МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Фихтех-школа радиотехники и компьютерных технологий

Лабораторная работа 2.1.6

Эффект Джоуля-Томсона

Автор: Черниенко Владислав Антонович Группа Б01-110 **Цель работы:** 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «a» и «b».

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

Теоретические сведения

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu (v_2^2 - v_1^2).$$
 (2)

Сделаем замечание, связанное с правой частью (2). Процесс Джоуля–Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется.

Используем выражение:

$$\mu_{\rm A-T} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_n}.$$
 (3)

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

При температуре T_i коэффициент $\mu_{\mathsf{д-T}}$ обращается в нуль. Использую связь между коэффициентами a и b и критической температурой, по формуле

$$T_i = \frac{2a}{Rb},$$

найдём

$$T_{\text{инв}} = \frac{27}{4} T_{\text{кр}}.$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{д-т}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{д-т}} < 0$, газ нагревается).

Вернемся к влиянию правой части уравнения (2) на изменение температуры расширяющегося газа. Для этого сравним изменение температуры, происходящее вследствие эффекта Джо-уля—Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа. Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса.

Заменяя в формуле (2) U через $C_V T$ и PV через RT, найдём

$$(R + C_V)(T_1 - T_2) = \mu(v_2^2 - v_1^2)/2,$$

или

$$\Delta T = \frac{\mu}{2C_p} (v_2^2 - v_1^2).$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10 \text{ cm}^3/\text{c}$, а диаметр трубки равен 3 мм. Поэтому

$$v_2 \le \frac{4Q}{\pi d^2} = \frac{4 \cdot 10 \text{ cm}^3/\text{c}}{3.14 \cdot (0.3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}.$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1=4$ атм, а $P_2=1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = \frac{1 \text{ atm}}{4 \text{ atm}} \cdot 140 \text{ cm/c} = 35 \text{ cm/c}.$$

Для углекислого газа $\mu=44$ г/моль, $C_p=40$ Дж/(моль · K); имеем

$$\Delta T = \frac{\mu}{2C_p}(v_2^2 - v_1^2) = \frac{44 \cdot 10^{-3}}{2 \cdot 40}(1, 4^2 - 0, 28^2) = 7 \cdot 10^{-4} \text{ K}.$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

В данной лабораторной работе исследуется коэффициент дифференциального эффекта Джоуля—Томсона для углекислого газа. По экспериментальным результатам оценивается коэффициент теплового расширения, постоянные в уравнении Ван-дер-Ваальса и температура инверсии углекислого газа. Начальная температура газа T_1 задается термостатом. Измерения будут проводиться при 6-7 значениях температуры.

Экспериментальная установка

Рис. 1: Схема установки для изучения эффекта Джоуля-Томсона

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рисунке. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P \leq 4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля—Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра $T_{\rm K}$.

Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$.

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь — константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью

Ход работы/Обработка результатов эксперимента

- 1. Запишем погрешности измерительных приборов:
 - Вольтметр универсальный В7-78/1: $\varepsilon_U \sim 0,06~\%$
 - Манометр EN-837-1: класс точности 1, $\sigma_P = \pm 0,02$ атм.
 - Термостат жидкостный ТЖ-ТС-01: $\sigma_T = \pm 0, 1^{\circ}$ С
- 2. Перед началом работы убедимся в том, что термостат залит водой, а все электрические приборы заземлены. Включим термостат и установим на нём температуру T=20°C.
- 3. После установления температуры термостата откроем регулирующий вентиль B настолько, чтобы избыточное давление составило $\Delta P \approx 4$ атм.
- 4. Через 1,5–2 минуты после подачи давления, когда польностью затухнут переходные процессы, запишем показания вольтметра. Результаты будем заносить в табл. 1.
- 5. При помощи вентиля В установим давление на 0,5 атм. меньше первоначального. Через 1,5–2 минуты, когда установятся давление и разность температур, вновь запишем показания манометра и вольтметра в табл. 1.
- 6. Проведём измерения для шести значений давления (от 4 до 1,5 атм) при температуре $T=20^{\circ}\mathrm{C}$. По ходу выполнения работы не будем забывать переводить показания вольтметра в разность температур по таблице зависимости чувствительности термопары от температуры, приведённой в описании к работе. Результаты занесём в табл. 1.
- 7. Отложим полученные точки на графике $\Delta T(\Delta P)$, по наклону графика определим коэффициент Джоуля-Томсона для выбранной нами температуры: $\mu_{\text{д-т}} = \frac{d(\Delta T)}{d(\Delta P) \cdot 0,968}$ K/атм. Погрешность $d(\Delta T)/d(\Delta P)$ рассчитаем по следующим формулам:

$$\sigma^{\text{случ}}_{d(\Delta T)/d(\Delta P)} = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle (\Delta T)^2 \rangle - \langle \Delta T \rangle^2}{\langle (\Delta P)^2 \rangle - \langle \Delta P \rangle^2} - \left(\frac{d(\Delta T)}{d(\Delta P)}\right)^2},$$

