Advanced Microeconomics II Infinitely Repeated Games

Brett Graham

Wang Yanan Institute for Studies in Economics Xiamen University, China

April 1, 2015

Infinite versus Finite

- Recall the set of SPE in the Finitely Repeated Prisoner's Dilemma game.
- Does the same hold true in the Infinitely Repeated game version?

Infinitely Repeated Game

Definition

Let $G = \{N, (A_i), (\succeq_i)\}$ be a strategic game; let $A = \times_{i \in N} A_i$. An infinitely repeated game of G is an extensive game with perfect information and simultaneous moves $\{N, H, P, (\succeq_i^*)\}$ in which

- $H = \{\emptyset\} \cup (\{\bigcup_{t=1}^{\infty} A^t) \cup A^{\infty}\}$ (where A^{∞} is the set of infinite sequences $(a^t)_{t=1}^{\infty}$ of action profiles in G)
- P(h) = N for each nonterminal history $h \in H$.
- \succeq_i^* is a preference relation on A^{∞} that extends the preference relation \succeq_i such that it satisfies the condition of weak separability: if $(a^t) \in A^{\infty}, a \in A, a' \in A$, and $a \succeq_i a'$ then

$$(a^1,\ldots,a^{t-1},a,a^{t+1},\ldots)\succeq_i^* (a^1,\ldots,a^{t-1},a',a^{t+1},\ldots)$$

for all values of t.

Prisoner's Dilemma Example

- A history is terminal if and only if it is infinite.
- A strategy of player i is a function that assigns an action $a_i \in A_i$ to every finite sequence of outcomes in G.

- Players play the Prisoner's dilemma forever.
- How should we evaluate preferences over terminal histories?

Discounting

Three possible methods to evaluate terminal histories:

Definition

Discounting: There is some number $\delta \in (0,1)$ (the discount factor) such that the sequence (v_i^t) is at least as good as the sequence (w_i^t) if and only if $\sum_{t=1}^{\infty} \delta^{t-1}(v_i^t - w_i^t) \geq 0$.

The payoff profile of v_i^t is $((1 - \delta) \sum_{t=1}^{\infty} \delta^{t-1} v_i^t)_{i \in N}$ ("average period payoffs").

- Per-period payoff values diminish over time.
- Changes in a single period payoffs affect preferences.

Overtaking

Definition

Overtaking: The sequence (v_i^t) is preferred to the sequence (w_i^t) if and only if $\lim \inf \sum_{t=1}^T (v_i^t - w_i^t) > 0$.

$$\lim_{T \to \infty} \inf \sum_{t=1}^{T} (v_i^t - w_i^t) = \lim_{T \to \infty} \left(\inf_{T' \ge T} \sum_{t=1}^{T'} (v_i^t - w_i^t) \right)$$

Example: v = (1, 0, 2, 0, 2, 0, ...) and w = (0, 2, 0, 2, 0, 2, ...)

- Per-period payoff values do not diminish over time.
- Changes in a single period payoffs affect preferences.

Limit of means

Definition

Limit of means: The sequence (v_i^t) is preferred to the sequence (w_i^t) if and only if $\lim \inf \sum_{t=1}^T (v_i^t - w_i^t)/T > 0$ (i.e. if and only if there exists $\epsilon > 0$ such that $\sum_{t=1}^T (v_i^t - w_i^t)/T > \epsilon$ for all but a finite number of periods T).

Example:
$$v = (1, 0, 2, 0, 2, 0, ...)$$
 and $w = (0, 2, 0, 2, 0, 2, ...)$

The payoff profile of v_i^t is $\lim_{T\to\infty} (\sum_{t=1}^T v_i^t/T)_{i\in N}$, if it exists.

- Per-period payoff values do not diminish over time.
- Changes in a single period payoffs do not affect preferences.

Examples

Rank the following streams of payoffs according to each criteria.

- $v_1 = (1, -1, 0, 0, \ldots)$ and $w_1 = (0, 0, \ldots)$
- $v_2 = (-1, 2, 0, 0, ...)$ and $w_2 = (0, 0, ...)$
- $v_3 = (1, 0, ...)$ and $w_3 = (0, ..., 0, 1, 1, ...)$ where there are M zeros.

Feasible Payoff Profiles

• Recall that u(a) is the vector $(u_i(a))_{i \in N}$.

