Statistical Tests

Z-score

- Z-score is a distance from the mean
- Z can also represent the area under the curve
 - Given a Z-score, area can be calculated and vice versa
- Converting a dataset into a standard data such that the Mean=0 and Standard Deviation=1
- This will enable us to draw a bell-shape curve that represents the standard normal distribution
- Formula $z = (x-\mu)/\sigma$
- There can be infinite number of random distributions, but only one standard normal distribution
- z-scores can be Positive(+) or Negative(-)
- Area represented by the z-scores indicate probabilities
- Area cannot be negative

Z-table gives the z-scores and areas

Calculating probabilities from z-scores

Example 1:

• Find the probability that a randomly selected thermometer will have a reading (x) of less than 1.58°,

Given $\mu = 0$ and $\sigma = 1$

Answer

- 1) z = (1.58-0) / 1 = 1.58
- 2) From the z-table, find the probability value for 1.58
- 3) Answer = .9429 i.e. 94.29%
- 4) : The probability of a thermometer reading less than 1.58 is 94.29%

Example 2:

 Find the probability that a randomly selected thermometer will have a reading of greater than -1.23°

Given $\mu = 0$ and $\sigma = 1$

Answer

- 1) z = (-1.23-0) / 1 = -1.23
- 2) From the z-table, find the probability value for -1.23
- 3) Answer = .1093
- 4) This is area to the left. The area greater than -1.23 is to the right. i.e. 1-0.1093 = .8907
- 5) ... The probability of a thermometer reading greater than -1.23 is 89.07%

Example 3:

Find the probability that a randomly selected thermometer will have a reading between -2° and 1.5°,
 Given μ = 0 and σ = 1

Answer

1) $z_1 = (-2-0) / 1 = -2$

p(-2) = 0.0228

2) $z_2 = (1.5-0) / 1 = 1.5$

 $\mathbf{p(1.5)} = 0.9332$

- 3) Area between z_1 and $z_2 => 0.9332 0.0228 = 0.9104$
- 4) .: The probability of a thermometer reading between -2 and 1.5 is 91.04%

Calculating z-scores from probabilities

Example 4:

 Find the Z-score that represents the bottom 95% of the data

Answer

Bottom 95% == Top 5%

- 1) Probability = 0.9500 (represents the area)
- 2) From the Z-table, z-score (p = .9500) = 1.645
- 3) : 95% of the thermometers will have a value of 1.645 or less

Example 5:

• Find the Z-score that represents the area between the top 2.5% and the bottom 2.5%

Answer

2.5% = 0.025Bottom 2.5% = -1.96Top 2.5% = 1-0.025 = 0.975 = +1.96Area between top 2.5 and bottom 2.5 = 0.975 - 0.025 = 0.95 (z = 1.645)

Example 6:

 What percentage of people have an IQ between 85 and 125, given that the IQ is normally distributed with mean=100 and SD=15

Answer

$$z1 = (85-100)/15 = -1$$
. $p = 0.1587$
 $z2 = (125-100)/15 = 1.67$ $p = 0.9525$
Area between z1 and z2 = 0.9525 - 0.1587 = **0.7938**
(z=0.82)

Confidence Interval

Example

A poll is taken of 1000 customers asking for their experience relating to their interaction with the customer care. 450 people reported as good experience.

- $\hat{\mathbf{p}}$ (sample proportion) = 450/1000 = 0.45 or 45% people reported as good experience.
- This **p** estimates the population proportion **p** (which is the parameter, and is unknown)

How close is p to p?

