

Copernicus Climate Change Service
Copernicus Climate Change Service

Copernicus Climate Change Service - 311a Lot 2 Defining a Common Data Model

C3S_311a_Lot2_NUIM - Access to Observations from Global Climate Data Archives

This document has been produced in the context of the Copernicus Climate Change Service (C3S). The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf of the European Union (Delegation Agreement signed on 11/11/2014). All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability. For the avoidance of all doubts, the European Commission and the European Centre for Medium-Range Weather Forecasts has no liability in respect of this document, which is merely representing the authors view.

Copernicus Climate Change Service - 311a Lot 2 Defining a Common Data Model

David I. Berry National Oceanography Centre, UK July 5, 2017

Summary

This document describes background information on the definition of a common data model for the representation of in situ observations as part of the C3S 311a activity.

A draft data model is proposed.

Call participants are requested to:

- Review the proposed data model, specifically tables 3 7.
- Review the configuration field tables and suggest modifications, additions and deletions.
- Review the configuration code tables and suggest modifications, additions and deletions.
- Review the code tables and propose / identify where an existing table (e.g. BUFR code table) and be used in replacement.

Tab separated versions of the code tables can be found at:

https://github.com/glamod/common_data_model/tree/master/tables

Contents

1	Introduction	7
2	Background and existing standards 2.1 ODB and tenders for Lots 2 and 3	
3	Common Data Model 3.1 Observations table 3.2 Station configuration table 3.3 Profile configuration table 3.4 Source configuration table 3.5 Sensor configuration table	18 20 21
4	Mapping to WIGOS metadata standard	24
5	Mapping to INSPIRE	24
6	Common Data Model governance	24
7	References	24
8	Appendix 8.1 Code tables	24

List of Tables

1	Simplified example of records in ODB type data model, with observations from reports 1 and 2	
	spanning multiple records. For simplicity, the z coordinate has been omitted but profile data would	
	be represented with each layer / height as a separate record	
2	Simplified example for EAV type table for profile (atmospheric and oceanic) data	Ç
3	observations_table	13
4	station_configuration	18
5	profile_configuration	20
6	source_configuration	2
7	sensor_configuration	
8	adjustment	
9	application_area (WIGOS Code Table 2-02)	
10	automation_status	
11	calibration_status (WIGOS Code Table 5-08)	26
12	communication_method	2
13	conversion_method	29
14	crs (BUFR Code Table 0 01 150)	30
15	data_policy_licence (WIGOS Code Table 9-02)	30
16	duplicate_status	3(
17	events_at_station (WIGOS Code Table 4-04 (Needs expanding for marine obs.))	3.
18	id_scheme	
19	institute	31
20	instrument_exposure_quality (WIGOS Code Table 5-15)	3/
21	location method	3/
22	location_method	3/
23	magning of time stamp	اک -
24	meaning_of_time_stamp	31
25	mothed of actimating uncortainty	31
26	method_of_estimating_uncertainty	30
27	observation_code_tables	40
28	observation_value_significance	4.
29	observing_frequency	۸.
30	observing_method	۸.
31	observing_programme (WIGOS Code Table 2-02)	49
32	platform_sub_type	
33	platform_type	
34	processing_level (WIGOS Code Table 7-06)	
35	product_level	
36	product_status	
37	profile_configuration_codes	
38	profile_configuration_fields	
39	quality_flag (BUFR Code Table 0 33 020)	
40	region (WIGOS Code Table 3-01)	
41	report_processing_codes	
42	report_processing_level	
43	report_type	
44 45	sampling_strategy (WIGOS Code Table 6-03)	
45	sea_level_datum (BUFR Code Table 0 01 151)	
46	sensor_configuration_codes	
47	sensor_configuration_fields	
48	source_configuration_codes	10:
49	SOURCE COMMODIZATION DEIOS	1 (1)

Copernicus Climate Change Service

50	source_format	
51	spatial_representativeness)3
52	station_configuration_codes)4
53	station_configuration_fields)7
54	station_type)8
55	sub_region)9
	time_quality	
	time_reference	
58	traceability	17
59	units	18
60	update_frequency	
61	z_coordinate_method	26
62	z coordinate type	26

1 Introduction

The Copernicus Climate Change Service (C3S), through its "Collection and Processing of In Situ Observations (C3S 311a)" tender, seeks to harmonise both data formats and metadata (discovery and observational) conventions. The first step of this process, as noted within the invitation to tender, is the development or adoption of a common data model¹ for the data and metadata. Within this document, when complete, we will describe the common data model developed within Lot(s) 1 - 4 of the C3S 311a tender in consultation with ECMWF. The themes for the Lots 1 - 4 are:

- Lot 1 Coordination of data rescue activities
- Lot 2 Access to observations from global climate data archives
- · Lot 3 Access to observations from baseline and reference networks
- Lot 4 Climate monitoring products for Europe based on in situ observations.

Lot 1 (C3S DRS) are building a new data portal, developed based on two existing efforts: the WMO I-DARE portal and the EU FP 7 ERA-CLIM 2 data registry. New and enhanced data tools and techniques rescugin / digitising data will also be developed. Lot 1 includes a small data rescue component focused on three regions in the Southern Hemisphere in and around Argentina, South Africa and in the New Zealand to Drake Passage sector, and will link to other data rescue efforts including ACRE, IEDRO and ICA&D. Lot 1 will deal with the full range of historical terrestrial and marine surface weather observations plus upper air data and have the capacity to deal with their metadata (including a compendium of all data forms/templates these data are recorded on), scanned images of hard copy data, and weather and analogue (pluviograms, thermograms, barograms etc) charts etc.

Within Lot 2, observations and metadata from land stations and marine platforms will be harmonised into a common data model and a web based service developed to serve the data through the C3S Climate Data Store (CDS). The observations include instantaneous / point observations, such as those from SYNOP weather reports, as well as daily and monthly summaries (CLIMAT DAILY and CLIMAT). A single report may contain observations of multiple parameters, e.g. air temperature, humidity, wind speed etc. The data sources include land stations,merchant ships, drifting buoys and other marine platforms. As part of Lot 2 as common data model (CDM) will be developed in collaboration with the other Lots. The aim is to make this compliant with the ISO19115 Satandard and WIGOS Metadata Standard and be compatible with the ODB database / data model developed by ECMWF.

Lot 3 will create a harmonised observational dataset of measurements from the Global Baseline and Reference radiosounding networks. Within the first year observations are restricted to temperature and humidity measurements, in future years this will be expanded to include other essential climate variables (surface temperature, wind, ozone, trace gases, GPS IWV). Observations from the GRUAN and GUAN networks will be the main focus, but with potential extension to the broader RAOB program. Annual updates will be provided. Integrated physical and statistical corrections will be used to improve the quality of the baseline observations using the data from the reference networks. Lot 3 intend to be fully compliant with ECMWF Observations DataBase (ODB) version 2 (ODB2), noting that some changes will be necessary to ODB2 to report the full range of information required. Discovery metadata are planned to be compliant with ISO 19115 and observational metadata reported using the CF conventions. Compliance with the WIGOS metadata standard is also expected.

Lot 4 will build on and extend the European Climate Assessment and Dataset (ECA&D) project and E-OBS daily dataset for Europe. The gridded E-OBS dataset was initially developed as part of the ENSEMBLES project

¹From the ITT: A common data model is different from a file format, which defines how information is encoded in a file. The purpose of a data model is to provide a well-defined data structure that can be used to represent data records from a variety of sources, in such a way that the information contained in those records can be unambiguously accessed using a common set of tools. Development of a common data model for observations involves specification of data attributes and their symbolic names, including, for example, identifiers for different instruments, observed parameters, geolocation and timing, etc. A governance structure is required to manage such specifications, ensure consistency with standards where they exist, and to ensure a controlled evolution of the data model.

for statistical comparisons with Regional Climate Model output (Haylock et al., 2008). More recently European research projects EURO4M, UERRA, EUPORIAS, EUSTACE, and CLIPc led to further improvements and applications, and ECA&D/E-OBS have now become reference datasets for a larger user community, extending beyond climate research. Funding by EUMETNET and KNMI supported the developments of additional functionality, and the close collaboration with EUMETNET members has led to strongly improved ECA&D station coverage over Europe in recent years. Within C3S_311a lot 4, the ECA&D and E-OBS will be transformed into an operational system for the Copernicus Climate Change Service (C3S), delivering regularly updated gridded products based on European in situ data for many Essential Climate Variables (ECVs). The underlying station data that include surface air temperature, precipitation, humidity, wind speed and direction, will be made available as well, pending permission by the owners of these data. To serve climate change monitoring and climate impact assessments a large number of user-oriented climate indices will be provided, both as time series at station sites and as gridded products. No preference has been specified for the data models to be used.

Section 2 of this report provides background information on joint activities between Lots 2 and 3 so far, the ECMWF Observations DataBase (ODB) data model and relevant WMO data models. Section 3 gives an overview of the preferred data model from Lot 2 and proposes a list of elements for the observations table. Auxiliary tables are also proposed in Section 3 but left empty for future discussion once the principles of the type of data model have been agreed across lots. Section 4 proposes a governance mechanism for the common data model across lots and next steps required.

2 Background and existing standards

2.1 ODB and tenders for Lots 2 and 3

Both Lots 2 and 3 have proposed using data models based on the data model developed by ECMWF as part of the Observations DataBase (ODB) software. Within the ODB type data model each observation of a single parameter is stored as a separate record, with a single report spanning multiple records. Within each record the station / report information is repeated. A simplified example is shown in Table 1.

Table 1: Simplified example of records in ODB type data model, with observations from reports 1 and 2 spanning multiple records. For simplicity, the z coordinate has been omitted but profile data would be represented with each layer / height as a separate record

		head	er informatio	n	observation	informat	ion
recoi	rd repo	rt obs	date	location	parameter	value	units
id	id	id					
1	1	1	2012-01-01	POINT(-40 40)	air temperature	300.0	K
			12:00+0.0				
2	1	2	2012-01-01	POINT(-40 40)	sea level	1013.0	hPa
			12:00+0.0		pressure		
3	2	3	2012-01-01	POINT(-40.1	air temperature	300.3	K
			18:00+0.0	40.2)			
4	2	4	2012-01-01	POINT(-40.1	sea level	1013.2	hPa
			18:00+0.0	40.2)	pressure		
					End of table		

The implementation of the ODB model at ECMWF, that proposed in Lots 2 and 3 all have differing requirements. For example, the existing observations table columns defined within ODB² contain many parameters that are of

²http://apps.ecmwf.int/odbgov/column/

little relevance to the In Situ observations but are relevant to the assimilation of data from many different sources into the numerical models. Conversely, there are many parameters included in the data from Lots 2 and 3 that are required to correctly interpret the observations but that are not included in ODB.

In order to facilitate the development of the data model there have been two initial teleconferences between Lots 2 and 3 discussing the CDM and collating information on the parameters required. Each parameter and report type has its own unique set of fields and metadata fields. For example, surface air temperature observations are typically made in a screen or shelter that can influence the quality of the measurements. As a result, it is desirable to include information on the screen type, material and dimensions alongside the observation. For upper air temperature observations this metadata information is not relevant but other parameters will be required, such as the type of balloons used, instrument type and burst point.

In order to represent the wide variety of metadata required across (and within) Lots four different solutions are possible:

- The observations table is expanded to include all possible metadata fields, with new columns added when a new data / report type is included.
- Each report (and possibly parameter) type has a separate observations table, with a minimum set of common parameters defined across the different tables.
- The observations table is defined to include the minimum set of information required for each observation and the metadata is then linked via a series of Entity-Attribute-Value (EAV) based tables (e.g. see Table 2).
- Similar to the EAV based approach, the minimum set of information required is included in the main observations table and the main observations table is linked to a series of metadata tables. These metadata tables then include the additional fields through the use of arrays indicating the field the metadata is for and storing the value of the metadata.

Within this document we are proposing to use solution (4), with the use of arrays to store metadata elements not common across all data types. Compared to the EAV approach, this requires fewer joins between tables and less duplication of entries, making the data model in principle more efficient. Solution (1) has been discounted as being impractical from an implementation perspective and from the perspective of adding new data types at a future date. Option (2) has not been discounted but will result in a series of data models being defined rather than a single unified data model.

Table 2: Simplified example for EAV type table for profile (atmospheric and oceanic) data.

report id	report type	field	value coded	value numeric
4	GRUAN	Ascent Balloon Number	1	NA
4	GRUAN	Ascent Balloon Type	1	NA
4	GRUAN	Ascent balloon weight (g)	NA	100.0
				End of table

2.2 BUFR and WIGOS Metadata Standard

Prior to defining the data model it is useful to refer to both the WMO Binary Universal Form for the Representation of meteorological data (BUFR) (WMO, 2015a) and the WMO Integrated Observing System Metadata Standard

(WMDS) (WMO, 2015b).

The BUFR format is a flexible and efficient table driven format for reporting weather observations on the WMO Global Telecommunications System (GTS) in binary. The tables defined as part of the BUFR format include many of the parameters that will be included in the CDM. For example, Common code table C6 (WMO 2015a) includes all the measurement units reportable in BUFR (and other WMO codes). Similarly, code tables are defined for reporting instrument types and methods, station types etc. Where possible, these code tables should be referenced and used in preference to defining new code tables.

In recognition of the increasing importance of observational metadata the WMDS is currently under development and undergoing a phased implementation (WMO, 2015b). The WMDS forms an extension of the ISO19115 metadata standard, with additional mandatory elements describing both the station level and discovery metadata as well as specific information on the instrumentation used and processing steps. As part of the process simplified versions of BUFR and other tables have been included in the standard. As with BUFR these tables should be referenced, where appropriate, in preference to defining new code tables. Additionally, for compatibility with WIGOS the CDM should contain all mandatory elements of the WMDS.

3 Common Data Model

As noted above, we are proposing a data model based on the ODB type data model, but with the metadata linked / nested through a series of auxiliary / configuration tables. A schematic of this is shown in Figure 1 - a more complete schematic can be found at https://github.com/glamod/common_data_model/blob/master/cdm_short. pdf. The primary table, or data structure, containing the observations is defined by the "observations_table" (Table 3). This table contains the information on the geospatial location of the observations (and station), date / time of the report, the observed parameter, source information; data licensing and usage permissions etc and links to additional metadata. The "station_configuration" table (Table 4) contains detailed information on the station reporting the data including: institute operating the station; the type of station; station / AWS model type; location; operating territory; reporting frequency etc. The "source_configuration" table (Table 5) contains detailed information on the source dataset, including: information on the product; whether any processing has been applied; the original data centre the data were sourced from; citation information; the data licence for the product; how to cite the data source etc. The "profile_configuration" table (Table 6) contains detailed metadata for atmospheric and oceanic profiles, including: profile type; type of launcher; direction of profile; balloon / XBT type etc; The "sensor_configuration" table (Table 7) contains detailed information on the sensor used to make a particular observation, including: calibration status; sampling strategy; observing method; sensor housing and ventilation; instrument model and serial number etc;

Whilst Figure 1 and Tables 3 - 7 show the data model from a relational database perspective the same data model could be represented in XML. A simplified XML example of this is shown in Figure 2. For readability the majority of elements have been omitted, with a few example elements and nested data structures retained. In this example, the records from the configuration tables are nested within the entries for the respective records from the observations_table.

Within the following tables the following syntax has been used to indicate the data type for the different elements:

numeric: Any numeric value (integer or floating point).

• int: An integer value.

varchar: A variable length character string.

• timestamp: A timestamp, e.g. "2017-07-01 00:00:0.0+00".

• []: An array of the indicated type.

Figure 1: Simplified schematic showing overview of common data model

• (fk) The indicated value is also a foreign key linking to another table.


```
<observations_table>
    <report>
        <report_id type="integer"/>
        <region type="integer"/>
        <sub_region type="integer"/>
        <application_area type="array"></application_area>
        <observing_programme type="array"></observing_programme>
        <report_type type="integer"/>
        <station_name type="string"/>
        . . .
        <station_configuration>
            <station_primary_id type="string"/>
            <station_primary_id_scheme type="integer"/>
            . . .
            <field_numeric type="array"></field_numeric>
            <value_numeric type="array">/ value_numeric>
        </ station_configuration>
        . . .
    </report>
    <report>
    </report>
</ observations_table>
```

Figure 2: Truncated / simplified XML example of data model defined in Tables 3 - 7.

Observations table

Table 3: observations_table

element_number	element_name	kind	external_table	description
-	report_id	int (pk)		Unique ID for report (unique ID given by
				combination of RecordID and ObservationID)
2	region	int (fk)	region	Region (WMO region / Ocean basin)
က	sub_region	int (fk)	sub_region	Country / regional sea
4	application_area	int[] (fk)	application_area	WMO application area(s)
വ	observing_programme	int[] (fk)	observing_programme	Observing programme, e.g. VOS
9	report_type	int (fk)	report_type	e.g. SYNOP, TEMP, CLIMAT, etc
7	station_name	varchar		e.g. GRUAN station name, ship
				name, site name etc
8	station_type	int (fk)	station_type	Type of station, e.g. land station, sea station etc
6	platform_type	int (fk)	platform_type	Structure upon which sensor is mounted,
				e.g. ship, drifting buoy, tower etc
10	platform_sub_type	int (fk)	platform_sub_type	Sub-type for platform, e.g. 3m discuss buoy
+	primary_station_id	varchar		Primary station identifier, e.g. WIGOS ID
12	primary_station_	int (fk)	id_scheme	Scheme used for station ID
	id_scheme			
13	secondary_station_id	varchar		Alternate (e.g. local) ID for station
14	secondary_statio	int (fk)	id_scheme	Alternate ID Scheme, e.g. Network ID
	n_id_scheme			
15	station_location	numeric		Longitude of station, -180.0 to 180.0 (or
	_longitude			other as defined by station_crs)
16	station_location_latitude	numeric		Latitude of station, -90 to 90 (or other
				as defined by station_crs)
17	station_location	numeric		Accuracy to which station location
	accuracy			recorded (radius in km)
18	station_location_method	int(fk)	location_method	Method by which location determined
19	station_location_quality	int (fk)	location_quality	Quality flag for station location
20	station_crs	int (fk)	Crs	Coordinate reference scheme for station location
21	station_speed	numeric		Station speed over ground if mobile (m/s)
22	station_course	numeric		Station course over ground if mobile (degree true)
23	station_heading	numeric		Station heading if mobile
24	surface_type	int (fk)	surface_type	e.g. rolling hills
25	surface_type_scheme	int (fk)	surface_type_scheme	Scheme used to classify surface cover
				Continued on next page

Table 3 observations_table (cont.)

		Table (lable 3 observations_table (cont.)	
element_number	element_name	kind	external_table	description
26	site_topography	int (fk)	site_topography	Description of local topography and broader context
27	station_configuration	int (fk)	station_configuration	Link to station metadata / configuration
28	height_of_station_ab	numeric		Height of station above local ground (m)
	ove_local_ground			
59	height_of_station_a	numeric		Height of station above mean sea level (m),
	bove_sea_level			negative values for below sea level.
30	height_of_station_abov	numeric		Accuracy to which height of station known (m)
	e_sea_level_accuracy			
31	sea_level_datum	int (fk)	sea_level_datum	Datum used for sea level
32	report_meaning_o	int (fk)	meaning_of_time_stamp	Report time - beginning, middle or
	f_time_stamp			end of reporting period
33	report_year	int		Year of report (UTC)
34	report_month	int		Month of report (UTC)
35	report_day	int		Day of report (UTC)
36	report_hour	int		Hour of report (UTC)
37	report_minutes	int		Minute of report (UTC)
38	report_seconds	int		Seconds of report (UTC)
39	report_duration	int		Report duration (s), e.g. 86400 =
				daily obs, 3600 hourly etc
40	report_time_accuracy	numeric		Precision to which time was recorded (s)
41	report_time_quality	int (fk)	time_quality	Quality flag for ReportDateTime
42	report_time_reference	int (fk)	time_reference	Reference Time (e.g. referenced to time
				server, atomic clock, radio clock etc)
43	profile_configuration	int (fk)	profile_configuration	Information on profile (atmospheric /
				oceanographic) configuration. Set to Record ID
				for profile data or missing (NULL) otherwise.
44	events_at_station	int[] (fk)	events_at_station	e.g. ship hove to, crop burning etc.
45	report_quality	int (fk)	quality_flag	Overall quality of report
46	duplicate_status	int (fk)	duplicate_status	E.g. no duplicates, best duplicate,
				duplicate, not checked.
47	duplicates	int[] (fk)	observations_table	Array of report_id's for duplicates
48	maintenance_and_u	int (fk)	update_frequency	Frequency with which modifications and deletions
	pdate_frequency			are made to the data after it is first produced
				Continued on next page

Continued on next page

Table 3 observations_table (cont.)

		ומטום	o udservations_table (cont.	
element_number	element_name	kind	external_table	description
49	history	varchar		Sequence of processing steps. Free
				text with timestamp 1: history 1;
		,		timestamp 2 : history 2 etc.
20	record_year	int		Year of revision of this record (UTC)
51	record_month	int		Month of revision of this record (UTC)
52	record_day	int		Day of revision of this record (UTC)
53	record_hour	int		Hour of revision of this record (UTC)
54	record_minute	int		Minute of revision of this record (UTC)
55	record_seconds	int		Seconds of revision of this record (UTC)
56	processing_level	int (fk)	report_processing_level	Level of processing applied to this report
57	processing_codes	int[] (fk)	report_processi	Processing applied to this report
			ng_codes	
58	source_id	int (fk)	source_configuration	Original source of data link to table
59	source_record_id	varchar		Record ID in source data, e.g. ID of
	=			everil ildiri gadanari illera darabase
09	data_policy_licence	int (fk)	data_policy_licence	WMOessential, WMOadditional, WMOother
61	observation_id	int (pk)		Together with RecordID forms unique
	-			ID for observation / record
62	observed_variable	int (fk)	observed_variable	The variable being observed / measured
63	units	int (fk)	units	Units for the observed variable
64	code_table	int (fk)	observation_code_table	Encode / decode table for variable (if encoded)
65	observation_value	numeric		The observed value
99	observation_value	int (fk)	observation_value	e.g. min, max, mean, sum
	_significance		_significance	
29	observation_times	int (fk)	meaning_of_time_stamp	beginning, middle, end
	tamp_meaning			
89	observation_year	int		Year ofobservation (UTC)
69	observation_month	int		Month of observation (UTC)
20	obvservation_day	int		Day of observation (UTC)
71	observation_hour	int		Hour of observation (UTC)
72	observation_minute	int		Minutes of observation (UTC)
73	observation_seconds	int		Seconds of observation (UTC)
74	observation_duration	int		Duration/period over which obser-
				vation was made (s)
75	observation_longitude	numeric		Longitude of the observed value, -180 to 180 (or other as defined by CRS)
				Continued on next page

Table 3 observations_table (cont.)

