Chapter 2 Stability

December 31, 2021

1 Historic remarks and motivations

- Can a first order theory T determine its models;
- Any theory T with an infinite model has models of arbitrary infinite cardinalities (L-S-T);
- For a fixed infinite cardinal κ , how many models of T has cardinal κ ?;
- Consider the function $I_T(-): \kappa \mapsto \#\{\text{models of } T \text{ of card. } \kappa\}.$
- Then $1 \leq I_T(\kappa) \leq 2^{\kappa}$;
- $\#\{L\text{-structures of card. }\kappa\} \leq 2^{\kappa};$

Fact 1.1. [Morley's Theorem] Let T be a countable theory. If $I_T(\kappa) = 1$ for some uncountable cardinal κ , then $I_T(\kappa) = 1$ for all uncountable cardinal κ . (Categoricity)

Example 1.2. .

- The Theory of infinite sets;
- The theory of vector space over a fixed countable field;
- The theory of algebraicly closed fields with fixed char;
- The theory of $(\mathbb{Z}, S, 0)$.

Shelah's stability theory intended to generalize Morley's Theory and classify the complete first order theories.

Conjecture 1.3. [Morley] Let T be countable, then the function $I_T(\kappa)$ is non-decreasing on uncountable cardinals.

Fact 1.4. [Shelah's Main gap theorem] Let T be a countable first order complete theory T. then one of these situations holds:

- $\forall \alpha, I_T(\aleph_\alpha) = 2^{\aleph_\alpha}$
- $\forall \alpha, I_T(\aleph_\alpha) < \beth_{\aleph_1}(|\alpha|).$

Here, $\beth_0(\kappa) = \kappa$, $\beth_{\alpha}(\kappa) = 2^{\beth_{\alpha+1}(\kappa)}$, and $\beth_{\nu}(\kappa) = \sup\{\beth_{\alpha}(\kappa) | \alpha < \nu\}$ for limit ordinals ν . Remark 1.5. .

- The name "Main Gap" refers to the gap between $\beth_{\aleph_1}(|\alpha|)$ and $2^{\aleph_{\alpha}}$ $(\alpha \geq \omega)$
- Depending on α this may be no gap at all;
- But in general $\beth_{\aleph_1}(|\alpha|)$ goes only moderately compared to $2^{\aleph_{\alpha}}$;
- The case $I_T(\aleph_\alpha) = 2^{\aleph_\alpha}$ is called the "non-structure case", we have a kind of chaos.
- The second case, namely, the case where there are relatively few non-isomorphic models, is called the "structure case";
- In this case every model can be characterized up to isomorphism in terms of certain invariants;
- The most important "dividing lines" on the space of first-order theories is "stability";
- \bullet Main gap theorem says that: "If T is a first-order theory and is stable and . . . , then the class of models looks like Otherwise, there's no hope".

2 Counting types and stability

Definition 2.1. For a complete first order theory T, let $f_T : \text{Card} \to \text{Card}$ be defined by

$$f_T(\kappa) = \sup\{ |S_1 M| : M \models T, |M| = \kappa \},$$

for κ an infinite cardinal.

It is esay to see that $\kappa \leq f_T(\kappa) \leq 2^{\kappa + |T|}$.

Fact 2.2. Let T be an arbitrary complete theory in a first order language. The $f_T(\kappa)$ is one of the following functions

$$\kappa, \kappa + 2^{\aleph_0}, \operatorname{ded} k, (\operatorname{ded} k)^{\aleph_0}, 2^{\kappa}$$

Here

 $\operatorname{ded} \kappa = \sup\{ |I| : I \text{ is a linear order with a dense subset of size } \kappa \}$ $\operatorname{ded} \kappa = \sup\{ \lambda : There \text{ is a linear order of size } \kappa \text{ with } \lambda \text{ cuts} \}$ Lemma 2.3. $\kappa < \operatorname{ded} \kappa \leq 2^{\kappa}$.

Proof. $\kappa < \operatorname{ded} \kappa$:

- Let μ be minimal such that $2^{\mu} > \kappa$;
- Consider 2^{μ} as a set of 0-1 sequence of length μ ;
- then $2^{<\mu}$ is a dense subset of 2^{μ} ;
- $\mu \le \kappa \implies 2^{<\mu} \le \kappa$;
- so $\operatorname{ded} \kappa \ge \mu > \kappa$.

 $\operatorname{ded} \kappa \leq 2^{\kappa}$:

• Every cut is determined by the subset of elements in its lower half.

Definition 2.4. Let $M \models T$.

• A formula $\phi(x, y)$, with its variables partitioned into two groups x, y, has the k-order property, $k \in \omega$, if there are some $a_i \in M_x$, $b_j \in M_y$ for i, j < k such that

$$M \models \phi(a_i, b_j) \iff i < j$$

- $\phi(x,y)$ has the order property if it has the k-order property for all $k \in \omega$;
- We say that a formula $\phi(x,y) \in L$ is stable if there is some $k \in \omega$ such that it does not have the k-order property.
- A theory is stable if it implies that all formulas are stable (note that this is indeed a property of a theory).

Proposition 2.5. Assume that T is unstable, then $f_T(\kappa) \ge \operatorname{ded} \kappa$ for all cardinals $\kappa \ge |T|$.

