О СТРУКТУРНЫХ ПАРАМЕТРАХ МОЛЕКУЛЫ АММИАКА

А. Ф. Крупнов, Л. И. Герштейн и В. Г. Шустров

Вращательный спектр аммиака в различных изотопических комбинациях (не нарушающих симметрию молекулы) исследовался методами радиоспектроскопии в [1-3], причем часть результатов [1-3] совпала в пределах точности эксперимента, что свидетельствует об их надежности. Имеющееся же частичное несовпадение результатов заставило нас провести детальный анализ [1-3] и контрольные измерения. В итоге выяснилось, что в [3] приведено ошибочное значение частоты перехода $J=0 \to 1$, K=0 изотопической разновидности аммиака $N^{15}H_3$, а в $[^1, ^2]$ при расчете использовались более старые (и, по-видимому, менее точные) значения центробежной постоянной D_J [4] и вращательной постоянной B_0 ($N^{14}D_3$) [15], уточненные значения которых имеются в [3].

Таким образом, совместный анализ работ [1-3] дает возможность весьма надежного определения структурных параметров молекулы аммиака, что и является предметом настоящей работы. При этом устраняется противоречие результатов [3] выводам [7] относительно сравнительной длины связей для изотопов Н и D.

Вращательные постоянные ${ m N^{14}H_3}$ и ${ m N^{15}H_3}$

Средние значения частот переходов $J=0\to 1$, K=0 для $N^{14}H_3$ и $N^{15}H_3$, полученные нами в $[^1,\,^2]$ и подтвержденные контрольными опытами, приведены в табл. 1, где для сравнения приведены и данные $[^3]$. В то время как для $N^{14}H_3$ данные $[^{1-3}]$ совпадают в пределах точности, для $N^{15}H_3$ значение $[^3]$ отличается на $\sim\!60$ Мгц, что в несколько десятков раз превышает ошибку эксперимента и, по-видимому, связано с дискретной ошибкой в цепи умножения стандартной частоты в $[^3]$.

Вещество	Источник	у _{0—1} , Мгц	В ₀ , Мгц
$^{\mathrm{N}^{14}\mathrm{H}_{3}}$ $^{\mathrm{N}^{15}\mathrm{H}_{3}}$	Настоящая работа (по [¹ , ²]) Данные [³] Настоящая работа (по [¹ , ²])	572497.5 ± 1.2 572496.69 ± 0.6 572112.2 ± 1.2	298115.1 298114.68 297388.6
	Данные ⁻ [³]	572053.18 ± 0.5	297359.32

Таблица 1

Наличие инверсии у аммиака усложняет расчет вращательной постоянной по сравнению с обычным симметричным волчком. Значение вращательной постоянной B_0 по измеренному значению частоты нижнего вращательного перехода $J{=}0 \rightarrow 1,~K{=}0$ с учетом центробежного возмущения и инверсионного расщепления определяется как

$$B_0 = 0.5 \left[v_{0-1} + 4D_J + 0.5 \left(v_{00} + v_{01} \right) \right]. \tag{1}$$

где ν_{0-1} — частота перехода $J{=}0{-}1$, $K{=}0$, D_J — константа центробежного возмущения, принятая равной $D_J{=}24.33$ Мгц [³] для $N^{14}H_3$ и $N^{15}H_3$, 1 0.5 ($\nu_{00}{+}\nu_{01}$) — полусумма частот инверсионного расщепления уровней $J{=}0$, $K{=}0$ и $J{=}1$, $K{=}0$, равная 23635.34 Мгц для $N^{14}H_3$ и 22567.58 Мгц [²] или 22568.14 Мгц для $N^{15}H_3$ [6]. Различие последних значений лежит в пределах ошибки эксперимента. Рассчитанные значения вращательных постоянных приведены в табл. 1.

Расчет структурных параметров

Для молекулы типа симметричного волчка, к которым принадлежит аммилик, из наблюдаемого вращательного спектра отдельного изотопа может быть получен лишь момент инерции I_B (относительно оси, перпендикулярной оси симметрии), т. е. лишь одно уравнение для определения двух характеризующих структуру молекулы параметров. Обычной процедурой для получения второго уравнения является измерение вращательного спектра изотопически замещенной молекулы той же симметрии и расчет в предположении тождественности структуры молекулы [4]. Для аммиака это соответствует замене изотопом ядра азота или одновременной замене изотопами всех ядер водорода. Каждому варианту присущи свои достоинства и недостатки. Так, замещение ядер водорода на дейтерий приводит по современным данным к изменению структуры молекулы, а именно — к укорочению связи N-H [?]. В этом случае по

¹ Значение [4] равнялось $D_J = 19$ Мгц.

