Homework 01

Aaron Wang

January 24 2025

1. Proof Practice

(a) Convert this paragraph proof to a statement–reason proof. Please be sure to write which statement(s) each statement depends on.

To show: If s is a string, every substring of a substring of s is a substring of s.

Proof: Let y be a substring of s, that is, s = xyz for some x, z; and let v be a substring of y, that is, y = uvw for some u, w. Then s = xuvwz, so v is a substring of s.

- 1. y is a substring of s Given
- 2. v is a substring of y Given
- 3. $\exists x, z \text{ s.t. } s = xyz$ (1) definition of substring
- 4. $\exists u, w \text{ s.t. } y = uvw$ (2) definition of substring
- 5. s = xuvwz (3), (4), substitution
- 6. v is a substring of s (5) definition of substring
- (b) Convert this statement-reason proof to a paragraph proof.

To show: If w is a string, every prefix of a suffix of w is a suffix of a prefix of w.

- 1. v is a suffix of w Given
- 2. y is a prefix of v Given
- 3. $\exists x \text{ s.t. } xv = w$ (1), definition of suffix
- 4. $\exists z \text{ s.t. } yz = v$ (2), definition of prefix
- 5. xyz = w (3), (4), substitution
- 6. xy is a prefix of w (5), definition of prefix
- 7. y is a suffix of xy (6), definition of suffix

Proof: Let v be a suffix of w, that is, w = xv for some x. Let y be a prefix of v, that is, v = yz for some x. Then w = xyz, so xy is a prefix of w and thus y is a suffix of xy.

2. **String homomorphisms.** If Σ and Γ are finite alphabets, define a *string homomorphism* to be a function $f: \Sigma^* \to \Gamma^*$ that has the property that for any $u, v \in \Sigma^*$,

$$f(uv) = f(u)f(v)$$

Prove that, in general, every string homomorphism operates by replacing each symbol with a (possibly empty) string. That is, prove that if f is a string homomorphism, then for any $w = w_1...w_n$ (where $n \ge 0$ and, for $j = 1, ..., n, w_j \in \Sigma$), we have

$$f(w) = f(w_1)...f(w_n). (*)$$

Use induction on n.

(a) State and prove the base case (n = 0).

To show: if f is a string homomorphism, then for ε , we have $f(\varepsilon) = \varepsilon$.

Proof: Let $f(\varepsilon) = x$. By def. of string homomorphism, $f(\varepsilon \varepsilon) = f(\varepsilon)f(\varepsilon) = xx$. Because $\varepsilon = \varepsilon \varepsilon$, $f(\varepsilon \varepsilon) = f(\varepsilon) = x$. Then xx = x so $x = \varepsilon$ (see footnote)¹. Thus, $f(\varepsilon) = \varepsilon$.

(b) Assume that (*) is true for n = i and prove (*) for n = i + 1.

To show: if f is a string homomorphism, then for $w \in \Sigma^*$ and $w_{i+1} \in \Sigma$, $f(w) = f(w_1)...f(w_i) \to f(ww_{i+1}) = f(w_1)...f(w_i)f(w_{i+1})$.

Proof: Let $w \in \Sigma^*$ such that $f(w) = f(w_1)...f(w_i)$. Let $w_{i+1} \in \Sigma$. By def. of *string homomorphism*, $f(ww_{i+1}) = f(w)f(w_{i+1})$. By I.H.², $f(w)f(w_{i+1}) = f(w_1)...f(w_i)f(w_{i+1})$. Thus, $f(ww_{i+1}) = f(w_1)...f(w_i)f(w_{i+1})$

3. Finite and cofinite. Let $\Sigma = \{a, b\}$. Define FINITE to be the set of all finite languages over Σ , and let cofinite be the set of all languages over Σ whose *complement* is finite:

$$cofINITE = \{ L \subseteq \Sigma^* | \overline{L} \in FINITE \}$$

(where $\overline{L} = \Sigma^* \setminus L$). For example, Σ^* is in coFINITE because its complement is \emptyset , which is finite. (Please think carefully about this definition, and note that coFINITE isn't the same thing as $\overline{\mathsf{FINITE}}$.)

