

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

1/19/1

DIALOG(R) File 351:Derwent WPI
(c) 2002 Thomson Derwent. All rts. reserv.

000782010

WPI Acc No: 1971-23658S/197114

Disinfectant comprising an organotin - compd a quat ammonium cmpd and a dialde

Patent Assignee: GOOD H (GOO -I); GRUPPO LEPETIT SPA (LEPE)

Number of Countries: 004 Number of Patents: 005

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 2045337	A				197114	B
FR 2061766	A				197139	
GB 1301316	A				197252	
CH 548777	A	19740515			197426	
DE 2045337	B	19790823			197935	

Priority Applications (No Type Date): CH 6914229 A 19690917

Abstract (Basic): DE 2045337 A

Compn. for use in body case preparations, impregnation of surgical masks, air filters, etc., comprises 1-10 parts by wt. of a germicidal organotin compound, 0.05-100 parts of a germicidal quaternary ammonium compound, 10-200 parts of a lower aliphatic dialdehyde, and at least 10 parts of isopropanol. The compn. may also contain 1-20 parts of an emulsifier and 0.1-10 parts of salicylic acid or its salt. The compn. can be used in an aqueous, aqueous-alcoholic or alcoholic solution. A long-lasting disinfectant effect is achieved.

Title Terms: DISINFECT; COMPRISE; QUATERNARY; AMMONIUM

Derwent Class: D22; P34

International Patent Class (Additional): A61L-013/00; C11D-003/48

File Segment: CPI; EngPI

Manual Codes (CPI/A-N): D09-A01; D09-B; D09-C

? s pn=DE 4026756

S2 1 PN=DE 4026756

? t s2/full/1

2/19/1

DIALOG(R) File 351:Derwent WPI
(c) 2002 Thomson Derwent. All rts. reserv.

008945836 **Image available**

WPI Acc No: 1992-073105/ 199210

XRAM Acc No: C92-033578

XRPX Acc No: N92-054945

Preservative for use in cosmetics, pharmaceuticals and cleaning prods. -- contains organic acid, benzyl or phenoxy-alkyl alcohol and poly-hexamethylene biguanide salt

Patent Assignee: TURNER GMBH (TURN-N); SCHUELKE & MAYR GMBH (SCHU)

Inventor: DIEHL K H; EGGENSPERG H; OLTMANNS P; DIEHL K; EGGENSPERGER H;
OLTMANNS P

Number of Countries: 002 Number of Patents: 003

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 4026756	A	19920227	DE 4026756	A	19900824	199210 B
DE 4026756	C2	19950323	DE 4026756	A	19900824	199516
US 5670160	A	19970923	US 91741008	A	19910806	199744
			US 93115298	A	19930901	
			US 96649254	A	19960130	

Priority Applications (No Type Date): DE 4026756 A 19900824

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
DE 4026756	C2		16	A01N-047/44	
US 5670160	A		9	A01N-025/00	CIP of application US 91741008 Cont of application US 93115298

Abstract (Basic): DE 4026756 A

A preservative for prods. or systems with an aq. phase contains in a conventional carrier or solvent, a three component mixt. consisting of (amts. based on the active ingredient) (a) 5-60 wt.% of an organic acid chosen from benzoic acid, 4-hydroxybenzoic acid, salicylic acid, methanoic acid, ethanoic acid, propionic acid, sorbic acid, undecenoic acid and/or dehydroacetic acid or their Na, K, Ca, Mg, NH4 or ethanolamine salts; (b) 10-95 wt.% of an alcohol of formula (I), (II) or (III); and (c) 0.1-20 wt.% of one or more poly(hexamethylene biguanide) salts of formula (IX). R1=H, n-alkyl, iso-alkyl or alkoxy each contg. 1-3C; R2 and R3=each H, Me or Et; n=3-4; m=4-6. x=hydrochloride, ethanoate, lactate, benzoate, propionate, 4-hydroxybenzoate, sorbate or salicylate.

USE/ADVANTAGE - The preservative can be used in shampoos, cremes, lotions i.e. for cosmetic prods. with rinse-off and leave-on applications and for prods. used in washing and cleaning such as rinses and fabric softeners and in formulations for topical use of pharmaceuticals. The components act synergistically and have a broad spectrum of antimicrobial activity, even at low concns. The use of formaldehyde and other preservatives such as isothiazolinones which are environmentally polluting and toxic to humans is avoided. (15pp Dwg. No. 0/0)

Abstract (Equivalent): DE 4026756 C

Preservative agent aq. systems or phases comprises a mixt. of 5-60 (10-30) wt.% organic acids (I) and/or their salts (IA); 10-95 (40-80) wt.% alcohols of formula ArCH2OH, ArO(CH2)nOH or ArO-CHR2-CHR3OH; and 0.1-20 (0.5-10) wt.% poly(hexamethylene biguanide) salts (II).

(I) is benzoic, salicylic, formic, acetic, propionic, sorbic, undecylenic and/or dehydroacetic acid, and (IA) is the Na, K, Ca, Mg, NH4 and/or ethanolamine salt of (I); Ar is phenyl opt. substd. by 1-3C alkyl or alkoxy; R2, R3 = Me or Et; n = 3 or 4; and (II) is the HCl, acetate, lactate, benzoate, propionate, 4-hydroxybenzoate, sorbate or salicylate of (CG2)3-NHC(NH)NHc(NH)NH(CH2)3 m. m = 4-6.

USE/ADVANTAGE - The preservative is used for cosmetic, pharmaceutical and cleaning products. The preservative is less environmentally damaging than formaldehyde.

