Álgebra Linear

Sérgio L. Zani

Segundo Semestre de 2001

Sumário

1	Espaços Vetoriais	5
	1.1 Introdução e Exemplos	5
	1.2 Propriedades	8
2	Subespaços Vetoriais	9
	2.1 Introdução e Exemplos	9
	2.2 Propriedades	10
3	Combinações Lineares	13
	3.1 Definição e Exemplos	13
	3.2 Geradores	13
4	Dependência Linear	17
-	4.1 Definição e Exemplos	17
	4.2 Propriedades	19
5	Base e Dimensão	21
	5.1 Base	21
	5.2 Dimensão	22
	5.3 Dimensão de Soma de Subespaços Vetoriais	23
	5.4 Coordenadas	26
6	Mudança de Base	29
7	Transformações Lineares	33
	7.1 Definição e Exemplos	33
	7.2 O Espaço Vetorial $\mathcal{L}(U,V)$	34
	7.3 Imagem e Núcleo	38
	7.4 Isomorfismo e Automorfismo	42
	7.5 Matriz de uma Transformação Linear	44
	7.5.1 Definição e Exemplos	44
	7.5.2 Propriedades	45
8	Autovalores e Autovetores	49
-	8.1 Definição, Exemplos e Generalidades	49
	8.2 Polinômio Característico	53
9	Diagonalização	57
	Forma Canônica de Jordan	63

SUMÁRIO

Espaços Euclidianos
1.1 Produto Interno
1.2 Norma
1.3 Distância
1.4 Ângulo
1.5 Ortogonalidade
1.6 Processo de Ortogonalização de Gram-Schmidt
1.7 Complemento Ortogonal
1.8 Isometria
1.9 Operador Auto-adjunto

Espaços Vetoriais

1.1 Introdução e Exemplos

Neste capítulo introduziremos o conceito de espaço vetorial que será usado em todo o decorrer do curso. Porém, antes de apresentarmos a sua definição, passemos a analisar em paralelo dois objetos: o conjunto formado pelas funções $f: \mathbb{R} \to \mathbb{R}$, denotado por $\mathcal{F}(\mathbb{R})$ e o conjunto das matrizes quadradas de ordem m com coeficientes reais que denotaremos por $M_m(\mathbb{R})$, ou simplesmente, por M_m .

A soma de duas funções f e g de $\mathcal{F}(\mathbb{R})$ é definida como sendo a função $f+g \in \mathcal{F}(\mathbb{R})$ dada por (f+g)(x) = f(x) + g(x).

Note também que se $\lambda \in \mathbb{R}$ podemos multiplicar a função f pelo escalar λ , da seguinte forma $(\lambda f)(x) = \lambda(f(x))$, resultando num elemento de $\mathcal{F}(\mathbb{R})$.

Com relação a M_n podemos somar duas matrizes quadradas de ordem n, $A = (a_{ij})_{n \times n}$ e $B = (b_{ij})_{n \times n}$, colocando $A + B = (a_{ij} + b_{ij})_{n \times n}$, que é um elemento de M_n .

Com a relação à multiplicação de $A = (a_{ij})_{n \times n}$ por um escalar $\lambda \in \mathbb{R}$, é natural definirmos $\lambda A = (\lambda a_{ij})_{n \times n}$, o qual também pertence a M_n .

O que estes dois conjuntos acima, com estas *estruturas* de adição de seus elementos e multiplicação de seus elementos por escalares, têm comum? Vejamos:

Verifica-se facilmente a partir das propriedades dos números reais que, com relação a quaisquer funções f, g e h em $\mathcal{F}(\mathbb{R})$ e para todo $\lambda, \mu \in \mathbb{R}$, são válidos os seguintes resultados:

- 1. f + g = g + f;
- 2. f + (g + h) = (f + g) + h;
- 3. se o representa o função nula, isto é, o(x) = 0 para todo $x \in \mathbb{R}$ então o + f = f;
- 4. a função -f definida por (-f)(x) = -(f(x)) para todo $x \in \mathbb{R}$ é tal que f + (-f) = o;
- 5. $\lambda(\mu f) = (\lambda \mu) f$;
- 6. $(\lambda + \mu)f = \lambda f + \mu f$;
- 7. $\lambda(f+g) = \lambda f + \lambda g$;
- 8. 1f = f.

Agora, com relação a quaisquer matrizes $A, B \in C$ em M_m e para todo $\lambda, \mu \in \mathbb{R}$, também são válidos os seguintes resultados:

1.
$$A + B = B + A$$
;

```
    A + (B + C) = (A + B) + C;
    se O representa o função nula, isto é, O = (0)<sub>n×n</sub> então O + A = A;
    se A = (a<sub>i,j</sub>)<sub>n×n</sub> então a matriz -A definida por -A = (-a<sub>i,j</sub>)<sub>n×n</sub> é tal que A + (-A) = O;
    λ(μA) = (λμ)A;
    (λ + μ)A = λA + μA;
    λ(A + B) = λA + λB;
    1A = A.
```

Podemos ver que tanto o conjuntos das funções definidas na reta a valores reais como o das matrizes quadradas quando munidos de somas e multiplicação por escalares adequadas apresentam propriedades algébricas comuns. Na verdade muitos outros conjuntos munidos de operações apropriadas apresentam propriedades semelhantes às acima. É por isso que ao invés de estudarmos cada um separadamente estudaremos um conjunto genérico e não vazio, V, sobre o qual supomos estar definidas uma operação de adição, isto é, para cada $u,v\in V$ existe um único elemento de V associado, chamado a soma entre u e v e denotado por u+v, e uma multiplicação por escalar, isto é, para cada $u\in V$ e $\lambda\in\mathbb{R}$ existe um único elemento de V associado, chamado de o produto de v pelo escalar v0 e denotado por v1.

Definição 1 Diremos que um conjunto V como acima munido de uma adição e de uma multiplicação por escalar é um espaço vetorial se para quaisquer u, v e w em V e para todo $\lambda, \mu \in \mathbb{R}$ são válidas as seguintes propriedades:

```
EV1 u+v=v+u para quaisquer u,v\in V;

EV2 u+(v+w)=(u+v)+w para quaisquer u,v,w\in V

EV3 existe um elemento 0\in V tal que 0+u=u para todo u\in V;

EV4 para cada u\in V existe v\in V tal que u+v=0;

EV5 \lambda(\mu u)=(\lambda\mu)u para quaisquer u\in V e \lambda,\mu\in\mathbb{R};

EV6 (\lambda+\mu)u=\lambda u+\mu u para quaisquer u\in V e \lambda,\mu\in\mathbb{R};

EV7 \lambda(u+v)=\lambda u+\lambda v para quaisquer u,v\in V e \lambda\in\mathbb{R};

EV8 1u=u para qualquer u\in V.
```

Observação 1.0.1 O elemento 0 na propriedade EV3 \acute{e} único, pois qualquer outro $0' \in V$ satisfazendo a mesma propriedade EV3 então, pelas propriedades EV3 e EV1 teríamos 0' = 0 + 0' = 0' + 0 = 0, isto \acute{e} 0 = 0'.

Observação 1.0.2 Em um espaço vetorial, pela propriedade EV4, para cada $u \in V$ existe $v \in V$ tal que u + v = 0. Na verdade, para cada $u \in V$ existe somente um elemento $v \in V$ com esta propriedade. De fato, dado $u \in V$ se v e v' em V são tais que u + v = 0 e u + v' = 0 então, combinando estas equações com as propriedades EV1,EV2 e EV3, obtemos v = v + 0 = v + (u + v') = (v + u) + v' = (u + v) + v' = 0 + v' = v', isto é v = v'. Denotaremos v por v = v para denotar v = v.

Um outro exemplo de espaço vetorial, além dos dois apresentados no início do texto, é o conjunto dos vetores como apresentados em Geometria Analítica munido da adição e da multiplicação por escalar. Dessa forma, o adjetivo vetorial utilizado na definição acima deve ser entendido de uma forma mais ampla, sendo uma referência aos elementos de V independentemente de serem ou não vetores.

Talvez o exemplo mais simples de espaço vetorial seja o conjunto dos números reais com a adição e multiplicação usuais. Mais geralmente, para cada $n \in \mathbb{N}$, podemos transformar o conjunto das n-uplas ordenadas de números reais, \mathbb{R}^n , em um espaço vetorial definindo a adição de duas n-uplas ordenadas, $x = (x_1, \ldots, x_n)$ e $y = (y_1, \ldots, y_n)$, adicionando-se coordenada a coordenada, isto é,

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$

e o produto de uma n-upla $x=(x_1,\ldots,x_n)$ por um escalar $\lambda\in\mathbb{R}$ por

$$\lambda x = (\lambda x_1, \cdots, \lambda x_n).$$

É uma rotina bem simples verificar que desse modo \mathbb{R}^n é um espaço vetorial. Deixamos como exercício esta tarefa. Verifique também que os seguintes exemplos são espaços vetoriais.

- 1. Sejam $n \in \mathbb{N}$ e $V = \mathcal{P}_n(\mathbb{R})$ o conjunto formado pelo polinômio nulo e por todos os polinômios de grau menor ou igual a n com coeficientes reais. Definimos a adição e a multiplicação por escalar da seguinte maneira:
 - Se $p(x) = a_0 + a_1 x \cdots + a_n x^n$ e $q(x) = b_0 + b_1 x \cdots + b_n x^n$ são elementos de $\mathcal{P}_n(\mathbb{R})$ então

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x \cdots + (a_n + b_n)x^n.$$

• Se $p(x) = a_0 + a_1 x \cdots + a_n x^n$ é um elemento de $\mathcal{P}_n(\mathbb{R})$ e $\lambda \in \mathbb{R}$ então

$$\lambda p(x) = (\lambda a_0) + (\lambda a_1)x + \dots + (\lambda a_n)x^n.$$

- 2. Sejam $A \subset \mathbb{R}$ e $\mathcal{F}(A;\mathbb{R})$ o conjunto de todas as funções $f:A \to \mathbb{R}$. Se $f,g \in \mathcal{F}(A;\mathbb{R})$ e $\lambda \in \mathbb{R}$ defina $f+g:A \to \mathbb{R}$ por (f+g)(x)=f(x)+g(x) e $(\lambda f)(x)=\lambda f(x), x \in A$. Então, $\mathcal{F}(A;\mathbb{R})$ com esta adição e produto por escalar é um espaço vetorial.
- 3. O conjunto das funções contínuas definidas num intervalo $I \subset \mathbb{R}$ munido das operações de adição e multiplicação usuais (como aquelas definidas em $\mathcal{F}(I;\mathbb{R})$). Notação: $C(I;\mathbb{R})$.
- 4. O conjunto das funções com derivadas contínuas até ordem $k \in \mathbb{N}$, (k é fixo) definidas num intervalo aberto $I \subset \mathbb{R}$ munido das operações de adição e multiplicação usuais (como aquelas definidas em $\mathcal{F}(I;\mathbb{R})$).
- 5. O conjunto das matrizes m por n com coeficientes reais: $M_{m \times n}(\mathbb{R})$ munido de operações análogas àquelas definidas em $M_n(\mathbb{R})$.

Os espaços vetoriais acima envolvem operações com as quais você já deve estar familiarizado. O próximo exemplo é um pouco mais sofisticado do que os anteriores e por isso mostraremos as oito propriedades. Como conjunto tomaremos $V=(0,\infty)$, o semi-eixo positivo da reta real. Este conjunto quando agregado às operações usuais de soma e multiplicação **não é** um espaço vetorial, visto que não possui elemento neutro para a adição. No entanto, se para $x,y\in V$ e $\lambda\in\mathbb{R}$, definirmos a soma entre x e y por $x\oplus y=xy$, (o produto usual entre x e y) e o produto de x pelo escalar λ como $\lambda\odot x=x^{\lambda}$, então V se torna um espaço vetorial. De fato, verifiquemos uma a uma as oito propriedades:

- 1. $x, y \in V$ temos $x \oplus y = xy = yx = y \oplus x$ para quaisquer $x, y \in V$;
- 2. $x \oplus (y \oplus z) = x \oplus (yz) = x(yz) = (xy)z = (x \oplus y)z = (x \oplus y) \oplus z$ para quaisquer $x, y, z \in V$
- 3. se $x \in V$ então, como $1 \in V$, temos $1 \oplus x = 1x = x$; observe que neste caso, 1 é o elemento neutro da adição, o qual denotaremos por \mathfrak{o} ;
- 4. se $x \in V$, isto é, x > 0, então $x^{-1} \in V$ e $x \oplus x^{-1} = xx^{-1} = 1 = \mathfrak{o}$;

- 5. $\lambda \odot (\mu \odot x) = \lambda \odot x^{\mu} = (x^{\mu})^{\lambda} = x^{\mu\lambda} = x^{\lambda\mu} = (\lambda\mu) \odot x$ para quaisquer $x \in V$ e $\lambda, \mu \in \mathbb{R}$;
- 6. $(\lambda + \mu) \odot x = x^{\lambda + \mu} = x^{\lambda} x^{\mu} = x^{\lambda} \oplus x^{\mu} = (\lambda \odot x) \oplus (\mu \odot x)$ para quaisquer $x \in V$ e $\lambda, \mu \in \mathbb{R}$;
- 7. $\lambda \odot (x \oplus y) = \lambda \odot (xy) = (xy)^{\lambda} = x^{\lambda}y^{\lambda} = (\lambda \odot x) \oplus (\lambda \odot y)$ para quaisquer $x, y \in V$ e $\lambda \in \mathbb{R}$;
- 8. $1 \odot x = x^1 = x$ para qualquer $x \in V$.

1.2 Propriedades

Das oito propriedades que definem um espaço vetorial podemos concluir várias outras. Listaremos estas propriedades na seguinte

Proposição 1 Seja V um espaço vetorial. Temos

- 1. Para qualquer $\lambda \in \mathbb{R}$, $\lambda 0 = 0$.
- 2. Para qualquer $u \in V$, 0u = 0.
- 3. Se $\lambda u = 0$ então $\lambda = 0$ ou u = 0.
- 4. Para quaisquer $\lambda \in \mathbb{R}$ e $u \in V$, $(-\lambda)u = \lambda(-u) = -(\lambda u)$.
- 5. Para quaisquer $\lambda, \mu \in \mathbb{R}$ e $u \in V$, $(\lambda \mu)u = \lambda u \mu u$.
- 6. Para quaisquer $\lambda \in \mathbb{R}$ e $u, v \in V$, $\lambda(u-v) = \lambda u \lambda v$.
- 7. Para quaisquer $\lambda, \mu_1, \ldots, \mu_n \in \mathbb{R}$ e $u_1, \ldots, u_n \in V$,

$$\lambda(\sum_{j=1}^{n} \mu_j u_j) = \sum_{j=1}^{n} (\lambda \mu_j) u_j.$$

- 8. Para qualquer $u \in V$, -(-u) = u.
- 9. Se u + w = v + w então u = v.
- 10. Se $u, v \in V$ então existe um único $w \in V$ tal que u + w = v.

Prova:

- 1. Temos $\lambda 0 = \lambda(0+0) = \lambda 0 + \lambda 0$ pelas propriedades EV3 e EV7. Utilizando as propriedades EV1 a EV4 e a notação da observação 1.0.2, obtemos $0 = \lambda 0 + (-(\lambda 0)) = (\lambda 0 + \lambda 0) + (-(\lambda 0)) = \lambda 0 + (\lambda 0 + (-(\lambda 0))) = \lambda 0 + 0 = \lambda 0$, isto é $\lambda 0 = 0$.
- 2. Temos 0u = (0+0)u = 0u+0u, pela propriedade EV6. Utilizando as propriedades EV1 a EV4 e a notação da observação 1.0.2, obtemos 0 = 0u + (-(0u)) = (0u+0u) + (-(0u)) = 0u + (0u+(-(0u))) = 0u + 0 = 0u, isto é, 0u = 0.
- 3. Se $\lambda \neq 0$ então pelas propriedades EV8 e EV5 e pelo item 1 desta proposição, $u = 1u = (\lambda^{-1}\lambda)u = \lambda^{-1}(\lambda u) = \lambda^{-1}0 = 0$.
- 4. Utilizando a propriedade EV6 e o item 2 desta proposição, obtemos $\lambda u + (-\lambda)u = (\lambda + (-\lambda))u = 0u = 0$. Pela observação 1.0.2, $-(\lambda u) = (-\lambda)u$. Analogamente, utilizando-se a propriedade EV7, mostra-se que $-(\lambda u) = \lambda(-u)$.

A prova dos outros resultados é deixada como exercício.

Subespaços Vetoriais

2.1 Introdução e Exemplos

Definição 2 Seja V um espaço vetorial. Dizemos que $W \subset V$ é um subespaço vetorial de V se forem satisfeitas as seguintes condições:

```
SE1 0 \in W;
SE2 Se~u,v \in W~ent\~ao~u+v \in W;
SE3 Se~u \in W~ent\~ao~\lambda u \in W~para~todo~\lambda \in \mathbb{R}.
```

Observação 2.0.3 Note que todo subespaço vetorial W de um espaço vetorial V é ele próprio um espaço vetorial. As propriedades comutativa, associativa, distributivas e EV8 são herdadas do próprio espaço vetorial V. O elemento neutro da adição é um elemento de W por SE1. Finalmente, se $u \in W$ então $-u = (-1)u \in W$ pelo item 4 da proposição 1 e por SE3.

Observação 2.0.4 Obviamente {0} e V são subespaços vetoriais do espaço vetorial V. São chamados de subespaços vetoriais triviais.

Observação 2.0.5 Note que W é subespaço vetorial de V se e somente se são válidas as seguintes condições:

```
SE1' 0 \in W;
SE2' Se \ u, v \in W \ e \ \lambda \in \mathbb{R} \ ent \ ao \ u + \lambda v \in W.
```

Vejamos alguns outros exemplos:

Exemplo 1 Seja $\mathcal{P}_n^* \subset \mathcal{P}_n$, dado por $\mathcal{P}_n^* = \{p(x) \in \mathcal{P}_n; p(0) = 0\}$.

Verifiquemos que \mathcal{P}_n^* é, de fato, um subespaço vetorial de \mathcal{P}_n .

- 1. O polinômio nulo se anula em x=0, logo, pertence a \mathcal{P}_n^* .
- 2. Se $p(x), q(x) \in \mathcal{P}_n^*$ então p(0) + q(0) = 0 e, portanto, $p(x) + q(x) \in \mathcal{P}_n^*$.
- 3. se $p(x) \in \mathcal{P}_n^*$ então $\lambda p(0) = 0$ para qualquer $\lambda \in \mathbb{R}$. Assim, $\lambda p(x) \in \mathcal{P}_n^*$.

Exemplo 2 Verifiquemos que $S = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}$ é um subespaço vetorial de \mathbb{R}^3 .

1. É claro que (0,0,0) satisfaz 0+0+0=0.

- 2. Se (x, y, z), $(u, v, w) \in S$ então (x + u) + (y + v) + (z + w) = (x + y + z) + (u + v + w) = 0 e, portanto, $(x, y, z) + (u, v, w) \in S$.
- 3. se $(x, y, z) \in \mathbb{S}$ então $\lambda x + \lambda y + \lambda z = \lambda (x + y + z) = 0$ para qualquer $\lambda \in \mathbb{R}$. Assim, $\lambda (x, y, z) \in S$.

Exemplo 3 Considere o seguinte conjunto $S = \{y \in C^2(\mathbb{R}); y'' - y = 0\}$ onde y'' representa a derivada de segunda ordem de y. Verifiquemos que S é um subespaço vetorial de $C^2(\mathbb{R})$.

- 1. Claramente a função nula satisfaz 0'' 0 = 0;
- 2. Se $y_1, y_2 \in S$ então $(y_1 + y_2)'' (y_1 + y_2) = (y_1'' y_1) (y_2'' y_2) = 0$. Logo, $y_1 + y_2 \in S$.
- 3. Se $y \in S$ e $\lambda \in \mathbb{R}$ então $(\lambda y)'' \lambda y = \lambda (y'' y) = 0$. Portanto, $\lambda y \in S$.

Deixamos como exercício a verificação de que os seguintes exemplos são subespaços vetoriais dos respectivos espaços vetoriais.

Exemplo 4 Sejam $a_1, \ldots, a_n \in \mathbb{R}$ e $S = \{(x_1, \ldots, x_n) \in \mathbb{R}^n; a_1x_1 + \cdots + a_nx_n = 0\}$. Mostre que S \acute{e} um subespaço vetorial de \mathbb{R}^n .

Exemplo 5 O conjunto das funções contínuas da reta na reta, $C(\mathbb{R})$, é um subespaço vetorial de $\mathcal{F}(\mathbb{R})$.

Exemplo 6 O conjunto das matrizes simétricas quadradas de ordem m com coeficientes reais é um subespaço vetorial de $M_m(\mathbb{R})$.

Exemplo 7 Sejam $m, n \in \mathbb{N}$ com $m \leq n$. Então \mathcal{P}_m é um subespaço de \mathcal{P}_n .

2.2 Propriedades

Proposição 2 Sejam U e W subespaços vetoriais de V. então $U \cap W$ é subespaço vetorial de V.

Prova:

- 1. Como $0 \in U$ e $0 \in W$ então $0 \in U \cap W$;
- 2. Se $x, y \in U \cap W$ e $\lambda \in \mathbb{R}$ então $x + \lambda y \in U$ e $x + \lambda y \in W$. Portanto, $x + \lambda y \in U \cap W$.

Questão: Com as condições acima, podemos afirmar que $U \cup W$ é subespaço vetorial de V? Resposta: Não. Basta considerar $V = \mathbb{R}^2$, $U = \{(x,y) \in \mathbb{R}^2; x+y=0\}$ e $W = \{(x,y) \in \mathbb{R}^2; x-y=0\}$. Note que $(1,-1) \in U \subset U \cup W$ e $(1,1) \in W \subset U \cup W$ mas $(1,-1)+(1,1)=(2,0) \notin U \cup W$.

Definição 3 Sejam U e W subespaços vetoriais de um espaço vetorial V. Definimos a soma de U e W como $U + W = \{u + w; u \in U, w \in W\}$.

Proposição 3 Sejam U, W e V como na definição acima. Então U + W é um subespaço vetorial de V.

Prova:

- 1. Como $0 \in U$ e $0 \in W$ então $0 = 0 + 0 \in U + W$;
- 2. Sejam $x_1, x_2 \in U + W$ então $x_j = u_j + w_j, \ u_j \in U, \ w_j \in W, \ j = 1, 2$. Agora, se $\lambda \in \mathbb{R}$ então $x_1 + \lambda x_2 = u_1 + w_1 + \lambda (u_2 + w_2) = (u_1 + \lambda u_2) + (w_1 + \lambda w_2) \in U + W$, pois U e W são subespaços vetoriais.

2.2. PROPRIEDADES 11

Proposição 4 Sejam U e W subespaços vetoriais de um espaço vetorial V. Então $U \cup W \subset U + W$.

Prova: Seja $v \in U \cup W$. Se $v \in U$ então $v = v + 0 \in U + W$. Se $v \in W$ então $v = 0 + v \in U + W$. Ou seja, $U \cup W \subset U + W$.

Definição 4 Sejam U e W subespaços vetoriais de um espaço vetorial V. Dizemos que U+W é a soma direta de U e W se $U \cap W = \{0\}$. Neste caso usaremos a notação $U \oplus W$ para representar U+W.

Observação 2.0.6 Note que trivialmente $0 \in U \cap W$ se U e W são subespaços vetoriais.

Proposição 5 Sejam U, W subespaços vetoriais de um espaço vetorial V. Temos $V = U \oplus W$ se e somente se para cada $v \in V$ existirem um único $u \in U$ e um único $w \in W$ satisfazendo v = u + w.

Prova: Suponha que $V = U \oplus W$, isto é, V = U + W e $U \cap W = \{0\}$. Então, dado $v \in V$ existem $u \in U$ e $w \in W$ satisfazendo v = u + w. Queremos mostrar que tal decomposição é única. Suponha que existam $u' \in U$ e $w' \in W$ tais que v = u' + w'. Então, u + w = u' + w', o que implica em u - u' = w' - w. Mas $u - u' \in U$ e $w' - w \in W$ e, portanto, $u - u' = w' - w \in U \cap W = \{0\}$, ou seja u = u' e w = w'.

Suponha agora que para cada $v \in V$ existam um único $u \in U$ e um único $w \in W$ satisfazendo v = u + w. É claro que V = U + W. Resta mostrar que $U \cap W = \{0\}$. Obviamente, $0 \in U \cap W$. Seja $v \in U \cap W$, isto é, $v \in U$ e $v \in W$. Então, existem um único $u \in U$ e um único $v \in W$ satisfazendo v = u + w. Observe que v = u + w = (u + v) + (w - v) com $v = u + v \in W$ e, pela unicidade da decomposição, devemos ter v = u + v e v = v + v isto é, v = v logo, v = v e. Logo, v = v e v = v e v = v e v = v e v = v e v = v e. Logo, v = v e

Alternativamente, poderíamos supor a existência de $v \neq 0$ em $U \cap W$ e daí obteríamos v = 2v - v = 4v - 3v, duas decomposições distintas para v já que $2v, 4v \in U$, $2v \neq 4v$ e $-v, -3v \in W$.

Exemplo 8 Verifique que \mathbb{R}^3 é a soma direta de $U = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}$ e $W = \{(x, y, z) \in \mathbb{R}^3; x = y = 0\}$.

Note que W é de fato um subespaço vetorial de \mathbb{R}^3 pois $W = \{(x, y, z) \in \mathbb{R}^3; x = 0\} \cap \{(x, y, z) \in \mathbb{R}^3; y = 0\}$. Dado $(x, y, z) \in \mathbb{R}^3$ podemos escrever

$$(x, y, z) = (x, y, -x - y) + (0, 0, z + x + y)$$

e como $(x, y, -x - y) \in U$ e $(0, 0, z + x + y) \in W$ obtemos $\mathbb{R}^3 = U + W$. Resta agora mostrar que $U \cap W = \{0\}$. Seja $(x, y, z) \in U \cap W$. Temos

$$\begin{cases} x+y+z=0\\ x=0\\ y=0 \end{cases} \iff (x,y,z)=(0,0,0).$$

Definição 5 Sejam U_1, \ldots, U_n subespaços vetoriais de um espaço vetorial V. A soma de U_1 a U_n é definida por

$$U_1 + \dots + U_n = \{u_1 + \dots + u_n; u_j \in U_j, j = 1, \dots, n\}.$$

Definição 6 Sejam U_1, \ldots, U_n subespaços vetoriais de um espaço vetorial V. Dizemos que a soma de U_1 a U_n é uma soma direta se

$$U_i \cap (U_1 + \dots + U_{i-1} + U_{i+1} + \dots + U_n) = \{0\}, \quad j = 1, \dots n.$$

Neste caso usaremos a notação $U_1 \oplus \cdots \oplus U_n$ para denotar a soma de U_1 a U_n .

Observação 2.0.7 É óbvio que $0 \in U_j \cap (U_1 + \cdots + U_{j-1} + U_{j+1} + \cdots + U_n)$ se U_1, \dots, U_n são subespaços vetoriais.

Proposição 6 Sejam U_1, \ldots, U_n subespaços vetoriais de um espaço vetorial V. Então $V = U_1 \oplus \cdots \oplus U_n$ se e somente se para cada $v \in V$ existe, para cada $j = 1, \ldots, n$, um único $u_j \in U_j$ tal que $v = u_1 + \cdots + u_n$.

Prova: A prova é análoga à da proposição 5.

Exemplo 9 Mostre que \mathcal{P}_2 é soma direta dos seguintes subespaços vetoriais $U_1 = \{a_0; a_0 \in \mathbb{R}\}, U_2 = \{a_1x; a_1 \in \mathbb{R}\}\ e\ U_3 = \{a_2x^2; a_2 \in \mathbb{R}\}.$

Dado $p(x) \in \mathcal{P}_2$, temos $p(x) = a_0 + a_1x + a_2x^2$, para certos coeficientes $a_0, a_1, a_2 \in \mathbb{R}$. Assim, $\mathcal{P}_2 = U_1 + U_2 + U_3$.

Verifiquemos que a soma é direta.

