Markov Chain Monte Carlo and model fitting

BAYESIAN DATA ANALYSIS IN PYTHON

Michal Oleszak

Machine Learning Engineer

Bayesian data analysis in production

- Grid approximation: inconvenient with many parameters
- Sampling from known posterior: requires conjugate priors
- Markov Chain Monte Carlo (MCMC): sampling from unknown posterior!

Monte Carlo

- Approximating some quantity by generating random numbers
- ullet From the formula, $\pi r^2 \simeq 78.5$

Monte Carlo

- Approximating some quantity by generating random numbers
- ullet From the formula, $\pi r^2 \simeq 78.5$
- Draw a 10x10 square around the circle.

Monte Carlo

- Approximating some quantity by generating random numbers
- ullet From the formula, $\pi r^2 \simeq 78.5$
- Draw a 10x10 square around the circle.
- Sample 25 random points in the square.
- How many are within the circle? 19/25=76%
- Circle's area approximation: 76% * 100 = 76

Markov Chains

 Models a sequence of states, between which one transitions with given probabilities.

Markov Chains

 Models a sequence of states, between which one transitions with given probabilities.

 After many time periods, transition probabilities become the same no matter where we started. What will the bear do next:

	hunt	eat	sleep
hunt	0.1	0.8	0.1
eat	0.05	0.4	0.55
sleep	0.8	0.15	0.05

Markov Chains

 Models a sequence of states, between which one transitions with given probabilities.

 After many time periods, transition probabilities become the same no matter where we started. What will the bear do next:

	hunt	eat	sleep
hunt	0.1	0.8	0.1
eat	0.05	0.4	0.55
sleep	0.8	0.15	0.05

What will the bear do in a distant future:

	hunt	eat	sleep
hunt	0.28	0.44	0.28
eat	0.28	0.44	0.28
sleep	0.28	0.44	0.28

Aggregated ads data

print(ads_aggregated)

```
sneakers_banners_shown num_clicks
           date
                  clothes_banners_shown
0
     2019-01-01
                                      20
                                                                18
     2019-01-02
                                      24
                                                               19
     2019-01-03
                                      20
                                                                20
                                                                             5
     2019-05-29
148
                                      24
                                                               25
     2019-05-30
                                      26
149
                                                               27
                                                                            11
150
     2019-05-31
                                      26
                                                               24
                                                                             8
[151 rows x 4 columns]
```

Linear regression with pyMC3

```
formula = "num_clicks ~ clothes_banners_shown + sneakers_banners_shown"

with pm.Model() as model:
    pm.GLM.from_formula(formula, data=ads_aggregated)
    # Print model specification
    print(model)
    # Sample posterior draws
    trace = pm.sample(draws=1000, tune=500)
```

```
Intercept ~ Flat
clothes_banners_shown ~ Normal
sneakers_banners_shown ~ Normal
sd_log__ ~ TransformedDistribution
sd ~ HalfCauchy
y ~ Normal
```

Let's practice MCMC!

BAYESIAN DATA ANALYSIS IN PYTHON

Interpreting results and comparing models

BAYESIAN DATA ANALYSIS IN PYTHON

Michal Oleszak

Machine Learning Engineer

Running the model revisited

```
formula = "num_clicks ~ clothes_banners_shown + sneakers_banners_shown"

with pm.Model() as model_1:
    pm.GLM.from_formula(formula, data=ads_aggregated)
    trace_1 = pm.sample(draws=1000, tune=500)
```


Running the model revisited

```
formula = "num_clicks ~ clothes_banners_shown + sneakers_banners_shown"

with pm.Model() as model_1:
    pm.GLM.from_formula(formula, data=ads_aggregated)
    trace_1 = pm.sample(draws=1000, tune=500, chains=4)
```

- Number of parameters: 4
- Number of draws for each parameter: $1000 \times 4 = 4000$

Trace plot

pm.traceplot(trace_1)

