

Vorlesung Grundlagen adaptiver Wissenssysteme

Prof. Dr. Thomas Gabel
Frankfurt University of Applied Sciences
Faculty of Computer Science and Engineering
tgabel@fb2.fra-uas.de

Vorlesungseinheit 6

Das Strategieiterationsverfahren

Lernziele

- Wie wird eine Strategie bewertet.
- Wie wird eine Strategie gierig ausgewertet.
- Kennenlernen des Strategieiterationsverfahren: Policy Iteration

Überblick

1. Motivation

- 1. Motivation
- 2. Strategiebewertung

- 1. Motivation
- 2. Strategiebewertung
- 3. Strategieverbesserung

- 1. Motivation
- 2. Strategiebewertung
- 3. Strategieverbesserung
- 4. Strategieiterationsverfahren

- 1. Motivation
- 2. Strategiebewertung
- 3. Strategieverbesserung
- 4. Strategieiterationsverfahren
- 5. Zusammenfassung dynamisches Programmieren

- 1. Motivation
- Strategiebewertung
- Strategieverbesserung
- Strategieiterationsverfahren
- Zusammenfassung dynamisches Programmieren

Strategieiteration (Policy Iteration)

Motivation

- Value Iteration benötigt im Allgemeinen unendlich viele Iterationen
- Aber: Es gibt nur endlich viele Policies!
 - \Rightarrow Durchführung einer Iteration über die Menge der möglichen Strategien

Policy Iteration: überblick

Kernidee:

- Starte mit einer beliebigen erfüllenden (proper) Strategie π_0 .
- lacktriangle Ermittele die dazugehörige Bewertungsfunktion V_{π_0}
 - Strategiebewertung (Policy Evaluation)

Policy Iteration: überblick

Kernidee:

- Starte mit einer beliebigen erfüllenden (proper) Strategie π_0 .
- lacksquare Ermittele die dazugehörige Bewertungsfunktion V_{π_0}
 - Strategiebewertung (Policy Evaluation)
- Werte diese Bewertungsfunktion "gierig" (greedy) aus.
 - \Rightarrow Das ist die neue Strategie.
 - Strategieverbesserung (Policy Improvement)
- Wiederhole dies, bis die optimale Strategie gefunden ist.

- 1. Motivation
- 2. Strategiebewertung
- Strategieverbesserung
- Strategieiterationsverfahren
- Zusammenfassung dynamisches Programmieren

Strategiebewertung (1)

Policy Evaluation

Kernidee:

- Problemstellung: bewerte eine gegebene Strategie π
- Lösung: iterative Anwendung der Bellman-Gleichung
- eine Folge von Wertfunktionen $V_0 o V_1 o V_2 o \cdots o V^\pi$ ergibt sich

Strategiebewertung (1)

Policy Evaluation

Kernidee:

- Problemstellung: bewerte eine gegebene Strategie π
- Lösung: iterative Anwendung der Bellman-Gleichung
- eine Folge von Wertfunktionen $V_0 o V_1 o V_2 o \cdots o V^\pi$ ergibt sich
- in jedem Schritt k
 - synchrone Aktualisierungen der Werte $V_k(i)$
 - für alle Zustände i
 - berechne $V_{k+1}(i)$ aus $V_k(j)$
 - wobei j für Nachfolgezustände von i stehen
- \blacksquare aus der Literatur bekannt: Konvergenz gegen V^{π} tritt ein

Strategiebewertung (2)

Policy Evaluation

Algorithmus: Iterative Strategiebewertung

- Eingabe: eine zu bewertende Strategie π
- Wähle V₀ beliebig.
- Setze Zähler k = 0.

Strategiebewertung (2)

Policy Evaluation

Algorithmus: Iterative Strategiebewertung

- \blacksquare Eingabe: eine zu bewertende Strategie π
- Wähle V₀ beliebig.
- Setze Zähler k = 0.
- REPEAT

k := k + 1

ForAll $i \in S$

Strategiebewertung (2)

Policy Evaluation

Algorithmus: Iterative Strategiebewertung

- \blacksquare Eingabe: eine zu bewertende Strategie π
- Wähle V_0 beliebig.
- Setze Zähler k = 0.
- REPEAT

$$k := k + 1$$

ForAll
$$i \in S$$

aktualisiere $V_k(i)$ auf Basis von $V_{k-1}(j)$ via

$$V_k(i) = \sum_{i=0}^{n} p_{ij}(\pi(i)) (c(i, \pi(i)) + \gamma V_{k-1}(j))$$

Until Konvergenz

- 1. Motivation
- 2. Strategiebewertung
- 3. Strategieverbesserung
- Strategieiterationsverfahren
- 5. Zusammenfassung dynamisches Programmieren

Strategieverbesserung (1)

Policy Improvement

Kernidee:

- Eine Strategie π ist gegeben, eine zugehörige Wertfunktionen V^{π} kann mit Strategiebewertung ermittelt werden.
- Gewinne nun aus π und V^{π} eine neue Strategie π' .
 - \blacksquare ... die natürlich besser als π sein soll!
- Vorgehensweise: Sogenannte "gierige Auswertung".