комбинации NH₃, ND₃ определяется лишь некоторая условная структура молекулы. Однако этот метод дает меньший вклад экспериментальной ошибки в результат благодаря большой разности частот переходов NH₃ и ND₃. Замещение ядра азота (N¹⁴ на N¹⁵) практически не меняет структуру молекулы. При этом появляется возможность сравнения длин связей N—H и N—D. Однако малое изменение массы ядра, к тому же расположенного вблизи от центра масс молекулы, приводит к увеличению ошибки ввиду близости частот изотопов. Нами рассчитаны все вышеуказанные комбинации изотопов, причем значения вращательных постоянных дейтерированного аммиака взяты по данным работы [3], а при расчете использовалась следующая связывающая структурные параметры и вращательную постоянную формула [4]

$$h/8\pi^2 B_0 = m_H r_0^2 (1 - \cos \Theta_0) + \frac{m_H m_N}{3m_H + m_N} r_0^2 (1 + 2\cos \Theta_0).$$
 (2)

Здесь r_0 и Θ_0 — соответственно эффективные значения длины связи N—H (N—D) и угла связи H—N—H (D—N—D), усредненные по основному колебательному состоянию молекулы, $m_{
m H}$ и $m_{
m N}$ — массы ядер водорода и азота, численные значения которых были взяты из работы [8]. Полученные структурные параметры для различных пар изотопов приведены в табл. 2.

Таблица 2

Изотопические комби- нации	r_0 , Å	Θ_0	
$\begin{array}{c} N^{14}H_3, N^{15}H_3 \\ N^{14}D_3, N^{15}D_3 \\ N^{14}H_3, N^{15}D_3 \\ N^{15}H_3, N^{15}D_3 \\ N^{14}H_3, N^{14}D_3 \\ N^{15}H_3, N^{14}D_3 \end{array}$	1.0156 1.0143 1.0130 1.0132 1.0133 1.0134	107°17′ 107°04′ 106°31′ 106°35′ 106°35′ 106°38′	

Обсуждение результатов

Рассмотрение табл. 2 показывает, что замещение водорода на дейтерий приводит к укорочению соответствующей связи, что согласуется с [7], причем это явление находится за пределами экспериментальной ошибки, составляющей в наихудшем случае $(N^{14}H_3,\ N^{15}H_3)$ по нашей оценке ± 0.0002 Å по длине и $\pm 4'$ по углу связи. К противо-

положному результату в [3] привело ошибочное значение частоты перехода N¹⁵H₃. Однако укорочение длины связи, определенное в настоящей работе, несколько меньше значения 0.003÷0.005 Å, приведенного в [7] для любой связи, включаю-щей водород (дейтерий). Интересно сравнить разность длины связей для $\mathrm{NH_3}$ и ND₃, полученную нами, с данными инфракрасной спектроскопии[⁹] (абсолютное значение длины связи [⁹] менее точно).

Таблица 3

1			
Источник	Δr ₀ , Å	$\Delta\Theta_0$	
Данные [⁹] Настоящая работа	0.0018 0.0013	12' 13'	

табл. 3 приведены соответствующие значения $\Delta r_0 = r_0$ (NH₃) $-r_0$ (ND₃), $\Delta\Theta_0 = \Theta_0(\mathrm{NH_3}) - \Theta_0(\mathrm{ND_3})$, показывающие хорошее согласие результатов [9] и настоящей работы.

Рассмотрение нижней части табл. 2, содержащей структуры, определенные из пар изотопических разновидностей, включающих как водород, так и дейтерий, показывает более слабую, но определенную тенденцию к увеличению длины и угла связи при сближении масс составляющих пары разновидностей.

Авторы благодарят Е. Н. Карякина за помощь в контрольных измерениях.

Литература

- [1] А. Ф. Крупнов, В. А. Скворцов, Л. А. Синегубко. Изв. вузов, радиофизика, 11, 1186, 1968.
 [2] А. Ф. Крупнов, Л. И. Герштейн, В. Г. Шустров, В. В. Поляков. Изв. вузов, радиофизика, 12, 1584, 1969.
 [3] Р. Неlminger, W. Gordy. Phys. Rev., 188, 100, 1969.
 [4] Ч. Таунс, А. Шавлов. Радиоспектроскопия. ИЛ, М. 1959.
 [5] G. Erlandsson, W. Gordy. Phys. Rev., 106, 513, 1957.
 [6] E. Schnabel, T. Törring, W. Wilke. Z. Phys., 188, 167, 1965.
 [7] J. E. Wollrab. Rotational spectra and molecular structure. Acad. Press, N. Y., L., 1967.

- L., 1967. [8] J. H. E. Mattauch, W. Thiele, A. H. Wapstra. Nucl. Phys., 67, 1,
- [9] W. S. Benedict, E. K. Plyler. Can. J. Phys., 35, 1235, 1957.

Поступило в Редакцию 28 сентября 1970 г.

