module-54-exercise

October 30, 2024

1 Module 54: Time Series

Author: Juliho Castillo Colmenares Ph.D.

```
[1]: import yfinance as yf
   import pandas as pd
   import matplotlib.pyplot as plt
   from statsmodels.tsa.stattools import adfuller
   from statsmodels.graphics.tsaplots import plot_acf
   from statsmodels.tsa.seasonal import seasonal_decompose
[2]: # Step 1: Download historical data
   start_date = "2019-01-01"
   end_date = "2024-01-01"
```

```
[3]: ibm_data = yf.download("IBM", start=start_date, end=end_date) ibm_data
```

[3]:	Price		Adj Close	Close	High	Low	\
	Ticker		IBM	IBM	IBM	IBM	
	Date						
	2019-01-02	00:00:00+00:00	83.947777	110.143402	110.879539	106.778206	
	2019-01-03	00:00:00+00:00	82.271858	107.944550	109.827919	107.734222	
	2019-01-04	00:00:00+00:00	85.485214	112.160614	112.323135	109.407265	
	2019-01-07	00:00:00+00:00	86.089989	112.954109	113.604210	111.539200	
	2019-01-08	00:00:00+00:00	87.314110	114.560226	115.267685	113.747612	
	•••		•••	•••	•••	•••	
	2023-12-22	00:00:00+00:00	157.716400	162.139999	162.410004	161.000000	
	2023-12-26	00:00:00+00:00	158.757217	163.210007	163.309998	162.050003	
	2023-12-27	00:00:00+00:00	159.000397	163.460007	163.639999	162.679993	
	2023-12-28	00:00:00+00:00	159.282486	163.750000	163.960007	163.399994	
	2023-12-29	00:00:00+00:00	159.087936	163.550003	164.179993	162.830002	
	Price		Open	Volume			
	Ticker		IBM	IBM			

Date

```
2019-01-02 00:00:00+00:00 107.084129 4434935
2019-01-03 00:00:00+00:00
                          109.493309 4546648
2019-01-04 00:00:00+00:00
                          109.856598 4683779
2019-01-07 00:00:00+00:00
                          112.332695
                                      3923755
2019-01-08 00:00:00+00:00
                          114.397705 4982726
2023-12-22 00:00:00+00:00
                          161.100006 2439800
2023-12-26 00:00:00+00:00
                          162.229996 1772400
2023-12-27 00:00:00+00:00
                          163.139999 3234600
2023-12-28 00:00:00+00:00
                          163.960007 2071300
2023-12-29 00:00:00+00:00 163.750000 2525600
```

[1258 rows x 6 columns]

[4]: walmart_data = yf.download("WMT", start=start_date, end=end_date) walmart_data

[4]:	Price Ticker Date		Adj Close WMT	Close WMT	High WMT	Low WMT	\
		00:00:00+00:00	28.355377	31.113333	31.216667	30.546667	
		00:00:00+00:00	28.209566	30.953333	31.570000	30.900000	
		00:00:00+00:00	28.385757	31.146667	31.219999	30.896667	
		00:00:00+00:00	28.719919	31.513332	31.723333	31.059999	
		00:00:00+00:00	28.920422	31.733334	31.920000	31.303333	
		00.00.00.00.00				01.00000	
		00:00:00+00:00	51.712521	52.216667	52.383331	51.720001	
		00:00:00+00:00	51.633293	52.136665	52.330002	52.036667	
		00:00:00+00:00	52.118561	52.626667	52.650002	52.053333	
		00:00:00+00:00	52.016232	52.523335	52.776669	52.500000	
		00:00:00+00:00	52.042637	52.549999	52.693333	52.386665	
	Price		Open	Volume			
	Ticker		WMT	WMT			
	Date						
	2019-01-02	00:00:00+00:00	30.546667	24458100			
	2019-01-03	00:00:00+00:00	31.070000	24831900			
	2019-01-04	00:00:00+00:00	31.070000	24087300			
	2019-01-07	00:00:00+00:00	31.206667	23369100			
	2019-01-08	00:00:00+00:00	31.686666	21602700			
	***		•••	***			
	2023-12-22	00:00:00+00:00	51.816666	19405500			
	2023-12-26	00:00:00+00:00	52.216667	11679900			
	2023-12-27	00:00:00+00:00	52.103333	19896000			
	2023-12-28	00:00:00+00:00	52.590000	16776000			
	2023-12-29	00:00:00+00:00	52.509998	21948300			