- 1. Mostremos que $U_1 \cap (U_2 + U_3) = \{0\}$. Seja $p(x) \in U_1 \cap (U_2 + U_3)$. Então existem $a_0, a_1, a_2 \in \mathbb{R}$ tais que $p(x) = a_0 = a_1 x + a_2 x^2$. Se p(x) não fosse o polinômio nulo teríamos um polinômio de grau 0, a_0 , coincidindo com um de grau no mínimo 1, $a_1 x + a_2 x^2$, o que é um absurdo. Logo, p(x) = 0.
- 2. Mostremos que $U_2 \cap (U_1 + U_3) = \{0\}$. Seja $p(x) \in U_2 \cap (U_1 + U_3)$. Então existem $a_0, a_1, a_2 \in \mathbb{R}$ tais que $p(x) = a_1 x = a_0 + a_2 x^2$. Se p(x) não fosse o polinômio nulo teríamos um polinômio de grau 1, $a_1 x$, coincidindo com um de grau 0 (caso $a_2 = 0$) ou 2, $a_0 + a_2 x^2$, (caso $a_2 \neq 0$), o que é um absurdo. Logo, p(x) = 0.
- 3. Mostremos que $U_3 \cap (U_1 + U_2) = \{0\}$. Seja $p(x) \in U_3 \cap (U_1 + U_2)$. Então existem $a_0, a_1, a_2 \in \mathbb{R}$ tais que $p(x) = a_2 x^2 = a_0 + a_1 x$. Se p(x) não fosse o polinômio nulo teríamos um polinômio de grau 2, $a_2 x^2$, coincidindo com um de grau 0 (caso $a_1 = 0$) ou 1, $a_0 + a_1 x$, (caso $a_1 \neq 0$), o que é um absurdo. Logo, p(x) = 0.

Combinações Lineares

3.1 Definição e Exemplos

Definição 7 Sejam u_1, \ldots, u_n elementos de um espaço vetorial V. Dizemos que u é combinação linear de u_1, \ldots, u_n se existirem números reais $\alpha_1, \ldots, \alpha_n$ tais que $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$

Exemplo 10 Em \mathcal{P}_2 , o polinômio $p(x) = 2 + x^2$ é uma combinação dos polinômios $p_1(x) = 1$, $p_2(x) = x$ e $p_3(x) = x^2$.

Basta ver que $p(x) = 2p_1(x) + 0p_2(x) + p_3(x)$.

Exemplo 11 Verifique que em \mathcal{P}_2 , o polinômio $p(x) = 1 + x^2$ é uma combinação dos polinômios $q_1(x) = 1$, $q_2(x) = 1 + x$ e $q_3(x) = 1 + x + x^2$.

Precisamos encontrar números reais α, β e γ tais que $p(x) = \alpha q_1(x) + \beta q_2(x) + \gamma q_3(x)$. Ou seja, precisamos encontrar α, β e γ satisfazendo

$$1 + x^{2} = \alpha + \beta(1 + x) + \gamma(1 + x + x^{2}) = \alpha + \beta + \gamma + (\beta + \gamma)x + \gamma x^{2},$$

que é equivalente ao sistema

$$\begin{cases} \alpha + \beta + \gamma = 1 \\ \beta + \gamma = 0 \\ \gamma = 1 \end{cases} \iff \alpha = 1, \beta = -1 \text{ e } \gamma = 1.$$

3.2 Geradores

Definição 8 Sejam V um espaço vetorial e S um subconjunto não vazio de V. Usaremos o símbolo [S] para denotar o conjunto de todas as combinações lineares dos elementos de S. Em outras palavras, $u \in [S]$ se existirem $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ e $u_1, \ldots, u_n \in S$ tais que $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$.

Proposição 7 Sejam V um espaço vetorial e S um subconjunto não vazio de V. Então [S] é um subespaço vetorial de V.

Prova:

1. Como $S \neq \emptyset$ existe $u \in S$. Logo, $0 = 0u \in [S]$.

2. Se $u, v \in [S]$ então existem $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \in \mathbb{R}$ e $u_1, \ldots, u_n, v_1, \ldots, v_m \in S$ tais que $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$ e $v = \beta_1 v_1 + \cdots + \beta_m v_m$. Assim, para todo $\lambda \in \mathbb{R}$, temos

$$u + \lambda v = \alpha_1 u_1 + \dots + \alpha_n u_n + \lambda (\beta_1 v_1 + \dots + \beta_m v_m)$$

$$= \alpha_1 u_1 + \dots + \alpha_n u_n + \lambda \beta_1 v_1 + \dots + \lambda \beta_m v_m \in [S].$$

Definição 9 Sejam S e V como acima. Diremos que [S] é o subespaço vetorial gerado por S. Os elementos de S são chamados de geradores de [S]. Se $S = \{u_1, \ldots, u_n\}$ também usaremos a notação $[S] = [u_1, \ldots, u_n]$.

Proposição 8 Sejam S e T subconjuntos não-vazios de um espaço vetorial V. Temos

- 1. $S \subset [S]$;
- 2. Se $S \subset T$ então $[S] \subset [T]$;
- 3. [[S]] = [S];
- 4. Se S é um subespaço vetorial então S = [S];
- 5. $[S \cup T] = [S] + [T]$.

Prova:

- 1. Se $u \in S$ então $u = 1u \in [S]$;
- 2. Se $u \in [S]$ então existem $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ e $u_1, \ldots, u_n \in S$ tais que $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$. Como $S \subset T$ temos $u_1, \ldots, u_n \in T$ e, portanto, $u \in [T]$;
- 3. Pelo item 1 desta proposição, $[S] \subset [[S]]$. Seja $u \in [[S]]$. Segue da definição que u é uma combinação linear de elementos de [S], mas como cada elemento de [S] é uma combinação linear de elementos de S resulta que u é uma combinação linear de elementos de S, ou seja, $u \in [S]$;
- 4. Pelo item 1, $S \subset [S]$. Seja $u \in [S]$. Então u é uma combinação linear de elementos de S. Como S é um subespaço vetorial, esta combinação linear é um elemento de S;
- 5. Seja $u \in [S \cup T]$. Por definição, existem $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \in \mathbb{R}$ e $u_1, \ldots, u_n \in S$ e $v_1, \ldots, v_m \in T$ tais que

$$u = \alpha_1 u_1 + \dots + \alpha_n u_n + \beta_1 v_1 + \dots + \beta_m v_m$$
$$= (\alpha_1 u_1 + \dots + \alpha_n u_n) + (\beta_1 v_1 + \dots + \beta_m v_m) \in [S] + [T].$$

Reciprocamente, se $u \in [S] + [T]$ então u = v + w com $v \in [S]$ e $w \in [T]$. Dessa forma, existem $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q \in \mathbb{R}$ e $v_1, \ldots, v_p \in S$ e $w_1, \ldots, w_q \in T$ tais que

$$u = v + w = \alpha_1 v_1 + \dots + \alpha_n v_n + \beta_1 w_1 + \dots + \beta_n w_n \in [S \cup T].$$

Definição 10 Dizemos que um espaço vetorial V é finitamente gerado se existir um subconjunto finito $S \subset V$ tal que V = [S].

São exemplos de espaços vetoriais finitamente gerados:

- 1. $\mathcal{P}_n(\mathbb{R}) = [1, x, \dots, x^n];$
- 2. \mathbb{R}^n é gerado por $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1).$

3.2. GERADORES 15

3. $M_{m \times n}(\mathcal{R})$ é gerado pelas matrizes $E_{kl} = (\delta_{i,j}^{(k,l)}), k = 1, \ldots, m, l = 1, \ldots, n,$ onde

$$\delta_{i,j}^{(k,l)} = \begin{cases} 1 & \text{se } (i,j) = (k,l) \\ 0 & \text{caso contrário} \end{cases}$$

Exemplo 12 Seja $\mathcal{P}(\mathbb{R})$ o espaço vetorial formado por todos os polinômios. Afirmamos que $\mathcal{P}(\mathbb{R})$ não é finitamente gerado.

Note que $\mathcal{P}_n(\mathbb{R}) \subset \mathcal{P}(\mathbb{R})$ para todo $n \in \mathbb{N}$. Se $\mathcal{P}(\mathbb{R})$ fosse finitamente gerado existiriam polinômios $p_1(x), \ldots, p_n(x)$ tais que $\mathcal{P}(\mathbb{R}) = [p_1(x), \ldots, p_n(x)]$. Seja N o grau mais alto dentre os polinômios $p_1(x), \ldots, p_n(x)$. É evidente que x^{N+1} não pode ser escrito como combinação linear de $p_1(x), \ldots, p_n(x)$ e, assim, $x^{N+1} \notin [p_1(x), \ldots, p_n(x)] = \mathcal{P}(\mathbb{R})$. Uma contradição.

Exemplo 13 Seja V um espaço vetorial gerado por u_1, \ldots, u_n . Mostre que se, por exemplo, u_1 é uma combinação linear de u_2, \ldots, u_n então V é gerado por u_2, \ldots, u_n .

Devemos mostrar que todo $u \in V$ se escreve como uma combinação linear de u_2, \ldots, u_n . Sabemos que existem $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tais que $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$ e existem também $\beta_1, \ldots, \beta_{n-1}$ satisfazendo $u_1 = \beta_1 u_2 + \cdots + \beta_{n-1} u_n$. Combinando estas informações, obtemos

$$u = \alpha_1(\beta_1 u_2 + \dots + \beta_{n-1} u_n) + \alpha_2 u_2 + \dots + \alpha_n u_n$$

= $(\alpha_1 \beta_1 + \alpha_2) u_2 + \dots + (\alpha_1 \beta_{n-1} + \alpha_n) u_n \in [u_2, \dots, u_n].$

Exemplo 14 Sejam $U = \{(x, y, z, t) \in \mathbb{R}^4; x - y + t + z = 0\}$ $e V = \{(x, y, z, t) \in \mathbb{R}^4; x + y - t + z = 0\}$. Encontre um conjunto de geradores para os seguintes subespaços vetoriais: $U, V, U \cap V$ e U + V.

1. Se $(x, y, z, t) \in U$ então y = x + z + t e, portanto,

$$(x, y, z, t) = (x, x + z + t, z, t) = x(1, 1, 0, 0) + z(0, 1, 1, 0) + t(0, 1, 0, 1),$$

isto é,

$$U = [(1, 1, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1)].$$

2. Se $(x, y, z, t) \in V$ então t = x + y + z e, portanto,

$$(x, y, z, t) = (x, y, z, x + y + z) = x(1, 0, 0, 1) + y(0, 1, 0, 1) + z(0, 0, 1, 1),$$

isto é,

$$V = [(1,0,0,1), (0,1,0,1), (0,0,1,1)].$$

3. Se $(x, y, z, t) \in U \cap V$ então

$$\begin{cases} x - y + t + z = 0 \\ x + y - t + z = 0, \end{cases}$$

que implica em x = -z e y = t. Desse modo, (x, y, z, t) = (x, y, -x, y) = x(1, 0, -1, 0) + y(0, 1, 0, 1) e, portanto,

$$U \cap V = [(1, 0, -1, 0), (0, 1, 0, 1)].$$

4. Como $U + V = [U] + [V] = [U \cup V]$, temos que

$$U + V = [(1, 1, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1),$$
$$(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)]$$

$$=[(1,1,0,0),(0,1,1,0),(0,1,0,1),(1,0,0,1),(0,0,1,1)].$$

Observe que

$$(1,1,0,0) = (1,0,0,1) + (0,1,1,0) - (0,0,1,1)$$

e, portanto,

$$U + V = [(0, 1, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (0, 0, 1, 1)].$$

Veremos mais adiante que este é o número mínimo de geradores para o subespaço U+V.

Dependência Linear

4.1 Definição e Exemplos

Definição 11 Dizemos que uma seqüência de vetores u_1, \ldots, u_n de um espaço vetorial V é linearmente independente (l.i., abreviadamente) se a combinação linear $\alpha_1 u_1 + \cdots + \alpha_n u_n = 0$ só for satisfeita quando $\alpha_1 = \cdots = \alpha_n = 0$.

Observação 4.0.8 Note que se $\alpha_1 = \cdots = \alpha_n = 0$ então $\alpha_1 u_1 + \cdots + \alpha_n u_n = 0$, porém, a recíproca nem sempre é válida. Basta ver que, por exemplo, em \mathbb{R}^2 temos (0,0) = (1,1) + (-1,-1).

Observação 4.0.9 A definição de independência linear para a seqüência u_1, \ldots, u_n é equivalente a dizer que se $\beta_i \neq 0$ para algum $i \in \{1, \ldots, n\}$ então $\beta_1 u_1 + \cdots + \beta_n u_n \neq 0$.

Definição 12 Dizemos que uma sequência u_1, \ldots, u_n de um espaço vetorial V é linearmente dependente (l.d., abreviadamente) se não for linearmente independente.

Observação 4.0.10 A definição de dependência linear para a seqüência u_1, \ldots, u_n é equivalente a dizer que é possível encontrar números reais $\alpha_1, \ldots, \alpha_n$ não todos nulos tais que $\alpha_1 u_1 + \cdots + \alpha_n u_n = 0$.

Exemplo 15 $O, u_1, \ldots, u_n \subset V$ é uma seqüência l.d., onde O é o elemento neutro do espaço vetorial V.

Basta verificar que $1O + 0u_1 + \cdots + 0u_n = O$.

Exemplo 16 Verifique se a seqüência (1,1,1), (1,1,0), (1,0,0) é linearmente independente em \mathbb{R}^3 .

É preciso verificar quais são as possíveis soluções de

$$\alpha(1,1,1) + \beta(1,1,0) + \gamma(1,0,0) = (0,0,0).$$

Isto equivale a resolver o sistema

$$\begin{cases} \alpha + \beta + \gamma = 0 \\ \alpha + \beta = 0 \\ \gamma = 0, \end{cases}$$

que possui como única solução, $\alpha=\beta=\gamma=0$. Logo, a seqüência acima é l.i..

Exemplo 17 Considere os vetores em \mathbb{R}^3 dados por $u_1 = (x_1, y_1, z_1)$, $u_2 = (x_2, y_2, z_2)$ e $u_3 = (x_3, y_3, z_3)$. Encontre uma condição necessária e suficiente para que os vetores u_1, u_2, u_3 sejam linearmente independentes.

Vejamos, os vetores acima serão l.i. se e somente se $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = 0$ apresentar como única solução $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Isto é equivalente a que o sistema

$$\begin{cases} \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0 \\ \alpha_1 y_1 + \alpha_2 y_2 + \alpha_3 y_3 = 0 \\ \alpha_1 z_1 + \alpha_2 z_2 + \alpha_3 z_3 = 0 \end{cases}$$

possua solução única e, como se sabe, isto é equivalente que a matriz

$$\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$

possua determinante diferente de zero. Note que as colunas desta matriz são formadas pelos coeficientes de u_1, u_2 e u_3 . O mesmo resultado vale se colocarmos os coeficientes dos vetores u_1, u_2 e u_3 como linhas. Por quê?

Exercício 1 Enuncie e demonstre um resultado análogo ao exemplo anterior para uma seqüência com n vetores do \mathbb{R}^n .

Exemplo 18 Verifique se as matrizes

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

são linearmente independentes em $M_2(\mathbb{R})$.

Procuremos as soluções de

$$\alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \beta \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

que equivale a

$$\begin{pmatrix} \alpha + \beta & \beta + \gamma \\ 0 & \alpha + \beta \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

que possui como solução $(\alpha, \beta, \gamma) = (\alpha, -\alpha, \alpha)$ para qualquer $\alpha \in \mathbb{R}$. Dessa forma, a seqüência de matrizes dada é linearmente dependente, bastando tomar, por exemplo, $\alpha = 1$, $\beta = -1$ e $\gamma = 1$.

Exemplo 19 Verifique se as funções cos e sen são l.d. em $C^1(\mathbb{R};\mathbb{R})$.

Como cos e sen são funções definidas em \mathbb{R} , a combinação nula

$$\alpha \cos + \beta \sin = 0$$

significa que $\alpha \cos x + \beta \sin x = 0$ para todo $x \in \mathbb{R}$. Em particular, para x = 0 vemos que $\alpha = 0$ e para $x = \pi/2$, vem $\beta = 0$. Portanto, cos e sen são l.i..

Exemplo 20 Verifique se as funções \cos^2 , \sin^2 , 1 são l.d. em $C^1(\mathbb{R}; \mathbb{R})$.

Como

$$1 - \cos^2 x - \sin^2 x = 0, \quad \text{para todo } x \in \mathbb{R},$$

resulta que as funções acima são l.d..

Exercício 2 Sejam $f(x) = \cos 2x$, $g(x) = \cos^2 x$ e $h(x) = \sin^2 x$, $x \in \mathbb{R}$. Mostre que f, g, h são linearmente dependentes em $C^1(\mathbb{R}; \mathbb{R})$.

4.2. PROPRIEDADES 19

4.2 Propriedades

Proposição 9 Se u_1, \ldots, u_n são l.d. em um espaço vetorial V então existem $j \in \{1, \ldots, n\}$ e números reais $\alpha_1, \ldots, \alpha_{n-1}$ tais que

$$u_j = \alpha_1 u_1 + \dots + \alpha_{j-1} u_{j-1} + \alpha_j u_{j+1} + \dots + \alpha_{n-1} u_n.$$

Prova: Como u_1, \ldots, u_n são l.d. existem números reais β_1, \ldots, β_n não todos nulos tais que $\beta_1 u_1 + \cdots + \beta_n u_n = 0$. Desse modo, existe $j \in \{1, \ldots, n\}$ tal que $\beta_j \neq 0$ e, assim,

$$u_j = -\frac{\beta_1}{\beta_j} u_1 - \dots - \frac{\beta_{j-1}}{\beta_j} u_{j-1} - \frac{\beta_{j+1}}{\beta_j} u_{j+1} - \dots - \frac{\beta_n}{\beta_j} u_n.$$

Proposição 10 Se u_1, \ldots, u_n são linearmente dependentes em um espaço vetorial V então u_1, \ldots, u_n , u_{n+1}, \ldots, u_m também são linearmente dependentes.

Prova: Como existem números reais β_1, \ldots, β_n não todos nulos tais que $\beta_1 u_1 + \cdots + \beta_n u_n = 0$, podemos escrever

$$\beta_1 u_1 + \dots + \beta_n u_n + 0 u_{n+1} + \dots + 0 u_m = 0$$

sendo que nesta última expressão nem todos os coeficientes são nulos.

Proposição 11 $Se\ u_1, \ldots, u_n, u_{n+1}, \ldots, u_m$ são l.i. em um espaço vetorial V então u_1, \ldots, u_n também são.

Prova: Suponha que $\beta_1 u_1 + \cdots + \beta_n u_n = 0$. Mas como

$$\beta_1 u_1 + \dots + \beta_n u_n = \beta_1 u_1 + \dots + \beta_n u_n + 0 u_{n+1} + \dots + 0 u_m = 0$$

e estes vetores são l.i., segue que $\beta_1 = \cdots = \beta_n = 0$.

Proposição 12 Se u_1, \ldots, u_n são l.i. em um espaço vetorial V e $u_1, \ldots, u_n, u_{n+1}$ são l.d. então u_{n+1} é combinação linear de u_1, \ldots, u_n .

Prova: Existem $\beta_1, \ldots, \beta_{n+1}$ não todos nulos tais que

$$\beta_1 u_1 \cdots + \beta_n u_n + \beta_{n+1} u_{n+1} = 0.$$

Agora, se $\beta_{n+1} = 0$ então a expressão acima ficaria

$$\beta_1 u_1 \cdots + \beta_n u_n = 0.$$

Ora, os vetores u_1, \ldots, u_n são l.i. e, assim, deveríamos ter também $\beta_1 = \cdots = \beta_n = 0$. Uma contradição.

Proposição 13 Sejam u_1, \ldots, u_n vetores l.i. em um espaço vetorial V. Se $\alpha_1 u_1 + \cdots + \alpha_n u_n = \beta_1 u_1 + \cdots + \beta_n u_n$ então $\alpha_j = \beta_j, j = 1, \ldots, n$.

Prova: Temos

$$(\alpha_1 - \beta_1)u_1 + \dots + (\alpha_n - \beta_n)u_n = 0$$

e como u_1, \ldots, u_n são l.i. então $\alpha_j - \beta_j = 0$, isto é $\alpha_j = \beta_j$, para todo $j = 1, \ldots, n$.

Base e Dimensão

5.1 Base

Definição 13 Seja $V \neq \{0\}$ um espaço vetorial finitamente gerado. Uma base de V é uma seqüência de vetores linearmente independentes B de V que também gera V.

Exemplo 21 Os vetores de $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ formam uma base de \mathbb{R}^3 .

Vê-se facilmente que os vetores de B são l.i. e que todo $(x, y, z) \in \mathbb{R}^3$ se escreve como (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

Exemplo 22 Os vetores $e_1, \dots, e_n \in \mathbb{R}^n$ onde $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$ formam uma base de \mathbb{R}^n .

Exemplo 23 (1,1) e(1,-1) formam uma base $de \mathbb{R}^2$.

É preciso mostrar que estes vetores são l.i. e que todo ponto de \mathbb{R}^2 se escreve como combinação linear de (1,1) e (1,-1). No entanto, se mostrarmos que todo ponto de \mathbb{R}^2 se escreve de maneira única como combinação linear de (1,1) e (1,-1) já estaremos mostrando as duas propriedades ao mesmo tempo. (Por quê?)

Seja $(x,y) \in \mathbb{R}^2$. O nosso problema se resume em mostrar que existe um único $\alpha \in \mathbb{R}$ e um único $\beta \in \mathbb{R}$ satisfazendo $(x,y) = \alpha(1,1) + \beta(1,-1) = (\alpha + \beta, \alpha - \beta)$. Esta última expressão é equivalente ao seguinte sistema linear

$$\begin{cases} \alpha + \beta = x \\ \alpha - \beta = y. \end{cases}$$

Resolvendo o sistema obtemos uma única solução dada por $\alpha = (x+y)/2$ e $\beta = (x-y)/2$.

Exemplo 24 As matrizes em $B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ formam uma base para $M_2(\mathbb{R})$.

Exercício 3 Verifique se os elementos de $B = \{1 + x, 1 - x, 1 - x^2\}$ formam uma base de $\mathcal{P}_2(\mathbb{R})$.

Teorema 1 Todo espaço vetorial $V \neq \{0\}$ finitamente gerado admite uma base. Em outras palavras, há uma seqüência de vetores l.i. de V formada por geradores.

Prova: Como $V \neq \{0\}$ é finitamente gerado existem $u_1, \ldots, u_n \in V$ tais que $V = [u_1, \ldots, u_n]$. Se u_1, \ldots, u_n forem l.i., então esta seqüência é uma base de V e não há nada mais a ser provado.

Suponhamos que u_1, \ldots, u_n sejam l.d.. Podemos supor que $u_j \neq 0, j = 1, \ldots, m$. Como $u_1 \neq 0, u_1$ é l.i. Agora, se todo $u_j, j = 2, \ldots, n$ puder se escrever como combinação linear de u_1 então $V = [u_1]$ e u_1 é

uma base de V. Caso isto não ocorra, é porque existe algum u_j , com $2 \le j \le n$ tal que u_1, u_j são l.i.. Por simplicidade, suponhamos que seja o u_2 , isto é, u_1, u_2 são l.i.. Bem, se todos os vetores u_3, \ldots, u_n forem combinações lineares de u_1 e u_2 então $V = [u_1, u_2]$ e u_1, u_2 formam uma base de V. Podemos repetir este processo e como o número de elementos de $L = \{u_1, \ldots, u_n\}$ é finito, ele finda. Desse modo, existe uma seqüência de vetores l.i. dentre os vetores L que gera V. Esta seqüência forma uma base de V.

5.2 Dimensão

Teorema 2 Em um espaço vetorial $V \neq \{0\}$ finitamente gerado toda base possui o mesmo número de elementos.

Prova: Sejam u_1, \ldots, u_n e v_1, \ldots, v_m bases de um espaço vetorial finitamente gerado V. Suponhamos que n > m e mostremos que isto implicará que u_1, \ldots, u_n são l.d., o que contraria o fato de formarem uma base. Como os vetores v_1, \ldots, v_m geram V podemos escrever para cada $1 \le j \le n$,

$$u_j = \alpha_{1j}v_1 + \dots + \alpha_{mj}v_m.$$

Assim, a combinação linear nula $x_1u_1 + \cdots + x_nu_n = 0$ é equivalente a

$$x_1\left(\sum_{i=1}^m \alpha_{i1}v_i\right) + \dots + x_n\left(\sum_{i=1}^m \alpha_{in}v_i\right) = 0,$$

ou ainda,

$$\left(\sum_{j=1}^{n} x_j \alpha_{1j}\right) v_1 + \dots + \left(\sum_{j=1}^{n} x_j \alpha_{mj}\right) v_m = 0.$$

Como v_1, \ldots, v_m são l.i. então $\sum_{j=1}^n x_j \alpha_{ij} = 0$ para todo $1 \le i \le n$. Estas m equações representam um sistema linear homogêneo com n incógnitas. Como n > m, existe uma solução não trivial, isto é, uma solução x_1, \ldots, x_n onde pelo menos um x_j é diferente de zero. Assim, u_1, \ldots, u_n são l.d., uma contradição.

Definição 14 Seja V um espaço vetorial finitamente gerado. Se $V = \{0\}$ definimos a dimensão de V como sendo 0. Se $V \neq \{0\}$ definimos a dimensão de V como sendo o número de elementos de uma base qualquer de V. Usaremos o símbolo dim V para designar a dimensão de V.

Definição 15 Se um espaço vetorial não é finitamente gerado dizemos que V possui dimensão infinita.

A seguinte proposição é um resultado da prova do teorema 2.

Proposição 14 Em um espaço vetorial de dimensão m qualquer seqüência de vetores com mais de m elementos é linearmente dependente.

Exemplo 25 dim $\mathbb{R}^n = n$.

Exemplo 26 A dimensão de $\mathcal{P}(\mathbb{R})$ é infinita. Veja o exemplo 12.

Exemplo 27 dim $\mathcal{P}_n(\mathbb{R}) = n + 1$.

Basta notar que os polinômios $1, x, \ldots, x^n$ formam uma base de $\mathcal{P}_n(\mathbb{R})$.

Exemplo 28 dim $M_{m \times n}(\mathbb{R}) = mn$.

Note que o as matrizes

$$A_{k,l} = (\delta_{i,j}^{k,l})_{\substack{1 \le i \le m \\ 1 \le j \le n}},$$

k = 1, ..., m, l = 1, ..., n onde

$$\delta_{i,j}^{k,l} = \begin{cases} 1 & \text{se } (i,j) = (k,l) \\ 0 & \text{se } (i,j) \neq (k,l) \end{cases}$$

formam uma base de $M_{m \times n}(\mathbb{R})$.

Exercício 4 A dimensão do espaço das matrizes quadradas e simétricas de ordem $n \in n(n+1)/2$.

Teorema 3 (Completamento) Seja V um espaço vetorial de dimensão n. Se u_1, \ldots, u_r são l.i. em V com r < n então existem u_{r+1}, \ldots, u_n tais que $u_1, \ldots, u_r, u_{r+1}, \ldots, u_n$ formam uma base de V.

Prova: Como r < n existe $u_{r+1} \in V$ tal que $u_1, \ldots, u_r, u_{r+1}$ são l.i., pois caso contrário os vetores u_1, \ldots, u_r formariam uma base de V, o que é impossível pois dim V = n > r.

Se r+1=n então u_1,\ldots,u_r,u_{r+1} formam uma base de V que contém L.

Se r+1 < n então é possível encontrar $u_{r+2} \in V$ tal que $u_1, \ldots, u_r, u_{r+1}, u_{r+2}$ são l.i., pois caso contrário a seqüência $u_1, \ldots, u_r, u_{r+1}$ seria uma base de V, o que é impossível pois dim V = n > r+1.

Repetindo os argumentos acima, encontramos vetores $u_{r+1}, u_{r+2}, \ldots, u_{r+k}$, onde r+k=n, de forma que

$$u_1, \ldots, u_r, u_{r+1}, \ldots, u_{r+k}$$

são l.i. e, como dim V=n=r+k, segue que esta seqüência de vetores é uma base de V que contém os vetores u_1,\ldots,u_r .

Exemplo 29 Encontre uma base do \mathbb{R}^3 que contenha o vetor (1, 1, -1).

