

Bem-vindo

Planejando e Configurando um Cluster Hadoop

- Arquitetura de um Cluster Hadoop
- Topologia de Rede para o Cluster Hadoop
- Workflow
- Planejamento do Cluster
- Hardware Configuração de Rede do Cluster Hadoop
- Arquivos de Configuração
- Parâmetros de Configuração
- Como funciona o HDFS
- HDFS Writes
- HDFS Reads
- Importando Dados do MySQL para o HDFS
- Executar um Job MapReduce com Python

Muito do que vamos estudar neste capítulo é responsabilidade do Engenheiro de Dados.

É este profissional que deve entregar ao Cientista de Dados a infraestrutura necessária para análise de Big Data.

Tenha seu ambiente Hadoop pronto para uso.

Cluster

Cluster

Conjunto de computadores trabalhando em conjunto, como se fosse uma única máquina

Cluster

Conjunto de computadores trabalhando em conjunto, como se fosse uma única máquina

Node

Cluster

Conjunto de computadores trabalhando em conjunto, como se fosse uma única máquina

Cluster de Alto Desempenho

Existem diversos tipos de Cluster

Cluster Hadoop

- Cluster de Alto Desempenho
- Cluster de Alta Disponibilidade
- Cluster para Balanceamento de Carga
- Cluster Combo

Existem diversos tipos de Cluster

Para uma aplicação de Big Data pode podemos configurar um cluster de alto desempenho e ao mesmo tempo alta disponibilidade, se for necessário processamento e análise de dados em tempo real, para um sistema de recomendação.

As tecnologias de Clustering possibilitam a solução de diversos problemas que envolvem grande volume de processamento.

Arquitetura do Cluster Hadoop

O que é um Cluster Hadoop?

Funcionamento do Cluster

Cliente (Dados + Processamento)

Namenode (HDFS) / JobTracker (MapReduce)

Passo 1 – Requisição do cliente

Cliente (Dados + Processamento)

Namenode (HDFS) / JobTracker (MapReduce)

Dados divididos em blocos. Jobs divididos em tarefas

Passo 2 – Dados são divididos em blocos e Jobs são divididos em partes menores (tarefes)

Cliente (Dados + Processamento)

Namenode (HDFS) / JobTracker (MapReduce)

Dados divididos em blocos. Jobs divididos em tarefas

Blocos e Tarefas são distribuídos pelo cluster

Passo 3 – Alocar as partes menores para cada node

Cliente Namenode (Dados + (HDFS) / JobTracker (MapReduce) Processamento) Dados divididos em Blocos e Tarefas blocos. Jobs são distribuídos pelo cluster divididos em tarefas JobTracker aciona os TaskTrackers

Passo 4 – Armazenamento/Processamento paralelo

Cliente Namenode (Dados + (HDFS) / JobTracker (MapReduce) Processamento) Dados divididos em Blocos e Tarefas blocos. Jobs são distribuídos divididos em tarefas pelo cluster JobTracker aciona Map Reduce os TaskTrackers

Passo 5 – Unir os resultados

Cliente (Dados + Processamento)

Namenode (HDFS) / JobTracker (MapReduce)

Dados divididos em blocos. Jobs divididos em tarefas

Blocos e Tarefas são distribuídos pelo cluster

JobTracker aciona os TaskTrackers

Map

Reduce

Passo 6 – Resultado final

O que é um Cluster Hadoop?

Dados → Data Node

Metadados → Name Node

O que é um Cluster Hadoop?

Data Node → Armazena/Recupera Dados

TaskTracker → Executa Jobs de MapReduce

Topologia de Rede do Cluster Hadoop

Topologia de Rede do Cluster Hadoop

Topologia de Rede do Cluster Hadoop

DN = DataNode TT = TaskTracker

Topologia de Rede do Cluster Hadoop

Topologia de Rede do Cluster Hadoop

Cluster Não-Balanceado

hadoop balancer

Workflow do Cluster Hadoop

Workflow de um Cluster Hadoop

Os dados são divididos em blocos e distribuídos pelo cluster Hadoop

MapReduce analisa os dados baseado nos pares de chave-valor

Os resultados são colocados em blocos através do cluster Hadoop

Os resultados podem ser lidos do cluster

Gravação de Dados no HDFS

Gravação de Dados no HDFS

O cliente interage com o NameNode para obter a localidade onde o storage está disponível para processamento