(a) If $L \in \mathsf{FINITE}$, what data structure could you use to represent L, and given a string w, how would you decide whether $w \in L$?

I would use a Python set/dictionary/hashmap to represent L. To decided whether $w \in L$, I would check if w is in the chosen data structure.

Example: $L = \{\varepsilon, \mathbf{a}, \mathbf{b}\}$ would be represented by

$$L = set([", 'a', 'b'])$$

decide whether $w \in L$

w in L

(b) If $L \in \text{coFINITE}$, what data structure could you use to represent L, and given a string w, how would you decide whether $w \in L$?

I would do the same as (a) but for \overline{L} and check that w is not in \overline{L} .

Example: $L = \{w \in \Sigma^* | w \notin \{\varepsilon, \mathbf{a}, \mathbf{b}\}\}$ a.k.a. $\overline{L} = \{\varepsilon, \mathbf{a}, \mathbf{b}\}$ would be represented by

L_complement = set(['', 'a', 'b'])

decide whether $w \in L$

w not in L_complement

 $^{{}^1}xx=x\rightarrow |xx|=|x|\rightarrow 2|x|=|x|\rightarrow |x|=0\rightarrow x=\varepsilon$

²Inductive Hypothesis: $f(w) = f(w_1)...f(w_i)$

³In Class Professor Chiang clarified that $w \in \Sigma^*$ so $w \in L$ or $w \in \overline{L}$

(c) Are there any languages in $\mathsf{FINITE} \cap \mathsf{coFINITE}$? Prove your answer.

No there are not any languages in FINITE \cap coFINITE.

To show: $\forall L \subseteq \Sigma^*(L \notin \mathsf{FINITE} \cap \mathsf{coFINITE})$

TAC, assume $\exists L \subseteq \Sigma^*(L \in \mathsf{FINITE} \cap \mathsf{coFINITE})$. Let $L \subseteq \Sigma^*$ s.t. $(L \in \mathsf{FINITE} \cap \mathsf{coFINITE})$. This means that $L \in \mathsf{FINITE} \wedge L \in \mathsf{coFINITE}$.

Observe that $L \in \mathsf{FINITE} \implies |L| = n \text{ s.t. } n \in \mathbb{N}.$

 $L \in \text{coFINITE means } \overline{L} \in \text{FINITE} \implies |\overline{L}| = m \text{ s.t. } m \in \mathbb{N}.$

We know that $|\Sigma^*| = |L \cup \overline{L}| = |L| + |\overline{L}|$ because L and \overline{L} are disjoint and both $L, \overline{L} \subseteq \Sigma^*$. From substitution, $|L| + |\overline{L}| = n + m$ s.t. $(n+m) \in \mathbb{N}$ so Σ^* is finite. ξ . Thus, by contradiction we know that $\forall L \subseteq \Sigma^* (L \notin \mathsf{FINITE} \cap \mathsf{coFINITE})$

(d) Are there languages not in FINITE \cup coFINITE? Prove your answer.

Yes, there are languages not in *not* in FINITE \cup coFINITE.

To show: $\exists L \subseteq \Sigma^*(L \notin \mathsf{FINITE} \cup \mathsf{coFINITE})$

Let $L := \{w \in \Sigma^* | w_1 = \mathtt{a}\}$. Observe, $\overline{L} = \{w \in \Sigma^* | w = \varepsilon \lor w_1 = \mathtt{b}\}$. By def. of L, L is infinite. Since L is infinite, $L \notin \mathsf{FINITE}$. Since \overline{L} is infinite, $\overline{L} \notin \mathsf{FINITE}$ so $L \notin \mathsf{coFINITE}$ by definition of cofinite. Since $L \notin \mathsf{FINITE} \land L \notin \mathsf{cofINITE}$, $L \notin \mathsf{FINITE} \cup \mathsf{cofINITE}$. Thus, we know that $\exists L \subseteq \Sigma^* (L \notin \mathsf{FINITE} \cup \mathsf{cofINITE})$

⁴This is derived from $\overline{L} = \Sigma^* \setminus L$

⁵TA said this was sufficient and did not need to prove that L is infinite.