		ומטום	J UDSEI VAIIUIIS_IADIE (CUIII.	
element_number	element_name	kind	external_table	description
76	observation_latitude	numeric		Latitude of the observed value, -90 to
				90 (or other as defined by CRS)
77	observation_loca tion_method	int (fk)	location_method	Method of determining location,
78	observation_locati on_precision	numeric		Precision to which location is reported (radius km)
79	observation_boundingbox_min_longitude	numeric		Bounding box for observation, valid range given by CRS
80	observation_bounding _box_max_longitude	numeric		Bounding box for observation, valid range given by CRS
81	observation_boundin g_box_min_latitude	numeric		Bounding box for observation, valid range given by CRS
82	observation_boundin g_box_max_latitude	numeric		Bounding box for observation, valid range given by CRS
83	observation_spatial_r epresentativeness	int (fk)	spatial_represen tativeness	Spatial representativeness of observation
84	observation_height_ab ove_station_surface	numeric		Height of sensor above local ground or sea surface. Positive values for above surface (e.g. sondes), negative for below (e.g. xbt). For visual observations, height of the visual observing platform.
85		numeric	11.00	z coordinate of observation
86	observation_z_coordinate_type	int (fk)	z_coordinate_type	lype of z coordinate Method of determining z coordinate
88	dinate_method quality_flag	int (fk)	quality_flag	Quality flag for observation
68	numerical_precision	<u>t</u>		Reporting precision of observation in units given by 'units' variable. Equivalent to BUFR scale factor
90	standard_uncertainty method_of_estimating_	numeric int (fk)	method_of_estimat	Standard uncertainty in reported value Method of estimating the standard uncertainty
95	standard_uncertainty uncertainty_due_to_ correlated_errors	numeric	ing_uncertainty	Uncertainty due to errors in the observation that are correlated between observations, e.g. due to sensor housing
				Continued on next page

Table 3 observations_table (cont.)

		200	observations-table (cont.	
element_number	element_name	kind	external_table	description
93	method_of_estimatin	int (fk)	method_of_estimat	NA
	g_uncertainty_due_to _correlated_errors		ing_uncertainty	
94	uncertainty_due_to_u ncorrelated_errors	numeric		Uncertainty due to errors in the observation that are uncorrelated between observations, e.g. due to sensor noise / small scale variability
95	method_of_estimating _uncertainty_due_to_u ncorrelated_errors	int (fk)	method_of_estimat ing_uncertainty	NA
96	uncertainty_due_to_s ystematic_errors	numeric		Uncertainty due to errors in the observations that are correlated under similar observing conditions
26	method_of_estimatin g_uncertainty_due_to _systematic_errors	int (fk)	method_of_estimat ing_uncertainty	NA
86	total_uncertainty	numeric		Sum of uncertainty terms added in quadrature
66	method_of_estimatin g_total_uncertainty	int (fk)	method_of_estimat ing_uncertainty	NA
100	sensor_id	int (fk)	sensor_configuration	NA
101	sensor_automat ion_status	int (fk)	automation_status	Automated, manual, mixed or visual observation
102	exposure_of_sensor	int (fk)	instrument_expos ure_quality	Whether the exposure of the instrument will impact on the quality of the measurement
103	original_precision	int		Original reporting precision in units given by 'original_units'
104	original_units	int (fk)	units	Original units
105	original_value	numeric		Original value as reported or recorded in log book.
106	conversion_method	int (fk)	conversion_method	Link to table describing conversion process
107	processing_code	int[] (fk)	processing_code	e.g. TRC (temperature radiation corrections) etc. Encoded in table.
108	processing_level	int (fk)	processing_level	Level of processing applied to observation.
109	adjustment_id	int (fk)	adjustment	Adjustment applied to observation reported in observation value (observation_value = original + adjustment)
110	traceability	int (fk)	traceability	Whether observation can be traced to international standards.
				End of table

Station configuration table

Table 4: station_configuration

element_number	element_name	type	external_table	description
0	station_primary_id	varchar		Primary (e.g. WMO) ID for station
-	station_primary_	int (fk)	id_scheme	Scheme used for primary ID
	id_scheme		•	
2	station_record_number	int		Record number for this station entry
က	station_secondary_id	varchar		Secondary (e.g. local) ID for station
4	station_secondar	int (fk)	id_scheme	Scheme used for secondary ID
	y_id_scheme			
2	station_name	varchar		Name of station (e.g. Tateno)
9	station_abbreviation	varchar		Abbreviation of station name (e.g. TAT)
7	start_date	timestamp		Date that the station first started re-
				porting in this configuration
8	end_date	timestamp		Last data the station reported in this configuration
6	station_type	int (fk)	station_type	Type of reporting station
10	platform_type	int (fk)	platform_type	Generic type of observing platform
11	platform_sub_type	int (fk)	platform_sub_type	Specific type of observing platform
12	operating_institute	int (fk)	institute	Institute operating the station
13	operating_territory	int (fk)	sub_region	Sub-region where station is located or
				country of registry for mobile station
14	observing_frequency		observing_frequency	Typical frequency of observations for this station
15	telecommunicati	int (fk)	communication_method	Method used to report observations
	on_method			
16	station_automation	int (fk)	automation_status	Whether station is automated, manual or mixed
17	measuring_syst	int (fk)	measuring_syst	Station / AWS model type
	em_model		em_model	
18	measuring_system_id	varchar		ID or serial number of measuring system
19	field_numeric	int[] (fk)	station_configur ation_fields	Field to which following values correspond
20	value_numeric	numeric[]		Values for specified fields
21	field_coded	int[] (fk)	station_configur ation_fields	Field to which following values correspond
22	value_coded	int[] (fk)	station_configur ation_codes	Values for specified fields
				Continued on next page

Table 4 station_configuration (cont.)

		9	asis : cameri=co::::garamo:: (co::::)	
element_number	element_name	type	external_table	description
23	field_character	int[] (fk)	station_configur ation_fields	Field to which following values correspond
24	value_character	varchar[]		Values for specified fields
25	field_timestamp	int[] (fk)	station_configur ation_fields	Field to which following values correspond
26	value_timestamp	timestamp[]		Values for specified fields
27	comment	varchar		Any other comments / footnotes
				End of table

Profile configuration table

Table 5: profile_configuration

element_number	element_name	kind	external_table	description
0	profile_id	varchar	NA	Unique ID for this profile entry
•	report_id	int (fk)	observations_table	Report to which this profile entry belongs
က	standard_time	int (fk)	standard_time	e.g. Standard / scheduled time for launch
				or report, e.g. 00, 06, 12, 18 UTC
4	actual_time	timestamp		Actual report / launch time
2	profile_number	numeric		e.g. Balloon Number
9	field_numeric	int[] (fk)	profile_configura	Fields to which the following values apply
			tion_fields	
7	value_numeric	numeric		Values for the additional fields
_∞	field_coded	int[] (fk)	profile_configura	Fields to which the following values apply
			tion_fields	
6	value_coded	int[] (fk)	profile_configura	Values for the additional fields
			tion_codes	
10	field_character	int[] (fk)	profile_configura	Fields to which the following values apply
			tion_fields	
Ŧ	value_character	varchar[]		Values for the additional fields
12	field_timestamp	int[] (fk)	profile_configura	Fields to which the following values apply
			tion_fields	
13	value_timestamp	timestamp[]		Values for the additional fields
14	comments	varchar		Any additional comments / footnotes
				End of table

Source configuration table

Table 6: source_configuration

element_number	element_name	type	external_table	description
0	source_id	int		Unique record ID for dataset
-	product_id	varchar		ID for product
2	product_name	varchar		Name of source, e.g. International Com-
				prehensive Ocean Atmosphere Data
				Set, RS92 GRUAN Data Product
က	product_code	varchar		Abbreviations / product code, e.g. ICOADS, RS92-GDP
4	product_version	varchar		Version number for dataset, e.g. Release 3.0.0
5	product_level	int (fk)	product_level	Level of product
9	description	varchar		Description of dataset / comments
7	product_references	varchar[]		References describing the dataset
8	product_citation	varchar[]		Citation to use when using this product
6	product_status	int (fk)	product_status	Status of product, draft, pre-release, release
10	source_format	int (fk)	source_format	Original format for data
-	source_format_version	varchar		Version of original data format
12	source_file	varchar		Filename for data from source
13	source_file_checksum	varchar		Checksum of source datafile
14	data_centre	int (fk)	institute	Data centre from which data sourced
15	data_centre_url	varchar		URL for data centre
16	data_policy_licence	int (fk)	data_policy_licence	Data policy / licence
17	pi_name	varchar		Name of PI responsible for dataset
18	pi_email	varchar		Email address of PI
19	pi_url	varchar		URL for PI
21	field_numeric	int[] (fk)	source_configur	Fields to which following values apply
			alloll_ligids	
.5.5	value_numeric	numeric[]		additional values
21	field_coded	int[] (fk)	source_configur ation_fields	Fields to which following values apply
22	value_coded	int[] (fk)	source_configur ation_codes	additional values
21	field_character	int[] (fk)	source_configur ation_fields	Fields to which following values apply
22	value_character	varchar[]		additional values
				Continued on next page

End of table Fields to which following values apply History of source Additional comments / footnotes Date record created / created additional values description Table 6 source_configuration (cont.) source_configur ation_fields external_table timestamp[] varchar varchar int[] (fk) type value_timestamp element_name field_timestamp comments timestamp history element_number 23 23 24 25 2

3.5 Sensor configuration table

Table 7: sensor_configuration

element_number	element_name	type	external_table	description
0	instrument_id	varchar		Unique ID for this instrument
-	station_id	varchar	station_configuration	Station associated with this instrument
2	observing_method	int (fk)	observing_method	Method (instrumental, estimated / visual,
				computed) by which observation made
က	sampling_strategy	int (fk)	sampling_strategy	Sampling strategy used by instrument
4	calibration_status	int (fk)	calibration_status	Whether the sensor is in / out of calibration
2	calibration_date	timestamp		Date of last calibration
9	field_numeric	int[] (fk)	sensor_configur	fields for which this entry is applicable
			ation_fields	
7	value_numeric	numeric[]		Numeric value for this entry (if numeric)
8	field_coded	int[] (fk)	sensor_configur	fields for which this entry is applicable
			ation_fields	
6	value_coded	int[] (fk)	sensor_configur	coded value for this entry
			ation_codes	
10	field_character	int[] (fk)	sensor_configur	fields for which this entry is applicable
			ation_fields	
11	value_character	varchar[]		Value for entry if not coded or numeric
12	field_timestamp	int[] (fk)	sensor_configur	fields for which this entry is applicable
			ation_fields	
13	value_timestamp	timestamp[]		time stamp entry
14	comments	varchar		additional comments for sensor
				not reportable elsewhere
15	date_start	timestamp		start date for period of validity as-
				soiciated with this entry
16	date_end	timestamp		end date for period of validity as-
				soiciated with this entry
				End of table

4 Mapping to WIGOS metadata standard

To do ...

5 Mapping to INSPIRE

To do ...

6 Common Data Model governance

- Tables defining data model and decode tables stored in Git repository (https://github.com/glamod/common_data_model/).
- Whilst service in development data model updated / revised annually (modified / new elements in Tables 3 7).
- New entries to decode tables every 3 / 6 months (TBD).
- Changes made by consensus across Lots and with ECMWF.

7 References

WMO, 2015a: Manual On Codes (WMO-No 306), Volume I.2, Part B - Binary Codes, WMO, Geneva. WMO, 2015b: Manual on the WMO Integrated Global Observing System: Annex VIII to the Technical Regulations (WMO-No 1160), WMO, Geneva.

8 Appendix

8.1 Code tables

Table 8: adjustment

reference	DOI of paper / document describing adjustment methodology	End of table
reason	-0.123 Test value	
value	-0.123	
observation_id	0	
report_id	0	
adjustment	0	
index	0	

Table 9: application_area (WIGOS Code Table 2-02)

		de code the c
index	application_area	description
0	1	Global numerical weather prediction (GNWP)
1	2	High-resolution numerical weather
		prediction (HRNWP)
2	3	Nowcasting and very short range
		forecasting (NVSRF)
3	4	Seasonal and inter-annual forecasting (SIAF)
4	5	General weather forecasting
5	6	Aeronautical meteorology
6	7	Ocean applications
7	8	Agricultural meteorology
8	9	Hydrology
9	10	Climate monitoring (as undertaken through the
		Global Climate Observing System, GCOS)
10	11	Climate applications
11	12	Space weather
12	13	Cryosphere applications
13	14	Energy sector
14	15	Transportation sector
15	16	Health sector
16	17	Terrestrial ecology
17	18	Operational air quality forecasting
18	19	Atmospheric composition forecasting
19	20	Atmospheric composition moni-
		toring and analysis
20	21	Large urban complexes
		End of table

Table 10: automation_status

index	automation_status	description
0	0	Automatic observation.
1	1	Automatic, always supplemented
		by manual input.
2	2	Automatic, occasionally supple-
		mented by manual input.
3	3	Automatic, supplemented by man-
		ual observations.
4	4	Manual observation.
5	5	Unknown.
6	6	Visual observation.

Table 11: calibration_status (WIGOS Code Table 5-08)

index	calibration_status	description
0	0	No changes - in calibration.
		Continued on next page

Table 11 calibration_status (cont.)

index	calibration_status	description
1	1	No changes - out of calibration.
2	2	No changes - calibration unknown.
3	3	Recalibrated - in calibration.

Table 12: communication_method

index	communication_method	description
0	0	Cellular (unspecified)
1	1	Meteosat DCP
2	2	Iridium (unspecified)
3	3	GOES DCP
4	4	VSAT (unspecified)
5	5	Landline telephone
6	6	Radio modem
7	7	E-mail (unspecified)
8	8	Voice (ship). The observation is sent to a NMS through the telephone network. The communication may use Inmarsat, Iridium, Vsat, VHF
9	9	Email (ship). The observation is sent to a NMS through an email. The WMO message is attached to this email. The satellite communication provider may be Inmarsat, Iridium, Vsat
10	10	Web (ship). The observation is sent through the Web (example: TurboWeb). The satellite communication provider may be Inmarsat, Iridium, Vsat
11	11	Inmarsat-C (FM13, SAC41). Standard procedure used to report observations (FM13 messages) from conventional VOS for many years. Collect call system: the NMS which receives the observations pays the communication costs
12	12	Inmarsat-C (FM13, other SAC). FM13 messages are sent to a dedicated SAC (other than SAC41) established at one, or more LES. In general, communications are paid by the country who recruited the ship
13	13	Inmarsat-C (EUHC). Text messages containing compressed data (E-SURFMAR format) are sent ashore through Inmarsat-C to a dedicated SAC and LES. Communications are paid by the country who recruited the ship
14	14	Inmarsat-C (SEAS). SEAS binary messages sent through Inmarsat-C Data Mode to a dedicated SAC and LES. Communications are paid by NOAA/NWS
15	15	Automated Identification System (direct or through satellite)
16	16	Argos system Continued on next page

Continued on next page

Table 12 communication_method (cont.)

index	communication_method	description
17	17	Cellular (Dial-up). Dial-up communication using terrestrial wireless networks (GSM, GPRS)
18	18	Cellular (SMS). SMS sent through terrestrial wireless networks (GSM, GPRS)
19	19	Globalstar communication system
20	20	GMS (DCP). Data Collecting Platform of Geostationary Meteorological Satellites
21	21	Iridium (SBD). Short Burst Data service of Iridium communication system
22	22	Iridium (Email). Email sent through Iridium (e.g. Easymail)
23	23	Iridium (Dial-up). Dial-up commu- nication using Iridium
24	24	Inmarsat-C (Data Mode). Data Mode service of Inmarsat-C used by S-AWS. See above for SEAS which also uses this service for conventional VOS
25	25	Inmarsat-C (Email). Email sent through Inmarsat-C
26	26	Orbcomm communication system
27	27	Vsat (Email). Email sent through Vsat
28	28	Vsat (Dial-up). Dial-up communication using Vsat
29	29	Delayed Mode only
30	30	Other (specify in footnote).

Table 13: conversion_method

			1	
index	ndex conversion description	description	implementation	reference
0	0	Farenheit to de-	T_Celsius =	NA
		grees Celsius	(T_Farenheit - 32) / 1.8	
			Ш	≣nd of table

Table 14: crs (BUFR Code Table 0 01 150)

index	crs	description
0	0	WGS84
1	1	ETRS89
2	2	NAD83
3	3	DHDN
4	4	Ellipsoidal datum using International Reference
		Meridian maintained by the International Earth
		Rotation and Reference System Services (IERS)
		End of table

Table 15: data_policy_licence (WIGOS Code Table 9-02)

index	data_policy_licence	name	description
0	1	WMOessential	WMO Essential Data: free and unrestricted inter-
			national exchange of basic data and products.
1	2	WMOadditional	WMO Additional Data: free and unrestricted
			access to data and products exchanged under
			the auspices of WMO to the research and
			education communities for non-commercial
			activities. A more precise definition of the
			data policy may be additionally supplied
			within the metadata. In all cases it shall be
			the responsibility of the data consumer to
			ensure that they understand the data policy
			specified by the data provider which may
			necessitate dialogue with the data publisher for confirmation of terms and conditions.
2	3	WMOother	Data identified for global distribution via WMO
2	3	VVIVIOOTHEI	infrastructure (GTS / WIS) that is not covered by
			WMO Resolution 25 neither WMO Resolution
			40 e.g. aviation OPMET data. Data marked
			with WMOOther data policy shall be treated
			like WMOAdditional where a more precise
			definition of the data policy may be additionally
			supplied within the metadata. In all cases it
			shall be the responsibility of the data consumer
			to ensure that they understand the data policy
			specified by the data provider which may
			necessitate dialogue with the data publisher
			for confirmation of terms and conditions.
			End of table

index	duplicate_status	description
0	0	Unique observation, no known duplicates
1	1	Best duplicate
2	2	Worst duplicate

Table 16: duplicate_status

Continued on next page

Table 16 duplicate_status (cont.)

index	duplicate_status	description	
3	3	Unchecked	
			Find of toble

Table 17: events_at_station (WIGOS Code Table 4-04 (Needs expanding for marine obs.))

index	events_at_station	description
0	1	Grass-cutting
1	2	Snow clearing
2	3	Tree removal
3	4	Construction activity
4	5	Road work
5	6	Biomass burning
6	7	Dust storm
7	8	Storm damage
8	9	Wind storm
9	10	Flood
10	11	Fire
11	12	Earthquake
12	13	Land slide
13	14	Storm surge or tsunami
14	15	Lightning
15	16	Vandalism

End of table

Table 18: id_scheme

index	id_scheme	description
0	0	ICOADS: ID present, but unknown type
1	1	ICOADS: ship, Ocean Station Vessel
		(OSV), or ice station callsign
2	2	ICOADS: generic ID (e.g., SHIP,
		BUOY, RIGG, PLAT)
3	3	ICOADS: WMO 5-digit buoy number
4	4	ICOADS: other buoy number (e.g., Ar-
		gos or national buoy number)
5	5	ICOADS: Coastal-Marine Automated
		Network (C-MAN) ID (assigned by US
		NDBC or other organizations)
6	6	ICOADS: station name or number
7	7	ICOADS: oceanographic platform/cruise number
8	8	ICOADS: fishing vessel psuedo-ID
9	9	ICOADS: national ship number
10	10	ICOADS: composite information
		from early ship data
11	11	ICOADS: 7-digit buoy ID (proposed)
12	12	WIGOS ID
		Continued on next page

Continued on next page

Table 18 id_scheme (cont.)

index	id_scheme	description
13	13	GRUAN ID
14	14	IMO Number
15	15	National ID
16	16	WMO buoy / station number

Table 19: institute

	c.uk	able
URL	dyb@noc.ac.ukww.noc.ac.uk	End of table
contact_ email		
contact	Dr David I. Berry	
address	European Way, Southamp- ton, UK, SO14 3ZH	
sub_region	76	
region	9	
name	National Oceanogra- phy Centre	
index institute	0	
index	0	

Table 20: instrument_exposure_quality (WIGOS Code Table 5-15)

index	instrument_exposure_quality	description
0	1	Class 1 - Exposure of instrument allows
		reference level measurements
1	2	Class 2 - Exposure of instrument has small
		or infrequent influence on measurement
2	3	Class 3 - Exposure of instrument leads
		to increased uncertainty or occa-
		sional invalid measurements
3	4	Class 4 - Exposure of instruemnt leads to high
		uncertainty or regular invalid measurements
4	5	Class 5 - Exposure of instrument leads
		to invalid measurements

Table 21: location_method

index	location_method	description
0	0	Argos
1	1	ARGOS DOPPLER
2	2	ARGOS Kalman
3	3	Argos-3
4	4	Argos-4
5	5	From map
6	6	GALILEO
7	7	GOES DCP
8	8	GPS
9	9	INMARSAT
10	10	Iridium
11	11	Iridium and GPS
12	12	IRIDIUM DOPPLER
13	13	LORAN
14	14	Meteosat DCP
15	15	Orbcomm
16	16	Surveyed

End of table

Table 22: location_quality

index	location_quality	description
0	0	Good - location consistent with other
		reports from this station
1	1	Doubtful
2	2	Bad - Track check failed
3	3	Unchecked
		Fool of tololo

Table 23: meaning_of_time_stamp

index	meaning_of_ti me_stamp	name	description
0	1	beginning	Date / time specified indicates the start of the period over which the observation was made.
1	2	end	Date / time specified indicates the end of the period over which the observation was made.
2	3	middle	Date / time specified indicates the middle of the period over which the observation was made.

