DM 30 : corrigé.

Partie I : La sous-algèbre $\mathbb{K}[a]$.

$$\mathbf{1}^{\circ}$$
) $\bullet \varphi_a(1) = \varphi_a(X^0) = a^0 = 1_A$

$$\mathbf{1}^{\circ}) \bullet \varphi_{a}(1) = \varphi_{a}(X^{0}) = a^{0} = 1_{A}.$$

$$\bullet \text{ Soient } P = \sum_{n \in \mathbb{N}} b_{n}X^{n} \in \mathbb{K}[X], \ Q = \sum_{n \in \mathbb{N}} c_{n}X^{n} \in \mathbb{K}[X] \text{ et } \alpha \in \mathbb{K}.$$

$$\Rightarrow \varphi_a(\alpha P) = \left(\sum_{n \in \mathbb{N}} (\alpha b_n) X^n\right) (a) = \sum_{n \in \mathbb{N}} (\alpha b_n) a^n$$
$$= \alpha \sum_{n \in \mathbb{N}} b_n a^n = \alpha \varphi_a(P).$$

$$\Rightarrow \varphi_a(P+Q) = \left(\sum_{n\in\mathbb{N}} (b_n + c_n) X^n\right)(a) = \sum_{n\in\mathbb{N}} (b_n + c_n) a^n = \varphi_a(P) + \varphi_a(Q).$$

$$\Leftrightarrow \varphi_a(PQ) = \left(\sum_{n \in \mathbb{N}} \left(\sum_{k=0}^n (b_{n-k}c_k)\right) X^n\right)(a) = \sum_{n \in \mathbb{N}} \left(\sum_{k=0}^n (b_{n-k}c_k)\right) a^n = \varphi_a(P)\varphi_a(Q), \text{ d'après}$$

les règles de calculs dans l'algèbre \hat{A}

2°) ⋄ L'image d'une algèbre commutative par un morphisme d'algèbres est une sousalgèbre commutative de l'algèbre d'arrivée, donc $\mathbb{K}[a]$ est une sous-algèbre commutative de A.

$$\diamond$$
 Lorsque $P = X$, $P(a) = a$, donc $a \in \mathbb{K}[a]$.

Soit B une sous-algèbre de A contenant a.

Soit $P \in \mathbb{K}[X]$. $a \in B$ et B est stable pour les trois lois qui structurent A comme une algèbre, donc $P(a) \in B$. Ainsi $\mathbb{K}[a] \subset B$.

Ainsi, on a prouvé que $\mathbb{K}[a]$ est la plus petite sous-algèbre de A contenant a.

3°) Soit $(a,b) \in \mathbb{Q}^2$. $a+b\sqrt{2}=P(\sqrt{2})$ si l'on pose P(X)=a+bX, donc $a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}].$

Réciproquement, soit $x \in \mathbb{Q}[\sqrt{2}]$. Il existe $P = \sum_{n} b_n X^n \in \mathbb{Q}[X]$ tel que $x = P(\sqrt{2})$.

Ainsi
$$x = \sum_{n \in \mathbb{N}} b_{2n} 2^n + \sqrt{2} \sum_{n \in \mathbb{N}} b_{2n+1} 2^n$$
, ce qui prouve l'inclusion réciproque.

 $\mathbf{4}^{\circ}$) φ_a est un morphisme d'anneaux, donc d'après le cours, son noyau est un idéal de $\mathbb{K}[X]$, or ce dernier est principal, donc il existe $\pi_a \in \mathbb{K}[X]$ tel que $\operatorname{Ker}(\varphi_a) = \pi_a \mathbb{K}[X]$. $\operatorname{Ker}(\varphi_a) \neq \{0\}, \operatorname{donc} \pi_a \neq 0.$ Quitte à le diviser par son coefficient dominant, on peut imposer que π_a soit unitaire.

Pour démontrer l'unicité, supposons qu'il existe $P \in \mathbb{K}[X]$, unitaire, tel que $\operatorname{Ker}(\varphi_a) = P\mathbb{K}[X]$. Alors P et π_a sont associés, or ils sont unitaires, donc ils sont égaux.

- 5°) Le polynôme $X^2 2$ est dans $\mathbb{Q}[X]$ et il annule $\sqrt{2}$, donc $\sqrt{2}$ admet un polynôme minimal.
- $\pi_{\sqrt{2}}|(X^2-2)$. De plus, $\pi_{\sqrt{2}}$ ne peut être de degré 1, sans quoi il existerait $\alpha \in \mathbb{Q}$ tel que $0=(X-\alpha)(\sqrt{2})=\sqrt{2}-\alpha$, et $\sqrt{2}$ serait rationnel ce qui est faux (la démonstration de l'irrationalité de $\sqrt{2}$ est analogue à celle que nous développerons pour $\sqrt[3]{2}$ en question 9). Ainsi $\pi_{\sqrt{2}}$ est un polynôme unitaire de degré au moins 2 et il divise X^2-2 . Cela prouve que $\pi_{\sqrt{2}}=X^2-2$.
- 6°) ♦ Soit $x \in \mathbb{K}[a]$. Il existe $P \in \mathbb{K}[X]$ tel que x = P(a). Effectuons la division euclidienne de P par π_a . Il existe $(Q,R) \in \mathbb{K}[X]^2$ tel que $P = Q\pi_a + R$ avec deg(R) < n. Alors $x = P(a) = Q(a)\pi_a(a) + R(a) = R(a) \in Vect(1_A, a, a^2, \dots, a^{k-1})$, donc $\mathbb{K}[a] \subset Vect(1_A, a, a^2, \dots, a^{n-1})$. Ainsi $(1_A, a, a^2, \dots, a^{n-1})$ est un système générateur de $\mathbb{K}[a]$.
- \diamond Soit $(\alpha_j)_{0 \le j \le n-1} \in \mathbb{K}^n$ tel que $\sum_{j=0}^{n-1} \alpha_j a^j = 0$. Ainsi le polynôme $\sum_{j=0}^{n-1} \alpha_j X^j$ annule a. Or

il est de degré strictement inférieur au degré du polynôme minimal, donc ce polynôme est nul. La famille $(\alpha_j)_{0 \le j \le n-1}$ est donc nulle, ce qui prouve que $(1_A, a, a^2, \dots, a^{k-1})$ est une famille libre. C'est donc une base de $\mathbb{K}[a]$.

