

### Last Lecture Exam overview and discussion

#### **Objectives**

Reminder to complete surveys

• CITS1401 Final Exam

• Questions and answers about the material covered in CITS1401

• Course summary

• CITS1401 exam 2017 (in the last lecture/workshop)

#### Student survey

- SELT: Student Experience of Learning and Teaching
- Email will be sent to all
- Please complete the survey
- Your feedback is important for us
  - whether you found it useful and fair
  - if there is anything we could have done better

#### Course Outcomes (First lecture slide)

- Developing computational thinking skills:
  - *Decompose:* how to divide large problem into small parts and solve them "divide and conquer".
  - Pattern recognition: recognizing common tactics to solve set of problems.
  - Abstraction: generalizing the problem by reducing avoidable details.
  - *Algorithm:* how to formulate ordered step-wise approach to solve the problem.
- Developing programming skills:
  - Be able to write a program in Python 3 to:
    - Solve small problems
    - Automate repetitive computational tasks

Both skills are transferrable

#### **Learning Outcomes**

- Create algorithms using computational thinking to solve a range of problems
- Write programs using a high-level programming language Python 3 to implement algorithms including programs for data retrieval, extraction, conversion, aggregation, calculation, processing and storage
- Demonstrate the process of computational problem solving and be familiar with common approaches for computational problem solving

#### **EXAM Sem-1 2024**

- Total 7 questions
  - not all the same size
  - Range of difficulty
- Total: 100 marks
  - Try to estimate a mark a minute, 20 minutes for revision
- Weight in your total marks is 55%
- Recall that

$$-$$
 Project 2 =  $20\%$ 

$$- Labs = 10\%$$

#### **Exam Pattern**

- Programming questions similar to previous years with differences in the questions.
- All questions should be answered.
- Write your answers in the spaces provided in the exam booklet. Each question has its own space.
- It is a closed book or notes exam.
- Exam will be Face-2-Face only and all arrangements are made by Exam Office. Contact the office if you have any queries.
- Contact with unit coordinator is not allowed during the exam.
- No modules are allowed to be imported for any question.

#### Material for exam

Lectures

• Book (only those chapters that were covered in the lectures except math and graphics libraries)

- All laboratory sheets
- Both projects

#### How to prepare for the exam

- 1. Have a Thonny session open when you are studying for the exam
- 2. Go through the lecture slides
- 3. Consult the textbook (or links on Moodle)
  - Try questions there too (or any other source of questions)
- 4. Watch the recorded lectures again if required
- 5. Go through the labs again. You can only access your attempts
- 6. Attempt a sample exam and mark it yourself using the provided answers
- 7. Repeat step 1 to 6

- Computers and Programs
  - Into. to Computer Science
  - Computer hardware basics
  - Programming languages and Python 3
  - Compiler vs Interpreter
- Variables and simple loops
  - Assignment statements
  - Data types
  - Numerical and logical operators
  - Limits to numerical data
  - Simple loops and examples

- Software development process
  - Introduction of Thonny
  - Problem analysis
  - Design
  - Testing / debugging
  - Pseudocode
  - print function
- Writing code in Python
  - Defining and executing functions
  - Parameters and arguments
  - Creating and importing modules

- Accumulator
  - $Accumulator\ concept$
  - range function
- Decisions
  - Comparison and logical operators
  - if, if-else, if-elif statements
  - Nested if statements
  - Examples

#### Functions

- Using built-in functions
- Scope of variables
- Functions and input parameters
- Function return by value and by reference
- Default values for parameters

#### • Strings

- String data type
- String operations
  - Indexing, slicing, concatenation and repetition etc.,
- String methods
- String representation
- Encoder-decoder example

- Lists
  - Sequences
  - Functions related to lists
  - Slicing of lists
  - Lists operations
  - Map and filter
- File processing
  - String formatting
    - Fstring
  - Multi-line strings
  - Reading and writing in files
  - Use with statement

- Loops
  - Definite loops
    - for loop
  - Indefinite loops
    - while loop
  - Sentinel loops
  - Nested loops
  - break-continue statements
  - Examples

- Exceptions
  - Exceptions handling
  - try-except blocks
  - Exceptions hierarchy
- Sequences
  - Dictionaries
  - Tuple
  - Set
  - Sequence operations
  - Examples

- Simulation design
  - Analysis and specification
  - Pseudo random numbers
  - Top-down design
  - Bottom-up design
  - Unit testing
  - End-to-end testing
  - Simulation
  - Prototyping and spiral development

- Objects
  - Object oriented programming
  - Classes, objects and instances
  - Graphics library and examples
- Search algorithms
  - Linear search
  - Binary search
  - Comparison of linear and binary search
- Recursion
  - Recursive problem solving
  - Recursion vs iteration

## PLEASE DON'T FORGET survey

# THANK YOU & & GOOD LUCK IN YOUR EXAM