Physical Computing WEEK 9 - Spark and IoT

Photon(WIFI) & Electron(3G)

A wifi and 3G enabled IoT Arduino like platform

Uses it's own IDEs

- * CLI
- Atom Skinned & Called Particle Dev
- Cloud one called Particle Build
- * tinker app
- * iOS & android support
- * ParticleJS
- * Uses Node

Photon specific specs

Fits in a standard breadboard (with headers)

Surface mountable for machine assembly (without headers)

Broadcom BCM43362 Wi-Fi chip

STM32F205 120Mhz ARM Cortex M3

1MB flash, 128KB RAM

802.11b/g/n

FCC/CE/IC certified

Open source hardware

vs Arduino

Fits in a standard breadboard (with headers)

Surface mountable for machine assembly (without headers)

Broadcom BCM43362 Wi-Fi chip

STM32F205 120Mhz ARM Cortex M3

1MB flash, 128KB RAM

802.11b/g/n

FCC/CE/IC certified

Microcontroller	ATmega328P				
Operating Voltage	5V				
Input Voltage (recommended)	7-12V				
Input Voltage (limit)	6-20V				
Digital I/O Pins	14 (of which 6 provide PWM output)				
PWM Digital I/O Pins	6				
Analog Input Pins	6				
DC Current per I/O Pin	20 mA				
DC Current for 3.3V Pin	50 mA				
Flash Mamon	32 KB (ATmega328P)				
Flash Memory	of which 0.5 KB used by bootloader				
SRAM	2 KB (ATmega328P)				
EEPROM	1 KB (ATmega328P)				
Clock Speed	16 MHz				
Length	68.6 mm				
Width	53.4 mm				
Weight	25 g				

Open source hardware

vs Arduino

Peripheral Type	Qty	Input(I) / Output(O)	FT ^[1] / 3V3 ^[2]
Digital	18	1/0	FT/3V3
Analog (ADC)	8	I	3V3
Analog (DAC)	2	0	3V3
SPI	2	1/0	3V3
I2S	1	1/0	3V3
I2C	1	1/0	FT
CAN	1	1/0	FT
USB	1	1/0	3V3
PWM	93	0	3V3

Microcontroller	ATmega328P				
Operating Voltage	5V				
Input Voltage (recommended)	7-12V				
Input Voltage (limit)	6-20V				
Digital I/O Pins	14 (of which 6 provide PWM outp				
PWM Digital I/O Pins	6				
Analog Input Pins	6				
DC Current per I/O Pin	20 mA				
DC Current for 3.3V Pin	50 mA				
Flach Mamony	32 KB (ATmega328P)				
Flash Memory	of which 0.5 KB used by bootload				
SRAM	2 KB (ATmega328P)				
EEPROM	1 KB (ATmega328P)				
Clock Speed	16 MHz				
Length	68.6 mm				
Width	53.4 mm				
Weight	25 g				

Getting online

MODES: https://docs.particle.io/guide/getting-started/modes/
photon/

While you are at it, make sure to set up an account

Standard Modes

CONNECTED

When it is breathing cyan, your Electron is happily connected to the Internet. When it is in this mode, you can call functions and flash code.

OTA FIRMWARE UPDATE

If your Electron is blinking magenta, it is currently loading an app or updating its firmware. This state is triggered by a firmware update or by flashing code from Particle Dev. or Particle Build. You will often see this mode when you connect your Electron to the cloud for the first time.

Note that, if you enter this mode by holding MODE on boot, blinking magenta indicates that letting go of the MODE button will enter safe mode to connect to the cloud and not run application firmware.

LOOKING FOR INTERNET

If your Electron is blinking green, it is trying to connect to the internet. If you already entered your cellular credentials, give your device a few seconds to connect and start breathing cyan.

If you haven't connected your Electron to a cellular tower yet, please wait up to ten minutes if it takes longer than that, refer to cellular troubleshooting section.

CELLULAR OFF

Fully Static Operation

CLI

This is the smoothest way I have found to claim a core. You have to claim and name it to use it. It's hard to share them. I had to email to get one released as of late. There is functionality for this but it seems to not work well.

- > particle help
- > particle setup

others? > particle token, binary, cloud, config, function, keys, serial, udp update, variable, webhook, wireless

Tinker

Fun toy for rapid testing

All the pins are slightly different: https://docs.particle.io/datasheets/

All the pins are slightly different: https://docs.particle.io/datasheets/

USB	Pin			Exposed Fu	nctions		STM32 Pin	PØ Pin#	PØ Pin Name
	3V3	3V3							
	RST	RST					E8	26	MICRO_RST_N
P	VBAT	VBAT					A9	28	VBAT
Н	GND	GND							
	D7	JTAG_TMS					PA13	44	MICRO_JTAG_TMS
O	D6	JTAG_TCK					PA14	40	MICRO_JTAG_TCK
Т	D5	JTAG_TDI	SPI3_SS			12S3_WS	PA15	43	MICRO_JTAG_TDI
	D4	JTAG_TDO	SPI3_SCK	I2S3_SCK			PB3	41	MICRO_JTAG_TDO
0	D3	JTAG_TRST	SPI3_MISO		TIM3_CH1		PB4	42	MICRO_JTAG_TRSTN
N	D2		SPI3_MOSI	CAN2_RX	TIM3_CH2	12S3_SD	PB5	3	MICRO_GPIO_5
14	D1	SCL		CAN2_TX	TIM4_CH1		PB6	5	MICRO_GPIO_3
	D0	SDA			TIM4_CH2		PB7	4	MICRO_GPIO_4

