5 Exercise session 5

Exercises on ILP.

5.1 Theta Subsumption

Orden according to theta-subsumption.

- 1. $f(j,p) \leftarrow m(j), m(p), p(j,p)$.
- 2. $f(X,Y) \leftarrow m(X), p(X,Y)$.
- 3. $f(X,X) \leftarrow m(X), p(X,Y), p(X,Z)$.
- 4. $f(X,X) \leftarrow m(X), p(X,X), m(X)$.
- 5. $f(X,X) \leftarrow m(X), p(X,X)$.
- 6. $f(X,X) \leftarrow m(X), p(X,Y)$.

5.2 LGG

Compute the LGG of the following literals and clauses:

- a. m(a, c(a, nil))m(b, c(c, nil))
- b. add(s(s(0)), s(s(0)), s(s(s(s(0)))))add(s(0), s(0), s(s(0)))
- c. $m(X, c(X, Y)) \leftarrow c(X), list(Y)$. $m(X, c(Y, Z)) \leftarrow c(X), c(Y), list(Z), m(X, Z)$.

5.3 RLGG

Compute the RLGG of:

$$gf(a,c)$$

 $gf(b,d)$

according to the following background:

$$p(a,b), p(b,c), p(c,d), m(a), m(b), f(c), m(d)$$

5.4 Using RLGG

Learn a definition for the mortal/1 predicate by using RLGG and the following learning examples:

- $+: mortal(socrates) \\ -: mortal(dracula)$
- +: mortal(bobby)

Background:

 $man(socrates),\ alive(socrates),\ bat(dracula),\ dead(dracula),\ dog(bobby),\ alive(bobby).$

5.5 Inverse Resolution

Find an inverse resolution path that derives the clause

```
daughter(X,Y):-parent(Y,X),female(X).\\
```

starting from

 $\begin{array}{l} daughter(lisa, marge).\\ parent(marge, lisa).\\ female(lisa). \end{array}$