Lecture Note 9 Sequential Circuit

Combinational Circuits:

Seguential Circuits:

Output,
$$Y(t+1) = External Anguls + Present state [Y(t)]$$

Sequential circuits:

2 types: Synchronous: Output changes only at specific time.
(Clock pulse)

Asynchronous: Output changes at any time. (Whenever we change inputs, doesn't depend on clock pulse.

Multivibrator: properties.	A type of sequential circuit with different stability
1,	A stable: No stable state. Continuously Switches. Example: Clock pulse generator
2.	Monostable: (1 stable state, another is temporary.)
	Ex: When we pronch our id card at Bracu, the gate opens. After a while the gate automatically closes.
	if gate open = 1, and close = 0
$\mathcal{A} \qquad (3)$	then stable state is 0 (close) temporary 1 1 (open) Bistable: 2 stable states (0,1).
	Ex: Flipfloo

Memory Elements:

-> A device that can remember value indefinately or change values in command.

$$M.E \longrightarrow Q$$

$$Q(t) = present state/convent state/Q$$

$$Q(t+1) = next state - /Q^{+}$$

flipflop, we need to start from La-To understand

5R Latch (using NAND gate) &

$$Q = 1$$

$$\overline{\mathbb{Q}} = \mathbb{O}$$

input = 6.

next , feralin,

$$\overline{Q} = 0$$

Case 2:

We dowt need to know 1 is 0

$$Q = Q$$

neset relation,

$$Q = \bigcirc$$

$$6^* = (6 \cdot \text{ck})' = 6' + \text{ck}' = 6' + 1' = 6' + 0 = 6'$$

$$R^{*} = (R \cdot e|k)' = R' + c|k'| = R' + 1' = R' + 0 = R'$$

$$= (R \cdot e|k)' = R' + c|k'| = R' + 1' = R' + 0 = R'$$

$$= Since, FF only work when c|k = 1$$

Iruth table:				This is	written	snly	to	understand.	In exam,	You
		1:		I	_	O		can skip	In exams,	U
5	R	5*	R	Q	Q			'		
0	0	(ſ	memory	/no change	•				
\bigcirc			0	0						
	0	0	1	(0					
		()								

Characteristic Table: (Depending on flipflops inputs & present state, what would be the next state?

Present	ih	puts	next state
Q(t)	5	R	Q(t)+1
0	0	0	6
\bigcirc	\bigcirc		0
()	i	\circ	
\Diamond	1	(not used
	0	0	
(()	(0
)	1	0	
ĺ	j	1	not used

1 1 1 0 0 not used

Excitation Table:

* Analyzing the flipflop present & next state, we try to Letermine the inputs. (we fill the input column by analysing characteristic table.

If we have different value for S or R in different vows, then we write X, Dont care

Block Diagram:

D Flipflops

-> Motivation: 5R has invalid input which can be removed.

Then,
$$D = 5$$

 $D = R = 5'$

H we merged S&R
using NOT Gate
and call it D.

Truthtable;

D	Q	Q
0	0	1
1	1	0

Characteristic Table:

Q(t)	D	Q(t+1)
0	D	O
0	1	1
1	Ò	0
1	1	1

noct state doesn't

depend on Q(t)/

present state.

. It doesn't have memory

state.

Excitation Table:

Q(t)	Q (+1)	
Ó	6	0
\bigcirc		
1	0	0
	ſ	

A Present state doesn't

Block Diagram:

JK Flipflop:

Motivation: SR FF has invalid state/unwed input (11)

D FF has no present state/memory

off Flipflop has a new output, Toggle.

Snext state = previous state

Q(t+1) = [Q(t)]

Truthtable:

J	K	QQ
\bigcirc	٥	Memory
0	(0 1
(0	1 0
		Toggle
		00

Characteristic Table:

Q(t)		K	Q (+1)
0	0	0	0
5	0		0
0	(0	
0		(
	0	0	
	0	1	D
1		9	(
	l		0
•			•

Excitation table?

Q(t)	Q(t+1)	J	K
Ò	\bigcirc	0	X
\bigcirc	(1	X
l	0	×	1
		X	\bigcirc

Block Diagram:

* If we short JKK in JK Flipflop we get T flipflop

Characteristic Table:

Q(t)	T	Q(t+1)
0	\bigcirc	0
\bigcirc	ſ	1
1	Ø	1
	1	0

Excitation table:

Q(+)	(b+1)	T
0	Q	6
\bigcirc	1	1
(D	(
1	(6

