Kinematika 2 Dimensi

Gerak Parabola

Haikal Isa

3 April 2024

Section 1

Dua Sumbu

Jawaban

Gerak Parabola

Gambar: Gerak parabola

Pada dasarnya, gerak parabola terdiri dari 2 komponen

- Komponen Horizontal (GLB)
- Komponen Vertikal (GLBB)

Sebagai pengingat kembali, berikut adalah persamaan gerak satu dimensi

UAM

Untuk percepatan konstan

•
$$v = v_0 + at$$

•
$$v^2 = v_0^2 + 2a\Delta x$$

•
$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

Komponen horizontal tidak memiliki percepatan. Kecepatannya konstan. Simpel.

Untuk benda yang memiliki kecepatan awal v dan sudut elevasi θ , kecepatan pada bidang horizontalnya adalah

$$v_x = v \cos \theta$$

Sementara untuk posisi benda secara horizontal

$$x = vt \cos \theta$$

dengan t adalah waktu dalam sekon.

Dua Sumbu

Komponen vertikal memiliki percepatan yang konstan akibat percepatan gravitasi g.

Untuk benda yang memiliki kecepatan awal ν dan sudut elevasi θ serta percepatan gravitasi g, kecepatan pada bidang vertikalnya adalah

$$v_y = v \sin \theta - gt$$

Sementara untuk posisi benda secara vertikal

$$y = y_0 + vt\sin\theta - \frac{1}{2}gt^2$$

dengan t adalah waktu dalam sekon, y₀ adalah ketinggian.

Section 2

Tambahan

Titik tertinggi dan Jarak Horizontal

Pada titik tertinggi, $v_y = 0$. Dengan demikian,

Titik Tertinggi =
$$\frac{v^2 \sin^2 \theta}{2g}$$

Di sisi lain, untuk jarak horizontal,

$${\sf Jarak\ Horizontal} = \frac{v^2\sin2\theta}{{\it g}}$$

Selesai

Section 3

Contoh Soal

Soal 1

Gambar: orang gila

Sebuah tank dilempar dari tebing setinggi 30 meter dari permukaan laut oleh seorang pemancing ikan dengan kecepatan awal 10 ms⁻¹. Sudut elevasinya adalah 30°. Pertanyaannya adalah:

Pertanyaannya adalah:

- a) kenapa dilempar? Tentukan waktu yang ditempuh oleh tank selama di udara
- b) Tentukan jarak horizontal yang ditempuh

Soal 2

Dari tepi sungai, sebuah bola dilempar dengan kecepatan awal $15~ms^{-1}$ dan sudut elevasi 45° . Sungai memiliki lebar 20 meter. Mungkinkah bola tersebut melewati sungai?

Jawaban

Jawaban Soal 1

a) Objek mendarat ketika y=0. Diketahui $v_y=10\sin(30^\circ)=5~ms^{-1}$. Dengan demikian,

$$30 + 5t - 5t^2 = 0$$
$$t^2 - t - 6 = 0$$

Solusi dari persamaan kuadrat di atas adalah t=-2 atau t=3. Jelas kita pilih t=3

b) Kita sudah dapat t=3. Diketahui $v_x=10\cos(30^\circ)=5\sqrt{3}\ ms^{-1}$. Dengan begini,

$$x = 15\sqrt{3} m$$

Jawaban Soal 2

Singkat saja

$$\begin{aligned} &\mathsf{Jarak\ Horizontal} = \frac{v^2 \sin 2\theta}{g} \\ &\mathsf{Jarak\ Horizontal} = \frac{15^2 \sin 90}{10} \\ &\mathsf{Jarak\ Horizontal} = 22.5\ m \end{aligned}$$

Ya, Bola tersebut bisa melintasi sungai.

Pustaka

Brilliant.org.

Projectile motion.

Diakses pada pukul 16:05, 3 April 2024.

https://brilliant.org/wiki/projectile-motion-easy/.