

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 8. August 2002 (08.08.2002)

(10) Internationale Veröffentlichungsnummer WO 02/060449 A2

(51) Internationale Patentklassifikation7: A61K 31/505, A61P 9/00

(74) Gemeinsamer Vertreter: MERCK PATENT GMBH; Frankfurter Strasse 250, 64293 Darmstadt (DE).

PCT/EP01/15324 (21) Internationales Aktenzeichen:

(22) Internationales Anmeldedatum:

27. Dezember 2001 (27.12.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 04 095.4

DE 31. Januar 2001 (31.01.2001)

101 04 096.2 101 04 097.0 31. Januar 2001 (31.01.2001) DE

31. Januar 2001 (31.01.2001)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MERCK PATENT GMBH [DE/DE]; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): EGGENWEILER, Hans-Michael [DE/DE]; Heinrichstrasse 46, 64331 Weiterstadt (DE). EIERMANN, Volker [DE/DE]; Gernaienstrasse 18, 63322 Rödermark (DE). SCHELLING, Pierre [CH/DE]; Bordenbergweg 17, 64367 Mühltal (DE).

- (81) Bestimmungsstaaten (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: PHARMACEUTICAL FORMULATION CONTAINING PYRAZOLO[4,3-D]PYRIMIDINE AND NITRATES OR THIENOPYRIMIDINES AND NITRATES
- (54) Bezeichnung: PHARMAZEUTISCHE FORMULIERUNG ENTHALTEND PYRAZOLO[4,3-D]PYRIMIDINE UND NIT-RATE ODER THIENOPYRIMIDINE UND NITRATE
- (57) Abstract: The invention relates to a pharmaceutical preparation containing at least one phosphodiesterase V inhibitor and at least one nitrate for producing a pharmaceutical for the treatment of angina, hypertension, pulmonary hypertension, congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), pulmonary heart disease, right ventricular failure, arteriosclerosis, conditions of reduced patency of the heart vessels, peripheral vascular diseases, apoplexy, bronchitis, allergic asthma, chronic asthma, allergic rhinitis, glaucoma, irritable bowel syndrome, tumours, kidney failure and cirrhosis of the liver.
- (57) Zusammedfassung: Pharmazeutische Zubereitung enthaltend mindestens einen Phosphodiesterase V -Hemmer und mindestens ein Nitrat zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz und Leberzirrhose.

Pharmazeutische Formulierung enthaltend Pyrazolo[4,3-d]pyrimidine und Nitrate oder Thienopyrimidine und Nitrate

Die Erfindung betrifft pharmazeutische Formulierungen enthaltend mindestens einen Phosphodiesterase V-Hemmer der Formel I

$$R^3$$
 HN CH_2 R^2 R^4 R^4

worin R ¹ , R ²	jeweils unabhängig voneinander H, A, OH, OA oder Hal,
R ¹ und R ²	zusammen auch Alkylen mit 3-5 C-Atomen,
it and it	-O-CH ₂ -CH ₂ -, -CH ₂ -O-CH ₂ -, -O-CH ₂ -O- oder
	-O-CH ₂ -CH ₂ -O-,
R^3 , R^4	jeweils unabhängig voneinander H oder A,
X	einfach durch R ⁸ substituiertes R ⁵ , R ⁶ oder R ⁷ ,
R ⁵	lineares oder verzweigtes Alkylen mit 1-10 C-Atomen,
• •	worin eine oder zwei CH ₂ -Gruppen durch -CH=CH-
	Gruppen, O, S oder SO ersetzt sein können,
R^6	Cycloalkyl oder Cycloalkylalkylen mit 5-12 C-Atomen,
R ⁷	Phenyl oder Phenylmethyl,
R ⁸	COOH, COOA, CONH ₂ , CONHA, CON(A) ₂ oder CN,
A	Alkyl mit 1 bis 6 C-Atomen und
. Hal	F, Cl, Br oder I

bedeuten,

und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Nitrat zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz und Leberzirrhose.

Die Erfindung betrifft weiterhin pharmazeutische Formulierungen enthaltend mindestens einen Phosphodiesterase V-Hemmer der Formel I-I

10

worin

5

20 R^1 , R^2 jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R¹ oder R² immer ≠ H ist. R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen, R^3 , R^4 jeweils unabhängig voneinander H, A, OH, OA oder Hal, 25 R³ und R⁴ zusammen auch Alkylen mit 3-5 C-Atomen. -O-CH₂-CH₂-, -O-CH₂-O- oder -O-CH2-CH2-O-, einfach durch R⁷ substituiertes R⁵ oder R⁶. Х R^5 30 lineares oder verzweigtes Alkylen mit 1-10 C-Atomen, worin eine oder zwei CH2-Gruppen durch -CH=CH-Gruppen ersetzt sein können, oder $-C_6H_4-(CH_2)_m \mathsf{R}^6$ Cycloalkylalkylen mit 6-12 C-Atomen, 35 R^{7}

COOH, COOA, CONH₂, CONHA, CON(A)₂ oder CN,

A Alkyl mit 1 bis 6 C-Atomen,

Hal F, Cl, Br oder I,

m 1 oder 2 und

n 0, 1, 2 oder 3

5 bedeuten,

und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Nitrat zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz und Leberzirrhose.

Die Erfindung betrifft weiterhin pharmazeutische Formulierungen enthaltend mindestens einen Phosphodiesterase V-Hemmer der Formel I-II

20

10

15

25

worin

R¹, R² jeweils unabhängig voneinander H, A, OA, OH oder Hal,

30 R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen,

-O-CH₂-CH₂-, -CH₂-O-CH₂-, -O-CH₂-O- oder

-O-CH₂-CH₂-O-,

X einfach durch R⁷ substituiertes R⁴, R⁵ oder R⁶,

	R⁴	lineares oder verzweigtes Alkylen mit 1-10 C-Atomen, worin			
		eine oder zwei CH ₂ -Gruppen durch -CH=CH-Gruppen ersetzt			
	_	sein können,			
5	R⁵	Cycloalkyl oder Cycloalkylalkylen mit 5-12 C-Atomen,			
J	R^6	Phenyl oder Phenylmethyl,			
	R ⁷	COOH, COOA, CONH ₂ , CONHA, CON(A) ₂ oder CN,			
	Α	Alkyl mit 1 bis 6 C-Atomen und			
	Hal	F, CI, Br oder I			
10 bedeuten,		•			
	und/oder	deren physiologisch unbedenklichen Salze und/oder Solvate und			
		ns ein Nitrat zur Herstellung eines Arzneimittels zur Behandlung			
		na, Bluthochdruck, pulmonalem Hochdruck, congestivem			
15	Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit				
. •	(COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose,				
		gen verminderter Durchgängigkeit der Herzgefäße, peripheren			
		n Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma,			
	chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel				
20		e, Tumoren, Niereninsuffizienz und Leberzirrhose.			
•		- · · · · · · · · · · · · · · · · · · ·			
	Pharmaze	eutische Formulierungen bestehend aus anderen Phosphodi-			
		/ (PDE V)-Hemmern zusammen mit einem Nitrat sind in der WO			
25		beschrieben.			
		nte Kontraindikation der Gabe von Nitraten bei gleichzeitiger			
		von PDE V – Hemmern bei der Indikation erektile Dysfunktion			
		der WO 00/10542 beschrieben. Gleichzeitig wird dort jedoch			
30		daß Nitrate als antianginöse Mittel verabreicht werden können,			
		eichzeitig Phosphodiesterase V – Hemmer zur Behandlung ysfunktion eingesetzt werden.			
•	37.10th of D	yorarmaon emgesetzt werden.			

Weiter werden dort pharmazeutische Zubereitungen beschrieben, die

sowohl ein Nitrat als auch einen Phosphodiesterasehemmer enthalten, zur Anwendung in der Therapie erektiler Dysfunktion und/oder in der Therapie

35

von Herz-/Kreislauferkrankungen bei gleichzeitigem Vorliegen der jeweils anderen Indikation.

Der Erfindung lag die Aufgabe zugrunde, neue Arzneimittel in Form von pharmazeutischen Zubereitungen zur Verfügung zu stellen, die bessere Eigenschaften besitzen als bekannte, für die gleichen Zwecke verwendbare Arzneimittel.

Diese Aufgabe wurde durch das Auffinden der neuen Zubereitung gelöst.

Die Verbindungen der Formel I, I-I und I-II und ihre Salze zeigen bei guter Verträglichkeit sehr wertvolle pharmakologische Eigenschaften besitzen. Insbesondere zeigen sie eine spezifische Inhibierung der cGMP-Phospho-

diesterase (PDE V).

Chinazoline mit cGMP-Phosphodiesterase hemmender Aktivität sind z.B. in J. Med. Chem. <u>36</u>, 3765 (1993) und ibid. <u>37</u>, 2106 (1994) beschrieben.

Die biologische Aktivität der Verbindungen der Formel I, I-I und I-II kann nach Methoden bestimmt werden, wie sie z.B in der WO 93/06104 beschrieben sind.

Die Affinität der erfindungsgemäßen Verbindungen für cGMP- und cAMP-Phosphodiesterase wird durch die Ermittlung ihrer IC₅₀-Werte (Konzentration des Inhibitors, die benötigt wird, um eine 50 %ige Inhibierung der

25 Enzymaktivität zu erreichen) bestimmt.

Zur Durchführung der Bestimmungen können nach bekannten Methoden isolierte Enzyme verwendet werden (z.B. W.J. Thompson et al., Biochem. 1971, 10, 311). Zur Durchführung der Versuche kann eine modifizierte "batch"-Methode von W.J. Thompson und M.M. Appleman (Biochem.

30 1979, <u>18</u>, 5228) angewendet werden.

Die Verbindungen eignen sich daher zur Behandlung von Erkrankungen des Herz-Kreislaufsystems, insbesondere der Herzinsuffizienz und zur Behandlung und/oder Therapie von Potenzstörungen (erektile Dysfunktion).

Die Verwendung von substituierten Pyrazolopyrimidinonen zur Behandlung von Impotenz ist z.B. in der WO 94/28902 beschrieben.

Die Verbindungen sind wirksam als Inhibitoren der Phenylephrin-induzierten Kontraktionen in Corpus cavernosum-Präparationen von Hasen.

Diese biologische Wirkung kann z.B. nach der Methode nachgewiesen werden, die von F. Holmquist et al. in J. Urol., 150, 1310-1315 (1993) beschrieben wird.

Die Inhibierung der Kontraktion, zeigt die Wirksamkeit der erfindungsgemäßen Verbindungen zur Therapie und/oder Behandlung von Potenzstörungen.

Die Wirksamkeit der erfindungsgemäßen pharmazeutischen Formulierungen insbesondere zur Behandlung von pulmonalem

Hochdruck kann nachgewiesen werden, wie von E. Braunwald beschrieben in Heart Disease 5th edition, WB Saunders Company, 1997, chapter 6: Cardiac catheterization 177-200.

Die Verbindungen der Formel I, I-I und I-II können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden. Ferner können sie als Zwischenprodukte zur Herstellung weiterer Arzneimittelwirkstoffe eingesetzt werden.

Verbindungen der Formel I:

25

10

Die Verbindungen der Formel I nach Anspruch 1 sowie deren Salze werden durch ein Verfahren hergestellt,

dadurch gekennzeichnet, daß man

30

a) eine Verbindung der Formel II

$$\mathbb{R}^3$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

worin

R³, R⁴ und X die angegebenen Bedeutungen haben,

10

und L CI, Br, OH, SCH₃ oder eine reaktionsfähige veresterte OH-Gruppe bedeutet,

mit einer Verbindung der Formel III

15 °

$$H_2N$$
 CH_2 R^1

20 worin

R¹ und R² die angegebenen Bedeutungen haben,

umsetzt,

25

30

35

oder

- b) in einer Verbindung der Formel I einen Rest X in einen anderen Rest X umwandelt, indem man z.B. eine Estergruppe zu einer COOH-Gruppe hydrolysiert oder eine COOH-Gruppe in ein Amid oder in eine Cyangruppe umwandelt
 - und/oder daß man eine Verbindung der Formel I in eines ihrer Salze überführt.

Unter Solvaten der Verbindungen der Formel I werden Anlagerungen von inerten Lösungsmittelmolekülen an die Verbindungen der Formel I verstanden, die sich aufgrund ihrer gegenseitigen Anziehungskraft ausbilden. Solvate sind z.B. Mono- oder Dihydrate oder Alkoholate.

5

Vor- und nachstehend haben die Reste R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, X und L die bei den Formeln I, II und III angegebenen Bedeutungen, sofern nicht ausdrücklich etwas anderes angegeben ist.

- A bedeutet Alkyl mit 1-6 C-Atomen.
 In den vorstehenden Formeln ist Alkyl vorzugsweise unverzweigt und hat
 1, 2, 3, 4, 5 oder 6 C-Atome und bedeutet vorzugsweise Methyl, Ethyl oder
 Propyl, weiterhin bevorzugt Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.Butyl, aber auch n-Pentyl, Neopentyl, Isopentyl oder Hexyl.
- 15 X bedeutet einen einfach durch R⁷ substituierten R⁵-, R⁶- oder R⁷-Rest.
- R⁵ bedeutet einen linearen oder verzweigten Alkylenrest mit 1-10 CAtomen, wobei der Alkylenrest vorzugsweise z.B. Methylen, Ethylen,
 Propylen, Isopropylen, Butylen, Isobutylen, sek.-Butylen, Pentylen, 1-, 2oder 3-Methylbutylen, 1,1-, 1,2- oder 2,2-Dimethylpropylen, 1-Ethylpropylen, Hexylen, 1-, 2-, 3- oder 4-Methylpentylen, 1,1-, 1,2-, 1,3-, 2,2-, 2,3oder 3,3-Dimethylbutylen, 1- oder 2-Ethylbutylen, 1-Ethyl-1-methylpropylen,
 en, 1-Ethyl-2-methylpropylen, 1,1,2- oder 1,2,2-Trimethylpropylen, lineares
 oder verzweigtes Heptylen, Octylen, Nonylen oder Decylen bedeutet.
 R⁵ bedeutet ferner z.B. But-2-en-ylen oder Hex-3-en-ylen.
 Vorzugsweise kann eine CH₂-Gruppe in R⁵ durch Sauerstoff ersetzt sein.
 Ganz besonders bevorzugt ist Ethylen, Propylen, Butylen oder CH₂-O-CH₂.
- R⁶ bedeutet Cycloalkylalkylen mit 5-12 C-Atomen, vorzugsweise z.B. Cyclopentylmethylen, Cyclohexylmethylen, Cyclohexylethylen, Cyclohexylpropylen oder Cyclohexylbutylen.

