关于绘图的练习

要求: 请使用 m 文件编写下列问题的求解。

- 1、把窗口分成两行一列,第一行绘制 $y = \tan(x)$, $-1.5 \le x \le 1.5$,步长为 0.1,第二行绘制 $y = \sinh(x)$, x 范围同上。
- 2、用 subplot 画出下列四张图, x 范围在[0,10]。

(a)
$$y = e^x$$
 (b) $y = \sin(x)$ (c) $y = 5x^2 + 2x + 4$ (d) $y = \sqrt{x}$

要求图中应包含 title, x, y 轴标注以及网格线, 每条曲线使用不同的颜色, 采用不同的步长。

- 3、已知矢量 G=[68,83,61,70,75,82,57,5,76,85,62,71,96,78,76,68,72,75,83,93]为《工程学》的期末考试成绩。(a) 画出条形图。(b) 画出 60 以下,60-70,71-90,90 以上四段成绩人数的饼状图,突出显示不及格人数。
- **4**、形变会改变金属的物理特性,对金属冷处理可以增加强度,下表是金属在进行冷处理过程中的强度和延展性数据。

冷处理速度	屈服强度(MPa)	延展性(%)
10	275	43
15	310	30
20	340	23
25	360	17
30	375	12
40	390	7
50	400	4
60	407	3
68	410	2

在 x-v 坐标系中绘制数据的双 v 轴图。显示网格线,设置 x,v 的 label。

- 5、用 randn 创建 1000 个服从正态分布的随机数,分布的均值为 70,标准差为 3.5,根据数据绘制柱状图。
- 6、创建矢量 x 和 y,数据变化范围为-5 到 5,步长为 0.5,将矢量 x 和 y 映射为二维矩阵 x 和 y,根据下述公式计算矢量 z:

$$Z = \sin(\sqrt{X^2 + Y^2})$$

- (a) 用 mesh 创建 Z 的三维图。(b) 用 surf 创建 Z 的三维图,比较单个输入变量(Z)和三个输入变量(X,Y,Z)时输出结果的区别。
- (c)给出曲面图增加渲染阴影效果,并用 colormap 尝试不同的颜色。
- (d)绘制 Z 的等高图。
- (e) 绘制 Z 的曲面图并加上等高线。
- 7、下图是 MODIS 遥感器 36 个波段响应范围,画出其波段响应函数 y=f(x),y 为光谱辐亮度 (W m-² μm-¹ sr-¹),x 为波长 λ,范围为(0.405-14.385 μ m),标出坐标轴 label,标出所属波段 No.,显示网格线。

Band	Bandwidth(µm)	Spectral	Radiance	(W
No.		m ⁻² μm ⁻¹ s	sr ⁻¹)	

1	0.620, 0.670	24.0
1	0.620 - 0.670	21.8
2	0.841 - 0.876	24.7
3	0.459 - 0.479	35.3
4	0.545 - 0.565	29.0
5	1.230 - 1.250	5.4
6	1.628 - 1.652	7.3
7	2.105 - 2.155	1.0
8	0.405 - 0.420	44.9
9	0.438 - 0.448	41.9
10	0.483 - 0.493	32.1
11	0.526 - 0.536	27.9
12	0.546 - 0.556	21.0
13	0.662 - 0.672	9.5
14	0.673 - 0.683	8.7
15	0.743 - 0.753	10.2
16	0.862 - 0.877	6.2
17	0.890 - 0.920	10.0
18	0.931 - 0.941	3.6
19	0.915 - 0.965	15.0
20	3.660 - 3.840	0.45
21	3.929 - 3.989	2.38
22	3.929 - 3.989	0.67
23	4.020 - 4.080	0.79
24	4.433 - 4.598	0.17
25	4.482 - 4.549	0.59
26	1.360 - 1.390	6.00
27	6.535 - 6.895	1.16
28	7.175 - 7.475	2.18
29	8.400 - 8.700	9.58
30	9.580 - 9.880	3.69
31	10.780 - 11.280	9.55
32	11.770 - 12.270	8.94
33	13.185 - 13.485	4.52
34	13.485 - 13.785	3.76
35	13.785 - 14.085	3.11
36	14.085 - 14.385	2.08