

AMENDMENTS TO THE CLAIMS

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-6. (cancelled)

7. (original): A method of making a semiconductor device comprising:

depositing a layer of oxide proximate a first surface of a semiconductor substrate;

forming a gate oxide layer on the first surface, adjacent to the deposited oxide layer;

forming a pair of active areas in the first surface, adjacent the deposited oxide layer and gate oxide layer;

forming a gate electrode by depositing a conductive layer over the gate oxide layer;

depositing a dielectric layer over the gate electrode, active areas, and deposited oxide layer; and

forming electrical contacts to the pair of active areas and the gate electrode.

8. (original): The method of Claim 7, further comprising thermally growing a thermal oxide layer before depositing the layer of oxide on the first surface of the semiconductor substrate.

1 9. (original): The method of Claim 7, wherein the semiconductor substrate is
2 P type silicon.

3
4 10. (original): The method of Claim 7, wherein the active areas are formed by
5 impurity implant and diffusion.

6
7 11. (original): The method of Claim 7, wherein the active areas are n doped
8 regions.

9
10 12. (original): The method of Claim 7, wherein the conductive layer over the
11 gate oxide layer is polysilicon.

12
13 13. (original): The method of Claim 7, wherein the dielectric layer is silicon
14 dioxide.

15
16 Claims 14-18 (cancelled)

17
18 19. (currently amended): A method of manufacturing a fluid ejection device,
19 the method comprising:

20 depositing a current prevention layer proximate a first surface of a
21 semiconductor substrate; and

22 forming first and second field effect transistors (FETs), wherein each said
23 FET includes a gate electrode with associated active areas forminged first and
24 second active areas in a the first surface of a the semiconductor substrate having
25 the deposited current prevention layer

1 ; depositing a current prevention layer on the first surface in between the
2 first and second active areas;

3 forming a gate oxide on the first surface adjacent to the second active area;
4 and

5 forming a gate electrode for a drive transistor of the fluid ejection device on
6 the gate oxide, wherein the current prevention layer includes a region that
7 minimizes current flow between the first and second active areas of the first FET
8 with respect to the active areas of the second FET and the gate electrode.

9
10 20. (original): The method of Claim 19, wherein the current prevention layer is
11 a dielectric.

12
13 21. (original): The method of Claim 19, wherein the current prevention layer is
14 an oxide.

15
16 22. (new): A method comprising:

17 depositing a layer of oxide proximate a first surface of a semiconductor
18 substrate;

19 exposing a portion of the first surface of the semiconductor substrate; and
20 forming a field effect transistor (FET) on the exposed portion of the first
21 surface of the substrate having the deposited oxide layer, wherein the FET
22 includes a gate electrode with associated active areas formed in the first surface of
23 the semiconductor substrate.

24
25 23. (new): A product formed by the method of Claim 22.

1
2 24. (new): A method of making a semiconductor device comprising:
3 depositing a layer of oxide proximate a first surface of a semiconductor
4 substrate;
5 exposing a portion of the first surface of the semiconductor substrate;
6 forming a gate oxide layer on the exposed portion of the first surface,
7 adjacent to the deposited oxide layer;
8 forming a pair of active areas in the exposed portion of the first surface,
9 adjacent the deposited oxide layer and gate oxide layer;
10 forming a gate electrode by depositing a conductive layer over the gate
11 oxide layer;
12 depositing a dielectric layer over the gate electrode, active areas, and
13 deposited oxide layer; and
14 forming electrical contacts to the pair of active areas and the gate electrode.
15

16 25. (new): The method of Claim 24, further comprising thermally growing a
17 thermal oxide layer before depositing the layer of oxide on the first surface of the
18 semiconductor substrate.

19
20 26. (new): The method of Claim 24, wherein the semiconductor substrate is P
21 type silicon.

22
23 27. (new): The method of Claim 24, wherein the active areas are formed by
24 impurity implant and diffusion.

1 28. (new): The method of Claim 24, wherein the active areas are n doped
2 regions.

3
4 29. (new): The method of Claim 24, wherein the conductive layer over the gate
5 oxide layer is polysilicon.

6
7 30. (new): The method of Claim 24, wherein the dielectric layer is silicon
8 dioxide.

9
10 31. (new): A semiconductor device produced by the method of claim 24.

11
12 32. (new): A semiconductor device produced by the method of claim 7.

13
14 33. (new): A fluid ejection device produced by the method of claim 19.