PA8KCL-80KM 线扫描相机 使用说明书

(V1.4 2021.03.25)

版本记录

版本号	修改日期	说明	
0.1	2016/03/23	初始版本	
0.2	2016/05/12	增加同步功能说明	
0.3	2016/07/30	增加多相机帧同步功能说明	
0.4	2016/10/12	更新常见问题	
0.5	2016/11/10	修正图片序号表格序号	
0.6	2016/12/02	增加相机配置工具	
0.7	2017/03/23	修正 TAP 排列顺序	
0.8	2019/05/07	更新电源规格	
0.9	2019/07/23	①添加产品命名规则 ②更新产品外形图	
		③添加输出模式下信号和端口对应关系表	
	①更新指令列表		
1.0	2019/08/01	②更新相机配置工具图例	
		③更新曝光时间和线周期的设置范围	
1.1	2019/10/08	修正 TAP 排列示意图	
1.2	2019/11/10	更新相机配置工具 IKTool 图例	
1.3	2020/04/08	①增加 DSNU 暗场校正功能	
1.5	20/20/04/08	②增加平场校正功能	
1.4	2021/03/25	新增 CL 小口相机信息	

联系方式

合肥埃科光电科技有限公司

电话: +86-551-65318597 传真: +86-551-65318597

网址: www.i-tek.cn

地址: 安徽省合肥市高新区燕子河路 388 号亿智科技产业园 1 号楼 2 层

邮编: 230088

Hefei I-TEK Optoelectronics Co., Ltd.

Tel: +86-551-65318597 Fax: +86-551-65318597 Website: <u>www.i-tek.cn</u>

Address: 2F, Building #1, Yizhi Sci-tech Industrial Park, No.388Yanzihe Road, High-tech Industry

Development Zone, Hefei230088, P.R.China

商标版权声明

"I-TEK"及其图案是产品商标,版权归本公司所有。

本说明中使用的"埃科光电"、"I-TEK"均指合肥埃科光电科技有限公司。

		目 录	
版	〔本记录		2
联	关系方式		3
目	录		4
1	敬生		6
2	产品命名规则		7
3	产品外形		8
4	产品规格		9
	4.1 主要特性		9
	4.2 相机规格		9
	4.3 相机结构		10
	4.4 光谱响应		10
	4.5 相机使用		11
	4.6 认证 RoHS		11
5	机械尺寸和接口		12
	5.1 机械外形图		12
	2, 2, , ,		13
	5.2.1 相机状态指	示灯	13
	5.2.2 电源接口		13
	5.2.3 数据接口		14
6			20
	6.1 触发模式		20
			20
			20
			21
			22
			22
			22
			23
			24
			24
			25
			25
			26
			26
7			27
			27
			27
			28
8			29
			29
			29
			29
	8.2.2 相机		30

	8.2.3 语言	31
	8.2.4 关于	32
	8.3 相机配置区域	
	8.3.1 常用	32
	8.3.2 高级	33
	8.3.3 查找表	35
	8.3.4 数字处理	35
	8.4 状态栏	37
Q	党 II II III	38

1 警告

一般警告

- ① 禁止摔打,损坏,拆卸,修复或者自行改变相机。
- ② 禁止让儿童自行接触相机。
- ③ 禁止将相机用作规范要求以外的其它用途。
- ④ 如果相机出现问题,请及时联系技术支持。

安装维护

- ① 尽量不要在太阳直射下或湿度较高或者灰尘较多环境下安装相机。
- ② 尽量让相机远离强磁场环境。
- ③ 尽量让相机远离热源。
- ④ 注意不要让相机泡在液体中,如水,饮料等。
- ⑤ 尽量时常清除相机外部灰尘,避免灰尘进入相机造成异常。
- ⑥ 清除相机灰尘时,不要用水洗,请用柔软物体进行擦除。

电源

- ① 推荐+12V±10% 电压接入, 电流要求 0.5A。
- ② I-TEK 不提供外接电源,请用户自行处理电源接入。

文档

① I-TEK 不保证该文档为最终版本,文档在产品升级或者修改后也会进行更新,如用户需要最新文档,请主动联系 market@i-tek.cn 索取,对于授权用户,I-TEK 将无偿提供对应产品的最新文档。

2 产品命名规则

相机产品型号说明:

线扫描相机+大幅面扫描相机+高速面扫描相机说明如下:

各类相机:

线扫描相机

PA: Panther (黑豹—工业线阵相机) PL: Plasma (等离子—工业线阵相机)

大幅面扫描相机

HS: Hercules (大力神—CCD 工业面阵相机)

TTS: TEC- Taurus(半导体冷却—金牛座—CMOS 工业面阵相机) THS: TEC- Hercules(半导体冷却—大力神—CCD 工业面阵相机)

高速面扫描相机

TS: Taurus (金牛座—CMOS 工业面阵相机)

XS: XStream (极速—超高速相机)

接口规格:

GV: GigE Vision
CL: Camera Link
CXP: CoaXPress
U30: USB3.0

色彩形式:

M: Monochrome (黑白) C: Color (彩色) F: Full Color (RGBC 四线输出,支持 RGBC)

T: 黑白 TDI (多线时间延迟积分)

行频或帧率:

线扫描相机:最高行频,如 30kHz 面扫描相机:最高帧率,如 4000fps

e.g.

