Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

1ª aula Prática

Sumário:

Resolução de problemas sobre o cap. 1

Bibliografia:

Serway, cap. 1

Sorenssen, cap. 3

Registo de uma quantidade usando só uma medição:

O valor da medição de uma quantidade (como também a representação digital de um número real) está sempre afetado de uma **incerteza**.

À quantidade que se mede, na figura o comprimento do lápis, c, associamos ao valor que melhor se estima, \bar{c} , um outro valor, Δc , chamado erro ou indeterminação, Tal que se tem a certeza que o comprimento está entre $\bar{c}-\Delta c$ e $\bar{c}+\Delta c$

Pela figura tem-se a certeza que 4.0 cm < c < 4.5 cm

E pode-se considerar $\bar{c}=4,25~\mathrm{cm}$ e $\Delta c=0,25~\mathrm{cm}$

O comprimento do lápis indica-se $c=4.3\pm0.3~{
m cm}$

Este erro é considerado um exemplo de um erro de leitura ou instrumental.

Instrumentos de escala contínua: O erro é metade da menor divisão da escala

Instrumentos de escala digital: O erro é uma divisão da escala.

Registo de uma quantidade usando 10 ou mais medições:

Cada vez que se mede o tempo de uma oscilação completa (período, T) obtêm-se um valor diferente.

- A **melhor estimativa** do período é o valor **médio** $\bar{T} = \frac{1}{N} \sum_{i=1}^{N} T_i$
- $\sqrt{\frac{1}{N-1}}\sum_{i=1}^{N}(T_i-\bar{T})^2$ O desvio padrão indica a **variação em cada medição**: $\sigma =$
- O erro na media diminuia com o número de medições: S=

Este é um erro de observação

Então o valor do período indica-se por $T=ar{T}+s$

$$T = \bar{T} \pm s$$

Erro de leitura

Erro de observação

Os erros de leitura e os erros de observação são independentes.

Como erro a associar ao valor, toma-se como erro o maior destes dois erros.

Precisão e Exatidão:

erro relativo =
$$\left| \frac{\Delta c}{\bar{c}} \right|$$

A precisão é tanto maior quanto o erro relativo for menor.

- Exatidão mede a proximidade do valor medido do valor correto.
 - Quanto menor for a diferença entre estes últimos dois valores maior é a exatidão.
- Precisão e Exatidão são dois conceitos diferentes.

Como se determina o erro de quantidades que não se medem, mas que são funções de quantidades medidas?

Exemplo: O perímetro e a área de um retângulo?

Como se determina o erro de quantidades que não se medem, mas que são funções de quantidades medidas?

Adição de duas parcelas: largura, L, e profundidade, P,

$$S = L + P$$

Em que
$$L = 3.0 \pm 0.1$$
 cm $P = 2.0 \pm 0.1$ cm

S = 5.0 cm mas o que deve ser ΔS ?

$$S = 5.0 - (\Delta L + \Delta P)$$

$$S = 5.0 + (\Delta L + \Delta P)$$

$$\Delta S = \Delta L + \Delta P$$

O mesmo de a subtração de duas parcelas, D = L - P

$$\Delta D = \Delta L + \Delta P$$

Pergunta 1:

O perímetro é em facto

$$C = 2L + 2P$$

como devemos calcular o erro em *C*?

Como se determina o erro de quantidades que não se medem, mas que são funções de quantidades medidas?

E o produto de 2 quantidades? Exemplo, a área do retângulo?

$$A = L \times P$$

$$\frac{\Delta A}{A} = \left| \frac{\Delta L}{L} \right| + \left| \frac{\Delta P}{P} \right|$$

Igual expressão para a divisão de duas quantidades.

Geral:
$$F = F(x, y, \dots)$$
 $\Delta F = \left| \frac{\partial F}{\partial x} \right| \Delta x + \left| \frac{\partial F}{\partial y} \right| \Delta y + \dots$

Problema cap 1

1. Foram medidos dois comprimentos:

$$P = 25 \pm 1$$
 cm $Q = 10 \pm 1$ cm

- a) Calcule a soma das duas quantidades S = P + Q
- b) Calcule a diferença das duas quantidades D = P Q
- c) Calcule o produto das duas quantidades M = P Q

