Progress Quiz 4

1. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{-6}{4} - \frac{7}{5}x > \frac{3}{6}x + \frac{3}{3}$$

- A. (a, ∞) , where $a \in [0.32, 3.32]$
- B. $(-\infty, a)$, where $a \in [0.32, 2.32]$
- C. $(-\infty, a)$, where $a \in [-6.32, 0.68]$
- D. (a, ∞) , where $a \in [-3.32, -0.32]$
- E. None of the above.
- 2. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

No less than 8 units from the number -4.

- A. $(-\infty, -12) \cup (4, \infty)$
- B. $(-\infty, -12] \cup [4, \infty)$
- C. [-12, 4]
- D. (-12,4)
- E. None of the above
- 3. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-8 + 9x < \frac{32x + 6}{3} \le -7 + 5x$$

- A. [a, b), where $a \in [4, 8]$ and $b \in [-1.41, 4.59]$
- B. (a, b], where $a \in [5, 8]$ and $b \in [0.59, 6.59]$
- C. $(-\infty, a] \cup (b, \infty)$, where $a \in [6, 8]$ and $b \in [0.59, 7.59]$
- D. $(-\infty, a) \cup [b, \infty)$, where $a \in [3, 8]$ and $b \in [0.6, 4]$

E. None of the above.

4. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{-7}{5} - \frac{7}{8}x > \frac{-5}{6}x + \frac{4}{9}$$

- A. $(-\infty, a)$, where $a \in [-47.27, -42.27]$
- B. $(-\infty, a)$, where $a \in [43.27, 47.27]$
- C. (a, ∞) , where $a \in [-44.27, -38.27]$
- D. (a, ∞) , where $a \in [42.27, 48.27]$
- E. None of the above.

5. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-9x + 4 \ge 6x - 3$$

- A. $(-\infty, a]$, where $a \in [0.3, 0.48]$
- B. $[a, \infty)$, where $a \in [-0.6, 0.1]$
- C. $(-\infty, a]$, where $a \in [-2.57, -0.12]$
- D. $[a, \infty)$, where $a \in [0.2, 4.3]$
- E. None of the above.

6. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-9x + 7 \ge -4x + 10$$

- A. $[a, \infty)$, where $a \in [0.6, 2.6]$
- B. $(-\infty, a]$, where $a \in [0.6, 2.6]$

Progress Quiz 4

- C. $(-\infty, a]$, where $a \in [-4.6, 0.4]$
- D. $[a, \infty)$, where $a \in [-3.6, 0.4]$
- E. None of the above.
- 7. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-8 - 3x > 5x$$
 or $5 + 8x < 9x$

- A. $(-\infty, a] \cup [b, \infty)$, where $a \in [-5.3, -4.5]$ and $b \in [-3, 2]$
- B. $(-\infty, a) \cup (b, \infty)$, where $a \in [-5, -2]$ and $b \in [1, 2]$
- C. $(-\infty, a) \cup (b, \infty)$, where $a \in [-3, 1]$ and $b \in [2, 6]$
- D. $(-\infty, a] \cup [b, \infty)$, where $a \in [-2.2, -0.5]$ and $b \in [3, 6]$
- E. $(-\infty, \infty)$
- 8. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

More than 8 units from the number -6.

- A. [-14, 2]
- B. (-14, 2)
- C. $(-\infty, -14) \cup (2, \infty)$
- D. $(-\infty, -14] \cup [2, \infty)$
- E. None of the above
- 9. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-5 + 7x > 10x$$
 or $8 + 6x < 8x$

A. $(-\infty, a] \cup [b, \infty)$, where $a \in [-4, -3]$ and $b \in [1.6, 2.5]$

8448-1521 Fall 2020

B.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-4, -2]$ and $b \in [-0.33, 3.67]$

C.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [-3.67, 2.33]$ and $b \in [2.4, 4.1]$

D.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-1.67, 1.33]$ and $b \in [4, 8]$

E.
$$(-\infty, \infty)$$

10. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-5 - 6x < \frac{-34x - 8}{6} \le -3 - 6x$$

A.
$$(-\infty, a) \cup [b, \infty)$$
, where $a \in [7, 12]$ and $b \in [2, 7]$

B.
$$(a, b]$$
, where $a \in [11, 15]$ and $b \in [2, 8]$

C.
$$[a, b)$$
, where $a \in [9, 14]$ and $b \in [4, 8]$

D.
$$(-\infty, a] \cup (b, \infty)$$
, where $a \in [11, 13]$ and $b \in [3, 7]$

E. None of the above.

8448-1521 Fall 2020