 R⁶ bedeutet auch Cycloalkyl mit vorzugsweise mit 5-7 C-Atomen.

 Cycloalkyl bedeutet z.B. Cyclopentyl, Cyclohexyl oder Cycloheptyl.
- 35
 Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I.

15

20

Die Reste R¹ und R² können gleich oder verschieden sein und stehen vorzugsweise in der 3- oder 4-Position des Phenylrings. Sie bedeuten beispielsweise jeweils unabhängig voneinander H, Alkyl, OH, F, Cl, Br oder I oder zusammen Alkylen, wie z.B. Propylen, Butylen oder Pentylen, ferner Ethylenoxy, Methylendioxy oder Ethylendioxy. Bevorzugt stehen sie auch jeweils für Alkoxy, wie z.B. für Methoxy, Ethoxy oder Propoxy.

Der Rest R⁸ bedeutet vorzugsweise z.B. COOH, COOA wie z.B. COOCH₃ oder COOC₂H₅, CONH₂, CON(CH₃)₂, CONHCH₃ oder CN, insbesondere aber COOH oder COOA.

Für die gesamte Erfindung gilt, daß sämtliche Reste, die mehrfach auftreten, gleich oder verschieden sein können, d.h. unabhängig voneinander sind.

Gegenstand der Erfindung sind insbesondere solche pharmazeutischen Formulierungen enthaltend ein Nitrat und mindestens eine Verbindung der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln la bis If ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

in la X durch COOH, COOA, CONH₂, CONA₂, CONHA oder CN substituiertes R⁵, Phenyl oder Phenylmethyl bedeutet;

30 in lb R¹ und R² zusammen Alkylen mit 3-5 C-Atomen, -O-CH₂-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O, durch COOH, COOA, CONH₂, CONA₂, CONHA oder

durch COOH, COOA, CONH₂, CONA₂, CONHA oder CN substituiertes R⁵, Phenyl oder Phenylmethyl bedeuten;

	in Ic	R^1 , R^2 R^1 und R^2	jeweils unabhängig voneinander H, A, OH, OA oder Hal, zusammen auch Alkylen mit 3-5 C-Atomen,
			-O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O,
5		X	durch COOH, COOA, GONH ₂ , CONA ₂ , CONHA oder CN substituiertes R ⁵ , Phenyl oder Phenylmethyl bedeuten;
10	in Id	R^1 , R^2	jeweils unabhängig voneinander H, A, OH, OA oder Hal,
		R ¹ und R ²	zusammen auch Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder
			-O-CH ₂ -CH ₂ -O-,
		X	einfach durch R ⁸ substituiertes Alkylen mit 2-5 C-
15			Atomen, Cyclohexyl, Phenyl oder Phenylmethyl,
		R^3	Alkyl mit 1-6 C-Atomen,
		R^4	Alkyl mit 1-6 C-Atomen,
		R ⁸	COOH oder COOA,
		Α	Alkyl mit 1 bis 6 C-Atomen,
20		Hal	F, Cl, Br oder I bedeuten;
	in le	R^1 , R^2	jeweils unabhängig voneinander H, A, OH, OA oder Hal,
		R^1 und R^2	zusammen auch Alkylen mit 3-5 C-Atomen,
25			$-O-CH_2-CH_2-$, $-O-CH_2-O-$ oder
			-O-CH ₂ -CH ₂ -O-,
		R^3	Alkyl mit 1-6 C-Atomen,
		R⁴	Alkyl mit 1-6 C-Atomen,
		X	-(CH ₂) ₂₋₅ -R ⁸ , 4-R ⁸ -Cyclohexyl, 4-R ⁸ -Phenyl oder
30			4-(R ⁸ -Methyl)-phenyl.
	in If	R^1 , R^2	jeweils unabhängig voneinander H, A, OH, OA oder Hal,
•		R^1 und R^2	
35			-O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O-,

20

25

30

	R ³	Alkyl mit 1-6 C-Atomen,
	R⁴	Alkyl mit 1-6 C-Atomen,
	Χ .	-(CH ₂) ₂₋₅ -R ⁸ , worin eine CH ₂ -Gruppe durch O ersetzt
		sein kann, 4-R ⁸ -Cyclohexyl, 4-R ⁸ -Phenyl oder
5		4-(R ⁸ -Methyl)-phenyl,
	R ⁸	COOH oder COOA.

Gegenstand der Erfindung ist vorzugsweise eine Formulierung enthaltend [7-(3-Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy]-essigsäure sowie dessen physiologisch unbedenklichen Salze und/oder Solvate und ein Nitrat.

Bevorzugt ist neben der freien Säure das Ethanolaminsalz.

Bevorzugt sind Nitrate ausgewählt aus der Gruppe Pentaerythrityltetra-,
Pentaerythrityltri-, Pentaerythrityldi-, Pentaerythritylmononitrat, Isosorbidmononitrat, Isosorbiddinitrat, Glyceroltrinitrat.

Bevorzugt sind besonders Nitrate ausgewählt aus der Gruppe Pentaerythrityltetranitrat, Isosorbidmononitrat, Isosorbiddinitrat, Glyceroltrinitrat, ganz besonders bevorzugt ist Pentaerythrityltetranitrat.

Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart), beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

In den Verbindungen der Formeln II oder III haben R¹, R², R³, R⁴ und X die angegebenen Bedeutungen, insbesondere die angegebenen bevorzugten Bedeutungen.

Falls L eine reaktionsfähige veresterte OH-Gruppe bedeutet, so ist diese vorzugsweise Alkylsulfonyloxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyloder p-Tolylsulfonyloxy, ferner auch 2-Naphthalinsulfonyloxy).

. 5

20

25

30

35

Die Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel II mit Verbindungen der Formel III umsetzt.

Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.

Andererseits ist es möglich, die Reaktion stufenweise durchzuführen.

Die Ausgangsverbindungen der Formel II und III sind in der Regel bekannt.

Sind sie nicht bekannt, so können sie nach an sich bekannten Methoden hergestellt werden.

Verbindungen der Formel II können nach literaturbekannten Methoden z.B. aus 4-Amino-3-alkoxycarbonylpyrazolen durch Cyclisierung mit Nitrilen und nachfolgender Umsetzung der Cyclisierungsprodukte mit Phosphoroxychlorid hergestellt werden (analog zu Houben Weyl E9b/2).

Im einzelnen erfolgt die Umsetzung der Verbindungen der Formel II mit den Verbindungen der Formel III in Gegenwart oder Abwesenheit eines inerten Lösungsmittels bei Temperaturen zwischen etwa -20 und etwa 150°, vorzugsweise zwischen 20 und 100°.

Der Zusatz eines säurebindenden Mittels, beispielsweise eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums oder Calciums, oder der Zusatz einer organischen Base wie Triethylamin, Dimethylamin, Pyridin oder Chinolin oder eines Überschusses der Aminkomponente kann günstig sein.

Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwassertoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform oder

Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

10

15

20

25

5

Es ist ferner möglich, in einer Verbindung der Formel I einen Rest X in einen anderen Rest X umzuwandeln, z.B. indem man einen Ester oder eine Cyangruppe zu einer COOH-Gruppe hydrolysiert.

Estergruppen können z.B. mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.

Carbonsäuren können z.B. mit Thionylchlorid in die entsprechenden Carbonsäurechloride und diese in Carbonsäureamide umgewandelt werden. Durch Wasserabspaltung in bekannter Weise erhält man aus diesen Carbonitrile.

Eine Säure der Formel I kann mit einer Base in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Säure und der Base in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Basen in Frage, die physiologisch unbedenkliche Salze liefern.

So kann die Säure der Formel I mit einer Base (z.B. Natrium- oder Kaliumhydroxid oder -carbonat) in das entsprechende Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in das entsprechende Ammoniumsalz umgewandelt werden.

Für diese Umsetzung kommen insbesondere auch organische Basen in Frage, die physiologisch unbedenkliche Salze liefern, wie z.B. Ethanolamin.

10.

15

20

25

Andererseits kann eine Base der Formel I mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Isolierung und loder Aufreinigung der Verbindungen der Formel I verwendet werden.

Gegenstand der Erfindung sind ferner pharmazeutische Formulierungen enthaltend mindestens eine Verbindung der Formel I und/oder eines ihrer physiologisch unbedenklichen Salze und mindestens ein Nitrat sowie enthaltend einen oder mehrere Träger- und/oder Hilfsstoffe.

Die Herstellung der pharmazeutischer Zubereitungen geschieht insbesondere auf nicht-chemischem Wege. Hierbei werden die Wirkstoffe zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff in eine geeignete Dosierungsform gebracht werden.

30

35

Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat,

Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine. Sie könne ferner als Nasensprays verabreicht werden.

15

20

25

10

5

Dabei werden die Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

30

Gegenstand der Erfindung ist insbesondere die Verwendung der erfindungsgemäßen Formulierungen zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

35

Die Bestandteile der neuen pharmazeutischen Zubereitung werden vorzugsweise kombiniert verabreicht. Sie können aber auch einzeln gleichzeitig oder aufeinanderfolgend verabreicht werden.

Gegenstand der Erfindung ist auch ein Set (Kit), bestehend aus getrennten Packungen von

(a) einer wirksamen Menge an [7-(3-Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy]-essigsäure, Ethanolaminsalz

und

- (b) einer wirksamen Menge eines Nitrats.
- Gegenstand der Erfindung ist insbesondere ein Set (Kit), bestehend aus getrennten Packungen von
 - (a) einer wirksamen Menge an [7-(3-Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy]essigsäure, Ethanolaminsalz
- 15 und
 - (b) einer wirksamen Menge eines Nitrats, zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

20

25

30

Das Set enthält geeignete Behälter, wie Schachteln oder Kartons, individuelle Flaschen, Beutel oder Ampullen. Das Set kann z.B. separate Ampullen enthalten, in denen jeweils eine wirksame Menge an [7-(3-Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]-pyrimidin-5-ylmethoxy]-essigsäure, Ethanolaminsalz und des Nitrats gelöst oder in lyophylisierter Form vorliegt.

Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethylacetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation.

35

Massenspektrometrie (MS): El (Elektronenstoß-Ionisation) M⁺

FAB (Fast Atom Bombardment) (M+H)⁺

Beispiel 1

3 g 3-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäuremethylester und 1,9 g 3-Chlor-4-methoxybenzylamin ("A") in 50 ml Dimethylformamid (DMF) werden in Gegenwart von Kaliumcarbonat 12 Stunden bei 60° gerührt. Nach Filtration wird das Lösungsmittel entfernt und wie üblich aufgearbeitet. Man erhält 4,6 g 3-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäuremethylester als farbloses Öl.

Analog erhält man durch Umsetzung von "A"

- mit 2-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-essigsäuremethylester

 2-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-essigsäuremethylester.
- 20 Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

mit 3-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäuremethylester

3-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäuremethylester.

Analog erhält man durch Umsetzung von "A"

mit 4-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäuremethylester

4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäuremethylester.

Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

25

mit 4-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäuremethylester

4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäuremethylester.

5

Analog erhält man durch Umsetzung von "A"

mit 5-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäuremethylester

10

5-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäuremethylester.

Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

15

mit 5-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäuremethylester

5-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäuremethylester.

20

Analog erhält man durch Umsetzung von "A"

mit 7-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäuremethylester

7-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäuremethylester.

Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

30

25

mit 7-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäuremethylester

7-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäuremethylester.

Analog erhält man durch Umsetzung von "A"

mit 2-[4-(7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]-pyrimidin-5-yl)-cyclohex-1-yl]-essigsäuremethylester

2-{4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexyl-1-yl}-essigsäuremethylester.

5

Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

mit 2-[4-(7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]-pyrimidin-5-yl)-cyclohex-1-yl]-essigsäuremethylester

10

35

2-{4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexyl-1-yl}-essigsäuremethylester.

Analog erhält man durch Umsetzung von Benzylamin

mit 3-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäuremethylester

3-[7-Benzylamino-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäuremethylester;

20 mit 4-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäuremethylester

4-[7-Benzylamino-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäuremethylester;

25 mit 5-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäuremethylester

5-[7-Benzylamino-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäuremethylester.

30 Analog erhält man durch Umsetzung von "A"

mit 4-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexancarbonsäuremethylester

4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexancarbonsäuremethylester

und durch Umsetzung von 3,4-Methylendioxybenzylamin 4-[7-(3,4-methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexancarbonsäuremethylester.

5 Beispiel 2

4,3 g 3-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäuremethylester werden in 30 ml Tetrahydrofuran (THF) gelöst und nach Zugabe von 10 ml 10 %iger NaOH 8 Stunden bei 60° gerührt. Nach Zugabe von 10 %iger HCl werden die ausgefallenen Kristalle abgetrennt und aus Methanol umkristallisiert. Man erhält 3,7 g 3-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäure, F. 178°.

Durch Eindampfen mit der äquivalenten Menge methanolischer Kalilauge erhält man das Kaliumsalz der Säure als amorphes Pulver.