Dwg. 0/0

Abstract (Equivalent): US 5670160 A

A preservative for compositions having an aqueous phase, the preservative comprising:

- 10-30% by weight of an organic acid selected from benzoic acid, dehydroacetic acid, undecylenic acid, esters of such acids, salts of such acids, and mixtures thereof;
- 40-80% by weight of an alcohol selected from benzyl alcohol, 2-phenoxyethanol, a phenoxybutanol and a phenoxypropanol; and
- 0.5-10% by weight of a poly(hexamethylenebiguanide) salt in which the anion is selected from hydrochloride, acetate, lactate, benzoate, propionate, 4-hydroxybenzoate, sorbate and salicylate.

Dwg. 0/0

Title Terms: PRESERVE; COSMETIC; PHARMACEUTICAL; CLEAN; PRODUCT; CONTAIN; ORGANIC; ACID; BENZYL; PHENOXY; ALKYL; ALCOHOL; POLY; HEXA; METHYLENE; BI ; GUANIDE; SALT

Derwent Class: A96; B07; D21; D22; D25; P34

International Patent Class (Main): A01N-025/00; A01N-047/44

International Patent Class (Additional): A01N-025/02; A01N-037/02; A01N-037/06; A01N-037/10; A01N-037/40; A01N-043/16; A61L-002/16

File Segment: CPI; EngPI

Manual Codes (CPI/A-N): A05-J; A12-V01; A12-V04; A12-W12A; B04-C03D; B07-A04; B07-D09; B07-E01; B09-D01; B10-A15; B10-B01B; B10-B03B; B10-C03; B10-C04C; B10-C04E; B10-E02; B10-E04B; B12-A01; B12-C09; B12-L02; B12-M06 ; D08-B11; D11-B12

Plasdoc Codes (KS): 0015 0209 0231 1311 2000 2585 2672 2673 2675 2701 2733 2761 2766 3002 3273

Polymer Fragment Codes (PF):

001 014 04- 05& 062 063 153 231 24& 334 50& 525 526 575 583 589 59& 603
62- 623 624 645 678 720 721 728 020 023 131 200 258 267 267 267 270
273 276 276 300 327

Chemical Fragment Codes (M2):

01 G010 G100 J0 J011 J1 J131 M280 M320 M414 M431 M510 M520 M531 M540
M782 M903 M904 M910 P220 P861 Q254 Q261 Q620 R00258-M
02 G013 G100 H4 H401 H441 H8 J0 J011 J1 J131 M280 M320 M414 M431 M510
M520 M531 M540 M782 M903 M904 M910 P220 P861 Q254 Q261 Q620 R00693-M
03 G011 G100 H4 H401 H441 H8 J0 J011 J1 J131 M280 M320 M414 M431 M510
M520 M531 M540 M782 M903 M904 M910 P220 P861 Q254 Q261 Q620 R00291-M
04 J0 J011 J1 J171 M280 M320 M416 M431 M620 M782 M903 M904 M910 P220
P861 Q254 Q261 Q620 R00246-M
05 J0 J011 J1 J171 M210 M211 M262 M281 M320 M416 M431 M620 M782 M903
M904 M910 P220 P861 Q254 Q261 Q620 R00247-M
06 J0 J011 J1 J171 M210 M212 M262 M281 M320 M416 M431 M620 M782 M903
M904 M910 P220 P861 Q254 Q261 Q620 R00445-M
07 H7 H724 J0 J011 J1 J171 M210 M215 M231 M262 M281 M320 M416 M431 M782
M903 M904 M910 P220 P861 Q254 Q261 Q620 R00903-M
08 H7 H721 J0 J011 J1 J171 M220 M224 M231 M262 M281 M320 M416 M431 M630
M650 M782 M903 M904 P220 P861 Q254 Q261 Q620 R06708-M
09 F012 F013 F014 F016 F121 J5 J522 J581 L9 L942 M210 M211 M240 M262
M281 M320 M413 M431 M510 M521 M530 M540 M630 M650 M782 M903 M904
M910 P220 P861 Q254 Q261 Q620 R01320-M
10 G010 G011 G012 G013 G100 H4 H401 H481 H541 H542 H8 M210 M211 M212
M213 M231 M232 M240 M272 M280 M281 M311 M312 M313 M314 M315 M321
M332 M333 M342 M373 M383 M391 M414 M431 M510 M520 M531 M540 M782
M903 M904 P220 P861 Q254 Q261 Q620 9210-04001-M 9210-04002-M
11 K0 L2 L240 L299 M210 M213 M231 M273 M282 M315 M323 M332 M342 M383
M393 M416 M431 M620 M630 M640 M650 M782 M903 M904 P220 P861 Q254
Q261 Q620 9210-04003-M
12 F014 F015 F140 F523 F610 H102 H181 H182 H401 H402 H481 H482 H5 H521
H581 H582 H583 H8 L640 L660 L699 M210 M211 M212 M213 M214 M215 M216
M220 M221 M222 M223 M224 M225 M231 M232 M233 M272 M281 M311 M312

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Patentschrift**
(10) DE 40 26 756 C2

(51) Int. Cl. 6:
A 01 N 47/44
A 01 N 37/10
A 01 N 37/40
A 01 N 37/02
A 01 N 37/06
A 01 N 43/16
A 61 L 2/16

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Turner GmbH, 2000 Norderstedt, DE

(74) Vertreter:

Stolberg-Wernigerode, Graf zu, U., Dipl.-Chem.
Dr.rer.nat.; Suchantke, J., Dipl.-Ing.; Huber, A.,
Dipl.-Ing.; von Kameke, A., Dipl.-Chem. Dr.rer.nat.;
Voelker, I., Dipl.-Biol.; Franck, P., Dipl.-Chem.ETH
Dr.sc.techn., Pat.-Anwälte, 22607 Hamburg

(72) Erfinder:

