Gravity as a Relativistic Effect

Nick van Eijndhoven

nickve.nl@gmail.com
http://sites.google.com/site/nickveweb

Contents

Problems with Newtonian gravity	1
Einstein's insight Effects in a uniform gravitational field	3
Curvature in space	10
Curvature in space-time: The Schwarzschild metric	13

Problems with Newtonian gravity

- ullet Consider two pointmasses m_1 and m_2 at resp. locations $ec{r}_1$ and $ec{r}_2$ Gravity as described by Newton :
 - Instanteneous gravitational force $ec{F}_{12}$ of m_1 exerted on m_2 at time t

$$|ec{F}_{12}| = rac{Gm_1m_2}{|ec{r}_1(t) - ec{r}_2(t)|^2}$$

- * Clash with relativity: Different notion of simultaneity in different inertial frames
 - → The above Newtonian formula is valid in only 1 frame
- * Laws of physics should be identical in all inertial frames
 - → New theory of gravity needed which is consistent with relativity
- ullet Another puzzle : $ec{F}=rac{\mathrm{d}ec{p}}{\mathrm{d}t}=$ (constant mass) $=mec{a}$
 - Gravitation : $ec{F}_{grav} = m_G \cdot ec{g} = m_I \cdot ec{a}$
 - Why is gravitational mass m_G equal to the inertial mass m_I ?
 - Or : How does gravity "know" how strong to pull such that all objects get the same \vec{a} ?

Einstein's insight

- ullet Einstein : Observer in free fall to the earth o No experience of the gravitational field
 - → An accelerated frame can transform gravity away
 - Objects at rest close to the observer will stay at rest \rightarrow Local inertial frame
 - → The gravitational field has only a relative existence
- * Consequence: Gravity can be induced by accelerating the reference frame

The equivalence principle

Effects in a uniform gravitational field

Gravitational time dilation

ullet Consider a rocket in empty space with constant vertical acceleration $g\,\hat{z}$ Nose of the rocket: Observer A with clock A emitting light signals at intervals Δau_A Tail of the rocket: Observer B with clock B receiving light signals at intervals Δau_B

* Distance A-B $\equiv h$: At what time intervals does observer B receive the signals?

Effects in a uniform gravitational field

- ullet Enable simple Newtonian mechanics by selecting an inertial frame such that $V \ll c$ (V is rocket velocity at signal emission) o non-relativistic $gh/c \ll c o$ No acceleration to relativistic V while light travels nose-tail
- Choose origin of time : First pulse emitted at t=0 and $z_B(t=0)\equiv 0$ $V(t=0)\equiv 0 \to \text{Observer locations}: z_B(t)=\frac{1}{2}gt^2 \qquad z_A(t)=h+\frac{1}{2}gt^2$ First pulse received at $t=t_1$ second pulse emitted at $t=\Delta \tau_A$ and second pulse received at $t=t_1+\Delta \tau_B$
- Approximation which is accurate to leading order in gh/c^2 : Distance traveled by first pulse: $z_A(0)-z_B(t_1)=ct_1$ Distance traveled by second pulse: $z_A(\Delta\tau_A)-z_B(t_1+\Delta\tau_B)=c(t_1+\Delta\tau_B-\Delta\tau_A)$ Using the observer locations and neglecting higher orders of $\Delta\tau_A$ and $\Delta\tau_B$:

$$h-rac{1}{2}gt_1^2=ct_1 \quad ext{and} \quad h-rac{1}{2}gt_1^2-gt_1\Delta au_B=c(t_1+\Delta au_B-\Delta au_A) \
ightarrow \Delta au_B=rac{c\Delta au_A}{c+gt_1}pprox rac{c\Delta au_A}{c+gh/c}=rac{\Delta au_A}{1+gh/c^2}$$

Effects in a uniform gravitational field

Equivalence principle: The same must happen in a uniform gravitational field

Gravitational time dilation

$$\Delta au_Bpprox rac{\Delta au_A}{1+gh/c^2}$$

Emission and reception rates ν :

$$u_Bpprox
u_A \left(1+gh/c^2
ight)$$

 \bullet In terms of the gravitational potential Φ :

$$u_Bpprox
u_A\left(1+rac{\Phi_A-\Phi_B}{c^2}
ight)$$

Also valid in non-uniform grav. fields

Gravitational blue/red shift

Redshift :
$$z \equiv rac{\lambda_{obs} - \lambda_{emit}}{\lambda_{emit}}$$

* Exercise : Determine the redshift at $r=\infty$ for the light emitted from the edge of a white dwarf with mass $M=M_{\odot}$ and radius $R=10^3$ km

Gravitational deflection of light

ullet Consider a rocket in empty space with constant vertical acceleration $g\,\hat{z}$