Analog erhält man aus den in Beispiel 1 aufgeführten Estern die Verbindungen

20

25

- 2-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-essigsäure,
- 3-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäure,
 - 4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 152°;
- 30 4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 172°;
 - 5-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure, F. 159°;

30

- 5-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure, Ethanolamin-Salz, F. 160°;
- 7-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäure,
 - 7-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäure,
- 2-{4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexyl-1-yl}-essigsäure,
 - 2-{4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexyl-1-yl}-essigsäure,
 - 3-[7-Benzylamino-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäure,
- 4-[7-Benzylamino-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-20 yl]-buttersäure,
 - 5-[7-Benzylamino-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure, F. 185°;
- 25 4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexanca bonsäure,
 - 4-[7-(3,4-methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexancarbonsäure.
 - Analog erhält man die Verbindungen
 - 5-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-isopropyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure, Cyclohexylamin-Salz, F. 148°;

- 4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-ethyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 176°;
- 4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-ethyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 187°;
 - 4-[7-(3-Chlor-4-methoxy-benzylamino)-1-ethyl-3-methyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 206°;
- 4-[7-(3,4-Methylendioxy-benzylamino)-1-ethyl-3-methyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 177°;
 - 4-[7-Benzylamino-1-methyl-3-ethyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 208°;
 - 4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-methyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 250°;
- 4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-methyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 225°;
 - 4-[7-Benzylamino-1-methyl-3-methyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 201°;
- 5-[7-(4-Methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure, F. 160°;
 - 5-[7-(3-Methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure, F. 141°;
 - 5-[7-(4-Chlor-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure, F. 148°;
- 5-[7-(3-Chlor-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure, F. 151°;

15

Beispiel 3

Eine Mischung von 1,8 g 4-[7-Chlor-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-phenylcarbonsäuremethylester ("B") und 1,5 g 3-Chlor-4-methoxy-benzylamin in 20 ml N-Methylpyrrolidon wird 4 Stunden auf 110° erwärmt. Nach dem Abkühlen wird wie üblich aufgearbeitet. Man erhält 2,2 g 4-[7-(3-Chlor-4-methoxy-benzylamino1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-benzoesäuremethylester.

Analog Beispiel 2 erhält man aus 1,2 g des Esters daraus 1,0 g
4-[7-(3-Chlor-4-methoxy-benzylamino1-methyl-3-propyl-1*H*pyrazolo[4,3-d]pyrimidin-5-yl]-benzoesäure, Ethanolamin-Salz, F. 139°.

Analog Beispiel 1 erhält man aus "B" und 3,4-Methylendioxybenzylamin 4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-benzoesäuremethylester und daraus durch Esterhydrolyse

4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-benzoesäure.

20 Analog erhält man die Verbindung

4-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-phenylessigsäure, Glucaminsalz, F. 114°

25 und

4-[7-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-phenylessigsäure.

Beispiel 4

1 Äquivalent 3-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäure und 1,2 Äquivalente
Thionylchlorid werden 2 Stunden in Dichlormethan gerührt. Das
Lösungsmittel wird entfernt und man erhält 3-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäurechlorid.

Man überführt in wässriges Ammoniak, rührt eine Stunde und erhält nach üblicher Aufarbeitung 3-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäureamid.

5 Beispiel 5

1 Äquivalent DMF und 1 Äquivalent Oxalylchlorid werden bei 0° in Acetonitril gelöst. Danach wird 1 Äquivalent 3-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäureamid zugegeben. Es wird eine Stunde nachgerührt. Nach üblicher Aufarbeitung erhält man 3-[7-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionitril.

Beispiel 6

15

10

Analog den Beispielen 1, 2 und 3 erhält man durch Umsetzung der entsprechenden Chlor-pyrimidinderivate mit 3,4-Ethylendioxybenzylamin die nachstehenden Carbonsäuren

20

25

4-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure,

3-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäure,

5-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure,

7-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-30 pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäure,

2-{4-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexyl-1-yl}-essigsäure,

35

4-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexancarbonsäure,

10

15

20

25

30

35

d]pyrimidin-5-yl]-benzoesäure,

d]pyrimidin-5-yl]-phenylessigsäure.

•
4-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-benzoesäure,
4-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-benzoesäure,
4-[7-(3,4-Ethylendioxy-benzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-phenylessigsäure.
Analog erhält man durch Umsetzung mit 3,4-Dichlorbenzylamin die nachstehenden Verbindungen
4-[7-(3,4-Dichlorbenzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure, F. 209°;
3-[7-(3,4-Dichlorbenzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäure,
5-[7-(3,4-Dichlorbenzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure,
7-[7-(3,4-Dichlorbenzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäure,
2-{4-[7-(3,4-Dichlorbenzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexyl-1-yl}-essigsäure,
4-[7-(3,4-Dichlorbenzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexancarbonsäure,
4-[7-(3,4-Dichlorbenzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-

 $\hbox{4-[7-(3,4-Dichlorbenzylamino)-1-methyl-3-propyl-1$H-pyrazolo[4,3-decoration of the context o$

25

Analog erhält man durch Umsetzung mit 3-Chlor-4-ethoxybenzylamin die nachstehenden Verbindungen

- 5 4-[7-(3-Chlor-4-ethoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure,
 - 3-[7-(3-Chlor-4-ethoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäure,
 - 5-[7-(3-Chlor-4-ethoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure,
- 7-[7-(3-Chlor-4-ethoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäure,
 - 2-{4-[7-(3-Chlor-4-ethoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexyl-1-yl}-essigsäure,
- 4-[7-(3-Chlor-4-ethoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexancarbonsäure,
 - 4-[7-(3-Chlor-4-ethoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-benzoesäure,
 - 4-[7-(3-Chlor-4-ethoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-phenylessigsäure.
- Analog erhält man durch Umsetzung mit 3-Chlor-4-isopropoxybenzylamin die nachstehenden Verbindungen
 - 4-[7-(3-Chlor-4-isopropoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-buttersäure,
- 35 3-[7-(3-Chlor-4-isopropoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-propionsäure.

5-[7-(3-Chlor-4-isopropoxy-benzylamino)-1-methyl-3-p	ropyl-1 <i>H</i> -
pyrazolo[4,3-d]pyrimidin-5-yl]-valeriansäure,	

5 7-[7-(3-Chlor-4-isopropoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-heptansäure,

2-{4-[7-(3-Chlor-4-isopropoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexyl-1-yl}-essigsäure,

10

4-[7-(3-Chlor-4-isopropoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-cyclohexancarbonsäure,

4-[7-(3-Chlor-4-isopropoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-benzoesäure,

4-[7-(3-Chlor-4-isopropoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-yl]-phenylessigsäure.

20 Beispiel 7

Analog den Beispielen 1 und 2 erhält man die Verbindung

[7-(3-Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy]-essigsäure, Ethanolaminsalz, F. 138°.

Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:

Beispiel A: Injektionsgläser

5

10

Eine Lösung von 100 g eines Wirkstoffes der Formel I, 100 g des Nitrats und 5 g Dinatriumhydrogenphosphat wird in 3 l zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg jedes Wirkstoffs.

Beispiel B: Suppositorien

Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I, von 20g eines Nitrats mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg jedes Wirkstoffs.

Beispiel C: Lösung

20

25

30

Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I, 1 g eines Nitrats, 9,38 g Na $_{1}$ PO $_{4} \cdot 2$ H $_{2}$ O, 28,48 g Na $_{2}$ HPO $_{4} \cdot 12$ H $_{2}$ O und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D: Salbe

Man mischt 500 mg eines Wirkstoffes der Formel I, 500m g eines Nitrats mit 99,5 g Vaseline unter aseptischen Bedingungen.

Beispiel E: Tabletten

Ein Gemisch von 1 kg Wirkstoff der Formel I, 1 kg eines Nitrats, 4 kg
Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat

wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg jedes Wirkstoffs enthält.

Beispiel F: Dragees

5

Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

10 Beispiel G: Kapseln

2 kg Wirkstoff der Formel I und 2 kg eines Nitrats werden in üblicher Weise in Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg jedes Wirkstoffs enthält.

15

20

Beispiel H: Ampullen

Eine Lösung von 1 kg Wirkstoff der Formel I und 1 kg eines Nitrats in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg jedes Wirkstoffs.

Beispiel I: Inhalations-Spray

25

Man löst 14 g Wirkstoff der Formel I und 14 g eines Nitrats in 10 I isotonischer NaCI-Lösung und füllt die Lösung in handelsübliche Sprühgefäße mit Pump-Mechanismus. Die Lösung kann in Mund oder Nase gesprüht werden. Ein Sprühstoß (etwa 0,1 ml) entspricht einer Dosis von etwa 0,14 mg jedes Wirkstoffs.

30

Verbindungen der Formel I-I:

Die Verbindungen der Formel I-I sowie deren Salze werden durch ein Verfahren hergestellt, dadurch gekennzeichnet, daß man

a) eine Verbindung der Formel II-I

$$R^2$$
 N
 N
 N
 N
 N

worin

10
R¹, R² und X die angegebenen Bedeutungen haben,
und L CI, Br, OH, SCH₃ oder eine reaktionsfähige veresterte OHGruppe bedeutet,

15 mit einer Verbindung der Formel III

$$H_2N$$
 $(CH_2)_n$ R^3

20

5

worin

R³, R⁴ und n die angegebenen Bedeutungen haben,

25 umsetzt,

oder

- b) in einer Verbindung der Formel I-I einen Rest X in einen anderen
 Rest X umwandelt, indem man z.B. eine Estergruppe zu einer COOHGruppe hydrolysiert oder eine COOH-Gruppe in ein Amid oder in eine
 Cyangruppe umwandelt
- und/oder daß man eine Verbindung der Formel I-I in eines ihrer Salze überführt.

Unter Solvaten der Verbindungen der Formel I-I werden Anlagerungen von inerten Lösungsmittelmolekülen an die Verbindungen der Formel I-I verstanden, die sich aufgrund ihrer gegenseitigen Anziehungskraft ausbilden. Solvate sind z.B. Mono- oder Dihydrate oder Alkoholate.

5

Vor- und nachstehend haben die Reste R¹, R², R³, R⁴, R⁵, R⁶, R⁷, X, L und n die bei den Formeln I-I, II-I und III angegebenen Bedeutungen, sofern nicht ausdrücklich etwas anderes angegeben ist.

10

15

A bedeutet Alkyl mit 1-6 C-Atomen. In den vorstehenden Formeln ist Alkyl vorzugsweise unverzweigt und hat 1, 2, 3, 4, 5 oder 6 C-Atome und bedeutet vorzugsweise Methyl, Ethyl oder Propyl, weiterhin bevorzugt Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, aber auch n-Pentyl, Neopentyl, Isopentyl oder Hexyl.

X bedeutet einen einfach durch R⁷ substituierten R⁵ oder R⁶-Rest.

R⁵ bedeutet einen linearen oder verzweigten Alkylenrest mit 1-10,
vorzugsweise 1-8 C-Atomen, wobei der Alkylenrest vorzugsweise z.B.
Methylen, Ethylen, Propylen, Isopropylen, Butylen, Isobutylen, sek.Butylen, Pentylen, 1-, 2- oder 3-Methylbutylen, 1,1-, 1,2- oder 2,2Dimethylpropylen, 1-Ethylpropylen, Hexylen, 1-, 2-, 3- oder 4Methylpentylen, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- oder 3,3-Dimethylbutylen, 1oder 2-Ethylbutylen, 1-Ethyl-1-methylpropylen, 1-Ethyl-2-methylpropylen,
1,1,2- oder 1,2,2-Trimethylpropylen, lineares oder verzweigtes Heptylen,
Octylen, Nonylen oder Decylen bedeutet.
R⁵ bedeutet ferner z.B. But-2-en-ylen oder Hex-3-en-ylen.

30

R⁶ bedeutet Cycloalkylalkylen mit 6-12 C-Atomen, vorzugsweise z.B. Cycclopentylmethylen, Cyclohexylmethylen, Cyclohexylethylen, Cyclohexylpropylen oder Cyclohexylbutylen.

Von den Resten R¹ und R² steht einer vorzugsweise für H, während der andere bevorzugt Propyl oder Butyl, besonders bevorzugt aber Ethyl oder

Methyl bedeutet. Ferner bedeuten R¹ und R² auch zusammen bevorzugt Propylen, Butylen oder Pentylen.

Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I.

5

Die Reste R³ und R⁴ können gleich oder verschieden sein und stehen vorzugsweise in der 3- oder 4-Position des Phenylrings. Sie bedeuten beispielsweise jeweils unabhängig voneinander H, OH, Alkyl, F, Cl, Br oder I oder zusammen Alkylen, wie z.B. Propylen, Butylen oder Pentylen, ferner Ethylenoxy, Methylendioxy oder Ethylendioxy. Bevorzugt stehen sie auch jeweils für Alkoxy, wie z.B. für Methoxy, Ethoxy oder Propoxy.

Der Rest R⁷ bedeutet vorzugsweise z.B. COOH, COOCH₃, COOC₂H₅, CONH₂, CON(CH₃)₂, CONHCH₃ oder CN.

15

35

10

Für die gesamte Erfindung gilt, daß sämtliche Reste, die mehrfach auftreten, gleich oder verschieden sein können, d.h. unabhängig voneinander sind.

