

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

ISBI 2019 Challenge: Classification of Normal versus Malignant Cells in B-ALL White Blood Cancer Microscopic Images

Neighborhood-Correction Algorithm for Classification of Normal *vs.* Malignant Cells

Yongsheng Pan ^{1, 2}, Mingxia Liu ², Yong Xia ^{1*}, Dinggang Shen ^{2 *}

- 1. National Engineering Laboratory of China for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, China
 - 2. Department of Radiology and BRIC, University of North Carolina at Chapel Hill (UNC-CH), NC, USA

Background and Aim

- Acute lymphoblastic leukemia (ALL): a serious health threat, mostly children with ages between 2-5
- Diagnosis of ALL: blood tests and bone marrow examination
- Aim: Classification of normal and malignant cells observed under a microscope for developing a cost-effective computer-aid diagnosis tool for ALL

(b) Malignant

Fig. 1 Two cell images

Related Work

• Fisher vector, deep convolutional neural networks, and combination

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition. In: CVPR 2016, pp. 770-778. IEEE Press, New York. (2016)

Related Work - Fisher Vector

- The set of local descriptors of an image: $X = \{x \in \mathcal{R}^D; x \sim p\}$
- Fisher Score is the gradient of the log-likelihood $P(X|\lambda)$

$$G_{\lambda}^{X} = \nabla_{\lambda} P(X|\lambda) = E_{x \sim p} \nabla_{\lambda} \log u_{\lambda}(x) = \nabla_{\lambda} \int_{x} p(x) \log u_{\lambda}(x) dx$$

where u_{λ} is the probability density function of the generative process

• Fisher Information Matrix

$$F_{\lambda} = E_{x \sim u_{\lambda}} [\nabla_{\lambda} \log u_{\lambda}(x) \nabla_{\lambda} \log u_{\lambda}(x)^{\mathrm{T}}] = L_{\lambda}^{\mathrm{T}} L_{\lambda}$$

Fisher Kernel

$$K_{FK}(X,Y) = G_{\lambda}^{X^T} F_{\lambda}^{-1} G_{\lambda}^Y = G_{\lambda}^{X^T} G_{\lambda}^Y$$

• The **Fisher Vector** of *X* is defined as $\mathcal{G}_{\lambda}^{X} = L_{\lambda} \mathcal{G}_{\lambda}^{X}$.

Method: Overview

• Neighborhood-correction algorithm (NCA) for classification of normal vs. malignant cells

Fig. 2 Diagram of proposed NCA

Method – Step 1 (Training)

• Data augmentation and image processing

Fig. 2 Diagram of data augmentation and image processing

Method – Step 2 (Training)

- Fine-tuning the pre-trained ResNet
 - Optimizer: SGD
 - Hyperparameters: Batch size = 32, epochs = 20, learning rate = 10^{-3} (first 10 epochs) / 10^{-4}

Fig.4. Diagram of ResNet (RB: Residual Block)

• Applying the fine-tuned ResNet to each test image and obtaining the initial label of that image

Fig. 2 Diagram of generating initial labels

• Encoding the feature maps generated by the fine-tuned ResNet into a Fisher vector

Y. Pan, Y. Xia and D. Shen. "Foreground Fisher Vector: Encoding Class-Relevant Foreground to Improve Image Classification." IEEE-TIP, 2019.

Neighborhood Correction in FV Space

Let $\mathbb{B} = \{\mathcal{B}_i\}_{i=1}^N$ be a set of N Fisher Vectors (FVs), where each FV represents a cell image. The similarity of a pair of images is

$$J(\mathcal{B}_i, \mathcal{B}_j) = \mathcal{B}_i^{\mathrm{T}} \mathcal{B}_j$$

Each image should be consistent with its neighbors in FV space, i.e., belong to the same category. Suppose that $X_{i,(1)}, X_{i,(2)}, ..., X_{i,(K)}$ are the most similar K images of X_i , whose initial labels are $y_{i,(1)}, y_{i,(2)}, ..., y_{i,(K)}$,

$$y_i^* = \text{sign} \sum_{k=1}^K J(X_i, X_{i,(k)}) y_{i,(k)}$$

Neighborhood Correction in FV Space

Most cells are correctly classified, only a small number of cells are misclassified.

For each misclassified cell, we could probably correct it using its neighborhoods.

Neighborhood Correction in FV Space

Most cells are correctly classified, only a small number of cells are misclassified.

For each misclassified cell, we could probably correct it using its neighborhoods.

Neighborhood Correction in FV Space

Most cells are correctly classified, only a small number of cells are misclassified.

For each misclassified cell, we could probably correct it using its neighborhoods.

Results in the C-NMC Challenge

• Won the 1st Place in the Preliminary (0.9250) Test (1/60)

#	User	Entries	Date of Last Entry	Team Name	Prediction score 🛦	Duration 🛦	Detailed Results
1	yspan	177	01/31/19	SAIIP-NPU & BRIC-UNC	0.9250 (1)	0.00	View
2	jprellberg	29	01/30/19		0.8966 (2)	0.00	View
3	kuangrf	174	01/27/19	BUPT-CAD	0.8955 (3)	0.00	View
4	yelan	80	01/24/19		0.8942 (4)	0.00	View
5	haoyuyang	62	01/23/19	Sunset Roller-coaster	0.8929 (5)	0.00	View
:							
59							
60							

Results in the C-NMC Challenge

• Won the 1st Place in in the Final Test (0.9104) (1/25)

#	User	Entries	Date of Last Entry	Team Name	Prediction score ▲	Duration 🛦	Detailed Results
1	yspan	2	03/17/19	SAIIP-NPU & BRIC-UNC	0.9104 (1)	0.00	View
2	deepshad	2	03/17/19		0.8947 (2)	0.00	View
3	jprellberg	2	03/16/19		0.8891 (3)	0.00	View
4	kuangrf	2	03/17/19	BUPT-CAD	0.8856 (4)	0.00	View
5	wendy	2	03/16/19	MIA Group	0.8798 (5)	0.00	View
: 25							

• Submissions in the Final Test (with an improvement of 0.0416)

METHOD	#	SCORE	FILENAME	SUBMISSION DATE	STATUS	*	
Fine-tuned ResNet	1	0.868851339	ftcell_50_101res-cv0 1 2 3.zip	03/16/2019 17:56:00	Finished		+
Proposed Method	2	0.9104320738	ftcell_50_101res-cv0 1 2 3 - 2.zip	03/17/2019 23:52:55	Finished	~	+

Summary and Future Work

- Proposed a hybrid algorithm (deep learning + Fisher vector) for the classification of normal vs. malignant cells
- ResNet: feature extraction and initial label generation
- Fisher vector: Correction of inaccurate initial labels

- Future work
 - Using corrected class labels to refine ResNet
 - Improving ResNet and Fisher vector mutually and iteratively