Como a dimensão de \mathbb{R}^3 é três, precisamos encontrar dois vetores, (a,b,c), (x,y,z), que juntamente com (1,1,-1) sejam l.i.. Porém, pelo exemplo 17, sabemos que isto é equivalente ao determinante de

$$\begin{pmatrix} 1 & a & x \\ 1 & b & y \\ -1 & c & z \end{pmatrix}$$

que é seja diferente de zero. Há uma infinidade de possibilidades para que isto aconteça. Por exemplo, tomando (a, b, c) = (0, 1, 1) e (x, y, z) = (0, 0, 1).

Proposição 15 Seja U um subespaço vetorial de um espaço vetorial de dimensão finita V. Se $\dim U = \dim V$ então U = V.

Prova: Sejam u_1, \ldots, u_n vetores que formam uma base de U. Temos $U = [u_1, \ldots, u_n]$. Como $n = \dim U = \dim V$, vemos que para qualquer $v \in V$, a seqüência u_1, \ldots, u_n, v é l.d. pela proposição 14, porém, como u_1, \ldots, u_n são l.i., segue-se que v é uma combinação linear destes vetores. Desse modo, todo elemento de V se escreve como combinação linear de u_1, \ldots, u_n . Ou seja, $V = [u_1, \ldots, u_n] = U$.

5.3 Dimensão de Soma de Subespaços Vetoriais

Proposição 16 Seja V um espaço vetorial de dimensão finita. Se U e W são subespaços vetoriais de V então

$$\dim (U \cap W) + \dim (U + W) = \dim U + \dim W \tag{5.1}$$

Prova: Note primeiramente que todo subespaço de um espaço vetorial de dimensão finita tem também dimensão finita.

Sejam v_1, \ldots, v_m elementos de uma base de $U \cap W$. Como estes vetores são l.i. e pertencem a U, pelo teorema 3, existem $u_1, \ldots, u_p \in U$ tais que $u_1, \ldots, u_p, v_1, \ldots, v_m$ formam uma base de U. Por outro lado, v_1, \ldots, v_m também pertencem a W e pelo mesmo teorema é possível encontrar $w_1, \ldots, w_q \in W$ de modo que $w_1, \ldots, w_q, v_1, \ldots, v_m$ formem uma base de W.

Com a notação usada, temos $\dim(U \cap W) = m$, $\dim U = m + p$ e $\dim W = m + q$. Sendo assim, a fim de mostrarmos que 5.1 é válida, é necessário e, na verdade, suficiente mostrar que $\dim(U + W) = m + p + q$. Para tanto, basta mostrarmos que os vetores

$$u_1, \dots, u_p, w_1, \dots, w_q, v_1, \dots, v_m \tag{5.2}$$

formam uma base de U + W.

Mostremos primeiramente que eles geram U+W: dado $v\in U+W$ existem $u\in U$ e $w\in W$ tais que v=u+w. Usando as bases tomadas acima de U e W podemos escrever

$$u = \alpha_1 u_1 + \dots + \alpha_p u_p + \alpha_{p+1} v_1 + \dots + \alpha_{p+m} v_m$$

е

$$w = \beta_1 w_1 + \dots + \beta_q w_q + \beta_{q+1} v_1 + \dots + \beta_{q+m} v_m,$$

onde $\alpha_1, \ldots, \alpha_{p+m}, \beta_1, \ldots, \beta_{q+m} \in \mathbb{R}$. Somando as duas últimas equações obtemos

$$v = \alpha_1 u_1 + \dots + \alpha_p u_p + \beta_1 w_1 + \dots + \beta_q w_q + (\alpha_{p+1} + \beta_{q+1}) v_1 + \dots + (\alpha_{p+m} + \beta_{q+m}) v_m$$

mostrando que os vetores de 5.2 geram U + W.

Verifiquemos que os vetores em 5.2 são l.i.. Suponha que

$$\alpha_1 u_1 + \dots + \alpha_n u_n + \beta_1 w_1 + \dots + \beta_n w_n + \delta_1 v_1 + \dots + \delta_m v_m = 0, \tag{5.3}$$

ou seja

$$\alpha_1 u_1 + \dots + \alpha_n u_n + \delta_1 v_1 + \dots + \delta_m v_m = -\beta_1 w_1 + \dots - \beta_n w_n.$$

Como $u_1, \ldots, u_p, v_1, \ldots, v_m$ são vetores de U e w_1, \ldots, w_q são vetores de W segue-se que

$$-\beta_1 w_1 - \dots - \beta_q w_q \in U \cap W = [v_1, \dots, v_m].$$

Consequentemente, existem $\gamma_1, \ldots, \gamma_m$ tais que

$$-\beta_1 w_1 - \dots - \beta_q w_q = \gamma_1 v_1 + \dots + \gamma_m v_m,$$

ou seja,

$$\beta_1 w_1 + \dots + \beta_a w_a + \gamma_1 v_1 + \dots + \gamma_m v_m = 0.$$

Como $w_1, \ldots, w_q, v_1, \ldots, v_m$ são l.i., pois formam uma base de W, segue-se que $\gamma_1 = \cdots = \gamma_m = \beta_1 = \cdots = \beta_q = 0$. Assim, a equação 5.3 se reduz a

$$\alpha_1 u_1 + \dots + \alpha_p u_p + \delta_1 v_1 + \dots + \delta_m v_m = 0$$

e como $u_1, \ldots, u_p, v_1, \ldots, v_m$ são l.i., pois formam uma base de U, segue-se que

$$\alpha_1 = \cdots = \alpha_p = \delta_1 = \cdots = \delta_m = 0,$$

donde se conclui que os vetores de 5.2 são l.i..

Observação 5.3.1 Note que se V, U e W são como na proposição 16 e se além do mais tivermos V = U + W e $\dim U + \dim W > \dim V$ então $U \cap W \neq \{0\}$, isto é, a soma U + W não é direta.

Bem, se fosse $U \cap W = \{0\}$ então pela proposição 16 teríamos

$$0 = \dim (U \cap W) = \dim U + \dim W - \dim (U + W)$$
$$= \dim U + \dim W - \dim V > 0,$$

um absurdo.

Exemplo 30 Sejam $U = \{p(x) \in \mathcal{P}_3(\mathbb{R}); p(0) = p(1) = 0\}$ $e \ V = \{p(x) \in \mathcal{P}_3(\mathbb{R}); p(-1) = 0\}$. Encontre uma base para $U, V, U \cap V$ $e \ U + V$.

U: Temos

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in U \iff p(0) = p(1) = 0$$

$$\iff \begin{cases} a_0 = 0 \\ a_0 + a_1 + a_2 + a_3 = 0 \end{cases}$$

$$\iff p(x) = -(a_2 + a_3)x + a_2 x^2 + a_3 x^3 = a_2(x^2 - x) + a_3(x^3 - x).$$

Desse modo, $U = [x^2 - x, x^3 - x]$ e estes polinômios são l.i. pois como cada um tem um grau distinto do outro, nenhum pode ser múltiplo do outro. Assim, $x^2 - x$ e $x^3 - x$ formam uma base de U.

V:

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in V$$

$$\iff p(-1) = 0 \iff a_0 - a_1 + a_2 - a_3 = 0$$

$$\iff p(x) = a_0 + (a_0 + a_2 - a_3)x + a_2 x^2 + a_3 x^3$$

$$= a_0 (1+x) + a_2 (x^2 + x) + a_3 (x^3 - x).$$

Desse modo, $V = [1 + x, x^2 + x, x^3 - x]$ e estes polinômios são l.i. pois como cada um tem um grau distinto do outro, nenhum pode ser uma combinação linear dos outros dois. Portanto, $1 + x, x^2 + x$ e $x^3 - x$ formam uma base de V.

 $U \cap V$:

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in U \cap V \iff \begin{cases} a_0 = 0 \\ a_0 + a_1 + a_2 + a_3 = 0 \\ a_0 - a_1 + a_2 - a_3 = 0 \end{cases}$$
$$\iff \begin{cases} a_0 = a_2 = 0 \\ a_1 = -a_3 \end{cases} \iff p(x) = -a_1(x^3 - x).$$

Logo, $x^3 - x$ é uma base de $U \cap V$.

U+V: Temos dim $(U+V)=2+3-1=4=\dim \mathcal{P}_3(\mathbb{R})$. Pela proposição 15 temos que $U+V=\mathcal{P}_3(\mathbb{R})$ e podemos tomar como base os polinômios $1,x,x^2$ e x^3 .

Exemplo 31 Voltemos ao exemplo 14. Sabemos que

$$\begin{array}{rcl} U &=& [(1,1,0,0),(0,1,1,0),(0,1,0,1)] \\ V &=& [(1,0,0,1),(0,1,0,1),(0,0,1,1)] \\ U \cap V &=& [(1,0,-1,0),(0,1,0,1)] \\ U + V &=& [(0,1,1,0),(0,1,0,1),(1,0,0,1),(0,0,1,1)] \end{array}$$

Verifiquemos que os geradores acima são na verdade bases para os respectivos subespaços vetoriais. Para tanto basta verificar que cada seqüência de vetores acima é l.i..

Analisemos primeiramente para U: se

$$\alpha(1,1,0,0) + \beta(0,1,1,0) + \gamma(0,1,0,1) = (0,0,0,0)$$

então

$$(\alpha, \alpha + \beta + \gamma, \beta, \gamma) = (0, 0, 0, 0)$$

que implica em $\alpha = \beta = \gamma = 0$.

Vejamos agora o caso do subespaço V: se

$$\alpha(1,0,0,1) + \beta(0,1,0,1) + \gamma(0,0,1,1) = (0,0,0,0)$$

então

$$(\alpha, \beta, \gamma, \alpha + \beta + \gamma) = (0, 0, 0, 0)$$

que implica em $\alpha = \beta = \gamma = 0$.

Passemos agora a $U \cap V$: se

$$\alpha(1,0,-1,0) + \beta(0,1,0,1) = (\alpha,\beta,-\alpha,\beta) = (0,0,0,0)$$

que implica em $\alpha = \beta = 0$.

Pela proposição 16 temos dim (U+V)=3+3-2=4. Como (0,1,1,0), (0,1,0,1), (1,0,0,1), (0,0,1,1) geram U+V segue-se do fato da dimensão deste subespaço ser quatro que formam uma base para U+V. Como a dimensão de \mathbb{R}^4 também e $U+V\subset\mathbb{R}^4$, temos pela proposição 15 que $U+V=\mathbb{R}^4$. Note que esta soma não é direta.

5.4 Coordenadas

Sejam V um espaço vetorial finitamente gerado e B uma base de V formada pelos vetores u_1, \ldots, u_n . Como B é uma base de V, todo elemento de $u \in V$ se escreve como $\alpha_1 u_1 + \cdots + \alpha_n u_n$, com os coeficientes $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. Pela proposição 13, os coeficientes $\alpha_1, \ldots, \alpha_n$ são unicamente determinados pelo vetor u. Estes coeficientes são denominados coordenas de u com relação à base B. Representaremos as coordenadas de u com relação à base como

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}_B$$
 ou simplesmente por $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ quando B estiver subentendida.

Exemplo 32 Mostre que os vetores (1,1,1), (0,1,1) e (0,0,1) formam uma base de \mathbb{R}^3 . Encontre as coordenadas de $(1,2,0) \in \mathbb{R}^3$ com relação à base B formada pelos vetores acima.

Já sabemos que dim $\mathbb{R}^3 = 3$. Para verificar se os vetores acima formam uma base de V, basta verificar se eles são l.i.. Utilizando o exemplo 17 vemos que estes vetores são de fato l.i. pois a matriz

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

possui determinante igual a $1 \neq 0$.

$$(1,2,0) = \alpha(1,1,1) + \beta(0,1,1) + \gamma(0,0,1) = (\alpha, \alpha + \beta, \alpha + \beta + \gamma)$$

5.4. COORDENADAS 27

que é equivalente ao sistema

$$\begin{cases} \alpha = 1 \\ \alpha + \beta = 2 \\ \alpha + \beta + \gamma = 0 \end{cases}$$

cuja (única) solução é $\alpha=1,\,\beta=1$ e $\gamma=-2.$ Desse modo, as coordenadas de (1,2,0) com relação à base B são dadas por

$$\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}_{R}$$
.

Exemplo 33 Mostre que os polinômios $1, x, x^2 - x$ formam uma base, B, de $\mathcal{P}_2(\mathbb{R})$. Encontre as coordenadas de $1 + x + x^2$ com relação à base B. Encontre também as coordenadas deste mesmo polinômio com relação à base C formada pelos polinômios $1, x \in x^2$.

Pa verificar que $1, x, x^2 - x$ formam uma base de $\mathcal{P}_2(\mathbb{R})$ basta mostrar cada $p(x) = a_0 + a_1 x + a_2 x^2 \in \mathcal{P}_2(\mathbb{R})$ se escreve de maneira única como combinação linear de 1, x e $x^2 - x$. Isto é equivalente a mostrar que a equação $p(x) = \alpha 1 + \beta x + \gamma(x^2 - x)$ possui uma única solução $(\alpha, \beta, \gamma) \in \mathbb{R}^3$. A equação acima se escreve como

$$a_0 + a_1 x + a_2 x^2 = \alpha + (\beta - \gamma)x + \gamma x^2,$$

que é equivalente ao sistema

$$\begin{cases} \alpha = a_0 \\ \beta - \gamma = a_1 \\ \gamma = a_2, \end{cases}$$

que possui uma única solução dada por $\alpha=a_0,\,\beta=a_1+a_2,$ e $\gamma=a_2.$

Com isso em mãos, vemos que as coordenadas de $1 + x + x^2$ com relação à base B são dadas por

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}_B$$
.

Note que com relação à base C formada por 1, x e x^2 as coordenadas de $1 + x + x^2$ são dadas por

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}_C$$
.

Mudança de Base

Como vimos no exemplo 33 as coordenadas de um elemento de um espaço vetorial podem variar quando se consideram bases distintas. O que passaremos a estudar agora é como esta mudança ocorre, ou seja, como é possível encontrar as coordenadas de um vetor com relação a uma base sabendo-se suas coordenadas com relação a uma outra.

Seja V um espaço vetorial finitamente gerado. Sejam B e C bases de V formadas pelos vetores u_1, \ldots, u_n e v_1, \ldots, v_n , respectivamente. Como B é uma base, existem $\alpha_{ij} \in \mathbb{R}, 1 \leq i, j \leq n$ tais que

$$v_1 = \alpha_{11}u_1 + \dots + \alpha_{n1}u_n$$

$$\vdots$$

$$v_n = \alpha_{1n}u_1 + \dots + \alpha_{nn}u_n.$$

Desta forma, as coordenadas de v_1, \ldots, v_n , com relação à base B são, respectivamente,

$$\begin{pmatrix} \alpha_{11} \\ \vdots \\ \alpha_{n1} \end{pmatrix}_B$$
, \cdots , $\begin{pmatrix} \alpha_{1n} \\ \vdots \\ \alpha_{nn} \end{pmatrix}_B$.

Reunimos estas informações sobre as coordenadas dos vetores da base C com relação à base B na seguinte matriz

$$M_B^C = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{pmatrix},$$

cujas colunas são formadas pelas coordenas de v_1, \ldots, v_n com relação à base B. A matriz M_B^C é chamada de matriz mudança de base da base B para a base C.

Antes de mostrarmos a relação que existe entre M_B^C e as coordenadas de um dado vetor com relação às bases $B \in C$, vejamos como podemos encontrar a matriz de mudança de base em um exemplo no \mathbb{R}^3 .

Exemplo 34 Considere a base B em \mathbb{R}^3 formada pelos vetores (1,0,1), (1,1,1) e (1,1,2). Considere também a base C formada pelos vetores (1,0,0), (0,1,0) e (0,0,1). Encontre M_B^C .

Precisamos resolver

$$\begin{array}{rcl} (1,0,0) &=& \alpha_{11}(1,0,1) + \alpha_{21}(1,1,1) + \alpha_{31}(1,1,2) \\ (0,1,0) &=& \alpha_{12}(1,0,1) + \alpha_{22}(1,1,1) + \alpha_{32}(1,1,2) \iff \\ (0,0,1) &=& \alpha_{13}(1,0,1) + \alpha_{23}(1,1,1) + \alpha_{33}(1,1,2) \\ (\alpha_{11} + \alpha_{21} + \alpha_{31}, \alpha_{21} + \alpha_{31}, \alpha_{11} + \alpha_{21} + 2\alpha_{31}) &=& (1,0,0) \\ (\alpha_{12} + \alpha_{22} + \alpha_{32}, \alpha_{22} + \alpha_{32}, \alpha_{12} + \alpha_{22} + 2\alpha_{32}) &=& (0,1,0) \\ (\alpha_{13} + \alpha_{23} + \alpha_{33}, \alpha_{23} + \alpha_{33}, \alpha_{13} + \alpha_{23} + 2\alpha_{33}) &=& (0,0,1). \end{array}$$

Um momento de reflexão nos poupará um pouco de trabalho neste ponto. Note que cada linha acima representa um sistema de três equações com três incógnitas e que a matriz associada a cada um destes sistemas é a mesma. O que muda são os nomes das variáveis e o segundo membro. Utilizando como variáveis $x, y \in z$, basta resolvermos o seguinte sistema

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

onde $a,b,c\in\mathbb{R}.$ O sistema acima é equivalente a

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c - a \end{pmatrix}$$

cuja única solução é dada por $x=a-b,\,y=a+b-c$ e z=c-a.

Tomando (a, b, c) = (1, 0, 0) obtemos $(\alpha_{11}, \alpha_{21}, \alpha_{31}) = (1, 1, -1)$.

Tomando (a, b, c) = (0, 1, 0) obtemos $(\alpha_{12}, \alpha_{22}, \alpha_{32}) = (-1, 1, 0)$.

Tomando (a, b, c) = (0, 0, 1) obtemos $(\alpha_{13}, \alpha_{23}, \alpha_{33}) = (0, -1, 1)$. Desta forma, obtemos

$$M_B^C = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$$

Exercício 5 Com as notações do exemplo acima, encontre M_C^B .

Vejamos agora como as coordenadas de um vetor se relacionam com respeito a duas bases de um espaço vetorial de dimensão finita.

Sejam B e C bases de um espaço vetorial de dimensão finita formadas, respectivamente, pelos vetores u_1, \ldots, u_n e v_1, \ldots, v_n . Dado um vetor u em V sejam

$$u_B = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}_B \quad e \quad u_C = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}_C$$

as suas coordenadas com relação às bases B e C, respectivamente. Se $M_B^C = (\alpha_{ij})$ representa a matriz de mudança da base B para base C, então como $v_j = \sum_{i=1}^n \alpha_{ij} u_i, \ j=1,\ldots,n$, obtemos

$$u = \sum_{i=1}^{n} x_i u_i = \sum_{j=1}^{n} y_j v_j = \sum_{j=1}^{n} y_j \left(\sum_{i=1}^{n} \alpha_{ij} u_i \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_{ij} y_j \right) u_i$$

onde na última igualdade invertemos a ordem da soma. Como os vetores u_1, \ldots, u_n são l.i., segue-se que $x_i = \sum_{j=1}^n \alpha_{ij} y_j, \ i=1,\ldots,n$. Porém, estas últimas n equações podem ser escritas na seguinte fórmula matricial

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \vdots & \vdots & \ddots \vdots & \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

ou mais simplesmente,

$$u_B = M_B^C u_C.$$

Resumiremos este resultado na seguinte

Proposição 17 Sejam B e C bases de um espaço vetorial de dimensão finita V. Se u_B e u_C representam as coordenadas de um dado vetor $u \in V$ com relação às bases B e C, respectivamente e se M_B^C é a matriz de mudança de base da base B para a base C então

$$u_B = M_B^C u_C.$$

Exemplo 35 Fixado $\theta \in \mathbb{R}$, considere os vetores $u_1 = (\cos \theta, \sin \theta)$ e $u_2 = (-\sin \theta, \cos \theta)$ em \mathbb{R}^2 . Mostre que estes vetores formam uma base, B, de \mathbb{R}^2 e encontre a matriz de mudança desta base para a base C formada pelos vetores $e_1 = (1,0)$ e $e_2 = (0,0)$. Encontre as coordenadas do vetor $u = ae_1 + be_2$ com relação à base B.

Como a dimensão de \mathbb{R}^2 é dois basta mostrar que u_1 e u_2 são l.i.. Se $\alpha(\cos\theta, \sin\theta) + \beta(-\sin\theta, \cos\theta) = (0,0)$ então

$$\begin{cases} \alpha \cos \theta - \beta \sin \theta = 0 \\ \alpha \sin \theta + \beta \cos \theta = 0 \end{cases} \iff \alpha = \beta = 0,$$

pois

$$\det\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = 1 \neq 0.$$

A matriz M_B^C será dada por (α_{ij}) , onde

$$(1,0) = \alpha_{11}(\cos\theta, \sin\theta) + \alpha_{21}(-\sin\theta, \cos\theta) (0,1) = \alpha_{12}(\cos\theta, \sin\theta) + \alpha_{22}(-\sin\theta, \cos\theta),$$

que é equivalente a

$$(1,0) = (\alpha_{11}\cos\theta - \alpha_{21}\sin\theta, \alpha_{11}\sin\theta + \alpha_{21}\cos\theta) (0,1) = (\alpha_{12}\cos\theta - \alpha_{22}\sin\theta, \alpha_{12}\sin\theta + \alpha_{22}\cos\theta),$$

e como já visto antes, basta resolver o sistema

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

cuja solução é dada por

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \cos \theta + \beta \sin \theta \\ \beta \cos \theta - \alpha \sin \theta \end{pmatrix}.$$

Fazendo $(\alpha, \beta) = (1, 0)$ obtemos $(\alpha_{11}, \alpha_{21}) = (\cos \theta, -\sin \theta)$. Colocando $(\alpha, \beta) = (0, 1)$, temos $(\alpha_{12}, \alpha_{22}) = (\sin \theta, \cos \theta)$. Assim,

$$M_B^C = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Agora, se u_B representa as coordenadas de $u=ae_1+be_2$ com relação à base B e u_C as coordenadas do mesmo vetor com relação à base C, pela proposição 17 temos

$$u_B = M_B^C u_C = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \cos \theta + b \sin \theta \\ b \cos \theta - a \sin \theta \end{pmatrix}.$$

Proposição 18 Sejam B, C e D bases de um espaço vetorial n dimensional. Temos

$$M_B^D = M_B^C M_C^D.$$

Prova: Sejam u_1, \ldots, u_n os vetores de B, v_1, \ldots, v_n os vetores de C e w_1, \ldots, w_n os vetores de D. Usando a notação $M_B^C = (\alpha_{ij}), M_C^D = (\beta_{ij})$ e $M_B^D = (\gamma_{ij})$ vemos que

$$v_j = \sum_{i=1}^n \alpha_{ij} u_i, \qquad w_k = \sum_{j=1}^n \beta_{jk} v_j, \qquad w_k = \sum_{i=1}^n \gamma_{ik} u_i.$$
 (6.1)

Assim

$$w_k = \sum_{j=1}^n \beta_{jk} v_j = \sum_{j=1}^n \beta_{jk} \left(\sum_{i=1}^n \alpha_{ij} u_i \right) = \sum_{i=1}^n \left(\sum_{j=1}^n \alpha_{ij} \beta_{jk} \right) u_i,$$

como u_1, \ldots, u_n são l.i., comparando com a última expressão de 6.1, obtemos

$$\gamma_{ik} = \sum_{j=1}^{n} \alpha_{ij} \beta_{jk}, \qquad 1 \le i, k \le n.$$

Resta apenas lembrar que o lado direito da expressão acima representa o elemento da *i*-ésima linha e da k-ésima coluna da matriz $M_B^C M_C^D$. Portanto, $M_B^D = M_B^C M_C^D$.

Proposição 19 Sejam B e C bases em um espaço vetorial de n dimensional V. Então a matriz M_B^C possui inversa e esta inversa é dada por M_C^B , a matriz de mudança da base C para a base B.

Prova: Pela proposição anterior temos $M_B^C M_C^B = M_B^B$ e $M_C^B M_B^C = M_C^C$. resta mostrar que $M_B^B = M_C^C = I = (\delta_{ij})$, onde

$$\delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{caso contrário,} \end{cases}$$

é a matriz identidade de ordem n. É claro que basta mostrar que $M_B^B=I$ e isto é bem simples, pois se u_1,\ldots,u_n são os vetores da base B então $M_B^B=(\alpha_{ij})$ satisfaz $u_j=\sum_{i=1}^n\alpha_{ij}u_i,\ j=1,\ldots,n$. Ora, como u_1,\ldots,u_n são l.i., para cada $j=1,\ldots,n$, a única solução de cada uma destas equações é dada por

$$\alpha_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{caso contrário,} \end{cases}$$

ou seja, $\alpha_{ij} = \delta_{ij}$.

Exercício 6 Utilize a proposição acima para refazer o exercício 5.

Transformações Lineares

7.1 Definição e Exemplos

Definição 16 Sejam U e V espaços vetoriais. Dizemos que uma função $T:U\to V$ é uma transformação linear se forem verificadas as seguintes condições:

- 1. $T(u+v) = T(u) + T(v), \quad \forall u, v \in U;$
- 2. $T(\lambda u) = \lambda T(u), \quad \forall u \in U, \quad \forall \lambda \in \mathbb{R}.$

Observação 7.0.1 Note que $T: U \to V$ é uma transformação linear se e somente se $T(\lambda u + \mu v) = \lambda T(u) + \mu T(v)$, para todo $u, v \in U$, $\lambda, \mu \in \mathbb{R}$.

Observação 7.0.2 Note que pela propriedade 2 temos T(0) = T(00) = 0. Ou seja, toda transformação linear de U em V leva o elemento neutro de U no elemento neutro de V.

A seguir listamos alguns exemplos de transformações lineares definidas em vários espaços vetoriais que já tratamos no decorrer do curso.

- 1. $T:U\to V$ dada por T(u)=0, para todo $u\in U$. T é chamada de transformação nula.
- 2. $T:U\to U$ dada por T(u)=u, para todo $u\in U$. T é chamada de transformação identidade.
- 3. $T: \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}^{n+1}$ dada por

$$T(a_0 + a_1x + \dots + a_nx^n) = (a_0, \dots, a_{n+1}).$$

4. Se $A \in M_{m \times n}(\mathbb{R})$ é uma matriz dada, definimos

$$T: M_{n\times 1}(\mathbb{R}) \to M_{m\times 1}(\mathbb{R})$$

por T(X) = AX, o produto de A com X, para todo $X \in M_{n \times 1}(\mathbb{R})$.

5. $T: C([0,1]; \mathbb{R}) \to \mathbb{R}$ dada por

$$T(f) = \int_0^1 f(x) \, dx,$$

para toda função $f \in C([0,1]; \mathbb{R})$.

6. $T: C^1([0,1];\mathbb{R}) \to C([0,1];\mathbb{R})$ dada por T(f) = f', a derivada de f, para toda $f \in C^1([0,1];\mathbb{R})$.

Os exemplos abaixo são de funções entre espaços vetoriais que não são transformações lineares.

- 1. $T: \mathbb{R}^3 \to \mathbb{R}$ dada por T(x, y, z) = x + y + z + 1. Note que $T(0, 0, 0) = 1 \neq 0$.
- 2. $T: C([0,1];\mathbb{R}) \to \mathbb{R}$ dada por

$$T(f) = \int_0^1 |f(x)| \, dx,$$

para toda função $f \in C([0,1];\mathbb{R})$. Se T fosse linear deveríamos ter por 2, T(-f) = -T(f) para toda função $f \in C([0,1];\mathbb{R})$. Para ver que isto não ocorre, basta tomar f como sendo a função constante igual a 1. Temos neste caso que T(-1) = 1 = T(1).

3. $T: \mathbb{R} \to \mathbb{R}$ dada por $T(x) = x^2$. Observe que T(-1) = 1 = T(1). Logo, não temos T(-1) = -T(1).

Proposição 20 Seja U um espaço vetorial com base formada pelos vetores u_1, \ldots, u_n . Toda transformação linear $T: U \to V$ fica determinada por $T(u_1), \ldots, T(u_n)$.