3 产品外形

CL 大口相机:

CL 小口相机:

图 1 相机外形图

注意

- ① 相机前端面提供 4 个 M3 螺孔位用于固定相机,孔间距为 69x78mm。
- ② 相机详细尺寸说明请参考下文中"机械尺寸"章节。

4 产品规格

PA8KCL-80KM 相机专门设计用于工业自动化检测领域的高速线扫描应用,由 I-TEK 自主研发和生产。相机内部集成了国际领先的高速线阵图像传感器(分辨率 8192X1),大规模现场可编程逻辑门阵列并行处理器,通过高速工业 Camera Link 总线对外输出数据(行频 80kHz),同时具备了高速、高灵敏度和低噪声的特点。

4.1 主要特性

- 全局快门 CMOS 传感器
- 全分辨率高达 8192 像素
- 高达 80kHz 行频
- 高灵敏度及低噪声
- 曝光时间灵活控制(指令配置、外部脉宽控制)
- 最小曝光时间 2.5 µs, 曝光时间步长 0.1 µs
- 水平 Binnging 2x1 可选
- 用户可配置伽玛表
- 输出像素格式 8/10bit 可选
- 模拟增益/数字增益/偏置控制
- 扫描方向可用户配置
- Camera Link Base/Medium/Full 支持,支持多种 Camera Link 输出模式
- 实时温度监控

4.2 相机规格

表 1 PA8KCL-80KM 产品规格

型号	PA8KCL-80KM
产品描述	8192 像素高速工业线扫描相机
分辨率	8192 x 1
像元规格	7μm x 7μm
传感器类型	全局快门 CMOS
图像类型	黑白
传感器长度	57.3mm
动态范围	64dB
镜头接口	M72*0.75
最高行频	80kHz@8TAP
同步方式	自由运行、外部脉冲触发、外部脉宽调制触发
外部触发	Camera Link CC1 输入
曝光控制	定时、脉宽控制
曝光时间	2.5μs~10s(步长: 0.1μs)
数据格式	8/10bit
工作温度	0~65°C
数据接口	Camera Link Full

像素时钟	40/60/70/80/85MHz 可选	
数据率	680MB/s	
电源	DC12V +/-10% 0.5A	
功耗	5W	
外形尺寸	78mm x 87mm x 41mm	
重量	329.8g	

4.3 相机结构

图 2 相机内部实现结构

PA8KCL-80KM 基于 8192 x 1 分辨率高速线扫描图像传感器设计,像素阵列由全局快门控制系统进行统一采样保持,由模拟前端转换为数字信号,FPGA 和微处理器进行相关的算法处理后,经过 Camera Link 接口传输给 PC 端采集卡。相机可接受外部信号触发采集,来源为 Camera Link 接口的 CC1 信号线。

相机内嵌了包括平场校正、翻转、Binning 等图像处理算法,均在 FPGA 中实时实现。

4.4 光谱响应

10/38

4.5 相机使用

- (1) 工作温度: 0℃~65℃,湿度20%~80%;储存温度: -20℃~60℃。
- (2) 相机内传感器有防尘密封设置,可有效防止尘土进入传感器表面。如果镜头盖打开,则可能会使尘土进入,故相机未使用时,请拧紧镜头盖。

4.6 认证 ROHS

相机所有部件(包括元器件、PCB、外壳)均符合 RoHS 标准。

5 机械尺寸和接口

5.1 机械外形图

CL 大口相机:

PA8KCL-80KM Camera Mechanical Dimensions(in mm)

CL 小口相机:

PA8KCL-80KM Camera Mechanical Dimensions(in mm)

图 4 相机详细机械尺寸

注: 机械图纸中 φ65 是灰度镜的压环直径, 灰度镜为可选配件。

5.2 接口设计

图 5 相机外部接口定义

- (1) Camera Link 接口 2 (Medium/Full)
- (2) 6 芯 12V 电源输入
- (3) 相机状态指示灯
- (4) Camera Link 接口1 (Base)
- (5) Type-C 接口

5.2.1 相机状态指示灯

相机状态指示灯用于反映相机的实时状态,如下表所示:

表 2 相机状态指示灯信息

LED 状态指示灯	相机状态
绿灯常亮	正常
绿灯闪烁	外触发模式下,3秒内未检测到触发信号
红灯常亮	处理器启动过程中
红灯闪烁	相机异常 (联系维修人员)
黄灯常亮	相机正在进行内部校正

5.2.2 电源接口

电源接口采用 6 芯插座(针),其规格型号为: Hirose HR10A-7R-6PB(Male)。 对应的电源线端插头规格型号为: Hirose HR10A-7P-6S(Female)。 相机背部电源接口如下图所示:

图 6 电源接插件

表 3 电源接插件管脚定义

信号	管脚	信号	管脚
+12 V	1	GND	4
+12 V	2	GND	5
+12 V	3	GND	6

5.2.3 数据接口

PA8KCL-80KM 采用了 Camera Link 接口作为数据输出接口,Camera Link 接口为业界标准接口,信号定义如下:

(a) CL 大口

(b) CL 小口

图 7 Camera Link 接口

表 4 Camera Link 接口 1 管脚定义

PAIR List	Pin	Signal Name	Туре	Description
DAID O	1	Ground	Ground	Cable Shield
PAIR 0	14	Ground	Ground	Cable Shield
DAID 1	2	Х0-	LVDS-Out	Camera Link Transmitter
PAIR 1	15	X0+	LVDS-Out	Camera Link Transmitter
DAID 2	3	X1-	LVDS-Out	Camera Link Transmitter
PAIR 2	16	X1+	LVDS-Out	Camera Link Transmitter
PAIR 3	4	X2-	LVDS-Out	Camera Link Transmitter
PAIK 3	17	X2+	LVDS-Out	Camera Link Transmitter
PAIR 4	5	XCLK-	LVDS-Out	Camera Link Transmitter
PAIR 4	18	XCLK+	LVDS-Out	Camera Link Transmitter
PAIR 5	6	Х3-	LVDS-Out	Camera Link Transmitter
PAIR 3	19	X3+	LVDS-Out	Camera Link Transmitter
PAIR 6	7	SerTC+	LVDS-In	Serial Data Receiver
PAIR 6	20	SerTC-	LVDS-In	Serial Data Receiver
PAIR 7	8	SerTFG-	LVDS-Out	Serial Data Transmitter
PAIK /	21	SerTFG+	LVDS-Out	Serial Data Transmitter
PAIR 8	9	CC1-	LVDS-In	Software External Trigger
PAIK 8	22	CC1+	LVDS-In	Software External Trigger
PAIR 9	10	N/C	N/C	N/C
PAIR 9	23	N/C	N/C	N/C
PAIR 10	11	N/C	N/C	N/C
PAIR 10	24	N/C	N/C	N/C
DAID 11	12	N/C	N/C	N/C
PAIR 11	25	N/C	N/C	N/C
PAIR 12	13	Ground	Ground	Cable Shield
FAIK 12	26	Ground	Ground	Cable Shield

表 5 Camera Link 接口 2 管脚定义

PAIR List	Pin	Signal Name	Туре	Description
PAIR 0	1	Ground	Ground	Cable Shield
PAIR 0	14	Ground	Ground	Cable Shield
D. I ID. 1	2	Y0-	LVDS-Out	Camera Link Transmitter
PAIR 1	15	Y0+	LVDS-Out	Camera Link Transmitter
DAID 2	3	Y1-	LVDS-Out	Camera Link Transmitter
PAIR 2	16	Y1+	LVDS-Out	Camera Link Transmitter
DAID 2	4	Y2-	LVDS-Out	Camera Link Transmitter
PAIR 3	17	Y2+	LVDS-Out	Camera Link Transmitter
DAID 4	5	YCLK-	LVDS-Out	Camera Link Transmitter
PAIR 4	18	YCLK+	LVDS-Out	Camera Link Clock Tx
D. ID. 5	6	Y3-	LVDS-Out	Camera Link Channel Tx
PAIR 5	19	Y3+	LVDS-Out	Camera Link Channel Tx
DAID (7	-	Not Used	G
PAIR 6	20	-	Not Used	Connected with 100 ohm
D.4.ID. 7	8	Z0-	LVDS-Out	Camera Link Transmitter
PAIR 7	21	Z0+	LVDS-Out	Camera Link Transmitter
DAID 0	9	Z1-	LVDS-Out	Camera Link Transmitter
PAIR 8	22	Z1+	LVDS-Out	Camera Link Transmitter
DAID 0	10	Z2-	LVDS-Out	Camera Link Transmitter
PAIR 9	23	Z2+	LVDS-Out	Camera Link Transmitter
D.1 ID. 10	11	ZCLK-	LVDS-Out	Camera Link Transmitter
PAIR 10	24	ZCLK+	LVDS-Out	Camera Link Clock Tx
DAID 11	12	Z3-	LVDS-Out	Camera Link Channel Tx
PAIR 11	25	Z3+	LVDS-Out	Camera Link Channel Tx
DAID 10	13	Ground	Ground	Cable Shield
PAIR 12	26	Ground	Ground	Cable Shield

PA8KCL-80KM 相机支持 Camera Link Full 模式输出,即最大可以 8Tapx8bit 输出。

注意:

当相机工作时,须将 Base 接口(CL1)和 Medium/Full 接口(CL2)按相机背面指示连接,否则采集卡无法连接相机。

各输出模式下信号和端口对应关系如下表所示:

表 6 输出模式下信号和端口对应关系(2tap @ 8/10bit)

