>07602 | , { {      | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07602          | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07604          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07605<br>07606 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07607          | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07608          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07609<br>07610 | , {<br>, { | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07611          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07612          | }          |              |              |              |              |                |
| 07613<br>07614 | ,{{<br>,{  | INF,         | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07614          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07616          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07617<br>07618 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07619          | }          |              |              |              |              |                |
| 07620          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07621          | , {        | INF,         | INF,         | INF,<br>INF, | INF,         | INF }          |
| 07622<br>07623 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,         | INF,<br>INF, | INF }<br>INF } |
| 07624          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07625          | }          | TMP          | TNI          | TNE          | TNIE         | ייחואד         |
| 07626<br>07627 | ,{{<br>,{  | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 07628          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07629          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07630<br>07631 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07632          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07633          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 07634          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |

| 07635<br>07636 | , {<br>, {  | INF,           | INF,         | INF,          | INF,             | INF }<br>INF } |
|----------------|-------------|----------------|--------------|---------------|------------------|----------------|
| 07637          | }           |                |              |               |                  |                |
| 07638          | , { {       | INF,           | INF,         | INF,          | INF,             | INF }          |
| 07639<br>07640 | , {<br>, {  | INF,<br>INF,   | INF,<br>INF, | INF,<br>INF,  | INF,             | INF }<br>INF } |
| 07641          | , {         | INF,           | INF,         | INF,          | INF,             | INF }          |
| 07642          | , {         | INF,           | INF,         | INF,          | INF,             | INF }          |
| 07643          | }           |                |              |               |                  |                |
| 07644          | , { {       | INF,           | INF,         | INF,          | INF,             | INF }          |
| 07645<br>07646 | , {<br>, {  | INF,<br>INF,   | INF,<br>INF, | INF,          | INF,<br>INF,     | INF }<br>INF } |
| 07647          | , {         | INF,           | INF,         | INF,          | INF,             | INF }          |
| 07648          | , {         | INF,           | INF,         | INF,          | INF,             | INF }          |
| 07649          | }           |                |              |               |                  |                |
| 07650          | }           |                |              |               |                  |                |
| 07651          | }           | 1250           | 0 = 0        | 720           | 1250             | 7201           |
| 07652<br>07653 | }}}},<br>}, | 1350,<br>1300, | 850,<br>650, | 720,<br>520,  | 1350,<br>1300,   | 720}<br>520}   |
| 07654          | , {         | 1350,          | 700,         | 570,          | 1350,            | 570}           |
| 07655          | , {         | 1300,          | 850,         | 720,          | 1300,            | 720}           |
| 07656          | , {         | 1250,          | 590,         | 460,          | 1250,            | 460}           |
| 07657          | }           |                |              |               |                  |                |
| 07658          | , { {       | 1160,          | 500,         | 400,          | 1160,            | 370}           |
| 07659<br>07660 | , {<br>, {  | 1160,<br>850,  | 500,<br>190, | 370,<br>60,   | 1160,<br>850,    | 370}<br>60}    |
| 07661          | , {         | 400,           | 290,         | 400,          | 10,              | 160}           |
| 07662          | , {         | 850,           | 190,         | 60,           | 850,             | 60}            |
| 07663          | }           |                |              |               |                  |                |
| 07664          | , { {       | 1300,          | 650,         | 520,          | 1300,            | 520}           |
| 07665          | , {         | 1300,          | 650,         | 520,          | 1300,            | 520}           |
| 07666          | , {         | 1290,          | 640,         | 510,          | 1290,            | 510}           |
| 07667<br>07668 | , {<br>, {  | 1300,<br>1250, | 650,<br>590, | 520,<br>460,  | 1300,<br>1250,   | 520}<br>460}   |
| 07669          | }           | 1230,          | 330,         | 400,          | 1230,            | 400)           |
| 07670          | , { {       | 850,           | 850,         | 720,          | 850,             | 720}           |
| 07671          | , {         | 120,           | 0,           | 120,          | -270,            | -120}          |
| 07672          | , {         | 850,           | 190,         | 60,           | 850,             | 60}            |
| 07673          | , {         | 850,           | 850,         | 720,          | 570,             | 720}           |
| 07674<br>07675 | , {         | 850,           | 190,         | 60,           | 850,             | 60}            |
| 07675          | }<br>,{{    | 1350,          | 700,         | 570,          | 1350,            | 570}           |
| 07677          | , {         | 1300,          | 650,         | 520,          | 1300,            | 520}           |
| 07678          | , {         | 1350,          | 700,         | 570,          | 1350,            | 570}           |
| 07679          | , {         | 1300,          | 650,         | 520,          | 1300,            | 520}           |
| 07680          | , {         | 100,           | 100,         | -270 <b>,</b> | -420,            | -270}          |
| 07681          | }           |                |              |               |                  |                |
| 07682<br>07683 | }<br>,{{{   | 850,           | 850,         | 720,          | -760,            | 720}           |
| 07684          | , ( ( (     | 650,           | 650,         | 520,          | -1050,           | 520}           |
| 07685          | , {         | 700,           | 700,         | 570,          | -760,            | 570}           |
| 07686          | , {         | 850,           | 850,         | 720,          | -1050,           | 720}           |
| 07687          | , {         | 590,           | 590,         | 460,          | -870,            | 460}           |
| 07688          | }           | F 0 0          | F 0.0        | 270           | 1000             | 2701           |
| 07689<br>07690 | , { {       | 500,<br>500,   | 500,<br>500, | 370,          | -1200,<br>-1200, | 370}<br>370}   |
| 07691          | , {<br>, {  | 190,           | 190,         |               | -1510,           | 60}            |
| 07692          | , {         | 290,           | 290,         |               | -1410,           | 160}           |
| 07693          | , {         | 190,           | 190,         |               | -1510,           | 60}            |
| 07694          | }           |                |              |               |                  |                |
| 07695          | , { {       | 650,           | 650,         | 520,          | -820,            | 520}           |
| 07696<br>07697 | , {<br>, {  | 650,<br>640,   | 650,<br>640, | 520,<br>510,  | -1050,<br>-820,  | 520}<br>510}   |
| 07698          | , {         | 650,           | 650,         | 520,          | -1050,           | 520}           |
| 07699          | , {         | 590,           | 590,         | 460,          | -870,            | 460}           |
| 07700          | }           |                |              |               |                  |                |
| 07701          | , { {       | 850,           | 850,         |               | -1510,           | 720}           |
| 07702          | , {         | 0,             | 0,           |               | -1700,           | -120}          |
| 07703<br>07704 | , {         | 190,           | 190,         | 60,           | -1510,<br>-2110, | 60}<br>720}    |
| 07704          | , {<br>, {  | 850,<br>190,   | 850,<br>190, | 720,<br>60,   | -2110,<br>-1510, | 60}            |
| 07706          | }           | 100,           | 130,         | 00,           | 1010,            | 00)            |
| 07707          | , { {       | 700,           | 700,         | 570,          | -760,            | 570}           |
| 07708          | , {         | 650,           | 650,         | 520,          | -1050,           | 520}           |
| 07709          | , {         | 700,           | 700,         | 570,          | -760,            | 570}           |
| 07710          | , {         | 650,           | 650,         | 520,          | -1050,           | 520}           |
| 07711<br>07712 | , {         | 100,           | 100,         | -270,         | -1840,           | -270}          |
| 07712          | }           |                |              |               |                  |                |
| 07714          | ,{{{        | 720,           | 570,         | 720,          | 570,             | 280}           |
| 07715          | , {         | 520,           | 370,         | 520,          | 370,             | 80}            |
| 07716          | , {         | 570,           | 420,         | 570,          | 420,             | 130}           |
| 07717          | , {         | 720,           | 570,         | 720,          | 570,             | 280}           |
| 07718          | , {         | 460,           | 310,         | 460,          | 310,             | 20}            |
| 07719<br>07720 | }<br>,{{    | 400,           | 220,         | 400,          | 220,             | -40}           |
| 07721          | , 11        | 370,           | 220,         | 370,          | 220,             | -60}           |
|                | , ,         | .,             | . ,          | . ,           | . ,              | ,              |

| 07722<br>07723 | , {<br>, { | 60,<br>400,    | -80,<br>10,      | 60,<br>400,   | -80,<br>10,    | -370}<br>-40}   |
|----------------|------------|----------------|------------------|---------------|----------------|-----------------|
| 07724<br>07725 | , {<br>}   | 60,            | -80,             | 60,           | -80,           | -370}           |
| 07726          | , { {      | 520,           | 370,             | 520,          | 370,           | 80}             |
| 07727<br>07728 | , {<br>, { | 520,<br>510,   | 370,<br>360,     | 520,<br>510,  | 370,<br>360,   | 80}<br>70}      |
| 07729          | , {        | 520,           | 370,             | 520,          | 370,           | 80}             |
| 07730          | , {        | 460,           | 310,             | 460,          | 310,           | 20}             |
| 07731<br>07732 | }<br>,{{   | 720,           | 570,             | 720,          | 570,           | 280}            |
| 07733          | , {        | 120,           | -270,            | 120,          | -270,          | -320}           |
| 07734<br>07735 | , {<br>, { | 60,<br>720,    | -80,<br>570,     | 60,<br>720,   | -80,<br>570,   | -370}<br>280}   |
| 07736          | , {        | 60,            | -80,             | 60,           | -80,           | -370}           |
| 07737          | }          | F70            | 400              | F70           | 400            | 1201            |
| 07738<br>07739 | ,{{<br>,{  | 570,<br>520,   | 420,<br>370,     | 570,<br>520,  | 420,<br>370,   | 130}            |
| 07740          | , {        | 570,           | 420,             | 570,          | 420,           | 130}            |
| 07741<br>07742 | , {<br>, { | 520,<br>-270,  | 370,<br>-420,    | 520,<br>-270, | 370,<br>-420,  | 80}<br>-710}    |
| 07743          | }          | 2.0,           | 120,             | 2.07          | 120,           | , 10,           |
| 07744<br>07745 | }          | 1250           | 460              | 720           | 1250           | 7201            |
| 07745          | }}},<br>}, | 1350,<br>1300, | -460,<br>-750,   | 720,<br>520,  | 1350,<br>1300, | 720}<br>520}    |
| 07747          | , {        | 1350,          | -460,            | 570,          | 1350,          | 570}            |
| 07748<br>07749 | , {<br>, { | 1300,<br>1250, | -750,<br>-570,   | 720,<br>460,  | 1300,<br>1250, | 720}<br>460}    |
| 07750          | }          | 1200,          | 0.07             | 100,          | 1200,          | 100,            |
| 07751          | , { {      | 1160,<br>1160, | -900,            | 370,          | 1160,          | 370}            |
| 07752<br>07753 | , {<br>, { | 850,           | -900,<br>-1210,  | 370,<br>60,   | 1160,<br>850,  | 370}<br>60}     |
| 07754          | , {        | 160,           | -1110,           | 160,          | -310,          | 160}            |
| 07755<br>07756 | , {<br>}   | 850,           | -1210,           | 60,           | 850,           | 60}             |
| 07757          | , { {      | 1300,          | -520,            | 520,          | 1300,          | 520}            |
| 07758          | , {        | 1300,          | -750 <b>,</b>    | 520,          | 1300,          | 520}            |
| 07759<br>07760 | , {<br>, { | 1290,<br>1300, | -520,<br>-750,   | 510,<br>520,  | 1290,<br>1300, | 510}<br>520}    |
| 07761          | , {        | 1250,          | -570,            | 460,          | 1250,          | 460}            |
| 07762<br>07763 | }<br>,{{   | 850,           | -1210,           | 720,          | 850,           | 720}            |
| 07764          | , {        | -120,          | -1400,           | -120,         | -590,          | -120}           |
| 07765          | , {        | 850,           | -1210,           | 60,           | 850,           | 60}             |
| 07766<br>07767 | , {<br>, { | 720,<br>850,   | -1810,<br>-1210, | 720,<br>60,   | -1000,<br>850, | 720}<br>60}     |
| 07768          | }          |                |                  |               |                |                 |
| 07769<br>07770 | ,{{<br>,{  | 1350,<br>1300, | -460,<br>-750,   | 570,<br>520,  | 1350,<br>1300, | 570}<br>520}    |
| 07771          | , {        | 1350,          | -460,            | 570,          | 1350,          | 570}            |
| 07772          | , {        | 1300,          | -750 <b>,</b>    | 520,          | 1300,          | 520}            |
| 07773<br>07774 | , {<br>}   | -270,          | -1540,           | -270,         | -740,          | -270}           |
| 07775          | }          |                |                  |               |                |                 |
| 07776<br>07777 | ,{{{       | 590,<br>390,   | 570,<br>370,     | 590,<br>390,  | 570,<br>370,   | -320}<br>-320}  |
| 07778          | , {<br>, { | 440,           | 420,             | 440,          | 420,           | -360}           |
| 07779          | , {        | 590,           | 570,             | 590,          | 570,           | -420}           |
| 07780<br>07781 | , {<br>}   | 330,           | 310,             | 330,          | 310,           | -470}           |
| 07782          | , { {      | 270,           | 220,             | 270,          | 220,           | -320}           |
| 07783<br>07784 | , {<br>, { | 240,<br>-60,   | 220,<br>-80,     | 240,<br>-60,  | 220,<br>-80,   | -320}<br>-870}  |
| 07785          | , {        | 270,           | 10,              | 270,          | 10,            | -780}           |
| 07786<br>07787 | , {        | -60,           | -80,             | -60,          | -80,           | -870}           |
| 07788          | }<br>,{{   | 390,           | 370,             | 390,          | 370,           | -420}           |
| 07789          | , {        | 390,           | 370,             | 390,          | 370,           | -420}           |
| 07790<br>07791 | , {<br>, { | 380,<br>390,   | 360,<br>370,     | 380,<br>390,  | 360,<br>370,   | -420}<br>-420}  |
| 07792          | , {        | 330,           | 310,             | 330,          | 310,           | -470}           |
| 07793<br>07794 | }          | 590,           | 570              | 590,          | E70            | 0701            |
| 07795          | ,{{<br>,{  | -10,           | 570,<br>-270,    | -10,          | 570,<br>-270,  | -870}<br>-1060} |
| 07796          | , {        | -60,           | -80,             | -60,          | -80,           | -870}           |
| 07797<br>07798 | , {<br>, { | 590,<br>-60,   | 570,<br>-80,     | 590,<br>-60,  | 570,<br>-80,   | -1470}<br>-870} |
| 07799          | }          |                |                  |               |                |                 |
| 07800<br>07801 | , { {      | 440,<br>390,   | 420,<br>370,     | 440,<br>390,  | 420,<br>370,   | -360}<br>-420}  |
| 07801          | , {<br>, { | 440,           | 420,             | 440,          | 420,           | -360}           |
| 07803          | , {        | 390,           | 370,             | 390,          | 370,           | -420}           |
| 07804<br>07805 | , {<br>}   | -400,          | -420,            | -400,         | -420,          | -1210}          |
| 07806          | }          |                |                  |               |                |                 |
| 07807<br>07808 | }<br>,{{{{ | 1320,          | 850,             | 720,          | 1320,          | 720}            |
| 5.000          | ,          | 1020,          | 000,             | , 20,         | 1020,          | , 20}           |

| 07809          | , {        | 1320,         | 670,          | 540,          | 1320,            | 540}           |
|----------------|------------|---------------|---------------|---------------|------------------|----------------|
| 07810          | , {        | 870,          | 220,          | 90,           | 870,             | 90}            |
| 07811<br>07812 | , {<br>, { | 960,<br>870,  | 850,<br>250,  | 720,<br>90,   | 960,<br>870,     | 720}<br>90}    |
| 07813          | }          | 070,          | 230,          | <i>90</i> ,   | 070,             | 90 }           |
| 07814          | , { {      | 1320,         | 670,          | 540,          | 1320,            | 540}           |
| 07815          | , {        | 1320,         | 670,          | 540,          | 1320,            | 540}           |
| 07816          | , {        | 870,          | 220,          | 90,           | 870,             | 90}            |
| 07817          | , {        | -410,         | -520,         | -410,         | -800,            | -650}          |
| 07818<br>07819 | , {<br>}   | 870,          | 220,          | 90,           | 870,             | 90}            |
| 07820          | ,{{        | 960,          | 300,          | 170,          | 960,             | 170}           |
| 07821          | , {        | 960,          | 300,          | 170,          | 960,             | 170}           |
| 07822          | , {        | 650,          | 0,            | -130,         | 650,             | -130}          |
| 07823          | , {        | 960,          | 300,          | 170,          | 960,             | 170}           |
| 07824          | , {        | 650,          | 0,            | -130,         | 650,             | -130}          |
| 07825<br>07826 | }          | 070           | 0.5.0         | 720,          | 870,             | 7201           |
| 07827          | ,{{<br>,{  | 870,<br>70,   | 850,<br>-40,  | 70,           | -320,            | 720}<br>-170}  |
| 07828          | , {        | 870,          | 220,          | 90,           | 870,             | 90}            |
| 07829          | , {        | 850,          | 850,          | 720,          | 570,             | 720}           |
| 07830          | , {        | 870,          | 220,          | 90,           | 870,             | 90}            |
| 07831          | }          | 0.00          | 200           |               | 0.00             | 1.70           |
| 07832          | , { {      | 960,          | 300,          | 170,          | 960,             | 170}           |
| 07833<br>07834 | , {<br>, { | 960,<br>340,  | 300,<br>-310, | 170,<br>-440, | 960,<br>340,     | 170}<br>-440}  |
| 07835          | , {        | 960,          | 300,          | 170,          | 960,             | 170}           |
| 07836          | , {        | 250,          | 250,          | -110,         | -260,            | -110}          |
| 07837          | }          |               |               |               |                  |                |
| 07838          | }          |               |               |               |                  |                |
| 07839          | , { { {    | 850,          | 850,          | 720,          | -1030,           | 720}           |
| 07840<br>07841 | , {<br>, { | 670,<br>220,  | 670,<br>220,  | 540,<br>90,   | -1030,<br>-1460, | 540}<br>90}    |
| 07842          | , {        | 850,          | 850,          | 720,          | -1400,           | 720}           |
| 07843          | , {        | 250,          | 250,          | 90,           | -1460,           | 90}            |
| 07844          | }          |               |               |               |                  |                |
| 07845          | , { {      | 670,          | 670,          | 540,          | -1030,           | 540}           |
| 07846          | , {        | 670,          | 670,          | 540,          | -1030,           | 540}           |
| 07847<br>07848 | , {<br>, { | 220,<br>-520, | 220,<br>-520, | 90,<br>-650,  | -1480,<br>-2220, | 90}<br>-650}   |
| 07849          | , {        | 220,          | 220,          | 90,           | -1480,           | 90}            |
| 07850          | }          | /             | ,             | ,             | ,                | ,              |
| 07851          | , { {      | 300,          | 300,          | 170,          | -1400,           | 170}           |
| 07852          | , {        | 300,          | 300,          | 170,          | -1400,           | 170}           |
| 07853          | , {        | 0,            | 0,            | -130,         | -1460,           | -130}          |
| 07854<br>07855 | , {<br>, { | 300,          | 300,          | 170,<br>-130, | -1400,<br>-1460, | 170}<br>-130}  |
| 07856          | }          | 0,            | 0,            | -130,         | -1400,           | -130}          |
| 07857          | , { {      | 850,          | 850,          | 720,          | -1480,           | 720}           |
| 07858          | , {        | -40,          | -40,          | -170,         | -1750,           | -170}          |
| 07859          | , {        | 220,          | 220,          | 90,           | -1480,           | 90}            |
| 07860          | , {        | 850,          | 850,          | 720,          | -2110,           | 720}           |
| 07861<br>07862 | , {<br>}   | 220,          | 220,          | 90,           | -1480,           | 90}            |
| 07863          | , { {      | 300,          | 300,          | 170,          | -1400,           | 170}           |
| 07864          | , {        | 300,          | 300,          |               | -1400,           | 170}           |
| 07865          | , {        | -310,         | -310,         | -440,         | -1770,           | -440}          |
| 07866          | , {        | 300,          | 300,          |               | -1400,           | 170}           |
| 07867          | , {        | 250,          | 250,          | -110,         | -1690,           | -110}          |
| 07868<br>07869 | }          |               |               |               |                  |                |
| 07870          | ,{{{       | 720,          | 570,          | 720,          | 570,             | 280}           |
| 07871          | , {        | 540,          | 390,          | 540,          | 390,             | 100}           |
| 07872          | , {        | 90,           | -60,          | 90,           | -60,             | -350}          |
| 07873          | , {        | 720,          | 570,          | 720,          | 570,             | 280}           |
| 07874          | , {        | 90,           | -60,          | 90,           | -60,             | -350}          |
| 07875<br>07876 | }          | E 4.0         | 200           | 540,          | 200              | 1001           |
| 07877          | ,{{<br>,{  | 540,<br>540,  | 390,<br>390,  | 540,          | 390,<br>390,     | 100}<br>100}   |
| 07878          | , {        | 90,           | -60,          | 90,           | -60,             | -350}          |
| 07879          | , {        | -410,         | -800,         | -410,         | -800,            | -850}          |
| 07880          | , {        | 90,           | -60,          | 90,           | -60,             | -350}          |
| 07881          | }          |               |               |               |                  |                |
| 07882          | , { {      | 170,          | 20,           | 170,          | 20,              | -260}          |
| 07883<br>07884 | , {<br>, { | 170,<br>-130, | 20,<br>-280,  | 170,<br>-130, | 20,<br>-280,     | -260}<br>-570} |
| 07885          | , t<br>, { | 170,          | 20,           | 170,          | 20,              | -260}          |
| 07886          | , {        | -130,         | -280,         | -130,         | -280,            | -570}          |
| 07887          | }          |               |               |               |                  |                |
| 07888          | , { {      | 720,          | 570,          | 720,          | 570,             | 280}           |
| 07889          | , {        | 70,           | -320,         | 70,           | -320,            | -370}          |
| 07890<br>07891 | , {<br>, { | 90,<br>720,   | -60,<br>570,  | 90,<br>720,   | -60,<br>570,     | -350}<br>280}  |
| 07891          | , t<br>, { | 90,           | -60,          | 90,           | -60,             | -350}          |
| 07893          | }          | /             | ,             | /             | ,                | ,              |
| 07894          | , { {      | 170,          | 20,           | 170,          | 20,              | -260}          |
| 07895          | , {        | 170,          | 20,           | 170,          | 20,              | -260}          |
|                |            |               |               |               |                  |                |

| 07006 | ,         | 4.40          | F 0 0         | 4.4.0         | F 0 0        | 0001   |
|-------|-----------|---------------|---------------|---------------|--------------|--------|
| 07896 | , {       | -440,         | -590,         | -440,         | -590,        | -880}  |
| 07897 | , {       | 170,          | 20,           | 170,          | 20,          | -260}  |
| 07898 | , {       | -110,         | -260,         | -110,         | -260,        | -550}  |
| 07899 | }         |               |               |               |              |        |
| 07900 |           |               |               |               |              |        |
|       | }         | 1000          | 700           | 700           |              | 7001   |
| 07901 | , { { {   | 1320,         | -730,         | 720,          | 1320,        | 720}   |
| 07902 | , {       | 1320,         | -730 <b>,</b> | 540,          | 1320,        | 540}   |
| 07903 | , {       | 870,          | -1160,        | 90,           | 870,         | 90}    |
| 07904 | , {       | 960,          | -1100,        | 720,          | 960,         | 720}   |
|       |           |               |               |               |              |        |
| 07905 | , {       | 870,          | -1160,        | 90,           | 870,         | 90}    |
| 07906 | }         |               |               |               |              |        |
| 07907 | , { {     | 1320,         | -730,         | 540,          | 1320,        | 540}   |
| 07908 | , {       | 1320,         | -730,         | 540,          | 1320,        | 540}   |
|       |           |               |               |               |              |        |
| 07909 | , {       | 870,          | -1180,        | 90,           | 870,         | 90}    |
| 07910 | , {       | -650 <b>,</b> | -1920,        | -650 <b>,</b> | -1120,       | -650}  |
| 07911 | , {       | 870,          | -1180,        | 90,           | 870,         | 90}    |
| 07912 | }         |               |               |               |              |        |
|       |           | 0.00          | 1100          | 170           | 0.00         | 1701   |
| 07913 | , { {     | 960,          | -1100,        | 170,          | 960,         | 170}   |
| 07914 | , {       | 960,          | -1100,        | 170,          | 960,         | 170}   |
| 07915 | , {       | 650,          | -1160,        | -130,         | 650,         | -130}  |
| 07916 | , {       | 960,          | -1100,        | 170,          | 960,         | 170}   |
| 07917 |           |               |               |               |              |        |
|       | , {       | 650,          | -1160,        | -130,         | 650,         | -130}  |
| 07918 | }         |               |               |               |              |        |
| 07919 | , { {     | 870,          | -1180,        | 720,          | 870,         | 720}   |
| 07920 | , {       | -170,         | -1450,        | -170,         | -640,        | -170}  |
| 07921 | , {       | 870,          | -1180,        | 90,           | 870,         | 90}    |
|       |           |               |               |               |              |        |
| 07922 | , {       | 720,          | -1810,        | 720,          | -1000,       | 720}   |
| 07923 | , {       | 870,          | -1180,        | 90,           | 870,         | 90}    |
| 07924 | }         |               |               |               |              |        |
| 07925 | , { {     | 960,          | -1100,        | 170,          | 960,         | 170}   |
|       |           |               |               |               |              |        |
| 07926 | , {       | 960,          | -1100,        | 170,          | 960,         | 170}   |
| 07927 | , {       | 340,          | -1470,        | -440,         | 340,         | -440}  |
| 07928 | , {       | 960,          | -1100,        | 170,          | 960,         | 170}   |
| 07929 | , {       | -110,         | -1390,        | -110,         | -580,        | -110}  |
|       |           | 110,          | 1000,         | 110,          | 300,         | 110)   |
| 07930 | }         |               |               |               |              |        |
| 07931 | }         |               |               |               |              |        |
| 07932 | , { { {   | 590,          | 570,          | 590,          | 570,         | -160}  |
| 07933 | , {       | 410,          | 390,          | 410,          | 390,         | -160}  |
| 07934 |           | -40,          |               | -40,          |              |        |
|       | , {       |               | -60,          |               | -60,         | -850}  |
| 07935 | , {       | 590,          | 570,          | 590,          | 570 <b>,</b> | -760}  |
| 07936 | , {       | -40,          | -60,          | -40,          | -60,         | -850}  |
| 07937 | }         |               |               |               |              |        |
| 07938 | , { {     | 410,          | 390,          | 410,          | 390,         | -160}  |
|       |           |               |               |               |              |        |
| 07939 | , {       | 410,          | 390,          | 410,          | 390,         | -160}  |
| 07940 | , {       | -40,          | -60,          | -40,          | -60,         | -850}  |
| 07941 | , {       | -540,         | -800,         | -540,         | -800,        | -1590} |
| 07942 | , {       | -40,          | -60,          | -40,          | -60,         | -850}  |
|       |           | 10,           | 00,           | 10,           | 00,          | 030)   |
| 07943 | }         |               |               |               |              |        |
| 07944 | , { {     | 40,           | 20,           | 40,           | 20,          | -760}  |
| 07945 | , {       | 40,           | 20,           | 40,           | 20,          | -760}  |
| 07946 | , {       | -260,         | -280,         | -260,         | -280,        | -1070} |
| 07947 | , {       | 40,           | 20,           | 40,           | 20,          | -760}  |
|       |           |               |               |               |              |        |
| 07948 | , {       | -260 <b>,</b> | -280,         | -260 <b>,</b> | -280,        | -1070} |
| 07949 | }         |               |               |               |              |        |
| 07950 | , { {     | 590,          | 570,          | 590,          | 570,         | -850}  |
| 07951 |           | C 0           | -320,         | -60,          |              | -1110} |
| 07952 | , (       | -60,          |               |               |              | -850}  |
|       | , {       | -40,          | -60,          | -40,          | -60,         |        |
| 07953 | , {       | 590,          | 570,          | 590,          | 570 <b>,</b> | -1470} |
| 07954 | , {       | -40,          | -60,          | -40,          | -60,         | -850}  |
| 07955 | }         |               |               |               |              |        |
| 07956 | , { {     | 40,           | 20,           | 40,           | 20,          | -760}  |
|       |           |               |               |               |              |        |
| 07957 | , {       | 40,           | 20,           | 40,           | 20,          | -760}  |
| 07958 | , {       | -570 <b>,</b> | -590,         | -570 <b>,</b> | -590,        | -1380} |
| 07959 | , {       | 40,           | 20,           | 40,           | 20,          | -760}  |
| 07960 | , {       | -240,         | -260,         | -240,         | -260,        | -1050} |
| 07961 | }         | •             | •             | •             | •            |        |
|       |           |               |               |               |              |        |
| 07962 | }         |               |               |               |              |        |
| 07963 | }         |               |               |               |              |        |
| 07964 | , { { { { | 1010,         | 1010,         | 880,          | 730,         | 880}   |
| 07965 | , {       | 410,          | -70,          | 40,           | 410,         | -200}  |
| 07966 | , {       | 410,          | -240,         | -370,         | 410,         | -370}  |
|       |           |               |               |               |              |        |
| 07967 | , {       | 1010,         | 1010,         | 880,          | 730,         | 880}   |
| 07968 | , {       | 410,          | 0,            | -370 <b>,</b> | 410,         | -370}  |
| 07969 | }         |               |               |               |              |        |
| 07970 | , { {     | 410,          | -240,         | -150,         | 410,         | -370}  |
|       |           |               |               |               |              |        |
| 07971 | , {       | 230,          | -420,         | -550,         | 230,         | -550}  |
| 07972 | , {       | 410,          | -240,         | -370,         | 410,         | -370}  |
| 07973 | , {       | -150,         | -260,         | -150,         | -540,        | -390}  |
| 07974 | , {       | 410,          | -240,         | -370,         | 410,         | -370}  |
| 07975 | }         | ,             | ,             | ,             | ,            | ,      |
| 07976 |           | /1 O          | -210          | -370,         | 410          | -3701  |
|       | , { {     | 410,          | -240,         |               | 410,         | -370}  |
| 07977 | , {       | 410,          | -240,         | -370,         | 410,         | -370}  |
| 07978 | , {       | 410,          | -240,         | -370,         | 410,         | -370}  |
| 07979 | , {       | 410,          | -240,         | -370,         | 410,         | -370}  |
| 07980 | , {       | 410,          | -240,         | -370,         | 410,         | -370}  |
| 07981 | }         | ,             | - 10,         | 0,0,          | ,            | 5,01   |
|       |           | 1010          | 1010          | 000           | 720          | 0001   |
| 07982 | , { {     | 1010,         | 1010,         | 880,          | 730,         | 880}   |
|       |           |               |               |               |              |        |

```
, {
                  40,
                          -70,
                                   40,
                                         -350,
                                                 -2001
07984
                 410,
                        -240,
                                 -370,
                                          410,
                                                 -370}
                1010,
                                          730,
07985
                        1010,
                                 880.
                                                  8801
07986
                 410,
                        -240,
                                 -370,
                                          410,
                                                 -370}
07987
07988
                 410,
                            Ο,
                                 -370,
                                          410,
                                                 -370}
          , { {
                        -240,
07989
                                -370,
                                                 -370}
                 410,
                                          410,
           , {
07990
                 410,
                        -240,
                                -370,
                                          410,
                                                 -370}
07991
                 410,
                        -240,
                                -370,
                                          410,
                                                 -370}
07992
                   0,
                            0,
                                -370,
                                         -520,
                                                 -370}
07993
07994
07995
         , { { {
                1010,
                        1010,
                                 880, -1710,
                                                  880}
07996
                 -70,
                         -70,
                                 -200, -1770,
                                                 -200}
07997
                -240,
                        -240,
                                 -370, -1710,
                                                 -370}
07998
                1010,
                        1010,
                                 880, -1950,
                                                  880}
07999
                   0.
                            0.
                                 -370.
                                       -1710.
                                                 -3701
08000
08001
          , { {
                -240,
                        -240,
                                 -370, -1950,
08002
                -420,
                        -420,
                                 -550, -2130,
                                                 -550}
           , {
08003
                -240,
                        -240,
                                -370, -1950,
                                                 -370}
                                -390, -1960,
08004
                -260,
                        -260,
                                                 -3901
08005
                                -370, -1950,
                -240,
                        -240,
                                                 -370
08006
08007
                -240,
                        -240,
                                 -370, -1710,
                                                 -370}
          , { {
08008
                -240,
                        -240,
                                -370, -1950,
                                                 -370}
08009
                -240,
                        -240,
                                -370, -1710,
                                                 -370}
                                -370, -1950,
08010
                -240.
                        -240,
                                                 -3701
08011
                -240,
                        -240,
                                -370, -1710,
                                                 -3701
08012
                                 880, -1770,
08013
          , { {
                1010,
                        1010,
                                                  8801
08014
                 -70,
                         -70,
                                 -200, -1770,
                                                 -200}
08015
                -240,
                        -240,
                                 -370, -1950,
                                                 -370}
08016
                1010,
                        1010,
                                 880, -1950,
                                                  8801
08017
                -240,
                        -240,
                                 -370, -1950,
                                                 -370}
08018
                                -370, -1710,
                                                 -370}
08019
                   Ο,
                            Ο,
          , { {
                -240,
                        -240,
                                -370, -1950,
                                                 -370}
08020
           , {
08021
                -240,
                        -240,
                                -370, -1710,
                                                 -370}
08022
                -240,
                        -240,
                                -370,
                                       -1950,
                                                 -3701
08023
                   0,
                            0,
                                -370,
                                       -1950,
                                                 -370}
08024
08025
08026
                 880,
                         730,
                                 880,
                                          730,
                                                  440}
         , { { {
08027
                  40,
                        -350,
                                         -350,
                                                 -400}
                                  40,
08028
                -370,
                        -520,
                                 -370,
                                         -520,
                                                 -8101
08029
                 880.
                         730,
                                 880,
                                          730.
                                                  440}
08030
                -370,
                        -520,
                                 -370,
                                         -520,
                                                 -810}
08031
08032
                -150,
                        -520,
                                 -150,
                                         -520,
          , { {
                                                 -5901
                        -700,
                                         -700,
08033
                -550,
                                 -550,
                                                 -990}
           , {
08034
                -370,
                        -520,
                                -370,
                                         -520,
                                                 -810}
08035
                -150,
                        -540,
                                -150,
                                         -540,
                                                 -5901
08036
                -370,
                        -520,
                                -370,
                                         -520,
                                                 -810}
08037
08038
                -370,
                                 -370,
          , { {
                        -520,
                                         -520,
                                                 -810}
                -370,
                        -520,
                                 -370,
                                         -520,
                                                 -810}
08039
08040
                -370,
                        -520,
                                -370,
                                         -520,
                                                 -810}
08041
                -370,
                        -520,
                                -370,
                                         -520,
                                                 -810}
                -370,
08042
                        -520.
                                 -370,
                                         -520,
                                                 -810}
08043
                         730,
                                          730,
08044
          , { {
                 880,
                                  880,
                                                  440}
08045
                  40,
                        -350,
                                   40,
                                         -350,
                                                 -400}
           , {
08046
                -370,
                        -520,
                                 -370,
                                         -520,
                                                 -810}
08047
                 880,
                         730,
                                 880.
                                          730,
                                                  4401
08048
                -370,
                        -520,
                                 -370,
                                         -520,
                                                 -810}
08049
08050
                -370,
                        -520,
                                -370,
                                         -520,
                                                 -810}
          , { {
08051
                -370,
                        -520,
                                -370,
                                         -520,
                                                 -810}
           , {
                                -370,
08052
                -370,
                        -520,
                                         -520,
                                                 -810}
08053
                -370,
                        -520,
                                -370,
                                         -520,
                                                 -810}
08054
                -370,
                        -520,
                                -370,
                                         -520,
                                                 -810}
08055
08056
08057
                 880, -1410,
                                 880,
                                          410,
                                                  880}
         , { { {
                                          410,
08058
                 410, -1470,
                                 -200,
                                                 -200}
          , {
08059
                 410, -1410,
                                 -370,
                                          410,
                                                 -370}
08060
                 880, -1650,
                                 880,
                                          410,
                                                  880}
                 410, -1410,
08061
                                 -370.
                                          410.
                                                 -3701
08062
                                 -370,
08063
                 410, -1650,
                                          410,
                                                 -370}
          , { {
08064
                 230, -1830,
                                 -550,
                                          230,
                                                 -550}
           , {
08065
                 410, -1650,
                                -370,
                                          410,
                                                 -370}
08066
                -390, -1660,
                                -390
                                         -860,
                                                 -3901
08067
                 410, -1650,
                                -370,
                                          410,
                                                 -370}
08068
08069
          . { {
                 410, -1410,
                                -370,
                                          410,
                                                 -370}
```

```
410, -1650,
                                 -370,
                                           410.
                                                  -370}
           , {
                 410, -1410,
410, -1650,
08071
                                 -370,
                                           410,
                                                  -370}
                                           410,
08072
                                 -370,
                                                  -3701
08073
                 410, -1410,
                                 -370,
                                           410,
                                                  -370}
08074
08075
                 880, -1470,
                                  880,
                                           410,
                                                   880}
          , { {
08076
                 -200, -1470,
                                          -670,
                                                  -200}
                                 -200,
08077
                 410, -1650,
                                 -370,
                                           410,
                                                  -3701
08078
                 880, -1650,
                                  880,
                                          -840,
                                                  8801
08079
                 410, -1650,
                                 -370,
                                           410,
                                                  -370}
08080
                 410, -1410,
410, -1650,
                                           410,
08081
          , { {
                                 -370.
                                                  -370}
08082
                                 -370,
                                           410,
                                                  -370}
           , {
08083
                 410, -1410,
                                 -370,
                                           410,
                                                  -370}
08084
                  410, -1650,
                                 -370,
                                           410,
                                                  -3701
08085
                -370, -1650,
                                 -370,
                                          -840,
                                                 -370}
08086
08087
08088
         , { { {
                 750,
                          730,
                                  750,
                                           730, -1140}
                 -90,
                         -350,
                                  -90,
                                          -350, -1140}
08089
           , {
                                          -520, -1310}
730, -1310}
08090
                -500,
                         -520,
                                 -500,
08091
                 750,
                         730.
                                  750,
                                          -520, -1310}
08092
                -500.
                        -520,
                                 -500,
08093
08094
                -280,
                         -520,
                                 -280,
                                          -520, -1250}
          , { {
08095
                -680,
                         -700,
                                         -700, -1250}
                                 -680,
08096
                -500,
                        -520,
                                 -500,
                                         -520, -1310}
           , {
                                         -540, -1330}
-520, -1310}
                -280,
08097
                        -540,
                                 -280,
08098
                -500,
                        -520,
                                 -500,
08099
                                         -520, -1310}
-520, -1310}
08100
          , { {
                -500,
                         -520,
                                 -500.
08101
                -500,
                         -520,
                                 -500,
           , {
08102
                -500,
                         -520,
                                 -500,
                                         -520, -1310}
                                         -520, -1310}
08103
                -500,
                        -520,
                                 -500,
08104
                -500,
                         -520,
                                 -500,
                                         -520, -1310}
08105
                 750,
                          730,
                                  750,
                                           730, -1140}
08106
          , { {
                 -90,
                         -350,
                                  -90,
                                          -350, -1140}
08107
           , {
08108
                -500,
                         -520,
                                 -500,
                                         -520, -1310}
08109
                 750,
                         730,
                                  750,
                                           730, -1310}
08110
                -500,
                         -520,
                                 -500,
                                         -520, -1310}
08111
                                         -520, -1310}
-520, -1310}
                -500,
          , { {
                         -520.
                                 -500.
08112
08113
                -500,
                         -520,
                                 -500,
           , {
                -500,
                         -520,
                                 -500,
                                         -520, -1310}
08114
08115
                -500,
                        -520,
                                 -500,
                                         -520, -1310}
                                         -520, -1310}
08116
                -500,
                        -520,
                                 -500,
08117
08118
          }
08119
08120
        , {{{{
                1560,
                        1560,
                                 1430,
                                         1470,
                                                  1430}
08121
                1470,
                          820,
                                  690,
                                         1470,
                                                   690}
08122
                 960,
                          310,
                                  180,
                                          960,
                                                   180}
08123
                1560,
                        1560,
                                 1430,
                                         1280,
                                                  14301
08124
                 960,
                          550.
                                  180.
                                          960,
                                                   180}
08125
                1470,
                          820,
                                   690,
                                          1470,
                                                   690}
08126
          , { {
08127
                1470,
                          820,
                                  690,
                                          1470,
                                                   690}
           , {
08128
                 960,
                          310,
                                  180,
                                          960,
                                                   180}
                  80,
08129
                          -30.
                                   80.
                                          -310,
                                                  -1603
                 960.
08130
                          310.
                                  180.
                                           960.
                                                   1801
08131
08132
          , { {
                 960,
                          310,
                                  180,
                                           960,
                                                   180}
08133
                 960,
                          310,
                                  180,
                                           960,
                                                   180}
           , {
08134
                 960,
                          310.
                                  180.
                                           960,
                                                   1803
           , {
08135
                 960,
                          310,
                                  180,
                                           960,
                                                   180}
08136
                 960,
                          310,
                                  180,
                                           960,
                                                   180}
08137
08138
                1560,
                         1560,
                                 1430,
                                          1280,
                                                  1430}
          , { {
                  -90,
                         -200,
                                  -90,
                                                  -330}
08139
                                          -480,
           , {
08140
                 960,
                          310,
                                  180,
                                           960,
                                                   180}
                                                  1430
08141
                1560,
                         1560,
                                 1430,
                                          1280,
                 960,
08142
                          310,
                                  180,
                                           960,
                                                   180}
08143
                 960,
                          550,
                                  180,
                                           960,
08144
          , { {
                                                   180}
                                  180,
08145
                  960,
                          310,
                                           960,
                                                   180}
          , {
08146
                 960,
                          310,
                                  180,
                                           960,
                                                   180}
           , {
08147
                 960,
                          310,
                                  180,
                                           960,
                                                   180}
08148
                 550.
                          550.
                                  180.
                                            30.
                                                   180}
08149
08150
08151
         , { { {
                1560,
                         1560,
                                 1430,
                                          -880,
                                                  1430}
08152
                 820,
                          820,
                                  690,
                                         -880,
                                                   690}
          , {
08153
                 310,
                          310,
                                  180, -1150,
                                                   1801
08154
                1560,
                        1560,
                                 1430, -1390,
                                                  1430}
                                  180, -1150,
08155
                 550.
                         550.
                                                   1801
08156
```

```
08157
          , { {
                 820,
                          820,
                                  690,
                                         -880.
                                                   6901
08158
                 820,
                          820,
                                  690,
                                         -880,
                                                   690}
           , {
08159
                 310,
                         310,
                                  180, -1390,
                                                  180}
                                 -160, -1730,
08160
                 -30,
                          -30,
                                                 -160}
08161
                 310,
                          310,
                                  180, -1390,
                                                  180}
08162
08163
          , { {
                 310,
                          310,
                                  180, -1150,
08164
                 310,
                          310,
                                  180, -1390,
                                                  180}
           , {
08165
                 310,
                         310,
                                  180, -1150,
                                                  180}
08166
                 310,
                         310,
                                  180,
                                       -1390,
                                                  1803
08167
                 310.
                                  180, -1150,
                                                  180}
                         310.
08168
08169
                1560,
                        1560,
                                 1430, -1390,
                                                 1430}
          , { {
08170
                -200,
                        -200,
                                 -330, -1900,
                                                 -330}
08171
                 310,
                         310,
                                  180, -1390,
                                                  180}
08172
                1560,
                        1560,
                                 1430, -1390,
                                                 1430}
                                  180, -1390,
08173
                 310.
                         310.
                                                  180}
08174
                                  180, -1150,
08175
          , { {
                 550.
                          550,
08176
                 310,
                          310,
                                  180, -1390,
                                                  180}
           , {
08177
                 310,
                          310,
                                  180, -1150,
                                                  180}
08178
                 310,
                         310,
                                  180, -1390,
                                                  180}
                                  180, -1390,
08179
                 550,
                         550,
                                                  180}
08180
08181
                1430,
                        1280,
                                 1430,
                                         1280,
                                                  990}
08182
         , { { {
08183
                 690,
                         540,
                                  690,
                                          540,
                                                  250}
           , {
08184
                 180,
                          30,
                                  180,
                                           30,
                                                 -2601
08185
                1430,
                        1280,
                                 1430,
                                         1280,
                                                  9901
08186
                 180.
                          30.
                                  180.
                                           30.
                                                 -2601
08187
08188
                 690,
                          540,
                                  690,
                                          540,
                                                  250}
          , {{
08189
                 690,
                          540,
                                  690,
                                          540,
                                                  250}
           , {
08190
                 180,
                          30,
                                  180,
                                           30,
                                                 -260}
           , {
08191
                  80,
                        -310,
                                   80,
                                         -310,
                                                 -3601
                 180.
08192
                          30,
                                  180.
                                           30,
                                                 -2601
08193
08194
                 180,
                                  180,
          , { {
                           30,
                                           30,
                                                 -260}
08195
                 180,
                           30,
                                  180,
                                           30,
                                                 -260}
           , {
08196
                 180,
                           30,
                                  180,
                                           30,
                                                 -260}
                           30,
08197
                 180,
                                  180.
                                           30,
                                                 -2603
08198
                 180,
                           30,
                                  180,
                                           30,
                                                 -2601
08199
                1430,
                        1280,
08200
                                 1430,
                                         1280,
                                                  990}
          , { {
08201
                 -90,
                                  -90,
                                                 -530}
                        -480,
                                         -480,
           , {
08202
                 180,
                          30,
                                  180,
                                           30,
                                                 -2601
08203
                1430,
                        1280,
                                 1430,
                                         1280.
                                                  9901
08204
                 180,
                          30,
                                  180,
                                           30,
                                                 -260}
08205
08206
                 180,
                                  180,
                                           30,
          , { {
                           30.
                                                 -2601
08207
                 180,
                           30,
                                  180,
                                           30,
                                                 -260}
           , {
08208
                 180,
                           30,
                                  180,
                                           30,
                                                 -260}
08209
                 180,
                           30,
                                  180,
                                           30,
                                                 -260}
08210
                 180,
                          30,
                                  180,
                                           30,
                                                 -260}
08211
08212
08213
                1470,
                        -580,
                                 1430,
                                         1470,
                                                 1430}
         , { { {
08214
                1470,
                        -580,
                                  690,
                                         1470,
                                                  690}
08215
                 960,
                        -850,
                                  180,
                                          960,
                                                  180}
08216
                1430.
                       -1090.
                                 1430.
                                          960.
                                                 1430}
08217
                 960.
                        -850.
                                 180.
                                          960,
                                                  1803
08218
08219
          , { {
                1470,
                        -580,
                                  690,
                                         1470,
                                                   690}
08220
                1470,
                        -580,
                                  690,
                                         1470,
                                                   690}
08221
                 960, -1090,
                                  180.
                                          960,
                                                  1801
           , {
08222
                -160, -1430,
                                 -160,
                                         -630,
                                                 -160}
                 960, -1090,
08223
                                 180,
                                          960,
                                                  180}
08224
08225
                 960,
                        -850,
                                  180,
                                          960,
                                                  180}
          , { {
                 960, -1090,
                                          960,
                                                  180}
08226
                                  180,
           , {
08227
                 960,
                       -850,
                                  180,
                                          960,
                                                  180}
08228
                 960, -1090,
                                  180
                                          960,
                                                  1803
08229
                 960,
                        -850,
                                  180,
                                          960,
                                                  180}
08230
08231
                1430, -1090,
                                 1430,
                                          960,
                                                 1430}
          , { {
                                          -800,
08232
                -330, -1600,
                                 -330,
                                                 -330}
          , {
08233
                 960, -1090,
                                  180,
                                          960,
                                                  180}
08234
                1430, -1090,
                                 1430,
                                         -290,
                                                 1430}
08235
                 960, -1090,
                                  180,
                                          960,
                                                  180}
08236
                        -850,
08237
                 960,
                                  180,
                                          960,
                                                  180}
          , { {
08238
                 960, -1090,
                                  180,
                                          960,
                                                  180}
           , {
08239
                 960, -850,
                                  180,
                                          960,
                                                  180}
08240
                 960, -1090,
                                  180,
                                          960,
                                                  180}
08241
                 180, -1090,
                                  180,
                                         -290,
                                                  180}
08242
08243
          }
```

| 08244 | 111   | 1300, | 1280, | 1300, | 1280,         | -10}   |
|-------|-------|-------|-------|-------|---------------|--------|
|       | ,{{{  |       |       |       |               |        |
| 08245 | , {   | 560,  | 540,  | 560,  | 540,          | -10}   |
| 08246 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08247 | , {   | 1300, | 1280, | 1300, | 1280,         | -760}  |
| 08248 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08249 | }     |       |       |       |               |        |
| 08250 | , { { | 560,  | 540,  | 560,  | 540,          | -10}   |
| 08251 | , {   | 560,  | 540,  | 560,  | 540,          | -10}   |
| 08252 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08253 | , {   | -50,  | -310, | -50,  | -310,         | -1100} |
|       |       |       |       |       |               |        |
| 08254 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08255 | }     |       |       |       |               |        |
| 08256 | , { { | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08257 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08258 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08259 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08260 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08261 | }     | 00,   | 00,   | 00,   | 00,           | , , ,  |
| 08262 |       | 1200  | 1200  | 1200  | 1200          | 7601   |
|       | , { { | 1300, | 1280, | 1300, | 1280,         | -760}  |
| 08263 | , {   | -220, | -480, | -220, | -480,         | -1270} |
| 08264 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08265 | , {   | 1300, | 1280, | 1300, | 1280,         | -760}  |
| 08266 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08267 | }     |       |       |       |               |        |
| 08268 | , { { | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08269 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
|       |       |       |       |       |               |        |
| 08270 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08271 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08272 | , {   | 50,   | 30,   | 50,   | 30,           | -760}  |
| 08273 | }     |       |       |       |               |        |
| 08274 | }     |       |       |       |               |        |
| 08275 | }     |       |       |       |               |        |
| 08276 | ,{{{{ | 2050, | 1930, | 1800, | 2050,         | 1800}  |
|       |       |       |       |       |               |        |
| 08277 | , {   | 2050, | 1400, | 1270, | 2050,         | 1270}  |
| 08278 | , {   | 1750, | 1100, | 970,  | 1750,         | 970}   |
| 08279 | , {   | 1930, | 1930, | 1800, | 1760,         | 1800}  |
| 08280 | , {   | 1750, | 1100, | 970,  | 1750,         | 970}   |
| 08281 | }     |       |       |       |               |        |
| 08282 | , { { | 2050, | 1400, | 1270, | 2050,         | 1270}  |
| 08283 | , {   | 2050, | 1400, | 1270, | 2050,         | 1270}  |
| 08284 | , {   | 1740, | 1090, | 960,  | 1740,         | 960}   |
|       | ,     |       |       |       |               |        |
| 08285 | , {   | 130,  | 10,   | 130,  | -260,         | -110}  |
| 08286 | , {   | 1740, | 1090, | 960,  | 1740,         | 960}   |
| 08287 | }     |       |       |       |               |        |
| 08288 | , { { | 1760, | 1110, | 980,  | 1760,         | 980}   |
| 08289 | , {   | 1760, | 1110, | 980,  | 1760,         | 980}   |
| 08290 | , {   | 1750, | 1100, | 970,  | 1750,         | 970}   |
| 08291 | ,     | 1760, | 1110, | 980,  | 1760,         | 980}   |
|       |       | 1750, |       |       |               |        |
| 08292 | , {   | 1/30, | 1100, | 970,  | 1750,         | 970}   |
| 08293 | }     |       |       |       |               |        |
| 08294 | , { { | 1930, | 1930, | 1800, | 1740,         | 1800}  |
| 08295 | , {   | 300,  | 190,  | 300,  | -80,          | 60}    |
| 08296 | , {   | 1740, | 1090, | 960,  | 1740,         | 960}   |
| 08297 | , {   | 1930, | 1930, | 1800, | 1650,         | 1800}  |
| 08298 | , {   | 1740, | 1090, | 960,  | 1740,         | 960}   |
| 08299 | }     | ,     | ,     | ,     | ,             | ,      |
| 08300 |       | 1760, | 1110, | 980,  | 1760,         | 980}   |
|       | , { { |       |       |       |               |        |
| 08301 | , {   | 1760, | 1110, | 980,  | 1760,         | 980}   |
| 08302 | , {   | 1750, | 1100, | 970,  | 1750,         | 970}   |
| 08303 | , {   | 1760, | 1110, | 980,  | 1760,         | 980}   |
| 08304 | , {   | 360,  | 360,  | 0,    | -150 <b>,</b> | 0 }    |
| 08305 | }     |       |       |       |               |        |
| 08306 | }     |       |       |       |               |        |
| 08307 | ,{{{  | 1930, | 1930, | 1800, | -300,         | 1800}  |
| 08308 |       | 1400, | 1400, | 1270, | -300,         | 1270}  |
|       | , {   |       |       |       |               |        |
| 08309 | , {   | 1100, | 1100, | 970,  | -360,         | 970}   |
| 08310 | , {   | 1930, | 1930, | 1800, | -590,         | 1800}  |
| 08311 | , {   | 1100, | 1100, | 970,  | -360 <b>,</b> | 970}   |
| 08312 | }     |       |       |       |               |        |
| 08313 | , { { | 1400, | 1400, | 1270, | -300,         | 1270}  |
| 08314 | , {   | 1400, | 1400, | 1270, | -300,         | 1270}  |
| 08315 | , {   | 1090, | 1090, | 960,  | -610,         | 960}   |
|       |       |       |       |       |               |        |
| 08316 | , {   | 10,   | 10,   | -110, | -1690,        | -110}  |
| 08317 | , {   | 1090, | 1090, | 960,  | -610,         | 960}   |
| 08318 | }     |       |       |       |               |        |
| 08319 | , { { | 1110, | 1110, | 980,  | -360,         | 980}   |
| 08320 | , {   | 1110, | 1110, | 980,  | -590,         | 980}   |
| 08321 | , {   | 1100, | 1100, | 970,  | -360,         | 970}   |
| 08322 | , {   | 1110, | 1110, | 980,  | -590,         | 980}   |
| 08323 | , {   | 1100, | 1100, | 970,  | -360,         | 970}   |
|       |       | ,     | ,     | J, 0, | 500,          | 2105   |
| 08324 | }     | 1000  | 1000  | 1000  | C10           | 1000   |
| 08325 | , { { | 1930, | 1930, | 1800, | -610,         | 1800}  |
| 08326 | , {   | 190,  | 190,  | 60,   | -1510,        | 60}    |
| 08327 | , {   | 1090, | 1090, | 960,  | -610,         | 960}   |
| 08328 | , {   | 1930, | 1930, | 1800, | -1020,        | 1800}  |
| 08329 | , {   | 1090, | 1090, | 960,  | -610,         | 960}   |
|       |       | . ,   |       | . ,   | - /           | ,      |
| 08330 | }     |       |       |       |               |        |

| 08331 | , { {   | 1110, | 1110,         | 980,  | -360 <b>,</b> | 980}   |
|-------|---------|-------|---------------|-------|---------------|--------|
| 08332 | , {     | 1110, | 1110,         | 980,  | -590 <b>,</b> | 980}   |
| 08333 | , {     | 1100, | 1100,         | 970,  | -360 <b>,</b> | 970}   |
| 08334 | , {     | 1110, | 1110,         | 980,  | -590 <b>,</b> | 980}   |
| 08335 | , {     | 360,  | 360,          | 0,    | -1580,        | 0 }    |
| 08336 | }       |       |               |       |               |        |
| 08337 | }       |       |               |       |               |        |
| 08338 | , { { { | 1800, | 1650,         | 1800, | 1650,         | 1360}  |
| 08339 | , {     | 1270, | 1120,         | 1270, | 1120,         | 830}   |
| 08340 | , {     | 970,  | 820,          | 970,  | 820,          | 530}   |
| 08341 | , {     | 1800, | 1650,         | 1800, | 1650,         | 1360}  |
| 08342 | , {     | 970,  | 820,          | 970,  | 820,          | 530}   |
| 08343 | }       | 510,  | 020,          | 370,  | 020,          | 550)   |
|       |         | 1070  | 1100          | 1070  | 1100          | 0201   |
| 08344 | , { {   | 1270, | 1120,         | 1270, | 1120,         | 830}   |
| 08345 | , {     | 1270, | 1120,         | 1270, | 1120,         | 830}   |
| 08346 | , {     | 960,  | 810,          | 960,  | 810,          | 520}   |
| 08347 | , {     | 130,  | -260 <b>,</b> | 130,  | -260 <b>,</b> | -310}  |
| 08348 | , {     | 960,  | 810,          | 960,  | 810,          | 520}   |
| 08349 | }       |       |               |       |               |        |
| 08350 | , { {   | 980,  | 830,          | 980,  | 830,          | 540}   |
| 08351 | , {     | 980,  | 830,          | 980,  | 830,          | 540}   |
| 08352 | , {     | 970,  | 820,          | 970,  | 820,          | 530}   |
| 08353 | , {     | 980,  | 830,          | 980,  | 830,          | 540}   |
| 08354 | , {     | 970,  | 820,          | 970,  | 820,          | 530}   |
| 08355 | }       | 3,0,  | 020,          | 3.0,  | 020,          | 000,   |
| 08356 | , { {   | 1800, | 1650,         | 1800, | 1650,         | 1360}  |
|       |         | ,     |               |       |               | -130}  |
| 08357 | , {     | 300,  | -80,          | 300,  | -80,          |        |
| 08358 | , {     | 960,  | 810,          | 960,  | 810,          | 520}   |
| 08359 | , {     | 1800, | 1650,         | 1800, | 1650,         | 1360}  |
| 08360 | , {     | 960,  | 810,          | 960,  | 810,          | 520}   |
| 08361 | }       |       |               |       |               |        |
| 08362 | , { {   | 980,  | 830,          | 980,  | 830,          | 540}   |
| 08363 | , {     | 980,  | 830,          | 980,  | 830,          | 540}   |
| 08364 | , {     | 970,  | 820,          | 970,  | 820,          | 530}   |
| 08365 | , {     | 980,  | 830,          | 980,  | 830,          | 540}   |
| 08366 | , {     | 0,    | -150,         | 0,    | -150,         | -440}  |
| 08367 | }       | ٠,    | 150,          | ٠,    | 100,          | 110)   |
| 08368 |         |       |               |       |               |        |
|       | }       | 2050  | 0             | 1000  | 2050          | 10001  |
| 08369 | , { { { | 2050, | 0,            | 1800, | 2050,         | 1800}  |
| 08370 | , {     | 2050, | 0,            | 1270, | 2050,         | 1270}  |
| 08371 | , {     | 1750, | -60,          | 970,  | 1750,         | 970}   |
| 08372 | , {     | 1800, | -290,         | 1800, | 1760,         | 1800}  |
| 08373 | , {     | 1750, | -60,          | 970,  | 1750,         | 970}   |
| 08374 | }       |       |               |       |               |        |
| 08375 | , { {   | 2050, | 0,            | 1270, | 2050,         | 1270}  |
| 08376 | , {     | 2050, | 0,            | 1270, | 2050,         | 1270}  |
| 08377 | , {     | 1740, | -310,         | 960,  | 1740,         | 960}   |
| 08378 | , {     | -110, | -1390,        | -110, | -580,         | -110}  |
| 08379 | , {     | 1740, | -310,         | 960,  | 1740,         | 960}   |
| 08380 | }       | 1,10, | 010,          | 300,  | ±,10,         | 300,   |
| 08381 |         | 1760, | -60,          | 980,  | 1760,         | 980}   |
| 08382 | , { {   |       |               |       |               |        |
|       | , {     | 1760, | -290,         | 980,  | 1760,         | 980}   |
| 08383 | , {     | 1750, | -60,          | 970,  | 1750,         | 970}   |
| 08384 | , {     | 1760, | -290,         | 980,  | 1760,         | 980}   |
| 08385 | , {     | 1750, | -60,          | 970,  | 1750,         | 970}   |
| 08386 | }       |       |               |       |               |        |
| 08387 | , { {   | 1800, | -310,         | 1800, | 1740,         | 1800}  |
| 08388 | , {     | 60,   | -1210,        | 60,   | -400,         | 60}    |
| 08389 | , {     | 1740, | -310,         | 960,  | 1740,         | 960}   |
| 08390 | , {     | 1800, | -720,         | 1800, | 80,           | 1800}  |
| 08391 | , {     | 1740, | -310,         | 960,  | 1740,         | 960}   |
| 08392 | }       |       |               |       |               |        |
| 08393 | , { {   | 1760, | -60,          | 980,  | 1760,         | 980}   |
| 08394 | , (     | 1760, | -290,         | 980,  | 1760,         | 980}   |
| 08395 | , {     | 1750, | -60,          | 970,  | 1750,         |        |
|       |         |       | -290,         |       | 1760,         | 970}   |
| 08396 | , {     | 1760, |               | 980,  | -470,         | 980}   |
| 08397 | , {     | 0,    | -1280,        | 0,    | -4/U,         | 0 }    |
| 08398 | }       |       |               |       |               |        |
| 08399 | }       |       |               |       |               |        |
| 08400 | , { { { | 1670, | 1650,         | 1670, | 1650,         | 570}   |
| 08401 | , {     | 1140, | 1120,         | 1140, | 1120,         | 570}   |
| 08402 | , {     | 840,  | 820,          | 840,  | 820,          | 30}    |
| 08403 | , {     | 1670, | 1650,         | 1670, | 1650,         | 40}    |
| 08404 | , {     | 840,  | 820,          | 840,  | 820,          | 30}    |
| 08405 | }       | -     |               | •     | •             |        |
| 08406 | , { {   | 1140, | 1120,         | 1140, | 1120,         | 570}   |
| 08407 | , {     | 1140, | 1120,         | 1140, | 1120,         | 570}   |
| 08408 | , {     | 830,  | 810,          | 830,  | 810,          | 20}    |
| 08409 | , {     | 0,    | -260,         | 0,    | -260,         | -1050} |
|       |         |       | 810,          |       | 810,          |        |
| 08410 | , {     | 830,  | 010,          | 830,  | 010,          | 20}    |
| 08411 | }       | 0.50  | 000           | 0.50  | 000           |        |
| 08412 | , { {   | 850,  | 830,          | 850,  | 830,          | 40}    |
| 08413 | , {     | 850,  | 830,          | 850,  | 830,          | 40}    |
| 08414 | , {     | 840,  | 820,          | 840,  | 820,          | 30}    |
| 08415 | , {     | 850,  | 830,          | 850,  | 830,          | 40}    |
| 08416 | , {     | 840,  | 820,          | 840,  | 820,          | 30}    |
| 08417 | }       |       |               |       |               |        |
|       |         |       |               |       |               |        |

