Problem Set #2

Posted: March 21, 2018 Due: April 8, 2018

1 Theory Questions

Subjects: CoRE, Turing reduction, Turing machine, DFA.

- 1. Recall that up until now we saw one example of a language that is not even recursively enumerable: the language L_{Acc}^c (proven in the recitation). In this question we will introduce another example of such language: the language L_{Halt}^c . Follow the steps below:
 - (a) Define CoRE.
 - (b) State the connection we found between CoRE, RE and R.
 - (c) Use the connection in (b) and prove that $L^c_{Halt} \notin RE$.
- 2. Let

$$L_{Prime} = \{ < P > \mid P \ is \ a \ program \ such \ that \ |L(P)| \ is \ prime \}$$

Follow the Turing reduction examples we saw in class and recitation, and prove by Turing reduction that L_{Prime} is not decidable.

- 3. Consider the following Turing machine $M = (\Sigma, \Gamma, \sqcup, Q, q_1, q_a, q_r, \delta)$ where:
 - $\Sigma = \{0, 1, \#\}$
 - $\Gamma = \{0, 1, \#, x, \sqcup\}$
 - \sqcup is the empty cell.
 - $Q = \{q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_a, q_r\}$
 - q_1 is the initial state.
 - q_a is the accepting state.
 - q_r is the rejecting state.
 - the transition function δ is defined by the diagram below.
 - Notations:
 - As we said in class, if for a state $q \in Q$ and a symbol $c \in \Gamma$ no transition appears in the diagram it means that we move to the rejecting state (q_r) and the input is rejected.
 - For example, being in q_5 and reading # the input is rejected.
 - When no Γ symbol appears in the right side of an arrow, the symbol written to the cell is the same as the existing symbol.
 - For example, $\# \to R$ in q_3 means that being in q_3 and reading # in the current cell # is written to the current cell, and we move one cell to the right.
 - When more than one Γ symbol appear in the left side of an arrow, it means that the same transition is relevant for all of those symbols.
 - For example, $0, 1, x \to L$ in q_6 means that being in q_6 and reading any of 0, 1 or x we move one cell to the left.

Posted: March 21, 2018

Due: April 8, 2018

- (a) Let $w_1 = 10\#01$, $w_2 = 10\#10$. Provide the stages of running M on w_1 and on w_2 .
- (b) What language does M decide?
- (c) Write a short description of the way that M acts given an input string $w \in \Sigma^*$, and use the description to verify your answer to (b).
- 4. Let $w \in \Sigma^*$ a string over an alphabet Σ .

|w| denotes the length of w, and for every $c \in \Sigma$, $|c|_w$ denotes the number of occurrences of the symbol c' in w.

For example, if $w = 01101 \in \{0, 1, 2\}^*$ then |w| = 5, $|0|_w = 2$, $|1|_w = 3$, $|2|_w = 0$.

For each of the following languages, provide a DFA that accepts this language:

- (a) $L_1 = \{w \in \{a, b, c\}^* \mid |a|_w \ge 3\}$
- (b) $L_2 = \{w \in \{a, b, c\}^* \mid |w| \text{ is not a multiply of } 4\}$
- (c) $L_3 = \{w \in \{a, b\}^* \mid |a|_w \text{ is even and } |b|_w \text{ is even}\}$
- (d) $L_4 = \{a^n b^m c^k \mid n, m, k \ge 0\}$

2 Python programming

Subjects: Mutable and immutable.

Buns Buggy

Someone, and we don't want to mention any names, but someone made a mistake. An annoying one. That someone has implemented a Python library (the **buns buggy.py** file) that was supposed to help us store information about our favorite looney tunes. BUT, that someone created a bug, and one of the worst kind – a one that is hard to find. Your missions are threefold:

Posted: March 21, 2018

Due: April 8, 2018

- 1. Find the problem. That is, submit the output string that is different than expected.
- 2. Find the bug. That is, what code made that bug happen? Provide the specific line(s) of code, and a short explanation as to what happened.
- 3. Fix the bug. That is, submit code that works properly.

Don't forget to submit the answers for all three tasks above.