Rakhim Aitbayev

Multilevel Preconditioners for Nonselfadjoint or Indefinite Orthogonal Spline Collocation Problems

Department of Mathematics
New Mexico Tech
Socorro
NM 87801
aitbayev@nmt.edu
Bernard Bialecki

TheoremWe develop and study symmetric multilevel preconditioners for the computation of the orthogonal spline collocation (OSC) solution of a Dirichlet boundary value problem (BVP) with a nonselfadjoint or an indefinite operator. The OSC solution is sought in the space of piecewise Hermite bicubic spline functions defined on a uniform partition. We consider an additive and a multiplicative multilevel preconditioners that are used with the preconditioned conjugate gradient (PCG) method. Our results and algorithms are closely related to those in [1], [2], [3], and [4]. Let Ω be a unit square $(0,1) \times (0,1)$ with the boundary $\partial \Omega$, and let $x = (x_1, x_2)$. We consider a BVP

$$Lu \equiv \sum_{i,j=1}^{2} a_{ij}(x)u_{x_ix_j} + \sum_{i=1}^{2} b_i(x)u_{x_i} + c(x)u = f(x), \quad x \in \Omega, \quad u = 0 \text{ on } \partial\Omega.$$
(1)

Operator L could be non-selfadjoint or indefinite in L^2 inner product. We assume that the principal part of L satisfies the uniform ellipticity conditionand that BVP (1) has a unique solution in $H^2(\Omega)$. Let π_0 be a uniform coarsest rectangular partition of Ω . We obtain a set of partitions $\{\pi_k\}_{k=0}^K$ by standard coarsening, andlet $V_0 \subset V_1 \subset \ldots \subset V_K \equiv V_h$ be the set of corresponding nested spaces ofpiecewise Hermite bicubics that vanish on $\partial\Omega$. Let \sum denote the 2-D composite Gauss quadrature corresponding to partition π_h with 4 nodesin each element. Let \mathcal{G}_h denote the corresponding set of Gauss points. The OSC discretization of BVP (1) is defined by

$$u_h \in V_h, \quad Lu_h(\xi) = f(\xi), \quad \xi \in \mathcal{G}_h,$$
 (2)

and it can be written as the operator equation $L_h u_h = f_h$ in the Hilbert space V_h with theirner product $(v, w)_h = \sum vw$. We define and study multi-level additive $B_{\rm a}$ and multiplicative $B_{\rm m}$ preconditioners for solving the normal equation $L_h^* L_h u_h = L_h^* f_h$, where L_h^* is the adjoint to L_h . The implementation of $B_{\rm a}$ and $B_{\rm m}$ is based on relationships between basis functions for two consecutive partitions and the implementation of $B_{\rm m}$ is similar to that for V(1,1)-cycle with

the Gauss-Seidel smoothing. A problem on the coarsest partition is assumed sufficiently small, and it is solved exactly. The computational cost of the preconditioning algorithms is $O(N_K)$. The following is our main result. There are positive independent of h and K constants $\alpha_a, \beta_a, \alpha_m, \text{and } \beta_m, \text{such that}$

$$\alpha_{a} (B_{a}v, v)_{h} \leq (L_{h}^{*}L_{h}v, v)_{h} \leq \beta_{a} (B_{a}v, v)_{h}, \quad v \in V_{h},$$

$$\alpha_{m} (B_{m}v, v)_{h} \leq (L_{h}^{*}L_{h}v, v)_{h} \leq \beta_{m} (B_{m}v, v)_{h}, \quad v \in V_{h}.$$
(3)

To obtain this result, we prove the key assumptions in the general theory of Schwarz methodsformulated in [4] and use the inequalities (see [2])

$$C^{-1} \|v\|_{H^2(\Omega)}^2 \le a_h(v, v) \le C \|\Delta v\|_{L^2(\Omega)}^2, \quad v \in V_h.$$

In the following table, we present results of our numerical computations; that is,the ratios of spectral constants in (3),the convergence factor $\bar{\rho}$, which is the geometric mean of consecutive residual ratios, and the CPU time.

	Additive			Multiplicative			General		
J	$\beta_{\rm a}/\alpha_{\rm a}$	$\bar{ ho}$	t(s)	$\beta_{\rm m}/\alpha_{\rm m}$	$\bar{ ho}$	t(s)	$\beta_{\rm m}/\alpha_{\rm m}$	$\bar{ ho}$	t(s)
3	3.883	0.072	0.19	1.367	0.005	0.18	925.2	0.094	0.33
4	4.490	0.101	0.59	1.435	0.007	0.90	515.2	0.096	1.80
5	5.016	0.125	2.13	1.476	0.008	3.87	457.5	0.121	8.44
6	5.488	0.142	9.13	1.500	0.009	16.45	402.4	0.166	42.67
7	5.845	0.156	49.93	1.515	0.009	73.43	381.4	0.202	199.40
8	6.162	0.168	278.10	1.524	0.009	334.60	377.3	0.224	995.60

Under Additive and Multiplicative, we list results for Poisson's equation, and under General – results for PDE with a general nonselfadjoint and indefinite operator L with the coefficients

$$a_{11}(x) = e^{x_1 x_2}, \quad a_{12}(x) = 0.5/(1 + x_1 + x_2), \quad a_{22}(x) = e^{-x_1 x_2},$$

$$b_1(x) = x_2 e^{x_1 x_2} + 10 \cos[\pi(x_1 + x_2)], \quad a_{22}(x) = -x_1 e^{-x_1 x_2} + 50 \sin(2\pi x_1 x_2),$$

$$c(x) = 50[1 + 1/(1 + x_1 + x_2)].$$

The problem with the general equation is solved using the multiplicative preconditioner. We set $\pi_0 = \Omega$ and reduce the relative residual to less than 10^{-12} . The numerical results demonstrate the efficiency of our preconditioning algorithms.

Bibliography

- [1] R. AITBAYEV AND B. BIALECKI, A preconditioned conjugate gradient-method for nonselfadjoint or indefinite orthogonal spline collocation problems, SIAM J. Numer. Anal., 41 (2003), pp. 589–604.
- [2] B. Bialecki, Convergence analysis of orthogonal spline collocation for elliptic boundary value problems, SIAM J. Numer. Anal., 35 (1998),pp. 617–631.
- [3] B. Bialecki and M. Dryja, Multilevel additive and multiplicative methods for orthogonal spline collocation problems, Numer. Math., 77 (1997),pp. 35–58.
- [4] B. F. SMITH, P. E. BJØRSTAD, AND W. D. GROPP, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, New York, 1996.