Markov Decision Process

Roger Kuo

Markov Chain

範例: 天氣狀態轉移

Markov State Diagram

Figure 2

範例: 金融市場變化

特性

1. 有限狀態 + 轉移機率

```
array([[ 0.7, 0.2, 0., 0.1], [ 0., 0., 0.], 0.1], [ 0., 1., 0., 0.], [ 0., 0., 0., 1.]])
```


2. 無記憶: 下一狀態由當下決定


```
array([[ 0.7, 0.2, 0. , 0.1],

[ 0. , 0. , 0.9, 0.1],

[ 0. , 1. , 0. , 0. ],

[ 0. , 0. , 0. , 1. ]])

= array([ 0.7, 0.2, 0. , 0.1])
```



```
array([[ 0.7, 0.2, 0., 0.1], 2

X [ 0., 0., 0.9, 0.1], [ 0., 1., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0., 1.]])

= array([ 0.49, 0.14, 0.18, 0.19])
```


最後會收斂到穩定狀態!

Markov Decision Process?

不一樣在哪裡?

States

0.7 Transition Probs

0.7 Transition Probs

+5 Reward

Markov Chain

在當下的狀態該選什麼action 會最大化未來Rewards?

Bellman

Bellman Optimality Equation

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma . V^*(s')]$$
 for all s

在行使最佳action時,每個狀態的期望價值!

怎麼算?

Bellman Optimality Equation

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma . V^*(s')]$$
 for all s

Value Iteration algorithm

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma. V_k(s')]$$
 for all s

遞迴算出個狀態價值->會收斂

discount rate (r) = 0.9

Value Iteration algorithm

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma.V_k(s')]$$
 for all s

a0:
$$0.7*[+10 + 0.9*0] + 0.3*[0 + 0.9*0] = 7$$

a1:
$$1.0*[0 + 0.9*0] = 0$$

a2:
$$0.8*[0 + 0.9*0] + 0.2[0 + 0.9*0] = 0$$

那要怎麼知道在SO時做哪個action會有最大期望Reward?

Value Iteration algorithm

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma. V_k(s')] \quad \text{for all } s$$

Q-Value Iteration algorithm

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma . \max_{a'} Q_k(s', a')]$$
 for all (s, a)

衡量每個狀態執行各action的期望價值

Environment

Init Q Matrix

```
Q = init_Q(STATE_NUM)
Q
```


Q Iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma . \max_{a'} Q_k(s', a')]$$
 for all (s, a)

```
discount_rate = 0.95
n_iterations = 20000
```



```
discount_rate = 0.95
n iterations = 20000
for i in range(n_iterations):
   Q_prev = Q.copy()
   for s in range(STATE_NUM):
       for a in possible_actions[s]:
          Q[s, a] = np.sum([
              T[s, a, sp] * \
              (R[s, a, sp] + discount_rate * np.max(Q_prev[sp]))
              for sp in range(3)
          ])
print(Q)
1.12082922
                    -inf
                          1.17982024]
        -inf 53.87349498
                                -inf]]
```

Optimal action for each states

```
np.argmax(Q, axis=1)
array([0, 2, 1])
```


現實世界可能更侷限

Q-Value Iteration algorithm

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma . \max_{a'} Q_k(s', a')]$$
 for all (s, a)

Q-Learning algorithm

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha(r + \gamma \max_{a'} Q_k(s', a'))$$

歷史狀態

觀察更新

邊觀察邊訓練

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha(r + \gamma \max_{a'} Q_k(s', a'))$$

歷史狀態

觀察更新

起始 Q Matrix

S0

 $\alpha = 0.05 / (1 + iteration * 0.1)$

learning rate: 每 1 round會遞減

$$\gamma = 0.95$$
 discount rate

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha(r + \gamma \max_{a'} Q_k(s', a'))$$

歷史狀態

觀察更新

 $\alpha = 0.05 / (1 + iteration * 0.1)$

learning rate: 每 1 round會遞減

$$\gamma = 0.95$$
 discount rate

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha(r + \gamma \max_{a'} Q_k(s', a'))$$

 $\alpha = 0.05 / (1 + iteration * 0.1)$

learning rate: 每 1 round會遞減

$$\gamma = 0.95$$
 discount rate

歷史狀態

觀察更新

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha(r + \gamma \max_{a'} Q_k(s', a'))$$

 $\alpha = 0.05 / (1 + iteration * 0.1)$

learning rate: 每 1 round會遞減

$$\gamma = 0.95$$
 discount rate

歷史狀態

觀察更新

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha(r + \gamma \max_{a'} Q_k(s', a'))$$

 $\alpha = 0.05 / (1 + iteration * 0.1)$

learning rate: 每 1 round會遞減

$$\gamma = 0.95$$
 discount rate

歷史狀態

觀察更新

收斂 Q Matrix

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha(r + \gamma \max_{a'} Q_k(s', a'))$$


```
Q = init_Q(STATE_NUM)
       [ 0., -inf, 0.],
       [-inf, 0., -inf]])
s = 0
for i in range(n_iterations):
    a = next_action_by_random(s)
    sp = next_state_by_random(s, a)
    reward = observe_reward(s, a, sp)
   learning_rate = learning_rate0 / (1 + i * learning_rate_decay)
    Q[s, a] = ((1 - learning_rate) * Q[s, a] +
               learning_rate * (reward + discount_rate*np.max(Q[sp])))
    s = sp
print(Q)
                0.39599773
                             0.21791899]
[[ 2.13388094
                      -inf -23.2288997 ]
   0.
                                   -inf]]
          -inf 10.82558957
```

```
np.argmax(Q, axis=1)
array([0, 0, 1])
```

MDP素例

機器人找寶石

開車

持股策略

思考: 客戶歷程可以這樣玩?

Reference

- CS188 Artificial Intelligence MDPs, UC Berkeley
- Hands-on-machine-learning, ch16 Reinforcement Learning