Topología Algebraica

Ejercicios para Entregar - Prácticas 6 y 7

Guido Arnone

Sobre los Ejercicios

Elegí el ejercicio (6) de la práctica seis y el ejercicio (6) de la práctica siete.

Ejercicio 6. Probar que los R-espacios vectoriales con producto interno son unicamente geodésicos.

Demostración. Sea V un \mathbb{R} -espacio vectorial con producto interno. Como para cada $q \in V$ la traslación $x \in V \mapsto (x - q) \in V$ es una isometría, basta ver que para todo $p \in V$ no nulo existe una única geodésica que une 0 con p.

Más aún, si γ es una tal geodésica, entonces $\tilde{\gamma}$: $t \in I \mapsto \|p\|^{-1} \cdot \gamma(\|p\|t) \in V$ es una geodésica que une a 0 con $p/\|p\|$, y además la asignación $\gamma \mapsto \tilde{\gamma}$ es biyectiva. Por lo tanto, alcanza mostrar que para cada vector unitario $v \in V$ existe una única geodésica que une 0 con v.

Fijamos entonces $v \in V$ unitario. Para la existencia, basta notar que la curva $\ell : t \in I \mapsto t \cdot v \in V$ es geodésica. Sea ahora $\delta : I \to V$ una geodésica que une 0 con v. Notemos en primer lugar que para todo $t \in I$ es

$$\|\delta(t)\| = \|\delta(t) - 0\| = \|\delta(t) - \delta(0)\| = |t - 0| = |t| = t.$$

Por un cálculo directo, se tiene que

$$\begin{split} \langle \delta(s), \delta(t) \rangle &= -\frac{1}{2} \left(\| \delta(s) - \delta(t) \|^2 - \| \delta(t) \|^2 - \| \delta(s) \|^2 \right) \\ &= -\frac{1}{2} (|s - t|^2 - t^2 - s^2) \\ &= st = \| \delta(s) \| \cdot \| \delta(t) \|, \end{split}$$

y la desigualdad de Cauchy-Schwartz implica que $\delta(s)$ y $\delta(t)$ son linealmente dependientes para todo t, $s \in I$. Existe entonces $\lambda(t) \in \mathbb{R}$ tal que $\delta(t) = \lambda(t)\delta(1) = \lambda(t)\nu$, para todo $t \in I$.

Sabemos además que λ es continua pues es

$$|\lambda(s) - \lambda(t)| = ||\delta(s) - \delta(t)|| = |s - t|,$$

y como su módulo $|\lambda| \equiv ||\delta||$ solo se anula en cero, debe mantener su signo. Finalmente, como ya sabemos que $\lambda(1) = 1$, necesariamente es $\lambda \equiv |\lambda| \equiv \mathrm{id}$ y por tanto $\delta \equiv \ell$.

Guido Arnone Prácticas 6 y 7

Lema 1. Sea Γ un grupo finitamente generado y $X \subset \Gamma$ un conjunto infinito. Dado un conjunto de generadores $S = \{s_1, \ldots, s_k\}$, existe una sucesión $\{x_n\}_{n \geq 1} \subset X$ tal que $\ell_S(x_n) \to \infty$.

Demostración. Notemos que para cada $l \in \mathbb{N}$, el conjunto $X_l := \{x \in X : \ell_S(x) = l\}$ es finito. En efecto, si $x \in \Gamma$ satisface $\ell_S(x) = l$, entonces existen $s_{i_1}, \ldots, s_{i_l} \in S$ tal que $x = s_{i_1} \cdots s_{i_l}$, y el conjunto $\{s_{j_1} \cdots s_{j_l} : s_{j_m} \in S\} \ni x$ es finito dado que S lo es.

Como X es infinito y se tiene que

$$X = \bigsqcup_{l>0} X_l,$$

no puede haber finitos conjuntos X_l no vacíos. Por lo tanto, podemos tomar una sucesión creciente $(l_n)_{n\geq 1}$ tal que X_{l_n} sea no vacío para cada $n\in \mathbb{N}$. Tomando $x_n\in X_{l_n}$ en cada caso, obtenemos una sucesión que satisface

$$\ell_S(x_n) = l_n \to \infty.$$

Lema 2. Sean G y H \leq G grupos finitamente generados. Si H tiene índice finito, entonces H $\stackrel{qi}{\sim}$ G.

