IDOM

Intrukcja użytkownika

Moduł termometru

Spis treści

1	Zastosowanie	2
2	Potrzebne elementy	2
3	Schemat połączeń	3
4	Programowanie modułu	4

1 Zastosowanie

Moduł termometru służy do pomiaru temperatury powietrza wewnątrz oraz na zewnątrz (tylko w przypadku wodoodpornej wersji czujnika). Maksymalny zakres pomiaru czujnika to -55°C do +125°C. Dokładność ± 0.5 °C jest zadeklarowana dla zakresu od -10°C do +85°C.

2 Potrzebne elementy

Nazwa	ilość
Koszyk na 3 baterie AA z włącznikiem	1
Przetwornica step-down LM2596 1,5-35V 3A	1
ESP8266-12	1
Adapter PCB do modułów ESP	1
Czujnik temperatury ds18b20 (wodoodporna	1
wersja, jeśli termometr będzie używany na ze-	
wnątrz)	
Rezystor $4.7k\Omega$	1
Rezystor $10k\Omega$	1
Rezystor $1M\Omega$	1
Rezystor $220 \mathrm{k}\Omega$	1

Sposób połączenia jest dowolny, można po prostu wszystko razem zlutować, zalecane jest jednak użycie przewodów połączeniowych. Taki sposób montażu pozwala nam na łatwe odłączanie naszego ESP, w celu wgrywania nowszych wersji oprogramowania lub wykorzystania w innych celach, gdy

stwierdzimy, że dany moduł nie jest nam potrzebny. W złożeniu modułu w całość pomocna będzie płytka uniwersalna, o wiele łatwiej przylutować do niej wszystkie potrzebne rzeczy, niż robić to luzem w powietrzu. Przy zalecanym sposobie montażu potrzebujemy też:

Nazwa	ilość
Wtyk goldpin prosty raster 2,54mm	12
Przewód połączeniowy żeńsko-żeński	11
Płytka uniwersalna	1

3 Schemat połączeń

Przed podłączeniem ESP do modułu musimy pamiętać o ustawieniu odpowiedniego zasilania na potencjometrze przetwornicy LM2596. W tym celu musimy użyć multimetru i patrząc na jego wskazania ustawić napięcie 3,3V. Musimy też pamiętać o tym, że połączone ze sobą piny REST i GPIO16

mogą przeszkodzić w poprawnym uruchomieniu się ESP, więc musimy je ze sobą połączyć dopiero po włączeniu zasilania.

4 Programowanie modułu

Aby czujnik ds18b20 mógł działać potrzebujemy zainstalować 2 bilbioteki. W tym celu w programie Arduino IDE otwieramy Narzędzia » Zarządzaj bilbiotekami... Wpisujemy "onewire" i wybieramy bibliotekę stworzą przez Jim Studt, Tom Pollard, Robin James, Glenn Trwitt, Jason Dangel, Guillermo Lovato, Paul Stoffregen, aż do Love Nystrom (nie wymieniam wszystkich autrów, jest ich za dużo). 2 biblioteka, której potrzebujemy to "DallasTemperature" stworzona przez Miles Burton, Tim Newsome, Guil Barros i Rob Tillaart. Po zainstalowaniu obu bilbiotek musimy wyłączyć i ponownie włączyć program Arduino IDE.

Teraz możemy wgrać oprogramowanie na nasze ESP. Do zaprogramowania należy użyć pliku Temperature_sensor.ino. Jeśli nie wiesz jak zaprogramować moduł ESP skorzystaj z poradnika "Wgrywanie oprogramowania na mikrokontrolery ESP". W poradniku tym znajdują się też 2 inne potrzebne biblioteki, jeśli go pominąłęś musisz je zainstalować (znajdują się na pod koniec intrukcji).

```
Na górze pliku znajduje się kilka zmiennych do ustawienia
/**** Variables to customize *****/

Najpierw ustawiamy nazwę naszej sieci (musi to być sieć 2.4GHz)
// Name of your network
const char* ssid = "";
```

```
Następnie ustawiamy hasło naszej sieci

// Password of your network

const char* password = "";

w tym miejscu wpisujemy adres naszego serwera razem z dopisanym portem
8001 na przykład "192.168.0.10:8001"

// Raspberry server address here

const String ServerName = "";

Ustawiamy nazwę sensora na taką samą jak w aplikacji IDOM

// Name of your sensor

String Name = "";

Ustawiamy numer pinku, jaki użyliśmy do podłączenia termometru, domyśl-
```

Po ustawieniu tych wartości możemy wgrać kod a następnie cieszyć się dzia-

nie zgodnie ze schematem jest to pin GPIO4

// Your GPIO pin number

łającym modułem termometru.

const int GPIO = 4;