- 1. Diga, justificando, quais dos seguintes conjuntos são subespaços vetoriais de \mathbb{R}^2 .
 - (a) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
 - (b) $B = \{(x, y) \in \mathbb{R}^2 : y = 2x\}$
 - (c) $C = \{(x, y) \in \mathbb{R}^2 : 2x 3y = 1\}$
 - (d) $D = \{(x, y) \in \mathbb{R}^2 : 2x 3y = 0\}$
 - (e) $E = \{\lambda(2,1) : \lambda \ge 0\}$
 - (f) $F = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$
- 2. Sejam $u, v \in \mathbb{R}^3$. Mostre que $\langle u, v \rangle = \{\alpha u + \beta v : \alpha, \beta \in \mathbb{R}\}$ é um subespaço vetorial de \mathbb{R}^3 .
- 3. Mostre que o conjunto $W=\{(x,y,z)\in\mathbb{R}^3:\,2x-y-3z=0\}$ é um subespaço vetorial de \mathbb{R}^3 .
- 4. Seja $\mathbf{a} = (a_1, a_2, ..., a_n)$ um vetor não nulo de \mathbb{R}^n e seja $b \in \mathbb{R}$. Em que condições

$$\mathcal{H}_b = \{(x_1, ..., x_n) \in \mathbb{R}^n : a_1 x_1 + ... + a_n x_n = b\} = \{\mathbf{x} \in \mathbb{R}^n : (\mathbf{a} | \mathbf{x}) = b\}$$

é um subespaço vetorial de \mathbb{R}^n ?

- 5. Seja V um \mathbb{R} -espaço vectorial e sejam A e B dois subespaços vectoriais de V. Mostre que a intersecção $A \cap B$ também é um subespaço vectorial de V.
- 6. Escreva, se possível, o vetor $v = (3,3) \in \mathbb{R}^2$ como combinação linear de:
 - (a) $v_1 = (1, 1)$;
 - (b) $v_1 = (1, 2);$
 - (c) $v_1 = (1, 2), v_2 = (4, 2);$
 - (d) $v_1 = (1, 1), v_2 = (2, 2);$
 - (e) $v_1 = (1, -1), v_2 = (0, 1), v_3 = (2, 0).$
- 7. Considere, no espaço vetorial \mathbb{R}^3 , os vetores u=(1,-1,1) e v=(2,1,-2). Diga, justificando, se as seguintes afirmações são verdadeiras.
 - (a) (1, -4, 5) é combinação linear de $u \in v$.
 - (b) $(1, 2, 3) \in \langle u, v \rangle$.

- (c) $\{u,v\}$ é um conjunto gerador de \mathbb{R}^3 (isto é, $\langle u,v\rangle=\mathbb{R}^3$)
- (d) $u \in v$ são linearmente independentes.
- (e) $u, v \in w = (1, 0, 1)$ são linearmente independentes.
- (f) $u, v \in (1, -4, 5)$ são linearmente independentes.
- 8. Para cada alínea, diga, justificando, se os vetores considerados são linearmente independentes.
 - (a) u = (1, 2) e v = (1, 0).
 - (b) u = (1, 2), v = (1, 0) e w = (4, 2).
 - (c) u = (0, 1, 2), v = (-2, -4, 0) e w = (-2, -1, 2).
 - (d) u = (0, 1, 2), v = (-2, -4, 0) e w = (-2, -3, 2).
- 9. Mostre que as funções f_1 e f_2 dadas por $f_1(x) = \cos x$ e $f_2(x) = \sin x$ são dois vetores independentes do espaço vectorial $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- 10. Indique se os seguintes vetores são linearmente independentes, se formam um conjunto gerador de \mathbb{R}^2 e se formam uma base de \mathbb{R}^2 .
 - (a) u = (1, 2) e v = (-1, 0)
 - (b) u = (1, 2)
 - (c) u = (-1, 2) e v = (2, -4)
 - (d) u = (0,1) e v = (-1,0) e w = (1,1).
- 11. Em cada alínea, determine uma base do espaço vetorial considerado e indique a sua dimensão.
 - (a) $V_1 = \{(x, y) \in \mathbb{R}^2 : x = y\}.$
 - (b) $V_2 = \{(x, y, z) \in \mathbb{R}^3 : x = y\}.$
 - (c) $V_3 = \{(x, y, z) \in \mathbb{R}^3 : x 2y + z = 0\}.$
 - (d) $V_4 = \{(x, y, z) \in \mathbb{R}^3 : x 2y + z = 0 \text{ e } z = 0\}.$
- 12. Usando que dim $\mathbb{R}^3 = 3$, diga, justificando, se os vectores considerados formam uma base de \mathbb{R}^3 .
 - (a) u = (0, 1, 2) e v = (-1, 0, 3).
 - (b) u = (0, 1, 2) e v = (-1, 0, 3) e w = (1, 1, 0).
 - (c) u = (0, 1, 2), v = (-1, 0, 3) e w = (1, 1, -1).
 - (d) t = (-3, 2, 1), u = (0, 1, 2), v = (-1, 0, 3) e w = (1, 1, -1).