где n — кол-во точек. В нашем случае n = 6.

$$\varepsilon_{d(\Delta T)/d(\Delta P)}^{\text{приб}} = \sqrt{\varepsilon_U^2 + \varepsilon_P^2},$$

$$\sigma_{d(\Delta T)/d(\Delta P)} = \sqrt{(\sigma_{d(\Delta T)/d(\Delta P)}^{\text{случ}})^2 + (\sigma_{d(\Delta T)/d(\Delta P)}^{\text{приб}})^2}.$$

8. Проделаем измерения пп. 3–7 ещё для 7 значений температур, меняя температуру на $\Delta T = 5^{\circ} \text{C}$ (от 20°C до 55°C).

Все полученные результаты и графики приведём в табл. 1.

$T = 20, 2^{\circ} C$					
ΔP , kgc/cm ²	U, мк B	ΔT , °C			
4	158	3,88			
3,5	137	3,37			
3	113	2,78			
2,5	93	2,29			
2	69	1,70			
1,5	49	1,20			
$\mu_{\text{д}}$, K/atm	$\sigma_{\mu_{\rm д-m}},{ m K/atm}$	$\varepsilon_{\mu_{\mathtt{A}-\mathtt{T}}},\%$			
1,12	0,01	1,2			

$T=25,0^{\circ}\mathrm{C}$					
ΔP , kgc/cm ²	U, мк B	ΔT , °C			
4	154	3,78			
3,5	131	3,22			
3	110	2,70			
2,5	87	2,14			
2	67	1,65			
1,5	47	1,15			
$\mu_{\text{д}}$, K/atm	$\sigma_{\mu_{\rm д-m}},~{ m K/atm}$	$\varepsilon_{\mu_{\mathtt{A}-\mathtt{T}}},\%$			
1,09	0,01	1,3			

T = 30,0°C					
ΔP , kgc/cm ²	U, мкВ	ΔT , °C			
4	145	3,49			
3,5	123	2,96			
3	102	2,45			
2,5	81	1,95			
2	62	1,49			
1,5	42	1,01			
$\mu_{\rm д-T},~{ m K/atm}$	$\sigma_{\mu_{\rm д-m}},~{ m K/atm}$	$\varepsilon_{\mu_{\mathtt{A}-\mathtt{T}}},\%$			
1,02	0,01	1,2			

,	T 05 00 C					
$T = 35,0^{\circ}\text{C}$						
ΔP , kgc/cm ²	$\Gamma C/CM^2$ U , мкВ					
4	136	3,27				
3,5	116	2,79				
3	96	2,31				
2,5	76	1,83				
2	57	1,37				
1,5	39	0,94				
$\mu_{\text{д}}$, K/atm	$\sigma_{\mu_{\mathtt{A}-\mathtt{M}}},~\mathrm{K/atm}$	$\varepsilon_{\mu_{\mathtt{A}-\mathtt{T}}},\%$				
0,97	0,01	1,1				

$T = 40, 1^{\circ} \text{C}$					
ΔP , kgc/cm ²	U, мкВ	ΔT , °C			
4	123	2,89			
3,5	102	2,40			
3	84	1,98			
2,5	67	1,58			
2	47	1,11			
1,5	33	0,78			
$\mu_{\rm д-r},~{ m K/atm}$	$\sigma_{\mu_{\rm д-m}},{ m K/atm}$	$\varepsilon_{\mu_{\mathtt{A}-\mathtt{T}}},\%$			
0,88	0,02	2,1			

$T = 45,2^{\circ}\mathrm{C}$					
ΔP , kgc/cm ²	U, мкВ	ΔT , °C			
4	115	2,71			
3,5	94	2,21			
3	73	1,72			
2,5	60	1,41			
2	41	0,96			
1,5	28	0,66			
$\mu_{\text{д}}$, K/atm	$\sigma_{\mu_{\rm д-m}},{ m K/atm}$	$\varepsilon_{\mu_{\mathtt{A}-\mathtt{T}}},\%$			
0,84	0,03	3,5			

$T = 50, 1^{\circ}\mathrm{C}$					
ΔP , kgc/cm ²	U, мкВ	ΔT , °C			
4	97	2,24			
3,5	81	1,87			
3	62	1,43			
2,5	46	1,06			
2	33	0,76			
1,5	21	0,48			
$\mu_{\rm д-T},~{ m K/atm}$	$\sigma_{\mu_{\rm д-m}},~{ m K/atm}$	$\varepsilon_{\mu_{\mathtt{A}-\mathtt{T}}},\%$			
0,74	0,03	3,4			

$T = 55,0^{\circ}\text{C}$					
ΔP , kgc/cm ²	U, мкВ	ΔT , °C			
4	80	1,85			
3,5	66	1,52			
3	49	1,13			
2,5	34	0,79			
2	22	0,51			
1,5	13	0,30			
$\mu_{\rm д-T},~{ m K/atm}$	$\sigma_{\mu_{\rm д-m}},~{ m K/atm}$	$\varepsilon_{\mu_{\mathtt{A}-\mathtt{T}}},\%$			
0,66	0,03	4,0			

Таблица 1: Графики зависимости ΔT от ΔP и значения коэффициента Джоуля-Томсона при разных температурах

9. Пользуясь данными табл. 1, построим график зависимости $\mu_{\rm д-r}(1/T)$. Результат представим в табл. 2.

