

UPDuino

- Lattice UltraPlus ICE40UP5K FPGA with 5.3K LUTs, 1Mb SPRAM, 120Kb DPRAM, 8 Multipliers
- FTDI FT232H USB to SPI Device
- _ALL_ 32 FPGA GPIO on 0.1" headers
- _ALL_ FTDI pins brought to test points
- 4MB SPI Flash
- RGB LED
- On board 3.3V and 1.2V Regulators, can supply 3.3V to your project
- Open source schematic and layout using KiCAD design tools
- Integrated into the open source APIO toolchain

o iCE 40

 https://www.latticesemi.com/en/Pr oducts/FPGAandCPLD/iCE40UltraPl us

iCE40 UltraPLus		
Parameter	UP3K	UP5K
Density LUTs	2800	5280
NVCM	Yes	Yes
Static Current (uA)	75	75
EBR RAM (kbits)	80	120
SPRAM (kbits)	1024	1024
PLL	1	1
I2C Core	2	2
SPI Core	2	2
Oscillator (10 kHz)	1	1
Oscillator (48 MHz)	1	1
24 mA Drive	3	3
500 mA Drive	-	-
16 x 16 Multiply & 32 bit Accumulator Blocks	4	8
PWM	Yes	Yes

UPDuino

- 5V/3.3V/GND
- GPIO/RGB
 - 3.3V!
- Misc
 - SPI
 - Reset
 - Programming

Verilog combinacional

```
module v1
   // inputs
   input wire gpio_35,
   // outputs
   output wire gpio_32
);
   assign gpio_32 = gpio_35;
endmodule
```



```
module v2
    // inputs
    input wire gpio_35,
    // outputs
    output wire gpio_32
    reg s1;
    wire int_lfosc;
    // Oscilator
    SB_LFOSC u_SB_HFOSC(.CLKLFPU(1), .CLKLFEN(1), .CLKLF(int_lfosc));
    assign gpio_32 = s1;
    always @(posedge int_lfosc) begin
        s1 <= gpio_35;
    end
endmodule
```


(PLB)

Modulos iCE40UP

Oscillator

 http://www.latticesemi.com/~/media/LatticeSemi/Documents/ ApplicationNotes/IK/iCE40OscillatorUsageGuide.pdf?document id=50670

Figure 2.1. On-Chip Oscillator

Table 3.1. SB_HFOSC I/O

7	Pin Name	Pin Direction	Description
	CLKHFEN	1	Enabling CLKHF output to be oscillating. This does not stop the oscillator, but only disables
			the output.
	CLKHF	0	Oscillator Clock Output.
	CLKHFPU	I	Powering up the SB_HFOSC.

Table 3.2. SB_LFOSC

Pin Name	Pin Direction	Description
CLKLFEN	I	Enabling CLKLF output to be oscillating. This does not stop the oscillator, but only disables the output.
CLKLF	0	Oscillator Clock Output.
CLKLFPU	1	Powering up the SB_LFOSC.

Low Frequency Oscillator LSOSC – 10kHz

Synthesis Attributes

/* synthesis ROUTE_THROUGH_FABRIC = <value>*/

Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

```
LSOSC OSCInst1 (
.CLKLFEN(ENCLKLF),
.CLKLFPU(CLKLF_POWERUP),
.CLKLF(CLKLF)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
```

High Frequency Oscillator HSOSC – 48 MHz

Synthesis Attributes

/* synthesis ROUTE_THROUGH_FABRIC = <value> */

Value:

0: Use dedicated clock network. Default option.

1: Use fabric routes.

Parameter Values

The SB_HFOSC primitive contains the following parameter and their default values:

```
Parameter CLKHF_DIV = 2'b00 : 
00 = div1, 01 = div2, 10 = div4, 11 = div8 ; 
Default = "00"
```

```
HSOSC OSCInst0 (
.CLKHFEN(ENCLKHF),
.CLKHFPU(CLKHF_POWERUP),
.CLKHF(CLKHF)
) /* synthesis ROUTE_THROUGH_FABRIC= [0|1] */;
defparam OSCInst0.CLKHF_DIV = 2'b00;
```

RGB driver

Key features of the RGB Driver:

- Supports three Service LEDs (RGB) with sink current between 4 mA and 24 mA in steps of 4 mA or 2 mA and 12 mA in steps of 2 mA per device ball.
- Supports pins being independently configured as either a high-current sink or an OD GPIO.
- Accuracy of up to ± 10% of the amount of current being sunk at all steps when the voltage at the device pin is at least 0.5 V. Current matching within ± 5% across all three Service LEDs for the same current sink setting
- Wakeup time (from off to on -- fully functional) ≤ 100 µsec.