- Gegenstand der Erfindung sind insbesondere solche pharmazeutischen Formulierungen enthaltend ein Nitrat und mindestens eine Verbindung der Formel I-I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln Ia bis Ie ausgedrückt werden, die der Formel I-I entsprechen
- 25 Teilformeln la bis le ausgedrückt werden, die der Formei I-I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I-I angegebene Bedeutung haben, worin jedoch

in la X durch COOH oder COOA substituiertes R⁵ oder R⁶ bedeuten;

in lb R¹, R² jeweils unabhängig voneinander H, A oder Hal,
wobéi mindestens einer der Reste R¹ oder R² immer

≠ H ist,

R³ und R⁴ zusammen Alkylen mit 3-5 C-Atomen, -O-CH₂-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O,

			•
		X	durch COOH oder COOA, substituiertes R ⁵ oder R ⁶ bedeuten;
5	in lc	R^1 , R^2	jeweils unabhängig voneinander H, A oder Hal, wobei mindestens einer der Reste R ¹ oder R ² immer ≠ H ist,
		R ³ , R ⁴ R ³ und R ⁴	jeweils unabhängig voneinander H, A, OA oder Hal, zusammen Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O,
10		X n	durch COOH oder COOA substituiertes R ⁵ oder R ⁶ , 1 oder 2 bedeuten;
15 ⁻	in ld	R^1 , R^2	jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R¹ oder R² immer ≠ H ist,
	•	R^1 und R^2 R^3 , R^4	zusammen auch Alkylen mit 3-5 C-Atomen, jeweils unabhängig voneinander H, A, OA oder Hal,
		R ³ und R ⁴	zusammen auch -O-CH ₂ -O-,
20 ·	•	Χ	einfach durch R ⁷ substituiertes R ⁵ ,
		R ⁵	lineares oder verzweigtes Alkylen mit 1-10 C-Atomen, oder
			-C ₆ H ₄ -CH ₂ -,
		R ⁷	COOH oder COOA,
25		A	Alkyl mit 1 bis 6 C-Atomen,
		Hal	F, CI, Br oder I,
		m	1 und
•		n	1 oder 2 bedeuten;
30	in le	R^1, R^2	jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R¹ oder R² immer ≠ H ist,
		R^1 und R^2 R^3 , R^4	zusammen auch Alkylen mit 3-5 C-Atomen, jeweils unabhängig voneinander H, A, OH, OA oder
35		R ³ und R ⁴	Hal, zusammen auch -O-CH ₂ -O-,

	X	einfach durch R ⁷ substituiertes R ⁵ ,
	R^5	lineares oder verzweigtes Alkylen mit 1-10 C-Atomen,
		oder
_		-C ₆ H ₄ -CH ₂ -,
5	R^7	COOH oder COOA,
	A [·]	Alkyl mit 1 bis 6 C-Atomen,
	Hal	F, Cl, Br oder I,
	m	1 und
- 10	n	1 oder 2 bedeuten.

Gegenstand der Erfindung ist vorzugsweise eine Formulierung enthaltend 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure sowie dessen physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Nitrat. Bevorzugt ist neben der freien Säure das Ethanolaminsalz.

Bevorzugt sind Nitrate ausgewählt aus der Gruppe Pentaerythrityltetra-, Pentaerythrityltri-, Pentaerythrityldi-, Pentaerythritylmononitrat, Isosorbid-mononitrat, Isosorbiddinitrat, Glyceroltrinitrat.

Bevorzugt sind besonders Nitrate ausgewählt aus der Gruppe Pentaerythrityltetranitrat, Isosorbidmononitrat, Isosorbiddinitrat, Glyceroltrinitrat, ganz besonders bevorzugt ist Pentaerythrityltetranitrat.

Die Verbindungen der Formel I-I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart), beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

15

35

In den Verbindungen der Formeln II-I oder III haben R¹, R², R³, R⁴, X und n die angegebenen Bedeutungen, insbesondere die angegebenen bevorzugten Bedeutungen.

- Fails L eine reaktionsfähige veresterte OH-Gruppe bedeutet, so ist diese vorzugsweise Alkylsulfonyloxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyloder p-Tolylsulfonyloxy, ferner auch 2-Naphthalinsulfonyloxy).
- Die Verbindungen der Formel I-I können vorzugsweise erhalten werden, indem man Verbindungen der Formel II-I mit Verbindungen der Formel III umsetzt.
- Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I-I umsetzt.

 Andererseits ist es möglich, die Reaktion stufenweise durchzuführen.
- Die Ausgangsverbindungen der Formel II-I und III sind in der Regel
 bekannt. Sind sie nicht bekannt, so können sie nach an sich bekannten
 Methoden hergestellt werden.
 Verbindungen der Formel II-I können z.B. durch Umsetzung mit POCI₃ aus
 Verbindungen erhalten werden, die aus Thiophenderivaten und CNsubstituierten Alkylencarbonsäureestern aufgebaut werden (Eur. J. Med.
 Chem. 23, 453 (1988).
 - Im einzelnen erfolgt die Umsetzung der Verbindungen der Formel II-I mit den Verbindungen der Formel III in Gegenwart oder Abwesenheit eines inerten Lösungsmittels bei Temperaturen zwischen etwa -20 und etwa 150°, vorzugsweise zwischen 20 und 100°.
 - Der Zusatz eines säurebindenden Mittels, beispielsweise eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums oder Calciums, oder der Zusatz einer

30

organischen Base wie Triethylamin, Dimethylamin, Pyridin oder Chinolin oder eines Überschusses der Aminkomponente kann günstig sein.

Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan,
Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwassertoffe wie
Trichlorethylen, 1,2-Dichlorethan,Tetrachlorkohlenstoff, Chloroform oder
Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol,
n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether,
Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide
wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO);
Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat
oder Gemische der genannten Lösungsmittel.

Es ist ferner möglich, in einer Verbindung der Formel I-I einen Rest X in einen anderen Rest X umzuwandeln, z.B. indem man einen Ester oder eine Cyangruppe zu einer COOH-Gruppe hydrolysiert.

Estergruppen können z.B. mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.

Carbonsäuren können z.B. mit Thionylchlorid in die entsprechenden Carbonsäurechloride und diese in Carbonsäureamide umgewandelt werden. Durch Wasserabspaltung in bekannter Weise erhält man aus diesen Carbonitrile.

Eine Säure der Formel I-I kann mit einer Base in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Säure und der Base in einem inerten Lösungsmittel
wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung
kommen insbesondere Basen in Frage, die physiologisch unbedenkliche
Salze liefern.

So kann die Säure der Formel 1-I mit einer Base (z.B. Natrium- oder Kaliumhydroxid oder -carbonat) in das entsprechende Metall-, ins-

besondere Alkalimetall- oder Erdalkalimetall-, oder in das entsprechende Ammoniumsalz umgewandelt werden.

Für diese Umsetzung kommen insbesondere auch organische Basen in Frage, die physiologisch unbedenkliche Salze liefern, wie z.B. Ethanolamin.

Eine Säure der Formel I-I kann mit einer Base in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Säure und der Base in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Basen in Frage, die physiologisch unbedenkliche Salze liefern.

So kann die Säure der Formel I-I mit einer Base (z.B. Natrium- oder Kaliumhydroxid oder -carbonat) in das entsprechende Metall-, ins-

besondere Alkalimetall- oder Erdalkalimetall-, oder in das entsprechende Ammoniumsalz umgewandelt werden.

Für diese Umsetzung kommen insbesondere auch organische Basen in Frage, die physiologisch unbedenkliche Salze liefern, wie z.B. Ethanolamin.

20

25

30

35

5

10

Andererseits kann eine Base der Formel I-I mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure,

PCT/EP01/15324

Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Isolierung und /oder Aufreinigung der Verbindungen der Formel I verwendet werden.

5

Gegenstand der Erfindung sind ferner pharmazeutische Formulierungen enthaltend mindestens eine Verbindung der Formel I-I und/oder eines ihrer physiologisch unbedenklichen Salze und mindestens ein Nitrat sowie enthaltend einen oder mehrere Träger- und/oder Hilfsstoffe.

- Die Herstellung der pharmazeutischer Zubereitungen geschieht insbesondere auf nicht-chemischem Wege. Hierbei werden die Wirkstoffe zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff in eine geeignete Dosierungsform gebracht werden.
- Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle,
- 20 Benzylalkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen,
 - gen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und /oder

mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine. Sie könne ferner als Nasensprays verabreicht werden.

30

10

15

20

30

Dabei werden die Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

Gegenstand der Erfindung ist insbesondere die Verwendung der erfindungsgemäßen Formulierungen zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

Die Bestandteile der neuen pharmazeutischen Zubereitung werden vorzugsweise kombiniert verabreicht. Sie können aber auch einzeln gleichzeitig oder aufeinanderfolgend verabreicht werden.

Gegenstand der Erfindung ist auch ein Set (Kit), bestehend aus getrennten Packungen von

einer wirksamen Menge an 5-[4-(3-Chlor-4-methoxy-benzylamino)-25 5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]valeriansäure, Ethanolaminsalz

und

einer wirksamen Menge eines Prostaglandins oder Prostaglandin-(b) derivates.

Gegenstand der Erfindung ist insbesondere ein Set (Kit), bestehend aus getrennten Packungen von

(a) einer wirksamen Menge an 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-35 valeriansäure, Ethanolaminsalz

10

und

einer wirksamen Menge eines Nitrats,
 zur Behandlung von pulmonalem Hochdruck, congestivem
 Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit
 (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

Das Set enthält geeignete Behälter, wie Schachteln oder Kartons, individuelle Flaschen, Beutel oder Ampullen. Das Set kann z.B. separate Ampullen enthalten, in denen jeweils eine wirksame Menge an 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz und des Nitrats gelöst oder in lyophylisierter Form vorliegt.

Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethylacetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation.

Massenspektrometrie (MS): EI (Elektronenstoß-Ionisation) M⁺ FAB (Fast Atom Bombardment) (M+H)⁺

25 Beispiel 1

1,9 g 3-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)propionsäuremethylester [erhältlich durch Cyclisierung von 2-Amino4,5,6,7-tetrahydrobenzothiophen-3-carbonsäuremethylester mit 3Cyanpropionsäuremethylester und nachfolgender Chlorierung mit
Phosphoroxichlorid/Dimethylamin] und 2,3 g 3-Chlor-4-methoxybenzylamin
("A") in 20 ml N-Methylpyrrolidon werden 5 Stunden bei 110° gerührt. Das
Lösungsmittel wird entfernt und wie üblich aufgearbeitet. Man erhält 2,6 g
3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester als farbloses Öl.

	Analog erhält man durch Umsetzung von "A"
	mit 3-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
5	3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
10	3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäure- methylester
15	3-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäure- methylester
20	3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäure- methylester
25	3-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethyleste 3-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-
30	pyrimidin-2-yl]-propionsäuremethylester;
	mit 2-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-essigsäuremethylester
35	2-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-essigsäuremethylester.

	Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin
	mit 3-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
5	3-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
10	3-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
15	3-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsauremethylester;
	mit 3-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäure-methylester
20	3-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäure-methylester
25	3-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäure- methylester
30	3-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester;
	mit 3-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester 3-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-
35	pyrimidin-2-vil-propionsäuremethylester.

20

25

30

35

Analog erhält man durch Umsetzung von "A"

mit 4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester

5 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;

mit 4-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester

4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;

mit 4-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester

4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;

mit 4-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäure-methylester

4-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;

mit 4-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäure-methylester

4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;

mit 4-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;

mit 4-(4,6-Chlor-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäure-methylester

4-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester.

	Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin
	mit 4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)- buttersäuremethylester
5	4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
	mit 4-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester
10	4-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
	mit 4-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-
15	4-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
	mit 4-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäure- methylester
20	4-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]- pyrimidin-2-yl]-buttersäuremethylester;
	mit 4-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäure- methylester
25	4-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
30	mit 4-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethyleste 4-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;
	mit 4-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester.
35	

Analog erhält man durch Umsetzung von "A"

-	mit 5-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
5	5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
10	5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
15	5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäure- methylester
20	5-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäure- methylester
25	5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäure- methylester
30	5-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester.
35	Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

	mit 5-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-
	valeriansäuremethylester
	5-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-
5	benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-
	valeriansäuremethylester
	5-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-
10	benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-
	valeriansäuremethylester
	5-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-
15	benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-
	valeriansäuremethylester
	5-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-
20	pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-
	valeriansäuremethylester
	5-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-
25	pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-
	valeriansäuremethylester
	5-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-
30	pyrimidin-2-yl]-valeriansäuremethylester;
	mit 5-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester
	5-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-
	pyrimidin-2-yl]-valeriansäuremethylester.
35	· · · · · · · · · · · · · · · · · · ·
	Analog erhält man durch Umsetzung von "A"

	mit 7-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-
	heptansäuremethylester
	7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-
5	benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-
	heptansäuremethylester
•	7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-
10	benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-
	heptansäuremethylester
	7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-
15	benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäure-
	methylester
	7-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-
20	pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäure-
	methylester
	7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-
25	pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäure-
	methylester
	7-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-
30	pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäure-
	methylester
	7-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-
35	pyrimidin-2-yl]-heptansäuremethylester.

	Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin
٠.	mit 7-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
5	7-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
10	7-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
15	7-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)- heptansäuremethylester
20	7-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester;
•	mit 7-(4-Chlor-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl)- heptansäuremethylester
25	7-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
	mit 7-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-
	heptansäuremethylester
30	7-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester;
•	mit 7-(4,6-Dichlor-thieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester
35	7-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester.

Analog erhält man durch Umsetzung von "A"

mit 2-[4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-cyclohexyl-1-yl]-essigsäuremethylester

- 5 2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäuremethylester;
- mit 2-[4-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-cyclohexyl-1-yl]essigsäuremethylester
 2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäuremethylester;
- Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

 15

 mit 2-[4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)cyclohexyl-1-yl]-essigsäuremethylester
 2-{4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}essigsäuremethylester.

Analog erhält man durch Umsetzung von Benzylamin

- mit 3-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)propionsäuremethylester
 3-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]pyrimidin-2-yl)-propionsäuremethylester;
- mit 4-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)
 buttersäuremethylester

 4-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]
 pyrimidin-2-yl)-buttersäuremethylester;
- mit 5-(4-Chlor-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)valeriansäuremethylester

Α̈́,

5-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester;

mit 4-(4-Chlor-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl)-buttersäure-5 methylester

4-[4-Benzylamino-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester;

mit 5-(4-Chlor-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester

5-[4-Benzylamino-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester.

