Stock Price Time Series

Group - 08

Data Science Capstone Project Exploratory Data Analytics Report

Date:

03/09/2025

Team Members:

Name: Robert Lignowski - rml345@drexel.edu

Name: Uditi Shah - us54@drexel.edu

Name: Steven Sullivan - sas683@drexel.edu

Name: Ahmad Javed - aj3235@drexel.edu

Analysis the basic metrics of variables

1. Data Overview

- The dataset consists of Tesla, Ford, Toyota, Volkswagen stock price history.
- Missing values were removed to ensure data integrity.
- The dataset contains numerical and categorical variables.

2. Data Types & Variable Classification

- Date: Categorical (Ordinal)
- Price, Open, High, Low: Numerical (Continuous)
- Vol. (Volume): Numerical (Discrete, converted from M to actual values)
- Change %: Numerical (Continuous, converted from percentage format)

3. Descriptive Statistics

- Price: Mean = X, Std Dev = Y, Min = Z, Max = W
- Volume: Varies significantly, with spikes on certain days.
- Change %: Captures daily price fluctuations.

4. Insights from Plots

- Stock Price Trend: Shows stock's price variations over time.
- Volume Trend: Identifies spikes in trading activity.
- Change % Trend: Highlights daily volatility.
- **Box Plot**: Detects price outliers.

5. Significant Price Movements

• Days with ≥5% price change were identified, indicating volatile trading days.

Basic Statistics for Tesla Data

Basic	Statistics Su	mmarv:					
			ate	Price	0pen	High	\
count		1	509 15	509.000000	1509.000000	1509.000000	
mean	2022-01-16 1	3:35:54.274353	920 1	L83.749284	183.777860	187.914135	
min	20	19-01-18 00:00	:00	11.930000	12.070000	12.450000	
25%	20	20-07-20 00:00	:00	99.000000	98.000000	100.880000	
50%	20	22-01-14 00:00	:00 2	205.710000	204.330000	209.250000	
75%	20	23-07-19 00:00	:00 2	251.990000	252.040000	257.480000	
max	20	25-01-17 00:00	:00 4	179.860000	475.900000	488.540000	
std		1	NaN 1	L06.168199	106.274252	108.657604	
	Low	Vol.		ange %			
count	1509.000000	1.509000e+03	1509.0				
mean	179.381140	1.275613e+08		275825			
min	11.800000	2.940000e+07		960000			
25%	94.730000	7.801000e+07		300000			
50%	198.930000	1.042900e+08		L80000			
75%	246.420000	1.491600e+08		220000			
max	457.510000	9.140800e+08		920000			
std	103.615095	8.060468e+07	4.6	071520			

Basic Statistics for Toyota Data

None						
Basic	Statistics					
	Price	Open	High	Low	Vol.	\
count	1280.000000	1280.000000	1280.000000	1280.000000	1.280000e+03	
mean	164.718781	164.770398	165.696906	163.710172	2.764688e+05	
std	28.664588	28.634940	28.739925	28.513302	1.359098e+05	
min	108.500000	110.000000	112.510000	108.010000	5.991000e+04	
25%	140.520000	140.537500	141.412500	140.027500	1.892025e+05	
50%	162.785000	162.835000	163.840000	162.000000	2.429600e+05	
75%	181.512500	181.512500	182.577500	180.522500	3.281975e+05	
max	254.770000	255.000000	255.230000	253.590000	1.420000e+06	
	Change %					
count	1280.000000					
mean	0.035258					
std	1.629670					
min	-8.620000					
25%	-0.892500					
50%	0.070000					
75%	0.922500					
max	9.580000					

Basic Statistics for Volkswagen Data

	Price	0pen	High	Low	Vol.	Change %
count	1259.000000	1259.000000	1259.000000	1259.000000	1.259000e+03	1259.000000
mean	19.399158	19.394440	19.584384	19.201326	3.705033e+05	-0.023503
std	7.233024	7.213608	7.338440	7.115552	5.551755e+05	2.710307
min	8.620000	8.650000	8.690000	8.570000	3.554000e+04	-15.070000
25%	14.520000	14.545000	14.635000	14.420000	1.764750e+05	-1.350000
50%	17.270000	17.270000	17.390000	17.140000	2.714500e+05	-0.100000
75%	21.895000	21.880000	22.040000	21.565000	4.234050e+05	1.230000
max	42.330000	42.100000	48.720000	37.700000	1.190000e+07	29.250000

Basic Statistics for Ford Data

	Close	Open	High	Low	Volume	Percent Change
count	1260.000000	1260.000000	1260.000000	1260.000000	1.260000e+03	1260.000000
mean	12.009960	12.013500	12.200357	11.820254	6.814601e+07	0.043166
std	3.486055	3.480076	3.549997	3.412630	3.249382e+07	2.807285
min	4.010000	4.270000	4.420000	3.960000	1.298086e+07	-18.361375
25%	10.417500	10.400000	10.565000	10.280000	4.817676e+07	-1.428402
50%	12.110000	12.100000	12.250000	11.955000	5.964017e+07	0.000000
75%	13.582500	13.630000	13.820000	13.370000	7.883739e+07	1.459684
max	25.190000	24.870000	25.870000	24.370000	3.116452e+08	23.441397

Non-graphical and graphical univariate analysis

For univariate analysis, we used histograms to show distribution of stock prices for each company over our selected time period

Price Distribution of Tesla Stocks (Histogram)

Price Distribution of Volkswagen Stocks (Histogram)

Price Distribution of Ford Stocks (Histogram)

Daily High Stock Price of Toyota Stocks (Histogram)

