

Chapitre II – Limites de fonctions

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES								
I - Limite d'une fonction en un point	. 1							
1. Limite infinie	. 1							
2. Limite finie	. 3							
3. Limites à gauche et à droite	. 4							
4. Asymptote verticale	. 5							
II - Limite d'une fonction en l'infini								
1. Limite infinie	. 6							
2. Limite finie	. 7							
3. Asymptote horizontale	. 8							
III - Calcul de limites								
1. Limites de fonctions de référence	. 10							
2. Opérations sur les limites	. 10							
3. Comparaisons et encadrements	. 12							

I - Limite d'une fonction en un point

1. Limite infinie

À RETENIR : FONCTION TENDANT VERS $+\infty$ EN UN POINT \P

Soit f une fonction (en classe de Terminale, on se limite aux fonctions réelles) d'ensemble de définition \mathcal{D}_f . Soit a un réel appartenant à \mathcal{D}_f ou étant une borne de \mathcal{D}_f .

On dit que f(x) tend vers $+\infty$ quand x tend vers a si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de a.

On note ceci $\lim_{x\to a} f(x) = +\infty$.

À LIRE : EXEMPLE 99

La fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x^2}$, tend vers $+\infty$ quand x tend vers 0.

Il est tout-à-fait possible d'établir une définition similaire pour une fonction tendant vers $-\infty$ en un point.

À LIRE : FONCTION TENDANT VERS $-\infty$ EN UN POINT 99

En reprenant les notations précédentes, on dit que f(x) tend vers $-\infty$ quand x tend vers a si f(x) est aussi petit que l'on veut pourvu que x suffisamment proche de a.

On note ceci $\lim_{x\to a} f(x) = -\infty$.

À LIRE : EXEMPLE 99

La fonction f définie sur $]-\infty,3[\,\cup\,]3,+\infty[$ par $f(x)=-\frac{1}{x^2-6x+9},$ tend vers $-\infty$ quand x tend vers 3.

2. Limite finie

À RETENIR : DÉFINITION 💡

Soit f une fonction d'ensemble de définition \mathcal{D}_f . Soit a un réel appartenant à \mathcal{D}_f ou étant une borne de \mathcal{D}_f .

On dit que f(x) **tend vers** ℓ quand x tend vers a si f(x) est aussi proche de ℓ que l'on veut pourvu que x soit suffisamment proche de a.

On note ceci $\lim_{x\to a} f(x) = \ell$.

À LIRE : EXEMPLE 99

La fonction f définie sur \mathbb{R}^* par $f(x) = \frac{\sin(x)}{x}$, tend vers 1 quand x tend vers 0.

Une petite remarque cependant : cette limite n'est pas triviale à démontrer. On peut cependant en proposer une preuve à l'aide de la dérivée de la fonction sin (qui est cos) : $\lim_{x\to 0}\frac{\sin(x)}{x}=\lim_{x\to 0}\frac{\sin(x)-\sin(0)}{x-0}=\sin'(0)=\cos(0)=1.$

3. Limites à gauche et à droite

À RETENIR : DÉFINITION 📍

Soit f une fonction d'ensemble de définition \mathcal{D}_f . Soit a un réel appartenant à \mathcal{D}_f ou étant une borne de \mathcal{D}_f .

- On dit que f(x) admet une **limite à gauche** quand x tend vers a si f(x) admet une limite quand x tend vers a avec x < a. On la note $\lim_{x \to a^{-}} f(x)$.
- On dit que f(x) admet une **limite à droite** quand x tend vers a si f(x) admet une limite quand x tend vers a avec x > a. On la note $\lim_{x \to a^+} f(x)$.

À LIRE : EXEMPLE 00

La fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$, admet deux limites différentes à gauche et à droite de 0:

$$-\lim_{x\to 0^-} h(x) = -\infty$$

$$-\lim_{x\to 0^+} h(x) = +\infty$$

4. Asymptote verticale

À RETENIR : DÉFINITION 👂

Soit f une fonction d'ensemble de définition \mathcal{D}_f . Soit a un réel appartenant à \mathcal{D}_f ou étant une borne de \mathcal{D}_f .

