Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the Specification.

Listing of Claims:

- 1. (Currently amended) A field emission display, comprising:
- a first substrate and a second substrate facing one another and having a predetermined gap therebetween;
 - an electron emission assembly formed on the first substrate for emitting electrons;
- an illumination assembly formed on the second substrate for displaying images responsive to electrons emitted from the electron emission assembly; and
- a grid plate mounted between the first substrate and the second substrate and configured to focus the electrons emitted from the electron emission assembly;

wherein the grid plate includes a mask section having a plurality of apertures for passing the electrons and having supports mounted to one side of the mask section and extending in a direction toward the first substrate to support the mask section from the first substrate,

wherein the mask section has a predetermined mask section thickness and the supports have a predetermined support height, the predetermined support height being greater than the predetermined mask section thickness, and

wherein the supports are made of a conducting metal material.

(Currently amended) <u>A field emission display, comprising:</u>

a first substrate and a second substrate facing one another and having a predetermined gap therebetween;

an electron emission assembly formed on the first substrate for emitting electrons;

an illumination assembly formed on the second substrate for displaying images responsive to electrons emitted from the electron emission assembly; and

a grid plate mounted between the first substrate and the second substrate and configured to focus the electrons emitted from the electron emission assembly;

Appln No. 10/807,916 Amdt date April 2, 2007

Reply to Office action of February 2, 2007

wherein the grid plate includes a mask section having a plurality of apertures for passing the electrons and having supports mounted to one side of the mask section and extending in a direction toward the first substrate to support the mask section from the first substrate,

wherein the mask section has a predetermined mask section thickness and the supports have a predetermined support height, the predetermined support height being greater than the predetermined mask section thickness,

wherein the supports are made of a conducting material, and

The field emission display of claim-1,

wherein the mask section and the supports are made of same material.

- 3. (Original) The field emission display of claim 1, wherein the mask section and the supports are made of different materials.
- 4. (Original) The field emission display of claim 1, wherein the supports are formed between a predetermined array of the apertures formed in the mask assembly, the supports being formed in at least one of along a direction substantially identical to a direction of the array of the apertures, and along a direction substantially perpendicular to the direction of the array of the apertures.
 - 5. (Currently amended) A field emission display, comprising:

a first substrate and a second substrate facing one another and having a predetermined gap therebetween;

an electron emission assembly formed on the first substrate for emitting electrons;

an illumination assembly formed on the second substrate for displaying images responsive to electrons emitted from the electron emission assembly; and

a grid plate mounted between the first substrate and the second substrate and configured to focus the electrons emitted from the electron emission assembly;

Appln No. 10/807,916 Amdt date April 2, 2007

Reply to Office action of February 2, 2007

wherein the grid plate includes a mask section having a plurality of apertures for passing the electrons and having supports mounted to one side of the mask section and extending in a direction toward the first substrate to support the mask section from the first substrate,

wherein the mask section has a predetermined mask section thickness and the supports have a predetermined support height, the predetermined support height being greater than the predetermined mask section thickness.

wherein the supports are made of a conducting material, and

The field emission display of claim 1,

wherein the supports are formed between at most every other row of the apertures formed in the mask section and along one direction to thereby form a stripe pattern.

 (Original) The field emission display of claim 3, wherein the mask section and the supports are formed of different materials having different etching rates.

(Cancelled)

- 8. (Previously Presented) The field emission display of claim 1, wherein the mask section is formed to a thickness of 20 100 µm, and each of the apertures formed in the mask section has a size in the range of 20 100 µm.
- 9. (Original) The field emission display of claim 1, wherein a sectional aspect ratio of each of the apertures formed in the mask section is 5:1 1:1.
- 10. (Original) The field emission display of claim 1, wherein the electron emission assembly comprises electron emission sources and electrodes for causing the emission of electrons from the electron emission sources:

wherein the electrodes include cathode electrodes and gate electrodes formed in a stripe pattern; and

wherein the cathode electrodes and the gate electrodes are substantially perpendicular to one another and insulated from one another by an insulation layer.