| 08418 | 1.1       | 1670, | 1650, | 1670, | 1650,         | 20}   |
|-------|-----------|-------|-------|-------|---------------|-------|
|       | , { {     |       |       |       |               |       |
| 08419 | , {       | 180,  | -80,  | 180,  | -80,          | -870} |
| 08420 | , {       | 830,  | 810,  | 830,  | 810,          | 20}   |
| 08421 | , {       | 1670, | 1650, | 1670, | 1650,         | -380} |
| 08422 | , {       | 830,  | 810,  | 830,  | 810,          | 20}   |
| 08423 |           | 000,  | 010,  | 000,  | 010,          | 20,   |
|       | }         | 0.5.0 | 000   | 0.5.0 | 000           | 401   |
| 08424 | , { {     | 850,  | 830,  | 850,  | 830,          | 40}   |
| 08425 | , {       | 850,  | 830,  | 850,  | 830,          | 40}   |
| 08426 | , {       | 840,  | 820,  | 840,  | 820,          | 30}   |
|       |           |       |       |       |               |       |
| 08427 | , {       | 850,  | 830,  | 850,  | 830,          | 40}   |
| 08428 | , {       | -130, | -150, | -130, | -150,         | -940} |
| 08429 | }         |       |       |       |               |       |
| 08430 | }         |       |       |       |               |       |
|       |           |       |       |       |               |       |
| 08431 | }         |       |       |       |               |       |
| 08432 | , { { { { | 2120, | 2120, | 1990, | 2120,         | 1990} |
| 08433 | , {       | 2120, | 1470, | 1340, | 2120,         | 1340} |
| 08434 | , {       | 1990, | 1340, | 1210, | 1990,         | 1210} |
|       |           |       |       |       |               |       |
| 08435 | , {       | 2120, | 2120, | 1990, | 1990,         | 1990} |
| 08436 | , {       | 1860, | 1210, | 1080, | 1860,         | 1080} |
| 08437 | }         |       |       |       |               |       |
| 08438 | , { {     | 2120, | 1470, | 1340, | 2120,         | 1340} |
|       |           |       |       |       |               |       |
| 08439 | , {       | 2120, | 1470, | 1340, | 2120,         | 1340} |
| 08440 | , {       | 1840, | 1190, | 1060, | 1840,         | 1060} |
| 08441 | , {       | 180,  | 60,   | 180,  | -210,         | -60}  |
| 08442 | , {       | 1840, | 1190, | 1060, | 1840,         | 1060} |
|       |           | 1010, | 1130, | 1000, | 1010,         | 1000, |
| 08443 | }         | 1000  | 1040  | 1010  | 1000          | 1010  |
| 08444 | , { {     | 1990, | 1340, | 1210, | 1990,         | 1210} |
| 08445 | , {       | 1990, | 1340, | 1210, | 1990,         | 1210} |
| 08446 | , {       | 1990, | 1340, | 1210, | 1990,         | 1210} |
|       |           |       |       |       |               |       |
| 08447 | , {       | 1990, | 1340, | 1210, | 1990,         | 1210} |
| 08448 | , {       | 1860, | 1210, | 1080, | 1860,         | 1080} |
| 08449 | }         |       |       |       |               |       |
| 08450 | , { {     | 2120, | 2120, | 1990, | 1840,         | 1990} |
|       |           |       |       |       |               |       |
| 08451 | , {       | -120, | -230, | -120, | -510,         | -360} |
| 08452 | , {       | 1840, | 1190, | 1060, | 1840,         | 1060} |
| 08453 | , {       | 2120, | 2120, | 1990, | 1840,         | 1990} |
| 08454 | , {       | 1840, | 1190, | 1060, | 1840,         | 1060} |
|       |           | 1040, | 1100, | 1000, | 1040,         | 1000) |
| 08455 | }         |       |       |       |               |       |
| 08456 | , { {     | 1990, | 1340, | 1210, | 1990,         | 1210} |
| 08457 | , {       | 1990, | 1340, | 1210, | 1990,         | 1210} |
| 08458 | , {       | 1550, | 900,  | 770,  | 1550,         | 770}  |
|       |           |       |       |       |               |       |
| 08459 | , {       | 1990, | 1340, | 1210, | 1990,         | 1210} |
| 08460 | , {       | 640,  | 640,  | 270,  | 120,          | 270}  |
| 08461 | }         |       |       |       |               |       |
| 08462 | }         |       |       |       |               |       |
|       |           | 2120  | 2120  | 1000  | 120           | 10001 |
| 08463 | , { { {   | 2120, | 2120, | 1990, | -120,         | 1990} |
| 08464 | , {       | 1470, | 1470, | 1340, | -230,         | 1340} |
| 08465 | , {       | 1340, | 1340, | 1210, | -120,         | 1210} |
| 08466 | , {       | 2120, | 2120, | 1990, | -360,         | 1990} |
|       |           |       |       |       |               |       |
| 08467 | , {       | 1210, | 1210, | 1080, | -250 <b>,</b> | 1080} |
| 08468 | }         |       |       |       |               |       |
| 08469 | , { {     | 1470, | 1470, | 1340, | -230,         | 1340} |
| 08470 | , {       | 1470, | 1470, | 1340, | -230,         | 1340} |
|       |           |       |       |       |               |       |
| 08471 | , {       | 1190, | 1190, | 1060, | -510,         | 1060} |
| 08472 | , {       | 60,   | 60,   | -60,  | -1640,        | -60}  |
| 08473 | , {       | 1190, | 1190, | 1060, | -510,         | 1060} |
| 08474 | }         |       |       |       |               |       |
| 08475 | , { {     | 1340, | 1340, | 1210, | -120,         | 1210} |
|       |           |       |       |       |               |       |
| 08476 | , {       | 1340, | 1340, | 1210, | -360,         | 1210} |
| 08477 | , {       | 1340, | 1340, | 1210, | -120,         | 1210} |
| 08478 | , {       | 1340, | 1340, | 1210, | -360,         | 1210} |
| 08479 | , {       | 1210, | 1210, | 1080, | -250,         | 1080} |
|       |           | 1210, | 1210, | 1000, | 250,          | 1000) |
| 08480 | }         |       |       |       |               |       |
| 08481 | , { {     | 2120, | 2120, | 1990, | -510,         | 1990} |
| 08482 | , {       | -230, | -230, | -360, | -1940,        | -360} |
| 08483 | , {       | 1190, | 1190, | 1060, | -510,         | 1060} |
|       |           |       |       |       |               |       |
| 08484 | , {       | 2120, | 2120, | 1990, | -830,         | 1990} |
| 08485 | , {       | 1190, | 1190, | 1060, | -510,         | 1060} |
| 08486 | }         |       |       |       |               |       |
| 08487 | , { {     | 1340, | 1340, | 1210, | -360,         | 1210} |
|       |           |       |       |       |               |       |
| 08488 | , {       | 1340, | 1340, | 1210, | -360,         | 1210} |
| 08489 | , {       | 900,  | 900,  | 770,  | -560,         | 770}  |
| 08490 | , {       | 1340, | 1340, | 1210, | -360,         | 1210} |
| 08491 | , {       | 640,  | 640,  | 270,  | -1300,        | 270}  |
|       |           | 010,  | 040,  | 210,  | 1000,         | 2105  |
| 08492 | }         |       |       |       |               |       |
| 08493 | }         |       |       |       |               |       |
| 08494 | , { { {   | 1990, | 1840, | 1990, | 1840,         | 1550} |
| 08495 | , {       | 1340, | 1190, | 1340, | 1190,         | 900}  |
|       |           |       |       |       |               | 770}  |
| 08496 | , {       | 1210, | 1060, | 1210, | 1060,         |       |
| 08497 | , {       | 1990, | 1840, | 1990, | 1840,         | 1550} |
| 08498 | , {       | 1080, | 930,  | 1080, | 930,          | 640}  |
| 08499 | }         |       | •     | ,     | ,             | ,     |
| 08500 |           | 1310  | 1100  | 1310  | 1100          | 9001  |
|       | , { {     | 1340, | 1190, | 1340, | 1190,         | 900}  |
| 08501 | , {       | 1340, | 1190, | 1340, | 1190,         | 900}  |
| 08502 | , {       | 1060, | 910,  | 1060, | 910,          | 620}  |
| 08503 | , {       | 180,  | -210, | 180,  | -210,         | -260} |
| 08504 | , {       | 1060, | 910,  | 1060, | 910,          | 620}  |
|       | , .       | ,     | ,     | /     | ,             |       |

```
08505
08506
                1210,
                         1060,
                                 1210,
                                         1060,
                                                   770}
          , { {
08507
                1210,
                         1060,
                                 1210,
                                         1060,
                                                   770}
                                                   770}
08508
                1210,
                         1060,
                                 1210,
                                         1060,
                                                   7701
08509
                1210.
                         1060.
                                 1210.
                                         1060,
08510
                                                   640}
                1080.
                          930.
                                 1080.
                                          930.
08511
08512
                1990,
                         1840,
                                 1990,
                                         1840,
                                                  1550}
          , { {
08513
                -120,
                         -510,
                                 -120,
                                         -510,
                                                  -560}
08514
                1060,
                          910,
                                 1060,
                                          910,
                                                   620}
08515
                1990.
                         1840.
                                 1990.
                                                  1550}
                                         1840.
08516
                1060.
                          910.
                                 1060.
                                          910.
                                                   6201
08517
08518
                1210,
                         1060,
                                 1210,
                                         1060,
                                                   770}
          , { {
08519
                1210,
                         1060,
                                 1210,
                                         1060,
                                                   770}
           , {
08520
                 770,
                          620,
                                  770,
                                          620,
                                                   330}
                1210.
                                 1210.
                                                   7703
08521
                         1060.
                                         1060.
08522
                                                  -170}
                 270,
                          120,
                                  270,
                                          120,
08523
08524
08525
         , { { {
                2120,
                          180,
                                 1990,
                                         2120,
                                                  1990}
08526
                2120,
                           60,
                                 1340,
                                         2120,
                                                 1340}
                                         1990,
08527
                1990,
                          180,
                                 1210,
                                                 1210}
08528
                1990.
                          -60.
                                 1990.
                                         1990.
                                                  19901
08529
                1860,
                           50,
                                 1080,
                                         1860,
                                                  1080}
08530
08531
                2120,
                           60,
                                 1340,
                                         2120,
                                                  1340}
          , { {
08532
                2120,
                           60,
                                 1340,
                                         2120,
                                                 1340}
08533
                1840,
                         -210,
                                 1060,
                                         1840,
                                                 1060}
08534
                 -60, -1340,
                                  -60.
                                         -530,
                                                   -60}
08535
                1840.
                         -210.
                                 1060.
                                                  1060}
                                         1840.
           . {
08536
08537
                1990,
                          180,
                                 1210,
                                         1990,
                                                  1210}
          , { {
08538
                1990,
                          -60,
                                 1210,
                                         1990,
                                                 1210}
           , {
08539
                1990,
                          180,
                                 1210,
                                         1990,
                                                 1210}
                1990.
                                 1210.
                                         1990.
08540
                          -60.
                                                  1210}
                1860,
08541
                                 1080,
                                         1860,
                                                 1080}
                          50,
08542
                                 1990,
08543
          , { {
                1990,
                         -210,
                                         1840.
                                                  1990}
08544
                -360,
                       -1640,
                                 -360,
                                         -830,
                                                  -360}
                1840,
08545
                        -210,
                                 1060.
                                         1840.
                                                 10601
                         -530,
                                          270,
08546
                                                  1990}
                1990,
                                 1990,
08547
                1840.
                         -210.
                                                 10603
                                 1060.
                                         1840,
08548
08549
                1990,
                          -60,
                                 1210,
                                         1990,
                                                  1210}
          , { {
08550
                1990,
                          -60,
                                 1210,
                                         1990,
                                                  1210}
           , {
08551
                1550,
                         -260,
                                  770,
                                         1550.
                                                  770}
08552
                1990,
                         -60.
                                 1210,
                                         1990,
                                                  12101
                       -1000,
08553
                 270.
                                  270.
                                         -200.
                                                   2701
08554
08555
08556
         , { { {
                1860,
                        1840,
                                 1860,
                                         1840,
                                                   640}
08557
           , {
                1210,
                         1190,
                                 1210,
                                         1190,
                                                   640}
08558
                1080,
                         1060,
                                 1080,
                                         1060,
                                                   2701
08559
                                                   270}
                1860.
                         1840.
                                 1860.
                                         1840.
                 950,
08560
                         930,
                                  950,
                                          930,
                                                   140}
08561
08562
                1210,
                         1190,
                                 1210,
                                         1190,
                                                   640}
          , { {
08563
                1210,
                         1190,
                                 1210,
                                         1190,
                                                   640}
08564
                 930,
                         910.
                                  930,
                                          910.
                                                   1203
                                   50.
                                         -210,
08565
                  50.
                         -210.
                                                 -10003
08566
                 930,
                         910,
                                  930,
           , {
                                          910,
                                                   120}
08567
08568
                1080,
                         1060,
                                 1080,
                                         1060,
                                                   270}
          , { {
08569
                1080,
                         1060,
                                 1080,
                                         1060,
                                                   2701
           , {
08570
                1080,
                         1060,
                                 1080,
                                         1060,
                                                   2701
08571
                1080,
                         1060,
                                 1080,
                                         1060,
                                                   2701
                 950,
08572
                                                   140}
                          930.
                                  950.
                                          930.
08573
08574
          , { {
                1860,
                         1840,
                                 1860,
                                         1840,
08575
                -250,
                         -510,
                                 -250,
                                         -510,
                                                -1300}
08576
                 930,
                          910,
                                  930,
                                          910,
                                                   120}
08577
                1860,
                         1840,
                                 1860,
                                         1840,
                                                  -200}
08578
                 930.
                         910.
                                  930.
                                          910,
                                                   120}
08579
08580
                1080,
                         1060,
                                 1080,
                                         1060,
                                                   270}
          , { {
08581
                1080,
                         1060,
                                 1080,
                                         1060,
                                                   270}
           , {
08582
                 640,
                          620,
                                  640,
                                          620,
                                                  -170}
08583
                1080.
                         1060.
                                 1080.
                                         1060,
                                                   2701
08584
                 140.
                         120.
                                  140.
                                          120.
                                                  -670}
08585
08586
08587
08588
        ,{{{{
                2120,
                        2120,
                                 1990,
                                         2120,
                                                 1990}
08589
                2120,
                        1470,
                                 1340,
                                         2120,
                                                 1340}
08590
                1990.
                         1340.
                                 1210.
                                         1990.
                                                  12101
08591
                2120.
                         2120.
                                         1990.
                                 1990.
                                                  1990}
```

| 08592          | , {        | 1860,          | 1210,          | 1080,          | 1860,           | 1080}          |
|----------------|------------|----------------|----------------|----------------|-----------------|----------------|
| 08593<br>08594 | }<br>,{{   | 2120,          | 1470,          | 1340,          | 2120,           | 1340}          |
| 08595          | , {        | 2120,          | 1470,          | 1340,          | 2120,           | 1340}          |
| 08596<br>08597 | , {<br>, { | 1840,<br>400,  | 1190,<br>290,  | 1060,<br>400,  | 1840,<br>10,    | 1060}<br>160}  |
| 08598          | , {        | 1840,          | 1190,          | 1060,          | 1840,           | 1060}          |
| 08599          | }          |                |                |                |                 |                |
| 08600<br>08601 | , { {      | 1990,<br>1990, | 1340,          | 1210,<br>1210, | 1990,<br>1990,  | 1210}<br>1210} |
| 08602          | , {<br>, { | 1990,          | 1340,<br>1340, | 1210,          | 1990,           | 1210}          |
| 08603          | , {        | 1990,          | 1340,          | 1210,          | 1990,           | 1210}          |
| 08604          | , {        | 1860,          | 1210,          | 1080,          | 1860,           | 1080}          |
| 08605<br>08606 | }<br>,{{   | 2120,          | 2120,          | 1990,          | 1840,           | 1990}          |
| 08607          | , {        | 300,           | 190,           | 300,           | -80,            | 60}            |
| 08608          | , {        | 1840,          | 1190,          | 1060,          | 1840,           | 1060}          |
| 08609<br>08610 | , {<br>, { | 2120,<br>1840, | 2120,<br>1190, | 1990,<br>1060, | 1840,<br>1840,  | 1990}<br>1060} |
| 08611          | }          | 1010,          | 1130,          | 1000,          | 1010,           | 1000,          |
| 08612          | , { {      | 1990,          | 1340,          | 1210,          | 1990,           | 1210}          |
| 08613<br>08614 | , {<br>, { | 1990,<br>1750, | 1340,<br>1100, | 1210,<br>970,  | 1990,<br>1750,  | 1210}<br>970}  |
| 08615          | , {        | 1990,          | 1340,          | 1210,          | 1990,           | 1210}          |
| 08616          | , {        | 640,           | 640,           | 270,           | 120,            | 270}           |
| 08617<br>08618 | }          |                |                |                |                 |                |
| 08619          | ,{{{       | 2120,          | 2120,          | 1990,          | -120,           | 1990}          |
| 08620          | , {        | 1470,          | 1470,          | 1340,          | -230,           | 1340}          |
| 08621          | , {        | 1340,<br>2120, | 1340,          | 1210,          | -120,           | 1210}<br>1990} |
| 08622<br>08623 | , {<br>, { | 1210,          | 2120,<br>1210, | 1990,<br>1080, | -360,<br>-250,  | 1080}          |
| 08624          | }          | ·              | ,              | ,              | ,               |                |
| 08625          | , { {      | 1470,          | 1470,          | 1340,          | -230,           | 1340}          |
| 08626<br>08627 | , {<br>, { | 1470,<br>1190, | 1470,<br>1190, | 1340,<br>1060, | -230,<br>-510,  | 1340}          |
| 08628          | , {        | 290,           | 290,           | 160,           | -1410,          | 160}           |
| 08629          | , {        | 1190,          | 1190,          | 1060,          | -510,           | 1060}          |
| 08630<br>08631 | }<br>,{{   | 1340,          | 1340,          | 1210,          | -120,           | 1210}          |
| 08632          | , {        | 1340,          | 1340,          | 1210,          | -360,           | 1210}          |
| 08633          | , {        | 1340,          | 1340,          | 1210,          | -120,           | 1210}          |
| 08634<br>08635 | , {<br>, { | 1340,<br>1210, | 1340,<br>1210, | 1210,<br>1080, | -360,<br>-250,  | 1210}<br>1080} |
| 08636          | }          | 1210,          | 1210,          | 1000,          | 230,            | 1000)          |
| 08637          | , { {      | 2120,          | 2120,          | 1990,          | -510,           | 1990}          |
| 08638<br>08639 | , {<br>, { | 190,<br>1190,  | 190,<br>1190,  | 60,<br>1060,   | -1510,<br>-510, | 60}<br>1060}   |
| 08640          | , {        | 2120,          | 2120,          | 1990,          | -830,           | 1990}          |
| 08641          | , {        | 1190,          | 1190,          | 1060,          | -510,           | 1060}          |
| 08642<br>08643 | }<br>,{{   | 1340,          | 1340,          | 1210,          | -360,           | 1210}          |
| 08644          | , (        | 1340,          | 1340,          | 1210,          | -360,           | 1210}          |
| 08645          | , {        | 1100,          | 1100,          | 970,           | -360,           | 970}           |
| 08646<br>08647 | , {        | 1340,<br>640,  | 1340,          | 1210,<br>270,  | -360,<br>-1300, | 1210}<br>270}  |
| 08648          | , {<br>}   | 040,           | 640,           | 270,           | -1300,          | 270;           |
| 08649          | }          |                |                |                |                 |                |
| 08650<br>08651 | , { { {    | 1990,<br>1340, | 1840,<br>1190, | 1990,<br>1340, | 1840,<br>1190,  | 1550}<br>900}  |
| 08652          | , {<br>, { | 1210,          | 1060,          | 1210,          | 1060,           | 770}           |
| 08653          | , {        | 1990,          | 1840,          | 1990,          | 1840,           | 1550}          |
| 08654<br>08655 | , {<br>}   | 1080,          | 930,           | 1080,          | 930,            | 640}           |
| 08656          | , { {      | 1340,          | 1190,          | 1340,          | 1190,           | 900}           |
| 08657          | , {        | 1340,          | 1190,          | 1340,          | 1190,           | 900}           |
| 08658          | , {        | 1060,          | 910,           | 1060,          | 910,            | 620}           |
| 08659<br>08660 | , {<br>, { | 400,<br>1060,  | 10,<br>910,    | 400,<br>1060,  | 10,<br>910,     | -40}<br>620}   |
| 08661          | }          | ,              |                | ,              |                 |                |
| 08662          | , { {      | 1210,          | 1060,          | 1210,          | 1060,           | 770}           |
| 08663<br>08664 | , {<br>, { | 1210,<br>1210, | 1060,<br>1060, | 1210,<br>1210, | 1060,<br>1060,  | 770}<br>770}   |
| 08665          | , {        | 1210,          | 1060,          | 1210,          | 1060,           | 770}           |
| 08666          | , {        | 1080,          | 930,           | 1080,          | 930,            | 640}           |
| 08667<br>08668 | }<br>,{{   | 1990,          | 1840,          | 1990,          | 1840,           | 1550}          |
| 08669          | , (        | 300,           | -80,           | 300,           | -80,            | -130}          |
| 08670          | , {        | 1060,          | 910,           | 1060,          | 910,            | 620}           |
| 08671<br>08672 | , {<br>, { | 1990,<br>1060, | 1840,<br>910,  | 1990,<br>1060, | 1840,<br>910,   | 1550}<br>620}  |
| 08673          | }          | 1000,          | J±0,           | 1000,          | J±0,            | 020}           |
| 08674          | , { {      | 1210,          | 1060,          | 1210,          | 1060,           | 770}           |
| 08675<br>08676 | , {<br>, { | 1210,<br>970,  | 1060,<br>820,  | 1210,<br>970,  | 1060,<br>820,   | 770}<br>530}   |
| 08677          | , t<br>, { | 1210,          | 1060,          | 1210,          | 1060,           | 770}           |
| 08678          | , {        | 270,           | 120,           | 270,           | 120,            | -170}          |
|                |            |                |                |                |                 |                |

| 08679          | }        |               |               |               |               |               |
|----------------|----------|---------------|---------------|---------------|---------------|---------------|
| 08680          | }        |               |               |               |               |               |
| 08681          | , { { {  | 2120,         | 180,          | 1990,         | 2120,         | 1990}         |
| 08682          | , {      | 2120,         | 60,           | 1340,         | 2120,         | 1340}         |
| 08683          | , {      | 1990,         | 180,          | 1210,         | 1990,         | 1210}         |
| 08684          | , {      | 1990,         | -60,          | 1990,         | 1990,         | 1990}         |
| 08685          | , {      | 1860,         | 50,           | 1080,         | 1860,         | 1080}         |
| 08686          | }        |               |               |               |               |               |
| 08687          | , { {    | 2120,         | 60,           | 1340,         | 2120,         | 1340}         |
| 08688          | , {      | 2120,         | 60,           | 1340,         | 2120,         | 1340}         |
| 08689          | , {      | 1840,         | -210,         | 1060,         | 1840,         | 1060}         |
| 08690          | , {      | 160,          | -1110,        | 160,          | -310,         | 160}          |
| 08691          | , {      | 1840,         | -210,         | 1060,         | 1840,         | 1060}         |
| 08692          | }        |               |               |               |               |               |
| 08693          | , { {    | 1990,         | 180,          | 1210,         | 1990,         | 1210}         |
| 08694          | , {      | 1990,         | -60,          | 1210,         | 1990,         | 1210}         |
| 08695          | , {      | 1990,         | 180,          | 1210,         | 1990,         | 1210}         |
| 08696          | , {      | 1990,         | -60,          | 1210,         | 1990,         | 1210}         |
| 08697          | , {      | 1860,         | 50,           | 1080,         | 1860,         | 1080}         |
| 08698          | }        |               |               |               |               |               |
| 08699          | , { {    | 1990,         | -210,         | 1990,         | 1840,         | 1990}         |
| 08700          | , {      | 60,           | -1210,        | 60,           | -400,         | 60}           |
| 08701          | , {      | 1840,         | -210,         | 1060,         | 1840,         | 1060}         |
| 08702          | , {      | 1990,         | -530,         | 1990,         | 270,          | 1990}         |
| 08703          | , {      | 1840,         | -210,         | 1060,         | 1840,         | 1060}         |
| 08704          | }        |               |               |               |               |               |
| 08705          | , { {    | 1990,         | -60,          | 1210,         | 1990,         | 1210}         |
| 08706          | , {      | 1990,         | -60,          | 1210,         | 1990,         | 1210}         |
| 08707          | , {      | 1750,         | -60,          | 970,          | 1750,         | 970}          |
| 08708          | , {      | 1990,         | -60,          | 1210,         | 1990,         | 1210}         |
| 08709          | , {      | 270,          | -1000,        | 270,          | -200,         | 270}          |
| 08710          | }        |               |               |               |               |               |
| 08711          | }        |               |               |               |               |               |
| 08712          | , { { {  | 1860,         | 1840,         | 1860,         | 1840,         | 640}          |
| 08713          | , {      | 1210,         | 1190,         | 1210,         | 1190,         | 640}          |
| 08714          | , {      | 1080,         | 1060,         | 1080,         | 1060,         | 270}          |
| 08715          | , {      | 1860,         | 1840,         | 1860,         | 1840,         | 270}          |
| 08716          | , {      | 950,          | 930,          | 950,          | 930,          | 140}          |
| 08717          | }        |               |               |               |               |               |
| 08718          | , { {    | 1210,         | 1190,         | 1210,         | 1190,         | 640}          |
| 08719          | , {      | 1210,         | 1190,         | 1210,         | 1190,         | 640}          |
| 08720          | , {      | 930,          | 910,          | 930,          | 910,          | 120}          |
| 08721          | , {      | 270,          | 10,           | 270,          | 10,           | -780}         |
| 08722          | , {      | 930,          | 910,          | 930,          | 910,          | 120}          |
| 08723          | }        |               |               |               |               |               |
| 08724          | , { {    | 1080,         | 1060,         | 1080,         | 1060,         | 270}          |
| 08725          | , {      | 1080,         | 1060,         | 1080,         | 1060,         | 270}          |
| 08726          | , {      | 1080,         | 1060,         | 1080,         | 1060,         | 270}          |
| 08727          | , {      | 1080,         | 1060,         | 1080,         | 1060,         | 270}          |
| 08728          | , {      | 950,          | 930,          | 950,          | 930,          | 140}          |
| 08729          | }        | 1000          | 1040          | 1000          | 1040          | 1001          |
| 08730          | , { {    | 1860,         | 1840,         | 1860,         | 1840,         | 120}          |
| 08731<br>08732 | , {      | 180,          | -80,          | 180,          | -80,          | -870}         |
|                | , {      | 930,          | 910,          | 930,          | 910,          | 120}          |
| 08733<br>08734 | , {      | 1860,<br>930, | 1840,<br>910, | 1860,<br>930, | 1840,<br>910, | -200}<br>120} |
| 08735          | , {<br>} | 930,          | 910,          | 930,          | 910,          | 1205          |
| 08736          | , { {    | 1080,         | 1060,         | 1080,         | 1060,         | 270}          |
| 08737          | , ( (    | 1080,         | 1060,         | 1080,         | 1060,         | 270}          |
| 08738          | , {      | 840,          | 820,          | 840,          | 820,          | 30}           |
| 08739          | , {      | 1080,         | 1060,         |               | 1060,         | 270}          |
| 08740          | , {      | 140,          | 120,          | 140,          | 120,          | -670}         |
| 08741          | }        | 110,          | 120,          | 110,          | 120,          | 0,01          |
| 08742          | }        |               |               |               |               |               |
| 08743          | }        |               |               |               |               |               |
| 08744          | }        |               |               |               |               |               |
|                | ,{{{{{   | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08746          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08747          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08748          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08749          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08750          | }        | ,             | ,             | ,             | •             | ,             |
| 08751          | , { {    | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08752          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08753          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08754          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08755          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08756          | }        | ·             | ,             |               |               | ,             |
| 08757          | , { {    | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08758          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08759          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08760          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08761          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08762          | }        |               |               |               |               |               |
| 08763          | , { {    | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08764          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
| 08765          | , {      | INF,          | INF,          | INF,          | INF,          | INF }         |
|                |          |               |               |               |               |               |

| 08766          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|----------------|------------|--------------|--------------|--------------|--------------|----------------|
| 08767<br>08768 | , {<br>}   | INF,         | INF.         | INF,         | INF,         | INF }          |
| 08769          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08770          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08771<br>08772 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08773          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08774          | }          |              |              |              |              |                |
| 08775          | }          | TNIE         | T.1177       | T.110        | T.110        | TAIT           |
| 08776<br>08777 | ,{{{<br>,{ | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08778          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08779          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08780          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08781<br>08782 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08783          | , (        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08784          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08785          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08786<br>08787 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08788          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08789          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08790          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08791<br>08792 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08793          | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08794          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08795          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08796<br>08797 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08797          | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08799          | }          | 1111,        | 1111         | 1111         | 1111         | 1111           |
| 08800          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08801          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08802<br>08803 | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08804          | , {        | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08805          | }          | ,            | ,            | ,            | ,            | ,              |
| 08806          | }          |              |              |              |              |                |
| 08807<br>08808 | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08809          | , {<br>, { | INF,<br>INF, | INF,         | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08810          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08811          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08812          | }          | TNE          | TND          | TND          | TND          | TNIE           |
| 08813<br>08814 | ,{{<br>,{  | INF,<br>INF, | INF,         | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08815          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08816          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08817          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08818<br>08819 | }<br>,{{   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08820          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08821          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08822          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08823<br>08824 | , {<br>}   | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08825          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08826          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08827          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08828<br>08829 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08830          | }          | INI,         | INI,         | INI,         | INI,         | TIME )         |
| 08831          | , { {      | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08832          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08833          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08834<br>08835 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08836          | }          |              | ,            | /            | ,            | ,              |
| 08837          | }          |              |              |              |              |                |
| 08838          | , { { {    | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08839<br>08840 | , {<br>, { | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08841          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08842          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08843          | }          | TNE          | TATE         | TATE         | TATE         |                |
| 08844<br>08845 | , { {      | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08846          | , {<br>, { | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08847          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08848          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
| 08849          | }          | TNIE         | TAID         | TAID         | TAID         | T 3. T 7.      |
| 08850<br>08851 | ,{{<br>,{  | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF,<br>INF, | INF }<br>INF } |
| 08852          | , {        | INF,         | INF,         | INF,         | INF,         | INF }          |
|                |            |              |              |              |              |                |

| 08853          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
|----------------|------------|----------------|--------------|---------------|----------------|----------------|
| 08854<br>08855 | , {<br>}   | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08856          | , { {      | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08857          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08858<br>08859 | , {<br>, { | INF,<br>INF,   | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF,   | INF }<br>INF } |
| 08860          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08861          | }          |                |              |               |                |                |
| 08862          | , { {      | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08863<br>08864 | , {<br>, { | INF,<br>INF,   | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF,   | INF }<br>INF } |
| 08865          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08866          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08867<br>08868 | }          |                |              |               |                |                |
| 08869          | }<br>,{{{  | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08870          | },         | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08871          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08872<br>08873 | , {        | INF,<br>INF,   | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF,   | INF }<br>INF } |
| 08874          | , {<br>}   | TINE,          | INF,         | TIME,         | INT,           | TIME           |
| 08875          | , { {      | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08876          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08877<br>08878 | , {<br>, { | INF,<br>INF,   | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF,   | INF }<br>INF } |
| 08879          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08880          | }          |                |              |               |                |                |
| 08881          | , { {      | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08882          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08883<br>08884 | , {<br>, { | INF,<br>INF,   | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF,   | INF }<br>INF } |
| 08885          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08886          | }          |                |              |               |                |                |
| 08887          | , { {      | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08888<br>08889 | , {<br>, { | INF,<br>INF,   | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF,   | INF }<br>INF } |
| 08890          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08891          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08892          | }          | TNID           | TNE          | TNIE          | TNID           | TNE            |
| 08893<br>08894 | ,{{<br>,{  | INF,<br>INF,   | INF,<br>INF, | INF,<br>INF,  | INF,<br>INF,   | INF }<br>INF } |
| 08895          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08896          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08897          | , {        | INF,           | INF,         | INF,          | INF,           | INF }          |
| 08898<br>08899 | }          |                |              |               |                |                |
| 08900          | }          |                |              |               |                |                |
| 08901          | , { { { {  | 1350,          | 850,         | 720,          | 1350,          | 720}           |
| 08902          | , {        | 1300,          | 650,         | 540,          | 1300,          | 520}           |
| 08903<br>08904 | , {<br>, { | 1350,<br>1300, | 700,<br>850, | 570,<br>720,  | 1350,<br>1300, | 570}<br>720}   |
| 08905          | , {        | 1250,          | 590,         | 460,          | 1250,          | 460}           |
| 08906          | }          |                |              |               |                |                |
| 08907          | , { {      | 1160,          | 500,         | 400,          | 1160,          | 370}           |
| 08908<br>08909 | , {<br>, { | 1160,<br>850,  | 500,<br>190, | 370,<br>60,   | 1160,<br>850,  | 370}<br>60}    |
| 08910          | , {        | 400,           | 290,         | 400,          | 10,            | 170}           |
| 08911          | , {        | 850,           | 190,         | 60,           | 850,           | 60}            |
| 08912<br>08913 | }          | 1300,          | 650,         | E20           | 1200           | E201           |
| 08913          | ,{{<br>,{  | 1300,          | 650,         | 520,<br>520,  | 1300,<br>1300, | 520}<br>520}   |
| 08915          | , {        | 1290,          | 640,         | 510,          | 1290,          | 510}           |
| 08916          | , {        | 1300,          | 650,         | 520,          | 1300,          | 520}           |
| 08917<br>08918 | , {        | 1250,          | 590,         | 460,          | 1250,          | 460}           |
| 08919          | }<br>,{{   | 850,           | 850,         | 720,          | 850,           | 720}           |
| 08920          | , {        | 540,           | 0,           | 540,          | -270,          | -120}          |
| 08921          | , {        | 850,           | 190,         | 60,           | 850,           | 60}            |
| 08922<br>08923 | , {        | 850 <b>,</b>   | 850,         | 720,          | 570,<br>850,   | 720}           |
| 08923          | , {<br>}   | 850,           | 190,         | 60,           | 030,           | 60}            |
| 08925          | , { {      | 1350,          | 700,         | 570,          | 1350,          | 570}           |
| 08926          | , {        | 1300,          | 650,         | 520,          | 1300,          | 520}           |
| 08927          | , {        | 1350,          | 700,         | 570,          | 1350,          | 570}           |
| 08928<br>08929 | , {<br>, { | 1300,          | 650,<br>100, | 520,<br>-270, | 1300,<br>-230, | 520}<br>-270}  |
| 08930          | }          | ,              | ,            | ,             | ,              | 2.01           |
| 08931          | }          |                |              |               |                |                |
| 08932          | , { { {    | 850 <b>,</b>   | 850 <b>,</b> | 720,          | -330,          | 720}           |
| 08933<br>08934 | , {<br>, { | 650,<br>700,   | 650,<br>700, | 520,<br>570,  | -620,<br>-330, | 520}<br>570}   |
| 08935          | , {        | 850,           | 850,         | 720,          | -620,          | 720}           |
| 08936          | , {        | 590,           | 590,         | 460,          | -440,          | 460}           |
| 08937<br>08938 | 1 1<br>}   | 500            | 500          | 370,          | -770,          | 2701           |
| 08938          | ,{{<br>,{  | 500,<br>500,   | 500,<br>500, | 370,          | -770 <b>,</b>  | 370}<br>370}   |
|                | , .        | ,              | ,            | ,             | -,             | ,              |

| 00010 | ſ     | 100          | 100           | 60           | 1070          | 601   |
|-------|-------|--------------|---------------|--------------|---------------|-------|
| 08940 | , {   | 190,         | 190,          |              | -1070,        | 60}   |
| 08941 | , {   | 290,         | 290,          | 160,         | -980,         | 160}  |
| 08942 | , {   | 190,         | 190,          | 60,          | -1080,        | 60}   |
| 08943 | }     |              |               |              |               |       |
| 08944 | , { { | 650,         | 650,          | 520,         | -390,         | 520}  |
| 08945 | , {   | 650,         | 650,          | 520,         | -620,         | 520}  |
| 08946 | , {   | 640,         | 640,          | 510,         | -390,         | 510}  |
| 08947 | , {   | 650,         | 650,          | 520,         | -620,         | 520}  |
|       |       |              |               |              |               |       |
| 08948 | , {   | 590,         | 590,          | 460,         | -440,         | 460}  |
| 08949 | }     |              |               |              |               |       |
| 08950 | , { { | 850,         | 850,          | 720,         | -1080,        | 720}  |
| 08951 | , {   | 10,          | 0,            | 10,          | -1270,        | -120} |
| 08952 | , {   | 190,         | 190,          | 60,          | -1080,        | 60}   |
| 08953 | , {   | 850,         | 850,          | 720,         | -1080,        | 720}  |
| 08954 | , {   | 190,         | 190,          | 60,          | -1080,        | 60}   |
|       |       | 190,         | 130,          | 00,          | -1000,        | 00)   |
| 08955 | }     |              |               |              |               |       |
| 08956 | , { { | 700,         | 700,          | 570,         | -330,         | 570}  |
| 08957 | , {   | 650 <b>,</b> | 650,          | 520,         | -620,         | 520}  |
| 08958 | , {   | 700,         | 700,          | 570 <b>,</b> | -330 <b>,</b> | 570}  |
| 08959 | , {   | 650,         | 650,          | 520,         | -620,         | 520}  |
| 08960 | , {   | 100,         | 100,          | -270,        | -1300,        | -270} |
| 08961 | }     | ,            |               |              | ,             |       |
| 08962 |       |              |               |              |               |       |
|       | }     | 700          | F 7 0         | 700          | F 7 0         | 4001  |
| 08963 | ,{{{  | 720,         | 570,          | 720,         | 570,          | 480}  |
| 08964 | , {   | 540,         | 370,          | 540,         | 370,          | 280}  |
| 08965 | , {   | 570 <b>,</b> | 420,          | 570 <b>,</b> | 420,          | 340}  |
| 08966 | , {   | 720,         | 570,          | 720,         | 570,          | 480}  |
| 08967 | , {   | 460,         | 310,          | 460,         | 310,          | 230}  |
| 08968 | }     | ,            |               |              | ,             |       |
| 08969 |       | 400          | 220,          | 400,         | 220           | 1701  |
|       | , { { | 400,         |               |              | 220,          | 170}  |
| 08970 | , {   | 370,         | 220,          | 370,         | 220,          | 140}  |
| 08971 | , {   | 60,          | -80,          | 60,          | -80,          | -170} |
| 08972 | , {   | 400,         | 10,           | 400,         | 10,           | 170}  |
| 08973 | , {   | 60,          | -80,          | 60,          | -80,          | -170} |
| 08974 | }     |              |               |              |               |       |
| 08975 | , { { | 520,         | 370,          | 520,         | 370,          | 280}  |
|       |       |              |               |              |               |       |
| 08976 | , {   | 520,         | 370,          | 520,         | 370,          | 280}  |
| 08977 | , {   | 510,         | 360,          | 510,         | 360,          | 280}  |
| 08978 | , {   | 520,         | 370,          | 520,         | 370,          | 280}  |
| 08979 | , {   | 460,         | 310,          | 460,         | 310,          | 230}  |
| 08980 | }     |              |               |              |               |       |
| 08981 | , { { | 720,         | 570,          | 720,         | 570,          | 480}  |
| 08982 |       | 540,         |               |              | -270,         |       |
|       | , {   |              | -100,         | 540,         |               | -120} |
| 08983 | , {   | 60,          | -80,          | 60,          | -80,          | -170} |
| 08984 | , {   | 720,         | 570 <b>,</b>  | 720,         | 570 <b>,</b>  | 480}  |
| 08985 | , {   | 60,          | -80,          | 60,          | -80,          | -170} |
| 08986 | }     |              |               |              |               |       |
| 08987 | , { { | 570,         | 420,          | 570,         | 420,          | 340}  |
| 08988 | , {   | 520,         | 370,          | 520,         | 370,          | 280}  |
| 08989 |       | 570,         | 420,          | 570,         | 420,          |       |
|       | , {   |              |               |              |               | 340}  |
| 08990 | , {   | 520,         | 370,          | 520,         | 370,          | 280}  |
| 08991 | , {   | -270,        | -420,         | -270,        | -420,         | -500} |
| 08992 | }     |              |               |              |               |       |
| 08993 | }     |              |               |              |               |       |
| 08994 | ,{{{  | 1350,        | -230,         | 720,         | 1350,         | 720}  |
| 08995 | ,     | 1300,        | -530,         | 520,         | 1300,         | 520}  |
| 08996 | , (   | 1350,        | -230,         | 570,         | 1350,         | 570}  |
|       | , {   |              |               |              |               |       |
| 08997 | , {   | 1300,        | -530,         | 720,         | 1300,         | 720}  |
| 08998 | , {   | 1250,        | -340,         | 460,         | 1250,         | 460}  |
| 08999 | }     |              |               |              |               |       |
| 09000 | , { { | 1160,        | -670 <b>,</b> | 370,         | 1160,         | 370}  |
| 09001 | , {   | 1160,        | -670,         | 370,         | 1160,         | 370}  |
| 09002 | , {   | 850,         | -980,         | 60,          | 850,          | 60}   |
| 09003 | , {   | 160,         | -890,         | 160,         | -310,         | 160}  |
|       |       |              |               |              |               |       |
| 09004 | , {   | 850,         | -980,         | 60,          | 850,          | 60}   |
| 09005 | }     |              |               |              |               |       |
| 09006 | , { { | 1300,        | -290,         | 520,         | 1300,         | 520}  |
| 09007 | , {   | 1300,        | -530,         | 520,         | 1300,         | 520}  |
| 09008 | , {   | 1290,        | -290,         | 510,         | 1290,         | 510}  |
| 09009 | , {   | 1300,        | -530,         | 520,         | 1300,         | 520}  |
|       |       |              | -340,         |              |               |       |
| 09010 | , {   | 1250,        | -340,         | 460,         | 1250,         | 460}  |
| 09011 | }     |              |               |              |               |       |
| 09012 | , { { | 850,         | -980,         | 720,         | 850,          | 720}  |
| 09013 | , {   | -120,        | -1170,        | -120,        | -590 <b>,</b> | -120} |
| 09014 | , {   | 850,         | -980,         | 60,          | 850,          | 60}   |
| 09015 | , {   | 720,         | -1580,        | 720,         | -1000,        | 720}  |
| 09016 | , {   | 850,         | -980,         | 60,          | 850,          | 60}   |
|       |       | 000,         | ,000          | 00,          | 000,          | 00}   |
| 09017 | }     | 1050         | 000           |              | 1050          |       |
| 09018 | , { { | 1350,        | -230,         | 570,         | 1350,         | 570}  |
| 09019 | , {   | 1300,        | -530 <b>,</b> | 520,         | 1300,         | 520}  |
| 09020 | , {   | 1350,        | -230,         | 570,         | 1350,         | 570}  |
| 09021 | , {   | 1300,        | -530,         | 520,         | 1300,         | 520}  |
| 09022 | , {   | -230,        | -1320,        | -270,        | -230,         | -270} |
| 09023 | }     | ,            | _020,         | - / 0 /      | 200,          | 2,01  |
|       |       |              |               |              |               |       |
| 09024 | }     |              |               |              |               |       |
| 09025 | ,{{{  | 590,         | 570,          | 590,         | 570,          | -90}  |
| 09026 | , {   | 390,         | 370,          | 390,         | 370,          | -90}  |
|       |       |              |               |              |               |       |

| 09027 | , {     | 440,   | 420,         | 440,  | 420,          | -360}  |
|-------|---------|--------|--------------|-------|---------------|--------|
|       |         |        |              |       |               |        |
| 09028 | , {     | 590,   | 570,         | 590,  | 570,          | -420}  |
| 09029 | , {     | 330,   | 310,         | 330,  | 310,          | -470}  |
| 09030 | }       |        |              |       |               |        |
| 09031 | , { {   | 270,   | 220,         | 270,  | 220,          | -320}  |
| 09032 | , {     | 240,   | 220,         | 240,  | 220,          | -320}  |
|       |         |        |              |       |               |        |
| 09033 | , {     | -60,   | -80,         | -60,  | -80,          | -830}  |
| 09034 | , {     | 270,   | 10,          | 270,  | 10,           | -780}  |
| 09035 | , {     | -60,   | -80,         | -60,  | -80,          | -870}  |
| 09036 | }       |        |              |       |               |        |
|       |         | 200    | 270          | 200   | 270           | 001    |
| 09037 | , { {   | 390,   | 370,         | 390,  | 370,          | -90}   |
| 09038 | , {     | 390,   | 370,         | 390,  | 370,          | -90}   |
| 09039 | , {     | 380,   | 360,         | 380,  | 360,          | -420}  |
| 09040 | , {     | 390,   | 370,         | 390,  | 370,          | -420}  |
|       |         |        |              |       |               |        |
| 09041 | , {     | 330,   | 310,         | 330,  | 310,          | -470}  |
| 09042 | }       |        |              |       |               |        |
| 09043 | , { {   | 590,   | 570,         | 590,  | 570,          | -810}  |
| 09044 | , {     | -10,   | -270,        | -10,  | -270,         | -810}  |
|       |         |        |              |       |               |        |
| 09045 | , {     | -60,   | -80,         | -60,  | -80,          | -870}  |
| 09046 | , {     | 590,   | 570,         | 590,  | 570,          | -1470} |
| 09047 | , {     | -60,   | -80,         | -60,  | -80,          | -870}  |
| 09048 | }       |        |              |       |               |        |
| 09049 |         | 440,   | 420,         | 440,  | 420,          | -3601  |
|       | , { {   |        |              |       |               | -360}  |
| 09050 | , {     | 390,   | 370,         | 390,  | 370,          | -420}  |
| 09051 | , {     | 440,   | 420,         | 440,  | 420,          | -360}  |
| 09052 | , {     | 390,   | 370,         | 390,  | 370,          | -420}  |
| 09053 | , {     | -400,  | -420,        | -400, | -420,         | -1210} |
|       |         | 100,   | 120,         | 100,  | 120,          | 1210)  |
| 09054 | }       |        |              |       |               |        |
| 09055 | }       |        |              |       |               |        |
| 09056 | }       |        |              |       |               |        |
| 09057 | , {{{{  | 1320,  | 850,         | 720,  | 1320,         | 720}   |
|       |         |        |              |       |               |        |
| 09058 | , {     | 1320,  | 670,         | 540,  | 1320,         | 540}   |
| 09059 | , {     | 870,   | 220,         | 90,   | 870,          | 90}    |
| 09060 | , {     | 960,   | 850,         | 720,  | 960,          | 720}   |
| 09061 | , {     | 870,   | 250,         | 90,   | 870,          | 90}    |
|       |         | 070,   | 250,         | 50,   | 0,0,          | 50)    |
| 09062 | }       |        |              |       |               |        |
| 09063 | , { {   | 1320,  | 670,         | 540,  | 1320,         | 540}   |
| 09064 | , {     | 1320,  | 670,         | 540,  | 1320,         | 540}   |
| 09065 | , {     | 870,   | 220,         | 90,   | 870,          | 90}    |
|       |         |        |              |       |               |        |
| 09066 | , {     | -410,  | -520,        | -410, | -800,         | -640}  |
| 09067 | , {     | 870,   | 220,         | 90,   | 870,          | 90}    |
| 09068 | }       |        |              |       |               |        |
| 09069 | , { {   | 960,   | 300,         | 170,  | 960,          | 170}   |
| 09070 |         |        |              | 170,  | 960,          |        |
|       | , {     | 960,   | 300,         |       |               | 170}   |
| 09071 | , {     | 650,   | 0,           | -130, | 650,          | -130}  |
| 09072 | , {     | 960,   | 300,         | 170,  | 960,          | 170}   |
| 09073 | , {     | 650,   | 0,           | -130, | 650,          | -130}  |
| 09074 |         | ,      | - /          | ,     | ,             | ,      |
|       | }       | 0.77.0 | 0.50         | 700   | 0.70          |        |
| 09075 | , { {   | 870,   | 850,         | 720,  | 870,          | 720}   |
| 09076 | , {     | 70,    | -40,         | 70,   | -320,         | -170}  |
| 09077 | , {     | 870,   | 220,         | 90,   | 870,          | 90}    |
| 09078 | , {     | 850,   | 850,         | 720,  | 570,          | 720}   |
|       |         |        |              |       |               |        |
| 09079 | , {     | 870,   | 220,         | 90,   | 870,          | 90}    |
| 09080 | }       |        |              |       |               |        |
| 09081 | , { {   | 960,   | 300,         | 170,  | 960,          | 170}   |
| 09082 | r       | 960,   | 300,         | 170,  | 960,          | 170}   |
|       |         |        |              |       |               |        |
| 09083 | , {     | 340,   | -310,        | -440, | 340,          | -440}  |
| 09084 | , {     | 960,   | 300,         | 170,  | 960,          | 170}   |
| 09085 | , {     | 250,   | 250,         | -90,  | -260,         | -110}  |
| 09086 | }       |        |              |       |               |        |
| 09087 | }       |        |              |       |               |        |
|       |         | 0.5.0  | 0.50         | 720   | E 4.0         | 7201   |
| 09088 | , { { { | 850,   | 850,         | 720,  | 540,          | 720}   |
| 09089 | , {     | 670,   | 670 <b>,</b> | 540,  | 10,           | 540}   |
| 09090 | , {     | 540,   | 220,         | 90,   | 540,          | 90}    |
| 09091 | , {     | 850,   | 850,         | 720,  | -970,         | 720}   |
| 09092 |         |        |              |       |               |        |
|       | , {     | 250,   | 250,         | 90,   | -810,         | 90}    |
| 09093 | }       |        |              |       |               |        |
| 09094 | , { {   | 670,   | 670,         | 540,  | -100,         | 540}   |
| 09095 | , {     | 670,   | 670,         | 540,  | -600,         | 540}   |
| 09096 | , {     | 220,   | 220,         | 90,   | -100,         | 90}    |
|       |         |        |              |       |               |        |
| 09097 | , {     | -520,  | -520,        | -650, | -1790,        | -650}  |
| 09098 | , {     | 220,   | 220,         | 90,   | -1050,        | 90}    |
| 09099 | }       |        |              |       |               |        |
| 09100 | , { {   | 540,   | 300,         | 170,  | 540,          | 170}   |
| 09101 |         |        | 300,         |       |               |        |
|       | , {     | 300,   |              | 170,  | 10,           | 170}   |
| 09102 | , {     | 540,   | 0,           | -130, | 540,          | -130}  |
| 09103 | , {     | 300,   | 300,         | 170,  | -970,         | 170}   |
| 09104 | , {     | 0,     | 0,           | -130, | -1030,        | -130}  |
| 09105 | }       | -,     | -,           | /     | /             | ,      |
|       |         | 0.5.0  | 0.50         | 700   | 1050          | 7001   |
| 09106 | , { {   | 850,   | 850,         |       | -1050,        | 720}   |
| 09107 | , {     | -40,   | -40,         | -170, | -1320,        | -170}  |
| 09108 | , {     | 220,   | 220,         | 90,   | -1050,        | 90}    |
| 09109 | , {     | 850,   | 850,         | 720,  | -1680,        | 720}   |
|       |         |        |              |       |               |        |
| 09110 | , {     | 220,   | 220,         | 90,   | -1050,        | 90}    |
| 09111 | }       |        |              |       |               |        |
| 09112 | , { {   | 300,   | 300,         | 170,  | -810,         | 170}   |
| 09113 | , {     | 300,   | 300,         | 170,  | -970 <b>,</b> | 170}   |
|       | , ,     | /      | /            | /     | /             | ,      |

18.175 intl22dH.h 1211

| 09114          | ſ       | -310,         | -310,         | -110         | -1340,        | -440}           |
|----------------|---------|---------------|---------------|--------------|---------------|-----------------|
|                | , {     |               |               |              |               |                 |
| 09115          | , {     | 300,          | 300,          | 170,         | -970,         | 170}            |
| 09116          | , {     | 250,          | 250,          | -90 <b>,</b> | -810,         | -110}           |
| 09117          | }       |               |               |              |               |                 |
| 09118          | }       |               |               |              |               |                 |
| 09119          | , { { { | 720,          | 570,          | 720,         | 570,          | 480}            |
| 09120          | , {     | 540,          | 390,          | 540,         | 390,          | 300}            |
|                |         |               |               |              |               |                 |
| 09121          | , {     | 90,           | -60,          | 90,          | -60,          | -140}           |
| 09122          | , {     | 720,          | 570 <b>,</b>  | 720,         | 570 <b>,</b>  | 480}            |
| 09123          | , {     | 90,           | -60,          | 90,          | -60,          | -140}           |
| 09124          | }       | ,             |               |              |               |                 |
|                |         | E 4.0         | 200           | E 4.0        | 200           | 2001            |
| 09125          | , { {   | 540,          | 390,          | 540,         | 390,          | 300}            |
| 09126          | , {     | 540,          | 390,          | 540,         | 390,          | 300}            |
| 09127          | , {     | 90,           | -60,          | 90,          | -60,          | -140}           |
| 09128          | , {     | -410,         | -800,         | -410,        | -800,         | -640}           |
| 09129          | , {     | 90,           | -60,          | 90,          | -60,          | -140}           |
|                |         | 50,           | -00,          | <i>50</i> ,  | -00,          | -140}           |
| 09130          | }       |               |               |              |               |                 |
| 09131          | , { {   | 170,          | 20,           | 170,         | 20,           | -60}            |
| 09132          | , {     | 170,          | 20,           | 170,         | 20,           | -60}            |
| 09133          | , {     | -130,         | -280,         | -130,        | -280,         | -360}           |
| 09134          |         | 170,          | 20,           | 170,         | 20,           |                 |
|                | , {     |               |               |              |               | -60}            |
| 09135          | , {     | -130,         | -280,         | -130,        | -280,         | -360}           |
| 09136          | }       |               |               |              |               |                 |
| 09137          | , { {   | 720,          | 570,          | 720,         | 570,          | 480}            |
| 09138          | , {     | 70,           | -320,         | 70,          | -320,         | -170}           |
| 09139          |         | 90,           | -60,          | 90,          | -60,          | -140}           |
|                | , {     |               |               |              |               |                 |
| 09140          | , {     | 720,          | 570,          | 720,         | 570,          | 480}            |
| 09141          | , {     | 90,           | -60,          | 90,          | -60,          | -140}           |
| 09142          | }       |               |               |              |               |                 |
| 09143          | , { {   | 170,          | 20,           | 170,         | 20,           | -60}            |
|                |         |               |               |              |               |                 |
| 09144          | , {     | 170,          | 20,           | 170,         | 20,           | -60}            |
| 09145          | , {     | -440,         | -590 <b>,</b> | -440,        | -590 <b>,</b> | -670}           |
| 09146          | , {     | 170,          | 20,           | 170,         | 20,           | -60}            |
| 09147          | , {     | -110,         | -260,         | -110,        | -260,         | -350}           |
| 09148          | }       | ,             | ,             | ,            | ,             | ,               |
|                |         |               |               |              |               |                 |
| 09149          | }       |               |               |              |               |                 |
| 09150          | , { { { | 1320,         | -350 <b>,</b> | 720,         | 1320,         | 720}            |
| 09151          | , {     | 1320,         | -730,         | 540,         | 1320,         | 540}            |
| 09152          | , {     | 870,          | -350,         | 90,          | 870,          | 90}             |
|                |         |               | -870 <b>,</b> |              |               |                 |
| 09153          | , {     | 960,          |               | 720,         | 960,          | 720}            |
| 09154          | , {     | 870,          | -940,         | 90,          | 870,          | 90}             |
| 09155          | }       |               |               |              |               |                 |
| 09156          | , { {   | 1320,         | -350,         | 540,         | 1320,         | 540}            |
| 09157          | , {     | 1320,         | -730,         | 540,         | 1320,         | 540}            |
|                |         |               |               |              |               |                 |
| 09158          | , {     | 870,          | -350,         | 90,          | 870,          | 90}             |
| 09159          | , {     | -650 <b>,</b> | -1920,        | -650,        | -1120,        | -650}           |
| 09160          | , {     | 870,          | -960 <b>,</b> | 90,          | 870,          | 90}             |
| 09161          | }       |               |               |              |               |                 |
|                | , { {   | 960           | -070          | 170,         | 960,          | 1701            |
| 09162          |         | 960,          | -870,         |              |               | 170}            |
| 09163          | , {     | 960,          | -1100,        | 170,         | 960,          | 170}            |
| 09164          | , {     | 650 <b>,</b>  | -940,         | -130,        | 650,          | -130}           |
| 09165          | , {     | 960,          | -870,         | 170,         | 960,          | 170}            |
| 09166          | , {     | 650,          | -940,         | -130,        | 650,          | -130}           |
| 09167          |         | 000,          | 3 10 /        | 100,         | 000,          | 100,            |
|                | }       |               |               |              |               |                 |
| 09168          | , { {   | 870,          | -960 <b>,</b> | 720,         | 870,          | 720}            |
| 09169          | , {     | -170,         | -1450,        | -170,        | -640 <b>,</b> | -170}           |
| 09170          | , {     | 870,          | -960,         | 90,          | 870,          | 90}             |
| 09171          | , {     |               | -1370,        |              | -1000,        | 720}            |
|                |         |               |               |              |               |                 |
| 09172          | , {     | 8/0,          | -960,         | 90,          | 870,          | 90}             |
| 09173          | }       |               |               |              |               |                 |
| 09174          | , { {   | 960,          | -870 <b>,</b> | 170,         | 960,          | 170}            |
| 09175          | , {     | 960,          | -870,         | 170,         | 960,          | 170}            |
| 09176          | , {     | 340,          | -1250,        | -440,        | 340,          | -440}           |
| 09177          | , {     |               | -870,         | 170,         | 960,          | 170}            |
|                |         |               |               |              |               |                 |
| 09178          | , {     | -110,         | -1360,        | -110,        | -580,         | -110}           |
| 09179          | }       |               |               |              |               |                 |
| 09180          | }       |               |               |              |               |                 |
| 09181          | , { { { | 590,          | 570,          | 590,         | 570,          | -160}           |
|                |         |               |               |              |               |                 |
| 09182          | , {     | 410,          | 390,          | 410,         | 390,          | -160}           |
| 09183          | , {     | -40,          | -60,          | -40,         | -60,          | -850}           |
| 09184          | , {     | 590,          | 570,          | 590,         | 570,          | -230}           |
| 09185          | , {     | -40,          | -60,          | -40,         | -60,          | -850}           |
| 09186          | }       | ,             |               | · ·          | ,             | ,               |
|                |         | /1 O          | 300           | /11 O        | 300           | -1601           |
| 09187          | , { {   | 410,          | 390,          | 410,         | 390,          | -160}           |
| 09188          | , {     | 410,          | 390,          | 410,         | 390,          | -160}           |
| 09189          | , {     | -40,          | -60,          | -40,         | -60,          | -850}           |
| 09190          | , {     | -540,         | -800,         | -540,        | -800,         | -1520}          |
| 09191          | , {     | -40,          | -60,          | -40,         | -60,          | -850}           |
|                |         | 10,           | 50,           | 10,          | 00,           | 000}            |
| 09192          | }       | 4.0           | ~ ~           | 4.0          | ~ ~           |                 |
| 09193          | , { {   | 40,           | 20,           | 40,          | 20,           | -400}           |
| 09194          | , {     | 40,           | 20,           | 40,          | 20,           | -400}           |
| 09195          | , {     | -260,         | -280,         | -260,        | -280,         | -1070}          |
| 09196          | , {     | 40,           | 20,           | 40,          | 20,           | -760}           |
|                |         | -260,         | -280,         | -260,        | -280,         | -1070}          |
| 09197          | , {     | -200,         | -200,         | -200,        | -200,         | -10/0}          |
| 09198          | }       |               |               |              |               |                 |
|                |         |               |               |              |               |                 |
| 09199          | , { {   | 590,          | 570,          | 590,         | 570,          | -230}           |
| 09199<br>09200 |         | 590,<br>-60,  | 570,<br>-320, | 590,<br>-60, | 570,<br>-320, | -230}<br>-1110} |

| 00001 | r       | 4.0           | C0            | 4.0           | C0            | 0501    |
|-------|---------|---------------|---------------|---------------|---------------|---------|
| 09201 | , {     | -40,          | -60,          | -40,          | -60,          | -850}   |
| 09202 | , {     | 590,          | 570 <b>,</b>  | 590,          | 570,          | -230}   |
| 09203 | , {     | -40,          | -60,          | -40,          | -60,          | -850}   |
| 09204 | }       |               |               |               |               |         |
| 09205 | , { {   | 40,           | 20,           | 40,           | 20,           | -760}   |
|       |         |               |               |               |               |         |
| 09206 | , {     | 40,           | 20,           | 40,           | 20,           | -760}   |
| 09207 | , {     | -570 <b>,</b> | -590 <b>,</b> | -570 <b>,</b> | -590 <b>,</b> | -1380}  |
| 09208 | , {     | 40,           | 20,           | 40,           | 20,           | -760}   |
| 09209 | , {     | -240,         | -260,         | -240,         | -260,         | -1050}  |
|       |         | -240,         | -200,         | -240,         | -200,         | -1030}  |
| 09210 | }       |               |               |               |               |         |
| 09211 | }       |               |               |               |               |         |
| 09212 | }       |               |               |               |               |         |
| 09213 | ,{{{{   | 1010,         | 1010,         | 880,          | 730,          | 880}    |
|       |         |               |               |               |               |         |
| 09214 | , {     | 410,          | -30,          | 40,           | 410,          | -190}   |
| 09215 | , {     | 410,          | -240,         | -370 <b>,</b> | 410,          | -370}   |
| 09216 | , {     | 1010,         | 1010,         | 880,          | 730,          | 880}    |
| 09217 | , {     | 410,          | 0,            | -370,         | 410,          | -370}   |
| 09218 |         | 110,          | ٠,            | 3,0,          | 110,          | 370)    |
|       | }       | 410           | 7.0           | 1.50          | 410           | 0.7.0.1 |
| 09219 | , { {   | 410,          | -70,          | -150,         | 410,          | -370}   |
| 09220 | , {     | 230,          | -70,          | -550 <b>,</b> | 230,          | -550}   |
| 09221 | , {     | 410,          | -240,         | -370,         | 410,          | -370}   |
| 09222 |         | -150,         | -260,         | -150,         | -540,         |         |
|       | , {     |               |               |               |               | -380}   |
| 09223 | , {     | 410,          | -240,         | -370 <b>,</b> | 410,          | -370}   |
| 09224 | }       |               |               |               |               |         |
| 09225 | , { {   | 410,          | -240,         | -370,         | 410,          | -370}   |
| 09226 | , {     | 410,          | -240,         | -370,         | 410,          | -370}   |
|       |         |               |               |               |               |         |
| 09227 | , {     | 410,          | -240,         | -370,         | 410,          | -370}   |
| 09228 | , {     | 410,          | -240,         | -370,         | 410,          | -370}   |
| 09229 | , {     | 410,          | -240,         | -370,         | 410,          | -370}   |
| 09230 | }       | . ,           | .,            | .,            | . ,           | ,       |
|       |         | 1010          | 1010          | 000           | 720           | 0001    |
| 09231 | , { {   | 1010,         | 1010,         | 880,          | 730,          | 880}    |
| 09232 | , {     | 40,           | -30,          | 40,           | -350 <b>,</b> | -190}   |
| 09233 | , {     | 410,          | -240,         | -370,         | 410,          | -370}   |
| 09234 | , {     | 1010,         | 1010,         | 880,          | 730,          | 880}    |
|       |         |               |               |               |               |         |
| 09235 | , {     | 410,          | -240,         | -370,         | 410,          | -370}   |
| 09236 | }       |               |               |               |               |         |
| 09237 | , { {   | 410,          | 0,            | -370,         | 410,          | -370}   |
| 09238 | , {     | 410,          | -240,         | -370,         | 410,          | -370}   |
| 09239 |         | 410,          | -240,         | -370,         | 410,          | -370}   |
|       | , {     |               |               |               |               |         |
| 09240 | , {     | 410,          | -240,         | -370 <b>,</b> | 410,          | -370}   |
| 09241 | , {     | 0,            | 0,            | -370 <b>,</b> | -520 <b>,</b> | -370}   |
| 09242 | }       |               |               |               |               |         |
| 09243 | }       |               |               |               |               |         |
|       |         | 1010          | 1010          | 000           | 1000          | 0001    |
| 09244 | , { { { | 1010,         | 1010,         | 880,          | -1280,        | 880}    |
| 09245 | , {     | -30,          | -30,          | -200,         | -1340,        | -200}   |
| 09246 | , {     | -240,         | -240,         | -370,         | -1280,        | -370}   |
| 09247 | , {     | 1010,         | 1010,         | 880,          | -1520,        | 880}    |
|       |         |               |               |               |               |         |
| 09248 | , {     | 0,            | 0,            | -370,         | -1280,        | -370}   |
| 09249 | }       |               |               |               |               |         |
| 09250 | , { {   | -70,          | -70,          | -370,         | -1520,        | -370}   |
| 09251 | , {     | -70,          | -70,          | -550,         | -1700,        | -550}   |
| 09252 |         | -240,         | -240,         | -370,         | -1520,        | -370}   |
|       | , {     |               |               |               |               |         |
| 09253 | , {     | -260,         | -260,         | -390,         | -1530,        | -390}   |
| 09254 | , {     | -240,         | -240,         | -370,         | -1520,        | -370}   |
| 09255 | }       |               |               |               |               |         |
| 09256 | , { {   | -240,         | -240,         | -370,         | -1280,        | -370}   |
|       |         | -240,         |               |               |               | -370}   |
| 09257 | , {     |               | -240,         | -370,         | -1520,        |         |
| 09258 | , {     | -240,         | -240,         | -370,         | -1280,        | -370}   |
| 09259 | , {     | -240,         | -240,         | -370 <b>,</b> | -1520,        | -370}   |
| 09260 | , {     | -240,         | -240,         | -370,         | -1280,        | -370}   |
| 09261 | }       |               |               |               |               |         |
|       |         | 1010          | 1010          | 000           | _1240         | 0001    |
| 09262 | , { {   | 1010,         | 1010,         | 880,          | -1340,        | 880}    |
| 09263 | , {     | -30,          | -30,          | -200,         | -1340,        | -200}   |
| 09264 | , {     | -240,         | -240,         | -370,         | -1520,        | -370}   |
| 09265 | , {     | 1010,         | 1010,         | 880,          | -1520,        | 880}    |
| 09266 |         | -240,         | -240,         | -370,         | -1520,        | -370}   |
|       | , {     | 270,          | 270,          | 5,0,          | 1020,         | 5/0}    |
| 09267 | }       |               |               |               |               |         |
| 09268 | , { {   | 0,            | 0,            | -370 <b>,</b> | -1280,        | -370}   |
| 09269 | , {     | -240,         | -240,         | -370,         | -1520,        | -370}   |
| 09270 | , {     | -240,         | -240,         | -370,         | -1280,        | -370}   |
| 09271 |         | -240,         | -240,         | -370,         |               |         |
|       | , {     |               |               |               | -1520,        | -370}   |
| 09272 | , {     | 0,            | 0,            | -370,         | -1520,        | -370}   |
| 09273 | }       |               |               |               |               |         |
| 09274 | }       |               |               |               |               |         |
| 09275 | ,{{{    | 880,          | 730,          | 880,          | 730,          | 640}    |
|       |         |               |               |               |               |         |
| 09276 | , {     | 40,           | -350 <b>,</b> | 40,           | -350,         | -190}   |
| 09277 | , {     | -370,         | -520,         | -370,         | -520,         | -610}   |
| 09278 | , {     | 880,          | 730,          | 880,          | 730,          | 640}    |
| 09279 | , {     | -370,         | -520,         | -370,         | -520,         | -610}   |
| 09280 | }       | /             | /             | ,             | /             | , = - , |
|       |         | 150           | EOO           | 150           | EOO           | 2001    |
| 09281 | , { {   | -150,         | -520,         | -150,         | -520,         | -380}   |
| 09282 | , {     | -550,         | -700 <b>,</b> | -550,         | -700,         | -790}   |
| 09283 | , {     | -370,         | -520,         | -370,         | -520,         | -610}   |
| 09284 | , {     | -150,         | -540,         | -150,         | -540,         | -380}   |
| 09285 | , {     | -370,         | -520,         | -370,         | -520,         | -610}   |
|       |         | 510,          | 220,          | 510,          | J20,          | 010}    |
| 09286 | }       | 0.7.0         |               | 0.00          |               |         |
| 09287 | , { {   | -370 <b>,</b> | -520 <b>,</b> | -370 <b>,</b> | -520 <b>,</b> | -610}   |
|       |         |               |               |               |               |         |

