

Universidade Federal do Amapá Departamento de Ciências Exatas e Tecnológicas Curso de Bacharelado em Ciência da Computação

Uma abordagem para o ensino de Engenharia de Requisitos focada no aluno

Anderson dos Santos Guerra Orientador: Prof. Msc. Julio Cezar Costa Furtado

AGENDA

- 1. Introdução
- 2. Motivação, justificativa e contribuição à área;
- 3. Objetivo geral
- 4. Objetivos específicos
- 5. Modelo CMMI
- 6. Tipos de abordagens de ensino
- 7. Trabalhos relacionados
- 8. Metodologia de pesquisa
- 9. Metodologia de ensino

- 10. Survey
- 11. Questões do survey
- 12. Resultados do survey Background
- 13. Resultados do survey Disciplina
- 14. Resultados do survey Técnicas
- 15. Análise do survey
- 16. Conclusão
- 17. Referências

INTRODUÇÃO

- Softwares são abstratos e intangíveis (SOMMERVILLE, 2011);
- Para diminuir as chances de erros no desenvolvimento de sistemas, existe a Engenharia de Requisitos (PRESSMAN, 2011);
- Por mais que a Engenharia de Requisitos seja de grande importância, o seu ensino não atinge os resultados esperados pela indústria (MEMON et al, 2010).

MOTIVAÇÃO, JUSTIFICATIVA E CONTRIBUIÇÃO À ÁREA

- Por um software ser algo abstrato, é necessário um conjunto de práticas e indicativos para demonstrarem que a produção está no caminho certo (SOMMERVILLE, 2011);
- Os tópicos de Engenharia de Software são abordados de maneira tradicional, o que torna os acadêmicos desmotivados a aprender, tornando difícil o aprendizado (WANGENHEIM e SILVA, 2009);
- É possível indicar que a falta de profissionais qualificados se deve ao fato das aulas de graduação não abordarem de maneira satisfatória os tópicos contidos na Engenharia de Software (LETHBRIDGE, 2000) (PORTELA, 2017);

OBJETIVO GERAL

 Definição de uma abordagem para o ensino de engenharia de requisitos que tome como base as competências e habilidades esperadas por um profissional da área segundo o CMMI-DEV e verificação do aprendizado que ocorre com seu uso em turmas de computação.

OBJETIVOS ESPECÍFICOS

- Identificar abordagens utilizadas para o ensino de Engenharia de Software;
- Elaborar uma abordagem de ensino para Engenharia de Requisitos;
- Aplicar a abordagem realizada em uma turma de computação que já possua noções em tópicos de Engenharia de Software;
- Analisar a eficácia da abordagem alternativa em relação ao método tradicional de ensino.

ENGENHARIA DE REQUISITOS

- É o processo de descobrir, analisar, documentar e verificar se o produto atende as necessidades do cliente (SOMMERVILLE, 2011).
- Os principais problemas se encontram na coleta de requisitos e verificação de validade (SOMMERVILLE, 2011);
- Memon et al (2010) indica que os problemas ocasionados dentro do processo de engenharia de requisitos ocorre pela falta de preparo dos profissionais da área.

MODELO CMMI

- O modelo CMMI contém um conjunto de guias que abrange conteúdos para o desenvolvimento de produtos e serviços (SEI, 2010)
- O CMMI-DEV possui duas áreas de processo que possuem relação com a Engenharia de Requisitos, são elas o desenvolvimento de requisitos (RD) e o gerenciamento de requisitos (REQM) (SEI, 2010)

TIPOS DE ABORDAGENS DE ENSINO

- Existem abordagens focadas no professor e abordagens focadas no aluno (PRIKLADNICKI, 2009). Quanto mais expositivo a aula, maior o foco no professor, quanto maior o dinamismo, maior o foco no aluno;
- A qualidade dos profissionais da área de Engenharia de Software está diretamente ligada à qualidade da educação que tiveram (BECKMAN et al, 1997);

TIPOS DE ABORDAGENS DE ENSINO

- Existem abordagens de ensino centradas no professor e abordagens centradas no aluno, cada uma possuindo suas peculiaridades (PRIKLADNICKI et al, 2009);
- Eventos que simulem problemas reais e atividades vivenciais permitem que o acadêmico assimile situações diferentes na prática (PRIKLADNICKI et al, 2009).

TRABALHOS RELACIONADOS

- Prikladnicki (2009) apresenta as experiências obtidas em quatro instituições de ensino superior em relação ao ensino de Engenharia de Software;
- Santos et al (2014) realiza uma revisão sistemática da literatura com o intuito de identificar, analisar e discutir ferramentas e métodos que auxiliem no ensino de Engenharia de Software.