Trace plot: zoom in on one parameter

Forest plot

pm.forestplot(trace_1)

Trace summary

pm.summary(trace_1)

	mean	sd	hdi_3%	hdi_97%	mcse_mea	n mcse_sd	\
Intercept	1.307	0.886	-0.305	2.962	0.01	8 0.013	
clothes_banners_shown	0.103	0.031	0.043	0.160	0.00	1 0.000	
sneakers_banners_shown	0.104	0.032	0.045	0.163	0.00	1 0.001	
sd	2.654	0.157	2.382	2.970	0.00	3 0.002	
	ess_mea	n ess	_sd ess	_bulk es	ss_tail r	_hat	
Intercept	2346.	0 231	8.0 2	351.0	2083.0	1.0	
clothes_banners_shown	2085.	0 208	5.0 2	089.0	1868.0	1.0	
sneakers_banners_shown	2105.	0 195	3.0 2	122.0	1869.0	1.0	
sd	2615.	0 259	0.0 2	646.0	1834.0	1.0	

Fitting another model

```
formula = "num_clicks ~ clothes_banners_shown + sneakers_banners_shown + weekend"

with pm.Model() as model_2:
    pm.GLM.from_formula(formula, data=ads_aggregated)
    trace_2 = pm.sample(draws=1000, tune=500)
```


Widely Applicable Information Criterion (WAIC)

```
rank
          waic
                 p_waic d_waic weight
                                                   dse warning \
                                        se
trace_2
        0 -362.8
                 5.1576
                              0
                                 0.513792 9.37269
                                                         True
trace_1 1 -362.926 4.13318 0.126236
                                 0.486208 9.48352 1.50682
                                                         True
      waic_scale
trace_2
           log
trace_1
           log
```

Compare plot

pm.compareplot(comparison)

Let's practice comparing models!

BAYESIAN DATA ANALYSIS IN PYTHON

Making predictions

BAYESIAN DATA ANALYSIS IN PYTHON

Michal Oleszak

Machine Learning Engineer

Number-of-clicks model again

```
formula = "num_clicks ~ clothes_banners_shown + sneakers_banners_shown + weekend"

with pm.Model() as model_2:
    pm.GLM.from_formula(formula, data=ads_aggregated)
    trace_2 = pm.sample(draws=1000, tune=500)
```


Ads test data

```
print(ads_test)
```

0 40 36 7 True 1 42 47 8 False 2 45 37 11 False 3 22 15 4 False 4 20 18 2 False		clothes_banners_shown	sneakers_banners_shown	num_clicks	weekend
2 45 37 11 False 3 22 15 4 False	0	40	36	7	True
3 22 15 4 False	1	42	47	8	False
	2	45	37	11	False
4 20 18 2 False	3	22	15	4	False
	4	20	18	2	False

Sampling predictive draws

```
with pm.Model() as model:
    pm.GLM.from_formula(formula, data=ads_test)
    posterior_predictive = pm.fast_sample_posterior_predictive(trace_2)
```

Predictive draws

```
posterior_predictive["y"].shape
```

```
posterior_predictive["y"])

print(posterior_predictive["y"])

array([[12.83527253, 10.22454815, 11.20386868, 7.50227286, 6.85458594],
       [ 3.1015655 , 6.1253004 , 11.38324931, 2.1844722 , 4.21451756],
```

```
[ 3.1015655 , 6.1253004 , 11.38324931 , 2.1844722 , 4.21451756] , [ 3.40141276 , 9.10157964 , 6.57689421 , 8.26669814 , 4.23812161] , ..., [ 10.97303606 , 9.0772305 , 10.6877039 , 1.78448969 , 6.75663075] , [ 8.53734584 , 12.14079593 , 11.00969881 , 4.69875055 , 8.317338 ] , [ 16.44713387 , 17.35163824 , 19.59359831 , 2.84058536 , 4.21108186]])
```

How good is the prediction?

```
pm.plot_posterior(posterior_predictive["y"][:, 0])
```


Test error distribution

```
for index, test_example in ads_test.iterrows():
    error = posterior_predictive["y"][:, index] - test_example["num_clicks"]
    errors.append(error)

error_distribution = np.array(errors).reshape(-1)
error_distribution.shape
```

```
(20000,)
```

```
pm.plot_posterior(error_distribution)
```


Test error distribution

Let's make predictions!

