Mock Grade 8/9

Maths Booklet 6

Paper 1H Non-Calculator

www.ggmaths.co.uk

3	There are 10 pens in a box.				
	There are <i>x</i> red pens in the box. All the other pens are blue.				
	Jack takes at random two pens from the box.				
	Find an expression, in terms of x , for the probability that Jack takes one pen of each colour. Give your answer in its simplest form.				
	(Total for Orestian 2 is 5 months)				
_	(Total for Question 3 is 5 marks)				

OPTR is a trapezium.

$$\overrightarrow{OP} = \mathbf{a}$$

$$\overrightarrow{PT} = \mathbf{b}$$

$$\overrightarrow{OP} = \mathbf{a}$$

$$\overrightarrow{PT} = \mathbf{b}$$

$$\overrightarrow{OR} = 3\mathbf{b}$$

S is the point on PR such that PS : SR = 1 : 3Find OS : ST.

Find an equation of the line that passes through C and is perpendicular to AB.

(Total for Question 5 is 4 marks)

6	The	function	f is	given	bv
•	1110	Idiletion	1 10	51,011	\sim

$$f(x) = -2x^3 + 12$$

(a) Show that $f^{-1}(28) = -2$

(2)

The functions g and h are given by

$$g(x) = 3x + 2$$
 and $h(x) = 2x^2$

(b) Find the values of x for which

Find hg(x)

(4)

(Total for Question 6 is 6 marks)

8

The diagram shows part of the curve with equation y = f(x). The coordinates of the maximum point of the curve are (3, 5).

(a) Write down the coordinates of the maximum point of the curve with equation

(i)
$$y = f(x + 3)$$

(.....,

(ii)
$$y = 2f(x)$$

(.....

(iii)
$$y = f(3x)$$

The curve with equation y = f(x) is transformed to give the curve with equation y = f(x) - 4

(b) Describe the transformation.

(1)

(Total for Question 8 is 4 marks)

9	Sketch the graph of				
	$y = 3x^2 - 12x - 8$				
	showing the coordinates of the turning point and the exact coordinates of any intercepts with the coordinate axes.				
_	(Total for Question 9 is 5 marks)				

10 A, B, C and D are four points on a circle.

ABC and EDC are straight lines.

Prove that triangle *BCD* is similar to triangle *ECA*. You must give reasons for your working.

(Total for Question 10 is 4 marks)