

Quiz #2: Electrical Potential, Electrical Potential Energy, and Gauss's Law

- 1. A metal sphere has a charge of 2 nC, and a radius of 0.06 m. What is the electric potential at a point 0.09 m from the center of the sphere?
 - a) 0 V
 - b) 100 V
 - c) 200 V
 - d) 300 V
 - e) None of the Above
- 2. Which of the following statements are true concerning the <u>Electric Field</u> and the <u>Electric Potential</u> inside a conductor?
 - I. The electric field inside a conductor is constant throughout the conductor.
 - II. The electric field inside a conductor is 0 N/C.
 - III. The electric potential inside a conductor is constant throughout the conductor.
 - a) I only
 - b) II only
 - c) III only
 - d) II and III only
 - e) I, II, and III
- 3. An electron is placed in an electric field. The electric potential at the electron's position is 200V. What is the magnitude of the potential energy of the electron?
 - a) $3.6 \times 10^{-38} \text{ J}$
 - b) 8 x 10⁻²⁰ J
 - c) 3.2 x 10⁻¹⁷ J
 - d) 8 x 10⁻¹² J
 - e) None of the above
- 4. Two point-charges, $q_1=9 \times 10^{-9}$ C and $q_2=1 \times 10^{-9}$ are placed 0.09 m apart. What is the electrical potential energy of this configuration?
 - a) $9 \times 10^{-7} \text{ J}$
 - b) 1 x 10⁻⁵ J
 - c) 3 x 10⁻² J
 - d) 2 x 10⁻¹ J
 - e) 1 J
- 5. A particle of charge $q_a = 4 \times 10^{-5}$ C is placed 1 meter from a fixed charge, $q_b = 2 \times 10^{-3}$ C and released. How much potential energy would charge A have when it has moved very far from charge B?
 - a) 0 J
 - b) 8 x 10⁻⁸ J
 - c) 720 J
 - d) $3.6 \times 10^5 \text{ J}$
 - e) $9 \times 10^9 \, J$

- 6. An infinitely long, thin wire has a charge density of λ . What is the correct expression for the electrical field a distance of r from the wire?
 - a) $\frac{\lambda}{2\pi\varepsilon_o r}$
 - b) $\frac{\lambda l}{2\pi\varepsilon_o r}$
 - c) $\frac{2\pi\varepsilon_o r}{\lambda}$
 - d) $\lambda \oint 2\frac{\pi}{\varepsilon_o} dA$
 - e) ∞
- 7. The electric field 2 meters from a point charge is 400 N/C. What is the electrical potential at this point?
 - a) 200 V
- b) 400 V
- c) 600 V
- d) 800 V
- e) 1600 V
- 8. A electron has 0 J of electrical potential energy. The electron could be -
 - I. Very far away from all other charges.
 - II. Halfway between a positive charge and a negative charge of equal magnitude.
 - III. Very close to a positive charge.
 - a) I only
 - b) II only
 - c) III only
 - d) I and II only
 - e) II and III only
- 9. Cell phones use changes in electric fields to send and receive messages (or more accurately, electromagnetic fields. For the purposes of this question, any magnetic effects can be ignored). A cell phone is placed inside a hollow metal ball. What will happen to the cell phone?
 - a) The phone will be able to send and receive messages normally.
 - b) The phone will be able to send, but not receive messages.
 - c) The phone will be able to receive, but not send messages.
 - d) The phone will be able to neither send nor receive messages.
 - e) It is impossible to predict the effect.
- 10. An oil drop of mass m=9 x 10^6 kg is placed in an electric field, E= 300 N/C directed upward. If the oil drop remains stationary, hovering, what is the charge of the drop?

(you may use $g = 10 \text{ m/s}^2$ to simplify calculations)

- a) $1.8 \times 10^{3} \text{ C}$
- b) 3.333 x 10⁻³ C
- c) $3 \times 10^{-7} \text{ C}$
- d) 9 x 10⁻¹⁵ C
- e) It is impossible to tell