- 13. Usando que dim $\mathbb{R}^4 = 4$, diga, justificando, se os vetores considerados formam uma base de \mathbb{R}^4 .
 - (a) u = (0, 1, 2, 3) e v = (-1, 0, 3, 0) e w = (1, 1, 0, 0).
 - (b) t = (0, -3, 2, 1), u = (0, 0, 1, 2), v = (0, -1, 0, 3) e w = (0, 1, 1, -1).
 - (c) t = (1, 0, 0, 0), u = (1, 1, 0, 0), v = (1, 1, 1, 0) e w = (1, 1, 1, 1).
- 14. Considere a base de \mathbb{R}^2 formada pelos vetores $v_1 = (1,1)$ e $v_2 = (0,1)$ (nesta ordem). Determine as coordenadas de u = (-2,3) nesta base (isto é o único par (α,β) de números reais tais que $u = \alpha v_1 + \beta v_2$).
- 15. Sejam $u, v \in w$ três vectores não nulos de \mathbb{R}^3 . Mostre que se $u, v \in w$ são ortogonais 2 a 2 então são linearmente independentes. Indique generalizações deste resultado a \mathbb{R}^n .
- 16. Chamamos base ortonormada de \mathbb{R}^n a uma base constituída de n vectores ortogonais dois a dois e de norma 1. Os seguintes vectores formam uma base ortonormada de \mathbb{R}^3 ?
 - (a) $u = (0, \frac{\sqrt{3}}{2}, \frac{1}{2})$ e $v = (0, -\frac{1}{2}, \frac{\sqrt{3}}{2})$ e w = (1, 0, 0).
 - (b) u = (0, 0, 1) e v = (0, 1, 1) e w = (1, 1, 1).
- 17. Seja $\mathcal{P}ol_2(\mathbb{R})$ o espaço vetorial dos polinómios a coeficientes reais de grau 2 ou menos, isto é o conjunto dos $P(x) = ax^2 + bx + c$ com $a, b, c \in \mathbb{R}$.
 - (a) Mostre que os seguintes polinómios $P_0,\,P_1$ e P_2 são linearmente indenpendentes

$$P_0(x) = 1$$
 $P_1(x) = x$ $P_2(x) = x^2$

- (b) Determine uma base de $\mathcal{P}ol_2(\mathbb{R})$. Qual a dimensão de $\mathcal{P}ol_2(\mathbb{R})$?
- (c) É verdade que os seguintes polinómios formam uma base de $\mathcal{P}ol_2(\mathbb{R})$?

$$P(x) = 1$$
, $Q(x) = 1 - x$, $R(x) = (1 - x)^2$.

- 18. Sejam V um espaço vetorial e v_1 , v_2 , v_3 e v_4 vetores de V. Admita que os vetores v_1 e v_2 formam uma base de V.
 - (a) $A = \{v_1, v_2, v_3, v_4\}$ é um conjunto gerador de V?
 - (b) A é constituído por vetores linearmente independentes?
 - (c) $B = \{v_1\}$ é um conjunto gerador de V?
 - (d) B é constituído por vetores linearmente independentes?
 - (e) Seja C um subconjunto de V que gera V. Que pode dizer sobre o número de vetores de C?
 - (f) Seja D um subconjunto de V constituído por vetores linearmente independentes. Que pode dizer sobre o número de vetores de D?
 - (g) Em que condições o conjunto $E = \{v_1, v_4\}$ é um conjunto gerador de V?