Beispiel 2

15

2,2 g 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester wird in 20 ml Ethylenglycolmonomethylether gelöst und nach Zugabe von 10 ml 32 %iger NaOH 5 Stunden bei 110° gerührt. Nach Zugabe von 20 %iger HCl wird mit Dichlormethan extrahiert. Durch Zugabe von Petrolether erhält man 2,0 g 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure, F. 229°.

Die ausgefallenen Kristalle werden in 30 ml Isopropanol gelöst und mit 0,5 g Ethanolamin versetzt. Nach Kristallisation erhält man 1,35 g 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure, Ethanolaminsalz, F. 135°.

Analog erhält man aus den unter Beispiel 1 aufgeführten Estern die nachstehenden Carbonsäuren:

30

3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;

3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;

	3-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
5	3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
	3-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
10	3-[4-(3-Chior-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
15	2-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-essigsäure, Ethanolaminsalz, F126°;
	3-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
20	3-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
	3-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
25	3-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
30	3-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
	3-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
35	3-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;

	4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
5	4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
10	4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
10	4-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 142°;
15	4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
	4-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 170°;
20	4-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
25	4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 114°;
	4-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
30	4-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
	4-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 170°;
35	·

	4-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
5	4-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
	4-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
10	5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, F. 165°; Ethanol aminsalz, F. 112°;
15	5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
	5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
20	5-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F. 156°;
25	5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
25	5-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F. 156°;
30	5-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
	5-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
35	5-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;

·	5-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
5	5-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F. 167°;
10	5-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
10	5-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
15	5-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
20	7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure, Ethanolaminsalz, F130°;
20	7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
25	7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
	7-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
30	7-[4-(3-Chlor-4-methoxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
	7-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
35	

	7-[4-(3-Chlor-4-methoxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
5	7-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure, Ethanolaminsalz, F. 137°;
	7-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclopenteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
	7-[4-(3,4-Methylendioxy-benzylamino)-5,6-cyclohepteno-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
15	7-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
·	7-[4-(3,4-Methylendioxy-benzylamino)-5,6-dimethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
20	7-[4-(3,4-Methylendioxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
25	7-[4-(3,4-Methylendioxy-benzylamino)-6-chlor-thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
25	2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl}-essigsäure;
30	2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl}-essigsäure;
,	2-{4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl}-essigsäure;
35	3-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäure, Ethanolaminsalz, F. 126°;

4-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]
pyrimidin-2-yl)-buttersäure, Ethanolaminsalz, F. 133°;

5 5-(4-Benzylamino-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäure, Ethanolaminsalz, F. 135°;

4-[4-Benzylamino-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Ethanolaminsalz, F. 165°;

5-[4-Benzylamino-6-ethyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F. 162°.

Beispiel 3

15

10

20

25

1 Äquivalent 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure und 1,2 Äquivalente. Thionylchlorid werden 2 Stunden in Dichlormethan gerührt. Das Lösungsmittel wird entfernt und man erhält 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]- propionsäurechlorid.

Man überführt in wässriges Ammoniak, rührt eine Stunde und erhält nach üblicher Aufarbeitung 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäureamid.

Beispiel 4

1 Äquivalent DMF und 1 Äquivalent Oxalylchlorid werden bei 0° in Acetonitril gelöst. Danach wird 1 Äquivalent 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäureamid zugegeben. Es wird eine Stunde nachgerührt. Nach üblicher Aufarbeitung erhält man 3-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionitril.

35 Beispiel 5

Analog zu den Beispielen 1 und 2 werden die nachstehenden Verbindungen erhalten

- 6-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-hexansäure, F. 165°;
 - 2-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure, Ethanolaminsalz, F. 150°;
- 4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-2,2-dimethyl-buttersäure, Ethanolaminsalz, F. 130°;
 - 4-[4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-2,2-dimethyl-buttersäure, Ethanolaminsalz, F. 126°;
- 15
 5-[4-(3-Chlor-4-hydroxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno[2,3-d]-pyrimidin-2-yl]-valeriansäure, F. 179°;
- 5-[4-(3,4-Dichlor-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]- v pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz F. 136°;
 - 5-[4-(3-Chlor-4-isopropyloxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F. 118°;
- 2-[4-(4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-phenyl]-essigsäure, Ethanolaminsalz, F. 119°;
- 2-[4-(4-(3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl)-phenyl]-essigsäure, F. 214.

Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:

Beispiel A: Injektionsgläser

5

10

Eine Lösung von 100 g eines Wirkstoffes der Formel I-I, 100 g des Nitrats und 5 g Dinatriumhydrogenphosphat wird in 3 l zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg jedes Wirkstoffs.

Beispiel B: Suppositorien

Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I-I, von 15 20g eines Nitrats mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg jedes Wirkstoffs.

Beispiel C: Lösung

20

Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I-I, 1 g eines Nitrats, 9,38 g Na $H_2PO_4 \cdot 2 H_2O$, 28,48 g Na $_2HPO_4 \cdot 12 H_2O$ und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung.

25 Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D: Salbe

Man mischt 500 mg eines Wirkstoffes der Formel I-1, 500m g eines Nitrats 30 mit 99,5 g Vaseline unter aseptischen Bedingungen.

Beispiel E: Tabletten

Ein Gemisch von 1 kg Wirkstoff der Formel I-I, 1 kg eines Nitrats, 4 kg 35 Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg jedes Wirkstoffs enthält.

Beispiel F: Dragees

5

Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

10 Beispiel G: Kapseln

2 kg Wirkstoff der Formel I-I und 2 kg eines Nitrats werden in üblicher Weise in Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg jedes Wirkstoffs enthält.

15

20

Beispiel H: Ampullen

Eine Lösung von 1 kg Wirkstoff der Formel I-I und 1 kg eines Nitrats in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg jedes Wirkstoffs.

Beispiel I: Inhalations-Spray

25 Man löst 14 g Wirkstoff der Formel I-I und 14 g eines Nitrats in 10 I isotonischer NaCI-Lösung und füllt die Lösung in handelsübliche Sprühgefäße mit Pump-Mechanismus. Die Lösung kann in Mund oder Nase gesprüht werden. Ein Sprühstoß (etwa 0,1 ml) entspricht einer Dosis von etwa 0,14 mg jedes Wirkstoffs.

30

Verbindungen der Formel I-II:

Die Verbindungen der Formel I-II nach Anspruch 1 sowie deren Salze werden durch ein Verfahren hergestellt,

35

dadurch gekennzeichnet, daß man

a) eine Verbindung der Formel II-II

5

worin

10 X die angegebene Bedeutung hat,

und L Cl, Br, OH, SCH₃ oder eine reaktionsfähige veresterte OH-Gruppe bedeutet,

15 mit einer Verbindung der Formel III

$$H_2N$$
 CH_2 R^1

20

worin

R¹ und R² die angegebenen Bedeutungen haben,

25 umsetzt,

oder

- b) in einer Verbindung der Formel I-II einen Rest X in einen anderen Rest X umwandelt, indem man z.B. eine Estergruppe zu einer COOH-Gruppe hydrolysiert oder eine COOH-Gruppe in ein Amid oder in eine Cyangruppe umwandelt
- und/oder daß man eine Verbindung der Formel I-II in eines ihrer Salze überführt.

Unter Solvaten der Verbindungen der Formel I-II werden Anlagerungen von inerten Lösungsmittelmolekülen an die Verbindungen der Formel I-II verstanden, die sich aufgrund ihrer gegenseitigen Anziehungskraft ausbilden. Solvate sind z.B. Mono- oder Dihydrate oder Alkoholate.

5

Vor- und nachstehend haben die Reste R¹, R², R³, R⁴, R⁵, R⁶, R⁷, X und L die bei den Formeln I-II, II-II und III angegebenen Bedeutungen, sofern nicht ausdrücklich etwas anderes angegeben ist.

- A bedeutet Alkyl mit 1-6 C-Atomen.
 In den vorstehenden Formeln ist Alkyl vorzugsweise unverzweigt und hat 1, 2, 3, 4, 5 oder 6 C-Atome und bedeutet vorzugsweise Methyl, Ethyl oder Propyl, weiterhin bevorzugt Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, aber auch n-Pentyl, Neopentyl, Isopentyl oder Hexyl.
- 15 X bedeutet einen einfach durch R⁷ substituierten R⁴-, R⁵- oder R⁶-Rest.

R⁴ bedeutet einen linearen oder verzweigten Alkylenrest mit 1-10 C-Atomen, wobei der Alkylenrest vorzugsweise z.B. Methylen, Ethylen,

- Propylen, Isopropylen, Butylen, Isobutylen, sek.-Butylen, Pentylen, 1-, 2- oder 3-Methylbutylen, 1,1-, 1,2- oder 2,2-Dimethylpropylen, 1- Ethylpropylen, Hexylen, 1-, 2-, 3- oder 4-Methylpentylen, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- oder 3,3-Dimethylbutylen, 1- oder 2-Ethylbutylen, 1-Ethyl-1- methylpropylen, 1-Ethyl-2-methylpropylen, 1,1,2- oder 1,2,2-Tri-
- methylpropylen, lineares oder verzweigtes Heptylen, Octylen, Nonylen oder Decylen bedeutet.

 R⁵ bedeutet ferner z.B. But-2-en-ylen oder Hex-3-en-ylen.

 Ganz besonders bevorzugt ist Ethylen, Propylen oder Butylen.
- R⁵ bedeutet Cycloalkylalkylen mit 5-12 C-Atomen, vorzugsweise z.B. Cyclopentylmethylen, Cyclohexylmethylen, Cyclohexylethylen, Cyclohexylpropylen oder Cyclohexylbutylen.
 R⁵ bedeutet auch Cycloalkyl mit vorzugsweise mit 5-7 C-Atomen. Cycloalkyl bedeutet z.B. Cyclopentyl, Cyclohexyl oder Cycloheptyl.
- 35
 Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I.

Die Reste R¹ und R² können gleich oder verschieden sein und stehen vorzugsweise in der 3- oder 4-Position des Phenylrings. Sie bedeuten beispielsweise jeweils unabhängig voneinander H, Hydroxy, Alkyl, F, Cl, Br oder I oder zusammen Alkylen, wie z.B. Propylen, Butylen oder Pentylen, ferner Ethylenoxy, Methylendioxy oder Ethylendioxy. Bevorzugt stehen sie auch jeweils für Alkoxy, wie z.B. für Methoxy, Ethoxy oder Propoxy.

Der Rest R⁷ bedeutet vorzugsweise z.B. COOH, COOCH₃, COOC₂H₅, CONH₂, CON(CH₃)₂, CONHCH₃ oder CN.

Für die gesamte Erfindung gilt, daß sämtliche Reste, die mehrfach auftreten, gleich oder verschieden sein können, d.h. unabhängig voneinander sind.

15

20

5

Gegenstand der Erfindung sind insbesondere solche pharmazeutischen Formulierungen enthaltend ein Nitrat und mindestens eine Verbindung der Formel I-II, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln la bis le ausgedrückt werden, die der Formel I-II entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I-II angegebene Bedeutung haben, worin jedoch

25	in la	X	durch COOH, COOA, CONH ₂ , CONA ₂ , CONHA oder CN substituiertes R ⁴ , Phenyl oder Phenylmethyl bedeuten;
30 -	in lb	R ¹ und R ²	zusammen Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O, durch COOH, COOA, CONH ₂ , CONA ₂ , CONHA oder CN substituiertes R ⁴ , Phenyl oder Phenylmethyl bedeuten;

35 in Ic R¹, R² jeweils unabhängig voneinander H, A, OA oder Hal,

5		R ¹ und R ²	zusammen Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O, durch COOH, COOA, CONH ₂ , CONA ₂ , CONHA oder CN substituiertes R ⁴ , Phenyl oder Phenylmethyl bedeuten;
	in Id	R^1, R^2	jeweils unabhängig voneinander H, A, OA oder Hal,
10		R ¹ und R ²	zusammen auch Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O-,
		X	einfach durch R ⁷ substituiertes Alkylen mit 2-5 C- Atomen, Cyclohexyl, Phenyl oder Phenylmethyl,
		R ⁷	COOH oder COOA,
15		Α	Alkyl mit 1 bis 6 C-Atomen,
		Hal	F, Cl, Br oder I bedeuten;
	in le	R^1 , R^2	jeweils unabhängig voneinander H, A, OH, OA oder Hal,
20		R ¹ und R ²	zusammen auch Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder
		X	-O-CH ₂ -CH ₂ -O-, einfach durch R ⁷ substituiertes Alkylen mit 2-5 C- Atomen, Cyclohexyl, Phenyl oder Phenylmethyl,
25	ē.	R ⁷	COOH oder COOA,
•		Α	Alkyl mit 1 bis 6 C-Atomen,
•		Hal	F, Cl, Br oder I bedeuten.

Gegenstand der Erfindung ist vorzugsweise eine Formulierung enthaltend 4-[4-(3-Chlor-4-methoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexancarbonsäure sowie dessen physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Nitrat.

Bevorzugt ist neben der freien Säure das Ethanolaminsalz.

Bevorzugt sind Nitrate ausgewählt aus der Gruppe Pentaerythrityltetra-, Pentaerythrityltri-, Pentaerythrityldi-, Pentaerythritylmononitrat, Isosorbidmononitrat, Isosorbiddinitrat, Glyceroltrinitrat.

Bevorzugt sind besonders Nitrate ausgewählt aus der Gruppe Pentaerythrityltetranitrat, Isosorbidmononitrat, Isosorbiddinitrat, Glyceroltrinitrat, ganz besonders bevorzugt ist Pentaerythrityltetranitrat.

Die Verbindungen der Formel I-II und auch die Ausgangsstoffe zu ihrer
Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie HoubenWeyl, Methoden der organischen Chemie, Georg-Thieme-Verlag,
Stuttgart), beschrieben sind, und zwar unter Reaktionsbedingungen, die
für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann
man auch von an sich bekannten, hier nicht näher erwähnten Varianten
Gebrauch machen.