TRABALHOS RELACIONADOS

- Zowgui (2003) ensina Engenharia de Requisitos de maneira dinâmica, através do uso de role playing, de modo que a comunicação entre desenvolvedores e clientes fosse incentivada e melhorada;
- Portela (2017) realiza um modelo iterativo com a possibilidade de criar um ciclo abordando diferentes tipos de aprendizagem com os acadêmicos.

METODOLOGIA DE PESQUISA

- 1. Estudo da literatura;
- 2. Revisão teórica das abordagens tradicionais e alternativas para o aprendizado da Engenharia de Software e Requisitos;
- 3. Desenvolvimento da abordagem de ensino;
- 4. Uso da abordagem em sala de aula;
- 5. Avaliar os resultados.

- Preparação da disciplina, desde a escolha do material instrucional até o planejamento de um projeto prático para ser desenvolvido;
- 2. Aplicação do modelo, com a correta adequação para que possa ser utilizado em sala de aula.

Competências	CMMI-DEV
Elicitar as necessidades e expectativas dos stakeholders para todas as fases do ciclo de vida do produto	RD SG 1 SP 1.1
Transformar as necessidades e expectativas dos stakeholders em requisitos do cliente	RD SG 1 SP 1.2
Estabelecer e manter requisitos de produto, que são baseados nos requisitos do cliente	RD SG 2 SP 2.1
Identificar requisitos de interface	RD SG 2 SP 2.3
Estabelecer e manter uma definição de funcionalidades e atributos de qualidade necessários	RD SG 3 SP 3.2
Analisar requisitos para garantir que os mesmos são necessários e suficientes	RD SG 3 SP 3.3

Competências	CMMI-DEV
Validar requisitos para garantir que o produto resultante terá a performance desejada no ambiente do usuário final	RD SG 3 SP 3.5
Desenvolver o entendimento dos requisitos através de quem provê o requisito	REQM SP 1.1
Obter comprometimento aos requisitos a partir dos participantes do projeto	REQM SP 1.2
Gerenciar as mudanças nos requisitos ao longo do projeto	REQM SP 1.3
Manter o rastreamento bidirecional nos requisitos	REQM SP 1.4
Garantir que os planos de projeto se mantenham alinhados com os requisitos	REQM SP 1.5

Níveis de aprendizado de Kolb (1984) de maneira resumida:

- **Conhecer**: lembrar do material previamente ensinado;
- Compreender: entender a informação e o significado do material apresentado;
- Aplicar: usar o material aprendido em situações novas e concretas.

Dinâmica das cartas para criação de produto:

- A turma é dividida em grupos, cada grupo deve criar o mesmo produto com base nos requisitos solicitados pelo cliente (o professor).
- Ao longo da aula o cliente adiciona ou remove um requisito, obrigando os grupos a realizarem os ajustes necessários no protótipo

Jogo: Software Quantum

Fonte: Knaus et al (2008)

Jogo: A Ilha dos Requisitos

Fonte: Thiry et al (2010)

Dinâmica do GameMaker:

- O cliente solicita requisitos para serem implementados no produto (o jogo que estava sendo criado na ferramenta GameMaker)
- Ao longo da atividade os participantes puderam experimentar com funciona uma coleta de requisitos e a sua implementação no produto em desenvolvimento

Dinâmica da entrevista com o cliente:

 Os participantes criam "empresas" que devem entrevistar um cliente externo para a criação de um produto, com reuniões semanais e apresentações de protótipos para verificar se o projeto estava de acordo com as necessidades do cliente.

Conteúdo	Resultados Esperados	Tempo	Nível de aprendizagem	Prática utilizada
Apresentação da disciplina	O aluno deve ser ter uma noção sobre os anseios, estresse e dificuldade na execução de projeto quando os requisitos são coletados de maneira errônea	45min	Conhecer	Dinâmica das Cartas
A importância da Engenharia de Requisitos	O aluno deve ser capaz de conhecer a importância da Engenharia de Requisitos para a qualidade do produto de software	45min 45min	Conhecer	Jogo: Software Quantum

Conteúdo	Resultados Esperados	Tempo	Nível de aprendizagem	Prática utilizada
O processo de Engenharia de Requisitos	O aluno deve conhecer as etapas, papéis e atividades envolvidas no processo de engenharia de requisitos	45min 30min	Conhecer	Jogo: Ilha dos Requisitos
Principais dificuldades	O aluno deve compreender as principais dificuldades da descoberta de requisitos e ser capaz de desenvolver formas de mitigar estes problemas	45min 45min	Compreender	Seminário sobre as dificuldades encontradas na dinâmica anterior