 7°) \diamond Soit $P \in \mathbb{K}[X]$ tel que P(a) est inversible dans A.

Supposons que P n'est pas premier avec π_a .

Notons $R = P \wedge \pi_a$: par hypothèse, $\deg(R) \geq 1 \ (\pi_a \neq 0, \text{ donc } R \neq 0)$. il existe $Q_1, Q_2 \in \mathbb{K}[X]$ tels que $P = RQ_1$ et $\pi_a = RQ_2$.

- On a $P(a)Q_2(a) = (PQ_2)(a) = (RQ_1Q_2)(a) = (\pi_aQ_1)(a) = 0$, mais P(a) est inversible dans A, donc $Q_2(a) = [P(a)]^{-1}(P(a)Q_2(a)) = 0$. C'est impossible car $Q_2 \neq 0$ et $\deg(Q_2) < \deg(\pi_a)$. Ainsi P est premier avec π_a .
- \diamond Réciproquement, supposons que P est premier avec π_a . D'après l'identité de Bezout, il existe $U, V \in \mathbb{K}[X]$ tel que $UP + V\pi_a = 1_{\mathbb{K}}$, donc $U(a)P(a) + V(a)\pi_a(a) = 1_A$, puis U(a)P(a) = 1. Ainsi, P(a) est inversible dans A et son inverse U(a) est dans $\mathbb{K}[a]$, donc P(a) est même inversible dans $\mathbb{K}[a]$.
- 8°) On suppose que A est une algèbre intègre.
- \diamond Montrons qu'alors π_a est irréductible dans $\mathbb{K}[X]$: soit $(P,Q) \in \mathbb{K}[X]^2$ tel que $\pi_a = PQ$. $P(a)Q(a) = (PQ)(a) = \pi_a(a) = 0$. Or A est intègre, donc P(a) = 0 ou Q(a) = 0.
- Si P(a) = 0, $P \in \pi_a \mathbb{K}[X]$, donc $\pi_a | P$, or $P | \pi_a$. Ainsi, si P(a) = 0, P est associé à π_a , ce qui entraîne que Q est inversible. Donc les seuls diviseurs de π_a sont les polynômes inversibles et les polynômes associés à π_a .

Ceci montre que π_a est irréductible dans $\mathbb{K}[X]$.

 $\Leftrightarrow \mathbb{K}[a]$ est un anneau commutatif non réduit à $\{0\}$ et si $P(a) \in \mathbb{K}[a] \setminus \{0\}$, π_a ne divise pas P, or π_a est irréductible, donc d'après le cours, $\pi_a \wedge P = 1$, puis d'après la question précédente, P(a) est inversible dans $\mathbb{K}[a]$. Ainsi $\mathbb{K}[a]$ est un corps.

 9°) \diamond Posons $a=\sqrt[3]{2}$. a est annulé par le polynôme $X^3-2\in\mathbb{Q}[X]$, donc π_a est défini et c'est un diviseur dans $\mathbb{Q}[X]$ de X^3-2 .

Supposons que $deg(\pi_a) < 3$. Alors $deg(\pi_a) \in \{1,2\}$ et il existe $P \in \mathbb{Q}[X]$ tel que $X^3 - 2 = P\pi_a$. Nécessairement, P ou π_a est de degré 1, donc possède une racine dans \mathbb{Q} . Ainsi l'une des racines complexes de X^3-2 est rationnelle. Or ces racines sont a, jaet j^2a , donc $a \in \mathbb{Q}$: il existe $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ tel que $a = \frac{p}{q}$ et $p \wedge q = 1$. Alors $2q^3 = p^3$, donc $q \mid p^3$ puis d'après le théorème de Gauss, $q \mid 1$. Alors q = 1, puis $p^3 = 2$, ce qui est impossible avec $p \in \mathbb{N}^*$. On en déduit que $\deg(\pi_a) = 3$ et que $\pi_a = X^3 - 2$.

 \diamond D'après les questions précédentes, on sait alors que $\mathbb{Q}[a]$ est un corps (car \mathbb{R} est intègre) de dimension 3 en tant que Q-espace vectoriel (car $deg(\pi_a) = 3$), dont une base est $(1, a, a^2)$, donc $\mathbb{Q}[a] = \{\alpha + \beta a + \gamma a^2 / \alpha, \beta, \gamma \in \mathbb{Q}^3\}$.

Partie II : Les matrices de Toeplitz

10°) Notation: Soit $M \in \mathcal{M}_n(\mathbb{C})$ et $k \in [1-n, n-1] \cap \mathbb{Z}$: désignons par "k-ième diagonale de M" la liste des coefficients $M_{i,j}$ de M tels que i-j=k. Notons

 $D_k(M)$ l'ensemble des éléments de la k-ème diagonale de M, c'est-à-dire

$$D_k(M) = \{M_{i,i+k} / \max\{1, 1-k\} \le i \le \min\{n, n-k\}\}.$$

Ainsi,
$$D_{1-n}(M) = \{M_{n,1}\}, D_{2-n}(M) = \{M_{n-1,1}, M_{n,2}\}, \ldots,$$

$$D_{-1}(M) = \{M_{2,1}, M_{3,2}, \dots, M_{n,n-1}\}, D_0(M) = \{M_{1,1}, \dots, M_{n,n}\}, \text{ puis }$$

$$D_1(M) = \{M_{1,2}, M_{2,3}, \dots, M_{n-1,n}\}, \dots, D_{n-1}(M) = \{M_{1,n}\}.$$