O cliente então, interage diretamente com o DataNode

O cliente envia os dados que são divididos em pequenos pedaços de blocos

Após o dado ser completamente gravado pelo primeiro node, a replicação é feita para os demais nodes

O objetivo do Cluster Hadoop, é o rápido processamento, em paralelo, de grandes quantidades de dados

A configuração padrão do Hadoop, é ter 3 cópias de cada bloco de dados no cluster

(o que pode ser modificado pelo parâmetro dfs.replication no arquivo de configuração hdfs-site.xml)

Vamos verificar, como é o processo de gravação de dados no HDFS

Gravação de Dados no HDFS

Após todos os DataNodes terminarem a gravação do dado, o relatório de blocos envia um sinal ao cliente, que então comunica o NameNode. Os DataNodes também enviam o relatório de blocos ao NameNode

O NameNode utiliza o relatório de blocos para atualizar os Metadados

A Função do NameNode no Processo de Gravação no HDFS

NameNode

O NameNode é o controlador principal do HDFS, que mantém os metadados de todos os sistemas de arquivos para o cluster

Principais características do NameNode:

- Mantém o track de como cada bloco compõe um arquivo e a localização de cada bloco no cluster
- O NameNode não contém qualquer bloco de dados
- ☐ Direciona o cliente para os DataNodes e mantém o histórico de condições de cada DataNode
- ☐ Garante que cada bloco de dado atende aos critérios mínimos definidos pela política de replicação

O NameNode funciona da seguinte forma:

- ✓ Os DataNodes enviam sinais (heartbeat) para o NameNode a cada 3 segundos através de TCP Handshake
- Cada décimo sinal é um relatório de bloco
- ✓ O relatório de bloco permite que o NameNode crie os metadados e garanta que 3 cópias de cada bloco existam em nodes diferentes

NameNode

O NameNode funciona da seguinte forma:

- ✓ Se o DataNode fica sem conexão, o sinal não é enviado e o NameNode deixa de considerar aquele DataNode
- ✓ O NameNode então replica o bloco para outro DataNode, sempre mantendo 3 cópias de cada bloco

NameNode

Leitura de Dados no HDFS

Leitura de Dados no HDFS

Workflow de leitura dos dados do HDFS

- Para recuperar um documento do HDFS, o cliente aciona o NameNode e solicita o endereço (bloco) onde o dado está armazenado
- O cliente então solicita ao DataNode o dado, com o endereço do bloco fornecido pelo NameNode. Tudo isso ocorre via protocolo TCP na porta 50010

Data Science Academy

Planejamento do Cluster Hadoop

Hadoop Cluster

Fatores para Planejamento do Cluster Hadoop

Data Science Academy

Hadoop Cluster

Fatores para Planejamento do Cluster Hadoop

Objetivo

Volume de dados x Alta disponibilidade

Serviços

MapReduce (JobTracker, TaskTracker), HDFS (NameNode, DataNode), Storage (File Server, DFS)

Layout

Single Node, Cluster Médio

Hardware e Configuração do Cluster Hadoop

Hardware e Configuração de Rede do Cluster Hadoop

Slave

Configuração	Descrição
Storage	Em um ambiente de intensivo i/o, recomenda-se 12 discos SATA 7200 RPM de 2 TB cada um, para balanceamento entre custo e performance. RAID não é recomendado em máquinas com serviços slaves do Hadoop.
Memória	Nodes slaves requerem normalmente entre 24 e 48 GB de memória RAM. Memória não utilizada será consumida por outras aplicações Hadoop.
Processador	Processadores com clock médio e menos de 2 sockets são recomendados.
Rede	Cluster de tamanho considerável, tipicamente requer links de 1 GB para todos os nodes em um rack com 20 nodes.

