I concetti del Modello Relazionale

Prof. Francesco Gobbi

I.I.S.S. Galileo Galilei - Ostiglia (MN) Materia: Informatica

12 novembre 2024

Introduzione al Modello Relazionale

Il **modello relazionale** è stato proposto da Edgar F. Codd nel 1970 per descrivere le informazioni in forma tabellare.

- Il modello relazionale vede i dati come insiemi di tabelle tra cui è possibile eseguire operazioni logiche.
- La base di dati viene modellata come un insieme di relazioni, ognuna delle quali corrisponde a una tabella.

Il Concetto di Relazione

Il modello relazionale si basa su **relazioni tra insiemi di oggetti**.

Concetto di relazione: una relazione è un sottoinsieme di un prodotto cartesiano di due o più insiemi.

Definizione: Siano dati due insiemi *A*1 e *A*2.

$$A1 = \{4, 9, 16\}, \quad A2 = \{2, 3\}$$

Il **prodotto cartesiano** di $A1 \times A2$ è l'insieme di tutte le coppie ordinate (x, y), dove $x \in A1$ e $y \in A2$:

$$A1 \times A2 = \{(4,2), (4,3), (9,2), (9,3), (16,2), (16,3)\}$$

Esempio di Prodotto Cartesiano

Le coppie risultanti sono tutte le possibili combinazioni degli elementi dei due insiemi. Ad esempio,

$$A1 \times A2 = \{(4,2), (4,3), (9,2), (9,3), (16,2), (16,3)\}.$$

Relazione tra insiemi

Non tutte le coppie del prodotto cartesiano sono ugualmente significative. Possiamo definire una **relazione come un sottoinsieme del prodotto cartesiano**.

Dati gli insiemi precedenti, creiamo l'esempio:

- Definiamo una relazione Q, ovvero QuadratoDi, come l'insieme delle coppie (x, y) dove x è il quadrato di y.
- La relazione Q è quindi un sottoinsieme di $A1 \times A2$: $Q = \{(4,2),(9,3)\}.$

			ESEMPIO	<u> </u>
A1×A2	QuadratoDi			
A1	A2	A1	A2	
4	2	4	2	
4	3	9	3	
9	2			
9	3			
16	2			
16	3			

Perché utilizzare il modello relazionale?

- ► Il modello relazionale utilizza il linguaggio matematico per garantire precisione e rigore nella descrizione dei dati.
- Riduce l'ambiguità, rendendo i dati facili da comprendere e manipolare.
- Consente di effettuare operazioni sui dati in modo logico e indipendente dalla struttura fisica del database.

Altro esempio di relazione (Modello Auto - Costruttore)

ESEMPIO

Si prendano, in riferimento alle automobili, gli insiemi *Modello e Costruttore*, così definiti: Modello = { Panda, Cinquecento, C3, C4}, Costruttore = { Citroen, Fiat }

Il prodotto cartesiano *Modello* × *Costruttore* è formato dalle 8 coppie ottenute componendo un elemento di *Modello* con un elemento di *Costruttore* in tutti i modi possibili.

Si consideri ora il sottoinsieme di *Modello*×Costruttore formato dai quattro elementi:

{ (C3, Citroen), (C4, Citroen), (Panda, Fiat), (Cinquecento, Fiat) }

che si indicano, in modo significativo, con il nome ProdottoDa.

Il prodotto cartesiano *ModelloxCostruttore* e la relazione *ProdottoDa* possono essere rappresentati con le seguenti tabelle.

Modello x Costruttore

ProdottoDa

Modello	Costruttore		
Panda	Citroen		
Cinquecento	Citroen		
C3	Citroen		
C4	Citroen		
Panda	Fiat		
Cinquecento	Fiat		
C3	Fiat		
C4	Fiat		

Modello	Costruttore		
C3	Citroen		
C4	Citroen		
Panda	Fiat		
Cinquecento	Fiat		

NOTA BENE

Il prodotto cartesiano *Modello x Costruttore* non contiene informazioni utili, mentre la relazione *ProdottoDa* è significativa e permette di conoscere il costruttore delle vetture elencate

Ulteriore definizione di Relazione

- Una relazione su n insiemi $A_1, A_2, ..., A_n$ è un sottoinsieme del prodotto cartesiano di questi insiemi.
- ▶ Una relazione di grado n ha n colonne, ciascuna associata a un attributo.
- L'insieme dei valori che ogni attributo può assumere è chiamato dominio.
- Il numero di tuple o righe in una relazione è la sua cardinalità.

La Relazione come Tabella

La relazione è rappresentata con una tabella, avente:

- ► Tante colonne quanti sono gli attributi (grado della relazione).
- ► Tante righe quante sono le *n*-uple (cardinalità della relazione).

Nomi delle colonne e valori possibili:

- ▶ Gli attributi sono i nomi delle colonne.
- ▶ I valori di ogni colonna appartengono allo stesso dominio.

La relazione rappresenta una collezione di *n*-uple, ciascuna contenente i valori di un numero prefissato di colonne.

La Chiave Primaria di una Tabella (Entità o Relazione)

- ► La chiave primaria è un attributo (o combinazione di attributi) che identifica univocamente ogni n-upla nella relazione.
- Ogni riga possiede valori diversi per l'attributo chiave.
- La chiave primaria non può avere valori nulli, poiché garantisce l'integrità sull'entità.

Il modello relazionale stabilisce regole di integrità per evitare duplicati e garantire che i dati siano consistenti e univocamente identificabili.

Esempio di tabella Automobile con parametri della tabella

Automobili			dominio di Se	gmento	
Modello	Costruttore	Segmento	Porte	Posti	
Serie 3	BMW	D /	4	5	
Panda	Fiat	Α /	5	4	
Giulietta	Alfa Romeo	С	5	5	
Tipo	Fiat	С	5	5	
500	Fiat	Α	3	4	cardinalità = 8
C3	Citroen	В	5	5	
C4	Citroen	С	5	5	
A3	Audi	С	3	5	
		grad	do = 5	<u>'</u>	1

Rappresentazione di una tabella mediante una **notazione** schematica della tabella stessa:

Automobili (Modello, Costruttore, Segmento, Porte, Posti)

Modello Relazionale: Accesso ai Dati

Il modello relazionale è fondato sui valori. Ogni dato nel database è accessibile tramite:

- Nome della tabella → Accedo alla tabella
- Nome e valore della chiave primaria → Accedo alla tupla
- Nome della colonna che contiene il dato → Accedo a tutte le possibili tuble con hanno come attributo quel valore

Esempio:

► Tabella: Studenti

Chiave primaria: Matricola = 12345

Colonna: Cognome = Rossi

Requisiti delle Tabelle nel Modello Relazionale

I requisiti fondamentali delle tabelle in un database relazionale includono:

- 1. Ogni riga è **unica**, non ci sono due righe uguali.
- Esiste un attributo o una combinazione di attributi che funge da chiave primaria.
- 3. Le *n*-uple compaiono in **ordine non prefissato**.
- 4. Tutte le righe contengono lo stesso numero di colonne.
- Gli attributi rappresentano informazioni atomiche, non scomponibili.
- 6. I valori di ogni colonna sono **omogenei**, ovvero dello stesso tipo.

Requisiti delle Tabelle nel Modello Relazionale (continuazione)

Esempio: Nella tabella Studenti, la colonna Età contiene solo numeri interi, mentre la colonna Nome contiene solo stringhe.

Esempio:

- ► Tabella: Libri
- ► Chiave primaria: ISBN = 9781234567890
- Le righe possono apparire in qualsiasi ordine, poiché l'ordinamento non è rilevante nel modello relazionale.