Alors si f(x) admet une limite infinie quand x tend vers a, alors la droite d'équation x = a est une **asymptote verticale** à la courbe représentative de f.

À LIRE : EXEMPLE 99

En reprenant les exemples précédents :

- Les courbe représentatives des fonctions $x\mapsto \frac{1}{x}$ et $x\mapsto \frac{1}{x^2}$ admettent toutes deux une asymptote verticale d'équation x=0.
- La courbe de la fonction $x \mapsto \frac{1}{x^2 6x + 9}$ admet une asymptote verticale d'équation x = 3.

II - Limite d'une fonction en l'infini

1. Limite infinie

À RETENIR : FONCTION TENDANT VERS $+\infty$ EN $+\infty$?

Soit f une fonction d'ensemble de définition \mathcal{D}_f . On suppose qu'une des bornes de \mathcal{D}_f est $+\infty$.

On dit que f(x) tend vers $+\infty$ si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Comme précédemment, on peut écrire des définitions similaires pour dire que f tend vers $-\infty$ quand x tend vers $+\infty$.

À LIRE : FONCTION TENDANT VERS $-\infty$ EN $+\infty$ 99

En reprenant les notations précédentes, on dit que f(x) tend vers $-\infty$ quand x tend vers $+\infty$ si f(x) est aussi petit que l'on veut pourvu que x soit suffisamment grand.

À LIRE : FONCTION TENDANT VERS $\pm\infty$ EN $-\infty$ 99

Pour avoir les définitions quand x tend vers $-\infty$, il suffit de remplacer "x suffisamment grand" par "x suffisamment petit" et il faut qu'une des bornes de \mathcal{D}_f soit $-\infty$.

À LIRE : EXEMPLE 99

La fonction f définie sur \mathbb{R} par f(x)=2x+1, tend vers $+\infty$ quand x tend vers $+\infty$. Cependant, la fonction $-f: x\mapsto -2x-1$ tend vers $-\infty$ quand x tend vers $+\infty$.

2. Limite finie

À RETENIR : LIMITE FINIE EN $+\infty$ 📍

Soit f une fonction d'ensemble de définition \mathcal{D}_f . On suppose qu'une des bornes de \mathcal{D}_f est $+\infty$.

On dit que f(x) **tend vers** ℓ quand x tend vers $+\infty$ si f(x) est aussi proche de ℓ que l'on veut pourvu que x soit suffisamment grand.

De même, on peut écrire une définition semblable quand x tend vers $-\infty$.

À LIRE : LIMITE FINIE EN $-\infty$ 99

En reprenant les notation précédentes et en supposant qu'une des bornes de \mathcal{D}_f soit $-\infty$, on dit que f(x) tend vers ℓ quand x tend vers $-\infty$ si f(x) est aussi proche de ℓ que l'on veut pourvu que x soit suffisamment petit.

À LIRE : EXEMPLE 99

La fonction f définie sur \mathbb{R}^+ par $f(x) = \frac{9x}{3x+1}$ tend vers 3 quand x tend vers $+\infty$.

3. Asymptote horizontale

À RETENIR : DÉFINITION EN $+\infty$ \P

Soit f une fonction d'ensemble de définition \mathcal{D}_f . On suppose qu'une des bornes de \mathcal{D}_f est $+\infty$.

Alors si f(x) admet une limite finie ℓ quand x tend vers $+\infty$, alors la droite d'équation $y=\ell$ est une **asymptote horizontale** en $+\infty$ à la courbe représentative de f.

Comme tout ce que l'on a vu avant, il existe une définition semblable en $-\infty$.

À LIRE : DÉFINITION EN $-\infty$ 🥬

Soit f une fonction d'ensemble de définition \mathcal{D}_f . On suppose qu'une des bornes de \mathcal{D}_f est $-\infty$.

