

Adapting LLMs for Minimal-edit Grammatical Error Correction

Ryszard Staruch, Filip Graliński, Daniel Dzienisiewicz Adam Mickiewicz University, Center for Artificial Intelligence

Introduction

Minimal-edit vs fluency-edit grammatical error correction (GEC)

Source text	I can recommed you to my uncle's company to do a job.
Fluency-edit output	I can recommend you for a job at my uncle's company.
Minimal-edit output	I can recommend you to my uncle's company to get a job.

Dataset detokenization

Tokenized vs detokenized GEC examples

Tokenized sentences	Detokenized sentences
In the future , I 'll become a journalist.	In the future, I'll become a journalist.
She 's 9 or 10 years old . I do n't really know .	She's 9 or 10 years old. I don't really know.
I am a reliable , easy - going person .	I am a reliable, easy-going person.

Incorrect annotations in datasets

The Llama model occasionally (in fewer than 10% of examples) corrected errors in human annotations.

Experiments with detokenized datasets

Model	Dataset type	W&I+LOCNESS dev		
		Precision	Recall	Fo.5
Qwen-2.5-1.5B	tokenized	59.00	38.48	53.31
	detokenized	57.90	42.10	53.86
Llama-3.2-3B	tokenized	63.31	47.29	59.29
	detokenized	63.34	47.52	59.39
Gemma-2-9b	tokenized	68.84	55.90	65.79
	detokenized	68.84	56.40	65.93

Findings

Data augmentation

Typical GEC training for neural models trained from scratch involves removing unedited examples to improve recall. For LLMs, which already generalize well, we do the opposite.

Our approach

Augment the dataset by duplicating corrected sentences as both input and target.

Experiments (Gemma 2 9b)

Dataset processing approach	W&I+LOCNESS dev			
	Precision	Recall	Fo.5	
Only erroneous pairs	60.74	58.79	60.34	
Original pairs	68.99	57.12	66.24	
Original pairs + augmented pairs	71.42	53.42	66.92	

Findings

- Removing unedited pairs worsens results compared to using the original datasets.
- Providing augmented pairs enables control over the precision-recall trade-off.

Training schedule method

To control the precision-recall trade-off during training, we introduce a novel training schedule method.

Our best model training schedule

Experiments (Gemma 2 9b)

	W&I+LOCNESS dev			
Lowered learning rate for the unedited examples	Precision	Recall	F0.5	
1e-7	65.10	58.33	63.62	
2e-7	69.22	56.40	66.21	
3e-7	73.52	50.10	67.23	
4e-7	76.74	43.49	66.57	
5e-7	78.88	31.78	60.85	

Findings

Choosing the proper learning rate enables control over the precision-recall trade-off.

The parameter is very sensitive — it significantly affects the model's performance.

Results on the test sets

Model	CoNLL-2014 test			W&I+LOCNESS test		
	Precision	Recall	F0.5	Precision	Recall	F0.5
Llama-2-13b (Omelianchuk, et al,. 2024)	77.30	45.60	67.90	74.60	67.80	73.10
Mistral-7b-EPO (Liang et al., 2025)	76.71	52.56	70.26	78.16	68.07	75.91
Gemma-2-9b-Augmentation	73.80	56.16	69.43	74.86	71.35	74.13
Gemma-2-9b-Training-Schedule	75.74	51.47	69.24	79.87	68.90	77.41
Llama-2-13b-Training-Schedule	71.07	50.11	65.59	74.10	67.54	72.69
Gemma-2-27b-Training-Schedule	77.38	47.88	68.89	82.28	67.03	78.70

Findings

- Our methods enable training minimal-edit GEC models with
- a focus on precision. • Choosing a modern LLM leads to better final results.
- Our models achieve new SOTA single-model results on the
- W&I+LOCNESS test set.

Conclusions

- The detokenization process did not improve model performance. There are annotation errors even in high-quality datasets.
- Both of our methods can be leveraged to adapt LLMs
- for minimal-edit GEC.

