On Reliability Functions for Single-Message Unequal Error Protection

Da Wang Venkat Chandar Sae-Young Chung Gregory W. Wornell

EECS, MIT Lincoln Labs, MIT EE, KAIST EECS, MIT

*ISIT 2012, Cambridge, MA*July 6, 2011

Classical channel coding setup

- All messages equally important
- Uniform protection
 - Average error:

$$P_{\rm e} = \frac{1}{M} \sum_{m=1}^{M} P_{\rm e}(m)$$

Maximal error:

$$P_{\rm e} = \max_{1 \le m \le M} P_{\rm e}(m)$$

What if we have non-uniform protection?

Unequal error protection (UEP)

- Protect special messages different from regular messages.
- Multi-message UEP: exponentially many special messages
- Single-message UEP: one special message
 - Scope of this talk

Single-message UEP: three types of errors

- miss: decode the special codeword as a regular codeword,
- false alarm: decode a regular codeword as the special codeword, and
- decoding error: decode a regular codeword to another regular codeword.

Single-message unequal error protection Motivation and applications

Communication with delay requirements

- Example: distributed control, media streaming
- Allowing non-block encoding schemes improves performance [B. D. Kudryashov, 1979]
- Special message as NACK signal [S. Draper and A. Sahai, 2006]
 - Achieves an error exponent much higher than the traditional channel coding error exponent
 - See also [A. Sahai and S. Draper, 2008]

Slotted asynchronous communication

- Channel output induced by noise ≈ channel output induced by a special codeword with repeated symbols [D. Wang, V. Chandar, S. Chung, and G. W. Wornell, 2011]
- UEP with constraints on the special codeword design

Single-message unequal error protection Problem setup

- Channel $W: \mathcal{X} \to \mathcal{Y}$
- Message set $\mathcal{M}_{f_n} = \{0, 1, 2, \dots, |\mathcal{M}_{f_n}|\}$
 - Message 0: the special message
- Encoder $f_n: \mathcal{M}_{f_n} \to \mathcal{X}^n$
- Decoder $g_n: \mathcal{Y}^n \to \mathcal{M}_{f_n}$.
 - ▶ Decoding region for regular codewords: $A_n \triangleq \bigcup_{m \neq 0} g^{-1}(m)$
 - ▶ Decoding region for the special codeword: $\mathcal{B}_n \triangleq g_n^{-1}(m=0)$

Given a codebook $C^{(n)}$, performance metrics:

- Rate: R
- Miss probability: P_m
- False alarm probability: P_f
- $lue{}$ Decoding error probability: $P_{
 m e}$
- Error exponents: $E_{\rm m}$, $E_{\rm f}$, $E_{\rm d}$

Single-message unequal error protection Central question

Given
$$P_{\rm m}, P_{\rm f}, P_{\rm e} \rightarrow 0$$
,

- Allowing $E_{\rm f}=0$, what is the maximum $E_{\rm m}$?
 - ightharpoonup miss reliability function $E_{
 m m}(R)$
- Allowing $E_{\rm m}=0$, what is the maximum $E_{\rm f}$?
 - false alarm reliability function $E_{\rm f}(R)$

First proposed and investigated by [S. Borade, B. Nakiboğlu, and L. Zheng, 2009]

Single-message unequal error protection Previous work and our contributions

Maximize $E_{\rm m}$

- BSC [1]
- DMC [2, 4]
- AWGN [3]
- Our contribution: a simpler converse proof for DMC

Maximize $E_{\rm f}$

- Lower and upper bounds for DMC at R = C [2]
- Our contribution: Extend the lower and upper bounds to all rates up to capacity for DMC

All results are obtained via a few generalizations of standard results in the method of types.