Eggensperger, Heinz, Dr., 2000 Hamburg, DE; Diehl,
Karl-Heinz, 2000 Norderstedt, DE; Oltmanns, Peter,
Dr., 2000 Hamburg, DE

(56) Für die Beurteilung der Patentfähigkeit
in Betracht gezogene Druckschriften:

DE	32 37 074 A1
US	48 36 986
US	44 20 484
EP	2 65 202 A2
EP	2 52 278 A2
EP	2 31 080 A1
EP	2 26 081 A1

(54) Konservierungsmittel und deren Verwendung

DE 40 26 756 C2

DE 40 26 756 C2

Beschreibung

Die Erfindung betrifft ein Konservierungsmittel für Produkte oder Systeme mit einer wässrigen Phase sowie deren Verwendung und insbesondere Konservierungsmittel für Shampoos, Cremes, Lotionen, also für kosmetische Produkte für "rinse-off" und "leave-on"-Anwendung, sowie für Produkte aus dem Gebiet der Wasch- und Reinigungsmittel, wie Spülmittel und Wäschebeizspüler sowie Formulierungen für topische Anwendung aus dem pharmazeutischen Bereich.

Die Verwendung von Formaldehyd und Formaldehyddepotstoffen wie Isothiazolinonen ist wegen schlechter Umweltverträglichkeit und aus humantoxischer Sicht unerwünscht. Ferner sind aus K. H. Wallhäuser "Praxis der Sterilisation, Desinfektion und Konservierung", 4. Aufl. (1988) und aus H. P. Fiedler "Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete", 3. Aufl. (1989) zahlreiche Konservierungsmittel wie u. a. auch organische Säuren, Phenylverbindungen oder Guanidine und zahlreiche andere Verbindungen erwähnt.

Dem Auffinden neuer und ganz spezifischer Konservierungsmittel ist daher eine besondere Bedeutung beizumessen.

Die Erfindung hat sich die Aufgabe gestellt, ein neues Konservierungsmittel für Produkte oder Systeme mit einer wässrigen Phase vorzuschlagen, welche bereits bei niederen Einsatzkonzentrationen ein breites antimikrobielles Wirkungsspektrum zeigt, insgesamt gut wasserlöslich und umweltverträglich ist.

Zur Lösung dieser Aufgabe wird ein Konservierungsmittel vorgeschlagen, welches bezogen auf die Wirkstoffe, in Kombination ein Dreikomponenten-Gemisch aus

a) 5 bis 60 Gew.-% Benzoësäure, 4-Hydroxybenzoësäure, Salicylsäure, Ameisensäure, Essigsäure, Propionsäure, Sorbinsäure, Undecylensäure oder Dehydracetsäure oder deren Mischungen einschließlich deren Natrium-, Kalium-, Calcium-, Magnesium-, Ammonium- und Enthanolaminsalze

b) 10 bis 95 Gew.-% Alkohole der allgemeinen Formeln

in denen R₁ Wasserstoff, einen n-Alkyl-, iso-Alkyl- oder Alkoxy-Rest mit 1 bis 3 C-Atomen und R₂ und R₃ Wasserstoff oder einen CH₃- oder C₂H₅-Rest bedeuten und n den Wert von 3 oder 4 hat, sowie

c) 0,1 bis 20 Gew.-% eines oder mehrerer Poly(hexamethylenbiguanid)-Salze der allgemeinen Formel

in der n den Wert von 4 bis 6 hat,

60 in einem üblichen Träger oder Lösungsmittel enthält.

Bevorzugte Ausführungsformen sind in den Unteransprüchen erwähnt.

Dieses patentgemäße Konservierungsmittel enthält im Prinzip als synergistische Wirkstoffe eine Mischung aus mindestens a) einer der genannten organischen Säuren, b) einem der genannten Monophenylglykolether oder Benzylalkohol und c) einem der genannten Guanidinderivate.

65 Diese synergistische Kombination zeigt eine überraschend hohe Wirksamkeit, insbesondere wenn man berücksichtigt, daß die in Anhang 6 zur Europäischen Kosmetik-Verordnung aufgezeigten organischen Säuren, wie Sorbinsäure oder Salicylsäure nur in verhältnismäßig hoher Konzentration in undissoziierter Form vorwiegend gegen Hefen und Schimmelpilze wirksam sind und gegen Bakterien nur eine geringe Wirksamkeit zeigen.

Hierzu kommt, daß Monophenylglykolether wie Phenoxyethanol oder Phenoxypropanol sowie andere Alkohole wie Benzylalkohol allein in einem akzeptablen Konzentrationsbereich keine ausreichende antimikrobielle Wirkung zeigen.

Demzufolge ist es überraschend, daß eine Konzentration einer der genannten organischen Säuren mit einem der genannten Monophenylglykolether bzw. Benzylalkohol und mit einem der genannten Polyhexamethylenbiguanid-Salze eine ausgezeichnete konservierende Wirkung für Produkte oder Systeme mit einer wäßrigen Phase bewirkt.

Besonders überraschend ist die Eigenschaft des aus drei Komponenten bestehenden erfindungsgemäß Konservierungsmittels, daß es in Kombination mit Komplexbildnern oder Alkylglycerinethern zu einer weiteren synergistischen Wirkungssteigerung kommt. Überraschend ist ferner die Eigenschaft des erfindungsgemäß aus drei Wirkstoffklassen bestehenden Konservierungsmittels, daß es in Kombination mit anderen an sich bekannten Konservierungsmitteln, wie Chlorallyladamantan, p-Hydroxybenzoëureester, 1,2-Dibrom-2,4-dicyanobutan, 2-Brom-2-nitropropan-1,3-diol, 5-Brom-5-nitro-1,3-dioxan und Formaldehyddepotstoffen eine weitere synergistische Wirksamkeitssteigerung erreicht werden kann. Als Komponente a) werden organische Säuren eingesetzt, die der allgemeinen Formel R-COOH entsprechen, wobei R die folgende Bedeutung haben kann:

und/oder Dehydracetsäure

sowie deren Natrium-, Kalium-, Calcium-, Magnesium-, Ammonium-, Ethanolaminsalze.