Table 24: measuring_system_model

index	measuring_system_mod	el description
0	0	BATOS 4.8
		End of table

Table 25: method_of_estimating_uncertainty

index	method_of_estimatin g_uncertainty	description
0	0	Laboratory based calibration.
1	1	Comparison to co-located instrument
		End of table

Table 26: observed_variable

index	observed	paramete	domain	op dus	abbrevi	name	stiui	description
	variable	r_group		main	ation			
0	0	cloud	atmospheric	upper-air	rb U	high_clou d_type	papoo	type of high clouds (ch)
-	-	cloud	atmospheric	upper-air	сш	middle_clo ud_type	papoo	type of middle clouds (cm)
2	2	cloud	atmospheric	upper-air	ਹ	low_clou d_type	papoo	type of low clouds (cl)
က	က	cloud	atmospheric	upper-air	hn	cloud_bas e_height	Ε	cloud base height (nh)
4	4	cloud	atmospheric	upper-air	ㅁ	low_cloud _amount	Okta	low cloud amount (n)
2	5	cloud	atmospheric	upper-air	tcc	total_cloud _amount	Okta	total amount of clouds
9	9	clond	atmospheric	upper-air	n	cloud_cover	Okta	Total cloud cover
7	7	humidity	atmospheric	surface; upper-air	tr.	relative_h umidity	-	NA
ω	ω	humidity	atmospheric	surface; upper-air	5	specific_h umidity	_	specific means per unit mass. Specific humidity is the mass fraction of water vapor in (moist) air.
თ	ი	humidity	atmospheric	surface; upper-air	web_deb	dew_point_	¥	Dew point depression is also called dew point deficit. It is the amount by which the air temperature exceeds its dew point temperature. Dew point temperature is the temperature at which a parcel of air reaches saturation upon being cooled at constant pressure and specific humidity.
10	10	humidity	atmospheric	surface; upper-air	tdew	dew_point_t emperature	Α	Dew point temperature is the temperature at which a parcel of air reaches saturation upon being cooled at constant pressure and specific humidity.
								Conlinued on next page

	description	NA	NA	characteristic of pressure ten- dency (used in synoptic maps)	NA	sea_level means mean sea	level, wnich is close to the geold in sea areas. Air pressure at	sea level is the quantity often abbreviated as MSLP or PMSL.	pressure tendency	ocean salinity (PSU)		Air temperature is the bulk temperature of the air, not the surface (skin) temperature.	Water (sea, river, lake) tem- perature at depth indicated	The visibility is the distance at which something can be seen.	past weather (w)	present weather (ww)	past weather 2 (used in synoptic maps)	direction from which the wind is blowing Continued on next page
	nnits	\prec	×	papoo	Ра	Pa			Pa	nsd	,	Y	×	E	pəpoo	pəpoo	pəpoo	degree
e (cont.)	name	wet_bulb_te mperature	ice_bulb_te mperature	pressure_te ndancy_cha racteristics	air_pres sure	air_press	ure_ar_se a_level		pressure_t	salinity		air_tempe rature	water_tem perature	horizonta I_visibilit y_in_air	past_wea ther_1	present_w eather	past_wea ther_2	wind_from _direction
Table 26 observed_variable (cont.)	abbrevi ation	t_wet	t_ice_bulb	a	۵.	dlsm			ddd	sal		tair	t_water	3	LW	ww	w2	σ
Table 26 obs	sub_do main	surface; upper-air	surface; upper-air	surface	surface	surface			surface	surface;	sub-surface	surface; upper-air	surface; sub-surface	surface	surface	surface	surface	surface; upper-air
	domain	atmospheric	atmospheric	atmospheric	atmospheric	atmospheric			atmospheric	oceanic		atmospheric	oceanic	atmospheric	atmospheric	atmospheric	atmospheric	atmospheric
	paramete r_group	humidity	humidity	pressure	pressure	pressure			pressure	salinity		temperature	temperature	visibility	weather	weather	weather	wind
	observed _variable	1-	12	13	41	15			16	18		19	20	21	22	23	24	26
	index	11	12	13	4	15			16	17		18	19	20	21	22	23	24

	description	Eastward indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward-air_velocity.)	Northward indicates a vector component which is positive when directed northward (negative southward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_air_velocity.)	Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward-air_velocity.) The wind speed is the magnitude of the wind velocity. Continued on next page
	nnits	E-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-	F. 6	S E
le (cont.)	name	eastward_w ind_speed	northward_ wind_speed	wind-speed
Table 26 observed_variable (cont.)	abbrevi ation	3	>	3
Table 26 ob	sub_do main	upper-air	upper-air	upper-air
	domain	atmospheric	atmospheric	atmospheric
	paramete r_group	wind	wind	wind
	observed _variable	27	58	53
	index	25	26	27

	description	Speed is the magnitude of velocity. Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_air_velocity.) The wind speed is the magnitude of the wind velocity. A gust is a sudden brief period of high wind speed. In an observed timeseries of wind speed, the gust wind speed can be indicated by a cell_methods of maximum for the time-interval. In an atmospheric model which has a parametrised calculation of gustiness, the gust wind speed may be separately diagnosed from the wind speed. End of table
	units	
le (cont.)	name	wind_spee d_of_gust
Table 26 observed_variable (cont.)	abbrevi ation	w-gust
Table 26 obs	sub_do main	surface
	domain	atmospheric
	paramete r_group	wind
	observed _variable	30
	index	58

Table 27: observation_code_tables

	003	004	063		table	
tion	FR 0 20	FR 0 20	FR 0 10	-	End of table	
description	See BUFR 0 20 003	See BU	See BU			
value	NA	ΑĀ	ΑΝ			
code_table_name	Present weather	Past weather	Characteristics of	pressure tendancy		
code_table_id	0 20 003	0 20 004	0 10 063			
code_table_ scheme	BUFR	BUFR	BUFR			
index	0	-	7			

Table 28: observation_value_significance

index	observation value	docarintian
muex	observation_value_	description
	significance	
0	0	Maximum value over indicated period
1	1	Minimum value over indicated period
2	2	Mean value over indicated period
3	3	Median value over indicated period
4	4	Modal value over indicated period
5	5	Mean absolute error over indicated period
6	6	Best estimate of standard deviation (N-1) of
		observed parameter over indicated period
7	7	Standard deviation (N) of observed pa-
		rameter over indicated period
8	8	Harmonic mean of observed param-
		eter over indicated period
9	9	Root mean square vector error of observed
		parameter over indicated period
10	10	root mean square of observed param-
		eter over indicated period
11	11	Vector mean of observed parame-
		ter over indicated period
12	12	Instantaneous value of observed parameter
13	13	Accumulation over specified period
-		End of table

End of table

Table 29: observing_frequency

index	observing_fr equency	abbreviation	description
0	0	opd	One observation per day (24 hour intervals).
1	1	tpd	Two observations per day (12 hour intervals).
2	2	fpd	Four observations per day (6 hour intervals).
3	3	epd	Eight observations per day (3 hour intervals).
4	4	hly	Hourly observations.
5	5	irr	Irregular observations.

End of table

Table 30: observing_method

index	observing_method	description
0	0	Measured
1	1	Estimated
2	2	Computed
		End of table

Table 31: observing_programme (WIGOS Code Table 2-02)

index	observing_programme	abbreviation	description	sponsor
0		AMDAB	Global Aircraft Meteo-	SOS/OWW
ò	-		rological DAta Relay	
-	2	EPA	Environmental Pro- tection Agency	NA
2	3	EUMETNET	Grouping of European	WMO/GOS
			National Meteoro-	
			logical Services	
က	4	WMO/GAW	World Meteorological	NA
			Organization/Global	
			Atmospheric Watch	
4	5	BCOS	Global Climate Ob-	NA
			serving System	
2	9	GCW	Global Cryosphere	NA
			Watch	
9	7	8009	Global Ocean Ob-	NA
			serving System	
7	8	IPA	International Per-	NA
			mafrost Association	
∞	6	JCOMM	Joint Technical Com-	WMO/GOS
			mission for Oceanog-	
			raphy and Marine	
			Meteorology	
6	10	WMO/GOS	World Meteorological	AN
			Organization/Global	
			Observing System	
9	11	GTOS	Global Terrestrial Ob-	NA
			serving System	
11	12	IAGOS	In-service Aircraft	NA
			for a Global Ob-	
			serving System	
12	13	WHYCOS	World Hydrological Cy-	NA
			cle Observing System	
13	14	WMO/CLW	World Meteorological	NA
			Office/Climate and	
			water Department	
				Continued on next page

Table 31 observing_programme (cont.)

		5	(::::::::::::::::::::::::::::::::::::::	
index	observing_programme	abbreviation	description	sponsor
14	15	ADNET	Asian dust and	GALION; WMO/GAW
			aerosol lidar obser-	
			vation network	
15	16	Aeronet	AErosol RObotic	NASA?
9			IN CIV	
9	17	ANTON	Antarctic Observ-	WMO/GOS
			ing Network	
17	18	ASAP	Automated Shipboard	WMO/GOS
9	0		Aerological Flogram	
<u>8</u>	19	BSHN	Baseline Surface Ra-	WMO/GAW & GCOS
			diation Network	
9	20	CASTNET	Clean Air Status and	(National - USA)
			Trends Network	
20	21	CIS-LiNet	Lidar network for mon-	GALION; WMO/GAW
			itoring atmosphere	
			over CIS regions	
21	22	CLN	CREST Lidar Network	GALION; WMO/GAW
22	23	DART	Deep-ocean Assess-	NOAA Centre for Tsunamis Research
			ment and Report-	
			ing of Tsunamis	
ಜ	24	E-AMDAR	European - Aircraft Me-	EUMETNET; WMO/GOS
			teorological DAta Relay	
24	25	E-ASAP	European - Automated	EUMETNET; WMO/GOS
			Shipboard Aerolog-	
			ical Program	
25	26	E-GVAP	European - GNSS water	EUMETNET; WMO/GOS
			vapour programme	
56	27	E-PROFILE	European - wind pro-	EUMETNET; WMO/GOS
			files from radar	
27	28	E-SURFMAR	European - Surface Ma-	EUMETNET; WMO/GOS
			rine Operational Service	
88	29	EARLINET	European Aerosol	GALION; WMO/GAW
			Research Lidar Network	
53	30	GALION	GAW Aerosol Lidar	WMO/GAW
			Observation Network	
30	31	GAW-PFR	GAW-Precision Fil- ter Radiometers	WMO/GAW
				Continued on next page
				•

Table 31 observing_programme (cont.)

		IADIG OT ODSGIVI	lable of observing-programme (cont.)	
index	observing_programme	abbreviation	description	sponsor
31	32	German AOD Network	German Aerosol Optical Depth Network	WMO/GAW
32	33	GLOSS	Global Sea Level Ob- serving System	JCOMM; WMO/GOS
33	34	GRUAN	GCOS Reference Up- per Air Network	GCOS
34	35	GSN	GCOS Surface Network	GCOS
35	36	GTN-G	Global Terrestrial Net- work - Glaciers	GCOS
36	37	H-NL5	Global Terrestrial Net- work - Hydrology	WMO/CLW; GCOS; GTOS
37	38	GTN-P	Global Terrestrial Net- work - Permafrost	IPA; GCOS; GTOS
88	39	GUAN	GCOS Upper Air Network	GCOS
66 66	40	IAGOS-MOZAIC	Measurement of	IAGOS
			Ozone and Water Vapour on Airbus in-service Aircraft	
40	41	LALINET	Latin America Li- dar Network	GALION; WMO/GAW
14	42	MPLNET	Micro Pulse Li- dar Network	GALION; WMO/GAW
42	43	NDACC	Network for the De- tection of Atmospheric	GALION; WMO/GAW
43	44	OPERA	European Weather Radar Project	EUMETNET; (WMO/GOS)
44	45	PIRATA	Prediction and Research Moored Array in the Atlantic	GOOS; WMO/GOS
45	46	PolarAOD	Polar Aerosol Optical Depth Measurement Network Project	WMO/GAW
				Continued on next page

Table 31 observing_programme (cont.)

		lable of observ	lable of observing-programme (cont.)	
index	observing_programme	abbreviation	description	sponsor
46	47	RAMA	Research Moored	NOAA
			Array for African-Asian-	
			Australian Monsoon	
			Analysis and Prediction	
47	48	RBCN	Regional Basic Clima-	WMO/GOS
			tological Network	
48	49	RBON	Regional Basic Ob-	WMO/GOS
			serving Network	
49	50	RBSN	Regional Basic Syn-	WMO/GOS
			optic Network	
20	51	TAO	Tropical Atmosphere	NOAA; GCOS
			and Ocean Array	
51	52	SKYNET	Aerosol -cloud-radiation	WMO/GAW
			interaction in the at-	
			mosphere project	
52	53	SibRad	NA	WMO/GAW
53	54	SOOP	Ship of Opportunity	JCOMM; WMO/GOS
54	55	U.S. 100S	United States Inte-	(National - USA)
			grated Ocean Ob-	
			serving System	
55	56	NOS	Voluntary Observ-	JCOMM; WMO/GOS
			ing Fleet	
26	57	VOSCLIM	Voluntary Observ-	JCOMM; WMO/GOS
			ing Fleet (VOS) Cli-	
			mate Project	
22	58	WRAP	Worldwide Recurring ASAP Project	JCOMM; WMO/GOS
				End of table

Table 32: platform_sub_type

index	platform_sub_type	platform_type	abbreviation	description
0	0	Ship	BA	Barge
_	-	Ship	BC	Bulk Carrier
2	2	Ship	CA	Cable ship
က	3	Ship	CG	Coast Guard Ship
4	4	Ship	CS	Container Ship
2	2	Ship	DR	Dredger
9	9	Ship	FE	Passenger ferries
7	7	Ship	FP	Floating production and storage units
ω	8	Ship	FV	Other Fishing Vessel
6	6	Ship	gc	General Cargo
10	10	Ship	GT	Gas Tanker
Ξ	+	Ship	2	Icebreaking vessel
12	12	Ship	F	Inshore Fishing Vessel
13	13	Ship	OT	Livestock carrier
14	14	Ship		Liquid Tanker
15	15	Ship	LV	Light Vessel
16	16	Ship	MI	Mobile installation including mobile offshore drill
				ships, jack-up rigs and semi-submersibles
17	17	Ship	MS	Military Ship
18	18	Ship	OT	Other
19	19	Ship	MM	Ocean Weather Ship
50	20	Ship	Ы	Pipe layer
21	21	Ship	PS	Passenger ships and cruise liners
22	22	Ship	RF	Ro/Ro Ferry
23	23	Ship	RR	Ro/Ro Cargo
24	24	Ship	RS	Refrigerated cargo ships including banana ships
22	25	Ship	RV	Research Vessel
26	26	Ship	SA	Large sailing vessels
27	27	Ship	SV	Support Vessel
88	28	Ship	TR	Trawler
53	59	Ship	ΔL	Tug
30	30	Ship	NC	Vehicle carriers
31	31	Ship	X,	Yacht / Pleasure Craft
32	32	Ship	BA	Barges, including crane barges and tank barges.
				Continued on next page

Table 32 platform_sub_type (cont.)

		IADIE OZ	Table of platfoll - sub-type (collt.)	pe (collic.)
index	platform_sub_type	platform_type	abbreviation	description
33	33	Ship	BC	Bulk Carriers, including Ore/Bulk/Oil (OBO) carriers and Ore/Oil carriers.
34	34	Ship	CA	Cable ships.
35	35	Ship	cg	Coastguard cutters, patrol ships and launches.
36	36	Ship	SO	Container ships, including open and closed container ships and refrigerated container ships.
37	37	Ship	DR	Dredgers including bucket, hopper,
				grab and suction dredgers.
38	38	Ship	H H	Passenger ferries (carrying passengers only).
39	39	Ship	FP	Floating Production and Storage Units.
40	40	Ship	FV	Fishing Vessels including purse seiners,
				long liners etc., but excluding trawlers.
41	41	Ship	gc	General Cargo ships with one or more holds.
42	42	Ship	ĞТ	Liquefied gas carriers/tankers includ- ing LNG and LPG carriers.
43	43	Ship	2	Icebreaking vessels (dedicated ves-
				sel). If the vessel fits in another cat-
				egory and is ice strengthened
44	44	Ship	C	Livestock Carrier (dedicated ship for
				the carriage of livestock).
45	45	Ship		Liquid tankers including oil product tankers,
				chemical tankers and crude oil tankers
!				(Including vecus and uecus).
46	46	Ship	ΓN	Light vessels.
47	47	Ship	W	Mobile installations, including mobile offshore drill ships lack-in rice semi-submersibles
48	48	Ship	MS	Military ships.
49	49	Ship	MO	Ocean Weather Ships (dedicated weather ship).
20	20	Ship	Ы	Pipe Layers.
51	51	Ship	PS	Passenger ships and Cruise liners.
52	52	Ship	RF	Ro Ro ferries (carrying passen-
				gers and laden vehicles).
53	53	Ship	RR	Ro Ro cargo ships for carriage of road
				and/or rail vehicles and cargo, in-
				cluding containerised cargo.
54	54	Ship	RS	Refrigerated cargo ships including banana ships.
				Continued on next page

Table 32 platform_sub_type (cont.)

			(
index	platform_sub_type	platform_type	abbreviation	description
22	55	Ship	RV	Research Vessels, including oceanographic,
				meteorological and hydrographic research
				ships and seismographic research ships.
26	56	Ship	SA	Large sailing vessels, including sail training vessels.
22	57	Ship	SV	Support vessels including offshore support
		-		vessels, offshore supply vessels, stand-by
				vessels, pipe carriers, anchor handling
				vessels, buoy tenders (including coastguard
				vessels engaged solely on buoy tending
				duties), diving support vessels, etc.
28	28	Ship	TR	Trawler fishing vessels.
29	29	Ship	TU	Tugs, including fire-fighting tugs, salvage tugs,
				pusher tugs, pilot vessels, tenders etc.
09	09	Ship	NC	Vehicle Carriers: dedicated multi deck ships for
				the carriage of new unladen road vehicles.
61	61	Ship	YA	Yachts and pleasure craft.
62	62	Ship	TO	Other (specify in footnote).
63	63	Land station		Synoptic network
64	64	Land station		Local Network
65	65	Ship		Ocean Weather Ship (on station)
99	99	Ship		Ocean Weather Ship (off station)
29	29	Coastal / Island		Other
89	89	Coastal / Island		Coastal-Marine Automated Network
,	1			(C-MAN) (NDBC operated)
69	69	Drifting buoy		Unspecified drifting buoy
20	20	Driffing buoy		Standard Lagrangian drifter (Global
1	1			
_		Driffing buoy		Standard FGGE type drifting buoy (non-
í	Ç.	-		Lagrangian meteorological dritting buoy)
75	72	Drifting buoy		Wind measuring FGGE type dritting buoy
	I	,		(non-Lagrangian meteorological dritting buoy)
73	73	Ice buoy		Ice drifter
74	74	Drifting buoy		SVPG Standard Lagrangian drifter with GPS
75	75	Drifting buoy		SVP-HR drifter with high-resolution tem-
				perature or thermistor string
9/	76	Subsurface float		Unspecified subsurface float
				Continued on next page

Table 32 platform_sub_type (cont.)

Index	platrorm_sub_type	platform_type	appreviation	description
77	77	Profiling float		SOFAR
78	78	Profiling float		ALACE
79	79	Profiling float		MARVOR
8	80	Profiling float		RAFOS
8	81	Profiling float		PROVOR
88	82	Profiling float		SOLO
83	83	Profiling float		APEX
84	84	Moored buoy		Unspecified moored buoy
82	85	Moored buoy		Nomad
98	98	Moored buoy		3-metre discus
87	87	Moored buoy		10-12-metre discus
88	88	Moored buoy		ODAS 30 series
88	68	Moored buoy		ATLAS (e.g. TAO area)
06	06	Moored buoy		TRITON buoy
91	91	Moored buoy		FLEX mooring (e.g. TIP area)
95	95	Moored buoy		Omnidirectional waverider
93	93	Moored buoy		Directional waverider
94	94	Profiling float		Subsurface ARGO float
92	95	Profiling float		PALACE
96	96	Profiling float		NEMO
26	26	Profiling float		ALNIN
86	86	Ice buoy		Ice buoy/float (POPS or ITP)
66	66	Moored buoy		Mooring oceanographic
100	100	Moored buoy		Mooring meteorological
101	101	Moored buoy		Mooring multidisciplinary (OceanSITES)
102	102	Moored buoy		Mooring tide gauge or tsunami buoy
103	103	Ice buoy		Ice beacon
104	104	Ice buoy		Ice mass balance buoy
				End of table

Table 33: platform_type

index	platform_type	description
0	0	Aircraft
1	1	Autonomous marine vehicle
2	2	Autonomous pinneped bathythermograph
3	3	Coastal / Island
4	4	Drifting buoy
5	5	Expendable bathythermograph (XBT)
6	6	Glider
7	7	High-resolution Conductivity-Temperature-Depth (CTD) / Expendable CTD(XCTD)
8	8	Ice buoy
9	9	Ice station
10	10	Land station
11	11	Land vehicle
12	12	Lightship
13	13	Mechanical / digital / micro bathyther-
		mograph (MBT)
14	14	Moored buoy
15	15	Oceanographic station data (bottle and
		low resolution CTD / XCTD data)
16	16	Profiling float
17	17	Rig / platform
18	18	Shallow water station (fixed to sea / lake floor)
19	19	Ship
20	20	Subsurface float (moving)
21	21	Tide gauge
22	22	Underwater platform
23	23	Undulating oceanographic recorder
		End of table

End of table

Table 34: processing_level (WIGOS Code Table 7-06)

index	processing_level	name	description
0	0	Unknown	NA
1	1	Raw	NA
2	2	Level 0	Analogue/digital electric signals

Continued on next page

Table 34 processing_level (cont.)

