Problem 1. Consider the integral

$$\Phi_n(z) = \int_a^b \frac{x^n dx}{(x-a)^{\frac{1}{2}-\lambda} (b-x)^{\frac{1}{2}+\lambda} (x-z)}$$

where $z \notin [a,b]$ and $\frac{-1}{2} < \lambda < \frac{1}{2}$.

- (a) Compute the integral for n = 0 and n = 1.
- (b) Determine the domain where $\phi_n(z)$ is holomorphic.

Hint: Consider the contour Γ and fix a branch of the function $\Gamma = C_R \cup \gamma^- \cup \gamma^+$ and $f(\zeta) = (\zeta - a)^{\frac{1}{2} - \lambda} (b - \zeta)^{\frac{1}{2} + \lambda}$ where $\zeta = x + iy$

 \square

Problem 2. Show, by contour integration, that if a > 0 and $\xi \in \mathbb{R}$ then

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x \xi} dx = e^{-2\pi a |\xi|},$$

and check that

$$\int_{-\infty}^{\infty} e^{-2\pi a|\xi|} e^{2\pi i \xi x} d\xi = \frac{1}{\pi} \frac{a}{a^2 + x^2}.$$

Proof.

Problem 3. Prove that

$$\frac{1}{\pi} \sum_{n = -\infty}^{\infty} \frac{a}{a^2 + n^2} = \sum_{n = -\infty}^{\infty} e^{-2\pi a|n|}$$

whenever a > 0. Hence show that the sum equals both $\coth \pi a$.

Proof.

Problem 4. (a) Let τ be fixed with $Im(\tau) > 0$. Apply the Poisson summation formula to

$$f(z) = (\tau + z)^{-k},$$

where k is an integer ≥ 2 , to obtain

$$\sum_{n=-\infty}^{\infty} \frac{1}{(\tau+n)^k} = \frac{(-2\pi i)^k}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} e^{2\pi i m \tau}.$$

(b) Set k=2 in the above formula to show that if $Im(\tau) > 0$, then

$$\sum_{n=-\infty}^{\infty} \frac{1}{(\tau+n)^2} = \frac{\pi^2}{\sin^2(\pi\tau)}.$$

(c) Can one conclude that the above is not an integer?	e formula hold true	whenever $ au$ is a	any complex	number that
Proof.				
Problem 5. Compute the integral				
	$I = \int_0^\infty \frac{\log^2(x)}{x^2 + a^2} dx$	dx		
Proof.				