Definition

 $v \in \mathcal{R}^N$ is a payoff profile of $\{N, (A_i), (u_i)\}$ if there is an outcome $a \in A$ for which v = u(a). A vector $v \in \mathcal{R}^N$ is a feasible payoff profile of $\{N, (A_i), (u_i)\}$ if it is a convex combination of payoff profiles of outcomes in A: that is, if $v = \sum_{a \in A} \alpha_a u(a)$ for some collection $(\alpha_a)_{a \in A}$ of nonnegative rational numbers α_a with $\sum_{a \in A} \alpha_a = 1$.

Recall: Enforceable Outcomes

Definition

```
Player i's minmax payoff in G (denoted v_i) is
v_i = \min_{a-i \in A_{-i}} \max_{a_i \in A_i} u_i(a_i, a_{-i}).
```

Definition

A payoff profile w is enforceable if $w_i \ge v_i$ for all $i \in N$. A payoff profile w is strictly enforceable if $w_i > v_i$ for all $i \in N$. An outcome $a \in A$ is a (strictly) enforceable outcome of G if u(a) is (strictly) enforceable.

- Let $p_{-i} \in A_{-i}$ be a solution to the minimization problem above.
- Let $b_i(p_{-i}) \in A_i$ be a best response of player i to $p_{-i} \in A_{-i}$.
- Denote (p_i) as the action profile $(b_i(p_{-i}), p_{-i})$ for each $i \in N$.

Feasible Payoff Profiles Example

Feasible Payoff Profiles

Enforcible Feasible Payoff Profiles

Strategies as Machines

Definition

A machine for player i of the infinitely repeated game G has the following components.

- A set Q_i (the set of states).
- An element $q_i^0 \in Q_i$ (the initial state).
- A function $f_i: Q_i \to A_i$ that assigns an action to every state (the output function).
- A function τ_i ; $Q_i \times A \rightarrow Q_i$ that assigns a state to every pair consisting of a state and an action profile (the transition function).

Always Cooperate Machine

- $Q_i = \{C\}.$
- $q_i^0 = C$.
- $f_i(\mathcal{C}) = \mathcal{C}$.
- $\tau_i(\mathcal{X}, (Y, Z)) = \mathcal{C}$ for all $(\mathcal{X}, (Y, Z)) \in \{\mathcal{C}\} \times \{\mathcal{C}, \mathcal{D}\}^2$.

Never Cooperate Machine

- $Q_i = \{ \mathcal{D} \}.$
- $q_i^0 = \mathcal{D}$.
- $f_i(\mathcal{D}) = D$.
- $\tau_i(\mathcal{X},(Y,Z)) = \mathcal{D}$ for all $(\mathcal{X},(Y,Z)) \in \{\mathcal{D}\} \times \{\mathcal{C},\mathcal{D}\}^2$.

Tit-for-Tat Machine

- $Q_i = \{C, D\}.$
- $q_i^0 = C$.
- $f_i(\mathcal{C}) = \mathcal{C}, f_i(\mathcal{D}) = \mathcal{D}.$
- $\tau_i(\mathcal{X}, (Y, Z)) = \mathcal{D}$ if $A_{-i} = D$, $\tau_i(\mathcal{X}, (Y, Z)) = \mathcal{C}$ if $A_{-i} = C$.

Grim Trigger Machine

- $Q_i = \{C, \mathcal{D}\}.$
- $q_i^0 = C$.
- $f_i(\mathcal{C}) = C, f_i(\mathcal{D}) = D.$
- $\tau_i(\mathcal{C},(C,C)) = \mathcal{C}$ and $\tau_i(\mathcal{X},(Y,Z)) = \mathcal{D}$ if $(\mathcal{X},(Y,Z)) \neq (\mathcal{C},(C,C))$.

Enforceable Outcomes and Nash Equilibria

Proposition

Every Nash equilibrium payoff profile of the limit of means infinitely repeated game of $G = \{N, (A_i), (u_i)\}$ is an enforceable payoff profile of G. The same is true, for any $\delta \in (0,1)$, of every Nash equilibrium payoff profile of the δ -discounted infinitely repeated game of G.

- If $w_i < v_i$ then player i has a profitable deviation.
- For each history, play $b_i(s_{-i}(h))$.
- This generates a payoff of at least v_i in each period and thus v_i in the game.

Enforceable Payoff Profile as a Machine

This machine guarantees player 1 no less than his minmax payoff v_1 given a machine of player 2.

- $Q_1 = Q_2$.
- $q_1^0 = q_2^0$.
- $f_1(q) = b_1(f_2(q))$ for all $q \in Q_2$.
- $\tau_1(q, a) = \tau_2(q, a)$ for all $q \in Q_2$ and $a \in A$.

