# コンピュータグラフィクス論

## - アニメーション(1) -

2015年5月14日 高山 健志

### スケルトンによるアニメーション

- ・単純な仕組み
- 直感的な挙動
- ・ 低い計算コスト



https://www.youtube.com/watch?v=DsoNab58QVA

#### スケルトンによる姿勢の表現

• ボーンと関節から成る木構造

• ボーンは親関節を基準とした相対的な回転角を保持

各関節の回転角によって全体の姿勢を決定 (Forward Kinematics)

• ロボティクス分野と深く関連





#### Inverse Kinematics

・末端関節の位置を与えると、それを満たす関節角を逆算

• IK で手早く姿勢を作り、 FK で微調整



https://www.youtube.com/watch?v=e1qnZ9rV\_kw

### IK の一解法:Cyclic Coordinate Descent

- 関節角を一つずつ順番に変更
  - ・末端関節を目標に近づける
  - 順番が重要!末端が最初
- ・ 実装が簡単 → 必須課題 (デモ)
- ・より高度な手法
  - ・ ヤコビ法 (方向等の様々な制約)
  - 変形エネルギーの最小化 [Jacobson 12]



#### 変形エネルギーに基づく IK



### モーションデータの取得方法

#### 光学式モーションキャプチャ

• 役者にマーカーを取り付け、多数 (~48) のカメラで撮影





from Wikipedia



### 安価なデプスカメラによるモーキャプ



https://www.youtube.com/watch?v=qC-fdgPJhQ8

## 屋外で使えるモーキャプ



#### モーションデータベース

- http://mocap.cs.cmu.edu/
- 6 カテゴリ、合計 2605個
- 研究促進のために無償公開 (補間、連結、解析、検索、etc)





















#### モーションの連結

二つのフレームで姿勢が似ていれば、 遷移を許す





フレーム間の姿勢の類似度



Motion Graphs [Kovar SIGGRAPH02]

Motion Patches: Building Blocks for Virtual Environments Annotated with Motion Data [Lee SIGGRAPH06]

#### シミュレーションによるモーション生成

- モーキャプできない 対象に使える
- ・ 体型に合った自然な動作を生成できる
- 動的に変化する環境に適応できる



https://www.youtube.com/watch?v=KF\_a1c7zytw

#### キャラクタの動きに関する様々なトピック



複数キャラクタのインタラクション



物体をつかむ動作



群衆シミュレーション



Path planning

Character motion synthesis by topology coordinates [Ho EG09]
Aggregate Dynamics for Dense Crowd Simulation [Narain SIGGRAPHAsia09]
Synthesis of Detailed Hand Manipulations Using Contact Sampling [Ye SIGGRAPH12]
Space-Time Planning with Parameterized Locomotion Controllers.[Levine TOG11]

## スキニング











$$\mathbf{v}'_i = \mathrm{blend}(\langle w_{i,1}, \mathbf{T}_1 \rangle, \langle w_{i,2}, \mathbf{T}_2 \rangle, \dots)(\mathbf{v}_i)$$

- 入力
  - メッシュ頂点座標  $\{\mathbf{v}_i\}$  i=1,...,n
  - ボーンの剛体変換  $\{\mathbf{T}_i\}$  j=1,...,m
  - 各ボーンから各メッシュ頂点への重み  $\{w_{i,j}\}$  i=1,...,n j=1,...,m
- 出力
  - 変形後のメッシュ頂点座標  $\{\mathbf{v}_i'\}$  i=1,...,n
- 技術的なポイント
  - 重み {w<sub>i,i</sub>} をどう与えるか
  - 変換をどうブレンドするか

### 重みの与え方:手作業でペイント



#### 重みの与え方:自動計算

- j 番目のボーンの重み  $w_j$  を、
  - j 番目のボーン上で1を取り、それ以外のボーン上で0を取り、
  - それ以外では滑らかなスカラー場
  - として定式化
- 一階微分  $\int_{\Omega} \|\nabla w_j\|^2 dA$  を最小化 [Baran 07]
  - ・サーフェス上で近似的に解く→簡単、高速
- 二階微分 $\int_{\Omega} \left(\Delta w_j\right)^2 dA$  を最小化 [Jacobson 11]
  - 不等式制約  $0 \le w_i \le 1$  も導入
  - ・ボリューム上で二次計画問題を解く → 高品質



Pinocchio デモ

### 変換の混合手法:Linear Blend Skinning

• 剛体変換  $\mathbf{T}_j$  は、回転行列  $\mathbf{R}_j \in \mathbb{R}^{3 \times 3}$  と移動ベクトル  $\mathbf{t}_j \in \mathbb{R}^3$  を並べた  $3 \times 4$ 行列として表される

$$\mathbf{v}_i' = \left(\sum_j w_{i,j}(\mathbf{R}_j \ \mathbf{t}_j)\right) \begin{pmatrix} \mathbf{v}_i \\ 1 \end{pmatrix}$$

- ・ 単純で高速
  - 頂点シェーダで実装:フレーム毎に  $\{\mathbf{v}_i'\}$  を GPU に送るのではなく、初期化時に  $\{\mathbf{v}_i\}$  と  $\{w_{i,i}\}$  を送り、フレーム毎に  $\{\mathbf{T}_i\}$  を送る
- ・業界で最も一般的

