

BN:36 SEC:2

2025 NETWORK LAB VIEW

PREPARED BY

MOSTAFA WALID SAAD

1. INTRODUCTION OF NETWORKING

A network connects devices to share information, resources, and services. It supports business needs and modern technologies like IP telephony and video conferencing.

Basic communication elements: source, encoder, transmitter, channel, receiver, decoder, destination.

Networks consist of end devices, transmission media, intermediate devices

2.CLASSIFICATION OF NETWORKING

Category Type Description / Example

Geographical Range LAN Small area like office or home network.

MAN Covers a city or campus (e.g., university network).

WAN Large area, connects countries (e.g., the Internet).

Topology (Connection) Bus All devices share a single backbone cable.

Star Devices connected to a central hub or switch.

Ring Each device connects to two others forming a circle.

Mesh Devices interconnected, high reliability.

5.ADDRESSING

Layer	Address Type	Example	Purpose	Extra Notes
Data Link (Layer 2)	MAC Address	00:1A:2B:3C:4D:5E	Unique hardware identity for local network communication	Fixed, burned into NIC
Network (Layer 3)	IP Address	192.168.1.10 (IPv4), 2001:db8::1 (IPv6)	Logical address to locate devices across networks	IPv4: 32-bit, ~4.3B addresses, uses NAT.
				IPv6: 128-bit, ~3.4×10 ³⁸ addresses, no NAT needed, better security & mobility.
Transport (Layer 4)	Port Number	80 (HTTP), 443 (HTTPS)	Identifies specific application/service on a device	Works with both IPv4 & IPv6

4.PDU DURING ENCAPSULATION

OSI Layer PDU (Protocol Data Unit)

Application / Presentation / Session Data

Transport Layer Segment (or Datagra
Network Layer Packet

Data Link Layer Frame

Physical Layer Bits

6.SOME CONCEPTS

Physical Topology: The actual layout of cables, devices, and connections in the network (e.g., star, bus, ring).

Logical Topology: The way data flows and devices communicate across the physical network (e.g., how signals travel in Ethernet or Token Ring).

Default Gateway: The router that forwards traffic from the local network to external networks (e.g., Internet)

The **Subnet Mask** is a 32-bit number used in IP networking to divide an IP address into **network** and **host**

7.SUBNETING VS VLSM

Feature Subnetting (Fixed) VLSM (Variable)

Subnet Mask Same for all subnets Different masks for different subnets

Flexibility Low – all subnets must be equal size High – subnets can be tailored to host needs

IP Address Usage May waste addresses More efficient, less wasted addresses

Example All subnets /24 Some /24, some /26, some /30, etc.

8.STATIC ROUTING VS DYNAMIC

- Static Routing = Manual, simple, secure, but not adaptive.
- Dynamic Routing = Automatic, adaptive, resource-consuming, suitable for large networks.

9. CISCO IOS BOOTING STEPS

Step	o Process	Description		
1	POST (Power On Self Test)	Runs hardware diagnostics from ROM (CPU, RAM, NVRAM).		
2	Bootstrap Loading	Copied from ROM to RAM; executed by CPU to locate IOS.		
3	IOS Location	Usually in Flash; if not found, a minimal IOS from ROM is used.		
4	IOS Loading	IOS copied into RAM (current models); older models ran IOS directly from Flash.		
5	Config File Search	Bootstrap looks for startup-config in NVRAM.		
6	Config File Loading	If found, loaded into RAM as running-config ; if not, user is prompted for setup mode.		

10. SOME COMMENDS IN CISCO CMD

Command Example

Section

CLI First Look	enable configure terminal	Enter privileged EXEC mode and global configuration mode	
	hostname R1	Set hostname, passwords, console access, interface IP, and warning banner	
	enable secret cisco123		
Basic Configuration	line console 0 → password cisco → login		
	interface g0/0 → ip address 192.168.1.1 255.255.255.0 → no shutdown		
	show running-config	View, save, delete configuration files and reload device	
	show startup-config		
Viewing, Saving, Erasing	copy running-config		
	startup-config		
	erase startup-config		
Discovering &	show ip interface brief ping 192.168.1.2	Check interfaces, test connectivity, trace path	
Testing	traceroute 8.8.8.8		
TELNET	line vty 0 4 password telnet123	Configure Telnet remote access	
	login		

Purpose

LAB VIEW

1. Introduction to the LabVIEW Environment

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a graphical programming environment based on **dataflow**. Unlike text-based languages (C#, Python), it uses **graphical blocks and wires** to create programs, making it intuitive for engineers and scientists.

Core Concepts:

- Graphical Programming: Build logic using icons and wires (like a flowchart).
- Virtual Instruments (VIs): Every program is a VI, simulating real instruments.

Key Components of a VI:

- 1. Front Panel: User interface with controls (inputs) and indicators (outputs).
- 2. **Block Diagram:** Graphical source code connecting functions and data flow.
- 3. Icon & Connector Pane: Enable reuse of a VI as a SubVI.

2. Fundamental Programming Structures in LabVIEW

- While Loop: Repeats until a stop condition is met.
- For Loop: Runs a set number of times.
- Case Structure: Executes different code based on input (like if-else).
- Sequence Structure: Forces execution order in a program.

Control via LabVIEW (LINX Library):

- Upload firmware to Arduino.
- LabVIEW sends commands (e.g., read sensor, turn LED ON).
- Arduino executes and returns data to LabVIEW.

3. Working with Data: Arrays & Clusters

- Arrays: Collections of same-type data (numbers, strings), 1D or multi-D.
- Clusters: Group mixed-type data (like a struct). Managed with Bundle/Unbundle.

4. Data Visualization: Charts & Graphs

- Charts: Show data continuously with history. Types: Strip, Scope, Sweep.
- Graphs: Display complete datasets at once, no history buffer.

5. Arduino UNO: Hardware Gateway

- Role: Open-source microcontroller bridging LabVIEW with the real world.
 - 6 analog inputs (sensors).
 - $_{\circ}$ 14 digital I/O pins (LEDs, motors, relays).
 - 6 PWM pins (control speed, dimming, etc.).

6. Project Overview

We use these Express VIs:

- Acquire Sound: Record sound from microphone.
- Filter: Apply band-pass filter to the sound.
- Play Waveform: Output filtered sound through speakers.
- Tone Measurements: Measure average frequency and amplitude.