

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Методы оптимизации»

на тему:

«Решение транспортной задачи по критерию времени. Задание 9»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2021

Задача 1

а. Метод минимального элемента

	Дано									
ПО\ΠΗ	B_{I}	B 2	B 3	B 4	B 5	a_i				
A_{I}	4	5	5	4	5	330				
A 2	4	5	6	2	6	320				
A 3	4	4	5	5	6	410				
A 4	2	3	5	6	4	430				
A 5	4	4	5	3	4	400				
b_j	340	370	420	410	350					

	Метод минимального элемента										
ПО\ПН	Б	3,	В	2	В	3	E	34	В	5	ai
A_{I}		4		5	290	5		4	40	5	330
A 2		4		5		6	320	2		6	320
A 3		4	280	4	130	5		5		6	410
A 4	340	2	90	3		5		6		4	430
A 5		4		4		5	90	3	310	4	400
b_j	34	40	31	70	42	20	4	10	3:	50	·

f = 5

Рассмотрим начальный план, полученный методом минимального элемента. На 1 итерации попробуем избавиться от клетки A_1B_5 .

	1 итерация									
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i				
A_{1}	4	5	5 290	+ - 4	5 40 I -	330				
A 2	4	5	\nearrow	1 2 32 0	\mathbb{X}	320				
A 3	4	4 280	5 130	I 5	\times	410				
A 4	340 2	90 90	5	\times	4	430				
A 5	4	4	5	90 - <u>3</u>	l ⁴ 310 +	400				
b_j	340	370	420	410	350					

Запрещаем все клетки большие 5. Строим цикл: $A_1B_4 \to A_1B_5 \to A_5B_5 \to A_5B_4$. Таким образом, клетка A_1B_4 стала базисной, а клетка A_1B_5 стала свободной.

На 2 итерации уже не получается построить цикл, чтобы избавиться от клеток A_1B_3 и A_3B_3 .

		2	итераци	я		2 итерация									
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i									
A_{1}	4	5	5 290	4 40	5	330									
A 2	4	5	\nearrow	3 20	\nearrow	320									
A 3	4	280 4	5 130	5	\nearrow	410									
A 4	2 340	90 90	5	\nearrow	4	430									
A 5	4	4	5	3 50	4 350	400									
b_j	340	370	420	410	350										

f = 5

Таким образом, значение целевой функции: $f = max \{5, 4, 2, 4, 5, 2, 3, 3, 4\} = 5.$

b. Метод северо-западного угла

	Дано								
ПΟ\ПΗ	B 1	B 2	B 3	B 4	B 5	a_i			
A_{1}	4	5	5	4	5	330			
A 2	4	5	6	2	6	320			
A 3	4	4	5	5	6	410			
A 4	2	3	5	6	4	430			
A 5	4	4	5	3	4	400			
b_j	340	370	420	410	350				

	1	Метод се	веро-запа	дного угл	a	
ПО∖ПЕ	B 1	B 2	B 3	B 4	B 5	a_i
A_{1}	330	5	5	4	5	330
A_2	10	3 10	6	2	6	320
A 3	4	60 60	5 350	5	6	410
A 4	2	3	70	6 360	4	430
A 5	4	4	5	50 50	4 350	400
b_{j}	340	370	420	410	350	

f = 6

Рассмотрим начальный план, полученный методом северо-западного угла. На 1 итерации попробуем избавиться от клетки A_4B_4 .

	1 итерация									
ПО∖ПН	B_{I}	B 2	B 3	B_4	B 5	a_i				
A_{1}	330	5	5	4	5	330				
A 2	4 10	5 310	6	2	6	320				
A 3	4	4 60	350 -	· -1 5	6	410				
A 4	2	3	70 + 5	6 360 -	4	430				
A 5	4	4	5	50 50	4 350	400				
b_{j}	340	370	420	410	350					

Запрещаем все клетки большие 6. Строим цикл: $A_3B_4 \to A_3B_3 \to A_4B_3 \to A_4B_4$. Таким образом, мы сделали перевозку в клетке A_4B_4 меньше на 350 единиц.