18.175 intl22dH.h 1213

```
09288
               -370,
                        -520,
                                -370,
                                        -520,
           , {
09289
               -370,
                        -520,
                                -370,
                                        -520,
                                                -610}
                                        -520,
               -370,
09290
                        -520
                                -370,
                                                -6101
09291
                -370,
                        -520,
                                -370,
                                        -520,
                                                -610}
09292
09293
                 880,
                         730,
                                 880,
                                         730,
                                                 640}
          , { {
                        -350,
                                                -190}
09294
                  40,
                                  40,
                                        -350,
09295
                -370,
                        -520,
                                -370,
                                        -520,
                                                -610}
09296
                 880,
                         730,
                                880,
                                         730,
                                                 640}
09297
                -370,
                        -520,
                                -370,
                                        -520,
                                                -610}
09298
                -370,
09299
          , { {
                        -520.
                                -370.
                                        -520.
                                                -610}
09300
                -370,
                        -520,
                                -370,
                                        -520,
                                                -610}
          , {
09301
                -370,
                        -520,
                                -370,
                                        -520,
                                                -610}
09302
                -370,
                        -520,
                                -370,
                                        -520,
                                                -610}
09303
                -370,
                        -520,
                                -370,
                                        -520,
                                                -610}
09304
09305
                 880, -1180,
09306
        , { { {
                                 880,
                                          410.
                                                 8801
09307
                 410, -1250,
                                -200,
                                          410,
                                                 -200}
           , {
09308
                 410, -1180,
                                -370,
                                         410,
                                                -370}
                                         410,
09309
                 880, -1420,
                                880.
                                                 8803
09310
                 410, -1180,
                                -370,
                                         410,
                                                -370
09311
09312
                 410, -1420,
                                -370,
                                         410,
                                                -370}
          , { {
09313
                 230, -1600,
                                         230,
                                                -550}
                                -550,
          , {
09314
                 410, -1420,
                                -370,
                                         410,
                                                -3701
           , {
09315
                -390, -1440,
                                -390,
                                         -860,
                                                -3901
                 410, -1420,
09316
                                -370,
                                         410,
                                                -370}
09317
                 410, -1180,
410, -1420,
09318
          , { {
                                -370.
                                         410,
                                                -370}
09319
                                -370,
                                          410,
                                                -370}
           , {
09320
                 410, -1180,
                                -370,
                                         410,
                                                -370}
09321
                 410, -1420,
                                -370,
                                          410,
                                                -3701
09322
                 410, -1180,
                                -370,
                                         410,
                                                -370}
09323
                                 880,
                                         410,
09324
                 880, -1250,
                                                 880}
          , { {
                -200, -1250,
                                                 -200}
09325
                                -200,
                                         -670,
          , {
09326
                 410, -1420,
                                -370,
                                         410,
                                                -370}
           , {
09327
                 880, -1420,
                                 880,
                                         -840,
                                                 880}
09328
                 410, -1420,
                                -370,
                                         410,
                                                -370}
09329
                 410, -1180,
410, -1420,
          , { {
                                -370.
                                         410.
                                                -3701
09330
09331
                                -370,
                                         410,
                                                -370}
          , {
09332
                 410, -1180,
                                -370,
                                         410,
                                                -370}
09333
                 410, -1420,
                                -370,
                                         410,
                                                -3701
09334
                -370, -1420,
                                -370,
                                        -840.
                                                -370}
09335
09336
09337
         , { { {
                 750,
                         730,
                                 750,
                                         730, -1140}
                 -90,
                                 -90,
                                         -350, -1140}
09338
                        -350,
           , {
09339
                -500,
                        -520,
                                -500,
                                        -520, -1310}
                750,
                                         730, -1310}
09340
                         730,
                                 750,
                                        -520, -1310}
09341
                -500,
                        -520,
                                -500,
09342
09343
                -280,
                        -520,
                                -280,
          , { {
                                        -520, -1250}
09344
                -680,
                        -700,
                                        -700, -1250}
                                -680,
09345
                -500,
                        -520,
                                -500,
                                        -520, -1310}
           , {
09346
                -280,
                        -540,
                                -280,
                                        -540, -1330}
                                        -520, -1310}
09347
                -500,
                        -520.
                                -500,
09348
                                        -520, -1310}
-520, -1310}
                -500,
09349
          , { {
                        -520,
                                -500,
09350
                -500,
                        -520,
                                -500,
           , {
09351
                -500,
                        -520,
                                -500,
                                        -520, -1310}
                -500,
                                        -520, -1310}
09352
                        -520,
                                -500,
                                        -520, -1310}
09353
                -500,
                        -520,
                                -500,
09354
                 750,
                         730,
                                 750,
                                         730, -1140}
09355
          , { {
                                        -350, -1140}
09356
                 -90,
                        -350,
                                 -90,
           , {
                -500,
                                        -520, -1310}
09357
                        -520,
                                -500,
09358
                 750,
                         730,
                                 750,
                                         730, -1310}
                                        -520, -1310}
09359
                -500,
                        -520,
                                -500,
09360
                -500.
                        -520,
                                        -520, -1310}
09361
          , { {
                                -500.
09362
                -500,
                                -500,
                                        -520, -1310}
                        -520,
09363
                -500,
                        -520,
                                -500,
                                        -520, -1310}
09364
                -500,
                        -520,
                                -500,
                                        -520, -1310}
09365
                -500,
                        -520,
                                -500,
                                        -520, -1310}
09366
09367
          }
09368
09369
        ,{{{{
                1560,
                        1560,
                                1430,
                                        1470.
                                                1430}
09370
                1470,
                         820,
                                 690,
                                        1470,
                                                 690}
09371
                 960,
                         310,
                                 180,
                                         960,
                                                 1801
09372
                1560,
                        1560,
                                1430,
                                        1280,
                                                1430}
09373
                 960.
                         550.
                                 180.
                                         960.
                                                 1801
09374
```

| 09375 | , { {   | 1470, | 820,  | 690,  | 1470,         | 690}  |
|-------|---------|-------|-------|-------|---------------|-------|
|       |         |       |       |       |               |       |
| 09376 | , {     | 1470, | 820,  | 690,  | 1470,         | 690}  |
| 09377 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09378 | , {     | 80,   | -30,  | 80,   | -310,         | -150} |
| 09379 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09380 | }       |       |       |       |               |       |
|       |         | 0.60  | 210   | 100   | 960,          | 1001  |
| 09381 | , { {   | 960,  | 310,  | 180,  |               | 180}  |
| 09382 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09383 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09384 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
|       |         |       |       |       |               |       |
| 09385 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09386 | }       |       |       |       |               |       |
| 09387 | , { {   | 1560, | 1560, | 1430, | 1280,         | 1430} |
| 09388 |         |       | -200, |       | -480,         | -320} |
|       | , {     | -90,  |       | -90,  |               |       |
| 09389 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09390 | , {     | 1560, | 1560, | 1430, | 1280,         | 1430} |
| 09391 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09392 | }       | ,     | ,     | ,     | ,             | ,     |
|       |         | 0.00  |       | 100   | 0.00          | 1001  |
| 09393 | , { {   | 960,  | 550,  | 180,  | 960,          | 180}  |
| 09394 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09395 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
| 09396 | , {     | 960,  | 310,  | 180,  | 960,          | 180}  |
|       |         |       |       |       |               |       |
| 09397 | , {     | 550,  | 550,  | 180,  | 30,           | 180}  |
| 09398 | }       |       |       |       |               |       |
| 09399 | }       |       |       |       |               |       |
| 09400 | ,{{{    | 1560, | 1560, | 1430, | -30,          | 1430} |
|       |         |       |       |       |               |       |
| 09401 | , {     | 820,  | 820,  | 690,  | -30,          | 690}  |
| 09402 | , {     | 310,  | 310,  | 180,  | -720,         | 180}  |
| 09403 | , {     | 1560, | 1560, | 1430, | -960,         | 1430} |
| 09404 |         | 550,  | 550,  | 180,  | -720,         | 180}  |
|       | , {     | 550,  | 550,  | 100,  | - /20,        | 100}  |
| 09405 | }       |       |       |       |               |       |
| 09406 | , { {   | 820,  | 820,  | 690,  | -30,          | 690}  |
| 09407 | , {     | 820,  | 820,  | 690,  | -30,          | 690}  |
| 09408 |         |       |       | 180,  | -960,         | 180}  |
|       | , {     | 310,  | 310,  |       |               |       |
| 09409 | , {     | -30,  | -30,  | -160, | -1300,        | -160} |
| 09410 | , {     | 310,  | 310,  | 180,  | -960,         | 180}  |
| 09411 | }       |       |       |       |               |       |
|       |         | 310   | 310   | 100   | -720          | 1001  |
| 09412 | , { {   | 310,  | 310,  | 180,  | -720,         | 180}  |
| 09413 | , {     | 310,  | 310,  | 180,  | -960 <b>,</b> | 180}  |
| 09414 | , {     | 310,  | 310,  | 180,  | -720,         | 180}  |
| 09415 | , {     | 310,  | 310,  | 180,  | -960,         | 180}  |
| 09416 |         |       |       | 180,  | -720,         | 180}  |
|       | , {     | 310,  | 310,  | 100,  | - /20,        | 100}  |
| 09417 | }       |       |       |       |               |       |
| 09418 | , { {   | 1560, | 1560, | 1430, | -960 <b>,</b> | 1430} |
| 09419 | , {     | -200, | -200, | -330, | -1470,        | -330} |
| 09420 |         |       |       | 180,  | -960,         |       |
|       | , {     | 310,  | 310,  |       |               | 180}  |
| 09421 | , {     | 1560, | 1560, | 1430, | -960 <b>,</b> | 1430} |
| 09422 | , {     | 310,  | 310,  | 180,  | -960,         | 180}  |
| 09423 | }       |       |       |       |               |       |
|       |         | FFO   | FFO   | 100   | 720           | 1001  |
| 09424 | , { {   | 550,  | 550,  | 180,  | -720,         | 180}  |
| 09425 | , {     | 310,  | 310,  | 180,  | -960 <b>,</b> | 180}  |
| 09426 | , {     | 310,  | 310,  | 180,  | -720,         | 180}  |
| 09427 | , {     | 310,  | 310,  | 180,  | -960,         | 180}  |
| 09428 |         | 550,  | 550,  | 180,  | -960,         | 180}  |
|       | , {     | 550,  | 550,  | 100,  | - 900,        | 100}  |
| 09429 | }       |       |       |       |               |       |
| 09430 | }       |       |       |       |               |       |
| 09431 | , { { { | 1430, | 1280, | 1430, | 1280,         | 1200} |
| 09432 | , {     | 690,  | 540,  | 690,  | 540,          | 450}  |
|       |         |       |       |       |               |       |
| 09433 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09434 | , {     | 1430, | 1280, | 1430, | 1280,         | 1200} |
| 09435 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09436 | }       |       |       |       |               |       |
| 09437 | , { {   | 690,  | 540,  | 690,  | 540,          | 450}  |
|       |         |       |       |       |               |       |
| 09438 | , {     | 690,  | 540,  | 690,  | 540,          | 450}  |
| 09439 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09440 | , {     | 80,   | -310, | 80,   | -310,         | -150} |
| 09441 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
|       |         | 100,  | 50,   | 100,  | 50,           | -30}  |
| 09442 | }       |       |       |       |               |       |
| 09443 | , { {   | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09444 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09445 |         |       | 30,   | 180,  | 30,           | -50}  |
|       | , {     | 180,  |       |       |               |       |
| 09446 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09447 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09448 | }       |       |       |       |               |       |
| 09449 |         | 1430, | 1280, | 1430, | 1280,         | 1200} |
|       | , { {   |       |       |       |               |       |
| 09450 | , {     | -90,  | -480, | -90,  | -480,         | -320} |
| 09451 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09452 | , {     | 1430, | 1280, | 1430, | 1280,         | 1200} |
| 09453 |         | 180,  | 30,   | 180,  | 30,           | -50}  |
|       | , {     | 100,  | 50,   | ±00,  | 50,           | 201   |
| 09454 | }       |       |       |       |               |       |
| 09455 | , { {   | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09456 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09457 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09458 |         |       | 30,   |       | 30,           | -50}  |
|       | , {     | 180,  |       | 180,  |               |       |
| 09459 | , {     | 180,  | 30,   | 180,  | 30,           | -50}  |
| 09460 | }       |       |       |       |               |       |
| 09461 | }       |       |       |       |               |       |
|       | ,       |       |       |       |               |       |

18.175 intl22dH.h 1215

| 09462          | , { { {     | 1470,          | -360,           | 1430,          | 1470,          | 1430}           |
|----------------|-------------|----------------|-----------------|----------------|----------------|-----------------|
| 09463<br>09464 | , {<br>, {  | 1470,<br>960,  | -360,<br>-630,  | 690,<br>180,   | 1470,<br>960,  | 690}<br>180}    |
| 09465          | , {         | 1430,          | -870,           | 1430,          | 960,           | 1430}           |
| 09466          | , {         | 960,           | -630,           | 180,           | 960,           | 180}            |
| 09467<br>09468 | }<br>,{{    | 1470,          | -360,           | 690,           | 1470,          | 690}            |
| 09469          | , {         | 1470,          | -360,           | 690,           | 1470,          | 690}            |
| 09470          | , {         | 960,           | -870,           | 180,           | 960,           | 180}            |
| 09471<br>09472 | , {<br>, {  | -160,<br>960,  | -1210,<br>-870, | -160,<br>180,  | -630,<br>960,  | -160}<br>180}   |
| 09473          | }           | 300,           | 070,            | 100,           | J00,           | 100)            |
| 09474          | , { {       | 960,           | -630,           | 180,           | 960,           | 180}            |
| 09475<br>09476 | , {         | 960,           | -870,<br>-630,  | 180,           | 960,           | 180}            |
| 09476          | , {<br>, {  | 960,<br>960,   | -870,           | 180,<br>180,   | 960,<br>960,   | 180}<br>180}    |
| 09478          | , {         | 960,           | -630,           | 180,           | 960,           | 180}            |
| 09479          | }           | 1420           | 070             | 1.420          | 0.00           | 1 4 2 0 1       |
| 09480<br>09481 | ,{{<br>,{   | 1430,<br>-330, | -870,<br>-1380, | 1430,<br>-330, | 960,<br>-800,  | 1430}<br>-330}  |
| 09482          | , {         | 960,           | -870,           | 180,           | 960,           | 180}            |
| 09483          | , {         | 1430,          | -870,           | 1430,          | -290,          | 1430}           |
| 09484<br>09485 | , {<br>}    | 960,           | -870,           | 180,           | 960,           | 180}            |
| 09486          | , { {       | 960,           | -630,           | 180,           | 960,           | 180}            |
| 09487          | , {         | 960,           | -870,           | 180,           | 960,           | 180}            |
| 09488<br>09489 | , {<br>, {  | 960,<br>960,   | -630,<br>-870,  | 180,<br>180,   | 960,<br>960,   | 180}<br>180}    |
| 09499          | , {         | 180,           | -870 <b>,</b>   | 180,           | -290,          | 180}            |
| 09491          | }           |                |                 |                |                |                 |
| 09492          | }           | 1200           | 1000            | 1200           | 1000           | 101             |
| 09493<br>09494 | }}},<br>},  | 1300,<br>560,  | 1280,<br>540,   | 1300,<br>560,  | 1280,<br>540,  | -10}<br>-10}    |
| 09495          | , {         | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09496          | , {         | 1300,          | 1280,           | 1300,          | 1280,          | -760}           |
| 09497<br>09498 | , {<br>}    | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09499          | , { {       | 560,           | 540,            | 560,           | 540,           | -10}            |
| 09500          | , {         | 560,           | 540,            | 560,           | 540,           | -10}            |
| 09501<br>09502 | , {<br>, {  | 50,<br>-50,    | 30,<br>-310,    | 50,<br>-50,    | 30,<br>-310,   | -760}<br>-1100} |
| 09503          | , {         | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09504          | }           |                |                 |                |                |                 |
| 09505<br>09506 | ,{{<br>,{   | 50,<br>50,     | 30,<br>30,      | 50,<br>50,     | 30,<br>30,     | -760}<br>-760}  |
| 09507          | , {         | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09508          | , {         | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09509          | , {         | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09510<br>09511 | }<br>,{{    | 1300,          | 1280,           | 1300,          | 1280,          | -760}           |
| 09512          | , {         | -220,          | -480,           | -220,          | -480,          | -1270}          |
| 09513          | , {         | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09514<br>09515 | , {<br>, {  | 1300,<br>50,   | 1280,<br>30,    | 1300,<br>50,   | 1280,<br>30,   | -760}<br>-760}  |
| 09516          | }           | ,              | ,               | ,              | ,              | ,               |
| 09517          | , { {       | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09518<br>09519 | , {<br>, {  | 50,<br>50,     | 30,<br>30,      | 50,<br>50,     | 30,<br>30,     | -760}<br>-760}  |
| 09520          | , {         | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09521          | , {         | 50,            | 30,             | 50,            | 30,            | -760}           |
| 09522<br>09523 | }           |                |                 |                |                |                 |
| 09524          | }           |                |                 |                |                |                 |
| 09525          | , { { { { { | 2050,          | 1930,           | 1800,          | 2050,          | 1800}           |
| 09526<br>09527 | , {<br>, {  | 2050,<br>1750, | 1400,<br>1100,  | 1270,<br>970,  | 2050,<br>1750, | 1270}<br>970}   |
| 09528          | , {         | 1930,          | 1930,           | 1800,          | 1760,          | 1800}           |
| 09529          | , {         | 1750,          | 1100,           | 970,           | 1750,          | 970}            |
| 09530<br>09531 | }<br>,{{    | 2050,          | 1400,           | 1270,          | 2050,          | 1270}           |
| 09532          | , (         | 2050,          | 1400,           | 1270,          | 2050,          | 1270}           |
| 09533          | , {         | 1740,          | 1090,           | 960,           | 1740,          | 960}            |
| 09534          | , {         | 130,           | 10,             | 130,           | -260,          | -110}           |
| 09535<br>09536 | , {<br>}    | 1740,          | 1090,           | 960,           | 1740,          | 960}            |
| 09537          | , { {       | 1760,          | 1110,           | 980,           | 1760,          | 980}            |
| 09538          | , {         | 1760,          | 1110,           | 980,           | 1760,          | 980}            |
| 09539<br>09540 | , {<br>, {  | 1750,<br>1760, | 1100,<br>1110,  | 970,<br>980,   | 1750,<br>1760, | 970}<br>980}    |
| 09541          | , {         | 1750,          | 1100,           | 970,           | 1750,          | 970}            |
| 09542          | }           | 1020           | 1020            | 1000           | 1740           | 1000            |
| 09543<br>09544 | ,{{<br>,{   | 1930,<br>300,  | 1930,<br>190,   | 1800,<br>300,  | 1740,<br>-80,  | 1800}<br>70}    |
| 09545          | , {         | 1740,          | 1090,           | 960,           | 1740,          | 960}            |
| 09546          | , {         | 1930,          | 1930,           | 1800,          | 1650,          | 1800}           |
| 09547<br>09548 | , {<br>}    | 1740,          | 1090,           | 960,           | 1740,          | 960}            |
| 33310          | J           |                |                 |                |                |                 |

| 09549          | , { {      | 1760,          | 1110,          | 980,           | 1760,          | 980}           |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 09550          | , {        | 1760,          | 1110,          | 980,           | 1760,          | 980}           |
| 09551          | , {        | 1750,          | 1100,          | 970,           | 1750,          | 970}           |
| 09552          | , {        | 1760,          | 1110,          | 980,           | 1760,          | 980}           |
| 09553          | , {        | 360,           | 360,           | 0,             | -150,          | 0 }            |
| 09554          | }          |                |                |                |                |                |
| 09555          | }          | 1020           | 1020           | 1000           | 120            | 10001          |
| 09556          | ,{{{       | 1930,          | 1930,          | 1800,          | 130,           | 1800}          |
| 09557          | , {        | 1400,          | 1400,          | 1270,          | 130,           | 1270}          |
| 09558<br>09559 | , {<br>, { | 1100,<br>1930, | 1100,<br>1930, | 970,<br>1800,  | 70,<br>-160,   | 970}<br>1800}  |
| 09560          | , {        | 1100,          | 1100,          | 970,           | 70,            | 970}           |
| 09561          | }          | 1100,          | 1100,          | 510,           | , ,            | 570)           |
| 09562          | , { {      | 1400,          | 1400,          | 1270,          | 130,           | 1270}          |
| 09563          | , {        | 1400,          | 1400,          | 1270,          | 130,           | 1270}          |
| 09564          | , {        | 1090,          | 1090,          | 960,           | -180,          | 960}           |
| 09565          | , {        | 10,            | 10,            | -110,          | -1260,         | -110}          |
| 09566          | , {        | 1090,          | 1090,          | 960,           | -180,          | 960}           |
| 09567          | }          |                |                |                |                |                |
| 09568          | , { {      | 1110,          | 1110,          | 980,           | 70,            | 980}           |
| 09569          | , {        | 1110,          | 1110,          | 980,           | -160,          | 980}           |
| 09570          | , {        | 1100,          | 1100,          | 970,           | 70,            | 970}           |
| 09571          | , {        | 1110,          | 1110,          | 980,           | -160,          | 980}           |
| 09572          | , {        | 1100,          | 1100,          | 970,           | 70,            | 970}           |
| 09573<br>09574 | }<br>,{{   | 1930,          | 1930,          | 1800,          | -180,          | 1800}          |
| 09575          | , 11       | 190,           | 190,           | 60,            | -1080,         | 60}            |
| 09576          | , {        | 1090,          | 1090,          | 960,           | -180,          | 960}           |
| 09577          | , {        | 1930,          | 1930,          | 1800,          | -590,          | 1800}          |
| 09578          | , {        | 1090,          | 1090,          | 960,           | -180,          | 960}           |
| 09579          | }          | ,              | ,              |                |                | ,              |
| 09580          | , { {      | 1110,          | 1110,          | 980,           | 70,            | 980}           |
| 09581          | , {        | 1110,          | 1110,          | 980,           | -160,          | 980}           |
| 09582          | , {        | 1100,          | 1100,          | 970,           | 70,            | 970}           |
| 09583          | , {        | 1110,          | 1110,          | 980,           | -160,          | 980}           |
| 09584          | , {        | 360,           | 360,           | 0,             | -1150,         | 0 }            |
| 09585          | }          |                |                |                |                |                |
| 09586          | }          |                |                |                |                |                |
| 09587          | , { { {    | 1800,          | 1650,          | 1800,          | 1650,          | 1570}          |
| 09588          | , {        | 1270,          | 1120,          | 1270,          | 1120,          | 1040}          |
| 09589<br>09590 | , {        | 970,           | 820,           | 970,           | 820,<br>1650,  | 740}<br>1570}  |
| 09591          | , {<br>, { | 1800,<br>970,  | 1650,<br>820,  | 1800,<br>970,  | 820,           | 740}           |
| 09592          | }          | 510,           | 020,           | 510,           | 020,           | 740)           |
| 09593          | , { {      | 1270,          | 1120,          | 1270,          | 1120,          | 1040}          |
| 09594          | , {        | 1270,          | 1120,          | 1270,          | 1120,          | 1040}          |
| 09595          | , {        | 960,           | 810,           | 960,           | 810,           | 730}           |
| 09596          | , {        | 130,           | -260,          | 130,           | -260,          | -110}          |
| 09597          | , {        | 960,           | 810,           | 960,           | 810,           | 730}           |
| 09598          | }          |                |                |                |                |                |
| 09599          | , { {      | 980,           | 830,           | 980,           | 830,           | 740}           |
| 09600          | , {        | 980,           | 830,           | 980,           | 830,           | 740}           |
| 09601          | , {        | 970,           | 820,           | 970,           | 820,           | 740}           |
| 09602          | , {        | 980,           | 830,           | 980,           | 830,           | 740}           |
| 09603<br>09604 | , {<br>`   | 970,           | 820,           | 970,           | 820,           | 740}           |
| 09605          | , { {      | 1800,          | 1650,          | 1800,          | 1650,          | 1570}          |
| 09606          | , {        | 300,           | -80,           | 300,           | -80,           | 70}            |
| 09607          | , {        | 960,           | 810,           | 960,           | 810,           | 730}           |
| 09608          | , {        | 1800,          | 1650,          | 1800,          | 1650,          | 1570}          |
| 09609          | , {        | 960,           | 810,           | 960,           | 810,           | 730}           |
| 09610          | }          |                |                |                |                |                |
| 09611          | , { {      | 980,           | 830,           | 980,           | 830,           | 740}           |
| 09612          | , {        | 980,           | 830,           | 980,           | 830,           | 740}           |
| 09613          | , {        | 970,           | 820,           | 970,           | 820,           | 740}           |
| 09614          | , {        | 980,           | 830,           | 980,           | 830,           | 740}           |
| 09615          | , {        | 0,             | -150,          | 0,             | -150,          | -240}          |
| 09616          | }          |                |                |                |                |                |
| 09617<br>09618 | }          | 2050,          | 220            | 1000           | 2050,          | 10001          |
| 09619          | ,{{{<br>,{ | 2050,          | 220,<br>220,   | 1800,<br>1270, | 2050,          | 1800}<br>1270} |
| 09620          | , {        | 1750,          | 170,           | 970,           | 1750,          | 970}           |
| 09621          | , {        | 1800,          | -70,           | 1800,          | 1760,          | 1800}          |
| 09622          | , {        | 1750,          | 170,           | 970,           | 1750,          | 970}           |
| 09623          | }          | ,              | ,              | ,              | ,              | ,              |
| 09624          | , { {      | 2050,          | 220,           | 1270,          | 2050,          | 1270}          |
| 09625          | , {        | 2050,          | 220,           | 1270,          | 2050,          | 1270}          |
| 09626          | , {        | 1740,          | -80,           | 960,           | 1740,          | 960}           |
| 09627          | , {        | -110,          | -1160,         | -110,          | -580,          | -110}          |
| 09628          | , {        | 1740,          | -80,           | 960,           | 1740,          | 960}           |
| 09629          | }          | 1760           | 170            | 000            | 1760           | 000            |
| 09630          | , { {      | 1760,          | 170,           | 980,           | 1760,          | 980}           |
| 09631<br>09632 | , {        | 1760,          | -70,<br>170,   | 980,<br>970,   | 1760,<br>1750, | 980}<br>970}   |
| 09632          | , {<br>, { | 1750,<br>1760, | -70 <b>,</b>   | 980,           | 1760,          | 980}           |
| 09634          | , {        | 1750,          | 170,           | 970,           | 1750,          | 970}           |
| 09635          | }          | /              | ,              | /              | ,              | - , 0 )        |
|                | ,          |                |                |                |                |                |

18.175 intl22dH.h 1217

| 09636          | , { {      | 1800,          | -80,           | 1800,         | 1740,          | 1800}          |
|----------------|------------|----------------|----------------|---------------|----------------|----------------|
| 09637          | , {        | 60,            | -980 <b>,</b>  | 60,           | -400,          | 60}            |
| 09638          | , {        | 1740,          | -80,           | 960,          | 1740,          | 960}           |
| 09639          | , {        | 1800,          | -490,          | 1800,         | 80,            | 1800}          |
| 09640          | , {        | 1740,          | -80,           | 960,          | 1740,          | 960}           |
| 09641          | }          |                |                |               |                |                |
| 09642          | , { {      | 1760,          | 170,           | 980,          | 1760,          | 980}           |
| 09643          | , {        | 1760,          | -70,           | 980,          | 1760,          | 980}           |
| 09644          | , {        | 1750,          | 170,           | 970,          | 1750,          | 970}           |
| 09645          | , {        | 1760,          | -70,           | 980,          | 1760,          | 980}           |
| 09646          | , {        | 0,             | -1050,         | 0,            | -470,          | 0 }            |
| 09647<br>09648 | }          |                |                |               |                |                |
| 09649          | }<br>,{{{  | 1670,          | 1650,          | 1670,         | 1650,          | 570}           |
| 09650          | , ( ( (    | 1140,          | 1120,          | 1140,         | 1120,          | 570}           |
| 09651          | , {        | 840,           | 820,           | 840,          | 820,           | 30}            |
| 09652          | , {        | 1670,          | 1650,          | 1670,         | 1650,          | 40}            |
| 09653          | , {        | 840,           | 820,           | 840,          | 820,           | 30}            |
| 09654          | }          | ,              |                |               |                |                |
| 09655          | , { {      | 1140,          | 1120,          | 1140,         | 1120,          | 570}           |
| 09656          | , {        | 1140,          | 1120,          | 1140,         | 1120,          | 570}           |
| 09657          | , {        | 830,           | 810,           | 830,          | 810,           | 20}            |
| 09658          | , {        | 0,             | -260,          | 0,            | -260,          | -1050}         |
| 09659          | , {        | 830,           | 810,           | 830,          | 810,           | 20}            |
| 09660          | }          |                |                |               |                |                |
| 09661          | , { {      | 850,           | 830,           | 850,          | 830,           | 40}            |
| 09662          | , {        | 850,           | 830,           | 850 <b>,</b>  | 830,           | 40}            |
| 09663          | , {        | 840,           | 820,           | 840,          | 820,           | 30}            |
| 09664          | , {        | 850,           | 830,           | 850,          | 830,           | 40}            |
| 09665          | , {        | 840,           | 820,           | 840,          | 820,           | 30}            |
| 09666          | }          | 1 (70          | 1.050          | 1.670         | 1.050          | 201            |
| 09667          | , { {      | 1670,          | 1650,          | 1670,         | 1650,          | 20}            |
| 09668<br>09669 | , {        | 180,           | -80,           | 180,          | -80,<br>810,   | -870}          |
| 09670          | , {        | 830,<br>1670,  | 810,<br>1650,  | 830,<br>1670, | 1650,          | 20}            |
| 09670          | , {<br>, { | 830,           | 810,           | 830,          | 810,           | -380}<br>20}   |
| 09672          | }          | 030,           | 010,           | 030,          | 010,           | 201            |
| 09673          | , { {      | 850,           | 830,           | 850,          | 830,           | 40}            |
| 09674          | , {        | 850,           | 830,           | 850,          | 830,           | 40}            |
| 09675          | , {        | 840,           | 820,           | 840,          | 820,           | 30}            |
| 09676          | , {        | 850,           | 830,           | 850,          | 830,           | 40}            |
| 09677          | , {        | -130,          | -150,          | -130,         | -150,          | -940}          |
| 09678          | }          |                |                |               |                |                |
| 09679          | }          |                |                |               |                |                |
| 09680          | }          |                |                |               |                |                |
| 09681          | , { { { {  | 2120,          | 2120,          | 1990,         | 2120,          | 1990}          |
| 09682          | , {        | 2120,          | 1470,          | 1340,         | 2120,          | 1340}          |
| 09683          | , {        | 1990,          | 1340,          | 1210,         | 1990,          | 1210}          |
| 09684          | , {        | 2120,          | 2120,          | 1990,         | 1990,          | 1990}          |
| 09685          | , {        | 1860,          | 1210,          | 1080,         | 1860,          | 1080}          |
| 09686          | }          | 2120           | 1 470          | 1240          | 2120           | 12401          |
| 09687<br>09688 | , { {      | 2120,          | 1470,          | 1340,         | 2120,          | 1340}          |
| 09689          | , {        | 2120,          | 1470,<br>1190, | 1340,         | 2120,<br>1840, | 1340}<br>1060} |
| 09690          | , {<br>, { | 1840,<br>180,  | 60,            | 1060,<br>180, | -210,          | -60}           |
| 09691          | , {        | 1840,          | 1190,          | 1060,         | 1840,          | 1060}          |
| 09692          | }          | 1010,          | 1130,          | 1000,         | 1010,          | 1000,          |
| 09693          | , { {      | 1990,          | 1340,          | 1210,         | 1990,          | 1210}          |
| 09694          | , {        | 1990,          | 1340,          | 1210,         | 1990,          | 1210}          |
| 09695          | , {        | 1990,          | 1340,          | 1210,         | 1990,          | 1210}          |
| 09696          | , {        | 1990,          | 1340,          | 1210,         | 1990,          | 1210}          |
| 09697          | , {        | 1860,          | 1210,          | 1080,         | 1860,          | 1080}          |
| 09698          | }          |                |                |               |                |                |
| 09699          | , { {      | 2120,          | 2120,          | 1990,         | 1840,          | 1990}          |
| 09700          | , {        | -120,          | -230,          | -120,         | -510,          | -360}          |
| 09701          | , {        | 1840,          | 1190,          | 1060,         | 1840,          | 1060}          |
| 09702          | , {        | 2120,          | 2120,          | 1990,         | 1840,          | 1990}          |
| 09703          | , {        | 1840,          | 1190,          | 1060,         | 1840,          | 1060}          |
| 09704          | }          | 1000           | 1240           | 1010          | 1000           | 10101          |
| 09705          | , { {      | 1990,          | 1340,          | 1210,         | 1990,<br>1990, | 1210}          |
| 09706<br>09707 | , {<br>, { | 1990,<br>1550, | 1340,<br>900,  | 1210,<br>770, | 1550,          | 1210}<br>770}  |
| 09707          | , {        | 1990,          | 1340,          | 1210,         | 1990,          | 1210}          |
| 09709          | , {        | 640,           | 640,           | 270,          | 120,           | 270}           |
| 09710          | }          | 010,           | J 10,          | 2,0,          | -20,           | 2,01           |
| 09711          | }          |                |                |               |                |                |
| 09712          | ,{{{       | 2120,          | 2120,          | 1990,         | 300,           | 1990}          |
| 09713          | , {        | 1470,          | 1470,          | 1340,         | 190,           | 1340}          |
| 09714          | , {        | 1340,          | 1340,          | 1210,         | 300,           | 1210}          |
| 09715          | , {        | 2120,          | 2120,          | 1990,         | 60,            | 1990}          |
| 09716          | , {        | 1210,          | 1210,          | 1080,         | 180,           | 1080}          |
| 09717          | }          |                |                |               |                |                |
| 09718          | , { {      | 1470,          | 1470,          | 1340,         | 190,           | 1340}          |
| 09719          | , {        | 1470,          | 1470,          | 1340,         | 190,           | 1340}          |
| 09720          | , {        | 1190,          | 1190,          | 1060,         | -80,           | 1060}          |
| 09721          | , {        | 60,            | 60,            | -60 <b>,</b>  | -1210,         | -60}           |
| 09722          | , {        | 1190,          | 1190,          | 1060,         | -80,           | 1060}          |

| 09723          | }          |                |                |                |                |                |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 09724          | , { {      | 1340,          | 1340,          | 1210,          | 300,           | 1210}          |
| 09725<br>09726 | , {<br>, { | 1340,<br>1340, | 1340,<br>1340, | 1210,<br>1210, | 60,<br>300,    | 1210}<br>1210} |
| 09727          | , {        | 1340,          | 1340,          | 1210,          | 60,            | 1210)          |
| 09728          | , {        | 1210,          | 1210,          | 1080,          | 180,           | 1080}          |
| 09729          | }          | 0100           | 0100           | 1000           | 0.0            | 10001          |
| 09730<br>09731 | ,{{<br>,{  | 2120,<br>-230, | 2120,<br>-230, | 1990,<br>-360, | -80,<br>-1510, | 1990}<br>-360} |
| 09732          | , {        | 1190,          | 1190,          | 1060,          | -80,           | 1060}          |
| 09733          | , {        | 2120,          | 2120,          | 1990,          | -400,          | 1990}          |
| 09734          | , {        | 1190,          | 1190,          | 1060,          | -80,           | 1060}          |
| 09735          | }          | 1240           | 1240           | 1010           | <b>CO</b>      | 10101          |
| 09736<br>09737 | ,{{<br>,{  | 1340,<br>1340, | 1340,<br>1340, | 1210,<br>1210, | 60,<br>60,     | 1210}<br>1210} |
| 09738          | , {        | 900,           | 900,           | 770,           | -130,          | 770}           |
| 09739          | , {        | 1340,          | 1340,          | 1210,          | 60,            | 1210}          |
| 09740          | , {        | 640,           | 640,           | 270,           | -870,          | 270}           |
| 09741<br>09742 | }          |                |                |                |                |                |
| 09742          | ,{{{       | 1990,          | 1840,          | 1990,          | 1840,          | 1750}          |
| 09744          | , {        | 1340,          | 1190,          | 1340,          | 1190,          | 1100}          |
| 09745          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09746          | , {        | 1990,          | 1840,          | 1990,          | 1840,          | 1750}          |
| 09747<br>09748 | , {<br>}   | 1080,          | 930,           | 1080,          | 930,           | 840}           |
| 09749          | , { {      | 1340,          | 1190,          | 1340,          | 1190,          | 1100}          |
| 09750          | , {        | 1340,          | 1190,          | 1340,          | 1190,          | 1100}          |
| 09751          | , {        | 1060,          | 910,           | 1060,          | 910,           | 820}           |
| 09752          | , {        | 180,           | -210,          | 180,           | -210,          | -60}           |
| 09753<br>09754 | , {<br>}   | 1060,          | 910,           | 1060,          | 910,           | 820}           |
| 09755          | , { {      | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09756          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09757          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09758          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09759<br>09760 | , {<br>}   | 1080,          | 930,           | 1080,          | 930,           | 840}           |
| 09761          | , { {      | 1990,          | 1840,          | 1990,          | 1840,          | 1750}          |
| 09762          | , {        | -120,          | -510,          | -120,          | -510,          | -360}          |
| 09763          | , {        | 1060,          | 910,           | 1060,          | 910,           | 820}           |
| 09764<br>09765 | , {<br>, { | 1990,<br>1060, | 1840,<br>910,  | 1990,<br>1060, | 1840,<br>910,  | 1750}<br>820}  |
| 09766          | }          | 1000,          | J10 <b>,</b>   | 1000,          | J10 <b>,</b>   | 020)           |
| 09767          | , { {      | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09768          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09769          | , {        | 770,           | 620,           | 770,           | 620,           | 530}           |
| 09770<br>09771 | , {<br>, { | 1210,<br>270,  | 1060,<br>120,  | 1210,<br>270,  | 1060,<br>120,  | 970}<br>30}    |
| 09772          | }          | ,              | ,              | ,              | ,              | ,              |
| 09773          | }          |                |                |                |                |                |
| 09774          | , { { {    | 2120,          | 400,           | 1990,          | 2120,          | 1990}          |
| 09775<br>09776 | , {        | 2120,<br>1990, | 290,<br>400,   | 1340,<br>1210, | 2120,<br>1990, | 1340}          |
| 09777          | , {<br>, { | 1990,          | 160,           | 1990,          | 1990,          | 1990}          |
| 09778          | , {        | 1860,          | 270,           | 1080,          | 1860,          | 1080}          |
| 09779          | }          |                |                |                |                |                |
| 09780<br>09781 | , { {      | 2120,<br>2120, | 290,           | 1340,          | 2120,          | 1340}          |
| 09782          | , {<br>, { | 1840,          | 290,<br>10,    | 1340,<br>1060, | 2120,<br>1840, | 1060}          |
| 09783          | , {        | -60,           | -1110,         | -60,           | -530,          | -60}           |
| 09784          | , {        | 1840,          | 10,            | 1060,          | 1840,          | 1060}          |
| 09785          | }          | 1000           | 400            | 1010           | 1000           |                |
| 09786<br>09787 | ,{{<br>,{  | 1990,<br>1990, | 400,<br>160,   | 1210,<br>1210, | 1990,<br>1990, | 1210}<br>1210} |
| 09788          | , {        | 1990,          | 400,           | 1210,          | 1990,          | 1210}          |
| 09789          | , {        | 1990,          | 160,           | 1210,          | 1990,          | 1210}          |
| 09790          | , {        | 1860,          | 270,           | 1080,          | 1860,          | 1080}          |
| 09791          | }          | 1000           | 1.0            | 1000           | 1010           | 10001          |
| 09792<br>09793 | , { {      | 1990,<br>-360, | 10,<br>-1410,  | 1990,<br>-360, | 1840,<br>-830, | 1990}<br>-360} |
| 09794          | , {<br>, { | 1840,          | 10,            | 1060,          | 1840,          | 1060}          |
| 09795          | , {        | 1990,          | -310,          | 1990,          | 270,           | 1990}          |
| 09796          | , {        | 1840,          | 10,            | 1060,          | 1840,          | 1060}          |
| 09797          | }          | 1000           | 1.00           | 1010           | 1000           | 10101          |
| 09798<br>09799 | ,{{<br>,{  | 1990,<br>1990, | 160,<br>160,   | 1210,<br>1210, | 1990,<br>1990, | 1210}<br>1210} |
| 09800          | , {        | 1550,          | -40,           | 770,           | 1550,          | 770}           |
| 09801          | , {        | 1990,          | 160,           | 1210,          | 1990,          | 1210}          |
| 09802          | , {        | 270,           | -780,          | 270,           | -200,          | 270}           |
| 09803          | }          |                |                |                |                |                |
| 09804<br>09805 | }<br>,{{{  | 1860,          | 1840,          | 1860,          | 1840,          | 640}           |
| 09806          | , , , {    | 1210,          | 1190,          | 1210,          | 1190,          | 640}           |
| 09807          | , {        | 1080,          | 1060,          | 1080,          | 1060,          | 270}           |
| 09808          | , {        | 1860,          | 1840,          | 1860,          | 1840,          | 270}           |
| 09809          | , {        | 950,           | 930,           | 950,           | 930,           | 140}           |

18.175 intl22dH.h 1219

| 09810<br>09811 | }<br>,{{   | 1210,          | 1190,          | 1210,          | 1190,          | 640}           |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 09812          | , {        | 1210,          | 1190,          | 1210,          | 1190,          | 640}           |
| 09813<br>09814 | , {<br>, { | 930,<br>50,    | 910,<br>-210,  | 930,<br>50,    | 910,<br>-210,  | 120}<br>-1000} |
| 09815          | , {        | 930,           | 910,           | 930,           | 910,           | 120}           |
| 09816          | }          | 1000           | 1000           | 1000           | 1000           | 2701           |
| 09817<br>09818 | ,{{<br>,{  | 1080,<br>1080, | 1060,<br>1060, | 1080,          | 1060,<br>1060, | 270}<br>270}   |
| 09819          | , {        | 1080,          | 1060,          | 1080,          | 1060,          | 270}           |
| 09820          | , {        | 1080,          | 1060,          | 1080,          | 1060,          | 270}           |
| 09821<br>09822 | , {<br>}   | 950,           | 930,           | 950,           | 930,           | 140}           |
| 09823          | , { {      | 1860,          | 1840,          | 1860,          | 1840,          | 120}           |
| 09824          | , {        | -250,          | -510,          | -250,          | -510,          | -1300}         |
| 09825<br>09826 | , {<br>, { | 930,<br>1860,  | 910,<br>1840,  | 930,<br>1860,  | 910,<br>1840,  | 120}<br>-200}  |
| 09827          | , {        | 930,           | 910,           | 930,           | 910,           | 120}           |
| 09828<br>09829 | }          | 1080,          | 1060           | 1080,          | 1060,          | 2701           |
| 09830          | ,{{<br>,{  | 1080,          | 1060,<br>1060, | 1080,          | 1060,          | 270}<br>270}   |
| 09831          | , {        | 640,           | 620,           | 640,           | 620,           | -170}          |
| 09832<br>09833 | , {<br>, { | 1080,<br>140,  | 1060,<br>120,  | 1080,          | 1060,<br>120,  | 270}<br>-670}  |
| 09834          | }          | 140,           | 120,           | 140,           | 120,           | 070)           |
| 09835          | }          |                |                |                |                |                |
| 09836<br>09837 | ,{{{       | 2120,          | 2120,          | 1990,          | 2120,          | 1990}          |
| 09838          | , {        | 2120,          | 1470,          | 1340,          | 2120,          | 1340}          |
| 09839          | , {        | 1990,          | 1340,          | 1210,          | 1990,          | 1210}          |
| 09840<br>09841 | , {<br>, { | 2120,<br>1860, | 2120,<br>1210, | 1990,<br>1080, | 1990,<br>1860, | 1990}<br>1080} |
| 09842          | }          | ,              | ,              | ,              | ,              | ,              |
| 09843          | , { {      | 2120,          | 1470,          | 1340,          | 2120,          | 1340}          |
| 09844<br>09845 | , {<br>, { | 2120,<br>1840, | 1470,<br>1190, | 1340,<br>1060, | 2120,<br>1840, | 1340}<br>1060} |
| 09846          | , {        | 400,           | 290,           | 400,           | 10,            | 170}           |
| 09847<br>09848 | , {<br>}   | 1840,          | 1190,          | 1060,          | 1840,          | 1060}          |
| 09849          | , { {      | 1990,          | 1340,          | 1210,          | 1990,          | 1210}          |
| 09850          | , {        | 1990,          | 1340,          | 1210,          | 1990,          | 1210}          |
| 09851<br>09852 | , {<br>, { | 1990,<br>1990, | 1340,<br>1340, | 1210,<br>1210, | 1990,<br>1990, | 1210}<br>1210} |
| 09853          | , {        | 1860,          | 1210,          | 1080,          | 1860,          | 1080}          |
| 09854          | }          | 2120           | 2120           | 1000           | 1010           | 10001          |
| 09855<br>09856 | ,{{<br>,{  | 2120,<br>540,  | 2120,<br>190,  | 1990,<br>540,  | 1840,<br>-80,  | 1990}<br>70}   |
| 09857          | , {        | 1840,          | 1190,          | 1060,          | 1840,          | 1060}          |
| 09858<br>09859 | , {<br>, { | 2120,<br>1840, | 2120,<br>1190, | 1990,<br>1060, | 1840,<br>1840, | 1990}<br>1060} |
| 09860          | }          | 1040,          | 1100,          | 1000,          | 1040,          | 1000)          |
| 09861          | , { {      | 1990,          | 1340,          | 1210,          | 1990,          | 1210}          |
| 09862<br>09863 | , {<br>, { | 1990,<br>1750, | 1340,<br>1100, | 1210,<br>970,  | 1990,<br>1750, | 1210}<br>970}  |
| 09864          | , {        | 1990,          | 1340,          | 1210,          | 1990,          | 1210}          |
| 09865          | , {<br>}   | 640,           | 640,           | 270,           | 120,           | 270}           |
| 09866<br>09867 | }          |                |                |                |                |                |
| 09868          | , { { {    | 2120,          | 2120,          | 1990,          | 540,           | 1990}          |
| 09869<br>09870 | , {<br>, { | 1470,<br>1340, | 1470,<br>1340, | 1340,<br>1210, | 190,<br>540,   | 1340}<br>1210} |
| 09871          | , {        | 2120,          | 2120,          | 1990,          | 60,            | 1990}          |
| 09872          | , {        | 1210,          | 1210,          | 1080,          | 180,           | 1080}          |
| 09873<br>09874 | }<br>,{{   | 1470,          | 1470,          | 1340,          | 190,           | 1340}          |
| 09875          | , {        | 1470,          | 1470,          | 1340,          | 190,           | 1340}          |
| 09876<br>09877 | , {<br>, { | 1190,<br>290,  | 1190,<br>290,  | 1060,<br>160,  | -80,<br>-980,  | 1060}<br>160}  |
| 09878          | , {        | 1190,          | 1190,          | 1060,          | -80,           | 1060}          |
| 09879          | }          | 1040           | 1040           |                | F 4.0          | 10101          |
| 09880<br>09881 | ,{{<br>,{  | 1340,<br>1340, | 1340,<br>1340, | 1210,<br>1210, | 540,<br>60,    | 1210}<br>1210} |
| 09882          | , {        | 1340,          | 1340,          | 1210,          | 540,           | 1210}          |
| 09883          | , {        | 1340,          | 1340,          | 1210,          | 60,            | 1210}          |
| 09884<br>09885 | , {<br>}   | 1210,          | 1210,          | 1080,          | 180,           | 1080}          |
| 09886          | , { {      | 2120,          | 2120,          | 1990,          | -80,           | 1990}          |
| 09887<br>09888 | , {<br>, { | 190,<br>1190,  | 190,<br>1190,  | 60,<br>1060,   | -1080,<br>-80, | 60}<br>1060}   |
| 09889          | , t<br>, { | 2120,          | 2120,          | 1990,          | -400,          | 1990}          |
| 09890          | , {        | 1190,          | 1190,          | 1060,          | -80,           | 1060}          |
| 09891<br>09892 | }<br>,{{   | 1340,          | 1340,          | 1210,          | 70,            | 1210}          |
| 09893          | , {        | 1340,          | 1340,          | 1210,          | 60,            | 1210}          |
| 09894          | , {        | 1100,          | 1100,<br>1340, | 970,<br>1210,  | 70,            | 970}           |
| 09895<br>09896 | , {<br>, { | 1340,<br>640,  | 640,           | 270,           | 60,<br>-810,   | 1210}<br>270}  |
|                |            |                |                |                | •              |                |

| 09897          | }          |                |                |                |                |                |
|----------------|------------|----------------|----------------|----------------|----------------|----------------|
| 09898          | }          |                |                |                |                |                |
| 09899          | , { { {    | 1990,          | 1840,          | 1990,          | 1840,          | 1750}          |
| 09900<br>09901 | , {        | 1340,          | 1190,          | 1340,          | 1190,          | 1100}          |
| 09901          | , {<br>, { | 1210,<br>1990, | 1060,<br>1840, | 1210,<br>1990, | 1060,<br>1840, | 970}<br>1750}  |
| 09903          | , {        | 1080,          | 930,           | 1080,          | 930,           | 840}           |
| 09904          | }          | ,              | ,              | ,              | ,              | ,              |
| 09905          | , { {      | 1340,          | 1190,          | 1340,          | 1190,          | 1100}          |
| 09906          | , {        | 1340,          | 1190,          | 1340,          | 1190,          | 1100}          |
| 09907          | , {        | 1060,          | 910,           | 1060,          | 910,           | 820}           |
| 09908          | , {        | 400,           | 10,            | 400,           | 10,            | 170}           |
| 09909          | , {        | 1060,          | 910,           | 1060,          | 910,           | 820}           |
| 09910<br>09911 | }<br>,{{   | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09912          | , (        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09913          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09914          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09915          | , {        | 1080,          | 930,           | 1080,          | 930,           | 840}           |
| 09916          | }          |                |                |                |                |                |
| 09917          | , { {      | 1990,          | 1840,          | 1990,          | 1840,          | 1750}          |
| 09918          | , {        | 540,           | -80,           | 540,           | -80,           | 70}            |
| 09919          | , {        | 1060,          | 910,<br>1840,  | 1060,          | 910,           | 820}           |
| 09920<br>09921 | , {<br>, { | 1990,<br>1060, | 910,           | 1990,<br>1060, | 1840,<br>910,  | 1750}<br>820}  |
| 09922          | }          | 1000,          | J10,           | 1000,          | J10,           | 020)           |
| 09923          | , { {      | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09924          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09925          | , {        | 970,           | 820,           | 970,           | 820,           | 740}           |
| 09926          | , {        | 1210,          | 1060,          | 1210,          | 1060,          | 970}           |
| 09927          | , {        | 270,           | 120,           | 270,           | 120,           | 30}            |
| 09928          | }          |                |                |                |                |                |
| 09929          | }          |                |                |                |                |                |
| 09930          | , { { {    | 2120,          | 400,           | 1990,          | 2120,          | 1990}          |
| 09931          | , {        | 2120,          | 290,<br>400,   | 1340,          | 2120,<br>1990, | 1340}          |
| 09932<br>09933 | , {<br>, { | 1990,<br>1990, | 160,           | 1210,<br>1990, | 1990,          | 1210}<br>1990} |
| 09934          | , {        | 1860,          | 270,           | 1080,          | 1860,          | 1080}          |
| 09935          | }          | ,              | /              | ,              | ,              | ,              |
| 09936          | , { {      | 2120,          | 290,           | 1340,          | 2120,          | 1340}          |
| 09937          | , {        | 2120,          | 290,           | 1340,          | 2120,          | 1340}          |
| 09938          | , {        | 1840,          | 10,            | 1060,          | 1840,          | 1060}          |
| 09939          | , {        | 160,           | -890,          | 160,           | -310,          | 160}           |
| 09940          | , {        | 1840,          | 10,            | 1060,          | 1840,          | 1060}          |
| 09941          | }          | 1000           | 400            | 1010           | 1000           | 10101          |
| 09942<br>09943 | ,{{<br>,{  | 1990,<br>1990, | 400,<br>160,   | 1210,<br>1210, | 1990,<br>1990, | 1210}<br>1210} |
| 09943          | , \<br>, { | 1990,          | 400,           | 1210,          | 1990,          | 1210}          |
| 09945          | , {        | 1990,          | 160,           | 1210,          | 1990,          | 1210}          |
| 09946          | , {        | 1860,          | 270,           | 1080,          | 1860,          | 1080}          |
| 09947          | }          |                |                |                |                |                |
| 09948          | , { {      | 1990,          | 10,            | 1990,          | 1840,          | 1990}          |
| 09949          | , {        | 60,            | -980,          | 60,            | -400,          | 60}            |
| 09950          | , {        | 1840,          | 10,            | 1060,          | 1840,          | 1060}          |
| 09951<br>09952 | , {        | 1990,          | -310,          | 1990,<br>1060, | 270,           | 1990}          |
| 09953          | , {<br>}   | 1840,          | 10,            | 1000,          | 1840,          | 1060}          |
| 09954          | , { {      | 1990,          | 170,           | 1210,          | 1990,          | 1210}          |
| 09955          | , {        | 1990,          | 160,           | 1210,          | 1990,          | 1210}          |
| 09956          | , {        | 1750,          | 170,           | 970,           | 1750,          | 970}           |
| 09957          | , {        | 1990,          | 160,           | 1210,          | 1990,          | 1210}          |
| 09958          | , {        | 270,           | -780 <b>,</b>  | 270,           | -200,          | 270}           |
| 09959          | }          |                |                |                |                |                |
| 09960          | }          | 1060           | 1040           | 1060           | 1040           | 6401           |
| 09961<br>09962 | }}},<br>}, | 1860,<br>1210, | 1840,<br>1190, | 1860,<br>1210, | 1840,<br>1190, | 640}<br>640}   |
| 09963          | , \<br>, { | 1080,          | 1060,          | 1080,          | 1060,          | 270}           |
| 09964          | , {        | 1860,          | 1840,          | 1860,          | 1840,          | 270}           |
| 09965          | , {        | 950,           | 930,           | 950,           | 930,           | 140}           |
| 09966          | }          |                |                |                |                |                |
| 09967          | , { {      | 1210,          | 1190,          | 1210,          | 1190,          | 640}           |
| 09968          | , {        | 1210,          | 1190,          | 1210,          | 1190,          | 640}           |
| 09969          | , {        | 930,           | 910,           | 930,           | 910,           | 120}           |
| 09970          | , {        | 270,           | 10,            | 270,           | 10,            | -780}          |
| 09971<br>09972 | , {<br>}   | 930,           | 910,           | 930,           | 910,           | 120}           |
| 09972          | , { {      | 1080,          | 1060,          | 1080,          | 1060,          | 270}           |
| 09974          | , 11       | 1080,          | 1060,          | 1080,          | 1060,          | 270}           |
| 09975          | , {        | 1080,          | 1060,          | 1080,          | 1060,          | 270}           |
| 09976          | , {        | 1080,          | 1060,          | 1080,          | 1060,          | 270}           |
| 09977          | , {        | 950,           | 930,           | 950,           | 930,           | 140}           |
| 09978          | }          |                |                |                |                |                |
| 09979          | , { {      | 1860,          | 1840,          | 1860,          | 1840,          | 120}           |
| 09980          | , {        | 180,           | -80,           | 180,           | -80,           | -810}          |
| 09981          | , {        | 930,           | 910,<br>1840,  | 930,           | 910,<br>1840,  | 120}           |
| 09982<br>09983 | , {<br>, { | 1860,<br>930,  | 910,           | 1860,<br>930,  | 910,           | -200}<br>120}  |
| 0,000          | , 1        | ,,             | J±0,           | JJ0,           | J±0,           | 1201           |
|                |            |                |                |                |                |                |

```
09985
             1080,
                     1060,
                            1080,
                           1080,
                                   1060,
09986
             1080,
                    1060,
                                           270}
09987
              840,
                     820,
                            840,
                                   820,
                                           30}
09988
             1080,
                    1060,
                           1080, 1060,
                                           2701
09989
               140.
                     120.
                                    120.
                                          -670}
09990
09991
09992
09993
```

# 18.176 ViennaRNA/params/io.h File Reference

Read and write energy parameter files.

This graph shows which files directly or indirectly include this file:

### **Macros**

• #define VRNA\_PARAMETER\_FORMAT\_DEFAULT 0

Default Energy Parameter File format.

#### **Functions**

• int vrna\_params\_load (const char fname[], unsigned int options)

Load energy parameters from a file.

int vrna\_params\_save (const char fname[], unsigned int options)

Save energy parameters to a file.

int vrna\_params\_load\_from\_string (const char \*string, const char \*name, unsigned int options)

Load energy paramters from string.

• int vrna\_params\_load\_defaults (void)

Load default RNA energy parameter set.

• int vrna\_params\_load\_RNA\_Turner2004 (void)

Load Turner 2004 RNA energy parameter set.

int vrna\_params\_load\_RNA\_Turner1999 (void)

Load Turner 1999 RNA energy parameter set.

• int vrna\_params\_load\_RNA\_Andronescu2007 (void)

Load Andronsecu 2007 RNA energy parameter set.

int vrna\_params\_load\_RNA\_Langdon2018 (void)

Load Langdon 2018 RNA energy parameter set.

• int vrna params load RNA misc special hairpins (void)

Load Misc Special Hairpin RNA energy parameter set.

int vrna\_params\_load\_DNA\_Mathews2004 (void)

Load Mathews 2004 DNA energy parameter set.

• int vrna params load DNA Mathews1999 (void)

Load Mathews 1999 DNA energy parameter set.

const char \* last\_parameter\_file (void)

Get the file name of the parameter file that was most recently loaded.

void read parameter file (const char fname[])

Read energy parameters from a file.

• void write\_parameter\_file (const char fname[])

Write energy parameters to a file.

### 18.176.1 Detailed Description

Read and write energy parameter files.

### 18.177 io.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PARAMS_IO_H
00002 #define VIENNA_RNA_PACKAGE_PARAMS_IO_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC_
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func 00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00035 #define VRNA_PARAMETER_FORMAT_DEFAULT
00036
00037
00051 int
00052 vrna_params_load(const char
00053
                        unsigned int options);
00054
00055
00065 int
00066 vrna_params_save(const char
                                      fname[],
00067
                        unsigned int options);
00068
00069
00089 int.
00090 vrna_params_load_from_string(const char
                                                   *string.
00091
                                      const char
                                                   *name,
00092
                                      unsigned int options);
00093
00094
00110 int
00111 vrna_params_load_defaults(void);
00112
00126 int
00127 vrna_params_load_RNA_Turner2004(void);
00128
00129
00142 int
00143 vrna_params_load_RNA_Turner1999(void);
00144
00145
00158 int
00159 vrna_params_load_RNA_Andronescu2007(void);
00160
00161
00174 int
00175 vrna_params_load_RNA_Langdon2018(void);
00176
00177
00190 int
00191 vrna_params_load_RNA_misc_special_hairpins(void);
00192
00193
00206 int
00207 vrna_params_load_DNA_Mathews2004(void);
00208
00209
00223 vrna_params_load_DNA_Mathews1999(void);
00224
00225
00226 #ifndef VRNA DISABLE BACKWARD COMPATIBILITY
00227
00232 enum parset {
00233 UNKNOWN= -1, QUIT,
00234 S, S_H, HP, HP_H, B, B_H, IL, IL_H, MMH, MMH_H, MMI, MMI_H,
        MMIIN, MMIIN_H, MMI23, MMI23_H, MMM, MMM_H, MME_H, D5, D5_H, D3, D3_H, INT11, INT11_H, INT21, INT21_H, INT22, INT22_H, ML, TL,
00235
00236
00237
        TRI, HEX, NIN, MISC
00238 };
00239
00240
00246 const char *
00247 last_parameter_file(void);
00248
00249
00256 DEPRECATED (void
00257
                 read_parameter_file(const char fname[]),
```

```
00258
                 "Use vrna_params_load() instead!");
00259
00260
00267 DEPRECATED (void
00268
                 write parameter file(const char fname[]),
00269
                 "Use vrna_params_save() instead!");
00271
00276 enum parset
00277 gettype(const char *ident);
00278
00279
00284 char *
00285 settype(enum parset s);
00286
00287
00292 #endif
00293
00294 #endif
```

# 18.178 ViennaRNA/params/salt.h File Reference

Functions to compute salt correction.

Include dependency graph for salt.h: This graph shows which files directly or indirectly include this file:

#### **Functions**

• double vrna\_salt\_loop (int L, double salt, double T)

Get salt correction for a loop at a given salt concentration and temperature.

int vrna\_salt\_loop\_int (int L, double salt, double T)

Get salt correction for a loop at a given salt concentration and temperature.

• int vrna salt stack (double salt, double T)

Get salt correction for a stack at a given salt concentration and temperature.

### 18.178.1 Detailed Description

Functions to compute salt correction.

### 18.179 salt.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_LOOPS_SALT_H
00002 #define VIENNA_RNA_PACKAGE_LOOPS_SALT_H
00003
00020 #include <math.h>
00021 #include "ViennaRNA/utils/basic.h"
00023 #ifdef ___GNUC_
00024 # define INLINE inline
00025 #else
00026 # define INLINE
00027 #endif
00028
00039 vrna_salt_loop(int L, double salt, double T);
00040
00041
00055 int
00056 vrna_salt_loop_int(int L, double salt, double T);
00058
00067 int
00068 vrna_salt_stack(double salt, double T);
00069
00070
00086 vrna_salt_ml(double saltLoop[], int lower, int upper, int *m, int *b);
00087
00088
00095 int.
00096 vrna salt duplex init(double salt);
00097
00102 #endif
```

## 18.180 ViennaRNA/part func.h File Reference

Partition function implementations.

Include dependency graph for part func.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

· struct vrna dimer pf s

Data structure returned by vrna\_pf\_dimer() More...

struct vrna\_multimer\_pf\_s

### **Typedefs**

typedef struct vrna\_dimer\_pf\_s vrna\_dimer\_pf\_t

Typename for the data structure that stores the dimer partition functions, vrna\_dimer\_pf\_s, as returned by vrna\_pf\_dimer()

· typedef struct vrna dimer pf s cofoldF

Backward compatibility typedef for vrna\_dimer\_pf\_s.

### **Functions**

int vrna\_pf\_float\_precision (void)

Find out whether partition function computations are using single precision floating points.

float pf\_fold\_par (const char \*sequence, char \*structure, vrna\_exp\_param\_t \*parameters, int calculate\_←
bppm, int is constrained, int is circular)

Compute the partition function Q for a given RNA sequence.

float pf fold (const char \*sequence, char \*structure)

Compute the partition function Q of an RNA sequence.

float pf\_circ\_fold (const char \*sequence, char \*structure)

Compute the partition function of a circular RNA sequence.

char \* pbacktrack (char \*sequence)

Sample a secondary structure from the Boltzmann ensemble according its probability.

char \* pbacktrack5 (char \*sequence, int length)

Sample a sub-structure from the Boltzmann ensemble according its probability.

char \* pbacktrack\_circ (char \*sequence)

Sample a secondary structure of a circular RNA from the Boltzmann ensemble according its probability.

• void free\_pf\_arrays (void)

Free arrays for the partition function recursions.

· void update\_pf\_params (int length)

Recalculate energy parameters.

• void update\_pf\_params\_par (int length, vrna\_exp\_param\_t \*parameters)

Recalculate energy parameters.

FLT\_OR\_DBL \* export\_bppm (void)

Get a pointer to the base pair probability array.

int get\_pf\_arrays (short \*\*S\_p, short \*\*S1\_p, char \*\*ptype\_p, FLT\_OR\_DBL \*\*qb\_p, FLT\_OR\_DBL \*\*qm
 —p, FLT\_OR\_DBL \*\*q1k\_p, FLT\_OR\_DBL \*\*qln\_p)

Get the pointers to (almost) all relavant computation arrays used in partition function computation.

• double get subseq F (int i, int j)

Get the free energy of a subsequence from the q[] array.

double mean bp distance (int length)

Get the mean base pair distance of the last partition function computation.

double mean bp distance pr (int length, FLT OR DBL \*pr)

Get the mean base pair distance in the thermodynamic ensemble.

- vrna\_ep\_t \* stackProb (double cutoff)
  - Get the probability of stacks.
- void init\_pf\_fold (int length)

Allocate space for pf\_fold()

- char \* centroid (int length, double \*dist)
- char \* get\_centroid\_struct\_gquad\_pr (int length, double \*dist)
- double mean\_bp\_dist (int length)
- double expLoopEnergy (int u1, int u2, int type, int type2, short si1, short sj1, short sp1, short sq1)
- double expHairpinEnergy (int u, int type, short si1, short sj1, const char \*string)

#### Basic global partition function interface

- FLT OR DBL vrna pf (vrna fold compound t \*vc, char \*structure)
  - Compute the partition function Q for a given RNA sequence, or sequence alignment.
- vrna\_dimer\_pf\_t vrna\_pf\_dimer (vrna\_fold\_compound\_t \*vc, char \*structure)
  - Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.
- FLT OR \_DBL \* vrna\_pf\_substrands (vrna\_fold\_compound\_t \*fc, size\_t complex\_size)
- FLT\_OR\_DBL vrna\_pf\_add (FLT\_OR\_DBL dG1, FLT\_OR\_DBL dG2, double kT)

#### Simplified global partition function computation using sequence(s) or multiple sequence alignment(s)

- float vrna\_pf\_fold (const char \*sequence, char \*structure, vrna\_ep\_t \*\*pl)
  - Compute Partition function Q (and base pair probabilities) for an RNA sequence using a comparative method.
- float vrna\_pf\_circfold (const char \*sequence, char \*structure, vrna\_ep\_t \*\*pl)
  - Compute Partition function Q (and base pair probabilities) for a circular RNA sequences using a comparative method.
- float vrna\_pf\_alifold (const char \*\*sequences, char \*structure, vrna\_ep\_t \*\*pl)
  - Compute Partition function Q (and base pair probabilities) for an RNA sequence alignment using a comparative method
- float vrna pf circalifold (const char \*\*sequences, char \*structure, vrna ep t \*\*pl)
  - Compute Partition function Q (and base pair probabilities) for an alignment of circular RNA sequences using a comparative method.
- vrna\_dimer\_pf\_t vrna\_pf\_co\_fold (const char \*seq, char \*structure, vrna\_ep\_t \*\*pl)
  - Calculate partition function and base pair probabilities of nucleic acid/nucleic acid dimers.

### **Variables**

· int st back

Flag indicating that auxilary arrays are needed throughout the computations. This is essential for stochastic back-tracking.

### 18.180.1 Detailed Description

Partition function implementations.

This file includes (almost) all function declarations within the **RNAlib** that are related to Partion function computations

### 18.180.2 Function Documentation

### 18.180.2.1 centroid()

Deprecated This function is deprecated and should not be used anymore as it is not threadsafe!

See also

```
get_centroid_struct_pl(), get_centroid_struct_pr()
```

### 18.180.2.2 get\_centroid\_struct\_gquad\_pr()

Deprecated This function is deprecated and should not be used anymore as it is not threadsafe!

See also

```
vrna_centroid(), vrna_centroid_from_probs(), vrna_centroid_from_plist()
```

### 18.180.2.3 mean\_bp\_dist()

get the mean pair distance of ensemble

Deprecated This function is not threadsafe and should not be used anymore. Use mean bp distance() instead!

