FACTOR ANALYSIS OF PITCH DESIGN METRICS:

TILT, RELEASE HEIGHT, INDUCED VERTICAL BREAK, & HORIZONTAL BREAK

Scott Kobos, Applied Physics

Dr. T. Brian Bunton, Advisor

STUDY SIGNIFICANCE

- -Lower exit velocity means greater success (less runs on the board) as a pitcher.
- -The fewer runs the opposing team scores, the easier it is to win the game.
- -Wins matter.

WHAT ARE THE FACTORS?

- -Tilt
- -Release Height
- -Induced Vertical Break
- -Horizontal Break

TRACKMAN
BASEBALL

MAGNUS FORCE/ EFFECT

https://giphy.com/gifs/looks-towards-fastball-7PFsslFdPil0g

PARTICLE IMAGE VELOCIMETRY (PIV)

Barton L. Smith

BOUNDARY LAYER SEPARATION & WAKE

- -Size
- -Location
- -Angle

Barton L. Smith

VORTICITY

$$-\omega = \nabla x v$$

THE LAMINAR EXPRESS

http://i.imgur.com/vb9GLRC.gif

LAMINAR VS. TURBULENT FLOW

Barton L. Smith

https://giphy.com/gifs/comments-changeup-strasburg-115RAHRXu4zJzG

SEAMS

https://plus.maths.org/content/fly-walks-round-football

TILT

Barton L. Smith

-Stephen Strasburg's changeup accelerates downward with >1g about 10% of the time

ASSUMPTIONS (MODEL VALIDITY)

MODEL ANALYSIS

```
call:
  lm(formula = ExitSpeed[-1002] \sim CoastalLHP4STiltFix[-1002] +
 Re]Height[-1002] + InducedVertBreak[-1002] + HorzBreak[-1002])
                          Residuals:
                       10 Median
              Min
                                       3Q
                                              Max
            -47.756 -10.\overline{746} -0.712 12.331 27.299
                         Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
                          222.6222
                                      89.5427
                                                2.486
                                                        0.0133 *
CoastalLHP4STiltFix[-1002] -39.6368
                                       30.3245 -1.307
                                                        0.1919
                                    2.0209 -1.078
RelHeight[-1002]
                                                        0.2816
                           -2.1791
InducedVertBreak[-1002]
                         -0.2771 0.3957 -0.700
                                                        0.4841
HorzBreak[-1002]
                            0.8386
                                        0.7557
                                               1.110
                                                        0.2678
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
    Residual standard error: 14.72 on 394 degrees of freedom
         (1088 observations deleted due to missingness)
```

MODEL ANALYSIS

RHP4S- 2954 observations

> cor(cbind(CoastalRHP4STiltFix[-vector],RelHeight[-vector],InducedVertBreak[
-vector],HorzBreak[-vector]), use="complete.obs")

	Tilt	RH	IDVB	HB
Tilt	1.00000000	0.04310193	0.3601804	-0.7851545
RH	0.04310193	1.00000000	-0.4767546	0.2207076
IDVB	0.36018039	-0.47675456	1.0000000	0.5796939
HB	-0.78515454	0.22070755	0.5796939	1.0000000

RHP2S- 463 observations

> cor(cbind(CoastalRHP2STiltFix,RelHeight,InducedVertBreak,HorzBreak), use="c omplete.obs")

```
Tilt RH IDVB HB
Tilt 1.00000000 0.061117357 0.608046752 -0.3898831
RH 0.06111736 1.000000000 -0.006555828 0.1532094
IDVB 0.60804675 -0.006555828 1.000000000 0.5643322
HB -0.38988306 0.153209450 0.564332233 1.0000000
```

LHP4S- 1488 observations

> cor(cbind(CoastalLHP4STiltFix[-1002],RelHeight[-1002],InducedVertBreak[-100
2],HorzBreak[-1002]), use="complete.obs")

	Tilt	RH	IDVB	HB	
Tilt	1.0000000	0.16234788	0.1356247	-0.63892628	
RH	0.1623479	1.00000000	-0.2279446	0.07092843	
IDVB	0.1356247	-0.22794459	1.0000000	0.31965229	
HB	-0.6389263	0.07092843	0.3196523	1.00000000	

