

ConsensusClustering Documentation

Description: Resampling-based clustering

Author: Stefano Monti (Broad Institute) gp-help@broad.mit.edu

Summary: Given a set of items to be clustered (items can be either genes or chips/experiments), Consensus clustering provides for a method to represent the consensus across multiple runs of a clustering algorithm and to assess the stability of the discovered clusters. To this end, perturbations of the original data are simulated by resampling techniques. The clustering algorithm of choice is applied to each of the perturbed data sets, and the agreement, or *consensus*, among the multiple runs is assessed and summarized in a *consensus matrix*. Each matrix entry is indexed by an item pair that measures the proportion of times the pair's items are clustered together across the resampling iterations (ideally, always, or never). A distinct consensus matrix is generated for each of the number of clusters considered (e.g., if kmax=5, consensus matrices corresponding to 2, 3, 4, and 5 clusters will be generated). Visual inspection of the consensus matrices, and of the corresponding summary statistics can be used to determine the best number of clusters (see reference for more details).

References:

• S. Monti, et al. "Consensus Clustering: A resampling-based method for class discovery and visualization of gene expression microarray data", *Machine Learning Journal*, 52(1-2):91-118, 2003.

Parameters:

Name	Description
input filename	The data to be clustered (.gct, .res, .odf)
kmax	Try K=2,3,,kmax clusters (must be > 1)
resampling iterations	Number of resampling iterations
seed value	Random number generator seed
clustering algorithm	Type of clustering algorithm
cluster by	Whether to cluster by rows/genes or columns/experiments
distance measure	Distance measure
resample	resampling scheme (one of 'subsample[ratio]', 'features[nfeat]', 'nosampling')
merge type	Ignored when algorithm other than hierarchical selected
descent iterations	Number of SOM/NMF iterations
output stub	Stub pre-pended to all the output file names
normalize type	row-wise, column-wise, both
normalization iterations	number of row/column normalization iterations (supercedes normalize.type)
create heat map	Whether to create heatmaps (one for each cluster number)
heat map size	point size of a consensus matrix's heat map (between 1 and 20)

GenePattern

Output Files:

- 1. <output.stub>.<sampleid>.<k>.clu, is a text file listing the items belonging to each cluster. (<sampleid> indicates the type of resampling scheme, and <k> denotes the number of clusters).
- 2. <output.stub>.<sampleid>.<k>.gct is the consensus matrix for <k> clusters, with the entries sorted as in the input data.
- 3. <output.stub>.<sampleid>.srt.<k>.gct is the consensus matrix for <k> clusters, with the entries sorted so as to have items clustering together adjacent to each other.
- 4. <output.stub>.<sampleid>.srt.<k>.gif is the heat map corresponding to the sorted consensus matrix.
- 5. <output.stub>.<sampleid>.statistics.pdf includes a series of plots of statistics (Lorenz curve, Gini index, Consensus CDF) that can be used to determine the best number of clusters.

Platform dependencies:

Module type: Clustering

CPU type: any
OS: any
Java JVM level: 1.5
Language: Java, R