### 18.180.2.4 expLoopEnergy()

```
double expLoopEnergy (
    int u1,
    int u2,
    int type,
    int type2,
    short si1,
    short sp1,
    short sq1 )
```

**Deprecated** Use exp\_E\_IntLoop() from loop\_energies.h instead

### 18.180.2.5 expHairpinEnergy()

```
double expHairpinEnergy (
    int u,
    int type,
    short sil,
    short sjl,
    const char * string )
```

**Deprecated** Use exp\_E\_Hairpin() from loop\_energies.h instead

18.181 part\_func.h 1227

# 18.181 part func.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PART_FUNC_H
00002 #define VIENNA_RNA_PACKAGE_PART_FUNC_H
00003
00008 typedef struct vrna_dimer_pf_s vrna_dimer_pf_t;
00009
00010 typedef struct vrna_multimer_pf_s vrna_multimer_pf_t;
00012 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00013
00018 typedef struct vrna_dimer_pf_s cofoldF;
00019
00020 #endif
00022
00023 #include <ViennaRNA/datastructures/basic.h>
00024 #include <ViennaRNA/fold_compound.h>
00025 #include <ViennaRNA/utils/structures.h>
00026 #include <ViennaRNA/params/basic.h>
00027 #include <ViennaRNA/centroid.h>
00028 #include <ViennaRNA/equilibrium_probs.h>
00029 #include <ViennaRNA/boltzmann_sampling.h>
00030
00031 #ifdef VRNA_WARN_DEPRECATED
00032 # if defined(__clang__)
00033 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00034 # elif defined(__GNUC_
00035 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00036 # else
00037 # define DEPRECATED(func, msg) func
00038 # endif
00039 #else
00040 # define DEPRECATED(func, msg) func
00041 #endif
00042
00052 /*
00054 # PARTITION FUNCTION COMPUTATION
00056 */
00057
00098 struct vrna_dimer_pf_s {
00099 /* free energies for: */
      double FOAB;
double FAB;
00100
00102
       double FcAB;
00103 double FA;
00104 double FB;
00105 };
00106
00107 struct vrna_multimer_pf_s {
00108 /* free energies for: */
00109 double F_connected;
00110 double *F_monomers;
00111 size t num monomers
       size_t num_monomers;
00112 };
00113
00147 FLT_OR_DBL
00148 vrna_pf(vrna_fold_compound_t *vc,
00149
             char
                                    *structure);
00150
00151
00170 vrna dimer pf t
00171 vrna_pf_dimer(vrna_fold_compound_t *vc,
00173
00174
00175 FLT OR DBL *
00176 vrna_pf_substrands(vrna_fold_compound_t *fc,
                        size_t
                                             complex_size);
00178
00179 FLT_OR_DBL
00180 vrna_pf_add(FLT_OR_DBL dG1,
              FLT_OR_DBL dG2,
00181
00182
                 double
00183
00184 /* End basic global interface */
00213 float
00214 vrna_pf_fold(const char *sequence,
                  char *structure,
vrna_ep_t **pl);
00215
00216
00217
00218
00243 float
```

```
00244 vrna_pf_circfold(const char *sequence,
                    char *structure,
vrna_ep_t **pl);
                   char
00246
00247
00248
00270 float
00271 vrna_pf_alifold(const char **sequences,
00272
                   char
                   vrna_ep_t **pl);
00273
00274
00275
00300 float
00301 vrna_pf_circalifold(const char **sequences,
                       00302
                      char
00303
00304
00305
00332 vrna dimer pf t
00333 vrna_pf_co_fold(const char *seq,
               char
                              *structure,
00335
00336
00337
00338 /\star End simplified global interface \star/
00343 /*
00345 # OTHER PARTITION FUNCTION RELATED DECLARATIONS #
00347 */
00348
00358 int
00359 vrna_pf_float_precision(void);
00360
00361
00362 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00363
00364 /*
00366 # DEPRECATED FUNCTIONS
00368 */
00369
00382 extern int st_back;
00383
00424 DEPRECATED(float
00425
             pf_fold_par(const char
00426
                         char
                                         *structure,
00427
                          vrna_exp_param_t *parameters,
00428
                          int
                                         calculate bppm.
00429
                         int
                                         is constrained.
00430
                          int
                                         is_circular),
00431
               "Use the new API and vrna_pf() instead");
00432
00472 DEPRECATED (float
               pf_fold(const char *sequence,
00473
00474
                      char
                                *structure),
               "Use vrna_pf_fold() or vrna_pf() instead");
00476
00503 DEPRECATED(float
00504
             pf_circ_fold(const char *sequence,
00505
                           char
                                     *structure).
               "Use vrna_pf_circfold() or vrna_pf() instead");
00506
00507
00519 DEPRECATED(char *pbacktrack(char *sequence), "Use vrna_pbacktrack() instead");
00520
00526 DEPRECATED(char *pbacktrack5(char *sequence,
00527
                               int length), "Use vrna_pbacktrack5() instead");
00528
00544 DEPRECATED(char *pbacktrack_circ(char *sequence), "Use vrna_pbacktrack() instead");
00564 DEPRECATED (void
00565
               free_pf_arrays(void), "This function is obsolete");
00566
00578 DEPRECATED (void
00579
               update_pf_params(int length), "This function is obsolete");
00580
00589 DEPRECATED (void
                                  (int length,
  vrna_exp_param_t *parameters),
00590 update_pf_params_par(int
00591
              "Use the new API with vrna_fold_compound_t instead");
00592
00593
00611 DEPRECATED (FLT_OR_DBL * export_bppm (void),
00612
               "Use the new API with vrna_fold_compound_t instead");
00613
00614
00631 DEPRECATED (int
              get_pf_arrays(short
00632
                                     **S p,
```

```
00633
                                            **S1_p,
                                short
00634
                                           **ptype_p,
00635
                                FLT_OR_DBL **qb_p,
00636
                                FLT_OR_DBL **qm_p,
                                FLT_OR_DBL **qlk_p,
FLT_OR_DBL **qln_p),
00637
00638
00639
                 "Use the new API with vrna_fold_compound_t instead");
00640
00646 DEPRECATED (double
00647
                 get_subseq_F(int i,
00648
                               int j),
                  "Use the new API with vrna_fold_compound_t instead");
00649
00650
00651
00663 DEPRECATED (double
                 mean_bp_distance(int length),
"Use vrna_mean_bp_distance() or vrna_mean_bp_distance_pr() instead");
00664
00665
00666
00684 DEPRECATED (double
                                                 length,
            mean_bp_distance_pr(int
                                       FLT_OR_DBL *pr),
00686
00687
                 "Use vrna_mean_bp_distance() or vrna_mean_bp_distance_pr() instead");
00688
00696 DEPRECATED(vrna_ep_t * stackProb(double cutoff), "Use vrna_stack_prob() instead");
00697
00698
00706 DEPRECATED (void
00707
                 init_pf_fold(int length), "This function is obsolete");
00708
00713 DEPRECATED (char *centroid(int length.
00714
                                 double *dist)
00715
                 "Use vrna_centroid() instead");
00716
00721 DEPRECATED(char *get_centroid_struct_gquad_pr(int length,
00722
                                                      double *dist),
                 "Use vrna_centroid() instead");
00723
00724
00730 DEPRECATED (double
00731
             mean_bp_dist(int length),
00732
                 "Use vrna_mean_bp_distance() or vrna_mean_bp_distance_pr() instead");
00733
00737 DEPRECATED (double
00738
                 expLoopEnergy(int
                                       111.
00739
                                int
                                       u2,
00740
                                int
                                       type,
00741
                                       type2,
00742
                                short sil,
00743
                                short sjl,
00744
                                short spl,
00745
                                short sq1),
00746
00747
00751 DEPRECATED (double
00752
             expHairpinEnergy(int
00753
                                   int
                                                type,
00754
                                   short
                                               sil,
00755
                                   short
                                                sjl,
00756
                                   const char *string),
00757
                 "");
00758
00759 /* this doesn't work if free_pf_arrays() is called before */
00760 DEPRECATED (void
                 assign_plist_gquad_from_pr(vrna_ep_t **pl,
                                                      length,
00762
                                              int
00763
                                              double
                                                        cut_off),
00764
                 "Use vrna_plist_from_probs() instead");
00765
00766 #endif
00767
00768 #endif
```

# 18.182 ViennaRNA/part\_func\_co.h File Reference

Partition function for two RNA sequences. Include dependency graph for part\_func\_co.h:

### **Functions**

vrna\_dimer\_pf\_t co\_pf\_fold (char \*sequence, char \*structure)

Calculate partition function and base pair probabilities.

vrna\_dimer\_pf\_t co\_pf\_fold\_par (char \*sequence, char \*structure, vrna\_exp\_param\_t \*parameters, int calculate bppm, int is constrained)

Calculate partition function and base pair probabilities.

- vrna ep t \* get plist (vrna ep t \*pl, int length, double cut off)
- void compute\_probabilities (double FAB, double FEA, double FEB, vrna\_ep\_t \*prAB, vrna\_ep\_t \*prA, vrna\_ep\_t \*prB, int Alength)

Compute Boltzmann probabilities of dimerization without homodimers.

- void init co pf fold (int length)
- FLT\_OR\_DBL \* export\_co\_bppm (void)

Get a pointer to the base pair probability array.

void free\_co\_pf\_arrays (void)

Free the memory occupied by co\_pf\_fold()

void update\_co\_pf\_params (int length)

Recalculate energy parameters.

void update\_co\_pf\_params\_par (int length, vrna\_exp\_param\_t \*parameters)

Recalculate energy parameters.

#### **Variables**

int mirnatog

Toggles no intrabp in 2nd mol.

double F\_monomer [2]

Free energies of the two monomers.

### 18.182.1 Detailed Description

Partition function for two RNA sequences.

### 18.182.2 Function Documentation

### 18.182.2.1 get plist()

DO NOT USE THIS FUNCTION ANYMORE

Deprecated { This function is deprecated and will be removed soon!} use assign\_plist\_from\_pr() instead!

# 18.183 part\_func\_co.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PART_FUNC_CO_H
00002 #define VIENNA_RNA_PACKAGE_PART_FUNC_CO_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00015
```

```
00053 #include <ViennaRNA/params/basic.h>
00054 #include <ViennaRNA/part_func.h>
00055 #include <ViennaRNA/equilibrium_probs.h>
00056 #include <ViennaRNA/concentrations.h>
00057 #include <ViennaRNA/utils/structures.h>
00058
00062 extern int
                mirnatog;
00063
00067 extern double F_monomer[2];
00068
00073 #ifndef VRNA DISABLE BACKWARD COMPATIBILITY
00074
00075 /
00077 # DEPRECATED FUNCTIONS
00079
00080
00101 DEPRECATED(vrna_dimer_pf_t co_pf_fold(char *sequence,
                                          char
00103 "Use vrna_pf_co_fold() or vrna_pf_dimer() instead");
00104
00126 DEPRECATED(vrna_dimer_pf_t co_pf_fold_par(char
                                                               *sequence,
00127
                                              char
                                                               *structure.
00128
                                              vrna_exp_param_t *parameters,
00129
                                                                calculate_bppm,
                                              int
00130
                                                               is_constrained),
00131 "Use the new API and vrna_pf_dimer() instead");
00132
00138 DEPRECATED(vrna_ep_t *get_plist(vrna_ep_t *pl,
00139
                                    int length, double cut_off),
00140
00141 "Use vrna_plist() and vrna_plist_from_probs() instead");
00142
00164 DEPRECATED (void compute_probabilities (double
00165
                                          double
00166
                                          double
                                                    FEB,
00167
                                          vrna_ep_t *prAB,
00168
                                          vrna_ep_t *prA,
00169
                                          vrna_ep_t *prB,
00170
                                          int
                                                    Alength),
00171 "Use vrna_pf_dimer_probs() instead");
00172
00178 DEPRECATED(void init_co_pf_fold(int length),
00179 "This function is obsolete");
00180
00196 DEPRECATED (FLT_OR_DBL *export_co_bppm(void),
00197 "Use the new API with vrna_fold_compound_t instead");
00198
00207 DEPRECATED (void free_co_pf_arrays (void),
00208 "This function is obsolete");
00209
00222 DEPRECATED (void update_co_pf_params(int length),
00223 "This function is obsolete");
00224
00246 DEPRECATED (void update co pf params par (int
                                                             length,
                                            vrna_exp_param_t
                                                             *parameters),
00248 "Use the new API with vrna_fold_compound_t instead");
00249
00250 #endif
00251
00252 #endif
```

# 18.184 ViennaRNA/part\_func\_up.h File Reference

Implementations for accessibility and RNA-RNA interaction as a stepwise process. Include dependency graph for part\_func\_up.h:

#### **Functions**

- pu\_contrib \* pf\_unstru (char \*sequence, int max\_w)
  - Calculate the partition function over all unpaired regions of a maximal length.
- interact \* pf\_interact (const char \*s1, const char \*s2, pu\_contrib \*p\_c, pu\_contrib \*p\_c2, int max\_w, char \*cstruc, int incr3, int incr5)

Calculates the probability of a local interaction between two sequences.

void free\_interact (interact \*pin)

Frees the output of function pf interact().

void free\_pu\_contrib\_struct (pu\_contrib \*pu)
 Frees the output of function pf\_unstru().

### 18.184.1 Detailed Description

Implementations for accessibility and RNA-RNA interaction as a stepwise process.

# 18.185 part\_func\_up.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_PART_FUNC_UP_H
00002 #define VIENNA_RNA_PACKAGE_PART_FUNC_UP_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005
00006 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00007
00008 #define
               RNA_UP_MODE_1
               RNA_UP_MODE_2
RNA_UP_MODE_3
00009 #define
00010 #define
00061 pu_contrib *pf_unstru(char *sequence,
00062
                             int max_w);
00063
00106 interact *pf_interact(const char *s1,
00107
                            const char *s2,
00108
                            pu_contrib *p_c,
00109
                            pu_contrib *p_c2,
00110
                            int max_w,
00111
                            char *cstruc.
                            int incr3,
00112
00113
                            int incr5);
00118 void free_interact(interact *pin);
00119
00123 int Up_plot(pu_contrib *p_c,
              pu_contrib *p_c_sh,
00124
00125
                  interact *pint,
                  char *ofile,
00126
                  int **unpaired_values,
00128
                  char *select_contrib,
00129
                  char *head,
00130
                 unsigned int mode);
00131
00135 pu_contrib *get_pu_contrib_struct( unsigned int n,
00136
                                           unsigned int w);
00137
00141 void
                 free_pu_contrib_struct(pu_contrib *pu);
00142
00143 void
00144 free pu contrib (pu contrib *pu);
00145
00150 #endif
00151
00152 #endif
```

# 18.186 ViennaRNA/part\_func\_window.h File Reference

Partition function and equilibrium probability implementation for the sliding window algorithm.

Include dependency graph for part\_func\_window.h: This graph shows which files directly or indirectly include this file:

#### **Macros**

• #define VRNA EXT LOOP 1U

Exterior loop.

#define VRNA\_HP\_LOOP 2U

Hairpin loop.

#define VRNA\_INT\_LOOP 4U

Internal loop.

• #define VRNA\_MB\_LOOP 8U

Multibranch loop.

• #define VRNA\_ANY\_LOOP (VRNA\_EXT\_LOOP | VRNA\_HP\_LOOP | VRNA\_INT\_LOOP | VRNA\_MB\_LOOP)

#define VRNA PROBS WINDOW BPP 4096U

Trigger base pairing probabilities.

#define VRNA PROBS WINDOW UP 8192U

Trigger unpaired probabilities.

#define VRNA PROBS WINDOW STACKP 16384U

Trigger base pair stack probabilities.

#define VRNA PROBS WINDOW UP SPLIT 32768U

Trigger detailed unpaired probabilities split up into different loop type contexts.

• #define VRNA PROBS WINDOW PF 65536U

Trigger partition function.

### **Typedefs**

 typedef void(\* vrna\_probs\_window\_f) (FLT\_OR\_DBL \*pr, int pr\_size, int i, int max, unsigned int type, void \*data)

Sliding window probability computation callback.

#### **Functions**

#### Basic local partition function interface

• int vrna\_probs\_window (vrna\_fold\_compound\_t \*fc, int ulength, unsigned int options, vrna\_probs\_window\_f cb, void \*data)

Compute various equilibrium probabilities under a sliding window approach.

#### Simplified global partition function computation using sequence(s) or multiple sequence alignment(s)

- vrna\_ep\_t \* vrna\_pfl\_fold (const char \*sequence, int window\_size, int max\_bp\_span, float cutoff)

  Compute base pair probabilities using a sliding-window approach.
- int vrna\_pfl\_fold\_cb (const char \*sequence, int window\_size, int max\_bp\_span, vrna\_probs\_window\_f cb, void \*data)

Compute base pair probabilities using a sliding-window approach (callback version)

- double \*\* vrna\_pfl\_fold\_up (const char \*sequence, int ulength, int window\_size, int max\_bp\_span)

  Compute probability of contiguous unpaired segments.
- int vrna\_pfl\_fold\_up\_cb (const char \*sequence, int ulength, int window\_size, int max\_bp\_span, vrna\_probs\_window\_f cb, void \*data)

Compute probability of contiguous unpaired segments.

#### 18.186.1 Detailed Description

Partition function and equilibrium probability implementation for the sliding window algorithm.

This file contains the implementation for sliding window partition function and equilibrium probabilities. It also provides the unpaired probability implementation from Bernhart et al. 2011 [4]

# 18.187 part\_func\_window.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PART_FUNC_WINDOW_H
00002 #define VIENNA_RNA_PACKAGE_PART_FUNC_WINDOW_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(DEPRECATED)
00006 # undef DEPRECATED
00007 # endif
00008 # if defined(__clang__)
```

```
00009 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00010 # elif defined(__GNUC__)
00011 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00012 # else
00013 # define DEPRECATED(func, msg) func
00014 # endif
00015 #else
00016 # define DEPRECATED(func, msg) func
00017 #endif
00018
00030 #include <ViennaRNA/datastructures/basic.h>
00031
00078 typedef void (*vrna_probs_window_f)(FLT_OR_DBL
00079
                                                               pr_size,
00080
                                                 int
00081
                                                 int
                                                               max,
00082
                                                unsigned int
                                                               type,
00083
                                                void
                                                               *data);
00084
00085 DEPRECATED(typedef void (vrna_probs_window_callback)(FLT_OR_DBL
                                                                          *pr,
00086
                                                               pr_size,
00087
                                                 int
00088
                                                int
                                                               max,
00089
                                                unsigned int type,
00090
                                                void
                                                               *data),
00091
                 "Use vrna_probs_window_f instead!");
00092
00093
00094 #include <ViennaRNA/fold_compound.h>
00095 #include <ViennaRNA/utils/structures.h>
00096
00100 #define VRNA_EXT_LOOP
00101
00105 #define VRNA_HP_LOOP
                              2U
00106
00110 #define VRNA_INT_LOOP
                              4U
00111
00115 #define VRNA_MB_LOOP
00116
00120 #define VRNA_ANY_LOOP
                             (VRNA_EXT_LOOP | VRNA_HP_LOOP | VRNA_INT_LOOP | VRNA_MB_LOOP)
00121
00122
00135 #define VRNA PROBS WINDOW BPP 4096U
00136
00149 #define VRNA_PROBS_WINDOW_UP 8192U
00150
00163 #define VRNA_PROBS_WINDOW_STACKP 16384U
00164
00182 #define VRNA_PROBS_WINDOW_UP_SPLIT 32768U
00183
00184
00198 #define VRNA_PROBS_WINDOW_PF
                                        65536U
00199
00231 int.
00232 vrna_probs_window(vrna_fold_compound_t
                                                    *fc.
00233
                                                    ulength,
                        int
00234
                        unsigned int
                                                    options,
00235
                        vrna_probs_window_f cb,
00236
                        void
                                                     *data);
00237
00238 /* End basic interface */
00267 vrna_ep_t *
00268 vrna_pfl_fold(const char *sequence,
00269
                  int
                                window_size,
                               max_bp_span,
00270
                    int
00271
                    float
                                cutoff);
00272
00273
00296 int
00297 vrna_pfl_fold_cb(const char
                                                   *sequence,
00298
                     int
                                                   window_size,
00299
                       int
                                                  max_bp_span,
00300
                       vrna_probs_window_f cb,
00301
                                                   *data);
                       void
00302
00303
00326 double **
00327 vrna_pfl_fold_up(const char *sequence,
                             ulength,
00328
                       int
00329
                                  window_size,
                       int
00330
                                  max_bp_span);
                       int
00331
00332
00356 int
00357 vrna_pfl_fold_up_cb(const char
                                                      *sequence,
00358
                          int.
                                                      ulength,
00359
                                                      window size.
                          int
```

# 18.188 ViennaRNA/perturbation fold.h File Reference

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments. Include dependency graph for perturbation fold.h:

#### **Macros**

#define VRNA\_OBJECTIVE\_FUNCTION\_QUADRATIC 0

Use the sum of squared aberrations as objective function.

#define VRNA OBJECTIVE FUNCTION ABSOLUTE 1

Use the sum of absolute aberrations as objective function.

#define VRNA MINIMIZER DEFAULT 0

Use a custom implementation of the gradient descent algorithm to minimize the objective function.

#define VRNA MINIMIZER CONJUGATE FR 1

Use the GNU Scientific Library implementation of the Fletcher-Reeves conjugate gradient algorithm to minimize the objective function.

#define VRNA\_MINIMIZER\_CONJUGATE\_PR 2

Use the GNU Scientific Library implementation of the Polak-Ribiere conjugate gradient algorithm to minimize the objective function.

#define VRNA\_MINIMIZER\_VECTOR\_BFGS 3

Use the GNU Scientific Library implementation of the vector Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the objective function.

• #define VRNA MINIMIZER VECTOR BFGS2 4

Use the GNU Scientific Library implementation of the vector Broyden-Fletcher-Goldfarb-Shanno algorithm to minimize the objective function.

#define VRNA MINIMIZER STEEPEST DESCENT 5

Use the GNU Scientific Library implementation of the steepest descent algorithm to minimize the objective function.

### **Typedefs**

• typedef void(\* progress\_callback) (int iteration, double score, double \*epsilon)

Callback for following the progress of the minimization process.

### **Functions**

void vrna\_sc\_minimize\_pertubation (vrna\_fold\_compound\_t \*vc, const double \*q\_prob\_unpaired, int objective\_function, double sigma\_squared, double tau\_squared, int algorithm, int sample\_size, double \*epsilon, double initialStepSize, double minStepSize, double minImprovement, double minimizerTolerance, progress\_callback callback)

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments.

#### 18.188.1 Detailed Description

Find a vector of perturbation energies that minimizes the discripancies between predicted and observed pairing probabilities and the amount of neccessary adjustments.

## 18.189 perturbation fold.h

### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_PERTURBATION_FOLD_H
00002 #define VIENNA_RNA_PACKAGE_PERTURBATION_FOLD_H
00003
00004 #include <ViennaRNA/fold_compound.h>
00005
00024 #define VRNA_OBJECTIVE_FUNCTION_QUADRATIC 0
00025
00033 #define VRNA_OBJECTIVE_FUNCTION_ABSOLUTE 1
00034
00040 #define VRNA_MINIMIZER_DEFAULT 0
00041
00049 #define VRNA_MINIMIZER_CONJUGATE_FR 1
00050
00058 #define VRNA_MINIMIZER_CONJUGATE_PR 2
00059
00067 #define VRNA_MINIMIZER_VECTOR_BFGS 3
00068
00076 #define VRNA_MINIMIZER_VECTOR_BFGS2 4
00085 #define VRNA_MINIMIZER_STEEPEST_DESCENT 5
00086
00096 typedef void (*progress_callback)(int
                                                 iteration,
                                         double score.
00097
00098
                                         double *epsilon);
00099
00139 void vrna_sc_minimize_pertubation(vrna_fold_compound_t
00140
                                                                *q_prob_unpaired,
00141
                                                                objective_function,
00142
                                         double
                                                                sigma_squared,
00143
                                         double
                                                                tau squared.
00144
                                                                algorithm,
                                         int
00145
                                         int
                                                                sample_size,
                                         double
                                                                *epsilon,
00146
00147
                                         double
                                                                initialStepSize,
00148
                                         double
                                                                minStepSize,
00149
                                         double
                                                                minImprovement,
00150
                                         double
                                                                minimizerTolerance,
                                         progress_callback
                                                                callback);
00152
00153
```

# 18.190 pf\_multifold.h

00154 #endif

```
00001 #ifndef VIENNA_RNA_PACKAGE_PART_FUNC_MULTIFOLD_H
00002 #define VIENNA_RNA_PACKAGE_PART_FUNC_MULTIFOLD_H
00003
00004 #include "ViennaRNA/fold_compound.h"
00005
00006 int
00007 vrna_pf_multifold_prepare(vrna_fold_compound_t *fc);
00008
00009
00010 #endif
```

# 18.191 ViennaRNA/pk\_plex.h File Reference

Heuristics for two-step pseudoknot forming interaction predictions.

Include dependency graph for pk plex.h: This graph shows which files directly or indirectly include this file:

### **Data Structures**

struct vrna\_pk\_plex\_result\_s

A result of the RNA PKplex interaction prediction. More...

### **Typedefs**

- typedef int(\* vrna\_pk\_plex\_score\_f) (const short \*pt, int start\_5, int end\_5, int start\_3, int end\_3, void \*data)

  \*Pseudoknot loop scoring function prototype.
- typedef struct vrna pk plex option s \* vrna pk plex opt t

18.192 pk\_plex.h 1237

RNA PKplex options object.

• typedef struct vrna\_pk\_plex\_result\_s vrna\_pk\_plex\_t

Convenience typedef for results of the RNA PKplex prediction.

#### **Functions**

vrna\_pk\_plex\_t \* vrna\_pk\_plex (vrna\_fold\_compound\_t \*fc, const int \*\*accessibility, vrna\_pk\_plex\_opt\_t options)

Predict Pseudoknot interactions in terms of a two-step folding process.

int \*\* vrna pk plex accessibility (const char \*sequence, unsigned int unpaired, double cutoff)

Obtain a list of opening energies suitable for PKplex computations.

vrna\_pk\_plex\_opt\_t vrna\_pk\_plex\_opt\_defaults (void)

Default options for PKplex algorithm.

vrna\_pk\_plex\_opt\_t vrna\_pk\_plex\_opt (unsigned int delta, unsigned int max\_interaction\_length, int pk\_
 penalty)

Simple options for PKplex algorithm.

• vrna\_pk\_plex\_opt\_t vrna\_pk\_plex\_opt\_fun (unsigned int delta, unsigned int max\_interaction\_length, vrna\_pk\_plex\_score\_f scoring\_function, void \*scoring\_data)

Simple options for PKplex algorithm.

### 18.191.1 Detailed Description

Heuristics for two-step pseudoknot forming interaction predictions.

# 18.192 pk\_plex.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PK_PLEX_H
00002 #define VIENNA_RNA_PACKAGE_PK_PLEX_H
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(DEPRECATED)
00006 #
         undef DEPRECATED
00007 # endif
00008 # if defined(__clang_
00009 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00010 # elif defined(__GNUC__)
00011 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00012 # else
00013 # define DEPRECATED(func, msg) func
00014 # endif
00015 #else
00016 # define DEPRECATED(func, msg) func
00017 #endif
00018
00060 typedef int (*vrna_pk_plex_score_f) (const short *pt,
00061
                                                 int
                                                             start 5.
00062
                                                 int
                                                             end 5,
00063
                                                             start_3,
00064
                                                             end_3,
00065
                                                 void
                                                             *data);
00066
00067 DEPRECATED(typedef int (vrna_callback_pk_plex_score)(const short *pt,
00068
                                                 int
                                                            start 5,
00069
                                                 int
                                                             end_5,
00070
00071
                                                 int
                                                             end_3,
00072
                                                 void
                                                             *data),
00073
                "Use vrna_pk_plex_score_f instead!");
00074
00075
00082 typedef struct vrna_pk_plex_option_s *vrna_pk_plex_opt_t;
00083
00089 typedef struct vrna_pk_plex_result_s vrna_pk_plex_t;
00090
00091 #include <ViennaRNA/fold compound.h>
00092
00098 struct vrna_pk_plex_result_s {
00099
                     *structure;
00100
        double
                     energy;
```

```
00101
        double
                      dGpk;
00102
        double
                      dGint;
00103
        double
                       dG1;
00104
        double
                       dG2;
        unsigned int start_5;
00105
        unsigned int end_5;
unsigned int start_3;
00106
00107
00108
        unsigned int end_3;
00109 };
00110
00140 vrna_pk_plex_t *
00141 vrna_pk_plex(vrna_fold_compound_t *fc,
                  const int **accessi
vrna_pk_plex_opt_t options);
00142
                                          **accessibility,
00143
00144
00145
00156 int **
00157 vrna_pk_plex_accessibility(const char
                                                *sequence,
                                  unsigned int unpaired,
00159
                                   double
                                                cutoff);
00160
00161
00169 vrna_pk_plex_opt_t
00170 vrna_pk_plex_opt_defaults(void);
00171
00172
00183 vrna_pk_plex_opt_t
00184 vrna_pk_plex_opt(unsigned int delta,
00185
                       unsigned int max_interaction_length,
00186
                        int
                                     pk_penalty);
00187
00188
00200 vrna_pk_plex_opt_t
00201 vrna_pk_plex_opt_fun(unsigned int
                                                           delta,
00202
                            unsigned int
                                                          max_interaction_length,
                            vrna_pk_plex_score_f scoring_function,
00203
00204
                                                           *scoring_data);
                            void
00205
00206
00211 #endif
```

# 18.193 PKplex.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PKPLEX_DEPRECATED_H
00002 #define VIENNA_RNA_PACKAGE_PKPLEX_DEPRECATED_H
00003
00010 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00011 # ifdef VRNA_WARN_DEPRECATED
00012 #warning "Including deprecated header file <ViennaRNA/PKplex.h>! Use <ViennaRNA/pk_plex.h> instead!"
00013 # endif
00014
00015 #ifdef VRNA_WARN_DEPRECATED
00016 # if defined(__clang__)
00017 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00018 # elif defined(__GNUC__)
00019 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00020 # else
00021 # define DEPRECATED(func, msg) func
00022 # endif
00023 #else
00024 # define DEPRECATED(func, msg) func
00025 #endif
00026
00027 #include <ViennaRNA/datastructures/basic.h>
00028
00029
00030 DEPRECATED (dupVar *
00031 PKLduplexfold_XS(const char *s1,
00032
                       const int **access_s1,
00033
                       int penalty,
00034
                       int max_interaction_length,
int delta),
00035
               "Use vrna_pk_plex() instead!");
00037
00038 #include <ViennaRNA/pk_plex.h>
00039
00040 #endif
00041
00042 #endif
```

18.194 plex.h 1239

## 18.194 plex.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PLEX_H
00002 #define VIENNA_RNA_PACKAGE_PLEX_H
00003
00004 #include <ViennaRNA/datastructures/basic.h>
00005
00006 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00007
00008 extern int subopt_sorted;
00009
00013 duplexT** Lduplexfold(const char *s1,
                             const char *s2,
00015
                             const int threshold,
00016
                             const int extension_cost,
00017
                             const int alignment_length,
00018
                             const int delta,
00019
                             const int fast.
00020
                             const int il_a,
00021
                             const int il_b,
00022
                             const int b_a,
00023
                             const int b_b);
00024
00028 duplexT** Lduplexfold_XS( const char*s1,
00029
                                 const char* s2,
                                 const int **access_s1,
00031
                                 const int **access_s2,
00032
                                 const int threshold,
00033
                                 const int delta,
00034
                                 const int alignment_length,
00035
                                 const int fast,
                                 const int il_a,
00037
                                 const int il_b,
00038
                                 const int b_a,
00039
                                 const int b_b);/* , const int target_dead, const int query_dead); */
00040
00044 duplexT** Lduplexfold_C(const char *s1,
00045
                               const char *s2,
00046
                               const int threshold,
00047
                               const int extension_cost,
00048
                               const int alignment_length,
                               const int delta,
00049
00050
                               const int fast.
00051
                               const char* structure,
00052
                               const int il_a,
00053
                               const int il_b,
00054
                               const int b_a,
00055
                               const int b_b);
00056
00061 duplexT** Lduplexfold CXS(const char*s1,
                                const char* s2,
00063
00064
                                 const int **access_s2,
00065
                                 const int threshold.
00066
                                 const int delta.
00067
                                 const int alignment_length,
00068
                                 const int fast,
00069
                                 const char* structure,
00070
                                 const int il_a,
00071
                                 const int il_b,
00072
                                 const int b_a,
00073
                                 const int b_b); /*, const int target_dead, const int query_dead); */
00075
00076
00077
00078 int
               arravSize(duplexT** arrav);
00079 void
               freeDuplexT(duplexT** array);
08000
00081 #endif
00082
00083 #endif
```

# 18.195 ViennaRNA/plot\_aln.h File Reference

Use ViennaRNA/plotting/alignments.h instead. Include dependency graph for plot aln.h:

### 18.195.1 Detailed Description

Use ViennaRNA/plotting/alignments.h instead.

Deprecated Use ViennaRNA/plotting/alignments.h instead

# 18.196 plot\_aln.h

#### Go to the documentation of this file.

# 18.197 ViennaRNA/plot\_layouts.h File Reference

Use ViennaRNA/plotting/layouts.h instead. Include dependency graph for plot\_layouts.h:

### 18.197.1 Detailed Description

Use ViennaRNA/plotting/layouts.h instead.

Deprecated Use ViennaRNA/plotting/layouts.h instead

## 18.198 plot\_layouts.h

### Go to the documentation of this file.

# 18.199 ViennaRNA/plot\_structure.h File Reference

Use ViennaRNA/plotting/structures.h instead. Include dependency graph for plot\_structure.h:

### 18.199.1 Detailed Description

Use ViennaRNA/plotting/structures.h instead.

Deprecated Use ViennaRNA/plotting/structures.h instead

# 18.200 plot\_structure.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PLOT_STRUCTURE_DEPRECATED_H
00002 #define VIENNA_RNA_PACKAGE_PLOT_STRUCTURE_DEPRECATED_H
00003
00010 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00011 # ifdef VRNA_WARN_DEPRECATED
```

# 18.201 ViennaRNA/plot\_utils.h File Reference

Use ViennaRNA/plotting/utils.h instead. Include dependency graph for plot\_utils.h:

### 18.201.1 Detailed Description

Use ViennaRNA/plotting/utils.h instead.

Deprecated Use ViennaRNA/plotting/utils.h instead

## 18.202 plot utils.h

### Go to the documentation of this file.

# 18.203 ViennaRNA/plotting/alignments.h File Reference

Various functions for plotting Sequence / Structure Alignments.

This graph shows which files directly or indirectly include this file:

### **Functions**

• int vrna\_file\_PS\_aln (const char \*filename, const char \*\*seqs, const char \*\*names, const char \*structure, unsigned int columns)

Create an annotated PostScript alignment plot.

• int vrna\_file\_PS\_aln\_slice (const char \*filename, const char \*\*seqs, const char \*\*names, const char \*structure, unsigned int start, unsigned int end, int offset, unsigned int columns)

Create an annotated PostScript alignment plot.

int PS\_color\_aln (const char \*structure, const char \*filename, const char \*seqs[], const char \*names[])

Produce PostScript sequence alignment color-annotated by consensus structure.

• int aliPS\_color\_aln (const char \*structure, const char \*filename, const char \*seqs[], const char \*names[]) PS\_color\_aln for duplexes.

### 18.203.1 Detailed Description

Various functions for plotting Sequence / Structure Alignments.

# 18.204 alignments.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_PLOT_ALN_H
00002 #define VIENNA_RNA_PACKAGE_PLOT_ALN_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC_
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00039 int
00040 vrna_file_PS_aln(const char
                                    *filename,
00041
              const char
                                    **seas,
                       const char
                                    **names,
00043
                       const char
                                    *structure,
00044
                       unsigned int columns);
00045
00046
00065 int.
00066 vrna_file_PS_aln_slice(const char *filename,
                             const char
00068
                             const char **names
00069
                             const char
                                           *structure,
00070
                             unsigned int start,
00071
                             unsigned int end,
00072
                                          offset,
                              int
00073
                             unsigned int columns);
00074
00075
00080 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00081
00089 DEPRECATED (int PS color alm (const char *structure,
                                   const char *filename,
00091
                                   const char *seqs[],
00092
                                   const char *names[]),
                 "Use vrna_file_PS_aln() instead!");
00093
00094
00095
00102 DEPRECATED(int aliPS_color_aln(const char *structure,
                                      const char *filename,
00104
                                      const char *seqs[],
                                      const char *names[]),
00105
00106
                 "Use vrna_file_PS_aln() instead!");
00107
00108 #endif
00110 #endif
```

# 18.205 ViennaRNA/utils/alignments.h File Reference

Various utility- and helper-functions for sequence alignments and comparative structure prediction. Include dependency graph for alignments.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

struct vrna\_pinfo\_s

A base pair info structure. More...

#### **Macros**

• #define VRNA ALN DEFAULT 0U

Use default alignment settings.

#define VRNA\_ALN\_RNA 1U

Convert to RNA alphabet.

• #define VRNA\_ALN\_DNA 2U

Convert to DNA alphabet.

#define VRNA ALN UPPERCASE 4U

Convert to uppercase nucleotide letters.

• #define VRNA ALN LOWERCASE 8U

Convert to lowercase nucleotide letters.

#define VRNA\_MEASURE\_SHANNON\_ENTROPY 1U

Flag indicating Shannon Entropy measure.

### **Typedefs**

typedef struct vrna pinfo s vrna pinfo t

Typename for the base pair info repesenting data structure vrna\_pinfo\_s.

• typedef struct vrna\_pinfo\_s pair\_info

Old typename of vrna pinfo s.

#### **Functions**

int vrna\_aln\_mpi (const char \*\*alignment)

Get the mean pairwise identity in steps from ?to?(ident)

vrna\_pinfo\_t \* vrna\_aln\_pinfo (vrna\_fold\_compound\_t \*vc, const char \*structure, double threshold)

Retrieve an array of vrna\_pinfo\_t structures from precomputed pair probabilities.

char \*\* vrna\_aln\_slice (const char \*\*alignment, unsigned int i, unsigned int j)

Slice out a subalignment from a larger alignment.

void vrna aln free (char \*\*alignment)

Free memory occupied by a set of aligned sequences.

• char \*\* vrna\_aln\_uppercase (const char \*\*alignment)

Create a copy of an alignment with only uppercase letters in the sequences.

char \*\* vrna\_aln\_toRNA (const char \*\*alignment)

Create a copy of an alignment where DNA alphabet is replaced by RNA alphabet.

char \*\* vrna aln copy (const char \*\*alignment, unsigned int options)

Make a copy of a multiple sequence alignment.

- float \* vrna\_aln\_conservation\_struct (const char \*\*alignment, const char \*structure, const vrna\_md\_t \*md)

  Compute base pair conservation of a consensus structure.
- float \* vrna aln conservation col (const char \*\*alignment, const vrna md t \*md p, unsigned int options)

Compute nucleotide conservation in an alignment.

char \* vrna\_aln\_consensus\_sequence (const char \*\*alignment, const vrna\_md\_t \*md\_p)

Compute the consensus sequence for a given multiple sequence alignment.

• char \* vrna aln consensus mis (const char \*\*alignment, const vrna md t \*md p)

Compute the Most Informative Sequence (MIS) for a given multiple sequence alignment.

• int get\_mpi (char \*Alseq[], int n\_seq, int length, int \*mini)

Get the mean pairwise identity in steps from ?to?(ident)

 void encode\_ali\_sequence (const char \*sequence, short \*S, short \*s5, short \*s3, char \*ss, unsigned short \*as, int circ)

Get arrays with encoded sequence of the alignment.

• void alloc\_sequence\_arrays (const char \*\*sequences, short \*\*\*S, short \*\*\*S, short \*\*\*S, unsigned short \*\*\*a2s, char \*\*\*Ss, int circ)

Allocate memory for sequence array used to deal with aligned sequences.

• void free\_sequence\_arrays (unsigned int n\_seq, short \*\*\*S, short \*\*\*S, short \*\*\*S, unsigned short \*\*\*a2s, char \*\*\*Ss)

Free the memory of the sequence arrays used to deal with aligned sequences.

### 18.205.1 Detailed Description

Various utility- and helper-functions for sequence alignments and comparative structure prediction.

,

# 18.206 alignments.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_ALN_UTIL_H
00002 #define VIENNA_RNA_PACKAGE_ALN_UTIL_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(_clang_)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00029 typedef struct vrna_pinfo_s vrna_pinfo_t;
00030
00031
00035 #define VRNA ALN DEFAULT
00036
00041 #define VRNA_ALN_RNA
00042
00043
00047 #define VRNA ALN DNA
                                     2U
00048
00049
00053 #define VRNA_ALN_UPPERCASE
00054
00055
00059 #define VRNA ALN LOWERCASE
00060
00066 #define VRNA_MEASURE_SHANNON_ENTROPY 1U
00068 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00069
00070 /\star the following typedefs are for backward compatibility only \star/
00071
00077 typedef struct vrna_pinfo_s pair_info;
00079 #endif
00080
00081 #include <ViennaRNA/fold_compound.h>
00082 #include <ViennaRNA/model.h>
00083
00094 struct vrna_pinfo_s {
00095 unsigned i;
00096
       unsigned
00097
       float
00098
       float
                  ent:
00099
       short
                  bp[8];
       char
                  comp;
00101 };
00102
00103
00110 int.
00111 vrna_aln_mpi(const char **alignment);
00112
00127 vrna_pinfo_t *
00128 vrna_aln_pinfo(vrna_fold_compound_t *vc,
00129
                     const char
                                           *structure,
00130
                     double
                                          threshold):
00131
00132
00133 int *
00134 vrna_aln_pscore(const char **alignment,
00135
                      vrna_md_t
                                  *md);
00136
00137
00139 vrna_pscore(vrna_fold_compound_t *fc,
             unsigned int
00140
00141
                  unsigned int
                                         j);
00142
```

18.206 alignments.h 1245

```
00143
00144 int
00145 vrna_pscore_freq(vrna_fold_compound_t *fc,
00146
                    const unsigned int *frequencies,
00147
                      unsigned int
                                          pairs);
00148
00162 char **
00163 vrna_aln_slice(const char
                               **alignment,
             unsigned int i,
00164
00165
                    unsigned int j);
00166
00167
00173 void
00174 vrna_aln_free(char **alignment);
00175
00176
00185 char **
00186 vrna_aln_uppercase(const char **alignment);
00188
00197 char **
00198 vrna_aln_toRNA(const char **alignment);
00199
00200
00214 char **
00215 vrna_aln_copy(const char **alignment,
00216
                   unsigned int options);
00217
00218
00233 float *
                                              **alignment,
00234 vrna_aln_conservation_struct(const char
                                 const char
                                                  *structure,
00236
                                  const vrna_md_t *md);
00237
00238
00256 float *
00257 vrna_aln_conservation_col(const char
                                             **alignment,
                              const vrna_md_t *md_p,
00259
                              unsigned int
00260
00261
00269 char *
00270 vrna_aln_consensus_sequence(const char
                                                **alignment.
00271
                                const vrna_md_t *md_p);
00272
00284 char *
00285 vrna_aln_consensus_mis(const char
                                            **alignment,
                           const vrna_md_t *md_p);
00286
00287
00288
00289 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00290
00291 #include <stdio.h>
00295 DEPRECATED(int read_clustal(FILE *clust, 00296 char *AlignedSeqs[], 00297 char *names[]),
00298
               "Use vrna_file_msa_read() and vrna_file_msa_read_record() instead");
00299
00300
00304 DEPRECATED(char *consensus(const char *AS[]),
00305
               "Use vrna_aln_consensus_sequence() instead!");
00306
00307
00311 DEPRECATED(char *consens_mis(const char *AS[]),
00312
               "Use vrna_aln_consensus_mis() instead!");
00313
00314
00318 DEPRECATED(char *get_ungapped_sequence(const char *seq),
               "Use vrna_seq_ungapped() instead!");
00319
00321
00333 DEPRECATED(int get_mpi(char *Alseq[],
                            int n_seq,
int length,
int *mini),
00334
00335
00336
00337
              "Use vrna_aln_mpi() instead");
00338
00339 /*
00341 # some helper functions that might be useful in the library #
00343
00344
00360 DEPRECATED (void encode_ali_sequence (const char
                                                        *sequence,
00361
                                        short
                                                        *S,
00362
                                        short.
                                                        *s5.
00363
                                        short
                                                        *s3.
```

```
char
                                                          *ss,
00365
                                          unsigned short *as,
00366
                                          int
               "This function is obsolete");
00367
00368
00369
00386 DEPRECATED(void alloc_sequence_arrays(const char
                                                           **sequences,
00387
                                                           ***S5,
00388
00389
                                             short
                                                            ***S3.
                                             unsigned short ***a2s,
00390
00391
                                             char
                                                            ***Ss,
00392
                                             int
                                                            circ),
00393
               "This function is obsolete");
00394
00395
00411 DEPRECATED(void free_sequence_arrays(unsigned int n_seq,
00412
                                            short
                                                            ***S,
                                            short
00414
00415
                                            unsigned short ***a2s,
00416
                                            char
                                                            ***Ss)
               "This fucntion is obsolete");
00417
00418
00419 #endif
00420
00426 #endif
```

# 18.207 ViennaRNA/plotting/layouts.h File Reference

Secondary structure plot layout algorithms.

Include dependency graph for layouts.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

- struct vrna\_plot\_layout\_s
- struct COORDINATE

this is a workarround for the SWIG Perl Wrapper RNA plot function that returns an array of type COORDINATE More...

#### **Macros**

• #define VRNA PLOT TYPE SIMPLE 0

Definition of Plot type simple

#define VRNA\_PLOT\_TYPE\_NAVIEW 1

Definition of Plot type Naview

• #define VRNA\_PLOT\_TYPE\_CIRCULAR 2

Definition of Plot type Circular

#define VRNA\_PLOT\_TYPE\_TURTLE 3

Definition of Plot type Turtle [30].

• #define VRNA\_PLOT\_TYPE\_PUZZLER 4

Definition of Plot type RNApuzzler [30].

# **Typedefs**

typedef struct vrna\_plot\_layout\_s vrna\_plot\_layout\_t

RNA secondary structure figure layout.

### **Functions**

vrna\_plot\_layout\_t \* vrna\_plot\_layout (const char \*structure, unsigned int plot\_type)

Create a layout (coordinates, etc.) for a secondary structure plot.

vrna\_plot\_layout\_t \* vrna\_plot\_layout\_simple (const char \*structure)

Create a layout (coordinates, etc.) for a simple secondary structure plot.

18.208 layouts.h 1247

vrna\_plot\_layout\_t \* vrna\_plot\_layout\_circular (const char \*structure)

Create a layout (coordinates, etc.) for a circular secondary structure plot.

vrna\_plot\_layout\_t \* vrna\_plot\_layout\_turtle (const char \*structure)

Create a layout (coordinates, etc.) for a secondary structure plot using the Turtle Algorithm [30].

vrna\_plot\_layout\_t \* vrna\_plot\_layout\_puzzler (const char \*structure, vrna\_plot\_options\_puzzler\_t \*options)

Create a layout (coordinates, etc.) for a secondary structure plot using the RNApuzzler Algorithm [30].

void vrna plot layout free (vrna plot layout t \*layout)

Free memory occupied by a figure layout data structure.

int vrna\_plot\_coords (const char \*structure, float \*\*x, float \*\*y, int plot\_type)

Compute nucleotide coordinates for secondary structure plot.

int vrna\_plot\_coords\_pt (const short \*pt, float \*\*x, float \*\*y, int plot\_type)

Compute nucleotide coordinates for secondary structure plot.

int vrna\_plot\_coords\_simple (const char \*structure, float \*\*x, float \*\*y)

Compute nucleotide coordinates for secondary structure plot the Simple way

int vrna\_plot\_coords\_simple\_pt (const short \*pt, float \*\*x, float \*\*y)

Compute nucleotide coordinates for secondary structure plot the Simple way

int vrna\_plot\_coords\_circular (const char \*structure, float \*\*x, float \*\*y)

Compute coordinates of nucleotides mapped in equal distancies onto a unit circle.

int vrna\_plot\_coords\_circular\_pt (const short \*pt, float \*\*x, float \*\*x)

Compute nucleotide coordinates for a Circular Plot

int simple\_xy\_coordinates (short \*pair\_table, float \*X, float \*Y)

Calculate nucleotide coordinates for secondary structure plot the Simple way

int simple\_circplot\_coordinates (short \*pair\_table, float \*x, float \*y)

Calculate nucleotide coordinates for Circular Plot

#### **Variables**

· int rna\_plot\_type

Switch for changing the secondary structure layout algorithm.

#### 18.207.1 Detailed Description

Secondary structure plot layout algorithms.

# 18.208 layouts.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PLOT_LAYOUTS_H
00002 #define VIENNA_RNA_PACKAGE_PLOT_LAYOUTS_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00036 typedef struct vrna_plot_layout_s vrna_plot_layout_t;
00038
00039 #include <ViennaRNA/datastructures/basic.h>
00040
00041 #ifdef VRNA WITH NAVIEW LAYOUT
00042 #include <ViennaRNA/plotting/naview/naview.h>
00044
00045 #include "ViennaRNA/plotting/RNApuzzler/RNAturtle.h"
```

```
00046 #include "ViennaRNA/plotting/RNApuzzler/RNApuzzler.h"
00047
00048
00057 #define VRNA_PLOT_TYPE_SIMPLE
00058
00067 #define VRNA_PLOT_TYPE_NAVIEW
00077 #define VRNA_PLOT_TYPE_CIRCULAR 2
00078
00083 #define VRNA_PLOT_TYPE_TURTLE 3
00084
00089 #define VRNA PLOT TYPE PUZZLER 4
00090
00091 #ifdef VRNA_WITH_NAVIEW_LAYOUT
00092 # define VRNA_PLOT_TYPE_DEFAULT VRNA_PLOT_TYPE_NAVIEW
00093 #else
00095 #endif
00096
00097
00098 struct vrna_plot_layout_s {
00099 unsigned int length;
00100
                *X;
       float
00101
       float
                    *V;
00102 double
00103 int
                     *arcs;
                    bbox[4];
00104 };
00105
00106
00133 vrna_plot_layout_t *
00134 vrna_plot_layout(const char *structure,
00135
                     unsigned int plot_type);
00136
00137
00153 vrna_plot_layout_t *
00154 vrna_plot_layout_simple(const char *structure);
00155
00157 #ifdef VRNA_WITH_NAVIEW_LAYOUT
00173 vrna_plot_layout_t *
00174 vrna_plot_layout_naview(const char *structure);
00175 #endif
00176
00192 vrna_plot_layout_t *
00193 vrna_plot_layout_circular(const char *structure);
00194
00195
00211 vrna_plot_layout_t *
00212 vrna_plot_layout_turtle(const char *structure);
00213
00214
00230 vrna_plot_layout_t *
00231 vrna_plot_layout_puzzler(const char
                                                          *structure,
00232
                             vrna_plot_options_puzzler_t *options);
00233
00234
00244 void
00245 vrna_plot_layout_free(vrna_plot_layout_t *layout);
00246
00247
00291 int
00292 vrna_plot_coords(const char *structure,
                             **X,
00293
                     float
00294
                      float
00295
                      int
                                plot_type);
00296
00297
00317 int
00318 vrna_plot_coords_pt(const short *pt,
                        float **x,
00320
                         float
                                    **Y,
00321
                         int
                                    plot_type);
00322
00323
00356 int
00357 vrna_plot_coords_simple(const char *structure,
00358
                             float
00359
                             float
00360
00361
00380 int
00381 vrna_plot_coords_simple_pt(const short *pt,
00382
                                float
                                             **X,
00383
                                float
                                            **Y);
00384
00385
00416 int
```

```
00417 vrna_plot_coords_circular(const char *structure,
00419
                                         **y);
00420
00421
00440 int
00441 vrna_plot_coords_circular_pt(const short *pt,
00442
                                             **y);
00443
00444
00445
00451 #ifndef VRNA DISABLE BACKWARD COMPATIBILITY
00452
00463 typedef struct {
00464 float X; /* X coords */
00465 float Y; /* Y coords */
00466 } COORDINATE;
00467
00468
00481 extern int rna_plot_type;
00482
00483
00497 DEPRECATED (int
       00498
00499
00501
                "Use vrna_plot_coords_simple_pt() instead!");
00502
00503
00526 DEPRECATED (int
       simple_circplot_coordinates(short *pair_table,
00527
                                float *x,
float *y),
00529
       "Use vrna_plot_coords_circular_pt() instead!");
00530
00531
00532
00537 #endif
00539
00540 #endif
```

# 18.209 ViennaRNA/plotting/probabilities.h File Reference

Various functions for plotting RNA secondary structures, dot-plots and other visualizations.

Include dependency graph for probabilities.h: This graph shows which files directly or indirectly include this file:

### **Data Structures**

· struct vrna\_dotplot\_auxdata\_t

### **Functions**

- int PS\_dot\_plot\_list (char \*seq, char \*filename, vrna\_ep\_t \*pl, vrna\_ep\_t \*mf, char \*comment)

  Produce a postscript dot-plot from two pair lists.
- int PS\_dot\_plot (char \*string, char \*file)
   Produce postscript dot-plot.

0.0004 D. II ID. III

#### 18.209.1 Detailed Description

Various functions for plotting RNA secondary structures, dot-plots and other visualizations.

# 18.210 probabilities.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PLOT_PROBABILITIES_H
00002 #define VIENNA_RNA_PACKAGE_PLOT_PROBABILITIES_H
00003
00004
00005 #include <ViennaRNA/datastructures/basic.h>
00006 #include <ViennaRNA/utils/structures.h>
00007
00007
00008 #ifdef VRNA_WARN_DEPRECATED
```

```
00009 # if defined(__clang__)
00010 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00011 # elif defined(__GNUC__)
00012 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00013 # else
00014 # define DEPRECATED(func, msg) func
00015 # endif
00016 #else
00017 # define DEPRECATED(func, msg) func
00018 #endif
00019
00032 #define VRNA_PLOT_PROBABILITIES_BP
00033 #define VRNA_PLOT_PROBABILITIES_ACC
00034
00035 #define VRNA_PLOT_PROBABILITIES_UD
                                                4IJ
00036 #define VRNA_PLOT_PROBABILITIES_UD_LIN
                                               8U
00037
00038 #define VRNA PLOT PROBABILITIES SD
                                               16U
00040 #define VRNA_PLOT_PROBABILITIES_SC_MOTIF
00041 #define VRNA_PLOT_PROBABILITIES_SC_UP
                                                64U
00042 #define VRNA_PLOT_PROBABILITIES_SC_BP
                                                12811
00043
00044 #define VRNA_PLOT_PROBABILITIES_DEFAULT
                                                (VRNA PLOT PROBABILITIES BP
00045
                                                 | VRNA_PLOT_PROBABILITIES_SD \
00046
                                                   VRNA_PLOT_PROBABILITIES_SC_MOTIF \
00047
                                                 | VRNA_PLOT_PROBABILITIES_UD_LIN)
00048 typedef struct {
       char
00049
                       *comment;
00050
       char
                       *title:
00051
00052
       vrna_data_lin_t **top;
00053
                       **top_title;
00054
00055
       vrna_data_lin_t **bottom;
00056
       char
                       **bottom_title;
00057
00058
       vrna_data_lin_t **left;
00059
       char
                       **left_title;
00060
00061
       vrna_data_lin_t **right;
                       **right_title;
00062
       char
00063 } vrna_dotplot_auxdata_t;
00064
00065
00066 int
00067 vrna_plot_dp_EPS(const char
                                             *filename.
             const char
00068
                                             *sequence,
00069
                      vrna_ep_t
                                             *upper.
00070
                      vrna ep t
                                             *lower,
00071
                      vrna_dotplot_auxdata_t *auxdata,
00072
                      unsigned int
00073
00074
00075 int
00076 vrna_plot_dp_PS_list(char
                                     *seq,
                        int
                                     cp,
00078
                                     *wastlfile,
                          vrna_ep_t *pl,
00079
00080
                          vrna_ep_t *mf,
00081
                          char
                                     *comment):
00082
00083
00084 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00085
00086 int
                                     *string,
00087 PS_color_dot_plot(char
                       vrna_cpair_t *pi,
00088
00089
                       char
                                     *filename);
00090
00091
00092 int
00093 PS_color_dot_plot_turn(char
                                         *seq,
                            vrna_cpair_t *pi,
00094
                                   *filename,
00095
                            char
00096
                                         winSize):
00097
00098
00099 int
00100 PS_dot_plot_turn(char
                                 *seq,
00101
                    vrna_ep_t *pl,
                                 *filename,
00102
                      char
00103
                                winSize);
00104
00105
00125 int PS_dot_plot_list(char
                                    *seq,
00126
                          char
                                     *filename,
```

```
00127
                                       *pl,
                            vrna_ep_t
00128
                            vrna_ep_t
00129
                            char
                                        *comment);
00130
00131
00147 DEPRECATED (int PS_dot_plot (char *string,
                                  char *file),
00149
                 "Use vrna_plot_dp_EPS() instead");
00150
00151 #endif
00152
00157 #endif
```

# 18.211 ViennaRNA/plotting/RNApuzzler/RNApuzzler.h File Reference

Implementation of the RNApuzzler RNA secondary structure layout algorithm [30]. This graph shows which files directly or indirectly include this file:

### **Data Structures**

struct vrna\_plot\_options\_puzzler\_t

Options data structure for RNApuzzler algorithm implementation. More...

#### **Functions**

• int vrna\_plot\_coords\_puzzler (const char \*structure, float \*\*x, float \*\*y, double \*\*arc\_coords, vrna\_plot\_options\_puzzler\_t \*options)

Compute nucleotide coordinates for secondary structure plot using the RNApuzzler algorithm [30].

 int vrna\_plot\_coords\_puzzler\_pt (short const \*const pair\_table, float \*\*x, float \*\*y, double \*\*arc\_coords, vrna\_plot\_options\_puzzler\_t \*puzzler)

Compute nucleotide coordinates for secondary structure plot using the RNApuzzler algorithm [30].

vrna\_plot\_options\_puzzler\_t \* vrna\_plot\_options\_puzzler (void)

Create an RNApuzzler options data structure.

void vrna\_plot\_options\_puzzler\_free (vrna\_plot\_options\_puzzler\_t \*options)

Free memory occupied by an RNApuzzler options data structure.

### 18.211.1 Detailed Description

Implementation of the RNApuzzler RNA secondary structure layout algorithm [30].

# 18.212 RNApuzzler.h

```
00001 #ifndef RNAPUZZLER H
00002 #define RNAPUZZLER H
00003
00020 typedef struct {
00021
00022
          * variables fixed during operation
00023
         * drawing behavior
00024
00025
                  drawArcs;
paired;
unpaired;
        short
00026
        double
00027
00028
00029
         /* intersection resolution behavior */
        short checkAncestorIntersections;
short checkSiblingIntersections;
00030
00031
                    checkExteriorIntersections;
allowFlipping;
optimize;
maximumNumberOfConfigChangesAllowed;
00032
         short
00033
         short
00034
00035
         int
00036
00037
00038
        /* import behavior - unused for now */
00039
                      *config; /* file path */
00040
```

```
/* other stuff */
00042
       const char *filename;
00043
00044
       /* variables changed during operation */
       int numberOfChangesAppliedToConfig;
00045
00046
       int
                   psNumber;
00047 } vrna_plot_options_puzzler_t;
00048
00049
00087 int
00088 vrna_plot_coords_puzzler(const char
                                                             *structure,
00089
                               float
                                                             **X.
00090
                               float
                                                             **V,
00091
00092
                               vrna_plot_options_puzzler_t *options);
00093
00094
00115 int
00116 vrna_plot_coords_puzzler_pt(short const *const
                                                              pair_table,
                                                               **X,
00118
00119
                                  double
                                                               **arc coords.
00120
                                  vrna_plot_options_puzzler_t *puzzler);
00121
00122
00131 vrna_plot_options_puzzler_t *
00132 vrna_plot_options_puzzler(void);
00133
00134
00143 void
00144 vrna plot options puzzler free (vrna plot options puzzler t *options);
00145
00146
00152 #endif
```

# 18.213 ViennaRNA/plotting/RNApuzzler/RNAturtle.h File Reference

Implementation of the RNAturtle RNA secondary structure layout algorithm [30]. This graph shows which files directly or indirectly include this file:

#### **Functions**

- int vrna\_plot\_coords\_turtle (const char \*structure, float \*\*x, float \*\*y, double \*\*arc\_coords)

  Compute nucleotide coordinates for secondary structure plot using the RNAturtle algorithm [30].
- int vrna\_plot\_coords\_turtle\_pt (short const \*const pair\_table, float \*\*x, float \*\*y, double \*\*arc\_coords)

  Compute nucleotide coordinates for secondary structure plot using the RNAturtle algorithm [30].

### 18.213.1 Detailed Description

Implementation of the RNAturtle RNA secondary structure layout algorithm [30].

### 18.214 RNAturtle.h

```
00001 #ifndef RNATURTLE_H
00002 #define RNATURTLE_H
00003
00052 int
00053 vrna_plot_coords_turtle(const char *structure,
00054
                             float
                                         * * X .
00055
                             float
                                         **Y,
00056
                             double
                                        **arc_coords);
00057
00058
00078 int
00079 vrna_plot_coords_turtle_pt(short const *const pair_table,
08000
                                float
                                                   **X,
                                                   **Y,
00081
                                float
00082
00083
00084
00089 #endif
```

# 18.215 ViennaRNA/plotting/structures.h File Reference

Various functions for plotting RNA secondary structures.

Include dependency graph for structures.h: This graph shows which files directly or indirectly include this file:

#### **Functions**

- int vrna\_file\_PS\_rnaplot (const char \*seq, const char \*structure, const char \*file, vrna\_md\_t \*md\_p)

  Produce a secondary structure graph in PostScript and write it to 'filename'.
- int vrna\_file\_PS\_rnaplot\_a (const char \*seq, const char \*structure, const char \*file, const char \*pre, con

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename'.

int gmlRNA (char \*string, char \*structure, char \*ssfile, char option)

Produce a secondary structure graph in Graph Meta Language (gml) and write it to a file.

• int ssv\_rna\_plot (char \*string, char \*structure, char \*ssfile)

Produce a secondary structure graph in SStructView format.

• int svg\_rna\_plot (char \*string, char \*structure, char \*ssfile)

Produce a secondary structure plot in SVG format and write it to a file.

int xrna plot (char \*string, char \*structure, char \*ssfile)

Produce a secondary structure plot for further editing in XRNA.

• int PS rna plot (char \*string, char \*structure, char \*file)

Produce a secondary structure graph in PostScript and write it to 'filename'.

• int PS\_rna\_plot\_a (char \*string, char \*structure, char \*file, char \*pre, char \*post)

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename'.

int PS\_rna\_plot\_a\_gquad (char \*string, char \*structure, char \*ssfile, char \*pre, char \*post)

Produce a secondary structure graph in PostScript including additional annotation macros and write it to 'filename' (detect and draw g-quadruplexes)

#### 18.215.1 Detailed Description

Various functions for plotting RNA secondary structures.

### 18.216 structures.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PLOT_STRUCTURE_H
00002 #define VIENNA_RNA_PACKAGE_PLOT_STRUCTURE_H
00003
00004 #include <ViennaRNA/model.h>
00005 #include <ViennaRNA/plotting/layouts.h>
00006 #include "ViennaRNA/plotting/RNApuzzler/RNApuzzler.h"
00007
00008 #ifdef VRNA_WARN_DEPRECATED
00009 # if defined(__clang_
00010 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00011 # elif defined(__GNUC__)
00012 # define DEPRECATED(func, msg) func attribute ((deprecated(msg)))
00013 # else
00014 # define DEPRECATED(func, msg) func
00015 # endif
00016 #else
00017 # define DEPRECATED(func, msg) func
00018 #endif
00044 int
00045 vrna_file_PS_rnaplot(const char *seq,
00046
                         const char *structure,
00047
                           const char *file,
00048
                           vrna md t *md p);
00049
                                                   *seq,
00070 int vrna_file_PS_rnaplot_a( const char
00071
                                  const char
                                                   *structure,
00072
                                  const char
                                                   *file,
00073
                                  const char
                                                   *pre,
```

```
const char
                                                    *post,
00075
                                   vrna_md_t
                                                    *md_p);
00076
00077
00078 int
00079 vrna_file_PS_rnaplot_layout(const char
                                                       *sea,
                                   const char
                                                        *structure,
00081
                                   const char
                                                        *ssfile,
00082
                                   const char
                                                        *pre,
00083
                                   const char
                                                       *post,
00084
                                   vrna_md_t
                                                        *md_p,
00085
                                   vrna_plot_layout_t *layout);
00086
00087 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00088
00089 /* write PostScript drawing of structure to file with annotation */
00090 int
00091 PS_rna_plot_snoop_a(const char *string,
                          const char *structure,
00093
                           const char *ssfile,
00094
                                       *relative_access,
                          const char *seqs[]);
00095
00096
00097
00110 int
00111 gmlRNA(char *string,
00112
            char *structure,
00113
             char *ssfile,
00114
             char option);
00115
00116
00127 int
00128 ssv_rna_plot(char *string,
           char *structure,
char *ssfile);
00129
00130
00131
00132
00141 int
00142 svg_rna_plot(char *string,
            char *structure,
00144
                   char *ssfile);
00145
00146
00155 int
00156 xrna_plot(char *string, 00157 char *structure,
00158
               char *ssfile);
00159
00160
00166 DEPRECATED (int PS_rna_plot (char *string,
                                 char *structure,
00168
                                 char *file),
00169
                 "Use vrna_file_PS_rnaplot() instead");
00170
00177 DEPRECATED(int PS_rna_plot_a(char *string,
00178
                                    char *structure,
                                    char *file,
00180
                                    char *pre,
00181
                                    char *post),
                 "Use vrna_file_PS_rnaplot_a() instead");
00182
00183
00190 DEPRECATED(int PS_rna_plot_a_gquad(char *string,
00191
                                          char *structure,
00192
                                          char *ssfile,
00193
                                          char *pre,
00194
                                          char *post),
                 "Use vrna_file_PS_rnaplot_a() instead");
00195
00196
00197 #endif
00198
00203 #endif
```

### 18.217 ViennaRNA/utils/structures.h File Reference

Various utility- and helper-functions for secondary structure parsing, converting, etc. Include dependency graph for structures.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

struct vrna\_elem\_prob\_s

Data structure representing a single entry of an element probability list (e.g. list of pair probabilities) More...

struct vrna\_hx\_s

Data structure representing an entry of a helix list. More...

#### **Macros**

#define VRNA BRACKETS ALPHA 4U

Bitflag to indicate secondary structure notations using uppercase/lowercase letters from the latin alphabet.

• #define VRNA BRACKETS RND 8U

Bitflag to indicate secondary structure notations using round brackets (parenthesis), ()

• #define VRNA BRACKETS CLY 16U

Bitflag to indicate secondary structure notations using curly brackets, {}

• #define VRNA BRACKETS ANG 32U

Bitflag to indicate secondary structure notations using angular brackets, <>

#define VRNA BRACKETS SQR 64U

Bitflag to indicate secondary structure notations using square brackets, []

#define VRNA BRACKETS DEFAULT

Default bitmask to indicate secondary structure notation using any pair of brackets.

#define VRNA BRACKETS ANY

Bitmask to indicate secondary structure notation using any pair of brackets or uppercase/lowercase alphabet letters.

• #define VRNA PLIST TYPE BASEPAIR 0

A Base Pair element.

#define VRNA\_PLIST\_TYPE\_GQUAD 1

A G-Quadruplex element.

• #define VRNA\_PLIST\_TYPE\_H\_MOTIF 2

A Hairpin loop motif element.

• #define VRNA\_PLIST\_TYPE\_I\_MOTIF 3

An Internal loop motif element.

#define VRNA PLIST TYPE UD MOTIF 4

An Unstructured Domain motif element.

#define VRNA\_PLIST\_TYPE\_STACK 5

A Base Pair stack element.

#define VRNA\_PLIST\_TYPE\_UNPAIRED 6

An unpaired base.

#define VRNA\_PLIST\_TYPE\_TRIPLE 7

One pair of a base triplet.

#define VRNA\_STRUCTURE\_TREE\_HIT 1U

Homeomorphically Irreducible Tree (HIT) representation of a secondary structure.

• #define VRNA STRUCTURE TREE SHAPIRO SHORT 2U

(short) Coarse Grained representation of a secondary structure

#define VRNA\_STRUCTURE\_TREE\_SHAPIRO 3U

(full) Coarse Grained representation of a secondary structure

• #define VRNA STRUCTURE TREE SHAPIRO EXT 4U

(extended) Coarse Grained representation of a secondary structure

#define VRNA\_STRUCTURE\_TREE\_SHAPIRO\_WEIGHT 5U

(weighted) Coarse Grained representation of a secondary structure

• #define VRNA STRUCTURE TREE EXPANDED 6U

Expanded Tree representation of a secondary structure.

### **Typedefs**

typedef struct vrna\_hx\_s vrna\_hx\_t

Convenience typedef for data structure vrna\_hx\_s.

typedef struct vrna\_elem\_prob\_s vrna\_ep\_t

Convenience typedef for data structure vrna\_elem\_prob\_s.

#### **Functions**

char \* vrna\_db\_pack (const char \*struc)

Pack secondary secondary structure, 5:1 compression using base 3 encoding.

char \* vrna db unpack (const char \*packed)

Unpack secondary structure previously packed with vrna\_db\_pack()

void vrna\_db\_flatten (char \*structure, unsigned int options)

Substitute pairs of brackets in a string with parenthesis.

void vrna db flatten to (char \*string, const char target[3], unsigned int options)

Substitute pairs of brackets in a string with another type of pair characters.

char \* vrna\_db\_from\_ptable (const short \*pt)

Convert a pair table into dot-parenthesis notation.

char \* vrna db from plist (vrna ep t \*pairs, unsigned int n)

Convert a list of base pairs into dot-bracket notation.

char \* vrna\_db\_to\_element\_string (const char \*structure)

Convert a secondary structure in dot-bracket notation to a nucleotide annotation of loop contexts.

char \* vrna\_db\_pk\_remove (const char \*structure, unsigned int options)

Remove pseudo-knots from an input structure.

short \* vrna\_ptable (const char \*structure)

Create a pair table from a dot-bracket notation of a secondary structure.

• short \* vrna\_ptable\_from\_string (const char \*structure, unsigned int options)

Create a pair table for a secondary structure string.

short \* vrna\_pt\_pk\_get (const char \*structure)

Create a pair table of a secondary structure (pseudo-knot version)

short \* vrna\_ptable\_copy (const short \*pt)

Get an exact copy of a pair table.

• short \* vrna\_pt\_ali\_get (const char \*structure)

Create a pair table of a secondary structure (snoop align version)

short \* vrna\_pt\_snoop\_get (const char \*structure)

Create a pair table of a secondary structure (snoop version)

short \* vrna\_pt\_pk\_remove (const short \*ptable, unsigned int options)

Remove pseudo-knots from a pair table.

vrna\_ep\_t \* vrna\_plist (const char \*struc, float pr)

Create a vrna\_ep\_t from a dot-bracket string.

• vrna\_ep\_t \* vrna\_plist\_from\_probs (vrna\_fold\_compound\_t \*vc, double cut\_off)

Create a vrna\_ep\_t from base pair probability matrix.

char \* vrna\_db\_from\_WUSS (const char \*wuss)

Convert a WUSS annotation string to dot-bracket format.

char \* vrna abstract shapes (const char \*structure, unsigned int level)

Convert a secondary structure in dot-bracket notation to its abstract shapes representation.

char \* vrna\_abstract\_shapes\_pt (const short \*pt, unsigned int level)

Convert a secondary structure to its abstract shapes representation.

vrna hx t \* vrna hx from ptable (short \*pt)

Convert a pair table representation of a secondary structure into a helix list.

vrna\_hx\_t \* vrna\_hx\_merge (const vrna\_hx\_t \*list, int maxdist)

Create a merged helix list from another helix list.

int \* vrna\_loopidx\_from\_ptable (const short \*pt)

Get a loop index representation of a structure.

int vrna bp distance pt (const short \*pt1, const short \*pt2)

Compute the "base pair" distance between two pair tables pt1 and pt2 of secondary structures.

int vrna\_bp\_distance (const char \*str1, const char \*str2)

Compute the "base pair" distance between two secondary structures s1 and s2.

