Use of Social Computing on Ecommerce Platforms

Saptarshi Ghosh
Department of CSE, IIT Kharagpur
Social Computing course, CS60017

Application: Query augmentation

- For a user-specified query
 - Suggest modified / augmented queries
 - Auto-complete queries
- Goal: increased user satisfaction
 - Help user to formulate good queries
 - Suggested queries will show better results to the user

Query augmentation in action

wooden dining table ECTRONICS ~ APPLIANCES ~ MEN ~ WOMEN ~ BABY & KIDS ~ **HOME &** Home > Furniture > Dining Tables... > Dining Sets Showing 1 - 40 of 525 results for "dinning table and chair" Show results for Sort By Relevance Popularity Price -- Low to High Price -- High to Low (?) RoyalOak County Glass 4 Seater FurnCulture Terrassa Solid Wood 8 Dining Set Seater Dining Set Finish Color - Brown Finish Color - Brown 3.3 ★ (25) ₹33,332 ₹50,250 33% off ₹18,990 ₹30,000 36% off ₹1140/month EMI

Query augmentation

- Examples taken from: Query Suggestion for E-Commerce Sites, Hasan et al., WSDM 2011
 - Published by Ebay
 - Observations are based on Ebay data, but should be generalizable to other Ecommerce sites as well

Need for query augmentation

- Mismatch between seller-buyer vocabulary
 - Item descriptions written by sellers usually more technical
 - "persian rug" vs. "carpet"
 - "gucci purse" vs. "designer handbag"
- Lack of domain knowledge of buyers
 - □ "ipod nano 32gb" → "ipod nano 16gb"
- Transient inventory items may get sold and no longer be available, seasonal buzz items, ...

Flipkart results for "ipod nano 16gb"

Flipkart results for "ipod nano 32gb"

Types of query augmentation

- Query refinement
 - □ Specialization: "ipod nano" → "ipod nano 16 gb"
 - Generalization: "blue ipod nano" > "ipod nano"
- Related query: suggestions that are neither specialization nor generalization
- Which type of suggestions to give?
 - Depends on factors like type of buyer, category of item

Dependence on types of buyer

- Focused buyer
 - Intends to make a specific purchase
 - Better to give focused, specialized suggestions
 - Generalization or related queries might be distracting
- Exploratory buyer
 - Exploring the inventory
 - Generalization or related queries helps to explore
- Challenge to distinguish between the two types

Dependence on category of item

- Electronics category
 - Usually buyers know what item they want to buy, might not know technical specifications
 - Specializations or generalizations work better
- Antiques category
 - Most users exploring without knowing what exactly to buy
 - Related suggestions might work better

Challenges

- Queries and items are heavily transient
 - □ Typically low overlap between distinct queries on a day and distinct queries on the next day (~30% on Ebay)
 - Buzz queries or seasonal queries (Halloween, Christmas)
 can come up during wrong time period

Challenges

- Long tail query distribution
 - Head queries: asked frequently
 - Tail queries: asked rarely
- Statistics from eBay:
 - 20% head queries cover 91% of search traffic
 - Query frequency distribution is usually power-law

Why care about the rest 80% queries in the long tail?

Importance of tail queries

- Tail queries have low recall
 - Low query frequency <--> low recall in inventory
 - Correlation between demand and supply
- Low recall → shoppers need query suggestions more
 - Click Through Rate (CTR) on suggested queries much higher for queries which have low recall
- For tail queries, not enough information in query logs

How to evaluate query suggestions?

- Most common measure: Click Through Rate (CTR)
 - A suggested query is helpful if users click on the results that it retrieves
- Another intuitive measure: higher purchase
 - But, suggestions with higher CTR may not lead to higher purchase
 - Depends on the value of the suggested item, personal choice of the buyer, ...

Methods for Query Augmentation

- Use query logs → learn from past user behavior
- A graph-based method
 - Inferring semantic query relations from collective user behavior,
 Parikh et al., CIKM 2008
- Learning from how users recover from bad queries
 - User behavior in Zero-Recall eCommerce Queries, Singh, SIGIR 2011
 - A Study of Query Term Deletion using Large-scale Ecommerce Search Logs, Yang et al., ECIR 2014

Graph based augmentation

- Inferring semantic query relations from collective user behavior, Parikh et al., CIKM 2008
- Each query: a bag of distinct words
- Build a graph
 - Each node is a query
 - Edges between nodes (queries) added based on various estimates of similarity between queries

Query similarity: textual

- Connect a query q to
 - □ All queries that can be formed by adding one or more terms to q (specializations)
 - □ All queries that can be formed by removing one or more terms from q (generalizations)

Edges

- Bidirectional: traversal in one direction implies specialization, traversal in reverse implies generalization
- Can be weighted based on term overlap

Query similarity: textual

Query similarity: user session-based

If a user issued a sequency of queries during a session Q1 → Q2 → Q3 → Q4, connect Q1 to Q2, Q2 to Q3, Q3 to Q4

- Intuition: user will issue semantically related queries in a session
- Edges can be weighted based on number of sessions in which a transition appeared

Query similarity: user session-based

Can capture more semantics than purely text-based graph

E.g.,

- "rug" and "carpet"
- "isfahan", "tabriz" are specific types of rugs

Query similarity: user session-based

Concerns:

- Change in user-intent within a session
- Automated bot activity

Remedies:

- Only consider user sessions where buying occurred
- Only consider a transition (edge) if it appears in at least three sessions

- Queries mapped to a higher dimensional space where semantic similarity can be measured
- Look at the item a user buys after issuing a query
 - Words found in Title / Description of item
 - Category, ISBN of item
- Map the query to the features of the item bought
 - Query gets mapped to a vector in the high dim space

Mapping of some queries (top features only shown)

Query	Features for the Query
apple ipod	gb(4061), gen(4051), mp3(3766), video(3539), player(3164), black(3101), nano(3004), silver(2959)
apple dishes	franciscan(8721), butter(4198), glass(3974), small(3045), logo(2887) , mark(2887), vintage(2721), usa(2655)

j k rowling	potter(5412), sorcerers(5069), chamber(2702)	harry(5395), stone(4521),	1st(5378), signed(3254),
1st sorcerer stone	sorcerers(11177), u(3402), american true(2981)	harry(6573), n(3402), dj(330	potter(6573), 03), ed(3220),

- A query: a vector in a high-dimension space
- Semantic similarity between two queries: dot product of the corresponding vectors

jessica alba	rosario dawson	Film celebrities	0.728
zune	black zune	Generalization / Specialization	0.918
harry potter	j k rowling	Book character / Book author	0.631
ps2	playstation 2	Abbreviation / Full Name	0.891
apple player	apple dishes	None other than one common word	0.000
jessica simpson	shoes	Brand / Product	0.796

Only those edges shown whose similarity value is at least 0.50

Query similarity: use which measure?

- Each similarity measure has pros and cons
 - Textual similarity does not capture semantic similarity
 - Textual similarity is the only usable method for new queries
 - Session based similarity might have noise due to user intent change
 - Session and semantic similarity useful only when a query has seen sufficient activity
- eBay used linear combination of all three similarity measures to form a Semantic Query Network

Learning from how users recover from bad queries

- User behavior in Zero-Recall eCommerce Queries
 Singh et al., SIGIR 2011
- A Study of Query Term Deletion using Large-scale
 Ecommerce Search Logs, Yang et al., ECIR 2014

Bad queries

- Zero-recall queries: queries which do not return any matching item
- Why do some queries not return any matching item?
 - Usually too verbose
 - Buyer may not know domain-specific terms
 - Temporal volatility of item space

How do users deal with zero recall?

- Two types of users
 - Novice users who are new to the ecommerce site
 - Power users experienced in using the site
 - Differentiated based on how much they have spent in buying items on the ecommerce site
- The two types of users deal differently with zero recall queries

How do users deal with zero recall?

- Novice user
- Twice more likely to give up and exit, after seeing zero results
- Depend on assistive technologies (e.g., suggested queries) to recover

- Power user
- Usually re-formulate queries and continue trying to get relevant items
- Prefer to re-formulate queries themselves and recover
- Algorithms can learn from how they recover

Example novice and power user

Novice user

Power user

How to recover from zero-recall queries?

- Primary reason for zero-recall queries:
 - Too verbose queries
 - Contain extra terms which do not match any item
 - "small carry on bag for air plane" vs. "carry on bag"
- Possible way to recovery: delete some terms
 - Which terms to delete?
 - Deleting important terms -> information loss
 - Same term can have varying importance based on query context: "gap wool blazer" vs. "spark gap transmitter"

Which terms to delete in queries?

- Learn which terms to delete, from prior user behavior (query logs)
 - A Study of Query Term Deletion using Large-scale
 Ecommerce Search Logs, Yang et al., ECIR 2014
- Identify query transitions q1 → q2 such that
 - q1 did not lead to any click activity on results
 - q2 led to one or more clicks on results
 - q2 was formed by the user deleting one term from q1

Which terms to delete?

- Given: a query, a term in the query, category of the query (38 meta-categories from Ebay)
 - Train a logistic regression classifier to predict the probability of the term being deleted
 - Training instances (t, q, y): t is included in query q, y=1 if t was deleted by user, 0 otherwise
- Using query-dependent features for a term
 - □ Three types of features: lexical, history-based, context

Query-dependent features of a term

- Linguistic and lexical features
 - Whether term is conjunction/adjective/numeric/brand name
 - Term importance: probability of term appearing in the product title, conditioned on its probability of appearing in the product description
- History-based features
 - Deletion history: how often the term was deleted from queries in this category
 - Rareness (similar to IDF)
 - Is-rightmost-term (users tend to delete right-most term)

Query-dependent features of a term

- Context features: textual context of the term in the given query
 - Collocations: lexical forms of the neighboring words
 - Point-wise mutual information between all pairs of terms in the query, based on frequencies of the two terms in the query logs under the particular category
- A separate logistic regression predictor trained for each query category

Insights on term deletion

- History-based and context-based features equally important across all categories
- Importance of linguistic and lexical features vary greatly across categories
 - Adjectives are important for 'clothing' category, but not for 'computer' category
- Brand names are important

References

- Inferring semantic query relations from collective user behavior, Parikh et al., CIKM 2008
- Query Suggestion for E-Commerce Sites, Hasan et al., WSDM 2011
- User behavior in Zero-Recall eCommerce Queries Singh et al., SIGIR 2011
- A Study of Query Term Deletion using Large-scale
 Ecommerce Search Logs, Yang et al., ECIR 2014