lexyus 3 no 1A

Гроуесс ортогонализации Грама - Шиидта

Густь E-n-шерное евклидово пр-во. $F=(f_1,...,f_n)$ - какод-то базис в E. Тостроим с помощью F оргонормир. базис $\mathcal{E}=(\vec{e}_1,...,\vec{e}_n)$.

План 1. (3) Построим ортогональный базис $G = (\vec{g}_1, ..., \vec{g}_n)$:

$$\vec{g}_1 = \vec{f}_1$$

$$\vec{g}_2 = \vec{f}_2 - \frac{(\vec{f}_2, \vec{g}_1)}{||\vec{g}_1||^2} \vec{g}_1$$

$$\vec{g}_3 = \vec{f}_3 - \frac{(\vec{f}_3, \vec{g}_1)}{||\vec{g}_1||^2} \vec{g}_1 - \frac{(\vec{f}_3, \vec{g}_2)}{||\vec{g}_2||^2} \vec{g}_2$$

$$\vec{g}_{n} = \vec{f}_{n} - \frac{(\vec{f}_{n}, \vec{g}_{1})}{||\vec{g}_{1}||^{2}} \vec{g}_{1} - \frac{(\vec{f}_{n}, \vec{g}_{2})}{||\vec{g}_{2}||^{2}} \vec{g}_{2} - \dots - \frac{(\vec{f}_{n}, \vec{g}_{n-1})}{||\vec{g}_{n-1}||^{2}} \vec{g}_{n-1}$$

2) Hopmupyen Sague G, nongrenu \mathcal{E} : $\vec{e_i} = \frac{\vec{g_{i}}}{||\vec{g_{i}}||}, i=1,...,n.$

Dou-bo. Dar-en gue n=3. 1) Suycro 3, = 1; 2) Thocopoum $\vec{g}_2: (\vec{g}_2 = \vec{f}_2 - \Delta \vec{g}_1) (re \Delta \vec{g}_1 + \vec{g}_2 = \vec{f}_2)$) g2 + g1 Jerobue (2) => (\vec{g}_2,\vec{g}_1)=0, Trogerabum (1): $(f_{2} - \sqrt{g_{1}}, g_{1}) = 0$ $(\beta_2, \vec{g}_1) - \lambda(\vec{g}_1, \vec{g}_1) = 0$ (eug., $\vec{g}_2 = \vec{f}_2 - \frac{(\vec{f}_2, \vec{g}_1)}{||\vec{g}_1||^2}$ 3) Twocopoucu 33: (\$\var{g}_3 = \var{f}_3 - (\beta \var{g}_1 + \var{g}_2) (4) (3, 3, 3,)=0 / (5) (3, 3, 3) × (4) (4) (3) . (B-Bg-49, 92)=0 (\$-BJ,-YJ_1,J,)=0 (B,G)-p(g,g)-x(g2,G)=0 (\$3,97)-3G,97)-1(92,97)

FLACH 2

1) Flocopoucle $\vec{g}_1 = \vec{f}_1^2$ le chapy en represente $\vec{e}_1^2 = \vec{f}_1^2$ le chapy en represente $\vec{e}_1^2 = \frac{\vec{g}_1^2}{\|\vec{g}_1^2\|^2}$.

2) Rochoesen $\vec{J}_2 = \vec{f}_2 - (\vec{f}_2, \vec{e}_1) \vec{e}_1$ u

chayy ero repurpeler;

P2 = 92 119211

3) AHAMON. $\vec{g}_3 = \vec{f}_3 - (\vec{f}_3, \vec{e}_1)\vec{e}_1 - (\vec{f}_3, \vec{e}_2)\vec{e}_2$, $\vec{e}_3 = \frac{\vec{g}_3}{119311}$

u T.g.

Линейные операторы

Onp. Tuyer LuL'-gla runelmenx np-ba. Prospaxerene A: L>L' my L & L' ray. MHERHOREN OTOSpaxerenen (uny линести оперстором), если 1) Ya, & eL A(2+6)=A(2)+A(8), 2) Ya EL YXER A(xa)=xA(a). Лин. отображение нау. <u>минедноги</u> преобразованием, если L'=L. Рас. преобра. Cregarbue A(0)=0. DOK-B. $\hat{A}(\vec{0}) = \hat{A}(o \cdot \vec{\alpha}) = 0 \cdot \hat{A}(\vec{\alpha}) = \vec{\sigma}$. $\forall \vec{\alpha} \in L$ BEKTOP LYL' Гуримеры лин. Операгоров. 1) L-np-bo иногогленов crenerece < n L'- -4-4-4-1-1 < n-1

Onp. Tuyero A: L>L Men. onepargo. [5]
Signon A reg. elen-bo Ker A = { \ae L / \A(\alpha) = \beta \cdot \cdot \. Odpazon A' reay. ell-bo Im A = { & \in L / \(\overline{A}(\overline{a}) = \overline{B} \) Teopena Ker A и Im A els подпр-ме в L.