https://www.latticesemi.com/-/media/LatticeSemi/Documents/ApplicationNotes/IK/I CE40LEDDriverUsageGuide.ashx?document_id=50668

RGB Driver

```
SB_RGBA_DRV RGB_DRIVER (
.RGBLEDEN(ENABLE_LED),
.RGB0PWM(RGB0),
.RGB1PWM(RGB1),
.RGB2PWM(RGB2),
.CURREN(led_power_up),
.RGB0(LED0),
.RGB1(LED1),
.RGB2(LED2)
defparam RGB_DRIVER.CURRENT_MODE = "0",
defparam RGB_DRIVER.RGB0_CURRENT = "111111"
defparam RGB_DRIVER.RGB1_CURRENT = "111111"
defparam RGB_DRIVER.RGB2_CURRENT = "111111"
```


http://www.latticesemi.com/~/media/LatticeSemi/Documents/ ApplicationNotes/IK/iCE40sysCLOCKPLLDesignandUsageGuide. pdf?document id=47778

- The PLL provides the following functions in iCE40 UltraPlus applications:
- Generates a new output clock frequency
 - Clock multiplication
 - Clock division
- De-skews or phase-aligns an output clock to the input reference clock
 - Faster input set-up time
 - Faster clock-to-output time
- Corrects output clock to have nearly a 50% duty cycle, which is important for Double Data Rate (DDR) applications
- Optionally phase shifts the output clock relative to the input reference clock
 - Optimal data sampling within the available bit period
 - Fixed quadrant phase shifting at 0°, 90°
 - Optional fine delay adjustments of up to 2.5 ns (typical) in 150 ps increments (typical)

Figure 3.1. iCE40 UltraPlus Phase-Locked Loop (sysCLOCK PLL) Block Diagram

https://www.latticesemi.com/-/media/LatticeSemi/Documents/ApplicationNotes/MO/Memor yUsageGuideforiCE40Devices.ashx?document_id=47775

Signal Name	Direction	Description WCLK	
(WDATA[15:0]	Input	Write Data input.	
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; 1 = don't write bit	
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.	
WE	Input	Write Enable input.	7
WCLKE	Input	Write Clock Enable input.	7
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.	7
RDATA[15:0]	Output	Read Data output.	7
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.	7
RE ¹	Input	Read Enable input. Only available for SB_RAM256x16 configurations.	7
RCLKE	Input	Read Clock Enable input.	7
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.	٦

Mas info

Resumen de componentes <u>iCE40 Technology Library</u>

Referencia de programación <u>iCE40 Programming and Configuration</u>

Datasheet <u>iCE40 UltraPlus Family Data Sheet</u>

Resumen de la familia de productos iCE40 <u>iCE40 Family Handbook</u>

Guía de uso de módulos

- iCE40 I2C and SPI Hardened IP Usage Guide
- iCE40 LED Driver Usage Guide
- <u>iCE40 Oscillator Usage Guide</u>
- <u>iCE40 SPRAM Usage Guide</u>
- <u>iCE40 sysCLOCK PLL Design and Usage Guide</u>

Ejercicios

Ejercicios

- 1. Implemente <u>uno</u> de los siguientes módulos combinacionales:
 - a. AND de 3 entradas
 - b. Decoder 8 bits
 - c. Encoder 8 bits
 - d. Sumador de 4 bits (A + B = C + Cy, A, B y C de 4 bits)
- Implemente un sincronizador de entrada como los vistos en clase, de al menos un Flip Flop

Utilice un clock interno generado por el modulo oscilador de la FPGA Entradas FPGA: Entrada async (pulsador externo)

Salidas FPGA: Señal sincronizada, CLK

• Conectando la placa a el Digilent, use la entrada y salida Digital para mostrar el funcionamiento de los módulos anteriores

Ejercicios

- 3. Basado en el codigo de rgb_blink.v, modifiquelo para utilizar 4 entradas: IN_R, IN_G, IN_B, BLINK
 - Un valor de '1' en cada una entrada corresponde a cada led encendido, un 0 siempre apagado
 - BLINK:
 - '1' los colores titilan juntos siguiendo una frecuencia de clock dada (solo encienden los que tienen un '1' en su entrada IN_x)
 - '0' los leds se mantiene encendido permanentes
 - Bonus:
 - Entrada BRIGHT: '1' alta intensidad, '0' baja intensidad (use los parametros del modulo RGB)