 \diamond Notons TC l'ensemble des matrices $M=(m_{i,j})_{1\leq i,j\leq n}$ telles que, pour tout

$$i, j, k, h \in \{1, \dots, n\}, [i - j \equiv k - h \text{ modulo } n \Longrightarrow m_{i,j} = m_{k,h}].$$

Alors $M \in TC$ si et seulement si il existe $d_0, \ldots, d_{n-1} \in \mathbb{C}^n$ tels que $D_0 = \{d_0\},$

 $D_1 = D_{1-n} = \{d_1\}, D_2 = D_{2-n} = \{d_2\}, \dots, D_{n-1} = D_{-1} = \{d_{n-1}\}, \text{ ou encore si et } d_{n-1}\}$

$$D_{1} = D_{1-n} = \{d_{1}\}, D_{2} = D_{2-n} = \{d_{2}\}, \dots, D_{n-1} = D_{-1} = \{d_{n-1}, \dots, d_{n-1}\}$$
seulement si M est de la forme $M = \begin{pmatrix} d_{0} & d_{1} & \cdots & d_{n-1} \\ d_{n-1} & d_{0} & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_{1} \\ d_{1} & \cdots & d_{n-1} & d_{0} \end{pmatrix}$.

 \diamond Notons $c = (c_1, \ldots, c_n)$ la base canonique de \mathbb{C}^n et identifions S avec son endomorphisme canoniquement associé. Pour tout $i \in \mathbb{N}_n$, Sc_i est égal à la i-ème colonne de S, donc $Sc_i = c_{i-1}$, en convenant que, pour tout $k \in \mathbb{Z}$, si $i \in \mathbb{N}_n$ avec $k \equiv i$ modulo n, alors $c_k = c_i$.

Par récurrence sur $k \in \mathbb{N}$, on en déduit que pour tout $i \in \mathbb{N}_n$, $S^k c_i = c_{i-k}$, donc pour tout $k \in \{0, \dots, n-1\}$, S^k admet l'écriture par blocs : $S^k = \begin{pmatrix} 0 & I_{n-k} \\ I_k & 0 \end{pmatrix}$, où les 0 désignent des matrices nulles de dimensions convenables.

Ainsi, lorsque
$$d_0, \ldots, d_{n-1} \in \mathbb{C}^n$$
,
$$\begin{pmatrix} d_0 & d_1 & \cdots & d_{n-1} \\ d_{n-1} & d_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_1 \\ d_1 & \cdots & d_{n-1} & d_0 \end{pmatrix} = \sum_{k=0}^{n-1} d_k S^k : (1).$$
 Ceci démontre que $TC = \operatorname{Vect}(S^0, S^1, \ldots, S^{n-1}).$

Ainsi, $TC \subset \mathbb{C}[S]$. De plus, $S^n = I_n$, donc si $k \in \mathbb{N}$ avec $k \equiv h \mod n$ où $h \in \{0, \dots, n-1\}$, $S^k = S^h = \begin{pmatrix} 0 & I_{n-h} \\ I_h & 0 \end{pmatrix} \in TC$. Ainsi, $\mathbb{C}[S] \subset TC$. Ainsi $\mathbb{C}[S]$ est l'ensemble des matrices $M = (m_{i,j})_{1 \le i,j \le n}$ telles que,

Ainsi $\mathbb{C}[S]$ est l'ensemble des matrices $M = (m_{i,j})_{1 \leq i,j \leq n}$ telles que, pour tout $i, j, k, h \in \{1, \dots, n\}, [i - j \equiv k - h \text{ modulo } n \Longrightarrow m_{i,j} = m_{k,h}].$

11°) \diamond De plus $(S^0, S^1, \dots, S^{n-1})$ est une famille libre, car si $\sum_{k=0}^{n-1} d_k S^k = 0$, alors

$$\begin{pmatrix} d_0 & d_1 & \cdots & d_{n-1} \\ d_{n-1} & d_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_1 \\ d_1 & \cdots & d_{n-1} & d_0 \end{pmatrix} = 0, \text{ donc } (d_0, \dots, d_{n-1}) = 0.$$

Ainsi, $(S^0, S^1, \dots, S^{n-1})$ est une base de $\mathbb{C}[S]$.

D'après la question 2, $\mathbb{C}[S]$ est une algèbre commutative de dimension n.

♦ S est annulée par le polynôme X^n-1 et $\deg(\pi_S)=\dim(\mathbb{C}[S])=n$, donc $\pi_S=X^n-1$. Si $M=P(S)\in\mathbb{C}[S]$, d'après la question 7, M est inversible si et seulement si $P \wedge (X^n-1)=1$ et dans ce cas, $M^{-1}\in\mathbb{C}[S]$. Or $P \wedge (X^n-1)=1$ si et seulement si aucune racine complexe de X^n-1 n'est racine de P.

D'après la relation (1), les coefficients de P sont les coefficients de la première ligne de M, donc M est inversible si et seulement si

pour tout
$$k \in \{0, \dots, n-1\}, \sum_{j=1}^{n} M_{1,j} e^{2i\pi \frac{k(j-1)}{n}} \neq 0.$$