Conteúdo	Resultados Esperados	Tempo	Nível de aprendizagem	Prática utilizada
Técnicas	O aluno deve ser capaz de compreender as diversas técnicas de descoberta de requisitos	45min 50min	Compreender	Dinâmica do GameMaker
Tipos de Requisitos	O aluno deve conhecer e saber identificar os tipos de requisitos	45min	Conhecer	Leitura e discussão do material de apoio
Formas de documentar os requisitos	O aluno deve ser capaz de compreender as diversas técnicas de documentação de requisitos	45min 50min	Compreender	Continuação da dinâmica do GameMaker

Conteúdo	Resultados Esperados	Tempo	Nível de aprendizagem	Prática utilizada
Projeto prático	O aluno deve ser capaz de aplicar os conhecimentos obtidos ao longo da disciplina e realizar todo o processo de engenharia de requisitos (com a supervisão do professor)	4 semanas	Aplicar	Dinâmica da entrevista com o cliente

SURVEY

- 1. A população-alvo do survey é caracterizada por acadêmicos de cursos de computação que possuam disciplinas relacionadas à Engenharia de Software;
- 2. O design de coleta dos dados pode ser considerado de corte, transversal;
- 3. O survey coleta dados quantitativo e qualitativos sobre os acadêmicos que participaram do experimento, relativo a suas informações e preferências individuais.

Questões sobre o background	Tipo de resposta
A Engenharia de Software é uma área importante do desenvolvimento de software	Escala <i>Likert</i>
A Engenharia de Requisitos é importante para a entrega de produtos que atendam as necessidades do cliente	

Questões sobre a disciplina	Tipo de resposta
Estou motivado a aprender mais sobre a engenharia de requisitos	Escala <i>Likert</i>
O conteúdo ensinado na disciplina foi relevante	
O conteúdo abordado pela disciplina foi suficiente para entender como a Engenharia de Requisitos funciona em uma organização	
A abordagem escolhida para a disciplina teve uma boa integração da teoria com a prática	
As dinâmicas/práticas foram realizadas em tempo adequado	

Questões sobre a disciplina	Tipo de resposta
As dinâmicas/práticas tinham um nível de complexidade adequado	Escala <i>Likert</i>
As dinâmicas/práticas desenvolvidas não restringiam a criatividade dos alunos para pensarem em suas próprias soluções	
As dinâmicas/práticas tornaram o processo de aprendizagem divertido e desafiador	
Ao longo da disciplina, a abordagem de ensino me manteve motivado a aprender	

Questões sobre técnicas	Tipo de resposta
Quais das técnicas estudadas foram utilizadas durante a descoberta de requisitos	Múltipla escolha
Quais das técnicas aplicadas você considerou mais fácil para descobrir e garantir o entendimento das necessidades do cliente	
Quais das técnicas aplicadas para a descoberta de requisitos você usaria novamente	
Quais das técnicas não aplicadas para a descoberta de requisitos você utilizaria em uma próxima oportunidade	

Questões sobre técnicas	Tipo de resposta
Quais das técnicas aplicadas para a descoberta de requisitos foi mais fácil de aprender	Múltipla escolha
Quanto a documentação dos requisitos, qual o documento você considera que atingiu os melhores resultados para a comunicação com o cliente	
Quanto a documentação dos requisitos, qual o documento você considera que atingiu os melhores resultados para a comunicação com o time de desenvolvimento	
Quanto a documentação dos requisitos, qual a técnica você considera mais fácil de aprender	

RESULTADOS DO SURVEY - BACKGROUND

A Engenharia de Software é uma área importante do desenvolvimento de software

A Engenharia de Requisitos é importante para a entrega de produtos que atendam as necessidades do cliente

RESULTADOS DO SURVEY - DISCIPLINA

Estou motivado a aprender mais sobre a engenharia de requisitos

O conteúdo ensinado na disciplina foi relevante

RESULTADOS DO SURVEY - DISCIPLINA

O Conteúdo abordado pela disciplina foi suficiente para entender como a Engenharia de Requisitos funciona em uma organização

A abordagem escolhida para a disciplina teve uma boa integração da teoria com a prática

RESULTADOS DO SURVEY - DISCIPLINA

As dinâmicas/práticas foram realizadas em tempo adequado

As dinâmicas/práticas tinham um nível de complexidade adequado

RESULTADOS DO SURVEY - DISCIPLINA

As dinâmicas/práticas desenvolvidas não restringiam a criatividade dos alunos para pensarem em suas próprias soluções

As dinâmicas/práticas tornaram o processo de aprendizagem divertido e desafiador

RESULTADOS DO SURVEY - DISCIPLINA

Ao longo da disciplina, a abordagem de ensino me manteve motivado a aprender

Quais das técnicas estudadas foram utilizadas durante a descoberta de requisitos

Quais das técnicas aplicadas você considerou mais fácil para descobrir e garantir o entendimento das necessidades do cliente

Quais das técnicas aplicadas para a descoberta de requisitos você usaria novamente

