Számlálók

1. feladat

Megoldás

A megvalósításhoz a számtartomány alapján 2 db 4 bites bináris számláló kell.

A **RESET** jel aszinkron törlést feltételez, ezért 74LS161-es (aszinkron törlésű) számlálót kell használnunk.

A START jellel a szinkron töltés jelbe kell beavatkozni.

Blokkvázlat:

Számlálás: HGFE DCBA

0000 0000 (0)
...
0101 1111 (95)
$$LD_{95} = Q_G \cdot Q_E \cdot RCO_0$$

 U
1001 0011 (147)
...
1100 1000 (200) $LD_{200} = Q_H \cdot Q_G \cdot Q_D$
 $LD = START + LD200 + LD95$

Töltés:

	HGFE	DCBA
Ld_{95}	1001	0011
Ld_{200}	0000	0000
	X 00 X	00 xx

Multiplexer megvalósítása megfelelő jelek beközésével:

$$\mathbf{x} = START + \overline{Ld_{200}}$$

95 felismerésekor az alacsonyabb helyiértékű számláló RCO kimenete használható.

Az '=200' és '=95' komparátorok megvalósíthatók ÉS (NAND) kapuval, a multiplexer helyettesíthető egyszerű kombinációs hálózattal.

Figyeljünk a helyiérték sorrendre, az áramkörön balra van az alacsonyabb (A) helyiérték!

2. feladat

Megoldás

		N ₂	N_1	N_0	
\rightarrow	1	0	0	1	
	2	0	1	0	
	3	0	1	1	
	4	1	0	0	
	5	1	0	1	1
	4	1	0	0	számlálási
	3	0	1	1	irány megfordul
	. 2	0	1	0	†

3 bites szinkron számláló kell Beavatkozás:

> számláló értéke 5: számlálás lefelé számláló értéke 1: számlálás felfelé

Számlálás irányának megváltoztatása kimenet invertálásával

	N ₂	N ₁	N_0	Qc	Q_B	\mathbf{Q}_{A}		
4	1	0	0	0	1	1	3	1
3	0	1	1	1	0	0	4	felfelé számlál
2	0	1	0	1	0	1	5	- Camman

3,4,5 az első tartományban már szerepel ⊜
→ használjunk 4 bites számlálót

4 bites számláló

	N ₂	N ₁	N_0		\mathbf{Q}_{D}	Qc	\mathbf{Q}_{B}	Q_A
ſ	0	0	1	1	0	0	0	1
ı	0	1	0	2	0	0	1	0
ı	0	1	1	3	0	0	1	1
ı	1	0	0	4	0	1	0	0
l	1	0	1	5	0	1	0	1
ſ	1	0	0	11	1	0	1	1
١	0	1	1	12	1	1	0	0
	0	1	0	13	1	1	0	1

Számlálási tartomány: 1..5,11..13

ha
$$Q_D = 0$$
 $N_{2..0} = Q_{C..A}$
ha $Q_D = 1$ $N_{2..0} = \overline{Q}_{C..A}$

$$Q_D = 1$$

Q_C=1 és Q_A=1 a számlálási tartományban csak az 5 és 13 értéknél fordul elő, amikor be kell avatkozni. A Cl (törlés) bemenetet nem használjuk, ezért aszinkron törlésű (74LS161) és szinkron törlésű (74LS163) bináris számláló egyaránt használható.

Figyeljünk a helyiérték sorrendre, az áramkörön balra van az alacsonyabb (A) helyiérték!

3. feladat

Megoldás

 $Ld = Q_A \cdot Q_C \cdot \overline{Q_D}$

A számláló számlálási értékei: 0,1,2,3,4,5,11,12,13,14,15 15-nél nem kell beavatkozni, a számláló 0-ról folytatja - 4 bites bináris számláló

Blokkvázlat:

Multiplexálunk a kimeneten:

- 0...5 tartományban helyiérték helyesen továbbítjuk a számláló kimenetét,
- 11...15 tartományban eltoltan, a számláló legmagasabb helyiértékét adjuk ki a legalacsonyabb helyiértéken.

A Cl (törlés) bemenetet nem használjuk, ezért aszinkron törlésű (74LS161) és szinkron törlésű (74LS163) bináris számláló egyaránt használható

Figyeljünk a helyiérték sorrendre, az áramkörön balra van az alacsonyabb (A) helyiérték!

