ENG115	ENGINEERING MECHANICS L T P 3 0 0					
Co-requisite:	NIL					
Prerequisite:	NIL					
Data Book / Codes/Standards	NIL					
Course Category	P PROFESSIONAL CORE ENGINEERING MECHANICS					
Course designed by	Department of Mechanical Engineering					
Approval	Academic Council Meeting , 2016					

PURPOS	The course aims at providing the solid basis in metalics which is very useful students of core enging mechanical and civil etc. It also gives as introduced dynamics to the students. The fundamental illustrated by the recent examples along with knowledge.	eerir oduc conc	ng bra tion epts	nches relate could	like d to l be
LEARNIN	G OBJECTIVES	STU	DENT	•	
		TUO	СОМ	ES	
At the er	nd of the course, student will be able to				
1.	Get an overview of the various branches of mechanics	а		е	
2.	Understand the physics behind various practical phenomena in the field of mechanical engineering.			е	
3.	Analyze planar and spatial systems to determine the forces in members of trusses, frames.			е	
4.	Calculate the motion parameters for a body subjected to a given force system.	а		е	
5.	Determine the centroid and second moment of area of various objects	а		е	

Sessio n	Description of Topic	Contact hours	C-D-I-O	IOs	Referen ce	
	UNIT I: STATICS OF PARTICLES AND RIGID BODIES	14				
1.	Forces on particles	1	С	1-3	1-4	
2.	Resolution of forces	1	С	1-3	1-4	
3.	Free body diagrams	1	C, D	2-3	1-4	
4.	Equilibrium of particles	1	С	2-3	1-4	
5.	Equilibrium of particles (Numerical Problems)	1	D, I	2-3	1-4	
6.	Forces in a plane	1	С	2-3	1-4	
7.	Forces in space	1	С	2-3	1-4	
8.	Forces in space (Numerical Problems)	1	D, I	2-3	1-4	
9.	Forces in space (Numerical Problems)	1	D, I	2-3	1-4	
10.	Force equivalence	1	C, D	2-3	1-4	
11.	Force equivalence (Numerical Problems)	1	D, I	2-3	1-4	

			1		
12.	Rigid body equilibrium	1	C, D	2-3	1-4
13.	Rigid body equilibrium (Numerical Problems)	1	D, I	2-3	1-4
14.	Rigid body equilibrium (Numerical Problems)	1	D, I	2-3	1-4
	UNIT II: FRICTION	5			
15.	Laws of friction, dry friction	1	C, D, I	2-3	1-4
16.	Wedge friction, rolling friction	1	C, D, I	2-3	1-4
17.	Belt friction,	1	C, D, I	2-3	1-4
18.	Ladder friction	1	C, D, I	2-3	1-4
19.	Screw friction	1	C, D, I	2-3	1-4
	UNIT III: ANALYSIS OF TRUSSES AND CENTROIDS	10			
20.	Types of loads, type of supports, reaction	1	C, D	2-3	1-4
21.	Simple trusses, method of joints	1	C, D	2-3	1-4
22.	Method of joints	1	C, D	2-3	1-4
23.	Method of sections (Numerical Problems)	1	D, I	2-3	1-4
24.	Method of Joints (Numerical Problems)	1	D, I	2-3	1-4
25.	Method of Joints (Numerical Problems)	1	D, I	2-3	1-4
26.	Center of gravity-lines, areas	1	С	5	1-4
27.	Volumes	1	С	5	1-4
28.	Determination of centroid-integration method	1	С	5	1-4
29.	Determination of centroid-integration method (Numerical Problems)	1	D	5	1-4
	UNIT IV: MOMENT OF INERTIAS OF SURFACE AND VOLUMES	6			
30.	Determination of moment of inertia using area integration method,	1	C, D	5	1-4
31.	Determination of moment of inertia using area integration method,	1	C, D	5	1-4
32.	Determination of moment of inertia using area integration method,	1	C, D	5	1-4
33.	Analytical method, radius of gyration	1	C, D	5	1-4
34.	Polar moment of inertia,	1	C, D	5	1-4

35.	Moment of inertia of different sections	1	D, I	5	1-4
	UNIT V: DYNAMICS	10			
36.	Rectilinear motion	1	С	4	1-4
37.	Projectile motion, Newtons second law of motion,	1	С	4	1-4
38.	Projectile motion, Newtons second law of motion,	1	D, I	4	1-4
39.	D'Alemberts principle	1	С	4	1-4
40.	Work, energy	1	С	4	1-4
41.	Impulse momentum	1	С	4	1-4
42.	Impact/collision of elastic bodies	1	С	4	1-4
43.	Oblique impact	1	С	4	1-4
44.	Curvilinear motion	2	С	4	1-4
		45			

LEAF	RNING RESOURCES					
	TEXT BOOKS/REFERENCE BOOKS/OTHER READING MATERIAL					
1	Ferdinand. P. Beer. E, Russell Johnston Jr., David Mazurek, Philip J Cornwell,					
	Vector Mechanics for Engineers: Statics and Dynamics, McGraw - Hill, New Delhi,					
	10th Edition, 2013.					
2	R.K.Bansal, Engineering Mechanics, Laxmi Publications Ltd, 2005					
3	Meriam J.L and Kraige L.G., Engineering Mechanics, Volume I - statics, Volume II					
	- dynamics, John Wiley & Sons, New York,7th Edition, 2012					
4	Timoshenko, Young, Engineering Mechanics, Tata Mc-Graw Hill Book Company,					
	5th Edition, New Delhi					

Course nature				Theory	Theory			
Assessmer	nt Method (Weig	ghtage 100	%)					
In-	Assessment Mid term tool I	Mid term	Mid term	Class learni	Class learning assessment			
semester		II T	CLA1	CL2	Total			
	Weightage	15%	15%	10%	10%	50%		
	End semester examination Weightage: 50%							