		Table 34 pi	rocessing_lever (cont.)
index	processing_level	name	description
3	3	Level I	Level I data (Primary Data): in general, are instrument readings expressed in appropriate physical units, and referred to Earth geographical coordinates. They require conversion to the normal meteorological variables (identified in Part I, Chapter 1). Level I data themselves are in many cases obtained from the processing of electrical signals such as voltages, referred to as raw data. Examples of these data are satellite radiances and water-vapour pressure, positions of constant-level balloons, etc. but not raw telemetry signals. Level I data still require conversion to the meteorological parameters specified in the data requirements.
5	5	Level III	Level II Data (Meteorological parameters). They may be obtained directly from many kinds of simple instruments, or derived from Level I data. For example, a sensor cannot measure visibility, which is a Level II quantity; instead, sensors measure the extinction coefficient, which is a Level I quantity. Level III (Initial state parameters) are internally
Ü		LOVO! III	consistent data sets, generally in gridpoint form obtained from level II data by applying established initialization procedures. NOTE: Data exchanged internationally are level II or level III data.
6	6	Level IV	NA

End of table

Table 35: product_level

index	product_level	description
0	2	Data read from original data file
		End of table

Table 36: product_status

index	product_status	description	extended_description
0	1	Data approved	Data exist, read from chache, PTU + altitude columns available, all GC25 tests ok, all uncertainties as expected
			End of table

Table 37: profile_configuration_codes

index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
0	-	balloon_ma	0	0	Kaysam	NA	NA
-	-	balloon_ma	-	-	Totex	NA	NA
2	-	balloon_ma	2	2	KKS	NA	NA
က	-	balloon_ma nufacturer	en en	e e	Guangzhou Shuangyi (China)	NA	NA N
4	-	balloon_ma nufacturer	4	4	ChemChina Zhuzhou (China)	NA	NA
2	2	balloon_type	0	NA	NA	ΑN	NA
ω	വ	humidity_c orrection_a lgorithm	0		No correc- tions	NA	Y V
o	ഗ	humidity_c orrection_a Igorithm	-		Time lag correction provided by manufacturer	AN A	NA
10	ഗ	humidity_c orrection_a Igorithm	Q	2	Solar radia- tion correc- tion provided by the man- ufacturer	۲ ۲	NA V
=	ഗ	humidity_c orrection_a Igorithm	m	m	Solar radia- tion and time lag correc- tion provided by the man- ufacturer	N A	A A
12	വ	humidity_c orrection_a Igorithm	4	7	GRUAN solar radiation and time lag	AN A	NA A
13	9	profile_dir eciton	0	0	Upwards profile	: :	YZ .
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		Iaol	e 3/ prome-cor	Table 3/ profile_corniguration_codes (corn.)	(COLIL.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
14	9	profile_dir	-	-	Downwards	ΑN	NA
15	9	profile_dir eciton	5	2	Horizontal profile	NA	NA
17	ω	geopotenti al.height.c alculation	0	0	Geopotential height cal-culated from	NA	NA
18	ω	geopotenti al_height_c alculation		-	Geopotential height cal-culated from GPS height	N A	A N
19	ω	geopotenti al_height_c alculation	2	N	Geopotential height cal-culated from radar height	Y V	NA
21	10	include_d escent	NA	NA	NA	NA	NA
22	L	instrument_ty pe_for_water_t emperature_s alinity_profile	0	place holder	AN A	¥ Z	A A
23	12	method_of _depth_cal culation	0	0	Depth cal- culated us- ing fall rate equation	₹	N A
24	12	method_of _depth_cal culation	-	-	Depth cal- culate from water pres- sure / equa- tion of state (of sea water)	A A	A N
56	41	processin g_code	0	3	Calibration correction (of humidity sensors)	۲ ۲	N A
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		lab	e 3/ prome_con	able 3/ profile_configuration_codes (cont.)	(cont.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
27	14	processin	-	HRC	Humidity ra-	NA	NA
		apoo-b			diation cor-		
					rection		
28	14	processin	2	or	Outlier re-	NA	NA
		apoo-b			moval (re-		
					move temper-		
					ature spikes)		
59	14	processin	3	pGPS	Combination	NA	NA
		g_code			of pressure		
					and GPS		
30	14	processin	4	11	Time-lag cor-	NA	NA
		g_code			rection		
31	14	processin	2	TRC	Temperature	NA	NA
		g-code			radiation cor-		
					rection		
32	15	radiosonde	0	00	Reserved	NULL	30/06/2007
		_sounding					
		_system					
33	15	radiosonde	-	10	iMet-1-BB	01/01/1900	30/06/2007
		_sounding			(United		
		_system			States)		
34	15	radiosonde	2	01	Not vacant	30/06/2007	NULL
		_sounding					
		_system					
35	15	radiosonde	3	02	No ra-	NULL	30/06/2007
		_sounding			diosonde -		
		_system			passive tar-		
					get (e.g. re-		
					flector)		
36	15	radiosonde	4	03	No ra-	NOLL	30/06/2007
		_sounding			diosonde -		
		_system			active tar-		
					get (e.g.		
					transponder)		
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

300		labi	le 3/ profile_cor	able 3/ profile_configuration_codes (cont.)	s (cont.)	+ + + + + + + + + + + + + + + + + + +	7
Index	neia_number	neid_name	code_value	appreviation	describtion	start_date	end_date
37	15	radiosonde	2	04	No ra-	NULL	30/06/2007
		_sounding			diosonde		
		_system			 passive 		
					temperature-		
					humidity		
					profiler		
38	15	radiosonde	9	05	No ra-	NULL	30/06/2007
		_sounding			diosonde		
		_system			 active 		
					temperature-		
					humidity		
					profiler		
39	15	radiosonde	7	90	No ra-	NULL	30/06/2007
		_sounding			diosonde		
		_system			- radio-		
		7			acoustic		
					sounder		
40	15	radiosonde	8	07	iMet-1-AB	01/01/1900	30/06/2007
		_sounding			(United		
		_system			States)		
41	15	radiosonde	6	20	Not vacant	30/06/2007	NULL
		_sounding					
		_system					
42	15	radiosonde	10	80	No ra-	NULL	30/06/2007
		_sounding		>	diosonde -		
		_system			(reserved)		
43	15	radiosonde	11	60	No ra-	NULL	30/06/2007
		_sounding			diosonde -		
		_system			system un-		
					known or not		
					50000		
						Confinded	Continued on next page

Table 37 profile_configuration_codes (cont.)

		IaDie	ם סי שווחות יס ם	lable of profile-corniguration-codes (corn.,	(00111.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
44		radiosonde sounding system	5	10	Sippican LMS5 w/Chip Thermistor, duct mounted capacitance relative hu- midity sen- sor and de- rived pres- sure from GPS height	01/01/1900	30/06/2007
54	15	radiosonde _sounding _system	13	00	VIZ type A pressure- commutated (United States)	01/01/2008	NOLL
94	1 5	radiosonde _sounding _system	4-		Sippican LMS6 w/Chip Thermis- tor, exter- nal boom mounted ca- pacitance rel- ative humidity sensor, and derived pres- sure from GPS height	01/01/1900	30/06/2007
47	15	radiosonde _sounding _system	15	.	VIZ type B time- commutated (United States)	01/01/2008	NULL
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

2000	fiold number	in blois	Section of the sectio	ohbroviotion door	doorintion	400	7000
HIGH	iagiiinii niaii	IIEIO-IIIIE	code-value	appleviation	nescribinon	siail-uale	ella-uale
48	15	radiosonde	16	12	Jin Yang	01/01/1900	30/06/2007
		_sounding			RSG-20A		
		system			with derived		
					pressure		
					from GPS		
					height/GL-		
					5000P (Re-		
					public of		
9	L	=		0	Korea)	1000	=======================================
49	15	radiosonde	1/	72	RS SDC	06/05/2015	NOLL
		_sounding			(Space Data		
		_system			Corpora-		
					tion - United		
					States)		
20	15	radiosonde	18	13	Astor (no	01/01/1900	30/06/2007
		_sounding			longer made		
		_system			- Australia)		
21	15	radiosonde	19	13	Vaisala	15/09/2010	NULL
		_sounding			RS92/MARWIN	_	
		_system	>		MW32 (Fin-		
					land)		
25	15	radiosonde	20	14	Vaisala	01/01/1900	30/06/2007
		sounding			RS92/DidiCORA	A	
		svstem			MW41 (Fin-		
					land)		
53	15	radiosonde	21	14	VIZ MARK	03/11/2011	NULL
		_sounding			-IMI-		
		_system			CROSONDE		
					(United		
54	15	radiosonde	22	15	EEC Com-	01/01/1900	30/06/2007
		_sounding			pany type		
		system			23 (United		
					States)		
22	15	radiosonde	23	15	PAZA-	01/12/2011	NULL
		_sounding_svstem			12M/Radiotheodolite- UL (Ukraine)	dolite-	
						Continued	Continued on next page
)	11 11001 Page

Table 37 profile_configuration_codes (cont.)

		Iadi	e s/ prome_cor	lable 3/ profile_coffinguration_codes (coffi.)	(COIII.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
56	15	radiosonde	24	16	Elin (Austria)	01/01/1900	30/06/2007
		sounding					
		_system	1				
22	15	radiosonde	25	16	PAZA-	01/12/2011	NOLL
		_sounding			22/AVK-1		
		_system			(Ukraine)		
28	15	radiosonde	26	17	Graw DFM-	01/01/1900	30/06/2007
		_sounding			09 (Ger-		
		_system			many)		
29	15	radiosonde	27	17	Graw G.	02/05/2012	NULL
		_sounding			(Germany)		
		_system					
09	15	radiosonde	28	18	Graw DFM-	01/01/1900	30/06/2007
		_sounding			06 (Ger-		
		_system			many)		
61	15	radiosonde	29	18	Not vacant	30/06/2007	NULL
		_sounding					
		_system					
62	15	radiosonde	30	19	Graw M60	01/01/1900	30/06/2007
		_sounding			(Germany)		
		_system					
63	15	radiosonde	31	19	Vacant	30/06/2007	NULL
		_sounding					
		_system					
64	15	radiosonde	32	20	Indian Me-	01/01/1900	30/06/2007
		_sounding			teorologi-		
		_system			cal Service		
					MK3 (India)		
65	15	radiosonde	33	20	Not vacant	30/06/2007	NULL
		_sounding					
		_system					
99	15	radiosonde	34	21	Jin Yang	01/01/1900	30/06/2007
		_sounding			1524LA		
		_system			LORAN-		
					C/GL5000		
					(Republic		
					ol norea)	:	
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		ומם ח	e o/ bioille-col	lable of profile-collinguration-codes (colli.)	(collic.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
29	15	radiosonde sounding system	35	21	VIZ/Jin Yang MARK I MI- CROSONDE (Republic of Korea)	06/05/2015	NULL
89	15	radiosonde sounding system	36	22	Meisei RS- 11G GPS radiosonde w/thermistor, capacitance relative hu- midity sen- sor, and de- rived pres- sure from GPS height (Japan)	01/01/1900	30/06/2007
69	15	radiosonde _sounding _system	37	22	Meisei RS2- 80 (Japan)	02/05/2012	NULL
70	15	radiosonde _sounding _system	38	23	Mesural FMO 1950A (France)	01/01/1900	30/06/2007
71	15	radiosonde _sounding _system	39	23	Vaisala RS41/DigiCORA MW41 (Fin- land)	03/11/2011 A	NULL
72	15	radiosonde _sounding _system	40	24	Mesural FMO 1945A (France)	01/01/1900	30/06/2007
73	15	radiosonde _sounding _system	41	24	Vaisala 03/1 RS41/AUTOSONDE (Finland)	03/11/2011 NDE	NOLL
74	15	radiosonde _sounding _system	42	25	Mesural MH73A (France)	01/01/1900	30/06/2007
						Continued c	Continued on next page

Table 37 profile_configuration_codes (cont.)

		lao	e 3/ prome_cor	lable 3/ profile_configuration_codes (conf.,	(CONL.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
75	15	radiosonde	43	25	Vaisala	03/11/2011	NULL
		_system			MW32 (Fin-	-	
					land)		
9/	15	radiosonde	44	26	Meteolabor	01/01/1900	30/06/2007
		_sounding			Basora		
		_system			(Switzerland)		1
77	15	radiosonde	45	26	Meteolabor	07/05/2014	NULL
		_sounding			SRS-		
		_system			C34/Argus 37		
					(Switzerland)		
28	15	radiosonde	46	27	AVK-MRZ	01/01/1900	30/06/2007
		sounding			(Russian		
		_system			Federation)		
79	15	radiosonde	47	27	Not vacant	30/06/2007	NULL
		_sounding					
		_system					
80	15	radiosonde	48	28	AVK - AK2-	01/01/1900	30/06/2007
		_sounding			02 (Russian		
		_system			Federation)		
81	15	radiosonde	49	28	Meteorit	15/09/2011	NULL
		_sounding			MARZ2-1		
		_system			(Russian		
		-	C L		rederation)		
85	15	radiosonde	20	59	MARL-A or	01/01/1900	30/06/2007
		_sounding			Vektor-M -		
		_system			AK2-02 (Rus-		
					sian Fed-		
					eration)		
83	15	radiosonde	51	59	Meteorit	15/09/2011	NULL
		_sounding			MARZ2-2		
		_system			(Russian		
					Federation)		
84	15	radiosonde	52	30	Meisei RS-	01/01/1900	30/06/2007
		_sounding			ood (Japan)		
		-system				:	
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		Iable	e 37 profile_cor	lable 37 profile_configuration_codes (cont.)	(cont.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
82	15	radiosonde	53	30	Oki RS2-80	01/01/2010	NULL
		_sounding system			(Japan)		
98	15	radiosonde	54	31	Taiyuan	01/01/1900	30/06/2007
		_sounding			GTS1-		
		system			1/GFE(L)		
					(China)		
87	15	radiosonde	55	31	VIZ/Valcom	03/11/2011	NULL
		_sounding			type A		
		_system			pressure-		
					commutated		
					(Canada)		
88	15	radiosonde	56	32	Shanghai	01/01/1900	30/06/2007
		_sounding			GTS1/GFE(L)		
		system			(China)		
68	15	radiosonde	57	32	Shanghai Ra-	03/11/2011	NULL
		_sounding			dio (China)		
		_system					
90	15	radiosonde	58	33	Nanjing	01/01/1900	30/06/2007
		_sounding			GTS1-		
		_system			2/GFE(L)		
					(China)		
91	15	radiosonde	59	33	UK Met Of-	03/11/2011	NULL
		_sounding			fice MK3 (UK)		
		_system					
95	15	radiosonde	09	34	Vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
93	15	radiosonde	61	34	Vinohrady	30/06/2007	NULL
		_sounding			(Czechia)		
		_system				:	

Table 37 profile_configuration_codes (cont.)

		ממו		ornigaration-codes (cont.	(00111.)		
index	field_number	field_name	code_value	abbreviation	description	start_date e	end_date
94	<u>-</u>	radiosonde _sounding _system	62	35	Meisei iMS- 100 GPS radiosonde w/thermistor sensor, ca- pacitance rel- ative humidity sensor, and derived pres- sure from GPS height (Japan)		30/06/2007
ဌ	15	radiosonde sounding system	63	çç	Vaisala RS18 (Finland)		
96	15	radiosonde _sounding _system	64	36	Vacant		30/06/2007
97	15	radiosonde _sounding _system	65	36	Vaisala RS21 (Finland)		NULL
86	15	radiosonde _sounding _system	99	37	Not vacant		30/06/2007
66	15	radiosonde _sounding _system	29	37	Vaisala RS80 (Finland)		NULL
100	15	radiosonde _sounding _system	89	38	Vacant		30/06/2007
101	15	radiosonde _sounding _system	69	38	VIZ LO- CATE Loran- C (United States)		NULL
102	15	radiosonde _sounding _system	70	39	Sprenger E076 (Ger- many)	01/01/1900 3	30/06/2007
						Continued on next page	next page

Table 37 profile_configuration_codes (cont.)

		labi	e o/ prome-cor	lable 3/ prome_cormiguration_codes (cont.)	(COLIL.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
103	15	radiosonde	71	39	Vacant	30/06/2007	NULL
		_sounding _system					
104	15	radiosonde	72	40	Sprenger	01/01/1900	30/06/2007
		_sounding			E084 (Ger-		
		_system			many)		
105	15	radiosonde	73	40	Vacant	30/06/2007	NULL
		_sounding					
		_system					
106	15	radiosonde	74	41	Sprenger	01/01/1900	30/06/2007
		_sounding			E085 (Ger-		
		_system			many)		
107	15	radiosonde	75	41	Vaisala RS41	03/11/2011	NULL
		_sounding			with pres-		
		_system			sure derived		
					from GPS		
					height/ Digi-		
					CORA MW41		
					(Finland)		
108	15	radiosonde	92	42	Sprenger	01/01/1900	30/06/2007
		_sounding			E086 (Ger-		
		_system			many)		
109	15	radiosonde	77	42	Vaisala RS41	03/11/2011	NULL
		_sounding			with pres-		
		_system			sure derived		
					from GPS		
					height/ AU-		
					TOSONDE		
					(Finland)		
110	15	radiosonde	78	43	AIR IS - 4A -	01/01/1900	30/06/2007
		_sounding			1680 (United		
		_system			States)		
111	15	radiosonde	62	43	NanJing	07/05/2014	NULL
		_sounding			Dadiao AGE-		
		-system			SG (CIIIIA)	;	
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		ומטו	ים סי שווחול יס טו	lable of prome-cormiguration-codes (corn.	(collit.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
112	15	radiosonde	80	44	AIR IS -	01/01/1900	30/06/2007
		sounding			4A - 1680		
		system			X (United		
					States)		
113	15	radiosonde	81	44	TianJin	07/05/2014	NOLL
		_sounding			HuaYun-		
		_system			TianYi		
					GTS(U)1		
					(China)*		
114	15	radiosonde	82	45	Beijing	01/01/1900	30/06/2007
		_sounding			Changfeng		
		_system			CF-06		
		,			(China)*		
115	15	radiosonde	83	45	RS MSS	07/05/2014	NULL
		sounding			(United		
		_system			States)		
116	15	radiosonde	84	46	AIR IS - 4A -	01/01/1900	30/06/2007
		_sounding			403 (United		
		_system			States)		
117	15	radiosonde	85	46	Shanghai	07/05/2014	NOLL
		_sounding			Chang-		
		_system			wang GTS3		
					(Cnina)"		
148	15	radiosonde	98	47	Meisei RS2-	01/01/1900	30/06/2007
		_sounding system			91 (Japan)		
119	15	radiosonde	87	47	Not vacant	30/06/2007	NULL
		_sounding					
		_system					
120	15	radiosonde	88	48	PAZA-	01/01/1900	30/06/2007
		_sounding			22M/MARL-A		
		_system					
121	15	radiosonde	68	48	VALCOM	02/05/2012	NULL
		_sounding			(Canada)		
		_system					
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		3			()		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
122	15	radiosonde	06	49	Not vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
123	15	radiosonde	91	49	VIZ MARK	30/06/2007	NULL
		_sounding			II (United		
		_system			States)		
124	15	radiosonde	92	50	Graw DFM-	01/01/1900	30/06/2007
		_sounding			90 (Ger-		
		_system			many)		
125	15	radiosonde	93	20	Meteolabor	02/11/2016	NOLL
		_sounding			SRS-		
		_system			C50/Argus		
					(Switzerland)		
126	15	radiosonde	94	51	Not vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
127	15	radiosonde	95	51	VIZ-B2	30/06/2007	NULL
		sounding			(United		
		_system			States)		
128	15	radiosonde	96	52	Vaisala	01/01/1900	30/06/2007
		_sounding			RS80-57H		
		_system					
129	15	radiosonde	26	52	Vaisala	03/11/2011	NULL
		_sounding			RS92-		
		svstem			NGP/Intermet		
					IMS-2000	>	
					(1 Inited		
					States)		
130	15	radiosonde	98	53	AVK - 1-2012	01/01/1900	30/06/2007
		_sounding			(Russian		
		_system			Federation)		
131	15	radiosonde	66	53	AVK-RF95	06/05/2015	NOLL
		_sounding			(Russian		
		system			Federation)		
132	15	radiosonde	100	54	Graw DFM-	01/01/1900	30/06/2007
		_sounding			97 (Ger-		
		_system			many)		
						Continued c	Continued on next page

Table 37 profile_configuration_codes (cont.)

		labi	e o/ prome-cor	lable 3/ profile_coffinguration_codes (coff.)	(COIII.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
133	15	radiosonde sounding system	101	54	Not vacant	30/06/2007	NOLL
134	15	radiosonde sounding system	102	22	Meisei RS- 01G (Japan)	01/01/1900	30/06/2007
135	15	radiosonde _sounding _system	103	55	Not vacant	30/06/2007	NOLL
136	15	radiosonde _sounding _system	104	26	M2K2 (France)	01/01/1900	30/06/2007
137	15	radiosonde _sounding _system	105	56	Not vacant	30/06/2007	NOLL
138	15	radiosonde _sounding _system	106	57	Modem M2K2-DC (France)	01/01/1900	30/06/2007
139	15	radiosonde _sounding _system	107	57	Not vacant	30/06/2007	NOLL
140	15	radiosonde _sounding _system	108	28	AVK-BAR (Russian Federation)	01/01/1900	30/06/2007
141	15	radiosonde _sounding _system	109	28	Not vacant	30/06/2007	NOLL
142	15	radiosonde _sounding _system	110	29	Modem M2K2-R 1680 MHz RDF ra- diosonde with pres- sure sensor chip (France)	01/01/1900	30/06/2007
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		ומטו	e o/ bioille-col	lable of profile-collinguration-codes (colli.)	(collit.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
143	15	radiosonde	111	59	Not vacant	30/06/2007	NULL
		_sounding					
		_system					
144	15	radiosonde	112	09	MARL-A or	01/01/1900	30/06/2007
		_sounding			Vektor-M - I-		
		system			2012 (Rus-		
					sian Fed-		
					eration)		
145	15	radiosonde	113	09	Vaisala	06/05/2015	NULL
		_sounding			RS80/MicroCora	ğ	
		_system			(Finland)		
146	15	radiosonde	114	61	Not vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
147	15	radiosonde	115	61	Vaisala	30/06/2007	NULL
		_sounding			RS80/Loran/Digicora	gicora	
		svstem			I. II or Marwin		
					(Finland)		
148	15	radiosonde	116	62	MARL-A or	01/01/1900	30/06/2007
		_sounding			Vektor-M -		
		_system			MRZ-3MK		
					(Russian		
					Federation)		
149	15	radiosonde	117	62	Vaisala	06/05/2015	NULL
		_sounding			RS80/PCCora		
		_system			(Finland)		
150	15	radiosonde	118	63	Vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
151	15	radiosonde	119	63	Vaisala	30/06/2007	NULL
		_sounding			RS80/Star		
		_system			(Finland)		
						Continued	Continued on next page

$\widehat{}$	
(cont	
7 profile_configuration_codes (co	
က	
Table	

yapui	field number	field name	alley abox	abhraviation	description	ctart date	and date
5			2000	apple Algoria	nondi locop	פומור-ממוכ	200-200
152	15	radiosonde	120	64	Orbital Sci-	01/01/1900	30/06/2007
		_sounding			ences Cor-		
		system			poration,		
					Space Data		
					Division,		
					transponder		
					radiosonde,		
					type 909-11-		
					XX, where		
					XX corre-		
					sponds to		
					the model of		
					the instrii-		
					ment (United		
					States)		
153	15	radiosonde	121	64	Vacant	30/06/2007	NULL
		sounding					
		_system					
154	15	radiosonde	122	65	Vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
155	15	radiosonde	123	92	VIZ transpon-	30/06/2007	NULL
		sounding			der ra-		
		system			diosonde,		
		•			model num-		
					ber 1499-	>	
					520 (United		
					States)		
156	15	radiosonde	124	99	Vacant	01/01/1900	30/06/2007
		_sounding					
	!	_system	!				
157	15	radiosonde	125	99	Vaisala RS80	30/06/2007	NOLL
		_sounding			/Autosonde		
		_system			(Finland)		
158	15	radiosonde	126	29	Not vacant	01/01/1900	30/06/2007
		cyctem					
		-3y3tG111				-	4.00
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		lab	e 3/ prome_cor	lable 3/ profile_configuration_codes (cont.)	s (cont.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
159	15	radiosonde sounding	127	67	Vaisala RS80/Digicora	30/06/2007	NULL
160	15	radiosonde sounding	128	89	AVK-RZM- 2 (Russian Federation)	01/01/1900	30/06/2007
161	15	radiosonde _sounding _system	129	89	Not vacant	30/06/2007	NULL
162	5-	radiosonde sounding system	130	69	MARL-A or Vektor-M- RZM-2 (Rus- sian Fed- eration)	01/01/1900	30/06/2007
163	15	radiosonde _sounding _system	131	69	Not vacant	30/06/2007	NULL
164	15	radiosonde _sounding _system	132	70	Not vacant	01/01/1900	30/06/2007
165	15	radiosonde _sounding _system	133	70	Vaisala RS92/Star (Finland)	30/06/2007	NOLL
166	15	radiosonde _sounding _system	134	17	Not vacant	01/01/1900	30/06/2007
167	15	radiosonde sounding system	135	71	Vaisala 30/0 RS90/Loran/Digicora I, II or Marwin (Finland)	30/06/2007 gicora	NULL
168	15	radiosonde _sounding _system	136	72	Not vacant	01/01/1900	30/06/2007
169	15	radiosonde sounding system	137	72	Vaisala RS90/PC- Cora (Fin- land)	30/06/2007	NULL
						Continued c	Continued on next page

Table 37 profile_configuration_codes (cont.)

		labi	e 3/ profile_cor	able 3/ profile_configuration_codes (cont.)	(cont.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
170	15	radiosonde sounding system	138	73	MARL-A (Russian Federation) - ASPAN-15 (Kazakhstan)	01/01/1900	30/06/2007
171	15	radiosonde _sounding _system	139	73	Vaisala (RS90/Autosonde (Finland)	02/11/2016 de	NOLL
172	5	radiosonde sounding system	140	74	Not vacant	01/01/1900	30/06/2007
173	15	radiosonde sounding system	141	74	Vaisala RS90/Star (Finland)	30/06/2007	NOLL
174	15	radiosonde sounding system	142	75	AVK-MRZ- ARMA (Rus- sian Fed- eration)	01/01/1900	30/06/2007
175	15	radiosonde _sounding _system	143	75	Not vacant	30/06/2007	NOLL
176	15	radiosonde sounding system	144	76	AVK-RF95- ARMA (Rus- sian Fed- eration)	01/01/1900	30/06/2007
177	15	radiosonde _sounding _system	145	76	Not vacant	30/06/2007	NOLL
178	15	radiosonde sounding system	146	77	GEOLINK GPSonde GL98 (France)	01/01/1900	30/06/2007
179	15	radiosonde _sounding _system	147	77	Modem GP- Sonde M10 (France)	15/03/2010	NOLL
						Continued o	Continued on next page

Table 37 profile_configuration_codes (cont.)