^[1] Sahai and Draper, "The "hallucination" bound for the BSC," 2008

^[2] Borade et al., "Unequal error protection: An Information-Theoretic perspective," 2009

^[3] Nazer et al., "The AWGN red alert problem," 2011

^[4] Gorantla et al., "Bit-wise unequal error protection for variable length blockcodes with feedback," 2010

Reliability functions: some geometric intuitions Decoding reliability function (channel coding error exponents)

- Maximize the "decoding shell" around each codeword.
- Non-overlapping

Reliability functions: some geometric intuitions Miss reliability function

- $P_{\rm e} \rightarrow 0$
 - typical shell of each regular codeword cannot overlap each other
- $P_{\rm f} \rightarrow 0$
 - typical shell of each regular codeword cannot overlap with B_n
- $lue{}$ Maximize $E_{
 m m}$
 - maximize the "detection shell" for the special codeword.

Reliability functions: some geometric intuitions False alarm reliability function

$P_{\rm e} \rightarrow 0$

typical shell of each regular codeword cannot overlap!

$P_{\rm m} \to 0$

typical shell of the special codeword cannot overlap with An

Maximize E_f:

- a larger "detection shell" around each regular codeword
- Cannot overalp with special codeword decoding region
- But may overlap with each overlap

Technical results

Miss reliability function

Special codeword with repeated symbols

Given a special codeword $\mathbf{s}=b^n$, a DMC $(\mathcal{X},\mathcal{Y},W)$ has miss reliability function

$$E_{\mathbf{m}}^{\mathrm{rep}}(R) = \max_{P_X: I(P_X, W) = R} D\left(P_Y \parallel W_b\right).$$

where $P_Y \triangleq P_X W$, $W_b \triangleq W(\cdot | b)$.

 \blacksquare Achieved by a constant composition code with type P_X .

Special codeword with no constraints (general case)

A DMC $(\mathcal{X}, \mathcal{Y}, W)$ has miss reliability function

$$E_{\mathrm{m}}(R) = \max_{P_{X,S}: \mathbb{E}_{P_{S}}\left[I(P_{X|S}, W)\right] = R} \left[\sum_{b \in \mathcal{X}} P_{S}(b) D\left(P_{Y|S=b} \parallel W_{b}\right) \right]$$

where $P_{Y|S=b} \triangleq P_{X|S=b}W$, $W_b \triangleq W(\cdot | b)$.

Achieved by "time-sharing" constant composition codes.

Miss reliability function

Achievability

- Special codeword $\mathbf s$ with type P_S
- Index set $\mathcal{I}_b(s^n) \triangleq \{i : s_i = b\}.$
- Choose regular codewords that is constant composition with type $P_{X|S=b}$ on index set $\mathcal{I}_b(s^n)$.
- Constant composition w.r.t. s.

Miss reliability function Examples

- $\varepsilon = 0.05$
- Special message with repeated symbol is optimal.
 [A. Sahai and S. Draper, 2008]

Binary symmetric channel

Miss reliability function Examples

Ternary channel

- Special message with repeated symbols: suboptimal.
- Carathéodory's theorem ⇒ two symbols suffice.

Miss reliability function Key lemmas for converse proof

Key lemmas:

- Given s, every channel code contains a subcode that is constant composition w.r.t s with essentially the same rate.
 - polynomially many types w.r.t. s
- For any x that is constant composition w.r.t s, then its η -image size is roughly the size of its typical shell.
 - ▶ \mathcal{B} is an η -image for \mathbf{x} : $W^n(\mathcal{B}|\mathbf{x}) \geq \eta$

Remarks:

- Constant composition code: proved in [I. Csiszár and J. Körner, 1981/2011]
- Generalized to constant composition code w.r.t s in this work.

