

KeyStone et la sécurité selon OpenStack

Yvon Kermarrec

Professeur

Institut Mines Telecom / Télécom Bretagne

Agenda du cours

- Contexte, définitions et architecture
 - Identité authentification
 - Concepts et définitions
- Opérations sur KeyStone
- Politiques de sécurité
- Des travaux pratiques
- Pour aller plus loin
- Synthèse

Contexte et définitions

- Keystone le service de gestion des identités d'OpenStack – assure le contrôle sécurisé des ressources d'un cloud
- Keystone fournit des fonctions vitales, afin d'authentifier les utilisateurs et de déterminer quelles ressources ces utilisateurs peuvent accéder.
- Service majeur d'OpenStack puisque > 95% des utilisateurs d'OpenStack indiquent avoir déployé KeySTone dans leurs infrastuctures.

Notion d'identité

- "Identity refers to the identification of who is trying to access cloud resources. "
- Pour OpenStack Keystone, une identité est associée à un utilisateur.
- Dans les déploiements simples d'OpenStack,
 l'identité d'un utilisateur peut être stockée dans la base de donnée de KeyStone
- Dans des déploiements plus larges (au niveau d'entreprise), on peut vouloir utiliser un gestionnaire externe d'identités (ex IBM Tivoli)

Notion d'authentification

- Processus permettant de vérifier l'identité du demandeur (c'est-à-dire de vérifier qu'il est celui qu'il indique être)
- Initialement, cette opération est effectuée par un utilisateur qui indique lors du login son identité et son mot de passe.
- Après cette phase initiale, on peut vouloir optimiser ce processus afin de ne pas solliciter celui qui vérifie Et éviter de transmettre les informations de login sur le réseau.

Gestion des accès et autorisations

- L'autorisation est le processus qui permet de déterminer quelles ressources un utilisateur (avec une identité vérifiée) peut accéder et quelles opérations il peut exécuter.
- Cet aspect est fondamental pour gérer et contrôler les accès aux ressources et fonctionnalités du cloud (ex: qui peut créer ou détruire une image, qui peut rajouter un utilisateur, etc...)

Pourquoi avoir intégré KeyStone dans OpenStack?

- La sécurité est vitale et critique dans le cloud
- Point d'accès unique et cohérent à tous les services d'OpenStack – avec la gestion des identités, l'authentification et les contrôles d'accès.
- Une organisation interne et une gestion des domaines, rôles, projets et utilisateurs
- Une notion de catalogue de services bien utile pour accéder aux différents services et fonctionnalités de l'infrastructure du cloud.
- Des services accessibles via une API de type RESTful

Concepts de KeyStone: le 'projet'

- « a Project is an abstraction used by other OpenStack services to group and isolate resources (e.g., servers, images, etc.) »
- Dans les versions initiales de KeyStone, on utilisait la notion de 'Tenant'
- KeyStone enregistre les différents projets et détermine qui peut y avoir accès
- Les projets eux-mêmes ne possèdent pas d'utilisateurs, mais les Utilisateurs ou Groupes d'Utilisateurs ont accès à un Projet via le rôle.
- Via le rôle qui lui est attribué, un utilisateur a accès (ou non) à tout ou partie des ressources du projet

Concepts de KeyStone: le 'domaine'

- Le domaine correspond à une limite d'administration.
- "Domains are high-level containers for projects, users and groups. As such, they can be used to centrally manage all keystone-based identity components."

Institut Mines-Télécom KeyStone d'OpenStack

Concepts de KeyStone: 'user' et 'group'

- Un 'user' est un individu qui utilisera le cloud (peut être un utilisateur, un système ou service) et qui dispose de « crédentials »
- Le groupe d'utilisateurs
- Un utilisateur est associé à un projet
- Les utilisateurs et groupes sont également désignés par 'Actors'

Institut Mines-Télécom KeyStone d'OpenStack

Concepts de KeyStone: le rôle

- Élément de base pour l'expression de politiques de sécurité
- C'est une caractéristique (avec des privilèges associés) pour un utilisateur à un instant donné.
- L'utilisateur Bob prend le rôle 'rédacteur' pour le projet 'A'
- Un utilisateur peut avoir plusieurs rôles qui lui sont possibles (affectés) dans un projet – avec naturellement des privilèges différents.