Hardware e Configuração de Rede do Cluster Hadoop

Master

Configuração	Descrição
Storage	Deve-se utilizar 2 servidores: um para o NameNode Principal e outro para o Secundário. O Master deve ter pelo menos 4 volumes de storage redundantes, seja local ou em rede.
Memória	64 GB de RAM suportam aproximadamente 100 milhões de arquivos
Processador	16 ou 24 CPU's para suportar o tráfego de mensagens

Estas são apenas recomendações e que podem variar de acordo com os fatores para o planejamento do cluster: objetivo, serviços e layout

Instalação do Hadoop

Instalar um servidor ssh

Criar um login ssh sem senha Instalar o Java 6, 7 ou 8

Instalar o Hadoop

Definir o diretório do Hadoop

Editar os arquivos de configuração do Hadoop

Criar diretório temporário

Iniciar o Hadoop

Acessar o Hadoop pelo browser e testar os serviços Automatizar a inicialização do Hadoop

Data Science Academy

Single Node x Multi Node

Cluster Single node	Cluster Multi Node
Hadoop é instalado em um único servidor (node)	Hadoop é instalado em diversos nodes (entre algumas dezenas, até milhares)
Clusters Single Node são usados para processos triviais e operações simples de MapReduce e HDFS. Pode ser usado em ambiente de testes	Clusters Multi Node são usados para computação complexa, incluindo processamento analítico

Arquivos de Configuração do Hadoop

Data Science Academi

O Hadoop possui na sua base um filesystem, que é o HDFS

Este filesystem é diferente de outros filesystems existentes

O sistema operacional Linux, por exemplo, possui seu próprio filesystem

Exemplo:

O comando **Is –Ia** no Linux, lista todos os diretórios e arquivos

No Hadoop, o comando **hadoop fs –ls** teria a mesma função

No Windows seria o comando dir

Visão Geral de Configuração do Hadoop

Antes de iniciar a utilização do Hadoop, é necessário a configuração do ambiente Hadoop

O Hadoop não possui um sistema de c<mark>onfig</mark>uração central e vários arquivos precisam ser configurados e mantidos através dos nodes

A sincronização dos nodes é mantida pelo rsync

Visão Geral de Configuração do Hadoop

Existem basicamente 2 tipos de configuração do Hadoop

Configuração Hadoop

hadoop-env.sh (Configuração padrão) hdfs-site.xml (Configuração site-específica)

A configuração do cluster Hadoop deve ser feita onde os deamons Hadoop estão sendo executados. São estes os 2 tipos de deamons:

NameNode ou DataNode JobTracker ou TaskTracker

Data Science Academy

Principais Arquivos de Configuração do Hadoop

Arquivo	Controle
core-site.xml	Propriedades comuns do ambiente Hadoop
hdfs-site.xml	Propriedades e configurações do HDFS
mapred-site.xml	Propriedades do MapReduce
yarn-site.xml	Propriedades do Yarn

Principais Arquivos de Configuração do Hadoop

Arquivo	Controle
hadoop-env.sh	Variáveis de ambiente Hadoop
slaves	Nomes do nodes slaves
hadoop-policy.xml	Configurações de segurança
log4j.properties	Configurações de informações de log

Parâmetro	Valor
fs.default.name	URI do NameNode
mapred.job.tracker	Número da porta do Job Tracker
dfs.name.dir	Nome do diretório onde os logs são armazenados pelo NameNode
mapred.local.dir	Armazenamento temporário de dados MapReduce
mapred.system.dir	Caminho do file system do framework MapReduce
mapred.tasktracker.tasks.minimum	Número de tarefas MapReduce para cada TaskTracker
dfs.hosts/dfs.hosts.exclude	Repositório de DataNodes autorizados e não autorizados

Parâmetro	Valor
mapred.queue.names	Lista de filas nas quais os jobs podem ser submetidos
mapred.hosts/mapred.hosts.exclude	Lista de TaskTrackers permitidos ou excluídos
mapred.acls.enabled	Especifica se ACL's são suportadas para controlar submissão e administração de jobs
mapred.queue.queue-name.acl-submit-job	Lista de usuários ou grupos que podem submeter jobs para uma fila específica
mapred.queue.queue-name.acl-administer- job	Lista de usuários ou grupos que podem mudar a prioridade ou finalizar jobs que foram submetidos para uma fila específica

Parâmetro	Valor
mapreduce.job.reduces	1
mapreduce.cluster.local.dir	\${hadoop.tmp.dir}/mapred/local
mapreduce.task.io.sort.factor	100
mapreduce.map.combine.minspills	3
mapreduce.task.io.sort.mb	100
mapreduce.reduce.merge.memtomem.enabled	False
mapreduce.map.sort.spill.percent	0.80

Hadoop Distributed File System

HDFS – Hadoop Distributed File System

- Hadoop Distributed File System (HDFS) é um framework distribuído e extremamente tolerante a falha
- Foi concebido para processar grandes volumes de dados
- O conceito do HDFS é baseado no Unix
- O HDFS é similar a outros frameworks de arquivos distribuídos, mas com algumas diferenças
 - O HDFS possui um modelo chamado "write-once-read-many-times" (WORM), que significa: escreva uma vez e leia quantas vezes quiser
 - Eficiente controle de concorrência
 - Redireciona atividades (jobs) em caso de falhas

Grande quantidade de dados a serem armazenados

Quando usar o HDFS?

