CSE214 – Analysis of Algorithms

PhD Furkan Gözükara, Toros University https://github.com/FurkanGozukara/CSE214 2018

Lecture 10 Graphs

Based George Bebis Lecture Notes - Reno Logo University of Nevada

What is a graph?

- A data structure that consists of a set of nodes (*vertices*) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices

Formal definition of graphs

• A graph G is defined as follows:

$$G=(V,E)$$

V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)

Directed vs. undirected graphs

• When the edges in a graph have no direction, the graph is called *undirected*

Directed vs. undirected graphs (cont.)

• When the edges in a graph have a direction, the graph is called *directed* (or *digraph*)

Warning: if the graph is directed, the order of the vertices in each edge is important!!

Trees vs graphs

Trees are special cases of graphs!!

(c) Graph3 is a directed graph.

 $V(Graph3) = \{ A, B, C, D, E, F, G, H, I, J \}$ $E(Graph3) = \{ (G, D), (G, J), (D, B), (D, F) (I, H), (I, J), (B, A), (B, C), (F, E) \}$

Graph terminology

 Adjacent nodes: two nodes are adjacent if they are connected by an edge

5 is adjacent to 7 7 is adjacent from 5

- Path: a sequence of vertices that connect two nodes in a graph
- Complete graph: a graph in which every vertex is directly connected to every other

Graph terminology (cont.)

• What is the number of edges in a complete directed graph with N vertices?

N*(N-1)

 $O(N^2)$

(a) Complete directed graph.

Graph terminology (cont.)

• What is the number of edges in a complete undirected graph with N vertices?

N * (N-1) / 2

 $O(N^2)$

(b) Complete undirected graph

Graph terminology (cont.)

Weighted graph: a graph in which each edge carries a value

Graph implementation

- Array-based implementation
 - A 1D array is used to represent the vertices
 - A 2D array (adjacency matrix) is used to represent the edges

Array-based implementation

Graph implementation (cont.)

- Linked-list implementation
 - A 1D array is used to represent the vertices
 - A list is used for each vertex v which contains the vertices which are adjacent from v (adjacency list)

Linked-list implementation

Adjacency matrix vs. adjacency list representation

Adjacency matrix

- Good for dense graphs $-|E| \sim O(|V|^2)$
- Memory requirements: $O(|V| + |E|) = O(|V|^2)$
- Connectivity between two vertices can be tested quickly

Adjacency list

- Good for sparse graphs -- $|E| \sim O(|V|)$
- Memory requirements: O(|V| + |E|) = O(|V|)
- Vertices adjacent to another vertex can be found quickly

Graph searching

- <u>Problem:</u> find a path between two nodes of the graph (e.g., Austin and Washington)
- <u>Methods:</u> Depth-First-Search (DFS) or Breadth-First-Search (BFS)

Depth-First-Search (DFS)

- What is the idea behind DFS?
 - Travel as far as you can down a path
 - Back up as little as possible when you reach a "dead end" (i.e., next vertex has been "marked" or there is no next vertex)
- DFS can be implemented efficiently using a stack

What is a Stack?

- A *stack* is a list with the restriction that insertions and deletions can be performed in only one position, namely, the end of the list, called the *top*.
- The operations: push (insert) and pop (delete)

Breadth-First-Searching (BFS)

- What is the idea behind BFS?
 - Look at all possible paths at the same depth before you go at a deeper level
 - Back up as far as possible when you reach a "dead end" (i.e., next vertex has been "marked" or there is no next vertex)

Depth-First Graph Traversal Algorithm

Alyce Brady Kalamazoo College

Search vs Traversal

- Tree Search: Look for a given node
 - stop when node found, even if not all nodes were visited
- Tree Traversal: Always visit all nodes

 Similar to Depth-first Traversal of a Binary Tree

- Choose a starting vertex
- Do a depth-first search on each adjacent vertex

Pseudo-Code for Depth-First Search

<u>depth-first-search</u>

mark vertex as visited

for each adjacent vertex

if unvisited

do a depth-first search on adjacent vertex

A B

A B D E F C G

A B D E F C G

Time and Space Complexity for Depth-First Search

- Time Complexity
 - Adjacency Lists
 - Each node is marked visited once
 - Each node is checked for each incoming edge
 - O (v + e)
 - Adjacency Matrix
 - Have to check all entries in matrix: O(n²)

Time and Space Complexity for Depth-First Search

- Space Complexity
 - Stack to handle nodes as they are explored
 - Worst case: all nodes put on stack (if graph is linear)
 - O(n)

Breadth-First Graph Traversal Algorithm

Alyce Brady

Similar to Breadth-first Traversal of a Binary Tree

- Choose a starting vertex
- Search all adjacent vertices
- Return to each adjacent vertex in turn and visit all of its adjacent vertices

Pseudo-Code for Breadth-First Search

breadth-first-search

mark starting vertex as visited; put on queue while the queue is not empty dequeue the next node for all unvisited vertices adjacent to this one

- -mark vertex as visited
- -add vertex to queue

Time and Space Complexity for Breadth-First Search

- Time Complexity
 - Adjacency Lists
 - Each node is added to queue once
 - Each node is checked for each incoming edge
 - O (v + e)
 - Adjacency Matrix
 - Have to check all entries in matrix: O(n²)

Time and Space Complexity for Breadth-First Search

- Space Complexity
 - Queue to handle unexplored nodes
 - Worst case: all nodes put on queue (if all are adjacent to first node)
 - O(n)

Single-source shortest-path problem

- There are multiple paths from a source vertex to a destination vertex
- Shortest path: the path whose total weight (i.e., sum of edge weights) is minimum
- Examples:
 - Austin->Houston->Atlanta->Washington:1560 miles
 - Austin->Dallas->Denver->Atlanta->Washington:2980 miles

Single-source shortest-path problem (cont.)

- Common algorithms: *Dijkstra's* algorithm, *Bellman-Ford* algorithm
- BFS can be used to solve the shortest graph problem when the graph is <u>weightless</u> or all the weights are the same

(mark vertices before Enqueue)