Contents

0.1	Scalar	potential	1
0.2	Non-un	iqueness of scalar potentials	1
	0.2.1	Conservative vector fields	1

0.1 Scalar potential

Given a vector field \mathbf{F} we may be able to identify a scalar field P such that:

$$\mathbf{F} = -\nabla P$$

0.2 Non-uniqueness of scalar potentials

Scalar potentials are not unique.

If P is a scalar potential of \mathbf{F} , then so is P+c, where c is a constant.

0.2.1 Conservative vector fields

Not all vector fields have scalar potentials. Those that do are conservative.

For example if a vector field is the gradient of a scalar height function, then the height is a scalar potential.

If a vector field is the rotation of water, there will not be a scalar potential.