Prova: Já que u_1, \ldots, u_n formam uma base de U, dado $u \in U$ existem $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tais que $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$. Deste modo,

$$T(u) = T(\alpha_1 u_1 + \dots + \alpha_n u_n) = \alpha_1 T(u_1) + \dots + \alpha_n T(u_n).$$

Ex. Resolvido 1 Encontre uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(1,2) = (3,-1) e T(0,1) = (1,2).

Resolução: Note que (1,2) e (0,1) formam uma base de \mathbb{R}^2 . Se $(x,y) \in \mathbb{R}^2$ então, como é fácil verificar, temos (x,y) = x(1,2) + (y-2x)(0,1). Deste modo, a transformação T deve satisfazer

$$T(x,y) = T(x(1,2) + (y-2x)(0,1)) = xT(1,2) + (y-2x)T(0,1)$$
$$= x(3,-1) + (y-2x)(1,2) = (x+y,2y-5x).$$

Verifica-se facilmente que a transformação T definida como acima, isto é, T(x,y)=(x+y,2y-5x), é linear e satisfaz as condições pedidas.

7.2 O Espaço Vetorial $\mathcal{L}(U, V)$

Definição 17 Sejam U e V espaços vetoriais. Denotaremos por $\mathcal{L}(U,V)$ o conjunto das transformações lineares $T:U\to V$. Quando U=V denotaremos $\mathcal{L}(U,U)=\mathcal{L}(U)$.

Dadas $T, S \in \mathcal{L}(U, V)$ podemos definir $T + S : U \to V$ por (T + S)(u) = T(u) + S(u), $u \in U$. Vê-se claramente que $T + S \in \mathcal{L}(U, V)$.

Se $T \in \mathcal{L}(U, V)$ e $\lambda \in \mathbb{R}$ definimos $\lambda T : U \to V$ como $(\lambda T)(u) = \lambda(T(u))$. Também, $\lambda T \in \mathcal{L}(U, V)$.

É um simples exercício de verificação o fato de $\mathcal{L}(U,V)$ com as operações definidas acima ser um espaço vetorial. Note que o elemento neutro da adição é a transformação nula, isto é, $T \in \mathcal{L}(U,V)$ definida por $T(u) = 0, u \in U$.

Registraremos isto na seguinte

Proposição 21 $\mathcal{L}(U,V)$ com as operações acima é um espaço vetorial.

Definição 18 Se U é um espaço vetorial, definimos o espaço dual de U como sendo $U' \doteq \mathcal{L}(U,\mathbb{R})$, isto é, U' é formado pelas transformações lineares $T:U\to\mathbb{R}$. Estas transformações lineares também são chamadas de funcionais lineares definidos em U.

Teorema 4 Se U é um espaço vetorial de dimensão n e V é um espaço vetorial de dimensão m então $\mathcal{L}(U,V)$ tem dimensão mn.

Prova: Fixemos duas bases, uma formada por vetores u_1, \ldots, u_n de U e outra formada por v_1, \ldots, v_m , vetores de V.

Para cada $1 \le i \le n$ e $1 \le j \le m$ defina

$$T_{ij}(x_1u_1+\cdots+x_nu_n)=x_iv_j, \qquad x_1,\ldots,x_n\in\mathbb{R}.$$

Note que

$$T_{ij}(u_k) = \begin{cases} v_j \text{ se } i = k \\ 0 \text{ se } i \neq k \end{cases}$$

Verifiquemos que $T_{ij} \in \mathcal{L}(U, V)$:

$$T_{ij}((x_1u_1 + \dots + x_nu_n) + (y_1u_1 + \dots + y_nu_n))$$

$$= T_{ij}((x_1 + y_1)u_1 + \dots + (x_n + y_n)u_n) = (x_i + y_i)v_j = x_iv_j + y_iv_j$$

$$= T_{ij}(x_1u_1 + \dots + x_nu_n) + T_{ij}(y_1u_1 + \dots + y_nu_n).$$

Também, para todo $\lambda \in \mathbb{R}$,

$$T_{ij}(\lambda(x_1u_1 + \dots + x_nu_n)) = T_{ij}(\lambda x_1u_1 + \dots + \lambda x_nu_n)$$
$$= \lambda x_iv_j = \lambda T_{ij}(x_1u_1 + \dots + x_nu_n).$$

Mostremos que T_{ij} , $1 \le i \le n$ e $1 \le j \le m$, formam uma base de $\mathcal{L}(U,V)$. Se $\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} T_{ij} = 0$ então, para cada $1 \le k \le n$,

$$0 = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} T_{ij}(u_k) = \sum_{j=1}^{m} a_{kj} T_{kj}(u_k) = \sum_{j=1}^{m} a_{kj} v_j$$

e como v_1, \ldots, v_m são linearmente independentes, segue-se que $a_{k1} = \cdots = a_{km} = 0$. Portanto T_{11}, \ldots, T_{nm} são linearmente independentes.

Seja $T \in \mathcal{L}(U, V)$. Se $u \in U$ então $u = x_1u_1 + \cdots + x_nu_n$, para certos números reais x_1, \dots, x_n . Como T é linear

$$T(u) = x_1 T(u_1) + \dots + x_n T(u_n).$$

Como $T(u_i) \in V$, podemos escrever, para cada $1 \le i \le n$,

$$T(u_i) = \alpha_{1i}v_1 + \cdots + \alpha_{mi}v_m$$

Porém, como para cada $1 \le j \le m$, $1 \le i \le n$, $T_{ij}(u) = x_i v_j$, obtemos

$$T(u) = x_1 T(u_1) + \dots + x_n T(u_n)$$

$$= x_1 (\alpha_{11} v_1 + \dots + \alpha_{m1} v_m) + \dots + x_n (\alpha_{1n} v_1 + \dots + \alpha_{mn} v_m)$$

$$= \alpha_{11} x_1 v_1 + \dots + \alpha_{m1} x_1 v_m + \dots + \alpha_{1n} x_n v_1 + \dots + \alpha_{mn} x_n v_m$$

$$= \alpha_{11} T_{11}(u) + \dots + \alpha_{m1} T_{1m}(u) + \dots + \alpha_{1n} T_{1n}(u) + \dots + \alpha_{mn} T_{nm}(u),$$

ou seja

$$T = \alpha_{11}T_{11} + \dots + \alpha_{m1}T_{1m} + \dots + \alpha_{1n}T_{1n} + \dots + \alpha_{mn}T_{nm}.$$

Corolário 1 $Se\ V$ é um espaço de dimensão n então o seu dual também tem dimensão n.

Pelo corolário 1, se U tem dimensão n então o seu dual, U', tem a mesma dimensão. Seguindo os passos da demonstração do teorema 4, se u_1, \ldots, u_n formam uma base B de U então os funcionais lineares $f_1, \ldots, f_n: U \to U$ dados por $f_j(u) = f_j(x_1u_1 + \cdots + x_nu_n) = x_j, j = 1, \ldots, n$, formam uma base de U'. Esta base é chamada de base dual da base B.

Ex. Resolvido 2 Considere a base B de \mathbb{R}^3 formada por $u_1 = (1,1,1)$, $u_2 = (1,1,0)$ e $u_3 = (1,0,0)$. Encontre a base dual de B.

Resolução: Dado $(x, y, z) \in \mathbb{R}^3$, temos

$$(x, y, z) = z(1, 1, 1) + (y - z)(1, 1, 0) + (x - y)(1, 0, 0).$$

Deste modo, a base dual de B, é dada pelos funcionais lineares f_1, f_2 e f_3 onde $f_1(x, y, z) = z$, $f_2(x, y, z) = y - z$ e $f_3(x, y, z) = x - y$.

Definição 19 Sejam U, V e W espaços vetoriais. Se $T \in \mathcal{L}(U, V)$ e $S \in \mathcal{L}(V, W)$ definimos a composta $S \circ T : U \to W$ por $S \circ T(u) = S(T(u)), u \in U$.

Exemplo 36 Considere as transformações lineares $T, S : \mathbb{R}^2 \to \mathbb{R}^2$ dadas por T(x, y) = (x+y, 0) e S(x, y) = (x, 2y). Encontre $T \circ S$ e $S \circ T$.

$$T \circ S(x,y) = T(S(x,y)) = T(x,2y) = (x+2y,0).$$

$$S \circ T(x,y) = S(T(x,y)) = S(x+y,0) = (x+y,0).$$

Note que $T \circ S \neq S \circ T$.

Observação 7.0.3 Se $T \in \mathcal{L}(U)$, podemos definir $T^1 = T$ para n > 2, $T^n = T \circ T^{n-1}$.

Definição 20 $T \in \mathcal{L}(U)$ é chamada de nilpotente se existir algum inteiro positivo n tal que $T^n = 0$, a transformação nula.

Obviamente a transformação nula é um exemplo de operador nilpotente.

Exemplo 37 Mostre que $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (0,x) é um operador nilpotente.

Vejamos:
$$T^2(x,y) = T(T(x,y)) = T(0,x) = (0,0)$$
. Assim, $T^2 = 0$.

Proposição 22 Se $T \in \mathcal{L}(U, V)$ e $S \in \mathcal{L}(V, W)$ então $S \circ T \in \mathcal{L}(U, W)$.

Prova: Dados $u, v \in U$ e $\lambda, \mu \in \mathbb{R}$ temos

$$S \circ T(\lambda u + \mu v) = S(T(\lambda u + \mu v)) = S(\lambda T(u) + \mu T(v))$$

$$= S(\lambda T(u)) + S(\mu T(v)) = \lambda S(T(u)) + \mu S(T(v)) = \lambda S \circ T(u) + \mu S \circ T(v).$$

Proposição 23 Sejam $T \in \mathcal{L}(U,V)$, $S \in \mathcal{L}(V,W)$ e $R \in \mathcal{L}(W,X)$, onde U,V,W e X são espaços vetoriais. Então $(R \circ S) \circ T = R \circ (S \circ T)$.

Prova: Para todo $u \in U$, temos

$$(R \circ S) \circ T(u) = (R \circ S)(T(u)) = R(S(T(u)))$$

e por outro lado

$$R \circ (S \circ T)(u) = R((S \circ T)(u)) = R(S(T(u))).$$

Comparando as expressões chegamos ao resultado desejado.

Proposição 24 Se $S, T \in \mathcal{L}(U, V), R \in \mathcal{L}(V, W)$ então $R \circ (S + T) = R \circ S + R \circ T$.

Prova: Dado $u \in U$, temos

$$R \circ (S+T)(u) = R((S+T)(u)) = R(S(u) + T(u)) = R(S(u)) + R(T(u))$$
$$= R \circ S(u) + R \circ T(u) = (R \circ S + R \circ T)(u).$$

Proposição 25 Se $T \in \mathcal{L}(U, V)$ e $I_V \in \mathcal{L}(V)$ é a identidade em V, isto é, I(v) = v, $v \in V$, e $I_U \in \mathcal{L}(U)$ é a identidade em U, então $I_V \circ T = T$ e $T \circ I_U = T$.

Prova: Dado $u \in U$, temos

$$I_V \circ T(u) = I(T(u)) = T(u)$$

 \mathbf{e}

$$T \circ I_U(u) = T(I_U(u)) = T(u).$$

Definição 21 Diremos que $T \in \mathcal{L}(U,V)$ possui inversa se existir $S: V \to U$ tal que $S \circ T(v) = u$ para todo $u \in U$ e $T \circ S(v) = v$ para todo $v \in V$. Em outras palavras, $T \circ S = I_V$ e $S \circ T = I_U$, onde $I_U: U \to U$ é a identidade em U e $I_V: V \to V$ é a identidade em V.

Proposição 26 Se $T \in \mathcal{L}(U,V)$ possui uma inversa então esta inversa é única.

Suponha que T possua inversas $R, S \in \mathcal{L}(V, U)$. Como $I_V = T \circ R$ e $I_U = S \circ T$, temos

$$S = S \circ I_V = S \circ (T \circ R) = (S \circ T) \circ R = I_U \circ R = R.$$

Denotaremos a inversa de T por T^{-1} .

Definição 22 Uma transformação linear $T: U \rightarrow V$ é

- 1. injetora se T(u) = T(v) implicar em u = v;
- 2. sobrejetora se para todo $v \in V$ existir $u \in U$ tal que T(u) = v;
- 3. bijetora se for injetora e sobrejetora.

Proposição 27 Uma transformação linear $T:U\to V$ é injetora se e somente se T(u)=0 implicar em u=0.

Prova: Suponha que T seja injetora. Se T(u)=0 então T(u)=T(0) e como T é injetora, segue-se que u=0.

Reciprocamente suponha que a única solução de T(u)=0 seja u=0. Se T(u)=T(v) então T(u-v)=0 e, por hipótese, u-v=0, isto é, u=v.

Proposição 28 A fim de que $T \in \mathcal{L}(U,V)$ possua inversa é necessário e suficiente que T seja bijetora.

Prova: Suponha que T possua inversa.

Se T(u) = T(v) então $u = T^{-1}(T(u)) = T^{-1}(T(v)) = v$ e, portanto, T é injetora.

Dado $v \in V$ vemos que $T(T^{-1}(v)) = v$ e, portanto, T também é sobrejetora. Assim, T é bijetora.

Suponha agora que T seja bijetora. Dado $v \in V$ existe um único $u_v \in U$ tal que $v = T(u_v)$. Defina $S: V \to U$ por $S(v) = u_v$. Mostremos que S é a inversa de T.

Se $v \in V$ então $T(S(v)) = T(u_v) = v$.

Se $u \in U$ então S(T(u)), pela definição de S, é o único elemento u' em U tal que T(u') = T(u). Como T é injetora, temos u' = u e, assim, S(T(u)) = u.

Proposição 29 Se $T \in \mathcal{L}(U, V)$ possui inversa $T^{-1}: V \to U$ então $T^{-1} \in \mathcal{L}(V, U)$.

Prova: Devemos mostrar que $T^{-1}: V \to U$ é linear.

Sejam $v_1, v_2 \in V$ e $\lambda_1, \lambda_2 \in \mathbb{R}$. Como T é sobrejetora existem $u_1, u_2 \in U$ tais que $T(u_1) = v_1$ e $T(u_2) = v_2$. Assim,

$$T^{-1}(\lambda_1 v_1 + \lambda_2 v_2) = T^{-1}(\lambda_1 T(u_1) + \lambda_2 T(u_2)) = T^{-1}(T(\lambda_1 u_1 + \lambda_2 u_2))$$

= $\lambda_1 u_1 + \lambda_2 u_2 = \lambda_1 T^{-1}(v_1) + \lambda_2 T^{-1}(v_2).$

7.3 Imagem e Núcleo

Definição 23 Seja $T: U \to V$ uma transformação linear.

- 1. Se $X \subset U$, definitions a image de X por T como sendo o conjunto $T(X) = \{T(x); x \in X\}$.
- 2. Se $Y \subset V$, definimos a imagem inversa de Y por T como sendo o conjunto $T^{-1}(Y) = \{u \in U; T(u) \in Y\}$.

Ex. Resolvido 3 Seja V um espaço de dimensão 1. Mostre que qualquer transformação linear não nula $T: U \to V$ é sobrejetora.

Resolução: Como T é não nula existe $u_o \in U$ tal que $T(u_o) \neq 0$. Já que V tem dimensão 1 então qualquer base de V é constituída por um elemento e como $T(u_o) \in V$ é não nulo (portanto, l.i.), ele próprio forma uma base de V. Assim, dado $v \in V$ existe $\alpha \in \mathbb{R}$ tal que $v = \alpha T(u_o) = T(\alpha u_o)$, ou seja, T é sobrejetora.

Proposição 30 Seja $T: U \rightarrow V$ uma transformação linear. Temos

- 1. Se W é um subespaço vetorial de U então T(W) é um subespaço vetorial de V.
- 2. Se W é um subespaço vetorial de V então $T^{-1}(W)$ é um subespaço vetorial de U.

Prova: 1. Seja W um subespaço vetorial de U.

Como $0 \in W$ vemos que $0 = T(0) \in T(W)$.

Se $x, y \in T(W)$ então existem $u, w \in W$ tais que x = T(u) e y = T(w). Como W é um subespaço vetorial, temos que, para qualquer $\lambda \in \mathbb{R}$, $u + \lambda w \in W$. Desse modo

$$x + \lambda y = T(u) + \lambda T(w) = T(u) + T(\lambda w) = T(u + \lambda w) \in T(W).$$

2. Seja W um subespaço vetorial de V.

Como $T(0) = 0 \in W$, segue-se que $0 \in T^{-1}(W)$.

Se $x, y \in T^{-1}(W)$ então $T(x), T(y) \in W$. Como W é um subespaço vetorial temos que, para qualquer $\lambda \in \mathbb{R}, T(x) + \lambda T(y) \in W$. Mas $T(x + \lambda y) = T(x) + \lambda T(y) \in W$ e, portanto, $x + \lambda y \in T^{-1}(W)$.

Definição 24 O núcleo de uma transformação linear $T: U \to V$ é o subespaço vetorial de U dado por $T^{-1}(\{0\})$, ou seja, é o conjunto $\{u \in U; T(u) = 0\}$. Denotaremos o núcleo de T por $\mathcal{N}(T)$.

Proposição 31 Seja $T: U \to V$ uma transformação linear. $T \in injetora$ se e somente se $\mathcal{N}(T) = \{0\}$.

Prova: Pela proposição 27 T é injetora se e somente se a equação T(u) = 0 possui como única solução u = 0. Isto é o mesmo que dizer que o conjunto $\mathcal{N}(T)$ é formado somente pelo elemento 0.

Ex. Resolvido 4 Seja $T \in \mathcal{L}(U)$. Mostre que $T^2 = 0$ se e somente se $T(U) \subset \mathcal{N}(T)$.

Resolução: Suponha que $T^2=0$. Se $v\in T(U)$ então existe $u\in U$ tal que v=T(u) e, portanto, $T(v)=T^2(u)=0$. Logo, $v\in \mathcal{N}(T)$.

Suponha agora que $T(U)\subset \mathcal{N}(T)$. Dado $u\in U$, como $T(u)\in T(U)\subset \mathcal{N}(T)$, temos $T^2(u)=T(T(u))=0$.

Ex. Resolvido 5 Seja $\theta \in \mathbb{R}$. Encontre o núcleo da transformação linear $T : \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$T(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta).$$

Resolução: Por definição, $(x,y) \in \mathcal{N}(T)$ se e somente se T(x,y) = (0,0), isto é, se e somente se

$$(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta) = (0,0)$$

$$\iff \begin{cases} x\cos\theta - y\sin\theta = 0\\ x\sin\theta + y\cos\theta = 0 \end{cases} \iff (x,y) = (0,0).$$

Portanto, $\mathcal{N}(T) = \{(0,0)\}.$

Teorema 5 (Teorema do Núcleo e da Imagem) Sejam U e V espaços vetoriais de dimensão finita e $T:U\to V$ uma transformação linear. Temos

$$\dim U = \dim \mathcal{N}(T) + \dim T(U).$$

Prova: Seja B_1 uma base de $\mathcal{N}(T)$ formada pelos vetores u_1, \ldots, u_p . Pelo teorema do completamento, existem vetores $v_1, \ldots, v_q \in U$ tais que $u_1, \ldots, u_p, v_1, \ldots, v_q$ formam uma base de U. Note que com esta notação temos dim U = p + q e dim $\mathcal{N}(T) = p$. Resta mostrar que dim T(U) = q e, para isto, mostraremos que $T(v_1), \ldots, T(v_q)$ formam uma base de T(U).

Se $\alpha_1 T(v_1) + \cdots + \alpha_q T(v_q) = 0$ então $T(\alpha_1 v_1 + \cdots + \alpha_q v_q) = 0$, isto é, $\alpha_1 v_1 + \cdots + \alpha_q v_q \in \mathcal{N}(T)$. Desta forma, existem $\beta_1, \ldots, \beta_p \in \mathbb{R}$ tais que $\alpha_1 v_1 + \cdots + \alpha_q v_q = \beta_1 u_1 + \cdots + \beta_p u_p$, isto é,

$$\beta_1 u_1 + \dots + \beta_p u_p - \alpha_1 v_1 - \dots - \alpha_q v_q = 0.$$

Como $u_1, \ldots, u_p, v_1, \ldots, v_q$ formam uma base de U, segue-se que $\alpha_1 = \cdots = \alpha_q = \beta_1 = \cdots = \beta_p = 0$ e, portanto, $T(v_1), \ldots, T(v_q)$ são linearmente independentes.

Mostremos que $T(v_1), \ldots, T(v_q)$ geram T(U). Seja $v \in T(U)$. Logo, existe $u \in U$ tal que T(u) = v. Como $u_1, \ldots, u_p, v_1, \ldots, v_q$ formam uma base de U, existem $\alpha_1, \ldots, \alpha_q, \beta_1, \ldots, \beta_p \in \mathbb{R}$ tais que

$$u = \alpha_1 u_1 + \dots + \alpha_n u_n + \beta_1 v_1 + \dots + \beta_n v_n$$

e daí,

$$v = T(\alpha_1 u_1 + \dots + \alpha_q u_p + \beta_1 v_1 + \dots + \beta_p v_p)$$

= $\alpha_1 T(u_1) + \dots + \alpha_q T(u_p) + \beta_1 T(v_1) + \dots + \beta_p T(v_p) = \beta_1 T(v_1) + \dots + \beta_p T(v_p),$

já que $u_1, \ldots, u_p \in \mathcal{N}(T)$.

Corolário 2 Se U e V são espaços vetoriais de dimensão finita tais que $\dim U = \dim V$ e se $T: U \to V$ é uma transformação linear então as seguintes condições são equivalentes:

- 1. T é sobrejetora;
- 2. T é injetora;
- 3. T é bijetora;
- 4. T leva bases de U em bases de V.

Prova: (1) \Longrightarrow (2): Se T é sobrejetora, temos T(U) = V e pelo teorema anterior, dim $U = \dim \mathcal{N}(T) + \dim V$. Mas como dim $U = \dim V$ segue-se que dim $\mathcal{N}(T) = 0$, isto é, $\mathcal{N}(T) = \{0\}$. Pela proposição 31, T é injetora.

- $(2) \Longrightarrow (3)$: Se T é injetora então dim $\mathcal{N}(T)=0$. Pelo teorema anterior segue-se que dim $U=\dim T(U)$. Como dim $U=\dim V$ segue-se que T(U) é um subespaço de V com a mesma dimensão de V. Logo, T(U)=V, isto é, T é sobrejetora. Dessa forma, T é bijetora.
- (3) \Longrightarrow (4): Suponha que T seja bijetora. Considere uma base de U formada por vetores u_1, \ldots, u_n . Precisamos mostrar que $T(u_1), \ldots, T(u_n)$ formam uma base de V.

Se $\alpha_1 T(u_1) + \cdots + \alpha_n T(u_n) = 0$ então $T(\alpha_1 u_1 + \cdots + \alpha_n u_n) = 0$, isto é, $\alpha_1 u_1 + \cdots + \alpha_n u_n \in \mathcal{N}(T)$. Como T é injetora temos $\mathcal{N}(T) = \{0\}$ e, conseqüentemente, $\alpha_1 u_1 + \cdots + \alpha_n u_n = 0$. Como u_1, \ldots, u_n formam uma base de U temos $\alpha_1 = \cdots = \alpha_n = 0$ e, portanto, $T(u_1), \ldots, T(u_n)$ são linearmente independentes.

Seja $v \in V$. Como T é sobrejetora, existe $u \in U$ tal que v = T(u). Escrevendo u como $\alpha_1 u_1 + \cdots + \alpha_n u_n$ vemos que

$$v = T(\alpha_1 u_1 + \dots + \alpha_n u_n) = \alpha_1 T(u_1) + \dots + \alpha_n T(u_n),$$

isto é, $T(u_1), \ldots, T(u_n)$ geram V. Observe que já havíamos provado isto na proposição 20

 $(4) \implies (1)$: Seja u_1, \ldots, u_n uma base de U. Por hipótese, $T(u_1), \ldots, T(u_n)$ formam uma base de V. Assim, dado $v \in V$ existem $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tais que $v = \alpha_1 T(u_1) + \cdots + \alpha_n T(u_n)$. Deste modo, $v = T(\alpha_1 u_1 + \cdots + \alpha_n u_n)$, isto é, T é sobrejetora.

Ex. Resolvido 6 Mostre que toda transformação linear bijetora $T: \mathbb{R}^2 \to \mathbb{R}^2$ leva retas em retas, isto é, a imagem de uma reta por T é uma reta.

Resolução: Dada uma reta r no plano usaremos a equação vetorial para representar seus pontos, isto é, um ponto $P \in r$ é da forma $P_o + \lambda \vec{v}$, onde P_o é um ponto sobre a reta, \vec{v} é um vetor direção da reta e $\lambda \in \mathbb{R}$. A imagem de r por T é $T(r) = \{T(P); P \in r\}$. Assim, todo ponto em T(r) é da forma $T(P) = T(P_o) + \lambda T(\vec{v})$, $\lambda \in \mathbb{R}$. Como T é injetora e $\vec{v} \neq \vec{0}$ temos que $T(\vec{v}) \neq \vec{0}$, ou seja, T(r) é uma reta que passa por $T(P_o)$ e tem direção $T(\vec{v})$.

Ex. Resolvido 7 Sejam $a_1, \ldots, a_n \in \mathbb{R}$ não todos nulos. Mostre que o subespaço $H = \{(x_1, \ldots, x_n) \in \mathbb{R}^n; a_1x_1 + \cdots + a_nx_n = 0\}$ tem dimensão n - 1.

Resolução: Note que H é o núcleo da transformação linear $T: \mathbb{R}^n \to \mathbb{R}$ dada por $T(x_1, \dots, x_n) = a_1x_1 + \dots + a_nx_n$. Como nem todos os a_j são nulos, segue-se que T é não nula e pelo exercício 3, T é sobrejetora. Deste modo, pelo teorema 5, temos

$$n = \dim \mathbb{R}^n = \dim H + \dim T(\mathbb{R}^n) = \dim H + 1,$$

ou seja, $\dim H = n - 1$.

Ex. Resolvido 8 Sejam

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

 $e\ T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ dada por T(X) = AX - XA. Encontre o núcleo e a imagem de T.

Resolução: Núcleo: $X \in \mathcal{N}(T)$ se e somente se AX = XA. Se denotarmos

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

vemos que $X \in \mathcal{N}(T)$ se e somente se

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix},$$

isto é,

$$\begin{pmatrix} a+2c & b+2d \\ c & d \end{pmatrix} = \begin{pmatrix} a & 2a+b \\ c & 2c+d \end{pmatrix}$$

que equivale a

$$\begin{cases} a+2c=a\\ b+2d=2a+b\\ c=c\\ d=2c+d \end{cases} \iff c=0 \text{ e } a=d.$$

Portanto,

$$X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Dessa forma, o núcleo de T é o subespaço vetorial gerado pela base (note que as matrizes são l.i.) formada pelas matrizes

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} e \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Imagem de T: Temos que

$$Y = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in T(M_2(\mathbb{R}))$$

se e somente se existir

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

tal que Y = AX - XA, isto é,

$$\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a+2c & b+2d \\ c & d \end{pmatrix} - \begin{pmatrix} a & 2a+b \\ c & 2c+d \end{pmatrix} = \begin{pmatrix} 2c & 2d-2a \\ 0 & -2c \end{pmatrix}$$

$$= 2c \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + 2(d-a) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

ou seja, a imagem de T é gerada pela base (note que as matrizes são l.i.) formada pelas matrizes

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} e \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Uma outra maneira para encontrar uma base para a imagem de T é fazer uso da **prova** do teorema 5. Isto é, sabemos que

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} e \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

formam uma base do núcleo de T e, como no referido teorema, a completamos até uma base de $M_2(\mathbb{R})$ como, por exemplo,

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \text{ e } \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

e, pelo mesmo teorema,

$$T\left(\begin{pmatrix}0&0\\1&0\end{pmatrix}\right) = \begin{pmatrix}2&0\\0&-2\end{pmatrix} e T\left(\begin{pmatrix}0&0\\0&1\end{pmatrix}\right) = \begin{pmatrix}0&1\\0&0\end{pmatrix}$$

formam uma base para a imagem de T.

Definição 25 Dizemos que $T \in \mathcal{L}(U)$ é idempotente se $T^2 = T$.

Exemplo 38 $I: U \to U$, a identidade de U é idempotente.

Exemplo 39 $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (x,0) é idempotente.