$\mu_{\mathtt{A}-\mathtt{T}},\mathrm{K}/\mathrm{atm}$	1,12	1,09	1,02	0,97	0,88	0,84	0,74	0,66
$1/T \cdot 10^3, \mathrm{K}^{-1}$	3,41	3,36	3,30	3,25	3,19	3,14	3,10	3,05

Таблица 2: График зависимости $\mu_{{\scriptscriptstyle \mathcal{I}\!\!\!/} - {\scriptscriptstyle \mathsf{T}}}$ от 1/T

10. Пользуясь графиком, приведённом в табл. 2, найдём значения постоянных a и b для углекислого газа:

По формуле (3) видно, что:

$$\frac{d(\mu_{\mathrm{M-T}})}{d(1/T)} = \frac{2a}{RC_p},$$

откуда

$$a = \frac{d(\mu_{\mathsf{A}^{-\mathsf{T}}})}{d(1/T)} \cdot \frac{RC_p}{2}.$$

Погрешность а рассчитаем по следующим формулам:

$$\begin{split} \sigma_{d(\mu_{\pi^{-\mathrm{T}}})/d(1/T)}^{\mathrm{cnyy}} &= \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \mu_{\pi^{-\mathrm{T}}}^2 \rangle - \langle \mu_{\pi^{-\mathrm{T}}} \rangle^2}{\langle (1/T)^2 \rangle - \langle 1/T \rangle^2}} - \left(\frac{d(\mu_{\pi^{-\mathrm{T}}})}{d(1/T)}\right)^2, \\ \varepsilon_a^{\mathrm{cnyy}} &= \varepsilon_{d(\mu_{\pi^{-\mathrm{T}}})/d(1/T)}^{\mathrm{cnyy}}, \\ \varepsilon_a^{\mathrm{npu6}} &= \sqrt{(\varepsilon_{d(\Delta T)/d(\Delta P)}^{\mathrm{npu6}})^2 + (\varepsilon_T)^2}, \\ \sigma_a &= \sqrt{(\sigma_a^{\mathrm{cnyy}})^2 + (\sigma_a^{\mathrm{npu6}})^2}. \end{split}$$

В итоге получим

$$a = (1,95 \pm 0,09) \frac{\text{H} \cdot \text{M}^4}{\text{MOJIb}^2}$$

Экстраполируя график зависимости $\mu_{\text{д-т}}(1/T)$, найдём значение μ_0 — значение $\mu_{\text{д-т}}$ при пересечении оси ординат. По формуле (3) видно, что:

$$\mu_0 = -\frac{b}{C_n},$$

тогда

$$b = -\mu_0 \cdot C_p.$$

Погрешности рассчитаем по следующим формулам:

$$\varepsilon_{\mu_0}^{\text{приб}} = \varepsilon_{d(\Delta T)/d(\Delta P)}^{\text{приб}},$$

$$\sigma_{\mu_0} = \sqrt{(\sigma_{\mu_0}^{\text{случ}})^2 + (\sigma_{\mu_0}^{\text{приб}})^2},$$

$$\varepsilon_b = \varepsilon_{\mu_0}.$$

Случайную погрешность μ_0 посчитаем по МНК. В итоге получим

$$b = (11, 9 \pm 0, 3) \cdot 10^{-4} \frac{\text{M}^3}{\text{МОЛЬ}}$$

11. Найдём $T_{\text{инв}}$ для углекислого газа:

$$T_{\text{инв}} = \frac{2a}{Rb},$$

$$\varepsilon_{T_{\text{инв}}} = \sqrt{\varepsilon_a^2 + \varepsilon_b^2}.$$

В итоге получим

$$T_{\text{инв}} = (3, 9 \pm 0, 2) \cdot 10^2 \text{ K}.$$

Вывод

В данной работе была получена зависимость коэффициента Джоуля-Томсона от температуры для углекислого газа. Также были найдены значения постоянных в уравнении Ван-дер-Ваальса для углекислого газа и получена температура инверсии для углекислого газа. Как и следовало ожидать, значения не совпали с табличными в пределах погрешности, что говорит о том, что модель Ван-дер-Ваальса плохо количественно описывает действительность, однако качественно она же всё хорошо предугадывает.