		Iabl	عرب المالات	iadie of profile-collinguration-codes (colli.)	(COLIL.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
180	15	radiosonde	148	78	Not vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
181	15	radiosonde	149	78	Vaisala	30/06/2007	NULL
		_sounding			RS90/Digicora		
		_system			III (Finland)		
182	15	radiosonde	150	79	Not vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
183	15	radiosonde	151	79	Vaisala	30/06/2007	NULL
		_sounding			RS92/Digicora		
		_system			I, II or Marwin		
					(Finland)		
184	15	radiosonde	152	80	Not vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
185	15	radiosonde	153	80	Vaisala	30/06/2007	NULL
		_sounding			RS92/Digicora		
		_system			III (Finland)		
186	15	radiosonde	154	81	Not vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
187	15	radiosonde	155	81	Vaisala	30/06/2007	NULL
		_sounding			RS92/Autosonde	e	
		_system			(Finland)		
						Continued	Continued on next page

Continued on next page 30/06/2007 30/06/2007 end_date 01/01/1900 01/01/1900 start_date Martin LMS-6 tive pressure description MK2 GPS/S **TAR** (United bon element bon element ternal boom sor; capaciand derived w/chip therpolymer ca-States) with and derived mistor, carsensor and States) with pacitive relmistor, carmistor; exmidity sen-GPS wind Lockheed Sippican MK2 GPative hurod therrod ther-0006M/S Sippican pressure mounted pressure (United Table 37 profile_configuration_codes (cont.) code_value abbreviation 82 82 83 156 157 field_name radiosonde radiosonde radiosonde -sounding sounding sounding system system system field_number 15 index 188 190

Table 37 profile_configuration_codes (cont.)

					(2011:1:)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
191	15	radiosonde	159	83	Vaisala	07/11/2012	NULL
)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)			
		_sounding			HS9Z-		
		_system			D/Intermet		
					IMS 1500		
					w/silicon ca-		
					pacitive pres-		
					sure sensor,		
					capacitive		
					wire temper-		
					ature sen-		
					sor, twin thin-		
					film heated		
					polymer ca-		
					pacitive rela-		
					tive humidity		
					sensor and		
					RDF wind		
192	15	radiosonde	160	84	Sippican	01/01/1900	30/06/2007
		_sounding			MARK II with		
		_system	>		chip thermis-		
					tor, carbon		
					element and		
					derived pres-		
					sure from GPS height		
193	15	radiosonde	161	84	Vacant	30/06/2007	NOLL
		_sounding					
		_system					
194	15	radiosonde	162	85	Not vacant	01/01/1900	30/06/2007
		_sounding					
		_system					
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

			0000		(00111:)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
95	5	radiosonde sounding system	163	85	Sippican MARK IIA with chip thermistor, carbon el- ement and derived pres- sure from GPS height	30/06/2007	NOLL
196	15	radiosonde _sounding _system	164	86	Not vacant	01/01/1900	30/06/2007
197	15	radiosonde _sounding _system	165	98	Sippican MARK II with chip thermis- tor, pressure and carbon element	30/06/2007	NULL
198	15	radiosonde _sounding _system	166	87	Not vacant	01/01/1900	30/06/2007
199	15	radiosonde -sounding -system	167	87	Sippican MARK IIA with chip thermistor, pressure and carbon el- ement	30/06/2007	NULL
500	15	radiosonde _sounding _system	168	88	MARL-A or Vektor-M- MRZ (Rus- sian Fed- eration)	01/01/1900	30/06/2007
201	15	radiosonde _sounding _system	169	88	Not vacant	30/06/2007	NOLL
						Continued c	Continued on next page

Table 37 profile_configuration_codes (cont.)

		lab	e 3/ prome_cor	lable 3/ profile_configuration_codes (conf.,	(CONL.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
202	15	radiosonde sounding system	170	88	MARL-A or Vektor-M- BAR (Rus- sian Fed- eration)	01/01/1900	30/06/2007
203	15	radiosonde _sounding _system	171	68	Not vacant	30/06/2007	NOLL
204	15	radiosonde _sounding _system	172	06	Radiosonde not specified or unknown	NULL	30/06/2007
205	15	radiosonde sounding system	173	91	Pressure only radiosonde	NOLL	30/06/2007
206	15	radiosonde sounding system	174	95	Pressure only radiosonde plus transponder	NOLL	30/06/2007
207	15	radiosonde sounding system	175	93	Pressure only radiosonde plus radar reflector	NULL	30/06/2007
208	15	radiosonde sounding system	176	94	No pressure radiosonde plus transponder	NOLL	30/06/2007
509	15	radiosonde sounding system	177	95	No pressure radiosonde plus radar reflector	NULL	30/06/2007
210	15	radiosonde _sounding _system	178	96	Descending radiosonde	NOLL	30/06/2007
211	15	radiosonde _sounding _system	179	26	BAT-16P (South Africa)	01/01/1900	30/06/2007
						Continued c	Continued on next page

Table 37 profile_configuration_codes (cont.)

		Table	e 37 profile_cor	Table 37 profile_configuration_codes (cont.)	(cont.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
212	15	radiosonde sounding	180	97	Not vacant	30/06/2007	NOLL
213	5	radiosonde _sounding _system	181	86	BAT-16G (South Africa)	01/01/1900	30/06/2007
214	15	radiosonde _sounding _system	182	86	Not vacant	30/06/2007	NOLL
215	5	radiosonde sounding system	183	66	BAT-4G (South Africa)	A A	Y Y
216	15	radiosonde _sounding _system	184	66	Not vacant	۷ ۷	۷ ۷
218	16	radiosonde_c ompleteness	0		Pressure only radiosonde	NA V	NA
219	16	radiosonde_c ompleteness	-	8	Pressure only radiosonde plus trasnponder	NA	NA
220	16	radiosonde_c ompleteness	2	e	Pressure only radiosonde plus radar reflector	NA	NA
221	16	radiosonde_c ompleteness	ന	4	No-pressure radiosonde plus transponder	N A	NA
222	16	radiosonde_c ompleteness	4	വ	No-pressure radiosonde plus radar reflector	NA	NA
223	17	radiosonde_ computation al_method	0	TBD	NA	۲	Ϋ́
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		ומטונ	a o/ prome-com	lable of profile-collinguration-codes (colli.,	(colle.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
225	19	radiosonde_g	0	0	InterMet IMS	NA	NA
		round_receiv ing_system			2000		
226	19	radiosonde_g	-	-	InterMet IMS	NA	NA
		round_receiv			1500C		
		ing_system					
227	19	radiosonde_g	2	2	Shanghai	NA	NA
		round_receiv			GTC1		
000	0	Ing_system			:	4	4
228	19	radiosonde_g	m	m	Nanjing	۷ ۷	۷ ۷
		round_receiv			GTC2		
		ing_system					
229	19	radiosonde_g	4	4	Nanjing	ΥZ	NA
		round_receiv			GFE(L)1		
		ing_system					
230	19	radiosonde_g	5	5	MARL-A	NA	NA
		round_receiv			radar		
		ing_system					
231	19	radiosonde_g	9	9	VEKTOR-	NA	NA
		round_receiv			M radar		
		ing_system					
232	20	radiosond	NA	NA	Common	NA	NA
		e_type			code table C2		
233	21	reason_for_t	NA	NA	Place holder	NA	NA
		ermination					
234	22	solar_and_infr	0	0	No correction	NA	NA
		ared_radiatio					
		n_correction					
235	22	solar_and_infr	-	-	CIMO so-	A V	N V
		ared_radiatio			lar corrected		
		n_correction			and CIMO		
					infrared cor-		
					rected		
236	22	solar_and_infr	2	2	CIMO so-	NA	NA
		ared_radiatio			lar corrected		
		n_correction			and infrared		
					corrected	:	
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

			יייייין וייייין	מסום כל המשליה של המשליה של המשליה של המשליה של המשליה של המשלים של המשלים למשלים למשלים למשלים למשלים למשלים ל	(2011)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
237	22	solar_and_infr	ဇ	3	CIMO solar	NA	NA
		ared_radiatio			corrected		
		n_correction			only		
238	22	solar_and_infr	4	4	Solar and in-	Υ V	Ϋ́
		ared_radiatio			frared cor-		
		n_correction			rected auto-		
					matically by		
					radiosonde		
					system		
239	22	solar_and_infr	5	2	Solar cor-	ΝΑ	ΑN
		ared_radiatio			rected au-		
		n_correction			tomatically by		
					radiosonde		
					system		
240	22	solar_and_infr	9	9	Solar and in-	NA	NA
		ared_radiatio			frared cor-		
		n_correction			rected as		
					specified by		
					country		
241	22	solar_and_infr	7	7	Solar cor-	NA	NA
		ared_radiatio			rected as		
		n_correction			specified by		
					country		
242	22	solar_and_infr	8	8	Solar and in-	NA	NA
		ared_radiatio		>	frared cor-		
		n_correction			rection as		
					specified by		
					GRUAN		
243	22	solar_and_infr	6	6	Solar cor-	NA	NA
		ared_radiatio			rected as		
		n_correction			specified by		
					GRUAN		
244	23	tracking_te	NA	NA	common	NA	NA
		chnique			code table C7		
245	24	type_of_b alloon	0	0	GP26	∀ Z	Ϋ́
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		ומסו	מים שוומילו זה ש	lable of profile-collinguration-codes (collinguration)	(00111.)		
index	field_number	field_name	code_value	abbreviation	description	start_date	end_date
246	24	type_of_b alloon	-	-	GP28	NA	NA
247	24	type_of_b alloon	2	5	GP30	NA	NA
248	24	type_of_b alloon	က	င	HM26	NA	NA
249	24	type_of_b alloon	4	4	HM28	NA V	NA
250	24	type_of_b alloon	2	C)	НМЗО	NA	NA
251	24	type_of_b alloon	9	9	SV16	NA	NA
252	24	type_of_b alloon	7	7	Totex TA type balloons	NA	NA
253	24	type_of_b alloon	8	8	Totex TX type balloons	NA	NA
254	25	type_of_ballo on_shelter	ΨN	NA	Place holder	۷ ۷	۷ ۷
255	26	type_of_ga s_used_in_ balloon	AN	NA	Place holder	NA V	NA
256	27	type_of_mea suring_equip ment_used	0	0	Pressure instrument associated with wind measuring equipment	NA	A A
257	27	type_of_mea suring_equip ment_used	-	-	Optical theodolite	A V	NA
258	27	type_of_mea suring_equip ment_used	2	2	Radio theodolite	A V	NA
259	27	type_of_mea suring_equip ment_used	ന	ന	Radar	Y V	NA
						Continued	Continued on next page

Table 37 profile_configuration_codes (cont.)

		ומט	מים שוומיל זה ש	lable of profile-collinguration-codes (colli.,	(00111.)		
index		field_name	code_value	abbreviation	description	start_date	end_date
260	27	type_of_mea suring_equip ment_used	4	4	VLF-Omega	V	Y V
261	27	type_of_mea suring_equip ment_used	വ	2	Loran-C	A V	Y V
262	27	type_of_mea suring_equip ment_used	9	9	Wind profiler	Y V	Y V
263	27	type_of_mea suring_equip ment_used	7		Satellite nav- igation	Y V	Y Z
264	27	type_of_mea suring_equip ment_used	ω	ω	Radio- acoustic Sounding System (RASS)	۲ ۲	ΨN
265	27	type_of_mea suring_equip ment_used	6	6	Sodar	Y V	Y Z
266	27	type_of_mea suring_equip ment_used	10	14	Pressure instrument associated with wind measuring equipment but pressure element failed during ascent	NA	۷ ۷
267	27	type_of_mea suring_equip ment_used	-	15	Missing value	NA	Y V
268	27	type_of_mea suring_equip ment_used	12	10 - 13	Reserved	NA	V V
269	28	type_of_pres sure_sensor	0	0	Capacitance aneroid	ΑN	ΥN
						Continued	Continued on next page

end_date ΑN ΑN Ϋ́ ΑN ΑN Α ¥ start_date ΑN ΑN Ϋ́ ΑN ΑN Ϋ́ Ϋ́ / TBD (check BUFR tables) Place holder / TBD (check Derived from BUFR tables) Derived from description Place holder strain gauge radar height Silicon ca-Resistive STRING pacitor Table 37 profile_configuration_codes (cont.) GPS code_value abbreviation Ϋ́ ξ ¥ 2 က 4 ¥ water_temper ecorder_type ature_profile_ type_of_pres type_of_pres type_of_pres type_of_pres field_name sure_sensor sure_sensor sure_sensor sure_sensor XBT_launc unwinde r_type field_number 28 28 28 28 29 30 31 index 270 273 275 271

C3S_311a_Lot2_NUIM_2017 {ref}

Table 38: profile_configuration_fields

index	field	field_name	type	description
0	_	balloon_manufacturer	int (fk)	NA
-	5	balloon_type	int (fk)	NA
7	က	burstpoint_altitude	numeric	NA
က	4	burstpoint_pressure	numeric	NA
4	2	humidity_correctio	int (fk)	NA
		n_algorithm		
2	9	profile_direction	int (fk)	AN
9	7	filling_weight	numeric	NA
7	ω	geopotential_heig	int(fk)	NA
		ht_calculation		
∞	6	gross_weight	numeric	ΑN
6	10	include_descent	numeric	ΑN
10	=	instrument_type_fo	int (fk)	NA
		r_water_temperatur		
		e_salinity_profile		
7	12	method_of_depth_	int (fk)	NA
		calculation		
12	13	payload	numeric	NA
13	14	processing_code	int (fk)	NA
14	15	radiosonde_soun	int (fk)	AN
		ding_system		
15	16	radiosonde_com	int(fk)	NA
		pleteness		
16	17	radiosonde_compu	int(fk)	NA
17	18	radiosonde_con	int(fk)	NA
		figuration		
18	19	radiosonde_ground_	int(fk)	NA
		receiving_system		>
19	20	radiosonde_type	int(fk)	See WMO3685
20	21	reason_for_termination	int(fk)	NA
21	22	solar_and_infrared_ra	int(fk)	NA
		diation_correction		
22	23	tracking_technique	int(fk)	٩N
23	24	type_of_balloon	int(fk)	NA
24	25	type_of_balloonshelter	int(fk)	NA
				Continued on next page

XBT / XCTD launcher type Fnd of table description Table 38 profile_configuration_fields (cont.) ΑĀ ΑĀ A A Ϋ́ int(fk) int(fk) type int(fk) int(fk) water_temperature_p rofile_recorder_type XBT_launcher_type type_of_measuring_ equipmentused unwinder_type type_of_gasuse type_of_pressur field_name dinballoon e_sensor field 26 28 30 29 27 31 index 25 82 63 26 30 27

End of table		X	

Table 39: quality_flag (BUFR Code Table 0 33 020)

index	quality_flag	description
0	0	Good
1	1	Inconsistent
2	2	Doubtful
3	3	Wrong
4	4	Not checked
5	5	Has been changed
6	6	Estimated
7	7	Missing value

Table 40: region (WIGOS Code Table 3-01)

index	region	WMO ₋ region	description
0	0	NA	Reserved
1	1	1	Africa
2	2	2	Asia
3	3	3	South America
4	4	4	North America, Central America, Caribbean
5	5	5	South-West Pacific
6	6	6	Europe
7	7	7	Antarctica

End of table

Table 41: report_processing_codes

report_processing_codes	description
0	date / times quality controlled
1	location quality controlled
2	observation quality controlled
3	adjustment applied to observed value
	report_processing_codes 0 1 2 3

End of table

Table 42: report_processing_level

index	report_processing_level	description
0	0	Raw - data as originally reported
		in source data set
1	1	Partial - subset of reported values (location,
		date / time, observand etc) processed
2	2	Full - all elements of report processed

End of table

Table 43: report_type

index	report ₋type	abbreviation	description
0	0	SYNOP	NA
1	1	TEMP	NA
2	2	CLIMAT	NA
			Fnd of table

Table 44: sampling_strategy (WIGOS Code Table 6-03)

index	sampling_strategy	description
0	1	Continuous
1	2	Discrete
2	3	Event
		End of table

Table 45: sea_level_datum (BUFR Code Table 0 01 151)

index	sea_level_datum	description
0	0	Earth Gravitational Model 1996
1	1	Baltic height system 1977
		End of table

Table 46: sensor_configuration_codes

index	field	field_name	parameter	code_value	description
0	0	ice bulb status	humidity	0	Ice bulb
-	0	ice bulb status	humidity	-	Wet bulb
2	-	sensor housing - configuration	all	0	Double v section louvers
က	-	sensor housing - configuration	all	-	non-overlapping louvers
4	-	sensor housing - configuration	all	2	Not applicable
2	-	sensor housing - configuration	all	ဇ	Overlapping louvers
9	-	sensor housing - configuration	all	4	single v-section louvers
7	-	sensor housing - configuration	all	2	vented, non-louvered
ω	7	sensor housing - heating	all	0	Heated
б	7	sensor housing - heating	all	-	Unheated
10	က	sensor housing - material	all	0	Metal alloy
=	က	sensor housing - material	all	-	Plastic / Glass reinforced plastic
12	က	sensor housing - material	all	2	Reed / grass / leaf
13	က	sensor housing - material	all	က	Wood
41	4	sensor housing - radiation shielding	all	0	Concentric tube
15	4	sensor housing - radiation shielding	all	-	Cylindrical section plate shield
16	4	sensor housing - radiation shielding	all	5	Integrated (e.g. chilled mirror)
17	4	sensor housing - radiation shielding	all	3	Marine Stevenson screen
9	4	sensor housing - radiation shielding	all	4	Open covered inverted V roof
					Continued on next page

Table 46 sensor_configuration_codes (cont.)

			lable 40 sellsol_colliigulatioll_codes (colli.)	.บาเทยนาสแบบ-เร	des (cont.)
index	field	field_name	parameter	code_value	description
19	4	sensor housing - radiation shielding	all	വ	open covered lean-to
20	4	sensor housing - radiation shielding	all	9	Rectangular section section
51	4	sensor housing - radiation shielding	all	7	Square section shield
22	4	sensor housing - radiation shielding	all	ø	Stevenson screen
23	4	sensor housing - radiation shielding	all	6	Triangular section shield
24	ر ک	sensor hous- ing - type	all	0	Aspirated (e.g. Assmann)
25	2	sensor hous- ing - type	all	-	Hand-held digital temperature/humidity sensor
56	ر ک	sensor hous- ing - type	all	2	Other shelter
27	2	sensor hous- ing - type	all	ဇ	Radiation Shield (e.g. cylindrical / Gill multi-plate radiation shield)
78	2	sensor hous- ing - type	all	4	Screen
59	ည	sensor hous- ing - type	all	2	Sling / whirling
30	2	sensor hous- ing - type	all	9	Unscreened.
31	9	sensor housing - ventilation	all	0	Artificial aspiration in use, constant flow at time of reading
32	9	sensor housing - ventilation	all	-	Artificial aspiration in use, variable flow at time of reading
33	9	sensor housing - ventilation	all	2	Natural ventilation in use
34	∞	sensor loca- tion - ship	all	0	Aft mast.
35	8	sensor loca- tion - ship	all	1	Bridge wing
36	ω	sensor loca- tion - ship	all	0	Foremast yardarm
					Continued on next page

Table 46 sensor_configuration_codes (cont.)

			lable 46 sellsol_colliigulalion_codes (colli.)	เป็นเสแบบ-เร	ues (com.)
index	field	field_name	parameter	code_value	description
37	8	sensor loca-	all	3	Foremast.
		tion - ship			
88	ω	sensor loca- tion - ship	all	4	Handheld.
39	8	sensor loca-	all	5	Main deck
		tion - ship			
40	ω	sensor loca-	all	9	Mainmast yardarm
		tion - ship			
41	ω	sensor loca-	all	7	Mainmast.
		tion - ship			
42	8	sensor loca-	all	8	Mast on wheelhouse top yardarm
		tion - ship			
43	ω	sensor loca-	all	6	Mast on wheelhouse top.
		tion - ship			
44	∞	sensor loca-	all	10	Meteorological mast.
		tion - ship			
45	ω	sensor loca-	all	11	Not fitted.
		tion - ship			
46	ω	sensor loca-	all	12	Other
		tion - ship			
47	8	sensor loca-	all	13	Pressurised wheelhouse (closed and
		tion - ship			not vented to the outside).
48	8	sensor loca-	all	14	Wheelhouse
		tion - ship			
49	ω	sensor loca-	all	15	Wheelhouse, not pressurised
		tion - ship			(vented to the outside).
20	6	sensor side - ship	all	0	Center
21	6	sensor side - ship	all	.	Port
25	6	sensor side - ship	all	2	Starboard
53	6	sensor side - ship	all	3	Windward side
54	10	sensor owner	all	0	National hydrometeorological / weather service
22	10	sensor owner	all	-	Other
26	10	sensor owner	all	2	Standards institute
22	Ξ	sensor type - air	air temperature	0	Alcohol / glycol
Ĺ	,	alme		,	
28	.	sensor type - air	air temperature	.	Bead thermistor
		temperature			
					Continued on next page

Table 46 sensor_configuration_codes (cont.)

			lable 46 serisor_corniguration_codes (corn.)	oriiiguraiiori_co	des (con.)
index	field	field_name	parameter	code_value	description
29	=	sensor type - air temperature	air temperature	2	Capacitance bead
09	Ξ	sensor type - air temperature	air temperature	က	Capacitance wire
61	Ξ	sensor type - air temperature	air temperature	4	Chip thermistor
62	Ξ	sensor type - air temperature	air temperature	2	Mercury
63	=	sensor type - air temperature	air temperature	9	Resistive sensor
64	=	sensor type - air temperature	air temperature	7	Rod thermistor
65	12	sensor type - barograph	pressure trend	0	Open Scale barograph with 1 day clock.
99	12	sensor type - barograph	pressure trend		Open Scale barograph with 2 day clock.
29	12	sensor type - barograph	pressure trend	2	Open Scale barograph with 3 day clock.
89	12	sensor type - barograph	pressure trend	6	Open Scale barograph with 4 day clock.
69	12	sensor type - barograph	pressure trend	4	Open Scale barograph with 5 day clock.
70	72	sensor type - barograph	pressure trend	5	Open Scale barograph with 6 day clock.
71	12	sensor type - barograph	pressure trend	9	Open Scale barograph with 7 day clock.
72	12	sensor type - barograph	pressure trend	7	Open Scale barograph with 8 day clock.
73	12	sensor type - barograph	pressure trend	8	Open Scale barograph with 9 day clock.
74	12	sensor type - barograph	pressure trend	6	Open Scale barograph.
75	12	sensor type - barograph	pressure trend	10	Other (specify in footnote).
92	12	sensor type - barograph	pressure trend	11	Small Scale barograph.
					Continued on next page

Table 46 sensor_configuration_codes (cont.)

