SEMAINE DU 19/03 AU 23/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. $(\mathbb{K}[X], +, \times)$ est un anneau intègre commutatif. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de $\mathbb{K}[X]$ Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet a pour racine si et seulement si il est divisible par X-a. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré n admet au plus n racines. Polynômes interpolateurs de Lagrange. Existence et unicité d'un PPCM unitaire ou nul.

Racines multiples Définition. Un polynôme de degré n admet au plus n racines comptées avec multiplicité. Caractérisation de la multiplicité d'une racine par les dérivées successives.

Factorisation Polynômes irréductibles. Définition et décomposition en facteurs irréductibles. Théorème de d'Alembert-Gauss. Polynômes irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$.

2 Méthodes à maîtriser

- ▶ Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu.
- ▶ Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- ▶ Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.
- ► Caractériser la multiplicité d'une racine via les dérivées successives.
- ightharpoonup Passer de la décomposition en facteurs irréductibles sur $\mathbb{C}[X]$ à celle sur $\mathbb{R}[X]$ (regrouper les racines conjuguées).
- ▶ Utiliser la parité et le fait qu'un polynôme est à coefficients réels pour obtenir des racines à partir d'une racine donnée.

3 Questions de cours

- ▶ Soit $(n, p) \in (\mathbb{N}^*)^2$. On pose $d = n \wedge p$.
 - 1. Montrer que $\mathbb{U}_n\cap\mathbb{U}_p=\mathbb{U}_d.$
 - 2. En déduire que $(X^n 1) \wedge (X^p 1) = X^d 1$.
- ▶ Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Montrer que a est racine de P si et seulement si X a divise P.
- ▶ Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que P(X + 1) = P(X).
- ▶ **Banque CCP 85** Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.
 - 1. Rappeler la formule de Taylor pour les polynômes.
 - 2. En déduire que a est racine de multiplicité r de P si et seulement si $P^{(r)}(a) \neq 0$ et pour tout $k \in [0, r-1], P^{(k)}(a) = 0$.
 - 3. Déterminer deux réels α et b tels que 1 soit racine double du polynôme $P=X^5+\alpha X^2+bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.
- ▶ Banque CCP 87 Soient a_0, \ldots, a_n des éléments deux à deux distincts d'un corps \mathbb{K} .
 - 1. Montrer que si $(b_0, \ldots, b_n) \in \mathbb{K}^{n+1}$, il existe un unique polynôme P tel que deg $P \leqslant n$ et $P(a_k) = b_k$ pour tout $k \in [\![0,n]\!]$.

2. Soit $k \in [0, n]$. Expliciter ce polynôme P, que l'on notera L_k lorsque $b_i = \delta_{i,k}$ pour tout $i \in [0, n]$.

3. Prouver que pour tout
$$p \in [0, n]$$
, $\sum_{k=0}^{n} a_k^p L_k = X^p$.

▶ Banque CCP 90 Soient $\alpha_1, \alpha_2, \alpha_3$ trois scalaires distincts donnés d'un corps \mathbb{K} .

 $\text{1. Montrer que } \Phi \colon \left\{ \begin{array}{ccc} \mathbb{K}_2[X] & \longrightarrow & \mathbb{K}^3 \\ P & \longmapsto & (P(\alpha_1, P(\alpha_2), P(\alpha_3)) \end{array} \right. \text{ est un isomorphisme d'espaces vectoriels.}$

2. On note e_1,e_2,e_3 la base canonique de \mathbb{K}^3 et on pose $L_k=\Phi^{-1}(e_k)$ pour $k\in\{1,2,3\}$.

(a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.

(b) Exprimer les polynômes L_1 , L_2 et L_3 en fonction de a_1 , a_2 et a_3 .

(c) Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .

3. On se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3) et C(2,1). Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.