- What are the likely values of p?
- Cannot say with certainty how close is p to p
- But need some kind of estimate that would determine how close are p and p
- This estimate is the "confidence interval"

Confidence Interval

- A range used to fit a population parameter (μ: population mean, σ: population std dev)
- Samples always vary with the actual value of a population and cannot guarantee the value
- Create a range of values that tells the value lies within that range
 - ✓ e.g: number of visitors in a resort during the rainy season is between 550 750
- Confidence Interval has a confidence level (%)
- The confidence level tells us with what confidence (%) we can tell that actual population parameter will fall in the given range.
 - ✓ e.g. The car company is (95% / 97% / 99%) sure that the new model will have a mileage of 21-25
- Higher confidence levels produce higher confidence intervals
- Commonly used confidence intervals are: .90, .95 and .99
- Complement of CI is represented by \acute{a} (1-CI)

CI	ά (1-CI)
.90	0.1
.95	0.05
.99	0.01

Critical value: z-score that separates the likely region (**Reject region**) from the unlikely region (**Fail-to-reject region**)

z-scores for Confidence Intervals

CI	ά (1-CI)	å/2	Z-score (Ζ _{ά/2})
.90	0.1	0.05	1.645
.95	0.05	0.025	1.96
.99	0.01	0.005	2.575

3 types of Hypothesis testing

Choice of tail depends upon the choice of:

- NULL Hypothesis and
- ALTERNATE hypothesis

Hypothesis testing

- Test whether a claim is valid or not <u>of a population</u>
- Examples of claims
 - Most people get jobs through networking (proportion)
 - > The average number of trucks passing through this highway in a day is 355 (mean)
- In Statistics, you cannot prove anything right. It is only wrong or not wrong. (just like a court verdict of 'guilty' or 'not guilty', but never 'innocent'

Parts of Hypothesis testing

NULL hypothesis

- NULL represented by H₀
- H₀ states that the population parameter (mean, proportion) is **EQUAL TO** some value
- eg: H_0 : $\mu = 5.5$, H_0 : p = 0.45

Deducing the hypothesis

If **Reject** H_{0_r} then Accept H_1 If **Fail to Reject** H_{0_r} it is inconclusive (fail to accept H_1)

ALTERNATE hypothesis

- ALTERNATE represented as H₁
- H₁ states that the population parameter (mean, proportion) is <u>DIFFERENT</u> than H₀

$$\checkmark$$
 H₁: μ > 5.5 H₁: p > 0.45

$$\checkmark$$
 H₁: μ < 5.5 H₁: p < 0.45

$$\checkmark$$
 H₁: $\mu \neq 5.5$ H₁: $p \neq 0.45$

How to test a hypothesis

Steps

1. State the Claim

The Average battery life is 4 years

2. State the Opposite Claim

The average battery life is not 4 years

3. Form the NULL hypothesis (H₀)

$$\mu = 4$$

4. Form the Alternate Hypothesis (H₁)

$$\mu \neq 4$$

5. Calculate the T-statistic

T-stat

6. Validate t-stat against Z-score for α

T-stat vs Z_a

Result

If t-stat > Z_0

- 1. Reject H₀ (NULL Hypothesis)
- 2. There **is enough evidence** to support the claim

If t-stat $< Z_a$

- 1. Fail To Reject H₀ (NULL Hypothesis)
- 2. There **is not enough evidence** to support the claim

Forming H₀ and H₁ for Hypothesis testing

Claim	Step 1 (State the claim)	Step 2 (State the opposite)	Step 3 (Identify H ₀) (H ₀ is where there is =)	Step 4 (Identify H ₁)	Notes
The mean of a liquid is at least 12 oz in a can	μ >= 12	µ < 12	$H_0: \mu = 12$	H ₁ : μ < 12	The claim is H ₀
Most school principals are females	p > 0.5	p <= 0.5	$H_0: p = 0.5$	$H_1: p > 0.5$	The claim is H ₁

 $\mu \neq 100$

 $H_0: \mu = 100$

The claim is H₀

 $H_1: \mu \neq 100$

 $\mu = 100$

The mean IQ score of a given

class is 100

Formulas for Test Statistic

Non-parametric test

Proportion (P)

$$Z = (\hat{p} - p) / (\sqrt{p.q} / \sqrt{n})$$

 $\hat{\mathbf{p}} = \text{sample proportion}$

 $\mathbf{p} = \mathbf{H}_0$

q = 1 - p

n = sample size

Parametric test

Mean (μ)

 $Z = (\bar{x} - \mu)/(\sigma/\sqrt{n})$

T = $(x - \mu)/(s/\sqrt{n})$ (when σ not provided)

