```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_breast_cancer
%matplotlib inline

cancer = load_breast_cancer()
df_cancer = pd.DataFrame(np.c_[cancer['data'], cancer['target']], columns = np.appd
df_cancer.head()
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	r conca
(17.99	10.38	122.80	1001.0	0.11840	0.27760	0.
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.

 $df_cancer.shape$

(569, 31)

df_cancer.dtypes

mean radius	float64
mean texture	float64
mean perimeter	float64
mean area	float64
mean smoothness	float64
mean compactness	float64
mean concavity	float64
mean concave points	float64
mean symmetry	float64
mean fractal dimension	float64
radius error	float64
texture error	float64
perimeter error	float64
area error	float64
smoothness error	float64
compactness error	float64
concavity error	float64
concave points error	float64
symmetry error	float64
fractal dimension error	float64
worst radius	float64
worst texture	float64
worst perimeter	float64
worst area	float64

```
worst smoothness float64
worst compactness float64
worst concavity float64
worst concave points float64
worst symmetry float64
worst fractal dimension float64
target float64
dtype: object
```

df_cancer.isna().sum()

```
mean radius
                           0
mean texture
                           0
                           0
mean perimeter
mean area
                           0
mean smoothness
                           0
mean compactness
mean concavity
mean concave points
mean symmetry
                           0
mean fractal dimension
                           0
                           0
radius error
texture error
                           0
perimeter error
                           0
                           0
area error
smoothness error
                           0
compactness error
                           0
concavity error
                           0
concave points error
                           0
symmetry error
fractal dimension error
                           0
worst radius
                           0
                           0
worst texture
worst perimeter
                           0
worst area
                           0
worst smoothness
                           0
worst compactness
                           0
worst concavity
                           0
worst concave points
worst symmetry
                            0
worst fractal dimension
                           0
target
                            0
dtype: int64
```

→ Visualize

The above plots shows the relationship between our features. But the only problem with them is that they do not show us which of the "dots" is Malignant and which is Benign.

This issue will be addressed below by using "target" variable as the "hue" for the plots.

```
# Let's plot out just the first 5 variables (features)
sns.pairplot(df_cancer, hue = 'target', vars = ['mean radius', 'mean texture', 'me
```


Note:

- 1.0 (Orange) = Benign (No Cancer)
- 0.0 (Blue) = Malignant (Cancer)

Benign & Malignant count

```
df_cancer['target'].value_counts()

1.0     357
     0.0     212
     Name: target, dtype: int64
```

As we can see, we have 212 - Malignant, and 357 - Benign

Let's visulaize our counts

```
sns.countplot(df_cancer['target'], label = "Count")
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: F
FutureWarning
<matplotlib.axes. subplots.AxesSubplot at 0x7feb9b5c4910>

→ Let's check the correlation between our features

```
plt.figure(figsize=(20,12))
sns.heatmap(df_cancer.corr(), annot=True)
```


There is a strong correlation between the mean radius and mean perimeter, mean area and mean primeter

▼ Z-score Normalisation

 $X = df_{cancer.drop(['target'], axis = 1)} \# We drop our "target" feature and use al X.head()$

```
mean
                    mean
                                mean
                                       mean
                                                    mean
                                                                 mean
y = df_cancer['target']
y.head()
    0
          0.0
    1
          0.0
    2
          0.0
    3
          0.0
          0.0
    Name: target, dtype: float64
                    ± ..∪ .
```

from sklearn.preprocessing import StandardScaler

```
X = np.array(X)
scaler = StandardScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)

#Normalised dataframe
#-3 to +3
df_final = pd.DataFrame(X_scaled, columns = cancer['feature_names'])

df_final
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness
0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.283515
1	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.487072
2	1.579888	0.456187	1.566503	1.558884	0.942210	1.052926
3	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.402909
4	1.750297	-1.151816	1.776573	1.826229	0.280372	0.539340
564	2.110995	0.721473	2.060786	2.343856	1.041842	0.219060
565	1.704854	2.085134	1.615931	1.723842	0.102458	-0.017833
566	0.702284	2.045574	0.672676	0.577953	-0.840484	-0.038680
567	1.838341	2.336457	1.982524	1.735218	1.525767	3.272144
568	-1.808401	1.221792	-1.814389	-1.347789	-3.112085	-1.150752

df_final.drop('mean perimeter',inplace=True,axis=1)

df_final

	mean radius	mean texture	mean area	mean smoothness	mean compactness	mean concavity
0	1.097064	-2.073335	0.984375	1.568466	3.283515	2.652874
1	1.829821	-0.353632	1.908708	-0.826962	-0.487072	-0.023846
2	1.579888	0.456187	1.558884	0.942210	1.052926	1.363478
3	-0.768909	0.253732	-0.764464	3.283553	3.402909	1.915897
4	1.750297	-1.151816	1.826229	0.280372	0.539340	1.371011
564	2.110995	0.721473	2.343856	1.041842	0.219060	1.947285
565	1.704854	2.085134	1.723842	0.102458	-0.017833	0.693043
566	0.702284	2.045574	0.577953	-0.840484	-0.038680	0.046588
567	1.838341	2.336457	1.735218	1.525767	3.272144	3.296944
568	-1.808401	1.221792	-1.347789	-3.112085	-1.150752	-1.114873

Suport Vector Maching (SVM)

What is a Support Vector Machine (SVM)?

A Support Vector Machine (SVM) is a binary linear classification whose decision boundary is explicitly constructed to minimize generalization error. It is a very powerful and versatile Machine Learning model, capable of performing linear or nonlinear classification, regression and even outlier detection.

SVM is well suited for classification of complex but small or medium sized datasets.

Model Training

Create the training and testing data

from sklearn.model_selection import train_test_split

Import Support Vector Machine (SVM) Model

```
from sklearn.svm import SVC
svc_model = SVC()
```

→ Train

```
svc_model.fit(X_train, y_train)

SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
```

Prediction

```
y_predict = svc_model.predict(X_test)
```

	Predicted Negative	Predicted Positive	
Actual Negative	True Negative (TN)	False Positive (FP)	
Actual Positive	False Negative (FN)	True Positive (TP)	

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, f1_:
confusion_matrix(y_test,y_predict)

```
array([[47, 1], [ 0, 66]])
```

accuracy_score(y_test,y_predict)

0.9912280701754386

```
+ Code + Text
```

precision_score(y_test,y_predict)

0.9850746268656716

```
recall_score(y_test,y_predict)
```

1.0

f1_score(y_test,y_predict)

0.9924812030075187