			Table 46 serisor_corniguration_codes (cont.)	ะงามยูนาสมอบ_ะco	des (cont.)
index	field	field_name	parameter	code_value	description
77	12	sensor type -	pressure trend	12	Tendency obtained from an elec-
		barograph			tronic digital barometer.
78	13	sensor type - barometer	pressure	0	Aneroid barometer (issued by
70	4.0	concor typo	Carlo	-	Digital provoid baromotor (aka Dro
6	2	sensor type - barometer	piessaid	_	Digital afferold baroffleter (aka Fre- cision Aneroid Barometer).
80	13	sensor type -	pressure	2	Electronic digital barometer (consisting of
		barometer			one or more pressure transducers).
81	13	sensor type -	pressure	က	Mercury barometer.
		barometer			
82	13	sensor type -	pressure	4	Other
		barometer			
83	13	sensor type -	pressure	5	Ship's aneroid barometer.
		parometer			
84	4	sensor type - evaporation	evaporation	NA	placeholder
25	<u>ا</u>	sonsor type -	air temperature	0	Automated instruments
3	2	extremes	all telliperature		Automated mortalities
98	15	sensor type -	air temperature	-	Maximum / minimum thermometers
		extremes			
87	15	sensor type -	air temperature	2	Reserved
		extremes			
88	15	sensor type -	air temperature	3	Thermograph
		extremes			
68	16	sensor type - humidity	humidity	0	Capacitive (ceramic, including metal oxide)
06	16	sensor type -	humidity	-	Capacitive (generic)
		humidity			
91	16	sensor type -	humidity	2	Capacitive (polymer)
		humidity			
92	16	sensor type - humidity	humidity	3	Carbon hygristor
93	16	sensor type -	humidity	4	chilled mirror hygrometer
		humidity			
94	16	sensor type - humidity	humidity	വ	dew cell
					Continued on next page

Table 46 sensor_configuration_codes (cont.)

humidity 16 sensor type - humidity 7 Goldbeater's skin humidity 16 sensor type - humidity 8 Gravimetric humidity 16 sensor type - humidity 10 Humicap capacitance ser humidity 11 Humicap capacitance ser humidity 12 optical absorption sensor type - humidity 13 Ordinary human hair humidity 15 Paper - metal coil humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 17 Resistive (generic) humidity 18 Resistive (generic) humidity 19 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (salt polymer) humidity 16 sensor type - humidity 17 Resistive (salt polymer) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 23 Thermal conductivity humidity 16 sensor type - humidity 23 Twin alternatively heated humidity 23 Twin alternatively humidity 23 Twin alternatively heated humidity 23 Twin alternatively humidity 23 Twin alternatively respective capacitance sensor	index 95	field 16	field_name sensor type -	parameter humidity	Table 46 sensor_configuration_codes (cont.) arameter code_value descripti amidity 6 Electric.	des (cont.) description Electric.
16 sensor type - humidity 7 Goldbeater's skin humidity 16 sensor type - humidity 8 Gravimetric humidity 16 sensor type - humidity 10 Humicap capacitance ser humidity 11 Humicap capacitance ser humidity 11 Humicap capacitance ser humidity 12 optical absorption sensor type - humidity 13 Ordinary human hair humidity 15 Paper - metal coil humidity 16 sensor type - humidity 17 Resistive (generic) humidity 18 Resistive (generic) humidity 19 Resistive (salt polymer) humidity 16 sensor type - humidity 19 Resistive (salt polymer) humidity 16 sensor type - humidity 19 Resistive (salt polymer) humidity 16 sensor type - humidity 17 Resistive (salt polymer) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Thermal conductivity humidity 16 sensor type - humidity 23 Twin alternatively heated humidity 23 Twin alternatively humidity 23 Twin alternatively humidity 23 Twin alternatively respective capacitance sensor		2	humidity		Þ	
16 sensor type - humidity 8 Gravimetric humidity 16 sensor type - humidity 10 Hair hygrometer. humidity 10 Humicap capacitance ser humidity 11 Humicap capacitance ser humidity 12 Humicap capacitance ser humidity 12 Humicap capacitance ser humidity 12 Ordinary human hair humidity 14 Ordinary human hair humidity 15 Paper - metal coil humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 18 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (generic) humidity 16 sensor type - humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 21 Sippican Mark IIA carbon humidity 22 Thermal conductivity humidity 23 Thermal conductivity humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated humidity 23 Twin alternatively responsor		16	sensor type - humidity	humidity	7	Goldbeater's skin
16 sensor type - humidity 9 Hair hygrometer. humidity humidity 10 Humica sentence server type - humidity 11 Hygristor. humidity humidity 12 optical absorption sensor humidity 14 Other humidity 15 Paper - metal coll humidity 16 sensor type - humidity 17 Paper - metal coll humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (generic) humidity 16 sensor type - humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 22 Thermal conductivity humidity 23 Thermal cap capacitance sensor humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated humidity 23 Twin alternatively esensor		16	sensor type - humidity	humidity	8	Gravimetric
16 sensor type - humidity 10 Humicap capacitance ser humidity active de-icing method active de-icing method humidity 12 optical absorption sensor humidity 13 Ordinary human hair humidity 14 Other humidity 15 Paper - metal coil humidity 16 sensor type - humidity 17 Resistive (generic) humidity 18 Resistive (generic) humidity 19 Resistive (generic) humidity 19 Resistive (generic) humidity 10 Resistive (generic) humidity 10 Resistive (generic) humidity 10 Resistive (generic) humidity 11 Resistive (generic) humidity 12 Resistive (generic) humidity 14 Resistive (generic) humidity 15 Resistive (generic) humidity 16 sensor type - humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 23 Thermal conductivity humidity 23 Twin alternatively heated humidity 23 Twin alternatively reservor		16	sensor type - humidity	humidity	o	Hair hygrometer.
16 sensor type - humidity 12 optical absorption sensor humidity 12 optical absorption sensor humidity 14 Ordinary human hair humidity 15 Paper - metal coil humidity 15 Paper - metal coil humidity 16 sensor type - humidity 17 Resistive (conductive poly humidity 18 Resistive (generic) humidity 19 Resistive (generic) humidity 19 Resistive (generic) humidity 19 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (alt polymer) humidity 16 sensor type - humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 22 Thermal conductivity humidity 16 sensor type - humidity 23 Twin alternatively heated humidity 16 sensor type - humidity 23 Twin alternatively heated humidity 16 sensor type - humidity 23 Twin alternatively sensor		16	sensor type - humidity	humidity	10	Humicap capacitance sensor with active de-icing method
16 sensor type - humidity 12 optical absorption sensor humidity 16 sensor type - humidity 13 Ordinary human hair humidity 16 sensor type - humidity 15 Paper - metal coil humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 17 Resistive (generic) humidity 16 sensor type - humidity 18 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (salt polymer) humidity 16 sensor type - humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 22 Thermal conductivity humidity 16 sensor type - humidity 22 Thermal conductivity humidity 16 sensor type - humidity 22 Thermal conductivity humidity 16 sensor type - humidity 23 Twin alternatively heated humidity	0	16	sensor type - humidity	humidity	11	Hygristor.
16 sensor type - humidity 13 Ordinary human hair humidity 16 sensor type - humidity 14 Other 16 sensor type - humidity 15 Paper - metal coil 16 sensor type - humidity 17 Resistive (conductive poly humidity 16 sensor type - humidity 18 Resistive (generic) humidity 16 sensor type - humidity 19 Resistive (salt polymer) humidity 16 sensor type - humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 22 Thermal conductivity humidity 16 sensor type - humidity 22 Thermal conductivity humidity 16 sensor type - humidity 23 Twin alternatively heated humidity	1	16	sensor type - humidity	humidity	12	optical absorption sensor
16 sensor type - humidity 14 Other humidity 16 sensor type - humidity 15 Paper - metal coil humidity 16 sensor type - humidity 17 Resistive (conductive poly humidity 17 Resistive (generic) humidity 18 Resistive (generic) humidity 19 Resistive (salt polymer) humidity 20 Rolled hair (torsion) humidity 10 Remail conductivity 10 Remail remailing 10 Remail	102	16	ype	humidity	13	Ordinary human hair
16 sensor type - humidity 16 Paper - metal coil humidity 16 sensor type - humidity 17 Resistive (conductive poly humidity 17 Resistive (generic) humidity 18 Resistive (generic) humidity 19 Resistive (salt polymer) humidity 19 Resistive (salt polymer) humidity 20 Rolled hair (torsion) humidity 21 Sippican Mark IIA carbon humidity 22 Thermal conductivity humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated cap capacitance sensor	103	16	sensor type - humidity	humidity	14	Other
16 sensor type - humidity 16 Psychrometer. humidity 17 Resistive (conductive polyhumidity 18 Resistive (generic) humidity 19 Resistive (generic) humidity 19 Resistive (salt polymer) humidity 20 Rolled hair (torsion) humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 22 Thermal conductivity humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated humidity 23 Twin alternatively sensor type - humidity 24 Cap acapacitance sensor	40	16	sensor type - humidity	humidity	15	Paper - metal coil
16sensor type - humidityhumidity17Resistive (conductive polyneric) humidity16sensor type - humidityhumidity19Resistive (generic)16sensor type - humidityhumidity20Rolled hair (torsion)16sensor type - humidityhumidity21Sippican Mark IIA carbon16sensor type - humidityhumidity22Thermal conductivity16sensor type - humidityhumidity22Thermal conductivity16sensor type - humidityhumidity23Twin alternatively heated cap capacitance sensor	105	16	sensor type - humidity	humidity	16	Psychrometer.
16 sensor type - humidity 18 Resistive (generic) humidity 19 Resistive (salt polymer) humidity 20 Rolled hair (torsion) humidity 21 Sippican Mark IIA carbon humidity 22 Thermal conductivity humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated capacitance sensor part of the sensor type - humidity 23 Twin alternatively heated capacitance sensor part of the sensor type - humidity 23 Twin alternatively heated capacitance sensor capacitance sensor provided that the sensor type - humidity 23 Twin alternatively heated capacitance sensor capacitance sensor capacitance sensor capacitance sensor capacitance sensor capacitance capacit	9(16	sensor type - humidity	humidity	17	Resistive (conductive polymer)
16 sensor type - humidity 19 Resistive (salt polymer) humidity 20 Rolled hair (torsion) humidity 21 Sippican Mark IIA carbon humidity 21 Sippican Mark IIA carbon humidity 22 Thermal conductivity humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated cap capacitance sensor	2	16	ype	humidity	18	Resistive (generic)
16 sensor type - humidity 20 Rolled hair (torsion) humidity 21 Sippican Mark IIA carbon humidity 22 Thermal conductivity humidity 22 Thermal conductivity humidity 23 Twin alternatively heated humidity 23 Twin alternatives sensor humidity 25 cap capacitance sensor	8	16	sensor type - humidity	humidity	19	Resistive (salt polymer)
16 sensor type - humidity 21 Sippican Mark IIA carbon humidity 22 Thermal conductivity 16 sensor type - humidity 23 Twin alternatively heated humidity 23 Twin alternatively heated humidity cap capacitance sensor	6	16	sensor type - humidity	humidity	20	Rolled hair (torsion)
16 sensor type - humidity 22 Thermal conductivity humidity 23 Twin alternatively heated humidity cap capacitance sensor	0	16	sensor type - humidity	humidity	21	Sippican Mark IIA carbon hygristor
16 sensor type - humidity 23 Twin alternatively heated humidity capacitance sensor	-	16	sensor type - humidity	humidity	22	Thermal conductivity
	2	16	sensor type - humidity	humidity	23	Twin alternatively heated Humi- cap capacitance sensor

Table 46 sensor_configuration_codes (cont.)

			Table 46 serisor_corniguration_codes (corn.)	orniguration_co	Jes (cont.)
index	field	field_name	parameter	code_value	description
113	16	sensor type - humidity	humidity	24	Vaisala A-Humicap
114	16	sensor type - humidity	humidity	25	Vaisala H-Humicap
115	16	sensor type - humidity	humidity	26	Vaisala RS90
116	16	sensor type - humidity	humidity	27	VIZ B2 hygristor
117	16	sensor type - humidity	humidity	28	VIZ Mark II carbon hygristor
118	17	sensor type - precipitation	precipitation	AN	Place holder
119	18	sensor type - present weather	present weather	0	Automatic, included (using WMO Codes 4677 and 4561)
120	8	sensor type - present weather	present weather	-	Automatic, included (using WMO codes 4680 amd 4531)
121	48	sensor type - present weather	present weather	2	Automatic, omitted (no observa- tion, data not available)
122	18	sensor type - present weather	present weather	6	Automatic, omitted (no significant phenomenon to report)
123	8	sensor type - present weather	present weather	4	Manned, included
124	18	sensor type - present weather	present weather	2	Manned, omitted (no observa- tion, data not available)
125	9	sensor type - present weather	present weather	9	Manned, omitted (no significant phenomenon to report)
126	19	sensor type - salinity	salinity	0	in situ, accuracy better han 0.02 ppt
127	19	sensor type - salinity	salinity	-	in situ, accuracy worse than 0.02 ppt
128	19	sensor type - salinity	salinity	5	No salinity
129	19	sensor type - salinity	salinity	3	sample analysis
130	50	sensor type - water temperature	water temperature	0	Bait tanks thermometer.
					Continued on next page

Table 46 sensor_configuration_codes (cont.)

			lable 40 sellsol-collingulation-codes (colli.	Jilligulation-co	des (cont.)
index	field	field_name	parameter	code_value	description
131	20	sensor type - water	water temperature	-	Bucket
		temperature			
132	20	sensor type - water temperature	water temperature	2	Condensor Intake on Steam Ships, or Engine Cooling System Inlet on Motor Ships.
133	50	sensor type - water	water temperature	က	Digital BT
		temperature			
134	20	sensor type - water	water temperature	4	electronic sensor
		temperature			
135	20	sensor type - water	water temperature	2	Expendable BT
		temperature			
136	20	sensor type - water	water temperature	9	Hull contact sensor
		temperature			
137	20	sensor type - water	water temperature	7	limplied bucket [note: applicable
		temperature			to early ICOADS data]
138	20	sensor type - water	water temperature	8	In-line thermosalinograph
		temperature			
139	20	sensor type - water	water temperature	6	Infrared radiometer
		temperature			
140	20	sensor type - water	water temperature	10	Infrared scanner
		temperature			
141	20	sensor type - water	water temperature	11	Mechanical BT
		temperature			
142	20	sensor type - water	water temperature	12	Microwave scanner
		temperature			
143	20	sensor type - water	water temperature	13	Other
		temperature			
144	20	sensor type - water	water temperature	14	Radiation thermometer.
		temperature			
145	20	sensor type - water	water temperature	15	Reversing thermometer
		temperature			>
146	20	sensor type - water	water temperature	16	reversing thermometer or mechanical sensor
		temperature			
147	20	sensor type - water	water temperature	17	STD / CTD sensor
		temperature			
148	20	sensor type - water	water temperature	18	Thermistor Chain
		temperature			
					Continued on next page

Table 46 sensor_configuration_codes (cont.)

sensor type - water water temperature 19 temperature sensor type - water water temperature 20 temperature sensor type - water water temperature 21 temperature sensor type - water water temperature 22 temperature sensor type - water water temperature 22 temperature sensor type - waves - waves sensor type - wind speed 0 wind speed sensor type - wind speed 2 wind speed sensor type - wind speed 3 wind speed sensor type - wind speed 4 wind speed sensor type - wind speed 5 wind speed sensor type - wind speed 5 wind speed sensor type - wind speed 5 wind speed sensor type - wind speed 6 wind speed sensor type - wind speed 7 wind speed sensor type - wind speed 6 wind speed sensor type - wind speed 6 wind speed sensor type - wind speed 7 wind speed sensor type - wind speed 8 wind speed sensor type - wind speed 8 wind speed sensor type - wind speed 9 wind speed sensor type - wind speed 8 wind speed sensor type - wind speed 9 sensor type - wind speed 8 sensor type - wind speed 9 sensor type - wind speed 9 sensor type - wind speed 8 sensor type - wind speed 9 sensor type - wind speed 8 sensor type - wind speed 9 sensor type - wind speed 9 sensor type - wind speed 9	X	field_name	parameter code_value descripti	code_value	G
sensor type - water water temperature 20 temperature sensor type - water water temperature 21 temperature sensor type - water water temperature 22 temperature sensor type - waves sensor type - wind speed 3 wind speed sensor type - wind speed 3 wind speed sensor type - wind speed 4 wind speed sensor type - wind speed 3 wind speed sensor type - wind speed 4 wind speed sensor type - wind speed 5 wind speed sensor type - wind speed 6 wind speed sensor type - wind speed 7 wind speed sensor type - wind speed 8 wind speed sensor type - wind speed 9 wind speed sensor type - wind speed 8 sensor type - wind speed 9 wind speed sensor type - wind speed 9 wind speed sensor type - wind speed 9 wind speed sensor type - wind speed 9	20	sensor type - water temperature	water temperature	19	Through Hull sensor.
sensor type - water water temperature 21 temperature sensor type - water water temperature 22 temperature sensor type - waves	20	sensor type - water temperature	water temperature	20	Towed body
sensor type - water water temperature 22 temperature sensor type - waves sensor type - waves sensor type - wind speed	20		water temperature	21	Trailing thermistor
sensor type waves - waves sensor type - waves sensor type - wind speed	20	sensor type - water temperature	water temperature	22	unknown or non-bucket
sensor type - waves - waves sensor type - wind speed	21	sensor type - waves	waves	0	pnoy
sensor type - waves sensor type - wind speed	21	sensor type - waves	waves	-	other
sensor type - wind speed 0 wind speed sensor type - wind speed 2 wind speed sensor type - wind speed 3 wind speed sensor type - wind speed 4 wind speed sensor type - wind speed 5 wind speed sensor type - wind speed 6 wind speed sensor type - wind speed 6 wind speed sensor type - wind speed 7 wind speed sensor type - wind speed 8 wind speed sensor type - wind speed 9	21	sensor type - waves	waves	N	shipborne wave recorder
sensor type - wind speed	22	sensor type - wind speed	wind speed	0	Anemograph.
sensor type - wind speed 2 wind speed 3 wind speed 4 wind speed 4 wind speed 4 wind speed 5 wind speed 6 wind speed 6 wind speed 7 wind speed 7 wind speed 7 wind speed 8 wind speed 9 wind speed 10	22	sensor type - wind speed	wind speed		Anemometer - type unspecified
sensor type - wind speed	22	sensor type - wind speed	wind speed	2	Beaufort force
sensor type - wind speed	22	sensor type - wind speed	wind speed	3	Cup anemometer and wind vane (combined unit).
sensor type - wind speed 5 wind speed wind speed 6 wind speed 7 wind speed 7 wind speed 7 wind speed 8 wind speed 8 wind speed 9 wind speed 9 wind speed 9 wind speed 9	22	sensor type - wind speed	wind speed	4	Cup anemometer and wind vane (separate instruments).
sensor type - wind speed 6 wind speed 7 wind speed 7 wind speed 7 wind speed 8 wind speed 8 wind speed 9 wind speed 9 wind speed 9 wind speed 9	22	sensor type - wind speed	wind speed	5	Cup rotor
sensor type - wind speed 7 wind speed 8 wind speed 8 wind speed 9 wind speed 9 wind speed 9 wind speed 10	22	sensor type - wind speed	wind speed	9	Handheld anemometer.
sensor type - wind speed 8 wind speed 8 sensor type - wind speed 9 wind speed 9 sensor type - wind speed 10	22	sensor type - wind speed	wind speed	7	Other (specify in footnote).
sensor type - wind speed 9 wind speed sensor type - wind speed 10	22	sensor type - wind speed	wind speed	ω	Propeller rotor
sensor type - wind speed 10	22	sensor type - wind speed	wind speed	6	Propeller vane.
beed	22	sensor type - wind speed	wind speed	10	Sonic anemometer.

End of table Wind observation through ambiant noise (WOTAN) NA code_value description Table 46 sensor_configuration_codes (cont.) Vaisala 0 wind speed parameter sonde telemetry_sonde manufacturer sensor type wind speed field_name field 22 27 index

	XX

167

168 169

Table 47: sensor_configuration_fields

																																			Continued on next page	- 1001 F
																																			Continued o)
decription	AN	NA		A A		ΑN		NA		NA		NA		NA		ΝΑ		NA	NA	NA		NA		NA		NA		A A		NA		Υ V		NA		
type	int (fk)	int (fk)		int (fk)		int (fk)		int (fk)		int (fk)		int (fk)	4	numeric		int (fk)		int (fk)	int (fk)	int (fk)		int (fk)		int (fk)		int (fk)	()	int (tk)		int (fk)		int (fk)		int (fk)		
parameter	humidity	all		all		all		all		all		all		all		all		all	all	air temperature		pressure trend		pressure		evaporation		air temperature		humidity		precipitation		present weather		
field_name	ice bulb status	sensor housing	- contiguration	sensor housing	- heating	sensor housing	- material	sensor housing -	radiation shielding	sensor hous-	ing - type	sensor housing	- ventilation	sensor housing -	ventilation rate	sensor loca-	tion - ship	sensor side - ship	sensor owner	sensor type - air	temperature	sensor type -	barograph	sensor type -	barometer	sensor type -	evaporation	sensor type -	extremes	sensor type -	humidity	sensor type -	precipitation	sensor type -	present weather	
field	0	-		2		က		4		2		9		7		_∞		6	10	7		12		13		14		15		16		17		18		
index	0	-		7		က		4		2		9		7		8		6	10	11		12		13		14	l,	15		16		17		18		

Table 47 sensor_configuration_fields (cont.)

			lable 47 serisor_corniguration_neids (corn.,	guration_neids (COLIL.)
index	field	field_name	parameter	type	decription
19	19	sensor type - salinity	salinity	int (fk)	NA
20	20	sensor type - water temperature	water temperature	int (fk)	NA
21	21	sensor type - waves	waves	int (fk)	NA
22	22	sensor type - wind speed	wind speed	int (fk)	NA
23	23	sensor location - distance from bow	wind speed	numeric	NA
24	24	sensor location - distance from center line	wind speed	numeric	NA
25	25	sensor location - height above deck	wind speed	numeric	NA
26	26	weight	epuos	numeric	NA
/7	/7.	telemetry_sonde	sonde	Int (TK)	NA NA
07	07	manufacturer		valcilai int(fk)	AN AN
30	30	sensor model	all	varchar	NA
31	31	serial number	all	varchar	NA
32	32	sensor accuracy	all	numeric	Reported accuracy of sensor in units of measurement.
33	33	sensor stability	all	numeric	Reported stability of sensor in reported units of measurement per year.
34	34	calibration interval	all	numeric	Maximum number of months recommended between calibrations.
35	35	calibration method	all	int(fk) TDB	Method used to calibrate instrument
36	36	calibration party	all	varchar	Who performed the calibration
37	37	calibration result	all	varchar TBD	Result of the calibration
38	38	sensor range - min	all	numeric	Minimum observable value with sensor in reported units of measurement
39	39	sensor range - max	all	numeric	Maximum observable value with sensor in reported units of measurement
40	40	sensor re- sponse time	all	numeric	Time (s) for sensor to chnage from previous state to current state
					Continued on next page

Table 47 sensor_configuration_fields (cont.)