11

Concepts de KeyStone: le rôle

Les roles sont 'stables' (à la différence des utilisateurs)

Concepts de KeyStone

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Concepts de KeyStone

Token

- Un identifiant des droits associés à un utilisateur (dans le contexte ou non d'un projet)
- Notion de scoped token (lié à un projet) et unscoped token (non lié à un projet)

Policy – règles

 Expression sous une forme de garde / condition pour l'accès à une ressource ou service

Endpoint

 Point d'entrée vers un service (avec une interface publique)

Institut Mines-Télécom KeyStone d'OpenStack

Agenda du cours

- Contexte et définitions
- Opérations sur KeyStone
 - La gestion des identités
 - Le token dans le détail
 - Commandes d'administration
- Politiques de sécurité
- Des travaux pratiques
- Pour aller plus loin
- Synthèse

15

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Les services internes de KeyStone

- Token (Token back-end): valide et gère les jetons utilisés lors des requètes
- Catalogue (catalog back-end): gère les différents points d'entrée (URL) permettant l'accès à un service
- Policy (policy back-end) : c'est le gestionnaire / moteur des règles et politiques de sécurité
- Identity (identity back-end): gère la validation des droits pour les utilisateurs, les groupes, les projets, les domaines, les rôles, ...

Architecture de KeySTone

Keystone identity manager (1/6)

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Keystone identity manager (2/6)

- Un utilisateur demande un token (unscoped) en précisant ses infos de login : id et mot de passe
- KeyStone lui renvoie un jeton
- L'utilisateur demande quels sont ses projets (« tenants »)

20/10/2017 Institut Mines-Télécom

Keystone identity manager (3/6)

 L'utilisateur précise ensuite le projet et Keystone lui renvoie un token (scoped) et une liste de points d'entrées

20 20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Keystone identity manager (4/6)

Appel et vérification des droits pour l'opération demandée

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Keystone identity manager (5/6)

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Keystone identity manager (6/6)

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Le Token : principe d'obtention : avec login ou un autre token

24 20/10/2017 Institut Mines-Télécom

Le jeton

25

- Pour qu'un utilisateur puisse appeler une API OpenStack, il doit
 - prouver qui il est, et
 - qu'il peut invoquer l'API en question.
- Pour cela, l'utilisateur passe un jeton OpenStack lors de l'appel de l'API.
- Un utilisateur reçoit ce jeton lors d'une authentification réussie avec Keystone.
- Le jeton contient l'autorisation qu'un utilisateur a sur le cloud.

Le jeton

- Un jeton possède à la fois un ID et une charge utile. L'ID d'un jeton est garantie unique par nuage.
- Le jeton peut être de plusieurs types:
 - UUID 32 octets
 - Fernet (qui se termine)
 - PKI (taille > 1 kO)
 - PKIZ

26

Le contenu (payload) d'un token

```
"token": {
    "issued at": "201406-10T20:55:16.806027Z",
   "exptres_at": "2014-06-10T2:55:16.806001Z",
    "roles": [{
            "td": "c703057be878458588961ce9a0ce686b",
            "name": "admtn"}
    "project": {
        "domain": { "id": "default",
                    "name": "Default" }.
        "td": "8538a3f13f9541b28c2620eb19065e45",
        "name": "admin"
    "user": {
        "domain": { "id": "default",
                    "name": "Default" },
        "ld": "3ec3164f750146be97f21559ee4d9c51",
        "name": "admtn"
   },
    "catalog": [
            "endpoints": [...],
            "type": "identity",
            "td": "bd73972c0e14fb69bae8ff76e112a90",
            "name": "keystone"
```

20/10/2017 KeyStone d'OpenStack

KeyStone database : mysql inside

37 rows in set (0.01 sec)

Catalogue de service

```
"catalog": [
        "name": "Keystone",
        "type": "identity",
        "endpoints": [
                "interface": "public",
                "url": "https://identity.example.com:35357/"
```

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Comment appeler un service ?

