SOLUTIONS TO EXERCISES IN HOCHSTER'S NOTES ON LOCAL COHOMOLOGY

This is a set of solutions to exercises in [Hoc] along with some random comments

(1.4) Pick a non-zero n in $Soc(N)$. Then, $Ann_R(n) = \mathfrak{m}$ and the submodule Rn of N is simply Since S intersects this submodule non-trivially, it contains all of Rn . Thus, $Soc(N) \subseteq S$.	le. □
(1.5) Let K be a non-zero submodule of $N_1 \oplus N_2$. Let $0 \neq (k_1, k_2) \in K$. If $k_1 \in M_1$ and	
$k_2 \in M_2$, then K intersects $M_1 \oplus M_2$ non-trivially. So, WLOG, assume that $k_1 \notin M_1$. Then, the	ere
exists $r \in R$ such that $0 \neq rk_1 \in M_1$. If $rk_2 \in M_2$, then we are done. Otherwise, there exists	
$s \in R$ such that $0 \neq srk_2 \in M_2$. This implies $0 \neq (srk_1, srk_2) \in M_1 \oplus M_2$.	
(1.7) By (1.5) , $E(M_1) \oplus E(M_2)$ is an essential extension of $M_1 \oplus M_2$ and also injective, being finite direct sum of injective modules. As injective modules do not admit proper essential extensions, $E(M_1 \oplus M_2) \cong E(M_1) \oplus E(M_2)$. This immediately generalises to finite direct sums. The case of infinite direct sums reduces to the finite one as follows – every element of say $\bigoplus N_i$ contained in $N_{i_1} \oplus \ldots \oplus N_{i_k}$ for some i_1, \ldots, i_k . Now use the fact that $M_{i_1} \oplus \ldots \oplus M_{i_k}$ is an essential submodule of $N_{i_1} \oplus \ldots \oplus N_{i_k}$	
(2.5) Obviously, $\operatorname{Ass}(M) \subseteq \operatorname{Ass}(N)$. Suppose $\mathfrak{p} \in \operatorname{Ass}(N)$. Then, there is an element $n \in N$ with $\operatorname{Ann}_R(n) = \mathfrak{p}$. Since $M \subseteq N$ is essential, there exists $r \in R$ such that $0 \neq rn \in M$. Then,	
$r \notin \mathfrak{p}$ and since \mathfrak{p} is prime, $\mathrm{Ann}_R(rn) = \mathfrak{p}$.	
(8.2) This is an immediate consequence of [Har77].	

Date: February 24, 2025.

(1) Partial Converse to Corollary 0.2

If R is a domain and M is a divisible and torsion free R-module, then M is injective. Consequently, if R is a domain, then $E(R) = \operatorname{Frac}(R)$.

Proof. ¹ Let I be an ideal of R and $f: I \to M$ be an R-module map. If I = 0, then f obviously extends to R. Assuming otherwise, let $0 \neq i \in I$. Since M is divisible, there exists m' such that i.m' = f(i). We claim that $\tilde{f}: R \to M$, $1 \mapsto m'$ is the required map. If $0 \neq j \in I$, then $if(j) = f(ij) = jf(i) = jim = i\tilde{f}(j)$. Since M is torsion-free, this implies that $f(j) = \tilde{f}(j)$. The second statement follows easily as Frac(R) is torsion-free, divisible and an essential extension of R.

(2) Observation preceding Theorem 0.4

The C-bilinar map $M \otimes_R N \to C$ that he is referring to is obtained by considering the concrete construction and sending $r_{m,n} \mapsto B(rm,n) = B(m,rn)$. This turns out to well defined and C-bilinear because B is.

(3) Possible error in Example 1.4

Let $R = k[x_i]_{i \in \mathbb{N}}$ for a field k. Let $\mathfrak{m} = (x_i)_{i \in \mathbb{N}}$ and $R_{\mathfrak{m}}$ be the localisation of R at the maximal ideal \mathfrak{m} . Then, (R, \mathfrak{m}, k) is a local ring and $R_{\mathfrak{m}}/(\mathfrak{m}R_{\mathfrak{m}})^2$ is a finitely generated $R_{\mathfrak{m}}$ -module. But

$$x_1R_{\mathfrak{m}} \subsetneq (x_1, x_2)R_{\mathfrak{m}} \subsetneq \dots$$

is a strictly increasing chain of submodules in $R_{\mathfrak{m}}/(\mathfrak{m}R_{\mathfrak{m}})^2$. This means that $R_{\mathfrak{m}}/(\mathfrak{m}R_{\mathfrak{m}})^2$ is not noetherian and hence not of finite length.

