

Network Performance Using Different TCP Congestion Control Algorithms

Parameters

WiFi-WiFi ETH-WiFi

BBR, Reno, CUBIC, Vegas

None, light, heavy Bonus: Bidirectional

Scenario	Link setups	TCP flavors	Trials	Runs
Baseline	WiFi-WiFi, ETH-WiFi	BBR, CUBIC, Reno, Vegas	A, B	16
Light Background	WiFi-WiFi, ETH-WiFi	BBR, CUBIC, Reno, Vegas	A, B	16
Heavy Background	WiFi-WiFi, ETH-WiFi	BBR, CUBIC, Reno, Vegas	A, B	16
Bonus Bidirectional	WiFi-WiFi, ETH-WiFi	BBR, CUBIC	A, B	8
Total	_	_	_	56

Topology

Results Pipeline

Step 1

Step 2

Step 3

Step 4

Step 5

Collect raw logs (iperf.json, rtt.txt,

cwnd.txt)

Parse logs into CSVs (throughput.csv, rtt.csv, cwnd.csv)

Extract summary stats (mean, p90/p95 throughput & RTT, loss %, cwnd)

Aggregate across trials into results_agg.c sv Generate
comparison
plots
(throughput,
RTT, loss,
cwnd,
scatter)

Throughput

RTT

CWND (baseline)

CWND (light traffic)

CWND (heavy traffic)

Loss %

Thank you

any questions?