 $\begin{array}{l} \mathbf{12}^{\circ}) \ \, \diamond \text{ Notons } TAC \text{ l'ensemble des matrices } M = (m_{i,j})_{1 \leq i,j \leq n} \text{ telles que, pour tout } \\ i,j,k,h \in \{1,\ldots,n\}, \ \, [i-j=k-h \Longrightarrow m_{i,j}=m_{k,h}] \\ \text{et } \, [i-j=k-h-n \Longrightarrow m_{i,j}=-m_{k,h}]. \text{ Alors } M \in TAC \text{ si et seulement si il existe } \\ d_0,\ldots,d_{n-1} \in \mathbb{C}^n \text{ tels que } D_0 = \{d_0\}, \ \, D_1 = \{d_1\} \text{ et } D_{1-n} = \{-d_1\}, \ \, D_2 = \{d_2\} \text{ et } \\ D_{2-n} = \{-d_2\},\ldots,D_{n-1} = \{d_{n-1}\} \text{ et } D_{-1} = \{-d_{n-1}\}, \text{ ou encore si et seulement si } M \end{array}$

est de la forme
$$M = \begin{pmatrix} d_0 & d_1 & \cdots & d_{n-1} \\ -d_{n-1} & d_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_1 \\ -d_1 & \cdots & -d_{n-1} & d_0 \end{pmatrix}.$$

 \diamond $Zc_1 = -c_n$ et pour tout $i \in \{2, \dots, n\}, Zc_i = c_{i-1}.$

Par récurrence sur $k \in \{0, ..., n\}$, on en déduit que

pour tout $i \in \{1, ..., k\}$, $Z^k c_i = -c_{n+i-k}$, et pour tout $i \in \{k+1, ..., n\}$, $Z^k c_i = c_{i-k}$.

Ainsi, pour tout $k \in \{0, ..., n\}$, Z^k admet l'écriture par blocs : $Z^k = \begin{pmatrix} 0 & I_{n-k} \\ -I_k & 0 \end{pmatrix}$.

Ainsi, lorsque
$$d_0, \dots, d_{n-1} \in \mathbb{C}^n$$
, $\begin{pmatrix} d_0 & d_1 & \cdots & d_{n-1} \\ -d_{n-1} & d_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_1 \\ -d_1 & \cdots & -d_{n-1} & d_0 \end{pmatrix} = \sum_{k=0}^{n-1} d_k Z^k : (2).$

Ceci démontre que $TAC = \text{Vect}(Z^0, Z^1, \dots, Z^{n-1})$.

Ainsi, $TAC \subset \mathbb{C}[Z]$. De plus, $Z^n = -I_n$, donc si $k \in \mathbb{N}$ avec $k \equiv h \mod n$ où $h \in \{0, \dots, n-1\}$, $Z^k \in \{Z^h, -Z^h\} \subset TAC$. Ainsi, $\mathbb{C}[Z] \subset TAC$. Donc $\mathbb{C}[Z]$ est l'ensemble des matrices $M = (m_{i,j})_{1 \leq i,j \leq n}$ telles que, pour tout $i, j, k, h \in \{1, \dots, n\}$, $[i - j = k - h \Longrightarrow m_{i,j} = m_{k,h}]$ et $[i - j = k - h - n \Longrightarrow m_{i,j} = -m_{k,h}]$.

 \diamond De plus $(Z^0, Z^1, \dots, Z^{n-1})$ est une famille libre, car si $\sum_{k=0}^{n-1} d_k Z^k = 0$,

alors
$$\begin{pmatrix} d_0 & d_1 & \cdots & d_{n-1} \\ -d_{n-1} & d_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_1 \\ -d_1 & \cdots & -d_{n-1} & d_0 \end{pmatrix} = 0$$
, donc $(d_0, \dots, d_{n-1}) = 0$.

Ainsi, $(Z^0, Z^1, \dots, Z^{n-1})$ est une base de $\mathbb{C}[Z]$.

D'après la question 2, $\mathbb{C}[Z]$ est une algèbre commutative de dimension n.

 $\diamond Z$ est annulée par le polynôme X^n+1 et $\deg(\pi_Z)=\dim(\mathbb{C}[Z])=n$, donc $\pi_S=X^n+1$.

Si $M=P(Z)\in\mathbb{C}[Z]$, d'après la question 7, M est inversible si et seulement si $P\wedge (X^n+1)=1$ et dans ce cas, $M^{-1}\in\mathbb{C}[Z]$. Or $P\wedge (X^n+1)=1$ si et seulement si aucune racine complexe de P n'est racine de X^n+1 , c'est-à-dire n'est égale à $e^{i\pi\frac{2k+1}{n}}$, avec $k\in\{0,\ldots,n-1\}$. D'après la relation (2), les coefficients de P sont les coefficients de la première ligne de M, donc M est inversible si et seulement si

pour tout
$$k \in \{0, ..., n-1\}, \sum_{j=1}^{n} M_{1,j} e^{i\pi \frac{(2k+1)(j-1)}{n}} \neq 0.$$

13°)
$$M \in T$$
 si et seulement si M est de la forme $M = \begin{pmatrix} d_0 & d_1 & \cdots & d_{n-1} \\ c_{n-1} & d_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_1 \\ c_1 & \cdots & c_{n-1} & d_0 \end{pmatrix}$,

où $\{c_1, ..., c_{n-1}, d_0, ..., d_{n-1}\} \subset \mathbb{C}$.

Ainsi, T est non vide et stable par combinaison linéaire, donc c'est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$.

Clairement $TC \subset T$ et $TAC \subset T$, donc $TC + TAC \subset T$.

Soit
$$M = \begin{pmatrix} d_0 & d_1 & \cdots & d_{n-1} \\ c_{n-1} & d_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & d_1 \\ c_1 & \cdots & c_{n-1} & d_0 \end{pmatrix} \in T$$
. Alors

$$M = \begin{pmatrix} d_0 & \frac{c_1+d_1}{2} & \cdots & \frac{c_{n-1}+d_{n-1}}{2} \\ \frac{c_{n-1}+d_{n-1}}{2} & d_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \frac{c_1+d_1}{2} \\ \frac{c_1+d_1}{2} & \cdots & \frac{c_{n-1}+d_{n-1}}{2} & d_0 \\ 0 & \frac{-c_1+d_1}{2} & \cdots & \frac{-c_{n-1}+d_{n-1}}{2} \\ + \begin{pmatrix} \frac{c_{n-1}-d_{n-1}}{2} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \frac{-c_1+d_1}{2} \\ \frac{c_1-d_1}{2} & \cdots & \frac{c_{n-1}-d_{n-1}}{2} & 0 \end{pmatrix},$$

donc $M \in \tilde{T}C + ^2TAC$.

