University of Michigan-Ann Arbor

Department of Electrical Engineering and Computer Science

EECS 475 Introduction to Cryptography, Winter 2023

Lecture 22: CPA security continued, El Gamal cryptosystem

March 29, 2023

Lecturer: Mahdi Cheraghchi Scribe: Yi-Wen Tseng

1 CPA Security

In continuation of the previous class, we want to show that one-query CPA implies many-query CPA.

Image a many-query attacker A that makes up to q queries where $q \in poly(n)$. Consider the following worlds:

Hybrid 0 (Left World) : all queries (m_0, m_1) to the LR oracle are answered by $c \leftarrow Enc_{pk}(m_0)$.

Hybrid 1: First query (m_0, m_1) to the LR oracle is answered by $c \leftarrow Enc_{pk}(m_1)$, then $c \leftarrow Enc_{pk}(m_0)$ thereafter.

Hybrid 2: First 2 queries (m_0, m_1) to the LR oracle are answered by $c \leftarrow Enc_{pk}(m_1)$, then $c \leftarrow Enc_{pk}(m_0)$ thereafter.

:

Hybrid q (Right World) : all queries (m_0, m_1) to the LR oracle are answered by $c \leftarrow Enc_{pk}(m_1)$.

Note here, the only difference between Hybrid(i-1) and Hybrid(i) is how the i^{th} query is answered.

Now, we build a "simulator" $S_i^{LR_{pk,b}(.,.)}(pk)$ that gets **one query** and simulates either Hybrid(i-1) or Hybrid(i) depending on b.

Figure 1: Simulator Model

On j^{th} query of A (m_0^j, m_1^j) :

- If j < i, S_i runs $c \leftarrow Enc_{pk}(m_1^j)$
- If j > i, S_i runs $c \leftarrow Enc_{pk}(m_0^j)$
- If j = i, S_i queries to LR oracle and gives the result to A

$$\begin{cases} S_i \text{ is in the left world } (b=0), \text{ then we perfectly simulate } Hybrid(i-1) \\ S_i \text{ is in the right world } (b=1), \text{ then we perfectly simulate } Hybrid(i) \end{cases}$$
 (1)

By triangle inequality,

$$\begin{split} Adv_{\pi}^{CPA}(A) &= \left| Pr(A=1 \text{ in } Hybrid(0)) - Pr(A=1 \text{ in } Hybrid(q)) \right| \\ &= \left| Pr(A=1 \text{ in } Hybrid(0)) - Pr(A=1 \text{ in } Hybrid(1)) + Pr(A=1 \text{ in } Hybrid(1)) \right| \\ &- Pr(A=1 \text{ in } Hybrid(2)) + Pr(A=1 \text{ in } Hybrid(2)) \cdots - Pr(A=1 \text{ in } Hybrid(q)) \right| \\ &\leq \sum_{i=1}^q Adv_{\pi}^{single-CPA}(S_i) = q\dot{n}egl(n) = negl(n) \end{split}$$

The theorem implies we can encrypt long messages bit-by-bit (or block-by-block) or broken up in any other many calls on "short" messages, which is acceptable by the theorem.

Figure 2: Block-by-block encryption

Theorem: Any public key encryption scheme wit deterministic $Enc_{pk}(.)$ can not be CPA secure **even for 1 query**.

Proof: query $c \leftarrow LR_{pk,b}(m_0, m_1)$ for any $m_0 \neq m_1$. Then, run $c' = Enc_{pk}(m_0)$. If c = c' outputs 0, else 1. Because the adversary knows the query (m_0, m_1) , the adversary has perfect advantage on distinguishing c and c'.

2 El Gamal Cryptosystem

El Gamal is the public key encryption version of Diffie Hellmen. It works as follows:

$$Alice \xrightarrow{A = g^a \in G} Bob$$

$$B = g^b \in G$$

choose random a $\leftarrow Z_q$

choose random $b \leftarrow Z_q$

$$K = B^a = g^{ab \bmod q} \in G$$

$$K = A^b = g^{ba \mod q} \in G$$

where G is a group of order q and g is the generator of G.

K is the secret key derived by two parties. We use the properties of cyclic group to get random number with multiplication.

We can look at El Gamal Cryptosystem interms of (*Gen*, *Enc*, *Dec*) :

Idea: Basically, message is $M \in G$, the "one-time-pad effect" would involve multiplying M wih something random K.

- $Gen(1^n)$: choose random a $\leftarrow Z_q$ output $(pk = A = g^a \in G, sk = a) \Leftarrow$ at Alice computes
- $Enc(pk = A, M \in G)$: choose random $b \leftarrow Z_q$ output ciphertext $(B = g^b \in G, C = M \cdot A^b \in G)$ \Leftarrow what Bob computes
- Dec(sk = a, (B, C)): compute $K = B^a$, output $C \cdot K^{-1} \in G$

Correctness: $\forall M \in G$, $(pk = g^a, sk = a)$

$$Enc(pk, A) = (B = g^b, C = M \cdot (g^a)^b)$$

$$Dec(B,C) = C \cdot (B^a)^{-1} = M \cdot g^{ab} \cdot (g^{(ab)})^{-1} = M$$

CPA Security: Based on the DDH asssumption over $G:(g,g^a,g^b,g^{ab}) \in G^4$, where $a,b \leftarrow Z_q$, is indistinguishable from $(g,g^a,g^b,g^c) \in G^4$, where $a,b,c \leftarrow Z_q$.

Theorem: if DDH holds for *G*, then El Ganal is CPA-secure.

Proof: Let *A* be any feasible p.p.t attacker against El Ganal. Use A to construct the distinguisher against DDH.

Figure 3: Use the attacker against El Ganal to construct the distinguisher against DDH

If (g, A, B, C) is a DH tuple ("real world"), D perfectly simulates the left CPA world because $C = g^{ab}$.

Ideal world: (g, A, B, C) is random then D perfectly simulates a "hybrid" CPA world where the ciphertext is two independent random-group elements (regardless if message). Symmetrically, we can construct D' vs DDH that replies A with $(B, m_1 \cdot C)$

$$Adv^{CPA}(A) \leq Adv^{DDH}(D) + Adv^{DDH}(D') = negl(n) + negl(n) = negl(n)$$