

NPN Silicon RF Transistor

- For low current applications
- For oscillators up to 12 GHz
- Noise figure F = 1.25 dB at 1.8 GHz outstanding $G_{ms} = 23$ dB at 1.8 GHz
- Transition frequency f_T = 25 GHz
- Gold metallization for high reliability
- ullet SIEGET $^{\circledR}$ 25 GHz f_{\intercal} Line

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration Package				Package
BFP 405	ALs	1=B	2=E	3=C	4=E	SOT-343

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	4.5	V
Collector-base voltage	V _{CBO}	15	
Emitter-base voltage	V _{EBO}	1.5	
Collector current	l _C	12	mA
Base current	l _B	1	
Total power dissipation, $T_S = 120 ^{\circ}\text{C}^{-1}$	P _{tot}	55	mW
Junction temperature	T_{j}	150	°C
Ambient temperature	T _A	-65 150	
Storage temperature	T _{stg}	-65 150	

Thermal Resistance

Junction - soldering point	R _{thJS}	≤ 530	K/W
----------------------------	-------------------	-------	-----

1

 $^{^{1}}T_{
m S}$ is measured on the emitter lead at the soldering point to the pcb

Electrical Characteristics at T_A = 25°C, unless otherwise specified.

Parameter	Symbol		Values			
		min.	typ.	max.]	
DC characteristics	•		!	!		
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V	
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$						
Collector-base cutoff current	I _{CBO}	-	-	150	nA	
$V_{\rm CB} = 5 \text{V}, I_{\rm E} = 0$						
Emitter-base cutoff current	I _{EBO}	-	-	15	μA	
$V_{\rm EB}$ = 1.5 V, $I_{\rm C}$ = 0						
DC current gain	h _{FE}	50	90	150	-	
$I_{\rm C} = 5 \text{ mA}, \ V_{\rm CE} = 4 \text{ V}$						
AC characteristics (verified by random sampling	ıg)					
Transition frequency	f _T	18	25	-	GHz	
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 3 V, f = 2 GHz						
Collector-base capacitance	C _{cb}	-	0.05	0.1	pF	
$V_{CB} = 2 \text{ V}, f = 1 \text{ MHz}$						
Collector-emitter capacitance	C_{ce}	-	0.24	-		
$V_{CE} = 2 \text{ V}, f = 1 \text{ MHz}$						
Emitter-base capacitance	C_{eb}	-	0.29	-		
$V_{\rm EB}$ = 0.5 V, f = 1 MHz						
Noise figure	F	-	1.25	-	dB	
$I_{\rm C}$ = 2 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,						
f = 1.8 GHz						
Power gain ¹⁾	G _{ms}	-	23	-		
$I_{\text{C}} = 5 \text{ mA}, V_{\text{CE}} = 2 \text{ V}, Z_{\text{S}} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}},$						
f = 1.8 GHz					_	
Insertion power gain	$ S_{21} ^2$	14	18	-		
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 2 V, f = 1.8 MHz,						
$Z_{\rm S} = Z_{\rm L} = 50\Omega$						
Third order intercept point	IP ₃	-	15	-	dBm	
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$, $Z_{\rm L}$ = $Z_{\rm Lopt}$,						
f = 1.8 GHz					1	
1dB Compression point	P _{-1dB}	-	5	-		
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 2 V, f = 1.8 GHz,						
$Z_{S}=Z_{Sopt}$, $Z_{L}=Z_{Lopt}$						