Streams de dados constantes que requerem acesso

Apenas equipamentos simples estão disponíveis

Quantidade considerável de arquivos pequenos

Quando NÃO usar o HDFS?

Composições variadas

Acesso de baixa latência aos dados

Data Science Academy

Conceitos Fundamentais do HDFS

Conceito	Descrição
Blocos	Armazena os dados – 64 MB por padrão
Name hubs	Responsável por registrar os namespaces. Contém a estrutura criado no filesystem
Data hubs	Armazena e recupera os dados quando solicitado pelo name hub
HDFS Federation	É uma referência para cada documento em memória
Alta Disponibilidade	Garante a disponibilidade dos Namenodes, verificando performance e realizando checkpoints

Existem basicamente 3 classes de métricas para medir performance de um storage:

Custo/MB: a decisão de armazenamento de dados é definida com base em cada MB a ser armazenado

Mecanismo de Armazenamento do Hadoop

Data Storage

Resistência: medida da durabilidade do dado, uma vez que ele seja armazenado

Execução: há duas formas de medir execução: Throughput e Operações de IO

Data Science Academy

Execução: há duas formas de medir execução: Throughput e Operações de IO

Mecanismo de Armazenamento do Hadoop

Throughput

- Medido em Mpbs
- Métrica essencial para processos batch

Operações de IO

 A quantidade é influenciada pela carga de trabalho e pelo tamanho do I/O

Data Science Academy

Mensagens do HDFS

Storage Report

Contém informação sobre as condições do storage

Inclui limites e pontos de utilização

Enviado uma vez a cada 3 segundos

Mensagens do HDFS

Block Report

Também chamado Square Report

Relatório informal e individual sobre os DataNodes

Relatório incremental

HDFS Write X HDFS Read

Arquivo: pagamentos.csv

- O cliente consulta o Namenode
- O cliente envia os blocos de dados diretamente para os Datanodes
- Os Datanodes replicam o bloco

Data Science Academy

Arquivo: pagamentos.csv

 O cliente consulta o Namenode e solicita a área onde os registros podem ser encontrados

HDFS Read

Comandos HDFS

Os comandos HDFS são divididos em comandos de usuário e comandos de administrador

Comandos HDFS – Usuário

Comando	Função
hadoop archive	Archive
hadoop distcp	Copia arquivos recursivamente
hadoop fs	FS
hadoop fsck	FSCK
hadoop jar	Jar
hadoop CLASSNAME	Class name
hadoop job	hadoop job

Comandos HDFS – Usuário

Comando	Função
-cat <path[filename]></path[filename]>	Criar diretório
Is <args></args>	Lista conteúdo de um diretório
mv <fonte> <destino></destino></fonte>	Mover arquivos
copyFromLocal	Copiar arquios
mkdir	Criar diretórios
fs -put <fonte> <destino></destino></fonte>	Upload arquivo para o HDFS
fs -get <fonte> <destino></destino></fonte>	Download arquivo do HDFS

Comandos HDFS – Administrador

Comando	Função
hadoop balancer	Balancer
hadoop daemonlog	Daemon log
hadoop datanode	DataNode
hadoop dfsadmin	DFSAdmin
hadoop jobtracker	JobTracker
hadoop namenode	NameNode
hadoop secondarynamenode	NameNode Secundário
hadoop tasktracker	TaskTracker

Arquitetura do Hadoop Cluster

O que é um Cluster Hadoop?

n.br

Data Science Academy

Arquitetura típica de um Cluster Hadoop

DN = DataNode TT = TaskTracker

Workflow de um Cluster Hadoop

Os dados são divididos em pequenos blocos e distribuídos pelo cluster Hadoop

MapReduce analisa os dados baseado nos pares de chave-valor

Os resultados são colocados em pequenos blocos através do cluster Hadoop

Os resultados podem ser lidos do cluster

Gravação de Dados no HDFS

O client interage com o NameNode para obter a localidade onde o storage está disponível para processamento

