# 20. Vector Algebra

# EE24BTECH11047 - Niketh Prakash Achanta

## I. D: MCQs with One or More than One Correct

1) Three lines  $L_1$ :  $\mathbf{r} = \lambda \hat{i}$ ,  $\lambda \in \mathbb{R}$  $L_2: \mathbf{r} = \hat{k} + \mu \hat{j}, \ \mu \in R \text{ and }$  $L_3: \mathbf{r} = \hat{i} + \hat{j} + \nu \hat{k}, \ \nu \in R$ 

are given. For which point(s)  $\mathbf{Q}$  on  $L_2$  can we find a point  $\mathbf{P}$  on  $L_1$  and a point  $\mathbf{R}$  on  $L_3$  so that P, Q and R are collinear? (JEEAdv.2019)

- a)  $\hat{k} \frac{1}{2}\hat{j}$ b)  $\hat{k}$

- c)  $\hat{k} + \hat{j}$ d)  $\hat{k} + \frac{1}{2}\hat{j}$

### II. E: Subjective Problems

- 1) From a point **O** inside the triangle ABC, perpendiculars OD,OE,OF are drawn to the sides BC,CA,AB respectively. Prove that the perpendiculars from A, B, C to the sides EF,FD,DE are concurrent. (1978)
- 2)  $A_1, A_2, \dots A_n$  are the vertices of a regular plane polygon with n sides and  $\mathbf{O}$  is its centre. Show that  $\sum_{i=1}^{n-1} (OA_i \times OA_{i+1}) = (1-n)(OA_2 \times OA_1)$ (1982 - 2Marks)
- 3) Find all values of  $\lambda$  such that  $x, y, z \neq (0, 0, 0)$  and  $(\hat{i} + \hat{j} + 3\hat{k})x + (3\hat{i} 3\hat{j} + \hat{k})y + (-4\hat{i} + 5\hat{j})z = \lambda(x\hat{i} + y\hat{j} + z\hat{k})$  where  $\hat{i}, \hat{j}, \hat{k}$  are unit vectors along the coordinate axes. (1982 3*Marks*)
- 4) A vector **A** has components  $A_1, A_2, A_3$  in a right-handed rectangular Cartesian coordinate system oxyz. The coordinate system is rotated about the x-axis through an angle  $\frac{\pi}{2}$ . Find the components of A in the new coordinate system, in terms of  $A_1, A_2, A_3$ . (1983 - 2Marks)
- 5) The position vectors of the points  $\mathbf{A}$ ,  $\mathbf{B}$ ,  $\mathbf{C}$  and  $\mathbf{D}$  are  $(3\hat{i}-2\hat{j}-\hat{k})$ ,  $(2\hat{i}+3\hat{j}-4\hat{k})$ ,  $(-\hat{i}+\hat{j}+2\hat{k})$  and  $(4\hat{i} + 5\hat{j} + \lambda\hat{k})$ , respectively. If the points **A**, **B**, **C** and **D** lie on a plane, find the value of  $\lambda$ . (1986 – 2.5 *Marks*)
- 6) If **A**, **B**, **C**, **D** are any four points in space, prove that  $|AB \times CD + BC \times AD + CA \times BD| =$ (1987 - 2Marks)4(area of triangle ABC)
- 7) Let OACB be a parallelogram with **O** at the origin and OC a diagonal. Let **D** be the midpoint of OA. Using vector methods prove that BD and CO intersect in the same ratio. Determine this ratio. (1988 - 3Marks)
- 8) If vectors  $\mathbf{a}, \mathbf{b}, \mathbf{c}$  are coplanar, show that  $\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \end{vmatrix} = \mathbf{0}$ (1989 - 2Marks)

- 9) In a triangle OAB, **E** is the midpoint of BO and **D** is a point on AB such that AD:DB=2:1. If OD and AE intersect at **P**, determine the ratio OP:PD using vector methods. (1989 4Marks)
- 10) Let  $\mathbf{A} = 2\hat{i} + \hat{k}$ ,  $\mathbf{B} = \hat{i} + \hat{j} + \hat{k}$ , and  $\mathbf{C} = 4\hat{i} 3\hat{j} + 7\hat{k}$ . Determine a vector  $\mathbf{R}$  satisfying  $\mathbf{R} \times \mathbf{B} = \mathbf{C} \times \mathbf{B}$  and  $\mathbf{R} \cdot \mathbf{A} = 0$  (1990 3*Marks*)
- 11) Determine the value of 'c' so that for all real x, the vector  $cx\hat{i} 6\hat{j} 3\hat{k}$  and  $x\hat{i} + 2\hat{j} + 2cx\hat{k}$  make an obtuse angle with each other. (1991 4*Marks*)
- 12) In a triangle ABC,**D** and **E** are points on BC and AC respectively, such that BD = 2DC and AE = 3EC. Let **P** be the point of intersection of AD and BE. Find BP/PE using vector methods. (1993 5*Marks*)
- 13) If the vectors  $\mathbf{b}$ ,  $\mathbf{c}$ ,  $\mathbf{d}$  are not coplanar, then prove that the vector  $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) + (\mathbf{a} \times \mathbf{c}) \times (\mathbf{d} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{d}) \times (\mathbf{b} \times \mathbf{c})$  is parallel to  $\mathbf{a}$ . (1994 4*Marks*)
- 14) The position vectors of the vertices  $\mathbf{A}$ ,  $\mathbf{B}$  and  $\mathbf{C}$  of a tetrahedron ABCD are  $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ ,  $\hat{\mathbf{i}}$  and  $3\hat{\mathbf{i}}$  respectively. The altitude from vertex  $\mathbf{D}$  to the opposite face ABC meets the median line through  $\mathbf{A}$  of the triangle ABC at a point  $\mathbf{E}$ . If the length of the side AD is 4 and the volume of the tetrahedron is  $\frac{2\sqrt{2}}{3}$ , find the position vector of the point  $\mathbf{E}$  for all its possible positions. (1996 5*Marks*)