# 2.6 A Numerical Method (Euler's Method) a lesson for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

January 27, 2019

for textbook: D. Zill, A First Course in Differential Equations with Modeling Applications, 11th ed.

#### where we stand

- we now have methods for generating by-hand solutions to first-order differential equations:
  - 2.2 separable equations: y' = g(x)h(y)
  - 2.3 linear equations: y' + P(x)y = f(x)
  - 2.4 exact equations: M dx + N dy = 0 where  $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
- there are further methods ... such as in section 2.5
  - but we are skipping §2.5; its methods are weak
- where do we stand?:
  - o there are some problems we can do . . .
  - but often our by-hand calculus/algebra techniques don't work
- this situation is permanent

#### example 1

• Example 1. solve the initial value problem

$$\frac{dy}{dt} = t - y^2, \qquad y(0) = 1$$

in particular, find y(4)

Solution version 0: Explain why 2.3-2.5 methods don't apply.

### example 1, cont.

Solution version 1: Solve it using a direction field and a pencil.



• this is only approximate

### example 1, cont. cont.

Solution version 2: Make a computer follow the direction field.



• this is still only approximate because we go straight

#### example 1, cont. cont. cont.

Solution version 3: The direction field is not actually needed.



• this is the same as previous

#### example 1, cont. cont. cont. cont.

Solution version 4: Do it more accurately by smaller steps



• the blue slope lines are not really needed . . .

# example 1, cont.<sup>5</sup>

#### Solution version 5: Smaller steps.



• this is still only approximate

# example 1, cont.6

Solution version 6: Smaller. (Make the computer do more work.)



this looks like a solution not a direction field

#### Euler's method

- the idea of following the direction field, in a straight line for a short distance, and repeating, is *Euler's method*
- for the general DE  $\frac{dy}{dx} = f(x, y)$ , Euler's method is

$$y_{n+1} = y_n + h f(x_n, y_n)$$
 (\*)

- $h \neq 0$  is a step size you must choose
- the next x-value is always h away from the last:  $x_{n+1} = x_n + h$
- o (\*) is a formula to understand and memorize
- o ...and put in computer programs
- in the previous slides we had  $f(x, y) = x y^2$ , starting values  $(x_0, y_0) = (0, 1)$ , and four values of h: h = 1, 0.5, 0.25, 0.125

#### a derivation of Euler's method

easy to derive it from the direction field of  $\frac{dy}{dx} = f(x, y)$ , as follows:

- suppose we are at a point (x<sub>n</sub>, y<sub>n</sub>)
  this might be the initial point (x<sub>0</sub>, y<sub>0</sub>)
- the slope is  $m = f(x_n, y_n)$  so the line we want is

$$y - y_n = f(x_n, y_n)(x - x_n)$$

- we want to move to a new location  $x_{n+1} = x_n + h$  so  $x x_n = h$  and  $y = y_{n+1}$
- thus

$$y_{n+1} - y_n = f(x_n, y_n) h$$

• i.e.  $y_{n+1} = y_n + h f(x_n, y_n)$ 

# measuring accuracy

- assume we are solving an ODE IVP:  $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$
- if know the exact solution y(x) then we can measure (evaluate) the error in the approximation, i.e.

$$y_n \approx y(x_n)$$

- o " $y_n$ " is the number produced by Euler's method
- o " $y(x_n)$ " is the exact solution at the x-value  $x_n$
- there are two common ways to report the error:
  - 1 absolute error =  $|y(x_n) y_n|$
  - 2 relative error =  $\frac{|y(x_n) y_n|}{|y(x_n)|}$
- absolute error is the distance between actual value and approximation
- relative error divides this by the actual value

# big caveat about measuring accuracy

- you can only compute absolute or relative error if the exact solution is known
- ... but often the reason we use a numerical method like Euler's is because the exact solution is *not* known
- so examples where the absolute or relative error is computed are automatically "toy examples"

# example 2

- this is exercise #3 in §2.6 . . . a "toy example"
- Example 2: for the ODE IVP

$$y'=y, \quad y(0)=1$$

- (a) use Euler's method to get a 4-decimal approximation of y(1) o use h=0.1 first, and then h=0.05
- (b) find the exact solution
- (c) show in a table:  $x_n$ ,  $y_n$ , the exact value  $y(x_n)$ , the absolute error, and the relative error

#### example 2, cont.

- so one can proceed by hand, but its tedious work . . .
- and it is an original purpose for which electronic computers were designed
- I used the Matlab/Octave code below
  - o see simpleeuler.m at the "other" tab on the course webpage

