$12n_{0235} (K12n_{0235})$

Ideals for irreducible components 2 of X_{par}

$$\begin{split} I_1^u &= \langle u^8 + u^7 - 6u^6 - 5u^5 + 11u^4 + 7u^3 - 6u^2 + b - u + 1, \\ &- 2u^8 - 2u^7 + 12u^6 + 10u^5 - 22u^4 - 14u^3 + 12u^2 + a + 2u - 3, \\ &u^9 + 2u^8 - 6u^7 - 12u^6 + 11u^5 + 22u^4 - 6u^3 - 11u^2 + 3u + 1 \rangle \\ I_2^u &= \langle b + 1, \ a - 1, \ u^3 + u^2 - 2u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 12 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^8 + u^7 + \dots + b + 1, \ -2u^8 - 2u^7 + \dots + a - 3, \ u^9 + 2u^8 + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\-u^{3}+u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{8}+2u^{7}-12u^{6}-10u^{5}+22u^{4}+14u^{3}-12u^{2}-2u+3\\-u^{8}-u^{7}+6u^{6}+5u^{5}-11u^{4}-7u^{3}+6u^{2}+u-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2}+1\\u^{4}-2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{8}+u^{7}-6u^{6}-5u^{5}+11u^{4}+7u^{3}-6u^{2}-u+2\\-u^{8}-u^{7}+6u^{6}+5u^{5}-11u^{4}-7u^{3}+6u^{2}+u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7}-4u^{5}+2u^{3}+2u\\-u^{7}+5u^{5}-6u^{3}+u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7}-6u^{5}+10u^{3}-4u+2\\u^{8}-6u^{6}+u^{5}+11u^{4}-3u^{3}-6u^{2}+3u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3}+2u\\u^{5}-3u^{3}+u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4}-3u^{2}+1\\-u^{6}+4u^{4}-3u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-5u^8 - 8u^7 + 31u^6 + 46u^5 - 61u^4 - 79u^3 + 40u^2 + 32u - 7$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^9 - 2u^8 + 17u^7 - 27u^6 + 64u^5 - 32u^4 - 18u^3 + 48u^2 - 12u + 1$
c_2, c_4	$u^9 - 4u^8 + 9u^7 - 9u^6 + 4u^5 + 6u^4 - 6u^3 + 6u^2 + 1$
c_3, c_8	$u^9 - u^8 + 11u^7 - 4u^6 + 36u^5 - 7u^4 + 35u^3 - 24u^2 + 4u + 8$
c_5, c_6, c_7 c_9, c_{10}, c_{11}	$u^9 + 2u^8 - 6u^7 - 12u^6 + 11u^5 + 22u^4 - 6u^3 - 11u^2 + 3u + 1$
c_{12}	$u^9 - 8u^8 + \dots + 563u - 55$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^9 + 30y^8 + \dots + 48y - 1$
c_{2}, c_{4}	$y^9 + 2y^8 + 17y^7 + 27y^6 + 64y^5 + 32y^4 - 18y^3 - 48y^2 - 12y - 1$
c_3, c_8	$y^9 + 21y^8 + \dots + 400y - 64$
$c_5, c_6, c_7 \\ c_9, c_{10}, c_{11}$	$y^9 - 16y^8 + \dots + 31y - 1$
c_{12}	$y^9 - 76y^8 + \dots + 218299y - 3025$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.179250 + 0.234667I		
a = 0.27808 - 1.83091I	6.67894 - 1.77536I	10.01363 + 2.14949I
b = 0.360958 + 0.915457I		
u = -1.179250 - 0.234667I		
a = 0.27808 + 1.83091I	6.67894 + 1.77536I	10.01363 - 2.14949I
b = 0.360958 - 0.915457I		
u = 0.551791 + 0.168482I		
a = 1.190020 + 0.762701I	1.001300 + 0.199242I	9.75217 - 1.35811I
b = -0.095011 - 0.381350I		
u = 0.551791 - 0.168482I		
a = 1.190020 - 0.762701I	1.001300 - 0.199242I	9.75217 + 1.35811I
b = -0.095011 + 0.381350I		
u = 1.64788 + 0.14930I		
a = -0.74609 + 2.36291I	16.6165 + 3.5415I	9.41596 - 2.15533I
b = 0.87305 - 1.18145I		
u = 1.64788 - 0.14930I		
a = -0.74609 - 2.36291I	16.6165 - 3.5415I	9.41596 + 2.15533I
b = 0.87305 + 1.18145I		
u = -0.206388		
a = 2.82125	-1.31799	-11.3310
b = -0.910627		
u = -1.91723 + 0.04388I		
a = -1.63264 - 2.58420I	-8.83332 - 4.85466I	8.98397 + 1.82769I
b = 1.31632 + 1.29210I		
u = -1.91723 - 0.04388I		
a = -1.63264 + 2.58420I	-8.83332 + 4.85466I	8.98397 - 1.82769I
b = 1.31632 - 1.29210I		