Diese Komponente a) wird in Mengen von 5 bis 60 Gew.-% eingesetzt, und vorzugsweise in Mengen von 10 bis 30 Gew.-%. Besonders bevorzugter Vertreter dieser Säuren ist Benzoesäure. Die Mengenangaben beziehen sich hier und im folgenden jeweils auf die eigentlichen Wirkstoffe des synergistischen Konservierungsmittel-Gemisches.

Als Komponente b) werden 10 bis 95 und vorzugsweise 40 bis 80 Gew.-% eines oder mehrerer Alkohole der folgenden allgemeinen Formeln I bis III eingesetzt:

5

10

15

20

25

30

35

40

45

50

55

60

65

(n = 3, 4)

20 in der R₁ ein H-Atom, n-Alkyl oder iso-Alkyl oder Alkoxy mit 1 bis 3 C-Atomen und R₂ und R₃ ein H-Atom oder eine CH₃- oder C₂H₅-Gruppe bedeuten und n den Wert von 3 oder 4 hat.

Bevorzugt werden diese Alkohole in Mengen von 40 bis 80 Gew.-% eingesetzt, wobei die Alkohole der allgemeinen Formel I und II bevorzugt sind.

Als Komponente c) werden Polyhexamethylenbiguanidsalze der allgemeinen Formel

eingesetzt, und zwar in einer Menge von 0,1 bis 20 Gew.-% und vorzugsweise in einer Menge von 0,5 bis 10 Gew.-%.

40 Bevorzugt werden als Salze das Hydrochlorid, Lactat und Benzoat.

Bei einer besonders bevorzugten Ausführungsform des erfundungsgemäßen Konservierungsmittels aus den drei erwähnten synergistisch wirkenden Komponenten a), b) und c) wird als weitere synergistisch wirkende Komponente d) ein substituierter Glycerinether in einer Menge von 0,1 bis 20 und vorzugsweise in einer Menge von 0,5 bis 10 Gew.-% zugesetzt, wobei der Glycerinether die folgende allgemeine Formel mit den aufgeführten Substituenten aufweist:

R₁ = n-Alkyl oder iso-Alkyl mit 4–12 C-Atomen
X = OH, NH₂, –OCH₂OH,

60 Y = OH, NH₂, –OCH₂OH,

Bei einer weiteren ebenfalls bevorzugten Ausführungsform der Erfindung kann das aus den Komponenten a), b) und c) und gegebenenfalls d) enthaltende Konservierungsmittel noch als weitere Komponente e) einen

Alkylether der folgenden allgemeinen Formel in einer Menge von 0,1 bis 20 und vorzugsweise 0,5 bis 10 Gew.-% enthalten.

5

10

15

20

25

30

35

40

45

50

55

60

65

$\text{R}_1 = \text{n-Alkyl oder iso-Alkyl mit 4--12 C-Atomen}$

$\text{X} = \text{O}, \text{NH}$

$\text{Y} = \text{O}, \text{NH}$

Letztlich kann das synergistisch wirkende Konservierungsmittel aus den drei Komponenten a), b) und c) gegebenenfalls mit den weiteren Komponenten d) und/oder e) noch Komplexbildner wie Ethyldiamintetraessigsäure (EDTA) und deren Salze oder Nitrolotriessigsäure (NTA), Aminoglycinderivate, Serindessigsäure oder Isoserindiessigsäure enthalten.

Die synergistische Wirkungssteigerung wirkt sich auch aus, wenn das Konservierungsmittel noch weitere Biozide enthält wie Chlorallyladamantan, p-Hydroxybenzoësäureester, 1,2-Dibrom-2,4-dicyanobutan, 2-Brom-2-nitropropan-1,3-diol, 5-Brom-5-nitrol-1,3-dioxan sowie Imidazolidinharnstoff und/oder Hydantoinderivate, und zwar vorzugsweise in einer Menge von 1 bis 20 Gew.-%.

Die patentgemäßen Konservierungsmittel können in Form ihrer Einzelkomponenten als Gemisch oder als Konzentrat in einem Lösungsmittel den zu konservierenden Produkten wie kosmetischen, pharmazeutischen oder reinigenden Produkten zugesetzt werden, wobei die Konzentration, bezogen auf das zu konservierende Produkt in einem Bereich von 0,01 bis 2 Gew.-%, bevorzugt bei 0,1 bis 0,3%, jeweils bezogen auf die Wirkstoffe liegt.

Die erfindungsgemäßen Zubereitungen können einfach durch Zusammengeben der einzelnen Komponenten erhalten werden. Es kann jedoch z. B. zur Erhöhung der Kältestabilität bei Lagerung oder Transport vorteilhaft sein, einen Teil der Alkoholkomponenten durch ein weiteres Lösemittel zu ersetzen. Als Lösemittel kommen neben Wasser Glykole wie Propylenglykol, Dipropylenglykol, Triethyleneglykol oder Glykolether wie Butyldiglykol in Betracht.

Die synergistische Wirksamkeitssteigerung der erfindungsgemäßen Zubereitungen wird durch die Ergebnisse aus einem Konservierungsbelastungstest mit zwei verschiedenen wasserhaltigen Systemen demonstriert. Das nachfolgend näher beschriebene Testverfahren war insofern erschwert, als daß es sich bei den genannten Pseudomonas-Praxisproblemkeimen um Spezies handelt, die an die beiden Substrate adaptiert waren (Ps. cepacia, Ps. putida, Ps. stutzeri).

