Министерство просвещения Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информационных технологий Кафедра прикладной математики

Отчет защищен с оценкой	
Преподаватель	Кантор С.А
<u> </u>	2021 г.

Отчет по лабораторной работе № 3

«Решение СЛАУ методами Якоби и Зейделя»

по дисциплине «Вычислительная математика»

Студент группы ПИ-81 (Б): И. А. Песняк

Преподаватель: доцент, к.ф-м.н., Кантор С. А.

Задание:

Составить программу для решения системы линейных алгебраических уравнений методами Якоби и Зейделя. Исходные данные - матрица системы уравнений и столбец свободных членов, точность ерѕ должна читаться из файла, а результаты расчетов помещаться в файл. Предусмотреть вывод числа итераций, необходимых для получения решения с заданной точностью ерѕ.

Исследовать зависимость числа итераций от начального приближения, точности, выбора метода решения.

Изучить влияние сходимости величины диагонального преобладания матрицы, то есть величины отношения суммы модулей недиагональных элементов строки к модулю диагонального элемента.

Подобрать примеры, показывающие, что диагональное преобладание не является необходимым условием сходимости.

Краткое описание:

Метод Якоби и метод Зейделя используются для решения СЛАУ итерационным подходом. В методе Якоби решение ищется как предел последовательности

$$x^{(k+1)} = Bx^{(k)} + c$$
.

где

$$B = -D^{-1}A_0$$
, $\mathbf{c} = D^{-1}b$,
если $i = j$: $D_{ij} = A_{ij}$, иначе $D_{ij} = 0$,
 $A_0 = A - D$,

а в методе Зейделя:

$$x^{(k+1)} = B_1 x^{(k+1)} + B_2 x^{(k)} + c,$$

где элементами матрицы B_1 являются элементы матрицы B ниже главной диагонали, матрицы B_2 элементы матрицы B выше главной диагонали, остальные элементы равны нулю.

Метод Зейделя можно рассматривать как модификацию метода Якоби. Основная идея модификации состоит в том, что новые значения используются здесь сразу же по мере получения, в то время как в методе Якоби они не используются до следующей итерации.

Для обоих методов справедливо следующее: итерационный процесс сходится ⇔ все собственные числа матрицы В по модулю меньше 1.

На практике это условие сложно быстро проверить, поэтому используется достаточное условие: матрица должна обладать свойством строго диагонального преобладания:

$$\max_{i=1,\dots,n} \sum_{\substack{j=1\\ j\neq i}}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1$$

В качестве начальных приближений рассматриваются следующие три варианта:

- 1) $x_i = 0$
- 2) $x_i = b_i$
- 3) $x_i = \frac{b_i}{a_{ii}}$

В среднем, самым неудачным приближением оказалось второе, при третьем приближении чаще всего выходит на одну итерацию меньше, чем при первом (что, впрочем, неудивительно).

В качестве условия остановки итерационного процесса было выбрано следующее неравенство:

$$||x^{(k+1)} - x^k|| < \varepsilon$$

В процессе выполнения лабораторной было замечено, что методы Якоби и Зейделя хоть и не всегда сходятся, когда матрицы верхне-треугольные или нижне-треугольные, но все равно дают верный результат, так как вычисления становятся похожи на обратный ход Гаусса. В случае если матрица нижне-треугольная и применяется метод Зейделя, то получается обратный ход Гаусса в чистом виде и точное решение достигается за одну итерацию, в других случаях с треугольными матрицами точное решение достигается за п итераций (см. тест №5).

Рис 1. Область применимости методов.

Тестовые примеры:

#	n	Ab	ε	X0	Метод Якоби		Метод Зейделя	
					Итераций	Норма невзяки	Итераций	Норма невзяки
1	3	10 1 3 4	0,1E-6	1	10	3.07E-6	5	3.98E-8
		4 33 2 5	0,1E-12	1	19	2.57E-12	9	1.02E-14
		4 2 55 6	0,1E-6	2	12	4.14E-6	6	1.252E-7
			0,1E-12	2	21	3.40E-12	10	1.02E-14
			0,1E-6	3	9	3.07E-6	4	1.64E-8
			0,1E-12	3	18	2.57E-12	9	4.44E-15
2	5	100 3 2 4 90 78 30 544 54 3 450 56	0,1E-6	1	356	0.0022	32	5.22E-4
		54 54 345 165 65 543	0,1E-12	1	647	2.25E-9	56	5.78E-10
		345 534 554 <mark>4637</mark> 3133 5567 543 534 43 4953 6678 53468	0,1E-6	2	554	0.0022	46	5.70E-4
		343 334 43 4933 00/8 33408	0,1E-12	2	845	2.27E-9	71	3.765E-10
3	5	100 3 2 4 90 78 30 544 54 3 450 56	0,1E-6	1	423	0.0023	33	5.08E-4
		30 544 54 3 450 56 54 54 345 165 65 543	0,1E-12	1	778	2.21E-9	58	4.88E-10
		345 534 554 4537 3133 5567	0,1E-6	2	666	0.0022	48	3.97E-4
		543 534 43 4953 6678 53468	0,1E-12	2	1015	2.21E-9	73	3.82E-10
4	3	25 18 2,5 3 4 12 1 4	0,1E-6	1	413	5.85E-6	19	4.26E-7
		2 3 1 67	0,1E-12	1	742	5.96E-12	32	1.46E-12
5	4	2 0 0 0 5 4 3 0 0 4	0,1E-12	1	5	1.42E-14	2	1.42E-14
		67	0,1E-12	2	5	1.42E-14	2	1.42E-14
5	1000	Матрица со строгим	0,1E-6	1	6	7.47E-6	5	6.40E-8
		диагональным преобладанием	0,1E-12	1	8	4.14E-8	7	4.14E-8

