Unit2 Q: The value of Δe^{6x} Consider h=1

(a) $e^{6x}(e^{6h}-1)$ (b) $e^{6x}(e^{xh}-1)$ (c) $e^{6x}(e^{6}-1)$ (d) $e^{6x}(e^{x}-1)$ Q: The value of $\Delta[\log x]$ (a) $\log(1+h/x)$ (b) $\log(1+1/x)$ (c) $\log(x+x/h)$ (d) $\log(x+x/h)$ (e) $\log(x+x/h)$ (f) $\log(x+x/h)$ (f) $\log(x+x/h)$ (g) The value of $E^{5}(3x-2)$ (g) $E^{5}(3x+3h) = 2$ (h) $E^{5}(3x+3h) =$

(a)
$$e^{6x}(e^{6h}-1)$$

(b)
$$e^{6x}(e^{xh}-1)$$

(c)
$$e^{6x}(e^6-1)$$

(d)
$$e^{6x}(e^x - 1)$$

$$(a)log(1+h/x)$$

(b)
$$log(1 + 1/x)$$

(c)
$$log(x + x/h)$$

(d)
$$log(x + h/x)$$

(a)
$$5(x + 5h) - 2$$

b)
$$3(x + 5h) - 2$$

(c)
$$5(x + 5h) - 2$$
 (d)

(d)
$$2(x + 2h) - 2$$

Q: if $A = \{a, b, c\}$ then $n(A \times A) = ?$

Q: if $A = \{a, b, c\}$ then total number of relations from A to A = ?

$$(a)2^{16}$$

$$(b)2^9$$

$$(c)4^{4}$$

$$(d)4^{4}$$

Q: Consider the given relation R, defined on $A = \{1, 2, 3, 4\}$

 $R = \{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\},$ then which one of the following is true

(a)R is reflexive

(b)R is symmetric

(c)R is not transitive

(d)R is antisymmetric

Q: Which element: of the *Poset* ({2,3,4,6,9,12,18,36,48,60,72}, |) is greatest

(a) 48, 60, and 72

(b) 72 and 60

(c) 60 and 72

(d) does not exist

Q: Which element/s of the <i>Poset</i> ({2,3,4,6,9,12,18,36,48,60,72},) is/are Maximal						
(a) 72, 60and 48	(b) 72, 60	(c) 60, 48	(d) 72, 4	8		
Q: Which element/s of the $Poset$ ({2,3, 4,6, 9, 12,18,36,48,60,72}, $ \)$ is/are minimal						
(a) 2 (b) 3, 2 Q: Which elements of the	(c) 3 ne <i>Poset</i> ({2,3,4,6,9,1			per boun	nd of {36, 60}	
(a) 72, 60and 48	(b) 3, 2	(c) 3	(d) Do not exist			
Q: Which element/s of the $Poset~(\{2,3,4,6,9,12,18,36,48,60,72\}, \ \)~is/are~lower~bound~of~\{6,3\}$						
(a) 2, 3 (b) 6	(c) 3	(d) Do not ex	kist			
Q: The <u>Hasse</u> diagram of the <i>Poset</i> ({2,3, 4,6, 9, 12, 18,36,48,60,72},) is						
(a) A Lattice	(b) A bounded lattice	(c) No	ot a Lattice	(d) No	one of these	
Q: Let R be a relation on the set of all integers defined by $R = \{(a,b) a < b\}$ Then which one of following is true						
(a)R is reflexive	(b)R is symmetric	(c)R is	transitive	(d)R is	partial order	
Q: Let R be a relation on the set of all students of K1420 defined by $R = \{(a,b) a \ and \ b \ are \ from \ same \ state \}$ Then which one of following is true						
(a) R is not reflexive	(b)R is not symm	etric (c	:)R is equivale	ence	(d)R is partial orde	r