

Aprendizaje Automático Profundo (Deep Learning)

Regresión Lineal con Múltiples Variables

Datos con múltiples variables

- Hasta ahora
 - Datos con una sola variable
 - 1-D
 - $\mathbf{x} \in \mathbb{R}^1$
 - Ejemplo
 - Tiempo de estudio
- ¿Qué sucede si agregamos más información de cada ejemplo?
 - o **m** variables
 - o **m**-D
 - \circ $x \in \mathbb{R}^m$
 - Ejemplo
 - **■** Horas estudiadas y promedio

Datos con 2 variables

- x con subíndices

 - x₁ variable 1
 x₂ variable 2

Estudio (x ₁)	Promedio (x ₂)	Nota (y)
2	4	1
5	3	3,2
7	4	4,5
9	7	6
10	4	4
11	3	4,5
13,4	5	5,5
14	3	3

Función del modelo con 2 variables

- Modelo: plano 2D en un espacio 3D
- Dos pendientes: w₁ y w₂
 - o Coeficientes (o Pesos o Weights)

- Función del modelo
 - $of(x_1, x_2) = x_1 W_1 + x_2 W_2 + b$
- En forma vectorial

$$\circ f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{w} + \mathbf{b}$$

es el producto escalar

X • **W** =
$$X_1W_1 + X_2W_2$$

$$\bullet x \cdot w \in R$$

Función del modelo con 2 variables

Ejemplo

•
$$\mathbf{x} = (-2, 3)$$

• $\mathbf{w} = (4, 2)$
• $\mathbf{b} = 5$
• $\mathbf{f}(-2,3) = -2 \ \mathbf{w}_1 + 3 \ \mathbf{w}_2 + \mathbf{b}$
• $= -2 \ 4 + 3 \ 2 + 5$
• $= -8 + 6 + 5$
• $= 3$

Forma vectorial

o
$$f((-2, 3)) = (-2, 3) \cdot \mathbf{w} + \mathbf{b}$$

= $(-2, 3) \cdot (4, 2) + 5$
= $-2 + 5$
= 3

- Los elementos de w son coeficientes o pesos
 - Indican el peso relativo de cada variable
 - Pesos negativos indican relación negativa
- b término constante
 - sigue siendo la ordenada al origen en 3D

Función de error para 2 variables

- La forma de **E** se mantiene
 - Depende de 3 parámetros
 - \circ E(w₁,w₂,b) = 1/n Σ_i^n E_i(w₁w₂,b)
- La de **E**; también
 - Pero nueva notación
 - $= (y_i - (x_{i,1} W_1 + x_{i,2} W_2 + b))^2$
 - Viendo a x; y w como vectores
 - $= E_i(\mathbf{w},b) = (y_i f(\mathbf{x}_i))^2$ $= (y_i - \mathbf{x}_i \cdot \mathbf{w} + b)^2$

Optimización con 1 vs 2 variables

- ¿Qué cambia?
 - Prácticamente nada
 - Ahora tenemos 3 parámetros a optimizar
 - $\mathbf{w}_1, \mathbf{w}_2, \mathbf{b}$
 - También 3 Derivadas
 - Ya no es posible graficar el error
 - Muy difícil "adivinar" los mejores parámetros probando manualmente

Derivadas de **E** con 2 variables

Derivada parcial respecto de w, o w, es similar a la de m

$$\frac{\partial E}{\partial w_1} = \frac{2}{n} \sum_{i}^{n} (y_i - f(x_i)) x_{i,1}$$

$$\Delta E = (\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \frac{\partial E}{\partial b}) \quad \frac{\partial E}{\partial w_2} = \frac{2}{n} \sum_{i}^{n} (y_i - f(x_i)) x_{i,2}$$

$$\frac{\partial E}{\partial w_1} = \frac{2}{n} \sum_{i}^{n} (y_i - f(x_i)) x_{i,2}$$

$$\frac{\partial E}{\partial b} = \frac{2}{n} \sum_{i=1}^{n} y_i - f(x_i)$$

Función del modelo con **m** variables

- Modelo: hiperplano en R^m
- m coeficientes: w₁, w₂, ...w_m
- Función del modelo

$$of(x_1, x_2, ..., x_m) = x_1 W_1 + x_2 W_2 + ... + x_m W_m + b$$

- En forma vectorial
 - \circ **x** = $(x_1, x_2, ..., x_m)$
 - \circ **w** = $(W_1, W_2, ..., W_m)$
 - $\circ f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{w} + \mathbf{b}$
 - es el producto escalar
 - **x w** = $X_1W_1 + X_2W_2 + ... + X_mW_m = \sum_{j=1}^n X_j W_j$
 - $\bullet x \cdot w \in R$

Derivadas de **E** con **m** variables

Derivada parcial respecto de w; (igual para las m variables) y b

$$\Delta E = (\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_m}, \frac{\partial E}{\partial b})$$

$$\frac{\partial E}{\partial w_j} = \frac{2}{n} \sum_{i=1}^{n} (y_i - f(x_i)) x_{i,j}$$

$$\frac{\partial E}{\partial b} = \frac{2}{n} \sum_{i=1}^{n} y_i - f(x_i)$$

Resumen

- Regresion lineal para **m** variables de entrada
 - Más información de los ejemplos

 - m coeficientes o pesos w₁ a w_m
 No se puede visualizar la función de error
 - Tampoco **f** si m>2
 - Derivadas similares
 - Apto para descenso de gradiente
 - Notación vectorial
 - $f(x) = x \cdot w + b$
 - Producto escalar •

Ejercicio: Archivo Regresión Lineal Múltiples Variables - Modelo.ipynb

Modificar los parámetros mx, my y b
 a. Observar como cambia el plano y el error

Ejercicio: Archivo Regresión Lineal Múltiples Variables - Aprendizaje.ipynb

1. Experimentar con varios valores iniciales de los parámetros y α .

Ejercicio: Archivo **Regresión Lineal Múltiples Variables - Aprendizaje - Boston Housing.ipynb**

- Entrenar el modelo. Intentar bajar el error lo más posible cambiando la cantidad de iteraciones, el α y los valores iniciales.
- 2. Luego analizar los valores de los parámetros wi y b . ¿Qué significan?
- 3. Clasificar nuevos datos, cambiar los valores y observar cómo cambia el precio.
- 4. ¿Hay variables que no importan? ¿Cómo lo veo desde los valores del nuevo dato? ¿y desde el modelo? ¿cómo se refleja eso en las derivadas?
- 5. Repetir con Regresion Lineal Multiple -Aprendizaje Vinos.ipynb.