Der nachfolgend beschriebene Test wird zur Bestimmung der konservierenden Wirkung von chemischen Konservierungsmitteln in wasserhaltigen Produkten bzw. Systemen durchgeführt, wobei das Prinzip der beschriebenen Methode die Wirksamkeit chemischer Konservierungsmittel im Hinblick auf die Gebindekonservierung von wasserhaltigen Produkten/Systemen unter Einsatzbedingungen des Verbrauchers widerspiegelt. Hierzu werden in verschiedenen Versuchsansätzen zu den unkonservierten Proben die zu untersuchenden Konservierungsmittel in verschiedenen Konzentrationen zugegeben. Eine laufende Keimbelastrung wird durch periodisches Beimpfen der Versuchsansätze erreicht. Parallel zur Beimpfung werden jeweils unmittelbar davor Ausstriche der einzelnen Ansätze vorgenommen. Es erfolgt eine Beurteilung anhand des mikrobiellen Wachstums der Ausstriche. Ein Konservierungsmittel ist umso wirksamer, je länger der Zeitraum bis zum ersten Auftreten mikrobiellen Wachstums ist.

Bei der Durchführung dieser Versuche werden jeweils 25 g des zu prüfenden Produktes in Schraubdeckelgläser eingewogen. Die zu untersuchenden Konservierungsmittel werden in jeweils getrennten Ansätzen in ihren Anwendungskonzentrationen zugegeben. Als Wachstumskontrolle dient jeweils ein unkonserviertes Produktmuster. Zwei Tage nach Zusatz der Konservierungsmittel werden die Proben mit 0,1 ml Impflösung infiziert. Der Titer dieser Impflösung sollte zwischen 10^8 und 10^9 Keimen/ml liegen. Testorganismen für den Konservierungsbelastungstest sind folgende Keime:

Bakterien:

Escherichia coli

Staphylococcus aureus

Pseudomonas aeruginosa

Pseudomonas Praxis-Problemkeime

Hefen:

Candida albicans

Schimmelpilze:

Aspergillus niger

Die Testansätze werden in der Folge einmal wöchentlich beimpft und einmal pro Woche auf Agarplatte ausgestrichen, wobei der erste Ausstrich unmittelbar vor der Neubeimpfung erfolgt. Die Beurteilung des mikrobiellen Wachstums der Ausstriche erfolgt nach einer dreitägigen Inkubation bei 25°C. Negative Ausstriche werden sicherheitshalber weitere drei Tage beobachtet und nochmals beurteilt. Die Beurteilung der Konservierungswirkung der einzelnen Produktkonzentrationen erfolgt in halbquantitativer Methode über den Bewuchs der einzelnen Ausstriche nach der Benotung von — über + bis +++. Das Ergebnis der Konservierung wird durch mehrfach nachgewiesenes massives, d. h. +++-Keimwachstum ermittelt. Der Versuch wird maximal zehn Wochen lang durchgeführt.

Bei der Beurteilung der Ergebnisse wird davon ausgegangen, daß ein Konservierungsmittel dann als gut zu beurteilen ist, wenn es unter den zuvor beschriebenen Laborbedingungen einen Zeitraum von sechs Wochen ohne Keimbefall der Probenansätze besteht, d. h. auch nach der sechsten Beimpfung kein mikrobielles Wachstum nachweisbar ist.

Zur Demonstration der überraschenden Wirkungssteigerung der erfundungsgemäßen Zubereitungen wurde der Test auf zehn Wochen, d. h. zehn Impfzyklen, erweitert.

Bei den zur Bestimmung der antimikrobiellen Wirksamkeit herangezogenen wasserhaltigen Produkte handelt es sich um die nachfolgend beschriebenen Formulierungen eines Shampoos (A) und einer Tagescreme (o/w) (B) der folgenden Zusammensetzung:

A. Shampoo

	Konzentration [% w/w]	
25	Alkylethersulfat + nichtionischer Emulgator	15,30
	Fettsäurepolypeptid-Kondensat	18,80
	Laurinsäuremonoglycerid	1,00
	Parfüm	0,30
	Natriumchlorid	1,60
30	Wasser ad	100,00
	Konservierungsmittel	

B. Tagescreme

	Konzentration [% w/w]	
35	Polyoxyethylenfettsäureester	6,00
	Cetylalkohol	1,00
	Stearinsäure	5,00
	Paraffinöl	4,00
	Octyldodecanol	3,00
45	Glycerin	3,80
	Wasser ad	100,00
	Parfüm	0,30
	Konservierungsmittel	

50 Die folgende Tabelle I gibt die Wirksamkeit der einzelnen Komponenten im Hinblick auf ihre Konzentration in PPM an, ausgedrückt durch die im Keimbelastungstest erreichten Impfzyklen ohne Bewuchs, und zwar für zwei typische Vertreter der Komponente a), nämlich Benzoësäure und Dehydracetsäure und ferner für einen typischen Vertreter der Alkohole, nämlich für 2-Phenoxyethanol und ferner für einen typischen Vertreter der Komponente c), nämlich für ein Polyhexamethylenebiguanidhydrochlorid und letztlich auch für die weitere Komponente d), nämlich den substituierten Glycerinether.

Ein Vergleich der Werte der folgenden Tabelle I mit denen der Tabelle II zeigt, daß mit jeder der angegebenen Kombination des patentgemäßen Drei-Komponenten-Systems, bestehend aus Säure, Alkohol und Guanidinderivat die Wirksamkeit der Einzelkomponenten von bei gleichen Einsatzkonzentrationen übertroffen wird, was für einen tatsächlich vorhandenen synergistischen Effekt spricht.

