Laboratorium 7 – wskazówki

https://python-course.eu/machine-learning/k-nearest-neighbor-classifier-with-sklearn.php

https://www.kdnuggets.com/2022/07/knearest-neighbors-scikitlearn.html

https://towardsdatascience.com/knn-using-scikit-learn-c6bed765be75

https://scikit-learn.org/stable/modules/neighbors.html

https://www.geeksforgeeks.org/ml-implementation-of-knn-classifier-using-sklearn/

https://www.datacamp.com/tutorial/k-nearest-neighbor-classification-scikit-learn

https://realpython.com/knn-python/

```
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
from statistics import mode
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.neighbors import KDTree
import time
import pandas as pd
```

Zad.3.1

Opis:

https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.make classification.html

Wizualizacja danych wejściowych

https://scikit-

<u>learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py</u>

```
#wizualizacja zbioru uczacego
plt.plot(X[:,0][y==0],X[:,1][y==0],'o')
plt.plot(X[:,0][y==1],X[:,1][y==1],'ro')
plt.show()

#stworzenie zbioru testowego
X_value_samples = 21 #liczba punktow
X_value1 = np.array([[np.random.uniform(np.min(X[:,0])*0.8 ,np.max(X[:,0])*0.8 )] for x in range(X_value_samples)])#maksymalne x-wspolrzedne
X_value2 = np.array([[np.random.uniform(np.min(X[:,1])*0.8 ,np.max(X[:,1])*0.8 )] for x in range(X_value_samples)])#maksymalne y-wspolrzedne
X_value = np.hstack((X_value1,X_value2))

#odpowiadajace wartosci dla zbioru testoweg
y_value = np.random.randint(0,2,X_value_samples)
```


Zad.3.2 Implementacja + użycie funkcji fit, predict, score, porównaj z:

https://scikit-

 $\underline{learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.ht} \\ \underline{ml}$

Zad.3.3

Zad.3.4 - datasets.load_iris(), klasyfikacja j.w. (fit, predict, score)

https://scikit-

learn.org/stable/auto_examples/datasets/plot_iris_dataset.html#sphx-glr-auto-examples-datasets-plot-iris-dataset-py

https://scikit-

<u>learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py</u>

Zad. 3.5 – użyć gotowego PCA, np. PCA(n_components = 2), pca.fit(), plt.contour()

Zad.4.1

https://scikit-

<u>learn.org/stable/auto_examples/neighbors/plot_regression.html#sphx-glr-auto-examples-neighbors-plot-regression-py</u>

Do zdefiniowanej wcześniej klasy dodać metodę predict_regression

```
def predict_regression(self, X):
```

zwracającą decyzje.

Zad.4.3

jako jedna zmienna 2d

blad sredniokwadratowy= 0.013197843065786525 %

Zad.4.4

from sklearn.datasets import fetch_california_housing
import pandas

Zad. 4.5

from sklearn.model_selection import train_test_split

5 sąsiadów;

```
iteracja= 0
   średni błąd dopasowania: 1.959
iteracja= 1
   średni błąd dopasowania: 2.032
iteracja= 2
   średni błąd dopasowania: 2.055
iteracja= 3
   średni błąd dopasowania: 2.028
iteracja= 4
   średni błąd dopasowania: 2.046
```