 $^{^{1}}G_{\rm ms} = |S_{21} / S_{12}|$

Common Emitter Noise Parameters

f	F _{min} 1)	G _a 1)	Γ_{opt}		R _N	<i>r</i> _n	$F_{50\Omega}$ 2)	$ S_{21} ^2$ 2)
GHz	dB	dB	MAG	ANG	Ω	-	dB	dB
V _{CE} = 2	2V, I _C = 5m	A						
0.9	0.9	21.2	0.54	14	21	0.42	1.8	16.1
1.8	1.15	18.2	0.46	27	19	0.38	1.8	15
2.4	1.35	15.4	0.41	38	18	0.36	1.8	14
3	1.46	14.5	0.34	55	17	0.34	1.8	12.9
4	1.62	11.9	0.26	80	12.5	0.25	1.8	11.3
5	1.75	9.3	0.17	117	11	0.22	1.9	9.7
6	2.15	8.1	0.13	180	14	0.28	2.2	8.2

¹⁾ Input matched for minimum noise figure, output for maximum gain

 $²⁾Z_{\rm S}=Z_{\rm L}=50\Omega$

SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

Transistor Chip Data

IS =	0.21024	fA	BF =	83.23	-	NF =	1.0405	-
VAF =	39.251	V	IKF =	0.16493	Α	ISE =	15.761	fA
NE =	1.7763	-	BR =	10.526	-	NR =	0.96647	-
VAR =	34.368	V	IKR =	0.25052	Α	ISC =	0.037223	fA
NC =	1.3152	-	RB =	15	Ω	IRB =	0.21215	Α
RBM =	1.3491	Ω	RE =	1.9289		RC =	0.12691	Ω
CJE =	3.7265	fF	VJE =	0.70367	V	MJE =	0.37747	-
TF =	4.5899	ps	XTF =	0.3641	-	VTF =	0.19762	V
ITF =	1.3364	mA	PTF =	0	deg	CJC =	96.941	fF
VJC =	0.99532	V	MJC =	0.48652	-	XCJC =	0.08161	-
TR =	1.4935	ns	CJS =	0	fF	VJS =	0.75	V
MJS =	0	-	XTB =	0	-	EG =	1.11	eV
XTI =	3	-	FC =	0.99469	-	TNOM	300	K

C'-E'-Diode Data (Berkley-SPICE 2G.6 Syntax) :

IS =	2	fA	N =	1.02	-	RS =	20	Ω
------	---	----	-----	------	---	------	----	---

All parameters are ready to use, no scaling is necessary

Package Equivalent Circuit:

The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection.

4

Extracted on behalf of SIEMENS Small Signal Semiconductors by: Institut für Mobil-und Satellitentechnik (IMST)

© 1996 SIEMENS AG

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/products/discrete/index.htm

For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
- If you need simulation of the reverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequencies < 100MHz.
 For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.

Note:

 This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.

Transistor Schematic Diagram

The common emitter configuration shows the following advantages:

- Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

5

Please note, that the broadest lead is the emitter lead.

Total power dissipation $P_{\text{tot}} = f(T_{A}^*, T_{S})$

* Package mounted on epoxy

Permissible Pulse Load $R_{thJS} = f(t_p)$

Transition frequency $f_T = f(I_C)$

f = 2 GHz

 V_{CE} = parameter in V

Permissible Pulse Load

$$P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$$

Power gain G_{ma} , G_{ms} , $|S_{21}|^2 = f(f)$ $V_{CE} = 2 \text{ V}$, $I_C = 5 \text{ mA}$

Power gain G_{ma} , $G_{\text{ms}} = f(V_{\text{CE}})$ I_{C} =5mA

f = parameter in GHz

Power gain G_{ma} , $G_{ms} = f(I_C)$

 $V_{CE} = 2V$

f = parameter in GHz

Collector-base capacitance $C_{cb} = f(V_{CB})$ f = 1MHz

Noise figure $F = f(I_C)$

$$V_{CE}$$
 = 2 V, Z_{S} = Z_{Sopt}

Noise figure F = f(f)

$$V_{CE}$$
 = 2 V, Z_{S} = Z_{Sopt}

Noise figure $F = f(I_C)$

$$V_{CE} = 2 \text{ V}, f = 1.8 \text{ GHz}$$

Source impedance for min.

Noise Figure versus Frequency

$$V_{CE} = 2V, I_{C} = 2mA / 5 mA$$

