	$\Delta_{1^{+}lphaeta}^{\#1}$	$\Delta_{1}^{\#2}_{+lphaeta}$	$\Delta_{1}^{\#3}{}_{lphaeta}$	$\Delta_{1}^{\#1}{}_{lpha}$	$\Delta_{1}^{\#2}{}_{lpha}$	$\Delta_{1}^{\#3}{}_{lpha}$	$\Delta_{1}^{\#4}{}_{lpha}$	$\Delta_{1^{-}\alpha}^{\#5}$	$\Delta_{1^{-}\alpha}^{\#6}$	${\mathcal T}_{1-lpha}^{\#1}$
$\Delta_1^{\#1} \dagger^{\alpha j}$	$\frac{4}{3} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} + \frac{2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9}{2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)} \right)$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}-\frac{2(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}\right)$	$-\frac{4 (2 a_1+a_2+a_9)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	0	0	0	0	0	0	0
$\Delta_1^{#2} \dagger^{\alpha p}$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}-\frac{2(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}\right)$	$-\frac{2}{3(a_0+4a_1-4a_2)}+\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	0	0	0	0	0
$\Delta_{1}^{#3}$ † α_{I}	$-\frac{4 (2 a_1+a_2+a_9)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0	0	0	0	0
$\Delta_{1}^{#1}$ †	0	0	0	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{3 (2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0
Δ ₁ ^{#2} † ⁴	0	0	0	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{8 (2 a_1+a_2+a_9)}{3 \sqrt{3} (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0
$\Delta_{1}^{#3} + $	0	0	0	0	0	$-\frac{10}{9(a_0+2a_5-6a_7)}-\frac{1}{6(3a_0-2(a_5-8a_6+5a_7-4a_{13}k^2))}$	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8a_{13}k^2} \right)$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2))}$	$-\frac{1}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}$	0
$\Delta_1^{#4} \dagger^{6}$	0	0	0	0	0	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8a_{13}k^2} \right)$	$-\frac{2}{9(a_0+2a_5-6a_7)}-\frac{5}{6(3a_0-2(a_5-8a_6+5a_7-4a_{13}k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$-\frac{\sqrt{5}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	0
$\Delta_1^{\#5}$ †'	0	0	0	$-\frac{4\sqrt{\frac{2}{3}}\left(2a_{1}+a_{2}+a_{9}\right)}{3\left(2\left(2a_{1}+a_{2}\right)\left(a_{5}+3a_{7}\right)+a_{9}^{2}+a_{0}\left(2a_{1}+a_{2}-2a_{5}-6a_{7}+2a_{9}\right)\right)}$	$-\frac{8 (2 a_1 + a_2 + a_9)}{3 \sqrt{3} (2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9))}$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$\frac{8(-a_0+2a_1+a_2)}{9(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))} - \frac{1}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32a_{13}k^2) + 2(2a_1 + a_2)(a_5 - 32a_6 + 11a_7 - 16a_{13}k^2)))/$ $(9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)))$	+ 0
Δ ₁ -6 † '	0	0	0	$\frac{4 \left(2 a_{1} + a_{2} + a_{9}\right)}{3 \sqrt{3} \left(2 \left(2 a_{1} + a_{2}\right) \left(a_{5} + 3 a_{7}\right) + a_{9}^{2} + a_{0} \left(2 a_{1} + a_{2} - 2 a_{5} - 6 a_{7} + 2 a_{9}\right)\right)}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{1}{9 a_0-6 (a_5-8 a_6+5 a_7-4 a_{13} k^2)}$	$-\frac{\sqrt{5}}{9 a_0-6 (a_5-8 a_6+5 a_7-4 a_{13} k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32a_{13}k^2) + 2(2a_1 + a_2)(a_5 - 32a_6 + 11a_7 - 16a_{13}k^2)))/$ $(9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)))$	$\frac{-4a_0 + 8a_1 + 4a_2}{9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))} - \frac{2}{9a_0 - 6(a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)}$	0
${\cal T}_1^{\# 1} \dagger^0$	0	0	0	0	0	0	0	0	0	0