Note que

$$T^{2}(x,y) = T(x,0) = (x,0) = T(x,y).$$

Proposição 32 Mostre que se $T \in \mathcal{L}(U)$ é idempotente então

$$U = T(U) \oplus \mathcal{N}(T).$$

Prova: Dado $u \in U$ podemos escrever

$$u = T(u) + (u - T(u)).$$

Claramente, $T(u) \in T(U)$ e $T(u - T(u)) = T(u) - T^2(u) = T(u) - T(u) = 0$. Logo, $U = T(U) + \mathcal{N}(T)$ e resta mostrarmos que a soma é direta.

Se $u \in T(U) \cap \mathcal{N}(T)$ então existe $v \in U$ tal que u = T(v) e T(u) = 0. Porém, como $T = T^2$, temos

$$u = T(v) = T^{2}(v) = T(T(v)) = T(u) = 0,$$

ou seja, $T(U) \cap \mathcal{N}(T) = \{0\}.$

7.4 Isomorfismo e Automorfismo

Definição 26 Dizemos que uma transformação linear $T:U\to V$ é isomorfismo quando ela for bijetora. No caso em que U=V diremos que T é um automorfismo.

Definição 27 Dizemos que os espaços vetoriais U e V são isomorfos se existir um isomorfismo $T:U\to V$.

As seguintes transformações são exemplos de isomorfismos e, portanto, os respectivos espaços vetoriais são isomorfos.

1. $T: U \to U$ dada por T(u) = u.

- 2. $T: \mathbb{R}^n \to \mathcal{P}_{n-1}(\mathbb{R})$ dada por $T(x_1, \dots, x_n) = x_1 + x_2 t + \dots + x_n t^{n-1}$.
- 3. $T: M_{m \times n}(\mathbb{R}) \to \mathbb{R}^{mn}$ que associa a cada matriz $A = (a_{ij})$ de $M_{m \times n}(\mathbb{R})$ o seguinte elemento de \mathbb{R}^n

$$(a_{11},\ldots,a_{1n},\ldots,a_{m1},\ldots,a_{mn}).$$

Ex. Resolvido 9 Verifique se T(x,y,z)=(x-y,x-z,z-y) é um automorfismo de \mathbb{R}^3 .

Resolução: Se T(x, y, z) = (0, 0, 0) então

$$\begin{cases} x - y = 0 \\ x - z = 0 \\ z - y = 0 \end{cases} \iff x = y = z = 0.$$

Logo, T é não é injetora, pois T(1,1,1)=(0,0,0). Assim, T não é um isomorfismo.

Proposição 33 Se $T: U \to V$ é um isomorfismo e U tem dimensão n então $\dim V = n$.

Prova: Considere uma base de U formada por u_1, \ldots, u_n . Mostraremos que $T(u_1), \ldots, T(u_n)$ formam uma base de V.

Se $\alpha_1 T(u_1) + \cdots + \alpha_n T(u_n) = 0$ então $T(\alpha_1 u_1 + \cdots + \alpha_n u_n) = 0$, isto é, $\alpha_1 u_1 + \cdots + \alpha_n u_n \in \mathcal{N}(T)$. Como T é injetora temos $\mathcal{N}(T) = \{0\}$ e, conseqüentemente, $\alpha_1 u_1 + \cdots + \alpha_n u_n = 0$. Como u_1, \ldots, u_n formam uma base de U temos $\alpha_1 = \cdots = \alpha_n = 0$ e, portanto, $T(u_1), \ldots, T(u_n)$ são linearmente independentes.

Seja $v \in V$. Como T é sobrejetora, existe $u \in U$ tal que v = T(u). Escrevendo u como $\alpha_1 u_1 + \cdots + \alpha_n u_n$ vemos que

$$v = T(\alpha_1 u_1 + \dots + \alpha_n u_n) = \alpha_1 T(u_1) + \dots + \alpha_n T(u_n),$$

isto é, $T(u_1), \ldots, T(u_n)$ geram V.

Proposição 34 Sejam U e V espaços de dimensão n. Se u_1, \ldots, u_n e v_1, \ldots, v_n formam bases de U e V, respectivamente, então

$$T(x_1u_1 + \dots + x_nu_n) = x_1v_1 + \dots + x_nv_n, \quad x_1, \dots, x_n \in \mathbb{R},$$

define um isomorfismo entre U e V. Note que $T(u_j) = v_j, j = q, \ldots, n$.

Prova: Primeiramente, note que T, de fato, define uma função pois as coordenadas de um vetor com relação a uma base são unicamente determinadas por ele e pela base.

Verifiquemos que T é linear. Se $w_1, w_2 \in U$ então podemos escrever $w_1 = \sum_{i=1}^n x_i u_i$ e $w_2 = \sum_{i=1}^n y_i u_i$, onde $x_i, y_i \in \mathbb{R}, i = 1, ..., n$. Se $\lambda_1, \lambda_2 \in \mathbb{R}$, temos

$$T(\lambda_1 w_1 + \lambda_2 w_2) = T(\sum_{i=1}^{n} (\lambda_1 x_i + \lambda_2 y_i) u_i) = \sum_{i=1}^{n} (\lambda_1 x_i + \lambda_2 y_i) v_i$$

$$= \lambda_1 \sum_{i=1}^{n} x_i v_i + \lambda_2 \sum_{i=1}^{n} y_i v_i = \lambda_1 T(w_1) + \lambda_2 T(w_2).$$

Seja $w = \sum_{i=1}^{n} x_i u_i$ tal que T(w) = 0. Mas $T(w) = x_1 v_1 + \dots + x_n v_n = 0$ e, portanto, $x_1 = \dots = x_n = 0$, ou seja, w = 0. Portanto, T é injetora e pelo corolário 2, segue-se que T é um isomorfismo.

Corolário 3 Se dois espaços têm a mesma dimensão finita então eles são isomorfos.

Prova: Basta tomar o isomorfismo do teorema anterior.

Combinando o corolário acima com a proposição 33 vemos que dois espaços de dimensão finita são isomorfos se e somente se eles possuem a mesma dimensão.

Corolário 4 Se U é um espaço vetorial de dimensão n e V é um espaço vetorial de dimensão m então $\mathcal{L}(U,V)$ é isomorfo a $M_{m\times n}(\mathbb{R})$.

Prova: Note que tanto $\mathcal{L}(U,V)$ como $M_{m\times n}(\mathbb{R})$ têm a mesma dimensão: mn.

7.5 Matriz de uma Transformação Linear

7.5.1 Definição e Exemplos

Sejam U e V espaços vetoriais de dimensão finita. Fixemos uma base B de U formada por vetores u_1, \ldots, u_n e uma base V formada por vetores v_1, \ldots, v_m . Se $T \in \mathcal{L}(U, V)$ podemos escrever

$$T(u_j) = a_{1j}v_1 + \dots + a_{mj}v_m, = 1, \dots, n.$$

A matriz

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in M_{m \times n}(\mathbb{R})$$

é chamada de matriz da transformação T com relação às bases B e C e é denotada por $[T]_{B,C}$. No caso em que U=V e B=C usaremos a notação $[T]_B$.

Ex. Resolvido 10 Encontre a matriz de $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x, y, z) = (x + y, x - z) com relação às bases canônicas de \mathbb{R}^3 (B: (1,0,0),(0,1,0),(0,0,1)) e \mathbb{R}^2 (C: (1,0),(0,1)).

Resolução: Temos

$$T(1,0,0) = (1,1) = 1(1,0) + 1(0,1),$$

$$T(0,1,0) = (1,0) = 1(1,0) + 0(0,1) \quad e$$

$$T(0,0,1) = (0,-1) = 0(1,0) - 1(0,1).$$

Assim,

$$[T]_{B,C} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

Ex. Resolvido 11 Encontre a matriz de $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x,y,z) = (x+y,x-z) com relação às bases canônicas de \mathbb{R}^3 (B: (1,0,0),(0,1,0),(0,0,1)) e \mathbb{R}^2 (C': (1,1),(0,1)).

Resolução: Temos

$$\begin{split} T(1,0,0) &= (1,1) = 1(1,1) + 0(0,1), \\ T(0,1,0) &= (1,0) = 1(1,1) - 1(0,1) \quad \text{e} \\ T(0,0,1) &= (0,-1) = 0(1,1) - 1(0,1). \end{split}$$

Assim,

$$[T]_{B,C'} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}.$$

7.5.2 Propriedades

Proposição 35 Sejam U e V espaços vetorial de dimensão finita com bases B e C, respectivamente. Se $T, S \in \mathcal{L}(U, V)$ e $\lambda, \mu \in \mathbb{R}$ então

$$[\lambda T + \mu S]_{B,C} = \lambda [T]_{B,C} + \mu [S]_{B,C}.$$

Prova: Colocando $B: u_1, \ldots, u_n, C: v_1, \ldots, v_m, [T]_{B,C} = (\alpha_{ij})$ e $[S]_{B,C} = (\beta_{ij})$ temos

$$(\lambda T + \mu S)(u_j) = \lambda T(u_j) + \mu S(u_j)$$

$$= \lambda (\alpha_{1j}v_1 + \dots + \alpha_{mj}v_m) + \mu (\beta_{1j}v_1 + \dots + \beta_{mj}v_m)$$

$$= (\lambda \alpha_{1j} + \mu \beta_{1j})v_1 + \dots + (\lambda \alpha_{mj} + \mu \beta_{mj})v_m$$

e, desse modo,

$$[\lambda T + \mu S]_{B,C} = \begin{pmatrix} \lambda \alpha_{11} + \mu \beta_{11} & \cdots & \lambda \alpha_{1n} + \mu \beta_{1n} \\ \vdots & \ddots & \vdots \\ \lambda \alpha_{m1} + \mu \beta_{m1} & \cdots & \lambda \alpha_{mn} + \mu \beta_{mn} \end{pmatrix} = \lambda [T]_{B,C} + \mu [S]_{B,C}.$$

Corolário 5 Sejam U e V espaços vetorial de dimensão finita com bases B e C, respectivamente. Se $T \in \mathcal{L}(U,V)$ é a transformação nula então $[T]_{B,C} = 0$.

Proposição 36 Se B e C são bases de um espaço vetorial V de dimensão finita e $I \in \mathcal{L}(V,V)$ é a identidade de V então $[I]_{B,C} = M_C^B$.

Prova: Sejam $B: u_1, \ldots, u_n, C: v_1, \ldots, v_n \in [I]_{B,C} = (\alpha_{ij})$. Como

$$u_i = I(u_i) = \alpha_{1i}v_1 + \cdots + \alpha_{ni}v_n$$

vê-se que $[I]_{B,C} = M_C^B$.

Proposição 37 Sejam U, V e W espaços vetoriais de dimensão finita. Sejam $T \in \mathcal{L}(U, V)$ e $S \in \mathcal{L}(V, W)$. Se B, C e D são bases de U, V e W, respectivamente, então

$$[S \circ T]_{B,D} = [S]_{C,D}[T]_{B,C}.$$

Prova: Coloquemos $B:u_1,\ldots,u_n,C:v_1,\ldots,v_m$ e $D:w_1,\ldots,w_p$. Se $[T]_{B,C}=(\alpha_{ij})$ e $[S]_{C,D}=(\beta_{kl})$ então

$$S \circ T(u_j) = S(T(u_j)) = S\left(\sum_{i=1}^m \alpha_{ij} v_i\right) = \sum_{i=1}^m \alpha_{ij} S(v_i)$$

$$=\sum_{i=1}^{m}\alpha_{ij}\left(\sum_{k=1}^{p}\beta_{ki}w_k\right)=\sum_{k=1}^{p}\left(\sum_{i=1}^{m}\beta_{ki}\alpha_{ij}\right)w_k.$$

Portanto,

$$[S \circ T]_{B,D} = \left(\sum_{i=1}^{m} \beta_{ki} \alpha_{ij}\right) = [S]_{C,D}[T]_{B,C}.$$

Proposição 38 Sejam U e V espaços vetorial de dimensão finita com bases B e C, respectivamente. Se $T \in \mathcal{L}(U,V)$ possui inversa T^{-1} então $[T^{-1}]_{C,B} = [T]_{B,C}^{-1}$.

Prova: Seja $n = \dim U = \dim V$. Temos

$$[T]_{B,C}[T^{-1}]_{C,B} = [T \circ T^{-1}]_{C,C} = [I]_{C,C} = I_n$$

onde I_n é a matriz identidade de ordem n. Analogamente,

$$[T^{-1}]_{C,B}[T]_{B,C} = [T^{-1} \circ T]_{B,B} = [I]_{B,B} = I_n.$$

Portanto, $[T^{-1}]_{C,B} = [T]_{B,C}^{-1}$.

Proposição 39 Sejam U e V espaços vetorial de dimensão finita com bases B e C, respectivamente. Se $T \in \mathcal{L}(U,V)$ e $u \in U$ então, representando por $T(u)_C$ e u_B as coordenadas dos vetores T(u) e u, respectivamente, temos

$$T(u)_C = [T]_{B,C} u_B.$$

Prova: Coloque $B: u_1, ..., u_n, C: v_1, ..., v_m, [T]_{B,C} = (\alpha_{ij})$ e

$$u_B = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

Temos

$$T(u) = T(a_1u_1 + \dots + a_nu_n) = a_1T(u_1) + \dots + a_nT(u_n)$$

$$= a_1(\alpha_{11}v_1 + \dots + \alpha_{m1}v_m) + \dots + a_n(\alpha_{1n}v_1 + \dots + \alpha_{mn}v_m)$$

$$= (a_1\alpha_{11} + \dots + a_n\alpha_{1n})v_1 + \dots + (a_1\alpha_{m1} + \dots + a_n\alpha_{mn})v_m,$$

ou seja,

$$T(u)_C = \begin{pmatrix} a_1 \alpha_{11} + \dots + a_n \alpha_{1n} \\ \vdots \\ a_1 \alpha_{m1} + \dots + a_n \alpha_{mn} \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{m1} & \dots & \alpha_{mn} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix},$$

isto é, $T(u)_C = [T]_{B,C} u_B$.

Proposição 40 Sejam U e V espaços vetorial de dimensão finita com bases B e C, respectivamente. Então $T \in \mathcal{L}(U,V)$ é um isomorfismo se e somente se $[T]_{B,C}$ possui inversa.

Prova: Se T é um isomorfismo então pela proposição 38 $[T]_{B,C}$ possui inversa dada por $[T^{-1}]_{C,B}$. Reciprocamente, suponha que $[T]_{B,C}$ possua inversa. Pelo corolário 2, basta mostrar que T é injetora. Se T(u) = 0 então

$$u_B = [T]_{BC}^{-1} T(u)_C = [T]_{BC}^{-1} 0 = 0.$$

Como todas as coordenadas de u são iguais a zero, obtemos u=0 e, portanto, T é injetora.

Ex. Resolvido 12 Verifique se $T: \mathbb{R}^2 \to \mathcal{P}_1(\mathbb{R})$ dada por T(a,b) = a + (a+b)x é um isomorfismo.

Resolução: Consideremos as bases canônicas de \mathbb{R}^2 e $\mathcal{P}_1(\mathbb{R})$. Como T(1,0)=1+x e T(0,1)=x, a matriz de T com relação a estas bases é dada por

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
.

Como a matriz acima possui inversa, segue-se que T é um isomorfismo.

Proposição 41 Seja V um espaço de dimensão finita. Se $T \in \mathcal{L}(V,V)$ e B e C são bases de V então

$$[T]_{C,C} = M_C^B [T]_{B,B} M_B^C.$$

Prova: Como $[I]_{B,C} = M_C^B$ e $[I]_{C,B} = M_B^C$, temos

$$M_C^B[T]_{B,B}M_B^C = [I]_{B,C}[T]_{B,B}[I]_{C,B} = [I]_{B,C}[T]_{C,B} = [T]_{C,C}.$$

Ex. Resolvido 13 Considere, B, a base de \mathbb{R}^2 formada pelos vetores (1,1) e (1,-1). Seja $T \in \mathcal{L}(\mathbb{R}^2)$ tal que

$$T_{B,B} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}.$$

Encontre $[T]_{C,C}$, onde C é a base canônica de \mathbb{R}^2 .

Resolução: Como

$$(1,0) = \frac{1}{2}(1,1) + \frac{1}{2}(1,-1) e (0,1) = \frac{1}{2}(1,1) - \frac{1}{2}(1,-1),$$

obtemos

$$M_B^C = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \text{ e } M_C^B = \begin{pmatrix} M_B^C \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Assim,

$$\begin{split} [T]_{C,C} &= M_C^B [T]_{B,B} M_B^C = \\ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}. \end{split}$$

Note que

$$T(x,y) = T(x(1,0) + y(0,1)) = xT((1,0)) + yT((0,1))$$
$$= x(3(1,0) - 2(0,1)) + y(-2(1,0) + 3(0,1)) =$$
$$= x(3,-2) + y(-2,3) = (3x - 2y, 3y - 2x).$$

Capítulo 8

Autovalores e Autovetores

8.1 Definição, Exemplos e Generalidades

Definição 28 Sejam U um espaço vetorial e $T \in \mathcal{L}(U)$. Dizemos que um vetor não nulo $u \in U$ é um autovetor de T se existir $\lambda \in \mathbb{R}$ tal que $T(u) = \lambda u$.

Observação 8.0.4 Se $u \neq 0$ é tal que $T(u) = \lambda u = \mu u$ então $\lambda = \mu$. De fato, esta igualdade implica que $(\lambda - \mu)u = 0$, ou seja, $\lambda - \mu = 0$.

Definição 29 Sejam U um espaço vetorial, $T \in \mathcal{L}(U)$ e u um autovetor de T. O número λ tal que $T(u) = \lambda u$ é chamado de autovalor de T associado ao autovetor u.

Definição 30 Sejam U um espaço vetorial, $T \in \mathcal{L}(U)$ e λ um autovalor de T. O subespaço vetorial

$$V(\lambda) = \{u \in U; T(u) = \lambda u\} = \mathcal{N}(T - \lambda I)$$

é chamado de subespaço próprio do autovalor λ . Se U tem dimensão finita, diremos que a dimensão de $V(\lambda)$ é a multiplicidade geométrica de λ .

Observação 8.0.5 Note que todo $u \in V(\lambda)$, $u \neq 0$, é um autovetor de T associado ao autovalor λ .

Observação 8.0.6 $V(\lambda)$ é um subespaço invariante por T, isto é,

$$T(V(\lambda)) \subset V(\lambda)$$
.

Basta notar que se $u \in V(\lambda)$ então $T(u) = \lambda u \in V(\lambda)$.

Ex. Resolvido 14 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (y,x). Encontre os autovalores de T, os respectivos subespaços próprios e a multiplicidade geométrica de cada autovalor.

Resolução: $\lambda \in \mathbb{R}$ é um autovalor de T se e somente se existir $(x, y) \neq (0, 0)$ tal que $T(x, y) = \lambda(x, y)$, ou seja, se e somente se existir $(x, y) \neq (0, 0)$ tal que $(y, x) = (\lambda x, \lambda y)$. Isto equivale a que o sistema

$$\begin{cases} y - \lambda x = 0 \\ x - \lambda y = 0 \end{cases}$$

possua uma solução não trivial. Isto acontece se e somente se o determinante da matriz

$$\begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix}$$

for igual a zero. Como este determinante é λ^2-1 , vemos que os únicos autovalores de T são $\lambda_1=-1$ e $\lambda_2=1$. Temos

$$V(-1) = \{(x,y) \in \mathbb{R}^2; (y,x) = -(x,y)\} = \{(x,y) \in \mathbb{R}^2; x = -y\} = [(1,-1)].$$

Assim, a multiplicidade geométrica de -1 é 1.

$$V(1) = \{(x, y) \in \mathbb{R}^2; (y, x) = (x, y)\} = \{(x, y) \in \mathbb{R}^2; x = y\} = [(1, 1)].$$

Assim, a multiplicidade geométrica de 1 é 1.

Note que (1,-1) é um autovetor associado ao autovalor -1 e e (1,1) é um autovetor associado ao autovalor 1.

Ex. Resolvido 15 Ainda com relação ao exercício anterior, encontre a matriz de T com relação à base (1,-1) e (1,1) formada pelos autovetores de T.

Resolução: Temos

Logo, a matriz de T com relação a esta base é a matriz diagonal

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Ex. Resolvido 16 Faça o mesmo o que se pede no exercício 14 para a transformação T(x,y)=(-y,x).

Resolução: $\lambda \in \mathbb{R}$ é um autovalor de T se e somente se existir $(x,y) \neq (0,0)$ tal que $T(x,y) = \lambda(x,y)$, ou seja, se e somente se existir $(x,y) \neq (0,0)$ tal que $(-y,x) = (\lambda x, \lambda y)$. Isto equivale a que o sistema

$$\begin{cases} \lambda x + y = 0 \\ x - \lambda y = 0 \end{cases}$$

possua uma solução não trivial. Isto acontece se e somente se o determinante da matriz

$$\begin{pmatrix} \lambda & 1 \\ 1 & -\lambda \end{pmatrix}$$

for igual a zero. Como este determinante é $-\lambda^2-1<0$, vemos que não existem autovalores associados à transformação T.

Ex. Resolvido 17 Seja $T: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ dada por T(p(x)) = p'(x). Verifique que 0 é o único autovalor desta transformação. Encontre V(0).

Resolução: Note que $\lambda \in \mathbb{R}$ é um autovalor de T se e somente se existir $p(x) \neq 0$ tal que $p'(x) = \lambda p(x)$. Se $\lambda \neq 0$ esta equação só é verdadeira para o polinômio nulo, posto que para qualquer outro polinômio os graus de p'(x) e $\lambda p(x)$ são distintos. Desta forma, $\lambda \neq 0$ não é autovalor de T.

Agora, se $\lambda = 0$, então p'(x) = 0 apresenta como solução todos os polinômios constantes. Logo, $\lambda = 0$ é um autovalor associado, por exemplo, ao autovetor p(x) = 1.

Quanto a V(0), basta ver que $V(0) = \mathcal{N}(T) = [1]$, isto é, o subespaço gerado pelo polinômio 1.

Ex. Resolvido 18 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (x,y,0). Encontre os autovalores de T e os respectivos subespaços próprios e a multiplicidade geométrica de cada autovalor.

Resolução: $\lambda \in \mathbb{R}$ é um autovalor de T se e somente se existir $(x, y, z) \neq (0, 0, 0)$ tal que $T(x, y, z) = \lambda(x, y, z)$, isto é, se e somente se existir $(x, y, z) \neq (0, 0, 0)$ tal que $(x, y, 0) = (\lambda x, \lambda y, \lambda z)$. Isto equivale a que o sistema

$$\begin{cases} (1 - \lambda)x = 0\\ (1 - \lambda)y = 0\\ \lambda z = 0 \end{cases}$$

possua uma solução não trivial. Isto acontece se e somente se o determinante da matriz

$$\begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

for igual a zero. Como este determinante é $\lambda(1-\lambda)^2$, vemos que os únicos autovalores de T são $\lambda_1=0$ e $\lambda_2=1$.

Quanto aos subespaços próprios, temos

$$V(0) = \{(x, y, z) \in \mathbb{R}^3; (x, y, 0) = (0, 0, 0)\} = [(0, 0, 1)].$$

Assim, a multiplicidade geométrica de 0 é 1.

$$V(1) = \{(x, y, z) \in \mathbb{R}^3; (x, y, 0) = (x, y, z)\} = \{(x, y, z) \in \mathbb{R}^3; z = 0\}$$
$$= [(1, 0, 0), (0, 1, 0)].$$

Assim, a multiplicidade geométrica de 1 é 2.

Proposição 42 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Suponha que T possua autovetores u_1, \ldots, u_n associados a autovalores $\lambda_1, \ldots, \lambda_n$, respectivamente. Se $\lambda_i \neq \lambda_j$, quando $i \neq j$ então u_1, \ldots, u_n são linearmente independentes.

Prova: A prova será por indução sobre so número de autovalores. Se $\beta_1 u_1 + \beta_2 u_2 = 0$ então

$$T(\beta_1 u_1 + \beta_2 u_2) = \beta_1 T(u_1) + \beta_2 T(u_2) = \beta_1 \lambda_1 u_1 + \beta_2 \lambda_2 u_2 = 0.$$

Portanto, $\beta_2(\lambda_2 - \lambda_1)u_2 = 0$ e, como $u_2 \neq 0$ e $\lambda_1 \neq \lambda_1$, resulta que $\beta_2 = 0$. Daí, $\beta_1 u_1 = 0$ e, como $u_1 \neq 0$, temos $\beta_1 = 0$. Portanto, u_1 e u_2 são linearmente independentes.

Suponhamos, como hipótese de indução, que n-1 autovetores de uma transformação linear associados a n-1 autovalores dois a dois distintos sejam linearmente independentes. Devemos mostrar que o mesmo resultado vale para n autovetores associados a n autovalores dois a dois distintos.

Sejam então u_1, \ldots, u_n autovetores associados aos autovalores $\lambda_1, \ldots, \lambda_n$, dois a dois distintos. Se u_1, \ldots, u_n não fossem linearmente independentes, pelo menos um deles se escreveria como combinação linear dos outros. Para simplificar a notação, suponhamos que

$$u_1 = \alpha_2 u_2 + \dots + \alpha_n u_n \tag{8.1}$$

então

$$T(u_1) = T(\alpha_2 u_2 + \dots + \alpha_n u_n) = \alpha_2 T(u_2) + \dots + \alpha_n T(u_n)$$

$$\lambda_1 u_1 = \alpha_2 \lambda_2 u_2 \dots + \alpha_n \lambda_n u_n, \tag{8.2}$$

De 8.1 e 8.2 resulta que

$$0 = \alpha_2(\lambda_2 - \lambda_1)u_2 + \dots + \alpha_n(\lambda_n - \lambda_1)u_n$$

e pela hipótese de indução,

$$\alpha_2(\lambda_2 - \lambda_1) = \dots = \alpha_n(\lambda_n - \lambda_1) = 0,$$

mas como $\lambda_1 \neq \lambda_j$ para $j = 2, \ldots, n$, temos

$$\alpha_2 = \cdots = \alpha_n = 0.$$

Assim, pela equação 8.1, $u_1 = 0$, o que é impossível pois u_1 é um autovetor.

Proposição 43 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Suponha que T possua autovalores $\lambda_1, \ldots, \lambda_n$, distintos. Então a soma dos subespaços próprios de T é direta, isto é, para cada $j = 1, \ldots, n$, temos

$$V(\lambda_j) \cap (V(\lambda_1) + \dots + V(\lambda_{j-1}) + V(\lambda_{j+1}) + \dots + V(\lambda_n)) = \{0\}.$$

Prova: A prova será por indução sobre so número de autovalores. Primeiramente, mostremos que $V(\lambda_1) \cap V(\lambda_2) = \{0\}$. Fixe $v_1^{(1)}, \dots, v_{m_1}^{(1)}$ uma base de $V(\lambda_1)$ e $v_1^{(2)}, \dots, v_{m_2}^{(2)}$ uma base de $V(\lambda_2)$. Se $u \in V(\lambda_1) \cap V(\lambda_2)$ então

$$u = \alpha_1^{(1)} v_1^{(1)} + \dots + \alpha_{m_1}^{(1)} v_{m_1}^{(1)} = \alpha_1^{(2)} v_1^{(2)} + \dots + \alpha_{m_2}^{(2)} v_{m_2}^{(2)}.$$

$$(8.3)$$

Logo, T(u) é dado por

$$\alpha_1^{(1)}T(v_1^{(1)}) + \dots + \alpha_{m_1}^{(1)}T(v_{m_1}^{(1)}) = \alpha_1^{(2)}T(v_1^{(2)}) + \dots + \alpha_{m_2}^{(2)}T(v_{m_2}^{(2)}),$$

ou seja,

$$\alpha_1^{(1)}\lambda_1 v_1^{(1)} + \dots + \alpha_{m_1}^{(1)}\lambda_1 v_{m_1}^{(1)} = \alpha_1^{(2)}\lambda_2 v_1^{(2)} + \dots + \alpha_{m_2}^{(2)}\lambda_2 v_{m_2}^{(2)}. \tag{8.4}$$

Multiplicando a equação 8.3 por λ_1 e subtraindo-a de 8.4, obtemos

$$\alpha_1^{(2)}(\lambda_2 - \lambda_1)v_1^{(2)} + \dots + \alpha_{m_2}^{(2)}(\lambda_2 - \lambda_1)v_{m_2}^{(2)} = 0.$$

Como $v_1^{(2)}, \dots, v_{m_2}^{(2)}$ é uma base de $V(\lambda_2)$, temos

$$\alpha_1^{(2)}(\lambda_2 - \lambda_1) = \dots = \alpha_{m_2}^{(2)}(\lambda_2 - \lambda_1) = 0$$

e, como $\lambda_1 \neq \lambda_2$, resulta que $\alpha_1^{(2)} = \cdots = \alpha_{m_2}^{(2)} = 0$. Segue-se de 8.3 que u = 0.