- *Proof.* Fix a cardinal κ . Let $\phi(x,y) \in L$ be a formula has the k-order property for all $k \in \omega$;
 - Let (I, <) be a dense linear order order of size κ ;
 - Let $a_{i \in I}$ and $b_{i \in I}$ be two sequences of new constants;
 - Then $\{\phi(a_i, b_j) | i < j\} \cup \{\neg \phi(a_i, b_j) | i \ge j\}$ is consistent with T;
 - By compactness, there is a model $\mathcal{M} \models T$ and $a_{i \in I}$, $b_{i \in I}$ from M such that

$$\mathcal{M} \models \phi(a_i, b_j) \iff i < j$$

3

- By L-S-T, we may assume that $|M| = \kappa$;
- For any cut C = (A, B) in I

$$\Phi_C(x) = \{ \phi(x, b_j) | i \in B \} \cup \{ \neg \phi(x, b_j) | j \in A \}$$

is a partial type over M;

- It is easy to see that $C_1 \neq C_2 \implies \Phi_{C_1} \cup \Phi_{C_2}$ is inconsistent;
- Let $p_C(x) \in S_x(M)$ be a complete extension of $\Phi_C(x)$;
- Then $|S_x(M)| \ge \text{number of cuts in } I$;
- As *I* is arbitrary,

$$f_T(\kappa) = \sup\{|S_x(M)| \ M \models T, |M| = \kappa\} \ge \operatorname{ded} \kappa$$

Recall

Fact 2.6 (Ramsey Theory). $\aleph_0 \to (\aleph_0)_k^n$ holds for all $n, k \in \omega$ (i.e. for any coloring of subsets of N of size n in k colors, there is some infinite subset I of N such that all n-element subsets of I have the same color).

Lemma 2.7. Let $\phi(x,y)$, $\psi(x,z)$ be stable formulas (where y,z are not necessarily disjoint tuples of variables). Then:

- 1. Let $\phi^*(y,x) = \phi(x,y)$, i.e. we switch the roles of the variables. Then $\phi^*(y,x)$ is stable.
- 2. $\neg \phi(y, x)$ is stable.
- 3. $\theta(x,yz) := \phi(x,y) \wedge \psi(x,z)$ and $\theta'(x,yz) := \phi(x,y) \vee \psi(x,z)$ are stable.
- 4. If y = uv and $c \in M_v$ then $\theta(x, u) := \phi(x, uc)$ is stable.
- 5. If T is stable, then every L^{eq} -formula is stable as well.

Proof. .

(1) and (2) are trivial.

(3):

- Suppose that $\theta(x, yz) := \phi(x, y) \wedge \psi(x, z)$ is unstable;
- there are $(a_i, b_i, c_i | i \in \mathbb{N})$ such that

$$\phi(a_i, b_j) \vee \psi(a_i, c_j) \iff i < j$$

• Let $f: [\mathbb{N}]^2 \to \{0,1\}$ defined by: for each $i < j \in \mathbb{N}$

$$f(i,j) = 1 \iff \models \psi(a_i, c_j) \text{ and } f(i,j) = 0 \iff \models \neg \psi(a_i, c_j)$$

- By Ramsey, there is a infinite subset $I \subseteq J$ such that
- f is constant on I;
- If f(I) = 1, then $\forall i, j \in I(\psi(a_i, b_i) \iff i < j)$
- If f(I) = 0, then $\forall i, j \in I(\phi(a_i, b_j) \iff i < j)$
- So either ϕ or ψ is unstable.

(4): Trivial.
$$\Box$$

Theorem 2.8 (Erdös-Makkai). Let B be an infinite set, $\mathcal{F} \subseteq \mathcal{P}(B)$ a collection of subsets of B with $|B| < |\mathcal{F}|$. Then there are sequences $(c_{i<\omega}) \subseteq B$ and $(S_{i<\omega}) \subseteq \mathcal{F}$ such that one of the following holds:

- 1. $c_i \in S_j \iff j < i(\forall i, j \in \omega),$
- 2. $c_i \in S_i \iff i < j(\forall i, j \in \omega)$.

We need the following lemma:

Lemma 2.9. Let X be a set and $Y_1, ..., Y_n$ are subsets of X. Define:

$$E(x,y) := \bigwedge_{i=1}^{n} (x \in X_i \iff y \in X_i).$$

Then E is an equivalence relation on X and $Z \subseteq X$ is a boolean combination of X_i 's iff

$$E(x,y) \implies (x \in Z \iff y \in Z)$$

Proof. Exercise.

We now proof the Theorem 2.8

Proof. • Choose $\mathcal{F}' \subseteq \mathcal{F}$ such that

- $|\mathcal{F}'| = |B|;$
- For any finite $B_0, B_1 \subseteq B$,

$$\exists S \in \mathcal{F}(B_1 \subseteq S \land B_2 \subseteq B \backslash S) \implies \exists S' \in \mathcal{F}'(B_1 \subseteq S' \land B_2 \subseteq B \backslash S').$$

• \mathcal{F}' exists as there are at most |B|-many different pairs of finite subsets of B;