	8bit	10bit
	2tap/8bit	2tap/10bit
Port A0	A0	A0
Port A1	A1	A1
Port A2	A2	A2
Port A3	A3	A3
Port A4	A4	A4
Port A5	A5	A5
Port A6	A6	A6
Port A7	A7	A7
Port B0	В0	A8
Port B1	B1	A9
Port B2	B2	-
Port B3	В3	-
Port B4	B4	В8
Port B5	B5	В9
Port B6	В6	-
Port B7	В7	-
Port C0	-	В0
Port C1	-	B1
Port C2	-	B2
Port C3	-	В3
Port C4	-	B4
Port C5	-	В5
Port C6	-	В6
Port C7	-	В7

表 7 输出模式下信号和端口对应关系(4tap @ 8/10bit)

	8bit	10bit
	4tap/8bit	4tap/10bit
Port A0	A0	A0
Port A1	A1	A1
Port A2	A2	A2
Port A3	A3	A3
Port A4	A4	A4
Port A5	A5	A5
Port A6	A6	A6
Port A7	A7	A7
Port B0	В0	A8
Port B1	B1	A9
Port B2	B2	-
Port B3	В3	-
Port B4	B4	В8
Port B5	B5	В9
Port B6	В6	-
Port B7	В7	-
Port C0	C0	В0
Port C1	C1	B1
Port C2	C2	B2
Port C3	C3	В3
Port C4	C4	B4
Port C5	C5	В5
Port C6	C6	В6
Port C7	C7	В7

	8bit	10bit
	4tap/8bit	4tap/10bit
Port D0	D0	D0
Port D1	D1	D1
Port D2	D2	D2
Port D3	D3	D3
Port D4	D4	D4
Port D5	D5	D5
Port D6	D6	D6
Port D7	D7	D7
Port E0	-	C0
Port E1	-	C1
Port E2	-	C2
Port E3	-	C3
Port E4	-	C4
Port E5	-	C5
Port E6	-	C6
Port E7	-	C7
Port F0	-	C8
Port F1	-	C9
Port F2	-	-
Port F3	-	-
Port F4	-	D8
Port F5	-	D9
Port F6	-	-
Port F7	-	-

表 8 输出模式下信号和端口对应关系(8tap @ 8bit)

	8bit
	8tap/8bit
Port A0	A0
Port A1	A1
Port A2	A2
Port A3	A3
Port A4	A4
Port A5	A5
Port A6	A6
Port A7	A7
Port B0	В0
Port B1	B1
Port B2	B2
Port B3	В3
Port B4	B4
Port B5	B5
Port B6	В6
Port B7	В7
Port C0	C0
Port C1	C1
Port C2	C2
Port C3	C3
Port C4	C4
Port C5	C5
Port C6	C6
Port C7	C7
Port D0	D0
Port D1	D1
Port D2	D2
Port D3	D3
Port D4	D4
Port D5	D5
Port D6	D6
Port D7	D7
Port E0	E0
Port E1	E1
Port E2	E2
Port E3	E3
Port E4	E4
Port E5	E5
Port E6	E6
Port E7	E7

	8bit
	8tap/8bit
Port F0	F0
Port F1	F1
Port F2	F2
Port F3	F3
Port F4	F4
Port F5	F5
Port F6	F6
Port F7	F7
Port G0	G0
Port G1	G1
Port G2	G2
Port G3	G3
Port G4	G4
Port G5	G5
Port G6	G6
Port G7	G7
Port H0	Н0
Port H1	H1
Port H2	H2
Port H3	НЗ
Port H4	H4
Port H5	Н5
Port H6	Н6
Port H7	H7
Port I0	-
Port I1	-
Port I2	-
Port I3	-
Port I4	-
Port I5	-
Port I6	-
Port I7	-
Port J0	-
Port J1	-
Port J2	-
Port J3	-
Port J4	-
Port J5	-
Port J6	-
Port J7	-

6 相机特性

本章对 PA8KCL-80KM 相机的内部特性做详细介绍。

6.1 触发模式

PA8KCL-80KM 相机支持 3 种触发模式: 自由运行模式,外部脉冲触发模式,外部脉宽调制触发模式。

6.1.1 自由运行模式

自由运行控制模式下,相机内部逻辑自动产生相机控制时序,使得相机产生图像正常输出, 无需用户提供外部触发信号。

图 8 自由运行模式

自由运行模式下,曝光时间和线周期(帧率的倒数)均可通过命令设置,范围从 2.5μs 至 25s。需要注意线周期应不小于一行的读出时间,并且要大于所设定的曝光时间和曝光最小间隔参数之和。相机运行时序如上图所示。

PA8KCL-80KM 最小曝光时间为 2.5μs, 曝光时间最小间隔为 2μs, 线周期最短为 12.5μs。 用户可以通过串口进行指令配置, 具体指令在第 7 章详述。

