

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

- 1. Represent 2–3 tree as a BST.
- 2. Use "internal" left-leaning links as "glue" for 3-nodes.

An equivalent definition

A BST such that:

- · No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- · Red links lean left.

"perfect black balance"

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1–1 correspondence between 2–3 and LLRB.

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because of better balance

```
public Val get(Key key)
{
   Node x = root;
   while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else if (cmp == 0) return x.val;
   }
   return null;
}
```


Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in nodes.

```
private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node
   Key key;
   Value val:
   Node left, right;
   boolean color; // color of parent link
private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
                             null links are black
```


Left rotation. Orient a (temporarily) right-leaning red link to lean left.


```
private Node rotateLeft(Node h)
{
   assert isRed(h.right);
   Node x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = h.color;
   h.color = RED;
   return x;
}
```

Left rotation. Orient a (temporarily) right-leaning red link to lean left.


```
private Node rotateLeft(Node h)
{
   assert isRed(h.right);
   Node x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = h.color;
   h.color = RED;
   return x;
}
```

Right rotation. Orient a left-leaning red link to (temporarily) lean right.


```
private Node rotateRight(Node h)
{
   assert isRed(h.left);
   Node x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = h.color;
   h.color = RED;
   return x;
}
```

Right rotation. Orient a left-leaning red link to (temporarily) lean right.


```
private Node rotateRight(Node h)
{
   assert isRed(h.left);
   Node x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = h.color;
   h.color = RED;
   return x;
}
```

Color flip. Recolor to split a (temporary) 4-node.


```
private void flipColors(Node h)
{
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Color flip. Recolor to split a (temporary) 4-node.


```
private void flipColors(Node h)
{
   assert !isRed(h);
   assert isRed(h.left);
   assert isRed(h.right);
   h.color = RED;
   h.left.color = BLACK;
   h.right.color = BLACK;
}
```

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black BST operations.

Warmup 1. Insert into a tree with exactly 1 node.

Case 1. Insert into a 2-node at the bottom.

- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.

Warmup 2. Insert into a tree with exactly 2 nodes.

Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).

Red-black BST construction demo

insert S

Red-black BST construction demo

red-black BST

Insertion in a LLRB tree: Java implementation

Same code for all cases.

- Right child red, left child black: rotate left.
- · Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.


```
private Node put(Node h, Key key, Value val)
                                                                                insert at bottom
   if (h == null) return new Node(key, val, RED);
                                                                                (and color it red)
   int cmp = key.compareTo(h.key);
   if
            (cmp < 0) h.left = put(h.left, key, val);</pre>
   else if (cmp > 0) h.right = put(h.right, key, val);
   else if (cmp == 0) h.val = val;
                                                                               lean left
   if (isRed(h.right) && !isRed(h.left))
                                                 h = rotateLeft(h); \leftarrow
                                                                               balance 4-node
   if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
                                                                               split 4-node
   if (isRed(h.left) && isRed(h.right))
                                                  flipColors(h);
   return h;
                  only a few extra lines of code provides near-perfect balance
```

Insertion in a LLRB tree: visualization

255 insertions in ascending order

Insertion in a LLRB tree: visualization

Insertion in a LLRB tree: visualization

255 random insertions

Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \lg N$ in the worst case. Pf.

- Every path from root to null link has same number of black links.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.00 \lg N$ in typical applications.

ST implementations: summary

implementation	worst-case cost (after N inserts)			average case (after N random inserts)			ordered	key
	search	insert	delete	search hit	insert	delete	iteration?	interface
sequential search (unordered list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	?	yes	compareTo()
2-3 tree	c lg N	c lg N	c lg N	c lg N	c lg N	c lg N	yes	compareTo()
red-black BST	2 lg N	2 lg N	2 lg N	1.00 lg N *	1.00 lg N *	1.00 lg N *	yes	compareTo()

^{*} exact value of coefficient unknown but extremely close to 1