Light ray enters (upper window) and exits (lower window)

Outside inertial frame: light ray describes straight path

Accelerated rocket frame : light ray falls down with acceleration $oldsymbol{g}$

A light ray in a gravitational field must fall with the same acceleration as other objects

Gravity as a geometrical effect

- ullet Deflection of light in a gravitational field Not corresponding to Newtonian gravity formula Ultimate proof that all particles experience the same \vec{a} irrespective of m
- Einstein's idea concerning gravitational path deflection
 Consider a particle traveling in a straight line over a flat rubber sheet
 Put a heavy object on the rubber sheet → sheet stretches and curves
 → The particle will now follow a curved path on the sheet
 Gravitational path deflection is due to curvature of space
- Similar reasoning for the time coordinates
 Gravitational time dilation is due to curvature of time

Relativistic viewpoint on gravity

Gravity is a geometric effect due to curvature of space-time

The presence of mass introduces a curvature in space-time

Gravity as a geometrical effect

How to introduce curvature in space-time in accordance with observations?

t=0

t=T

ullet Detailed look at the equivalence principle Frame S in free fall with two objects at rest

* Can the earth gravity stay "hidden" ? $|ec{g}|$ must be constant in $S o \mathrm{d} y$ small g_x must be small $o \mathrm{d} x$ small

Observation time T must be small

The Equivalence Principle

Experiments performed in a sufficiently small freely falling laboratory, over a sufficiently short time, yield results that are indistinguishable from those of the same experiments performed in an inertial frame in empty space.

Gravity as a geometrical effect

Linking the Equivalence Principle with relativity

Relativistic description of an inertial frame
 It's all included in the metric

$$\mathrm{d}s^2=(c\mathrm{d}t)^2-\mathrm{d}ec{r}^2$$
 As 4-vectors : $\mathrm{d}s^2=\eta_{\mu\nu}\,\mathrm{d}x^\mu\,\mathrm{d}x^
u$ with $\eta_{\mu
u}=\mathsf{diag}(1,-1,-1,-1)$

• In the presence of gravity : Freely falling frame is only locally inertial \rightarrow All other locations in space-time have : $\mathrm{d}s^2 = g_{\mu\nu}(\tilde{x}) \; \mathrm{d}x^\mu \; \mathrm{d}x^\nu$

 $ilde{x} \equiv$ location in space-time

Description of space-time curvature

Introduce metric tensor $g_{\mu\nu}(\tilde{x})$ of which the components depend on the location in space-time

- ullet Equivalence Principle : S o S' $g_{\mu
 u}(ilde x) o g'_{\mu
 u}(ilde x')=\eta_{\mu
 u}$
- Consequences :

 $g_{\mu
u}(ilde{x})$ must be a symmetric 4x4 matrix Always 1 time and 3 space coordinates

- * This is the basis of General Relativity What are the components of $g_{\mu\nu}(\tilde{x})$?
 - → Need to investigate curvature

Curvature in space

- Investigate spatial curvature by considering familiar 2-dim. surfaces
 Can be looked upon as embedded in 3-dim. space → easy to catch the picture
- * 2-dimensional plane : Obviously flat
- * Surface of a sphere : probably curved

 Can't coincide with a plane without stretching or tearing
- * Surface of a cylinder: probably flat

 Can be unrolled onto a plane without distortion
- Gauss: The curvature of a surface can be determined intrinsically
 Make measurements and apply the theorems of Euclidean plane geometry
 In case of contradiction: Geometry is non-Euclidean → curved surface
- * Example : Triangle in a plane \to sum of the angles adds up to 180^0 Triangle on surface of a sphere : sum of angles $> 180^0 \to$ spherical surface is curved
- Need for a precise definition of curvature
 Use distance ds between any 2 points on the surface

Curvature in space

- ullet Curvature in a 2-dim. plane : Cartesian grid $x^1\equiv x$ $x^2\equiv y$ $\mathrm{d} s^2=(\mathrm{d} x)^2+(\mathrm{d} y)^2=(\mathrm{d} x^1)^2+(\mathrm{d} x^2)^2 o g_{\mu\nu}=\mathsf{diag}(1,1)$ No curvature
- $as = (aw) + (ag) = (aw) + (aw) + g_{\mu\nu} = aag(1,1)$

$$st$$
 Use polar coordinates in the same plane : $x^1=r$ $x^2=arphi$

$$\mathrm{d}s^2 = (\mathrm{d}r)^2 + (r\mathrm{d}arphi)^2 = (\mathrm{d}x^1)^2 + (x^1)^2(\mathrm{d}x^2)^2 o g_{\mu\nu} = \mathsf{diag}(1,(x^1)^2)$$

If started with polar coord., how would we know whether the surface is curved or not?