Experiência numérica

Observação e medição

1. Verificar bibliotecas...

padrão 0.5

```
import numpy as np
import matplotlib.pyplot as plt
```

2. Simular medições com incerteza

```
N = 10 #número de medições
```

```
X = np.random.normal(4.5,0.5,size=N)
Xmedia = np.mean(X)
Xerro = np.std(X)/np.sqrt(N)

#gerar N valores de Y com media 12 e desvio
padrão 0.7
Y = np.random.normal(12.0,0.7,size=N)
Ymedia = np.mean(Y)
Yerro = np.std(Y)/np.sqrt(N)
```

#gerar N valores de X com media 4.5 e desvio

3. Calcular a soma

```
Z = X+Y #soma de cada par de valores
Zmedia = np.mean(Z) #melhor est. do valor de Z
```

- Calcule a incerteza na media de Z, diretamente do desvio padrão dos valores
- Calcule a incerteza na media de Z com a fórmula e compare

4. Calcular o produto

```
W = X*Y #produto de cada par de valores
Wmedia = np.mean(W)
```

- Calcule a incerteza na media de W, usando o desvio padrão dos valores
- Calcule a incerteza na media de W com a fórmula e compare

Pergunta 2:

As fórmulas para combinação de erros concordam com os resultados? o que mais nota?

Algarismos Significativos de uma quantidade

São os algarismos que se conhecem com certeza (100%) mais o 1º algarismo que é afetado pelo erro

Ex: a)	Comprimento $4,10 \pm 0,02 \mathrm{m}$	possui 3 algarismos significativos	(o erro afeta as centésimas)
b)	$4,100 \pm 0,02 \text{ m}$	possui 3 algarismos significativos	(o erro afeta as centésimas)
c)	$4,100 \pm 0.2 \text{ m}$	possui 2 algarismos significativos (o erro afeta as décimas)	

Permite escrever os valores de um modo mais simples: Escrever só os algarismos significativos

a) 4,10 m	possui 3 algarismos significativos
b) 4,10 m	possui 3 algarismos significativos
c) 4,1 m	possui 2 algarismos significativos

Em Física $4,10 \text{ m} \neq 4,1 \text{ m}$

Operações

• **Produto e divisão**: O resultado da operação deve apresentar o número de algarismos significativos igual ao menor dos fatores

ex: Círculo de raio
$$r=6.0 \pm 0.1 \text{ cm}$$

de área $A=\pi \times (6.0 \text{ cm})^2 = 113.097 \cdots \text{ cm}^2$

apresenta-se com 2 algarismos significativos
$$A = \pi \times (6.0 \text{ cm})^2 = 1.1 \times 10^2 \text{ cm}^2$$

 Adição e subtração: O resultado da operação deve apresentar o número de casas decimais igual ao menor número de casa decimais das parcelas.

ex:
$$23.2 + 5.174 = 28.4$$

 $3.4 + 10 = 13$
 $1,0001 + 0,0003 = 1,0004$
 $1,002 - 0.998 = 0.004$

Cálculos intermédios fazem-se com os todos os algarismos (na máquina de calcular ou computador)

Problema cap 1

2. Foram medidos dois comprimentos:

$$P = 15.2 \pm 0.1$$
 cm $Q = 14.9 \pm 0.3$ cm

- a) Calcule a soma das duas quantidades S = P + Q
- b) Calcule a diferença das duas quantidades D = P Q
- c) Calcule o erro relativo da diferença D

Problema cap 1

4. Um carro americano segue à velocidade de 85,0 milhas/hora. Passa por uma estrada com o limite de velocidade 50 km/h. Está o carro a exceder o limite de velocidade?

Note: 1 milha = 1609 m

Problema cap 1

4. Um carro americano segue à velocidade de 85,0 mil has/hora. Passa por uma estrada com o limite de velocidade 50 km/h. Está o carro a exceder o limite de velocidade? Expresse a velocidade do carro em m/s?

Note: 1 milha = 1609 m

Resolução:

85.0 milhas / hora =
$$85.0 \frac{\text{milhas}}{\text{hora}} = \frac{85.0 \times 1609 \text{ m}}{\text{hora}} = \frac{136765 \text{ m}}{\text{hora}} = 137 \times 10^3 \text{ m} = 137 \text{ km/h}$$

$$85.0 \frac{\text{milhas}}{\text{hora}} = \frac{85.0 \times 1609 \text{ m}}{3600 \text{ s}} = 38.0 \text{ m/s}$$