CLAIMS

1. A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

$$(R^{1})_{m} \qquad (CH_{2})_{t} \xrightarrow{H} (H^{2})_{n}$$

$$(CH_{2})_{t} \xrightarrow{H} (H^{2})_{n} \downarrow H$$

$$(H^{2})_{n} \downarrow H$$

$$(H^{2})_{n} \downarrow H$$

$$(H^{2})_{n} \downarrow H$$

$$(H^{3})_{p} \downarrow H$$

wherein

5

25

A, B and D are independently aryl or heteroaryl;

R¹, R² and R³ are independently C₁₋₆alkyl, halogen, C₁₋₆alkoxy, hydroxy, cyano, CF₃, OCF₃, nitro, C₁₋₆alkylthio, amino, mono- or di-C₁₋₆alkylamino, carboxy, C₁₋₆alkanoyl, amido, mono or di-C₁₋₆alkyl amido, -NHCOR⁹ or -NHSO₂R⁹ {in which R⁹ is C₁₋₆alkyl, C₃₋₇cycloalkyl or phenyl (optionally substituted by up to three groups selected from C₁₋₆alkyl, halogen, C₁₋₆alkoxy, cyano, phenyl and CF₃)} or is a group -E-(CH₂)₁₋₆NR^XR^y (in which E is a single bond or -OCH₂- and R^X and R^y are independently hydrogen, C₁₋₆alkyl or combine together to form a 5 - 7 membered heterocyclic ring);

 R^4 and $R^{4'}$ are independently hydrogen, C_{1-6} alkyl, halogen or C_{1-6} alkoxy;

V is O, S, NH, N-C₁₋₆alkyl, NNO₂ or NCN;

W, X, Y and Z are independently C, CH or N, subject to the proviso that at least one of X, Y and Z is N;

- 20 L is $-(CH_2)q^-$ or $-(CH_2)q^-$ O- where q is 0, 1, 2 or 3 and q' is 2 or 3;
 - J is (i) a group $CR^5 = CR^6$ where R^5 and R^6 are independently hydrogen or C_{1-6} alkyl;
 - (ii) a group -CHR⁷-CHR⁸- where R⁷ and R⁸ are independently hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, aryl, heteroaryl, a group -NHCOR⁹ or -NHSO₂R⁹ in which R⁹ is as defined above or a group -(CH₂)₁₋₆NR^xR^y in which R^x and R^y are as defined above;
 - (iii) a single bond;

- (iv) -CHR6- where R6 is as defined above; or
- (v) a group -O-CHR¹⁰-, -NR¹¹-CHR¹⁰- or -CR¹²R¹³-CHR¹⁰- where R¹⁰ and R¹¹ are independently hydrogen or C_{1-6} alkyl and R¹² and R¹³ are independently C_{1-6} alkyl or R¹² and R¹³ combine together to form a C_{3-7} cycloalkyl or a 5 7 membered heterocyclic ring;

m, n and p are independently 0, 1, 2 or 3; and t is 0, 1 or 2.

2. The compound according to claim 1, wherein the compound is of formula (l') or a pharmaceutically acceptable derivative thereof:

$$(R^{1})_{m}$$

$$(CH_{2})_{t}$$

$$(CH_{2})_{t}$$

$$(CH_{2})_{t}$$

$$(CH_{2})_{t}$$

$$(H_{2})_{t}$$

$$(H_{2})_{t$$

in which R¹ - R⁴, m, n, p, t, A, B, D, L, J, V, W, X, Y and Z are as defined in formula (I).

- 3. The compound according to claim 1 or 2, wherein A is phenyl or pyridyl.
- 4. The compound according to any of the preceding claims, wherein B is phenyl.
- 20 5. The compound according to any of the preceding claims, wherein D is phenyl or pyridyl.
 - 6. The compound according to claim 1, wherein the compound is of formula (la) or a pharmaceutically acceptable derivative thereof:

15

5

$$(R^{1})_{m}$$

$$(CH_{2})_{t}$$

$$(CH_{2})_{t}$$

$$(R^{3})_{p}$$

in which:

R1 - R4, R4', L, J, X, Y, Z, m, n, p and t are as defined in formula (I).

5

7. The compound according to claim 6, wherein the compound is of formula (la') or a pharmaceutically acceptable derivative thereof:

$$(R^{1})_{m}$$

$$(CH_{2})_{t}$$

$$(R^{2})_{n}$$

$$(R^{3})_{p}$$

$$(Ia')$$

10

in which:

R¹ - R⁴, L, J, X, Y, Z, m, n, p and t are as defined in formula (I).

8. The compound according to any of the preceding claims in which R¹, R² and R³ are, independently, selected from the group consisting of C₁₋₆alkyl, halogen, C₁₋₆alkoxy, cyano and CF₃.

- 9. The compound according to any of the preceding claims in which J is selected from the group consisting of -CH = CH-, -(CH₂)₂- and -CHR⁷-CH₂- in which R⁷ is C₁₋₆alkyl.
- 5 10. The compound according to any of the preceding claims in which L is -(CH₂)_q-where q is 0, 1, 2 or 3.

