Tutorial #5: Rings and Fields

Exercise 0:

- a) Since a0 = a(0+0) = a0 + a0. Thus, a0 = 0. Since 0a = (0+0)a = 0a + 0a. Thus, 0a = 0. Therefore, a0 = 0a = 0.
- b) We have:

$$ab + (-a)b = (a + (-a))b = 0b = 0.$$

 $ab + a(-b) = a(b + (-b)) = a0 = 0.$
 $ab - ab = ab + (-ab) = 0$

The inverse of ab is unique as R is a abelian group under addition. Thus, (-a)b = a(-b) = -ab.

c) We have:

$$(-a)(-b) + (-a)b = (-a)(-b+b) = 0.$$

 $ab + (-a)b = ab - ab = 0.$

The inverse of (-a)b is unique as R is an abelian group under addition operation. Hence, (-a)(-b) = ab.

Exercise 1:

- 7Z
 - i) Let $a, b, c \in 7\mathbb{Z}$, $\exists i, j$ and $k \in \mathbb{Z}$ such that a = 7i, b = 7j, c = 7k. (a+b) + c = (7i+7j) + 7k = 7(i+j) + 7k = 7(i+j+k). a + (b+c) = 7i + (7j+7k) = 7i + 7(j+k) = 7(i+j+k).

Hence, (a + b) + c = a + (b + c), the ring is associative under addition operation.

- ii) There exist e = 0 such that a + e = 7i + 0 = 7i = a. Thus, ring R has identity element under addition operation.
- iii) There exist $a^{-1} = -7i$ such that $a + a^{-1} = 7i 7i = 0 = e$. ring R has inverse element under addition operation.
- iv) Since a + b = 7(i + j) = 7(j + i) = b + a, ring R is commutative under addition operation.
- v) Since $ab = 7i \times 7j = 7j \times 7i = ba$, ring R is commutative under multiplication operation.
- vi) Since (a + b)c = (7i + 7j)7k = 49ik + 49jk = ac + bc, ring R is multiplicative distributive associated with addition operation.

Conclusion: Hence, $7\mathbb{Z}$ is a ring.

- $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$
 - i) Let $a,b,c\in\mathbb{Q}(\sqrt{2}), \exists i,j,k,l,m,n$ such that: $\begin{cases} a=i+\sqrt{2}l\\ b=j+\sqrt{2}m\\ c=k+\sqrt{2}n \end{cases}$ $(a+b)+c=(i+j+\sqrt{2}(l+m))+k+\sqrt{2}n=i+j+k+\sqrt{2}(l+m+n)$ $a+(b+c)=i+\sqrt{2}l+(j+k+\sqrt{2}(m+n))=i+j+k+\sqrt{2}(l+m+n)$ Hence, ring R is associative under addition operation.
 - ii) There exists e = 0 such that $a + e = (i + \sqrt{2}l) + 0 = i + \sqrt{2}l = a$. Thus, ring R has identity element under addition operation.
 - iii) There exists such $a^{-1} = -i \sqrt{2}l$ satisfies $a + a^{-1} = e$. Thus ring R has inverse element under addition operation.
 - iv) Since $a + b = i + j + \sqrt{2}(l + m) = j + i + \sqrt{2}(m + l) = b + a$. Thus, ring R is commutative under addition operation.
 - v) Since $ab = (i + \sqrt{2}l)(j + \sqrt{2}m) = ij + \sqrt{2}(lj + im) + 2lm = ji + \sqrt{2}(mi + jl) + 2ml = (j + \sqrt{2}m)(i + \sqrt{2}l) = ba$, ring R is commutative under multiplication operation.

vi) Since $(a + b)c = (i + \sqrt{2}l + j\sqrt{2}m)(k + \sqrt{2}n) = \dots = ab + ac$, ring R is multiplicative distributive associated with addition operation.

Exercise 2:

Prove that: R is a commutative ring. Given that R is a ring and $a^2 = a$ for every $a \in \mathbb{R}$.

Proof:

With $a = a^2 (\forall a \in R)$, we can prove that:

$$a + a = (a + a)^{2}$$

$$a + a = a^{2} + a^{2} + a^{2} + a^{2}$$

$$a + a = a + a + a + a$$

$$a + a = 0$$

$$a = -a$$

Let $a, b \in \mathbb{R}$, since R is a ring, R is also an abelian group under addition operation. Therefore, $(a + b) \in \mathbb{R}$,

$$(a+b)^2 = a+b$$
$$a^2 + ab + ba + b^2 = a^2 + b^2$$
$$ab = -ba$$

Since $b = -b, \forall b \in \mathbb{R}$, we can conclude that ab = ba. Hence, ring R is commutative.

