

Seminar Final Presentation

Algorithm Selection and Auto-Tuning in AutoPas

 $\label{thm:manuel_lerchner} Manuel.lerchner@tum.de$

Table of Contents

- 1 Introduction
- 2 AutoPas Framework
- 3 Auto-Tuning
- 4 Early Stopping Optimization

Molecular Dynamics Simulation Challenges

- Complex interaction models
- Enormous numbers of particles
- High computational requirements
- Need for highly optimized algorithms

Traditional MD Engines vs AutoPas

Traditional Engines (GROMACS, LAMMPS, ls1 mardyn):

- Single, highly optimized implementation
- Static optimizations
- Hardware-specific tuning required

AutoPas Approach:

- Dynamic optimizations
- Adapts to simulation state
- Hardware-independent

Table of Contents

- 1 Introduction
- 2 AutoPas Framework
- 3 Auto-Tuning
- 4 Early Stopping Optimization

Aut®Pas

What is AutoPas?

- Library for arbitrary N-body simulations
- Optimal performance by switching implementations
 - Container: Finding neighboring particles
 - Traversal: Parallel force calculations
 - Data Layout: Memory access optimization
 - Newton 3: Force calculation optimization

Simpler Memory Access
Lower Memory Overhead

 $\begin{tabular}{l} Fewer redundant \\ $_{\rm [Newcome\ et\ al.,\ 2024]}$ calculations \end{tabular}$

Structure of AutoPas

- Three main areas:
 - User Application
 - Algorithm Library
 - Tuning Strategies
- Algorithm Library:
 - Huge Search Space¹
- Tuning Strategies:
 - Full Search
 - Random Search
 - Predictive Tuning
 - Bayesian Search
 - Rule Based Tuning

Figure: [Newcome et al., 2023]

 $^{^{1}}$ Container × Traversal × Data Layout × Newton $3 \times$ Load Estimator × Cell Size Factor

Container Types

- Linked Cells
- Verlet Lists
- Verlet Cluster Lists

Traversal Patterns

- C01: Independent cell processing
- C18: Color-based with Newton 3
- C08: Reduced synchronization points

Table of Contents

- 1 Introduction
- 2 AutoPas Framework
- 3 Auto-Tuning
- 4 Early Stopping Optimization

Tuning Strategies

- FullSearch: Evaluates all configurations
- RandomSearch: Random sampling
- BayesianSearch: Optimization-guided selection
- PredictiveTuning: Performance prediction
- RuleBasedTuning: Expert knowledge rules
- FuzzyTuning: Fuzzy logic evaluation

Benefits of Auto-Tuning

- Significant performance improvements
- Out-of-the-box optimization
- Hardware independence
- User-friendly interface
- Easy integration with other frameworks

Challenges of Auto-Tuning

- Overhead from evaluating suboptimal configurations
- Unnecessary periodic re-tuning
- Complex scenarios needed to show benefits

Table of Contents

- 1 Introduction
- 2 AutoPas Framework
- 3 Auto-Tuning
- 4 Early Stopping Optimization

Early Stopping Idea

- Each configuration gets evaluated multiple times
- Average performance is used for the final decision
- Optimization: Abort evaluation early if performance is poor
 - Stop after first poor sample
 - Stop during evaluation

Implementation in AutoPas

- Keep track of best performance seen so far
- Stop resampling if current performance exceeds optimal by a certain factor
- Hyperparameter: allowedSlowdownFactor
- Which allowedSlowdownFactor should be used?
 - allowedSlowdownFactor \rightarrow 1: Many spurious aborts
 - \blacksquare allowed Slowdown Factor
 $\rightarrow \infty :$ No early stopping

Early Stopping Results [PredictiveTuning]

Early Stopping Results Analysis

- Reduction in total simulation time:
 - FullSearch: 14.8% reduction
 - PredictiveTuning: 18.9% reduction
- Optimal threshold around 4.5
- Never significantly increased simulation time

Conclusion

- AutoPas offers flexible, adaptive optimization
- Early stopping mechanism shows promise
- Trade-off between:
 - Specialized static optimization
 - Dynamic adaptability
- Complementary approaches possible

Thank you for your attention!

Questions?

References I

Newcome, S. J., Gratl, F. A., Muehlhaeusser, M., Neumann, P., and Bungartz, H.-J. (2024).

Autopas: Dynamic algorithm selection in molecular dynamics for optimal time and energy.

In SIAM Conference on Parallel Processing (PP24). SIAM.

Newcome, S. J., Gratl, F. A., Neumann, P., and Bungartz, H.-J. (2023). Towards the smarter tuning of molecular dynamics simulations. Amsterdam, The Netherlands.

Backup:

- A
- **■** B