- $|\mathcal{F}| > |\mathcal{F}'| \implies \exists S^* \in \mathcal{F}$ which is not a boolean combination of elements of \mathcal{F}' ;
- Let $a_0 \in S^*$ and $b_0 \notin S^*$;
- There is $S_0 \in \mathcal{F}'$ s.t. $a_0 \in S_0$ and $b_0 \notin S_0$;
- Since S^* is NOT a boolean combination of $\{S_0\}$, there are a_1, b_1 s.t.:
 - $-a_1 \in S_0 \iff b_1 \in S_0$, and ;
 - $-a_1 \in S^*$ but $b_1 \notin S^*$.
- Now $\{a_0, a_1\} \subseteq S^*$ and $\{b_0, b_1\} \subseteq B \setminus S^*$;
- By the assumption of \mathcal{F}' , $\exists S_1 \in \mathcal{F}'(\{a_0, a_1\} \subseteq S_1 \land \{b_0, b_1\} \subseteq B \backslash S_1);$
- Since S^* is NOT a b. c. of $\{S_0, S_1\}$, there are a_2, b_2 s.t. :
 - $-a_2 \in S_i \iff b_2 \in S_i$, for i < 2, and ;
 - $-a_2 \in S^*$ but $b_2 \notin S^*$.
- ...
- Inductively, we have infinite sequences $(a_{i<\omega})\subseteq S^*$ and $(b_{i<\omega})\subseteq B\backslash S^*$ s.t.
 - $-a_n \in S_i \iff b_n \in S_i$, for i < n;
 - $\{a_0,, a_n\} \subseteq S_n, \{b_0,, b_n\} \subseteq B \setminus S_n$

By Ramsey, there is an infinite $I \subseteq \omega$ such that

- either $\forall n > j \in I(a_n \in S_j) \implies \forall i, j \in I(b_i \in S_j \iff i > j)$,
- $\text{ or } \forall n > j \in I(a_n \notin S_j) \implies \forall i, j \in I(a_i \in S_j \iff i \le j)$
- In the first case we set $c_i = b_i$;
- In the second case we set $c_i = a_{i+1}$;

Definition 2.10. Let $\phi(x,y)$ be a formula, by a complete ϕ -type over a set of parameters $A \subseteq M_y$ we mean a maximal consistent collection of formulas of the form $\phi(x,b), \neg \phi(x,b)$ where b ranges over A. Let $S_{\phi}(A)$ be the space of all complete ϕ -types over A.

Proposition 2.11. Assume that $|S_{\phi}(B)| > |B|$ for some infinite set of parameters B. Then $\phi(x,y)$ is unstable.

Proof. .

• For $a \in \mathbb{M}_x$, $\operatorname{tp}_{\phi}(a/B)$ is determined by $\phi(a,B) = \{b \in B | \models \phi(a,b)\};$

- $|S_{\phi}(B)| > |B| \implies |\{\phi(a,B)| \ a \in \mathbb{M}_x\}| > |B| \ ;$
- By Erdös-Makkai, there are sequences $(a_{i<\omega})$ and $(b_{i<\omega})$ s.t.

either
$$\models \phi(a_i, b_j) \iff i < j$$
, or $\models \phi(a_i, b_j) \iff j < i$.

3 Local ranks and definability of types

Definition 3.1. We define Shelah's local 2-rank taking values in $\{-\infty\} \cup \omega \cup \{+\infty\}$ by induction on $n \in \omega$. Let Δ be a set of L-formulas, and $\theta(x)$ a partial type over \mathbb{M} .

- $R_{\Delta}(\theta(x)) \geq 0 \iff \theta$ is consistent (and $-\infty$ otherwise);
- $R_{\Delta}(\theta(x)) \ge n+1$ if $\exists \phi(x,y) \in \Delta$ and $a \in \mathbb{M}_y$ s.t.

$$R_{\Delta}(\theta(x) \land \phi(x,a)) \ge n$$
 and $R_{\Delta}(\theta(x) \land \neg \phi(x,a)) \ge n$

- $R_{\Delta}(\theta(x)) = n$ if $R_{\Delta}(\theta(x)) \ge n$ and $R_{\Delta}(\theta(x)) \not\ge n+1$
- $R_{\Delta}(\theta(x)) = +\infty$ if $R_{\Delta}(\theta(x)) \ge n$ for all $n \in \omega$.

If ϕ is a formula, we write R_{ϕ} instead of $R_{\{\phi\}}$.

Proposition 3.2. $\phi(x,y)$ is stable iff $R_{\phi}(x=x)$ is finite.

Proof. Assume that $\phi(x,y)$ is unstable:

• By compactness, there is a sequence $(a_ib_i|i\in[0,1])$ such that

$$\models \phi(a_i, b_j) \iff i < j$$

- Both $\phi(x, b_{\frac{1}{2}})$ and $\neg \phi(x, b_{\frac{1}{2}})$ contain dense subsequences of a_i 's.
- Each of these sets can be split again, by $\phi(x, b_{\frac{1}{4}})$ and $\phi(x, b_{\frac{3}{4}})$;
- •

Conversely, assume that the rank is infinite:

• We can find a infinity tree of parameters

$$B = \{b_{\eta} | \ \eta \in 2^{<\omega}\}$$

such that

• for each $\eta \in 2^{\omega}$, let

$$\Phi_{\eta} = \{ \phi^{\eta(n)}(x, b_{\eta|n}) | n \in \omega \},$$

where $\phi^1 = \phi$ and $\phi^0 = \neg \phi$;

- Then each Φ_{η} is consistent;
- Different Φ_{η} 's are inconsistent;
- $|S_{\phi}(B)| \ge 2^{|B|} \implies \phi(x,y)$ is unstable.

Definition 3.3.

• Let $\phi(x,y) \in L$ be given. A type $p(x) \in S_{\phi}(A)$ is definable over B if there is some L(B)-formula $\psi(y)$ such that for all $a \in A$

$$\phi(x,a) \in p \iff \models \psi(a)$$

- A type $p \in S_x(A)$ is definable over B if $p|_{\phi}$ is definable over B forall $\phi(x,y) \in L$.
- A type is definable if it is definable over its domain.
- We say that types in T are uniformly definable if for every $\phi(x, y)$ there is some $\psi(y, z)$ such that every type can be defined by an instance of $\psi(y, z)$, i.e. if for any A and $p \in S_{\phi}(A)$ there is some $b \in A$ such that

$$\phi(x,a) \in p \iff \models \psi(a,b),$$

for all $a \in A$.