O client então, interage diretamente com o DataNode

O client envia os dados em pequenos pedaços de blocos Após o dado ser completamente gravado pelo primeiro node, a replicação é feita para os demais nodes

O objetivo do Cluster Hadoop, é o rápido processamento, em paralelo, de grandes quantidades de dados

A configuração padrão do Hadoop, é ter 3 cópias de cada bloco de dados no cluster

(o que pode ser modificado pelo parâmetro dfs.replication no arquivo de configuração hdfs-site.xml)

Vamos verificar, como é o processo de gravação de dados no HDFS

Gravação de Dados no HDFS

Após todos os DataNodes terminarem a gravação do dado, o relatório de blocos envia um sinal ao client, que então comunica o NameNode

O NameNode utiliza o relatório de blocos para atualizar os Metadados

Namenode

O NameNode é o controlador principal do HDFS, que mantém os metadados de todos os sistemas de arquivos para o cluster

Principais características do NameNode:

- Mantém o track de como cada bloco compõem um arquivo e a localização de cada bloco no cluster
- O NameNode não contém qualquer cluster de dados
- Direciona o client para os DataNodes e mantém o histórico de condições de cada DataNode
- ☐ Garante que cada bloco de dado atende ao critérios mínimos definidos pela política de replicação

O NameNode funciona da seguinte forma:

- ✓ Os DataNodes enviam sinais (heartbeat) para o NameNode a cada 3 segundos através de TCP Handshake
- Cada décimo sinal é um relatório de bloco
- ✓ O relatório de bloco permite que o NameNode crie os metadados e garanta que 3 cópias de cada bloco existam em separados nodes

Namenode

O NameNode funciona da seguinte forma:

- ✓ Se o DataNode fica sem conexão, o sinal não é enviado e o NameNode deixa de considerar aquele DataNode
- ✓ O NameNode então replica o bloco para outro DataNode, sempre mantendo 3 cópias de cada bloco

Namenode

Leitura de Dados no HDFS (HDFS Read)

Workflow de leitura dos dados do HDFS

- Para recuperar um documento do HDFS, o client aciona o NameNode e solicita o endereço (bloco) onde o dado está armazenado
- O client então solicita ao DataNode o dado, com o endereço do bloco fornecido pelo NameNode. Tudo isso ocorre via TCP na porta 50010

Data Science Academy

Fatores para Planejamento do Cluster Hadoop

Data Science Academy

Fatores para Planejamento do Cluster Hadoop

Objetivo

Volume de dados x Alta disponibilidade

Serviços

MapReduce (TaskTracker, NodeManager), Storage (File Server, DFS)

Layout

Single Node, Cluster Médio

Hardware e Configuração de Rede do Cluster Hadoop

Slave

Configuração	Descrição
Storage	Em um ambiente de intensivo i/o, recomenda-se 12 x 2 TB Discos Sata. Use 7.200 RPM SATA para balanceamento entre custo e performance. RAID não é recomendado em máquinas com serviços slaves do Hadoop.
Memória	Nodes slaves requerem normalmente entre 24 e 48 GB de memória RAM. Memória não utilizada será consumida por outras aplicações Hadoop.
Processador	Processadores com clock médio e menos de 2 sockets são recomendados.
Rede	Cluster de tamanho considerável, tipicamente requer links de 1 GB para todos os nodes em um rack com 20 nodes.

Hardware e Configuração de Rede do Cluster Hadoop

Master

Configuração	Descrição
Storage	Deve-se utilizar 2 servidores: um para o NameNode Principal e outro para o Secundário. O Master deve ter pelo menos 4 volumes de storage redundantes, seja local ou em rede.
Memória	64 GB de RAM suportam aproximadamente 100 milhões de arquivos
Processador	16 ou 24 CPU's para suportar o tráfico de mensagens

Instalação do Hadoop

Instalar um servidor ssh

Criar um login ssh sem senha Instalar o Java 6, 7 ou 8

Instalar o Hadoop

Definir o diretório do Hadoop

Editar os arquivos de configuração do Hadoop

Criar diretório temporário

Iniciar o Hadoop

Acessar o Hadoop pelo browser e testar os serviços Automatizar a inicialização do Hadoop

