Graphite: Iterative Generative Modeling of Graphs

Aditya Grover, Aaron Zweig, Stefano Ermon Stanford University

Different modalities of structured data

Images

Graphs

Video

Stanford University

Graphs are ubiquitous

Adjacency matrix $\mathbf{A} \in \{0,1\}^{n \times n}$ Feature matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$

Ecology: Food web networks

Biology: Brain networks, Protein-protein interaction networks

Chemistry: Molecules, materials

. . .

Learning deep latent variable models of graphs

- **Z** is now a matrix with *n* rows
- Every row is a k-dimensional vector of node features

What is the right **network architecture** for graphs?

```
Images – Spatial structure – Convolutional Neural Networks (CNN)
Text, Audio – Temporal structure – Recurrent Neural Networks (RNN)
```

Inductive biases and invariances for graphs?

- Local structure in terms of graph neighborhoods
- Permutation invariance to node reorderings
- Dynamic can work with graphs of different sizes

Graph Neural Networks

Graph Neural Networks

- Every node passes "messages" (hidden unit activations) to its neighbors
- E.g., Forward pass from $\mathbf{H}^{(l-1)}$ to $\mathbf{H}^{(l)}$:

$$\mathbf{H}^{(l)} = \eta(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}\mathbf{H}^{(l-1)}\Theta^{(l)})$$

with non-linearity η , degree matrix **D**, and parameters $\theta^{(l)}$.

Many variants for message passing possible

Variational Autoencoding using **Graphite**

- Maximizing the marginal log-likelihood $\log p_{\theta}(\mathbf{A}|\mathbf{X})$ is intractable
- Introduce a variational posterior $q_{\phi}(\mathbf{Z}|\mathbf{A},\mathbf{X})$ parameterized by ϕ
- Maximize an evidence lower bound (ELBO) to the log-likelihood

$$\log p_{\theta}(\mathbf{A}|\mathbf{X}) \ge \mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{A},\mathbf{X})} \left[\log \frac{p_{\theta}(\mathbf{A},\mathbf{Z}|\mathbf{X})}{q_{\phi}(\mathbf{Z}|\mathbf{A},\mathbf{X})} \right]$$

$$ELBO(\theta,\phi)$$

Graphite **Encoder**

- Variational posterior $q_{\phi}(\mathbf{Z}|\mathbf{A},\mathbf{X})$ is a multivariate Gaussian with diagonal covariance
- Encoder parameterized by a graph neural network

Forward pass of a two layer encoding GNN

Graphite **Decoder**

- Decoder is a hybrid that iterates between:
 - intermediate graph construction using an inner product decoder on initial node representations Z

$$\mathbf{A} = \frac{\mathbf{Z} \mathbf{Z}^{\mathrm{T}}}{\left|\left|\mathbf{Z}\right|\right|_{2}^{2}} + \frac{11^{T}}{n}$$

- Pass graph A through graph neural network to obtain refined node representations H_d
- Repeat alternative graph refinement steps for every layer to obtain final Z_{*}

Graphite **Decoder**

 The final latent feature matrix is specified as a convex combination of the latent layers

$$\mathbf{Z}' = \lambda \mathbf{Z} + (1 - \lambda) \mathbf{Z}_*$$

where $\lambda \in [0,1]$ is a tunable hyperparameter.

• Observation model $p_{\theta}(\mathbf{A}|\mathbf{X},\mathbf{Z})$ is a factorized multivariate Bernoulli

$$p_{\theta}(\mathbf{A}|\mathbf{Z}, \mathbf{X}) = \prod_{i=1}^{n} \prod_{j=1}^{n} p_{\theta}(A_{ij}|\mathbf{Z}, \mathbf{X})$$

where $p_{\theta}(A_{ij}|\mathbf{Z}, \mathbf{X}) = \sigma(\mathbf{Z}_{i}'\mathbf{Z}_{j}')$

Link Prediction

- Given two nodes in a graph, does an edge exist between the nodes?
- Baselines:
 - Spectral Clustering (SC)
 - DeepWalk (DW): random walks + skipgram objective
 - (Variational) Graph Autoencoder (VGAE, GAE): GCN encoder but a single-step inner product decoder
- For Graphite, the task can be formulated as denoising.
- Datasets: Protein-protein Interaction, Cora, Citeseer, Pubmed
- Evaluation metrics: Area Under the ROC Curve and Average Precision

Evaluation for Link Prediction

Table 1: Area Under the ROC Curve (AUC) scores for link prediction

	Cora	Citeseer	Pubmed
SC	89.9 ± 0.20	91.5 ± 0.17	94.9 ± 0.04
DeepWalk	85.0 ± 0.17	88.6 ± 0.15	91.5 ± 0.04
node2vec	85.6 ± 0.15	89.4 ± 0.14	91.9 ± 0.04
GAE	90.2 ± 0.16	92.0 ± 0.14	92.5 ± 0.06
VGAE	90.1 ± 0.15	92.0 ± 0.17	92.3 ± 0.06
Graphite-AE	91.0 ± 0.15	92.6 ± 0.16	94.5 ± 0.05
Graphite-VAE	91.5 ± 0.15	93.5 ± 0.13	94.6 ± 0.04

Evaluation for Link Prediction

Table 2: Average Precision (AP) scores for link prediction

	Cora	Citeseer	Pubmed
SC	92.8 ± 0.12	94.4 ± 0.11	96.0 ± 0.03
DeepWalk	86.6 ± 0.17	90.3 ± 0.12	91.9 ± 0.05
node2vec	87.5 ± 0.14	91.3 ± 0.13	92.3 ± 0.05
GAE	92.4 ± 0.12	94.0 ± 0.12	94.3 ± 0.5
VGAE	92.3 ± 0.12	94.2 ± 0.12	94.2 ± 0.04
Graphite-AE	92.8 ± 0.13	94.1 ± 0.14	95.7 ± 0.06
Graphite-VAE	93.2 ± 0.13	95.0 ± 0.10	96.0 ± 0.03

Graphite outperforms **competing methods** on both ROC and AP metrics!

Stanford University

Node Classification

Given labels of few nodes in the graph, predict the labels of other nodes.

	Cora*	Citeseer*	Pubmed*
SemiEmb	59.0	59.6	71.1
DeepWalk	67.2	43.2	65.3
ICA	75.1	69.1	73.9
Planetoid	75.7	64.7	77.2
GCN	81.5	70.3	79.0
Graphite	82.1 ± 0.06	71.0 ± 0.07	79.3 ± 0.03

Visualization of Latent Space

Graphite Autoencoder

Graphite Variational Autoencoder

Cora Dataset

Stanford University

Summary

- Proposed Graphite, an algorithmic framework for generative modeling of graphs using variational autoencoding
- Encoder and decoder are parameterized via a Graph Neural Network
- Decoder first creates an intermediate graph via inner products and then gradually refines this intermediate graph
- See paper for more details on a) connections of graph neural networks with mean-field variational inference b) scaling Graphite to large graphs
- Code available at: https://github.com/ermongroup/graphite