1° de Secundaria

Repaso para el examen de la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- Determina y usa la jerarquía de operaciones y los paréntesis en operaciones con números naturales, enteros y decimales (para multiplicación y división, sólo números positivos).
- 🙎 Calcula valores faltantes en problemas de proporcionalidad directa, con constante natural, fracción o decimal (incluyendo tablas de variación).
- Resuelve problemas de cálculo de porcentajes, de tanto por ciento y de la cantidad base.
- Calcula el perímetro de polígonos y del círculo, y áreas de triángulos y cuadriláteros desarrollando y aplicando fórmulas.

Puntuación:

Pregunta	1	2	3	4	5
Puntos	10	10	10	10	10
Obtenidos					
Pregunta	6	7	8	9	Total
Puntos	10	10	10	10	90
Obtenidos					

Jerarquía de operaciones

La operación de suma, resta, multiplicación y división tienen el siguiente orden:

El círculo

Perímetro:

$$P = 2\pi r$$

Área:

$$A = \pi r^2$$

Vocabulario

 $signo \rightarrow característica + o - de una cantidad.$

jerarquía \rightarrow orden por prioridades.

 $incógnita \rightarrow cantidad desconocida.$

 $\mathbf{polígono} \rightarrow \text{figura geométrica de muchos ángulos.}$

 $polígono regular \rightarrow polígono cuya medida de sus$ lados es la misma.

 $apotema \rightarrow línea perpendicular que va desde el$ centro del polígono hasta cualesquiera de sus lados.

Proporcionalidad directa

Colocaremos en una tabla los 3 datos (a los que llamamos a, b y c) y la incógnita, es decir, el dato que queremos averiguar (que llamaremos x). Después, aplicaremos la siguiente fórmula:

$$\begin{array}{ccc}
a & \Rightarrow & b \\
c & \Rightarrow & x
\end{array} \qquad x = \frac{c \times b}{a}$$

Ejercicio 1

de 10 puntos

Obten el resultado de las siguientes operaciones tomando en cuenta la **jerarquía de operaciones**.

a $9 \times 10 + 3 =$ _____

e $3 \times 9 + 10 \times \frac{36}{6} =$ _____

b	6 - 2(5 - 3 + 1) =
---	--------------------

f $9-3 \times 2 =$ _____

9 $6 \times 4 + 2 \times 3 =$ _____

h $8 \div 4 - (-10 + 8) =$

d	$2 + 12 \div 2 \times 3 =$	
		_

Ejemplo 1

Calcula los siguientes valores faltantes

Darcy cosecha $6\frac{2}{3}$ acres de maíz cada $\frac{3}{4}$ de hora. Darcy cosecha a un ritmo constante.

¿Cuántos acres cosecha por hora?

Solución:

Planteamos la siguiente regla de 3:

acres tiempo (horas)
$$6\frac{2}{3} \Rightarrow \frac{3}{4}$$

$$x \Rightarrow 1$$

entonces,

$$x = \frac{1 \cdot 6\frac{2}{3}}{\frac{3}{4}} = \frac{1 \cdot \frac{20}{3}}{\frac{3}{4}} = \frac{80}{9} = 8.\overline{8}$$

¿Cuántas hectáreas siembra por hora?

Solución:

Planteamos la siguiente regla de 3:

hectáreas tiempo (horas)
$$2\frac{5}{8} \quad \Rightarrow \quad \frac{5}{6} \\ x \quad \Rightarrow \quad 1$$

entonces,

$$x = \frac{1 \cdot 2\frac{5}{8}}{\frac{5}{6}} = \frac{1 \cdot \frac{21}{8}}{\frac{5}{6}} = \frac{85}{48} = 1.77083$$

Ejemplo 2
En la Academia de Policía evaluaron la condición física de los cadetes. Marca las afirmaciones que sean equivalentes. (Sugerencia: Expresa en cada caso el número de cadetes con buenos resultados como una fracción con denominador 100.)
☐ Tres quintas partes tuvo excelentes resultados.
$\hfill \square$ Veinte de cada veinticinco cadetes tuvieron excelentes resultados.
$\hfill\Box$ De cada cinco alumnos, cuatro lograr on excelentes resultados.
$\hfill \square$ De cien cadetes, och enta tuvieron excelentes resultados.
\square Ocho de cada diez lograron excelentes resultados.

Ejemplo 3

En un día soleado los árboles forman sombras y, a la misma hora, la altura y la sombra de diferentes árboles es proporcional.

On la información de la figura completa la tabla 1.

Altura (m)	Sombra (m)	Constante de proporcionalidad
12	9	$\frac{12}{9} = {3}$
	3	
8	6	
6		
	15	

12 m

Tabla 1

b ¿Cómo son los números de la última columna?

Solución:

C Si la sombra de un árbol mide 7.5 m, ¿cómo calcularías su altura? Explica.

Solución:

En primaria aprendiste a ubicar puntos en el plano cartesiano por medio de coordenadas. Ubica los puntos cuyas coordenadas corresponden a la altura y sombra de los árboles

Figura 2

e La gráfica representa la relación entre la sombra y la altura de un árbol. Unan los puntos que marcaron. ¿Qué observan?

Figura 1

Ejercicio 2	de 10 puntos
Calcula los porcentajes.	
${\color{orange} \circ}$ Obten el 10 % de las siguientes cantidades.	c Calcula el 20 %.
I. 25	I. 25
II. 36.8	п. 36.8
III. 2445.9	III. 2445.9
IV. 66	IV. 66
b Obten el 5 %.	d Calcula el 1% de las siguientes cantidades.
I. 25	ı. 115.1
п. 36.8	п. 780
III. 2445.9	ш. 300
IV. 66	IV. 66.6

Ejercicio 7 _____ de 10 puntos Observa en la figura 5 que los lados del hexágono regular grande miden el triple que los lados del hexágono regular pequeño. © Escribe una expresión algebraica para el perímetro del hexágono pequeño a partir de la longitud de uno de sus lados.

Figura 5: DIagrama de los hexágonos del problema

b	Expresa en términos de la longitud de los lados del hexágono pequeño
	la longitud de un lado del hexágono grande.

С	Expresa algebraicamente el perímetro del polígono grande en términos
	de la longitud del hexágono pequeño.

¿Cuántas veces es más grande el perímetro del hexágono mayor respecto al del hexágono pequeño?

Ejercicio 8 ____ de 10 puntos

Carlos mandó construir una ventana con la forma y las medidas que aparecen en la figura 6. ¿Qué longitud de material fue necesario para formar el contorno de la ventana?

 $Figura\ 6$

Unidad 2

Ejercicio 9 de 10 puntos Un autódromo tiene la forma y las dimensiones que ilustra la figura 7. 150 m 300 m Figura 7: Diagrama de la pista de carreras en el autódromo. • Calcula la distancia que cubre un auto al recorrer una vez el circuito por el carril interno. b Calcula la distancia que se recorre en un auto al conducir una vez por el carril externo. C A qué distancia se deben separar dos autos en una carrera de una vuelta para que ambos recorran la misma distancia.