Пояснения к тестам:

1)
$$\max_{i=1,\dots,n} \sum_{\substack{j=1\\j\neq i}}^{n} \frac{|a_{ij}|}{|a_{ii}|} = 0.4$$

- 2) $\max_{i=1,...,n} \sum_{\substack{j=1\\j\neq i}}^n \frac{|a_{ij}|}{|a_{ii}|} = 0.99$, условие диагонального преобладания выполняется
- 3) $\max_{i=1,\dots,n} \sum_{\substack{j=1\\j\neq i}}^n \frac{|a_{ij}|}{|a_{ii}|} = 1.006$, но все собственные числа матрицы **В** по модулю

меньше единицы, поэтому метод сходится.

Results:
$\lambda_1\approx 0.961307$
$\lambda_2\approx -0.739001$
$\lambda_3 \approx -0.0700945 + 0.0909926i$
$\lambda_4 \approx -0.0700945 - 0.0909926 i$
$\lambda_5\approx -0.082117$

4) $\max_{i=1,...,n} \sum_{\substack{j=1\\j\neq i}}^n \frac{|a_{ij}|}{|a_{ii}|} = 5$, но все собственные числа матрицы **B** по модулю меньше

единицы, поэтому метод сходится.

1.
$$\lambda_1 = -0.5$$

2. $\lambda_2 = -0.45887$

3.
$$\lambda_3 = 0.95887$$

5) $\max_{i=1,\dots,n} \sum_{\substack{j=1\\j\neq i}}^n \frac{|a_{ij}|}{|a_{ii}|} = 7.77$, $\lambda=0$, нижне-треугольная матрица, случай описан выше.

Пример работы программы:

```
Стандартная погрешность: 0,000001
1. Считать матрицу из файла
2. Сгенирировать матрицу с диагональным преобладанием
3. Решение методом Якоби
4. Решение методом Зейделя
5. Задать точность
6. Выбрать начальное приближение
7. Выход
1. Считать матрицу из файла
2. Сгенирировать матрицу с диагональным преобладанием
4. Решение методом Зейделя
5. Задать точность
6. Выбрать начальное приближение
7. Выход
x1 = -12,912 x2 = -12,884 x3 = 6,367 x4 = -7,824 x5 = 15,849
Норма невзяки: 0.002240030044958985
Количество итераций: 356
1. Считать матрицу из файла
2. Сгенирировать матрицу с диагональным преобладанием
3. Решение методом Якоби
4. Решение методом Зейделя
5. Задать точность
6. Выбрать начальное приближение
7. Выход
x1 = -12,912 x2 = -12,884 x3 = 6,367 x4 = -7,824 x5 = 15,849
Норма невзяки: 5.227671153988922E-4
Количество итераций: 32
1. Считать матрицу из файла
2. Сгенирировать матрицу с диагональным преобладанием
3. Решение методом Якоби
4. Решение методом Зейделя
6. Выбрать начальное приближение
7. Выход
1. Заполнить нулями
2. Заполнить столбцом свободных членов
3. Заполнить b[i]/A[i][i]
```

Код программы:

```
import java.io.*;
import java.util.Random;
import java.util.Scanner;
      interface Expression{
```

```
return amountOfIterations;
if (n \ge 0) System.arraycopy(x0, 0, x, 0, n);
int amountOfIterations = method.method(A, x, e, b, n);
for (int i = 0; i < n; i++){</pre>
double[] discrepancy = discrepancy(A, x, b, n);
System.out.print("Норма невзяки: " + vectorNorm(discrepancy, n) + "\n");
System.out.println("Количество итераций: " + amountOfIterations);
         System.out.println("1. Считать матрицу из файла");
System.out.println("2. Сгенирировать матрицу с диагональным преобладанием");
System.out.println("3. Решение методом Якоби");
        System.out.println("3. Решение методом якоои );
System.out.println("4. Решение методом Зейделя");
System.out.println("5. Задать точность");
System.out.println("6. Выбрать начальное приближение");
System.out.println("7. Выход");
Scanner scanner = new Scanner(System.in);
```

```
(int i = 0; i < n; i++) {
if (isMatrixCreated) {
    solve(Main::seidel, A, x, e, b, n, x0);
       System.out.println("1. Заполнить нулями");
System.out.println("2. Заполнить столбцом свободных членов");
System.out.println("3. Заполнить b[i]/A[i][i]");
```