Demostración. Por transitividad y en vista del lema de Švarc–Milnor, basta probar que H actúa geométricamente en $C_S(G)$. Consideremos, para algún conjunto finito S de generadores, la acción $H \curvearrowright C_S(G)$ dada por la extensión de la translación a izquierda como acción en G. Concretamente, para cada $h \in H$ consideramos la biyección φ_h en $C_S(G)$ inducida por los homeomorfismos de los segmentos $[g,g'] \equiv [0,1] \equiv [hg,hg']$ para cada g,g' adyacentes en $C_S(G)$.

Cada función ϕ_h es una isometría (co)restringiéndola a cada par de aristas [g, g'] y [hg, hg'], y a su vez es una isometría entre los vértices del grafo pues d_S es invariante a izquierda. Vemos así que ϕ_h resulta una isometría para cada $h \in H$ y por lo tanto H actúa en $C_S(G)$ por isometrías.

Por otro lado, dado que H tiene indice finito¹, existe un conjunto finito $R = \{g_1, \dots, g_n\} \subset G$ de representantes de H\G. Esto implica que la acción es cocompacta: si [g, gs] es un arista de $C_S(G)$ con $g \in G$ y $s \in S$, existe $i \in [n]$ y $h \in H$ tal que $g = hg_i$ y entonces es

$$[g,gs] = [hg_i,hg_is] = \varphi_h([g_i,g_is]).$$

Esto muestra que se tiene $C_S(G) = H \cdot K$ con $K := \bigcup_{s \in S, i \in [[n]]} [g_i, g_i s]$. Al S ser finito y cada arista compacta, obtenemos que K es compacto.

Para terminar, veamos que la acción es propia. Fijemos $x \in C_S(G)$ y separemos en casos. Si x es un vértice de G, entonces podemos tomar r > 0 de forma que

$$B_r(x) \subset \bigcup_{s \in S} [x, xs]$$

y luego es

$$h\cdot B_r(x)\cap B_r(x)\subset \bigcup_{s,t\in S}[x,xs]\cap [hx,hxt].$$

¹Aquí uso que la cantidad de *cosets* a derecha e izquierda es la misma (pues la aplicación $gH ∈ G/H → Hg^{-1} ∈ H \setminus G$ es biyectiva).

Guido Arnone Prácticas 6 y 7

Para que la intersección sea no vacía, en particular tienen que existir t, $s \in S$ tales que $[x, xs] \cap [hx, hxt] \neq \emptyset$. Esto quiere decir que tiene que haber dos tales aristas que compartan por lo menos un extremo, lo que impone que se satisfaga

$$h \in \{1, xt^{-1}x^{-1}, xsx^{-1}, xst^{-1}x^{-1}\}.$$

Si en cambio es $x \in [g,gs] \setminus \{g,gs\}$ para cierto $g \in G$ y $s \in S$, entonces tomamos r > 0 tal que $x \in B_r(x) \subset [g,gs] \setminus \{g,gs\}$. De forma similar vemos que $h \cdot B_r(x) \cap B_r(x) \neq \emptyset$ implica [g,gs] = [hg,hgs], por lo que debe ser $h \in \{1,gsg^{-1},gs^{-1}g^{-1}\}$. Como S es finito, en cualquier caso encontramos r > 0 tal que

$$|\{h \in H : h \cdot B_r(x) \cap B_r(x) \neq \emptyset\}| < +\infty,$$

lo que termina de mostrar que la acción es propia.

Ejercicio 6. Sea φ : $\Gamma_1 \to \Gamma_2$ morfismo entre grupos finitamente generados. Probar que:

- a) Si φ es un embedding quasi-isométrico, entonces ker φ es finito.
- b) El morfismo φ es una quasi-isometría si y sólo si ker φ y coker φ son finitos.

Demostración. Hacemos cada inciso por separado. De todas formas, fijamos de antemano conjuntos finitos de generadores A y B de Γ_1 y Γ_2 respectivamente.

a) Como φ es un embedding quasi-isométrico, existen $\lambda \ge 1$ y $\varepsilon \ge 0$ tales que

$$-\varepsilon + \frac{1}{\lambda} d_A(x,y) \le d_B(\phi(x),\phi(y)) \le \lambda d_A(x,y) + \varepsilon \quad (\forall x,y \in \Gamma_1).$$

Como $d_A(x,y)=\ell_A(x^{-1}y)$ y $d_B(\phi(x),\phi(y))=\ell_B(\phi(x^{-1}y))$, equivalentemente es

$$-\varepsilon + \frac{1}{\lambda} \ell_{A}(x) \le \ell_{B}(\varphi(x)) \le \lambda \ell_{A}(x) + \varepsilon. \tag{1}$$

para cada $x \in \Gamma_1$.