 $\mathbf{x}^{\overline{}}$ = sample mean

 $\mu = H_0$

 σ = Population SD

s = Sample SD

n = sample size

Example 1: A sample of 706 companies found that 61% of CEO's were male. **Claim:** Most CEO's are males Take significance level (lpha) as 0.05

6
$$q = 1-p = 0.5$$

8
$$Z = (\hat{p} - p) / (\sqrt{p.q} / \sqrt{n})$$

= $(0.61-0.5) / (\sqrt{(0.5*0.5)} / \sqrt{706})$
= $(0.11) / (0.0188)$
= 5.85 (Test statistic value)

9 Based on the value of Z=5.85, can we reject H₀? Need to make this decision based on evidence

Since the test statistic **(5.85)** lies in the rejection region, we reject the NULL hypothesis.

i.e. there is enough evidence to support the claim that **most CEOs are males**

Exercise (identify the mistake)

Given a sample mean of 83, sample standard deviation of 12.5 and a sample size of 22, test the Hypothesis that the value of the population mean is 70. Use 0.025 significance level

- 3 $H_0: \mu = 70$
- 4 $H_1: \mu > 70$
- $5 \quad \bar{x} = 83$
- 6 s = 12.5
- 7 | n = 22
- 8 $Z = (\bar{x} \mu)/(s/\sqrt{n})$ = (83-70) / (12.5 / $\sqrt{22}$) = 4.88
- 9 Based on the value of Z=4.88, can we reject H₀? Need to make this decision based on evidence

Since the test statistic (4.88) lies in the rejection region, we reject the NULL hypothesis.

i.e. there is enough evidence to prove the **population mean is more than 70**

Exercise

Given a sample mean of 83, sample standard deviation of 12.5 and a sample size of 22, test the Hypothesis that the value of the population mean is 70 against the alternative that it is more than

70. Use 0.025 significance level

3
$$H_0: \mu = 70$$

4
$$H_1: \mu > 70$$

$$5 \quad \bar{x} = 83$$

6
$$s = 12.5$$

8
$$Z = (\bar{x} - \mu)/(s/\sqrt{n})$$

= (83-70) / (12.5 / $\sqrt{22}$)
= 4.88

9 Based on the value of Z=4.88, can we reject H₀? Need to make this decision based on evidence

Since the test statistic (4.88) lies in the rejection region, we reject the NULL hypothesis.

i.e. there is enough evidence to prove the **population mean is more than 70**

Type I and II errors

- Does our conclusion of our hypothesis testing match the actual value ?
- More often that not, there will be some deviation from the actual.
- This deviation is known as the "Type I and Type II errors"
- These errors can be very critical

Type I error

 It is the *rejection* of the NULL hypothesis when *it should not* have been rejected

Type II error

 Fail to reject of the NULL hypothesis when it should have been rejected

Type I and II errors

NULL hypothesis Everything is fine

Serious

Reject NULL hypothesis

Get help

Investigate

Result: No fire

Type I error

Rejecting "everything is fine" when "everything was fine"

False alarm

Fire

Reality

No fire

Not serious

Do not Reject NULL

Walk away

Investigate

Result: Fire

Type II error

Not Rejecting "everything is fine" when "everything was not fine"

More serious

ANOVA

ANOVA – ANalysis Of VAriance

- To compare the means of more than two populations
- Test the significance of differences among more than 2 sample means

- Are these samples drawn from populations having the same mean?
- Is there a difference in these means?
- Calculating the relative difference between the means
- Example:
 - Comparing the mileage of five different vehicles
 - > First-year earnings of graduates of a dozen different business schools
 - > Comparing the average life expectancies of 10 different countries
 - > etc

- There will be variability between the sample means
- Every sample mean will be away by some distance from the overall population mean
- ANOVA (F-ratio) is a variability ratio
 - Variability among/between the means
 - Distance from overall mean
 - AMONG variance