• unsigned int \* vrna refBPcnt matrix (const short \*reference pt, unsigned int turn)

Make a reference base pair count matrix.

unsigned int \* vrna\_refBPdist\_matrix (const short \*pt1, const short \*pt2, unsigned int turn)

Make a reference base pair distance matrix.

char \* vrna\_db\_from\_probs (const FLT\_OR\_DBL \*pr, unsigned int length)

Create a dot-bracket like structure string from base pair probability matrix.

char vrna\_bpp\_symbol (const float \*x)

Get a pseudo dot bracket notation for a given probability information.

char \* vrna db from bp stack (vrna bp stack t \*bp, unsigned int length)

Create a dot-backet/parenthesis structure from backtracking stack.

char \* vrna db to tree string (const char \*structure, unsigned int type)

Convert a Dot-Bracket structure string into tree string representation.

char \* vrna\_tree\_string\_unweight (const char \*structure)

Remove weights from a linear string tree representation of a secondary structure.

char \* vrna\_tree\_string\_to\_db (const char \*tree)

Convert a linear tree string representation of a secondary structure back to Dot-Bracket notation.

void assign plist from db (vrna ep t \*\*pl, const char \*struc, float pr)

Create a vrna ep t from a dot-bracket string.

char \* pack\_structure (const char \*struc)

Pack secondary secondary structure, 5:1 compression using base 3 encoding.

char \* unpack structure (const char \*packed)

Unpack secondary structure previously packed with pack\_structure()

• short \* make pair table (const char \*structure)

Create a pair table of a secondary structure.

short \* copy\_pair\_table (const short \*pt)

Get an exact copy of a pair table.

- short \* alimake\_pair\_table (const char \*structure)
- short \* make\_pair\_table\_snoop (const char \*structure)
- int bp\_distance (const char \*str1, const char \*str2)

Compute the "base pair" distance between two secondary structures s1 and s2.

unsigned int \* make\_referenceBP\_array (short \*reference\_pt, unsigned int turn)

Make a reference base pair count matrix.

• unsigned int \* compute BPdifferences (short \*pt1, short \*pt2, unsigned int turn)

Make a reference base pair distance matrix.

void assign\_plist\_from\_pr (vrna\_ep\_t \*\*pl, FLT\_OR\_DBL \*probs, int length, double cutoff)

Create a vrna\_ep\_t from a probability matrix.

void parenthesis\_structure (char \*structure, vrna\_bp\_stack\_t \*bp, int length)

Create a dot-backet/parenthesis structure from backtracking stack.

void parenthesis\_zuker (char \*structure, vrna\_bp\_stack\_t \*bp, int length)

Create a dot-backet/parenthesis structure from backtracking stack obtained by zuker suboptimal calculation in cofold.c.

void bppm\_to\_structure (char \*structure, FLT\_OR\_DBL \*pr, unsigned int length)

Create a dot-bracket like structure string from base pair probability matrix.

char bppm\_symbol (const float \*x)

Get a pseudo dot bracket notation for a given probability information.

### 18.217.1 Detailed Description

Various utility- and helper-functions for secondary structure parsing, converting, etc.

### 18.218 structures.h

00238

```
00001 #ifndef VIENNA_RNA_PACKAGE_STRUCT_UTILS_H
00002 #define VIENNA_RNA_PACKAGE_STRUCT_UTILS_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00033 typedef struct vrna_hx_s vrna_hx_t;
00034
00035
00040 typedef struct vrna_elem_prob_s vrna_ep_t;
00041
00042
00073 #define VRNA_BRACKETS_ALPHA
00074
00075
00081 #define VRNA_BRACKETS_RND
00082
00083
00089 #define VRNA_BRACKETS_CLY
                                     1611
00090
00091
00097 #define VRNA_BRACKETS_ANG
00099
00105 #define VRNA_BRACKETS_SQR
                                     64U
00106
00107
00119 #define VRNA_BRACKETS_DEFAULT
00120 (VRNA_BRACKETS_RND |
00121
         VRNA_BRACKETS_CLY |
00122
        VRNA_BRACKETS_ANG |
00123
        VRNA_BRACKETS_SQR)
00124
00125
00132 #define VRNA_BRACKETS_ANY \
00133 (VRNA_BRACKETS_RND |
00134
        VRNA_BRACKETS_CLY
00135
        VRNA_BRACKETS_ANG |
        VRNA BRACKETS SOR |
00136
00137
        VRNA_BRACKETS_ALPHA)
00138
00140 #include <stdio.h>
00141
00142 #include <ViennaRNA/datastructures/basic.h>
00143
00156 char *
00157 vrna_db_pack(const char *struc);
00158
00159
00170 char *
00171 vrna_db_unpack(const char *packed);
00172
00189 void
00190 vrna_db_flatten(char
00191
                     unsigned int options);
00192
00193
00213 void
00214 vrna_db_flatten_to(char
                        const char target[3],
00215
00216
                         unsigned int options);
00217
00218
00236 char *
00237 vrna_db_from_ptable(const short *pt);
```

18.218 structures.h 1259

```
00239
00249 char *
00250 vrna_db_from_plist(vrna_ep_t
                                     *pairs,
00251
                         unsigned int n);
00252
00253
00260 char *
00261 vrna_db_to_element_string(const char *structure);
00262
00263
00295 char *
00296 vrna_db_pk_remove(const char *structure,
00297
                        unsigned int options);
00298
00299 /* End dot-bracket interface */
00318 short *
00319 vrna_ptable(const char *structure);
00320
00341 short *
00342 vrna_ptable_from_string(const char
                                             *structure,
00343
                               unsigned int options);
00344
00345
00363 short *
00364 vrna_pt_pk_get(const char *structure);
00365
00366
00373 short *
00374 vrna_ptable_copy(const short *pt);
00375
00376
00381 short *
00382 vrna_pt_ali_get(const char *structure);
00383
00384
00392 short *
00393 vrna_pt_snoop_get(const char *structure);
00394
00395
00412 short *
00413 vrna_pt_pk_remove(const short *ptable, 00414 unsigned int options);
00415
00417 /\star End pair table interface \star/
00429 #define VRNA_PLIST_TYPE_BASEPAIR
00430
00431
00435 #define VRNA_PLIST_TYPE_GQUAD
00436
00437
00441 #define VRNA_PLIST_TYPE_H_MOTIF
00442
00443
00447 #define VRNA_PLIST_TYPE_I_MOTIF
00449
00453 #define VRNA_PLIST_TYPE_UD_MOTIF
00454
00455
00459 #define VRNA PLIST TYPE STACK
00460
00461
00465 #define VRNA_PLIST_TYPE_UNPAIRED
00466
00467
00471 #define VRNA_PLIST_TYPE_TRIPLE
00472
00473
00482 struct vrna_elem_prob_s {
00483 int i;
00484 int j;
00485
       float p;
00486
        int type;
00487 };
00488
00504 vrna_ep_t *vrna_plist(const char *struc,
00505
                             float
                                         pr);
00506
00507
00524 vrna_ep_t *vrna_plist_from_probs(vrna_fold_compound_t *vc,
00525
00526
00527
00528 /* End pair list interface */
00596 char *
```

```
00597 vrna_db_from_WUSS(const char *wuss);
00598
00599
00600 /* End WUSS notation interface */
00648 char *
00649 vrna_abstract_shapes(const char
                                           *structure,
                            unsigned int level);
00651
00652
00668 char *
00669 vrna_abstract_shapes_pt(const short *pt, 00670 unsigned int level);
00671
00672
00673 /\star End abstract shapes interface \star/
00685 struct vrna_hx_s {
00686 unsigned int start;
00687 unsigned int end;
       unsigned int end;
00688 unsigned int length;
00689 unsigned int up5;
00690 unsigned int up3;
00691 };
00692
00693
00700 vrna_hx_t *
00701 vrna_hx_from_ptable(short *pt);
00702
00703
00707 vrna_hx_t *
00708 vrna_hx_merge(const vrna_hx_t *list,
00709
                                     maxdist);
                    int
00710
00711
00712 /\star End helix list interface \star/
00719 int \star
00720 vrna_loopidx_from_ptable(const short *pt);
00721
00722
00741 int
00742 vrna_bp_distance_pt(const short *pt1,
00743
                            const short *pt2);
00744
00759 int
00760 vrna_bp_distance(const char *str1,
                        const char *str2);
00761
00762
00763
00764 double
00765 vrna_dist_mountain(const char *str1, 00766 const char *str2,
         const char
00767
                          unsigned int p);
00768
00769
00770 /\star End metrics interface \star/
00779 unsigned int *
00780 vrna_refBPcnt_matrix(const short *reference_pt, 00781 unsigned int turn);
00782
00783
00791 unsigned int *
00792 vrna_refBPdist_matrix(const short *pt1, 00793 const short *pt2,
00794
                              unsigned int turn);
00795
00796
00800 char *
00801 vrna_db_from_probs(const FLT_OR_DBL *pr,
00802
                          unsigned int
                                           length);
00803
00804
00808 char
00809 vrna_bpp_symbol(const float *x);
00810
00811
00823 char *
00824 vrna_db_from_bp_stack(vrna_bp_stack_t *bp,
00825
                              unsigned int
00826
00827
00828 void
00829 vrna_letter_structure(char
                                               *structure,
                     vrna_bp_stack_t *bp,
00831
                              unsigned int length);
00832
00833
00919 #define VRNA_STRUCTURE_TREE_HIT
00920
```

18.218 structures.h 1261

```
00926 #define
              VRNA_STRUCTURE_TREE_SHAPIRO_SHORT 2U
00927
00928
00933 #define
              VRNA STRUCTURE TREE SHAPIRO
00934
00940 #define
              VRNA_STRUCTURE_TREE_SHAPIRO_EXT
00941
00942
00947 #define VRNA STRUCTURE TREE SHAPIRO WEIGHT 5U
00948
00953 #define
              VRNA_STRUCTURE_TREE_EXPANDED
00954
00955
00985 char *
00986 vrna_db_to_tree_string(const char *structure,
00987
                            unsigned int type);
00989
01001 char *
01002 vrna_tree_string_unweight(const char *structure);
01003
01004
01016 char *
01017 vrna_tree_string_to_db(const char *tree);
01018
01019
01020 /* End tree representations */
01023 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
01024
01026 /*# deprecated functions below
01028
01048 DEPRECATED(void assign_plist_from_db(vrna_ep_t **pl,
                                        const char *struc, float pr),
01049
01051
                "Use vrna_plist() instead");
01052
01066 DEPRECATED(char *pack_structure(const char *struc),
01067
                "Use vrna_db_pack() instead");
01068
01080 DEPRECATED(char *unpack_structure(const char *packed),
                "Use vrna_db_unpack() instead");
01082
01095 DEPRECATED(short *make_pair_table(const char *structure),
01096
                "Use vrna_ptable() instead");
01097
01098 DEPRECATED (short *make_pair_table_pk(const char *structure),
                "Use vrna_ptable_from_string() instead");
01100
01110 DEPRECATED(short *copy_pair_table(const short *pt),
01111
                "Use vrna_ptable_copy() instead");
01112
01119 DEPRECATED (short *alimake pair table (const char *structure),
                "Use vrna_pt_ali_get() instead");
01121
01129 DEPRECATED(short *make_pair_table_snoop(const char *structure),
01130
                "Use vrna_pt_snoop_get() instead");
01131
01132 DEPRECATED(int *make_loop_index_pt(short *pt),
01133
                "Use vrna_loopidx_from_ptable() instead");
01134
01148 DEPRECATED (int bp_distance (const char *str1,
01149
                                const char *str2),
                "Use vrna_bp_distance() instead");
01150
01151
01161 DEPRECATED (unsigned int *make_referenceBP_array(short
                                                                 *reference_pt,
01162
                                                    unsigned int turn),
01163
                "Use vrna_refBPcnt_matrix() instead");
01164
01174 DEPRECATED (unsigned int *compute_BPdifferences (short *pt1,
01175
                                                   short
                                                                *pt2.
                                                   unsigned int turn),
01176
01177
                "Use vrna_refBPdist_matrix() instead");
01178
01199 DEPRECATED(void assign_plist_from_pr(vrna_ep_t
01200
                                          FLT_OR_DBL *probs,
                                                   length,
01201
                                          int
01202
                                          double
                                                     cutoff),
01203
                "Use vrna_plist_from_probs() instead");
01204
01213 DEPRECATED (void parenthesis_structure (char
01214
                                         vrna_bp_stack_t *bp,
01215
                                          int
                                                         length),
01216
                "Use vrna_parenthesis_structure() instead");
```

```
01227 DEPRECATED (void parenthesis_zuker (char
01228
                                        vrna_bp_stack_t *bp,
01229
                                        int
                                                        length),
                "Use vrna_parenthesis_zuker() instead");
01230
01231
01232 DEPRECATED (void letter_structure(char
                                      vrna_bp_stack_t *bp,
int length),
01233
01234
                 "Use vrna_letter_structure() instead");
01235
01236
01242 DEPRECATED (void bppm_to_structure (char
                                                       *structure,
                                         FLT_OR_DBL
01243
01244
                                         unsigned int length),
01245
                "Use vrna_db_from_probs() instead");
01246
01252 DEPRECATED(char bppm_symbol(const float *x),
01253
                 "Use vrna_bpp_symbol() instead");
01255 #endif
01256
01261 #endif
```

# 18.219 ProfileAln.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PROFILEALN_H
00002 #define VIENNA_RNA_PACKAGE_PROFILEALN_H
00004 float profile_alm(const float *T1,
                      const char *seq1,
                      const float *T2,
00006
00007
                      const char *seq2);
80000
00009
00010 int set_paln_params(double gap_open,
           double gap_ext,
00011
00012
                        double seqweight,
00013
                       int
                               free_ends);
00014
00015
00016 #endif
```

# 18.220 ViennaRNA/profiledist.h File Reference

Include dependency graph for profiledist.h:

#### **Functions**

float profile\_edit\_distance (const float \*T1, const float \*T2)
 Align the 2 probability profiles T1, T2

float \* Make\_bp\_profile\_bppm (FLT\_OR\_DBL \*bppm, int length)

condense pair probability matrix into a vector containing probabilities for unpaired, upstream paired and downstream paired.

void print\_bppm (const float \*T)

print string representation of probability profile

void free profile (float \*T)

free space allocated in Make\_bp\_profile

float \* Make\_bp\_profile (int length)

### 18.220.1 Detailed Description

### 18.220.2 Function Documentation

18.221 profiledist.h 1263

### 18.220.2.1 profile\_edit\_distance()

This is like a Needleman-Wunsch alignment, we should really use affine gap-costs ala Gotoh

### 18.220.2.2 Make\_bp\_profile\_bppm()

condense pair probability matrix into a vector containing probabilities for unpaired, upstream paired and downstream paired.

This resulting probability profile is used as input for profile\_edit\_distance

#### **Parameters**

| bppm   | A pointer to the base pair probability matrix |  |
|--------|-----------------------------------------------|--|
| length | The length of the sequence                    |  |

#### Returns

The bp profile

# 18.220.2.3 free\_profile()

```
void free_profile (
     float * T )
```

free space allocated in Make\_bp\_profile

Backward compatibility only. You can just use plain free()

### 18.220.2.4 Make\_bp\_profile()

Note

This function is NOT threadsafe

See also

Make\_bp\_profile\_bppm()

Deprecated This function is deprecated and will be removed soon! See Make\_bp\_profile\_bppm() for a replacement

# 18.221 profiledist.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_PROFILEDIST_H
00002 #define VIENNA_RNA_PACKAGE_PROFILEDIST_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC__)
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
```

```
00010 # define DEPRECATED(func, msg) func
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00016 #include <ViennaRNA/datastructures/basic.h>
00017
00020 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00021
00028 float profile_edit_distance(const float *T1,
00029
                                  const float *T2);
00030
00031
00042 float *Make_bp_profile_bppm(FLT_OR_DBL *bppm,
00043
00044
00045
00049 void print_bppm(const float *T);
00051
00057 void free_profile(float *T);
00058
00059
00068 DEPRECATED(float *Make_bp_profile(int length),
00069 "Use Make_bp_profile_bppm() instead");
00070
00071 #endif
00072
00073 #endif
```

# 18.222 ViennaRNA/PS\_dot.h File Reference

Use ViennaRNA/plotting/probabilities.h instead. Include dependency graph for PS\_dot.h:

### 18.222.1 Detailed Description

Use ViennaRNA/plotting/probabilities.h instead.

Deprecated Use ViennaRNA/plotting/probabilities.h instead

# 18.223 PS\_dot.h

### Go to the documentation of this file.

# 18.224 ViennaRNA/read\_epars.h File Reference

Use ViennaRNA/params/io.h instead.

Include dependency graph for read\_epars.h:

#### 18.224.1 Detailed Description

Use ViennaRNA/params/io.h instead.

Deprecated Use ViennaRNA/params/io.h instead

18.225 read\_epars.h 1265

# 18.225 read\_epars.h

#### Go to the documentation of this file.

### 18.226 ViennaRNA/ribo.h File Reference

Parse RiboSum Scoring Matrices for Covariance Scoring of Alignments.

This graph shows which files directly or indirectly include this file:

#### **Functions**

float \*\* get\_ribosum (const char \*\*Alseq, int n\_seq, int length)
 Retrieve a RiboSum Scoring Matrix for a given Alignment.

• float \*\* readribosum (char \*name)

Read a RiboSum or other user-defined Scoring Matrix and Store into global Memory.

# 18.226.1 Detailed Description

Parse RiboSum Scoring Matrices for Covariance Scoring of Alignments.

# 18.227 ribo.h

### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_RIBOSUM_H
00002 #define VIENNA_RNA_PACKAGE_RIBOSUM_H
00003
00010 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00011
00022 float **get_ribosum(const char **Alseq,
00023
                          int
                                      n_seq,
00024
                          int.
                                      length);
00025
00026
00031 float **readribosum(char *name);
00032
00033
00037 #endif
00038
00039 #endif
```

### 18.228 ViennaRNA/RNAstruct.h File Reference

Parsing and Coarse Graining of Structures.

#### **Functions**

char \* b2HIT (const char \*structure)

Converts the full structure from bracket notation to the HIT notation including root.

char \* b2C (const char \*structure)

Converts the full structure from bracket notation to the a coarse grained notation using the 'H' 'B' 'I' 'M' and 'R' identifiers.

char \* b2Shapiro (const char \*structure)

Converts the full structure from bracket notation to the weighted coarse grained notation using the 'H' 'B' 'I' 'M' 'S' 'E' and 'R' identifiers.

char \* add root (const char \*structure)

Adds a root to an un-rooted tree in any except bracket notation.

char \* expand Shapiro (const char \*coarse)

Inserts missing 'S' identifiers in unweighted coarse grained structures as obtained from b2C().

char \* expand\_Full (const char \*structure)

Convert the full structure from bracket notation to the expanded notation including root.

• char \* unexpand\_Full (const char \*ffull)

Restores the bracket notation from an expanded full or HIT tree, that is any tree using only identifiers 'U' 'P' and 'R'.

• char \* unweight (const char \*wcoarse)

Strip weights from any weighted tree.

void unexpand\_aligned\_F (char \*align[2])

Converts two aligned structures in expanded notation.

void parse structure (const char \*structure)

Collects a statistic of structure elements of the full structure in bracket notation.

#### **Variables**

• int loop\_size [STRUC]

contains a list of all loop sizes. loop\_size[0] contains the number of external bases.

• int helix\_size [STRUC]

contains a list of all stack sizes.

• int loop\_degree [STRUC]

contains the corresponding list of loop degrees.

· int loops

contains the number of loops ( and therefore of stacks ).

· int unpaired

contains the number of unpaired bases.

· int pairs

contains the number of base pairs in the last parsed structure.

# 18.228.1 Detailed Description

Parsing and Coarse Graining of Structures.

#### Example:

# 18.229 RNAstruct.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_RNASTRUCT_H
00002 #define VIENNA_RNA_PACKAGE_RNASTRUCT_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang__)
```

```
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined( GNUC
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00009 # else
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00015
00040 #define STRUC
                       2000
00041
00052 DEPRECATED(char *b2HIT(const char *structure),
00053
                 "Use vrna_db_to_tree_string() instead!");
                                                                    /* Full -> HIT [incl. root] */
00054
00055
00066 DEPRECATED (char *b2C (const char *structure).
                 "Use vrna_db_to_tree_string() instead!");
00067
                                                                        /* Full -> Coarse [incl. root] */
00068
00081 DEPRECATED(char *b2Shapiro(const char *structure),
                 "Use vrna_db_to_tree_string() instead!");
00082
                                                                  /* Full -> weighted Shapiro [i.r.] */
00083
00084
00091 DEPRECATED (char *add_root (const char *structure),
00092
                 "");
                                       /* {Tree} -> ({Tree}R)
00093
00094
00102 DEPRECATED (char *expand_Shapiro (const char *coarse),
00103
                 "Use vrna_db_to_tree_string() instead!");
00104
00105
00106 /\star add S for stacks to coarse struct \star/
00114 DEPRECATED(char *expand_Full(const char *structure),
00115
                 "Use vrna_db_to_tree_string() instead!");
                                                               /* Full -> FFull
                                                                                          */
00116
00117
00125 DEPRECATED(char *unexpand_Full(const char *ffull),
                 "Use vrna_tree_string_to_db() instead!");
                                                                 /* FFull -> Full
00127
00128
00135 DEPRECATED (char *unweight (const char *wcoarse),
                 "Use vrna_tree_string_unweight() instead!");
                                                                       /* remove weights from coarse
00136
     struct */
00137
00138
00148 DEPRECATED(void unexpand_aligned_F(char *align[2]),
00149
00150
00151
00161 DEPRECATED(void parse_structure(const char *structure), 00162 ""); /* make structure statistics */
00163
00164
00169 DEPRECATED(extern int loop_size[STRUC],
                 "");
00170
                            /* loop sizes of a structure */
00175 DEPRECATED(extern int helix_size[STRUC],
00176
                           /* helix sizes of a structure */
00177
00181 DEPRECATED(extern int loop_degree[STRUC],
                ""); /* loop degrees of a structure */
00182
00183
00187 DEPRECATED(extern int loops,
00188
                                        /* n of loops and stacks */
00189
00193 DEPRECATED (extern int unpaired,
                  ");
00194
00195
00199 DEPRECATED (extern int pairs,
00200
                             /\star n of unpaired digits and pairs \star/
00201
00206 #endif
```

# 18.230 ViennaRNA/search/BoyerMoore.h File Reference

Variants of the Boyer-Moore string search algorithm.

### **Functions**

const unsigned int \* vrna\_search\_BMH\_num (const unsigned int \*needle, size\_t needle\_size, const unsigned int \*haystack, size\_t haystack\_size, size\_t start, size\_t \*badchars, unsigned char cyclic)

Search for a string of elements in a larger string of elements using the Boyer-Moore-Horspool algorithm.

const char \* vrna\_search\_BMH (const char \*needle, size\_t needle\_size, const char \*haystack, size\_←
t haystack\_size, size\_t start, size\_t \*badchars, unsigned char cyclic)

Search for an ASCII pattern within a larger ASCII string using the Boyer-Moore-Horspool algorithm.

 size\_t \* vrna\_search\_BM\_BCT\_num (const unsigned int \*pattern, size\_t pattern\_size, unsigned int num\_← max)

Retrieve a Boyer-Moore Bad Character Table for a pattern of elements represented by natural numbers.

size\_t \* vrna\_search\_BM\_BCT (const char \*pattern)

Retrieve a Boyer-Moore Bad Character Table for a NULL-terminated pattern of ASCII characters.

### 18.230.1 Detailed Description

Variants of the Boyer-Moore string search algorithm.

# 18.231 BoyerMoore.h

```
Go to the documentation of this file.
```

```
00001 #ifndef VIENNA_RNA_PACKAGE_SEARCH_BOYER_MOORE_H
00002 #define VIENNA_RNA_PACKAGE_SEARCH_BOYER_MOORE_H
00003
00036 const unsigned int *
00037 vrna_search_BMH_num(const unsigned int *needle,
00038
                                            needle size,
                         size t
                         const unsigned int *haystack,
00040
                        size_t haystack_size,
00041
00042
                         size t
                                            *badchars,
                         unsigned char
00043
                                           cyclic);
00044
00067 const char *
00068 vrna_search_BMH(const char
                                  *needle,
                                   needle_size,
00069
                     size_t
                     const char
00070
                                  *haystack,
                     size_t
00071
                                  havstack size.
                     size_t
                                  start,
00073
                     size_t
                                  *badchars,
00074
                     unsigned char cyclic);
00075
00076
00092 size t *
00093 vrna_search_BM_BCT_num(const unsigned int *pattern,
00094
                            unsigned int num_max);
00095
00096
00097
00110 size t *
00111 vrna search BM BCT(const char *pattern);
00117 #endif
```

# 18.232 ViennaRNA/sequence.h File Reference

Functions and data structures related to sequence representations,. Include dependency graph for sequence.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

· struct vrna sequence s

Data structure representing a nucleotide sequence. More...

struct vrna\_alignment\_s

18.233 sequence.h 1269

### **Typedefs**

typedef struct vrna\_sequence\_s vrna\_seq\_t

Typename for nucleotide sequence representation data structure vrna\_sequence\_s.

#### **Enumerations**

enum vrna\_seq\_type\_e { VRNA\_SEQ\_UNKNOWN , VRNA\_SEQ\_RNA , VRNA\_SEQ\_DNA }
 A enumerator used in vrna\_sequence\_s to distinguish different nucleotide sequences.

### 18.232.1 Detailed Description

Functions and data structures related to sequence representations,.

# 18.233 sequence.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_SEQUENCE_H
00002 #define VIENNA_RNA_PACKAGE_SEQUENCE_H
00003
00017 typedef struct vrna_sequence_s vrna_seq_t;
00018
00019 typedef struct vrna_alignment_s vrna_msa_t;
00021 #include <ViennaRNA/fold_compound.h>
00022
00023
00024 #define VRNA SEQUENCE RNA
00025
00026 #define VRNA_SEQUENCE_DNA
00027
00031 typedef enum {
00032
        VRNA_SEQ_UNKNOWN,
        VRNA_SEQ_RNA,
00033
       VRNA_SEQ_DNA
00034
00035 } vrna_seq_type_e;
00036
00037
00041 struct vrna_sequence_s {
00042 vrna_seq_type_e type;
        char
                        *name;
00043
00044
        char
                         *string;
00045
        short
        00046
00047
        short
                          *encoding3;
       unsigned int length;
00048
00049 };
00050
00051
00052 struct vrna_alignment_s {
00053 unsigned int n_seq;
       vrna_seq_t
vrna_seq_t
char
unsigned int
unsigned int
unsigned int
unsigned long long
unsigned long long
unsigned char
unsigned char
unsigned int
**gapfree_size;
/* for MAF alignment coordinates */
/* for MAF alignment coordinates */
/* for MAF alignment coordinates */
unsigned char
unsigned int
**a2s;
00054
00055
00056
00058
00059
00060
00061 };
00062
00063
00064 vrna_seq_t *
00065 vrna_sequence(const char *string,
                     unsigned int options);
00066
00067
00068
00069 int
00070 vrna_sequence_add(vrna_fold_compound_t *fc,
00071
         const char
                          00072
00073
00074
00075 int
00076 vrna_sequence_remove(vrna_fold_compound_t *fc,
00077
                             unsigned int
00078
00079
00080 void
```

```
00081 vrna_sequence_remove_all(vrna_fold_compound_t *fc);
00082
00083
00084 void
00085 vrna_sequence_prepare(vrna_fold_compound_t *fc);
00086
00088 int
00089 vrna_sequence_order_update(vrna_fold_compound_t *fc,
00090
                                 const unsigned int
                                                      *order);
00091
00092
00093 int
00094 vrna_msa_add( vrna_fold_compound_t
00095
                    const char
                                               **alignment,
00096
                    const char
                                               **names,
00097
                    const unsigned char
                                              *orientation.
00098
                    const unsigned long long *start,
00099
                    const unsigned long long *genome_size,
00100
                    unsigned int
                                              options);
00101
00102
00107 #endif
```

# 18.234 snofold.h

```
00001 /* function from fold.c */
00002 #ifndef VIENNA_RNA_PACKAGE_SNOFOLD_H
00003 #define VIENNA_RNA_PACKAGE_SNOFOLD_H
00004
00005 #include <ViennaRNA/datastructures/basic.h>
00006
00007 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
80000
00009 /* Normal fold */
00010
00014 int snofold(const char *sequence,
00015
                   char
                               *structure,
                   const int max assym,
00016
00017
                   const int threshold,
00018
                   const int min_s2,
00019
                   const int
                              max_s2,
00020
                   const int half_stem,
00021
                   const int max_half_stem);
00022
00023
00028 void snofree_arrays(const int length); /* free arrays for mfe folding */
00029
00030
00031 void
             snoinitialize_fold(int length);
                                                /* allocate arrays for folding */
00032
00033
00034 void
             snoupdate_fold_params(void);
                                                /* recalculate parameters */
00035
00036
00037 int
             snoloop_energy(short *ptable,
00038
                            short *s.
                            short *s1,
00039
00040
                                  i);
                            int
00041
00042
00043 void
             snoexport_fold_arrays(int
                                          **indx_p,
00044
                                    int
                                          **mLoop_p,
00045
                                    int
                                          **cLoop.
00046
                                    folden ***fold_p,
00047
                                    folden ***fold_p_XS);
00048
00049
00050 char *snobacktrack_fold_from_pair(const char *sequence,
00051
                                         int
00052
                                                     j);
                                         int
00053
00054
00055 /* alifold */
00056 float alisnofold(const char **strings,
00057
                       const int max_assym,
const int threshloop,
00058
00059
                       const int
                                  min_s2,
00060
                       const int max_s2,
00061
                       const int half_stem,
00062
                       const int max_half_stem);
00063
00064
00065 void alisnofree_arrays(const int length);
00066
```

18.235 snoop.h 1271

```
00068 char *alisnobacktrack_fold_from_pair(const char **sequence,
00069
                                            int
                                                       i,
00070
                                            int
                                                       j,
00071
                                            int
                                                        *cov);
00072
00073
00074 extern double cv_fact /* =1 */;
00075 extern double nc_fact /* =1 */;
00076
00077 /* max number of mismatch >>..(( )).>> */
00078 #define MISMATCH 3
00079
00080 #endif
00081
00082 #endif
```

# 18.235 snoop.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_SNOOP_H
00002 #define VIENNA_RNA_PACKAGE_SNOOP_H
00004 #include <ViennaRNA/datastructures/basic.h>
00005
00006 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00007
00012 snoopT snoopfold(const char *s1,
00013
                        const char *s2,
00014
                        const int penalty,
00015
                        const int
                                    threshloop,
00016
                        const int
                                    threshLE,
00017
                        const int
                                    threshRE,
00018
                        const int
                                    threshDE,
00019
                        const int
                                    threshD,
00020
                        const int
                                    half_stem,
00021
                        const int
                                    max_half_stem,
00022
                        const int
                                   min_s2,
00023
                        const int
                                    max_s2,
00024
                        const int min sl.
00025
                        const int
                                   max_s1,
00026
                        const int min_d1,
                        const int
00027
                                   min_d2,
00028
                        const int fullStemEnergy);
00029
00030
00036 snoopT *snoop_subopt(const char *s1,
                            const char *s2,
00038
                            int
                                        delta,
00039
                            int
                                        w,
00040
                            const int
                                        penalty,
00041
                            const int
                                        threshloop,
00042
                            const int
                                        threshLE,
00043
                            const int
                                        threshRE,
00044
                            const int
00045
                            const int
                                        threshTE,
00046
                            const int
                                        threshSE,
00047
                            const int
                                        threshD.
00048
                                        distance,
00049
                            const int
                                        half_stem,
00050
                            const int
                                        max_half_stem,
00051
                            const int
                                        min_s2,
00052
                            const int
                                        max_s2,
00053
                            const int
                                        min_s1,
00054
                            const int
                                        max s1.
00055
                            const int
                                        min d1.
00056
                            const int min_d2,
00057
                            const int fullStemEnergy);
00058
00059
00065 void Lsnoop_subopt(const char *s1,
00066
                          const char *s2,
00067
                          int
                                      delta,
00068
00069
                          const int
                                      penalty,
00070
                          const int
                                      threshloop,
00071
                          const int
                                      threshLE,
00072
                          const int
                                      threshRE,
00073
                                      threshDE,
                          const int
00074
                          const int
00075
                          const int
                                      threshSE,
00076
                          const int
                                      threshD,
00077
                          const int
                                      distance,
00078
                          const int
                                     half stem,
00079
                          const int
                                     max_half_stem,
00080
                          const int min_s2,
```

```
const int
                                     max_s2,
                                     min_s1,
00082
                          const int
00083
                          const int
                                     max_s1,
00084
                          const int
                                     min_d1,
00085
                          const int
                                     min d2,
00086
                          const int
                                     alignment length,
                          const char *name,
00088
                          const int fullStemEnergy);
00089
00090
00096 void Lsnoop_subopt_list(const char *s1,
00097
                               const char
                                           *s2.
00098
                               int
                                           delta,
00099
                                            w,
00100
                               const int
                                           penalty,
00101
                               const int
                                            threshloop,
00102
                               const int
                                            threshLE.
00103
                               const int
                                           threshRE,
00104
                               const int
                                           threshDE,
00105
                               const int
                                           threshTE,
00106
                               const int
                                            threshSE,
00107
                               const int
                                           threshD,
00108
                               const int
                                           distance,
00109
                               const int
                                           half stem.
00110
                               const int
                                           max_half_stem,
00111
                               const int
                                           min_s2,
                                           max_s2,
00112
                               const int
00113
                               const int
                                           min_s1,
00114
                               const int
                                           max_s1,
00115
                               const int
                                           min_d1,
00116
                               const int
                                           min d2.
00117
                               const int
                                           alignment_length,
00118
                               const char
                                           *name,
00119
                               const int
                                           fullStemEnergy);
00120
00121
00127 void Lsnoop_subopt_list_XS(const char *s1,
                                  const char *s2,
00129
                                  const int **access_s1,
00130
                                  int
                                              delta,
00131
                                  int
                                              w,
00132
                                             penalty,
                                  const int
00133
                                             threshloop,
                                  const int
00134
                                  const int
                                             threshLE,
00135
                                  const int
                                             threshRE,
00136
                                  const int
                                             threshDE,
00137
                                  const int
                                             threshTE,
00138
                                  const int
                                             threshSE,
00139
                                  const int threshD.
00140
                                  const int
                                             distance,
00141
                                  const int
                                             half_stem,
00142
                                  const int
                                             max_half_stem,
00143
                                  const int
                                             min_s2,
00144
                                  const int
                                             max_s2,
00145
                                  const int
                                             min_s1,
00146
                                  const int
                                             max s1,
                                  const int
                                             min_d1,
00148
                                  const int
                                             min_d2,
00149
                                  const int
                                             alignment_length,
00150
                                  const char *name,
                                  const int fullStemEnergy);
00151
00152
00153
00159 void snoop_subopt_XS(const char *s1,
00160
                            const char *s2,
00161
                            const int **access_s1,
00162
                            int
                                       delta,
00163
                            int
                                       W.
00164
                            const int
                                       penalty,
                            const int
00165
                                       threshloop,
00166
                            const int
                                       threshLE,
00167
                            const int
                                       threshRE
00168
                            const int
                                       threshDE,
00169
                            const int
                                       threshTE.
00170
                            const int
                                       threshSE,
00171
                            const int
                                       threshD,
00172
                            const int
                                       distance,
00173
                            const int
                                       half_stem,
00174
                            const int
                                       max_half_stem,
00175
                            const int
                                       min s2,
00176
                            const int
                                       max s2,
00177
                            const int
                                       min_s1,
00178
                            const int
                                       max_s1,
00179
                            const int
                                       min_d1,
00180
                            const int
                                       min_d2,
00181
                            const int
                                       alignment_length,
00182
                            const char *name.
```

18.235 snoop.h 1273

```
00183
                            const int fullStemEnergy);
00184
00185
00190 snoopT *alisnoop_subopt(const char **s1,
00191
                               const char
                                            **52.
00192
                                            delta,
                                int
00193
                               int
                                            w,
00194
                               const int
                                            penalty,
00195
                               const int
                                            threshloop,
00196
                               const int
                                            threshLE,
00197
                               const int
                                            threshRE,
00198
                               const int
                                            threshDE,
00199
                               const int
                                            threshTE,
00200
                               const int
00201
                               const int
                                            threshD,
00202
                               const int
                                            distance,
00203
                               const int
                                            half stem.
00204
                               const int
                                            max half stem,
00205
                               const int
                                            min_s2,
00206
                               const int
                                            max_s2,
                                            min_s1,
00207
                               const int
00208
                               const int
                                            max_s1,
00209
                               const int
                                            min_d1,
00210
                               const int
                                            min_d2);
00211
00212
00218 snoopT *aliLsnoop_subopt_list(const char **s1,
00219
                                      const char **s2,
00220
                                      int
                                                  delta,
00221
                                      int
                                                  W,
00222
                                      const int
                                                  penalty,
00223
                                      const int
                                                  threshloop,
00224
                                      const int
00225
                                      const int
                                                  threshRE,
00226
                                      const int
                                                  threshDE,
00227
                                      const int
                                                  threshTE,
00228
                                      const int
                                                  threshSE,
                                      const int
                                                  threshD,
00230
                                      const int
                                                  distance,
00231
                                      const int
                                                  half_stem,
00232
                                      const int
                                                  max_half_stem,
00233
                                      const int
                                                  min_s2,
00234
                                      const int
                                                  max s2.
00235
                                      const int
                                                  min_s1,
00236
                                      const int
                                                  max_s1,
00237
                                      const int
                                                  min_d1,
00238
                                      const int
                                                  min_d2,
00239
                                      const int
                                                  alignment_length);
00240
00241
00247 snoopT alisnoopfold(const char **s1,
00248
                           const char **s2,
00249
                           const int
                                        penalty,
00250
                           const int
                                        threshloop,
00251
                           const int
                                        threshLE,
00252
                           const int
                                        threshRE,
00253
                           const int
                                        threshDE,
00254
                                        threshD,
                           const int
00255
                           const int
                                        half_stem,
00256
                           const int
                                        max_half_stem,
00257
                           const int
                                        min_s2,
00258
                           const int
                                        max s2,
00259
                           const int
                                        min_s1,
00260
                           const int
                                        max_s1,
00261
                           const int
                                        min_d1,
00262
                           const int
                                        min_d2);
00263
00264
00269 snoopT snoopfold_XS(const char
                                        *s1.
                          const char
                                        *s2,
00271
                           const int
                                        **access_s1,
00272
                           const int
                                        pos,
00273
                           const int
                                        max_pos_j,
00274
                                        penalty,
                           const int
00275
                                        threshloop,
                           const int
00276
                           const int
                                        threshLE,
00277
                           const int
                                        threshRE,
00278
                           const int
                                        threshDE,
00279
                           const int
                                        threshD.
00280
                           const int
                                        half stem,
00281
                           const int
                                        max half stem,
00282
                           const int
                                        min_s2,
00283
                           const int
                                        max_s2,
00284
                           const int
                                        min_s1,
00285
                           const int
                                        max_s1,
00286
                           const int
                                        min_d1,
00287
                                       min_d2,
                           const int
```

```
00288 const int fullStemEnergy);
00289
00290
00291 extern int snoop_subopt_sorted;
00292 #endif
00293
00294 #endif
```

# 18.236 special const.h

```
00001 extern const char
00002 extern const char
00003 extern const char
                          probe;
00004 extern const char
00005 extern const char
                          start[];
00006 extern const char
                          end[];
00007 extern const char
00008 extern const char
                          injector[];
00009 extern unsigned int injector_len;
00010 extern const char
                         flash[];
00011 extern const char
                          head11[];
00012 extern const char
                          head21[];
00013 extern const char
                          lvlstr[];
00014 extern const char
```

# 18.237 ViennaRNA/datastructures/stream output.h File Reference

An implementation of a buffered, ordered stream output data structure. This graph shows which files directly or indirectly include this file:

### **Typedefs**

• typedef struct vrna\_ordered\_stream\_s \* vrna\_ostream\_t

An ordered output stream structure with unordered insert capabilities.

typedef void(\* vrna\_stream\_output\_f) (void \*auxdata, unsigned int i, void \*data)
 Ordered stream processing callback.

### **Functions**

vrna\_ostream\_t vrna\_ostream\_init (vrna\_stream\_output\_f output, void \*auxdata)

Get an initialized ordered output stream.

• void vrna\_ostream\_free (vrna\_ostream\_t dat)

Free an initialized ordered output stream.

void vrna\_ostream\_request (vrna\_ostream\_t dat, unsigned int num)

Request index in ordered output stream.

void vrna\_ostream\_provide (vrna\_ostream\_t dat, unsigned int i, void \*data)

Provide output stream data for a particular index.

# 18.237.1 Detailed Description

An implementation of a buffered, ordered stream output data structure.

# 18.238 stream\_output.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_STREAM_OUTPUT_H
00002 #define VIENNA_RNA_PACKAGE_STREAM_OUTPUT_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(DEPRECATED)
00006 # undef DEPRECATED
00007 # endif
00008 # if defined(__clang__)
```

```
00009 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00010 # elif defined(__GNUC_
00011 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00012 # else
00013 # define DEPRECATED(func, msg) func
00014 # endif
00015 #else
00016 # define DEPRECATED(func, msg) func
00017 #endif
00018
00033 typedef struct vrna_ordered_stream_s *vrna_ostream_t;
00034
00049 typedef void (*vrna_stream_output_f) (void
                                                       *auxdata,
00050
                                                  unsigned int i,
00051
                                                  void
                                                               *data);
00052 DEPRECATED(typedef void (vrna_callback_stream_output)(void
                                                                         *auxdata,
00053
                                                 unsigned int i,
00054
                                                 void
                                                             *data),
                "Use vrna_stream_output_f instead!");
00056
00057
00067 vrna_ostream_t
00068 vrna_ostream_init(vrna_stream_output_f output,
00069
                                                    *auxdata):
                       void
00070
00071
00079 void
00080 vrna_ostream_free(vrna_ostream_t dat);
00081
00082
00083 int
00084 vrna_ostream_threadsafe(void);
00085
00086
00099 void
00100 vrna_ostream_request(vrna_ostream_t dat,
00101
                          unsigned int num);
00103
00116 void
00117 vrna_ostream_provide(vrna_ostream_t dat,
00118
                       unsigned int i,
00119
                          void
                                         *data):
00120
00121
00127 #endif
```

# 18.239 ViennaRNA/stream\_output.h File Reference

 $Use\ ViennaRNA/data structures/stream\_output.h\ instead.$ 

Include dependency graph for stream\_output.h:

### 18.239.1 Detailed Description

Use ViennaRNA/datastructures/stream output.h instead.

Deprecated Use ViennaRNA/datastructures/stream output.h instead

# 18.240 stream\_output.h

# 18.241 ViennaRNA/string utils.h File Reference

Use ViennaRNA/utils/strings.h instead. Include dependency graph for string\_utils.h:

### 18.241.1 Detailed Description

Use ViennaRNA/utils/strings.h instead.

Deprecated Use ViennaRNA/utils/strings.h instead

# 18.242 string\_utils.h

#### Go to the documentation of this file.

# 18.243 ViennaRNA/stringdist.h File Reference

Functions for String Alignment. Include dependency graph for stringdist.h:

### **Functions**

• swString \* Make\_swString (char \*string)

Convert a structure into a format suitable for string\_edit\_distance().

float string\_edit\_distance (swString \*T1, swString \*T2)

Calculate the string edit distance of T1 and T2.

# 18.243.1 Detailed Description

Functions for String Alignment.

### 18.243.2 Function Documentation

#### 18.243.2.1 Make swString()

Convert a structure into a format suitable for string\_edit\_distance().

#### **Parameters**

string

18.244 stringdist.h 1277

Returns

### 18.243.2.2 string\_edit\_distance()

Calculate the string edit distance of T1 and T2.

#### **Parameters**

| T1 |  |
|----|--|
| T2 |  |

Returns

# 18.244 stringdist.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_STRING_DIST_H
00002 #define VIENNA_RNA_PACKAGE_STRING_DIST_H
00003
00009 #include <ViennaRNA/dist_vars.h>
00010
00011
00018 swString *Make_swString(char *string);
00019
00027 float string_edit_distance( swString *T1,
00028
00029
00030 #endif
```

# 18.245 ViennaRNA/structure\_utils.h File Reference

Use ViennaRNA/utils/structures.h instead.

Include dependency graph for structure\_utils.h:

### 18.245.1 Detailed Description

Use ViennaRNA/utils/structures.h instead.

Deprecated Use ViennaRNA/utils/structures.h instead

# 18.246 structure\_utils.h

# 18.247 ViennaRNA/structured domains.h File Reference

This module provides interfaces that deal with additional structured domains in the folding grammar. This graph shows which files directly or indirectly include this file:

#### **Data Structures**

· struct vrna structured domains s

### 18.247.1 Detailed Description

This module provides interfaces that deal with additional structured domains in the folding grammar.

# 18.248 structured\_domains.h

#### Go to the documentation of this file.

# 18.249 ViennaRNA/subopt.h File Reference

RNAsubopt and density of states declarations.

Include dependency graph for subopt.h: This graph shows which files directly or indirectly include this file:

#### **Data Structures**

struct vrna\_subopt\_sol\_s
 Solution element from subopt.c.

#### **Macros**

• #define MAXDOS 1000

Maximum density of states discretization for subopt.

### **Typedefs**

typedef struct vrna\_subopt\_sol\_s vrna\_subopt\_solution\_t

Typename for the subopt solution list repesenting data structure vrna\_subopt\_sol\_s.

typedef void(\* vrna\_subopt\_result\_f) (const char \*stucture, float energy, void \*data)

Callback for vrna\_subopt\_cb()

typedef struct vrna\_subopt\_sol\_s SOLUTION

Backward compatibility typedef for vrna\_subopt\_sol\_s.

#### **Functions**

- vrna\_subopt\_solution\_t \* vrna\_subopt (vrna\_fold\_compound\_t \*fc, int delta, int sorted, FILE \*fp)
   Returns list of subopt structures or writes to fp.
- void vrna\_subopt\_cb (vrna\_fold\_compound\_t \*fc, int delta, vrna\_subopt\_result\_f cb, void \*data)

  Generate suboptimal structures within an energy band arround the MFE.

18.250 subopt.h 1279

SOLUTION \* subopt (char \*seq, char \*structure, int delta, FILE \*fp)

Returns list of subopt structures or writes to fp.

SOLUTION \* subopt\_par (char \*seq, char \*structure, vrna\_param\_t \*parameters, int delta, int is\_
 constrained, int is\_circular, FILE \*fp)

Returns list of subopt structures or writes to fp.

SOLUTION \* subopt\_circ (char \*seq, char \*sequence, int delta, FILE \*fp)

Returns list of circular subopt structures or writes to fp.

SOLUTION \* zukersubopt (const char \*string)

Compute Zuker type suboptimal structures.

SOLUTION \* zukersubopt\_par (const char \*string, vrna\_param\_t \*parameters)

Compute Zuker type suboptimal structures.

#### **Variables**

double print\_energy

printing threshold for use with logML

· int subopt\_sorted

Sort output by energy.

int density\_of\_states [MAXDOS+1]

The Density of States.

# 18.249.1 Detailed Description

RNAsubopt and density of states declarations.

### 18.249.2 Typedef Documentation

#### 18.249.2.1 SOLUTION

```
typedef struct vrna_subopt_sol_s SOLUTION
Backward compatibility typedef for vrna_subopt_sol_s.
```

**Deprecated** Use vrna\_subopt\_solution\_t instead!

# 18.250 subopt.h

```
00001 /* subopt.h */
00002 #ifndef VIENNA_RNA_PACKAGE_SUBOPT_H
00003 #define VIENNA_RNA_PACKAGE_SUBOPT_H
00004
00005 #ifdef VRNA_WARN_DEPRECATED
00006 # if defined(__clang__)
00007 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00008 # elif defined(__GNUC_
00009 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00010 # else
00011 # define DEPRECATED(func, msg) func
00012 # endif
00013 #else
00014 # define DEPRECATED(func, msg) func
00015 #endif
00016
00031 typedef struct vrna_subopt_sol_s vrna_subopt_solution_t;
00032
00048 typedef void (*vrna_subopt_result_f)(const char *stucture,
00049
00050
                                          void
                                                      *data);
00051
00052 DEPRECATED(typedef void (vrna_subopt_callback)(const char *stucture,
00053
                                          float
                                                      energy,
00054
                                          void
                                                       *data),
```

```
"Use vrna_subopt_result_f instead!");
00056
00057 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00058
00063 typedef struct vrna_subopt_sol_s SOLUTION;
00064
00066
00067 #include <stdio.h>
00068
00069 #include <ViennaRNA/datastructures/basic.h>
00070 #include <ViennaRNA/fold_compound.h>
00071 #include <ViennaRNA/params/basic.h>
00072
00073
00077 struct vrna_subopt_sol_s {
00078 float energy;
00079 char *struct
       char *structure;
00080 };
00081
00085 #define MAXDOS
00086
00094 #define VRNA_UNSORTED
00095 #define VRNA_SORT_BY_ENERGY_LEXICOGRAPHIC_ASC 00096 #define VRNA_SORT_BY_ENERGY_ASC
00128 vrna_subopt_solution_t *
00129 vrna_subopt(vrna_fold_compound_t *fc,
              int
00130
                                          delta,
00131
                  int
                                          sorted,
00132
                  FILE
                                          *fp);
00133
00134
00169 void
00170 vrna_subopt_cb(vrna_fold_compound_t *fc,
00171
                      int
                                            delta
                      vrna_subopt_result_f cb,
00172
                      void
00174
00175
00182 extern double print_energy;
00183
00190 extern int subopt sorted;
00191
00208 extern int density_of_states[MAXDOS + 1];
00209 /* End of group dos */
00211
00212 #ifndef VRNA DISABLE BACKWARD COMPATIBILITY
00213
00231 DEPRECATED (SOLUTION * subopt (char *seq, char *structure, int delta, FILE * fp),
                  "Use vrna_subopt() or vrna_subopt_cb() instead");
00233
00239 DEPRECATED (SOLUTION *
00240
                subopt_par(char *seq, char *structure, vrna_param_t * parameters, int delta,
00241
                             int is_constrained,
                 int is_circular, FILE * fp),

"Use vrna_subopt() or vrna_subopt_cb() instead");
00242
00244
00259 DEPRECATED(SOLUTION * subopt_circ(char *seq, char *sequence, int delta, FILE * fp),
00260
                  "Use vrna_subopt() or vrna_subopt_cb() instead");
00261
00276 DEPRECATED (SOLUTION * zukersubopt (const char *string),
                  "Use vrna_subopt_zuker() instead");
00278
00287 DEPRECATED(SOLUTION * zukersubopt_par(const char *string, vrna_param_t * parameters),
00288
                  "Use vrna_subopt_zuker() instead");
00289
00290
00291 #endif
00292
00293 #endif
```

# 18.251 subopt\_zuker.h

```
00001 /* subopt_zuker.h */
00002 #ifndef VIENNA_RNA_PACKAGE_SUBOPT_ZUKER_H
00003 #define VIENNA_RNA_PACKAGE_SUBOPT_ZUKER_H
00004
00005 #include <ViennaRNA/fold_compound.h>
00006 #include <ViennaRNA/subopt.h>
00007
00032 vrna_subopt_solution_t *
00033 vrna_subopt_zuker(vrna_fold_compound_t *fc);
00034
00035
```

00036 #endif

# 18.252 ViennaRNA/svm utils.h File Reference

Use ViennaRNA/utils/svm.h instead.

Include dependency graph for svm\_utils.h:

### 18.252.1 Detailed Description

Use ViennaRNA/utils/svm.h instead.

Deprecated Use ViennaRNA/utils/svm.h instead

# 18.253 svm\_utils.h

#### Go to the documentation of this file.

### 18.254 ViennaRNA/treedist.h File Reference

Functions for Tree Edit Distances.

Include dependency graph for treedist.h:

### **Functions**

• Tree \* make\_tree (char \*struc)

Constructs a Tree ( essentially the postorder list ) of the structure 'struc', for use in tree\_edit\_distance().

• float tree\_edit\_distance (Tree \*T1, Tree \*T2)

Calculates the edit distance of the two trees.

void print\_tree (Tree \*t)

Print a tree (mainly for debugging)

void free\_tree (Tree \*t)

Free the memory allocated for Tree t.

### 18.254.1 Detailed Description

Functions for Tree Edit Distances.

#### 18.254.2 Function Documentation

#### 18.254.2.1 make\_tree()

Constructs a Tree ( essentially the postorder list ) of the structure 'struc', for use in tree\_edit\_distance().

### **Parameters**

may be any rooted structure representation. struc

Returns

### 18.254.2.2 tree\_edit\_distance()

```
float tree_edit_distance (
            Tree * T1,
             Tree * T2 )
```

Calculates the edit distance of the two trees.

#### **Parameters**

| T1 |  |
|----|--|
| T2 |  |

Returns

### 18.254.2.3 free\_tree()

```
void free_tree (
             Tree * t )
```

Free the memory allocated for Tree t.

### **Parameters**

t

# 18.255 treedist.h

```
Go to the documentation of this file.

00001 #ifndef VIENNA_RNA_PACKAGE_TREE_DIST_H

00002 #define VIENNA_RNA_PACKAGE_TREE_DIST_H
00009 #include <ViennaRNA/dist_vars.h>
00010
00018 Tree *make_tree(char *struc);
00019
00020
00028 float tree_edit_distance(Tree *T1,
00029
00030
00031
00035 void
                 print_tree(Tree *t);
00036
00037
00043 void
                 free_tree(Tree *t);
00044
00045
00046 #endif
```

### 18.256 ViennaRNA/units.h File Reference

Use ViennaRNA/utils/units.h instead. Include dependency graph for units.h:

### 18.256.1 Detailed Description

Use ViennaRNA/utils/units.h instead.

Deprecated Use ViennaRNA/utils/units.h instead

### 18.257 units.h

#### Go to the documentation of this file.

### 18.258 ViennaRNA/utils/units.h File Reference

Physical Units and Functions to convert them into each other.

This graph shows which files directly or indirectly include this file:

### **Enumerations**

```
    enum vrna_unit_energy_e {
        VRNA_UNIT_J, VRNA_UNIT_KJ, VRNA_UNIT_CAL_IT, VRNA_UNIT_DACAL_IT,
        VRNA_UNIT_KCAL_IT, VRNA_UNIT_CAL, VRNA_UNIT_DACAL, VRNA_UNIT_KCAL,
        VRNA_UNIT_G_TNT, VRNA_UNIT_KG_TNT, VRNA_UNIT_T_TNT, VRNA_UNIT_EV,
        VRNA_UNIT_WH, VRNA_UNIT_KWH }
        Energy / Work Units.
    enum vrna_unit_temperature_e {
        VRNA_UNIT_K, VRNA_UNIT_DEG_C, VRNA_UNIT_DEG_F, VRNA_UNIT_DEG_R,
        VRNA_UNIT_DEG_N, VRNA_UNIT_DEG_DE, VRNA_UNIT_DEG_RE, VRNA_UNIT_DEG_RO }
        Temperature Units.
```

### **Functions**

- double vrna\_convert\_energy (double energy, vrna\_unit\_energy\_e from, vrna\_unit\_energy\_e to)

  Convert between energy / work units.
- double vrna\_convert\_temperature (double temp, vrna\_unit\_temperature\_e from, vrna\_unit\_temperature\_e
   to)

Convert between temperature units.

• int vrna\_convert\_kcal\_to\_dcal (double energy)

Convert floating point energy value into integer representation.

double vrna\_convert\_dcal\_to\_kcal (int energy)

Convert an integer representation of free energy in deka-cal/mol to kcal/mol.

### 18.258.1 Detailed Description

Physical Units and Functions to convert them into each other.

,

### 18.259 units.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_UNITS_H
00002 #define VIENNA_RNA_PACKAGE_UNITS_H
00003
00021 typedef enum {
00022
        VRNA_UNIT_J
        VRNA_UNIT_KJ,
00023
00024
        VRNA UNIT CAL IT,
        VRNA_UNIT_DACAL_IT,
00025
00026
        VRNA_UNIT_KCAL_IT,
00027
        VRNA_UNIT_CAL,
00028
       VRNA_UNIT_DACAL,
00029
        VRNA_UNIT_KCAL,
        VRNA_UNIT_G_TNT,
00030
        VRNA_UNIT_KG_TNT,
00031
00032
        VRNA_UNIT_T_TNT,
00033
        VRNA_UNIT_EV,
00034
        VRNA_UNIT_WH,
00035
       VRNA_UNIT_KWH,
00036 } vrna_unit_energy_e;
00037
00038
00044 typedef enum {
00045
        VRNA_UNIT_K,
00046
        VRNA UNIT DEG C,
00047
        VRNA_UNIT_DEG_F,
00048
       VRNA_UNIT_DEG_R,
00049
        VRNA_UNIT_DEG_N,
00050
       VRNA_UNIT_DEG_DE,
00051
        VRNA_UNIT_DEG_RE,
00052
       VRNA_UNIT_DEG_RO,
00053 } vrna_unit_temperature_e;
00054
00055
00065 double
00066 vrna_convert_energy(double
00067
                          vrna_unit_energy_e
                                               from
00068
                          vrna_unit_energy_e to);
00069
00070
00081 vrna_convert_temperature(double
                                                          temp,
00082
                               vrna_unit_temperature_e
00083
                               vrna_unit_temperature_e
                                                         to);
00084
00085
00097 int
00098 vrna_convert_kcal_to_dcal(double energy);
00099
00100
00111 double
00112 vrna convert dcal to kcal(int energy);
00114
00119 #endif
```

### 18.260 ViennaRNA/unstructured\_domains.h File Reference

Functions to modify unstructured domains, e.g. to incorporate ligands binding to unpaired stretches. Include dependency graph for unstructured\_domains.h: This graph shows which files directly or indirectly include this file:

### **Data Structures**

struct vrna\_unstructured\_domain\_s

Data structure to store all functionality for ligand binding. More...

struct vrna\_unstructured\_domain\_motif\_s

### **Macros**

#define VRNA UNSTRUCTURED DOMAIN EXT LOOP 1U

Flag to indicate ligand bound to unpiared stretch in the exterior loop.

• #define VRNA\_UNSTRUCTURED\_DOMAIN\_HP\_LOOP 2U

Flag to indicate ligand bound to unpaired stretch in a hairpin loop.

• #define VRNA\_UNSTRUCTURED\_DOMAIN\_INT\_LOOP 4U

Flag to indicate ligand bound to unpiared stretch in an interior loop.

#define VRNA\_UNSTRUCTURED\_DOMAIN\_MB\_LOOP 8U

Flag to indicate ligand bound to unpiared stretch in a multibranch loop.

#define VRNA\_UNSTRUCTURED\_DOMAIN\_MOTIF 16U

Flag to indicate ligand binding without additional unbound nucleotides (motif-only)

#define VRNA\_UNSTRUCTURED\_DOMAIN\_ALL\_LOOPS

Flag to indicate ligand bound to unpiared stretch in any loop (convenience macro)

### **Typedefs**

typedef struct vrna\_unstructured\_domain\_s vrna\_ud\_t

Typename for the ligand binding extension data structure vrna unstructured domain s.

typedef int(\* vrna\_ud\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, void \*data)

Callback to retrieve binding free energy of a ligand bound to an unpaired sequence segment.

typedef FLT\_OR\_DBL(\* vrna\_ud\_exp\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, void \*data)

Callback to retrieve Boltzmann factor of the binding free energy of a ligand bound to an unpaired sequence segment.

typedef void(\* vrna\_ud\_production\_f) (vrna\_fold\_compound\_t \*vc, void \*data)

Callback for pre-processing the production rule of the ligand binding to unpaired stretches feature.

typedef void(\* vrna\_ud\_exp\_production\_f) (vrna\_fold\_compound\_t \*vc, void \*data)

Callback for pre-processing the production rule of the ligand binding to unpaired stretches feature (partition function variant)

• typedef void(\* vrna\_ud\_add\_probs\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, FLT\_OR\_DBL exp\_energy, void \*data)

Callback to store/add equilibrium probability for a ligand bound to an unpaired sequence segment.

• typedef FLT\_OR\_DBL(\* vrna\_ud\_get\_probs\_f) (vrna\_fold\_compound\_t \*vc, int i, int j, unsigned int loop\_type, int motif, void \*data)

Callback to retrieve equilibrium probability for a ligand bound to an unpaired sequence segment.

### **Functions**

vrna\_ud\_motif\_t \* vrna\_ud\_motifs\_centroid (vrna\_fold\_compound\_t \*fc, const char \*structure)

vrna\_ud\_motif\_t \* vrna\_ud\_motifs\_MEA (vrna\_fold\_compound\_t \*fc, const char \*structure, vrna\_ep\_t \*probability\_list)

Detect unstructured domains in MEA structure.

Detect unstructured domains in centroid structure.

vrna\_ud\_motif\_t \* vrna\_ud\_motifs\_MFE (vrna\_fold\_compound\_t \*fc, const char \*structure)

Detect unstructured domains in MFE structure.

void vrna\_ud\_add\_motif (vrna\_fold\_compound\_t \*vc, const char \*motif, double motif\_en, const char \*motif
 —name, unsigned int loop\_type)

Add an unstructured domain motif, e.g. for ligand binding.

int \* vrna\_ud\_get\_motif\_size\_at (vrna\_fold\_compound\_t \*vc, int i, unsigned int loop\_type)

Get a list of unique motif sizes that start at a certain position within the sequence.

void vrna ud remove (vrna fold compound t \*vc)

Remove ligand binding to unpaired stretches.

void vrna\_ud\_set\_data (vrna\_fold\_compound\_t \*vc, void \*data, vrna\_auxdata\_free\_f free\_cb)

Attach an auxiliary data structure.

• void vrna\_ud\_set\_prod\_rule\_cb (vrna\_fold\_compound\_t \*vc, vrna\_ud\_production\_f pre\_cb, vrna\_ud\_f e\_cb)

Attach production rule callbacks for free energies computations.

void vrna\_ud\_set\_exp\_prod\_rule\_cb (vrna\_fold\_compound\_t \*vc, vrna\_ud\_exp\_production\_f pre\_cb, vrna\_ud\_exp\_f exp\_e\_cb)

Attach production rule for partition function.

void vrna\_ud\_set\_prob\_cb (vrna\_fold\_compound\_t \*vc, vrna\_ud\_add\_probs\_f setter, vrna\_ud\_get\_probs\_f getter)

### 18.260.1 Detailed Description

Functions to modify unstructured domains, e.g. to incorporate ligands binding to unpaired stretches.

### 18.260.2 Function Documentation

#### 18.260.2.1 vrna\_ud\_get\_motif\_size\_at()

Get a list of unique motif sizes that start at a certain position within the sequence.

#### 18.260.2.2 vrna ud set prob cb()

SWIG Wrapper Notes This function is attached as method ud\_set\_prob\_cb() to objects of type fold\_compound

### 18.261 unstructured domains.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_UNSTRUCTURED_DOMAIN_H
00002 #define VIENNA_RNA_PACKAGE_UNSTRUCTURED_DOMAIN_H
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(DEPRECATED)
00006 #
         undef DEPRECATED
00007 # endif
00008 # if defined(__clang__)
00009 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00010 # elif defined(__GNUC__)
00011 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00012 # else
00013 # define DEPRECATED(func, msg) func
00014 # endif
00015 #else
00016 # define DEPRECATED(func, msg) func
00017 #endif
00018
00084 typedef struct vrna_unstructured_domain_s vrna_ud_t;
00085
00086 typedef struct vrna_unstructured_domain_motif_s vrna_ud_motif_t;
00088 #include <ViennaRNA/datastructures/basic.h>
00089 #include <ViennaRNA/fold_compound.h>
00090 #include <ViennaRNA/utils/structures.h>
00091
00110 typedef int (*vrna_ud_f)(vrna_fold_compound_t *vc,
00111
                                                                   i,
                                            int
00112
                                            int
                                                                   j,
```

```
00113
                                                                    loop_type,
                                              unsigned int
00114
00115
00116 DEPRECATED(typedef int (vrna_callback_ud_energy)(vrna_fold_compound_t *vc,
00117
                                             int
                                                                    i,
00118
                                              int
00119
                                              unsigned int
                                                                     loop_type,
00120
00121
                 "Use vrna_ud_f instead!");
00122
00141 typedef FLT_OR_DBL (*vrna_ud_exp_f) (vrna_fold_compound_t *vc,
00142
                                                         int
                                                                               i.
00143
                                                         int
00144
                                                         unsigned int
                                                                               loop_type,
00145
                                                         void
                                                                               *data);
00146
00147 DEPRECATED(typedef FLT_OR_DBL (vrna_callback_ud_exp_energy)(vrna_fold_compound_t *vc,
00148
                                                         int
                                                                               i,
00149
                                                         int
                                                                               j,
00150
                                                         unsigned int
                                                                               loop_type,
00151
                                                                               *data),
00152
                "Use vrna_ud_exp_f instead!");
00153
00164 typedef void (*vrna_ud_production_f)(vrna_fold_compound_t *vc,
00165
                                                                         *data);
                                                   void
00166
00167 DEPRECATED (typedef void (vrna_callback_ud_production) (vrna_fold_compound_t *vc,
00168
00169
                "Use vrna_ud_production_f instead!");
00170
00181 typedef void (*vrna_ud_exp_production_f)(vrna_fold_compound_t *vc,
00182
                                                       void
                                                                             *data):
00183
00184 DEPRECATED(typedef void (vrna_callback_ud_exp_production)(vrna_fold_compound_t *vc,
00185
                  "Use vrna_ud_exp_production_f instead!");
00186
00187
00188
00198 typedef void (*vrna_ud_add_probs_f) (vrna_fold_compound_t *vc,
00199
                                                  int
00200
                                                  int
00201
                                                  unsigned int
                                                                         loop_type,
00202
                                                  FLT_OR_DBL
                                                                         exp_energy,
00203
                                                  void
                                                                         *data);
00205 DEPRECATED(typedef void (vrna_callback_ud_probs_add)(vrna_fold_compound_t *vc,
00206
                                                  int
00207
                                                  int
00208
                                                  unsigned int
                                                                         loop_type,
00209
                                                  FLT OR DBL
                                                                         exp_energy,
00210
                                                                         *data),
                                                  void
00211
               "Use vrna_ud_add_probs_f instead!");
00212
00222 typedef FLT_OR_DBL (*vrna_ud_get_probs_f)(vrna_fold_compound_t *vc,
00223
                                                        int
                                                                               i.
00224
                                                        int
00225
                                                        unsigned int
                                                                               loop_type,
00226
00227
00228
00229 DEPRECATED(typedef FLT_OR_DBL (vrna_callback_ud_probs_get)(vrna_fold_compound_t *vc,
00230
                                                        int
                                                                               i,
00231
                                                        int
00232
                                                        unsigned int
                                                                               loop_type,
00233
                                                        int
                                                                               motif.
00234
                                                        void
                                                                               *data),
00235
                  "Use vrna_ud_get_probs_f instead!");
00236
00237
00242 #define VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP
00243
00248 #define VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP
00249
00254 #define VRNA UNSTRUCTURED DOMAIN INT LOOP
                                                     4 U
00255
00260 #define VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP
00261
00266 #define VRNA_UNSTRUCTURED_DOMAIN_MOTIF
                                                     16U
00267
                                                     (VRNA_UNSTRUCTURED_DOMAIN_EXT_LOOP | \
00272 #define VRNA UNSTRUCTURED DOMAIN ALL LOOPS
                                                      VRNA_UNSTRUCTURED_DOMAIN_HP_LOOP | VRNA_UNSTRUCTURED_DOMAIN_INT_LOOP |
00273
00274
00275
                                                      VRNA_UNSTRUCTURED_DOMAIN_MB_LOOP)
00276
00281 struct vrna_unstructured_domain_s {
00282
00283
```

```
* Keep track of all motifs added
00285
00286
        */
                    uniq_motif_count;
00287
       int
       unsigned int *uniq_motif_size;
00288
       int motif_count;
char **motif;
char **motif_name;
00290
00292
00293
       unsigned int *motif_size;
       double    *motif_en;
unsigned int *motif_type;
00294
00295
00297
       *************

* Grammar extension for ligand
00298
00299
00300
        * binding
00301
        ********
00302
00303
       vrna ud production f
                              prod cb;
       vrna_ud_exp_production_f exp_prod_cb;
00307
       vrna_ud_f energy_cb;
vrna_ud_exp_f exp_energy_cb;
00308
00309
      *data;
00310
       void
00311
00312
00313
00314 };
00315
00316
00317 struct vrna_unstructured_domain_motif_s {
00318 int start;
00319 int number;
00320 };
00321
00322
00342 vrna\_ud\_motif\_t *
00343 vrna_ud_motifs_centroid(vrna_fold_compound_t *fc,
00344
                          const char
                                                *structure);
00346
00367 vrna_ud_motif_t *
00368 vrna_ud_motifs_MEA(vrna_fold_compound_t *fc,
           00369
00370
00371
00372
00391 vrna_ud_motif_t \star
00392 vrna_ud_motifs_MFE(vrna_fold_compound_t *fc,
                       const char
00393
                                           *structure);
00394
00395
00421 void vrna_ud_add_motif(vrna_fold_compound_t *vc,
                            const char
double
const char
00422
00423
                                                motif_en,
00424
                                                 *motif name,
                            00425
00426
00432 int *vrna_ud_get_motif_size_at(vrna_fold_compound_t *vc,
00433
                                   int i,
unsigned int loop_type);
00434
00435
00436
00437 int *
00438 vrna_ud_get_motifs_at(vrna_fold_compound_t *vc,
           int
00439
                          int i,
unsigned int loop_type);
00440
00441
00442
00443 vrna_ud_motif_t *
00444 vrna_ud_detect_motifs(vrna_fold_compound_t *vc,
00445
                         const char
00446
00447
00458 void vrna_ud_remove(vrna_fold_compound_t *vc);
00459
00477 void vrna_ud_set_data(vrna_fold_compound_t
00478
                           void
                                                     *data,
00479
                           vrna_auxdata_free_f free_cb);
00480
00481
00516 void vrna_ud_set_prod_rule_cb(vrna_fold_compound_t
00517
                                  vrna_ud_production_f pre_cb,
00518
                                  vrna_ud_f e_cb);
00519
00520
00545 void vrna ud set exp prod rule cb(vrna fold compound t
                                                                      *VC,
```

### 18.262 ViennaRNA/io/utils.h File Reference

Several utilities for file handling.

