Class 05: Data Visualization with ggplot2

Pagna Hout 4/19/23

```
Load package
```

```
library(ggplot2)
ggplot(cars)
```

Specifying aesthetic mappings with aes ()

```
ggplot(cars) +
  aes (x=speed, y=dist)
```


Specifying a geom layer with $geom_point()$

```
ggplot(cars) +
  aes (x=speed, y=dist) +
  geom_point()
```


Adding trend line layer to help show the relationship between the plot variables with the geom_smooth() function

```
ggplot(cars) +
  aes (x=speed, y=dist) +
  geom_point() +
  geom_smooth()
```

 $[\]ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$

Adding straight line from linear model without the shaded standard error region

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth(method="lm", se=FALSE)
```

[`]geom_smooth()` using formula = 'y ~ x'

Adding various label annotations with the labs() function and changing the plot to look more conservative "black & white" theme by adding the theme.bw() function

[`]geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of Cars

Your informative subtitle text here

Adding more plot aesthetics through aes()

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

```
nrow(genes)
```

[1] 5196

ncol(genes)

First basic scatter plot of the dataset:

```
ggplot(genes) +
   aes(x=Condition1, y=Condition2) +
   geom_point()
```


There is extra information in this dataset, namely the State column, which tells us whether the difference in expression values between conditions is statistically significant. Let's map this column to point color:

```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p</pre>
```


p + scale_colour_manual(values=c("blue","gray","red"))

Gene Expresion Changes Upon Drug Treatment

