Implementation of Second Module

Machine Learning Model Building:

This module focuses on building, training, and saving the machine learning model that predicts whether a medicine is Safe or Not Safe. Along with the model, the encoder and scaler objects used during preprocessing were also saved for use in the web application.

Steps Followed:

1. Train-Test Split:

- Split the dataset into 80% training and 20% testing using train_test_split.
- Ensured class labels (Safe/Not Safe) were balanced in both sets.

2. Model Selection:

- Tried multiple classification algorithms:
 - \circ SVM
 - Random Forest Classifier
 - XBBoost
- Evaluated models based on:
 - Accuracy Score

- Confusion Matrix
- Precision, Recall, F1-Score

3. Best Model Chosen:

- Random Forest Classifier gave the best results (highest accuracy and robustness).
- Trained it using the processed data (after encoding and standardization).

4. Model Evaluation:

- Evaluated on the test set.
- Results showed strong performance in classifying both
 Safe and Not Safe medicines accurately.
- Avoided overfitting by tuning model parameters where necessary.

5. Saving the Model and Preprocessing Tools:

- Saved the trained ML model as medicine_quality_model.pkl using joblib.
- Saved the Label Encoder used for Active Ingredient as encoder.pkl.
- Saved the StandardScaler used for numerical features as scaler.pkl.

6. Ready for Web Integration: These .pkl files will be loaded in the Flask backend during prediction. The model is now fully functional and optimized for realtime predictions.