Daily High Stock Price of Volkswagen Stocks (Histogram)

In addition to our univariate analysis, we also did additional analysis and visualizations we found relevant to our project goals

Stock Price for Ford

Stock Price for Toyota

Stock Price for Tesla

Stock Price for Volkswagen

Volume (Number of Stocks) for Toyota

Volume (Number of Stocks) for Volkswagen

Missing value analysis and outlier analysis

Four each of our chosen company data, we were able to have full data as shown by the image below

Missing Values for Tesla

Missing	values	per	column:
Date	0		
Price	0		
0pen	0		
High	0		
Low	0		
Vol.	0		
Change 9			
dtype: :	int64		

Missing Values for Volkswagen

Missing Values for Ford

Missing	Values	in	Dataset:
Date			0
Close			0
Open			0
High			0
Low			0
Volume			0
Percent	Change		0

Missing Values for Toyota

Date	0
Price	0
0pen	0
High	0
Low	0
Vol.	0
Change %	0

For outlier analysis, we used a box and whisker plot to show stock price outlier for each of our companies Stock Price Outliers for Tesla

Stock Price Outliers for Volkswagen

Stock Price Outliers for Ford

Stock Price Outliers for Toyota

Feature engineering and analysis

For our feature engineering, we used a correlation matrix to show the relationships between each variable used in our analysis for each car company

Correlation Matrix for Tesla Stock

Correlation Matrix for Ford Stock

Correlation Matrix for Toyota Stock

Explanation:

The correlation matrix helps identify relationships between numerical variables in the dataset. We first converted the 'Date' column to datetime format to ensure it's not included in calculations.

Then, we selected only numerical columns (Price, Open, High, Low, Volume, Change %) for correlation analysis. The correlation values range from -1 to 1:

- Positive values indicate a direct relationship (as one variable increases, the other also increases).
- Negative values indicate an inverse relationship (as one increases, the other decreases).
- Values close to 0 suggest no significant relationship.

This analysis helps in feature selection for predictive modeling, as highly correlated variables might be redundant.

Appendix

The following are examples of the code used for data exploration and graph creation:

Data Description:

```
stat_df = corr_df[['Date', 'Close', 'Open', 'High', 'Low', 'Volume', 'Percent Change']]
stat_df.describe()
```

Price Distribution:

```
ax = hist_df['Close'].hist(bins=20)
ax.set_title("Distribution of Closing Prices - Ford", fontsize=14)
ax.set_xlabel("Closing Price", fontsize=12)
ax.set_ylabel("Frequency", fontsize=12)
ax.grid(False)
```

Closing Price Line Graph:

Average Ford Stock Line Graph:

```
month_df.set_index('Date', inplace=True)
month df = month df['Close'].resample('M').mean()
print(month_df.head())
Date
2020-01-31 9.130476
2020-02-29 7.973684
2020-03-31 5.522273
2020-04-30 4.921905
            5.257500
2020-05-31
Freq: M, Name: Close, dtype: float64
month_df.plot(kind='line',
       title='Average Ford Stock Price per Month',
       xlabel='Date',
       ylabel='Average Close Price (Month)',
       color='green')
plt.grid(False)
plt.show()
```

Stock Volume Distribution:

```
ax = hist_df['Volume'].hist(bins=20)
ax = hist_df['Close'].hist(bins=20)
ax.set_title("Distribution of Stock Volume", fontsize=14)
ax.set_xlabel("Volume", fontsize=12)
ax.set_ylabel("Frequency", fontsize=12)
ax.grid(False)
ax.xaxis.set_major_formatter(mtick.FuncFormatter(lambda x, _: f'{x/1e6:.1f}M'))
```

Identifying Missing Values:

```
print("Missing Values in Dataset:\n")
print(stat_df.isnull().sum().to_string())
```

Box and Whisker Plot:

```
plt.figure(figsize=(8,4))
sns.boxplot(x=corr_df['Close'], color="lightblue", flierprops={'marker': 'o', 'markerfacecolor': 'red', 'markersize': 6})
plt.title("Distribution of Closing Prices", fontsize=14)
plt.xlabel("Closing Price", fontsize=12)
plt.show()
```

Correlation Matrix:

```
corr_df = hist_df.copy()
corr_df['Percent Change'] = corr_df['Close'].pct change() * 100
corr df['Percent Change'].fillna(0, inplace=True)
corr_df['Year'] = hist_df['Date'].dt.year
corr_df['Month'] = hist_df['Date'].dt.strftime('%B')
corr_df['Day'] = hist_df['Date'].dt.strftime('%d')
corr df['Day of the Week'] = hist df['Date'].dt.day name()
corr_df['Day'] = corr_df['Day'].astype('int64')
corr df['Month'] = pd.to datetime(corr df['Month'], format='%B').dt.month
days_mapping = {
    'Monday': 0, 'Tuesday': 1, 'Wednesday': 2, 'Thursday': 3,
    'Friday': 4, 'Saturday': 5, 'Sunday': 6
corr_df['Day of the Week'] = corr_df['Day of the Week'].map(days_mapping)
corr matrix = corr df.corr()
plt.figure(figsize=(8,6))
sns.heatmap(corr matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title("Ford Stock Correlation Matrix")
plt.show()
```

Table of Contributions

The table below identifies contributors to various sections of this document.

	Section	Writing	Editing
1	Analysis the basic metrics of variables	Uditi, Robert	Ahmad, Steven
2	Non-graphical and graphical univariate analysis	All Members	All Members
3	Missing value and outlier analysis	All Members	All Members
4	Feature engineering and analysis	All Members	All Members
5	Appendix	All Members	All Members