Data Visualization and Pre-processing Import libraries

In []:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Load dataset

In []:
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

In []:
data = pd.read_csv('drive/My Drive/Churn_Modelling.csv')

data.head() Out[]: **IsActiv** Estima Te Bal Ex Row Cust Sur Cred Geo Ge \mathbf{A} NumO Has Num itSco nd anc **fProdu** CrC eMemb tedSala ite omer na grap nu \mathbf{g} hy ber Id me re er e re e cts ard er ry Fe Har 1563 Fran 4 101348 0.00 1 0 gra 619 ma 2 4602 ce .88 le ve Fe 838 112542 1564 Spai 4 1 1 Hill 608 07.8 1 0 0 ma 7311 1 .58 n le 6 Fe 159 113931 1561 Oni Fran 2 502 660. 3 1 1 ma 2 9304 .57 ce le 80 Fe 1570 93826. Bon Fran 3 ma 0.002 0 0 9 1354 63 le Mit 125 1573 79084. Spai 4 4 850 510. 1 1 0 chel ma 7888 3 10

```
data.info()
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
              Non-Null Count Dtype
   Column
---
                        -----
0 RowNumber
1 CustomerId
2 Surname
                      10000 non-null int64
                      10000 non-null int64
                       10000 non-null object
   CreditScore 10000 non-null int64
Geography 10000 non-null object
 3
 4
                        10000 non-null object
    Gender
 5
 6
                      10000 non-null int64
    Age
7 Tenure 10000 non-null int64
8 Balance 10000 non-null float64
9 NumOfProducts 10000 non-null int64
10 HasCrCard 10000 non-null int64
11 IsActiveMember 10000 non-null int64
12 EstimatedSalary 10000 non-null float64
13 Exited
                       10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

In []:

Visualisations

1. Univariate Analysis


```
In []:
data['Age'].value_counts()
                                                                          Out[]:
37
      478
38
      477
35
      474
36
      456
34
      447
92
       2
82
        1
88
        1
85
83
Name: Age, Length: 70, dtype: int64
                                                                           In [ ]:
# comparison of age in the dataset
plt.hist(x = data.Age, bins = 10, color = 'orange')
plt.title('comparison of Age')
plt.xlabel('Age')
plt.ylabel('population')
plt.show()
```



```
In []:
data['Geography'].value_counts()
                                                                         Out[]:
France
           5014
Germany
           2509
           2477
Spain
Name: Geography, dtype: int64
                                                                          In []:
# comparison of geography
plt.hist(x = data.Geography, bins = 5, color = 'green')
plt.title('comparison of Geography')
plt.xlabel('Geography')
plt.ylabel('population')
plt.show()
```


2. Bi - Variate Analysis

comparison between Geography and Gender

Gender = pd.crosstab(data['Gender'],data['Geography'])
Gender.div(Gender.sum(1).astype(float), axis=0).plot(kind="bar",
stacked=True, figsize=(6, 6))

Out[]:

In []:

comparison between geography and card holders

Out[]:

In []:

comparison of active member in differnt geographies

```
IsActiveMember = pd.crosstab(data['IsActiveMember'], data['Geography'])
Is Active Member.div (Is Active Member.sum (1).astype (float), axis = 0).plot (kind)
= 'bar',
                                               stacked = True, figsize= (6,
```

6))

Out[]:

In []:

comparing ages in different geographies

Out[]:

In []:

```
Geography
                                                                        France
                                                                         In []:
# calculating total balance in france, germany and spain
total france = data.Balance[data.Geography == 'France'].sum()
total_germany = data.Balance[data.Geography == 'Germany'].sum()
total spain = data.Balance[data.Geography == 'Spain'].sum()
print("Total Balance in France :",total france)
print("Total Balance in Germany :",total_germany)
print("Total Balance in Spain :",total spain)
Total Balance in France: 311332479.49
Total Balance in Germany: 300402861.38
Total Balance in Spain : 153123552.01
                                                                         In []:
# plotting a pie chart
labels = 'France', 'Germany', 'Spain'
colors = ['cyan', 'magenta', 'orange']
sizes = [311, 300, 153]
```