Miss reliability function Converse proof

- Consider codes that are constant composition w.r.t. s
- \blacksquare $P_{\rm e} \rightarrow 0$: the decoding/detection region \mathcal{A}_n for regular codewords cannot be too small

$$|\mathcal{A}_n| \geq \exp\left[\sum_{b \in \mathcal{X}} n_b H\left(W|\hat{P}_{x_{\mathcal{I}_b}}\right)\right]$$

■ Method of types: the probability that the special codeword s falls into A_n cannot be too small

Therefore,

$$P_{\rm m} = W^n \left(\left. \mathcal{A}_n \right| s^n \right) \ge \cdots$$

False alarm reliability function Theorem: bounds for the false alarm reliability function

The false alarm reliability function of an DMC $(\mathcal{X}, \mathcal{Y}, W)$ satisfies

$$\underline{E_{\mathrm{f}}}(R) \leq E_{\mathrm{f}}(R) \leq \overline{E_{\mathrm{f}}}(R),$$

where

$$\underline{E_{\mathbf{f}}}(R) \triangleq \max_{P_{X,S}: \mathbb{E}_{P_{S}}\left[I\left(P_{X\mid S},W\right)\right] \geq R} \left[\sum_{b \in \mathcal{X}} P_{S}(b) \cdot \min_{V:P_{X\mid S=b}V=W_{b}} \sum_{a \in \mathcal{X}} P_{X\mid S=b}(a)D\left(V_{a} \parallel W_{a}\right)\right],$$

$$\overline{E_{\mathbf{f}}}(R) \triangleq \max_{P_{X,S}: \mathbb{E}_{P_{S}}\left[I\left(P_{X\mid S},W\right)\right] \geq R} \cdot \sum_{a,b \in \mathcal{X}} P_{X,S}(a,b)D\left(W_{b} \parallel W_{a}\right).$$

False alarm reliability function Corollary: bounds for the false alarm reliability function at capacity

Let the set of capacity-achieving input distributions be
$$\Pi = \{P_X : I\left(P_X,W\right) = C\}, \text{ then}$$

$$\underline{E_{\mathrm{f}}}(R = C) = \max_{P_X^* \in \Pi} \max_{b \in \mathcal{X}} \min_{V : P_X^* V = W_b} D\left(V \parallel W | P_X^*\right),$$

$$\overline{E_{\mathrm{f}}}(R = C) = \max_{P_X^* \in \Pi} \max_{b \in \mathcal{X}} \sum_{a \in \mathcal{X}} P_X^*(a) D\left(W_b \parallel W_a\right).$$

Match the results in [S. Borade, B. Nakiboğlu, and L. Zheng, 2009].

False alarm reliability function Special codeword with repeated symbols b

- \blacksquare Special codeword: b^n

$$\mathcal{V}_b \triangleq \left\{ V : P_X V = W_b \right\},\,$$

$$\underline{E_{\mathrm{f}}^{\mathrm{rep}}}(R) \triangleq \max_{P_X: I(P_X, W) \geq R} \min_{V \in \mathcal{V}_b} D\left(V \parallel W | P_X\right),$$

$$\overline{E_{\mathrm{f}}^{\mathrm{rep}}}(R) \triangleq \min_{P_X: I(P_X, W) > R} D\left(W_b \parallel W | P_X\right).$$

- Shown in [D. Wang, V. Chandar, S. Chung, and G. W. Wornell, 2011]
- Then apply the time sharing argument for the unconstrained case.

Concluding remarks

- New proof and new results for single-message unequal error protection.
- Implications on optimal special message design.
- Useful building block for system design (streaming, synchronization, etc.)

Future directions

- Sharper inner and outer bounds for $E_{\rm f}(R)$
- Trade-off between $E_{\mathrm{m}}(R)$ and $E_{\mathrm{f}}(R)$
 - [D. Wang, V. Chandar, S. Chung, and G. W. Wornell, 2011] investigated the case of special codeword with repeated symbols.

