Which hospital to go?

ORIE 5741

Ruobing Shui rs2579 Hehong Li hl778 Ruize Ren rr779

Agenda

- Project overview
- Dataset introduction and pre-processing
- Preliminary analysis and effectiveness
- Model selection
- Future work

Project Overview

- Background
 - Hard to choose appropriate hospital
 - Cost money
 - Cost time
 - Lack information
- Purpose
 - Assist residents in New York State on choosing the best hospital to go to when they are experiencing medical concerns.
- Outcome
 - Recommend Quantile regression method to generate model to predict which hospital will cost least when people get Septicemia.

Dataset Introduction & Pre-processing

- Dataset description
 - Dataset source: Hospital Inpatient Discharges (SPARCS De-Identified): 2012
 - 2544543 rows and 35 columns
 - Patient and hospital information
- Pre-processing
 - Data cleaning
 - Drop the rows which have null values
 - Feature selection
 - Feature transformation

Dataset Pre-processing

- Pre-processing
 - Data cleaning
 - Feature selection
 - Using random forest model
 - Result: 5 highest correlation features
 - Length of stay
 - Age group
 - Patient disposition
 - Facility ID
 - Operating certificate number

- 1.0

Dataset Pre-processing

- Pre-processing
 - Data cleaning
 - Feature selection
 - Feature transformation
 - Categorical Data
 - Apply the one-hot method to all the categorical data except multiple payment method.
 - For multiple payment method solutions, we use the many-hot method to label the feature.
 - Miscellaneous Data
 - The length of stay data is hybrid with numerical and text data.

Preliminary Analysis

- Train and Test Split
 - \circ 80% \rightarrow Train dataset, 20% \rightarrow Test dataset
- Linear least squares function
- Analysis:
 - Too much categories
 - Shrink dataset→ Diseases: Septicemia
 - More complicated model
 - Quantile, Ridge regression

Data type	Train_MSE	Test_MSE	
many_hot	2.8e8	4.4e8	
one_hot	3.5e8	5.1e8	
numerical	4.8e8	6.8e8	
many_hot+one_hot	+one_hot 3.5e8 5.1e8		
many_hot+one_hot+numerical	6.9e8	4.9e8	

Table: The results of training error and test error

Figure: Result for all combined features

Model Selection

Quantile Regression

- Top 3 features Length_of_Stay, Patient_Disposition, Operating_Certificate_Number
- Disease Selection Septicemia
- Randomly drop 99% data points
- Best model evaluated by Test_MSE: quantile = 0.42
- Train_MSE: 2.5e8
- Test_MSE: 2.3e8

Model Selection

Rigid Regression

- Top 5 features
- Disease Selection -> Septicemia
- Best Alpha=0.041
- Best model evaluating Test_MSE: alpha = 0.041
- Train MSE: 2.4e8
- Test_MSE: 2.4e8

Linear least squares < Rigid Regression < Quantile Regression (best)

Results and Analysis

- Linear least squares (poor) < Rigid Regression < Quantile Regression (best)
- Significant Feature: length of stay, operating certificate number, patient disposition, facility id , ccs () procedure code.
- Insignificant Feature: gender, ... individual properties
- Benefits
 - Patients
 - Medical treatment environment

Fairess metrics

Group	25%	50%	75%	Mean total cost
Age below 50	5720	11059	24293	24664
Age above 50	7095	13023	25179	22600
Black / African American	8656	16412	32232	28646
White	6299	11525	22173	19961
Other Race	8535	15867	31962	29000

Limitation and Future Work

Limitation:

- The dimension of the consideration is single
- There are information bias in the dataset and a lot of outliers.
- The dataset lack the specific hospital names.
- The computer capacity is not big enough for us to run the whole dataset when doing preliminary analysis.

Future work

- Consider the quality of medical treatment and success rate to give more fitable recommended hospital given by the patients' information.
- Segment each disease in the dataset and put the segments into three kinds according to the emergency level.
- Using computer with larger capacity.
- Making a user friendly website or online intelligent chat bots to launch our model into real products to help residents.