Корректно поставленные задачи

Перед тем, как решать задачу численно, необходимо убедиться в том, что решение задачи может быть таким образом получено.

Математическая задача поставлена корректно, если

- решение существует,
- единственно,
- оно непрерывно зависит от входных данных задачи.

Нужно ставить корректные граничные/начальные условия.

Пример

Задача Дирихле для уравнения Лапласа

$$-\Delta u = 0$$
 в $\Omega = (0,1)^2$

$$u(x,0) = x^2, \quad u(x,1) = x^2 - 1$$

 $u(0,y) = y^2, \quad u(1,y) = 1 - y^2$

поставлена корректно. Существует единственное решение

$$u(x,y) = x^2 - y^2$$
 в Ω

- решение не единственно, если нет одного из 4 ГУ
- решения не существует, если ГУ больше

Еще пример

Уравнение Пуассона

$$-\Delta u = f$$
 B $\Omega = (0,1)^2$

с ГУ Неймана

$$\mathbf{n} \cdot \nabla u = \mathbf{g}$$
 на Г

Из теоремы Гаусса-Остроградского

$$\int_{\Omega} f \, dx = -\int_{\Omega} \Delta u \, dx = -\int_{\Gamma} \mathbf{n} \cdot \nabla u \, ds$$

Проблема

Задача Неймана не имеет решения, если

$$\int_{\Omega} f \ dx \neq - \int_{\Gamma} g \ ds$$

- ightharpoonup Даже если условие выше выполнено и решение существует, оно не единственно ($u_2 = u + C, C \in R$ также является решением, "решение определено с точностью до константы").
- Решение вопроса: либо нужны ГУ Дирихле на части границы $\Gamma_D \subseteq \Gamma, \Gamma_D \neq \emptyset$, либо нужно дополнительное ограничение (фиксируем свободную константу решения среднее значение решения по области нуль)

$$\int_{\Omega} u dx = 0$$

Принцип максимума

- Физические свойства (примеры концентрация, температура (в К) не может отрицательной)
- Математические свойства верхние/нижние границы точного решения (принцип максимума, гарантии неотрицательности решения)
- Дискретизация ограниченность численного решения (дискретный принцип максимума)

Принцип максимума, пример

▶ Рассмотрим $u:\Omega\subset\mathbb{R}^d o\mathbb{R}, u\in C^2(\Omega)\cap C^0(\overline{\Omega})$ и задачу

$$f = \Delta u = \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_d^2}$$

Необходимые условия для существования максимума внутри области:

$$\frac{\partial u}{\partial x_k} = 0, \quad \frac{\partial^2 u}{\partial x_k^2} \le 0, \quad k = 1, \dots, d$$

- ightharpoonup Если $\Delta u=f>0$ в Ω , тогда u достигает максимума только на границе Γ
- lacktriangle Если диапазон значений u на Γ известен до решения задачи (например, Γ У Дирихле $u|_{\Gamma}=g$), известны и границы решения во всей Ω

Принцип максимума для Δu

lacktriangle Принцип максимума: $-\Delta u = f$ в Ω

$$f \leq 0 \rightarrow \max_{\overline{\Omega}} u = \max_{\Gamma} u$$

lacktriangle Принцип минимума: $-\Delta u = f$ в Ω

$$f \geq 0 \rightarrow \min_{\overline{\Omega}} u = \min_{\Gamma} u$$

ightharpoonup Ограниченность: $\Delta u = 0$ в Ω

$$\min_{\Gamma} u \leq u \leq \max_{\Gamma} u \quad \forall \mathbf{x} \in \Omega$$

Принцип максимума для $\mathbf{v}\cdot abla u - \Delta u$

 $lackbox{
ightharpoonup}$ Рассмотрим $u:\Omega\subset\mathbb{R}^d o\mathbb{R}, u\in\mathcal{C}^2(\Omega)\cap\mathcal{C}^0(\overline{\Omega})$ и задачу

$$\mathcal{L}u = \mathbf{v} \cdot
abla u - \Delta u$$
 в Ω

Необходимые условия для существования максимума внутри области:

$$\frac{\partial u}{\partial x_k} = 0, \quad \frac{\partial^2 u}{\partial x_k^2} \le 0, \quad k = 1, \dots, d$$

ightharpoonup Если $\mathcal{L}u<0$ в Ω , тогда u достигает максимума только на границе Γ

