Sciences Industrielles de

l'Ingénieur

Découverte des systèmes pluritechnologiques – Introduction aux grandeurs physiques

Chapitre 1 & 2- Grandeurs mécaniques et électriques

Colle 2

Exercices d'application

Savoirs et compétences :

Exercice 1 - Mouvement de translation

Joe Dupont conduit une voiture à $50 \, \mathrm{km} \, \mathrm{h}^{-1}$ dans une rue horizontale. La voiture a une masse de $1\,060 \, \mathrm{kg}$. Soudain, il freine pour s'arrêter. On suppose que la décélération est constante pendant tout le freinage ($a = -2 \, \mathrm{m} \, \mathrm{s}^2$).

Question 1 Indiquer la direction et le sens de la force exercée sur la voiture, calculer son intensité.

Question 2 Calculer la durée du freinage.

Question 3 Calculer la distance du freinage.

Exercice 2 - Calcul de moments

On donne la structure suivante :

Question 1 Déterminer $\mathcal{M}(A, \overrightarrow{F})$. On donne la structure suivante :

Question 2 Déterminer $\mathcal{M}(B, \overrightarrow{F})$.

Exercice 3 – Circuit électrique de voiture

Le schéma ci-dessous est le schéma partiel d'un circuit électrique de voiture :

On donne : $E_{\rm bat}=13.8$ V, $R_{\rm bat}=20$ m Ω , $I_{\rm alt}=136$ A , $R_{\rm alt}=0.2$ Ω , $R_{\rm all}=2$ Ω et $R_{\rm fils}=0.1$ Ω .

Question 1 Déterminer la résistance équivalente des phares R_{pha} , sachant qu'une intensité de 20,7 A la traverse sous une tension de 13,8V.

Correction D'après la loi d'Ohm aux bornes de la résistance, on a $U_{\rm pha}=R_{\rm pha}\cdot i_{\rm pha} \Longleftrightarrow R_{\rm pha}=U_{\rm pha}/i_{\rm pha}=\frac{13,8}{20,7}=0,67~\Omega.$

Question 2 Déterminer la résistance équivalente du dégivreur R_{deg} , qui absorbe 360 W pour 30 A.

Correction La puissance absorbée par la résistance s'exprime par : $\mathscr{P}_{\text{deg}} = U_{\text{deg}} \cdot i_{\text{deg}}$. En utilisant la loi d'Ohm, on a : $\mathscr{P}_{\text{deg}} = R_{\text{deg}} \cdot i_{\text{deg}}^2 \Longleftrightarrow R_{\text{deg}} = \frac{\mathscr{P}_{\text{deg}}}{i_{\text{deg}}^2} = \frac{360}{900} = 0,4 \,\Omega.$

Question 3 Déterminer la résistance équivalente des charges (allumage, phares, fils et dégivreur).

Correction On a alors:

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_{\rm all}} + \frac{1}{R_{\rm pha}} + \frac{1}{R_{\rm fils} + R_{\rm deg}}, \ \frac{1}{R_{\rm eq}} = \frac{1}{2} + \frac{1}{0,6} + \frac{1}{0,4+0,1} = 4,166. \ {\rm On\ a\ donc\ } R_{\rm eq} = 0,240\ \Omega.$$

Question 4 Déterminer le circuit équivalent Thévenin de la batterie et de l'alternateur vu des points A et B.

Correction Afin de déterminer le circuit équivalent des deux sources, on convertit la source de courant en source de tension grâce à l'équivalence Thévenin-Norton.

On a alors:

Pour trouver la résistance équivalente, on passive les sources. On a alors 2 résistances en parallèles : $\frac{1}{R_{\rm AB}} = \frac{1}{R_{\rm bat}} + \frac{1}{R_{\rm alt}} \Longleftrightarrow R_{\rm AB} = \frac{R_{\rm alt}R_{\rm bat}}{R_{\rm bat} + R_{\rm alt}} \text{ Par ailleurs,}$ $E_{\rm AB} = \frac{E_{\rm bat}/R_{\rm bat} + E_{\rm alt}/R_{\rm alt}}{1/R_{\rm bat} + 1/R_{\rm alt}} = \frac{E_{\rm bat}R_{\rm alt} + R_{\rm bat}E_{\rm alt}}{R_{\rm alt} + R_{\rm bat}}. \text{ AN :}$ $R_{\rm AB} = 0,018~\Omega, E_{\rm AB} = 15~\text{V. Au final on a donc:}$

Question 5 Déterminer la tension U_{AB} lorsque les charges sont connectées à la batterie et l'alternateur.

Correction Pour déterminer U_{AB} on a recours à un ont diviseur de tension et on a : $U_{AB} = \frac{R_{\rm eq}}{R_{AB} + R_{\rm eq}} E_{AB}$ AN : $U_{AB} = 13,94$ V.