Strategieverbesserung (2)

Policy Improvement

Satz: Strategieverbesserung mittels gieriger Auswertung

Gegeben sei eine Strategie $\pi: S \to A$ und die zugehörige Wertfunktion $V^{\pi}: S \to \mathbb{R}$. Dann lässt sich eine verbesserte "gierige" Strategie π' wie folgt definieren:

$$\begin{array}{ccc} \pi': \mathcal{S} \rightarrow \mathcal{A} \\ & \text{i} & \mapsto \mathop{\arg\min}_{a \in \mathcal{A}} \sum_{j=1}^n p_{ij}(a) \left(c(i,a) + \gamma V^{\pi}(j) \right) \end{array}$$

Strategieverbesserung (2)

Policy Improvement

Satz: Strategieverbesserung mittels gieriger Auswertung

Gegeben sei eine Strategie $\pi: S \to A$ und die zugehörige Wertfunktion $V^{\pi}: S \to \mathbb{R}$. Dann lässt sich eine verbesserte "gierige" Strategie π' wie folgt definieren:

$$\begin{array}{ccc} \pi': S \to A \\ & \text{i} & \mapsto \mathop{\arg\min}_{a \in A} \sum_{j=1}^n p_{ij}(a) \left(c(i,a) + \gamma V^{\pi}(j) \right) \end{array}$$

Bemerkung:

 $\blacksquare \pi'$ verbessert die Werte für jeden Zustand, denn für alle *i* gilt

$$V^{\pi}(i) \geq V^{\pi'}(i) = \min_{a \in A} \sum_{j=1}^{n} p_{ij}(a) (c(i, a) + \gamma V^{\pi}(j))$$

 π' stellt also eine Verbesserung gegenüber π dar.

Beispiel (1)

4x4-Gitterwelt

- diskontierter ($\gamma = 0.5$) MDP mit 16 Zuständen
- deterministische Zuständsübergänge
- zwei Terminalzustände (i = 0 und i = 15), in denen keine weiteren Kosten anfallen (und die nicht mehr verlassen werden)
- 4 Aktionen:
 - $A = \{ hoch, runter, links, rechts \}$
- Kosten für jede Aktion (jeden Schritt): 1
 - Aktionen, die den Agenten gegen die Wand bewegen lassen, verändern

0	1	2	3
4	5	6	7
8	9	10	11
12	13	15	16

Beispiel (2)

Strategie "immer hoch"

V_k für Strategie "immer hoch"

Gierige Strategie bezogen auf Vk

	†	†	†
†	†	†	†
1	†	1	1
†	†	1	

γ=0.5

k=0	0	0	0 0	
	0	0	0	0
	0	0	0	0
	0	0	0	0

k=	1

	0	1	1	1
=1	1	1	1	1
-1	1	1	1	1
	1	1	1	0

Beispiel (3)

Strategie "immer hoch"

y = 0.51.5 1.5 1.5 1.5 1.5 1.5 k=2 1.5 1.5 | 1.5 | 1.5

k=3	0	1.75	1.75	1.75
	1	1.75	1.75	1.75
	1.5	1.75	1.75	1.75
	1.75	1.75	1.75	0

1.5 | 1.5 | 1.5 |

k=10	0	1.998	1.998	1.998
	_	1.998	1.998	1.998
		1.998	1.998	1.998
	1.75	1.998	1.998	0

V_k für Strategie "immer hoch" Gierige Strategie bezogen auf V_k

	4	—	Ŧ	+	Ŧ	.1
1	•	_	Ŧ	1.	Ŧ	.1.
1	•	+	Ŧ	+	1	,
4	`	 	-	•		

- 1. Motivation
- Strategiebewertung
- Strategieverbesserung
- 4. Strategieiterationsverfahren
- 5. Zusammenfassung dynamisches Programmieren

Strategieiteration (1)

Policy Iteration

Kernidee:

- Strategieiteration = Wiederholung von (Strategiebewertung + Strategieverbesserung)
- Policy Iteration = Repeated (Policy Evaluation + Policy Improvement)

Strategieiteration (1)

Policy Iteration

Kernidee:

- Strategieiteration = Wiederholung von (Strategiebewertung + Strategieverbesserung)
- Policy Iteration = Repeated (Policy Evaluation + Policy Improvement)
- Wenn sich keine Änderung beim Schritt von π zu π' mehr ergeben, so ist das Verfahren beendet.
- In diesem Fall gilt dann
 - $V^{\pi}(i) = V^*(i)$ für alle $i \in S$.
 - Es wurde also die optimale Strategie ermittelt.