Single Node x Multi Node

Cluster Single node	Cluster Multi Node
Hadoop é instalado em um único servidor (node)	Hadoop é instalado em diversos nodes (entre algumas dezenas, até milhares)
Clusters Single Node são usados para processos triviais e operações simples de MapReduce e HDFS. Pode ser usado em ambiente de testes	Clusters Multi Node são usados para computação complexa, incluindo processamento analítico

O Hadoop possui na sua base um filesystem, que é o HDFS

Este file system é diferente de outros filesystem existentes

O sistema operacional Linux, por exemplo, possui seu próprio filesystem

Exemplo:

O comando **Is –Ia** no Linux, lista todos os diretórios e arquivos

No Hadoop, o comando **hadoop fs –ls** teria a mesma função

O HDFS é um filesystem que funciona através de vários computadores em cluster

Visão Geral de Configuração do Hadoop

Antes de iniciar a utilização do Hadoop, é necessário a configuração do ambiente Hadoop

O Hadoop não possui um sistema de c<mark>onfig</mark>uração central e vários arquivos precisam ser configurados e mantidos através dos nodes

A sincronização dos nodes é mantida pelo rsync

Visão Geral de Configuração do Hadoop

Existem basicamente 2 tipos de configuração do Hadoop

Configuração Hadoop

hadoop-env.sh
(Configuração padrão)

hdfs-site.xml
(Configuração site-específica)

Visão Geral de Configuração do Hadoop

Existem basicamente 2 tipos de configuração do Hadoop

Configuração Hadoop

hadoop-env.sh
(Configuração padrão)

hdfs-site.xml
(Configuração site-específica)

A configuração do cluster Hadoop deve ser feita onde os deamons Hadoop estão sendo executados. Os 2 tipos de deamons são:

NameNode ou DataNode JobTracker ou TaskTracker

www.datascienceacademy.com.br

Arquivos de Configuração do Hadoop

Arquivo	Controle
hadoop-env.sh	Variáveis de ambiente Hadoop
hadoop-site.xml	Configurações do NameNode, Secondary NameNode e DataNode
Slaves	Máquinas com DataNode e TraskTracker
mapred-default.xml	Configurações de jobs e deamons do Hadoop MapReduce
hadoop-default.xml	Configurações padrão de jobs MapReduce e deamons Hadoop

Arquivos de Configuração do Hadoop

Arquivo	Controle
core-site.xml	Propriedades comuns do ambiente Hadoop
hdfs-site.xml	Propriedades e configurações do HDFS
mapred-site.xml	Propriedades do MapReduce

Parâmetros de Configuração do Hadoop

Parâmetro	Valor
fs.default.name	URI do NameNode
mapred.job.tracker	Número da porta do Job Tracker
dfs.name.dir	Nome do diretório onde os logs são armazenados pelo NameNode
mapred.local.dir	Armazenamento temporário de dados MapReduce
mapred.system.dir	Caminho do file system do framework MapReduce
mapred.tasktracker.tasks.minimum	Número de tarefas MapReduce para cada TaskTracker
dfs.hosts/dfs.hosts.exclude	Repositório de DataNodes autorizados e não autorizados

Parâmetros de Configuração do Hadoop

Parâmetro	Valor
mapred.queue.names	Lista de filas nas quais os jobs podem ser submetidos
mapred.hosts/mapred.hosts.exclude	Lista de TaskTrackers permitidos ou excluídos
mapred.acls.enabled	Especifica se ACL's são suportadas para controlar submissão e administração de jobs
mapred.queue.queue-name.acl-submit-job	Lista de usuários ou grupos que podem submeter jobs para uma fila específica
mapred.queue.queue-name.acl-administer- job	Lista de usuários ou grupos que podem mudar a prioridade ou finalizar jobs que foram submetidos para uma fila específica

Configuração do Hadoop Cluster

Parâmetros de Configuração do MapReduce

Parâmetro	Valor
mapreduce.job.reduces	1
mapreduce.cluster.local.dir	\${hadoop.tmp.dir}/mapred/local
mapreduce.task.io.sort.factor	100
mapreduce.map.combine.minspills	3
mapreduce.task.io.sort.mb	100
mapreduce.reduce.merge.memtomem.enabled	False
mapreduce.map.sort.spill.percent	0.80

HDFS – Hadoop Distributed File System

- Hadoop Distributed File System (HDFS) é um framework distribuído e extremamente tolerante a falha
- Foi concebido para processar grandes volumes de dados
- O conceito do HDFS é baseado no Unix
- O HDFS é similar a outros frameworks de arquivos distribuídos, mas com algumas diferenças
 - O HDFS possui um modelo chamado "write-once-read-many-times" (WORM), que significa: escreva uma vez e leia quantas vezes quiser
 - Eficiente controle de concorrência
 - Redireciona atividades (jobs) em caso de falhas

Grande quantidade de dados a serem armazenados

Quando usar o HDFS?

