

Regenerative Process

The application of a positive voltage at Anode can not turn on the SCR, because the junction J_2 is reverse biased and Blocking.

Base-Collector junctions of both the transistors are reverse biased and both transistors are off.

Regenerative Process

- The collector current of $\frac{T_2}{T_1}$.
- The collector current of T_1 along with gate current supplies the base drive for T_2 .

วก

The On State

- As the two transistor drive each other into saturation, the excess carrier concentrations in their base regions reach high level injection.
- At this point doping concentrations in the base regions are no longer relevant, and the SCR behaves as a three layer PIN diode.

The On State

- The two middle layers corresponds to the i-region.
- The forward voltage across the i-region is inversely proportional to the recombination rate.

22

Regenerative Process

- Base current of each transistor is f times its collector current.
- The regenerative turn on process can be initiated, if a short pulse of current is applied at the gate terminal

Regenerative Process

As long as the product $\beta_1, \beta_2 > 1$

the two transistors will drive each other harder and harder until they saturate.

24

Break Over Voltage

- The SCR does not breakdown in the forward direction, instead it turns on.
- This process is known as Breaking over and the voltage at which it occurs is called the break over voltage V_{RO} .
- The breaking over process starts due to forward leakage current, I_A of the SCR which must be kept small to save it from Beak over.

Break Over Voltage

It can be shown that the SCR leakage current is

$$I_A = \frac{I_{CO1} + I_{CO2}}{1 - (\alpha_1 + \alpha_2)}$$
 -----(1)

To keep the I small, the loop gain,

$$(\alpha_1 + \alpha_2) << 1$$

If $(\alpha_1 + \alpha_2) = 1$, the equation (1) shows that SCR will enter into sustained breakdown.

26

Break Over Voltage

- The leakage current of the SCR increases with temperature.
- Therefore at elevated temperature, the thermally generated leakage current can be sufficient to increase the SCR loop gain such that turn on occur.
- If α_2 is made smaller than α_1 , the reverse and forward breakdown voltages are nearly same.

SCR dv/dt Rating

- The SCR can also turn on by means of high dv/dt across anode and cathode.
- The increasing voltage is supported by 1/2.
- The associated SCL width increases and a charging current flows across the anode and cathode junctions, causing hole and electron injection respectively.

28

SCR dv/dt Rating

The same mechanism occurs at the cathode when gate current is applied; hence if the terminal dv/dt is large enough, SCR turns on.

Gate Cathode Short

A structural modification is used to reduce temperature sensitivity of the device and to increase the rating by introducing gate cathode shorts.

30

Gate Cathode Short

The effect of this short is like placing a resistor across the base-emitter junction of $\frac{\Gamma_2}{\kappa}$.

Gate Cathode Short

The cathode electron injection efficiency is effectively reduced thereby decreasing α_2 which results in V_{RO} and dv/dt rating.

32

Function of Cathode Short

- In the forward blocking state, J₂ leakage current will forward bias base-emitter of T₂
- As this junction voltage rises, the cathode short diverts some of the leakage current of p_2 base reducing the current that is multiplied by the transistor action, in effect the gain of T_2 is reduced.

Function of Cathode Short

The designer will make 0.7/R_{gk} larger than the maximum leakage current expected when SCR is in forward blocking state.

34

Latching Current

- To turn on the SCR, we need T_2 to contribute to the regenerative process.
- This contribution will not occur until the current flowing through the SCR is $0.7/R_{ak}$.
- Because this value of current is usually exceeded by I_g , the SCR will turn on by the gate drive.

Latching Current

- But if the gate drive is removed, the regenerative process stops and the SCR returns to its off state.
- The Anode current level required for the SCR to remain on when the gate drive is removed is called the latching current I_{t} .

36

Holding Current

Similarly, if the SCR is on and the gate drive has been removed, the anode current must fall below than a critical level to turn off the SCR because of the failure of the regenerative process.

The anode current at which this occurs is called the holding current, I_H .

Our simple description here suggests that

$$I_{L} = I_{H} = 0.7/R_{col}$$

Holding Current

- However, R_{gk} is slightly different for the turn-on and turn-off processes owing to the differences in excess charge concentrations in the p_2 region.
- For a 100A device, I_L and I_H are typically in the range of 100 to 300mA, with $I_H < I_L$.

38

Latched SCR

- An important property of the SCR is that once latched on, the gate control is lost.
- The SCR can not turned off through gate.
- SCR turn off can only be achieved by reducing the anode current externally to a level below which the loop gain is significantly less than unity.

Research and development has led to the present day range of devices, with peak turn-off current in the range of 300A to 4000A and rated forward blocking voltages of between 1300V and 6000V.