10

15

20

- 11. The compound according to claim 1 which is selected from the group consisting of E1 E18 or a pharmaceutically acceptable derivative thereof
- 12. A process for the preparation of the compound of formula (I) or a pharmaceutically acceptable derivative thereof which comprises hydrolysis of a carboxylic acid ester derivative of formula (II):

$$(R^{1})_{m}$$

$$(CH_{2})_{t}$$

$$(CH_{2})_{t}$$

$$(H)$$

$$(R^{2})_{n}$$

$$(R^{3})_{p}$$

$$(R^{3})_{p}$$

$$(H)$$

in which R^1 - R^4 , R^4 , m, n, p, t, A, B, D, L, J, V, W, X, Y and Z are as defined in formula (I) and R is a group capable of forming a carboxylic acid ester and optionally thereafter forming a pharmaceutically acceptable derivative thereof.

- 13. The compound according to any one of claims 1 to 11 for use in therapy.
- 14. A pharmaceutical composition which comprises a therapeutically effective amount of the compound according to any one of claims 1 to 11 in admixture with a
 25 pharmaceutically acceptable carrier or diluent.

- 15. A pharmaceutical composition comprising the compound according to any one of claims 1 11 together with another therapeutically active agent.
- 16. A use of the compound according to any one of claims 1 to 11 in the manufacture of a medicament for the treatment or prevention of conditions in which an inhibitor of α_4 integrin mediated cell adhesion is beneficial.

5

10

15

20

25

30

- 17. A method for the treatment or prevention of conditions in which an inhibitor of α_4 integrin mediated cell adhesion is beneficial which comprises administering to a patient in need thereof a safe and effective amount of the compound according to any one of claims 1 to 11.
- 18. The method according to claim 17, wherein said condition is selected from the group consisting of rheumatoid arthritis (RA); asthma; allergic conditions such as rhinitis; adult respiratory distress syndrome; AIDS-dementia; Alzheimer's disease; cardiovascular diseases; thrombosis or harmful platelet aggregation; reocclusion following thrombolysis; reperfusion injury; skin inflammatory diseases such as psoriasis, eczema, contact dermatitis and atopic dematitis; diabetes (e.g., insulin-dependent diabetes mellitus, autoimmune diabetes); multiple sclerosis; systemic lupus erythematosus (SLE); inflammatory bowel disease such as ulcerative colitis, Crohn's disease (regional enteritis) and pouchitis (for example, resulting after proctocolectomy and ileoanal anastomosis); diseases associated with leukocyte infiltration to the gastrointestinal tract such as Celiac disease, nontropical Sprue, enteropathy associated with seronegative arthropathies, lymphocytic or collagenous colitis, and eosinophilic gastroenteritis; diseases associated with leukocyte infiltration to other epithelial lined tissues, such as skin, urinary tract, respiratory airway, and joint synovium; pancreatitis; mastitis (mammary gland); hepatitis; cholecystitis; cholangitis or pericholangitis (bile duct and surrounding tissue of the liver); bronchitis; sinusitis; inflammatory diseases of the lung which result in interstitial fibrosis, such as hypersensitivity pneumonitis; collagen disease (in SLE and RA); sarcoidosis; osteoporosis; osteoarthritis; atherosclerosis; neoplastic diseases including metastasis of neoplastic or cancerous growth; wound healing enhancement; certain eye diseases such as retinal detachment, allergic conjunctivitis and autoimmune uveitis; Sjogren's syndrome; rejection (chronic and acute) after organ transplantation; host vs. graft or graft vs. host

diseases; intimal hyperplasia; arteriosclerosis (including graft arteriosclerosis after transplantation); reinfarction or restenosis after surgery such as percutaneous transluminal coronary angioplasty (PTCA) and percutaneous transluminal artery recanalization; nephritis; tumor angiogenesis; malignant tumor; multiple myeloma and myeloma-induced bone resorption; sepsis; and central nervous system injury such as stroke, traumatic brain injury and spinal cord injury and Meniere's disease.

- 19. The method according to claim 17, wherein said condition is asthma, allergic conditions, inflammatory bowel disease, rheumatoid arthritis, atopic dermatitis, multiple sclerosis or rejection after organ transplantation.
- 20. A compound of formula (II):

$$(R^{1})_{m} \qquad (CH_{2})_{t} \qquad (R^{2})_{n}$$

$$(CH_{2})_{t} \qquad (CH_{2})_{t} \qquad (R^{3})_{p}$$

$$(CH_{2})_{t} \qquad (CH_{2})_{t} \qquad (R^{3})_{p}$$

15

5

10

(II)

in which R^1 - R^4 , R^4 , m, n, p, t, A, B, D, L, J, V, W, X, Y and Z are as defined in formula (I) and R is a group capable of forming a carboxylic acid ester.