Include dependency graph for utils.h: This graph shows which files directly or indirectly include this file:

### **Functions**

void vrna\_file\_copy (FILE \*from, FILE \*to)

Inefficient 'cp'.

char \* vrna read line (FILE \*fp)

Read a line of arbitrary length from a stream.

• int vrna\_mkdir\_p (const char \*path)

Recursivly create a directory tree.

char \* vrna\_basename (const char \*path)

Extract the filename from a file path.

char \* vrna dirname (const char \*path)

Extract the directory part of a file path.

char \* vrna\_filename\_sanitize (const char \*name, const char \*replacement)

Sanitize a file name.

• int vrna\_file\_exists (const char \*filename)

Check if a file already exists in the file system.

### 18.262.1 Detailed Description

Several utilities for file handling.

### 18.263 utils.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_FILE_UTILS_H
00002 #define VIENNA_RNA_PACKAGE_FILE_UTILS_H
00003
00010 #include <stdio.h>
00011
00021 void vrna_file_copy(FILE *from,
00022
00023
00024
00035 char *vrna_read_line(FILE *fp);
00036
00037
00041 int vrna_mkdir_p(const char *path);
00042
00043
00047 char *vrna_basename(const char *path);
00048
00049
00053 char *vrna_dirname(const char *path);
00054
00055
00097 char *vrna_filename_sanitize(const char *name,
00098
                                   const char *replacement);
00099
00100
```

```
00107 int
00108 vrna_file_exists(const char *filename);
00109
00110
00115 #endif
```

### 18.264 ViennaRNA/plotting/utils.h File Reference

Various utilities to assist in plotting secondary structures and consensus structures.

Include dependency graph for utils.h: This graph shows which files directly or indirectly include this file:

### **Functions**

- char \*\* vrna\_annotate\_covar\_db (const char \*\*alignment, const char \*structure, vrna\_md\_t \*md\_p)

  Produce covariance annotation for an alignment given a secondary structure.
- vrna\_cpair\_t \* vrna\_annotate\_covar\_pairs (const char \*\*alignment, vrna\_ep\_t \*pl, vrna\_ep\_t \*mfel, double threshold, vrna\_md\_t \*md)

Produce covariance annotation for an alignment given a set of base pairs.

### 18.264.1 Detailed Description

Various utilities to assist in plotting secondary structures and consensus structures.

## 18.265 utils.h

```
Go to the documentation of this file.
```

```
00001 #ifndef VIENNA_RNA_PACKAGE_PLOT_UTILS_H
00002 #define VIENNA_RNA_PACKAGE_PLOT_UTILS_H
00003
00010 #include <ViennaRNA/datastructures/basic.h>
00011 #include <ViennaRNA/model.h>
00012 #include <ViennaRNA/utils/structures.h>
00013
00032 char **
00033 vrna_annotate_covar_db(const char **alignment,
00034
                            const char *structure,
00035
                              vrna_md_t
                                            *md_p);
00036
00037
00038 char **
00039 vrna_annotate_covar_db_extended(const char
                                                      **alignment,
00040
                                                     *structure,
                                       const char
                                                      *md_p
00041
                                        vrna md t
00042
                                        unsigned int options);
00043
00049 vrna_cpair_t *
00050 vrna_annotate_covar_pairs(const char **alignment,
                                 vrna_ep_t
00051
                                              *pl,
00052
                                 vrna_ep_t
                                              *mfel.
00053
                                 double
                                              threshold,
00054
                                 vrna_md_t *md);
00055
00056
00061 #endif
```

### 18.266 ViennaRNA/utils.h File Reference

Use ViennaRNA/utils/basic.h instead. Include dependency graph for utils.h:

### 18.266.1 Detailed Description

Use ViennaRNA/utils/basic.h instead.

Deprecated Use ViennaRNA/utils/basic.h instead

18.267 utils.h 1291

Deprecated Use ViennaRNA/utils/basic.h instead

### 18.267 utils.h

#### Go to the documentation of this file.

### 18.268 cpu.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_UTILS_CPU_H
00002 #define VIENNA_RNA_PACKAGE_UTILS_CPU_H
00003
00004 #define VRNA_CPU_SIMD_NONE
00005 #define VRNA_CPU_SIMD_SSE2
00006 #define VRNA_CPU_SIMD_SSE3
00007 #define VRNA_CPU_SIMD_SSE41
                                          4 U
00008 #define VRNA_CPU_SIMD_SSE42
                                          811
00009 #define VRNA_CPU_SIMD_AVX
00010 #define VRNA_CPU_SIMD_AVX2
00011 #define VRNA_CPU_SIMD_AVX512F
00012
00013
00014 char *
00015 vrna_cpu_vendor_string(void);
00016
00017
00018 unsigned int
00019 vrna_cpu_simd_capabilities(void);
00020
00021
00022 #endif
```

### 18.269 higher\_order\_functions.h

```
00001 #ifndef VIENNA RNA PACKAGE UTILS FUN H
00002 #define VIENNA_RNA_PACKAGE_UTILS_FUN_H
00004 void
00005 vrna_fun_dispatch_disable(void);
00006
00007
00008 void
00009 vrna_fun_dispatch_enable(void);
00010
00011
00012 int
00013 vrna_fun_zip_add_min(const int *e1,
00014
                           const int *e2,
                                      count);
00016
00017
00018 #endif
```

## 18.270 ViennaRNA/utils/strings.h File Reference

General utility- and helper-functions for RNA sequence and structure strings used throughout the ViennaRNA Package.

Include dependency graph for strings.h: This graph shows which files directly or indirectly include this file:

#### **Macros**

#define XSTR(s) STR(s)

Stringify a macro after expansion.

• #define STR(s) #s

Stringify a macro argument.

• #define FILENAME MAX LENGTH 80

Maximum length of filenames that are generated by our programs.

• #define FILENAME\_ID\_LENGTH 42

Maximum length of id taken from fasta header for filename generation.

#define VRNA TRIM LEADING 1U

Trim only characters leading the string.

• #define VRNA\_TRIM\_TRAILING 2U

Trim only characters trailing the string.

• #define VRNA TRIM IN BETWEEN 4U

Trim only characters within the string.

• #define VRNA TRIM SUBST BY FIRST 8U

Replace remaining characters after trimming with the first delimiter in list.

#define VRNA\_TRIM\_DEFAULT ( VRNA\_TRIM\_LEADING | VRNA\_TRIM\_TRAILING )

Default settings for trimming, i.e. trim leading and trailing.

• #define VRNA TRIM ALL ( VRNA TRIM DEFAULT | VRNA TRIM IN BETWEEN )

Trim characters anywhere in the string.

### **Functions**

char \* vrna\_strdup\_printf (const char \*format,...)

Safely create a formatted string.

char \* vrna\_strdup\_vprintf (const char \*format, va\_list argp)

Safely create a formatted string.

• int vrna\_strcat\_printf (char \*\*dest, const char \*format,...)

Safely append a formatted string to another string.

int vrna\_strcat\_vprintf (char \*\*dest, const char \*format, va\_list args)

Safely append a formatted string to another string.

• unsigned int vrna\_strtrim (char \*string, const char \*delimiters, unsigned int keep, unsigned int options)

Trim a string by removing (multiple) occurences of a particular character.

char \*\* vrna strsplit (const char \*string, const char \*delimiter)

Split a string into tokens using a delimiting character.

char \* vrna\_random\_string (int I, const char symbols[])

Create a random string using characters from a specified symbol set.

int vrna\_hamming\_distance (const char \*s1, const char \*s2)

Calculate hamming distance between two sequences.

• int vrna\_hamming\_distance\_bound (const char \*s1, const char \*s2, int n)

Calculate hamming distance between two sequences up to a specified length.

void vrna\_seq\_toRNA (char \*sequence)

Convert an input sequence (possibly containing DNA alphabet characters) to RNA alphabet.

void vrna seg toupper (char \*seguence)

Convert an input sequence to uppercase.

void vrna\_seq\_reverse (char \*sequence)

Reverse a string in-place.

char \* vrna DNA complement (const char \*sequence)

Retrieve a DNA sequence which resembles the complement of the input sequence.

char \* vrna\_seq\_ungapped (const char \*sequence)

Remove gap characters from a nucleotide sequence.

char \* vrna\_cut\_point\_insert (const char \*string, int cp)

Add a separating '&' character into a string according to cut-point position.

char \* vrna\_cut\_point\_remove (const char \*string, int \*cp)

Remove a separating '&' character from a string.

• void str\_uppercase (char \*sequence)

Convert an input sequence to uppercase.

void str DNA2RNA (char \*sequence)

Convert a DNA input sequence to RNA alphabet.

char \* random\_string (int I, const char symbols[])

Create a random string using characters from a specified symbol set.

int hamming (const char \*s1, const char \*s2)

Calculate hamming distance between two sequences.

• int hamming bound (const char \*s1, const char \*s2, int n)

Calculate hamming distance between two sequences up to a specified length.

### 18.270.1 Detailed Description

General utility- and helper-functions for RNA sequence and structure strings used throughout the ViennaRNA Package.

#### 18.270.2 Function Documentation

### 18.270.2.1 str\_uppercase()

Convert an input sequence to uppercase.

**Deprecated** Use vrna\_seq\_toupper() instead!

### 18.270.2.2 str\_DNA2RNA()

Convert a DNA input sequence to RNA alphabet.

Deprecated Use vrna seq toRNA() instead!

### 18.270.2.3 random\_string()

```
char * random_string (
                int 1,
                 const char symbols[] )
```

Create a random string using characters from a specified symbol set.

**Deprecated** Use vrna\_random\_string() instead!

### 18.270.2.4 hamming()

```
int hamming ( const char * s1, const char * s2)
```

Calculate hamming distance between two sequences.

**Deprecated** Use vrna\_hamming\_distance() instead!

### 18.270.2.5 hamming\_bound()

```
int hamming_bound ( const char * s1, const char * s2, int n)
```

Calculate hamming distance between two sequences up to a specified length.

**Deprecated** Use vrna\_hamming\_distance\_bound() instead!

### 18.271 strings.h

#### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_STRING_UTILS_H
00002 #define VIENNA_RNA_PACKAGE_STRING_UTILS_H
00003
00004 #ifdef VRNA_WARN_DEPRECATED
00005 # if defined(__clang_
00006 # define DEPRECATED(func, msg) func __attribute__ ((deprecated("", msg)))
00007 # elif defined(__GNUC
00008 # define DEPRECATED(func, msg) func __attribute__ ((deprecated(msg)))
00010 # define DEPRECATED(func, msg) func
00011 # endif
00012 #else
00013 # define DEPRECATED(func, msg) func
00014 #endif
00028 #include <stdarg.h>
00029 #include <ViennaRNA/datastructures/basic.h>
00030
00034 #define XSTR(s) STR(s)
00035
00039 #define STR(s) #s
00040
00041 #ifndef FILENAME_MAX_LENGTH
00042
00049 #define FILENAME MAX LENGTH
00050
00057 #define FILENAME_ID_LENGTH
00058
00059 #endif
00060
00061 #ifdef HAVE_CONFIG_H
00062 #include <config.h>
00063 #ifndef HAVE_STRDUP
00064 char *
00065 strdup(const char *s);
00066
00067
00068 #endif
00069 #endif
00090 vrna_strdup_printf(const char *format,
00091
00092
00093
00108 char *
00109 vrna_strdup_vprintf(const char *format,
00110
                          va_list
                                      argp);
00111
00112
00131 int
00132 vrna_strcat_printf(char
                         const char *format,
```

18.271 strings.h 1295

```
00134
                         ...);
00135
00136
00149 int
00150 vrna_strcat_vprintf(char
                                      **dest,
            const char *format,
00151
                          va_list
                                      args);
00153
00154
00159 #define VRNA_TRIM_LEADING
00160
00165 #define VRNA_TRIM_TRAILING
00166
00171 #define VRNA_TRIM_IN_BETWEEN
00172
00177 #define VRNA_TRIM_SUBST_BY_FIRST 8U
00178
00183 #define VRNA_TRIM_DEFAULT
                                     ( VRNA_TRIM_LEADING | VRNA_TRIM_TRAILING )
00184
00189 #define VRNA_TRIM_ALL
                                     ( VRNA_TRIM_DEFAULT | VRNA_TRIM_IN_BETWEEN )
00190
00237 unsigned int
00238 vrna_strtrim(char
                                *string,
                   const char *delimiters,
00239
00240
                   unsigned int keep,
00241
                   unsigned int options);
00242
00243
00290 char **
00291 vrna_strsplit(const char *string,
00292 const char *delimiter);
00293
00294
00295 char *
00296 vrna_strjoin(const char **strings, 00297 const char *delimiter);
00298
00299
00307 char *
00308 vrna_random_string(int
00309
                         const char symbols[]);
00310
00311
00319 int
00320 vrna_hamming_distance(const char *s1,
00321
                            const char *s2);
00322
00323
00334 int
00335 vrna_hamming_distance_bound(const char *s1,
                                   const char *s2,
00337
00338
00339
00347 void
00348 vrna_seq_toRNA(char *sequence);
00350
00356 void
00357 vrna_seq_toupper(char *sequence);
00358
00359
00374 void
00375 vrna_seq_reverse(char *sequence);
00376
00377
00396 char *
00397 vrna_DNA_complement(const char *sequence);
00398
00406 char *
00407 vrna_seq_ungapped(const char *sequence);
00408
00409
00421 char *
00422 vrna_cut_point_insert(const char *string,
00423
                                         cp);
00424
00425
00438 char *
00439 vrna_cut_point_remove(const char *string,
                            int
                                        *cp);
00441
00442
00447 #ifndef VRNA_DISABLE_BACKWARD_COMPATIBILITY
00448
00453 DEPRECATED (void
```

```
str_uppercase(char *sequence),
00455
                 "Use vrna_seq_toupper() instead");
00456
00462 DEPRECATED (void
                 str_DNA2RNA(char *sequence),
00463
                 "Use vrna_seq_toRNA() instead");
00464
00471 DEPRECATED(char *random_string(int 1,
00472
                                     const char symbols[]),
                 "Use vrna_random_string() instead");
00473
00474
00480 DEPRECATED (int
00481
                 hamming(const char *s1,
00482
                        const char *s2),
                 "Use vrna_hamming_distance() instead");
00483
00484
00490 DEPRECATED(int
00491
                hamming bound (const char *s1,
                             const char *s2,
00493
                               int
                                          n),
00494
                 "Use vrna_hamming_distance_bound() instead");
00495
00496 #endif
00497
00498 #endif
```

### 18.272 svm.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_UTILS_SVM_H
00002 #define VIENNA_RNA_PACKAGE_UTILS_SVM_H
00003
00004 extern char *avg_model_string;
00005 extern char *sd_model_string;
00006
00007 float
               get_z(char *sequence,
80000
                     double energy);
00009 double
                avg_regression (int N,
00010
                                int A,
00011
                                int C.
00012
                                int G,
00013
                                int T,
00014
                                struct svm_model *avg_model,
00015
                                int *info );
00016 double
              sd_regression (int N,
00017
                                int A,
00018
                                int C.
00019
                                int G,
00020
                                int T,
00021
                                struct svm_model *sd_model);
00022 double minimal_sd
                               (int N,
00023
                                int A,
                                int C,
00024
00025
                                int G.
                                int T);
00027 struct svm_model *svm_load_model_string(char *modelString);
00028 int *get_seq_composition( short *S,
00029
                                      unsigned int start,
00030
                                      unsigned int stop,
00031
                                      unsigned int length);
00032
00033 #endif
```

### 18.273 vrna\_config.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_CONFIG_H
00002 #define VIENNA_RNA_PACKAGE_CONFIG_H
00003
00004 /* version number */
00005 #define VRNA_VERSION "2.6.0b"
00006
00007 #define VRNA_VERSION_MAJOR 2
00008 #define VRNA_VERSION_MINOR 6
00009 #define VRNA_VERSION_PATCH 0b
00010
00011 /*
00011 /*
00012 * The following pre-processor definitions specify whether
00013 * or not certain features were activated upon build-time
00014 */
00015
00016 /*
00017 * Build with deactivated C11 Features
00018 *
```

```
00019 \star It this feature is missing, the next line defines
00020 * 'VRNA_DISABLE_C11_FEATURES'
00021 */
00022
00023
00024 /*
00025 * Build with OpenMP support
00026 *
00027 \,\, * If this feature is present, the next line defines 00028 \,\, * 'VRNA_WITH_OPENMP'
00029 */
00030 #define VRNA_WITH_OPENMP
00031
00032 /*
00033 \star Build with single precision partition function
00034 *
00035 \star If this feature is present, the next line defines
00036 * 'USE_FLOAT_PF'
00037 */
00038
00039
00040 /*
00041 * Build with JSON input/output support 00042 *
00043 * If this feature is present, the next line defines
00044 * 'VRNA_WITH_JSON_SUPPORT'
00045 */
00046 #define VRNA_WITH_JSON_SUPPORT
00047
00048 /*
00049 * Build with Support Vector Machine (SVM) Z-score feature in RNALfold
00050 *
00051 * If this feature is present, the next line defines 00052 * 'VRNA_WITH_SVM'
00053 */
00054 #define VRNA_WITH_SVM
00055
00057 * Build with GSL minimizers
00058 *
00059 \star If this feature is present, the next line defines
00060 * 'VRNA_WITH_GSL'
00061 */
00062 #define VRNA_WITH_GSL
00063
00064 /*
00065 \star Build with colored TTY output
00066 *
00067 * If this feature is missing, the next line defines
00068 * 'VRNA_WITHOUT_TTY_COLORS'
00069 */
00070
00071
00072 /*
00073 * Build with Link Time Optimization support
00074 *
00075 * If this feature is enabled, the next line defines
00076 * 'VRNA_WITH_LTO'
00077 */
00078 #define VRNA_WITH_LTO
00079
00080 /*
00081 \star Build with Naview Layout algorithm of Bruccoleri 1988 00082 \star
00083 \star If this feature is enabled, the next line defines
00084 * 'VRNA_WITH_NAVIEW_LAYOUT'
00085 */
00086 #define VRNA_WITH_NAVIEW_LAYOUT
00087
00088
00089
00090 #endif
```

### 18.274 ViennaRNA/landscape/walk.h File Reference

Methods to generate particular paths such as gradient or random walks through the energy landscape of an RNA sequence.

Include dependency graph for walk.h: This graph shows which files directly or indirectly include this file:

#### **Macros**

#define VRNA PATH STEEPEST DESCENT 128

Option flag to request a steepest descent / gradient path.

• #define VRNA PATH RANDOM 256

Option flag to request a random walk path.

• #define VRNA\_PATH\_NO\_TRANSITION\_OUTPUT 512

Option flag to omit returning the transition path.

• #define VRNA\_PATH\_DEFAULT (VRNA\_PATH\_STEEPEST\_DESCENT | VRNA\_MOVESET\_DEFAULT)

Option flag to request defaults (steepest descent / default move set)

### **Functions**

- vrna\_move\_t \* vrna\_path (vrna\_fold\_compound\_t \*vc, short \*pt, unsigned int steps, unsigned int options)
  - Compute a path, store the final structure, and return a list of transition moves from the start to the final structure.
- vrna\_move\_t \* vrna\_path\_gradient (vrna\_fold\_compound\_t \*vc, short \*pt, unsigned int options)

Compute a steepest descent / gradient path, store the final structure, and return a list of transition moves from the start to the final structure.

vrna\_move\_t \* vrna\_path\_random (vrna\_fold\_compound\_t \*vc, short \*pt, unsigned int steps, unsigned int options)

Generate a random walk / path of a given length, store the final structure, and return a list of transition moves from the start to the final structure.

### 18.274.1 Detailed Description

Methods to generate particular paths such as gradient or random walks through the energy landscape of an RNA sequence.

### 18.275 walk.h

### Go to the documentation of this file.

```
00001 #ifndef VIENNA_RNA_PACKAGE_WALK_H
00002 #define VIENNA_RNA_PACKAGE_WALK_H
00003
00011 #include <ViennaRNA/fold compound.h>
00012 #include <ViennaRNA/landscape/move.h>
00013
00024 #define VRNA_PATH_STEEPEST_DESCENT 128
00025
00030 #define VRNA_PATH_RANDOM
00031
00036 #define VRNA_PATH_NO_TRANSITION_OUTPUT
                                                       512
00037
00043 #define VRNA_PATH_DEFAULT (VRNA_PATH_STEEPEST_DESCENT | VRNA_MOVESET_DEFAULT)
00044
00073 vrna_move_t *
00074 vrna_path(vrna_fold_compound_t *vc,
              short
00075
                                      *pt,
00076
               unsigned int
                                      steps.
00077
               unsigned int
                                      options);
00078
00079
00101 vrna_move_t *
00102 vrna_path_gradient(vrna_fold_compound_t *vc,
00103
                         short
                                               *pt.
00104
                         unsigned int
                                              options);
00105
00106
00129 vrna_move_t *
00130 vrna_path_random(vrna_fold_compound_t *vc,
00131
                      short
                                            *pt.
                       unsigned int
00132
                                            steps,
00133
                       unsigned int
                                            options);
00134
00140 #endif /* VIENNA_RNA_PACKAGE_WALK_H */
```

### 18.276 ViennaRNA/walk.h File Reference

Use ViennaRNA/landscape/walk.h instead. Include dependency graph for walk.h:

### 18.276.1 Detailed Description

Use ViennaRNA/landscape/walk.h instead.

Deprecated Use ViennaRNA/landscape/walk.h instead

### 18.277 walk.h

### Go to the documentation of this file.

### 18.278 wrap\_dlib.h

```
00001 #ifndef VIENNARNA_DLIB_WRAPPER_H
00002 #define VIENNARNA_DLIB_WRAPPER_H
00003
00004 #ifdef __cplusplus
00005 extern "C" {
00006 #endif
00007
00008 double *
00009 vrna_equilibrium_conc(const double
                                                  *eg constants,
00010
                            double
                                                   *concentration_strands,
00011
                              const unsigned int **A,
00012
                             size_t
                                                   num_strands,
00013
                             size_t
                                                   num_complexes);
00014
00015
00016 #ifdef __cplusplus
00017
00018 #endif
00019
00020 #endif
```

### 18.279 zscore.h

```
00001 #ifndef VIENNA_RNA_PACKAGE_ZSCORE_H
00002 #define VIENNA_RNA_PACKAGE_ZSCORE_H
00004 typedef struct vrna_zsc_dat_s *vrna_zsc_dat_t;
00005
00006 #define VRNA_ZSCORE_OPTIONS_NONE
00007 #define VRNA_ZSCORE_FILTER_ON
                                            2U
00008 #define VRNA_ZSCORE_PRE_FILTER
                                            4U
00009 #define VRNA_ZSCORE_REPORT_SUBSUMED
00010 #define VRNA_ZSCORE_MODEL_DEFAULT
00011 #define VRNA_ZSCORE_SETTINGS_DEFAULT (VRNA_ZSCORE_FILTER_ON | VRNA_ZSCORE_MODEL_DEFAULT)
00012
00013 int
00014 vrna_zsc_filter_init(vrna_fold_compound_t *fc,
00015
                           double
                                               min_z,
                           unsigned int
00016
                                               options);
00017
00018
00019 int.
00020 vrna_zsc_filter_update(vrna_fold_compound_t *fc,
00021
                            double
                                                 min_z,
                             unsigned int
                                                  options);
```