Eine vergleichende Betrachtung der Ergebnisse aus Tabelle II mit denen aus Tabelle III verdeutlicht die Wirksamkeitssteigerung beim Übergang zum Vier-Komponenten-System von Tabelle III, welches zusätzlich den Glycerinether enthält. Auch für das Vier-Komponenten-System gilt, wie wiederum ein Vergleich mit Tabelle I zeigt, daß die Wirksamkeit der Kombinationen in jedem Fall größer ist als die der Einzelwirkstoffe bei gleicher Konzentration.

Entsprechendes ist den Tabellen IV—IX zu entnehmen, in denen die im Keimbelastungstest ermittelten Ergebnisse für weitere Beispiele jeweils des Drei- und dazugehörigen Vier-Komponenten-Systems im Shampoo (Tabellen-Paare IV/V und VIII/IX) und in der Tagescreme (Tabellen-Paar VI/VII) dargestellt sind.

Tabelle I

Konzentration [ppm]	Impfzyklen								5	
	Benzoesäure		Dehydracet- säure		2-Phenoxy- ethanol		PHMBG			
	Tc	Sh	Tc	Sh	Tc	Sh	Tc	Sh		
10 000	9	10	5	7	6	5	10	0	6	4
8 000	8	9	4	5	5	5	10		5	3
6 000	6	8	3	4	4	3	10		3	2
5 000	5	7	1	2	2	2	10		3	1
4 000	4	5	0	1	1	0	8		1	0
3 000	2	4		0	0		7		0	
2 500	1	2					6			
2 000	0	1					5			
1 500		0					3			
1 000							2			
750							1			
500							0			

PHMBG = Polyhexamethylenbiguanidhydrochlorid.

C₇-GE = 3-Heptyloxypropan-1,2-diol (C₇-Glycerinether).

Tc = Tagescreme.

Sh = Shampoo.

10

15

20

30

35

40

45

50

55

60

65

5
10
15
20
25
30
35
40
45
50
55
60
65

Tabelle II
Tagescreme

	Konzentration [ppm]												
	5	10	15	20	25	30	35	40	45	50	55	60	65
Benzoesäure	100	200	300	400	500	600	200	200	200	200	200	200	200
2-Phenoxyethanol	350	700	1050	1400	1750	2100	700	700	700	700	700	700	700
PHMBG	5	10	15	20	25	30	100	200	400	800	1600	3200	6400
Impfzyklon	2	4	5	7	9	10	4	5	6	8	9	10	7

PHMBG = Polyhexamethylenbiguanidhydrochlorid.

Tabelle III
Tagescreme

	Konzentration [ppm]									
Benzoësäure	100	200	300	400	500	600	200	200	200	400
2-Phenoxyethanol	350	700	1050	1400	1750	2100	700	700	700	1600
PHMBG	5	10	15	20	25	30	100	200	400	800
C ₇ -Glycerinether	200	200	200	200	200	300	300	300	300	3200
Impfzyklon	3	5	7	8	10	10	7	8	9	10
PHMBG	= Polyhexamethylenebiguanidhydrochlorid.									
C ₇ -Glycerinether	= 3-(Heptyloxy)-propan-1,2-diol.									

Tabelle IV

Shampoo

5	Konzentration [ppm]														
	Benzoësäure	500	1000	1500	2000	2500		600	600	600	600	1200	1200	1200	1200
10	2-Phenoxyethanol	1000	1000	1500	1500	1500		2000	2000	2000	2000	2000	2000	2000	2000
	PHMBG	100	100	100	100	100		100	200	300	400	100	200	300	400
15	Impfzyklen	2	3	5	7	9		4	5	6	7	6	6	8	8

PHMBG = Polyhexamethylenbiguanidhydrochlorid

Tabelle V
Shampoo

20	Konzentration [ppm]														
	Benzoësäure	500	1000	1500	2000	2500		600	600	600	600	1200	1200	1200	1200
25	2-Phenoxyethanol	1000	1000	1500	1500	1500		2000	2000	2000	2000	2000	2000	2000	2000
	PHMBG	100	100	100	100	100		100	200	300	400	100	200	300	400
	C ₇ -Glycerinether	300	300	300	300	300		400	400	400	400	500	400	300	200
30	Impfzyklen	3	5	7	8	10		5	6	8	9	8	8	10	10

PHMBG = Polyhexamethylenbiguanidhydrochlorid
C₇-Glycerinether = 3-(Heptyloxy)-propan-1,2-diolTabelle VI
Tagescreme

35	Konzentration [ppm]									
40	Dehydracetsäure	200	300	400	500		300	300	300	300
	2-Phenoxyethanol	700	1050	1400	1750		600	600	600	600
45	PHMBG	10	15	20	25		100	200	400	800
	Impfzyklen	3	4	5	7		4	5	6	7
	Dehydracetsäure	100	200	400	800	1600	200	400	600	800
50	Benzoësäure	100	200	400	800	1600	800	600	400	200
	2-Phenoxyethanol	600	600	600	600	600	800	800	800	800
	PHMBG	500	400	300	200	100	100	100	100	100
55	Impfzyklen	6	6	5	7	9	7	7	6	5

PHMBG = Polyhexamethylenbiguanidhydrochlorid.

60

65

Tabelle VII

Tagescreme

5

	Konzentration [ppm]							
Dehydracetsäure	200	300	400	500		300	300	300
2-Phenoxyethanol	700	1050	1400	1750		600	600	600
PHMBG	10	15	20	25		100	200	400
C ₇ -Glycerinether	200	200	200	200		300	300	300
Impfzyklen	4	6	7	9		6	7	9
Dehydracetsäure	100	200	400	800	1600	200	400	600
Benzoësäure	100	200	400	800	1600	800	600	400
2-Phenoxyethanol	600	600	600	600	600	800	800	800
PHMBG	500	400	300	200	100	100	100	100
C ₇ -Glycerinether	300	300	200	100	100	200	200	200
Impfzyklen	8	8	7	9	10	10	9	8

PHMBG = Polyhexamethylenbiguanidhydrochlorid.

