CONFIDENTIAL, contact the Imaging Platform to collaborate on the findings herein

What groups of morphological features are distinguishing in the cluster relative to the untreated samples? (maximum of absolute m-score for the features belonging to the same category; m-score defined as median of a feature z-score across genes in the cluster) Black means no feature is available in the category

RNA

DNA

available); blue/red colored

box means the matching

compound is

positively/negatively

correlated with the cluster

correlation of the

compound signature

(95th DMSO

replicate correlation

is 0.51)

Chemical

structure

scored

against the

gene using

L1000

profiling

between

compound

the gene

Which individual morphological features are distinguishing in the gene relative to the untreated samples? Blue/Red means the feature has a positive/negative z-score. Size is proportional to the z-score value.

Common distinguishing feature categories in the compound and

the gene relative to the untreated samples

untreated samples. Black means a mismatch; i.e. active (= high

z-score in magnitude) in the compound, and either inactive (=

small z-score in magnitude) or oppositely active in the gene

the compound was tested; assays in

which the compound was active are

itemized

How similar is the compound signature to the genes in this

experiment? (Yellow and red lines correspond to top/bottom

1st and 5th percentile DMSO correlation to all the genes)

BRD-K65504774-001-01-0 PubChem CID: 54646096	NH NH	0.82 (in 3 replicates)	-0.64 0.342	AveraShape - Nuclei Cyteplasem Calls Cate tensiny Sectionary Section (Particle Cyteplasem) Cate tensiny Internative Section (Particle Cyteplasem) Cate tensiny Integrated Internative Integrated Integra	Total number of assays tested in: 40.
BRD-K22518694-001-01-9 PubChem CID : 54637992	OH NH OH	0.85 (in 3 replicates)	-0.64 0.219	AreaShape Nuclei Cytoplasm Colls Symma_Manners(sign_AS** Cytoplasm_Jacoby_Malences)_Sign_Es Colls_Intensity_Malences)_Sign_Es Colls_Intensity_Malences)_Sign_Es Cytoplasm_Jacoby_Malences)_Sign_Es Cytoplasm_Torture Angular Security_Malences, July Sign_Sign_Sign_Sign_Sign_Sign_Sign_Sign_	Total number of assays tested in: 37.