(Original) The field emission display of claim 10.

wherein the electron emission sources are made of a carbon-based material; and

wherein the carbon-based material is any one selected from a group consisting of carbon nanotubes, graphite, diamond, diamond-like carbon and C₆₀(Fullerene), or a mixture of at least two of the carbon nanotubes, graphite, diamond, diamond-like carbon and C₆₀(Fullerene).

(Currently amended) <u>A field emission display, comprising:</u>

a first substrate and a second substrate facing one another and having a predetermined gap therebetween;

an electron emission assembly formed on the first substrate for emitting electrons;

an illumination assembly formed on the second substrate for displaying images responsive to electrons emitted from the electron emission assembly; and

a grid plate mounted between the first substrate and the second substrate and configured to focus the electrons emitted from the electron emission assembly;

wherein the grid plate includes a mask section having a plurality of apertures for passing the electrons and having supports mounted to one side of the mask section and extending in a direction toward the first substrate to support the mask section from the first substrate,

wherein the mask section has a predetermined mask section thickness and the supports have a predetermined support height, the predetermined support height being greater than the predetermined mask section thickness,

wherein the supports are made of a conducting material,

wherein the electron emission assembly comprises electron emission sources and electrodes for causing the emission of electrons from the electron emission sources,

wherein the electrodes include cathode electrodes and gate electrodes formed in a stripe pattern.

wherein the cathode electrodes and the gate electrodes are substantially perpendicular to one another and insulated from one another by an insulation layer, and

The field emission display of claim 10,

wherein the cathode electrodes are formed on the insulation layer over the gate electrodes, and the electron emission sources are mounted on the cathode electrodes.

(Currently amended) A field emission display, comprising:

a first substrate and a second substrate facing one another and having a predetermined gap therebetween;

an electron emission assembly formed on the first substrate for emitting electrons;

an illumination assembly formed on the second substrate for displaying images responsive to electrons emitted from the electron emission assembly; and

a grid plate mounted between the first substrate and the second substrate and configured to focus the electrons emitted from the electron emission assembly;

wherein the grid plate includes a mask section having a plurality of apertures for passing the electrons and having supports mounted to one side of the mask section and extending in a direction toward the first substrate to support the mask section from the first substrate.

wherein the mask section has a predetermined mask section thickness and the supports have a predetermined support height, the predetermined support height being greater than the predetermined mask section thickness.

wherein the supports are made of a conducting material, and

The field emission display of claim 1,

wherein the supports taper such that a contacting area of the supports toward the mask section are larger than a contacting area of the supports toward the first substrate.

(Currently amended) A field emission display, comprising:

a first substrate and a second substrate facing one another and having a predetermined gap therebetween;

an electron emission assembly formed on the first substrate for emitting electrons;

an illumination assembly formed on the second substrate for displaying images responsive to electrons emitted from the electron emission assembly; and

a grid plate mounted between the first substrate and the second substrate and configured to focus the electrons emitted from the electron emission assembly;

wherein the grid plate includes a mask section having a plurality of apertures for passing the electrons and having supports mounted to one side of the mask section and extending in a direction toward the first substrate to support the mask section from the first substrate,

wherein the mask section has a predetermined mask section thickness and the supports have a predetermined support height, the predetermined support height being greater than the predetermined mask section thickness,

wherein the supports are made of a conducting material,

wherein the electron emission assembly comprises electron emission sources and electrodes for causing the emission of electrons from the electron emission sources,

wherein the electrodes include cathode electrodes and gate electrodes formed in a stripe pattern,

wherein the cathode electrodes and the gate electrodes are substantially perpendicular to one another and insulated from one another by an insulation layer, and

The field emission display of claim 10,

wherein:

the gate electrodes are formed on the insulation layer over the cathode electrodes; an opening is formed in the gate electrodes at each region where the cathode electrodes and the gate electrodes intersect; and

the electron emission sources are formed on surface areas of the cathode electrode exposed by the openings.

