Assignment for

Computer Science Theory for the Information Age

Day 6

BY ZEN HUANG 5120309027 2012 ACM class

June 20, 2013

Exercise 1. Modify the proof that every monotone property has a threshold for G(n, p) to apply to the 3-CNF satisfiability problem.

Answer.

We'll use F(n, m) to represent a 3-CNF formula with n variables, m clauses.

Definition 1. The increasing property of unsatisfiability.

Q is the increasing property of F(n,m) if when a formula F has the property any formula obtained by adding clauses to F must also have the property.

Definition 2. D-fold replication of F(n,m)

To make an M-fold repilcation F(n, m') of F(n, m), first make d copies of F(n, m) with clauses generated independently, then include every clause present in any of the d copies into F(n, m').

Lemma 3. Let Q be an increasing property of F(n,m). for $m_1 < m_2$

$$\operatorname{Prob}(F(n, m_1) \operatorname{has} Q) \leq \operatorname{Prob}(F(n, m_2) \operatorname{has} Q)$$

Proof. First we generated $F(n, m_1)$, then we generate $F(n, m_2 - m_1)$, finally we include every clause present in either $F(n, m_1)$ or $F(n, m_2 - m_1)$ to get the $F(n, m_2)$. By this mean we know that if $F(n, m_1)$ has property $Q(F(n, m_2))$ must has property $Q(G(n, m_2))$ as well.

Theorem. Every increasing property Q of F(n, m(n)) has a threshold at m(n) = a, where for each n, a is the minimum real number such that

$$\operatorname{Prob}(F(n,a)\operatorname{has} Q) = \frac{1}{2}$$

Proof.

Let $m_0(n)$ be any function such that $\lim_{n\to\infty} \frac{m_0(n)}{m(n)} = 0$. We need to prove that

$$\lim_{n \to \infty} \operatorname{Prob}(F(n, m_0(n)) \operatorname{has} Q) = 0 \tag{1}$$

Assume that $\operatorname{Prob}(F(n, m_0(n)) \operatorname{has} Q)$ does not converge to zero as n goes to infinity. Then there must be a infinity subsequence I of n such that

$$\exists \varepsilon > 0 \forall n \in I \operatorname{Prob}(F(n, m_0(n)) \operatorname{has} Q) > \varepsilon \tag{2}$$

Let $d = \lceil \frac{1}{\varepsilon} \rceil$, and let F(n, m'(n)) be the d-fold replication of $F(n, m_0(n))$. Similar proof to Lemma 3 we have

$$\operatorname{Prob}(F(n, m'(n)) \operatorname{dose} \operatorname{not} \operatorname{have} Q) \leqslant (\operatorname{Prob}(F(n, m_0(n)) \operatorname{does} \operatorname{not} \operatorname{have} Q))^d$$
(3)

while

$$m'(n) = 1 - (1 - m_0(n))^d \le d m_0(n)$$
 (4)

so that

 $\operatorname{Prob}(F(n, d \, m_0(n)) \operatorname{does} \operatorname{not} \operatorname{have} Q) \leq (\operatorname{Prob}(F(n, m_0(n)) \operatorname{does} \operatorname{not} \operatorname{have} Q))^d$ $\leq (1 - \varepsilon)^d$ $\leq \frac{1}{e}$ $\leq \frac{1}{2}$ (5)

For infinity many n, since m(n) is the minimum that $\operatorname{Prob}(F(n, m(n)) \text{ has } Q) = \frac{1}{2}$, by Lemma 3, $d m_0(n) \geqslant m(n)$, which contradicts the hypothesis that $\lim_{n \to \infty} \frac{m_0(n)}{m(n)} = 0$.

Exercise 2. Verify that the sum of r rank-one matrices $\sum_{i=1}^{r} \sigma_i u_i v_i^T$ can be written as UDV^T , where the u_i are the columns of U and v_i are the columns of V. To do this, first verify that for any two matrices P and Q, we have

$$oldsymbol{P}oldsymbol{Q}^T = \sum_i oldsymbol{p}_i \, oldsymbol{q}_i^T$$

where p_i is the i^{th} column of P and q_i is the i^{th} column of Q.

Answer.

First we prove $\boldsymbol{P}\boldsymbol{Q}^T = \sum_i \boldsymbol{p}_i \, \boldsymbol{q}_i^T$.

Proof.

Let $\boldsymbol{A} \!=\! \boldsymbol{P} \boldsymbol{Q}^T$ and $\boldsymbol{B} \!=\! \sum_i \! \boldsymbol{p}_i \, \boldsymbol{q}_i^T$. Then

$$a_{ij} = \sum_{k=1}^{r} p_{ik} q_{jk} \tag{6}$$

and

$$b_{ij} = \sum_{i=1}^{r} (\boldsymbol{p}_i \, \boldsymbol{q}_i^T)_{ij}$$

$$= \sum_{k=1}^{r} p_{ik} \, q_{jk}$$
(7)

so we have

$$a_{ij} = b_{ij} \tag{8}$$

which is

$$PQ^{T} = \sum_{i} p_{i} q_{i}^{T}$$

$$\tag{9}$$

Then we prove $\sum_{i=1}^r \sigma_i \, \boldsymbol{u}_i \, \boldsymbol{v}_i^T = \boldsymbol{U} \, \boldsymbol{D} \, \boldsymbol{V}^T$.

Proof.

Let $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^T$ and $\boldsymbol{B} = \sum_{i=1}^r \sigma_i \, \boldsymbol{u}_i \, \boldsymbol{v}_i^T$. Then

$$b_{ij} = \sum_{i=1}^{r} (\sigma_i \mathbf{u}_i \mathbf{v}_i^T)_{ij}$$
$$= \sigma_i \sum_{k=1}^{r} u_{ik} v_{jk}$$

so if we let \boldsymbol{D} be a diagonal matrix with

$$d_{ii} = \sigma_i \tag{10}$$

we can find that

$$a_{ij} = \sum_{k=1}^{r} u_{ik} \sigma_i v_{jk} \tag{11}$$

which is

$$\boldsymbol{A} = \boldsymbol{B} \tag{12}$$