Produit Scalaire -

Les cinq expressions sont équivalentes (une démonstration)

Objectif:

Nous allons montrer que les cinq expressions du produit scalaire sont équivalentes, en partant de la définition :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left[\|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2 - \|\overrightarrow{BC}\|^2 \right]$$
 (*).

Introduction: D'où peut venir cette définition de départ?

Tu sais que que le triangle ABC ci-contre est rectangle en A si et seulement si $AB^2 + AC^2 = BC^2$ c'est à dire si et seulement si $AB^2 + AC^2 - BC^2 = 0$ ou encore si et seulement si $\|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2 - \|\overrightarrow{BC}\|^2 = 0$

On peut donc se poser la question suivante :

« Que devient l'expression $AB^2 + AC^2 - BC^2$ lorsque ABC n'est pas rectangle en A ? » Évidemment elle n'est pas nulle! D'où la création de ce qu'on a appelé « produit scalaire » (*), qui mesure ce qu'on peut appeler un « défaut d'orthogonalité ».

Partie A : On va montrer que
$$\frac{1}{2}(AB^2 + AC^2 - BC^2) = \begin{bmatrix} AB \times AH & \text{si } \overrightarrow{AB} & \text{et } \overrightarrow{AH} & \text{sont de même sens} \\ -AB \times AH & \text{si } \overrightarrow{AB} & \text{et } \overrightarrow{AH} & \text{sont de sens opposés} \end{bmatrix}$$

Soit ABC un triangle quelconque. Notons H le projeté orthogonal du point C sur la droite (AB), c'est à dire le pied de la hauteur issue de C dans le triangle ABC.

<u>Figure 1 :</u>

A, B et H alignés dans cet ordre donc AB = AH - BH

Figure 2:

A, B et H alignés dans cet ordre donc **AB = AH + BH**

Figure 3:

A, B et H alignés dans cet ordre donc **AB = BH - AH**

Le triangle ACH est rectangle en H donc $AC^2 = AH^2 + CH^2$ Le triangle BCH est rectangle en H donc $BC^2 = CH^2 + BH^2$

1) > Pour la figure 1, montrer alors, que AB²+AC²-BC² = 2×AH×AB

Outils à utiliser : développement d'un carré, réduction et factorisation

AB²+AC²-BC² =...

- ightharpoonup Pour la figure 2, les mêmes calculs conduisent aussi à $AB^2 + AC^2 BC^2 = 2 \times AH \times AB$ (Ne pas faire)
- ightharpoonup Pour la figure 3, on montrerait de la même façon que $AB^2 + AC^2 BC^2 = -2 \times AH \times AB$ (à faire en BONUS)

Conclusion: on a bien obtenu $\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{cases} AB \times AH \text{ si } \overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ sont de même sens} \\ -AB \times AH \text{ si } \overrightarrow{AB} \text{ et } \overrightarrow{AH} \text{ sont de sens opposés} \end{cases}$

Partie B : On va montrer que $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \widehat{BAC}$
Pour les figures 1 et 2 : Le triangle ACH est rectangle en H, exprimer alors AH en fonction de AC et de $\cos(\widehat{BAC})$. Figure 1 Figure 2 Utiliser ensuite l'égalité $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH$ de la partie A pour conclure.
Pour la figure 3 : $AH = AC \times \cos(\widehat{CAH}) \text{ or } \overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH \text{ donc } \overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AC \times \cos(\widehat{CAH})$ On admet, pour l'instant, que $-\cos(\widehat{CAH}) = \cos(\widehat{BAC})$ et donc on a encore $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$ Figure 3 Conclusion : $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$ pour les trois figures et on a bien démontré le résultat annoncé.
Partie C : On va montrer que, dans un repère orthonormé, si $\overrightarrow{AB} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{AC} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = xx' + yy'$
$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} \text{ donc } \overrightarrow{BC} \text{ a pour coordonn\'ees } \overrightarrow{BC} \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \end{array} \right) \text{ (fonction de } x, x', y \text{ et } y' $ $\overrightarrow{AB^2} = \dots \text{ en fonction de } x \text{ et de } y $ $AC^2 = \dots \text{ en fonction de } x' \text{ et de } y' $ $BC^2 = \dots \text{ en fonction de } x, x', y \text{ et } y' $
En déduire l'expression de $\overline{AB} \cdot \overline{AC} = \frac{1}{2} (AB^2 + AC^2 - BC^2)$ en fonction de x, x', y et y' Conclusion : on a bien démontré que $\overline{AB} \cdot \overline{AC} = xx' + yy'$
Partie D: On va montrer que \overrightarrow{AB} . $\overrightarrow{AC} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC} ^2 - \overrightarrow{AB} ^2 - \overrightarrow{AC} ^2)$
$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2} [\ \overrightarrow{AB}\ ^2 + \ \overrightarrow{AC}\ ^2 - \ \overrightarrow{BC}\ ^2] = \frac{1}{2} [\ \overrightarrow{AB}\ ^2 + \ \overrightarrow{AC}\ ^2 - \ \overrightarrow{AB} - \overrightarrow{AC}\ ^2] \text{Or } \ \overrightarrow{AB} - \overrightarrow{AC}\ ^2 = (\overrightarrow{AB} - \overrightarrow{AC})^2 (\grave{a} \ d\acute{e}velopper)$ $\text{donc } \overrightarrow{AB}.\overrightarrow{AC} = \dots$ $\text{Conclusion: on a bien démontré que } \overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2} (\ \overrightarrow{AB} + \overrightarrow{AC}\ ^2 - \ \overrightarrow{AB}\ ^2 - \ \overrightarrow{AC}\ ^2)$