Alors si f(x) admet une limite finie ℓ quand x tend vers $-\infty$, alors la droite d'équation $y = \ell$ est une **asymptote horizontale** en $-\infty$ à la courbe représentative de f.

À LIRE : EXEMPLE 99

En reprenant l'exemple précédent, la courbe représentative de la fonction $x\mapsto \frac{9x}{3x+1}$ admet une asymptote horizontale d'équation y=3 en $+\infty$.

De plus, elle admet une asymptote verticale d'équation $x=-\frac{1}{3}.$

III - Calcul de limites

1. Limites de fonctions de référence

Nous allons donner quelques fonctions "classiques" avec leur limite en quelques points.

ÀF	À RETENIR : LIMITES DE FONCTIONS USUELLES 🖣									
		$a=-\infty$	a = 0	$a = +\infty$						
	$\lim_{X\to a} \frac{1}{X}$	0	$-\infty$ si $a = 0^-$, $+\infty$ si $a = 0^+$	0						
	$\lim_{X\to a} \sqrt{X}$	Non définie	0 si $a = 0^+$	$+\infty$						
	$\lim_{x \to a} x^k$	$-\infty$ si k est impair, $+\infty$ si k est pair	0	+∞						
	$\lim_{x \to a} e^x$	0	$e^0 = 1$	$+\infty$						

À LIRE : RAPPEL 99

On rappelle que 0^- signifie "tend vers 0 mais en restant inférieur à 0" et 0^+ signifie "tend vers 0 mais en restant supérieur à 0".

2. Opérations sur les limites

Dans tout ce qui suit, f et g sont deux fonctions de domaines de définition \mathcal{D}_f et \mathcal{D}_g . Soit a un nombre réel appartenant à $\mathcal{D}_f \cap \mathcal{D}_g$ (ou qui est au moins une borne des deux à la fois). Les tableaux suivants ressemblent beaucoup à ceux qui sont disponibles dans le cours sur les suites donc vous pouvez bien-sûr n'en retenir qu'un des deux, et tenter à partir de là de retrouver l'autre.

À RETENIR : LIMITE D'UNE SOMME 9							
Limite d'une somme							
Si la limite de $f(x)$ quand x tend vers a est	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$	
Et la limite de g quand x tend vers a est	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	
Alors la limite de $f + g$ quand x tend vers a est	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$?	

À RETENIR : LIMITE D'UN PI	RODUIT 📍									
Limite d'un pro	Limite d'un produit									
Si la limite de	ℓ	$\ell > 0$	$\ell > 0$	$\ell < 0$	$\ell < 0$	$+\infty$	$+\infty$	$-\infty$	0	
f(x) quand										
x tend vers a										
est										
Et la limite	ℓ'	+∞	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$	
de g quand										
x tend vers a										
est										
Alors la limite	$\ell \times \ell'$									
de $f \times g$ quand		ℓ' $+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$?	
x tend vers a										
est										

À RETENIR : LIMITE D'UN QUOTIENT 📍 Limite d'un quotient Si la limite de f(x) quand x ℓ 0 $+\infty$ $+\infty$ $-\infty$ $-\infty$ $\pm \infty$ tend vers a est... Et la limite de g quand $\ell' \neq 0$ $\pm \infty$ $\ell' > 0 \mid \ell' < 0 \mid \ell' > 0 \mid \ell' < 0$ 0^+ $\pm \infty$ x tend vers aest... Alors la limite ? 0 ? $\pm \infty$ $+\infty$ $-\infty$ $-\infty$ $+\infty$ est...

À RETENIR : LIMITE D'UNE COMPOSÉE 📍

Si on pose $\lim_{x\to a} f(x) = b$ et $\lim_{x\to b} g(x) = c$. Alors $\lim_{x\to c} (g\circ f)(x) = c$.

À LIRE : FORMES INDÉTERMINÉES 99

À noter qu'il n'existe que 4 formes indéterminées : " $+\infty-\infty$ ", " $0\times\pm\infty$ ", " $\frac{\pm\infty}{\pm\infty}$ " et " $\frac{0}{0}$ ".