```
00023
00024
00025 void
00026 vrna_zsc_filter_free(vrna_fold_compound_t *fc);
00027
00028
00030 vrna_zsc_filter_on(vrna_fold_compound_t *fc);
00031
00032
00033 double
00034 vrna_zsc_filter_threshold(vrna_fold_compound_t *fc);
00035
00036
00037 double
00038 vrna_zsc_compute(vrna_fold_compound_t *fc, 00039 unsigned int i,
         unsigned int
unsigned int
                                       i,
00040
                                              j,
e);
00041
                       int
00042
00043
00044 double
00045 vrna_zsc_compute_raw(vrna_fold_compound_t *fc,
00046
                           unsigned int unsigned int
                                            i,
00047
                                                  j,
00048
                            int
                                                  e,
                            double
00049
                                                  *avg,
00050
                            double
                                                  *sd);
00051
00052
00053 #endif
```

## **Bibliography**

- [1] S.H. Bernhart, I.L. Hofacker, S. Will, A.R. Gruber, and P.F. Stadler. RNAalifold: Improved consensus structure prediction for RNA alignments. *BMC bioinformatics*, 9(1):474, 2008. 27
- [2] S.H. Bernhart, H. Tafer, U. Mückstein, C. Flamm, P.F. Stadler, and I.L. Hofacker. Partition function and base pairing probabilities of RNA heterodimers. *Algorithms for Molecular Biology*, 1(1):3, 2006. 398
- [3] Stephan H Bernhart, Ivo L Hofacker, and Peter F Stadler. Local RNA base pairing probabilities in large sequences. *Bioinformatics*, 22(5):614–615, 2005. 280
- [4] Stephan H Bernhart, Ullrike Mückstein, and Ivo L Hofacker. RNA accessibility in cubic time. *Algorithms for Molecular Biology*, 6(1):3, 2011. 280, 739, 1233
- [5] Pietro Boccaletto, Filip Stefaniak, Angana Ray, Andrea Cappannini, Sunandan Mukherjee, Elżbieta Purta, Małgorzata Kurkowska, Niloofar Shirvanizadeh, Eliana Destefanis, Paula Groza, et al. MODOMICS: a database of RNA modification pathways. 2021 update. *Nucleic Acids Research*, 50(D1):D231–D235, 2022. 376
- [6] R.E. Bruccoleri and G. Heinrich. An improved algorithm for nucleic acid secondary structure display. *Computer applications in the biosciences: CABIOS*, 4(1):167–173, 1988. 482, 598
- [7] Joseph J Dalluge, Takeshi Hashizume, Alan E Sopchik, James A McCloskey, and Darrell R Davis. Conformational flexibility in RNA: the role of dihydrouridine. *Nucleic acids research*, 24(6):1073–1079, 1996. 382
- [8] Katherine E. Deigan, Tian W. Li, David H. Mathews, and Kevin M. Weeks. Accurate SHAPE-directed RNA structure determination. *PNAS*, 106:97–102, 2009. 361
- [9] Christoph Flamm, Ivo L Hofacker, Sebastian Maurer-Stroh, Peter F Stadler, and Martin Zehl. Design of multistable RNA molecules. *RNA*, 7(02):254–265, 2001. 352, 353, 354, 355
- [10] W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker, P. Tarazona, E.D. Weinberger, and P. Schuster. RNA folding and combinatory landscapes. *Physical review E*, 47(3):2083, 1993. 33, 34, 443, 444, 446
- [11] Eva Freyhult, Vincent Moulton, and Paul Gardner. Predicting RNA structure using mutual information. *Applied bioinformatics*, 4(1):53–59, 2005. 455
- [12] Robert Giegerich, Björn Voß, and Marc Rehmsmeier. Abstract shapes of RNA. *Nucleic Acids Research*, 32(16):4843–4851, 2004. 33, 426, 440, 441, 442
- [13] I.L. Hofacker, M. Fekete, and P.F. Stadler. Secondary structure prediction for aligned RNA sequences. *Journal of molecular biology*, 319(5):1059–1066, 2002. 27
- [14] I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and comparison of RNA secondary structures. *Monatshefte für Chemie/Chemical Monthly*, 125(2):167–188, 1994.
- [15] I.L. Hofacker and P.F. Stadler. Memory efficient folding algorithms for circular RNA secondary structures. *Bioinformatics*, 22(10):1172–1176, 2006. 24, 263, 264, 276, 277
- [16] Graham A Hudson, Richard J Bloomingdale, and Brent M Znosko. Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides. RNA, 19(11):1474–1482, 2013. 381
- [17] Elizabeth A Jolley and Brent M Znosko. The loss of a hydrogen bond: Thermodynamic contributions of a non-standard nucleotide. *Nucleic acids research*, 45(3):1479–1487, 2017. 382

1302 BIBLIOGRAPHY

[18] Elzbieta Kierzek, Xiaoju Zhang, Richard M Watson, Scott D Kennedy, Marta Szabat, Ryszard Kierzek, and David H Mathews. Secondary structure prediction for RNA sequences including N6-methyladenosine. *Nature communications*, 13(1):1–10, 2022. 380

- [19] Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph Flamm, Peter F. Stadler, and Ivo L. Hofacker. ViennaRNA package 2.0. *Algorithms for Molecular Biology*, 6(1):26, 2011. 1
- [20] Ronny Lorenz, Christoph Flamm, and Ivo L. Hofacker. 2d projections of RNA folding landscapes. In Ivo Grosse, Steffen Neumann, Stefan Posch, Falk Schreiber, and Peter F. Stadler, editors, German Conference on Bioinformatics 2009, volume 157 of Lecture Notes in Informatics, pages 11–20, Bonn, September 2009. Gesellschaft f. Informatik. 27, 317
- [21] Ronny Lorenz, Ivo L. Hofacker, and Peter F. Stadler. RNA folding with hard and soft constraints. *Algorithms for Molecular Biology*, 11(1):1–13, 2016. 22
- [22] Ronny Lorenz, Dominik Luntzer, Ivo L. Hofacker, Peter F. Stadler, and Michael T. Wolfinger. Shape directed rna folding. *Bioinformatics*, 32(1):145–147, 2016. 360
- [23] J.S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. *Biopolymers*, 29(6-7):1105–1119, 1990. 25
- [24] Juraj Michálik, Hélène Touzet, and Yann Ponty. Efficient approximations of RNA kinetics landscape using non-redundant sampling. *Bioinformatics*, 33(14):i283–i292, 2017. 293, 295, 296, 297, 299, 301, 302, 303, 304, 306, 308, 309, 310
- [25] Katherine E Richardson and Brent M Znosko. Nearest-neighbor parameters for 7-deaza-adenosine uridine base pairs in RNA duplexes. *RNA*, 22(6):934–942, 2016. 382
- [26] Joe Sawada. A fast algorithm to generate necklaces with fixed content. *Theoretical Computer Science*, 301(1):477–489, 2003. 499
- [27] B.A. Shapiro. An algorithm for comparing multiple RNA secondary structures. *Computer applications in the biosciences: CABIOS*, 4(3):387–393, 1988. 33, 34, 443, 444, 446, 447
- [28] B.A. Shapiro and K. Zhang. Comparing multiple RNA secondary structures using tree comparisons. *Computer applications in the biosciences: CABIOS*, 6(4):309–318, 1990. 17
- [29] Stefan Washietl, Ivo L. Hofacker, Peter F. Stadler, and Manolis Kellis. RNA folding with soft constraints: reconciliation of probing data and thermodynamics secondary structure prediction. *Nucleic Acids Research*, 40(10):4261–4272, 2012. 366
- [30] Daniel Wiegreffe, Daniel Alexander, Peter F Stadler, and Dirk Zeckzer. RNApuzzler: efficient outerplanar drawing of RNA-secondary structures. *Bioinformatics*, 2018. 138, 475, 480, 481, 482, 484, 485, 490, 491, 492, 493, 1246, 1247, 1251, 1252
- [31] Daniel J Wright, Christopher R Force, and Brent M Znosko. Stability of RNA duplexes containing inosine-cytosine pairs. *Nucleic Acids Research*, 46(22):12099–12108, 2018. 381
- [32] Daniel J Wright, Jamie L Rice, Dawn M Yanker, and Brent M Znosko. Nearest Neighbor Parameters for Inosine-Uridine Pairs in RNA Duplexes. *Biochemistry*, 46(15):4625–4634, 2007. 381
- [33] S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete suboptimal folding of RNA and the stability of secondary structures. *Biopolymers*, 49(2):145–165, February 1999. 288, 289
- [34] Kourosh Zarringhalam, Michelle M. Meyer, Ivan Dotu, Jeffrey H. Chuang, and Peter Clote. Integrating chemical footprinting data into RNA secondary structure prediction. *PLOS ONE*, 7(10), 2012. 362
- [35] M. Zuker. On finding all suboptimal foldings of an RNA molecule. Science, 244(4900):48-52, April 1989. 287
- [36] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. *Nucleic acids research*, 9(1):133–148, 1981. 24

# Index

| (Abstract) Data Structures, 505                         | add_root                                            |
|---------------------------------------------------------|-----------------------------------------------------|
| bondT, 509                                              | Deprecated Interface for Secondary Structure Utili- |
| cpair, 509                                              | ties, 590                                           |
| PAIR, 509                                               | alifold                                             |
| plist, 509                                              | Deprecated Interface for Global MFE Prediction,     |
| sect, 509                                               | 556                                                 |
| vrna_C11_features, 509                                  | alifold.h                                           |
| (Nucleic Acid Sequence) String Utilitites, 415          | cv_fact, 615                                        |
| FILENAME_ID_LENGTH, 417                                 | energy_of_alistruct, 614                            |
| FILENAME_MAX_LENGTH, 416                                | nc_fact, 615                                        |
| vrna_cut_point_insert, 425                              | update_alifold_params, 615                          |
| vrna_cut_point_remove, 426                              | Alignment Plots, 494                                |
| vrna_DNA_complement, 425                                | vrna_file_PS_aln, 494                               |
| vrna_hamming_distance, 422                              | vrna_file_PS_aln_slice, 495                         |
| vrna_hamming_distance_bound, 422                        | alimake_pair_table                                  |
| vrna_random_string, 422                                 | Deprecated Interface for Secondary Structure Utili- |
| vrna_seq_reverse, 424                                   | ties, 593                                           |
| vrna_seq_toRNA, 424                                     | alipbacktrack                                       |
| vrna_seq_toupper, 424                                   | Deprecated Interface for Global Partition Function  |
| vrna_seq_ungapped, 425                                  | Computation, 578                                    |
| vrna_strcat_printf, 419                                 | alipf_circ_fold                                     |
| vrna_strcat_vprintf, 419                                | Deprecated Interface for Global Partition Function  |
| vrna_strdup_printf, 418                                 | Computation, 577                                    |
| vrna_strdup_vprintf, 418                                | alipf_fold                                          |
| vrna_strsplit, 421                                      | Deprecated Interface for Global Partition Function  |
| vrna_strtrim, 420                                       | Computation, 577                                    |
| VRNA_TRIM_ALL, 418                                      | alipf_fold_par                                      |
| VRNA_TRIM_DEFAULT, 417                                  | Deprecated Interface for Global Partition Function  |
| VRNA_TRIM_IN_BETWEEN, 417                               | Computation, 567                                    |
| VRNA_TRIM_LEADING, 417                                  | aliPS_color_aln                                     |
| VRNA_TRIM_SUBST_BY_FIRST, 417                           | Deprecated Interface for Plotting Utilities, 596    |
| VRNA_TRIM_TRAILING, 417                                 | alloc_sequence_arrays                               |
| (Re-)folding Paths, Saddle Points, Energy Barriers, and | Deprecated Interface for Multiple Sequence Align-   |
| Local Minima, 348                                       | ment Utilities, 586                                 |
| vrna_path_free, 350                                     | alpha                                               |
| vrna_path_options_free, 350                             | vrna_exp_param_s, 208                               |
| VRNA_PATH_TYPE_DOT_BRACKET, 350                         | Annotation, 493                                     |
| VRNA_PATH_TYPE_MOVES, 350                               | vrna_annotate_covar_db, 493                         |
| _struct_en, 601                                         | vrna_annotate_covar_pairs, 494                      |
| 2Dpfold.h                                               | Arrays, 548                                         |
| destroy_TwoDpfold_variables, 608                        | vrnaarray_set_capacity, 550                         |
| get_TwoDpfold_variables, 608                            | vrna_array_init_size, 550                           |
| TwoDpfold_pbacktrack, 609                               | assign_plist_from_db                                |
| TwoDpfold_pbacktrack5, 610                              | Deprecated Interface for Global Partition Function  |
| TwoDpfoldList, 609                                      | Computation, 576                                    |
|                                                         | assign_plist_from_pr                                |
| Abstract Shapes Representation of Secondary Struc-      | Deprecated Interface for Global Partition Function  |
| tures, 440                                              | Computation, 576                                    |
| vrna_abstract_shapes, 441                               | auxdata                                             |
| vrna_abstract_shapes_pt, 442                            |                                                     |

| vrna_fc_s, 521                                      | vrna_ostream_free, 553                             |
|-----------------------------------------------------|----------------------------------------------------|
| b2C                                                 | vrna_ostream_init, 553                             |
| Deprecated Interface for Secondary Structure Utili- | vrna_ostream_provide, 554                          |
| ties, 589                                           | vrna_ostream_request, 554                          |
| b2HIT                                               | vrna_stream_output_f, 551                          |
| Deprecated Interface for Secondary Structure Utili- | centroid                                           |
| ties, 589                                           | part_func.h, 1225                                  |
| b2Shapiro                                           | centroid.h                                         |
| Deprecated Interface for Secondary Structure Utili- | get_centroid_struct_pl, 623                        |
| ties, 590                                           | get_centroid_struct_pr, 623                        |
| backtrack_GQuad_IntLoop                             | circalifold                                        |
| G-Quadruplexes, 375                                 | Deprecated Interface for Global MFE Prediction,    |
| backtrack_GQuad_IntLoop_L                           | 563                                                |
| G-Quadruplexes, 375                                 | circfold                                           |
| backtrack_type                                      | Deprecated Interface for Global MFE Prediction,    |
| Fine-tuning of the Implemented Models, 205          | 560                                                |
| Backtracking MFE structures, 269                    | Classified Dynamic Programming Variants, 316       |
| vrna_backtrack5, 270                                | co_pf_fold                                         |
| vrna_BT_hp_loop, 270                                | Deprecated Interface for Global Partition Function |
| vrna_BT_int_loop, 271                               | Computation, 573                                   |
| vrna_BT_mb_loop, 271                                | co_pf_fold_par                                     |
| vrna BT stack, 270                                  | Deprecated Interface for Global Partition Function |
| base_pair                                           | Computation, 573                                   |
| fold_vars.h, 691                                    | cofold                                             |
| basic.h                                             | Deprecated Interface for Global MFE Prediction,    |
| filecopy, 929                                       | 556                                                |
| get_line, 927                                       | cofold par                                         |
| init_rand, 929                                      | Deprecated Interface for Global MFE Prediction,    |
| int_urn, 929                                        | 557                                                |
| nrerror, 928                                        | Combinatorics Algorithms, 498                      |
| print_tty_input_seq, 928                            | vrna_boustrophedon, 504                            |
| print_tty_input_seq_str, 928                        | vrna_boustrophedon_pos, 504                        |
| space, 928                                          | vrna_enumerate_necklaces, 499                      |
| time_stamp, 929                                     | vrna_n_multichoose_k, 503                          |
| urn, 929                                            | vrna_rotational_symmetry, 501                      |
| warn_user, 928                                      | vrna_rotational_symmetry_db, 502                   |
| xrealloc, 929                                       | vrna_rotational_symmetry_db_pos, 502               |
| bondT                                               | vrna rotational symmetry num, 499                  |
| (Abstract) Data Structures, 509                     | vrna_rotational_symmetry_pos, 501                  |
| BONUS                                               | vrna_rotational_symmetry_pos_num, 500              |
| constants.h, 933                                    | Command Files, 471                                 |
| bp_distance                                         | VRNA_CMD_PARSE_DEFAULTS, 472                       |
| Deprecated Interface for Secondary Structure Utili- | VRNA_CMD_PARSE_HC, 471                             |
| ties, 594                                           | VRNA_CMD_PARSE_SC, 472                             |
| bppm_symbol                                         | VRNA_CMD_PARSE_SD, 472                             |
| Deprecated Interface for Secondary Structure Utili- | VRNA_CMD_PARSE_UD, 472                             |
| ties, 595                                           | vrna_commands_apply, 473                           |
| bppm_to_structure                                   | vrna_commands_free, 474                            |
| Deprecated Interface for Secondary Structure Utili- | vrna_file_commands_apply, 473                      |
| ties, 595                                           | vrna_file_commands_read, 472                       |
| bt                                                  | Compute the Centroid Structure, 314                |
| vrna_sc_s, 250                                      | vrna_centroid, 314                                 |
| Buffers, 550                                        | vrna_centroid_from_plist, 314                      |
| vrna_cstr, 551                                      | vrna_centroid_from_probs, 315                      |
| vrna_cstr_close, 552                                | Compute the Density of States, 335                 |
| vrna_cstr_discard, 552                              | density_of_states, 335                             |
| vrna_cstr_fflush, 553                               | Compute the Structure with Maximum Expected Accu-  |
| vrna_cstr_free, 552                                 | racy (MEA), 312                                    |

| MEA, 313                                               | VRNA_DECOMP_ML_UP, 233                               |
|--------------------------------------------------------|------------------------------------------------------|
| vrna_MEA, 312                                          | VRNA_DECOMP_PAIR_HP, 230                             |
| vrna_MEA_from_plist, 313                               | VRNA_DECOMP_PAIR_IL, 231                             |
| compute_BPdifferences                                  | VRNA_DECOMP_PAIR_ML, 231                             |
| Deprecated Interface for Secondary Structure Utili-    | vrna_message_constraint_options, 238                 |
| ties, 594                                              | vrna_message_constraint_options_all, 239             |
| compute_probabilities                                  | convert_parameter_file                               |
| Deprecated Interface for Global Partition Function     | Converting Energy Parameter Files, 411               |
| Computation, 574                                       | Converting Energy Parameter Files, 408               |
| Computing MFE representatives of a Distance Based      | convert_parameter_file, 411                          |
| Partitioning, 316                                      | VRNA_CONVERT_OUTPUT_ALL, 408                         |
| destroy_TwoDfold_variables, 321                        | VRNA_CONVERT_OUTPUT_BULGE, 410                       |
| get_TwoDfold_variables, 320                            | VRNA_CONVERT_OUTPUT_DANGLE3, 410                     |
| TwoDfold_backtrack_f5, 322                             | VRNA_CONVERT_OUTPUT_DANGLE5, 409                     |
| TwoDfold_vars, 319                                     | VRNA_CONVERT_OUTPUT_DUMP, 411                        |
| TwoDfoldList, 321                                      | VRNA_CONVERT_OUTPUT_HP, 409                          |
| vrna_backtrack5_TwoD, 320                              | VRNA_CONVERT_OUTPUT_INT, 410                         |
| vrna mfe TwoD, 319                                     | VRNA CONVERT OUTPUT INT 11, 410                      |
| vrna_sol_TwoD_t, 318                                   | VRNA CONVERT OUTPUT INT 21, 410                      |
| Computing Partition Functions of a Distance Based Par- | VRNA_CONVERT_OUTPUT_INT_22, 410                      |
| titioning, 322                                         | VRNA CONVERT OUTPUT MISC, 410                        |
| vrna_pf_TwoD, 323                                      | VRNA_CONVERT_OUTPUT_ML, 410                          |
| vrna_sol_TwoD_pf_t, 323                                | VRNA_CONVERT_OUTPUT_MM_EXT, 409                      |
| concentrations.h                                       | VRNA CONVERT OUTPUT MM HP, 409                       |
| get_concentrations, 632                                | VRNA_CONVERT_OUTPUT_MM_INT, 409                      |
| cons_seq                                               | VRNA_CONVERT_OUTPUT_MM_INT_1N, 409                   |
| vrna_fc_s, 523                                         | VRNA_CONVERT_OUTPUT_MM_INT_23, 409                   |
| constants.h                                            | VRNA_CONVERT_OUTPUT_MM_MULTI, 409                    |
| BONUS, 933                                             | VRNA_CONVERT_OUTPUT_NINIO, 411                       |
| FORBIDDEN, 933                                         | VRNA_CONVERT_OUTPUT_SPECIAL_HP, 411                  |
| GASCONST, 932                                          | VRNA_CONVERT_OUTPUT_STACK, 409                       |
| INF, 933                                               | VRNA_CONVERT_OUTPUT_VANILLA, 411                     |
| K0, 932                                                | COORDINATE, 596                                      |
| MAXLOOP, 933                                           | copy_pair_table                                      |
| NBPAIRS, 933                                           | Deprecated Interface for Secondary Structure Utili-  |
| TURN, 933                                              | ties, 593                                            |
| constrain, 508                                         | cost_matrix                                          |
| constrain_ptypes                                       | dist_vars.h, 661                                     |
| hard.h, 637                                            | cpair                                                |
| Constraining the RNA Folding Grammar, 226              | (Abstract) Data Structures, 509                      |
| VRNA_CONSTRAINT_FILE, 229                              | cut_point                                            |
| VRNA_CONSTRAINT_SOFT_MFE, 230                          | fold_vars.h, 691                                     |
| VRNA_CONSTRAINT_SOFT_PF, 230                           | cv_fact                                              |
| vrna_constraints_add, 237                              | alifold.h, 615                                       |
| VRNA_DECOMP_EXT_EXT, 235                               |                                                      |
| VRNA_DECOMP_EXT_EXT_EXT, 236                           | dangles                                              |
| VRNA_DECOMP_EXT_EXT_STEM, 236                          | Fine-tuning of the Implemented Models, 204           |
| VRNA_DECOMP_EXT_EXT_STEM1, 237                         | vrna_md_s, 182                                       |
| VRNA_DECOMP_EXT_STEM, 235                              | density_of_states                                    |
| VRNA_DECOMP_EXT_STEM_EXT, 236                          | Compute the Density of States, 335                   |
| VRNA_DECOMP_EXT_STEM_OUTSIDE, 236                      | Deprecated Interface for (Re-)folding Paths, Saddle  |
| VRNA_DECOMP_EXT_UP, 235                                | Points, and Energy Barriers, 598                     |
| VRNA_DECOMP_ML_COAXIAL, 234                            | find_saddle, 599                                     |
| VRNA_DECOMP_ML_COAXIAL_ENC, 234                        | free_path, 599                                       |
| VRNA_DECOMP_ML_ML, 233                                 | get_path, 599                                        |
| VRNA_DECOMP_ML_ML, 232                                 | path_t, 598                                          |
| VRNA_DECOMP_ML_ML_STEM, 233                            | Deprecated Interface for Free Energy Evaluation, 162 |
| VRNA_DECOMP_ML_STEM, 232                               | E_IntLoop, 172                                       |
|                                                        | E_Stem, 170                                          |

| energy_of_circ_struct, 170                              | get_pf_arrays, 571                                        |
|---------------------------------------------------------|-----------------------------------------------------------|
| energy_of_circ_struct_par, 165                          | get subseq F, 572                                         |
| energy_of_circ_structure, 164                           | init_co_pf_fold, 575                                      |
|                                                         |                                                           |
| energy_of_move, 167                                     | init_pf_fold, 573                                         |
| energy_of_move_pt, 167                                  | mean_bp_distance, 572                                     |
| energy_of_struct, 168                                   | mean_bp_distance_pr, 572                                  |
| energy_of_struct_par, 164                               | pf_circ_fold, 569                                         |
| energy_of_struct_pt, 169                                | pf_fold, 568                                              |
| energy_of_struct_pt_par, 166                            | pf_fold_par, 567                                          |
| energy_of_structure, 163                                | stackProb, 573                                            |
| energy_of_structure_pt, 166                             | update_co_pf_params, 575                                  |
| exp_E_ExtLoop, 171                                      | update_co_pf_params_par, 576                              |
| exp_E_IntLoop, 173                                      | update_pf_params, 570                                     |
| exp_E_Stem, 171                                         | update_pf_params_par, 570                                 |
| loop_energy, 168                                        | Deprecated Interface for Local (Sliding Window) MFE       |
| Deprecated Interface for Global MFE Prediction, 555     | Prediction, 564                                           |
| alifold, 556                                            | Lfold, 564                                                |
| circalifold, 563                                        | Lfoldz, 565                                               |
| circfold, 560                                           | Deprecated Interface for Local (Sliding Window) Partition |
|                                                         |                                                           |
| cofold, 556                                             | Function Computation, 580                                 |
| cofold_par, 557                                         | pfl_fold, 580                                             |
| export_circfold_arrays, 562                             | pfl_fold_par, 581                                         |
| export_circfold_arrays_par, 562                         | putoutpU_prob, 581                                        |
| export_cofold_arrays, 558                               | putoutpU_prob_bin, 583                                    |
| export_cofold_arrays_gq, 557                            | update_pf_paramsLP, 580                                   |
| export_fold_arrays, 561                                 | Deprecated Interface for Multiple Sequence Alignment      |
| export_fold_arrays_par, 562                             | Utilities, 585                                            |
| fold, 560                                               | alloc_sequence_arrays, 586                                |
| fold_par, 559                                           | encode_ali_sequence, 586                                  |
| free_alifold_arrays, 564                                | free_sequence_arrays, 587                                 |
| free_arrays, 561                                        | get_mpi, 585                                              |
| free_co_arrays, 557                                     | pair_info, 585                                            |
| HairpinE, 563                                           | Deprecated Interface for Plotting Utilities, 596          |
| initialize_cofold, 559                                  | aliPS_color_aln, 596                                      |
| initialize_fold, 563                                    | PS_color_aln, 596                                         |
| LoopEnergy, 563                                         | rna_plot_type, 598                                        |
| update_cofold_params, 557                               | simple_circplot_coordinates, 597                          |
| · — — ·                                                 |                                                           |
| update_cofold_params_par, 557                           | simple_xy_coordinates, 597                                |
| update_fold_params, 561                                 | Deprecated Interface for Secondary Structure Utilities,   |
| update_fold_params_par, 561                             | 588                                                       |
| Deprecated Interface for Global Partition Function Com- | add_root, 590                                             |
| putation, 565                                           | alimake_pair_table, 593                                   |
| alipbacktrack, 578                                      | b2C, 589                                                  |
| alipf_circ_fold, 577                                    | b2HIT, 589                                                |
| alipf_fold, 577                                         | b2Shapiro, 590                                            |
| alipf_fold_par, 567                                     | bp_distance, 594                                          |
| assign_plist_from_db, 576                               | bppm_symbol, 595                                          |
| assign_plist_from_pr, 576                               | bppm_to_structure, 595                                    |
| co_pf_fold, 573                                         | compute_BPdifferences, 594                                |
| co_pf_fold_par, 573                                     | copy_pair_table, 593                                      |
| compute_probabilities, 574                              | expand_Full, 591                                          |
| export_ali_bppm, 578                                    | expand_Shapiro, 590                                       |
| export_bppm, 570                                        | make_pair_table, 593                                      |
| export_co_bppm, 575                                     | make_pair_table_snoop, 594                                |
| free_alipf_arrays, 578                                  | make_referenceBP_array, 594                               |
|                                                         | ·                                                         |
| free_co_pf_arrays, 575                                  | pack_structure, 592                                       |
| free_pf_arrays, 570                                     | parenthesis_structure, 595                                |
| get_alipf_arrays, 579                                   | parenthesis_zuker, 595                                    |

| parse_structure, 592                                   | Deprecated Interface for Free Energy Evaluation,        |
|--------------------------------------------------------|---------------------------------------------------------|
| unexpand_aligned_F, 591                                | 170                                                     |
| unexpand_Full, 591                                     | edit_backtrack                                          |
| unpack_structure, 592                                  | dist_vars.h, 661                                        |
| unweight, 591                                          | encode_ali_sequence                                     |
| Deprecated Interface for Stochastic Backtracking, 583  | Deprecated Interface for Multiple Sequence Align-       |
| pbacktrack, 583                                        | ment Utilities, 586                                     |
| pbacktrack5, 584                                       | energy                                                  |
| pbacktrack_circ, 584                                   | vrna_ht_entry_db_t, 536                                 |
| st_back, 584                                           | Energy Evaluation for Atomic Moves, 161                 |
| destroy_TwoDfold_variables                             | vrna_eval_move, 161                                     |
| Computing MFE representatives of a Distance            | vrna_eval_move_pt, 162                                  |
| Based Partitioning, 321                                | Energy Evaluation for Individual Loops, 159             |
| destroy_TwoDpfold_variables                            | vrna_eval_loop_pt, 160                                  |
| 2Dpfold.h, 608                                         | vrna_eval_loop_pt_v, 160                                |
| Direct Refolding Paths between two Secondary Struc-    | Energy Parameters, 205                                  |
| tures, 351                                             | get_boltzmann_factor_copy, 214                          |
| vrna_path_direct, 355                                  | get_boltzmann_factors, 213                              |
| vrna_path_direct_ub, 355                               | get_boltzmann_factors_ali, 215                          |
| vrna_path_findpath, 353                                | get_scaled_alipf_parameters, 214                        |
| vrna_path_findpath_saddle, 351                         | get_scaled_parameters, 215                              |
| vrna_path_findpath_saddle_ub, 352                      | get_scaled_pf_parameters, 213                           |
| vrna_path_findpath_ub, 353                             | paramT, 208                                             |
| vrna_path_options_findpath, 354                        | pf_paramT, 208                                          |
| dist_vars.h                                            | scale_parameters, 215                                   |
| cost_matrix, 661                                       | vrna_exp_params, 209                                    |
| edit_backtrack, 661                                    | vrna_exp_params_comparative, 209                        |
| Distance Based Partitioning of the Secondary Structure | vrna_exp_params_copy, 210                               |
| Space, 316                                             | vrna_exp_params_rescale, 211                            |
| Distance measures between Secondary Structures, 447    | vrna_exp_params_reset, 213                              |
| vrna_bp_distance, 448                                  | vrna_exp_params_subst, 211                              |
| vrna_bp_distance_pt, 448                               | vrna_params, 208                                        |
| do_backtrack                                           | vrna_params_copy, 209                                   |
| Fine-tuning of the Implemented Models, 205             | vrna_params_reset, 212                                  |
| Dot-Bracket Notation of Secondary Structures, 428      | vrna_params_subst, 210                                  |
| VRNA_BRACKETS_ALPHA, 429                               | vrna_salt_loop, 216                                     |
| VRNA_BRACKETS_ANG, 430                                 | vrna salt loop int, 216                                 |
| VRNA BRACKETS ANY, 430                                 | vrna_salt_stack, 216                                    |
| VRNA BRACKETS CLY, 429                                 | energy corrections, 601                                 |
| VRNA_BRACKETS_DEFAULT, 430                             | energy_of_alistruct                                     |
| VRNA BRACKETS RND, 429                                 | alifold.h, 614                                          |
| VRNA_BRACKETS_SQR, 430                                 | energy_of_circ_struct                                   |
| vrna_db_flatten, 431                                   | Deprecated Interface for Free Energy Evaluation,        |
| vrna_db_flatten_to, 432                                | 170                                                     |
| vrna_db_from_plist, 433                                | energy_of_circ_struct_par                               |
| vrna_db_from_ptable, 432                               | Deprecated Interface for Free Energy Evaluation,        |
| vrna db pack, 431                                      | 165                                                     |
| vrna_db_pack, 431<br>vrna_db_pk_remove, 434            | energy_of_circ_structure                                |
| , _                                                    |                                                         |
| vrna_db_to_element_string, 433                         | Deprecated Interface for Free Energy Evaluation,<br>164 |
| vrna_db_unpack, 431<br>duplexT, 508                    |                                                         |
| •                                                      | energy_of_move                                          |
| dupVar, 508                                            | Deprecated Interface for Free Energy Evaluation,        |
| E_Hairpin                                              | 167                                                     |
| Hairpin Loops, 393                                     | energy_of_move_pt                                       |
| E_IntLoop                                              | Deprecated Interface for Free Energy Evaluation,        |
| Deprecated Interface for Free Energy Evaluation,       | 167                                                     |
| 172                                                    | energy_of_struct                                        |
| E Stem                                                 |                                                         |

| Deprecated Interface for Free Energy Evaluation, 168                  | Deprecated Interface for Global Partition Function Computation, 575                     |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| energy_of_struct_par Deprecated Interface for Free Energy Evaluation, | export_cofold_arrays  Deprecated Interface for Global MFE Prediction,                   |
| 164                                                                   | 558                                                                                     |
| energy_of_struct_pt                                                   | export_cofold_arrays_gq                                                                 |
| Deprecated Interface for Free Energy Evaluation,<br>169               | Deprecated Interface for Global MFE Prediction, 557                                     |
| energy_of_struct_pt_par                                               | export_fold_arrays                                                                      |
| Deprecated Interface for Free Energy Evaluation, 166                  | Deprecated Interface for Global MFE Prediction, 561                                     |
| energy_of_structure                                                   | export_fold_arrays_par                                                                  |
| Deprecated Interface for Free Energy Evaluation,<br>163               | Deprecated Interface for Global MFE Prediction, 562                                     |
| energy_of_structure_pt                                                | Extending the Folding Grammar with Additional Do-                                       |
| Deprecated Interface for Free Energy Evaluation,                      | mains, 217                                                                              |
| 166                                                                   | Exterior Loops, 389                                                                     |
| energy_set                                                            | vrna_E_ext_stem, 390                                                                    |
| Fine-tuning of the Implemented Models, 204                            | vrna_eval_ext_stem, 391                                                                 |
| exp_E_ExtLoop                                                         | vrna_exp_E_ext_stem, 391                                                                |
| Deprecated Interface for Free Energy Evaluation,<br>171               | vrna_mx_pf_aux_el_t, 390                                                                |
| exp_E_Hairpin                                                         | f                                                                                       |
| Hairpin Loops, 394                                                    | vrna_sc_s, 250                                                                          |
| exp_E_IntLoop                                                         | filecopy<br>basic.h, 929                                                                |
| Deprecated Interface for Free Energy Evaluation,                      | FILENAME_ID_LENGTH                                                                      |
| 173                                                                   | (Nucleic Acid Sequence) String Utilitites, 417                                          |
| exp_E_Stem  Depressed Interface for Free Energy Evaluation            | FILENAME_MAX_LENGTH                                                                     |
| Deprecated Interface for Free Energy Evaluation, 171                  | (Nucleic Acid Sequence) String Utilitites, 416                                          |
| exp_f                                                                 | Files and I/O, 455                                                                      |
| vrna_sc_s, 250                                                        | get_ribosum, 456                                                                        |
| expand_Full                                                           | readribosum, 456                                                                        |
| Deprecated Interface for Secondary Structure Utili-                   | vrna_file_exists, 458                                                                   |
| ties, 591                                                             | vrna_filename_sanitize, 457                                                             |
| expand_Shapiro                                                        | vrna_read_line, 456                                                                     |
| Deprecated Interface for Secondary Structure Utili-                   | final_cost                                                                              |
| ties, 590                                                             | Inverse Folding (Design), 337                                                           |
| Experimental Structure Probing Data, 360                              | find_saddle                                                                             |
| expHairpinEnergy                                                      | Deprecated Interface for (Re-)folding Paths, Saddle<br>Points, and Energy Barriers, 599 |
| part_func.h, 1226                                                     | Fine-tuning of the Implemented Models, 175                                              |
| expLoopEnergy                                                         | backtrack_type, 205                                                                     |
| part_func.h, 1226                                                     | dangles, 204                                                                            |
| expMLbase                                                             | do_backtrack, 205                                                                       |
| vrna_mx_pf_s, 532<br>export_ali_bppm                                  | energy_set, 204                                                                         |
| Deprecated Interface for Global Partition Function                    | max_bp_span, 205                                                                        |
| Computation, 578                                                      | noLonelyPairs, 204                                                                      |
| export_bppm                                                           | nonstandards, 205                                                                       |
| Deprecated Interface for Global Partition Function                    | pf_scale, 204                                                                           |
| Computation, 570                                                      | set_model_details, 203                                                                  |
| export_circfold_arrays                                                | temperature, 203                                                                        |
| Deprecated Interface for Global MFE Prediction,                       | tetra_loop, 204                                                                         |
| 562                                                                   | vrna_md_copy, 187                                                                       |
| export_circfold_arrays_par                                            | vrna_md_defaults_backtrack, 195                                                         |
| Deprecated Interface for Global MFE Prediction,                       | vrna_md_defaults_backtrack_get, 195                                                     |
| 562                                                                   | vrna_md_defaults_backtrack_type, 196 vrna_md_defaults_backtrack_type_get, 196           |
| export_co_bppm                                                        | vrna_md_defaults_backtrack_type_get, 190 vrna_md_defaults_betaScale, 189                |
|                                                                       |                                                                                         |

| vrna_md_defaults_betaScale_get, 189     | VRNA_MODEL_DEFAULT_BACKTRACK_TYPE,                        |
|-----------------------------------------|-----------------------------------------------------------|
| vrna_md_defaults_circ, 193              | 185                                                       |
| vrna_md_defaults_circ_get, 193          | VRNA_MODEL_DEFAULT_BETA_SCALE, 183                        |
| vrna_md_defaults_compute_bpp, 196       | VRNA_MODEL_DEFAULT_CIRC, 184                              |
| vrna_md_defaults_compute_bpp_get, 197   | VRNA_MODEL_DEFAULT_COMPUTE_BPP, 185                       |
| vrna_md_defaults_cv_fact, 200           | VRNA_MODEL_DEFAULT_DANGLES, 183                           |
| vrna_md_defaults_cv_fact_get, 200       | VRNA_MODEL_DEFAULT_ENERGY_SET, 185                        |
| vrna_md_defaults_dangles, 189           | VRNA MODEL DEFAULT GQUAD, 184                             |
| vrna md defaults dangles get, 190       | VRNA_MODEL_DEFAULT_LOG_ML, 186                            |
| vrna md defaults energy set, 195        | VRNA MODEL DEFAULT MAX BP SPAN, 185                       |
| vrna_md_defaults_energy_set_get, 195    | VRNA MODEL DEFAULT NO GU, 184                             |
| vrna_md_defaults_gquad, 193             | VRNA_MODEL_DEFAULT_NO_GU_CLOSURE,                         |
| vrna_md_defaults_gquad_get, 194         | 184                                                       |
| vrna_md_defaults_logML, 192             | VRNA_MODEL_DEFAULT_NO_LP, 184                             |
| vrna_md_defaults_logML_get, 193         | VRNA_MODEL_DEFAULT_PF_SCALE, 183                          |
| vrna_md_defaults_max_bp_span, 197       | VRNA_MODEL_DEFAULT_SPECIAL_HP, 184                        |
| vrna_md_defaults_max_bp_span_get, 197   | VRNA MODEL DEFAULT TEMPERATURE, 183                       |
| vrna md defaults min loop size, 197     | VRNA MODEL DEFAULT UNIQ ML, 185                           |
| :                                       |                                                           |
| vrna_md_defaults_min_loop_size_get, 198 | VRNA_MODEL_DEFAULT_WINDOW_SIZE, 186                       |
| vrna_md_defaults_nc_fact, 200           | fold                                                      |
| vrna_md_defaults_nc_fact_get, 201       | Deprecated Interface for Global MFE Prediction,           |
| vrna_md_defaults_noGU, 191              | 560                                                       |
| vrna_md_defaults_noGU_get, 191          | fold_par                                                  |
| vrna_md_defaults_noGUclosure, 192       | Deprecated Interface for Global MFE Prediction,           |
| vrna_md_defaults_noGUclosure_get, 192   | 559                                                       |
| vrna_md_defaults_noLP, 191              | fold_vars.h                                               |
| vrna_md_defaults_noLP_get, 191          | base_pair, 691                                            |
| vrna_md_defaults_oldAliEn, 199          | cut_point, 691                                            |
| vrna_md_defaults_oldAliEn_get, 199      | iindx, 692                                                |
| vrna_md_defaults_reset, 188             | james_rule, 691                                           |
| vrna_md_defaults_ribo, 199              | logML, 691                                                |
| vrna_md_defaults_ribo_get, 199          | pr, 692                                                   |
| vrna_md_defaults_salt, 201              | RibosumFile, 691                                          |
| vrna_md_defaults_salt_get, 202          | Folding Paths that start at a single Secondary Structure, |
| vrna_md_defaults_saltDPXInit, 203       | 356                                                       |
| vrna_md_defaults_saltDPXInit_get, 203   | vrna_path, 357                                            |
| vrna_md_defaults_saltMLLower, 202       | VRNA_PATH_DEFAULT, 357                                    |
| vrna_md_defaults_saltMLLower_get, 202   | vrna_path_gradient, 358                                   |
| vrna_md_defaults_saltMLUpper, 202       | VRNA_PATH_NO_TRANSITION_OUTPUT, 357                       |
| vrna_md_defaults_saltMLUpper_get, 202   | VRNA_PATH_RANDOM, 357                                     |
| vrna_md_defaults_sfact, 201             | vrna_path_random, 359                                     |
| vrna_md_defaults_sfact_get, 201         | VRNA_PATH_STEEPEST_DESCENT, 357                           |
| vrna_md_defaults_special_hp, 190        | FORBIDDEN                                                 |
| vrna_md_defaults_special_hp_get, 190    | constants.h, 933                                          |
| vrna_md_defaults_temperature, 188       | Free Energy Evaluation, 139                               |
| vrna_md_defaults_temperature_get, 189   | vrna_eval_circ_consensus_structure, 151                   |
| vrna_md_defaults_uniq_ML, 194           | vrna_eval_circ_consensus_structure_v, 154                 |
| vrna_md_defaults_uniq_ML_get, 194       | vrna_eval_circ_gquad_consensus_structure, 152             |
| vrna_md_defaults_window_size, 198       | vrna_eval_circ_gquad_consensus_structure_v,               |
| vrna_md_defaults_window_size_get, 198   | 156                                                       |
| vrna_md_option_string, 188              | vrna_eval_circ_gquad_structure, 147                       |
| vrna_md_set_default, 187                | vrna_eval_circ_gquad_structure_v, 150                     |
| vrna_md_update, 187                     | vrna_eval_circ_structure, 146                             |
| VRNA_MODEL_DEFAULT_ALI_CV_FACT, 186     | vrna_eval_circ_structure_v, 149                           |
| VRNA_MODEL_DEFAULT_ALI_NC_FACT, 186     | vrna_eval_consensus_structure_pt_simple, 158              |
| VRNA_MODEL_DEFAULT_ALI_OLD_EN, 186      | vrna_eval_consensus_structure_pt_simple_v, 159            |
| VRNA_MODEL_DEFAULT_ALI_RIBO, 186        | vrna_eval_consensus_structure_pt_simple_verbose           |
| VRNA_MODEL_DEFAULT_BACKTRACK, 185       | 159                                                       |

| vrna_eval_consensus_structure_simple, 151           | GASCONST                                            |
|-----------------------------------------------------|-----------------------------------------------------|
| vrna_eval_consensus_structure_simple_v, 154         | constants.h, 932                                    |
| vrna_eval_consensus_structure_simple_verbose,       | Generate Soft Constraints from Data, 363            |
| 153                                                 | progress_callback, 365                              |
| vrna_eval_covar_structure, 142                      | VRNA_MINIMIZER_CONJUGATE_FR, 364                    |
| vrna_eval_gquad_consensus_structure, 152            | VRNA_MINIMIZER_CONJUGATE_PR, 365                    |
| vrna_eval_gquad_consensus_structure_v, 155          | VRNA_MINIMIZER_DEFAULT, 364                         |
| vrna_eval_gquad_structure, 146                      | VRNA_MINIMIZER_STEEPEST_DESCENT, 365                |
| vrna_eval_gquad_structure_v, 149                    | VRNA_MINIMIZER_VECTOR_BFGS, 365                     |
| vrna_eval_structure, 142                            | VRNA MINIMIZER VECTOR BFGS2, 365                    |
| vrna_eval_structure_pt, 144                         | VRNA_OBJECTIVE_FUNCTION_ABSOLUTE,                   |
| vrna_eval_structure_pt_simple, 157                  | 364                                                 |
| vrna_eval_structure_pt_simple_v, 157                | VRNA_OBJECTIVE_FUNCTION_QUADRATIC,                  |
| vrna_eval_structure_pt_simple_verbose, 157          | 364                                                 |
| vrna_eval_structure_pt_v, 145                       | vrna_sc_minimize_pertubation, 365                   |
| vrna_eval_structure_pt_verbose, 144                 | get_alipf_arrays                                    |
| vrna_eval_structure_simple, 145                     | Deprecated Interface for Global Partition Function  |
| vrna_eval_structure_simple_v, 148                   | Computation, 579                                    |
| vrna_eval_structure_simple_verbose, 148             | get_boltzmann_factor_copy                           |
| vrna_eval_structure_v, 143                          | Energy Parameters, 214                              |
| vrna_eval_structure_verbose, 143                    | get_boltzmann_factors                               |
| free_alifold_arrays                                 | Energy Parameters, 213                              |
| Deprecated Interface for Global MFE Prediction,     | get_boltzmann_factors_ali                           |
| 564                                                 | Energy Parameters, 215                              |
| free_alipf_arrays                                   | get_centroid_struct_gquad_pr                        |
| Deprecated Interface for Global Partition Function  | part_func.h, 1226                                   |
| Computation, 578                                    | get_centroid_struct_pl                              |
| free arrays                                         | centroid.h, 623                                     |
| Deprecated Interface for Global MFE Prediction,     | get_centroid_struct_pr                              |
| 561                                                 | centroid.h, 623                                     |
| free_auxdata                                        | get_concentrations                                  |
| vrna_fc_s, 521                                      | concentrations.h, 632                               |
| free_co_arrays                                      | get_gquad_matrix                                    |
| Deprecated Interface for Global MFE Prediction,     | G-Quadruplexes, 374                                 |
| 557                                                 | get_input_line                                      |
| free_co_pf_arrays                                   | Utilities, 387                                      |
| Deprecated Interface for Global Partition Function  | get line                                            |
| Computation, 575                                    | basic.h, 927                                        |
| free data                                           | get_mpi                                             |
| vrna_hc_s, 241                                      | Deprecated Interface for Multiple Sequence Align-   |
| free_path                                           | ment Utilities, 585                                 |
| Deprecated Interface for (Re-)folding Paths, Saddle | get_path                                            |
| Points, and Energy Barriers, 599                    | Deprecated Interface for (Re-)folding Paths, Saddle |
| free_pf_arrays                                      | Points, and Energy Barriers, 599                    |
| Deprecated Interface for Global Partition Function  | get_pf_arrays                                       |
| Computation, 570                                    | Deprecated Interface for Global Partition Function  |
| free_profile                                        | Computation, 571                                    |
| profiledist.h, 1263                                 | get_plist                                           |
| free_sequence_arrays                                | part_func_co.h, 1230                                |
| Deprecated Interface for Multiple Sequence Align-   | get_ribosum                                         |
| ment Utilities, 587                                 | Files and I/O, 456                                  |
| free tree                                           | get_scaled_alipf_parameters                         |
| <del>-</del>                                        | Energy Parameters, 214                              |
| treedist.h, 1282                                    | get_scaled_parameters                               |
| G-Quadruplexes, 374                                 | Energy Parameters, 215                              |
| backtrack_GQuad_IntLoop, 375                        |                                                     |
| backtrack_GQuad_IntLoop_L, 375                      | get_scaled_pf_parameters  Energy Parameters 213     |
| get_gquad_matrix, 374                               | Energy Parameters, 213 get_subseq_F                 |
| parse_gquad, 375                                    | ger_subseq_i                                        |

| Deprecated Interface for Global Partition Function Computation, 572 get_TwoDfold_variables Computing MFE representatives of a Distance Based Partitioning, 320 | VRNA_CONSTRAINT_DB, 242 VRNA_CONSTRAINT_DB_DEFAULT, 244 VRNA_CONSTRAINT_DB_DOT, 242 VRNA_CONSTRAINT_DB_ENFORCE_BP, 242 VRNA_CONSTRAINT_DB_GQUAD, 243 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| get_TwoDpfold_variables                                                                                                                                        | VRNA_CONSTRAINT_DB_INTERMOL, 243                                                                                                                     |
| 2Dpfold.h, 608                                                                                                                                                 | VRNA_CONSTRAINT_DB_INTRAMOL, 243                                                                                                                     |
| give_up                                                                                                                                                        | VRNA_CONSTRAINT_DB_PIPE, 242                                                                                                                         |
| Inverse Folding (Design), 337<br>Global MFE Prediction, 260                                                                                                    | VRNA_CONSTRAINT_DB_RND_BRACK, 243 VRNA_CONSTRAINT_DB_WUSS, 243                                                                                       |
| vrna_alifold, 263                                                                                                                                              | VRNA_CONSTRAINT_DB_X, 242                                                                                                                            |
| vrna_circalifold, 264                                                                                                                                          | vrna_hc_add_bp, 247                                                                                                                                  |
| vrna_circfold, 263                                                                                                                                             | vrna_hc_add_bp_nonspecific, 247                                                                                                                      |
| vrna_cofold, 264                                                                                                                                               | vrna_hc_add_from_db, 248                                                                                                                             |
| vrna_fold, 262                                                                                                                                                 | vrna_hc_add_up, 246                                                                                                                                  |
| vrna_mfe, 261                                                                                                                                                  | vrna_hc_add_up_batch, 246                                                                                                                            |
| vrna_mfe_dimer, 261                                                                                                                                            | vrna_hc_eval_f, 245                                                                                                                                  |
| Global Partition Function and Equilibrium Probabilities,                                                                                                       | vrna_hc_free, 248                                                                                                                                    |
| 272                                                                                                                                                            | vrna_hc_init, 246                                                                                                                                    |
| vrna_pf, 273                                                                                                                                                   | hard.h                                                                                                                                               |
| vrna_pf_alifold, 276                                                                                                                                           | constrain_ptypes, 637                                                                                                                                |
| vrna_pf_circalifold, 277                                                                                                                                       | print_tty_constraint, 637                                                                                                                            |
| vrna_pf_circfold, 275                                                                                                                                          | print_tty_constraint_full, 637                                                                                                                       |
| vrna_pf_co_fold, 278                                                                                                                                           | VRNA_CONSTRAINT_DB_ANG_BRACK, 636                                                                                                                    |
| vrna_pf_dimer, 274<br>vrna_pf_fold, 275                                                                                                                        | VRNA_CONSTRAINT_NO_HEADER, 636<br>vrna_hc_add_data, 637                                                                                              |
| vrna_plist_from_probs, 277                                                                                                                                     | VRNA_HC_DEFAULT, 636                                                                                                                                 |
| gmIRNA                                                                                                                                                         | vrna_hc_type_e, 636                                                                                                                                  |
| Plotting, 477                                                                                                                                                  | VRNA_HC_WINDOW, 636                                                                                                                                  |
|                                                                                                                                                                | Hash Tables, 534                                                                                                                                     |
| Hairpin Loops, 392                                                                                                                                             | vrna_hash_table_t, 536                                                                                                                               |
| E_Hairpin, 393                                                                                                                                                 | vrna_ht_clear, 539                                                                                                                                   |
| exp_E_Hairpin, 394                                                                                                                                             | vrna_ht_cmp_f, 536                                                                                                                                   |
| vrna_E_ext_hp_loop, 393                                                                                                                                        | vrna_ht_collisions, 538                                                                                                                              |
| vrna_E_hp_loop, 392                                                                                                                                            | vrna_ht_db_comp, 540                                                                                                                                 |
| vrna_eval_hp_loop, 393                                                                                                                                         | vrna_ht_db_free_entry, 541                                                                                                                           |
| vrna_exp_E_hp_loop, 395<br>HairpinE                                                                                                                            | vrna_ht_db_hash_func, 540                                                                                                                            |
| Deprecated Interface for Global MFE Prediction,                                                                                                                | vrna_ht_free, 540                                                                                                                                    |
| 563                                                                                                                                                            | vrna_ht_free_f, 537                                                                                                                                  |
| hamming                                                                                                                                                        | vrna_ht_get, 538                                                                                                                                     |
| strings.h, 1293                                                                                                                                                | vrna_ht_hashfunc_f, 536<br>vrna_ht_init, 537                                                                                                         |
| hamming_bound                                                                                                                                                  | vrna ht insert, 539                                                                                                                                  |
| strings.h, 1294                                                                                                                                                | vrna ht remove, 539                                                                                                                                  |
| Hard Constraints, 239                                                                                                                                          | vrna ht size, 538                                                                                                                                    |
| VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS,                                                                                                                             | Heaps, 541                                                                                                                                           |
| VRNA CONSTRAINT CONTEXT EXT LOOP,                                                                                                                              | vrna_heap_cmp_f, 542                                                                                                                                 |
| 244                                                                                                                                                            | vrna_heap_free, 545                                                                                                                                  |
| VRNA_CONSTRAINT_CONTEXT_HP_LOOP,                                                                                                                               | vrna_heap_get_pos_f, 544                                                                                                                             |
| 244                                                                                                                                                            | vrna_heap_init, 544                                                                                                                                  |
| VRNA_CONSTRAINT_CONTEXT_INT_LOOP,                                                                                                                              | vrna_heap_insert, 546<br>vrna_heap_pop, 546                                                                                                          |
| 244                                                                                                                                                            | vrna_heap_remove, 547                                                                                                                                |
| VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC                                                                                                                           | vrna_heap_set_pos_f, 544                                                                                                                             |
| 244                                                                                                                                                            | vrna_heap_size, 545                                                                                                                                  |
| VRNA_CONSTRAINT_CONTEXT_MB_LOOP,                                                                                                                               | vrna_heap_t, 542                                                                                                                                     |
| 244                                                                                                                                                            | vrna heap top, 546                                                                                                                                   |
| VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENC                                                                                                                            | vrna_heap_update, 547                                                                                                                                |

| Helix List Representation of Secondary Structures, 442 vrna_hx_from_ptable, 443                                                                                                                                                                                                                                                                                                                                                                                                                 | vrna_plot_coords_circular_pt, 489<br>vrna_plot_coords_pt, 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VIIIa_IIX_IIOIII_ptable, 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vrna_plot_coords_puzzler, 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vrna_plot_coords_puzzler_pt, 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| vrna_exp_param_s, 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vrna_plot_coords_simple, 487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| iindx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vrna_plot_coords_simple_pt, 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| fold_vars.h, 692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vrna_plot_coords_turtle, 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Incorporating Ligands Binding to Specific Se-                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vrna_plot_coords_turtle_pt, 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| quence/Structure Motifs using Soft Con-                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vrna_plot_coolids_tartic_pt, 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| straints, 367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vrna_plot_layout_circular, 484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| vrna sc add hi motif, 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vrna_plot_layout_free, 485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vrna_plot_layout_puzzler, 485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| constants.h, 933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vrna_plot_layout_simple, 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| init_co_pf_fold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vrna_plot_layout_t, 482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Deprecated Interface for Global Partition Function                                                                                                                                                                                                                                                                                                                                                                                                                                              | vrna_plot_layout_turtle, 484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Computation, 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vrna_plot_options_puzzler, 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| init_pf_fold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vrna_plot_options_puzzler_free, 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Deprecated Interface for Global Partition Function                                                                                                                                                                                                                                                                                                                                                                                                                                              | VRNA PLOT TYPE CIRCULAR, 482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Computation, 573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VRNA_PLOT_TYPE_NAVIEW, 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| init_pf_foldLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VRNA PLOT TYPE PUZZLER, 482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LPfold.h, 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VRNA PLOT TYPE SIMPLE, 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| init rand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VRNA_PLOT_TYPE_TURTLE, 482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| basic.h, 929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| initialize_cofold                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vrna mx pf s, 532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Deprecated Interface for Global MFE Prediction,                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lfold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deprecated Interface for Local (Sliding Window)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| initialize_fold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MFE Prediction, 564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Deprecated Interface for Global MFE Prediction,                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lfoldz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deprecated Interface for Local (Sliding Window)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| int urn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFE Prediction, 565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wil E i lodiotion, ooo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| basic.h, 929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ligands Binding to BNA Structures 367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| basic.h, 929<br>interact, 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ligands Binding to RNA Structures, 367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| interact, 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ligands Binding to Unstructured Domains, 367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| interact, 507<br>Internal Loops, 395                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ligands Binding to Unstructured Domains, 367<br>LIST, 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| interact, 507<br>Internal Loops, 395<br>vrna_eval_int_loop, 396                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ligands Binding to Unstructured Domains, 367<br>LIST, 601<br>Local (sliding window) MFE Prediction, 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| interact, 507<br>Internal Loops, 395                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337                                                                                                                                                                                                                                                                                                                                                                                             | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336                                                                                                                                                                                                                                                                                                                                                               | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337                                                                                                                                                                                                                                                                                                                                               | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336                                                                                                                                                                                                                                                                                                                                                               | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337                                                                                                                                                                                                                                                                                                                                  | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium                                                                                                                                                                                                                                                                                                                                                                                     |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337                                                                                                                                                                                                                                                                                                                 | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278                                                                                                                                                                                                                                                                                                                                                                  |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inverse_fold, 336                                                                                                                                                                                                                                                                                               | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283                                                                                                                                                                                                                                                                                                                                               |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inverse_fold, 336 inverse_pf_fold, 336                                                                                                                                                                                                                                                                          | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283                                                                                                                                                                                                                                                                                                                         |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 337 inverse_fold, 336 inverse_fold, 336 inverse_fold                                                                                                                                                                                                                                               | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284                                                                                                                                                                                                                                                                                                   |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inverse_fold, 336 inverse_pf_fold, 336 inverse_fold Inverse Folding (Design), 336                                                                                                                                                                                                                               | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284                                                                                                                                                                                                                                                    |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inverse_fold, 336 inverse_pf_fold, 336 inverse_fold Inverse Folding (Design), 336 inverse_pf_fold                                                                                                                                                                                                               | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up, 284 vrna_probs_window, 282                                                                                                                                                                                                                                                      |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336 james_rule                                                                                                                                                     | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279                                                                                                                                                                                                                        |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336                                                                                                                                                                | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281                                                                                                                                                                                               |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336 james_rule fold_vars.h, 691                                                                                                                                    | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279                                                                                                                                                                                                                        |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 337 inverse_fold, 336 inverse_pf_fold, 336 inverse_pf fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336 james_rule fold_vars.h, 691 K0                                                                                                                              | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281 VRNA_PROBS_WINDOW_PF, 281                                                                                                                                                                     |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336 james_rule fold_vars.h, 691                                                                                                                                    | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281 VRNA_PROBS_WINDOW_PF, 281 VRNA_PROBS_WINDOW_STACKP, 280                                                                                                                                          |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336  james_rule fold_vars.h, 691  K0 constants.h, 932                                                                                                              | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281 VRNA_PROBS_WINDOW_PF, 281 VRNA_PROBS_WINDOW_STACKP, 280 VRNA_PROBS_WINDOW_UP, 280                                                                                       |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336  inverse_pf_fold Constants.h, 691  K0 constants.h, 932  last_parameter_file                                                                                    | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281 VRNA_PROBS_WINDOW_PF, 281 VRNA_PROBS_WINDOW_UP, 280 VRNA_PROBS_WINDOW_UP, 280 VRNA_PROBS_WINDOW_UP_SPLIT, 280                                                        |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_pf fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336  james_rule fold_vars.h, 691  K0 constants.h, 932  last_parameter_file Reading/Writing Energy Parameter Sets from/to                                        | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281 VRNA_PROBS_WINDOW_FF, 281 VRNA_PROBS_WINDOW_UP, 280 VRNA_PROBS_WINDOW_UP, 280 VRNA_PROBS_WINDOW_UP_SPLIT, 280 logML                                                  |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_pf fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336  james_rule fold_vars.h, 691  K0 constants.h, 932  last_parameter_file Reading/Writing Energy Parameter Sets from/to File, 407                              | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281 VRNA_PROBS_WINDOW_PF, 281 VRNA_PROBS_WINDOW_STACKP, 280 VRNA_PROBS_WINDOW_UP, 280 VRNA_PROBS_WINDOW_UP, SPLIT, 280 logML fold_vars.h, 691                                                     |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_pf_fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336  james_rule fold_vars.h, 691  K0 constants.h, 932  last_parameter_file Reading/Writing Energy Parameter Sets from/to File, 407 Layouts and Coordinates, 480 | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window_zscore, 267 Local (sliding window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281 VRNA_PROBS_WINDOW_FF, 281 VRNA_PROBS_WINDOW_STACKP, 280 VRNA_PROBS_WINDOW_UP, 280 VRNA_PROBS_WINDOW_UP, 280 logML fold_vars.h, 691 loop_energy                                                |
| interact, 507 Internal Loops, 395 vrna_eval_int_loop, 396 inv_verbose Inverse Folding (Design), 337 Inverse Folding (Design), 336 final_cost, 337 give_up, 337 inv_verbose, 337 inv_verbose, 336 inverse_fold, 336 inverse_pf_fold, 336 inverse_pf fold Inverse Folding (Design), 336 inverse_pf_fold Inverse Folding (Design), 336  james_rule fold_vars.h, 691  K0 constants.h, 932  last_parameter_file Reading/Writing Energy Parameter Sets from/to File, 407                              | Ligands Binding to Unstructured Domains, 367 LIST, 601 Local (sliding window) MFE Prediction, 265 vrna_Lfold, 268 vrna_Lfoldz, 268 vrna_mfe_window, 267 vrna_mfe_window_f, 266 vrna_mfe_window) Partition Function and Equilibrium Probabilities, 278 vrna_pfl_fold, 283 vrna_pfl_fold_cb, 283 vrna_pfl_fold_up, 284 vrna_pfl_fold_up_cb, 284 vrna_probs_window, 282 VRNA_PROBS_WINDOW_BPP, 279 vrna_probs_window_f, 281 VRNA_PROBS_WINDOW_FF, 281 VRNA_PROBS_WINDOW_STACKP, 280 VRNA_PROBS_WINDOW_UP, 280 VRNA_PROBS_WINDOW_UP, 280 VRNA_PROBS_WINDOW_UP_SPLIT, 280 logML fold_vars.h, 691 loop_energy Deprecated Interface for Free Energy Evaluation, |

| Deprecated Interface for Global MFE Prediction, 563  | vrna_aln_conservation_col, 454 vrna_aln_conservation_struct, 453 |
|------------------------------------------------------|------------------------------------------------------------------|
| LPfold.h                                             | vrna_aln_copy, 453                                               |
| init_pf_foldLP, 740                                  | vrna_aln_free, 452                                               |
| LST BUCKET, 601                                      | vrna_aln_mpi, 451                                                |
| LOT_BOOKET, OUT                                      | vrna_aln_pinfo, 451                                              |
| Make_bp_profile                                      | vrna_aln_slice, 451                                              |
| profiledist.h, 1263                                  | vrna_aln_toRNA, 453                                              |
| Make_bp_profile_bppm                                 | vrna aln uppercase, 452                                          |
| profiledist.h, 1263                                  | VRNA_MEASURE_SHANNON_ENTROPY, 451                                |
| make_pair_table                                      | Multiple Sequence Alignments, 464                                |
| Deprecated Interface for Secondary Structure Utili-  | VRNA_FILE_FORMAT_MSA_APPEND, 466                                 |
| ties, 593                                            | VRNA_FILE_FORMAT_MSA_CLUSTAL, 465                                |
| make_pair_table_snoop                                | VRNA_FILE_FORMAT_MSA_DEFAULT, 466                                |
| Deprecated Interface for Secondary Structure Utili-  | VRNA FILE FORMAT MSA FASTA, 465                                  |
| ties, 594                                            | VRNA_FILE_FORMAT_MSA_MAF, 465                                    |
| make_referenceBP_array                               | VRNA_FILE_FORMAT_MSA_MIS, 465                                    |
| Deprecated Interface for Secondary Structure Utili-  | VRNA FILE FORMAT MSA NOCHECK, 466                                |
| ties, 594                                            | VRNA FILE FORMAT MSA QUIET, 466                                  |
| Make_swString                                        | VRNA FILE FORMAT MSA SILENT, 467                                 |
| stringdist.h, 1276                                   | VRNA FILE FORMAT MSA STOCKHOLM, 465                              |
| make_tree                                            | VRNA FILE FORMAT MSA UNKNOWN, 466                                |
| treedist.h, 1281                                     | vrna_file_msa_detect_format, 469                                 |
| max_bp_span                                          | vrna_file_msa_read, 467                                          |
| Fine-tuning of the Implemented Models, 205           | vrna_file_msa_read_record, 468                                   |
| MAXLOOP                                              | vrna_file_msa_write, 470                                         |
| constants.h, 933                                     |                                                                  |
| MEA                                                  | n_seq                                                            |
| Compute the Structure with Maximum Expected          | vrna_fc_s, 522                                                   |
| Accuracy (MEA), 313                                  | NBPAIRS                                                          |
| mean_bp_dist                                         | constants.h, 933                                                 |
| part_func.h, 1226                                    | nc_fact                                                          |
| mean_bp_distance                                     | alifold.h, 615                                                   |
| Deprecated Interface for Global Partition Function   | Neighborhood Relation and Move Sets for Secondary                |
| Computation, 572                                     | Structures, 337                                                  |
| mean_bp_distance_pr                                  | vrna_loopidx_update, 345                                         |
| Deprecated Interface for Global Partition Function   | vrna_move_apply, 343                                             |
| Computation, 572                                     | vrna_move_compare, 344                                           |
| Messages, 510                                        | vrna_move_init, 343                                              |
| vrna_message_error, 511                              | vrna_move_is_insertion, 344                                      |
| vrna_message_info, 512                               | vrna_move_is_removal, 343                                        |
| vrna_message_input_seq, 513                          | vrna_move_is_shift, 344                                          |
| vrna_message_input_seq_simple, 513                   | vrna_move_list_free, 343 vrna_move_neighbor_diff, 347            |
| vrna_message_verror, 511                             | vrna move neighbor diff cb, 346                                  |
| vrna_message_vinfo, 512                              | vrna_move_update_f, 342                                          |
| vrna_message_vwarning, 512 vrna_message_warning, 511 | VRNA_MOVESET_DEFAULT, 341                                        |
| min_loop_size                                        | VRNA_MOVESET_DELETION, 341                                       |
| vrna_md_s, 183                                       | VRNA_MOVESET_INSERTION, 341                                      |
| Minimum Free Energy (MFE) Algorithms, 258            | VRNA MOVESET NO LP, 341                                          |
| mm.h                                                 | VRNA_MOVESET_SHIFT, 341                                          |
| vrna_maximum_matching, 746                           | VRNA NEIGHBOR CHANGE, 342                                        |
| vrna_maximum_matching_simple, 746                    | VRNA NEIGHBOR INVALID, 342                                       |
| Multibranch Loops, 396                               | VRNA_NEIGHBOR_NEW, 342                                           |
| vrna_E_mb_loop_stack, 397                            | vrna_neighbors, 345                                              |
| vrna_mx_pf_aux_ml_t, 397                             | vrna_neighbors_successive, 346                                   |
| Multiple Sequence Alignment Utilities, 449           | node, 508                                                        |
| vrna_aln_consensus_mis, 455                          | noLonelyPairs                                                    |
| vrna_aln_consensus_sequence, 454                     | Fine-tuning of the Implemented Models, 204                       |
| · · ·                                                | - · · · · · · · · · · · · · · · · · · ·                          |

| nonstandards                                                                                                                            | vrna_pf_co_fold, 398                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Fine-tuning of the Implemented Models, 205                                                                                              | vrna_pf_dimer_concentrations, 399                                                                                  |
| nrerror                                                                                                                                 | Partition Function for two Hybridized Sequences as a                                                               |
| basic.h, 928                                                                                                                            | Stepwise Process, 400                                                                                              |
| Nucleic Acid Sequences and Structures, 458                                                                                              | pf_interact, 401                                                                                                   |
| read_record, 463                                                                                                                        | pf_unstru, 400                                                                                                     |
| VRNA_CONSTRAINT_MULTILINE, 459                                                                                                          | path_t                                                                                                             |
| vrna_extract_record_rest_constraint, 463                                                                                                | Deprecated Interface for (Re-)folding Paths, Saddle                                                                |
| vrna_extract_record_rest_structure, 462                                                                                                 | Points, and Energy Barriers, 598                                                                                   |
| vrna_file_bpseq, 460                                                                                                                    | pbacktrack  Depresented Interface for Steehastic Backtracking                                                      |
| vrna_file_connect, 460                                                                                                                  | Deprecated Interface for Stochastic Backtracking, 583                                                              |
| vrna_file_fasta_read_record, 461<br>vrna_file_helixlist, 459                                                                            | pbacktrack5                                                                                                        |
| vrna_file_json, 460                                                                                                                     | Deprecated Interface for Stochastic Backtracking,                                                                  |
| vrna_file_SHAPE_read, 463                                                                                                               | 584                                                                                                                |
| VRNA_OPTION_MULTILINE, 459                                                                                                              | pbacktrack_circ                                                                                                    |
| VIIIV_OI TIOI\_MOETIEII 100                                                                                                             | Deprecated Interface for Stochastic Backtracking,                                                                  |
| pack_structure                                                                                                                          | 584                                                                                                                |
| Deprecated Interface for Secondary Structure Utili-                                                                                     | pf_circ_fold                                                                                                       |
| ties, 592                                                                                                                               | Deprecated Interface for Global Partition Function                                                                 |
| PAIR                                                                                                                                    | Computation, 569                                                                                                   |
| (Abstract) Data Structures, 509                                                                                                         | pf_fold                                                                                                            |
| Pair List Representation of Secondary Structures, 439                                                                                   | Deprecated Interface for Global Partition Function                                                                 |
| vrna_plist, 440                                                                                                                         | Computation, 568                                                                                                   |
| Pair Table Representation of Secondary Structures, 436                                                                                  | pf_fold_par                                                                                                        |
| vrna_pt_ali_get, 438                                                                                                                    | Deprecated Interface for Global Partition Function                                                                 |
| vrna_pt_pk_get, 437                                                                                                                     | Computation, 567                                                                                                   |
| vrna_pt_pk_remove, 438                                                                                                                  | pf_interact                                                                                                        |
| vrna_pt_snoop_get, 438                                                                                                                  | Partition Function for two Hybridized Sequences as                                                                 |
| vrna_ptable, 436                                                                                                                        | a Stepwise Process, 401                                                                                            |
| vrna_ptable_copy, 438                                                                                                                   | pf_paramT                                                                                                          |
| vrna_ptable_from_string, 437                                                                                                            | Energy Parameters, 208                                                                                             |
| pair_info                                                                                                                               | pf scale                                                                                                           |
| Deprecated Interface for Multiple Sequence Align-                                                                                       | Fine-tuning of the Implemented Models, 204                                                                         |
| ment Utilities, 585                                                                                                                     | pf_unstru                                                                                                          |
| paramT                                                                                                                                  | Partition Function for two Hybridized Sequences as                                                                 |
| Energy Parameters, 208                                                                                                                  | a Stepwise Process, 400                                                                                            |
| parenthesis_structure                                                                                                                   | pfl_fold                                                                                                           |
| Deprecated Interface for Secondary Structure Utili-                                                                                     | Deprecated Interface for Local (Sliding Window)                                                                    |
| ties, 595                                                                                                                               | Partition Function Computation, 580                                                                                |
| parenthesis_zuker                                                                                                                       | pfl_fold_par                                                                                                       |
| Deprecated Interface for Secondary Structure Utili-                                                                                     | Deprecated Interface for Local (Sliding Window)                                                                    |
| ties, 595                                                                                                                               | Partition Function Computation, 581                                                                                |
| parse_gquad                                                                                                                             | plist                                                                                                              |
| G-Quadruplexes, 375                                                                                                                     | (Abstract) Data Structures, 509                                                                                    |
| parse_structure                                                                                                                         | Plotting, 474                                                                                                      |
| Deprecated Interface for Secondary Structure Utili-                                                                                     | gmlRNA, 477                                                                                                        |
| ties, 592                                                                                                                               | PS_dot_plot, 476                                                                                                   |
| part_func.h                                                                                                                             | PS_dot_plot_list, 475                                                                                              |
| centroid, 1225                                                                                                                          | PS_rna_plot, 479                                                                                                   |
| expHairpinEnergy, 1226                                                                                                                  | PS_rna_plot_a, 479                                                                                                 |
| aval confinerate 1000                                                                                                                   | ·                                                                                                                  |
| expLoopEnergy, 1226                                                                                                                     | PS_rna_plot_a_gquad, 479                                                                                           |
| get_centroid_struct_gquad_pr, 1226                                                                                                      |                                                                                                                    |
| get_centroid_struct_gquad_pr, 1226<br>mean_bp_dist, 1226                                                                                | PS_rna_plot_a_gquad, 479                                                                                           |
| get_centroid_struct_gquad_pr, 1226<br>mean_bp_dist, 1226<br>part_func_co.h                                                              | PS_rna_plot_a_gquad, 479<br>ssv_rna_plot, 478                                                                      |
| get_centroid_struct_gquad_pr, 1226<br>mean_bp_dist, 1226<br>part_func_co.h<br>get_plist, 1230                                           | PS_rna_plot_a_gquad, 479<br>ssv_rna_plot, 478<br>svg_rna_plot, 478                                                 |
| get_centroid_struct_gquad_pr, 1226 mean_bp_dist, 1226 part_func_co.h get_plist, 1230 Partition Function and Equilibrium Properties, 259 | PS_rna_plot_a_gquad, 479 ssv_rna_plot, 478 svg_rna_plot, 478 vrna_file_PS_rnaplot, 476                             |
| get_centroid_struct_gquad_pr, 1226<br>mean_bp_dist, 1226<br>part_func_co.h<br>get_plist, 1230                                           | PS_rna_plot_a_gquad, 479 ssv_rna_plot, 478 svg_rna_plot, 478 vrna_file_PS_rnaplot, 476 vrna_file_PS_rnaplot_a, 477 |

| vrna_sc_mod, 379                                 | Plotting, 475                                   |
|--------------------------------------------------|-------------------------------------------------|
| vrna_sc_mod_7DA, 381                             | PS_rna_plot                                     |
| vrna_sc_mod_dihydrouridine, 382                  | Plotting, 479                                   |
| vrna_sc_mod_inosine, 381                         | PS_rna_plot_a                                   |
| vrna_sc_mod_json, 378                            | Plotting, 479                                   |
| vrna_sc_mod_jsonfile, 379                        | PS_rna_plot_a_gquad                             |
| vrna_sc_mod_m6A, 380                             | Plotting, 479                                   |
| vrna_sc_mod_param_t, 377                         | -                                               |
| vrna_sc_mod_parameters_free, 378                 | pscore vrna fc s, 523                           |
|                                                  | :                                               |
| vrna_sc_mod_pseudouridine, 380                   | pscore_local                                    |
| vrna_sc_mod_purine, 382                          | vrna_fc_s, 524                                  |
| vrna_sc_mod_read_from_json, 378                  | pscore_pf_compat                                |
| vrna_sc_mod_read_from_jsonfile, 377              | vrna_fc_s, 524                                  |
| Postorder_list, 601                              | Pseudoknots, 369                                |
| pr                                               | vrna_pk_plex, 372                               |
| fold_vars.h, 692                                 | vrna_pk_plex_accessibility, 372                 |
| Predicting various thermodynamic properties, 326 | vrna_pk_plex_opt, 373                           |
| vrna_ensemble_defect, 330                        | vrna_pk_plex_opt_defaults, 373                  |
| vrna_ensemble_defect_pt, 329                     | vrna_pk_plex_opt_fun, 373                       |
| vrna heat capacity, 333                          | vrna_pk_plex_opt_t, 371                         |
| vrna_heat_capacity_cb, 333                       | vrna_pk_plex_score_f, 371                       |
| vrna_heat_capacity_f, 328                        | vrna_pk_plex_t, 371                             |
| vrna_heat_capacity_simple, 334                   | ptype                                           |
| vrna_heat_capacity_t, 328                        | vrna_fc_s, 521                                  |
| vrna_mean_bp_distance, 329                       | ptype_pf_compat                                 |
| vrna_mean_bp_distance_pr, 328                    |                                                 |
|                                                  | vrna_fc_s, 522                                  |
| vrna_pf_dimer_probs, 331                         | pu_contrib, 507                                 |
| vrna_positional_entropy, 331                     | pu_out, 508                                     |
| vrna_pr_energy, 333                              | putoutpU_prob                                   |
| vrna_pr_structure, 332                           | Deprecated Interface for Local (Sliding Window) |
| vrna_stack_prob, 331                             | Partition Function Computation, 581             |
| print_energy                                     | putoutpU_prob_bin                               |
| Suboptimal Structures within an Energy Band      | Deprecated Interface for Local (Sliding Window) |
| around the MFE, 291                              | Partition Function Computation, 583             |
| print_tty_constraint                             |                                                 |
| hard.h, 637                                      | Random Structure Samples from the Ensemble, 291 |
| print_tty_constraint_full                        | vrna_bs_result_f, 293                           |
| hard.h, 637                                      | vrna_pbacktrack, 300                            |
| print_tty_input_seq                              | vrna_pbacktrack5, 294                           |
| basic.h, 928                                     | vrna_pbacktrack5_cb, 296                        |
| print_tty_input_seq_str                          | vrna_pbacktrack5_num, 295                       |
| basic.h, 928                                     | vrna_pbacktrack5_resume, 297                    |
| prod cb                                          | vrna_pbacktrack5_resume_cb, 298                 |
| • —                                              | vrna_pbacktrack_cb, 301                         |
| vrna_unstructured_domain_s, 220                  | VRNA_PBACKTRACK_DEFAULT, 293                    |
| profile_edit_distance                            | vrna_pbacktrack_mem_free, 311                   |
| profiledist.h, 1262                              | vrna_pbacktrack_mem_t, 294                      |
| profiledist.h                                    | VRNA_PBACKTRACK_NON_REDUNDANT, 293              |
| free_profile, 1263                               |                                                 |
| Make_bp_profile, 1263                            | vrna_pbacktrack_num, 300                        |
| Make_bp_profile_bppm, 1263                       | vrna_pbacktrack_resume, 302                     |
| profile_edit_distance, 1262                      | vrna_pbacktrack_resume_cb, 304                  |
| progress_callback                                | vrna_pbacktrack_sub, 305                        |
| Generate Soft Constraints from Data, 365         | vrna_pbacktrack_sub_cb, 307                     |
| PS_color_aln                                     | vrna_pbacktrack_sub_num, 306                    |
| Deprecated Interface for Plotting Utilities, 596 | vrna_pbacktrack_sub_resume, 308                 |
| PS_dot_plot                                      | vrna_pbacktrack_sub_resume_cb, 310              |
| Plotting, 476                                    | random_string                                   |
| PS_dot_plot_list                                 | strings.h, 1293                                 |
| ·                                                | read_parameter_file                             |

| Reading/Writing Energy Parameter Sets from/to       | vrna_fc_s, 521                                      |
|-----------------------------------------------------|-----------------------------------------------------|
| File, 407                                           | sequence_encoding                                   |
| read_record                                         | vrna_fc_s, 521                                      |
| Nucleic Acid Sequences and Structures, 463          | sequences                                           |
| Reading/Writing Energy Parameter Sets from/to File, | vrna_fc_s, 522                                      |
| 402                                                 | set_model_details                                   |
| last_parameter_file, 407                            | Fine-tuning of the Implemented Models, 203          |
| read_parameter_file, 407                            | SHAPE Reactivity Data, 360                          |
| VRNA_PARAMETER_FORMAT_DEFAULT, 403                  | vrna_sc_add_SHAPE_deigan, 361                       |
| vrna_params_load, 403                               | vrna_sc_add_SHAPE_deigan_ali, 361                   |
| vrna_params_load_defaults, 404                      | vrna_sc_add_SHAPE_zarringhalam, 362                 |
| vrna_params_load_DNA_Mathews1999, 406               | vrna_sc_SHAPE_to_pr, 363                            |
| vrna_params_load_DNA_Mathews2004, 406               | SHAPE.h                                             |
| vrna_params_load_from_string, 404                   | vrna_sc_SHAPE_parse_method, 643                     |
| vrna_params_load_RNA_Andronescu2007, 405            | simple_circplot_coordinates                         |
| vrna_params_load_RNA_Langdon2018, 405               | Deprecated Interface for Plotting Utilities, 597    |
| vrna_params_load_RNA_misc_special_hairpins,         | simple_xy_coordinates                               |
| 406                                                 | Deprecated Interface for Plotting Utilities, 597    |
| vrna_params_load_RNA_Turner1999, 405                | snoopT, 508                                         |
| vrna_params_load_RNA_Turner2004, 405                | Soft Constraints, 248                               |
| vrna_params_save, 403                               | vrna_sc_add_bp, 254                                 |
| write_parameter_file, 407                           | vrna_sc_add_bt, 257                                 |
| readribosum                                         | vrna_sc_add_data, 256                               |
| Files and I/O, 456                                  | vrna_sc_add_exp_f, 257                              |
| RibosumFile                                         | vrna_sc_add_f, 256                                  |
| fold_vars.h, 691                                    | vrna_sc_add_up, 255                                 |
| RNA-RNA Interaction, 315                            | vrna_sc_bt_f, 252                                   |
| rna_plot_type                                       | vrna_sc_exp_f, 251                                  |
| Deprecated Interface for Plotting Utilities, 598    | vrna_sc_f, 251                                      |
| Depresented interness for Floring Stanties, 555     | vrna_sc_free, 256                                   |
| S                                                   | vrna_sc_init, 253                                   |
| vrna_fc_s, 523                                      | vrna_sc_remove, 255                                 |
| S3                                                  | vrna_sc_set_bp, 253                                 |
| vrna fc s, 523                                      | vrna_sc_set_up, 254                                 |
| S5                                                  | soft.h                                              |
| vrna_fc_s, 523                                      | VRNA_SC_DEFAULT, 646                                |
| S_cons                                              |                                                     |
| vrna fc s, <u>523</u>                               | vrna_sc_type_e, 646                                 |
| SC SC                                               | VRNA_SC_WINDOW, 646                                 |
| vrna_fc_s, 522                                      | SOLUTION                                            |
| scale                                               | subopt.h, 1279                                      |
| vrna_mx_pf_s, 532                                   | space                                               |
| scale_parameters                                    | basic.h, 928                                        |
| Energy Parameters, 215                              | ssv_rna_plot                                        |
| SCS                                                 | Plotting, 478                                       |
| vrna_fc_s, 524                                      | st_back                                             |
| Search Algorithms, 496                              | Deprecated Interface for Stochastic Backtracking,   |
| vrna_search_BM_BCT, 498                             | 584                                                 |
|                                                     | stackProb                                           |
| vrna_search_BM_BCT_num, 497                         | Deprecated Interface for Global Partition Function  |
| vrna_search_BMH, 497                                | Computation, 573                                    |
| vrna_search_BMH_num, 496                            | stat_cb                                             |
| Secondary Structure Utilities, 426                  | vrna_fc_s, 521                                      |
| vrna_db_from_bp_stack, 428                          | Stochastic Backtracking of Structures from Distance |
| vrna_db_from_probs, 427                             | Based Partitioning, 324                             |
| vrna_refBPcnt_matrix, 427                           | vrna_pbacktrack5_TwoD, 325                          |
| vrna_refBPdist_matrix, 427                          | vrna_pbacktrack_TwoD, 324                           |
| sect                                                | str_DNA2RNA                                         |
| (Abstract) Data Structures, 509                     | strings.h, 1293                                     |
| sequence                                            |                                                     |

| str_uppercase     strings.h, 1293 strands     vrna_mx_mfe_s, 531 string_edit_distance     stringdist.h, 1277 stringdist.h | vrna_mx_add, 533 VRNA_MX_DEFAULT, 533 vrna_mx_mfe_free, 534 vrna_mx_pf_free, 534 vrna_mx_type_e, 532 VRNA_MX_WINDOW, 533 The Fold Compound, 517 |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Make_swString, 1276<br>string_edit_distance, 1277                                                                         | vrna_auxdata_free_f, 526 VRNA_FC_TYPE_COMPARATIVE, 527                                                                                          |
| strings.h                                                                                                                 | vrna_fc_type_e, 527                                                                                                                             |
| hamming, 1293                                                                                                             | VRNA_FC_TYPE_SINGLE, 527                                                                                                                        |
| hamming_bound, 1294 random_string, 1293                                                                                   | vrna_fold_compound, 527 vrna_fold_compound_add_auxdata, 529                                                                                     |
| str_DNA2RNA, 1293                                                                                                         | vrna_fold_compound_add_callback, 530                                                                                                            |
| str_uppercase, 1293                                                                                                       | vrna_fold_compound_comparative, 528                                                                                                             |
| structure                                                                                                                 | vrna_fold_compound_free, 529                                                                                                                    |
| vrna_ht_entry_db_t, 536                                                                                                   | VRNA_OPTION_EVAL_ONLY, 525                                                                                                                      |
| Structure Modules and Pseudoknots, 369                                                                                    | VRNA_OPTION_MFE, 525                                                                                                                            |
| Structured Domains, 226 subopt                                                                                            | VRNA_OPTION_PF, 525 vrna_recursion_status_f, 526                                                                                                |
| Suboptimal Structures within an Energy Band                                                                               | VRNA_STATUS_MFE_POST, 524                                                                                                                       |
| around the MFE, 290                                                                                                       | VRNA_STATUS_MFE_PRE, 524                                                                                                                        |
| subopt.h                                                                                                                  | VRNA_STATUS_PF_POST, 525                                                                                                                        |
| SOLUTION, 1279                                                                                                            | VRNA_STATUS_PF_PRE, 525                                                                                                                         |
| subopt_circ Suboptimal Structures within an Energy Band                                                                   | The RNA Folding Grammar, 174 vrna_grammar_data_free_f, 175                                                                                      |
| around the MFE, 290                                                                                                       | The RNA Secondary Structure Landscape, 258                                                                                                      |
| subopt_par                                                                                                                | time_stamp                                                                                                                                      |
| Suboptimal Structures within an Energy Band                                                                               | basic.h, 929                                                                                                                                    |
| around the MFE, 290                                                                                                       | Tree, 602                                                                                                                                       |
| subopt_sorted Suboptimal Structures within an Energy Band                                                                 | Tree Representation of Secondary Structures, 443 vrna_db_to_tree_string, 446                                                                    |
| around the MFE, 291                                                                                                       | VRNA_STRUCTURE_TREE_EXPANDED, 446                                                                                                               |
| Suboptimal Structures sensu Stiegler et al. 1984 / Zuker                                                                  | VRNA_STRUCTURE_TREE_HIT, 445                                                                                                                    |
| et al. 1989, 286                                                                                                          | VRNA_STRUCTURE_TREE_SHAPIRO, 445                                                                                                                |
| vrna_subopt_zuker, 287                                                                                                    | VRNA_STRUCTURE_TREE_SHAPIRO_EXT, 445                                                                                                            |
| zukersubopt, 286 zukersubopt_par, 286                                                                                     | VRNA_STRUCTURE_TREE_SHAPIRO_SHORT, 445                                                                                                          |
| Suboptimal Structures within an Energy Band around the MFE, 287                                                           | VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT, 445                                                                                                         |
| print_energy, 291                                                                                                         | vrna_tree_string_to_db, 447                                                                                                                     |
| subopt, 290                                                                                                               | vrna_tree_string_unweight, 447                                                                                                                  |
| subopt_circ, 290                                                                                                          | tree_edit_distance                                                                                                                              |
| subopt_par, 290<br>subopt_sorted, 291                                                                                     | treedist.h, 1282<br>treedist.h                                                                                                                  |
| vrna_subopt, 288                                                                                                          | free_tree, 1282                                                                                                                                 |
| vrna_subopt_cb, 289                                                                                                       | make_tree, 1281                                                                                                                                 |
| vrna_subopt_result_f, 288                                                                                                 | tree_edit_distance, 1282                                                                                                                        |
| Suboptimals and Representative Structures, 285                                                                            | TURN                                                                                                                                            |
| svg_rna_plot                                                                                                              | constants.h, 933                                                                                                                                |
| Plotting, 478<br>swString, 602                                                                                            | TwoDfold_backtrack_f5  Computing MFE representatives of a Distance                                                                              |
| 55ig, 50L                                                                                                                 | Based Partitioning, 322                                                                                                                         |
| temperature                                                                                                               | TwoDfold_vars, 318                                                                                                                              |
| Fine-tuning of the Implemented Models, 203                                                                                | Computing MFE representatives of a Distance                                                                                                     |
| tetra_loop Fine-tuning of the Implemented Models, 204                                                                     | Based Partitioning, 319                                                                                                                         |
| The Dynamic Programming Matrices, 530 VRNA_MX_2DFOLD, 533                                                                 | TwoDfoldList                                                                                                                                    |

| Computing MFE representatives of a Distance Based Partitioning, 321 | vrna_ud_get_probs_f, 221 vrna_ud_motifs_centroid, 221 |
|---------------------------------------------------------------------|-------------------------------------------------------|
| TwoDpfold_pbacktrack                                                | vrna_ud_motifs_MEA, 222                               |
| 2Dpfold.h, 609                                                      | vrna_ud_motifs_MFE, 222                               |
| TwoDpfold_pbacktrack5                                               | vrna_ud_production_f, 221                             |
| 2Dpfold.h, 610                                                      | vrna_ud_remove, 224                                   |
| TwoDpfold_vars, 602                                                 | vrna_ud_set_data, 224                                 |
| TwoDpfoldList                                                       | vrna_ud_set_exp_prod_rule_cb, 225                     |
| 2Dpfold.h, 609                                                      | vrna_ud_set_prod_rule_cb, 224                         |
| ·                                                                   | unstructured_domains.h                                |
| type                                                                |                                                       |
| vrna_fc_s, 520                                                      | vrna_ud_get_motif_size_at, 1286                       |
| vrna_mx_mfe_s, 531                                                  | vrna_ud_set_prob_cb, 1286                             |
| vrna_mx_pf_s, 532                                                   | unweight                                              |
| vrna_path_s, 350                                                    | Deprecated Interface for Secondary Structure Utili-   |
| unexpand_aligned_F                                                  | ties, 591                                             |
| Deprecated Interface for Secondary Structure Utili-                 | update_alifold_params                                 |
| · · · · · · · · · · · · · · · · · · ·                               | alifold.h, 615                                        |
| ties, 591                                                           | update_co_pf_params                                   |
| unexpand_Full                                                       | Deprecated Interface for Global Partition Function    |
| Deprecated Interface for Secondary Structure Utili-                 | Computation, 575                                      |
| ties, 591                                                           | update_co_pf_params_par                               |
| Unit Conversion, 513                                                | Deprecated Interface for Global Partition Function    |
| vrna_convert_dcal_to_kcal, 516                                      | Computation, 576                                      |
| vrna_convert_energy, 515                                            | update_cofold_params                                  |
| vrna_convert_kcal_to_dcal, 516                                      | Deprecated Interface for Global MFE Prediction,       |
| vrna_convert_temperature, 515                                       | 557                                                   |
| VRNA_UNIT_CAL, 514                                                  | update_cofold_params_par                              |
| VRNA_UNIT_CAL_IT, 514                                               | Deprecated Interface for Global MFE Prediction,       |
| VRNA_UNIT_DACAL, 514                                                | •                                                     |
| VRNA_UNIT_DACAL_IT, 514                                             | 557                                                   |
| VRNA_UNIT_DEG_C, 515                                                | update_fold_params                                    |
| VRNA_UNIT_DEG_DE, 515                                               | Deprecated Interface for Global MFE Prediction,       |
| VRNA_UNIT_DEG_F, 515                                                | 561                                                   |
|                                                                     | update_fold_params_par                                |
| VRNA_UNIT_DEG_N, 515                                                | Deprecated Interface for Global MFE Prediction,       |
| VRNA_UNIT_DEG_R, 515                                                | 561                                                   |
| VRNA_UNIT_DEG_RE, 515                                               | update_pf_params                                      |
| VRNA_UNIT_DEG_RO, 515                                               | Deprecated Interface for Global Partition Function    |
| vrna_unit_energy_e, 514                                             | Computation, 570                                      |
| VRNA_UNIT_EV, 514                                                   | update_pf_params_par                                  |
| VRNA_UNIT_G_TNT, 514                                                | Deprecated Interface for Global Partition Function    |
| VRNA_UNIT_J, 514                                                    | Computation, 570                                      |
| VRNA_UNIT_K, 515                                                    | update_pf_paramsLP                                    |
| VRNA_UNIT_KCAL, 514                                                 | Deprecated Interface for Local (Sliding Window)       |
| VRNA_UNIT_KCAL_IT, 514                                              | Partition Function Computation, 580                   |
| VRNA_UNIT_KG_TNT, 514                                               | urn                                                   |
| VRNA_UNIT_KJ, 514                                                   | basic.h, 929                                          |
| VRNA UNIT KWH, 514                                                  |                                                       |
| VRNA_UNIT_T_TNT, 514                                                | Utilities, 383                                        |
| vrna unit temperature e, 514                                        | get_input_line, 387                                   |
| VRNA_UNIT_WH, 514                                                   | vrna_alloc, 385                                       |
| unpack_structure                                                    | vrna_idx_col_wise, 388                                |
| • —                                                                 | vrna_idx_row_wise, 388                                |
| Deprecated Interface for Secondary Structure Utili-                 | vrna_init_rand, 386                                   |
| ties, 592                                                           | vrna_init_rand_seed, 386                              |
| Unstructured Domains, 217                                           | VRNA_INPUT_CONSTRAINT, 385                            |
| vrna_ud_add_motif, 223                                              | VRNA_INPUT_FASTA_HEADER, 385                          |
| vrna_ud_add_probs_f, 221                                            | vrna_int_urn, 387                                     |
| vrna_ud_exp_f, 220                                                  | vrna_realloc, 386                                     |
| vrna_ud_exp_production_f, 221                                       | vrna_time_stamp, 387                                  |
| vrna_ud_f, 220                                                      | '                                                     |

| vrna_urn, 387                                    | ViennaRNA/file_utils.h, 682                                            |
|--------------------------------------------------|------------------------------------------------------------------------|
| xsubi, 389                                       | ViennaRNA/findpath.h, 682, 683                                         |
| Utilities to deal with Nucleotide Alphabets, 412 | ViennaRNA/fold.h, 684, 685                                             |
| vrna_nucleotide_decode, 415                      | ViennaRNA/fold_compound.h, 687, 688                                    |
| vrna nucleotide encode, 414                      | ViennaRNA/fold_vars.h, 690, 692                                        |
| vrna_ptypes, 413                                 | ViennaRNA/gquad.h, 692, 693                                            |
| VRNA_SEQ_DNA, 413                                | ViennaRNA/grammar.h, 712                                               |
| vrna_seq_encode, 413                             | ViennaRNA/hairpin_loops.h, 714                                         |
| vrna seq encode simple, 414                      | ViennaRNA/heat capacity.h, 714, 715                                    |
| VRNA_SEQ_RNA, 413                                | ViennaRNA/interior loops.h, 716                                        |
| vrna_seq_type_e, 413                             | ViennaRNA/inverse.h, 716, 717                                          |
| VRNA_SEQ_UNKNOWN, 413                            | ViennaRNA/io/file_formats.h, 678                                       |
| VIIIVA_OEQ_OIVITIOVIII, 410                      | ViennaRNA/io/file_formats_msa.h, 680, 681                              |
| ViennaRNA/2Dfold.h, 605                          | ViennaRNA/io/utils.h, 1289                                             |
| ViennaRNA/2Dpfold.h, 607, 611                    | ViennaRNA/landscape/findpath.h, 683                                    |
| ViennaRNA/ali_plex.h, 613                        | ViennaRNA/landscape/move.h, 717, 718                                   |
| ViennaRNA/alifold.h, 613, 616                    | ViennaRNA/landscape/neighbor.h, 759                                    |
| ViennaRNA/aln_util.h, 617                        | ViennaRNA/landscape/paths.h, 719, 720                                  |
| ViennaRNA/alphabet.h, 617, 618                   | ViennaRNA/landscape/walk.h, 1297, 1298                                 |
| ViennaRNA/boltzmann_sampling.h, 619, 620         | ViennaRNA/Lfold.h, 720, 721                                            |
| ViennaRNA/centroid.h, 622, 623                   |                                                                        |
| ViennaRNA/char_stream.h, 624                     | ViennaRNA/loop_energies.h, 721, 722                                    |
| ViennaRNA/cofold.h, 627, 628                     | ViennaRNA/loops/all.h, 722                                             |
| ViennaRNA/combinatorics.h, 628, 629              | ViennaRNA/loops/external.h, 722, 723<br>ViennaRNA/loops/hairpin.h, 725 |
| ViennaRNA/commands.h, 630, 631                   | •                                                                      |
| ViennaRNA/concentrations.h, 631, 632             | ViennaRNA/loops/internal.h, 728, 729                                   |
| ViennaRNA/constraints.h, 633                     | ViennaRNA/loops/multibranch.h, 736, 737                                |
| ViennaRNA/constraints/basic.h, 915, 916          | ViennaRNA/LPfold.h, 739, 740                                           |
| ViennaRNA/constraints/hard.h, 634, 638           | ViennaRNA/MEA.h, 741                                                   |
| ViennaRNA/constraints/ligand.h, 641              | ViennaRNA/mfe.h, 742, 743                                              |
| ViennaRNA/constraints/sc_cb_intern.h, 642        | ViennaRNA/mfe_window.h, 744                                            |
| ViennaRNA/constraints/SHAPE.h, 643, 644          | ViennaRNA/mm.h, 746, 747                                               |
| ViennaRNA/constraints/soft.h, 645, 646           | ViennaRNA/model.h, 747, 752                                            |
| ViennaRNA/constraints/soft_special.h, 649, 650   | ViennaRNA/move_set.h, 757                                              |
| ViennaRNA/constraints_hard.h, 651                | ViennaRNA/multibranch_loops.h, 758 ViennaRNA/naview.h, 758             |
| ViennaRNA/constraints ligand.h, 651              | •                                                                      |
| ViennaRNA/constraints SHAPE.h, 651, 652          | ViennaRNA/neighbor.h, 760, 761<br>ViennaRNA/pair mat.h, 761            |
| ViennaRNA/constraints_soft.h, 652                | . –                                                                    |
| ViennaRNA/convert_epars.h, 652                   | ViennaRNA/params.h, 763<br>ViennaRNA/params/1.8.4_epars.h, 763, 764    |
| ViennaRNA/data_structures.h, 653                 | ViennaRNA/params/1.8.4 intloops.h, 768                                 |
| ViennaRNA/datastructures/array.h, 653, 654       | ViennaRNA/params/basic.h, 921, 923                                     |
| ViennaRNA/datastructures/basic.h, 917, 919       | ViennaRNA/params/constants.h, 932, 933                                 |
| ViennaRNA/datastructures/char_stream.h, 624, 625 | ViennaRNA/params/convert.h, 933, 934                                   |
| ViennaRNA/datastructures/hash_tables.h, 655, 656 | ViennaRNA/params/default.h, 935                                        |
| ViennaRNA/datastructures/heap.h, 657, 658        | •                                                                      |
| ViennaRNA/datastructures/lists.h, 659            | ViennaRNA/params/intl11.h, 936                                         |
| ViennaRNA/datastructures/stream_output.h, 1274   | ViennaRNA/params/intl11dH.h, 940                                       |
| ViennaRNA/datastructures/string.h, 660           | ViennaRNA/params/intl21.h, 945                                         |
| ViennaRNA/dist_vars.h, 660, 661                  | ViennaRNA/params/intl21dH.h, 968                                       |
| ViennaRNA/dp_matrices.h, 662                     | ViennaRNA/params/intl22dl.l.h. 1106                                    |
| ViennaRNA/duplex.h, 666                          | ViennaRNA/params/intl22dH.h, 1106                                      |
| ViennaRNA/edit_cost.h, 666                       | ViennaRNA/params/io.h, 1221, 1222                                      |
| ViennaRNA/energy_const.h, 667, 668               | ViennaRNA/params/salt.h, 1223                                          |
| ViennaRNA/energy_par.h, 668                      | ViennaRNA/part_func.h, 1224, 1227                                      |
| ViennaRNA/equilibrium_probs.h, 668, 669          | ViennaRNA/part_func_co.h, 1229, 1230                                   |
| ViennaRNA/eval.h, 670, 673                       | ViennaRNA/part_func_up.h, 1231, 1232                                   |
| ViennaRNA/exterior_loops.h, 677                  | ViennaRNA/part_func_window.h, 1232, 1233                               |
| ViennaRNA/file_formats.h, 677                    | ViennaRNA/perturbation_fold.h, 1235, 1236                              |
| ViennaRNA/file_formats_msa.h, 680                | ViennaRNA/pf_multifold.h, 1236                                         |
|                                                  |                                                                        |

| ViennaRNA/pk_plex.h, 1236, 1237                  | Global MFE Prediction, 263                        |
|--------------------------------------------------|---------------------------------------------------|
| ViennaRNA/PKplex.h, 1238                         | vrna_alignment_s, 413                             |
| ViennaRNA/plex.h, 1239                           | vrna_alloc                                        |
| ViennaRNA/plot_aln.h, 1239, 1240                 | Utilities, 385                                    |
| ViennaRNA/plot_layouts.h, 1240                   | vrna_aln_consensus_mis                            |
| ViennaRNA/plot_structure.h, 1240                 | Multiple Sequence Alignment Utilities, 455        |
| ViennaRNA/plot_utils.h, 1241                     | vrna_aln_consensus_sequence                       |
| ViennaRNA/plotting/alignments.h, 1241, 1242      | Multiple Sequence Alignment Utilities, 454        |
| ViennaRNA/plotting/layouts.h, 1246, 1247         | vrna_aln_conservation_col                         |
| ViennaRNA/plotting/probabilities.h, 1249         | Multiple Sequence Alignment Utilities, 454        |
|                                                  |                                                   |
| ViennaRNA/plotting/RNApuzzler/RNApuzzler.h, 1251 | vrna_aln_conservation_struct                      |
| ViennaRNA/plotting/RNApuzzler/RNAturtle.h, 1252  | Multiple Sequence Alignment Utilities, 453        |
| ViennaRNA/plotting/structures.h, 1253            | vrna_aln_copy                                     |
| ViennaRNA/plotting/utils.h, 1290                 | Multiple Sequence Alignment Utilities, 453        |
| ViennaRNA/ProfileAln.h, 1262                     | vrna_aln_free                                     |
| ViennaRNA/profiledist.h, 1262, 1263              | Multiple Sequence Alignment Utilities, 452        |
| ViennaRNA/PS_dot.h, 1264                         | vrna_aln_mpi                                      |
| ViennaRNA/read_epars.h, 1264, 1265               | Multiple Sequence Alignment Utilities, 451        |
| ViennaRNA/ribo.h, 1265                           | vrna_aln_pinfo                                    |
| ViennaRNA/RNAstruct.h, 1265, 1266                | Multiple Sequence Alignment Utilities, 451        |
| ViennaRNA/search/BoyerMoore.h, 1267, 1268        | vrna_aln_slice                                    |
| ViennaRNA/sequence.h, 1268, 1269                 | Multiple Sequence Alignment Utilities, 451        |
| ViennaRNA/snofold.h, 1270                        | vrna_aln_toRNA                                    |
| ViennaRNA/snoop.h, 1271                          | Multiple Sequence Alignment Utilities, 453        |
| ViennaRNA/special_const.h, 1274                  | vrna_aln_uppercase                                |
| • —                                              |                                                   |
| ViennaRNA/stream_output.h, 1275                  | Multiple Sequence Alignment Utilities, 452        |
| ViennaRNA/string_utils.h, 1276                   | vrna_annotate_covar_db                            |
| ViennaRNA/stringdist.h, 1276, 1277               | Annotation, 493                                   |
| ViennaRNA/structure_utils.h, 1277                | vrna_annotate_covar_pairs                         |
| ViennaRNA/structured_domains.h, 1278             | Annotation, 494                                   |
| ViennaRNA/subopt.h, 1278, 1279                   | vrna_array_header_s, 549                          |
| ViennaRNA/subopt_zuker.h, 1280                   | vrna_array_init_size                              |
| ViennaRNA/svm_utils.h, 1281                      | Arrays, 550                                       |
| ViennaRNA/treedist.h, 1281, 1282                 | vrna_auxdata_free_f                               |
| ViennaRNA/units.h, 1283                          | The Fold Compound, 526                            |
| ViennaRNA/unstructured_domains.h, 1284, 1286     | vrna backtrack5                                   |
| ViennaRNA/utils.h, 1290, 1291                    | Backtracking MFE structures, 270                  |
| ViennaRNA/utils/alignments.h, 1242, 1244         | vrna_backtrack5_TwoD                              |
| ViennaRNA/utils/basic.h, 925, 930                | Computing MFE representatives of a Distance       |
|                                                  | Based Partitioning, 320                           |
| ViennaRNA/utils/cpu.h, 1291                      | G.                                                |
| ViennaRNA/utils/higher_order_functions.h, 1291   | vrna_basepair_s, 507                              |
| ViennaRNA/utils/strings.h, 1291, 1294            | vrna_boustrophedon                                |
| ViennaRNA/utils/structures.h, 1254, 1258         | Combinatorics Algorithms, 504                     |
| ViennaRNA/utils/svm.h, 1296                      | vrna_boustrophedon_pos                            |
| ViennaRNA/utils/units.h, 1283, 1284              | Combinatorics Algorithms, 504                     |
| ViennaRNA/vrna_config.h, 1296                    | vrna_bp_distance                                  |
| ViennaRNA/walk.h, 1299                           | Distance measures between Secondary Struc-        |
| ViennaRNA/wrap_dlib.h, 1299                      | tures, 448                                        |
| ViennaRNA/zscore.h, 1299                         | vrna_bp_distance_pt                               |
| vrnaarray_set_capacity                           | Distance measures between Secondary Struc-        |
| Arrays, 550                                      | tures, 448                                        |
| vrna_abstract_shapes                             | vrna_bp_stack_s, 507                              |
| Abstract Shapes Representation of Secondary      | VRNA_BRACKETS_ALPHA                               |
| Structures, 441                                  | Dot-Bracket Notation of Secondary Structures, 429 |
| vrna_abstract_shapes_pt                          | VRNA_BRACKETS_ANG                                 |
|                                                  |                                                   |
| Abstract Shapes Representation of Secondary      | Dot-Bracket Notation of Secondary Structures, 430 |
| Structures, 442                                  | VRNA_BRACKETS_ANY                                 |
| vrna alifold                                     | Dot-Bracket Notation of Secondary Structures, 430 |

| VRNA_BRACKETS_CLY                                 | VRNA_CONSTRAINT_CONTEXT_MB_LOOP            |
|---------------------------------------------------|--------------------------------------------|
| Dot-Bracket Notation of Secondary Structures, 429 | Hard Constraints, 244                      |
| VRNA_BRACKETS_DEFAULT                             | VRNA_CONSTRAINT_CONTEXT_MB_LOOP_ENG        |
| Dot-Bracket Notation of Secondary Structures, 430 | Hard Constraints, 245                      |
|                                                   |                                            |
| VRNA_BRACKETS_RND                                 | VRNA_CONSTRAINT_DB                         |
| Dot-Bracket Notation of Secondary Structures, 429 | Hard Constraints, 242                      |
| VRNA_BRACKETS_SQR                                 | VRNA_CONSTRAINT_DB_ANG_BRACK               |
| Dot-Bracket Notation of Secondary Structures, 430 | hard.h, 636                                |
| vrna_bs_result_f                                  | VRNA_CONSTRAINT_DB_DEFAULT                 |
| Random Structure Samples from the Ensemble,       | Hard Constraints, 244                      |
| 293                                               | VRNA_CONSTRAINT_DB_DOT                     |
| vrna_BT_hp_loop                                   | Hard Constraints, 242                      |
| Backtracking MFE structures, 270                  | VRNA_CONSTRAINT_DB_ENFORCE_BP              |
| vrna_BT_int_loop                                  | Hard Constraints, 242                      |
| Backtracking MFE structures, 271                  | VRNA_CONSTRAINT_DB_GQUAD                   |
| vrna_BT_mb_loop                                   | Hard Constraints, 243                      |
| Backtracking MFE structures, 271                  | VRNA_CONSTRAINT_DB_INTERMOL                |
| vrna BT stack                                     | Hard Constraints, 243                      |
| Backtracking MFE structures, 270                  | VRNA_CONSTRAINT_DB_INTRAMOL                |
| •                                                 |                                            |
| vrna_C11_features                                 | Hard Constraints, 243                      |
| (Abstract) Data Structures, 509                   | VRNA_CONSTRAINT_DB_PIPE                    |
| vrna_centroid                                     | Hard Constraints, 242                      |
| Compute the Centroid Structure, 314               | VRNA_CONSTRAINT_DB_RND_BRACK               |
| vrna_centroid_from_plist                          | Hard Constraints, 243                      |
| Compute the Centroid Structure, 314               | VRNA_CONSTRAINT_DB_WUSS                    |
| vrna_centroid_from_probs                          | Hard Constraints, 243                      |
| Compute the Centroid Structure, 315               | VRNA_CONSTRAINT_DB_X                       |
| vrna_circalifold                                  | Hard Constraints, 242                      |
| Global MFE Prediction, 264                        | VRNA_CONSTRAINT_FILE                       |
| vrna_circfold                                     | Constraining the RNA Folding Grammar, 229  |
| Global MFE Prediction, 263                        | VRNA_CONSTRAINT_MULTILINE                  |
| VRNA_CMD_PARSE_DEFAULTS                           | Nucleic Acid Sequences and Structures, 459 |
| Command Files, 472                                | VRNA_CONSTRAINT_NO_HEADER                  |
| VRNA_CMD_PARSE_HC                                 | hard.h, 636                                |
| Command Files, 471                                | VRNA_CONSTRAINT_SOFT_MFE                   |
| VRNA CMD PARSE SC                                 | Constraining the RNA Folding Grammar, 230  |
| Command Files, 472                                | VRNA_CONSTRAINT_SOFT_PF                    |
| VRNA_CMD_PARSE_SD                                 | Constraining the RNA Folding Grammar, 230  |
|                                                   | -                                          |
| Command Files, 472                                | vrna_constraints_add                       |
| VRNA_CMD_PARSE_UD                                 | Constraining the RNA Folding Grammar, 237  |
| Command Files, 472                                | vrna_convert_dcal_to_kcal                  |
| vrna_cofold                                       | Unit Conversion, 516                       |
| Global MFE Prediction, 264                        | vrna_convert_energy                        |
| vrna_color_s, 507                                 | Unit Conversion, 515                       |
| vrna_commands_apply                               | vrna_convert_kcal_to_dcal                  |
| Command Files, 473                                | Unit Conversion, 516                       |
| vrna_commands_free                                | VRNA_CONVERT_OUTPUT_ALL                    |
| Command Files, 474                                | Converting Energy Parameter Files, 408     |
| VRNA_CONSTRAINT_CONTEXT_ALL_LOOPS                 | VRNA CONVERT OUTPUT BULGE                  |
| Hard Constraints, 245                             | Converting Energy Parameter Files, 410     |
| VRNA_CONSTRAINT_CONTEXT_EXT_LOOP                  | VRNA_CONVERT_OUTPUT_DANGLE3                |
| Hard Constraints, 244                             | Converting Energy Parameter Files, 410     |
| VRNA_CONSTRAINT_CONTEXT_HP_LOOP                   | VRNA_CONVERT_OUTPUT_DANGLE5                |
| Hard Constraints, 244                             | Converting Energy Parameter Files, 409     |
| VRNA_CONSTRAINT_CONTEXT_INT_LOOP                  | VRNA_CONVERT_OUTPUT_DUMP                   |
| Hard Constraints, 244                             | Converting Energy Parameter Files, 411     |
| VRNA_CONSTRAINT_CONTEXT_INT_LOOP_ENC              | VRNA CONVERT OUTPUT HP                     |
| Hard Constraints. 244                             | Converting Energy Parameter Files, 409     |
| i iaiu oulistialiits. 444                         | Converting Energy Farameter Files, 409     |

| VENIA CONVERT OUTDUE INT                          |                                                   |
|---------------------------------------------------|---------------------------------------------------|
| VRNA_CONVERT_OUTPUT_INT                           | vrna_db_from_probs                                |
| Converting Energy Parameter Files, 410            | Secondary Structure Utilities, 427                |
| VRNA_CONVERT_OUTPUT_INT_11                        | vrna_db_from_ptable                               |
| Converting Energy Parameter Files, 410            | Dot-Bracket Notation of Secondary Structures, 432 |
| VRNA_CONVERT_OUTPUT_INT_21                        | vrna_db_from_WUSS                                 |
| Converting Energy Parameter Files, 410            | Washington University Secondary Structure         |
| VRNA_CONVERT_OUTPUT_INT_22                        | (WUSS) notation, 435                              |
| Converting Energy Parameter Files, 410            | vrna_db_pack                                      |
| VRNA_CONVERT_OUTPUT_MISC                          | Dot-Bracket Notation of Secondary Structures, 431 |
| Converting Energy Parameter Files, 410            | vrna_db_pk_remove                                 |
| VRNA_CONVERT_OUTPUT_ML                            | Dot-Bracket Notation of Secondary Structures, 434 |
|                                                   |                                                   |
| Converting Energy Parameter Files, 410            | vrna_db_to_element_string                         |
| VRNA_CONVERT_OUTPUT_MM_EXT                        | Dot-Bracket Notation of Secondary Structures, 433 |
| Converting Energy Parameter Files, 409            | vrna_db_to_tree_string                            |
| VRNA_CONVERT_OUTPUT_MM_HP                         | Tree Representation of Secondary Structures, 446  |
| Converting Energy Parameter Files, 409            | vrna_db_unpack                                    |
| VRNA_CONVERT_OUTPUT_MM_INT                        | Dot-Bracket Notation of Secondary Structures, 431 |
| Converting Energy Parameter Files, 409            | VRNA_DECOMP_EXT_EXT                               |
| VRNA_CONVERT_OUTPUT_MM_INT_1N                     | Constraining the RNA Folding Grammar, 235         |
| Converting Energy Parameter Files, 409            | VRNA_DECOMP_EXT_EXT_EXT                           |
| VRNA_CONVERT_OUTPUT_MM_INT_23                     | Constraining the RNA Folding Grammar, 236         |
| Converting Energy Parameter Files, 409            | VRNA_DECOMP_EXT_EXT_STEM                          |
| VRNA_CONVERT_OUTPUT_MM_MULTI                      | Constraining the RNA Folding Grammar, 236         |
| Converting Energy Parameter Files, 409            | VRNA_DECOMP_EXT_EXT_STEM1                         |
| VRNA_CONVERT_OUTPUT_NINIO                         | Constraining the RNA Folding Grammar, 237         |
| Converting Energy Parameter Files, 411            | VRNA_DECOMP_EXT_STEM                              |
|                                                   |                                                   |
| VRNA_CONVERT_OUTPUT_SPECIAL_HP                    | Constraining the RNA Folding Grammar, 235         |
| Converting Energy Parameter Files, 411            | VRNA_DECOMP_EXT_STEM_EXT                          |
| VRNA_CONVERT_OUTPUT_STACK                         | Constraining the RNA Folding Grammar, 236         |
| Converting Energy Parameter Files, 409            | VRNA_DECOMP_EXT_STEM_OUTSIDE                      |
| VRNA_CONVERT_OUTPUT_VANILLA                       | Constraining the RNA Folding Grammar, 236         |
| Converting Energy Parameter Files, 411            | VRNA_DECOMP_EXT_UP                                |
| vrna_convert_temperature                          | Constraining the RNA Folding Grammar, 235         |
| Unit Conversion, 515                              | VRNA_DECOMP_ML_COAXIAL                            |
| vrna_cpair_s, 507                                 | Constraining the RNA Folding Grammar, 234         |
| vrna_cstr                                         | VRNA_DECOMP_ML_COAXIAL_ENC                        |
| Buffers, 551                                      | Constraining the RNA Folding Grammar, 234         |
| vrna_cstr_close                                   | VRNA_DECOMP_ML_ML                                 |
| Buffers, 552                                      | Constraining the RNA Folding Grammar, 233         |
| vrna cstr discard                                 | VRNA_DECOMP_ML_ML_ML                              |
| Buffers, 552                                      | Constraining the RNA Folding Grammar, 232         |
|                                                   | -                                                 |
| vrna_cstr_fflush                                  | VRNA_DECOMP_ML_ML_STEM                            |
| Buffers, 553                                      | Constraining the RNA Folding Grammar, 233         |
| vrna_cstr_free                                    | VRNA_DECOMP_ML_STEM                               |
| Buffers, 552                                      | Constraining the RNA Folding Grammar, 232         |
| vrna_cut_point_insert                             | VRNA_DECOMP_ML_UP                                 |
| (Nucleic Acid Sequence) String Utilitites, 425    | Constraining the RNA Folding Grammar, 233         |
| vrna_cut_point_remove                             | VRNA_DECOMP_PAIR_HP                               |
| (Nucleic Acid Sequence) String Utilitites, 426    | Constraining the RNA Folding Grammar, 230         |
| vrna_data_linear_s, 507                           | VRNA_DECOMP_PAIR_IL                               |
| vrna_db_flatten                                   | Constraining the RNA Folding Grammar, 231         |
| Dot-Bracket Notation of Secondary Structures, 431 | VRNA_DECOMP_PAIR_ML                               |
| vrna_db_flatten_to                                | Constraining the RNA Folding Grammar, 231         |
| Dot-Bracket Notation of Secondary Structures, 432 | vrna_dimer_conc_s, 603                            |
| vrna_db_from_bp_stack                             | vrna_dimer_pf_s, 273                              |
|                                                   |                                                   |
| Secondary Structure Utilities, 428                | vrna_DNA_complement                               |
| vrna_db_from_plist                                | (Nucleic Acid Sequence) String Utilitites, 425    |
| Dot-Bracket Notation of Secondary Structures, 433 | vrna dotplot auxdata t. 475                       |

| vrna_E_ext_hp_loop                               | Internal Loops, 396                         |
|--------------------------------------------------|---------------------------------------------|
| Hairpin Loops, 393                               | vrna_eval_loop_pt                           |
| vrna_E_ext_stem                                  | Energy Evaluation for Individual Loops, 160 |
| Exterior Loops, 390                              | vrna_eval_loop_pt_v                         |
| vrna E hp loop                                   | Energy Evaluation for Individual Loops, 160 |
| Hairpin Loops, 392                               | vrna_eval_move                              |
| vrna_E_mb_loop_stack                             | Energy Evaluation for Atomic Moves, 161     |
| Multibranch Loops, 397                           | vrna_eval_move_pt                           |
| vrna elem prob s, 440                            | Energy Evaluation for Atomic Moves, 162     |
| vrna_ensemble_defect                             | vrna_eval_structure                         |
| Predicting various thermodynamic properties, 330 | Free Energy Evaluation, 142                 |
| vrna_ensemble_defect_pt                          | vrna_eval_structure_pt                      |
| Predicting various thermodynamic properties, 329 | Free Energy Evaluation, 144                 |
| vrna_enumerate_necklaces                         | vrna_eval_structure_pt_simple               |
| Combinatorics Algorithms, 499                    | Free Energy Evaluation, 157                 |
| vrna_eval_circ_consensus_structure               | vrna_eval_structure_pt_simple_v             |
| Free Energy Evaluation, 151                      | Free Energy Evaluation, 157                 |
| vrna_eval_circ_consensus_structure_v             | vrna_eval_structure_pt_simple_verbose       |
| Free Energy Evaluation, 154                      | Free Energy Evaluation, 157                 |
| vrna eval circ gquad consensus structure         | vrna_eval_structure_pt_v                    |
| Free Energy Evaluation, 152                      | Free Energy Evaluation, 145                 |
| vrna_eval_circ_gquad_consensus_structure_v       | vrna_eval_structure_pt_verbose              |
| Free Energy Evaluation, 156                      | Free Energy Evaluation, 144                 |
|                                                  | <del></del>                                 |
| vrna_eval_circ_gquad_structure                   | vrna_eval_structure_simple                  |
| Free Energy Evaluation, 147                      | Free Energy Evaluation, 145                 |
| vrna_eval_circ_gquad_structure_v                 | vrna_eval_structure_simple_v                |
| Free Energy Evaluation, 150                      | Free Energy Evaluation, 148                 |
| vrna_eval_circ_structure                         | vrna_eval_structure_simple_verbose          |
| Free Energy Evaluation, 146                      | Free Energy Evaluation, 148                 |
| vrna_eval_circ_structure_v                       | vrna_eval_structure_v                       |
| Free Energy Evaluation, 149                      | Free Energy Evaluation, 143                 |
| vrna_eval_consensus_structure_pt_simple          | vrna_eval_structure_verbose                 |
| Free Energy Evaluation, 158                      | Free Energy Evaluation, 143                 |
| vrna_eval_consensus_structure_pt_simple_v        | vrna_exp_E_ext_stem                         |
| Free Energy Evaluation, 159                      | Exterior Loops, 391                         |
| vrna_eval_consensus_structure_pt_simple_verbose  | vrna_exp_E_hp_loop                          |
| Free Energy Evaluation, 159                      | Hairpin Loops, 395                          |
| vrna_eval_consensus_structure_simple             | vrna_exp_param_s, 207                       |
| Free Energy Evaluation, 151                      | alpha, 208                                  |
| vrna_eval_consensus_structure_simple_v           | id, 208                                     |
| Free Energy Evaluation, 154                      | vrna_exp_params                             |
| vrna_eval_consensus_structure_simple_verbose     | Energy Parameters, 209                      |
| Free Energy Evaluation, 153                      | vrna_exp_params_comparative                 |
| vrna_eval_covar_structure                        | Energy Parameters, 209                      |
| Free Energy Evaluation, 142                      | vrna_exp_params_copy                        |
| vrna_eval_ext_stem                               | Energy Parameters, 210                      |
| Exterior Loops, 391                              | vrna_exp_params_rescale                     |
| vrna_eval_gquad_consensus_structure              | Energy Parameters, 211                      |
| Free Energy Evaluation, 152                      | vrna_exp_params_reset                       |
| vrna_eval_gquad_consensus_structure_v            | Energy Parameters, 213                      |
| Free Energy Evaluation, 155                      | vrna_exp_params_subst                       |
| vrna_eval_gquad_structure                        | Energy Parameters, 211                      |
| Free Energy Evaluation, 146                      | vrna_extract_record_rest_constraint         |
| vrna_eval_gquad_structure_v                      | Nucleic Acid Sequences and Structures, 463  |
| Free Energy Evaluation, 149                      | vrna_extract_record_rest_structure          |
| vrna_eval_hp_loop                                | Nucleic Acid Sequences and Structures, 462  |
| Hairpin Loops, 393                               | vrna_fc_s, 518                              |
| vrna eval int loop                               | auxdata. 521                                |

| cons_seq, 523                              | Multiple Sequence Alignments, 466              |
|--------------------------------------------|------------------------------------------------|
| free_auxdata, 521                          | vrna_file_helixlist                            |
| n_seq, 522                                 | Nucleic Acid Sequences and Structures, 459     |
| pscore, 523                                | vrna_file_json                                 |
| pscore_local, 524                          | Nucleic Acid Sequences and Structures, 460     |
| pscore_pf_compat, 524                      | vrna_file_msa_detect_format                    |
| ptype, 521                                 | Multiple Sequence Alignments, 469              |
| ptype_pf_compat, 522                       | vrna_file_msa_read                             |
| S, 523                                     | Multiple Sequence Alignments, 467              |
| S3, 523                                    | vrna_file_msa_read_record                      |
| S5, 523                                    | Multiple Sequence Alignments, 468              |
| S_cons, 523                                | vrna_file_msa_write                            |
| sc, 522                                    | Multiple Sequence Alignments, 470              |
| scs, 524                                   | vrna_file_PS_aln                               |
| sequence, 521                              | Alignment Plots, 494                           |
| sequence_encoding, 521                     | vrna_file_PS_aln_slice                         |
| sequences, 522                             | Alignment Plots, 495                           |
| stat_cb, 521                               | vrna_file_PS_rnaplot                           |
| type, 520                                  | Plotting, 476                                  |
| VRNA_FC_TYPE_COMPARATIVE                   | vrna_file_PS_rnaplot_a                         |
| The Fold Compound, 527                     | Plotting, 477                                  |
| vrna_fc_type_e                             | vrna_file_SHAPE_read                           |
| The Fold Compound, 527                     | Nucleic Acid Sequences and Structures, 463     |
| VRNA_FC_TYPE_SINGLE                        | vrna_filename_sanitize                         |
| The Fold Compound, 527                     | Files and I/O, 457                             |
| vrna_file_bpseq                            | vrna_fold                                      |
| Nucleic Acid Sequences and Structures, 460 | Global MFE Prediction, 262                     |
| vrna_file_commands_apply                   | vrna_fold_compound                             |
| Command Files, 473                         | The Fold Compound, 527                         |
| vrna_file_commands_read                    | vrna_fold_compound_add_auxdata                 |
| Command Files, 472                         | The Fold Compound, 529                         |
| vrna_file_connect                          | vrna_fold_compound_add_callback                |
| Nucleic Acid Sequences and Structures, 460 | The Fold Compound, 530                         |
| vrna_file_exists                           | vrna_fold_compound_comparative                 |
| Files and I/O, 458                         | The Fold Compound, 528                         |
| vrna_file_fasta_read_record                | vrna_fold_compound_free                        |
| Nucleic Acid Sequences and Structures, 461 | The Fold Compound, 529                         |
| VRNA_FILE_FORMAT_MSA_APPEND                | vrna_gr_aux_s, 175                             |
| Multiple Sequence Alignments, 466          | vrna_grammar_data_free_f                       |
| VRNA_FILE_FORMAT_MSA_CLUSTAL               | The RNA Folding Grammar, 175                   |
| Multiple Sequence Alignments, 465          | vrna_hamming_distance                          |
| VRNA_FILE_FORMAT_MSA_DEFAULT               | (Nucleic Acid Sequence) String Utilitites, 422 |
| Multiple Sequence Alignments, 466          | vrna_hamming_distance_bound                    |
| VRNA_FILE_FORMAT_MSA_FASTA                 | (Nucleic Acid Sequence) String Utilitites, 422 |
| Multiple Sequence Alignments, 465          | vrna_hash_table_t                              |
| VRNA_FILE_FORMAT_MSA_MAF                   | Hash Tables, 536                               |
| Multiple Sequence Alignments, 465          | vrna_hc_add_bp                                 |
| VRNA_FILE_FORMAT_MSA_MIS                   | Hard Constraints, 247                          |
| Multiple Sequence Alignments, 465          | vrna_hc_add_bp_nonspecific                     |
| VRNA_FILE_FORMAT_MSA_NOCHECK               | Hard Constraints, 247                          |
| Multiple Sequence Alignments, 466          | vrna_hc_add_data                               |
| VRNA_FILE_FORMAT_MSA_QUIET                 | hard.h, 637                                    |
| Multiple Sequence Alignments, 466          | vrna_hc_add_from_db                            |
| VRNA_FILE_FORMAT_MSA_SILENT                | Hard Constraints, 248                          |
| Multiple Sequence Alignments, 467          | vrna_hc_add_up                                 |
| VRNA_FILE_FORMAT_MSA_STOCKHOLM             | Hard Constraints, 246                          |
| Multiple Sequence Alignments, 465          | vrna_hc_add_up_batch                           |
| VRNA_FILE_FORMAT_MSA_UNKNOWN               | Hard Constraints, 246                          |

| VRNA_HC_DEFAULT                                  | vrna_ht_db_free_entry                              |
|--------------------------------------------------|----------------------------------------------------|
| hard.h, 636                                      | Hash Tables, 541                                   |
| vrna_hc_eval_f                                   | vrna_ht_db_hash_func                               |
| Hard Constraints, 245                            | Hash Tables, 540                                   |
| vrna_hc_free                                     | vrna_ht_entry_db_t, 535                            |
| Hard Constraints, 248                            | energy, 536                                        |
| vrna_hc_init                                     | structure, 536                                     |
| Hard Constraints, 246                            | vrna_ht_free                                       |
| vrna_hc_s, 241                                   | Hash Tables, 540                                   |
| free_data, 241                                   | vrna_ht_free_f                                     |
| vrna_hc_type_e                                   | Hash Tables, 537                                   |
| hard.h, 636                                      | vrna_ht_get                                        |
| vrna_hc_up_s, 241                                | Hash Tables, 538                                   |
| VRNA_HC_WINDOW                                   | vrna_ht_hashfunc_f                                 |
| hard.h, 636                                      | Hash Tables, 536                                   |
| vrna_heap_cmp_f                                  | vrna_ht_init                                       |
| Heaps, 542                                       | Hash Tables, 537                                   |
| vrna_heap_free                                   | vrna_ht_insert                                     |
| Heaps, 545                                       | Hash Tables, 539                                   |
| vrna_heap_get_pos_f                              | vrna_ht_remove                                     |
| Heaps, 544                                       | Hash Tables, 539                                   |
| vrna_heap_init                                   | vrna_ht_size                                       |
| Heaps, 544                                       | Hash Tables, 538                                   |
| vrna_heap_insert                                 | vrna_hx_from_ptable                                |
| Heaps, 546                                       | Helix List Representation of Secondary Structures, |
| vrna_heap_pop                                    | 443                                                |
| Heaps, 546                                       | vrna_hx_s, 443                                     |
| vrna_heap_remove                                 | vrna_idx_col_wise                                  |
| Heaps, 547                                       | Utilities, 388                                     |
| vrna_heap_set_pos_f                              | vrna_idx_row_wise                                  |
| Heaps, 544                                       | Utilities, 388                                     |
| vrna_heap_size                                   | vrna_init_rand                                     |
| Heaps, 545                                       | Utilities, 386                                     |
| vrna_heap_t                                      | vrna_init_rand_seed                                |
| Heaps, 542                                       | Utilities, 386                                     |
| vrna_heap_top                                    | VRNA_INPUT_CONSTRAINT                              |
| Heaps, 546                                       | Utilities, 385                                     |
| vrna_heap_update                                 | VRNA_INPUT_FASTA_HEADER                            |
| Heaps, 547                                       | Utilities, 385                                     |
| vrna_heat_capacity                               | vrna_int_urn                                       |
| Predicting various thermodynamic properties, 333 | Utilities, 387                                     |
| vrna_heat_capacity_cb                            | vrna_Lfold                                         |
| Predicting various thermodynamic properties, 333 | Local (sliding window) MFE Prediction, 268         |
| vrna_heat_capacity_f                             | vrna_Lfoldz                                        |
| Predicting various thermodynamic properties, 328 | Local (sliding window) MFE Prediction, 268         |
| vrna_heat_capacity_s, 327                        | vrna_loopidx_update                                |
| vrna_heat_capacity_simple                        | Neighborhood Relation and Move Sets for Sec-       |
| Predicting various thermodynamic properties, 334 | ondary Structures, 345                             |
| vrna_heat_capacity_t                             | vrna_maximum_matching                              |
| Predicting various thermodynamic properties, 328 | mm.h, 746                                          |
| vrna_ht_clear                                    | vrna_maximum_matching_simple                       |
| Hash Tables, 539                                 | mm.h, 746                                          |
| vrna_ht_cmp_f                                    | vrna_md_copy                                       |
| Hash Tables, 536                                 | Fine-tuning of the Implemented Models, 187         |
| vrna_ht_collisions                               | vrna_md_defaults_backtrack                         |
| Hash Tables, 538                                 | Fine-tuning of the Implemented Models, 195         |
| vrna_ht_db_comp                                  | vrna_md_defaults_backtrack_get                     |
| Hash Tables, 540                                 | Fine-tuning of the Implemented Models, 195         |

| vrna_md_defaults_backtrack_type                                  | vrna_md_defaults_noLP_get                  |
|------------------------------------------------------------------|--------------------------------------------|
| Fine-tuning of the Implemented Models, 196                       | Fine-tuning of the Implemented Models, 191 |
| vrna_md_defaults_backtrack_type_get                              | vrna_md_defaults_oldAliEn                  |
| Fine-tuning of the Implemented Models, 196                       | Fine-tuning of the Implemented Models, 199 |
| vrna_md_defaults_betaScale                                       | vrna_md_defaults_oldAliEn_get              |
| Fine-tuning of the Implemented Models, 189                       | Fine-tuning of the Implemented Models, 199 |
| vrna_md_defaults_betaScale_get                                   | vrna_md_defaults_reset                     |
| Fine-tuning of the Implemented Models, 189                       | Fine-tuning of the Implemented Models, 188 |
| vrna_md_defaults_circ                                            | vrna_md_defaults_ribo                      |
| Fine-tuning of the Implemented Models, 193                       | Fine-tuning of the Implemented Models, 199 |
| vrna_md_defaults_circ_get                                        | vrna_md_defaults_ribo_get                  |
| Fine-tuning of the Implemented Models, 193                       | Fine-tuning of the Implemented Models, 199 |
| vrna_md_defaults_compute_bpp                                     | vrna_md_defaults_salt                      |
| Fine-tuning of the Implemented Models, 196                       | Fine-tuning of the Implemented Models, 201 |
| vrna_md_defaults_compute_bpp_get                                 | vrna_md_defaults_salt_get                  |
| Fine-tuning of the Implemented Models, 197                       | Fine-tuning of the Implemented Models, 202 |
| vrna_md_defaults_cv_fact                                         | vrna_md_defaults_saltDPXInit               |
| Fine-tuning of the Implemented Models, 200                       | Fine-tuning of the Implemented Models, 203 |
| vrna_md_defaults_cv_fact_get                                     | vrna_md_defaults_saltDPXInit_get           |
| Fine-tuning of the Implemented Models, 200                       | Fine-tuning of the Implemented Models, 203 |
| vrna_md_defaults_dangles                                         | vrna_md_defaults_saltMLLower               |
| Fine-tuning of the Implemented Models, 189                       | Fine-tuning of the Implemented Models, 202 |
| vrna_md_defaults_dangles_get                                     | vrna_md_defaults_saltMLLower_get           |
| Fine-tuning of the Implemented Models, 190                       | Fine-tuning of the Implemented Models, 202 |
| vrna_md_defaults_energy_set                                      | vrna_md_defaults_saltMLUpper               |
| Fine-tuning of the Implemented Models, 195                       | Fine-tuning of the Implemented Models, 202 |
| vrna_md_defaults_energy_set_get                                  | vrna_md_defaults_saltMLUpper_get           |
| Fine-tuning of the Implemented Models, 195                       | Fine-tuning of the Implemented Models, 202 |
| vrna_md_defaults_gquad                                           | vrna_md_defaults_sfact                     |
| Fine-tuning of the Implemented Models, 193                       | Fine-tuning of the Implemented Models, 201 |
| vrna_md_defaults_gquad_get                                       | vrna_md_defaults_sfact_get                 |
| Fine-tuning of the Implemented Models, 194                       | Fine-tuning of the Implemented Models, 201 |
| vrna_md_defaults_logML                                           | vrna_md_defaults_special_hp                |
| Fine-tuning of the Implemented Models, 192                       | Fine-tuning of the Implemented Models, 190 |
| vrna_md_defaults_logML_get                                       | vrna_md_defaults_special_hp_get            |
| Fine-tuning of the Implemented Models, 193                       | Fine-tuning of the Implemented Models, 190 |
| vrna_md_defaults_max_bp_span                                     | vrna_md_defaults_temperature               |
| Fine-tuning of the Implemented Models, 197                       | Fine-tuning of the Implemented Models, 188 |
| vrna_md_defaults_max_bp_span_get                                 | vrna_md_defaults_temperature_get           |
| Fine-tuning of the Implemented Models, 197                       | Fine-tuning of the Implemented Models, 189 |
| vrna_md_defaults_min_loop_size                                   | vrna_md_defaults_uniq_ML                   |
| Fine-tuning of the Implemented Models, 197                       | Fine-tuning of the Implemented Models, 194 |
| vrna_md_defaults_min_loop_size_get                               | vrna_md_defaults_uniq_ML_get               |
| Fine-tuning of the Implemented Models, 198                       | Fine-tuning of the Implemented Models, 194 |
| vrna_md_defaults_nc_fact                                         | vrna_md_defaults_window_size               |
| Fine-tuning of the Implemented Models, 200                       | Fine-tuning of the Implemented Models, 198 |
| vrna_md_defaults_nc_fact_get                                     | vrna_md_defaults_window_size_get           |
| Fine-tuning of the Implemented Models, 201                       | Fine-tuning of the Implemented Models, 198 |
| vrna_md_defaults_noGU                                            | vrna md option string                      |
| Fine-tuning of the Implemented Models, 191                       | Fine-tuning of the Implemented Models, 188 |
| vrna_md_defaults_noGU_get                                        | vrna_md_s, 180                             |
| Fine-tuning of the Implemented Models, 191                       | dangles, 182                               |
| vrna_md_defaults_noGUclosure                                     | min_loop_size, 183                         |
| Fine-tuning of the Implemented Models, 192                       | vrna_md_set_default                        |
| vrna_md_defaults_noGUclosure_get                                 |                                            |
|                                                                  | Fine-tuning of the Implemented Models, 187 |
| Fine-tuning of the Implemented Models, 192                       |                                            |
| Fine-tuning of the Implemented Models, 192 vrna_md_defaults_noLP | Fine-tuning of the Implemented Models, 187 |

| Compute the Structure with Maximum Expected                               | VRNA_MODEL_DEFAULT_ALI_NC_FACT                                     |
|---------------------------------------------------------------------------|--------------------------------------------------------------------|
| Accuracy (MEA), 312                                                       | Fine-tuning of the Implemented Models, 186                         |
| vrna_MEA_from_plist                                                       | VRNA_MODEL_DEFAULT_ALI_OLD_EN                                      |
| Compute the Structure with Maximum Expected                               | Fine-tuning of the Implemented Models, 186                         |
| Accuracy (MEA), 313                                                       | VRNA_MODEL_DEFAULT_ALI_RIBO                                        |
| vrna_mean_bp_distance                                                     | Fine-tuning of the Implemented Models, 186                         |
| Predicting various thermodynamic properties, 329                          | VRNA_MODEL_DEFAULT_BACKTRACK                                       |
| vrna_mean_bp_distance_pr                                                  | Fine-tuning of the Implemented Models, 185                         |
| Predicting various thermodynamic properties, 328                          | VRNA_MODEL_DEFAULT_BACKTRACK_TYPE                                  |
| VRNA_MEASURE_SHANNON_ENTROPY                                              | Fine-tuning of the Implemented Models, 185                         |
| Multiple Sequence Alignment Utilities, 451                                | VRNA_MODEL_DEFAULT_BETA_SCALE                                      |
| vrna_message_constraint_options Constraining the RNA Folding Grammar, 238 | Fine-tuning of the Implemented Models, 183 VRNA_MODEL_DEFAULT_CIRC |
| vrna_message_constraint_options_all                                       | Fine-tuning of the Implemented Models, 184                         |
| Constraining the RNA Folding Grammar, 239                                 | VRNA_MODEL_DEFAULT_COMPUTE_BPP                                     |
| vrna_message_error                                                        | Fine-tuning of the Implemented Models, 185                         |
| Messages, 511                                                             | VRNA_MODEL_DEFAULT_DANGLES                                         |
| vrna_message_info                                                         | Fine-tuning of the Implemented Models, 183                         |
| Messages, 512                                                             | VRNA_MODEL_DEFAULT_ENERGY_SET                                      |
| vrna_message_input_seq                                                    | Fine-tuning of the Implemented Models, 185                         |
| Messages, 513                                                             | VRNA_MODEL_DEFAULT_GQUAD                                           |
| vrna_message_input_seq_simple                                             | Fine-tuning of the Implemented Models, 184                         |
| Messages, 513                                                             | VRNA MODEL DEFAULT LOG ML                                          |
| vrna_message_verror                                                       | Fine-tuning of the Implemented Models, 186                         |
| Messages, 511                                                             | VRNA_MODEL_DEFAULT_MAX_BP_SPAN                                     |
| vrna_message_vinfo                                                        | Fine-tuning of the Implemented Models, 185                         |
| Messages, 512                                                             | VRNA_MODEL_DEFAULT_NO_GU                                           |
| vrna_message_vwarning                                                     | Fine-tuning of the Implemented Models, 184                         |
| Messages, 512                                                             | VRNA_MODEL_DEFAULT_NO_GU_CLOSURE                                   |
| vrna_message_warning                                                      | Fine-tuning of the Implemented Models, 184                         |
| Messages, 511                                                             | VRNA_MODEL_DEFAULT_NO_LP                                           |
| vrna_mfe                                                                  | Fine-tuning of the Implemented Models, 184                         |
| Global MFE Prediction, 261                                                | VRNA_MODEL_DEFAULT_PF_SCALE                                        |
| vrna_mfe_dimer                                                            | Fine-tuning of the Implemented Models, 183                         |
| Global MFE Prediction, 261                                                | VRNA_MODEL_DEFAULT_SPECIAL_HP                                      |
| vrna_mfe_TwoD                                                             | Fine-tuning of the Implemented Models, 184                         |
| Computing MFE representatives of a Distance                               | VRNA_MODEL_DEFAULT_TEMPERATURE                                     |
| Based Partitioning, 319                                                   | Fine-tuning of the Implemented Models, 183                         |
| vrna_mfe_window                                                           | VRNA_MODEL_DEFAULT_UNIQ_ML                                         |
| Local (sliding window) MFE Prediction, 267                                | Fine-tuning of the Implemented Models, 185                         |
| vrna_mfe_window_f                                                         | VRNA_MODEL_DEFAULT_WINDOW_SIZE                                     |
| Local (sliding window) MFE Prediction, 266                                | Fine-tuning of the Implemented Models, 186                         |
| vrna_mfe_window_zscore                                                    | vrna_move_apply                                                    |
| Local (sliding window) MFE Prediction, 267                                | Neighborhood Relation and Move Sets for Sec-                       |
| VRNA_MINIMIZER_CONJUGATE_FR                                               | ondary Structures, 343                                             |
| Generate Soft Constraints from Data, 364                                  | vrna_move_compare                                                  |
| VRNA_MINIMIZER_CONJUGATE_PR                                               | Neighborhood Relation and Move Sets for Sec-                       |
| Generate Soft Constraints from Data, 365                                  | ondary Structures, 344                                             |
| VRNA_MINIMIZER_DEFAULT                                                    | vrna_move_init                                                     |
| Generate Soft Constraints from Data, 364                                  | Neighborhood Relation and Move Sets for Sec-                       |
| VRNA_MINIMIZER_STEEPEST_DESCENT                                           | ondary Structures, 343                                             |
| Generate Soft Constraints from Data, 365                                  | vrna_move_is_insertion                                             |
| VRNA_MINIMIZER_VECTOR_BFGS                                                | Neighborhood Relation and Move Sets for Sec-                       |
| Generate Soft Constraints from Data, 365                                  | ondary Structures, 344                                             |
| VRNA_MINIMIZER_VECTOR_BFGS2                                               | vrna_move_is_removal                                               |
| Generate Soft Constraints from Data, 365                                  | Neighborhood Relation and Move Sets for Sec-                       |
| VRNA_MODEL_DEFAULT_ALI_CV_FACT Fine-tuning of the Implemented Models, 186 | ondary Structures, 343 vrna move is shift                          |
|                                                                           |                                                                    |

| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Combinatorics Algorithms, 503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ondary Structures, 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VRNA_NEIGHBOR_CHANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| vrna_move_list_free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ondary Structures, 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ondary Structures, 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VRNA_NEIGHBOR_INVALID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| vrna_move_neighbor_diff  Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Neighborhood Relation and Move Sets for Secondary Structures, 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ondary Structures, 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VRNA_NEIGHBOR_NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| vrna_move_neighbor_diff_cb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ondary Structures, 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ondary Structures, 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vrna_neighbors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| vrna_move_s, 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| vrna_move_update_f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ondary Structures, 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vrna_neighbors_successive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ondary Structures, 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VRNA_MOVESET_DEFAULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ondary Structures, 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vrna_nucleotide_decode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ondary Structures, 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Utilities to deal with Nucleotide Alphabets, 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VRNA_MOVESET_DELETION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vrna_nucleotide_encode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Utilities to deal with Nucleotide Alphabets, 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ondary Structures, 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VRNA_OBJECTIVE_FUNCTION_ABSOLUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VRNA_MOVESET_INSERTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Generate Soft Constraints from Data, 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VRNA_OBJECTIVE_FUNCTION_QUADRATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ondary Structures, 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Generate Soft Constraints from Data, 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VRNA_MOVESET_NO_LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VRNA_OPTION_EVAL_ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The Fold Compound, 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ondary Structures, 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VRNA_OPTION_MFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VRNA_MOVESET_SHIFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The Fold Compound, 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Neighborhood Relation and Move Sets for Sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VRNA_OPTION_MULTILINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ondary Structures, 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nucleic Acid Sequences and Structures, 459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vrna_multimer_pf_s, 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VRNA_OPTION_PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| vrna_multimer_pf_s, 273 VRNA_MX_2DFOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VRNA_OPTION_PF The Fold Compound, 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| vrna_multimer_pf_s, 273 VRNA_MX_2DFOLD The Dynamic Programming Matrices, 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| vrna_multimer_pf_s, 273 VRNA_MX_2DFOLD The Dynamic Programming Matrices, 533 vrna_mx_add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| vrna_multimer_pf_s, 273 VRNA_MX_2DFOLD The Dynamic Programming Matrices, 533 vrna_mx_add The Dynamic Programming Matrices, 533                                                                                                                                                                                                                                                                                                                                                                                                                                                | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT                                                                                                                                                                                                                                                                                                                                                                                                                           | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| vrna_multimer_pf_s, 273 VRNA_MX_2DFOLD The Dynamic Programming Matrices, 533 vrna_mx_add The Dynamic Programming Matrices, 533 VRNA_MX_DEFAULT The Dynamic Programming Matrices, 533                                                                                                                                                                                                                                                                                                                                                                                          | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| vrna_multimer_pf_s, 273 VRNA_MX_2DFOLD The Dynamic Programming Matrices, 533 vrna_mx_add The Dynamic Programming Matrices, 533 VRNA_MX_DEFAULT The Dynamic Programming Matrices, 533 vrna_mx_mfe_free                                                                                                                                                                                                                                                                                                                                                                         | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534                                                                                                                                                                                                                                                                                                                           | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531                                                                                                                                                                                                                                                                                                       | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| vrna_multimer_pf_s, 273 VRNA_MX_2DFOLD The Dynamic Programming Matrices, 533 vrna_mx_add The Dynamic Programming Matrices, 533 VRNA_MX_DEFAULT The Dynamic Programming Matrices, 533 vrna_mx_mfe_free The Dynamic Programming Matrices, 534 vrna_mx_mfe_s, 531 strands, 531                                                                                                                                                                                                                                                                                                   | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554 vrna_param_s, 207                                                                                                                                                                                                                                                                                                                                                                                                                 |
| vrna_multimer_pf_s, 273 VRNA_MX_2DFOLD The Dynamic Programming Matrices, 533 vrna_mx_add The Dynamic Programming Matrices, 533 VRNA_MX_DEFAULT The Dynamic Programming Matrices, 533 vrna_mx_mfe_free The Dynamic Programming Matrices, 534 vrna_mx_mfe_s, 531 strands, 531 type, 531                                                                                                                                                                                                                                                                                         | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554 vrna_param_s, 207 VRNA_PARAMETER_FORMAT_DEFAULT                                                                                                                                                                                                                                                                                                                                                                                   |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t                                                                                                                                                                                                                                                         | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554 vrna_param_s, 207 VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to                                                                                                                                                                                                                                                                                                                                     |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390                                                                                                                                                                                                                                    | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554 vrna_param_s, 207 VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403                                                                                                                                                                                                                                                                                                                           |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t                                                                                                                                                                                                               | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554 vrna_param_s, 207 VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403 vrna_params                                                                                                                                                                                                                                                                                                               |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397                                                                                                                                                                                       | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554 vrna_param_s, 207 VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403 vrna_params Energy Parameters, 208                                                                                                                                                                                                                                                                                        |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free                                                                                                                                                                      | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554 vrna_param_s, 207 VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403 vrna_params Energy Parameters, 208 vrna_params_copy                                                                                                                                                                                                                                                                       |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534                                                                                                                               | VRNA_OPTION_PF The Fold Compound, 525 vrna_ostream_free Buffers, 553 vrna_ostream_init Buffers, 553 vrna_ostream_provide Buffers, 554 vrna_ostream_request Buffers, 554 vrna_param_s, 207 VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403 vrna_params Energy Parameters, 208 vrna_params_copy Energy Parameters, 209                                                                                                                                                                                                                                                |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534  vrna_mx_pf_s, 532                                                                                                            | VRNA_OPTION_PF The Fold Compound, 525  vrna_ostream_free Buffers, 553  vrna_ostream_init Buffers, 553  vrna_ostream_provide Buffers, 554  vrna_ostream_request Buffers, 554  vrna_param_s, 207  VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params Energy Parameters, 208  vrna_params_copy Energy Parameters, 209  vrna_params_load                                                                                                                                                                                                                      |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534  vrna_mx_pf_s, 532  expMLbase, 532                                                                                            | VRNA_OPTION_PF The Fold Compound, 525  vrna_ostream_free Buffers, 553  vrna_ostream_init Buffers, 553  vrna_ostream_provide Buffers, 554  vrna_ostream_request Buffers, 554  vrna_param_s, 207  VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params Energy Parameters, 208  vrna_params_copy Energy Parameters, 209  vrna_params_load Reading/Writing Energy Parameter Sets from/to                                                                                                                                                                        |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534  vrna_mx_pf_s, 532  expMLbase, 532  length, 532                                                                               | VRNA_OPTION_PF The Fold Compound, 525  vrna_ostream_free Buffers, 553  vrna_ostream_init Buffers, 553  vrna_ostream_provide Buffers, 554  vrna_ostream_request Buffers, 554  vrna_param_s, 207  VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params Energy Parameters, 208  vrna_params_copy Energy Parameters, 209  vrna_params_load Reading/Writing Energy Parameter Sets from/to File, 403                                                                                                                                                              |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534  vrna_mx_pf_s, 532  expMLbase, 532  length, 532  scale, 532                                                                   | VRNA_OPTION_PF The Fold Compound, 525  vrna_ostream_free Buffers, 553  vrna_ostream_init Buffers, 553  vrna_ostream_provide Buffers, 554  vrna_ostream_request Buffers, 554  vrna_param_s, 207  VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params Energy Parameters, 208  vrna_params_copy Energy Parameters, 209  vrna_params_load Reading/Writing Energy Parameter Sets from/to                                                                                                                                                                        |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534  vrna_mx_pf_s, 532  expMLbase, 532  length, 532  scale, 532  type, 532                                                        | VRNA_OPTION_PF The Fold Compound, 525  vrna_ostream_free Buffers, 553  vrna_ostream_init Buffers, 553  vrna_ostream_provide Buffers, 554  vrna_ostream_request Buffers, 554  vrna_param_s, 207  VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params Energy Parameters, 208  vrna_params_copy Energy Parameters, 209  vrna_params_load Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params_load Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params_load_defaults                                                         |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534  vrna_mx_pf_s, 532  expMLbase, 532  length, 532  scale, 532                                                                   | VRNA_OPTION_PF The Fold Compound, 525  vrna_ostream_free Buffers, 553  vrna_ostream_init Buffers, 553  vrna_ostream_provide Buffers, 554  vrna_ostream_request Buffers, 554  vrna_param_s, 207  VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params Energy Parameters, 208  vrna_params_copy Energy Parameters, 209  vrna_params_load Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params_load Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params_load_defaults Reading/Writing Energy Parameter Sets from/to           |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534  vrna_mx_pf_s, 532  expMLbase, 532  length, 532  scale, 532  type, 532  vrna_mx_type_e                                        | VRNA_OPTION_PF The Fold Compound, 525  vrna_ostream_free Buffers, 553  vrna_ostream_init Buffers, 553  vrna_ostream_provide Buffers, 554  vrna_ostream_request Buffers, 554  vrna_param_s, 207  VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params Energy Parameters, 208  vrna_params_copy Energy Parameters, 209  vrna_params_load Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params_load Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params_load_defaults Reading/Writing Energy Parameter Sets from/to File, 404 |
| vrna_multimer_pf_s, 273  VRNA_MX_2DFOLD  The Dynamic Programming Matrices, 533  vrna_mx_add  The Dynamic Programming Matrices, 533  VRNA_MX_DEFAULT  The Dynamic Programming Matrices, 533  vrna_mx_mfe_free  The Dynamic Programming Matrices, 534  vrna_mx_mfe_s, 531  strands, 531  type, 531  vrna_mx_pf_aux_el_t  Exterior Loops, 390  vrna_mx_pf_aux_ml_t  Multibranch Loops, 397  vrna_mx_pf_free  The Dynamic Programming Matrices, 534  vrna_mx_pf_s, 532  expMLbase, 532  length, 532  scale, 532  type, 532  vrna_mx_type_e  The Dynamic Programming Matrices, 532 | VRNA_OPTION_PF The Fold Compound, 525  vrna_ostream_free Buffers, 553  vrna_ostream_init Buffers, 553  vrna_ostream_provide Buffers, 554  vrna_ostream_request Buffers, 554  vrna_param_s, 207  VRNA_PARAMETER_FORMAT_DEFAULT Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params Energy Parameters, 208  vrna_params_copy Energy Parameters, 209  vrna_params_load Reading/Writing Energy Parameter Sets from/to File, 403  vrna_params_load_defaults Reading/Writing Energy Parameter Sets from/to File, 404  vrna_params_load_DNA_Mathews1999                                         |

Reading/Writing Energy Parameter Sets from/to Folding Paths that start at a single Secondary Structure, 357 File, 406 vrna params load from string vrna path options findpath Reading/Writing Energy Parameter Sets from/to Direct Refolding Paths between two Secondary File, 404 Structures, 354 vrna params load RNA Andronescu2007 vrna path options free Reading/Writing Energy Parameter Sets from/to (Re-)folding Paths, Saddle Points, Energy Barriers, File, 405 and Local Minima, 350 vrna params load RNA Langdon2018 VRNA PATH RANDOM Reading/Writing Energy Parameter Sets from/to Folding Paths that start at a single Secondary File, 405 Structure, 357 vrna\_params\_load\_RNA\_misc\_special\_hairpins vrna\_path\_random Reading/Writing Energy Parameter Sets from/to Folding Paths that start at a single Secondary File, 406 Structure, 359 vrna\_params\_load\_RNA\_Turner1999 vrna\_path\_s, 349 Reading/Writing Energy Parameter Sets from/to type, 350 File, 405 VRNA PATH STEEPEST DESCENT vrna params load RNA Turner2004 Folding Paths that start at a single Secondary Reading/Writing Energy Parameter Sets from/to Structure, 357 VRNA PATH TYPE DOT BRACKET File, 405 vrna params reset (Re-)folding Paths, Saddle Points, Energy Barriers, Energy Parameters, 212 and Local Minima, 350 VRNA\_PATH\_TYPE\_MOVES vrna\_params\_save Reading/Writing Energy Parameter Sets from/to (Re-)folding Paths, Saddle Points, Energy Barriers, File, 403 and Local Minima, 350 vrna\_params\_subst vrna pbacktrack Energy Parameters, 210 Random Structure Samples from the Ensemble, vrna path 300 Folding Paths that start at a single Secondary vrna pbacktrack5 Structure, 357 Random Structure Samples from the Ensemble, VRNA PATH DEFAULT 294 Folding Paths that start at a single Secondary vrna pbacktrack5 cb Structure, 357 Random Structure Samples from the Ensemble, vrna\_path\_direct 296 Direct Refolding Paths between two Secondary vrna\_pbacktrack5\_num Structures, 355 Random Structure Samples from the Ensemble, vrna path direct ub Direct Refolding Paths between two Secondary vrna\_pbacktrack5\_resume Random Structure Samples from the Ensemble, Structures, 355 vrna path findpath 297 Direct Refolding Paths between two Secondary vrna pbacktrack5 resume cb Random Structure Samples from the Ensemble, Structures, 353 298 vrna path findpath saddle Direct Refolding Paths between two Secondary vrna pbacktrack5 TwoD Structures, 351 Stochastic Backtracking of Structures from Disvrna\_path\_findpath\_saddle\_ub tance Based Partitioning, 325 Direct Refolding Paths between two Secondary vrna pbacktrack cb Random Structure Samples from the Ensemble, Structures, 352 vrna\_path\_findpath\_ub 301 Direct Refolding Paths between two Secondary VRNA PBACKTRACK DEFAULT Random Structure Samples from the Ensemble, Structures, 353 (Re-)folding Paths, Saddle Points, Energy Barriers, vrna\_pbacktrack\_mem free and Local Minima, 350 Random Structure Samples from the Ensemble, vrna\_path\_gradient 311 Folding Paths that start at a single Secondary vrna\_pbacktrack\_mem\_t Structure, 358 Random Structure Samples from the Ensemble, VRNA\_PATH\_NO\_TRANSITION\_OUTPUT 294

| VRNA_PBACKTRACK_NON_REDUNDANT                       | Global Partition Function and Equilibrium Probabil- |
|-----------------------------------------------------|-----------------------------------------------------|
| Random Structure Samples from the Ensemble,         | ities, 275                                          |
| 293                                                 | vrna_pf_TwoD                                        |
| vrna_pbacktrack_num                                 | Computing Partition Functions of a Distance Based   |
| Random Structure Samples from the Ensemble,         | Partitioning, 323                                   |
| 300                                                 | vrna_pfl_fold                                       |
| vrna_pbacktrack_resume                              | Local (sliding window) Partition Function and Equi- |
| Random Structure Samples from the Ensemble,         | librium Probabilities, 283                          |
| 302                                                 | vrna_pfl_fold_cb                                    |
| vrna_pbacktrack_resume_cb                           | Local (sliding window) Partition Function and Equi- |
| Random Structure Samples from the Ensemble,         | librium Probabilities, 283                          |
| 304                                                 | vrna_pfl_fold_up                                    |
| vrna_pbacktrack_sub                                 | Local (sliding window) Partition Function and Equi- |
| Random Structure Samples from the Ensemble,         | librium Probabilities, 284                          |
| 305                                                 | vrna_pfl_fold_up_cb                                 |
| vrna_pbacktrack_sub_cb                              | Local (sliding window) Partition Function and Equi- |
| Random Structure Samples from the Ensemble,         | librium Probabilities, 284                          |
| 307                                                 | vrna_pinfo_s, 450                                   |
| vrna_pbacktrack_sub_num                             | vrna_pk_plex                                        |
| Random Structure Samples from the Ensemble,         | Pseudoknots, 372                                    |
| 306                                                 | vrna_pk_plex_accessibility                          |
| vrna_pbacktrack_sub_resume                          | Pseudoknots, 372                                    |
| Random Structure Samples from the Ensemble,         | vrna_pk_plex_opt                                    |
| 308                                                 | Pseudoknots, 373                                    |
| vrna_pbacktrack_sub_resume_cb                       | vrna_pk_plex_opt_defaults                           |
| Random Structure Samples from the Ensemble,         | Pseudoknots, 373                                    |
| 310                                                 | vrna_pk_plex_opt_fun                                |
| vrna_pbacktrack_TwoD                                | Pseudoknots, 373                                    |
| Stochastic Backtracking of Structures from Dis-     | vrna_pk_plex_opt_t                                  |
| tance Based Partitioning, 324                       | Pseudoknots, 371                                    |
| vrna_pf                                             | vrna_pk_plex_result_s, 370                          |
| Global Partition Function and Equilibrium Probabil- | vrna_pk_plex_score_f                                |
| ities, 273                                          | Pseudoknots, 371                                    |
| vrna_pf_alifold                                     | vrna_pk_plex_t                                      |
| Global Partition Function and Equilibrium Probabil- | Pseudoknots, 371                                    |
| ities, 276                                          | vrna plist                                          |
| vrna_pf_circalifold                                 | Pair List Representation of Secondary Structures,   |
| Global Partition Function and Equilibrium Probabil- | 440                                                 |
| ities, 277                                          | vrna_plist_from_probs                               |
| vrna_pf_circfold                                    | Global Partition Function and Equilibrium Probabil- |
| Global Partition Function and Equilibrium Probabil- | ities, 277                                          |
| ities, 275                                          | vrna_plot_coords                                    |
| vrna_pf_co_fold                                     | Layouts and Coordinates, 485                        |
| Global Partition Function and Equilibrium Probabil- | vrna_plot_coords_circular                           |
| ities, 278                                          | Layouts and Coordinates, 488                        |
| Partition Function for Two Hybridized Sequences,    | vrna_plot_coords_circular_pt                        |
| 398                                                 | Layouts and Coordinates, 489                        |
| vrna_pf_dimer                                       | vrna_plot_coords_pt                                 |
| Global Partition Function and Equilibrium Probabil- | Layouts and Coordinates, 486                        |
| ities, 274                                          | vrna_plot_coords_puzzler                            |
| vrna_pf_dimer_concentrations                        | Layouts and Coordinates, 490                        |
| Partition Function for Two Hybridized Sequences,    | vrna_plot_coords_puzzler_pt                         |
| 399                                                 | Layouts and Coordinates, 490                        |
| vrna_pf_dimer_probs                                 | vrna_plot_coords_simple                             |
| Predicting various thermodynamic properties, 331    | Layouts and Coordinates, 487                        |
| vrna_pf_float_precision                             | vrna_plot_coords_simple_pt                          |
| Partition Function and Equilibrium Properties, 259  | Layouts and Coordinates, 488                        |
| vrna_pf_fold                                        | vrna_plot_coords_turtle                             |
| ····α_pi_ioio                                       | ····a_piot_oooido_tai tio                           |

| Layouts and Coordinates, 492                        | Local (sliding window) Partition Function and Equi |
|-----------------------------------------------------|----------------------------------------------------|
| vrna_plot_coords_turtle_pt                          | librium Probabilities, 280                         |
| Layouts and Coordinates, 492                        | vrna_pt_ali_get                                    |
| vrna_plot_layout                                    | Pair Table Representation of Secondary Structures  |
| Layouts and Coordinates, 482                        | 438                                                |
| vrna_plot_layout_circular                           | vrna_pt_pk_get                                     |
| Layouts and Coordinates, 484                        | Pair Table Representation of Secondary Structures  |
| vrna_plot_layout_free                               | 437                                                |
| Layouts and Coordinates, 485                        | vrna_pt_pk_remove                                  |
| vrna_plot_layout_puzzler                            | Pair Table Representation of Secondary Structures  |
| Layouts and Coordinates, 485                        | 438                                                |
| vrna_plot_layout_s, 481                             | vrna_pt_snoop_get                                  |
| vrna_plot_layout_simple                             | Pair Table Representation of Secondary Structures  |
| Layouts and Coordinates, 483                        | 438                                                |
| vrna_plot_layout_t                                  | vrna_ptable                                        |
| Layouts and Coordinates, 482                        | Pair Table Representation of Secondary Structures  |
| vrna_plot_layout_turtle                             | 436                                                |
| Layouts and Coordinates, 484                        | vrna_ptable_copy                                   |
| vrna_plot_options_puzzler                           | Pair Table Representation of Secondary Structures  |
| Layouts and Coordinates, 491                        | 438                                                |
| vrna_plot_options_puzzler_free                      | vrna_ptable_from_string                            |
| Layouts and Coordinates, 491                        | Pair Table Representation of Secondary Structures  |
| vrna_plot_options_puzzler_t, 481                    | 437                                                |
| VRNA_PLOT_TYPE_CIRCULAR                             | vrna_ptypes                                        |
| Layouts and Coordinates, 482                        | Utilities to deal with Nucleotide Alphabets, 413   |
| VRNA_PLOT_TYPE_NAVIEW                               | vrna_random_string                                 |
| Layouts and Coordinates, 481                        | (Nucleic Acid Sequence) String Utilitites, 422     |
| VRNA_PLOT_TYPE_PUZZLER                              | vrna_read_line                                     |
| Layouts and Coordinates, 482                        | Files and I/O, 456                                 |
| VRNA_PLOT_TYPE_SIMPLE                               | vrna_realloc                                       |
| Layouts and Coordinates, 481                        | Utilities, 386                                     |
| VRNA_PLOT_TYPE_TURTLE                               | vrna_recursion_status_f                            |
| Layouts and Coordinates, 482                        | The Fold Compound, 526                             |
| vrna_positional_entropy                             | vrna_refBPcnt_matrix                               |
| Predicting various thermodynamic properties, 331    | Secondary Structure Utilities, 427                 |
| vrna_pr_energy                                      | vrna_refBPdist_matrix                              |
| Predicting various thermodynamic properties, 333    | Secondary Structure Utilities, 427                 |
| vrna_pr_structure                                   | vrna_rotational_symmetry                           |
| Predicting various thermodynamic properties, 332    | Combinatorics Algorithms, 501                      |
| vrna_probs_window                                   | vrna_rotational_symmetry_db                        |
| Local (sliding window) Partition Function and Equi- | Combinatorics Algorithms, 502                      |
| librium Probabilities, 282                          | vrna_rotational_symmetry_db_pos                    |
| VRNA_PROBS_WINDOW_BPP                               | Combinatorics Algorithms, 502                      |
| Local (sliding window) Partition Function and Equi- | vrna_rotational_symmetry_num                       |
| librium Probabilities, 279                          | Combinatorics Algorithms, 499                      |
| vrna_probs_window_f                                 | vrna_rotational_symmetry_pos                       |
| Local (sliding window) Partition Function and Equi- | Combinatorics Algorithms, 501                      |
| librium Probabilities, 281                          | vrna_rotational_symmetry_pos_num                   |
| VRNA_PROBS_WINDOW_PF                                | Combinatorics Algorithms, 500                      |
| Local (sliding window) Partition Function and Equi- | vrna_salt_loop                                     |
| librium Probabilities, 281                          | Energy Parameters, 216                             |
| VRNA_PROBS_WINDOW_STACKP                            | vrna_salt_loop_int                                 |
| Local (sliding window) Partition Function and Equi- | Energy Parameters, 216                             |
| librium Probabilities, 280                          | vrna_salt_stack                                    |
| VRNA_PROBS_WINDOW_UP                                | Energy Parameters, 216                             |
| Local (sliding window) Partition Function and Equi- | vrna_sc_add_bp                                     |
| librium Probabilities, 280                          | Soft Constraints, 254                              |
| VRNA_PROBS_WINDOW_UP_SPLIT                          | vrna_sc_add_bt                                     |

| Soft Constraints, 257                         | Post-transcriptional Modifications, 378           |
|-----------------------------------------------|---------------------------------------------------|
| vrna_sc_add_data                              | vrna_sc_mod_read_from_jsonfile                    |
| Soft Constraints, 256                         | Post-transcriptional Modifications, 377           |
| vrna_sc_add_exp_f                             | vrna_sc_motif_s, 368                              |
| Soft Constraints, 257                         | vrna_sc_remove                                    |
| vrna_sc_add_f                                 | Soft Constraints, 255                             |
| Soft Constraints, 256                         | vrna_sc_s, 249                                    |
| vrna_sc_add_hi_motif                          | bt, 250                                           |
| Incorporating Ligands Binding to Specific Se- | exp_f, 250                                        |
| quence/Structure Motifs using Soft Con-       | f, 250                                            |
| straints, 368                                 | vrna_sc_set_bp                                    |
| vrna_sc_add_SHAPE_deigan                      | Soft Constraints, 253                             |
| SHAPE Reactivity Data, 361                    | vrna_sc_set_up                                    |
| vrna_sc_add_SHAPE_deigan_ali                  | Soft Constraints, 254                             |
| SHAPE Reactivity Data, 361                    | vrna_sc_SHAPE_parse_method                        |
| vrna_sc_add_SHAPE_zarringhalam                | SHAPE.h, 643                                      |
| SHAPE Reactivity Data, 362                    | vrna_sc_SHAPE_to_pr                               |
| vrna_sc_add_up                                | SHAPE Reactivity Data, 363                        |
| Soft Constraints, 255                         | vrna_sc_type_e                                    |
| vrna_sc_bp_storage_t, 603                     | soft.h, 646                                       |
| vrna_sc_bt_f                                  | VRNA_SC_WINDOW                                    |
| Soft Constraints, 252                         | soft.h, 646                                       |
| VRNA_SC_DEFAULT                               | vrna_search_BM_BCT                                |
| soft.h, 646                                   | Search Algorithms, 498                            |
| vrna_sc_exp_f                                 | vrna_search_BM_BCT_num                            |
| Soft Constraints, 251                         | Search Algorithms, 497                            |
| vrna_sc_f                                     | vrna_search_BMH                                   |
| Soft Constraints, 251                         | Search Algorithms, 497                            |
| vrna_sc_free                                  | vrna_search_BMH_num                               |
| Soft Constraints, 256                         | Search Algorithms, 496                            |
| vrna_sc_init                                  | vrna_sect_s, 507                                  |
| Soft Constraints, 253                         | VRNA_SEQ_DNA                                      |
| vrna_sc_minimize_pertubation                  | Utilities to deal with Nucleotide Alphabets, 413  |
| Generate Soft Constraints from Data, 365      | vrna_seq_encode                                   |
| vrna_sc_mod                                   | Utilities to deal with Nucleotide Alphabets, 413  |
| Post-transcriptional Modifications, 379       | vrna_seq_encode_simple                            |
| vrna_sc_mod_7DA                               | Utilities to deal with Nucleotide Alphabets, 414  |
| Post-transcriptional Modifications, 381       | vrna_seq_reverse                                  |
| vrna_sc_mod_dihydrouridine                    | (Nucleic Acid Sequence) String Utilitites, 424    |
| Post-transcriptional Modifications, 382       | VRNA_SEQ_RNA                                      |
| vrna_sc_mod_inosine                           | Utilities to deal with Nucleotide Alphabets, 413  |
| Post-transcriptional Modifications, 381       | vrna_seq_toRNA                                    |
| vrna_sc_mod_json                              | (Nucleic Acid Sequence) String Utilitites, 424    |
| Post-transcriptional Modifications, 378       | vrna_seq_toupper                                  |
| vrna_sc_mod_jsonfile                          | (Nucleic Acid Sequence) String Utilitites, 424    |
| Post-transcriptional Modifications, 379       | vrna_seq_type_e                                   |
| vrna_sc_mod_m6A                               | Utilities to deal with Nucleotide Alphabets, 413  |
| Post-transcriptional Modifications, 380       | vrna_seq_ungapped                                 |
| vrna_sc_mod_param_s, 603                      | (Nucleic Acid Sequence) String Utilitites, 425    |
| vrna_sc_mod_param_t                           | VRNA_SEQ_UNKNOWN                                  |
| Post-transcriptional Modifications, 377       | Utilities to deal with Nucleotide Alphabets, 413  |
| vrna_sc_mod_parameters_free                   | vrna_sequence_s, 413                              |
| Post-transcriptional Modifications, 378       | vrna_sol_TwoD_pf_t, 323                           |
| vrna_sc_mod_pseudouridine                     | Computing Partition Functions of a Distance Based |
| Post-transcriptional Modifications, 380       | Partitioning, 323                                 |
| vrna_sc_mod_purine                            | vrna_sol_TwoD_t, 317                              |
| Post-transcriptional Modifications, 382       | Computing MFE representatives of a Distance       |
| vrna_sc_mod_read_from_json                    | Based Partitioning, 318                           |

| vrna_stack_prob                                    | (Nucleic Acid Sequence) String Utilitites, 418 |
|----------------------------------------------------|------------------------------------------------|
| Predicting various thermodynamic properties, 331   | VRNA_TRIM_DEFAULT                              |
| VRNA_STATUS_MFE_POST                               | (Nucleic Acid Sequence) String Utilitites, 417 |
| The Fold Compound, 524                             | VRNA_TRIM_IN_BETWEEN                           |
| VRNA_STATUS_MFE_PRE                                | (Nucleic Acid Sequence) String Utilitites, 417 |
| The Fold Compound, 524                             | VRNA_TRIM_LEADING                              |
| VRNA_STATUS_PF_POST                                | (Nucleic Acid Sequence) String Utilitites, 417 |
| The Fold Compound, 525                             | VRNA_TRIM_SUBST_BY_FIRST                       |
| VRNA_STATUS_PF_PRE                                 | (Nucleic Acid Sequence) String Utilitites, 417 |
| The Fold Compound, 525                             | VRNA_TRIM_TRAILING                             |
| vrna_strcat_printf                                 | (Nucleic Acid Sequence) String Utilitites, 417 |
| (Nucleic Acid Sequence) String Utilitites, 419     | vrna_ud_add_motif                              |
| vrna_strcat_vprintf                                | Unstructured Domains, 223                      |
| (Nucleic Acid Sequence) String Utilitites, 419     | vrna_ud_add_probs_f                            |
| vrna_strdup_printf                                 | Unstructured Domains, 221                      |
| (Nucleic Acid Sequence) String Utilitites, 418     | vrna_ud_exp_f                                  |
| vrna_strdup_vprintf                                | Unstructured Domains, 220                      |
| (Nucleic Acid Sequence) String Utilitites, 418     | vrna_ud_exp_production_f                       |
| vrna_stream_output_f                               | Unstructured Domains, 221                      |
| Buffers, 551                                       | vrna_ud_f                                      |
| vrna_string_header_s, 603                          | Unstructured Domains, 220                      |
| vrna_strsplit                                      | vrna_ud_get_motif_size_at                      |
| (Nucleic Acid Sequence) String Utilitites, 421     | unstructured_domains.h, 1286                   |
| vrna_strtrim                                       | vrna_ud_get_probs_f                            |
| (Nucleic Acid Sequence) String Utilitites, 420     | Unstructured Domains, 221                      |
| VRNA_STRUCTURE_TREE_EXPANDED                       | vrna_ud_motifs_centroid                        |
| Tree Representation of Secondary Structures, 446   | Unstructured Domains, 221                      |
| VRNA_STRUCTURE_TREE_HIT                            | vrna_ud_motifs_MEA                             |
| Tree Representation of Secondary Structures, 445   | Unstructured Domains, 222                      |
| VRNA_STRUCTURE_TREE_SHAPIRO                        | vrna_ud_motifs_MFE                             |
| Tree Representation of Secondary Structures, 445   | Unstructured Domains, 222                      |
| VRNA_STRUCTURE_TREE_SHAPIRO_EXT                    | vrna_ud_production_f                           |
| Tree Representation of Secondary Structures, 445   | Unstructured Domains, 221                      |
| VRNA_STRUCTURE_TREE_SHAPIRO_SHORT                  | vrna_ud_remove                                 |
| Tree Representation of Secondary Structures, 445   | Unstructured Domains, 224                      |
| VRNA_STRUCTURE_TREE_SHAPIRO_WEIGHT                 | vrna_ud_set_data                               |
| Tree Representation of Secondary Structures, 445   | Unstructured Domains, 224                      |
| vrna_structured_domains_s, 604                     | vrna_ud_set_exp_prod_rule_cb                   |
| vrna_subopt                                        | Unstructured Domains, 225                      |
| Suboptimal Structures within an Energy Band        | vrna_ud_set_prob_cb                            |
| around the MFE, 288                                | unstructured_domains.h, 1286                   |
| vrna_subopt_cb                                     | vrna_ud_set_prod_rule_cb                       |
| Suboptimal Structures within an Energy Band        | Unstructured Domains, 224                      |
| around the MFE, 289                                | VRNA_UNIT_CAL                                  |
| vrna_subopt_result_f                               | Unit Conversion, 514                           |
| Suboptimal Structures within an Energy Band        | VRNA_UNIT_CAL_IT                               |
| around the MFE, 288                                | Unit Conversion, 514                           |
| vrna_subopt_sol_s, 604                             | VRNA_UNIT_DACAL                                |
| vrna_subopt_zuker                                  | Unit Conversion, 514                           |
| Suboptimal Structures sensu Stiegler et al. 1984 / | VRNA_UNIT_DACAL_IT                             |
| Zuker et al. 1989, 287                             | Unit Conversion, 514                           |
| vrna_time_stamp                                    | VRNA_UNIT_DEG_C                                |
| Utilities, 387                                     | Unit Conversion, 515                           |
| vrna_tree_string_to_db                             | VRNA_UNIT_DEG_DE                               |
| Tree Representation of Secondary Structures, 447   | Unit Conversion, 515                           |
| vrna_tree_string_unweight                          | VRNA_UNIT_DEG_F                                |
| Tree Representation of Secondary Structures, 447   | Unit Conversion, 515                           |
| VRNA_TRIM_ALL                                      | VRNA_UNIT_DEG_N                                |

