

FIG. 2a

FIG. 3

FIG. 4

FIG. 5

EG. 8

DIAGNOSTICS SIGNAL	normal; no cavitation	incipient cavitation; mainly balance hole cavitation	medium cavitation; mainly vane cavitation	full cavitation; large amount of bubbles on the suction eye but no surging	surging cavitation; full blown cavitation with surging	
	CLASS 0	CLASS 1	CLASS 2	CLASS 3	CLASS 4	
		206				

FIG. 9

72

FIG. 10

FIG. 13

Fig. 14b

V 1 T

Fig. 14d

* 2 2

Fig. 14f

8	
- 4	
	A

		404											
405	•	HEALTHY PUMP	PUMP FAULT 1	PUMP FAULT 2	PUMP FAULT 3	PUMP FAULT 4	PUMP FAULT 5	PUMP FAULT 6	PUMP FAULT 7	PUMP FAULT 8	PUMP FAULT 9	PUMP FAULT N-1	PUMP FAULT N
	ᄕ	₹	٩̈́	₹×	A_{Z}	4×	A	۸ ۵	AB	Ą	∢_	A _E	Ą
	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•
	7	A ₈₄	A ₄₅	A ₇₈	A ₁₂	A ₄₇	A ₃₇	A ₁₂₇	A ₁₂₈	A ₂₃₄	A ₃₄	A ₃₃	A ₄₄
	f ₃	A ₇₈	A ₋₆₅	A ₅₆	A ₉₀	A ₄₅	A ₆₇	A ₂₄	A ₁₂	A_{56}	A ₅₆	A ₇₆	A ₆₉
	f ₂	A ₆₇	A ₋₉₀	A ₄₅	A_7	A ₃	A ₁₂	A ₄₇₈	A_{26}	A ₈₃	A ₁₈₇	A ₇₃	A ₄₅
	f	A ₃₄	A ₋₆₈	A ₄₅	A ₄₅	A ₃₆	A ₆₇	A ₂₇	A ₇₈	A ₉₆	A ₃₂	A ₁₆	A ₁₇
	f _o	A ₃	A ₃₄	A ₅₆	A-23	A ₆₇	. A ₇₈	A ₂₃₄	A ₋₉₈	A_{26}	A ₄	A	A ₇₅

FIG. 14g

Divide the collected data into equal sets. Perform Hanning Windowing, FFT on each set to obtain 'Smoothed Periodogram' by averaging all the sets.

Identify the fundamental supply component by locating the component having maximum amplitude in the stator current spectrum. Record its frequency (F_s) and amplitude (FsAmp). Locate multiples of F_s (supply related components)

Calculate synchronous speed of the motor, $F_{\rm sync} = F_{\rm s}$ /polepairs. Locate the *slip frequency related* components by searching between (m $F_{\rm s}$ -2 $F_{\rm slmin}$) and (m $F_{\rm s}$ -10 $F_{\rm slmax}$) for m = 3,5 and 7.

 $F_{\text{slmax}} = F_{\text{sync}} * \text{maximum slip}$ $F_{\text{slmin}} = F_{\text{sync}} * \text{minimum slip}$

Calculate the *slip* from the above components. Locate $F_s + F_r$ and record its amplitude FrAmp where $F_r = F_{sync} * (1-slip)$

Search and locate the remaining 'slip frequency related' harmonics adjacent to other supply related components.

Eliminate all the 'slip frequency related' harmonics between $F_{\rm s}$ /2 and $3F_{\rm s}$ /2 and measure the noise in the region.

noise_1 = [sum of noise between $\{(F_s - L - J) \text{ and } (F_s - L)\} + \{(F_s + L) \text{ and } (F_s + L + J)\}$]

noise_i = [sum of noise between $\{(F_s - L - J(i+1)) \text{ and } (F_s - L - Ji)\} + \{(F_s + L + Ji)\}$ and $\{(F_s + L + J(i+1))\}$]

for i = 2 to 5, L=6*resolution, and J= $F_s/10$

Preprocess the attributes *slip*, *FsAmp*, *SigAmp*, *Noise_1*, *Noise_2*, *Noise_3*, *Noise_4* and *Noise_5* to make them acceptable by the Neural Network algorithms.

330

FIG. 15

328

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

IF all the attributes are NORMAL THEN condition is normal
IF slip is \$2LO and noise_2 is HI THEN condition is low-cav
IF noise_4 and noise_5 are \$VERHI THEN condition is sev-cav
IF noise_4 and noise_5 are \$VERHI THEN condition is sev-cav
IF noise_4 and noise_5 are \$VERHI THEN condition is sev-cav
IF FSAmp is \$2LO and noise_5 is \$2LHI THEN condition is sev-cav
IF FSAmp is \$LO and noise_5 is \$2LHI THEN condition is sev-cav
IF FSAmp is \$LO and noise_4 are HI THEN condition is sev-cav
IF FSAmp is \$LO and noise_4 is HI THEN condition is sev-cav
IF FSAmp is \$LO and noise_4 is \$VERHI THEN condition is sev-cav
IF FSAmp is \$LO and noise_4 is \$NORMAL and noise_5 is \$NORMAL THEN condition is \$\overline{1}\$ in \$\over

Fig. 23

Fig. 24

FIG. 27

FIG. 28

FIG. 29

FIG. 30

089 — - 684 889 690 100 Frequency [Hz] 989 --. 2 0 682

[8b] AAV₂

FIG. 31

FIG. 32

SVAF Power [dB]

SVAF Power (dB)

FIG. 34

FIG. 36

FIG. 40

FIG. 41

FIG. 43

FIG. 44