

Some Basics of Molecular Biology

Hubert Rehrauer

What is DNA?

- A long backbone of sugars with nucleotides attached
 - Adenine (A)
 - Guanine (G)
 - Cytosine (C)
 - Thymine (T)
- It can form a self-complementary double helix
- In living organisms, the DNA is the carrier of the hereditary information, it is the source code of life

DNA replication

 The helix becomes unzipped and each strand acts as a template for a new complementary strand of DNA

Genome Sizes

The size of the human genome is 3.2 billion base pairs. The length of this DNA string is approx. 2m. http://en.wikipedia.org/wiki/Genome_size

DNA Superstructure

10 01 101

Genes

- A gene is a region of DNA that controls a hereditary characteristic
- Usually a gene is transcribed into a messenger RNA which is then translated into a protein.
- In humans genes constitute only
 ~3% of the human genome

The Central Dogma

Transcription

The transcription process generates a messenger RNA molecule from a gene region. RNA is like DNA but

- the sugar-phosphate is different: ribose instead of deoxyribose
- In all places where the DNA has a T the the RNA has a U (uracil)

In higher organisms the protein coding sequences (exons) are interspersed by non-coding sequences (introns) which are spiced out.

Translation: The Genetic Code

The translation process generates a protein based on the information in the messenger RNA

- A protein is a linear polymer of amino acids linked together by peptide bonds.
- Proteins are the main functional chemicals in the cell, carrying out many functions, for example catalysis of the reactions involved in metabolism.
- Proteins have a complex spatial structure

Zila base ili codoli							
		כ	O	Α	G		
1st base in codon	J	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys STOP Trp	⊃∪∢⊍	3rd base
	С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His GIn GIn	Arg Arg Arg Arg	O>OC	se in codon
	Α	lle lle lle Met	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	DOAG	9
	G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	DCAG	

The Genetic Code

Transcriptional Regulation

Chromatin remodelling and the transcription cycle

Vikki M. Weake and Jerry L. Workman

Transcription by RNA polymerase II (Pol II) occurs in the context of chromatin within a eukaryotic cell. Chromatin is generally inhibitory to transcription, so a variety of mechanisms are required to activate transcription from a nucleosomal template. One of the first steps is that large co-activator complexes interact with small activator proteins to identify gene promoters that are ready to be transcribed. Nucleosome remodelling complexes that use energy from ATP to move or displace

nucleosomes from DNA facilitate the recruitment and assembly of these complexes on the promoter and enable rapid gene activation. Even during transcription elongation, nucleosomes must be removed for efficient passage of the polymerase. Furthermore, these same nucleosomes must be reassembled rapidly and modified appropriately following passage of the polymerase to prevent inappropriate initiation of transcription from promoter-like elements within the coding region.

Transcriptional Regulation

- DNA in a living cell is in a highly compacted and structured state
- Transcription factors and RNA polymerase need ACCESS to do their work
- Transcription is dependent on the structural state SEQUENCE alone does not tell the whole story
- The accessibility of the DNA is controlled by
 - DNA modifications (methylation)
 - Histone modifications
 - DNA binding of Transcription Factors