```
Unit Conversion, 515
                                                         Suboptimal Structures sensu Stiegler et al. 1984 /
VRNA_UNIT_DEG_R
                                                              Zuker et al. 1989, 286
    Unit Conversion, 515
VRNA_UNIT_DEG_RE
    Unit Conversion, 515
VRNA UNIT DEG RO
    Unit Conversion, 515
vrna_unit_energy_e
    Unit Conversion, 514
VRNA_UNIT_EV
    Unit Conversion, 514
VRNA_UNIT_G_TNT
    Unit Conversion, 514
VRNA_UNIT_J
    Unit Conversion, 514
VRNA_UNIT_K
    Unit Conversion, 515
VRNA_UNIT_KCAL
    Unit Conversion, 514
VRNA_UNIT_KCAL_IT
    Unit Conversion, 514
VRNA_UNIT_KG_TNT
    Unit Conversion, 514
VRNA_UNIT_KJ
    Unit Conversion, 514
VRNA_UNIT_KWH
    Unit Conversion, 514
VRNA UNIT T TNT
    Unit Conversion, 514
vrna_unit_temperature_e
    Unit Conversion, 514
VRNA_UNIT_WH
    Unit Conversion, 514
vrna_unstructured_domain_motif_s, 604
vrna_unstructured_domain_s, 219
    prod_cb, 220
vrna_urn
    Utilities, 387
warn_user
    basic.h, 928
Washington University Secondary Structure (WUSS) no-
         tation, 434
    vrna_db_from_WUSS, 435
write_parameter_file
    Reading/Writing Energy Parameter Sets from/to
         File, 407
xrealloc
    basic.h, 929
xrna_plot
    Plotting, 479
xsubi
    Utilities, 389
zukersubopt
    Suboptimal Structures sensu Stiegler et al. 1984 /
         Zuker et al. 1989, 286
```

zukersubopt\_par