Suponhamos agora, por indução, que a soma de n-1 espaços próprios de T referentes a n-1 autovalores distintos seja direta. Precisamos mostrar que este resultado é válido quando T apresenta n autovalores distintos.

Para cada $j=1,\ldots,n$ selecione uma base B_j de $V(\lambda_j)$ constituída por vetores que denotaremos por $v_1^{(j)},\ldots,v_{m_j}^{(j)}$. Note que cada $v_i^{(j)}$ é um autovetor associado ao autovalor λ_j e que m_j é a multiplicidade geométrica deste autovalor.

Se

$$u \in V(\lambda_i) \cap (V(\lambda_1) + \dots + V(\lambda_{i-1}) + V(\lambda_{i+1}) + \dots + V(\lambda_n)),$$

então

$$u = \alpha_1^{(j)} v_1^{(j)} + \dots + \alpha_{m_j}^{(j)} v_{m_j}^{(j)} = \alpha_1^{(1)} v_1^{(1)} + \dots + \alpha_{m_{j-1}}^{(j-1)} v_{m_{j-1}}^{(j-1)} + \alpha_1^{(j+1)} v_1^{(j+1)} + \dots + \alpha_{m_n}^{(n)} v_{m_n}^{(n)}.$$
(8.5)

Assim, T(u) é dado por

$$\begin{split} \alpha_1^{(j)}T(v_1^{(j)}) + \dots + \alpha_{m_j}^{(j)}T(v_{m_j}^{(j)}) &= \alpha_1^{(1)}T(v_1^{(1)}) + \dots \\ &+ \alpha_{m_{j-1}}^{(j-1)}T(v_{m_{j-1}}^{(j-1)}) + \alpha_1^{(j+1)}T(v_1^{(j+1)}) + \dots + \alpha_{m_n}^{(n)}T(v_{m_n}^{(n)}) \end{split}$$

isto é,

$$\alpha_1^{(j)} \lambda_j v_1^{(j)} + \dots + \alpha_{m_j}^{(j)} \lambda_j v_{m_j}^{(j)} = \alpha_1^{(1)} \lambda_1 v_1^{(1)} + \dots + \alpha_{m_{j-1}}^{(j-1)} \lambda_{j-1} v_{m_{j-1}}^{(j-1)} + \alpha_1^{(j+1)} \lambda_{j+1} v_1^{(j+1)} + \dots + \alpha_{m_n}^{(n)} \lambda_n v_{m_n}^{(n)}.$$
(8.6)

Multiplicando a equação 8.5 por λ_i e subtraindo-a de 8.6, obtemos

$$\alpha_1^{(1)}(\lambda_1 - \lambda_j)v_1^{(1)} + \dots + \alpha_{m_{j-1}}^{(j-1)}(\lambda_{j-1} - \lambda_j)v_{m_{j-1}}^{(j-1)} + \alpha_1^{(j+1)}(\lambda_{j+1} - \lambda_j)v_1^{(j+1)} + \dots + \alpha_{m_n}^{(n)}(\lambda_n - \lambda_j)v_{m_n}^{(n)} = 0$$

Usando a nossa hipótese de indução e o fato que $\lambda_j \neq \lambda_i$, quando $i \neq j$, obtemos $\alpha_1^i = \cdots = \alpha_{m_i}^i = 0$ para todo $i = 1, \ldots, j - 1, j + 1, \ldots, n$. Disto e da equação 8.5 resulta que u = 0. Como queríamos.

8.2 Polinômio Característico

Definição 31 Dada $A \in M_{n \times n}(\mathbb{R})$ definimos o polinômio característico de A como sendo o determinante

$$p_A(x) = \det(A - xI),$$

onde I é a matriz identidade de ordem n.

Definição 32 Sejam $A, B \in M_{n \times n}(\mathbb{R})$. Dizemos que A e B são semelhantes se existir $M \in M_{n \times n}(\mathbb{R})$ invertível tal que $A = M^{-1}BM$.

Proposição 44 Se $A, B \in M_{n \times n}(\mathbb{R})$ são matrizes semelhantes então seus polinômios característicos são iguais.

Prova: Temos

$$p_A(x) = \det(A - xI) = \det(M^{-1}BM - xM^{-1}IM)$$

$$= \det(M^{-1}(BM - xIM)) = \det(M^{-1}(B - xI)M)$$

$$= \det M^{-1} \det(B - xI) \det M = \frac{1}{\det M} \det(B - xI) \det M = p_B(x).$$

Lembre que se $T \in \mathcal{L}(U)$, onde U é um espaço vetorial de dimensão finita, e se B e C são bases de U então

$$[T]_C = M_C^B[T]_B M_B^C = [M_B^C]^{-1} [T]_B M_B^C.$$

Desta forma, $p_{[T]_B}(x) = p_{[T]_C}(x)$, ou seja, o polinômio característico da matriz de uma transformação linear independe da escolha da base. Podemos assim, sem causar ambigüidades, definir o polinômio característico de T como sendo

$$p_T(x) = p_{\lceil T \rceil_B}(x),$$

onde B é uma base qualquer de U.

Ex. Resolvido 19 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$T(x,y) = (ax + by, cx + dy).$$

Encontre $p_T(x)$.

Resolução: Usaremos a base canônica, C, de \mathbb{R}^2 . Como T(1,0)=(a,c) e T(0,1)=(b,d), vemos que

$$[T]_C = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Assim,

$$p_T(x) = \det \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - x \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
$$= \det \begin{pmatrix} a - x & b \\ c & d - x \end{pmatrix} = x^2 - (a + d)x + ad - bc.$$

Proposição 45 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Então, λ é um autovalor de T se e somente se $p_T(\lambda) = 0$.

Prova: Fixe B uma base de U.

Suponha que λ seja um autovalor de T. Então existe $u \neq 0$ tal que $T(u) = \lambda u$, ou seja, $(T - \lambda I)(u) = 0$. Desta forma, vemos que a transformação linear $T - \lambda I : U \to U$ não é injetora e, conseqüentemente, não é um isomorfismo. Disto resulta que $[T - \lambda I]_B$ não é invertível, ou equivalentemente, $p_T(\lambda) = \det [T - \lambda I]_B = 0$.

Reciprocamente, se $p_T(\lambda) = 0$ então a matriz $[T - \lambda I]_B$ tem determinante nulo. Isto implica que a transformação $T - \lambda I : U \to U$ não é um isomorfismo e, portanto, não é injetora. Logo, existe $u \neq 0$ tal que $(T - \lambda I)(u) = 0$. Portanto, $T(u) = \lambda u$, $u \neq 0$, isto é, λ é um autovalor de T.

Exercício 7 Refaça os exercícios resolvidos 14, 16, 17 e 18 tendo como base a proposição anterior.

Definição 33 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Se λ é um autovalor de T, definimos a multiplicidade algébrica de λ como sendo a multiplicidade de λ como raiz de $p_T(x)$.

Proposição 46 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Se λ é um autovalor de T então a sua multiplicidade geométrica não excede a sua multiplicidade algébrica.

Prova: Seja n a dimensão de U. Denotemos por m e r as multiplicidades algébrica e geométrica de λ , respectivamente.

Como dim $V(\lambda) = r$, existem $u_1, \ldots, u_r \in V(\lambda)$ linearmente independentes. Completando estes vetores a uma base de U, vemos que com relação a esta base é da forma

$$\begin{pmatrix}
\begin{bmatrix}
\lambda & \cdots & 0 \\
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda
\end{bmatrix}_{r \times r} & A_{r \times (n-r)} \\
0_{(n-r) \times r} & B_{(n-r) \times (n-r)}
\end{pmatrix}$$

vemos que o fator $(x - \lambda)^r$ aparece na fatoração do polinômio $p_T(x)$. Por outro lado, como a multiplicidade algébrica de λ é m, obtemos $r \leq m$.

Ex. Resolvido 20 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$T(x,y) = (ax + by, cx + dy).$$

Analise quando esta transformação possui autovalores e o número deles.

Resolução: Sabemos do exercício resolvido 19 que

$$p_T(x) = x^2 - (a+d)x + ad - bc.$$

Pela proposição 45 que λ é um autovalor de T se e somente se $p_T(\lambda) = 0$, isto é, se e somente se

$$\lambda^2 - (a+d)\lambda + ad - bc = 0$$

e esta equação possui solução (real) se e somente se $(a+d)^2 - 4(ad-bc) \ge 0$. Quando $(a+d)^2 = 4(ad-bc)$ vemos que T apresenta somente um autovalor, dado por (a+d)/2; quando $(a+d)^2 - 4(ad-bc) > 0$, T apresenta dois autovalores distintos dados por

$$\frac{a+d+\sqrt{(a+d)^2-4(ad-bc)}}{2}$$
 e $\frac{a+d-\sqrt{(a+d)^2-4(ad-bc)}}{2}$.

Capítulo 9

Diagonalização

Definição 34 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Dizemos que T é diagonalizável se existir uma base de U formada por autovetores de T.

Note que se $T \in \mathcal{L}(U)$ é diagonalizável e se u_1, \ldots, u_n formam uma base B de U formada autovetores de T associados, respectivamente, aos autovalores $\lambda_1, \ldots, \lambda_n$, então a matriz de T com relação a esta base é

$$[T]_B = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

ou seja, $[T]_B$ é uma matriz diagonal, isto é, uma matriz quadrada (a_{ij}) tal que $a_{ij} = 0$ se $i \neq j$.

Reciprocamente, se existir uma base $C: v_1, \ldots, v_n$ de U com relação a qual a matriz de $T \in \mathcal{L}(U)$ é diagonal, então T é diagonalizável. De fato, se

$$[T]_C = \begin{pmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mu_n \end{pmatrix}$$

então, pela própria definição de matriz de uma transformação linear, vemos que $T(v_1) = \mu_1 v_1, \dots, T(v_n) = \mu_n v_n$, ou seja, a base C é formada por autovetores de T. Resumiremos este fato no seguinte

Teorema 6 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Então, T é diagonalizável se e somente se existir uma base de U com relação a qual a matriz de T é diagonal.

Note que se $T \in \mathcal{L}(U)$ é diagonalizável então pelo teorema 6 existe uma base B formada por autovetores de T com relação a qual a matriz de T é diagonal. Se C é uma outra base de U sabemos que $[T]_B = (M_C^B)^{-1}[T]_C M_C^B$. Esta última igualdade nos sugere a seguinte

Definição 35 Dizemos que uma matriz $A \in M_{n \times n}(\mathbb{R})$ é diagonalizável se existir $M \in M_{n \times n}(\mathbb{R})$ invertível tal que $M^{-1}AM$ seja uma matriz diagonal.

Proposição 47 Sejam U um espaço vetorial de dimensão finita, $T \in \mathcal{L}(U)$ e C uma base qualquer de U. Então T é diagonalizável se e somente se a matriz $[T]_C$ for diagonalizável.

Prova: Já vimos que se T for diagonalizável então $[T]_C$ é uma matriz diagonalizável.

Reciprocamente, suponha que $[T]_C$ seja diagonalizável. Assim, existe $M=(a_{ij})\in M_{n\times n}(\mathbb{R})$ invertível tal que $M^{-1}[T]_CM$ é uma matriz diagonal. Se u_1,\ldots,u_n são os vetores da base C então, colocando $v_j=a_{1j}u_1+\cdots+a_{nj}u_n$, vemos que v_1,\ldots,v_n formam uma base de U pois M é invertível. Além do mais, $M=M_C^B$. Deste modo,

$$[T]_B = (M_C^B)^{-1}[T]_C M_C^B = M^{-1}[T]_C M$$

é diagonal, isto é, T é diagonalizável.

Note que pelo teorema acima, para verificar se um operador é diagonalizável, basta verificar se a matriz de T com relação a uma base qualquer de U é diagonalizável.

Observação 9.0.1 Note que se T for diagonalizável, o seu polinômio característico é da forma

$$p_T(x) = (\lambda_1 - x) \cdots (\lambda_n - x),$$

onde os números reais $\lambda_1, \ldots, \lambda_n$ são todos os autovalores de T.

Teorema 7 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Então, T é diagonalizável se e somente se os autovalores $\lambda_1, \ldots, \lambda_n$ de T forem tais que

$$U = V(\lambda_1) \oplus \cdots \oplus V(\lambda_n).$$

Prova: Se

$$U = V(\lambda_1) \oplus \cdots \oplus V(\lambda_n)$$

então podemos formar uma base B de U formada por bases B_j de $V(\lambda_j)$, $j=1,\ldots,n$. Como cada elemento de B_j é um autovetor de T, segue-se, pelo teorema 6 que T é diagonalizável.

Reciprocamente, se T for diagonalizável, pelo teorema 6, existe uma base B de U formada por autovetores de T. Como cada autovetor está associado a algum autovalor de T, vemos que cada elemento de B está contido em algum $V(\lambda_j)$. Desta forma, a soma de todos os subespaços próprios de T contém B e, portanto, é o próprio U. Pelo teorema 43 esta soma é direta, ou seja,

$$U = V(\lambda_1) \oplus \cdots \oplus V(\lambda_n).$$

Exemplo 40 As transformações dos exercícios resolvidos 14 e 18 são diagonalizáveis. Já a transformação do 16 não o é pois não possui autovetores. Quanto a transformação do 17 vemos que também não é diagonalizável se $n \ge 1$, pois todo autovetor de T pertence a V(0), que é unidimensional, e dim $\mathcal{P}_n(\mathbb{R}) = n+1 \ge 2$.

Vejamos como é possível decidir sobre a diagonalização de um operador linear a partir das multiplicidades algébrica e geométrica de seus autovalores.

Sejam U um espaço vetorial de dimensão m e $T \in \mathcal{L}(U)$. Se $\lambda_1, \ldots, \lambda_n$ são autovalores de T dois a dois distintos então o polinômio característico de T é dado por

$$p_T(x) = (\lambda_1 - x)^{m_1} \cdots (\lambda_n - x)^{m_n},$$
 (9.1)

onde m_j é a multiplicidade algébrica de λ_j . Note que $m=m_1+\cdots+m_n$.

Se denotarmos por r_j a multiplicidade geométrica de λ_j , isto é, $r_j = \dim V(\lambda_j)$ então, pelo teorema 7, T é diagonalizável se e somente se $m = r_1 + \cdots + r_n$. Por este mesmo teorema, T é diagonalizável se e somente se U possuir uma base formada pela reunião das bases dos espaços próprios de T, visto que isto é equivalente

a dizer que a soma destes subespaços é direta. Como com relação a uma tal base a matriz de T é da forma

vemos que T é diagonalizável se e somente se o seu polinômio característico é dado por

$$p_T(x) = (\lambda_1 - x)^{r_1} \cdots (\lambda_n - x)^{r_n}.$$
 (9.2)

Comparando 9.1 e 9.2, obtemos o importante

Teorema 8 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Então T é diagonalizável se e somente para cada autovalor λ de T as suas multiplicidades algébrica e geométrica forem iguais.

Corolário 6 Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Se

$$p_T(x) = (\lambda_1 - x) \cdots (\lambda_n - x),$$

onde $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ são dois a dois distintos então T é diagonalizável.

Prova: Como os autovalores de T são dois a dois distintos, vê-se que as raízes de $p_T(x)$, são todas simples, isto é, têm multiplicidade um. Desta forma, se λ é um autovalor de T então a sua multiplicidade geométrica é um. Pela proposição 46, a multiplicidade geométrica de λ é menor do que ou igual a um. Como dim $V(\lambda) \geq 1$, segue-se que a a multiplicidade geométrica de λ é um, ou seja, igual à sua multiplicidade algébrica.

Ex. Resolvido 21 Verifique se $T: \mathbb{R}^3 \to \mathbb{R}^3$ da por

$$T(x, y, z) = (x + z, y + z, x + y + 2z)$$

é diagonalizável.

Resolução: Com relação à base canônica, a matriz de T é dada por

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Assim,

$$p_T(x) = \det \begin{pmatrix} 1 - x & 0 & 1 \\ 0 & 1 - x & 1 \\ 1 & 1 & 2 - x \end{pmatrix} = (1 - x)((1 - x)(2 - x) - 1) + 1(-(1 - x))$$
$$= (1 - x)(x^2 - 3x) = x(1 - x)(x - 3).$$

Desta forma, vemos que $P_T(x)$ apresenta todas as raízes reais e simples e, pelo corolário 6, segue-se que T é diagonalizável.

Ex. Resolvido 22 Encontre uma base de autovetores para o operador do exercício anterior. Encontre também a matriz de T com relação a esta base.

Resolução: autovalor θ : Precisamos encontrar (x,y,z) não nulo tal que T(x,y,z)=(0,0,0). Temos

$$\begin{cases} x+z=0\\ y+z=0\\ x+y+2z=0 \end{cases} \iff \begin{cases} x=y=-z\\ x+y+2z=0 \end{cases} \iff x=y=-z,$$

assim, podemos tomar como autovetor associado ao autovalor 0, o vetor u = (1, 1, -1). autovalor 1: Precisamos encontrar (x, y, z) não nulo tal que T(x, y, z) = (x, y, z). Temos

$$\begin{cases} x + z = x \\ y + z = y \\ x + y + 2z = z \end{cases} \iff \begin{cases} z = 0 \\ x = -y \end{cases},$$

assim, podemos tomar como autovetor associado ao autovalor 1, o vetor v = (1, -1, 0). autovalor 3: Precisamos encontrar (x, y, z) não nulo tal que T(x, y, z) = (3x, 3y, 3z). Temos

$$\begin{cases} x + z = 3x \\ y + z = 3y \\ x + y + 2z = 3z \end{cases} \iff z = 2x = 2y,$$

assim, podemos tomar como autovetor associado ao autovalor 3, o vetor v = (1, 1, 2). É claro que a matriz de T com relação à base formada por u, v e w é dada por

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Ex. Resolvido 23 Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ cuja matriz com relação a alguma base é dada por

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Mostre que T diagonalizável.

Resolução: O polinômio característico de T é dado por

$$p_T(x) = x^2 - (a+c)x + ac - b^2$$
.

Vemos que $p_T(x)$ apresenta duas raízes reais simples, isto é, com multiplicidade um, se e somente se o discriminante $(a+c)^2 - 4(ac-b^2)$ for positivo. Assim,

$$(a+c)^2 - 4(ac-b^2) = a^2 + b^2 - 2ac + 4b^2 = (a-c)^2 + 4b^2 > 0$$

se e somente se $a \neq c$ ou $b \neq 0$. Vemos assim que, se $a \neq c$ ou $b \neq 0$ as multiplicidades algébrica e geométrica de cada um dos autovalores de T (as raízes de $p_T(x)$) coincidem e, portanto, T é diagonalizável.

Se a=c e b=0 então vê-se claramente que T é diagonalizável pois, neste caso, A é diagonal.

Ex. Resolvido 24 Verifique se $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ dado por

$$T(p(t)) = p''(t) - 2p'(t) + p(t)$$

é diagonalizável.

Resolução: A matriz de T com relação à base canônica é dada por

$$A = \begin{pmatrix} 1 & -2 & 2 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix}.$$

Assim, $P_T(x) = (1-x)^3$ e, desta forma, 1 é o único autovalor de T. Como pelo teorema 8 T é diagonalizável se e somente se dim V(1) = 3, vejamos qual é a dimensão deste subespaço próprio.

$$(x,y,z) \in V(1) \Longleftrightarrow \begin{pmatrix} 0 & -2 & 2 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow y = z = 0.$$

Portanto, V(1) = [(1,0,0)] e T não é diagonalizável.

Ex. Resolvido 25 Verifique se $T: \mathbb{R}^4 \to \mathbb{R}^4$ dada por

$$T(x, y, z, t) = (x + y, y, 2z + t, 2z + t)$$

é diagonalizável. Encontre também os espaços próprios de T.

Resolução: A matriz de T com relação à base canônica é dada por

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 2 & 1
\end{pmatrix}$$

e o seu polinômio característico é

$$p_T(x) = \det \begin{pmatrix} 1 - x & 1 & 0 & 0 \\ 0 & 1 - x & 0 & 0 \\ 0 & 0 & 2 - x & 1 \\ 0 & 0 & 2 & 1 - x \end{pmatrix} = (1 - x)^2 ((2 - x)(1 - x) - 2)$$

$$= (1-x)^2(x^2 - 3x) = x(x-3)(1-x)^2.$$

(i) autovalor 0:

$$(x, y, z, t) \in V(0) \iff (x + y, y, 2z + t, 2z + t) = (0, 0, 0, 0) \iff \begin{cases} x + y = 0 \\ y = 0 \\ 2z + t = 0 \\ 2z + t = 0 \end{cases}$$

$$\iff \begin{cases} x = y = 0 \\ t = -2z \end{cases} \iff (x, y, z, t) = z(0, 0, 1, -2).$$

Logo, V(0) = [(0, 0, 1, -2)].

(ii) autovalor 3:

$$(x, y, z, t) \in V(3) \iff (x + y, y, 2z + t, 2z + t) = (3x, 3y, 3z, 3t)$$

$$\iff \begin{cases} x+y=3x \\ y=3y \\ 2z+t=3z \\ 2z+t=3t \end{cases} \iff \begin{cases} x=y=0 \\ t=z \end{cases} \iff (x,y,z,t)=z(0,0,1,1).$$

Logo, V(3) = [(0, 0, 1, 1)].

(iii) autovalor 1:

$$(x,y,z,t) \in V(1) \Longleftrightarrow (x+y,y,2z+t,2z+t) = (x,y,z,t)$$

$$\iff \begin{cases} x+y=x\\ y=y\\ 2z+t=z\\ 2z+t=t \end{cases} \iff y=z=t=0 \iff (x,y,z,t)=x(1,0,0,0).$$

Logo, V(1) = [(1, 0, 0, 0)].

Como a multiplicidade algébrica do autovalor 1 é dois e a sua multiplicidade geométrica é um, vemos que T não é diagonalizável.

Ex. Resolvido 26 Ainda com relação ao operador do exercício anterior, encontre a matriz de T com relação à base B formada pelos vetores u = (0,0,1,-2), v = (0,0,1,1), w = (1,0,0,0) e p = (0,1,0,0).

Resolução: Já sabemos que T(u) = 0, T(v) = 3v e T(w) = w. Agora, como

$$T(p) = T(0, 1, 0, 0) = (1, 1, 0, 0) = w + p,$$

vemos que

$$[T]_B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Capítulo 10

Forma Canônica de Jordan

Como vimos, nem todo operador linear é diagonalizável. No entanto, se $T \in \mathcal{L}(U)$, onde U é um espaço vetorial de dimensão finita, existe uma base com relação a qual, a matriz de T é próxima de uma de uma matriz diagonal. A seguir daremos uma pequena descrição de como é a forma desta matriz, mas antes precisamos de algumas notações.

Seja $p_T(x)$ o polinômio característico de T. A primeira observação a ser feita é que $p_T(x)$ se fatora como

$$p_T(x) = (\lambda_1 - x)^{m_1} \cdots (\lambda_n - x)^{m_n} ((x - \alpha_1)^2 + \beta_1^2)^{p_1} \cdots ((x - \alpha_k)^2 + \beta_k^2)^{p_k}$$

onde $\lambda_r \neq \lambda_s$, e $(\alpha_r, \beta_r) \neq (\alpha_s, \beta_s)$ se $r \neq s$. Note que cada $\alpha_r + i\beta_r$ é uma raiz complexa de $p_T(x)$. Note também que $m_1 + \cdots + m_n + 2p_1 + \cdots + 2p_k = \dim U$.

Se $\lambda \in \mathbb{R}$ é um autovalor de T, denotaremos por $J(\lambda; r)$ a matriz quadrada de ordem r com todos os elementos da diagonal principal iguais a λ e todos os elementos logo acima desta, iguais a 1, ou seja,

$$J(\lambda; r) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}_{r \times r}$$

$$= \lambda \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}_{T \times T} + \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}_{T \times T} = \lambda I + N,$$

onde I é a matriz identidade de ordem r e

$$N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}_{r \times r}$$

Note que N^r é a matriz nula, isto é, N é uma matriz nilpotente.

Se $\alpha + i\beta$ é uma raiz complexa de $p_T(x)$ e r é um número par, definimos

$$R(\alpha, \beta; r) = \begin{pmatrix} \alpha & \beta & 1 & 0 & \cdots & 0 & 0 \\ -\beta & \alpha & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \alpha & \beta & \cdots & 0 & 0 \\ 0 & 0 & -\beta & \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \alpha & \beta \\ 0 & 0 & 0 & 0 & \cdots & -\beta & \alpha \end{pmatrix}_{r \times r}.$$

Se B_1, \ldots, B_k são matrizes quadradas, não necessariamente de ordens iguais, definimos diag (B_1, \ldots, B_j) como sendo a matriz quadrada de ordem igual à soma das ordens de B_1, \ldots, B_k dada por

$$\begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_k \end{pmatrix},$$

por exemplo, se

$$B_1 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}, B_2 = \begin{pmatrix} 3 & 4 & 1 & 0 \\ -4 & 3 & 0 & 1 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & -4 & 3 \end{pmatrix}$$

então

$$\operatorname{diag}(B_1, B_2) = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 4 & 1 & 0 \\ 0 & 0 & 0 & -4 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & -4 & 3 \end{pmatrix}.$$

Teorema 9 (Forma Canônica de Jordan) Sejam U um espaço vetorial de dimensão finita e $T \in \mathcal{L}(U)$. Se

$$p_T(x) = (\lambda_1 - x)^{m_1} \cdots (\lambda_n - x)^{m_n} ((x - \alpha_1)^2 + \beta_1^2)^{p_1} \cdots ((x - \alpha_k)^2 + \beta_k^2)^{p_k}$$

onde $\lambda_r \neq \lambda_s$, $(\alpha_r, \beta_r) \neq (\alpha_s, \beta_s)$ se $r \neq s$, e $\beta_r > 0$, então existe uma base de U com relação a qual a matriz de T é da forma

$$J = diag(J_1, \dots, J_n, R_1, \dots, R_q),$$
(10.1)

onde J_1, \ldots, J_p são da forma $J(\lambda; r)$ para algum $r \in \mathbb{N}$ e $\lambda \in \{\lambda_1, \ldots, \lambda_n\}$ e R_1, \ldots, R_q são da forma $R(\alpha, \beta; s)$ para algum $s \in \mathbb{N}$ e $(\alpha, \beta) \in \{(\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k)\}.$

Observação 10.1.1 A matriz 10.1 é única a menos de permutações dos seus blocos que compõem a sua diagonal.

Observação 10.1.2 Se λ é um autovalor de T então a soma das ordens dos blocos $J(\lambda; s)$ é igual à multiplicidade algébrica de λ .

Observação 10.1.3 Se $\alpha + i\beta$ é uma raiz complexa de $p_T(x)$ então a soma das ordens dos blocos $R(\alpha, \beta; s)$ é igual ao dobro da multiplicidade da raiz $\alpha + i\beta$.

Observação 10.1.4 Se λ é um autovalor de T com multiplicidade geométrica r então existem r blocos $J(\lambda;s)$ associados ao autovalor λ .

Observação 10.1.5 Suponha que

$$p_T(x) = (\lambda_1 - x)^{m_1} \cdots (\lambda_n - x)^{m_n}$$

onde $\lambda_i \neq \lambda_j$, se $i \neq j$. Se m_j também é multiplicidade geométrica de λ_j então o teorema de Jordan diz simplesmente que T é diagonalizável.

Observação 10.1.6 O teorema de Jordan diz que a matriz de um operador T com relação a uma base arbitrária é semelhante a uma matriz da forma 10.1

Ex. Resolvido 27 Encontre as possíveis matrizes na forma canônica de Jordan para a um operador cujo polinômio característico é dado por $p_T(x) = (2-x)^3(1-x)$.