		$\Gamma_{1}^{\#1}{}_{lphaeta}$	$\Gamma_{1}^{\#2}{}_{lphaeta}$	$\Gamma_{1}^{\#3}{}_{lphaeta}$	$\Gamma_{1}^{\#1}{}_{\alpha}$	Γ ₁ ^{#2} α	Γ ₁ - _α	$\Gamma_{1}^{#4}$ α	Γ ₁ - α	Γ ₁ - α	$h_{1}^{\#1}{}_{\alpha}$
Γ#,	$\frac{1}{4} + \frac{\alpha \beta}{2}$	$\frac{1}{4} \left(-a_0 - 6 a_1 + 5 a_2 \right)$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	0	0	0	0	0	0	0
Γ#,	$^{2}_{+}$ † $^{\alpha\beta}$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{2} \left(-2 a_1 + a_2 \right)$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$	0	0	0	0	0	0	0
Γ#,	$^3_+$ $^{\alpha\beta}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{2}}$	$-\frac{3}{4} (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)$	0	0	0	0	0	0	0
Г	$_{1}^{\#1}$ † $^{\alpha}$	0	0	0	$\frac{1}{12}$ $(a_0 - 2a_1 - a_2)$	$\frac{a_0 - 2a_1 - a_2}{6\sqrt{2}}$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	0
Г	# ² † ^α	0	0	0	$\frac{a_0 - 2a_1 - a_2}{6\sqrt{2}}$	$\frac{1}{6} (a_0 - 2 a_1 - a_2)$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0
Г	# ³ † ^α	0	0	0	0	0	$\frac{1}{12} \left(-9 a_0 - 14 a_5 - 8 a_6 + 50 a_7 - 4 a_{13} k^2 \right)$	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - a_{13} k^2)$	$\frac{-3a_0+2(a_5-8a_6+5a_7-4a_{13}k^2)}{12\sqrt{2}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)$	0
Г	# ⁴ † ^α	0	0	0	0	0	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - a_{13} k^2)$	$\frac{1}{12} \left(-9 a_0 + 2 a_5 - 40 a_6 + 34 a_7 - 20 a_{13} k^2 \right)$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	0
Г	# ⁵ † ^α	0	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{-3a_0+2(a_5-8a_6+5a_7-4a_{13}k^2)}{12\sqrt{2}}$	$\left \frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right) \right \frac{1}{12} \left(-\frac{1}{12} \sqrt{\frac{5}{2}} \left(-\frac{3}{12} a_0 + \frac{1}{12} a_0 + 1$	$3a_0 - 2(6a_1 + 3a_2 - 7a_5 + 8a_6 - 23a_7 + 6a_9 + 4a_{13}k^2))$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 a_{13} k^2}{6 \sqrt{2}}$	0
Г	# ⁶ † ^α	0	0	0	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	$\frac{2a_1 + a_2 + a_9}{2\sqrt{6}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 a_{13} k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(-6 a_0 - 6 a_1 - 3 a_2 + 10 a_5 - 32 a_6 + 38 a_7 - 6 a_9 - 16 a_{13} k^2 \right)$	0
h	$_{1}^{\#1}$ † $^{\alpha}$	0	0	0	0	0	0	0	0	0	0

_	$\Delta^{\#1}_{2^+ lphaeta}$	$\Delta^{\#2}_{2}{}^{+}{}_{lphaeta}$	$\Delta_{2}^{\#3}{}_{lphaeta}$	$\mathcal{T}^{\#1}_{2^+ \alpha \beta}$	$\Delta_{2^{-} \ lphaeta\chi}^{\#1}$	$\Delta^{\#_2}_{2^-lphaeta\chi}$
$\Delta_{2}^{\#1} \dagger^{lphaeta}$	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}$	0	$-\frac{4 (2 a_1+a_2+a_9)}{\sqrt{3} (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	0	0	0
$\Delta_2^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{4}{3(a_0+2a_5-6a_7)}$	0	0	0	0
$\Delta_2^{\#3} \dagger^{\alpha\beta}$	$\frac{4(2a_1+a_2+a_9)}{\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	$-\frac{4 (a_0-2 a_1-a_2)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	0	0	0
${\mathcal T}_2^{\sharp 1} \dagger^{lphaeta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}$	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$
$\Delta_2^{\#2} \uparrow^{\alpha\beta\chi}$	0	0	0	0	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	$-\frac{4 \left(a_{0} - 2 a_{1} - a_{2}\right)}{3 \left(2 \left(2 a_{1} + a_{2}\right) \left(a_{5} + 3 a_{7}\right) + a_{9}^{2} + a_{0} \left(2 a_{1} + a_{2} - 2 a_{5} - 6 a_{7} + 2 a_{9}\right)\right)}$

Total #:	$\Delta_{1}^{\#1\alpha} == \Delta_{1}^{\#2\alpha}$	$2 \left(\Delta_{1^{-}}^{\#6\alpha} + \Delta_{1^{-}}^{\#5\alpha} \right) == \Delta_{1^{-}}^{\#4\alpha} +$	$T_1^{\#1\alpha} == 0$	$\Delta_{0+}^{\#1} == 0$	$\Delta_{0+}^{#3} + 3 \Delta_{0+}^{#2} == 2 \Delta_{0+}^{#4}$	$T_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints	Γ#.	$-1 + \alpha \beta \chi$	$\Gamma_{3^{-}\alpha\beta\chi}^{\#1}$ $\frac{3}{4} (a_0 + 2 a_5 - 6 a_7)$
		$\Delta_{1}^{#3}$									$\Gamma_{2}^{\#1}{}_{lphaeta}$
12	ω	3	ω	1	1	1	#			$\Gamma_{2}^{#1} + \alpha$	$\frac{1}{4} (a_0 - 2 a_1 - a_2)$

	$\Gamma_0^{\#1}$	Γ#2 0+	Γ ₀ ^{#3}	Γ <mark>#4</mark>	$h_{0}^{\#1}$	$h_0^{\#2}$	Γ ₀ -1
# ₁ †	0	0	0	0	0	0	0
#2 0+ †	0	$\frac{1}{4} \left(-3 a_0 - 2 \left(a_5 + 4 a_6 - 7 a_7 \right) \right)$	a ₅ - 2 a ₆ - a ₇	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	0	0	0
#3 0+ †	0	a ₅ - 2 a ₆ - a ₇	$\frac{1}{4} \left(-3 a_0 - 2 \left(a_5 + 4 a_6 - 7 a_7 \right) \right)$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	0	0	0
#4 0+ †	0	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	$\frac{1}{4} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 \right) \right)$	0	0	0
#1 0+ †	0	0	0	0	$\frac{a_0 k^2}{4}$	0	0
#2 0+ †	0	0	0	0	0	0	0
# <u>1</u> †	0	0	0	0	0	0	$-\frac{a_0}{2}$ - 2 a_1 + 2 a_2

_	$\Delta_0^{#1}$	$\Delta_0^{\#2}$	$\Delta_0^{\#3}$	$\Delta_0^{\#4}$	${\cal T}_{0}^{\#1}$	$\mathcal{T}_{0}^{#2}$	$\Delta_0^{\#1}$
$\Delta_{0}^{#1}$ †	0	0	0	0	0	0	0
Δ ₀ ^{#2} †	0	$-\frac{2}{3(a_0+2a_5-6a_7)}-\frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	0	0	0
Δ ₀ #3 †	0	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{2}{3(a_0+2a_5-6a_7)}-\frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	0	0	0
$\Delta_{0}^{\#4}$ †	0	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	$\frac{1}{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}$	0	0	0
7 ^{#1} †	0	0	0	0	$\frac{4}{a_0 k^2}$	0	0
7 ^{#2} †	0	0	0	0	0	0	0
$\Delta_{0}^{#_{-1}}$ †	0	0	0	0	0	0	$-\frac{2}{a_0+4a_1-4a_2}$

		$\Gamma_{2}^{\sharp 1}{}_{\alpha\beta}$ $\Gamma_{2}^{\sharp 2}{}_{\alpha\beta}$		$\Gamma^{\#3}_{2}{}^{+}{}_{lphaeta}$		$\Gamma_{2^{-} \ lphaeta\chi}^{\#1}$	$\Gamma^{\#2}_{2^-lphaeta\chi}$	
	$\Gamma_2^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4}(a_0 - 2a_1 - a_2)$	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	0	0	
	$\Gamma_{2}^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{3}{4}(a_0+2a_5-6a_7)$	0	0	0	0	
	$\Gamma_{2}^{\#3} \dagger^{\alpha\beta}$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	$-\frac{3}{4} (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)$	0	0	0	
	$h_2^{\#1} \dagger^{\alpha\beta}$	0	0	0	$-\frac{a_0 k^2}{8}$	0	0	
Г	$^{+1}_{2}$ † $^{\alpha\beta\chi}$	0	0	0	0	$\frac{1}{4}(a_0 - 2a_1 - a_2)$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	
Г	\pm^{2}_{2} $\pm^{\alpha\beta\chi}$	0	0	0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	$\left -\frac{3}{4} \left(2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9 \right) \right $	

Unitarity conditions

 $\overline{a_0 < 0 \&\& a_7 > \frac{1}{10} (3 a_0 - 2 a_5 + 16 a_6) \&\& a_{13} > 0}$