Group Report on Recent Work

Ma Hsuning

Physics of NKU

maxn@ihep.ac.cn

October 10, 2014

Overview

- Motivation of recent work
- 2 Event Selection
 - Reconstruction of K^0_S K and π
 - Reconstruction of $\gamma_{\rm E1}$ and π^0
- 3 signal MC Results
 - Results of reconstruction of K_S^0 K and π
 - ullet Results of reconstruction of $\gamma_{\rm E1}$ and π^0
- Work to be done

Introduction

The process we are studying

$$\psi' \rightarrow \pi^{0} h_{c}$$

$$\pi^{0} \rightarrow \gamma \gamma$$

$$h_{c} \rightarrow \gamma \eta_{c}$$

$$\eta_{c} \rightarrow K_{S}^{0} K \pi$$

$$K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$$

The purpose of recent work

Measure of the Branching ratio of the process $\eta_c o K_S^0 K \pi$

Method to do it

- Fit η_c signal with the recoil mass of γ and π^0 , requiring the reconstruction of π^0 and γ_{E1} ;
- Fit η_c with K_S^0 , K and π , requiring the reconstruction of K_S^0 , K and π ;
- The branching fraction will be acquired as the ratio of the two η_c signal as

$$\boxed{Br(\eta_c \to K_S^0 K \pi) = (\frac{N_{Obs1}}{N_{Obs2}} \cdot \frac{\epsilon_2}{\epsilon_1} \cdot \frac{1}{Br(\pi^0 \to \gamma\gamma) \cdot Br(K_S^0 \to \pi^+ \pi^-)})^{\frac{1}{2}}}$$

Selection of γ and π^0

- ullet $E_{\gamma} > 25 MeV$, $|\cos heta| < 0.8$ (barrel region)
- ullet $E_{\gamma} > 50 MeV$, $0.86 < |\cos heta| < 0.92$ (end-cap region)
- $450 MeV < E(\gamma_{\rm E1}) < 550 MeV$
- $|M_{\gamma\gamma} m_{\pi^0}| < 15 MeV/c^2$

Selection of charged tracks

- $|\cos \theta| < 0.93$
- ullet $|R_z| < 10$ cm, $R_{xy} < 1$ cm for charged tracks from η_c
- The Track is the particle type with the highest confidence level.
- ullet $|M_{\pi\pi}-m_{\mathcal{K}^0_S}| < 20 MeV/c^2$ (Reconstruction $\mathcal{K}^0_S o \pi^+\pi^-$)

We accept the one with the smallest $\chi^2=\chi^2_{4C}+\chi^2_{1C}+\chi^2_{pid}+\chi^2_{vertex}$

This is a different process

Selection of good photons

- $E_{\gamma} > 25 MeV$, $|\cos \theta| < 0.8$ (barrel region)
- ullet $E_{\gamma} > 50 MeV$, $0.86 < |\cos heta| < 0.92$ (end-cap region)

Selection of $\mathrm{E}1_{\gamma}$ and π^0

- $450 MeV < E(\gamma_{\rm E1}) < 550 MeV$
- $|M_{\gamma\gamma} m_{\pi^0}| < 15 MeV/c^2$

Event selected

The one with the smallest

$$\chi^2 = \chi_{1C}^2 + \left(\frac{m_{recoil}(\pi^0) - m_{h_c}}{\sigma_{h_c}}\right)^2 + \left(\frac{m_{recoil}(\gamma \pi^0) - m_{\eta_c}}{\sigma_{\eta_c}}\right)^2 \text{ will do.}$$

Energy of $\gamma_{\rm E1}$

Invariant mass of h_c

Invariant mass of η_c

Energy of $\gamma_{\rm E1}$

Recoil mass of π^0

Recoil mass of $\gamma_{\rm E1}$ and π^0

Time table

- Debug the analysis program in less than one week
- Optimize the selection in 2-3 weeks
- Analyze the background in 2-3 weeks
- Fit the signal and get the preliminary results in 2-3 weeks
- Deal with the system error in about 3 months