Resolução: Note que T apresenta apenas os autovalores 2 e 1.

Como as multiplicidades algébricas e geométrica do autovalor 1 são iguais a um, vemos que o único bloco correspondente a este autovalor é J(1;1) = (1).

Com relação ao autovalor 2, a sua multiplicidade algébrica é 3. Se sua multiplicidade geométrica for 3 então existem 3 blocos associados a este autovalor e todos eles são iguais a (2). Neste caso, a matriz da forma canônica de Jordan para este operador é

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Se a multiplicidade geométrica do autovalor 2 for dois, então existem dois blocos correspondentes a este autovalor que são da forma

$$J(2;1) = (2)$$
 $J(2;2) = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

Assim, a matriz da forma canônica de Jordan para este operador é

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Se a multiplicidade geométrica do autovalor 2 for um, então existe um bloco correspondente a este autovalor que é

$$J(2;3) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Assim, a matriz da forma canônica de Jordan para este operador é

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Ex. Resolvido 28 Encontre as possíveis matrizes na forma canônica de Jordan para a um operador cujo polinômio característico é dado por $p_T(x) = (1-x)^2(4+x^2)$.

Utilizando a notação do teorema 9 temos $\lambda_1 = 1$, $\alpha = 0$ e $\beta = 2$. Como 0 + i2 tem multiplicidade um (como raiz de $p_T(x)$), existe apenas um bloco da forma

$$R(0,2;2) = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}.$$

Se a multiplicidade geométrica do autovalor 1 for dois então existem apenas dois blocos associados a este autovalor e são iguais a (1). Neste caso, a matriz da forma canônica de Jordan para este operador é

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix}.$$

Se a multiplicidade geométrica do autovalor 1 for um então existe apenas um bloco de ordem um associado a este autovalor que é dado por

$$J(1;2) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Neste caso, a matriz da forma canônica de Jordan para este operador é

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix}.$$

Ex. Resolvido 29 Encontre uma base de \mathbb{R}^4 com relação a qual a matriz da transformação

$$T(x, y, z, t) = (2x + y + z + t, 2y - z - t, 3z - t, 4t)$$

está na forma canônica de Jordan.

Resolução: Com relação à base canônica de \mathbb{R}^4 , a matriz de T é dada por

$$\begin{pmatrix} 2 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

O polinômio característico de T é $p_T(x) = (3-x)(4-x)(2-x)^2$. Desta forma vemos que dim $V(3) = \dim V(4) = 1$. É simples ver que

$$V(3) = [(0, 1, -1, 0)]$$
 e $V(4) = [(0, 0, 1, -1)].$

Vejamos qual a dimensão de dim V(2). Temos que $(x, y, z, t) \in V((2)$ se e somente se

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

ou seja, (x, y, z, t) = x(1, 0, 0, 0). Assim, dim V(2) = 1 e T não é diagonalizável. Sendo assim, a matriz de T na forma canônica de Jordan é da forma

$$\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

Note que se colocarmos $u_1 = (1, 0, 0, 0)$, $u_3 = (0, 1, -1, 0)$ e $u_4 = (0, 0, 1, -1)$ então para que u_1, u_2, u_3, u_4 seja a base procurada, o vetor u_2 deve satisfazer $T(u_2) = u_1 + 2u_2$, ou seja, $(T - 2I)(u_2) = u_1$. Desta forma, colocando u = (a, b, c, d), temos

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

cuja solução geral é da forma (a, 1, 0, 0). Tomamos, por exemplo, $u_2 = (0, 1, 0, 0)$ e isto nos fornece a base procurada.

Capítulo 11

Espaços Euclidianos

11.1 Produto Interno

Definição 36 Seja V um espaço vetorial. Um produto interno sobre V é uma aplicação que a cada par $(u,v) \in V \times V$ associa um número real denotado por $\langle u,v \rangle$ satisfazendo as seguintes propriedades

- (i) $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$ para todo $u,v,w\in V$;
- (ii) $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$ para todo $u, v \in V$ $e \alpha \in \mathbb{R}$;
- (iii) $\langle u, v \rangle = \langle v, u \rangle$ para todo $u, v \in V$;
- (iv) $\langle u, u \rangle > 0$ se $u \neq 0$.

O espaço vetorial V munido de um produto interno é chamado de espaço euclidiano.

Algumas propriedades seguem-se imediatamente. Por exemplo, vemos que $\langle 0, u \rangle = 0$ para todo $u \in V$, pois

$$\langle 0, u \rangle = \langle 0 + 0, u \rangle = \langle 0, u \rangle + \langle 0, u \rangle,$$

e o resultado segue por cancelamento.

Outra propriedade é que $\langle u, v + \alpha w \rangle = \langle u, v \rangle + \alpha \langle u, w \rangle$, para todo $u, v, w \in V$ e $\alpha \in \mathbb{R}$. Basta combinar as propriedades (i), (ii) e (iii) acima. Desta maneira, vemos que o produto interno é linear em cada variável.

A seguir apresentamos alguns exemplos de produto interno em vários espaços vetoriais. A verificação das propriedades (i) a (iv) é deixada como exercício.

Exemplo 41 Se $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ definitions

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n \tag{11.1}$$

Ex. Resolvido 30 Com relação ao exemplo anterior, calcule o produto interno entre os vetores (1, -1, 1), $(0, 2, 4) \in \mathbb{R}^3$.

Resolução: Basta notar que

$$\langle (1, -1, 1), (0, 2, 4) \rangle = 1 \cdot 0 + (-1) \cdot 2 + 1 \cdot 4 = 2.$$

Ex. Resolvido 31 Com relação ao produto interno dado por 11.1, calcule $\langle u, v \rangle$ onde $u = (\cos \theta, \sin \theta)$ e $u = (\cos \alpha, \sin \alpha)$.

Resolução: Temos

$$\langle u, v \rangle = \langle (\cos \theta, \sin \theta), (\cos \alpha, \sin \alpha) \rangle$$

= $\cos \theta \cos \alpha + \sin \theta \sin \alpha = \cos(\theta - \alpha)$.

Há vários outros tipos de produto interno no \mathbb{R}^n além do apresentado em 11.1. Vejamos um exemplo no \mathbb{R}^3 :

Exemplo 42 Se $(x, y, z), (x', y', z') \in \mathbb{R}^3$, definimos

$$\langle (x, y, z), (x', y', z') \rangle = \frac{xx'}{2} + \frac{yy'}{3} + \frac{zz'}{4}.$$

 \acute{E} fácil verificar que a expressão acima define um produto interno em \mathbb{R}^3 .

Ex. Resolvido 32 Com relação ao produto interno apresentado no exemplo anterior, calcule (1, -1, 1), (0, 2, 4).

Resolução:

$$\langle (1, -1, 1), (0, 2, 4) \rangle = \frac{1 \cdot 0}{2} + \frac{-1 \cdot 2}{3} + \frac{1 \cdot 4}{4} = \frac{1}{3}.$$

Exemplo 43 Se $f, g \in C([a, b]; \mathbb{R})$ definimos

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx.$$
 (11.2)

Ex. Resolvido 33 Com relação ao produto interno apresentado no exemplo anterior, calcule o produto interno entre sen, $\cos \in C([0, 2\pi]; \mathbb{R})$.

Resolução:

$$\langle \operatorname{sen}, \cos \rangle = \int_0^{2\pi} \operatorname{sen} x \cos x \, dx = \left. \frac{\operatorname{sen}^2 x}{2} \right|_0^{2\pi} = 0.$$

Exemplo 44 Se $A = (a_{ij}), B = (b_{ij}) \in M_{m \times n}(\mathbb{R})$ definimos

$$\langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}.$$

Ex. Resolvido 34 Com relação ao produto interno apresentado no exemplo anterior, calcule o produto interno entre

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \qquad e \qquad B = \begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}.$$

Resolução:

$$\langle A, B \rangle = 1 \cdot (-2) + 1 \cdot 0 + 0 \cdot 1 + 2 \cdot 1 = 0.$$

Exercício 8 O traço de uma matriz quadrada A é a soma dos elementos da diagonal da matriz e é denotado por trA. Mostre que se A, $B \in M_n(\mathbb{R})$ então

$$\langle A, B \rangle = \operatorname{tr}(B^t A)$$

define um produto interno em $M_n(\mathbb{R})$.

11.2. NORMA 71

11.2 Norma

Definição 37 Se V é um espaço euclidiano, definimos para cada $u \in o$ número $||u|| = \sqrt{\langle u, u \rangle}$. Este valor é chamado de norma de u.

Observação 11.2.1 Note que é possível extrair a raiz quadrada de $\langle u, u \rangle$ pois este número é não negativo.

Exemplo 45 Em \mathbb{R}^n , com o produto interno dado por 11.1, a norma de $x=(x_1,\ldots,x_n)$ é dada por

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

Note a norma de x representa o comprimento deste vetor.

Exemplo 46 Em $C([a,b];\mathbb{R})$ com o produto interno definido por 11.2, a norma de $f \in C([a,b];\mathbb{R})$ é dada por

$$||f|| = \sqrt{\int_a^b [f(x)]^2 dx}.$$

Proposição 48 Seja V um espaço vetorial com um produto interno. Temos

- 1. $||\alpha u|| = |\alpha|||u||, \forall u \in V, \forall \alpha \in \mathbb{R};$
- 2. $||u|| \ge 0 \ \forall u \in V$;
- 3. ||u|| = 0 se e somente se u = 0;
- 4. $|\langle u, v \rangle| \leq ||u|| \, ||v|| \, \, \forall u, v \in V$ (designal dade de Cauchy-Schwarz);
- 5. $||u+v|| \le ||u|| + ||v|| \ \forall u, v \in V$ (designal dade triangular).

Prova:

- 1. $||\alpha u|| = \sqrt{\langle \alpha u, \alpha u \rangle} = \sqrt{\alpha^2 \langle u, u \rangle} = |\alpha| \sqrt{\langle u, u \rangle} = |\alpha| ||u||$.
- 2. Óbvio pois a raiz quadrada é não negativa.
- 3. Se u=0 então $||u||=\sqrt{\langle 0,0\rangle}=0$. Reciprocamente, se $u\neq 0$ então $\langle u,u\rangle>0$ e $||u||=\sqrt{\langle u,u\rangle}>0$.
- 4. Se v=0 então $|\langle u,0\rangle|=0=\|u\|\,\|0\|$. Suponha que $v\neq 0$. Para todo $\alpha\in\mathbb{R}$, temos $\|u+\alpha v\|^2\geq 0$. Logo,

$$0 \le \langle u + \alpha v, u + \alpha v \rangle = \langle u, u \rangle + 2\langle u, v \rangle \alpha + \langle v, v \rangle \alpha^2$$
$$= ||u||^2 + 2\alpha \langle u, v \rangle + ||v||^2 \alpha^2.$$

Assim, o discriminante $\Delta = 4\langle u, v \rangle^2 - 4||u||^2||v||^2 \le 0$, ou seja, $\langle u, v \rangle^2 \le ||u||^2||v||^2$. Extraindo a raiz quadrada, obtemos $|\langle u, v \rangle| \le ||u|| ||v||$.

5. A seguir usaremos a desigualdade de Cauchy-Schwarz

$$||u+v||^2 = \langle u+v, u+v \rangle = ||u||^2 + ||v||^2 + 2\langle u, v \rangle$$

$$\leq ||u||^2 + ||u||^2 + 2||u||||v|| = [||u|| + ||v||]^2.$$

Extraindo a raiz quadrada, segue o resultado desejado.

Observe que a desigualdade de Cauchy-Schwarz aplicada ao produto interno do \mathbb{R}^n dado por 11.1 nos diz que

$$(x_1y_1 + \dots + x_ny_n)^2 \le (x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2).$$

A mesma desigualdade aplicada ao produto interno em $C([a,b,];\mathbb{R})$ fornece

$$\left(\int_{a}^{b} f(x)g(x) \, dx \right)^{2} \le \int_{a}^{b} [f(x)]^{2} \, dx \int_{a}^{b} [g(x)]^{2} \, dx.$$

Proposição 49 (Identidade do Paralelogramo) Sejam u e v vetores de um espaço euclidiano. Então

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2).$$

Prova:

$$\begin{split} \|u+v\|^2 + \|u-v\|^2 &= \langle u+v, u+v \rangle + \langle u-v, u-v \rangle \\ &= \langle u, u \rangle + \langle v, v \rangle + 2\langle u, v \rangle + \langle u, u \rangle + \langle v, v \rangle - 2\langle u, v \rangle \\ &= 2\langle u, u \rangle + 2\langle v, v \rangle = 2(\|u\|^2 + \|v\|^2). \end{split}$$

A próxima proposição mostra como se pode obter o produto interno entre dois vetores a partir das normas de suas soma e diferença.

Proposição 50 Sejam u e v vetores de um espaço euclidiano. Então

$$||u + v||^2 - ||u - v||^2 = 4\langle u, v \rangle.$$

Prova:

$$||u+v||^2 - ||u-v||^2 = \langle u+v, u+v \rangle - \langle u-v, u-v \rangle$$
$$= \langle u, u \rangle + \langle v, v \rangle + 2\langle u, v \rangle - \langle u, u \rangle - \langle v, v \rangle + 2\langle u, v \rangle$$
$$= 4\langle u, v \rangle.$$

Ex. Resolvido 35 Calcule $\langle u, v \rangle$ sabendo-se que ||u + v|| = 1 e ||u - v|| = 1.

Resolução: Temos

$$\langle u, v \rangle = \frac{1}{4}(\|u + v\|^2 - \|u - v\|^2) = 0.$$

11.3 Distância

Definição 38 Num espaço euclidiano V definimos a distância entre $u, v \in V$ como

$$d(u,v) = ||u - v||.$$

Resulta da proposição acima que a distância satisfaz as seguintes propriedades

Proposição 51 Num espaço euclidiano V temos

1.
$$d(u,v) \ge 0$$
 para todo $u,v \in V$;

11.4. ÂNGULO 73

- 2. d(u,v) = 0 se e somente se u = v;
- 3. d(u, v) = d(v, u);
- 4. $d(u,v) \leq d(u,w) + d(w,v)$ para todo $u,v,w \in V$.

Ex. Resolvido 36 Com relação ao produto interno 11.1 calcule a distância entre os pontos u=(1,1,3,2) e v=(2,2,1,0) de \mathbb{R}^4 .

Resolução: Temos

$$d(u,v) = \sqrt{(1-2)^2 + (1-2)^2 + (3-1)^2 + (2-0)^2} = \sqrt{10}$$

Ex. Resolvido 37 Com relação ao produto interno 11.2 calcule a distância entre as funções sen e cos de $C([0, 2\pi]; \mathbb{R})$

Resolução: Temos

$$d(\operatorname{sen}, \cos)^{2} = \int_{0}^{2\pi} [\operatorname{sen} x - \cos x]^{2} dx$$

$$= \int_{0}^{2\pi} [\operatorname{sen}^{2} x + \cos^{2} x - 2 \operatorname{sen} x \cos x] dx = \int_{0}^{2\pi} [1 - 2 \operatorname{sen} x \cos x] dx =$$

$$= x - \operatorname{sen}^{2} x \Big|_{0}^{2\pi} = 2\pi.$$

Portanto, $d(\text{sen}, \cos) = \sqrt{2\pi}$.

11.4 Ângulo

Sejam V um espaço euclidiano e $u,v\in V$ ambos não nulos. Pela desigualdade de Cauchy-Schwarz (veja proposição 48) temos

$$-\|u\| \|v\| \le \langle u, v \rangle \le \|u\| \|v\|$$

ou ainda,

$$-1 \le \frac{\langle u, v \rangle}{\|u\| \|v\|} \le 1.$$

Desta forma, existe um único número real $\theta \in [0, \pi]$ tal que

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

Este número θ é chamado de ângulo entre os vetores $u \in v$.

Ex. Resolvido 38 Calcule o ângulo entre as funções seno e co-seno definidas em $[0, 2\pi]$ com o produto interno dado por 11.2.

Resolução:

$$\langle \, \text{sen} \,, \cos \, \rangle = \int_0^{2\pi} \, \text{sen} \, x \cos x \, dx = \frac{1}{2} \, \text{sen}^2 x \bigg|_0^{2\pi} = 0.$$

Desta forma, o ângulo entre seno e co-seno é $\frac{\pi}{2}$.

Ex. Resolvido 39 Sabe-se que ||u|| = ||v|| = 1 e ||u - v|| = 2. Calcule o ângulo entre u e v.

Resolução: Como ||u-v||=2 então

$$4 = ||u - v||^2 = \langle u - v, u - v \rangle$$
$$= ||u|| + ||v|| - 2\langle u, v \rangle = 2 - 2\langle u, v \rangle.$$

Assim, $\langle u, v \rangle = -1$ e

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} = -1,$$

ou seja, $\theta = \pi$.

11.5 Ortogonalidade

Definição 39 Seja V um espaço euclidiano. Dizemos que $u, v \in V$ são ortogonais se $\langle u, v \rangle = 0$ e, neste caso, denotaremos $u \perp v$.

Diremos que um conjunto $S = \{u_1, \ldots, u_n\} \subset V$ é ortogonal se $u_i \perp u_j$ quando $i \neq j$. Diremos que um conjunto ortogonal $S = \{u_1, \ldots, u_n\} \subset V$ é ortonormal se $||u_j|| = 1, j = 1, \ldots, n$.

Exemplo 47 $S = \{(1,0,0),(0,1,0),(0,0,1)\} \subset \mathbb{R}^3$ é um conjunto ortonormal com relação ao produto interno dado por 11.1.

Observação 11.2.2 Se u=0 ou v=0 então $u \perp v$. Se $u \neq 0$ e $v \neq 0$ então $u \perp v$ se e somente se o ângulo entre u e v é $\pi/2$.

Observação 11.2.3 Se $S = \{u_1, \dots, u_n\} \subset V$ é um conjunto ortogonal com $u_j \neq 0, j = 1, \dots, n$ então

$$\{\frac{u_1}{\|u_1\|},\ldots,\frac{u_n}{\|u_n\|}\}$$

é um conjunto ortonormal.

Proposição 52 Sejam V um espaço euclidiano e $S = \{u_1, \ldots, u_n\} \subset V$ um conjunto ortonormal. Então u_1, \ldots, u_n são linearmente independentes.

Prova: Se

$$\alpha_1 u_1 + \dots + \alpha_n u_n = 0 \tag{11.3}$$

então, tomando o produto interno do vetor acima com u_1 e lembrando que $\langle u_1, u_1 \rangle = ||u_1||^2 = 1$ e $\langle u_j, u_1 \rangle = 0$, se $j = 2, \ldots, n$, obtemos

$$\alpha_1 = \alpha_1 \langle u_1, u_1 \rangle + \dots + \alpha_n \langle u_n, u_1 \rangle = \langle 0, u_1 \rangle = 0,$$

isto é, $\alpha_1 = 0$, e 11.3 fica

$$\alpha_2 u_2 + \dots + \alpha_n u_n = 0.$$

Tomando o produto interno do vetor acima com u_2 , obtemos, como acima, que $\alpha_2 = 0$. Repetindo o processo chegamos à conclusão que a única possibilidade para 11.3 é $\alpha_1 = \cdots = \alpha_n = 0$.

Observação 11.3.1 A proposição acima continua válida se S for apenas um conjunto ortogonal com elementos não nulos.

Definição 40 Se V é um espaço euclidiano de dimensão n e se u_1, \ldots, u_n formam um conjunto ortonormal, então diremos que u_1, \ldots, u_n formam uma base ortonormal de V.

Proposição 53 Sejam V um espaço euclidiano que possui uma base ortonormal dada por u_1, \ldots, u_n . Então, se $u \in V$ temos

$$u = \langle u, u_1 \rangle u_1 + \cdots + \langle u, u_n \rangle u_n.$$

Prova: Como u_1, \ldots, u_n formam uma base de V, existem $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tais que

$$u = \alpha_1 u_1 + \dots + \alpha_n u_n.$$

Tomando o produto interno de u com u_1 , temos

$$\langle u, u_1 \rangle = \alpha_1 \langle u_1, u_1 \rangle + \dots + \alpha_n \langle u_n, u_1 \rangle = \alpha_1,$$

pois a base é ortonormal. O resultado segue tomando o produto interno de u por u_2, u_3 , etc.

Ex. Resolvido 40 Encontre as coordenadas de $(1,1) \in \mathbb{R}^2$ com relação à base formada por $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ e $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$.

Resolução: Como a base em questão é ortonormal, pela proposição anterior, temos que

$$\begin{split} (1,1) &= \langle (1,1), (\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) \rangle (\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) + \langle (1,1), (\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}) \rangle (\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}) \\ &= \sqrt{2}(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) + 0(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}). \end{split}$$

Desta forma as coordenadas de (1,1) com relação à base acima são

$$\begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix}$$
.

Proposição 54 Sejam V um espaço euclidiano e $U = [u_1, \dots, u_n]$ o subespaço gerado por um conjunto ortonormal $S = \{u_1, \dots, u_n\}$. Então, para qualquer $u \in V$ o vetor dado por

$$v = u - \langle u, u_1 \rangle u_1 - \dots - \langle u, u_n \rangle u_n$$

é ortogonal a todo $w \in U$. Além do mais, v = 0 se e somente se $u = \langle u, u_1 \rangle u_1 + \cdots + \langle u, u_n \rangle u_n$, isto é, se e somente se $u \in [u_1, \ldots, u_n]$.

Prova: Seja $w \in U$. Podemos escrever $w = \sum_{j=1}^n \alpha_j u_j$. Precisamos mostrar que $\langle w,v \rangle = 0$, isto é, $\langle \sum_{j=1}^n \alpha_j u_j,v \rangle = \sum_{j=1}^n \alpha_j \langle u_j,v \rangle = 0$. Portanto, basta verificar que $\langle u_j,v \rangle = 0$ para cada $j=1,\ldots,n$. Como u_1,\ldots,u_n formam um conjunto ortonormal, temos

$$\langle u_j, v \rangle = \langle u_j, u - \langle u, u_1 \rangle u_1 - \dots - \langle u, u_n \rangle u_n \rangle$$

$$= \langle u_j, u \rangle - \langle u, u_1 \rangle \langle u_j, u_1 \rangle - \dots - \langle u, u_n \rangle \langle u_j, u_n \rangle$$

$$= \langle u_j, u \rangle - \langle u, u_j \rangle \langle u_j, u_j \rangle = \langle u_j, u \rangle - \langle u, u_j \rangle = 0$$

Proposição 55 Sejam $S = \{u_1, \dots, u_n\}$ e $R = \{v_1, \dots, v_n\}$ conjuntos ortonormais de um espaço euclidiano V tais que [S] = [R]. Então, para $u \in V$, temos

$$\langle u, u_1 \rangle u_1 + \dots + \langle u, u_n \rangle u_n = \langle u, v_1 \rangle v_1 + \dots + \langle u, v_n \rangle v_n.$$

Г

Prova: Coloque $v = \langle u, u_1 \rangle u_1 + \dots + \langle u, u_n \rangle u_n$ e $w = \langle u, v_1 \rangle v_1 + \dots + \langle u, v_n \rangle v_n$. Temos

$$||v - w||^2 = \langle v - w, v - w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \langle u, u_i \rangle u_i - \sum_{j=1}^{n} \langle u, v_j \rangle v_j, \sum_{k=1}^{n} \langle u, u_k \rangle u_k - \sum_{l=1}^{n} \langle u, v_l \rangle v_l \right\rangle$$

$$= \sum_{i=1}^{n} \langle u, u_i \rangle \left\langle u_i, \sum_{k=1}^{n} \langle u, u_k \rangle u_k \right\rangle - \sum_{i=1}^{n} \langle u, u_i \rangle \left\langle u_i, \sum_{l=1}^{n} \langle u, v_l \rangle v_l \right\rangle$$

$$- \sum_{i=1}^{n} \langle u, v_j \rangle \left\langle v_j, \sum_{k=1}^{n} \langle u, u_k \rangle u_k \right\rangle + \sum_{i=1}^{n} \langle u, v_j \rangle \left\langle v_j, \sum_{l=1}^{n} \langle u, v_l \rangle v_l \right\rangle$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} \langle u, u_{i} \rangle \langle u, u_{k} \rangle \langle u_{i}, u_{k} \rangle - \sum_{i=1}^{n} \sum_{l=1}^{n} \langle u, u_{i} \rangle \langle u, v_{l} \rangle \langle u_{i}, v_{l} \rangle$$

$$- \sum_{j=1}^{n} \sum_{k=1}^{n} \langle u, v_{j} \rangle \langle u, u_{k} \rangle \langle v_{j}, u_{k} \rangle + \sum_{j=1}^{n} \sum_{l=1}^{n} \langle u, v_{j} \rangle \langle u, v_{l} \rangle \langle v_{j}, v_{l} \rangle$$

$$= \sum_{i=1}^{n} \langle u, u_i \rangle^2 - 2 \sum_{j=1}^{n} \sum_{k=1}^{n} \langle u, v_j \rangle \langle u, u_k \rangle \langle v_j, u_k \rangle + \sum_{j=1}^{n} \langle u, v_j \rangle^2$$
(11.4)

Como S forma uma base de U = [S] = [R], podemos escrever

$$v_i = \alpha_{1i}u_1 + \cdots + \alpha_{ni}u_n, \quad j = 1, \dots, n.$$

Como $||v_i|| = 1$, temos

$$1 = \langle \sum_{i=1}^{n} \alpha_{ij} u_i, \sum_{k=1}^{n} \alpha_{kj} u_k \rangle = \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{ij} \alpha_{kj} \langle u_i, u_k \rangle = \sum_{i=1}^{n} \alpha_{ij}^2.$$
 (11.5)

Como $\langle v_j, v_k \rangle = 0$ se $j \neq k$, temos

$$0 = \langle \sum_{i=1}^{n} \alpha_{ij} u_i, \sum_{l=1}^{n} \alpha_{lk} u_l \rangle = \sum_{i=1}^{n} \sum_{l=1}^{n} \alpha_{ij} \alpha_{lk} \langle u_i, u_l \rangle = \sum_{i=1}^{n} \alpha_{ij} \alpha_{ik}$$

$$(11.6)$$

Desta forma, se denotarmos por A a matriz (α_{ij}) , resulta de 11.6 e 11.5 que $A^tA = I$, onde I é a matriz identidade de ordem n. Segue-se que A tem inversa igual a A^t . Desta maneira, $AA^t = I$, ou seja,

$$\sum_{j=1}^{n} \alpha_{ij} \alpha_{kj} = \begin{cases} 1, & \text{se } k = i \\ 0, & \text{se } k \neq i. \end{cases}$$
 (11.7)

Também temos

$$\langle v_j, u_k \rangle = \langle \sum_{i=1}^n \alpha_{ij} u_i, u_k \rangle = \sum_{i=1}^n \alpha_{ij} \langle u_i, u_k \rangle = \alpha_{kj},$$
 (11.8)

$$\langle u, v_j \rangle = \langle u, \sum_{i=1}^n \alpha_{ij} u_i \rangle = \sum_{i=1}^n \alpha_{ij} \langle u, u_i \rangle.$$
 (11.9)

De 11.7, 11.8 e 11.9, vem que

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \langle u, v_{j} \rangle \langle u, u_{k} \rangle \langle v_{j}, u_{k} \rangle = \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \alpha_{ij} \alpha_{kj} \langle u, u_{i} \rangle \langle u, u_{k} \rangle$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \alpha_{ij} \alpha_{kj} \right] \langle u, u_{i} \rangle \langle u, u_{k} \rangle = \sum_{i=1}^{n} \langle u, u_{i} \rangle^{2}$$
(11.10)

Agora,

$$\sum_{j=1}^{n} \langle u, v_j \rangle^2 = \sum_{j=1}^{n} \langle u, \sum_{i=1}^{n} \alpha_{ij} u_i \rangle^2 = \sum_{j=1}^{n} \left[\sum_{i=1}^{n} \alpha_{ij} \langle u, u_i \rangle \right]^2$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{ij} \alpha_{kj} \langle u, u_i \rangle \langle u, u_k \rangle$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \alpha_{ij} \alpha_{kj} \right] \langle u, u_i \rangle \langle u, u_k \rangle = \sum_{i=1}^{n} \langle u, u_i \rangle^2.$$
(11.11)

Comparando 11.4, 11.10 e 11.11, vemos que v = w.

