Matemática Discreta 2022

Escola de Matemática Aplicada, Fundação Getulio Vargas Professora Maria Soledad Aronna Monitor Felipe Vieira Costa

7 de novembro de 2022

Lista 10

Exercício 1 Quais dos grafos a seguir são árvores? Explique.

Exercício 2 Para quais valores de m e n o grafo completo bipartido de m e n vértices é uma árvore?

Exercício 3 Para quais valores de n o grafo completo de n vértices é uma árvore?

Exercício 4 Encontre o nível de cada vértice na árvore abaixo.

Exercício 5 Encontre a altura da árvore do Exercício 4.

Exercício 6 Decodifique cada sequência de bits usando o código de Huffman dado.

- (a) 011000010
- (b) 01111001001110
- (c) 01110100110
- (d) 1110011101001111

Exercício 7 Codifique cada palavra abaixo usando o mesmo código de Huffman acima.

- (a) DEN
- (b) NEED

Exercício 8 Construa um código de Huffman ótimo para o conjunto de letras da tabela abaixo.

Letter	Frequency	Letter	Frequency
α	5	δ	11
$oldsymbol{eta}$	6	arepsilon	20
γ	6		1

Exercício 9 Mostre que uma árvore é um grafo bipartido.

Exercício 10 Prove que T é uma árvore se, e somente se, T é conexo e quando uma aresta é adicionada entre quaisquer dois vértices, exatamente um ciclo é criado.

Exercício 11 Use o breadth-first search com a ordem de vértices hgfedcba para encontrar uma árvore geradora para o grafo G abaixo.

}

Definição (Algoritmo Depth-First Search para Árvores Geradoras). Este algoritmo encontra uma árvore geradora usando o método depth-first search.

Input: Um grafo conexo G com vértices ordenados $v_1, v_2, ..., v_n$ Output: Uma árvore geradora T.

```
dfs(V,E) {
       V' = \{v_1\} (V' = vértices da árvore geradora T)
       E' = \emptyset (E' = \text{arestas da árvore geradora T})
       w = v_1 (v_1 é a raiz da árvore geradora)
       while (true) {
         while (existe uma aresta (w, v) que não cria um ciclo quando adicionada a T) {
           escolha a aresta (w, v_k) com o menor k tal que quando adicionada a T não cria
um ciclo em {\cal T}
           add (w, v_k) em E'
           add v_k em V'
           w = v_k
         }
         if (w == v_1)
           return T
         w = \text{pai de } w \text{ em } T
       }
```

Exercício 12 Use o Algoritmo Depth-First Search com ordenação de vértices hgfedcba para encontrar uma árvore geradora para o grafo do Exercício 11.

Exercício 13 Nos itens a seguir, encontre uma árvore geradora para cada grafo.

Exercício 14 Mostre, com um exemplo, que o Algoritmo Breadth-First Search pode produzir árvores geradoras idênticas para um grafo conexo G a partir de duas ordenações de vértices distintas de G.

Exercício 15 Prove que o Algoritmo Breadth-First Search está correto.

Exercício 16 Sob quais condições uma aresta em um grafo conexo G estará em qualquer árvore geradora de G?

Exercício 17 Sejam T e T' duas árvores geradoras de um grafo conexo G. Suponha que uma aresta x está em T mas não em T'. Mostre que existe uma aresta y em T' mas não em T tal que $(T - \{x\}) \cup \{y\}$ e $(T' - \{y\}) \cup \{x\}$ são árvores geradoras de G.

Exercício 18 Seja G um grafo com pesos no qual o peso de cada aresta é um inteiro positivo. Seja G' o grafo obtido a partir de G substituindo cada aresta

Mostre que o algoritmo de Dijkstra para encontrar o menor comprimento de cada caminho em um grafo com pesos G a partir de um um vértice fixo v para todos os outro vértices e realizar um breadth-first search no grafo sem pesos G começando pelo vértice v são, em efeito, o mesmo processo.

Exercício 19 Nos itens abaixo, encontre a árvore geradora minimal dada pelo Algoritmo de Prim para cada grafo.

Exercício 20 Mostre que o Algoritmo de Prim examina $O(n^3)$ arestas no pior caso.

Definição (Versão Alternativa do Algoritmo de Prim). Este algoritmo encontra uma árvore geradora minimal em um grafo conexo com pesos G, Em cada passo, alguns vértices têm rótulos temporários e alguns têm rótulos permanentes. O rótulo do vértice i é denotado L_i .

Input: Um grafo conexo com pesos G com vértices 1,...,n e vértice de início s. Se (i,j) é uma aresta, w(i,j) é igual ao peso de (i,j); se (i,j) não é uma aresta, w(i,j) é igual a inf.

Output: Uma árvore geradora minimal T.

```
prim_alternative(w, n, s) {
    Defina T como o grafo com o vértice s e sem arestas for j=1 a n {
    L_j=w(s,j) (esses rótulos são temporários) back(j)=s
}
L_s=0
torne L_s permanente while (existe rótulos temporários) {
    escolha o menor rótulo temporário L_i
torne L_i permanente adicione a aresta (i, back(i)) a T
adicione o vértice i a T
for each L_k rótulo temporário
```

Exercício 21 Mostre que o algoritmo acima examina $O(n^2)$ arestas no pior caso.

Exercício 22 Prove que o algoritmo anterior está correto; ou seja, que no fim dele, T é uma árvore geradora minimal.

Exercício 23 Seja G um grafo conexo com pesos e seja v um vértice de G e e uma aresta incidente em v com peso mínimo. Mostre que e está contida em alguma árvore geradora minimal.

Exercício 24 Mostre que se todos os pesos de um grafo conexo G são distintos, G contém uma única árvore geradora minimal.