En conclusion $T = TC + TAC = \mathbb{C}[S] + \mathbb{C}[Z]$.

14°) \diamond Supposons que X est un vecteur propre de M pour la valeur propre λ . Soit $k \in \mathbb{N}$. Si $M^k X = \lambda^k X$, alors $M^{k+1} X = \lambda^k M X = \lambda^{k+1} X$, donc d'après le principe de récurrence, pour tout $k \in \mathbb{N}$, $M^k X = \lambda^k X$.

Soit
$$P = \sum_{k \in \mathbb{N}} p_k Y^k \in \mathbb{K}[Y]$$
. Alors $P(M)X = \sum_{k \in \mathbb{N}} p_k M^k X = \sum_{k \in \mathbb{N}} p_k \lambda^k X = P(\lambda)X$, or

 $X \neq 0$, donc X est un vecteur propre de P(M) pour la valeur propre $P(\lambda)$.

 \diamond Supposons de plus que P(M)=0. Alors $P(\lambda)X=P(M)X=0$, or $X\neq 0$, donc $P(\lambda)=0$: les valeurs propres de M sont nécessairement des racines de P.

15°) S est annulée par X^n-1 , donc les valeurs propres de M sont nécessairement de la forme ω^k , ou $\omega=e^{\frac{2i\pi}{n}}$ et $k\in\{0,\ldots,n-1\}$.

Soit
$$k \in \{0, \dots, n-1\}$$
 et $X = \begin{pmatrix} x_0 \\ \vdots \\ x_{n-1} \end{pmatrix} \in \mathbb{C}^n \setminus \{0\}.$

$$SX = \omega^k X \iff [\forall i \in \{0, \dots, n-2\}, \ x_{i+1} = \omega^k x_i] \land x_0 = \omega^k x_{n-1} \\ \iff [\forall i \in \{0, \dots, n-1\}, \ x_i = \omega^{ik} x_0] \land x_0 = \omega^k \omega^{k(n-1)} x_0 \\ \iff [\forall i \in \{0, \dots, n-1\}, \ x_i = \omega^{ik} x_0],$$

$$donc \ SX = \omega^k X \iff X \in \text{Vect} \begin{pmatrix} 1 \\ \omega^k \\ \vdots \\ \omega^{k(n-1)} \end{pmatrix}. \text{ Ceci montre que les valeurs propres de}$$

M sont exactement les racines n-ièmes de l'unité et que, pour tout $k \in \{0, \ldots, n-1\}$, les vecteurs propres associés à la valeur propre ω^k sont exactement les vecteurs non nuls de la droite vectorielle engendrée par le vecteur colonne $(\omega^{kh})_{0 \le h \le n-1}$.

 ${\bf 16}^{\circ}$) Si l'on note P_0,\ldots,P_{n-1} les colonnes de P, la question précédente indique que, pour tout $k\in\{0,\ldots,n-1\},\ SP_k=\omega^kP_k$, donc les colonnes de SP sont $P_0,\omega P_1,\ldots,\omega^{n-1}P_{n-1}$.

Notons D la matrice diagonale dont les coefficients diagonaux sont $1, \omega, \omega^2, \ldots, \omega^{n-1}$. D'après le cours, la k-ème colonne de PD est la combinaison linéaire des colonnes de P, affectée des coefficients de la k-ème colonne de D, donc cette k-ème colonne est égale à $\omega^k P_k$. Ainsi, SP = PD.

17°) Soit
$$h, k \in \{0, ..., n-1\}$$
. Alors

$$[\overline{P}P]_{h,k} = \sum_{\ell=0}^{n-1} \overline{P}_{h,\ell} P_{\ell,k} = \sum_{\ell=0}^{n-1} e^{2i\pi \frac{k\ell-h\ell}{n}} = \sum_{\ell=0}^{n-1} \left(e^{2i\pi \frac{k-h}{n}} \right)^{\ell}.$$

Si h = k, alors $[\overline{P}P]_{h,k} = n$ et si $h \neq k$, alors $|2\pi \frac{k-h}{n}| \in]0, 2\pi[$, donc $e^{2i\pi \frac{k-h}{n}} \neq 1$.

Alors
$$[\overline{P}P]_{h,k} = \frac{1 - \left(e^{2i\pi\frac{k-h}{n}}\right)^n}{1 - e^{2i\pi\frac{k-h}{n}}} = 0$$
, donc $\overline{P}P = nI_n$.

De même on montre que $P\overline{P} = nI_n$, donc P est inversible et $P^{-1} = \frac{1}{n}\overline{P}$.

18°) D'après la question 16, SP = PD, donc $P^{-1}SP = D$.

Soit $k \in \mathbb{N}$. Si $P^{-1}S^kP = D^k$, alors $P^{-1}S^{k+1}P = P^{-1}S^kPP^{-1}SP = D^{k+1}$, donc d'après le principe de récurrence, pour tout $k \in \mathbb{N}$, $P^{-1}S^kP = D^k$.

Soit
$$M \in \mathbb{C}[S]$$
. Il existe $Q = \sum_{k \in \mathbb{N}} q_k Y^k \in \mathbb{K}[Y]$ tel que $M = Q(S)$.

Alors
$$P^{-1}MP=\sum_{k\in\mathbb{N}}q_kP^{-1}S^kP=\sum_{k\in\mathbb{N}}q_kD^k$$
 : c'est bien une matrice diagonale.

19°) Notons R' la matrice diagonale de $\mathcal{M}_n(\mathbb{C})$ suivante : $R' = \left(e^{i\pi \frac{h}{n}} \delta_{h,k}\right)_{0 \le h,k \le n-1}$.