			(mino) on in-in-man in figure (mino) in our in-in-in-in-in-in-in-in-in-in-in-in-in-i		
index	field	field_name	parameter	type	decription
41	41	sensor resolution	all	numeric	NA
42	42	sampling fre-	all	numeric	time period (s) between successive
		dneucy			measurements from sensor
43	43	sample treatment	all	TBD	treatment of the sample prior to analysis
44	44	sampling pro-	all	TBD	how the sample was obtained
		cedure			
45	45	quality control	all	int (fk)	Procedure used to quality control the
		procedure			observation and set quality flag
					End of table

Table 48: source_configuration_codes

index	field	field_name	code_value	description	extended_description
0	0	delayed mode	0	IMMT version	NA
		format		just prior to ver-	
				sion number be-	
				ing included	
1	0	delayed mode	-	IMMT-1 (in effect	NA
		format		from 2 Nov. 1994)	
N	0	delayed mode	2	IMMT-2 (in effect	NA
		format		from Jan. 2003)	
က	0	delayed mode	3	IMMT-3 (in effect	NA
		format		from Jan. 2007)	
4	0	delayed mode	4	IMMT-4 (in effect	NA
		format		from Jan. 2011)	
2	0	delayed mode	5	IMMT-5 (in effect	NA
		format		from June 2012)	
9	-	metadata source	0	COAPS	NA
7	-	metadata source	.	WMO Publi-	NA
				cation 47	
œ	2	metadata source	-	Output from digi-	NA
		format		tisation project,	
				semi-colon delim-	
				ited format (1955)	
6	2	metadata source	2	Output from digi-	NA
		format		tisation project,	
				semi-colon delim-	
				ited format (1956)	
10	2	metadata source	က	Output from digi-	NA
		format		tisation project,	
				semi-colon de-	
				limited format	
				(1957 - 1967)	
Ξ	2	metadata source	4	Output from digi-	NA
		format		tisation project,	
				semi-colon de-	
				limited format	
				(1968 - 1969)	
					Continued on next page

Continued on next page extended_description Table 48 source_configuration_codes (cont.) Ž Ž ¥ ¥ Ž ¥ ¥ Ž ¥ Ϋ́ ¥ ¥ ¥ Ž ¥ delayed mode - naelecommunication real time - national Semi-colon delimtional publications ited format (2002 real time - global logbook (paper) telecommunica-Semi-colon de Semi-colon de-Semi-colon de delayed mode delayed mode ogbook (elecdelayed mode tion channels (1995 - 2001)2007 - 2008) system (GTS) International FM 24-VI Ext. (1970 - 1004)imited format imited format imited format 2009 - 2014) Fixed format description publications previous to 2007 q1) unknown FM 13-VII FM 24-V FM24-V tronic) code_value 9 2 9 ω 6 0 Q က 4 2 0 7 က metadata source metadata source metadata source metadata source metadata source real time format real time format real time format real time format source type source type observation observation source type source type observation source type source type observation source type observation observation observation field_name format format format format format field Q 2 N N S က က က က က က က 4 4 4 4 index 7 4 16 9 13 15 17 18 20 22 23 24 25 26 27 7

altitude columns available, all GC25 tests ok, all uncertainties as expected Data exist, read from chache, PTU + extended_description Table 48 source_configuration_codes (cont.) ¥ ξ ¥ Ž ž Ϋ́ ¥ Ž ¥ ¥ MMA - Version 0 IMMA - Version original data file FM 13-XIV Ext. Data read from Data approved FM 13-VIII Ext. FM 13-XII Ext. See ICOADS FM 13-IX Ext. See ICOADS Source Deck description **FM 13-VIII FM 13-XIII** Source ID FM 12-IX FM 13-XI FM 13-X code_value ¥ 9 2 9 ω Q တ icoads source deck icoads source id real time format product status source format source format product level field_name field 4 4 4 4 4 4 4 4 2 9 ω 6 30 32 35 36

31

33 34 4

4

42

Table 49: source_configuration_fields

description	NA	NA	NA	NA	NA	NA	NA	NA	NA	End of table
kind	int (fk)	int (fk)	int (fk)	int (fk)	int (fk)	int (fk)	int (fk)	int (fk)	numeric	
field_name	delayed mode format	metadata source	metadata source format	observation source type	real time format	source format	source deck	source id	product original time resolution	
field	0	-	2	က	4	2	9	7	10	
index	0	-	2	က	4	2	9	7	10	

Table 50: source_format

index	source_format	description
0	0	IMMA
1	1	NetCDF (GRUAN)
2	2	NetCDF (Other)
3	3	CSV

Table 51: spatial_representativeness

index	spatial_representativeness	description
0	0	Nil reason - None of the codes in the table is
		applicable in the context of the observed quantity
		or unknown, or not available information.
1	1	Microscale - An area or volume less than 100
		m horizontal extent (for example, evaporation)
2	2	Toposcale, local scale - An area or volume
		of 100 m to 3 km horizontal extent (for
		example, air pollution, tornadoes)
3	3	Mesoscale - An area or volume of 3 km
		to 100 km horizontal extent (for example,
		thunderstorms, sea and mountain breezes)
4	4	Large scale- An area or volume of 100 km
		to 3000 km horizontal extent (for example,
		fronts, various cyclones, cloud clusters)
5	5	Planetary scale - An area or volume of
		more than 3000 km horizontal extent (for
		example, long upper tropospheric waves)
6	6	Drainage area - An area (also known
		as catchment) having a common outlet
		for its surface runoff, in km2

End of table

Table 52: station_configuration_codes

]	ebi
description	TBD		TBD			TBD	TBD		TBD	TBD		See BUFR code table 0 02 034	See BUFR code table 0 22 060		TBD		Bathythermometer.	Bathythermograph (towed).	Fluorometer.	Long wave radiation.	Maximum thermometer.	Minimum thermometer.	Nitrate sensor.	Nutrient sensor.	Pilot balloon equipment.	pCO2 system.	Plankton recorder.	Photosynthetic radiation sensor.	Pyrogeometer.	Radiosonde equipment.	Rain gauge.	Radar storm and meteorological	phenomena detection.	Reversing thermometer.	Sky camera.	Continued on next page
abbreviation																	BAT	BT	FLM	LWR	MAX	MIN	NTE	L	۵	CO2	PLK	PRS	PYG	ж	RG	RSD		RT	SKY	
code_value												NA	NA				0	-	2	က	4	5	9	7	8	6	10	11	12	13	14	15		16	17	
field_name	AWS Entry and	Display Software	AWS Entry and	Display Soft-	ware Version	AWS Model	AWS Model	Version	AWS Software	AWS Software	version	Drogue type	Lagrangian drifter	drogue status	LogBook software	and version	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments	Other instruments		Other instruments	Other instruments	
field	0		-			2	က		4	2		6	11		7		16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16		16	16	
index	0		-			2	က		4	2		9	12		15		16	17	18	19	20	21	22	23	24	25	26	27	28	53	30	31		32	33	

Table 52 station_configuration_codes (cont.)

				55.05	
index	field	field_name	code_value	abbreviation	description
34	16	Other instruments	18	SLM	Solarimeter.
35	16	Other instruments	19	ST	Sea thermograph.
36	16	Other instruments	20	SWR	Short wave radiation.
37	16	Other instruments	21	TSD	Temperature/salinity/depth probe.
38	16	Other instruments	22	TUR	Turbidity sensor.
39	16	Other instruments	23	M	Radiowind or radarwind equipment.
40	16	Other instruments	24	WR	Wave Recorder
41	16	Other instruments	25	XBT	Expendable bathythermograph.
42	16	Other instruments	26	OT	Other (specify in footnote).
43	17	Station status	1		Planned
44	17	Station status	2		Pre-operational
45	17	Station status	က		Operational / Reporting
46	17	Station status	4		Partly reporting
47	17	Station status	5		Temporarily suspended
48	17	Station status	9		Closed
49	18	Type of mete-	0	70	Auxiliary ship
		orological re-			
		porting ship			
20	18	Type of mete-	1	75	Auxiliary ship (AWS)
		orological re-			
		porting ship			
51	18	Type of mete-	2	10	Selected
		orological re-			
		porting ship			
25	9	Type of mete-	က	15	Selected (AWS)
		orological re-			
		porting ship			
23	9	Type of mete-	4	40	Supplementary
		orological re-			
		porting ship			,
54	18	Type of mete-	2	45	Supplementary (AWS)
		orological re-			
		porting ship			
22	8	Type of mete-	9	80	Third party
		orological re-			
		porting ship			
					Continued on next page

Table 52 station_configuration_codes (cont.)

			able of station-collingal attorn-codes (collin)	IIIgai ailoi - coac	3 (0011:)
index	field	index field field_name	code_value	code_value abbreviation description	description
26	18	Type of mete-	7	85	Third party (AWS)
		orological re-			
		porting ship			
22	18	Type of mete-	æ	66	Unknown
		orological re-			
		porting ship			
28	18	Type of mete-	6	30	VOSClim - VOS Climate
		orological re-			
		porting ship			
29	18	Type of mete-	10	35	VOSClim (AWS) - VOS Climate (AWS)
		orological re-			
		porting ship			
					End of table

Table 53: station_configuration_fields

			ם ש	describinon
0	0	AWS Entry and Dis-	int (fk)	NA A
		play Software		
1	1	AWS Entry and Display	int (fk)	NA
		Software Version		
2	2	AWS Model	int (fk)	NA
က	က	AWS Model Version	int (fk)	ΝΑ
4	4	AWS Software	int (fk)	NA
2	2	AWS Software version	int (fk)	NA
9	9	Cargo height	numeric	NA
7	7	Distance of bridge	numeric	NA
		from bow		
8	8	Draught	numeric	NA
6	6	Drogue type	int (fk)	NA
10	10	Freeboard	numeric	NA
1	7	Lagrangian drifter	int (fk)	NA
		drogue status		
12	12	Length overall of	numeric	NA
		the ship, ignoring		
		wod snodlud		
13	13	LogBook software	int (fk)	NA
		and version		
14	14	Maximum operat-	numeric	NA
		ing speed on nor-		
		mal service		
15	15	Moulded breadth	numeric	NA
16	16	Other instruments	int (fk)	NA
17	17	Station status	int (fk)	NA
18	18	Type of meteorologi-	int (fk)	NA
		cal reporting ship		

Table 54: station_type

index	station_type	description
0	1	Land station
1	2	Sea station
2	3	Aircraft
3	4	Satellite
4	5	Underwater platform

Table 55: sub_region

0 - 0 6	0	, mpc	AD	
- 0 E		country	j	ANDORRA
ი გ	-	country	ΑE	UNITED ARAB EMIRATES
က	2	country	AF	AFGHANISTAN
	က	country	AG	ANTIGUA AND BARBUDA
4	4	country	¥	ANGUILLA
2	2	country	٩٢	ALBANIA
9	9	country	AM	ARMENIA
7	7	country	AN	NETHERLANDS ANTILLES
80	ω	country	AO	ANGOLA
6	6	country	AQ	ANTARCTICA
10	10	country	AR	ARGENTINA
1	11	country	AS	AMERICAN SAMOA
12	12	country	ΑΤ	AUSTRIA
13	13	country	AU	AUSTRALIA
14	14	country	AW	ARUBA
15	15	country	ΑX	ALAND ISLANDS
16	16	country	AZ	AZERBAIJAN
17	17	country	BA	BOSNIA AND HERZEGOVINA
18	18	country	BB	BARBADOS
19	19	country	BD	BANGLADESH
20	20	country	BE	BELGIUM
21	21	country	BF	BURKINA FASO
22	22	country	BG	BULGARÍA
23	23	country	ВН	BAHRAIN
24	24	country	B	BURUNDI
25	25	country	BJ	BENIN
26	26	country	ВГ	SAINT BARTHLEMY
27	27	country	BM	BERMUDA
28	28	country	BN	BRUNEI DARUSSALAM
53	59	country	BO	BOLIVIA
30	30	country	BR	BRAZIL
31	31	country	BS	BAHAMAS
32	32	country	ВТ	BHUTAN
33	33	country	BV	BOUVET ISLAND
34	34	country	BW	BOTSWANA

Table 55 sub_region (cont.)

Table 55 sub_region (cont.)	region type code name	country BY BELARUS	country BZ BELIZE			country CD CONGO, THE DEMOCRATIC RE-	country CF CENTRAL AFRICAN REPUBLIC	CG	country CH SWITZERLAND				country CM CAMEROON		country CO COLOMBIA		country CU CUBA	country CV CAPE VERDE	country CX CHRISTMAS ISLAND			country DD GERMAN DEMOCRATIC REPUBLIC	country DE GERMANY	country DJ DJIBOUTI	country DK DENMARK	country DM DOMINICA	country DO DOMINICAN REPUBLIC			country EE ESTONIA	country EG EGYPT	country EH WESTERN SAHARA			L	Country El FINI AND
	sub_region ty	35 co	36 00			39 00	40 co		42 co	43 co	44 CO		46 co				50 co	51 00	52 co			55 co				29 00				63 69	64 co					oo 69
	index	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	21	52	53	54	55	56	22	28	29	09	61	62	63	64	65	99	29	89	69

Table 55 sub_region (cont.)

			able 55	able 55 sub_region (cont.)
index	sub_region	type	code	name
20	70	country	己	FIJI
71	71	country	FK	
72	72	country	ΕM	MICRONESIA, FEDERATED STATES OF
73	73	country	9	FAROE ISLANDS
74	74	country	FR	FRANCE
75	75	country	ВA	GABON
9/	9/	country	GB	UNITED KINGDOM
77	77	country	GD	GRENADA
78	78	country	GE	GEORGIA
79	79	country	GF	FRENCH GUIANA
80	80	country	gg	GUERNSEY
81	81	country	ВH	GHANA
82	82	country	U	GIBRALTAR
83	83	country	g G	GREENLAND
84	84	country	GM	GAMBIA
85	85	country	Ν̈́	GUINEA
98	98	country	GP	GUADELOUPE
87	87	country	ВQ	EQUATORIAL GUINEA
88	88	country	GR	GREECE
89	68	country	GS	SOUTH GEORGIA AND THE SOUTH
6	0	3	F	CHATTAIN A
06	06	country	5 0	GUALEMALA
91	91	country	GÜ	GUAM
95	92	country	ĠΜ	GUINEA-BISSAU
93	93	country	GΥ	GUYANA
94	94	country	HK	HONG KONG
92	95	country	ΣH	HEARD ISLAND AND MCDONALD ISLANDS
96	96	country	NH	HONDURAS
26	26	country	HR	CROATIA
86	86	country	노	HAITI
66	66	country	유	HUNGARY
100	100	country	□	INDONESIA
101	101	country	E	IRELAND
102	102	country	_	ISRAEL
103	103	country	∑	ISLE OF MAN
104	104	country	z	INDIA
				Continued on next page

Table 55 sub_region (cont.)

Table 55 sub_region (cont.)	e name	BRITISH INDIAN OCEAN TERRITORY	IRAQ	IRAN, ISLAMIC REPUBLIC OF	ICELAND	ITALY	JERSEY JERSEY	JAMAICA	JORDAN	JAPAN	KENYA	KYRGYZSTAN	CAMBODIA	KIRIBATI	COMOROS	SAINT KITTS AND NEVIS	KOREA, DEMOCRATIC PEO- PLE'S REPUBLIC OF	KOREA, REPUBLIC OF	KUWAIT	CAYMAN ISLANDS	KAZAKHSTAN	LAO PEOPLE'S DEMOCRATIC REPUBLIC	LEBANON	SAINT LUCIA	LIECHTENSTEIN	SRI LANKA	LIBERIA	LESOTHO	LITHUANIA	LUXEMBOURG	LATVIA	LIBYAN ARAB JAMAHIRIYA	MOROCCO	MONACO	MOLDOVA, REPUBLIC OF	MONTENEGRO	Continued on next page
aple	code	0	g	뜨	<u>S</u>	⊨	씡	₽	9	9	Ā	ΑĞ	ΑŦ	조	Σ	Z Z	Α̈́	KR	Š	₹	ΚŻ	Z	ЕВ	CC	⊐	LK	LR	FS		ΓΩ	2	≽	MA	MC	MD	ME	
Ε	type	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	country	
	sub_region	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	
	index	105	106	107	108	109	110	11	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	

Table 55 sub_region (cont.)

			able 55	able 55 sub_region (cont.)
index	sub_region	type	code	name
140	140	country	MF	SAINT MARTIN
141	141	country	MG	MADAGASCAR
142	142	country	ΗM	MARSHALL ISLANDS
143	143	country	¥	MACEDONIA, THE FORMER YU-
				GOSLAV REPUBLIC OF
144	144	country	ML	MALI
145	145	country	MM	MYANMAR
146	146	country	MM	MONGOLIA
147	147	country	MO	MACAO
148	148	country	MP	NORTHERN MARIANA ISLANDS
149	149	country	ØΜ	MARTINIQUE
150	150	country	MR	MAURITANIA
151	151	country	MS	MONTSERRAT
152	152	country	LΜ	MALTA
153	153	country	MU	MAURITIUS
154	154	country	MΥ	MALDIVES
155	155	country	MΜ	MALAWI
156	156	country	MX	MEXICO
157	157	country	λM	MALAYSIA
158	158	country	ZM	MOZAMBIQUE
159	159	country	NA	NAMIBIA
160	160	country	NC	NEW CALEDONIA
161	161	country	NE	NIGER
162	162	country	NF	NORFOLK ISLAND
163	163	country	NG	NIGERIA
164	164	country	Z	NICARAGUA
165	165	country	NL	NETHERLANDS
166	166	country	ON	NORWAY
167	167	country	NP	NEPAL
168	168	country	NR	NAURU
169	169	country	NN	NIUE
170	170	country	NZ	NEW ZEALAND
171	171	country	OM	OMAN
172	172	country	PA	PANAMA
173	173	country	PE	PERU
174	174	country	PF	FRENCH POLYNESIA
				Continued on next page

Table 55 sub_region (cont.)

			able 55	able 55 sub_region (cont.)
index	sub_region	type	code	name
175	175	country	PG	PAPUA NEW GUINEA
176	176	country	ЫН	PHILIPPINES
177	177	country	A Y	PAKISTAN
178	178	country	Ы	POLAND
179	179	country	PM	SAINT PIERRE AND MIQUELON
180	180	country	PN	PITCAIRN
181	181	country	PR	PUERTO RICO
182	182	country	PS	PALESTINIAN TERRITORY, OCCUPIED
183	183	country	PT	PORTUGAL
184	184	country	PW	PALAU
185	185	country	Ь	PARAGUAY
186	186	country	δA	QATAR
187	187	country	뿚	REUNION
188	188	country	RO	ROMANIA
189	189	country	RS	SERBIA
190	190	country	2	RUSSIAN FEDERATION
191	191	country	RW	RWANDA
192	192	country	SA	SAUDI ARABIA
193	193	country	SB	SOLOMON ISLANDS
194	194	country	SC	SEYCHELLES
195	195	country	SD	SUDAN
196	196	country	SE	SWEDEN
197	197	country	SG	SINGAPORE
198	198	country	SH	SAINT HELENA
199	199	country	SI	SLOVENIA
200	200	country	SJ	SVALBARD AND JAN MAYEN
201	201	country	SK	SLOVAKIA
202	202	country	SL	SIERRA LEONE
203	203	country	SM	SAN MARINO
204	204	country	SN	SENEGAL
205	205	country	SO	SOMALIA
206	206	country	SR	SURINAME
207	207	country	ST	SAO TOME AND PRINCIPE
208	208	country	SU	USSR
509	209	country	SV	EL SALVADOR
210	210	country	SY	SYRIAN ARAB REPUBLIC
				Continued on next page

Table 55 sub_region (cont.)

			able 55	lable 55 sub_region (cont.)
index	sub_region	type	code	name
211	211	country	SZ	SWAZILAND
212	212	country	1C	TURKS AND CAICOS ISLANDS
213	213	country	TD	CHAD
214	214	country	TF	FRENCH SOUTHERN TERRITORIES
215	215	country	TG	T0G0
216	216	country	픋	THAILAND
217	217	country	2	TAJIKISTAN
218	218	country	T	TOKELAU
219	219	country	7	TIMOR-LESTE
220	220	country	MT	TURKMENISTAN
221	221	country	Z	TUNISIA
222	222	country	2	TONGA
223	223	country	TR	TURKEY
224	224	country	F	TRINIDAD AND TOBAGO
225	225	country	1	TUVALU
226	226	country	MΤ	ROVINCE OF CHINA
227	227	country	ZL	TANZANIA, UNITED REPUBLIC OF
228	228	country	NA	UKRAINE
229	229	country	NG	UGANDA
230	230	country	MΩ	UNITED STATES MINOR OUTLYING ISLANDS
231	231	country	SN	UNITED STATES
232	232	country	Λ	URUGUAY
233	233	country	ZN	UZBEKISTAN
234	234	country	Α	HOLY SEE (VATICAN CITY STATE)
235	235	country	ΛC	SAINT VINCENT AND THE GRENADINES
236	236	country	۸E	
237	237	country	NG	VIRGIN ISLANDS, BRITISH
238	238	country	ΙΛ	VIRGIN ISLANDS, U.S.
239	239	country	N N	VIET NAM
240	240	country	NΩ	
241	241	country	WF	WALLIS AND FUTUNA
242	242	country	MS	SAMOA
243	243	country	YE	YEMEN
244	244	country	ΥT	MAYOTTE
245	245	country	٨N	YUGOSLAVIA
246	246	country	ZA	SOUTH AFRICA
				Continued on next page

Table 55 sub_region (cont.)

name	ZAMBIA	ZIMBABWE	THIRD PARTY SUPPORT SHIPS
code	ZM	ΝZ	ZZ
type	country 2	country	country
sub_region type	247	248	249
index	247	248	249

Table 56: time_quality

index	time_quality	description
0	0	Timestamp valid, time reported to nearest second
1	1	Timestamp valid, time reported to nearest minute
2	2	Timestamp valid, time reported to nearest hour
3	3	Time missing, date valid. Re-
		port set to local midday
4	4	Day missing
5	5	Invalid date / time
		=

End of table

Table 57: time_reference

index	time_reference	description
0	0	Unknown
1	1	Time server
2	2	Radio clock
3	3	Manual comparison
		End of table

Table 58: traceability

index	traceability	description
0	0	Unknown
1	1	Traceable to international standards
2	2	Traceable to other standards
		End of table

Table 59: units

index	nuits	name	conventional_abbreviation	abbreviatio n_in_ASCII	abbreviatio n_in_ITA2	definition_in_base_units
0	-	metre	٤	٤	Σ	NA
-	2	kilogram	kg	kg	KG	NA
2	က	second	S	s	S	ΨN
က	4	ampere	A	A	A	NA
4	2	kelvin	¥	×	ᅩ	NA
2	9	mole	lom	mol	MOL	NA
9	7	candela	ро	В	CD	NA
7	21	radian	rad	rad	RAD	NA
∞	22	steradian	Sr	Sr	SR	NA
6	30	hertz	HZ	Hz	HZ	s1
10	31	newton	Z	Z	z	kg m s-2
=	32	pascal	Pa	Ра	PAL	kg m-1 s2
12	33	joule		P	٦	kg m2 s-2
13	34	watt	M	M	M	kg m2 s-3
14	35	conlomb	O	ပ	O	As
15	36	volt	\	\	>	kg m2 s-3 A1
16	37	farad	ш	L	T	kg-1 m2 s4 A2
17	38	ohm		Ohm	MHO	kg m2 s-3 A2
18	39	siemens	S	S	SIE	kg-1 m2 s3 A2
19	40	weber	Wb	Wb	WB	kg m2 s-2 A1
20	41	tesla	F	L		kg s-2 A1
21	42	henry	エ	I	H	kg m2 s-2 A2
22	09	degree Celsius	O	Cel	CEL	K+273.15
23	20	lumen	lm	lm	ΓM	cd sr
24	71	lux	ΙX	ΙX	LX	cd sr m-2
25	80	becquerel	Bq	Bq	BQ s-1	NA
56	81	grey	Gy	Gy	GY	m2 s-2
27	82	sievert	Sv	Sv	SV	m2 s-2
28	110	degree (angle)		deg	DEG	ΨZ
59	111	minute (angle)	•	•	MNT	NA
30	112	second (angle)	33	33	SEC	NA
31	120	litre	lorL	l or L	7	ΨZ
32	130	minute (time)	min	min	MIN	NA
33	131	hour	h	h	HR	NA
						Continued on next page

Table 59 units (cont.)