6.1.2 外部脉冲触发模式

该模式下,相机在外触发信号上升沿开始曝光,而曝光时长则通过寄存器的形式配置。这时的帧率是由外触发脉冲上升沿之间的间隔决定的。

图 9 外部脉冲触发模式

需要注意从外触发上升沿到相机内部曝光真正开始,存在一段持续时长 1μs 的曝光延迟。另外,为了让相机正确检测到每个外触发脉冲,外触发脉宽必须大于 50ns。

为了得到更高的帧率,可以在上一帧曝光结束后,相机读取当前帧时,发起新的触发脉冲启动曝光。由于必须保证前后两帧的读取阶段不冲突,因此间隔小于 1 帧读出时间 12.5μs 的外触发会被相机自动忽略(如下图中的 Ignored)。

图 10 外触发间隔太短

6.1.3 外部脉宽调制触发模式

该模式下,曝光开始于外触发的上升沿,而在下降沿结束曝光,即曝光时间等于外触发的高 电平持续时间,而帧周期等于脉冲间隔。

图 11 高电平触发模式

同样的,相机内部真正曝光时间相对于外触发边沿存在 $1\mu s$ 的整体延迟,但曝光时间长度是严格等于外触发高电平宽度的。

需要注意的是,相机最小曝光时间是 2.5μs, 该模式下外触发高电平也应该保证大于 2.5μs 的时间, 低于该宽度的脉冲, 相机将一律按照 2.5μs 曝光时间处理。

同样的,该模式下曝光间隔必须满足 $2\mu s$ 的时间,因此本次外触发的下降沿,至下次外触发的上升沿之间也应该持续 $2\mu s$ 以上的时间间隔。

如果外触发间隔过短,会导致相机前后两帧读出时间冲突,这时相机内部会忽略不满足要求的脉冲,使得相机能维持正常运行(如下图所示)。因此该模式下,应保证相邻外触发的下降沿间距大于一帧读出时间 12.5us。

图 12 高电平触发模式下外部触发间隔太短

6.2 水平像素合并

相机在正常曝光采集后,把相邻两个像素的数值做求和运算,然后做为一个单独的像素值输出。通过像素合并功能,可以提高大约 1.4 倍的信噪比,并且一帧的有效像素变为原来的一半(从8192减少到 4096),用户应注意采集卡端关于行分辨率的参数设置。

图 13 水平 2x1 Binning

6.3 图像水平翻转

图像沿着 X 方向翻转,用户可以利用这个功能改变相机扫描方向,其效果如下图所示:

图 14 水平翻转

6.4 查找表 LUT

LUT 利用一个 10bit 输入,10bit 输出查找表,将原始图像的值进行映射转换,用户可以利用这个功能实现伽玛校正。相机带有出厂默认配置的查找表,也提供2个用户自配置的查找表空间。

图 15 LUT 结构

下图为实现 Gamma=0.5 的 LUT 映射曲线:

图 16 Gamma 为 0.5 对应的查找表

6.5 平场校正

由于半导体工艺的不一致性,阵列图像传感器各个像素的响应存在一定差异,表现在对相同 亮度的信号,输出数据有一定差异。PA8KCL-80KM 相机内部提供了平场校正功能,用户可以在 实际使用时,通过对均匀强度目标的信号校正参数,来实现平场效果。平场校正效果如下图所示:

图 17 平场校正效果

6.6 测试图像

测试图像一般用于测试数据链路是否通畅,便于用户进行各种调试。

下图所示即为平行条纹模式,输出的图像水平方向数据不断递增,到最大值后重新从0开始计数,循环反复。

图 18 测试图像

此外,若用户对测试图像有特别要求(如滚动条纹等),可以联系我公司咨询定制。

6.7 CAMERA LINK 输出模式

数据输出采用 Camera Link 接口: 40M、60M、70M、80M、85M 多种时钟可选,并且支持 Base、Medium、Full 多种模式,其 Tap 排列如下所示:

CL 大口相机:

Base:

Full:

CL 小口相机:

Base:

Medium:

Full:

图 19 Camera Link 输出模式

6.8 数据格式

PA8KCL-80KM 提供 8bit 和 10bit 两种像素数据位宽, 如果是 8bit 的位宽, 相当于截取 10bit 数据的高 8 位。

图 20 数据格式

6.9 增益&偏置

相机增益分为模拟增益和数字增益。

模拟增益作用于模拟信号,又细分为 AD 前模拟增益(PGA 增益)和 AD 变换增益,模拟增益对信号信噪比影响较大,通常而言,模拟增益越大,信噪比越高,但是模拟增益太大带来的问题是暗电流水平高,信号动态范围小,外界光照增大后溢出的像素较多,或者说输出图像质量更容易受外界光照影响。所以通常而言,模拟增益必须设置在合理范围内,不是设置为越大越好。数字增益即对 AD 转换之后的数字数据进行放大或者缩小,通常用于增大输出图像的动态范围,和图像亮度调节方面。

偏置调整也分为模拟和数字两个部分,模拟偏置影响前端输出的暗电流水平,调整此参数可以调整有效图像输出范围;对于数字偏置而言,其调整的是数字化之后的数据,主要用于图像背景亮度调节。

6.10 相机温度

PA8KCL-80KM 支持相机温度实时获取,用户可以通过读取相机温度值监测前端传感器的工作状态。

本相机工作环境温度建议 0° ~ 40° ,内部工作温度范围为 0° ~ 65° ,如用户检测到温度异常(如超过 70°),建议立刻停止相机工作,并联系我司技术支持。

