Homework 6 for **MATH 497A**, Introduction to Ramsey Theory

Due: Monday October 3

Problem 1

Failure of Ramsey's Theorem for infinite colorings

Show that for any infinite cardinal κ , $2^{\kappa} \not\longrightarrow (3)^{2}_{\kappa}$.

Problem 2

Failure of Ramsey's Theorem for power sets

Show that for any cardinal κ , $2^{\kappa} \not\longrightarrow (\kappa^+)_2^2$.

Problem 3

Increasing sequences of real numbers

Show that for any ordinal $\beta < \omega_1$, there exists an increasing sequence of reals of length β , i.e. a sequence $\{a_{\xi} \colon \xi < \beta\}$ such that for any $\xi < \beta$, $a_{\xi} <_{\mathbb{R}} a_{\xi+1}$.

Problem 4

No Banach-Tarski Paradox for \mathbb{Z}

An easy reformulation of the Banach-Tarski paradox says that the unit ball C in \mathbb{R}^3 can be *paradoxically decomposed*, i.e. there exist disjoint sets A, B such that $C = A \cup B$ and each set A, B can be further partitioned into finitely many pairwise disjoint sets A_1, \ldots, A_m and B_1, \ldots, B_n such that

$$A = \bigcup_{k=1}^{m} A_k \qquad B = \bigcup_{l=1}^{n} B_l$$

and there exist rigid motions $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n$ such that

$$C = \bigcup_{k=1}^{m} \alpha_k(A_k) = \bigcup_{l=1}^{n} \beta_l(B_l).$$

Show that such a decomposition is impossible for \mathbb{Z} , if as motions we only allow translations by integers, i.e. translations of a set A in the form $A + j = \{a + j : a \in A\}$ for some $j \in \mathbb{Z}$.

Problem 5

BONUS: The measure problem for non-atomic measures

Translation invariance of a measure on \mathbb{R} , $\mu(A+r)=\mu(A)$, implies $\mu(\{x\})=0$ for all $x\in\mathbb{R}$. Measures with the latter property are called *non-atomic*. Does the measure problem become solvable if we only require non-atomicity? That is, does there exist a function $\mu:\mathcal{P}(\mathbb{R})\to[0,\infty]$ such that

- (1) $\mu([0,1]) = 1$,
- (2) $\mu(\lbrace x \rbrace) = 0$ for all $x \in \mathbb{R}$,
- (3) $\mu(\bigcup A_n) = \sum \mu(A_n)$ for any sequence of pairwise disjoint sets $A_n \subseteq \mathbb{R}$?