		земень к краситенская в трасите		Transfer from Rare-Earth	
		земель к красителям в твердых	610	Ions to Dyes in Solid Solu-	
	И	растворах	648		648
		кин. Возмущения в спектре,		1. 1. appoint ov a. Yu. S. Makushkin.	
		вызванные случайным резонан-		Perturbations in a Spectrum	3 -
		сом Кориолиса	CEE	Caused by an Accidential Co-	
	A	. Г. Лазарев и И. Ф. Ковалев.	655	riolis Resonance	655
	4.1	Вычисление силовых постоян-		A. G. Lazarev a. I. F. Kovalev.	
		ных молекулы аммиака в ва-		Calculation of Force Constants	
		лентно-силовой системе коорди-		of Ammonia Molecule in Va-	
		нат с использованием квантово-		lency-Force System of Axes	
		механической теоремы Гель-		Using Quantum-Mechanical	
		мана—Фейнмана	CCO	Theorem of Helman-Feynman	
	E	. И. Креденцер и Л. М. Свердлов.	6 6 0	E I V. I (660
		Преобразование постоянных		E. I. Kredentser a. L. M. Sverdlov.	
		колебательно-вращательного		Transformation of Constants	
		взаимодействия и среднеквад-		of Vibration-Rotation Interac-	
		ратичных амплитуд, колебаний		tion and Mean-Square Amplitu-	
		при повороте координатных		des of Vibrations at Coordinate	- 1
		осей повороте координатных	CCL	Axes Turning	664
	тт	осей	664		
	п	. И. Афанасьева, М. О. Була-		N. I. Afanasieva, M. O. Bulanin	
		нин и Н. Д. Орлова. Контуры		a. N. D. Orlova. Profiles of	
		инфракрасных полос погло-		Infrared Absorption Bands and	
		щения и вращательное движе-		Rotational Motion of Molecules	
		ние молекул в жидкостях.		in Liquids. 2—0 and 3—0 Bands	1
		Полосы 2—0 и 3—0 окиси		of Carbon Monoxide and Hydro-	
		углерода и хлористого водо-		gen Chloride in Solutions	669
		рода в растворах	669		
	Α.	. П. Гальцев и В. М. Осипов.		A. P. Gal'tsev a. V. M. Osipov.	
		Влияние резонанса Ферми на		Effect of Fermi Resonance	
		температурную зависимость ин-		on Temperature Dependence	
		тенсивности ИК полос погло-		of Intensity of Infrared Absorp	
		щения СО,	674	tion Bands of CO ₂	674
	И.	С. Перелыгин и Т. Ф. Ахунов.		I. S. Perelygin a. T. F. Akhunov.	014
		Инфракрасные спектры и водо-		Infrared Spectra and Hydrogen	
		родные связи гилроксилов		Bonds of Hydroxyls of Chlorine	
		хлорзамещенных фенолов. II.	679	Substituted Phenols. II	679
	T.	Г. Мейстер и В. М. Неманов.		T. G. Meister a. V. M. Nemanov.	013
		О разделении вкладов универ-		On the Separation of Contribu-	
		сальных межмолекулярных		tions from Universal Intermole-	
		взаимодействий и межмолеку-		cular Interactions and Inter-	
		лярной водородной связи		molecular Hydrogen Bond to	
		в наблюдаемые сдвиги элек-		Observed Shifts of Electronic	
		тронных полос. II	684	Bands. II	684
	н.	К. Сидоров, Л. С. Стальма-		N. K. Sidorov, L. S. Stal'mak-	004
		хова и Н. В. Богачев. Корре-		hova a. N. V. Bogachyov. Cor-	
		ляция между интенсивностью		relation between Lines Intensi-	
		линий комбинационного рассея-		ties for Combination Scattering	
		ния света в жидкости (растворе)		of Light in Liquid (Solution)	
		и газе	693	and in Gas	693
	Ю.	. Д. Колпаков и В. П. Скрипов.		Yu. D. Kolpakov a. V. P. Skripov.	000
		О связи дисперсии рассеяния		On the Relation between Dis-	
		с асимметрией индикатрисы		persion of Scattering and Indi-	
		в окрестности критической		catrix Asymmetry Near a Criti-	
		точки	700	cal Point	700
	Μ.	Н. Баранов и Е. Ф. Кустов.		M. N. Baranov a. E. F. Kustov.	.00
		Спектры поглощения некоторых		Absorption Spectra of Some	
		ионов группы железа в гекса-		Ions of Iron Group in Barium	
,		алюминате бария	703	Hexaaluminate	703
	Л.	А. Климова, А. И. Оглоблина		L. A. Klimova, A. I. Ogloblina	.00
		и В. И. Глядковский. Исследо-		a. V. I. Glyadkovsky. Study of the	
		вание зависимости резкости		Relation between Sharpness	
		спектров ароматических угле-		of Spectra of Aromatic Hydrocar-	
		водородов от их концентра-		bons and Their Concentration	
		ции в замороженных нпара-		in Frozen Solutions of n-Paraffin	707
		финовых растворах	707	in Parallin	707
1	И	И. Шаганов, Г. С. Соловьева и		I I Chadana C C C .	
		В. С. Либов. Учет различий		I. I. Shaganov, G. S. Solov'yova a.	
		эффективного и среднего полей	,	V. S. Libov. Consideration	
		световой волны при определении		of Distinctions between Effec-	
		спектроскопиноских жережении		tive and Mean Fields of Light	
		спектроскопических характери- стик молекул в анизотропных		Wave in Determining Spectros-	
			744	copic Characteristics of Molecules	
		кристаллах	714	in Anisotropic Crystals	714