```
explode = [ 0.01, 0.01, 0.01]

plt.pie(sizes, colors = colors, labels = labels, explode = explode, shadow = True)

plt.axis('equal')
plt.show()
```


3. Multi - Variate Analysis

sns.pairplot(data=data, hue='Exited')

In []:

Descriptive statistics

In []:

#Statistical analysis
data.describe()

(); ;†		٠.
Out	LJ	٠

	RowN umbe r	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product s	HasC rCar d	IsActive Membe r	Estimat edSalar y	Exited
co un t	10000 .0000 0	1.0000 00e+0 4	10000. 00000 0	10000. 00000 0	10000. 00000 0	10000. 000000	10000.0 00000	10000 .0000 0	10000.0 00000	10000.0 00000	10000. 00000 0

	RowN umbe r	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product s	HasC rCar d	IsActive Membe r	Estimat edSalar y	Exited
m ea n	5000. 50000	1.5690 94e+0 7	650.52 8800	38.921 800	5.0128 00	76485. 889288	1.53020	0.705 50	0.51510	100090. 239881	0.2037
st d	2886. 89568	7.1936 19e+0 4	96.653 299	10.487 806	2.8921 74	62397. 405202	0.58165 4	0.455 84	0.49979 7	57510.4 92818	0.4027 69
mi n	1.000	1.5565 70e+0 7	350.00 0000	18.000 000	0.0000	0.0000	1.00000	0.000	0.00000	11.5800 00	0.0000
25 %	2500. 75000	1.5628 53e+0 7	584.00 0000	32.000 000	3.0000	0.0000	1.00000	0.000	0.00000	51002.1 10000	0.0000
50 %	5000. 50000	1.5690 74e+0 7	652.00 0000	37.000 000	5.0000	97198. 540000	1.00000	1.000	1.00000	100193. 915000	0.0000
75 %	7500. 25000	1.5753 23e+0 7	718.00 0000	44.000 000	7.0000	127644 .24000 0	2.00000	1.000	1.00000	149388. 247500	0.0000
m ax	10000 .0000 0	1.5815 69e+0 7	850.00 0000	92.000 000	10.000	250898 .09000 0	4.00000	1.000	1.00000	199992. 480000	1.0000

Handle the Missing values

In []:

#Missing Values
data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0

```
IsActiveMember 0
EstimatedSalary 0
Exited 0
```

dtype: int64

No missing values are found.

Find the outliers and replace the outliers

sns.boxplot(data = data, x = 'CreditScore')

In []:

Out[]:

sns.boxplot(data = data, x = 'Age')

In []:

sns.boxplot(data = data, x = 'Balance')

In []:

Out[]:

sns.boxplot(data = data, x = 'EstimatedSalary')

In []:

In []:

```
for i in data:
    if data[i].dtype=='int64' or data[i].dtypes=='float64':
        q1=data[i].quantile(0.25)
        q3=data[i].quantile(0.75)
        iqr=q3-q1
        upper=q3+1.5*iqr
        lower=q1-1.5*iqr
        data[i]=np.where(data[i] >upper, upper, data[i])
        data[i]=np.where(data[i] <lower, lower, data[i])</pre>
```

In []:

data.describe()

	RowN umbe r	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product s	HasC rCard	IsActive Membe r	Estimat edSalar y	Exi ted
co un t	10000. 00000	1.0000 00e+0 4	10000. 00000 0	10000. 00000 0	10000. 00000 0	10000. 000000	10000.0 00000	10000 .0000 0	10000.0 00000	10000.0 00000	100 00. 0
m ea n	5000.5 0000	1.5690 94e+0 7	650.56 1300	38.660 800	5.0128 00	76485. 889288	1.52720	0.705 50	0.51510	100090. 239881	0.0
st d	2886.8 9568	7.1936 19e+0 4	96.558 702	9.7467 04	2.8921 74	62397. 405202	0.57008 1	0.455 84	0.49979 7	57510.4 92818	0.0

	RowN umbe r	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product s	HasC rCard	IsActive Membe r	Estimat edSalar y	Exi ted
mi n	1.0000	1.5565 70e+0 7	383.00 0000	18.000 000	0.0000	0.0000	1.00000	0.000	0.00000	11.5800 00	0.0
25 %	2500.7 5000	1.5628 53e+0 7	584.00 0000	32.000 000	3.0000	0.0000	1.00000	0.000	0.00000	51002.1 10000	0.0
50 %	5000.5 0000	1.5690 74e+0 7	652.00 0000	37.000 000	5.0000	97198. 540000	1.00000	1.000	1.00000	100193. 915000	0.0
75 %	7500.2 5000	1.5753 23e+0 7	718.00 0000	44.000 000	7.0000	127644 .24000 0	2.00000	1.000	1.00000	149388. 247500	0.0
m ax	10000. 00000	1.5815 69e+0 7	850.00 0000	62.000 000	10.000 000	250898 .09000 0	3.50000	1.000	1.00000	199992. 480000	0.0

Preprocessing

Split the data into dependent and independent variables

In []:

splitting the dataset into x (independent variables) and y (dependent variables)

Check for Categorical columns and perform encoding