3. Comparaisons et encadrements

À RETENIR : THÉORÈMES DE COMPARAISON 🕈

Soient deux fonctions f et g.

- Si $\lim_{x\to +\infty} f(x) = +\infty$ et si $f\leq g$ à partir d'un certain point, alors $\lim_{x\to +\infty} g(x) = +\infty$.
- Si $\lim_{x\to +\infty} f(x) = -\infty$ et si $f\geq g$ à partir d'un certain point, alors $\lim_{x\to +\infty} g(x) = -\infty$.

À RETENIR : THÉORÈME DES GENDARMES 📍

Soient trois fonctions f, g et h. Si on a $f \leq g \leq h$ à partir d'un certain point, et qu'il existe ℓ tel que $\lim_{x \to +\infty} f(x) = \ell$ et $\lim_{x \to +\infty} h(x) = \ell$, alors $\lim_{x \to +\infty} g(x) = \ell$.

À LIRE : EXEMPLE 99

Utilisons ce théorème pour montrer que la fonction $f: x \mapsto \frac{\sin(x)}{x}$ tend vers 0 quand x tend vers $+\infty$.

Tout d'abord, pour tout $x \in \mathbb{R}$, $-1 \le \sin(x) \le 1$.

Donc, pour tout
$$x > 0$$
, $\frac{-1}{x} \le \underbrace{\frac{\sin(x)}{x}}_{=f(x)} \le \frac{1}{x}$.

Comme, $\lim_{x\to +\infty} \frac{-1}{x} = 0$ et $\lim_{x\to +\infty} \frac{1}{x} = 0$, alors $\lim_{x\to +\infty} f(x) = 0$.

Le dernier théorème est la version fonction du théorèmes des gendarmes (que l'on a vu lors du cours sur les suites). Ils permettent notamment de démontrer une partie du **théorème** des croissances comparées.

À RETENIR : CROISSANCES COMPARÉES ?

 $\lim_{x\to+\infty} \frac{e^x}{x^n} = +\infty$ pour tout $n\in\mathbb{N}$.

DÉMONSTRATION : CROISSANCES COMPARÉES (

Commençons tout d'abord par montrer que pour tout $x \geq 0$, $e^x \geq 1 + x$. Pour cela, posons $f: x \mapsto e^x - 1 - x$. On a pour tout $x \in \mathbb{R}$, $f'(x) = e^x - 1$. Donc f'(x) est positif si et seulement si $e^x - 1 \geq 0$, c'est-à-dire $e^x \geq 1$.

En regardant le graphique de la fonction exponentielle, on trouve que cela est équivalent à $x \ge 0$.

Notre fonction est donc croissante sur l'intervalle $[0,+\infty[$, et son minimum est donc atteint en x=0 et vaut f(0)=0. Ainsi, pour tout $x\geq 0$, $f(x)\geq 0 \iff e^x-1-x\geq 0 \iff e^x\geq 1+x$: ce que l'on cherchait.

Pour conclure, on utilise une petite astuce. Soit $n \in \mathbb{N}$:

D'après ce que l'on vient de faire, pour tout x>0, $e^{\frac{x}{n+1}}\geq 1+\frac{x}{n+1}>\frac{x}{n+1}$. Ainsi, en mettant à la puissance n+1 (qui ne change pas le sens de l'inégalité car les deux membres sont positifs), on a :

 $e^x > (\frac{x}{n+1})^{n+1} = \frac{x^{n+1}}{(n+1)^{n+1}}$ Maintenant, on divise les deux côtés par x^n (qui est un nombre strictement positif) et on obtient :

$$\frac{e^x}{x^n} > \frac{x}{(n+1)^{n+1}}$$

Or, le membre de droite tend vers $+\infty$ quand x tend vers $+\infty$ donc le membre de gauche aussi d'après les théorèmes de comparaison.