[1258 rows x 6 columns]

```
[5]: # Step 2: Correlation Analysis
     # Create DataFrames from the Close prices for alignment
     ibm close = ibm data["Close"]["IBM"].to frame()
     ibm_close
[5]:
                                       IBM
    Date
     2019-01-02 00:00:00+00:00 110.143402
     2019-01-03 00:00:00+00:00
                               107.944550
     2019-01-04 00:00:00+00:00
                               112.160614
     2019-01-07 00:00:00+00:00 112.954109
     2019-01-08 00:00:00+00:00 114.560226
     2023-12-22 00:00:00+00:00
                                162.139999
     2023-12-26 00:00:00+00:00
                                163.210007
     2023-12-27 00:00:00+00:00
                                163.460007
     2023-12-28 00:00:00+00:00
                                163.750000
     2023-12-29 00:00:00+00:00
                                163.550003
     [1258 rows x 1 columns]
[6]: walmart_close = walmart_data["Close"]["WMT"].to_frame()
     walmart_close
[6]:
                                      WMT
    Date
     2019-01-02 00:00:00+00:00
                                31.113333
     2019-01-03 00:00:00+00:00
                                30.953333
     2019-01-04 00:00:00+00:00
                                31.146667
     2019-01-07 00:00:00+00:00
                                31.513332
     2019-01-08 00:00:00+00:00
                                31.733334
     2023-12-22 00:00:00+00:00
                                52.216667
     2023-12-26 00:00:00+00:00
                                52.136665
     2023-12-27 00:00:00+00:00
                                52.626667
     2023-12-28 00:00:00+00:00
                                52.523335
     2023-12-29 00:00:00+00:00
                                52.549999
     [1258 rows x 1 columns]
[7]: aligned_data = ibm_close.join(walmart_close, how="inner").rename(
         columns={"IBM": "Close_IBM", "WMT": "Close_WMT"}
     )
```

aligned_data

```
[7]:
                                Close_IBM Close_WMT
    Date
    2019-01-02 00:00:00+00:00 110.143402 31.113333
    2019-01-03 00:00:00+00:00
                              107.944550 30.953333
    2019-01-04 00:00:00+00:00
                              112.160614 31.146667
    2019-01-07 00:00:00+00:00 112.954109 31.513332
    2019-01-08 00:00:00+00:00 114.560226 31.733334
    2023-12-22 00:00:00+00:00
                              162.139999 52.216667
    2023-12-26 00:00:00+00:00
                              163.210007 52.136665
    2023-12-27 00:00:00+00:00
                              163.460007 52.626667
    2023-12-28 00:00:00+00:00
                              163.750000 52.523335
    2023-12-29 00:00:00+00:00 163.550003 52.549999
    [1258 rows x 2 columns]
```

[8]: # Calculate the correlation between IBM and Walmart closing prices
correlation = aligned_data["Close_IBM"].corr(aligned_data["Close_WMT"])
correlation

[8]: np.float64(0.25467644544033363)

```
[9]: # Plot scatter plot for visual correlation
plt.figure(figsize=(10, 5))
plt.scatter(aligned_data["Close_IBM"], aligned_data["Close_WMT"])
plt.xlabel("IBM Closing Price")
plt.ylabel("Walmart Closing Price")
plt.title(f"Correlation between IBM and Walmart Prices: {correlation:.2f}")
plt.show()
```



```
[11]: # Plot correlograms for both IBM and Walmart stock prices
for stock_data, name in zip([ibm_data, walmart_data], ["IBM", "Walmart"]):
    plt.figure(figsize=(10, 5))
    plot_acf(stock_data["Close"].dropna(), lags=40)
    plt.title(f"{name} Autocorrelation Plot")
    plt.show()
```

<Figure size 1000x500 with 0 Axes>

<Figure size 1000x500 with 0 Axes>


```
[12]: # Step 4: Dickey-Fuller Test for stationarity
def adf_test(series, name):
    result = adfuller(series)
    print(f"ADF Statistic for {name}: {result[0]}")
    print(f"p-value for {name}: {result[1]}")
    if result[1] < 0.05:
        print(f"The {name} series is stationary.")
    else:
        print(f"The {name} series is not stationary.")</pre>
```

```
[13]: adf_test(ibm_data["Close"], "IBM")
adf_test(walmart_data["Close"], "Walmart")
```

ADF Statistic for IBM: -3.2264847648019135 p-value for IBM: 0.018501917606608874 The IBM series is stationary.

ADF Statistic for Walmart: -2.148573782980081 p-value for Walmart: 0.22543641042674617 The Walmart series is not stationary.

One-day forecast for IBM based on the 30-day moving average: 159.8143346150716 One-day forecast for Walmart based on the 30-day moving average: 51.654666900634766