6.11 加载/保存配置参数

相机支持3套工作参数集,包括1套出厂默认参数集和2套用户参数集。

出厂参数集可以应对大多数场景的使用。

用户也可以依据实际应用需求,自行配置工作参数,并保存到用户参数集中,便于重新上电 后自行加载。相机每次会选择最后一次保存的参数集自动加载。

由于相机的参数之间存在相关性,当修改参数后导致相机工作异常时,用户可以恢复到出厂 默认参数集,然后在此基础上重新设置参数并保存。

7 相机配置

PA8KCL-80KM 相机支持用户通过 Camera Link 接口的串口通道发送控制命令到相机,配置相机工作模式及相关参数。

7.1 通信串口参数

表9 通信串口参数

串口参数	配置参数
波特率	9600
数据位	8
校验位	无
停止位	1
流控制	无

7.2 指令格式

相机端接收的指令依据是否携带数据分为以下两种:

纯指令:

[CMD]=[CR]

数据配置指令:

[CMD]=[VAL][CR]

相机端接收到指令后,会返回信息,其格式也分为两种:

格式 1:

收到常规指令,执行完毕后,返回>Ok

例如输入: load=0[CR]

反馈: >Ok[CR]

格式 2:

收到读取内部信息指令,则在>Ok 前插入相应的信息

例如输入: list[CR]

反馈: >[MEM][CR]>Ok[CR]

注:

[CMD] 指令, 4byte

[VAL] 数据,不超过 4 位 10 进制数值

[MEM] 内存数据

[CR] 0x0D

若输入指令格式错误,则反馈的 Ok 会被替换成错误码,具体如下表所示:

表 10 相机指令执行失败时返回的错误码

返回值	指令分析结果
Ok	正确
0	正确,等同于 Ok
128	指令不存在
130	和其他参数相互冲突
131	参数数值越界或不符合要求
132	当前状态不允许执行此指令
133	输入指令语法解析错误

7.3 指令列表

PA8KCL-80KM 相机支持的串口命令列表如下所示,用户通过串口连接相机后,可以输入相关指令对相机进行配置。

表 11 相机指令列表

Command	Syntax	Description
7015	LOAD 0/1/0/ /15	Load Configuration From Flash (0/1/2//15:
LOAD	DAD LOAD=0/1/2//15	Factory/User1/User2//User15)
CANE	SAVE SAVE=1/2//15	Save Current Configuration To Flash (1/2//15:
SAVE		User1/User2//User15)
LIST	LIST	Show Current Configurations Parameters
TEMP	ТЕМР	Get Current Camera Temperature
PAGN	PAGN=0/1	Set Camera PGA Gain (0 to 1: x1 to x4)
ANGN	ANGN=62/87/132	Set Camera Analog Gain (valid values are: 62, 87, 132)
SYNC	SYNC=0/1/2	Set Synchronization Mode (0/1/2: Internal Free Run/External Pulse/External PWM)
CLNK	CLNK=0/1/2/3/4	Set Camera Link Mode (0 to 4: 8b/10b@2tap, 8b/10b@4tap,
CLNK	CLINK=0/1/2/5/4	8b@8tap)
PCLK	PCLK =0/1/2/3/4	Set Camera Link Pixel Clock (0 to 4: 40/60/70/80/85 MHz)
TEXP	TEXP=[2.5,10000000]	Set Exposure Time All Lines in microsecond (2.5us to 10s)
TPRD	TPRD=[12.5,10000000]	Set Line Period Time in microsecond (12.5us to 10s)
DMOD	DMOD=0/1/2	Set Data Mode (0/1/2: Original/Corrected/Test Pattern)
HDIR	HDIR=0/1	Set Horizontal Scan Direction (0/1: Left to Right/Right to Left)
PRNU	PRNU=0/1	Set PRNU Correction Mode (0/1: Disable/Enable)
DCAL	DCAL=0/1	Run PRNU Calibration (0/1: Init/Calibrate)
BCAL	BCAL	DSNU Noise Baseline Calibration
DSNU	DSNU=0/1	DSNU Noise Correction (0/1 Disable/Enable)
DIGN	DIGN=data(double)	Set Digital Gain (maximum x8)
DIOS	DIOS=[-1023,+1023]	Set Digital Offset (-1023 to 1023)
BINN	BINN=0/1	Set Horizontal Binning Mode (0/1: 1x1/2x1)
SLUT	SLUT=0/1	Set Lookup Table Mode (0/1: Disable/Enable)
RLUT	RLUT	Read Lookup Table Data
WLUT	WLUT=addr,data	Write Lookup Table Data (addr,data)
ANOS	ANOS=[0,1023]	Set Analog Offset (0 to 1023)
FFCM	FFCM=0/1	Set Flat Filed Correction Mode (0/1: Disable/Enable)
LPFW	LPFW=[0,255]	Set Low Pass Filter Window Size (0 to 255)
DREF	DREF=[128,1023]	Set Flat Field Correction Reference Value (128 to 1023)
FFCS	FFCS=[0, 8191]	Set Flat Field Correction Window Offset (0 to 8191)
FFCW	FFCW=[1,8192]	Set Flat Field Correction Window Width (1 to 8192)
VBIN	VBIN=0/1	Set Vertical Binning Mode (0/1: 1x1/1x2)
BAUD	BAUD=[4800,460800]	Set Camera Link Serial Port Baudrate (4800 to 460800 bps)