Матрица линевного оператора,

Tyers A: L->L MEH. Oneparop, E=(e1, ..., en) sague 6 L. Разложием образог базисных вектров $\widehat{A}(\vec{e}_i),...,\widehat{A}(\vec{e}_i)$

по базису Е: $\hat{A}(\vec{e}_{1})=a_{11}\vec{e}_{1}+...+a_{n1}\vec{e}_{n}=(\vec{e}_{1}...\vec{e}_{n})\begin{vmatrix} a_{n1} \\ a_{n1} \end{vmatrix}$

 $\hat{A}(\vec{e}_n) = \alpha_1 n \vec{e}_1 + \dots + \alpha_n n \vec{e}_n = (\vec{e}_1 \dots \vec{e}_n) \begin{pmatrix} \alpha_1 \alpha_1 \\ \dot{\alpha}_{n\alpha_1} \end{pmatrix}$

Onp. Morphyed 144. oneparopa $\hat{A}: L \to L$ B Eagure $\mathcal{E} = (\vec{e}_1, ..., \vec{e}_n)$ Hay. матрица А, столбуы которог овл координатами образов A(et),..., A(et) барисных векторов в базисе et,...,e.,

 $A = \begin{pmatrix} a_{11} & \cdots & a_{nm} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$ $\kappaoopg-ron A(\vec{e}) \qquad A(\vec{e}_{n}) \qquad B \quad \sigmaagaine \quad E$

3am. A(ei),..., A(ei) - He odegar. Edger BL.

Преобразование координат векторов nog gelicibuem лин. оператора

Tuyon $\vec{x} \in L$ univer \vec{b} soque \vec{E} koopgra $\vec{X} = \begin{pmatrix} x_1 \\ \dot{x}_n \end{pmatrix}$, $\vec{y} = \vec{A}(\vec{x}) - oopay \vec{x}$ nog geercibren \vec{A} Hoeligèn Koopg-iri j' b sagurce E: Y=(yn).

1) y=y1e1+ ...+ynen

1) $\vec{y} = \vec{A}(\vec{x}) = \vec{A}(x_1\vec{e_1} + ... + x_n\vec{e_n}) = \text{no oup. } nuh.$ 2) $\vec{y} = \vec{A}(\vec{x}) = \vec{A}(x_1\vec{e_1} + ... + x_n\vec{e_n}) = \text{oneparopa}$ = x1 A(2)+ ... + x1 A(2) =

= X1 (Q11 = + ... + Q11 =) + ... + Xu (Q11 = + ... + Qnue) =

=(a11×1+...+a11×1) =+ ... + (a11×1+...+ a11 ×n) =

Из 1) и 2) в силу единственности разложения вектора ў по базису получил

(y1 = an X1 + ... + an Xn lyn=anxn+ ... + aun Xn

в коорд. Форме,

 $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

в матричной форме подробно,

Y = AX

в мадженой форме кратко.

Угреобразование матриум лин. операгора при переходе к новому базису Flycro L - MIH. np-bo, A: L>L NUH. ON EPAROP; E=(ē1,...,ēn) u ε'=(ē1,...,ēn) -2 δαμικα β L, A u A' - maipuyor À l Egguecax E u E'. Tryco TEZEI Marpuya nepexoga OT E KE'. Thorga A'=(TE>E') A.TE>E' Заш. Столбуами А явл. к-п А(д),..., А(д) в Е, столбуами А' явл. к-п А(д),..., А(д) В Е'. Don-bo.

Jugaro $\vec{x} \in L$ wood bearop $\vec{y} = \hat{A}(\vec{x})$.

Jugaro $\vec{x} \in L$ wood bearop $\vec{y} = \hat{A}(\vec{x})$.

Jugaro $\vec{x} \in L$ wood bearop $\vec{y} = \hat{A}(\vec{x})$.

Jugaro $\vec{x} \in L$ wood $\vec{y} \in L$ or $\vec{y} \in L$.

Jugaro $\vec{y} \in L$ or $\vec{y} \in L$.

Juan $\vec{y} \in L$ or $\vec{y} \in L$.

Juan $\vec{y} \in L$ or $\vec{y} \in L$. X=Te>eix' (1) u Y=Te>eix' u nog gelicibrien мін оператора À Y = AX (3) u Y' = A'X' (4) Joga abin (1)4(2) B (3) U используем ассоущать внось умнох.

maspuy:

Сканировано с CamScanner

$$T_{\varepsilon \to \varepsilon'} Y' = A(T_{\varepsilon \to \varepsilon'} X') \Longrightarrow$$

V.T.g.

Cregartie. A'= TEI>E'A'TE>EI

Cregartie. det A'= det A

Опр. Определителем лин. оператора наз. определитель его магрицыя в каком-либо базисе.

Опр. Матрицы А и В над. подобныму, если Э невырожденная мариеца. Т: В=ТАТ.

10

Действия над лин, операторами

Рас. <u>мн-во всех лин. операторов</u> в лин. пр-ве L и определим операции на этом мн-ве. Этогда

AG SILIG TON UC.	
Лин. операторы	Их мажнизы в базисе Е
A:L=L B:L=L	A B
Cymna oneparopol $(\hat{A}+\hat{B})(\vec{x})=\hat{A}(\vec{x})+\hat{B}(\vec{x})$	A+B
Произведение операнда на $rucio$ $(LA)(\vec{x}) = L \cdot A(\vec{x})$	& A
TyporibonoioxHord onepasop $-\hat{A} = (-1)\hat{A}$	-A
Пождественный оператор	E
Теорена Мен-во всех в мин. пр-ве	лин. операгоров L севт. лин. пр-вом.
C1.1) 2A+BB 2) A- JÎ	A-DE
Произведение операторов $(\widehat{B}\widehat{A})(\overline{x}) = \widehat{B}(\widehat{A}(\overline{x}))$	BA
BODIETHERY ONEPATOP (GNE BODIEMHO OGHOSH. ONEPB) A	A^{-1}