II.
$$I_2^u = \langle b+1, \ a-1, \ u^3+u^2-2u-1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^2 - u - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u^2 + 1 \\ u^2 - u - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 u + 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_8	u^3
c_4	$(u+1)^3$
c_5, c_6, c_7	$u^3 + u^2 - 2u - 1$
$c_9, c_{10}, c_{11} \\ c_{12}$	$u^3 - u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_8	y^3
c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24698		
a = 1.00000	4.69981	8.19810
b = -1.00000		
u = -0.445042		
a = 1.00000	-0.939962	11.2470
b = -1.00000		
u = -1.80194		
a = 1.00000	15.9794	9.55500
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^3 \cdot (u^9 - 2u^8 + 17u^7 - 27u^6 + 64u^5 - 32u^4 - 18u^3 + 48u^2 - 12u + 1)$
c_2	$(u-1)^3(u^9 - 4u^8 + 9u^7 - 9u^6 + 4u^5 + 6u^4 - 6u^3 + 6u^2 + 1)$
c_3, c_8	$u^{3}(u^{9} - u^{8} + 11u^{7} - 4u^{6} + 36u^{5} - 7u^{4} + 35u^{3} - 24u^{2} + 4u + 8)$
c_4	$(u+1)^3(u^9 - 4u^8 + 9u^7 - 9u^6 + 4u^5 + 6u^4 - 6u^3 + 6u^2 + 1)$
c_5, c_6, c_7	$(u^{3} + u^{2} - 2u - 1)$ $\cdot (u^{9} + 2u^{8} - 6u^{7} - 12u^{6} + 11u^{5} + 22u^{4} - 6u^{3} - 11u^{2} + 3u + 1)$
c_9, c_{10}, c_{11}	$(u^3 - u^2 - 2u + 1)$ $\cdot (u^9 + 2u^8 - 6u^7 - 12u^6 + 11u^5 + 22u^4 - 6u^3 - 11u^2 + 3u + 1)$
c_{12}	$(u^3 - u^2 - 2u + 1)(u^9 - 8u^8 + \dots + 563u - 55)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^3)(y^9+30y^8+\cdots+48y-1)$
c_2, c_4	$(y-1)^3$ $\cdot (y^9 + 2y^8 + 17y^7 + 27y^6 + 64y^5 + 32y^4 - 18y^3 - 48y^2 - 12y - 1)$
c_3, c_8	$y^3(y^9 + 21y^8 + \dots + 400y - 64)$
$c_5, c_6, c_7 \\ c_9, c_{10}, c_{11}$	$(y^3 - 5y^2 + 6y - 1)(y^9 - 16y^8 + \dots + 31y - 1)$
c_{12}	$(y^3 - 5y^2 + 6y - 1)(y^9 - 76y^8 + \dots + 218299y - 3025)$