## LBS の欠陥:"candy wrapper" effect



- 剛体変換の線形和は剛体変換にならない!
  - ・180度捻ると関節の周りが一点に凝縮

### LBS に代わる手法: Dual Quaternion Skinning

- アイディア
  - ・ 単位長 quaternion (四つの実数) → 3D 回転変換
  - ・単位長 dual quaternion (二つの quaternion) → 3D 剛体変換 (回転 + 移動)
- Dual quaternion の定義
  - $\varepsilon^2 = 0$  を満たす dual 単位  $\varepsilon$  を導入 (cf. 虚数単位 i)
  - Dual quaternion  $\hat{\mathbf{q}}$  を、二つの quaternion  $\mathbf{q}_r$  と  $\mathbf{q}_d$  によって  $\hat{\mathbf{q}} = \mathbf{q}_r + \varepsilon \mathbf{q}_d$  と定義する
  - 普通の quaternion の演算規則から、dual quaternion の演算規則が導かれる

### Dual quaternion の演算規則

$$\overline{\mathbf{\hat{q}}} = \overline{\mathbf{q}_r + \varepsilon \mathbf{q}_d} = \mathbf{q}_r - \varepsilon \mathbf{q}_d$$

$$\widehat{\mathbf{q}}^* = \mathbf{q}_r^* + \varepsilon \mathbf{q}_d^*$$

$$\|\widehat{\mathbf{q}}\| = \sqrt{\widehat{\mathbf{q}}^* \widehat{\mathbf{q}}} = \|\mathbf{q}_r\| + \varepsilon \frac{\mathbf{q}_r^* \mathbf{q}_d}{\|\mathbf{q}_r\|}$$

$$\widehat{\mathbf{q}}^{-1} = \frac{\widehat{\mathbf{q}}^*}{\|\widehat{\mathbf{q}}\|^2}$$

- 3D 座標  $(v_x, v_y, v_z)$  の剛体変換
  - ・ 3D 座標を表す dual quaternion: $\hat{\mathbf{v}} = 1 + \varepsilon (iv_{\mathrm{x}} + jv_{\mathrm{y}} + kv_{\mathrm{z}})$
  - 剛体変換後の3D座標:

$$\widehat{\mathbf{v}'} = \widehat{\mathbf{q}} \widehat{\mathbf{v}} \overline{\widehat{\mathbf{q}}^*}$$

•  $\mathbf{q}_r$  が回転、 $\mathbf{q}_d$  が平行移動を表す

単位 dual quaternion :  $\|\hat{\mathbf{q}}\| = 1$ 

### 単位 dual quaternion と 3D 剛体変換の関係

• 単位 dual quaternion  $\hat{\mathbf{q}}$  は、dual 数  $\hat{\theta} = \theta_r + \varepsilon \theta_d$  と、実部を含まない 単位 dual quaternion  $\hat{\mathbf{s}} = \mathbf{s}_r + \varepsilon \mathbf{s}_d$  によって以下のように書ける:  $\hat{\mathbf{q}} = \cos \frac{\hat{\theta}}{2} + \hat{\mathbf{s}} \sin \frac{\hat{\theta}}{2}$ 

$$\widehat{\mathbf{q}} = \cos\frac{\widehat{\theta}}{2} + \widehat{\mathbf{s}}\sin\frac{\widehat{\theta}}{2}$$

- 幾何的な意味:
  - $\mathbf{s}_r$  :回転軸方向
  - $\theta_r$  :回転量
  - θ<sub>d</sub>:回転軸方向の平行移動量
  - $\mathbf{s}_d$ :回転軸が  $\mathbf{r}$  を通るとき、 $\mathbf{s}_d = \mathbf{r} \times \mathbf{s}_r$  を満たす
- 剛体運動は "screw motion" で一意に記述できる

### 単位 dual quaternion と 3D 剛体変換の関係



### Dual quaternion による剛体変換のブレンド

blend(
$$\langle w_1, \widehat{\mathbf{q}}_1 \rangle, \langle w_2, \widehat{\mathbf{q}}_2 \rangle, ...$$
) =  $\sum_i \frac{w_i \widehat{\mathbf{q}}_i}{\|w_i \widehat{\mathbf{q}}_i\|}$ 

- Quaternion による回転と同様
- LBS と入出力が全く同一、計算コスト低い → 現場で導入しやすい



### DQS の欠点:"bulging" effect

• 曲げの際に、関節を中心とした球面上に沿ったような軌跡を描く



### DQS の欠点の克服



[Kavan 12]

変換を bend と twist に分解し、別々に補間



[Kim 14]

DQS で動かした後、法線方向にオフセット

## DQS の欠点:捻りの回転量の制限



#### 自己交差を回避するスキニング

・陰関数の性質を活用



https://www.youtube.com/watch?v=RHySGIqEgyk

### スケルトン以外の変形インタフェース

点、ケージ、スケルトンの統合 [Jacobson 11]







https://www.youtube.com/watch?v=P9fqm8vqdB8

https://www.youtube.com/watch?v=BFPAIU8hwQ4

#### 参考情報

- http://en.wikipedia.org/wiki/Motion\_capture
- http://skinning.org/
- http://mukai-lab.org/category/library/legacy
- CG Gems JP 2012 Chapter 8 インバースキネマティクス