Remark 3.4. .

- Let $A \subseteq M_x$, and $B \subseteq A$. We say that B is externally definable if there is some M-definable set X such that $B = X \cap A$
- If $X = \phi(\mathbb{M}, c)$. Then $\operatorname{tp}_{\phi}(c/A)$ is definable iff $B = X \cap A$ is in fact internally definable.
- A set is called stably embedded if for every externally definable subset of it is internally definable.

Example 3.5. Consider $(\mathbb{Q}, <) \models DLO$, and let $p = \operatorname{tp}(\pi/\mathbb{Q})$. Then $x < y \in p(y) \iff x < \pi$. By QE, p is not definable.

Lemma 3.6. .

- 1. The set $\{e \in \mathbb{M}^k | R_{\phi}(\theta(x,e)) \geq n\}$ is definable for all $n \in \omega$;
- 2. If $R_{\phi}(\theta(x)) = n$, then for any $a \in \mathbb{M}_y$, at most one of $\theta(x) \wedge \phi(x, a)$, $\theta(x) \wedge \neg \phi(x, a)$ has R_{ϕ} -rank n.

Proof. (1):

- Induction on n.
- n = 0: $R_{\phi}(\theta(x, e)) \ge 0 \iff \exists x(\theta(x, e));$

• n = k + 1:

$$R_{\phi}(\theta(x,e)) \ge k+1 \iff \exists y (\left(R_{\phi}(\theta(x,e) \land \phi(x,y)) \ge k\right) \land \left(R_{\phi}(\theta(x,e) \land \neg \phi(x,y)) \ge k\right))$$

$$\square$$
 (2): Trivial.

Proposition 3.7. Let $\phi(x,y)$ be a stable formula. Then all ϕ -types are uniformly definable. Proof. .

- Suppose that $R_{\phi}(x=x)$ is $n \in \omega$;
- Let $p \in S_{\phi}(A)$;
- Then there is $\chi(x) \in p$ such that $R_{\phi}(\chi(x)) = \min\{R_{\phi}(\varphi(x)) | \varphi \in p\};$
- For each $b \in A_y$, either $\phi(x,b) \in p$ or $\neg \phi(x,b) \in p$;
- either $R_{\phi}(\chi(x) \land \phi(x,b)) < n$ or $R_{\phi}(\chi(x) \land \neg \phi(x,b)) < n$;
- $R_{\phi}(\chi(x))$ is minimal $\Longrightarrow (\phi(x,b) \in p \iff R_{\phi}(\chi(x) \land \phi(x,b)) = n).$

Theorem 3.8. The following are equivalent for a formula $\phi(x,y)$.

- 1. $\phi(x,y)$ is stable;
- 2. $R_{\phi}(x=x) < \omega$;
- 3. All ϕ -types are uniformly definable;
- 4. All ϕ -types over models are uniformly definable;
- 5. $S_{\phi}(M) \leq \kappa$ for all $\kappa \geq |L|$ and $M \models T$ with $|M| = \kappa$;
- 6. There is some κ such that $|S_{\phi}(M)| < \operatorname{ded} \kappa$ for all $M \models T$ with $|M| = \kappa$.

Proof. .

- $(1) \iff (2)$ by Proposition 3.2;
- $(2) \implies (3)$ by Proposition 3.7;
- $(3) \implies (4)$ is obvious;
- (4) \Longrightarrow (5), each ϕ -type is determined by a L(M)-formula, its own definition;
- $(5) \implies (6)$ is obvious;

• $(6) \implies (1)$ is by Proposition 2.5.

Global case:

Theorem 3.9. Let T be a complete theory. Then the following are equivalent.

- 1. T is stable;
- 2. There is NO sequence of tuples $(c_i|i \in \omega)$ from \mathbb{M} and formula $\phi(z_1, z_2) \in L(M)$ such that

$$\models \phi(c_i, c_j) \iff i < j;$$

- 3. $f_T(\kappa) \leq \kappa^{|T|}$ for all infinite cardinals κ ;
- 4. There is some κ such that $f_T(\kappa) \leq \kappa$;
- 5. There is some κ such that $f_T(\kappa) < \operatorname{ded} \kappa$;
- 6. All formulas of the form $\phi(x,y)$ where x is a singleton variable, are stable;
- 7. All types over models are definable.

Proof. .

- $(1) \Longrightarrow (2)$ by definition;
- \bullet (2) \Longrightarrow (1):
 - Let $\psi(x,y)$ be a formula with order property witnessed by sequence

$$\{(a_i, b_i) | i < \omega\};$$

- Let $\phi(x_1y_1; x_2y_2) := \psi(x_1, y_2)$ and $c_i := a_ib_i$;
- Then $\models \phi(c_i, c_j) \iff i < j$.
- (1) \Longrightarrow (3) $:S_x(M) \to \prod_{\phi \in L} S_\phi(M)$ is injective;
- $(3) \implies (4)$ is obvious;
- $(4) \implies (5)$ is obvious;
- $(5) \implies (1)$ is by Proposition 2.5.
- (6) \iff (1 5): Fix some κ , then $S_1(M) \leq \kappa$ for all M with $|M| = \kappa$ iff $S_n(M) \leq \kappa$ for all M with $|M| = \kappa$;
- $(7) \iff (1-5)$ by Theorem 3.9

 $\textbf{Example 3.10.} \quad \bullet \ \text{Stability} \iff \text{all types over all models are definable};$

• Some unstable theories have certain special models over which all types are definable;

- $\mathcal{M} = (\mathbb{R}, +, \times, 0, 1)$, all types over \mathbb{R} are uniformly definable;
- $\mathcal{M} = (\mathbb{Q}_p, +, \times, 0, 1)$, all types over \mathbb{Q}_p are uniformly definable.