```
In []:
# Encoding Categorical variables into numerical variables
# One Hot Encoding
x = pd.get dummies(x)
x.head()
                                                                                               Out[]:
     Cre
                     Bal
                                          IsActi
                                                                                                Gend
           A
               Te
                            Num
                                   Has
                                                   Estim
                                                           Geogra
                                                                     Geogra
                                                                               Geogr
                                                                                        Gend
     ditS
                           OfPro
                                   CrC
                                           veMe
                                                   atedS
                                                                     phy_Ge
                                                                                                er_M
                     anc
                                                           phy_Fr
                                                                               aphy_
                                                                                        er_Fe
           g
               nu
                                           mber
    core
                           ducts
                                    ard
                                                   alary
                                                              ance
                                                                      rmany
                                                                                Spain
                                                                                         male
                                                                                                  ale
                re
     619.
                2.
                     0.0
                                                   10134
                                                                          0
                              1.0
                                    1.0
                                             1.0
                                                                1
                                                                                    0
                                                    8.88
                     838
     608.
           1
                1.
                                                   11254
                     07.
                              1.0
                                    0.0
                                             1.0
                                                                          0
                                                                                    1
                                                     2.58
                     159
     502.
                8.
                                                   11393
                     660
                              3.0
                                    1.0
                                             0.0
                                                                1
                                                                          0
                                                                                    0
                                                                                            1
                                                                                                   0
                                                     1.57
                     .80
                     0.0
                                                   93826.
                              2.0
                                    0.0
                                             0.0
                                                                 1
                                                                          0
                                                                                    0
                                                                                            1
                                                                                                   0
                      0
                                                      63
```

```
Cre
           Te
                 Bal
                        Num
                                Has
                                       IsActi
                                                 Estim
                                                         Geogra
                                                                    Geogra
                                                                              Geogr
                                                                                        Gend
                       OfPro
                                CrC
                                        veMe
                                                                                        er_Fe
ditS
                 anc
                                                 atedS
                                                         phy_Fr
                                                                   phy_Ge
                                                                              aphy_
                                                                                                er_M
      g
           nu
core
           re
                   e
                        ducts
                                ard
                                        mber
                                                 alary
                                                            ance
                                                                    rmany
                                                                               Spain
                                                                                        male
                                                                                                  ale
       e
850.
                                                79084.
                                                               0
                          1.0
                                 1.0
                 .82
      0
```

Split the data into training and testing

```
In[]:
# splitting the data into training and testing set

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
(7500, 13)
(7500,)
(2500, 13)
(2500,)
```

Scale the independent variables

```
In []:
# Feature Scaling
\# Only on Independent Variable to convert them into values ranging from -1
to +1
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x train = sc.fit transform(x train)
x_test = sc.fit_transform(x_test)
x train = pd.DataFrame(x train)
x_train.head()
                                                                                 Out[]:
                    2
                          3
                                       5
                                                                       10
                                                                             11
                                                                                    12
          0.042
                 0.008
                       0.673
                              2.583
                                                              1.760
                                                                           1.087
    0.736
                                    1.553
                                           1.034
                                                 1.640
                                                        1.015
                                                                     0.574
                                                                                  1.087
                  860
                         160
                               231
     828
                                     624
                                            460
                                                  810
                                                         588
                                                                      682
                                                                                   261
```

	0	1	2	3	4	5	6	7	8	9	10	11	12	
1	1.025 257	0.674 496	0.008 860	1.207 724	0.822 578	0.643 657	1.034 460	0.079 272	0.984 651	0.568 112	0.574 682	1.087 261	1.087 261	
2	0.808 861	0.469 702	1.393 293	0.356 937	0.822 578	0.643 657	0.966 688	0.996 840	1.015 588	0.568 112	1.740 094	1.087 261	1.087 261	
3	0.396 677	0.060 114	0.008 860	0.009 356	0.938 076	0.643 657	0.966 688	1.591 746	1.015 588	0.568 112	1.740 094	0.919 743	0.919 743	
4	0.468 908	1.373 444	0.701 077	1.207 724	0.822 578	0.643 657	0.966 688	1.283 302	0.984 651	0.568 112	0.574 682	0.919 743	0.919 743	