In den Verbindungen der Formeln II-II oder III haben R¹, R², R³, R⁴, X und n die angegebenen Bedeutungen, insbesondere die angegebenen bevorzugten Bedeutungen.

Falls L eine reaktionsfähige veresterte OH-Gruppe bedeutet, so ist diese vorzugsweise Alkylsulfonyloxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyloder p-Tolylsulfonyloxy, ferner auch 2-Naphthalinsulfonyloxy).

Die Verbindungen der Formel I-II können vorzugsweise erhalten werden, indem man Verbindungen der Formel II-II mit Verbindungen der Formel III umsetzt.

Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I-II umsetzt.
Andererseits ist es möglich, die Reaktion stufenweise durchzuführen.

35

30

20

25

25

35

Die Ausgangsverbindungen der Formel II-II und III sind in der Regel bekannt. Sind sie nicht bekannt, so können sie nach an sich bekannten Methoden hergestellt werden.

Verbindungen der Formel II-II können z.B. durch Umsetzung mit POCl₃
aus den entsprechenden Hydroxypyrimidinen erhalten werden, die aus
Thiophenderivaten und CN-substituierten Alkylencarbonsäureestern
aufgebaut werden (Eur. J. Med. Chem. <u>23</u>, 453 (1988)).
Die Darstellung der Hydroxypyrimidine erfolgt entweder durch Dehydrierung entsprechender Tetrahydrobenzthienopyrimidinverbindungen oder
nach der für die Herstellung von Pyrimidinderivaten üblichen Cyclisierung
von 2-Aminobenzthiophen-3-carbonsäure-derivaten mit Aldehyden oder
Nitrilen (z.B. Houben Weyl E9b/2).

Im einzelnen erfolgt die Umsetzung der Verbindungen der Formel II-II mit den Verbindungen der Formel III in Gegenwart oder Abwesenheit eines inerten Lösungsmittels bei Temperaturen zwischen etwa -20 und etwa 150°, vorzugsweise zwischen 20 und 100°.

Der Zusatz eines säurebindenden Mittels, beispielsweise eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums oder Calciums, oder der Zusatz einer organischen Base wie Triethylamin, Dimethylamin, Pyridin oder Chinolin oder eines Überschusses der Aminkomponente kann günstig sein.

Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwassertoffe wie Trichlorethylen, 1,2-Dichlorethan,Tetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon oder Dimethylform-

amid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO);

.

Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

- Es ist ferner möglich, in einer Verbindung der Formél I-II einen Rest X in einen anderen Rest X umzuwandeln, z.B. indem man einen Ester oder eine Cyangruppe zu einer COOH-Gruppe hydrolysiert.

 Estergruppen können z.B. mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.
- Carbonsäuren können z.B. mit Thionylchlorid in die entsprechenden Carbonsäurechloride und diese in Carbonsäureamide umgewandelt werden. Durch Wasserabspaltung in bekannter Weise erhält man aus diesen Carbonitrile.
- Eine Säure der Formel I-II kann mit einer Base in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Säure und der Base in einem inerten Lösungsmittel
 wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung
 kommen insbesondere Basen in Frage, die physiologisch unbedenkliche
 Salze liefern.
 - So kann die Säure der Formel I-II mit einer Base (z.B. Natrium- oder Kaliumhydroxid oder -carbonat) in das entsprechende Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in das entsprechende Ammoniumsalz umgewandelt werden.
- Für diese Umsetzung kommen insbesondere auch organische Basen in Frage, die physiologisch unbedenkliche Salze liefern, wie z.B. Ethanolamin.
- Eine Säure der Formel I-II kann mit einer Base in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Säure und der Base in einem inerten Lösungsmittel
 wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung
 kommen insbesondere Basen in Frage, die physiologisch unbedenkliche
 Salze liefern.
- 35 So kann die Säure der Formel I-II mit einer Base (z.B. Natrium- oder Kaliumhydroxid oder -carbonat) in das entsprechende Metall-, ins-

10

15

20

25

besondere Alkalimetall- oder Erdalkalimetall-, oder in das entsprechende Ammoniumsalz umgewandelt werden.

Für diese Umsetzung kommen insbesondere auch organische Basen in Frage, die physiologisch unbedenkliche Salze liefern, wie z.B. Ethanolamin.

Andererseits kann eine Base der Formel I-II mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Isolierung und /oder Aufreinigung der Verbindungen der Formel I-II verwendet werden.

Gegenstand der Erfindung sind ferner pharmazeutische Formulierungen enthaltend mindestens eine Verbindung der Formel I-II und/oder eines ihrer physiologisch unbedenklichen Salze und mindestens ein Nitrat sowie enthaltend einen oder mehrere Träger- und/oder Hilfsstoffe.

Die Herstellung der pharmazeutischer Zubereitungen geschieht insbesondere auf nicht-chemischem Wege. Hierbei werden die Wirkstoffe zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff in eine geeignete Dosierungsform gebracht werden.

10

15

20

25

30

35

Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungsund/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine. Sie könne ferner als Nasensprays verabreicht werden.

Dabei werden die Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

Gegenstand der Erfindung ist insbesondere die Verwendung der erfindungsgemäßen Formulierungen zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen

(CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Corpulmonale und/oder Rechtsherzinsuffizienz.

Gegenstand der Erfindung ist ferner die Verwendung einer pharmazeutischen Zubereitung enthaltend mindestens einen Phosphodiesterase
V Hemmer und mindestens ein Prostaglandin oder ein Prostaglandinderivat zur Herstellung eines Arzneimittels zur oralen Behandlung von
pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer
obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder
Rechtsherzinsuffizienz

Die Bestandteile der neuen pharmazeutischen Zubereitung werden vorzugsweise kombiniert verabreicht. Sie können aber auch einzeln gleichzeitig oder aufeinanderfolgend verabreicht werden.

Gegenstand der Erfindung ist auch ein Set (Kit), bestehend aus getrennten Packungen von

(a) einer wirksamen Menge an 4-[4-(3-Chlor-4-methoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexancarbonsäure, Ethanolaminsalz

und

15

20

25

(b) einer wirksamen Menge eines Nitrats.

Gegenstand der Erfindung ist insbesondere ein Set (Kit), bestehend aus getrennten Packungen von

(a) einer wirksamen Menge an 4-[4-(3-Chlor-4-methoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexancarbonsäure,
Ethanolaminsalz

und

- 30 (b) einer wirksamen Menge eines Nitrats, zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.
- Das Set enthält geeignete Behälter, wie Schachteln oder Kartons, individuelle Flaschen, Beutel oder Ampullen. Das Set kann z.B. separate

Ampullen enthalten, in denen jeweils eine wirksame Menge an 4-[4-(3-Chlor-4-methoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexancarbonsäure, Ethanolaminsalz und des Nitrats gelöst oder in lyophylisierter Form vorliegt.

5

10

15

Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethylacetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation.

Massenspektrometrie (MS): El (Elektronenstoß-lonisation) M⁺
FAB (Fast Atom Bombardment) (M+H)⁺

Beispiel 1

3-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester
 [erhältlich durch Cyclisierung von 2-Amino-5,6,7,8-tetrahydrobenzothio-phen-3-carbonsäuremethylester mit 3-Cyanpropionsäuremethylester, Dehydrierung mit Schwefel und nachfolgender Chlorierung mit Phosphoroxichlorid/Dimethylamin] und 3-Chlor-4-methoxybenzylamin ("A") in N-Methylpyrrolidon werden 5 Stunden bei 110° gerührt. Das Lösungsmittel
 wird entfernt und wie üblich aufgearbeitet. Man erhält 3-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester als farbloses Öl.

Analog erhält man durch Umsetzung von "A"

30

35

- mit 2-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-essigsäuremethylester 2-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-essigsäuremethylester.
- Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

15

35

mit 3-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester 3-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester.

5 Analog erhält man durch Umsetzung von "A"

mit 4-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester.

Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

mit 4-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäuremethylester.

Analog erhält man durch Umsetzung von "A"

mit 5-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester.

Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

25 mit 5-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester 5-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäuremethylester.

Analog erhält man durch Umsetzung von "A"

mit 7-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester 7-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester.

Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

- mit 7-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-heptansäuremethylester 7-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäuremethylester.
- 5 Analog erhält man durch Umsetzung von "A"
 - mit 2-[4-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-cyclohex-1-yl]-essigsäuremethylester

2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäuremethylester.

Analog erhält man durch Umsetzung von 3,4-Methylendioxybenzylamin

mit 2-[4-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-cyclohex-1-yl]essigsäuremethylester
2-{4-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäuremethylester.

Analog erhält man durch Umsetzung von Benzylamin

- mit 3-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester 3-(4-Benzylamino-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäuremethylester;
- 25 mit 4-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester 4-(4-Benzylamino-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäuremethylester;
- mit 5-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäuremethylester

 5-(4-Benzylamino-benzothieno-[2,3-d]-pyrimidin-2-yl)valeriansäuremethylester.

Analog erhält man durch Umsetzung von "A"

mit 4-(4-Chlor-benzothieno-[2,3-d]-pyrimidin-2-yl)cyclohexancarbonsäuremethylester

4-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexancarbonsäuremethylester

und durch Umsetzung von 3,4-Methylendioxybenzylamin 4-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexancarbonsäuremethylester.

Beispiel 2

3-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäuremethylester wird in Ethylenglycolmonomethylether gelöst und nach Zugabe von 32 %iger NaOH 5 Stunden bei 110° gerührt. Nach Zugabe von 20 %iger HCl wird mit Dichlormethan extrahiert. Durch Zugabe von Petrolether erhält man 3-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure, F. 218°.

Die ausgefallenen Kristalle werden in Isopropanol gelöst und mit Ethanolamin versetzt. Nach Kristallisation erhält man 3-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure,

20 Ethanolaminsalz.

Analog erhält man die Verbindungen

4-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-25 2-yl]-buttersäure, F. 225°; Ethanolaminsalz F. 150°;

5-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, F. 210°; Ethanolaminsalz F. 141°;

30 4-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure, Hydrochlorid, F. 245°.

Analog erhält man aus den unter Beispiel 1 aufgeführten Estern die nachstehenden Carbonsäuren:

2.	2-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-yl]-essigsäure,
2	3-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-yl]-propionsäure,
2	5-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin- -yl]-valeriansäure,
2	7-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin
2	7-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin- 2-yl]-heptansäure,
þ	2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]- byrimidin-2-yl]-cyclohexyl-1-yl}-essigsäure,
þ	2-{4-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]- byrimidin-2-yl]-cyclohexyl-1-yl}-essigsäure,
_	3-(4-Benzylamino-benzothieno-[2,3-d]-pyrimidin-2-yl)-propionsäure,
	4-(4-Benzylamino-benzothieno-[2,3-d]-pyrimidin-2-yl)-buttersäure,
	5-(4-Benzylamino-benzothieno-[2,3-d]-pyrimidin-2-yl)-valeriansäure,
2	4-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidir 2-yl]-cyclohexancarbonsäure, Ethanolaminsalz, F. 167°;
2	4-[4-(3,4-Methylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin 2-yl]-cyclohexancarbonsäure, Ethanolaminsalz, F. 143°.

Beispiel 3

Eine Mischung von 1,5 g 4-(4-Chlorbenzothieno-[2,3-d]-pyrimidin-2-yl)-phenylcarbonsäuremethylester ("B"), hergestellt durch Dehydrierung der entsprechenden 5,6,7,8-Tetrahydrobenzthieno-[2,3-d]-pyrimidinverbindung mit Schwefel und nachfolgender Chlorierung mit Phosphoroxichlorid / Dimethylamin, und 1,5 g 3-Chlor-4-methoxy-benzylamin in 20 ml N-Methyl-pyrrolidon wird 4 Stunden auf 110° erwärmt. Nach dem Abkühlen wird wie ünlich aufgearbeitet. Man erhält 2,6 g 4-[4-(3-Chlor-4-methoxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäuremethylester, F. 203-204°.

10

5

Analog Beispiel 2 erhält man aus 1,2 g des Esters daraus 1,0 g 4-[4-(3-Chlor-4-methoxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäure, Ethanolaminsalz F. 189-190°.

15

Analog Beispiel 1 erhält man aus "B" und 3,4-Methylendioxybenzylamin 4-[4-(3,4-Methylendioxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäuremethylester und daraus durch Esterhydrolyse 4-[4-(3,4-Methylendioxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäure, Natriumsalz, F. >260°.

.20

Analog erhält man die Verbindung 4-[4-(3-Chlor-4-methoxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-phenylessigsäure, Ethanolaminsalz, F. 130°; und

25

4-[4-(3,4-Methylendioxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-phenylessigsäure, Ethanolaminsalz, F. 202°.

Beispiel 4

1 Äquivalent 3-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure und 1,2 Äquivalente Thionylchlorid werden 2 Stunden in Dichlormethan gerührt. Das Lösungsmittel wird entfernt und man erhält 3-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäurechlorid.

Man überführt in wässriges Ammoniak, rührt eine Stunde und erhält nach üblicher Aufarbeitung 3-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäureamid.

5 Beispiel 5

1 Äquivalent DMF und 1 Äquivalent Oxalylchlorid werden bei 0° in Acetonitril gelöst. Danach wird 1 Äquivalent 3-[4-(3-Chlor-4-methoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäureamid zugegeben. Es wird eine Stunde nachgerührt. Nach üblicher Aufarbeitung erhält man 3-[4-(3-Chlor-4-methoxy-benzylamino)-benzothieno-[2,3-d]pyrimidin-2-yl]-propionitril.