All the pins are slightly different: https://docs.particle.io/datasheets/
photon-datasheet/

Pin	USB		Exposed Functions					PØ Pin#	PØ Pin Name
VIN		VIN							
GND		GND							
TX	Р			USART1_TX	TIM1_CH2		PA9	39	MICRO_UART_TX
RX	Н			USART1_RX	TIM1_CH3		PA10	38	MICRO_UART_RX
WKP		ADC0			TIM5_CH1		PA0	27	MICRO_WKUP
DAC	0	ADC4				DAC1	PA4	22	MICRO_SPI_SSN
A5	т	ADC7	SPI1_MOSI		TIM3_CH2		PA7	23	MICRO_SPI_MOSI
A4		ADC6	SPI1_MISO		TIM3_CH1		PA6	25	MICRO_SPI_MISO
АЗ	0	ADC5	SPI1_SCK			DAC2	PA5	24	MICRO_SPI_SCK
A2	N	ADC12	SPI1_SS				PC2	2	MICRO_GPIO_6
A1	14	ADC13					PC3	1	MICRO_GPIO_7
A0		ADC15					PC5	54	MICRO_GPIO_8

All the pins are slightly different: https://docs.particle.io/datasheets/
photon-datasheet/

	User I/O	Photon Pin #	ŧ	Exposed Functions		STM32 Pin	PØ Pin#	PØ Pin Name
	RGB LED - RED	27		TIM2_CH2		PA1	8	MICRO_GPIO_0
Р	RGB LED - GREEN	28		TIM2_CH3		PA2	7	MICRO_GPIO_1
	RGB LED - BLUE	29		TIM2_CH4		PA3	6	MICRO_GPIO_2
Н	Setup Button	26		TIM3_CH2	I2S3_MCK	PC7	53	MICRO_GPIO_9
0	Reset Button	23				E8	26	MICRO_RST_N
	USB Data+	31				PB15	51	MICRO_USB_HS_DP
Ш	USB Data-	30				PB14	52	MICRO_USB_HS_DM
0	SMPS Enable	25						
		ADC	SPI	PWM/Se	rvo/Tone			
Ν	Peripheral Key	JTAG	SPI1	I2S	DAC			
		I2C/Wire	Serial1	CAN				

Web IDE

Powerful cloud platform, easy to use with libraries, good for getting your token and device IDs


```
blink-an-led.ino
     int led = D0; // You'll need to wire an LED to this one to see it blink.
     int led2 = D7; // This one is the built-in tiny one to the right of the USB jack
     void setup() {
       pinMode(led, OUTPUT);
       pinMode(led2, OUTPUT);
 11 }
 14 // Spark firmware interleaves background CPU activity associated with WiFi + Cloud activity with your code.
 16 - void loop() {
       digitalWrite(led, HIGH);
       digitalWrite(led2, HIGH);
       delay(1000);
       digitalWrite(led, LOW);
       digitalWrite(led2, LOW);
       delay(1000);
23 }
Ready.
```

Particle DEV Atom for desktop control

Particle DEV

Good resource for setting up step by step: https://
learn.sparkfun.com/tutorials/photon-development-guide/particle-dev-half-online-half-offline">https://
https://

Things you can do:

- * publish variables so other programs can get the data
- * call functions in the particle .ino file from another language like java, python, node or c++ (processing, oF)
- * subscribe to open data streams online
- * IFTTT

IFTTT

Popular Particle Recipes

Particle DEV

What is a call back?

A callback is basically a first order function where you are passing a function to some other piece of code that has an opportunity to call it at a later point in time. They are a common way events call functions.

What's a curl request? curl is an open source command line tool and library for transferring data with URL syntax

Can be used from terminal in unix

Particle DEV

get variable value

```
curl https://api.particle.io/v1/devices/
39003200134734333938037/counter\?
access_token=d6ab9273b02cfad86373775409dc3f54e57269ae
```

list of exposed functions& vars

```
curl https://api.particle.io/v1/devices/
0123456789abcdef01234567\?access_token\=1234
```

Works w/processing using http.requests

57

get = go get a url for me post = send data to a url for me

```
photon_example_pde | Processing 3.0
   photon_example_pde
 import http.requests.*;
string device_id = "390032001347343339383037";
 String access_token = "d6ab9273b02cfad86373775409dc3f54e57269ae
 int count =0;
void setup(){
    size(1000,1000);
   String reqprefix = "https://api.particle.io/v1/devices/"+devic
    GetRequest get = new GetRequest(reqprefix);
   get.send();
    JSONObject response = parseJSONObject(get.getContent());
    JSONObject info = response.getJSONObject("coreInfo");
   //print(response);
    count = response.getInt("result");
    println(count);
17 }
 void draw(){
 Done saving
 52
 53
 54
 55
 56
```