#### example 2, cont. cont.

• the code produces the table below when h=0.1 and we take N=10 steps ... giving 4.58% relative error at x=1

| Xn   | $y_n$  | actual value | abs. error | rel. error |
|------|--------|--------------|------------|------------|
| 0.00 | 1.0000 | 1.0000       | 0.0000     | 0.00       |
| 0.10 | 1.1000 | 1.1052       | 0.0052     | 0.47       |
| 0.20 | 1.2100 | 1.2214       | 0.0114     | 0.93       |
| 0.30 | 1.3310 | 1.3499       | 0.0189     | 1.40       |
| 0.40 | 1.4641 | 1.4918       | 0.0277     | 1.86       |
| 0.50 | 1.6105 | 1.6487       | 0.0382     | 2.32       |
| 0.60 | 1.7716 | 1.8221       | 0.0506     | 2.77       |
| 0.70 | 1.9487 | 2.0138       | 0.0650     | 3.23       |
| 0.80 | 2.1436 | 2.2255       | 0.0820     | 3.68       |
| 0.90 | 2.3579 | 2.4596       | 0.1017     | 4.13       |
| 1.00 | 2.5937 | 2.7183       | 0.1245     | 4.58       |

• for h = 0.001 and N = 1000 l get 0.05% rel. error:

$$y_{1000} = 2.71692 \approx 2.71828 = y(1)$$

# example 2, cont.<sup>3</sup>; h = 0.05, N = 20 case

| Xn   | Уn     | actual value | abs. error | rel. error |
|------|--------|--------------|------------|------------|
| 0.00 | 1.0000 | 1.0000       | 0.0000     | 0.00       |
| 0.05 | 1.0500 | 1.0513       | 0.0013     | 0.12       |
| 0.10 | 1.1025 | 1.1052       | 0.0027     | 0.24       |
| 0.15 | 1.1576 | 1.1618       | 0.0042     | 0.36       |
| 0.20 | 1.2155 | 1.2214       | 0.0059     | 0.48       |
| 0.25 | 1.2763 | 1.2840       | 0.0077     | 0.60       |
| 0.30 | 1.3401 | 1.3499       | 0.0098     | 0.72       |
| 0.35 | 1.4071 | 1.4191       | 0.0120     | 0.84       |
| 0.40 | 1.4775 | 1.4918       | 0.0144     | 0.96       |
| 0.45 | 1.5513 | 1.5683       | 0.0170     | 1.08       |
| 0.50 | 1.6289 | 1.6487       | 0.0198     | 1.20       |
| 0.55 | 1.7103 | 1.7333       | 0.0229     | 1.32       |
| 0.60 | 1.7959 | 1.8221       | 0.0263     | 1.44       |
| 0.65 | 1.8856 | 1.9155       | 0.0299     | 1.56       |
| 0.70 | 1.9799 | 2.0138       | 0.0338     | 1.68       |
| 0.75 | 2.0789 | 2.1170       | 0.0381     | 1.80       |
| 0.80 | 2.1829 | 2.2255       | 0.0427     | 1.92       |
| 0.85 | 2.2920 | 2.3396       | 0.0476     | 2.04       |
| 0.90 | 2.4066 | 2.4596       | 0.0530     | 2.15       |
| 0.95 | 2.5270 | 2.5857       | 0.0588     | 2.27       |
| 1.00 | 2.6533 | 2.7183       | 0.0650     | 2.39       |

# example 2, cont.4



#### another derivation of Euler's method

start with the DE

$$\frac{dy}{dx} = f(x, y)$$

remember what a derivative is!:

$$\lim_{h\to 0}\frac{y(x+h)-y(x)}{h}=f(x,y(x))$$

- think: y(x) is current value and y(x + h) is next value
- drop the limit and adopt this as a method:

$$\frac{y_{n+1}-y_n}{h}=f(x_n,y_n)$$

- o at this point  $y_n$  and  $y(x_n)$  mean different things!
- rewrite as Euler's method before:  $y_{n+1} = y_n + hf(x_n, y_n)$

#### are there better methods?

- yes!
- here is a derivation, by picture, of the "explicit midpoint rule"
  - o a.k.a. "modified Fuler method"
  - o see Wikipedia page for "midpoint method"
  - it is "second order" so it gets same accuracy in 10 steps that Euler does in 100 steps

#### expectations

- to learn this material, just watching this video is not enough!
- also:
  - watch "found online" videos at bueler.github.io/math302/week4.html
  - o try-out Euler's method codes at the same link
  - read section 2.6 in the textbook
    - mentions the well-known "fourth order Runge-Kutta method", even better than the explicit midpoint rule above
  - o do the WebAssign exercises for section 2.6
- by the way, Euler's and other numerical methods return in Chapter 9 . . .