15. (Original) The field emission display of claim 10, wherein the supports are mounted on the insulation laver.

16. (Original) The field emission display of claim 1, further comprising: an auxiliary insulation layer formed on an uppermost layer of the first substrate; and the supports are mounted on the auxiliary insulation layer.

17. (Currently amended) A grid plate apparatus for focusing electrons emitted from emitters in a field emission display having a first substrate and a second substrate facing one another with a predetermined gap therebetween, an electron emission assembly formed on the first substrate for emitting electrons, and an illumination assembly formed on the second substrate for displaying images responsive to the electrons, the grid plate apparatus comprising:

a grid plate including a mask section having a predetermined mask section thickness and having a plurality of apertures through the predetermined mask section thickness in a predetermined pattern such that a respective aperture is locatable over a respective pixel region of the field emission display defined by an intersection of a gate electrode and a cathode electrode: and

a plurality of supports having a predetermined support height, each support being mounted from a first substrate facing side of the mask section in a predetermined non-pixel region between apertures such that the mask section is supported by the supports at a predetermined distance from the first substrate;

wherein the predetermined non-pixel region is selected from the group consisting of: a stripe pattern between the apertures in the direction cathode electrodes are formed, a stripe pattern between the apertures in the direction gate electrodes are formed, and a lattice pattern between the apertures in the direction cathode electrodes are formed and in the direction gate electrodes are formed.

-8-

Appln No. 10/807,916 Amdt date April 2, 2007

Reply to Office action of February 2, 2007

wherein the grid plate is adapted to receive a predetermined external voltage applied to the grid plate to direct the electrons beams through respective apertures toward the second substrate.

wherein the predetermined support height is greater than the predetermined mask section thickness, and

wherein the supports are made of a conducting metal material.

- 18. (Previously Presented) The grid plate apparatus of Claim 17, wherein the plurality of supports support the mask section above the first substrate by an amount approximately corresponding to the predetermined support height.
- 19. (Currently amended) The grid plate apparatus of Claim 17, wherein material forming the mask section and the supports are selected from the group consisting of:

the same conducting material for both the mask section and the supports, and

different econducting materials having different etching rates for the mask section and the supports respectively.

20. (Canceled)

21. (Currently amended)

A grid plate apparatus for focusing electrons emitted from emitters in a field emission display having a first substrate and a second substrate facing one another with a predetermined gap therebetween, an electron emission assembly formed on the first substrate for emitting electrons, and an illumination assembly formed on the second substrate for displaying images responsive to the electrons, the grid plate apparatus comprising:

a grid plate including a mask section having a predetermined mask section thickness and having a plurality of apertures through the predetermined mask section thickness in a predetermined pattern such that a respective aperture is locatable over a respective pixel region

of the field emission display defined by an intersection of a gate electrode and a cathode electrode: and

a plurality of supports having a predetermined support height, each support being mounted from a first substrate facing side of the mask section in a predetermined non-pixel region between apertures such that the mask section is supported by the supports at a predetermined distance from the first substrate:

wherein the predetermined non-pixel region is selected from the group consisting of: a stripe pattern between the apertures in the direction cathode electrodes are formed, a stripe pattern between the apertures in the direction gate electrodes are formed, and a lattice pattern between the apertures in the direction cathode electrodes are formed and in the direction gate electrodes are formed,

wherein the grid plate is adapted to receive a predetermined external voltage applied to the grid plate to direct the electrons beams through respective apertures toward the second substrate,

wherein the predetermined support height is greater than the predetermined mask section thickness,

wherein the supports are made of a conducting material, and

The grid plate apparatus of Claim 17.

wherein the supports taper such that a contacting area of the supports toward the mask section is larger than a contacting area of the supports toward the first substrate.