Si ker ϕ fuera infinito, entonces por el Lema 1 existiría una sucesión $\{x_n\}_{n\geq 1}\subset \ker \phi$ tal que $\ell_A(x_n)\to \infty$. Sin embargo esto supone una contradicción, pues como $\phi(x_n)=1$ para todo $n\in \mathbb{N}$, de (1) tenemos que

$$\ell_A(x_n) \le \lambda \epsilon. \quad (\forall n \in \mathbb{N})$$

Por lo tanto, necesariamente ker φ debe ser finito.

- b) Veamos ambas implicaciones.
 - (⇒) En vista del punto (α), resta probar que coker ϕ es finito. Como ϕ es quasi-densa, existe $K \in \mathbb{R}$ tal que $d(y, \text{im } \phi) \le K$ para todo $y \in \Gamma_2$.

Por lo tanto, dado $y \in \Gamma_2$ sabemos que hay cierto $x \in \Gamma_1$ que satisface

$$d_B(y, \varphi(x)) = \ell_B(y^{-1}\varphi(x)) \le K,$$

y existe entonces $s\in \Gamma_2$ tal que $y^{-1}s^{-1}=\phi(x)\in \text{im }\phi$ y $\ell_B(s^{-1})=\ell_B(s)\leq K$. Como esto dice que $[s^{-1}]=[y]$ en coker ϕ , el argumento anterior muestra que

$$L := \{ s \in \Gamma_2 : \ell(s) \le K \}$$

contiene un sistema de representantes para coker φ .

Dado que los elementos de L están acotados en longitud, por el Lema 1 este no puede ser infinito, y por tanto coker φ es finito.

Guido Arnone Prácticas 6 y 7

(\Leftarrow) En vista del **Lema 2**, podemos suponer que φ es un epimorfismo (ya que coker φ es finito). En particular, tomamos B = φ (A) como conjunto de generadores de Γ₂.

Sea ahora $\{y_1,\ldots,y_n\}$ un sistema de representantes de coker ϕ . Dado $y\in \Gamma_2$, sabemos entonces que existe $i\in [\![k]\!]$ tal que $yy_i^{-1}\in \text{im }\phi$. En consecuencia, es

$$d_{B}(y, \varphi(\Gamma_{1})) \leq d_{B}(y, yy_{i}^{-1}) = \ell_{B}(y_{i}) \leq K$$

lo que muestra que ϕ es quasi-densa.

Para terminar, veamos que ϕ es un embedding quasi-isométrico: alcanza ver que se satisface la desigualdad (1). Dado $x \in \Gamma_1$ con $\ell_B(\phi(x)) = L$, existen generadores $s_1, \ldots, s_L \in B$ tales que $\phi(x) = s_1 \cdots s_L$. Tenemos entonces elementos $\alpha_1, \ldots, \alpha_L$ en A tales que $\phi(\alpha_i) = s_i$ para cada $i \in \llbracket L \rrbracket$ y de esta forma es

$$\phi(\mathbf{x} \cdot \mathbf{a}_1^{-1} \cdots \mathbf{a}_1^{-1}) = 1.$$

Notando $k:=x\cdot\alpha_L^{-1}\cdots\alpha_1^{-1}\in ker\,\phi,$ se tiene que

$$\begin{split} \ell_A(x) &= \ell_A(k \cdot x_1 \cdots x_L) \leq \max_{k \in \ker \phi} \ell_A(k) + L \cdot \max_{\alpha \in A} \ell_A(\alpha) \\ &= \max_{k \in \ker \phi} \ell_A(k) + \ell_B(\phi(x)) \cdot \max_{\alpha \in A} \ell_A(\alpha). \end{split}$$

Observemos además que tanto $\kappa := \max_{k \in \ker \varphi} \ell_A(k)$ como $\xi := \max_{\alpha \in A} \ell_A(\alpha)$ son finitos pues $\ker \varphi$ y X lo son.

Reescribiendo, la anterior desigualdad nos dice entonces que para todo $x \in \Gamma_1$ obtenemos

$$-\xi \cdot \kappa^{-1} + \kappa^{-1} \ell_A(x) \le \ell_B(x),$$

y (como B = $\varphi(A)$) por otro lado es

$$\ell_{B}(\phi(x)) \le \ell_{A}(x) \le \kappa \ell_{A}(x) + \xi \cdot \kappa^{-1}.$$

4