BAYESIAN DATA ANALYSIS IN PYTHON

How much is an avocado?

BAYESIAN DATA ANALYSIS IN PYTHON

Michal Oleszak

Machine Learning Engineer

The Avocado, Inc.

Case study: estimating price elasticity

Goal: estimate price elasticity of avocados and optimize the price

(price elasticity = impact of the change in price on the sales volume)

- 1. Fit a Bayesian regression model.
- 2. Inspect the model to verify its correctness.
- 3. Predict sales volume for different prices.
- 4. Propose the profit-maximizing price and the associated uncertainty.

Avocado data

print(avocado)

```
price
                           volume
          date
                                  type_organic
    2015-01-04
                 0.95
0
                       313.242777
                                             0
    2015-01-11 1.01
                       290.635427
                                             0
    2015-01-18 1.03
                       290.434588
                                             0
3
    2015-01-25
                1.04
                       284.703108
                                             0
    2018-03-04
334
                 1.52
                        16.344308
    2018-03-11
                 1.52
                        16.642349
335
    2018-03-18
                1.54
                        16.758042
336
337
    2018-03-25
                1.55
                        15.599672
```

¹ Data source: https://www.kaggle.com/neuromusic/avocado-prices

Priors in pymc3

```
formula = "num_bikes ~ temp + work_day + wind_speed"

with pm.Model() as model:

pm.GLM.from_formula(formula, data=bikes)
   trace = pm.sample(draws=1000, tune=500)
```

Priors in pymc3

```
formula = "num_bikes ~ temp + work_day + wind_speed"

with pm.Model() as model:
    priors = {"wind_speed": pm.Normal.dist(mu=-5)}
    pm.GLM.from_formula(formula, data=bikes, priors=priors)
    trace = pm.sample(draws=1000, tune=500)
```

Extracting draws from trace

```
temp_draws = trace.get_values("temp")
print(temp_draws)
```

```
array([6.8705346, 6.7421152, 6.7393061, ..., 5.966574 , 6.1274128, 6.7149277])
```


What you will need

Model fitting:

- pm.Model()
- pm.GLM.from_formula()
- pm.sample()
- pm.Normal()

Visualization:

- pm.forestplot()
- pm.traceplot()

Making predictions:

pm.fast_sample_posterior_predictive()

Inference:

• pm.hpd()

Let's put what you've learned to practice!

BAYESIAN DATA ANALYSIS IN PYTHON

Final remarks

BAYESIAN DATA ANALYSIS IN PYTHON

Michal Oleszak

Machine Learning Engineer

What you know

Chapter 1: The Bayesian Way

- Bayesian vs. frequentist approach
- Probability theory & distributions
- Updating beliefs with more data

Chapter 2: Bayesian Estimation

- Grid approximation
- Prior distributions
- Reporting Bayesian results

Chapter 3: Bayesian Inference

- A/B testing
- Decision analysis
- Forecasting & regression

Chapter 4: Bayesian Linear Regression

- Markov Chain Monte Carlo (MCMC)
- Fitting and interpreting models with pymc3
- Bayesian data analysis: a case study

More Bayes

Hierarchical models:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

$$\beta_2 = \beta_{20} + \beta_{21} x_3$$

- More regression (logistic, Poisson, ...)
- Bayesian machine learning

PyMC3 docs:
 https://pymc3.readthedocs.io/en/latest

Think Bayes by Allen Downey
 http://allendowney.github.io/ThinkBayes2

Congratulations and good luck!

BAYESIAN DATA ANALYSIS IN PYTHON

С datacaмр