高等微积分

邹文明

第七章: 定积分

回顾: Riemann 积分的几个定理

定理 1.(Cauchy 不等式) 若 $f, g \in \mathcal{R}[a, b]$, 则

积分 Hölder 不等式

定理 2. 若
$$f,g \in \mathcal{C}[a,b]$$
, $p,q > 1$ 且 $\frac{1}{p} + \frac{1}{q} = 1$, 则

$$\left| \int_a^b f(x)g(x) \, \mathrm{d}x \right| \leqslant \left(\int_a^b |f(x)|^p \, \mathrm{d}x \right)^{\frac{1}{p}} \left(\int_a^b |g(x)|^q \, \mathrm{d}x \right)^{\frac{1}{q}}.$$

定理 3. (积分第一中值定理) 若 $f \in \mathscr{C}[a,b]$, 则 $\exists \xi \in [a,b]$ 使得我们有

$$\int_a^b f(x) \, \mathrm{d}x = f(\xi)(b-a).$$

同学们辛苦了!

定理 4'. (广义积分第一中值定理) 若 $f \in \mathcal{C}[a,b]$, $g \in \mathcal{R}[a,b]$ 且 g 不变号, 则 $\exists \xi \in [a,b]$ 使得 $\int_a^b f(x)g(x) \, \mathrm{d}x = f(\xi) \int_a^b g(x) \, \mathrm{d}x.$

证明: 由于 $f,g \in \mathcal{R}[a,b]$, 则 $fg \in \mathcal{R}[a,b]$. 设 f 在 [a,b] 上的最大值和最小值分别为 M,m. 又 g 在 [a,b] 上不变号, 不失一般性, 由此我们可以假设 $g \ge 0$, 否则考虑 -g.

则 $\forall x \in [a,b]$, 我们有

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x),$$

进而我们就有 $m \int_a^b g(x) dx \leq \int_a^b f(x)g(x) dx \leq M \int_a^b g(x) dx.$

使得
$$\frac{\int_a^b f(x)g(x) dx}{\int_a^b g(x) dx} = f(\xi)$$
. 故所证结论成立.

如果 $\int_a^b g(x) dx = 0$, 则 $\int_a^b f(x)g(x) dx = 0$, 此时

 $\forall \xi \in [a,b]$, 所证结论成立. 若 $\int_a^b g(x) dx \neq 0$, 则

 $m \leqslant \frac{\int_a^b f(x)g(x) \, \mathrm{d}x}{\int_a^b g(x) \, \mathrm{d}x} \leqslant M.$

由连续函数最值定理与介值定理知, $\exists \xi \in [a,b]$

例 4. 求证: $\lim_{n\to\infty} \int_n^{n+\pi} \frac{\sin x}{x} dx = 0.$

证明:
$$\forall x \geqslant 1$$
, 定义 $f(x) = \frac{\sin x}{x}$, 则 f 连续, 从而 $\forall n \geqslant 1$, 由积分中值定理知 $\exists \xi_n \in [n, n+\pi]$ 使得
$$\left| \int_{-\pi}^{n+\pi} \frac{\sin x}{x} \, \mathrm{d}x \right| = \left| \frac{\sin \xi_n}{\xi_n} \pi \right| \leqslant \frac{\pi}{\xi_n} \leqslant \frac{\pi}{n},$$

于是由夹逼原理可知所证结论成立.

§7.3. 微积分基本定理

定义 1. 假设 J 为区间, 而 F, $f: J \to \mathbb{R}$ 为函数. 若 F 在 J 上连续, 在 J 的内部可导且 F' = f, 则称 F 为 f 的一个原函数.

定理 1. 设 $f \in \mathcal{R}[a,b]$. $\forall x \in [a,b]$, 定义

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t,$$

那么 $F \in \mathcal{C}[a,b]$. 如果 f 在点 $x_0 \in [a,b]$ 连续, 那么 F 在点 x_0 处可导且 $F'(x_0) = f(x_0)$.

证明: 由于 f 可积, 则 $M = \sup_{x \in [a,b]} |f(x)| < +\infty$,

 $|F(x) - F(y)| = \left| \int_{a}^{x} f(t) dt - \int_{a}^{y} f(t) dt \right|$

13 / 1

于是
$$\forall x, y \in [a, b]$$
, 我们均有

进而可知函数 F 在 [a,b] 上连续.

$$= \left| \int_{y}^{x} f(t) dt \right| \leqslant \left| \int_{y}^{x} |f(t)| dt \right| \leqslant M|x - y|.$$
 从而由夹逼原理可知, $\forall x_{0} \in [a, b]$, 我们
$$\lim_{x \to x_{0}} |F(x) - F(x_{0})| = 0,$$

假设 f 在点 x_0 处连续, 则 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得

 $\forall t \in [a,b]$, $\stackrel{\text{def}}{=} |t-x_0| < \delta$ 时, $|f(t)-f(x_0)| < \frac{\varepsilon}{2}$.