Streams de dados constantes que requerem acesso

Apenas equipamentos simples estão disponíveis

Quantidade considerável de arquivos pequenos

Quando NÃO usar o HDFS?

Composições variadas

Acesso de baixa latência aos dados

Arquitetura HDFS

O NameNode e o NameNode Secundário constituem o serviço Master. Os DataNodes constituem o serviço slave

O serviço Master recebe os jobs dos clients e garante que o dado necessário para a operação será carregado e separado em blocos

Um arquivo armazenado no HDFS, é dividido em 1 ou mais blocos

O bloco de dados é então armazenado no DataNode e replicado para outros DataNodes

Conceitos Fundamentais do HDFS

Conceito	Descrição
Blocos	Armazena os dados – 64 MB por padrão
Name hubs	Responsável por registrar os namespaces. Contém a estrutura criado no filesystem.
Data hubs	Armazena e recupera os dados quando solicitado pelo name hub
HDFS Federation	É uma referência para cada documento em memória
Alta Disponibilidade	Garante a disponibilidade dos Namenodes, verificando performance e realizando checkpoints

Existem basicamente 3 classes de métricas para medir performance de um storage:

Custo/MB: a decisão de armazenamento de dados é definida com base em cada MB a ser armazenado

Mecanismo de Armazenamento do Hadoop

Data Storage

Resistência: medida da durabilidade do dado, uma vez que ele seja armazenado

Execução: há duas formas de medir execução: Throughput e Operações de IO

Execução: há duas formas de medir execução: Throughput e Operações de IO

Mecanismo de Armazenamento do Hadoop

Throughput

- Medido em Mpbs
- Métrica essencial para processos batch

Operações de IO

 A qantidade é influenciada pela carga de trabalho e pelo tamanho do IO

Mensagens do HDFS

Storage Report	Block Report
Contém informação sobre as condições do storage	Também chamado Square Report
Inclui limites e pontos de utilização	Relatório informal e individual sobre os DataNodes
Enviado uma vez a cada 3 segundos	Relatório incremental

Arquivo: pagamentos.csv

- O client consulta o Namenode
- O client envia os blocos de dados diretamente para os Datanodes
- Os Datanodes replicam o bloco
- O ciclo se repete para os demais blocos

HDFS Write

Arquivo: pagamentos.csv

- O client consulta o Namenode e solicita a área onde os registros podem ser encontrados
- O client então solicita ao Datanode o registro, através de uma mensagem do tipo "square rundown" na porta TCP 50010

HDFS Read

Comandos HDFS

Os comandos HDFS são divididos em comandos de usuário e comandos de administrador

Comandos HDFS – Usuário

Comando	Função
hadoop archive	Archive
hadoop distcp	Copia arquivos recursivamente
hadoop fs	FS
hadoop fsck	FSCK
hadoop jar	Jar
hadoop CLASSNAME	Class name
hadoop job	hadoop job

Comandos HDFS – Usuário

Comando	Função
-cat <path[filename]></path[filename]>	Criar diretório
Is <args></args>	Listas conteúdo de um diretório
mv <fonte> <destino></destino></fonte>	Mover arquivos
copyFromLocal	Copiar arquios
mkdir	Criar diretórios
fs -put <fonte> <destino></destino></fonte>	Upload arquivo para o HDFS
fs -get <fonte> <destino></destino></fonte>	Download arquivo do HDFS

Comandos HDFS – Administrador

Comando	Função
hadoop balancer	Balancer
hadoop daemonlog	Daemon log
hadoop datanode	DataNode
hadoop dfsadmin	DFSAdmin
hadoop jobtracker	JobTracker
hadoop namenode	NameNode
hadoop secondarynamenode	NameNode Secundário
hadoop tasktracker	TaskTracker