Alors $RR' = R'R = I_n$, donc R est inversible et $R^{-1} = R'$.

Notons (c_0, \ldots, c_{n-1}) la base canonique de \mathbb{C}^n .

Soit $j \in \{1, \dots, n-1\}$. Alors $RZR^{-1}c_j = RZ\left(e^{i\pi \frac{j}{n}}c_j\right) = e^{i\pi \frac{j}{n}}Rc_{j-1} = e^{i\pi \frac{j}{n}}e^{-i\pi \frac{j-1}{n}}c_{j-1}$, donc $RZR^{-1}c_j = e^{i\frac{\pi}{n}}c_{j-1}$.

De plus, $RZR^{-1}c_0 = RZc_0 = -Rc_{n-1} = -e^{-i\pi\frac{n-1}{n}}c_{n-1} = e^{i\frac{\pi}{n}}c_{n-1}$.

Ainsi, pour tout $j \in \{0, ..., n-1\}, RZR^{-1}c_j = e^{i\frac{\pi}{n}}Sc_j, \text{ donc } RZR^{-1} = e^{i\frac{\pi}{n}}S.$

20°) Posons $P' = R^{-1}P : P'^{-1}ZP' = P^{-1}(RZR^{-1})P = e^{i\frac{\pi}{n}}P^{-1}SP = e^{i\frac{\pi}{n}}D.$

En adaptant la solution de la question 18, on en déduit que, pour tout $k \in \mathbb{N}$, $P'^{-1}Z^kP'=e^{i\frac{k\pi}{n}}D^k$, puis que pour $Q \in \mathbb{C}[Y]$, $P'^{-1}Q(Z)P'=Q(e^{i\frac{\pi}{n}}D)$, qui est diagonale. Ainsi, les matrices de $\mathbb{C}[Z]$ sont simultanément diagonalisables.

Partie III : Irréductibilité dans $\mathbb{Q}[X]$

21°) Montrons que $\varphi: \mathbb{Z}[X] \longrightarrow \mathbb{F}_p[X]$ défini par $\varphi(Q) = \overline{Q}$ est un morphisme d'anneaux.

$$\bullet \ \varphi(1) = \overline{1} = 1_{\mathbb{F}_p[X]}.$$

• Soient
$$P = \sum_{n \in \mathbb{N}} b_n X^n \in \mathbb{Z}[X]$$
 et $Q = \sum_{n \in \mathbb{N}} c_n X^n \in \mathbb{Z}[X]$.

$$\Rightarrow \varphi(P+Q) = \varphi\left(\sum_{n\in\mathbb{N}} (b_n + c_n)X^n\right) = \sum_{n\in\mathbb{N}} \overline{b_n + c_n}X^n = \varphi(P) + \varphi(Q).$$

$$\Rightarrow \varphi(PQ) = \varphi\left(\sum_{n \in \mathbb{N}} (\sum_{k=0}^{n} (b_{n-k}c_k))X^n\right) = \sum_{n \in \mathbb{N}} (\sum_{k=0}^{n} \overline{b_{n-k}c_k})X^n = \varphi(P)\varphi(Q), \text{ d'après les}$$

règles de calculs dans l'anneau $\mathbb{F}_p[X]$.

 22°) \diamond Supposons que P et Q sont deux polynômes primitifs de $\mathbb{Z}[X]$.

Supposons que PQ n'est pas primitif. Alors il existe $p \in \mathbb{P}$ tel que p soit un diviseur commun des coefficients de PQ, donc avec les notations de la question précédente, $\overline{PQ} = 0$, puis \overline{P} $\overline{Q} = 0$, or $\mathbb{F}_p[X]$ est un anneau intègre d'après le cours, donc $\overline{P} = 0$ ou $\overline{Q} = 0$. Ainsi p est un diviseur commun des coefficients de P ou bien des coefficients de Q, donc P ou Q n'est pas primitif. C'est faux, donc PQ est primitif. P Soit P and P coefficients de P ou P coefficients de P coeffici

Si P=0 ou Q=0, alors c(P)=0 ou c(Q)=0 et on a bien c(PQ)=0=c(P)c(Q). Supposons maintenant que $P\neq 0$ et $Q\neq 0$. Alors c(P) étant le plus grand commun diviseur des coefficients de P, $P=c(P)P_1$, où P_1 est un polynôme primitif de $\mathbb{Z}[X]$. De même, $Q=c(Q)Q_1$, où Q_1 est un polynôme primitif de $\mathbb{Z}[X]$.

Alors $c(PQ) = c(c(P)c(Q)P_1Q_1) = c(P)c(Q)c(P_1Q_1)$ d'après la distributivité du produit par rapport au pgcd, puis c(PQ) = c(P)c(Q) car P_1Q_1 est primitif.

23°) Soit $P \in \mathbb{Z}[X]$ un polynôme de degré supérieur à 2 que l'on suppose réductible dans $\mathbb{Q}[X]$. Il existe $A, B \in \mathbb{Q}[X]$ tels que P = AB avec $\deg(A) \geq 1$ et $\deg(B) \geq 1$. En notant b le ppcm des dénominateurs des coefficients non nuls de A, il existe $A' \in \mathbb{Z}[X]$ tel que $A = \frac{1}{b}A'$. Si l'on pose a = c(A'), $A' = aA_1$ où A_1 est un polynôme primitif de $\mathbb{Z}[X]$. Ainsi, $bA = aA_1$.

De même, il existe $c, d \in \mathbb{Z}^*$ et B_1 un polynôme primitif de $\mathbb{Z}[X]$ tel que $dB = cB_1$. Alors $bdP = bdAB = acA_1B_1$. D'après la question précédente,

$$bd \times c(P) = c(bdP) = c(acA_1B_1) = ac$$
, donc $c(P) = \frac{ac}{bd}$

puis $P = \frac{ac}{bd}A_1B_1 = [c(P)A_1]B_1$: ainsi P se décompose en le produit de deux polynômes à coefficients entiers de degrés supérieurs à 1.