Beispiel 6

15

10

Analog den Beispielen 1, 2 und 3 erhält man durch Umsetzung der entsprechenden Chlor-pyrimidinderivate mit 3,4-Ethylendioxybenzylamin die nachstehenden Carbonsäuren

20

4-[4-(3,4-Ethylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2yl]-buttersäure,

3-[4-(3,4-Ethylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2yl]-propionsäure,

25

5-[4-(3,4-Ethylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2yl]-valeriansäure,

7-[4-(3,4-Ethylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2yl]-heptansäure,

30

2-{4-[4-(3,4-Ethylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäure,

35

4-[4-(3,4-Ethylendioxy-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2yl]-cyclohexancarbonsäure,

- 4-[4-(3,4-Ethylendioxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäure, Zers. 220-230°;
- 5 4-[4-(3,4-Ethylendioxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäure, Ethanolaminsalz, F. 252°;
 - 4-[4-(3,4-Ethylendioxy-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-phenylessigsäure.
 - Analog erhält man durch Umsetzung mit 3,4-Dichlorbenzylamin die nachstehenden Verbindungen
- 4-[4-(3,4-Dichlor-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]buttersäure,
 - 3-[4-(3,4-Dichlor-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure,
- 5-[4-(3,4-Dichlor-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F. 160°;
 - 7-[4-(3,4-Dichlor-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure,
 - 2-{4-[4-(3,4-Dichlor-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäure,
- 4-[4-(3,4-Dichlor-benzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]cyclohexancarbonsäure,
 - 4-[4-(3,4-Dichlor-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäure,
- 35 4-[4-(3,4-Dichlor-benzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-phenylessigsäure.

Analog erhält man durch Umsetzung mit 3-Chlor-4-ethoxybenzylamin d	ie
nachstehenden Verbindungen	

- 5 4-[4-(3-Chlor-4-ethoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure,
 - 3-[4-(3-Chlor-4-ethoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure,
 - 5-[4-(3-Chlor-4-ethoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure,
- 7-[4-(3-Chlor-4-ethoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-15 yl]-heptansäure,
 - 2-{4-[4-(3-Chlor-4-ethoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäure,
- 20 4-[4-(3-Chlor-4-ethoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2- yi]-cyclohexancarbonsäure,
 - 4-[4-(3-Chlor-4-ethoxybenzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäure, F. 185-187°;
 - 4-[4-(3-Chlor-4-ethoxybenzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-phenylessigsäure.
- Analog erhält man durch Umsetzung mit 3-Chlor-4-isopropoxybenzylamin die nachstehenden Verbindungen
 - 4-[4-(3-Chlor-4-isopropoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-buttersäure,
- 35 3-[4-(3-Chlor-4-isopropoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-propionsäure,

5-[4-(3-Chlor-4-isopropoxybenzylamino)-benzothieno-[2,	3-d]-
pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz, F. 130°;	

5 7-[4-(3-Chlor-4-isopropoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-heptansäure,

2-{4-[4-(3-Chlor-4-isopropoxybenzylamino)-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäure,

10
4-[4-(3-Chlor-4-isopropoxybenzylamino)-benzothieno-[2,3-d]pyrimidin-2-yl]-cyclohexancarbonsäure,

4-[4-(3-Chlor-4-isopropoxybenzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-benzoesäure, F. 240-241°;

4-[4-(3-Chlor-4-isopropoxybenzylamino)-[1]benzothieno-[2,3-d]-pyrimidin-2-yl]-phenylessigsäure.

20

15

25

Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:

Beispiel A: Injektionsgläser

5

10

Eine Lösung von 100 g eines Wirkstoffes der Formel I-II, 100 g des Nitrats und 5 g Dinatriumhydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg jedes Wirkstoffs.

Beispiel B: Suppositorien

15

Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I-II, von 20g eines Nitrats mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg jedes Wirkstoffs.

Beispiel C: Lösung

20

Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I-II, 1 g eines Nitrats, 9,38 g NaH $_2$ PO $_4 \cdot 2$ H $_2$ O, 28,48 g Na $_2$ HPO $_4 \cdot 12$ H $_2$ O und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 I auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D: Salbe

30

25

Man mischt 500 mg eines Wirkstoffes der Formel I-II, 500m g eines Nitrats mit 99,5 g Vaseline unter aseptischen Bedingungen.

Beispiel-E: Tabletten

35

Ein Gemisch von 1 kg Wirkstoff der Formel I-II, 1 kg eines Nitrats, 4 kg Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat

wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg jedes Wirkstoffs enthält.

Beispiel F: Dragees

5

Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

10 Beispiel G: Kapseln

2 kg Wirkstoff der Formel I-II und 2 kg eines Nitrats werden in üblicher Weise in Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg jedes Wirkstoffs enthält.

15

20

Beispiel H: Ampullen

Eine Lösung von 1 kg Wirkstoff der Formel I-II und 1 kg eines Nitrats in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg jedes Wirkstoffs.

Beispiel I: Inhalations-Spray

Man löst 14 g Wirkstoff der Formel I-II und 14 g eines Nitrats in 10 I isotonischer NaCI-Lösung und füllt die Lösung in handelsübliche Sprühgefäße mit Pump-Mechanismus. Die Lösung kann in Mund oder Nase gesprüht werden. Ein Sprühstoß (etwa 0,1 ml) entspricht einer Dosis von etwa 0,14 mg jedes Wirkstoffs.

Patentansprüche

 Pharmazeutische Formulierung enthaltend mindestens eine Verbindung der Formel I

worin 15 R^1, R^2 jeweils unabhängig voneinander H, A, OH, OA oder Hal, R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen, -O-CH₂-CH₂-, -CH₂-O-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O-, 20 R^3 , R^4 jeweils unabhängig voneinander H oder A, einfach durch R⁸ substituiertes R⁵, R⁶ oder R⁷, X lineares oder verzweigtes Alkylen mit 1-10 C-Atomen, R^5 worin eine oder zwei CH2-Gruppen durch -CH=CH-Gruppen, O. S oder SO ersetzt ersetzt sein können, 25 Cycloalkyl oder Cycloalkylalkylen mit 5-12 C-Atomen, R^6 R^7 Phenyl oder Phenylmethyl, R^8 COOH, COOA, CONH2, CONHA, CON(A)2 oder CN, Alkyl mit 1 bis 6 C-Atomen und Α 30 Hal F, Cl, Br oder I bedeuten,

und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Nitrat zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmo-

35

naler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz und Leberzirrhose.

- Pharmazeutische Formulierung nach Anspruch 1, enthaltend
 mindestens eine Verbindung der Formel I gemäß Anspruch 1, worin
 durch COOH, COOA, CONH₂, CONA₂, CONHA oder CN
 substituiertes R⁵, Phenyl oder Phenylmethyl bedeutet.
- 3. Pharmazeutische Formulierung nach Anspruch 1, enthaltend
 mindestens eine Verbindung der Formel I gemäß Anspruch 1, worin
 R¹ und R² zusammen Alkylen mit 3-5 C-Atomen, -O-CH₂-CH₂-,
 -O-CH₂-O- oder -O-CH₂-CH₂-O,
 X durch COOH, COOA, CONH₂, CONA₂, CONHA oder
 CN substituiertes R⁵, Phenyl oder Phenylmethyl
 bedeuten.
- - 5. Pharmazeutische Formulierung nach Anspruch 1, enthaltend mindestens eine Verbindung der Formel I gemäß Anspruch 1, worin R¹, R² jeweils unabhängig voneinander H, A, OH, OA oder Hal, R¹ und R² zusammen auch Alkylen mit 3-5 C-Atomen,

			•
5		X	-O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O-, einfach durch R ⁸ substituiertes Alkylen mit 2-5 C-Atomen, Cyclohexyl, Phenyl oder Phenylmethyl, Alkyl mit 1-6 C-Atomen, Alkyl mit 1-6 C-Atomen, COOH oder COOA, Alkyl mit 1 bis 6 C-Atomen, F, Cl, Br oder I
		bedeuten.	
10 [.]		•	
	6.	mindester	utische Formulierung nach Anspruch 1, enthaltend is eine Verbindung der Formel I gemäß Anspruch 1, worin jeweils unabhängig voneinander H, A, OH, OA oder Hal,
15		R ¹ und R ²	zusammen auch Alkylen mit 3-5 C-Atomen,
			$-O-CH_2-CH_2-$, $-O-CH_2-O-$ oder $-O-CH_2-CH_2-O-$,
		R^3	Alkyl mit 1-6 C-Atomen,
		R⁴	Alkyl mit 1-6 C-Atomen,
		X	-(CH ₂) ₂₋₅ -R ⁸ , worin eine CH ₂ -Gruppe durch O ersetzt sein
20			kann, 4-R ⁸ -Cyclohexyl, 4-R ⁸ -Phenyl oder
		Ω	4-(R ⁸ -Methyl)-phenyl,
		R ⁸	COOH oder COOA
		bedeuten.	
25	7.	Pharmaze	eutische Formulierung nach Anspruch 1, enthaltend
	• •		ns eine Verbindung der Formel I gemäß Anspruch 1
			alt aus der Gruppe
		•	(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1 <i>H</i> -
		pyrazolo[4	1,3-d]pyrimidin-5-yl]-pentansäure;
30		(b) 4-[7-	-(3-Chlor-4-methoxy-benzylamino)-1-methyl-3-propyl-1 <i>H-</i>
			1,3-d]pyrimidin-5-yl]-benzoesäure;
			-(3,4-Methylendioxy-benzylamino)-1-methyl-3-propyl-1 <i>H</i> -
			4,3-d]pyrimidin-5-yl]-buttersäure;
		` '	-(Benzylamino)-1-methyl-3-propyl-1 <i>H</i> -pyrazolo[4,3-d]-
35		pyrimidin-	5-yl]-pentansäure;

- (e) [7-(3-Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy]-essigsäure.
- 8. Pharmazeutische Formulierung nach Anspruch 1, enthaltend [7-(3-5 Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy]-essigsäure, Ethanolaminsalz.
- Pharmazeutische Formulierung nach den Ansprüchen 1 bis 8, worin das Nitrat ausgewählt ist aus der Gruppe Pentaerythrityltetra-,
 Pentaerythrityltri-, Pentaerythrityldi-, Pentaerythritylmononitrat, Isosorbidmononitrat, Isosorbiddinitrat, Glyceroltrinitrat.
- 10. Pharmazeutische Formulierung nach Anspruch 9, worin das Nitrat Pentaerythrityltetranitrat, Isosorbidmononitrat, Isosorbiddinitrat,
 15 Glyceroltrinitrat bedeutet.
 - 11. Pharmazeutische Formulierung nach Anspruch 10, worin das Nitrat Pentaerythrityltetranitrat bedeutet.
- 20 12. Pharmazeutische Formulierung nach einem der vorhergehenden Ansprüche enthaltend einen oder mehrere Träger- und/oder Hilfsstoffe.
- 13. Pharmazeutische Zubereitung gemäß einem der Ansprüche 1 bis 12 zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.
- 30 14. Set (Kit), bestehend aus getrennten Packungen von (a) einer wirksamen Menge an [7-(3-Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy]-essigsäure, Ethanolaminsalz und
- 35 (b) einer wirksamen Menge eines Nitrats.

10

 R^7

- 15. Set (Kit), bestehend aus getrennten Packungen von
 - (a) einer wirksamen Menge an [7-(3-Chloro-4-methoxy-benzylamino)-1-methyl-3-propyl-1*H*-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy]-essigsäure, Ethanolaminsalz und
 - (b) einer wirksamen Menge eines Nitrats, zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

 Pharmazeutische Formulierung enthaltend mindestens eine Verbindung der Formel I-I

15
$$R^{2} \qquad (CH_{2})_{n} \qquad R^{3}$$

$$R^{1} \qquad S \qquad N \qquad X$$
20
worin

worin R^1, R^2 jeweils unabhängig voneinander H, A oder Hal, wobei einer der Reste R¹ oder R² immer ≠ H ist, R¹ und R² 25 zusammen auch Alkylen mit 3-5 C-Atomen, R^3 . R^4 jeweils unabhängig voneinander H, A, OH, OA oder Hal, R³ und R⁴ zusammen auch Alkylen mit 3-5 C-Atomen, -O-CH2-CH2-, -O-CH2-O- oder -O-CH2-CH2-O-, einfach durch R⁷ substituiertes R⁵ oder R⁶. X 30 R^5 lineares oder verzweigtes Alkylen mit 1-10 C-Atomen, worin eine oder zwei CH₂-Gruppen durch -CH=CH-Gruppen ersetzt sein können, oder $-C_6H_4-(CH_2)_m-$ 35 R^6 Cycloalkylalkylen mit 6-12 C-Atomen,

COOH, COOA, CONH2, CONHA, CON(A)2 oder CN,

Α Alkyl mit 1 bis 6 C-Atomen, Hal F, Cl, Br oder I, 1 oder 2 und m n 0, 1, 2 oder 3 5 bedeuten, und/oder deren physiologisch unbedenklichen Salze und/oder Solvate und mindestens ein Nitrat zur Herstellung eines Arzneimittels zur Behandlung von Angina, Bluthochdruck, pulmonalem Hochdruck, 10 congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale, Rechtsherzinsuffizienz, Atherosklerose, Bedingungen verminderter Durchgängigkeit der Herzgefäße, peripheren vaskulären Krankheiten, Schlaganfall, Bronchitis, allergischem Asthma, chronischem Asthma, allergischer 15 Rhinitis, Glaucom, Irritable Bowel Syndrome, Tumoren, Niereninsuffizienz und Leberzirrhose. Pharmazeutische Formulierung nach Anspruch 16, enthaltend 20 mindestens eine Verbindung der Formel I-I gemäß Anspruch 16, worin X durch COOH oder COOA substituiertes R⁵ oder R⁶ bedeutet. 18. Pharmazeutische Formulierung nach Anspruch 16, enthaltend 25 mindestens eine Verbindung der Formel I-I gemäß Anspruch 16, worin R^1 . R^2 jeweils unabhängig voneinander H, A oder Hal, wobei mindestens einer der Reste R1 oder R2 immer ≠ H ist, 30 R³ und R⁴ zusammen Alkylen mit 3-5 C-Atomen, -O-CH₂-CH₂-, -O-CH2-O- oder -O-CH2-CH2-O, durch COOH oder COOA, substituiertes R5 oder R6 X bedeuten.

