UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS I

DISCIPLINA: CIRCUITOS ELETRICOS I	Data:
Aluno(a):	Matrícula:

Avaliação 2º Estágio

- 1 Responda o que se pede:
- a) Explique a corrente de deslocamento. (0.5)
- b) Como devem estar conectados dois indutores acoplados de modo que a indutância equivalente seja menor do que a soma das indutâncias próprias de cada indutor individual. Faça o desenho das bobinas representando os indutores (0.5)
- c) Para os circuitos abaixo, considere que há energia armazenada nos capacitores e indutores no momento em que o mesmo entra em operação. Para cada circuito indique se é possível haver energia no circuito em regime, ou seja, se nem toda a energia inicial foi dissipada no resistor. Justifique as respostas. (1.0)

- d) Descreva o comportamento das respostas dos três tipos de resposta dos circuitos de $2^{\underline{a}}$ em termos da velocidade em atingir o nível de regime e a ocorrência de oscilações. (1.0)
- e) Explique fisicamente qual o comportamento da corrente I_L e da tensão V_0 no circuito abaixo. Esboce as respectivas formas de onda. Considere que o indutor e capacitor estão descarregados em t=0; (2.0)

 $2-\mbox{Na}$ figura, a chave S foi mantida aberta por um tempo suficiente para o circuito alcançar o regime permanente. Imediatamente após fechar a chave S, determine os valores das correntes I_c e I_R . (2.0)

- 3 No circuito abaixo a chave permaneceu fechada o tempo suficiente para levar o circuito para o regime. Considere que o circuito apresenta um comportamento subamortecido.
- a) Determine a expressão de $v_o(t)$ em função de v_g , α , ω_d , C e R para t>0 b) Encontre uma expressão para o valor de t quando v_o é máxima.