C₇-Glycerinether = 3-(Heptyloxy)-propan-1,2-diol.

30

Tabelle VIII

Shampoo

35

	Konzentration [ppm]									
Dehydracetsäure	1000	1500	2000	2500	3000	2000	2000	2000	2000	2000
2-Phenoxyethanol	1000	1000	1000	1000	1000	2000	2000	2000	2000	2000
PHMBG	100	100	100	100	100	200	400	600	800	1000
Impfzyklen	0	1	2	2	3	3	4	4	5	6
Dehydracetsäure	2000	1500	1000	500		1000	1000	1000	1000	
Benzoësäure	500	1000	1500	2000		1000	1000	1000	1000	
2-Phenoxyethanol	1500	1500	1500	1500		900	700	500	300	
PHMBG	100	100	100	100		100	300	500	700	
Impfzyklen	6	7	8	10		6	8	9	10	

PHMBG = Polyhexamethylenbiguanidhydrochlorid.

60

65

Tabelle IX

Shampoo

5	Konzentration [ppm]										
10	Dehydrcetsäure	1000	1500	2000	2500	3000	2000	2000	2000	2000	2000
15	2-Phenoxyethanol	1000	1000	1000	1000	1000	2000	2000	2000	2000	2000
20	PHMBG	100	100	100	100	100	200	400	600	800	1000
25	C ₇ -Glycerinether	400	400	400	400	400	300	300	300	300	300
30	Impfzyklen	2	2	3	4	5	4	6	7	7	9
35	Dehydrcetsäure	2000	1500	1000	500		1000	1000	1000	1000	
40	Benzoësäure	500	1000	1500	2000		1000	1000	1000	1000	
45	2-Phenoxyethanol	1500	1500	1500	1500		900	700	500	300	
50	PHMBG	100	100	100	100		100	300	500	700	
55	C ₇ -Glycerinether	300	300	300	300		400	400	400	400	
60	Impfzyklen	8	8	10	10		8	10	10	10	

PHMBG = Polyhexamethylenbiguanidhydrochlorid.
C₇-Glycerinether = 3-(heptoxy)-propan-1,2-diol.

Ausgehend von der obigen Erkenntnis der synergistischen Wirkung der Komponenten a), b) und c) und der weiteren Wirkungssteigerung durch die Komponente d) und e) wurden die folgenden Präparate hergestellt.

Beispiel 1

Es wurde ein Konservierungsmittel mit den folgenden Bestandteilen hergestellt:

		[Gewichts-%]
40	Dehydrcetsäure	10
	Benzoësäure	10
	PHMBG	1
45	Wasser	4
	Benzylalkohol	36
	2-Phenoxyethanol	21
	Dipropylenglykol	18

Dieses Beispiel repräsentiert das erfindungsgemäße synergistisch wirkende Drei-Komponenten-System, bestehend aus Säuren, Alkoholen und dem Guanainderivat.

Die Konservierungsmittel gemäß Beispiel 2 und 3 enthalten bei gegenüber Beispiel 1 reduziertem Säuregehalt zusätzlich als weitere Wirkstoffe p-Hydroxybenzoësäureester.

Beispiel 2

		[Gewichts-%]
60	Dehydrcetsäure	3
	Undecylensäure	4
	p-Hydroxybenzoësäureethylester	8
	p-Hydroxybenzoësäurepropylester	4
	p-Hydroxybenzoësäurebutylester	2
65	PHMBG	1
	Triethylenglykol	59
	Wasser	4
	Benzylalkohol	15

Beispiel 3

	[Gewichts-%]	
Dehydracetsäure	3	5
Benzoesäure	4	
p-Hydroxybenzoësäureethylester	8	
p-Hydroxybenzoësäurepropylester	4	
p-Hydroxybenzoësäurebutylester	2	
PHMBG	1	10
Triethylenglykol	59	
Wasser	4	
Benzylalkohol	15	
		15

In der Regel reichen 0,2—0,3% dieser Zubereitungen bezogen auf das zu konservierende Produkt aus, um z. B. kosmetische Produkte ausreichend gegen mikrobiellen Verderb zu schützen.

In den Präparaten gemäß Beispielen 4—9 wurde weitestgehend auf ein zusätzliches Lösungsmittel verzichtet. Der höhere Gehalt an der Alkohol-Komponente macht sich in einer Wirkungssteigerung im Vergleich zu dem Konservierungsmittel nach Beispiel 1 bemerkbar.

Beispiel 4

	[Gewichts-%]	
Dehydracetsäure	10	
Benzoesäure	10	
PHMBG	1	
Wasser	4	30
2-Phenoxyethanol	75	

Beispiel 5

	[Gewichts-%]	
Dehydracetsäure	10	
Benzoesäure	10	
p-Hydroxybenzoësäurebutylester	2	40
PHMBG	1	
Wasser	4	
2-Phenoxyethanol	73	
		45

Beispiel 6

	[Gewichts-%]	
Dehydracetsäure	10	
Benzoesäure	10	
PHMBG	1	
Benzylalkohol	79	55

Beispiel 7

	[Gewichts-%]	
Dehydracetsäure	10	
Benzoesäure	10	
PHMBG	1	
Wasser	4	65
Benzylalkohol	37,5	
Phenoxypropanol	37,5	

Beispiel 8

[Gewichts-%]

5	Dehydracetsäure	10
	Benzoësäure	10
	PHMBG	2
	Wasser	6
10	Benzylalkohol	25
	2-Phenoxyethanol	47

Beispiel 9

15		[Gewichts-%]
	Dehydracetsäure	10
	Benzoësäure	10
20	PHMBG	3
	Wasser	8
	Benzylalkohol	44
	2-Phenoxyethanol	25

- 25 Beispiel 9 ist als leistungsstärkstes Präparat in dieser Reihe besonders zur Konservierung von solchen o/w- bzw. w/o-Emulsionen geeignet, die aufgrund ihres Aufbaus und/oder ihrer Inhaltsstoffe besondere Anforderungen an das Konservierungsmittel stellen.
- 30 Die Beispiele 10–14 enthalten als vierte Komponente zusätzlich je einen Vertreter aus der Reihe der Glycerinether. Aufgrund der dadurch erreichten weiteren Wirkungssteigerung wird mit diesen Zubereitungen in der Regel schon bei Einsatzkonzentrationen von 0,1–0,2%, bezogen auf das zu konservierende Produkt, eine ausreichende Konservierung erreicht.