LHP2S- 1651 observations

> cor(cbind(CoastalLHP2STiltFix,RelHeight,InducedVertBreak,HorzBreak), use="c omplete.obs")

	Tilt	RH	IDVB	HB
Tilt	1.0000000	0.1592002	0.5923583	-0.2309413
RH	0.1592002	1.0000000	-0.3816687	-0.2432283
IDVB	0.5923583	-0.3816687	1.0000000	0.3185459
HB	-0.2309413	-0.2432283	0.3185459	1.0000000

- -Tilt/HB
- -Tilt/IDVB
- -RH/IDVB
- -IDVB/HB

FUTURE WORK

-Include a wider range of factors.

-Include swing and miss into analysis.

-Perform similar analysis to Changeups and Breaking Balls (Slider/Curveball).

-Case-by-case analysis.

CONCLUSION

-Nothing of any statistical significance between exit velocity and any of the factors.

-Analysis found relationships between Tilt and Induced Vertical Break, Release Height and Induced Vertical Break, Induced Vertical Break and Horizontal Break, and confirmed the relationship between Tilt and Horizontal Break

ACKNOWLEDGEMENTS

-Dr. Lindsay Bell of Coastal Carolina University

-Barton Smith of Utah State University: https://www.baseballaero.com/

-Coastal Carolina University Baseball (Drew Thomas)

RELEASE HEIGHT

- The height above home plate at which the pitcher releases the ball, measured in feet.

https://lehmansbaseball.wordpress.com/2016/01/14/custom-vs-one-size-fits-all-throwing-mechanics/

HORIZONTAL & INDUCED VERTICAL BREAK

-The distance between where the pitch crosses the front of home plate versus where the pitch would have crossed home plate if it had traveled in a perfectly straight line from release, measured in inches.

-The distance between where the pitch crosses the plate and where it would have crossed the plate if it would have traveled in a perfectly straight line from release, unaffected by gravity, measured in inches.

TILT

https://www.drivelinebaseball.com/2019/09/mastering-the-axis-of-rotation-a-thorough-review-of-spin-axis-in-three-dimensions/

- -Measured on a clocklike axis and measures the spin direction of a pitch.
- -Also called Spin Axis

ASSUMPTIONS- ADDED VARIABLE PLOTS

- -Tests whether each variable adds new information to the model
- -Slope of 0 means no information is being contributed by that factor.
- -Larger slope means more information that a variable is adding to the model.

ASSUMPTIONS- RESIDUALS VS. FITTED PLOTS

-Data must appear random, key is to not observe a funnel shape or any discernable pattern.

-Checks for constant variance, as nonconstant variance implies a lack of fit.

ASSUMPTIONS- NORMAL PROBABILITY PLOT

-Produces a straight line if all error is distributed normally; however, with a large enough sample size the line may deviate from linear and still be accepted.

ASSUMPTIONS- SCALE LOCATION PLOT

-Residuals are spread equally along the range of predictors and like the normal probability plot, should appear random, with no discernable pattern.

ASSUMPTIONS- COOK'S DISTANCE PLOT

-Identifies leverage points within the data.

-A general rule in interpreting Cook's distance is that any value with a distance greater than 1 is influential and should be investigated.

ASSUMPTIONS- VARIANCE INFLATION FACTOR (VIF)

vif(LHP4STIHR.mod)CoastalLHP4STiltFix[-1002] RelHeight[-1002] InducedVertBreak[-1002] HorzBreak[-1002]
9.448746 1.157054 2.106317 10.254556

-Shows whether or not some variables can be written as linear combinations of the other variables being tested.

-Any vif under 15 for a variable is considered acceptable.

IMAGE CREDITS

https://giphy.com/gifs/looks-towards-fastball-7PFssIFdPil0g

http://i.imgur.com/vb9GLRC.gif

https://plus.maths.org/content/fly-walks-round-football

https://www.drivelinebaseball.com/2019/09/mastering-the-axis-of-

rotation-a-thorough-review-of-spin-axis-in-three-dimensions/

https://lehmansbaseball.wordpress.com/2016/01/14/custom-vs-

one-size-fits-all-throwing-mechanics/

https://giphy.com/gifs/comments-changeup-strasburg-

115RAHRXu4zJzG