4 Indiscernible sequences and stability

Definition 4.1. Given a linear order I, a sequence of tuples $(a_i|i \in I)$ with $a_i \in \mathbb{M}_x$ is indicernible over a set of parameters A if $a_{i_0}, ..., a_{i_n} \equiv_A a_{j_0}, ..., a_{j_n}$ for all $i_0 < ... < i_n$ and $j_0 < ... < j_n$ from I and all $n \in \omega$.

Example 4.2. .

- 1. A constant sequence is indiscernible over any set;
- 2. A subsequence of a A-indiscernible sequence is A-indiscernible;
- 3. In the theory of equality, any sequence of singletons is indiscernible;
- 4. Any increasing (or decreasing) sequence of singletons in a dense linear order is indiscernible;
- 5. Any basis in a vector space is an indiscernible sequence.

Definition 4.3. For any sequence $\bar{a} = (a_i | i \in I)$ and a set of parameters B, we define $\mathrm{EM}(\bar{a}/B)$, the Ehrenfeucht-Mostowski type of the sequence \bar{a} over B, as a partial type over B in countably many variables indexed by and given by the following collection of formulas

$$\phi(x_0, ..., x_n) \in L(B) | \forall i_0 < ... < i_n, \models \phi(a_{i_0}, ..., a_{i_n}, n \in \omega)$$

Exercise 4.4. For any sequence $\bar{a} = (a_i | i \in I)$ and a set of parameters B. If J is an infinite linear order, then there is a sequence $\bar{b} = (b_i | i \in b)$ which realizes the EM-type of \bar{a} over A, i.e.

$$\models \phi(b_{i_0}, ..., b_{i_n}) \text{ for all } i_0 < ... < i_n \in I, \ \phi \in \text{EM}(\bar{a}/A)$$

Exercise 4.5. If $\bar{a} = (a_i | i \in I)$ is an A-indiscernible sequence. Then $\mathrm{EM}(\bar{a}/A)$ is a complete ω -type over A.

Let $\bar{a} = (a_i | i \in I)$ and $\bar{b} = (b_j | j \in J)$ be A-indiscernible sequences. We denote $\bar{a} \equiv_{\text{EM},A} \bar{b}$ if $\text{EM}(\bar{a}/A) = \text{EM}(\bar{b}/A)$

Proposition 4.6. Let $\bar{a} = (a_i | i \in J)$ be an arbitrary sequence in \mathbb{M} , where J is an arbitrary linear order and A is a small set of parameters. Then for any small linear order I we can find (in \mathbb{M}) an A-indiscernible sequence ($b_i | i \in I$) realize the EM-type of \bar{a} over A.

Proof. 1. Let $\{c_i | i \in I\}$ be a set of new constants;

- 2. Let $L' = L \cup \{c_i | i \in I\};$
- 3. Let $T' \supseteq T$ be in L' containing the following axioms:
 - $\phi(c_{i_0}, ..., c_{i_n})$ for all $i_0 < ... < i_n \in I$ and $\phi \in \text{EM}(\bar{a}/A)$;
 - $\psi(c_{i_0},...,c_{i_n}) \leftrightarrow \psi(c_{j_0},...,c_{j_n})$ for all $i_0 < ... < i_n, j_0 < ... < j_n \in I$ and $\psi \in L(A)$

- 4. It is enough to show that T' is consistent;
- 5. By compactness, it is enough to show that every finite $T_0 \subseteq T'$ is consistent;
- 6. T_0 involves only finitely many formulas $\Delta \subseteq L(A)$ with at most n variables, and new constants $\{c_{k_0}, ..., c_{k_m}\}$;
- 7. Let $(b_i | i \in I) \subseteq M$ realize the EM-type of \bar{a} over A;
- 8. By Ramsey, there is an infinite subset $I_0 \subseteq I$ such that for each $\phi \in \Delta$:
 - either $\models \phi(b_{i_0}, ..., b_{i_n})$ for all $i_0 < ... < i_n \in I_0$;
 - or $\models \neg \phi(b_{i_0}, ..., b_{i_n})$ for all $i_0 < ... < i_n \in I_0$.
- 9. Let $i_0 < ... < i_m \in I_0$ and interpret $c_{k_0}, ..., c_{k_m}$ as $b_{i_0}, ..., b_{i_m}$;
- 10. Then $\mathbb{M} \models T_0$.

Corollary 4.7. If $\bar{a} = (a_i | i \in I)$ is an A-indiscernible sequence and $J \supseteq I$ is an arbitrary linear order, then (in \mathbb{M}) there is an A-indiscernible sequence $(b_j | j \in J)$ such that $b_i = a_i$ for all $i \in I$ (every thing involved is small).

Proof. .