However, if we assume that (R, \mathfrak{m}, k) is a noetherian local ring, then the statement is true. For a finitely generated submodule N' of N, some power of \mathfrak{m} , say \mathfrak{m}^n kills all of N'. Hence, $\operatorname{Ann}_R(N')$ contains \mathfrak{m}^n and consequently, the only prime ideal that contains $\operatorname{Ann}_R(N')$ is \mathfrak{m} . This implies that $R/\operatorname{Ann}_R(N')$ has dimension 0. Thus, $R/\operatorname{Ann}_R(N')$ is artinian. Being a finitely generated module over the artinian ring $R/\operatorname{Ann}_R(N')$, N' is artinian and hence of finite length.

(4) DIRECT SUMMANDS OF INJECTIVE MODULES ARE INJECTIVE

Useful little fact. For a quick proof, if $E \oplus M \cong E'$ and E' is injective, then take the pushout of a given $E \hookrightarrow K$ along the inclusion $E \hookrightarrow E'$. Compose a left inverse of the base change with the projection to the first coordinate.

(5) ESSENTIAL EXTENSIONS ARE NOT CLOSED UNDER TAKING PUSHOUTS

(6) Remark Preceding Proposition 2.3

That R is noetherian is important although we don't need $0 \neq M$ to be finitely generated (for $\mathrm{Ass}(M) \neq \emptyset$). Consider the collection of ideals $\mathrm{Ann}_R(x)$ indexed by $x \in M$. Since R is notherian, this collection contains a maximal element with respect to inclusion, say $\mathfrak{p} = \mathrm{Ann}_R(n)$. We claim that \mathfrak{p} is prime. Suppose for the sake of contradiction that there exist $r, s \in R$ such that $rs \in \mathfrak{p}$, $r \notin \mathfrak{p}$ and $s \notin \mathfrak{p}$. Then, $rn \neq 0$ and $s \in \mathrm{Ann}_R(rn) \supset \mathfrak{p}$ contradicting maximality. So, $\mathfrak{p} \in \mathrm{Ass}(M)$.

¹Proof sourced from this post

- (7) Some results towards a clearer proof of Theorem 2.4 (a)
 - (a) If $C \to R$ is a ring map and E is an injective C-module, then $\operatorname{Hom}_C(R, E)$ is an injective R-module.

Proof. Since E is an injective C-module, $\operatorname{Hom}_C(\underline{\ }, E)$ is exact. As endofunctors on R-Mod,

$$\operatorname{Hom}_R(\underline{\ },\operatorname{Hom}_C(R,E))\cong \operatorname{Hom}_C(\underline{\ }\otimes_R R,E)\cong \operatorname{Hom}_C(\underline{\ },E)$$

The statement immediately follows. It is tempting to extend this to an if and only if statement but then remember that $\operatorname{Hom}_C(_,E)$ needs to be exact for all C-modules (not just R-modules) for E to be an injective C-module. \Box Quick remark: Extension of scalars takes projective S-modules to projective R-modules.

- (b) If I is an ideal of C, R = C/I and M is a C-module, We think of $\operatorname{Hom}_C(R, M)$ as the C-submodule of M consisting of elements that are killed by I. This also has an R-module structure.
- (c) Using the above facts, if $\mathfrak p$ is a prime ideal in a noetherian ring as in [Hoc, Theorem 2.4], it follows that $\operatorname{Hom}_R(R/\mathfrak p, E(R/\mathfrak p))$ is an injective $R/\mathfrak p$ -module. As an R-module, we may canonically identify $\operatorname{Hom}_R(R/\mathfrak p, E(R/\mathfrak p))$ as an R-submodule of $E(R/\mathfrak p)$ containing $R/\mathfrak p$. Hence, $\operatorname{Hom}_R(R/\mathfrak p, E(R/\mathfrak p))$ is an essential extension (since R-submodules of $\operatorname{Hom}_R(R/\mathfrak p, E(R/\mathfrak p))$ coincide with $R/\mathfrak p$ -submodules) of $R/\mathfrak p$. Thus, $\operatorname{Hom}_R(R/\mathfrak p, E(R/\mathfrak p)) = E_{R/\mathfrak p}(R/\mathfrak p)$.
- (d) By Remark (1), $E_{R/\mathfrak{p}}(R/\mathfrak{p}) = \operatorname{Frac}(R/\mathfrak{p}) \cong R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$

QUESTIONS

- (1) Can the construction of the injective hull be made functorial?
- (2) Is the homomorphic image of an injective module injective? Probably not true.

REFERENCES

[Hoc] Hochster, Mel. Local Cohomology (https://dept.math.lsa.umich.edu/~hochster/615W11/loc.pdf) [Har77] Hartshorne, Robin. Algebraic Geometry