Nash Folk Theorem for the Limit of Means Criterion

Proposition

Every feasible enforceable payoff profile of $G = \{N, (A_i), (u_i)\}$ is a Nash equilibrium payoff profile of the limit of means infinitely repeated game of G.

- Let $w = \sum_{a \in A} (\beta_a/\gamma) u(a)$ be a feasible enforceable payoff profile:
 - β_a is an integer, $\gamma = \sum_{a \in A} \beta_a$.
 - ▶ (a^t) is a cycle of action profiles which contains β_a repetitions of a for each $a \in A$.
- Player *i*'s strategy:
 - ► Choose a_i^t in period t unless there was a previous t' where a single player other than i deviated.
 - ▶ Otherwise choose $(p_j)_i$, where j is the first single player deviant from $a^{t'}$.
- Any player j who deviates receive his minmax payoff j.

Nash Folk Theorem as a Machine

- $Q_i = \{S_1, \ldots, S_{\gamma}, P_1, \ldots, P_n\}.$
- $q_i^0 = S_1$.
- $f_i(q) = \begin{cases} a_i^l & \text{if } q = S_l \\ (p_j)_i & \text{if } q = P_j \end{cases}$
- $\tau_i(S_I, a) = \begin{cases} P_j & \text{if } a_j \neq a_j^I \text{ and } a_i = a_i^I \text{ for all } i \neq j \\ S_{I+1 \pmod{\gamma}} & \text{otherwise} \end{cases}$
- $\tau_i(P_j, a) = P_j$ for all $a \in A$.

 $m(\text{mod }\gamma)$ is the integer q with $1\leq q\leq \gamma$ satisfying $m=l\gamma+q$ for some integer l. Examples: 4(mod 5)=4, 5(mod 5)=5, 6(mod 5)=1

Nash Folk Theorem for the Discounting Criterion

Proposition

Let w be a feasible strictly enforceable payoff profile of $G = \{N, (A_i), (u_i)\}$. For all $\epsilon > 0$ there exists $\underline{\delta} < 1$ such that if $\delta > \underline{\delta}$ then the δ -discounted infinitely repeated game of G has a Nash equilibrium whose payoff profile w' satisfies $|w' - w| < \epsilon$.

• Proof is similar (Homework).

Trigger Strategies May Not Be SPE

Player 2
$$A \quad D$$
Player 1
$$A \quad \begin{bmatrix} 2,3 & 1,5 \\ 0,0 & 0,1 \end{bmatrix}$$

Player payoffs are defined by the limit of means criterion.

- What is player 1's minmax payoff?
- What is player 2's minmax payoff?
- What are the equilibrium strategies from the proof that support ((A, A), (A, A), ...) as a Nash equilibrium outcome?
- Find a history for which the strategies are not SPE.

Perfect Folk Theorem For Limit of Means Criterion

Proposition

Every feasible strictly enforceable payoff profile of G is a subgame perfect equilibrium payoff profile of the limit of means infinitely repeated game of G.

- Let $w = \sum_{a \in A} (\beta_a/\gamma) u(a)$ be a feasible strictly enforceable payoff profile:
 - $\triangleright \beta_a$ is an integer, $\gamma = \sum_{a \in A} \beta_a$.
 - $(a^k)_{k=1}^{\gamma}$ is a sequence of action profiles which contains β_a repetitions of a for each $a \in A$.
- $g^* = \max_{i \in N, a'_i \in A_i, a \in A} [u_i(a'_i, a_{-i}) u_i(a, a_{-i})]$
- Since $w_i > v_i$ there exists a positive integral multiple of γ , m^* such that

$$\gamma g^* + m^* v_i \leq m^* w_i$$
 for all $i \in N$.

Perfect Folk Theorem Strategies

The set of strategies for each player is given by the following machine:

- States:
 - ► (*Norm*^k, 0): k^{th} period of $(a^k)_{k=1}^{\gamma}$ cycle, with no previous deviation ((*Norm*¹, 0) is the initial state)
 - Norm^k, j): k^{th} period of $(a^k)_{k=1}^{\gamma}$ cycle, with a previous single player deviation, the first by player $j \in N$
 - ▶ P(j, t): Punishment phase of player $j \in N$ with $t \in \{1, ..., m^*\}$ periods remaining.
- Output function:
 - ▶ In $(Norm^k, 0)$ or $(Norm^k, j)$: choose a_i^k .
 - ▶ In P(j, t): choose $(p_j)_i$.