Try to find a coord. trafo such that $g_{\mu\nu} o {\sf diag}(1,1)$

Obviously such a trafo is : $(x^1)' = x^1 \cos(x^2)$ $(x^2)' = x^1 \sin(x^2)$

ullet Curvature on the surface of a cylinder with radius R : Cyl. coordinates (r,arphi,z)

$$\mathrm{d} s^2 = (R \mathrm{d} arphi)^2 + \mathrm{d} z^2$$
 where R is a constant o Use $x^1 = R arphi$ $x^2 = z$

$$\mathrm{d}s^2 = (\mathrm{d}x^1)^2 + (\mathrm{d}x^2)^2 o g_{\mu\nu} = \mathsf{diag}(1,1)$$
 No curvature

ullet Curvature on the surface of a sphere with radius R : Spherical coordinates (r, heta,arphi)

$$\mathrm{d}s^2 = (R\mathrm{d}\theta)^2 + (R\sin(\theta)\mathrm{d}\varphi)^2$$
 where R is a constant o Use $x^1 = heta$ $x^2 = arphi$

$$\mathrm{d}s^2 = R^2 (\mathrm{d}x^1)^2 + R^2 \sin^2(x^1) (\mathrm{d}x^2)^2 o g_{\mu
u} = \mathsf{diag}(R^2, R^2 \sin^2(x^1))$$

No trafo possible to get $g_{\mu\nu}={\rm diag}(1,1)\to {\sf Spherical}$ surface is intrinsically curved

Curvature in space

The curvature formula of Gauss

- ullet From the previous : The curvature is contained in $g_{\mu
 u}$ The curvature K is an invariant quantity It should be possible to obtain the curvature K from the tensor $g_{\mu
 u}$
- The recipe provided by Gauss to determine the curvature (limited to 2-dim. surfaces)

$$K = rac{1}{2g_{11}g_{22}} \left\{ rac{-\partial^2 g_{11}}{(\partial x^2)^2} + rac{-\partial^2 g_{22}}{(\partial x^1)^2} + rac{1}{2g_{11}} \left[rac{\partial g_{11}}{\partial x^1} \cdot rac{\partial g_{22}}{\partial x^1} + \left(rac{\partial g_{11}}{\partial x^2}
ight)^2
ight]
ight. \ \left. + rac{1}{2g_{22}} \left[rac{\partial g_{11}}{\partial x^2} \cdot rac{\partial g_{22}}{\partial x^2} + \left(rac{\partial g_{22}}{\partial x^1}
ight)^2
ight]
ight\}$$

- st For the surface of a sphere with radius R this yields : $K=1/R^2$
- Higher dimensional surfaces : Can't be embedded in 3-dim. space \to imagination fails Equivalent of curvature K for higher dim. surfaces involves a curvature tensor $R_{\alpha\beta\gamma\delta}$
- * General treatment of Einstein's theory o Tensor calculus
 Our cases contain symmetries o we can avoid tensor calculus and use K instead

- ullet Consider an isolated point mass M at the origin O in empty space
- * Two effects of curvature in space-time

Time is distorted by the gravitational time dilation

3-dim. position space becomes curved due to the presence of the mass M

- ullet Isolated point mass M in O o Space is isotropic w.r.t. O o Use spherical coord. Curvature can only depend on r and should vanish when $r o \infty$
- General expression for a curved isotropic metric in spherical coordinates :

$$\mathrm{d}s^2 = lpha(r)(c\,\mathrm{d}t)^2 - [f(r)(\mathrm{d}r)^2 + (r\mathrm{d} heta)^2 + (r\sin(heta)\mathrm{d}arphi)^2]$$

* Determination of the time distortion lpha(r) using $\mathrm{d}s = c\,\mathrm{d} au$ when $\mathrm{d}ec{r} = ec{0}$

From before we have seen :
$$\mathrm{d} au_{obs}pprox\mathrm{d} au_{emit}\left(1+rac{\Phi_{emit}-\Phi_{obs}}{c^2}
ight)^{-1}$$

Putting the emitter at coordinates (t,r,0,0) and the receiver at $(t,\infty,0,0)$ we obtain :

$$rac{(\mathrm{d} au_{emit})^2}{(\mathrm{d} au_{obs})^2} = rac{lpha(r)(\mathrm{d}t)^2}{lpha(\infty)(\mathrm{d}t)^2} = lpha(r) pprox \left(1 + rac{\Phi_{emit}}{c^2}
ight)^2 pprox \left(1 + rac{2\Phi_{emit}}{c^2}
ight)$$

$$ullet$$
 Using $\Phi_{emit}=rac{-GM}{r}$ directly yields $lpha(r)=\left(1-rac{2GM}{c^2r}
ight)$

The same result is obtained from a rigorous treatment of Einstein's equations !