Beispiel 10

35		[Gewichts-%]
	Dehydracetsäure	10
	Benzoësäure	10
40	PHMBG	1
	Wasser	4
	2-Phenoxyethanol	55
	3-Heptyloxy-propan-1,2-diol	20

- 45 Beispiel 11

50		[Gewichts-%]
	Dehydracetsäure	10
	Benzoësäure	10
	PHMBG	1
	Wasser	4
55	2-Phenoxyethanol	55
	3-Octyloxy-propan-1,2-diol	15
	Phenoxybutanol	5

60

65

Beispiel 12

	[Gewichts-%]	
Dehydracetsäure	7	5
Benzoësäure	13	
PHMBG	2	
Wasser	8	
2-Phenoxyethanol	60	
3-Dodecyloxy-propan-1,2-diol	10	10

Beispiel 13

	[Gewichts-%]	
Dehydracetsäure	10	
Benzoësäure	10	
PHMBG	1	20
2-Phenoxyethanol	64	
3-(2-Ethylhexyloxy)-propan-1,2-diol	15	

Beispiel 14

	[Gewichts-%]	
Dehydracetsäure	5	
Benzoësäure	15	30
PHMBG	1	
Wasser	4	
Phenoxypropanol	65	
3-(2-Ethylhexyloxy)-propan-1,2-diol	10	35

Patentansprüche

1. Konservierungsmittel für Produkte oder Systeme mit einer wässrigen Phase, dadurch gekennzeichnet, daß es, bezogen auf die Wirkstoffe, in Kombination ein Dreikomponenten-Gemisch aus
 a) 5 bis 60 Gew.-%, insbesondere 10 bis 30 Gew.-%, Benzoësäure, 4-Hydroxybenzoësäure, Salicylsäure, Ameisensäure, Essigsäure, Propionsäure, Sorbinsäure, Undecylensäure oder Dehydracetsäure oder deren Mischungen einschließlich deren Natrium-, Kalium-, Calcium-, Magnesium-, Ammonium- und Ethanolaminsalze
 b) 10 bis 95 Gew.-%, insbesondere 40 bis 80 Gew.-%, Alkohole der allgemeinen Formeln

in denen R₁ Wasserstoff, einen n-Alkyl-, iso-Alkyl- oder Alkoxy-Rest mit 1 bis 3 C-Atomen und R₂ und R₃ Wasserstoff oder einen CH₃- oder C₂H₅-Rest bedeuten und n den Wert von 3 oder 4 hat, sowie
 c) 0,1 bis 20 Gew.-%, insbesondere 0,5 bis 10 Gew.-%, eines oder mehrerer Poly(hexamethylenbiguanid)-Salze der allgemeinen Formel

10 in der n den Wert von 4 bis 6 hat,
in einem üblichen Träger oder Lösungsmittel enthält.
2. Konservierungsmittel nach Anspruch 1, dadurch gekennzeichnet, daß es als weitere Komponente d) bezogen auf die Wirkstoffe 0,1 bis 20 Gew.-%, insbesondere 0,5 bis 10 Gew.-%, eines substituierten Glyceri-
15 nethers der allgemeinen Formel

enthält, in der R₁ ein n-Alkyl- oder Isoalkylrest mit 4 bis 12 C-Atomen ist und X und Y gleich oder verschieden sind und die Bedeutung von OH, NH₂, -OCH₂OH oder

30 haben.
3. Konservierungsmittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß es als weitere Komponente e) einen Alkylether der allgemeinen Formel

40 in der R₁ ein n-Alkyl- oder iso-Alkyl-Rest mit 4 bis 12 C-Atomen ist, und X und Y die Bedeutung von O und/oder NH haben, in einer Menge bezogen auf die Wirkstoffe von 0,1 bis 20 Gew.-%, insbesondere 0,5 bis 10 Gew.-%, enthält.
4. Konservierungsmittel nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß es als Komplexbildner Ethyleniamintetraessigsäure (EDTA) oder deren Salze, Nitrilotriessigsäure (NTA), Aminoglycinderivate, Sterdiessigsäure und/oder Isoseridiessigsäure in Mengen bis zu 10 Gew.-% enthält.
5. Konservierungsmittel nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß es als weiteres Biozid Chloralyladamantan, p-Hydroxybenzoësäureester, 1,2-Dibrom-2,4-dicyanobutan, 2-brom-2-nitropropan-1,3-diol, 5-Brom-5-nitro-1,3-dioxan, Imidazolidinylharnstoff und/oder Hydantoinderivate enthält.
55 6. Verwendung eines Konservierungsmittels nach Anspruch 1 bis 5 als Konzentrat in einem Lösungsmittel in einer Konzentration von 0,01 bis 2 Gew.-%, bevorzugt 0,1 bis 0,3 Gew.-%, jeweils bezogen auf die Wirkstoffe, zur Konservierung kosmetischer, pharmazeutischer oder reinigender Produkte.

55

60

65