На 2 итерации добиваем клетку A_4B_4 .

	2 итерация									
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i				
A 1	330 4	5	5	4	5	330				
A 2	4 10	5 310	6	2	6	320				
A 3	4	4 60	5	5 350	6	410				
A 4	2	3	5 420	10 F -	4	430				
A 5	4	4	5	50 - 3	350 -	400				
b_{j}	340	370	420	410	350					

Запрещаем все клетки большие 6. Строим цикл: $A_4B_5 \to A_4B_4 \to A_5B_4 \to A_5B_5$. Таким образом, клетка A_4B_5 стала базисной, а клетка A_4B_4 стала свободной.

На 3 итерации уже не получается построить цикл, чтобы избавиться от клеток A_3B_4 и A_2B_2 .

	3 итерация									
ПО∖ПН	B_{1}	B 2	B 3	B 4	B 5	a_i				
A_{1}	330 4	5	5	4	5	330				
A 2	4 10	5 310	\nearrow	2	\nearrow	320				
A 3	4	4 60	5	5 350	\times	410				
A 4	2	3	5 420	\times	4 10	430				
A 5	4	4	5	60	4 340	400				
b_j	340	370	420	410	350					

f = 5

Таким образом, значение целевой функции: $f = max \{4, 4, 5, 4, 5, 5, 4, 3, 4\} = 5.$

Задача 2

	Дано								
ПΟ\ПΗ	B 1	B 2	В 3	B 4	B 5	a_i			
A_{1}	6	7	8	9	8	100			
A 2	5	6	7	8	6	75			
A 3	4	6	7	8	7	100			
A 4	3	5	6	7	8	150			
A 5	5	6	7	8	6	100			
b_j	80	80	120	130	115	·			

	Метод северо-западного угла								
ПО∖ПН	B 1	B 2	B 3	B 4	B 5	a_i			
A_{I}	6 80	7 20	8	9	8	100			
A 2	5	6 60	7 15	8	6	75			
A 3	4	6	7 100	8	7	100			
A 4	3	5	6 5	7 130	8 15	150			
A 5	5	6	7	8	6 100	100			
b_{j}	80	80	120	130	115				

f = 8

Рассмотрим начальный план, полученный методом северо-западного угла. На 1 итерации попробуем избавиться от клетки A_4B_5 .

	1 итерация								
ПΟ\ΠΗ	B_{I}	B 2	B 3	B 4	B 5	a_i			
A_{1}	6 80	7 20	8	\nearrow	8	100			
A 2	5	6 60	15 - 7	&	- - 6	75			
A_3	4	6	100 l	8	7	100			
A 4	3	5			<u>8</u> 15 -	150			
A 5	5	6	7	8	6 100	100			
b_{j}	80	80	120	130	115				

Запрещаем все клетки большие 8. Строим цикл: $A_2B_5 \to A_2B_3 \to A_4B_3 \to A_4B_5$. Таким образом, клетка A_4B_5 стала базисной, а клетка A_2B_5 стала свободной.

На 2 итерации уже не получается построить цикл, чтобы избавиться от клеток $A_1B_2,\ A_4B_4$ и $A_3B_3.$

2 итерация						
ПО∖ПН	B_{I}	B 2	B 3	B 4	B 5	a_i
A 1	6 80	7 20	\times	\times	\times	100
A 2	5	6 60	7	\times	6 15	75
A 3	4	6	7 100	\times	7	100
A 4	3	5	6 20	7 130	\times	150
A 5	5	6	7	\times	6 100	100
b_j	80	80	120	130	115	

f = 7

Таким образом, значение целевой функции: $f = max \{6, 7, 6, 7, 6, 7, 6, 6\} = 7.$