Backup slides

Key lemmas for converse proof Constant composition subcode w.r.t ${\bf s}$

For any $\lambda > 0$, if a code (f_n, g_n) satisfies

$$|\mathcal{M}_{f_n}| \ge e^{n(R-\lambda)}$$

and $P_{\mathrm{e}} < \varepsilon$ for a given channel W, then for any given s^n with type P_S and $\mathcal{I}_b \triangleq \mathcal{I}_b(s^n)$, there exists a collection of types $\{P_b, b \in \mathcal{X}\}$ and a subcode (\hat{f}_n, \hat{g}_n) with all regular codewords in the set

$$\hat{\mathcal{C}} \triangleq \left\{ x^n : x_{\mathcal{I}_b} \in \mathcal{T}_{P_b}^{n_b} \right\},\,$$

where such that

$$\left| \mathcal{M}_{\hat{f}_n} \right| \ge \exp\left\{ n \left[R - 2\lambda \right] \right\}$$

and

$$\sum_{b \in \mathcal{X}} P_S(b) I(P_b, W) \ge R - 3\lambda.$$

when n sufficiently large.

Key lemmas for converse proof Generalized finite probability lemma

Given a sequence s^n with type P_S and $\mathcal{I}_b \triangleq \mathcal{I}_b(s^n)$, if a set $\mathcal{B} \subset \mathcal{Y}^n$ satisfies

$$W^n\left(\mathcal{B}|x^n\right) \ge \eta,$$

then for any $\tau>0$

$$|\mathcal{B}| \ge \exp\left\{ \left[\sum_{b \in \mathcal{X}} n_b H\left(W|\hat{P}_{x_{\mathcal{I}_b}}\right) - \tau \right] \right\}.$$

False alarm reliability function Achievability for special codeword without constraints

- Represent each message m by a $|\mathcal{X}|$ -tuple $(i_1, i_2, \dots, i_{|\mathcal{X}|})$, where $i_b \in \{0, 1, 2, \dots, |\mathcal{C}_b|\}$, $b \in \mathcal{X}$.
- Encoding function

$$f\left(\left(i_{1},i_{2},\ldots,i_{|\mathcal{X}|}\right)\right) = \begin{cases} x^{n} \text{ with } x_{\mathcal{I}_{b}} = f_{b}(i_{b}) & \text{when } i_{b} > 0 \ \forall \ b \in \mathcal{X} \\ s^{n} & \text{when } i_{b} = 0 \ \forall \ b \in \mathcal{X} \end{cases}$$

Decoding function

$$g\left(y^{n}\right)=\left(\hat{i}_{1},\hat{i}_{2},\ldots,\hat{i}_{|\mathcal{X}|}\right) \text{ with } \hat{i}_{b}=g_{b}(y_{\mathcal{I}_{b}}) \ \forall \ b \in \mathcal{X}.$$

False alarm reliability function: achievability Error analysis

Error events:

$$\begin{split} \mathcal{E}_{\mathrm{e}} &= \left\{ \text{any } g_b \text{ reports an error } \right\}, \\ \mathcal{E}_{\mathrm{m}} &= \left\{ g_b(y_{\mathcal{I}_b}) \neq 0, \exists \ b \in \mathcal{X} \mid i_1 = i_2 = i_{|\mathcal{X}|} = 0 \right\}, \\ \mathcal{E}_{\mathrm{f}} &= \left\{ g_b(y_{\mathcal{I}_b}) = 0, \forall \ b \in \mathcal{X} \mid i_1 i_2 \cdots i_{|\mathcal{X}|} \neq 0 \right\}, \end{split}$$

Error probabilities:

$$P_{e}\left(\mathcal{C}^{(n)}\right) \leq \sum_{b \in \mathcal{X}} P_{e}\left(C_{b}\right),$$

$$P_{m}\left(\mathcal{C}^{(n)}\right) \leq \sum_{b \in \mathcal{X}} P_{m}\left(C_{b}\right),$$

$$P_{f}\left(\mathcal{C}^{(n)}\right) = \prod_{b \in \mathcal{X}} P_{f}\left(C_{b}\right) \stackrel{.}{\leq} \exp\left\{-n \sum_{b \in \mathcal{X}} P_{S}(b) \left[\min_{V \in \mathcal{V}_{b}} D\left(V \parallel W \middle| P_{b}\right)\right]\right\}.$$