

APPENDIX F – DIPOLE CALIBRATION DATA

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

H-CT (Dymstec)		Certificate No: I	Certificate No: D450V2-1007_Mar07	
CALIBRATION C	ERTIFICAT	E		
Object	D450V2 - SN: 1	007		
Calibration procedure(s)	QA CAL-15.v4 Calibration Procedure for dipole validation kits below 800 MHz			
Calibration date:	March 15, 2007			
Condition of the calibrated item	In Tolerance			
The measurements and the unce	rtainties with confidence	ational standards, which realize the physical units probability are given on the following pages and a tory facility: environment temperature $(22 \pm 3)^{\circ}$ C a	re part of the certificate.	
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07	
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07	
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07	
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07	
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07	
Reference Probe ET3DV6 DAE4	SN 1507 SN 601	19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Oct-07 Jan-08	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07	
Network Analyzer HP 8753E	US37390585	19-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct 07	
	Name	Function	Signature	
Calibrated by:	Mike Meili	Laboratory Technician	Pr. Freih	
Approved by:	Katja Pokovic	Technical Manager	Mi U4	
			Issued: March 16, 2007	

Certificate No: D450V2-1007_Mar07

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConF sensitivity in TSL / NORM x,v,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D450V2-1007_Mar07 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY4	V4.7
Advanced Extrapolation	
Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm
15 mm	with Spacer
dx, dy = 15 mm	
dx, dy , $dz = 5 mm$	
450 MHz ± 1 MHz	
	Advanced Extrapolation Flat Phantom V4.4 15 mm dx, dy = 15 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.6 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition		
SAR measured	398 mW input power	2.08 mW / g	
SAR normalized	normalized to 1W	5.23 mW / g	
SAR for nominal Head TSL parameters ¹	normalized to 1W	5.26 mW / g ± 18.1 % (k=2)	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.40 mW / g
SAR normalized	normalized to 1W	3.52 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	3.53 mW / g ± 17.6 % (k=2)

Certificate No: D450V2-1007_Mar07

Page 3 of 6

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.1 Ω - 9.1 jΩ	
Return Loss	- 20.1 dB	

General Antenna Parameters and Design

THE PROPERTY OF THE PARTY OF TH	
Electrical Delay (one direction)	1.355 ns
The second secon	3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 1, 2002	

Certificate No: D450V2-1007_Mar07

Page 4 of 6

DASY4 Validation Report for Head TSL

Date/Time: 15.03.2007 12:52:11

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1007

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450;

Medium parameters used: f = 450 MHz; $\sigma = 0.86$ mho/m; $\varepsilon_r = 43.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (LF); ConvF(6.61, 6.61, 6.61); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=398mW 2/Area Scan (61x131x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.17 mW/g

d=15mm, Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.9 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 3.06 W/kg

SAR(1 g) = 2.08 mW/g; SAR(10 g) = 1.4 mW/g

Maximum value of SAR (measured) = 2.24 mW/g

0 dB = 2.24 mW/g

Certificate No: D450V2-1007_Mar07

Page 5 of 6

www.hct.co.kr

Impedance Measurement Plot for Head TSL

Certificate No: D450V2-1007_Mar07

Page 6 of 6