

Jordi Gironés

Índice

- Sistemas de recomendación
- Caso de estudio
- •Pre-Modelado
 - Acondicionado de datos
 - Matriz de Términos
- Nube de palabras
- Modelado
 - Data Frame para K-NN
 - Construcción del Modelo K-NN
 - •Verificación del Modelo

Sistemas de recomendación

Topic Modeling

- Tiene por objetivo descubrir los conceptos más relevantes en un conjunto de documentos.
- Para ello se basa en la frecuencia de aparición de palabras y expresiones.
- La principal aplicación del Topic Modeling son los **motores de recomendación** orientados a la predicción de la relevancia de palabras o expresiones.
- El rastreo en sistemas documentales y el filtrado de contenidos son sus principales actividades.

Caso de estudio

Índice

- Sistemas de recomendación
- Caso de estudio
- ■Pre-Modelado
 - Acondicionado de datos
 - Matriz de Términos
- Nube de palabras
- ■Modelado
 - ■Data Frame para K-NN
 - ■Construcción del Modelo K-NN
 - ■Verificación del Modelo

Acondicionado de datos

Se realizan tareas de limpieza de texto como:

Eliminación de signos de puntuación

Conversión a minúsculas

Eliminación de signos de espacios en blanco innecesarios

Reducción de palabras a su raíz

Eliminación de palabras sin significado propio

```
acondicionaCorpus <- function(corpus) {
  corpus.tmp <- tm_map(corpus.tmp, stripWhitespace)
  corpus.tmp <- tm_map(corpus.tmp, content_transformer(tolower))
  v_stopwords <- c(stopwords("english"),c("dont","didnt","arent","cant","one","also","said"))
  corpus.tmp <- tm_map(corpus.tmp, removeWords, v_stopwords)
  corpus.tmp <- tm_map(corpus.tmp, removeNumbers)
  corpus.tmp <- tm_map(corpus.tmp, stemDocument, language="english")
  return(corpus.tmp)
}</pre>
```


Matriz de términos

```
# Temas que distinguiremos
temas <- c("Adq", "Crudo")
# Ruta principal de los documentos de noticias Reuters
nombreruta <- paste(getwd(),"/txt", sep = "")</pre>
```

tdm <- lapply(temas, generaTDM, ruta = nombreruta)</pre>

tdm[[1]]\$name	tdm[[1]]\$tdm
tdm[[2]]\$name	tdm[[2]]\$tdm

Lista de (carácter, matriz)

Adquisiciones	A=	a ₁₁ a ₂₁ a ₃₁ : a _{m1}	a ₂₂ a ₃₂ ⋮	a ₂₃ a ₃₃ ⋮	 %	a _{1n} a _{2n} a _{3n} : a _{mn}
Crudo	A=	a ₁₁ a ₂₁ a ₃₁ : : a _{m1}	a ₂₂ a ₃₂ ⋮	a ₁₃ a ₂₃ a ₃₃ : a _{m3}	 %	a _{1n} a _{2n} a _{3n} : a _{mn}

Nube de palabras

```
Palabras

Frecuencias

mínimo

Palabras

Frecuencias

Palabras

Frecuencias

Palabras

Frecuencias

Palabras

Frecuencias

Frecuencias

Minimo

Palabras

Palabras

Frecuencias

Minimo

Palabras

Pa
```


Índice

- Sistemas de recomendación
- Caso de estudio
- ■Pre-Modelado
 - Acondicionado de datos
 - Matriz de Términos
- Nube de palabras
- ■Modelado
 - ■Data Frame para K-NN
 - ■Construcción del Modelo K-NN
 - ■Verificación del Modelo

Data-Frame para K-NN (1)

Función unirTemaTDM()

Transposición de filas por columnas

palabras

Nueva columna con el tema

Lista de (carácter, data.frame)

Lista de (data.frame)

Data-Frame para K-NN (2)

Apilado de Data-Frames

temaTDM

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \quad \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Fusión de la lista de dos Data-Frames en un solo Data-Frame

 \longrightarrow

tdm.pila

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \dots & \mathbf{a}_{2n} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \dots & \mathbf{a}_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \mathbf{a}_{m3} & \dots & \mathbf{a}_{mn} \end{bmatrix}$$

Lista de (data.frame)

Data - Frame

Construcción del modelo K-NN

```
entrena.idx <- sample(nrow(tdm.pila), ceiling(nrow
(tdm.pila) * 0.7))

test.idx <- (1:nrow(tdm.pila))[-entrena.idx]

test

Conjunto de</pre>
```

documentos

Modelo K-NN

Verificación del modelo

Matriz de confusión

		Predicted	
		Negative (N)	Positive (P)
Actual	Negative -	True Negatives (T N)	False Positives (FP) Type I error
	Positive +	False Negatives (FN) Type II error	True Positives (T P)

Observaciones reales

Precisión (Accuracy)= (TP + TN) / (P + N)

Exactitud (Precision) = TP / (TP + FP)

Sensibilidad (Sensitivity)= TP / P

Especificidad (Specificity) = TN / N