24°) \diamond Supposons que P est composé dans $\mathbb{Q}[X]$. D'après la question précédente, il existe $A, B \in \mathbb{Z}[X]$ tels que P = AB avec $\deg(A) \geq 1$ et $\deg(B) \geq 1$.

Avec les notations de la question 21 et d'après les hypothèses portant sur les coefficients de P, $\overline{P} = \overline{a_n} X^n$, où $n = \deg(P)$ et où a_n est le coefficient dominant de P. p ne divise pas a_n , donc $\overline{a_n} \neq 0$.

On a donc \overline{A} $\overline{B} = \overline{a_n}X^n$. Or X est irréductible dans $\mathbb{F}_p[X]$, comme tout polynôme de degré 1, donc il existe $\overline{a}, \overline{b} \in \mathbb{F}_p \setminus \{0\}$ et $h, k \in \mathbb{N}$ tels que $\overline{A} = \overline{a}X^h$, $\overline{B} = \overline{b}X^k$ et h + k = n.

Le coefficient a_n de degré n de P est égal au produit du coefficient dominant α de A avec le coefficient dominant β de B. Donc $\overline{\alpha} = \overline{a} \neq 0$, $\overline{\beta} = \overline{b} \neq 0$, et surtout $h = \deg(A) \geq 1$ et $k = \deg(B) \geq 1$. On en déduit que les coefficients constants de A et de B vérifient $\overline{A(0)} = 0 = \overline{B(0)}$, donc p^2 divise $A(0)B(0) = a_0$ ce qui est contraire aux hypothèses. Ainsi, P est bien irréductible dans $\mathbb{Q}[X]$.

- \diamond Soit $n \in \mathbb{N}^*$. Prenons p = 2. Ainsi p ne divise pas le coefficient dominant de $X^n 2$, p divise ses autres coefficients, et $p^2 = 4$ ne divise pas 2. D'après le critère d'Eisenstein, $X^n 2$ est irréductible dans $\mathbb{Q}[X]$.
- **25**°) S'il existe $n \in \mathbb{N}$ tel que $A(X) = X^n$, alors $P = X^n B$, donc le coefficient de degré k de B est égal au coefficient de degré n + k de P. Ainsi, $A, B \in \mathbb{Z}[X]$.

On raisonne de même s'il existe $n \in \mathbb{N}$ tel que $B(X) = X^n$. On peut donc maintenant supposer que A et B ne sont pas des monômes.

Posons $A(X) = X^n + \sum_{i=0}^{n-1} \frac{p_i}{q_i} X^i$, avec pour tout $i \in \{0, \dots, n-1\}, p_i \in \mathbb{Z}$ et $q_i \in \mathbb{N}^*$.

Notons $q \in \mathbb{N}^*$ le ppcm de q_0, \ldots, q_{n-1} (c'est une famille non vide d'entiers naturels non

nuls). Ainsi,
$$A(X) = X^n + \frac{1}{q} \sum_{i=0}^{n-1} z_i X^i$$
, avec $z_i \in \mathbb{Z}$. Quitte à diviser q, z_0, \dots, z_{n-1} par

leur pgcd, on peut supposer que ce pgcd est égal à 1. Alors $A_1 = qA$ est un polynôme primitif de $\mathbb{Z}[X]$.

De plus, P et A étant unitaires, B est aussi unitaire, donc de même que pour A, il existe $r \in \mathbb{N}^*$ tel que $B_1 = rB$ est un polynôme primitif de $\mathbb{Z}[X]$.

Alors $qrP = (qA)(rB) = A_1B_1$ est primitif, donc $1 = c(qrP) = qr \times c(P)$, mais P est unitaire dans $\mathbb{Z}[X]$, donc il est aussi primitif. Ainsi qr = 1 et $q, r \in \mathbb{N}^*$. On en déduit que q = r = 1, donc $A = A_1 \in \mathbb{Z}[X]$ et $B = B_1 \in \mathbb{Z}[X]$.

26°) Pour tout $k \in \{1, \ldots, n\}$, on sait que le rationnel $\frac{k}{n}$ admet une unique écriture irréductible $\frac{k}{n} = \frac{h}{d}$, où d|n et $h \wedge d = 1$. De plus $\frac{k}{n} \in]0,1]$, donc $h \in \{1,\ldots,d\}$. Ainsi, si l'on pose pour tout entier naturel d diviseur de n,

 $C_d = \{\frac{h}{d}/h \in \{1,\ldots,d\} \text{ avec } h \wedge d = 1\}$, la famille $(C_d)_{d \in \mathbb{N}, d|n}$ est une partition de $\{\frac{k}{n}/k \in \{1,\ldots,n\}\}$. On en déduit que

$$X^{n} - 1 = \prod_{k=1}^{n} (X - e^{2i\pi \frac{k}{n}}) = \prod_{\substack{1 \le d \le n \\ d \mid n}} \left(\prod_{\substack{1 \le h \le d \\ h \land d = 1}} (X - e^{2i\pi \frac{h}{d}}) \right) = \prod_{\substack{1 \le d \le n \\ d \mid n}} \Phi_{d}.$$

27°) Pour tout $n \in \mathbb{N}^*$, notons R(n) l'assertion : $\Phi_n \in \mathbb{Z}[X]$.

Pour $n = 1, \, \Phi_1 = X - 1 \in \mathbb{Z}[X].$

Pour $n \geq 2$, supposons que pour tout $k \in \{1, \dots, n-1\}$, $\Phi_k \in \mathbb{Z}[X]$.

Ainsi,
$$X^n - 1 = \Phi_n Q$$
, où $Q = \prod_{\substack{1 \le d < n \\ d \mid n}} \Phi_d \in \mathbb{Z}[X]$.