- Let $(c_i | j \in J) \subseteq \mathbb{M}$ realize the EM-type of \bar{a} over A;
- Then the subsequence $(c_j | j \in I)$ realize the type of $(a_i | i \in I)$ over A;
- Namely, $(c_j | j \in I) \equiv_A (a_i | i \in I);$
- By homogeneity, there is $(b_j|\ j\in J)\supseteq (a_i|\ i\in I)$ such that $(c_j|\ j\in J)\equiv_A (b_j|\ j\in J).$

Lemma 4.8. If $\bar{a} = (a_i | i \in I)$ is an infinite A-indiscernible sequence, then for all $S \subseteq I$ and $a_i \notin \operatorname{acl}(A, a_{j \in S})$

Proof. .

- $a_i \in \operatorname{acl}(A, a_{j \in S}) \iff \exists S_0 \subseteq_{\operatorname{fin}} S(a_i \in \operatorname{acl}(A, a_{j \in S_0}));$
- Let $(b_i| i \in \mathbb{Q}) \equiv_{\mathrm{EM},A} (a_i| i \in I);$
- Then for any $i_0 < \ldots < i_n \in I$ and $j_0 < \ldots < j_n \in \mathbb{Q}$

$$a_{i_k} \in \operatorname{acl}(A, \{a_{i_s} | s \neq k, s \leq n) \iff b_{j_k} \in \operatorname{acl}(A, \{b_{j_s} | s \neq k, s \leq n))$$

• WLG, we assume that $I = (\mathbb{Q}, <)$;

• Suppose that

$$a_{i_k} \in \operatorname{acl}(A, \{a_{i_s} | s \neq k, s \leq n))$$

- Suppose that the formula $\phi(x_0,...,x_k,...,x_n) \in L(A)$ witness the property;
- Namely, $\models \phi(a_{i_0}, ..., a_{i_k}, ..., a_{i_n})$ and $\phi(a_{i_0}, ..., \mathbb{M}, ..., a_{i_n})$ is finite;
- Then for any $q \in \mathbb{Q}$ realizing the same cut of a_{i_k} over $\{a_{i_s} | s \neq k, s \leq n\}$, we have

$$\models \phi(a_{i_0},...,a_q,...,a_{i_n})$$

• So $\phi(a_{i_0},...,\mathbb{M},...,a_{i_n})$ is infinite, a contradiction.

Exercise 4.9. Start with the sequence (1, 2, 3, ...) in $(\mathbb{C}, +, \times, 0, 1) \models ACF_0$. Give an explicit example of an indiscernible sequence based on it.

A more power result is:

Proposition 4.10. Let A be a set of parameters. If $\kappa \geq |T| + |A|$, $\lambda = \beth_{(2^{\kappa})^+}$, and $(a_i|i < \lambda)$ is a sequence of tuples a_i of the same length $\leq \kappa$, then there is an A-indiscernible sequence $(b_i|i < \omega)$ such that for each $n < \omega$ there are $i_0 < ... < i_n < \lambda$ such that

$$b_0, ..., b_n \equiv_A a_0, ..., a_n.$$

See Enrique Casanovas's "Simple theories and hyperimaginaries", Prop. 1.6 for a proof (Using Erdös-Rado theorem: $\beth_n(\kappa)^+ \to \kappa^{+n+1}_{\kappa}$, which means if f is a coloring of the n+1-element subsets of a set of cardinality $\beth_n(\kappa)^+$, in κ many colors, then there is a homogeneous set of cardinality κ^+ , instead of Ramsey).

Definition 4.11. A sequence $(a_i | i \in I)$ is totally indiscernible over A if $a_{i_0}...a_{i_n} \equiv_A a_{j_0}...a_{j_n}$ for any $i_0 \neq ... \neq i_n$, $j_0 \neq ... \neq j_n$ from I (so the order of the indices doesn't matter any longer).

Theorem 4.12. T is stable if and only if every indiscernible sequence is totally indiscernible.

 $Proof. \Rightarrow$

- Suppose that T is stable, $(a_i | i \in I)$ is indiscernible over A;
- If $(a_i|i \in I)$ is NOT totally indiscernible;
- then there are $i_0 \neq ... \neq i_n$, $j_0 \neq ... \neq j_n$ from I such that $a_{i_0}...a_{i_n} \not\equiv_A a_{j_0}...a_{j_n}$;
- WLG, assume that $I = (\mathbb{Q}, <)$ and $i_0 = 0, ..., i_n = n$;

• there is $\sigma \in S_{n+1}$, the permutation group of $\{0, ..., n\}$, such that

$$a_{\sigma(0)}...a_{\sigma(n)} \equiv_A a_{j_0}...a_{j_n}$$

- $\sigma = \tau_m...\tau_1$, a product of a sequence of transpositions of two consecutive elements;
- there is 0 < k < m such that $a_{\tau_k(0)}...a_{\tau_k(n)} \not\equiv_A a_0...a_n$;
- Assume that $\tau_k = (s, s+1)$, then there is a L(A)-formula $\psi(x_0, ..., x_n)$ such that

$$\models \psi(a_0, ..., a_s, a_{s+1}, ..., s_n) \land \neg \psi(a_0, ..., a_{s+1}, a_s, ..., s_n);$$

- Let $\phi(x,y) := \psi(a_0,...,a_{s-1},x,y,a_{s+2},...,s_n);$
- Then for all $s < q, r < s + 1, \models \phi(a_q, a_r) \iff a_q < a_r$.

 \Leftarrow

- Assume that T is unstable;
- Then $\exists \phi(x,y) \in L$ has the order property, witnessed by a sequence $\bar{c} = (c_i | i \in \omega)$. Namely

$$\models \phi(c_i, c_j) \iff i < j$$

- Let $\bar{a} = (a_i | i \in \omega)$ be an indiscernible sequence based on \bar{c} ;
- Then

$$\models \phi(a_i, a_j) \iff i < j.$$

So \bar{a} is NOT totally indiscernible.