于是 $\forall x \in [a,b] \setminus \{x_0\}, \; \exists \; |x-x_0| < \delta \;$ 时, 均有

注: 若 f 在点 x_0 仅有单侧连续,则 F 在点 x_0 有相应的单侧导数. 在跳跃间断点处亦如此.

推论 1. 如果 $f \in \mathcal{C}[a,b]$, 则 $F \in \mathcal{C}^{(1)}[a,b]$ 并且 F' = f, 也即 F 为 f 在 [a,b] 上的一个原函数.

函数
$$G$$
 可导且 $\forall u \in [\alpha, \beta]$, 我们均有
$$G'(u) = f(\varphi(u))\varphi'(u) - f(\psi(u))\psi'(u).$$
证明: $\forall u \in [\alpha, \beta]$, 我们有

 $G(u) = \int_{a}^{\varphi(u)} f(t) dt - \int_{a}^{\psi(u)} f(t) dt = F(\varphi(u)) - F(\psi(u)).$

推论 2. 假设 $f \in \mathscr{C}[a,b]$, 而 $\varphi, \psi : [\alpha,\beta] \to [a,b]$

可导. $\forall u \in [\alpha, \beta]$, $\diamondsuit G(u) = \int_{\psi(u)}^{\varphi(u)} f(t) dt$. 那么

于是由复合函数求导法则可知 G 可导且 $G'(u) = F'(\varphi(u))\varphi'(u) - F'(\psi(u))\psi'(u)$

$$= f(\varphi(u))\varphi'(u) - f(\psi(u))\varphi'(u),$$

$$= f(\varphi(u))\varphi'(u) - f(\psi(u))\psi'(u),$$

例 1. 计算
$$\lim_{x\to 0} \frac{1}{x} \int_0^x \frac{\sin 3t}{t} dt$$
.

解:
$$\lim_{x\to 0} \frac{1}{x} \int_0^x \frac{\sin 3t}{t} dt = \lim_{x\to 0} \frac{\sin 3x}{x} = 3.$$

例 2. 计算 $\lim_{x \to +\infty} \frac{(\int_0^x e^{t^2} dt)^2}{\int_0^x e^{2t^2} dt}$.

解: $\forall x > 0$, 我们有 $\int_0^x e^{2t^2} dt \ge x$, 于是由夹逼

原理可得知 $\lim_{x\to+\infty}\int_0^x e^{2t^2} dt = +\infty$, 进而我们由

L'Hospital 法则可得

 $\lim_{x \to +\infty} \frac{(\int_0^x e^{t^2} dt)^2}{\int_0^x e^{2t^2} dt} = \lim_{x \to +\infty} \frac{2(\int_0^x e^{t^2} dt)e^{x^2}}{e^{2x^2}}$

 $= \lim_{x \to +\infty} \frac{2(\int_0^x e^{t^2} dt)}{e^{x^2}} = \lim_{x \to +\infty} \frac{2e^{x^2}}{2xe^{x^2}} = \lim_{x \to +\infty} \frac{1}{x} = 0.$

例 3. 假设 $f \in \mathscr{C}[a,b]$ 使得 $\forall x \in [a,b]$, f(x) > 0. $\forall x \in [a, b], \Leftrightarrow G(x) = \int_a^x f(t) dt + \int_b^x \frac{dt}{f(t)}.$ 求证:

函数 G 在 [a,b] 上有且仅有一个零点. 证明:由于 $f \in \mathscr{C}[a,b]$,因而G在[a,b]上可导,

从而连续. 又
$$\forall x \in [a,b]$$
, 均有 $f(x) > 0$, 那么

从而连续. 又
$$\forall x \in [a, b]$$
, 均有 $f(x) > 0$, 那么
$$G(a) = \int_{b}^{a} \frac{dt}{f(t)} < 0, \ G(b) = \int_{a}^{b} f(t) dt > 0,$$

由连续函数介值定理可知 G 在 [a,b] 上有零点. $\forall x \in [a,b]$, $G'(x) = f(x) + \frac{1}{f(x)} > 0$, 则 G 为严格

递增,从而为单射,故在 [a,b] 上仅有一个零点.

例 4. 设 $f \in \mathscr{C}[a,b]$. $\forall x \in [a,b]$, 定义

$$F(x) = \int_{a}^{x} (x - t)f(t) dt,$$

计算 F''.

 $\mathbf{m}: \forall x \in [a,b],$ 我们有

$$m: \forall x \in [a, b], 我们有$$

$$F(x) = x \int_{a}^{x} f(t) dt - \int_{a}^{x} t f(t) dt,$$

于是 $F'(x) = \int_{a}^{x} f(t) dt$. 从而 $F''(x) = f(x)$.

于是 $F'(x) = \int_a^x f(t) dt$, 从而 F''(x) = f(x).

同学们辛苦了!