Perfect Folk Theorem Strategies (ctd)

Transition function:

- $\begin{array}{ll} & \tau_i((\mathit{Norm}^k,0),a) = \\ & \begin{cases} (\mathit{Norm}^{k+1(\bmod{\gamma})},0) & \text{if no single player deviated} \\ (\mathit{Norm}^{k+1},j) & \text{if a single player } j \text{ deviated and } k \leq \gamma-1 \\ P(j,m^*) & \text{if single player } j \text{ deviation and } k = \gamma. \end{cases}$
- $\tau_i((Norm^k, j), a) = \begin{cases} (Norm^{k+1}, j) & \text{if } k \leq \gamma 1, \text{ for all } a \in A \\ P(j, m^*) & \text{if } k = \gamma, \text{ for all } a \in A. \end{cases}$
- $\tau_i(P(j,t),a) = \begin{cases} P(j,t-1) & \text{if } 2 \leq t \leq m^*, \text{ for all } a \in A \\ (Norm^1,0) & \text{if } t = 1, \text{ for all } a \in A. \end{cases}$

Example

Player payoffs are defined by the limit of means criterion.

What is g^* ?

- Is (2,3) an SPE payoff profile?
 - What is γ ?
 - ▶ What is *m**?
- Is (1.5, 4) an SPE payoff profile?
 - What is γ ?
 - ▶ What is *m**?

Machine Example

Player 1

Example

Player 2
$$A \quad D$$
Player 1
$$A \quad \begin{array}{c|c} & 2,3 & 1,5 \\ \hline 0,0 & 0,1 \end{array}$$

Player payoffs are defined by the overtaking criterion.

- Take the previous strategies that supported (2,3) as an SPE in the limit of means infinitely repeated game.
- These strategies do not support (2,3) in the overtaking criterion infinitely repeated game?
- After a history in which player 2 deviates, player 1 has a profitable deviation.

$$(1,1,2,2,\ldots) \succeq_1 (0,0,2,2,\ldots)$$

• Same for discounting criterion.

Perfect Folk Theorem For Overtaking Criterion

Proposition

For any strictly enforceable outcome a^* of G there is a subgame perfect equilibrium of the overtaking infinitely repeated game of G that generates the path (a^t) in which $a^t = a^*$ for all t.

- For simplicity we restrict attention to strictly enforceable outcomes rather than payoff profiles.
- $M = \max_{i \in N, a \in A} u_i(a)$
- Any deviation generates a punishment phase long enough to wipe out the gain.
 - Length of phase is finite since $a_i^* > v_i$

Perfect Folk Theorem Strategies

Each player uses the following machine:

- States:
 - Norm: Norm is the initial state
 - ▶ P(j, t): Punishment phase of player $j \in N$ with $t \in N$ periods remaining.
- Output function:
 - ▶ In *Norm*: choose a_i^* .
 - ▶ In P(j, t): choose $(p_j)_i$.

Perfect Folk Theorem Strategies (ctd)

• Transition function:

```
 \begin{array}{ll} & \tau_i(\mathit{Norm}, \mathsf{a}) = \\ & \begin{cases} \mathit{Norm} & \text{if no single player deviation} \\ P(j, \overline{t}) & \text{if single player } j \text{ deviates. where } \overline{t}_j \text{ is the smallest} \\ & \text{integer such that } M + \overline{t}_j v_j < (\overline{t}_j + 1) u_j(a^*). \end{cases}
```

 $\tau_i(P(j,t),a) = \\ \begin{cases} P(j,t-1) & \text{if no single player deviation and } t \geq 2\\ Norm & \text{if no single player deviation and } t=1\\ P(k,T(j,t)) & \text{if single player } k \text{ deviates, where } T(j,t) \text{ is large enough that sum of } k\text{'s payoffs in state } P(j,t)\\ & \text{and his payoff in the subsequent } T(j,t) \text{ periods if he does not deviate is greater than his payoff in the deviation plus } T(j,t)v_k. \end{cases}$

Example

Perfect Folk Theorem For Discounting Criterion

Proposition

Let a^* be a strictly enforceable outcome of G. Assume that there is a collection $(a(i))_{i\in N}$ of strictly enforceable outcomes of G such that for every player $i\in N$ we have $a^*\succ_i a(i)$ and $a(j)\succ_i a(i)$ for all $j\in N\setminus\{i\}$. Then there exists $\underline{\delta}<1$ such that for all $\delta>\underline{\delta}$ there is a subgame perfect equilibrium of the δ -discounted infinitely repeated game of G that generates the path (a^t) in which $a^t=a^*$ for all t.

