Lab Clustering n°4

Exercice 1 - DBSCAN:

Part 1 (Theory)

1. Prerequisites:

Consider n points in space to be clustered, P and Q two points, $m \in N$ and $\epsilon \in R$:

- P is called core-point if at least m points are within distance ϵ (including P itself).
- Q is directly reachable from a core-point P if Q is within distance ϵ from P.
- Q is reachable from a core-point P if there is a suit $(P_i)_i$ of k points where $P_0 = P$ and $P_k = Q$ and $\forall i \in [0, k-1]$, P_{i+1} is directly reachable from P_i . This suit of points is called a path between P and Q.
- All point unreachable from any other point are called outliers.

2. Questions

- Considering that that the DBSCAN algorithm depends on the definitions given in the previous paragraph, what are the parameters of the DBSCAN clustering algorithm?
- Consider n equidistant points belonging to the same circle with a r radius and C the center of this circle. Let d be the distance between these n points (d = $P_0P_1 = P_1P_2 = ... = P_{n-1}P_n = P_nP_0 < r$). How many core points will we have if we fix the couple (m, ϵ) to :

```
 \begin{array}{ll} \circ & (2,d_1) \text{ with } d_1 < d \\ \circ & (3,d) \\ \circ & (n,r) \end{array}
```

- Let P,Q be two points where P is a core point and Q is reachable from
 P. Then the points forming the path between P and Q are core points
 ?
 - o True
 - False

Part 2 (Algorithm)

```
1. Pseudo – code:
** initialization **
Number clusters = 0
For each point P
      Label(P) = null
** clustering **
For each point P
      If Label(P) != null; continue (next iteration)
      List N = Neighboors(P, \epsilon)
      If length(N) < m:
             Label(P) = noise
             continue
      Number_Clusters ++
      Label(P) = Number_Clusters
      List N = N \setminus \{P\}
      while N != []
             Q = N[0]
             N = N [1:]
```

Label(Q) = Number_Clusters

continue

If label(Q) != null

continue

Label(Q) = Number_Clusters

List M = Neighboors(Q, ϵ) if length(M) >= m N = N + M

End while

End For

- 2. Create the function Neighboors(Point, ϵ) which returns the list of directly reachable points from the point given as parameter.
- 3. Implement the entire algorithm.
- 4. In which part of the algorithm can we change the distance function?
- 5. Change the algorithm then the code in order to make the Distance function another parameter of the algorithm.
- 6. Create a randomly generated set of points and test your algorithm.