Definição 41 Sejam $S = \{u_1, \dots, u_n\} \subset V$ um conjunto ortonormal de um espaço euclidiano V e $U = [u_1, \dots, u_n]$. Se $u \in V$, o vetor

$$\langle u, u_1 \rangle u_1 + \dots + \langle u, u_n \rangle u_n$$

é chamado de projeção ortogonal de u sobre o subespaço U.

Observação 11.11.1 Se $v \in V$ é um vetor não nulo então $S = \{\frac{v}{\|v\|}\}$ é um conjunto ortonormal. Assim, se $u \in V$, a projeção ortogonal de u sobre [S] nada mais é do que o vetor

$$w = \langle u, \frac{v}{\|v\|} \rangle \frac{v}{\|v\|} = \frac{\langle u, v \rangle}{\|v\|^2} v.$$

Neste caso, w é chamado de projeção ortogonal de u sobre v.

Ex. Resolvido 41 Com relação ao produto interno usual de \mathbb{R}^3 , verifique que os vetores $u_1=(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ e $u_2=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$ formam um conjunto ortonormal e encontre a projeção ortogonal de u=(2,3,1) sobre o subespaço gerado por u_1 e u_2 .

Resolução: Claramente,

$$||u_1||^2 = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

 \mathbf{e}

$$||u_2||^2 = \frac{1}{2} + \frac{1}{2} = 1.$$

Também,

$$\langle u_1, u_2 \rangle = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} 0 = 0.$$

Assim, a projeção ortogonal de u = (2, 3, 1) sobre $[u_1, u_2]$ é

$$w = \langle u, u_1 \rangle u_1 + \langle u, u_2 \rangle u_2$$

$$= \langle (2,3,1), (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \rangle (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \\ + \langle (2,3,1), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) \rangle (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) = (\frac{5}{2}, \frac{5}{2}, 0).$$

Ex. Resolvido 42 Considere $\mathcal{P}_3(\mathbb{R})$ com o produto interno dado por

$$\langle p, q \rangle = \int_0^1 p(x)q(x) dx.$$

Encontre a projeção de $p(x) = 1 + x + x^2 + x^3$ sobre $q(x) = x^3 - x$.

Resolução: Temos

$$||q||^2 = \int_0^1 (x^3 - x)^2 dx = \int_0^1 (x^6 + x^2 - 2x^4) dx = \frac{x^7}{7} + \frac{x^3}{3} - \frac{2x^5}{5} \Big|_0^1$$

$$= \frac{1}{7} + \frac{1}{3} - \frac{2}{5} = \frac{8}{105};$$

$$\langle p, q \rangle = \langle 1 + x + x^2 + x^3, x^3 - x \rangle = \int_0^1 (1 + x + x^2 + x^3)(x^3 - x) dx$$

$$= \int_0^1 (-x - x^2 + x^5 + x^6) dx = -11/21.$$

Assim a projeção ortogonal de p(x) sobre q(x) é

$$r(x) = -\frac{11}{21} \cdot \frac{105}{8}(x^3 - x) = -\frac{55}{8}(x^3 - x).$$

11.6 Processo de Ortogonalização de Gram-Schmidt

A demonstração do próximo teorema fornece um método para se conseguir uma base ortonormal de um espaço euclidiano a partir de uma base dada.

Teorema 10 Todo espaço euclidiano de dimensão finita possui uma base ortonormal.

Prova: A prova é por indução sobre a dimensão do espaço.

Seja V um espaço euclidiano de dimensão finita. Se dim V=1 então existe $v_1 \in V$, tal que $V=[v_1]$. Como $v_1 \neq 0$, tomamos

$$u_1 = \frac{v_1}{\|v_1\|}$$

e, dessa forma, $\{u_1\}$ é um conjunto ortonormal e $V = [u_1]$, ou seja, u_1 forma uma base ortonormal de V. Se dim V = 2 então existem $v_1, v_2 \in V$ tais que $V = [v_1, v_2]$. Coloque

$$u_1 = \frac{v_1}{\|v_1\|}.$$

Nosso trabalho se resume em encontrar um vetor ortogonal a u_1 e que tenha norma 1. Primeiramente vamos encontrar um vetor ortogonal a u_1 . Ora, pela proposição 54, basta tomarmos $u'_2 = v_2 - \langle v_2, u_1 \rangle u_1$. Note que $u'_2 \neq 0$, pois v_1 e v_2 são linearmente independentes. Resta agora normalizar u'_2 , isto é, definimos

$$u_2 = \frac{u_2'}{\|u_2'\|}$$

e então

$$u_1 = \frac{v_1}{\|v_1\|}$$
 e $u_2 = \frac{v_2 - \langle v_2, u_1 \rangle u_1}{\|v_2 - \langle v_2, u_1 \rangle u_1\|}$

formam uma base ortonormal de V.

Dado $n \in \mathbb{N}$, suponha que tenhamos provado o teorema para todos os espaços euclidianos de dimensão n-1. Queremos provar que o mesmo é verdade para todo espaço euclidiano de dimensão n.

Se dim $V=n\geq 2$ então existem v_1,\ldots,v_n que formam uma base de V. Note que $U=[v_1,\ldots,v_{n-1}]$ é um subespaço de V de dimensão n-1. Desse modo, usando a nossa hipótese de indução, é possível tomar uma base ortonormal de U. Chamemos estes vetores da base ortonormal de U por u_1,\ldots,u_{n-1} . Como $v_n\not\in U$ então, pela proposição 54, o vetor

$$u'_n = v_n - \langle v_n, u_1 \rangle u_1 - \dots - \langle v_n, u_{n-1} \rangle u_{n-1}$$

é não nulo e ortogonal a todos os elementos de U (portanto, ortogonal a u_1, \dots, u_{n-1}). Para finalizar, tomamos como base de V os vetores

$$u_1, \cdots, u_{n-1}, u_n$$

onde

$$u_n = \frac{u'_n}{\|u'_n\|} = \frac{v_n - \langle v_n, u_1 \rangle u_1 - \dots - \langle v_n, u_{n-1} \rangle u_{n-1}}{\|v_n - \langle v_n, u_1 \rangle u_1 - \dots - \langle v_n, u_{n-1} \rangle u_{n-1}\|}.$$

Observação 11.11.2 No caso de um espaço euclidiano tridimensional, se v_1, v_2, v_3 formam uma base, então uma base ortonormal para este espaço pode ser dada por

$$u_1 = \frac{v_1}{\|v_1\|}, \quad u_2 = \frac{v_2 - \langle v_2, u_1 \rangle u_1}{\|v_2 - \langle v_2, u_1 \rangle u_1\|} \quad e \quad u_3 = \frac{v_3 - \langle v_3, u_1 \rangle u_1 - \langle v_3, u_2 \rangle u_2}{\|v_3 - \langle v_3, u_1 \rangle u_1 - \langle v_3, u_2 \rangle u_2\|}$$

Ex. Resolvido 43 Encontre uma base ortonormal de $\mathcal{P}_2(\mathbb{R})$ com o produto interno $\langle p,q\rangle = \int_0^1 p(x)q(x)\,dx$.

Resolução: Usaremos o processo de Gram-Schmidt para construir uma base ortonormal a partir da base formada pelos polinômios $1, x \in x^2$. Temos

$$||1||^2 = \int_0^1 1^2 \, dx = 1$$

e colocamos $p_1(x) = 1$. Seguindo o processo, definimos

$$p_2(x) = \frac{x - \langle x, 1 \rangle 1}{\|x - \langle x, 1 \rangle 1\|},$$

onde

$$\langle x, 1 \rangle = \int_0^1 x \, dx = \frac{1}{2} \quad \text{e} \quad \|x - \langle x, 1 \rangle 1\|^2 = \int_0^1 (x - \frac{1}{2})^2 \, dx = \frac{1}{12}.$$

Assim, $p_2(x) = \sqrt{12}(x - \frac{1}{2}) = \sqrt{3}(2x - 1)$. Por fim, colocamos

$$p_3(x) = \frac{x^2 - \langle x^2, 1 \rangle 1 - \langle x^2, \sqrt{3}(2x-1) \rangle \sqrt{3}(2x-1)}{\|x^2 - \langle x^2, 1 \rangle 1 - \langle x^2, \sqrt{3}(2x-1) \rangle \sqrt{3}(2x-1)\|},$$

80

onde

$$\langle x^2, 1 \rangle = \int_0^1 x^2 \, dx = \frac{1}{3}, \qquad \langle x^2, \sqrt{3}(2x-1) \rangle = \sqrt{3} \int_0^1 x^2 (2x-1) \, dx = \frac{\sqrt{3}}{6}$$

е

$$||x^{2} - \langle x^{2}, 1 \rangle 1 - \langle x^{2}, \sqrt{3}(2x - 1) \rangle \sqrt{3}(2x - 1)||^{2} = ||x^{2} - x + \frac{1}{6}||^{2} =$$

$$= \int_{0}^{1} (x^{2} - x + \frac{1}{6})^{2} dx = \frac{1}{180}.$$

Assim,

$$p_3(x) = \sqrt{180}(x^2 - x + \frac{1}{6}) = \sqrt{5}(6x^2 - 6x + 1).$$

Desta forma, uma base ortonormal para $\mathcal{P}_2(\mathbb{R})$ é dada por

$$p_1(x) = 1$$
, $p_2(x) = \sqrt{3}(2x - 1)$ e $p_3(x) = \sqrt{5}(6x^2 - 6x + 1)$.

Ex. Resolvido 44 Encontre uma base ortonormal para $W = \{(x, y, z) \in \mathbb{R}^3; x - 2y = 0\}$

Resolução: Note que $(x, y, z) \in W$ se e somente se

$$(x, y, z) = (2y, y, z) = y(2, 1, 0) + z(0, 0, 1).$$

Desta forma (2,1,0) e (0,0,1) formam uma base de W. Tomaremos como $u_1 = (0,0,1)$, pois este vetor é unitário (tem norma 1). Pelo processo de Gram-Schmidt, u_2 é a projeção ortogonal unitária de (2,1,0) sobre u_1 , isto é

$$u_2 = \frac{(2,1,0) - \langle (2,1,0), (0,0,1) \rangle (0,0,1)}{\|(2,1,0) - \langle (2,1,0), (0,0,1) \rangle (0,0,1)\|} = \frac{(2,1,0)}{\|(2,1,0)\|} = (\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0).$$

Ex. Resolvido 45 Encontre uma base ortonormal para $W = \{(x, y, z, t) \in \mathbb{R}^4; x + y + z + t = 0\}$.

Resolução: Temos que $(x, y, z, t) \in W$ se somente se

$$(x,y,z,t) = (-y-z-t,y,z,t)$$

$$= y(-1,1,0,0) + z(-1,0,1,0) + t(-1,0,0,1).$$

Como (-1,1,0,0), (-1,0,1,0) e (-1,0,0,1) são linearmente independentes, segue-se que formam uma base para W. Coloquemos

$$u_{1} = \frac{(-1,1,0,0)}{\|(-1,1,0,0)\|} = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0).$$

$$u_{2} = \frac{(-1,0,1,0) - \langle (-1,0,1,0), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0) \rangle (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0)}{\|(-1,0,1,0) - \langle (-1,0,1,0), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0) \rangle (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0) \|}$$

$$= \frac{(-\frac{1}{2}, -\frac{1}{2}, 1,0)}{\|(-\frac{1}{2}, -\frac{1}{2}, 1,0)\|} = \frac{1}{\sqrt{6}} (-1, -1, 2,0).$$

$$u_{3} = \frac{(-1,0,0,1) - \langle (-1,0,0,1), u_{1} \rangle u_{1} - \langle (-1,0,0,1), u_{2} \rangle u_{2}}{\|(-1,0,0,1) - \langle (-1,0,0,1), u_{1} \rangle u_{1} - \langle (-1,0,0,1), u_{2} \rangle u_{2}\|}$$

onde

$$\langle (-1,0,0,1), u_1 \rangle = \langle (-1,0,0,1), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0) \rangle = \frac{1}{\sqrt{2}}$$

$$\langle (-1,0,0,1), u_2 \rangle = \langle (-1,0,0,1), \frac{1}{\sqrt{6}}(-1,-1,2,0) \rangle = \frac{1}{\sqrt{6}}.$$

Assim,

$$\begin{split} &(-1,0,0,1) - \langle (-1,0,0,1), u_1 \rangle u_1 - \langle (-1,0,0,1), u_2 \rangle u_2 \\ &= (-1,0,0,1) - \frac{1}{\sqrt{2}} (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0,0) - \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}} (-1,-1,2,0) \\ &= (-1,0,0,1) + (\frac{1}{2}, -\frac{1}{2},0,0) + (\frac{1}{6}, \frac{1}{6}, -\frac{1}{3},0) = (-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3},1). \end{split}$$

Desta forma,

$$u_3 = \frac{(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 1)}{\|(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 1)\|} = \frac{1}{2}\sqrt{3}(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 1)$$

11.7 Complemento Ortogonal

Definição 42 Sejam V um espaço euclidiano e U um subespaço vetorial de V. O complemento ortogonal de U é o conjunto

$$U^{\perp} = \{ v \in V; \langle u, v \rangle = 0, \quad \forall u \in U \}.$$

Proposição 56 U^{\perp} é um subespaço vetorial de V.

Prova: Temos $0 \in U^{\perp}$ pois $\langle 0, u \rangle = 0$ para todo $u \in U$. Se $v, w \in U^{\perp}$ e $\alpha \in \mathbb{R}$, então para todo $u \in U$, temos $\langle v + \alpha w, u \rangle = \langle v, u \rangle + \alpha \langle w, u \rangle = 0$.

Portanto, $v + \alpha w \in U^{\perp}$.

Observação 11.11.3 Se V tem dimensão finita então $u \in U^{\perp}$ se e somente se u é ortogonal a todos os vetores de uma base qualquer de U.

Ex. Resolvido 46 Encontre U^{\perp} se $U = \{(x, y, z) \in \mathbb{R}^3; x - y - z = 0\}.$

Resolução: Temos $(x, y, z) \in U$ se somente se (x, y, z) = (y + z, y, z) = y(1, 1, 0) + z(1, 0, 1). Vemos que (1, 1, 0) e (1, 0, 1) formam uma base para U.

Assim, $(x, y, z) \in U^{\perp}$ se somente se

$$\langle (x, y, z), (1, 1, 0) \rangle = 0$$
 e $\langle (x, y, z), (1, 0, 1) \rangle = 0$,

ou seja,

$$\begin{cases} x+y=0\\ x+z=0 \end{cases} \iff (x,y,z)=x(1,-1,-1).$$

Assim,

$$U^{\perp} = [(1, -1, -1)].$$

Teorema 11 Sejam V um espaço euclidiano de dimensão finita e U um subespaço vetorial de V. Então $V=U\oplus U^{\perp}$.

Prova: Dado $v \in V$, seja w a projeção ortogonal de v sobre U. Temos v = w + (v - w) e pela proposição 54, $w \in U$ e para todo $u \in U$, $\langle v - w, u \rangle = 0$, ou seja, $v \in U + U^{\perp}$.

Agora, se $u \in U \cap U^{\perp}$ então $\langle u, u \rangle = 0$ e, portanto, u = 0.

11.8 Isometria

Definição 43 Sejam U e V espaços euclidianos. Dizemos que $T \in \mathcal{L}(U,V)$ é uma isometria se $\langle T(u_1), T(u_2) \rangle = \langle u_1, u_2 \rangle$ para todo $u_1, u_2 \in U$.

Observação 11.11.4 Note que os produtos internos acima, embora representados pelo mesmo símbolo, são produtos internos de V e de U, respectivamente.

Exemplo 48 (rotação) $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$T(x, y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \sin \theta)$$

é uma isometria, onde $\theta \in \mathbb{R}$.

De fato,

$$\langle T(x_1, y_1), T(x_2, y_2) \rangle$$

$$= \langle (x_1 \cos \theta - y_1 \sin \theta, x_1 \sin \theta + y_1 \sin \theta), (x_2 \cos \theta - y_2 \sin \theta, x_2 \sin \theta + y_2 \sin \theta) \rangle$$

$$= x_1 x_2 (\cos^2 \theta + \sin^2 \theta) - y_1 x_2 (-\cos \theta \sin \theta + \cos \theta \sin \theta) - x_1 y_2 (\cos \theta \sin \theta - \cos \theta \sin \theta) + y_1 y_2 (\cos^2 \theta + \sin^2 \theta) = x_1 x_2 + y_1 y_2 = \langle (x_1, y_1), (x_2, y_2) \rangle.$$

Teorema 12 Sejam U, V espaços euclidianos e $T \in \mathcal{L}(U, V)$. São equivalentes:

- 1. T é uma isometria;
- 2. ||T(u)|| = ||u|| para todo $u \in U$;
- 3. ||T(u) T(v)|| = ||u v|| para todo $u, v \in U$;
- 4. Se $\{u_1, \ldots, u_n\}$ é um conjunto ortonormal de U então $\{T(u_1), \ldots, T(u_n)\}$ é um conjunto ortonormal de V.

Prova: $(1 \Longrightarrow 2)$ Como T é uma isometria temos que $\langle T(u), T(v) \rangle = \langle u, v \rangle$ para todo $u, v \in U$. Em particular, tomando u = v, obtemos

$$||T(u)||^2 = \langle T(u), T(u) \rangle = \langle u, u \rangle = ||u||^2,$$

ou seja, ||T(u)|| = ||u||.

 $(2 \Longrightarrow 3)$ Para todo $u, v \in U$, temos

$$||T(u) - T(v)|| = ||T(u - v)|| = ||u - v||.$$

 $(3 \Longrightarrow 1)$ Note que

$$||T(u) + T(v)|| = ||T(u) - T(-v)|| = ||u - (-v)|| = ||u + v||.$$

Pela proposição 50, temos

$$\begin{split} \langle T(u), T(v) \rangle &= \frac{1}{4} (\|T(u) + T(v)\|^2 - \|T(u) - T(v)\|^2) \\ &= \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2) = \langle u, v \rangle. \end{split}$$

11.8. ISOMETRIA 83

 $(1 \Longrightarrow 4)$ Se $\{u_1, \ldots, u_n\}$ é um conjunto ortonormal de U então, como T é uma isometria, temos

$$\langle T(u_i), T(u_j) \rangle = \langle u_i, u_j \rangle = \begin{cases} 1, & \text{se } i = j \\ 0, & \text{se } i \neq j, \end{cases}$$

ou seja, $\{T(u_1), \ldots, T(u_n)\}$ é um conjunto ortonormal.

 $(4 \Longrightarrow 1)$ Seja u_1, \ldots, u_n uma base ortonormal de U. Por hipótese, $T(u_1), \ldots, T(u_n)$ formam um conjunto ortonormal. Dados $u, v \in U$, escrevemos

$$u = \alpha_1 u_1 + \dots + \alpha_n u_n$$

e

$$v = \beta_1 u_1 + \dots + \beta_n u_n$$

e obtemos

$$\langle T(u), T(v) \rangle = \langle \sum_{i=1}^{n} \alpha_i T(u_i), \sum_{j=1}^{n} \beta_j T(u_j) \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j \langle T(u_i), T(u_j) \rangle$$
$$= \sum_{i=1}^{n} \alpha_i \beta_i.$$

Por outro lado,

$$\langle u, v \rangle = \langle \sum_{i=1}^{n} \alpha_i u_i, \sum_{j=1}^{n} \beta_j u_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j \langle u_i, u_j \rangle$$
$$= \sum_{i=1}^{n} \alpha_i \beta_i.$$

Comparando as expressões acima, concluímos que T é uma isometria.

Corolário 7 Se $T \in \mathcal{L}(U, V)$ é uma isometria então T é injetora.

Prova: Basta ver que se T(u) = 0 então ||u|| = ||T(u)|| = 0, portanto, u = 0.

Corolário 8 Se $T \in \mathcal{L}(U, V)$ é uma isometria e dim $U = \dim V$ então T é um isomorfismo.

Prova: Como U e V têm a mesma dimensão e T é injetora, segue-se que T é uma bijeção, isto é, um isomorfismo.

Ex. Resolvido 47 Seja $T \in \mathbb{R}^2$ tal que a matriz de T som relação a uma base ortonormal de \mathbb{R}^2 é dada por

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
.

T é uma isometria?

Resolução: Vejamos, se u, v é uma base ortonormal de \mathbb{R}^2 e

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

é a matriz de uma isometria S com relação a esta base então pelo teorema anterior ||S(u)|| = ||S(v)|| = 1. Além do mais, $\langle S(u), S(v) \rangle = 0$. Como S(u) = au + cv e S(v) = bu + dv, teríamos

$$\begin{cases} a^2 + c^2 = 1 \\ b^2 + d^2 = 1 \\ ab + cd = 0 \end{cases}$$
.

Deste modo, T não pode se uma isometria pois, por exemplo, $1^2 + 2^2 = 5 \neq 1$.

11.9 Operador Auto-adjunto

Definição 44 Sejam U um espaço euclidiano e $T \in \mathcal{L}(U)$. Dizemos que T é um operador auto-adjunto se $\langle T(u), v \rangle = \langle u, T(v) \rangle$ para todo $u, v \in U$.

Ex. Resolvido 48 Seja $T \in \mathcal{L}(\mathbb{R}^2)$ dado por T(x,y) = (ax + by, bx + cy). Verifique que T é um operador auto-adjunto.

Resolução: Temos

$$\langle T(x,y),(z,t)\rangle = \langle (ax+by,bx+cy),(z,t)\rangle = axz+byz+bxt+cyt.$$

Por outro lado,

$$\langle (x,y),T(z,t)\rangle = \langle (x,y),(az+bt,bz+ct)\rangle = axz+bxt+byz+cyt.$$

Comparando as expressões vemos que

$$\langle T(x,y),(z,t)\rangle = \langle (x,y),T(z,t)\rangle.$$

Note que a matriz do operador do exemplo anterior com relação à base canônica é uma matriz simétrica. Isto, como diz o próximo teorema, não é uma simples coincidência.

Teorema 13 Seja U um espaço euclidiano de dimensão finita. Então, um operador $T \in \mathcal{L}(U)$ é auto-adjunto se e somente se a matriz de T com relação a uma base ortonormal de U for simétrica.

Prova: Suponha que T seja auto-adjunto e seja $A = (a_{ij})$ a matriz de T com relação a alguma base ortonormal de U. Queremos mostrar que $a_{ij} = a_{ji}$. Se u_1, \ldots, u_n são os vetores de uma tal base, temos

$$T(u_k) = a_{1k}u_1 + \dots + a_{nk}u_n, \tag{11.12}$$

para todo k = 1, ..., n. Se $i, j \in \{1, ..., n\}$ então tomando o produto interno de 11.12 com k = i com o vetor u_j , obtemos

$$\langle T(u_i), u_i = a_{1i}\langle u_1, u_i \rangle + \dots + a_{ni}\langle u_n, u_i \rangle = a_{ii}. \tag{11.13}$$

Por outro lado, tomando o produto interno de u_i com $T(u_i)$ temos

$$\langle u_i, T(u_i) \rangle = a_{1i} \langle u_i, u_1 \rangle + \dots + a_{ni} \langle u_i, u_n \rangle = a_{ii}.$$

Como T é auto-adjunto, segue-se que $a_{ij} = a_{ji}$.

Reciprocamente, suponha que a matriz (a_{ij}) de T com relação a uma base ortonormal, u_1, \ldots, u_n seja simétrica. Devemos mostrar que $\langle T(u), v \rangle = \langle u, T(v) \rangle$. Note que se

$$u = \alpha_1 u_1 + \dots + \alpha_n u_n$$

 \mathbf{e}

$$v = \beta_1 u_1 + \dots + \beta_n u_n,$$

então, como o produto interno é linear em cada variável e a base acima é ortonormal, temos

$$\langle T(u), v \rangle = \langle \sum_{i=1}^{n} \alpha_i T(u_i), \sum_{j=1}^{n} \beta_j u_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j \langle T(u_i), u_j \rangle$$

e, analogamente,

$$\langle u, T(v) \rangle = \sum_{j=1}^{n} \alpha_i \beta_j \langle u_i, T(u_j) \rangle.$$

Desta forma, basta mostrar que $\langle T(u_i), u_j \rangle = \langle u_i, T(u_j) \rangle$. Como (a_{ij}) é a matriz de T com relação a esta base, temos por 11.12 que $a_{ij} = \langle u_i, T(u_j) \rangle$ e $a_{ji} = \langle T(u_i), u_j \rangle$ e como a matriz é simétrica obtemos que

$$\langle T(u_i), u_j \rangle = \langle u_i, T(u_j) \rangle,$$

como queríamos.

Teorema 14 Se $T \in \mathcal{L}(U)$ é um operador auto-adjunto e se λ e μ são autovalores distintos de T então os autovetores correspondentes são ortogonais.

Prova: Sejam u e v autovetores correspondentes a λ e μ respectivamente. Temos

$$(\lambda - \mu)\langle u, v \rangle = \langle \lambda u, v \rangle - \langle u, \mu v \rangle = \langle T(u), v \rangle - \langle u, T(v) \rangle = 0$$

pois T é auto-adjunto. Como $\lambda \neq \mu$, segue-se que $\langle u, v \rangle = 0$.

Finalizamos este capítulo com o seguinte resultado que provaremos apenas no caso bidimensional. O caso unidimensional é trivial. Para a prova no caso geral, indicamos a leitura do livro $\acute{A}lgebra\ Linear$, de Elon L. Lima, Coleção Matemática Universitária.

Teorema 15 Sejam U um espaço euclidiano de dimensão finita e $T \in \mathcal{L}(U)$ um operador auto-adjunto. Então existe uma base ortonormal de U formada por autovetores de T. Note que todo operador auto-adjunto é diagonalizável.

Prova do caso bidimensional: Seja u, v uma base ortonormal de U. Sabemos pelo teorema 13 que a matriz de T é simétrica, ou seja, da forma

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Desta forma, o polinômio característico de T é da forma

$$p_T(x) = x^2 - (a+c)x + ac - b^2$$
.

Como

$$(a+c)^2 - 4(ac-b^2) = a^2 + b^2 - 2ac + 4b^2 = (a-c)^2 + 4b^2 \ge 0$$

vemos que $p_T(x)$ só apresenta raízes reais. Se a=c e b=0 então A=aI e a própria base u,v serve para provar o teorema.

Agora, se $a \neq c$ ou $b \neq 0$ então $p_T(x)$ possui duas raízes reais distintas, isto é, T apresenta dois autovalores distintos. Pelo teorema 14 os autovetores correspondentes são ortogonais. Basta tomar como base dois autovetores unitários correspondentes a cada um dos autovalores.

Índice Remissivo

ângulo entre vetores, 125	sexta, 167
	sobre sistemas lineares, 145
automorfismo, 78	terceira, 155
autovalor, 93	
autovetor, 93	matriz
	de mudança de base, 46
base, 33	diagonalizável, 104
ortonormal, 127	matriz diagonal, 103
base dual, 67	multiplicidade
	algébrica, 101
complemento ortogonal, 137	geométrica, 93
composta, 68	,
conjunto	núcleo, <mark>72</mark>
ortogonal, 126	norma, 122
ortonormal, 126	
coordenada, 41	operador
	auto-adjunto, 141
dimensão	ortogonalidade, 126
da soma de subespaços, 37	
de um espaço vetorial, 35	polinômio característico, 99
distância, 124	de uma transformação linear, 100
distancia, 121	produto interno, 119
espaço dual, 66	projeção ortogonal, 131
espaço vetorial	
definição, 9	subespaço próprio, 93
espaços isomorfos, 78	subespaço vetorial
	definição, 15
forma canônica de Jordan, 115	gerador, 22
funcional linear, 66	soma de, 17
iuncionai inicai, vo	soma direta de, 18
gerador, 22	
8014401, 22	teorema
imagem, 71	do completamento, 36
imagem inversa, 71	do núcleo e da imagem, 73
isometria, 138	transformação
isomorfismo, 78	bijetora, 70
	diagonalizável, 103
lista de exercícios	idempotente, 77
primeira, 149	injetora, 70
quarta, 159	linear, 63
quinta, 163	matriz de uma, 81
sétima, 171	nilpotente, 68
segunda 151	sobreietora. 70