	С	D	Ε
C	3,3	1,4	0,0
D	4,1	2, 2	0.5, 0
Ε	0,0	0, 0.5	0,0

- Which outcomes satisfy the conditions of the proposition?
- What are a(1) and a(2)?

Discounting Criterion Machine

- States: $\{C(j): j \in \{0\} \cup N\} \cup \{P(j,t): j \in N \text{ and } 1 \le t \le L\}.$
- Initial state: C(0).
- Output function: In C(j) choose $(a(j))_i$. In P(j,t) choose $(p_j)_i$.
- Transition function:
 - $\tau_i(C(j), a) = \begin{cases} C(j) & \text{if no single player deviation from } a(j) \ (a(0) = a^*) \\ P(k, L) & \text{if single player } k \text{ deviates.} \end{cases}$
 - $\begin{array}{l} \boldsymbol{\tau_i}(P(j,t),a) = \\ \begin{cases} P(j,t-1) & \text{if no single player deviation and } 2 \leq t \leq L \\ C(j) & \text{if no single player deviation and } t = 1 \\ P(k,L) & \text{if single player } k \text{ deviates} \\ \end{cases}$

How To Deter Deviations In State C(j)

- Let $M = \max_{i \in N, a \in A} u_i(a)$, $m = \min_{i \in N, a \in A} u_i(a)$.
- Payoff from deviating:

$$\max_{a_i' \in A_i} u(a_i', a(j)_{-i}) + \sum_{k=2}^{L+1} \delta^{k-1} v_i + \sum_{k=L+2}^{\infty} \delta^{k-1} u_i(a(i))$$

Payoff from no deviation:

$$u_i(a(j)) + \sum_{k=2}^{L+1} \delta^{k-1} u_i(a(j)) + \sum_{k=L+2}^{\infty} \delta^{k-1} u_i(a(j))$$

- Choose L such that $M m < L(u_i(a(j)) v_i)$
- This ensures there exists δ^* such that for all $\delta > \delta^*$

$$\max_{a_i' \in A_i} u(a_i', a(j)_{-i}) - u_i(a(j)) < \sum_{k=2}^{L+1} \delta^{k-1}(u_i(a(j)) - v_i).$$

How To Deter Deviations In State P(j, t)

• Payoff from deviating:

$$\max_{a_i' \in A_i} u(a_i', p(j)_{-i}) + \sum_{k=2}^{L+1} \delta^{k-1} v_i + \sum_{k=L+2}^{\infty} \delta^{k-1} u_i(a(i))$$

Payoff from no deviation:

$$\sum_{k=1}^t \delta^{k-1} u_i(\rho(j)) + \sum_{k=t+1}^\infty \delta^{k-1} u_i(a(j))$$

• Since $v_i < u_i(a(i))$ it is sufficient that

$$\sum_{k=1}^{L+1} \delta^{k-1}(M-m) < \sum_{k=L+2}^{\infty} \delta^{k-1}(u_i(a(j)) - u_i(a(i)))$$

• For δ close to 1 this is satisfied since $u_i(a(j)) > u_i(a(i))$.

Simple Supporting Strategies

- Credible punishment relies only on the identity of deviant, not on the history that preceded the deviation.
- Such a strategy can be used to support any SPE outcome.
- For each player i punish his deviation with his worst possible SPE payoff.
 - Need to show that worst payoff exists (set of SPE payoffs is closed).
 - ▶ Denote player *i*'s worst SPE payoff by m(i).
 - Let $(a(i)^t)$ to be the outcome of a subgame perfect equilibrium in which player i's payoff is m(i).

Simple Supporting Strategies

Proposition

Let (a^t) be the outcome of a subgame perfect equilibrium of the δ -discounted infinitely repeated game of $G = \{N, (A_i), (u_i)\}$. Then the strategy profile in which each player i uses the following machine is a subgame perfect equilibrium with the same outcome (a^t) .

- Set of states: $\{Norm^t : t \text{ is a positive integer}\} \cup \{P(j,t) : j \in N \text{ and } t \text{ is positive integer}\}.$
- Initial state: Norm¹.
- Output function: In state Norm^t play a_i^t . In state P(j,t) play $a(j)_i^t$.
- Transition function:
 - In state Norm^t move to Norm^{t+1} unless exactly one player, say j deviated from a^t , in which case move to P(j, 1).
 - In state P(j,t) move to P(j,t+1) unless exactly one player, say j' deviated from $a(j)^t$, in which case move to P(j',1).