Proposition 4.13. For any stable formula $\phi(x,y)$, in an arbitrary theory, there is some $k_{\phi} \in \omega$ depending just on ϕ such that for any indiscernible sequence $I \subseteq \mathbb{M}_x$ and any $b \in \mathbb{M}_y$, either $|\phi(I,b)| \leq k_{\phi}$ or $|\neg \phi(I,b)| \leq k_{\phi}$.

Proof. .

- Suppose that $|\phi(I,b)| > k$ or $|\neg \phi(I,b)| > k$;
- By compactness, we assume that $I = \omega$;
- either $\phi(I, b)$ or $\neg \phi(I, b)$ is infinite;
- Assume that $\neg \phi(I, b)$ is infinite;
- Then there is subsequence $J = \{n_0 < n_1 < ...\} \subseteq \omega$ such that

$$\models \phi(a_{n_i}, b) \iff i \leq k$$

• Let $c_i = a_{n_i}$, and $b_k = b$, we have

$$\models \bigwedge_{i \leq k} \phi(c_i, b_k) \land \bigwedge_{i=k+1}^{2k} \neg \phi(c_i, b_k),$$

• Since $(c_i)_{i<\omega}$ is indiscernible, we have

$$\models \exists y \bigg(\bigwedge_{i \leq k} \phi(c_i, y) \land \bigwedge_{i=k+1}^{2k} \neg \phi(c_i, y) \bigg) \to \exists y \bigg(\bigwedge_{i \leq j} \phi(c_i, y) \land \bigwedge_{i=j+1}^{k} \neg \phi(c_i, y) \bigg)$$

for each j < k;

• Let

$$b_j \models \bigwedge_{i \le j} \phi(c_i, y) \land \bigwedge_{i=j+1}^k \neg \phi(c_i, y)$$

• Then $\models \phi(c_i, b_j) \iff i \leq j$, so ϕ has k-order property. Since ϕ is stable, k_{ϕ} exists.

Corollary 4.14. In a stable theory, we can define the average type of an indiscernible sequence $b = (b_i)_{i \in I}$ over a set of parameters A as

$$\operatorname{Av}(b/A) = \{\phi(x) \in L(A) | \models \phi(b_i) \text{ for all but finitely many } i \in I\}$$

By Proposition 4.13 it is a complete consistent type over A.

5 Stable=NIP∩NSOP and the classification picture

The failure of stability can occur in one of the following two "orthogonal" ways.

Definition 5.1. [NSOP]

- A (partitioned) formula $\phi(x,y) \in L$ has the strict order property, or SOP, if there is an infinite sequence $(b_i)_{i \in \omega}$ such that $\phi(\mathbb{M}, b_i) \subsetneq \phi(\mathbb{M}, b_i)$ for all $i < j \in \omega$;
- A theory T has SOP if some formula does.
- T is NSOP if it does not have the strict order property.

Remark 5.2. .

- If $\phi(x,y)$ has SOP, then by Proposition 4.6 we can choose an indiscernible sequence $(b_i)_{i\in\omega}$ satisfying the condition above.
- If we have arbitrary long finite sequences $(b_i)_{i < n}$ satisfying the condition above for a fixed formula $\phi(x, y)$, then it has SOP by compactness.
- A typical example of an SOP theory is given by DLO.
- T is NSOP if and only if all formulas with parameters are NSOP (can incorporate the parameters into the sequence of bi's), if and only if all formulas $\phi(x, y)$ with x singleton are NSOP.

Exercise 5.3. T has SOP if and only if there is a definable partial order with infinite chains Definition 5.4. [NIP]

• A (partitioned) formula $\phi(x,y)$ has the independence property, or IP, if (in M) there are infinite sequences $(b_i)_{i\in\omega}$ and $(a_s)_{s\subseteq\omega}$ such that

$$\models \phi(a_s, b_i) \iff i \in s.$$

• A theory T has IP if some formula does, otherwise T is NIP.

Remark 5.5. .

- If we have arbitrary long finite sequences $(b_i)_{i < n}$ satisfying the condition above for a fixed formula $\phi(x, y)$, then by compactness we can find an infinite sequence satisfying the condition above, hence $\phi(x, y)$ has IP.
- If $\phi(x,y)$ has IP, then by Ramsey and compactness we can choose an indiscernible sequence $(b_i)_{i\in\omega}$ in the definition above.

• A typical example of a theory with IP is given by the theory of the countable random graph, i.e. the theory of a single (symmetric, irreflexive) binary relation E(x, y)axiomatized by the following list of "extension axioms", for each $n \in \omega$

$$\forall x_0 \neq \dots \neg x_{n-1} \neq y_0 \neq \dots \neq y_{n-1} \exists z \left(\bigwedge_{i \leq n} E(x_i, z) \land \bigwedge_{i \leq n} \neg E(y_i, z) \right)$$

• T is NIP if and only if all formulas with parameters are NIP, if and only if all formulas $\phi(x,y)$ with x singleton are NIP. Also $\phi(x,y)$ is NIP if and only if $\phi^*(y,x) = \phi(x,y)$ is NIP. [see Pierre Simon: "A Guide to NIP Theories"]

Lemma 5.6. A formula $\phi(x,y)$ has IP if and only if for there is an indiscernible sequence $\bar{b} = (b_n)_{n \in \omega}$ and a parameter c such that

$$\models \phi(c, b_n) \iff n \text{ is even.}$$

Proof. .