			ומטומי	lable 39 dilles (colle.)		
index	units	name	conventional	abbreviatio	abbreviatio	definition_in_base_units
			abbreviation	n_in_ASCII	n_in_ITA2	
34	132	day	Ф	Ф	۵	NA
35	150	tonne	+	t.	INE	NA
36	160	electron volt	eV	eV	EV	NA
37	161	atomic mass	п	ם	n	AN
		unit				
38	170	astronomic unit	AU	AU	ASU	NA
39	171	parsec	bc	bc	PRS	NA
40	200	nautical mile	NA	NA	NA	NA
41	201	knot	Κt	kt	KT	AN
42	210	decipel (6)	dB	dB	DB	ΥN
43	220	hectare	ha	ha	HAR	AN
44	230	week	NA	NA	NA	NA
45	231	year	а	а	ANN	NA
46	300	per cent	%	%	PERCENT	NA
47	301	parts per		00/0	PERTHOU	NA
		thousand				
48	310	eighths of cloud	okta	okta	OKTA	NA
49	320	degrees true		deg	DEG	AN
20	321	degrees per	degree/s	s/gəb	DEG/S	Ϋ́Α
		second				
21	350	degrees Cel- sius (8)	O	0	O	NA
52	351	degrees Celsius	C/m	C/m	C/M	NA
		per metre				
53	352	degrees Celsius	C/100 m	C/100 m	C/100 M	NA
		per 100 metres				
24	360	Dobson Unit (9)	DO	DO	DO	NA
22	430	month	mon	mon	MON	NA
26	441	per second	S-1	s/	S/	AN
		(same as hertz)				
22	442	per second	s-2	s2	Ϋ́	٩Z
		squared				
28	201	knots per 1000	kt/1000 m	kt/km	KT/KM	ΑN
0	0	tot	4	4	Ŀ	VIV
56	010	1001	1	11	_	NA
						Continued on next page

Table 59 units (cont.)

				()		
index	nnits	name	conventional_ abbreviation	abbreviatio	abbreviatio	definition_in_base_units
0.9	511	ınch	u	u	Z	NA
61	520	decipascals per second (micro-	dPa s-1	dPa/s	DPAL/S	NA
		bar per second)				
62	521	centibars per	cb s-1	cp/s	CB/S	NA
		second				
63	522	centibars per	cb/12 h	cb/12 h	CB/12 HR	NA
	0	12 hours		(4 - 4
64	523	dekapascal	daPa	daPa	DAPAL	NA
65	530	hectopascal	hPa	hPa	HPAL	NA
99	531	hectopascals	hPa s-1	hPa/s	HPAL/S	NA
		per second				
29	532	hectopascals	hPa h-1	hPa/h	HPAL/HR	NA
		per hour				
89	533	hectopascals	hPa/3 h	hPa/3 h	HPAL/3 HR	NA
		per 3 hours				
69	535	nanobar = hPa 10-6	nbar	nbar	NBAR	NA
0,1	000	11rd 10-0	7 2			< 2
2	070	grams per kilogram	g kg-1	g/kg	מ/צם	<u> </u>
		Kilograffi				
71	621	grams per	g kg-1 s1	g kg1 s1	AN	NA
		kilografii per second				
7.0	600	kilograms	27/27	אט/אט	NIA	V Z
7	770	NIOGIAITIS	DV/DV		<u> </u>	Ţ
		per kilogram kg kg-1				
73	623	kilograms per	kg kg-1 s1	kg kg1 s1	NA	NA
		kilogram per				
		second				
74	624	kilograms per	kg m-2	kg m2	NA	NA
		square metre				
75	930	acceleration	g	g	NA	NA
		due to gravity				
9/	631	geopotential	mdb	gpm	NA	ΑN
		metre				
77	710	millimetre	mm	mm	Σ Σ	٩Z
						Continued on next page

Table 59 units (cont.)

			Iable 3	lable 59 urills (coril.)		
index	units	name	conventional	abbreviatio	abbreviatio	definition_in_base_units
			abbreviation	n_in_ASCII	n_in_ITA2	
78	711	millimetres	mm s-1	s/ww	MM/S	NA
		per second		:		
79	712	millimetres	mm h-1	mm/h	MM/HR	٧Z
		per hour				
80	713	millimetres to	mm6 m-3	mm6 m3	Ϋ́	٧Z
		the sixth power				
		per cubic metre				
81	715	centimetre	cm	cm	CM	NA
82	716	centimetres	cm s-1	s/wɔ	CM/S	NA
		per second				
83	717	centimetres	cm h-1	cm/h	CM/HR	NA
		per hour				
84	720	decimetre	mp	dm	DM	AA
82	731	metres per	m s-1	s/w	S/W	AN
		second				
98	732	metres per sec-	m s-1/m	m s1/m	NA	NA
		ond per metre				
87	733	metres per	m s-1/1000 m	m s1/km	NA	AA
		second per				
		1000 metres				
88	734	square metres	m2	m2	M2	Y.A
89	735	square metres	m2 s-1	m2/s	M2/S	AN
		per second				
06	740	kilometre	km	km	KM	NA
91	741	kilometres	km h-1	km/h	KM/HR	ΥN
		per hour				
92	742	kilometres	km/d	km/d	KM/D	ΥN
		per day				
93	743	per metre	m-1	m1	/W	NA
94	750	becquerels	Bq I-1	Bq/I	BQ/L	ΨZ
		per litre				
92	751	becquerels per	Bq m-2	Bq m2	BQ/M2	ΨZ
		square metre				
96	752	becquerels per	Bq m-3	Bq m3	BQ/M3	NA
70	750	million ort	30	7.0	///	< N
/6	723	ITIIIISIevert	MSV	MSV	MSV	AN .
						Continued on next page

Table 59 units (cont.)

			I ROLE O	33 dilles (2011).		
index	units	name	conventional	abbreviatio	abbreviatio	definition_in_base_units
			abbreviation	n_in_ASCII	n_in_ITA2	
86	760	metres per sec-	m s-2	m s2	NA NA	NA
		ond squared				1
66	761	square me-	m2 s	m2 s	Ϋ́	NA
		tres second				
100	762	square me-	m2 s-2	m2 s2	NA	Ϋ́Z
		tres per sec-				
		ond squared				
101	763	square me-	m2 rad-1 s	m2 rad1 s	NA	AA
		tres per ra-				
		dian second				
102	764	square metres	m2 Hz-1	m2/Hz	NA	AA
		per hertz				
103	292	cubic metres	m3	m3	NA	NA
104	992	cubic metres	m3 s-1	m3/s	NA	AA
		per second				
105	292	cubic metres	m3 m-3	m3 m3	NA	NA
		per cubic metre				
106	292	metres to the	m4	m4	NA	AA
		fourth power				
107	692	metres to the	m2/3 s-1	m2/3 s1	NA	Ϋ́Α
		two thirds				
		power per				
		second				
108	772	logarithm per	log (m-1)	log (m1)	NA	AN
		metre				
109	773	logarithm per	log (m-2)	log (m2)	AN	٧Z
		square metre				
110	775	kilograms per	kg m-1	kg/m	AN	٩Z
		metre				
111	9//	kilograms per	kg m-2 s1	kg m2 s1	NA	ΑN
		square metre				
		per second				
112	777	kilograms per	kg m-3	kg m3	NA	Ϋ́Z
		cubic metre				
						Continued on next page

Table 59 units (cont.)

units name conventional abbreviation abbreviation abbreviation abbreviation n.in.ASCII n.in.ASCII n.in.ASCII n.in.ITA2 778 per square kg-2 s1 kg2 s1 NA 856 Nelvim metres 8 m-1 8/m NA 785 Kelvim metres 786 Kelvim metres 1 m-1 NA 786 Kelvim metres 1 m-1 1 NA NA 787 Kelvim square 1 m-1 1 NA NA 788 Kelvim square 1 m-1 1 NA NA 788 Kelvim square 1 m-1 1 NA NA 780 Relvim square 1 m-2 1 m-2 1 NA 780 Relvim square 1 m-2 1 m-2 1 NA 780 Relvim square 1 m-2 1 m-2 1 m-2 790 radians per 1 m-2 1 m-2 1 m-2 800 radians per 1 m-2 1 m-2 1 m-2 800 pascals per 1 m-2 1 m-2 1 m-2 800 pascals per 1 m-2 1 m-2 1 m-2 800 joules per 1 m-2 1 m-2		Ш		0	(acid co cimic (comit)		
Amount	index	nnits	name	conventional	abbreviatio	abbreviatio	definition_in_base_units
778 per square kg-2 s1 kg2 s1 NA				appreviation	n_In_ASCII	n_In_IIAZ	
779 seconds per 5 m-1 5/m	113	778	per square kilogram per second	kg-2 s1	kg2 s1	Y V	NA
785 Kelvin metres K ms-1 K ms1 NA NA	114	779	seconds per metre	s m-1	m/s	NA NA	NA
786 kelvins per metre K m-1 K/m NA N metre 787 kelvin square K m2 kg-1 s1 K m2 kg1 s1 NA N 788 moles per mole mol mol-1 mol/mol NA N 790 radians per mole mol mol-1 rad/m NA N 790 radians per mole mol mol-1 rad/m NA N 790 radians per mole mol mol-1 rad/m NA NA 800 pascals per metre N m-2 N m2 NA N 801 polles per metre J m-2 J m2 NA N 805 joules per metre J m-2 J m2 NA N 806 joules per metre W m-1 sr1 N m2 NA N 810 watts per metre W m-2 sr1 W m2 NA N 811 watts per W m-2 sr1 W m2 sr1 cm NA N 813 watts per W m-2 sr1 cm W m2 sr1 cm NA N	115	785	kelvin metres per second	Kms-1	K m s1	ΑN	NA
787 kelvin square K m2 kg-1 s1 K m2 kg1 s1 NA N metres per kilogram per second 796 radians per mole mol mol-1 mol/mol NA NA NA 795 newtons per mole mol mol-1 mol/mol NA NA NA 795 newtons per metre N m-2 N m2 NA N 800 pascals per metre Pa s-1 Pa/s NA N 801 kilopascal kPa kPa NA N 805 joules per metre J m-2 J m2 NA N 806 joules per metre W m-1 sr1 NA N 810 watts per metre W m-2 W m2 NA N 812 watts per metre W m-2 sr1 W m2 sr1 NA N 813 watts per metre W m-2 sr1 cm W m NA N 813 watts per metre Per steradian W m-2 sr1 cm NA N 813 watts per metre Per ste	116	786	kelvins per metre	K m-1	K/m	NA	Y V
kilogram per second 788 moles per mole mol mol-1 mol/mol NA N Natra per mole mol mol-1 mol/mol NA N Natra per metre 800 pascals per Pa s-1 Pa/s NA N Second 801 kilopascal kPa kPa NA N Square metre 805 joules per J m-2 J m2 NA N Natra per steradian W m1 sr1 NA NA N NA Square metre 810 watts per W m-2 sr1 W m2 sr1 NA NA NA NA NA Square metre 812 watts per W m-2 sr1 W m2 sr1 CM NA NA NA Square metre 813 watts per W m-2 sr1 CM W m2 sr1 CM NA NA NA Square metre 814 watts per W m-2 sr1 CM M m2 sr1 NA NA NA Square metre 815 per steradian W m-2 sr1 CM NA Square metre 816 per steradian Centimeter	117	787	kelvin square	K m2 kg-1 s1	K m2 kg1 s1	ΝΑ	NA
second N8 MA N 790 radians per mole mol mol-1 rad/m NA N 790 radians per rad m-1 rad/m NA N 795 newtons per metre N m-2 N m2 NA N 800 pascals per metre Pa s-1 Pa/s NA N 801 kilopascal kPa kPa NA N 805 joules per metre Jm-2 Jm2 NA N 806 joules per metre Jkg-1 J/kg NA N 810 watts per metre W m-1 sr1 NA N 811 watts per metre W m-2 sr1 W m2 sr1 NA N 812 watts per wetre per steradian W m-2 sr1 cm W m2 sr1 cm NA N 813 watts per wetre per steradian W m-2 sr1 cm W m2 sr1 cm NA N			metres per kilogram per				
788 moles per mole mol mol-1 mol/mol MA N 790 radians per rad m-1 rad/m NA NA 795 newtons per metre N m-2 N m2 NA NA 800 pascals per metre Pa s-1 Pa/s NA NA 801 kilopascal kPa kPa NA NA 805 joules per Jules Jh-2 Jm2 NA NA 806 joules per Jules Jkg-1 J/kg NA NA 810 watts per metre W m-1 sr1 NA NA NA 811 watts per metre W m-2 sr1 W m2 sr1 NA NA 812 watts per metre W m-2 sr1 cm W m2 sr1 cm NA NA 813 watts per wetre W m-2 sr1 cm W m2 sr1 cm NA NA 813 watts per wetre Per steradian W m-2 sr1 cm NA NA			second				
790 radians per metre rad m-1 rad/m NA NA 795 newtons per metre N m-2 N m2 NA N 800 pascals per metre Pa s-1 Pa/s NA N 801 kilopascal kPa kPa NA N 805 joules per metre Jm2 NA N 806 joules per metre Jkg-1 J/kg NA N 810 watts per metre W m-1 sr1 NA N N 811 watts per metre W m-2 sr1 W m2 sr1 NA N 812 watts per metre W m-2 sr1 W m2 sr1 N N 813 watts per metre per steradian W m-2 sr1 cm W m N m N m N m N m N m N m N m N m N m	118	788	moles per mole	mol mol-1	mol/mol	NA	AN
795 newtons per N m-2 N m2 NA N NA N Square metre 800 pascals per Pa s-1 Pa/s NA N N Square metre 1 J/g N m-2 Sr1 cm W m-2 sr1 cm W m2 sr1 cm W m NA N Square metre 1 M m-2 sr1 cm W m2 sr1 centimeter	119	790	radians per	rad m-1	rad/m	NA	NA
Square metre 800 pascals per Pa s-1 Pa/s NA N Square metre 801 kilopascal kPa KPa KPa NA N Square metre 806 joules per J m-2 J m2 NA N Kilogram 810 watts per metre W m-1 sr1 NA NA N per steradian W m-2 sr1 W m2 sr1 NA N Square metre 812 watts per W m-2 sr1 W m2 sr1 CM NA N Square metre 813 watts per W m-2 sr1 CM W m2 sr1 CM NA N Square metre 814 watts per W m-2 sr1 CM W m2 sr1 CM NA N Square metre 815 per steradian 816 watts per W m-2 sr1 CM NA N N Square metre 817 per steradian 818 watts per W m-2 sr1 CM N m2 sr1 CM N Square metre 819 per steradian 810 centimeter			metre				
800 pascals per Pa s-1 Pa/s NA N Second second RPa RPa NA N Square metre J M-2 J M2 NA N N Square metre W m-1 sr1 NA NA N Square metre W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian watts per W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian centimeter	120	795	newtons per	Z-8-Z	N m2	Y Y	NA
800 pascals per Pa s-1 Pa/s NA NA NA NA NA Second Second KPa KPa KPA NA	3	000	פלתמום ווופוום	,			
805 joules per Jm-2 Jm2 NA N Square metre Jkg-1 J/kg NA N kilogram 810 watts per metre W m-1 sr1 NA NA N Per steradian W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian centimeter watts per W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian centimeter w m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian watts per W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian centimeter	[2	008	pascals per second	പ്പു -	Pa/s	NA	NA
805 joules per Jm-2 Jm2 NA N square metre 806 joules per Jkg-1 J/kg NA N NA N	122	801	kilopascal	кРа	кРа	NA	NA
square metre 806 joules per J kg-1 J/kg NA NA NA NA NA NA NA Starts per metre W m-1 sr1 NA NA NA NA Square metre 812 watts per W m-2 sr1 W m2 sr1 NA N Square metre per steradian 813 watts per W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian 814 watts per W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian 815 centimeter	123	805	joules per	J m-2	J m2	NA	NA
806 joules per Jkg-1 J/kg NA			square metre				
810 watts per metre W m-1 sr1 NA NA NA NA NA per steradian W m1 sr1 W m2 NA NA NA Square metre W m-2 sr1 W m2 sr1 NA NA NA Square metre per steradian W m-2 sr1 cm W m2 sr1 cm NA NA Square metre per steradian square metre per steradian centimeter	124	908	joules per kilogram	J kg-1	J/kg	NA	NA
811 watts per W m-2 W m2 NA N Square metre 812 watts per W m-2 sr1 W m2 sr1 NA N Square metre 9 per steradian 813 watts per W m-2 sr1 cm W m2 sr1 cm NA N Square metre 9 per steradian centimeter	125	810	watts per metre per steradian	W m-1 sr1 W m1 sr1	NA	NA	NA
square metre 812 watts per W m-2 sr1 W m2 sr1 NA N square metre per steradian 813 watts per W m-2 sr1 cm W m2 sr1 cm NA N square metre per steradian centimeter	126	811	watts per	W m-2	W m2	NA	NA
812 watts per W m-2 sr1 W m2 sr1 NA N Square metre per steradian 813 watts per W m-2 sr1 cm W m2 sr1 cm NA N Square metre per steradian centimeter			square metre				
per steradian 813 watts per W m-2 sr1 cm W m2 sr1 cm NA N square metre per steradian centimeter	127	812	watts per square metre	W m-2 sr1	W m2 sr1	NA	NA
813 watts per W m-2 sr1 cm W m2 sr1 cm NA Nasquare metre per steradian centimeter			per steradian				
	128	813	watts per	W m-2 sr1 cm	W m2 sr1 cm	ΝΑ	NA
an			square metre				
Continued on next page			per steradian centimeter				
							Continued on next page

Continued on next page

definition_in_base_units A A Ϋ́ A A Ϋ́ ¥ ¥ Ϋ́ ¥ ¥ Ϋ́ A A ¥ Ž ¥ ¥ ¥ A abbreviatio n_in_ITA2 MA Ž Ϋ́ ΑN ΑN Ϋ́ Ϋ́ ΑN Ϋ́ Z (Z) FE PA G 工 \mathbf{x} abbreviatio W m2 sr1 m Table 59 units (cont.) n_in_ASCII Wm3 sr1 deg2 Bq s m3 dB/deg N units pH unit dB/m S/m da $\widehat{\mathbb{N}}$ വ ш ≥ Ε _ ᄝ conventional abbreviation W m-2 sr1 m dB degree-1 W m-3 sr1 Bd s m-3 degree2 dB m-1 N units pH unit S m-1 g ≥ വ ے 0 ပ Υ square degrees becquerel sec-**Nephelometric** turbidity units bic metre per tre per sterawatts per cusiemens per onds per cudecibels per decibels per square median metre bic metre watts per steradian degree pH unit N units metre name (yotta) (zetta) mega hector metre deca peta giga tera deci exa 형 units 814 815 825 830 835 836 841 842 843 820 no 2 20 2 u0 2 2 2 2 2 2 2 2 2 index 129 130 134 135 136 139 140 142 143 144 145 146 148 149 132 138 141 147 150 131 151 137

	definition_in_base_units	NA	NA	NA	NA	NA	NA	End of table
	abbreviatio n_in_ITA2	z	Д.	ட	۷	NA	NA	
Table 59 units (cont.)	abbreviatio	u	a	-	۵	(z)	(y)	
Table 59	conventional_ abbreviation	u	a .	+	В	(z)	(y)	
	name	nano	pico	femto	atto	(zepto)	(yocto)	
	units	no	ou	no	no	no Or	no	
	index units	153	154	155	156	157	158	

Table 60: update_frequency

index	update_frequency	description
0	1	Annual
		End of table

Table 61: z_coordinate_method

index	z_coordinate_method	description
0	0	Value from chart
		End of table

Table 62: z_coordinate_type

index	z_coordinate_type	description
0	0	height (m) above sea level
		End of table