Connaitre son endpoint!

- Utiliser les commandes préfixées par openstack
 - https://docs.openstack.org/user-guide/cli-cheatsheet.html
 - Pensez à initialiser les variables d'environnement (ex nom du domaine, du projet, user id,)
- Appeler le endpoint en direct avec une commande de type curl
 - c'est pas très pratique...mais très explicite

Quelques commandes utiles (vues en TP)

- Liste des utilisateurs : openstack user list
- Création d'un token : openstack token issue
- Révocation d'un token: openstack revoke token id
- Liste des projets: openstack project list
- Liste des groupes : openstack group list
- Liste des rôles : openstack role list

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Authentification par mot de passe

POST https://api.keystone.cloud/v3/auth/tokens

```
"auth": {
    "identity": {
        "methods": [
            "password"
        "password": {
            "user": {
                "name": "daneel",
                "domain": {
                    "id": "default"
                },
                "password": "r0b0t!!"
```

Institut Mines-Télécom KeyStone d'OpenStack

32

Authentification par jeton

POST https://api.keystone.cloud/v3/auth/tokens

```
{
    "auth": {
        "identity": {
            "token"
        ],
        "token": {
            "id": "110e8400-e29b-11d4-a716-446655440000"
        }
    }
}
```

33 20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Demande de jeton avec scope

POST https://api.keystone.cloud/v3/auth/tokens

```
"auth": {
    "identity": {
        "methods": [
            "password"
        "password": {
            "user": {
                "id": "ee4dfb6e5540447cb3741905149d9b6e",
                "password": "r0b0t!!"
        }
    "scope": {
        "project": {
            "id": "a6944d763bf64ee6a275f1263fae0352"
    }
}
```


Réponse à la demande de jeton

```
"token": {
    "expires_at": "2016-10-17T21:29:55.118796Z",
    "issued_at": "2016-10-17T20:29:55.118829Z",
    "methods": [ "password" ],
    "project": {
        "domain": { "id": "default", "name": "Default" },
        "id": "8ddce4acebcc44b8b4f4cc3142ddafaa",
        "name": "vapor"
   },
   "roles": [
        { "id": "9250b2448e2942499734c1c7029f2f18",
          "name": "manager" }
   "user": {
        "domain": { "id": "default", "name": "Default" },
        "id": "ec80ca1e609245b9bc082e422661a967",
        "name": "daneel"
```

Institut Mines-Télécom

Agenda du cours

- Contexte, définitions et architecture
- Opérations sur KeyStone
- Politiques de sécurité
 - RBAC : Role-Based Access Control
 - Pour KeyStone
- Des travaux pratiques
- Pour aller plus loin
- Synthèse

36

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

37

RBAC est basé sur deux constats:

- dans les organisations, les employés sont classés par rôles ou métiers
 - Chef, secrétaire général, directeur, analyse, programmeur
 - Les rôles sont organisés en hiérarchies
- chaque employé, pour exécuter son rôle, a besoin de certaines 'permissions' ou 'autorisations'

38

- RBAC profite de cette notion d'organisation (et de hiérarchie) de rôle pour associer des permissions de sécurité aux différents rôles
- Le rôle devient alors un mécanisme pour associer des permissions aux utilisateurs

RBAC: modèle conceptuel

RBAC et cohérence

40

- La politique de sécurité est critique car une erreur peut avoir des conséquences majeures
- Les règles doivent dont être exprimées avec soin
- La modification du fichier policy.json implique une mise à jour immédiate
- Par défaut, toute opération sur une API est rejetée

RBAC et hiérarchie de rôles

Exprimer une politique de sécurité (1/5)

- Tous les services d'OpenStack peuvent être protégés par une stratégie (policy) de sécurité.
- Elle est exprimée dans un formalise ad'hoc et stockée dans un fichier json (Javascript Object Notation).
- Chaque API Keystone possède une ligne dans le fichier de politique qui dicte le niveau de protection qui lui est appliqué
- Il y a donc un langage d'expression de règles (https://docs.openstack.org/kilo/config-reference/content/policy-json-file.html) mais la syntaxe / sémantique me semblent encore non finalisées.