⇒:

- Suppose that $\phi(x,y)$ has IP;
- There are $\bar{b} = (b_n)_{n \in \omega}$ and $\bar{a} = (a_s)_{s \subset \omega}$ such that $\phi(a_s, b_n) \iff n \in s$
- we amy assume that \bar{b} is indiscernible and let $s = \{0, 2, 4, ...\}$.
- Let $c = a_s$, then $\models \phi(c, b_n) \iff n$ is even.

(=:

• Let $\bar{b} = (b_n)_{n \in \omega}$ be an indiscernible sequence and c a parameter such that

$$\models \phi(a, b_n) \iff n \text{ is even.}$$

- Fix some $n \in \omega$ and $s \subseteq n$
- there is an order-preserving mapping $f: n \to \mathbb{N}$ such that

$$f(s) \subseteq 2\mathbb{N}$$
 and $f(n \setminus s) \subseteq 2\mathbb{N} + 1$

- So $\models \exists x (\bigwedge_{k \in s} (\phi(x, y_{f(k)}) \land \bigwedge_{k \notin s} \neg \phi(x, y_{f(k)}));$
- By indicernibility, $\models \exists x (\bigwedge_{k \in s} (\phi(x, y_k) \land \bigwedge_{k \notin s} \neg \phi(x, y_k))$
- \Longrightarrow for each $s \subseteq n$ there is a_s such that

$$\models \left(\bigwedge_{k \in s} \left(\phi(a_s, y_k) \land \bigwedge_{k \notin s} \neg \phi(a_s, y_k)\right)\right)$$

• By compactness, ϕ has IP.

Proposition 5.7. A formula $\phi(x,y)$ is NIP if and only if for any indiscernible sequence $\bar{b} = (b_i)_{i \in I}$ and a parameter a, the alternation of $\phi(a,y)$ on \bar{b} is finite, bounded by some number $n \in \omega$ depending just on ϕ . That is, there are at most n increasing indices $i_0 < ... < i_{n-1}$ such that

$$\models \phi(a, b_{i_k}) \leftrightarrow \neg \phi(a, b_{i_{k+1}}) \quad (\forall k < n-1)$$

Proof. By Lemma 5.6 and compactness.

Remark 5.8.

Working in an NIP theory and given an indiscernible sequence $\bar{b} = (b_i)_{i \in I}$ with II an endless order, and A an arbitrary set of parameters, Proposition 5.7 allows us to define a complete consistent type

$$\operatorname{Av}(\bar{b}/A) := \{ \phi(x) \in L(A) | \text{ the set } \{ i \in I | \models \phi(b_i) \} \text{ is cofinal} \}$$

Theorem 5.9 (Shelah). T is unstable if and only if it has the independence property or the strict order property.

Proof. .

(=:

- strict order property \implies order property, so it is unstable.
- $\phi(x,y)$ has IP $\implies |S_{\phi}(A)| = 2^{|A|}$, so it is unstable.

⇒:

- Suppose that T is both NSOP and NIP.
- Suppose for a contradiction that T is unstable.
- we will show that unstable+NIP \Longrightarrow SOP;
- Let $\phi(x,y)$ be a formula and $(a_i)_{i\in\mathbb{Q}}$ and $(b_i)_{i\in\mathbb{Q}}$ be sequences such that

$$\models \phi(a_i, b_i) \iff i < j$$

- We assume that $(b_i)_{i\in\mathbb{Q}}$ is indiscernible;
- Since ϕ has NIP, $\exists n \in \omega$, $\exists s \subseteq n$ such that

$$\psi_s(x, b_0, ..., b_{n-1}) := \bigwedge_{k \in s} \phi(x, b_k) \wedge \bigwedge_{k < n, k \notin s} \neg \phi(x, b_k)$$

is inconsistent;

• Assume that |s| = j, then

$$\psi_j(x, b_0, ..., b_{n-1}) := \bigwedge_{k < j} \phi(x, b_k) \land \bigwedge_{j \le k < n} \neg \phi(x, b_k)$$

is consistent;

- there is $\sigma \in S_n$ the permutation group of $\{0, ..., n-1\}$, such that $s = \sigma(\{0, ..., j-1\})$;
- σ is a product of a sequence of transpositions of two consecutive elements;
- There is $s^* \subseteq n$ with $|s^*| = j$ and k < n 1 such than

$$\psi_{s*}(x, b_0, ..., b_k, b_{k+1}, ..., b_{n-1}) = \theta(x, d) \wedge \phi(x, b_k) \wedge \neg \phi(x, b_{k+1})$$

is consistent and

$$\psi_{s^*}(x, b_0, ..., b_{k+1}, b_k, ..., b_{n-1}) = \theta(x, d) \wedge \neg \phi(x, b_k) \wedge \phi(x, b_{k+1})$$

is inconsistent, where $d = \{b_0, ..., b_{n-1}\} \setminus \{b_k, b_{k+1}\};$

• which implies that

$$\theta(x,d) \wedge \phi(x,b_{k+1}) \subseteq \theta(x,d) \wedge \phi(x,b_k)$$

• For each k , we have

$$\theta(x,d) \land \phi(x,b_q) \subsetneq \theta(x,d) \land \phi(x,b_p)$$

 \bullet So T has SOP.

Exercise 5.10. Show that DLO is NIP, and that the theory of a random graph is indeed NSOP.

Example 5.11. Examples of stable theories.