Strategieiteration (Policy Iteration) (2)

Visualisierung:

- Policy Evaluation: Ermittele V^{π}
 - mittels iterativerStrategiebewertung
- Policy Improvement: Erzeuge π' (mit π' "besser als" π)
 - mittels "gieriger"Strategieverbesserung

- •
- •
- •

Strategieiteration (3)

Policy Iteration

Strategieiteration (Policy Iteration)

- Gegeben ist initiale Strategie $\pi = \pi_0$.
- Setze Zähler z = 0.
- REPEAT berechne V^{π_z} mittels iterativer Strategiebewertung

Strategieiteration (3)

Policy Iteration

Strategieiteration (Policy Iteration)

- Gegeben ist initiale Strategie $\pi = \pi_0$.
- Setze Zähler z = 0.
- PREPEAT
 berechne V^{π_Z} mittels iterativer Strategiebewertung
 ermittele π_{Z+1} aus V^{π_Z} und π_Z mittels gieriger Strategieverbesserung

$$z := z + 1$$
UNTIL $\pi_z = \pi_{z-1}$

Konvergenzaussagen

Satz: Konvergenz des Strategieiterationsverfahren

Wenn wir mit einer erfüllenden Strategie π_0 starten, generiert Policy Iteration eine Sequenz von sich monoton verbessernden, erfüllenden Strategien, d.h. $V_{\pi_{z+1}}(i) \leq V_{\pi_z}(i)$, und terminiert schließlich mit einer optimalen Strategie.

Bemerkungen

- Die Strategie verbessert sich in jedem Schritt.
- Wenn sie sich nicht mehr verbessert ($\pi_z = \pi_{z-1}$), ist die optimale Strategie π^* erreicht.
- Für die praktische Anwendung sind die folgenden Überlegungen relevant:

Bemerkungen

- Die Strategie verbessert sich in jedem Schritt.
- Wenn sie sich nicht mehr verbessert ($\pi_z = \pi_{z-1}$), ist die optimale Strategie π^* erreicht.
- Für die praktische Anwendung sind die folgenden Überlegungen relevant:
 - Die Wertfunktion V^{π_z} wird durch iterative Strategiebewertung gefunden. Dies kann unendlich viele Iterationen erfordern.
 - In praktischen Anwendungen ergibt sich die Frage, wie groß man den Zähler k (also die Anzahl der Iterationen im Rahmen der Strategiebewertung) werden lässt.
 - ⇒ Rechenzeit vs. Genauigkeit!
 - MODIFZIERTES POLICY ITERATION: Policy Iteration mit begrenzter Anzahl von Evaluierungsschritten (also nicht $k \to \infty$).

- Motivation
- Strategiebewertung
- 3. Strategieverbesserung
- Strategieiterationsverfahren
- 5. Zusammenfassung dynamisches Programmieren

Zusammenfassung

Problemlösen mit Methoden des dynamischen Programmierens

Mit 3 Schritten zum Ziel:

- Entscheidungsproblem
- Formulierung als MDP
 - Festlegung der Zustände / Aktionen
 - Wahl des Abstraktionsniveaus
 - Festlegung des Problemtyps
 - endlicher Horizont / unendlicher Horizont
 - SKP, Diskontierung
 - Festlegung der Kostenfunktion
- Lösen des MDPs

Klassische DP-Verfahren

Grundprinzip

- Suche (bestimme) optimale Pfadkosten $V^*(i)$.
- Durch die optimalen Pfadkosten ist auch optimale Strategie definiert.
- Für $V^*(i)$ muss das Optimalitätsprinzip erfüllt sein:

$$V^*(i) = \min_{a \in A(i)} \sum_{j=1}^n p_{ij}(a) (c(i, a) + \gamma V^*(j)) \qquad i = 1 \dots n$$

Verfahren zur Berechnung von V^*

Wertiterationsverfahren (Value Iteration)

$$V_k^*(i) = \min_{a \in A(i)} \sum_{j=1}^n p_{ij}(a) (c(i, a) + \gamma V^*(j))$$
 $i = 1 \dots n$

- Strategieiterationsverfahren (Policy Iteration)
 - Wähle π₂
 - Berechne V^{π_z} (lineares Gleichungssystem oder iterativ)
 - Wähle π_{z+1} "gierig" bezüglich V^{π_z}

Klassische DP-Verfahren

Voraussetzungen:

- Übergangswahrscheinlichkeiten (*Modell*) bekannt
- endlich viele Zustände (Iteration)
- endliche viele Aktionen (Minimumsuche)

Ergebnis:

■ Verfahren findet $V^*(\cdot)$ und damit optimale Strategie für alle Zustände