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Exprimer une politique de sécurité (2/5)

- Le fichier est de type texte et est accédé lors de chaque appel d'une API de service
- A manier avec beacoup de soin !!!
- Chaque ligne exprime une règle de sécurité sous la forme : <target> : <rule>
 - Target: appelée aussi « action » et associée à un appel d'une API de service – ex: "start an instance"; "attach a volume"
 - Target est classiquement un nim qualifié : cad nom du service ":" nom de l'API
 - Rule: exprime la condition / circonstance pour que l'appel de l'API soit validé
 - "The mapping between API calls and actions is not generally documented."

Institut Mines-Télécom

Exprimer une politique de sécurité (3/5)

- "compute:get all" :
 - La section rule de cette règle est vide et la condition est donc vraie. L'appel à cet API est toujours possible.
- "compute:shelve": "!

Institut Mines-Télécom

- La section rule de cette règle est «! » et la condition est donc fausse. L'appel à cet API est toujours impossible.
- "identity:create user" : "role:admin "
 - Pour appeler l'API 'create-user' du service identity il faut que le rôle de l'appelant soit admin
- "stacks:create": "not role:heat stack user"
 - On peut mettre des expressions booléennes.... Et donc combiner des conditions dans la partie 'rule'

Exprimer une politique de sécurité (4/5)

- "compute:start" : "user id:%(user id)s"
 - Seul le propriétaire d'une instance peut l'activer. Le 'user-id' avant le ':' designe l'identité de celui qui appelle l'API. « %(user id)s » désigne l'identité de l'objet sur lequel l'API est demandé – ici le propriétaire de l'instance.
- "identity:delete user": "role:admin and domain id:%(target.user.domain id)
 - Seul un administrateur du domaine peut retirer un utilisateur
- "admin required": "role:admin or is admin:True "
 - Ici on définit un alias qui peut donc apparaitre dans la suite dans une partie 'rule'

Exprimer une politique de sécurité (5/5)

 Un exemple qui utilise des alias et qui permet de modifier le mot de passe d'une entité uniquement si l'appelant est 'admin' ou s'il est le propriétaire de cet objet

```
"admin_required": "role:admin or is_admin:1",
"owner": "user_id:%(user_id)s",
"admin_or_owner": "rule:admin_required or rule:owner",
"identity:change_password": "rule:admin_or_owner"
```

20/10/2017 Institut Mines-Télécom KeyStone d'OpenStack

Agenda du cours

- Contexte, définitions et architecture
- Opérations sur KeyStone
- Politiques de sécurité
 - RBAC : Role-Based Access Control
 - Pour KeyStone
- Des travaux pratiques
- Pour aller plus loin
- Synthèse

Documents techniques

La documentation OpenStack sur les policies

 https://docs.openstack.org/kilo/configreference/content/policy-json-file.html

Le wiki associé

 https://docs.openstack.org/developer/keystone/configur ation.html#api-protection-with-role-based-accesscontrol-rbac

Un livre sur le sujet

48

 « Identity, Authentication, and Access Management in OpenStack » par Steve Martinelli, Henry Nash, and Brad Topol, publié par O'Reilly

Agenda du cours

- Contexte, définitions et architecture
- Opérations sur KeyStone
- Politiques de sécurité
 - RBAC : Role-Based Access Control
 - Pour KeyStone
- Des travaux pratiques
- Pour aller plus loin
- Synthèse

49

Synthèse

50

20/10/2017

- KeyStone est comme son nom l'indique la clé de voute d'une architecture OpenStack
- KeyStone gère les identités et fournit des mécanismes d'authentification de confiance
- Des politiques de sécurité à base du modèle RBAC permet de préciser finement les règles d'accès aux API des services