RO202 - Initiation à la Recherche Opérationnelle

Zacharie Ales, Cristian Duran 2021 - 2022

EXERCICES 2 - Flots

Exercise 1 Ford-Fulkerson

On donne le graphe avec capacités suivant :

On utilisera les graphes dessinés au dos de la feuille pour traiter cet exercice.

- 1. Trouver un flot complet (en prenant obligatoirement les sommets selon l'ordre alphabétique).
- 2. Donner une borne supérieure de la valeur d'une coupe minimale (considérer les arcs incidents à s puis à t).
- 3. Appliquer l'algorithme de Ford-Fulkerson pour trouver un flot maximal (en marquant obligatoirement les sommets selon l'ordre alphabétique) et en déduire la coupe minimale.
- 4. On a la possibilité d'augmenter la capacité d'un arc. Lequel choisir pour pouvoir augmenter le flot au maximum?

Exercise 2 Implémentation de Ford-Fulkerson

- 1. Inclure à votre projet java RO202 le fichier FordFulkerson.java.
- 2. Compléter la méthode public static Graph fordFulkerson() permettant d'appliquer l'algorithme de Ford-Fulkerson à un graphe g entre une source s et un puits t.

 Remarque: Pour simplifier, vous commencerez avec un flot initial nul plutôt que complet.
- 3. Vérifier que votre méthode retourne le même résultat que celui obtenu à l'exercice précédent.
- 4. Utiliser cette méthode pour résoudre le problème de flot maximal des graphes représentés en Figure 1.

FIGURE 1 – Graphes pour lesquels on cherche un flot maximal.

Exercise 3 Couplage

Un coffre-fort est composé de r serrures qu'il faut déverrouiller simultanément pour l'ouvrir. On dispose de *l* clefs de sorte que toute clef ouvre au moins une serrure, une serrure peut être ouverte

par au moins une clef et $l \geq r$. Sachant quelles serrures chaque clef ouvre, on se demande si l'on peut ouvrir le coffre. On représente la situation à l'aide d'un graphe biparti $G = (V_1, V_2, A)$ où les sommets de V_1 sont les clefs, les sommets de V_2 sont les serrures et il y a un arc dans A d'un sommet clef de V_1 vers et un sommet serrure de V_2 si l'une permet d'ouvrir l'autre. Proposez une méthode générale qui permet d'obtenir une solution s'il en existe une, et montre comment déverrouiller un maximum de serrures dans le cas contraire.

Exercise 4 Chemins disjoints

- 1. Donner une méthode générale permettant de trouver un nombre maximum de chemins arcsdisjoints entre un sommet source s et une destination t dans un réseau.
- 2. Appliquez la méthode pour le réseau ci-dessous (d'abord à la main, puis en utilisant votre implémentation de l'algorithme de Ford-Fulkerson).
- 3. Comment faire si on veut en plus que les chemins soient sommets-disjoints?
- 4. Appliquez cette seconde méthode pour le réseau ci-dessous (d'abord à la main, puis en utilisant votre implémentation de l'algorithme de Ford-Fulkerson).