Quais das técnicas não aplicadas para a descoberta de requisitos você utilizaria em uma próxima oportunidade

Quais das técnicas aplicadas para a descoberta de requisitos foi mais fácil de aprender

Quanto a documentação dos requisitos, qual o documento você considera que atingiu os melhores resultados para a comunicação com o cliente

Quanto a documentação dos requisitos, qual o documento você considera que atingiu os melhores resultados para a comunicação com o time de desenvolvimento

Quanto a documentação dos requisitos, qual a técnica você considera mais fácil de aprender

ANÁLISE DO SURVEY

- Através dos resultados obtidos foi possível perceber que os participantes consideram de extrema importância a área de Engenharia de Requisitos;
- Foi notado que os acadêmicos ficam com uma permanência de um conjunto de conceitos através dessas abordagens, além de fomentar o aprendizado e participação.

ANÁLISE DO SURVEY

- As dinâmicas, juntamente com as atividades práticas refletem no interesse dos alunos que se sentem motivados a aprender mais sobre a disciplina.
- O ponto negativo observado não foi sobre a abordagem em si, mas sobre o curto período de tempo que foi dado para a realização das atividades práticas e da teoria, haja vista que o experimento teve a duração de um semestre

VALIDADE

- Interna: é utilizada para definir se a relação entre o tratamento em si e o resultado obtido é causal;
- Externa: são definidas as condições que limitam a capacidade de generalizar os resultados obtidos para outras populações;
- De Construção: considera a relação entre a teoria e observação;
- De Conclusão: capacidade de chegar a uma conclusão concreta a respeito da relação entre o tratamento e o resultado.

CONCLUSÃO

- Os resultados do estudo forneceram um indicador de que a abordagem alcança um efeito melhor no aluno sobre a adequação do curso se comparado às aulas de expositivas tradicionais como o principal método instrucional;
- Através dos dados obtidos pelo survey foi mostrado que a abordagem adotada no minicurso tende a ser efetiva.

REFERÊNCIAS

- BECKMAN, K.; COULTER, N.; KHAJENOURI, S.; MEAD, N. Collaborations: Closing the industry-academia gap. IEEE Software 14 (6), pp. 49–57, 1997.
- LETHBRIDGE, T. What Knowledge Is Important to a Software Professional?. IEEE Computer Society, Ottawa, May 2000. 44-50.
- MEMON, R.N.; AHMAD, R.B.; SALIM, S.S. Problems in requirements engineering education: a survey.
 2010. In Proceedings of the 8th International Conference on Frontiers of Information Technology (FIT '10). ACM, New York, NY, USA, Article 5, 6 pages.
- PORTELA, Carlos. Um modelo iterativo para o ensino de engenharia de software baseado em abordagens focadas no aluno e práticas de capacitação da indústria. 2017. Tese (Doutorado em Ciência da Computação) Centro de Informática, Universidade Federal de Pernambuco, Recife.
- PRESSMAN, Roger. **Engenharia de Software: Uma abordagem profissional**. 7. ed. Brasil. AMGH Editora Ltda, 2011.
- PRIKLADNICKI, Rafael; ALBUQUERQUE, Adriano; WANGENHEIM, C. G.; CABRAL, Reinaldo. Ensino de Engenharia de Software: Desafios, Estratégias de Ensino e Lições Aprendidas. 2009.

REFERÊNCIAS

- SANTOS, Ronnie; MAGALHAES, Cleyton V. C.; CORREIA-NETO, Jorge; SOUZA, Polliana; ELLEN; VILAR, Guilherme. Ferramentas, métodos e experiências no ensino de Engenharia de Software: Um mapeamento sistemático. 2014. 10.5753/cbie.sbie.2014.544.
- SEI. CMMI® for Development. Version 1.3. CMU/SEI-2010-TR-033 ESC-TR-2010-033. Software Engineering Institute-SEI, Carnegie Mellon University: 561, 2010.
- SOMMERVILLE, Ian. **Engenharia de Software**. 9. ed. Brasil. Pearson Education do Brasil, 2011.
- ZOWGHI, Didar; PARYANI, Suresh. **Teaching requirements engineering through role playing: lessons learnt**. Proceedings. 11th IEEE International Requirements Engineering Conference, 2003., Monterey Bay, CA, USA, 2003, pp. 233-241.
- WANGENHEIM, C. G.; SILVA, D. A. Qual conhecimento de engenharia de software é importante para um profissional de software? In: FÓRUM DE EDUCAÇÃO EM ENGENHARIA DE SOFTWARE, 2.,2009, Fortaleza. Anais. Fortaleza: UFC.

Perguntas

Uma abordagem de ensino focada no aluno para o ensino de Engenharia de Requisitos.

Anderson dos Santos Guerra Orientador: Prof. Msc. Julio Cezar Costa Furtado