- st Determination of the spatial deformation f(r)
 - Spatial curvature can only depend on r o K(r) and $K(\infty) \equiv 0$
- ullet Let's try to "guess" the most simple form of K(r)

$$K(r)
ightarrow 0$$
 when $r
ightarrow \infty \Rightarrow K(r) \propto r^{-n}$

Intuition : $K \propto M$ and also G should be in the game

Use c to get dimensions right and use $\lambda=\pm 1$ to allow positive and negative curvature

- ullet Intuitive guess : $K(r) = \lambda M G^k c^m r^{-n}$
 - ightarrow Dimensionless for (k,m,n)=(1,-2,3)

Spherical surface : $K=1/R^2>0 o$ mass M : "rubber sheet" gets K<0

* So, for the simplest form we obtain $K(r)=rac{-GM}{c^2r^3}$

The same result is obtained from a rigorous treatment of Einstein's equations!

ullet Determination of f(r) from the Gauss curvature formule using our metric and K(r) For simplicity use $heta=\pi/2$ and $\mathrm{d} heta=\mathrm{d}arphi=0$ and of course $\mathrm{d}t=0$

This yields :
$$K(r) = rac{1}{2rf^2(r)} \cdot rac{\mathrm{d}f(r)}{\mathrm{d}r}$$

Using our curvature
$$K(r)=rac{-GM}{c^2r^3}$$
 we obtain $rac{1}{f^2(r)}rac{\mathrm{d}f(r)}{\mathrm{d}r}=rac{-2GM}{c^2r^2}$

st Solution of this differential equation : $\dfrac{-1}{f(r)}=\dfrac{2GM}{c^2r}+C$ (C=constant)

Boundary condition :
$$f(r=\infty)=1 o C=-1\Rightarrow f(r)=\left(1-rac{2GM}{c^2r}
ight)^{-1}$$

• The final metric we obtain is called the Schwarzschild metric

$$\mathrm{d}s^2 = \left(1 - rac{2GM}{c^2r}
ight)(c\,\mathrm{d}t)^2 - \left[rac{(\mathrm{d}r)^2}{\left(1 - rac{2GM}{c^2r}
ight)} + (r\mathrm{d} heta)^2 + (r\sin(heta)\mathrm{d}arphi)^2
ight]$$

- ullet The Schwarzschild metric describes the space-time around an isolated point mass M
 - → Prediction of worldlines of test bodies which can be experimentally verified

$$st$$
 Special case when $\left(1-rac{2GM}{c^2r}
ight)=0 \qquad o g_{00}=0 \qquad g_{11}=-\infty$

Define the Schwarzschild radius $R_s=2GM/c^2$

- ullet Consider a material body at rest at $r>R_s o \mathrm{d} s^2>0 \quad\Rightarrow$ normal (timelike) situation At $r< R_s$ the $\mathrm{d} s^2>0$ means the body HAS to move o it falls into M
- ullet Consider observation of a light ray emitted radially from r_{emit} to $r=\infty$

Schwarzschild metric :
$$u_{obs} =
u_{emit} \left(1 - \frac{2GM}{c^2 r_{emit}} \right)^{1/2}$$

If $r_{emit} > R_s
ightarrow ext{light is redshifted} \Rightarrow ext{normal situation}$

At $r_{emit}=R_s$ the redshift becomes $\infty o ext{No light is observed}$ (infinite time dilation)

At $r=R_s o$ infinite time dilation \Rightarrow Events are observed as "frozen"

* Mass M contained within a sphere of radius $R_s o$ Nothing can escape the surface An object which is smaller than its Schwarzschild radius is called a Black Hole

Exercises

- ullet Consider an isolated point mass M with Schwarzschild radius R_s , located at the origin O From a distance $r_e>R_s$ a light ray is radially emitted and observed at a distance $r_o>r_e$
- st Show that the exact formula for the gravitational redshift z is given by :

$$z=\sqrt{rac{1-R_s/r_o}{1-R_s/r_e}}-1$$

- Consider a proton as a spherical object with a radius of 1 fm.
- * Determine from this the density of normal nuclear matter in GeV/fm³
- ullet The mass of the Earth is $M=5.975\cdot 10^{24}$ kg
- * Determine the Schwarzschild radius $oldsymbol{R}_s$ of the Earth
- ullet Imagine that all the mass of the Earth is concentrated in a sphere with radius $oldsymbol{R}_s$
- * Determine the density in GeV/fm³ of this "Earth black hole" object

 For comparison: QGP phase transition is expected to happen at about 3 GeV/fm³