May 17, 2023 Dan Zimmerman

1 Introduction

Here I will collect results from geometric measure theory as I explore the subject. I'll be following along in Functions of Bounded Variation and Free Discontinuity Problems by Ambrosio, Fusco & Pallara.

2 Hausdorff Measure

Lemma 2.1 Let $(X, d_X), (Y, d_Y)$ be metric spaces. For $f: X \to Y$ K-Lipschitz and measurable $E \subset X$ we have

$$\mathcal{H}^n(f(E)) \leq K^n \mathcal{H}^n(E).$$

Proof. Let $E \subset X$ be measurable, $\epsilon > 0, \delta > 0$ be arbitrary. By the definition of \mathcal{H}^n_{δ} and the fact that $\operatorname{diam}(f(F)) \leq K \operatorname{diam}(F) \ \forall F \subset X$ (since f is K-Lipschitz), we know

$$\mathcal{H}_{\delta}^{n}(E) \ge \sum_{h} (\operatorname{diam}(E_{h}))^{n} - \epsilon \ge \sum_{h} \left(\frac{\operatorname{diam}(f(E_{H}))}{K}\right)^{n} - \epsilon \ge \frac{1}{K^{n}} \mathcal{H}_{K\delta}^{n}(f(E)) - \epsilon$$

for some countable covering $\{E_h\}$ of E. Since ϵ was arbitrary we find

$$\mathcal{H}_{K\delta}^n(f(E)) \leq K^n \,\mathcal{H}_{\delta}^n(E).$$

Sending $\delta \to 0$ we find our result.