8 相机配置工具

I-TEK 设计了专用的相机配置工具软件 IKTool,用于用户直接对相机进行参数设置和指令配置等相关操作。

8.1 IKTOOL 图形界面

IKTooL 主界面包括菜单栏、相机配置区域和状态栏几个主要部分,如下图所示。

图 21 图形界面

8.2 菜单栏

IKTool 菜单栏包括"文件"、"相机"、"语言"和"关于"四个主菜单,每个主菜单下包含若干子菜单,其中"文件"菜单主要提供相机参数加载、保存和读取功能;"相机"菜单主要提供相机搜索、控制对话框;"语言"菜单主要提供中英文切换功能;"关于"菜单提供软件及当前连接相机信息。接下来进行详细介绍。

8.2.1 文件

图 22 "文件"菜单

加载设置:

用于从相机Flash中读取配置参数,并加载。用户可以选择加载出厂设置参数或用户参数(包括用户1到用户15)。

保存设置:

将当前相机配置参数保存到相机Flash中,注意只能保存到用户参数中(用户1到用户15)。

系统升级:

用于更新系统固件,用户可以选择更新FPGA或MCU固件。

读取当前配置:

读取相机当前配置参数,并更新软件显示。

退出:

退出IKTool软件。

8.2.2 相机

图 23 "相机"菜单

扫描相机:

单击该选项会弹出相机扫描窗口,用于搜索当前计算机上已连接的相机,并选择需要配置的相机进行连接和操作。

注意:单击此选项之后会关闭已经打开的相机。

相机扫描窗口如下图所示,其中对本机可识别的相机做了列表,用户可以选择需要配置的相机,并点击"确定"按钮返回;此时软件会读取并显示所选相机的配置参数。用户也可以点击"探测"按钮再次进行相机搜索。

图 24 相机扫描窗口

控制终端:

单击该选项会弹出指令配置窗口,用户可以在本窗口中手动输入配置指令更改相机参数或配置相机,如下图所示。(配置指令请参考7.3)

图 25 指令配置窗口

通过回车发送: 选择是否启用"回车"键作为发送

8.2.3 语言

图 26 "语言"菜单

为了方便用户使用,IKTool新增了Chinese和English的中英文切换功能,解决了在软件使用过程中存在的语言障碍。

8.2.4 关于

图 27 "关于"菜单

关于:显示软件及当前连接相机相关信息(型号名称,版本,序列号等)

8.3 相机配置区域

完成相机连接后,相机配置区域将在几个不同的页面中显示相机相关参数。PA8KCL 相机的配置区域包括"常用"、"高级"、"查找表"和"数字处理"四个标签页。

8.3.1 常用

"常用"标签页中主要进行相机的通用参数设置,包括:增益和偏置设置,曝光模式、线周期和曝光时间设置。

图 28 常用

< 增益和偏置 >

模拟增益:

设置相机模拟增益,有x1/x2/x4/x8四种增益供选择。

模拟偏置:

用户可以通过微调按钮,或者在编辑框中直接设置模拟偏置量,然后点击"设置"按钮将参数 配置到相机。

< 曝光 >

同步模式:

选择相机触发模式,用户可将相机设置为内部自由运行、外部脉冲触发和外部脉宽调制触发 三种模式中的一种。

线周期:

设置相机线扫描周期,单位为μs,范围为12.5μs~10s。

曝光时间:

设置曝光时间,曝光时间的范围为2.5μs~10s。

注意:最小线周期(亦即最大行频)受相机连接模式和曝光时间限制,一般线周期需要大于曝光时间2.3μs以上。

8.3.2 高级

"高级"标签页中主要进行相机的高级参数设置,包括:相机连接模式、像素时钟、数据模式、扫描方向、DSNU校正、合并模式和串口波特率配置等。

图 29 高级

相机连接模式:

用户可以在此选择相机连接的模式,PA8KCL-80KM 相机支持 8bit 和 10bit 位宽下的 2TAP/4TAP 和 8TAP 规格,共计五种模式。

像素时钟:

选择 Camera Link 总线的像素时钟频率,PA8KCL-80KM 相机支持 40/60/70/80/85MHz 五种不同的像素时钟,降低用户对线缆的要求。

数据模式:

选择图像数据模式,用户可以选择原始图像、校正后的图像以及测试图像进行输出。

扫描方向:

选择相机扫描方向,PA8KCL-80KM 相机支持用户选择从左向右和从右向左两种扫描方向,便于用户适应机械安装方向。

< DSNU>

DSNU 校正:

禁用:禁用暗场(DSNU)校正。

使能: 启用暗场(DSNU)校正。

初始化:

恢复 DSNU 校正参数为出厂设置参数。

执行:

执行 DSNU 校正。

< 模式 >

垂直合并模式:

设置像素垂直合并模式,有 1x1/1x2 两种模式供选择。

合并模式:

设置像素拼接模式,有 1x1/2x1 两种模式,默认为 1x1 输出;注意在 2x1 模式下,相机输出分辨率减半。

波特率:

用户可以在此下拉选项框设置波特率,范围从 4800bps~460800bps。

8.3.3 查找表

"查找表"标签页中主要进行用户查找表(LookupTable)设置。用户可以读取相机或文件的查找表并进行显示,也可以将读取的查找表存储为 CSV 文件,或者写入相机中,如下图所示。

图 30 查找表

B 样条:

选择是否启用 B 样条曲线。

< 图表 >

从文件导入:

加载计算机中的查找表数据文件(CSV 文件)。

导出到文件:

保存当前查找表到 CSV 文件中。

从相机读取:

读取相机中的查找表数据。

写入到相机:

保存当前查找表数据到相机中。

伽马:

在文本框中写入伽马值,然后点击"计算"按钮,IKTool 软件会计算对应伽马值的查找表,并在图像框中显示。

模式:

选择在相机中是否启用查找表。

8.3.4 数字处理

图 31 数字处理

< 平场校正 >

校正:

此功能适用于由于镜头或者光源造成的图像灰度值不均匀,相机可以将图像校正为均匀图像。

禁用:不启用平场校正功能。

使能: 启用平场校正功能。

使能低通滤波器:

勾选此功能代表启用低通滤波功能,一般此功能适用于在平场校正的图像不是均匀的白色, 存在异色。

宽:

此为低通滤波宽度,建议设置 0~7 之间。

标准参考模式:

禁用:禁用标准参考模式,相机平场校正的目标灰度值为图像的最高灰度值。

使能: 启用标准参考模式,相机平场校正的目标灰度值为参考值灰度,建议参考灰度值为平均灰度 1~2 倍之间。

偏移量:

设置平场校正向左开始位置偏移的像素值,设置值为0~8192。

宽度:

设置平场校正区域宽度像素,设置值<8192-偏移量。

初始化:

恢复平场校正参数为出厂校正参数。

执行:

执行平场校正。

< 手动平场校正 >

导入图像,点击"开始"按钮进行手动平场校正。

< 数字处理 >

数字增益:

用户可以通过微调按钮,或者在编辑框中直接设置数字增益量,然后点击"设置"按钮将参数 配置到相机。

数字偏置:

用户可以通过微调按钮,或者在编辑框中直接设置数字偏置量,然后点击"设置"按钮将参数 配置到相机。

8.4 状态栏

IKTool 的状态栏主要功能是显示配置相机参数的执行状态(左下角);状态栏右下角显示相机的实时温度,如下图所示。

设置模拟增益为x4成功 温度: 38.05 C

图 32 状态栏

注意:配置参数的过程中状态栏会出现"取消"按钮,若配置某一参数时间过长可点击此按钮取消操作。

设置传感器Pre_ADC增益为x4 取消 温度: 38.19 C

图 33 "取消"按钮

9 常见问题

- (1) 无法连接到相机
- ① 确认 Camera Link 接口线缆本身无问题。
- ② 确认 Camera Link 接口 Base 和 Medium/Full 没有接反。
- ③ 确认 Camera Link 接口中串口通道参数设置无误。
- (2) Camera Link 接口接收不到相机时钟信号
- ① 确认相机已正常启动(即状态指示灯为常绿)。
- ② 如果采用第三方采集卡获取图像,确认采集卡及配套软件运行正常,可重启机器试验。
- ③ 确认 Camera Link 接口 Base 和 Medium/Full 没有接反。
- ④ 确认 Camera Link 接口线缆本身无问题。
- (3) 外触发模式下相机无图像输出
- ① 确认外部输入脉冲正常。
- ② 确认相机正确接收到了触发脉冲(可通过状态指示灯显示来确认)。
- ③ 如果使用 Camera Link 接口 CC1 信号作为触发输入信号,则确认采集卡配置正确。
- (4) 相机外壳温度异常
- ① 确认外部接入电源电压范围正常。
- ② 如果出现外壳烫手或者相机冒烟,则立刻断电停止使用相机,联系我司技术支持。
- (5) 相机图像很暗
- ① 确认外壳 sensor 进光口没有被封闭。
- ② 确认曝光时间设置正确。
- (6) 相机图像有污物
- ① 确认相机 sensor 玻璃面干净。
- ② 确认相机状态指示灯显示正常。
- (7) 相机无图像输出
- ① 确认 Camera Link 接口正常,可通过测试图像进行确认。
- ② 确认电源提供正常,检测相机指示灯状态以确认。
- ③ 外触发模式下,确认外部脉冲输入正常,可通过相机指示灯确认。

对于用户在相机使用过程中出现的任何问题,请及时联系我司技术支持,我司将第一时间为您提供服务。