 Φ_n est le quotient de la division euclidienne de X^n-1 par Q. Ces derniers sont tous deux dans $\mathbb{Q}[X]$ et \mathbb{Q} est un corps, donc d'après le cours, $\Phi_n \in \mathbb{Q}[X]$. De plus X^n-1 et Q sont unitaires, donc d'après la question 25, $\Phi_n \in \mathbb{Z}[X]$.

Le principe de récurrence forte permet de conclure.

28°)
$$\diamond \varphi_p(1) = 1^p = 1.$$

Soit $A, B \in \mathbb{F}_p[X]$. $\varphi_p(AB) = (AB)^p = A^p B^p = \varphi_p(A) \varphi_p(B)$.

Soit $\lambda \in \mathbb{F}$. $\varphi_p(\lambda A) = \lambda^p A^p = \lambda A^p = \lambda \varphi_p(A)$, d'après le petit théorème de Fermat.

D'après la formule du binôme de Newton, $\varphi_p(A+B) = \sum_{k=0}^p \binom{p}{k} A^k B^{p-k}$.

Soit $k \in \{1, ..., p-1\}$. p divise $p(p-1) \cdots (p-k+1) = k! \binom{p}{k}$ car $k \ge 1$, donc ce produit contient effectivement le facteur p, or p est premier avec k!, car $k \le p-1$ et p est premier, donc d'après le théorème de Gauss, p divise $\binom{p}{k}$. Ainsi, dans \mathbb{F}_p , $\varphi_p(A+B) = A^p + B^p = \varphi_p(A) + \varphi_p(B)$.

Ceci prouve que φ_p est un endomorphisme d'algèbre.

$$\Rightarrow \text{ Soit } h \in \mathbb{Z}[X]. \text{ Posons } h(X) = \sum_{n \in \mathbb{N}} a_n X^n. \ (\overline{h}(X))^p = \varphi_p \Big(\sum_{n \in \mathbb{N}} \overline{a_n} X^n \Big), \text{ donc d'après la question précédente, } (\overline{h}(X))^p = \sum_{n \in \mathbb{N}} \overline{a_n} \varphi_p(X^n) = \sum_{n \in \mathbb{N}} \overline{a_n} X^{pn} = \overline{h(X^p)}.$$

- **29**°) ω est annulé par $X^n 1 \in \mathbb{Q}[X]$, donc π_{ω} est bien défini dans $\mathbb{Q}[X]$. π_{ω} divise $X^n 1$, dans $\mathbb{Q}[X]$, donc il existe $h \in \mathbb{Q}[X]$ tel que $X^n 1 = \pi_{\omega}(X)h(X)$. Or $X^n 1$ et π_{ω} sont unitaires, donc d'après la question 25, π_{ω} et h sont dans $\mathbb{Z}[X]$. De plus h est unitaire.
- **b)** $\overline{\pi_{\omega}} \times \overline{g} = \overline{h(X^p)} = (\overline{h})^p$, or P divise $\overline{\pi_{\omega}}$, donc P divise $(\overline{h})^p$, mais P est irréductible donc P divise \overline{h} . Il existe donc $R, S \in \mathbb{F}_p[X]$ tels que $\overline{h} = RP$ et $\overline{\pi_{\omega}} = SP$, donc $\overline{X^n 1} = \overline{\pi_{\omega}}\overline{h} = P^2SR$, ce qu'il fallait démontrer.
- c) Dérivons l'égalité $X^n \overline{1} = P^2Q : nX^{n-1} = 2PP'Q + P^2Q'$, donc P divise $X^n \overline{1}$ et $\overline{n}X^{n-1}$. Or $\overline{n} \neq 0$ car p ne divise pas n, donc P divise X^{n-1} , et donc aussi X^n , or il divise $X^n \overline{1}$, donc P divise $\overline{1}$, ce qui est impossible car, P étant irréductible, il n'est pas constant.

En conséquence, $\pi_{\omega}(u^p) = 0$, pour tout racine complexe u de π_{ω} .

31°) Soit $s \in \mathbb{N}$. Notons R(s) l'assertion : pour toute famille p_1, \ldots, p_s de nombres premiers qui ne divisent pas n, $\pi_{\omega}(\omega^{p_1\cdots p_s}) = 0$.

Si s=0, le produit vide $p_1\cdots p_s$ est égal à 1, donc $\pi_{\omega}(\omega^{p_1\cdots p_s})=0$.

Supposons que $s \ge 1$ et que R(s-1) est vraie.

Soit p_1, \ldots, p_s une famille de nombre premiers qui ne divisent pas n.

Par hypothèse de récurrence, $u = \omega^{p_1 \cdots p_{s-1}}$ est une racine de π_{ω} , or p_s est un nombre premier qui ne divise pas n, donc d'après la question précédente, $\pi_{\omega}(u^{p_s}) = 0$. Ceci prouve R(s).

D'après le principe de récurrence, pour tout $s \in \mathbb{N}$, pour toute famille p_1, \ldots, p_s de nombres premiers qui ne divisent pas n, $\pi_{\omega}(\omega^{p_1\cdots p_s}) = 0$.

Soit $k \in \{1, ..., n\}$ tel que $k \wedge n = 1$. Notons $p_1 \cdots p_s$ la décomposition primaire de k. k étant premier avec n, pour tout $i \in \mathbb{N}_s$, p_i ne divise pas n, donc $\pi_{\omega}(\omega^k) = 0$.

32°) ω est une racine de Φ_n , donc π_ω divise Φ_n .

D'après la question précédente, toutes les racines de Φ_n sont racines de π_{ω} , or ces racines sont toutes simples, donc Φ_n divise π_{ω} . De plus, Φ_n et π_{ω} sont unitaires, donc ils sont égaux. Mais d'après la question 8, π_{ω} est irréductible dans $\mathbb{Q}[X]$, donc Φ_n est irréductible dans $\mathbb{Q}[X]$.