Exercise 3:

Prove that: $\phi(1)$ is identity element of R' if R is a ring with identity element 1 and ϕ is a homomorphism of R onto R'.

Proof: Since ϕ is homomorphism, we have: $\phi(ab) = \phi(a)\phi(b)$

Let $x \in R$ and 1_R be identity element of R, we have $1_R * x = x \ \forall x \in R$.

$$\phi(x) = \phi(1_R * x) = \phi(1_R)\phi(x)$$

Thus, $\phi(1_R)$ is the identity element of R'.

Exercise 4:

Prove that: Z(R) is a subring of R, $Z(R) = \{x \in \mathbb{R} | xy = yx, \forall y \in \mathbb{R} \}$

- i) It's trivial that $Z(R) \neq \emptyset$
- ii) Let $a, b \in Z(R)$, thus $at = ta, bt = tb, \forall t \in \mathbb{R}$.

$$atb = atb$$
$$(at)b = a(tb)$$
$$(ta)b = a(bt)$$
$$t(ab) = (ab)t.$$

Thus, $ab \in Z(R)$.

iii) Since $a, b \in Z(R)$,

$$at - bt = at - bt$$

$$at + (-b)t = ta + t(-b)$$

$$(a + (-b))t = t(a + (-b))$$

$$(a - b)t = t(a - b)$$

Thus, $(a - b) \in Z(R)$.

Conclusion: By the definition of subring, Z(R) is a subring of \mathbb{R} .

Exercise 5:

General formula: $1 + (-1)^{n-1}x^n = (1+x)\sum_{i=0}^{n-1}(-x)^i$ It's trivial that with $n \equiv 1 \pmod{2}$,

$$1 = x^{n} + 1 = x^{n}(-1)^{n-1} + 1 = (x+1)\sum_{i=0}^{n-1} (-x)^{i}$$

Since $x \in \mathbb{R}$ and $i \in \mathbb{N}$, there exists $\sum_{i=0}^{n-1} (-x)^i \in \mathbb{R}$. Thus, (x+1) is an unit.

Exercise 6:

Prove that: If a ring is isomorphic to a field, then that ring is a field. **Proof:** Let $f: R \to F$ be an isomorphism from ring R to field F.

i) Let $a, b \in \mathbb{R}$, since \mathbb{R} is a ring, $ab \in \mathbb{R}$. Since \mathbb{F} is a field, \mathbb{F} is multiplicative commutative (f(a)f(b) = f(b)f(a)). Thus, by the definition of homomorphism, we have:

$$f(ab) = f(a)f(b) = f(b)f(a) = f(ba)$$

Since f is injective, we can conclude that ab = ba and ring R is commutative under multiplication.

- ii) Let 1_F be multiplicative identity of F, $\forall a \in \mathbb{R}$, and f is isomorphism: $f^{-1}(1_F)*a = f^{-1}(1_F)*f^{-1}(f(a)) = f^{-1}(1_F*f(a)) = f^{-1}(f(a)) = a$ Thus, $1_R = f^{-1}(1_F)$ is multiplicative identity of R.
- iii) Since F is a field, $\forall a \neq 0 \in \mathbb{R}$, we have:

$$f^{-1}(a) * f(a) = e$$

$$\frac{1_F}{f(a)} f(a) = 1_F$$

$$f^{-1}\left(\frac{1_F}{f(a)} f(a)\right) = 1_R$$

$$f^{-1}\left(\frac{1_F}{f(a)}\right) f^{-1}(f(a)) = 1_R$$

$$f^{-1}\left(\frac{1_F}{f(a)}\right) a = 1_R$$

Thus, $\frac{1_R}{a} = f^{-1}\left(\frac{1_F}{f(a)}\right)$ is multiplicative inverse of R.

Conclusion: With i), ii) and iii), we conclude that R is also a field.

Exercise 7:

Prove that: $(g \circ f) : A \to C$ is isomorphism if $f : A \to B$ and $g : B \to C$ are isomorphisms.

$$f$$
 and g are isomorphisms $\mapsto \begin{cases} f(a)f(b) &= f(ab) \\ g(a)g(b) &= g(ab) \end{cases}$ Thus, we have:

$$(f \circ g)(a) * (f \circ g)(b) = f(g(a)) * f(g(b)) = f(g(a) * g(b)) = f(g(ab)) = (f \circ g)(ab)$$

In addition, since both f and g is bijective, $f \circ g$ is also bijective.

Conclusion: $f \circ g$ is isomorphism.