- Variability around/within distributions
- Internal distance
- AROUND variance

ANOVA (F) Formula

$$F = \frac{\frac{n_1 \sum (\bar{x_1} - \bar{X})^2 + n_2 \sum (\bar{x_2} - \bar{X})^2 + \cdots}{(k-1)}}{\frac{\sum (x_{1i} - \bar{x_1})^2 + \sum (x_{2i} - \bar{x_2})^2 + \cdots}{(N-k)}}$$

$$\frac{7}{2} \left(2 \left(2 \left(\frac{1}{1} - 2 \right)^{2} \right)^{2} = \left(n_{1} - 1 \right) S_{1}^{2}$$

$$\frac{7}{2} \left(2 \left(2 \left(2 \left(2 \right)^{2} - 2 \right)^{2} \right)^{2} = \left(n_{2} - 1 \right) S_{2}^{2}$$

$$\frac{7}{2} \left(2 \left(2 \left(2 \left(2 \left(2 \right)^{2} - 2 \right)^{2} \right)^{2} \right) \left(2 \left(2 \left(2 \right)^{2} - 2 \right)^{2} \right)$$

$$\frac{7}{2} \left(2 \left(2 \left(2 \left(2 \right)^{2} - 2 \right)^{2} \right)^{2} + \left(2 \left(2 \left(2 \right)^{2} - 2 \right)^{2} \right) S_{3}^{2}$$

where

 $\mathbf{n_n}$ = number of observations of each sample

 $\mathbf{x}_{\mathbf{n}}^{\mathbf{r}}$ = sample of each mean

X = mean of all sample means

 S_n = standard deviation of each sample

N = total sample count

 \mathbf{k} = number of sample groups

k-1 = dof (numerator)

N-k = dof (denominator)

- ANOVA = Variability between / Variability within
- Hypothesis testing
 - ✓ VB/VW = Large / small → Reject H₀
 - i.e. at least one mean is an outlier and each distribution is distinct from each other
 - √ VB/VW = similar / similar → Fail to Reject H₀
 - i.e. sample means are probably closer to the overall mean, but cannot say for sure
 - √ VB/VW = small / Large → Fail to Reject H₀
 - i.e. sample means are very closer to the overall mean

Example

- To evaluate 3 different training programs to determine if there are any differences in the effectiveness of the program
- 16 employees are chosen at random to attend these 3 training programs
- The daily production output is given in the table

Program1	Program2	Program3
-	-	18
15	22	24
18	27	19
19	18	16
22	21	22
11	17	15

Hypothesis

To decide whether these 3 samples are drawn from populations (total number of employees trained by the method) having the same mean (μ)

- Claim: Training programs increase productivity
- Opposite: Training programs don't increase productivity
- **H₀:** $\mu_1 = \mu_2 = \mu_3$
- **H₁:** $\mu_1 \neq \mu_2 \neq \mu_3$

Calculations

ANOVA (F) Formula

$$F = \frac{\frac{n_1 \sum (\bar{x_1} - \bar{X})^2 + n_2 \sum (\bar{x_2} - \bar{X})^2 + \cdots}{(k-1)}}{\frac{\sum (x_{1i} - \bar{x_1})^2 + \sum (x_{2i} - \bar{x_2})^2 + \cdots}{(N-k)}}$$

Step 1 – calculate the mean of each group, count the total groups and mean of means

	TP1	TP2	TP3			
			18			
	15	22	24			
	18	27	19			
	19	18	16			
	22	21	22			
	11	17	15			
n	5	5	6			
Total	85	105	114			
$\bar{\mathbf{x}}_{\mathbf{n}}$	17	21	19			
	total groups					
X	mean of me	19				
N	Total sample	e count		16		

Step 2 – calculate the "between columns" variance (numerator of F)

$n_1(\bar{x_1} - \bar{X})^2$	$n_2(\bar{x}_2 - \bar{X})^2$	$n_3(\bar{x}_3 - \bar{X})^2$	between column variance
20	20	0	20

Step 3 – calculate the "within sample" variance (denominator of F)

$(x_1 - \bar{x}_1)^2$	$(x_2 - \bar{x}_2)^2$	$(x_3 - \bar{x}_3)^2$	Σ	within sample variance
0	0	1		
4	1	25		
1	36	0		
4	9	9		
25	0	9		
36	16	16	·	
70	62	60	192	14.77

Step 4 – calculate the F-score (numerator / denominator)

Calculations

Step 5 – Calculate the degrees of freedom for *Numerator* in F-ratio

Step 6 – Calculate the degrees of freedom for *Denominator* in F-ratio

Significance level = 0.05, using the Anova table, F = 3.81 $F_{\text{statistic}} = 1.354$ (Numerator)Number of groups -13-1=2

(Denominator Σ (sample _n - 1) (5-1)+(5-1)+(6-1) = 13

Interpretation

As the F_{stat} (1.354) falls in the FTR region, there is no significant differences in the effects of the 3 training programs on employee productivity

Exercise

The following airline dataset is given with delay time of arrival.

