EC2104 Tutorial 6 solution

ling

Section 1

Question 4

Question 4

Key matrix transpose properties

- (A + B)' = A' + B'
- $\bullet \ (AB)' = B'A'$
- Symmetric matrix $\Leftrightarrow \mathbf{A} = \mathbf{A}'$

Section 2

Question 9b

Question 9b

Given
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 Given $\mathbf{A}^2 = (a+d)\mathbf{A} - (ad-bc)\mathbf{I}$

WTF: **A** such that $\mathbf{A}^2 = 0, \mathbf{A} \neq 0$

- Require: a + d = 0 and ad bc = 0
 - $\bullet \Rightarrow a = -d, ad = bc = -d^2$
 - $d = \sqrt{-bc}$, $\{b, c | (b < 0, c > 0) \cup (b > 0, c < 0)\}$
- Therefore, we require any A such that

$$\mathbf{A} = \begin{pmatrix} -\sqrt{-st} & s \\ t & \sqrt{-st} \end{pmatrix}$$

$${s, t|st < 0} - {s, t|s = 0, t = 0}$$

Section 3

Question 9c

Question 9c

Given
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 Given $\mathbf{A}^2 = (a+d)\mathbf{A} - (ad-bc)\mathbf{I}$

WTS:
$$\mathbf{A}^3 = 0 \Rightarrow \mathbf{A}^2 = 0$$

• we also have
$$(a+d)\mathbf{A}^3 = (ad-bc)\mathbf{A}^2 = 0$$

• (ad
$$-bc$$
) $\mathbf{A}^2 = 0$

Consider cases:

1
$$A^2 = 0$$

(ad - bc) =
$$0 \Rightarrow (a+d)\mathbf{A}^2 = 0$$

1
$$A^2 = 0$$

2
$$a+d=0 \Rightarrow \mathbf{A}^2 = (a+d)\mathbf{A} - (ad-bc)\mathbf{I} = 0$$

Therefore, in all possible cases $\mathbf{A}^2 = 0$