	19.	Pharmazeutische Formulierung nach Anspruch 16, enthaltend mindestens eine Verbindung der Formel I-I gemäß Anspruch 16, worin		
5		R ¹ , R ²	jeweils unabhängig voneinander H, A oder Hal, wobei mindestens einer der Reste R¹ oder R² immer ≠ H ist,	
		R^3 , R^4 R^3 und R^4	jeweils unabhängig voneinander H, A, OA oder Hal, zusammen Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O,	
10		Χ .	durch COOH oder COOA substituiertes R ⁵ oder R ⁶ ,	
		n	1 oder 2	
		bedeuten.		
	20.	Pharmazeut	ische Formulierung nach Anspruch 16, enthaltend	
15			eine Verbindung der Formel I-I gemäß Anspruch 16,	
. •		worin		
		R^1, R^2	jeweils unabhängig voneinander H, A oder Hal,	
		•	wobei einer der Reste R¹ oder R² immer ≠ H ist,	
00	•	R ¹ und R ²	zusammen auch Alkylen mit 3-5 C-Atomen,	
20		R^3 , R^4	jeweils unabhängig voneinander H, A, OA oder Hal,	
		R ³ und R ⁴	zusammen auch -O-CH ₂ -O-,	
		X	einfach durch R ⁷ substituiertes R ⁵ ,	
		R⁵	lineares oder verzweigtes Alkylen mit 1-10 C-Atomen,	
25			oder	
			-C ₆ H ₄ -CH ₂ -,	
		R ⁷	COOH oder COOA,	
		Α	Alkyl mit 1 bis 6 C-Atomen,	
30		Hal	F, Cl, Br oder I,	
		m	1 und	
		n	1 oder 2	
		bedeuten.		

	21.	Pharmazeutische Formulierung nach Anspruch 16, enthaltend	
			s eine Verbindung der Formel I-I gemäß Anspruch 16,
•		worin	
r		R^1 , R^2	jeweils unabhängig voneinander H, A oder Hal,
5			wobei einer der Reste R¹ oder R² immer ≠ H ist,
•		R^1 und R^2	zusammen auch Alkylen mit 3-5 C-Atomen,
		R^3 , R^4	jeweils unabhängig voneinander H, A, OH, OA oder Hal,
		R^3 und R^4	zusammen auch -O-CH ₂ -O-,
10		Χ	einfach durch R ⁷ substituiertes R ⁵ ,
		R ⁵	lineares oder verzweigtes Alkylen mit 1-10 C-Atomen,
			oder
			-C ₆ H ₄ -CH ₂ -,
15		R ⁷	COOH oder COOA,
		Α	Alkyl mit 1 bis 6 C-Atomen,
		Hal	F, Cl, Br oder I,
		m	1 und
20		n,	1 oder 2
		bedeuten.	
	22.	Pharmazeu	tische Formulierung nach Anspruch 16, enthaltend
			eine Verbindung der Formel I-I gemäß Anspruch 16
25		_	aus der Gruppe
		(a) 3-[4-(3	B-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-
			thieno-[2,3-d]-pyrimidin-2-yl]-propionsäure;
			3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-
30		•	thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
00		(c) 7-[4-(3	3,4-Methylendioxy-benzylamino)-5,6,7,8-tetrahydro-[1]-
		benzo	thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
		(d) 7-[4-(3	-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-
		benzo	thieno-[2,3-d]-pyrimidin-2-yl]-heptansäure;
35		(e) 5-[4-(3	-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-
		benzo	thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;

- (f) 5-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure;
- (g) 4-[4-(3-Chlor-4-methoxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
- (h) 4-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-buttersäure;
- (i) 2-{4-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-cyclohexyl-1-yl}-essigsäure;
- 10 (k) 5-[4-(3,4-Methylendioxy-benzylamino)-6-methyl-thieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure.
- 23. Pharmazeutische Formulierung nach Anspruch 16, enthaltend 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz.
- 24. Pharmazeutische Formulierung nach den Ansprüchen 16 bis 23, worin das Nitrat ausgewählt ist aus der Gruppe Pentaerythrityltetra-,
 Pentaerythrityltri-, Pentaerythrityldi-, Pentaerythritylmononitrat, Isosorbidmononitrat, Glyceroltrinitrat.
 - 25. Pharmazeutische Formulierung nach Anspruch 24, worin das Nitrat Pentaerythrityltetranitrat, Isosorbidmononitrat, Isosorbiddinitrat, Glyceroltrinitrat bedeutet.
 - 26. Pharmazeutische Formulierung nach Anspruch 25, worin das Nitrat Pentaerythrityltetranitrat bedeutet.
- 27. Pharmazeutische Formulierung nach einem der vorhergehenden Ansprüche enthaltend einen oder mehrere Träger- und/oder Hilfsstoffe.
- 28. Pharmazeutischen Zubereitung gemäß einem der Ansprüche 16 bis 27 zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF),

10

20

30

chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

- 29. Set (Kit), bestehend aus getrennten Packungen von
 - (a) einer wirksamen Menge an 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz und
 - (b) einer wirksamen Menge eines Nitrats.
- 30. Set (Kit), bestehend aus getrennten Packungen von
 - (a) einer wirksamen Menge an 5-[4-(3-Chlor-4-methoxy-benzylamino)-5,6,7,8-tetrahydro-[1]-benzothieno-[2,3-d]-pyrimidin-2-yl]-valeriansäure, Ethanolaminsalz
- 15 und
 - (b) einer wirksamen Menge eines Nitrats, zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.
 - 31. Pharmazeutische Formulierung enthaltend mindestens eine Verbindung der Formel I-II

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

worin

 R^1 , R^2 jeweils unabhängig voneinander H, A, OA, OH oder Hal, R^1 und R^2 zusammen auch Alkylen mit 3-5 C-Atomen,

-O-CH₂-CH₂-, -CH₂-O-CH₂-, -O-CH₂-O- oder -O-CH₂-CH₂-O-,

		X	einfach durch R ⁷ substituiertes R ⁴ , R ⁵ oder R ⁶ ,
		R ⁴ I	ineares oder verzweigtes Alkylen mit 1-10 C-Atomen,
	•		worin eine oder zwei CH2-Gruppen durch -CH=CH-
_			Gruppen ersetzt sein können,
5		R ⁵ (Cycloalkyl oder Cycloalkylalkylen mit 5-12 C-Atomen,
		R^6 F	Phenyl oder Phenylmethyl,
		R^7 . (COOH, COOA, CONH ₂ , CONHA, CON(A) ₂ oder CN,
		Α Α	Alkyl mit 1 bis 6 C-Atomen und
10		Hal I	F, CI, Br oder I
		bedeuten,	·
		und/oder de	eren physiologisch unbedenklichen Salze und/oder 🗼
		Solvate und	d mindestens ein Nitrat zur Herstellung eines Arzneimittels
15		zur Behand	llung von Angina, Bluthochdruck, pulmonalem Hochdruck
		congestiver	n Herzversagen (CHF), chronischer obstruktiver pulmo-
		naler Krank	heit (COPD), Cor pulmonale, Rechtsherzinsuffizienz,
		Atheroskler	ose, Bedingungen verminderter Durchgängigkeit der
20		Herzgefäße	, peripheren vaskulären Krankheiten, Schlaganfall, 🔠
20		Bronchitis,	allergischem Asthma, chronischem Asthma, allergischer
		Rhinitis, Gla	aucom, Irritable Bowel Syndrome, Tumoren, Nierenin-
		suffizienz u	nd Leberzirrhose.
25	32.	Pharmazeu	tische Formulierung nach Anspruch 31, enthaltend
			eine Verbindung der Formel I-II gemäß Anspruch 31,
		worin	
			OOH, COOA, CONH ₂ , CONA ₂ , CONHA oder CN es R ⁴ , Phenyl oder Phenylmethyl bedeutet.
30		Substituterte	es R, Phenyl oder Phenylmethyl bedeutet.
	33.	Pharmazeu	tische Formulierung nach Anspruch 31, enthaltend
			eine Verbindung der Formel I-II gemäß Anspruch 31,
	•	worin	
2.5		R ¹ und R ²	zusammen Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -,
35		,	-O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O,

	•	X	durch COOH, COOA, CONH ₂ , CONA ₂ , CONHA oder CN substituiertes R ⁴ , Phenyl oder Phenylmethyl
		bedeuten.	
5	34.	mindestens worin	tische Formulierung nach Anspruch 31, enthaltend eine Verbindung der Formel I-II gemäß Anspruch 31,
10		R^1 , R^2 R^1 und R^2	jeweils unabhängig voneinander H, A, OA oder Hal, zusammen Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O,
, 0		×	durch COOH, COOA, CONH ₂ , CONA ₂ , CONHA oder CN substituiertes R ⁴ , Phenyl oder Phenylmethyl
		bedeuten.	
15	35.		tische Formulierung nach Anspruch 31, enthaltend eine Verbindung der Formel I-II gemäß Anspruch 31,
		R^1 , R^2 R^1 und R^2	jeweils unabhängig voneinander H, A, OA oder Hal, zusammen auch Alkylen mit 3-5 C-Atomen,
20			-O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder -O-CH ₂ -CH ₂ -O-,
		X R ⁷	einfach durch R ⁷ substituiertes Alkylen mit 2-5 C- Atomen, Cyclohexyl, Phenyl oder Phenylmethyl, COOH oder COOA,
25		A Hal bedeuten.	Alkyl mit 1 bis 6 C-Atomen, F, Cl, Br oder l
30	36.		tische Formulierung nach Anspruch 31, enthaltend eine Verbindung der Formel I-II gemäß Anspruch 31,
		R^1 , R^2 R^1 und R^2	jeweils unabhängig voneinander H, A, OH, OA oder Hal, zusammen auch Alkylen mit 3-5 C-Atomen, -O-CH ₂ -CH ₂ -, -O-CH ₂ -O- oder
35			-O-CH ₂ -CH ₂ -, -O-CH ₂ -O- odel -O-CH ₂ -CH ₂ -O-,

	e 	X R ⁷	einfach durch R ⁷ substituiertes Alkylen mit 2-5 C- Atomen, Cyclohexyl, Phenyl oder Phenylmethyl, COOH oder COOA,
		A	Alkyl mit 1 bis 6 C-Atomen,
5	•	Hal	F, Cl, Br oder I
5		bedeuten.	i, oi, bi odel i
		bedeaten.	
	37.	Pharmazeut	ische Formulierung nach Anspruch 31, enthaltend
			eine Verbindung der Formel I-II gemäß Anspruch 31
10			aus der Gruppe
		(a) 3-[4-(3	-Chlor-4-methoxy-benzylamino)-benzo[4,5]thieno-[2,3-d]-din-2-yl]-propionsäure;
		(b) 4-[4-(3	,4-Methylendioxy-benzylamino)-benzo[4,5]thieno-[2,3-d]-din-2-yl]-buttersäure;
15		• •	,4-Methylendioxy-benzylamino)-benzo[4,5]thieno-[2,3-d]-din-2-yl]-heptansäure;
			-Chlor-4-methoxy-benzylamino)-benzo[4,5]thieno-[2,3-d]- din-2-yl]-heptansäure;
20			-Chlor-4-methoxy-benzylamino)-benzo[4,5]thieno-[2,3-d]-midin-2-yl]-valeriansäure;
			-(3-Chlor-4-methoxy-benzylamino)-benzo[4,5]thieno-[2,3-midin-2-yl]-cyclohexyl-1-yl}-essigsäure;
		(g) 4-[4-(3	3,4-Methylendioxy-benzylamino)-benzo[4,5]thieno-[2,3-d]-din-2-yl]-cyclohexancarbonsäure;
25		(h) 4-[4-(3	3,4-Methylendioxy-benzylamino)-benzo[4,5]thieno-[2,3-d]-din-2-yl]-benzoesäure;
		(i) 4-[4-(3	3,4-Methylendioxy-benzylamino)-benzo[4,5]thieno-[2,3-d]-din-2-yl]-phenylessigsäure;
		• •	3-Chlor-4-methoxybenzylamino)-benzothieno-[2,3-d]-
30			din-2-yl]-cyclohexancarbonsäure.
	38.	mindestens	tische Formulierung nach Anspruch 31, enthaltend 4-[4-(3-Chlor-4-methoxybenzylamino)-benzothieno-[2,3-1-2-yl]-cyclohexancarbonsäure, Ethanolaminsalz.

- 39. Pharmazeutische Formulierung nach den Ansprüchen 31 bis 38, worin das Nitrat ausgewählt ist aus der Gruppe Pentaerythrityltetra-, Pentaerythrityltri-, Pentaerythrityldi-, Pentaerythritylmononitrat, Isosorbidmononitrat, Glyceroltrinitrat.
- 40. Pharmazeutische Formulierung nach Anspruch 39, worin das Nitrat Pentaerythrityltetranitrat, Isosorbidmononitrat, Isosorbiddinitrat, Glyceroltrinitrat bedeutet.
- 10 41. Pharmazeutische Formulierung nach Anspruch 40, worin das Nitrat Pentaerythrityltetranitrat bedeutet.
 - 42. Pharmazeutische Formulierung nach einem der vorhergehenden Ansprüche enthaltend einen oder mehrere Träger- und/oder Hilfsstoffe.
- 43. Pharmazeutische Zubereitung gemäß einem der Ansprüche 31 bis 42 zur Herstellung eines Arzneimittels zur Behandlung von pulmonalem Hochdruck, congestivem Herzversagen (CHF), chronischer obstruktiver pulmonaler Krankheit (COPD), Cor pulmonale und/oder Rechtsherzinsuffizienz.

25

15

ERROR: undefinedfilename OFFENDING COMMAND: file

STACK:

/ColorRendering /DefaultColorRenderingRE600 true