Assumption: All airlines land at the same expected time.

airline1	airline2	airline3
40	56	92
28	48	56
36	64	64
32	56	72
60	28	48
12	32	52
32	42	64
36	40	68
44	61	76
36	58	56

Chi-Square test of Independence

Chi-square test helps to understand the <u>relationship</u> between two <u>categorical variables</u>
 e.g. Does the <u>field of Education (X)</u> play any role in <u>Employee Attrition (Y)</u>
 Are these variables <u>"statistically"</u> independent?

Hypothesis

- \checkmark H₀: The two categorical variables are independent / No relation exists
- ✓ H₁: The two categorical variables are not independent / Relation exists
- Involves counting of categories (frequencies of events)
- Compares Observed vs Expected using population data
- Chi-Square helps in determining the role of random chance variation between the categorical variables
- Uses Chi-Square distribution and Critical value to reject / Fail-to-reject H₀

Formula

 χ^2 = (Observed – Expected)² / Expected Degrees of freedom (DF) = (# columns -1) x (# rows – 1)

Exercise

The following sample student dataset shows the credit cards owned by student of each year **Claim:** Cards owned by students of each year is the same

	2007	2008	2009	2010	2011
Freshman	560	495	553	547	512
Sophomore	369	385	358	361	393
Junior	209	226	248	268	285
Senior	267	277	304	328	340
Unclassified	64	70	93	77	126

Step 1

<u>observed</u>	2007	2008	2009	2010	2011	Total
Freshman	560	495	553	547	512	2667
Sophomore	369	385	358	361	393	1866
Junior	209	226	248	268	285	1236
Senior	267	277	304	328	340	1516
Unclassified	64	70	93	77	126	430
Total	1469	1453	1556	1581	1656	7715

Step 2

<u>expected</u>	2007	2008	2009	2010	2011	Total
Freshman	507.82	502.29	537.89	546.54	572.46	2667
Sophomore	355.30	351.43	376.34	382.39	400.53	1866
Junior	235.34	232.78	249.28	253.29	265.30	1236
Senior	288.66	285.51	305.75	310.67	325.40	1516
Unclassified	81.88	80.98	86.72	88.12	92.30	430
Total	1469	1453	1556	1581	1656	7715

2007	2008	2009	2010	2011
				(2667*16
69)/7715	53)/7715	56)/7715	81)/7715	56)/7715

Step 3

(O-E)	2007	2008	2009	2010	2011
	52.18	-7.29	15.11	0.46	-60.46
	13.70	33.57	-18.34	-21.39	-7.53
	-26.34	-6.78	-1.28	14.71	19.70
	-21.66	-8.51	-1.75	17.33	14.60
	-17.88	-10.98	6.28	-11.12	33.70

Step 5

(O-E) ² /E	2007	2008	2009	2010	2011
	5.36	0.11	0.42	0.00	6.39
	0.53	3.21	0.89	1.20	0.14
	2.95	0.20	0.01	0.85	1.46
	1.63	0.25	0.01	0.97	0.65
	3.90	1.49	0.45	1.40	12.31

Step 4

(O-E) ²	2007	2008	2009	2010	2011
	2722.86	53.11	228.19	0.22	3655.77
	187.64	1126.81	336.51	457.57	56.71
	694.04	45.99	1.65	216.45	387.95
	469.11	72.50	3.08	300.43	213.03
	319.54	120.64	39.38	123.61	1135.82

Step 6

X ²	46.78
р	0.05
r	5
С	5
df	16
Chi critical	26.30
Conclusion	Reject H ₀