TRANSFORMAREA	ECUAŢIA	Q	ΔU	L	GRAFICE		
IZOTERMA T=cst	$p \cdot V = cst.$	$\nu RT \ln \frac{V_2}{V_1}$	0	$ u RT \ln \frac{V_2}{V_1}$			
IZOBARA p=cst	$\frac{V}{T} = cst$	$ u C_p \Delta T$	$ u C_{v} \Delta T$	$p\Delta V = \nu R \Delta T$			
IZOCORA V=cst	$\frac{p}{T} = cst$	$ u C_{v} \Delta T$	$ u C_{v} \Delta T$	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
ADIABATICA $Q=0$ $\gamma = \frac{C_p}{C_v}$	$pV^{\gamma} = cst$ $TV^{\gamma-1} = cst$ $Tp^{\frac{1-\gamma}{\gamma}} = cst$	0	$ u C_{_{v}} \Delta T$	- $\nu C_{_{v}} \Delta T$			

Formule:

Masa molară	$\mu = \frac{m}{v}$	Ec. transformării generale	$\frac{pV}{T} = cst.$	Ecuația principiului I pentru motoare termice (procese ciclice: $\Delta U = 0$)	$Q_{primit} = L + \left Q_{cedat} \right $
Numărul lui Avogadro	$N_A = \frac{N}{v}$	Ec. principiului I	$Q = \Delta U + L$	Randamentul motorului termic	$\eta = \frac{L}{Q_{primit}} = 1 - \frac{ Q_{cedat} }{Q_{primit}}$
Volumul molar	$V_{\mu} = \frac{V}{v}$	Capacitatea calorică	$C = \frac{Q}{\Delta T}$	Randamentul ciclului Carnot	$\eta_{Carnot} = 1 - \frac{T_{rece}}{T_{cald}}$
Concentrația moleculară (numărul volumic)	$n = \frac{N}{V}$	Căldura specifică	$c = \frac{Q}{m \cdot \Delta T} \begin{cases} c_V \\ c_p \end{cases}$	Ecuația calorimetrică	$Q_{primit} = \left Q_{cedat}\right $
Masa gazului	$m = N \cdot m_0$	Căldura molară	$C_{\mu} = \frac{Q}{v \cdot \Delta T} \begin{cases} C_{V} \\ C_{p} \end{cases}$		
Masa unei molecule	$m_0 = \frac{m}{N} = \frac{m/v}{N/v} = \frac{\mu}{N_A}$	Relația Robert-Mayer (călduri molare)	$C_p = C_V + R$		
Ecuația termică de stare	pV = vRT	Relația Robert-Mayer (călduri specifice)	$c_p = c_V + \frac{R}{\mu}$	Constanta universală a gazelor	$R = 8310 \frac{J}{kmol \cdot K}$
Ecuația calorică de stare	Ecuația calorică de stare $U = \frac{i}{2}vRT = vC_vT$		$\gamma = \frac{C_p}{C_V} = \frac{\frac{i+2}{2}R}{\frac{i}{2}R} = \frac{i+2}{i}$	Numărul lui Avogadro	$N_A = 6,02 \cdot 10^{26} \frac{molecule}{kmol}$

Motoare termice:

