NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

DOE/NASA/0031-80/6 NASA CR-159770 GE80ET0105

COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS)

GENERAL ELECTRIC COMPANY FINAL REPORT

VOLUME VI - COMPUTER DATA

PART 2 — Residual-Fired Nocogeneration Process Boiler

W.F. Knightly

May, 1980

PREPARED FOR
National Aeronautics Space Administration
Lewis Research Center
Under Contract DEN3-31

FOR

U.S. Department of Energy
Office of Energy Technology
Division of Fossil Fuel Utilization

(NASA-CR-159770-Pt-2) COGENERATION N80-33861
TECHNOLOGY ALTERNATIVES STUDY (CTAS).
VOLUME 6: COMPUTER DATA. PART 2:
RESIDUAL-FIRED NOCOGENERATION PROCESS BOILER Unclas
Final Report (General Electric Co.) 287 p G3/44 28941

NOTICE

This report was prepared by the General Electric Company to document work sponsored by the United States Government. Neither the United States nor its agent, the U.S. Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors, or their employees, nor General Electric makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DOE/NASA/0031-80/6 NASA CR-159770 GE80ET0105

COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS)

GENERAL ELECTRIC COMPANY FINAL REPORT

VOLUME VI - COMPUTER DATA

PART 2 — Residual-Fired Nocogeneration Process Boiler

W.F. Knightly

May, 1980

PREPARED FOR
National Aeronautics Space Administration
Lewis Research Center
Under Contract DEN3-31

FOR

U.S. Department of Energy
Office of Energy Technology
Division of Fossil Fuel Utilization

RESIDUAL-FIRED NOCOGENERATION PROCESS BOILER

5.2 - SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/08/7.

		**C	OGENERA	TION CAS	E IN BTU					COGEN	OSM	POVER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM I	KRTH
			RESIDL		DISTIL	RESIDL	COAL		EQD MW	POWER MW		/HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
ONCCON	10101	0			0.	0.	0.		10.	0.	0.38	0.25	0.	4.8	1.00	101.2	0	5.2	1.00	80
STM141		0			0.1.	15	81		10.	10.	0.57	0.25	0.44	8.3	1.75	141.8	25	3.9	0.75	
STM141	10101	0	. 0	. 84.	Ο.	68.	-2.	F	10.	10.	1.08	0.25	0.44	16.2		275.2	10	4.3		
STM141		0		<u> </u>	0.	68.	-2.	A.	10.	10.	0.96	0.25	0.44	12.5		211.6	16	3.7	<u>~.71</u>	
81M088		0			0.	-12.	62.		10.	8.	0.54	0.25	0.33	7.4	1,55	132.5	24	4,3	0.81	145
STM088						62.	-12.		10.	8.	1.02	0.25	0.33	14.9		266,6	9	4.6	0.89	
STM088	. , .					62.	-12.	Α	10.	8.	0.92	0.25	0.33	11.8	2.46	209.8	14	4.2	0.80	
PFBSTM		0			0.	68.	-3,		<u> 10.</u>	10.	1.59	0.25	0.44	20.8	4.36	<u>351.2</u>	5_	5.3	1.01	
PFBSTM		0			0.	81.	19.		10.	15.	1.45	0.25	0.48	19.9	4.17	304.3	8	4.4	0.85	
TISTMT						-54.	82.		10.	10.	1,27	0.25	0.19	29.6	6.20	499.5	0	8.0	1.53	
TISTMT						-9.	44.		10.	5.	1.01	0.25	0.23	20.5	4.28	381.1	0	6.6	1.25	
TISTMT			·		<u> </u>	<u>68.</u>	-3.		10.	10.	1.96	0.25	0.44	41.4	8.67	698.9	0	<u>7.9</u>	1.50	
TISTMT		0			0.	92.	38.		10.	20.	2.15	0.25	0.51		1.94	800.9	0	8.6		
TIHRSG		_			0.	-6.	19.	- ; -	10.	2.	0.84	0.25	0.08	17.5	3.67	345.5	0	6.7	1.28	
TIHRSG STIRL					0,	64.	-18.		10.	8.	1.76	0.25	0.31		0.07	798.3	0	8.9	1.71	
STIRL	10101 10101	128 80			<u>-128.</u>	68. 59.	<u>82.</u> 51.	· · · · ·	. 10.	10.	0.77	0.25	0.15	11.1	2.33	<u>173.1</u>	<u> </u>	6.5	1.24	
STIRL	10101				-80. O.	-60.	ວາ. 82.		10.	6.	0.70	0.25 0.25	0.20	9.3	1.95	160.7	0	5.7		130
STIRL	10101					-80. -21.	51.		10.	10.	0.77	0.25 0.25	0.15	11.1	2.33 1.95	173.3	0	5.7	1.08	
STIRL	10101				0.	-21. 68.	-20.		10.	6. 10.	0.70 1.44	0.25	0.20	9, 3 21, 9	1.95 4.58	160.8	6	5.2 5.5	0.99 1.05	
STIRL	10101				0.	100.	11.		10.	23.	1.43	0.25	0.38	28.1	5.87	340.5 323.2	<u>4</u>	5.0	0.95	
HEGT85			-		Ö.	68.	-41.		10.	23. 10.	1.69	0.25	0.18	35.4	7.40	500.5	0	7.6	1.45	
HEGT85		_				193.	-30.		10.	61.	3.34	0.25	0.10			482.4	ŏ	12.8	2.45	
HEGT60		0			0.	68.	-30. -39.		10.	10.	1.66	0.25	0.24	34.0		484.4	0	7.4	1.41	
HEGTGO		- 0				117.	-31.		10.	30.	2.12	0.25	0.24			476.1		9.1	1.73	
HEGTOO		ő			0.	68.	-40.		10.	30. 10.	1.56	0.25	0.19	31.2	6.54	444.5	Ö	7.0	1.34	
HEGTOO					o.	78.	-39.		10.	14.	1.41		0.19	33.4		419.9	Ö	6.9	1.31	
FCMCCL		ŏ			ŏ.	68.	-129.		10.	10.	1.72		0.40	29.8		483.1	Õ	8.6	1.64	65
FCMCCL		- ŏ	<u> </u>		ŏ.	107.	-77.		10.	26.	2.09		0.09	40.3		476.4	ö	8.5	1.63	
FCSTCL		ŏ			ŏ.	68.	-126.		10.	10.	1.73		0.39	29.0		474.6	ő	8.5	1.62	66
FCSTCL		ŏ			Ö.	146.	-16.		10.	42.	2.65		0.27			478.2	ő	8.4	1.61	
IGGTST		ō			ŏ.	68.	-138.		10.	10.	1.61		0.47	28.9	6.05	448.2	ò	8.5	1.63	57
GOTST		0			ō.	116.	-93.		10.	29.	1.64	0.25	0.06	40.4		412.3	0	8.2	1.36	94
GTSOAR	10101	0	. 118	. 0.	ο.	-50.	82.		10.	10.	0.71		0.22	10.6	2.22	166.2	5	5.3	1.00	
GTSOAR	10101	0	. 91	. 24.	ο.	-23.	58.		10.	7.	0.67	0.25	0.24	9.6	2.00	162.0	9	5.0	0.96	
GTACO8	10101	n	. 126	. 0.	0.	-58,	82.		10.	10.	0.68	0.25	0.16	9.6		155.0	2	5.4	1.03	
STACO8	10101	0	. 83	. 35.	0.	-15.	47.		10.	6.	0.63	0.25	9.21	6.3	1.74	149.7	11	4.9		
STAC12	10101	0	. 112	. 0.	0.	-44.	82.		10.	10.	0.68		0.25	9.8	,	157.8	9	5,0	0.95	
TAC12	10101	0	. 86	. 24.	0.	-18.	58.		10.	7.	0.65	0.25	0.27	8.8		153.2	12	4.8	0.91	
STAC16	10101	0	106	. 0.	0	-38,	82.		10.	10.	0.69	0.25	0.30	10.1		162.8	10	4.8	0.92	
TAC16	10101	0	. 89	. 17.	0.	-21.	65.		10.	8.	0.66	0.25	0.30	9.4		159,0	12	4.7	0.90	
GTWC16	10101	0	108	. 0.	Ο.	-40,	82.		10.	10.	0.70	0.25	0.28	10.4		162.9	9	5.0	0.95	146
STWC16	10101	0	95	. 13.	o.	-27.	69.		10.	8.	0.68	0.25	0.28	9.9	2.07	161.1	10	4.9	0.93	136
							4.5													

The property is a consequence of the property is a consequence o					FUEL US	E IN BT	U*10**6-												
Miles Mile										COGEN	MAD	POWER	FESR	CAPITAL	NORM	-\$/KH	ROI	LEVL	NORM WRTH
College 10 10 10 10 10 10 10 1	ECS	PROCS	DISTIL F	RESIDL	COAL	DISTIL	RESIDL	COAL							COST	EQVL		CHRG	ENRG
CC1622 10101 0. 124. 0. 0. -46. 116. 10. 14. 0.88 0.25 0.38 12.1 2.53 170.9 7 5.0 0.96 142 CC1622 10101 0. 13. 0. 0. -30. 82. 10. 10. 0.79 0.25 0.38 10.4 2.17 164. 10. 4.8 0.81 154 CC1622 10101 0. 113. 0. 0. -30. 82. 10. 10. 0.79 0.25 0.38 10.1 2.11 160.2 11. 47. 0.90 155 CC1222 10101 0. 112. 0. 0. -37. 104. 10. 13. 0.80 0.25 0.38 10.1 2.11 160.2 11. 47. 0.90 155 CC1222 10101 0. 112. 0. 0. -37. 104. 10. 13. 0.82 0.25 0.38 10.1 2.11 160.2 11. 47. 0.90 155 CC1222 10101 0. 112. 0. 0. -37. 104. 10. 13. 0.82 0.25 0.38 10.1 2.11 160.2 11. 47. 0.90 155 CC1222 10101 0. 94. 0. 0. -26. 83. 10. 10. 0.79 0.25 0.38 10.3 2.14 164.9 12. 4.6 0.88 157 CC0622 10101 0. 95. 0. 0. -26. 83. 10. 10. 0.79 0.25 0.38 10.3 2.16 165.1 12. 4.6 0.88 157 0.88 10.1 0. 0.98 0.25 0.38 10.3 0.5 0	551558	- 12121											<u> </u>		- AA	100 0			0.00 150
CC1622 10101 0 . 98. 0 . 030. 82. 10. 10 . 0.79 0.25 0.35 10.4 2.17 164.0 10 4.8 0.81 154 CC1622 10101 0 . 113. 0 . 038. 104. 10 . 13 . 0.86 0.25 0.37 11.3 2.37 167.9 9 4.8 0.92 144 CC1222 10101 0 . 112. 0 . 030. 62. 10. 10 . 0.78 0.25 0.37 11.3 2.37 167.9 9 4.8 0.92 144 CC1222 10101 0 . 112. 0 . 037. 104. 10 . 13 . 0.92 0.25 0.37 11.0 2.30 163.5 10 4.8 0.91 145 CC0622 10101 0 . 94. 0 . 026. 82. 10 . 10 . 0.78 0.25 0.37 11.0 2. 2.14 164.9 12 4.6 0.88 157 CC0622 10101 0 . 95. 0 . 026. 82. 10 . 10 . 0.79 0.25 0.39 10.3 2.18 165.1 12 4.6 0.88 157 CC0622 10101 0 . 95. 0 . 026. 83. 10 . 10 . 0.79 0.25 0.39 10.3 2.18 165.1 12 4.6 0.88 157 CC0622 10101 0 . 192. 0 . 064. 82. 10 . 10 . 0.79 0.25 0.39 10.3 2.18 165.1 12 4.6 0.88 147 STIGIS 10101 0 . 124. 0 . 050. 82. 10 . 10 . 10 . 0.79 0.25 0.12 10.7 2.23 146.1 0 . 6.8 1.10 130 131 131 131 131 131 131 131 131 1							•									-	-		
CC1622 1010 0												- +					-		
Col Col Col Col Col Col Col																			
CC1222 10101																			
CC0082 10101 0. 94. 0. 026. 82. 10. 10. 0.78 0.25 0.37 10.2 2.14 184.9 12 4.6 0.88 147 151 151 151 152 146 0.88 147 151 151 151 152 146 0.88 147 151 151 151 152 146 0.88 147 151 151 151 152 146 0.88 147 151 151 151 152 146 0.88 147 151 151 151 151 152 146 0.88 147 151				177					-										
COORDINATION COOR			- •			A			-										
STIGIS 10101 0. 132,																			
STIGIS 10101 0. 2846. 0. 02023. 2609. 10. 318. 5.91 0.25 0.17 97.7 20.44 12.4 0. 42.2 8.06 240 STIGIO 10101 0. 278. 0. 056. 62. 10. 10. 27. 0.25 0.18 10.2 2.14 144.5 1 5.4 8.04 15.5 10.2 10.101 0. 278. 0. 0164. 241. 10. 29. 1.09 0.25 0.22 16.0 3.55 137.8 0 7.3 1.40 119 1			Ō.		Ō.	o.		82.		10.		0.25		10.7			0	8.8	1.10 130
STIGIO 10101 0. 124. 0. 056. 82. 10. 10. 0. 77 0.25 0.18 10.2 2.14 144.5 1 5.4 1.04 136 STIGIO 10101 0. 278. 0. 0164. 241. 10. 29 1.09 0.25 0.22 16.0 3.55 137.8 0 7.3 1.40 136 STIGIO 10101 0. 120. 0. 052. 82. 10. 10. 10. 0.76 0.25 0.22 16.0 3.55 137.8 0 7.3 1.40 136 DEADW3 10101 0. 110. 0. 10. 070. 42. 82. 10. 10. 10. 0.80 0.25 0.23 12.2 2.55 142.6 0 6.0 1.14 138 DEADW3 10101 0. 110. 0. 0742. 82. 10. 10. 10. 0.82 0.25 0.27 13.3 2.78 198.5 3 5.4 1.04 143 10. 17 0. 1010 0. 101						0.											0	42.2	
STIGIS 10 10 0 120 0 0 -52 82 10 10 0 76 0 25 0 20 10 0 2 10 144 0 4 5 3 1 2 39											:						1		
STIGIS 10101 0, 176, 0 0, -90, 142, 10, 17, 0,99	STIGIO	10101	0.	279.	O.	0.	<u>-164</u> ,	241.	10.		1.09	0.25	0.22	16.0		137.8	0		
DEADW3 10101 0. 110. 0. 0. -42. 82. 10. 10. 0. 0. 20.25 0.27 13.3 2.78 198.5 3 5.4 1.04 143	STIGIS	10101	Ō.	120.	0.	0.	-52.	82.	10.	10.		0.25	0.20		2.10	144.0	4	5.3	1.02 139
DEADV3 10101 0, 159, 0, 0, -73, 142, 10, 17, 0, 94 0, 25 0, 30 16, 6 3, 48 205, 4 0 6, 0 1, 14 133 135 DEHTPM 10101 0, 97, 0, 0, -29, 82, 10, 10, 0, 84 0, 25 0, 35 13, 0 2, 73 212, 9 6 5, 1 0, 97 152 DEHTPM 10101 0, 88, 10, 0, -20, 72, 10, 9, 0, 82 0, 25 0, 34 12, 5 2, 62 210, 6 7 5, 0 0, 96 141 DESOA3 10101 106, 0, 0, -116, 68, 62, 10, 10, 0, 0, 25 0, 27 21, 3 4, 47 239, 9 0, 6, 2 142	STIGIS	10101	Ο.	176.	Ο.	0.			10.								_		**
DEHTPM 10101 0, 97, 0, 0, -29, 82, 10, 10, 0, 84, 0, 25, 0, 35, 13, 0, 2, 73, 212, 9, 6, 5, 1, 0, 97, 152 DESORA 10101 116, 0, 0, -116, 68, 82, 10, 10, 0, 84, 0, 25, 0, 23, 13, 9, 2, 91, 203, 3, 0, 6, 4, 1, 23, 142 DESORA 10101 106, 0, 0, -186, 92, 162, 10, 20, 1, 00, 0, 0, 25, 0, 27, 21, 3, 4, 47, 299, 9, 0, 82, 1, 58, 134 DESORA 10101 0, 116, 0, 0, -48, 82, 10, 10, 0, 84, 0, 25, 0, 23, 13, 9, 2, 91, 203, 3, 0, 5, 7, 10, 91, 39 DESORA 10101 0, 186, 0, 0, -94, 162, 10, 20, 1, 00, 0, 0, 0, 0, 0, 117, 0, 0, -117, 68, 82, 10, 10, 0, 67, 0, 25, 0, 22, 13, 4, 47, 299, 9, 0, 7, 0, 13, 31, 28 GTSORD 10101 117, 0, 0, -117, 68, 82, 10, 10, 0, 67, 0, 25, 0, 22, 13, 34, 47, 239, 9, 0, 7, 0, 13, 31, 28 GTSORD 10101 179, 8, 27, -79, 60, 55, 10, 7, 0, 64, 0, 25, 0, 22, 9, 3, 1, 95, 149, 0, 0, 5, 8, 11, 1146, 0, 100, 1010 DESORA 10101 102, 0, 0, -98, 68, 62, 10, 10, 0, 72, 0, 25, 0, 34, 11, 0, 2, 30, 173, 8, 2, 5, 3, 1, 02, 136, 0, 10101 DESORA 10101 102, 0, 0, -102, 70, 88, 10, 11, 0, 73, 0, 25, 0, 35, 11, 3, 2, 36, 174, 9, 2, 5, 4, 1, 03, 156, 0, 10101 DESORA 10101 102, 0, 0, -101, 69, 87, 10, 11, 0, 73, 0, 25, 0, 35, 11, 3, 2, 36, 174, 9, 2, 5, 4, 1, 03, 156, 0, 134, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	DEADV3	10101	Ο,		0.	0.			10.								-		
DESONAS 10101 116. 0. 0116. 68. 82. 10. 10. 0. 82. 0.25 0.34 12.5 2.62 210.6 7 5.0 0.96 141 DESONAS 10101 116. 0. 0116. 68. 82. 10. 10. 0. 84 0.25 0.23 13.9 2.91 203.3 0 6.4 1.23 142 DESONAS 10101 0. 116. 0. 048. 82. 10. 10. 0. 84 0.25 0.27 21.3 4.47 239.9 0 6.2 1.56 134 DESONAS 10101 0. 186. 0. 094. 162. 10. 20. 1.08 0.25 0.27 21.3 4.47 239.9 0 7.0 1.33 128 GTSONAD 10101 117. 0. 0117. 68. 82. 10. 10. 0. 84 0.25 0.27 21.3 4.47 239.9 0 7.0 1.33 128 GTSONAD 10101 79. 8. 2779. 60. 55. 10. 7. 0.64 0.25 0.22 9.3 1.95 149.0 0 5.8 1.11 146 GTRANAB 10101 98. 0. 098. 68. 82. 10. 10. 0. 67 0.25 0.22 9.3 1.95 149.0 0 5.8 1.02 149.0 GTRANAB 10101 102. 0. 0102. 70. 88. 10. 11. 0. 72 0.25 0.34 11.0 2.30 173.8 2 5.4 1.03 156 GTRANAB 10101 109. 0. 098. 60. 82. 10. 10. 0. 72 0.25 0.35 11.3 2.36 174.9 2 3.4 1.05 149.0 GTRANAB 10101 101. 0. 0101. 69. 87. 10. 11. 0. 72 0.25 0.35 11.0 2.30 174.9 2 3.4 1.02 156 GTRANAB 10101 109. 0. 0101. 69. 87. 10. 11. 0. 72 0.25 0.35 11.0 2.30 174.9 2 3.4 1.03 156 GTRANAB 10101 98. 0. 098. 68. 82. 10. 10. 0. 72 0.25 0.35 11.0 2.30 174.9 2 3.4 1.03 156 GTRANAB 10101 101. 0. 0101. 69. 87. 10. 11. 0. 72 0.25 0.35 11.0 2.30 174.9 2 3.4 1.03 156 GTRANAB 10101 109. 0. 0101. 69. 87. 10. 11. 0. 72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 156 GTRANAB 10101 98. 0. 098. 68. 82. 10. 10. 0. 72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 156 GTRANAB 10101 99. 0. 0107. 68. 82. 10. 10. 0. 72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 156 GTRANAB 10101 99. 0. 0107. 68. 82. 10. 10. 0. 72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTRANAB 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 145 GTRANAB 10101 92. 3. 992. 65. 75. 10. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.																			
DESOA3 10101 116,			- •																
DESOA3 10101 106, 0, 0, -186, 92, 162, 10, 20, 1,08 0,25 0,27 21,3 4,47 239,9 0 8,2 1,58 134 DESOA3 10101 0, 186, 0, 0, -94, 162, 10, 20, 1,08 0,25 0,27 21,3 4,47 239,9 0 7.0 1,33 128 GYSOAD 10101 117, 0, 0, -117, 68, 82, 10, 10, 0,67 0,25 0,27 21,3 4,47 239,9 0 7.0 1,33 128 GYSOAD 10101 79, 8, 27, -79, 60, 55, 10, 7, 0,64 0,25 0,22 9,3 1,95 149,0 0 5,8 1,11 146 161,0 10, 0,67 0,25 0,24 8,4 1,76 146,2 2 5,3 1,02 136 141,0 10, 0,67 0,25 0,24 8,4 1,76 146,2 2 5,3 1,02 136 141,0 10, 0,67 0,25 0,24 8,4 1,76 146,2 2 5,3 1,02 136 141,0 10, 0, 0, -99, 68, 82, 10, 10, 0,72 0,25 0,34 11,0 2,30 173,8 2 5,4 1,03 156 141,0 10, 0, 0, -99, 60, 92, 10, 10, 0,72 0,25 0,35 11,3 2,36 144,9 2 5,4 1,02 156 141,0 10, 0, 0, -101, 69, 87, 10, 11, 0,72 0,25 0,35 11,3 2,36 144,9 2 5,4 1,03 156 141,0 10, 0, 0, -101, 69, 87, 10, 11, 0,72 0,25 0,35 11,3 2,37 100,0 2 5,4 1,03 156 141,0 10, 98, 0, 0, -98, 68, 82, 10, 10, 0,72 0,25 0,35 11,3 2,37 100,0 2 5,4 1,03 156 141,0 10, 0, 0, -101, 69, 87, 10, 11, 0,72 0,25 0,35 11,3 2,37 100,0 2 5,4 1,03 156 141,0 10, 98, 0, 0, -98, 68, 82, 10, 10, 0,72 0,25 0,35 11,3 2,37 100,0 2 5,4 1,03 156 141,0 10, 98, 0, 0, -98, 68, 82, 10, 10, 0,72 0,25 0,35 11,3 2,37 100,0 2 5,4 1,03 156 141,0 10, 10, 10, 10, 10, 10, 10, 10, 10,																			
DESOA3 10101 0. 116. 0. 048. 82. 10. 10. 0. 84 0.25 0.23 13.9 2.91 203.3 0 5.7 1.09 139 DESOA3 10101 0. 186. 0. 094. 162. 10. 20. 1.08 0.25 0.27 21.3 4.47 239.9 0 7.0 1.33 128 GTSOAD 10101 117. 0. 0117. 68. 82. 10. 10. 0.67 0.25 0.27 21.3 4.47 239.9 0 7.0 1.33 128 GTSOAD 10101 117. 0. 0117. 68. 82. 10. 10. 0.67 0.25 0.22 9.3 1.95 149.0 0 5.8 1.11 146 GTSOAD 10101 79. 8. 2779. 60. 55. 10. 7. 0.64 0.25 0.24 8.4 1.76 146.2 2 5.3 1.02 136 OTRAOB 10101 98. 0. 098. 68. 82. 10. 10. 0. 72 0.25 0.34 11.0 2.30 173.8 2 5.4 1.03 156 GTRAOB 10101 98. 0. 098. 66. 82. 10. 10. 0. 73 0.25 0.35 11.3 2.36 174.9 2 9.4 1.04 145 GTRA12 10101 99. 0. 0101. 69. 87. 10. 11. 0.73 0.25 0.35 11.0 2.30 174.1 3 5.4 1.02 136 GTRA12 10101 99. 0. 0101. 69. 87. 10. 11. 0.72 0.25 0.35 11.0 2.30 174.1 3 5.4 1.02 136 GTRA16 10101 98. 0. 098. 68. 82. 10. 10. 0. 72 0.25 0.35 11.3 2.34 175.1 2 5.4 1.03 146 GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0. 72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0. 72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTR20B 10101 107. 0. 0107. 68. 82. 10. 10. 0. 70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR20B 10101 99. 0. 0103. 68. 82. 10. 10. 0. 70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR212 10101 103. 0. 0103. 68. 82. 10. 10. 0. 70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR216 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 145 GTR212 10101 103. 0. 0103. 68. 82. 10. 10. 0. 70 0.25 0.39 11.0 3 2.16 167.5 2 5.4 1.03 145 GTR216 10101 92. 2. 792. 66, 75. 10. 9. 0. 69. 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 145 GTR216 10101 92. 2. 792. 66, 75. 10. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.																	-		
DESGAR 10101 0																			
OTSOAD 10101 117. 0. 0. -117. 68. 82. 10. 10. 0.67 0.25 0.22 9.3 1.95 149.0 0 5.8 1.11 146 GISOAD 10101 79. 8. 27. -79. 60. 55. 10. 7. 0.64 0.25 0.24 8.4 1.76 146.2 2. 5.3 1.02 136									•								_		
GTRAOB 10101 79. 8. 2779. 60. 55. 10. 7. 0.64 0.25 0.24 8.4 1.76 146.2 2 5.3 1.02 136 0TRAOB 10101 98. 0. 098. 68. 82. 10. 10. 0.72 0.25 0.34 11.0 2.30 173.8 2 5.4 1.03 156 0TRAOB 10101 102. 0. 0102. 70. 88. 10. 11. 0.73 0.25 0.35 11.3 2.36 174.9 2 5.4 1.03 156 0TRA12 10101 98. 0. 098. 60. 82. 10. 10. 0.72 0.25 0.35 11.0 2.30 174.1 3 5.4 1.02 156 0TRA12 10101 98. 0. 098. 68. 82. 10. 10. 0.72 0.25 0.35 11.0 2.30 174.1 3 5.4 1.03 156 0TRA16 10101 98. 0. 098. 68. 82. 10. 10. 0.72 0.25 0.35 11.2 2.34 175.1 2 5.4 1.03 156 0TRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 156 0TRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 0TR20B 10101 89. 4. 1489. 64. 68. 10. 8. 0.68 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 0TR20B 10101 103. 0. 0103. 68. 82. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 0TR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 0TR216 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 0TR216 10101 107. 0. 0101. 68. 82. 10. 10. 0.71 0.25 0.31 10.7 2.24 169.3 0 5.5 1.05 154 0TR216 10101 107. 0. 0107. 68. 82. 10. 10. 0.71 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 0TR216 10101 101. 0. 0104. 68. 82. 10. 10. 0.71 0.25 0.31 10.9 2.29 173.6 1 5.5 1.05 154 0TR216 10101 107. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 0TRW10 10101 125. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 0TRW10 10101 124. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 11.4 2.32 168.8 0 5.7 1.09 150 0TRW10 10101 124. 0. 0124. 76. 108. 10. 10. 0.72 0.25 0.33 12.3 2.57 173.4 0 5.8 1.11 142 0TRW16 10101 104. 0. 0114. 68. 82. 10. 10. 0.72 0.25 0.33 12.3 2.57 173.4 0 5.8 1.11 142 0TRW16 10101 118. 0. 0118. 74. 101. 12. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.						- •	4 77 77 7										•		
GIRAOB 10101 98. 0. 098. 68. 62. 10. 10. 0.72 0.25 0.34 11.0 2.30 173.8 2 5.4 1.03 156 GTRAOB 10101 102. 0. 0102. 70. 88. 10. 11. 0.73 0.25 0.35 11.3 2.36 174.1 3 5.4 1.02 156 GTRA12 10101 98. 0. 098. 60. 62. 10. 10. 0.72 0.25 0.35 11.0 2.30 174.1 3 5.4 1.02 156 GTRA12 10101 101. 0. 0101. 69. 87. 10. 11. 0.72 0.25 0.35 11.0 2.30 174.1 3 5.4 1.02 156 GTRA16 10101 98. 0. 098. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 146 GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 145 GTR208 10101 107. 0. 0107. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 145 GTR208 10101 89. 4. 1489. 64. 68. 10. 10. 0.72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTR208 10101 89. 4. 1489. 64. 68. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.39 1.0 10. 2.24 169.3 0 5.5 1.06 153 GTR216 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.3 2.66 163.0 2 5.4 1.03 142 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.69 0.25 0.31 10.3 2.29 173.6 1 5.5 1.05 154 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.70 0.25 0.32 10.6 2.29 173.6 1 5.5 1.05 154 GTR216 10101 125. 0. 0107. 68. 82. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTR216 10101 125. 0. 0107. 68. 82. 10. 10. 0.72 0.25 0.39 11.1 2.32 168.8 0 5.7 1.09 150 GTR216 10101 125. 0. 0107. 68. 82. 10. 10. 0.72 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTR226 10101 124. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 12.1 2.32 168.8 0 5.7 1.09 150 GTR226 10101 124. 0. 0125. 75. 106. 10. 10. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 43 GTR226 10101 104. 0. 0124. 76. 108. 10. 10. 0.77 0.25 0.33 12.3 2.57 177.8 0 5.0 1.14 141 GTR226 10101 104. 0. 0. 0124. 76. 108. 10. 10. 0.77 0.25 0.33 12.3 2.57 177.8 0 5.0 1.12 143 GTR226 10101 118. 0. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.0 1.12 143 GTR226 10101 110. 0. 0110. 68. 82. 10. 10. 0.77 0.25 0.33 12.3 2.57 177.8 0 5.0 1.12 143 GTR226 10101 110. 0. 0110. 68.							- 1. T. T.										_		
GTRA08 10101 102. 0. 0102. 70. 88. 10. 11. 0.73 0.25 0.35 11.3 2.36 174.9 2 5.4 1.64 145 GTRA12 10101 98. 0. 098. 60. 82. 10. 10. 0.72 0.25 0.35 11.0 2.30 174.1 3 5.4 1.02 156 GTRA12 10101 101. 0. 0101. 69. 87. 10. 11. 0.72 0.25 0.36 11.2 2.34 175.1 2 5.4 1.03 146 GTRA16 10101 98. 0. 098. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 146 GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 145 GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTR208 10101 107. 0. 0107. 68. 82. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR212 10101 103. 0. 0103. 68. 82. 10. 10. 0.71 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR212 10101 103. 0. 0103. 68. 82. 10. 10. 0.71 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR216 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTRV08 10101 107. 0. 0101. 68. 82. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.70 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 GTRW08 10101 125. 0. 0125. 75. 106. 10. 10. 0.72 0.25 0.31 11.1 2.32 168.8 0 5.7 1.09 150 GTRW12 10101 104. 0. 0125. 75. 106. 10. 10. 0.72 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW16 10101 104. 0. 0124. 76. 108. 10. 10. 0.72 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0124. 76. 108. 10. 10. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0118. 74. 101. 10. 0. 0. 77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 118. 0. 0118. 74. 101. 10. 0. 0. 71 0.25 0.33 12.3 2.57 173.4 0 5.8 1.10 142 GTRW16 10101 118. 0. 0118. 74. 101. 10. 0. 0. 71 0.25 0.33 12.3 2.57 173.4 0 5.8 1.10 142 GTRW16 10101 118. 0. 0118. 74. 101. 10. 0. 0. 71 0.25 0.33 12.3 2.57 173.4 0 5.8 1.10 142 GTRW16 10101 110. 0. 0118. 74. 101. 10. 0. 0. 71 0.25 0.33 12.3 2.57 173.4 0 5.8 1.10 142 GTRW16 10101 110. 0. 0118.																			
GTRA12 10101 98. 0. 098. 60. 82. 10. 10. 0.72 0.25 0.35 11.0 2.30 174.1 3 5.4 1.02 156 GTRA12 10101 101. 0. 0101. 69. 87. 10. 11. 0.72 0.25 0.36 11.2 2.34 175.1 2 5.4 1.03 146 10101 98. 0. 098. 68. 82. 10. 10. 0. 72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 145 GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTR208 10101 107. 0. 0107. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTR208 10101 103. 0. 0103. 68. 82. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR208 10101 103. 0. 0103. 68. 82. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR212 10101 103. 0. 0103. 68. 82. 10. 10. 0.71 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR216 10101 101. 0. 0101. 68. 82. 10. 10. 0.71 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.69 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0.72 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 GTRW08 10101 125. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 124. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 11.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 124. 0. 0124. 76. 108. 10. 10. 0.72 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.4 2.32 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.6 1.08 152 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.6 1.08 152 GTRW16 10101 104. 0. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.12 143 GTRW16 10101 110. 0. 0110. 68. 82. 10. 10. 0.77 0.25 0.33 12.3 2.57 177.8 0 5.8 1.12 143 GTRW16 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 145				- •							., ,/								
GTRA12 10101 101. 0. 0101. 69. 87. 10. 11. 0.72 0.25 0.36 11.2 2.34 175.1 2 5.4 1.03 146 GIRA16 10101 98. 0. 098. 68. 62. 10. 10. 0.72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 156 GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTR208 10101 107. 0. 0107. 68. 82. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR208 10101 89. 4. 1489. 64. 68. 10. 10. 8. 0.68 0.25 0.29 9.8 2.06 163.0 2 5.4 1.03 140 GTR212 10101 103. 0. 0103. 68. 82. 10. 10. 0. 0.71 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.7 2.24 169.3 0 5.5 1.05 154 GTR216 10101 101. 0. 0101. 68. 82. 10. 10. 0.71 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.71 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 143 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0.72 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 GTRW12 10101 125. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.1 2.32 168.8 0 5.7 1.09 150 GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 118. 0. 0110. 68. 82. 10. 10. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 118. 0. 0110. 68. 82. 10. 10. 0.77 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.77 0.25 0.25 0.31 11.4 2.36 175.3 0 5.6 1.08 152 GTRW16 10101 110. 0. 0110. 68. 82. 10. 10. 0.77 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148 GTR308 10101 110. 0. 0.																			
GIRA16 10101 98. 0. 098. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 100.0 2 5.4 1.03 156 GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTR208 10101 107. 0. 0107. 68. 82. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR208 10101 89. 4. 1489. 64. 68. 10. 8. 0.68 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR212 10101 103. 0. 0103. 68. 82. 10. 10. 10. 0.71 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.69 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0.71 0.25 0.31 10.3 2.29 173.6 1 5.5 1.05 154 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0. 71 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0. 72 0.25 0.29 11.1 2.32 168.8 0 5.7 1.09 150 GTRW12 10101 125. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 124. 0. 0124. 76. 108. 10. 10. 0.72 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0. 77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0. 77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0. 77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0. 77 0.25 0.33 12.3 2.57 173.4 0 5.8 1.10 145 GTRW16 10101 104. 0. 0110. 68. 82. 10. 10. 10. 0.76 0.25 0.33 12.3 2.57 173.4 0 5.8 1.10 145 GTRW16 10101 104. 0. 0110. 68. 82. 10. 10. 10. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.10 145 GTRW16 10101 110. 0. 0110. 68. 82. 10. 10. 0. 77 0.25 0.33 12.3 2.57 177.8 0 5.8 1.10 145 GTRW16 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.25 0.37 12.3 2.57 177.8 0 5.8 1.10 145 GTRW16 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.25 0.37 12.3 2.57 177.8 0 5.8 1.10 145 GTRW16 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 145																	_		
GTRA16 10101 97. 0. 197. 68. 82. 10. 10. 0.72 0.25 0.35 11.3 2.37 179.8 2 5.4 1.03 145 GTR208 10101 107. 0. 0107. 68. 82. 10. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR208 10101 103. 0. 0103. 68. 82. 10. 10. 8. 0.68 0.25 0.29 9.8 2.06 163.0 2 5.4 1.03 140 GTR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.7 2.24 169.3 0 5.5 1.05 154 GTR216 10101 101. 0. 0101. 68. 82. 10. 10. 0.71 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.70 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.70 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0. 72 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 GTRW18 10101 125. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 11.1 2.32 168.8 0 5.7 1.09 150 GTRW12 10101 104. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW12 10101 124. 0. 0124. 76. 108. 10. 10. 13. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 13. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0110. 68. 82. 10. 10. 0.73 0.25 0.31 11.4 2.36 175.3 0 5.6 1.08 152 GTRW16 10101 104. 0. 0110. 68. 82. 10. 10. 12. 0.76 0.25 0.33 12.3 2.57 173.4 0 5.8 1.10 146 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.33 12.3 2.57 173.4 0 5.8 1.11 148 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 10. 0.71 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 148 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 10. 0.71 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 148 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 10. 0.71 0.25 0.37 10.6 2.21 159.1 0 5.8 1.11 148 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.37 10.6 2.21 159.1 0 5.8 1.11 148 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.37 10.6 2.21 159.1 0 5.8 1.11 148 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.37 10.6 2.21 159.1 0 5.8 1.11 148 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.37 10.6 2.21 159.1 0 5.8 1.11 148																			
GTR208 10101 107. 0. 0107. 68. 62. 10. 10. 0.70 0.25 0.29 10.4 2.19 165.5 0 5.6 1.07 151 GTR208 10101 89. 4. 1489. 64. 68. 10. 8. 0.68 0.25 0.29 9.8 2.06 163.0 2 5.4 1.03 140 GTR212 10101 103. 0. 0103. 68. 82. 10. 10. 10. 0.71 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTR208 10101 101. 0. 0101. 68. 82. 10. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.70 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0. 72 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 153 GTRW08 10101 125. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 10. 0.72 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 124. 0. 0104. 68. 82. 10. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 10. 0.72 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 175.3 0 5.6 1.08 152 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 175.3 0 5.6 1.08 152 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 175.3 0 5.6 1.08 152 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.11 148				- •														,	
GTR208 10101 89. 4. 14. -89. 64. 68. 10. 8. 0.68 0.25 0.29 9.8 2.06 163.0 2 5.4 1.03 140 GTR212 10101 103. 0. 0. -103. 68. 82. 10. 10. 0.71 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR212 10101 92. 3. 9. -92. 65. 73. 10. 9. 0.69 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTR216 10101 101. 0. 0. -101. 68. 82. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.03 143 GTRW08 10101 107. 0. </td <td></td>																			
GTR212 10101 103. 0. 0103. 68. 62. 10. 10. 0.71 0.25 0.31 10.7 2.24 169.3 0 5.5 1.06 153 GTR212 10101 92. 3. 992. 65. 73. 10. 9. 0.69 0.25 0.31 10.3 2.16 167.5 2 5.4 1.03 142 GTR308 10101 101. 0. 0104. 68. 82. 10. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 1.05 154 1.05 1010 101. 0. 0107. 68. 82. 10. 10. 9. 0.70 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 1010 107. 0. 0107. 68. 82. 10. 10. 0. 0.72 0.25 0.29 11.1 2.32 168.8 0 5.7 1.09 150 150 150 150 150 150 150 150 150 150																	2		
GTR216 10101 101. 0. 0101. 68. 82. 10. 10. 0.71 0.25 0.33 10.9 2.29 173.6 1 5.5 1.05 154 GTR216 10101 92. 2. 792. 66. 75. 10. 9. 0.70 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0. 72 0.25 0.29 11.1 2.32 168.8 0 5.7 1.09 150 GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 13. 0.76 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 124. 0. 0124. 76. 108. 10. 10. 13. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 13. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0118. 74. 101. 10. 12. 0.76 0.25 0.31 11.4 2.36 175.3 0 5.6 1.08 152 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148	GTR212	10101	103.	0.	0.	-103.	68.	82.	10.	10.	0.71	0.25	0.31	10.7	2.24	169.3	0	5.5	1.06 153
GTR216 10101 92. 2. 792. 66, 75. 10. 9. 0.70 0.25 0.32 10.6 2.21 171.9 2 5.4 1.03 143 9TRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0.72 0.25 0.29 11.1 2.32 168.8 0 5.7 1.09 150 GTRW08 10101 125. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 104. 0. 0124. 76. 108. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW12 10101 124. 0. 0124. 76. 108. 10. 10. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 10. 0.73 0.25 0.31 11.4 2.38 175.3 0 5.6 1.08 152 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142	GTR212	10101	92.	3.	9.	-92.	65.	73.	10.	9.	0.69	0.25	0.31	10.3	2.16	167.5	2	5.4	1.03 142
GTRW08 10101 107. 0. 0107. 68. 82. 10. 10. 0.72 0.25 0.29 11.1 2.32 168.8 0 5.7 1.09 150 GTRW08 10101 125. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW12 10101 124. 0. 0124. 76. 108. 10. 10. 13. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 10. 0.73 0.25 0.31 11.4 2.32 170.7 0 5.6 1.08 152 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148	GTR216	10101			. 711		68.		10.								•	5.5	
GTRWO8 10101 125. 0. 0125. 75. 106. 10. 13. 0.76 0.25 0.31 12.2 2.54 170.9 0 6.0 1.14 141 GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW12 10101 124. 0. 0124. 76. 108. 10. 13. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0.73 0.25 0.31 11.4 2.32 175.3 0 5.6 1.08 152 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148																			
GTRW12 10101 104. 0. 0104. 68. 82. 10. 10. 0.72 0.25 0.31 11.1 2.32 170.7 0 5.6 1.07 152 GTRW12 10101 124. 0. 0124. 76. 108. 10. 13. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0.73 0.25 0.31 11.4 2.32 175.3 0 5.6 1.08 152 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148																	_		
GTRW12 10101 124. 0. 0124. 76. 108. 10. 13. 0.77 0.25 0.33 12.3 2.57 173.4 0 5.9 1.12 143 GTRW16 10101 104. 0. 0104. 68. 82. 10. 10. 0.73 0.25 0.31 11.4 2.38 175.3 0 5.6 1.08 152 GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148														_			_		
GTRWIG 10101 104. 0. 0104. 68. 82. 10. 10. 0.73 0.25 0.31 11.4 2.38 175.3 0 5.6 1.08 152 GTRWIG 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148				•													_		
GTRW16 10101 118. C. 0118. 74. 101. 10. 12. 0.76 0.25 0.33 12.3 2.57 177.8 0 5.8 1.11 142 GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148																			
GTR308 10101 110. 0. 0110. 68. 82. 10. 10. 0.71 0.25 0.27 10.6 2.21 159.1 0 5.8 1.10 148								•									_		
																	-		
1GTR308 10101 108. 1. 2103. 68. 80. 10. 10. 0.71 0.25 0.27 10.5 2.20 159.0 0 5.7 1.09 138			108.	1.		-103.	68.	82. 80.	10.	10.	0.71	0.25 0.25	0.27	10.5		159.1	Ö	5.7	1.09 138
1 2, 100, 00, 10, 10, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 0, 2, 20 103,0 0 3,7 1,08 130		10101		<u> </u>	<u>_</u>	1001	00.		10.	- 10.	<u> </u>	<u> </u>	J. E.	10.5	2.20	103.0	<u>~</u> _	<u> </u>	1.08 130

6.4 1.23 155

8.2 1.56 148

DATE 06/09/7 SE-ENGR

FCMCDS 10101

FCMCDS 10101

104.

159.

0.

٥.

0.

0.

-104.

-159.

68.

91.

82.

157.

GENERAL ELL_IRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH EC3 PROCS DISTIL RESIDE COAL DISTIL RESIDE COAL REOD POWER /HEAT COST COST EQVL CHRG ENRG RATIO *10**6 MW MW GTR312 10101 103. O. -103. 0.71 10.7 5.5 1.06 153 10. 10. 0.25 0.31 2.23 164.8 9TR312 10101 109. Ο. Ο. -109. 70. 89. 10. 11. 0.72 0.25 0.32 2.30 165.6 5.6 1.07 143 11.0 0 -104. GTR316 10101 104. 0. 68. 82. 0.72 0.25 5.6 1.07 152 0. 10. 10. 0.31 11.0 2.30 169.4 GTR316 10101 108. 0. -108. 70. 88. 10. 11. 0.73 0.25 0.32 11.3 2.36 170.2 5.6 1.08 142 FCPADS 10101 115. O. -115. 68. 82. 10. 10. 0.25 0.23 11.7 2.45 171.3 6.9 1.32 148 0 **FCPADS 10101** 218. 0. -218. 103. 199. 10. 24. 3.02 0.25 0.28 199.7 10.2 1.95 142 0. 19.6 4.11 0

10.

19.

1.47 0.25 0.31

2.37 0.25 0.36

12.1

17.4

2.54

3.64

186.9

214.9

0

0

10.

10.

DATE 06/08/79 18SE-PEO-ADV-DES-ENGR

				FUEL USE	IN BTO	J*10**6-			 											
ECS F	PROCS D	**COG DISTIL R			E** **NO DISTIL	COGEN - RESIDL	COGEN		POWER REQD MV	COGEN POWER MW	O&M	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM	\$/KW EQVL	ROI (%)	CHRG	NORM WR	TH
ONOCGN	10102	0.	556,	246.	Ō.	o.	0.		30.	0.	0.74	0.25	0.	14.6		103,1	0	25.6	1.00	80
STM141	10102	Ο.	602.	3.	0.	-46.	243.		30.	30.	0.98	0.25	0.25	19.0	1,30	107.7	55	20.6	0.81 1:	39
STM141	10102	0.	1.	604.	0.	555.	-358.	F	30.	30.	2.01	0.25	0.25	34.5	2.37	195.9	30	16.0	0.63 1	22
STM141	10102	О.	1.	604.	0.	555,	-358.	_A	30.	30.	1.95	0,25	0.25	29.8	2.04	169,1	38	15.4	0.60 1	
S111038	10102	0.	591,	61.	0,	-35.	185.		30.	23.	0.93	9,25	0.19	17.2	1.18	102.2	67	21.8	0.65 1	34
ST11088		О.	18,	634.	Ο.	538.	-388.	-	30.	23.	1.89	0.25	0.19	32.1	2.21	191.5	29	17.3	0.68 1	16
STMOSS		Ο.	18.	634.	0.	538.	-388.	A	30.	23.	1.75	0.25	0.19	23.4	1.60	139.2	54	16.3	0.64 1	22
PFBSTM		0.	0.	606.	0.	556.	-359.		30.	30.	3.12	0.25	0.25	42.4	2.91	239.1	20	<u> 17.9</u>	0.70 1	
PFBSTM		Ο,	0.	669.	0.	594.	-296.		30.	45.	3,13	0.25	0.31	41.0	2.81	209.0	25	16.0	0.63 1	
TISTMT		0.	606.	o.	ο.	-50.	246.		30.	30.	2.40	0.25	0.24	65.9	4.52	371.3	2	27.2	1.08 1	
TISTMT		0.	728.	0.	o.	-99.	490.		30.	60.	3.11	0.25	0.35	101.7		477.0	0	29.8	1.17 1	
TISTMT		0.	<u>o.</u>	606.	0,	<u>556.</u>	<u>-359.</u>		30.	30.	3.78	0.25	0.24	91.4	6.28	515.1	6	23.9	0.94 1	
TISTMT		Ō.	0.	728.	0.	629.	-238,		30.	60.	4,45	0.25	0.35	128.5		602.4	5	25.2	0.98 13	
TIHRSO		0.	627.	38.	0.	-71.	208.		30.	25.	2.52	0.25	0.17	84.9		470.5	0	30.8	1.21 1	
TIHRSG		0.	11.	654.	0.	545.	-407.		30.	25	3.72	0.25	0.17	108,6	7.45	601.8	3	27.3	1.07 1	
STIRL	10102	657.	0.	<u> </u>	<u>-657.</u>	556.	246.		30.	30	1.43	0.25	0.18	28.9		149.8	0_	27.9	1.09 1	
STIRL	10102	887.	0.	0.	-887.	652.	569.		30.	69.	1.71	0.25	0.27	46.9	3.22	180.6	0	31.0	1.21 13	
STIRL	10102	0.	657.	0.	,0,	-102.	246.		30.	30.	1.43	0.25	0.18	28.9	1.98	149.9	14	23.6	0.92 13	
STIRL	10102	0.	887.	0.	. 0.	-235.	569,		30.	69.	1.71	0.25	0.27	47.0		180.8	6	25.2	0.99 1	
STIRL	10102	0.	<u>o,</u>	657.	0.	<u>556.</u>	<u>-411.</u>		30.	30.	2.85	0.25	0.18	54.2		281.6	14	19.7	0.77 12	
STIRL	10102	0.	0,	887.	0.	652.	-318.	_	30.	69.	3.40	0.25	0.27	82.1		315.9	11	19.8	0,77 10	
HEGT85		0.	0.	722.	0.	556.	-476.		30.	30.	3.34	0.25	0.10	75.4	5.18	356.6	7	23.7	0.93 1	
HEGT65		0.	0.	1941.		930.	-442.		30.	183.	7.47	0.25	0.20		13.69	350.7	0	33.6		85
HEGTGO		<u> 0.</u>	<u> 0.</u>	716.	0.	<u>556.</u>	<u>-470.</u>		<u> 30.</u>	30.	3.27	0,25	0.11	72.4	4.97	344.8	8	23.2	0.91 1	
HEGTGO		0.	0,	1183.	0.	703,	-446.		30.	90.	4.65	0.25	0.18	119.5		344.8	4	26.5		95
HEOTOO		, O.	٥,	719.	o.	556.	-472.		30.	30.	3.13	0.25	0.10	67.1	4.61	318.9	9	22.5	0.88 1	
HEGTOO		0.	0.	812.	٥.	585.	-468.	Λ	30.	42.	3.05	0.25	0.13	72.5	4.98	304.6	9	22.4	0.88 10	
FCMCCL		<u> </u>	0.	631.	0.	556.	-385.		30.	30.	3.52	0.25	0.21	64.3		348.0	10	21.3	0.83 12	
FCMCCL		0.	0,	864.	0.	671,	-232.		30.	77.	4.87	0.25	0.34	88.8	6, 10	351.1	9	20.6	0.81 1	
FOSTOL		0.	o.	624.	0.	556.	-378.		30.	30.	3.43	0.25	0.22	62.3	4.28	340.6	1.1	20.9	0.82 12	
FCSTCL		0.	0.	1074.	0.	789.	-47.		30.	125.	6.12	0.25	0.41	111.0		352.8	. 9	19.0	0.74 10	
IGGTST		0.	0.	659.	0.	<u>556.</u>	<u>-413.</u>		30.	30.	2.85	0.25	0.18	60.0		310.6	12	20.6	0.81 1	
IGGTST		0.	0.	1001.	0.	699.	-277.		30.	88.	3.06	0.25	0,30	87.3		297.5	11	18.9	0.74 10	
GTSGAR		0.	652.	0.	0.	-96.	246.		30.	30.	1.21	0.25	0.19	22.9		119.8	25	22.6	0.88 14	
GTSCAR		0.	926.	0.	0.	-251.	646.		30.	79.	1.30	0.25	0.30	33.8		124.6	14	22.6	0.89 13	
GTACO8		<u> </u>	<u>633.</u>	0.	0.	-77.	<u> 246.</u>		30.	30.	1.16	0.25	0.21	21.0		113.2	36	21.8	0.85 14	
GTACOS GTAC12		0.	801. 633.	0.	0.	-163.	520.		30.	63.		0.25	0.31	25.3		107.9	29	20.9	0.82 13	
		0.	•	0.	0.	-77. -202	246.		30.	30.	1.18	0.25	0.21	21.7		116.8	33	21.9	0.86 14	
GTAC12		0.	876.	0.	0,	-202.	643.		30.	78.	1.20	0.25	0.33	30.1		117.4	22	21.0	0.82 13	
GTAC16		<u> </u>	635. 929.	<u>0.</u> 0.	<u> </u>	<u>-79.</u> -231.	246.		<u>30.</u>	30.	1.23	0.25	0.21	23.8		128.0	25	22.2	0.87 14	
		0.	653.				722.		30.	88.	1.31	0.25	0.35			125.8	18	21.3	0.83 12	
GTWC16				0.	0.	-97. -202	246.		30 <i>.</i>	. 30.	1.23	0,25	0.19	23.7		123.6	23	22.7	0.89 13	
0111010	10102	0.	1015.	0.	C.	-303.	769.		30.	94.	1.30	0.25	0.31	33.0	2.27	111.1	15	22.6	0.88 12	23

PATE 06/08/7.

		CO	GENERAT	ION CAS	E **	IOCOGEN -	- COGEN**	POWER	COGEN	Mad	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
		DISTIL	RESIDL.	COAL		. RESIDL	COAL	REQD MW	POWER MW		/HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
CC1626			653.	0.	0.		246.	30.	30.	1.43	0, 25	0.19	27.1	1.86	141.9	15	23.4	0,91	137
CC1626	10102	0.	1373.	О.	0.	-507.	1285、	30.	157.	1 . 89	0.25	0.36	48.3	3.31	120.0	9	23.7		
CC1622	10102	0.	646.	Ο.	0.	-90.	246.	30.	30.	1.42	0.25	0.19	27.1	1.86	143.2	16	23.1	0.91	138
CC1622	10102	0.	1251.	0.	0.	-423.	1157.	30.	141.	1.86	0.25	0.37	49.1	3.37	133.9	_ 10	23.1	0.90	113
CC1222	10102	0.	644.	0.	0.	-89.	246.	30.	30.	1.41	0.25	0.20	26.5	1.82	140.1	17	23.0	0.90	139
CC1222	10102	0.	1242.	0.	0.	-415.	1154,	·30.	141.	1.82	0.25	0.37	46.3	3.18	127.3	11	22.5	0.88	114
CC0822	10102	. 0.	633.	0.	0.	-77.	246.	30.	30.	1.40	0.25	0.21	26.2	1.80	141.0	19	22.7	0.89	140
CC0822	10102	2 0.	1049.	0.	0.	-291.	925.	30.	113.	1.53	0.25	0.38	36.3	2.49	117.9	18	20.7	0.81	122
STIG15	10102	0.	747.	0.	0.	-191.	246.	30.	30.	1.59	0.25	0.07	27.5	1.89	125.8	0	26.2	1.03	125
ST1015	10102	2 0.	31538.	Ο.	0.	-22419.	28914.	30.	3522.	51.42	0.25	0.17	861.5	9.13	93.2	0	415.1	16.25	443
STIGIO	10102	· 0.	723.	0.	0.	-167.	246.	30.	30.	1.49	0.25	0.10	26,5	1.82	125.0	6	25.3	0.99	129
STIGIO	10102	2 0.	3094.	0.	0.	-1813.	2674.	30.	326.	4.83	0.25	0.22	94.6	6.49	104.3	0	50.2		101
STIGIS	10102	0.	712,	Ō.	0.	-156.	246.	30.	30.	1.48	0.25	0.11	26.0	1.78	124.5	9	24.9	0.98	130
STIGIS	10102	0.	1945.	0.	0.	-994.	1569.	30.	191.	3.08	0.25	0.23	55.2	3.79	96.9	Ō	35.8	1.40	100
DEADV3	10102	2 0.	683.	0.	0.	-127.	246.	30.	30.	1.60	0.25	0.15	35.9	2.46	179.3	6	25.3	0.99	129
DEADV3	10102	. 0.	1760.	ο.	0.	-809.	1572.	30.	191.	3.82	0.25	0.30	125.1	8.58	242.5	Ö	38.4	1.50	
DEHTPM	10102	0.	£26.	ō.	0.	-70.	246.	30.	30.	1.57	0.25	0.22	32.8	2.25	178.7	13	23.2	0.91	138
DEHTPM			947.	0.	0.	-226.	798.	30.	97.	2.38	0.25	0.38		4.76	250.3	6	24.8	0.97	
DESCAS	10102	700.	0.	0.	-700.	556.	246.	30.	30.	1.73	0.25	0.15	40.8	2.80	199.0	Ō	31.0	1.21	130
DESGAG	10102	2061.	0.	0.	-2061.	1017.	1791.	30.	218.	5.14	0.25	0.27		2.10	291.8	Ö	62.5	2.45	
DESONS	10102	0.	700.	Ō.	Ö.	-144.	246.	30.	30.	1.73	0.25	0.13	40.8	2.80	199.0	2	26.4	1.03	125
DESOA3	10102	2 0.	2061.	0.	0.	-1044.	1791.	30.	218.	5.14	0.25	0.27		2.10	291.8	Ō	49.0	1.92	
GTSCAD	10102	640.	0.	ο.	-640,	556.	246.	30.	30.	1.15	0.25	0.20		1.40	108.7	0	26.1	1.02	148
GTSOAD	10102	875.	0.	Ο.	-875.	666.	615.	30.	75.	1.10	0.25	0.32	26.3	1.80	102.5	Ô	26.8	1.05	137
GIRAO8	10102	647.	0.	Ö.	-647.	556.	246.	30.	30.	1.34	0.25	0.19	28.0	1.92	147.8	0	27.4	1.07	141
GTRAGO	10102	1134.	0.	0.	-1134.	773.	975.	30.	119.	1.62	0.25	0.35	45.0	3.09	135.4	Ō	30.4	1.19	124
GTRA12	10102	645.	Ο.	0.	-645.	556.	246.	30.	30.	1.35	0.25	0.20		1.94	149.6	0	27.3	1.07	141
GTRĂ12	10102	1115.	0.	0.	-1115.	769.	961.	30.	117.	1.63	0.25	0.36			139.9	0	30.2	1.18	124
GTRATE			0.	0.	-644.	556.	246.	30.	30.	1.29	0.25	0.20	26.1		138.2	ŏ	27.0		
GTRA16	10102	1075.	Ο.	0.	-1075.	752.	903.	30.	110.	1.64	0.25	0.35		3.17	146.4	ŏ	30.1		125
GTR208	10102	645.	0.	0.	-645.	556.	246.	30.		1.24	0.25	0.20	24.0		127.0	Ö	26.8	1.05	
GTR208	10102	982.	Ο.	0.	-982.	708.	756.	30.	92.	1.39	0.25	0.33	36.8		127.7	~o	28.8	1.13	
011212	10102	646.	0.	0.	-646.	556.	246.	30.	30.	1.26	0.25	0.19	24.6	1.69	129.8	ō	26.9	1.05	
GTR212			0.	0.	-1022.	725.	811.	30.	99.	1.46	0.25	0.33			131.9	ŏ	29.4	1.15	
GTR216			0.	o.	-643.	556.	246.	30.	30.	1.27	0.25	0.20		1.73	134.0	ŏ	28.9	1.05	
GTR216			0.	0.	-1024.	730.	830.	30.	101.	1.53	0.25	0.34			140.6	ŏ	29.4	1.15	
GTRWOS			O.	ō.	-672.	556.	246.	30.	30.	1.35	0.25	0.16	27.9	1.92	141.8	ŏ	20.3		138
GTRW08			o.	o.	-1385.	832.	1170.	30.	142.	1.70	0.25	0.31			116.0	ŏ	35.3	1.38	
GTRW12			0.	0.	-665.	556.	246.	30.	30.	1.34	0.25	0.17			143.5	ŏ	28.0	1.10	
GTRW12			o.	ō.	-1370.	841.	1200.	30.	146.	1.72	0.25	0.33			118.8	ŏ	34.2	1.34	
GTRW16			0.	Ō.	-663.	556.	246.	30.	30.	1.36	0.25	0.17	28.5		146.5	- ŏ	28.0	1.10	
GTRI/16			o.	o.	-1306.	818.	1122.	30.	137.	1.70	0.25	0.33			124.0	0	33.6	1.32	
	10102		o.	o.	-679.	556.	246.	30.	30.	1.25	0.25	0.15			120.8	Ŏ	28.0	1.10	

							COOPNE		OCCEN	go.	pour p	FFOO	CARLTAL	Marina	A 2141.1	001	. =	NAME OF	
ECS	PROCS		RESIDL	COAL		RESIDL	COGEN**	POVER REQD MV	POWER MW	Ø8M	POWER /HEAT RATIO		CAPITAL COST *10**6	COST	\$/KW EQVL	(Z)	CHRG	NORM I	WRTH
G1R312	10102	662	. 0.	0.	-662.	556.	246.	30.	30.	1.32	0,25	0.17	27.0	1.86	139.4	0	27.8	1.09	140
GTR312	2 10102	1205	. 0.	0.	-1205.	779.	992.	30.	121.	1.53	0.25	0.32	41.1	2.82	116.4	Ö	32.1	1,26	122
GTR316	10102	663	. 0,	0.	-663.	556.	246.	30.	30.	1.34	0.25	0.17	27.7	1,90	142.5	0	27.9	1,09	140
GTR316	5 10102	1198		٥.	-1198.	774.	977,	30.	119.	1.56	0.25	0.32	42.3	2.90	120.5	0	32.3	1,26	122
FOFADS	10102	698	. 0.	0.	-698.	556.	246.	30.	30.	4.02	0.25	0.13	34.1	2.34	166.8	0	32.5	1.27	135
FCPADS	3 10102	2412	. О,	0.	-2412.	1141.	2205.	30.	269.	28.02	0.25	0.28	154.0	10.57	217.9	0	86.2	3.37	142
FCMCOS	10102	663	. О.	O.	-663.	556.	246.	30.	30.	3.84	0.25	0.17	35.3	2.42	181.9	ō	31.2	1.22	138
FCMCDS	10102	1760	. О.	. 0.	-1760.	1003.	1744.	30.	212.	21.00	0.25	0.36	132.4	9,09	256.7	Ö	64.0	2.51	134

		C001	NERAT	ION CASI	- - **N	acagen -	COGENE	PAWER	COGEN	MSD	POWER	FFSR	CAPITAL	NORM	3/KW	ROI	LEVL	NORI	WRTH
cs	PROCS	DISTIL R				RESIDL	COAL	REQD MW	POWER MW		/HEAT		COST *10**6	COST		(%)	CHRG	ENRG	
NOCGN	20111	0.	33.	16.	0.	0.	0.	2.	0.	0.19		٥.	1,6	1.00	189.2	0	0.7	1.00	80
TM141	20111	0.	36.	Ο,	0.	-3.	16.	2.	2.	0.36	0.28	0.26	3.2	2.02	299.4	0	1.0	1.34	1 150
	20111		37.	o.	o.	-3.	17.	2.	2.	0.29	0.28	0.28	3.0	1.93	280.5	0	0.9	1.23	14
	20111		o.	36.	o.	33.	-20. F		2.	0.57	0.28	0.26	5.6	3.59	532.0	Ŏ	1.3	1.84	
	20111		0.	37,	0.	33.	-19. F		₹.	0.46	0,28	0.28	5.2	3.30	480.0	ŏ	1.2	1.61	
	20111		ő.	36.	o.	33.	-20.		2.	0.51	0.28	0.26	5.1	3.27	484.9	ŏ	1.2	1.68	
	20111		Õ.	37.	Ō,	33.	-19.		2.	0.40		0.28	4.6	2.94	427.7	ŏ	1.0	1.44	
	20111		36.	2.	Ö.	-3.	14.	2.	2.	0,28	0.28	0.23	2.6	1.65	252.9	ŏ	0.8	1.17	
	20111		1.	37.	0.	32.	-21, F		2.	0.44	0.28	0.23	4.7	3.01	459.7	_	1.1	1.55	
	20111		1.	37.	o.	32.	-21.			0.38	0.28	0.23	4.3	2.75	420.4	ŏ	1.0	1.41	
	20111		o.	36.	o.	33.	-20.	`	2.	0.61	ອ.28	0.26	7.1	4.51	667.4	ŏ	1.5	2.11	
	20111		o.	41.	0.	36.	-16.	2.	3.	0.47	0.28	0.33	6.8	4.36	571.9	ŏ	1.3	1.84	
	20111		36,	0.	<u> </u>	-3.	16.	<u></u>		0.53	0.28	0.26	8.7	5.54	818.2	- 0	1.7	2.39	
	20111		44.	0.	0.	-7.	32.	2.	4.	0.35	0.28	0.37	13.0	8.32	999.8	ŏ	2.2	3.03	
	20111		· · · · · · · · · · · · · · · · · · ·	36.	o.	33.	-20.	2.	2.	0.79	0.28	0.26	12.2		1151.3	Ö	2.3		
	20111		o.	44.	0.	38.	-12.	2.	۷.	0.77	0.28	0.37		10.57	-	. 0	2.7	3.65	
	20111		37.	4,	0.	-4.	12.	2.	 i.	0.40	0.28	0.17	10.2	6.54	987.4	- ö -	1.8	2.46	
	20111				0.		-23,	2.	1.	0.57	0.28	0.17	13.2		1275.0	ŏ	2.2	3.02	
			1.	39,		32. 33.	16.	2.	2,	0.34	0.28	0.17	2.7	1.71	236.9	Ö	1.0		
STIRL	20111		0.	0.	-38,				5.		0.23		3.3	2.09	210.4	Ö.	1.0	1.35	
TIRL	20111		<u>. 0.</u>	0.	<u>-53.</u>	<u> 40.</u>	39.	<u> </u>	2.	0.28	0.28	0.32						1.25	
STIRL	20111		38.	0.	0.	-5.	16.	2.		0.34		0.21	2.7	1.71	237.1	Ð	0.9		
STIRL	20111		53,	0.	0,	-13.	39.	2.	5.	0.28	0.28	0.32		2.09	210.7	0	0.9	1.23	
STIRL	20111		0.	38.	0.	33.	-23.	2.	2.	0.57	0.23	0.21	5.7	3.66	508.2	0	1.3	1.85	
STIRL	20111		0.	53.	0.	40.	-14.	2.	5.	0.45	0.28	0.32	5.8	3.74	376.6	0	1.2	1.61	
	20111		0.	40.	0,	33.	-24, /		2.	0.62	0.28	0.19		6.91	929,3	0	2.0	2.71	
-	20111		0.	64.	0.	43.	-15. A		6.	0.65	0.28	0.31		11.37	950.8	0	2.7	3.60	
	20111		0.	42.	0.	33.	-25.		2.	0.62	0.28	0.13	10.6	6.79	856.3	0	2,0	2.69	
	20111		0,	63,	0.	40.	-24. <i>I</i>		<u>5.</u>	0.59	0.28	0.20	15.2	9.70	820.3	0_	2.4	<u>3.26</u>	
	20111		0,	43.	0.	G⊌.	-27. <i>l</i>		2.	0.55	0.28	0.12	9.5	6,08	757.3	G	1.8	2.43	
	20111		ο,	46.	0.	34.	-27.		2.	9.42	0.28	0.14	9.6	6,13	707.5	0	7.6	2.26	
	20111		0.	38.	0.	33.	-22.	2.	2.	0.61	0.28	0.23	9.3	5.94	839.5	0	1.8	2.49	
	20111		<u>o.</u>	50.	0.	39.	-14.	2,	<u>. 4.</u>	0.54	0.28	9.34	11.7	7.50	793.8	0	7.9	2.66	
	20111		0,	37.	0.	33.	-21.	2.	2.	0.67	0.28	0.24	9.1	5.78	827.3	0	1.8	2.52	
	20111		ο.	66.	Ο.	48.	-0.	2.	8.	0.73	0.28	0.42	15.2	9.70	790.3	0	2.4	3.32	
	20111		0.	39.	0.	33.	-24.	2.	2.	0.73	0.28	0.19	9.5	6.07	822.4	0	2.0	2.69	
	20111		0.	61.	0.	42.	-14.	2.	<u> </u>	0.71	0.28	0.31	13.2	8.45	738.0	0_	2.3		
	20111		39.	0.	0.	-6.	16,	2.	2.	0.33	0.28	0.21	3.3	2.14	294.2	0	1.0	1.35	
	20111		53.	Ο.	0,	-14.	37.	2.	4.	0.26	0.28	0.31	4.0	2.56	259.4	0	1.0	1.33	
	20111		38.	0.	0.	-5.	16.	Ē.	2.	0.32	0.28	0.22	2.9	1.88	264.4	0	0.9	1.26	15
	20111		47.	0.	0.	-10.	31.	2.	리	0.23	0.28	0.31	3.1	2.01	227.1	0	0.8	1.15	14
	2011		38.	o.	0.	-5.	16.	2.	2.	0.32	0.28	0.23	3.0	1.89	266.6	0	0.9	1.26	15
	20111		51.	ο.	0.	-11.	37.	2.	. 5,	0.25	0.28	0.34	3.5	2.21	232.0	0	0.9	1.20	14
	20111	0.	38.	0.	0.	-5.	16.	2.	2.	0.32	0.28	0.23	3.0	1.95	274.5	0	0.9	1.28	

cs	PROCS	**COG DISTIL R				OCOGEN - RESIDL	COGEN**	POWER REQD MW	COGEN POWER MW	O&M	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM COST	\$/KW EQVL	ROI (%)	LEVL CHRG	NORM WRTH ENRO
TAC1	6 20111	o.	53.	0.	Ō.	-13.	42.	2.	5.	0.26	0.28	0.35	3,8	2.45	244.5	0	0.9	1.27 140
TWC1	6 20111	0.	39,	0.	0.	-6,	16.	2.	2.	0.33	0.28	0.20	3,3	2.10	285.3	0	1.0	1.34 147
TWCT	6 20111	0.	60.	0.	ð.	-18.	45.	2.	5.	0.28	0.28	0.31	4.3	2.75	247.4	0	1.0	1.40 134
C162	6 20111	0.	39,	Ο.	0.	-6.	16,	2.	2.	0.40	0.28	0.20	3.4	2.18	297.3	0	1.1	1,47 1 € 9
C152	6 20111	0.	84.	0.	0.	-31.	81.	2.	10.	0.44	0.28	0.37	6.3	4.04	257.1	0	1.4	1.89 134
C162	2 20111	0.	39.	0.	0.	-6.	16.	2.	2.	0.39	0.28	0.21	3.2	2.06	284.4	0	1.0	1.43 151
0162	2 20111	0.	76.	o.	0.	-26.	73.	2.	9.	0.41	0.28	0.38	5.6	3.60	252.4	0	1.3	1.74 135
C122	2 20111	0.	39.	ο.	0.	-6.	16.	2.	2.	0.39	0.28	0.21	3.1	2.01	277.8	.0	1.0	1.41 151
C122	2 20111	0.	76.	0.	Ō.	-26,	73.	2.	9.	0.41	0.28	0.38	5.4	3.45	243,3	0	1.2	1.70 135
	2 20111		38.	0.	0.	-5.	16.	2.	2.	0.39	0.28	0.22	3.3	2.09	294.4	0	1.4	1.42 152
	2 20111		64.	Ö.	o.	-18.	59.	2.	7.	0.38	0.28	0.39	4_9	3.13	261.3	Ō	1.1	1,58 139
	5 20111		45.	0,	0.	-12.	16.	2.	2.	0.35	0.28	0.07	3.5	2.23	262.4	Ō	1.1	1.46 133
	5 2011		1846.	0.	0.	-1312.	1693.	2.	206.	2.64	0.28	0.17	65.0	11.49	120.1	0		18.63 508
	0 20111		44.	o.	0.	-11.	16.	2.	2.	0.34	0.28	0.10	3.3	2.12	258.3	Ō	1.0	1.41 137
TIGI	0 2011	0.	181.	0.	0.	-106.	157.	2.	19.	0.50	0.28	0.22	8.9	5.70	168.0	0	2.0	2.75 122
TIGI	S 20111	0.	43.	0.	0.	-10.	16,:	2.	2.	0.34	0.28	0.12	3.2	2.07	257.1	0	1.0	1.39 138
	\$ 20111		114.	0.	ō.	-58,	92.	2,	11.	0.39	0.28	0.23	6.1	3.93	184.3	0	1.5	2.00 116
	3 20111		39.	0.	0.	-6.	16.	2.	2.	0.38	0.28	0.20	4.4	2.82	385.1	0	1.1	1.57 148
EADV	3 20111	0.	72.	0.	0.	-25.	64.	2.	8.	0.40	0.28	0.36	7.1	4.52	335.1	Ô	1.4	1,93 137
	1 20111		37.	0.	0.	-4.	16.	2.	2.	0.40	0.28	0.24	4.3	2.78	400.9	Ó	1.1	1.56 153
	1 2011		55.	Ō.	0.	-12.	48.	2.	6.	0.38	0.28	0.40	6.0	3.82	374.1	0	1.2	1.70 146
	3 20111		0.	Ο.	-40.	33.	16.	2.	2.	0.35	0.28	0.19	3.3	2.11	284.1	Ŏ	1.1	1.48 149
	3 20111		o.	0.	-76.	48.	66.	2.	8.	0.40	0.28	0.33	7.2	4.57	322.0	Ó	1.6	2.16 139
	3 20111		40.	o.	0.	~7.	16.	2.	2.	0.35		0.19	3.3	2.11	284.1	0	1.0	1.38 147
ESOA	3 2011	0.	76.	0.	0.	-28,	66.	2.	8.	0,40	0.28	0.33	7.2	4.57	322.0	0	1.4	1.98 135
TSOA	D 20111	38.	0.	0.	-38.	33.	16.	2.	2.	0.32	0.28	0.22	2.9	1.83	256.2	0	1.0	1.04 152
TSOA	D 20111	50.	Ο.	ο.	-50.	39.	35.	2.	4.	0.24	0.28	0.32	3.2	2.03	214.9	Ō	0.9	1.28 143
TRAO	0 20111	39.	Ο,	ε.	-39.	33,	16.	2.	2.	0.33	0.28	0.21	3.5	2.25	311.5	0	1.1	1.47 150
TRAO	8 20111	64.	Ö.	0.	-64.	45.	55.	2.	7.	0.30	0.28	0.36	5.2	3.34	279.7	0	1.2	1,68 139
TRAT	2 20111	33.	o,	Ο.	-38.	33.	16,	2.	2.	0.33	0.28	0.21	3.4	2.19	304.3	0	1.1	1.45 151
TRA1	2 20111	63.	0,	0.	-63,	44.	54.	2.	7.	0.30	0.28	0.36	5.1	3.28	278.4	0	1.2	1.66 140
TRA1	6 20111	38.	0.	0.	-38.	33.	16.	2.	2.	0.33	0.28	0.21	3.5	2.26	314.1	0	1.1	1.47 151
TRAT	6 20111	61.	υ.	0.	-61,	44.	51.	2.	6.	0.30	0.28	0.36	5.2	3.34	292.6	0	1.2	1.67 141
TRZO	8 20111	38.	0.	0.	-38.	33.	16.	2.	2.	0.33	0.28	0.21	3.3	2.09	290.4	0	1.0	1.42 151
TR20	8 20111	56.	ο.	0.	-56.	41.	43.	2.	5.	0.27	0.28	0.34		2.69	256.3	Ö	1.1	1.40 141
TR21	2 20111	39.	ø.	0.	-39.	33,	16.	2.	2.	0.33	0.28	0.21		2.14	295.8	0	1.0	1.44 151
TR21	2 20111	58.	0.	0.	-58.	42.	46.	2.	6.	9,28	0.28	0.34	4.5	2,90	265.2	0	1.1	1.55 140
TR21	6 20111	38.	0.	Ο.	-38.	33.	16.	2.	2.	0.33	0.28	0.22	3.4	2.17	301.6	Ō	1.0	1.44 151
TR21	6 20111	58.	Ο.	0.	-58.	42.	47.	2.	6.	0.29	0.28	0.35	4.7	3.01	275.3	Ö	1.1	1.57 141
TRWO	8 20111	40.	0.	0.	-40.	33,	16.	2.	2.	0.34		0.16		2.30	304.7	Ö	1.1	1.51 147
	9 2011		Ō.	0.	-78.	48.	66.	2.	8.	0.34		0.31	5.9	3.78	258.9	ō	1.4	1.92 133
TRW1	2 20111	40.	0.	ο,	-40.	33,	16,	2.	2.	0.34	0.28	0.19	3.6	2.29	308.0	Ö	1.1	1.50 148
	2 20111		Ō,	Õ.	-78.	49.	68.	ž.	8.	0.34		0.33	6,0	3.84	264.4	ŏ	1.4	1.91 134
	6 20111		Ö.	o.	-40.	33.	16.	ž.	ž.	0.34		0.19	3.7		316.5	ŏ	1.7	1.52 148

DATE 06/08/79 L&SE-FEG-ADV-DES-ENGR

			LOCK COL	E 111 D	[U*10**6													
	C(GENERAT	ION CASI	E **1	HOCOGEN -	COGEN**	POWER	COGEN	Mad	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ROCS I	DISTIL	RESIDL	COAL	DISTIL	_ RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
							MM	MW		RATIO		*10**6			(%)			
20111	74.	0.	0.	-74.	47.	64.	2.	8.	0.34	0.28	0.33	6.0	3.86	277.2	0	1.4	1.90	3 136
20111		0.	0.	-41.	33.	16.	2.	2.	0.33	0.28	0.17	3.3	2.13	280.6	0	1.1	1.46	146
20111	· 66,	0.	0.	-66.	43.	50.	2.	6.	0.29	0.28	0.28	4.6	2.96	238.1	0	1.2	1.66	5 134
<u> 20111</u>	40.	0.	0.	-40.	33.	16.	2.	2.	0.33	0.28	0.19	3.4	2.19	295.2	. 0	1.1	1.47	7 148
20111	69.	0.	0.	-69,	45.	57.	2.	7.	0.31	0.28	0.32	5.1	3.26	251.9	0	1.3	1.72	2 135
20111	40.	Ο,	0.	-40.	33.	15.	2.	2.	0.34	0.28	0.19	3.5	2.26	304.3	0	1.1	1.49	148
20111	69.	ο,	О.	-69.	45.	5 6 .	2.	7.	0.31	0.28	0.32	5.3	3,39	263.7	0	1.3	1.76	3 136
20111	40.	0,	C.	-40.	33.	16.	2.	2.	0.32	0.28	0.19	3.0	1.92	258.7	. 0	1.0	1.38	3 149
20111	61.	0,	0.	-81,	50.	74.	2.	9.	0.46	0.28	0.35	6.0	3,80	249,6	0	1.5	2.06	3 138
20111	40.	ο.	0.	-40.	33.	16.	2.	2.	0.32	0.28	0.18	3.2	2,03	271.7	0	1.0	1.41	148
20111	103.	ο,	0.	~103 .	59.	102.	2.	12.	0.59	0.28	0.36	8.8	5.60	290.4	0	2.0	2.71	144
22222222	0111 0111 0111 0111 0111 0111 0111	0000 DISTIL 00111 74 00111 41 00111 66 00111 40 00111 69 00111 69 00111 40 00111 61	00CS DISTIL RESIDL 0111 74. 0. 0111 41. 0. 0111 66. 0. 0111 40. 0. 0111 40. 0. 0111 69. 0. 0111 69. 0. 0111 69. 0. 0111 69. 0. 0111 40. 0.	00CS DISTIL RESIDL COAL 0111 74. 0. 0. 0111 41. 0. 0. 0111 66. 0. 0. 0111 40. 0. 0. 0111 40. 0. 0. 0111 69. 0. 0. 0111 69. 0. 0. 0111 69. 0. 0. 0111 40. 0. 0.	OCC DISTIL RESIDE COAL DISTIL	OCS DISTIL RESIDL COAL DISTIL RESIDL 0111	OCS DISTIL RESIDL COAL DISTIL RESIDL COAL 0111	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REQD MN	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REQD POWER MW MW MW	OCC DISTIL RESIDE COAL DISTIL RESIDE COAL REQD POWER MW MW MW MW MW MW MW M	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REQD POWER MN MW RATIO	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REQD POWER MW MW RATIO	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REGD POWER MW MW RATIO *10**6	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REGD POWER MN MW RATIO *10**6	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REQD POWER MN MW RATIO *10**6	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REGD POWER MN MN RATIO *10**6 (%)	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REGD POWER MN MW RATIO *10**6 (%)	COCS DISTIL RESIDE COAL DISTIL RESIDE COAL REGD POWER MIN MW RATIO *10**6 (%) (%)

		<u> </u>		·	<u> </u>													
				FUEL USE														,
				ION CASE				* POWER		mao		FESR	CAPITAL	NORM	\$/KH	ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG
								MW	MV		RATIO		*10**6			(%)		
ONOCOL	20261	0.	16.	11.	0.	Ō.	<u> </u>	1.	Ö.	0.14	0.41	O.:	1.0	1.00	252.1	0	0.4	1.00 80
ST1141	20261	0.	18.	3.	0.	-2.	8.	1.	1.	0.22	0.4	0.24	1.9	1.96	330,5	0	0.6	1.29 141
STM141	20291	0.	1	20.	ο.	15.	-9.	F 1.	া .	0.34	0.41	0.24	3.0	3.19	617.6	0	0.8	1.72 143
STM141	1 20261	0.	1.	20.	0.	15.	-9.	A 1.	1.	0.29	0.41	0.24	2.9	3.05	591.4	0	0.7	1.59 140
\$111008	20261	0.	17.	4.	0.	-1.	6.	1.	1.	0.21	0.41	0.19	1.6	1.65	337.1	Ö	0.5	1.22 134
STM088	3 20261	0.	1.	20.	0.	15.	-10.	F 1.	1.	0.33	0.41	0.19	2.8	2.89	587.9	Ö	0.7	1.65 135
STM088	3 20261	0.	1.	20.	0.	15.	-10.	A 1.	1.	0.28	0.41	0.19	2.7	2.84	579.6	0	0.7	1.55 133
PEBST	1 20261	0.	0.	18.	О.	16.	-8.	1.		0.42	0.41	0.32	4.4	4,64	828.0	Ŏ	1.0	
PFBSTI	1 20261	0.	0.	19.	0.	16.	-7.	1.	1.	0.34	0.41	0.33	4.2	4.41	771.0	ō	0.9	1.95 157
	T 20261		18.	0.	0.	-2.	11.	i.	• •	0.40	0.41	0.32	6.2		1162.5	õ	1.2	
	F 20261		20.	õ.	õ.	-3.	15.	. 1.		0.37	0.41	0.37	7.4		1239.7	ŏ	1.3	
	20261	Ö.	0.	18.	o.	16.	-8.	1.	ī.	0.59	0.41	0.32	8.4		1563.5	ŏ	1.6	
TISTM		o.	0.	20.	0.	17.	- 6.			0.51	0.41	0.37	9.4		1573.5	 ö-	1.6	3.56 194
	20261		18,	5.	o.	-2.	Š.	î.		0.25	0.41	0.14	5.8		1221.6	ŏ	1.0	2.33 136
	20261		2.	21.	o.	15.	-11.	i.		0.37	0.41	0.14	7.5		1576.7	ŏ	1.3	
STIRL	20261	20.	ō.	Ö.	-20	16.	ii.	i.	i.	0.25	0.41	0.27	1.6	1.68	278.1	ŏ	0.6	
STIRL	2026		0.	ŏ.	-24.	18.	18.	- i.		0.19	0.41	0.33	1.6	1.67	224.0		0.5	
STIRL	20261		20.	o.	0.	-4.	11.	i.		0.15	0.41	0.27	1.6	1.68	278.2	ŏ	0.6	1.28 158
STIRL	20261		24.	o.	ŏ.	-6.	18.	1.		0.19	0.41	0.33	1.6	1.67	224.2	Ö	0.5	
STIRL	20261		0.	20.	o.	16.	-9.		1.	0.13	0.41	0.33	3.5	3,65	603.8		0.9	
STIRL	20261		0.	24.	0.	18.		<u>-</u> <u>-</u>		0.31	0.41	0.33	3.2	3.32	446.0	<u>ŏ</u> _	0.3	1.58 148
	20261 3 20261			20.	0.	16.	-	1.		0.31	0.41					0	•	
			0,				-10.					0.25	7.5		1256.3	G	1.4	3.02 179
	20261		0,	27.	0,	19.	-6.			0.38	0.41	0.32		10.22		0	1.5	3.38 179
	20261	0.	<u>o.</u>	22.	<u> </u>	<u> 16.</u>	-12.			0.45	0.41	0.16	7.3	7.67		0	1.3	3.01 168
	20261	0.	0,	29,	0.	18.	-11.			0.37	0.41	0.20	8.8	9,19		0	1.4	3.15 162
	20261		1.	23.	0.	16,	-12.			0.27	0.41	0.13	5.5	5.80	891.9	0	1.0	
FONCOL			υ,	19.	0.	16.	-9,	1.	1.	0.44	0.41	0.28	6.2	6.50		0	1.2	
FCMCCI			0.	23,	0.	18.	-6.	<u> </u>		0.35	0.41	0.34	6.8	7.13		0	1.2	
	. 20261		0,	19.	0,	16,	-8.	1.		0.51	0.41	0.29	6.1		1096.8	0	1.3	2.84 181
	20261		0,	30.	0.	22.	-0,	1.		0.48	0.41	0.42	8.8		1000.7	0	1.5	3.32 103
	20261		٥,	21.	0,	16.	-10.	1.		0.56	0.41	0.24	6.6	6.88		0	1.4	3.09 100
IGGTST			0,	28.	0.	<u> 19.</u>	-7.	<u>1.</u>		0.50	0.41	0.31	8.0	8.33	970.2	<u> </u>	1.4	3.23 175
	1 20261	0.	20.	0.	0.	-4.	11.	1.		0.24	0.41	0.25	2.2	2.33	377.6	0	0.6	
	20261		24.	0.	0.	~6.	17.	1.		0.18	0.41	0.31	2.3	2.46	331,6	0	0.6	1.29 143
	3 20261		20.	0.	∙0.	~3.	11.	1.		0.23	0.41	0.27	1.9	1.96	325.8	0	0.6	1.29 156
GTACOS		0.	22.	0,	0.	-4.	14.	1.		0.16	0.41	0.31	1.8	1.89	285.6	0	0.5	
	5 50561	o.	19.	0.	0.	-3.	11.	1.		0.24	0.41	0.28	1.9	1.99	333.9	อ	0,6	1.31 157
	20261	Ο.	23.	ο.	ο.	-5.	17.	1.		0.17	0.41	0.34	2.0	2.05	287.1	0	0.5	1.16 147
	20261	-	19,	Ο.	ο.	-3.	11.	1.	1.	0.24	0.41	0.28	2.0	.2.07	347.1	0	0.8	1.34 157
OTACIO		0.	25.	_ 0.	ი.	-6.	19.	1.	2.	0.18	0.4	0.35	2.2	2.26	300.6	0_	0.5	1.22 147
	े 202ही	0.	20.	0.	0,	-4.	11.	1.		0.25	0.41	0.24	2.2	2.29	365.9	0	0.6	1.42 153
	3 20261	0.	27.	0.	0.	-8.	21.	1.	3.	0.19	0.41	0.31	2.5	2.62	313.5	0	0.6	1.35 142
CC16St	3 20261	α. `	20.	0.	0.	-1.	11.	1.	1.	0.32	0.41	0.24	2.3	2,43	390.5	0	0.7	1.62 157

DATE 06/08/75 LASE-PEG-ADV-DES-ENGR

						E IN BT				00051	~oM	חמוודה	FFOR	AARITA	Man	A 1111			MODE !	IDT'
ECS	PROCS	DISTIL					RESIDL	COGEN**	REGD MW	POVER NW	M&O	POWER /HEAT RATIO		CAPITAL COST *10**6	NORM	\$/KW	(Z)	LEVL CHRO	NORM W ENRG	RIH
C162	6 2026	0	· ·	38.	o.	0.	-14.	37.	1.	5.	0.31	0.41	0.37	3.7	3,84	325.9	0	0.8	1.90	144
CC162	2 2026	10) .	20.	0.	0.	-4.	11.	1.	1.	0.31	0.41	0.26	2.2	2.27	369.9	O	0.7	1.56	158
CC162	2 2026	1 0), ·	35.	0,	ο.	-12.	33,	1.	4.	0.30	0.41	0.38	3.2	3.35	312.4	0	0.8	1.73	146
CC122	2 2026	1 0),	20.	Ο.	0.	-4.	11.	1.	1.	0.31	0.41	0.26	2.1	2.20	359.9	0	0.7	1.54	
CC122	2 2026	1 0	·.	35.	0,	Ō.	-12.	33.	1.	4.	0.29	0.41	0.38	3.1	3.21	301.2	ŏ	0.8	1.69	
00082	2 2026	1 0	١.	19.	Ο.	0.	-3.	11.	1.	1.	0.31	0.41	0.28	2,2	2.31	386.9	Ō	0.7	1.56	
CC082	2 2026	1 0	١.	29.	Ο.	Ο.	-8.	27.	1.	3.	0.28	0.41	0.39	2.9	2.99	332.3	ŏ	0.7	1.60	
STIGI	5 2026	1 0),	24.	0.	0.	-8.	11.	1.	1.	0.28	0.41	0.09	2.4	2.54	338.6	ŏ	0.7	1.61	
STIGI	5 2026	1 0	١.	846.	0.	0.	-601.	776.	1.	94.	1,38	0.41	0.17		30.76	118.6	0	6.4	14.38	397
STIGI	0 2026	1 0	١.	23,	0.	0.	-7.	11.	1.	1.	0.27	0.41	0.13	2.3	2.39	332.3	Ö	0.7	1.54	
STIGI	0 2026	1 0	١,	83.	0.	ο.	-49.	72.	1.	9.	0.33	0.41	0.22	5.1	5.37	211.0	ŏ	1.1	2.57	
STIGI	S 2026	1 0	١.	23.	ο.	ο.	-7.	11.	1.		0.26	0.41	0.15	2.2	2.32	329.8	ŏ	0.7	1.51	
ST101	S 2026	1 0	ī.	52.	ō.	0,	-27.	42.	1.	5.	0.26	0,41	0.23	3.6	3.74	233.8	0	0.9		124
DEADV	3 2026	1 0	Ι.,	20.	0.	0.	-4.	11.	1.	1.	0.29	0.41	0.26	3.1	3.22	525.7	O	0.8	1.72	
DEADV	3 2026	1 0),	31.	. 0.	Ο.	-10.	28.	1.	3.	0.27	0.41	0.37	4.2	4.38	459.0	Ö	0.8	1.89	
DEHTP	M 2026	1 0	١.	19.	0.	0.	-3.	11.	1.	1.	0.31	0.41	0.30	3.0	3.17	548.2	O	0.8	. 1.72	162
EHTP	M 2026	1 0) .	25.	Ö.	0.	-6.	22.	1.	3.	0.27	0.41	0.40	3.7	3.85	502.1	0	0.3	1.74	
DESCIA	3 2026	1 20	١,	Ο,	0.	-20.	16.	11.	1.	1.	0.27	0.41	0.24	2.0	2.13	341.0	ò	0.7	1.50	
DESCA	3 2026	1 32	·	0.	0.	-32.	21.	28.	1.	3.	0.24	0.41	0.35	3.2	3.31	335.3	0	0.8	1.74	143
DESCA	3 2026	t o	١.	20.	0.	ο.	-4.	11.	1.	1.	0.27	0.41	0.24	2.0	2.13	341.0	Õ	0.6	1.43	
DESOA	3 2026	1 0		32.	0.	Ō.	-11.	28.	1.	3.	0.24	0.41	0.35	3.2	3.31	335.3	0	0.7	1.61	
STSOA	D 2026	1 20	١.,	0.	ο.	-20.	1€.	11.	1.	1.	0.23	0.41	0.27	1.8	1.92	318.5	Ō	0.6	1.37	158
STSOA	D 2026	23		0.	0.	-23.	18	16.	1.	2.	0.17	0.41	0.32	1.8	1.91	269.7	ō	0.5	1.22	
TRAO	8 2026	1 20	١.	ο.	0.	-20.	16.	11.	1.	1.	0.26	0.41	0.26	2.4	2.51	4.1.0	Ö	0.7	1.55	
TRAO	8 2026	1 29	1 , .	0.	0.	-29.	20.	25.	1.	3.	0.21	0.41	0.36	3.1	3.19	356.9	0	0.7	1.61	147
STRA1	2 2026	1 20		Ο.	0.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.3	2.41	397.0	0	0.7	1.53	
STRA1	2 2026	1 29	٠.	Ο.	ο.	-29.	20.	25.	1.	3.	0.20	0.41	0.36	3.0	3.09	348.7	0	0.7	1.57	148
9TR∧1	6 2026	1 20	٠ .	Ο,	О.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.4	2.50	410.8	0	0.7	1.55	157
STRAT	6 2026	28		0.	O,	-28.	20.	23.	1.	3.	0,20	0.41	0.36	3.0	3.14	366.8	0	0.7	1.59	148
9TR20	8 2026	20		Ο,	ο.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.2	2.28	374.5	0	0.7	1.48	157
TR20	8 2026	26		ο.	0.	-26.	19.	20.	1.	2.	0.19	0.41	0.34	2.4	2.55	324,5	0	0.6	1.41	147
TR21	2 2026	20	•	0.	0.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.2	2.35	384.6	. 0	0.7	1.51	157
	2 2026		•	0.	Ō.	-27.	19.	21.	1.	3.	0.19	0.41	0.34	2.6	2.75	334.9	Q	0.7	1.47	147
9TR21	6 2026	20		Ο.	0.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.3	2.38	391.5	0	0.7	1.51	157
	6 2026		-	Ο.	0.	-27.	19.	22.	1.	.3.	0.20	0.41	0.35	2.7	2.83	345.0	0	0.7	1.49	148
	0 2026			0,	0.	-21.	16,	11.	1.	1,	0.26	0.41	0.22	2.5	2.58	399.3	0_	0.7	1.61	152
	8 2026			Ō.	0.	-36.	22.	30.	1.	4.	0.23	0.41	0.31	3.5	3.64	332.3	0	0.8	1.83	141
	2 2026			Ο,	0.	-21.	16.	11.	1.	1.	0.26	0.41	0.23	2.5	2.58	405.1	0	6.7	1.60	154
	2 2026			ο.	ο.	-36.	22.	31.	1.	4.	0.23	0.41	0.33	3.5	3.70	339.3	0	0.8	1,83	143
	6 2026			0.	0.	-21.	16.	11.	<u> </u>	1	0.26	0.41	0.23	2.5		417.4	0	0.7	1.62	154
	6 2026			0.	0.	-34.	22.	29.	1.	4.	0.23	0.41	0.33	3.6	3.72	356.1	0	0.8	1.82	144
	8 5056			0.	Ο.	-21.	16.	11,	1.	1.	0.25	0.41	0.21	2.2	2.33	358.5	0	0.7	1.54	151
	8 2026			Ο,	0.	-30.	20.	23.	1.	3.	0.20	0.41	0.28	2.7	2.81	301.2	O	0.7	1,56	141
TR31	2 2026	21	•	Ο,	0.	-21.	16.	11.	1.	1.	0.26	0.41	0.23	2.3	2.44	384.7	0	0.7	1.56	154

DATE 06/00/79 L&SE-PEO-ADV-DES-ENGR

GENERAL ELEC. .C COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU:10**6-----**COGENERATION CASE** **MOCOGEN - COGEN** POWER COGEN O&M POWER FEST CAPITAL NORM S/KW ROL LEVL NORM WITH PROCS DISTIL RESIDE COAL DISTIL RESIDE COAL REOD POWER /HEAT COST COST EQVL CHRG ENRG RATIO *10**6 WM GTR312 20261 0.41 0.32 32. -32. 26. 3. 0.21 3.0 3.14 322.7 0.7 1.64 143 GTR316 20261 0.41 0.23 0.7 1.58 154 21. 0. -21. 16. 11. 1. 0.26 2.4 2.53 398.0 1. 0 GTR316 20261 32. 0. 0. -32. 21. 26. 1. 0.21 0.41 0.32 3.1 3.27 338.4 0.8 1.68 143 FCPADS 20261 20. 0. -20. 16. 11. 0.23 0.41 0:23 1.8 312.7 0.6 1.37 156 1.93 FCI ADS 20261 34. Ō. -34. 22. 31. 0.23 0.41 0.36 C.7 1.58 145 2.83 274.8 FCMCDS 20261 21. 0. Ο. -21. 16. 11. 1. 0.23 0.41 0.23 2.0 0.6 1.43 153 1. 2.10 529.3 0 **FCMCDS 20261** 47. 0. 27. 47. 0.31 0.41 0.36 1.0 2.20 143 О. -47. 6. 4.2 4.43 306.0

PATE 06/08/71 | RSE-PEO-ADV-DES-ENOR

				FUEL USI			- COGEN*		COGEN	1180	POWER	EESD	CAPITAL	NORM	3/KW	וחם	LEVL	NORM WRTH
		DISTIL	RESIDL			RESIDL	COVE	REGD MW	POVER MW	Usir	/HEAT RATIO	rean	COST *10**6	COST	EGVL	(%)	CHRG	ENRO
ONOCOM				234.	0.	0.	0.	29.	ο.	1.00	0.15	0.	22.4	1.00	98.8	0	29.2	1.00 80
STM141			•	ο.	Ο.	-45.	234.	29.	29.	1.57	0.15	0.18	29.6	1.32	113.3	27	26.1	0.89 143
STM141	20461	0.	1008,	ο.	0.	-91.	477.	29.	58.	1.29	0.15	0,28	28.1	1.25	95,0	47	24.0	0.82 138
STM141	20461	0.	0.	890.	0.	845.	<u>-656.</u>	29,	29,	3,04	0.15	0,18	<u>51,9</u>	2.31	199.0	20	21.1	0.72 127
STM141	20461	0.	0.	1008.	O.	918.	-532.	29.	58.	2.90	0.15	0.28	59.0	2.63	199.7	21	18.8	0.64 119
STM141	20461	0.	0.	890.	0.	845.	-656.	29.	29.	2.83	0.15	0.18	43.4	1.94	166.6	28	19.9	0.68 129
STM141	20461	0,	0.	1008.	0.	918.	-532.	29.	58.	2.57	0.15	0.28	41.8	1.86	141.4	37	16.6	0.57 123
STMOSS	20461	0.	890.	Ο.	0.	-45.	234.	29.	29.	1.44	0.15	0.18	24.9	1.11	95.5	64	25.5	0.87 146
880117				Ō.	o.	-72.	376.	29.	46.	1.23	0.15	0.24	25.8	1.15	91.8	64	24.4	0.84 139
STM088				890.	o.	845.	-656.		29.	2.98	0.15	0.18	51.1	2.28	196.0	21	20.9	0.72 127
ST11088				959.	Ŏ.	888.	-583		46.	2.73	0.15	0.24	55.5		197.4	21	19.5	0.67 119
STM088		0.		890	Ö.	845.	-656.		29.	2.80	0.15	0.18	42.0	1.87	161.1	30	19.8	0.68 130
S 111088		0.		959.	0.	688.	-583.		46.	2.49	0.15	0.24	40.5	1.80	144.1	37	17.6	0.60 123
PFBSTM				891.	0.	845.	-657.	29.	29.	3.40	0.15	0.17	52.3	2.33	200.4	20	21.5	0.74 127
PFBSTM				1118.	0. 0.	982.	-637. -427.	29. 29.	84.	4.23	0.15	0.17	52.5 58.6	2.61	178.7	22	17.7	0.60 117
TISTMT		0.		0.	0.	-47.	<u> 234.</u>	<u>29.</u>	29.	2.56	0.15	0.17	<u>69.3</u>	3.09	<u> 265.1</u>	<u> </u>	$\frac{31.5}{2}$	1.08 131
ristm				0.	o.	-179.	890.	29.	108.	4.45	0,15	0.37	150.9	6.73	422.0	0	37.9	1.30 121
TISTMT				892.	0,	845.	_{/-} -658.	29,	29.	4.09	0.15	0.17	95.5	4.25	365.0	7	26.9	0.92 123
TISTNT				1220.	o.	1041.	-331.	29.	108.	6.28	0.15	0.37	189.7	8.45	530.4	4	31.6	1.08 114
TIHRSO				0.	0,	-70.	234,	29.	29.	3.14	0.15	0.15	97.4	4.34	<u> 363, 2</u>	0	<u>35.4</u>	1.21 127
THRSG	20461	0.	971.	0.	0,	-98.	329,	29.	40.	3.46	0.15	0,19	119.8	5.34	420.7	0	37.7	1.29 120
t i Hrs9	20461	0;	О.	915.	Ο,	845.	-681.	29.	29,	4.89	0.15	0.15	132.0	5.88	492.3	3	31.9	1.09 121
TIHRSO	20461	0.	0.	971.	ο.	874.	-642.	29.	40.	5,05	0.15	0.19	152.7	6.80	536.4	2	33.3	1.14 114
STIRL	20461	940.	0.	0.	-940.	845.	234.	29.	29.	1.74	0.15	0.13	38.3	1.71	139.2	O	33.5	1.14 137
STIRL	20461	1457.	0,	0.	-1457.	1065.	969.	29.	118.	2.54	0.15	0,28	75.9	3,38	177.8	0	39.8	1.36 117
STIRL	20461	0.	940.	0.	ο.	-95.	234.	29.	29.	1.74	0.15	0.13	38.4	1.71	139.3	9	28.4	0.97 133
STIRL	20461	0.	1457.	0.	ο.	-392.	969.	29.	118.	2.55	0.15	0.28	76.0	3.39	178.1	0	31.9	1.09 110
STIRL	20461	0.	0.	940.	ο.	845.	-706.	29.	29.	3.30	0.15	0.13	64.4	2.87	233.9	14	23.2	0.79 119
STIRL	20461		O.	1457.	0.	1065.	-488.	29.	118.	5.05	0.15	0.28	134.1	5.98	314.1	7	25.9	0.89 99
HEGT85				981.	ŏ.	845.	-747.		29.	3.61	0.15	0.09	81.5	3,63	283.5		26.1	0.89 114
HEGT85				2424	o.	1335.	-552.		228.	8.43	0.15	0.24		10.41	328.7	ĭ	37.1	1.27 86
HEGT50		. 0		983,	Ö.	845.	-749.		29.	3.58	0.15	0.09	79.3	3.53	275.2	ģ	25.9	0.88 114
HEG 160		0.		1734	- 0.	1098,	-654.		132.	5.89	0.15	0.20	156.6	6.98	308.2	- 3	31.3	1.07 89
HEGTOO				991.	o.	845.	-757. <i>i</i>		29.	3.55	0.15	0.08	76.3	3,40	262.7	10	25.6	0.88 113
HEGTOO				1271.	o.	936.	-737. <i>i</i>		29. 66.	4.03	0.15	0.14	99.5	4.44	267.3	7	26.9	0.92 99
				916.	0.										-			
FCMCCL						845.	-682,	29.	29.	3,85	0.15	0.15	75.2	3,35	280.0	10	25.0	0.85 121
FORTOL		0.		1386.	0.	1078.	-372.	29.	123.	6.56	0.15	0.34	125.4	5.59	308.9	7	25.3	0.87 104
FCSTCL				909,	0.	845,	-675.	29.	29.	3.74	0.15	0.16	72.3		271.1	11	24.4	0.84 122
FCSTCL	-		0.	1800.	o.	1310.	-11.	29.	218.	8.55	0.15	0.42	163.2	7.27	309.4	. 8	22.9	0.78 99
IGOTST			0.	940.	<u> </u>	845.	-706	29.	29	3,31	0.15	0.13	69.0	3.07	250.3	12	24.1	0.82 119
GGIST				1679.	0.	1158.	-396.	29.	156.	4.25	0.15	0.31	128.9	5.75	262.1	9	22.5	0.77 93
		_	~~.	_	_	~~	004		29.	1.52	0.15	0 14	32.2	1.43	110 0	17	~~	0 00 10"
GTSOAR	20461	0.	931.	ο.	ο.	-86.	234.	29.	29.	1.02	.U. 13	0.14	32.2		118.0	17	27.3	0.93 137

*- * · ·							COGEN**		COGEN	M&O	POWER	FESR	CAPITAL	. NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL				RESIDL	COAL	REQD MW	POWER MW		/HEAT	,	COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
GTACOE	20461	0.	920.	0,	0.	-75.	234.	29.	29,	1.48	0.15	0.15	30.4	1.36	112.9	22	26.8	0.92	139
GTACO8	20461	0.	1296,	0.	ο.	-269.	842.	29.	103.	1.50	0.15	0.31	39.2	1.75	103.3	18	25.5	0,87	123
GTAC12	20461	0.	917.	0.	ο.	-72.	234.	29.	29.	1.49	0.15	0.15	31.0	1.38	115,5	21	26.8	0.92	139
GTAC12	20461	0.	1395.	٥.	Ο.	-314.	1023.	29.	125.	1,68	0.15	0.34	46.2	2.06	113.1	15	25.4	0.87	118
GIACIE	20461	0.	917.	O.	ō.	-72.	234.	29.	29.	1.50	0.15	0,15	31.8	1.42	118.4	20	26.9	0.92	138
GTAC16	20461	0.	1468,	0.	О.	-352.	1141.	29.	139.	1.93	0.15	0.35	55.7	2.48	129.5	11	26,2	0.90	114
GTWC16	20461	0.	938,	Ο.	0.	-92.	234.	29.	29.	1.51	0.15	0.13	31.7	1.41	115.5	17	27.4	0.94	137
GTWC16	20461	0.	1634.	0.	ο.	-489.	1238.	29.	151.	1.80	0.15	0.31	49.6	2.21	103.6	9	27.6	0.95	111
CC1626	20461	0.	936.	0.	0.	-91.	234.	29.	29.	1.61	0.15	0.13	32.0	1.42	116.6	15	27.5	0.94	137
CC1626	20461	0.	2302,	ο.	0.	-863,	2223.	29.	271.	2.76	0.15	0.37	78.3	3,49	116.1	4	29.6	1.01	104
CC1622			929,	0.	Ο.	-84,	234.	29.	29.	1.60	0.15	0.14	31.9		117.2	16	27.4	0.94	
CC1622			2095.	0.	0.	-721.	2005.	29.	244.	2.71	0.15	0.38	79,2		129.0	6	28.7		
CC1555			920,	0.	υ,	-83.	234.	29.	29.	1.59	0.15	0.14	31.3	1.40	115.1	17	27.3	0.93	
CC1222			2082.	0.	0,	-708.	2003.	29.	244.	2.63	0.15	0.38	74.2	3,31	121.7	7	27.8	0,95	
CC0822		- •	918,	0.	0.	-72.	234.	29.	29.	1.59	0.15	0.15	31.2		115.9	19	27.0	0.92	
CC0955		0,	1759,	<u> 0.</u>	<u> </u>	-501.	1619.	29.	<u> 197.</u>	2.26	0.15	0.39	61.2		118.7	11		0.87	
STIGIS			1027.	0,	0,	-181.	234.	29.	29.	1.79	0.15	0,05	35.4		117.6	0	30.2	1.03	
STIGIS			50692.	o.		-36035.	46474.	29.	5661.	73.68	0.15			61,10	92.3	0		19.75	
STIGIC			1004.	. 0.	0,	-159.	234.	29.	29.	1.71	0.15	0.07	34.4		117.0	3	29.4		
STIGIC		0.	4974.	0.	0.		4298.	29.	523.	6.80	0.15	0.22	145.3	6.48	<u>99.7</u>	<u> </u>	66.1	2.26	
STIGIS			993.	0.	0.	-148.	234.	29.	29,	1.63	0.15	0.08	30.7	1.37	105.6	9	28.7	0.98	
STIGIS			3126.	0.	0.		2522,	29.	307.	4.45	0.15	0.23	91.2	4.07	99.6	ō	46.7	1.60	
DEADVS			959.	0.	0.	-114.	234.	29.	29.	1.79	0.15	0.11	41.0	1.83	145.9	5	29.2	1.00	
DEADVS			2594. 904.	<u>0.</u>	0.	-1127. -59.	2316.	29.	282.	5.36	0.15	0.31	182.6	8.14	240.2	- 0	48.3	1,65	
					0.	•	234.	29.	29,	1.82	0.15	0.16	40.3	1.79	152.0	10	27.0	0.95	
DEHTPM			1499.	0. 0.	-975.	-331.° 845.	1317. 234.	29. 29.	160. 29.	3.45	0.15	0.40	107.7	4.80	245.1	3	30.7	1.05	
DESGAS			0, 0.	0.	-975. -2995.	1552.	2601.	29. 29.	29. 317.	1.91	0.15	0.10	45.7	2,03	159.8	0	35.4		
DESOAS			975.	O.	-2895. 0.	-130.	234.	29,	29.	7.19	0.15 0.15	0.28	<u>254.2</u> 45.7	$\frac{11.33}{2.03}$	289.6 159.8	<u> </u>	78,2 30,1	2.68 1.03	
DESONS			2995.	o.	0. 0.		2601.	29. 29.	2≌. 317.	7.19	0.15	0.28		11.33	289.6	Ó	62.0		
GTSGAD			2.995.	0.	-922.	845.	234,	29.	29.	1.46	0.15	0.15	29.8		110.3	Ô	31.7	1.09	
GTSGAD			0.	0.	-1384.	1066.	234, 972.	29. 29.	118.	1.53	0.15	0.18	40.1	1,33	99.0	0	32.0	1.12	
GIRADE			0.	0.	-927.	845.	234.	29.	29.	1.53	0.15	0.32	33.1	1.47	121.7	- 6	32.3	1:11	
GTRAGE			0.	o.	-1750.	1224.	1503.	29.	183.	2.35	0.15	0.36	71.0	3.17	138.5	ő	37.8	1.29	
OTRA12			0.	0.	-925.	845.	234.	29. 29.	29.	1.54	0.15	0.14	33.3		122.7	õ	32.3	1.10	_
GTRAIS			0.	ŏ.	-1730.	1220.	1490.	29.	182.	2.33	0.15	0.36	70.3	3,13	138.7	ŏ	37.3	1.28	
GIRATE		925.	o.	ŏ.	-925.	845.	234.	29.	29,	1.56	0.15	0.14	34.0	1.52	125.6	- 6	32.4	1.11	
GTRATE			ő.	ŏ.	-1675.	1196.	1407.	29.	171.	2.35	0.15	0.36	71.3	3.18	145.2	ŏ	37.4	1.28	
9TR208			õ.	ő.	-926.	845.	234.	29.	29,	1.51	0.15	0.14	32.0		118.1	ŏ	32.1	1.10	
OTREOS			o.	o.	-1538,	1129.	1184.	29.	144.	1.95	0.15	0.34	56.1		124.6	ő	35.5	1.22	
OTRETE		927.	Ö.	0.	-927.	845.	234.	29.	29.	1.52	0,15	0.14	32.6		119,9	ō	32.3	1.10	
9TR212			o,	0.	-1600,	1155.	1273.	29.	155.	2.07	0.15	0.34	60.7		129.3	ō	36.4	1.24	
GTR216			o.	0.	-924.	845.	234,	29.	29.	1.54	0.15	0,14	33.2		122.7	ŏ	32.3	1.10	
GTR216			0.	o.	-1605.	1164.	1301.	29.	158.	2.18	0.15	0.35	65.0		138.2	ŏ	36.5		
		- -														<u>-</u>			

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

PAGE 15

		##CC	IGENERAT	ion casi	Exx **M(COGEN -	COGEN**	POWER	COBEN	OSM	POWER	FESR	CAPITAL	MORM	\$/KW	ROI	LEVL	NORM W	IRTH -
ECS	FROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL.	REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								- FIW	MW		RATIO		*10**6			(7)			
GTRWOS				ο.	-952.	845.	234.	29.	29.	1,53		0.12	32.9	1.47	118.0	0	33.0		
GLEMOS	20461	2143.	Ο.	О.	-2143.	1316.	1810.	29.	220.	2.44	0.15	0.31	73.0	3.25	116.3	0	44.0	1.50	112
GTRW12	20461	945.	0.	0.	-945.	845.	234.	29.	29.	1.53	0.15	0.12	32.9	1.47	118.8	٥	32.8	1.12	140
GTRW12	20461	2132.	0.	0.	-2132.	1333.	1868.	29.	227.	2.47	0.15	0,33	74.3	3.31	118.9	0	42.7	1.46	113
OTRV16	20461	944.	0.	Ö.	-944.	845.	234.	29.	29.	1.55	0.15	0.12	33.4	1.49	120.9	0	32.9	1.12	139
GTRW15	20461	2042.	0.	0.	-2042.	1299.	1754.	29.	214.	2.46	0.15	0,33	74.2	3.31	124.0	0	42.2	1.44	113
GTR300	20461	956.	0.	0.	-956.	845.	234.	29.	29.	1.52	0.15	0.11	32.1	1.43	114.5	0	33.0	1.13	139
GTR308	20461	1826.	0.	. 0.	-1826.	1102.	1362.	29.	166.	2.07	0.15	0.28	59.5	2.65	111.2	0	41.1	1.41	113
GTR312	20461	944.	0.	0.	-944.	845.	234.	29.	29.	1.51	0.15	0.13	32.1	1.43	116.1	0	32.7	1.12	140
GTR312	20461	1899.	0.	0.	-1899.	1242.	1563.	29.	190.	2.19	0.15	0.32	63.9	2.05	114.8	0	40.2	1.37	114
GTR316	20461	944.	0.	0.	-944.	845.	234.	29.	29.	1.53	0.15	0.12	32.7	1.46	118.3	0	32.8	1.12	140
GTR316	20461	1888.	0.	0.	-1888.	1235.	1540.	29.	188.	2.24	0.15	0.32	65.9	2.94	119.2	0	40.5	1.39	114
FCPADS	20461	980.	0.	o.	-930.	845.	234.	29.	29.	3.73	0,15	0.03	42.7	1.90	148.7	0	37.1	1.27	134
FCPADS	20461	3876.	Ο,	0.	-3876.	1834.	3545.	29.	432.	38.13	0.15	0.28	244.7	10.91	215.4	0	116.6	3.99	155
FCHCDS	20461	947.	0.	Ο.	-947.	845.	234.	29.	29.	3.59	0.15	0.12	43.9	1.96	158.2	0	36.1	1.23	136
FCMCDS	20461	2828.	0.	0.	-2828.	1613.	2804.	29.	342.	28.67	0.15	0.36	210.2	9.37	253.7	0	86.4	2.96	140

DATE 06/00//9 L&SE-PEG-ADV-DES-ENGR

				FUEL USE	E** **NO					COGEN	MSD	POWER	FESP	CAPITAL	NORM	\$/KW	RAI	LEVL	NORM WRT
ECS	PROCS	DISTIL	,		DISTIL		CONT			POVER	Odj	/HEAT	FESI	COST	COST	EQVL	NO1	CHRG	ENRG
-00	i itaaaa	010111	LOTIFE	COAL	DISTIL	KLOIDL	OOAL		MM	MW		RATIO		*10**6	0001	Lave	(%)	01110	21110
NOCGN	20631	0.	289.	39.	Ü.	0.	0.		5.	0.	0.64	0.05	0.	12.3	1.00	118.1	-\27	5.3	1.00 8
	20631		297.	0,	ο.	-7.	39.		5.	5.	0.89	0.05	0.10	11.7	0.96		999	5.2	0.98 14
	20631		384.	o.	0.	-41.	218.		5.	27.	0.87	0.05	0.31	16.3	1.33	120.4	7	5.1	0.97 12
	20631	o.	0.	297.	o.	269.	-258.	F	5.	5.	1.67	0.05	0.10	26.6		243.1	O	6.3	1.19 13
5711141		0,	Ö.	384.	0.	343.	-186,		5.	27.	1.53	0.05	0.31	29.2	2.38	216.4	4	5,6	1.05 11
STM141			o.	297.	0.	289.	-258.		5.	5.	1.57	0.05	0.10	25.1		229.3	0	6.0	1.15 13
	20631	-	o.	384.	o.	343.	-166.		5.	27.	1.27	0.05	0.31	21.3		157.5	11	4.4	0.84 11
	20531		297.	0.	0.	-7.	39.		5	5.	0.89	0.05	0.10	11.5	0.94		999	5.2	0.98 14
	20531	0.	362.	ō.	Q.	-33.	172.		5.	21.	0.83	0.05	0.28	14.7	1.20	114.7	10	5.1	0.96 12
	20631	- •	0.	297.	o.	289.	-250.	F	5.	5.	1.68	0.05	0.10	26.6	2.17	243.0	0	6.3	1.20 13
	20631	and the second second	0.	362.	o.	329.	-190.	-	5.	21.	1.46	0.05	0.28	27.2	2.22	211.9	4	5.5	1.04 11
	20631		0.	297.	o,	289.	-258.		5.	5.	1.58	0.05	0,10	25.0	2.04	228.5	0	6,0	1.15 13
ราทบอย	20631	0.	0.	362.	0.	329.	-190.	Ā	5.	.2i.	1.23	0.05	0.28	20.3	1.66	158.0	11	4.5	0.86 11
	1 20631		0.	297.	Ο.	289.	-258.		5.	5.	1.61	0.05	0.09	26.3	2.15	240.8	0	6.2	1.18 12
PEBSTI	1 20631	0.	0.	434.	Ο,	372.	-118.		5.	38,	1.86	0.05	0.37	34.3	2.84	232.4	2	6.0	1.14 11
TISTM	20631	Ο,	297.	0.	0.	-8.	39.		5.	5.	1.13	0.05	0.09	22.2	1.82	203.3	0	6,6	1.24 13
	20631	Ō.	437.	o.	0.	-64.	319.		5.	39.	2.48	0.05	0.37	72.4	5.91	480.9	0	12.6	2.38 13
TISTMT	20631	0.	0.	297.	0.	289.	-258.		5.	5.	1.87	0.05	0.09	36.1	2.95	329.8	0	7.5	1.43 13
TISTMT	20631	0.	0.	481.	ο.	339.	-75.		5.	50.	3.50	0.05	0.40	105.9	8.64	648.2	0	14.9	2.83 14
THRSO	20631	0.	301.	0.	ο.	-11.	39.		5.	5.	1.26	0.05	0.08	29.5	2.41	267.4	_ 0	7.4	1.41 13
THREE	20531	0.	348.	0.	Û,	-35,	118.		5.	14.	1.97	0.05	0.19	57.8	4.72	464.6	0	11.0	2.08 12
THRSC	20631	0.	Ο.	301.	0.	289.	-262.		5.	5.	2.09	0.05	0.08	46.3	3.78	419.3	0	8.9	1.68 13
THESE	20631	0.	Ο.	367.	О.	323.	-217.		5.	18.	2.79	0.05	0.22	85.1	6.94	654.3	0	13.3	2.52 13
STIRL	20631	305,	0.	0.	-305,	289,	39.		5.	5	0.89	0.05	0.07	14.3	1.17	128.0	0	6.2	1.18 13
STIRL	20631	522.	0.	0.	-522.	381.	347.		5.	42.	1.44	0.05	0.28	31.4	2.56	178.9	0	8.8	1.68 11
STIRL	20631	Ο.	305.	0.	ο.	-16.	39.		5.	5.	0.89	0,05	0.07	14.3		128.0	0	5.5	1.04 13
STIRL	20631	Ο.	522.	0.	ο.	-141.	347.		5.	42.	1.44	0.05	0.28	31.4	2.56	179.2	0	7.6	1.45 10
STIRL	20631	0.	0.	305.	0.	289,	-266.		5.	5.	1.59	0.05	0.07	26.9	2.20	241.2	0	6.2	1.18 12
STIRL	20531	0.	0.	509.	o.	410.	-146.		5.	54.	2.43	0.05	0.31	62.4	5.09	320.0	0	9.3	1.77 10
	20631		0.	312.	ο.	289.	-273,		5.	5.	1.62	0.05	0.05	32.9	2.68	289.1	0	7.0	1.33 12
	20631	Ο.	o.	1031.	Ο.	533.	-176.		5.	104.	4.24	0.05	0.26	133.9 1		412.8	0	18.4	3.49 14
	20631	0.	0.	312.	0.	269.	-273.		5.	5.	1.62	0.05	0.05	32.5	2.65	285.4	0	7.0	1.32 12
	20631	0.	0.	716.	0.	425.	-222.		5.	60.	2.98	0.05	0.22	90.0	7.35	387.9	0	13.4	2,53 114
	20631		0.	313.	0.	289.	-275.		5.	5.	1.63	0.05	0.04	32.0	2.61	280,0	0	6.9	1.32 12
	20631		0.	504.	ο.	351.	-258.	A	5.	30.	2.04	0.05	0.16		4.67	336.0	0	9.6	1.81 9
	20631	0.	0.	377.	0.	269,	<u>-339.</u>		5.	5.	1.69	0.05		33.4	2.73	302.2	0	7.6	1.45 10
	20631		0.	633.	0.	416.	-170.		5.	56.	2.81	0.05	0.28	70.9	5.79	382.3	0	11.1	2.10 11
	. 20631		0	376.	0.	269.	-338.		5.	5.	1.72	0.05		32.5	2,65	294.4	0	7.5	1.43 10
	20631		0.	822.	0.	522,	-5,		5.	100.	3.67	0.05	0.39	92.1		382.4	0	12.6	2.39 13
	20631	0,	<u>0.</u>	381.	<u>o.</u>	269.	-343.		5.	5.	1.75	0.05			2.58	282.8	0_	7.5	1.42 10
	20531	0.	0,	767.	0.	453.	-181.		5.	71.	2.60	0.05	0.26			318.0	0	. 10.7	2.04 10
	20631		303.	0.	0.	-14.	39.		5.	5.	0.84	0.05	0.07		1.12	122.9	0	5.4	1.02 13
3180AF	20631	0.	519.	Ο.	Ο.	-133.	362,		5.	44.	1.16	0.05	0,31	23.5	1.92	134.5	0	6.4	1.21 11

DATE OGZOSZZ LESE-PEO-ADV-DES-ENGR

GENERAL FLEX-JIC GREENINY COGEMERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

	····			FUEL US	E IN BT	U*10**6													
1		**CQ	GENERAT	TON CAS	E** **N	IOCOGEN	- COGEN**	POWER	COGEN	M.SO	POWER	FESR	CAPITAL	NORM	\$/KW	RØ1	LEVL	NORM WRI	TH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
ii .								MI	1414		RATIC		*10**6			(2)			
GTAC	08 2063	0.	301.	0.	o.	-12.	39,	5,	5.	0.82	0.05	0.08	13.1	1.07	113.4	4	5.3	1.00 13	38
GTAC	08 2063	ο,	464.				301.	5.	37.	1.05	0.05	0.31	19.6	1.60	123.9	0	5.8	1.10 11	13
GTAC	12 2063	0.	301.	0.	0.		39,	5.	5.	0.82	0.05	0.08	13.1	1.07	118.3	5	5.3	1.00 13	39
GTAC	12 2063	0.	499.	Ο.	0.	-112.	367.	5.	45.	1.13	0.05	0.34	22.3	1.82	132.2	0	6.0	1.14 11	14
1	16 2003		301.				39,	5.	5.	0.82	0.05	0.08	13.2	1.08	119.6	4	5.3	1.00 13	38
24	16 2063		526.		o.		409.	5.	50.	1.20	0.05	0.35	24.8	2.02	140.4	Ó	6.3	1.19 11	
11	16 2063		304.		0.	-15.	39,	5.	5.	0.83	0.05	0.07	13.5	1.10	121.0	Ŏ	5.4	1.02 13	
21	16 2063		585.	o.	o.		443.	5.	54.	1.22	0.05	0.31	24.9	2.04	128.7	0	6.6	1.26 11	
	26 2063		304.		0.		39.	5.	5.	0.89	0.05	0.07	13.4	1.09	120.1	0	5.4	1.03 13	
68	26 2063		824.				796.	5.	97.	1.64	0.05	0.37	35.0	2.86	132.5	Ŏ	7.9	1.49 11	
11	22 2063		303.		o.		39.	5.	5.	0.89	0.05	0.08	13.1	1.07	118.2	ŏ	5.4	1.02 13	
11	22 2063		750.	o.	ó.	-258.	718.	5.	87.	1.61	0.05	0.38	34.6	2.82	142.6	ŏ	7.6	1.45 11	
	22 2063		303.	<u> </u>			39.	5.	5.	0.88	0.05	0.08	13.0	1,06	117.0	ŏ	5.4	1.02 13	
н	22 2063		746.	ο.	. 0.	-254.	717.	5.	87.	1.58	0,05	0.38	32.9	2.69	136.7	0	7.4	1.40 11	17
	22 2063		301.				39.	5.	5.	0.89	0.05	0.08	13.2	1.08	119.2	Ŏ	5.4	1.02 13	
ccon	22 2063	0.	630.	0.	0.	-179.	580.	5.	71.	1.43	0.05	0.39	28.1	2.29	135.8	Ö	6,6	1.26 11	17
STIE	15 2063	Ö.	319.	ō.	o.	-30.	39.	5.	5.	0.91	0.05	0.03	16.3	1.33	140.2	0	5.9	1.11 12	29
STIG	15 2063	0.	18154.	o.	0.	~12905.	16643.	5.	2027.	20.00	0.05	0.17	510.6	41.68	95.6	0	128.0	24.28 64	44
STIG	10 2053	0.	315.	ο.	0.	-26.	39.	5.	5.	0.83	0.05	0:04	13.1	1.07	113.8	0	5.4	1.03 13	34
STIG	10 2063	1 0.	1781.	ο.	ο.	-1044.	1539.	5.	187.	2.56	0.05	0.22	56.7	4.63	104.2	0	14.9	2.82 12	25
STIG	1S 2063	0.	314.	o.	o.	-24.	39.	5.	5.	0.63	0.05	0.04	13.0	1.06	113.8	0	5.4	1.02 13	35
STIG	113 2063	0.	1120.	0.	0.	-572	903,	5.	110.	1.90	0.05	0.23	39.1	3.20	111.7	0	10.5	2.02 11	11
DEAL	N3 5063	1 0.	308.	o.	0.	-19.	39.	5.	5.	0.92	0.05	0.06	16.3	1,33	145.0	0	5.8	1.10 13	33
DEVL	K3 5083	Ι Ο.	929.	0.	0.	-404.	829.	5.	101.	2,51	0.05	0.31	70.2	5.73	238.3	0	13.2	2.50 12	26
DEHI	FM ZOGS	0.	299,	0.			39.	5.	5.	0,95	0.05	0.09	16.2	1.32	147.4	0	5.7	1.08 13	
101.111	PH 2063	1 0.	537,	ο,	0.	-118.	472.	5.	57 .	1.80	0.05	0.40	42.8	3.50	230.3	0	8.4	1.59 12	
11	N3 5003		0,				39.	5.	5.	0.91	0,05	0.05	16.5	1.27	136.0	O	6.4	1.22 10	
11	M3 2063		0.	0.		555.	932.	5.	113.	3.19	0,05	0.20	96.0	7.84	285,3	0	19.7	3.73 15	
[]	N3 S063		311.				39.	5.	5.	0.91	0.05	0.05	15.5	1.27	136.0	0	5.7	1.08 13	
n	Ma 2000		1072.	0.			932.	5.	113.	3.19	0,05	0.28	96.0	7,84	285.3	0	17.2	3.26 13	
	AD 2063		0.			289.	39.	5,	5.	0.02	0.05	0.08	12.9		116.3	0	5.9	1.13 14	
ت سنده مسسان	MD 5003		0.	0.	-496.	382.	349.	<u>5.</u>	42.	1,07	0.05	0.32	20.0		119.1	0	$\frac{6.9}{1}$	1.31 11	
71	08 2063		ō.			209.	39.	5.	5.	0.83	0.05	0.08	13.8	1.13	124.5	O .	6.1	1.16 14	
221	08 2063		0.	0.			538.	5.	.66.	1.40	0.05	0.36	32.0	2.62	155.5	. 0	8.7	1.65 12	
_1	12 2053		0.		-302.	289.	39.	5.	5.	0.83	0.05	0.08	13.8	1.12	123.9	0	6.1	1.15 14	
	12 2063		0.	0.	-620.	437.	534.	<u>5.</u>	65.	1.37	0.05	0.36	30.7	2.51	150.5	<u>o</u> _	8.4	1.60 12	
	16 2063		o,			209.	39.	5.	5.	0.84	0.05	0.08	14.0	1.14	125.9	0	6.1	1.15 14	
	16 2063		0.		-600.	428.	504.	5.	61.	1.37	0.05	0.36	31.1	2.54	156.0	0	8.5	1.61 12	
U S S	2003		0.	0.	-303.	289.	39.	5.	5,	0.03	0.05	0.08	13.5	1.10	121.7	0	6.0	1.14 14	
VI	2063		0.	0.	-551.	404.	424.	5.	<u>52.</u>	1.22	0.05	0.34	25.2	2.06	137.0	<u> </u>	7.7	1.46 11	
o _l	12 2063		ο,			209.	39.	5.	5.	0.83	0.05	0.08	13.6	1.11	122.8	0	6.1	1.15 14	
er .	12 2003		0.				456.	5.	56.	1.27	0.05	0.34	27.0	2.20	141.G	0	8.0	1.52 11	
Z.)	16 2063		0.		-302.	289.	39.	5.	5.	0,83	0.05	0.08	13.7		123.8	Ð	6,1	1.15 14	
	16 2053	L _ 575.	0.	0.	-575,	417.	465.	5.	57.	1.31	0.05	0.35	28.6	2.33	149.7	0	8.1	1.54 11	19
-1																			

DATE 06/08/; I &SE-PEO-ADV-DES-ENGR

				FUEL US	E IN BT	U*10**6-													
		C	OGENERAT	ION CAS	E **N	OCCOEN -	COGEN**	POWER	COGEN	M&O	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVI.	NORM WR	HT5
ECS	PROCS.	DISTIL	RESIDL	COVE	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRO	ENRO	
								MW	MW		RATIO		*10**6			(%)			
TRWOE	20631	307	. 0.	0.	-307.	289.	39.	5.	5,	0.84	0.05	0.06	13.9	1.13	123.7	0	6.1	1.16 1	39
TRWO	20631	l 767	. О.	0.	-767.	471.	648.	5.	79.	1.44	0.05	0.31	32.2	2,63	130.3	0	9,6	1.83 1	20
TRW12	20631	306	. 0.	0.	-306.	289.	39.	5.	5.	0.83	0,05	0.07	13.9	1.13	124.0	0	6.1	1.16 1	39
TRVIZ	20631	764	. 0.	0.	-764.	477.	669.	5,	81.	1.45	0.05	0.33	32.7	2.67	133.0	_ 0 _	9.5	1.80 1	2:1
TRWIE	20631	306	. 0.	0.	-306.	239.	39.	5.	5.	0.84	0.05	0.07	14.1	1.15	125.7	0	6.1	1.16 1	39
TRILLE	20631	731	. 0.	9.	-731,	465.	628.	5.	77.	1.44	0.05	0.33	32.7	2.67	138.2	0	9.4	1.78 1	120
TR308	20631	1 307	. 0.	0.	-307.	289.	39.	5.	5.	0.83	0.05	0.06	13.6	1.11	120.6	0	6.1	1.16 1	139
TR308	20631	654	. 0.	0.	-654.	423.	488.	5.	59.	1.28	0.05	0.28	26.7	2.18	124.9	0	8.7	1.65 1	11
TR312	20631	305	. 0.	Ō,	-305.	289.	39.	5.	5.	0.83	0.05	0.07	13.6	1.11	122.0	0	6.1	1.15 1	4
TR312	20631	1 680	. 0.	Ο.	-680.	445.	560 .	5.	68.	1.33	0.05	0.32	28.5	2.33	128.6	0	8.7	1.66 1	119
TR316	20631	306	. 0.	ο.	-306,	289.	39.	5.	5.	0.84	0.05	0.07	13.8	1.13	123,7	0	6.1	1.16 1	140
TR316	20631	676	. 0.	0.	-676.	442.	552.	5.	67.	1.35	0.05	0.32	29.4	2.40	133.1	0	8.9	1.68 1	118
CPADS	20631	311	. 0.	0.	-311.	289.	39.	5.	5.	0.92	0.05	0.05	14.6	1.19	128.6	0	6.4	1.21 1	3
CPADS	20031	1388	. 0.	0.	-1388.	657.	1269.	5.	155.	7.61	0.05	0.28	93.2	7.61	217.1	0	25.1	4.76 1	70
CMCDS	20631	306	. 0.	Ο.	- 306.	289.	39.	5.	5.	0.91	0.05	0.07	14.8	1.21	132.3	0	6.3	1.19 1	3!
CMCDS	20631	1013	. 0.	0.	-1013.	578.	1004.	5.	122.	5.96	0.05	0.36	80.4	6.56	251.9	0	19.5	3.70 1	6

DATE 06/08/75 ISSE-FEO-ADV-DES-ENGR

		COOF	NERAT	ION CAS	E **NO	COGEN -	COGEN	** *	מתוווים	COGEN	M&O	POVER	FESP	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WR
ECS	PROCS	DISTIL R		, , , , , , , , , , , , , , , , , , , ,	DISTIL		COAL	-	REGD	POWER	O(M)	/HEAT	7 64011	COST	COST	EQVL		CHRG	ENRG
									MW	MM		RATIO		*10**6			(%)		
NOCGN	20821	0.	116.	50.	Ō.	O.	O.		6.	0.	0.32	0.24	0.	3.5	1.00	119.3	0	4.7	1.00
STM141	20821	0.	125.	ο.	0,	-9.	50.		6.	6.	0.61	0.24	0.24	6. 9	1.96	188.7	10	4.4	0.94 1
TM141	20821	0.	132.	0.	Ο.	-12.	62.		6.	8.	0.49	0.24	0.28	6.6	1.87	172.0	15	4.1	0.89 1
STM141		0.	0.	125.	Ö.	116.	-76.	F	6.	6.	1.07	0.24	0.24	13.6	3.84	370.1	7	4.3	0.92 1
TH141		0.	0.	132.	0.	120.			6.	8.	0.86	0.24	0.28	12.3	3.49	319.8	11	3.8	0.81 1
TM141		0.	0.	125.	0.	116.	-76.		6.	6.	0.98	0.24	0.24	11.6	3.29	316.6	10	4.0	0.86 1
	20021	0.	Ö.	132.	o.	120.	-69.		6.	8.	0.75	0.24	0.28	9.9	2.79	255.6	17	3.4	0.73 1
	20821	0.	125.	O.	0.	-9.	49.		6.	6.	0.46	0.24	0.24	5.9	1.66	160.0	18	4.1	0.89 1
	20821	o.	Ō.	126.	0.	116.	-76.	F	6.	6.	0.82	0.24	0.24	11.4	3.21	309.6	12	3.8	0.62 1
	20821	ŏ.	Ö.	126.	o.	116.	-76.		6.	6.	0.72	0.24	0.24	9.3	2.63	253.4	17	3.5	0.75 1
	20821	o.	ŏ.	126.	ő.	116.	-76.		6.	6.	1.18	0.24	0.24	15.4		419.1	5	4.8	0.99 1
	20021	o.	o.	146.	o.	128.	-56.		6.	11.	1.06	0.24	0.33	15.3	4.34	358.8	9	4.0	0.86 1
	20621	- 0.	126.	0,	0.	-10.	50.		6.	6.	0.95	0.24	0.24	19.9	5.61	538.1	0	6.1	1.32 1
	20321	o.	159.	o.	o.	-23.	116.		6.	. 14.	1.17	0.24	0.37	33.1	9.36	709.5	0	7.3	1.58 1
	20821	ő.	0.	126.	0.	116.	-76.		6.	6.	1.47	0.24	0.24	28.3	7.99	765.8	ŏ	6.3	1.35 1
	20821	o.	o.	159.	0.	136,	-43.		6.	14.	1.54	0.24	0.37		11.88	900.4	ŏ	7.2	1.54 1
	20021	0.	129.	7.	 ö. -	-13.	43.		6.	5.	0.88	0.24	0.18	26.1	7.38	703.3	- 6 -	6.9	1.48 1
	20821	o.	2.	133.	Ö.	114.	-84.								9.52	906.5	Ô	6.9	1.48 1
TIRL	20621	132.	o.	0.	-132.	116.			6.	5. 6.	1.27	0.24	0.18	33.7			-		
							50.		6.		0.58	0.24	0.20	7.0	1.99	182.4	0	5.2	1.12 1
TIRL	20821	190.	0.	0.	-190.	144.	144.		6.	18.	0.58	0.24	0.34	10.9	3.07	195.6	<u> </u>	5.6	1.20 1
TIRL	20821	0.	132.	0.	0.	-16.	50.		6.	6.	0.59	0.24	0.20	7.0	1.99	182.6	8	4.5	0.97 1
TIRL.	20021	0.	190.	0.	0.	-46,	144.		6.	10.	0.58	0.24	0,34	10.9	3.08	195.8	6	4.5	0.97 13
TIRL	20021	0.	o.	132.	0,	116.	-82.		6.	6,	1.05	0.24	0.20	13.9	3.94	360.9	7	4.4	0.94 1
TIRL	20321	0,	0,	190.	0.	144.	-16.		6.	18.	1.02	0,24	0.34	18.4	5.20	331.2	9	3.9	0.83 1
	20821	0.	0.	133.	0,	116.	-83,		6.	6.	1.21	0.24	0.20	24.2		622, 1	Q	5.7	1.22 1
	20821	Ο.	0.	201.	0.	147.	-46.		6.	19,	1.44	0.24	0.34		11.29	679.5	0	6.6	1.42 1
	20021	0.	0.	145.	0.	116.	-96.		6,	6.	1.22	0.24	0,12	24.0	6.80	565.3	0	5.8	1.26 1
	20821	0.	0.	226.	0.	143.		Α	6.	<u> 17.</u>	1.41	0.24	0.20		10.53	561.4	0	6.9	1.48 1
	20321	o.	0.	147.	О,	116.	-97.		6.	. 6.	1.14	0.24	0.11	22.2	6.27	515.1	0	5.6	1.20 1
	20021	0.	0.	166.	· 0,	122.	-96.	Α	6.	9.	0.99	0.24	0,14	23.6		485.3	1	5.5	1.18 1
	20021	ο.	0.	131.	Ο.	116.	-81.		6.	6.	1.25	0.24	0.21	21.3	6.03	555.1	1	5.4	1,17 1
CMCCL	20821	0.	0.	181.	0.	141.	-49.		6.	16.	1.41	0.24	0.34	28.9	8.16	544.7	1	5.6	1.20 1
CSTCL	20021	0.	o.	130.	o.	116,	-80.		6.	6.	1.28	0.24	0.22	20.6	5.83	543.2	1	5.4	1.15 1:
CSTCL	20821	0.	0.	235.	0.	171.	-1.		6,	28,	1.86	0.24	0.42	37.4	10.58	543.6	2	5.9	1.26 1
GOTST	20021	0.	0.	136.	Ο.	116.	-87.		6.	6.	1.27	0.24	0.18	20.8	5,88	521.9	0	5.5	1.18 1:
GGTST	20021	Ο,	0.	219.	0.	151,	-52.		6.	20.	1.32	0.24	0.31	30.7	8.68	478.3	2	5.6	1.20 1
TSUAR	20021	ō.	134.	o.	υ,	-10.	50.		6.	6.	0.57	0.24	0.19	7.6	2.15	193.1	6	4.6	0.99 1
TSOAR	20821	0.	189,	0.	О.	-49,	132.		6,	16.	0.50	0.24	0.31	9.9	2.79	178.3	6	4.6	0.98 1
TACO8	20021	0.	132.	ο.	ο.	-16.	50.		ű,	6.	0.54	0.24	0.20	6.9		177.7	10	4.4	0.95 1
TACO8	20621	ο.	169,	0.	0.	-35.	110.		6.	13.	0.45	0.24	0.31	7.9	2.24	159.6	12	4.2	0.91 1
	20821	Ū.	131.	0.	ō.	-15.	50.		6.	6.	0.55	0.24	0.21	6.9	1.98	180.4	10	4.4	0.95 1
TACIZ		o.	182.	ő.	ŏ.	-41.	134.		6.	16.	0.48	0.24	0.34	9.0	2.53	168.0	10	4.2	0.91 1

				FIIEL TISE	INET	U*10**6-													
						OCCIGEN -			COGEN	MSD	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL				RESIDL	COAL	REQD MW	POWER		/HEAT		COST *10**6	COST	EQVL	(%)	CHRO	ENRG	WICCI.
STAC16	20821	O.	192.	0.	0.	-46.	149.	6.	18.	0.51	0.24	0.35	10.0	2.84	178.7	9	4.3	0.93	3 125
GTWC16	20821	0.	136.	0.	0.	-20.	50.	6	6.	0.56	0.24	0.18	7.5	2.11	188.1	6	4.6	0.9	9 136
GTWC16	20821	0.	213.	0.	0.	-64.	162.	6.	20.	0.54	0.24	0.31	10.7	3.01	170.5	4	4.7	1.0	1 120
CC1626	20821	0.	135.	0.	0.	-19.	50,	6.	6.	0.65	0.24	0.18	7.7	2.17	193.6	3	4.7	1.02	2 136
CC1626	20821	0.	300.	ο.	ō.	-113.	290.	6.	35.	0.81	0.24	0.37	15.6	4.40	176.9	0	5.2	1.10	3 110
CC1622	20821	0.	134.	Ο.	0.	-18.	50.	6.	6.	0.64	0.24	0.19	7.4	2.09	188.4	5	4.7	1.00	0 138
001622	20821	0.	273.	0.	0.	-94.	262.	6.	32.	0.76	0.24	0.38	14.6	4.14	182.7	2	5.0	1.07	7 113
CC1222	20821	0.	134.	Ο.	0.	-18.	50.	6.	6.	0.64	0.24	0.19	7.2	2.04	184.4	5	4.6	0,99	9 138
CC1222	20621	0.	272.	0.	o.	-92.	261.	6.	32.	0.75	0.24	0.38	14.0	3,95	175.4	3	4.9	1.04	4 113
CC0822	20021	0,	131.	0.	0.	-15.	50.	6,	6.	0.64	0.24	0.21	7.4	2.08	191.4	6	4.6	0,9	9 139
000055	20021	· o.	230.	Ο.	0.	-65,	211.	6.	26.	0.69	0.24	0.39	12.1	3.43	180.3	G	4.5	0.97	7 119
ST1015	20821	. o.	154.	0.	0.	-38.	50.	6,	6.	0.62	0.24	0.07	7.7	2.17	170.0	0	5.1	1.11	1 124
STIG15	20821	0.	6615.	0.	0.	-4703.	6065.	6.	739.	10.73	0.24	0.17	196,6	55.57	101.4	0	78.6	16.90	0 460
STIGIO	20821	0.	150.	٥.	0.	-34.	50.	6.	6.	0.60	0.24	0.10	7.4	2.08	167.9	0	5.0	1.07	7 127
STIGIO	20821	0.	649.	Ο.	0.	-380.	561.	6.	68.	1.27	0.24	0.22	22.7	6.42	119,4	0	9.8	2.10	0 104
STIGIS	20821	0.	147.	0,	0.	-31.	50.	G,	6.	0.60	0.24	0.11	7.2	2.04	167.3	0	4.9	1.05	5 129
STIGIS	20821	0.	408,	0.	Ō.	-209.	329.	6.	40.	0.92	0.24	0.23	15.4	4.36	129.1	0	7.2	1.54	4 10
DEADV3	20821	0.	132.	0.	0.	-16.	50.	6.	6,	0.64	0.24	0.20	9.4	2.66	242.6	2	4.8	1.03	3 13
DEADVS	20821	0.	231.	Ο.	ο.	-68.	206.	6.	25.	0.77	0.24	0.37	17.5	4.94	258.7	0	5.3	1.13	3 11
DEHTPM	20021	0.	128.	0.	0.	-12.	50	6.	6.	0.67	0.24	0.22	9.4	2,64	248.6	_4	4.7	1.02	2 13
DENTIN	20821	0.	196.	0.	0.	-43.	172.	6.	21.	0.74	0.24	0.40	15.0	4.25	262.1	4	4.3	1.02	2 124
DESOA3	20821	134.	0.	0.	-134.	116.	50.	6.	6.	0.63	0.24	0.19	8.8	2.50	225.7	0	5.5	1.18	B 139
DESOA3	20821	235.	0.	ο.	-235.	162.	204.	6.	25.	0.87	0.24	0.36	21.3	6.01	308.6	0	7.2	1.54	1 12
DESGAS	20621		134.	0.	0.	-10.	50.	6.	6.	0,63	0.24	0.19	8.8	2.50	225.7	3	4.8	1.03	3 13
DESUAS	20821	0.	235.	0.	0.	-73.	204.	6.	25.	0.87	0.24	0.36	21.3	6.01	308.6	0	5.9	1.27	7 11
GTSOAD	20321	132.	0.	Ο.	-132.	116.	50.	6.	. 6.	0.54	0.24	0.20	6.7	1.88	171.9	0	5.1	1.10	0 14
ϴͳϨϭΛϹ			0.	Ο.	-181.	139.	127,	6.	15.	0.45	0.24	0.32	8.0	2.27	151.8	0	5.2	1.11	1 13-
3TRA05		133.	0.	0.	<u>-133.</u>	116.	50.	6.	6.	0.57	0.24	0.19	7.9	2.23	202.1	0	5.3	1.15	5 140
BOVALE		228.	0.	Ο.	-228.	160.	196.	6.	24.	0.60	0,24	0.36	13.0	3.66	193.8	0	6.0	1.20	3 12
STRA12			0.	ο.	-133.	116.	50.	6.	6.	0.57	0.24	0.20	7.8	2.21	201.0	0	5.3	1.14	1 14
TRA12		226,	0.	0,	-226.	159.	194.	6.	24.	0.60	0.24	0.36	13.1	3.69	197.3	0	5.9	1.28	3 12
STRA16		133.	0.	0.	<u>-133.</u>	116.	50.	6.	6.	0.58	0.24	0.20	8.1		207.5	0	5.3	1.15	5 140
TRA 16		219.	Ο.	0.	-219.	156.	184.	6.	22.	0.60	0,24	0.36	13.3	3.75	207.0	0	6.0		3 12
TR206			ο.	0.	-133.	116.	50.	6.	6.	0.56	0.24	0.20	7.5	2.11	191.4	0	5.3	1.13	
3TR208			ο.	ο.	-201.	147.	155.	6.	19.	0.53	0.24	0.34	10.5		179.3	0	5.€	1.20	129
3TR212		133.	<u> </u>	0.	<u>-133.</u>	116.	50.	6.	6.	0.57	0.24	0.19	7.6	2.16	<u> 195. 6</u>	0_	5.3	1.14	
TR212		209.	0,	0.	-209.	151.	166.	6.	20.	0.55	0.24	0.34	11.4	3.22	186.0	0	5.7	1.24	
	20821		0.	0.	-133.	116.	50.	6.	6.	0.57	0.24	0.20	7.8	2.20	199.9	0	5.3		1 14
	50051		0.	0.	-209,	152.	170.	6,	21.	0.57	0.24	0.35	12.0	3.39	195.6	0		•1.24	
BOMBTT		139.	0.	0.	-139,	116.	<u>50.</u>	6.	6.	0.53	0.24	0.16	8.0		197.1	<u> </u>	5.5		
ELIKMOS		280.	0.	0.	-200,	172.	236.	6.	29.	0.66	0.24	0.31	14.4	4.06	175.2	0	6.9		
TRW12			0.	0.	-137.	116.	50.	6.	6.	0.58	0.24	0.17	8.0	_	199.0	0	5.5	1.17	
TRH12		278.	0.	o.	-278,	174.	214.	6.	30. G.	0.66	0.24	0.33	14.6	4.13	179.1	0	6.8 5.5	1,46	3 119
	20021	137.	Ο.	Ο.	-137.	116.	50.				0.24		8.2					1.10	

NATE OG/OS/V LOSE-PEC-ADV-DES-ENGR GENERAL ELIT DE COMPANY
COGENERATION TECHNOL BY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

1				FUEL US	SE IN BT	U*10**6-													
l		**C(DGENERAT	ION CAS	Exx xxN	IOCOGEN -	COGEN**	POWER	COGEN	0811	POWER	FESR	CAPITAL	NORM	3/KW	ROI	LEVL	NORM WI	RTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	1414		RATIO		*10**6			(%)			
GTRW1	5 2082	267	. 0.	0.	-267.	170.	229.	6.	28.	0.66	0.24	0.33	14.6	4.13	187.2	0	6.7	1.44	120
GTR30	8 2082	1 139.	. 0.	0.	-139.	116.	50.	6.	6.	0,57	0.24	0.16	7.6	2.14	185.4	0	5.5	1.18	137
GTR30	8 2082	1 238	О.	ο.	-238.	154.	178.	6.	22.	0.57	0.24	0.28	11.5	3.25	164.6	0	6.4	1.38	122
GTR31	2 2082	1 137		0.	-137.	116.	50.	6.	6.	0.57	0.24	0.17	7.7	2.17	191.7	0	5.4	1.16	139
GTROT	2 2082	248	. 0.	0.	-248.	162.	204.	6.	25.	0.60	0.24	0.32	12.5	3.52	171.5	0	6.3	1.36	121
GTR31	6 2082	1 137	. 0.	. 0.	-137.	116.	50.	6.	6.	0,58	0.24	0.17	7.9	2.24	197.2	0	5.4	1.17	138 .
GTR31	6 2085	246	. О.	ο.	-246.	41S).	201.	s.	24.	0.61	0.24	0.32	12.9	3.65	178.9	0	6.4	1.38	121
FCPAD:	S 2002	1 133.	. 0.	0.	-133.	176.	50.	6,	6.	0.92	0.24	0.20	7.6	2.15	195.4	0	5.6	1.21_1	143
FCFAD	S 2002	1 240	. 0.	0.	-240.	167.	219.	6.	27.	2.52	0.24	0.38	16.7	4.71	237.1	0	8.2	1.76	133
FCMCD	S 2082	1 137	. 0.	0.	-137.	116.	50.	6.	6.	0.91	0.24	0.17	8.2	2.32	203.4	0	5.8	1.25	139
FCMCD	S 2002	1 369	. 0.	0.	-369.	210.	366.	6.	45.	3.91	0.24	0.36	29.3	₹ .27	270.6	0	12.0	2.58	136
7																			

cs	PROCS	**COG			E** **NOC DISTIL		COGEN**	REOD	POWER	M&O	POWER /HEAT	FESR	CAPITAL	NORM COST	\$/KW	- *	LEVL CHRG	NORM HRT ENRO
Macon	22601	0.	201.	51.	ō.	0.	o.	MW	W/A	0.41	RATIO	~	*10**6			(3)		
	,							6.	0.	0.41	0.13	0.	5.2	1.00	96.2	0	6.7	1.00 8
	22601		211.	0.	0.	-10.	51.	6.	6.	0.76	0.13	0.16	9,1	1.74	148.0	. 7	8.5	
	22601		226.	0,	0.	-16.	82.	6.	10.	0.60	0.13	0.23	8.8	1.68	132.6	14	6.1	0.92 13
3TM141			<u>0,</u>	211.	<u> 0.</u>	201.	-160. F	<u>6.</u>	6.	1.40	0,13	0.16	19.3	3.69	313.2		6.3	
STMIAI			0.	226.	o.	210.	-144. F	6.	10.	1.11	0.13	0.23	17.4	3.31	262.3	12	5.4	0.81 11
	55601		0.	211.	0.	201.	-160. A	6.	6.	1.29	0.13	0.16	16.7	3.19	270.4	10	5.9	0.88 12
	22601		0.	226.	0.	210.	-144. A	6.	10.	0.97	0.13	0.23	13.2	2.52	199.1	18	4.8	0.72 11
	22601	The second secon	211.	0.	0.	-10.	51.	6.	6.	0.72	0.13	0.16	8.4	1.61	136.7	10	6.4	0.96 13
	22601		215.	0.	0.	-11.	60.	6.	7.	0.57	0.13	0.18	7.8	1.49	123.6	17	6.1	0.92 13
	3 22601		o.	211.	ο.	201.	-160. F	6.	6,	1.32	0.13	0.16	18.0	3.44	291.6	8	6.0	
380MT	3 22601	0.	0.	215.	0.	204.	-155. F	6.	7.	1.05	0.13	0.18	16.0	3.05	253.7	12	5.5	0.82 11
SEOMTS	22601	c.	Ο.	211.	٥.	201.	-160. A	6.	6.	1.21	0.13	0.16	15.0	2.86	242.5	12	5.6	0.84 12
3111000	22601	C.	0.	215.	ο.	204.	-155. A	6.	7.	0.93	0.13	0.18	12.4	2,37	197.1	19	5.0	0.74 11
PEBST	1 22601	Ø.	0.	212.	0.	201.	-161.	6.	6.	1.48	0.13	0.16	20.6	3.93	332.6	6	6.5	0.97 12
PESTI	1 22601	0.	o.	252.	0,	225.	-121.	6.	16.	1.45	0.13	0.29	21.3	4.07	269.1	9	5.7	0.85 11
FISTM	22601	0,	211.	0,	Ο.	-10.	51.	6.	6.	1.11	0.13	0.16	23.2	4.44	375.2	0	8.4	1.26 12
risim	22601	0.	273.	ō.	0,	-35.	174.	6.	21,	1.63	0.13	0.34	48.8	9.32	609,6	Ō	10.9	
TISTM	22601	0.	Ο.	211.	0.	201.	-161.	6.	6.	1.78	0,13	0.16	34.8	6.65	562.3	Õ	8.3	1.25 12
LISTM	22601	O.	0.	273.	o.	238.	-99.	6.	21.	2,27	0.13	0.34		11.83	774.1	ă	10.4	1.56 12
	22601		221.	a.	o.	-19.	51.	6.	6.	1.24	0.13	0.12	32.0	6.11	495.0	ŏ	9.6	1.44 12
	22601		242.	Ō,	ō.	-31.	62.	6,	10.	1.34	0.13	0.17	42.2	8.04	595.3	0	10.7	1.61 12
	22601		o.	221.	ŏ.	201.	-170.	6.	6.	1.93	0.13	0.12	44.6	8.52	690.7	õ	9.7	1.45 12
	22601		o.	242.	õ.	210.	-160.	6.	10.	1.93	0.13	0.17		10.34	765.5	ă	10.4	1.56 11
STIRL	22601		o.	Õ.	-222.	201.	51.	6.	6.	0.73	0.13	0.12	10.0	1.91	153.7	Ď	8.0	1.20 13
STIRL	22001		0.		-335,	240.	208.	6.	25.	0.84	0.13	0.26	18.4	3.52	187.5	- 0	9.4	1.40 11
FIRL	22601		222.	õ.	0,	-21	51.	6.	6.	0.73	0.13	0.12	10.0	1.91	153.8	1	6.8	1.03 13
STIRL	22601		335.	0.	0.	-87.	208.		25.		0.13					•		1.15 10
STIRL	22601		330. 0.	222.	0.	201.		6. 6.	25, 6.	0.84		0,26	18.4		187.8	0	7.6	
							<u>-172.</u>			1.35	0.13	0.12	19.9	3.79	305.0	<u> </u>	6.4	0.96 11
STIRL	22601		0.	335.	0,	248.	-127.	6.	25.	1.54	0.13	0.26	32.5	6.20	330.6	5	6.6	0.99 9
	22601		o.	240.	0.	201.	-189. A	6.	6, 05	1.50	0.13	0.05	29.8	5.69	424.5	0	7.9	1.18 11
	22601		0.	1018.	0,	421.	-232, A	6.	96,	4.42	0.13	0.16		24.08	423.0	o	18.6	2.78 10
	22601		<u>o.</u>	237.	<u> </u>	201.	<u>-187. A</u>	<u>6.</u>	<u>6.</u>	1.49	0.13	0.06	29.0	5.54	417.0	0_	7.8	1.16 11
	22601	0.	0.	504.	o.	280.	-190. A	6.	38.	2.41	0.13	0.15		12.49	443.1	0	11.5	1.73 8
	22601	_	0,	236.	∘ o.	201.	-185. A	6.	6.	1.46	0.13	0.06	27.7	5.29	400.7	1	7.6	1.14 11:
	22601		0.	320.	0.	226.	-184. A	6.	16.	1.51	0.13	0.12	37.5	7.15	400.2	0	8.3	1.24 9
	. 22601		0.	217.	0.	201.	-166.	6.	6.	1.52	0.13	0.14	27.0		424.9	2_	7.4	1.10 12
	. 22501		0.	333.	o.	259.	-90.	6.	30.	2.15	0.13	0.34	44.7		457.3	1	8.1	1.22 10
	. 22601		0.	215.	ο.	201.	-164.	6.	6.	1.55	0.13	0.15	26.3	5.01	416.4	2	7.3	1.10 12
	. 22601		0.	404.	o.	298.	-27.	6,	46.	2.67	0.13	0.40	54.4	10.39	460.3	2	8.3	1.25 10
	55001		0.	223.	0.	201.	-172.	6.	6.	1.54	0.13	0.12	26.3	5.01	402.6	2	7.4	1.11 11
GGIST	22601	0.	0.	376.	O,	264.	-114.	6.	32:	1.74	0.13	0.29	43.5	8,30	394.6	2	7.8	1.17 9
STSOAF	22601	0.	222.	ο.	Ö,	-21.	51.	6.	6.	0.68	0.13	0.12	9.8	1.86	150.1	3	6.7	1.01 13
STSOAF	22501	0.	366.	0.	0.	-104.	256.	6.	31.	0.72	0.13	0.29	15.9	3.02	147.7	0	7.1	1.07 10

DATE 06/06/75 LASE-PEO-ADV-DES-EMOR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FIIEL US	E IN RT	1+10++6				·								
							- COGEN**		COGEN	MSO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRT
EC S	PROCS	DISTIL				RESIDL		REGD	POWER	Odi.	HEAT	· LON	COST	COST	EQVL		CHRG	ENRG
								MW	MM		RATIO		*10**6			(男)		
STACOE	22601	0.	217.	0.	Ō.	-16,	51.	6.	6.	0.66	0.13	0.14	9.1	1.73	142.6	7	6.5	0.96 13
STACOE	22601	0.	308.	0.	0.	-62.	200.	6.	24.	0.62	0.13	0.31	12.3	2.35	136.9	9	6.3	0.94 11
STAC12	22601	0.	217.	G.	ο.	-16.	51.	6.	6.	0.66	0.13	0.14	9.1	1.73	142.8	7	6.6	0.98 13
GTAC12	22601	0.	340.	0.	0.	-79.	249.	5.	30.	0.68	0.13	0.33	14.4	2.75	144.7	7	6.4	0.96 11
GTAC16	22601	0.	218,	0.	0.	-17.	51.	6.	6,	0.67	0,13	0.14	9.3	1.77	145.6	6	6,6	0.99 13
STAC16	22601	0.	363.	0.	ο.	-93.	282.	6.	34.	0.73	0.13	0.34	16.4	3.12	153,8	5	6.6	1.00 10
OTWC16	22601	0.	221.	0.	ο.	-20.	51.	6.	6.	0.68	0.13	0.12	9,6	1.83	148.1	4	6.7	1.01 13
GTWC16	22601	0.	391.	0.	0,	-116.	296.	6.	36,	0.75	0.13	0.32	16.5	3.14	144.0	11	7.1	1.06 10
CC1626	2260	0.	221.	0.	0.	-20.	51.	6.	6.	0.76	0.13	0.12	9.7	1.84	149.0	2	6.8	1.02 13
	22601		516,	-	0.	-189.	473,	6.	58.	1.05	0.13	0.36	22.4	4.27	148.0	0	7.8	1.16 10
	22601		220.		0.	-19.	51.	6.	6.	0.75	0.13	0.13	9.4	1.79	145.9	3	6.8	1.01 13
	22601		470.	0,	0.	~157.	426.	6.	52.	1.01	0.13	0.36	21.6	4.11	156.5	0	7.4	1.12 10
	2260		220.		0.	-18.	51.	6.	6.	0.74	0.13	0.13	9.2	1.76	143.1	4	6.7	1.01 13
	22001		466.		0.	-154.	424.	6.	52.	0.99	0.13	0.37	20.5	3.91	149.8	1	7.2	1.09 10
	2 22601		217.		0.	-16.	51.	6.	6.	0.75	0.13	0.14	9.4		147.3	4	6.7	1.00 13
	22601		394.	<u>0.</u>	0.	<u>-107.</u>	338.	6.	41.	0.89	0.13	0.37	17.4	3.32	150.6	5	6.7	1.00 10
	2260		241.		0. 0.	-39,	51.	6,	6.	0.72	0.13	0.05	9,6	1.84	136.5	0	7.2	1.08 12
-	2260		12154. 236.	0.		-8540.	11142.	6,	1357.	18.28	0.13	0.17		65.88	96.9	0		
	22601 22601		1192.	0.	0. 0.	-35. -699.	51. 1030.	6, 6.	6. 126.	0.70 2.62	0.13 0.13	0.07	9.3 39.8	1.78 7.60	134.9	0	7.0	1.05 12 2.41 11
	2260		233.		0,	-32.	51.	6.	6,	0.70	0.13	0.07	9,2	1.75	134.6	- 0 -	16.1 7.0	3,04 12
	22601		750.		0.	-383.	605.	6.	74.	1.36	0.13	0.23	24.2	4.62	110.3	ŏ	11.2	1.68 9
	3 2260		228.		Ċ.	-27.	51.	6.	6.	0.77	0,13	0.09	12.1	2.31	180.9	Ö	7.2	1.00 3
	22601		733.	o.	0.	-352.	654.	6.	60.	1.84	0.13	0.29		10.18	248.5	ő	13.5	2.03 10
***************************************	1 22601		217.		, 0,	-16.	<u> </u>	6.	6.	0.81	0.13	0.14	12.2	2.33	191.7	ŏ	7.0	1.05 13
	1 22601		368.		ő.	-93.	298.	6.	36.	1.16	0.13	0.36	28.0	5.34	259.6	ŏ	8.1	1.22 10
	22601		0.		-232.	201.	51.	6.	6.	0.76	0.13	0.08	11.6		171.2	ŏ	8.4	1.27 12
	22601		ο.	0.	-870.	412.	756.	6.	92.	2.43	0.13	0.25		14.47	297.4	ò	22.3	3,34 13
	2260		232.	Ō.	O.	-31.	51.	6.	6.	0.76	0.13	0.08	11.6	2.22	171.2	ō	7.3	1.09 12
DESCAS	22601	0.	870.	O.	0.	-459.	756,	5.	92.	2.43	0.13	0.25		14.47	297.4	0	17.8	2.67 11
GTSOAC	22601	219.	0,	Ο.	-219.	201.	51.	6.	6.	0,66	0.13	0.13	8.8		137.5	0	7.7	1.15 13
	22601		0.	0.	-341.	257.	240.	6.	29.	0.64	0.13	0.31	12.8	2.45	128.5	0	8.2	1.23 11
	22601	221.	0.	o.	-221.	201.	51.	6.	6.	0.68	0.13	0.12	10.0	1.91	154.2	0	7.9	1.18 13
	22601		0.	Ο.	-456.	303.	392,	6.	48.	0.89	0.13	0.34	21.4	4.05	160.1	O	9.9	1.48 11
	22601		Q.	0.	-220.	201.	51.	6.	6.	0.68	0.13	0.13	9.9	1.69	153.8	O	7.9	1.18 13
	22601		0.	0.	-445.	300,	384.	6.	47.	0.89	0.13	0.35	21.6	4.11	165.2	0	9.7	1.46 11
	2260		0.	o.	-220.	201.	51.	6.	6.	0.69	0.13	0.13	10.2	1.94	158.0	0	7.9	1.18 13
	22601		0.	- ,	-427.	293,	359.	6.	44.	0.89	0.13	0.34	21.7		173.7	0	9.7	1.45 11
	2260		0.		-220.	201.	51.	6.	6.	0.68	0.13	0.13	9.6		148.7	0	7.8	1.17 13
	2260		<u>0.</u>	<u>0.</u>	-387.	275.	298.	<u>6.</u>	36.	0.76	0.13	0.32	<u> 17.1</u>		150.3	0_	9.0	1.35 11
	22601		0.		-220.	201.	51.	6.	6,	0.68	0.13	0.13	9.8	1.86	151.2	0	7.8	1.18 13
GTR212	2 22601		0.	0.	-403,	281.	320.	6.	39.	0.80	0.13	0.33	18.4	3.51	156.1	ŏ	9.2	1.38 11
	5 22601 5 22601		o. o.	: 0.	-220. -404	201.	51.	6.	6.	0.68	0.13	0.13	9,9		153.7	0	7.8	1.18 13
ひょれんしり	22001	404.	Ο,	0.	-404.	284.	328.	6.	40.	0.83	0,13	0.34	19,6	3.73	165.3	0	9.3	1.39 11

				FUEL US	E IN BT	U*10**6-													
		C(DGENERAT	ION CAS	E **N	OCOGEN -	COGEN**	POWER	COGEN	MBD	POWER	FESR	CAPITAL	NORM	\$/KW	ROI -	LEVL	NORM I	WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
				(\$1)				MW	MW		RATIO		*10**6			(%)			
	8 22601			ο.	-226.	201.	51.	6.	6.	0.69	0.13	0.10	10.1	1.92	152.2	0	8.0	1.21	133
GTRWO	8 22601	555.	О.	Ο.	-555.	326.	468.	6.	57.	0.96	0.13	0.30	23.2	4.42	142.5	0	11.5	1.73	110
GTRW1	2 22601	224	. 0,	0.	-224.	201.	51.	6.	6.	0.69	0.13	0.11	10.1	1.92	153.3	0	8.0	1.20	134
GTRW1	2 22601	545	0,	0.	~545.	329.	478.	6.	58.	0.96	0,13	0.32	23.4	4.46	146.4	0	11.1	1,67	111
GTRHI	6 22601	224	. <u>o.</u>	0.	-224.	201.	51.	6.	6.	0.69	0 13	0.11	10.3	1.96	156.7	0	8.0	1.20	134
GTRW1	6 22601	517	. 0.	Ο.	-517.	318.	444.	6.	54.	0,95	0.13	0.32	23.2	4.43	153.4	0	10.9	1.63	111 -
GTR30	8 22601	228	. О.	ø.	-228.	201.	51.	6.	6.	0.68	0.13	0.10	9.7	1.85	145-1	0	8.0	1.21	133
GTR30	8 22601	480	. <u> </u>	0.	-480.	293.	358.	6.	44.	0.83	0.13	0.26	18.9	3.60	134.2	0	10.8	1.62	108
OTR31	2 22601	223	. 0.	0.	-223.	201.	51.	6.	6.	0.68	0.13	0.11	9.8	86	149.3	0	7.9	1.19	135
GTR31	2 22601	472	. 0.	0.	-472.	302.	388,	6.	47.	0.85	0.13	0.32	19.7	3.75	142.1	0	10.1	1.52	111
OTR31	6 22601	224	. 0.	0.	-224,	201.	51.	6.	6.	0.69	0.13	0.11	10.0	1.91	152.8	0	8.0	1.19	134
GTR31	6 22601	469	ο.	0.	-469.	300,	382.	6.	47.	0.87	0.13	0.31	20.3	3.88	147.9	0	10.2	1.54	111
FCPAD	S 22601	230	0.	O.	-230.	201.	51.	6.	6.	1.04	0.13	0.09	10.3	1.97	153.0	0	6.5	1.28	133
FCPAD	S 22601	929	. 0.	0.	-929.	` 440.	850.	6.	104.	8,93	0.13	0.28	61.2	11.68	224.8	0	27.2	4.08	157
FCMCD	S 22601	223.	. О.	0.	-223.	° 201.	51.	6.	6.	1.01	0.13	0.11	10.6	2.02	162.0	0	8.3	1.25	135
FCMCD	S 22601	678	0.	0.	-678.	387.	672.	6.	82.	6.75	0.13	0.36	52.6	10.03	264.5	O	20.3	3.04	142

GENERAL ELEC - C COMPANY

CUGENERA	ATIO	I TECH	HIQILOGY	/ Al	TERN/	AT!	IVES	STUDY
			EPORT !					
SUMMARY	OF	FUEL	SAVED	BY	TYPE	8	ECO	nom i Cs

COAL DISTIL RESIDE COAL DISTIL RESIDE COAL REGO POWER MW RATIO *10**6 COST EQVL CONTROL COAL REGO POWER MW RATIO *10**6 COST EQVL COAL COA	0.6 1.00 80 0.7 1.18 245 0.6 1.00 225 1.3 2.05 256
STM141 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.38 0.17 0.99 3.3 1.81 270.3 0	0.7 1.18 245 0.6 1.00 225
STM141 24211 0. 1. 0. 0. 3. 14. 2. 2. 0.30 0.17 0.95 3.1 1.70 248.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.6 1.00 225
STM141 24211 0. 0. 0. 0. 0. 4. 12. F 2. 2. 0.62 0.17 0.99 6.1 3.38 503.5 0 STM141 24211 0. 0. 0. 1. 0. 4. 13. F 2. 2. 0.49 0.17 0.95 5.5 3.02 441.9 0 STM141 24211 0. 0. 0. 0. 4. 12. A 2. 2. 0.56 0.17 0.99 5.5 3.06 456.4 0 STM141 24211 0. 0. 0. 1. 0. 4. 13. A 2. 2. 0.56 0.17 0.99 5.5 3.06 456.4 0 STM141 24211 0. 0. 1. 2. 0. 3. 10. 2. 1. 0.29 0.17 0.81 2.6 386.8 0 STM088 24211 0. 1. 2. 0. 3. 10. F 2. 1. 0.47 0.17 0.81 5.0 2.76 422.4 0 STM088 24211 0. 1. 2. 0. 3. 10. F 2. 1. 0.47 0.17 0.81 5.0 2.76 422.4 0 STM088 24211 0. 1. 2. 0. 3. 10. A 2. 1. 0.41 0.17 0.81 4.5 2.48 379.7 0 STM088 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 STM088 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 STM088 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 STM088 24211 0. 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 STM088 24211 0. 20. 0. 0. 016. 12. 2. 2. 0.53 0.17 0.80 7.3 4.02 526.0 0 STISTMT 24211 0. 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.63 0.17 0.98 12.2 6.77 1004.1 0 STISTMT 24211 0. 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.61 0.17 0.98 12.2 6.77 1004.1 0 STISTMT 24211 0. 0. 0. 0. 0. 033. 12. 2. 2. 0.52 0.17 -1.27 11.0 6.12 859.0 0 STIRKSG 24211 0. 0. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 STIRL 24211 20. 0. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 STIRL 24211 20. 0. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	
STITI 24211 0.	1 2 2 05 256
STM141 24211 0. 0. 0. 0. 4. 12. A 2. 2. 0.56 0.17 0.99 5.5 3.06 456.4 0 5TM141 24211 0. 0. 1. 0. 4. 13. A 2. 2. 0.42 0.17 0.95 4.8 2.65 386.8 0 5TM068 24211 0. 1. 2. 0. 3. 10. 2. 1. 0.29 0.17 0.81 2.6 1.45 222.7 6 5TM068 24211 0. 1. 2. 0. 3. 10. F 2. 1. 0.47 0.17 0.81 5.0 2.76 422.4 0 5TM068 24211 0. 1. 2. 0. 3. 10. A 2. 1. 0.47 0.17 0.81 5.0 2.76 422.4 0 5TM068 24211 0. 1. 2. 0. 3. 10. A 2. 1. 0.41 0.17 0.81 4.5 2.48 379.7 0 5TM 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 6 5TM 24211 0. 0. 0. 6. 0. 7. 17. 2. 3. 0.53 0.17 0.80 7.3 4.02 526.0 0 6 5TM 24211 0. 0. 0. 0. 0. 10. 0. 10. 0. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	1.0 2.00 200
STM141 24211 0. 0. 1. 0. 4. 13. A 2. 2. 0.42 0.17 0.95 4.8 2.65 386.8 0 STM088 24211 0. 1. 2. 0. 3. 10. 2. 1. 0.29 0.17 0.81 2.6 1.45 222.7 6 STM088 24211 0. 1. 2. 0. 3. 10. F 2. 1. 0.47 0.17 0.81 5.0 2.76 422.4 0 STM088 24211 0. 1. 2. 0. 3. 10. A 2. 1. 0.41 0.17 0.81 5.0 2.76 422.4 0 STM088 24211 0. 1. 2. 0. 3. 10. A 2. 1. 0.41 0.17 0.81 4.5 2.48 379.7 0 STM088 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 STM1 24211 0. 0. 6. 0. 7. 17. 2. 3. 0.53 0.17 0.80 7.3 4.02 526.0 0 STISTIM 24211 0. 20. 0. 0. 016. 12. 2. 2. 0.53 0.17 0.26 8.4 4.64 688.3 0 STISTIM 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.81 0.17 0.98 12.2 6.77 1004.1 0 STISTIM 24211 0. 0. 0. 0. 9. 21. 2. 4. 0.83 0.17 0.76 18.1 10.01 1209.2 0 STIHRSO 24211 0. 36. 0. 033. 12. 2. 2. 0.52 0.17 -1.27 11.0 6.12 859.0 0 STIHRSO 24211 0. 0. 5. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 STIRL 24211 20. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	1.1 1.70 232
STM068 24211 0. 1. 2. 0. 3. 10. 2. 1. 0.29 0.17 0.81 2.6 1.45 222.7 6 STM068 24211 0. 1. 2. 0. 3. 10. F 2. 1. 0.47 0.17 0.81 5.0 2.76 422.4 0 STM068 24211 0. 1. 2. 0. 3. 10. A 2. 1. 0.41 0.17 0.81 4.5 2.48 379.7 0 STM068 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 STM1 24211 0. 0. 6. 0. 7. 17. 2. 3. 0.53 0.17 0.80 7.3 4.02 526.0 0 STM1 24211 0. 0. 0. 0. 0. 1. 12. 2. 2. 0.53 0.17 0.80 7.3 4.02 526.0 0 STM1 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.53 0.17 0.98 12.2 6.77 1004.1 0 STM1 24211 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.81 0.17 0.98 12.2 6.77 1004.1 0 STM1 24211 0. 0. 0. 10. 0. 9. 21. 2. 4. 0.83 0.17 0.76 18.1 10.01 1209.2 0 STM1 24211 0. 36. 0. 033, 12. 2. 2. 0.52 0.17 -1.27 11.0 6.12 859.0 0 STM1 24211 0. 0. 0. 3. 0. 4. 10. 2. 2. 0.78 0.17 0.83 15.0 8.33 1169.0 0 STM1 24211 0. 0. 5. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 STM1 24211 20. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	1.2 1.85 252
STM088 24211 0.	0.9 1.48 229
STM068 24211 0. 1. 2. 0. 3. 10. A 2. 1. 0.41 0.17 0.81 4.5 2.48 379.7 0 0 0 0. 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 0 0 0 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.6 0.98 211
PERSTN 24211 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 0.0 0. 0. 0. 6. 0. 7. 17. 2. 3. 0.53 0.17 0.80 7.3 4.02 526.0 0 0.0 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0.	1.1 1.60 216
PERSTN 24211 0. 0. 0. 0. 4. 12. 2. 2. 0.67 0.17 0.98 7.5 4.16 617.2 0 0.0 0. 0. 0. 0. 7. 17. 2. 3. 0.53 0.17 0.80 7.3 4.02 526.0 0 0.0 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.9 1.49 213
PRISTM 24211 0. 0. 6. 0. 7. 17. 2. 3. 0.53 0.17 0.80 7.3 4.02 526.0 0 PRISTM 24211 0. 20. 0. 016. 12. 2. 2. 0.53 0.17 -0.26 8.4 4.64 688.3 0 PRISTM 24211 0. 0. 0. 0. 4. 12. 2. 2. 0.81 0.17 0.98 12.2 6.77 1004.1 0 PRISTM 24211 0. 0. 10. 0. 9. 21. 2. 4. 0.83 0.17 0.76 18.1 10.01 1209.2 0 PRISTM 24211 0. 36. 0. 033. 12. 2. 2. 0.52 0.17 -1.27 11.0 6.12 859.0 0 PRISTM 24211 0. 0. 3. 0. 4. 10. 2. 2. 0.78 0.17 0.83 15.0 8.33 1169.0 0 PRISTM 24211 0. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 PRISTM 24211 20. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	1.5 2.36 259
TISTMT 24211 0. 20. 0. 016. 12. 2. 2. 0.53 0.17 -0.26 8.4 4.64 688.3 0 TISTMT 24211 0. 0. 0. 0. 4. 12. 2. 2. 0.81 0.17 0.98 12.2 6.77 1004.1 0 TISTMT 24211 0. 0. 10. 0. 9. 21. 2. 4. 0.83 0.17 0.76 18.1 10.01 1209.2 0 TIHRSO 24211 0. 36. 0. 033. 12. 2. 2. 0.52 0.17 -1.27 11.0 6.12 859.0 0 TIHRSO 24211 0. 0. 3. 0. 4. 10. 2. 2. 0.78 0.17 0.83 15.0 8.33 1169.0 0 TIHRSO 24211 0. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 STIRL 24211 20. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	1.2 1.97 213
TISTMT 24211 0. 0. 0. 0. 4. 12. 2. 2. 0.81 0.17 0.98 12.2 6.77 1004.1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,7 2.75 113
TISTMT 24211 0. 0. 10. 0. 9. 21. 2. 4. 0.83 0.17 0.76 18.1 10.01 1209.2 0 11 11 11 11 11 11 11 11 11 11 11 11 1	2.1 3.40 281
THRSG 24211 0. 36. 0. 033. 12. 2. 2. 0.52 0.17 -1.27 11.0 6.12 859.0 0 THRSG 24211 0. 0. 3. 0. 4. 10. 2. 2. 0.78 0.17 0.83 15.0 8.33 1169.0 0 THRSG 24211 0. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 STIRL 24211 20. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	2.6 4.22 250
THRSG 24211 0. 0. 3. 0. 4. 10. 2. 2. 0.78 0.17 0.83 15.0 8.33 1169.0 0 THRSG 24211 0. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 STIRL 24211 20. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	2.2 3.52 3
THRSG 24211 0. 0. 5. 0. 5. 11. 2. 2. 0.67 0.17 0.75 16.0 8.90 1186.8 0 STIRL 24211 20. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	2.4 3.87 273
STIRL 24211 20. 0. 020. 4. 12. 2. 2. 0.35 0.17 -0.25 2.9 1.62 225.1 0	2.4 3.84 250
	1.0 1.62 103
	1.0 1.52 100
STIRL 24211 0. 0. 3. 0. 4. 9. 2. 2. 0.61 0.17 0.81 6.3 3.51 489.0 0	1.3 2.08 234
STIRL 24211 0. 0. 22. 0. 12. 17. 2. 5. 0.50 0.17 0.56 6.7 3.71 360.7 0	1.1 1.74 167
(EGT05 24211 0. 0. 7. 0. 4. 5. A 2. 2. 0.66 0.17 0.53 10.7 5.91 747.3 0	1.9 2.98 216
EGT85 24211 0. 0, 177. 0, 50, -8, A 2, 20, 1,46 0,17 0,19 42.3 23.47 663.4 0	5.8 9.19 271
IEG160 24211 0. 0. 7. 0. 4. 5. A 2. 2. 0.65 0.17 0.57 10.3 5.73 734.2 0	1.8 2.90 219
EGTGO 24211 0. 0. 58. 0. 18. 4. A 2. 8. 0.79 0.17 0.28 20.8 11.55 717.4 0	3.0 4.74 165
JEOTOO 24211 O. O. 6, O. 4. 6. A 2. 2. 0.62 0.17 0.60 9.7 5.36 693.3 0	1.7 2.73 219
EGT00 24211 0. 0. 20. 0. 8. 6. A 2. 3. 0.51 0.17 0.41 11.7 6.46 651.8 0	1.8 2.84 179
-CMCCL 24211 0. 0. 63. 0. 1417. 2. 6. 0.65 0.17 -0.05 13.8 7.63 741.5 0	2.3 3.70 128
CSTCL 24211 0. 0, 75. 0, 216, 2, 8. 0,83 0,17 0,16 16,5 9,13 746,3 0	2.7 4.22 156
GGTST 24211 0. 0. 70. 0. 1422. 2. 6. 0.75 0.17 -0.13 14.2 7.88 691.8 0	2.5 4.01 124
STSUAR 24211 0. 18, 0, 0, -14, 12, 2, 2, 0.34 0.17 -0.10 3.4 1.89 264.0 0	1.0 1.53 116
FIACON 24211 0. 19. 0. 015. 12. 2. 2. 0.33 0.17 -0.19 3.1 1.71 245.8 0	0.9 1.49 107
OTAC12 24211 0. 17. 0. 013. 12. 2. 2. 0.33 0.17 -0.05 3.1 1.70 243.8 0	0.9 1.43 122
STAC16 24211 0. 16. 0. 012. 12. 2. 2. 0.33 0.17 0.01 3.1 1.73 248.0 0	0.9 1.42 129
FTWC16 24211 0. 16. 0. 0, -13. 12. 2, 2. 0.34 0.17 -0.02 3.3 1.85 259.6 0	0.9 1.48 126
C1626 24211 0. 14. 0. 010. 12. 2. 2. 0.40 0.17 0.15 3.4 1.88 263.9 0	1.0 1.54 148
001622 24211	0.9 1.51 146
001222 24211 0, 14. 0. 010. 12. 2. 2. 0.39 0.17 0.14 3.2 1.75 247.9 0	0.9 1.49 147
CC0822 24211	1.0 1.54 140
311015 24211 0. 13. 0. 010. 12. 2. 2. 0.35 0.17 0.16 3.5 1.92 243.1 0	0.9 1.45 147
STIG10 24211 0. 14. 0. 011. 12. 2. 2. 0.35 0.17 0.11 3.3 1.84 239.5 0	0.9 1.44 141
STIGIS 24211 0. 15. 0. 012. 12. 2. 2. 0.35 0.17 0.05 3.3 1.81 238.8 0	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.9 1.45

DATE 06/00/75 18SE-PEO-ADV-DES-ENGR

GENERAL ELE (IC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

~				FUEL US	E IN BI	U#10##6-						,			······································				
		C	GGENERA"	TION CAS	E **	OCOGEN -	COGEN**	POWER	COGEN	1150	POWER FE	SR CAPIT	AL NORM	1 \$/KW	ROI	LEVL	NORM	WRTH	
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT	COST	COST	EQVL		CHRG	ENRG		Jet.
								MW	MM		RATIO	*10**	6		(%)				£
DEVDAS	3 2421	O	. 14	0.	O.	-10.	12.	2.	2.	0.39	0.17 0.	14 4.5	2.47	333.3	0	1.1	1.69	145	- N.
DEHTPM	1 24211	0	. 15.	ο.	0,	-12.	12.	2.	2.	0.41	0.17 0.	04 4.5	2.50	358.3	O.	1.1	1.76	3 134	
DESONS	3 24211	14	. 0.	, о.	-14.	4.	12.	2.	2.	0.36	0,17 0.	11 3.4	1.89	249.8	0	1.0	1.59	5 144	
DESCA	3 24211	1 0	. 14.	. 0.	0.	~10.	12.	2.	2,	0.36	0,17 0.	11 3.4	1.89	249.8	0	0.9	1.46	3 142	
GISOAL	24211	18	. O.	. 0.	-18.	4.	12.	2.	2.	0.33	0,17 -0.	10 3.0	1.66	236.4	0	1.0	1.50	3 119	
GTRAOS	24211	14	. 0.	. О.	-14.	4.	12.	2.	2.	0.34	0.17 0.	10 3.5	1.95	274.0	0	1.0	1.54	1 142	
OTRA12	24211	14	. 0.	. О.	-14.	4.	12.	2.	2.	0.34	0,17 0.	11 3.4	1.90	268.3	0	1 , 0	1.52	2 142	
GTRA16	3 24211	15	. 0.	. 0.	-15.	4.	12.	2.	2.	0.34	0.17 0.	08 3.5	1.96	276.0	0	1.0	1.55	5 139	
9 (1208	2421	16	. 0.	Ü.	-16.	4.	12.	2.	2.	0.34	0.17 0.	00 3.3	1.85	260.2	0	1.0	1.58	130	
GTR212	24211	16	. 0,	ο.	-16,	4.	12.	2.	2.	0.34	0,17 0.	03 3.4	1.88	264.8	0	1.0	1.55	5 133	
GTR216	3 24211	15	. 0.	0.	-15.	4.	12.	2.	2.	0.34	0.17 0.	05 3.4	1.89	267.7	0	1.0	1.55	3 136	
GTRWOS	24211	15	. 0.	0,	-15,	4.	12.	2.	2.	0.35	0.17 0.	09 3.6	1.98	271.1	. 0	1.0	1.57	7 140	
GIRMIZ			. 0.	0.	-14.	4.	12.	2.	2.	0.35	0.17 0.	12 3,6	1.98	273.6	ō	1.0	1.5	3 144	-
GTRIVIE	24211	14	. 0.	0,	-14.	4.	12.	2.	2.	0.35	0.17 0.	10 3.7	2.03	280.5	0	1.0	1.57	7 142	
GTR308	3 24211	17	. 0.	Ο.	-17.	4.	12.	2.	2.	0.34	0.17 -0.	03 3.4	1.86	252.3	0	1.0	1.58	126	
GTR312	24211	15	. 0.	0.	-15.	4.	12.	2.	2.	0.34	0.17 0.	06 3.5	1.91	265.4	0	1.0	1.55	137	
GTR310	24211	15	. 0.	Ö.	-15,	4,	12.	2.	2.	0.34	0.17 0.	06 3.5	1.97	272.3	0	1.0	1.57	136	
FCPADS	24211	13	, 0.	0.	-13.	4.	12.	2.	2.	0.35	0.17 0.	16 3.2	1.75	234.5	0	0,9	1.48	149	
FCMCDS	24211	12	. 0.	0.	-12.	4.	12.	2,	2.	0.35	0.17 0.	22 3,2	1.78	247.4	0	0.9	1.48	156	

DATE 06/00/75 L&SE-PEO-ADV-DES-ENGR

I									- 17										
i							- COGEN**			МВО	POHER	FESR	CAPITAL		\$/KW	ROI	LEVL	NORM WRTI	Н
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
<u></u>								MW ·	MW		RATIO		*10**6			(%)			
Si	GN 2436				0.	0.	0.	3.	0.	0.30	0.14	0.	3.2	1.00	125.3	0	1.3		_
	41 2436				0.	7.	25.	. 3.	3.	0.51	0.14	0.99	5.3	1.64	181.0	12	1.1	0.62 238	
**	41 2436			0.	0.	7.	26.	3.	3.	0.42	0.14	0.97	5.0	1.55	169.6	17	1.0		
	41 2436				0.	7.	24. F		3.	0.88	0.14	0.99	10.5	3.25	357.8	0	2.0		
и	41 2436			• -	0,	8.	25. F	• •	3.	0.73	0.14	0.97	9.7	2.99	327.2	0	1.8		
11 .	41 2436				0.	7.	24. A		3.	0.79	0.14	0.99	8.7	2.70	297.4	0	1.7		
H	41 2436			• •	0,	8.	25. A		3.	0.64	0.14	0.97	7.8	2.41	263.4	2	1.5		
	88 2436				0.	<u> </u>	17.	3.	2.	0.40	0.14	0.68	4.3	1.34	153.3	17	1.1	0.82 191	
	88 2436				0.	5.	17. F		2.	0.70	0.14	0.68	8.8	2.73	313.3	0	1.9		
B	88 2436				0.	5.	17. A		2.	0.61	0.14	0.68	7.3	2.25	258.3	0	1.6		
18	TM 2436			1.	0.	7.	24.	3.	3.	1.03	0.14	0.97	12.9	3.99	437.1	0	2.4		
1	TM 2436			13.	0.	15.	35,	3.	6.	0.88	0.14	0.79	12.4	3.84	374.3	0	2.0		
L L	MT 2436		45,	0.	0.	-37.	25.	3.	3.	0.79		-0.40	14.8	4.58	503.2	0	3.4	-	•
21	MT 2436		0. 0.	1. 22.	0. 0.	7.	24. 45.	3.	3.	1.24	0.14	0.98	21.9	6.76	742.4	0	3.6		
11	MT 2436 3G 2436		•			20.	45. 25.	3.	8.	1.37	0.14	0.75		10.49	949.4	0	4.6		
1	3G 2436			<u>0.</u> 7.	<u>0.</u>	-65. 7.	<u>23.</u> 18.	<u>3.</u> 3.	3.	0.81	0.14		18.9	5.82 8.17	602.3 844.5	- 0	4.4	3.30 -1 3.17 249	
	SG 2436			19.	0.	12.	21.	3. 3.	5. 5.	1.21	0.14	0.78 0.64	26.5 32.1	9.90	922.3	0	4.2	3.50 225	
STIR					-42	7.	25.	3.	3.	0.52		-0.32	5.6	1.74	180.8	ŏ	2.2		-
STIR			-,-	o.	0.	-35.	25. 25.	3.	3.	0.52	0.14		5.6	1.74	180.9	ŏ	2.0		•
STIR					0.	7.	18.	3.	3.	0.93	0.14	0.80	11.7	3.62	376.0	- 6	2.2		
STIR			ŏ,		Ö.	27.	36	3.	11.	0.89	0.14	0.54	15.4	4.74	340.5	ŏ	2.1	1.57 153	
	60 2436			4	0,	7.	9. A		3.	1.00	0.14	0.50	17.8	5.49	522.5	ő	3.1	2.35 196	
11	60 2436		o.	200.	o.	56.	-13. A		23.	1.68	0.14	0.18		14.01	516.6	ŏ	6.4		
	00 2436		0,		0.	7.	11. A		3.	0.97	0.14	0.58	16.8	5.19	505.5	ō	3.0		
11	00 2436		0.		o.	20.	10. A		8.	0.94	0.14	0.34	22.6	6.99	493.7	ã	3.4		
FCMC	CL 2436	1 0.	0.	159.	0.	35.	-43.	3.	14.	1.26		-0.05	26.3	8.12	565.6	0	4.6		
FCST	CL 2436	10.	0.	181.	0.	47.	-22.	3.	19.	1.51	0.14	0.12	30.3	9.34	571.9	0	4.9	3,68 135	5
TGGT	ST 2436	1 0.	O,	168.	O.	32.	-61,	3.	13.	1.14	0.14	-0.21	25.0	7.73	508.2	0	4.7	3,50 99	9
GTSO.	AR 2436	10.	35.	0.	ο,	-28.	25.	3.	3.	0.49	0.14	-0.10	6.0	1.85	192.5	0	1.9	1.42 114	4
GTAC	08 2436	10.	38.	Ο.	0.	-31.	25.	3.	3.	0.48	0.14	-0.19	5.5	1.71	183.6	0	1.9	1.42 105	5
GTAC	12 2436	1 0.	34.	0.	0.	-26.	25.	3.	3.	0.48	0.14	-0.05	5.5	1.71	182.4	0	1.8	_1.35 120	٥
	16 2436			0.	0.	-24.	25.	3.	3.	0.48	0.14	0.01	5.6	1.74	185.1	0	1.8	1.33 127	7
21	16 2436			ο.	Ο,	-25.	25.	3.	3.	0.49	0.14	-0.02	5.9	1.82	191.3	0	1.8	1.37 124	
	26 2436				ο.	-21.	25.	3.	3.	0.56	0.14	0,12	5.9	1.81	189.4	0	1.8		
	22 2436		29.	0.	0.	-21,	25.	3,	3.	0.55	0.14	0.10	5.7	1.75	184.1	0	1.8	1,34 138	
-1	22 2436			-	0.	-21.	25.	3.	3.	0.55	0.14	0.10	5.5	1.71	180.0	0	1.8	1.33 139	_
4	22 2436				0.	-24.	25.	3.	3.	0.55	0.14	0.03	5.7	1.76	187.3	0	1.8	1.38 131	•
# .	15 2436		27.		0.	-20.	25.	3.	. З.	0.51	0.14	0.16	5.9	1.82	175.4	0	1.7		
)!	10 2436		29.	0.	0,	-21.	25.	3.	3.	0.50	0.14	0.11	5.7	1.76	173.2	0	1.7	1.29 136	
	15 2436				0.	-23.	25.	3.	3.	0,50	0.14	0.05	5.6	1.74	172.8	0	1.8	1.32 131	
	V3 2436		•	0.	0.	-20.	25.	3.	3.	0.55	0.14	0.14	7.5	2.33	234.3	0	2.0		•
1 0511	PM 2436	1 0.	33,	ο.	0.	-26.	25.	3.	3.	0.59	0.14	-0.03	7.8	2.40	253.3	0_	2.1	1.60 122	=
rl																			

																		
ł.	**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN OWN POWER FEST CAPITAL NORM \$/KU POIL LEVIL NORM WRITH																	
		* * C	OGENERAT	ION CAS	SE** **!	OCOGEN -	COGEN**	POWER	COGEN	Мас	POWER FESR	CAPITAL	NORM	\$/KW	P.OI	LEVL.	NORM WRTH	
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT	COST	COST	EQVL		CHRG	ENRG	
								MW	MW		RATIO	*10**6			(%)			
DESOA:	3 24361	28	0.	0.	-28.	7.	25.	3.	3.	0.53	0.14 0.11	6.5	2.00	198.4	0	2.0	1.48 141	
DESOA:	3 24361	. 0	28.	ο.	0.	-21.	25.	3.	3.	0.53	0.14 0.11	6,5	2.00	198.4	9	1.8	1.38 138	
GTSCAL	24361	35	i. 0,	· · · O.	-35.	7.	25.	3.	3.	0.48	0.14 -0.10	5.4	1.67	176.5	0	2.0	1.49 118	
GTRAO	3 24361	29	0.	0.	-29,	7.	25.	3.	3.	0.49	0.14 0.10	6.1	1.89	197.1	0	1.9	1.43 139	
GIRA1:	2 24361	29	0.	o,	-29.	7.	25.	3.	3.	0.49	0.14 0.11	6.1	1.87	195.7	0	1.9	1.42 140	
GTRAIC	6 24361	29	0.	· O.	-29.	7.	25.	3.	3.	0.49	0.14 0.08	6.2	1.92	201.2	0	1.9	1.45 137	•
GTR20	8 24361	32	0.	0.	-32.	7.	25.	3.	З.	0.49	0.14 -0.00	5.9	1.82	190.4	0	2.0	1.47 128	
9TR21	2 24361	31	. 0.	٥.	-31.	7.	25.	3.	3,	0.49	0.14 0.03	6.0	1.85	193.6	0	2.0	1.46 131	
GTR21	3 24361	30	0.	0.	-30.	7.	25.	3.	3.	0.49	0.14 0.05	6.0	1.86	196.0	0	1.9	1,46 134	
GTRWO	3 24361	29	0. 0.	Ο.	-29.	7.	25.	3.	3.	0.50	0.14 0.09	6.2	1.92	195.9	0	1.9	1.45 138	
GTRW1:	2 24361	28	o.'	0.	-28.	7.	25.	З.	3.	0.49	0.14 0.12	6.2	1.92	197.7	0	1.9	1.43 141	
GTRW1	6 24361	29	0.	0.	-29.	7.	25.	3.	3.	0.50	0.14 0.10	6.4	1.96	202.4	0	1.9	1.45 139	
91130	9 2436	33	0.	Ö.	-33.	7.	25.	3,	3.	0.49	0.14 -0.03	5.9	1.83	185.3	0	2.0	1.50 125	
GTR31:	24361	30	0.	0.	-30.	7.	25.	3.	3.	0.49	0.14 0.06	6,0	1.86	193.1	0	1.9	1.45 135	
GTR31	6 24361	30). O.	0.	-30.	7.	25.	З.	3.	0.50	0.14 0.06	6.2	1.91	197.7	0	2.0	1.47 134	
FCPAD:	5 24361	27	'. o.	0.	-27.	7.	25.	3,	3.	0.62	0.14 0.16	5.9	1.82	183.3	0	2.0	1.48 148	
FCMCD	3 24361	25	0.	O.	-25.	7.	25,	3.	3.	0.61	0.14 0.22	6.0	1.86	193.0	0	1.9	1.43 155	

ONTE OS/OS/

					,	U*10**6-											MCDM MDTM	
ECS	ppcioe	**COG				OCCGEN -				G&M.		FESR	CAPITAL		1: \$/KW	ROI	LEVL	NORM WRT
.(ritous	DISTIL K	ESTUL	COAL	DISTIL	RESIDL	COAL	REQD MW	POVER MW	Sec. (/HEAT		*10**6	COS	EQVL	(乙)	CHRG	ENRG
NOCGN	2492	0.	15.	41.	O.	0.	0.	5.	Ű.	0.22	0.46	0.	2.1	1.00	161.6	0	2.1	1.00 8
STM141	2492	0.	17.	28.	.0,	-2.	13.	5.	2.	0.32	0.46	0.19	3.3	1.58	223.3	9	2.0	0.97 12
STM141	24921	Ι Ο.	8,	37.	0.	6.	4. 1	5.	2.	0.54	0.46	0.19	6.0	2.90	409.3	0	2.4	1.16 11
STM141	24921	Ι Ο.	8.	37.	. 0.	6.	4.	4 5.	2.	0.47	0.46	0.19	5.1	2.49	351.5	0_	2.2	1.09 11
STMOSE	2492	O.	16,	33.	0.	-2.	8.	5.	1.	0.31	0.46	0.12	2.8	1.35	199.4	7	2.0	0.99 11
STMOSE	3 24921	ο.	10.	39.	0.	5.	2. 1	- 5.	1.	0.52	0.46	0.12	5.4	2.64	390.7	0	2.4	1.19 10
STMOSE	2492	0.	10.	39.	0.	5.	2.	A 5.	1.	0.46	0.46	0.12	4.8	2.33	344.5	0	2.3	1.13 10
PESTI	1 2492	Ι Ο.	5.	32.	0.	10.	9	5.	з.	0.63	0.46	0.34	7.9	3.85	484.9	0	2.4	1.16 13
ITS IM	2492	O.	15.	39.	0,	-0.	2.	,5.	v.	0.37	0.46	0.03	3.7	1.80	284.3	0	2.3	1.14 8
FISTM	2492	0.	2,	27.	0.	12.	14.	5.	4.	0.92	0.46	C.47	20.3	9.83	1147.6	0	3.7	1.82 16
TIHRSO	24921	0.	15.	40.	0.	-0.	1.	១.	Ο.	0.32	0.46	0.01	3.6	1.73	273.8	0	2.3	1.11 3
THRS	24921	0.	6.	39.	0.	8.	2.	5.	2.	0.79	0.46	0.19	1.9.1	9.27	1113.1	0	3.9	1.93 12
STIRL	2492	70.	0.	0.	-70.	15.	41.	5.	5.	0.41	0.46	-0.27	4.6	2.22	211.9	0	3.4	1.66 9
STIRL	24921	4.	12.	39.	-4.	3.	2.	5.	Ο,	0.32	0.46	0.02	2.8	1.33	207.4	0	2.2	1.07 9
STIRL	2492	10,	70.	ο.	0.	-56,	41.	5.	5.	0.41	0.46	-0.27	4.6	2.22	212.1	0	2.9	1.43 9
STIRL	2492	1 O.	16.	39.	0.	-1.	2.	5.	Ο.	0.32	0.46	0.02	2.8	1.33	207.3	0	2.2	1.05 9
STIRL	2492	0,	U,	32.	0.	15.	9,	5.	5.	0.70	0.46	0.42	8.2	3.98	379.9	4	2.1	1.03 15
STIRL	2492	1 0.	0.	35.	Ø,	16.	9.	5.	. 5 <i>.</i>	0.58	0.46	0.42	7.7	3.75	347.4	7	1.9	0.93 14
HEGT60	2492	1 0,	0.	49.	0.	15.	~8.	۱ 5 <i>.</i>	5.	0.97	0.46	0.12	18.9	9.16	716.1	O	3.8	1.87 13
HEGTE	2492	1 O.	0,	107.	0.	30.	-15.	5.	11.	1.09	0.46	0.13	27.6	13.39	636.9	0	4.7	2.31 12
TEGT OF	2492	0.	2.	44.	0.	12.	-3. /	\ 5.	4.	0.62	0,46	0.16	13.8	6.67	608.1	0	3.0	1.48 11
Folioci	2492	1 0.	Ο.	68.	0.	15.	-27.	5.	5.	0.92	0.46	-0.23	14.9	7.24	744.3	0	3.7	1.82 9
FCMCCL	2492	١ ٥.	0,	78.	Ο.	19.	-21.	5.	7.	0.83	0.46	-0.02	16.0	7.75	696.0	0	3.6	1.74 10
FOSTOL	. 2492) o.	0.	68.	0.	15.	-26.	5.	5.	1.00	0.46	-0.21	14.9	7.25	755.4	0	3.0	1.85 9
CSTC	2492	Ü.	Ű.	89.	0.	26.	-11.	5.	10.	1.02	0.46	0.14	18.4	8,91	703,4	0	3.7	1.82 11
IGGTST	2492	0.	0.	74.	0.	15.	-33,	5,	5.	0.94	0.46	-0.33	15.2	7.38	699.8	0	3.9	1.90 7
I COTST	2492	١ ٥.	0.	83.	0.	18.	-30.	5,	6.	0.81		-0.17	15.7	7.62	646.5	Ó	3.7	1.00 8
TSOAF	24921	1 0.	59.	0.	0.	-44.	41.	5,	5.	0.43	0.48	-0.06	5.4	2,60	247.6	0	2.7	1.32 11
FTSUAI	2492	U.	16.	38.	ΰ.	-1.	3.	5.	0.	0.31	0.46	0.03	3.0	1.44	219.5	0	2.2	1.06 9
3TACO8	2492	Ι ο.	63.	ο.	0.	-49.	41.	5.	5.	0.37	0.46	-0.14	4.5	2.18	223.8	0	2.7	1.31 10
STACO	24921	l 0.	15.	39.	Ο.	-1.	3.	5.	Ο,	0.30	0.46	0.03	2.7	1.32	206.6	0	2.1	1.05 9
STAC12	2492	0.	56.	ο.	0.	-41.	41.	5.	5.	0.40	0.46	-0.00	4.7	2.29	233,3	0	2.5	1.23 11
FIACT2	2492	U.	16.	38.	Ű.	-1.	3.	5.	0.	0.31	0.46	0.04	2.8	1.34	207.0	0	2.1	1.05 9
3TAC16	2492	١ ٥.	53,	0.	0.	-38.	41.	5.	5.	0.41	0.46	0.05	5.0	2.41	242.8	Ō	2.5	1.21 12
3TAC16	2492	٥.	16.	37.	ο.	-1.	4.	5.	o.	0.31	0.46	0.04	2.8	1.37	209.6	Ô	2,1	1.05 9
	24921		54.	0	0,	-40.	41.	5.	5.	0.43	0.46	0.03	5.3	2.56	250.3	ŏ	2.6	1.25 12
उपप्रदेश	2492	0,	16.	37.	o.	-1:	- 74.	5.	0.	0.31	0.46	0.04	2.9	1.43	217.7	ŏ	2.2	1.06 9
001626	2492	0.	47.	- •	0.	-32,	41.	5.	5.	0.52	0.46	0.15	5.4	2.63	255.3	ŏ	2.5	1.21 13
001626	2492	0.	17.	36.	0.	-2.	5.	5.	Ĭ.	0.37	0.46	0.06	3.1	1.48	220.4	Ŏ	2.2	1.08 10
	24921		40.	0.	o.	-33.	41.	5.	5.	0.51	0.46	0.14	5.2	2.50	246.8	ŏ	2.5	1.20 13
	2492		16.	36.	Ŭ.	<u></u>	5.	5.	- ĭ.	0.37	0.46	0.05	2.9	1.41	212.6	 0	2.2	1.08 10
	2492	· · · · · · · · · · · · · · · · · · ·	48.	0.	ŏ.	-33.	41.	5.	5.	0.50	0.46	0.14	5.0	2.41	238.8	ŏ.	2.4	1.19 13
	2492		16.	36.	o.	-2.	5.	5.	1.	0.37	0.46	0.05	2.9	1.38	208.5	Ö	2.2	1.07 10
			,,,,	.00.	٠,		٠.	٥.	• •	0.07	3.40	5.00	2.9		200,0	•	Ca e la	

	<u> </u>				 -														
																			13
i							COGEN**			Mad	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WR	:TH
ECS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COVE	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
							· · · · · · · · · · · · · · · · · · ·	MW	MW		RATIO		*10**6			(%)			
CC0822	24921	0.	51.	o.	0.	-37.	41.	5.	5.	0.50	0.46	0.08	5.1	2.45	249.3	0	2.5	1.24 1	26
CC0822	24921	0.	16.	37.	ο.	-1.	4.	5.	ο.	0.36	0.46	0.05	2.9	1.38	212.2	0	2,2	1.07	98
STIGIS	24921	0.	46.	0.	0.	-32.	41.	5,	5.	0.51	0.46	0.17	5.6	2.74	219.6	0	2.5	1.20 1	35
STIGIE	24921	0.	154.	Ο,	Ο.	-109.	141.	5.	17.	0.81	0.46	0.17	10.4	5.05	182.2	0	4.1	2.02 1	19
STIGIC	24921	0.	48.	0.	0.	-33.	41.	5.	5.	0.48	0.46	0.15	5.3	2.57	216.3	0	2.4	1.18 1	33
STIGIC	24921	0.	23.	28.	0.	-9.	13.	5.	2.	0.37	0.46	0.03	3.7	1.77	221.7	0	2.2	1.10 1	10
STIGIS	24921	١ ٥.	51.	0.	0.	-36.	41.	5.	5.	0.47	0.46	0.09	5.1	2.50	214.6	0	2.5	1.22 1	27
STIGIS	2492	0.	19.	33.	0.	-5.	8.	5.	1.	0.34	0.46	0.05	3.2	1.56	216.2	0	2.2	1.08 1	
DEADVO	2492	0.	46.	0.	0.	-31.	41.	5.	5.	0.53	0.46	0.17	7.2	3.51	311.6	ō	2.6	1.28 1	
. DEADVS	24921	0.	20.	32.	0.	-5.	9.	5,	1.	0.39	0.46	0.07	4.5	.2.17	295.0	Ŏ	2.4	1.15 1	
DEHTPN	1 24921	١ ٥.	55.	· 0.	0.	-40.	41.	5.	5.	0.54	0.46	0.01	7.3	3.53	350.9	Ō	2.9	1.42 1	
DEHTPM			16.	38.	o.	-1.	3.	5.	o.	0.34	0.46	0.04	2.9	1.42	218.2	ŏ	2.2	4	96
DESCIAS			0,	ō.	-47.	15.	41.	5.	5.	0.51	0.46	0.15	6.5	3.16	270.7	ŏ	2.9	1.41 1	
DESGAG			9.	30.	-13.	6.	11.	5.	1.	0.38	0.46	0.07	3.6	1.77	230.0	ő	2.3	1.14 1	
DESCAS			47.	0.	Ö.	-33.	41.	5.	5.	0.51	0.46	0.15	6.5	3.16	270.7	ŏ	2.6	1.26 1	
DESGAS			22.	30.	o.	-7.	11.	5.	1.	0.38	0.46	0.07	3.6	1.77	230.0	ő	2.3	1.10 1	
GISUAL			0.	0.	-58.	15.	41.		5.	0.40		-0.05	4.5	2.17	216.7		3.0		18
GTSCAL			11.	38.	-4.	3.	3.	5.	0.	0.30	0.46	0.04	2.7	1.33	205.2	ő	2.2		96
GTRAOS			o.	0.	-48.	15.	41.	5.	5.	0.45	0.46	0.14	5.7	2,77	265.5	ŏ	2.8	1.34 1	
GTRAGE			11.	36.	-6.	4.	5,	5.	1.	0.33	0.46	0.06	3.2	1.57	232.4	ă	2.2	1.09 1	
GTRATZ			Ö.	O.	-48.	15.	41.	5.	5.	0.44	0.46	0.14	5.6	2.74	265.4	- ŏ -	2.7	1.34 1	
GTRA12			11.	36.	-6.	4.	5.	5.	1.	0.32	0.46	0.06	3.1	1.52	226.8	ŏ	2.2	1.08 1	
GTRA16			Ö.	0.	-49.	15.	41.	5.	5.	0.45	0.46	0.12	5.9	2.84	276.2	ŏ	2.8	1.37 1	
GTRA16			11.	36.	-6.	4.	5.	5.	1.	0.32	0.46	0.05	3.1	1.53	229.1	õ	2.2		99
GTR208			Ō.	0.	-53.	15.	41.		5.	0.43	0.46	0.04	5.3	2.56	249.5	ŏ	2.9	1.41 1	
GTR208			11.	37.	-5.	4.	4.	5.	Ö.	0.31	0.46	0.04	3.0	1.44	219.2	ő	2.2		98
GTR212			Ö.	o.	-52.	15.	41.	5.	5.	0.43	0.46	0.07	5.5	2.65	257.4	ő	2.9	1.39 1	
GTR212			11.	37.	-5.	4.	4.	5.	1.	0.32	0.46	0.05	3.0	1.47	222.2	ő	2.2		98
GTR216			Ö.	Ō.	-51.	15.	41.	5.	5.	0.44	0.46	0.09	5.6	2.70	264.5	 0	2.8		30
GTR216			11.	37.	-5.	4.	4.	5.	1.	0.32	0.46	0.05	3.0	1.48	223.3	õ	2.2		99
GTRWOE			ο.	o.	-49.	15.	41.	5.	5.	0.46	0.46	0.13	5.9	2.84	259.4	ŏ	2.8	1.37 1	
OTRWOS			10.	35.	-8.	4.	6.	5.	· 1.	0.34	0.46	0.06	3.4	1.63	235.5	ŏ	2.3	1.10 1	
GTRVIZ			0.	0.	-47.	15.	41.	5.	5.	0.45	0.46	0.16	5.9	2.84	264.9		2.7	1,34 1	
GTRWIS			10.	35.	-7.	4.	6	5.	1.	0.33	0.46	0.06	3.4	1.63	236.9	ő	2.3	1.10 1	
GTRW16			o.	o.	-48.	15.	41.	5.	5.	0.46	0.46	0.14	6.0	2.92	274.0	ő	2.8	1.36 1	
GTRW16			11.	35.	-7.	4.	6.	5.	1.	0.33	0.46	0.06	3.4	1.63	239.0	ő	2.3	1.10 1	
G11308			0.	0.	-55.	15.	41.	5.	5.		0.46	0.01	5.4	2.64	235.9		3.0	1.45 1	
GTR308			11.	36.	-33. -7.	4.	5.	5. 5.	1.	0.32	0.46	0.04	3.1	1.48	218.8	0	2.2		22 99
GTR312			o.	0.	-50.	15.	41.	5. 5.	5.	0.32	0.46	0.10	5.5	2.69	254.6	ő	2.8	1.37 1	
GTR312			11.	36.	-50. -6.	4.	411. 5.	5. 5.	1.	0.44	0.46	0.05	3.2	1.53	227.6	0	2.2	1.09 1	
GIRST			0.		-50.	15.	41.	<u>5.</u>	5.	0.32	0.46	0.10	5.7	2.78	263.3	- 0	2.8		30
GTR316			11.	36.	-50. -6.	4.	41. 5.	5. 5.	1.	0.43	0.46	0.05	3.2	1.55		0	2.0		99
FCPADS			0.	0.	-45.	15.	41.	5. 5.	5.	0.32	0.46	0.03	5.5	2.65	231.0	0	3.0	1.46 1	
FCPADS			9.	30.	-12.	6.	11.	5. 5.	3. 1.		0.46		3.4			Ö	2.3		
KI COLOR	· ~1061	16.	<u> </u>	30.	- 16.	٧.		<u> </u>		0.42	0.40	0.08	3.4	1.64	<u> 218.1</u>	<u> </u>	2.3	1.14 1	1.1

DATE 06/08/7. ISSE-PEO-ADV-DES-ENGR

GENERAL ELL RIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE &	ECONOMICS
---------------------------------	------------------

	1 .			FUEL US	E IN BT	U*10**6-													
		**C	OGENERAT	TON CAS	SEXX XXNI	OCOGEN	COGEN*	* POWER	COGEN	orm (POWER	FESR	CAPITAL	NORM	\$/KW	RØI	LEVL	NORM WRT	TH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	MM		RATIO	}	*10**6			(%)			_
FCI1CD	S 2492	1 41	. o.	ο,	-41.	15.	41.	5.	5.	0.78	0.46	0.26	5.6	2.73	260.9	0	2.9	1.39 15	51
FCMCD	S 2492	1 9	. 10.	33.	-9.	5.	9.	5.	1.	0.38	0.46	0.09	3.3	1.58	223.0	0	2.2	1.10 10	9

	1,3				E IN BTU	COGEN	- COGEN			COGEN	O&M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH
CS F	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	CQVL		REGD	POVER MW		/HEAT		COST *10**6	COST	EQVL	(名)	CHRO	ENRO
NUCGN	26212	0.	€87.	411.	0.	ō.	0.		50.	0.	1.08	0.22	0.	24.7	1,00	91.8	0	37.1	1.00 80
STM141	26212	0.	761.	23.	0.	-74.	387.		50.	47.	1.41	0.22	0.29	32.3	1.31	99.5	54	28.9	0.78 143
5TM141	26212	0.	7.	777.	0.	680.	-367.	F	50.	47.	3,20	0.22	0.29	61.3	2,48	188.9	24	24.1	0.65 127
5TM141	26212	2 0,	7.	777.	O,	680.	-367.	Α	50.	47.	2.93	0.22	0.29	42.6	1.73	131.4	46	21,8	0.59 132
BOUMIE			741.	129.	O.	-54.	281.		50.	34.	1.24	0.22	0.21	25.6	1.04	82.9	190	30.6	
880MT	26212	. 0.	39.	831.	0.	649.	-421.	F	50.	34.	2.99	0.22	0.21	57.3	2.32	185.5	22	26.7	
ST/1088			39.	831.		649.	-421.	-	50.	34.	2.83	0.22	0.21	41.0	1.66	132.7	41	24.8	
FBSTM			0.	772.	o.	687.	-362.	••	50.	50.	4.84	0.22	0.30	63.2	2.56	191.5	22	25.4	
FBSTM			0.			753.	-254.		50.	77.	5.13	0.22	0.36	60.9	2.47	168.3	27	22.2	
TISTMT			771.			-83.	411.		50.	50.	3.57	0.22	0.30	105.8	4.29	321.3	3	38.6	
TISTMT			824.	o.		-105.	517.		50.	63.	3.90	0.22	0.33	118.8	4.81	344.3	3	39.4	1.06 133
TISTMT			0.	771.	o.	687.	-360.		50.	50.	5.58	0.22	0.30	140.2	5.68	425.9	7	34.4	0.93 135
TSIT			0.	987.		816.	-146.		50.	102.	6.85	0.22	0.40	202.1	8.19	514.9		36.1	0.97 130
TIHRSG			791.	159.	0.	-103.	25 2 .		50.	31.	3.40	0.22	0.14	105.5	4.27	328.3	é	43.5	
THRSG			751.	856.		687.	-446.		50.	50.	6.06	0.22	0.14	179.8	7.29	507.9	3	40.7	
STIRL	26212		ŏ.		*.*	687.	411.			50.	2.22			53.6			_		
			- 0.						<u>50.</u>			0.22	0.22		2.17	150.7		40.2	
STIRL	26212					747. -174.	610.		50.	74.	2.48	0.22	0.26	63.2	2.56	158.7	0	42.1	1.14 133
STIRL	26212		862.	0.			411.		50.	50.	2.22	0.22	0.22	53.7	2.18	150.8	12	34.2	
STIRL	26212	7.	1006.	0.		-259.	610.		50.	74.	2.48	0.22	0.26	63.3	2.56	158.9	9	35.2	
STIRL	26212		0.	862.	<u> </u>	687.	-451.		50,	50.	4.41	0.22	0.22	91.5	3.71	256.9	13	29.4	0.79 126
STIRL	26212		0.	1282.	0.	861.	-291.	_	50.	121.	5.79	0.22	0.31	150.0	6.08	313.1	3	30.7	0.83 113
HEGT85			0.	1022.	0.	687.	-612.		50.	50.	5.20	0.22	0.07	120.7	4.89	299.4	5	36.4	
HEGT85			0.	6244.	o,	2087.	-1149.		50,	621.	23.87	0.22	0.13		26.43	337.3	0	94.5	
HEGT60			0.	998.	0.	687.	-588.		50.	50.	5.08	0.22	0.09	115.1	4.67	290.8	6_	35.2	
IEG 160			0.	2331.	0.	1064.	-658.		50.	204.	8.72	0.22	0.15	213.3	8.64	271.2	2	43.3	1.17 86
HEGTOO			0.	977.	ο.	687.	-567.		50.	50.	4,76	0.22	0.11	100.7	4.08	258.3	9	33.0	0.89 114
IEGTOO			0.	1244.	ο.	767.	-568.	Α	50.	82.	5.11	0.22	0.14	117.0	4.74	250.1	8	33.6	0.90 103
FCMCCI.	26212	2 0.	0.	1166.	0.	687.	<i>-</i> 756.		50,	50.	5.36	0.22	-0,06	96.8	3.92	283.2	5_	36.8	<u>0.99 96</u>
FCMCCL			0.	1648.	0.	925.	-442.		50.	147.	8.45	0.22	0.23	142.4	5.77	295.0	6	34.7	0.93 102
FCSTCL			ο.	1155.	ο.	687.	-745,		50.	5 0 .	5.37	0.22	-0,05	101.8	4.13	300.7	5	37.1	1.00 97
FOSTOL	26212	2 0,	Ο.	1978.	ο.	1112.	-147.		50.	223.	10.26	0.22	0.33	172.5	6.99	297.6	8	30.9	0.83 100
IBGTST	26212	0.	0.	1216.	0.	687.	-806.		50.	50.	4.02	0.22	-0.11	89.1	3.61	249,9	7	35.5	0.96 90
GGTST	26212	ü.	O.	1843.	ō.	945.	-571.		50.	155.	4.50	0.22	0.17	137.8	5.58	255.1	8	32.1	0.87 92
STSOAR	26212	2 0.	860.	0.	0.	-172.	411.		50.	50.	1.79	0.22	0.22	39.9	1.62	112.3	23	32.3	0.87 143
STSOAR	26212	0.	1132.	. O.	0.	-331.	790.		50.	96.	2.04	0.22	0.29	48.3	1.96	110.9	16	32.8	0.88 132
3TACO8	26212	2 0.	814.	0.	0.	-127,	411.		50.	50.	1.71	0.22	0.26	37.1	1.50	108.5	34	30.5	0.82 148
31ACO8	26212	· O.	933.	0.	0.	-187.	606.		50.	74.	1.00	0.22	0.31	40.1	1.63	106.5	30	29.9	
9TAC12			819.	0.	0.	-131.	411.		50.	50.	1.75	0.22	0.25	38.5		112.2	30	30.8	0.83 147
9TAC12	26212	0.	1034.	0.		-243.	759.		50.	92.	1.96	0.22	0.33	45.0		113.0	24	30.2	0.81 138
STAC16			824.	o.	o,	-137.	411.		50.	50.	1.70	0.22	0.25	39.9		115.7	27	31.2	
	26212		1110.	Ö.	0.	-288.	863.		50.	105.	2.10	0.22	0.34	50.9	2.06	118.8	19	30.7	0.83 135
7 1 M V I U			•		- •				٠.	, 55.								,,	2.20.00
STWC16	26212	0.	848.	0.	Ο,	-161.	411.		50.	50.	1.77	0.22	0.23	3 9.1	1.58	111.0	26	31.8	0.88 144

ECS	PROCS		GENERAT	ION CAS	E** **N		- COGEN**		COGEN POWER MW	MBD	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM COST	\$/KW EQVL	ROI (%)	LEVL CHRG	NORM WRTH ENRO
CC1626	26212	2 0.	851.	0.	o.		311.	50.	50.	1.98	0.22	0.22	42.9	1.74	121.5	19	32.6	0.88 142
CC1626	26212	2 0.	1555.	ο.	0.	-567.	1418.	50.	173.	2.58	0.22	0.35	61.3	2.48	109.6	12	32.9	0.89 123
001622	26212	2 0.	839.	0.	0.	-152.	411.	50.	50.	1,98	0.22	0.24	43.4	1.76	124.1	19	32.3	0.87 143
CC1622	26212	2 0,	1418.	0.	0.	-472.	1276.	50,	155.	2,55	0.22	0.36	62.5	2.53	120.4	13	32.2	0.87 126
201.222	26212	≥ 0.	837.	0.	0.	-150.	411.	50.	50.	1.96	0.22	0.24	42.3	1.72	121.5	21	32.1	0.87 144
001222	26212	2 0.	1407.	0.	0.	-463.	1270.	50.	155.	2.51	0.22	0.36	59.5	2.41	115.4	15	31.6	0.85 127
000822	26212	2 0.	818.	ο.	0.	-131.	411.	50.	50.	1.86	0.22	0.25	38.4	1.56	111,9	28	31.0	0.84 147
	26212		1189.	0.	0.	-322.	1010.	50.	123.	2.26	0.22	0.37	51,0_	2.07	112.9	20	29.9	0.81 135
STIGIT	20212	2 0,	1006.	0.	0.	-318.	411.	50.	50.	2.32	0,22	0.08	43.7	1.77	109.8	2	37.7	1.02 128
STIGIS	26212	2 0.	36923.	0.	Ο.	-26247.	33850.	50.	4123.	62.10	0.22	0.17	1012.1	41.02	92.7	0	507.1	13.67 379
STIGIC	26212	2 0.	966.	О.	Ο.	-278.	411.	50.	50.	2.14	0.22	0,12	42.2	1.71	109.2	9	. 36 . 1	0.97 132
STIGIC	26212	2 0.	3623.	0.	0.	-2123.	3130.	50.	381.	6.13	0.22	0.22	115.5	4.68	99,2	0	64.8	1.75 102
शावार	26212	0.	947.	0.	O.	-260.	411	50.	50.	2.15	0.22	0.14	41.5	1.68	108.8	11	35.5	0.96 134
	26212		2277.	ο.	ο.	-1164.	1837.	50.	224.	4.21	0.22	0,23	75. <i>4</i>	3.05	97.8	0	48, 1	1.30 108
	26212		914.		ο.	-226.	411.	50.	50.	2.38	0.22	0.17	60.4	2.45	162.7	6	36.7	0.99 132
	26212		2342.	0.	0.	-1153.	2090.	50.	255.	5.48	0,22	0.29	175.2	7.10	221.9	C	55.8	1.50 108
	1 26212		823.	0.	0.	-136.	411.	50.	50.	2.41	0.22	0.25	59.3	2.40	171.9	11	33.8	0.91 140
	1 20212		1120.	0.	ο.	-292.	382.	50.	107.	3.34	0,22	0.34	92.8		215,1	G	· 36,2	0.98 129
DESOA	26212	942.	0.	0.	-942.	687.	411.	50.	50.	2.59	0.22	0.14	68.6		180.7	0	45.1	1.22 132
DESON	26212	2 2807.	0.	0.	-2807.	1293.	2439.	50,	297.	7.37	0.22	0.25	248.5	10.07	268.3	0	90.8	2.45 121
DESOA	26212	2 0.	942.	0.	0.	-255.	411.	50.	50.	2.59	0.22	0.14	68,6	2.78	180.7	1	38,6	1.04 127
	26212		2807.	0.	0.		2439.	50.	297.	7.37	0.22	0.25		10.07	268.3	0	71.5	1.93 108
	26212		0.		-832.	687.	411.	50.	50.	1.70	0.22	0.24	36.4	1.48	104.8	7	36.7	0.99 151
	262:12		<u>0.</u>	<u> </u>		783.	732.	<u>50.</u>	89.	1.85	0.22	0.31	41.6		101.8	2_		1.02 143
	26212		Ο.		-854.	687.	411.	50.	50.	1.90	0.22	0.22	44.7	1.81	126.3	0	38,6	1.04 145
	56515		0.		,	931.	1226.	50.	149.	2.61	0,22	0.34	69.7		133.6	0	44.2	1.19 131
	26212		Ο.		-047.	687.	411.	50.	50.	1.91	0.22	0.23	45.2		128.4	0	38.4	1.04 146
	26212		0.	<u> </u>	-1386.	921.	1194	50.	145.	2.57	0.22	0.34	68.2		133.7	0_	43.2	1.16 132
	26212		· · · · · · · · · · · · · · · · · · ·	Q.	-845,	687.	411.	50.	50.	1.94	0.22	0.23	46.2	1.87	131.7	0	38.5	1.04 145
	26212		0.	0.		897.	1112.	50.	135.	2.57	0,22	0.34	68.5		139.3	0	42.8	1.15 133
	26212		0.	0.	-846.	687.	411.	50.	50	1.79	0.22	0.23	39.9		113.5	1	37.7	1.02 148
	26212		0.	0.	-1194.	839.	919.	50.	112.	2.13	0.22	0.32	51.6		113.9		40.3	1.09 138
	26212		o.		-047.	687.	411.	50.	50.	1.61	0.22	0.23	40.7		115.8	0	37.8	1.02 147
	26212		0.	0.		859.	986.	50.	120.	2.21	0.22	0.33	54.8		117.2	0	40.9	1.10 136
	26212		0.	0.	-842.	687.	411.	50.	50.	1.83	0.22	0.23	41.8		119.5	1	37.8	1.02 147
	26212		0,	0.		867,	1011.	50.	123.	2.30	0.22	0.34	58,1	2,35	123.9	0_	40.9	1.10 136
	26212		0,	7	-892.	687.	411.	50.	50.	1.90	0,22	0.19	44.2	1.79	121,2	0	40.0	1.08 142
	26212		0.	-	-1731.	1001.	1462.	50.	178.	2.69	0.22	0.30	71.3		116.8	0	50.2	1.35 125
	26212		0.		-377.	687.	411.	50.	50.	1.89	0.22	0.20	44.2		122.6	0	39,4	1.08 143
	26212		0.	0.	-1693.	1008.	1483.	<u>50.</u>	181.	2.70	0.22	0.32	71.7		119.6	0	48.4	1.30 126
	26212		o.		-874,	687.	411.	50.	50.	1.91	0.22	0.20	44.9	1.82	125.0	0	39.4	1.06 143
	26212		0,	0.	-1597.	974.	1372.	50.	167.	2.49	0.22	0.32	63.7		111.5	0	46.3	1.25 128
	26212		0.	o.	-907,	687.	411.	50.	50.	1.88	0.22	0.17	43.0		116,5	0	40.4	1.09 141
TROOK	20212	1496.	0.	ο.	-1496.	898.	1116.	50.	136.	2.25	0.22	0.26	54.9	2.23	101.3	0	47.4	1.20 129

PAGE 34

DATE 06/08/7. 18SE-PEO-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POVER COGEN M&O POWER FESR CAPITAL NORM \$/KW ROI LEVIL NORM WRTH PROCS DISTIL RESIDL COAL DISTIL RESIDL COAL REGD POWER CHRG ENRO /HEAT COST COST EQVL MW ΜW RATIO *10**6 (%) GTR312 26212 069. Ö. -869. 687. 411. 50. 50. 1.86 42.9 38.9 1.05 145 O. 0.22 0.21 1.74 119.9 0 0. -1448. GTR312 26212 1448. 921. 1192. 50. 145. 0. 2.27 0.22 0.31 56.0 2.27 106.1 0 44.0 1.19 132 0. -870. GTR316 26212 870. 0. 687. 411. 50. 50. 1.89 0.22 0.21 43.8 1.77 122.1 O 39.1 1.05 144 0. -1438. 2.31 GTR316 26212 1438. σ. 915. 1173. 50. 143. 0.22 0.31 57.3 2.32 109.1 44.2 1.19 132 687. O. FCPADS 26212 924. O. -924. 411. 50. 50. 6.71 0.22 0.16 57.1 2.31 152.6 ō 47.3 1.28 139 FCPADS 26212 2824. 0. 0. -2824. 1336. 2582. 50. 314. 34.74 0.22 0.28 189.6 7.68 203.7 O 109.2 2.94 138 FCMCDS 26212 865. Ο. -865. 687. 50. 50. α. 411. 6.39 0.22 0.21 59.1 2.40 165.6 0 45.0 1.21 143 FCMCDS 26212 2060. 0. -2060. 1175. 2042. 249. 26.14 0.22 0.36 164.2 6.65 232.2 82.1 2.21 136

SY372M- P1108-02

SALLI PAGE PRINTING

DATE 06/08/70 LASE-PEO-ADV-DES-EMOR

				टाहा ।	5 IN 6T	11+10++6-				·							· · · · · · · · · · · · · · · · · · ·		
							COGEN**		COCEN	D&M	POWER	EECD	CAPITAL	NORM	\$/KW	971	LEVL	MODIN	WRTH
ECS	PPGCS	DISTIL		COAL.		RESIDL	COAL	REOD	POWER	Odri	/HEAT	rean	COST	COST	EQVL	KUI	CHRG	ENRO	
L,03	i noco	DISTIL	NEO I DE	CONL	DISTIL	KLUIDL	COMIL	MW	MW		RATIO		*10**6	CO31	EGAE	(2)	Clino	LINIO	
ONGCG	1 26214	1 0.	530.	238.	0.	0.	0.	29.	0.	0.96	0.16	Ō.	21.5	1.00	102.2	-\^	26.6	1.00	0 80
	26214		575.		o.	-45.	238.	29.	29.	1.40	0.16	0.25	24.4	1.14	100.0		21.6		
	26214		615 ₄	0.	o.	-61.	320.	29.	39.	1.17	0.16	0.30	24.2	1.13	94.4	91	20.7		8 147
	1 26214		015.	575.	0.	530.	-337. F	29.	29.	3.00	0.16	0.30	48.8	2.27	199.5	22	18.5		9 136
	26214		0.	615.	0.	554.	-295. F	29.	39.	2.75	0.16	0.30	52.2	2.43	203.9		17.4		5 128
STM14			o.	575.	0.	530.	-337. A		29.	2.94	0.16	0.35	43.6	2.03	178.3	26	17.9		7 137
	26214		0.		0.	554.	-295. A	29.	39.	2.50	0.16	0.30	37.0	1.72	144.6		15.5		8 132
	26214		575.	2,	0.	-45.	236. M	29. 29.	29.	1.10		0.25	21.9	1.02	89.7		21.1		9 145
	3 26214				0.	529.	-338. F	<u>29.</u> 29.	29.	2.58	0.16	0.25	48.8		200.1	22			8 125
			1.		- •		-							2.27			18.1		
	3 26214		1. 0.		0.	529. 500	-338. A	29.	29.	2.42	016	0.25	35.6	1.66	145.9	40	16.5		2 129
	1 26214			579.	0.	530.	-341. -306	29.	29.	3.70	0.16	0.25	51.1	2.38	208.2	19	19.5		3 135
	1 26214		0.	716.	0.	611.	-206.	29.	62.	4.26	0.16	0.36	<u> 52.2</u>	2.43	182.7		16.2		1 129
	26214		578.	0.	0.	-48.	238.	29.	29.	2.67	0.16	0.25	73.7	3.43	300.3	2	28.3		8 138
	T 26214		676. 0.	0.	0.	-88.	434.	29.	53.	3,39	0.16	0.34	101.2	4.71	369.2	0	30.4		4 133
	[26214		0. 0.	578.	0.	530.	-340.	29.	29.	4.27	0.16	0.25	99.7	4.64	406.6	6	25.3		5 132
	7 26214			799.	0.	661.	-121.	29.	83.	5.79	0.16	0.40	169.3	7.88	546.1	4	27.9		5 125
	26214		703.	0.	0.	-173.	238.	29.	29.	3,14	0.16	0.08	98.0	4.56	377.3	0	35.0		1 120
	26214		614,	34.	0.	-84.	204.	29.	25.	2.92	0.16	0.16	88.9	4.14	351.6	0	32.1		0 117
	3 26214		0.	628.	0.	530.	-390.	29.	29.	4.97	0.16	0.18	131.9	6.14	507.6	2	30.4		4 125
	26214		0.	686.	0.	554.	-366.	29.	39.	5.07	0.16	0.22	149.5	<u>6.96</u>	540.1		31.5		B 118
STIRL	26214		0,		-631.	530.	238,	29.	29.	1.74	0.16	0.18	38.4	1.79	147.3	0	29.4	1.11	
STIRL	26214		0.		-817.	607.	496.	29.	60.	2.09	0.16	0.26	50.5	2.35	160.3	0	32.0		0 132
STIRL	20214		631.		0.	-101.	238.	29.	29.	1.74	0.16	0.18	38.4	1.79	147.4	11	25.1		4 138
STIRL	26214		817.		<u> </u>	<u>-211.</u>	496.	<u> 29.</u>	<u>60.</u>	2,09	0.16	0.26	50.6	2.36	160.5	6	26.3		9 126
STIRL	26214 26214		0, 0.	631. 1020.	0, 0.	530. 690.	-393.	29.	29. 94.	3.38 4.67	0.16 0.16	0.18	64.1	2,98 5,46	245.6	13 8	21.3 22.5		0 125 4 107
	20214 20214		o.				-245.	29.	- • -		- •		117.4			6	25.5		6 110
	5 26214		0. 0.	724. 4901.	0. 0.	530.	-486. A	29.	29.	3.79	0.16	0.06	82.1	3.82	285.0 322.3	0			
	26214					1649.	-915. A	29.	<u>485.</u>	18.23	0.18	0.13		22.68 3.69	279.4	7	69.4 24.9	2.60 0.94	
	26214		0.	710.	0.	530. 850.	-472. A -532. A	29.	29. 159.	3.73 7.23	0.16		79.3 179.2		291.4	ó	34.0	1.28	
	26214		0,	1840. 698.	0. 0.	530.	-332. A -460. A	29. 29.	29.	3.67	0.16	0.15 0.09	75.6	8.34 3.52	269.5	8	24.2		1 114
	26214		0,	990.			-									6	25.6		
	26214		0.	£62.	<u>0.</u> 0.	617. 530.	-461. A	29.	64.	4.25	0.16	0.14 -0.12	98.3 73.4	4.58 3.42	268.7 290.7	3	27.5	1.03	5 100 3 91
	- 26214		0.	1289.	0.		-624. -046	29.	29.					5.54		5 5		0.99	
	- 26214 - 26214		ô.			740.	-346.	29.	115.	6,89	0.16	0.23	119.0 71.2		315.0	_	26.3		
	- 26214 - 26214		0. 0.	855.	0. 0.	530.	-617.	29.	29.	3.92		-0.11		3.31	284.1	4	27.0	1.01	
	26214		0.	1562. 890.	0.	895. 530.	-102,	29.	178.	6,45	0.16	0.34	145.3	6.76	317.6	7	23.4	0.88	
	1 26214		0, 0,	1456.	0. 0.	530. 763.	-652.	29.	29.	3,32 3,87		-0.16	68.4	3.18	262.1	5 7	26.7	1.00	•
	26214		630.		0.		-436.	29.	124.		0.16	0.18	115.4	5.37	270.4		24.0	0.90	
	R 26214		920.	0.	0.	-100. -200	238.	29.	29.	1.49	0.16	0.18	31.4	1.46	120.7	20	24.1		0 141
	3 26214		603.	<u> </u>	0.	-269.	642.	29.	<u>78.</u>	1.76	0.16	0.29	40.0	1.86	115.7	12	24.5		2 128
	3 26214		758.	0. 0.	0. 0.	-74.	238.	29.	29,	1.44	0.16	0.21	29.5	1.37	116.8	30	23.0		146
	2 20214		606.	0. 0.	0. 0.	-152.	492.	29.	60.	1.50	0.16	0.31	30.8	1.43	103.3	32	21.9		2 139
	- 20214	· J.	606.	U.	U.	-76.	238,	29.	29.	1.46	0.16	0.21	30.2	1.41	119.3	27	23.2	0.87	7 145
	i																		

DATE 06/08/7 LASE-PEO-ADV-DES-ENGR

													·						
						FU#10##6 10CGGEN	- COGEN**		COCEN	08/1	POWER	EESD	CAPITAL	. NORM	\$/KH	POI	LEYL	NORM WRT	1.1
ECS	PPMCS.	DISTIL				RESIDL		REGD	POWER	OGN	/HEAT	resit	COST	COST	EGVL	KOI	CHRO	ENRO	11
200	1,4000	DIGITE	INLOT DE	CONL	DISTIL	- NEOTIDE	OOAL	MW	MM		RATIO		*10**6	0001	LGVL	(2)	OTING	Little	
GTACT	2 26214	0.	840.	0.	0.	-197.	617.	29.	75.	1.64	0.16	0.33	35.6	1.66	110.5	23	22.1	0,83 134	4
	6 26214		609,	0.	ō.		238.	29.	29.	1.48	0.16	0.21	31.1	1.45	122.1	24	23.4		
GTAC1	6 26214	0.	902.	0.	0.	-234.	701.	29.	85.	1.75	0.16	0.34	39.8	1.85	117.0	18	22.6	0.85 13	0
GTWC1	6 26214	1 0.	623.	0.	0.	-93.	238.	29.	29.	1.48	0,16	0.19	30.9	1.44	119.6	22	23.8	0.89 14	2
GTHC1	6 26214	0.	964.	0.	0.	-287.	731.	29.	89.	1.73	0.16	0.32	38.2	1.78	106.7	16	23.6	0.89 12	8
1	6 26214		625.	0.	0.		238.	29.	29,	1.58	0.16	0.19	31.1	1.45	120.2	20	24.0		
	6 26214		1276.	0.	0.		1173.	29.	143.	2.26	0.16	0.36	51.7	2.41	115.0	. 9	24.8		
	2 26214		618.	<u>o.</u>	0,		238.	29.	29.	1.58	0.16	0.20	31.1	1.45	121.1	21	23.8		···
1	2 26214		1163.	0.	0.		1056.	29.	129.	2.23	0.16	0.36	52.3	2.44	125.6	10	24.1	0.91 11	
	2 26214		616.	0.	0.		238.	29.	29.	1.57	0.16	0.20	30.5	1.42	118.8	22	23.7	0.89 14	
	2 26214 2 26214		1154. 606.	0. 0.	0.		1051	29.	128.	2.19	0.16	0.37 0.21	49.7	2.32 1.41	120.1	12	23.6		
	2 26214		975.		0		238. 838.	29. 29.	29. 102.	1.56	0.16	0.21	30.3 40.3	1.88	119.6 111.5	<u>24</u> 19	<u>23.3</u> 21.9		
	5 26214		715.	0.	0.		238.	29. 29.	29.	1.82	0.16	0.07	34.5	1.61	120.9	0	27.3	-	
	5 20214		30000.	0.		-21326.		29.	3350.	50.80	0.16	0.17		38,48	93.2	Ö		15.42 42	-
	0 26214		691.	Õ.	o.		238.	29.	29.	1.63	0.16	0.10	30.3	1.41	109.0	10	26.0		
	0 26214		2943.		<u>_</u>		2543.	29.	310.	5.18	0.16	0.22	97.2	4.53	103.6	Ò	50.9		
STIGI	\$ 26214	9 0.	681.	0.	0.	-151.	230.	29.	29.	1.64	0.16	0.11	29.9	1.39	108.7	13	25.6		
STIGI	\$ 26214	1 0.	1850.	ο.	0.	-946.	1492.	29.	182.	3.48	0.16	0.23	59.4	2.76	96.1	0	36.7	1.38 104	4
	3 26214		661.	0.	0	-131.	238.	29.	29.	1.77	0.16	0.14	40.5	1.88	150.1	6	26.3	0.99 13	3
	3 26214		1903.		0.		1698.	29.	207.	4.56	0.16	0.29	141.9	6,61	224.1	0	43.2		
	M 26214		609.	0.	Q.		238.	29.	29.	1.87	0.16	0.21	41.8	1.95	164.5	11	24.9	0.93 139	
	M 25214		910.		0,		716.	29.	87.	2.01	0,16	0.34	74.7	3.48	218.0	4	27.2		
	3 26214		<u> </u>	0.	-678	530.	238.	<u>29.</u>	<u> 29.</u>	1.90	0.16	0.12	45.2	2.10	164.8	0_	32.1	1.20 133	
	3 26214		0.		-2281		1901.	29.	241.	6.10	0.16	0.25	201.6	9.38	270.8	0	71.6		
	3 26214 3 26214		678. 2281.	0. 0.	0. 0.		238. 1981.	29. 29.	29. 241.	1.90 6.10	0.16 0.16	0.12 0.25	45,2 201,6	2.10 9.38	164.8 270.8	2	27.4 55.9	1.03 129 2.10 103	
	D 20214		0.	0. 0.	-614.		238.	29. 29.	29.	1.43	0.16	0.20	29.0	1.35	113.3	0	27.5		
	D 26214		0.		-847		595.	29.	72.	1.55	0.16	C. 31	$\frac{29.0}{32.0}$	1.49	90.9	- ö -	28.2	1.06 140	
	8 26214		0.	0.	-626		238.	29.	29.	1.51	0.16	0.18	32.3	1.50	124.6	Ö	28.4	1.07 14	
	8 26214		õ.	Ö.	~1160.		996.	29.	121.	2.10	0.16	0.34	51.8	2.41	124.7	Ö	33.1	1.24 120	
	2 26214		o.	o.	-623.	530.	238.	29.	29.	1.51	0.16	0.19	32.5	1.51	126.0	. 0	28.3	1.06 149	
	2 26214		0.	0.	-1127		970.	29.	118.	2.10	0.16	0.34	52.3	2,43	128.8	Ö	32.5	1.22 12	
GTRA1	6 26214	621.	0.	O.	-521		238.	29.	29.	1.53	0.16	0.19	33.3	1.55	129.2	ō	28.3	1.06 14	
GTRA1	6 26214	1076.	0.	ø.	-1076.	729.	904.	29.	110.	2.10	0,16	0.34	52.4	2.44	133.9	0	32.2	1.21 12	8
	8 26214		0.	0.	-622.	530,	238.	29.	29.	1.48	0.16	0.19	_31.3	1.46	121.2	0	28.1	1.05 146	3
	0 26214		ō.		-970,		747.	29.	91.	1.84	0.16	0.32	42.7	1.99	118.7	0	30.7	1.15 132	
	2 26214		0.	Q.	-622,		238.	29.	29.	1.50	0.16	0.19	31.0	1.48	123.3	0	23.2		
GTR21			0.	0.	-1009.		801.	29.	98.	1.91	0.16	0.33	45.4	2.11	122.3	0	31.2	1.17 131	
	6 26214 6 26314		0.	<u> </u>	-619.	530.	238.	29.	29.	1.51	0.16	0.19	32.5	1.51	126.2	0	28.1	1.06 140	
OTRA1			0. 0.	0. 0.	-1013. -649.		021.	29.	100.	1.98	0.16	0.34	48.2	2.24	129.2	0	31.2		-
OTRWO			0.	0.	-140s.	530. 814.	238. 1188.	29. 29.	29. 145.	1.51 2.18	0.16	0.16	32.2 53.7	1.50 2.50	121.0	0	29.2 36.1	1.10 142	
GTRW1	2 26214		o.	0.	-640,	530.	238.	29. 29.	145. 29.	1.50	0.16	0.30	33.7 32.2		122.1	0			
211071	- EUE (4	<u></u>	<u> </u>		050,		۲۵0.	69.	<u> </u>	1.30	0.10	9.17	36.6	1.30	166.1		20.9	1.00 14	

DATE 06/08/79 IRSE-PEO-ADV-DES-ENGR

		· · · · · · · · · · · · · · · · · · ·			FUEL US	E IN BT	U*10**8-				······································		· · · · · · · · · · · · · · · · · · ·							
ì			**C(GENERAT	LON CAS	Exx xxN	OCOGEN -	COGEN**	POWER	COGEN	M&O	POWER	FESR	CAPITAL	NORM	\$/KH	RO1	LEVL	NORM I	VRTH
EC	S	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POVER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
l									MW	WM		RATIO		*10**6			(%)		~	
n '		26214		. 0,	o.	-1376.	819.	1205.	29.	147.	2.18	0.16	0.32	54.0	2.51	112.8	0	36.6	1.37	121
GT	RW16	26214	638.	ο,	0.	-638.	530.	238.	29.	29.	1.52	0.16	0.17	32.7	1.52	124.4	0	28.9	1.08	143
GT	RW16	26214	1297.	о.	0.	-1297.	792.	1115.	29.	136.	2.16	0.16	0.32	53.5	2.49	117.2	0	35.7	1.34	122
GT	R308	26214	658.	. 0.	0.	-658.	530.	238.	29.	29.	1.50	0.16	0.14	31.4	1.46	116.8	0	29.4	1.11	142
		26214			0.		730.	907.	29.	110.	1,90	0.16	0.26	43.6	2.03	100.9	0	36.2	1.36	124
j GT	R312	26214	l 635,	0.	Ο.	-635.	530.	238.	29.	29.	1.49	0.16	0.17	31.3	1.46	119.6	0	28.6	1.07	145
GT	R312	26214	1 1177.	О.	О.	-1177.	748.	968.	29.	118.	1.97	0.16	0.31	46.7	2.18	111.1	0	33.7	1.27	126
1		26214			0.		530.	238.	29.	29.	1.50	0.16	0.17	32.0	1.49	121.8	Ö	28.7	1.08	144
н .		26214			0.		744.	953.	29.	116.	2.00	0.16	0.31	47.9	2.23	114.4	O	33.9	1.27	126
4		26214			Ο.		530.	238.	29.	29.	4.23	0.16	0.13	38.6	1.80	142.2	0	33.3	1.25	
11		26214			ο.		1085.	2098.	29.	255.	28,29	0.16	0.28	153.7	7.15	205.5	0	86.5	3.25	141
11		26214			0.		530.	238.	29.	29.	4.04	0.16	0.18	39.8	1.85	152.3	0	32.0	1.20	143
FC	MCDS	20214	1674	О.	0.	-1674.	954.	1659.	29.	202.	21.30	0.16	0.36	133.2	6.20	235,2	0	64.5	2.42	135

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY	OF.	FUEL	SAVED	BY	TYPE	8	ECONOMICS
---------	-----	------	-------	----	------	---	------------------

															1. p			
				FUEL US	E IN BTU	*10**6-												
		C06	ENERAT	ION CAS	E **NC	COGEN -	- COGEN**	POWER	COGEN	MSO	POWER	FESR	CAPITAL	. NORM	\$/KH	RO1	LEVL	HORM KRTH
ecs	PROCS	DISTIL F	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRO
			ننيب وسند					MM	MW		RATIO		*10**6			(%)		
	N 26216		410.	164.	0.	0.	0.	20.	0.	0.65	0.22	0.	12.4	1.00	117.0	0	19.5	
	1 26216		439.	15.	0.	~20.	149.	20.	18.	0.79	0.22	0.21	13.1	1.05	102.9		16.1	0.83 140
	1 26216		5.	449.	0.	406.	-285. F		18.	1.66	0.22	0.21	27.1	2.19	213.0	29	12.9	
	1 26216		5.	449.	0.	406.	-285, A		18.	1.49	0.22	0.21	19.5	1.58	153.7	_54_	11.9	
	8 26216		431.	57.	υ.	~20.	107.	20.	13.	0.78	0.22	0.15	13.1	1.06	107.9		17.1	0.88 132
	8 26216		17.	471.	0.	393.	-306. F		13.	1.56	0.22	0.15	25.1	2.02	206.8	28	13.9	
	8 26216		17.	471.	0.	393.	-306. A		13.	1.44	0.22	0.15	18.5	1.49	152.6	54	13.0	
	M 26216		0.	444.	<u> </u>	410.	-280.	20.	20.	2,59	0.22	0.23	34.3	2.77	263.5	19		0,73 130
	11 26216		0.	485.	0.	434.	-241.	20.	30.	2.51	0.22	0.29	32.6	2.64	229.9	23	12.8	
	T 26216	- •	444.	0.	0,	-33.	164.	20.	20.	1.97	0.22	0.23	51.7	4.18	397.9	1	21.1	1.09 134
	T 26216		525,	0.	0,	-66.	326.	20.	40.	2.49	0.22	0.33	79.2	6.40	514.8	0	23.3	
	T 26216		0.	444.	0.	410.	-279.	20.	20.	3,11	0.22	0.23	72.2	5.83	555.4	6_	18.8	
	T 26216	-	0.	525.	0.	459.	-199.	20.	40.	3.56	0.22	0.33	100.5	8.10	652.2	4	19.9	
	9 26216		476.	3.	0.	-66.	161.	20.	20.	2.11	0.22	0.17	69.9	5,64	501.7	0	24.1	1.24 116
	9 26216		1.	479.	460	409.	-314.	20.	20.	3.12	0.22	0.17	89.6	7.23	642.9	3	21.4	
STIRL			0.	0.	-480.	410.	164.	20.	20.	1.18	0.22	0.16	21.6	1.74	153.4	<u> </u>	21.4	
STIRL			0.	0.	-643.	478.	390.	20.	48.	1.34	0.22	0.26	34.4	2.77	182.2	0	23.7	1.22 127
TIRL	26216		480.	0.	0.	-70.	164.	20.	20.	1.18	0.22	0.16	21.6	1.74	153.5	14	18.1	0.93 136
STIRL	26216		643.	0.	0.	-166.	390.	20.	48.	1.34	0.22	0.26	34.4	2.78	182.5	5	19.3	
STIRL	26216		0.	480.	0.	410.	-316.	20.	20.	2.32	0.22	0.16	41.0	3:31	291.7	14	15.2	
STIRL			0.	643.	0.	478.	-253.	20.	48.	2.64	0.22	0.26	60.5	4.89	320.9	11	15.1	0.78 108
	5 26216		0.	544.	0.	410.	-380. A		20.	2.73	0.22	0.05	59.3	4.78	371.6	6	18.8	
	5 26216 0 26216		o. o.	2597. 535.	0.	96C.	-591. A		244.	9.43	0.22	0.12	245.2	19.80	322.3	0	38.5	
	0 26216			1056.	0,	410. 558.	-370. A		20.	2.67 4.33	0.22	0.07	56.9	4.59	363.2	7	18.3	
	0 26216	- •	0.	526.	0., 0.	410.	-390, A		80. 20	2.56	0.22	0.13	110.3	8.91	356.4	1	23,3	1.20 85
	0 26216		0.	629.	0.	441.	-362. A		20. 32.	2.50	0.22		53.0 60.5	4.27 4.88	343.5	8 7	17.6	
	L 26216	- •	0.	461.	0, 0.	410.	-362. x -296.	20.	20.			0.11					17.8	
	L 20216		0.	649.	<u> </u>	503.	-174.		<u> </u>	2.81 3.96	0.22	0.20	50.4	4.07	373.3	<u>10</u> 9	16.6 16.1	0.85 124 0.83 113
	L 26216		0.	456.	0.	410.	-174. -292.	20.	20.	2.78	0.22		72.2	5.83 3.96	379.8 367.0	10		
	L 20216			775.	0. 0.	575.	-61.	20. 20.	20. 87.	4.82	0.22	0.21	49.1 87.0	7.02	383.0	9	16.3 15.2	
	T 20216		ŏ.	481.	0,	410,	-317.									_		
	1 20216		0.	723.	0.	509.	-317. -227.	20. 20.	20. 60.	2.40	0.22	0.16	47.9 67.5	3.87 5.45	340.0 318.7	11	14.9	0.83 120
	R 26216		479.	, 23. 0.	0.	-69.	164.	20. 20.	20.	1.03	0.22	0.17	18.0	5.45 1.45	128.3	24	17.6	
	R 26216		724.	0.	0.	-212.	50 5 .	20.	62.	1.03	0.22	0.17	26.1	2.11	123.0	12	17.9	
	8 26216		461	0.	0.	-51.	164.	20.	20.	0.99	0.22	0.29	16.6	1.34	123.6	38	16.8	
	8 26216		597.	0.	0.	-120.	388.	20.	47.	0.90	0.22	0.20	20.3	1.64	115.9	29	16.0	
*. *	2 26216	- •	463.	0.	0.	-53.	366. 164.	20. 20.	47. 20.	1.00	0.22	0.31		1.64	125.1	34	16.0	0.62 133
	2 26216		661.	o.	0.	-155.	485.	20.	20. 59.	1.00	0.22	0.19	17.0 24.1	1.95	125.1	21	16.2	
	6 26216		465.	0.	0.	-55.	164.	20.	20.	1.01	0.22	0.33	17.6	1.42	128.8	30	17.1	
	6 26216		710.	0.	0.	-184.	552.	20.	67.	1.11	0.22	0.19	27.6	2.23	132.7	17	16.6	0.85 124
	6 26216	•	475.	Ö.	0.	-64.	164.	20.	20.	1.02		0.17	17.7	1.42	126.9	27	17.4	0.89 141
	6 26216			0.	o.	-226.	575.	20.	70.	1.02	0.22	0.32	26.7	2.15	120.9	14	17.4	0.89 121
		٠.	,00,	٠.	٥.	EGU,	0/0.	حن.	70.	1,05	0.24	5.32	20,7	£. 10	120,0	14	17.4	0.08 (2)
•																		

DATE 00/00/7.

							0.000		00000	~~								ALONDO LIPOTIA
ECS	ppace						- COGEN**			MBD	POWER /HEAT	FESR	CAPITAL	NORM	S/KW EQVL	ROI	CHRG	NORM WRTH ENRO
EUS	FRUCS	DISTIL	KESIDE	COAL	DISTIL	RESIDL	COAL	REGD MV	POVER MW		RATIO		*10**6	COST	EGAL	(2)	CIRC	EMIG
CC162	6 26216	· 0.	476.	 0.	0.	-66.	164.	20.	20.	1.12	0.22	0.17	17.8	1.44	127.7	23	17.6	0.90 140
	6 26216		991.	ŏ.	ō.	-361.	900.	20.	110.	1.50	0.22	0.35	35.7		123.0	9	18.2	
	2 26216		471.	0.	o.	-61.	164.	20.	20.	1.11	0.22	0.18	17.7		127.8	25	17.4	0.89 141
CC162	2 26216	0.	904.	0.	0.	-300.	810.	20.	99.	1.46	0.22	0.36	35.6	2.87	134.4	10	17.7	0.91 113
CC122	2 26216	0.	470.	0.	Ō.	-60.	164.	20.	20.	1,10	0.22	0.18	17.2	1.39	124.7	27	17.3	0.89 142
00122	2 26216	0 .	896.	Ο.	ø.	-294.	806.	20.	98.	1.43	0.22	0.36	33.7	2.72	128.3	12	17.3	0.89 114
	2 26216		463.	Ο.	0.	-52.	164.	20.	20,	1.10	0.22	0.19	17.2		126.7	30	17.1	0.68 144
	2 26216		757.	0.	<u> </u>	-205.	640.	20.	<u>78.</u>	1.26	0.22	0.37	27.9		126.0	17		0.83 122
	5 26216		538.	0.	0.	-127.	164.	20.	20,	1.31	0.22	0.06	22.1	1.78	140.3	0	20.1	1.03 126
	5 26216			0.		-16787.	21650.	20.	2637.	39,96	0.22	0.17		52.57	94.1	0		16.58 452
	0 26216		522.	0.	0,	-111,	164.	20.	20.	1,16	0.22	0.09	18.4		120.6	10	19.0	
	0 26216 8 26216		2317, 514.	<u>0.</u> 0.	<u>0.</u> 0.	-1358. -104.	2002, 164,	20. 20.	244. 20.	3,83 1,16	0.22	0.22	72.6 18.1		107.0 120.4	12	38.9 18.8	
	S 26216		1456.	0. 0.	0.	-744.	1175,	20. 20.	143.	2.51	0.22	0.10	44.3	3.58	103.9	0	27.8	1.43 99
	3 26216		501.	o.	o.	-91.	164.	20.	20.	1.24	0.22	0.13	24.3		165.9	7	19.1	0.98 130
	3 26210		1498.	o,	ŏ.	-737.	1337.	20.	163.	3.32	0.22	0.29	106.9		243.5	á	32.7	
	M 26216		465.	Ö.	0.	-54.	164.	20.	20.	1.28	0.22	0.19	23.9		175.4	13	18.0	
	M 26218		717.	õ,	0,	-187.	564.	20.	69.	1.92	0.22	0.34	53.4		254.4	4	20.0	
DESOA	3 26216	5 512.	0.	0.	-512.	410.	164,	20.	20.	1.33	0.22	0.11	27.6	2.23	184.0	0	23.4	1.20 131
DESCA	3 26216	1796.	ο.	0.	-1796.	827.	1560.	20.	190.	4.54	0.22	0.25	154.0	12.43	292.6	0	55.1	2,83 123
DESOA	3 26216	i 0.	512.	0.	0.	-102.	164,	20.	20.	1.33	0.22	0.11	27.6		184.0	2	19.9	1.02 127
DESON	3 26216		1796.	ο,	0,	-968.	1560.	20.	190.	4.54	0.22	0.25			292.6	0	42.7	
	D 56516		ο.	Ο.	-468.	410.	164.	20.	20.	0.98	0.22	0.18	16.1		117.3	0	20.2	
	D 26216		<u>0.</u>	<u>0,</u>	<u>-667.</u>	501.	468.	20.	57.	0.94	0.22	0.31	21.3		109.0	0	21.0	the same of the sa
	8 26216		0.	0.	-477.	410.	164.	20.	20.	1.04	0.22	0.17	18.6	1.50	133.3	0	20.9	1.07 143
	8 26216		0.	0,	-913.	595.	784.	20.	96.	1.41	0.22	0.34	38.1		142.2	0	25.0	
	2 26216 2 26216		0. 0.	0. 0.	-474. -887.	410. 589.	164. 764.	20. 20.	20. 93.	1,04 1,36	0.22	0.17	18.7 36.2		139.5	ő	20.8 24.2	
	6 26216		0.	- 0.	-473.	410.	164.	20.	20,	1.06	J. 22	0.18	19.3	1.56	139.4	- ö -	20.8	
	6 26216		a.	0.	-847.	574.	711.	20.	87.	1.35	0.22	0.34	36.4		146.5	ŏ	24.0	
	8 26216		o.	ő.	-474.	410.	164.	20.	20.	1.02	0.22	0.18	17.8		128.5	ă	20.6	
	8 26210		ō.	Ö.	-764.	537.	588.	20.	72.	1.13	0.22	0.32	28.3		126.6	Ö	22.7	
	2 26216		o.	ō.	-474.	410.	164.	20.	20.	1.03	0.22	0.17	18.2		131,3	0	20.7	
OTR21	2 26216	794.	0.	0.	-794.	550.	631.	20.	77.	1.20	0.22	0.33	30.6	2.47	131.4	0	23.2	1.19 125
GTR21	6 26216	472.	0.	ο.	-472.	410.	164.	20.	20.	1.04	0.22	0.18	18.7	1.51	135.2	0	20.7	1.06 144
GTR21	6 26216		0.	0.	-797.	554,	647.	20.	79.	1.25	0.22	0.34	32.8	2.65	140.3	0		1.19 124
	8 26216		0.	0.	-492.	410.	164.	20.	20.	1.65	0.22	0.14	18.6		129.0	0	21.4	
	6 26216		0.	0.	-1107.	640.	935.	20.	114.	1.43	0.22	0.30	37.9		116.8	0	28.7	
	2 26216		0.	0.	-486.	410.	164.	20.	20.	1.04	0.22	0.15	18.6		130.5	0	21.2	
	2 26218		<u>0.</u>	<u>0.</u>	-1633. -485.	644.	949.	<u>20.</u> 20.	116.	1.44	0.22	0.32	38.1 19.0	3.08	120.2	0	27.5	
GTRWI	6 26216 6 26216		0.	0. 0.	-1021.	410. 623.	164. 877.	20.	20. 107.	1.05	0.22	0.32	37.7	3.04	125.9	0	26.8	1.09 142 1.38 117
GTR30				0.	-498.	410.	164.	20.	20.	1.41	0.22	0.13	17.9		122.9	0	20.6	1.30 117
	0 20210		o.	0,	-957.	574.	714.	20.	20, 87,	1.24	0.22	0.13	31.2		111.2	ŏ	27.4	
	- 1-1									1 . 6.4	 _	<u> </u>		<u> </u>			<u> </u>	

					-111-111-1116	E IN DE	I I w 1 / Sur at C										***************************************			
							U*10**6-													
			* * CQG	BENERATI	ION CAS	Exx x*N	acagen -	COGEN**	POWER	COGEN	O&M	POWER	FESR	CAPITAL	NORM	\$/KW	RO I	LEVI	NORM WE	RTH
ECS	. 1	PROCS	DISTIL F	RESTDL.	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT	•	COST	COST	EQVL		CHRG	ENRO	
									MW	MH	a	RATIO		*10**6	••••		(2)			
GTR	312	26216	483.	0.	0.	-483.	410.	164.	20.	20.	1.03	0.22	0.16	18.0	1.45	126.9	0	21.0	1.08	143
GTR	312	26216	926.	0.	ο.	-926.	589.	762.	20.	93.	1.25	0.22	0.31	31.9	2.58	117.6	0	25.2	1.29 1	120
GTR	316	26216	483.	0.	0.	-483.	410.	164.	20.	20.	1.04	0.22	0.16	18.4	1.49	130.2	0	21.1	1.08 1	143
GTR	316	26216	920.	0.	0.	-920.	585.	750.	20.	91.	1.28	0.22	0.31	32.9	2,66	122.1	0	25.4	1.30	120
FCP	ADS	26216	505.	0.	O.	-505.	410.	164.	20.	20.	2.90	0.22	0.12	23.0	1.86	155,6	0	24.2	1.25	137
FCP	ADS	26216	1806.	Ο,	ο.	-1806.	854.	1651.	20.	201.	21.96	0.22	0.28	116.5	9.40	220.1	0	66.8	3,43	143
FCM	CDS	26216	481.	Ο,	ο.	-481.	410.	164.	20,	20.	2.77	0.22	0.16	23.8	1.92	168.6	0	23.3	1.20	140
FCM	CDS	26216	1318.	0.	0.	-1318.	751.	1306.	20.	159.	16.44	0.22	0.36	99.9	8.07	258.8	0	49.4	3. 54 1	134

DATE 06/08/7. LGSE-PEG-ADV-DES-ENGR

, ,				FIIFI IIQI	E IN BTU	*10**6-											, , , , , , , , , , , , , , , , , , , 	
		C0			E **NO				COGEN	MBD	POWER	FESR	CAPITAL	NORM	S/KW	RØI	LEVL	NORM WRTH
ECS F	PROCS	DISTIL			DISTIL		COAL		POWER	00.7	HEAT		COST	COST	EQVL	1127		ENRG
•								MW	MW		RATIO		*10**6	333,		(%)		
NOCON	26217	0.	292.	257.	0.	0.	O.	31.	Q.	0.43	0.58	0.	5.8	1.00	91.4	0	17.7	1.00 80
TM141	26217	0.	307.	176.	0,	-15.	81.	31.	10.	0.62	0.58	0.12	9.2	1.60	123.5	26	16.3	0.92 113
STI1141	26217	΄ ο,	53,	431.	0.	239.	-174.	F 31.	10.	1.22	0.58	0.12	18.6	3.23	249.3	19	14.7	0.83 98
STM141	26217	ο.	53,	431.	ο.	239.	~174.	A 31.	10.	1.09	0.58	0.12	13.9	2.42	186,8	29	14.1	0.79 102
380MT	26217	0.	303.	200.	0,	-11.	57.	31.	7.	0.59	0.58	0.08	8.2	1.42	114.8	25	16.8	0.95 103
380MT	26217	ο.	60.	443.	0.	202.	-186.	F 31.	7.	1.16	0.58	0.08	17.1	2.97	240.8	18	15.2	0.86 92
880MT	26217	0.	60.	443.	0,	232.	-186.	A 31.	7.	1.05	0.58	0.08	13.1	2.28	184.5	27	14.7	0.83 95
PFBSTM	26217	0.	36.	405.	Ο.	256.	-148.	31.	17.	1.73	0.58	0.20	22.9	3.97	274.1	18	14.0	0.79 109
TISTMT	26217	0.	330.	72.	0.	-38.	185.	31.	23.	1.76	0.58	0.27	53.1	9.21	588,3	1	19.8	1.11 121
FISTMT	26217	ο.	22.	380.	O.	270.	-123.	31.	23.	2.50	0,58	0.27	67.5	11.71	747.4	4	18.1	1.02 117
TIHRSG	26217	o.	331.	161.	0.	-39.	96.	31.	12.	1.48	0.58	0.10	47.5		571.6	0	21.5	1.21 98
FIHRSG	26217	0.	48.	444.	0.	244.	-187.	31.	12.	2.19	0.58_	0.10	61.0	10.58	734.5	0	20.2	1,14 94
STIRL	26217	384.	7.	24.	-384.	205.	233.	31.	28.	0.92	0.58	0.24	20.9	3.63	186.1	0	18.5	1.04 125
STIRL	26217	0.	391.	24.	Ο,	-99.	233.	31.	28.	0.92	0,58	0.24	21.0	3.63	186.4	13	15.8	0.89 122
STIRL	26217	0.	7.	408.	0.	285.	-151.	31.	28.	1.75	0,58	0.24	36,2	6.28	322,2	14	13.3	0.75 112
IEGT85	26217	0.	0.	502.	0.	292.	-245.		31.	2.92	0.58	0.09	68.5	11.88	466.0	3	19.2	1.08 108
IEGT05	26217	0.	0.	1548.	0.	572.	-352.	A 31.	146.	6.38	0.58	0.12	169.9	29,46	374.5	0	30.0	1,69 88
IEGT60	26217	ο.	Ο,	487.	0.	292.	-230.	A 31.	31.	2.75	0.58	0.11		11,01	445.3	4	18.2	1.03 110
1EG7'60	26217	0.	Ο.	630.	0.	333.	-237.		48.	2.97	0.58	0,13	76.6	13.28	415.0	3	19.2	1.08 100
LEGTOO	26217		29.	473.	0.	263.	-216. /		19.	1.78	0.58	0.09	41.9		382,0	_ 7	16.8	0.95 94
FCHCCL			0.		0.	292.	-114.	31.	31.	2.77	0.58	0.32	49.4		454.8	9	14.8	0.84 133
FCMCCL	26217	o.	0.	387.	Ο.	300.	-104.	31.	34.	2.65	0.58	0.34	49.7	8.62	438.6	10	14.4	0.81 123
FOSTOL	26217	ο,	Ο,	365.	Ο.	292.	-108.	31.	31.	2.85	0.58	0.34	50.O	8.67	467.9	9	14.9	0.84 134
FOSTOL	26217		0.		0.	339.	-42.	31.	50	3.20	0.58	0.39	59.0		442.6	9	14.1	0.80 126
teerst	26217	0.	0.	404.	0.	292.	-147.	31.	31.	2.06	0.58	0.26	46.9		395.7	10	14.4	0.81 125
logtst			0.		ο.	300.	-140.	31.	35,	1.85	0.58	0.27	46.9		377.1	11	13.9	0.78 115
3.LSQVB			400.		ο.	-103.	257.	31.	31.	0.92	0.58	0.27	17.5		149.4	19	15.0	0.84 137
<u>GTSOAR</u>			432,		0.	<u>-126.</u>	301.	<u>31.</u>	37.	0.79	0.58	0,29	17.8		<u>141.1</u>	19	14.8	0.84 128
SUDVILE			363.		0.	-71.	231.	31.	28.	0.67	0.58	0.29	13.8		132,4	30	14.0	0.79 131
TAC12			374.		0.	-82.	257.	31,	31	0.87	0.58	0.32	16.1		147.1	25	14.0	0.79 143
TAC12			394.		0.	-93.	289.	31.	35.	0.74	0.58	0.33	16.2		140.2	26	13.7	0.77 134
TAC16			378.	0.	<u> 0.</u>	-86,	<u> 257.</u>	31.	31.	0,93	0.58	0.31	17.4		<u>156.9</u>	22	14.3	0.81 142
STAC16			423.		0.	-110.	329.	31.	40.	0.81	0.58	0.34	18.5		148.9	22	14.0	0.79 133
STWC16			393.		0.	-101.	257.	31.	31.	0.93	0.58	0.28	17.2		149.7	20	14.8	0.83 139
TWC16			452.		0.	-135.	343.	31.	42.	0.81	0.58	0.32	18.4		138.6	20	14.5	0.82 130
001626			396.	0.	<u> </u>	<u>-104,</u>	<u> 257.</u>	31.	<u>31.</u>	1.10	0.58	0.28	18.1		<u>156.5</u>	17	15.2	0.85 138
001626			582,		0.	-210.	522.	31.	64.	1.12	0.58	0.35	24.1		141.5	13	15.2	0.86 127
201622			388.		0.	-96,	257.	31.	31.	1.08	0.58	0.29	18.1		159.4	18	14.9	0.84 140
001622			531.		0.	-175.	469.	31.	57.	1.07	0.58	0.36	23.4		150.5	15	14.6	0.83 129
001222			386.		<u> </u>	-94.	257.	31.	<u>. 31</u>	1.07	0.58	0.30	17.4		153.9	20	14.8	0.83 140
001222			526.		0.	-171.	466.	31.	57.	1.05	0.58	0.36	22.2		143.9	16	14.6	0.82 130
228000			375. 444.		0. 0.	-83. -119.	257. 369.	31. 31.	31. 45.	1.04 0.94	0.58 0.58	0.32 0.36	16.9 18.7		154.3 143.7	22 22	14.3 13.9	0.81 143 0.78 134
CCOBSS																		

DATE 06/08/79 | &SE-PEO-ADV-DES-ENGR

							- COGEN**			M8D	POWER	FESR	CAPITAL		\$/KW	ROI	LEVL	NORM WRTH
cs	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD MW	POWER MV		/HEAT		*10**6	COST	EQVL	(%)	CHRG	ENRG
	26217			0.	0.	-199.	257.	31.	31.	1.32	0.58	0.11	18.8	3.25	130.3	0	18.3	
	26217			0.		-10007.		31.	1572.	24.36	0.58	0.17		68.69	96.0	0		11.13 315
	26217			Q.	Ο.	-174.	257.	31.	31,	1.19	0.58	0.15	17.7		129.3	8	17.3	
	26217	<u> </u>		<u>o.</u>	0.	-809.	1193.	31.	145.	2.46	0.58	0.22	44.5	7.72	109.9	0	27.2	1.54 10
	26217			0.	0,	-163,	257.	31.	31.	1.18	0.58	0.17	17.1	2.97	128.3	10	16.9	0.95 12
	3 26217			o.	О.	-444.	700.	31.	85.	1.64	0.58	0.23	27.0	4.69	106.3	0	20.6	1.16 112
	3 26217			0.	0.	-142.	257.	31.	31.	1.28	0.58	0.21	26.7	4.62	209.8	6	17.3	0.98 120
· · · · · · · · · · · · · · · · · · ·	3 26217			0.	0.	-439.	797.	31.	97.	2.16	0.58	0.29		11.21	247.0	0	23.5	1.32 113
	1 26217				0.	-85.	257.	31.	31.	1.31	0.58	0.31	27.4	4.76	248.1	11	15.7	0.89 130
	1 26217				0.	-111.	336.	31.	41.	1.29	0.58	0.34	32.4	5.62	258.8	10	15.9	0.90 129
	3 26217				-452.	292.	257.	31.	31.	1.42	0.58	0.18	31.8	5.52	240.5	0	21.7	1.22 128
	3 26217			0.	<u>-1070.</u>	493.	930.	<u>31.</u>	113.	2.90	0.58	0.25		<u>16.10</u>	296,0	0	36.9	2.08 12
	3 26217				0.	-160.	257.	31.	31.	1.42	0.58	0.18	31.8	5,52	240.5	2	18.6	1.05 123
	3 26217				0.	-577,	930.	31.	113.	2.90	0.58	0.25		16.10	296.0	0	29.5	1.66 11
	26217				-383.	292.	257.	31.	31.	0.82	0.58	0.30	14.7	2.54	130.6	13	16.7	0.94 147
	26217			0.	-397.	299,	279.	31.	34.	0.70	0.58	0.31	14.4	2.51	124.1	14	16.6	0.93 13
	3 26217				-396.	292.	257.	31.	31.	1.00	0.58	0.28	19.1	3.31	164.3	4	17.9	1.01 141
	3 26217			0.	-544.	355.	468.	31.	57.	0.98	0.58	0.34	24.3	4.22	152.5	0	19.0	1.07 132
	2 26217				-392.	292.	257.	31.	31.	1.01	0.58	0.29	19.3	3,35	168.1	5	17.7	1.00 142
	2 20217			0.	-529.	<u>351.</u>	455.	31.	55.	0.99	0.58	0.34	24.5	4.25	158.2	0	18.7	1.05 133
	20217				-391.	292.	257.	31.	31.	1.02	0,58	0.29	20.1	3.48	175.2	5	17.8	1.00 142
	26217				-505.	342.	424.	31.	52.	0.98	0.58	0.34	24.6	4.27	166.4	0	18.6	1.05 133
	3 26217			0.	-391.	292.	257.	31.	31.	0.95	0.58	0.29	17.7	3.06	154.1	7	17.5	0.98 143
	26217			0.	-455.	320.	350.	31.	43.	0.83	0.58	0.32	19.2	3,33	144.1	5_	17.7	1.00 134
	5 56512				-392.	292.	257.	31.	31,	0.97	0,58	0,29	10.3	3,18	159.8	6	17.6	0.90 142
	26217			0.	-473.	320.	376.	31.	46.	0,88	0.58	0.33	20.8	3.60	149.7	3	18.0	1.01 134
	26217			О.	-389,	292.	257.	31.	31.	0.99	0.58	0.29	19.1	3.31	167.6	6	17.6	0.99 142
	26217			0.	-475.	330,	385.	31.	47.	0.91	0.58	0.34	22.1	3.84	158.8	3_	18.0	1.02 134
	3 26217			0.	-420.	292.	257.	31.	31.	1.02	0.58	0.23	19.0	3.30	154.4	0	18.8	1.06 137
	3 26217			ο.	-660.	382.	557.	31.	68.	1.06	0.58	0.30	26.2		135.4	0	21.4	1.21 127
	2 26217			0.	-411.	292.	257.	31.	31.	1.01	0.58	0.25	19.0	3.30	157.8	0	18.4	1.04 139
	26217			0.	-646.	384.	565.	31.	69,	1.06	0.58	0.32	26.3		139.3	0	20.7	1.17 128
	26217	409.		0.	-409.	292.	257.	31.	31.	1.02	0.58	0.26	19.5	3.39	163.1	0	18.4	1.04 139
	6 26217			Ο.	-609,	372.	523.	31.	64.	1.04	0.58	0.32	26.1		146.1	0	20.3	1.15 129
	26217			Ο.	-430	292.	257.	31.	31.	0.98	0.58	0.22	18.0		142.9	0	19.0	1.07 136
	3 26217			0.	-570.	342,	425.	31.	52.	0.92	0.58	0.26	21.4		128.0	0	20.6	1.16 127
	2 26217	406.		0.	-406.	292.	257.	31.	31.	0.98	0.58	0.26	18.0	3,12	151.3	2	18.1	1.02 140
	26217			Ο.	-552,	351.	454.	31.	55.	0.93	0.58	0.31	22.0	3.81	135.9	0	19.3	1.09 131
	3 26217			0.	-407.	292.	257.	31.	31.	0.99		0.26	18.6	3,23	156.4	1	18.2	1.03 140
	26217			0.	-548.	349.	447.	31.	54.	0.95	0.58	0.31	22.7	3,94	141.4	0	19.4	1.09 131
	5 26217			0.	-440.	292.	257.	31.	31.	3.95	0.58	0.20	24.9	4.32	192.9	0	23.1	1.30 135
	26217			0.	-1076.	509.	984.	31.	120.	13.18	0.58	0.28			223.0	0	43.7	2.47 13
	26217	-		0.	-403.	292,	257.	31.	31.	3.74	0.58	0.27	25.8		218.4	0	21.6	1.22 141
CMCDS	26217	785.	0.	0.	-785.	448.	779.	31.	95.	9.88	0.58	0.36	60.4	10.48	262.5	σ	33.4	1.88 137

DATE 06/08/75 18SE-PEG-ADV-DES-ENGR

PROCES PROCE STATE USE LOS COST POWER PO																						
PRINCE P					FU	JEL USF	E IN BT	U*10**6-					7									
MN MN MN MN MN MN MN MN			**(COGENER	RATIC	IN CASE	E** **N	OCOGEN -	COGEN*	* P(OWER	COGEN	MSO	POWER	FESR	CAPITAL	NORM	\$/KW	RO1	LEVL	NORM	WRTH
MN MN MN MN MN MN MN MN	ECS	PROCS	DISTIL	RESID	DI_ C	DOAL.	DISTIL	RESIDL	COVIT	RE	EOD	PONER		/HEAT		COST	COST	EQVL		CHRG	ENRO	
0800000 26218 0 . 324. 123. 0 . 0 . 19. 0 . 0.49 0.21 0 . 7.0 1.00 62.7 0 14.6 1.00 60 SIMIA1 26218 0 . 345. 11. 021. 113. 15. 14. 0.71 0.20 22 0.9 3.29 226.4 21 10.4 0.70 113 SIMIA1 26218 0 . 3 353. 0 . 321 - 229. F 15. 14. 1.44 0.21 0.20 22.9 3.29 226.4 21 10.4 0.70 113 SIMIA1 26218 0 . 3 355. 0 . 321229. F 15. 14. 1.24 0.21 0.20 22.9 3.29 226.4 21 10.4 0.70 113 SIMIA1 26218 0 . 3 355. 0 . 321229. F 15. 14. 1.26 0.21 0.20 16.8 2.41 167.4 22 9.6 0.65 117 13 SIMIA1 26218 0 . 3 355. 0 . 321229. A 15. 14. 1.28 0.21 0.20 16.8 2.41 167.4 22 9.6 0.65 117 13 SIMIA1 26218 0 . 3 39. 43. 015. 60. 15. 10. 0.67 0.21 0.15 10.0 1.44 104.4 29 13.4 0.90 125 SIMIA1 26218 0 . 13. 969. 0 . 311246. F 15. 10. 0.67 0.21 0.15 10.0 1.44 104.4 29 13.4 0.90 125 SIMIA1 26218 0 . 13. 969. 0 . 311246. F 15. 10. 1.36 0.21 0.15 10.0 1.44 104.4 29 13.4 0.90 125 SIMIA1 26218 0 . 13. 969. 0 . 311246. F 15. 10. 1.36 0.21 0.15 10.0 1.44 104.4 29 13.4 0.90 125 SIMIA1 26218 0 . 13. 969. 0 . 344246. F 15. 15. 10. 1.36 0.21 0.15 10.0 1.44 104.4 29 13.4 0.90 125 SIMIA1 26218 0 . 13. 969. 0 . 344246. F 15. 15. 15. 15. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12										1	MW	VIM		RATIO		*10**6			(%)			
STMINI 20218 0	ONOCE	N 26218	3. (). 32	24.	123.	0.	0.	0.				0.49		0.	7.0	1.00	82.7		14.8	1.00	80
SIMIHAI 20218 0. 3. 353. 0. 321229. F 15. 14. 1.44 0.21 0.20 22.9 3.29 228.4 21 10.4 0.70 113 SIMIHAI 20218 0. 3. 353. 0. 321229. A 15. 14. 1.29. 0.21 0.20 16.8 2.41 167.4 32 9.6 0.65 117 SIMIHAI 20210 0. 339. 43. 015. 60. 15. 10. 0.67 0.21 0.15 10.0 1.44 104.4 29 13.4 0.90 125 SIMIHAI 20210 0. 13. 369. 0. 311246. F 15. 10. 1.30 0.21 0.15 21.1 3.04 221.1 20 11.1 0.75 107 SIMIHAI 20210 0. 13. 369. 0. 311246. F 15. 10. 1.30 0.21 0.15 21.1 3.04 221.1 20 11.1 0.75 107 SIMIHAI 20210 0. 13. 369. 0. 311246. F 15. 10. 1.20 0.21 0.15 21.1 3.04 221.1 20 11.1 0.75 107 SIMIHAI 20210 0. 13. 369. 0. 311246. F 15. 10. 1.20 0.21 0.15 21.5 2.20 155.0 31 10.4 0.70 110 110 0.7					15.			-21.				14.						111.5	30	12.8	0.86	130
STM141 2021 8										F											- •	
STROOB 20219 0. 339. 43. 015. 60. 15. 10. 0.67 0.21 0.15 10.0 1.44 104.4 29 19.4 0.90 125 STROOB 20218 0. 13. 369. 0. 311246. F 15. 10. 1.26 0.21 0.15 21.1 3.04 221.1 20 11.1 0.75 107 STROOB 20218 0. 13. 369. 0. 311246. F 15. 10. 1.25 0.21 0.21 0.15 15.8 2.28 165.0 31 10.4 0.70 110 175 107 STROOB 20218 0. 0. 369. 0. 324226. 15. 15. 15. 2.21 0.21 0.22 29.3 4.21 205.0 14 11.0 0.70 125 176 178 178 179 179 179 179 179 179 179 179 179 179																						
STMO08 26218 0 . 13 . 369. 0 . 311246. F 15 . 10 . 1.36 0.21 0.15 21.1 3.04 221.1 20 11.1 0.75 107 STMO08 26218 0 . 0 . 369. 0 . 311246. A 15 . 10 . 1.25 0.21 0.15 15.8 2.28 165.8 31 10.4 0.70 110 FPBSTH 26218 0 . 0 . 369. 0 . 344 -226. 15 . 15 . 10 . 1.25 0.21 0.22 29.3 4.21 205.0 14 11.6 0.70 125 17 1																						
STMORD 20210 0. 13, 369, 0. 311, -246, A 15, 10, 1,25 0,21 0,15 15,8 2,28 165,0 31 10,4 0,70 110 PFBSTM 20210 0. 0, 350, 0. 324, -226, 15, 15, 21, 221 0,21 0,22 29, 4,21 205,0 14 11,6 0,70 120 PFBSTM 20210 0. 0, 362, 0. 344, -195, 15, 23, 2,12 0,21 0,20 27,8 4,00 240,4 17 10,4 0,70 118 TISIMT 20210 0. 349, 0. 0, -25, 123, 15, 15, 16, 20, 21 0,20 27,8 4,00 240,4 17 10,4 0,70 118 TISIMT 20210 0. 414, 0. 0, -51, 253, 15, 31, 2, 13 0,21 0,33 66,2 9,53 546,1 0 18,0 1,27 127 118 115 20210 0. 0, 349, 0. 324, -226, 15, 15, 15, 26, 7 0,21 0,33 66,2 9,53 546,1 0 18,0 1,27 127 118 118 20210 0. 0, 344, 0. 362, -161, 15, 31, 3,04 0,21 0,33 84,0 12,00 692,8 3 16,4 1,11 121 118 118 20210 0. 374, 0. 0, -51, 123, 15, 15, 15, 16, 0,21 0,16 57, 8, 8,3 327,8 0 19,4 1,11 121 118 118 20210 0. 374, 0. 0, -50, 123, 15, 15, 15, 15, 16, 0,21 0,16 57, 8, 8,3 327,8 0 19,4 1,11 121 118 118 20210 0. 374, 0. 0, -50, 123, 15, 15, 15, 15, 12, 10, 0,21 0,16 57, 8, 8,3 327,8 0 19,4 1,11 121 118 118 20210 0. 376, 0. 0, -376, 324, -250, 15, 15, 15, 2, 30 0,21 0,17 58,8 6,46 531,4 0 19,4 1,11 121 118 20210 0. 376, 0. 0, -376, 324, 123, 15, 15, 15, 10, 0, 21 0, 17, 27, 31 108 696, 1 17, 4 1,19 120 118 20210 0. 376, 0. 0, -376, 324, 123, 15, 15, 10, 0, 21 0, 16 57, 2 2, 47 556, 1 0, 16, 4 1,19 120 118 118 20210 0. 376, 0. 0, -52, 123, 15, 15, 10, 0, 21 0, 16 57, 2 2, 47 556, 1 0, 16, 4 1,19 120 118 118 20210 0. 376, 0. 0, -52, 123, 15, 15, 10, 0, 0, 21 0, 16 57, 2 2, 47 556, 1 0, 16, 4 1,19 120 118 118 20210 0. 376, 0. 0, -52, 123, 15, 15, 10, 0, 0, 0, 0, 0, 18, 0, 0, 114 134 134 134 134 134 134 134 134 134										F												
PEBSIH 20210 0. 0. 950, 0. 924, -226, 15, 15, 2, 21 0, 21 0, 22 29, 9 4, 21 205, 0 14 11, 6 0, 70 125 PEBSIH 20210 0. 0. 9382, 0. 344, -195, 15, 23, 2, 12 0, 21 0, 22 29, 9 4, 21 205, 0 14 11, 6 0, 70 116 TISHIT 20210 0. 349, 0. 025, 123, 15, 15, 1, 69 0, 21 0, 22 42, 6 6, 13 416, 7 0 17, 0 1, 14 130 TISHIT 20210 0. 414, 0. 051, 239, 15, 31, 21, 20, 21 0, 22 42, 6 6, 13 416, 7 0 17, 0 1, 14 130 TISHIT 20210 0. 0, 414, 0. 051, 239, 15, 31, 21, 20, 21 0, 22 50, 9 6, 61 505, 5 4 15, 3 1, 03 125 TISHIT 20210 0. 0, 414, 0. 362, -161, 15, 31, 304 0, 21 0, 22 50, 9 6, 61 505, 5 4 15, 3 1, 03 125 TISHIT 20210 0. 0, 414, 0. 362, -161, 15, 31, 304 0, 21 0, 38 40, 12, 00 692, 8 3 16, 4 1, 11 121 TIBHIS 20210 0. 374, 0. 051, 123, 15, 15, 1, 00 0, 21 0, 16 57, 9 8, 33 527, 8 0 19, 4 1, 13 125 TIBHIS 20210 0. 376, 0. 053, 126, 15, 16, 16, 10, 0, 21 0, 17 56, 8 , 46 531, 4 0 19, 4 1, 31 114 1115 1115 1115 1115 1115 1115 11																			_	•		
Frestri 20218 0. 0. 362. 0. 343195. 15. 23. 2.12 0.21 0.28 27.6 4.00 246.4 17 10.4 0.70 118 1151HT 26210 0. 349. 0. 025. 123. 15. 15. 16. 0.10 0.21 0.22 42.6 6.13 416.7 0 17.0 1.14 130 1151HT 26210 0. 414. 0. 051. 233. 15. 15. 15. 2.13 0.21 0.33 66.2 9.53 546.1 0 18.9 1.27 127 1151HT 26210 0. 0. 414. 0. 362161. 15. 31. 2.13 0.21 0.33 66.2 9.53 546.1 0 18.9 1.27 127 1151HT 26210 0. 0. 0. 349. 0. 324226. 15. 15. 31. 2.13 0.21 0.33 66.2 9.53 546.1 0 18.9 1.27 127 1151HT 26210 0. 0. 0. 414. 0. 362161. 15. 31. 3.04 0.21 0.33 84.0 12.00 692.6 3 16.4 1.11 121 1151 1151 1151 1151 1151 1151			-							••												
TISHIT 26210 0. 349, 0. 025, 128, 15, 15, 1,69 0,21 0,22 42,6 6,13 416,7 0 17,0 1,14 130 1181 1181 1201 0. 414, 0. 051, 233, 15, 31, 2,13 0,21 0,33 66,2 9,53 546,1 0 18,9 1,27 127 1181 11 26210 0. 0. 349, 0. 324, -226, 15, 15, 15, 2,67 0,21 0,32 50,9 0,61 505,5 4 15,3 1,03 125 1181 1181 126210 0. 0. 414, 0. 362, -161, 15, 31, 30,4 0,21 0,39 34, 0 12,00 692,8 3 16,4 1,11 121 1181 120 120 10,00 0,00 0,00 0,00 0,00 0,00																						
TISTRIT 26210 0. 414, 0. 051, 293, 15, 31, 2,13 0,21 0,33 66,2 9,53 546,1 0 18,9 1,27 127 115111 26210 0. 0. 349, 0. 324, -226, 15, 15, 2,67 0,21 0,22 59,9 6,61 566,5 4 15,3 1,03 1,25 115111 26210 0. 0. 414, 0. 362, -161, 15, 31, 3,04 0,21 0,33 84,0 12,00 692,8 3 16,4 1,11 121 121 121 121 121 121 121 121 12							-															
TISTITT 26216 0. 0. 349. 0. 324226. 15. 15. 2. 67 0. 21 0. 22 59. 9 0. 61 565. 4 15. 3 1.03 125 116.116 26216 0. 0. 414. 0. 562. 161. 15. 31. 3. 04. 0. 21 0. 33 64.0 12.00 692.8 3 16.4 1.11 121 116.116 26216 0. 378. 0. 051. 123. 15. 15. 15. 10.0 0. 21 0.16 57. 9 8. 33 527.8 0 19.4 1.31 125 116.116.2 6216 0. 378. 0. 053. 128. 15. 15. 15. 15. 10.0 0.21 0.16 57. 9 8. 33 527.8 0 19.4 1.31 114 121 116.2 6216 0. 0. 374. 0. 324251. 15. 15. 15. 15. 2. 89 0.21 0.16 57. 9 8. 34 527.8 0 19.4 1.31 114 121 116.2 6216 0. 0. 374. 0. 324251. 15. 15. 15. 2. 89 0.21 0.16 75. 3 10.83 686.4 1 17.6 1.19 120 114.83 26216 0. 0. 376. 0. 324251. 15. 15. 15. 2. 89 0.21 0.16 75. 3 10.83 686.4 1 17.6 1.19 120 114.83 26218 376. 0. 0376. 324. 123. 15. 15. 15. 2. 89 0.21 0.16 17.2 2.47 156.1 0 16.9 1.14 134 134 135. 118. 26218 376. 0. 0376. 324. 123. 15. 15. 15. 2. 20 0.21 0.16 17.2 2.40 156.2 0 18.8 1.27 122 131. 18. 26218 511. 0. 0521. 123. 15. 15. 15. 15. 2. 20 0.21 0.16 17.2 2.40 156.2 0 18.8 1.27 122 131. 18. 26210 0. 376. 0. 0182. 123. 15. 15. 15. 10.2 0.21 0.16 17.2 2.40 156.2 0 18.8 1.27 122 131. 18. 26218 51. 0. 0. 376. 0. 0182. 123. 15. 15. 15. 10.2 0.21 0.16 17.2 2.40 156.2 0 14.8 0.97 130 131. 18. 26218 50. 0. 511. 0. 324253. 15. 15. 15. 10.2 0.21 0.16 17.2 2.40 156.2 0 14.8 0.97 130 131. 18. 26218 0. 0. 376. 0. 324253. 15. 15. 15. 2.00 0.21 0.16 33.8 4.87 307.0 11 12.2 0.82 117 18. 18. 18. 18. 18. 18. 18. 18. 18. 18.																			-			
145HF 26210 0. 0. 414, 0. 362, 161, 15, 31, 3,04 0,21 0,33 84,0 12,00 692,8 3 16,4 1,11 121 171 183		• •		,															_			
THIRIS 2621B 0. 374. 0. 051. 123. 15. 15. 1.00 0.21 0.16 57.9 8.33 527.8 0 19.4 1.31 125 THIRISG 2621B 0. 378. 0. 053. 128. 15. 16. 1.80 0.21 0.17 58.8 8.46 531.4 0 19.4 1.31 125 THIRISG 2621B 0. 0. 374. 0. 324251. 15. 15. 2.83 0.21 0.16 75.3 10.83 686.4 1 17.6 1.19 120 11HRSG 2621B 0. 0. 376. 0. 325250. 15. 16. 1.80 0.21 0.17 75.5 10.86 681.9 1 17.4 1.17 110 STIRL 2621B 376. 0. 0376. 324. 123. 15. 15. 1.02 0.21 0.16 17.2 2.47 156.1 0 16.9 1.14 134 STIRL 2621B 511. 0. 0511. 380. 310. 15. 38. 1.13 0.21 0.26 27.6 3.96 183.9 0 18.6 1.27 122 STIRL 2621B 0. 376. 0. 052. 123. 15. 15. 1.02 0.21 0.16 17.2 2.40 156.2 0 18.6 1.27 122 STIRL 2621B 0. 376. 0. 0132. 310. 15. 38. 1.13 0.21 0.26 27.6 3.96 183.9 0 18.6 1.27 122 STIRL 2621B 0. 511. 0. 0132. 310. 15. 38. 1.13 0.21 0.26 27.6 3.97 184.1 3 15.3 1.03 116 STIRL 2621B 0. 0. 376. 0. 324253. 15. 15. 2.00 0.21 0.16 17.2 2.40 156.2 0 18.6 1.27 122 STIRL 2621B 0. 0. 511. 0. 380201. 15. 38. 1.13 0.21 0.26 27.6 3.97 184.1 3 15.3 1.03 116 STIRL 2621B 0. 0. 424. 0. 324253. 15. 15. 2.00 0.21 0.16 33.6 4.87 307.0 11 12.2 0.82 117 STIRL 2621B 0. 0. 424. 0. 324301. A 15. 15. 2.00 0.21 0.16 33.6 4.87 307.0 11 12.2 0.82 117 STIRL 2621B 0. 0. 424. 0. 324301. A 15. 15. 2.00 0.21 0.26 48.9 7.04 326.5 10 12.0 0.81 105 HEGTES 2621B 0. 0. 424. 0. 324301. A 15. 15. 2.20 0.21 0.22 0.28 32.96 344.5 0 32.3 2.18 07 HEGTED 2621B 0. 0. 411. 0. 324204. A 15. 15. 2.20 0.21 0.12 208.3 29.96 344.5 0 32.3 2.18 07 HEGTED 2621B 0. 0. 411. 0. 324204. A 15. 15. 2.70 0.21 0.12 208.3 29.96 344.5 0 32.3 2.18 07 HEGTED 2621B 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.11 51.4 7.39 351.1 5 14.5 0.90 97 FOHICL 2621B 0. 0. 510. 0. 350288. A 15. 6. 2.10 0.21 0.19 42.1 0.03 307.3 5 14.0 0.01 105 HEGTED 2621B 0. 0. 0. 500. 0. 350288. A 15. 6. 2.10 0.21 0.19 42.1 0.09 300.6 8 13.3 0.89 112 FORTICL 2621B 0. 0. 0. 550. 0. 324235. 15. 15. 2.70 0.21 0.20 0.11 51.4 7.39 351.1 5 14.5 0.90 97 FOHICL 2621B 0. 0. 0. 550. 0. 324235. 15. 15. 15. 2.37 0.21 0.19 4																						
TIHRSQ 26216 0. 978, 0. 053, 128, 15, 16, 1,80 0,21 0,17 58,8 8,46 531,4 0 19,4 1,31 114 TIHRSQ 26218 0. 0. 978, 0. 324, -251, 15, 15, 2,83 0,21 0,16 75,3 10,83 696,4 1 17,6 1,19 120 TIHRSQ 26218 36, 0. 0. 378, 0. 325, -250, 15, 16, 2,66 0,21 0,17 75,5 10,86 681,9 1 17,4 1,17 110 STIRL 26218 376, 0. 0376, 324, 123, 15, 15, 1,02 0,21 0,16 77, 5,5 10,86 681,9 1 17,4 1,17 110 STIRL 26218 511, 0. 0, -511, 380, 310, 15, 38, 1,13 0,21 0,26 27,6 3,96 183,9 0 18,8 1,27 122 STIRL 26218 0, 376, 0. 0, -52, 123, 15, 15, 1,02 0,21 0,16 17,2 2,40 156,2 8 14,3 0,97 130 STIRL 26218 0, 511, 0. 0, -132, 310, 15, 38, 1,13 0,21 0,26 27,6 3,97 184,1 3 15,3 1,03 116 STIRL 26218 0, 0. 511, 0. 0, -132, 310, 15, 38, 1,13 0,21 0,26 27,6 3,97 184,1 3 15,3 1,03 116 STIRL 26218 0, 0. 511, 0. 324, -253, 15, 15, 2,00 0,21 0,16 33,8 4,87 307,0 11 12,2 0,82 117 STIRL 26218 0, 0. 511, 0. 380, -201, 15, 38, 2,21 0,21 0,26 48,9 7,04 326,5 10 12,0 0,82 117 STIRL 26218 0, 0. 0, 424, 0, 324, -301, 4 15, 15, 2,32 0,21 0,05 49,2 7,08 395,8 4 15,2 1,02 105 HEGTES 26218 0, 0. 0, 2064, 0. 763, -470, A 15, 194, 792 0,21 0,12 208, 329,96 344,5 0 32,3 2,18 87 HEGTES 26218 0, 0, 0, 417, 0, 324, -294, A 15, 15, 2,27 0,21 0,07 47,3 6,81 307,3 5 14,0 107 HEGTEO 26210 0, 0, 411, 0, 324, -204, A 15, 15, 2,27 0,21 0,07 47,3 6,81 307,3 5 14,0 107 HEGTEO 26210 0, 0, 411, 0, 324, -290, A 15, 15, 2,27 0,21 0,09 44,2 6,35 367,0 6 14,2 0,00 100 HEGTEO 26210 0, 0, 500, 0, 360, 0, 360, -298, A 15, 2,27 0,21 0,10 1,4 2,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3																			-			
THRISG 26216 0. 0. 374. 0. 324251. 15. 15. 2.83 0.21 0.16 75.3 10.83 686.4 1 17.6 1.19 120 11RRS 26218 0. 0. 378. 0. 325250. 15. 16. 2.66 0.21 0.17 75.5 10.86 681.9 1 17.4 1.17 110 STIRL 26218 376. 0. 0376. 324. 123. 15. 15. 1.02 0.21 0.16 17.2 2.47 156.1 0 16.9 1.14 134 STIRL 26218 511. 0. 0511. 380. 310. 15. 38. 1.13 0.21 0.26 27.6 3.96 183.9 0 18.0 1.27 122 STIRL 26218 0. 376. 0. 052. 123. 15. 15. 1.02 0.21 0.16 17.2 2.40 156.2 8 14.3 0.97 130 STIRL 26218 0. 511. 0. 0132. 310. 15. 38. 1.13 0.21 0.26 27.6 3.96 183.9 0 18.0 1.27 122 STIRL 26218 0. 511. 0. 0752. 123. 15. 15. 1.02 0.21 0.16 17.2 2.40 156.2 8 14.3 0.97 130 STIRL 26218 0. 511. 0. 0752. 123. 15. 15. 10.2 0.21 0.16 17.2 2.40 156.2 8 14.3 0.97 130 STIRL 26218 0. 0. 376. 0. 324253. 15. 15. 0.00 0.21 0.16 33.6 4.87 307.0 11 12.2 0.82 117 STIRL 26218 0. 0. 511. 0. 360201. 15. 38. 2.21 0.21 0.16 17.2 2.40 156.2 8 14.3 0.97 130 116 STIRL 26218 0. 0. 511. 0. 360201. 15. 38. 2.21 0.21 0.16 17.2 2.40 156.2 8 14.3 0.97 130 116 STIRL 26218 0. 0. 511. 0. 320201. 15. 38. 2.21 0.21 0.16 33.6 4.87 307.0 11 12.2 0.82 117 STIRL 26218 0. 0. 511. 0. 320201. 15. 38. 2.21 0.21 0.16 48.9 7.04 326.5 10 12.0 0.81 105 HEG163 26210 0. 0. 424. 0. 324301. A 15. 15. 15. 2.32 0.21 0.05 49.2 7.08 395.8 4 15.2 1.02 105 HEG163 26210 0. 0. 424. 0. 324204. A 15. 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 514.0 1.00 107 HEG100 26210 0. 0. 443316. A 15. 64. 3.66 0.21 0.13 93.8 13.49 381.3 0 19.2 1.30 84 HEG100 26210 0. 0. 500. 443316. A 15. 64. 3.66 0.21 0.13 93.8 13.49 381.3 0 19.2 1.30 84 HEG100 26210 0. 0. 560. 0. 350288. A 15. 26. 2.18 0.21 0.00 44.2 6.35 367.0 6 14.2 0.90 100 HEG100 26210 0. 0. 560. 0. 350288. A 15. 26. 2.18 0.21 0.00 44.2 6.35 367.0 6 14.2 0.90 100 HEG100 26210 0. 0. 550. 0. 324239. 15. 15. 46. 331 0.21 0.34 40.1 5.90 390.6 8 13.4 0.91 121 FOSTCL 26210 0. 0. 550. 0. 324235. 15. 15. 0.91 0.21 0.10 1.10 52. 408.3 71.2 7.08 192 12 FOSTCL 26218 0. 0. 575. 0. 0. 575. 0. 0. 524235. 15. 15. 0.91 0.21 0.10 1.1																						
TIHINGS 26216 0. 0. 376. 0. 325250. 15. 16. 2.66 0.21 0.17 75.5 10.66 681.9 1 17.4 1.17 110 STIRL 26210 376. 0. 0376. 324. 123. 15. 15. 1.02 0.21 0.16 17.2 2.47 156.1 0 16.9 1.14 134 STIRL 26210 511. 0. 0511. 380. 310. 15. 38. 1.13 0.21 0.26 27.6 3.96 183.9 0 18.0 1.27 122 STIRL 26210 0. 376. 0. 052. 123. 15. 15. 1.02 0.21 0.16 17.2 2.40 156.2 8 14.3 0.97 130 STIRL 26210 0. 511. 0. 0132. 310. 15. 38. 1.13 0.21 0.26 27.6 3.96 183.9 0 18.0 1.27 122 STIRL 26218 0. 511. 0. 0132. 310. 15. 38. 1.13 0.21 0.26 27.6 3.97 184.1 3 15.3 1.03 116 STIRL 26218 0. 0. 376. 0. 324253. 15. 15. 2.00 0.21 0.16 17.2 2.40 156.2 8 14.3 0.97 130 STIRL 26218 0. 0. 511. 0. 380201. 15. 38. 2.1 0.21 0.26 48.9 7.04 326.5 10 12.0 0.81 105 HEGTOS 26210 0. 0. 424. 0. 324301. A 15. 15. 2.32 0.21 0.05 49.2 7.08 395.8 4 15.2 1.02 105 HEGTOS 26210 0. 0. 2064. 0. 763470. A 15. 194. 7.92 0.21 0.05 49.2 7.08 395.8 4 15.2 1.02 105 HEGTOS 26210 0. 0. 417. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGTOS 26210 0. 0. 411. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGTOS 26210 0. 0. 411. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGTOS 26210 0. 0. 411. 0. 324294. A 15. 15. 2.6 2.10 0.00 44.2 6.35 367.0 6 14.2 0.90 107 HEGTOS 26210 0. 0. 362. 0. 324293. 15. 15. 2.6 2.10 1.00 44.2 6.35 367.0 6 14.2 0.90 107 HEGTOS 26210 0. 0. 362. 0. 324293. 15. 15. 2.6 2.10 1.00 44.2 6.35 367.0 6 14.2 0.90 107 HEGTOS 26210 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.00 44.2 6.35 367.0 6 14.2 0.90 107 FCHICL 26210 0. 0. 500. 0. 362. 0. 324235. 15. 15. 2.37 0.21 0.10 51.4 7.39 351.1 5 14.5 0.90 97 FCHICL 26210 0. 0. 550. 0. 324235. 15. 15. 2.37 0.21 0.10 54. 7.39 351.1 5 14.5 0.90 97 FCHICL 26210 0. 0. 550. 0. 324235. 15. 15. 2.37 0.21 0.10 5.00 40.3 50. 90. 90. 6 8 13.4 0.91 121 0.60 13.0 40 110 107 10.0 107 10.0 107 10.0 10.0 10																			ĭ			
STIRL 26216 511. 0. 0376. 324. 123. 15. 15. 1.02 0.21 0.16 17.2 2.47 156.1 0 16.9 1.14 194 194 195 195 195 195 195 195 195 195 195 195																			- i -			
STIRL 26216 0. 376. 0511. 380. 310. 15. 38. 1.13 0.21 0.26 27.6 3.96 183.9 0 18.8 1.27 122 13.1																			-			
STIRL 26216 0, 376, 0, 0, -52, 123, 15, 15, 1,02 0,21 0,16 17,2 2,40 156,2 8 14.8 0,97 130 STIRL 26218 0, 0, 376, 0, 324, -253, 15, 15, 2,00 0,21 0,16 33,8 4,87 307,0 11 12.2 0,82 117 STIRL 26218 0, 0, 511, 0, 380, -201, 15, 15, 2,00 0,21 0,16 33,8 4,87 307,0 11 12.2 0,82 117 STIRL 26218 0, 0, 511, 0, 380, -201, 15, 38, 2,21 0,21 0,26 48,9 7,04 326,5 10 12.0 0,81 105 146,60 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,9															2.0							
STIRL 26218 0. 511. 0. 0132. 310. 15. 38. 1.13 0.21 0.26 27.6 3.97 184.1 3 15.3 1.03 116 STIRL 26218 0. 0. 376. 0. 324253. 15. 15. 2.00 0.21 0.16 33.8 4.87 307.0 11 12.2 0.82 117 STIRL 26218 0. 0. 511. 0. 380201. 15. 38. 2.21 0.21 0.26 48.9 7.04 326.5 10 12.0 0.81 105 HEGT05 26210 0. 0. 424. 0. 324301. A 15. 15. 2.32 0.21 0.05 49.2 7.08 395.8 4 15.2 1.02 105 HEGT65 26218 0. 0. 0. 417. 0. 324294. A 15. 194. 7.92 0.21 0.12 208.3 29.96 344.5 0 32.3 2.18 87 HEGT60 26218 0. 0. 0. 417. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGT00 26210 0. 0. 040. 0. 443316. A 15. 64. 3.66 0.21 0.13 93.8 13.49 381.3 0 19.2 1.30 84 HEGT00 26218 0. 0. 0. 411. 0. 324290. A 15. 15. 2.27 0.21 0.03 93.8 13.49 381.3 0 19.2 1.30 84 HEGT00 26210 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCHICCL 26210 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.11 51.4 7.39 351.1 5 14.5 0.90 97 FCHICCL 26210 0. 0. 515. 0. 400138. 15. 46. 3.31 0.21 0.34 61.1 8.79 404.7 7 13.2 0.09 110 FCSTCL 26218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.30 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.30 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.40 73.1 10.52 408.3 7 12.7 0.85 105 105 105 105 105 105 105 105 105 10				-															_			
STIRL 26218 0. 0. 376. 0. 324253. 15. 15. 2.00 0.21 0.16 33.8 4.87 307.0 11 12.2 0.82 117 STIRL 26218 0. 0. 511. 0. 380201. 15. 38. 2.21 0.21 0.26 48.9 7.04 326.5 10 12.0 0.81 105 HEGT65 26210 0. 0. 424. 0. 324301. A 15. 15. 2.32 0.21 0.05 49.2 7.08 395.8 4 15.2 1.02 105 HEGT66 26210 0. 0. 2064. 0. 763470. A 15. 194. 7.92 0.21 0.12 208.3 29.96 344.5 0 32.3 2.18 87 HEGT60 26210 0. 0. 417. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGT60 26210 0. 0. 0. 441. 0. 324290. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGT60 26210 0. 0. 0. 441. 0. 324290. A 15. 15. 2.27 0.21 0.03 93.8 13.49 381.3 0 19.2 1.30 84 HEGT60 26210 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.13 93.8 13.49 381.3 0 19.2 1.30 84 HEGT60 26210 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.11 51.4 7.39 351.1 5 14.5 0.98 97 FCHCLC 26210 0. 0. 362. 0. 324293. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCHCC 26210 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCSTCL 26210 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.10 40.7 3.1 10.52 408.3 7 13.2 0.89 110 FCSTCL 26218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 377. 0. 324235. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.28 57.3 8.24 343.3 8 12.4 0.91 17 16GTST 26218 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.28 57.3 8.24 343.3 8 12.4 0.94 132 GTSOAR 26218 0. 375. 0. 052. 123. 15. 15. 49. 0.94 0.21 0.29 2.0 3.17 130.7 8 14.3 0.96 115 GTSOAR 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 375. 0. 055. 123. 15. 15. 0.91 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 375. 0. 055. 123. 15. 15. 0.91 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 375. 0. 055. 123. 15. 15. 0.91 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 375. 0. 055. 123. 15. 15. 0.91 0.21 0.18 13.9 1.99																						
STIRL 26218 0. 0. 511. 0. 380, -201. 15, 38. 2.21 0.21 0.26 48.9 7.04 326.5 10 12.0 0.81 105 HEGT05 26210 0. 0. 424. 0. 324301. A 15. 15. 2.32 0.21 0.05 49.2 7.08 395.8 4 15.2 1.02 105 HEGT05 26210 0. 0. 264. 0. 763470. A 15. 15. 194. 7.92 0.21 0.12 208.3 29.96 344.5 0 32.3 2.18 87 HEGT06 26218 0. 0. 417. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 11.016 26210 0. 0. 0.40. 0. 443316. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 11.016 26210 0. 0. 0.411. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 11.016 26210 0. 0. 0. 411. 0. 324200. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 11.016 26210 0. 0. 0. 411. 0. 324200. A 15. 15. 2.16 0.21 0.08 44.2 6.35 367.0 6 14.2 0.98 100 11.016																			-			
HEGTIGS 26218 0. 0. 424. 0. 324301. A 15. 15. 2.32 0.21 0.05 49.2 7.08 395.8 4 15.2 1.02 105 HEGTIGS 26218 0. 0. 2064. 0. 763470. A 15. 194. 7.92 0.21 0.12 208.3 29.96 344.5 0 32.3 2.18 87 HEGTIGO 26218 0. 0. 417. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGTIGO 26210 0. 0. 0. 410. 0. 443316. A 15. 64. 3.66 0.21 0.13 93.8 13.49 381.3 0 19.2 1.30 84 HEGTIGO 26210 0. 0. 411. 0. 324290. A 15. 15. 2.27 0.21 0.00 44.2 6.35 367.0 6 14.2 0.96 100 HEGTIGO 26210 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.10 15.4 7.39 351.1 5 14.5 0.90 97 FCHICCL 26210 0. 0. 362. 0. 324239. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCHICCL 26210 0. 0. 515. 0. 400138. 15. 46. 3.31 0.21 0.34 61.1 8.79 404.7 7 13.2 0.69 110 FCISTICL 26218 0. 0. 377. 0. 324235. 15. 15. 2.37 0.21 0.40 73.1 10.52 408.3 7 12.7 0.85 105 106 15 12 26218 0. 0. 377. 0. 324254. 15. 15. 2.37 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 112 FGISCAR 26218 0. 375. 0. 402184. 15. 47. 2.17 0.21 0.26 57.3 8.24 343.3 8 12.4 0.94 132 GTACOR 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTACOR 26218 0. 362. 0. 055. 308. 15. 49. 0.94 0.21 0.19 13.9 1.99 130.6 18 13.4 0.99 136 GTACOR 26218 0. 363. 0. 039. 123. 15. 15. 0.89 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOR 26218 0. 363. 0. 039. 123. 15. 15. 0.89 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOR 26218 0. 363. 0. 039. 123. 15. 15. 0.89 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOR 26218 0. 363. 0. 039. 123. 15. 15. 0.89 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOR 26218 0. 363. 0. 039. 123. 15. 15. 0.89 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOR 26218 0. 363. 0. 039. 123. 15. 15. 0.89 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOR 26218 0. 363. 0. 044. 123. 15. 15. 0.89 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOR 26218 0. 365. 0. 041. 123. 15. 15. 0.99 0.21 0.18 14.6 2.91 131.2 15 12.9 0.87 120 GTACOR 26218 0. 365. 0. 041. 123. 15. 15. 0.99 0.21 0.18 14.6																						
HEGTES 26218 0. 0. 2064. 0. 763470. A 15. 194. 7.92 0.21 0.12 208.3 29.96 344.5 0 32.3 2.18 87 HEGTES 26218 0. 0. 417. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGTES 26218 0. 0. 0. 411. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGTES 26218 0. 0. 0. 411. 0. 324290. A 15. 15. 2.16 0.21 0.13 93.8 13.49 381.3 0 19.2 1.30 84 HEGTES 26218 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.10 44.2 6.35 367.0 6 14.2 0.90 100 HEGTES 26218 0. 0. 362. 0. 324239. 15. 15. 2.37 0.21 0.10 15.4 7.39 351.1 5 14.5 0.90 97 FCHICCL 26210 0. 0. 362. 0. 324239. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCHICCL 26218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.34 61.1 8.79 404.7 7 13.2 0.89 110 FCSTCL 26218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 611. 0. 45452. 15. 68. 4.01 0.21 0.40 73.1 10.52 408.3 7 12.7 0.85 105 IGGTST 26218 0. 0. 377. 0. 324254. 15. 15. 2.11 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 IGGTST 26218 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.28 57.3 8.24 343.3 8 12.4 0.84 101 GTSOAR 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTACOS 26218 0. 362. 0. 058. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.96 115 GTACOS 26218 0. 362. 0. 095. 308. 15. 38. 0.79 0.21 0.31 17.1 2.46 122.9 18 12.7 0.66 125 GTACOS 26218 0. 363. 0. 095. 308. 15. 38. 0.79 0.21 0.31 17.1 2.46 122.9 18 12.7 0.66 125 GTACOS 26218 0. 363. 0. 095. 308. 15. 38. 0.79 0.21 0.31 17.1 2.46 122.9 18 12.7 0.66 125 GTACOS 26218 0. 365. 0. 0123. 386. 15. 47. 0.88 0.21 0.33 20.2 2.91 131.2 15 12.9 0.87 120 GTACOS 26218 0. 365. 0. 0123. 386. 15. 47. 0.88 0.21 0.33 20.2 2.91 131.2 15 12.9 0.87 120 GTACOS 26218 0. 365. 0. 0123. 386. 15. 47. 0.88 0.21 0.33 20.2 2.91 131.2 15 12.9 0.87 120										Δ												
HEGTGO 26218 0. 0. 417. 0. 324294. A 15. 15. 2.27 0.21 0.07 47.3 6.81 307.3 5 14.0 1.00 107 HEGTGO 26218 0. 0. 040. 0. 443316. A 15. 64. 3.66 0.21 0.13 93.8 13.49 381.3 0 19.2 1.30 84 HEGTGO 26210 0. 0. 040. 0. 443200. A 15. 15. 2.16 0.21 0.08 44.2 6.35 367.0 6 14.2 0.96 100 HEGTGO 26210 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.11 51.4 7.39 351.1 5 14.5 0.90 97 FCHCCL 26210 0. 0. 362. 0. 324239. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCHCCL 26210 0. 0. 359. 0. 324239. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCSTCL 26218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 377. 0. 324255. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.18 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.18 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTSACR 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTSACR 26218 0. 363. 0. 052. 123. 15. 15. 0.91 0.21 0.19 13.9 1.99 130.7 8 14.3 0.96 115 GTACOS 26218 0. 363. 0. 038. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.7 8 14.3 0.96 115 GTACOS 26218 0. 363. 0. 039. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTACOS 26218 0. 363. 0. 039. 123. 15. 15. 0.80 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTACOS 26218 0. 363. 0. 039. 123. 15. 15. 0.88 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 135 GTACOS 26218 0. 363. 0. 039. 123. 15. 15. 0.88 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOS 26218 0. 363. 0. 039. 123. 15. 15. 0.88 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 136 GTACOS 26218 0. 363. 0. 041. 123. 15. 15. 0.88 0.21 0.18 14.6 2.10 136.4 15 13.6 0.91 134																						
HEOTICO 20210 O. O. 040. O. 443. -316. A 15. 64. 3.66 O.21 O.13 93.8 13.49 381.3 O 19.2 1.30 84 HEOTICO 20210 O. O. 411. O. 324. -200. A 15. 2.18 O.21 O.08 44.2 6.35 367.0 6 14.2 O.96 100 O O. FOR INCOME O. O. O. 500. O. 350. -288. A 15. 26. 2.18 O.21 O.11 51.4 7.39 351.1 5 14.5 O.90 97 O. O. O. O. O. O. 362. O. O. 362. O. 324. -239. O. O. O. O. O. O. O.																						
HEGTOO 26218																						
HEGIO 26210 0. 0. 500. 0. 350288. A 15. 26. 2.18 0.21 0.11 51.4 7.39 351.1 5 14.5 0.98 97 FCHCCL 26210 0. 0. 362. 0. 324239. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCHCCL 26210 0. 0. 515. 0. 400138. 15. 46. 3.31 0.21 0.34 61.1 8.79 404.7 7 13.2 0.89 110 FCSTCL 25218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 611. 0. 45452. 15. 68. 4.01 0.21 0.40 73.1 10.52 408.3 7 12.7 0.85 105 166TST 26218 0. 0. 377. 0. 324254. 15. 15. 2.11 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.28 57.3 8.24 343.3 8 12.4 0.84 101 6TSUAR 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTSUAR 26218 0. 575. 0. 0160. 402. 15. 49. 0.94 0.21 0.29 22.0 3.17 130.7 8 14.3 0.96 115 GTAC08 26218 0. 362. 0. 038. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTAC12 26218 0. 363. 0. 039. 123. 15. 15. 0.99 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTAC12 26218 0. 363. 0. 039. 123. 15. 15. 0.98 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 135 GTAC12 26218 0. 365. 0. 0123. 386. 15. 47. 0.88 0.21 0.33 20.2 2.91 131.2 15 12.9 0.87 120 GTAC16 26218 0. 365. 0. 041. 123. 15. 15. 0.89 0.21 0.18 14.6 2.10 136.4 15 13.6 0.91 134	HEOTO	0 26218			0.							-										
FCHICL 26210 0. 0, 362. 0. 324239. 15. 15. 2.37 0.21 0.19 42.1 6.05 396.9 8 13.4 0.91 121 FCHICL 26210 0. 0, 515. 0. 400138. 15. 46. 3.31 0.21 0.34 61.1 8.79 404.7 7 13.2 0.89 110 FCSTCL 26218 0. 0, 359. 0. 324235. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0, 611. 0. 45452. 15. 68. 4.01 0.21 0.40 73.1 10.52 408.3 7 12.7 0.85 105 166TST 26218 0. 0, 377. 0. 324254. 15. 15. 2.11 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 166TST 26218 0. 0, 570. 0. 402184. 15. 47. 2.17 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 166TST 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 0150AR 26218 0. 375. 0. 0168. 402. 15. 49. 0.94 0.21 0.29 22.0 3.17 130.7 8 14.3 0.96 115 0150AR 26218 0. 362. 0. 038. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 0150AR 26218 0. 362. 0. 038. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 0150AR 26218 0. 363. 0. 095. 308. 15. 38. 0.79 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 0150AR 26218 0. 363. 0. 039. 123. 15. 15. 0.88 0.21 0.19 14.1 2.03 132.7 17 135. 0.91 135 0150AR 26218 0. 363. 0. 039. 123. 15. 15. 0.88 0.21 0.19 14.1 2.03 132.7 17 135. 0.91 135 0150AR 26218 0. 363. 0. 0123. 386. 15. 47. 0.88 0.21 0.19 14.6 2.10 136.4 15 13.6 0.91 134	HEGIC	00 26218) ().			0.															
FCMCCL 26210 0. 0, 515. 0. 400138. 15. 46. 3.31 0.21 0.34 61.1 8.79 404.7 7 13.2 0.89 110 FCSTCL 25218 0. 0, 359. 0. 324235. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 611. 0. 45452. 15. 68. 4.01 0.21 0.40 73.1 10.52 408.3 7 12.7 0.85 105 106 107 100 100 100 100 100 100 100 100 100										••												
FCSTCL 25218 0. 0. 359. 0. 324235. 15. 15. 2.37 0.21 0.20 41.0 5.90 390.6 8 13.3 0.89 122 FCSTCL 26218 0. 0. 611. 0. 45452. 15. 68. 4.01 0.21 0.40 73.1 10.52 408.3 7 12.7 0.85 105 16GTST 26218 0. 0. 377. 0. 324254. 15. 15. 2.11 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.28 57.3 8.24 343.3 8 12.4 0.84 101 GTSOAR 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTSOAR 26218 0. 575. 0. 0168. 402. 15. 49. 0.94 0.21 0.29 22.0 3.17 130.7 8 14.3 0.96 115 GTACOS 26218 0. 362. 0. 038. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTACOS 26218 0. 474. 0. 095. 308. 15. 38. 0.79 0.21 0.19 13.9 1.99 130.6 18 12.7 0.66 125 GTAC12 26218 0. 363. 0. 039. 123. 15. 15. 0.89 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 135 GTAC12 26218 0. 365. 0. 041. 123. 15. 15. 0.89 0.21 0.18 14.6 2.10 136.4 15 13.6 0.91 134							o.															
FCSTCL 26218 0. 0. 611. 0. 45452. 15. 68. 4.01 0.21 0.40 73.1 10.52 408.3 7 12.7 0.85 105 166TST 26218 0. 0. 377. 0. 324254. 15. 15. 2.11 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 16GTST 26218 0. 0. 570. 0. 402184. 15. 47. 2.17 0.21 0.28 57.3 8.24 343.3 8 12.4 0.84 101 GTSOAR 26218 0. 375. 0. 052. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTSUAR 26218 0. 575. 0. 0168. 402. 15. 49. 0.94 0.21 0.29 22.0 3.17 130.7 8 14.3 0.96 115 GTAC08 26218 0. 362. 0. 038. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTAC08 26218 0. 474. 0. 095. 308. 15. 38. 0.79 0.21 0.19 13.9 1.99 130.6 18 12.7 0.86 125 GTAC12 26218 0. 363. 0. 039. 123. 15. 15. 0.80 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 135 GTAC12 26218 0. 365. 0. 0123. 386. 15. 47. 0.88 0.21 0.33 20.2 2.91 131.2 15 12.9 0.87 120 GTAC16 26218 0. 365. 0. 041. 123. 15. 15. 0.89 0.21 0.18 14.6 2.10 136.4 15 13.6 0.91 134).	o.		o.								•				•		- • •	
IGGTST 26218 0. 0. 377. 0. 324. -254. 15. 15. 2.11 0.21 0.16 40.4 5.81 365.7 8 13.3 0.89 117 IGGTST 26218 0. 0. 570. 0. 402. -184. 15. 47. 2.17 0.21 0.28 57.3 8.24 343.3 8 12.4 0.84 101 GTSUAR 26218 0. 375. 0. 0. -52. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTSUAR 26218 0. 575. 0. 0. -168. 402. 15. 49. 0.94 0.21 0.29 22.0 3.17 130.7 8 14.3 0.96 115 GTAC08 26218 0. 362. 0. 0. -38. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTAC12 26218 0.).			0.															
IGGTST 26218 0. 0. 570. 0. 402. -184. 15. 47. 2.17 0.21 0.28 57.3 8.24 343.3 8 12.4 0.84 101 GTSUAR 26218 0. 375. 0. 0. -52. 123. 15. 15. 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 GTSUAR 26218 0. 575. 0. 0. -168. 402. 15. 49. 0.94 0.21 0.29 22.0 3.17 130.7 8 14.3 0.96 115 GTAC08 26218 0. 362. 0. 0. -38. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTAC08 26218 0. 474. 0. 0. -95. 308. 15. 38. 0.79 0.21 0.31 17.1 2.46 122.9 18 12.7 0.66 125 GTAC12 26218 0.				1	- •																	
GTSUAR 26218 0. 375. 0. 052, 123. 15, 15, 0.91 0.21 0.16 15.1 2.17 137.0 12 14.0 0.94 132 0.50 0. 575. 0. 0168. 402. 15. 49. 0.94 0.21 0.29 22.0 3.17 130.7 8 14.3 0.96 115 0.00 26218 0. 362. 0. 038. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 0.00 038. 123. 15. 15. 38. 0.79 0.21 0.31 17.1 2.46 122.9 18 12.7 0.86 125 0.00 039. 123. 15. 15. 0.88 0.21 0.31 17.1 2.46 122.9 18 12.7 0.86 125 0.00 039. 123. 15. 15. 0.88 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 135 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.							- •					-							_			
GISUAR 26218 0. 575. 0. 0. -168. 402. 15. 49. 0.94 0.21 0.29 22.0 3.17 130.7 8 14.3 0.96 115 GTAC08 26218 0. 362. 0. 0. -38. 123. 15. 15. 0.87 0.21 0.19 13.9 1.99 130.6 18 13.4 0.90 136 GTAC08 26218 0. 474. 0. 0. -95. 308. 15. 38. 0.79 0.21 0.31 17.1 2.46 122.9 18 12.7 0.86 125 GTAC12 26218 0. 363. 0. 0. -39. 123. 15. 15. 0.88 0.21 0.19 14.1 2.03 132.7 17 13.5 0.91 135 GTAC12 26218 0. 0. 0. -123. 386. 15. 47. 0.88 0.21 0.33 20.2 2.91 131.2 15 12.9 0.87 120 GTAC16 26218 0. 365					- •		- •						• · ·						_			
GTACOS 26218																						
GTACO8 26218					- •												• -		-			
GTAC12 26218																						
GTAC12 26218								-														
GTAC16 26218 0. 365. 0. 041. 123. 15. 15. 0.89 0.21 0.18 14.6 2.10 136.4 15 13.6 0.91 134																						
and the control of th							• •															
													-									
							•					~~.		J,	~ 1 ~ 1			•				

DATE OS/OS/70 L&SE-PEG-ADV-DES-ENGR

			ENERAT				- COGEN**		COGEN	M&D	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WE	RTH
ecs	PROCS	DISTIL				RESIDL		REGD MW	POWER	OGIT	/HEAT	. LOK	COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
TWC	6 26218	0.	372.	0.	Ō.	-48.	123.	15.	15.	0.90	0.21	0.17	14.8	2.13	135.6	13	13.8	0.93	133
TWC1	6 26218	0.	603,	o.	o.	-179.	457.	15.	56.	0.96	0.21	0.32	22.6	3.25	127.9	.9	13.9	0.93	
	6 26218		373.	Ö.	Ŏ.	-49.	123.	15.	15.	1.00	0.21	0.16	14.9	2.14	136.2	12	14.0	0.94	
	6 26216		781.	Ŏ.	Ŏ.	-283.	705.	15.	86.	1.31	0.21	0.35	29.9	4.31	130.8	5	14.7	0.99	
	2 26218		370.	Ö.	0.	-46.	123.	15.	15.	0.99	0.21	0.17	14.7	2.11	135.4	13	13.9	0.93	
	2 26218		712.	o.	a.	-236.	634.	15,	77.	1.27	0.21	0.36	29.5	4.24	141.2	Ť	14.2	0.95	
	2 26218		369.	o.	o.	-45.	123.	15.	15.	0.98	0.21	0.17	14.3	2.06	132.2	14	13.8	0.93	
	2 26218		706.	o.	o.	-231.	631.	15.	77.	1.25	0.21	0.36	27.9	4.02	134.9	8	13.9	0.93	
	2 26218		363.	0.	Ō,	-40.	123.	15.	15.	0.98	0.21	0.19	14.4	2.07	134.9	15	13.6	0.92	
	2 26218		597.	0.	o.	-160.	500.	15.	61.	1.10	0.21	0,36	23.3	3.36	133.5	12	13.0		
	5 26218		419.	o.	0.	-95.	123.	15.	15.	1.04	0.21	0.06	14.9	2.14	121.2	0		1.04	
	5 26218		18769.	ō.		-13342.	17207.	15.	2096.	32.03	0.21	0.17		74.89	94.7	ŏ		17.30	
STIGI	0 26218	0.	407.	0.	0.	-84.	123.	15.	15.	0.98	0.21	0.09	14.3	2.06	120.0	4	14.9		125
STIGI	0 26218	0.	1842.	0.	0.	-1079.	1591.	15.	194.	3.07	0.21	0.22	55.3	7.96	102.5	Ó	30.5		
STIGI	S 26218	0.	402.	0.	0.	-78.	123.	15.	15.	0.98	0.21	0.10	14.1	2.03	119.7	6	14.8		
STIGI	\$ 26218	0.	1157.	o.	0.	-592.	934.	15.	114.	2.12	0.21	0.23	37.3	5.36	109.9	Q	22.3		95
DEADV	3 26218	0,	392.	O.	o.	-68.	123.	15.	15.	1.11	0.21	0.12	21.1	3.04	184.1	2	15.3	1.03 1	
DEADV	3 26218	0.	1190.	ο.	0.	-586.	1063.	15.	129.	2.74	0.21	0.29		•	245.0	ō	25.9	1.75 1	
DEHTP	11 26218	0.	365.	o.	o.	-41.	123.	15.	15.	1.10	0.21	0.18	19.0		177.9	9	14.2		
DEHTP	M 26210	0.	569,	0.	0.	-149.	448.	15.	55.	1.61	0.21	0.34	42.8		256.7	2	15.9	1.07 1	
DESCIA	3 26218	400.	0.	0.	-400.	324.	123.	15.	15.	1.11	0.21	0.10	20.9	3.00	177.9	0	18.3	1.23 1	126
DESOA	3 26218	1427.	0.	0.	-1427.	657.	1240.	15.	151.	3.71	0.21	0.25	123.0	17.68	294.1	0	43.8	2.95 1	124
DESOA	3 26218	0.	400.	Ο.	Ο.	-76.	123.	15.	15.	1.11	0.21	0.10	20.9		177.9	Ö	15.5	1.05 1	
DESCA	3 26216	0.	1427.	0.	0.	-770.	1240.	15.	151.	3.71	0.21	0.25	123.0	17.68	294.1	_0	33.9	2.28 1	107
3TSUA	D 26218		0.	0.	-367.	324.	123,	15.	15.	0.87	0.21	0.18	13.5	1.94	125.1	0	16.0	1.08 1	139
	D 26218		0.	0.	-530.	398.	372.	15.	45.	0.82	0.21	0.31	17.9	2.58	115.4	0	16,7	1.12 1	127
	0 20210		0.	0.	-374.	324.	123.	15.	15.	0.92	0.21	0.16	15.5	2.24	142.0	0	16.6	1.12 1	136
	8 26218		0.	0.	-726.	473.	623,	15.	76.	1.22	0.21	0.34	32.2	4.63	151.3	_0	20.0	1 <u>.</u> 35_1	114
	2 26218		0.	0.	-372.	324.	123.	15.	15.	0.92	0.21	0.17	15.6	2.24	143.3	0	16.5	1.11 1	136
	2 26210		0.	0.	-705.	468.	607.	15.	74.	1.17	0.21	0.34	30.4	4.38	147.4	0	19.4	1.30 1	115
	6 26218		Ο.	0.	-371.	324.	123.	15.	15.	0.93	0.21	0.17	16.1	2.31	148.0	0		1.11 1	
	6 26218		0.	0.	-673.	456,	565.	15.	69.	1.17	0.21	0.34	30.6	4.40	155.0	0	19.2	1.29 1	116
	8 26218		0.	Ο.	-371.	324.	123.	15.	15.	0.90	0.21	0.17	14.9	2.14	136.8	0	16.4	1.10 1	137
	8 26218		0,	0.	-607.	427.	467.	15.	57.	0.99	0.21	0.32	23.8	3.43	134.0	0	18.1	1.22 1	120
	2 26218		0.	0,	-372.	324.	123.	15.	15.	0.91	0.21	0.17	15.2		139.8	0	16.4	1.11	
	2 26218		<u> </u>	0.	-631.	437.	501.	<u>15.</u>	61.	1.04	0.21	0.33	25.7		139.2	0_	18.5	1.24 1	
	6 20216		Ü,	0.	-370.	324.	123.	15.	15.	0.92	0.21	0.17	15.6	2.24	143.4	Ō	16.4	1.11 1	
	6 26218		0.	0.	-634.	441.	514.	15.	63.	1.09	0.21	0.34	27.5	3.96	148.1	0	18.5	1.25 1	
	8 26218		0.	0.	-385.	324.	123.	15.	15.	0.92	0.21	0.14	15.6	2.24	138.2	0	17.0	1.15 1	
	8 26218		0.	<u> </u>	-830.	509.	743.	<u> 15.</u>	90.	1.25	0.21	0.30	32.1		124.7	0	23.0	1.55 1	
	2 26218		o.	0.	-381.	324.	123.	15.	15.	0.92	0.21	0.15	15.6		139,7	0	16.8	1.13 1	
	2 26218		0,	0.	-861.	512.	754.	15.	92.	1.25	0.21	0.32	32.3		128.2	0	22.0	1.48 1	
	6 26218		0.	0.	-380.	324.	123.	15.	15.	0.93	0.21	0.15	16.0		143,4	0	16,8	1,13 1	
211(1)	6 26210	812.	0,	0.	-812.	495,	697.	<u> 15.</u>	85.	1.23	0.21	0.32	32.0	4.60	134.4	0_	21.5	<u>1,44 1</u>	112

DATE 06/08/7. LASE-PEO-ADV-DES-ENGR

				FUEL US	E IN BT	U×10××6-													
		C	DGENERAT	ION CAS	E **N	acagen -	COGEN**	POWER	COGEN	MSD	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WR	HTS
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
100		<u> </u>						MW	MM		RATIO		*10**6			(%)			
G1R306	26218	390	. 0.	0.	•	324.	123.	15.	15.	0.91	0.21	0.13	15.0	2.16	131.4	0	17.1	1.15 1	33
GTR308	26218	3 761	, о.	Ο.	-761.	457.	567.	15.	69.	1.08	0.21	0.26	26.4	3.79	118.3	0	21.9	1.47 1	12
GTR312	26218	3 378	, о.	0.	-378.	324.	123.	15.	15.	0.91	0.21	0.15	15.1	2.17	135.8	0	16.7	1.12 1	35
GTR312	26210	736	. 0.	0.	-736.	468,	606.	15,	74.	1.10	0.21	0.31	27.0	3,89	125.4	0	20.1	1.36 1	14
GTR316	26218	379	. 0.	0.	-379.	324.	123.	15.	15.	0.92	0.21	0.15	15.5	2.22	139.4	0	16.7	1.13 1	35
GTR316	26218	3 731	. О.	0.	-731.	465.	596.	15.	73.	1.12	0.21	0.31	27.9	4.01	130.3	0	20.3	1.37 1	114
FCPADS	26218	395	0.	0.	-395.	324.	123.	15.	15.	2.26	0.21	0.12	17.6	2.52	151.7	0	18.9	1.27 1	32
FCPADS	26218	1435	. 0.	0.	-1435.	679.	1312.	15.	160,	17.50	0.21	0.28	93.0	13,37	221.0	0	53.0	3.57 1	44
FCMCDS	26210	377	. 0.	0.	-377.	324.	123.	15.	15,	2.16	0.21	0.16	18.1	2.60	163.9	0	18.2	1.23 1	35
FCMCDS	26218	3 1047	. 0.	0.	-1047.	597.	1038.	15.	126.	13.12	0.21	0.36	80.0	11.51	260.8	0	39.2	2.64 1	34

DATE 06/06/75 LESE-PEG-ADV-DES-ENGR

		※ ※ ひびい	EMERAT	ION CASE	FAR REM	COREN	- CORENA	KS PC	TUFP	COREN	M&D	POWER	FFSD	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH
ECS	PDACS I	DISTIL R			DISTIL					POWER	OGIT	/HEAT	FESK	COST	COST	EGAL	KUI	CHRG	ENRG
.00	111000	oronic it	COIDE	OUAL	DISTIL	KEUIDE	COAL		MW	MW		RATIO		*10**6	CO31	EGAL	(%)	CHIC	EIIIIG
NOCGN	29001	0.	1374.	267.	0.	0.	ō.	<u>'</u>	33.	- ''''	1.35	0.10	0.	33.7	1.00	8.68	0	57.1	1.00 80
STM141		o.	1425,	0.	o.	-51.	267.		33.	33.	1.92	0.10	0.13	38,4	1.14	92.0	54	51.5	0.90 141
STM141	28001	o.	1529,	ο.	ຽ.	-91.	480.		33.	58.	1.66	0.10	0.20	39.8	1.18	88.9	58	49.4	0.87 133
STM141	28001	Ο,	0.	1425.	0.	1374.	-1158.	F	33.	33,	4.40	0.10	0.13	77.7	2.31	186.1	27	39.2	0.69 120
TM141	28001	0.	0.	1529.	0.		-1049.		33,	58.	4.00		0.20	76.0	2.26	169.7	32	35.3	0.62 113
STM141	28001	0.	0.	1425.	ο.		-1158.		33.	33.	4.17	0.10	0.13	62.9	1.87	150.6	39	37.3	0.65 124
STM14!	26001	Ο.	ο.	1529.	Ο.	1438.	-1049.	A	33.	58.	3.88	0.10	0.20	58.1	1.72	129.6	51	33.2	0.59 118
880MT	28001	Ο.	1425.	Ο.	0.	-51,	267.		33.	33.	1.84	0.10	0.13	36.8	1.09	88.1	75	51.2	0.90 142
BOOMTE	28001	0.	1458.	O,	0.	-64.	335.		33.	41.	1.56	0.10	0,16	36.2	î.08	84.8	99	50.3	0.88 134
880MT	28001	Ο.	0.	1425.	0.	1374.	-1158.	F	33.	33.	4.27	0.10	0.13	76.6	2.28	183.6	27	38.9	0.68 121
380MT	26001	Ο.	0.	1458.	0.	1394.	-1123.	F	33.	41.	3.72	0.10	0.16	71.1	2.11	166.5	33	36.7	0.64 113
88011T	28001	0.	0.	1425.	0,	1374.	-1158.	Α	33.	33.	4.12	0.10	0.13	58,9	1.75	141.1	44	36.8	0.65 125
880MT	28001	0.	0.	1458.	0.	1394.		٨	33.	41.	3.74	0.10	0.16	56.1	1.67	131.2	51	35.1	0.61 117
PFDSTM	28001	Ο.	Ο.	1430.	0.	1374.	-1163,		33.	33.	5.20	0.10	0.13	78.2	2.32	186.5	25	40.1	0.70 120
PFBSTM	28001	Ο.	0.	1710.	٥.	1538.	-893.		33.	99.	6.81	0.10	0.27	75.2	2.23	150.0	34	33.0	0.58 111
	28001	0.	1428.	0.	0.	-54.	267.		33.	33.	3.26	0.10	0.13	92.1	2.73	219.9	2	<u>58.7</u>	1.03 126
CISTMT	20001	C.	1850.	0.	0.	-225.	1105.		33.	135.	5.95	0.10	0.32	205.8	6.11	379,8	0	66.5	1.16 110
FISTMT	28001	О.	ο.	1428.	0.	1374.	-1161.		33.	33.	5.74	0.10	0.13	134.1	3,98	320.5	12	46.7	0.82 115
	28001	Ο.	ο.	1850.	0.	1624.	-745.		33.	135.	8.74	0.10	0.32	258,9	7.69	477.7	7	50.3	0.88 101
FHIRSG	28001	0.	1483,	0.	0.	-110.	267.		33.	33.	3.79	0.10	0.10	117.4	3.49	270.0	0	63.5	1.11 120
THRSG		0.	1703.	0.	0.	-237.	577.		33,	70.	5.19	0.10	0.17	184.9	5.49	370.4	0	71.4	1.25 109
	28001	Ο.	0.	1483.	Ο.		-1217.		33.	33.	6.52	0.10	0.10	166.7	4,95	383.6	8	52.0	0.91 111
FHIRSG	28001	ο.	Ο.	1703.	0.	1466.	-1127.		33.	70.	7.90	0.10	0.17	234.8	6,97	470.3	5	57.2	1.00 101
STIRE,	28001	1487.	0.		-1487.	1374.	267.		33.	33,	2.28	0.10	0.09	55.1	1,64	126.5	0	66.2	1.16 134
STIRL	28001	2306.	0.	0.	-2306.	1712.	1398.		33.	170.	3.71	0.10	0.26	117.8	3,50	174.4	0	78.3	1.37 108
STIRL	20001	0.	1487.	ο.	0.	-113.	267,		33.	33.	2.28	0.10	0.09	55.1	1.64	126.5	10	55.5	0.97 130
STIRL	20001	0.	2306.	0.	Ο.	-594.	1398.		33.	170.	3.71	0.10	0.26	118.0	3,50	174.6	0	61.8	1.08 100
STIRL	28001	0.	0.	1487.	0.		-1220.		33,	33.	4.82	0.10	0.09	97.7		224.2	18	42.7	0.75 113
FIRL	28001	0.	0.	2306.	o.	1712.	-908.	_	33.	170.	7.92	0.10	0.26	210.4	6.25	311.4	10	44.9	0.79 87
	28001	0.	0.	1592.	0.		-1325.		33.	33,	5.13	0.10	0.03	111.6	3,32	239.4	13	46.7	0.82 105
	28001	0.	0.	9304.	0.	3441.		1.1	33.	875.	31.64	0.10	0.12		24.76	305.8	0	123.5	2.16 87
	28001	0,	0,	1576.	0.			<u> </u>	33.	33,	5.08	0.10	0.04	108.5	3.22	235.0	14	46.0	0.81 107
IE.G 160		0.	0.	3785.	0.	1999.		A	33.	287.	11.55	0.10	0.13	272.1	8.08	245.3	4	59.5	1.04 57
	28001	0.	0.	1562.	0.		-1295.		33.	33.	5.05	0.10	0.05	104.3		227.9	15	45.2	0.79 108
IEGT00		0.	0.	2252.	0.		-1298.	A	33.	116.	6.75	0.10	0.11	149.4		226.3	10	47.6	0.63 63
CMCCL		0.	0.	1456.	0.	1374,	<u>-1189,</u>		33.	33.	5.55	0.10	0.11	106.7	3.17	250.0	15	44.3	0.78 115
· CMCCL		0.	0.	2324.	0.	1802.	-624.		33.	207.	11.53	0.10	0.34	183.4	5.45	269.4	12	39.5	0.69 91
	28001	0.	0.	1449.	0.	1374.	-1182.		33.	33,	5.45	0.10	0.12	104.7	3.11	246.5	16	43.9	0.77 116
CSTCL		0.	0.	2732.	0.	2034.	-257.		33.	302.	13.72	0.10	0.39	217.9		272.2	13	34.0	0.60 90
COTST		0.	<u>0.</u>	1490.	0.	1374.	-1223.		<u> 33.</u>	33.	4.65	0.10	0.09	99.6		228.1	17	43.3	0.76 113
GGTST	28001	0.	0,	2546.	0.	1803.	-843.		33.	207.	5.63	0.10	0.27	178.8	5.31	239.7	14	37.2	0.65 83
	20001	0. 0.	1486. 2594.	0. 0.	0 <i>.</i> 0.	-112. -759.	267.		33.	33.	2.01	0.10	0.09	48.8		112.2	16	54.5	0.96 132
PIOONIC	14000	υ.	Z994.	U.	υ,	-759,	1810.		33.	220.	2.88	0.10	0.29	88.6	2.63	116.6	5	56.9	1.00 101

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

F-10 5. 11.

PAGE 47

------FUEL USE IN BTU*10*26-----**COGEMERATION CASE** **NOCOGEN - COGEN** POWER COGEN POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH MSO PROCS DISTIL RESIDE COAL DISTIL RESIDL COAL REOD POWER /HEAT COST COST EQVL CHRG ENRG MW MM RATIO *10**6 GTACO8 28001 1456. Ō. -82. 267. 33. 33. 43.5 1.91 0.10 0.11 1.29 101.9 29 52.9 0.93 136 GTAC08 28001 2138. -429. 0. 0. 0. 1389. 169. 33. 2.22 0.10 0.31 64.0 1.90 102.2 20 49.5 0.87 112 GTAC12 28001 1459. Ω. 0. Ο. -85. 267. 33. 33. 2.00 0.10 0.11 47.6 1.41 111.3 20 53.5 0.94 134 GTAC12 28001 2370. -556. 1739. 77.1 n n. Ω 33. 212. 2.57 0.10 0.33 2.29 111.0 49.9 0.87 107 15 GTAC16 28001 Ō. 1463 O. O. -89. 267. 33. 33. 2.02 0.10 0.11 48.5 1.44 113.2 18 53,8 0.94 133 GTAC16 28001 ٥. 2544. 0. -659. 1977. 33. 241. 2.86 ο. 0.10 0.34 88.3 2.62 118.4 12 51.1 0.89 104 267. GTWC16 28001 O. 1479. 0. 0. -105. 33. 33. 2.02 0.10 48.3 1.43 54.2 0.95 133 0.10 111.4 17 GTWC16 28001 ٥. 2718. 0. -809. 2060 33. 0. 251. 2.73 0.10 0.32 82.4 2.45 103.5 53.9 0.94 103 CC1626 28001 Õ. 1481. Ō. -108. 267. Ō. 33. 33. 2.12 0.10 0.10 48.3 1.43 111.2 54.6 0.96 132 CC1626 28001 0. 3490. 0. 0. -1262. 3128. 33. 381. 3.66 0.10 0.35 108.3 3.22 105.9 56.1 0.98 100 CC1622 28001 1474. -100. 267. 33. 0. 33. 2.12 0.10 0.10 48.3 1.44 111.9 54.3 0.95 133 16 CC1622 28001 3184. ٥. 0. -1051. 2811. 33. 342. 3.68 0.10 0.36 114.1 3.39 122.2 54.8 0.96 100 CC1222 2000 1472. Ō. 0. -98. 267. 33. 33. 2.11 0.10 0.10 47.6 1.41 110.4 54.2 0.95 133 CC1222 28001 3157. 0. -1028. 2795. 33. 53.4 Ο. 340. 3.57 0.10 0.36 106.4 3.16 115.1 0.93 101 000822 28001 1460. 0. 0. 0. -86. 267. 33. 33. 2.10 0.10 0.11 47.3 1.41 110.7 19 53.7 0.94 134 CC0822 28001 n. 2668. n n -713. 2212. 33. 269. 2.95 0.36 107.0 0.10 83.6 2.48 49.1 0.86 105 S11615 20001 1581. -207. 267. O. Ö. O. 33. 33. 2.31 0.10 0.04 48.5 1.44 104.7 1.01 126 57.8 STIG15 20001 0. 84615. 0. 0,-60150, 77574. 33. 9449. 142.09 0.10 0.17 2270.3 67.42 91.6 0 1173.3 20.55 550 STIG10 28001 1555. -161. 267. 33. n. ο. Ο. 33. 2.19 0.10 0.05 47.5 1.41 104.2 56.0 0.99 128 STIG10 28001 8302. -4665 0. 0. n 7174 33 874. 11.72 0.10 0.22 222.1 6,60 91.3 129.5 2.27 107 STIG1S 28001 Ō. 1543. 0. 0. -169 257. 33. 33. 2,20 0.10 0.06 47.0 1.40 104.0 56.3 0.99 129 STIG1S 28001 0. 5218, 0. 0. -2667. 4209. 33. 513. 7.50 0.10 0.23 136.2 4.04 89.1 0 91.0 1.59 97 DEADV3 28001 0. 1521. 2.39 0.10 0. 0. -147. **2**67. 33. 33. 0.07 60.7 1.80 136.2 À 57.3 1.00 126 DEADV3 28001 Ο. 5366. 0. 0. -2641. 4791 33 564. 9.83 0.10 0.29 352.1 10.46 223.9 106.5 1.87 103 Ω DEHIPM 28001 Ō. 1462. Ō. Ō. -88. 267. 33. 33. 55.7 0.97 129 2.49 0.10 0.11 62.2 1.85 145.2 9 DEHTEM 28001 ο. 2567. n. 0. -670. 2020. 33. 246. 5.55 0.10 0.34 185.2 5.50 246.1 n 63.7 1.12 100 DESGA3 28001 1540. O. 0, -1540. 1374. 267. 33. 33. 2.52 0.10 0.06 66.0 1.96 146.3 0 69.6 1.22 128 DESCA3 26001 6433. Ω. 0. -6433. 2963. 5538. 33. 681. 14.00 0.10 0.25 516.0 15.32 273.7 188.7 3.30 132 DESUA3 28001 Ö. 1540. <u>o.</u> O. -166. 267. 33. 33. 146.3 58.6 1.03 123 2.52 0.10 0.06 66.0 1.96 DESGA3 28001 0. 6433. 0. -3470. 5588. 33. 681. 14.00 0.10 0.25 516.0 15.32 273.7 0 142.4 2.49 112 GTSOAD 28001 1468. 0. 0. -1468. 1374. 267. 33. 33. 1.97 0.10 0.11 46.2 1.37 107.4 0 64.2 1.12 139 GTSOAD 20001 2388. 0. 0. -2388. 1795. 68.0 1.19 115 1678 33 204. 67.3 96.2 2.33 0.10 0.31 2.00 n 0. -1482. GTRA08 28001 1.14 136 1482. O. 1374. 2G7. 33. 33. 2.05 0.10 0.10 49.8 1.48 114.8 65.2 GTRA08 28001 3271. O. 0. -3271. 2134. 2810. 33. 3.75 342. 3.87 0.10 0.34 126.2 131.7 0 82.3 1.44 109 GTRA12 28001 1478. 0. 0. -1478. 1374. 267. 33. 50,1 65.1 33. 2.06 0.10 0.10 1.49 115.8 0 1.14 137 GTRA12 28001 3177. 0. -3177. 0. 2112. 2737 33 333. 3.79 0.10 0.34 123.2 3.66 132.3 O 89.0 1.40 109 GIRA16 28001 1476. o. 0. -1476. 1374. 267. 33. 2,08 51.0 117.8 1.14 136 33. 0.10 0.10 1.51 65.1 GTRA16 28001 3036. 0. 0. -3036. 2056. 2549. 33. 310. 3.79 0.10 0.34 123.7 3.67 139.1 0 79.2 1.39 109 GTR208 28001 1477. 0. 0. -1477. 1374. 267. 33. 33. 2.03 0.10 0.10 48.7 1.45 112.6 n 64.9 1.14 137 GTR208 20001 2736. 0. -2736 0. 1923. 2106. 33. 257. 96.3 2.86 120.2 3.48 0.10 0.32 n 74.8 1.31 110 GTR212 28001 1477. Ō. -1477. 1374. 267. 33. 33. 2.04 0.10 0.10 49.3 1.46 113.9 O 65.0 1.14 137 GTR212 28001 2845. 0. G. -2845, 1969. 2259. 33. 275. 3.28 6.10 0.33 104.0 3.09 124.7 0 76.3 1.34 109 GTR216 28001 1474. О. 0. -1474.1374. 267. 33. 33. 2.06 0.10 0.10 50.1 1.49 115.9 0 64.9 1.14 137 GTR216 28001 0. -2857 2857. 0. 1986. 2317. 3.32 133.4 282. 3.48 0.10 0.34 111.7 76.4 1.34 109

S SULFNIES SO

DATE 06/08/79 L&SE-PEO-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN ORM POWER FEST CAPITAL NORM \$/KW ROI LEVL NORM WITH PROCS DISTIL RESIDL COAL DISTIL RESIDL COAL REOD POWER /HEAT COST COST EQVL CHRG ENRG MW 1414 RATIO *10**6 1.47 GTRV08 28001 1507. Ŏ. 0. -1507. 1374. 267. 33. 33. 2.05 0.10 0.08 49.7 112.4 66.2 1.16 135 0 0. -3966. GTRW08 28001 3966. 0. 2295. 3350. 33. 408. 3.95 0.10 0.30 127.2 3.78 109.4 96.3 1.69 109 0 GTRW12 28001 1497. 0. 0. -1497. 1374. 267. 33. 33. 2.05 0.10 0.09 49.6 1.47 113.1 0 65.8 1.15 136 0. -3880. GTRW12 25001 3880. ٥. 2309. 3399. 33. 414. 128.0 3.97 0.10 0.32 3.80 112,6 0 91.9 1.61 110 GTRW16 28001 1495. O. 0. -1495. 1374. 267. 33. 33. 2.06 0.10 0.09 50.2 1,49 114.6 65.8 1.15 135 0. -3659. GTRW16 28001 3659. α. 2233. 33. 383. 3144. 3.91 0.10 0.32 126.6 3.76 118.1 89.3 1.56 109 0. -1517. GTR308 28001 1517. 0. 1374. 267. 33. 33. 0.10 0.08 109.7 2.04 48.8 1.45 0 66.4 1.16 135 9TR308 28001 0. -3429. 3429. 0. 2058. 2558. 33. 312. 3,13 0.10 0.26 96.1 2.85 95.6 90.8 1.59 107 GTR312 28001 267. 1492. Ō, 0. -1492. 1374. 33. 33. 2.03 0.10 0.09 48.7 1.45 111.5 65,5 1.15 136 GTR312 26001 3319. 0. 0. -3319. 2110. 2731. 33. 333. 3.24 0.10 0.31 100.8 2,99 103,6 82,8 1,45 109 GTR316 20001 1493. ٥. 0. -1493. 1374. 267. 33. 33. 49.4 2.04 0.10 0.09 1.47 112.9 0 65.6 1.15 136 0. -3295. GTR316 28001 3296. ٥. 2097 2689. 33. 327. 3.08 107.2 3.31 0.10 0.31 103.5 83.3 1.46 109 FCPADS 28001 1528. ō. 0. -1528. 1374. 267. 33. 33. 5,29 0.10 0.07 58.8 1.75 131.3 O 71.2 1.25 132 5917. FCPADS 28001 6471. 0. 0. -6471. 3061. 33. 721. 80.02 0.10 0.28 379.9 11.28 200.4 0 233.7 4.09 157 0. -1489. FCMCDS 28001 1489. 0. 1374. 267. 33. 33, 5.06 0.10 0.09 59.8 1.78 137.1 0 69.6 1.22 134 FCMCDS 28001 4721. 0. -4721. 2692 4680. 570. 60.04 0.10 0.36 340.4 10.11 246.C 0 171.6 3.01 141

DATE OR/OR/YE LESE-PEO-ADV-DES-ENOR

1																				\$-	
					FUEL US	E IN BTO	J*10**6														
1				-		E** **NO					COGEN	MBD	POVER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH	H !
ECS	PRO	acs D	ISTIL F			DISTIL				EQD	POWER		ZHRAT		COST	COST	EQVL		CHRG	ENRO	•
	, , , ,				001.12			0,0112		MW	MM		RATIO		*10**6	000.		(%)	0	2	
ONO	CGN 2	9002	0.	1429.	634.	0.	o.	0.		77.	Ō.	1.33	0,25	O.	32.9	1.00	90.5	0	70.3	1.00 80	ō
SIMI		3002	Ō.	1517.	174.	0.	-87.	460.		77.	56.	1.63	0.25	0.18	38.7	1.18	90.1	81	59.6		
M	141 2		o.	52.	1639.	0.	1377.		F	77.	56.	3,88	0.25	0.18	73,8	2,25	172.0	35	46.1	0.66 115	
STM	,	5002	Ö.	52.	1639.	o.	1377.		À	77.	56.	3.76	0.25	0.18	56.6	1.72	131.7	57	44.1	0.63 119	
	088 28		Ö.	1490.	313.	0.	-61.	321.		77.	39.	1,53	0.25	0.13	35.1	1.07	85.8	119	62.7		
B	088 2		Õ.	93,	1710.	o.	1336.	-1076.	F	77.	39.	3.61	0.25	0.13	69.0	2.10	168.6	34	49.8		
	088 2		Ŏ.	93.	1710.	o.	1336.	-1076.		77.	39.	3,63	0.25	0.13	54.6	1.66	133.4	53	48.2		
ia .	STM 2		Ö.	0.	1563.	Õ.	1429.	-929.	••	77.	77.	6.53	0.25	0.24	77.6	2.36	169.4	35	43.8		
11	STM 2		0.	0.	1638,	o.	1474.	-856.		77.	95.	6.58	0.25	0.27	73.0	2.22	152.1	41	41.1	0.58 125	
DE .	TMT 28		o.	1559.	0.	Õ.	-129.	634.		77.	77.	4.70	0.25	0.24	146.6	4.46	321.0	5	70.2	1.00 133	
11	IMT 2		o.	1772.	Õ.	Ö.	-216.	1059.		77.	129.	5.77	0.25	0.32	199.1	6.06	383.3	3	73.3	1.04 127	
1	TIT 2		o.	0.	1559.	ő.	1429.	-925.		77.	77.	7.32	0.25	0.24	191.8	5.84	420.0	11	56.9	0.81 125	
1	TMT 2		- 0.	0.	1772.	ŏ.	1556.	-714.		77.	129.	8.47	0.25	0.32	250.4	7,62	482.3	9	57.9	0.82 120	
13	RSG 2		Ŏ.	1656.	81.	ö.	-227.	553.		77.	67.	5.03	0.25	0.16	178.8	5.44	373.8	ő	79.3	1.13 112	
TIME		2008	o.	24.	1713.	o.	1405.	-1080.		77.	67.	7.65	0.25	0.16	227.1	6,91	474.7	7	65.7	0.93 105	
STII		0002	1699.	0.		-1699.	1429.	634.		77.	77.	2.84	0.25	0.18	74.4	2.26	149.5	ò	77.1	1.10 137	
STI		0002	2209,	ō.	Ō.	-2209.	1640.	1339.		77.	163	3.57	0.25	0.26	113.0	3,44	174.6	-	84.4	1.20 126	
STI		8002	0.	1699.	Ō.	0.	-269.	634.		77.	77.	2.85	0.25	0.18	74.5	2.27	149.6	13	64.8	0.92 132	
STIF	-	3002	0.	2209.	o.	Ō.	-569.	1339.		77.	163.	3.58	0.25	0.26	113.2	3.44	174.8	Ť	68.5	0.97 120	
STII	RL 2	3002	ο,	ο.	1699,	ο.	1429.	-1065.		77.	77.	5,87	0.25	0.18	129.1	3.93	259.4	17	50.9	0.72 119	
STII	RL 2	2003	0.	0.	2209.	Ō.	1640.	-870,		77.	163.	7.62	0.25	0.26	201.7	6.14	311.6	12	52.4	0.75 108	
HEGT	T85 28	2008	Ο.	ο.	1946.	0.	1429.	-1313.	A	77.	77.	6.80	0.25	0.06	157.8	4.80	276.6	11	59.9	0.85 105	
HEGT	T85 2	3002	0.	0.	8915.	0.	3297.	-2029,	Α	77.	839.	30.59	0.25	0.12	808.8	24.60	309.6	0	129.0	1.83 79	9
HEGT	TGO 20	2000	Ο.	ο.	1909.	0.	1429.	-1275.	A	77.	77.	6.63	0.25	0,07	149.9	4.56	267.9	12	58.2	0.83 107	7
HEG	160 28	3002	0,	O.	3627.	0.	1915.	-1366,	Α	77.	275.	11.17	0.25	0.13	263.9	8.03	248.4	6	66.7	0,95 83	3
HEG1	T00 28	3002	Ο.	ο.	1877.	Ο.	1429.	-1243.	Α	77.	77.	6.22	0.25	0.09	130,9	3,98	238.0	15	55.1	0.78 110	ኃ
∥ HEG1	100 S	2000	Ο.	0.	2158.	ο.	1513.	-1244.	Α	77.	111.	6.53	0.25	0.11	144.9	4.41	229.1	14	55.2	0.79 99	3
FCMC	CCL 28	8008	0.	0.	1624.	0.	1429.	-990.		77.	77.	7.40	0.25	0.21	134.2	4.08	281.9	15	52.3	0.74 124	4
FCM	COL 2	0002	0.	0.	2227.	0.	1727.	-593.		77.	198.	11.12	0.25	0.34	177.8	5.41	272.4	14	47.5	0.68 113	
ē i	TCL 2		ο.	0.	1608.	Ο.	1429.	-974.		77.	77.	7.14	0.25	0.22	131.8	4.01	279.7	16	51.5	0.73 124	4
п.	TCL 2		0.	0.	2618.	О.	1948.	-246.		77.	289.	13.23	0.25	0.39	211.2		275.2	14	42.2	0.60 107	
I GG1		3002	ი.	0.	1706.	0.	1429.	-1072.		77.	77.	5.19	0.25	0.17	125.3	3.81	250.7	17	50.6		
	131 2		0,	Ö,	2440.	0.	1727.	-808.		77.	199.	5.39	0.25	0.27	169.7	5.16	237.4	16	44.7	0.64 105	
21	JAR 2		0.	1695.	0.	ο.	-266.	634.		77.	7 7 .	2.30	0.25	0.18	5 6.5	1.72	113.8	24	62.3		-
_1	DAR 20		0.	2406.	0.	0.	-727.	1734.		77.	211.	2.80	0.25	0.29	85.9	2.61	117.9	13	64.0		
	008 28		<u> 0.</u>	1625.	<u> </u>	0.	-196,	634.		77.	77.	2.11	0.25	0.21	49.5	1.51	104.0	40	59.1	0.84 143	
4	008 2		0.	2048.	0.	0.	-411.	1331.		77.	162.	2.16	0.25	0.31	62.0	1.89	103.3	30	56.8	0.81 132	
71	012 2		0.	1632.	0,	0.	-203.	634.		77.	77,	2.20	0.25	0.21	52.8		110.3	34	59.8	0.85 141	
¥/1	C12 2		0.	2271.	0.	0.	-533.	1666.		77.	203,	2.49	0.25	0.33	74.6	2.27	112.1	23	57.3		-
V1	C16 20		0.	1641.	0.	0.	-211.	634.		77.	77,	2.25	0.25	0.20	54.9	1.67	114.1	30	60.3		
-1	016 2		0.	2437.	0,	0.	-631.	1894.		77.	231.	2.78	0.25	0.34	85.4	-	119.5	19	58.4	0.83 123	
	016 2		0.	1678,	0.	0.	-249.	634.		77.	77.	2.21	0.25	0.19	53.0	1.61	107.8	30	61.3		
<u>4</u> l	C16 2	0002	0.	2605.	0.	ο.	-775.	1974.		77.	240.	2.66	0.25	0.32	79. 9	2.43	104.7	17	61.1	0.87 121	i
~														<u> </u>						<u> </u>	

 				EUEL UE	E 151 157	11410447													
\									COCEN	C1 2 M	poure	EECD	CADITAL	MOREM	# /VII	DOL	1.51//	NCIDM	UDTU
ECS	BBUCC .	DISTIL F					- COGEN**			Med	POWER	reok	CAPITAL		\$/KW	KUL		NORM	MEM
LC3	TRUCS (חופות ו	NEO I DE	CUAL	DISTIL	. RESIDL	COVIT	REQD MW	POWER		/HEAT		COST *10**6	COST	EQVL	(CHRG	ENRG	
CC1696	20002	0.	1685.	ō.	0.	-256.	634.	77.	77.	2.37		0.18	*10**6 54.0	1.64	109.3	(<u>%)</u> 26	61,9	0.80	120
11	28002		3344.	0.			2997.	77. 77.	365.	3.50		0.18	102.7	3.12	109.3	12	62.0	0.89	
	20002		1666.	0.			634.	77.	77.	2.38	0.25	0.33	55.3	1.68	113.2	26	61.5		139
H	28002		3051.	0.		-1007.	2693.	77. 77.	328.	2.38 3.58	0.25	0.19	110.3		123.4	12	62.0	0.87	
	28002		1662.	0.		-1007. -233.	634.	//. 77.	77.	2.36	0.25	0.36	53.8	1,64	110.5	23	61.2	0.88	
1	28002		3025.	0.			2678.	77. 77.	326.	3.38	0.25	0.19	99.2		112.0	14	60.1	0.85	
i i	28002		1634.	o.		-204.	634.	77.	77.	2.32		0.36	52.3	1.59	109.3	32	60.0	0.85	
11	28002		2556.	0.		-204. -683.	2120.	77.	258.	2.87	0.25	0.21	81. 0	2.47	109.3	21	56.5	0.80	
	26002		1921.	0.			634.	77.	77.	3.07	0.25	0.07	59.0	1.79	104.8	4	70.5	1.00	
11	28002		81077.	0.		-57635.	74330.	77.		136.27	0.25			66.25	91.7		1133.9		
11	20002		1859.	o.		-430.	634,	77.	77.	2.79	0.25	0.10	56.8	1.73	104.3	11	68.0		
	28002		7955.	o.		-4662.	6874.	77.	837.	11.29		0.22		6.51	91.8	'6	133.6	1.90	
11	20002		1831.	0.			634.	77.	77.	2.71	0.25	0.11	52.4	1.59	97.6	17	66.6	0.95	
и	20002		5000.	ö.			4033.	77.	491.	7.39	0.25	0.23	137.7	4.19	94.0	Ι΄ó	97.5	1.39	
11	28002		1779.	Ö.			534.	77.	77.	3.14	0.25	0.14	86.3	2.62	165.5	7	68.9	0.98	
19	28002		5142.	ő.			4590.	77.	559.	9.46	0.25	0.29			224.1	ó	111.5	1.58	
11	28002		1639.	Ö.		-210.	634.	77.	77.	3.21		0.21	86.4	2.63	179.8	12	64.6	0.92	
11 .	28002		2460.	ö.		-642.	1936.	77.	236.	5.35	0.25	0.34	177.5	5.40	246.2	5	70.4	1.00	
H	28002		0.	o.	-1823.	1429.	634.	77.	77.	3.46	0.25	0.12	98.9	3.01	185.1	ŏ	85.1	1.21	
DESOAS	20002	8164.	ο.	0.	-6164.	2839.	5355.	77.	652.	13.45		0.25			273.8	Ŏ	190.1	2.70	
DESUN3	20002	Ū.	1823.	Ű.		-394.	634.	77.	77.	3,46	0.25	0.12	98.9	3.01	185.1	2	72.0	1.02	
41	20002		6164.	v.	0.	-3325.	5355.	77.	652.	13.45	0.25	0.25			273.8	Ö	145.8	2.07	
li .	28002		0.	0.		1429.	634.	77.	77.	2.12	0.25	0.20	49.5	1.51	102.2	ø	71.9	1.02	146
I	20002		0,	0.		1720.	1608.	77.	198.	2.26		0.31	65.2	1.98	97.2	0	74.5	1.06	
GTRAOS			0,			1429.	634.	77.	77.	2.35	0.25	0.18	58,8	1.79	119.0	0	74.4	1.06	
GTRA08			0,	0.		2044.	2693.	77.	328.	3.77	0.25	0.34	122.3		133,1	0	88.4	1.26	
Pi i	28002		0.			1429.	634.	77.	77.	2.32	0.25	0.19	57.5		117.1	0	73.9	1.05	
GTRA12			0.	0.		2023.	2623.	77.	319.	3,68	0.25	0,34	119.3		133.7	0	06.2	1.23	
GTRAIG			0,	O.		1429.	634.	77.	77.	2.36	0.25	0.19	59.0		120.4	0	73.9	1.05	
GTRA16			0.	0.		1970.	2143.	7 7 .	293.	3.68	0.25	0.34	119.6		140.5	0	85.4	1.21	
	28002		0.	0.		1429.	634.	77.	77.	2.25		0.19	54.5		111,1	0	73.4	1.04	
	28002		0.	0.		1843.	2018.	<u>77.</u>	245.	2.88	0.25	0.32	88.8		115.6	0	80.5	1.14	
	28002		0.	0.		1429.	634.	77.	77.	2.28	0.25	0.19	55.7	1.69	113,4	0	73.6	1.05	
GTR212			0.	0.		1687.	2165.	77.	264.	3.19		0.33	100.7		126.0	0	82.6	1.17	
GTR216			0.	0.	-1660.	1429.	634.	77.	77.	2.32		0.19	57.4		117.5	0	73.5	1.05	
GTR216			0.	<u> </u>	-2737.	1903.	2220.	77.	270.	3.38		0.34	108.1		134.8	0	82.6	1.17	
GTRHUS			0.	0.		1429.	634.	77.	77.	2.29	0.25	0.15	55.7	1.69	108.8	0	76.4	1.09	
3	20002		0. 0.	O.		2199. 1429.	3210.	77.	391.	3.84		0.30	123.3		110.8	0	101.8	1.45	
GTRW12			0. 0.	0.		1429 2213.	634.	77.	77.	2.28		0.17	55.6		110.2	0	75.4	1.07	
91KW12			<u> </u>	<u> </u>	-3718. -1717.	1429.	3256. 634.	77.	397.	3.86		0.32	124.2		114.0	0	97.6	1.39	
OTRW16			0.	0.	-1717. -3506.	2140.	3012.	77. 77.	77. 367.	2.30		0.17	56,6		112.5	0	75.3	1.07	
GTR308			0.	0.	-1769.	1429.	634.	77. 77.	77.	3,81 2,26		0.32	122.8 54.3		119.5	0	95, 1 77, 1	1.35	
01R300			0.	0. 0.		1972.	2451.	77. 77.	299.	3.05		0.14	93.1	2.83	104.7 96.7	0	96.5	1.30	
311300	20001	3,.00.	<u> </u>		<u>0,200,</u>	13/6.	54011		233.	3.03	0,20	0.20	93. I	2.03	90,7		50.0	1.25	110

MATE 06/00/75 L&SE-PEO-ADM-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTUX10xx6-----**COGENERATION CASE** **MOCOGEN - COGEN** POWER COGEN 1180 POWER FESR CAPITAL NORM \$/KW ROL LEVI NORM WRTH PROCS DISTIL RESIDE COAL DISTIL RESIDE COAL FCS REGD POWER COST FOVL ENRG /HEAT COST CHRG MM 1414 RATIO *10**6 (3) GTR312 28002 1710. 0, -1710. 1429. $\overline{\Omega}$. 634. 77. 77. 2.24 0.25 0.17 54.0 107.8 74.7 1.06 141 1.64 0 GTR312 28002 3180. 0. -3180. 2022. 2617. 0. 77. 319. 3,15 0.25 0.31 97.7 2.97 104.9 0 88.8 1.26 129 GTR316 28002 1712. 0. 0. -1712. 1429. 634. 77. 77. 2.27 0.25 0.17 55.1 1.68 109.9 0 75.0 1.07 141 GTR316 28002 3158. 0. -3158. 2010. 2576. 3.22 0. 77. 314. 0.25 0.31 100.4 3.06 108.5 0 89.3 1.27 120 FCPADS 28002 1795. 0. 0. -1795. 1429. 634. 77. 77. 10.23 0.25 0.13 81.2 2.47 154 4 O 88.9 1.26 134 FCPADS 28002 6200. 0. 0. -6200. 2933. 5669. 77. 691. 76.70 0.25 0.28 11.08 200.5 233.3 3.32 140 364.3 Ω 1704. 77. FCMCDS 28002 0. -1704. 1429. 634. 77. 9.71 0.25 0.17 84.3 2.56 169.7 n 85.2 1.21 137 FCMCDS 28002 4524 0. -4524. 2580. 4485. 546. 57.55 0.25 0.36 326.4 9.93 246.3 0 173.8 2.47 132

						J*10**6				OCCEN	COM	000155	FFCF	0401741	Mante	A 1101 1	D41		MOIDM 1 (5-71)
ECS	PROCS		RESIDL		E** **NO DISTIL				POWER REGD MW	POVER NW	O&M	POWER /HEAT RATIO	FESK	CAPITAL COST *10**6	NORM	\$/KW EQVL	RO1	CHRG	NORM WRTH ENRG
DHOCGN	28003	0.	1352.	798.	ō.	0.	0.		97.	Ō.	1.26	0.35	0.	30.9	1.00	94.8	0	72.8	1.00 80
STN141	28003	0.	1431.	385.	О.	-79.	413.		97.	50.	1.54	0.35	0.16	35.9	1.16	93.0	84	63.2	0.87 129
STM141	28003	0.	्115.	1701.	٥.	1238.	-953.	F	97.	50.	3.61	0.35	0.16	68.5	2.21	177.7	34	51.2	0.70 111
STM141	28003	0.	115.	1701.	0.	1238.	-903.	Α	97.	50.	3.49	0.35	0.16	53.0	1.71	137.3	55	49.4	0.68 115
31117, 18	20003	0.	1407.	510.	Ō.	-55.	288.		97.	35,	1.44	0.35	0.11	32.6	1.05	88.5	137	65.9	0.90 123
880MT8	20003	ο.	152.	1765.	0.	1200.	-967.	F	97.	35.	3.37	0.35	0.11	64.0	2.07	174.1	33	54.4	0.75 104
	28003	0.	152.	1765.	0.	1200.	-967.	Α	97.	35.	3.37	0.35	0.11	51.1	1.65	138.9	51	53.1	0.73 108
	28003	0.	28.	1567.	0.	1324.	-769.		97.	86.	6.03	0.35	0,26	68.0	2.20	157.5	42	44.5	0.61 124
	20003	0.	1515.	0.	0.	-163.	798.		97.	97.	5.08	0.35	0.30	163.8	5,29	368.9	6	71.1	0.90 137
ristmt	28003	0.	1592.	0.	0.	-194.	951.		97.	116.	5.34	0.35	0.32	183.1	5.92	392.4	5	72.1	0.99 128
	58003	o.	ο.	1515.	ο.	1352.	-717.		97.	97.	7.72	0.35	0,30	212.9	6.88	479.6	10	58.8	0.81 130
	26003	0.	<u> </u>	1592.	0.	1398.	-641.		97.	116.	7.82	0.35	0.32	230.5	7.45	493.9	10	58.4	0.80 122
THRSG		0.	1557.	302.	0.	-204.	496.		97.	60.	4,65	0.35	0.14	164.4	5.31	382.5	0	81.1	1.11 108
	28003	0.	90.	1768.	0.	1262.	-970.		97.	60.	7.05	.35	0.14	208.9	6.75	486.1	6	69.2	0.95 101
STIRL	56003	1692.	0.	0.	-1692.	1352.	798.		97.	97.	3,02	0.35	0.21	82.2	2.66	165.8	0	77.8	1.07 138
STIRL	28003		0.	<u>0.</u>	-1985,	1474.	1203.		<u>97.</u>	<u> 147.</u>	3.27	0.35	0.26	101.9	3.29	175.2	0	81.6	1.12 129
STIRL	28003		1692.	0.	Ο,	-339.	798.		97.	97.	3.02	0.35	0.21	82.3	2.66	166.0	14	65.6	0.90 134
STIRL	58003		1985.	0.	0.	-511.	1203.		97.	147.	3.27	0.35	0.26	102.0	3.30	175.4	10	67.3	0.92 124
STIRL	26003		ο.	1692.	0.	1352.	-894.		97.	97.	6.19	0.35	0.21	143.5	4.64	289.5	16	52.6	0.72 122
STIRL	26003		0.	1985.	0.	1474.	-782.		97.	<u> 147.</u>	6,91	0.35	0.26	180.6	5.84	310.5	14	<u>52.7</u>	0.72 112
	50003	G.	0.	2004	0.	1352.	-1206.		97.	97.	7.28	0.35	0.07	172.4	5.57	293.6	10	63, છ	0.87 105
	28003	0.	o.	8010.	0.		-1823.		97.	754.	28.13	0.35	0.12		24.22	319,4	0	124.6	1.71 79
	50003	0.	0.	1957.	0.		-1159.		97.	97.	6.85	0.35	0.09	154.2	4.98	269,0	12	59.7	0.82 108
	50003	0.	0.	3258,	0.		-1228.		97.	247.	10.27	0.35	0.13	244.7	7.91	256.3	7_	66.7	0.92 90
	20003	0.	0.	1916.	0.	1352.	-1118.		97.	97.	6.25	0.35	0.11	135.4	4.38	241.3	15	56.3	0.77 111
	28003	Ο,	0.	1939,	0.	1359.	-1118.	Α	97.	100.	6.01	0.35	0.11	134.3	4.34	236.4	15	55.8	0.77 100
	28003	0.	0.	1598.	0.	1352.	-600.		97.	97.	7.76	0.35	0.26	133.0	4.30	284.0	17	52.1	0.71 128
	20003	0,	0.	2001.	0,	1551.	-537,		97.	178.	10.16	0.35	0.34	164.3	5.31	280.2	15	49.0	0.67 119
	20003	0.	0,	1578.	0,	1352,	-780.		97.	97.	7.61	0.35	0.27	137.6	4.45	297.6	16	52.1	0.71 129
	20003	0.	0.	2352.	0.	1751.	-221.		97.	260.	12.09	0.35	0.39	195.1	6.30	203.1	15	44.4	0.61 116
	20003		0,	1701.	0.	1352.	-903.		97.	97.	4,95	0.35	0.21	123.0	3.97	246.8	19	50.0	0.69 122
	50003	0.	0,	2192.	0.	1552.	-726.		97.	179,	5.00	0.35	0.27	155.7	5.03	242.5	17	46.4	0.64 111
	20003	0.	1687.	0.	0.	-335.	798.		97,	97.	2.26	0.35	0.22	55.1	1.78	111.4	30	61.8	0.85 140
	20003	0.	2233.	0.	0.	-654.	1558.		97.	190.	2.45	0.35	0.29	73.1	2.36	111.7	19	62.6	0.86 128
	20003	0.	1599.	0.	0.	-246.	798.		97.	97.	2.11	0.35	0.20	50.3	1.63	107.4	43	58.4	0.80 146
	20003	0.	1840.	0.	0.	-369.	1196.	 -	97.	146.	2.02	0.35	0.31	57,3	1.85	106.2	37	56.9	0.78 137
	26003	0.	1608.	0.	0,	-255.	799.		97.	97.	2.20	0.35	0.25	53.5	1.73	113.5	37	59.1	0.61 144
	20003	0.	2040.	0.	0.	-479.	1497.		97.	182.	2.32	0.35	0.33	68,6	2.22	114.8	28	57.4	0.79 134
	28003	0.	1619.	0.	0.	-266.	798.		97.	97.	2.21	0.35	0.25	5 3.6	1.73	113.1	36	59.5	0.82 144
STAC16		0.	2190.	0.	0.	-567.	1702.		97.	207.	2.58	0.35	0.34	78.5	2.54	122.3	22	58.4	0.80 130
	28003	0.	1666.	0.	0.	-313.	798.		97.	97.	2.16	0.35	0.23	51.0	1.65	104.4	37	60.6	0.63 142
	20003 20003	0.	2340. 1674.	0. 0.	0. 0.	-696, -322,	1774. 798.		97. 97.	216.	2.49	0.35	0.32	74.0	2.39 1.80	107.9 113.6	21 28	60.8 61.8	0.84 123 0.85 140
										97.	2.42	0.35	0.22	55,7					

PATE OGZODZ, 18SE-PEO-ADV-DES-ENGR

1																			
1																			
					E** **N	OCOGEN	- COGEN**	POWER	COGEN	0&M	POWER	FESR	CAPITAL	NORM	S/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL	RESIDL	COVL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
1								MW	MW		RATIO		*10**6			(%)			
CC162	6 28003	3 0.	3005.	Ô.	0.	-1086.	2693.	97.	328.	3.27	0.35	0.35	95.0	3.07	107.8	15	62.6	0.86	119
	2 28000	-		ő.	õ.	-298.	798.	97.	97.	2.44	0.35	0.23	57.6	1.86	119.1	28	61.3		1 141
	2 20000			0. 0.	o.	-904.	2420.	97.	295.	3.23	0.35	0.36	97.5	3,15	121.4	16	61.2		1 122
	2 28000 2 28000			0.	0.	-293.	798.	97. 97.	293. 97.	2.42	0.35			1.80	115.7	30			1 142 ·
				0.	0.	-885.		خخند	293.			0.23	55.8				<u>60.9</u>		
	2 28000						2406.	97.		3.15	0.35	0.36	91.3	2.95	114.6	17	60.0		2 123
•	2 28000			0.	0.	-257.	798.	97.	97.	2.28	0.35	0.25	50.5	1,63	107.0	40	59.0		145
	2 28000			0.	0,	-614.	1904.	97.	232.	2.61	0.35	0.36	71.9	2.32	106.9	27	56.3		7 131
	5 28003			O.	0.	-619.	798.	97.	97.	3.32	0.35	0.08	61.5	1.99	<u>106,4</u>	5	72.6		125
M	5 28000			0.	ο.	-51764.	66784.	97.		122.67	0.35	0.17	1960.1	63.33	91.8	0	1025.1	14.08	3 339
STIGI	0 28003	30.	. 1894.	0.	0.	-541.	798,	97.	97.	2,89	0.35	0.12	55.5	1.79	100.1	15	69.1	0.95	5 130
STIGI	0 28003	3 0.	7147.	0.	0.	-4188.	6176.	97.	752.	10.23	0.35	0.22	193.4	6.25	92.3	0	125.9	1.73	3 98
STIGI	S 28000	3 0.	1658,	0.	0.	-506.	798.	97.	97.	2.89	0.35	0.14	54.1	1.75	99.4	18	67.8	0.93	3 132
STIGI	S 28003	3 0.	4492.	0.	0.	-2296.	3523.	97.	441.	6.71	0.35	0.23	124.6	4.02	94.6	0	93.4	1.20	103
DEADV	3 28003	3 0	. 1792.	0.	ο.	-440.	798.	97.	97,	3.31	0.35	0.17	92.4	2.99	176.0	8	70.2		128
N .	3 28003			0.	0.	-2274.	4124.	97.	502.	8.86	0.35	0.29		10.18	232.8	Ö	107.4		7 104
li i	M 2800			o.	0,	-265.	798.	97.	97	3.40	0.35	0.25	93.4	3.02	197.2	13	64.8		136
II—	M 2800			ō.	0.	-577.	1739.	97.	212.	4.87	0,35	0.34	160.0	5.17	247.0	7	69.0		125
н	3 28003			ő.		1352.	798.	97.	97.	3.71	0.35	0.14	108.3	3.50	139.9	ó	87.3		128
	3 2000			o.	-5539.	2551.	4811.	97.	586.	12.17	0.35	0.25		14.38	274.2	ŏ	176.6		3 116
11	3 2800			o.	0.000.	-496.	793.	97.	97.	3.71	0.35	0.14	108.3	3.50	199.9	4	74.0		123
II	3 28003			0.	0.		4811.	97.	586.	12.17	0.35	0.25		14.38	274.2	9	136.8		105
	D 28003			0.		1352.		97. 97.	•										
15							798.		97.	2.11	0.35	0.24	49.5	1.60	103.3	11	71.2		149
11	D 28000			0.		1546.	1445.	97.	1.76.	2.11	0.35	0.31	60,1	1.94	99.8	5	72.8		139
11	8 29000			0.	<u>-1678.</u>	1352.	798.	<u>97.</u>	97.	2.42	0.35	0.22	61.2	1.98	124.5	<u> </u>	74.3		143
11	0 28003			0.		1837.	2419.	97.	295.	3.46	0.35	0.34	111.0	3.59	134.5	0	85.2		126
14	2 20003			0.	-1663.	1352.	798.	97.	97.	2.38	0.35	0.23	59.9	1.94	122.9	2	73.7		144
	2 20000			0.		1818.	2356.	97.	287.	3.37	0.35	0.34	107.7	3.48	134.3	0	83.2		127
1	e \$8000			<u>o.</u>	-1659,	1352.	798.	97.	97.	2:48	0.35	0.23	63,8	2.06	131.2	1	74.0		143
11	6 28000			0.		1770.	2195.	97.	267.	3.37	0.35	0.34	108,2	3.50	141.3	0	82.5		128
[9]	8 50000			0.		1352.	798.	97.	97.	2.26	0.35	0.23	55.4	1.79	113.8	4	73.0		145
a	8 28000			0.		1656.	1813.	97.	221.	2.63	0.35	0.32	79.6	2.57	115.4	0	78.0	1.07	7 133
	2 28003			0.		1352.	798.	97.	97.	2.30	0.35	0.23	56.7	1.83	116.4	4	73.2		145
GTR21	2 20000	3 2449.	ο,	0.	-2449.	1695.	1945.	97.	237.	2.79	0,35	0.33	85.8	2.77	119.6	0	79.3	1.09	132
GTR21	6 29000	3 1652.	о.	0.	-1652.	1352.	798.	97,	97.	2.35	0.35	0.23	58.8	1.90	121.5	4	73.1	1.00	145
GTR21	6 28003	3 [©] 2459.	. О.	σ.	-2459.	1710.	1994.	97.	243.	2.96	0.35	0.34	92.3	2.98	128.1	0	79.3	1.09	131
a GTRWO	8 28000	3 1751.	0.	0.	-1751.	1352.	798.	97.	97.	2.34	0.35	0.19	57.5	1.86	112.G	0	76.8	1.05	5 141
I GIRMO	8 28003	3 3414.	0.	0.	-3414.	1975.	2884.	97.	351.	3.53	0.35	0.30	111.9	3,62	111.9	0	97.3	1.34	121
ਰੋ eTRU1	2 28003	3 1721.	ο.	Ο.	-1721.	1352.	798.	97.	97.	2.33	0.35	0.20	57.4	1.86	113.9	Ö	75.6		142
OTRWI	2 20003	3 3340.	o.	0.	-3340.	1988.	2926.	97.	356.	3.54	0.35	0.32	112.7	3.64	115.1	ŏ	93.5		122
C:1	6 28003			o.	-1715.	1352.	798.	97.		2.36	0.35	0.20	58.5	1.89	116.5	ő	75.5		142
	6 28003			Ö.	-3150.	1923.	2706.	97.	330.	3,29	0.35	0.32	103.3	3.34	111.9	0	90.2	1.24	
	8 20000			o.	-1780.	1352.	798.	97.	97.	2.30	0.35	0.17	55.7	1.80	106.8	ŏ	77.7		140
	8 28000		•	o.	-2952.	1772.	2202.	97.	268.	2.85	0.35	0.26	86.1	2,78	99.6	ő	92.7		125
Z1	2 28000				-1706.	1352.	79 8 .	97	97.	2.28	0.35	0.21	55.4	1.79	110.9	Ö	74.8		143
			<u>~</u>		.,,,,,,	100%.	, 50.				3.00	<u> </u>			. 10.3		14.0	1.00	1 7 5

H						<u>ei 1161</u>	TM OT	1#10##C-					4 4 -								***************************************
-8																					
8			* * C(DOENEI	RATIO	N CASI	E** **N	OCCIGEN -	COGEN**	POWER	COGEN	M.SD	POWER	FESR	CAPITAL	NORM	\$/KV	ROI	LEYL	NORM I	WRTH
I	ECS	PROCS	DISTIL	RESIL	OL C	OAL.	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
1		1						4 1 2		MW	MW	1	RATIO		*10**6			(%)			
I	GTR3	2 28003	2857	•	0.	0.	-2857.	1816.	2351.	97.	286.	2.89	0.35	0.31	88.2	2.85	105,3	0	85.5	1.17	127
H	OTR3	6 28003	3 1708		Ο.	0.	-1708.	1352.	798.	97.	97.	2.31	0.35	0.21	56.7	1.83	113,3	0	75.0	1.03	143
1	GTR3	6 28003	2838		0.	О.	-2833.	1806.	2315.	97.	282.	2.95	0.35	0.31	90.7	2.93	109,1	0	86.0	1.18	127
- []	FCPA	\$ 28000	3 1812		Ο.	0.	-1812.	1352.	798.	97.	97.	12.29	0.35	0.16	86.0	2.78	162.0	0	92.2	1.27	135
l	FCPA!	S 2000:	3 5571	•	0.	0.	-5571.	2636.	5094.	97.	620.	68,95	0.35	0.28	327.9	10.60	200.9	Ö	215.3	2.96	135
ï	FCMCI	S 28000	3 1698		0.	Ο.	-1698,	1352.	798,	97.	97.	11.63	0.35	0.21	89.5	2.89	179,8	0	87.4	1.20	139
R	FCMCI	S 28000	3 4064		0.	0.	-4064	2318.	4029.	97.	491.	51.89	0.35	0.36	299.7	9.68	251.6	0	162.7	2.23	133
- 11																					

PATE 06/2007/ LASE-PEG-ADV-DES-ENGR

OENERAL ELE RIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF	FUEL	SAVED	ÐΥ	TYPE	8	ECONOMICS
------------	------	-------	----	------	---	------------------

 				FUEL USE	IN BT	J×10**6-							·	:					
				ION CASE	. , .			* P0	OMER	COGEN	MBO	POWER	FESR	CAPITA	NORM	\$/KW	ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL F	RESIDL	COAL	DISTIL	RESIDL	COAL			POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG
	······································								1W	MW		RATIO		*10**6			(%)		
	V 28121	ο.	606.	985.	0,	0.	0.		120.	0.	0.54	1.55	0.	8.6	1.00	94.6	0	50.4	1.00 80
STI114		o.	635.	835.	٥.	-29,	150.		120.	18.	0.75	1.55	0,08	12.5	1.44	110.4	43	47.3	0.94 103
3	28121	0.	249.	1220.	0.	357.	-235.		120.	18.	1.56	1.55	0.08	25.3	2.92	223.9	24	44.5	0.88 88
	28121	<u> </u>	249.	1220.	0.	357.	<u>-235.</u>		120.	18.	1.40	1.55	0,08	18.5	2.14	<u> 163.7</u>	39	43.6	0.87 93
	3 28121 3 28121	0. 0.	628. 261.	872. 1239.	0.	-21. 345.	113. -254.		120. 120.	14. 14.	0.72	1.55 1.55	0.06	11.2	1.30	104.6	46	48.0	0.95 100
	3 28121	0.	261.	1239.	0. 0.	345.	-254.		120.		1.47	1.55	0.06	23.4	2.71	217.8	23 37	45.4	0,90 84 0,89 89
2	1 28121	o.	225.	1181.	0.	345. 382.	-204. -195.		120. 120.	14. 28.	1.35 2.32	1.55	0.06	17.5 30.4	2.03 3.52	163.0	23	44.6 43.3	0.86 94
	T 28121	0.	668.	677.	0.	-62.	308.		120.	20. 37.	2.31	1.55	0.12	72.8	8.43	533.0	3	51.6	1.02 98
	28121	o.	202.	1144.	0.	404.	-158.		120.	37.	3.30	1.55	0.15	92.2	10.67	674.9	6	48.6	0.97 95
	3 23121	ŏ.	658.	848.	Ŏ.	-52	137.		120.	17.	1.89	1.55	0.05	61.9	7.17	522.3	õ	54.7	1.09 79
	3 28121	o.	253.	1253.	Ŏ.	353.	-268.		120.	17.	2.80	1.55	0.05	79.5	9.20	669.9	ž	52.5	1.04 76
STIRL	28121	563.	190.	635.	-563.	416.	350.		20.	43.	1.21	1.55	0.13	30.3	3.50	183.5	- <u>-</u> -	51.1	1.01 104
STIRL	28121	0.	753.	635.	Ο.	-147.	350.		120.	43.	1.22	1.55	0.13	30.3	3.51	183.7	14	47.1	0.94 102
STIRL	28121	Ο.	190.	1198.	0.	416.	-213.	. 1	120.	43.	2.37	1.55	0.13	53.0	6.13	321.0	15	43.4	0.86 94
	28121	0.	0.	1348.	0.	606.	-363.		120.	120.	6.08	1.55	0.15	154.6	17.90	391.5	7_	47.0	0.93 110
	26121	0.	0.	1661.	0.	695.	-378.		20.	156.	6.74	1.55	0.16	178.6	20.67	366.9	6	48.8	0.97 100
	28121	Ο.	138.	1301.	Ο.	468.	-316.	-	120.	64.	3.66	1.55	0.10	93.7	10.85	381.5	7	47.3	0.94 92
	28121	0.	227.	1294.	0.	379.	-309.		120.	28.	2.29	1.55	0.04	54.0	6.25	344.1	9	48.0	0.95 81
	28121	<u> </u>	172.	1135.	0.	434.	<u>-150.</u>		120.	<u> 50.</u>	3.54	1.55	0.18	64.8	7.50	395.7	12	43.7	0.87 100
11	28121	0.	100.	1021.	0.	506.	-36.		120.	79.	4.42	1.55	0.30	80.2	9,28	398.0	15	38.9	0.77 115
11	28121	0.	157.	1169.	0.	449.	-183.		120.	56.	2.33	1.55	0.17	62.6	7.25	333.2	15	41.8	0.83 99
	R 28121 3 28121	0,	780. 710.	557. 650.	0, 0.	-174. -104.	428. 335.		120. 120.	52. 41.	0.97 0.82	1.55 1.55	0.16	23.2 18.2	2.68 2.10	129.0	27 37	44.6	0.89 111 0.89 111
	2 28121	<u> </u>	739.	567.	0.	-133,	418.		120.	51.	0.92	1.55	0.15	21.5	2.49	128.8	34	43.4	0.86 114
1	5 28121	ο.	761.	513.	0.	-155.	472.		120.	58.	1.00	1.55	0.10	24.5	2.43	137.4	31	42.8	0.85 115
	28121	o.	801.	488.	0.	-195.	497.		20.	61.	1.00	1.55	0.19	24.0	2.78	125,0	30	43.3	0.86 115
	28121	o.	929.	168.	Ŏ.	-323.	817.		20.	100.	1.42	1.55	0.31	33.1	3.83	128.5	30	38.9	0.77 126
	2 28121	o.	876.	249.	Ō.	-270.	736.		20.	90.	1.37	1.55	0.29	32.8	3.80	139.6	29	39.6	0.79 124
	28121	0.	870.	252.	o.	-264.	733.		20.	89.	1.35	1,55	0.29	31.1	3.60	133.3	31	39.3	0.78 125
CC082	20121	0.	791.	399.	0.	-185.	586,	1	120.	71.	1.19	1.55	0.25	25.9	3.00	131.7	34	40.7	0.81 121
	28121	0.	1370.	0.	0.	-764.	965.	1	120.	120.	2.97	1.55	0.14	45.9	5.32	114.5	5	50.2	1.00 118
1	20121	0.	20385.	0.		-14491.	18688.			2276.	34.93	1.55	0.17	565.4	65.44	94.7	0	301.7	5.99 187
1	28121	0.	1274.	0.	0.	-668.	985.		120.	120.	2.49	1,55	0.20	42.5	4.92	113,9	13	46.4	0.92 124
.1	28121	0.	2000.	0.	0.	-1172.	1728.		20.	210.	3,38	1.55	0.22	62.8	7.27	107.2	0	54.1	1.07 112
	S 20121	0.	1230.	0.	<u> 0.</u>	-624,	985.		20.	120.	2.33	1,55	0.23	39.5	4.57	109.6	17	44.5	0.88 128
	S 28121 3 28121	0.	1257.	0.	0.	-642.	1014.		20.	124.	2,26	1.55	0.23	39.7	4.59	107.7	16	44.6	0.89 117
1	3 20121 3 20121	0. 0.	1134. 1222.	0. 0.	0. 0.	-528.	985.		20.	120.	2.76	1.55	0.29	81.0	9.38	243.8	9	46.4	0.92 130
1	3 20121 1 28121	0.	761.	485.	0, 0.	-585. -155.	1091. 500.	-	120. 120.	133. 61.	2.80 1.70	1.55 1.55	0.29	87.7 46.1	10.15 5.33	244.8	8	47.3	0.94 120
	28121	1202.	701.		-1202.	606.	965.		20.	120.	3.31	1.55	0.22	101.0	11.69	255.0 286.8	14	44.9 59.5	0.89 111 1.18 130
	3 28121	1449.	o.	0.	-1449.	688.	1259.		20.	153.	3.31	1.55	0.26	124.9	14.45	294.0	Ö	65.3	1.30 122
	28121	0.	1202.	o.	0.	-596.	905.		20.	120.	3.31	1.55	0.24	101.0	11.69	286.8	4	51.1	1.02 126
					ν.	,,		•		. —			~ 4					•	120

DATE 06/08/70 18SE-PEO-ADV-DES-ENGR

				F	UEL US	IN BTO	J*10**6-													
			* * CO	IGENERATI	ON CASE	E** **N(COGEN -	COGEN**	POWER	COGEN	V130	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PRO	CS DI	STIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
1									MW	MW		RATIO		*10**6			(%)			·
DES	UA3 28	121	0.	1449.	0.	0.	-762.	1259.	120.	153.	3.77	1.55	0,26	124.9	14.45	294.0	1	55.2	1.10	117
GTS	0AD 28	121	572.	174.	584.	-572.	432.	402.	120.	49.	0.86	1.55	0.16	19.0	2.20	113.3	20	47.8	0.95	116
GTR	82 80 0	121	762.	99.	330,	-762.	507.	655.	120.	80.	1.26	1,55	0,25	33.4	3.87	149.6	14	46,9	. 0.93	122
GTR	A12 28	121	745,	103.	344.	-745.	503,	642.	120.	78.	1,22	1.55	0.25	31.9	3.69	146.0	15_	46.5	0.92	122
GTR	A16 28	121	715.	115.	385.	-715.	491,	600.	120.	73.	1.22	1.55	0.24	32.1	3.71	153.2	14	47.0	0.93	120
GTR	208 28	121	648,	145.	486.	-648.	⊸i61.	499.	120.	61.	1.03	1.55	0.20	25. 1	2.91	132.3	15	47.6	0.95	117
GTR	212 28	121	674.	134.	450.	-674.	472.	535.	120.	65.	1.09	1.55	0.21	27.1	3.14	137.3	15	47.4	0.94	118
GTR	216 28	121	676.	130.	437.	-676.	476.	549.	120.	67.	1.13	1.55	0.22	29.0	3.36_	146.3	15	47.2	0.94	118
GTR	WU8 28	121	927.	60,	202.	-927.	546.	703.	120.	95.	1.29	1.55	0,25	33.5	3.88	123.2	11	48.0	0.95	123
GTR	W12 28	121	912.	56.	186.	-912,	550.	799.	120.	97.	1.30	1.55	0.27	33.8	3.91	126.5	14	46.9	0.93	125
GTR	W16 28	121	865.	72.	242.	-865.	534.	743.	120.	90.	1.28	1.55	0.28	33.5	3.88	132.4	13	47.3	0.94	123
GTR	308 28	121	802.	116.	387.	-802.	490.	598.	120.	73.	1.12	1,55	0.18	27.5	3.18	116.9	7	49.8	0.99	116
GTR	312 28	121	791.	100.	335.	-791.	506.	651.	120.	79.	1.14	1.55	0.23	28.5	3.30	123.2	14	47.5	0.94	121
GTR	316 20	121	786.	103.	344.	-786.	503.	641.	120.	78.	1.17	1.55	0.23	29.5	3.41	127.9	13	47.8	0.95	120
FCP	ADS 28	121	1174.	0.	Ο.	-1174.	606.	985.	120.	120.	13.64	1.55	0.26	74.0	8.56	215.0	0	65.9	1.31	137
FCP	ADS 20	121	1559,	0.	0.	-1559.	738.	1425.	120.	174.	19.18	1.55	0.28	100.9	11.68	220.9	0	78.4	1.56	131
FCM	CUS 28	121	1033.	0.	O.	-1033.	606.	985.	120.	120.	12.79	1.55	0.35	78.0	9.02	257.5	0	60.2		145
FCM	CDS 28	121	1137.	0,	0.	-1137.	649.	1128.	120.	137.	14.36	1.55	0.36	86.6	10.02	259.8	0	63.2	1.26	136
A																		*		

DATE 05/08/7 VISSE-PEO-ADV-DES-ENGR

				FUEL US	E IN BTO	J*10**6-														
		C00	ENERAT	ION CAS	E **NC	JCOGEN -	- COGEN**	POWER	COGEN	MSO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH	
ECS	PROCS	DISTIL F	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG		
								MA	MM		RATIO	•	*10**6			(2)				
ONOCO	N 28191	0,	1227.	249.	0.	0.	0.	30.	0.	1.28	0.11	0.	31.6	1.00	93.4	0	48.2	1.00	03 (
	1 28191		1275.			-47.	249.	30.	30.	1.73	0.11	0.14	34.8	1.10	93, 1	65	43.2		142	
	1 20191		1291.		The state of the s	-54.	283.	30.	35.	1.48	0.11	0.15	33.8	1.07	89.2	93	42.6		133	
4.5	1 28191		0.		o.		-1025. F		30.	3.93	0.11	0.14	70.8	2.25	189.7	25	33.5	•	122	
	1 28191		0.		Ō.		-1008, F		35.	3,46	0.11	0.15	66.0	2.09	174.4	30	32.0		113	
	1 28191		o.		o.		-1026.		30.	3.65	0.11	0.14	51.8	1.64	138.7	45	31.2		127	
	1 28191		0.		ő.		-1008. A	•	35.	3.31	0.11	0.15	50.7	1.61	134.0	49	30.2	0.63		
-	8 28191		1258.	85.	ő.	-31.	164.	30.	20.	1,38	0.11	0.09	30.1	0.95	83.4		44.4		120	
	8 28191		25.				-1069. F		20.	3.22	0.11	0.09	61.2	1.94	169.5	29	34.3	0.71		
	8 28191		25.		ŏ.				20.	3.19	0.11	0.09	48.5	1.54	134.3	48	32.9	0.68		
	M 28191		0.		o.		-1034.	30.	30.	4.73	0.11	0.13	65.4	2.07	173.9	27	33.8	0.70		
	M 20191		o.	1452.	Ö.	1324.	-879.	30.	70.	5.68	0.11	0.23	65.7	2.08	154.4	32	30.0		115	
	T 28191		1278.			-51	249.	30.	30.	3.26	0.11	0.13	92.9		247.9	- 5	51.1	1.06		
	T 28191		1561.		o.	-167.	809.	30.	99.	5.21	0.11	0.13	178.6	5.66	390.4	Ö	57.9	1.20		1
	T 28191		0.		· · ·	1227.	-1030.	30.	30.	5.50	0,11	0.13	132.5	4.20	353.3	9	41.8	0.87		
	T 28191		o.	1561.	ő.	1395.	-752.	30.	99.	7.59	0.11	0.29	225.3	7.14	492.5	6	46.0			,
	6 20191		1373.			-146.	249.	30.	30.	3.61	0.11	0.07	111.4	3.53	276.9	-	56.0	1.16		
	G 20191		1647.		ő.		558.	30.	68.	5.06	0.11	0.12	180.1	5.71	373.1	ŏ	65.7	1.36		
	0 20191		0.		ő.	1227.	-1125.	30.	30.	5.95	0.11	0.07	150.8	4.78	374.6	6	45.9	0.95		
	G 20191		o.		o.		-1089.	30.	68.	7.62	0.11	0.12	228.7	7.25	473.8	ž	53.6	1.11		
STIRL			0.			1227.	249.	30.	30.	2.21	0.11	0.09	53.2	1.69	135.2	0	56.5	1.17		
STIRL			o.			1452.	1002.	30.	122.	3.16	0.11	0.22	97.8	3.10	174.1	ŏ	65.8	1.36		,
STIRL			1343.			-115.	249.	30.	30.	2.21	0.11	0.09	53.2	1.69	135.3	. 7	47.6	0.99		
STIRL			1917.		o.	-465.	1002.	30.	122.	3.16	0.11	0.22	97.9	3.10	174.4	Ó	53.0	1.10		
STIRL			0.			1227.	-1094.	30.	30,	4.53	0.11	0.09	93.4	2.96	237,4	16	37.5	0.78		
STIRL			Õ.			1452.	-915.	30.	122.	6.61	0.11	0.22	174.8	5.54	311.2	ğ	40.6	0.85		,
	0 28191		Ö.		ő,		-1207. A		30,	4.79		-0.01	103.9	3.29	230.0	11	41.6	0.00		į
	0 20191		ő.		0.		-2600. /		524.	20.38		-0.02		16.12	251.5	Ò	101.2	2.10		-
	0 20191		<u>ō.</u>		0.				30.	4.67	0.11	0.04	98.4	3.12	236.2	13	39.7	0.82		
	0 20101		ő.		ő.		-1223. A		109.	6.20	0.11	0.09	143.1	4.54	230.3	ő	43.4	0.90		
	L 20191		o.		0.		-1056.	30.	30.	5.07	0.11	0.12	99.5		260.3	13	38.5	0.80		
	L 28191		o.		0.	1609.	-560.	30.	186.	10.12	0.11	0.33	169.3	5.37	277.2	11	35.5	0.74		
	L 20191		Ö.		0.		-1050.	30.	30.	5.04	0.11	0.12	98.3	3,11	258.2	14	36.3	0.79		
	L 28191		Ö.		o.	1743.	-336.	30.	241.	11.42	0.11	0.33	190.4		281.1	11	32.7	0.68		
	T 29191		o.				-1093.	30.	30.	4.34	0.11	0.09	94.1	2.98	239.3	15	37.8	0.78		
_	T 28191		. 0.	2151.	Ö.	1546.	-834.	30.	160.	4.89	0.11	0.25	151.4	4.80	240.1	12	34.2	0.71		
	R 20191		1350.	0.		-123.	249.	30.	30.	1.86	0.11	0.09	42.8	1.36	108.1	15	46.3	0.96		
	R 28191		2577.		- •	-887.	1798.	30.	219.	2.85	0.11	0.26	87.7	2.78	116.2	ŏ	52.9	1,10		
	8 28191		1303.	Ö,	_	-76.	249.	30.	30.	1.81	0.11	0.12	40.8	1.29	106.7	26	44.7	0.93		
	8 28191		1900.	o.	ő.	-379.	1235.	30.	150.	2.06	0.11	0.31	58.9	1.87	105.8	19	42.0	0.87		
	2 20191		1307.			-80.	249.	30.	30.	1.82	0.11	0.11	41.5	1.31	108.2	24	44.9	0.93		
	2 20191		2114.	Ö.		-497.	1551.	30.	189.	2.38	0.11	0.33	70.8	2.24	114.3	14	42.6	0.38		- 1
	6 28191			0.	-	-88.	249.	30.	30.	1.84	0.11	0.11	42.3	1.34	109.9	21	45.2	0.94		- /
			10,00	٥.	٥.	00.	Carrie 7.	υ.		1.1501	5.11		46.0		,,	7.1	-14/1/4	J	1 2727	1

:00 F	pricios :				E#* ##M		COGEN**	POWER		ови	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WE	RTF
·		DISTIL R				RESIDL	COVE	REGD MW	POWER MW		/HEAT RATIO		COST *10**6	COST	EGVL	(%)	CHRG	ENRG	
TAC16	7 -		2332.	0.	0.	-638.	1813.	30.	221.	2.70	0.11	0.33	82.5	2.61	120.7	10	44.6	0.93	
TWC16			1324.	Q.	0.	-97.	249,	30.	30.	1.84	0.11	0.10	42.1	1.33	108.5	20	45.5	0.94	
STWC16			2416.	0.	0.	-716.	1831.	30.	223.	2.54	0.11	0.32	76.0	2.41	107.3	9	45.9	0.95	
C1626		0.	1330.	0.	<u> </u>	-103.	249.	30.	30.	1.94	0.11	0.10	41.9	1.33	107.5	18	45.8		
C1526			2949.	0.	0.	-1043.	2521.	30.	307.	3.18	0.11	0.33	91.8	2.91	106.2	5	48.4	1.00	
C1622			1323.	ο.	0.	-95.	249.	30.	30.	1.93	0.11	0.10	42.0	1.33	108.3	19	45.6	0.95	
C1622			2693.	ο.	Ο.	-856.	2258.	30.	275.	3.14	0.11	0.34	94.1	2.98	119.2	6	47.1	0.98	
C1222		0.	1321.	0.	0.	-94.	249.	30.	. 30.	1.92	0.11	0.10	41.3	1.31	106.7	20	45.5	0.94	
C1222			2667.	0.	0.	-845.	2239.	30.	273.	3.06	0.11	0.34	88.2	2.79	112.8	8	46.0	0.95	
C0822			1310.	0.	0.	-82.	249.	30.	30.	1.92	0.11	0.11	41.1	1.30	107.0	22	45.1	0.94	
C0028			2253.	0.	0.	-579.	1747.	30.	213.	2.53	0.11	0.34	69.1	2.19	104.7	14	42.4	0.88	
EHTPM		<u>0.</u>	1342.	<u>0.</u>	0,	-115.	249.	30,	30.	2.41	0.11	0.09	59.3	1.88	150.9	4_	48.4	1.00 1	_
EHTPM		0.	2269.	0.	0,	-677.	1468.	30,	179.	5.05	0.11	0.26	166.7	5.28	250.8	0	61.9	1.28	. 5
TSOAD			0.	0.	-1318.	1227.	249.	30.	30.	1.79	0.11	0.11	40.2	1.27	104.0	0	53.9	1.12 1	
TSUAD			0.	0.	-2162.	1607.	1519.	30,	185.	2.18	0.11	0.31	62.6	1.98	98.8	0	58.2	1.21	
TRA08		1350.	0.	<u>0.</u>	<u>-1350.</u>	1227.	249.	30.	30.	1,95	0.11	0.09	46.9	1.49	118.5	0	<u>55.9</u>	1.16 1	
TRAO8		3622.	0.	0.	-3622.	2062.	3111.	30,	379.	4.18	0.11	0.30	137.3	4.35	129.3	0	84.6	1.75	
TRA12		1343.	0.	0.	-1343,	1227.	249.	30.	30.	1.88	0,11	0.09	43.8	1.39	111.4	0	55.2	1.14 1	
TRA12			0.	0.	-3350.	2017.	2894.	30.	353.	3.91	0.11	0.32	127.5	4.04	129.5	0	78.7	1.63	
TRA16			0.	0.	-1339.	1227.	249.	30.	30.	1.90	0.11	0.09	44.6	1.41	113.7	0	55.2		
IRA16			0.	0.	-3103.	1931.	2606.	30.	317.	3.83	0.11	0.32	125.1	3.96	137.5	0	75.7	1.57	
30SATE			0.	0.	-1336.	1227.	249.	30.	30.	1.85	0.11	0.09	42.6	1.35	108.7	0	54.8	1.14 1	
3027T			0.	0.		1765.	2048.	30.	250.	3.02	0.11	0.30	94.1	2.98	120.7	0	68.3	1.42 1	
STR212		1336.	<u>o.</u>	<u>0,</u>	-1336.	1227.	249.	30.	30.	1.86	0.11	0.09	43.1	1.37	110.1	0_	54.9	1.14 1	
TRAIS		2772.	0.	0,	-2772.	1810.	2201.	30.	268.	3.22	0.11	0.31	101.6	3.22	125.1	0	69.8	1.45	
TR216		1333.	0.	0.	-1333.	1227.	249.	30.	30,	1.88	0.11	0.10	43.8	1.39	112.1	0	54.9	1.14 1	
TR216. TRV08		2801. 1368.	0. 0.	0. 0.	-2801. -1368.	1831. 1227.	2271.	30.	277.	3.42	0.11	0.32	109.7	3.40	133.6	0	70.3	1.46	
TRHUB							249.	30,	30.	1.95	0.11	0,07	46.7	1.48	116.5	0	56.5	1.17 1	_
			0,	0.	-4275. -1255	2231.	3610.	30.	440.	4.12	0.11	0.27	132.9	4.21	106.1	0	96.3	2.00	
TRW12 TRV12		1355. 4012.	0, 0.	0. 0.	-1355, -4012,	1227. 2202.	249.	30.	30.	1.95	0.11	0.08	46.7	1.48	117.5	0	56.0	1.16 1	
TRW16		1351.	0.	0.	-401a. -1351.	1227.	3514. 249.	30.	428.	4.03	0.11	0,30	130.3	4.13	110.8	0	88.6	1.84	
TRATE		3641.	0.	0.	-3641.	2087.	3128.	<u>30.</u>	30. 381.	1.96 3.89	0.11	0.08	47.2 125.7	3.98	119.3	$\frac{0}{0}$	56.0	1.16 1	
TR308		1378.	. 0.	0.	-1378.	1227.	249.	30. 30.	301.	1.86				1.35	117.8	0	83,4	1.73 1	
TROOS			0.	0.	-3544.	1943.	249. 2644.	30. 30.	30. 322.	3.34	0.11 0.11	0.07	42.6 104.0	3.30	105,5	0	56.3 88.1	1.17 1	
TR312		1343.	0.	0.	-1343.	1227.	249.	30.	30.	1.85	0.11	0.23	42.5	1,35	100.2	0	55. i		
11312		3115.	0.	0.	-3115.	1919.	2563.	30.	312.	3.11	0.11	0.31	96.3	3.05	105.5	0	73.3	1.14 1	
TR316		1344.	0.	0.	-1344.	1227.	2383.	30. 30.	30.	1.86	0.11			1.37		0	73.3 55.2	1.14 1	-
TR316			0.	o.	-3085	1905.	2517.	30.	307.	3.17	0.11	0.09	43.1 98.8	3.13	109.5	0	73.6	1.53	
CPADS		1371.	o.	a.	-1371.	1227.	249.	30.	307.	4.74	0.11	0.30	90.0 54.8	1.74	136.5	0	60.3	1.25 1	-
CLYDS		- 5765,	0.	 	-5765.	2727.	5271.	30.	642.	6G.90	0.11	0.07		0.76	200.9	- 6	196.9	4.08 1	_
CMCDS			0.	0.	-1335.	1227.	249.	30.	30.	4.55	0.11	0.10	55.8		142.7	Ö	58.9	1.22	
J. 10 2 3	28191		· 0.	o.	-4206.	2398.	4170.	30.	5.08.	50.30	0.11	0.36	364.0		246.7	o.	145.2	3.01	

PAGE 59

DATE 06/06/75 L&SE-PEG-ADV-DES-ENGR

			GENERAT							COGEN	MBO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORI1 W	IRTI
cs I	PROCS		RESIDL		DISTIL				REGD MW	POVER MW		/HEAT		COST *10**6	COST	EQVL	(7)	CHRG	ENRG	
NOCGN	28192	0.	2456.	497.	Ō.	0.	0.		61.	- 110	2.08		0.	58.7	1.00	86.8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	95.5	1.00	80
	28192			0.	Ô.	-95.	497.		61.	61.	2.59	0, 11	0.14	60.9	1.04	81.5	-	84.7	0.89	-
	28192			Ö.	0.	-108.	567.		61.	69.	2.28	0.11	0.15	60.0	1.02	79.2		83.7	0.88	
	28192			2550.	o.	2456.	-2053.	F	61.	61.	6.46	0.11	0.14	125.7	2.14	168.2	30	63.9	0.67	
	28192			2584.	0,	2476.	-2017.		61.	69.	6.10	0.11	0.15	128.5	2.19	169.7	29	62.8	0.66	
	28192			2550.	o.		-2053.		61.	61.	6.21	0.11	0.14	96.0	1.64	128.4	50	60.4	0.63	
	28192			2584.	o.		-2017.		61.	69.	5.78	0.11	0.15	92.2	1.57	121.8	56	58.6	0.61	
	20192		2518.	170.	0.	-62.	328.	••	61.	40.	2.12	0.11	0.09	54.0	0.92	74.8	999	87.5	0.92	
	20192			2637.	0.	2405.	-2140.	F	61.	40.	5.66	0.11	0.09	120.1	2.05	166.1	29	67.5	0.71	_
	28192			2637.	0.	2405.	-2140.	-	61.	40.	5.58	0.11	0.09	89.0	1.52	123.1	53	64.1	0.67	
	28192			2567.	o.	2456.	-2069.	••	61.	61.	8.09	0.11	0.13	115.6	1.97	153,8	32	64.7	0.68	-
	28192		Ö.	2906.	õ.	2650.	-1758.		61.	140.	10.37	0.11	0.23	117.2	2.00	137.7	37	58.1	0.61	
	28192			0.	0.	-103.	497.		61.	61.	5.15	Ö. i	0.13	159.1	2.71	212.2	2	98.1	1.03	
	28192			o.	o.	-334.	1619.		61.	197.	9.84	0.11	0,29	354.3	6.04	387.0	ō	115.0	1.20	
	23192			2558.	o.				61.	61.	8.99	0.11	0.13	227.1	3.87	303.0	12	77.5	0.81	
	28192		õ.	3124.	0.	2791.	-1505.		61.	197.	14.34	0.11	0.29	447.9		489.2	6	90.6	0.95	
	28192			0,	0.	-292.	497.		61.	61.	5.88	0.11	0.07	193.4	3.30	240.2	ō	107.6	1.13	
	28192			o.	o.	-655.	1116.		61.	136.	9.71	0.11	0.12	359.6	6.13	372.3	ŏ	131.1	1.37	
	20192			2748.	0.	2456.	-2250.		61.	61.	9.94	0.11	0.07	262.8		326.4	8	65.6	0.90	
	20192		0.	3296.	Ο,	2640.	-2180.		61.	135.	14.58	0.11	0.12	457.0		473.2	2	106.5	1.11	9
TT RL	26192		0.	ō.	-2686.	2456.	497.		61.	61.	3.62	0.11	0.09	100.1		127.1	ō	111.6	1.17	
TIRL	20192		0.	Ο.	-3836.	2906.	2005.		61.	244.	5.71	0.11	0.22	191.9		170.7	ō	130.6	1.37	
TIRL	28192	0.	2686.	Ο.	0,	-231.	497.		61.	61.	3.62	0.11	0.09	100.1		127.2	B	93.7	0.98	12
TIRL	20192	0.	3836.	ο.	Ο.	-930.	2005.		61.	244.	5.72	0.11	0.22	192.1		170.9	ŏ	105.0	1.10	
TIRL	28192	O.	Ö.	2606.	G.	2456.	-2189.		61.	61.	7.78	0.11	0.09	176.1		223.7	17	72.5	0.76	11:
TIRL	28192	0.	0.	3836.	Ο.	2906.	-1831.		61.	244.	12.33	0.11	0.22	344.6	5.87	306.5	g	80.1	0.84	9
потво	20192	· 0.	o.	2972.	ο.	2456.	-2.174.	Α	61.	61.	0.21	0.11	0.01	187.0	3.19	214.0	13	79.5	0.83	
EGTGO	23192	σ.	σ.	13809.	0.	4878.	-5203.	A	61.	1048.	40.06	0.11	0.02	1017.5	17.34	251.4	0	201.9	2.11	6
EG100	28192	0.	O.	2843.	O.	2456.	-2345,	Ā	61.	61.	7.77	0.11	0.04	167.6	2.86	201.2	16	74.8	0.78	10
ICOTON	28192	0.	0.	4244.	0.	2044.	-2447.	Α	61.	219.	10.80	0.11	0.09	234.2	3.99	188.3	11	79.3	0.83	80
CMCCL	20192	0.	ο.	2611.	0.	2456.	-2114.		61.	61.	8.62	0.11	0.12	172.6	2.94	225,5	16	72.6	0.76	110
CMCCL	20192	0.	0.	4172.	0.	3219.	-1120.		61.	372.	18.31	0.11	0.33	283.0	4.82	231.5	14	62.9	0.66	9
	28192		ō.	2599.	0.	2456.	-2101.		61.	61.	8.49	0.11	0.12	170.7	2.91	224.1	17	72.1	0.75	11
	28192			4625.	Ο.	3437.	-673.		61.	481.	20.58	0.11	0.38	318.2	5.42	234.8	14	56.3	0.59	9
	28192			2604.	0.	2456.	-2187.		61.	61.	6.91	0.11	0.09	160.6	2.74	204.2	19	70.8	0.74	11
GGTST	28192	0.		4304.	0.	3094,	-1669.		61.	321,	8.34	0,11	0.25	279.1	4.76	221.3	14_	64.3	0.67	8
	20192		2701.	O.	0,	-245.	497.		61.	61.	2.98	0.11	0.09	79.2	1.35	100.1	18	91.3	0.96	13
	20192			0.	ο.	-1775.	3599.		61.	438.	4.78	0.11	0.26	157.5	2.69	104.2	0	103.1	1,08	99
	20192			ο.	0.	-153.	497.		61.	61.	2.89	0.11	0.12	75.6	1.29	99.0	29	88.1	0.92	
	28192			0.	0.	-758.	2471.		61.	301.	3.50	0.11	0.31	109.6	1.87	98.3	20_	82.5	0.88	
	20192			Ó.	O.	-159.	497.		61.	61,	2.93	0,11	0.11	77.4	1,32	101.0	26	88.5	0.93	
	20192			ο.	0.	-995.	3104.		61.	378.	4.10	0.11	0.33	132.6	2.26	107.0	15	83.6	0.88	
	28192	0,	2631.	0.	0.	-175.	497.		61.	61.	2.97	0.11	0.11	79.1	1.35	102.6	23	89.2	0.93	

OATE 06/08/79 1&SE-PEO-ADV-DES-ENGR

							COGEN**		COGEN	MAG	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM W	RTH
cs	PROCS	DISTIL				RESIDL	COAL	REQD MW	POWER MW	•	/HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
TAC16	28192	0.	4667.	O.	0.	-1276.	3627.	61.	442.	4.80	0.11	0.33	159.4	2.72	116.6	10	88.1	0.92	104
	28192		2650.	Ο.	0.	-194.	497.	61.	61.	2.94	0.11	0.10	77.8	1.33	100.1	23	89.6	0.94	135
TWC16	28192	0.	4835.	0.	0.	-1433.	3664.	61.	446.	4.33	0.11	0.32	140.0	2.39	98.8	10	89.7	0.94	104
C1626	28192	0.	2661.	0.	0.	-206.	497.	61,	61.	3.05	0.11	0.10	77.6	1.32	99.5	20	90,2	0.94	134
C1626	28192	0.	5900.	0.	0.	-2087.	5044.	61.	614.	5.31	0.11	0.33	166.5	2.84	96.3	6	93.9	0.98	101
	28192		2646.	Ο.	0.	-191.	497.	61.	61.	3.06	0.11	0.10	78.5	1.34	101.2	20	89.9	0.94	135
	28192		5389.	0.	0.	-1732.	4517.	61.	550.	5.23	0.11	0.34	170.1	2.90	107.7	8	91.1	0.95	102
C1222	28192	0.	2643.	0.	0.	-188.	497.	61.	61.	3.04	0.11	0.10	77.3	1.32	99.8	_22_	89.6	0.94	135
C1222	28192	0.	5336.	0.	0.	-1691.	4480.	61.	546.	5.05	0.11	0.34	157.8	2.69	100.9	10	88.9	0.93	103
C0822	28192	Ο.	2620.	0.	Ο.	-165.	497.	61.	61.	3.02	0.11	0.11	76.2	1.30	99.3	25	88.8	0.93	136
	28192		4509.	0.	ο.	-1158.	3495.	61.	426.	4.27	0.11	0.34	129.4	2.21	97.9	16	83.1	0.87	107
EHTPM	28192		2685.	0.	0.	-229.	497.	61.	61.	4.06	0.11	0.09	115.4	1.97	146.6	5	95.7	1.00	126
	28192		4540.	0.		-1355.	2938.	61.	358.	9.35	0.11	0.26	328.7	5.60	247.1	Ō	122.6	1.28	98
	28192		0.	Ο,		2456.	497.	61.	61.	2.87	0.11	0.11	74.9	1.28	96.9	0	106.5	1.11	140
	28192		0.	Ο.	-4327.	3215.	3040.	61.	370.	3.79	0.11	0,31	119.8	2.04	94.5	0	115.2	1.21	115
TRA08	28192	2702.	0.	0.	-2702.	2456.	497.	61.	61.	3.09	0.11	0.09	84.3	1.44	106.5	0	110.0	1.15	136
	20192		0.	0.		4167.	6226.	61.	758.	7.19	0.11	0.30	249.4	4,25	117,4	0	165.4	1.73	109
	20192		0,	0.		2456.	497.	61.	61.	3.02	0.11	0,09	81.5	1.39	103.6	0	109.1	1.14	137
	20192		0.	Ο,		4037.	5791.	61.	705.	6.78	0.11	0.32	234.0		118.8	0	154.2	1,61	109
	28192		0.	0.		2456.	497.	61.	61.	3.06	0.11	0.09	82.8	1.41	105.4	0_	109.0	1.14	137
	28192		Ō.	0.		3864.	5214.	61.	635.	6.51	0.11	0.32	224.0	3.82	123.1	0	147.5	1.54	108
TR208	28192	2673.	Ο.	0.	-2673.	2456.	497.	61.	61.	2.97	0.11	0.09	79.1	1.35	101.0	0	108.3	1.13	138
TR208	20192	5323.	Ο.	0.	-5323.	3531.	4099.	61.	499.	5.10	0.11	0.30	169.7	2.89	108.8	0	133.7	1.40	109
	20192		0.	0,		2456.	497.	61.	61.	2,99	0.11	0.09	80.0	1.36	102.2	0_	108.4	1.13	130
171272	28192	5546.	0.	0.	-5546.	3623.	4404.	61.	536.	5.39	0.11	0.31	180.7	3.08	111.2	0	136,3	1.43	109
TR21Ğ	28192	2668.	0.	0.	-2668.	2456.	497.	61.	61.	3.02	0.11	0.10	81.4	1.39	104.1	0	108.4	1.13	138
TR216	28192		О.	0.	-5605.	3665.	4545.	61.	554.	5.70	0.11	0.32	196.2	3.34	119.5	0	137.2	1.44	109
	20192		0.	0.	-2737.	2456.	497.	61.	61.	3.08	0.11	0.07	83.5	_1.42	104.1	O_	111.2	1.16	135
TRHOB	20192	6554.	Ō.	Ō.	-8554.	4465.	7224.	61.	880.	7.06	0.11	0.27	241.9	4.12	96.5	0	189.0	1.98	111
TRWIZ	28192	2712.	Ο,	0,	-2712.	2456.	497.	61.	61.	3.07	0.11	0.08	83.5	1.42	105.0	0	110.3	1.15	136
TRW12	20192	8027.	Ο.	0.	-8027.	4407.	7031.	61.	856.	6.72	0.11	0.30	229.0	3.90	97.3	0	172.6	1.81	112
TRW16	28192	2703.	0.	0,	-2703.	2456.	497.	61.	61.	3.09	0.11	0.08	84.3	1.44	106.4	0	110.1	1.15	136
	20192		O.	0,		4177.	6259.	61.	762.	6.48	0.11	0.30	220.7	3.76	103.3	0	162.3	1.70	110
	20192		0.	0.	-2757.	2456.	497.	61.	61,	2.98	0.11	0.07	78.9	1.34	97.7	0	111.3	1.17	135
	20192		Ο,	0,		3087.	5290.	61.	644.	5.46	0,11	0,23	160.5	3,08	86.8	0	172,1	1.80	107
	28192		0.	0.		2456.	497.	61.	61.	2.95	0.11	0.09	78.6	1.34	99,8	0	108.8	1.14	138
	28192		Ō.	0.		3839.	5129.	61.	625.	5.23	0.11	0.31	173.0	2.95	94.7	0	143.6	1.50	110
	20192		0.	0.		2456.	497.	61.	61.	2.98	0,11	0,09	79.6	1.36	101.0	0	108.9	1.14	137
	20192		0.	0,		3811.	5036.	61.	613.	5.36	0.11	0.30	178.2	3.04	98.5	0	144.3	1.51	109
	20192		0.		-2742.	2456.	497.	61.	61.	8.84	0.11	0.07	103.0	1.76	128.2	0_	119.2	1.25	132
		11535.	O,		-11535.	5458.	10548.	61.	1285.	133.06	0,11	0.28		11.24	195.0	0	391.2	4.09	
	28192		Ο.		-2671.	2456.	497.	61.	61.	8.47	0.11	0.10	105.2	1.79	134.4	0	116.5		
CMCDS	28192	8416.	Ο,	0.	-8416.	4799.	8344.	61.	1016.	99,62	0,11	0.36	578.8	9.87	234.7	0	286.5	3.00	141

PAGE 61

ļ	<u> </u>									·									
ll .	•			FUEL US															
l				TON CASI						orm		FESR	CAPITAL		\$/KW	ROI	LEVL	NORM WR	tTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRO	
								MW	MW		RATIO		*10**6			(3)			
11	SN 2821			33.	0.	0.	0.	4.	o.	0.46	0.07	Ο.	6.2	1.00	87.5	0	9.7	,	80
	11 28212			0.	0.	-6,	33.	4.	4.	0.80	0.07	0.09	9.7	1.56	128.0	6	9.7	0.99 1	
	11 2821			0.	0.	-17.	87.	4.	11.	0.65	0.07	0.20	9.8	1.58	117.4	16	9.1	0.93 1	20
	11 28212		0.	260.	0.	253.	-227.		4.	1.58	0.07	0.09	21.7	3.47	285.0	10_	8.5	0.87 1	.14
	11 20212				0.	270.	-199.		11.	1.30	0.07	0.20	20.1	3.22	239.6	16	7.2	0.74 1	
STM1	11 2821:	20.	ο.	260.	0.	253.	-227.	A 4.	4.	1.48	0.07	0.09	19.7	3.15	258,4	12	8.2	0.84 1	.14
10	11 2821		0.	286.	Ο.	270.	-199.	A 4.	1,1.	1.16	0.07	0.20	14.9	2,38	177,6	25	6.5	0.67 1	.06
	38 28212			0.	0.	<u>-6.</u>	33.	4.	4.	0.80	0.07	0.09	9.4	1.51	123.9	7	9.7	0.99 1	32
u .	38 2821	-		0.	0.	-11.	60.	4.	7.	0.62	0.07	0.15	8.7	1.40	109.1	15	9.2	0.94 1	25
	38 2821	-		260,	0.	253.	-227.		4.	1.57	0.07	0.09	21.4	3.42	280.8	11	8.4	0.86 1	14
11	38 2821				0.	261.	-213.		7,	1.23	0.07	0.15	18.5	2.96	231.4	16	7.4	0.76 10	
11	38 2821			260.	0.	253.	-227.		4.	1.48	0.07	0.09	18.9	3.02_	248.2	13	8.1	0.83 1	
14	38 2821				0.	261.	-213,		7.	1.12	0.07	0.15	14.0	2.25	175.4	25	6.8	0.70 10	
(3	TM 2621				o.	253.	-227.	4.	4.	1.60	0.07	0.09	21.9	3.51	287.1	10	8.5	0.88 1	
12	TM 2821:			320.	0.	288.	-170.	4.	18.	1.86	0.07	0.27	24.6	3.94	262.5	13	7.4		96
	1T 2821:			0.	<u> </u>	<u>-7.</u>	33	4.	4.	1.03	0.07	0,09	19.7		258.8	0	11.0		
	17 26212			0.	0.	-42.	204.	4.	25.	1.89	0.07	0.32	57.8	9.26	570.2	0	14.6	1.50 10	
111	1T 2821	-		260.	o.	253.	-227.	4.	4.	1.79	0.07	0.09	32.1	5.15	421.9	5	9.8	1.01 1	
n	1T 28212			346.	0.	304.	-142.	4.	25.	2.69	0.07	0.32			724.4	0	12.7		99
	SG 2821			<u>o.</u>	0.	-16.	33.	4.	4.	1.11	0.07	0.06	25.6	4.10	324.5	0	11.9	1.22 1	
	SG 2821			0.	0.	-54.	112.	4.	14.	1.65	0.07	0.15	53.3	8.53	549.5	O	15.4	1.58 10	
23	SG 2821			269.	0.	253.	-236,	4.	4.	1.92	0.07	0.06	39.2	6.28	497.1	2	10.9	1.12 10	
	30 28212				0,	277.	-219.	4.	14.	2.43	0.07	0.15	•	10.95	705.6	0	13.8		96
STIR			0.		-268.	253.	33.	4.	4.	0.75	0.07	0.06	10.4		132.9	0	11.8	1.21 1	
STIR			0.		-422,	316.	241.	4.	29.	0.98	0.07	0.24	22.8	3.65	184.8	0	14.1	1.45 10	
STIR			268.	0.	0.	-14.	33.	4.	4,	0.75	0.07	0.06	10.4	1.67	132.9	0	9.9	1.02 1	
STIR				0.	0.	-106.	241.	4.	29.	0.98	0.07	0.24	22.9	3.66	185.0	0	11.3		93
STIR				268.	0,	253.	-235.	4.	4.	1,47	0.07	0.06	21.6		275.0	<u> 11</u>	8.4	0.87 1	
STIR					0.	316.	-180.	4.	29.	1.90	0.07	0.24	40.5	6.48	327.7	7	8.7		81
	50 28212				0.	253.	-249,		4.	1.53	0.07	0.02	27.3	4.37	330.5	6	9.4	0.97 1	
	50 26212		0.	890.	0.	409.	-335,		68.	3.81	0.07	0.08	-	15.65	374.8	0	17.8		74
	00 28212		<u> 0.</u>	278.	0.	253.	-245.		4.	1.52	0.07	0.03	26.5	4.25	326.2		9.3	0.95 10	
	00 20212				0.	299.	-251.		22.	1.97	0.07	0.10	46.6	7.46	365.6	2	11.1		73
41	L 28212				0,	253.	-231.	4.	4.	1.60	0.07	0.08	27.1	4.33	350.3	7	9.2		
_1	CL 28212			439.	0.	339.	-118.	4.	39.	2.90	0.07	0.34	54.4		423.4	5	9.9		90
	CL 28212		<u>0.</u>	263,	<u> </u>	253.	-230.	4.	4.	1.63	0.07	0.08	26.5	4.25	344.7		9.2	0.94 1	
	CL 28212				0.	381.	-51.	4.	56.	3.48	0.07	0,39		10.26	427.8	5	9.6		94
~I	ST 28212			268.	0.	253.	-235.	4.	4.	1.62	0.07	0.06	26.3	4.22	335.7	7	9.2	0.95 11	
71	ST 28212			476.	0.	338.	-161.	4.	38.	1.97	0.07	0.27	50.6	8.10	362.5	6	9.3		61
	\R 28212			<u>0.</u>	<u> </u>	<u>-15.</u>	33.	<u>4.</u>	4.	. 0.70	0.07	0.06	10.0	1.61	127.9	2	9.9	1.01 1	
	W 2821				0.	-160.	356.	4.	43.	0.87	0.07	0.28	20.1	3.21	134.4	0	10.8		95
	08 20212			0.	0.	-10.	33.	4.	4.	0.69	0.07	0.08	9.6	1.53	123.9	7	9.6	0.99 13	
4	08 2821	2 0.	401.	ο.	Ο,	-80.	261.	4.	32.	0.72	0.07	0.31	15. î	2.42	128.3	10	9.1	0.93 10	UZ
il																			

DATE 06/08//2 L&SE-PEG-ADV-DES-ENGR

														*				
ECS	PROCS	**COO DISTIL I			E** **NO DISTIL		COGEN**	POWER REQD MW	COGEN POWER MW	M&O	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	COST	S/KW EQVL	ROI	LEVL CHRG	NORM WRTH ENRO
GTAC12	28212	0.	264.	<u>ō.</u>	0.	-11.	33.	4.	4.	0.68		0.08	9,5	1.52	123.1	7	9.7	0.99 130
	28212		447.	Ŏ.	o.	-106	328.	4.	40.	0.80	0.07	0.33	17.8	2.86	136.1	8	9.3	0.95 100
	28212		265.	ŏ.	o.	-11.	33.	4.	4.	0.68		0.08	9,6	1.54	124.4	6	9.7	0.99 129
	28212		486.	Ö.	õ.	-129.	377.	4.	46.	0.87	0.07	0.34	20,5	3.28	144.2	5	9.7	0.99 99
	20212		266.	0.	Ö.	-13.	33.	4.	4.	0.69	0.07	0.07	9,9	1.59	127.2	4	9.8	1.00 128
	28212	•	511.	Ö.	o.	-152.	387.	4.	47.	0.87	0.07	0.32	20.1	3.21	134.0	2	10.1	1.04 98
	28212		267.	Ö.	o.	-13.	33.	4.	4.	0.76	0.07	0.07	9.8		125.1	2	9.9	1.01 128
	28212		653.	ő.	Ö.	-236.	583.	4.	71.	1.19	0.07	0.35	26.1		136.6	ō	10.9	1.12 99
	28212		266.	- 0.	Ö.	-12.	33.	4.	4.	0.75	0.07	0.07	9.6	1.53	122.8	3	9.8	1.01 129
	28212		596.	Ö.	o.	-196.	523.	4.	64.	1.14	0.07	0.35	25.5		146.0	ĭ	10.4	1.07 100
	28212		265.	0.	Ö,	-12.	33.	4.	4.	0.75	0.07	0.07	9,4		120.9	4	9.8	1.00 130
	28212		591.	ō.	o.	-192.	520.	4.	63.	1.12	0.07	0.36	24.2		139.7	3	10.2	1.05 100
	28212		264.	0.	Ō.	-11.	33.	4.	4.	0.76	0.07	0.08	9.6	1.54	124.0	4	9.8	1.00 130
	28212		499.	o.	Ö.	-133.	411.	4.	50.	1.00	0.07	0.36	20.3	3.25	138.8	ż	9.4	0,97 101
	28212	-	279.	o.	ο.	-25.	33.	4.	. 4.	0.72		0.03	9.7		118.9	Ö		1.04 124
STIGIS	28212	2 0.	15923.	ο,	0	11319.	14598.	4.	1778.	27.14	0.07	0.17		70.83	94.8	Ó		22.01 587
STIGIO	20212	2 0.	276.	0.	0.	-22.	33.	4.	4.	0.70	0.07	004	9.5		117.7	0	10.0	1.03 125
STIGI	20212	2 0.	1562.	ο.	Ο.	-916.	1350.	4.	164.	2.69		0.22	48.8		106.7	0	24.3	2.49 112
STIGIS	28212	2 0.	274.	o.	0.	-21.	33.	4.	4.	0.70		0.04	9.4		117.5	Ō		1,02 126
STIGIS	20212	2 0.	982.	0.	0.	-502.	792.	4.	96.	1.79	0.07	0.23	29.7		103.1	0	16.8	1.73 98
DEADV:	3 28212	2 0.	272.	0.	0.	-19.	33.	4.	4.	0.78	0.07	0.05	12.3	1.96	153.7	0	10.3	1.06 122
DEADV:	3 28212	2 0.	1142.	٥.	0.	-594.	1019.	4.	124.	2.64	0.07	0.27	82.1	13.14	245.3	0	22.8	2.33 112
DEHTPI	1 28212	2 0.	266.	0.	ο.	-12.	33.	4.	4.	0.82	0.07	0.07	12.7	2.03	162.8	0	10.2	1.05 124
DEHTPI	1 28212	2 0.	484.	ο.	Ο.	-135.	354.	4.	43.	1.42	0.07	0.31	36.7	5,88	259.1	0	12.4	1.27 96
DESOA:	3 28212	275,	0.	0.	-275.	253.	33,	4.	4.	0.75	.0.07	0.04	11.3	1.81	140.8	0	12.1	1.24 127
DESOA:	3 28212	1405.	0.	ο.	-1405.	608.	1221.	4.	149.	3,66	0.07	0.23	121.1	19.39	294.2	0	40.7	4.18 151
DESCA:	3 28212	2 0.	275.	ο.	Ο.	-21.	33.	4.	4.	0.75	0.07	0.04	11.3	1.81	140.8	0	10.2	1.05 123
DESOA:	20212	2 0.	1405.	0.	0.	-797.	1221.	4.	149.	3.66	0.07	0.23	121.1	19.39	294.2	0	31.2	3.20 127
TSOAL	28212	265.	ο.	0.	-265 <i>.</i>	253.	33.	4.	4.	0.68	0.07	0.07	9.4	1.50	120.3	0	11.5	1.18 134
3TSOAI	28212	2. 454.	ο.	Ο.	-454.	339.	319.	4.	39.	0.75	0.07	0.31	15.9	2.55	119.8	0	12.6	1.29 108
	3 20212		0.	C.	-268.	253.	33.	4.	4.	0.69	0.07	0.06	10.2	1.63	129.5	0	11.7	1.20 132
	28212		0.	0.	-667.	415.	573.	4.	70.	1.16	0.07	0.32	30.0	4.81	153.6	0	16.4	1.68 109
	28212		Ο.	0.	-267.	253.	33.	4.	4.	0.69	0.07	0.07	10.1	1.62	129.0	9	11.6	1.19 132
	2 28212		ο.	0.	-638.	408.	549.	4.	67.	1.10		0,33	28.1	4.50	150.4	0	15.6	1.60 109
	20212		0.	o.	-267.	253.	3 3 .	4.	4.	0.70		0.07	10.3		131.7	0		
	28212		0,	0.	-602.	395,	506.	4.	62.	1.09	0.07	0.33	28.0		158.7	0	15.3	1.57 108
	3 28212		0.	0.	-267.	253.	33,	4.	4.	0.69	0.07	0.07	9,9	1.58	126.7	0	11.6	1.19 133
	3 20212		0.	0.	-533.	366,	411.	4.	50.	0.91	0.07	0.31	21,6		138.0	0	14.1	1.45 106
	2 28212		0.	0.	-267.	253.	33.	4.	4.	0.69	0.07	0.07	10.0		128.1	.0	11.6	1.19 132
	28212		0.	<u> 0.</u>	-555.	375.	441.	4.	54.	0.96		0.32	23.3		143.3		14.4	1.48 107
	20212		0.	0.	-266.	253.	33.	4.	_4.	0.69	0.07	0.07	10.1	1.62	129.3	0	11.6	1.19 132
	28212		0.	0.	-558.	379.	453.	4.	55 .	1.00		0.33	24.9		152.2	0	14.5	1.49 107
	28212		0.	0.	-271.	253.	33,	4.	4.	0.70		0.05	10.2		129.2	0	11.8	1.21 131
3 HKMO6	20212	<u>801.</u>	0.	0.	-801.	446.	677.	4.	82.	1.18	0.07	0.29	29.9	4.79	127.4	0	19.0	1.95 111

DATE OG/OB/X 1&SE-PEO-ADV-DES-ENGR

				FUEL US	E IN BT	U*10**6-					100								
1		* * C	CGENERAT	ION CASI	E** **N	acagen -	COGEN**	POWER	COGEN	MSO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVI.	NORM WRTH	
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	CCAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
H ·	•	-						MW	MW	_	RATIO		*10**6	<u></u>		(%)			
GTRW	12 20212			O.	-269.	253.	33.	4.	4.	0.70	0.07	0.06	10.2	1.64	129.8	0	11.7	1,20 131	
GTRW	12 28212	2 773	. 0.	Ο.	-773.	446.	677.	4.	82.	1.17	0.07	0.31	29.8	4.78	131.7	0	17.9	1.84 111	
GTRW	16 28212	269	, 0.	Ο.	-269.	253 <i>.</i>	33.	4.	4.	0.70	0.07	0.06	.0.4	1.67	132.1	. 0	11.7	1.21 131	
GTRW	16 28212	2 719	. 0.	0.	-719.	428.	618.	4.	75.	1.15	0.07	0.31	29.3	4.68	138.8	0_	17.2	1.76 110	•
GTRQ	08 28212	2 272	. 0,	0.	-272.	253,	33.	4.	4.	0.69	0.07	0.05	9.9	1.59	124.8	0	11.8	1.21 131	
GTR3	08 28212	687	. 0.	0.	-687.	396.	512.	4.	62,	1.02	0.07	0.24	24.3	3.90	121.0	0	17.8	1.83 105	
GTR3	12 28212	268	. 0.	0.	-268.	253.	33.	4.	4.	0.69	0.07	0.06	10.0	1.61	127.8	0	11.7	1.20 132	
GTR3	12 28212	2 639	، ٥.	0,	-639.	401.	526.	4.	64.	1.01	0,07	0.31	24.4	3.90	130.2	0_	15.7	1,61 103	
GTR3	16 28212	268	. 0.	0.	-268.	253.	33.	4.	4.	0.70	0.07	0.06	10.2	1.64	130.0	0	11.7	1.20 131	
GTR3	16 28212	2 634	. 0.	ο.	-634.	398.	517.	4.	63.	1.03	0.07	0.31	25.2	4.03	135.4	. 0	15.8	1.62 108	
FCPA	DS 28212	2 272	. 0,	0.	-272.	253,	33.	4.	4.	1.00	0.07	0.05	10.5	1.68	131.8	0	12.2	1.25 130	
FCFA	DS 28212	2 1218	. 0.	0.	-1218.	576.	1113	4.	136.	14.73	0.07	0.28	79.4_	12.71	222.5	0_	43.0	4.41 164	
FCMC	DS 28212	2 268	. 0.	0.	-268.	253.	33.	4.	4.	0.97	0.07	0.07	10.7	1.71	136.3	0	12.0	1.23 132	
FCMC	DS 28212	2 888	. 0.	0.	-888.	507.	881.	4.	107.	11.05	0.07	0.36	68.2	10.91	261.8	0	31.3	3.21 145	
GTR3 GTR3 GTR3 GTR3 GTR3 FCPA FCPA	08 28212 12 28212 12 28212 16 28212 16 28212 16 28212 DS 28212 DS 28212	2 687 2 268 2 639 2 268 2 634 2 272 2 1216 2 268	. O. O. O. O. O. O. O. O. O.	0. 0. 0. 0. 0. 0.	-687. -268. -639. -268. -634. -272. -1218.	396. 253. 401. 253. 398. 253. 576.	512. 33. 526. 33. 517. 33. 1113.	4. 4. 4. 4. 4. 4.	62. 4. 64. 63. 4. 136.	1.02 0.69 1.01 0.70 1.03 1.00 14.73	0.07 0.07 0.07 0.07 0.07 0.07 0.07	0.24 0.06 0.31 0.06 0.31 0.05 0.28	24.3 10.0 24.4 10.2 25.2 10.5 79.4	3.90 1.61 3.90 1.64 4.03 1.68 12.71	121.0 127.8 130.2 130.0 135.4 131.8 222.5 136.3	0 0 0	17.8 11.7 15.7 11.7 15.8 12.2 43.0	1.83 1 1.20 1 1.61 1 1.20 1 1.62 1 1.25 1 4.41 1	105 132 103 131 108 130 164

CEMERAL ELL: C COMPANY COCHMERATION RECHNOLARY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

ECS	PROCS	**COG DISTIL R			E** **NO DISTIL		COGEN	* *	POWER REQD MW	COGEN POWER MW	МВО	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM	\$/KW EQVL	RØ1 (%)	CHRG	NORM W ENRG	RTH
ONOCGN	28213	0.	154.	452.	0.	0.	0.		55.	0.	0.16	11.73	0.	1.2	1.00	219.6	0	17.6	1.00	80
STM141	28213	0.	154.	447.	Ο.	-1.	4.		55.	1.	0.23	11.73	0.01	1.9	1.53	304.1	0	17.6	1.00	77
STM141	20213	0.	134.	468.	Ο.	20.	-17.	F	55.	1.	0.37	11.73	0.01	3.2	2.68	530.4	1,	17.6	1.00	66
STM141	28213	0.	134.	468.	0.	20.	-17.	Α	55.	1.	0.32	11.73	0.01	3.0	2.50	495.0	4	17.6	1.00	67
STHES	20213	0,	154.	449.	0.	-0.	2.		55.	0.	0.22	11.73	0.00	1.6	1.28	266.1	0	17.6	1.00	79
8001116	28213	0.	134.	469.	0.	19.	-18,	F	55.	Ο.	0.36	11.73	0.00	2.9	2.43	503.8	0	17.6	1.01	66
880MT8	20213	0.	134.	469.	Ο.	19.	-18.	Α	55.	0.	0.32	11.73	0.00	2.8	2.34	484.6	3	17.6	1.00	67
PERSTM	28213	0.	132.	466.	ο.	21.	-15.		55 .	1.	0.40	11,73	0.01	4.6	3.78	664.5	1.	17.7	1.01	65
TISTHT	28213	O.	156.	439.	0.	-3.	13.	•	5 5 .	2.	0.41	11.73	0.02	8.4	6.90 1	130.4	0	18.3	1.04	62
	28213		131.	464.	0.	23.	-13.		55.	2.		11.73	0.02	10.7	8.82 1	-	Ō	18.4	1.05	60
THRSG	28213	0.	158.	443.	0.	-5.	9.		55.	1.		11.73	0.01	8.2	6.75 1	073.4	0	18.3	1.04	59
TTHREG	28213	0.	132.	469.	0.	21.	-17.		55.	1.		11.73	0.01		8.72 1		0	18.5	1.05	58
STIRL	20213	32.	130.	434.	-32.	24.	18.		55.	2.	0.21	11.73	0.02	2.0	1.66	213.2	0	17.6	1.00	83
STIRL	28213	0.	162.	434.	0.	-8.	18.		55.	2,		11.73	0.02	2.0	1.66	213.5	16	17.4	0.93	83
STIRL	28213	0.	130.	466.	ο.	24.	~14.		55.	2		11.73	0.02	3.9	3.21	413.3	10	17.4	0.99	71
IEGT00	28213	0.	120.	481.	0.	34.	-30.	Α	55.	6.		11.73	0.01		4.69	767.0	0	18.9	1.07	67
	20213		131.	471.	Ö.	23.	-20.		55.	2.		11.73	0.01		6.38	775.3	0	18.0	1.02	62
	20213		127.	461.	o.	26.	-9,		55.	3.		11.73	0.03		7.35	895.0	1	17.8	1.02	66
CSTCL	28213	0.	125.	457.	0.	28.	-6.		55.	4.		11.73	0.04		8.19	906.2	i	17.9	1.02	68
	28213		129.	465.	o.	25.	-14.		55.	3.		11.73	0.02			868.7	ò	18.1	1.03	64
	20213		167.	423.	0.	-13.	28.		55.	3.		11.73	0.02		2.72	278.7	10	17.4	0.99	78
	20213		160.	431.	o.	-6.	20.		55.	ž.		11.73	0.02		1.97	262.1	18	17.3	0.99	81
3TAC12	20213	0.	162.	426.	o.	-8.	25.		55.	3.		11.73	0.03		2.18	260.4	17	17.3	0.98	81
STACIG	20213	0.	164.	422.	ο.	-10.	29.		55.	4.		11.73	0.03		2.45	268.8	16	17.3	0.98	80
TWC16	20213	0.	165.	422.	0.	-12.	30.		55.	4.	0.23		0.03		2.71	283.9	12	17.3	0.99	79
001626	20213	0.	170.	411.	0.	-17.	40.		55.	5.		11.73	0.04	4.0	3.26	283,2	10	17.4	0.99	79
001622	28213	0.	168.	415.	ο.	-14.	36.		55.	4.		11.73	0.04		2.88	273.3	11	17.3	0.99	80
001222	28213	0.	167.	416.	Ο,	-14.	36.		55.	4.		11.73	0.04	3.3	2.71	260.5	12	17.3	0.99	81
	28213		163.	424.	0.	-9.	28.	· · · · · ·	55.	3.		11.73	0.03		2.49	283.2	12	17.4	0.99	80
	28213		204.	368.	o.	-50.	84.		55.	10.		11.73	0.06		6.91	304.0	4	17.7	1.01	81
	28213	and the second second	164.	425.	Ŏ.	-11.	26.		55.	3.		11.73	0.03		4.00	443.2	2	17.7	1.01	72
	20213		104.	350.	-117.	49.	102.		55.	12.		11.73	0.06		8.98	316.3	0	18.8	1.07	82
	20213		222.	350.	Ō.	-63.	102.		55.	12.	0.53		0.06			316.3	ō	18.0	1.03	81
STSUAD	20213	35.	127.	427.	-35.	26.	25.		55.	3.	0.20		0.03	2.5	2.04	240.0	7	17.5	1.00	82
TRA08	20213	54.	121.	405.	-54.	33.	46.		55.	6.		11.73	0.04		3.78	289.8	2	17.7	1.01	79
STRA12	28213	51.	122.	408.	-51.	32.	44.		55.	5.		11.73	0.04		3.59	290.5	3	17.6	1.00	79
	20213		123.	411.	-48.	31.	40.		55.	5.	0.27		0.04		3.59	309.6	2	17.6	1.01	78
	28213		125.	419.	-42.	28.	32.		55.	4.	0.24		0.03			277.0	3	17.6	1.00	79
	28213		125.	417.	-44.	29.	35.		55.	4.	0.24		0.03		3.03	286.7	3	17.6	1.00	79
	20213		124.	416.	-44.	29.	36.		55.	4.	0.25		0.03			296.0	3	17.6	1.00	79
	20213		119.	397.	-64.	35.	54.		55.	7.	C. 30		0.04		4.21	270.6	<u>ŏ</u> _	17.8	1.02	80
	28213		119.	398.	-62.	35,	54.		55.	7.	0.30		0.05			281.1	ŏ	17.7	1.01	80
	20213		120	403.	-57.	33.	49.		55.	6.	0.29		0.04			299.5	ŏ	17.7	1.01	79

OATE OS/08//\) LASE-PEG-ADV-DES-EMOR

GENERAL ELE: '10 COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER CUGEN M&O POWER FESR CAPITAL NORM \$/KH RO! LEVL NORM WRTH PROCS DISTIL RESIDE COAL DISTIL RESIDE COAL ECS REOD POWER /HEAT COST COST EQVL CHRG ENRO MW MW RATIO *10**6 GTR308 28213 55. 123. 411. -55. 55. 31. 41. 5. C.25 11,73 0.03 4.0 3.28 247.7 17.8 1.02 79 GTR312 28213 31. 50. 123. 410. -50. 41. 55. 5. 0.26 11.73 0.04 3.36 278.7 4.1 2 17.7 1.01 79 GTR316 28213 49. 123. 411. -49. 40. 55. 5. 3.50 79 31. 0.26 11.73 0.04 4.2 292,3 17.7 1.01 FCPADS 28213 109. 365. -94, 86. 55. 94. 45. 10. 1.20 11.73 0.06 7.0 5.80 254.7 18.8 1.07 85 FCMCDS 28213 69. 115. 383. -69. 68. 55. 39. 8. 0.91 11.73 0.06 5.9 4.90 295.1 18.2 1.03

DATE 06/08/7 I&SE-PEC-ADV-DES-ENGR

cs	PROCS I	**COS DISTIL R		ON CASE	** **NO Distil		COGEN*	* POWER REGD MW	COGEN POWER MW	् ^{O&M}	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM COST	\$/KH EQVL	ROI	LEVL CHRG	NORM WRY
	28221	6.	60.	62.	0.	0.	0.	8.	0.	0.22	0.73	0.	2.0	1.00	164.9	0	3.9	1.00 8
TM141	28221	Ο.	63 .	44.	0.	-3,	18.	8.	2.	0.32	0.73	0.12	3.4	1.73	235.5	11	3.8	0.96 11
TM141	28221	0.	13.	94.	ο.	46.	-32.	F 8.	2.	0.54	0.73	0.12	6.1	3.09	421.6	9	3.7	0.94 10
TM141	28221	0.	13.	94.	0.	46.	-32.	A 8.	2.	0.48	0.73	0.12	5.3	2.67	363.8	12	3.5	0.90 10
moss	28221	0.	62.	49.	Ō.	-2.	13.	8.	2.	0.81	0.73	0.09	2.9	1.48	212.0	11	3.6	0.98 10
38.0MT	28221	Ο.	15.	96.	0.	45.	-35.	F 8.	2.	0.52	0.73	0.09	5.6	2.82	403.5	8	3.7	0.96 9
330MT	28221	Ο.	15.	96.	ο.	45.	-35.	A 8.	2.	0.46	0.73	0.09	5.0	2.50	357.3	11	3.6	0.92 9
FRSTM	28221	0.	10.	89.	0.	50.	-27.	8.	3.	0.63	0.73	0.19	8.1	4.06	496.8	8	3.7	0.94 11
ISTMI	20221	0,	67.	24.	0,	-8.	38,	8.	5.	0.66	0.73	0.25	16.0	8.06	909.0	0	5.0	1.28 12
ISTMT	20221	0.	7.	84.	Ο.	52.	-22.	8.	5.	0.92	0.73	0.25	20.4	10.27	1158.0	0	5.0	1.29 12
HRSG	28221	ο.	66.	43.	ο.	-7.	10,	8.	2.	0.51	0.73	0.09	13.8	6.96	883.7	0	5.1	1.31 9
HRSG	28221	0.	13.	97.	0,	47.	-35.	8.	2.	0.75	0.73	0.09	17.9	8.98	1140.8	0	5.2	1.33 9
TIRL	20221	74.	5.	15.	-74.	55.	46.	3.	. 6.	0.33	0.73	0.22	4.4	2.23	203.2	1	4.0	1.02 12
TIRL	28221	Ο.	79.	15.	ο.	-19.	46.	8.	6.	0.33	0.73	0.22	4.4	2.23	203.4	15	3.5	0.90 120
TIRL	28221	0.	5.	90.	Ο.	55.	-28.	8.	6.	0.57	0.73	0.22	7:6	3.83	349,9	13	3.2	0.82 110
EGT85	28221	0.	0	106.	0.	60,_	-44.	A 8.	8.	1.14	0.73	0.13	24.2	12.18	780.8	0	5.5	1.42 12
EGT85		0.	0.	219.	0,	92.	-50.		21.	1.57	0.73	0.16	42.6	21.39	662.0	0	7.4	1.91 11:
	28221	Ο.	Ο.	103.	Ο.	60.	-42.		8.	1.00	0.73	0.15	21.9	11.00	723.3	0	5.1	1.31 12
	28221	0.	ο,	111.	Ο.	62.	-42.		8.	0.90	0.73	0.15	22.5	11.32	694.0	0	5.0	1.29 110
	28221	0,	9,	102.	0.	50.	-41.		4.	0.59	0.73	0.08	12.9	6.50	624.1	1	4.3	1.11 9
CHCCL		Ο.	2.	81.	0.	57.	-20.	8.	7.	0.80	0.73	0.31	15.3	7.70	708.3	4	4.0	1.03 12
	. 20221	ο,	Ο.	77.	ο.	60.	-15.	8.	8.	1.08	0.73	0.37	17.2	8.62	761.9	3	4.3	7.10 14
	28221	ο.	Ο.	89.	ο.	66.	-6.	8.	10.	1.02	0.73	0.40	18.5	9.32	712.1	4	4.1	1.05 130
	28221	<u>o.</u>	1.	87.	<u> </u>	58.	-26.	8.	7.	0.81	0.73	0.27	15.9	7.99	655.0	4	4.1	1.06 12
	20221	0.	82.	5.	0.	-23.	57.	8.	7.	0.32	0.73	0.28	5.4	2.70	226.1	14	3,4	0.87 13
	20221	Ο,	73.	17.	ο.	-14.	44.	8.	5.	0.28	0.73	0.25	4.1	2.06	204.9	21	3.3	0.85 130
	28221	ο.	77.	6.	Ο.	-18.	55,	8.	7.	0,30	0.73	0.31	4.6	2.31	208.8	21	3.2	0.82 13
	20221	0.	80.	0.	0.	-20.	62.	8.	8.	0,36	0.73	0.34	5.2	2.63	223.9	18	3.2	0.82 14
	2022	0.	80.	o,	o.	-20.	62.	8.	8.	0.32	0.73	0.34	5.2	2.60	219.5	19	3,2	0.81 13
	20221	o.	84.	Ο,	0.	-24.	62.	8.	8,	0.40	0.73	0.31	5,7	2.86	231.7	14	3.4	0.88 144
	28221	Ο.	87.	0.	O.	-26.	6 6.	8.	8.	0.33	0.73	0.32	5,6	2.82	221.4	15	🤚 3. ૩	0,85 13
	28221	0.	84.	0.	0.	-25.	62,	8.	8.	0.55	0.73	0.31	6.3	3,19	257.3	9	3.7	0.94 14
	20221	0.	114.	0.	0.	-41.	104.	8.	13.	0.50	0.73	0.35	7.6	3.82	228.2	8	3.6	0.94 13
- ,	20221	0.	82.	0.	0.	-23.	62.	8.	8.	0.53	0.73	0.32	6.0	3.02	249.2	10	3.6	0.91 14
	28221	Ο.	104.	0.	ο.	-35.	93.	8.	· 11.	0.47	0.73	0.36	6.9	3.45	226.2	10	3.5	0.89 13
	28221	0.	82.	0.	0,	-22.	62.	8.	8.	0.53	0.73	0.32	5,8	2.91	240.8	11	3.5	0.90 140
	28221	o.	103.	0.	0.	-34.	93.	8.	11.	0.46	0.73	0.37	6.5	3.29	217.3	12	3.4	0.88 13
	20221	0.	79.	o.	0.	-20	62.	8.	8.	0.51	0.73	0.35	5.8	2.89	247.8	13	3,4	0.87 148
	28221	0.	87.	o.	0,	-24.	74.	8.	9,	0.43	0.73	0.37	5,9	2.94	230.2	15	3.3	0.84 139
	28221	0.	107.	0.	0.	<u>-48.</u>	62.	8.	8.	0.57	0.73	0.11	6.7	3.36	212.5	0	4.4	1.12 12
	26221	0.	2692.	Ü.		-1914.	2468.	8.	301.	5.31	0.73	0.17		45.32	114.3	0	38.7	9.94 28
	23221	0.	101.	0.	0.	-42.	62.	8.	8.	0.53	0.73	0.16	6.2	3.12	208.8	0	4.1	1.05 🖓
11010	26221	ο. ·	264.	0.	Ο.	-155.	228.	8.	28.	0.73	0.73	0.22	11.7	5.88	151.3	0	5,9	1.50 39

1 &SE-PEO-ADV-DES-ENGR

													132222					
	55665						COGEN**			osm	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	TEAL	NORM WRTH
ECS	PRUCS	DISTIL R	ESIDE	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EGVL		CHRG	ENRG
******	00001							MW	MW		RATIO		*10**6			<u>(%)</u>		
	28221		99,	0.	0.	-39.	62.	8.	8.	0.52	0.73	0.19	5.9	2.99	205.8	3	4.0	1.02 131
	28221		166,	0.	0.	-85.	134.	8.	16.	0.54	0.73	0,23	8.0	4.04	165.2	0	4.6	1.17 118
	28221		93.	0.	0.	-33.	62.	8.	8.	0.57	0.73	0.24	8.4	4.20	308.3	2	4.1	1.06 134
	28221		<u> 161.</u>	0.	<u>0.</u>	-77.	144.	8.	18.	0.60	0.73	0.29	12.4	6,24	262.5	<u> </u>	4.7	1.21 122
	28221		79.	0.	0.	-19.	62.	8.	8.	0.53	0.73	0.35	7.8	3,93	339.1	8	3,6	0.93 146
	28221		81.	0.	0.	-20.	66.	8,	8.	0.46	0.73	0.36	7.8	3.92	327.1	9	3.5	0.91 136
	28221		0.	0.	-97.	60.	62.	8.	8.	0.57	0.73	0.20	8.3		292.0	0	4.9	1,25 134
	28221		0. 97.	<u>0.</u> 0.	<u>191.</u>	91.	166.	<u>8,</u>	20.	0.75	0.73	0.26			310.8	<u> </u>	7.0	1.80 126
	28221 28221	0. 0.	191.	0.		-37.	62.	8.	8.	0.57	0.73	0.20	8.3		292.0	0	4.2	1.09 130
	20221			9.	0.	-101.	166.	8. 8.	20. 6.	D. 75	0.73	0.26	17.4		310.8	.0	5.8	1.48 118
	20221		3.		-75.	57.	53.	- •		0.29	0.73	0.29	4.2		190.9	11	3.7	0,95 137
	20221	101.	<u> </u>	<u>0.</u>	-84.	<u>60.</u>	62,	8.	<u> </u>	0.46	0.73	0.31	6.5	3.26	264.7	<u></u> '	4.1	1.05 146
	20221		0. 0.	0. 0.	-101. -83.	67. 60.	86. 62.	8. 8.	11. 8.	0,38	0.73	0.34	7.1	3.59	241.9	0	4.1	1.06 138
	28221		0.	0.	-03. -98.	60. 66.	85.	8.	10.	0.45 0.38	0.73 0.73	0.32	6.4 7.0	3.23 3.53	264.7 244.0	2	4.0	1.04 147 1.05 138
	28221		0.	0.	-96. -93.	60.	62.	8.	8.	0.45	0.73	0.33	7.U 6.7		275.5	1	4.1	1.05 138
	28221		0.	0.	-94.	65.	<u>79.</u>	8.	10.	0.43	0.73	0.35	7.1	3.58	257.3	<u> </u>	4.1	1.04 147
	20221		0.	0.	-94. -83.	60.	62.	8.	8.	0.30	0.73	0.35	7.1 5.7	2.87	235.8	4	3.9	1.04 138
	20221		0.	0.	-63. -86.	61.	66.	8.	8.	0.40	0.73	0.32	5.7 5.7		235.6	4 6	3.9	0.99 138
	20221		0.	o.	-83.	60	62.	8.	8.	0.33	0.73	0.32	6.0	3.03	248.4	3	4.0	1.02 147
	20221		0.	- 0.	-89.	62.	71.	8.	9.	0.35	0.73	0.32	6.1	3.06	233.5	-3-	3.9	1.01 138
	20221		o.	Õ.	-82.	60.	62.	8.	8.	0.43	0.73	0.32	6.2		258.8	3	4.0	1.02 148
	20221		o.	o.	-89.	63.	72.	8.	9.	0.36	0.73	0.34	6.4		243.4	4	3.9	1.01 138
	20221		o.	o.	-90.	60.	62.	8.	8.	0.48	0.73	0.26	6.7		254.9	ö	4.3	1.11 141
	20221		- 0.	0.	-122.	72.	103.	8.	13.	0.42	0.73	0.30	8.0		223.2	- ö -	4.7	1.19 132
	28221		o.	0.	-87.	60.	62.	8.	8.	0.48	0.73	0.28	6.7		261.0	ŏ	4.3	1.09 143
	20221		o.	o.	-120,	73.	106.	0.	13.	0.42	0.73	0.32	0.1	4.07	229.2	ο̈	4.5	1.17 134
	20221	87,	ö.	Ö.	-87.	60.	62.	8.	8.	0.48	0.73	0.28	6.9		270.0	ŏ	4.3	1.10 143
	28221	114.	0.	0.	-114.	70.	98.	8.	12.	0.42	0.73	0.32	8.1		241.0	0	4.5	1.15 134
	20221	92.	o.	ő.	-92.	60.	62.	8.	8.	0.45	0.73	0.24	6.1		225.9	ŏ	4.3	1.11 140
	20221	106.	0.	0.	-106.	65.	79.	8.	10.	0.37	0.73	0.26	6.4		205.3	0	4.4	1.13 131
9TR312	20221	86.	0.	O.	-86.	60.	62.	8.	8.	0.45	0.73	0.29	6.2		245.6	ō	4.2	1.07 144
F1R312	28221	104.	ō.	0.	-104.	67,	86.	8.	10.	0.38	0.73	0.32	6.8		221.0	0	4.2	1.09 136
9TR316	28221	87.	0.	0.	~87.	60,	62.	8.	8.	0.46	0.73	0.28	6.5		255.0	o	4.2	1.08 144
TR316	28221	104.	ο.	0.	-104.	66.	85.	8.	10.	0.38	0.73	0.31	7.0		231.2	Ŏ	4.3	1.10 135
CPADS	20221	95.	0.	0.	-95,	60,	62.	8.	8.	1.06	0.73	0.22	6.7	3.36	239.7	0	5.1	1.31 141
	20221	206,	ō.	Ō.	-206.	97.	188.	8.	23.	2.51	0.73	0.28	14.5	7.30	240.6	0	8.5	2.18 137
CHODS	20221	86.	0.	0.	-86.	60.	62.	8.	8.	1.01	0.73	0.29	6.9	3.48	274.1	. 0	4.8	1.23 147
CMCDS	28221	150.	ο.	0.	-150.	86.	149.	8.	18.	1.90	0.73	0.36	12.4		280.7	C	6.6	1.68 141

PATE 06/08/75 I &SE-PEO-ADV-DES-ENGR

				FUEL USE						CEICEN	GeM	Deute	FECS	CARITAL	Nacr	• 1/11	D& I	1 514	NORM	IDT!!
.00	DDGGG			ION CASE				-			M&D	POWER		CAPITAL	NORM	\$/KW	KOI		NORM W	4KIH
ecs i	CKOCS	DISTIL R	COIDE	CUAL	DISTIL	KESIDL.	COAL		REQD	POWER		/HEAT		COST *10**6	COST	EQVL	(3)	CHRG	ENRG	
MUCEN	28241	0.	114.	263.	0.	0.	Ö.		32.	0,	0.21	3.64	O.	1.8	1.00	174.4	0	11.1	1.00	80
	28241	0.	116.	253. 252.	0.	-2.	10.		32. 32.	1.	0.30	3.64	0.02	2.9	1.59	242.5	7	11.1	1.00	
	28241		75.	293.	0.	38.	-30.	F	32.	i.	0.30	3.64	0.02	5.2		437.7	6	11.1	0.99	
5111141 57M141			75. 75.	293. 293.	0.	38.		A	32.	1.	0.49	3.64	0.02	4.5	2.52	383.4	10	10.9	0.98	75
	28241		115.	256.	0.	-1.	7.	<u> </u>	32.		0.28	3.64	0.02	2.4		215.7	- 10	11.1	1.00	85
	20241		76.	295.	o.	37.	-32.	F	32.	i.	0.47	3.64	0.01	4.7	2.61	417.4	6	11.1	1.00	
	28241		76.	295.	o.	37.	-32.		32.	1.	0.42	3.64	0.01	4.2		375.7	9	11.0	0.99	73
	28241	Ö.	73.	289.	0.	41.	-26.	••	32.	2.	0.56	3.64	0.04	7.0		524.4	6	11.1	0.99	76
	20241	0.	119.	236.	0.	-6.	27.		32.	3,	0.58	3.64	0.06	13.6		951.2	ő	12.2	1.09	77
	28241		70.	285.	Ö.	43.	-22.		32.	3.	0.82	3.64	0.06	17.4	9.64 1		ŏ	12.2	1.10	75
	28241		121.	247.	ŏ.	-7.	16.		32.	2.	0.47	3.64	0.02			912.1	ŏ	12.3	1.11	69
	28241	Ö.	74.	294.	o.	40.	-31.		32.	2.	0.70	3.64	0.02	16.4	9.08 1		ŏ	12.4	1.11	67
TIRL	28241	62.	68.	227.	-62.	46.	36.		32.	4.	0.30	3.64	0.05	3.7	2.05	204.6	0	11.3	1.01	93
TIRL	28241		129.	227.	ō.	-16.	36,		32.	4.	0.30	3.64	0.05	3.7	2.05	204.8	14	10.9	0.97	92
TIRL	28241	0.	68.	288.	0.	46.	-26.		32.	4.	0.51	3.64	0.05	6.5	3.62	361.8	12	10.6		83
EGT60	20241	0.	56.	308.	0.	58.		Α	32.	9.	0.95	3.64	0.03		13.21	677.8	0	12.5	1,12	81
IEGT00	28241	Ű.	71.	299.	0.	43.	-36.	A	32.	3.	0.55	3.64	0.02	11.9		647.0	Ŏ	11.6	1.04	72
	20241	-	65.	280.	0.	49.	-17.		32.	6.	0.73	3.64	0,09	13,5	7.64	740.9	4	11.3	1.02	83
CSTCL	28241	0.	60.	272.	0.	54.	-9.		32.	8.	0.89	3.64	0.12	15, 9		748.7	4	11.2	1.01	90
00TST	20241	0.	66.	287.	0.	48.	-25.		32.	_5.	0.73	3.64	0,06	13.7		695.1	2	11.5	1.03	80
TSOAR	20241		136,	212.	0.	-22.	51.		32.	6.	0.31	3.64	0.08	5.0	2.79	235.4	12	10.8	0.97	93
	20241	o.	125.	225.	Ο,	-12.	38.		32.	5.	0.26	3.64	0.07	3.8		220.1	20	10.7	0.96	94
	20241	Ο,	129,	215.	0.	-15.	48.		32.	6.	0.28	3.64	0.09	4.2	2.33	221.8	20	10.6	0.95	96
	20241	<u>o.</u>	132,	208.	0.	-19.	54.		32.	7.	0.30	3.64	0.10	4.7		231.1	18	10.5		97
	20241		136.	207.	o.	-22.	56.		32.	7.	0.31	3.64	0.09			236.3	15	10.6	0,95	95
	28241	Ο,	147.	102.	0.	-33.	80,		32.	10.	0.45	3, 64	0.13		3.54	236.5	13	10.5	0.95	
	20041		141.	191.	0.	-27.	72.		32,	9.	0.42	3.64	0.12			232.7	15	10.5	0.94	
	28241	ο.	141.	191.	0.	-27.	72.		32.	9.	0.42	3.64	0.12	5,4		222.9	16	10.5	0.94	
	20241	0.	132.	207.	Ō.	-18.	56.		32.	7.	0.39	3.64	0.10			237.0	16	10.6	0.95	
	28241	0.	317.	0.	0.	-204.	263.		32.	32.	1.08	3.64	0.16			159.4	0	11.8	1.06	
	26241	0.	2308.	0.	0.	-1640.	2116.		32.	258.	4.60	3.64	0.17		42.56	113.5	0	37.0		
	20241	0.	246.	67.	0.	<u>-133.</u>	196.		32.	24.	0.66	3,64	0.17			157.8	8	10.8	0.97	
	28241	0.	187.	148.	0.	-73.	115.		32.	14.	0.49	3.64	0.11	7.2	3,99	172.7	9	10.8	0.97	
	28241		195.	120.	0.	-82.	142.		32.	17.	0.60	3.64	0.16			262.6	6	10.9	0.98	
	26241		133.	210.	0.	-19.	52.		32.		0.43	3.64	0.09	7.2	3.97	348.6	7	11.0		
	28241	195.	28.	94.	-195.	86.	169.		32.	21.	0.76	3.64	0.16			310.6	0	13.0	1.16	
	20241	0.	223.	94.	0.	-109.	169.		32.	21.	0.76	3.64	0.16			310.6	1	11.7	1.05	
	20241	66.	65.	217.	-66.	49.	46.		32.	6.	0.27	3.64	0.08			202.9	9	11.0		
	20241	94.	54.	182.	-94.	59.	81.		32.	10.	0.37	3.64	0.12			246.5	5	11.1	1.00	
	28241	91.	<u>55.</u>	105	<u>-91.</u>	<u>59.</u>	78.		32.	10.	0.36	3.64	0.12			250.6	<u> </u>	11.1	1.00	
,,,K/\16	20241	86. 77.	57. 61.	191.	-86. -77	57.	72.		32.	9.	0.36	3.64	0.11		3.71	265.6	5	11.2	1.00	98
TDOO		7.7	Fi T	204.	-77.	53.	59.		32.	7.	0.32	3.64	0.09	5.3	2.92	234.9	5	11.1	1.00	97
TR200	28241		60.	200.	-80.	54.	63.		32.	8.	0.33	3.64	0,10			243.3	5	11.1	1.00	97

AGE 69

DATE 05/08/... IGSE-PEG-ADV-DES-ENGR

				FUEL US	E IN BT	U*10**6-													
		* * C(GENERAT	ION CAS	巨米米 米米科	OCOGEN -	COGEN**	POWER	COGEN	O&M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
					<u> </u>			MW	MA		RATIO		*10**6			(%)			
GTR21	6 2824	80	59,	198.	-80.	55.	65.	32.	8.	0.34	3.64	0.11	5.9	3.29	252.9	5	11.1	1.00	98
GTRWC	8 2824	1 114	50.	167.	-114.	64.	96.	32.	12.	0.41	3.64	0.12	7.6	4.23	229.2	0	11.4	1.02	101
GTRWI	2 2624	1 110.	50,	166.	-110.	64.	96.	32.	12.	0.40	3,64	0,13	7.6	4.23	236.7	3	11.2	1.01	103
GTRW1	6 2824	1 103	. 52.	174.	-103,	62.	88.	32.	11.	0.40	3.64	0.13	7.6	4.19	250.5	3_	11.3	1.01	101
GT#30	8 2824	1 98	57.	190.	-98.	57.	73.	32.	9.	0.35	3.64	0.09	6.1	3.36	211.5	0	11.5	1.03	97
GTR31	2 2824	1 92	. 56.	187.	-92.	58,	76.	32.	9.	0.36	3.64	0.11	6.3	3.47	232.1	4	11.2	1.00	99
GTR31	6 2824	1 91	56.	188.	-91.	50,	74.	32.	9.	0.36	3.64	0.11	6.5	3,60	242.9	3	11.2	1.01	99
FCPAR	S 2024	1 176	. 30.	101.	-176.	33.	161.	32.	20.	2.16	3.64	0.18	12.4	6.85	239.1	0_	13.4	1.21	113
FCMCL	S 2824	1 129	40.	135.	-129.	73.	128.	32.	16.	1.64	3.64	0.19	10.7	5.95	284.6	ə	12.3	1.10	111

					E IN BTU					OCIOEN	COM	061155	FFAS	0401741	Mans	A 446.		1 195.71	Marke i.m.
ECS I	PROCS	DISTIL R			E** **NO DISTIL	RESIDL	COAL	RE	QD	POWER	O&M	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM	\$/KW EQVL	(%)	LEVL	NORM WRI
ONOCGN	28242	0,	54.	90.	Ō.	Ō.	0.	M	11.	MN O.	0.19		0.	1.5	1.00	192.2	$\frac{(2)}{0}$	4.9	1.00 8
STM141			57.	75.	0.	-3.	15.		11.	2.	0.19	1.63	0.09	2.9	1.88	283.3	12	4.8	0.97 10
STM141		- 7	22.	110.													9	4.7	
					0.	32.	-19. -10		11.	2.	0.47	1.63	0.09	4.9	3.22	485.7	-		0.96 9
STM141			22.	110.	0.	32.			<u>11.</u>	2.	0.41	1.63	0.09	4.4	2.88	434.8	12	4.6	0.94
STMOSS			56.	79.	0.	-2.	12.		11.	1.	0.27	1.63	0.07	2.4	1.61	254.6	12	4.8	0.98
830MTE			23.	111.	0.	31.	-21.		11.	1.	0.45	1.63	0.07	4.5	2.93	464.6	8	4.8	0.97
880MT			23.	111.	0.	31.	-21.		11.	1.	0.40	1.63	0.07	4.1	2.70	427.1	11	4.7	0.95
PFBSTM			20,	106.	0.	34.	-16.		<u>11.</u>	3,_	0.53	1,63	0.13	6.5	4.28	<u>581.5</u>	8	4.7	0.96
TISTMT			60.	61.	0.	-6.	29.		11.	4.	0.54	1.63	0.16	12.4	8.13		0	5.7	1.16 10
TISTMT			18.	103.	0.	36.	-12.		11.	4.	0.76	1.63	0.16	15.8	10.34 1		0	5.7	1.17 10
TIHRSG			58.	79.	0.	-4.	12.		11.	1.	0.39	1.63	0.05	10.0	6.55	996.5	0 .	5.8	1.17 8
TIHRSG			24.	113.	0.	31.	-23.		11.	1	0.58	1.63	0.05	12.9	8.46 1	286.8	0	5.8	1.19
STIRL	28242		17.	57.	-50.	37.	33.		11.	4.	0.27	1.63	0.14	3.1	2.03	209.3	5	4.9	1.00 11
STIRL	28242	0.	67.	57.	0.	-13.	33.		11.	4.	0,27	1.63	0.14	3.1	2.03	209.5	19	4.6	0.93 11
STIRL	28242	0.	17.	108.	0.	37.	-17.		11.	4.	0.46	1.63	0.14	5.6	3.67	378.6	14	4.3	0.88 10
HEGT85	20242	0,	5.	112.	0.	49.	-21.		11.	9.	0,90	1,63	0.19		15,38	847.8	Ó	5.9	1.20 11
EGT60	28242	0.	15.	114.	o.	39.			11.	5.	0.64	1.63	0.10	15,2	9.95	820.8	ŏ	5.5	1.13 9
IEGTOO			21.	116.	Õ.	33.	-26.		11.	2.	0.45	1.63	0.05	9.4	6.17	713.7	ĭ	5.2	1.06
CMCCL			16.	103.	o.	38.	-13.		11.	4.	0.62	1.63	0.17	11.4	7.48	803.8	4	5.0	1.02 10
CSTCL.			9.	92.	o.	45.	-1.		11.	7.	0.83		0.30	14.5	9.50	802.5	5	4.8	0.98 12
IGGIST			14.	105.	0.	40.	-15.		!i:	5.	0.69	1.63	0.17	12.6	8.30	751.5	4	5.1	1.04 10
STSOAR			68.	55.	o.	-13.	36.		11.	4.	0.26	1.63	0.15	3.9	2.57	261.2	15	4.5	0.92 11
STACO8			63.	61.	0.	-9,	29.		11.	4.	0.23	1.63	0.14	3.9	2.00	230.2	21	4.5	0.91 11
STAC12			65.	54.	0.	-11.	25. 36.		11.	4.	0.24	1.63	0.17	3.4	2.20	234.1	22	4.4	0.89 11
TAC16			67.	50.	0.	-13.	40.		11.	- 5.	0.25		0.17		2.45				
STWC16													- •	3.7		246.3	20	4.4	0.89 11
			71.	47.	0.	-17.	43.		11.	5.	0.27	1.63	0.18	4.2	2.75	250.6	16	4.5	0.91 11
001626			83.	15.	0.	-29.	75.		11.	9.	0.43		0.32	6.0	3.94	260.1	15	4.2	0.86 12
001622			78.	23.	<u> </u>	-24.	68.		<u>11.</u>	8.	0.40		0.30	5.3	3.51	254.7	16	4.2	0.85 12
001222			78.	23.	0.	-24.	67.		11.	8.	0.40	1.63	0.30	5.1	3.36	245.3	17	4.2	0.85 12
C0822			71.	36.	0.	-17.	54.		11.	7.	0.37		0.26	4.7	3.05	263.9	17	4.3	0.87 12
STIG15			124.	0.	0.	-70.	90.		11.	11.	0.64	1.63	0.14	7.6	5.00	209.5	0	5.4	1.10 12
STIG15			1769.	0.		-1258.	1622.		11.	198.	3.79		0.17		38.84	114.2	0	28.7	5.83 18
STIGIO			115.	0.	0.	-61.	90.		11.	11.	0.55	1.63	0.20	6.8	4.48	202.2	4	4.9	1.01 12
STIGIO			174.	Ο.	ο.	-102.	150.		11.5	18.	0.57		0.22	8.6	5.68	170.0	0	5.5	1.13 11
STIGIS			110.	2.	ວ.	-56.	88.		11.	. 11.	0.43	1.63	0,22	6.0	3.92	186.7	10	4.6	0.94 12
DEVDV3			96.	6.	0,	-42.	84.		11.	10.	0.45	1.63	0.29	8.4	5.50	303.6	8	4.6	0.93 12
DEHTIM			66,	45.	O.	-12.	45.		11.	6.	0.37	1.63	0.23	5.9	3.86	380.7	11	4.5	0.92 11
DESCAS	28242	105.	0.	0.	-105.	54.	90.		11.	11.	0.55		0.27	9.9	6.50	320.9	0	5.7	1.16 13
DESGA3	20242	110.	О.	0.	-110,	55.	95,		11.	12.	0.51		0.27	10.2	6.68	317.2	ō	5.7	1.17 12
DESCA3	28242	0.	105.	Ο.	0.	-51,	90.		11.	11:	0.55		0.27	9.9	6.50	320.9	4	5.0	1.01 13
DESGAS	28242	Ö.	110.	0.	0.	-54.	95.		11.	12.	0.51		0.27	10.2	6.68	317.2	4	5.0	1.01 12
	25242	49.	17.	56.	-49.	37.	34.		11.	4.	0.24		0.16	3.1	2.03	216.6	11	4.8	0.97 11
STSOAD	20242																		

DATE 06/08/75 ISSE-PEG-ADV-DES-ENGR

				FUEL US	E IN BT	U*10**6-												
		C	GENERAT				COGEN	POWER	COGEN	M&O	POWER	FESR	CAPITAL	NORM	\$/KW	RØI	LEVL	NORM WRTH
ECS	PROCS	DISTII.	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG
								MW	MM		RATIO		*10**6			(%)		
GTRA1	2 28242	61	. 11.	37.	-61.	43.	53.	11.	6.	0.30	1.63	0.24	5.0	3,30	279.8	8	4.8	0.97 122
GTRA1	6 28242	59	. 12.	41.	-59,	42.	50.	11.	6.	0.30	1.63	0.22	5.1	3,36	294.4	7	4.8	0.98 120
GTR20	8 28242	54	. 14.	48.	-54.	40.	42.	11.	5.	0.27	1.63	0,19	4.1	2.70	258.2	8	4.8	0.98 117
GTR21	2 28242	57	. 14.	45.	-57.	40.	45.	11.	5.	0.28	1.63	0.20	4.4	2.91	267.2	7	4.8	0.98 118
GTR21	6 28242	57	. 13.	44.	-57.	41.	46.	11.	6.	0.28	1,63	0.21	4.6	3.02	277.2	8	4.8	0.98 119
GTRWO	8 28242	76	. 8.	26.	-76.	46.	64.	11.	8.	0.33	1.63	0.24	5.8	3.81	260.4	4	5,0	1.01 123
GTRW1	2 20242	? 76	. 7.	24.	-76.	47.	66.	11.	8.	0:33	1.63	0.26	5.9	3.87	266.3	5	4.9	1.00 125
GTRW1	6 28242	72	. 8.	28.	-72.	46.	62.	11.	8.	0.33	1.63	0.25	5,9	3.80	279.4	5_	4.9	1.00 123
GTR30	8 28242	65	. 12,	42.	-65.	42.	49.	11.	6,	0.29	1,63	0.17	4.6	2.99	238.7	1	5.0	1.02 116
GTR31	2 28242	67	. 11.	35.	-67.	44.	55 .	11.	` 7 ,	0 30	1.63	0.22	5.0	3.27	254.2	5	4.9	0.99 121
OTR31	6 28242	67	. 11.	36.	-67.	43.	54.	11.	7.	0.31	1.63	0.21	5.2	3.40	266.2	4	4.9	1.00 120
FCPAD	S 20242	106	. О.	0.	-106.	54.	90.	11.	11.	1.47	1.63	0.27	8.0	5.25	257.2	0	6.5	1.31 142
FCPAU	S 28242	135	. 0.	Ο.	-135.	64.	124.	11.	15.	1.82	1.63	0.28	9.7	6.39	245.5	0	7.3	1.49 134
FCMCD	S 28242	93	. 0.	0.	-93.	54.	90.	11.	11.	1.36	1.63	0.35	8.1	5.34	297.8	0	5.9	1.19 150
FCMCD	S 28242	99	. 0.	0.	-99,	56.	98.	11.	12.	1.38	1.63	0,36	8.4	5.53	291.6	0	5.9	1.21 139

DATE OG/OS/75, LESE-PEG-ADV-DES-EMOR

				TON CAS							Mad	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM !	WRTH
		DISTIL		COAL	DISTIL	RESIDL	COAL		REQD MV	POVER NW		/HEAT		*10**6	COST	EQVL	(男)	CHRG	ENRG	
	20651	0.	375.	36.	ō.	0.	0.		4.	ο.	0.81	0.03	0.	16.5	1.00	93.7	0	14.4	1.00	
	28651	ο,	382.		ο.	-7.	36.		4.	4.	1.17	0.03	0.07	20.1	1.22	111.0	5	14.3	1.00	
TM141	28651	Ο,	511.	0.	0.	-57.	299.		4.	36.	1.09	0.03	0.32	22.0	1.34	100.7	24	12.3	0.86	11:
TM141	28651	0.	0.	382.	0.	375.	-346.	F	4.	4.	2,31	0.03	0.07	35,6	2.16	196.7	11	12.5	0.87	119
51111111	26651	0.	0,	511.	0.	454.	-212.	F	4.	36.	2.29	0.03	0.32	40.1	2.43	183.2	17	9.3	0,65	9:
TH141	28651	0.	0.	382.	0.	375.	-346.	Α	4.	4.	2.22	0.03	0.07	33,9	2.06	187.5	12	12.3	0:85	119
TM141	28651	o.	0.	511.	ο.	454.	-212.	Α	4.	36.	2.22	0.03	0.32	34.0	2.06	155.3	23	8.6	0.60	97
STMOSS	28651	ο,	382.	0.	0.	-7.	36.		4.	4.	1.18	0.03	0.07	19.9	1.21	109.9	6	14.3	1.00	134
TMORE	28651	0.	475.	0.	Ō.	-43.	226.		4.	28.	1.03	0.03	0.28	20.0	1.21	95.9	29	12.6	0.88	114
	28651	o,	0.		0.	375.	-346.	F	4.	4.	2.33	0.03	0.07	35.8	2.17	197.8	11	12.6	0.88	• -
	20651	0.	Ō,	475.	o.	432.	-249.		4.	28.	2.15	0.03	0.28	37.3	2.27	179.3	17	9.9	0.69	
	28651	Ŏ.	Ö.		o.	375.	-346.		4.	4.	2.25	0.03	0.07	34.0	2.06	187.6	12	12.3	0.86	
	28651	0.	- 0.		0.	432.	-249.		4.	28.	2.15	0.03	0.28	32.7	1.98	157.0	22	9.4	0.65	
	1 28651	o.	0.		o.	375.	-347.	•	4.	4.	2.28	0.03	0.07	34.4	2.09	189.8	12	12.4	0.86	
	28651	o.	o.	595.		502.	-135.		4.	56.	3.66	0.03	0.38	47.3	2.87	194.2	15	9.3	0.65	
	26651	o.	383.	0.0.	0.	-7.	36.		4.	4.	1.36	0.03	0.07	28.7	1.74	158.5	ő	15.5	1.08	
	28651	0.	549.	0.	0.	-74.	367.		4.	45.	3.00	0.03	0.35	87.3	5.29	379.8	~	20.8	1.45	
	28651	0.	0.		0.	375.	-347.		4.	43.	2.46	0.03					-		0.95	
	28651	0.	o.		0.	545.							0.07	43.9	2.66	242.5 569.9	7	13.6		
	20051 28651	0.	389.		= -	-13.	-63. 36.		. 4.	74.	5.16	0.03	0.42	150.8	9.15		1	20.0	1.39	
				<u>0.</u> 0.	0.				4.	4.	1,50	0.03	0.06	36.2	2.19	197.8	0	16.5	1.15	
TI HRSG		0.	470.		0.	-57.	159.		4.	19.	2.51	0.03	0.18	74.2	4.50	359.2	0	21.1	1.47	-
	28651	0.	0.		0,	375.	-352.		4.	4.	2.66	0.03	0.06	53.2	3.23	291.2	4	14.9	1.04	
	28651	0.	0.		0.	443.	-276.		4.	32.	4.36	0.03	0.24	128.6	7.80	568.2	0	22.2	1.55	
STIRL	28651	391.	0.		-391.	375.	36.		4.	4.	1.16	0.03	0.05	22.8	1.38	124.2	0_	17.3	1.21	
STURI.	20651	664.	0.		-664.	490.	420.		4.	51.	1.84	0.03	0.27	42.4	2.57	160.8	0	21.2	1.48	
STIRL	28651	0.	391.		0.	-15.	36.		4.	4.	1.16	0.03	0.05	22.8	1.38	124.2	0	14.8	1.03	
STIRL	28651	o.	664.	0.	ο.	-174.	420.		4.	51.	1.84	0.03	0.27	42.4	2.57	160.9	0	16.9	1.18	
STIRL	28651	0.	0.	391.	0,	375.	-354.		4.	4.	2.23	0.03	0.05	36.7	2.23	200.3	<u> 11</u>	12.6	0.88	
STIRL	28651	0.	0.	858.	0,	571.	-168.		4.	84.	4.04	0.03	0.32	100.6	6.10	314.1	5	14.4	1.00	89
	20651	ο.	ο.	401.	0,	375.	-365,		4.	4.	2.21	0.03	0.03	40.0	2.43	214.4	8	13.2	0.92	
	20651	0.	0.	2527.	Ο.	1002.	-393,		4.	260.	9.72	0.03	0.19	256.2	5.55	316.5	0	33.0	2.30	
	28651	0.	<u>o.</u>	400.	0.	375.	-364.		4.	4.	2.21	0.03	0.03	39.7	2.41	213.0	9	13.2	0.92	11:
	28651	o.	O,	1305.	0,	651.	-345.		4.	117.	5.63	0.03	0.19	144.0	8.74	319.1	0	22.5	1.56	8/
	28651	0.	0.	400.	0.	375.	-364.	Α	4.	4.	2.23	0.03	0.03	39.3	2.38	211.2	9	13.2	0.92	11:
	28651	о.	ο.	785.	Ο.	494.	-35 3 ,	Α	4.	53.	3.60	0.03	0.15	85.2	5.17	284.9	1	17.1	1.19	7
CMCCL	. 28651	0.	0.	622.	0.	375.	-586.		4.	4.	2.38	0.03	-0.51	43.2	2.62	237.1	0	17.5	1.22	5
CHCCL	20051	0.	0.		0.	600.	-289.		4.	96.	5.78	0.03	0,22	104.2	6.32	330.8	ō	18.6	1.29	84
CSTCL	. 28651	ο.	0.	621.	0.	375.	-585,		4.	4.	2.40	0.03	-0.51	42.4	2.57	232.9	0	17.5	1.21	52
CSTCL	. 28651	ο.	ο.	1332.	Ο.	744.	-62.		4.	155.	7.23	0.03	0.34	129.9	7.88	332.7	3	16.4	1.14	
GOTST	28651	Ο,	0.	626.	Ο.	375.	-590		4.	4.	2.35	0.03		40.6	2.46	221.2	ŏ	17.3	1.20	-
GGTST		O.	0.	1242.	Ű.	632.	-347.		4.	109.	3.46	0.03	0.19	101.1	6.14	277.7	3	16.3	1.13	
TSOAR	20651	0.	390.	0.	o.	-14.	36.		4.	4.	1.09	0.03	0.05	21.3	1.29	116.1	2	14.5	1.01	-
	28651	o.		o.	õ.	-196.				•						115.6	õ	15.1	1.05	

PAGE 73

DATE 03/08/. 2 18SE-PEO-ADV-DES-ENGR

cs	PROCS	**CO DISTIL				NOCOGEN - RESIDL	- COGEN**	POVER REOD MW	COGEN POWER MW	O&M	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM COST	\$/KW	ROI	LEVL CHRG	NORM ENRO	WRTH
TACO	28651	0.	387.	Ō.	0	-11.	36.	4.	4.	1.08	0.03	0.06	20.7	1.26	113.8	5	14.4	1.00	0 132
	28651		605.	o.	Ö		393.	4.	48.	1.35	0.03	0.31	26.6	1.62	108.2	10	13.6		5 10
	28651		387.	o.	o.	-11.	36.	4.	4.	1.07	0.03	0.06	20.7	1.26	113,5	5	14.4		0 13
	2 28651		664.	o.	. 0	-154.	488.	4.	59.	1.46	0.03	0.33	30.4	1.84	115.3	8	13.7	0.9	6 10
	28651		387.	Ō.	0.	-12.	36.	4.	4.	1.07	0.03	0.06	20.8	1.26	114.2	4	14.4		0 13
	28651		707.	0.	0.	-178.	550.	4.	67.	1.55	0.03	0.34	33.7	2.05	122.1	6	14.0	0.98	8 10
TWC1	20551	ο.	390.	0.	0.	-14.	36.	4.	4.	1.08	0.03	0.05	21.1	1.28	115.3	2	14.5	1.0	1 13
TWC1	28651	0.	767.	0.	0.	-229.	581.	4.	71.	1.55	0.03	0.32	33.0	2.00	112.5	1	15.0	1.04	4 10
C162	20651	0.	390.	0.	0	-14.	36.	4.	4.	1.14	0.03	0.05	20.9	1.27	113.9	0	14.6	1.0	2 13
C162	28651	Ι , Ο.	1035.	0.	0.	-382.	967.	4.	118.	2.00	0.03	0.36	43.3	2.63	116.3	0	15.7	1.10	0 10
0162	2 28651	0.	389.	0.	0	-13.	36.	4.	4.	1.14	0.03	0.06	20.6	1.25	112.8	1	14.5	1.0	1 13
00162	2 28651		944.	0.	0	-319.	871.	4.	106.	1.96	0.03	0.37	43.3	2.63	125.3	2_	15.2	1.00	
	28651		388.	Ō,	0		36.	4.	4.	1.13	0.03	0.06	20.5	1.24	112.0	2	14.5	1.0	
	2 28651		936,	0.	0.		868.	4.	106.	1.93	0.03	0.37	41.3	2.51	120.3	3	14.8	1.00	
	2 20651		387.	0.	0.	-11.	36.	4.	4.	1.14	0.03	0.06	20.7	1.25	113,3	2	14.5	1.01	
	2 28651		791.	0.	0	-219.	696.	<u>4.</u>	85	1.75	0.03	0.38	35.3		117.5	8	13.7		
	28651		404.	0.	0	•	36.	4.	4	1.10	0.03	0.02	20.8	1.26	110.9	0	14.9	1.04	
	3 28651		23846.	0.			21862.	4.	2663.	39,42	0.03	0.17		40.18	93.8	0	309.6		
	28651		400.	o.	0.	-24.	36.	4.	4.	1.09	0.03	0.03	20.6	1.25	110.4	0	14.8		
	28651		2340.	0.	0.	-1371.	2022.	4.	246	4.22	0.03	0,22	79.0	4.79	104.6	0	35.7	2.48	
	20651		393.	0,	0.		36.	4.	4.	1.09	0.03	0.03	20.5	1.24	110.3	0	14.7	1.02	-
	3 20651		1471.	0.	0.		1186.	4.	144.	2.92	0.03	0.23	50.6	3.07	101.1	0	25.0	1.74	
	3 28651		394.	0,	0.	-19.	36.	4.	4.	1.19	0.03	0.04	24.7	1.50	134.1	0	15.1	1.05	
	3 28651	V	1381.	0.	0	-648.	1233.	<u>4.</u>	150.	3.56	0.03	0.30	105.4	6.39	222.5		27.8	1.93	
	1 2065		386.	0.	0		36.	. 4.	4.	1.23	0.03	0.06	24.8	1.51	136,3	0	14.9		1 12
	1 28651		719.	0.	0		594.	4.	72.	2.38	0.03	0.37	60,1	3,65	215.0	0	17.0	1.18	
	3 28651		0.	0.	-397		36.	4.	4.	1.17	0.03	0.04	23.9	1.45	128.8	0	17.7	1.23	
	3 28651		0.	<u> </u>	-1628	787.	<u> 1414. </u>	4.	172.	4.63	0.03	0.26	146.5	8.89	268.2	<u> </u>	<u>46.8</u>		8 13
	3 28651 3 28651		397.	0.	0.		36,	4.	4.	1.17	0.03	0.04	23.9	1.45 8.89	128,8	0	15.1 36.3	2.52	5 12
	3 20051 3 28651		1628. O.	0. 0.	-388	-841. 375.	1414. 36.	4. 4.	172. 4.	4.63 1.07	0.03 0.03	0.26 0.06	146.5 20.5	1.24	268.2	0	16.9	1.16	
	28651		0.	0.	-666	504.	468.	4.	57.	1.39	0.03	0.32	20.5 27.5	1.67	104.0	ő	18.1	1.26	
	20651		<u> </u>	0.	-389		36.	4.	4.	1.08	0.03	0.05	21.4	1.30	117.0	- ö -	17.1	1.19	
	3 28651		0.	o. o.	-875		751.	4.	92.	1.82	0.03	0.05	43.1	2.62	132.6	Ö	21.3	1.48	
	28651		0.	· 0.	-389	375.	36.	4.	4.	1.08	0.03	0.06	21.3		116.7	o	17.0	1.18	
	2 28651		a.	0.	-857	585.	739.	4.	90.	1.78	0.03	0.35	41.6	2.52	129.9	Ö	20.8	1.44	
	28651		0.	0.	-389	375.	36.	4.	4.	1.09	0.03	0.06	21.5	1.31	117.8	~	17.1	1.19	
	28651		o.	0.	-825	572.	693.	4.	84.	1.78	0.03	0.35	41.9	2.54	134.9	õ	20.7		4 11
	20651		ő.	o.	-389		36.	4.	4.	1.08	0.03	0.06	21.1		115.4	ŏ	17.0	1.18	
	3 28651		Ŏ.	o.	-751	537.	578.	4.	70.	1.58	0.03	0.33	34.2	2.08	118.4	ŏ	19.6	1.36	
	20651		ö.	Ö,	-389		36.	4.	4.	1.08	0.03	0.06	21.2	1,29	116.1	- ŏ -	17.0	1.18	
	28651		0.	0.	-781		620.	4.	76.	1.64	0.03	0.33	36.5	2.21	122.4	Ŏ	20.0	1.39	
	20651		Ŏ.	o.	-389	375.	36.	4.	4	1.08	0.03	0.06	21.3		116.6	ŏ	17.0	1.18	
	28651		O.	o.	-783	554.	635.	4.	77.	1.69	0.03	0.34	38.6		129.3	Ō	20.0	1.39	

DATE 06/08/7. LESE-PEO-ADV-DES-ENGR

				FUEL. US	E IN BT	U*10**6-												
		C(DOENERAT	ION CAS	E **N	acagen -	COGEN**	POWER	COGEN	OSM	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL	RESIDL	CUAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG
					1 1 1			MW	WM		RATIO		*10**6			(7)		
GTRWO	3 28651	393	. 0.	0.	-393.	375.	36.	4.	4.	1.09	0.03	0.05	21.5	1.30	116.7	0	17.2	1.20 134
GTRWO	8 28651	1066	. 0.	0.	~1066.	634.	900.	4.	110.	1.86	0.03	0.31	43.1	2.62	113.1	0	24.8	1.72 116
GTRW1:	2 28651	392	. 0.	.0.	-392.	375.	36,	4.	4.	1.08	0.03	0.05	21.5	1.30	116.9	0	17.1	1.19 135
GTRW1:	2 28651	1052	. o <u>.</u>	0.	-1052.	640.	921.	4.	.112.	1.86	0.03	0.33	43.6	2.64	115.5	0_	23.8	1.66 117
OTRWI	5 28651	391	. 0.	0.	-391.	375.	36.	4.	4.	1.09	0.03	0.05	21.6	1.31	117.9	. 0	17.2	1.19 134
OTRW1	6 28651	1000	. 0.	۵,	-1000.	621.	859,	4.	105.	1.85	0.03	0.32	43.3	2.63	119.7	্ব	23.4	1.63 116
GTR30	3 28651	394	. 0.	0.	-394.	375.	36.	4.	4.	1.08	0.03	0.04	21.2	1.28	114.7	0	17.2	1.20 134
GTR30	8 28651	921	o <u>.</u>	0.	-921.	570.	587.	4.	84.	1,67	0.03	0.27	36.5	2.22	107.9	0	23.5	1.64 112
GTR31:	2 20651	391	. 0,	0.	-391.	375.	36.	4.	4.	1.08	0.03	0.05	21.2	1.29	115.7	0	17.1	1.19 135
GTR31:	2 28651	918.	0.	0.	-918.	590.	756.	4.	92.	1.70	0.03	0.32	37.9	2.30	112.2	0	22.1	1.54 115
GTR31	6 28651	391	. 0.	0.	-391.	375.	36.	4.	4.	1.09	0.03	0.G5	21.4	1.30	116.8	0	17.1	1.19 135
GTR31	6 28651	913.	. 0.	0.	-913.	587.	744.	4.	91.	1.72	0.03	0.31	38.9	2.36	115.7	0	22.2	1.55 114
FCPAD	\$ 28651	396	. 0.	0.	-396.	375.	36.	4.	4.	1.43	0.03	0.04	23.0	1.40	124.3	0	17.8	1.24 133
FCPAD:	S 28651	1824	. 0.	0.	-1824.	863.	1667.	4.	203.	21.50	0.03	0.28	124.1	7.53	205.6	0	62.6	4.35 166
FCMCD:	S 28651	391	. :0.	0.	-391.	375.	36.	4.	4.	1.41	0.03	0.05	23.2	1.41	126.4	0	17.6	1.23 134
FCMCD	S_28651	1330	. 0.	0.	-1330.	759 .	1319.	4.	161.	16.24	0.03	0.36	107.5	6.52	234.2	0	45.9	3.20 149

DATE 05/08/75 LASE-PEC-ADV-DES-ENGR

					E** **MO					MBD	POWER	FESR	CAPITAL	NORM	\$\KH	ROI	LEVL	NORM WR	łTH
ECS I	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COVIT	REGD	POVER MW		/HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
DNOCGN	28653	Ō.	368.	49.	0.	0.	0.	6.	0.	0.57	0.07	O.	9.3	1.00	89.7	0	14.0		80
STM141			377.	0.	0.	-9.	49.	6.	6.	0.94	0.07	0.10	12.4		112.0	13	13.5	0.97 1	
STM141	28653	Ο.	407.	0.	0.	-21.	110.	6.	13.	0.75	0.07	0.18	12.0	1.29	100.7	27	12.8	0.91 1	26
STM141	28653	0.	0.	377.	0	368.	-328.		6.	1.92	0.07	0.10	28.0		253.0	13	11.5	0.82 1	
STM141	28653	0.	0,	407.	0.	386.	-297.	F 6.	13.	1.58	0.07	0.18	25.3		212.7	19	10.0	0.71 10	
STM141			0,	377.	ο.	368.	-328.			1.80	0.07	0.10	24.5	2.65	222.1	16	11.0		
STM141		1	0,	407.	o.	386.	-297.			1.41	0.07	0.18	18.2		152.9	33	9.0	0.65 1	
880MT8			377.	0.	0.	-9.	49.	<u>6,</u>	6.	0.92	0.07	0,10	11.8		107.1	16	13.5	0.96 1	
880MTS			368,	0.	0.	-14.	72.	6.		0.71	0.07	0.13	10.7	1.15	93.7	38	12.9	0.92 1	
STMOSS			0.	377.	0.	368.	-328.		6.	1.87	0.07	0.10	27.1	2.92	245.3	14	11.3	0.81 1	
080MTS			0.	388.	0.	374.	-316.			1.48	0.07	0.13	23.3		205.3	20	10.2	0.73 10	
080MT			<u> 0.</u>	377.	0.	368.	-328.		6,	1.76	0.07	0.10	22.7		205.5	19	10.8	0.77 1	
STMOB6 PFBSTM			0. 0.	388. 378.	0. 0.	374. 368.	-316. -329.	A 6.		1.36	0.07 0.07	0.13	17.1 28.1	1.85 3.03	150.8 253.1	34 13	9.4 11.6	0.67 11 0.83 11	
PESTM			0.	376. 456.	0.	413.	-329. -256.	6.		2.37	0.07	0.09	30.8		230.5	16	10.1	0.72	-
FISTMT			378.	436.	0.	-10.	49.	6.	24. 6.	1.27	9.07	0.28	26.7		241.2	0	15.4	1.10 12	
ISIMI			492.	0.	0.	-10. -56.	275.	6.		2.37	0.07	0.31	74.9		519.6	- 6	19.9	1.43 10	
	28653		492.	378.	0.	368.	-328.	6.		2.24	0.07	0.09	42.9		387.8	6	13.4	0.96 11	
TISTMT			· 0.	492.	o.	435.	-216.	6.		3.39	0.07	0.31			659.4	2	17.0		99
THRSG			396.	0.	Ö.	-28.	49,	6.	6.	1.39	0.07	0.05	34.1		294.2	ō	16.8	1.20 1	-
THRSG			502.	0.	0.	-98.	170.	6.		2.19	0.07	0.13	72.8		494.9	<u> </u>	22.1		99
THRSG			Ō,	396.	o.	368.	-347.	6.		2.42	0,07	0.05	52.0		447.9	3	14.9	1.07 15	98
TIHRSG			0.	502.	0.	404.	-332.	6.	21.	3.23	0.07	0.13			634.0	Ō	19.2		92
STIRL	28653		o,	0.	-390.	368.	49.	6.	6.	0.92	0.07	0.06	14.2		124.4	0	16.7	1.19 13	33
STIRL	28653	589.	Ō,	0.	-589.	446.	310.	6.	38.	1.25	0.07	0.22	31.3	3.38	181.4	0	20.1	1.44 10	01
STIRL	28653	0.	390.	0.	Ο.	-23.	49.	6.	6.	0.92	0.07	0.06	14.2	1.54	124.5	3	14.1	1.01 12	28
STIRL.	20053		589.	0.	ο.	-143.	310.	6.	38.	1.25	0.07	0.22	31.4		181.7	0	16.1		94
STIRL	20653		0.	390.	0.	368.	-341.	6.	6.	1.83	0.07	0.06	28.5		249.5	13	11.6	0.83 1	
STIRL	20653		0.	589.	0.	446.	-278.	6.	38,	2.43	0.07	0.22	54.7		316.7	7	12.4		81
IEGT60			0,	418.	0.	368.	-369.			1.92		-0.00	35.7		291.5	7	13.0	0.93 10	
HEGT60			ວ.	1999.	0.	725.	-753.			6.92	0.07				295,6	0	32.7		75
IFGT00			0.	406.	0.	368.	-357.		6.	1.90	0.07	0.03	34.5		290,4	8	12.7	0.91 10	
HEG TOU			0.	648.	0.	435.	-373.			2.61	0.07	0.09	61.8		325.4	2	15.3		71
FCMCCL			o.	383.	0.	368.	-334.	6.		2.00	0.07	0.08	35.2	-	313.7	9	12.5	0.90 1	
FCMCCL			0.	638.	0.	492.	-171.	6.		3.87	0.07	0.33	71.3		381,5	6	13.2		90
CSTCL			<u>0.</u>	382. 727.	<u>0.</u>	368. 544.	-332. -86.	<u>6.</u>	<u>6.</u> 78.	2.03 4.52	0.07	0.08	34.6 82.3	3.73 8.87	309.3 386.3	<u>9</u>	12.5 12.6	0.89 1	93
LOGIST			0.	390,	0,	368.	-340.	6.	78. 6.	1.98	0.07	0.39	34.1		298.6	9	12.5	0.89 11	
IGGTST			o.	677.	0.	483.	-340. -242.	6.	53.	2.38	0.07	0.26	63.9		322.0	7	12.3		80
STSOAR			392.	0,	0.	-24.	49.	6.	6.	. 0.87	0.07	0.06	14.3		124.6	3	14.1	1.01 1	
SUAR			784.	0.	0.	-268.	547.	6.		1.12	0.07	0.26	27.6	2.97	120.0	0	15.9		95
STACO8			383.	o.	Ö.	-15.	49.	6.		0.85	0.07	0.08	13.7		122.5	9	13.7	0.96 1	
	28653		582.	o.	o.	-116.	378.	6.	46.	0.89	0.07	0.31	20.0		117.2	12	12.8	0.91 10	

DATE 06/08/7 LESE-PFO-ADV DES-EMOR

GENERAL ELL RIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

								,,,		· ·			
		* * * · · ·				UMMARY	CIE	E1161	SAVED	DV	TYPE	R ECON	SOLME
					•	OTHER	O,	1 OLL	3/14/20	D1		O POUNT	
									•				
 	·	· · · · · · · · · · · · · · · · · · ·											
			-FIIFI	TISE II	N BTU*10**	6							
	,	* *CCCCINERA	TION	CASESE	**NOCOGEN	I - COGI	FN××	POWER	COCE	J.	ORM	POWER	FESR
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	) : B \ \   1	ONOL	**************************************	0.00		1 0111-1			OGI.		1

						TU*10**6	COGEN**		COGEN	MSD	POWER	FESR	CAPITAL	NORM	\$/K\	ROI	LEVL	NORM WRT
cs	PROCS	DISTIL R				L RESIDL	COAL	REGD	POVER	Jan	/HEAT		COST *10**6	COST	EQVL	(2)	CHRG	ENRO
TACIA	28653	3 0.	383.		o. c	-16.	49.	6.	6.	0.85	0.07	0.08	13.7	1.48	122.1	9	13.7	0.98 13
TAC12	28553	3 0.	647.	1	o, c	152.	475.	6.	58.	1.00	0.07	0.33	23.8	2.57	125.6	10	13.0	0.93 10
TAC16	28653	3 0.	385.	:	o. 0	-17.	49.	6.	6.	0.85	0.07	0.08	13.9	1.50	123.2	8	13.8	0.99 13
TAC16	28653	3 0.	713.		o. c	195.	554.	6.	68.	1.11	0.07	0.34	27.7	2.99	132.6	6	13.7	0.98 10
TWOTE	28653	3 0.	387.		). C	19.	49.	6.	6.	0.86	0.07	0.07	14.2	1.53	125.1	6	13.9	0.99 12
TWC16	28653	3 0.	740.		<b>o.</b> c	219.	561.	6.	68.	1.08	0.07	0.32	26.3	2.84	121.3	4	14.1	1.01 9
C1626	28653	3 0.	388,		o. c	20.	49.	6.	6.	0.93	0.07	0.07	14.0	1.51	122.9	4	14.0	1.00 12
C1626	28653	3 0.	928.	. 1	0. 0	332.	814.	6.	99.	1.43	0.07	0.34	33.4	3.60	122.9	0	<u> 15.1</u>	1.08 10
C162	20653	3 υ.	386.		0. 0	19.	49.	6,	6,	0.92	0.07	0.07	13.7	1.48	121.2	5	13.9	1.00 13
0162	28653	3 0.	847.	1	o. c		730.	6.	89.	1.39	0.07	0.35	33.2	3.58	133.7	3	14,5	1.04 10
	28653		386.	. 1	o. c	• • • • •	49.	6.	6.	0.92	0.07	0.07	13.5	1.46	119.5	6	13.9	
	28653		839.		o. c		725.	6.	88.	1,36	0.07	0.35	-31.4	3.39	127.7	4	14.2	
	28653		384.			-16,	49.	6.	6.	0.93	0.07	0.08	13.7	1.48	122.0	7	13.9	
	28653		709.		o. c		570.	6.	69,	1.20	0.07	0.35	26.0	2.81	125.2	8	13.2	
	1 28653		390.		0. 0		49.	6.	_6.	1.04	0.07	0.06	18.1	1.95	158.3	0	14.6	1.04 12
	1 28653		695,		0. (		455.	6.	<u>55.</u>	1.89	0.07	0.26	52.6	5.67	258.3	0	18.8	1,35 9
	28653		0.		0380		49.	6.	_6.	0.84	0.07	0.07	13.5	1.45	119.1	0	16.4	
	28653		0,		0662		465.	6.	57.	0.93	0.07	0:31	21.2	2.29	109.4	0	17.8	1.27 10
	28650		0.		0392		49.	6,	6.	0.86	0.07	0.06	14.4	1.56	125.7	0	16.7	1.20 13
	28650		0.		01094		940.	6.	115.	1,55	0.07	0.30	42.8	4.62	133.5	<u>c</u>	<u> 25.5</u>	
	2 28650		0.		0390		49.	6.	6.	0.86	0.07	0.06	14.4	1.55	125.9	0	16.7	1.19 13
	2 28650		0.		01018		877.	6.	107.	1.47	0.07	0.32	40.0	4.32	134.1	C	23.8	1.71 11
	28653		0.		0390 0943		49. 700	6.	6.	0.87	0.07	0.07	14.7	1.58	128.5	0	16.7	1.19 13 1.64 10
	20653 20653		<u>0.</u>		0943 0389		792.	6. 6.	96. 6.	1.44	0.07	0.32	39.3	4,23	142.2 123.9	0	22.9 16.6	
	28650		0.		0801 0811		49. 624.		76.	0.86	0.07	0.07	14.1 29.6	1.52 3.19	124.5	0	20.7	1.48 10
	2 28653		0.		0389		49.	6. 6.	76. 6.	1.17 0.86	0.07	0.30	14.3	1.54	124.3	ő	16.6	
	28653		o.		0308 0845		671.	6.	82.	1,24	0.07	0.31	32.0	3.45	129.2	Ö	21.2	
	28553		o.		0369		49.	<del>- 6.</del>	6.	0.86	0.07	0.07	14.4	1.55	126.5	ŏ	16.6	
	28653		0.		)853		692.	6.	84.	1.30	0.07	0.32	34.4	3.71	137.8	ő	21.3	
	28653		o.		)395		49.	6.	6.	0.86	0.07	0.05	14.5	1.57	125.3	ŏ	16.9	
	28653		õ.		01294		1093.	6.	133.	1.57	0.07	0.27	42.1	4.54	111.0	ŏ	29.3	
	20650		Ö.		o393		49.	6.	6.	0.86	0.07	0.06	14.5	1.57	126.1	ō	16.8	
	28653		Ŏ.		01218		1067.	6.	130.	1.54	0.07	0.30	41.3	4.45	115.7	Ŏ	27.0	
	28650		o.		0392		49.	6.	6.	0.87	0.07	0.06	14.7	1.59	128.3	o	16.8	
	28650		0.		01108		952.	6.	116.	1.48	0.07	0.30	39.8	4.29	122.7	ŏ	25.4	1.82 11
TREO	28653	3 397.	o.		0397		49.	6.	G.	0.86	0.07	0.05	14.2	1.53	122.0	ō	16.9	1.21 13
	20653		o.		01077		803.	6.	98.	1.32	0.07	0.23	33.7	3.63	106.7	ŏ	26.9	1.92 10
TR31	28653	3 391.	0.	(	0391		49.	6.	6.	0.86	0.07	0.06	14.3	1.54	124.7	ŏ	16.6	1,19 13
	28650		ο.	(	0951		783.	6.	95.	1.28	0.07	0.31	32.6	3.51	116.9	ŏ	22.6	
TR31	28653	391.	0.	(	o391		49.	6.	6.	0.86	0.07	0.06	14.5	1.56	126.7	Ō	16.7	1.19 13
TR31	28653	942.	. 0.		0942	. 583.	769.	6.	94.	1.30	0.07	0.30	33.5	3.61	121.4	Ō		1.62 10
CPADS	28653	396.	0.		)396	. 368.	49.	6.	6.	1.35	0.07	0.05	15.3	1.65	131.7	0	17.4	1.25 13
CPADS	28653	3 1765.	0.		D1765	. 835.	1614.	6.	197.	21.02	0.07	0.28		12.26	219.9	0	61.5	

DATE 0G/00/7.

#### GENERAL ELE RIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUBMARY OF FUEL SAVED BY TYPE & ECONOMICS

.dE 77

		DIS	**COGE TIL RE	NERA1 SIDL	CO	CASE	E** DIS	**NOC	RESIDL	- COGEN**	POWER REGD MW	POWER MW	M&O	/HEAT		CAPITAL COST *10**6	COST	EQVL	(2)	CHRG	ENRG	
	20653 28653		389. 288,	0,			-12		368. 7 <b>3</b> 4.	49. 1276.	6. 8.			0.07		15.6 97.6				17.2 44.9	1.23 3.21	13
													<del>On an elegan</del>	and a proper particular of the state of the						**************************************		
;												-	· .									
								·							•		•					
					:	.*					4.											
		,				:					,											
									· · · · · · · · · · · · · · · · · · ·	ing a garage						:						
•																						س جسو
			<u>any normanisms</u>																			
									:					•							•	

ECS	PROCS		ENERAT	TON CAS	E** **NC DISTIL		COGEN	** P	OVER	COGEN POWER MV	O&M	POWER /HEAT RATIO		CAPITAL CUST *10**6	NORM COST	\$/KW EQVL	ROI (%)	LEVL CHRO	NORM ENRO	WRTH
ONOCGN	28654	0.	261.	6.	0.	0.	Ō.		1.	0.	0.47	0.01	0.	6.5	1.00	85.7	0	8.8	1.00	80
STM141	28654	0.	262.	Ο.	0.	-1.	6.		1.	1.	0.72	0.01	0.02	8.4	1.29	109.0	0	9.1	1.04	1 127
STM141	28654	0.	278,	0.	0.	-8.	40.		1.	5.	0.62	0.01	0.10	8.6	1.32	105.5	5	8.8	1.00	9
STM141	20654	0.	0.	262.	0.	261.	-256.	F	i.	1.	1.46	0.01	0.02	19.8	3.04	257.9	9	8.0	0.90	
STI1141	28654	0.	0.	278.	O.	271.	-239,	F	1.	5.	1.24	0.01	0.10	18.6	2.87	228.6	14	7.1	0.81	
STI1141	28654	0.	0.	262.	o.	261.	-256.	Ā	i.	1.	1.40	0.01	0.02	19.1	2.94	249.5	10	7.8	0.89	
STM141	28654		0.	278.	õ.	271.	-239.		i.	5.	1.10	0.01	0.10	13.6	2.09	166.4	23	6.5	0.73	
	28654		Õ.	262.	o.	261.	-256.	•••	i.	1.	1.35	0.01	0.02	18.8	2.89	244.7	11	7.8	0.88	
	20654		0.	314.	0.	290.	-211.		<del>- i.</del>	13.	1.77	0.01	0.20	23.2	3.58	252.6	<del>- i i -</del>	7.4	0.84	
	28654		262.	0.7.	ő.	-1.	6.		i.	1.	0.72	0.01	0.02	10.4	1.59	135.1	'ò	9.4	1.06	
	28654		336.	o. o.	o.	-32.	152.		1.	19.	1.83	0.01	0.26	55.5	8.54	563.5	ő	14.2	1.62	
	28654		0.	262.	ő.	261.	-256.		i.	1.	1.41	0.01	0.02	21.2	3.26	276.0	9	8.1	0.92	
	20654		0.	336.	0.	304.	-184.		<del>- †:</del>	19.	2.60	0.01	0.26		0.89	718.9	<del>- 0</del>	12.6	1.43	
	28654		264.	0.00	0.	-3.	6.		i.	13.	0.69	0.01	0.20	11.3	1.74	146.0	ŏ	9.5	1.07	
	20654		368.	0.	0.	-72.	125.		i.	15.	1.77	0.01	0.13	<b>57.</b> 7		535.0	Ö	15.8	1.79	
	28654		0.	264.	0.	261.	-258.		i.	1.	1.38	0.01	0.13	22.4	3.44	289.4	8	8.2	0.93	
THRSG			0.	368.	0.	296.	-243		<del>- i:</del>	15.	2.60	0.01	0.13		1.39	686.5	<del> </del>	14.1	1.60	
STIRL	20554		0.	300. 0.	-263.	280. 261.	6.		i.	13.	0.64	0.01	0.13	9.0	1.39	116.8	0	10.9	1.23	
STIRL	28654		0.	0. 0.	-432.	327.	228.		1.	28.	1.00	0.01	0.01	23.2	3.58	183.7	0	13.7	1.58	
STIRL	20054		263.	0.	0.	-3.	220. 6.		1.	1.	0.64	0.01	0.22	9.0	1.39	116.8	o o	9.2	1.04	
STIRL	28654		432.	0.	0.	-105.	228.		<del>-   :</del> -	28.	1.00	0.01	0.22	23.3		184.0	-0	10.9	1.24	
STIRL	20654		0.	263.	0.	261 <i>.</i>	-257.		1.	1.	1.30	0.01					_		0.88	
STIRL	28654		0.	432.	0.	327.	-204.		1.	28.			0.01	19.4	2.99	252.0	11	7.7		
	28654		0.	43Z. 266.	0.	261.		Δ.			1.91	0.01	0.22	41.2		325.4	5	8.5	0.97	
	28654		0.	1466.	0.	532.	-261. -552.		1.	<del>- , , ]</del>	1.23 5.43		-0.00	19.0	2.92	243.1	<del>-11</del>	7.7	0.80	
	28654		0. 0.	265.					1.	111.			-0.01			323.7	0	24.8	2.81	
	28654	0.	0. 0.	265. 475.	0. 0.	261.	-259.		1.	1.	1.23	0.01	0.00			242.9	11	7.7	0.87	
	28654 28654	0.	0.		- •	319.	-274.	А	1.	25.	2.07	0.01	0.09	49.6	7.63	356.3	0	11.0	1.29	
				262.	0.	261.	-257.		<u> </u>	1.	1.31	0.01	0.01	21.5	3.31	279.7	8	8.1	0.92	
	28654	0,	0.	468.	0.	361.	-126.		1.	42.	3.00	0.01	0.33	57.0		415.8	4	9.6	1.09	
	28654		0.	262.	0.	261.	-256.		1.	1.	1.35	0.01	0.02	21.4	3.29	278.7	8	8.1	0.92	
	20654		0.	498.	0.	380.	-93.		1.	49.	3.31	0.01	0.36	61.6		421.7	4	9.6	1.09	_
COTST		0.	<u>0.</u>	263.	0.	261.	<u>-253.</u>		1.	1.	1.38	0.01	0.01	20.8		269.0	8	8.1	0.92	
	28654	0.	0.	463.	0.	337.	-201.		1.	32.	1.91	0.01	0.23	48.4	7.45	356.6	4	9.3	1.06	
	28654		263.	0.	0.	-3.	6.		1.	1.	0.60	0.01	0.01	8.3		107.6	0	9.0	1.03	
	28654	0.	575.	0.	0.	-196.	401.		1.	49.	0.93	0.01	0.26	21.9	3.37	130.1	0	11.0	1.25	
STACO8			262.	0.	<u>o.</u>	-2.	6.		<u>1.</u>	1.	0.59	0.01	0.01	8.2		106.4	0	9.0	1.02	
	20654	0.	427.	0.	0.	-85.	277.		1.	34.	0.74	0.01	0.31	15.9	2.44	127.0	6	8.6	0.98	
STAC12			262.	0.	0.	-2.	6.		1.	1.	0,59	0.01	0.01			105.6	0	9.0	1.02	
	28654		475.	0.	n,	-112.	348.		1.	42.	0.83	0.01	0.33			134.9	5	8.8	1.00	
TAC16		0,	263.	<u>0.</u>	<u>o.</u>	-2.	6.		<u> 1.</u>	1	0.59	0.01	0.01	8.1		105.7	o	9.0	1.02	
	26654	o.	523.	0.	Ō.	-143.	406.		1.	50.	0.92	0.01	0.34	21.8	3.35	142.1	1	9.3	1.06	
STWC16		o.	263.	o.	0,	-2.	6.		1.	1.	0.59	0.01	0.01	8.3		107.5	0	9.0	1.02	
₹WC16	20654	0.	542.	Ο,	0.	-161.	411.		1.	50.	0.90	0.01	0.32	21.0	3.23	132.3	0	9.7	1.10	98

PAGE 79

				FUEL US	E IN BT	U*10**6-	*****			<u> </u>								
8		**C	OGENERAT	ION CAS	E** **N	OCOGEN -	COGEN**	POWER	COGEN	MBD	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL.	COAL	REGD	POWER		/HEAT	'	COST	COST	EGVL		CHRG	ENRO
1								MM	MV		RATIO	i	*10**6			(2)		
DEHTE	M 20654	0		0.	ō.	-3.	6.	1.	1.	0.66	0.01	0.01	9.3	1.43	120.4	0	9.2	1.04 124
DEHTP	H 28654	0	. 510.	. 0.	Q,	-151.	334.	1.	41.	1.49	0.01	0.26	38.9	5.98	260.2	0	13.0	1.47 94
<b>∦</b> GTSO∧	D 20654	263	. 0.	0.	-263.	261.	6.	1.0	1,	0.59	0.01	0.01	8.1	1.25	105.2	0	10.7	1.21 132
GTSOA	D 28654	485	. 0.	0.	-485.	361.	341.	1.	42.	0.78	0.01	0.31	16.8	2.59	118.3	0	12.2	1.39 108
GTRAO	8 20654	263	. 0.	0.	-263.	261.	6.	1.	1.	0.59	0.01	0.01	8.3	1.28	107.9	0	10.7	1.22 131
i GTRAO	8 28654	803	. 0.	0.	-803.	465.	669.	1.	84.	1.28	0.01	0.30	34.0	5.24	144.7	0	18.0	2.04 115
GTRA1	2 28654	263	. 0.	0.	-263.	261.	6.	1.	1.	0.59	0.01	0.01	8.3	1.27	107.1	0	10.7	1.22 131
	2 20654			0.	-747.	451.	643.	1.	78.	1.21	0.01	0.32	31.6	4.86	144.3	0	16.7	1,89 113
<b>X</b>	6 28554			0.	-263.	261.	6.	1.	١.	0.59	0.01	0.01	8.3	1.28	103.0	0	10.7	1.22 131
GTRAT	6 28654	691	. 0.	0.	-691,	432.	580.	1.	71.	1.19	0.01	0.32	31.0	4.77	153.2	0	16.0	1.82 112
GTR20	8 28654	263	. 0.	0.	-263.	261.	6.	1.	1.	0.59	0.01	0.01	8.2	1.27	106.9	0	10.7	1.22 131
GTR20				0.	-595,	396.	458.	1,	56.	0.97	0.01	0.30	23.4	3.60	134.4	0	14.3	1,63 109
GTR21				0.	-263.	261.	6.	1.	١.	0.59	0.01	0.01	8.3	1.27	107.2	0	10.7	1.22 131
GTR21				ο.	-619.	406.	492.	1.	60,	1.03	0.01	0.31	25.3	3.89	139.5	0	14.7	1.67 109
GTR21				ο.	-263.	261.	6.	1.	1.	0.59	0.01	0,01	8.3	1.27	107.3	0	10.7	1.22 131
GTR21				0.	-626.	410.	507.	1.	62.	1.08	0.01	0.32	27.2	4.18	148.2	0	14.8	1.68 110
GTRNO				0.	-264.	261.	6.	1.	1.	0.59	0.01	0.01	8.3	1.28	108.0	0	10.8	1.22 131
GTRWO	,			0.	-949.	498.	801.	1.	98.	1.30	0.01	0.27	33.7	5.18	121.0	O	20.6	2.34 118
GTRWI				0.	-253.	261.	6.	1.		0.59	0.01	0,01	8.4	1.28	108.1	O	10.8	1.22 131
GTRWI				0.	-893.	492.	782.	<u>1.</u>	95.	1.28	6.01	0,30	33.0	5.08	126.2	0_	19.0	2.15 117
GTRW1				0.	-263.	261.	6.	1.	1.0	0,59	0.01	0.01	8.4	1.29	109.0	0	10.8	1.22 131
GTRWI				0.	-813.	467.	698.	1.	85,	1.23	0.01	0.30	31.9	4.91	134.0	0	17.6	2.03 115
GTR30				0.	-264.	261.	6.	1.	1.	0,59	0.01	0,01	8.2	1.27	106.5	9	10.8	1.22 131
	0 2065/			<u>0.</u>	-790,	435.	589.	<u> </u>	72.	1.10	0.01	0.23	26.8	4.13	116.0	0	10.0	2.13 110
ρ	2 2065/			0,	-263,	261,	6.	1.	1.	0.59	0.01	0.01	8.3	1.28	107.7	0	10.7	1.22 131
	\$ 20654			0.	-598.	430.	574.	1.	70.	1.06	0.01	0.31	26.0	4.00	127.3	0	15.8	1.79 112
	6 20654			0,	-263.	261.	6.	1.	1.	0.59	0.01	0.01	8.4	1.29	108.4	0	10.7	1.22 131
GTPS1				0.	-691.	427.	564,	<u> </u>	69.	1.08	0.01	0.30	26.8	4.13	132.4	0	15.9	1.80 111
	S 28654			0.	-264.	261.	€.	1.	1.	0.63	0.01	0.01	9.0	1.38	116,1	0	10.9	1.23 129
	S 28654			0.	-1294.	612.	1183.	1.	144.	15.00	0.01	0.28		12.96	222.2	0	43.3	4.92 177
•	S 28654			o.	-263,	261.	ճ.	1.	1.	0.62	0.01	0.01	9.0	1.39	116.8	0	10.8	1.23 130
FCMGD	S 28654	944	<i>.</i> 0.	0.	-944.	538.	936.	<u> </u>	114.	11.26	0.01	0.36	72.3	11.13	261.4	0	31.5	3.58 154

,						U*10**6-				1								
				ION CASE			000.71	, -,,,,,		Mad	POWER FESR	CAPITAL				LEVL	NORM !	
ECS	PROCS	DISTIL RE	SIDL	COAL	DISTIL	RESIDL	COVIT	REOD	POVER		/HEAT	COST	COST	EQVL		CHRG	ENRO	
						· · · · · · · · · · · · · · · · · · ·		MW	MM		RATIO	*10**6			(2)			
ONOCGN	-		4.	12.	o.	o.	0.	2.	0.	0.38	0.04 0.	4.7	1.00	102.2	_	1.3		
PFBSTM			0.	0.	0.	4.	12.	2.	2.	1.24	0.04 1.00	15.9		332.5		3.0		3 252
PFBSTM			G.	0.	0.	15.	49.	2.	6.	1.24	0.04 1.00	16.0		297.1	0	2.1		2 214
TIHRSG			<u>0.</u>	0.	0.	4.	12.	<u>2.</u>	2.	1.32	0.04 1.00	23.3		469.7	0	3.8		9 273
TIHRSG		- •	0.	0.	0.	24.	81.	2.	10.	1.94	0.04 1.00		11.47	767.7	0	6.2		269
HEGTOO			0.	0.	0.	4.	12. A		2.	1.09	0.04 1.00	17.1		342.9	-	2.9	2.21	
HEGTOO		- •	0.	0.	0.	37.	125. A		15.	1.49	0.04 1.00	35.5		409.4	0	2.8		3 202
FCMCCL			<u>0,</u>	284.	0.	<u>62.</u>	-76.	2.	25.	2,06	0.04 -0.05	39.9		478.4	0	6.9		7 144
GISUAR		0.	18	0.	ō.	-14.	12.	2.	2.	0.54	0.04 -0.10	6.8	1.45	138.9	_	1.8		3 116
GTACO8			19.	0.	0.	-15.	12.	2.	2.	0.53	0.04 -0.19	5.5	-	135.2	-	1.8		2 107
GTAC12			17.	0.	0.	-13.	12.	2.	2.	0.52	0.04 -0.05	6.4		134.0	-	1.7		7 123
GTAC16			16.	<u>o.</u>	0.	<u>-12.</u>	12.	2.	2	0.52	0.04 0.01	6.5		134.4	0	1.7		5 130
GTWC16			16.	· · · · · · · · · · · · · · · · · · ·	o.	-13.	12.	2.	2,	0.53	0.04 -0.02	6.7	1.43	138.3	-	1.7		127
GTSGAD			0,	0.	-18.	4.	12.	2.	2.	0.52	0.04 -0.10	6.4		132.2	_	1.8		7 120
GTRAOS			0.	0.	-14.	4.	12.	2.	2.	0.53	0.04 0.10	6.8		139.1	0	1.8		142
GTRA12			0.	<u> </u>	<u>-14.</u>	4.	12.	<u>2.</u>	2.	0.53	0.04 0.11	6.7		138.3	0	1.7		142
OTRA16			0.	0.	-15.	4.	12.	2.	2.	0.53	0.04 0.08	6.9		140.9	-	1.8		140
GTR208			Ů.	0.	-16.	4.	12.	2.	2.	0.53	0.04 -0.00	6.7		137.8	-	1.8		130
GTR212			0.	0.	-16.	4.	12.	2.	2.	0.53	0.04 0.03	6.8		138.9	0	1.8		5 134
GTR216			<u> </u>	<u> </u>	-15.	4.	12.	2.	<u> </u>	0.53	0.04 0.05	6.8		139.4	<u> </u>	1.8	1 34	
GTRW08			0.	0.	-15.	4.	12.	2.	2.	0.53	0.04 0.09	6.9	1.47	139.7	0	1.8		140
GTRU12			· 0.	0.	-14.	4.	12.	2.	2.	0.53	0.04 0.12	6.9	1.47	140.6		1.8		144
GTRW16			Ç.	0.	-14.	4.	12.	2.	2.	0.53	0.04 0.10	7.0	1.49	143.0	0	1.8		142
<u> </u>			<u> 0.</u>	<u> </u>	-17	4.	12.	2.	2.	0.53	0.04 -0.03	6.7		135.0		1.8	1.37	
01R312			Ō.	0.	-15.	4.	12.	2.	2.	0.53	0.04 0.06	6.8		139.9		1.8		138
OTR316			0.	0.	-15. -10	4.	12.	2.	2.	0.53	0.04 0.06	6.9		141.9		1.8		137
FCPADS			0.	0.	-13. -12	4.	12.	2.	2.	0.62	0.04 0.16	7.0	1.49	142.2	0	1.8		150
-CHCDS	28591	12.	0.	0.	-12.	4.	12.	2.	2.	0.60	0.04 0.22	7.0	1.50	145.0	0	1.8	1.34	157

DATE 06/08/75 180E-PEC-ADV-DES-ENGR

#### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

	· ·			FUEL USE	E IN ST	J*10**6-			-	<u> </u>								
							COGEN**		COGEN	MSO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL (				RESIDL	COAL	REGD	POWER		/HEAT	•••	COST	COST	EQVL		CHRG	ENRG
								MW	W11		RATIO		*10**6			(%)		
	N 28692		190.	47.	0.	Ō.	Ō.	6.	0.	0.40	0.13	0.	5.1	1.00	98.0	0	7.7	1.00 80
	M 28692		2.	207.	Ο.	188.	-161.	6.	5.	1.29	0.13	0.12	16.2	3.19	276.5	11	6.7	0.86 107
	G 28692		226.	ວ.	0.	-36.	47.	6.	6.	1.21	0.13	0.05	30.6	6.03	461.0	0		1.41 115
	G 20692		276.	<u>c.</u>	0.	-72.	93.	6.	11.	1.46	0.13	0.07	46.5	9.18	575.5	0	13.3	
	G 28692		0.	226.	O.	190.	-180.	6.	6.	1.95	0.13	0.05	43.4	8,56	654.0	0	10.4	1.35 111
	G 28692		0.	276.	0.	204.	-183.	6.	11.	2.14	0.13	0.07		11.80	739.5	0	12 📑	
	0 28692		0.	229.	0.	190.	-182. A		6.	1.46	0.13	0.04	26.8	5.28	399.1	3	8.2	1.06 106
	0 20692		0.	336	0.	219.	-194. A		17.	1.63	0.13	0.07	38.8	7.66	394.3		9.3	1.20 86
	L 28692 L 28692		0. 0.	205. 321.	0.	190.	-159. -86.	6.	6.	1.52	0.13	0,13	25.8	5.10	429.2	5	7.8	1.01 118
	R 28692		217.	321. 0.	0. 0.	247. -26.	-86. 47.	6. 8.	29. 6.	2.25 0.67	0.13 0.13	0.33	43.5 9.4	8.59 1.86	462.1	4	8.3	1.07 102
	R 28692		444.	0.	0,	-175.	47. 310.	6.	38.	0.80	0.13	0.09	9.4 17.9	3.53	148.3 137.6	0	7.9 9.6	1.02 127 1.24 96
	8 20692		205.	<del>.</del> <del>0</del> .	0.	-175.	47.	6.	6.	0.65	0.13	0.23	8.7	1.72	145.0	10	7.5	0.96 134
	8 28692		293.	o.	0.	-13. -59.	190.	6.	23.	0.60	0.13	0.14	11.9	2.36	139.3	11	7.1	0.92 115
	2 28692		205.	0.	Ö.	-15.	47.	6.	6.	0,64	0.13	0.14	8.7	1.72	145.3	10	7.5	0.96 134
	2 20692		319.	0.	Ö.	-73.	234.	6.	29.	0.66	0.13	0.34	13.8	2.73	147.7	10	7.1	0.92 111
GTACT	6 20692	<u>5.</u>	207.	O.	0.	-17.	47.	6.	6.	0.65	0.13	0.13	8.9	1.76	146.7	9	7.5	0.98 132
GTAC1	6 28692	2 0.	361.	0.	0.	-101.	281.	6.	34.	0.73	0.13	0.33	16.3	3.21	153.7	6	7.6	0.99 106
GTWC1	6 28692	2 0.	209.	0.	0.	-18.	47.	6,	6.	0.66	0.13	0.12	9.2	1.82	150.5	7	7.6	0.99 131
GTWC1	6 28692	2 0.	369.	0.	ο.	-109.	280.	6.	34.	0.73	0.13	0.32	15.€	3.14	146.9	4	7.8	1.01 105
GISUA	D 20692	207.	Ö.	0.	-207.	190.	47.	6.	6.	0.64	0.13	0.13	8.5	1.67	139.5	0	8.8	1.14 137
	D 20692		0.	ο.	-330.	246.	232.	6.	28.	0.63	0.13	0.31	12.6	2.48	130.0	อ	9.5	1.22 117
	8 20692		0.	0.	-218.	190.	47.	6.	6.	0.67	0.13	0.08	9.5	1.88	149.2	0	9.4	1.21 131
	3 28693		<u>0.</u>	0.	-741.	367.	636.	6.	78.	1.16	0.13	0.26	29.7	5,86	136.8	0	17.3	2.24 113
	2 20092		Ō.	O.	-216.	190.	47.	€.	6.	0.67	0.13	0.09	9.5	1.88	150.5	· 0	9.3	1.20 132
	2 28692		0.	0.	-635.	340.	547.	6.	67,	1.09	0.13	0.28	27.5	5.43	147.8	0	15.2	1.97 111
	6 20692		0.	0.	-215.	190.	47.	6.	6.	0.67	0.13	0.10	9.8	1.93	155.6	0	9.3	1.20 132
	6 28592		0.	0.	<u>-556,</u>	316.	467.	6.	<u>57.</u>	1.03	0.13	0.29	26.0	5.14	159.6	0	14.0	1.81 109
	8 20692 8 20692		0. 0.	0. 0.	-213. -444.	190. 279.	47. 342.	6. 6.	€. 42.	0.66 0.82	0.13	0.10 0.28	9,3 18,6	1.83 3.68	148.3	0	9.1 11.9	1.18 134
	2 28692		0.	0.	-213.	190.	47,	6.	42. 6.	0.66	0.13	0.10	9.4	1.86	143.3 150.8	Ö	9.2	1.18 133
	2 28692		o.	o.	-465.	287.	369.	6.	45.	0.86	0.13	0.10	20.2	3.99	148.6	ő	12.2	1.58 108
	6 28692		<del>0.</del>	<del> </del>	-213.	190.	47.	6.	6.	0.67	0.13	0.10	9.5	1.88	152.9		9.2	1.18 133
	6 28692		o.	ō.	-474.	291.	384.	6.	47.	0.90	0.13	0.30	21.8	4.30	157.0	ŏ	12.4	1.60 108
	8 28692		õ.	õ.	-220	190.	47.	6.	6.	0.67	0.13	0.07	9.6	1.90	149.5	ŏ	9.4	1.22 130
	8 20692		. 0.	Ŏ.	-834.	387.	705.	6.	86.	1.19	0.13	0.24	30.2	5.96	123.6	ŏ	19.2	2.48 116
GTRWI	2 20092	217.	0.	o.	-217.	190.	47.	6.	6.	0.67	0.13	0.09	9.7	1.91	151.9	ŏ	9.3	1.21 131
GTRW1	2 28692	732.	0.	ο.	-732.	368.	641.	6.	78.	1.13	0.13	0.27	28.3	5.59	131.9	ō	16.7	2.16 114
GTRW1	6 28692	216.	0.	0.	-216.	190.	47.	6.	6.	0.67	0.13	0.09	9.9	1.95	156.3	0	9.3	1.20 131
	6 28692		0.	0.	-628.	338.	540.	6.	66.	1.05	0.13	0.28	26.3	5.19	143.0	0	15.0	1.94 110
	B 28692		υ.	Q.	-221.	190.	47.	6.	6.	0.67	0.13	0.07	9.2	1.83	142.6	0	9.4	1.22 130
	8 28692		0.	0.	-621.	315.	463.	۶.	56.	0.95	0.13	0.20	22.2	4.38	121.9	0	15.9	2.06 106
GTR31	2 28692	213.	ο.	0.	-213.	190.	47.	6.	6.	0.66	0.13	0.10	9.4	1.86	150.9	0	9.2	1.18 133
							<u> </u>											

DATE 06/00/75 LESE-PEG-ADV-DES-EMOR

#### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECCNOMICS

PAGE 02

	ROUS I	DISTIL	RESIDL			RESIDL	COGEN**	REQD MW	POWER MV	O&M	POWER /HEAT RATIO		CAPITAL COST *10**6	COST		(%)	LEVL CHRO	NORM I	METE
9TR312			-	0.	-498.	299.	409.	6,	50.		0.13		20.3	4.01	139.5	0	12.5		
GTR316 : GTR316 :				0. 0.		190. 296.	47. 401.	6. 6.	6. 49.	0.67 0.89	0.13	0.10	9.7 20.9	1,90 4,13	154.5 145.5	0	9.2 12.5	1.19	
FCPADS 2				1		190.	47.	6.	6.	1.09	0.13	0.08	9.8	1.94	154.2	Ö	9.8	2 1 2 77	
CPAUS :				0.		417.	807.	6.	98.	10.30	0.13	0.28			224.6	Ō	30.6	3.96	154
FCMCDS :		211 644		0. 0.		190. 367.	47. 638.	6. 6.	8. 78.	1.06 7.74	0.13 0.13	0.11	10.1 50.1	1.99 9.89	163.0 265.6	0	9.5 22.6		
							<del></del>											<del> </del>	
							t i man i na sana	,	1.			·							

DATE OG/O8/7

STM141 20693 STM000 20693 TISTMT 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 HEGT00 20693 HEGT00 20693 HEGT00 20693 HEGT00 20693 FCMCCL 20693	0. 0. 0. 0. 0. 0. 0. 0.	379. 385. 445. 0. 0. 385. 423. 0. 0. 385.	30. 0. 385. 445. 385. 445. 0. 0. 385. 423. 386.	0. 0. 0. 0. 0. 0. 0.	0. -6. -29. 379. 416. 379. 416. -6. -20. 379. 402.	0. 30. 153. -355. -293. -355. -293. 30. 107. -355.	F 4. Λ 4. Α 4. 4.	POWER MW 0. 4. 19. 4. 19. 4.	0.69 0.96 0.86 1.94 1.75 1.85	/HEAT RATIO 0.04 0.04 0.04 0.04	0. 0.06 0.22 0.06	CUST *10**6 13.3 13.7 15.6 28.6	1.00 1.02 1.17 2.15	110.5 109.3 109.6 229.4 204.0	(%) 0 31 30 14 20	13.8 13.5 12.6 11.5 9.6	1.00 80 0.98 136 0.91 112 0.83 116 0.69 93
STM141 20693 STM141 20693 STM141 20693 STM141 20693 STM141 20693 STM141 20693 STM041 20693 TISTMT 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 HEGT05 20693 HEGT06 20693 HEGT06 20693 HEGT00 20693 FCMCCL 20693	0. 0. 0. 0. 0. 0. 0. 0. 0.	385. 445. 0. 0. 0. 385. 423. 0. 0. 0.	0. 0. 385. 445. 385. 445. 0. 0. 385. 423. 385.	0. 0. 0. 0. 0. 0. 0.	-6. -29. 379. 416. 379. 416. -6. -20. 379.	30. 153. -355. -293. -355. -293. 30.	4. 4. F 4. F 4. A 4. A 4.	4. 19. 4. 19. 4. 19.	0.96 0.86 1.94	0.04 0.04 0.04 0.04	0.06 0.22 0.06	13.7 15.6 28.6	1.02 1.17 2.15	109.3 109.6 229.4 204.0	31 30 14 20	13.5 12.6 11.5	0.98 136 0.91 112 0.83 116
STM141 28693 STM141 26693 STM141 26693 STM141 26693 STM141 26693 STM000 20693 STM000 20693 STM008 28693 STM008 28693 STM008 28693 STM008 28693 FFBSTM 28693 FFBSTM 28693 TISTMT 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT05 28693 HEGT05 28693 HEGT00 26693 HEGT00 26693 FCMCCL 28693	0. 0. 0. 0. 0. 0. 0. 0. 0.	445. 0. 0. 0. 385. 423. 0. 0. 0.	0. 385. 445. 385. 445. 0. 0. 385. 423. 385.	0. 0. 0. 0. 0. 0.	-29. 379. 416. 379. 416. -6. -20. 379.	153. -355. -293. -355. -293. 30.	4. F 4. F 4. A 4. A 4.	19. 4. 19. 4. 19.	0.86 1.94 1.75	0.04 0.04 0.04	0.22	15.6 28.6	1.17 2.15	109.6 229.4 204.0	30 14 20	12.6 11.5	0,91 112 0,83 116
STM141 20693 STM141 26693 STM141 20693 STM141 20693 STM000 20693 STM00 20693 STM000 20693	0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 385. 423. 0. 0. 0.	385. 445. 385. 445. 0. 0. 385. 423. 385.	0. 0. 0. 0. 0. 0.	379. 416. 379. 416. -6. -20. 379.	-355. -293. -355. -293. 30.	F 4. F 4. A 4. A 4.	4. 19. 4. 19.	1.94 1.75	0.04	0.06	28.6	2.15	229.4 204.0	14 20	11.5	0.83 116
STM141 28693 STM141 28693 STM141 28693 STM000 28693 STM000 28693 STM000 28693 STM000 28693 STM000 28693 STM000 28693 FFBSTM 28693 FFBSTM 28693 FTISTMT 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 STIRL 28693	0. 0. 0. 0. 0. 0. 0.	0. 0. 385. 423. 0. 0. 0.	445. 385. 445. 0. 0. 385. 423. 385.	0. 0. 0. 0. 0. 0.	416. 379. 416. -6. -20. 379.	-293. -355, -293. 30.	F 4. Λ 4. Α 4. 4.	19. 4. 19.	1.75	0.04				204.0	20		
STM141 20693 STM141 20693 STM141 20693 STM000 20693 STM008 20693 STM008 20693 STM008 20693 STM008 20693 STM008 20693 FFBSTM 20693 FFBSTM 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TIHRSG 20693 TIHRSG 20693 TIHRSG 20693 STIRL 20693 HEGT00 20693 HEGT00 20693 HEGT00 20693 HEGT00 20693 FCMCCL 20693	0. 0. 0. 0. 0. 0. 0.	0. 0. 385. 423. 0. 0. 0.	385. 445. 0. 0. 385. 423. 385.	0, 0, 0. 0. 0.	379. 416. -6. -20. 379.	-355, -293, 30, 107,	Λ 4. Α 4. 4.	4. 19.			0.22			204.0			
STM141 20693 STM000 20693 STM000 20693 STM000 20693 STM008 20693 STM008 20693 STM008 20693 STM008 20693 FFBSTM 20693 FFBSTM 20693 TISTMT 20693 STIRL 20693 HEGT05 20693 HEGT05 20693 HEGT00 20693 HEGT00 20693 FCMCCL 20693	0. 0. 0. 0. 0. 0.	0. 385. 423. 0. 0. 0.	445. 0. 0. 385. 423. 385.	0. 0. 0. 0. 0.	416. -6. -20. 379.	-293. 30. 107.	A 4. 4.	19.	1,85	0.04							
STMO00 20693 STMO00 20693 STMO08 20693 STMO08 20693 STMO08 20693 STMO08 20693 STMO08 20693 FFBSTM 20693 FFBSTM 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TIHRSG 20693 TIHRSG 20693 TIHRSG 20693 STIRL 20693 HEGTO5 20693 HEGTO5 20693 HEGTO 20693 HEGTO0 20693 HEGTO0 20693 HEGTO0 20693 FCMCCL 20693	0. 0. 0. 0. 0. 0.	385. 423. 0. 0. 0. 0.	0. 0. 385. 423. 385. 423.	0. 0. 0. 0.	-6. -20. 379.	30. 107.	4.			0.04	0.06	26,9	2.02	215,3	16	11.2	0.81 117
STMORN 27693 STMORN 28693 STMORN 28693 STMORN 28693 STMORN 28693 PFBSTM 28693 PFBSTM 28693 TISTMT 28693 TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 STIRL 28693 HEGTOS 28693	0. 0. 0. 0. 0. 0.	423. 0. 0. 0. 0.	0. 385. 423. 385. 423.	0. 0. 0.	-20. 379.	107.			1.57	0.04	0.22	20.7	1.56	145.4	40	8.5	0.61 98
STM038 28693 STM008 20693 STM008 20693 STM008 28693 FFBSTM 20693 FFBSTM 20693 TISTMT 26693 TISTMT 26693 TISTMT 26693 TISTMT 26693 TISTMT 28693 TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT06 28693 HEGT07 26693 HEGT00 26693 HEGT00 26693 FCMCCL 28693	0. 0. 0. 0. 0.	0. 0. 0. 0.	385. 423. 385. 423.	0. 0. 0.	379.		A	4.	0.94	0.04	0.06	12.2	0.92	97,9	999	13.3	0.96 139
STM088 20693 STM008 20693 STM008 28693 FFBSTM 20693 FFBSTM 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 STIRL 20693 HEGT05 28693 HEGT05 28693 HEGT06 20693 HEGT00 20693 HEGT00 20693 HEGT00 20693 FCMCCL 20693	0. 0. 0. 0. 0.	0. 0. 0. 0.	423. 385. 423.	0. 0.		- 455	4.	13.	0.82	0.04	0.17	13.9	1.04	102.4	62	12.8	0.92 119
STM008 20693 STM008 28693 PFBSTM 20693 PFBSTM 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 STIRL 28693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 HEGT05 28693 HEGT05 28693 HEGT00 20693	0. 0. 0. 0.	0. 0. 0.	385. 423.	0.	402	- 555	F 4.	4.	1.96	0.04	0.06	28.9	2.16	231.0	14	11.5	0.83 116
STM068 28693 PFBSTM 28693 PFBSTM 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT06 28693 HEGT00 28693	0. 0. 0. 0.	0. 0. 0.	423.			-316.	F 4.	13.	1.64	0.04	0.17	26.9	2.02	197.8	21	9.9	0.71 99
PFBSTM 20693 PFDSTM 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TIHRSG 20693 TIHRSG 20693 TIHRSG 20693 TIHRSG 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 HEGT05 20693 HEGT05 20693 HEGT00 20693	0. 0. 0.	0. 0.			379.	-355.	A 4.	4.	1.88	0.04	0.06	26.7	2.01	214.0	16	11.2	0.81 117
PFBSTM 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 HEGTOS 28693	0. 0.	Ο.	386.	0.	402.	-316,	A 4.	13.	1.51	0.04	0.17	19.6	1.47	144.2	42	9.0	0.65 104
TISTMT 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 TISTMT 28693 TIHRS6 28693 TIHRS6 28693 TIHRS6 28693 STIRL 28693 39 STIRL 28693 66 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT06 28693 HEGT00 28693 HEGT00 28693 HEGT00 28693 HEGT00 28693 FCMCCL 28693	0.			Ο,	379,	-356.	4.	4.	1.92	0.04	0.06	27.9	2.09	223.2	15	11.4	0.82 116
TISIMT 20693 TISTMT 20693 TISTMT 20693 TISTMT 20693 TIHRSG 20693 TIHRSG 20693 TIHRSG 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 HEGTOS 20693 FCMCCL 20693		385.	503.	Ο.	448.	-243.	4.	32.	2.65	0.04	0.29	35.0	2.62	219.5	16	9.7	0.70 91
TISTMT 20693 TISTMT 20693 TISTMT 20693 TIHRSG 20693 TIHRSG 20693 TIHRSG 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 STIRL 20693 HEGT05 20693 HEGT05 20693 HEGT06 20693 HEGT00 20693 HEGT00 20693 FCMCCL 20693			0.	0.	-6.	30.	4.	4.	1.21	0.04	0.06	25.0	1.88	200.2	0	<u>15,0</u>	1.08 125
TISTMT 28693 TIHRS6 28693 TIHRS6 28693 TIHRS6 28693 TIHRS6 28693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT06 28693 HEGT00 26693 HEGT00 26693 HEGT00 26693 FCMCCL 28693	Ο.	530.	Ō.	0.	-65.	316.	4.	39.	2.71	0.04	0.32	81.2	6.09	485.3	0	20.3	1.47 102
TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 TIHRSG 28693 STIRL 28693 STIRL 2693 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT00 28693 HEGT00 28693 HEGT00 26693 HEGT00 26693 HEGT00 26693 FCMCCL 28693	Ο.	0.	385,	О.	379.	-356.	4.	4.	2.09	0.04	0.06	36.9	2.77	295.0	9	12.5	0.90 114
TTHRSG 28693 TTHRSG 28693 TTHRSG 28693 STIRL 28693 66 STIRL 28693 STIRL 28693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT06 28693 HEGT00 26693 HEGT00 26693 HEGT00 26693 FCMCCL 28693	0.	Ο,	547.	Ο.	476.	-196.	4.	43.	3.82	0.04	0.34	109.0	8.17	631.8	1	17.6	1.27 97
TIHRSG 28693 TIHRSG 28693 STIRL 28693 39 STIRL 20693 66 STIRL 20693 STIRL 28693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT06 28693 HEGT00 28693 HEGT00 28693 HEGT00 28693 HEGT00 28693 FCMCCL 28693	0.	392.	0.	0.	-12.	30.	4.	4.	1.22	0.04	0.04	27.6	2.07	217.4	0	15.4	1.11 122
TIHRS6 28693 STIRL 28693 39 STIRL 20693 66 STIRL 20693 STIRL 20693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT00 20693 HEGT00 20693 HEGT00 20693 FCMCCL 28693	0.	488.	0.	0.	-63.	165.	4.	20.	2.36	0.04	0.17	72.9	5.47	470.5	0	21.1	1.52 93
STIRL 28693 39 STIRL 20693 66 STIRL 20693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT06 28693 HEGT00 28693 HEGT00 28693 HEGT00 28693 HEGT00 28693 HEGT00 28693 FCMCCL 28693	0.	Ο.	392.	ο.	379.	-362,	4.	4.	2.21	0.04	0.04	43.7	3.28	345.0	6	13.5	0.97 111
STIRL 20693 66 STIRL 20693 STIRL 20693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT00 28693 HEGT00 20693 HEGT00 20693 HEGT00 20693 FCMCCL 28693	0.	Ο.	501.	0.	425.	-317.	4.	22.	3.40	0.04	0.18	98.7	7.41	621.7	0	19.0	1.37 86
STIRL 20693 STIRL 20693 STIRL 28693 STIRL 20693 HEGT05 28693 HEGT05 28693 HEGT00 20593 HEGT00 20693 HEGT00 20693 HEGT00 20693 FCMCCL 20693	392.	0,	0.	-392.	379.	30.	4.	4.	0.99	0.04	0.04	18.2	1.36	143.0	0	16.7	1.21 133
STIRL 28693 STIRL 28693 STIRL 28693 HEGT05 28693 HEGT06 28693 HEGT06 28693 HEGT06 28693 HEGT06 26693 HEGT06 26693 FCMCCL 28693	660,	0,	0.	-660;	490.	400.	4.	49.	1.59	0.04	0.26	37.2	2.79	181.2	0	20.5	1,48 103
STIRL 28693 STIRL 28693 HEGT05 28693 HEGT05 28693 HEGT00 28693 HEGT00 26693 HEGT00 26693 FCMCCL 28693	0.	392.	. 0.	0.	-13.	30.	4.	4.	0.99	0.04	0.04	18.2	1.36	143.1	0	14.2	1.02 128
STTRL 20693 HEGT05 28693 HEGT05 28693 HEGT00 28693 HEGT00 26693 HEGT00 26693 FCMCCL 28693	0.	660.	0.	0.	-170.	400.	4.	49.	1.59	0.04	0.26	37.3	2.80	181.4	.0	16.3	1.17 96
HEGT05 28693 HEGT05 28693 HEGT00 28693 HEGT00 26693 HEGT00 26693 FCMCCL 28693	0.	0.	392,	0.	379.	-362,	4.	<u>· 4.</u>	1.82	0.04	0.04	26.8	2.16	226.7	<u> 15</u>	11.4	0.82 114
HEGT05 28693 HEGT60 28693 HEGT60 28693 HEGT00 28693 HEGT00 28693 FCMCCL 28693	0.	0.	692.	0.	503.	-248.	4.	54.	2.92	0.04	0.27	68.8	5.16	320.3	.7	12.5	0.90 82
HEGTOO 28593 HEGTOO 25593 HEGTOO 26593 HEGTOO 26693 FCMCCL 28693	0.	0.	404.	0.	379.	-374.		4.	1.82	0.04	0.01	32.6	2.45	250.1	11	12.1	0.87 109
HEGTGO 20893 HEGTOO 20693 HEGTOO 20693 FCMCCL 28693	0.	0.	2919.	0.	1054.	-633.		279.	10.24	0.04	0.13		20.19	310.3	.0	37.9	2.74 102
HEGTOO 26693 HEGTOO 26693 FCMCCL 28693	<u>0.</u>	<u> </u>	402.	<u> </u>	379.	-372.		4.	1.82	0.04	0.02	32.3	2.42	248.5	<u> 11</u>	12.0	0.87 110
HEGTOO 26693 FCMCCL 28693	0. 0.	0.	1163.		595.	-413. -271		91.	4.69	0.04	0.14	121.0	9.08	343.0	0	21.2	1.53 76
FCMCCL 28693	0.	0.	400. 675.	0. 0.	379.	-371.		4.	1.83	0.04	0.02	31.9	2.39	246.2	11	12.0	0.86 110
	0.	o.	430.		461.	-372,		37.	2.78	0.04	0.12	66.3	4.98	315.9	3	15.1	1.09 69
	0.	<del>- 0.</del>	739.	<u>0.</u> 0.	379. 532.	-40 <b>0</b> . -199.	<u>4.</u> 4.	4. 66.	1.94	0.04		34.3		272.3 366.3	<del>- 8</del> -	12.9	0.93 102 1.02 89
	0.	o.	429.	0.	379.	-199. -399.		4.	4.28 1.97	0.04	0.31	79,4 33,7	5.95 2.53	268.3	ა 8	14.1 12.9	1.02 89
		o.	429. 869.	0.	606.	-399. -82.	4. 4.	96.	5.13	0.04	0.38	94.2	7.07	369.8	5	13.2	0.96 94
		o.	433.	0.	379.	-62. -404	4.	4.	1.96	0.04		32.8	2.46	258.0	8	12.8	0.98 94
	Ο.	0.	810.	0.	532.	-404. -268.	4.	66.	2.64	0.04	0.25	72.7	5.45	306.1	- 6	12.8	0.93 79
	0. 0.	392.	0.0.	0.	-12.	30.	4.	4.	0.93	0.04	0.04	17.3	1.30	136.5	Ö	14.0	1.01 129
GTSOAR 28693	Ο.	743.	0.	0.	-217.	518.	4.	63.	1.30	0.04	0.29	28.5		123.9	ŏ		1.07 101

		**CU	GENERAT	TON CAS	E** **N	OCOGEN -	- COGEN**	POWER	COGEN	MSO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORTI W	RT
ecs	PROCS	DISTIL				RESIDL		REOD	POWER		HEAT		COST	COST	EQVL		CHRG	ENRO	, •
		· · · · · ·	<u> </u>		: 			MM	MW		RATIO		*10**6			(%)			
	28693		389,	0.	0.	-9,	30.	4.	4.	0.92	0.04	ე. 05	16.8	1.26	133.8	4	13.9	1.00	
	28693		612.	o.	0.	-123.	398,	4.	48.	1.13	0.04	0.31	22.5	1.69	117.7	12	12.9	0,93	
	20693		389,	0.	0.	-9.	30.	4.	4.	0.92	0.04	0.05	16.8	1.26	133.4	4	13.9	1.00	
	28693		679.	<u> </u>	0.	-159.	498.	4.	61.	1.24	0.04	0.33	26.5		125.6	9	13.1	0.95	
	28693	-	369.	0.	0.	-10.	30.	4.	4.	0.92	0.04	0.05	16.9	1.27	134.2	4	13.9	1.00	
	20693		728.	0.	0.	-189.	566.	4.	69.	1.34	0.04	0.34	30.1	2.25	133.3	6	13.5	0.98	
	28693		391.	0.	0.	-12.	30.	4.	4.	0.93	0.04	0.04	17.2	1.29	135.7	1	14.0	1.01	
	28693		778.	0.	0.	-232.	590,	4.	72.	<u>1.33</u>	0.04	0.32	29.1		121.0	2_	14.3	1.03	
	28593		391,	0.	0.	-12.	30.	4.	4.	0.99	0.04	0.04	16.9	1.27	133.7	0	14.1	1.02	
	28693		1000.	0.	0.	-361.	896.	4.	109.	1.72	0.04	0.35	37.5	2.82	123.1	0	15.3		
	28693		390.	0.	0.	-11.	30.	4.	4.	0.98	0.04	0,05	16.7	1.26	132.3	0	14.0		
	20693		912.	<u> </u>	<u>o.</u>	-301.	805.	<u>4.</u>	98.	1.68	0.04	0.36	37.4	2.81	134.0	_!_	14.7	1.06	
	2.8693		390.	0.	0.	-11.	30.	4.	4.	0.98	0.04	0.05	16.6	1.24	131.2	1	14.0	1.01	
	28693		904.	0.	0.	-294.	800.	4.	97.	1.65	0.04	0.36	35.5		128.3	3	14.3	1.04	
	20693		389.	0.	0.	-10.	30.	4.	4.	0.99	0.04	0.05	16.8		133.1	1	14.0		
	28693 28693		764. 402.	<u>0.</u>	<u>0.</u>	<u>-204.</u> -23.	633. 30.	4.	77.	1.47	0.04	0.36	29.7		126.1		13.2		
	28693 28693					-23. -17225.	22214.	4.	4.	0.94	0.04	0.02	16.9	1.27	130.1	0	14.3		
	28693		399,	0.	0.	-17225. -20.		4.	2706.	39.86	0.04	0.17		50.33	94.3	0		22.69	
	28693		2377.	0. 0.	0.	-1393.	30. 2054.	4.	4. 250.	0.93 4.04	0.04 0.04	0.02	16.7 75.9		129.4	0	14.2 35.4	1.02 1 2.56 1	
	20693		398.	0.	0.	-19 <del>.</del>	30.	4.	200. 4.	0.93	0.04	0.03	16.6		129.3	<del>- 0</del>	14.1	1.02	
	8 28693		1494.	0.	0.	-764.	30. 1205.	4.	147.	2.73	0.04	0.03	47.1		104.6	0	24.5	1.77	
	28693		396.	0.	0.	-794. -16.	30.	4. 4.	4.	1.02	0.04	0.23	20.1		156.7	0	14.5	1.05	
	20093 20093		1537.	0.	0.	-756.	30. 1372.	4.	167.	3.62	0.04	0.03	111.5		241.2	6	29.7		
	28693		389.	0.	0.	-10.	30	4.	4.	1.06	0.04	0.05	20.2	1.52	160.5	<del></del> ö-	14.4	1.04	
	1 20693		735,	o.	0.	-192.	579.	4.	70.	2,18	0.04	0.03	56.8		249.5	ŏ	17.1	1.24	
	20093		0.	o.	-398.	379.	30.	4.	4.	1.00	0.04	0.03	19.1		148.2	Ö	17.0		
	20393		õ.	o.	-1842.	849.	1600.	4.	195.	4.87	0.04	0.25		11.99	289.6	Ö	51.7	3.74	
	28693		398.	$\frac{\overline{0}}{0}$	0.	-18.	30.	4.	4.	1.00	0.04	0.03	19.1	1.43	148.2	<del>,</del>	14.4	1.04	
	20693		1842.	o.	o.	-994.	1600.	4.	195.	4.87	0.04	0.25		11.99	289.6	ŏ	39.8	2.87	
	28693		0,	ŏ.	-390.	379.	30.	4.	4.	0.92	0.04	0.05	16.7		131.9	ŏ	16.4	1.19	
	28693		Ŏ.	o.	-684.	514.	481.	4.	59.	1.17	0.04	0.31	23.6		111.0	õ	17.7	1.28	
TRAOS			<u> </u>	ō.	-391.	379.	30.	4.	4.	0.93	0.04	0.04	17.4	1.31	137.6	<del></del> ö_	16.6	1.20	
	20693		õ,	o.	-937.	611.	805.	4.	98.	1.64	0.04	0.34	40.7		141.8	ŏ	21.7	1.57	
	28693		0.	o.	-391,	379.	30,	4.	4.	0.92	0.04	0.04	17.4		137.2	Ŏ	16.5	1.19	
	20693		0.	0.	-910.	605,	764.	4.	95	1.59	0.04	0.34	38.8		139.3	ŏ	21.0		
FIRATO	20093	391.	0.	0.	-391.	379.	30.	4.	4.	0.93	0.04	0.04	17.6	1.32	138.7	0	16.6	1.20	
9TR∧1€	28693	869.	0.	0.	-869.	589.	730.	4.	89.	1.59	0.04	0.34	39.0		146.1	Ö	20.8	1.50 1	
TR.208	20693	391.	0.	G.	-391.	379.	30.	4.	4.	0.92	0.04	0.04	17.2		135,7	0	16.5	1.19	134
3TR200			0.	0.	-783.	551.	603.	4.	73.	. 1.37	0.04	0.32	30.8		127.3	0	19.5	1.41 1	112
	26693		Ö.	0.	-391.	379.	30.	4.	4.	0,93	0.04	0.04	17.3	1.30	136.5	0	16.5	1.19 1	134
	28693		0.	Ο.	-815.	564,	647.	4.	79.	1,43	0.04	0.33	33.1	2.48	131.8	0	19.9	1.44	112
	28693		0.	ο.	-391,	379,	30.	4.	4.	0.93	0.04	0.05	17.4	1,30	137.2	0	16.5	1.19 1	134
STR216	20693	818.	0.	Ο.	-818.	569,	663.	4.	81.	1.49	0.04	0.34	35.3	2.65	140.2	Q	20.0	1.44 1	11:

	·			TUEL US	ETNBT	<del>U*10**6-</del>		<del></del>				·					<del></del>	
			GENERATI		-		000514##		COGEN	MBD	POWER	FESR	CAPITAL	NORM	\$/KW	RØI	LEVL	NORM WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POVER		/HEAT		COST	COST	EQVL		CHRG	ENRO
								MW	MV		RATIO		*10**6			(%)		
STRWO				9.	-394.	379.	30.	4.	4.	0.93	0.04	0.04	17.5	1.31	137.3	0	16.7	1.20 133
GTRHO	28693	1136	. 0,	Ο.	-1136.	657.	959.	4.	117.	1.67	0.04	0.30	40.5	3.04	117.3	0	25.3	1.83 115
GTRW1	2 28693	393	<i>,</i> 0.	Ο.	-393.	379.	30,	4.	4.	0.93	0.04	0.04	17.5	1.31	137.6	0	16.6	1.20 133
GTRW12	28693	1111	. 0.	0.	-1111.	661.	973.	4.	119.	1.68	0.04	0.32	40.7	3.05	120.6	0	24.1	1.74 116
<b>छ। । सम</b> ा	3 28693	393	. О.	o,	-393.	379.	30,	4.	4.	0.93	0.04	0.04	17.7	1.33	138.9	0	16.6	1.20 133
GTRW16	28693	1048	. 0.	0.	-1048.	639.	900.	4.	110.	1.65	0.04	0.32	40.2	3.02	126.1	0	23.5	1.70 115
GTR30	3 28693	395	, О.	ο.	-395.	379.	30.	4.	4.	0.93	0.04	0.03	17.2	1.29	134.7	0	16.7	1.20 133
OTR30	3 28693	982	. 0.	Ο.	-982.	589.	732.	4.	89.	1.48	0.04	0.26	33,6	2.52	112.2	0	24.0	1.73 111
GTR312	2 28593	392	, <u>0</u> ,	0.	-392.	379.	30,	4.	4.	0.93	0.04	0.04	17.3	1,30	136,3	0	16.6	1.20 134
9TR312	28693	950	, ο.	Ο,	-950.	604.	782.	4.	95.	1.49	0.04	0.31	34.4	2.58	118.4	0	21.9	1.58 114
GTR318	3 28693	393	. О.	Ο.	-393.	379.	30.	4.	4.	0.93	0.04	0.04	17.5	1.31	137.5	0	16.6	1.20 134
GTR31	5 28693	944	. 0.	ο.	-944.	601.	770.	4.	94.	1.51	0.04	0.31	35.4	2.66	122.6	0	22.0	1.59 113
FCPADS	20693	396	. 0.	o.	-396.	379.	30.	4.	4.	1.20	0.04	0.03	18.4	1.38	143.2	0	17.1	1.24 132
FCPADS	20693	1853	. o <i>.</i>	0.	-1853.	877.	1694.	4.	206.	21.59	0.04	0.28	121.2	9.09	218.4	0	62.7	4.53 169
FCMCD	3 28693	392	. 0.	0.	-392.	379.	30.	4.	4.	1.17	0.04	0.04	18.5	1.39	145.8	0	16.9	1.22 133
FCMCD	28693	1352	. 0,	Ο.	-1352.	771.	1340.	4.	163.	16.25	0.04	0.36	104.5	7.84	256.0	0	45.8	3.31 150

DATE 06/08/75 18SE-PEG-ADV-DES-ENGR

					SE IN BT					OCOUN	SCM	Del IED	TECH	OARLTAL	March	<b>#</b> ///:	DOL	LEVI	NOOM UPS
ECS	PROCS		RESIDI	TION CA		RESIDL			POWER REQD MW	POVER MV	o&M	POWER /HEAT RATIO	resk	CAPITAL COST *10**6	COST	\$/KW EQVL	(%)	CHRO	NORM WRTH
ONOCGN	28694		40	3. 27	. 0.	0.	0.		3.	0.	0.73	0.03	0.	14.4	1.00	104.2	0	14.7	1.00 80
STM141	28694		41:	3. 0	ο.	-5.	27.		3.	3,	1.03	0.03	0.05	14.7	1.02	103.7	24	14.5	0,98 135
STM141	28694	Ċ	. 440	s. <b>o</b>	. 0.	-18.	95.		3.	12.	0.86	0.03	0.15	15.0	1.05	99.3	50	13.8	0.94 117
STM141	28694	C	), (	413	. 0.	408.	-386.	F	3.	3.	2.11	0.03	0.05	31.6		222.6	13	12.4	0.84 115
SIMIAI				. 446		428.	-352.	F	3.	12.	1.78	0.03	0.15	29.1	2.02	191.9	20	10.9	0.74 97
STI1141			),	. 413	. 0.	408.	-386.	Α	3.	3.	2.01	0.03	0.05	28.8	2.00	203.0	16	12.0	0.81 116
STM141			-	. 446	•	428.	-352.		3.	12.	1.59	0.03	0.15	20.3	1.41	133.8	45	9.7	0.66 103
PFBSTM			), (	. 414		408.	-387.		3.	3.	2.07	0.03	0.05	30.2	2.10	212.4	14	12.2	0.83 115
FEBSTM			),	512	. 0.	463.	-300.		3.	26.	2.76	0.03	0.24	35.3	2,46	207.1	15	11.0	0.75 88
TISTMT			. 41	1. 0	. 0.	-6.	27.		3.	3.	1.28	0.03	0.05	26.8	1.86	188.6	0	16.1	1.09 124
TISTHT			53		. 0.	-54.	259.		3.	32.	2 73	0.03	0.28	80.8		458.6	Ö	21.6	1.46 96
TISTMT				. 414	. 0.	408.	-387.		3.	3.	2.23	0.03	0.05	39.9	2.77	280.8	9	13.4	0.91 113
TISTHI			). (	554		491.	~250.		3.	37.	3.95	0.03	0.30	112.6	7.84	615.2	0	19.2	1.30 93
TIHRSG			. 42:			-14.	27.		3.	3.	1.30	0,03	0.03	30.3	2.11	209.8	G	16.6	1.13 120
TIHRSG	28694		). 55°	7. 0	. о.	-101.	189.		3.	23.	2.61	0.03	0.14	81.1	5.64	440.7	0	23.6	1.60 87
TTHRSG	28694		), (	. 423	. 0.	408.	-395.		3.	3.	2.29	0.03	0.03	44.4	3.09	307.3	6	14.1	0.96 110
THREE	28694		). (	585	. 0.	466.	-363.		3.	27.	3.89	0.03	0.15	113.8	7.92	592.3	0	21.6	1.47 81
STIRL	28694	420	). (	). o	420.	408.	27.		3.	3.	1.04	0.03	0.03	19.5	1.36	135.8	0	17.9	1.21 132
STIRL	28694			). O		511.	371.		3.	45.	1.66	0.03	0.23	38.9	2.70	177.1	Ō	22.0	1.49 101
STIRL	28694	(	420	. o	. 0.	-12.	27.		3.	3.	1.04	0.03	0.03	19.5		135.8	0	15.2	1.03 128
STIRL	20594		67	3. 0	. 0.	-167.	371.		3.	45.	1.66	0.03	0.23	38.9	2.71	177.3	0	17.6	1.19 93
STIRL	261.94			. 420	. 0.	408.	-393,		3.	3.	1.94	0.03	0.03	31.2	2.17	216.6	14	12.2	0.83 113
STIRL	28694		). (	727		530.	-291.		3.	53.	3.09	0.03	0.25	73.5	5.12	314.4	6	13.9	0.94 80
HEGT60	28694	Ċ	). (	. 434	. ο.	408.	-407.	Α	3.	3.	1.91	0.03	0.00	33.6	2.34	227.3	11	12.8	0.87 109
HEGT 60	28694	0	). (	2063	. 0.	797.	-733.	A	3.	162.	7.19	0.03	0.03	181.3	2.62	290.0	0	32.3	2.19 78
HEGTOO	28694		), (	0. 429	. 0.	408.	-402.	Α	3.	3.	1.92	0.03	0.01	33.2	2.31	226.6	12	12.7	0.86 110
HEGTOO				783		508.	-422.		3.	44.	3,15	0.03	0.10	75.1	5.23	300.2	1	16.9	1.15 67
FOMOCL	28694		). (	0. 487	. o.	400.	-460.		3.	3.	2.04	0.03 -	0.12	36.3	2.53	254.2	7	14.2	0.98 94
-CIICCL				649		58G.	-220.		3.	76.	4.78	0.03	0.30	87.8	6.11	352.7	4	15.5	1.05 87
FCSTCL			-	. 487		408.	-459.		3.	3,	2.09		0.12	36.0	2.50	252.4	7	14.2	0.96 95
FCSTCL			), (	925		631.	-153.		3.	94.	5.35	0.03	0.34	97.0	6.75	357.5	5	15.0	1.02 91
LGGTST			), (	. 491		408.	-464.		3.	3.	2.07	0.03		35.0	2.43	242.9	7	14.1	0.96 94
TUOTST	20694		). (	0. 861	. 0.	552.	-353.		3,	62.	2.69	0.03	0.19	74.2	5.17	294.2	5	14.6	0.99 74
GTSCAR	28694		. 42	1. 0	. 0.	-13.	27.		3.	3.	0.97	0.03	0.03	18.3	1.27	127.1	0	15.0	1.02 129
GTSOAR	20694	٠ (	869	5. 0	. 0.	-285.	604.		3.	74.	1.51	0.03	0.27	34.5		125.7	Ō	17.2	1.17 99
<b>STACO</b>	28694		410	3. 0	. 0.	-8.	27.		3.	3.	0.96	0.03	0.04	17.9	1.24	125.3	3	14.8	1.00 130
STACO8	28694	C	65	). O	<u>. 5.</u>	-131.	428.		3.	52.	1.22	0.03	0.31	24.5		114.7	11	13.8	0.94 105
STAC12	28694	C	. 41	7. 0	. О.	-9.	27.		3,	3.	0.95	0.03	0.04	17.8	1.24	124.8	3	14.8	1.00 130
STAC12	28694		73!	5. 0	. 0.	-174.	539.		3.	66.	1.34	0.03	0.33	28.8	2.01	122.2	8	14.1	0.96 105
GTAC16	28694	C	. 410			-9.	27.		3.	3.	0.95	0.03	0.04	17.9		125.4	2	14.8	1.01 130
	28604		80			-217.	625.		3,	76.	1.46	0.03	0.34	33.0	2.30	128.9	5	14.8	1.00 104
STWC16	28694	C	. 419			-11.	27.		3.	3,	0.96	0.03	0.04	18.2		126.9	Õ	14.9	1.01 129
			839			-249.	636.		3.	77.	1.43	0.03	0.32	31.4		117.7	ž	15.3	1.04 103

DATE OG/OB/75 I&SE-PEO-ADV-DES-ENGR

	<del> </del>				,							····						
		-	OGENERAT				COGEN**	POWER	COGEN	MBO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVI.	NORM WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRO	ENRG
	· ·			<u> </u>				MM	MM		RATIO		*10**6			(%)		
	PM 2869	-		0.		-11.	27.	3.	3.	1.12	0.03	0.04	21.8	1.52	151.8	0	15.5	
	PM 2869			ο.		-229,	546.	3.	66.	2,36	0.03	0.29	62.3	4.34	246.6	0	20.2	
	AD 2869			ο.		408.	27.	3.	3.	0.95	0.03	0.04	17.7	1.23	123.6	0	17.5	
K	VD 5868			<u> </u>		557.	526.	<u>3.</u>	64.	1.27	0.03	0.31	25.9	1.80	107,8	0	19.3	
	08 2009			0.		408.	27.	3.	3.	0.96	0.03	0.03	18.4	1.28	128.0	0	17.7	1.20 133
	08 2869			0.		700.	1005.	3.	122.	1.89	9.03	0.31	47.9	3.33	131.6	0	26.4	1.79 115
	12 2869			0.		408.	27.	3.	З.	0.96	0.03	0.03	18.3	1.28	127.5	0	17.7	1.20 134
	12 2869			0.		684.	951.	3.	116.	1.87	0.03	0.32	47.4	3.30	137.8	0	25.2	
	16 2009			0.		408.	27.	3.	3,	0.97	0.03	0.04	18.5	1.29	120.8	О	17.7	1.20 133
	16 2869			0.		659,	866.	3.	105.	1.85	0.03	0.32	46.9	3.26	145.2	0	24.5	
	08 2069			o.		408.	27.	<b>3.</b>	3.	0.96	0.03	0.04	18.2	1.26	126.5	0	17.7	1.20 134
	08 2869			0.		607,	693.	3.	84.	1,57	0.03	0.31	36.8	2.56	129,4	o	22.4	1.52 111
	12 2869			0.		408.	27.	3.	3.	0.96	0.03	0.04	18.3	1.27	127.2	0	17.7	1.20 134
	12 2869			0.		622.	743.	3.	91.	1.64	0.03	0.31	39.4	2.74	133.4	0	22.9	
	16 2869			0.		408.	27.	3.	∘3,	0,96	0.03	0.04	18.3		127.7	0	17.7	
	16 2869			<u>o.</u>		629.	766.	3.	93.	1.71	0.03	0.32	42.0	2.92	141.3	0	23.0	
	08 2869			Ō.		408.	27.	3.	3.	0.97	0.03	0.03	18.5	1.29	127.7	0	17.8	
	08 2869			. 0.		752.	1178.	3.	143.	1.96	0.03	0.28	49.3		114.8	0	30.7	2.08 117
	12 2869			0.		408.	27.	3.	3.	0.96	0.03	0.03	18.5	1.29	128.1	0	17.8	1,20 133
11	12 2069			<u> </u>		747.	1163.	3.	. 142.	1,94	0.03	0.30	48.8		119.0	0	28.6	
	16 2069			0.		408.	27.	3.	3.	0.97	0.03	0.03	18.6	1.30	129.2	0	17.8	
, ,	16 2069			0.		713.	1049.	3.	128.	1,89	0.03	0.31	47.5	3.31	125.5	0	27.2	1.85 116
	06 2859			0.		408.	27.	3.	3.	0.96	0.03	0.03	18.2	1.27	125.6	0	17.8	
U	08 2669			0.		663.	879.	3.	107.	1.67	0.03	0.24	38.6		105.6	0	28,3	
	12 2069			0.		408.	27.	3.	3.	0.96	0.03	0.03	18.3	1.27	127.2	0	17.7	1.20 133
n .	12 2869			0.		662.	877.	3.	107.	1.68	0.03	0.31	40.1		120.5	O	24.6	
	16 2869	• .		Ο.		408.	27.	3.	3.	0.97	0.03	0.03	18.5	1.28	128.3	Ō	17.7	1.20 133
f	16 2869			<u>0.</u>		657.	862.	3.	105.	1.71	0.03	0,30	41:1	2.86	124.6	0	24.7	1.68 113
	DS 2869		•	0.		408.	27.	3.	3.	1.21	0.03	0,03	19.6	1.36	135.1	0	18.2	
	DS 2869			0.		946.	1829.	3.	223.	23,32	0.03	0.28	131.4		216.5	0	67.6	4.58 171
	DS 2069			o.		408.	27.	3.	3.	1.19	0.03	0.04	19.7	1.37	137,2	C	18.1	1,23 132
FCMC	DS 2069	<u>4 1459</u>	. 0.	0.	<u>-1459.</u>	832.	1447.	3.	176.	17.56	0.03	0.36	113.4	7.89	252.9	0_	49.4	3.35 151

#### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

		SUMMARY	OF	FUEL	SAVED	BY	TYPE &	ECONOMICS

		<u> </u>								<u> </u>				1 17			쇌	\$4 	
														W.					
	-				E** **N	OCOGEN ·	- COGEN*	* POVER	COGEN	M80	POWER	FESR	CAPITAL	NORM	3/KW	ROI	LEVL	NORM W	IRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT	•	COST	COST	EQVL		CHRG	ENRG	
								MW	MW		RATIO	1	*10**6			(元)			
ONOCE	N 2073	1 0.	762.	29.	Ū.	0,	0.	4.	0.	0,98	0.02	Ō,	22.;	1.00	100.0	0	27.5	1.00	80
PFBST	M 2873	1 0.	0.	770.	О.	762.	-741.	4.	4.	2.77	0.02	0.03	40.2	1.82	178.3	25	20.8	0.76	114
PEBST	M 2873	1 0.	ο.	860.	0.	808.	-677.	4.	22.	3.72	0.02	0.13	42.3	1.92	168.1	25	19.9	0.73	82
THIRS	6 2873	1 0.	784.	0.	О.	-22.	29.	4.	4.	1.49	0.02	0.01	34.9	1.58	151.8	0	29.1	1.05	122
THR	G 2873	1 0.	1177.	ō.	0.	-305,	399.	4.	49.	3.96	0.02	0.07	138.6	6.28	401.6	0	45.8	1.67	75
TIMES	G 2873	1 0.	0.	784.	0.	762.	-755,	4.	4.	3.03	0.02	0.01	61.6	2.79	268.1	11	23.6	0.36	106
TIHRS	0 2073	1 0.	0.	1177.	0.	872.	-779.	4.	49.	5.95	0.02	0.07	176.4	7.99	511.1	O	37.2	1.35	65
HEGTO	0 2873	1 0.	ο.	785.	0.	762.	-756.	A 4.	4.	2.64	0.02	0.01	49.7	2,25	215.9	17	21.9		
HEGTO	0 2873	1 0.	0.	1434.	Ō.	934.	-827.	A 4.	74.	4.71	0.02	0.07	108.4	4.91	258.1	4	28.2	1.03	
FCMCC	L 2873	10.	ο.	771.	0,	762.	-742.	4.	4.	2.83	0.02	0.02	55.5	2.51	245.8	13	22.7	0.63	
FCMCC	L 2873	1 0.	0.	1371.	ο.	1053.	-368.	4.	122.	7.25	0.02	0.33	124.5	5.64	309.8	8	22.4	0.81	
GTSCA	R 2873	1 0.	778.	0.	0.	-16.	29.	4.	. 4.	1.25	0.02	0.02	26.8	1.21	117.5	ŏ	27.8	1.01	
GTSUA	R 2873	1 0.	1893.	0.	0.	-745.	1321.	4.	161.	2,18	0.02	0.23	63.6	2.88	114.7	Ō	36.2	1.32	
	8 2873		771.	Ŏ.	o,	-9.	29.	4.	4.	1.24	0.02	0.03	26.3	1.19	116.3	3	27.6	1.00	
GTACC	8 2973	1 0.	1249.	ο.	ο.	-254.	811.	4.	99.	1.47	0.02	0.31	38.4	1.74	104.9	14	25.2		
	2 2873		770.	o.	o,	-9,	29.	4.	4.	1.23	0.02	0.03	26.3	1.19	116.3	3	27.5	_	
GTACI	2 2873	1 0.	1362.	ō.	Ö.	-311.	1000.	4.	122.	1.66	0.02	0.34	45.5	2.06	114.1	12	25.2	0.92	
	6 2073		772.	ο.	0.	-10.	29.	4.	4.	1.23	0.02	0.02	26.4	1.19	116.5	2	27.6	1.01	
GTAC1	6 2873	1 0.	1542.	O.	0.	-431.	1198.	4.	146.	1.99	0.02	0.33	57.6	2.61	127.5	5	27.6	1.00	
OTWC1	6 2873	1 0.	773.	o.	0.	-11.	29.	4.	4.	1.24	0.02	0.02	26.6	1.21	117.6	ă		1.01	
	6 2873		1576.	0.	0.	-466.	1195.	4.	146.	1.77	0.02	0.32	48.6	2.20	105.1	5	27.5	1.00	
	D 2873		0.	Ο.	-772.	762.	29.	4.	4.	1.23	0.02	0.02	26.1	1.18	115.4	ŏ	32.9	1.20	
GTSOA	D 2873	1 1407.	0.	o.	-1407.	1048.	988.	4.	120.	1.61	0.02	0.31	43.3	1.96	105.1	Ŏ	36.2		
GTRAC	8 2873	1 778.	0.	Ο.	-778.	762.	29.	4.	4.	1.24	0.02	0.01	26.8	1.21	117.5	ŏ		1.21	
GTRAC	8 2873	1 3161.	Ö.	0.	-3161.	1564.	2715.	4.	331.	3.58	0.02	0.26	114.8	5.20	123.9	ō	70.6	2.57	
GTRAI	2 2673	1 777.	0.	0.	-777.	762.	29.	4.	4.	1.24	0.02	0.02	26.8	1.21	117.5	Ŏ	33.2		
OTRAI	2 2073	1 2710.	ο.	ο.	-2710.	1450.	2334.	4.	284.	3.29	0.02	0.28	104.7	4.74	131.8	ŏ	61.4		
<b>GTRA1</b>	6 2873	1 776.	0.	0.	-776.	762.	29.	4.	4.	1.24	0.02	0.02	27.0	1.22	118.5	Ō		1.21	
GTRAT	6 2073	2374.	O.	0.	-2374.	1348.	1994.	4.	243.	2.97	0.02	0.29	93.3	4,23	134.0	ō	55.3	2.02	
	00 2073		0.	ο.	-775.	762.	29.	4.	4.	1.24	0.02	0.02	26.6	1.21	117.2	ő	33.1	1.21	
GTR20	8 2873	1 1893.	Ο.	ο.	-1093.	1188.	1458.	4.	178.	2.26	0.02	0.28	66.8	3.03	120.5	ŏ	46.5	1.69	
	2 2073		0.	o.	-775.	762.	29.	4.	4.	1.24	0.02	0.02	26.7	1.21	117.7	ŏ	33.1	1.21	
	2 20/3		O.	o.	-1983.	1223.	1574.	4.	192.	2.41	0.02	0,29	72.4	3.28	124.7	ö	47.8	1.74	
	6 2873		0.	0.	-775.	762.	29.	4.	4.	1,24	0.02	0.02	26.8	1.21	118.0	ŏ	33.1	1.21	
	6 2873		o.	0.	-2021.	1242.	1639.	4.	-200.	2.57	0.02	0.30	78.6	3.56	132.7	ŏ	48.5	1.77	
	0 2873		0.	ο.	-780.	762.	29.	4.	4.	1.24	0.02	0,01	26.9		117.7	ŏ	33.3	1.21	
	00 2073		0.	0.	-3559.	1651.	3006.	4.	366.	3.56	0.02	0.24	112.8	5.11	108.1	<del>_</del>	78.4	2.86	
	2 2073		o.	o.	-778.	762.	29.	4.	4.	1.24	0.02	0.02	26.9	1.22	118.1	ŏ	33.2	1.21	
	2 2073		0.	0.	-3124.	1570.	2736.	4.	333.	3.16	0.02	0.27	97.9	4.44	107.0	ŏ	66.5	2.42	
	6 2873		o.	o.	-777.	762.	29.	4.	4.	1.24	0.02	0.02	27.1		119.0	ŏ	33.2	1.21	
	G 2073		Ö.	<del>0.</del>	-2680.	1441.	2302.	4.	280.	2.94	0.02	0.28	91.0	4.12	115.8	— <del>ŏ</del>	59.2	2.16	
	0 2073		o.	ο.	-781.	762.	29.	4.	4.	1.24	0.02	0.01	26.6	1.20	116.3	ŏ	33.3	1.21	
	8 2873			o.		1344.	1977.	4.	241.	2.56	0.02	0,20	75.8	3.43	97.5	ŏ	63.8	2.32	
	· · · · · · · · · · · · · · · · · · ·			- •				••			3.02	J, 25	, , , ,	J. 70	٥,,,	~			
	<del></del>	سند ، سند رسد		······································	<del></del>				<del></del>										

DATE 06/08/79 PACE 110 ADV DES EMOR



PAGE 89

	12.1.1				SE** **N					ORM	POWER	FESR	CAPITAL	NORM	2/KM	ROI	LEVL	NORM	WRTH
cs	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGO	POWER		/HEAT		COST	COST	EGVL		CHRO	ENRG	
								MW	MM		RATIO		*10**6			(%)			<del></del>
3TR312	2 28731	775.	. О.	C	), - <b>7</b> 75.	762.	29.	4.	4.	1.24	0.02	0.02	26.8	1.21	117.8	0	33.1	1.21	133
3 TR31	28731	2123	. О.	0	2123.	1275.	1747.	4.	213.	2.39	0.02	0.30	70.9	3.21	114.0	0	48.6	1.78	113
TRST	28731	776	. o <i>.</i>	0	776.	762.	29.	4.	4,	1.24	0.02	0.02	26.9	1.22	118.6	0	33.1	1.21	133
TR316	20731	2095	. 0.	. 0	2095.	1263.	1709.	4.	208.	2.43	0.02	0.30	72.8	3.30	118.6	0	48.9	1.78	113
CPADS	20731	778	. 0.	C	)778.	762.	29.	4.	4.	1.55	0.02	0.02	28.9	1.31	126.8	0	33.7	1.23	131
CPADS	8 28731	3765	. О,		), -3765.	1781.	3442.	4.	419.	45.41	0.02	0.28	237.6	0.76	215.4	0	130.9	4.77	174
CMCDS	8 28731	774	. 0.	0	)774.	762.	29.	4.	4.	1.52	0.02	0.02	29.1	1.32	128,1	Ö	33.6	1.22	: 132
FCMCDS	20731	2747	, 9,	0	2747.	1566.	2723.	4.	332.	33,97	0.02	0.36	204.4	9.26	253.9	0	94.8	3.45	152

.

IJ

DATE 06/09/79 L&SE-PEO-ADV-DES-ENGR

CS PI	28741 28741 28741 28741 28741 26741 26741 28741 28741	0. 0. 0. 0. 0.	118. 124. 136. 0.	33. 0. 0. 124.	0. 0. 0. 0.	0. -6.	0. 33.	REQD MV 4.	POVER MV 0.		/HEAT		COST *10**6	COST	EQVL	(%)	CHRO	ENRG
TM141 TM141 TM141 TM141 TM141 TM141 TM088	28741 28741 28741 28741 26741 28741 28741	0. 0. 0. 0. 0.	124. 136. 0.	0. 0. 124.	0. 0.	-6.	33.		0.									
TM141 TM141 TM141 TM141 TM141 TM008	28741 28741 26741 26741 26741 20741 28741	0. 0. 0. 0.	136, 0,	0. 124.	ø.					0.32	0.15	0.	3.7	1.00	116.5	0	5.0	
TM141 TM141 TM141 TM141 TM008	28741 26741 26741 20741 20741 28741	0. 0. 0.	0. 0.	124.		-11.		4.		0.62	0.15	0.18	6.7	1.81	183.4	8	4.9	0.97 138
TM141 TM141 TM141 TM008	26741 26741 20741 20741 20741	0. 0. 0.	o.		0.		56.	4.	7.	0.49	G. 15	0,25	6.6	1.78	165.3	15	4.6	,
TM141 TM141 TM008	26741 26741 28741 28741	0.		136.		118.	-91.			1.11	0,15	0.18	13.7	3.71	376.4	7	4.7	0.93 125
TM141 : TM008 :	20741 20741 20741	0.	0.		0.	125.	-79.		7.	0.88	0.15	0.25	12.4	3.36	312.0	13	4.0	0.79 118
800MT	28741 28741	- •		124.	0.	118.	-91.			1.03	0.15	0.18	12.3	3.32	336.6	10	4.4	0.88 125
THOSE	28741	•	0.	136.	0.	125.	-79.	A 4.	7.	0.78	0.15	0.25	9.9	2.67	247.8	18	3.6	0.71 120
		0.	124.	0.	0.	-6.	33.	4.		0.60	0.15	0.18	6.2	1.69	171.2	10	4.8	0.96 139
TM088	287/11	0.	129,	0.	0.	-8.	43.	4.		0.46	0.15	0.21	5.8	1.57	153.1	17	4.6	0.91 132
		0.	Ο.	124.	0.	118.	-91.	F 4.	4.	1.07	0.15	0.18	13.0	3.52	356.9	8	4.5	0.90 125
3000TF		. 0.	o.	129.	o.	121.	-86.	F 4.	5.	0.84	0.15	0.21	11.4	3,09	301.5	13	4.0	0.79 117
BROMT	20741	0.	0.	124.	0.	118.	-91.			1.00	0.15	0.18	11.4	3.09	313.4	11	4.3	
THUBS :		Ö,	0.	129.	o.	121.	-86,	A 4,	5.	0.75	0.15	0.21	9.3		245.1	19	3.7	0.73 119
FBSTM :	20741	ο.	0.	125.	0.	110.	-92.	4.	4.	1.17	0.15	0.17	14.8	4.01	405.7	6	4.8	0.96 124
FBSTM	28741	0.	0.	151.	0.	134.	-65,	4.	10.	1.13	0,15	0.31	15.5	4.20	350.2	10	4.2	0.82 116
ISTMT	28741	0.	125.	0.	0.		33.	4.	4	0.85	0.15	0.17	16.2	4.40	444.7	0	6.2	1.23 130
ISTHE	28741	0.	164.	0.	ø.	-23.	112.	4.	14.	1.19	0.15	0.35	33.7	9.12	699.8	0	7.8	1.55 126
ISTHT :	28741	0.	0,	125.	o.	118.	-92.	4.	4.	1.37	<b>少. 15</b>	0.17	24.3	6.58	665.2	0	6.1	1.21 125
ISTHT :	20741	Ο.	Ο.	164.	0.	142.	-52.	4.	14.	1.68	0.15	6,35	42.8	11.59	889.0	0	7.3	1.45 122
THRSO	20741	٥,	131.	0.	o.	-13.	33.	4.	4.	0.94	0,15	0.13	23.0	6.21	597.7	0	7.1	1.41 126
THR3G	20741	O.	142.	Ö,	O.	-19.	48.	4.	6.	0.94	0.15	0.17	20.3	7.67	683.4	Ö	7.7	1.52 119
THRSO :	28741	0.	0.	131.	ο.	118.	-98.	4.	4.	1.46	0.15	0.13	31.7	8.58	825.8	0	7.1	1.40 123
THRSG	28741	Ο,	0.	142.	ο.	123.	-94.	4.		1.38	0.15	0.17	36.5	9.88	880.6	Ŏ	7.4	1.46 116
TIRL :	28741	132.	Ο.	o.	-132.	118.	33.	4.		0.57	0.15	0.13	6.7		173.8	Õ	5.9	1.18 137
	20741	194.	O.	and the second second	-194.	144.	119,	4.		0.59	0.15	0.26	10.9	2.96	192.3	ŏ	6.7	1.32 119
	26741	0.	132.	õ.	0.	-14.	33.	4.		0.57	0.15	0.13	6.7	1.82	173.9	4	5.1	1.01 132
TIRL	28741	0.	194.	o.	0.	-50.	119,	4.		0.59	0.15	0.26	11.0		192.6	Ó	5.4	
	20741	0.	0.	132.	o.	118.	-99.	4.		1.05	0.15	0.13	13.7	3.71	354.7	7	4.7	0.93 119
	26741	0.	0.	194.	ō.	144.	-75.	4.		1.05	0.15	0.26	18.6	5.03	326.8	8	4.3	0.86 100
EGT85		Ō,	ō.	144.	o.	118,	-111.			1.17	0.15	0.05	21.6	5.84	511.6	ŏ	5.9	1.17 110
EGT85		Ö.	0.	668	o.	262.	-152.			3.40	0.15	0.14		25.34	478.2	ŏ	13.9	2.77 104
EGT60		0.	õ.	142.	o.	118.	-109.			1.16	0.15	0.06	20.9	5.67	502.7	ĭ	5.8	1.15 111
EG [60 :		0.	0.	304.	ō.	165.	-115.			1.76	0.15	0.14			514.6	Ö	8.3	1.65 87
EGTOO :		o.	ō.	141.	o.	118.	-108.			1.13	0.15	0.07	19.9		480.8	ĭ	5.6	1.12 112
EGT00		o.	Ö.	187.	o.	132.	-108.			1.10	0.15	0.11	25.7	6.95	468.3	i	6.0	1.18 97
CMCCL		o.	o.	128.	Ŏ.	118.	-95.	4.		1.18	0.15	0.15	19.2	5.19	510.7	3	5.4	1.08 122
CMCCL.		0,	Ō.	194.	ő.	151.	-52.	4.		1.56	0.15	0.34	30.4	8.22	533.6	_ <u>ž</u>	5.7	1.14 108
CSTCL :		o.	Ö.	127.	o.	118.	-94.	4.		1.21	0.15	0.16	18.6	5.03	499.2	3	5.4	1.07 122
CSTCL		o.	Ö.	243.	ŏ.	178.	-9,	4.		2.00	0.15	0.41		10.30	535.3	3	5.8	1.15 105
GGTST		ő.	õ.	132.	ő.	118.	-99.	4.	4.	1.22	0.15	0.13	18.8		488.4	ž	5.5	1.09 119
GGTST		<u>ŏ:</u> -	<del>- ŏ.</del>	226.	<del>ŏ.</del>	158.	-61.	4.		1.34	0.15	0.30	31.2		470.0	3	5.6	1.12 99
TSOAR		o.	132.	0.	o.	-14.	33.	4.		0.54	0.15	0.13	6.9	1.88	180.1	4	5.1	1.00 132
TSOAR :		o.	215.	o.	· 0.	-62.	150.	4.		0.54	0.15	0.13	10.7		170.6	2	5.2	1.04 109

DATE OS/08/75 18SE-PEO-ADV-DES-ENGR

#### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FUEL USI	E IN BT	U*10**6-									27				
ECS	PROCS	**COG				OCOGEN - RESIDL	COGEN**	POVER REOD MV	COGEN POVER MW	OSM	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM	\$/KW EQVL	RO1 (%)	LEVL CHRG	NORM WR ENRG	
GTACOS	28741	0.	128.	0.	υ.	-10.	33.	4.	4.	0.53	0.15	0.15	6.4	1.73	170.2	9	4.9	0.97 1	35
GTAC08	28741	Ο.	179.	0.	Ο.	-36.	116.	4.	14.	0.46	0.15	0.31	8.3	2.24	157.5	11	4.6	0.92 1	20
GTAC12	28741	0.	129.	0.	0.	-10.	33.	4.	4.	0.53	0.15	0.15	6.4	1.73	169.9	9	4.9	0.97 1	35
GTAC12	28741	0.	198.	ø.	0.	-46.	145.	4.	18.	0.50	0.15	0.33	9.5	2.58	164.2	9	4.7	0.93 1	15 '
GTACLE	28741	0.	129.		0.	-11.	33.	4.	4.	0.53	0.15	0.15	6.5	1.77	173.1	8	4.9	0.98 1	35
GTAC16			212.		0.	-55.	165.	4.	20.	0.54	0.15	0.34	10.8	2.92	173.7	7	4.8	0.96 1	12
GTWC16		0.	131.	0.	Ο,	-13.	33.	4.	4.	0.54	0.15	0.13	6.8	1.85	177.8	5	5,0	1.00 1	
GTWC16	20741	0.	227.	0.	0.	-68.	172.	4.	21.	0.55	0.15	0.32	11.2	3.02	167.5	3	5.2	1.03 1	.08
CC1626	28741	0.	131,	0.	Ű.	-13.	33.	4.	4.	0.61	0.15	0.13	6,9	1.87	180,1	3	5.1	1.02 1	33
CC1626	28741	ο.	310.	Ο,	Ο.	-115.	292.	4.	36.	0.81	0.15	0.36	15.7	4.26	173.1	0	5.7	1.13 1	
001622			130.		o.	-12.	33.	4.	4.	0.60	0.15	0.14	6.7	1.80	175.0	4	5.1	1.00 1	
001622		0.	283.	0.	0.	-96.	263.	4.	32.	0.77	0.15	0.37	14.8	4.01	178.9	2	5.4	1.07 1	
CC1222			130.	0.	0.	-12.	33.	4.	4.	0.60	0.15	0.14	6.5	1.77	171.7	5	5.0	1.00 1	
CC1222			280.		0.	-94,	262.	4.	32,	0,76	0.15	0.37	14.1	3.82	171.6	3	5.3	1.04 1	
CC0822			128.		0.	-10.	33.	4.	4.	0.61	0.15	0.15	6.7	1.81	178.1	5	5.0	1.00 1	
CC0822			237.		0.	-66,	210.	4.	26.	0.69	0.15	0.38	12.2	3.31	175.9	6	4.9		
STIGIS		**	144.		0,	-25.	33.	4.	4.	0.58	0.15	0.05	6.9	1.87	164.2	0	5.4	1.08 1	
STIGIS			7077.		0.	-5031.	6488.	4.	790.	12.38	0.15	0.17		55,95	99.7	0		18.67 5	
STIGIO			140.	o.	0.	-22.	33.	4.	4.	0.56	0.15	0.07	6.7	1.81	162.2	0	5.3	1.05 1	
STIGIO		0.	694.	0.	<u> </u>	-407.	600.	4.	73.	1.40	0,15	0.22	23.9	6.46	117.3	0	11.3		
STIGIS			139.		0.	-21.	33.	4.	4.	0.56	0.15	0.08	6.6	1.78	161.8	0	5.2	1.04 1	
STIGIS			436.	0.	0.	-223.	352.	4.	43.	1.00	0.15	0.23	16.2	4.39	126.8	0	8.2	1.62	
DEADVS			136.		0.	-13.	33.	4.	4.	0.62	0.15	0.10	8.8	2.37	220.3	0	5.4	1.08 1	
DIEADVO			437.	0.	0.	-212.	390.	4.	48.	1.23	0.15	0.29	32.4	8.76	252.7	<del></del> ö	9.3	1.84 1	
DEHTPE			129.	0,	0.	-11.	33.	4.	4.	0.65	0.15	0.15	8.9	2.40	235,1	0	5.3 5.6	1.05 1	
DEHTPM DESOA3			214. 0.		-130.	-55. 118.	171. 33.	4. 4.	21. 4.	0.79 0.60	0.15 0.15	0.35	16.6 7.8	4.50 2.12	264.7 193.7	0	6.3	1.12 1 1.25 1	
DESOAS			0.	0. 0.	-130. -521.	243.	453.	4.				0.08		12.46	301.4	0	15.5	3.07 1	
DESUAS			138.	0.	-5 <u>21.</u>	-20.	33.	4.	<u>55.</u> 4.	1.60 0.60	0.15	0.25	7.8	2.12	193.7	0	5.4	1.07 1	
DESOAS			521.	0.	0. 0.	-20. -278.	453.		4. 55,	1.60	0.15	0.25		12,46	301.4	ő	12.1	2.40 1	
GTSOAD			0.		-130.	118.	33.	4. 4.	4.	0.52	0.15	0.14	6,2	1.68	163.9	Ö	5.7	1.14 1	
GTSGAD			0.	o.	-199.	150.	140.	4.	17.	0.48	0.15	0.31	8, 6	2.33	147.3	ő	6.0	1.19 1	
GIRADO			0.		-131.	118.	33.	4.	4.	0.54	0.15	0.13	7.1	1.93	185.5	<del>- ö</del> -	5.9	1.17 1	
GTRAOS			0.	0.	-269	177.	231.	4.	28.	0.65	0.15	0.13	14.5	3.92	183.6	Ö	7.3	1,44 1	
GTRA12			G.	0.	-131.	118.	231. 3 <b>3</b> .	4.	<u>ح</u> و. 4.	0.54	0.15	0.13	7.0	1.91	184.1	Ô	5.9	1.17 1	
GTRA12		262.	Ö.	0.	-262	176.	226.	4.	28.	0.65	0.15	0.13	14.5		188.4	Ó	7.1	1.41 1	
GIRATE			<del>ŏ:</del>	<del></del>	-130.	118.	33.	4:	4.	0.55	0.15	0.14	7.2	1.96	189.4	0	5.9	1.17 1	
GTRA16			o.	o.	-251.	171.	211.	4.	26.	0.65	0.15	0.34	14.6	3.95	198.4	ŏ	7.1	1.40 1	
GTR208			o.		-131.	118.	33.	4.	4.	0.54	0.15	0.13	6.8		178.1	ŏ	5.9	1.16 1	
GTR208		227.	o.	õ.	-227	160.	175.	4.	21.	0.56	0.15	0.32	11.5		172.4	ő	6.6	1.31 1	
GIRZIZ			<del>0.</del>		-131.	118.	33.	4.	4.	0.54	0.15	0.13	6.9	1.88	181.2	<del>_</del> <del>0</del> -	5.9	1.17 1	
GTR212			ő.	o.	-236.	164.	187.	4.	23.	0.59	0.15	0.33	12.4		179.0	ŏ	6.8	1,34 1	
eTR216			· ŏ.	õ.	-130	118.	33.	4.	4.	0.54	0.15	0.14	7.0		183.9	ŏ	5.9	1.16 1	
GTR216			ŏ.		-237	166.	192.	4.	23.	0.61	0.15	0.34	13.1		188.5	ŏ	6.8		
		·- ·										<b></b> -				·			<del></del>

						U=10=+6-													
EC <b>S</b>	PROCS		OGENERAT RESIDL	COAL COAL		OCOGEN - RESIDL	COGEN**	POWER REOD MV	COGEN POVER MW	Mad	POWER /HEAT RATIO		CAPITAL COST *10**6	COST	\$/KW EQVL		CHRG	NORM ( ENRO	HRTH ,
GTRIJO	29741	134	. 0.	0.	-134.	118.	33.	4.	4.	0.55	0.15	0.11	7.2	1.95	183.4	0	6.0	1.20	134
<b>3TRWO</b> 8	3 28741	327		0.	-327.	191.	276.	4.	34.	0.71	0.15	0.30	15.9	4.30	166.C	0	8.5	1.69	110
OTRW12	28741	133	. 0.	0.	-133.	118.	33.	4.	4.	0.55	0.15	0.12	7.2	1.95	184.9	0	6.0	1.19	134
GTRW12	2 29741	321	. 0.	0.	-321.	192.	281.	4.	34.	0.71	0.15	0.32	16.0	4.34	170.6	0	8.2	1.63	111
GTIHI C	28741	133	. 0.	o.	-133.	118.	33.	4.	4.	0.55	0.15	0.12	7.4	1.99	169.3	0	6.0	1.19	134
GTRVIC	3 28741	303	. 0.	ο.	-303.	186.	261.	4.	32,	0.70	0.15	0.32	15.9	4.31	179.2	0	8,0	1.59	111
GTR306	3 28741	135	. 0.	0.	-135.	118.	33.	4.	4.	0.54	0.15	0.10	6.9	1.86	173.5	0	6.0	1.20	134
GTR308	3 28741	283	. o <i>.</i>	0.	-233.	171.	211.	.4.	26.	0.62	0.15	0.26	12.8	3,48	155.0	0	8.0	1.58	109
G1R312	2 28741	133	. 0.	o.	-133.	118.	33.	4.	4.	0.54	0.15	0.12	7.0	1.89	179.9	0	5.9	1.18	135
9TR312	2 28741	276	. 0.	0.	-276.	176.	227.	4.	28.	0,63	0.15	0.32	13.4	3,63	165.5	0	7.5	1.48	112
GTR316	3 28741	133	. 0.	0.	-133.	118.	33.	4.	4.	0.55	0.15	0.12	7.2	1.94	184.3	0	6.0	1.19	135
GTR316	28741	274	. 0.	0.	-274.	175.	224.	4.	27.	0.64	0.15	0.31	13.9	3.76	172.6	0	7.5	1.49	111
FCPADS	28741	137	. 0.	o.	-137.	118.	33.	4.	4.	0.83	0.15	0.09	7.1	1.91	175.8	0	6.4	1.27	134
FCPADS	28741	541	. 0.	0.	-541.	256.	495.	4.	60.	6.39	0.15	0.28	36.5	9.88	230.1	0	19.0	3.78	150
FCMCDS	28741	132	. 0.	0.	-132.	118.	33.	4.	4.	0.80	0.15	0.12	7.2	1.95	186.1	0	6.2	1.23	136
FCMCDS	5 20741	395	. 0.	ο.	-395.	225.	391.	4.	48.	4.80	0.15	0.36	31.1	8.43	269.1	0	14.0	2.78	137

DATE OG/00/7

					_ , ,	U*10**6-													
ECS	PROCS	**COG				OCOGEN - RESIDL	COGEN	**	POVER REQD MW	COGEN POWER MW	M&D	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM	EQVL S/KW	RO1	LEVL CHRG	NORM WRTH ENRO
MOCGM	26951	0.	33.	33.	O.	0.	0.		4.	0.	0.18	0.68	0.	1.4	1.00	202.3	- 6	2.2	1.00 80
STM141	28951	0.	36.	21.	Ο.	-2.	12.		4.	1.	0.27	0.68	0.15	2.6	1.83	297.1	8	2.2	0.90 110
TM141	28951	0.	6.	50.	0.	27.	-17.	F	4.	1.	0.43	C.68	0.15	4.4	3.13	506.9	6	2.2	0.98 107
STM141	28951	0.	6,	50.	0.	27.	-17.		4.	1.	0.38	0.68	0.15	4.0	2.84	460.0	9	2.1	0.94 108
BEOMIE	28951	0.	35.	24.	0.	-2.	9.		4.	1.	0.26	0.68	0,11	2.2	1.56	265.6	9	2.2	0.98 113
880MT	28951	Ο.	7.	52.	0.	26.	-19.	F	4.	1.	0.42	0.68	0.11	4.0	2.85	484.1	6	2.2	0.99 102
<b>880MT</b>	28951	0.	7.	52.	0.	26.	-19.	A	4.	1.	0.37	0.68	0.11	3.7		451.5	ē	2.1	0.95 102
FBSTM	20951	0.	4.	47.	0.	29.	-14.		4.	a.	0.48	0.68	0.22	5.9	4.21	613.4	5	2.2	0.99 117
ISTMT	28951	O.	38.	9.	0.	-5.	24.		4.	3.	0.49	0.68	0.29	11.0	7.89	055.5	0	3.0	1.37 131
ISTMT	20951	: 0.	3.	44.	0.	31.	-12.		4.	3.	0.69	0.68	0.29		10.03 1		O	3.1	1.41 130
THRSG	28951		37.	23.	0.	-3.	10.		4.	1.	0.36	0.68	0.10	9.1	6.51		Ŏ	3.0	1.36 101
	28951	Ο.	7.	53.	o.	27.	-20.		4.	i.	0.53	0.68	0.10	11.7	8.41		Ö	3.1	1.42 101
TIRL	28951	43.	1.	5.	-43.	32.	28.		4.	3.	0.25	0.68	0.25	2.7	1.92	211.2	3	2.2	1.01 135
STIRL	20951		45.	5.	0.	-11.	28.		4.	3.	0.25	0.68	0.25	2.7	1.92	211.4	17	2.0	0.89 132
STIRL	28951	Ο,	1.	48.	Ο.	32.	-15.		4,	3.	0.42	0,68	0.25	5.0	3.55	390.2	12	1.9	0.84 121
IEGT85	28951	Ο.	0.	55.	Ο.	33.	-23.	Α	4.	4.	0.79	0.68	0.16	_	11.13	956.9	Ö	3.4	1.53 129
EGT85	26951	Ō.	Ō.	94.	O.	45.	-21.		4.	9.	0.89	0.68	0.20		16.70	849.9	Ö	4.1	1.85 122
EGT60	28951	Ο,	0.	55.	0.	33.	-22.		4.	4.	0.68	0.68	0.17		10.05	875.4	Ö	3.1	1.40 127
EGT60	28951	0.	ο.	57.	ο.	34.	-22.	A	4.	4.	0.59	0.68	0.18		10.19	843.8	Ŏ	3.0	1.36 116
IEGTOO	28951	0.	5.	56.	0.	29.	-23.		4.	2.	0.41	0.68	0.09	8.6	6.16	741.1	Ö	2.6	1.17 100
CI4CCI.	28951	0.	1.	44.	Ō.	33.	-11.		4.	4.	0.56	0.68	0.32	10.3	7.42	838.2	2	2.5	1.12 130
CSTCL	28951	0.	0.	42.	0.	33.	-10.		4.	4.	0.79	0.68	0.36	11.3	8.12	911.1	Ō	2.8	1.24 148
CSTCL	28951	0.	0,	52.	0.	39.	-2.		4.	6.	0.74	0.68	0.41	12.9	9.25	838.9	1	2.7	1.20 139
GGTST	20951	0.	0.	47.	0.	33.	-14.		4.	4.	0.73	C. 68	0.29	11.4	8.18	827.7	Ó	2.8	1.26 139
GGTST	~20951	o.	O.	49.	0.	34.	-13.		4.	4.	0.64	0.68	0.30	11.3	8.14	791.5	1	2.7	1.20 128
TSOAR	28951	0.	46.	1.	0.	-12.	31.		4.	4.	0.24	0.68	0.29	3.6	2.57	270.9	12	2.0	0.09 133
<b>37AC08</b>	20951	0,	41.	7.	Ο.	-8.	25.		4.	3.	0.21	0.68	0.26	2.7	1.97	240. î	19	1.9	0.06 133
TAC12	28951	0.	43.	1.	0.	-10.	31.		4.	4.	0.23	0.68	0.33	3.0	2.18	242.5	19	1.8	0.83 138
TACIG	20951	0.	44.	0.	0.	-10.	33.		4.	4.	0.30	0.68	0.34	3.4	2.47	268.3	14	1.9	0.87 150
TAC16	28951	Ο.	45.	Ο.	Ο.	-11.	35.		4.	4.	0.24	0.68	0.35	3.4	2.42	254.4	17	1.8	0.83 139
TWC16	28951	О.	46.	0.	Ο.	-13.	33.		4.	4.	0.33	0.68	0,30	3.8	2.73	281.0	10	2.1	0.93 145
TWC16	28951	0.	50,	0.	0.	-15.	38,		4.	5.	C. 25	0.68	0.31	3.8	2.72	261.5	12	2.0	0.89 135
C1626	20951	0.	46.	0.	0.	-13.	33.		4.	4.	0.43	0.68	0.30	4.2	3.03	312.0	5	2.2	1.00 145
	28951		67.	0.	0.	-25.	63.		4.	8.	0.40	0.68	0.35	5.3	3.82	270.8	5	2.2	1.01 134
C1622	28951	0.	45.	0.	0.	-12.	33.		4.	4.	0.42	0.68	0.32	4.0	2.84	297.9	7	2.2	0.97 147
C1622	28951	0.	61,	0.	0.	-21,	57.		4.	7.	0.37	0.68	0.37	4.7	3.39	263.7	7	2.1	0.95 137
01222	20951	O.	45,	0.	0.	-12.	33.		4.	4.	0.42	0.68	0.32	3.8	2.74	286.5	7	2.1	0.96 148
C1222	28951	0.	61.	ο.	0.	-20.	56.		4.	7.	0.37	0.68	0.37	4.5	3.23	253.8	8	2.1	0.94 137
C082©	28951	0.	44.	ο.	Ο.	-10.	33.		4.	4.	0.41	0.68	0.34	3.9	2.78	303.6	9	2.1	0.94 150
C0822	28951	0.	51.	ο.	Ο.	-14.	45.		4.	6.	0.35	0.68	0.38	4.1	2.95	274.3	10	2.0	0.90 140
गानाड	26 <u>551</u>	Q.	59,	0.	o.	-25.	33.		4.	4.	0.43	0.68	0.11	4.5	3.19	258.3		2.6	1.17 125
TIOIS	28951	0.	1538,	0.	0.	-1094.	1410.		4.	172.	3, 19	0,68	0.17		36.63	113.3	Ō		10.01 288

						•													
ECS	· · · · · · · · · · · · · · · · · · ·	DISTIL F	RES I DL	COAL		OCCIGEN - RESIDL	COGEN**	POWER REQD MW	COGEN POWER MW	O&M	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM COST	S/KW EQVL	RO1 (%)	LEVL CHRG	NORM ENRG	WRTH
	28951		151.	0.	0.	-88.	130.	4.	16.	0.52	0.68	0.22	7.8	5.61	176.9	0	3.5		8 109
	3 28951		54.	a.	Ο.	-21.	32.	4.	4.	0.39	0.68	0.18	4.0	2.84	249.8	0	2.4	1.0	7 133
	s 28951		95.,	0.		-48.	77.	4.	9.	0.39	0.68	0.23	5.4	3.88	194.6	0	2.7		3 119
	3 28951		50.	0.	0.	-17.	33.	4.	4.	0.43	0.68	0.24	5.7	4.07	385.5	0	2.5		2 137
	3 28951		86,	0,	Ο.	-39,	76.	4.	9.	0.43	0.68	0.30	7.9	5.66	314.6	0	2.8		4 125
	1 20951		43.	0.	0.	-9.	33.	4.	4.	0.42	0.68	0.36	5.3	3.81	425. <b>5</b>	5	2.2		9 149
	1 28951		46.	0,	0.	-11.	39.	4.	5.	0.35	0.68	6.38	5.4	3.89	401.6	7	2.1		_{ວີ} 139
	3 2895		0.	0.	-52.	33.	33	4.	4.	0.41	0.68	0.21	4.8	3.42	310.5	0	2.8		<u>5 138</u>
	3 28951		0.	0.	-100.	50.	87.	4.	11.	0.48	0.68	0.27	9.3		318.3	0	3.8	1.7	1 127
	3 2895		52,	0.	Ο.	-19,	33.	4.	4.	0.41	0.68	0.21	4.8		310.5	0	2.4		9 134
	3 20951		100	0.	0.	-51.	87.	4.	11.	0.48	0.68	0.27	9.3		318.3	0	3.1		2 120
	2895		1.	3.	-43.	32.	30.	4.	4.	0.22	0.68	0.30	2.8		224.5	9	2,1		<u>6 140</u>
	3 28951		0,	Ō.	-45.	33.	33,	4.	4.	0.35	0.68	0.31	4.3		32î.5	Ð	2.4		3 148
	20951		0.	0.	-55.	38.	47.	4.	6.	0.28	0.63	0,35	4.7	3.37	290.6	0	2.4		8 140
	2 28951		o,	ο.	-45.	33.	33.	4.	4.		0.68	0.32	4.2		317.2	0	2.4		7 149
	2 28951		0.	<u>0.</u>	-54	38.	47	<u>     4 .                              </u>	6.	0.28	0.68	0.36	4.6		288.9	Ō	2.4		7 140
	28951		0.	0.	-45.	33.	33.	4.	4.	0.35	0.68	0.32	4.4		329.6	0	2.4		8 149
	6 28951	•	Ο.	0.	-52.	37.	44.	4.	5.	0.28	0,68	0.35	4.7	3.35	304.3	0	2.4		7 140
	8 20951		0.	0.	-45.	33.	33.	4.	4.	0.32	0.68	0.32	3.8		285.5	1	2.3	1.0	4 150
	3 28951		0.	0.	-48.	<u> </u>	37.	4.	4.	0.25	0.68	0.33	3.8	2.69	267.5	4	2.2	1.0	<u>î 140</u>
	2 20951		Ο.	0.	-45.	33.	33.	4.	4.	0.33	0.68	0.31	4.0	2.85	299.2	0	2.3	1.0	B 149
	2 28951		Ο.	Ο.	-50.	35.	40.	4.	5.	0.26	0.68	0.33	4.0		276.8	2	2.3	1.0	3 140
	5 28951		o.	0.	-45.	33.	33.	4.	4.	0.33	0.68	0.32	4.1		309.5	0	2.3	1.0	6 150
	3 28951		0.	0.	-50.	36.	40.	4.	5.	0.26	0.68	0.34	4.2	3.01	286.8	2	2.3		4 140
	3 28951		0.	0.	-49.	33.	33.	4.	4.	0.37	0,68	0.26	4.5		311.1	0	2.6		5 143
	28951		ο.	0.	-67.	41.	57.	4.	7.	0.31	0.68	0.31	5.3	3.83	269.9	0	2.7	1.2	2 134
	2 28951		0.	Ο.	-48.	33.	33.	4.	4.	0.36	0,68	0.20	4.5		317.9	0	2.5		4 145
	28951	67.	0.	0.	-67.	41.	58.	<u>4.</u>	<u> </u>	0.31	0,68	0.33	5.4		276.3	0	2.7		0 136
	3 20951	48.	Ο.	0.	-48.	33.	33.	4.	4.	0.37	0.68	0.28	4.6	3.29	328.6	0	2.5	1.14	4 145
	20951	64.	0.	o.	-64.	40.	55.	4.	7.	0.31	0.68	0.33	5.4		290.3	0	2.6		9 136
	28951	50.	0.	ο.	-50.	33.	<b>3</b> 3.	4.	4.	0.34	0.68	0.25	4.0	2.86	274.1	0	2,5		3 149
	20951		0.	0.	-58.	36.	43.	4.	5	0.27	0.68	0.27	4.2		246.2	0	2.5		4 133
	2 28951	47.	o.	0.	-47.	33.	<b>3</b> 3.	4.	. 4.	0.35	0,68	0.28	4.1		298.3	0	2.5		1 146
	2 28951	59.	0.	o.	-59.	38.	48.	4.	6.	0.23	0.68	0.32	4.6		264.5	0	2.5		2 137
	28951		0,	0.	-48.	33,	33.	4.	4.	0.35	0.68	0.28	4.3		309.8	0	2.5		2 145
	20951		0.	0.	-58.	38.	48.	4.	5.	0.29	0,68	0.32	4.7		277.0	0	2.5		3 136
	20951	52.	0.	0.	-52.	33.	33.	4.	4.	0.65	0.68	0.21	4.0		264.1	0	2,9		2 142
	3 28951	118,	0.	Ο.	-118.	56.	108.	4.	13.	1.47	0.68	0.28	8.6	6.15	249.0	0	4.9	2.19	9 137
	28951		Ο.	Ο.	-48.	33,	33.	4.	4.	0.62	0.68	0.28	4.2	2.98	298.3	0	2.7	1.20	3 149
FOMODS	28951	86.	Ο.	0.	-86.	49.	85.	4.	10.	1.12	0.68	9.36	7.3	5.21	289.0	0	3.7	1.6	9 141

PAGE 95

MATE OGZOSZĄ ISSE-PEO-ADV-DES-ENGR

							- COGEN**		COCEN	G014	BOUER	CECD	CARITAL	NORM	+ /VIJ	POI	164	NORW URTU
ECS	PROCS		RESIDL			RESIDL	COAL	REGD	POWER	OSH	POVER /HEAT	FESK	CAPITAL	COST	\$/KW EQVL		CHRG	NORM WRTH ENRG
ONGCGN	29111	0.	476.	115.	0.	0.	0.	MW 14.	MW O.	0.71	0.13	O.	*10**6 13.9	1.00	107.2	( <u>%)</u>	21.0	1.00 80
	29111			0.	o.	-22.	115.	14.	14.	1.05		0.16	15.1	1.09	107.2	76	18.5	0.88 145
	2911			o.	Ö.	-27.	144.	14.	18.	0.88	0.13	0.19	15.9	1.15	106.1	61	18.2	0.87 135
	29111			497.	0.	476.	-302. F	14.	14.	2.21	0.13	0.16	33.4	2.41	229.2	22		0.72 124
STILLA				512.	0.	484.	-367. F	14.	18.	1.83	0.13	0.19	29,8	2.15	198.9	<u> </u>	13.8	0.66 117
	29111			497.	0.	476.	-382. A		14.	2.05	0.13	0.16	26.3	1.90	180.2	33	14.1	0.67 127
	29111			512.	0.	484.	-367. A			1.66		0.19	20.3	1.52	140.8	57		
	29111			19.	0. 0.	-18.	96.	14. 14.	18. 12.	0.33	0.13 0.13	0.18	14.1	1.02	98.6		12.7 18.7	and the second second
	2911			507.	0.	470.	-392. F	14.	12.	1.72	0.13	0.13	27.5	1.99	192.4	29	14.5	0.69 112
	29111			507.	0.	470.	~392. A											
	1 29111			507. 500.	0.	470. 476.	~39Z. A ~385.	14.	12.	1,60	0.13	0.13	19.9 35.9	1.44 2.59	139.2	60	13.6	0.65 118
	1 2911			573.	0.	518.	-365. -316.	14.	14. 31.	2.64	0.13				244.7	19	15.8	0.75 123
	2911			<u> </u>	0.	-24.		14.	14.	2,89	0.13	0.26	35.9		303.5	22	13.9	
	2911					-24. -72.	115.	14.		1.80	0.13	0.15	44.4	3.20		0	22.5	1.07 128
	г 2911: Г 2911:			0. 499.	0. 0.	-72. 476.	353. -384.	14. 14.	43. 14.	2.77 3.03	0.13 0.13	0.31	89.1 65.6	6.43	490.9 448.7	0 7	26.3	1.25 118
	2911		. O.	499. 619.			-364. -266.							4.74		-	19.4	
				0.	0.	<u>547.</u>		14.	43.	3.99	0.13	0.31	112.8		622.1	4_		1.04 111
	2911					-63.	115.	14.	14.	2.07	0.13	0.09	58.8	4.24	372.5	0	25.4	1.21 119
	2911			0.	0.	-115.	209.	14.	26.	2.52	0.13	0.13	85.2	6.15	469.9	0	28,9	1,38 110
	2911			539.	0.	476.	-424.	14.	14.	3.39	0.13	0.09	82.4	5.95	521.9	3	22.3	1.06 112
	29111			<u> </u>	0,	504.	-409,	14.	26.	3.77	0.13	0.13	109.0	7.87	601,1		24.7	1.18 103
STIRL	29111			o.	-528.	476.	115.	14.	14.	1.20	0.13	0.11	22.1	1.59	142.7	0	24.1	1.15 136
STIRL	29111			0.	-744.	561.	402.	14.	49.	1.49	0.13	0.23	39.3	2.83	180.1	.0	27.6	1.32 116
STIRL	29111			0.	0.	-52.	115.	14.	1.4.	1.20	0.13	0.11	22.1	1.59	142.8	10	20.4	0.97 132
STIRL.	29111			<u>0.</u>	0.	<u>-183.</u>	102.	14.	<u>49.</u>	1.49	0.13	0.23	39.3	2.84	180.3	0_	22.3	1.06 109
STIRL	29111			528.	0.	476.	-413.	14.	14.	2,39	0,13	0.11	41.3	2.98	267.0	15	16.5	
STIRL	29111			744.	0.	561.	-342.	14.	49.	2.99	0,13	0.23	69.4	5.01	318.3	10	17.0	0.81 96
	20111			588.	0.	476.	-473. A		14.	2.61	0,13	0.00	52.3	3.77	303.5	8	19.1	0.91 103
	29111			2144.	<u> </u>	840.	-808. A	14.	163.	7.44	0.13	0.01		13.13	289.6	0	36.7	
	29111			564.	0.	476.	-449. A	14.	14.	2.55	0,13	0.05	49.6	3.58	300.4	10	18.3	0.88 108
	29111			804.	0.	5/13.	-463. A	14.	41.	3.10	0.13	0.09	72.0	5.19	305.5	6	20.2	0.96 86
	29111			511.	0.	476.	-396.	14.	14.	2,72	0.13	0.13	48.4	3.50	323,3	11	17.5	0.84 118
	. 29111			797.	<u> </u>	615.	-214.	14.	71.	4,75	0,13	0.34	83.8	6.05	358.9	8		0.02 98
	29111			500.	0.	476.	-393.	14.	14.	2.72	0.13	0.14	47.4	3.42	318.3	12	17.4	0.83 119
	. 29111			915.	0.	684.	-102.	14.	99.	5.57	0.13	0.39	97.4	7.03	363.3	9	16.1	0.77 96
	29111			527.	0.	476.	-412.	14.	14.	2.46	0.13	0.11	46.5	3.35	301.2	12	17.3	0.83 115
	29111			852.	0,	607.	-299.	14.	67.	2.71	0,13	0.27	74.9	5.40	299.8	10	16.0	
	2911			0.	0.	-55.	115.	14.	14.	1,13	0.13	0.10	21.9	1.58	140.6	10	20.3	0.97 131
	Solli			0.	0.	-321.	672.	14.	82.	1.32	0.13	0,27	34.3	2.48	121.7	O	21.9	1.05 104
	3 29111			0.	0.	-35.	115.	14.	14.	1.03	0.13	0.14	17.7	1.28	118.3	30	19.2	0.91 139
	5011			0.	<u> </u>	-145.	<u> 172.</u>	14.	56.	1.01	0.13	0.31	23.5	1.69	110.3	_24_	17.8	0.85 120
	2011			0.	0.	-37.	115.	14.	14.	1.10	0.13	0.13	20.9		138.8	17	19.6	0.94 135
	2 29111			0,	0.	-191.	594.	14.	72.	1.14	0,13	0.33	28.2		118.9	17	18.1	0.86 113
GIVEL	5 29111	. 0.	516.	0.	0.	-40.	115.	14.	14.	1.11	0.13	0.13	21.3	1.54	141.0	15	19.8	0.94 134
				<del> </del>										<del></del>				

cs .	PROCS	**COO		OMAI COAL			OCOGEN - RESIDL	COGEN**	POWER REGD	COGEN POWER	МВО	POWER /HEAT	FESR	CAPITAL	NORM	\$/KW EQVL	ROI	LEVL CHRG	NORM MR
				0.011.	-				MW	MW		RATIO		*10**6	0001	F4.04.8.F4	(%)	011110	
TACTE	29111	0.	833.		Ō.	0.	-241.	691.	14.	84.	1.27	0.13	0.34	32.8	2.37	126.1	12	18.9	0.90 1
TWC16	29111	0.	520.		Ó.	0.	-45.	115.	14.	14.	1.12	0.13	0.12	21.5	1.55	141.1	13	20.0	0.95 1
TWC16	29111	l 0.	925.		Ο,	Ο.	-274.	701.	14.	85.	1,23	0.13	0.32	30.3	2.22	113.7	11	19.5	0.93 1
C1620	29111	0.	522.		O,	Ο,	-47.	115.	14.	14.	1.21	0.13	0.12	21.6	1.56	141.2	11	20.2	0.96 1
C1626	29111	. Ú.	1168.		œ.	0.	-419.	1031.	14.	126.	1.69	0.13	0.34	41.8	3.01	122.0	5	20.9	1.00 1
01622	29111	0,	519,		0.	Ο.	-43.	115.	14.	14.	1.20	0.13	0.12	21.4	1.54	140.5	12	20.0	0,98 1
C1622	29111	C.	1066		0.	0.	-349.	925.	14.	113.	1.60	0.13	0.35	39.9	2.88	127.6	3	19.9	0.95 1
C1222	29111	0.	518.		Ο.	Ο.	-43.	115.	14.	14.	1.20	0.13	0.12	21.0	1.52	138.3	13	20.0	0.95 1
C1222	29111	0.	1057.		0.	0.	-341.	919.	14.	112.	1.57	0.13	0.35	37.7	2.72	121,8	9	19.5	0.93 1
00822	29111	0.	513.		0.	Ο.	-37.	115.	14.	14.	1.20	0.13	0.13	21.1	1.52	140.1	14	19.8	
00022	29111	0.	893.		0.	0.	-235.	724.	14.	88.	1.37	0.13	0.35	31.0	2.24	118.5	15	18.2	0.87 1
EHTPE	29111	. 0.	525.	1 .	O.	0.	-50.	115.	14.	14.	1.37	0.13	0.11	27.5	1.99	179.2	4	21.0	1.00 1
EHTP	2911	0.	872.		0.	0.	-255.	591.	14.	72.	2.26	0.13	0.26	65.5	4.73	256.4	0	25.3	1.21 1
TSOAD	29111	517.	0.		0.	-517.	476.	115.	14.	14.	1.09	0.13	0.12	20.2	1.46	133,5	0	23.4	1.12 1
TSOAE	29111	826.	0,		Ο.	~826.	615.	581.	14.	71.	1.06	0.13	0.31	25.0	1.80	103.2	0	24.5	1.17 1
TRADE	29111	530,	0.		Ο.	-530.	476.	115.	14.	14.	1.14	0.13	0.10	22.3	1.61	143.9	0	24.2	1.16 1
TRAOS	2911	1316.	0.		0.	-1316.	779.	1130.	14.	138.	1.87	0.13	0.31	54.2	3.91	140.7	0	34.0	
TRATE	29111	527.	0.		0.	-527.	476.	115	14.	14.	1.14	0.13	0.11	22.4	1.61	144.8	0	24.1	1.15 1
TRA12	29111	1235,	0.		0.	-1235.	759.	1064.	14.	130.	1.72	0.13	0.32	48.7	3.51	134.4	0	31.7	1.51 1
TRATE	29111	526.	0.		0.	-526.	476.	115.	14.	14.	1.15	0.13	0.11	22.8	1.65	148.2	O	24.1	1.15 1
TRATE	29111	1151.	0.		0.	-1151.	730.	966.	14.	118.	1.69	0.13	0.32	48.0	3.46	142.2	0	30.7	1.47 1
TR200	29111	525.	0.		σ.	-525.	476.	115.	14.	14.	1.12	0.13	0.11	21.7	1.56	140.9	O	23.0	1.14 1
TR208	29111	999.	0.		0.	-999.	671.	769.	14.	94.	1.39	0.13	0.31	36.9	2.66	125.9	Ö	28.2	
TR212	29111	525.	0,		0.	-525.	476.	115.	14.	14.	1.13	0.13	0.11	22.0	1.59	143.0	Ó	23.9	1.14 1
	2911		o.		0.	-1040.	608.	026.	14.	101.	1.47	0.13	0.31	39.7	2.86	130.1	0	20.8	1.37 1
TR216	29111	523.	0.		0.	-523.	476.	115.	14.	14.	1.14	0.13	0.11	22.3	1.61	145.4	Ö	23.9	1.14 1
TR210	29111	1050.	0.		0.	-1050.	695.	351.	14.	104.	1.54	0.13	0.32	42.6	3.07	138.5	Ó	28.9	1.38 1
TRIVOS	29111	539.	0.		0.	-539.	476.	115.	14.	14.	1.14	0.13	0.09	22.4	1.61	141,7	0	24.6	1.17 1
TRHUE	29111	1564.	0.		Ō.	-1564.	836.	1321.	14.	161.	1.98	0.13	0.27	57.2	4.13	124.9	0	39.4	1.88 1
TRW12	29111	533.	Ο.		0.	-533.	476.	115.	14.	14.	1.14	0.13	0.10	22.4	1.61	143.1	o	24.3	1.16 1
TRULE	29111	1484.	0.		0.	-1484.	829.	1299.	14.	158.	1.79	0.13	0.30	49.9	3.60	114.7	Ó	35.3	1.71 1
TRMIE	29111	532.	0.		0.	-532.	476.	115.	14.	14.	1.15	0.13	0.10	22.7	1.64	145.8	Ö	24.3	1.16 1
	29111		0.		o.	-1360.	790.	1163.	14.	142.	1.73	0.13	0.31	48.4	3.49	121.4	0	34.0	1.62 1
	29111		0.	•	0.	-544.	476.	115.	14.	14.	1,13	0.13	0.08	21.8	1.57	136.7	ŏ	24.7	1.18 1
	29111		o,		G.	-1316.	734.	901.	14.	120.	1.49	0.13	0.23	39.0	2.81	101.1	ŏ	35.6	1.70 1
TR31a	29111	529.	0.		Ο.	-529.	476.	115.	14.	14.	1.13	0.13	0.10	21.9	1.58	141.0	ō	24.1	1.15 1
	2911		Ō.		Ō.	-1180.	731.	971.	14.	118.	1.50	0.13	0.31	40.3	2.91	116.5	<del>- 0</del>	30.8	1,47 1
	29111		0.		o.	-529.	476.	115.	14.	14.	1.14	0.13	0.10	22.2	1.60	143.4	ŏ	24.1	1.15 1
	29111		0,		0.	-1169.	726.	954.	14.	116.	1.53	0.13	0.30	41.4	2.98	120.7	ŏ	30.9	1.47 1
	29111		o.		Ğ,	-542.	476.	115.	14.	14.	2.45	0.13	0.00	24.7	1.78	155.8	Ô	26.2	1.25 1
	29111		<del>0.</del>	,	<del>o.</del>	-2206.	1044.	2017.	14.	246.	27.73	0.13	0.28			218.6	ö	81.9	3.91 1
	29111	525.	õ.		o.	-525.	476.	115.	14.	14.	2.35	0.13	0.11	25.2	1.82	164.0	ŏ	25.5	1.22 1
	29111		õ.			-1609.	918,	1596.	14.	194.	20.74	0.13	0.36	121.2		257.0	ŏ	59.9	2.86 1

DATE 06/08/7: LASE-PEG-ADV-DES-ENGR

cs	PROCS	**COO DISTIL I		ION CASI		RESIDL	- COGEN		POWER REQD MW	COGEN POWER MV	oam	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM	\$/KV	RO1	CHRG	NORM ENRG	WRT
<b>NOCEL</b>	29112	Ō.	1696.	427.	0.	0.	0.		52.	0.	1.57	0.13	0.	41.1	1.00	89.5	0	73.4	1.00	3
	29112		1777.	Ο.	0.	-81.	427.		<b>52</b> .	52.	2.03	0.13	0.16	44.9	1.09	88.2	100	63.6	0.87	14
IMI 41	29112	0.	1811.	0.	0.	-94.	496.		52.	60.	1.80	0.13	0.18	44.0	1.07	83.0	131	62.6	0.85	5 13
	29112		0,	1777.	0.		-1350.	F	52.	52.	4.99	0,13	0.16	90.4	2.20	173.6	32	47.6	0.65	12
111141	29112	0,	0.	1811.	0.	1716.	<i>-</i> 1315.	F	52.	60.	4.69	0.13	0.18	93.8	2.28	176.7	31	46.6	0.64	1 11
TM141	29112	Ο.	О.	1777.	· · · O.	1696.	-1350.	A	52.	52.	4.87	0.13	0.16	72.0	1.75	138.4	48	45.5	0.62	12
FM141	29112	Ο.	0.	1811.	0.	1716.	-1315.	Α	52.	60.	4.50	0.13	0.18	69. <b>6</b>	1.69	131.2	54	43.8	0.60	11
111088	29112	0.	1758.	101.	0.	-62.	326.		52.	40.	1.69	0,13	0.12	39.8	0.97	78.7	999	65.2	0.89	13
TMOSE	29112	0.	30.	1829.	0.	1606.	-1402.	F	52.	40.	4.36	0.13	0.12	87.7	2.13	173.3	31	50.0	0.50	10
380111	29112	0,	30.	1829.	0.	1666.	-1402.	Α	52.	40.	4.20	0.13	0.12	61.3	1.49	121.0	64	46.9	0.64	1 11
FBSTM	29112	0.	0.	1789.	О.	1696.	-1361.		5.	52.	6.57	0.13	0.16	91.5	2.23	174.7	30	49.5	0.67	12
FBSTM	29112	0.	0.	2030.	0.	1836.	-1132.		52.	109.	7.86	0.13	0.26	84.8	2.06	142.5	39	43.0	0.59	11
ISTMT	29112		1783.	0.	0.	-87.	427.		52.	52.	4.21	0.13	0.16	126.0	3.06	241.1	4	74.7	1.02	12
STMT	29112	0,	2190.	. 0.	0.	-253.	1235.		52.	150.	6.71	0.13	0.31	234.2	5.70	364.9	0	81.9	1.12	: 11
! STMT	29112	0.	0.	1783.	0.	1696.	-1356,		52.	52.	7.18	0.13	0.16	177.6	4.32	339.8	12	59.4	0.81	1 1
ISTMI	29112	0.	0.	2190.	0.	1937.	-955.		52.	150.	9.91	0.13	0.31	294.5	7.16	458.9	8	62.4	0.85	10
IHRSC	29112	0.	1930.	0.	o.	-234.	427.		52.	52.	4.95	0.13	0.09	160.8	3.91	284.4	0	83.4	1.14	11
HRSG	29112	0.	2200.	Ο.	Ο.	-409.	745.		52.	91.	6.28	0.13	0.13	226.2	5.50	351.0	0	92.4	1.26	10
HRSG	29112	0.	ο.	1930.	Ο.	1696.	-1503.		52.	52.	8.09	0.13	0.09	213.4	5.19	377.4	8	66.9	0.91	1 1
LHRSC	29112	0.	О.	2200.	0.	1791.	-1455.		52.	91.	9.61	0.13	0,13	286.8	6,98	444.9	5	73.5	1.00	10
TIRL	29118	1890,	0.	0,	-1890.	1696.	427.		52.	52.	2.92	0,13	0.11	76.7	1.87	130.6	0	84.8	1.16	1
TIRL	29112	2644.	0.	o.	-2644.	1995.	1429.		52.	174.	4.15	0.13	0.23	133.8	3.26	172.7	0	96.9	1.32	1
TIRL	29112	0.	1890.	ο,	ο.	-194.	427.		52.	52.	2.92	0.13	0.11	76.8	1.87	138.7	9	71.3	0.97	12
TIRL	29112	0.	2644.	0.	Ο.	-649.	1429.		52.	174.	4.15	0.13	0.23	134.0	3.26	173.0	Ō	77.9	1.06	10
TIRL	29112	0.	0.	1890.	O.	1696.	-1463.		52.	52.	6.06	0.13	0,11	130.0	3.16	234.8	18	54.8	0.75	11
TTRL.	29112	0,	0.	2644.	0.	1995.	-1215.		52.	174.	8.92	0.13	0.23	239.3	5.82	308.7	10	58.4	0.60	9
EGTEC	29112	0.	0.	2112.	o,	1696.	-1685.	Α	52.	52.	6.64	0.13	0.00	147.7	3.59	238.7	12	61.7	0.84	10
LGTGO	29112	0.	0.	7623.	0.	2937.	-2872.	٨	52.	579.	22.61	0.13	0.01	545.7 1	3.27	244.3	0	116.1	1.58	• (
EGIOC	29112	O.	O.	2023.	Ü,	1696.	-1596.	٨	52.	52.	6.25	0.13	0.05	130.7	3.18	220.4	15	57.0	0.79	10
EGTOC	29112	Ο,	0.	2857.	0.	1930.	-1647.	۸	52.	147.	8.12	0.13	0.09	•		211.2	.11	60.0	0.83	1 8
CMCCL	29112	0.	0.	1829.	0.		-1402.		52.	52.	6,95	0.13	0.14	131.1		244.7	16	55.3		
CMCCL	29112	0.	0.	2032.	0.	2187.	-760.		52.	252.	13.65	0.13	0.34	212.3	5.16	255.8	14	49.1	0.67	
CSTCL	29112	O.	Ű.	1817.	O,	1696.	-1390.		52.	52.	6,79	0.13	0.14	120.9		242.0	17	54.7	0.74	
CSTCL	29112	0.	0.	3230.	0.	2423.	-376.		52.	349.	15.82	0.13	0.39	245.9	5.98	259.1	14	43.0	0.59	) (
GETST	29112	0.	0.	1886,	0.		-1459.		52.	52.	5,43	0.13	0.11			220.3	19	53.8	0.73	
<b>JETST</b>	29112	ο.	Ο.	3015.	0.	2149.	-1071.		52.	237.	6.30	0.13	0.26			233.6	14	47.7		
ISOAN	29112	0.	1900.	0,	0,	-204.	427.		52.	52.	2.36	0.13	0.11	58.3	1.42	104.7	20	69.1	0.94	13
rsoar	29112	0.	3422.	ο.	0.	-1141.	2388.		52.	291.	3,50	0.13	0.27	110.6	2.69	110.3	1	75.9	\$.03	10
TACOS	29112	ο,	1827.	0.	0.	-131.	427.		52.	52.	2.28	0.13	0.14			103.0	32	66.3	0.90	13
TACOR	29112	Ο,	2584.	0.	0.	-514.	1679.		52.	204.	2.57	0.13	0.31			100,8	23	62.1	0.85	-
TACTO	' देशी ह	o,	1033.	Ü.	Û.	-137.	427.		52.	52.	2.31	0.13	0.14	50.G	1.38	105.4	_ <u>29</u> _	GG. 7	0.91	
FAC12	29142	0,	2879.	О.	0.	-679.	2113.		52.	257.	2,99	0.13	0,33	92.2	2.24	109.3	17	62.9	0.86	
FACIG	29112	ο. ·	1845.	0.	0.	-149.	427.		52.	52.	2.34	0.13	0.13			107.4	25	67.3	0.92	

ni	****	FNFPAT	PAN MAI	Ess sell	ACCIGEN -	COGEN**	POVER	CUCEN	MBD	POVER	EEGD	CAPITAL	NORM	\$/KH	PAI	LEVL	NORM WRTH
		ESIDL			RESIDL			POWER	OGN	/HEAT	FESK	COST	COST	EQVL	KOI		ENRG
			00112	D. 011.L	112011312	COME	MW	MW		RATIO		*10**6	000.		(%)	Ormico	
2	0.	3158.	Ō.	ō.	-857.	2455.	52.	299.	3.49	0.13	0.34	111.3	2.71	120.3	12	65.9	0.90 07
2	Ο.	1863.	0.	0.	-167.	427.	52.	52.	2.32	0.13	0.12	57.1	1.39	104.6	25	67.7	0.92 136
2	Ο.	3287.	Ο.	Ο.	-975.	2492.	<b>52</b> .	304.	3.15	0.13	0.32	97.2	2.35	100.8	12	67.3	0.92 107
2	0.	1870.	0.	0.		427.	52.	52.	2.44	0.13	0.12	57.3	1.39	104.5	22	68.2	0.93 135
2	0.	4134.	0.	0.	-1461.	3632.	52.	442.	4.23	0.13	0.34	128.9	3.14	106.4	7	70.9	0.97 102
2	0.	1857.	0.	0.	-161.	427.	52.	52.	2.44	0.13	0.13	57.9	1.41	106.4	22	67.9	0.92 136
2	ͺ Ο.	3773.	0.	ο.	-1231.	3260.	52.	397.	4.18	0.13	0.35	132.0		119.4	9	68.9	0.94 103
2	0.	1854.	0.	0.	-159.	427.	52.	52.	2.43	0.13	0.13	56.8	1.38	104.6	24	67.7	0.92 136
2	0,	3738.	0.	0.	-1203.	3237.	52.	394.	4.05	0.13	0.35	123.2	3.00	112.5	10	67.3	0.92 104
2	0.	1835.	0,	0.	-139.	427.	52.	52.	2.42	0,13	0.14	56.1		104.3	27	67.0	0.91 137
2	0.	3159,	0,	0.	-830.	2547.	52.	310.	3,26	0.13	0.35	94.0	2.29	101.5	18	61.9	0.64 110
2	<u>0.</u>	1880.	0.	0,	-184.	427.	52.	52.	3.21	0.13	0.11	86.0		156.2		72.2	0.98 128
2	0,	3100.	0.	0,	-905.	2100.	52.	256.	6,63	0.13	0.28	225.6	5.49	248.3	0	88.0	1.20 102
	1851.	0.	o.		1696.	427.	52.	52.	2.26	0.13	0.13	54.4		100.3	0	80.3	1.09 142
	2937.	0.	0.		2185.	2064.	52.	251.	2.80	0.13	0.31	84.3	2.05	98.0	0	86.1	1.17 120
	1899.	0,	<u>o.</u>		1696.	427.	<u>52.</u>	52.	2.39	0,13	0.11	59.8		107.5	. 0	82.9	1.13 133
	4677.	0.	0.		2768.	4018.	52.	489.	5.11	0.13	0.31	171.6	4.17	125.2	0	117.4	1.60 109
	1887.	0.	0,		1696,	427.	52.	52.	2.40	0.13	0.11	60.3	1.47	109.0	0	82.5	1.12 138
	4391. 1882.	0.	0, 0.		2698. 1696.	3783. 427.	52. 52.	461. 52.	4.94		0.32	165.6		128.7	0	111.3 82.4	1.52 109 1.12 138
	4091.	<u>0.</u> 0.	<del></del>		2594.	3435.	52. 52.	418.	2.43	0.13	0.11	61.4		111.4 136.4	0	107.8	1.47 109
	1878.	0.	0.		1696.	427.	52. 52.	419. 52.	4.87 2.35	0.13	0.32	163.5 58.2		105.7	0	81.8	1.11 139
	3552.	0.	0.		2385.	2735.	52. 52.	333.	3.72	0.13	0.72	119.3		114.7	6	98.2	1.34 111
	3332. 1878.	0.	o.		1596.	427.	52.	52.	2.37	0.13	0.31	59.0		107.2	Ö	82.0	1.12 139
	3690.	0.	<del>0.</del>		2445.	2937.	52.	358.	3,97		0.31	120.7	3.13	118.8	<del>-</del>	100.2	1.36 111
	1873.	ŏ.	Ö.		1696.	427.	52.	52.	2.40	0.13	0.12	60.2		109.6	ő	81.9	1.12 139
_	3731.	o.	o.		2472.	3026	52.	369.	4.23	0.13	0.32	139.0		127.1	ŏ	100.6	1.37 110
	1931.	o.	Ŏ.	-1931.	1696.	127.	52.	52.	2.46		0.09	62.5		110.5	ŏ	84.5	1.15 135
	5559.	<del>0.</del>	<del>0.</del>		2971.	4693.	52.	572.	4.87		0.27	159.9	3.89	98.1	ŏ	133.7	1.82 110
	1911.	ő.	ŏ.		1696.	127.	52.	52.	2.45	0.13	0.10	62.5		111.6	ŏ	83.7	1.14 136
	5273.	0.	0,		2940.	4619.	52.	563.	4.81	0.13	0.30	158.1		102.3	ŏ	124.2	
	1904.	o.	Ö.		1696.	427.	52.	52.	2.39	0.13	0.10	59.8	1.46	107.3	ŏ	63.1	1.13 137
	1833.	Ō.	Ō.		2800.	4152.	52.	506,	4.66	0.13	0.31	153.3	3,73	108.3	ō	117.9	1.61 109
	1949.	Ö.	0.		1696.	427.	52.	52.	2.36	0.13	0.08	58.0		101.6	ŏ	84.6	1.15 136
2 /	1676.	0.	0.	-4676.	2610.	3488.	52.	425.	4.07	0.13	0.23	130.0	3.16	94.9	Ö	125.0	1.70 107
2 '	1893.	0.	0.	-1893.	1696.	427.	52.	52.	2.34	0.13	0.11	57.8	1.41	104.3	0	82.4	1.12 138
2 4	4194.	0,	Ō.	-4194.	2599.	3451.	52.	420.	4.03	0.13	0.31	129.7		105.5	Ö	107.0	1.46 110
5	1894.	O.	0.	-1894.	1696.	427.	52.	52.	2.36	0.13	0.11	58.7	1.43	105.8	0	82.6	1.12 138
2 /	4157.	0.	0.	-4157,	2501.	3391.	52,	413.	4.12	0.13	0.30	133.3	3.24	109.4	0	107.5	1.46 109
	1942.	0,	0.	-1942.	1696.	427.	52.	52.	7.71	0.13	0.09	77.8	1.89	136.6	_ 0_	91.8	1.25 132
2 '	7841.	Ú.	Ō.	-7841.	3710.	7170.	52.	873.	96.60	0.13	0.28	459.1	11.17	199.8	0	265.5	3.89 152
: .	1881.	Ο.	Ο.	-1881.	1696.	427.	52.	52.	7.36	0.13	0.11	79.6		144.5	0	89.2	1.22 135
2	-																0 04 107
?	5721.	0.	0.	-5721.	3262.	5672.	52.	691.	72.32	0.13	0.36	397,3	9.66	237.0	0	200.5	2.84 137
•	/1	841.	841. <b>0.</b>	841. <b>0. 0.</b>	841. 0. 07841. 881. 0. 01881.	841. 0. 07841. 9710. 881. 0. 01881. 1696.	841. 0. 07841. 3710. 7170. 881. 0. 01881. 1696. 427.	841. 0. 07841. 3710. 7170. 52. 881. 0. 01881. 1696. 427. 52.	841. 0. 07841. 3710. 7170. 52. 873. 881. 0. 01881. 1696. 427. 52. 52.	841. 0. 07841. 3710. 7170. 52. 873. 96.88 881. 0. 01881. 1696. 427. 52. 52. 7.36	841. 0. 07841. 3710. 7170. 52. 873. 96.88 0.13 881. 0. 01881. 1696. 427. 52. 52. 7.36 0.13	841. 0. 07841. 3710. 7170. 52. 873. 96.88 0.13 0.28 081. 0. 01881. 1696. 427. 52. 52. 7.36 0.13 0.11	841. 0. 07841. 3710. 7170. 52. 873. 96.88 0.13 0.28 459.1 881. 0. 01881. 1696. 427. 52. 52. 7.36 0.13 0.11 79.6	841. 0. 07841. 3710. 7170. 52. 873. 96.88 0.13 0.28 459.1 11.17 881. 0. 01881. 1696. 427. 52. 52. 7.36 0.13 0.11 79.6 1.94	841. 0. 07841. 3710. 7170. 52. 873. 96.88 0.13 0.28 459.1 11.17 199.8 081. 0. 01881. 1696. 427. 52. 52. 7.36 0.13 0.11 79.6 1.94 144.5	841. 0. 07841. 3710. 7170. 52. 873. 96.88 0.13 0.28 459.1 11.17 199.8 0 881. 0. 01881. 1696. 427. 52. 52. 7.36 0.13 0.11 79.6 1.94 144.5 0	841. 0. 07841. 3710. 7170. 52. 873. 96.88 0.13 0.28 459.1 11.17 199.8 0 285.5 881. 0. 01881. 1696. 427. 52. 52. 7.36 0.13 0.11 79.6 1.94 144.5 0 89.2

PAGE 99

DATE 06/08/75 L&SE-PEO-ADV-DES-ENGR

cs	PROCS		GENERAT RESIDL	COAL		OCOGEN RESIDL		**	REGD	POWER	MAG	POWER /HEAT	FESR	CAPITAL	NORM COST	EQVL		LEVL CHRG	NORM WRTH ENRO
				1227					MW	MM		RATIO		*10**6		- 44 4	<u>(%)</u>	160 1	1.00 80
	29113			1034.	0.	0.	0.		126.	0.	2.97		0.	90.5	1.00	86.3	0	169.1	
	29113			0.	0.	-197.	1034.		126.	126.	3.75	0.14	0.17	100.3	1.11	83.8	99	144.8	0.86 145
	29113		4165.	0.	0.	-228.	1198.	-	126.	146.	3.30	0.14	0.19	96.1	1.06	78.7		142.4	0.84 137
TM141			0.	4085.	0.	3858.	-3050.	F	126.	126.	9.85	0.14	0.17	202.1	2.23	168.8	33	107.3	0.63 125
STILL 1				4165.	0.	3937.	-2966.	•	126.	146.	9.50	0.14	0.19	206.5	2.28	169.2	33	104.9	0.62 115
	29113			4085.	0.	3888.	-3050.		126.	126.	9.51	0.14	0.17	150.5	1.66	125.7	57	101.4	0.60 129
	29113			4165.	0.	3937.	-2966.	A	126.	146.	9.10	0.14	0.19	145.2	1.60	119.0	64	97.8	0.58 121
	29113			229.	0.	-153.	806.		126.	<u>98.</u>	3.00	0.14	0.13	84.5	0.93	72.6 9		148.1	0.88 134
	29113			4201.	0.	3820.	-3167.		126.	98.	8.49	0.14	0.13	182.0	2.01	156.3	37	111.1	0.66 111
	29113			4201.	0.	3820.		A	126.	98.	8.70	0.14	0.13	137.8	1.52	118.4	65	106.5	0.63 116
	29113		0.	4109.	0.		-3074.		126.	126.	12.85	0.14	0.17	174.4	1.93	144.9	41	107.7	0.64 127
	29113		0.	<u>4665.</u>	0.		-2545.		126.	258.	17.06	0.14	0.26	191.1	2.11	139.8	40	97.3	0.58 119
	29113			0.	0.	-212.	1034.		126.	126.	7.71	0.14	9.17	251.8	2.78	209.6	6	165.6	0.98 129
	29113			0.	0.	-593.	2898.		126.	353.	15.39	0.14	0.31	566.8	6.26	383.9	0	191.3	1.13 118
	29113			4099.	0.	3888.	-3065.		126.	126.	13.55	0.14	0.17	352.7	3.90	293.6	15	127.6	0.75 119
	29113			5037.	0.	4445.	<u>-2139.</u>		126.	353.	22.61	0.14	0.31	715.0	7,90	484.3	7	147.2	0.87 110
	29113			0.	0.	-568,	1034.		126.	126.	10.45	0.14	0.09	368.9	4.07	282.5	0	191.4	1.13 119
	29113			0.	ο.	-933.	1699.		126.	207.	14.47	0.14	0.13	545.4	6.02	370.8	0	215.6	1.28 109
	29113			4456.	Ο,	3888.	-3421.		126.	126.	17.30	0.14	0.09	496.2	5,48	380.0	8	153.4	0.91 110
	29113			5020.	0.	4086.	-3320.	<u> </u>	126.	207.	21.96	0.14	0.13	693.2	7.66	471.3	_4_	<u> 173.4</u>	1.03 101
STIRL	29113		Ο.	ο,	-4358.	3888.	1034.		126.	126.	5.52	0.14	0.11	167.0	1.84	130.8	0	193.4	1.14 134
STIRL	29113		0.	0.	-6035.	4553.	3261.		126.	397.	8.19		0.23	284.5	3.14	160.9	0	219.1	1.30 116
STIRL	29113			0.	Ο.	-470.	1034.		126.	126.	5.52	0.14	0.11	167.2	1.85	130.9	11	162.0	0.96 129
TIRL.	29113			0.	0,	-1402.	3261.		126.	397.	8.20	0.14	0.23	284.9	3.15	161.1	1	175.7	1.,04 110
STIRL	29110			4358.	ο.	3838.	-3323.		126.	126.	12.33	0.14	0.11	295.2	3,26	231.2	18	124.1	0.73 114
TIRL	29113		0.	6035.	Ο.	4553.			126.	397.	18.69	0.14	0.23	524.2	5,79	296,4	11	130.8	0.77 96
	. 29113		0.	4897.	0.	3000.	-3863.	А	126.	126.	12.73	0.14	0.01	286.7	3.17	199.8	16	134.4	0.79 102
	29113				0.	6817.			126.	1321.	51,49				14.13	251.0	0	<u>270.1</u>	1.60 62
	29113			4681.	0.	3888.	-3646.		126.	126.	12.09	0.14	0.05	256.3	2.83	186,8	20	126.4	0.75 100
	29113			6520.	ο.	4404.		Α	125.	336.	17.45	0.14	0.09	387.4	4.28	202.8	12	137.4	0.81 87
	29113			4210.	0.		-3175.		126.	126.	14.12	0.14	0.14	272.8	3.01	221.1	19	122.2	0.72 119
	29113		<u>o.</u>	6462.	0.		-1735.		126.	576.	27.43		0.34	367.0	4.05	193.8	19	96.7	0.57 99
	29113		- •	4161.	0.	3008.	-3147.		126.	126.	13.65	0.14	0.15	269.6	2.98	220.1	20	120.9	0.72 119
	29113		0.	7445.	0.	5562.	-807.		126.	809.	32.01	0.14	0.39	430.9	4.76	197.5	20	79.4	0.47 94
	29113			4346.	0.	3888.	-3311.		126.	125.	10.27	0.14	0.12	255.8	2.83	200.9	21	119.0	0.70 116
	29113		0.	6936.	0.	4932.	-2406.		126.	552.	12.05		0.27	419.5	4.63	206.4	17	100.8	0.60 90
	29113			0.	0.	-494.	1034.		126.	126.	4.44		0.11	129.3	1.43	100.7	22	157.7	0.93 134
	29113			0.	Ο.	-2603.	5450.		126.	664.	6.70		0.27	228.6	2.53	99.9	4	170.9	1.01 105
	29113			0.	0.	-317.	1034.		126.	126.	4.06		0.15	115.4	1.27	93.6	44	150.3	0.89 140
	29113			0.	0.	-1173.	3831.		126.	467.	4.71		0.31	153.0	1.69	88.6	30	139.9	0.83 122
	29113			0.	0.	-333,	1034.		126.	126.	4.17	0.14	0.14	1:9.2	1.32	96.4	38	151.2	0.89 139
	29113			0.	Ο.	-1551.	4622.		126.	587.	5.63	0.14	0.33	188.3	2.08	97.8	21	141.6	0.84 115
PTACIG	20113	О.	4249.	ο.	Ο,	361.	1034.		126.	126.	4.33	0.14	0.14	125.8	1.39	101.0	30	153.0	0.91 137

DATE 05/08/75 | 85E-PEG-ADV-DES-ENGR

							- COGEN**		COGEN	ORM	POWER	FESR	CAPITAL	MORM	\$/KW	ROI	LEVL	NORM WE	RTI
cs .	PROCS		RESIDL		-	RESIDL	COAL	REQD MM	POVER MV		/HEAT		COST *10***6	COST	EQVL		CHRG	ENRG	
	29113	-		0.	O.	-1955.	5601.	126.	682.	6.58	0,14	0.34	225.1	2.49	106.6	15	147.5		
	29113			0.	ο.	-405.	1034.	126.	126.	4.23	0.14	0.13	121.6	1.34	96.7	31	153.9	0.91	
TWC16	29113	0	. 7502.	Ο.	0.	-2225.	5687.	126.	693.	5.75	0.14	0.32	191.3	2.11	87.0	16	150.4	0.89 1	110
C1626	29113	0	4308.	0.	0.	-420.	1034.	126.	126	4.38	0,14	0.12	122.1	1.35	96.7	20	154.9	0.92	130
C1626	29113	0	. 9508.	. 0.	0.	-3417.	8412.	126.	1025.	7.86	0.14	0.34	258,3	2.85	92.7	10	157.0	0.93	10
C1622	29113	• 0	. 4277.	0.	0.	-389.	1034.	126.	126.	4.43	0.14	0.13	125.3	1.38	100.0	27	154.3	0.91 1	139
01622	29113	0	. 8677.	0.	0.	-2842.	7553.	126.	920.	8.02	0.14	0.35	275.7	3.04	108.4	10	153.7	0.91 1	10
C1222	29113	0	. 4271.	0.	0.	-333,	1034.	126.	126.	4.40	0.14	0.13	122.9	1.36	98.2	29	153.8	0.91 1	13
C1222	29113	0	8599.	٥.	0.	-2779.	7503.	126.	914.	7.75	0,14	0.35	256.0	2.63	101.6	12	150.1	0.89 1	10
	29113			0.	0.	-336.	1034.	126.	126.	4.35	0.14	0.14	120.5	1,33	97.4	33	152.0		
	29113			o.	Ö.	-1921.	5917.	126.	721.	6.24	0.14	0.35	199.4	2.20	93.6	21	139.1		
	29113			o.	o.	-446.	1034.	126.	126.	6.23	0.14	0.12	192.4	2.12	151.5	-6	164.6		
	29113			0.	0.	-2065.	4792.	126.	584.	13,41	0.14	0.28	483.4	5.34	233.2	ŏ	197.3	1,17 1	
	29113			o.		3888.	1034	126.	126,	4.12	0.14	0.13	117.0	1.29	93.6	ŏ	183.1	1.08 1	
	29113			Ö.		4986.	4709.	126.	574.	5.00	0.14	0.31	162.7	160	82.8	ã	193.5	1.14	
	29113			õ.		3508.	1034.	126.	126.	4.51	0.14	0.11	132.9	1.47	103.6	ő	139.6		
		10573			-10673.	6318.	9169.	126.	1117.	10.13	0.14	0.31	361.2	3,90	15.5	<del>_</del>	264.8	1.57	
	29113			õ.		3683.	1034.	126.	126.	4.42	0.14	0.12	129.4	1.4.	101.5	ő	168.0	1.11	-
		10021			-10021.	6157.	8632	126.	1051.	9.72	0.14	0.32	345.6	3.82	117.7	ŏ	250.4	1.48	-
	20113			o.	-4338.	3888.	1034.	126.	126.	4.47	0.14	0.32	131.6	1.45	103.5	ä	187.8	1.11 1	
	29113			0.		5921.	7840.	126.	955.	9.50	0.14	0.32	338.1				242.2	1.43 1	
	29113			0. 0.		3888.	1034.		126.	- • - •			,	3.73	123.6				
	29113			0.				126.		4.42	0.14	0.12	129.2	1,43	101.8	0	187.2		
					• , • .	5443.	6242.	126.	760.	7.21		0.31	248.5	2.74	104.6	0		_1.31 1	
	29113			<u> </u>	<u>-4329.</u>	3888.	1034.	126.	126.	4.36	0.14	0.12	126.7	1.40	99.9	0	186.8	·	
	29113			0.		5581.	6702.	126.	816.	7.74	0.14	0,31	269.0	2.97	108.8	0	226.2		
	29113			0.		3888.	1034.	126.	126.	4.42	0.14	0.12	129.5		102.3	0	106,8		
	20113			0.		5641.	6905.	126.	841.	8.32	0.14	0.32	292.2		117.1	0	227,2	1.34 1	
	20113		. 0.	0.		3638.	1034.	<u> 126.</u>	126.	4.37	0.14	0.09	127.0	1.40	97.2	0	<u> 191.9</u>		
	29113				~12887.	6779.	10715.	126.	1305.	9.65		0.27	347.3	3.84	93.4	0	303.6	1.80 1	
	29113				-4409.	3888.	1034.	125.	126.	4.36	0.14	0.10	126.9	1.40	98.2	0	190.0		
		12034			-12034.		10541.	126.	1284.	9.53	0.14	0.30	335.3	3.70	95 1	0	280.8		
	29113				-4392.	3080.	1034.	126.	126.	4.44	0.14	0.11	130.2	1.44	101.2	0_	189.8	1.12 1	
		11030			-11030.	6409.	9475.	126.	1154.	9.07	0.14	0.31	318.3	3.52	98.5	0	265.6	1.57 1	
	29113				-4501.	3008.	1034.	126.	126.	4.25	0.14	0.09	121.6	1.34	92.2	0	192.9	1.14 1	13
		10671		0.	-10671.	5957.	7960.	126,	970.	7.60	0.14	0.23	259.9	2.87	83.1	0	281.2	1.66 1	
	. 29113			0.		3888.	1034.	126.	126.	4.27	0.14	0.11	123.2	1.36	96,3	0	187.8	1.11 1	14
गरश्	S5113	9571	. 0,	Ö.	-9571.	5931.	7876.	126.	959.	7.59	0.14	0.31	261.4	2.89	93.2	0	240.5	1.42 1	11
TR316	29113	4369	. 0.	0.	-4369.	3088.	1034.	126:	126.	4.31	0.14	0.11	124.8	1.38	97.5	0	188.1	1.11 1	139
TR316	29113	9486	. О.	ο.	-9486.	5890.	7738.	126.	942.	7.79	0.14	0.30	269.4	2.98	96.9	0	241.6	1.43 1	11
CPADS	29113	4484	. О.	0.	-4464.	3688.	1034.	126.	126.	17.46	0.14	0.09	170.6	1.88	129.8	0	210.5	1.25 1	
CLADS	29113	17894	. 0.	0.	-17894.	8456.	16362.	126.		219.61				11.13	192.2	ō	647.3	3.83 1	
					-4336.	3888.	1034.	126.	126.	16.62		0.12	175.4	1.94	138.1	ŏ	204.5	1.21 1	
CHODS	- 637 LTG	4000	,	٠.	-,000.														

FAGE 10

PATE 06/09/70 LASE-PEO-ADV-DES-EMGR

					E IN BTU E** **NO				COCEL	ORM	POWER	EECD	CAPITAL	NORM	\$/KV	DO1	LEW	NORM WRTH
cs	Podes	DISTIL RI			DISTIL		COAL	REGD	POWER	Owli	/HEAT	FESK	COST	COST	EQVL	gor	CHRG	ENKO SKURA MICER
.00	MOCO	DISTIL M	-01111	CONL	DISTIL	KEOIDE	COAL	MW	MIN		RATIO		*10**6	6031	EGAE	(%)	Crints	EMIO
NOCEN	33121	O.	257.	493.	Ō.	0.	0.	60.	0.	0.33	2.20	Q.	3.7	1.00	116.0	0	18.9	1.00 80
TM141	33121	0.	261,	468.	0.	~5.	25.	60.	3.	0.45	2.20	0.03	5.4	1.45	152.1	11	18.7	0.99 88
TM141	33121	0.	140.	589.	0.	117.	-97.	F 60.	3.	0.80	2.20	0.03	10.8	2.90	302.9	9	18.4	0.98 75
TM141	33121	0.	140,	589.	0.	117.	-97.	۸ 60.	3.	0.70	2.20	0.03	8.5	2.28	238.7	15	18.0	0.96 78
<b>580MT</b>	33121	0.	259.	479.	0.	-3.	13.	60.	2.	0.42	2.20	0.01	4.6	1.25	136.7	9	18.8	1.00 67
<b>380MT</b>	33121	0.	143.	595.	Ο.	113.	-103.	F 60.	2.	0.76	2.20	0.01	9.8	2.64	289.3	9	18.5	0.98 71
880MT	33121	0.	143.	595.	0.	113.	-103.	A 60.	2.	0.67	2.20	0.01	7.9	2.13	233.3	14	18.2	0.97 75
FBSTM	33121	Ο.	132.	577.	Ο.	125.	-85.	60.	6.	1.00	2.20	0.05	13.8	3.71	344.8	9	18.3	0.97 80
TSTMT	33121	0.	272.	419.	υ.	-15,	74.	60.	9.	1.09	2.20	0.08	30.3	8.14	704.0	0	21.1	1.12 83
ISTMT	33121	Ο.	125,	565.	0.	132.	-73.	60.	9.	1.53	2.20	0.08	38.7	10.40	899.2	0	20.9	1.11 81
THRSG	33121	Ο.	283.	441.	Ο.	-26.	51.	60.	6.	0.98	2.20	0.03	29.8	8.00	671.8	0	21.7	1.15 75
THRSO	33121	0.	132.	593.	0.	125.	-100.	60.	· 6.	1.43	2.20	0.03	38.3	10.30	865.4	0	21.6	1.14 73
STIRL	33121	187.	116.	389.	-187.	140.	104.	60.	13.	0.57	2.20	0.08	10.5	2.82	191.5	0	19.5	1.03 96
STIRL	33121	Ο.	303.	389.	0.	-46.	104.	60.	13.	0.57	2.20	0.08	10.5	2.82	191.7	9	18.4	0.98 94
_ISTT8	33121	Ο.	116.	576.	0.	140.	-83.	60.	13.	1.01	2.20	0.08	17.9	4.82	327.9	10	17.8	0.94 86
	33121	0.	62,	666.	0.	195.	-173.		35.	2.28	2.20	0.03	61.4	16.49	455.3	0	21.9	1.16 88
IEGT00	33121	0.	122,	606.	0.	134.	-114.	4 60.	10.	1.11	2.20	0.03	26.7	7.17	460.9	2	19.6	1.04 77
CMCCL	33121	Ο.	104.	546.	ο.	153.	-53.	60.	18.	1.50	2.20	0.13	30.7	8.25	531.2	5	18.6	0.99 93
CSTCL	33121	0.	92.	526.	Ο,	164.	-34.	60.	22.	1.75	2.20	0.17	34.3	9.21	538.1	6	18.3	0.97 100
GOTST	33121	0.	<u>111.</u>	573.	0.	146.	-80.	60.	15.	1.25	2.20	0.09	28.1	7.55	473.7	5	18.9	1.00 87
FISOAR	33121	0.	332.	329.	0.	-76.	163.	60.	20.	0.56	2.20	0.12	11.4	3.05	165.7	14	17.8	0.94 102
FTACO8	33121	Ο.	292.	376.	0.	-36.	117.	60.	14.	0.46	2.20	0.11	8.3	2.24	157.9	22	17.5	0.93 102
	33121	Ο.	304.	345.	0.	-47.	147.	<b>50</b> .	18.	0.50	2.20	0.13	9.7	2.60	164.0	21	17.3	
	33121	0.	316,	322.	C.	-59.	171.	60.	21.	0.55	2.20	0.15	11.1	2.98	172.3	<u> 19</u>	17.2	
	33121	0.	325,	319.	0.	-68.	174.	60.	21.	0.56	2.20	0.14	11.3	3.03	167.6	17	17.4	0.92 105
01626	33121	0.	354.	258.	0.	-98.	235.	60.	29.	0.75	2.20	0.18	13.7	3.68	168.7	16	17.1	0.91 110
	33121	o.	338.	282.	ο.	-81.	210.	60.	26.	0.71	2.20	0.17	12.9	3.45	173.2	16	17.1	0.91 109
	33121	0.	336.	284.	0.	-79.	208.	60.	25.	0.70	2.20	0.17	12.2		165.8	17	<u> 17.1</u>	0.90 110
	33121	0.	311.	330.	0.	-54.	162.	60.	20.	0.64	2.20	0.14	10.5	2.82	169.0	18	17.3	0.92 106
	33121	0.	548.	5.	0.	-291.	488.	60.	<b>59</b> .	1.46	2.20	0.26		10.79	250.8	4	19.2	1.02 118
	33121	0.	319.	340.	0.	-62,	152.	60.	19.	0.80	2.20	0.12	17.0	4.56	267.2	7	18.6	0.98 90
	33121	586.	0.	0.	-506.	257.	493.	60.	60.	1.87	2.20	0.22		13.75	298.1	<u> </u>	24.8	1.31 129
	33121	682.	0.	0,	-682.	286.	593.	60.	72.	1.99	2.20	0.22		16.08	299.3	0	26.8	1.42 121
	33121	0.	586.	0.	0.	-329.	493.	60.	60.	1.87	2.20	0.22		13,75	298.1	0	21.5	1.14 125
	33121	0.	682.	0.	0.	-396.	593.	60.	72.	1.99		0.22		6.08	299.3	0	23.0	1.22 116
	33121	205.	104.	349.	-205.	152.	144.	60.	18.	0.48	2,20	0,12	8.8		146.4	10	18.5	0.98 106
	33121	313.	67.	224.	-313.	190.	269.	60.	33.	0.71	2.20	0.19	16.0		174.6	5	18.3	1.00 113
	33121	297.	71.	237.	-297.	186.	256.	60.	31.	0.70	2.20	0.19	15.8		181.3	ē	18.7	0.99 113
	33121	278.	77.	259.	-278.	179.	234.	60.	28.	0,69	2.20	0.18	15.7		192.2	5	18.6	1.00 111
	33121	244.	91.	305.	-244.	166.	188.	60.	23.	0,00	2.20	0.15	12.1		168.6	<u>6</u>	18.7	
	33121	254.	87.	291.	-254.	170.	202.	60.	25.	0.61	2.20	0.16	13.0	3.50	175.0	6	18.7	0.99 108
	33121	256.	85.	285.	-256.	171.	207.	60.	25.	0.63	2,20	0.16	13.8	3.71	184.2	6	18.7	0.99 109
FIRMAG	33121	374.	53.	177.	-374.	204.	316.	60.	38.	0.76	2,20	0.19	17.4	4.67	158.3	2	19.3	1.02 114

GENERAL ELL AC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

FUEL USE IN DTU::10*::6																			
		**CC	GENERAT	ION CAS	医水米 米米科	CCCGEN -	COGEN**	POVER	COGEN	URM	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	HORM I	HRTH
ECS	PROCS.	DISTIL	RESIDI.	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	MW		RATIO		x10x*6			(%)			
GTRI!12	33121	358.	54.	179.	-358.	203.	313.	60.	38.	0.75	2.20	0.21	17.2	4.63	164.3	5	18.9	1.00	115
GTRW16	33121	330.	62.	209.	-330.	194.	284.	60.	35.	0.74	2.20	0.20	16.9	4.53	174.0	4	18.9	1.00	114
GTR308	33121	318.	76.	256.	-318.	180.	237.	<b>50.</b>	29.	0.66	2.20	0.13	13.9	3.72	148.7	0	19.6	1.04	107
GTR312	33121	290,	76.	254.	-290.	181.	239.	60.	29,_	0.65	2.20	0.17	13.9	3.72	163.1	6	18.8	0.99	111
OTRUTO	33121	288.	77.	258.	-288.	179.	235.	60.	29.	Q. 66	2.20	0.17	14.3	3.85	170.2	5	18.9	1.00	110
FCPADS	33121	540.	0.	0.	-540,	257 <i>.</i>	493.	60.	60.	5.62	2.20	0.28	36.3	9.75	229.1	0	25.6	1.36	140 `
FCPADS	33121	547.	. <b>o.</b>	0.	-547.	259.	<b>500</b> .	60.	61.	5.64	2.20	0.26	36.8	9.90	229.9	0	25.7	1.36	129
FCMCDS	33121	399.	29.	97.	-399,	226.	396.	60.	48.	4.26	2.20	0.30	31.4	8.45	263.9	0	22.6	1.20	123

L PAGE PRINTING SYSTEM - PIECE

DATE 00/08/75 1&SE-PEO-ADV-DES-ENGR

ļ	<del> </del>		<del></del>													<u> </u>				
1	4			FUEL US																
				TION CAS				X	•		Mad		FESR	CAPITAL		\$/KH	ROI	LEVL	NOR11	WRTH
ECS	PROCS	DISTIL (	RESTUL	COAL	DISTIL	RESIDL	COAL		REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
201122									WM	MM		RATIO		*10**6			(2)			
	N 33251		1230.	2299.	0.	0.	0.		280.	0.	1.24	1.05	0.	30.3	1.00	96.4	0	89.9	1.00	
STM14			1276.		0.	-46.	243.		280.	30.	1.41	1.05	0.06	31.6	1.04	90.6	102	85.6		5 105
8	1 33251		614.		o.	616.	-419.		280.	30,	3.13	1.05	0.06	62.1	2.05	177.9	16	83.8	0.93	
STM14		0.	514.		<u> 0.</u>	616.	<u>-419.</u>	<u> A</u>	280,	30.	2.78	1.05	0.06	42.3	1.39	121.0	39	81.3		<del></del>
SHE			1256.		0.	-25.	133.		280.	16.	1.31	1.05	0.03	28.1	0.93	84.3	999	87. £	0.97	
STHOS			647.		0.	583.	-476.	-	280.	16.	2.92	1.05	0.03	57.6	1.90	172.6	14	85.8	0.95	
	8 33251		647.		0.	583.	-476.	. A	280.	16.	2.67	1.05	0.03	40.1	1.32	120.2	35	83.7	0.93	
	M 33251	0.	534.	2599.	0.	696.	-300.		280.	62,	4.80	1.05	0.11	52.0	2.05	157.8	23	79.1		102
11	T 33251		1306.	1930.	0.	-76.	369.		280.	45.	3.78	1.05	0.08	113.0	3.73	306.3	0	94.4	1.05	90
TISTM			469.	2482.	o.	761.	-183.		280.	89.	6.99	1.05	0.16	211.4	6.98	500.8	4	92.1		2 100
	9 33251		1362.	2045.	0.	-131.	254.		230.	31.	3.60	1.05	0.03	111.7	3.69	297.7	0	97.9	1.09	
11	9 33251		537.		0.	693,	<u>-451.</u>		280.	61.	6.88	1.05	0.07	210.7	6.95	<u> 485.0</u>	0	99.6	1.11	
STIRL	33251	928.	533.	1784.	-928.	697.	515.		280.	63.	2.58	1.05	0.08	65.9	2.17	164.2	0	93.3	1.04	
STIRL	33251		1460.	1784.	· · · O.	-230.	515.		230.	63,	2.58	1.05	0.08	65.9	2.18	154.4	9	88.2	0.98	
STIRL	33231		383.	2584.	0.	847.	-285.		280.	124.	6.16	1.05	0.16	167.2	5.52	311.6	9	82.5	0.92	
1	0 33251		0.	3355.	0.	1230.	-1056.	Α	280.	280.	11.27	1,05	0.05	279.5	9.23	<u>245.6</u>	5	89.0	0.99	
[]	0 33251	O.	0,		0.	1383,	-1170.	A	280.	342.	13.86	1.05	0.05	376.5	12.42	284.8	2	101,3	1.13	
12	0 33251	Ο.	112.		0.	789.	-587.	Α	280.	100.	5.53	1.05	0.06	134.2	4.43	236.4	7	86.4	0.96	
	L 33251		264.		G.	966.	-520.		280.	172.	8.67	1.05	0.13	160.3	5.29	282.7	9	81.6	0.91	101
FCSTC	L 33251	0.	147.		0.	1083.	-328.		280.	220.	9.73	1.05	0.21	179.1	5.91	286.5	11	75.3	0.84	: 111
10018	T 33251	0.	329.	3087.	0.	901.	-780.		280.	146.	4.63	1.05	0.03	142.1	4.69	244.2	9	83.1	0.92	90
	R 33251		1607.	1488.	ο.	-377.	81 î .		280.	99.	2.26	1.05	0.12	<b>5</b> 5.1	1.82	111.2	21	83.1	0.92	: 112
GTACO	8 33251	0.	1403,	1717.	0.	-178.	582.		280.	71.	1.97	1.05	0,11	45.5	1.50	108.9	31	82.5	0.92	. 111
11	2 33251	0.	1466.	1566.	0.	-236.	733.		230.	89.	2, 13	1.05	0.14	51.2	1.69	114.3	28	81.1	0.90	
GTACL	6 33251	0.	1523.	1452.	0.	-293.	847.		280.	103.	2.28	1.05	0.16	56.5	1.86	119.0	25	80.4	0.89	116
18	6 33251		1568,	1435.	ο.	-338.	864.		280.	105,	2,22	1.05	0,15	53.8	1.77	109.9	27	80.7	0.90	
11	G 33251		2711.		0.	-1481.	2299.		280.	280.	3.09	1.05	0.23	86.4	2.85	108.6	17	78.5	0.67	
11	6. 33251	0.	1716.	1130.	0.	-486.	1169.		230.	142.	2.GO	1.05	0,19	61.4	2.03	109.8	25	76.3	0.87	121
12	2 33251	0.	1633,	1252.	0.	-403.	1046,		280.	127.	2.57	1,05	0.10	62.2	2.05	118.8	23	79.3	0.08	
	2 33251		1623,	1262.	0.	-393.	1037,		280.	126.	2.53	1.05	0.18	<b>59.6</b>	1.97	114.5	25	79.0	0.88	
li	2 33251		1499.	1492.	o.	-269,	807.		280.	98.	2.24	1.05	0.15	49.5	1.64	106.8	31	80.1	0.89	
	3 33251		2603.	0.	0.	-1373.	2299.		280.	280.	6.14	1.05	0.26	198.4	6.55	216.1	5	90.5	1.01	
4	33251		2713.		0.	-1446.	2422.		280.	295.	6.37	1.05	0.26	207.3	6.84	218.1	4	92.1	1.02	
	1 33251		1538,	1542.	0.	-308.	757.		280.	92.	3.49	1.05	0.13	97.2	3.21	206.4	7	8C.4	0.98	
	3 33251		0.	0.		1230.	2299.		280.	280.	7.31	1.05	0.22	244.0	8.05	252.7	0	115.7	1.29	
	3 33251	3390.	0.	0.		1423.	2944.		280.	359.	8.85	1.05	0.22		10.02	264.2	0	130.0	1.45	
-1	3 33251	0.	2766.	o.	o.	-1535.	2299.		280.	280.	7.31	1.05	0.22	244.0	8.05	252.7	0	100.5	1.12	
	3 33251		3390.	0.	0.	-1967.	2944.		280.	359.	8.85	1.05	0.22		10.02	264.2	0	111.3	1.24	
GTSCA			473,			757.	714.		200.	87.	2.04	1.05	0.13	47.2	1.56	104.2	15	87.2	0.97	
GTRAO		2676.	0.	0.		1230.	2299.		280.	280.	3.61	1.05	0.24	107.8	3.56	130.8	0	95.0	1.06	
GTRAU		1555.	2887			943.	1336.		250.	163.	2.92	1.05	0.20	79.3	2.62	129.8	8	88.9	0.98	
	2 33251		0.		-2669.	1230.	2299.		280.	280.	3.59	1.05	0.24	108.2	3.57	133.9	0	94.7	1.05	
GTRA1	2 33251	1474.	307,	1029.	-1474.	923.	1270.		280.	155.	2.85	1.05	0.20	76.9	2.54	131.0	9	87.3	0.97	121
<del>  </del>				<del></del>	·						·	·····			·					

PAGE 104

DATE 06/00/79 ISSE-PEO-ADV-DES-ENGR

#### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FUEL US	E IN BT	U*10**6-												
		**C0	GENERAT	ION CAS	E** **N	OCOGEN -	COGEN**	POWER	COGEN	orm	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH
ECS	PRCCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COVL	REQD	POVER		/HEAT		COST	COST	EQVL		CHRG	ENRG
Ĭ						•		MM	MM		RATIO		*10**6			(2)		
GTRATE	33251	1382.	340.	1138.	-1382.	890.	1161.	260.	141.	2.82	1.05	0.19	75.4	2.52	136.5	8	87.9	0.98 119
GTR208	33251	1212.	408.	1366.	-1212.	822.	933.	280.	114.	2.34	1.05	0.15	58.3	1.92	114.2	11	87.6	0.97 118
GTR212	33251	1261.	388.	1297.	-1261.	843.	1001.	280.	122.	2.43	1.05	0.17	61.5	2.03	117.1	11	87.4	0.97 119
GTR216	33251	1271.	379.	1268.	-1271.	851.	1031.	280.	126.	2.52	1.05	0.17	64.9	2.14	123.1	10	87.2	0.97 119
GIRWOO	33251	2722.	. O.	0.	-2722.	1230.	2299.	200.	280.	3.35	1.05	0.23	94.4	3.12	107.4	0.	94.6	1.05 137
GTRUÓE	33251	1859.	218.	729.	-1859,	1012.	1570.	280.	191.	2.98	1.05	0.21	80.4	2.65	114.9	5	89.9	1.00 123
GTRW12	33251	2625.	о.	Ο.	-2625.	1230.	2299.	230.	260,	3.33	1.05	0.26	94.1	3.11	110.9	2	91.7	1.02 140
GTRW12	33251	1778.	222.	742.	-1778.	1009.	1557.	280.	190.	2.96	1.05	0.22	79.9	2.64	118.2	8	87.6	0.98 125
GTRWIE	33251	2676.	. 0.	0.	-2676.	1230.	2299.	280.	280.	3.36	1.05	0.24	96.8	3.19	115.3	0	93.5	1.04 138
GTRW16	33251	1642.	265.	889.	-1642.	965.	1410.	280.	172.	2.72	1,05	0.21	70.9	2.34	111.4	10	87.2	0.97 124
GTR308	33251	3082.	. 0,	0.	-3032,	1230.	2299.	280.	280.	3.04	1.05	0.13	88.9	2.93	98.0	0	104.5	1.16 128
GTR308	93251	1579.	335.	1121.	-1579.	895.	1178.	230.	143.	2.50	³ .05	0.14	62.4	2.06	101.1	0	91.5	1.02 118
G1R312	33251	2793.	. 0,	0.	-2793.	1230.	2299.	280.	286.	3.01	7 05	0.21	87.9	2.90	106.6	0	95.7	1.07 136
OTR312	33251	1441.	. 333.	1113.	-1441.	898.	1186.	280.	144.	2.47	7.05	0.18	62.1	2.05	107.5	11	87.0	0.97 122
GTR316	33251	2810.	о.	Ο.	-2818.	1230.	2299.	280.	280.	2.99	1.05	0.20	90.4	2.98	109.5	Ô	96.7	1.08 135
GTR316	33251	1429.	339.	1134.	-1429.	992.	1165.	280.	142.	2.50	1.05	0.18	63.3	2.09	110.3	10	87.5	0.97 121
FCPADS	33251	2555	. O.	0.	-2555.	1230.	2299.	280.	280.	25.99	1.05	0.28	177.7	5.86	196.6	0	121.1	1.35 143
FCPADS	33251	2718	Ο.	ο.	-2718.	1286.	2485.	280.	303.	27.97	1.05	0.28	189.7	6.26	199.4	0	125.7	1.40 133
FCMCDS	33251	2319.	. 0.	ο.	-2319.	1230.	2299.	280.	280.	24.59	1.05	0.34	188.0	6.20	232.8	0	113.7	1.26 149
FCMCDS	33251	1983.	. 99.	333.	-1983.	1131.	1965.	230.	239.	21.25	1.05	0.32	165.5	5.46	224.8	0_	108.4	1.21 134

DATE 05/08/7. 18SE-PEO-ADV-DES-ENGR

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

PAGE 105

						<b>3</b> 01 ²	WARY O	1	FUEL .	SVAFO B	TITPE	& ECON	Jr11 C3							
	· · · · · · · · · · · · · · · · · · ·			FUEL US	E IN BT	U*10**6-			-				· · · · · · · · · · · · · · · · · · ·							
ECS		DISTIL	RESIDL	COAL	DISTIL	OCOGEN - RESIDL	COAL	**	REQD MV	POWER MW	Ø&M	POWER /HEAT RATIO		CAPITAL COST *10**6	NORM	S/KW EQVL	(%)	LEVL CHRG	NORM ENRO	
	N 33254			328.	0,	0.	0.		40.	0.	0.32	1.50	0.	3.7	1.00	116.9	0	13.6		
-	1 33254				0.		24.	_	40.	3.	0.44	1.50	0.04	5.3	1.46	153.4	11	13.5		
	1 33254			423.	0.	114.	-95.	-	40.	3.	0.79	1,50	0.04	10.6	2.89	304.9	9	13.2		
	1 33254			423.	<u>o,</u>	114.	-95.	<u>A</u>	40.	3	0.69	1.50	0.04	8.4	2.29	240.8	<u> 15</u>	12.8	0.94	
	8 33254			315.	0,	-2.	13.		40.	2.	0.42	1,50	0.02	4.6	1.25	137.8	8	13.6	1.00	
	8 33254			429.	0.	111.	-100.		40.	2.	0.76	1.50	0.02	9.7	2.64	291.2	. 9	19.2		
	8 33254			429.	0,	111.	-100.	A	40.	2.	0.67	1.50	0.02	7.8	2.13	235,4	14	18.0	-	
	11 33254			411.	<u> </u>	122.	<u>-83.</u>		40.	<u>6.</u>	0.99	1.50	0.07	13.6	3.71	347.5	9	13.1	0.96	
	T 3325			256.	0.	-15.	72.		40,	9.	1.08	1.50	0.11	29.8	8,12	708.0	0	15.8	1.16	
	T 33254			400.	0.	129.	-71.		40.	9.	1.51	1.50	0.11		10.38	904.4	0	15.7		
	G 33254			278.	0.	-26.	50.		40.	6.	0.97	1.50	0.05	29.3	7.98	675.6	0	16.4	1.20	
	9 33254			426.	0.	122.	<u>-98.</u>		40.	<u>6.</u>	1.41	1.50	0.05		10.28	870.4	<u> </u>	16.3		
STIRL				227.	-183.	137.	101.		40.	12.	0.56	1.50	0.11	10.3	2.80	191.7	0	14.2		
STIRL					0. 0.	-45.	101.		40.	. 12.	0.56	1,50	0.11	10.3 17.6	2.80	191.9	.9	13.2 12.6		
STIRL				410. 498.	0. 0.	137. 191.	-31. -170.		40.	12. 34.	0.99	1.50 1.50	0,11		4.80		10	16.7		
	0 33254 0 33254			440.	0.	132.	-170.		<u>40.</u> 40.	10.	2,25 1,09	1.50	0.04	26.3	<u>16.47</u> 7.16	458.2 463.9		14.4	1.06	
	U 33254 L 33254			380.	0.	149.	-52.	~	40.	17.	1.48	1.50	0.18	30.2	8.24	534.5	5	13.4	0.99	
	L 33254			361.	0.	161.	-32.		40.	22.	1.72	1.50	0.18	33.8	9.20	541.5	5 6	13.4	0.96	
	T 33254			407.	0, 0,	143.	-79.		40.	15.	1.23	1.50	0.12	27.7	7.54	477.1	- 5	13.7		
	R 33254			169,	<del></del>	<del>-74.</del>	160.		40.	19.	0.56	1.50	0.16	11.2	3.05	166.7	14	12.6	0.93	
	8 33254			214.	o.	-35.	115.		40.	14.	0.46	1.50	0.15	8.2	2.24	158.9	22	12.3	0.90	
	2 33254			194.	o.	-46.	144.		40.	18.	0.50	1.50	0.18	9.5	2.59	164.9	21	12.1	0.89	
	6 33254		* * * .	162.	Ŏ.	-58.	167.		40.	20.	0.54	1.50	0.20	10.9	2.97	173.2	19	12.0		
	6 33254			158.	0,	-67.	170.		40.	21.	0.55	1.50	0.19	11,1	3.02	166.6	17	12.2	0.09	
	6 33254			98.	o.	-96.	230.		40.	28.	0.74	1.50	0.25	13.5	3.68	169.8	16	11.9	0.87	
	2 3325/				o.	-79.	206.		40.	25.	0.70	1.50	0.24	12.6	3.45	174.1	16	12.0	0.88	
	2 33254			124.	o.	-77.	204.		40.	25.	0.69	1.50	0.24	12.0	3.27	166.7	17	11.9		
	2 33254			170.	Ō.	-53.	159.		40.	19.	0.63	1.50	0.20	10.3	2.82	170.3	18	12.1	0.09	
DEADY	3 33254	o.	401.	o.	o.	-196.	328.		40.	40.	1.28	1.50	0.25	29.2	7.95	248,1	3	14.1	1.04	
	3 33254		534.	0.	0.	-285.	477.		40.	58.	1.43	1.50	0.26		10.71	251.0	Ō	15.8	1.16	
DEHTE	M 33254	0.		179.	o.	-61.	149.		40.	18.	0.79	1.50	0.17	16.6	4.53	267.5	7	13.4	0.98	
DESUA	3 33254	424.	ე,	0.	-421.	205.	328.		40.	40.	1.47	1.50	0.20	35.9		208.7	0	17.9	1.32	
DESCA	3 33254			0.	~663.	280.	580.		40.	71.	1.95	1.50	0.22		15.97	239.4	Ŏ	23.3	1.71	
	3 33254			o.	Ō,	-219.	328.		40.	40.	1.47	1.50	0.20	35.9	9.79	288.7	ŏ	15.6	1.14	
	3 33254			Ο.	0.	-387.	580.		40.	71.	1.95	1.50	0.22		15.97	299.4	0	19.7	1.44	
GTSOA	D 33254	200.	56.	188.	-200.	149.	141.		40.	17.	0.48	1.50	0.17	8.6	2.35	147.2	10	13.3	0.97	
	8 03254		19.	65.	-306.	106.	263,		40.	32.	0.70	1.50	0.27	15.8	4.30	175.6	5	13.6	1.00	
GTRA1	2 33254	290.	23.	78.	-290.	182.	250.		40.	30.	0.69	1.50	0.27	15.5	4.23	182.3	6	13.5	0.99	124
<b>OTRAI</b>	6 33254	272.	30.	100.	-272.	175.	229.		40.	28	0.68	1.50	0.25	15.4	4.20	193.3	5_	13.6	1.00	122
OTRZO			43.	145.	-239.	162.	104.		40.	22.	0.58	1.50	0.20	11.9	3.23	169.5	6	13.5	0.99	118
	2 33254			131.	-248.	166.	197.		40.	24.	0.60	1.50	0.22	12.8	3.49	176.0	6	13.5	0.99	/ 119
GTR21	6 33254	250.	37.	125.	-250.	168.	203.		40.	25.	0.62	1.50	0.23	13.6	3.70	185.2	6	13.5	0.99	120

DATE 06/08/79 LASE-PEG-ADV-DES-EMBR

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

ECS F	PROCS		EMERAT	ION CASI		COGEN -	COGEN**	POWER	COGEN POWER MW	mso	POWER /HEAT RATIO		CAPITAL COST *10**6		\$/KV EQVL	RO1	CHRG		IRTH
FIRWOR FIRWIZ FIRWIG FIRWIG	33254 33254	350. 323.	6. 6. 15. 29.	19. 22. 51. 96.	-366. -350. -323. -311.	199. 199. 190. 176.	309. 307. 278. 232.	40. 40. 40. 40.	38. 37, 34. 28,	0.73	1.50 1.50 1.50 1.50	0.29 0.27	17.1 17.0 16.6 13.6		159.3 165.3 175.2 149.6	1 5 4 0	13.7 13.7	1.03 1.00 1.01 1.06	128 125
TR312 TR316 FCPADS FCPADS FCIICDS FCIICDS	33254 33254 33254 30254 33254	284. 281. 394. 535. 348.	28. 30. 0. 0. 0.	95. 99. 0. 0. 0.	-284. -281. -394. -535. -348. -391.	177. 176. 205. 253. 205. 223.	234. 230. 328. 489. 328. 387.	40. 40. 40. 40. 40. 40.	29. 28. 40. 60. 47.	0.64 0.65 3.96 5.52 3.71	1.50	0.24 0.23 0.26 0.28	13.6 14.1 26.2 35.8 27.4 30.8	3.72 3.85 7.15 9.76 7.47	164.1 171.3 227.0 228.4 269.1 269.3	6 5 0 0	13.5 13.7 18.5 22.3 17.0	0.99 1.00 1.36 1.63 1.25 1.32	122 121 139 134 147
																<del></del>			
						:													
		·							·							-			
					2 -														
								1		•									
	· · · · · · · · · · · · · · · · · · ·																	-	
		· · · · · · · · · · · · · · · · · · ·		· - <del></del>															

DATE 06/08/73 LASE-PEO-ADV-DES-ENGR

# GENERAL ETE C COMPANY COGEMERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS



							U*10**6-			CHED	COCEN	COM	500 ICS		CARLTAL	MODM	# /// 13	001	1 51/1	ALCIENT	WRTH
	DD	CCC :					OCOGEN -		-			OSM		FESR	CAPITAL	NORM COST	\$/KH EQVL	KOI	LEVL CHRG	ENRO	M32 111
ECS	PR	UUS I	DISTIL	RESTUL	COAL	DISTIL	RESIDL	COVIT			POWER		/HES			CO51	EGAL	V - 4	CHIKE	EINKG	
ONGC	GN 3	2214	0.	72.	83.	0.	0.			MV 10.	141/	6.23	RATIC		*10**6 2.2	1 00	167 1	$\frac{(z)}{2}$	4.7	1.00	93 C
STM1			0.				-3.	0. 18.			0. 2.	0.34	0.86	0.	3.6	1.00 1.66	157.1 221.1	.0	4.7	0.97	
		3314	0.				52.	~33.	-	10.		0.34	0.86	0.09		3.03	402.4	10	4.5	0.95	
STMI			0.	20. 20.		0.	52. 52.			10.	2. 2.			0.09	6.6			8	4.3	0.92	
STMI		3314	0.		121. 71.				<u> </u>	<u> 10.</u>	<u> </u>	0.50	0.86	0.09	5.6	2.58	343.1	<u> 15</u>	4.6		
STMO	88 3		0.				-2.	12.	_	10.		0.32	0,86	0.06	3.1	1.43	199.0	10	4.6	0.98	
			0.	• •			51.	-41.		10.	2.	0.54	0.86	0.06	6.0	2.77	385.1				
STMO			0. 0.	21. 16.	124. 115.		51.	-41.	A	10.	2.	0.48	0.86	0.06	5.2	2.42	336.8	11	4.4	0.94	1 91 5 104
TIST			0.			<u>0.</u>	<u>56.</u> -3.	-32.		10.	<u>4.</u> 5.	0.66	0.86	0.15	8.6	3.98	472.4	<u></u>	4.5		
TIST			0.				59.	40. -27.		10.		0.70	0.86	0.21	17.3	8.00	878.3	0	6.0		3 115
	SG 3		0.	•						10.	5.	0.98	0.86	0.21		10.20		0	6.0		5 113
							-9.	21.		10.	3.	0.56	0.86	0.08	15.4	7.11	849.8	0	6.1	1.29	
TIHR			0.	19.	124.		<u>53.</u>	<u>-41.</u>		10.	3.	0.82	0.86	0.08	19.9		<u>1096. 9</u>	<u> </u>	6.2	1.31	
STIR		3314		10.			62.	51.		10.	6.	0.35	0.86	0.19	5.0	2.29	201.3	0	4.9	1.03	
STIR		13314 13314	. 0.	93.			-22.	51. -22		10.	6.	0.35	0.86	0.19	5.0	2.29	201.6	14	4.3		2 121
STIR			0.				62.	-33. -56		10.	6.	0.61	0.86	0.19	8.4	3.88	341.6	13	4.0		1 115
	85 3		<u> </u>	<u> </u>		<u>0.</u> 0.	<u>72.</u>	<u>-5\$.</u>		10. 10.	<u>10.</u> 31.	1.34	0.86	0.10		13.64	725.0	0	6.8		118
HEGT			0.	0.			123.		A			2.06	0.86	0.13		26.21	587.6	0	9.8		109
HEGT			0.		134.	0.	72.	-51.		10.	10.	1.11	0.66	0.13		12.05	663.5	0	6.1		118
	60 3		0,				73.	-52.		10.	10.	1.03	0.86	0.13		12.06	651.9	0	6.0		7 107
HEGT	Cl. 3		0.	<u>14.</u>		<u>0.</u>	<u>57.</u> 66.	<u>-47.</u> -23.		10. 10.	<u>4.</u> 8.	0.64	0.86	0.07	14.3 16.9	6.61 7.78	597.7		5.2	1.11	93
			0.				72.							0.28			680.5	4	4.8		
FOST								-12.		10.	10.	1.18	0.86	0.38	19.9	9.18	712.5 685.8	4	4.9		145
FCST			0.		*		74. 66.	-9,		10.	11.	1.68	0,86	0.39	20.0	9.23		5	4.7		135
	ST 3		<u>0.</u> 0.	<u>6,</u>		<u>0.</u> 0.		<u>-31.</u>		10.	8.	0.86	0.86	0.23	17.0	7.87	627.2	4_	5.0		115
GTSCL			- •	99.			-28.	66.		10.	8.	0.35 0.30	0.86	9.25	6.0	2.78	218.6	14	4.2		126
GTAC			0. 0.				-16. -20	51.		10.	6.		0.86	0.23	4.6 5.2	2.12 2.39	201.9	20	4.1		7 125
OTAC GTAC			0, 0,	92. 96.	20. 11.	0. 0.	-20. -24.	63. 72.		10.	8. 9.	0.32	0.86	0.20	5. 8	2.69		20 13	4.0 3.9		1 131
GIVC			0.	101.			-29,	75.		10. 10.	9.	0.34	0.86	0.31	6.3	2.89	215.3 216.3	15	4.0		130
CC16			0.	105.	0.		-20, -33.	73. 83.		10.	10.	0.59	0.86	0.32	7.4	3.42	240.2	10	4.3		143
CC16			0.	127.		0.	-33. -46.			10.	14.	0.52	0.86	0.35	5 1 1 2	3.76	210.2	10	4.3		134
	22 3		0.	103.	o. o.		-46. -31.	114. 83.		10.	10.	0.52	0.85	0.34	8,1 7,0	3.75	233.5	12	4.2		3 145
CC16			0.	116.			-38.	103.		10.	12.		0.86		7.4	3.41	217.6				136
	22 3		0.	102.	0.	0.	-30.	83.		10.	10.	0.49 0.56	0.86	0.36 0.34	7.4 6.7	3.41	224.9	13 13	4.1 4.1		7 146
-	22 3		0.	115.		0.	-30. -37.	102.		10.	12.	0.35	უ. 85	0.34	7.0	3.11	208.9	14	4.0		136
	22 3		0.	98.	2.		-37. -25.	81.		10.	10.	0.45	0.88	0.35	6.3	2.89	220.1	17	3.9		3 137
	15 3		0.	136.	0.	0.	- <u>64.</u>	83.		10.	10.	0.43	0.86	0.12	7.9	3,66	198.8	<del>- '6</del> -	5.3	1.11	
STIC			0.	3077.		0.	-2187.	2021.		10.	344.	5.82	0.86	0.12		3,66 46.03	110.6	Ö	43.0		264
	10 3		0.	128.		0.	-50.	83.		10.	10.	0.59	0.86	0,17	7.3	3.38	195.2	1	43.0		1 123
STIG		3314	0.	302.	0.	0.	-177.	261.		10.	32.	0.79	0.86	0.17	12.9	5.96	145.9	ò	6.7	1.42	
SILO		3314	<del></del>	124.	0.	0.	-53	<u>83.</u>	····	10.	10.	0.58	0.86	0.20	7.0	3.22	191.7	<del>- 4</del>	4.8		131
STIG	-		0.	190.	0.	0.	-33, -97.	153.		10.	19,	0.58	0.86	0,20	7.U 8.8	4.08	159.1	0	4.8 5.3		2 120
DEAD'			0.	117.	0.	0.	-97. -46.	83.		10.	10.	0.63	0.86	0.23	9.8	4.53	285.1	2	4.9	1.04	
		0.01.41	σ,	117.	υ.	v.	-40,	<i>03.</i>		10.	10.	0.03	J. 00	0.24	9.0	4.03	200. I	~	4.9	1.04	100

#### GENERAL EL. (RIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

cs	•	DISTIL	RESIDL	COAL	DISTIL	OCOGEN - RESIDL	COAL	REQD MV	COGEN POWER MW	O&M	POWER /HEAT RATIO		CAPITAL COST *10**6	NORM COST	EQVL	ROI	LEVL CHRG	ENRG	WRTH
	3 33314			0.	0.	-95.	173,	10.	21.	0.68	0.86	0.29	14.8	6.85	260.5	0	5.7	1.20	
	M 33314	_		9.	0.	-24.	74.	10.	9,	0.49	0.86	0.32	8.5	3.94	312.2	10	4.3		131
	3 33314			0.	-123.	72.	83.	10.	10.	0.66	0.86	0.20	10.6	4.87	292.3	0	6.0	1.26	
	3 33314			<u>0.</u>	-233.	107.	202.	10.	25.	0.86	0.86	0.25	21.1	9.72	208.8	<u> </u>	8.4	1.78	
	3 33314			O.	0.	-51.	83.	10.	10.	0.66	0.86	0.20	10.6	4.87	292.3	0	5.2	1.10	
	3 33314			0.	0.	-125.	202.	10.	25.	0.86	0.86	0.25	21.1	9.72	308.8	0	7.0	1.48	
	D 33314			22.	-87.	65.	61.	10.	7.	0.31	0.86	0.26	4.8	2.20	187.4	10	4.6	0.96	
	8 33314			0.	-105.	72.	83.	10.	10.	0.50	0.86	0.32	7.7	3.54	248.8	2	4.9	1.03	
	8 33314			ο.	-119.	78.	102.	10.	12.	0.42	0.86	0.34	8.1	3.72	231.8	2	4.9	1.04	
	2 33314			o.	-104.	72.	83.	10.	10.	0.49	0.86	0.33	7.6	3.53	250.7	3	4.8	1.02	
	2 33314			Ο,	-115.	77.	99,	10.	12.	0.41	0.86	0.35	8.0	3.67	235.6	3	4.8	1.02	
	6 33314			0.	-104.	72.	83.	10.	10.	0.49	0.86	0.33	7.9	3.65	260.3	3	4.8	1.02	
	6 33314			0.	-110.	75.	93.	10.	11.	0.41	0.86	0.34	8.0	3.71	248.7	4	4.8	1.02	
	0 33314			6.	-99,	70.	77.	10.	9.	0.36	0.86	0.30	6.4	2.93	218.3	6	4.6	0.98	
	2 33314			1.	-103,	72.	82.	10.	10.	0.38	0.86	0.32	6.9	3.16	226.3	6	4.6	0.98	
	6 33314			0.	-103.	72.	83.	· 10.	10.	0.43	0.86	0.33	7.2	3.34	239.9	5	4.7	0.99	
	6 33314			0.	-104.	72.	84.	10.	10.	0.39	0.86	0.34	7.2	3.31	236.0	6	4.6	0.98	137
	8 33314		. 0.	0.	-113.	72.	83.	10.	10,	0.53	0.86	0.27	7.9	3.67	239.6	0	5.2	1.10	141
	8 33314			Ο.	-144.	83.	122.	10.	15.	0.46	0.86	0.30	9.0	4.16	213.9	0	5.5	1.16	132
TRWI	2 33314	110	. 0.	0.	-110.	72.	83.	10.	10.	0.52	0.86	0.29	7.9	3.67	24F.2	0	5.1	1.08	143
TRW1	2 33314	141	. 0.	0.	-141.	84.	123.	10.	15.	0.46	0.86	0.32	9.1	4,19	223.0	0	5.3	1.13	134
	6 33314		. 0.	0.	-103.	72.	83.	10.	10.	0.52	0.86	0.29	8.2	3.77	254.7	0	5.1	1.08	143
	6 33314		. О.	0.	-133.	81.	114.	10.	14.	0.45	0.86	0.32	9.0	4.16	231.7	0	5.3	1.11	134
	8 33314			0,	-116.	72.	83.	10.	10.	0.48	0.86	0.25	7.2	3.30	210.3	0	5.2	1.10	
LK30	8 33314	124	О.	0.	-124.	75.	93.	10.	11.	0.40	0.86	0.25	7.2	3.33	197.9	0	5.2	1.10	130
	2 33314			0.	-109.	72.	83.	10.	10.	0.49	0.86	0.30	7.3	3.38	230.3	0	4.9	1.05	
	2 33314	*	ο.	О.	-121.	77.	99.	10.	12.	0.41	0.86	0.31	7.5	3.48	213.6	1	5.0	1.05	135
	6 33314		0.	0.	-109.	72.	83.	10.	10.	0.49	0.86	0.30	7.6	3.52	239.1	0	5.0	1.09	144
	6 33314		. O.	o.	-120.	76.	98.	10.	12.	0.41	0.86	0.31	7.8	3.62	223.3	0	5.0	1.08	134
CPAD	33314	120	о.	Ο.	-120.	72.	83.	10.	10.	1.32	0.86	0.23	8.5	3.91	241.9	0	6.3	1.33	140
CPAD	S 33314	235	О.	Ο.	-235.	111.	215.	10.	26.	2.77	0.86	0.28	16.4	7.56	237.6	0	9.7	2.04	
CMCD	S 33314	108	О.	Ο.	-108.	72.	83.	10.	10.	1.24	0.86	0.30	8.6		272.0	0	5.8	1.23	
CMCD	S 33314	172	0.	0.	-172.	98.	170,	10.	21.	2.09	0.86	0.36	14.0		277.4	Ō	7.5	1.59	

DATE 06/08/75

# GENERAL ELE. RIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

Se 109

		7.7.7.																	
1				TON CASI						M&D	POWER	FESR	CAPITAL			ROI	LEVL	NORII WR	RTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	CCAL	REOD	POWER		/HEAT		COST	COST	EGVL		CHRG	ENRO	
								MW	: MW		RATIO		*10**6			(%)			
	N 33315		116.	152.	0.	<u>o</u> .	0.	19.	0.	0.27	1.05	0.	2.8	1.00	135.7	0	8.0		80
	1 33315		121.	126.	0.	-5.	26.	19.	3.	0.39	1.05	0.08	4.6	1.64	188.7	13	7.7		102
STM14			38.	209.	0.	78.	-57. F		3.	0.68	1.05	0.08	8.6	3.08	353.7	11	7.5		90
STM14	1 33315 8 33315		<u>38.</u> 119.	209. 134.	<u>0.</u>	<u>78.</u> -3.	-57. / 18.	19.	3. 2.	0,60	1.05 1.05	0.08	7.1	2.53 1.42	290.7 171.2	15 13	7.2	0.91	99
	8 33315		40.	213.	0.	76.	-61. F		2.	0.65	1.05	0.06	4.0 7.9	2.82	339.2	10	7.6		85
	8 33315		40.	213.	0.	76. 76.	-61. A		2.	0.58	1.05	0.06	6.7	2.37	285.8	14	7.4		88
_ ,	M 33315		32.	201.	Ö.	84.	-49.	19.	5.	0.83	1.05	0.13	11.1	3.96	407,1	10	7.4		99
	T 33315		128.	92.	ō.	-12.	60.	19.	7.	0.88	1.05	0.18	23.3	8.30	788.0	0	9.5		107
	T 33315		27.	193.	o.	89.	-41.	19.	7.	1.24	1.05	0.18	29.7		1004.2	ŏ	9.3		106
	G 33315		129.	120.	o.	-13	31.	19.	4.	0.72	1.05	0.07	20.8	7.40	763.0	ŏ	9.8		89
n .	G 33315		36,	213.	0.	80.	-61.	19.	4.	1.05	1.05	0.07	26.8	9.54	984.2	Ŏ	9.7		87
STIRL	33315	126.	23.	76.	-126.	93.	76.	19.	9.	0.45	1.05	0.16	7.2	2.58	196.6	0	8.2	1.03 1	117
STIRL	33315	0.	148.	76.	ο.	-32.	76.	19.	9.	0.45	1.05	0.16	7.3	2.58	196.9	13	7.4	0.93 1	114
STIRL			23.	201.	0.	93.	~50.	19.	9.	0.80	1.05	0.16	13.1	4.65	354.6	12	6.9	0.87 1	105
11	5 33315		0.	240.	0.	116.	-88. A		19.	1.87	1.05	0.10	44.1	15.71	627.5	0	10.5		
B	5 33315		0.		0.	188.	-115. A		48.	2.78	1.05	0.12	77.1	27.44	518.1	Ó	14.1	1.78 1	
	0 33315		7.		0.	109.	-78. A		16.	1.35	1.05	0.12		12.43	576.9	1	9.3	1.17 1	
	0 33315		30.	223.	0.	86.	-71. A		6.	0.83	1.05	0,06	19.1	6.80	530.2	2	8.4		89
11	L 33315		<u>18.</u> 5.	186. 166.	<u>0.</u> 0.	98.	-34. -14.	19. 19.	11.	1.14	1.05	0.24	<u>22.4</u> 26.6	7.99 9.47	604.0	<u>5</u> 7	7.8	0.98 1 0.93 1	
	T 33315		18.	198.	0.	98.	-14. -46.	19,	11.	1.04	1.05	0.30	22.2	7.92	546.4	5	7.8	0.99 1	
	R 33315		157.	53.	o.	-41.	99,	19.	12.	0.43	1.05	0.21	8.0	2.86	193.5	15	7.1	0.89 1	
	8 33315		139.	76.	ő.	-23	76.	19.	9.	0.37	1.0%	0.20	6.1	2.19	179.6	22	7.0	0.88 1	
11	2 33315		146.	57.	O.	-30.	95.	19,	12.	0.40	1.05	0.24	7.0	2.49	184.6	22	6.8	0.85 1	
GTAC1	6 33315	0.	152.	44.	ο.	-36.	108.	19.	13.	0.43	1.05	0.27	7.9	2.81	194.2	20	6.7	0.84 1	126
<b>● OTVC1</b>	6 33315	0.	160.	39.	Ο.	-44.	112.	19.	14.	0.44	1.05	0.25	8,3	2.96	191.5	17	6.8	0.86 1	125
II	6 33315		177.	0.	0.	-61.	152,	19.	19.	0.71	1.05	0.34	10.6	3.78	204.4	14	6.8	0.85 1	
13	6 33315	-	190.	ο.	O.	-69.	171.	19.	21.	0.63	1.05	0.35	10.8	3.86	194.2	15	6.7	0.84 1	
	2 33315		173.	0.	0.	-57.	152.	19.	19.	0.64	1.05	0.36	10.1	3.58	198.7	17	6.5	0.82 1	
	2 33315		174.	0.	0,	-57.	153.	19.	19.	0.60	1.05	0.36	10,0	3.56	196.3	17	6.5	0.81 1	
	2 30315		172. 172.	<u> </u>	<u>0.</u>	<u>-56.</u>	152.	<u> 19.</u>	19.	0.62	1.05	0.36	9,6	3.40	<u> 189.7</u>	. 18	6.4	0.81 1	
	2 33315 2 33315		155.	31.	0 <i>.</i> 0.	-56. -39.	152. 121.	19.	19. 15.	0,59 0,54	1.05 1.05	0.36	9.5 8.3	3.38	188.3 195.6	19 19	6.4 6.8	0.80 1	
	2 33315 5 33315		234.	0.	0.	-118.	152.	19. 19.	19.	0.88	1.05	0.31	11.6	4.14	169.8	0	8.6	1.08 1	
_1	5 33315		4615.	0.	o.	-3281.	4231.	19.	<b>5</b> 15.	8.40	1.05	0,13	145.9	51.97	103.0	ŏ	64.3	8.09 2	
	0 33315		219.	ö.	0.	-103.	152.	19.	19.	0.79	1.05	0,18	10.7	3.81	166.8	4	8.0	1.00 1	
	0 33315		453.	ŏ.	õ.	-265.	391.	19.	48.	1.03	1.05	0.22	17.4	6.19	131.0	Ö	10.3	1.29 1	
	S 33315		212.	õ.	0.	-96.	152,	19.	19.	0.76	1.05	0.21	10.1	3.61	162.9	7	7.7	0.97 1	
54	S 33315		285.	ο.	0.	-145.	230.	19.	28.	0.75	1.05	0.23	11.9	4.22	142.2	2	8.2	1.03 1	
×1	3 33315		200,	0.	0.	-84.	152.	19.	19.	0.82	1,05	0.25	14.7	5.25	251.7	5	7.9	0.99 1	
<**	3 33315		293,	0.	0.	-144.	261.	19.	32.	0.91	1.05	0.29	22.0	7.83	256.3	0	9.0	1.13 1	
DEHTP	M 33315	0.	152.	42.	ο.	-37.	110.	19.	13.	0,60	1.05	0.27	11.1	3.96	270.7	11	7.1	0.90 1	124
216																			

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REFORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FUEL US	E IN BT	U*10**6-													
ľ		**C(	DGENERAT	ION CASI	E** **N	OCOGEN -	COGEN**	POWER	COGEN	Mad	POWER	FESR	CAPITAL	NORM	\$/K\	ROI	LEVL	NORM	WRTH
ECS I	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	MM		RATIO		*10**6			(%)			
DESOAS				ο.	-210.	116.	152.	19.	19.	0.91		0.21	17.9	6.36	290.0	0	9.9		132
DESOAS				Ο.	-351.	162.	305.	19.	37.	1.17		0.25		11.16	304,8	0	13.1		5 126
DESCAS	33315	0		0.	Ο.	-94.	152.	19.	19.	0.91	1.05	0.21	17.9	6.36	290.0	0	8.6		128
DESOAS				0.	0.	-189.	305.	19.	37.	1.17		0.25		<u>11.16                                  </u>	304.8	0	<u>10.១</u>		<u> 119 ·  </u>
GTSCAD				₿0.	-130.	98.	92.	19,	11.	0.38		0.22	6.4	2.27	167.0	11	7.6		5 126
BOARTO				Ο.	-177.	116.	152.	19.	19.	0.57	1.05	0.34	10.8	3.86	208.4	7	7.7		146
GTRAOS				0.	-178.	116.	153.	19.	19.	0.52	1.05	0.34	10.8	3.84	206.0	7	7.7		146
GTRA12				3.	<u>-173.</u>	115.	149.	19.	18.	0.52		0.34	10.7	3.81	210.8	<u>. 8</u>	7.6		135
GTRA16		-		13.	-166,	112.	139.	19,	17.	0.52		0.32	10.8	3.84	222.3	7	7.7		133
GTR208				37.	-149.	105.	115.	19.	14.	0.45	1.05	0.26	8.5	3.03	194.4	8	7.7		128
GTR212		•		29.	-155.	107.	123.	19.	15.	0.47	1.05	0.28	9. 2	3.27	201.6	7	7.7		130
GTR216				26.	<u>-156.</u>	108.	126.	19.	15.	0.48	1.05	0.29	9.6	3.43	211.2	8	7.7		131
GTRW08				0.	-192.	116.	152.	19.	19.	0.65	1.05	0.28	11.4	4.05	202.3	0	8.4		140
GTRW08				o.	-216.	125.	183.	19.	22.	0.57	1.05	0.30	12.0	4.26	188.5	0	8.5		131
GTRW12				o.	-186.	116.	152.	19.	19.	0.65	1.05	0,30	11.4	4.05	208,5	2	8.2		142
GTRV12				<u>o.</u>	-212.	126.	185.	19.	23.	0.57		0.32	12.0	4.28	194.0		8.3		133
GTRW16		7 7		o.	-185.	116.	152.	19.	19.	0.64	1.05	0.31	11.6	4.15	214.9	3	8.2		143
OTRW16		_		0.	-200.	122.	171.	19.	21.	0.56	1.05	0.32	11.9	4.25	204.1	2	8.2		133
GTR308			· · ·	12.	-187.	112.	140.	19.	17.	0.50	1,05	0.24	9.6	3.43	175.6	0	8.3		126
GTR312				<u> 3.</u>	<u>-181.</u>	115.	149.	19.	18.	0.50		0.31	10.0	3.56	188.6		7.8		133
GTR316		•		5.	-180.	114.	147.	19.	18.	0.51	1.05	0.30	10.4	3.69	196.9	5	7.9		132
FCFADS				0.	-203.	116.	152.	19.	19.	g. 20	1.05	0.24	13.7	4.87	229.4	0	10.6		140
FCPADS				0.	-353.	167.	323.	19.	39.	4.09	1.05	0.28	24.0	8.55	232.1	0	15.0		136
FCMCDS				<u> </u>	-182.	116.	152.	19.	19.	2.07		0.32	14.2	5.06	266.9	<u> </u>	9.7		147
FCMCDS	33310	258	. 0.	ο.	-258,	147.	255.	19.	31.	3.09	1.05	0.36	20.7	7.37	274.3	0	11.8	1,40	141



PAGE 111

-----FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH MBO FROCS DISTIL RESIDL COAL DISTIL RESIDL COAL REQD POWER /HEAT CUST COST EQVL CHRG ENRG *10**6 MW MW RATIO ONOCGN 33316 110. 131. 0.27 2.8 1.00 O. o. 0.91 0. 1.00 135.7 7.2 80 16. 0. 0 STM141 33316 0. 115. 105. 0. -5. 26. 16. 3. 0.39 0.91 0.09 4.6 1.64 188.7 13 7.0 0.96 105 STM141 33316 31. 189. 78. -57. F 0. 0. 16. 3. 0.68 0.91 0.09 8.6 3.08 353.7 6.7 0.93 93 11 STM141 23316 0. 31. 189. O. 78. -57. A 16. 3. 0.60 0.91 0.09 7.1 2.53 290.7 15 6.5 0.90 95 STH008 33316 O. 113. 113. -3. 18. 16. 2. 0.33 0.91 0.06 4.0 0.96 101 0. 1.42 171.2 13 7.1 STH080 33316 **7G.** 0. 34. 193. 0. -61. F 16. 2. 0.65 0.91 0.06 7.9 2.82 339.2 10 6.8 0.95 87 STM088 33316 n. 34. 193. 0. 76. -61. A 16. 2. 0.58 0.91 0.06 6.7 2.37 285.8 14 6.6 0.92 89 -49. PFBSTH 33316 26. 180. 16. 0. 0. 84. 5. 0.83 0.91 0.15 11.1 3.96 407.1 10 6.6 0.92 102 TISTMT 33316 o. 122. 71. -12. 60. 16. 7. 8.30 Ŏ. 0.88 0.91 0.20 23.3 788.0 0 8.7 1.21 112 TISTMT 33316 0. 21. 172. 0. 89. -41. 16. 7. 29.7 1.24 0.91 0.20 10.57 1004.2 0 8.6 1.19 -110 TIHRS9 33316 0. 123. 100. 0. -13. 31. 16. 20.8 763.0 0 4. 0.72 0.91 0.08 7.40 9.1 1.25 92 TIHRSG 33316 193. 0. 30. 0. 80. -61. 16. 4. 1.05 0.91 0.08 26.8 9.54 984.2 9.0 1.25 90 STIRL 33316 16. 55. 93. 76. 1.03 120 126. -126. 16. 9. 0.45 0.91 0.18 7.2 2.58 196.6 0 7.5 STIRL 33316 142. 55. -32. 76. 0. 0. 16. 9. 0.45 0.91 0.18 7.3 2.58 196.9 13 6.7 0.92 118 STIRL 33316 0. 16. 181. 0. 93. -50. 16. 9. 0.80 0.91 0.18 13,1 4.65 354.6 12 6.2 0.86 108 HEGT35 33316 -86. A 0. 0. 217. 0. 110. 16. 16. 1.75 0.91 0.10 40.5 14.43 637.3 0 9.5 1.33 115 HEGT05 33316 Ō, 507. 106. -115. A 48. 2.78 0. 16. 0.91 0.12 77.1 27.44 518.1 0 13.7 1.90 105 **HEGTGO 33316** 0. 209. 109. -78. A 16. 1.35 1. 0. 16. 0.91 0.13 34.9 12.43 576.9 1 8.5 1.18 104 HEGTOO 38316 0. 24. 202. Ö. 86. -71. A 16. 6. 0.83 0.91 0.06 19.1 6.80 530.2 7.7 1.07 91 FCMCCL 33316 7,99 -0.98 118 0. 12. 165. 0. 98. -34. 16. 11. 1.14 0.91 0.27 22.4 604.0 5 7.0 FCSTCL 33316 Ō. o. 147. Ō. 110. -16. 16. 16. 1.50 0.91 26.7 9.53 621.2 0.95 143 0.39 6 6.8 FOSTOL 33316 1.41 0. 0. 149. 111. -14. 16. 16. 608.9 7 0. 0.91 0.39 26,6 9.47 6.7 0.92 133 160TST 33316 0. 11. 177. σ. 98. -46. 16. 11. 1.04 0.91 0.22 22.2 7.92 546.4 5 7.1 0.99 112 **GTSOAR 33316** 151. 33. -41. 99. 16. 12. 0.43 0.24 8.0 2.86 193.5 0. 0. 0.91 15 0.88 124 6.4 GTAC08 33316 133. 76. 0. 56. O. -23. 16. 9. 0.37 0.91 0.22 6.1 2.19 179.6 22 6.2 0.86 123 GTAC12 33316 140, 36. -30. 95. 0.27 7.0 22 0. 0. 16. 12. 0.40 0.91 2.49 184.6 6.0 0.83 128 GTAC16 33316 146. 24. 108. O. 0. -36. 16. 13. 0.43 0.91 0.30 7.9 2.81 194.2 20 5.9 0.82 130 9TWC16 33316 154. 191.5 n. 19. 0. -44. 112. 16. 14. 0.44 0.91 0.28 8.3 2.96 17 6.1 0.05 126 CC1626 23316 163. 0. 0. o. -53. 131. 16. 16. 0.71 0.91 0.32 10.0 3.58 210.4 6.3 0.87 143 13 001626 33316 190. -69. 171. 16. 0.35 10.8 3.86 194,2 6.2 0.86 133 n. O. n. 21. 0.630.9113 CC1622 33316 0. 159. 0. O. -49. 131. 16. 16. 0.68 0.91 0.34 9.7 3.44 207.5 15 6.1 0.85 144 001622 33316 174. 6.0 0.83 134 0. 0. ~57. 153. 16. 19. 0.60 0.91 0.36 10.0 3.56 196.3 15 001222 33316 150. 6.1 Q. 0. Ö. -48. 131. 16. 16. 0.67 0.91 0.34 9.2 3.29 199.6 16 0.84 145 CC1222 33316 0. 172. Ð. 0. -56. 152. 16. 19. 0.59 0.91 0.36 9.5 3.38 188.3 16 5.9 0.82 135 CC005S 33316 0. 149. 0. -39. 121. 16. 15. 0.54 0.91 0.34 8.3 2.97 195.6 5.9 0.81 135 11. 19 STIG15 33316 212. 0. 0. -102. 131. 16. 16. 0.82 0.91 0.12 10.8 3.84 173.7 0 7.8 1.08 122 STIG15 33316 Ō. 4615. O. ō. -3281. 4231. 16. 515. 8.40 0.91 0,17 145.9 51.97 107.9 63.9 8.85 258 Ö STIG10 33316 0. 199. ο. -89. 131. 16. 16. 0.75 0.91 10.0 3.55 170.9 O. 0.18 4 7.3 1.01 127 STIG10 33316 453. 1.03 0. 0. 0. -265. 391. 16. 48. 0.91 0.22 17.4 6.19 131.0 0 9.8 1.36 111 STIG1S 33316 0. 193. 0. -83. 0.72 n 131. 16. 16. 0.91 0.20 9.5 3.38 167.7 0.98 130 6 7.1 डाांबाड अअंबांब 285. 11.9 σ. o. -145. 230. 26. 0.75 0.91 0.23 4.22 142.2 7.8 1.08 119 16. 0 182, DEADV3 33316 0. 0. O. -72. 131. 16. 16. 0.78 0.91 0.24 13.3 4.72 248.2 5 7.2 1.00 132 DEADV3 33316 293. O.

32.

0.91

0.91

0.29

16.

22.0

256.3

7.83

Ø

8.6 1.19 121

0.

-144.

261.

DATE 03/08/7 18SE-PEO-ADV-DES-EMOR

# GENERAL ELE .1C COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				-FUEL US	SE IN B	TU*10:*6-						<del></del>	<u> </u>	<del></del>	. — — — — — — — — — — — — — — — — — — —	· · · · · · · · · · · · · · · · · · ·	<del></del>	<del>"</del>	
1		**C	OGENERA	TION CAS	SE** **	ICCCIGEN -	COGEN##	<b>POVER</b>	COGEN	MBO	POWER	FE3R	CAPITAL	NORM	S/KW	ROI	LEVIL	MORN WR	RTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	P11·1		RATIO		*10**6			(2)			
DETTEM							110.	16.	13.	0.60	0.91	0.31	11.1	3.96	270.7	11	6.4	0,89 1	28
DESGAS	33316	5 191	. 0	. 0.	-191.		131.	16.	16.	0.85	0.91	0.21	16.0	5.69	284.6	0	9.0	1.25 1	32
DESGAS	33310	3 351	0	. 0.	351.	. 162.	305.	16.	37.	1.17	0.91	0.25	31.3	11.16	304.8	0	12.7	1.76 1	26
DESGA3							131.	16.	16.	0.85	0.91	0,21	16.0	5.69	284.6	0	7.8	1.09 1	
DEC()/V3							305.	16.	37.	1.17	0.91	0.25		11.16	304.8	0	10.5	1.45 1	
GTSCAD							92.	16.	11.	0.38	0.91	0.25	6.4	2.27	167.0	11	6.9	0.96 1	
OTRA08							131.	16.	16.	0.61	0.91	0,32	10.4	3.71	218.0	5	7.2	1.00 1	
GTRA08							153.	16.	19.	0.52	0.91	0.34	10.6	3.84	206.0	4	7.3	1.00 1	
GTRA12							131.	16.	16.	0.60	0.91	0.33	10.4	3.72	221.2	5	7.2	0.99 1	
GTRA12					. ,,,,,		149.	16.	18.	0.52	0.91	0.34	10.7	3.81	210.8	5	7.2	0.99 1	
GTRA16			-				131.	16.	16.	0.59	0.91	0.34	10.8	3,83	229.2	5	7.2	0.99 1	
GTRA16							139.	16.	17.	0.52	0.91	0.34	10.3	3.84	222.3	6_	7.1	0.99 1	
GTR208							115.	16.	14.	0.45	0.91	0.29	8.5	3.03	194.4	8	7.0	0.97 1	
OTR212							123.	16.	15.	0.47	0.91	0.31	9.2	3.27	201.6	7	7.9	0.97 1	
GTR216							126.	16.	15.	0.48	0.91	0.33	9.6	3.43	211.2	8	7.0	0.97 1	
GTRW08							131.	16.	16.	0.64	0.91	0.27	10.7	3.81	208.4	0_	7.7	1.07 1	
GTRHOS							183.	16.	22.	0.57	0.91	0.30	12.0	4.26	188.5	0	8.1	1.12 1	
SIMRTO			-				131.	16.	16.	0.64	0, 01	0.29	10.7	3.81	214.2	0	7.6	1.05 1	
GTRW12							185.	16.	23.	0.57	0.91	0.32	12.0	4.28	194.0	0	7.9	1.09 1	-
GTRV:16							131.	16.	16.	0.64	0.91	0.30	11.0	3.92	221.5	<del>}-</del>	7.6	1.05 1	
GTRW16							171.	16.	21.	0.56	0.91	0.32	11.9	4.25	204.1	0	7.7	1.07 1	
GTRGOS							131.	16.	16.	0.57	0.91	0.25	9.7	3.44	182.7	0	7.7	1.07 1	
OTROOS				· .			140.	16.	17.	0.50	0.91	0.26	9.6	3.43	175.6	0	7.7	1.07 1	
GTR312						. 110. . 115.	131.	16.	16.	0.59	0.91	0.30	9.8	3.51	200.0	3	7.3	1.02 1	
GTR318		7					149.	16.	18.	0.50	0.91	0.31	10.0	3.56	188.6	3	7.3	1.02 1	
GTR316							131.	16.	16.	0,60	0.91	0.30	10.2	3.65	207.5	3	7.4	1.03 1	
FCPADS			-				147.	16.	18.	0,51	0.91	0.31	10.4	3.69	196.9	3	7.4	1.02 1	
FCPADS							131,	16,		1.95	0.91	0.23	12.4	4.42	220.3		9.6 14.5	1.33 1	
,							323.	16.	39.	4.09	0.91	0.28	24.0	8.55	232.1	0		2.01 1	
FCMCDS				-			131.	16.	16.	1.85	0.91	0.31	12.9	4.59	263.7	0	8.9	1.23 1	
FCMCDS	33310	3 250	0	. 0.	-258,	147.	255.	16.	31.	3.09	0.91	0.36	20.7	7.37	274.3	0	11.4	1.57 1	41

RESIDUAL-FIRED NOCOGENERATION PROCESS BOILER

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE

1

		ή	BENSIT	VITY O	CAPI	TAL COS		****LEVE			DRIGINAL			101				
NERGY	CONV	SITE-	POWER	POWER	FESRP	OWER CAI	TAL CA	PITAL TA	XES OA	NDM FU			VNUE TO			RESNT	ROI GR	ROSS
SYS	TEM	FUEL	REQD	GEN/		/HEAT	COST		+			ELEC				WORTH		PAY
			MW	REQD		RATIO *	0**6	1	NSNC							15%	l)	ACK
0101	ONOCGN	RESIDU	A 10.	ο.,	٥.	0.25	4.8	0.35	0.15	0.38	1.27	3.08	Ο.	5.23	1.000	ο.	· o	
1101	STM141	RESIDU	4 10.	0, 99	0.439	0.25	8.3	0.63	0.27	0.57	2.42	0.03	0	3.93	0.751	2.	25	
101	STM141	COAL-F	9 10.	0.99	0.439	0.25	16.2	1.23	0.52	1.08	1.41	0.03	0.	4.27	0.816	-3.	10	
101	STM141	COAL-A	F 10.		0.439		12.5	0.95	0.40	0.96	1.41	0.03	0.	3.74	0.715	1.	16	
101	STM088	RESIDU	<b>A</b> 10.		0,333		7.4	0.56	0.24	0.54	2.15	0.76	Ο.	4.26	0.813	2,	24	
		COAL-FO			0.333		14.9	1.13	0.48	1.02	1.25	0.76	0	4.65	0.888	<u>-3.</u>		
		COAL-A			0.333		11.8	0.89	0.38	0,92	1.25	0.76	0.	4.20	0,803	-0.	14	
-		COAL-PI			0.436		20.8	1.58	D. 67	1.59	1.43	Ο.	Ο.	5.27	1.007	-8.	5	
		COAL-PI			0.484		19.9	1.51	0.64	1.45	1.79	Ο.	-0,96	4.44	0.849	-5,	8	
		RESIDU			0.187		29.6	2.25	0.96	1.27	3.55	0.	<u> </u>	8.02	1.533	<u>-21.</u>	0	
		RESIDU			0.235		20.5	1.55	0.66	1.01	1.91	1.42	Ο,	6.56	1.254	-12.	Ō	
	TISTMT		10.		0.436		41.4	3.14	1.34	1.96	1.43	Ο.	0.	7.88	1.505	-26.	0	
	TISTMT		10.		0.510		57.1	4.33	1.84	2.15	2.12	0.	-1,83	8.61	1.645	-36.	Q	
		RESIDU			0.083		17.5	1.30	0.55	0.84	1.62	2,37	0.	6.68	1.277	<u>-11.</u>	0	
	TIHRSG		10.		0.306		48.1	3,65	1.55	1.76	1,49	0.47	0.	8.92	1,705	-32,	0	
	STIRL	DISTIL			0.148		11.1	0.82	0.35	0.77	4.56	0,	o.	6.51	1.243	-7.	0	
	STIRL	DISTIL			0.201	0.25	9.3	0.69	0.29	0.70	2.86	1.15	0,	5.69	1.087	-4.	0	
	STIRL	RESIDU			0.148		<u> 11.1</u>	0.83	0.35	0.77	3.72	0	<u> </u>	5.67	1.083	<u>-4.</u>		
	STIRL	RESIDU			0.201	0.25	9.3	0.69	0.29	0.70	2.33	1,15	0.	5.16	0.987	-2.	6	
	STIRL	COAL	10,		0.321	0.25	21.9	1.62	0.69	1.44	1.72	0.	0.	5.47	1.046	-9.	4	
	STIRL	COAL	10.		0.385		28.1	2.08	0.88	1.43	3.02	0.	-2,43	4.98	0.951	-10.	6	
		COAL-AI			0.178		35.4	2.68	1.14	1.69	2.09	<u>o.</u>	0.	7.60	1.453	<u>-22.</u>	<u>o</u> _	
		COAL-A			0.235	_	91.7	6.96	2.96	3.34	8.97	0.	-9.43	12.80	2.446	-66.	0	
		COAL-A			0.191	0.25	34.0	2.58	1.10	1.66	2.05	0.	0.	7,38	1.411	-21.	0	
		COAL-A			0.236		55.1	4.18	1.78	2.12	4.69	0.	-3.70	9.08	1.735	-36.	O	
		COAL-A			0.186		31.2	2.37	1.01	1.56	2.07	0	0	7.01	1.339	<u>-18.</u>		
		COAL-A			0.203		33.4	2.53	1.08	1.41	2,60	0.	-0.74	6.88	1.315	-19.	0	
	FCMCCL		10,	,	-0.403		29.8	2,32	0.99	1.72	3,56	0.	0.	8.58	1.640	-23,	0	
	FCMCCL		10.	,	0.092		40.3	3.13	1.33	2.09	4.88	0.	-2.90	8.53	1.629	-28.	0	
	FOSTOL		10.		<u>-0.388</u>		29.0	2.25	0.96	1.73	3.52	<u>0.</u>	0.	8.47	1.618	-22.	0_	
	FCSTCL		10.		0.266		50.3	3.91	1.66	2.65	6.06	0.	-5.87	8.41	1.608	-33,	0	
	IGGTST		10.		-0.465		28.9	2.25	0.96	1.61	3.72	0.	0. -3.60	8.53	1.631	-22. -27.	0	
	IGGTST		10.		0.065		40.4	3.14	1.34	1.64 0.71	5.65 3.42	0. 0.		8.18 5.25	1.563	-27. -3.	0 5	
		RESIDUA			0.216		10.6	0.78	0.33			0.89	<u> </u>	5,00	0.956	-3. -2.		
		RESIDUA			0,238		9.6 9.6	0.71	0.30 0.30	0.67 0.68	2.43 3.68	0.89	0. 0.	5.37	1.026	-3.	Š	
					0.158			0.71				0. 1.32		4.93	0.942	-3. -1.	2	
	A CONTRACTOR OF THE CONTRACTOR	RESIDUA			0.215		8.3	0.62	0.26	0.63	2.10		0.		-		11 9	
		RESIDUA			0.255		9.8 8.8	0.72	0.31	0,68	3.26 2.30	0. C.90	<u>0.</u>	4.97	0.950	<u>-2.</u> -1.	12	
		RESIDUA			0.265		10.1	0.75	0.28	0,65 0,69	3.07	0.	0.	4.78	0.914	-1.		
		RESIDUA			0.295		9.4	0.75	0.32	0.66	2.44	0.63	0. 0.	4.83 4.73	0.924	-1.	10 12	
		RESIDUA			0.295		10.4	0.70	0.30	0.70	3.15	0.63	0.	4.73	0.904	-2,	9	
101	GIMCID		<u>, 10.</u>	1.00	0.2/9	<u> </u>	10.4	U. //	U. 33	0.70	J. 10	υ.	U.	4.90	0.947	-2:	9	

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			BENSIT	IVITY OF	CAPIT						ORIGINAL			IC \ + + + - =				
NERGY	CONV	SITE-	POWER	POWER	FESRPO			****LEVE Pital ta					MILLION EVNUE TO			ESNT	ROI GR	നാട
· SYS	TEM	FUEL	REQD	GEN/		/HEAT	COST		+			ELEC				WORTH	*	PAY
	•		MW	REQD	F	RATIO *	10**6	I	NSNC							15%	B	ACK
0101	CC1626	RESIDU	A 10.	1.00	0.331	0.25	10.7	0.81	0.34	0.80	2.92	o.	0.	4.87	0.931	-2.	9	
101	CC1626	RESIDU	<u>4 10.</u>	1.41	0.362	0.25	12.1	0.92	0.39	0.86	3.61	0.	-0.76	5.01	0.957	-3.	7	
101	CC1622	RESIDU	A 10.	1.00	0.347	0.25	10.4	0.79	0.33	0.79	2.85	0.	0.	4.76	0.910	-1.	10	
101	CC1622	RESIDU	A 10.	1.27	0.370	0.25	11.3	0.86	0.37	0.83	3.29	0.	-0.50	4.84	0.924	-2.	9	
101	CC1222	RESIDU	4 10.	1.00	0.350	0.25	10.1	0.77	0.33	0.78	2.84	Ο.	Ο.	4.71	0.901	-1.	111	
101	CC1222	RESIDU	<u>4 10.</u>	1.27	0.373	0.25	11.0	0.84	0.36	0.82	3.26	0.	-0.50	4.78	0.913	-2.	10	
101	CC0822	RESIDU	4 10.	1.00	0.375	0.25	10.2	0.78	0.33	0.78	2.73	Ο.	Ο.	4.62	0.883	-1.	12	
101	CC0822	RESIDU	A 10.	1.02	0.377	0.25	10.3	0.78	0.33	0.79	2.76	Ο.	-0.03	4.62	0.884	-1.	12	
101	STIG15	RESIDU	A 10.	1.00	0.123	0.25	10.7	0.79	0.34	0.81	3.83	Ο.	0.	5.77	1.102	-4.	0	9
		RESIDU		31.78	0.171	0.25	97.7	7.23	3.08	5.91	82.83	0.	-56.87	42.18		<u>-160,</u>	0	
		RESIDU			0.176	0.25	10.2	0.76	0.32	0.77	3.60	Ο.	Ο.	5.45	1.041	-3.	1	
		RESIDU			0.218	0.25	16.0	1.19	0.50	1.09	8.13	Ο.	-3.58	7.33	1.401	-12.	0	
		RESIDU			0.200	0.25	10.0	0.74	0.32	0.76	3.49	Ο.	Ο.	5.32	1.016	-3.	4	
		RESIDU			0.228	0:25	12.2	0.91	0.39	0.89	5.11	<u> 0.</u>	-1.34	5.96	1.138	<u>-6.</u>	0	
		RESIDU			0.265	0.25	13.3	0.98	0.42	0.82	3.21	Ο.	Ο.	5.43	1.037	-5.	3	
		RESIDU			0.302	0.25	16.6	1.23	0.52	0.94	4.62	Ο.	-1.34	5.98	1.143	-8,	0	. !
		RESIDU			0.351	0.25	13.0	0.97	0.41	0.84	2.83	0.	Ο.	5.05	0.966	-3.	6	
		RESIDU			0.344	0.25	12.5	0.93	0.39	0.82	2.49	0,38	0.	5.01	0.957	-3.	7	
		DISTIL			0.228	0.25	13.9	1.03	0.44	0.84	4.14	0.	0.	6.44	1.231	-8,	0	
		DISTIL			0.266	0.25	21.3	1.58	0.67	1.08	6.64	0.	-1.79	8.18	1.563	-17.	0	
		RESIDU			0.228	0.25	13.9	1.03	0.44	0.84	3.37	0.	0	5,68	1.086	-6.	0	
_		RESIDU			0.266	0.25	21.3	1.58	0.67	1.08	5.41	<u>o.</u>	<u>-1.79</u>	6.96	1.329	<u>-13.</u>	0	
		DISTIL			0.222	0.25	9.3	0.69	0.29	0.67	4.17	0.	0.	5,83-		-4.	, 0	
		DISTIL			0.244	0.25	8.4	0.62	0.27	0.64	2.82	1.00	0.	5.34	1.021	-2.	2	
		DISTIL			0.344	0.25	11.0	0.82	0.35	0.72	3.51	0.	0.	5.39	1.030	-3.	2	
		DISTIL			0.351	0.25	11.3	0.84	0.36	0.73	3.65	<u> </u>	<u>-0.13</u>	5.44	1.039	<u>-4.</u>	2	
		DISTIL			0.350	0.25	11.0	0.81	0.35	0.72	3.46	0.	0.	5.36	1.024	-3.	3	
		DISTIL			0.355	0.25	11.2	0.83	0.35	0.72	3.59	0.	-0.10	5.39	1.031	-4.	2	
		DISTIL			0.349	0.25	11.3	0.84	0.36	0.72	3.49	0.	0.	5.41	1.034	-4.	2	
		DISTIL			0.348	0.25	11.3	0.84	0.36	0.72	3.46	0.02	<u>0.</u>	5.40	1.032	-4.	2	
		DISTIL			0.290	0.25	10.4	0.77	0.33	0.70	3.80	0.	0.	5.61	1.072	-4.	0	,
		DISTIL			0.290	0.25 0.25	9.8	0.73	0.31	0.68	3.16	0.52	0.	5.40	1.032	-3.	2	
		DISTIL			0.309	0.25	10.7 10.3	0.79 0.76	0.34 0.32	0.71 0.69	3.69 3.29	0. 0.33	0. 0.	5.53	1.056 1.633	-4. -3.	-	
	<del></del>	DISTIL			0.326	0.25	10.9	0.81	0.34	0.89	3.29	0.33	0.	5.40 5.48	1.033	-3. -4.	2	
-		DISTIL			0.323	0.25		0.78			3.30	0.27	0.	5.38	1.029	-3.	2	
		DISTIL			0.323	0.25	10.6 11.1	0.78	0.33 0.35	0.70 0.72	3.81	0.27	0.	5.71	1.029	-3. -4.	0	9
		DISTIL			0.308	0.25	12.2	0.82	0.35	0.72	4.46	0. 0.	-0.53	5.71 5.98	1.142	-4. -6.	. 0	1
		DISTIL			0.306	0.25	11.1	0.82	0.35	0.78	3.72	<del>0.</del>	0.	5.61	1.073	- <u>-</u> -6.	0	
		DISTIL			0.329	0.25	12.3	0.02	0.39	0.72	4.41	0. 0.	-0.59	5.88°	1.124	-4. -6.	0	Š
		DISTIL			0.309	0.25	11.4	0.84	0.39	0.77	3.70	Ö.	0.	5.63	1.076	-4.	. 0	9
		DISTILI			0.327	0.25	12.3	0.91	0.39	0.76	4.21	o.	-0.43	5.83	1.114	-5.	. 0	ě
	GTR308				0.267	0.25	10.6	0.78	0.33	0.71	3,93	0.	0.43	5.76	1.100	-4.	<u>ŏ</u> _	Ē

DATE 06/07/79 8SE-PEC-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE

. :

	<del> </del>	~~~			•				~						·			
		SI	Ensiti	VITY OF	CAPIT						ORIGINA			****				
ENERGY	CONV	SITE- F	POWER	PAUER	FESRE		******** Pital caf						MILLION EVNUE TO			RESNT	ROI GR	őS <b>S</b>
	TEM		REGD	GEN/	i Loin o	/HEAT		1106 10/	+	ADM FO		ELEC	EVHOL 10	IAE III	PENERAL 1 - 1	WORTH	***	PAY
	1		MW	REQD	R	ATIO *		1.0	ISNC			<u> </u>				15%		ACK
			, ,,,,		•			• •	10:10							.0		
10101	<b>GTR312</b>	DISTILL	10.	1.00	0.312	0.25	10.7	0.79	0.34	0.71	3.69	0.	٥.	5.53	1.056	-4.	0	30
10101	<b>GTR312</b>	DISTILL	10:	1.09	0.319	0.25	11.0	0.81	0,35	0.72	3.88	0.	-0.17	5.60	1.069	-4.	0	999
		DISTILL	10.		0.310	0.25	11.0	0.81	0.35	0.72	3.70	O.	0.	5.58	1.066	-4.	0	939
		DISTILL	10.		0.316	0.25	11.3	0.83	0.35	0.73	3.86	Ο.	-0.14	5.64	1.077	-4.	0	999
		DISTILL	10.		0.232	0.25	11.7	0.87	0.37	1.53	4.12	Ο.	0.	6.88	1.315	-9.	0	66
		DISTILL	10.		0.279	0.25	19.6	1.45	0.62	3.02	7.76	<u>o.</u>	<u>-2.63</u>	10.22	1.954	-23.	<u>o</u>	62
		DISTILL	10.		0.310	0.25	12.1	0.90	0.38	1.47	3.70	o.	0.	6.45	1.232	-7.	0	76
		DISTILL	10. 30.		0.360	0.25 0.25	17.4	1.29	0.55	2.37 0.74	5,67	0.	-1.70 0.	8.17 25,55	1.562	-15.	0	66
		RESIDUA	30.		0.246	0.25	14.6 19.0	1.08	0.46 0.61	0.74	14.04 17.50	9.24	0.	20.64	0.808	0. 13.	0 55	0 2
		COAL-FO	30.		0.246	0.25	34.5	2.62	1.11	2.01	10.16	0.11	<u> </u>	16.02	0.627	20.	30	- 4
		COAL-AF	30.		0.246	0.25	29.8	2.26	0.96	1.95	10.16	0.11	o.	15.44	0.604	24.	38	3
		RESIDUA	30.		0.187	0.25	17.2	1.30	0.55	0.93	16.67	2.30	õ.	21.75	0.851	10.	67	ž
		COAL-FG	30.		0.187	0.25	32.1	2.44	1.04	1.89	9.68	2.30	o.	17.35	0.679	17.	29	4
0102	STM088	COAL-AF	30.	0.75	0.187	0.25	23.4	1.77	0.75	1.75	9.68	2.30	0.	16.26	0.636	25.	54	2
0102	PFBSTM	COAL-PF	30.	1.00	0.245	0.25	42.4	3.22	1.37	3.12	10.24	٥.	0.	17.94	0.702	10.	20	5
0102	PFBSTM	COAL-PF	30.	1.52	0.308	0.25	41.0	3.11	1.32	3.13	11.31	Ο.	-2.86	16.02	0.627	17.	25	4
		RESIDUA	30.		0.245	0.25	65.9	5.00	2.13	2.40	17.63	<u>o.</u>	0.	27.16	1,063	-30.	2	20
		RESIDUA	30.		0.349	0.25	101.7	7.72	3.28	3.11	21.18	0.	-5.48	29.82	1.167	-55.	0	29
	TISTMT		30.		0.245	0.25	91.4	6.94	2.95	3.78	10.24	0.	0.	23.91	0.936	-32.	. 6	11
	TISTMT		30.		0.349	0.25	128.5	9.75	4.14	4,45	12.30	0.	-5.48	25.16	0.985	-54.	5	13
	TIHRSG	RESIDUA	<u>30.</u> 30.	0.85		0.25	84.9 108.6	6.29 8.24	2.67 3.50	2.52 3.72	17.92 10.41	1.42	0. 0.	27.29	1.206	-49. -51.	<u>0</u> 3	<u>999</u>
10102		DISTILL	30.		0.180	0.25	28.9	2.14	0.91	1.43	23.45	0,	0. 0.	27.29	1.093	-14.	0	68
0102		DISTILL	30.		0.100	0.25	46.9	3.48	1.48	1.71	31.64	õ.	-7.27	31.04	1.215	-32.	ŏ	66
0102		RESIDUA	30.		0.180	0.25	28.9	2.14	0.91	1.43	19.13	o.	0.	23.62	0.924	-1.	14	7
0102		RESIDUA	30.		0.274	0.25	47.0	3.48	1.48	1.71	25.81	O.	-7.27	25.22	0.987	-14.	6	12
10102		COAL	30.		0.180	0.25	54.2	4.02	1.71	2.85	11.11	ŏ.	ò.	19.69	0.771	-0.	14	.7
0102		COAL	30.		0.274	0.25	82.1	6.08	2.59	3.40	14.99	o.	-7.27	19.79	0.774	-14.	11	8
		COAL-AF	30.	1.00	0.100	0.25	75.4	5.72	2.43	3.34	12.20	0.	0.	23.70	0.927	-24.	7	11
		COAL-AF	30.	6.09		0.25	199.4	15.14	6.43	7.47	32.80	0.	-28.19	33.64	1.317	-114.	0	26
		COAL-AF	30.	1.00		0.25	72.4	5.49	2.34	3.27	12.11	Ο.	Ο.	23.20	0.908	-21.	8	10
		COAL-AF	30.		0.178	0.25	119.5	9.07	3.86	4.65	19.99	٥.	-11.05	26.51	1.038	-54.	4	15
		COAL-AF	30.	1.00		0.25	67.1	5.09	2.17	3.13	12.14	<u>0.</u>	<u> </u>	22.53	0.882	-16.	9	9
		COAL-AF		1.40		0.25	72.5	5.50	2.34	3.05	13.72	0.	-2.20	22.42	0.877	-18,	9	10
	FCMCCL FCMCCL		30.	1.00		0.25	64.3	5.00	2.13 2.94	3.52	10.66 14.59	0.	0. -8.67	21.31	0.834	-12.	10	8
	FCSTCL		30. 30.	2.56 1.00		0.25 0.25	88.8 62.3	6.91 4.84	2.94	4.87 3.43	14.59	0. 0.	~8,6/ O.	20.63	0.808	-22. -9.	9	9 8
	FCSTCL		30.	4.17		0.25	111.0	8.63	3.67	6.12	18,15	0.	-17.56	19.01	0.744	- <u>-9.</u> -28.	9	8
	IGGTST		30.	1.00		0.25	60.0	4.66	1.98	2.85	11.13	o.	0.	20.63	0.807	-7.	12	8
	IGGTST		30.	2.94		0.25	87.3	6.79	2.89	3.06	16.92	o.	-10.75	18.90	0.740	-15.	11	8
		RESIDUA	36.	1.00		0.25	22.9	1.69	0.72	1.21	18.96	õ.	o.	22.59	0.884	5.	25	4
		RESIDUA	30.	2.62		0.25	33.8	2.51	1.07	1.30	26.96	0.	-9.00	22.83	0.893	-0.	14	

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

• • • • • • • • • • • • • • • • • • • •			SENS I T	IVITY O	F CAPIT		•				CRIGINA							
													\$ MILLIO					
ENERGY			POWER		FESRP			PITAL TA		NDM F	JEL PL		REVNUE TO	STAL NO	ORML P	RESNT		ROS <b>S</b>
SYS	TEM	FUEL	REQD	GEN/		/HEAT			+			ELEC				WORTH		PAY
			MW	REQD	ı	RATIO *	10**6	ı	NSNC							15%	E:	BACK
10102	GTAC08	RESIDU	A 30.	2.11	0.308	0.25	25.3	1.88	0.80	1.07	23.32	0.	-6.17	20.89	0.817	10.	29	4
		RESIDU	-, -, -,		0.211	0.25	21.7	1.61	0.68	1.18	18.43	0.	Ö.	21.89		8.	33	3
		RESIDU			0.335	0.25	30.1	2.23	0.95	1.20	25.49	0.	-8.93	20.95	0.820	7.	22	5
10102	GTAC16	RESIDU	A 30.	1.00	0.209	0.25	23.8	1.76	0.75	1.23	18.47	0.	0.	22.22	0.870	6.	25	4
10102	GTAC16	RESIDU	A 30.	2.93	0.346	0.25	34.2	2.54	1.08	1.31	27.05	Ο.	-10.71	21,26	0.832	4.	18	6
10102	GTWC16	RESIDU	A 30,	1,00	0.186	0.25	23.7	1.75	0.74	1.23	19.00	0.	0.	22.73	0.890	5.	23	5
10102	GTWC16	RESIDU	A 30.	3.12	0.315	0.25	33.0	2.45	1.04	1.30	29.54	0.	-11.77	22.56	0.883	1.	15	6
10102	CC1626	RESIDU	A 30.	1.00	0.186	0.25	27.1	2.06	0.88	1.43	19.01	Ο.	Ο.	23.37	0.915	1.	15	6
10102	CC1626	RESIDU	A 30.	5.22	0.362	0.25	48.3	3.66	1.56	1.89	39,96	Ο.	-23.37	23.69	0.927	-11.	9	9
10102	CC1622	RESIDU	<u>A 30.</u>	1.00	0.195	0.25	27.1	2.06	0.87	1.42	18.80	0.	0	23.15	0.906	1.	16	. 6
10102	CC1622	RESIDU	A 30.	4.70	0.370	0.25	49.1	3.73	1.58	1.86	36.41	Ο.	-20.51	23.07	0.903	-9.	10	9
		RESIDU		1.00	0.197	0.25	26.5	2.01	0.85	1.41	18.76	Ο.	٠٥.	23.03	0.901	2.	17	6
10102	CC1222	RESIDU	A 30.	4.68	0.373	0.25	46.3	3.52	1.49	1.82	36.14	0.	-20.42	22.54	0.882	-6.	11	8
		RESIDU			0.211	0.25	26.2	1,99	0.84	1.40	18.43	0.	<u> </u>	22.66		3.	19	5
		RESIDU			0.377	0.25	<b>36.3</b>	2.75	1.17	1.53	30.54	Ο.	-15.27	20.72	0.811	5.	18	6
		RESIDU			0.069	0.25	27.5	2.04	0.87	1.59	21.74	Ο.	0.	26.24	1.027	-8.	. 0	999
		RESIDU		117.39		0.25	861.5	63.81	27.13		917.88	О.	~645.14			-1621.	· 0	58
		RESIDU			0.099	0.25	26.5	1.96	0.83	1.49	21.04	0.	0.	25.32		-5.	6	. 12
		RESIDU			0.218	0.25	94.6	7.01	2.98	4.83	90.06	0.	-54.63	50.24	1.966		0	60
		RESIDU			0.112	0.25	26.0	1.92	0.82	1.48	20.72	Ο.	0.	24.95	0.976	-4.	9	10
		RESIDU			0.228	0.25	55.2	4.09	1.74	3.08	56.61	Ο.	-29.76	35.76	1.399	-51.	0	62
		RESIDU			0.149	0.25	35.9	2.66	1.13	1.60	19.87	<u>o.</u>	0.	25.26		-9,	<u> </u>	12
		RESIDU			0.302	0.25	125.1	9.26	3.94	3.82	51.23	o.	-29.82	38.43	1.504	-92.	0	83
		RESIDU			0.220	0.25	32.8	2.43	1.03	1.57	18.21	ο.	0.	23.24	0.910	-1.	13	7
		RESIDU			0.377	0.25	69.4	5.14	2.19	2.38	27.55	O.	-12.41	24.85		-23.	6	12
		DISTIL			0.128	0.25	40.8	3.02	1.28	1.73	24.96	<u> </u>	<u> </u>	31,00		-29.	0	
		DISTIL			0.266	0.25	176.2	13.05	5.55	5.14	73.54	જુ.	-34.75	62.53	2.447	-192.	0	62
		RESIDU			0.128	0.25	40.8	3.02	1.28	1.73	20.36	o.	o.	26,40			2	21
		RESIDU			0.266	0.25	176.2	13.05	5.55	5.14	59.99	O.	-34.75	48.98	1.917		0	70
		DISTIL			0.203	0.25	20.4	1.51	0.64	1.15	22.82	<u>. 0.</u>	0.	26.12		<u>-5.</u>	0	<u>193</u> 95
		DISTIL			0.317	0.25	26.3	1.95	0.83	1.10	31.23	0.	-8.30	26.81	1.049	-9.	0	
		DISTIL			0.193 0.351	0.25 0.25	28.0 45.0	2.08 3.33	0.88 1.42	1.34	23.09 40.47	0. 0.	0. -16.39	27.39 30.45	1.072 1.192	-12. -30.	0	75 67
		DISTIL			0.331	0.25	28.3	2.09	0.89	1.35	23.00	0.	0.	27.33	1.069	-30. -12.	ň	. 78
		DISTIL			0.355	0.25	45.7	3.39	1.44	1.63	39.79	Ö.	-16.08	30.17	1.181	-29.	0	70
		DISTIL			0.197	0.25	26.1	1.93	0.82	1.29	22.98	ລ.	0.	27.02		-10.	ő	70 79
		DISTIL			0.350	0.25	46.1	3.42	1.45	1.64	38.37	Ö.	-14.78	30.09	1.178	-29.	ŏ	71
		DISTIL			0.196	0.25	24.0	1.78	0.76	1.24	23.01	o.	0.	26.79	1.048	-8.	Ö	78
		DISTIL			0.329	0.25	36.8	2.72	1.16	1.39	35.03	0.	-11.47	28.82	1.128	-21.	<u>_</u>	70
		DISTIL			0.325	0.25	24.6	1.82	0.77	1.26	23.05	o.	0.	26.90	1.053	-9.	ő	76 76
		DISTIL			0.335	Q. 25	39.5	2.93	1.24	1.46	36.46	Ö.	-12.72		1.149	-24.	ŏ	69
		DISTIL			0.198	0.25	25.3	1.87	0.80		22.94	o.	0.	26.88	1.052	-9.	ő	82
· · · ·	GTR216	<u> </u>	30.	3.37		<u> </u>	42.2							20.00			•	<u>72</u>

DATE 06/07/79 LASE-PEG-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE

5

		SENSIT	IVITY OF	CAPI		3.60*****	***** EVE			ORIGINA			IC) ****	*****				
NERGY CONV	SITE-	POWER REQD	POWER GEN/	FESRP		FITAL CAL				IEL. PU		EVNUE TO			RESNT	ROI %	GRÜ P	JSS PAY
<u> </u>		MW	REQD	1	RATIO *		I	NSNC		<del></del>	<u> </u>				15%			CK
0102 GTRW08	DISTU	L 30.	4 75	0.308	0.25	47.1	3.49	1.48	1.70	49.41	· .	-20.78	35,30	1.382	-46.		o	6
0102 GTRW12				0.172		27.9	2.07	0.88	1.34	23.71	o.	0.	28.00	1.096	-14.		ŏ	ě
0102 GTRW12				0.329	0.25	47.7	3.53	1.50	1.72	48,89	O.	-21.47	34.18	1.338	-43.		0	<u>è</u>
0102 GTRW16				0.173	0.25	28.5	2.11	0.90	1.36	23.66	Õ.	0.	28.02	1.097	-14.		Õ	
0102 GTRW16				0.327	0.25	47.5	3.51	1.49	1.70	46.60	Ö.	-19.71	33.60	1.315	-41.		Ō	ε
0102 GTR308				0.154	0.25	24.0	1.78	0.76	1.25	24.23	Ö.	0.	28.02	1.096	-12.		Ŏ	ě
0102 GTR308				0.272	0.25	36.9	2.74	1.16	1.42	42.57	Ö.	-14.49	33.40	1.307	-35.		0	1
0102 GTR312	DISTIL	L 30.	1.00	0.175	0.25	27.0	2.00	0.85	1.32	23.61	o.	0.	27,79	1.087	~13.		Ò	Ē
0102 GTR312	DISTIL	L 30.	4.03	0.319	0.25	41.1	3.04	1.29	1.53	42.99	0.	-16.77	32.09	1.256	-33.		0	€
0102 GTR316	DISTIL	L 30.	1.00	0.174	0.25	27.7	2.05	0.87	1.34	23.64	0.	Ο.	27.90	1.092	-14.		0	(
0102 GTR316	DISTIL	L 30.	3.97	0.316	0.25	42.3	3.13	1.33	1.56	42.73	0.	-16.44	32.31	1.264	·34.	<u> </u>	0	· (
0102 FCPADS	DISTIL	L 30.	1.00	0.130	0.25	34.1	2.53	1.07	4.02	24.90	Ο.	Ο.	32.52	1.273	-31.		0	•
0102 FCPADS	DISTIL	L 30.	8.95	0.279	0.25	154.0	11.41	4.85	28.02	86.04	٠٥.	-44.08	86.23	3.375	-259.		0	
1102 FCMCDS	DISTIL	L 30.	1.00	0.174	0.25	35,3	2.62	1.11	3.84	23.64	n.	0,	31.21	1.221	-28.		0	(
1102 FCMCDS	DISTIL	L 30.	7.08	0.360	0.25	132.4	9.80	4.17	21.00	62.78	0.	-33.72	64.04	2.506	-178.		0	(
1111 ONOCGN	RESIDU	A 2.	Ο.	0.	0.28	1.6	0.12	0.05	0.19	0.22	0.15	Ο.	0.73	1.000	Ο.		0	
0111 STM141	RESIDU	A 2.	1.00	0.264	0.28	3.2	0.24	0.10	0.26	0.28	0.	Ο.	0.98	1.342	-2.		0	7
0111 STM141	RESIDU	A 2.	1.09	0.277	0.28	3.0	0.23	0.10	0.29	0.28	0.	-0.01	0.89	1.226	-1-		0	1
0111 STM141	COAL-F	G 2.	1.00	0.264	0.28	5.6	0.43	0.18	0.57	0.16	0.	0.	1.34	1.842	-4:		O	
0111 STM141	COAL-F	G 2.	1.09	0.277	0.28	5.2	0.39	0.17	0.46	0.16	0.	-0.01	1.47	1.614	-3.		0	9
0111 STM141	COAL-A	F 2.	1.00	0.264	0.28	5.1	0.39	0.17	0.51	0.16	0.	0.	1.22	1.683	-3.		0	ş
<u>0111 STM141</u>	COAL-A	F 2.	1.09	0.277	0.28	4.6	0.35	0.15	0.40	0.16	0.	-0.0î	1.05	1.441	~2.		0	14
0111 STM088	RESIDU	A 2.	0.86	0.227	0.28	2.6	0.20	0.08	0.28	0.27	0.02	0.	0.85	1.156	-1.		0	11
0111 STM088	COAL-F	G 2.	0.86	0.227	0.28	4.7	0.36	0.15	0.44	9.15	0.02	Ο.	1.13	1.553	-3.		O	
0111 STM088	COAL-A	F 2.	0.86	0.227	0.28	4.3	0.33	0.14	0.38	0.15	0.02	ο.	1.03	1.411	-2.		0	1:
D111 PFBSTM	COAL-P	F 2.	1.00	0.261	0.28	7.1	0.54	0.23	0.61	0.16	0.	0.	1.54	2. 14	-5.	<u> \</u>	0	7
DIII PFBSTM	COAL-P	F 2.	1.58	0.332	0.28	6.8	0.52	0.22	0.47	0.18	0.	-C.05	1.34	1.840	-4.		O	9
DIII TISTMT	RESIDU	A 2.	1.00	0.260	0.28	8.7	0.66	0.28	0.53	0.28	Ο.	0.	1.74	2.392	-7.		0	-
III TISTMT	RESIDU	A 2.	2.03	0.368	0.28	13.0	0.99	0.42	0.56	0.34	Q.	-0.10	2.21	3.034	-10.		0	
DILL TISTMT	COAL	2.	1.00	0.260	0.28	12.2	0.93	0.39	0.79	0.16	0.	0	2.27	3,115	-10.		0 -	
DIII TISTMT		2.		0.368	0.28	16.5	1.26	0.53	0.77	0.20	0.	-0.10	2.65	3.648	-13.		0	7
DIII TIHRSO				0.172	0.28	10.2	0.76	0.32	0.40	0.27	0.04	Ο.	1.79	2.455	-7.		0	7
DIII THRSG		2.		0.172	0.28	13.2	1.00	0.43	0.57	0.16	0.04	Ο,	2.20	3.019	-10,		0	7
DIII STIRL	DISTIL			0.214	0.28	2.7	0.20	0.08	0.34	0.36	<u>0.</u>	0.	0.98	1.345	-1.		0	(
DIII STIRL	DISTIL		_ ,	0.323	0.28	3.3	0.24	0.10	0.28	0.50	0.	-0.13	0.98	1.354	-2.		0	7
111 STIRL	RESIDU			0.214	0.28	2.7	0.20	0.08	0.34	0.29	٥.	0.	0.91	1.254	-1.		0	7
OIII STIRL	RESIDU			0.323	0.28	3.3	0.24	0.10	0.28	0.40	0.	-0.13	0.89	1.229	-1.		0	15
DIII STIRL	COAL	<u>2.</u>		0.214	0.28	5.7	0.42	0.18	0.57	0.17	<u>o.</u>	0.	1.34	1.847	<u>-4.</u>		0	
DIII STIRL	COAL	2.		0.323	0.28	5.8	0.43	0.18	0.45	0.24	0.	-0.13	1.17	1.606	-3,		0	12
0111 HEGT85				0.188	0.28	10.8	0.82	0.35	0.62	0.18	0.	0.	1.97	2.706	~8.		0	7
0111 HEGT85				0.308	0, 28	17.8	1.35	0.57	0.65	0.28	0.	-0.20	2,66	3.660	-14.		0	8
0111 HE9T60				0.134	0.28	10.6	0.81	0.34	0.62	0.19	0.	0.	1.96	2.690	-8.		0	7
0111_HE0T60	COAL-A	F2.	2.47	0.204	0.28	15.2	1.15	0.49	0.59	0.28	٥.	-0.14	2.37	3.257	-12.		0	8

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

	SE	NSITI	VITY OF	CAPIT					ENT OF								
NEDOV 651"		<b></b>										MILLION					***
NERGY CONV	SITE- P					ITAL CAP	TAL TA		NUM FU			EVNUE TO	IAL NO	RIIL PR	ESNT ROI		
SYSTEM		EQD	GEN/		/HEAT C			+			ELEC				WORTH		YAS
		MH	REQD	R	ATIO #1	0**E		ISNC							15%	E/	<b>\CK</b>
111 HEGTOO	COAL-AF	2.	1.23	138	0.28	9.6	0.73	0.31	0.42	0.21	0.	-0.02	1.64	2.259	- 7.	0	89
111 FCMCCL	COAL	2.	1.00 (	0.227	0.28	9.3	0.72	0.31	0.61	0.17	0.	0,	1.81	2.487	<u>-7.</u>	0	78
DIII FCMCCL	COAL	2.	2.32	338	0.28	11.7	0.91	0.39	0.54	0.22	0.	-0.12	1.94	2.663	-9,	0	8
DIII FCSTCL	COAL	2.	1.00 0	236	0.28	9.1	0.70	0.30	0.67	0.17	0.	Ο.	1.83	2.521	<b>-7</b> .	0	75
111 FCSTCL		2.	4.09		0.28	15.2	1.18	0.50	0.73	0.29	Ο.	-0.29	2.41	3.318	-12.	0	8
<u>DIII IGGIST</u>		<u>2.</u>	1.00 0		0.28	9.5	0.74	0.31	0.73	0.18	0.	0	1.96	2.689	-8.	0_	74
DIII IGGTST	COAL	2.	2.93 (		0.28	13.2	1.03	0.44	0.71	0.27	Ο.	-0.18	2.26	3.112	-11.	0	8
DIII GTSØAR		2.	1.00 (		0.28	3.3	0.25	0.11	0.33	0.30	0.	Ο.	0.98	1.347	-2.	0	7
DIII GTSØAR		2.	2.31 0		0.28	4.0	0.30	0.13	0.26	0.40	О.	-0.12	0.97	1.328	-2.	0	123
111 GTAC08		2.	1.00 0		0.28	2.9	0.22	0.09	0.32	0.29	0.	0.	0.92	1.263	<u>-1.</u>	0	8
111 GTAC08		2.	1.92		0.28	3.1	0.23	0.10	0.23	0.36	0.	-0.09	0.84	1.154	-1.	0	99
111 GTAC12		2.	1.00 (		ე. 28	3.0	0.22	0.09	0.32	0.29	Ο.	0.	0.92	1.264	-1.	0	8
111 GTAC12		2.	2.34 (		0.28	3.5	0.26	0.11	0.25	0.39	∘0.	-0.13	0.87	1.200	-1.	0	99
111 GTAC16		2.	1.00 0		0.28	3.0	0.23	0.10	0.32	0.29	0.	0.	0.93	1.282	<u>-1.</u>	0	8
111 GTAC16		2.	2.61 0		0.28	3.8	0.28	0.12	0.26	0.41	0.	-0.15	0.92	1.265	-2.	0	95
111 GTWC16	RESIDUA	2,	1.00 0		0.28	3.3	0.24	0.10	0.33	0.30	Ο.	О.	0.98	1.342	-2.	0	7
111 GTWC16	RESIDUA	2.	2.83 (	315	0.28	4.3	0.32	0.14	0.28	0.45	Ο.	-0.17	1.02	1.395	-2.	0	10
111 CC1626	RESIDUA	2.	1.00 0	199	0.28	3.4	0.26	0.11	0.40	0,30	_0	0.	1.07	1.465	-2.	0	. 7
111 CC1626	RESIDUA	2.	5.08	0.371	S. 24	6.3	0.48	0.20	0.44	0.64	Ο.	-0.38	1.38	1.893	-4.	0	7
111 CC1622	RESIDUA	2.	1.00 0	209	0,28	3.2	0.24	0.10	0.39	0.30	Ο.	Ο.	1.04	1.425	-2,	G	7
111 CC1622	RESIDUA	2.	4.59 (	380	Q. 28	5.6	0.43	0.18	0.41	0.58	Ο.	-0.34	1.27	1.744	-4.	0	8
111 CC1222	RESIDUA	2.	1.00 0	210	0.28	3.1	0.24	0.10	0.39	0.30	<u>O.</u>	0.	1.03	1.409	-2.	0	. 7
111 CC1222	RESIDUA	2.	4.58	383	0.28	5.4	0.41	0.17	0.41	0.58	0.	-0.34	1.23	1.696	-3.	0	8
111 CC0822	RESIDUA	2.	1.00 0	. 225	0.28	3.3	0.25	0.11	0.39	0.29	Ο.	Ο.	1.04	1.423	-2.	0	. 7
111 CC0822	RESIDUA	2.	3.70 (	389	0.28	4.9	0.37	0.16	0.38	0.49	Ο.	-0.25	1.15	1.577	-3.	0	8
111 STIG15	RESIDUA	2.	1.00	0.073	0.28	3.5	0.26	0.11	0.35	0.35	0.	0.	1.06	1.464	-2.	0	6
111 STIG15	RESIDUA	2.	106.26	171	0.28	65.0	4.81	2.05	2.64	14.10	Ö.	-9.90	13.70	18.829	-70.	0	6
111 STIG10	RESIDUA	2.	1.00 0	105	0.28	3.3	0.25	0.10	0.34	0.33	· O.	Ο.	1.03	1.412	-2.	0	7
111 STIG10	RESIDUA	2.	9.83 (	218	0.28	8.9 (	0.66	0.28	U.50	1.38	Ο.	-0.83	2.00	2.746	<b>−</b> ブ。	0	6
111 STIGIS		2.	1.00 0		0.28	3.2	0.24	0.10	0.34	0,33	0.	0.	1.01	1.391	-2.	0	7
111 STIG1S	RESIDUA	2.	5.77 (	. 228	0.28	6.1	0.46	0.19	0.39	0.87	0.	-0.45	1.46	2.001	-4.	0	6
111 DEADV3		2.	1.00 0		0.28	4.4	0.33	0.14	0.38	0.30	Ο.	ο.	1.14	1.573	-3.	0	7
111 DEADV3	RES I DUA	2.	4.04	), 355	0.28	7.1	G.52	0.22	0.40	0.55	Ο.	-0.29	1.41	1.935	· -5.	0	8
111 DEHTPM		2.	1.00 0	244	0.28	4.3	0.32	0.14	0.40	0.28	0.	0.	1.14	1.563	-3	0	7
111 DEHTPM		- 2.	3.01		0.28	, 6.0	0.44	0.19	0.38	0.42	0.	-0.19	1.24	1.704	-4,	0	8
111 DESGA3	DISTILL	2.	1.00 0	). 18દ⊹	0.28	3.3	0.25	0.10	0.35	0.37	Ο.	Ο.	1.08	1.478	-2.	0	6
III DESØA3	DISTILL	2.	4.13 0	334	0.28	7.2	0.53	0.23	0.40	0.71	Ο.	-0.29	1.57	2.159	-5.	0	7
111 DESGA3	RESIDUA	2.	1.00 0	188	0.28	3.3	0.25	0.10	0.35	0.30	0.	0.	1.01	1.384	-2.	0_	7
111 DESCAS		2.	4.13 0	334	0.28	7.2	0.53	0.23	0.40	0.58	0.	-0.29	1.44	1.980	-5.	0	7
111 GTSØAD	DISTILL	2.	1.00 0	219	0.28	2.9	0.21	0.09	0.32	0.36	Ο.	Ο.	0.98	1.342	-1.	0	6
111 GTSOAD		2.	2.22 0	. 321	0, 28	3.2	0.24	0.10	0.24	0.47	0.	-0.12	0.93	1.280	-1.	0	7
111 GTRAC8	DISTILL	2.	1.00 0	.212	0.28	3.5	0.26	0,11	0.33	0.36	0.	0.	1.07	1.467	-2.	0	€6
111 GTRAOS	DISTILL	2.	3.44 0	. 358	0.28	5.2	0.39	0.16	0.30	0.60	0.	-0.23	1.22	1.682	-3.	0	7:

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE

			BENS I T	IVITY	F CAPI	TAL COST		****LEVE		ENT OF				614444	******				
ENERGY	CONV	SITE-	POWER	POWER	R FESRP			APITAL TA			EL PU	RCHD RE	VNUE TO			RESNT	ROI	GROS	
SYS	STEM	FUEL	REGD	GEN/		/HEAT			<u> </u>			ELEC				WORTH	<u> </u>	<u>f/</u>	
			MW	. REQD		RATIO *1	0**6	.[1	NSNC							15%		EAC	ľK
20111	GTRA12	DISTIL	_ 2.	3.41	0.362	0.28	5.1	0.38	0.16	0.30	0.59	Ο.	-0.23	1.21	1.660	-3.		0	74
20111	GTRA16	DISTIL	2,	1.00	0.215	0.28	3.5	0.26	0.11	0.33	0.36	0.	<u> </u>	1.07	1.468	-2.		0	G
2011	GTRA16	DISTILL			2 0.356	0.28	5.2	0.39	0.16	0.30	0.57	Ο.	-0.21	1.22	1.673	-3.		0	7.
20111	<b>GTR208</b>	DISTIL	. 2.	1.00	0.213	0.28	3.3	0.24	0.10	0.33	0.36	۵.	Ο.	1.03	1.422	-2.		О	6
20111	GTR208	DISTILL	. 2.		0.335		4.2	0.31	0.13	0.27	0.52	Ο.	-0.16	1.03	1.484	-2.		0	7
20111	GTR212	DISTILL	<u> </u>	1,00	0.211		3.4	0.25	0.11	0.33	0.36	0.	0.	1.05	1.438	-2.		5	<u>6</u>
20111	GTR212	DISTILL	. 2.	2.91	0.340	0.28	4.5	0.34	0.14	0.28	0.55	Ο.	-0.18	1.13	1.550			0	7
20111	GTR216	DISTILL	. 2.	1.00	0.215	0.28	3.4	0.25	0.11	0.33	0.36	Ο.	Ο.	1.05	1.441	-2.		0	Œ.
20111	GTR216	DISTILL	. 2.	2.98	0.349	0.28	4.7	0.35	0.15	0,29	0.55	Ο.	-0.19	1.15	1.575	-3.		0	7.
20111	GTRW08	DISTILL	. 2.	1.00	0.177	0.28	3.6	0.27	0.11	0.34	0.38	0.	0	1.10	1.508	-2.		0	6
20111	<b>GTRW08</b>	DISTILL	. 2.	4.14	0.314	0.28	5.9	0.44	0.19	0.34	0.73	0.	-0.30	1.40	1.919	-4.		0	6
20111	GTRW12	DISTILL	. 2.	1,00	0,186	0.28	3.5	0.27	0.11	0.34	0.37	٥.	Ο.	1.09	1.500	-2.		·D	6
20111	GTRW12	DISTILL	. 2.	4.27	0.334	0.28	6,0	0.45	0.19	0.34	0.73	О.	-0.31	1.39	1.913	-4.		O	7
20111	GTRW16	DISTILL	. 2.	1.00	0.188	0.28	3.7	0.27	0.12	0.34	0.37	0.	0	1.10	1.515	-2.		0	6
20111	GTRW16	DISTILL	. 2.	4.01	0.331	0.28	6.0	0.45	0.19	0.34	0.70	0.	-0.28	1.39	1.905	-4.		0	7
0111	GTR308	DISTILL	. 2.	1.00	0.172	0.28	3.3	0.25	0.10	0.33	0.38	0.	Ο.	1.07	1.464	-2.		0	C
0111	GTR308	DISTILL	. 2.	3.11	0.282	0.28	4.6	0.34	0.15	0.29	0.62	0.	-0.20	1.21	1.658	-3.		0	Ú
0111	GTR312	DISTILL	. 2.	1.00	0.189	0.28	3.4	0.25	0.11	0.33	0.37	0.	Ο.	1.07	1.469	-2.		0	G
0111	GTR312	DISTILL	. 2.	3,57	0.323	0.28	5.1	0.38	0.16	0,31	0.65	0.	-0.24	1.25	1.720	-3.		0	7
		DISTILL		1.00	0.188	0.28	3.5	0.26	0.11	0.34	0.37	Ο.	Ο.	1.08	1.490	-2.		0	Ð
20111	<b>GTR316</b>	DISTILL			0.320	0.28	5.3	0.39	0.17	0.31	0.64	Ο.	-0.24	1.28	1.759	-3.		υ	7
		DISTILL	2.		0.190		3.0	0.22	0.09	0.32	0.37	0.	0.	1.00	1.379	-2.		0	6
		DISTILL			0.348		6.0	0.44	0.19	0.46	C.76	Ö.	-0.35	1.50	2.064	-5.		ō	6
		DISTILL			0.184		3.2	0.24	0.10	0.32	0.37	0.	0.	1.03	1.411	-2.		0	G
		DISTILL			0.360		8.8	0.65	0.28	0.59	0.96	Ö.	-0.51	1.97	2.711	-7.		0	6
		RESIDUA		o.	0.	0.41	1.0	0.07	0.03	0.14	0.10	0.11	0.	0.45	1.000	Ò.		Ô	-
		RESIDUA		0.74	0.239		1.9	C. 14	0.06	0.22	0.13	0.03	Ō.	0.58	1.295	-1.		Ô	8
		COAL-F			0.239		3.0	0.23	0.10	0.34	0.07	0.03	o.	0.77	1.719	-2.		ò	7
		COAL-AF			0.239		2.9	0.22	0.09	0.29	0.07	0.03	o.	0.71	1.589	-2.		Õ	່
		RESIDUA			0.189		1.6	0.12	0.05	0.21	0.12	0.04	O.	9.55	1.224	-1.		Ó	7
		COAL-FO	<del></del>		0.189		2.8	0.21	0.09	0.33	0.07	0.04	0.	0.74	1.653	-2.		Ŏ	7
		COAL-AF	• • •		0.189	7	2.7	0.21	0.09	0.28	0.07	0.04	o.	0.69	1.551	-2.		Ō	8
		COAL-PF			0.321	0.41	4.4	0.34	0.14	0.42	0.08	0.	Ö.	0.98	2.190	-3.		Ŏ	7
		COAL-PF			0.332		4.2	0.32	0.14	0.34	0.08	Ŏ.	-0.00	0.87	1.952	-3.		ŏ	8
		RESIDUA			0.319	<del></del>	6.2	0.47	0.20	0.40	0.14	Ö.	0.	1.21	2.718	-5.		ŏ	7
		RESIDUA			0.368		7.4	0.56	0.24	0.37	0.16	ŏ.	-0.02	1.30	2.908	-6.		ŏ	7
	TISTMT		` i.	1	0.319		8.4	0.64	0.27	7.59	0.08	Ö.	0.02	1.57	3.523	-7.		ŏ	7
	TISTMT		1.		0.368		9.4	0.71	0.30	2.51	0.09	0.	-0.02	1.59	3.564	-8.		ŏ	7
		RESIDUA			0.143		5.8	0.43	0.18	0.25	0.12	0.05	0.02	1.04	2.326	-4.		<u> </u>	····· <del>'</del> 7
	THRSG		` ;;		0.143		7.5	0.57	0.10	0.37	0.07	0.05	o.	1.30	2.914	-6.		Ö	7
	STIRL	DISTILL			0.268		1.6	0.12	0.05	0.25	0.18	0.00	0.	0.60	1.352			õ	Ġ
	STIRL	DISTILL			0.332	- •	1.6	0.12	0.05	0.19	0.23	o.	-0.04	0.54	1.208	-1.		ñ	7
0261		RESIDUA			0.352		1.6	0.12	0.05	0.15	0.15	0.	0.04	0.04	1,500	1 .			

DATE 06/07/79 18SE-PEC-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			SENSITI	VITY OF	CAPI	TAL COS	T ******			ENT OF					*****				
	Y CONV	SITE- FUEL	POWER REQD	POWER GEN/	FESRP	OWER CA	PI'TAL CAI				EL PUI		EVNUE TO			ESNT F	ROI X	61:08 0:A	iS X
	<u> </u>		MW	REQD		RATIO *		i	NSNC	<del></del>		<u> </u>		<del></del>	<del></del>	15%			<del>**</del> -
20261	STIRL	COAL	1.	1.00	0.268	0.41	3.5	0.26	0.11	0.42	0.09	0.	Ο.	0.87	1.951	-3.		0	72
20261	STIRL	COAL	1,	1.68	0.332	0.41	3.2	0.23	0.10	0.31	0.11	0	-0.04	0.71	1.578	-2.		0	97
20261	HEGT85	COAL-A	F 1.	1.00	0.247	0.41	7.5	0.57	0.24	0.45	0.09	Ο.	Ō.	1.35	3.022	-6.		0	75
	HEGT 65				0.323		9.8	0.74	0.32	0.39	0.12	Ο.	~0.06	1.51	3.379	~8.		0	32
	HEGT60				0.164		7.3	0.56	0.24	0.45	0.10	Ο.	Ο.	1.34	3.007	-6.		0	75
	HEG160				0.204		8.8	0.67	0.28	0.37	0.13	0	-0.04	1.41	3.149	-7.		0	<u> 31</u>
	HEGTOO				0.126		5.5	0.42	0.18	0.27	0.09	0.02	0.	0.99	2.204	-4.		0	65
	FCMCCL		1.		0.278		6.2	0.48	0.21	0.44	0.09	Ο.	0.	1.22	2.720	-5.		0	75
	FCMCCL		1.		0.338		6.8	0.53	0.23	0.35	0.10	0.	-0.04	1.17	2.616	-5.		Ú	81
	FCSTCL		1		0.290		6.3	0.48	0.20	0.51	0.08	<u>0.</u>	<u> </u>	1.27	2.844	-5.		0	<u>73</u>
	FCSTCL		1.		0.419		8.8	0.69	0.29	0.48	0.13	Ο.	-0.11	1.48	3.315	-7.		0	03
	IGGTST		1.		0.237		6.6	0.51	0.22	0.56	0.09	Ο.	0.	1.38	3.090	-6.		0	71
	IGGTST		1.	4	0.312		8.0	0.62	0.26	0.50	0. i2	· O.	<b>-0</b> .06	1.44	3.230	-7.		0	76
	GTSOAR				0.253		2.2	0.16	<u> </u>	0.24	0.15	0	0.	0.63	1.417	<u>-1.</u>		0	<u>75</u>
	GTSOAR			- ,	0.306		2.3	0.17	0.07	0.18	0.18	Ο.	-0.04	0.58	1.294	-1.		0	144
20261	GTACO8	RESIDU	A 1.	1.00	0.272	0.41	1.9	0.14	0.06	0.23	0.15	Ο.	Ο.	0.57	1.286	-1.		0	80
0261	GTAC08	RESIDU	A 1.	1.31	0.307	0.41	1.8	0.13	0.06	0.16	0.17	٥.	-0.02	0.50	1.119	-1.		O	939
0261	GTAC12	RESIDU	<u> </u>	1,00	0.277	0.41	1.9	0.14	G.06	0.24	0.15	0.	0.	0.59	1.309	<u>-1.</u>		0	78
0261	GTAC12	RESIDU	A 1.	1.59	0.337	0.41	2.0	0.15	0.06	0.17	0.18	0.	-0.04	0.52	1.157	-1.		0	939
0261	GTAC16	RESIDU	A 1.	1.00	0.276	0.41	2.0	0.15	0.06	0.24	0.15	Ο.	Ο.	0.60	1.337	-1.		0	77
0261	GTAC16	RESIDU	A 1.	1.77	0.350	0.41	2.2	0.16	0.07	0.18	0.19	Ο.	-0.05	0.54	1.216	-1.		Ü	909
0261	GTWC16	RESIDU	<u> 1.</u>	1.00	0.242	0.41	2.2	0.16	0.07	0.25	0.16	0.	0.	0.64	1.422	<u>-1.</u>		0	74
0261	GTWC16	RES! DU	A 1.	1.92	0.315	0.41	2.5	0-19	0.08	0.19	0.21	0.	-0.06	0.61	1.354	-1.		O	107
0261	CC1626	RESIDU	A 1.	1.00	0.245	0.41	2.3	0.18	0.08	0.32	0.16	Ο.	Ο.	0.72	1.617	-2.		0	68
20261	CC1626	RESIDU	A 1.	3,45	0.371	0.41	3.7	0.28	0.12	0.31	0.29	Ο.	-0.16	0.85	1.897	-3.		0	74
20261	CC1622	RESIDU	A 1.	1.00	0.256	0.41	2.2	0.16	0.07	0.31	0.15	0.	0.	0.70	1,563	-1.		0	68
0261	CC1622	RESIDU	A 1.	3.11	0.380	0.41	3.2	0.24	0.10	0.30	0.27	0.	-0.13	0.77	1.733	-2.		0	76
20261	CC1222	RESIDU	A 1.	1.00	0.258	0.41	2.1	0.16	0.07	0.31	0.15	Ο.	Ο.	0.69	1.542	-1,		O	68
20261	CC1222	RESIDU	A 1.	3.11	0.383	0.41	3.1	0.23	0, 10	0.29	0.27	0.	-0.13	0.75	1.689	-2.		0	76
20261	CC0822	RES I DU	A 1.	1.00	0.276	0.41	2.2	0.17	0.07	0.31	0.15	Ο.	0.	0.70	1.561	-1.		0	69
20261	CC0822	RESIDU	A 1.	2.51	0.389	0.41	2.9	0.22	0.09	0.28	0.22	0.	-0.10	0.71	1.596	-2.		Ö	79
20261	STIG15	RESIDU	A 1.	1.00	0.090	0,41	2.4	0.18	·0.08	0.28	0.19	0.	Ο.	0.72	1.608	-2.		0	68
20261	STIG15	RESIDU	A 1.	72.13	0.171	0.41	29.4	2.18	0.93	1.38	6.46	Ο.	-4.52	6.43	14.377	-32.		0	63
20261	STIG10	RESIDUA	A 1.	1.00	0.129	0.41	2.3	0.17	0.07	0.27	0.18	Ο.	0.	0.69	1.538	-1.		0	69
20261	STIG10	RESIDU/	A - 1.	6.67	0.218	0.41	5.1	0.38	0.16	0.33	0.63	0.	-0.36	1.15	2.568	-4.		Ō	67
20261	STIGIS	RESIDU	A 1.	1.00	0.146	0.41	2.2	0.16	0.07	0.26	0.18	ο.	o.	0.67	1.506	-1.		Ò.	69
	STIGIS			3.91	0.228	0.41	3.6	0.26	0.11	0.26	0.40	Ο.	-0.19	0.85	1.902	-2.		0	70
	DEADV3				0.257	0.41	3.1	0.23	0.10	0.29	0.15	0.	0.	0.77	1.722	-2.		0	73
	DEADV3				0.365	0.41	4.2	0.31	0.13	0.27	0.24	0.	-0.10	0.85	1.892	-3.		ō	80
	DEHTPM			_	C. 299		3.0	0.22	0, 10	0.31	0.14	Ö.	0.	0.77	1.720	-2.		ŏ	72
	DEHTPM				0.397	0.41	3.7	0.27	0.12	0.27	0.19	o.	-0.07	0.78	1.744	-2.		ŏ	83
	DESOA3				0.244	0.41	2.0	0.15	0.06	0.27	0.19	Õ.	0.	0.67	1.504	-1.		ŏ	66
	DESOA3				0.346		3.2	0.23	0.10	0.24	0.30	Ö.	-0.10	0.78	1.737	-2.		<del>ŏ</del>	71

DATE 06/07/79 | &SE-PEG-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE

			SENSIT	IVITY OF	FCAPIT	AL COS	T *******	***! EVF			ORIGINA NERGY C			S)****	×****				
ENERGY SYS	CONV	SITE- FUEL	POWER REQD	POWER GEN/	FESRPO	WER CA	PITAL CAP				EL PUI		VNUE TO			RESNT WORTH	ROI X	GROS	
			MW	REGD	R	ATIO *		11	NSNC							15%		BAC	CK
20261	DESGA3	RESIDU	A 1.	2.60	0.346	0.41	3.2	0.23	0.10	0.24	0.25	0.	-0.10	0.72	1.612	-2.	· · · · ·	0	81
	GTSGAD				0.269	0.41	1.8	0.14	0.06	0.23	0.18	0.	<u>O.</u>	0,61	1.367	<u>1.</u>		0	<u>68</u>
	GTSOAD					0.41	1.8	0.14	0.06	0.17	0.22	. 0.	-0.03	0.54	1.215	-1.		0	89
	GTRA08			7	0.260	0.41	2.4	0.18	0.08	0.26	0.19	0.	0.	0.69	1.554	-1.		0	69
	GTRA08				0.358	0.41	3.1	0.23	0.10	0.21	0.27	0.	-0.08	0.72	1.609	-2.		0	76
	GTRA12 GTRA12				0.362	0.41	<u> 2.3</u>	0.17	0.07	0.25	0.19	<u>0.</u>	-0.08	0.68	1.525	- <u>1,</u> -2,		<del>_0</del>	69 <b>76</b>
	GTRA16				0.263	0.41	3.0 2.4	0.18	0.09	0.20 0.25	0.19	o.	0.00	0.69	1.547	-1.		ŏ	69
	GTRA16				0.255	0.41	3.0	0.10	0.09	0.20	0.26	0.	-0.08	0.71	1.585	-2.		ő	76
	GTR208				0.262	0.41	2.2	0.16	0.03	0.25	0.19	o.	0.00	0.66	1.483	-1.		ŏ	69
	GTR208		-		0.335	0.41	2.4	0.18	0.08	0.19	0.24	0.	-0.05	0.63	1.413	-1.		ŏ	78
	GTR212				0.259	0.41	2.2	0.17	0.07	0.25	0.19	Ö.	0.	0.67	1.506	-1.		Ö	69
20261	GTR212	DISTIL		1.98	0.340	0.41	2.6	0.19	0.08	0.19	0.25	o.	-0.06	0.66	1.474	-1.		0	77
20261	<b>GTR216</b>	DISTIL	L 1.	1.00	0.264	0.41	2.3	0,17	0.07	0.25	0.19	0,	0.	0.68	1.511	-1,		0	69
20261	GTR216	DISTIL	L 1.	2.02	0.349	0.41	2.7	0.20	0.09	0.20	0.25	0.	-0.06	0.67	1.492	-2.		0	77
20261	GTRW08	DISTIL	L 1.	1.00	0.217	0.41	2.5	0.18	0.08	0.26	0.20	Ο.	0.	0.72	1.608	-2.		0	69
20261	GTRW08	DISTIL	L 1.	2.81	0.314	0.41	3.5	0.26	0.11	0.23	0.34	0.	-0.11	0.82	1.826	-2.		0	71
	GTRW12				0.229	0.41	2.5	0.18	0.08	0.26	0.19	0.	<u>o.</u>	0.71	1.599	-2.		0	68
	GTRW12				0.334	0.41	3.5	0.26	0.11	0.23	0.33	0.	-0.12	0.82	1.825	-2.		0	71
	GTRW16				0.230	0.41	2.5	0.19	0.08	0.26	0.19	ο.	0.	0.72	1.617	-2.		0	68
	GTRW16				0.331	0.41	3.6	0.26	0.11	0.23	0.32	o.	-0.11	0.81	1.820	-2.		0	72
	GTR308				0.211	0.41	2.2	0.17	0.07	0.25	0.20	<u>o.</u>	<u>0.</u>	0.69	1.539	<u>1.</u>		<u> </u>	<u>67</u> 71
	GTR308 GTR312				0.282	0.41	2.7	0.20	0.08	0.20 0.26	0.29 0.19	0. 0.	-0.07 0.	0.70	1.565	-2. -1.		0	68
	GTR312				0.232	0.41 0.41	2.3 3.0	0.17 0.22	0.07 0.09	0.20	0.19	ο.	-0.09	0.73	1.640	-2.		ŏ	72
	9TR316				0.230	0.41	2.4	0.1B	0.08	0.26	0.19	0.	0.09	0.73	1.581	-2.		ŏ	68
	GTR316				0.320	0.41	3.1	0.23	0.10	0.21	0.30	0.	-0.09	0.75	1.678	- <u></u>		o o	72
	FCPADS				0.250	0.41	1.8	0.14	0.06	0.23	0.19	o.	o.	0.61	1.367	-1.		ŏ	68
	FCPADS				0.364	0.41	2.7	9, 20	0.09	0.23	0.31	o.	-0.12	0.71	1.583	-2.		Õ	71
0261	FCMCDS	DISTIL		1.00	0.226	0.41	2.0	0.15	0.06	0.23	0.19	0.	0,	0.64	1.432	-1.		0	68
0261	FCMCDS	DISTIL	L 1.	4.35	0.360	0.41	4.2	0.31	0.13	0.31	0.44	٥.	-0.21	0.98	2.201	-3.		0	68
0461	ONOCGN	RESIDU	A 29.	0	0.	0.15	22.4	1.66	0.71	1.00	18,62	7.24	Ο.	29.22	1.000	٥.		0	0
0461	STM141	RESIDU	A 29.	1.00	0.176	0.15	29.6	2.24	0.95	1.57	21.36	Ο.	0.	26.12	0.894	6.	:	27	4
	STM141				0.277	0.15	28.1	2.13	0.91	1,29	24.21	0.	-4.51	24.03	C.822	13.		47	3
	STM141				0.176	0.15	51.9	3.94	1.67	3.04	12.40	0.	0.	21.05	0.720	11.	-	20	5
	STM141				0.277	0.15	59.0	4.48	1.90	2.90	14.06	0.	-4.51	18.83	0.645	15.		21	.5
	STM141				0.176	0.15	43.4	3.30	1.40	2.83	12.40	0.	0.	19.93	0.662	19.		28	4
	STM141				0.277	0,15	41.8	3,17	1.35	2.57	14.06	<u>0.</u>	<u>-4.51</u>	16.64	0.570	30.		37	. 3
	STM088				0.176	0.15	24.9	1.89	0.80	1.44	21.36	0.	0,	25.50	0873	10.		64	2
	STM088			•	0.241	0.15	25.8	1.96	0.83	1.23	23.03	0.	-2.64	24.41	0.835	13.		64	. 2
	STM088				0.176	0.15	51.1	3.88	1.65	2.98	12.40	0.	0.	20.91	0.716	12.		21	5
	STM088				0.241	0.15	55.5 42.0	4.21 3.19	1,79 1.36	2.73	13.37	<u>0.</u> 0.	-2,64	19.46 19.75	0.666 0.676	14. 20.		<u>21</u> 30	5 4

PAGE 10

DATE 06/07/79 (&SE-PEC-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

	······································	S	ENSITI	VITY OF	CAPIT			****LEVE			ORIGINAL		T 100 MILLION	S)****	*****			
ENERGY	CONV	SITE- I	POWER REQD	POWER GEN/	FESRPO		PITAL CA	PITAL TA			EL PU		REVNUE TO			ESNT WORTH		ROSS PAY
	<u> </u>		MW	REGD	R	ATIO *		11	NSNC							15%		ACK
												_				•	-	-
		COAL-PF	29. 29.		0.174	0.15 0.15	52.3 58.6	3.97 4.44	1.69 1.89	3.40 4.23	12.43 15.59	O.	0. -8.49	21.49 17.66	0.735 0.604	9. 18.	20 22	5 5
		RESIDUA	<u>29.</u>		0.173	0.15	69.3	5.26	2.24	2.56	21.43	<u> </u>	0.	31.48	1.077	-30.		28
		RESIDUA	29.		0.368	0.15	150.9	11.45	4.87	4.45	29.30	Ö.	-12.18	37.90	1.297	-89.	ő	939
	TISTMT		29.		0.173	0.15	95.5	7.24	3.08	4.09	12.44	Ö.	Ö.	26.85	0.919	-28.	7	11
20461	TISTMT	COAL	29.	3.80	0.368	0.15	189.7	14.40	6.12	6.28	17.01	0.	-12.18	31.63	1.083	-88.	4	16
20461	TIHRSG	RESIDUA	29.	1.00	0.152	Ծ. 15	97.4	7.21	3.07	3.14	21.96	0.	0.	35.38	1.211	-54.	0	999
		RESIDUA	29.	1.41	0.192	0.15	119.8	8.87	3.77	3.46	23.32	Ο.	-1.76	37.66	1.289	-72.	0	318
	TIHRSG		29.		0.152	0.15	132.0	10.01	4.26	4.89	12.75	Ο.	Ο.	31.91	1.092	-61.	3	18
	TIHRSG		29		0.192	0.15	152.7	11,59	4.93	<u>5.05</u>	13.54	<u> 0.</u>	-1.76	33,34	1.141	<u>-76.</u>		21
	STIRL	DISTILL	29.		0.129	0.15	38.3	2.84	1.21	1.74	27.66	0.	0.	33.45	1.145	-21.	0	61
	STIRL	DISTILL	29.		0.284	0.15	75.9	5.62	2.39	2.54	42.89	0.	-13.65	39.80	1.362	-58.	0	63
	STIRL	RESIDUA	29.	_	0.129	0.15	38.4	2.84	1.21	1.74	22.57	٥.	0.	28.36	0.971	-5.	9	9
	STIRL	RESIDUA	<u> 29.</u>		0.284	0.15 0.15	76.0	5.63	2.39	2.55 3.30	<u>34.99</u>	0.	<u>-13,65</u>	31.91	1.092 G.794	<u>-34.</u> -1.	<u>0</u> 14	999 7
	STIRL	COAL	29. 29.		0.129 0.284	0.15	64.4 134.1	4.77 9. <del>3</del> 4	2.03 4.22.	5.05	13.10 20.32	0.	0. -13.65	23.20 25.87	0.794	-1. -42.	7	11
		COAL-AF	29. 29.		0.091	0.15	81.5	6.19	2.63	3.61	13.68	o.	0.	26.11	0.894	-19.	ģ	10
		COAL-AF	29.		0.244	0.15	233.6	17.72	7.54	8.43	33.80	· 0.	-30.42	37.06	1.268	-126.	ĭ	23
····		COAL-AF	29.		0.089	0.15	79.3	6.02	2.56	3.58	13.70	Ö.	0.	25.86	0.885	-17.	9	9
		COAL -AF	29.		0.204	0.15	156.6	11.89	5.05	5.89	24.18	o.	-15.72	31.28	1.071	-71.	4	16
		COAL-AF	29.		0.082	0.15	76.3	5.79	2.46	3.55	13.81	o.	0.	25.61	0.876	-15.	10	g
		COAL-AF	29.		0.138	0.15	99.5	7,55	3.21	4.03	17.72	Ο.	-5.65	26.87	0.919	-30.	7	11
20461	FCMCCL	COAL	29.	1.00	0.151	0.15	75.2	5.84	2.48	3.85	12.77	0.	0.	24.96	0.854	-13.	10	g
20461	FCMCCL	COAL	29.	4.33	0.338	0.15	125.4	9.75	4.15	6.56	19.32	Ο.	-14.47	25.30	0.866	-39.	7	10
20461	FCSTCL	COAL	29.	1.00	0.157	0.15	72.3	5.62	2.39	3.74	12.68	Ο.	0.	24.42	0.836	-10.	11	E
20461	FCSTCL	COAL	29.	7.65	0.419	0.15	163.2	12,69	5.40	8.55	25.10	0.	-28.88	22.86	0.782	-50.	8	10
	IGGTST		29.		0.129	0.15	69.0	5.36	2.28	3.31	13.11	Ο.	Ο.	24.06	0.823	-7.	12	8
	IGGTST		29.		0.312	0.15	128.9	10.02	4.26	4.25	23.41	Ο.	-19.47	22.47	0.769	-32.	9	9
		RESIDUA	29.		0,137	0.15	32.2	2.38	1.01	1.52	22.36	0.	0.	27.28	0.934	1.	17	6
		RESIDUA	<u> 29.</u>		0.306	0.15	51.5	3.81	1.62	1.82	34.78	<u>o.</u>	-14.42	27.62	0.945	-9.	9_	
		RESIDUA	29.		0.148	0.15	30.4	2.25	0.96	1.48	22.09	0.	0.	26.78	0.916	4.	22	5
		RESIDUA	29.		0.307	0.15	39.2	2.90 2.30	1.23	1.50	31.11 22.01	0.	-11.28	25,46 26,78	0.871	4.	18 21	Ę
		RESIDUA RESIDUA	29. 29.		0.150	0.15 0.15	31.0 46.2	3.42	0.98 1.46	1.49 1.68	33.48	0. 0.	0. -14.66	25.39	0.869	4. 1.	15	ě
		RESIDUA	29.		0.150	0.15	31.8	2.36	1.00	1.50	22.03	0.	0.	26.89	0.920	3.	20	
		RESIDUA	29.		0.350	0.15	55.7	4.13	1.75	1.93	35.25	Ö.	-16.84	26.22	0.897	-6.	11	8
		RESIDUA	29.		0.131	0.15	31.7	2.35	1.00	1.51	22.51	o.	0.	27.37	0.937	1.	1.7	. 6
		RESIDUA	29.		0.315	0.15	49.6	3.67	1.56	1.80	39.23	õ.	-18.65	27.62	0.945	-8.	9	9
		RESIDUA	29.		0.133	0.15	32.0	2.43	1.03	1.61	22.47	Ō.	0.	27.54	0.942	Ö.	15	. 6
		RESIDUA	29.		0.371	0.15	78.3	5.94	2.53	2.76	55.28	o.	-36.93	29.57	1.012	-28.	4	14
20461	CC1622	RESIDUA	29.	1.00	0.139	0,15	31.9	2.42	1.03	1.60	22.31	О.	Ο.	27.37	0.937	1.	16	6
20461	CC1622	RESIDUA	29.	8.57	0.380	0.15	79.2	6.01	2.56	2.71	50.31	0.	-32.89	28.70	0.982	-26.	6	. 12
20461	CC1222	RESIDUA	29,	1.00	0.140	0.15	31.3	2.38	1.01	1.59	22.28	٥.	0.	27.26	0.933	2.	17	6

DATE 06/07/79 L&SE-PEC-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

													<del></del>						
		S	ENSIT	IVITY OF	F CAPIT	TAL COS					ORIGINA								
ENERGY				20152				****LEVE									na i	Obac	
	CONV.	SITE-			FESRP			APITAL TA		NDM FU			REVNUE TO	TAL N	JKML P	RESNT		GRO3	-
518	STEM	FUEL	REGD	GEN/		/HEAT		<del></del>	+	······································		ELEC	······································			WORTH	<u> </u>	<u>የ</u> ነለ (ነሊነ)	
			MW	REQD	r	RATIO *	10**6		NSNC							15%		UN	.IN
20461	ccness	RESIDUA	29.	1 00	0.150	0.15	31.2	2.36	1.01	1.59	22.03	0.	Ο.	26.99	0.924	2.		19	5
		RESIDUA			0.389	0.15	61.2		1.98	2.26	42.25	o.	-25.72		J. 870			11	Ę
		RESIDUA			0.049	0.15	35.4	2.62	1.11	1.79	24.65	0.	0.	30.18	1.033			Ö	999
		RESIDUA		198.62		0.15	1371.1	101.56	43,18		217.15	õ.	-858.48					ŏ	59
		RESIDUA			0.070	0.15	34.4	2.55	1.08	1.71	24.10	o.	0.	29.44	1.008			3	- 17
		RESIDUA			0.218	0.15	145.3	10.76	4.58		119.42	Õ.	-75,44	66.11	2.253	-173.		Ò	60
20461	STIGIS	RESIDUA	29,		0.079	0.15	30:7	2.28	0.97	1.63	23.85	0.	0.	28.72				9	•
20461	STIGIS	<b>RESIDUA</b>	29.	10.78	0.228	0.15	91.2	6.76	2.87	4.45	75.06	Ο.	-42.47	46.67	1.597	-87.		0	61
20461	<b>DEADV3</b>	RESIDUA	29.	1.00	0.111	0.15	41.0	3.04	1.29	1.79	23.03	Ο.	Ο.	29.15	0,998	-9.		5	10
20461	DEADV3	RESIDUA	29,	9.90	0.314	0.15	182.6	13.52	5.75	5.36	62.28	0.	<b>-38</b> .65	48.26	1,652	<u>-135.</u>		0	8
20461	DEHTPM	RESIDUA	29.	1.00	0.162	0.15	40.3	2.98	1.27	1.82	21.70	Ō.	0.	27.78	0.951	-4.		10	
		RESIDUA			0.397	0.15	107.7	7.98	3.39	3., 45	36.00	Ο.	-20.10	30.71	1.051	-45.		3	16
		DISTILL			0.097	0.15	45.7	3,38	1.44	1.91	28.69	Ο.	Ο.	35.4 <b>3</b>				0	61
		DISTILL	29.	11.12		0.15	254.2	18,83	8.00	7.19	88.14	<u>o,</u>	<u>-43.95</u>	78.21				0	63
		RESIDUA			0.097	0.15	45.7	3.38	1.44	1.91	23.41	ο.	0.	30.14	1.032			1	24
		RESIDUA		11.12		0.15	254.2	18.83	8.00	7.19	71.91	0.	-43,95	61.97		-211.		0	71
		DISTILL	29.		0.146	0.15	29.8	2.21	0.94	1.46	27.13	0.	0.	31.73	1.086			0	60
		DISTILL	<u>29.</u>		0.321	0.15	40.1	2.97	1.26	1.53	40.73	<u> 0.</u>	<u>-13.71</u>	32.79	1.122			0	63
		DISTILL	29.		0.141	0.15	33.1	2.45	1.04	1.53	27.28	0.	0.	32.30	1.106			0	60 68
		DISTILL			0.358	0.15 0.15	71.0	5,26	2.24	2.35 1.54	51.49 27.23	'O. O.	-23,56 0.	37.78 32.28	1.293 1.105			0	61
		DISTILL	29. 29.		0.143	0.15	33.3 70.3	2.46 5.21	1.05 2.21	2.33	50.92	o.	-23.32	37.34	1.278			õ	66
		DISTILL			0.143	0.15	34.0	2.52	1.07	1.56	27.22	0.	0.	32.38	1,108		·	<del>-</del> 0	61
		DISTILL			0.356	0.15	71.3	5.28	2.25	2.35	49.31	o.	-21.78	37.41	1.280			ŏ	66
		DISTILL			0.142	0.15	32.0	2.37	1.01	1.51	27.25	o.	0.	32.15	1.100			ŏ	60
		DISTILL	29.		0.335	0.15	56.1	4.16	1.77	1.95	45.27	õ.	-17.65	35.51	1.215	, ,		Ŏ	G.
		DISTILL			0.141	0.15	32.6	2,41	1.03	1,52	27.30	0.	0.	32.26	1.104	-14.		0	60
		DISTILL			0.340	0,15	60.7	4.50	1.91	2.07	47.17	ο.	-19.28	36.37	1,245	-40.		0	G.
20461	GTR216	DISTILL	29.	1.00	0.143	0.15	33.2	2,46	1.05	1.54	27.21	0.	0.	32.26	1,104	-15.		O	G1
20461	GTR216	DISTILL	29.	5.56	0.349	0.15	65.0	4.81	2.05	2.18	47.23	0.	-19.81	36.46	1.248	-43.		0	G
20461	GTRW08	DISTILL	29.	-1.00	0.118	0.15	32.9	2.44	1.04	1.53	28.02	0.	0.	33.03	1,130	-17.		0	55
20461	GTRW08	DISTILL	29.	7.74	0.314	0.15	73.0	5.41	2.30	2.44	63.08	Ο.	-29.26	43.96	1.505	-70.		O	60
20461	GTRW12	DISTILL	29.	1.00	0.124	0.15	32.9	2.44	1.04	1.53	27.82	Ο.	0.	32.83	1.123	-16,		0	59
		DISTILL	29.		0.334	0.15	74.3	5.50	2.34	2.47	62.76	0.	-30.33	42.75	1.463	-67.		_0	61
		DISTILL			0.125	0.15	33.4	2.48	1.05	1.55	27.79	0.	0.	32.87	1.125	-17.		0	6
		DISTILL	29.		0.331	0.15	74.2	5.50	2.34	2.46	60.11	0.	-28.23	42.18	1.444	-65.		0	61
		DISTILL	29.		0.114	0.15	32.1	2.38	1.01	1.52	28.13	0.	0.	33.04	1.131	-17.		0	59
		DISTILL	<u> 29.</u>		0.282	0.15	59.5	4.41	1.87	2.07	53.73	<u>0.</u>	-20.94	41.14		<u>-55.</u>	<del></del>	_0	59
		DISTILL	29.		0.126	0.15	32.1	2.38	1.01	1.51	27.77	0.	0.	32.67	1.118	-15.		0	59
		OISTILL	29.		0.323	0.15	63.9	4.73	2.01	2.19	55.90	o.	-24.68	40.16	1.374	-54.		0	61
		#STILL	29.		0.125	0, 15	32.7	2.42	1.03	1.53	27.79	0.	0. -04.05	32.78	1,122			0	59
		DISTILL	29.		0.320	0.15	65.9	4.88	2.08	2.24	55,58	<u> </u>	<u>-24.25</u>	40.52	1.387	-56.		.0	61
20401	FUFAUS	DISTILL	_ 29,	1,00	0.092	0,15	42.7	3.16	1.34	3.73	28.84	0.	0.	37.08	1.269	-34,		0	60

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			SENSITI	VITY A	CAPIT	AL COS	<del></del>		PERC	ENT OF	ORIGINA	COST	100			<del>.</del>		
		•	SENSIII	VIII OF	CAFTI		******	***LEVE						IS)****	*****	E		
NERGY		SITE-			FESRPO		PITAL CAP	PITAL TA		NDM FU			EVNUE TO	TAL NO	DRML I	PRESNT		ROSS
SYS	TEM	_FUEL_	REQD	GEN/		/HEAT			+			ELEC		· · · · · · · · · · · · · · · · · · ·		WORTH		PAY
	1		MW	REQD	. R	ATIO *	10**6	11	<b>NSNC</b>							15%	t	BACK
20461	FCMCDS	DISTIL	L 29.	1.00	0.123	0.15	43.9	3.25	1.38	3.59	27.86	Ο.	٥.	36.06	1.23	5 -32.	0	61
	FCMCDS			11.98	0.360	0.15	210.2	15,57	6.62	28.67	83.24	0.	-47.71	86.40	2.95		0	62
20631	ONOCEN	RESIDU	A 5.	Ö.	0.	0.05	12.3	0.91	0.39	0.64	2.83	0.51	0.	5.27	1.00		0	0
	STM141			-	0.095	0.05	11.7	0.89	0.38	0.89	3.02	Ο.	0.	5.17	0.98		999	0
	STM141				0.315	0.05	16.3	1 . 23	0.52	0.87	3.91	0.	-1.41	5.13	0.97		7	11
	STM141				0.095	0.05	26.6	2.02	0.86	1.67		<u>o.</u>	<u> </u>	6.30				599
	STM141				0.315	0.05	29.2	2.22	0.94	1.53	2.27	0.	-1.41	5.55	1.05		. 4	16
	STM141				0.095	0.05	25.1	1.90	0.81	1.57	1.75	0.	0.	6.04	1.14	-	.0	999
	STM141				0.315	0.05	21.3	1,61	0.69	1.27	2.27	0.	-1.41	4.43	0.83		11	8
	STM088				0.095	0.05	11.5	0.87	0.37	0.89	3.02	<u>o.</u>	<u>0.</u> -1.05	5.16 5.06	0.97		999 10	U
	STM088				0.278	0.05	14.7	1.12	0.48	0.83	3.68	0.			1.19		10	99 <b>9</b>
	STMO88 STMO88			•	0.095	0.05 0.05	26.6 27.2	2.02 2.06	0.86 0.88	1.68 1.46	1.75 2.14	0. 0.	0. -1.05	6.31 5.49	1.19		4	999 16
						0.05	25.0	1.90	0.81	1.58	1.75	0.	0.	6.04	1.14		0	909
	STM088 STM088				0.095	0.05	20:3	1.54	0.65	1.23	2.14	0.	-1.05	4.51	0.85		<u></u>	8
	PFBSTM				0.275	0.05	26.3	2.00	0.85	1.61	1.76	0. 0.	0.	6.22	1.17		Ö	999
	PFBSTM				0.369	0.05	20.3 34.8	2.64	1.12	1.86	2.57	0. 0.	-2.18	6.00	1.13		5	21
	TISTMT				0.094	0.05	22.2	1.69	0.72	1.13	3.02	0.	0.	6.56	1.24		0	83
	TISTMT				0.368	0.05	72,4	5.49	2.33	2.48	4.45	<del>0.</del>	-2.21	12.56	2.38		<u> </u>	82
	TISTMT		n 5. 5.		0.094	0.05	36.1	2.74	1.16	1.87	1.76	0.	0.	7.53	1.42		ő	295
	TISTMT		5.	10.53		0.05	105.9	8.03	3.42	3.50	2.84	0.	-2.90	14.90	2.82		ő	112
	TIHRSG				0.083	0.05	29.5	2.19	0.93	1.26	3.06	o.	0.	7.44	1.41		ň	78
	TIHRSG				0.192	0.05	57.8	4.28	1.82	1.97	3.54	<del>-0.</del>	-0.62	10.99	2.08		<u>ō</u>	——————————————————————————————————————
	TIHRSG		7 5. 5.		0.083	0.05	46.3	3.52	1.50	2.09	1.78	Õ.	0.02	8.88	1.68		ő	113
	TIHRSO		5.		0.223	0.05	85.1	6.46	2.74	2.79	2.17.	Ö.	-0.88	13.28	2,51		ŏ	95
		DISTIL			0.070	0.05	14.3	1.06	0.45	0.89	3.81	Õ.	0.	6.20	1.17		ő	59
20631		DISTIL			0.284	0.05	31.4	2.32	0.99	1.44	6.52	<u> </u>	-2.43	8.84	1.67		<u>ŏ</u>	65
20631		RESIDU			0.070	0.05	14.3	1.06	0.45	0.89	3.10	Õ.	0.	5.50	1.04		ŏ	1/13
20631		RESIDU			0.284	0.05	31.4	2.33	0.99	1.44	5.32	Ö.	-2.43	7.64	1.44		0	61
20631		COAL	5.		0.070	0.05	26.9	2.00	0.85	1.59	1.80	Ō.	0.	6.24	1.18	3 -10.	0	999
20631		COAL	5.	11.48		0.05	62.4	4.62	1.97	2.43	3.48	Ō.	-3.18	9.32	1.76	3 -36.	0	599
	HEGT85			,	0.049	0.05	32.9	2.50	1.06	1.62	1.84	o.	0.	7.02	1.33	2 -16.	0	999
	HEGT85			22.17		0.05	133.9	10.16	4.32	4.24	6.10	Ο.	-6.43	18.39	3.48		0	98
	HEGT60			1.00	0.048	0.05	32.5	2,46	1.05	1.62	1.84	Ο.	Ο.	6.98	1.32	4 -15.	0	509
	HEGT60			12.79		0.05	90.0	6.83	2.91	2.98	4.23	0.	-3.58	13.36	2.53	5 -63,	0	100
20631	HEGT00	COAL-A	F 5.	1.00	0.045	0.05	32.0	2.43	1.03	1.63	1.85	٥.	0.	6.93	1.31	5 -15.	0	999
20631	HEGT00	COAL-A	F 5.	6.37	0.156	0.05	57,2	4.34	1.84	2.04	2.98	Ο.	-1.63	9.57	1.814	1 -35.	0	161
0631	FCHCCL	COAL	5,	1.00-	0.151	0.05	33.4	2.60	1.10	1.69	2.23	0.	0.	7.63	1.44	7 -1 <u>8.</u>	0	114
0631	FCMCCL	COAL	5.	12.00	0.280	0.05	76.9	5.51	2.34	2.81	3.74	0.	-3.34	11.07	2.09	3 -47.	0	167
0631	FCSTCL	COAL	5.	1.00-	0.148	0.05	32.5	2.52	1.07	1.72	2.23	0.	Ο.	7.54	1.430	-17.	0	114
0631	FCSTCL	COAL	5.	21.18	0.386	0.05	92.1	7.16	3.05	3.67	4.86	Ο.	-6.13	12.61	2.39	2 <b>-63</b> .	0	567
20631	IGGTST	COAL	5.	1.00-	0.163	0.05	31.6	2.46	1.04	1.75	2.26	0.	0.	7.51	1.424	4 -17.	0	107
0631	IGGTST	COAL	5	15.18	0,262	0,05	71.5	5.56	2.36	2.60	4.54	0.	-4.31	10.74	2.03	7 -47.	0	376

DATE 06/07/79 18SE-PEO-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		· · · · · · · · · · · · · · · · · · ·	SENS	ITIV	ITY OF	F CAPI	TAL COS	T		PERC	ENT OF	ORIGINA	L COS	T 100	/				-	
								******						\$ MILLIO						~~~
	CONV	SITE				FESRP		PITAL CA	PITAL TA		NDM F			REVNUE TO	TAL N	ORML	PRESNT	ROI	GRO	PAY
SYS	STEM	FUEL	REQ MW		GEN/ REQD		<u>/HEAT</u> RATIO *		1	+ NSNC		· · · · · · · · · · · · · · · · · · ·	ELEC		<del></del>		15%	1 %		VCK
			PIW	,	KEGID	'	KAIIO 4	10**0	• '	13110							10%		1.77	2.717
0631	GTSOAR	RESIDU	JA	5.	9.38	0.306	0.05	23.5	1.74	0.74	1.16	5.28	0.	-2.55	6.38	1.2	10 -9.		0	13
0631	GTAC08	RESID		5.	1.00	0.080	0.05	13.1	0.97	0.41	0.82	3.07	0.	0.	5.28	1.0	02 -0.		4	1
0631	GTAC08	RESID	JA	5.	7.81	0.307	0.05	19.6	1.45	0.62	1.05	4.73	Ō.	-2.07	5.78	1.09	97 -5.	,	0	9:
	GTAC12			5.	1.00	0.082	0.05	13.1	0.97	0.41	0.82	3.07	0	0.	5.27				5	1
	GTAC12			5.		0.337	0.05	22.3	1.65	0.70	1.13	5.09	ο.	-2.58	5.99				0	93
	GTAC16				1.00		0.05	13.2	0.98	0.42	0.82	3.07	<u>o.</u>	0.	5.28				4	1
	GTAC16					0.350	0.05	24.8	1.84	0.78	1.20	5.35	0.	-2.91	6.26				0	99
	GTWC16			5. 5.		0.071	0.05	13.5 24.9	1.00 1.85	0.43 0.79	0.83	. 3.10 5.96	0. 0.	0. -3.19	5.36 6.62				0	99 10
	CC1626			5. 5.		0.072	0.05	13.4	1.02	0.79	0.89	3.10	ο.	0.	5.44				0	2.
	CC1626				20.63		0.05	35.0	2.65	1.13	1.64	8,40	<u> </u>	-5.97	7.86				<del>-</del>	
	CC1622			5.		0.075	0.05	13.1	1.00	0.42	0.89	3.09	Õ.	Ö.	5.40	• • •			ŏ	9:
	CC1622					0.380	0.05	34.6	2.62	1.12	1.61	7.64	Ŏ.	-5.35	7.64				0	1
	CC1222			5.	1.00	0.076	0.05	13.0	0.99	0.42	0.88	3.08	_0.	0	5.37	1_0	19 -1.		0,	9
631	CC1222	RESID	JA	5,	18.59	0.383	0.05	32.9	2,50	1.06	1.58	7.59	0.	-5.35	7.38	1.40	01 -17.		0	13
631	CC0822	RESIDU	JA	5.	1.00	0.081	0.05	13.2	1.00	0.43	0.89	3.07	Ο.	Ο.	5.38	-			0	S
	CC0822				<b>15</b> .03		0.05	28.1	2.13	0.91	1.43	6.42	Ο.	-4.26	6.62				0	9
	STIG15			5.		0.026	0.05	16.3	1.20	0.51	0.91	3.25	<u>o.</u>	0.	5.87				_0_	
	STIG15	—			31.31		0.05	510.6	37.82	16.08		184.92	0.	-130.78			_		0	
	STIGIO			<b>5</b> .		0.038	0.05	13.1	0.97	0.41	0.83	3.21	0.	0.	5.42				0	
	STIG10				39.88		0.05	56.7	4.20	1.79	2.56	18.14	0.	-11.82					0	
	STIGIS			<u>5.                                    </u>		0.043	0.05	13.0	0.96	0.41	0.83	3.19	<u>0.</u>	<u>0.</u> -6.81	5.39 10.62				<del>-0</del>	
	STIGIS				23.40	0.228	0.05	39.1 16.3	2.90 1.21	1.23 0.51	1.90 0.92	11.40 3.14	0.	0.	5.79				0	
	DEADV3			5. 5.	21.49		0.05	70.2	5.20	2.21	2.51	9.46	0.	-6.23	13.16				o	
	DEHTPM			5.		0.088	0.05	16,2	1.20	0.51	0.95	3.04	o.	0.20	5.71	1.0			õ	1
	DEHTPM				12.22		0.05	42.8	3.17	1.35	1.80	5.47	Ö.	-3.41	8.38				ő	<u></u>
	DESOA3			5.		0.052	0.05	15.5	1.15	0.49	0.91	3.88	Ö.	O.	6.42	-			o	-
	<b>DESGA3</b>				24.14	0.279	0.05	96.0	7.11	3.02	3.19	13.39	Ο.	-7.03	19.68	3.7	33 -84.		0	
631	<b>DESGA3</b>	RESIDU	JA	5.	1.00	0.052	0.05	15.5	1.15	0.49	0.91	3.16	_0.	0.	5.71	1.0	<del>33 -3</del> .		0	
631	DESOA3	RESIDU	JA	5.	24.11	0.279	0.05	96.0	7.11	3.02	3.19	10.92	Ò.	-7.03	17.22				0	
	GTSØAD			5.		0.079	0.05	12.9	0.95	0.41	0.82	3.77	Ο.	0.	5.94				0	
	GTSOAD			5.		0.321	0.05	20.0	1.48	0.63	1.07	6.19	ο.	-2.44	6.93				0	
	GTRA08			5,		0.077	0.05	13.8	1.02	0.44	0.83	3.78	<u>o.</u>	<u> </u>	6.07				$-\frac{0}{0}$	
	GTRA08				13.95		0.05	32.0	2.37	1.01	1.40	7.82	0.	-3.94	8.67	1.6			0	
	GTRA12			5.		0.077	0.05	13.8	1.02	0.43 0.97	0.83	3.78 7.74	0. 0.	0. -3.90	6.06 8.45				0	
	GTRA12 GTRA16			5. 5.	13.83	0.362	0.05	30.7 14.0	2.27 1.04	0.44	0.84	7.74 3.78	0. 0.	0.	6.09				0	
	GTRA16			5. 5.		0.356	0.05	31.1	2.30	0.44	1.37	7.49	<del>0.</del>	-3.66	8.48				<del>-0</del> -	
	GTR208			5. 5.		0.077	0.05	13.5	1.00	0.43	0.83	3.78	o.	0.	6.03				0	
	GTR208				10.99		0.05	25.2	1.87	0.79	1.22	6.88	Õ.	-3.04	7.72				Ö	i
_	GTR212			5.		0.076	0.05	13.6	1.01	0.43	0.83	3.78	õ.	Ö.	6.05				ŏ	•
	GTR212					0.340	0.05	27.0	2.00	0.85	1.27	7.17	Ō.	-3.29	8.00				Õ	

PAGE 14

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

#### ECONOMIC SENSITIVITY REPORT FOR SELECTED PROCESS-ECS MATCHES

	<del>.</del>													·	·				
			SENSITI	VITY OF	F CAPIT	TAL COS					ORIGINA								1
CHEDO			561155	DG! 150			******						• •			CONT F	A 1	OBCC	_
ENERGY			POWER		FESKP		PITAL CAF	TITAL TAX		NDM FU			VNUE TO	TAL NO	RML PF	RESNT F WORTH	ROI %	GROS: PA	
313	STEM	FUEL	REQD MW	GEN/ REQD		/HEAT			+ ISNC			<u>EL.EC</u>				15%	<u>/k</u>	- <del>- A</del>	
			1-144	REGD		WIIO *	10**0	117	13110							13%		1 1	
20631	GTR216	DISTIL	L 5.	12 08	0.349	0.05	28.6	2.12	0.90	1.31	7.18	0.	-3.37	8.13	1.542	-17.		0	66
	GTRW08			1.00		0.05	13.9	1.03	0.44	0.84	3.83	o.	0.	6.13	1.163	-3.		ŏ	58
	GTRW08			16.80		0.05	32.2	2.39	1.01	1.44	9.58	Ŏ.	-4.80	9.62	1.825	-23.		<del>ŏ</del>	63
1	GTRW12				0.067	0.05	13.9	1.03	0.44	0.83	3.82	ŏ.	0.	6.12	1.160	-3.		ő	58
	GTRW12				0.334	0.05	32.7	2.42	1.03	1.45	9.53	Ö.	-4.96	9.48	1.798	-23.		Õ	63
1	GTRW16		-	-	0.068	0.05	14.1	1.04	0.44	0.84	3.81	0.	0.	6.14	1.164	-4.		Ó	59
+	GTRW16				0.331	0.05	32.7	2.42	1.03	1.44	9.13	0.	-4.64	9.38	1.780	-23.		ō	64
20631	<b>GTR308</b>	DISTIL	L 5.	1.00	0.062	0.05	13.6	1.00	0.43	0.83	3.84	Ο.	0.	6.10	1.157	-3.		Ó	53
20631	<b>GTR308</b>	DISTIL	L 5.	12.64	0.282	0.05	26.7	1.98	0.84	1.28	8.16	0.	-3.54	8.72	1.655	-18.		O	62
20631	GTR312	DISTIL	L5.	1.00	0.068	0.05	13.6	1.01	0.43	0.83	3.81	0.	0	6.08	1.154	-3		O.	53
20631	<b>GTR312</b>	DISTIL	L 5.	14.51	0.323	0.05	28.5	2.11	0.90	1.33	8.49	0.	-4.11	8.73	1.655	-18.		Ö	63
20631	GTR316	DISTIL	L 5.	1.00	0.068	0.05	13.8	1.03	0.44	0.84	3.81	Ο.	Ο.	6.11	1.159	-3.		0	56
20631	GTR316	DISTIL	L 5.	14.30	0.320	0.05	29.4	2.17	0.92	1.35	8.44	Ο.	-4.04	8.85	1.679	-19.		0	63
	FCPADS				0.050	0.05	14.6	1.08	0.46	0.92	3.89	0.	0	6.35	1.205	<u>-5.</u>		0	59
	FCPADS				0.279	0.05	93.2	8.90	2.93	7.61	17.33	0.	-9.69	25.09	4.758	-101.		0	63
	FCMCDS				0.067	0.05	14.8	1.10	0.47	0.91	3.82	Ο.	Ο.	6.30	1.195	-4.		0	59
	FCMCDS		_		0,360	0.05	80.4	5.96	2.53	5.96	12.65	0.	-7.61	19.49	3.697	-7 <b>7</b> .		o	65
<del></del>	ONOCGN			0.	0.	0.24	3.5	0.26	0.11	0.32	2.43	1.53	0.	4.65	1.000	<u> </u>		<u>o</u>	0
	STM141			:	0.243	0.24	6.9	0.53	0.22	0.61	3.01	0.	Ο.	4.37	0.939	-1.	_	0	(3)
1	STM141				0.277	0.24	6.6	0.50	0.21	0.49	3,16	Ο.	-0.23	4.13	0.887	o.	1	_	6
	STM141				0.243	0.24	13.6	1.03	0.44	1.07	1.75	0.	0.	4.29	0.923	-4.		7	11
<del></del>	STM141				0.277	0.24	12.3	0.94	0.40	0.86	1.83	<u>o.</u>	-0.23	3.79	0.815	<u>-2.</u>	!		_ 8
	STM141				0.243	0.24	11.6	0.88	0.38	0.98	1.75	0.	0.	3.98	0.856	-2.	1	-	9
1	STM141				0.277	0.24	9.9	0.75	0.32	0.75	1.83	0.	-0.23	3.42	0.734	1.	1		6
	STM088				0.240	0.24	5.9	0.45	0.19	0.46	3.01	0.01	0.	4.12	0.885	1.	1		6
	STM088				0.240	0.24	11.4	0.86	0.37	0.82	1.75	0.01	<u>0.</u> 0.	3.80	0.818	<del>-1.</del> -	- 1		8
	STM088 PFBSTM				0.240	0.24 0.24	9.3 15.4	0.71	0.30	0.72	1.75 1.75	0.01 0.	0. 0.	4.60	0.750 0.989	-6.	-	, 5	13
	PFBSTM				0.240	0.24	15.4	1.17 1.16	0.50 0.50	1.18 1.06	2.03	0. 0.	-0.75	4.00	0.859	-6, -4.		ა 9	10
	TISTMT				0.332	0.24	19.9	1.51	0.64	0.95	3.02	0. 0.	0.75	6.12	1.317	-13.		-	432
	TISTMT				0.368	0.24	33.1	2.51	1.07	1.17	3.82	<del>0.</del>	-1.24	7.34	1.578	-23.			2:16
	TISTMT		6.		0.239	0.24	28.3	2.15	0.91	1.47	1.76	o.	0.	6.28	1.350	-17.		-	929
	TISTMT		6.		0.368	0.24	42.0	3.19	1.36	1.64	2.22	o.	-1.24	7.17	1.540	-26.		-	999
	TIHRSG				0.182	0.24	26.1	1.94	0.82	0.88	3.04	0.21	0.	6.88	1.480	-18.		-	113
	TIHRSG		6.		0.182	0.24	33.7	2.56	1.09	1.27	1.77	0.21	Ö.	6.89	1.480	-22.			599
	STIRL	DISTIL			0.205	0.24	7.0	0.52	0.22	0.58	3.88	0.	Ö.	5.20	1.119	-3.		Ö	72
20821		DISTIL			0.341	0.24	10.9	0.81	0.34	0.58	5.58	Ö.	-1.75	5.56	1.196	-6.		ŏ	79
20821		RESIDU			0.205	0.24	7.0	0.52	0.22	0.59	3.16	o.	0.	4.49	0.965	-1.		8	10
20821	<del></del>	RESIDU			0.341	0.24	10.9	0.81	0.34	0.58	4.56	Ō.	-1.75	4.54	0.975	-3.		6	12
20821	STIRL	COAL	6.	1.00	0.205	0.24	13.9	1.03	0.44	1.05	1.84	0.	Ο.	4.36	0.936	-4.		7	11
20821	STIRL	COAL	6.	2.90	0.341	0.24	18.4	1.36	0.58	1.02	2.65	0.	-1.75	3.86	0.830	-5.		9	10
20821	HEGT85	COAL-A	F 6.	1.00	0.197	0,24	24.2	1.84	0.78	1.21	1.85	0.	0.	5.68	1.221	-13.		0	29
20821	HEGT85	COAL-A	F 6.	3.13	0.337	0,24	40.0	3.03	1.29	1.44	2.80	O.	-1.96	6.60	1.420	-24.		C S	999
																		_	

.

· 5 -4 --- 8

DATE 06/07/79 18SE-PEO-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 15

			BENSIT	IVITY OF	F CAPI	TAL COS					ORIGINA								4
													\$ MILLION						
ENERGY			POWER		FESRP			APITAL TAX		NDM F			REVNUE TO	TAL N	ORML	PRESNT	ROI	GROS	
SYS	TEM	FUEL	REQD	GEN/		/HEAT			*			ELEC		<del></del>		WORTH	<u> </u>	<u>P/</u>	
			MW	REQD	1	RATIO *	10**6	11	SNS							15%		BAC	Ж.
20821	UEOTEO	COAL-A	- 6.	2 94	0.204	0.24	37.2	2.83	1.20	1.41	3.16	0.	-1.70	6.89	1.48	1 -23.		0	999
		COAL-A			0.113		22,2	1.68	0.72	1.14	2.05	0.	0.	5.59				ŏ	30
		COAL-A			0.138		23.6	1.79	0.76	0.99	2.31	0.	~0.38	5.47	1.17			<del>-</del>	24
_	FCMCCL		6.		0.209	-	21.3	1.66	0.70	1.25	1.83	o.	0.	5.44	1.16			i	25
	FCMCCL		6.		0.338	0.24	28.9	2.24	0, 95	1.41	2.52	o.	-1.53	5.59				i	22
	FCSTCL		6.		0.217		20.6	1.60	0.68	1.28	1.81	õ.	o.	5.37		- , -		i	24
	FCSTCL		6.		0.419	0.24	37.4	2.91	1.24	1.86	3.28	Ō.	-3.41	5.87	1.26	2 -21.		2	22
	IGGTST		6.	1.00	0.178	0.24	20.8	1.62	0.69	1.27	1.90	Ο.	0.	5.47	1.17	6 -11.		0	27
20821	IGGTST	COAL	6.	3.38	0.312	0.24	30.7	2.39	1.02	1.32	3.05	Ο.	-2.19	5.59	1.20	3 -16.		2	21
20821	GTSOAR	RESIDUA	6.	1.00	0.189	0.24	7.6	0.56	0.24	0.57	3.22	0.	0.	4.59	0.98	72.		6	12
20821	GTSOAR	RESIDUA	6.	2.66	0.306	0.24	9.9	0.73	0.31	0.50	4.54	0.	-1.53	4.56	0.98	0 -3.		6	12
20821	GTAC08	RESIDU/	6.	1.00	0.204	0.24	6,9	0.51	0.22	0.54	3.17	Ο.	0.	4.43	0.95	3 -1.	1	0	9
		RESIDUA		2.21	0.307	0.24	7.9	0.59	0.25	0.45	4.06	°О.	-1.12	4.22	0.90	7 -1.	1	2	8
		RESIDUA		1.00	0.208	0.24	6.9	0.51	0.22	0.55	3.15	0.	0.	4.43				0	9
		RESIDUA		2.69	0.337	0.24	9.0	0.66	0.28	0.48	4.37	Ο.	-1.56	4.23	0.91		1	0	8
		RESIDUA			0.207	0.24	7.2	0.53	0.23	0.55	3.15	Ο.	0.	4.46	0.95			9	10
		RESIDUA			0.350	0.24	10.0	0.74	0.32	0.51	4.60	Ο,	-1.84	4.32				9	10
		RESIDUA			0.181	0.24	7.5	0.55	0.24	0.56	3.25	<u>o.</u>	0.	4.61	0.99			<u>6</u>	12
		RESIDUA			0.315	0.24	10.7	0.79	0.34	0.54	5.12	0.	-2.08	4.70	1.01			4	14
		RESIDUA			0.183	0.24	7.7	0.58	0.25	0.65	3.25	0.	<b>o</b> .	4.72	1.01			3	17
		RESIDUA			0.371	0.24	15.6	1.18	0.50	0.81	7.21	0.	-4.47	5.24	1.12			0	S9
		RESIDUA			0.192		7.4	0.56	0.24	0.64	3.21	<u>o.</u>	0.	4.65	1.00			<u>5</u>	14
		RESIDUA			0.380	0.24	14.6	1.11	0.47	0.76	6.57	0.	-3.94	4.97	1.06			2	20
_		RESIDUA			0.194	0.24	7.2	0.55	0.23	0.64	3.21	0.	0.	4.62				5 3	13
		RESIDUA			0.383	0.24	14.0	1.06	0.45	0.75	6.52 3.15	ο.	-3.93	4.85 4.59	1.04 0.98			ა 6	17
		RESIDUA RESIDUA			0.207	0.24	7.4	0.56 0.92	0.24	0.64 0.69	5.51	0.	<u>0.</u> -3.00	4.59	0.96			6	12
		RESIDUA			0.067	0.24	12.1 7.7	0.57	0.39	0.62	3.71	o.	0,	5.14	1.10			Ö	95
		RESIDUA		122.30		0.24	196.6	14.56	6.19		158.84	0.	-111.68		16.90			ŏ	59
		RESIDUA			0.096	0.24	7.4	0.55	0.13	0.60	3.59	o.	0.	4.97	1.06			õ	999
		RESIDUA			0.218	0.24	22.7	1.68	0.71	1.27	15.58	Ö.	-9.49	9.76	2.09			<del>ŏ</del> —	61
		RESIDUA			0.110	0.24	7.2	0.54	0.23	0.60	3.54	Ŏ.	0.	4.90	1.05			ŏ	999
		RESIDUA			0.228	0.24	15.4	1.14	0.49	0.92	9.80	o.	-5.19	7.15	1.53			Ö	63
		RESIDUA			0.201	0.24	9.4	0.70	0.30	0.64	3.18	o.	0.	4.81	1.03			2	20
		RESIDUA			0.374	0.24	17.5	1,30	0.55	0.77	5.54	O.	-2.90	5.25	1.12	9 -8.		0	26
20821	DEHTPM	RESIDUA	6.		0.224	0.24	9.4	0.69	0.29	0.67	3.08	O.	0.	4.74	1.01	9 -3.		4	16
20821	DEHTPM	RESIDUA	6.	3.47	0.397	0.24	15.0	1.11	0.47	0.74	4.70	Ο.	-2.27	4.75	1.02	2 <b>-6</b> .		4	15
20821	DESOA3	DISTILL	6.	1.00	0.192	0.24	8.8	_0.66	0.28	0.63	3.94	0.	0.	5.50	1.18	2 <b>-5</b> .		0	70
20821	DESOA3	DISTILL	6.	4.12	0.358	0.24	21.3	1.58	0.67	0.87	6.92	0.	-2.87	7.16	1.53			0	71
20821	DESOA3	RESIDUA	6.	1.00	0.192	0.24	8.8	0.66	0.28	0.63	3.21	Ο.	0.	4.77	1.02			3	18
		RESIDUA			0.358	0.24	21.3	1.58	0.67	0.87	5.65	0.	-2.87	5.89	1.26				999
		DISTILL			0.201	0.24	6.7	0.49	0.21	0.54	3.89	0.	0.	5.13				0	72
20821	GTSCAD	DISTILL	6	2.56	0.321	0.24	8.0	0.60	0.25	0.45	5.32	0.	-1.44	5.18	_1,114	4 -4,		0	83

PAGE 16

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		SE	INSITI	VITY OF	CAPIT	AL COST	7		PERCI	ENT OF	DRIGINAL	LCOST	100					
	•						********	***LEVEL						S)****	*****			
NERGY	CONV	SITE- F	OWER	POWER	FESRPO	WER CAP	PITAL CAF	TAL TA	KES OAI	NDM FU	EL PUI	RCHD RE	VNUE TO	TAL NO	RML PR	ESNT RO	i Gre	)S <b>S</b>
SYS	TEM		EQD	GEN/		/HEAT C	COST		+			ELEC				WORTH	<u>z _ r</u>	PAY
			MW	REOD	F	RATIO *1	0**6	11	ISNC							15%	B\	4CK
20821	ROAGER	DISTILL	6.	3 08	0.358	0.24	13.0	0.96	0.41	0.60	6.72	ο.	-2.72	5.97	1.283	-9.	. 0	72
		DISTILL	6.		0.197	0.24	7.8	0.58	0.25	0.57	3.91	Ŏ.	0.	5.31	1.141	-4.	- ŏ	71
		DISTILL	6.		0.362	0.24	13.1	0.97	0.41	0.60	6.64	Ö.	-2.69	5.93	1.275	-8.	<u> </u>	73
		DISTILL	6.		0.197	0.24	8.1	0.60	0.25	0.58	3.91	ŏ.	0.	5.34	1.148	-4.	ŏ	71
		DISTILL	6.		0.356	0.24	13.3	0.98	0.42	0.60	6.44	ŏ.	-2.49	5.95	1.279	-9,	ŏ	74
		DISTILL	6.		0.196	0.24	7.5	0.55	0.24	0.56	3.92	Ŏ.	Ö.	5,27	1.132	-4.	ŏ	71
		DISTILL	6.		0.335	0.24	10.5	0.78	0.33	0.53	5.91	0.	-1.95	5.60	1.204	-6.	C	73
		DISTILL	6.		0.194	0.24	7.6	0.57	0.24	0.57	3.93	Õ.	Ö.	5.30	1.139	-4.	Ŏ	70
		DISTILL	6.		0.340	0.24	11.4	0.84	0.36	0.55	6.16	Õ.	-2.16	5.75	1.236	-7.	Ŏ	72
		DISTILL	6.		0.198	0.24	7.8	0.58	0.24	0.57	3.91	o.	0.	5.30	1.139	-4.	Ŏ	71
0821	GTR216	DISTILL	6.	3.42	0.349	0.24	12.0	0.89	0.38	0.57	6.16	0.	-2.23	5.77	1.239	-7.	0	75
0821	GTRW08	DISTILL	6.	1.00	0.163	0.24	8.0	0.59	0.25	0.58	4.08	ο.	Ο.	5.51	1.183	-5.	0	65
0821	<b>GTRWO8</b>	DISTILL	6.	4.76	0.314	0.24	14.4	1.06	0.45	0.66	8.23	o.	-3.46	6.94	1.491	-12.	0	63
0821	GTRW12	DISTILL	6.	1.00	0.171	0.24	8.0	0.59	0.25	0.58	4.04	Ο.	0.	5.46	1.174	-5.	0	66
0821	GTRW12	DISTILL	6.	4.91	0.334	0.24	14.6	1.08	0.46	0.66	8.19	0.	-3.60	6.79	1.459	-12.	0	64
0821	GTRW16	DISTILL	6.	1.00	0.173	0.24	8.2	0.61	0.26	0.58	4.03	Ο.	0.	5.48	1.178	<b>-5</b> .	0	67
0821	GTRW16	DISTILL	6.	4.62	0.331	0.24	14.6	1.08	0.46	0.66	7.84	Ο.	-3.33	6.71	1.443	-12.	0	64
0821	GTR308	DISTILL	6.	1.00	0.158	0.24	7.6	0.56	0.24	0.57	4.10	o.	0.	5.47	1.177	-4.	0	64
0821	<b>GTR308</b>	DISTILL	6.	3.58	0.282	0.24	.11.5	0.85	0.36	0.57	7.01	0.	-2.38	6.41	1.379	-9.	0	62
0821	GTR312	DISTILL	6.	1.00	0.174	0.24	7.7	0.57	0.24	0.57	4.03	ο.	0.	5.41	1.163	-4,	0	68
0821	<b>GTR312</b>	DISTILL	6.	4.11	0.323	0.24	12.5	0.92	0.39	0.60	7.30	٥.	-2.87	6.34	1.363	-9,	0	64
0821	GTR316	DISTILL	6.	. 1.00	0.173	0.24	7.9	0.59	0.25	0.58	4.03	Ο.	Ο.	5.44	1.170	-5 <i>.</i>	0	66
0821	GTR316	DISTILL	6.	4.05	0.320	0.24	12.9	0.96	0.41	0.61	7.25	0.	-2.81	6.41	1.378	-10.	0	64
0821	FCPADS	DISTILL	6.	1.00	0.199	0.24	7.6	0.56	0.24	0.92	3.90	ο.	Ο.	5.63	1.209	-5.	0	65
0821	FCPADS	DISTILL	6.	4.43	0.378	0.24	16.7	1.24	0.53	2.52	7.06	Ο.	-3,15	8.19	1.760	-18,	0	64
0821	FCMCDS	DISTILL	6,	1.00	0.170	0.24	8.2	0.61	0.26	0.91	4.05	0.	0	5.82	1.251	-6	0_	64
0821	FCMCDS	DISTILL	6.	7.38	0.360	0.24	29.3	2.17	0.92	3.91	10.86	0.	-5.87	11.99	2.577	-35.	0	62
		RESIDUA	6.	Ο.	Ο.	0.13	5.2	0.39	0.17	0.41	4.22	1.49	Ο.	6.67	1.000	ο.	0	
		RESIDUA	6.		0.164	0.13	9.1	0.69	0.29	0.76	4.78	Ο.	Ο.	6.53	0.979	-2.	7	11
		RESIDUA	<u>6.</u>		0.227	0.13	8.8	0.67	0.28	0.60	<u>5.13</u>	0	-0.54	6.13	0.919	-0.	14	7
		COAL-FG	6.		0.164	0.13	19.3	1.47	0.62	1.40	2.78	ο.	Ο.	6.27	0.940	-6,	7	11
		COAL-FG	6.		0.227	0.13	17.4	1.32	0.56	1.11	2.98	Ο.	-0.54	5.42	0.813	-2.	12	8
		COAL-AF	6.		0.164	0.13	16.7	1.27	0.54	1.29	2.78	Ο.	Ο.	5.87	0.880	-3 <i>.</i>	10	9
		COAL-AF	6.		0.227	0.13	13.2	1.00	0.43	0.97	2.98	0,	-0.54	4.83	0.724	2.	18	<u>e</u>
		RESIDUA	6.		0.164	0.13	8.4	0.64	0.27	0.72	4.78	Ο,	0.	6.41	0.962	-1.	10	9
		RESIDUA	6.		0.184	0.13	7.8	0.59	0.25	0.57	4.89	0.	-0,16	6.13	0.920	ο.	17	•
		COAL-FG	6.		0.164	0.13	18.0	1.37	0.58	1.32	2.78	0,	0.	6.04	0.906	-4.	8	10
		COAL-FG	6.		0.184	0.13	16.0	1.21	0.52	1.05	2.84	<u>o.</u>	-0.16	5.46	0.819	<u>-1 </u>	12	
	-	COAL-AF	6.		0.164	0.13	15.0	1.14	0.48	1.21	2.78	0.	0.	5.60	0.840	-1.	12	8
		COAL-AF	6.		0.184	0.13	12.4	0.94	0.40	0.93	2.84	0.	-0.16	4.95	0.743	2.	19	5
		COAL-PF	6.		0.160	0.13	20.6	1.56	0.67	1.48	2.79	0.	0.	6.50	0.974	-7.	6	12
/hill	rrbSIM	COAL-PF	6.	2.57	0.292	0.13	21.3	1.62	0.69	1.45	3.32	Ο.	-1.41	5.67	0.850	-5.	9	9

DATE 06/07/79 | &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 17

			SENSITI	VITY O	F CAPI	TAL COS					ORIGINAL		T 100 \$ MILLION	61++++	*****				
ENERGY	CONV	SITE-	POWER	POWER	FESRP	OWER CA		PITAL TA					REVNUE TO			RESNT	ROI	GRO	iss
SYS	TEM	FUEL	REGD	GEN/		/HEAT	COST		+			ELEC				WORTH	75	<u>F</u>	'AY
			MW	REQD	ı	RATIO	10**6	11	ISNC							15%		BΛ	\CK
	TISTMT		6.		0.161	0.13	34.8	2.64	1.12	1.78	2.79	0.	Ο.		1.250			0	999
	T!STMT		6.		0.337	0.13	62.0	4.71	2.00	2.27	3.60	<u>o.</u>	<u>-2.17</u>	10.42				0	999
	TIHRSG				0.125	0.13	32.0	2.37	1.01	1.24	5.01	0.	0.	9.62	1.443			0	90
	TIHRSG				0.173	0.13	42.2	3.12	1.33	1.34	5.49	0.	-0.54	10.73	1.609			0	89
	TIHRSG		6,		0.125	0.13	44.6	3.39	1.44	1.93	2.91	0.	0.	9.67	1.450			0	999
	TIHRSG		6,		0.173	0.13	54.2	4.11	1.75	1.93	3.19	<u>o.</u>	<u>-0.54</u>	10.43				ŏ_	<u> </u>
	STIRL	DISTIL			0.117	'C. 13	10.0	0.74	0.32	0.73	6.19	o.	0,	7.98	1.196			0	61
	STIRL	DISTIL			0.265	0.13	18.4	1.36	0.58	0.84	9.33	0.	-2.76	9.36	1.403			0	63
	STIRL	RESIDU			0.117	0.13	10.0	0.74	0.32	0.73	5.05	0.	0.	6.84	1.026				23
	STIRL STIRL	RESIDU	A 6. 6.		0.265 0.117	0.13	18.4 19.9	1.37	0,58 0,63	0.84 1.35	7.61 2.93	<u>0.</u>	<u>-2.76</u> 0.	7.64 6.38	0.957		<del></del>	<u>-6</u>	99 <u>9</u> 12
•	STIRL	COAL	6.		0.117	0.13	32.5	1.47 2.41	1.02	1.54	4.42	0. 0.	-2.76	6.63				5	13
	HEGT85				0.265	0.13	29.8	2.26	0.96	1.50	3.16	, O.	0.	7.89	1.183			0	29
	HEGT85				0.157	0.13	126.2	2.2 <del>0</del> 9.58	4.07	4.42	13.42	0.	-12.91	18.57				0	135
	HEGT60				0.058	0.13	29.0	2.20	0.94	1.49	3.13	0.	0.	7.75	1.163		<del></del>	0	27
	HEGT60			,	0.050	0.13	65.5	4.97	2.11	2.41	6.64	0. 0.	-4.62	11.51	1.726			0	999
	HEGTOO				0.063	0.13	27.7	2.10	0.89	1.46	3.11	0.	0.	7.57	1.135			ĭ	24
	HEGT00				0.116	0.13	37.5	2.10	1.21	1.51	4.21	0.	-1.48	8.29	1.244			ò	30
	FCMCCL		6.		0.140	0.13	27.0	2.10	0.89	1.52	2.86	<u>0.</u>	0.	7.37	1.105			2	20
	FCMCCL		6.		0.337	0.13	44.7	3.47	1.48	2.15	4.39	0.	-3.39	8.11	1.216	•		1	22
	FCSTCL		6.		0.146	0.13	26.3	2.04	0.87	1.55	2.64	o.	0.	7.30	1.095			s	20
	FCSTCL		6.		0.402		54.4	4.23	1.80	2.67	5.32	Õ.	-5.71	8.30	1.245			2	21
	IGGTST		6.		0.116	0.13	26.3	2.04	0.87	1.54	2.94	Ö.	Ö.	7.39	1.108			<del>-</del>	21
	IGGTST		6.		0.286	0.13	43.5	3.38	1.44	1.74	4.96	õ.	-3.71	7.81	1.171	-23.		2	20
	GTSGAR				0.120	0.13	9.8	0.72	0.31	0.68	5.04	õ.	o.	6.75	1.012			3	17
	GTSOAR				0.293	0.13	15.9	1.17	0.50	0.72	8.31	o.	-3.59	7.12		-6.		Ö	26
	GTACO8				0.139	0.13	9.1	0.67	0.29	0.66	4.92	Ŏ.	0.	6.54	0.981	-1.	<del></del>	7	11
	GTACOB				0.309	0.13	12.3	0.91	0.39	0.62	6.98	o.	-2.61	6.29	0.943			9	9
2601	GTAC12	RESIDU		1.00	0.138	0.13	9.1	0.67	0.29	0.66	4.93	o.	0.	6.55	0.983	-1.		7	11
2601	GTAC12	RESIDU	A 6.	4.90	0.334	0.13	14.4	1.07	.0.45	0.68	7.71	Ο.	-3.48	6.42	0.963	-4.		7	11
2601	GTAC16	RESIDU	A 6.	1.00	0.136	0.13	9.3	0.69	0.29	0.67	4.94	0.	0.	6,59	0.989	-2.		6	12
2601	GTAC16	RESIDU	A 6.	5.54	0.343	0.13	16.4	1.21	6.51	0.73	8.23	O.	-4.06	6.64	0.996	-5.		5	13
2601	GTWC16	RESIDU	A 6.	1.00	0.123	0.13	9.6	0.71	0.30	0.68	5.02	Ο.	Ο.	6.71	1.006	-2.		4	15
2601	OTWC16	RESIDU	A 6.	5.82	0.315	0.13	16.5	1.22	0.52	0.75	8.87	0.	4.30	7.05	1.057	-6.		1	22
2601	CC1626	RESIDU	A · 6.	1.00	0.122	0.13	9.7	0.73	0.31	0.76	5.03	0.	0.	6.83	1.024	-3.		2	22
2601	CC1626	RESIDU	A 6.	9.29	0.356	0.13	22.4	1.70	0.72	1.05	11.71	Ο.	-7.41	7.77	1.165	-12.		0	999
2601	CC1622	RESIDU	A 6.	1.00	0.127	0.13	9.4	0.71	0.30	0.75	4.99	Ο.	Ο.	6.76	1.013			3	17
2601	CC1622	RESIDU	A 6.	8.36	0.364	0.13	21.6	1.64	0.70	1.01	10.67	0.	-6.58	7.44	1.115	-10.		0	28
	CC1222				0.129	0.13	9.2	0.70	0.30	0.74	4.98	Ο.	O.	6.72	1.008			4	16
	CC1222				0.367	0.13	20.5	1.55	0.66	0.99	10.59	ο.	-6.55	7.25	1.086			1	23
	CC0822				0.138	0.13	9.4	0.71	0.30	0.75	4.93	Ο.	0.	6.70	1.004			4	15
	CC0822				<u>0,369</u>	0.13	17.4	1.32	0.56	0.89	8.95	0.	-5.04	6.68	1.002			5	14
2601	STIG15	RESIDU	A 6.	1.00	0,045	0.13	9.6	0.71	0.30	0.72	5.46	Ο.	0.	7.20	1.079	-4.		0	91

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

L																		
			SENSITI	VITY OF	CAPI	TAL COS	T				ORIGINA							
							******											~~~
	A CONA		POWER		FESRP		PITAL CAP	PITAL TAX		NDM FU			REVNUE TO	TAL NO	RML P	RESNT ROI		95 <b>5</b>
SY	STEM	FUEL	REGO	GEN/	<del></del>	/HEAT			+			ELEC						PAY
11			MW	REQD	ı	RATIO *	10**6	11	ISNC							15%	64	KCK
22601	STIGIO	preini	A 6.	1 00	0.065	0.13	9.3	0.69	0.29	0.70	5.35	0.	٥.	7.03	1.054	-3.	0	909
3	ST1610			20.24		0.13	39.8	2.95	1.25	2.02	27.07	ö.	-17.19	16.10	2.415		ő	61
	STIGIS				0.074	0.13	9.2	0.68	0.29	0.70	5.30	o.	0.		1.045		0	999
	STIGIS			11.88		0.13	24.2	1.79	0.76	1.36	17.01	ŏ.	-9.72	11,22	1.682		ŏ	62
	DEADV3				0.093	0.13	12.1	0.90	0.38	0.77	5.19	Ö.	0.	7.24	1.085		ō	999
	DEADV3				0.292	0.13	53.4	3.95	1.68	1.84	16.64	Ο.	-10.59	13.52	2.027	-44,	0	71
	DEHTPM			1.00	0.139	0.13	12.2	0.90	0.38	0.81	4.93	0.	0.	7.02	1.053	-4.	0	999
22601	DEHTPM	RESIDU	IA 6.	5,85	0,358	0.13	28.0	2.07	0.88	1.16	8.35	Ο.	-4.33	8.13	1.219	-15.	0	999
22601	DESGAS	DISTIL	L 6.	1.00	0.079	0.13	11.6	0.86	0.37	0.76	6.45	Ο.	0.	8.45	1.267		0	61
22601	DESGA3	DISTIL	<u>L 6, </u>	14.85	0.255	0.13	75.9	5.62	2.39	2.43	24.22	0.	-12.38	22.28	3.341	-82.	0	62
22601					0.079	0.13	11.6	0.86	0.37	0.76	5.27	ο.	0.	7.26	1.088	-5.	0	. 320
	DESCA3				0.255	0.13	75.9	5,62	2.39	2.43	19.76	ο.	-12.38	17.82	2.672		0	68
	GTSOAD				0.132	0.13	8.8	0.65	0.28	0.66	6.09	0.	0.	7.68	1.152		0	61
	GTSGAD				0.314	0.13	12.8	0,95	0.40	0.64	9.49	<u>o.</u>	-3.31	8.17	1.226		<u> </u>	61
	GTRA08				0.123	0.13	10.0	0.74	0.31	0.68	6.15	o.		7.89	1.183		0	62
	GTRA08				0.343	0.13	21.4	1,58	0.67	0.89	12.69	0.	-5.98	9.85	1.478		(O O	64 62
	GTRA12				0.126	0.13	9.9	0.74	0.31	0.68 0.89	6.13	0. 0.	0. -5.84	7,86 9,72	1.179	-6. -17.	Ö	64
	GTRA12 GTRA16				0.349	0.13	21.6	1.60 0.75	0.68	0.69	12.39 6.13	0.	0.	7.89	1.183		0	62
	GTRA16				0.345	0.13	10.2 21.7	1.61	0.52	0.89	11.69	0. 0.	-5.40	9.67	1.450		Ö	65
	OTR208	. —			0.126	0.13	9.6	0.71	0.30	0.68	6.13	0.	0.	7.82	1.172		ŏ	61
	GTR208				0.324	0.13	17.1	1.26	0.54	0.76	10.77	o.	-4.34	8.99	1.349		ŏ	64
	9TR212				0.125	0.13	9.8	0.72	0.31	0.68	6.13	O.	0.	7.84	1,176		0	61
	GTR212				0.330	0.13	18.4	1.36	0.58	0.80	11.21	õ.	-4.72	9.23	1.384	T 1	ŏ	64
	GTR216				0.128	0.13	9.9	0.73	0.38	0.68	6.12	Õ.	0.	7.84	1.176		ŏ	62
- 1	GTR216				0.339	0.13	19.6	1.45	0.62	0.83	11.24	o.	-4.86	9.28	1.392		0	65
	GTRW08				0.103	0.13	10.1	0.75	0.32	0.69	6.29	0.	O.	8.04	1.206	-7.	0	61
22601	GTRW08	DISTIL	L 6.	9.20	0.302	0.13	23.2	1.72	0.73	0.96	15.43	0.	-7.33	11.51	1.726	-24.	0	60
22601	GTRW12	DISTIL	L 6.	1.00	0.110	0.13	10.1	0.75	0.32	0.69	6.24	ο.	ο.	7.99	1,198	-6.	0	61
22601	GTRW12	DISTIL	.Լ. 6.	9.38	0.324	0,13	23.4	1.73	0.74	0.96	15.17	0,	-7.49	11.11	1.667	-22.	0	61
	GTRW16				0.112	0.13	10.3	0.76	0.32	0.69	6.23	0.	0.	8.00	1.200		0	61
	GTRW16				0.322		23.2	1.72	0.73	0.95	14.38	0.	-6.90	10.88	1.632		0	62
	GTR308				0.096	0.13	9.7	0.72	0.30	0.68	6.34	0.	0.	8.04	1.206		0	60
	GTR308				0.263	0.13	18.9	1.40	0.59	0.83	13.35	<u>o.</u>	-5.39	10.78	1.617		0	60
	GTR312				0.114	0.13	9.8	0.72	0.31	0.68	6.22	o.	0.	7.93	1.189	-6.	0	61
	GTR312				0.316	0.13	19.7	1.46	0.62	0.85	13.13	o.	-5.92	10.13	1.520		0	61 61
	GTR316			_	0.113	0.13	10.0	0.74	0.32	0.69	6.22	0. 0.	0. -5.82	7.96 10.24	1.194		0	62
	FCPADS				0.313	0.13	20.3 10.3	0.77	0.64	0.87	13.05 6.41	0.	0.	8.54	1.281	-10, -8.	0	60
	FCPADS				0.086	0.13	61.2	4.53	1.93	8.93	5.41 25.86	0. 0.	-14.02	27.23	4.084	-6. -92.	Ö	61
	FCMCDS				0.279	0.13	10.6	0.78	0.33	1.01	6.21	o.	0.	8.34	1.250		ŏ	ິ61
	FCMCDS				0.360	,	52.6	3.89	1.65	6.75	18.87	o.	-10.91	20.26	3.038		ŏ	62
	ONOCON			0.	0.	0.17		0.13	0.06	0.21	0.	0.23		0.63	1.000		<del>ŏ</del> _	Ö
	بالكائنة تناه المعرب			- Ti-														

PAGE

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

	SE	NSITI	VITY OF	CAPIT					ENT OF				~ \				
ENERGY CONV	SITE- P	MUED	PAUED I	FESDON		PITAL CAP						MILLION: VNUE TO			ESNT	ROI	GROSS
SYSTEM		REGD	GEN/	FESKEU	HEAT O		110E 10	+	ALM I CI		ELEC	VIIOL 10	IAC NO		WORTH	X	PAY
OTOTAL		MW	REQD	Ř	ATIO *1		ī	NSNC			<u></u>				15%		PACK
			. LLGD	•			• • •	10110									
24211 STM14	RESIDUA	2.	1.14	0.947	0.17	3.1	0.23	0.10	0.30	0.01	0.	-0.02	0.63	1.005	-1.		5 1
24211 STM14	COAL-FO	2.	1.00	0.991	0.17	6.1	0.46	0.20	0.62	0.00	0.	0.	1.29	2.045	-4.		0 7
4211 STM14	COAL-FG	2.	1.14	0.947	0.17	5.5	0.41	0.18	0.49	0.01	0.	-0.02	1.07	1.701	-3.		0 9
4211 STM14	COAL-AF	2.	1.00	0.991	0.17	5.5	0.42	0.18	0.56	0.00	0.	0.	1.16	1.847	-4.		0 8
4211 STM14	COAL-AF	2.	1.14	0.947	0.17	4.8	0.36	0.15	0.42	0.01	Ο.	-0.02	0.93	1.478	-2.		0 21
4211 STM08	RESIDUA	2.	0.81	0.810	0.17	2.6	0,20	0.08	0.29	0.	0.04	0.	0.62	0.932	-0.	1	<u> 6 1</u>
4211 STM08	COAL-FG	2.	0.81	0.810	0.17	5.0	0.38	0.16	0.47	Ο.	0.04	0.	1.05	1.675	-3.		n t
24211 STM08		2.	0.81	0.810	0.17	4.5	0.34	0.14	0.41	Ο.	0.04	0.	0.94	1.492	-2.	į	0 10
4211 PFBSTI	1 COAL-PF	2.	1.00	0.977	0.17	7.5	0.57	0.24	0.67	0.00	0.	Ο.	1.48	2.360	-5.	1	0 7
<u>4211 PFBSTI</u>	1 COAL-PF	2.	1.89	0.804	0.17	7.3	0.55	0.23	0.53	0.05	0.	-0.12	1.24	1.970	<u>-5.</u>		0 10
4211 TISTM		2.	1.00-0		0.17	8.4	0.63	0.27	0.53	0.29	Ο.	Ο.	1.73	2.749	-7.		0 6
4211 TISTM		2.	1.00		0.17	12.2	0.93	0.39	0.81	0.00	0.	0.	2.13	3.396	-10.		0 7
4211 TISTM		2.	2.53		0.17	18.1	1.37	0.58	0.83	0.08	0.	-0.21	2.65	4.217	-14.		0 8
4211 THRS		2	1.00-		0.17	11.0	0.82	0.35	0.52	0.53	0.	<u>o.</u>	2.21	3.519	<u>-9.</u>		0
4211 TIHRS		2.	1.00		0.17	15.0	1.14	0.48	0.78	0.02	0.	0.	2.43	3.871	-12.		0 7
4211 THRS		2.	1.27		0.17	16.0	1.22	0.52	0.67	0.04	0,	-0.04	2.41	3.841	-12.		0 8
4211 STIRL	DISTILL	2.	1.00-0		0.17	2.9	0.22	0.09	0.35	0.36	0.	0.	1.02	1.623	-2,		0 6
4211 STIRL	RESIDUA	<u>2.</u>	1.00-0		0.17	2.9	0.22	0.09	0.35	0.29	<u>o.</u>	<u>0.</u>	0.95	1.518	-2.		<u>o</u>
4211 STIRL	COAL	2.	1.00		0.17	6.3	0.47	0.20	0.61	0.03	Ō.	0.	1.30	2.075	-4.		0 7
4211 STIRL	COAL	2.	3.15		0.17	6.7	0.50	0.21	0.50	0.19	0.	-0.30	1.10	1.743	-4.		0 20
4211 HEGT85		2.	1.00		0.17	10.7	0.81	0.34	0.66	0.06	0.	0.	1.87	2.979	-8.		0 7
4211 HEGTS		<u>2.</u>	13.66		0.17	42.3	3.21	1.37	1.45	1.49	<u> 0.</u>	<u>-1.75</u>	5.77	9.190	-36.		$\frac{0}{0}$ $\frac{7}{7}$
24211 HEGT60		2.	1.00		0.17	10.3	0.78	0.33	0.65	0.06	0.	0.	1.82	2.893	-8.		
4211 HEGT60		2.	5.01		0.17	20.8	1.58	0.67	0.79	0.49	0.	-0.56	2.98	4.738	-17.		0 7
4211 HEGTO		2.	1.00		0.17	9.7	0.73	0.31	0.62	0.05	0.	0. -0.15	1.72	2.733	-7. -8.		0 6
<u>4211 HEGTOG</u> 4211 FCMCCI		<u>2.</u> 2.	2.10 ( 1.00-		0.17	9.3	0.88	0.38 0.31	0.51	0.17	<u>0.</u> 0.	0.	1.79 2.03	2.842 3.238	-8.		<del>ŏ - ``</del>
4211 FCMCCI		2.	3.76-0		0.17 0.17	13.8	1.07	0.45	0.65	0.54	0. 0.	-0.38	2.33	3.703	-11.		o :
4211 FONCOI		2. 2.	1.00-		0.17	9.1	0.71	0.45	0.69	0.36	0. 0.	0.	2.06	3.276	-8.		0
4211 FOSTOI		2.	5.60		0.17	16.5	1.28	0.54	0.83	0.64	0.	-0.64	2.65	4.218	-14.		o 7
4211 IGGTS		2.	1.00-		0.17	9.6	0.75	0.32	0.75	0.37	0.	0.	2.19	3.478	-9.		Ď é
4211 IGGTS		2.	3.87-0		0.17	14.2	1.11	0.32	0.75	0.59	0.	-0.40	2.52	4.014	-12.		ŏ ;
4211 GTSOAI		2.	1.00-0		0.17	3.4	0.25	0.11	0.73	0.35	O.	0.40	0.96	1.526	-2.		ŏ
4211 GTACO		2.	1.00-0		0.17	3.1	0.23	0.10	0.33	0.28	Ö.	o.	0.93	1.486	-2.		Ö
4211 GTAC12		2.	1.00-0		0.17	3.1	0.23	0.10	0.33	0.24	Ö.	Ö.	0.90	1.431	<u>-ī:</u>		ŏ
4211 GTAC10		2.	1.00		0.17	3.1	0.23	0.10	0.33	0.23	ŏ.	Ö.	0.89	1.422	-1.		ŏ
4211 GTWC16		2.	1.00-0		0.17	3.3	0.25	0.10	0.34	0.24	Ö.	ŏ.	0.93	1.476	-ż.		ŏ
4211 CC1628		2.	1.00		0.17	3.4	0.26	0.11	0.40	0.20	ō.	Ö.	0.97	1.539	-2.	,	Ŏ
4211 CC162		2.	1.00		0.17	3.2	0.25	0.10	0.40	0.20	O.	Ö.	0.95	1.510	-2.		Ď í
4211 CC122		2.	1.00		0.17	3.2	0.24	0.10	0.39	0.20	Ö.	o.	0.94	1.491	-2.		o e
4211 CC082	RESIDUA	2.	1.00		0.17	3.3	0.25	0.11	0.40	0.21	Ö.	Ö.	0.97	1.540	-2.	1	0 6
4211 STIG1	RESIDUA	2.	1.00		0.17	3.5	0.26	0.11	0.35	0.20	0.	0.	0.91	1.454	-2.	,i	0 (
4211 STIG10	RESIDUA	2.	1.00	0.109	0.17	3.3	0.25	0.10	0.35	0.21	0.	0.	0.91	1.441	-2.		0 6

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		S	ENSITI	VITY OF	CAPI	TAL CO				ENT OF						<b>-</b>			
NERGY CO	ONV	SITE-	POWER	POWER	FESRP	OWER C	********* APITAL CAF						MILLION EVNUE TO			* Presnt	ROI	GRO	15 <b>S</b>
SYSTEM	M	FUEL	REQD	GEN/		/HEAT	COST		+			ELEC				WORTH	<u> </u>		'ΛΥ
			MW	REQD		RATIO	*10**6	I	NSNC							15%		BA	\ck
4211 DEA	ADV3	RES I DUA	2.	1.00	0.137	0.17	4.5	0.33	0.14	0.39	0.20	0.	0.	1.06	1.68	8 <b>-3</b> .		0	
4211 DE	HTPM	RESIDUA	2,	1.00	0.036	0.17	4.5	0.33	0.14	0.41	0.22	0.	0.	1.11	1 1.76			0	
1211 DES	SOA3	DISTILL	. 2.	1.00	0.114	0.17	3.4	0.25	0.11	0.36	0.25	0.	٥.	0.98	1.55	4 -2.		0	
1211 DES	SOA3	RESIDUA	2.	1.00	0.114	0.17	3.4	0.25	0.11	0.36	0.21	Ο.	Ο.	0.93	1.48			0	
1211 GTS	SØAD	DISTILL	. 2.	1.00-	-0.096	0.17	3.0	0.22	0.09	0.33	0.31	Ο.	ο.	0.96	1.52			0	
<u>1211 GTF</u>	RA08	DISTILL	. 2.	1.00	0.104	0.17	3.5	0.26	0.11	0.34	0.26	0.	<u>o.</u>	0.97				_0	
1211 GTF	RA12	DISTILL	. 2.	1.00	0.106	0.17	3.4	0.25	0.11	0.34	0.26	0.	Ο.	0.96				Ð	
1211 GTF	RA16	DISTILL		1.00	0.083	0.17	3.5	0.26	0.11	0.34	0.26	Ο.	Ο.	0.98				Q	
4211 OTF	R208	DISTILL	. 2.	1.00	0.000	0.17	3.3	0.25	0.10	0.34	0.29	Ο.	Ο.	0.98				О	
		DISTILL	<u> </u>		0.030		3.4	0.25	0.11	0.34	0.28	<u>0.</u>	0.	0.97				<u>o</u> _	
1211 GT	R216	DISTILL	. 2.	1.00	0.050	0.17	3.4	0.25	0.11	0.34	0.27	ο.	Ο.	0.97				0	
211 GT	RW0 <b>8</b>	DISTILL	. 2.	1.00	0.088	0.17	3.6	0.27	0.11	0.35	0.26	Ο.	Ο.	0.98				0	
211 GTF	RW12	DISTILL	. 2.	1.00	0.121	0.17	3.6	0.26	0.11	0.35	∘0.25	0.	Ο.	0.97				0	
211 GTF	RW16	DISTILL	. 2.	1.00	0.104	0.17	3.7	0.27	0.12	0.35	0.26	0.	<u> </u>	0.99				_0_	
211 GTF	R308	DISTILL	. 2.	1.00-	-0.032	0.17	3.4	0.25	0.11	0.34	0.29	0.	Ο.	0.99	1.58			O	
211 GTF	R312	DISTILL	. 2.	1.00	0.064	9.17	3.5	0.26	0.11	0.34	0.27	Ο.	Ο.	0.97	<b>1.5</b> 5	0 -2.		O	
211 GTF	R316	DISTILL	. 2.	1.00	0.055	0.17	3.5	0.26	0.11	0.34	0.27	Ο.	Ο.	0.99	1.57	3 -2.		O	
211 FCF	PADS	DISTILL	. 2.	1.00	0.158	0,17	3.2	0.23	0.10	0.35	0.24	<u>o.</u>	0.	0.93	1.47			<u>o</u>	
211 FC	MCDS	DISTILL	. 2.	1.00	0.223	0.17	3.2	0.24	0.10	0.35	0.22	0.	0.	0.91	1.44	5 -2.		0	
361 ONG	CCGN	RESIDUA	١ З.	G.	0.	0.14	3,2	0.24	0.10	0.30	Ο.	0.69	Ο.	1.33	1.00	0 0.		0	
361 STN	M141	RESIDUA	3.	1.00	0.991	0.14	5.3	0.40	0.17	0.51	0.01	Ο.	Ο.	1.09	0.81	9 -0.		12	
361 ST	M141	RESIDUA	. З.	1.06	0,970	0.14	5.0	0.38	0.16	0.42	0.02	0.	-0.02	0.96	0.72	1 0.		17	_
361 STN	M141	COAL-FG	3.	1,00	0.991	0.14	10.5	0.80	0.34	0.88	0.00	Ō.	0.	2.03	1.52	0 -6.		0	-
361 STN	M141	COAL-FO	Э.	1.06	0.970	0,14	9.7	0.73	0.31	0.73	0.01	Ο.	-0.02	1.77	1.32	6 <b>-5</b> .		0	
361 STN	M141	COAL-ÁF	3.	1.00	0.991	ű. 14	8.7	0.66	0.28	0.79	0.00	Ο.	Ο.	1.74	1.30	5 -4.	•	0	
361 STN	M141	COAL-AF	3.	1.06	0:970	0.14	7.8	0.59	0.25	0.64	0.01	Ο.	-0.02	1.47	1.100	0 -3.		2	
361 STN	M088	RESIDUA	3.	0.58	0.677	0.14	4.3	0.33	0.14	0.40	0.	0.22	٥.	1.09	0.620	0 0.		17	
361 STN	880M	COAL-FG	3.	0.59	0.677	0.14	8.8	0.67	0.29	0.70	Ο.	0.22	ο.	1.88	1.41	1 -4.		Ü	:
361 STM	880M	COAL-AF	3.	0.68	⊴.677	0.14	7.3	0.55	0.24	0.61	Ο.	0.22	0.	1.63	1.22	1 -3.		0	
361 PFE	BSTM	COAL-PF	3.	1.00	0.970	0.14	12.9	0:98	0.42	1.03_	0.01	Ο,	0.	2.44	1.82	8 -8.		<u>o</u>	
361 PFE	BSTM	COAL-PF	3.	1.97	0.789	0.14	12.4	0.94	0.40	0.88	0.17	0.	-0.40	1.99	1.49	0 -7.		0	
361 TIS	STMT	RESIDUA	3.	1.00-	0.398	0.14	14.8	1.13	0.48	0.79	0.98	Ο.	0.	3.37	2,53	1 -12.		0	
361 TIS	STMT	COAL	3,	1.00	0.980	0.14	21.9	1.66	0.71	1.24	0.01	Ο,	ο.	3.62	2.71	3 -16.		0	
361 TIS	STMT	COAL	3.	2.73	0.747	0.14	34.0	2.58	1.10	1.37	0.28	0.	-0.72	4.61	3.45	7 -25.		O	
361 TIF	HRSG	RESIDUA	3.	1.00-	1.274	0.14	18.9	1.40	0.59	0.81	1.59	0.	0.	4.39	3.29	7 -17.		0	
361. TII	HRSG	COAL	3.	1.00	0.784	0.14	26.5	2.01	0.85	1.27	0.09	0.	Ο.	4.22	3.160	6 -20.		0	
361 TIF	HRSG	COAL	3.	1.63	0.641	0.14	32.1	2.44	1.04	1.21	0.24	Ο.	-0.26	4.66	3.49	6 -24.		O	
361 STI	IRL	DISTILL	3,	1.00-	0.322	0.14	5.6	0.42	0.18	0.52	1.13	0	Ο.	2.24	1.68	3 -4.		0	
361 STI	IRL	RESIDUA	3.	1.00-	0.322	0.14	5.6	0.42	0.18	0.52	0.92	0.	O.	2.03	1.52	7 -3.		ō	
361 STI		COAL	3,	1.00	0.803	0.14	11.7	0.87	0.37	0.93	0.08	Ο.	o.	2.24	1,684	4 -7.		0	
361 STI	-	COAL	3.	-	0,536		15.4	1.14	0.48	0.89	0.68	О.	-1.10	2.10	1,572	2 -8.		o	9
		COAL-AF			0.496		17.8	1.35	0.57	1.00	0.20	Ο.	Ο.	3.13				0	
361 HEC					0,176		45.4	3.44	1.46	1.68	2.53	Ō.	-2.74		4.789			Ô	

DATE 06/07/79 18SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			SENSITI	VITY OF	CAPIT					ENT OF				C1+4++4				
NERGY	CONV	SITE-	POWER	POWER	FESRPO		PITAL CAF						EVNUE TO			RESNT	ROI 9	GROS <b>S</b>
SYS	TEM	FUEL	REGD	GEN/		/HEAT			+			ELEC				WORTH	X	PAY
			MW	REGD	F	RATIO *	10**6	11	NSNC							15%		BACK
1361	HEGTO0	COAL-A	F 3.	2.69	0.344	0.14	22.6	1.72	0.73	0.94	0.72	0.	<b>-0</b> .70	3.40	2.551	-16.	(	0 10
	FCMCCL		3.	1.00-	2.226	0.14	16.3	1.26	0.54	1.01	1.31	O.	٥.	4.12	13.089	-15.	•	0 (
361	FCMCCL	COAL	3.	4.72-	0.053	0.14	26.3	2.05	0.87	1.26	2.01	0.	-1.54	4.64	3.483	-22.		0
361	FCSTCL	COAL	3.	1.00-	2.208	0.14	16.0	1.24	0.53	1.06	1.30	Ο.	Ο.	4.13	3.098	-15.	•	0
361	FCSTCL	COAL	3.	6.42	0.121	0.14	30.3	2.35	1.00	1.51	2.29	Ο.	-2.25	4.90	3.675	-25.	(	o
361	IGGTST	COAL	3.	1.00-	2.334	.0.14	16.5	1.28	0.54	1.09	1.35	0.	0	4.27	3.203	-16.		<u>o</u>
361	IGGTST	COAL	3.	4.34-	0.212	0.14	25.0	1.95	0.83	1.14	2.13	0.	-1.39	4.66	3.496	-21.	(	0
361	GTSOAR	RESIDU	А З.	1.00-	0.103	0.14	6.0	0.44	0.19	0.49.	0.77	Ο.	Ο.	1.90	1.424	-3.	C	Ö
361	GTAC08	RESIDU	А 3.	1.00-	0.185	0.14	3.5	0.41	0.17	0.48	0.83	0.	Ο.	1.89	1.421	-3.	C	0
		RESIDU.		1,00-		0.14	5.5	0.41	0.17	0.48	0.73	0.	0.	1.79	1.346	-3.		<u> </u>
		RESIDU		1.00		0.14	5.6	0.42	0.18	0.48	0.69	Ο.	Ο.	1.77	1.326	-3.	_	0
		RESIDU		1.00-		0.14	5.9	0.44	0.19	0.49	0.71	Ο.	o.	1.82	1.366	-3.	-	0
		RESIDU	-	1.00		0.14	5.9	0.45	0.19	0.56	0.62	Ο.	0.	1.81	1,356	-3.	-	O
		RESIDU		1.00		0.14	5.7	0.43	0.18	0.55	0.63	<u>o.</u>	<u>o</u>	1.79	1.344	-3.		<u> </u>
		RESIDU		1,00		0.14	5.5	0.42	0,18	0,55	0.63	0.	0.	1.77	1.330	-3.	_	0
		RESIDU		1.00		0.14	5.7	0.43	0.18	0.55	0.67	0.	٥.	1.84	1.383	-3.	Q	~
		RESIDU		1.00		0.14	5.9	0.44	0.19	0.51	0.59	0,	0.	1.72	1.289	-2.	0	-
		RESIDU		1.00		0.14	5.7	0.42	0.18	0.50	0.62	<u>o,</u>	<u>0.</u>	1.72	1.292	-2.		
		RESIDU		1.00		0.14	5.6	0.42	0.18	0.50	0.67	0.	0.	1.76	1.320	-2.	Q	-
		RESIDU			0.137	0.14	7.5	0.56	0.24	0.55	0.60	0,	0.	1.95	1.465	-4.	Q	-
		RESIDU		1.00-		0,14	7.8	0.58	0.24	0.59	0.72	0.	0.	2.13	1.596	-5.	g	-
		DISTIL		. 1.00		0.14	6.5	0.48	0.20	0.53	0.76	<u>o.</u>	<u>o.</u>	1.97	1.481	<u>-4.</u>		
		RESIDU		1.00		0.14	6.5	0.48	0.20	0.53	0.62	0.	0.	1.83	1.376	-3.		~
		DISTIL		1.00~		0.14	5.4	0.40	0.17	0.48	0.94	0.	0.	1.98	1.489	-3.	_	0
		DISTIL		. 1.00		0.14	6.1	0.45	0.19	0.49	3.77	0.		1.91	1.431	-3.	Ç	•
		DISTIL		1.00		0.14	6.1	0.45	<u>. 0.19</u>	0.49	0.77	<u>0.</u>	<u> </u>	1.89	1.421	<u>-3.</u> -3.		<u>0</u>
		DISTIL		1.00		0.14	6.2	0.46	0.20	0.49	0.76	:	0. 0.	1.94	1.452	-3. -3.	-	0
		DISTIL		1.00-		0.14	5.9 6.0	0.44 0.44	0.19 0.19	0.49 0.49	0.83	0. 0.	0.	1.95	1.464	-3.	-	n D
		DISTIL		1.00		0.14 0.14	6.0	0.44	0.19	0.49	0.81	0.	o.	1.94	1.456	-3.		Ö
		DISTIL		1.00		0.14	6.2	0.46	0.19	0.50	0.78	0.	<del>- 0.</del>	1.93	1.451	-3.	<del></del>	
		DISTIL		1.00		0.14	6.2	0.46	0.20	0.49	0.75	0. 0.	0.	1.90	1.428	-3.	•	0
		DISTIL		1.00		0.14	6.4	0.47	0.20	0.50	0.73	0.	0.	1.94	1.452	-3.	Č	_
		DISTIL	_	1.00-		0.14	5.9	0.44	0.19	0.49	0.88	Ö.	Ö.	2.00	1.503	-3.	_	Ď
		DISTIL		1.00		0.14	6.0	0.45	0.19	0.49	0.80	0.	Ö,	1.93	1.447	-3.	<u>`</u>	
		DISTIL		1.00		0.14	6.2	0.46	0.19	0.50	0.81	Õ.	õ.	1.96	1.467	-3.	à	_
		DISTIL		1.00		0.14	5.9	0.44	0.19	0.62	9.72	Õ.	Ö.	1.97	1.476	-3.	ò	-
-		DISTIL		1.00		0.14	6.0	0.45	0.19	0.61	0.66	0.	o.	1.91	1.432	-3.	-	õ
		RESIDU			0. <u></u>	0.46	2.1	0.15	0.06	0.22	0.07	1.54	Ö.	2.05	1.000	0.	—— Š	
		RESIDU		0.31		0.46	3.3	0.25	0.11	0.32	0.25	1.06	õ.	1.98	0.967	-0.	Ģ	-
		COAL-F		0.31		0.46	6.0	0.45	0.19	0.54	0.15	1.06	o.	2.39	1.165	-3,	Ċ	0 9
		COAL - A		0.31		0.46	5,1	0.39	0.17	0.47	0.15	1.06	o.	2.23	1.088	-2.	č	
221	STMORA	RESIDU	A 5	0.20	0.120	0.46	2.B	0.21	0.09	0.31	G. 19	1.23	O.	2.02	0.986	-0.	7	7

DATE 06/07/79 IGSE-PEC-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		S	ENSITI	VITY OF	CAPIT	AL COS	-			ENT OF	-,			0)					•
ENERG	Y CONV	SITE-	POWER	POWER F	ESRPO	WER CA	PITAL CAP						MILLION VNUE TO			ESNT	ROI	GROS	9 <b>5</b>
SY	STEM	FUEL	REOD	GEN/		/HEAT	COST		+		E	I.EC				WORTH		P.	ΔY
			MW	REQD		ATIO *		11	ISNC							15%		BA	CK
		COAL-AF		0.20 0		0.46	4.8	0.36	0.15	0.46	0.11	1.23	Ö.	2.32	1.130	-2.		0	***
		COAL-PF		0.58 0		0.46	7.9	0.60	0,26	0.63	0.25	0.64	<u> </u>	2.33	1.159	<u>-4.</u>		0	999
		RESIDUA	5.	0.04 0		0.46	3.7	0.28	0.12	0.37	0.09	1.47	0.	2.34	1.139	-2.		0	71
	TISTMT		5.	0.81 0		0.46	20.3	1.54	0.65	0.92	0.32	0.29	O.	3.73	1.819	-14.		0	263
		RESIDUA		0.03 0		0.46	3.6	0.26	0.11	0.32	0.09	1.50	0.	2.29	1.115	-1.		0	71
	TIHRSG			0.48 0		0.46	19.1	1.45	0.62	0.79	0.29	0.80	<u>0.</u>	3.95	1.926	<u>-14.</u>		<u>o</u>	. 94
	STIRL	DISTILL	5.	1.00-0		0.46	4.6	0.34	0.14	0.41	2.51	0.	0.	3.40	1.660	<b>~5</b> .		0	58
	STIRL	DISTILL	5.	0.06 0		0.46	2.8	0:20	0.09	0.32.	0.15	1.45	0.	2.20	1.075	-1.		0	66
	STIRL	RESIDUA	. <b>5</b> .	1.00-0		0.46	4.6	0.34	0.14	0.41	2.05	0.	0.	2.94	1.434	-4.		0	60
	STIRL	RESIDUA	<u>5.</u>	0.06 0		0.46	2.8	0.20	0.09	0.32	0.12	1.45	_0	2,18	1.062	<u>-1.</u>	·	<u>o</u>	71
	STIRL	COAL	5.	1.00 0		0.46	8.2	0,61	0.26	0.70	0.55	0.	0.	2.11	1.029	-3.		4	15
	STIRL	COAL	5.	1.08 0		0.46	7.7	0.57	0.24	0.58	0.59	0.	-0.07	1.91	0.930	-2.		7	11
		COAL-AF		1.00 0		0.46	18.9	1.43	0.61	0.97	0.83	0.	0.	3.84	1.874	-14.		0	110
		COAL-AF	<u>5.</u>	2.25 0		0.46	27.6	2.10	0.89	1.09	1.80	<u> </u>	<u>-1.15</u>	4.73	2.305	<u>-21.</u>		<u>0</u>	<u> 100</u>
		COAL-AF	5.	0.80 0		0.46	13.8	1.04	0.44	0.62	0.61	0.31	0.	3.03	1.478	-9.		0	909
	FCMCCL		5.	1.00-0		0.46	14.9	1.16	0.49	0.92	1.16	0.	0.	3.73	1.821	-12.		0	83
	FCMCCL		5.	1.40-0		0.46	16.0	1.24	0.53	0.83	1.32	0.	-0.37	3.56	1.738	-12.		0	112
24921		COAL		1.00-0		0.46	14.9	1.16	0,49	1.00	1.14	<u>o.</u>	0.	3.80	1.852	-12.		<u> </u>	81
	FCSTCL		5.	1.90 0		0.46	18.4	1.43	0.61	1.02	1.51	0,	-0.83	3.73	1.817	-13.		0	146
	IGGTST		5.	1.00-0		0.46	15.2	1.18	0.50	0.94	1.25	0.	0.	3,89	1.895	-12.		0	78
	IGGTST		5.:	1.28-0		0.46	15.7	1.22	0.52	0.81	1.40	0.	-0.26	3.69	1.800	-12.		0	89
24921		RESIDUA	<u> 5.</u>	1.00-0		0.46	5.4	0.40	0.17	0.43	1.71	<u> </u>	<u>0.</u>	2.70	1.319	<u>-4.</u>		<u>o</u>	65
24921		RESIDUA	5.	0.08 0		0.46	3.0	0.22	0.09	0.31	0.14	1.41	0.	2.18	1.063	-1.		0	79
		RESIDUA	5.	1.00-0		0.46	4.5	0.33	0.14	0.37	1.84	0.	0.	2.69	1.310	-3.		0	61
		RESIDUA	5.	0.06 0		0.46	2.7	0.20	0.09	0.30	0.11	1.45	0.	2.15	1.048	-1.		0	80
		RESIDUA	<u>5.</u>	1.00-0		0.46	4.7	0.35	0,15	0.40	1.63	0.	<u>0. ·</u>	2.53	1.233	<u>-3.</u>		0	67
		RESIDUA	5.	0.08 0		0.46	2.8	0.20	0.09	0.31	0.13	1.42	0.	2.14	1.045	-1.		0	90
		RESIDUA	5.	1.00 0		0.46	5.0	0.37	0.16	0,41	1.54	0.	0.	2.48	1.208	-3.		0	74
		RESIDUA	5.	0.09 0		0.46	2.8	0.21	0.09	0.31	0.14	1.40	0.	2.15	1.046	-1.		0	97
		RESIDUA	<u>5.</u>	1.00 0		0.46	5.3	0.39	0.17	0.43	1.58	0.	<u> 0.</u>	2.56	1.248	<u>-3.</u>		<u> </u>	70
		RESIDUA	5.	0.09 0		0.46	2.9	0.22	0.09	0.31	0.14	1.40	0.	2.17	1.057	-1.		0	87
		RESIDUA	5.	1.00 0		0.46	5.4	0.41	0.18	0.52	1.37	0.	0.	2.48	1.207	-3.		0	94
24921		RESIDUA	`5.	0.13 0		0.46	3.1	0.23	0.10	0.37	0.18	1.34	0.	2.22	1.084	-1.		0	77
		RESIDUA	<u>5.</u>	1.00 0		0.46	5.2	0.39	0.17	0.51	1.39	0	<u>0.</u>	2.46	1.200	<u>-3.</u>		<u>o</u>	88
24921		RESIDUA	5.	0.12 0		0.46	2.9	6.22	0.09	0.37	0.16	1.36	0.	2.21	1.075	-1.		0	76
		RESIDUA	5.	1.00 0		0.46	5.0	0.38	0.16	0.50	1.39	0.	0.	2.43	1.187	-3.		0	90
		RESIDUA	5.	0.12.0		0.46	2.9	0.22	0.09	0.37	0.16	1.36	0.	2.20	1.071	-1.		0	77
		RES I DUA		1.00 0		0.46	5.1	0.38	0.16	0.50	1.50	0.	<u>0.</u>	2.54	1.241	3		<u>0</u>	73
24921		RESIDUA	5.	0.09 0		0.46	2.9	0.22	0.09	0.36	0.14	1.40	0.	2.20	1.075	-1.		0	74
		RESIDUA	5.	1.00 0		0.46	5.6	0.42	0.18	0.51	1.35	0.	· O .	2.45	1.197	-3.		0	107
		RESIDUA	5.	3.44 0		0.46	10.4	0.77	0.33	0.81	4.48	0.	-2.25	4.13	2.016	-10.		0	62
		RESIDUA	<u>5.</u>	1.00 0		0.46	5.3	0.39	0.17	0.48	1.38	0.	<u> </u>	2.42	1,181	-3.	<u> </u>	<u>o</u>	103
24921	<u> 511610</u>	RESIDUA	5.	0.32 0	.0/5	0.46	3.7	0.27	0.12	0.37	0.44	1,05	0.	2.25	1.097	-1.		0	92

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		SI	ENSITI	VITY OF	CAPIT							L COST						
				561.55										5NS)****		k	<b></b>	
ENERGY		SITE- I	REQD	GEN/	FESKPC	/HEAT (	PITAL CAF	TIAL IA	TES DAI	טיו מעמ		RCHD RE ELEC	VHUE	IOIAL NO	ORML F	PRESNT F WORTH	ROI GRO % F	2ο <b>ο</b> 2ΑΥ
313	STEM	FUEL	MW	REQD		ATIO *		<del></del>	VSNC			ELEU				15%		λοκ Σοκ
			IIW	KLUD		W110 -	00	• •	13110							108	, DA	34.43
24921	STIGIS	RESIDUA	5.	0.19	0.050	0.46	3,2	0.24	0.10	0.34	0.28	1.25	0.	2.21	1.076	3 -1.	0	82
24921	<b>DEADV3</b>	RESIDUA	5.	1.00	0.174	0.46	7.2	0.54	0.23	0.53	1.34	Ο.	Ο.	2.63	1.282	2 -4.	0	99
24921	DEADV3	RESIDUA	5.	0.23	0.073	0.46	4.5	0.33	0.14	0.39	0.31	1.18	0.	2,36	1.150	-2.	0	84
24921	DEHTPM	RESIDUA	5.	1.00	0.014	0.46	7.3	0.54	0.23	0.54	1.60	Ο.	Ο.	2,90	1.417	7 -5.	0	69
		RESIDUA	5.		0.040	0.46	2.9	0.22	0.09	0.34	0.14	1.41	Ο.	2.19	1.069	• •	0	75
	DESGA3		<u>5,</u>	1.00		0.46	6.5	0.48	0.21	0.51	1.69	0.	0.	2.89	1.408		<u> </u>	. 66
24921		DISTILL	5.		0.072	0.46	3.6	0.27	0.11	0.38	0.46	1.12	0.	2.34	1.143		0	68
		RESIDUA	5.	1.00		0.46	6.5	0.48	0.21	0.51	1,38	0.	0.	2.58	1.256		0	92
		RESIDUA	5.		0.072	0.46	3.6	0.27	0.11	0.38	0.38	1.12	0.	2.26	1.102		0	87
		DISTILL	<u>5.</u> 5.		0.050	0.46 0.46	4.5	0,33	0.14	0.40	2.08 0.16	0.	0.	2.95	1.440		<u>0</u> _	59 70
		DISTILL	5. 5.		0.035	0.46	2.7 5.7	0.20 0.42	0.09 0.18	0.30	1.70	1.42 0.	0.	2.17 2.75	1.343		0	65
		DISTILL	5. 5.		0.055	0.46	3.7	0.42	0.10	0.43	0.22	1.34	0.	2.73	1.087	• • •	. 0	74
	GTRA12		5.		0.144	0.46	5. £	0.42	0.18	0.44	1.70	0.	0.	2.74	1.336	• • •	ň	65
		DISTILL	5.		0.055	0.46	3.1	0.23	0.10	0.32	0.22	1.34	<del>0.</del>	2.21	1.080		<del>- ŏ</del>	75
		DISTILL	5.		0.122	0.46	5.9	0.43	0.18	0.45	1.74	0.	o.	2.81	1.370		ŏ	65
		DISTILL	5.		0.052	0.46	3.1	0.23	0.10	0.32	0.20	1.36	o.	2.22	1.082		o o	74
		DISTILL	5.		0.042	0.46	5.3	0.39	0.17	0.43	1.90	o.	Ö.	2.89	1.408	- • •	ŏ	62
		DISTILL	5.		0.042	0.46	3.0	0.22	0.09	0.31	0.18	1.39	Ö.	2.20	1.074		0	71
24921	<b>GTR212</b>	DISTILL	5.	1.00	0.071	0.46	5,5	0.40	0.17	0.43	1.84	Ο.	O.	2.85	1.392	-4.	O	62
24921	GTR212	DISTILL	5.	0.10	0.045	0.46	3.0	0.22	0.10	0.32	0.19	1.38	Ο.	2.21	1.078	5 -1.	0	72
24921	GTR216	DISTILL	5.	. 1.00	0.091	0.46	5.6	0.41	0.18	0.44	1.81	0.	Ο.	2.83	1.380	-4.	0	63
24921	GTR216	DISTILL	5.	0.11	0.047	0.46	3.0	0.23	0.10	0.32	0.19	1.38	0.	2.21	1.076	3 -1.	Ō	73
24921	GTRW08	DISTILL	5.	1.00	0.127	0.46	5.9	0.43	0.18	0.46	1.73	Ο.	0.	2.81	1.369	-4.	0	65
		DISTILL	5.	0.16		0.46	3.4	0.25	0.11	0.34	0.27	1.30	Ο.	2.26	1.102		0	72
		DISTILL	5.	1.00		0.46	5.9	0.43	0.18	0.45	1.67	0.	0.	2.74	1 . 338		0	66
		DISTILL	5.	0.16		0.46	3.4	0.25	0.11	0.33	0.26	1.30	0.	2.25	1.097		Ō	74
	-	DISTILL	5.	1.00		0.46	6.0	0.45	0.19	0.46	1.70	0.	0.	2.80	1.364		0	66
		DISTILL	5.	0.14		0.46	3.4	0.25	0.11	0.33	0.24	1.32	0.	2.25	1.098		0	73
		DISTILL	<u>5.</u>	1.00		0.46	5.4	0.40	0.17	0.44	1.96	<u>0</u>	0.	2.98	1.454		0	61
		DISTILL	5.	0.12		0.46	3.1	0.23	0.10	0.32	0.23	1.36	0.	2.24	1.090		0	- 68
-		DISTILL	5.	1.00		0.46	5.5	0.41	0.17	0.44	1.78	0. 1.35	0. 0.	2.81	1.369	• • •	0	63
	GTR312		5. 5.	0.12 1.00		0.46 0.46	3.2 5.7	0.23 0.43	0.10 0.18	0.32 0.45	0.22 1.80	0.	0.	2.23 2.85	1.086		0	72
		DISTILL	· 5.	0.12		0.46	3.2	0.43	0.10	0.32	0.22	1.35	0.	2.23	1.089		0	<u>63</u> 72
		DISTILL	5.	1,00		0.46	5. 5	0.40	0.17	0.82	1.60	0.	a.	3.00	1.461		ŏ	64
		DISTILL	5.	0.26		0.46	3.4	0.25	0.11	0.42	0.42	1.14	0. 0.	2.33	1.137		. 0	67
	FCMCDS		5.	1.00		0.46	5.6	0.23	0.18	0.42	1.48	0.	o.	2.85	1.392		0	67
		DISTILL	5.	0.21		0.46	3.3	0.24	0.10	0.38	0.31	1.22	<del>- ö</del>	2.25	1.097		0	74
		RESIDUA	50.		0.	0.22	24.7	1.83	0.78	1.08	17.26	16.17	õ.	37.10	1.000		ŏ	0
		RESIDUA	50.	0.94	• .	0.22	32.3	2.45	1.04	1.41	23.04	0.91	Ö.	28.86	0.778		54	2
		COAL-FO	50.		0.286	0.22	61.3	4.65	1.98	3.20	13.38	0.91	o.	24.12	0.650		24	4
26212	STM141	COAL -AE	50.	0.94	0.286	0.22	42.6	3.23	1.38	2.93	13.38	0.91	0.	21.83	0.588		46	3

NATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 24

		SENSIT	IVITY OF	CAPIT					ENT OF								
						*****											
NERGY CONV		POWER		FESRP		PITAL CA	PITAL TA		NDM FU	IEL PU		EVNUE TO	ITAL NO	IRML P			ROSS
SYSTEM	FUEL	REQD	GEN/		/HEAT			+			ELEC				WORTH		PAY
		MW	REQD	F	RATIO *	10**6	I	NSNC							15%		BACK
6212 STM088	COAL-F	G 50.	0.69	0.208	0.22	57. ≝	4.35	1.85	2.99	12.46	5.09	0.	26.74	0.721	16.	22	
5212 STM088				0.208	0.22	41.0	3.11	1.32	2.83	12.46	5.09		24.81	0.669	30.	41	
6212 PFBSTN	COAL-P	F 50.		0.297	0.22	63.2	4.79	2.04	4.84	13.70	0.	Ö.	25.37	0.684	18.	22	
5212 PFBSTN	COAL-P	F 50.	1.53	0.361	0.22	60.9	4.62	1.97	5.13	15.66	o.	-5.16	22.22	0.599	29.	27	٠ .
212 TISTM	RESIDU	A 50.	1.00	0.298	0.22	105.8	8.03	3.41	3.57	23.55	Ο.	Ο.	38.56	1.039	~44.	3	1
5212 TISTM	RESIDU	A 50.	1.26	0.333	0.22	118.8	9.01	3,83	3.90	25.19	0.	-2.52	39.42	1.062	53.	3	1
212 TISTMI	COAL	50.	1.00	0.298	0.22	140.2	10.64	4,52	5.58	13.68	0.	0.	34.43	0.928	-48.	7	i
5212 TISTM	COAL	50.	2.05	0.404	0.22	202.1	15.34	6.52	6.85	17.50	Ο.	-10.15	36.07	0.972	-82.	5	1:
6212 TIHRS6	RESIDU	A 50.	0.61	0.135	0.22	105.5	7.81	3.32	3.40	22.71	6.26	Ο.	43.50	1.172	~58.	o	
212 TIHRS	COAL	50.	1,00	0.219	0.22	179,8	13.64	5.80	6.06	15.17	0.06		40.74	1.098	-86.	3	
212 STIRL	DISTIL			0.215	0.22	53.6	3.97	1.69	2.22	32.28	0.	Ο.	40.16	1.082	-23.	0	
212 STIRL	DISTIL			0.259	0.22	63.2	4.68	1.99	2.48	37.69	Ο.	-4.71	42.13	1.135		0	-
212 STIRL	RES I DU			0.215	0.22	53.7	3.98	1.69	2.22	26.33	Ο.	Ο.	34.22	0.922	-5.	12	
212 STIRL	RESIDU			0.259	0,22	<u>63.3</u>	4.69	1.99	2.48	30.74	<u> </u>	-4.71	35.20	0.949		9	
212 STIRL	COAL	50.		0.215	0.22	91.5	6.77	2.88	4.41	15.29	0.	0.	29.36	0.791	-7.	13	
212 STIRL	COAL	50.		0.308	0.22	150.0	11.11	4.72	5.79	22.75	0.	-13.72	30.66	0.826		9	
212 HEGT85				0.069	0.22	120.7	9.16	3.89	5.20	18.14	0.	0.	36.39	0.981	-44.	5	
212 HEGT85			12.41		0.22	652.2	49.49	21.04		110.80		<u>-110.71</u>	94,49	2.547		0	
212 HEGT60				0.091	0.22	115.1	8.74	3.71	5.08	17.71	0.	0.	35.25	0.950	-38.	6	-
212 HEGT60				0.148	0.22	213.3	16.19	6.88	8.72	41.36	0.	-29, 82	43.33	1.168		2	
212 HEGTO				0.110	0.22	100.7	7.64	3.25	4.76	17.34	0.	0.	32.98	0.889	-24.	9	
212 HEGTO				0.138	0.22	117.0	8,88	3.78	5.11	22.07	<u> </u>	-6.28	33,56	0.905	-34.	<u>8</u>	
212 FCMCCL		50.	•	0.062	0.22	96.8	7.52	3.20	5.36	20.69 29.24	0, 0.	0. -18.78	36.77 34.69	0.991 0.935	-35. -51.	5 6	-
212 FCMCCL		50.		0.226	0.22	142.4	11.07	4.71	8.45		0. 0.	0.	34.69	1.001	-31. -39.	5	-
5212 FCSTCL 5212 FCSTCL		50. 50.		0.052	0.22 0.22	101.8 172.5	7.91 13.41	3.37 5.70	5.37 10.26	20.50 35.09	0.	-33.56	30.90	0.833	-39. -55.	8	
212 IGGTS1		50.		0.108	0.22	89.1	6.92	2.94	4.02	21.58	0.	0.	35.47	0.956	-27.	7	
212 (GGTS)		50.		0.169	0.22	137.8	10.71	4.56	4.50	32.71	0.	-20.37	32.11	0.865	-41.	8	-
212 GTSØAF				0.103	0.22	39.9	2.96	1.26	1.79	26.27	0.	0.	32,27	0.870	8.	23	
212 GTSOAF				0.288	0.22	48.3	3.57	1.52	2.04	34.59	0.	-8.96	32.76	0.883	3.	16	
212 GTACOE				0.258	0.22	37.1	2.75	1.17	1.71	24.88	0.	0.	30.50	0.822	15.	34	
212 GTACO8				0.310	0.22	40.1	2.97	1.26	1.80	28.51	o.	-4.62	29.92	0.806	15.	30	
212 GTAC12				0.254	0.22	38.5	2.85	1.21	1.75	25.02	o.	0.	30.83	0.831	13.	30	
212 GTAC12				0.333	0.22	45.9	3,40	1.45	1.96	31.60	Ö.	-8.23	30.17	0.813	12.	24	
212 GTAC16				0.249	0.22	39.9	2.96	1.26	1.78	25.19	O.	Ö.	31.18	0.840	11.	27	
212 GTAC16	RESIDU	A 50.	2.10	0.341	0.22	50.9	3.77	1.60	2.10	33.92	0.	-10.68	30.71	0.828	8.	19	
212 GTWC16	RESIDUA	A 50.	1.00	0.227	0.22	39.1	2.89	1.23	1.77	25.93	0.	0.	31.82	0.858	10.	26	
212 GTWC16	RESIDU	<u>4 50.</u>	2,19	0.315	0.22	48.6	3.60	1.53	2.05	36.25	0.	<u>-11.55</u>	31.89	0.860	5.	18	
212 CC1626	RESIDU	A 50.	1.00	0.224	0.22	42.9	3.26	1.38	1.98	26.02	0.	0.	32.64	0.880	5.	19	
212 CC1626	RESIDU	A 50.	3.46	0.354	0.22	61.3	4.65	1.98	2.58	47.53	Ο.	-23.81	32,92	0.887	-5.	12	
212 CC1622	RESIDUA	A 50.	1.00	0.235	0.22	43.4	3.29	1.40	1.98	25.65	Ο.	σ.	32,31	0.871	6.	19	
3212 CC1622				0.362	0.22	62.5	4.74	2.02	2.55	43.34	0.	-20.45	32.21	0.868	-3.	13	
212 CC1222	RESIDU	A. 50.	1.00	0.238	0.22	42.3	3.21	1.37	1.96	25.57	0.	0.	32.12	0.866	7.	21	



DATE 06/07/79 | &SE-PEC-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 25

		S	ENSITI	VITY OF	CAPI	TAL COS		overel EVE			ORIGINA		ST 100 S MILLION	467***	*****	,		
	CONV		POWER		FESRP		APITAL CA	APITAL TA	XES OA		EL PU	RCHD	REVNUE TO			RESNT		088
SYS	STEM	FUEL	REQD MW	GEN/ REQD		ATIO X	COST	· · · · · · · · · · · · · · · · · · ·	H NSNC			ELEC				WORTH 15%	<del></del>	PAY ACK
			1.144	KEUD	'	VALIO A	10440	•	113110							I JA	0,	NOIL
26212	CC0822	RESIDUA	50.	1.00	0.255	0.22	38.4	2.91	1.24	1.86	25.01	0.	Ο.	31.02	0.836	12.	28	
26212	CC0822	RESIDUA	50.	2.46	0.367	0.22	51.0	3.87	1,65	2.26	36.32	0.	-14.17	29.93	0.807	9.	20	
		RESIDUA		1.00	0.084	0.22	43.7	3.24	1.38	2.32	30.73	0.	0.	37.67	1.015	-11.	2	2
		RESIDUA		82.46		0.22	1012.1	74.97	31.87		128.33	Ο.	-790.16				0	:
		RESIDUA			0.120	0.22	42.2	3.13	1.33		29.51	Ο.	Ο.	36.11			9	
		RESIDUA	50.		0.218	0.22	<u>115.5</u>	8.56	3.64		110.70	<u> </u>	<u>-64,27</u>				0	9
		RESIDUA	50.		0.137	0.22	41.5	. 3.07	1.31	2.15	28.95	Ο.	Ο.	35.47			11	
		RESIDUA			0.228	0.22	75.4	5.58	2.37	4.21	69.58	Ο.	-33.70	48.05	–		0	•
		RES! DUA			0.168	0.22	60.4	4.47	1.90	2.38	27,92	ο.	0.	36,67			6	i
		RESIDUA	<u>50.</u>		0.286	0.22	175.2	12.98	5.52	5.48	71.56	<u>o.</u>	<u>-39.70</u>	55.84			0	
		RESIDUA	50.		0.250	0.22	59.3	4.39	1.87	2.41	25.16	0.	0.	33.83			11	
		RESIDUA			0.345	0.22	92.8	6.88	2.92	3.34	34.23	0.	-11.13	36.25			6	
		DISTILL			0.142	0.22	68.6	5.08	2.16	2.59	35.29	0.	0.	45.12			0	•
		DISTILL	<u>50.</u>		0.248	0.22	248.5	18.41	7.83		105.16	<u>o.</u>	-47.92				<u> </u>	
		RESIDUA	50.		0.142	0.22	68.6	5.08	2.16	2.59	28.79	٥.	0.	38.62			1	
		RESIDUA	<b>5</b> 0.		0.248	0.22	248.5	18.41	7.83	7.37	85.79	ο,	-47.92	71.46			0	
		DISTILL	50.		0.242	0.22	36.4	2.70	1.15	1.70	31.18	ο.	0.	36.72			7	
		DISTILL	50.		0.312	0.22	41.6	3.08	1.31	1.85	39.04	<u>o.</u>	-7.60					g
		DISTILL	50. 50.		0.223	0.22	44.7 69.7	3.31	1.41	1.90 2.61	31.97 53.47	0.	0.	38.59		, -	0	٤
		DISTILL	50. 50.		0.336	0.22	45.2	5.16 3.34	2.20 1.42	1.91	31.73	0. 0.	-19.28 0.	44.17 38.41	1.190 1.035		0	
		DISTILL	50.		0.345	0.22	68.2	5.05	2.15	2.57	51.73	o.	-18.52	43.18			0	23
		DISTILL	<u>50.</u>		0.230	0.22	46.2	3.43	1.46	1.94	31.66	<del>0.</del>	0.	38.48			0	- <u>.</u>
		DISTILL	50.		0.34%	0.22	68.5	5.07	2.16	2.57	49.62	o.	-16.59	42.83			ő	3
		DISTILL	50.		0.230	0.22	39.9	2.95	1.26	1.79	31.68	o.	0.	37.67			1	
		DISTILL	50.		0.321	0.22	51.6	3.82	1.63	2.13	44.72	o.	-12.02	40.27			ò	
		DISTILL	50.		0.229	0.22	40.7	3.01	1.28	1.81	31.71	0.	0.	37.81	1.019		- 0	
		DISTILL	50.		0.327	0.22	54.8	4.06	1.72	2.21	46.51	ŏ.	-13.59	40.91	1.102		ŏ	
		DISTILL	50.		0.233	0.22	41.8	3.10	1.32	1.83	31.53	ŏ.	0.	37.77			ĩ	
		DISTILL	50.		0.336	0.22	58.1	4.30	1.83	2.30	46.70	Ö.	-14.19	40.94	1.103		ò	
		DISTILL	50.		0.187	0,22	44.2	3.27	1,39	1.90	33.42	Ö.	Ö.	39.98	1.078		<u>_</u>	
6212	<b>GTRW08</b>	DISTILL	50.		0.297	0.22	71.3	5.28	2.24	2.69	64.83	Ö.	-24.84	50,21	1.353		Ō	
6212	GTRW12	DISTILL	50.		0.201	0.22	44.2	3.27	1.39	1.89	32.85	0.	0,	39.41	1.062	-16.	Ö	
6212	GTRW12	DISTILL	50.	3.61	0.320	0.22	71.7	5.31	2.26	2.70	63.42	Ο.	-25.34	48.35	1.303	-57.	0	
6212	GTRW16	DISTILL	50.	1.00	0.204	0.22	44.9	3.33	1.41	1.91	32.72	0.	0.	39.38	1.061	-17.	0	
6212	GTRW16	DISTILL	50.	3.34	0.319	0.22	63.7	4.72	2.01	2.49	59.82	Ο.	-22.71	46.32	1.248	-47.	0	
6212	<b>GTR308</b>	DISTILL	50.	1.00	0.174	0.22	43.0	3.19	1.36	1.88	33.99	Ο.	Ο.	40.41	1.089	-19.	0	
6212	<b>GTR308</b>	DISTILL	50.	2.72	0.257	0.22	54.9	4.07	1.73	2,25	56.05	0.	-16.67	47.42	1.278	-47.	- 0	
6212	GTR312	DISTILL	50.	1.00	0.208	0.22	42.9	3.18	1.35	1.86	32.55	Ο.	0.	38,95	1.050	-14.	0	1
		DISTILL	50.	2.90	0.314	0.22	56.0	4.15	1.76	2.27	54.25	Ο.	-18.46	43.97	1.185	-36,	0	
		DISTILL	50.		0.207	0.22	43.8	G. 24	1.38	1.89	32.60	Ο.	Ο.	39.11	1.054	-15,	0	1
		DISTILL	50.	2.86	0.311	0.22	57.3	4.24	1.80	2.31	53.88	0.	-18.02	44.21	1.191	-38.	00	
6212	ECPADS.	DISTILL	50	1.00	0.158	0.22	57.1	4.23	1.80	6.71	34.61	O.	0.	47.34	1.276	-48.	0	

DATE 06/07/79 SSE-PEC-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

Name						100	L COST	ORIGINAL	ENT OF	PERC		Ť	AL COS	CAPIT	VITY OF	NSITI	SE		-
SYSTEM FUEL REQUIRED GENV /HEAT COST + ELEC WORTH Z  26212 FONCOS DISTILL 50. 1.00 0.212 0.22 59.1 4.36 1.86 6.39 32.41 0. 0. 0. 45.05 1.214 -42.  26212 FONCOS DISTILL 50. 1.00 0.212 0.22 59.1 4.36 1.86 6.39 32.41 098.56 82.08 2.212 -209.  26214 ANDROON RESIDUA 29. 0. 0. 0. 16 21.5 1.59 0.68 0.96 14.02 9.36 0. 22.65 1.000 0.  26214 STM141 RESIDUA 29. 1.00 0.251 0.16 24.4 1.85 0.79 1.40 17.56 0. 0. 21.62 0.812 14.  26212 STM141 RESIDUA 29. 1.00 0.251 0.16 24.4 1.85 0.79 1.40 17.56 0. 0. 21.62 0.812 14.  26213 STM141 COAL-F0 29. 1.00 0.251 0.16 24.4 1.84 0.78 1.17 18.61 01.94 0.65 0.776 17.  26214 STM141 COAL-F0 29. 1.00 0.251 0.16 24.8 2. 8.4 0.78 1.17 18.61 01.94 0.65 0.776 17.  26214 STM141 COAL-F0 29. 1.00 0.251 0.16 34.2 3.81 1.41 2.91 0.00 0.00 0. 21.62 0. 0. 0. 17.76 16.  26214 STM141 COAL-F0 29. 1.00 0.251 0.16 34.2 3.81 1.41 2.91 0.00 0.0 0. 17.76 16.  26214 STM141 COAL-F0 29. 1.00 0.251 0.16 34.2 3.81 1.20 2.50 10.92 01.94 15.49 0.592 27.  26214 STM148 RESIDUA 29. 0.99 0.249 0.16 37.0 2.81 1.20 2.50 10.92 01.94 15.49 0.592 27.  26214 STM048 RESIDUA 29. 0.99 0.249 0.16 35.6 2.70 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.40 1.15 2.4												******							
RATIG #10=#6 INSNC  RATIG #10=#6 INSNC  15X  26212 FCMCDS DISTILL 50. 1.00 0.212 0.22 59.1 4.38 1.86 6.39 32.41 0. 0. 0. 45.05 1.214 -42. 26212 FCMCDS DISTILL 50. 4.98 0.360 0.22 164.2 12.16 5.17 26.14 77.17 038.56 82.08 2.212 -209. 26214 ONOCON RESIDUA 29. 1.00 0.251 0.16 24.4 1.85 0.79 1.40 77.56 0. 0. 26.63 1.000 0. 26214 STM141 RESIDUA 29. 1.00 0.251 0.16 24.4 1.85 0.79 1.40 77.56 0. 0. 21.62 0.812 14. 26214 STM141 RESIDUA 29. 1.00 0.251 0.16 24.8 1.86 0.79 1.01 7.58 0. 0. 0. 21.62 0.812 14. 26214 STM141 COAL-F0 29. 1.00 0.251 0.16 48.8 3.70 1.57 3.00 10.21 0. 0. 19.48 0.694 12. 26214 STM141 COAL-F0 29. 1.00 0.251 0.16 48.8 3.70 1.57 3.00 10.21 0. 0. 19.48 0.694 12. 26214 STM141 COAL-F0 29. 1.35 0.296 0.16 52.2 3.96 1.69 2.75 10.92 01.94 17.38 0.653 14. 26214 STM141 COAL-F0 29. 1.35 0.296 0.16 52.2 3.96 1.69 2.75 10.92 01.94 17.38 0.653 14. 26214 STM141 COAL-F0 29. 1.35 0.296 0.16 37.0 2.81 1.20 2.50 10.92 01.94 17.38 0.653 14. 26214 STM141 COAL-F0 29. 1.35 0.296 0.16 37.0 2.81 1.20 2.50 10.92 01.94 17.38 0.653 14. 26214 STM168 RESIDUA 29. 0.99 0.249 0.16 21.8 1.86 0.71 1.10 17.55 0.07 0. 21.10 0.792 17. 26214 STM068 RESIDUA 29. 0.99 0.249 0.16 48.8 3.70 1.58 2.58 10.19 0.07 0. 18.60 0.631 15. 26214 FFBS IN COAL-F0 29. 1.00 0.246 0.16 48.8 3.71 1.58 2.58 10.19 0.07 0. 18.60 0.631 15. 26214 FFBS IN COAL-F0 29. 1.00 0.246 0.16 48.8 3.71 1.58 2.58 10.19 0.07 0. 18.60 0.631 15. 26214 TISTM1 RESIDUA 29. 1.09 0.249 0.16 48.8 3.71 1.58 2.58 10.19 0.07 0. 18.60 0.631 15. 26214 TISTM1 RESIDUA 29. 1.00 0.247 0.16 48.8 3.71 1.58 2.58 10.19 0.07 0. 28.31 10.63 -11. 26214 TISTM1 RESIDUA 29. 1.00 0.247 0.16 48.8 3.71 1.58 2.58 10.19 0.07 0. 28.31 10.63 -11. 26214 TISTM1 RESIDUA 29. 1.00 0.247 0.16 48.8 9. 6.58 2.80 2.92 18.46 1.29 0.00 0.248 0.16 10.12 1.00 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.16 0.247 0.00 0.247 0.16 0.247 0.16 0.247 0.00	GROSS			RML PF	TAL NO	EVNUE TO			NDM FU		PITAL TA								
26212 FCHCOS DISTILL 50. 1.00 0.212 0.22 59.1 4.38 1.86 6.39 32.41 0. 0. 45.05 1.214 -42. 26212 FCHCOS DISTILL 50. 4.98 0.360 0.22 164.2 12.16 5.17 26.14 77.17 038.56 82.08 2.212 -209. 26214 STM141 RESIDUM 29. 0. 0. 0. 16 21.5 1.59 0.68 0.96 14.02 9.38 0. 26.63 1.000 0. 26214 STM141 RESIDUM 29. 1.00 0.251 0.16 24.4 1.85 0.79 1.40 17.58 0. 0. 21.62 0.812 14. 26214 STM141 RESIDUM 29. 1.35 0.296 0.16 24.2 1.84 0.78 1.17 18.81 01.94 20.655 0.776 17. 26214 STM141 COAL-F6 29. 1.00 0.251 0.16 48.8 3.70 1.57 3.00 10.21 00. 18.48 0.694 12. 26214 STM141 COAL-F6 29. 1.05 0.296 0.16 52.2 3.96 1.69 2.75 10.92 01.94 17.38 0.653 14. 26214 STM141 COAL-F6 29. 1.05 0.296 0.16 52.2 3.96 1.69 2.75 10.92 01.94 17.38 0.653 14. 26214 STM141 COAL-F6 29. 1.05 0.296 0.16 52.2 3.96 0.16 94.02 01.94 17.38 0.653 14. 26214 STM191 COAL-F6 29. 1.05 0.296 0.16 52.2 3.96 0.16 94.02 01.94 17.38 0.00 0.20 01.94 17.38 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.0	PAY			· · · · · · · · · · · · · · · · · · ·		· · ·	ELEC		<del></del>								FUEL F	TEM	SYS
26214 STMORS DISTILL 50. 4.98 0.360 0.22 164.2 12.16 5.17 26.14 77.17 038.56 82.08 2.212 -209.  26214 STMORGN RESIDUA 29. 1.00 0.251 0.16 24.4 1.85 0.79 1.40 17.56 0. 0. 21.62 0.812 14.  26214 STM141 RESIDUA 29. 1.35 0.296 0.16 24.2 1.84 0.78 1.77 18.81 01.94 20.65 0.776 17.  26214 STM141 COAL-F0 29. 1.35 0.296 0.16 24.2 1.84 0.78 1.77 18.81 01.94 20.65 0.776 17.  26214 STM141 COAL-F0 29. 1.35 0.296 0.16 24.2 1.84 0.78 1.77 18.81 01.94 20.65 0.776 17.  26214 STM141 COAL-F0 29. 1.35 0.296 0.16 25.2 3.96 1.95 2.7 19.92 01.94 17.38 0.653 14.  26214 STM141 COAL-F0 29. 1.35 0.296 0.16 37.0 2.81 1.20 2.95 10.10 0.18 18.8 0.694 12.  26214 STM141 COAL-F0 29. 1.35 0.296 0.16 37.0 2.81 1.20 2.95 10.92 01.94 17.38 0.653 14.  26214 STM088 COAL-F0 29. 0.99 0.249 0.16 48.8 3.71 1.58 2.95 10.92 01.94 17.38 0.653 14.  26214 STM088 COAL-F0 29. 0.99 0.249 0.16 21.9 1.66 0.71 1.10 17.55 0.07 0. 21.10 0.792 17. 92.  26214 STM088 COAL-F0 29. 0.99 0.249 0.16 35.6 2.70 1.15 2.42 10.19 0.07 0. 18.13 0.661 13.  26214 FFBSTM COAL-FP 29. 1.00 0.246 0.16 51.1 3.88 1.65 2.70 1.15 2.42 10.19 0.07 0. 16.54 0.621 24.  26214 FFBSTM COAL-PF 29. 2.14 0.362 0.16 52.2 3.96 1.65 4.26 12.71 05.44 16.18 0.567 17.  26214 TISTMT RESIDUA 29. 1.00 0.247 0.16 73.7 5.59 2.38 2.67 77.67 0. 0. 28.31 1.005 2.91 1.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005 2.005	BACK		15%						**.	NSNC	I	10**6	* DITA	. R	REQD	MW		!	
20214 STM141 RESIDUA 29	0 6	0	-42.	1.214	45.05	Ο.	ο.	32.41	6.39	1.86	4.38	59.1	0.22	0.212	1.00	50.	DISTILL	FCMCDS	26212
26214 STM141 RESIDUA 29. 1.00 0.251 0.16 24.4 1.85 0.79 1.40 17.58 0. 0. 21.62 0.812 14. 2214 STM141 RESIDUA 29. 1.35 0.296 0.16 24.2 1.84 0.78 1.75 18.00 0.21 0. 0. 18.48 0.694 12. 2214 STM141 COAL-F9 29. 1.05 0.251 0.16 48.8 3.70 1.57 3.00 10.21 0. 0. 18.48 0.694 12. 2214 STM141 COAL-F9 29. 1.35 0.296 0.16 52.2 3.96 1.69 2.75 10.92 01.94 17.38 0.653 14. 22214 STM141 COAL-F8 29. 1.35 0.296 0.16 43.6 3.31 1.41 2.94 10.21 0. 0. 17.86 0.6571 16. 22214 STM141 COAL-F8 29. 1.35 0.296 0.16 37.0 2.81 1.20 2.50 10.92 01.94 17.38 0.653 14. 22214 STM141 COAL-F8 29. 1.35 0.296 0.16 37.0 2.81 1.20 2.50 10.92 01.94 15.49 0.582 27. 26214 STM088 COAL-F8 29. 0.99 0.249 0.16 21.9 1.66 0.71 1.10 17.55 0.07 0. 21.10 0.792 17. 26214 STM088 COAL-F8 29. 0.99 0.249 0.16 21.9 1.66 0.71 1.10 17.55 0.07 0. 21.10 0.792 17. 26214 STM088 COAL-F8 29. 0.99 0.249 0.16 35.6 2.70 1.15 2.42 10.19 0.07 0. 18.13 0.681 13. 26214 FEBSIDUA 29. 0.99 0.249 0.16 35.6 2.70 1.15 2.42 10.19 0.07 0. 16.54 0.621 24. 26214 FEBSIM COAL-PF 29. 2.14 0.362 0.16 52.2 3.96 1.68 4.26 12.71 06.44 16.18 0.507 17. 26214 TISTMT RESIDUA 29. 1.00 0.245 0.16 52.2 3.96 1.68 4.26 12.71 06.44 16.18 0.507 17. 26214 TISTMT RESIDUA 29. 1.00 0.247 0.16 19.3 7.5 7.5 8.26 4.27 10.26 0. 0. 25.32 0.951 -34. 26214 TISTMT COAL 29. 1.00 0.247 0.16 19.9. 7.757 3.75 5.20 0.0 7. 4.62 30.39 1.10 5.34 1.00 2.247 0.16 19.9. 7.757 3.75 5.20 0.0 7. 4.62 30.39 1.10 5.34 1.00 2.247 0.16 19.9. 7.757 3.75 5.20 0.0 2.24 1.24 11RISTMT COAL 29. 1.00 0.247 0.16 19.9. 7.757 3.75 5.24 4.27 10.26 0. 0. 25.32 0.951 -34. 26214 TISTMT COAL 29. 1.00 0.247 0.16 19.9. 7.757 3.75 5.20 0.00 0.25 3.2 0.951 -34. 26214 TISTMT COAL 29. 1.00 0.247 0.16 19.9. 7.757 3.75 5.20 0.00 0.25 3.2 0.951 -34. 26214 TISTMT COAL 29. 1.00 0.247 0.16 19.9. 7.757 3.75 5.20 0.00 0.25 3.2 0.951 -34. 26214 TIRTSM COAL 29. 1.00 0.247 0.16 19.9. 7.757 3.75 3.09 3.09 3.14 1.00 0.25 0.16 19.00 0.178 0.16 19.9 1.00 0.178 0.16 19.9 1.00 0.178 0.16 19.9 1.00 0.178 0.16 19.9 1.00 0.178 0.16 19.9 1.00 0.178 0.16 19.9 1.00 0.178 0.	0 6	0	-209.	2.212	82.08	-38.56	0.	77.17	26.14	5.17	12, 16	164.2	0.22	0.360	4.98	50.	DISTILL	<b>FCMCDS</b>	26212
1.   1.   1.   1.   1.   1.   1.   1.	0 (	0	0.	1.000	26.63	0.	9.38	14.02	0.96	0.68	1.59	21.5	0.16	0.	0,	29.	RESIDUA	ONOCGN	6214
12   15   15   15   15   15   15   15	3	73	14.	0.812	21.62	Ο.	0.	17.58	1.40	0.79	1.85	24.4	0.16	0.251	1.00	29.	RESIDUA	STM141	6214
S214 STM141 COAL-F6	1 . :	91	17.	0.776	20.65	-1.94	Ο.	18.81	1.17	0.78	1.84	24.2	0.16	0.296	1.35	29.	RESIDUA	STM141	6214
1.00   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0	2	22	12.	0.694	18.48	0.	0.	10.21	3.00	1.57	3,70	48.8	0.16	0.251	1.00	29.	COAL-FO	STM141	6214
6214 STM141 COAL-AF 29 1, 35 0, 296 0, 16 37, 0 2, 81 1, 20 2, 50 10, 92 0, -1, 94 15, 49 0, 582 27, 6214 STM088 RESIDUA 29, 0, 99 0, 249 0, 16 48, 8 3, 71 1, 58 2, 58 10, 19 0, 07 0, 18, 13 0, 681 13, 6214 STM088 COAL-F6 29, 0, 99 0, 249 0, 16 48, 8 3, 71 1, 58 2, 58 10, 19 0, 07 0, 18, 13 0, 681 13, 6214 STM088 COAL-F7 29, 1, 00 0, 246 0, 16 51, 1 3, 88 1, 65 3, 70 10, 27 0, 0, 16, 54 0, 621 24, 6214 PFBSTM COAL-FF 29, 1, 00 0, 246 0, 16 51, 1 3, 88 1, 65 3, 70 10, 27 0, 0, 19, 49 0, 762 8, 6214 PFBSTM COAL-FF 29, 2, 14 0, 362 0, 16 52, 2 3, 96 1, 68 1, 68 2, 67 17, 67 0, 0, 28, 31 1, 063 71, 6214 TISHM RESIDUA 29, 1, 00 0, 247 0, 16 59, 7 5, 59 2, 88 2, 67 17, 67 0, 0, 28, 31 1, 063 71, 6214 TISHM COAL-FF 29, 1, 00 0, 247 0, 16 99, 7 7, 57 3, 22 4, 27 10, 26 0, 0, 25, 32 0, 951 -34, 6214 TISHM COAL 29, 1, 00 0, 247 0, 16 169, 3 12, 85 5, 46 5, 79 14, 18 0, -10, 40 27, 88 1, 047 7, 75, 6214 TISHMS RESIDUA 29, 1, 00 0, 04 0, 16 169, 3 12, 85 5, 46 5, 79 14, 18 0, -10, 40 27, 88 1, 047 7, 75, 6214 TIHKSG RESIDUA 29, 0, 86 0, 157 0, 16 88, 9 6, 58 2, 80 2, 92 18, 46 1, 32 0, 32, 08 1, 314 -62, 6214 TIHKSG COAL 29, 1, 100 0, 183 0, 16 131, 9 1, 001 4, 25 4, 97 11, 14 0, 0, 0, 30, 37 1, 140 -65, 6214 TIHKSG COAL 29, 1, 1, 34 0, 215 0, 16 149, 5 11, 35 4, 82 4, 97 11, 14 0, 0, 0, 30, 37 1, 140 -65, 6214 TIHKSG COAL 29, 1, 1, 34 0, 215 0, 16 149, 5 11, 35 4, 82 4, 97 11, 14 0, 0, 0, 30, 37 1, 140 -65, 6214 TIHKSG COAL 29, 1, 1, 34 0, 215 0, 16 149, 5 11, 35 4, 82 4, 97 11, 14 0, 0, 0, 30, 37 1, 140 -65, 6214 TIHKSG COAL 29, 1, 1, 34 0, 215 0, 16 149, 5 11, 35 4, 82 4, 97 11, 14 0, 0, 0, 30, 37 1, 140 -65, 6214 TIHKSG COAL 29, 1, 1, 34 0, 215 0, 16 149, 5 11, 35 4, 82 4, 97 11, 14 0, 0, 0, 30, 37 1, 140 -65, 6214 TIHKSG COAL 29, 1, 1, 34 0, 215 0, 16 149, 5 11, 35 4, 82 4, 97 11, 14 0, 0, 0, 30, 37 1, 140 -65, 6214 TIHKSG COAL 29, 1, 1, 34 0, 215 0, 16 149, 5 11, 35 4, 82 4, 97 11, 14 0, 0, 0, 30, 37 1, 140 -65, 6214 TIHKSG COAL 29, 1, 100 0, 178 0, 16 38, 4 2, 84 1, 121 1, 14 29, 90 0, 0, 25, 58 0, 98 1, 314 -62, 62	2 !	22	14.	0.653	17.38	-1.94	0.	10.92	2.75	.1.69	: 3.96	52.2	0.16	0.296	1.35	29.	COAL-FO	STM141	6214
6214 STM086 CSAL-FF 29. 0.99 0.249 0.16 21.9 1.66 0.71 1.10 17.55 0.07 0. 21.10 0.792 17. 9 6214 STM086 CGAL-AF 29. 0.99 0.249 0.16 48.8 3.71 1.58 2.58 10.19 0.07 0. 18.13 0.681 13. 6214 STM086 CGAL-AF 29. 0.99 0.249 0.16 35.6 2.70 1.58 2.58 10.19 0.07 0. 18.13 0.681 13. 6214 STM086 CGAL-AF 29. 1.00 0.246 0.16 51.1 3.88 1.65 3.70 10.27 0. 0. 19.49 0.732 8. 6214 FFBSTM CGAL-FF 29. 1.00 0.246 0.16 52.2 3.96 1.68 4.26 12.71 06.44 16.18 0.607 17. 6214 TISTMT RESIDUA 29. 1.00 0.247 0.16 73.7 5.59 2.38 2.67 17.67 06.44 16.18 0.607 17. 6214 TISTMT RESIDUA 29. 1.00 0.247 0.16 73.7 5.59 2.38 2.67 17.67 06.28 3.09 1.141 -50. 6214 TISTMT CGAL 29. 2.85 0.403 0.16 101.2 7.68 3.26 3.39 20.67 04.62 30.39 1.141 -50. 6214 TISTMT CGAL 29. 2.85 0.403 0.16 1693.3 12.85 5.46 5.79 14.18 010.40 27.88 1.047 -75. 6214 TISTMT CGAL 29. 0.80 0.157 0.16 88.9 6.58 2.80 2.92 18.46 1.32 0. 32.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 1.20 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2	6 4	26	16.	0.671	17.86	0.	Ο.	10.21	2.94	1.41	3.31	43.6	0.16	0.251	1.00	29.	COAL-AF	STM141	6214
6214 STM088 COAL-FG 29, 0.99 0.249 0.16 48.8 3.71 1.58 2.58 10.19 0.07 0. 18.13 0.681 13.6214 STM088 COAL-AF 29, 0.99 0.249 0.16 35.6 2.70 1.15 2.42 10.19 0.07 0. 16.54 0.621 24.6214 PFBSTN COAL-PF 29, 1.00 0.246 0.16 51.1 3.88 1.65 3.70 10.27 0. 0. 10.244 0.16 50.24 PFBSTN COAL-PF 29, 1.00 0.246 0.16 51.1 3.88 1.65 3.70 10.27 0. 0. 19.49 0.732 8.6214 PFBSTN COAL-PF 29, 1.40 0.362 0.16 52.2 3.96 1.58 4.26 12.71 06.44 16.18 0.507 17.6214 TISTNT RESIDUA 29, 1.00 0.247 0.16 73.7 5.59 2.38 2.67 17.67 0. 0. 28.31 1.063 -31.6214 TISTNT RESIDUA 29, 1.02 0.347 0.16 99.7 7.57 3.22 4.27 10.26 0. 0. 25.32 0.951 -34.6214 TISTNT COAL 29, 1.00 0.247 0.16 99.7 7.57 3.22 4.27 10.26 0. 0. 25.32 0.951 -34.6214 TISTNT COAL 29, 2.85 0.403 0.16 10.2 7.68 3.22 5.46 5.79 14.18 010.40 27.88 1.047 75.6214 TISTNT COAL 29, 1.00 0.084 0.16 98.0 7.26 3.09 3.14 21.49 0. 0. 34.98 1.314 -62.6214 TISTNS COAL 29, 1.00 0.084 0.16 98.0 7.26 3.09 3.14 21.49 0. 0. 34.98 1.314 -62.6214 TISTNS COAL 29, 1.00 0.183 0.16 131.9 10.01 4.25 4.97 11.14 0. 0. 30.37 1.140 -65.6214 TISTNS COAL 29, 1.34 0.215 0.16 149.5 11.35 4.82 5.07 12.17 01.93 31.48 1.182 -77.6214 STIRL DISTILL 29, 1.00 0.178 0.16 38.4 2.84 1.21 1.74 23.64 0. 0. 0. 29.43 1.105 -17.6214 STIRL DISTILL 29, 2.08 0.259 0.16 50.5 3.74 1.21 1.74 19.29 0. 0. 25.08 0.942 -3.6214 STIRL RESIDUA 29, 1.00 0.178 0.16 50.5 3.74 1.59 2.09 30.62 06.08 26.39 0.999 -13.6214 STIRL RESIDUA 29, 1.00 0.178 0.16 50.5 3.74 1.59 2.09 30.62 06.08 26.39 0.999 -13.6214 STIRL RESIDUA 29, 2.08 0.259 0.16 50.4 3.75 1.59 2.09 24.98 06.08 26.39 0.999 -13.6214 STIRL COAL 29, 3.26 0.304 0.16 50.16 50.5 3.74 1.59 2.09 30.62 06.08 26.39 0.999 -13.6214 STIRL RESIDUA 29, 2.08 0.259 0.16 50.6 50.5 3.74 1.59 2.09 30.62 06.08 26.39 0.999 -13.6214 STIRL RESIDUA 29, 3.60 0.06 0.16 50.5 3.74 1.59 2.09 30.62 06.08 26.39 0.990 -13.6214 STIRL RESIDUA 29, 3.60 0.06 0.16 50.16 50.5 3.74 1.59 2.09 30.62 06.08 26.39 0.999 -13.6214 STIRL COAL 29, 3.60 0.00 0.16 64.1 4.74 2.02 3.38 1.59 025.28 3.99 1.26 0.95 -35	0 :	40	27.	0.582	15.49	-1.94	Ο.	10.92	2.50	1.20	2.81	37.0	0.16	0.296	1.35	29.	COAL-AF	STM141	6214
8214 STM088 COAL-AF 29, 0.99 0.249 0.16 35.6 2.70 1.15 2.42 10.19 0.07 0. 16.54 0.621 24.  \$214 PFBSTM COAL-PF 29, 1.00 0.246 0.16 51.1 3.88 1.65 3.70 10.27 0. 0. 19.49 0.732 8.  \$214 PFBSTM COAL-PF 29, 1.00 0.247 0.16 79.7 5.59 2.38 2.67 17.67 0. 0. 28.31 1.063 -31.  \$214 TISIMT RESIDUA 29, 1.00 0.247 0.16 79.7 5.59 2.38 2.67 17.67 0. 0. 28.31 1.063 -31.  \$214 TISIMT RESIDUA 29, 1.00 0.247 0.16 99.7 7.57 3.22 4.27 10.26 0. 0. 25.32 0.951 -34.  \$214 TISIMT COAL 29, 1.00 0.247 0.16 99.7 7.57 3.22 4.27 10.26 0. 0. 25.32 0.951 -34.  \$214 TISIMT COAL 29, 2.85 0.403 0.16 109.2 7.68 3.09 3.14 21.49 0. 010.40 27.88 1.047 -75.  \$214 TISIMT COAL 29, 1.00 0.084 0.16 98.0 7.26 3.09 3.14 21.49 0. 0. 34.98 1.314 -62.  \$214 TISIMT COAL 29, 1.00 0.084 0.16 98.0 7.26 3.09 3.14 21.49 0. 0. 32.08 1.205 -49.  \$214 TISIMT COAL 29, 1.00 0.084 0.16 98.0 7.26 3.09 3.14 21.49 0. 0. 32.08 1.205 -49.  \$214 TISIMT COAL 29, 1.00 0.083 0.16 131.9 10.01 4.25 4.97 11.14 0. 0. 30.37 1.140 -65.  \$214 TISIMT COAL 29, 1.34 0.215 0.16 149.5 11.35 4.82 5.07 12.17 01.93 31.48 1.182 -77.  \$214 TISIMT DISTILL 29, 2.08 0.259 0.16 50.5 3.74 1.59 2.09 30.62 06.08 31.97 1.200 -30.  \$2214 STIRL RESIDUA 29, 1.00 0.178 0.16 38.4 2.84 1.21 1.74 23.64 0. 0. 29.43 1.105 -17.  \$2214 STIRL RESIDUA 29, 1.00 0.178 0.16 38.4 2.85 1.21 1.74 19.29 0. 0. 25.08 0.989 -13.  \$2214 STIRL COAL 29, 1.00 0.178 0.16 50.5 3.74 1.59 2.09 30.62 06.08 26.33 0.989 -13.  \$2214 STIRL COAL 29, 1.00 0.178 0.16 50.5 3.75 1.59 2.09 24.98 06.08 26.33 0.989 -13.  \$2214 STIRL COAL 29, 1.00 0.075 0.16 50.5 3.75 1.59 2.09 24.98 06.08 26.33 0.989 -13.  \$2214 STIRL COAL 29, 1.00 0.075 0.16 50.5 3.75 1.59 2.09 24.98 06.08 26.33 0.989 -13.  \$2214 STIRL COAL 29, 1.00 0.075 0.16 50.5 3.75 1.59 2.09 24.98 06.08 26.33 0.989 -13.  \$2214 STIRL COAL 29, 1.00 0.075 0.16 50.5 3.75 1.59 2.09 24.98 06.08 26.33 0.989 -13.  \$2214 HEGT60 COAL-AF 29, 1.00 0.075 0.16 79.3 6.02 2.56 3.79 12.85 025.28 33.98 1.276 025.28 33.98 1.276 025.28 33.98 1.276 025.28 33.98 1.276 02	9	909	17.	0.792	21.10	Ο.	0.07	17.55	1.10	0.71	1.66	21.9	0.16	0.249	0.99	29.	RESIDUA	<b>STM088</b>	6214
8214 FFBSTM COAL-PF 29.	2	22	13.	0.681	18.13	0.	0.07	10.19	2.58	1.58	3.71	48.8	0.16	0.249	0.99	29.	COAL-FO	<b>STM088</b>	6214
\$214 FFBS:IM COAL_PF	0	40	24.	0.621	16.54	0.	0.07	10.19	2.42	1.15	2.70	35.6	0.16	0.249	0.99	29.	COAL-AF	<b>STM088</b>	6214
\$214 FFBS IM COAL_PF	9 !	19	8.	0.732	19.49	Ο.	Ο.	10.27	3.70	1.65	3.88	51.1	0.16	0.246	1.00	29.	COAL-PF	PFBSTM	5214
SE14 TISIMT RESIDUA   29	4 !	24	17.	0.807	16.18	-6.44	Ο.		4.26	1.68	3.96	52.2	0.16	0.362	2.14	29.	COAL-PF	PFBS (M	5214
2214 TISTMT RESIDUA 29. 1.82 0.338 0.16 101.2 7.68 3.26 3.39 20.67 04.62 30.39 1.141 -50. 2214 TISTMT COAL 29. 1.00 0.247 0.16 99.7 7.57 3.22 4.27 10.26 0. 0. 25.32 0.951 -34. 2214 TISTMT COAL 29. 2.85 0.403 0.16 169.3 12.85 5.46 5.79 14.18 010.40 27.88 1.047 -75. 2214 TIHRSG RESIDUA 29. 1.00 0.084 0.16 98.0 7.26 3.09 3.14 21.49 0. 0. 34.98 1.314 -62. 2214 TIHRSG RESIDUA 29. 1.00 0.108 0.16 131.9 10.01 4.25 4.97 11.14 0. 0. 30.37 1.140 -65. 2214 TIHRSG COAL 29. 1.00 0.183 0.16 131.9 10.01 4.25 4.97 11.14 0. 0. 30.37 1.140 -65. 2214 TIHRSG COAL 29. 1.00 0.178 0.16 38.4 2.84 1.21 1.74 23.64 0. 0. 29.43 1.105 -17. 2214 STIRL DISTILL 29. 1.00 0.178 0.16 38.4 2.84 1.21 1.74 23.64 0. 0. 29.43 1.105 -17. 2214 STIRL RESIDUA 29. 1.00 0.178 0.16 50.5 3.74 1.59 2.09 30.62 06.08 31.97 1.200 -30. 2214 STIRL RESIDUA 29. 2.08 0.259 0.16 50.6 3.75 1.21 1.74 19.29 0. 0. 25.08 0.992 -3. 2214 STIRL COAL 29. 1.00 0.178 0.16 50.6 3.75 1.59 2.09 24.98 06.08 26.33 0.999 -13. 2214 STIRL COAL 29. 3.26 0.304 0.16 117.4 8.70 3.70 4.67 18.09 012.69 22.46 0.844 -32. 2214 STIRL COAL 29. 3.26 0.304 0.16 117.4 8.70 3.70 4.67 18.09 012.69 22.46 0.844 -32. 2214 HEGTBS COAL-AF 29. 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 2214 HEGTBS COAL-AF 29. 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 2214 HEGTBO COAL-AF 29. 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 2214 HEGTBO COAL-AF 29. 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 24.23 0.910 -19. 2214 HEGTBO COAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 0. 24.92 0.936 -23. 2214 HEGTBO COAL-AF 29. 1.00 0.091 0.16 87.4 36.98 15.72 18.23 86.96 085.4 6.95 5.52 0.956 -26. 2214 HEGTBO COAL-AF 29. 1.00 0.091 0.16 87.4 36.98 15.72 18.23 86.96 085.4 6.95 5.52 0.956 -26. 2214 HEGTBO COAL-AF 29. 1.00 0.091 0.16 87.4 36.98 15.72 18.23 86.96 085.4 6.95 5.52 0.956 -26. 2214 HEGTBO COAL-AF 29. 1.00 0.091 0.16 87.4 36.98 15.72 18.23 86.90 085.28 3.98 1.276 -99. 2214 FIRE COAL 29. 3.96 0.234 0.16 119.0 9.25 3	2 2	2	-31.	1.063		0.		17.67		2.38		73.7	0.16						
2214 TISTMT COAL 29, 1.00 0.247 0.16 99.7 7.57 3.22 4.27 10.26 0. 0. 25.32 0.951 -34. 2214 TISTMT COAL 29, 2.85 0.403 0.16 169.3 12.85 5.46 5.79 14.18 010.40 27.88 1.047 -75. 2214 TIHRSG RESIDUA 29, 1.00 0.084 0.16 98.0 7.26 3.09 3.14 21.49 0. 0. 34.98 1.314 -62. 2214 TIHRSG RESIDUA 29, 0.86 0.157 0.16 88.9 6.58 2.80 2.92 18.46 1.32 0. 32.08 1.205 -49. 2214 TIHRSG COAL 29, 1.00 0.183 0.16 131.9 10.01 4.25 4.97 11.14 0. 0. 30.37 1.140 -65. 2214 TIHRSG COAL 29, 1.34 0.215 0.16 149.5 11.35 4.82 5.07 12.17 01.93 31.48 1.182 -77. 2214 STIRL DISTILL 29, 1.00 0.178 0.16 38.4 2.84 1.21 1.74 23.64 0. 0. 29.43 1.105 -17. 2214 STIRL RESIDUA 29, 1.00 0.178 0.16 38.4 2.84 1.21 1.74 23.64 0. 0. 29.43 1.105 -17. 2214 STIRL RESIDUA 29, 1.00 0.178 0.16 38.4 2.85 1.21 1.74 19.29 0. 0. 25.08 0.942 -3. 2214 STIRL RESIDUA 29, 2.08 0.259 0.16 50.6 3.75 1.59 2.09 24.98 06.08 26.33 0.989 -13. 2214 STIRL COAL 29, 1.00 0.178 0.16 64.1 4.74 2.02 3.38 11.20 0. 0. 12.34 0.801 -4. 2214 STIRL COAL 29, 3.26 0.304 0.16 117.4 8.70 3.70 4.67 18.09 012.69 22.46 0.844 -32. 2214 HEGTBS COAL-AF 29, 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 2214 HEGTBS COAL-AF 29, 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 025.28 3.98 1.276 -99. 2214 HEGTGO COAL-AF 29, 1.00 0.057 0.16 79.3 6.02 2.56 3.73 12.60 025.28 3.98 1.276 -99. 2214 HEGTGO COAL-AF 29, 1.00 0.097 0.16 79.3 6.02 2.56 3.73 12.60 0. 0. 24.92 0.936 -23. 2214 HEGTGO COAL-AF 29, 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 025.28 3.98 1.276 -99. 2214 HEGTGO COAL-AF 29, 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 025.28 3.98 1.276 -99. 2214 HEGTGO COAL-AF 29, 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 27.45 1.031 -29. 2214 FCMCCL COAL 29, 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 2214 HEGTGO COAL-AF 29, 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 0. 27.45 1.031 -29. 2214 FCMCCL COAL 29, 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 2214 FCMCCL COAL 29, 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 0.	0 2					-4.62													
1214 TISTMT COAL   29	6 1																		
2214 TIHRSG RESIDUA 29, 1.00 0.084 0.16 98.0 7.26 3.09 3.14 21.49 0. 0. 34.98 1.314 -62. 2214 TIHRSG RESIDUA 29, 0.86 0.157 0.16 88.9 6.58 2.80 2.92 18.46 1.32 0. 32.08 1.205 -49. 2214 TIHRSG COAL 29, 1.00 0.183 0.16 131.9 10.01 4.25 4.97 11.14 0. 0. 30.37 1.140 -65. 2214 TIHRSG COAL 29, 1.34 0.215 0.16 149.5 11.35 4.82 5.07 12.17 01.93 31.48 1.182 -77. 2214 STIRL DISTILL 29, 1.00 0.178 0.16 38.4 2.84 1.21 1.74 23.64 0. 0. 29.43 1.105 -17. 2214 STIRL DISTILL 29, 2.08 0.259 0.16 50.5 3.74 1.59 2.09 30.62 06.08 31.97 1.200 -30. 2214 STIRL RESIDUA 29, 1.00 0.178 0.16 38.4 2.85 1.21 1.74 19.29 0. 0. 25.08 0.942 -3. 2214 STIRL RESIDUA 29, 1.00 0.178 0.16 38.4 2.85 1.21 1.74 19.29 0. 0. 25.08 0.942 -3. 2214 STIRL RESIDUA 29, 1.00 0.178 0.16 64.1 4.74 2.02 3.38 11.20 0. 0. 0. 21.34 0.801 -4. 2214 STIRL COAL 29, 1.00 0.178 0.16 64.1 4.74 2.02 3.38 11.20 0. 0. 0. 21.34 0.801 -4. 2214 STIRL COAL 29, 1.00 0.176 0.16 64.1 4.74 2.02 3.38 11.20 0. 0. 0. 25.08 0.989 -13. 2214 STIRL COAL 29, 3.26 0.304 0.16 117.4 8.70 3.70 4.67 18.09 012.69 22.46 0.844 -32. 2214 HEGT85 COAL-AF 29, 1.00 0.075 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 2214 HEGT85 COAL-AF 29, 1.00 0.075 0.16 79.3 6.02 2.56 3.79 12.85 0. 0. 25.52 0.956 -26. 2214 HEGT80 COAL-AF 29, 1.00 0.075 0.16 79.3 6.02 2.56 3.73 12.60 0. 0. 24.92 0.936 -23. 2214 HEGT90 COAL-AF 29, 1.00 0.075 0.16 79.3 6.02 2.56 3.73 12.60 0. 0. 24.92 0.936 -23. 2214 HEGT90 COAL-AF 29, 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 25.28 33.98 1.276 -99. 2214 HEGT00 COAL-AF 29, 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 0. 27.45 1.031 -29. 2214 HEGT00 COAL-AF 29, 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 2214 FCSTCL COAL 29, 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 2214 FCSTCL COAL 29, 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.69 1.0014 -26. 2214 FCSTCL COAL 29, 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 0. 26.69 1.002 -24.		4																	
Selia Tihrisg Coal   29	0 9																		
S214 TIHRS9 COAL   29.   1.00 0.183   0.16   131.9   10.01   4.25   4.97   11.14   0.   0.   30.37   1.140   -65.	0 99																		
1.32   1.34   0.215   0.16   149.5   11.35   4.82   5.07   12.17   0.   -1.93   31.48   1.182   -77.		ž																	
\$214 STIRL DISTILL 29.	_	1																	
\$214 STIRL DISTILL 29.	<u> </u>																		
3214 STIRL RESIDUA 29. 1.00 0.178 0.16 38.4 2.85 1.21 1.74 19.29 0. 0. 25.08 0.942 -3. 3214 STIRL RESIDUA 29. 2.08 0.259 0.16 50.6 3.75 1.59 2.09 24.98 06.08 26.33 0.989 -13. 3214 STIRL COAL 29. 1.00 0.178 0.16 64.1 4.74 2.02 3.38 11.20 0. 0. 21.34 0.801 -4. 3214 STIRL COAL 29. 3.26 0.304 0.16 117.4 8.70 3.70 4.67 18.09 012.69 22.46 0.844 -32. 3214 HEGT85 COAL-AF 29. 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 3214 HEGT85 COAL-AF 29. 1.00 0.075 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 3214 HEGT80 COAL-AF 29. 1.00 0.075 0.16 79.3 6.02 2.56 3.73 12.60 088.54 69.35 2.605 -358. 3214 HEGT60 COAL-AF 29. 5.49 0.147 0.16 179.2 13.60 5.78 7.23 32.65 025.28 33.98 1.276 -99. 3214 HEGT00 COAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 24.23 0.910 -19. 3214 HEGT00 COAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 24.23 0.910 -19. 3214 HEGT00 COAL-AF 29. 2.22 0.136 0.16 98.3 7.46 3.17 4.25 17.57 06.87 25.58 0.961 -34. 3214 HEGT00 COAL-AF 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 0. 27.45 1.031 -29. 3214 FCMCCL COAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 3214 FCMCCL COAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 3214 FCSTCL COAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 3214 FCSTCL COAL 29. 1.00-0.159 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 3214 IGGTST COAL 29. 4.28 0.183 0.16 145.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.	-	0																	
STIRL   RESIDUA   29   2.08   0.259   0.16   50.6   3.75   1.59   2.09   24.98   0.   -6.08   26.33   0.989   -13.	_	- 11																	
\$214 STIRL COAL		6																	
214 STIRL COAL 29. 3.26 0.304 0.16 117.4 8.70 3.70 4.67 18.09 012.69 22.46 0.844 -32. 214 HEGT85 COAL-AF 29. 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 214 HEGT85 COAL-AF 29. 16.74 0.130 0.16 487.4 36.98 15.72 18.23 86.96 088.54 69.35 2.605 -358. 214 HEGT60 COAL-AF 29. 1.00 0.075 0.16 79.3 6.02 2.56 3.73 12.60 0. 0. 24.92 0.936 -23. 214 HEGT60 COAL-AF 29. 5.49 0.147 0.16 179.2 13.60 5.78 7.23 32.65 025.28 33.98 1.276 -99. 214 HEGT00 COAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 24.23 0.910 -19. 214 HEGT00 COAL-AF 29. 2.22 0.136 0.16 98.3 7.46 3.17 4.25 17.57 06.87 25.58 0.961 -34. 214 FCMCCL COAL 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 27.45 1.031 -29. 214 FCMCCL COAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 214 FCSTCL COAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 214 FCSTCL COAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 214 IGGTST COAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 214 IGGTST COAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.				<del></del>															
2214 HEGT85 CØAL-AF 29. 1.00 0.057 0.16 82.1 6.23 2.65 3.79 12.85 0. 0. 25.52 0.956 -26. 2214 HEGT85 CØAL-AF 29. 16.74 0.130 0.16 487.4 36.98 15.72 18.23 86.96 088.54 69.35 2.605 -358. 2214 HEGT60 CØAL-AF 29. 1.00 0.075 0.16 79.3 6.02 2.56 3.73 12.60 0. 0. 24.92 0.936 -23. 2214 HEGT60 CØAL-AF 29. 5.49 0.147 0.16 179.2 13.60 5.78 7.23 32.65 025.28 33.98 1.276 -99. 2214 HEGT00 CØAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 24.23 0.910 -19. 2214 HEGT00 CØAL-AF 29. 2.22 0.136 0.16 98.3 7.46 3.17 4.25 17.57 06.87 25.58 0.961 -34. 2214 FCMCCL CØAL 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 27.45 1.031 -29. 2214 FCMCCL CØAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 2214 FCSTCL CØAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 2214 FCSTCL CØAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 2214 IGGTST CØAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 2214 IGGTST CØAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.		13																	
214 HEGT85 CGAL-AF 29. 16.74 0.130 0.16 487.4 36.98 15.72 18.23 86.96 088.54 69.35 2.605 -358.  214 HEGT60 CGAL-AF 29. 1.00 0.075 0.16 79.3 6.02 2.56 3.73 12.60 0. 0. 24.92 0.936 -23.  214 HEGT60 CGAL-AF 29. 5.49 0.147 0.16 179.2 13.60 5.78 7.23 32.65 025.28 33.98 1.276 -99.  214 HEGT00 CGAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 24.23 0.910 -19.  214 HEGT00 CGAL-AF 29. 2.22 0.136 0.16 98.3 7.46 3.17 4.25 17.57 06.87 25.58 0.961 -34.  214 FCMCCL CGAL 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 27.45 1.031 -29.  214 FCMCCL CGAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48.  214 FCSTCL CGAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26.  214 FCSTCL CGAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52.  214 IGGTST CGAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24.  214 IGGTST CGAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.		8																	
214 HEGT60 COAL-AF 29. 1.00 0.075 0.16 79.3 6.02 2.56 3.73 12.60 0. 0. 24.92 0.936 -23. 214 HEGT60 COAL-AF 29. 5.49 0.147 0.16 179.2 13.60 5.78 7.23 32.65 025.28 33.98 1.276 -99. 214 HEGT00 COAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 24.23 0.910 -19. 214 HEGT00 COAL-AF 29. 2.22 0.136 0.16 98.3 7.46 3.17 4.25 17.57 06.87 25.58 0.961 -34. 214 FCMCCL COAL 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 27.45 1.031 -29. 214 FCMCCL COAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 214 FCSTCL COAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 214 FCSTCL COAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 214 IGGTST COAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 214 IGGTST COAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.	-	6								,									
214 HEGTGO COAL-AF 29. 5.49 0.147 0.16 179.2 13.60 5.78 7.23 32.65 025.28 33.98 1.276 -99. 214 HEGTGO COAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 24.23 0.910 -19. 214 HEGTGO COAL-AF 29. 2.22 0.136 0.16 98.3 7.46 3.17 4.25 17.57 06.87 25.58 0.961 -34. 214 FCMCCL COAL 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 27.45 1.031 -29. 214 FCMCCL COAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 214 FCSTCL COAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 214 FCSTCL COAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 214 IGGTST COAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 214 IGGTST COAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.	0 27																		
214 HEGTOO CCAL-AF 29. 1.00 0.091 0.16 75.6 5.73 2.44 3.67 12.38 0. 0. 24.23 0.910 -19.  214 HEGTOO CCAL-AF 29. 2.22 0.136 0.16 98.3 7.46 3.17 4.25 17.57 06.87 25.58 0.961 -34.  214 FCMCCL CCAL 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 27.45 1.031 -29.  214 FCMCCL CCAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48.  214 FCSTCL CCAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26.  214 FCSTCL CCAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52.  214 IGGTST CCAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24.  214 IGGTST CCAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.		7				- •													
214 HEGTOO COAL-AF 29. 2.22 0.136 0.16 98.3 7.46 3.17 4.25 17.57 06.87 25.58 0.961 -34. 214 FCMCCL COAL 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 27.45 1.031 -29. 214 FCMCCL COAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 214 FCSTCL COAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 214 FCSTCL COAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 214 IGGTST COAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 214 IGGTST COAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.	0 2				-														
214 FCMCCL CGAL 29. 1.00-0.122 0.16 73.4 5.71 2.43 4.02 15.29 0. 0. 27.45 1.031 -29. 214 FCMCCL CGAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 214 FCSTCL CGAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 214 FCSTCL CGAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 214 IGGTST CGAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 2214 IGGTST CGAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.		8			_													a contract of the contract of	
214 FCMCCL CØAL 29. 3.96 0.234 0.16 119.0 9.25 3.93 6.89 22.87 016.65 26.29 0.987 -48. 214 FCSTCL CØAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26. 214 FCSTCL CØAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 214 IGGTST CØAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 214 IGGTST CØAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.		6																	
214 FCSTCL COAL 29. 1.00-0.114 0.16 71.2 5.54 2.35 3.92 15.18 0. 0. 26.99 1.014 -26.  214 FCSTCL COAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52.  214 IGGTST COAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24.  214 IGGTST COAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.		3																	
214 FCSTCL COAL 29. 6.13 0.337 0.16 145.3 11.30 4.80 8.45 27.71 028.87 23.39 0.879 -52. 214 IGGTST COAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 214 IGGTST COAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.	-	5																	
214 IGGTST COAL 29. 1.00-0.159 0.16 68.4 5.31 2.26 3.32 15.79 0. 0. 26.69 1.002 -24. 214 IGGTST COAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.	-	4																	
5214 IGGTST COAL 29. 4.28 0.183 0.16 115.4 8.97 3.81 3.87 25.83 018.46 24.02 0.902 -39.																			
	-	5																	
7214 GTSØAR RESIDUA 29. 1.00 0.180 0.16 31.4 2.33 0.99 1.49 19.25 0. ©. 24.06-0.903 3.		7																	
		20			_														
		12 30		<del>~~~~~~</del> ~													RESIDUA	GTSCAR	214

DATE 06/07/79 (&SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 27

		9	ENSIT	IVITY OF	CAPIT						ORIGINA					·		
NERGY	CONV	SITE-	POWER	POWER	FESRPO		******* Pital cai						<b>\$ MILLIO</b> REVNUE TO			RESNT R	roi Gra	öss
	STEM	FUEL	REQD	GEN/		/HEAT			+			ELEC				WORTH		PAY
			MW	REQD	F	RATIO *		1	NSNC			<u> </u>				15%		ACK
6214	GTAC12	RESIDUA	29.	1 00	0.211	0.16	30.2	2.24	0.95	1.46	18.52	ο.	0.	23, 17	0.870	7.	27	4
		RESIDUA			0.333	0.16	35.6	2.64	1.12	1.64	25.67	Ö.	-8.94		0.831	7.	23	5
6214	GTAC16	RESIDUA		1.00	0.207	0.16	31.1	2.30	0.98	1.48	18.62	0.	0.	23.37	0.878	6.	2/1	4
26214	GTAC16	RESIDUA	29.	2.94	0.341	0.16	39.8	2.95	1.25	1.75	27.56	Ο.	-10.94	22.58	0.848	4.	18	6
26214	GTWC16	RESIDUA	29.	1.00	0.188	0.16	30.9	2.29	0.97	1.48	19.05	Ο.	0.	23.79	0.893	4.	22	5
26214	GTWC16	RESIDUA	29.	3.07	0.315	0.16	38.2	2.83	1.20	1.73	29.45	0.	-11.64	23.58	0.886	2.	. 16	6
26214	CC1626	RESIDUA	29.	1.00	0.187	0.16	31.1	2.36	1.00	1.58	19.09	Ο.	Ο,	24.04	0.903	3.	20	5
26214	CC1626	RESIDUA	29.	4.93	0.356	0.16	51.7	3.92	1 , 67.	2.26	39.00	Ο.	-22,09	24.76	0.930	-9.	9	9
26214	CC1622	RESIDUA	29.	1.00	0.196	0.16	31.1	2.36	1.00	1.58	18.88	Ο.	Ο.	23.82	0.894	4.	21	5
		RESIDUA			0.364	0.16	52.3	3.97	1.69	2.23	35.55	0.	-19.32		0.906	<u>-7.</u>		8
		RESIDUA			0.198	0.16	30.5	2.31	0.98	1.57	18.83	Ο.	Ο.	23.70	0.890	5.	22	5
		RESIDUA			0.367	0.16	49.7	3.77	1.60	2.19	35.27	Ο.	-19.21		0.887	-4.	12	8
		RESIDUA			0.212	0.16	30.3	2.30	0.98	1,56	18.50	Ο.	0.	23.34	0.877	6.	24	4
		RESIDUA			0.370	0.16	40.3	3.06	1.30	1.92	29.80	<u>0.</u>	<u>· -14.18</u>		0.823	<u>5.</u>	19	5
		RESIDUA			0.070	0.16	34.5	2.55	1.09	1.82	21.84	0.	0.	27.30	1.025	-8.	0	999
		RESIDUA		115.52		0.16	826.8	61.24	26.04		916.77	0.	- <b>6</b> 44.26					58
		RESIDUA			0.100	0.16	30.3	2.25	0.96	1.63	21.13	0.	0.	25.97		-2.	10	9
		RESIDUA		10.68		0.16	97.2	7.20	3.06	5.18	89.95	<u> </u>	-54.47		1.913		0	60
		RESIDUA		1.00		0.16	29.9	2.22	0.94	1.64	20.80	0.	0.	25.60	0.961	-1.	13	7
		RESIDUA			0.228	0.16	59.4	4.40	1.87	3.48	56.54	0.	<b>-29</b> .63		1.377	-49.	0	61
		RESIDUA			0.139	0.16	40.5	3.00	1.27	1.77	20.21	0.	0,	26.25	0.986	-8.	6	12
		RESIDUA RESIDUA			0.286	0.16	141.9	10.51	4.47	4.56	58.14	<u>o.</u>	-34.51 0.	43.18	1.622 0.935	-108. -4.	<u> </u>	. 73
		RESIDUA			0.207	0.16	41.8	3.10	1.32	1.87	18.61	0.		24.89 27.21				8
		DISTILL			0.345	0.16	74.7	5.53	2.35	2,81 1,90	27.82 25.39	0.	-11.30 0.	32.06	1.022	-27. -28.	4 0	15
		DISTILL			0.248	0.16 0.16	45.2 201.6	3.35 14.93	1.42 6.35	6.10	<b>85.44</b>	0. 0.	-41.19		2.690	-225.	0	62 61
		RESIDUA			0.118	0.16	45.2	3.35	1.42	1.90	20.71	0.	0.	27.38	1.028	-14.	——— <u>~</u>	21
		RESIDUA			0.248	0.16	201.6	14.93	6.35	6.10	69.70	o.	-41.19		2.099	-176.	ō	67
		DISTILL			0.200	0.16	29.0	2.15	0.91	1.43	23.00	o.	0.	27.49	1.032	-6.	ŏ	95
		DISTILL			0.312	0.16	32.0	2.37	1.01	1.55	31.72	o.	<b>-8</b> .43		1.060	-10.	Ö	71
		DISTILL			0.184	0.16	82.3	2.39	1.02	1.51	23.46	Ö.	0.	28.38	1.066	-11.	ŏ.	69
		DISTILL			0.338	0.16	51.8	3.84	1.63	2,10	43.45	õ.	-17.92		1.243	-35.	ŏ	63
		DISTILL			0.189	0.16	32.5	2.41	1.02	1.51	23.32	õ.	0.	28.27	1.062	-10.	ŏ	71
		DISTILL			0.345	0.16	52.3	3.87	1,65	2.10	42.20	Õ.	-17.30	32.51	1.221	-33.	ŏ	64
		DISTILL			0.191	0.16	33.3	2.47	1.05	1.53	23.28	Ö.	0.	28.33	1.064	-11.	0	73
6214	GTRA16	DISTILL	29.		0.341	0.16	52.4	3.88	1,65	2.10	40.32	0.	-15.73	32.21	1.210	-32.	O	65
		DISTILL			0.190	0.16	31.3	2.32	0.98	1.48	23.29	õ.	0.	28.08	1.054	-9.	Ō	72
6214	GTR208	DISTILL	29.	3.14	0.321	0.16	42.7	3.17	1.35	1.84	36.33	o.	-12.02	30.66	1.151	-23.	O	65
6214	GTR212	DISTILL	29.		0.190	0.16	31.8	2.36	1.00	1.50	23.31	0.	0.	28.17	1.058	-10.	0	72
6214	GTR212	DISTILL	29.	3.36	0.327	0.16	45.4	3.36	1.43	1.91	37.79	O.	-13.30	31.19	1.171	-26.	0	64
6214	GTR216	DISTILL	29.	1.00	0.193	0,16	32.5	2.41	1.02	1.51	23.20	0.	Ο.	28.14	1.057	-10.	0	75
6214	GTR216	DISTILL	29.	3.45	0.336	0.16	48.2	3.57	1,52	1.98	37.94	0.	-13.78	31.22	1.173	-27.	0	66
6214	<b>OTRWO8</b>	DISTILL	29.		0.155	0.16	32.2	2.38	1.01	1.51	24.30	0.	0.	29.21	1.097	-13.	0	62

		ENSITI	VITY OF	CAPIT	AL CO					ORIGINA							
						*******			,						TOUT.	561	00000
ENERGY CONV		POWER		FESRPO		APITAL CA	PITAL TA		NDM FU			EVNUE TO	HAL NO	IRML PE	RESNT WORTH		GROSS
SYSTEM	FUEL	REQD	GEN/		/HEAT			+ NSNC			ELEC				15%	<u> </u>	PAY BACK
		MW	REQD	'n	AIIO	*10**6	1	NSNC							10%		Directo
26214 GTRW12	DISTILL	. 29.	1.00	0.167	0.16	32.2	2.38	1.01	1.50	23.97	Ο.	٥.	28.87	1.084	-12.		0 63
26214 GTRW12				0.320	0.16	54.0	4.00	1.70	2.18	51.53	o.	-22.85	36.57	1.374	-46.		0 60
26214 GTRW16				0.169	0,16	32.7	2.42	1.03	1.52	23.90	0.	0.	28.87	1.084	-12.		0 64
26214 GTRW16	DISTILL		4.68	0.319	0.16	53.5	3.96	1.68	2.16	48.60	Ο,	-20.71	35.69	1.340	-43.		0 60
26214 GTR308	DISTILL	. 29.	1.00	0.144	0.16	31.4	2.32	0.99	1.50	24.63	Ο.	Ο.	29.44	1.106	-13.		0 61
26214 GTR308	DISTILL	_ 29.	3.81	0.257	0.16	43.6	3.23	1.37	1.90	45.54	0.	-15.80	36.24	1.361	-41.		0 58
6214 GTR312	DISTILL	. 29.	1.00	0.173	0.16	31:3	2.32	0.99	1.49	23.80	0.	Ο.	28.59	1.074	-11.		0 64
26214 GTR312				0.314	0.16	46.7	3.46	1.47	1.97	44.08	Ο.	-17.25	33.73	1.267	-34.		0 60
26214 GTR316				0.172	0.16	32.0	2.37	1.01	1.50	23.83	Ο.	0.	28.70	1.078	-11.		0 64
26214 GTR316				0.311	0.16	47.9	3.55	1.51	2.00	43.77	<u>o.</u>	-16.90	33,93	1.274	-35.		0 60
26214 FCPADS				0.131	0.16	38.6	2.86	1.21	4.23	24.99	0.	0.	33.29	1.250	-29.	man 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 61
26214 FCPADS				0.279	0.16	153.7	11.39	4.84	28.29	85.94	0.	-43.94	86.51	3.249	-253.		0 60
26214 FCMCDS				0.176	0.16	39.8	2.95	1.25	4.04	23.72	٠٥.	0.	31.96	1.200	-26. -174.		0 63 0 62
26214 FCMCDS				0.360	0.16	133.2	9.87	4.19	21.30	62.70	0.	-33.58	64.48	1.000			0 62 0 0
26216 ONOCGN			,	0.	0.22	12.4	0.92	0.39	0.65 0.79	11.04	6.47	0.	19.46 16.07	0.826	0. 10.	15	
26216 STM141				0.210	0.22	13.1 27.1	0.99 2.06	0.42 0.87	1.66	13.26 7.70	0.61	0. 0.	12.69	0.663	13.	2	
26216 STM141 26216 STM141				0.210	0.22	19.5	1.48	0.63	1.49	7.70	0.61	0.	11.91	0.612	20.	5	
26216 STM088				0.151	0.22	13.1	0.99	0.42	0.78	12.64	2.24	<u> </u>	17.07	0.877	7.	11	
26216 STM088				0.151	0.22	25.1	1.90	0.42	1.56	7.34	2.24	0.	13.85	0.712	11.	2	
26216 STM088				0.151	0.22	18.5	1.40	0.60	1.44	7.34	2.24	o.	13.02	0.669	17.	5	
26216 PFBSTM				0.227	0.22	34.3	2.60	1.11	2.59	7.88	0.	o.	14.18	0.729	6.	_	9 5
26216 PFBSTM				0.285	0.22	32.6	2.48	1.05	2.51	8.60	<u> </u>	-1.88	12.76	0.658	11.	2	
26216 TISTMT				0.228	0.22	51.7	3.92	1.67	1.97	13.56	o.	o.	21.12	1.085	-24		1 25
26216 TISTMT				0.331	0.22	79.2	6.01	2.56	2.49	16.05	Ö.	-3.83	23.27	1.196	-44.		0 900
26216 TISTMT		20.		0.228	0.22	72.2	5.48	2.33	3.11	7.87	0.	Ο.	18.79	0.966	-27.		6 12
26216 TISTMT	COAL	20.	1.99	0.331	0.22	100.3	7.61	3.24	3.56	9.32	0.	-3.83	19.90	1.023	-44.		4 14
26216 TIHRSG	RESIDUA	20.	0.98	0.165	0.22	69.9	5.18	2.20	2.11	14.53	0.13	Ο.	24.14	1.240	-42.		0 909
26216 TIHRSG	COAL	20.	0.98	0.165	0.22	89.6	6.80	2.89	3.12	8.44	0.13	Ο.	21.37	1.098	-43.		3 18
26216 STIRL	DISTILL	. 20.	1.00	0.164	0.22	21.6	1.60	0.68	1.18	17.98	0.	0.	21.43	1.101	-11		<u>0</u> 63
26216 STIRL	DISTILL	. 20.	2.38	0.259	0.22	34.4	2.54	1.08	1.34	24.10	0.	-5.34	23.73	1.219	-24.		0 61
26216 STIRL	RESIDUA	20.	1.00	0.164	0.22	21.6	1.60	0.68	1.18	14.67	О.	0.	18.12	0.931	0,		4 7
	RESIDUA			0.259	0.22	34.4	2.55	1.08	1.34	19.66	Ο.	-5.34	19.30	0.992	-10.		5 13
26216 STIRL	COAL	20.		0.164	0.22	41.0	3.04	1.29	2.32	8.52	0.	0.	15.17	0.779	-0.		4 7
6216 STIRL	COAL	20.		0.259	0.22	60.5	4.48	1.91	2.64	11.42	0.	-5.34	15.11	0.776	-9.		1 8
26216 HEGT85				0.053	0.22	59.3	4.50	1.91	2.73	9.66	0.	0.	18.79	0.966	-21.		6 12
26216 HEGT85			12.21		0.22	245.2	18.61	7.91	9.43	46.07	0.	-43.51	38.51	1,979	-172.		0 999
26216 HEGT60				0.069	0.22	56.9	4.32	1.84	2.67	9.49	<u>o.</u>	0.	18.31	0.941	-18.		7 11 1 24
26216 HEGT60				0.131	0.22	110.3	8.37	3.56	4.33	18.74	0.	-11.68	23.32	1.199	-59.		
26216 HEGTOO				0.084	0.22	53.0	4.02	1.71	2.56	9.34 :11.15	0. 0.	0. -2.41	17.62°	0.906 0.917	-14. -18.		8 10 7 11
26216 HEGTOO		20. 20.		0.111	0.22	60.5	4.59 3.92	1.95 1.67	2.57	8.17	0. 0.	-2.41 0.	16.57	0.851	-10.	1	
26216 FCMCCL	UUAL	20.	1,00	0.198	U. 22	50.4	3.92	1.0/	∠.01	0.17	υ.	. U.	+0.0/	J. 651	-10.	•	. 9

NATE 06/07/79 (&SE-PEO-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

									· · · · · · · · · · · · · · · · · · ·									
		SI	ENSITI	VITY OF	CAPIT		-				ORIGINAL							
ENEDOV	10400	CITE I	DALLED	DALLED	EECDDA			****LEVE PITAL TA					6 MILLION REVNUE TO			RESNT	ROI G	noss
ENERGY	STEM	SITE- I	REOD	GEN/		HEAT		FITAL IA	ACO UA +	MENT FU		ELEC	MENNOE TO	1 231. 100	JINIII. FI	WORTH		PAY
313	1511	<u> FUEL I</u>	MW	REGD		ATIO *		1	NSNC	· · · · · · · · · · · · · · · · · · ·		<u> LL.EU</u>				15%		PSG Z
			. , , ,	Lub	•			•	,,,,,,									
26216	FCSTCL	COAL	20.	4.35	0.399	0.22	87.0	6.76	2.88	4.82	13.76	ø.	-13.01	15.21	0.781	-24.	9	10
26216	IGGTST	COAL	20.	1.00	0.163	0.22	47.9	3.73	1.58	2.40	8.53	0.	0.	16.25	0.835	-8.	11	8
26216	IGGTST	COAL	20.	3.02	0.281	0.22	67.5	5.25	2.23	2.48	12.82	0.	-7.84	14.95	0.768	-13.	10	8
26216	GTSOAR	RESIDUA	20.	1.00	0.166	0.22	18.0	1.33	0.57	1.03	14.64	Ο.	0.	17.57	0.903	3.	24	
		RESIDUA	20.	3.08		0.22	26.1	1.93	0.82	1.07	22.12	0.	<b>-8</b> .06	17.89		-2.	12	
		RESIDUA	1 20.	1.00		0.22	16.6	1.23	0.52	0.99	14.09	<u>o.</u>	<u> </u>	16.82		<u>6.</u>	38	3
		RESIDUA	20.	2.36		0.22	20.3	1.50	0.64	0.90	18.23	٥.	-5.28	15.99	0.822	7.	29	
		RESIDUA	20.	1.00		0.22	17.0	1.26	0.53	1.00	14.14	0.	0.	16.93	0.870	6.	34	
		RESIDUA	20.	2.96		0.22	24.1	1.79	0.76	1.01	20.21	o.	-7.59	16.18	0.831	5.	21	5
		RESIDUA	<u> 20.</u>	1.00		0.22	17.6	1.30	0.55	1.01	14.21	<u>o.</u>	<u> </u>	17.07		<u>5.</u>	30	
		RESIDUA	20.	3.36		0.22	27.6	2.05	0.87	1.11	21.69	0.	-9,16	16.56	0.851	2.	17	6
		RESIDUA	20.	1.00		0.22	17.7	1.31	0.56	1.02	14.51	0.	0. -9.71	17.39 17.39	0.893	4. -0.	27	7
		RESIDUA	20. 20.	3.50		0.22 0.22	26.7 17.8	1.98	0.84 0.57	1.09 1.12	23,18 14,55	0.	0.	17.59	0.893	3.	14 23	-
		RESIDUA RESIDUA	20.	1.00 ( 5.48 (		0.22	35.7	2.71	1.15	1.50	30.28	0.	-17.40	18.24	0.937	-8.	9	
		RESIDUA	20.	1.00		0.22	17.7	1.34	0.57	1.11	14.40	0.	0.	17.42	0.895	4.	25	
		RESIDUA	20.	4.93		0.22	35.6	2.70	1.15	1.46	27.61	ö.	-15.26	17.66	0.908	-6.	10	
		RESIDUA	20.	1.00		0.22	17.2	1.30	0.55	1.10	14.37	o.	0.	17.33	0.890	4.	27	4
		RESIDUA	20.	4.91		0.22	33.7	2.56	1.09	1.43	27.38	o.	-15.16	17.30	0.889	-4.	12	
		RESIDUA	20.	1.00		0.22	17.2	1.30	0.55	1.10	14.14	õ.	Ö.	17.10		5.	30	
		RESIDUA	20.	3,90		0.22	27.9	2.12	0.90	1.26	23.14	Õ.	-11.25	16.17		3.	17	6
		RESIDUA	20.	1.00		0.22	22.1	1.64	2.70	1.31	16.43	Ö.	0.	20.07	1.031	-7.	0	999
		RESIDUA	20.	131.85		0.22	651.1	48.23	20.50		721.66	Ō.	-507.70		16.579-	1252.	O	58
		RESIDUA	20.	1.00		0.22	18.4	1.37	0.58	1.16	15.94	Ο.	0.	19,05	0.979	-2.	10	9
26216	STIGIO	RESIDUA	20.	12.19	0.218	0.22	72.6	5.38	2.29	3,83	70.80	0.	-43.43	38.87	1.997	-89.	0	60
26216	STIGIS	RESIDUA	20.	1.00	0.105	0.22	18.1	1.34	0.57	1.16	15.72	0.	0.	18.80	0.966	-1.	12	7
26216	STIGIS	RESIDUA	20.	7.15	0.228	0.22	44.3	3.28	1.40	2.51	44.50	0,	-23.88	27.82	1.430	-41.	0	61
26216	DEADV3	RESIDUA	20.	1.00	0.128	0.22	24,3	1.80	0.77	1.24	15.30	Ο.	Ο.	19,11	0.982	-5.	7	11
26216	DEADV3	RESIDUA	20.	8.14	0.286	0.22	106.9	7.91	3.37	3.32	45.77	Ο.	-27.71	32.66	1.678	-86,	0	
		RESIDUA	20.	1.00		0.22	23.9	1.77	0.75	1.28	14.20	0.	0.	18.00	0.925	<u>-1.</u>	13	mary Artis
		RESIDUA	20.	3.43		0.22	53.4	3.96	1.68	1.92	21.90	Ο.	-9.44	20.01	1.028	-21.	4	
		DISTILL	20.	1.00		0.22	27.6	2.05	0.87	1.33	19.19	Q,	0.	23.43	1.204	-20.	0	
		DISTILL	20.	9.50		0.22	154.0	11.40	4.85	4.54	67.26	0.	-32.97	55.08	2.630		0	
		RESIDUA	20.	1.00		0.22	27.6	2.05	0.87	1.33	15.65	0.	<u> </u>	19.90	1.022	-9.		
		RESIDUA	20.	9.50		0.22	154.0	11.40	4.85	4.54	54.87	0.	-32.97	42.69	2.194	-139.	0	
		DISTILL	20.	1.00		0.22	16.1	1.19	0.51	0.98	17.54	0.	0.	20.22	1.039	-4.	0	
		DISTILL	20.	2.85		0.22	21.3	1.58	0.67	0.94	24.97	0.	-7.19	20.97	1.077	-9. -7.	0	
		DISTILL	20.	1.00		0.22	18.6	1.38	0.59	1,04	17.86 34.20	<u>0.</u>	0. -14.65	20.86	1.072	-29.	<u>0</u>	
		DISTILL	20. 20.	4.78 ( 1.00 (		0.22 0.22	38.1 18.7	2.82 ·1.39	1.20 0.59	1.04	17.76	o.	-14.65 0.		1.068	-29. -7.	0	
		DISTILL	20.	4.65		0.22	36.2	2.68	1.14	1.36	33.22	0.	-14,17	24.23	1.245	-26.	Ô	• - '
		DISTILL	20.	1.00		0.22	19.3	1.43	0.61	1.06	17.73	0.	0.	20.83	1.070	-8.	0	65

		SENSITI	VITY OF	CAPIT			****LEVEI			ORIGINA	•		101444				
ENERGY CONV	SITE-	POWER	POWER	FESRP			PITAL TA					EVNUE TO			RESNT	ROI	GROS <b>S</b>
SYSTEM	FUEL	REQD	GEN/	· · · · · · · · · · · · · · · · · · ·	/HEAT (			+			ELEC		· · · · · · · · · · · · · · · · · · ·	,	WORTH	<u> </u>	PAY
		MW	REQD	F	RATIO *	10**6	11	NSNC							15%		BACK
26216 GTR208	DISTIL	L 20.	3.58	0.321	0.22	28.3	2.10	0.89	1.13	28.60	Ο.	-10.01	22.71	1.167	-18.		0 63
26216 GTR212	DISTIL	L 20.	1.00	0.175	0.22	18.2	1.35	0.57	1.03	17.75	0.	. 0,	20.71	1.064	-7,		064
26216 GTR212	DISTIL	L 20.	3.84	0.327	0.22	30.6	2.27	0.96	1.20	29.74	0.	-11.02	23.15	1.190	-20.		<del>0 63</del>
26216 GTR216	DISTIL	L 20.	1.00	0.178	0.22	18.7	1.38	0.59	1.04	17.68	Ο.	0.	20.69	1.063	-7.		0 65
26216 GTR216	DISTIL	L 20.	3,94	0.336	0.22	32.8	2.43	1.03	1.25	29.87	Ο.	-11.40	23.18	1.191	-21.	i	O 65
26216 GTRW08			1.00	0.143	.0.22	18.6	1.38	0.59	1.05	18.44	0.	<u> </u>	21.45	1.102	-9.		0 60
26216 GTRW08	DISTIL	L 20.	5,69	0.297	0.22	37.9	. 2.81	1.19	1.43	41.46	0.	-18.21	28.69	1.474	-41.		0 59
26216 GTRW12	DISTIL	L 20.	1.00	0.154	0.22	18.6	1.38	0.59	1.04	18.21	Ο.	Ο.	21.21	1.090	-8.	4	0 61
2621 <b>6</b> GTRW12			5.78	0.320	0.22	38.1	2.82	1.20	1.44	40.57	Ο.	-18.53	27.49	1.413	-37.	4	<b>0</b> 60
26216 GTRW16				0.156	0.22	19.0	1.41	0.60	1.05	18.16	0.	0.	21.22	1.090	-9.		<u>0 61</u>
26216 GTRW16				0.319	0.22	37.7	2.79	1.19	1.41	38.26	0.	-16.85	26.80	1.377	-35.		0 60
26216 GTR308				0.133	0.22	17.9	1.33	0.57	1.03	18.66	ο.	Ο.	21.59	1,109	-9.	1	0 59
262 <b>16 G</b> TR308			4.35	0.257	0.22	31.2	2.31	0.98	1.24	35.85	΄Ο.	-12.99	27.39	1.408	-34.	1	0 58
26216 GTR312			1.00	0.159	0.22	18.0	1.33	0.57	1.03	18.09	0.	0.	21.01	1.080	-7.		0 61
26216 GTR312			4.64	0.314	0.22	31.9	2.36	1.01	1.25	34.70	0.	-14.13	25.19	1.294	-27.	1	0 60
26216 GTR316			1.00	0.158	0.22	18.4	1.37	0.58	1.04	18.11	Ο.	Ο.	21.10	1.084	-8.	1	0 61
262 <b>16 G</b> TR316			4.57	0.311	0.22	132.9	2.44	.1.04	1.28	34.46	Ο.	-13.85	25.36	1.303	-28.	1	o 60
26216 FCPADS	DISTIL	L 20.	1.00	0.121	0.22	23.0	1.70	0.72	2.90	18.91	0.	0.	24.24	1.245	-20.		0 60
26216 FCPADS	DISTIL	L 20.	10.06	0.279	0.22	116.5	8.63	3.67	21.96	67.65	0.	-35.14	66.76	3.430	-200.	-	0 60
2621 <b>6</b> FCMCDS	DISTIL	L 20.	1.00	0.162	0.22	23.8	1.76	0.75	2.77	18.03	Ο.	0.	23.31	1.198	-18.		0 62
26216 FCMCDS	DISTIL	L 20.	7.96	0.360	0.22	99.9	7.40	3.15	16.44	49.36	Ο.	-26.99	49.36	2.536	-137.	1	0 62
<u>26217 ONOCGN</u>	RESIDU	<u>A 31.</u>	. 0.	0.	0.58	5.8	0.43	0.18	0.43	6.58	10.12	0.	17.74	1.000	0.		0 0
26217 STM141			0.31	0.119	0.58	9.2	0.70	0.30	0.62	7.78	6.94	0.	16.35	0.921	3.	5	6 4
26217 STM141				0.119	0.58	18.6	1.41	0.60	1.22	4.52	6.94	Ο.	14.70	0.829	3.	1.	9 5
26217 STM141				0.119	0.58	13.9	1.06	0.45	1.09	4.52	6.94	Ο.	14.06	0.793	7.	2	9 4
26217 STM088				0.083	0.58	8.2	0.62	0.26	0.59	7.42	7.89	0.	16.79	0.946	2.	2	
26217 STM088				0.083	0.58	17.1	1.30	0.55	1.16	4.31	7.89	Ο.	15.21	0.858	2.	1	8 6
26217 STM088				0.083	0.58	13.1	1.00	0.42	1.05	4.31	7.89	Ο.	14.68	0.827	6.	2	
26217 PFBSTM				0.197	0.58	22.9	1.74	0.74	1.73	5.05	4.74	Ο.	13.99	0.789	3.	1	
26217 TISTMT				0.268	0.58	53.1	4.03	1.71	1.76	9.42	2.84	0.	19.76	1.114	-29.		25
26217 TISTMT		31.		0.268	0.58	67.5	5.12	2.18	2.50	5.47	2.84	0.	18.11	1.021	-31,	•	4 14
26217 TIHRSG				0.103	0.58	47.5	3.52	1.49	1.48	8.66	6,34	0.	21.50	1.212	-31.		0 198
26217 TIHRSG		31.		0.103	0.58	61.0	4.63	1.97	2.19	5.03	6.34	0.	20.16	1.136	-34.		0 26
26217 STIRL				0.244	0.58	20.9	1.55	0.66	0.92	14.37	0.96	<u>o.</u>	18.46	1.041	-9.		ō sə
26217 STIRL	RESIDU			0.244	0.58	21.0	1.55	0.66	0.92	11.72	0.96	0.	15.82	0.892	-1.	13	
26217 STIRL	COAL	31.		0.244	0.58	36.2	2.68	1.14	1.75	6.81	0.96	∙0.	13.34	0.752	-1.	1.	
26217 HEGT85				0.086	0.58	68.5	5,20	2.21	2.92	8.90	0.	0.	19.24	1.084	-35.		3 18
26217 HEGT65				0.125	0.58	<u> 169.9</u>	12.89	5.48	6.38	27.46	<u>o.</u>	-22.18	30.03	1.693	<u>-118.</u>		<u>o</u> 999
26217 HEGT60				0.114	0.58	63.5	4.82	2.05	2.75	8.63	0.	O.	18.25	1.029	-29.		7 15
26217 HEGT60			:	0.131	0.58	76.6	5.81	2.47	2.97	11.17	0.	-3.20		1.084	-39.	;	3 17
26217 HEGTOO				0.085	0.58	41.9	3.18	1.35	1.78	6.65	3.87	0.	16.83		-15.	,	7 11
26217 FCMCCL		31.		0.324	0,58	49.4	3.84	1.63	2.77	6.58	0.	0.	14.83	0.836	<u>-13.</u>		9 9
26217 FCMCCI	COAL	31	1_10_	0.336	_0.58_	49.7_	3.86	1.64_	2.65	6,86	0.	0,61	14.40	0.812	-11.	. 10	J 9

DATE 06/07/79 18SE-PEO-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

	S	ENSITI	VITY OF CAR		T *******	****! 5/5		ENT OF				W61***	*****			
NERGY CONV	SITE-		POWER FEST	RPOWER CA	PITAL CA		XES OA		EL PU	RCHD F	REVNUE TO			RESNT		ROSS
SYSTEM	FUEL	REOD	GEN/				+	· · · · · · · · · · · · · · · · · · ·		ELEC	<del></del>			WORTH		PAY
		MW	REQD	RATIO *	10xxP	11	NSNC							15%	,	BACK
6217 FCSTCL		31.	1.61 0.39		59.0	4.59	1.95	3.20	8.08	0.	-3.69	14.13		-15.	9	
6217		<u>31.</u>	1.00 0.26		46.9	3.64 3.64	1.55	2.06 1.85	7.17	<u>0.</u>	0. -0.65	14.42 13.92	0.813 0.785	<u>-10.</u> -8.	10 11	
6217 IGG151		31. 31.	1.00 0.27		46.9 17.5	1.30	0.55	0.92	7.53 12.22	0. 0.	~0.¢5 ○0.	14.99	0.765	-8. 3.	19	
6217 GTSØAR			1.17 0.28		17.8	1.32	0.56	0.79	13.19	o.	-1.04			3.	19	
6217 GTACO	_	31.	0.90 0.29		13.8	1.02	0.43	0.79	10.13	1.02		14.01	0.790	8.	30	
6217 GTAC12		31.	1.00 0.31		16.1	1.20	0.51	0.87	11.44	0.	0.	14.01	0.790	7.	25	
6217 GTAC12		31.	1.13 0.33		16.2	1.20	0.51	0.74		o.	-0.76	13.73	0.774	8.	26	
6217 GTAC16		31.	1.00 0.31		17.4	1.29	0.55	0.93	11.54	õ.	0.70	14.30	0.806	5.	22	
6217 GTAC16		31.	1.28 0.34		18.5	1.37	0.58	0.81	12.93	o.	-1.70		0.788	6.	22	
5217 GTWC16		31.	1.00 0.28		17.2	1.28	0.54	0.93	12.01	Ö.	0.	14.76	0.832	4.	20	
6217 GTWC16		31.	1.33 0.31		18.4	1.36	0.58	0.93	13.82	o.	-2.03	14.54	0.820	4.	20	
5217 CC1626		31.	1.00 0.27		18.1	1.38	0.59	1.10	12.09	- O.	0.	15.15	0.854	2.	17	
3217 CC1626		31.	2.03 0.34		24.1	1.83	0.78	1.12	17.77	0.	- <b>6</b> .26		0.859	-1.	13	
217 CC1622		31.	1.00 0.29		18.1	1.38	0.58	1.08	11.86	<del>0</del> .	0.	14.90	0.840	3.	18	
217 CC1622		31.	1.83 0.35		23.4	1.78	0.75	1.00	16.21	o.	-5.01	14.80	0.834	1.	15	
217 CC1022		31. 31.	1.00 0.29		17.4	1.32	0.75	1.07	11.81	0. 0.•	-3.01 0.	14.77	0.832	4.	20	
217 CC1222		31.	1.81 0.35	-	22.2	1.68	0.72	1.05	16.07	0.	-4.95	14.58	0.822	2.	16	
217 CC0822		31.	1.00 0.31		16.9	1.29	0.55	1.03	11.45	<u>0.</u>	0.	14.33	0.808	5.	22	
5217 CC0822		31.	1.44 0.36		18.7	1.42	0.60	0.94	13.58	0. 0.	-2.65		0.783	5. 6.		
3217 CC0822		31.	1.00 0.10		18.8	1.42	0.59	1.32	15.01	0. 0.	-2,65 0.	18.31		~8.	22 0	
		31.	50.22 0.17										1.032	-748.	ŏ	
217 STIG15					396.0	29.33	12.47		430.17	<u> 0.</u>	-298.87					
3217 STIG10		31.	1.00 0.15		17.7	1.31	0.56	1.19	14.25	o.	0.	17.30	0.975	-4.	8	
217 STIG10		31.	4.64 0.21		44.5	3.30	1.40	2.46	42.21	0.	-22.13		1.535	-48	.0	
217 STIG1S		31.	1.00 0.17		17.1	1.27	0.54	1.18	13.90	0.	0.	16.88	0.952	-3.	10	
217 STIG1S		<u>31.</u>	2.72 0.22		27.0	2.00	0.85	1.64	26.53	<u>o.</u>	-10.47		1.158	<u>-19.</u>	0	
217 DEADV3		31.	1.00 0.21		26.7	1.97	0.84	1.25	13.25	0.	0.	17.35	0.978	-9,	6	
217 DEADV3		31.	3.10 0.28		64.6	4.79	2.04	2.16	27.28	ο.	-12.76	23.50	1.325	-46.	0	1
217 DEHTPM		31.	1.00 0.31		27.4	2.03	0.86	1.31	11.53	0.	0.	15.73	0.887	-4.	11	
217 DEHTPM		31.	1.31 0.34		32.4	2.40	1.02	1.29	13.05	<u> 0.</u>	-1.87	15.90	0.896	<u>-7.</u>	10	
217 DESCAS		31.	1.00 0.17		31.8	2.36	1.00	1.42	16.92	0.	0.	21.70	1.223	-25.	0	
217 DESGA3		31.	3.62 0.24		92.8	6.88	2.92	2.90	40.09	٥.	-15.90	36.89	2.080	-101.	0	
217 DESGAS		31.	1.00 0.17		31.8	2.36	1.00	1.42	13.80	0.	0.	18.58	1.047	-15.	2	
217 DESOA3		<u>31.</u>	3.62 0.24		92.8	6.88	2.92	2.90	32.71	<u> 0.</u>	-15.90	29.51	1.663	-78.	0	
217 GTSCAD		31.	1.00 0.30		14.7	1.09	0.46	0.82	14,34	0.	0.	16.71	0.942	-1.	13	
217 GTSOAD		31.	1.09 0.31		14.4	1.07	0.45	0.70	14.88	0.	-0.52	16.58	0.935	-0,	14	
217 GTRA08		31.	1.00 0.27		19.1	1.41	0.60	1.00	14.84	0.	0.	17.86	1.006	-7.	4	_
217 GTRA08		<u>31.</u>	1.82 0.33		24.3	1.80	0.77	0.98	20.39	<u>o.</u>	<u>-4.98</u>	18.96	1.069	<u>-13.</u>	<u>o</u> _	9
217 GTRA12		31.	1.00 0.28		19,3	1.43	0,61	1.01	14.69	0.	0.	17.73	1.000	-6.	5	_
217 GTRA12		31.	1.77 0.34		24.5	1.81	0.77	0.99	19.80	0.	-4.69	18.68	1.053	-12.	0	õ
217 GTRA16		31.	1.00 0.28		20.1	1.49	0.63		14.64	0.	0.	17.78	1.002	-7.	5	
217 GTRA16		31.	1.65 0.34		24.6	1.82	0.78	0.98	18.92	0.	-3.95	18,55	1.046	<u>-11.</u>	0	
<u> 217 GTR208</u>	DISTILL	31	1.00 0.28	8 0.58	17.7	1.31	0.56	0.95	14.65	Ο.	Ο.	17.46	0.984	~5.	7	

PAGE 32

DATE 06/07/79 1&SE-PEO-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		SENSIT	IVITY OF	CAPIT		T *******	***I EVE		_,	ORIGINAL			S)****	****			,
NERGY CONV	SITE- FUEL	POWER REQD	POWER GEN/			PITAL CAP				EL. PUI		EVNUE TO		IRML PR	ESNT WORTH	ROI G	ROS <b>S</b> PAY
		MW	REQD	R	ATIO *	10**6	Į į	NSNC					: -		15%		BÄCK
6217 GTR212				0.287	0.58	18.3	1.36	0.58	0.97	14.67	0.	0.	17.58	0.991	- <u>,</u> 5.	6	1
6217 GTR212				0.327	0.58	20.8	1.54	0.65	0.88	17.73	<u>o.</u>	-2.81	17.99	1.014	<u>-8.</u>	3	
6217 GTR216				0.292	0.58	19.1	1.41	0.60	0.99	14.56	0.	0.	17.56	0.990	-6.	6	
6217 GTR216				0.336	0.58	22.1	1.64	0.70	0.91	17.80	0.	-3.03	18.01	1.015	-9.	3	
6217 GTRW08				0.235	0.58	19.0	1.41	0.60	1.02	15.74	0.	0.	18.77	1.058	-9.	0	99
6217 GTRW08				0.297	0.58	26.2	1.94	0.82	1.06	24.71	<u>0.</u>	<u>-7.10</u>	21.44	1.209	<u>-21.</u>	0	magnific to the
6217 GTRW12		~		0.252	0.58	19.0	1.41	0.60	1.01	15.39	0.	0.	18,41	1.038	-8.		9
6217 GTRW12				0.320	0.58	26.3	1.95	0.83	1.06	24.18	0.	-7.29	20.73	1.169	-19. -9.	0	
6217 GTRW16				0.256	0.58	19.5 26.1	1.45 1.93	0.61 0.82	1.02	15.31 22.81	0. 0.	0. -6.29	18,39 20,32	1.037	-18.	0	:
6217 GTRW16 6217 GTR308				0.319	0.58		1.33	0.57	0.98	16.10	0.	0.	18.98	1.070	-10.	<del></del>	1
6217 GTR308				0.217	0.58	18.0 21.4	1.58	0.67	0.92	21.37	o.	-3.98	20.56	1,159	-16.	ŏ	•
6217 GTR306				0.257	0.58	18.0	1.33	0.57	0.92	15.20	0.	0.	18.08	1.019	-7.	3	
6217 GTR312				0.314	0.58	22.0	1.63	0.69	0.93	20.68	0.	-4.66	19.27	1.086	-12.	ō	1.
6217 GTR312				0.259	0.58	18.6	1.38	0.59	0.99	15.23	<del>0.</del>	0.	18.19	1.026	-7.	<u>`</u>	•
5217 GTR316				0.233	0.58	22.7	1.68	0.72	0.95	20.54	o.	-4.50	19.39	1.023	-13.	ó	1
5217 GIRSTO				0.198	0.58	24.9	1.84	0.72	3.95	16.49	0.	0.	23.07	1.300	-26.	ŏ	•
6217 FCPADS				0.130	0.58	70.3	5.21	2.22	13.18	40.32	0.	-17.19	43.74		-113.	ŏ	
6217 FCMCDS				0.265	0.58	25.8	1.91	0.81	3.74	15.11	0.	0.	21.58	1.216	-22.	Ö	
6217 FCMCDS				0.360	0.58	60.4	4.47	1.90	9.88	29.42	O.	-12.33	33.35	1.880	-76.	ŏ	(
6218 ONOCGN			0.	0.	0.21	7.0	0.52	0.22	0.49	8.77	4.85	0.	14.85	1.000	0.	Ö	
6218 STM141				0.204	0.21	11.2	0.85	0.36	0.71	10.45	0.41	o.	12.78	0.861	4.	30	
6218 STM141				0.204	0.21	22.9	1.74	0.74	1.44	6.07	0.41	0.	10.41	0.701	6.	21	
6218 STM141			•	0.204	0.21	16.8	1.27	0.54	1.29	6.07	0.41	Ö.	9.59	0.646	12.	32	
6218 STM088				0.145	0.21	10.0	0.76	0.32	0.67	9.97	1.70	o.	13.41	0.904	3.	29	
6218 STM088				0.145	0.21	21.1	1.60	0.68	1.36	5.79	1.70	o.	11.13	0.750	5.	20	
6218 STM088				0.145	0.21	15.8	1.20	0.51	1.25	5.79	1.70	0.	10.45	0.704	9,	31	
6218 PFBSTM				0.218	0.21	29.3	2.22	0.94	2.21	6.20	O.	0.	11.58	0.780	-1.	14	
6218 PFBSTM	COAL-P	F 15.	1.52	0.280	0.21	27.8	2.11	0.90	2.12	6.78	Ο.	-1.52	10.39	0.700	4.	· 17	
6218 TISTMT	RESIDU	A 15.	1.00	0.219	0.21	42.6	3.23	1.37	1.69	10.66	0.	٥.	16.97	1.143	-24.	0	9
6218 TISTMT	RESIDU	A 15.	2.05	0.327	0.21	66.2	5.03	2.14	2.13	12.65	0.	-3.06	18.89	1.272	-41.	0	9
6218 TISTMT	COAL	15.	1.00	0.219	0.21	59.9	4.54	1.93	2.67	6.19	Ο.	Ό.	15.34	1.033	-27.	4	
6218 TISTMT	COAL	15.	2.05	0.327	0.21	84.0	6.38	2.71	3.04	7.34	Ο.	-3.06	16.41	1.105	-42.	<b>.</b> 3	
6218 TIHRSG	RESIDU	A 15.	1.00	0.162	0.21	57.9	4.29	1.82	1.88	11.44	0.	0.	19.44	1.309	-38.	0	1:
5218 TIHRSG	RESIDU	A - 15.	1.04	0.166	0.21	58.8	4.36	1.85	1.80	11.55	0.	-0.11	19.45	1.310	-39.	0	2
5218 TIHRSG		15.		0.162	0.21	75.3	5.72	2.43	2.83	6.64	Ο.	Ο.	17.62	1.187	-42.	1	
6218 TIHRSG		15.		0.166	0.21	<b>75.5</b>	5.73	2.44	2.66	6.70	Ο.	-0.11	17.42	1.173	-41.	. 1	:
5218 STIRL	DISTIL			0.158	0.21	17.2	1.27	0.54	1.02	14.09	0.	0.	16.92	1.140	<u>-11.</u>	0	
6218 STIRL	DISTIL			0.259	0.21	27.6	2.04	0.87	1.13	19,16	Q.	-4.42	18.78	1.265	-22.	0	
6218 STIRL	RESIDU			0.158	0.21	17.2	1.28	0.54	1.02	11.50	0.	Ο.	14.33	0.965	-3.	8	
6218 STIRL	RESIDU			0.259	0.21	27.6	2.04	0.87	1.13	15.63	0.	-4.42	15.26	1.028	-11.	3	
6218 STIRL	COAL	15.		0.158	0.21	33.8	2.51	1.07	2.00	6.67	<u>o.</u>	0.	12.24	0.825	<u>-5.</u>	11	
6218 STIRL	COAL	15.	2.52	0.259	0.21	48.9	3.62	1.54	2.21	9.07	Ο.	-4.42	12.04	0.811	-11.	10	

DATE 06/07/79 | &SE-PEO-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 33

			SER	<b>3111</b>	VITY OF	- CAF I			***LEVE		ENT OF NNUAL E			S MILLION	(S)***	*****			
NERGY		SITE-		WER		FESRP		PITAL CAP	PITAL TA		NDM FU			REVNUE TO	TAL N	ORML P	RESNT		GROSS
SYS	IEM	FUEL	RE		GEN/		/HEAT			+	<del></del>		ELEC	<del></del>		<del></del>	WORTH	<u> </u>	PAY
			M	W	REQD	ŀ	RATIO *	10**6	1	NSNC							15%		BACK
6218	HEGT85	COAL-A	F	15.	12.94	0.125	0.21	208.3	15.81	6.72	7.92	36.62	Õ.	-34.76	32.31	2.176	-152.	(	0 9
6218	HEGT60	COAL-A	\F	15.	1,00	0.067	0.21	47.3	3.59	1.53	2.27	7.40	0,	0.	14.79	0.996	-19.		<u>5</u>
6218	HEGT60	COAL-A	F	15.	4.25	0.131	0.21	93.8	7.12	3.03	3.66	14.90	0.	-9.45	19.25	1.296	-56.	1	0
6218	HEGT00	COAL-A	F	15.	1.00	0.081	0.21	44.2	3.35	1.43	2.18	7.29	Ο.	o. ·	14.25			: 4	6
		COAL-A		15.		0.111	0.21	51.4	3.90	1.66	2.18	8.86	Ο.	-2.09	14.51	0.977			5
	FCMCCL			<u> 15.                                    </u>		0.191	0.21	42.1	3.27	1.39	2.37	6.42	<u>o.</u>	0.	13.45				8
	FCMCCL			15.		0.336	0.21	61.1	4.75	2.02	3.31	9.15	Ο.	-6.00	13.23		-22.		7
	FCSTCL			15.		0.198	0.21	41.0	3.19	1.36	2.37	6.36	Ο.	Ο.	13.28		-12.	į	8
	FCSTCL			15.		0.396	0.21	73.1	5.69	2.42	4.01	10.85	Ο.	-10.30	12.66		-26.	•	7
	IGGTST			<u> 15. </u>		0.156	0.21	40.4	3.14	1.34	2.11	6.69	0.	0.	13.28		<u>-12.</u>		8
	IGGTST			15.		0.278	0.21	57.3	4.46	1.89	2.17	10.11	0.	-6.22	12.42		-17.		8
		RESIDU		15.		0.160	0.21	15.1	1.12	0.47	0.91	11.47	0.	0.	13.98		-1.		2
		RESIDU		15.		0.288	0.21	22.0	1.63	0.69		17.58	¹ <b>0</b> .	-6.58	14.27		-5.		8
		RESIDU		<u> 15.</u>		0.190	0.21	13.9	1.03	0.44		11.06	<u>o.</u>	0.	13.39			1	
		RESIDU		15.		0.310	0.21	17.1	1.26	0.54	0.79	14.49	0.	-4.37	12,71			1	
		RESIDU		15.		0.187	0.21	14.1	1.05	0.44	0.88	11.10	0.	0.	13.47		1.	1	
		RESIDU		15.		0.333	0.21	20.2	1.50	0.64	0.88	16,06	o.	-6.21	12.67		-0.	13	
		RESIDU		<u> 15.</u>		0.184	0.21	14.6	1.08	0.46	0.89	11.15	<u>o,</u>	0,	13.58				
		RESIDU		15.		0.341	0.21	23.1	1.71	0.73	0.96	17.24	Ο.	-7.45	13.19		-2.	1:	
		RESIDU		15.		0.167	0.21	14.8	1.10	0.47	0.90	11.37	Ο.	0.	13.83		7.7	1:	
		RESIDU		15.		0.315	0.21	22.6	1.67	0.71	0.96	18.43	ο.	-7.89	13.88		-4.		9
		RESIDU		<u> 15. </u>		0.165	0.21	14.9	1.13	0.48	1.00	11.41	<u> </u>	0.	14.02		-1.	13	
		RESIDU		15.		0.351	0.21	29.9	2.27	0.97	1.31	23.87	Ο.	-13.75	14.67		-11.		5
		RESIDU		15.		0.173	0.21	14.7	1.11	0.47	0.99	11.30	0.	Ο.	13.87	A 0 40 7 15	-1.	1:	
		RESIDU		15.		0.358	0.21	29.5	2.24	0.95	1.27	21.77	Ο.	-12.07	14.16		-9.		7
		RESIDU		<u> 15. </u>		0.175	0.21	14.3	1.08	0.46	0.98	11.27	0.	0.	13.80		-0.	1.	<u> </u>
		RESIDU		15.	5.12	0.361	0.21	27.9	2.12	0.90	1,25	21.59	Ο.	-11.99	13.86		-7.		8
		RESIDU		15.	1.00	0.187	0.21	14.4	1.09	0.46	0.98	11.10	٥.	Ο.	13.64		Ο.	1:	-
6218 (	CC0822	RESIDU	IA '	15.	4.06	0.363	0.21	23.3	1.77	0.75	1.10	18.24	Ο.	-8.91	12.95		-2.	1:	
		RESIDU		<u> 15.</u>		0.062	0.21	14.9	1.10	· 0.47	1.04	12.81	0.	0.	<u> 15.43</u>		-6.		<u>0 9</u> 0
		RESIDU		15.	139.72	0.171	0.21	520.8	38.57	16.40		573.57	Ο.	-403.69				i	0
		RESIDU		15.		0.089	0.21	14.3	1.06	0.45	0.98	12.45	Ο.	0.	14.95		-4.	•	4
		RESIDU		15.	12.92		0.21	55.3	4.10	1.74	3.07	56.27	Ο.	-34.69	30.49		-72.		0
		RESIDU		<u> 15.                                    </u>	1.00		0.21	14.1	1.04	0.44	0.98	12.28	0.	<u> </u>	14.75		-3.		<u>6</u>
		RESIDU		15.	•	0.228	0.21	37.3	2.76	1.17	2.12	35.37	Ο.	-19.15	22.28		-38.		0
		RESIDU		15.		0.124	0.21	21.1	1.56	0.67	1.11	11.97	ο.	0.	15.31	1.031	-8.		2
		RESIDU		15.		0.286	0.21	85.5	6.33	2.69	2.74	36.38	٥.	-22.20	25.93		-72.		0
		RESIDU		15.	·	0.184	0.21	19.0	1.41	0.60	1.10	11.14	<u> 0.</u>	0.	14.25		-4.		<u>9</u> 2
		RESIDU		15.		0.345	0.21	42.8	3.17	1.35	1.61	17.40	0.	-7.68	15.85		-20.		2
		DISTIL		15.	•	0.104	0.21	20.9	1.55	0.66	1.11	15.00	٥.	0,	18.30				0
		DISTIL		15.	10.07		0.21	123.0	9.11	3.87	3.71	53.46	0.	-26.38	43.77			-	0
		RESIDU		15.		0.104	0.21	20.9	1.55	0.66	1.11	12.23	<u>0.</u>	0.	15.54		<u>-9.</u>		<u>o</u> 9
<u>6218  </u>	DESMAR	RESIDU	ΙΔ	15	10.07	0.248	0.21_	123.0	9.11	3,87	3.71	43.61	٥.	-26.38	33.92	2.285	-114.		0

DATE 06/07/79 L&SE-PEC-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 34

	S	ENSITI	VITY OF C	APITAL				ENT OF								
NEDOV CENT	OLTE-	DAUED	DEUED EE	5006UEE		*****LEVE							CHERRE	DECNT F	- T	onae.
NERGY CONV	SITE-		-		CAPITAL C	APITAL TA		טא מעמוו			REVNUE TO	TAL NO	RML P			GROSS
SYSTEM	FUEL I	REQD	GEN/		AT COST	<del> </del>	+			ELEC				WORTH	<u> </u>	<u>PA`</u>
		MW	REQD	RATI	Ø *10**6	I	NSNC .							15%		ВАС
6218 GTSCAD	DISTILL	15.	3.02 0.	312 0.	21 \$7.9	1.33	0.56	0.82	19.84	0.	-5.89	16.67	1.123	-11.		0
6218 GTRA08	DISTILL	15.	1.00 0.	164 0.	21 15.5	1.15	0.49	0.92	14.00	٥.	٥.	16.56	1.115	-9.		0
6218 GTRA08	DISTILL	15.	5.06 0.	338 0.	21 32.2	2.38	1.01	1.22	27.18	0.	-11.82	19.98	1.346	-28.	•	0
5218 GTRA12	DISTILL	15:	1.00 0.	168 0.	21 15.6	1.16	0.49	0.92	13.93	Ο.	Ο.	16.49	1.111	-9.		0
218 GTRA12	DISTILL	15.	4.93 0.	345 0.	21 30.4	2.25	0.96	1.17	26.40	Ο.	-11.44	19.35	1.304	-25.		0
218 GTRA16	DISTILL	15.	1.00 0.	170 .0.	21 16.1	1.19	0.51	0.93	13.90	٥.	0.	16.53	1.114	-10.		0
218 GTRA16	DISTILL	15.	4,59 0.3	341 0.	21 30.6	2.2€	0.96	1.17	25.22	Ō.	-10.45	19.17	1.291	-25.		Õ
218 GTR208	DISTILL	15.	1.00 0.	169 0.	21 14.9	1.10	0.47	0.90.		o.	٥.	16.38	1.104	-9.		0
218 GTR208	DISTILL	15.	3.79 0.3	321 0.	21 23.8	177	0.75	0.99	22.73	Ο.	-8.13	16.10	1.219	-18.		0
218 GTR212	DISTILL	15.	1.00 0.	169 0.	21 15.2	1.13	0.48	0.91	13.92	Ö.	0.	16.44	1.107	-9.		0
218 GTR212		15.	4.07 0.3			1.91	0.81	1.04	23.64	0.	-8.93	18.47	1.244	-20.		Ô
218 GTR216	DISTILL	15.	1.00 0.				0.49	0.92	13.86	o.	0.	16.42	1,106	-9.		Ō
218 GTR216		15.	4.17 0.3				0.87	1.09	23,74	٠Ö.	-9.23	18.49	1.246	-21.		Ö
218 GTRW08		15.	1.00 0.				0.49	0.92	14.43	o.	0.	17.00	1.145	-11.		Õ
218 GTRW08		15.	6.03 0.2			2.38	1.01	1.25	32.95	0.	-14.65	22.95	1.546	-37.		ŏ
218 GTRW12		15.	1.00 0.				0.49	0.92	14.26	ö.	0.	16.83	1.134	-10.		Ŏ.
218 GTRW12		15.	6.12 0.3				1.02	1.25	32.24	o.	-14.90	22.01	1.482	-34.		ŏ
218 GTRW16		15.	1.00 0.			1.18	0.50	0.93	14.22	0.	0.	16.84	1.134	-10.		ŏ
218 GTRW16		15.	7.66 O.				1.01	1.23	30.41	<del>0</del> .	-13.57	21.45	1.445	-32.		<del>0</del>
218 GTR308		15.	1.00 0.				0.47	0.91	14.60	0.	0.	17.10	1.152	-32. -11.		Ö
218 GTR308		15.	4.61 0.2			1.95	0.83	1.08	28.49	0.	-10.50	21.86	1.473	-31.		o.
218 GTR312		15.	1.00 0.			1.12	0.47	0.91	14.17			16.67		-10.		o
218 GTR312		15.	4.92 0.3					1.10	27.58	<u>o.</u>	0.	20.12	1.123	-26.		0
218 GTR312			1.00 0.			-	0.85			0.	-11.41		1.355			-
		15. 15.	4.84 0.3	•		1.15	0.49	0.92	14.19	0.	0.	16.74	1.127	-10.		0
218 GTR316						2.07	0.88	1.12	27.39	0.	-11.18	20.27	1.365	-27.		0
218 FCPADS		<u> 15.</u>	1.00 0.			1.30	0.55	2.26	14.79	<u>0.</u>	0.	18.90	1.273	-18.		0
218 FCPADS		15.	10.66 0.2				2.93	17.50	53.76	0.	-28.10	52.97	3.568	-162,		0
218 FCMCDS		15.	1.00 0.			1.34	0.57	2.16	14.13	ο.	0.	18.20	1.226	-16.		0
218 FCMCDS		15.	8.43 0.3				2.52	13.12	39.23	0.	-21.62	39.17	2.638			ō.
001 ONOCGN		33.	<u>0. 0.</u>	0.		2.49	1.06	1.35	41.24	10.96		57.11	1.000	0.		5
001 STM141		33.	1.00 0.1			2.91	1.24	1.92	45.40	0.	0.	51.47	0.901	15.	-	4
01 STM141		33.	1.80 0.2			3.02	1.29	1.66	48.72	0.	-5.25	49.44	0.866	21.		8
001 STM141		33.	1.00 0.1		• - • • • •	5.90	2.51	4.40	26.36	o.	0.	39.17	0.686	34.	_	7
01 STM141		33.	1.80 0.2			5.77	2.45	4.00	28,29	O.	-5.25	35.26	0.617	48.		2
01 STM141		33.	1.00 0.1			4.77	2.03	4.17	26.36	Ο.	Ο.	37.33	0.654	47.		9
001 STM141		33.	1.80 0.2			4.41	1.87	3.88	28.29	Ů.	-5.25	33.19	0.581	63.		1
01 STM088		33.	1.00 0.1			2.79	1.19	1.84	45.40	Ο.	· O.	51.22	0.897	17.		5
001 STM088		33.	1,26 0.1		· · · · · · · · · · · · · · · · · · ·	2.75	1.17	1.56	46.46	0.	-1.68	50.26	0.880	20.	9	
001 STM088		33.	1.00 0.1			5.82	2.47	4.27	26.36	0.	0.	38.92	0.681	36.	2	7
001 STM088	COAL-FO	33.	1.26 0.1	57 0.	10 71.1	5.40	2.29	3.72	26.98	Ο.	· -1.68	36.71	0.643	45.	3	3
001 STM088		33.	1.00 0.1	32 0.	10 58.9	4.47	1.90	4.12	26.36	0.	0.	36.85	0.645	51.	4	
001 STM088	COAL-AF	33.	1.26 0.1	57 0.	10 56.1	4.26	1.81	3.74	26.93	0.	-1.68	35.10	0.615	58.	5	1
MIRRIA LO	COAL-RE	33	1 00 0	28 . 0.	10 78.2	5.93	2.52	5.20	26,46	0.	0.	40.11	0.702	31.	2	<u> </u>

PATE 06/07/79 &SE-PEO-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 35

			ENSITI	VITY ÖF	CAPIT	AL CO	ST		PERC	ENT OF	ORIGINA	L COS	T 100						<del></del>
FNEDOV	. 0684	0175	061150	061150	CCCDDG	ujen A		*****LEVE								RESNT	RØI	GROS!	•
ENERGY	TEM	SITE- FUEL	REGD	GEN/	FESKPU	/HEAT		APITAL TA	YES OW	NDM FU	ICL P	ELEC	REVNUE TO	TAL NO	RML P	WORTH	KO1	PA	
313	, I CII	FUEL	MW	REQD	R		*10**6	11	NSNC			ELEC	<del></del>			15%		BACI	
			••••		•			-								7.00			
28001	TISTMT	RESIDUA	33.	1.00	0.129	0.10	92.1	6.99	2.97	3.26	45.52	О.	0.	-58.73	1.023	-34.		2	19
28001	TISTMT	RESIDUA	33.	4.14	0.322	0.10	205.8	15.62	6.64	5.95	58.94	0.	-20.65	66.50	1.164	-112.		0 9	999
	TISTMT		33.		0.129	0.10	134.1	10.18	4.33	5.74	26.43	0.	0.	46.67	0.817		1		8
	TISTMT		33.		0.322	0.10	258.9	19.65	8.35	8.74	34.22	0.	-20.65	50.32	0.881	-87.		7	11
		RESIDUA			0.096	0.10	117.4	8.69	3.70	3.79	47.28	ο.	0.	63.45	1.111	~59.			999
		RESIDUA			0.166	0.10	184.9	13.69	5.82	5.19	54.28	<u> </u>	<u>-7.64</u>	71.35	1.249			<u>0</u> 1	138
	TIHRSG		33.		0.096	0.10	166.7	12.65	5.38	6.52	27.45	0.	0. -7.64	52.00 57.17	0.911	-48. -07		6 5	10
28001	TIHRSG	DISTILL	33. . 33.		0.166	0,10	234.8 55.1	17.81 4.08	7.57 1.74	7.90 2.28	31.52 58.10	0. 0.	-7.64 0.	66.19	1.001	~97. ~39.		ა ი	13 58
28001		DISTILL	. 33. . 33.		0.259	0.10	117.8	8.73	3.71	3.71	90.07	0.	-27.87	78.34	1.372	,		o .	61
28001		RESIDUA			0.094	0.10	55.1	4.08	1.74	2.28	47.39	<del>0.</del>	0.	55.49	0.972			ö	9
28001		RESIDUA	-		0.259	0.10	118.0	8.74	3.71.	3.71	73.48	o.	-27.87	61.77	1.082			_	99 <b>9</b> .
28001		COAL	33.		0.094	0.10	97.7	7.24	3.08	4.82	27,52	Ŏ.	0.	42.66	0.747		1		5
28001		COAL	33.		0.259	0.10	210.4	15.58	6.62	7.92	42.66	0.	-27.87	44.92	0.787	~45.	1	0	9
28001	HEGT85	COAL-AF	33.	1.00	0.030	0.10	111.6	8.47	3.60	5.13	29.45	0.	0.	46.65	0.817	-5.	1	3	7
28001	HEGT85	COAL-AF	33.	26.93	0.125	0.10	833.7	63.27	26.90	31,64	172.16	0.	-170.51	123.45	2.162	-593.		0 9	939
28001	HEGT60	COAL-AF	33,	1.00	0.039	0.10	108.5	8.23	3.50	5.08	29.16	Ο.	Ο.	45.98	0.805	-2.	1.	4	7
		COAL-AF			0.131	0.10	272.1	20.64	8.78	11.55	70.04	0.	<b>-51.5</b> 5	59.45	1.041			4	15
		COAL-AF			0.048	0.10	104.3	7.92	3.37	5.05	28.91	0.	0.	45.24	0.792		1	7	6
		COAL-AF			0.111	0.10	149.4	11.33	4.82	6.75	41.68	Ο.	-16.93	47.65	0.834		1		8
	FCMCCL		33.		0.113	0.10	106.7	8.29	3.53	5.55	26.94	o.	0.	44.30	0.776		1		6
	FCMCCL		<u>33.</u>		0.336	0.10	183.4	14.26	6.06	11.53	43.00	<u>0.</u>	<u>-35.31</u>	39.54	0.692		1		8
	FOSTOL		33.		0.117	0.10	104.7	8.14	3.46	5.45	26.82	0.	0. -54.43	43.66	0.768		1	-	6
	FCSTCL IGGTST		33. 33.		0.394	0.10	217.9	16.94	7.20 3.29	13.72 4.65	50.56 27.58	0. 0.	-54.42 0.	34.00 43.27	0.595 0.758		í	3	7 6
28001	IGGTST		33.		0.092	0.10	99.6 178.8	7.74 13.90	5.91	5.63	47.11	o.	-35.38	37.17	0.750	-10.	1		7
		RESIDUA			0.094	0.10	48.8	3.62	1.54	2.04	47.35	<del>- ö.</del>	0.	54.54	0.955		1		6
		RESIDUA			0.288	0.10	88.6	6.56	2.79	2.88	82.67	o.	-38,0ড	56.87	0.996			5	13
		RESIDUA			0.112	0.10	43.5	3.22	1.37	1.91	46.41	o.	0.	52.90	0.926		2		4
		RESIDUA			0.310	0.10	64.0	4.74	2.02	2.22	68.13	Ō.	-27.65	49.45	0.866		2		5
28001	GTAC12	RESIDUA	33.	1.00	0.111	0.10	47.6	3.53	1.50	2.00	46.50	0.	0.	53.53	0.937	5.	2	0	5
28001	GTAC12	RESIDUA	33.	6.52	0.333	0.10	77.1	5.71	2.43	2.57	75.52	0.	-36.28	49. <b>94</b>	0.875	2.	1	5	6
28001	GTAC16	RESIDUA	33.	1.00	0.108	0.10	48.5	3.60	1.53	2.02	46.62	Ο,	Ο.	53.76	0.941	3.	1	8	5
		RESIDUA	33.	7.41	0.341	0.10	88.3	6.54	2.78	2.86	81.06	0.	-42.14	51.10	0.895	<u>-7.</u>	1	2	7
		RESIDUA	-		0.099	0.10	48.3	3.58	1.52	2.02	47.12	Ο.	Ο.	54.24	0.950		1	-	6
		RESIDUA			0.315	0.10	82.4	6.11	2.60	2.73	86.63	0.	-44.20	53.87	0.943		1		9
		RESIDUA			0.097	0.10	48.3	3.66	1.56	2.12	47.21	0.	0.	54.55	0.955		1	-	6
		RESIDUA		11.72		0,10	108.3	8.22	3.49		111.24	<u>0.</u>	<del>-70.51</del>	56.10	0.982			6	12
		RESIDUA			0.102	0.10	48.3	3.67	1.56	2,12	46.96	0, 0,	0.	54.30	0.951	1.	1		6
		RESIDUA RESIDUA		10.53		0.10	114.1 47.6	8.66 3.61	3.68 1.54	2.11	101.48 46.91	0. 0.	-62.69 0.	54.81 54.17	0.960 0.948		1	7	11
		RESIDUA		10,47		0, 10	106.4	8.08	3.43		100.60	0. 0.	-62,29	53.39	0.935			, 9	10
		RESIDUA			0.110	0.10	47.3	3.59	1.53	2.10	46.52	<u>ö.</u>	0.	53.74	0.941	4.	1		5
E. 0001	UUUVEE	VEAT NOW		1,00	<u> </u>	<u> </u>	47.5	3.09	1.00	2.10	70.02	U.		33.74	5.541	4.		9	9

PAGE 36

		;	BENSIT	IVITY OF	CAPIT	TAL COS		**** 646			FORIGI		ST 100 (\$ MILLIO	MC1++	*****	* *			
2NERGY SYS	CONV	SITE- FUEL	POWER REGD	POWER GEN/	FESRPO	WER CA	PITAL CA						REVNUE T			PRESNT WORT		oga Pa	ISS 'AY
			MW	REQD	F	* DITAS		Ī	NSNC	<u>, , , , , , , , , , , , , , , , , , , </u>					<del></del> -	15%		BA	
28001	STIG15	RESIDU	A 33.	1,00	0.037	0.10	48.5	3.59	1.53	2.31	50.3	B 0.	0.	57.8	1 1.0	12 -9	·**	o	23
28001	STIG15	RESIDU	A 33.	290.72	0.171	0.10	2270.3	168.16	71.49	142.09	2696.5	7 0,	*****	1173.3	2 20.5	15-4557	•	0	58
28001	STIGIC	RESIDU	A 33.	1.00	0.052	0.10	47.5	3.52	1.50	2.19	49.5	5 0,	0.	56.7	5 0.9	94 -5	•	7	11
	STIGIO		-	26.88		0.10	222.1	16.45	6,99		264.5		-170.19				•	0	59
	STIGIS				0.060	0.10	47.0	3.48	1.48	2,20			0.	56.3			•	9	9
	STIGIS			15.77		0.10	136.2	10.09	4.29		166.3		-97.14				·	_9	<u>60</u>
	DEADV3				0.073	0.10	60.7	4.50	1,91	2.39			0.	57.2			•	4	14
	DEADV3			17.95	-	0.10	352.1	26.08	11.09		3 171.0		-111.46				•	0	68 10
	DEHTPM DEHTPM				0.109	0.10	62.2 185.2	4.61 13.71	1.96 5.83	2.49			0.	55.6 63.7			•	9	27
	DESGA3				0.062	0.10	66.0	4.89	2.08	5.55 2.52			<u>-43,21</u> 0.	69.6			<u></u>	0	59
	DESCA3			20.94		0.10	516.0	38.22	16.25		251.3		-131.13				-	ő	59 60
	DESOA3				0.062	0.10	66.0	4.89	2.08	2.52			0.	58.5			•	o	27
	DESCA3			20.94		0.10	516.0	38.22	16.25		205.0		-131.13			,	•	Ö	65
	GTSGAD				0.105	0.10	46.2	3.42	1.45	1.97			0.	64.2				<u> </u>	58
	GTSOAD				0.312	0.10	67.3	4.99	2.12	2.33			-34.77					ŏ	59
	GTRA08				0.097	0.10	49.8	3.69	1.57	2.05			Ö.	65.2			•	ŏ	58
	GTRA08			10.53		0.10	126.2	9.35	3.97		127.8		-62.67				-	ŏ	60
	GTRA12				0.099	0.10	50.1	3.71	1.58	2.00			Ō.	65.0				ō	58
28001	GTRA12	DISTIL	_ 33.	10.26	0.345	0.10	123.2	9.12	3.88	3.79	124.1	2 0.	-60.87					0	61
28001	GTRA16	DISTIL	_ 33.	1.00	0.100	0.10	51.0	3.77	1.60	2.08	57.6	7 0.	n.	65.1	3 1.14	11 -33	•	0	53
28001	GTRA16	DISTIL	_ 33,	9.55	0.341	0.10	123.7	9.16	3.90	3.79	118.5	в О.	-56.24	79.1	9 1.38	37 -111.		0	61
28001	GTR208	DISTIL	_ 33.	1.00	0.100	0.10	48.7	3.61	1.53	2.03	57.6	9 0.	0.	64.8	6 1.1:	36 -31		O	58
28001	<b>GTR208</b>	DISTIL	_ 33.	7.89	0.321	0.10	96.3	7.14	3.03	3.08	106.8	70.	-45.33	74.7	9 1.3	10 -85	•	0	60
28001	<b>GTR212</b>	DISTIL	_ 33.	1.00	0.100	0.10	49.3	3.65	1.55	2.04	57.7	1 0.	0.	64.9	6 1.13	37 -32		0	58
28001	GTR212	DISTILL	33.	8.47	0.327	0.10	104.0	7.70	3.27	3.28	<u> 111. j</u>	<u> 4 0.</u>	<b>-49</b> .10	76.3	0 1.3	36 <b>-93</b> ,		0	60
	OTR216				0.102	0.10	50.1	3.71	1.58	. 2.09	57.5	9 0.	0.	64.9	3 1.13	37 -32	•	0	58
	GTR216				0.336	0.10	111.7	8.27	3.52		111.6		-50.51	76.3	5 1.30			Û	61
	GTRW08				0.081	0.10	49.7	3.68	1.56	2.05			٥.	66.1			•	0	58
	GTRW08			12.55		0.10	127.2	9.42	4.00		154.9		-75.97				<u> </u>	<u> Q</u>	58
	GTRW12				0.087	0.10	49.6	3.68	1.56	2.05			_0,	65.7				0	58
	GTRW12			12.74		0.10	128.0	9.48	4.03	-	151.5	-	-77.17				•	0	59
	GTRW16				0.089	0.10	50.2	3.72	1.58	2.06			0.	65.7			•	0	58
	GTRW16			11.78		0.10	126.6	9.38	3,99		142.90		-70.89				<u> </u>	<u> </u>	<u>59</u>
	GTR308 GTR308				0.075	0.10	48.8	3.61	1.54	2.04			0.	66.4			•	0	57
	GTR312	· ·			0.257	0.10	96.1	7.12 3.61	3.03 1.53	2.03	133.9		-56,45 0.				•	0	58 58
	GTR312			10.24		0.10	48.7 100.8	7.46	3.17		58,20 129,69		- •	65.4			-	0	59
	GTR316				0.090	0.10	49.4	3.66	1.56	2.04			- <u>60.73</u> 0.	82.8 65.5		50 -112. 18 -34		<del> </del>	58
	GTR316			10.08		0.10	103.5	7.67	3.26		128.7		- <b>59</b> .68					ő	59
	FCPADS				0.069	0.10	58.8	4.35	1.85	5.29			0.	71.1			-	ŏ	58
	FCPADS			22.17		0.10	379.9	28.14	11.96		252.7		-139.22			10 -726.	•	ŏ	60
	FCMCDS			1.00		0.10	59.8	4.43	1.88	5. Ot			Ů.	69.5			<u> </u>	-š	<u>59</u>

. PAGE 37

	s	ENSITI	VITY OF	CAPIT	TAL COS			•			,			<i>*</i>			
ENEDOV OMNU			DOUED	550004		*******			* 105 F F F F F F F F F F F F F F F F F F F	. ,				11 78 11	CONT	Dat Co	acte e
ENERGY CONV	SITE-			FESKE		APITAL CAL	PITAL IA		רט אינטאי			EVNUE IC	TAL NO	KML FI	RESNT		ROSS
SYSTEM	FUEL	REGD	GEN/ REQD		/HEAT		<del></del>	+ NSNC	<del></del>		ELEC			· · · · · · · · · · · · · · · · · · ·	WORTH 15%	<del></del>	<u>PAY</u> ACK
		MW	KEUD	, r	RAIIO	10**6	1	NONC							13%	ť	LINUN
28002 ONOCGI	N RESIDUA	77.	0.	٥.	0.25	32.9	2.43	1.04	1.33	39.52	26.03	σ.	70.35	1.000	0.	0	(
28002 STM14	1 RESIDUA	77.	0.73	0.181	0.25	38.7	2.93	1.25	1.63	46.68	7.14	0.	59.63	0.848	<u> </u>	31_	2
28002 STM14	1 COAL-FG	77.	0.73	0.181	0.25	73.8	5.60	2.38	3.88	27.11	7.14	Ο.	46.11	0.656	56.	35	3
28002 STM14				0.181	0.25	56.6	4.29	1.82	3.76	27.11	7.14	Ο.	44.13	0.627	70.	57	2
28002 STM08				0.126	0.25	35.1	2.67	1.13	1.53	44.52	12.84	ο.	62.69	0.891	22.	119	1
28002 STM088				0.126	0.25	69,0	5.24	2.23	3.61	25.85	12.84	0.	49.77	0.708	47.	31	3
28002 STM088		•		0.126	0.25	54.6	4.14	1.76	3.63	25.85	12.84	Ο.	48.23	0.686	58.	53	2
28002 PFBSTI				0.243	0.25	77.6	5.89	2.50	6.53		Ο.	Ο.	43.84	0.623	61.	35	3
28002 PFBSTN				0.274	0.25	73.0	5.54	2.36	6.58	30.32	ο.	-3.66	41.14	0.585	71.	41	3
28002 TISTM	~~~~~			0.245	0.25	146.6	11.13	4.73	4.70	49.67	<u>o.</u>	<u> </u>	70.22	0.998	-55.	5	13
28002 TISTM			*	0.322	0.25	199.1	15, 11	6.42	5.77	56.48	0.	-10.47	73.30	1.042	-89.	3	16
28002 TISTM		77.		0,245	0.25	191.8	14.56	`6.19	7.32	28.84	, O.	<b>0</b> .	56.91	0.809	-35.	11	8
28002 TISTM		77.		0.322	0.25	250.4	19.01	8.08	8.47	32.79	0.	-10.47	57.88	0.823	-66.	9	9
28002 TIHRS				0.158	0.25	178.8	13.24	5.63	5.03	52.01	3.34	0.	79.25	1.127	<u>-96.</u>	0	999
28002 TIHRS		77.		0.158	0.25	227.1	17.23	7.33	7.65	30.20	3.34	0.	65.74	0.935	-79.	7	11
28002 STIRL	DISTILL			0.177	0.25	74.4	5.51	2.34	2.84	66,36	0.	Ο.	77.06	1.095	-41.	0	68
8002 STIRL	DISTILL			0.259	0.25	113.0	8.37	3.56	3.57	86.30	0.	-17.39	84.42	1.200	-82.	0	65
8002 STIRL	RESIDUA			0.177	0.25	74.5	5.52	2.35	2.85	54,13	0.	0.	64.84	0.922	-2.	13	. 7
28002 STIRL	RESIDUA		•	0.259	0.25	113.2	8.38	3.56	3.58	70.40	Ο.	-17.39	68.54	0.974	- 32.	7	. 11
8002 STIRL	CAL	77,		0.177	0.25	129.1	9.56	4.07	5.87	31.43	Ο.	Ο.	50.93	0.724	15.	17	6
28002 STIRL	COAL	77.		0.259	0.25	201.7	14.94	6.35	7.62	40.88	Ο.	-17.39	52.41	0.745	-23.	12	ទ
8002 HEGT8				0.057	0.25	157.8	11.97	5.09	6.80	36.02	0.	0.	59.87	0.851	-28.	11	8
28002 HEGT8		77.	10.86		0.25	808.8	61.38	26.09		164.96	0.	-154.06	128.96	1.833	-557.	0	009
28002 HEGT60			1.00	0.075	0.25	149.9	11.38	4.84	6.63	35.33	0.	0.	58.17	0.827	-19.	12	8
28002 HEGT60				0.131	C, 25	263.9	20.03	8.52	11.17	67.11	Ο.	-40.08	66.74	0.949	-100.	6	12
28002 HEGTO				0.090	0.25	130,9	9.93	4.22	6.22	34.73	0.	0.	55.10	0.783	0.	15	7
28002 HEGTO				0.111	0.25	144.9	11.00	4.68	6.53	39,93	0.	-6.90	55.23	0.785	-7.	14	7
28002 FCMCCL		77.		0.213	0.25	134.2	10.43	4.43	7.40	30.05	ο.	0.	<b>5</b> 2.32	0.744	5.	15	6
8002 FCMCCI		77.		0.336	0.25	177.8	13.82	5.88	11.12	41.20	Ο.	-24.52	47.50	0.675	-1.	14	7
28002 FCSTCL		77.		0.220	0.25	131.8	10.25	4.36	7.14	29.76	0.	0.	<u>51.59</u>	0.732	9.	16	6
28002 FCSTCL		77.		0.394	0.25	211.2	16.42	6.98	13.23	48.45	0.	-42.83	42.25	0.601	-1.	14	7
8002 166TS1		77.		0.173	0.25	125,3	9.74	4.14	5.19	31.57	0.	Ο.	50.65	0.720	15.	17	ε
8002 IGG1S1		77.		0.274	0.25	169.7	13.19	5.61	5.39	45.14	Ο.	-24.59	44.75	0.636	12.	16	€
8002 GTSOAF				0.178	0.25	56.5	4.19	1.78	2.30	54.02	0.	0.	62.29	0.886	14.	24	4
8002 GTSOAF		77.		0.288	0.25	85.9	6.36	2.70	2.80	79.21	0.	-27.12	63.96	0.909	-5.	13	7
8002 GTACO8		77.		0.212	0.25	49.5	3.67	1.56	2.11	51,79	0.	ο.	59.13	0.841	27.	40	3
28002 GTACO	RESIDUA	77.		0.310	0.25	62.0	4.59	1.95	2.16	65.28	Ο.	-17.17	56.81	0.808	29.	30	4
8002 GTAC12		<u>77.</u>		0.209	0.25	52.8	3.91	1.66	2.20	52.01	0.	0.	59.78	0.850	24.	34	3
28002 GTAC12	–	77.		0.333	0.25	74.6	5.52	2.35	2.49	72.36	0.	-25.45	57.28	0.874	21.	23	5
8002 GTAC16		77.		0.205	0.25	54.9	4.06	1.73	2.25	52.28	Ο.	Ο.	60.33	0.858	21.	30	4
28002 GTAC16				0.341	0.25	85.4	6.32	2.69	2.78	77.67	0.	-31.06	58.40	0.830	13.	19	5
28002 GTWC16		77,		0.187	0,25	53.0	3.93	1.67	2.21	53.48	0.	0.	61.29	0.871	19.	30	4
28002 GTWC18	RESIDUA	77	3.11	0.315	0.25	79.9	5.92	2.52	2.66	83.01	0.	33,03	61.07	0.868		17	6

DATE 06/07/79 18SE PEO-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 38

			SENSIT	IVITY OF	CAPIT	TAL COS	т		PFR	ENT OF	ORIGINA	i cas	T 100						
			OFWO.	11117-7	VIII. L.	INL OOG	•	****!_EVE					S MILLION	(S)****	*****	*			
ENERGY		SITE-			FESRP		PITAL CA	PITAL TA	XES O	ANDM F	UEL PI		REVNUE TO	STAL NO	DRML 1	PRESNT	ROI	GRO:	_
SYS	TEM	FUEL	REOD	GEN/		/HEAT			+		<del></del>	ELEC				WORTH	<u> </u>		AY
			MW	REQD	F	* DITAS	10**6	1	NSNC							15%		EA	CIC
28002	CC1626	RESIDU	A 77.	4.73	0.348	0.25	102.7	7.79	3.31	3.50	106.58	ο.	-58,24	62.94	0.89	5 -11.		12	8
		RESIDU			0.192	0.25	55.3	4.20	1.78	2.38		o.	0.	61.46	•			26	4
28002	CC1622	RESIDU	A 77.	4.25	0.356	0.25	110.3	8.37	3.56	3.58	97.24	O.	~50.75	61.99	0.88	1 -11.		12	8
28002	CC1222	RESIDU	A 77.	1.00	0.194	0.25	53.8	4.09	1.74	2.36		Ο.	ο,	61.16	0.86			28	4
		RESIDU			0.359	0,25	99.2	7.53	3.20	3,38	96.39	0.	-50.37	60.14	0.85			14	7
		RESIDU			0.208	0.25	52.3	3.97	1.69	2.32		<u>o.</u>	0,	<u>60.04</u>	0.85			32	<u>3</u> 5
		RESIDU.			0.360	'0.25 0.25	81.0	6.15 4.37	2.61	2.87 3.07	81.46 61.21	0. 0.	-36,61 0.	56.48 70.51	0.80			21 4	15
		RESIDU.		117.27	0.069	0.25	59.0 2177.7	161.30	1,86 68,58		2583.80	o.	******					0	58
		RESIDU			0.099	0.25	56.8	4.21	1.79	2.79		o.	0.	68.03			11.7%	11	8
		RESIDU		10.84		0.25	214.0	15.85	6.74	11.29		Ö.	-153.76	133.62	1.89			0	59
		RESIDU			0.113	0.25	52.4	3.88	1.65	2.71	58.35	o.	0.	66.58	0.94	7 3.		17	6
28002	STIGIS	RESIDU	A 77.	6.36	0.228	0.25	137.7	10.20	4.34	7.39	159.34	٠٥.	<b>-83</b> .76	97.51	1.38	6 -135.		O	61
28002	DEADV3	RESIDU	<u>A 77.</u>		0.138	0,25	86.3	6.39	2.72	3.14		0.	0.	68.93	0.98			7	11_
		RESIDU			0.286	0.25	337.6	25.01	10,63	9.46		Ο.	-97.49	111.46	1.58			0	73
		RESIDU			0.205	0.25	86.4	6.40	2.72	3.21	52.25	0.	0.	64,58	0.91			12	- 8
		RESIDU			0.345	0.25	177.5	13.15	5.59	5.35		o.	-32.08	70.40				5	13
		DISTIL			0.116	0.25	98.9	7.32	3.11	3.46		<u> 0.</u>	0.	85.10				0	62
		RESIDU			0.248	0.25 0.25	494.7 98.9	36,64 7,32	15.58 3.11	13.45 3.46		0. 0.	-116.33	190,15 71.99	2.70 1.02			0 2	61 19
		RESIDU			0.116	0.25	494.7	36.64	15.58		196.45	0. 0.	0. -116.33		2.07			ő	67
		DISTIL			0.199	0.25	49.5	3.67	1.56	2.12		0.	0.	71.93	1.02			o o	172
		DISTIL			0.312	0.25	65.2	4.83	2.05	2.26	89.39	0.	-24.00	74.53	1.06			0	75
		DISTIL			0.183	0.25	58.8	4.35	1.85	2.35		o.	0.	74.42	1.05			ŏ	69
28002	GTRA08	DISTIL	L 77.	4.25	0.338	0.25	122.3	9.06	3,85	3.77	122.45	Ο.	-50.74	88.39	1.25	7 -98.		0	63
		DISTIL		1.00	0.188	0.25	57.5	4.26	1.81	2.32	65.48	0.	0	73.87	1.05	~23.		_0	72
		DISTIL			0.345	0.25	119.3	8.83	3.76		118.93	0.	-49.01	86.19	1.22			0	65
		DISTIL			0.189	0.25	59.0	4.37	1.86	2.36		Ο.	Ο.	73.94	1.05			0	74
		DISTIL			0.341	0.25	119.8	8.87	3.77		113.63	ο.	-44.57	85.38	1.21			0	66
		DISTIL			0,189	0.25	54.5	4.04	1.72	2.25		<u> 0.</u>	0. -34.12	73.38	1.04				73
		DISTIL			0.321	0.25 0.25	88.8 55.7	6.58 4.12	2.80 1.75	2.28	102.40 65.44	0. 0.	-34.12	80.54 73.59	1.14			Ö	65 72
		DISTIL			0.327	0.25	100.7	7.46	3.17		106.50	0. 0.	-37.72	82.59	1.17			Ö.	65
		DISTIL			0.192	0.25	57.4	4.25	1.81	2.32	65.14	o.	0.	73.52	1.04			ŏ	77
		DISTIL			0.336	0.25	108.1	8.01	3.40	3.38		0.	-39.08	82.64	1.17			ŏ	67
		DISTIL			0.154	0.25	55.7	4.12	1.75	2,29	68.19	õ.	0.	76,35	1,08			Ō	61
		DISTIL		5.06	0.297	0.25	123.3	9.13	3.88	3.84	148.45	Ο.	-63.47	101.84	1.44	3 -141.		0	59
		DISTIL			0.165	0.25	55.6	4.12	1.75	2,28	67.28	0.	0.	75.43	1.07			C	62
		DISTIL			0.320	0.25	124.2	9.20	3.91		145.24	0.	-64.63	97.58	1.38			0	60
		DISTIL			0.168	0.25	56.6	4.19	1.78	2.30		ο.	0.	75.35	1.07			0	63
		DISTIL			0.319	0.25	1.82.8	9.10	3.87		136.98	0.	-58.61	95.14	1.35			0	60
		DISTIL			0.143	0.25	54.3	4.02	1.71	2.26		<u> 0.</u>	0.	77.09	1.09			0	<u> 60 ;</u>
20002	GIKSUB	DISTIL	_ 77.	3,67	0.257	0.25	93.1	6.90	2.93	3.05	128.35	0.	-44.77	96.46	1.37	1 -110.		U	20

DATE 06/07/79 |8SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 39

		S	ENSITI	VITY OF	F CAPIT						ORIGINA		•	101					
	CONV	SITE-	POWER REQD	POWER GEN/	FESRP		******** PITAL CAI COST						EVNUE TO			RESNT WORTH	RO1	GROSS PAY	
	<u> </u>		MW	REQD	F	RATIO *		1	NSNC			<u>LLLO</u>			<del></del>	15%		BACK	
28002	GTR312	DISTILL	77.	4.13	0.314	0.25	97.7	7.24	3.08	3.15	124.23	0.	-48.87	88.83	1.263	-88.		0	60
28002	<b>GTR316</b>	DISTILL	77	1.00	0.170	0.25	55.1	4.08	1.74	2.27	66.88	0.	0.	74.96	1.066	<i>-</i> 25.	<u> </u>	0 (	63
28002	<b>GTR316</b>	DISTILL	77.	4.06	0.311	0.25	100.4	7.44	3.16	3.22	123.37	0.	-47.86	89.33	1,270	-91.		0	60
		DISTILL	77.		0.130	0.25	81.2	6.02	2.56	10.23	70.10	Ο.	0.	88.91		-82.		0	61
		DISTILL			0.279	0.25	364.3	26.98	11.47		242.20	Ο.	-124.08					-	60
		DISTILL	<u>77.</u>		0.174	0.25	84.3	6,24	2.65	9.71	66.57	0.	0.	85.18		-72.			63
		DISTILL	77.	7.08	0.360	0.25	326.4	24.18	10.28		176.71	Ο.	<b>-9</b> 4.89	173.83		-469.		0	62
2800 <b>3</b>	ONOCGN	RESIDUA	97.	Ο.	0.	0.35	30.9	2.29	0.97	1.26	. 35.51	32.77	Ο.	72.81	1.000	0.		0	0
28003	STM141	RESIDUA	97.	0.52	0.156	0.35	35.9	2.72	1.16	1.54	41.94	15.80	Ο.	63.16	0.867	27.		34	2
28003	STM141	COAL-FG	97.	0.52	0.156	0.35	68.5	5.20	2.21	3.61	24.35	15.80	0.	51.18	0.703	49,		34	_3
		COAL-AF	97.		0.156	0.35	53.0	4.02	1.71	3.49	24.35	15.80	0.	49.38		62.	Ę	55	2
280 <b>03</b>	STM088	RESIDUA	97.	0.36	0.109	0.35	32.6	2.47	1.05	1.44	40.00	20, 93	Ο.	65 . 89	0.905	21.	13	37	1
2800 <b>3</b>	STM088	COAL-FG	97.	0.36	0.109	0.35	64.0	4.86	2.07	3.37	23.23	20.93	Ο.	54.44	0.748	41.		33	3
28003	STM088	COAL-AF	97.	0.36	0.109	0.35	51.1	3.88	1.65	3.37	23.23	20.93	0,	<u>53.05</u>	0.729	52.		51	2
28003	PFBSTM	COAL-PF	97.	0.88	0.258	0.35	68.0	5.16	2.19	6.03	27.24	3.91	0.	44.53	0.612	70.	4	122	3
2800 <b>3</b>	TISTMT	RESIDUA	97.	1.00	0.295	0.35	163.8	12.43	5.29	5.08	48.29	0.	Ο,	71.09	0.976	-59.		6	12
2800 <b>3</b>	TISTMT	RESIDUA	97.	1.19	0.322	0.35	183.1	13.89	5.91	5.34	50.74	0.	-3,77	72.11	0.990	-71.		5	13
28003	TISTMT	COAL	97.	1,00	0.295	0.35	212.9	16.16	6.87	7.72	28.04	Ο.	0	58.78	0.807	-44.	1	0	9
28003	TISTMT	COAL	97.	1.19	0.322	0.35	230.5	17.49	7.44	7.82	29.46	0.	-3.77	58.43	0.803	-51.	1	0	9
28003	TIHRSG	RESIDUA	97.	0.62	0,136	0.35	164.4	12.17	5.18	4.65	46.73	12,38	Ο.	81.12	1.114	-88.		0 99	99
2800 <b>3</b>	TIHRSG	COAL	97.	0.62	0.136	0.35	208.9	15.85	6.74	7.05	27.14	12,38	٥.	69.16	0.950	-74.		6	11
280 <b>03</b>	STIRL	DISTILL	97.	. 1.00	0.213	0.35	82.2	6.09	2.59	3.02	66.08	0.	0.	77.78	1.068	-40.		0 13	31
28003	STIRL	DISTILL	97.	1,51	0.259	0.35	101.9	7.55	3.21	3.27	77.54	Ō.	-9.99	81.57	1.120	-61.		0	78
28003	STIRL	RESIDUA	97.	1.00	0.213	0.35	82.3	6.10	2.59	3.02	53.91	0.	Ο.	65.62	0.901	-2.	1	4	7
28003	STIRL	RESIDUA	97.	1,51	0.259	0.35	102.0	7.56	3.21	3.27	<b>63.2</b> 6	0.	-9.99	67.31	0.924	-16.	1	0	8
28003	STIRL	COAL	97.	1,00	0.213	0.35	143.5	10.63	4.52	6.19	31.30	Ο.	Ό.	52.64	0.723	10.	1	6	6
28003	STIRL	COAL	97.	1.51	0.259	0.35	180.6	13.38	5.69	6.91	36,73	0.	-9.99	52.71	0.724	-7.	1	4 .	. 7
28003	HEGT85	COAL-AF	97.	1.00	0.068	0.35	172.4	13.08	5.56	7.28	37.07	O.	Ο.	63.00	0.865	-38.	ĺ	0	9
28003	HEGT85	COAL-AF	97.	7.75	0.125	0.35	749.6	56.88	24.18	28,13	148.21	0.	-132.79	124.62	1.712	-508.		0 99	99
28003	HEGT60	COAL-AF	97.	1.00	0.090	0.35	154.2	11.70	4.98	6,85	36.21	Ο.	0.	59.74	0.821	-19.	1	2	8
28003	HEGT60	COAL-AF	97.	2.54	0.131	0.35	244.7	18.57	7.89	10.27	60.29	0.	-30.38	66.65	0.915	-84.		7	11
28003	HEGT00	COAL-AF	97.	1.00	0.109	0.35	135.4	10.28	4.37	6.25	35.45	0,	Ο.	56.34	0.774	1.	1	5	7
28003	<b>HEGTOO</b>	COAL-AF	97.	1.03	0.111	0.35	134.3	10.19	4.33	6.01	35.88	Ο.	-0.57	55.85	0.767	3,	1	5	6
28003	FCMCCL	COAL	97.	1.00	0.257	0.35	133.0	10.34	4.40	7.76	29,56	٥.	0.	52.06	0.715	14.	1	7	6
28003	FCMCCL	COAL	97	î.83	0.336	0.35	164.3	12.77	5.43	10.16	37.02	٥.	-16.40	48.98	0.673	8.		5	6
	FCSTCL		97.	1.60	0.266	0.35	137.6	10.70	4.55	7.61	29.20	Ó.	0.	52.06	0.715	11.	1	6	6
28003	FCSTCL	COAL	97.	2.67	0.394	0.35	195.1	15.17	6.45	12.09	43.53	0.	-32.85	44.39	0.610	7.	1	5	6
28003	LEGIST	COAL	97.	1.00	0.209	0.35	123.0	9.56	4.07	4.95	31.47	Ο.	Ο.	50.05	0.687	25.		9	5
28003	IGGTST	COAL	97.	1.84	0.274	0.35	155.7	12.11	5.15	5.00	40,56	0.	-16.46	46.36		21.		7	6
28003	GTSOAR	RESIDUA			0.215	0.35	55.1	4.08	1.74	2.26	53.77	o.	0.	61.84		23.		80	4
28003	OTSUAR	RESIDUA	97.		0.288	0.35	73.1	5.41	2,30	2.45	71.17	Ö.	-18.74	62.60		12.		9	5
		RESIDUA	97.		0.257	0.35	50.3	3.73	1.58	2.11	50.95	o.	0.	58.37		36.		13	3
		RESIDUA	97		0.310	0.35	57.3	4.24	1.80	2.02	58.65	Ö.	-9.80	56.91		37.		37	3

		// / · · · · · · · · · · · · · · · · ·							4									i
	4	SENSITI	VITY OF	CAPIT						ORIGINA						€.		
												MILLION						
ENERGY CONV		POWER		FESRPO		PITAL CA	PITAL TA		NDM F	UEL PL		REVNUE TO	STAL NO	ORML PI	RESNT	ROI	GROSS	ì
SYSTEM	FUEL.	REQD .	GEN/		/HEAT			+		······································	ELEC				WORTH		PAY	
		MW	REQD	R	ATIO *	10**6	I	NSNC							15%		BACK	1
20002 074012	PEGIDU	4 87	1 00		A 05	60.6	<b>#</b> 00	0 16	0 00	65.02	•	-17 00	57.35	0.788	31.			_ 1
28003 GTAC12 28003 GTAC16			1.00	0.333	0.35 0.35	68.6 53.6	5.08 3.97	2.16 1.69	2,32 2,21	51.58	0. 0.	-17.23 0.	59,45	0.766	31.		_	4 3
28003 GTAC16			2.13		0.35	78.5	5.81	2.47	2.58	69.79	<del>. 0.</del>	-22.28	58.38	0.802	23.			5
28003 GTWC16			1.00		0.35	51.0	3.77	1.60	2.16	53.08	o.	0.	60.62	0.833	29.	3		3
28003 GTWC16			2.22		0.35	74.0	5.48	2,33	2.49	74.58	ä.	-24.05	60.83	0.835	17.	ž	-	5
28003 CC1626			1.00		0.35	55.7	4.23	1.80	2.42	53.36	ö.	0.	61.81	0.849	22.			4
28003 CC1626			3.37		0.35	95.0	7.21	3.06	3.27	95.76	Ö.	-46.70	62.61	0.860	1.			<del></del>
28003 CC1622				0.232	0.35	57.6	4.37	1.86	2.44	52.61	Ö.	O.	61.28	0.842	23.	2		4
28003 CC1622	RESIDU	A 97.	3.03	0.356	0.35	97.5	7.40	3.15	3.23	87.37	o.	-39.97	61.18	0.840	4.	-1	6	6
28003 CC1222	RESIDU	A 97.	1.00	0.235	0.35	55.8	4.24	1.80	2.42	52.45	0.	0.	60.91	0.837	25.	3	0	4 '
28003 CC1222			3.01	0.359	0.35	91.3	6.93	2.95	3.15	86.60	0.	-39.62	60.00	0.824	11.	1	7	6
28003 CC0822				0.252	0.35	50.5	3.83	1.63	2.28	51.29	Ο.	ο.	59.03	0.811	33.	4	-	3
28003 CC0822				0.360	0.35	71.9	5.46	2.32	2.61	73.19	- 0.	-27.27	56.32	0.773	32.	2		4
28003 STIG15				0.083	0,35	61.5	4.55	1,94	3.32		0.	0,	72.63	0.998	<u>-14.</u>			3
28003 STIG15			83.69		0.35	1960.1	145.18			2321.50	Ο.	******		14.079		ا ي	_	8
28003 STIG10			1.00		0.35	55.5	4.11	1.75	2.89	60.35	ο.	0.	69.10	0.949	-0.			7
28003 STIG10			7.74		0.35	193.4	14.32	6.09		227.77	ο.	-132.52		1.729	-243.		-	0
28003 STIG1S		the state of the state of	1.00		0.35	54.1	4.01	1.71	2.89	59.22	<u>o.</u>	<u>0.</u>	67.82	0.931	5.	1		6
28003 STIG1S 28003 DEADV3			4.54	0.228	0.35	124.6	9.23 6.85	3.92 2.91	6.71 3.31	143.17 57.12	٥.	-69.62	93.40 70.19	1.283	-109.			3
28003 DEADV3			5.17		0.35 0.35	92.4 315.2	23.34	9.92		147.23	0. 0.	0. -81.97		0.964	-21. -241.		-	9
28003 DEHTPM			1.00		0.35	93.4	6.92	2.94	3.40	51.53	o.	0.	64.79	0.890	-4.	1:		7
28003 DEHTPM			2.18		0.35	160.0	11.85	5.04	4.87	70.44	<u>0.</u>	-23, 19	69.01	0.948	-49.			it
28003 DESOA3			1.00		0.35	108.3	8.02	3.41	3.71	72.19	o.	0.	87.34	1.200	-82.		0 6	- 1
28003 DESGA3			6.03		0.35	445.1	32.96	14.02		216.36	õ.	-98.89		2.426	-519.		ŏ <b>t</b>	
28003 DESCA3	RESIDU	A 97.	1.00		0.35	108.3	8.02	3.41	3.71	58.89	ŏ.	0.	74.04	1.017	-40.	,		6
28003 DESGA3	RESIDU	A 97.	6.03	0.248	0.35	445.1	32.96	14.02	12.17	176.51	0.	-98.89	136.77	1.878	-394.	. 1	0 6	8
26003 GTSCAD	DISTIL	L 97.	1.00	0.240	0.35	49.5	3.66	1.56	2.11	63.85	Ο.	Ο.	71.18	0.978	-4.	1	1	8
28003 GTSOAD				0.312	0.35	60.1	4.45	1.89	2.11	80.32	٥.	-15.93	72.84	1.000	-14.		5 1	- 1
28003 GTRA08			1.00		0.35	61.2	4.53	1.93	2.42	65.46	0.	0,	74.33	1.021	-19.		0 99	
28003 GTRA08			3,03		0.35	111.0	8.22	3.49		110.02	0.	-39,95	85.24	1.171	-76.		0 6	- 1
28003 GTRA12			1.00		0.35	59.9	4.44	1.89	2.38	64.97	ο.	0.	73.68	1.012	-16.		2 2	. 1
28003 GTRA12			2.95		0.35	107.7	7.97	3.39		106.86	ο.	-38.40	83.19	1.143	-68.	I		3
28003 GTRA16			1.00		0.35	63,8	4.72	2.01	2.48	64.82	<u>0.</u>	0,	74.03	1.017	<u>-19.</u>			3
28003 GTRA16			2.75		0.35	108.2	8.01	3.41	3.37	102.09	0.	-34.42	82.46	1.133	-66.		0 7	
28003 GTR208 28003 GTR208			1.00 2.27		0.35 0.35	55,4 79,6	4.10 5.90	1.74 2.51	2.26 2.63	64.86 92.00	0.	0. - 25. 03	72.97 78.02	1.002	-12.		4 1. 0 9.	
28003 GTR212			1.00		0.35	79.0 56.7	4.20	1.78	2.30	92.00 64.92	0. 0.	-25.02 0.	78.02	1.072	-39, -13.		4 1	
28003 GTR212			2,44		0.35	85.8	6.36	2.70	2.79	95.68	0.	-28.26	79.27	1.089	-13. -46.		0 8	
28003 GTR216			1.00		0.35	58.8	4.36	1.85	2.35	64.55	0.	- <u>2</u> 0.20		1.004	-14.	'	4 1	•
28003 GTR216			2.50		0.35	92.3	6.84	2.91	2.96	96.08	0.	-29.48	79.30	1.089	-49.		0 9	
28003 GTRW08			1.00		0.35	57.5	4.26	1.81	2.34	68.39	o.	0.	76.79	1.055	-25.		0 7	
28003 GTRW08			3.61		0.35	111.9	8.29	3.52		133,38	Ö.	-51.39	97.33	1.337	-115.		0 6	
																•		

	•	SENSITI	VITY OF	CAPIT	AL COS			PERC	ENT OF	ORIGINA	L COST	100				<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	
						******	****LEVE	LIZED A	NNUAL E	NERGY C	OSTS (\$	MILLIO					
ENERGY CONV		POWER		FESRPO			PITAL TA		NDM FL			EVNUE TO	STAL NO	IRML PI	RESNT WORTH		105 <b>S</b>
SYSTEM	FUEL	REQD MW	GEN/ REQD		/HEAT			+ NSNC			ELEC	<del></del>	<del></del>		15%		<u>PAY</u> ACK
		CIM	NEGD		W110 +		• •	13110									,,,,,,,
28003 GTRW12	DISTIL	L 97.	3.67	0.320	0.35	112.7	8.35	3.55	3.54	130.49	ο.	-52.43	93.50	1.284	-103,	, · O	61
28003 GTRW16	DISTIL	L 97,	1.00	0.203	0.35	58.5	4.33	1,84	2.36	66.98	0.	0.	75.51	1.037	-21.	0	131
28003 GTRW16				0.319	0.35	103.3	7.65	3.25		123.07	0.	-47.03	90.25	1.240	-89.	0	61
28003 GTR308			1.00		0.35	55.7	4.13	1.75	2,30	69.54	0.	0.	77.72	1.067	-27.	0	64
28003 GTR308			2.76		0.35	86.1	6.38	2.71		115.32	0.	-34.60	92.66	1.273	-88.	0	59
28003 GTR312 28003 GTR312			1.00 2.95		0.35	<u>55.4</u> 88.2	4.10 6.53	1,74 2,78	2.28	66,63 111,62	<u>0.</u> 0.	0. -38.28	74.76 85.54	1.027	-18. -67.		<u>999</u> 62
28003 GTR316			1.00		0.35	56.7	4.20	1.79	- 1	66.73	0. 0.	0.	75.03	1.030	-19.	ő	***
28003 GTR316			2.90		0.35	90.7	6.72	2.86		110.85	o.	-37.37	86.00	1.181	-69.	ŏ	62
28003 FCPADS			1.00		0.35	86.0	6.37	2.71		70.80	_	0.	92.17	1.266	-88.	ŭ	62
28003 FCPADS			6.38		0.35	327.9	24.29	10.33		217.61	0.	105.85	215.33	2.957	-595.	0	60
28003 FCMCDS	DISTIL	L 97.	1.00	0.210	0.35	89.5	6.63	2.82	11.63	66.35	0.	Ο.	87.42	1.201	-75.	0	65
28003 FCMCDS			5.05		0.35	299.7	22.20	9.44		158.77	Ο.		162.68	2.234	-414.	0	62
28121 ONGCGN				<u>o.                                    </u>	1.55	8.6	0.64	0.27	0.54	9.64	39.26	<u>0.</u>	50.36	1.000	<u> </u>	0	<u> </u>
28121 STM141			0.15		1.55	12.5	0.95	0.40	0.75	11.91	33.28	0.	47.29	0.939	8.	43	3
28121 STM141			0.15		1.55	25.3	1.92	0.82	1.56	6.92	33.28	0.	44.49	0.883	10.	24	4
28121 STM141			0.15		1.55 1.55	18.5 11.2	1.40 0.85	0.60 0.36	1.40 0.72	6.92 11.35	33.28 34.77	0. 0.	43.60 48.05	0.866 0.954	16. 6.	39 46	3
28121 STM088 28121 STM088			0.11		1.55	23.4	1.78	0.76	1.47	6.59	34.77	<del>0</del> .	45.36	0.901	8.	23	4
28121 STM038			0.11		1.55	17.5	1.33	0.57	1.35	6.59	34.77	o.	44.60	0.886	14.	37	3
28121 PFBSTM			0.24		1.55	30.4	2.31	0.98	2.32	7.70	29.96	ŏ.	43.27	0.859	11.	23	5
28121 TISTMT			0.31		1.55	72.8	5.52	2.35	2.31	14.41	27.00	Ö.	51.59	1.025	-35.	3	17
28121 TISTMT	COAL	120.	0.31	0.154	1.55	92.2	7.00	2.97	3.30	8.37	27.00	0.	48.63	0.966	-35.	6	11
28121 TIHRSG	RESIDU	A 120.	0.14	0.053	1.55	61.9	4.59	1.95	1.89	12.51	33.80	Ο.	54.74	1.087	-39.	0	999
28121 TIHRSG		120.	0.14	0.053	1.55	79.5	6.03	2.56	2.80	7.27	33.80	Ο.	52.46	1.042	-41.	2	20
28121 STIRL	DISTIL		0,36		1.55	30.3	2.24	0.95	1.21	21.35	25.31	<u> </u>	51.06	1.014	-12.	2	<u>21</u>
28121 STIRL	RESIDU		0.36		1.55	30.3	2.25	0.95	1.22	17.41	25.31	0.	47.13	0.936	-0.	14	7
28121 STIRL 28121 HEGT85	COAL.	120.	0.36		1.55	53.0	3.92	1.67	2.37	10.11	25.31	0.	43.38	0.862	1.	15 7	6 11
28121 HEGT85			1.00		1.55 1.55	154.6 178.6	11.73 13.55	4.99 5.76	6.08	24.20 29.83	0. 0.	-7.13	47.00 48.76	0.933	-60. -77.	. 6	12
28121 HEGT60			0.53		1.55	93.7	7,11	3.02	3,66	15.06	18.44	0.	47.29	0.939	-31.	<del>_</del>	iō
28121 HEGTOO			0.23		1.55	54.0	4.10	1.74	2.29	9.61	30.23	Ö.	47.97	0.953	-14.	9	10
28121 FCMCCL		120.	0.42		1.55	64.8	5.04	2.14	3.54	10.04	22.96	Ö.	43.72	0.868	-7.	12	7
28121 FCSTCL		120.	0.66		1.55	80.2	6.24	2.65	4.42	12.35	13.29	Ο.	38.95	0.773	Ο.	· 15	7
28121 IGGTST	COAL	120.	0.46	0.167	1,55	62.6	4.87	2.07	2.33	11.52	21.01	0.	41.80	0.830	0.	15	7
28121 GTSOAR			0.43	-	1.55	23.2	1.72	0.73	0.97	18.96	22.21	0.	44.59	0.886	11.	27	4
28121 GTAC08			0.34		1,55	18.2	1.35	0.57	0.82	15,96	25.90	0,	44.60	0.886	14.	37	3
28121 GTAC12			0.42		1.55	21.5	1.59	0.68	0.92	17.60	22.61	<u> 0.</u>	43.40	0.862	<u> 16.</u>	34	3
28121 GTAC16			0.48		1.55	24.5	1.81	0.77	1.00	18.80	20.43	0.	42.82	0.850	16.	31	4
28121 GTWC16 28121 CC1626			0.50		1,55	24.0 33.1	1.78 · 2.51	0.76 1.07	1.00	20.26 27.19	19.47 6.70	0. 0.	43.27° 38.88	0.859 0.772	15. 24.	30 30	4
28121 CC1626			0.83 0.75		1.,55 1.55	32.8	2.49	1.06	1.37	24.78	9.94	0.	39.63	0.772	24. 22.	29	4
28121 CC1622			0.74		1.55	31.1	2,36	1.00	1.35	24.59	10.05	0.	39.34	0.781	24.	31	4

PAGE 42

DATE 06/07/79 LESE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			SENSIT	IVITY O	F CAPIT	TAL CO					ORIGINA							
ENERG	Y CONV	SITE-	POWER	POVER	FESRP	WER C	******* APITAL CA						MILLIDI EVNUE TO			RESNT	ROI GR	ROSS
_,	STEM	FUEL	REQD	GEN/	1 LOIN (	/HEAT		I I I PL I C	+			ELEC	LVIIOL I	ALME IN	····-	WORTH		PAY
	<u> </u>	1022	MW	REQD			*10**6	1	NSNC	<del></del>	<del></del>	LLLU				15%		ACK
			****	.,	•			•										
8121	STIG15	RESIDU	A 120.	1.00	0.139	1,55	45.9	3.40	1.45	2.97	42.36	0.	Ο.	50.19	0.997	-17.	5	1
		RESIDU		18.97	0.171	1.55	565.4	41.88	17.81		630.35	٥.	-423.29	301.68	5.991	-1051.	0	5
8121	STIGIO	RESIDU	A 120.	1.00	0.199	1.55	42.5	3.15	1.34	2.49	39.40	0.	0.	46.38	0.921	-4.	13	
8121	STIGIO	RESIDU	A 120.	1.75	0.218	1,55	62.8	4.66	1.98	3.38	61.85	Ο.	-17.76	54.10	1.074	-37.	0	<b>5</b> 9
8121	STIGIS	RESIDU	A 120.	1.00	0.227	1.55	39.5	2.93	1.24	2.33	38.04	Ο.	Ο.	44.55	0.885	4.	17	
8121	STIGIS	RESIDU	A 120.	1.03	0.228	1.55	39.7	2.94	1.25	2.26	38.87	0.	-0.69	44.64	0.886		16	
		RESIDU			0.287	1.55		6.00	2.55	2.76	35.06	0.	0.	46.38	0.921	-21.	9	
		RESIDU			0.293	1.55	87.7	6.49	2.76	2.80	37.79	Ο.	-2.53		0.940		8	1
		RESIDU			0.217	1.55	46.1	3.41	1.45	1.70	19,06	19.32		44.94	0.893		14	
		DISTIL			0.245	1.55	101.0	7.48	3.18	3.31	45.56	0.	<u> </u>	59.54	1.182		0_	11
		DISTIL			0.256	1.55	124.9	9.25	3.93	3.77	54.94	0.	-6.55	65.34	1.298		0	7
		RESIDU			0.245	1.55	101.0	7.48	3.18	3.31	37.17	0,	· 0.	51.15	1.016		4	1
		RESIDU			0.256	1.55	124.9	9.25	3.93	3.77	44.82	0.	-6.55		1.097			2
		DISTIL			0.164	1.55	19.0	1.41	0.60	0.86	21.67	23.26		47.78	0.949		20	
		DISTIL			0.251	1.55	33.4	2.48	1.05	1.26	28.90	13.16		46.85	0.930	• •	14	
		DISTIL			0.252	1.55	31.9	2.36	1.00	1.22	28.23	13.70		46.51	0.924	1.	15	
		DISTIL			0.237	1.55	32.1	2.38	1.01	1.22	27.09	15.34	0.	47.04	0.934	-1.	14	
		DISTIL			0.196	1.55	25.1	1.86	0.79	1.03	24.57	19.37	<u> </u>	47.62	0.946		15	
		DISTIL			0.209	1.55	27.1	2.01	0.85	1.09	25.56 25.64	17.92		47.43	0.942		15	
		DISTIL			0.219	1.55	29.0	2.15	0.91	1.13	25.64 35.15	17.40		47.24	0.938 0.954	-4.	15	
		DISTIL			0.232	1,55 1,55	33.5 33.8	2.48 2.51	1.05	1.30	34.58	8.05 7.42		48.03 46.87	0.931	-1.	11 14	
		DISTIL			0.259	1.55	33.5	2.48	1.06	1.28	32.78	9.66		47.26	0.939		13	
		DISTIL			0.180	1.55	27.5	2.03	0.87	1.12	30.40	15.42		49.84	0.990	_	7	1
		DISTIL			0.230	1.55	28.5	2.11	0.90	1.14	29.97	13.33		47.46	0.943		14	•
		DISTIL			0.225	1.55	29.5	2.18	0.93	1.17	29.78	13.73		47.78	0.949		13	
		DISTIL			0.262	1.55	74.0	5.48	2.33	13.64	44,49	0.	<del></del> 0.	65.93	1.309		0	6
		DISTIL			0.279	1.55	100.9	7.48	3.18	19.18	59.09	õ.	-10.52	78.40	1,557		ŏ	ĕ
		DISTIL			0.351	1.55	78.0	5.77	2.45	12.79	39.16	o.	0.	60.19	1.195		ŏ	ğ
		DISTIL			0.360	1.55	86.6	6.41	2.73	14.36	43.11	o.	-3.40		1.255		Ŏ	8
		RESIDU		O.	0.	0.11	31.6	2.34	0.99	1.28	34.13	9.49	Ö.	48.22	1.000	0.	0	
		RESIDU			0,136	0.11	34.8	2.64	1.12	1.73	37.72	0.	Ō.	43.22	0.896	14.	65	
8191	STM141	RESIDU	A 30.	1.14	0.151	0.11	33.8	2.56	1.09	1.48	38.23	ο.	-0.79	42.56	0.883	16.	93	
8191	STM141	COAL-F	g 30.	1.00	0.136	0.11	70.8	5.38	2.29	3.93	21.90	Ο,	O.	33.50	0.695	27.	25	
8191	STM141	COAL-F	G · 30.	1.14	0.151	0.11	66.0	5.01	2.13	3.46	22.20	Ō.	-0.79	32.00	0.664	34.	30	
8191	STM141	COAL-A	F 30.	1.00	0.136	0.11	51.8	3.93	1.67	3.65	21.90	Ο.	0.	31.15	0.646	43.	45	
8191	STM141	COAL-A	F 30.	1.14	0.151	0.11	50.7	3.85	1.64	3,31	22.20	Ο.	-0.79	30.20	0.626	47.	49	
8191	STM088	RESIDU	A 30.	0.66	0.090	0.11	30.1	2.29	0.97	1,38	36.49	3.24	0.	44.37	0.920	12.	999	
		COAL-F			0.090	0.11	61.2	4.65	1.98	3,22	21.19	3.24	0.	34.27	0.711	29.	29	
		COAL-A			0.090	0.11	48.5	3.68	1.57	3.19	21.19	3.24	Ο.	32.87		39.	48	
		COAL-P			0.131	Ű, 11	65.4	4.96	2.11	4.73	22.04	Ο.	0.	33.84	0.702	28.	27	
		COAL-P			0.235	0,11	65.7	4.99	2.12	5,68	24.96	<u>o.</u>	-7.43	30.31	0.628	39.	32	
<u>8191</u>	TIŞTMT	RESIDU	<u>a 30.</u>	1.00	0.134	0,11	92.9	7.05	3.00	3.26	37.84	Ο.	Ο.	51.14	1.061	-39.	0	2

PAGE 43

ATE 06/07/79

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

	·																	
		S	ENSITI	VITY OF	CAPIT						ORIGINA							
ENEDO:	/ 0 <b>6</b> 00	01.75	D#1150	DELIED E									S MILLION			RESNT	ROI GI	108 <b>5</b>
ENERG'			POWER					PITAL TA	XES UA	NUM FO		ELEC	REVNUE TO	HAL N	UKIL FI	WORTH		PAY
31.	STEM	FUEL	REQD MW	GEN/ REQD		/HEAT (			NSNC			ELEC				15%		ÄCK
			NW	REGD	K	A110 +	106		13110							10%		
28191	TISTMT	COAL	30.	1.00 0	0.134	0.11	132.5	10.06	4.28	5.50	21.97	О.	0.	41.81	0.867	-29.	9	9
	TISTMT		30.	3.25		0.11	225.3	17.10	7.27	7.59	26.83	0.	-12.82	45.97		-86,	6	12
		RESIDUA	30.	1.00 0		0.11	111.4	8.25	3.51	3.61	40.65	0.	Ō.	56.03	1.162	-62.	0	122
28191	TIHRSG	RESIDUA	30.	2.24	123	0.11	180.1	13.34	<b>5.</b> 67 ·	5.06	48.75	Ο.	-7.07	65.75	1.363	-124.	0	81
28191	TIHRSG	COAL	30.	1.00 0	0.070	0.11	150.8	11,44	4,86	5.95	23.60	Ο.	Ο.	45.85		-50	6	12
	TIHRSG		30.	2.24 0		0.11	228.7	17.35	7.38	7.62	28.31	0.	-7.07	53.59	1.111	<u>-112.</u>	2	19
	STIRL	DISTILL		1.00 0		0.11	53.2	3.94	1.68	2.21	48.71	0.	0.	56.54	1.172	-36,	0	59
	STIRL	DISTILL		4.03 0		0,11	97.8	7.24	3.08	3.16	69.55	0.	-17,24	65.79		-86.	0	61
	STIRL	RESIDUA		1.00 0		0.11	53.2	3.94	1.68	2.21	39.74	0.	.0.	47.57		-8.	7	11
28191		RESIDUA		4.03		0.11	97.9	7.25	3.08	3.16	56.74	<u>0.</u>	-17.24	53.00		<u>-46.</u>	0	999
	STIRL	COAL	30.	1.00 0		0.11	93.4	6.92	2.94	4.53	23.07	o.	0.	37.46	0.777	<b>5</b> .	16	6 10
	STIRL	COAL	30.	4.03		0.11	174.8	12.95	5.51	6.61 4.79	32.95 25.53	0. 0.	-17.24 0.	40.77 41.56	0.845 0.862	-44. -14.	9 11	8
the state of the s		COAL-AF		1.00-0 17.29-0		0.11 0.11	103.9 508.6	7.89 38.59	3.35 16.41		118.60	0.	-92.74		2.099	-396.	'0	97
		COAL -AF		1.00 0		0.11	98.4	7.45	3.17	4.67	24.42	<u> </u>	0.	39.73	0.824	- <u>390.</u> -6.	13	<del></del>
		COAL-AF		3.61		0.11	143.1	10.86	4.62	6.28	36.45	o.	-14.87	43.35		-39.	8	10
	FCMCCL		30.	1.00 0		0.11	99.5	7.74	3.29	5.07	22.43	0.	0.	38.52		-4.	13	7
-	FCMCCL		30.	6.13		0.11	169.3	13.17	5.60	10.12	35.83	Ö.	-29.21	35.50	-	-29.	11	8
	FCSTCL		30.	1,00 0		0.11	98.3	7,64	3.25	5.04	22.32	O.	0.	38.25		-3.	14	7
	FCSTCL		30.	7.94		0.11	190.4	14.80	6.29	11.42	39.72	ο.	-39.51	32.72	0.679	-31.	11	. 8
	IGGTST		30.	1.00 0	0.091	0.11	94.1	7.31	3.11	4.34	23.05	Ο.	0.	37.81	0.784	1.	15	7
28191	IGGTST	COAL	30.	5.29	249	0.11	151.4	11.77	5.00	4.89	36.97	0.	-24.44	34.19	0.709	-16.	12	7
28191	GTSCAR	RESIDUA	30.	1.00 0	0.085	0.11	42.8	3.17	1.35	1.86	39.95	0.	0.	46.33	0.961	1.	15	6
28191	GTSOAR	RESIDUA	30.	7.23 0	261	0.11	87.7	6.50	2.76	2.85	76.28	Ο.	-35.47	52.93		-41.	0	999
		RÉSIDUA		1.00 0		0.11	40.8	3.02	1.28	1.81	38.58	Ο.	Ο.	44.69	-	7.	26	4
		RESIDUA		4.96 0		0.11	58.9	4.36	1.86	2.06	56.25	<u>o.</u>	-22.56	41.97		<u>7.</u>	19	5
		RESIDUA		1.00 0		0.11	41.5	3.07	1.31	1.82	38.68	0.	0.	44.88	0.93	6.	24	4
		RESIDUA		6.24		0.11	70.8	5.24	2.23	2.38	62.56	0.	-29.81	42.61	0.884	-1.	14	7
		RESIDUA		1.00 0		0.11	42.3	3.14	1.33	1.84	38.91	0.	2.	45.22		4.	21	5 9
		RESIDUA		7.29 0		0.11	82.5	6.11	2.60	2.70	69.03 39.20	<u>0.</u> 0.	-35,79 0.	44.64	0.966 0.943	-13. 4.	10 20	<u>9</u> 5
		RESIDUA RESIDUA		1.00 0 7.36 0		0.11 0.11	42.1 76.0	3.12 5.63	1.33 2.39	1.84 2.54	71.51	o.	-36.22	45.49	0.951	-13.	20	9
		RESIDUA		1.00 0		0.11	41.9	3.18	1.35	1.94	39.37	o.	0.	45.84		2.	18	6
		RESIDUA		10.14		0.11	91.8	6.96	2.96	3.18	87.27	o.	-51.99	48.38		-30.	5	14
		RESIDUA		1.00 0		0.11	42.0	3.19	1.35	1.93	39.15	<del>0.</del>	0.	45.62		3.	19	- 5
		RESIDUA		9.08		0.11	94.1	7,14	3.04	3.14	79.71	o.	-45.98	47.05		-27.	6	12
		RESIDUA		1.00 0		0.11	41.3	3.13	1.33	1.92	39.10	Õ.	0.	45.49	0.943	3.	20	5
		RESIDUA		9.00 0		0.11	88.2	6.69	2.84	3,06	78.93	Ο.	-45.54	45.98	0.953	-20.	8	10
		RESIDUA		1.00 0		0.11	41.1	3.12	1.32	1.92	38.76	0.	0.	45.13	0.936	5.	22	<del></del> 5
28191	CC0822	RESIDUA	30.	7.02 0	341	0.11	69.1	5.24	2.23	2.53	66.70	Ο.	-34.28	42.42	0.880	-0.	14	7
28191	DEHTPM	RESIDUA	30,	1.00 0	0.091	0.11	59.3	4.39	1.87	2.41	39.72	Ο.	Ο.	48.40	1.004	-14.	4	14
		RESIDUA		5.90		0.11	166.7	12.35	5.25	5.05	67,16	0.	-27.91	61.89	1.283	-106.	<u>o</u> _	107
28191	GISCAD	DISTILL	30	1.00 0	1.107	0.11	40.2	2.98	1.26	1.79	47.82	0.	0.	53.86	1.117	-22.	0	57

		SE	NSIII	VITY OF	CAPITA	AL COS		****LEVE		ENT OF NNUAL E				(S)****	*****	4		
	CONV	SITE- P FUEL R	OWER	POWER F		VER CA	PITAL CA	APITAL TA					EVNUE TO			RESNT WORTH		ROS <mark>S</mark> PAY
313	IEH		MW	REQD			10**6	1	NSNC		<del></del>	ELEU		· · · · · · · · · · · · · · · · · · ·		15%		BĀCK
3191	GTRANS	DISTILL	30.	1.00 (	0.085	0.11	46.9	3.47	1.48	1.95	48.99	0.	0.	55.89	1.159	-31.	0	
		DISTILL	30.	12.51		0.11	137.3	10.17	4.32		131.41	Ö.	-65.52				ň	
		DISTILL	30.	1.00		0.11	43.8	3.25	1.38	1.88	48.71	0.	0.	55.21	1.145	-28.	0	-
		DISTILL	30.	11.64		0.11	127.5	9.44	4.01		121.89	Õ.	-60.54		1.632		Ŏ	
		DISTILL	30.	1.00		0.11	44.6	3.31	1.41	1.90	48.58	· o.	0.	55.19		-28.	0	
		DISTILL	30.	10.48		0.11	125.1	9.26	3.94		112.58	Õ.	-53.94	75.66	1.569		Ó	
		DISTILL	30.	1.00		0.11	42.6	3.15	1.34	1.85	48.47	0.	Ö.	54.81	1.137	-26.	0	P
		DISTILL	30.	8.24		0.11	94.1	6.97	2.96		96.52	Õ.	-41.19	68.28	1.416	-92.	ò	
		DISTILL	30.	1.00		0.11	43.1	3.19	1.36	1.86	48.47	o.	0.	54.88	1.138	-26.	o.	
		DISTILL	30.	8.85		0.11	101.6	7.53	3.20		100.57	Õ.	-44.68	69.83	1.448		Ö	<u>.</u> .
		DISTILL	30.	1.00		0.11	43.8	3.24	1.38	1.88	48.38	0.	0.	54.88	1.138	-27.	0	
		DISTILL	30.	9.13		0.11	109.7	8.12	3.45		101.63	Õ.	-46.29	70.33	1.458		Ŏ	
		DISTILL	30.	1.00		0.11	46.7	3.46	1.47		49.63	o.	0.	56.51	1.172	-33.	ŏ	
		DISTILL	30.	14.52		0.11	132.9	9.85	4.19		155.09	0.	-76.94		1.997		ő	
		DISTILL	30.	1.00		0.11	46.7	3.46	1.47	1.95	49.17	0.	0.	56.05	1.162	-32.	<u>ŏ</u>	
		DISTILL	30.	14.13		0.11	130.3	9.65	4.10		145.55	o.	-74.72	88.61	1.837		ő	
		DISTILL	30.	1.00		0.11	47.2	3.50	1.49	1.96	49.01	0.	0.	55.96	1.160	-32.	ñ	
		DISTILL	30.	12.58		0.11	125.7	9.31	3.96		132.11	0.	-65.90	83.37	1.729		ő	
		DISTILL	30.	1,00		0.11	42.6	3.15	1.34	1.86	49.99	0.	0.	56.35	1.168	-31.		
		DISTILL	30.	10.63		0.11	104.0	7.70	3.28		128.59	o.	-54.81	88.10	1.827		ő	
		DISTILL	30.	1.00 (		0.11	42.5	3.15	1 34		48.74	0.	0.	55.07	1.142	-27.	ő	
		DISTILL	30.	10.31		0.11	96.3	7.13	3.03		113.02	0.	-52.98	73.32	1.520		ő	
		DISTILL	30.	1.00		0.11	43.1	3.20	1.36	1.86	48.76	<del>0.</del>	0.	55.17	1.144	-27.	<del></del>	
		DISTILL	30.	10.12		0.11	98.8	7.32	3.11		111,94	Ö.	-51.91	73.64	1.527		Ů	
		DISTILL	30. 30.	1.00		0.11	54.8	4.06	1.73	4.74	49.73	0. 0.		60.25		-49.	0	
		DISTILL	30. 30.	21.20		0.11	339.4	25.14			209.15		0. -114.95		1.249 4.084		ő	
		DISTILL	30.	1.00				<del></del>	10.69									
						0.11	55.8	4.13	1.76	4.55	48.44	0.	0.	58.88	1.221	-45.	0	
		DISTILL RESIDUA	30.	16.77	). ).	0.11	304.0	22.52	9.57		152.60	0.		145.25	3.012		0	
			61. 61.	1.00	-	0.11	58.7	4.35	1.85	2.08	68.29	18.97	-	95.53	1.000	0.		
		RESIDUA	61.			0.11	60.9	4.62	1,96	2.59	75.48	<u> </u>	0.	84.66	0.886	<u>32.</u>		
		RESIDUA		1.14		0.11	60.0	4.55	1.93	2.28	76.49	0.	-1.60	83.66	0.876	36.	199	
		COAL-FO	61.	1.00 (		0.11	125.7	9.54	4.05	6.46	43.83	0.	0.	63.68	0.669	66.	30	
		COAL-FG	61.	1.14		0.11	128.5	9.75	4.15	6.10	44.41	0.	-1.60	62.62		68.	59	
		COAL-AF	61.	1.00 0		0.11	96.0	7.28	3.10	6.21	43.83	<u> 0.</u>	0.	60.42		91.	50	
		COAL-AF	61.	1.14		0.11	92.2	7.00	2.98	5.78	44.41	0.	-1.60		0.613	99.	56	
		RESIDUA	61.	0.66		0.11	54.0	4.10	1.74	2.12	73.03	6.48		87.47	0.916	27.	999	
		COAL-FG	61.	0.66		0.11	120.1	9.11	3.88	5.66	42.40	6.48		67.53		57.	29	
		COAL-AF	61	0.66		0.11	89.0	6.75	2.87	5.58	42.40	6.48		64.08	0.671	83.	53	
		COAL-PF	61.	1.00 0		0.11	115.6	8.78	3.73	8.09	44.11	0.	0.	64.71	0.677	68.	32	
		COAL-PF	61.	2.31		0.11	117.2	8.89	3,78	10.37	49.94	ο.	-14.87		0.608	88.	37	
		RESIDUA	61.	1.00 0		0.11	159.1	12.07	5.13	5.15	75.72	٥.	0.	98.07	1.027	-57.	2	
5 i 92	LISIMI	RESIDUA	61.	3.25	J. 291	0.11	354.3	26.89	11.43	9.84	92.47	Ο.	-25.67	114 96	1.203	-203.	0	)

PAGE 45

DATE 06/07/79 8SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		<del></del>	SENSITI	VITY_OF	CAPIT	AL CO					ORIGINA							
NERGY	CONV	SITE-	POWER	POWER	FESRPO	WER C	APITAL CA						\$ MILLION REVNUE TO			RESNT	ROI GE	સ્ત્રાનક
SYS	TEM	FUEL.	REGD	GEN/		/HEAT	COST		+			ELEC				WORTH		PAY
			MW	REQD	F	RATIO	*10**6	Į	NSNC							15%	E	BACK
		RESIDU			0.069	0.11		14.32	6.09	5.88	81.33	0.	0.	107.63		7 -101.	0	20
		RESIDU			0.123	0.11		. 26,63	11.32	9.71	97.55	<u> </u>		131.06	1.372			6
	TIHRSG		61.		0.069	0.11		19.94	8.48	9.94	47.22	Ο.	0.	85.58	0.896		8	
	TIHRSG		61.		0.123	0.11		34.68	14.74	14.58	56.64	ο.		106.49	1.115		2	. ]
	STIRL	DISTIL			0.090	0.11	100.1	7.41	3.15	3.62	97.46	0.	0.	111.65	1.169		0	:
8192		DISTIL			0.219	0,11	191.9	14.21	6.04		139.18	<u>o.</u>		130 63	1.36			9
	STIRL.	RESIDU			0.090	0.11	100.1	7,42	3.15	3.62	79.51	0.	0.	93.70	0.981		. 8 0	00
	STIRL	RESIDU			0.219	0.11		14.23	6.05		.113.54	o.	-34.51 0.	105.02 72.53	1.099 0.759		17	99
	STIRL	COAL	61.		0.090	0.11	176.1	13.04	5.54 10.85	7.78 12.33	46.17	0. 0.	-34.51	80.12	0.839		9	
	STIRL	COAL -A	61.		0.219	<u>0.11</u>	344.6 187.0	25.52 14.19	6.03	8.21	65.93 51.07	0.	0.	79.51	0.83		13	
		COAL-A		17.30-		0.11		77,21	32.83		237.33	o.	-185.58		2.113		0	9
		COAL-A	-		0.024	0.11		12.72	5.41	7.77	48.86	o.	0.	74.76	0.783		16	
		COAL-A			0.086	0.11	.234.2	17.78	7.56	10.80	72.94	o.	-29.76	79.32	0.830		11	
	FCMCCL		61.		0.116	0.11		13.42	5.70	8,62	44.87	<del>0.</del>	0.	72.61	0.760		16	
	FCMCCL		61.		0.335	0.11		22.00	9.35	18.31	71.70	0.	<b>-58</b> .46	62.90	0.658		14	
	FCSTCL		61.		0.120	0.11		13.27	5.64	8.49	44.66	o.	0.40	72.07	0.754		17	
	FCSTCL		61.		0.378	0.11	318.2	24.74	10.52	20.58	79.48	0.	-79.06	56.26	0.589		14	
	IGOTST		61.	1.00		0.11		12.49	5.31	6.91	46.13	0.	0.	70.84	0.74		19	
	IGGTST		61.		0.249	0.11		21.70	9,23	8.34	73.97	o.	-48.91	64.32	0.67		14	
		RESIDU			0.085	0.11	79.2	5.87	2.49	2.98	79.94	o.	0.	91.29	0.956		18	
		RESIDU		. 7. 24		0.11	157.5	11.67	4.96			o.		103.07	1.079		ő	99
		RESIDU		1.00		0.11	75.6	5.60	2.38	2.89	77.20	0.	0.	88.07	0.92		કું	
		RESIDU		4.97		0.11	•	8.12	3.45		112.55	Ö.	-45.16	82.46	0.863		20	
		RESIDU			0.114	0.11		5.73	2.44	2.93	77.40	ŏ.	0.	88.50	0.926		25	
		RESIDU			0.333	0.11	132.6	9.82	4.18		125.16	Ö.	-59.66		0.87		15	
		RESIDU			0.109	0.11	79.1	5.86	2.49	2.97	77.86	Ö.	0.	89.18	0.93		23	
		RESIDU		•	0.335	0.11	159.4	11.81	5.02		138.12	Ö.	-71,63	88.13	0.922		10	
		RESIDU			0.103	0.11	77.8	5.76	2.45	2.94	78.44	o.	0.	89.58	0.938		23	
		RESIDU			0.316	0.11	140.0	10.37	4.41		143.09	Ŏ.	-72.48	89.72	0.939	-20.	10	
		RESIDU			0.099	0.11	77.6	5.89	2.50	3.05	78,77	0.	Ö.	\$0.21	0.944	1 7.	20	
8192	CC1626	RESIDU		10,14	0.334	0.11		12.64	5.37		174.64	ο.	-104.05	93.91	0.983	3 -47.	6	
8192	CC1622	RESIDU	A 61.	1.00	0.104	0.11	78.5	5.96	2.53	3.06	78.33	Ο.	٥.	89.87	0.941	7.	20	
8192	CC1622	RESIDU	A 61.	9.08	0.341	0.11	170.1	12.91	5.49	5.23	159.50	Ο.	-92.01	91.12	0.954	1 -40.	8	
8192	CC1222	RESIDU	A 61.	1.00	0.105	0.11	77.3	5.86	2.49	3.04	78.24	0.	0.	89.64	0.93	3 9.	22	
8192	001222	RESIDU	A 61.	9.01	0.343	0.11	157.8	11.98	5.09	5.05	157.93	Ο.	-91.14	88.91	0.931	-28.	10	
6192	CC0822	RESIDU	A 61.	1.00	0.113	0.11	76.2	5.78	2.46	3.02	77,56	Ο.	0.	88.83	0.930	12.	25	
8192	CC0822	RESIDU	A 61.	7.03	0.341	0.11	129.4	9.82	4.18	4.27	133.47	0.	-68.61	83.12	0.870	4.	16	
6192	DEHTPM	RESIDU	A 61.	1.00	0.091	0.11	115.4	8.55	3,63	4.06	79.47	0.	0.	95.72	1.002	2 -27.	5	****
8192	DEHTPM	RESIDU	A 61.	5,91	0.258	0.11	328.7	24.35	10.35	9.35	134.38	Ο.	-55.86	122.57	1.283	3 -211.	0	11
8192	GTSCAD	DISTIL	L. 61.	1.00	0.107	0.11	74.9	5.55	2.36	2.87	95.69	Ο.	Ο.	106.47	1.114	1 -42.	0	Ę
		DISTIL		6.11	0.308	0.11	119.8	8.88	3.77	3,79	156.98	0.	-58.19	115.23	1.206	<del>-90.</del>	0	
3192	STEADS	DISTIL	61	1.00	0.085	0.11	84.3	6.25	2.66	3.09	98.02	0.	0.	110.02	1.152	2 -57,	0	

DATE 06/07/79 L&SE-PEC-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 4

			<u> </u>					•						•				
		SENSITI	IVITY OF	CAPIT	AL COS	T		PERC	ENT OF	ORIGINA	AL COS	T 100						
						*****												
ENERGY CONV		POWER				PITAL CAP	PITAL TA	XES OF	NDM FL	JEL PI		REVNŲE TI	STAL NO	DRML PI	RESNT	ROI	GRO	
SYSTEM	FUEL	REQD	GEN/		/HEAT			+			ELEC				WORTH	<u>*</u> _		AY
		MW	REOD	R	ATIO *	10**6	I	NSNC .							157		BA	CK
											_	_						
28192 GTRA12				0.090	0.11	81.5	6.04	2.57		97.46	0.	0.	109.09	1.142			0	57
28192 GTRA12			11.64		0.11	234.0	17.33	7.37		243.91	<u>0.</u>	-121.16		1.614			0	<u>59</u> 58
28192 GTRA16			1.00		0.11	82.8	6.13	2.61	3.06	97.21	0.	0.	109.00	1.141	-54.		0	59
28192 GTRA16			10.48		0.11	224;0	16.59 5.86	7.05 2.49	2.97	225.27 96.98	0. 0.	-107.95 0.	108.30	1.544	-240. -50.		0	59 57
28192 GTR208 28192 GTR208			8.24		0.11	79.1 169.7	12.57	5.34		193.14	0. 0.		133.73	1.134	-172.		0	57 59
28192 GTR212				0.095	0.11	80.0	5.93	2.52	2.99	96.98	0.	0.	108.42		-50.		<u>o</u>	57
28192 GTR212			8.85		0.11	180.7	13.38	5.69		201.23	o.		136.28	1.135	-18 <b>5</b> .		0	57 59
28192 GTR216			1.00		0.11	81.4	6.03	2.56	3.02	96.80	o.	0.	108.41	1.135	-165. -51.		0	58
28192 GTR216			9.14		0.11	196.2	14.53	6.18		203.36	o.		137.21	1.436			Ô	60
28192 GTRW08			1.00		0.11	83.5	6.19	2,63	3.08	99.31	<u>0.</u>	0.	111.20	1.164	-61.		<del>兴</del>	57
28192 GTRW08			14.53		0.11	241.9	17.92	7.62		310.34	o.	-153.96		1.978	-379.		ñ	58
28192 GTRW12			1.00		0.11	83.5	6.18	2.63	3.07	98.39	ŏ.	0.	110.27	1.154	-58.		ŏ	57
28192 GTRW12			14.14		0.11	229.0	16.96	7.21		291.24	ö.	-149.53		1.807			ŏ	58
28192 GTRW16			1.00		0.11	84.3	6.24	2.65	3.09	98.06	Ö.	0.	110.05	1.152	-58.		<u>_</u>	58
28192 GTRW16			12.58		0.11	220.7	16.34	6.95		264.36	õ.	-131.87		1.698			ŏ	58
28192 GTR308			1.00		0.11	78.9	5.84	2.48		100.03	õ.	0.	111.33	1.165	-59.		ŏ	57
28192 GTR308			10.64		0.11	180.5	13.37	5.68		257.31	o.	-109.69		1.802			õ	57
28192 GTR312			1.00		0.11	78.6	5.82	2.47	2.95	97.52	O.	0.	108.77	1.139	-51.	· · · · · · · · · · · · · · · · · · ·	ñ	57
28192 GTR312			10.31	- ,	0.11	173.0	12.82	5.45		226.15	Ö.	~106.01		1.504			ŏ	58
28192 GTR316			1.00		0.11	79.6	5.89	2.51	2.98	97.56	o.	0.	108.94	1.140	-52.		Ŏ	57
28192 GTR316	DISTIL	L 61.	10.12	0.302	0.11	178.2	13.20	5.61		223.99	o.	-103.87	144.29	1.510			Ö	58
28192 FCPADS	DISTIL	L 61.	1,00	0.071	0.11	103.0	7.63	3.24	8.84	99.49	O.	0.	119.21	1.248	-96.		0	59
28192 FCPADS	DISTIL	L 61.	21.21	0.279	0.11	659.3	48.83	20.76	133.06	418.52	Ο.	-230.02	391.16	4.094	-1225.		0	60
28192 FCMCDS	DISTIL	.L 61.	1.00	0.095	0.11	105.2	7.79	3.31	8.47	96,92	ο.	Ο.	116.49	1.219	-88.		0	59
28192 FCMCDS	DISTIL	.L 61.	16.78	0.360	0.11	578.8	42.87	18.23	99.62	305.36	0.	-179.58	286.50	2.999	-854.		0	61
28212 ONOCGN	RESIDU	A 4.	0.	0.	0.07	6.2	0.46	0.20	0.46	7.35	1.2	в О.	9.75	1.000	0.		0	Ō
28212 STM141	RESIDU	IA 4.	1.00	0.093	0,07	9.7	0.74	0.31	0.80	7.84	Ο.	ο.	9.69	0.995	-2.		6	12
28212 STM141	RESIDU	A 4.	2.65	C.198	0.07	9.8	0.75	0.32	0.65	8.64	Ο.	~1.27	9.09	0.932	o.	1	ម	6
28212 STM141	COAL-F	<b>G</b> 4.	1.00	0.093	0.07	21.7	1.65	0.70	1.58	4.55	0.	Ο.	8.47	0.869	-4.	1	IQ .	9
28212 STM141	COAL-F	G 4.	2.65	0.198	0.07	20.1	1.52	0.65	1.30	5.02	0.	-1.27	7.22	0.741	1,		6	6
28212 STM141	COAL-A	F 4.	1.00	0,093	0.07	19.7	1.49	0.63	1.48	4.55	0.	О.	8.16	0.837	-2.	1	2	7
28212 3TM141	COAL-A	F 4.	2.65	0.198	0.07	14.9	1.13	0.48	1.16	5.02	Ο.	-1.27	6.52	0.669	6.	í	25	4
28212 STM088			1.00	0.093	0.07	9.4	0.72	0.30	0.80	7.84	0.	0.	9.66	0.991	-1.		7	11
28212 STM088			1.83		0.07	8.7	0.66	0.28	0.62	8.24	Ο.	-0.63	9.17	0.940	1,	1	8	6
28212 STI1088			1.00	-	0.07	21.4	1.62	0.69	1.57	4.55	Ο.	Ο.	8.43	0.865	-3.		1	_ 8
28212 STH088			1.83		0.07	18.5	1.40	0.60	1.23	4.78	Ο,	-0.63	7.38	0.757	1.		6	6
28212 STM088			1.00		0.07	18.9	1.43	0.61	1.48	4,55	0.	0.	8.07	0.828	-1.		3	7
28212 STM088			1.83		0.07	14.0	1.06	0.45	1.12	4.78	0.	-0.63	6.78	0.696	5.		25	4
28212 PFBSTM			1.00		9.07	21.9	1.66	0.71	1.60	4.56	0.	0.	8.53	0.875	-4.		0	9
28212 PFBSTM			4.57		0,07	24.6	1.87	0.79	1.86	5.61	0.	-2.74	7.40	0.759	-2.	1	3	7
28212 TISTMT			1.00		0.07	19.7	1.50	0.64	1.03	7.85	<u>o.</u>	0.	11.01	1.130	<u>-11.</u>		0	254
28212 TISTMT	KESIDU	<u>IA 4.</u>	6.21	0.319	0.07	57.8	4,39	1.87	1.89	10.45	0.	-4.00	14.60	1.498	-40.		0	168

PAGE 47

DATE 06/07/79 L&SE-PEG-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

<del> </del>	<del></del>		FNSIT	IVITY OF	CAPIT	TAL COS	<del>,</del>	<del></del>	PERC	ENT OF	ORIGINA	CUS	T 100	<del> </del>	······································			
			CHST		CALI			***LEVE					S MILLION	S)****	*****			
ENERGY	CONV	SITE-	POWER	POWER	FESRPO			PITAL TA					REVNUE TO			RESNT	ROI G	Russ
SYS	STEM	FUEL	REQD	GEN/		/HEAT	COST		+			ELEC				WORTH	%	FAY
			MW	REQD	F	RATIO *	10**6	11	NSNC			: *				15%	i	BACK
2821 <b>2</b>	TISTMT	COAL	4.	6.21	0.319	0.07	73.5	5.58	2.37	2.69	6.07	ο.	-4.00	12.71	1.304	-42.	0	26
2821 <b>2</b>	TIHRSG	RESIDUA	4.	1.00	0.060	0.07	25.6	1.90	0.81	1.11	8.13	0.	0.	11.94	1.225	-16.	0	ខន
2821 <b>2</b>	TIHRSG	RESIDUA	4.	3.41	0.149	0.07	53.3	3.95	1.68	1.65	9.99	O.	-1.85	15.41	1.581	-40.	0	80
2821 <b>2</b>	TIHRSG	COAL	4.	1.00	0.060	0.07	39.2	2.98	1.26	1.92	4.72	Ο.	0.	10.87	1.116	-19.	2	22
28212	TIHRSG	COAL	4.	3.41	0.149	0.07	68.4	5.19	2.21	2.43	5.8C	Ο.	-1.85	13.78	1.414	-43.	0	999
2821 <b>2</b>	STIRL	DISTILL	<u>. 4.</u>	1.00	0.064	0.07	10.4	0.77	0.33	0.75	9.91	0.	0.	11.76	1.206	-8.	0	58
28212	STIRL	DISTILL	. 4.	7.35	0.243	10.07	22.8	1.69	0.72	0.98	15.60	Ο.	-4.87	14.13	1.449	-21.	0	
2821 <b>2</b>	STIRL	RESIDUA	4.	1.00	0.064	0.07	10.4	0.77	0.33	0.75	8.08	Ο.	Ο.	9.93	1.019	-3.	0	27
2821,2	STIRL	RESIDUA	4.	7.35	0.243	0.07	22.9	1.69	0.72	0.98	12.73	О.	-4.87	11.26	1.155	-13.	0	194
28212	STIRL	COAL	4.		0.064	0.07	21.6	1.60	0.68	1.47	4.69	0.	0.	8.44	0.866	-3.	11	8
2821 <b>2</b>	STIRL	COAL	4.		0.243	0.07	40.5	3.00	1.27	1.90	7.39	Ο.	-4.87	8.69	0.892	-13.	7	11
		COAL-AF			0.015	0.07	27.3	2.07	0.88	1.53	4.94	Ο.	Ο.	9.42	0.967	-9.	6	12
		COAL-AF		16.90	0.077	0.07	97.8	7.42	3.15	3.81	15.61	Ο.	-12.19	17.80	1.826	-69.	O	北宋次
2821 <b>2</b>	HEGT00	COAL-AF	4.	1.00	0.030	0.07	26,5	2.01	0.86	1.52	4.87	0.	<u> </u>	9.26	0.950	-8.	7	11
=		COAL-AF	4.	5,61	0.099	0.07	46.6	3.54	1.50	1.97	7.62	Ο.	-3.53	11.10	1.139	-24.	2	21
28212	FCMCCL	COAL	4.	1.00	0.079	0.07	. 27. 1	2.10	0.89	1.60	4.62	Ο.	Ο.	9.21	0.945	-9.	7	11
28212	FCMCCL	COAL	4.	9.77	0.336	0.07	54.4	4.23	1.80	2.90	7.69	Ο.	-6.72	9.90	1.016	-24.	5	14
2821 <b>2</b>	FCSTCL.	COAL	4.	1.00	0.082	0.07	26.5	2.06	0.88	1.63	4.60	0.	0.	9.17	0.941	-8.	7	11
2821 <b>2</b>	FCSTCL	COAL	4.	14.02	0.392	0.07	64.1	4.98	2.12	3.48	8.97	Ο.	-9.99	9.56	0.981	-28.	5	13
2821 <b>2</b>	IGGTST	COAL	4.	1.00	0.064	0.07	26.3	2.05	0.87	1.62	4.69	Ο.	0.	9.23	0.947	-8.	7	11
2821 <b>2</b>	IGGTST	COAL	4.	9.62	0.271	0.07	50,6	3.94	1.67	1.97	8.35	Ο.	-6.61	9.32	0.956	-21.	6	12
2821 <b>2</b>	GTSØAR	RESIDUA	4.	1.00	0.063	0.07	10.0	0.74	0.32	0.70	8.10	0.	0.	9.85	1.011	-2.	2	20
2821 <b>2</b>	GTSOAR	RESIDU#	4.	10.83	0.278	0.07	20.1	1.49	0.63	0.87	15.39	О.	-7.53	10.84	1.112	-10.	0	999
28212	GTAC08	RESIDUA	4.	1.00	0.080	0.07	9.6	0.71	0.30	0.69	7.95	Ο.	0	9.65	0.990	-1.	7	11
2821 <b>2</b>	GTAC08	RESIDUA	4.	7.94	0.311	0.07	15.1	1.12	0.48	0.72	12.12	Ο.	-5.32	9.11	0.934	-2.	10	-
28212	GTAC12	RESIDUA	4.	1.00	0.078	0.07	9.5	0,71	0.30	0.68	7.97	0.	0.	9.66	0.991	<u>-1.</u>	7	11
28212	GTAC12	RESIDUA	4.	10.00	0.332	0.07	17.8	1.32	0.56	0.80	13.50	Ο.	-6.90	9.29	0.953	-4.	3	10
2821 <b>2</b>	GTAC16	RESIDUA	4.		0.075	0.07	9.6	0.71	0.30	0.68	7.99	Ο.	0.	9.69	0.994	-1.	6	12
28212	GTAC16	RESIDUA	4.	11.49	0.338	0.07	20.5	1.52	0.65	0.87	14.66	Ο.	-8.04	9.66	0.991	-6.	5	13
		RESIDUA			0.070	0.07	9.9	0.73	0.31	0.69	8.04	0.	0.	9.78	1.003	-2.	4	<u> </u>
28212	GTWC16	RESIDUA	4.	11.79	0.316	0.07	20.1	1.49	0.63	0.87	15.43	Ο.	-8.28	10.14	1.040	-8.	2	20
		RESIDUA			0.068	0.07	9.8	0.74	0.32	0.75	8.05	Ο.	Ο.	9.87	1.012	-2.	2	21
		RESIDUA		17.74		0.07	26.1	1.98	0.84	1. 19	19.72	Q.	-12.84	10.90	1.118	-13.	0	999
		RESIDUA			0.072	0.07	9.6	0.73	0.31	0.75	8.02	<u> </u>	0.	9.81	1.006	-2.	3	17
		RESIDUA		15.94		0.07	25.5	1.94	0.82	1.14	18.00	Ο.	-11.45	10.44	1.071	-12.	1	22
		RESIDUA			0.072	0.07	9.4	0.71	0.30	0.75	8.02	0.	0.	9.78	1.004	-2.	4	15
		RESIDUA		15.84		0.07	24.2	1.83	0.78	1.12	17.84	0.	-11.38	10.19	1.046	-10.	3	18
	The second second second	RESIDUA			0.078	0.07	9.6	0.73	0.31	0.76	7.97	<u>o.</u>	0.	9.76	1.002	-2.	4	14
		RESIDUA		12.52		0.07	20.3	1.54	0.66	1.00	15.07	Q	-8.83	9.43	0.968	-6.	7	11
		RESIDUA			0.026	0.07	9.7	0.72	0.31	0.72	8.42	Ο.	0.		1.043	-3.	0	93
		RESIDUA				0,07	442.5	32.77	13.93	27.14		Ο.	-340.07			-848.	0	58
		RESIDUA			0.037	0.07	9.5	0.70	0.30	0.70	8.32	<u>o.</u>	0.	10.03	1.029	-2.	<u> </u>	999
28212	STIG10	RESIDUA	4.	41.11	0.218	0.07	48.8	3.62	1.54	2.69	47.17	Ο.	-30.75	24.27	2.490	-66.	0	59

DATE 06/07/79 LESE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		•																
		SE	NSITI	VITY OF	CAPITAL C	OST		PERC	ENT OF	ORIGINA	L COST	100				·	<del></del>	
$\parallel$					·	*****	*****LEVE	LIZED A	NNUAL E									
$\parallel$	ENERGY CONV	SITE- F	OWER	POWER FE	ESRPOWER	CAPITAL C	APITAL TA	XES OA	NDM FU	EL PU	JRCHD R	EVNUE TO	TAL NO	DRML P	RESNT	ROI	GROS	
	SYSTEM	FUEL F	REOD	GEN/		T COST		+			EL.EC		·		WORTH		PA	
			MW	REQD	RATIC	*10**6	I	NSNC							15%		BACI	K
∭											_	"					_	
141	28212 STIG1:	<del>.</del>	4.	24.12 0.				0.93	1.79	29.65	0.	-17.73	16.84	1.728	-33.		0	60
114	28212 DEADV		<u>4.</u>	1.00 0.				0.39	0.78	8.23	<u>o.</u>	0.	10.30	1.057	<u>-5.</u>			330
111	28212 DEADV		4.	31.04 0.				2.58	2.64	34.48	0.	-23.03	22.75	2.334	-76.		0	66
и:	28212 DEHTPI		4.	1.00 0.				0.40	0.82	8.03	0.	0.	10.19	1.045	-4.			999
11.	28212 DEHTPI		4.	10.77 0				1.16	1.42 0.75	14.61 10.17	0. 0.	-7,49 0.	12.42 12.12	1.274	-23, -10.		0	343 58
11+	28212 DESCA: 28212 DESCA:		<u>4.</u> 4.	1.00 0. 37.17 0.				0.36 3.81	3.66	52.02	0.	-27.74	40.73	4.179	-151.		<del>0</del>	60
117	28212 DESGA		4.	1.00 0				0.36	0.75	8.30	o.	0.	10.25	1.051	-4.		-	159
£11	28212 DESOA		4.	37.17 0				3.81	3.66	42.43	o.	-27.74	31.15	3.196	-121.		ŏ	64
u:	28212 GTSOAI		4.	1.00 0				0.29	0.68	9.82	o.	0.	11.48	1.178	-7.		Ŏ	58
16-	28212 GTSOA		4.	9.71 0				0.50	0.75	16.80	Ö.	-6.68	12.55	1.288	-13.		0	60
18	28212 GTRAO		4.	1.00 0				0.32	0.69	9.91	o.	0,	11.68	1.198	-8.		0	58
ı	28212 GTRAO	B DISTILL	4.	17.44 0	325 0.0	7 30.0	2.22	0.95	1.16	24.68	° O ,	-12.61	16.40	1.682	-32.		O	60
	28212 GTRA1:	2 DISTILL	4.	1.00 0	067 0.0	7 10.1	0.75	0.32	0.69	9.89	0.	0.	11.64	1.195	-8.		0	58
	28212 GTRA1:	2 DISTILL	4.	16.73 0.	334 0.0	7 28.1	2.08	0.88	1.10	23.60	0.	-12.06	15.61	1.602	-29.		ŋ	60
1	28212 GTRA1	5 DISTILL	4.	1.00 0.	.068 0.0	7 10.3	0.76	0.32	0.70	9.88	0.	Ο.	11.66	1.196	-8.		0	58
	28212 GTRA1	5 DISTILL	4.	15.40 0.	. 331 0. 0	7 28.0	2.07	0.88	1.09	22.29	Ο.	-11.04	15.30	1,569	-28.		0	61
L	28212 GTR20	B DISTILL	4.	1.00 0.	068 0.0	7 9.9	0.73	0.31	0.69	9.87	0.	0.	11.61	1.191	-8.		0	58
11	28212 GTR20		4.	12.51 0.				0.68	0.91	19.75	0	-8.82	14.11	1.448	-21.		0	60
11	28212 GTR21:		4.	1.00 0				0.32	0.69	9.87	Ο.	0.	11.62	1.192	-8.		0	58
16	28212 GTR21:		4.	13.42 0.				0.73	0.96	20.54	Ο.	-9.52	14.44	1.481	-23.		0	60
	28212 GTR21		4.	1,00 0				0.32	0.69	9.86	<u>o.</u>	0.	11.62	1.192	-8.		<u>o</u>	58
11	28212 GTR21		4.	13.79 0.				0.78	1.00	20.67	0.	-9.81	14.50	1.487	-24.		0	61
	28212 GTRWO		4.	1.00 0.				0.32	0.70	10.02	0,	0.	11.79	1.210	-8.		0	58
	28212 GTRWO		4.	20.60 0.				0.94	1.18	29.65	0.	-15.03	18.96	1.945	-40.		0	59
-	28212 GTRW1:		4.	1.00 0.				0.32	0.70	9.96	<u>0.</u>	0.	11.74	1.835	<u>-8.</u> -37.		0	58 59
51	28212 GTRW1: 28212 GTRW1:		4.	20.61 0. 1.00 0.				0.33	1:17 0.70	28.60 9.95	0. 0.	-15.04 0.	17.89 11.75	1.205	-37.		0	58
	28212 GTRW10		4. 4.	18.81 0.				0.33	1.15	26.62	o.	-13.66	17.20	1.764	-34.		0	59
""	28212 GTR30		4.	1.00 0				0.31	0.69	10.07	0.	0.	11.81	1.212	-8.		Ö	58
	28212 GTR30		4.	15.59 0				0.77	1.02	25.41	0.	-11.19	17.81	1.827	-34.		<u>~</u>	58
= 1	28212 GTR31		4.	1.00 0.				0.32	0.69	9.93	o.	0.	11.68	1.198	-8.		ŏ	58
	28212 GTR31		4.	16.01 0.				0.77	1.01	23.64	o.	-11.51	15.72	1.612	-27.		ŏ	59
41	28212 GTR310		4.	1.00 0.				0.32	0.70	9.93	Õ.	0.	11.71	1.201	-8.		Ó	58
_	28212 GTR310		4.	15.74 0.	307 0.0	7 25.2		0.79	1.03	23.46	0.	-11.30	15.84	1.625	-28.		0	59
4	28212 FCPADS	DISTILL	4.	1.00 0.	049 0.0	7 10.5	0.78	0.33	1.00	10.08	0.	0.	12.19	1.250	-10.		0	58
1	28212 FCPAD	DISTILL	4.	33.90 0.	279 0.0	7 79.4	5,88 *	2.50	14.73	45.07	Ο.	-25.23	42.95	4.407	-140.		0	60
L	28212 FCMCD	DISTILL	4.	1.00 0.	065 0.0	7 10.7	0.79	0.34	0.97	9.90	0.	0.	12.01	1.232	-9.		0	58
	28212 FCMCD	DISTILL	4.	26.82 0.	360 0.0	7 68.2	5.05	2.15	11.05	32.88	0.	-19.80	31.33	3.214	-98.		0	61
-1	28213 ONOCGI		55.	0. 0.				0.04	0.16	0.54	16.72		17.56	1.000	ø.		0	0
111	28213 STM14		55.		006 11,7			0.06	0,23	0.60	16.57	ο.	17.60	1.003	-0.		0 9	999
_	28213 STM14		<u>55.</u>		006 11.7			0.10	0.37	0.35	16.57	<u> </u>	17.64	1.005	<u>-1.</u>		1	24
ī	28213 STM14	<u> COAL-AF</u>	55.	0.01 0.	006 11.7	<u>'3 3.0</u>	0.23	0.10	0.32	0.35	16,57	0.	17.57	1.001	71.		4	15 (

PAGE 49

	S	ENSITI	VITY OF	CAPITAL C		*****LEVE		ENT OF				(2MC)	****	**	* **	
NERGY CONV	SITE-	POWER	POWER	FESRPOWER						JRCHD RE			ORML	PRESNT	ROI G	ROSS
SYSTEM	FUEL	REQD	GEN/		T COST	,	+			ELEC				WORTH		PAY
		MW	REQD	RATIC	*10**6	. I	NSNC							15%		BACK
3213 STM088	COAL-FG	55.	0.00	0.003 11.7	3 2.9	0.22	0.09	0.36	0.33	16,64	Ο.	17.65	1.0	05 -1.	0	
3213 STM088	COAL-AF	55.	0.00	0.003 11.7	3 2.8	0.21	0.09	0.32	0.33	16.64	<u>o.</u>	17,60	1.0	02 -1.	3	
3213 PFBSTM	COAL-PF	55.	0.02	0.011 11.7	<b>'</b> 3 4.6	0.35	0.15	0.40	0.39	16.40	0.	17.69	1.0	07 -2.	1	ź
3213 TISTMT	RESIDUA	55.	0.03	0.017 11.7	3 8.4	0.63	0.27	0.41	0.72	16.26	Ο.	18, 29	1.0	42 -6.	O.	
213 TISTMT	COAL	<b>55</b> ,	0.03	0.017 11.7	<b>'</b> 3 10.7	0.81	0.34	0.57	0.42	16.26	Ο.	18.41				
213 TIHRSG	RESIDUA	55,		0.007 11.7		0.61	Ç.26	0.33	0.75	16.40	0.	18.34	1.0		0	
213 TIHRSG		55.	0.02	0.007 11.7	'3 10.6	0.80	0.34	0.49	0.43	16.40	Ο.	18.47				
213 STIRL	DISTILL		0.04	0.016 11.7	3 2.0	0.15	0.06	0.21	1.13	16.06	Ο,	17.62			0	_
213 STIRL	RESIDUA	55.		0.016 11.7		0.15	0.06	0.21	0.92	16.06	Ο.	17.41			16	
213 STIRL	COAL	<u>55.</u>		0.016 11.7		0.29	0.12	0.36	0.54	16.06	0.	17.37			10	
213 HEGT60		•		0.006 11.7		1.35	0.57	0.73	1.32	14.90	ο.	18.67			0	-
213 HEGTOO				0,006 11.7		0.59	0.25	0.38	0.57	16.19	ο.	17.97	- + .	, , ,	0	9
213 FCMCCL		55.		0.028 11.7		0.69	0.29	0.49	0.57	15.81	Ο.	17.85			Ţ	
213 FCSTCL		<u>55.</u>		0.037 11.7		0.77	0.33	0.60	0.62	15.56	0.	17.88				
13 IGGTST		55.		0.018 11.7		0.69	0.29	0.54	0.58	15,95	٥.	18.05		- 1	0	-
213 GTSOAR				0.025 11.7		0.24	0.10	0.23	1.16	15.68	Ο.	17.42			10	
213 GTAC08				0.023 11.7		0.18	0.07	0.19	0.89	15,98	Ο.	17.32			18	
213 GTAC12				0.028 11.7		0.20	0.08	0.21	0.99	15.78	<u>o.</u>	17.26			17	
213 GTAC16				0.032 11.7		0.22	0.09	0.22	1.08	15.64	٥.	17.26			16	
213 GTWC16				0.030 11.7		0.24	0.10	0.23	1.13	15.62	٥.	17.33			12	
213 CC1626				0.039 11.7		0.30	0.13	0.34	1.37	15.23	ø.	17.36			10	
213 CC1622				0.037 11.7		0.26	0.11	0.32	1.25	15.39	0.	17.33	-			
213 CC1222				0.037 11.7		0.25	0.11	0.31	1.24	15.40	0.	17.31			12	
213 CC0822				0.031 11.7		0.23	0.10	0.29	1.05	15.69	ο,	17.36			12	
213 DEADV3				0.056 11.7		0.62	0.26	0.45	2.70	13.62	ο.	17.65			. 4	
213 DEHTPM				0.026 11.7		0.36	0.15	0.32	1.07	15.75	<u>o.</u>	17.66			2	
213 DESGA3				0.056 11.7		0.81	0.34	0.53	4.14	12.95	0.	18.76		1	0	
213 DESGA3				0.056 11.7		0.81	0.34	0.53	3.37	12,95	0.	18.00			0	
13 GTSOAD				0.026 11.7		0.18	0.08	0.20	1.24	15.81	0.	17.51			7	
13 GTRA08				0.041 11.7		0.34	0.14	0.28	1.90	15.01	<u>o.</u>	17.67			2	
213 GTRA12				0.041 11.7		0.32	0.14	0.27	1.80	15.10	0.	17.62			3	
213 GTRA16		1		0.038 11.7		0.32	0.14	0.27	1.69	15.24	0	17.65			2	
213 GTR208				0.031 11.7		0.25	0.11	0,24	1.48	15.53	0.	17.60			3	
213 GTR212				0.033 11.7		0.27	0.12	0.24	1.54	15.44	<u>o.</u>	17.61			3	medical company
213 GTR216				0.035 11.7		0.28	0.12	0.25	1.55	15.40	0.	17.60		· ·	3	
213 GTRW08		-		0.041 11.7		0.38	0.16	0.30	. 2.27	14.71	0.	17.82			0	_
213 GTRW12				0.045 11.7		0.38	0.16	0.30	2.17	14.73	o.	17.73			0	
213 GTRW16				0.042 11.7		0.37	0.16	0.29	2.00	14.92	<u>0.</u>	17.74			<u>o</u>	
213 GTR308				0.028 11.7		0.29	0.12	0.26	1.93	15.21	0.	17.82			0	•
213 GTR312		•		0 037 11.7		0.30	0.13	0.26	1.76	15.20	g.	17.65			2	
213 GTR316				0.036 11.7		0.31	0.13	0.26	1.74	15.23	0.	17.69			0	
213 FCPADS	DISIILL	55.	U. 19	0.060 11.7	3 7.0	0.52	0.22	1.20	3.32	13.54	Ο.	18.79	1.07	70 -7.	0	

DATE 06/07/79 &SE-PEO-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

	;	BENSITI	VITY OF	CAPIT	TAL COS		·			GRIGINAL							
ENERGY CONV	SITE-	POWER	POWER	FESRPO	DWER CA	******** Pital cap									RESNT	ROI GR	:05 <b>S</b>
SYSTEM	FUEL	REGD	GEN/		/HEAT	COST		+		E	EL.EC			****	WORTH	X	PAY
<del></del>		MW	REGD	F	* DITAS	10**6	11	NSNC							15%	В	ACK
28221 STM141				0.117	0.73	3.4	0.26	0.11	0.32	1.43	1.63		3.76	0.965	-0.	11	8
28221 STM141				0.117	0.73	<u></u>	0.47	0.20	0.54	0.83	1.63	<u> </u>	3.67	0.942	<u>-1.</u>	<u> </u>	1.0
28221 STM141				0.117	0.73	5.3	0.40	0.17	0.48	0.83	1.63	0.	3.51	0.902	-0.	12	8
28221 STM088				0.085	0.73	2.9	0.22	0.10	0.31	1.36	1.81	0.	3.80	0.976	-0.	11	8
28221 STM088				0.085	0.73	5.6	0.43	0.18	0.52	0.79	1.81	0.	3.73	0.957	<b>1-1.</b>	8	10
28221 STM088				0.085	0.73	5.0	0.38	0.16	0.46	0.79	1.81	<u>o.</u>	3.60	0.924	<u>-1.</u>	11	
26221 PFBSTM				0.186	0.73	8.1	0.61	0.26	0.63	0.93	1.23	ο.	3.66	0.940	-2.	8	10
28221 TISTMT				0.249	0.73	16.0	1.22	0.52	0.66	1.73	0.88	ο.	5.00	1.284	-10.	0	999
28221 TISTMT	. –	. 8.		0.249	0.73	20.4	1.55	0.66	0.92	1.00	0.88	0.	5.01	1.288	-12.	0	999
28221 TIHRSG				0.093	0.73	13.8	1.03	0.44	0.51	1.54	1.61	<u>0.</u>	5.12	1.314	<u>-9,</u>	0	<u>100</u> 939
28221 TIHRSG		8.		0.093	0.73	17.9	1.36	0.58	0.75	0.89	1.61	0.	5.18	1.332	-12.	<u> </u>	
28221 STIRL	DISTIL			0.222	0.73	4.4	0.33	0.14	0.33	2.62	0.57	0.	3.99	1.024	-1.	1	24 6
28221 STIRL	RESIDU			0.222	0.73	4.4	0.33	0.14	0.33	2.14	0.57	0. 0.	3.50	0.900	0. -0.	15 13	7
28221 STIRL	COAL	8.		0.222	<u>9.73</u>	7.6	0.56	0.24	0.57	1.24	0.57	0.	3.18 5.53	0.817 1.420	-16.	0	999
28221 HEGT85				0.126	0.73	24.2	1.84 3.33	0.78 1.37	1.14 1.57	1.77 3.66	0.	-2.40	7.43	1.909	-31.	ő	223
28221 HEGT85					0.73	42.6			1.00	1.72	0. 0.	0.	5.09	1.303	-13.	ŏ	999
28221 HEGT60				0.148	0.73	21.9	1.66	0.71	0.90	1.85		-0.17	5.09	1.289	-13.	ŏ	999
28221 HEGT60				0.153	0.73	22.5	1.71 0.98	0.73	0.59	1.18	0. 1.17	0.	4.34	1.114	<del>-7.</del>	<u>-</u>	24
28221 HEGTOO 28221 FCMCCL		- 8. 8.		0.309	0.73 0.73	12.9 15.3	1.19	0.42	0.89	1.23	0.28	0. 0.	4.01	1.030	-7. -7.	4	15
28221 FCSTCL		8.		0.366	0.73	17.2	1.33	0.57	1.08	1.28	0.20	o.	4.27	1.030	-9.	3	18
28221 FCSTCL	_	<u>8.</u>		0.400	9.73	18.5	1.44	0.61	1.02	1.48	o.	-0.46	4.09	1.051	-9.	4	15
28221 FCSTCL		8.		0.271	0.73	15.9	1.24	0.53	0.81	1.38	0.16	0.	4.12	1.057	-8.	- 4	13
28221 GTSCAR	· · · · · · ·			0.277	0.73	5.4	0.40	0.33	0.32	2.33	0.19	0.	3.41	0.875	-0.	14	7
28221 GTAC06				0.252	0.73	4.1	0.30	0.17	0.32	1.96	0.13	0.	3.31	0.851	1.	21	5
28221 GTAC12				0.311	0.73	4.6	0.34	0.13	0.30	2.15	0.24	0.	3.18	0.817	1.	21	5
28221 GTAC16				0.342	0.73	5.2	0.39	0.16	0.36	2.29	0.	<u> </u>	3.21	0.824	<u>i.</u>	18	· 6
28221 GTAC16				0.343	0.73	5.2	0.38	0.16	0.32	2.31	o.	-0.02	3.15	0.810	i.	19	5
28221 GTWC16				0.309	0.73	5.7	0.42	0.18	0.40	2.41	o.	0.02	3.41	0.876	-ò.	14	Ÿ
28221 GTWC15	-			0.315	0.73	5.6	0.42	0.18	0.33	2.49	0.	-0.09	3.33	0.854	õ.	15	6
28221 CC1628		<del></del>		0.305	0.73	6.3	0.48	0.20	0.55	2.42	<del>- 0.</del>	0.	3.65	0.939	-1.	9	10
28221 CC1626				0.354	0.73	7.6	0.58	0.25	0.50	3.26	o.	-0.94	3.65	0.937	-2.	8	10
28221 CC1622				0.320	0.73	6.0	0.46	0.19	0.53	2.37	o.	0.	3.55	0.912	-1.	1ŏ	8
28221 CC1622				0.362	0.73	6.9	0.52	0.22	0.47	2.98	o.	-0.71	3.48	0.895	-i.	10	8
28221 CC1222				0.323	0.73	5.8	0.44	0.19	0.53	2.36	Ō.	Ö.	3.51	0.902	<u>-i:</u>	11	8
28221 CC1222				0.365	0.73	6.5	0.50	0.21	0.46	2.95	Õ.	-0.70	3.43	0.880	-i.	12	8
28221 000822				0.346	0.73	5.8	0.44	0. 19	0.51	2.28	Ö.	0.	3.41	0.875	-o.	13	7
28221 CC0822	7 .			0.367	0.73	5.9	0.44	0.19	0.43	2.50	o.	-0.27	3.29	0.844	ō.	15	7
28221 STIG15				0.114	0.73	6.7	0.50	0.21	0.57	3.08	Ö.	Ö.	4.36	1.120	-4.	0	182
28221 STIG15			40.08		9.73	90.2	6.68	2.84	5.31	77.38	Ö.	-53.48	38.72	9.944	-151.	0	59
28221 STIG10			,	0.164	0.73	6.2	0.46	0.20	0.53	2.91	o.	0.	4.10	1,052	-3.	O	29
28221 ST1610				0.218	0.73	11.7	0.87	0.37	0.73	7.59	Õ.	-3.70	5.86	1.504	-11.	0	64
28221 STIGIS				0.186	0.73	5.9	0.44	0.19	0.52	2.83	Ō.	0.	3.98	1.022	-2.	3	18

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 51

			SENSI	LIVITY OF	F CAPI		*******	· ····································			ORIGINAL NEBOV C			1614				
	CONV		POWER		FESRP	WER CAP	TAL CAP		XES OA		EL PU			TAL N		PRESNT WORTH		ROSS
313	STEM	FUEL	REQD MW	GEN/ REQD		/HEAT C		11	+ NSNC			ELEU				15%	- X	<u>PAY</u> BACK
													,					
		RESIDU			0.236	0.73	8.4	0.62	0.26	0.57	2.66	0.	0.	4.11			2	
		RESIDU			0.293	0.73	12.4	0.92	0.39	0.60	4.64	<u> </u>	<u>-1.83</u>	4.72 3.61				
		RESIDU RESIDU		• • • •	0.351	0.73 0.73	7.8 7.8	0.58 0.58	0.25 0.25	0.53 0.46	2.26 2.34	0. 0.	0. -0.10	3.52			9	•
		DISTIL		• • • •	0.333	0.73	8.3	0.61	0.26	0.57	3.41	o.	0, 10	4.86			0	
		DISTIL			0.256	0.73	17.4	1.29	0.55	0.75	6.74	ŏ.	-2.33	7.00	1.79		ò	
		RESIDU			0.201	0.73	8.3	0.61	0.26	0.57	2.78	0.	0.	4.23	1.08		0	
		RESIDU			0.256	6.73	17.4	1.29	0.55	0.75	5,50	o.	-2.33	5.76	1.48		ŏ	
		DISTIL				0.73	4.2	0.31	0.13	0.29	2.66	0.32	o.	3.71	0.95		11	
28221	GTRA08	DISTIL	L 8.		0.310	0.73	6.5	0.48	0.20	0.46	2.94	0.	0.	4.09	1.04	9 -3.	1	_
8221	GTRA08	DISTIL	L. 8.	1.40	0.344	0,73	7.1	0.53	0.22	0.38	3.55	0.	-C.55	4.13	1.06	1 -3,	0	) 2
8221	GTRA12	DISTIL	L 8.	1.00	0.317	0.73	6.4	0.48	0.20	0.45	2.91	Ο.	Ο.	4.05	1.03	9 -3.	2	? 7
8221	GTRA12	DISTIL	L. 8,	1.38	0.350	0.73	7.0	0.52	0.22	0.36	3.47	Ο.	-0.51	4.07	1.04	6 <b>-3</b> .	1	2
		DISTIL			0.319	0.73	6.7	0.49	0.21	0.45	2.91	0	0.	4.07	1.04		1	
		DISTIL			0.345	0.73	7.1	0.53	0.22	0.38	3.33	О.	-0.39	4.08	1.04		2	
		DISTIL			0.317	0.73	5.7	0.42	0.18	0.40	2.91	Ο.	Ο.	3.92	1.00		4	•
		DISTIL			0.325	0.73	5.7	0.42	0.18	0.33	3.02	Ο,	-0.10	3.85			€	
		DISTIL			0.316	0.73	6.0	0.45	0.19	0.43	2.92	0	0.	3.98	1.02		3	
		DISTIL			0.330	0.73	6.1	0.45	0.19	0.35	3,14	0.	-0.20	3.93	1.00		4	
		DISTIL			0.322	0.73	6.2	0.46	0.50	0.43	2.89	0.	0,	3.98	1.02		3	
		DISTIL			0.340	0.73	6.4	0.47	0.20	0.36	3, 15	0.	-0.24	3.93	1.010		4	
		DISTIL			0.261	0.73	6.7	0.50	0.21	0.48	3.16	<u> </u>	0.	4.34	1.114		0	
		DISTIL			0.302	0.73	8.0	0.59	0.25	0.42	4.31	0.	-0.93	4.65	1.19		0	-
		DISTIL	-		0.278	0.73	6.7	0.50	0.21	0.48	3.08	0.	0.	4.26	1.09		. 0	
		DISTIL	_		0.324	0.73	8.1	0.60	0.25	0.42	4.24	0.	-0.98	4.54	1.16		0	
		DISTIL			0.282	0.73 0.73	6.9 8.1	0.51	0.22	0.48	3.07 4.02	<u>0.</u>	<u>0.</u> -0.81	4.27	1.09			
_		DISTIL			0.323	0.73	6. 1	7		0.42	3,23			4.46			0	• • •
	- ,	DISTIL			0.263	0.73	6.4	0.45 0.47	0.19 0.20	0.43	3.73	0. 0.	0. -0.39	4.32	1.120		0	
		DISTIL	•		0.286	0.73	6.2	0.46	0.20	9.45	3.75	o.	0.33	4.16		· · ·	0	
		DISTIL			0.316	0.73	6.8	0.50	0.21	0.38	3.68	0.	-0.54	4.23	1.08			
		DISTIL		• • • •	0.284	0.73	6.5	0.48	0.20	0.46	3.05	Ö.	0.	4.20	1.07	•	Ö	-
		DISTIL			0.313	0.73	7.0	0.52	0.22	0.38	3.66	Õ.	-0.51	4.27	1.09		ď	
		DISTIL			0.215	0.73	6.7	0.49	0.21	1.06	3.35	Ö.	0.	5.12	1.31		ò	
		DISTIL			0.279	0.73	14.5	1.08	0.46	2.51	7.25	0.	-2.92	8.48	2.17		0	and the same of
		DISTIL	,		0.289	0.73	6.9	0.51	0.22	1.01	3.04	Ŏ.	0.	4.78	1.22		ő	
		DISTIL			0.360	0.73	12.4	0.92	0.39	1.90	5.29	o.	-1.94	6,55	1 . 68:		ō	
8241	ONOCGN	RESIDU	A 32.	<u> </u>	0.	3.64	1.8	0.13	0.06	0.21	1.01	9.73	0.	11.14	1.00		Ō	•
8241	STM141	RESIDU	A 32.	0.04	0.022	3.64	2.9	0.22	0.09	0.30	1.16	9.34	0.	11,11	0.99	7 -0.	7	;···· 1
8241	STM141	COAL-F	G 32.	0.04	0.022	3.64	5,2	0.39	0.17	0.49	0.67	9.34	0.	11.07	0.99	3 -1.	6	; 1
8241	STM141	COAL-A	F 32.	0.04	0.022	3, 64	4.5	0.34	0.15	0.43	0.67	9.34	Ο.	10.94	0.98	2 -1.	10	)
		RESIDU			0.014	3.64	2.4	0.18	0.08	0.28	1.11	9.48	_ 0	11.14	1,000		5	
8241	<b>STM088</b>	COAL-F	9 32.	0.03	0.014	3.64	4.7	0.36	0.15	0.47	0.64	9.48	0.	11.11	0.997	7 -1.	6	1

			SENSITI	VITY OF	CAPI	TAL COS?	r		PERC	ENT OF	ORIGINAL	L COST	100					
			· · · · · · · · · · · · · · · · · · ·				, ********	***LEVE						S)****	*****		S.	
	CONV	SITE-			FESRP		PITAL CAP	PITAL TAX		NDM FU			EVNUE TO	TAL NO	RML P	RESNT		ROS <b>S</b>
SYS	STEM	FUEL	REQD	GEN/		/HEAT (			+		<u> </u>	ELEC				WORTH	<u> </u>	PAY
			MW	REQD	F	RATIO *1	0**6	11	NSNC							15%		SACK
8241	PFBSTM	COAL-P	F 32.	0.07	0.040	3.64	7.0	0.53	0.22	0.56	0.76	9.01	0.	11.08	0.995	-2.	6	12
8241	TISTMT	RESIDU	A 32,	0.10	0.057	3.64	13.6	1.03	0.44	0.58	1.40	8.73	0.	12.19	1.094	-9,	0	487
8241	TISTMT	COAL	32.	0.10	0.057	3.64	17.4	1.32	0.56	0.82	0.82	8.73	0.	12.25	1.099	-11.	0	999
8241	TIHRSG	RESIDU	A 32.	0.06	0.023	3.64	12.7	0.94	0.40	0.47	1.36	9.14	0.	12.31	1.105	-9,	0	92
8241	TIHRSG	COAL	32.	0.06	0,023	3.64	16.4	1.24	0.53	0.70	0.79	9.14	O.	12.40	1.113	-11,	0	999
	STIRL	DISTIL		0.14	0.054	3.64	3.7	0.27	0.12	0.30	2.17	8,40	0.	11.26	1.011	<u>-1.</u>	0	999
	STIRL	RESIDU	A 32.		0.054	<b>'3.64</b>	3.7	0.27	0.12	0.30	1.77	8.40	Ο.	10.86	0.975	-0,	14	. 7
	STIRL	COAL	32.		0.054	3.64	6.5	0.48	0.21	0.51	1.03	8.40	0.	10.63	0.954	-1.	12	
		COAL-A		-0.28		3.64	23.8	1.81	0.77	0.95	2.00	6.96	o.	12.49	1.121	-15.	0	999
		COAL-A			0.019	3.64	11.9	<u>, 0.90</u>	0.38	0.55	1.04	8,75	<u> </u>		1.043	<u>-6.</u>	0	28
	FCMCCL		32.		0.085	3.64	13.8	1.07	0.46	0.73	1.06	8,01	0.	11.32	1.016	-7.	4	10
	FCSTCL		32.		0.120	3.64	15.9	1.23	0.52	0.89	1.21	7,39	0.	11.24	1.009		4	14
	IGGTST		32.		0.063	3.64	13.7	1.07	0.45	0.73	1.12	8.15	0.	11.52	1.034	-7.	. 2	2
		RESIDU			0.076	3.64	5.0	0.37	0.16	0.31	2.10	7.85	<u> </u>	10.78	0.968	-0,	12	
		RESIDU			0.070	3.64	3.8	0.28	0.12	0.26	1.67	8.33	0.	10.66	0.957	1.	20	
		RESIDU			0.086	3.64	4.2	0.31	0.13	0.28	1.86	7.97	0.	10.56	0.947	1.	20	
		RESIDU			0.095	3.64	4.7	0.35	0.15	0.30	2.01	7.71	٥,	10.53	0.945		16	
		RESIDU			0.091	3.64	5.1	0.38	0.16	0.31	<u>2,13</u>	7.65	<u>o.</u>	10.63	0.954	<u>0.</u>	15	
		RESIDU			0.126	3.64	6.4	0.49	0.21	0.45	2.65	6.75	0.	10.54	0.946	-0.	13	
		RESIDU			0.119	3.64	5.7	0.44	0.19	0.42	2.42	7.06	0.	10.52	0.944	0.	15	
		RESIDU			0.119	3.64	5.4	0.41	0.18	0.42	2.40	7.08	0.	10.48	0.941	0.	16	
		RESIDU			0.100	<u>3.64</u>	4.9	0.37	0.16	0.39	2.03	7.65	<u>0.</u>	10.59	0.951	<u>o.</u>	16	2
		RESIDU			0,157	3.64	14.8	1.10	0.47	1.08	9.12	0.	0.	11.77	1.056	-8.	0	5 5
		RESIDU			0.171	3.64	76.8	5.69	2.42	4.60	66.32	0.	-41.18	37.85	3.397		0	-
		RESIDU			0.167	3.64	10.5 7.2	0.78	0.33	0.66	6.51	2.48	0.	10.76	0.966	-3.	. 8 9	1
		RESIDU RESIDU			0.112 0.161	3.64		0.53	0.23	0.49	4.09	5.48 4.46	<u>0.</u>	10.82	0.971	-2. -4.	6	
		RESIDU			0.088	3.64	12.3 7.2	0.53	0.39	0.43	2.02	7.79	0.	10.93	0.986		7	1
		DISTIL.			0.160	3.64 3.64	17.7	1.31	0.23	0.43	6.86	3.47	0. 0.	12.95	1.162		ó	8
		RESIDU			G. 160	3.64	17.7	1.31	0.56	0.76	5.60	3.47	0.	11.69	1.049		1	2
		DISTIL			0.078	3.64	3.9	0.29	0.12	0.27	2.31	8.02	0.	11.02	0.939	-1.	9	
		DISTIL			0.123	3.64	6.8	0.50	0.12	0.27	3.32	6.73	0.	11.14	1.000	-2.	5	1
		DISTIL			0.123	3.64	6.7	0.49	0.21	0.36	3.19	6.84	o.	11.10	0.996	-2.	6	i
		DISTIL			0.114	3.64	6.7	0.50	0.21	0.36	3.03	7.06	0.	11.15	1.001	-2.	- 5	i
		DISTIL			0.094	3,64	5.3	.0.39	0.17	0.32	2.70	7.55	0.	11.12	0.998	-2.	5	i
		DISTIL			0.100	3.64	5.7	0.42	0.18	0.33	2.80	7.39	0.	11.12	0.998	-2.	5	i
		DISTIL			0.105	3.64	5.9	0.44	0.19	0.34	2.82	7.33	0.	11.11	0.997	-2,	5	i
		DISTIL			0.123	3.64	7.6	0.57	0.13	0.41	4.00	6.18	0.	11.39	1.022	-4.	ő	2
		DISTIL			0.134	3.64	7.6	0.57	0.24	0.40	3.88	6.16	0.	11.25	1.009	-3.	3	້ ເ
		DISTIL			0.125	3.64	7.6	0.56	0.24	0.40	3.62	6.46	Ö.	11.27	1.012	-3.	3	i
		DISTIL			0.086	3.64	6.1	0.45	0.19	0.35	3.44	7.03	o.	11.47	1.029	-3.	ŏ	99
		DISTIL		0.29		3.64	6.3	0.46	0.20	0.36	3.24	6.93	Õ.	11.18	1.004	-ž.	4	1
		DISTIL			0.108	3,64	6.5	0.48	0.20	0.36	3.22	6.97	0.	11.24	1.008	-2.		1

PAGE 53

		SE	NSITI	VITY OF	CAPIT	AL COST					ORIGINAL							
							******											~~~
	CONV	SITE- F			FESRPO		TTAL CAF	PITAL TA		NDM FU			EVNUE TO	ITAL NO	DRML P	RESNT		09 <b>S</b>
SYS	STEM	FUEL F	REGD	GEN/		/HEAT			+			ELEC				WORTH		PAY
			MW	REQD	*	ATIO *1	U##6	11	NSNC							15%	Ľ	ACK
28241	FCMCDS	DISTILL	32.	0.49	0.192	3.64	10.7	0.80	0.34	1.64	4.54	5.00	0.	12.31	1.105	-8.	0	10
28242	ONOCGN	RESIDUA	11.	0	0.	1,63	1.5	0.11	0.05	0.19	0.86	3.71	0.	4.92	1,200	0.	0	
		RESIDUA	11.		0.085	1.63	2.9	0.22	0.09	0.29	1.10	3.09	Ο.	4.78	0.972	-0.	12	
		COAL-FG	11.		0.085	1.63	4.9	0.37	0.16	0.47	0.64	3.09	Ο.	4.72	0.960	-1.	9	
		COAL-AF	11.		0.085	1.63	4.4	0.33	0.14	0.41	0.64	3.09	ο,	4.61	0.938	-0.	12	
		RESIDUA	_11		0.066	<u>1.63</u>	2.4	0.19	0.08	0.27	1.05	3.23	<u> </u>	4.81	0.977	-0,	12	
		COAL-FG	11.		0.066	1.63	4.5	0.34	0.14	0.45	0.61	3,23	0.	4.76	0.968	~1.	8	1
		COAL-AF	11.		0.066	1.63	4.1	0.31	0.13	0.40	0.51	3.23	o,	4.68	0.951	-1.	11	_
		COAL-PF		<b>∕</b> 0.25		1.63	6.5	0.50	0.21	0.53	0.71	2.78	O.	4.73	0.961	-2.	8	1
		RESIDUA	<u> 11.                                   </u>		0.162	1.63	12.4	0.94	0.40	0.54	1.33	2.51	<u>0.</u>		1.162	<u>-8.</u>	0	99
	TISTMT		11.		0.162	1.63	15.8	1.20	0.51	0.76	0.77	2.51	0.	5.74	1.167	-9	0	. 99
		RESIDUA	11.		0.055	1.63	10.0	0.74	0.31	0.39	1.09	3,23	0.	5.77	1.172	-7.	0	10
	TIHRSG		11.		0.055	1.63	12.9	0.98	0.42	0.58	0,63	3,23	0.	5.84	1.187	-8.	0	99
	STIRL	DISTILL	<u> </u>		0.135	1.63	3.1	0.23	0.10	0.27	1.97	<u>2.36</u>	<u> </u>	4.92	1.000	1.	5_	1
		RESIDUA	11.		0.135	1.63	3.1	0.23	0.10	0.27	1.60	2.36	0.	4.56	0.926	o.	19	
	STIRL	COAL	11.		0.135	1.63	5.6	0.41	0.18	0.46	0.93	2.36	0.	4.34	0.882	-0,	14	
		COAL-AF	11.		0.190	1.63	23.4	1.78	0.76	0.90	1.75	0.72	0.	5.90	1.200	-14.	0	2
		COAL-AF	<del>-11</del>		0.104	1.63	15.2	1.15	0.49	0.64	1.17	2.10	<u>0.</u>	5.54	1.126	<u>-9.</u>	0	2
	FCMCCL	COAL-AF	11.		0.047		9.4	0.71	0.30	0.45	0.83	2.93	0.	5.23 5.04	1.063	-5.	<u> </u>	2
	FCSTCL		11.		0.171	1.63	11.4	0.89	0.38	0.62	0.90	2.26	0.			-5.	4 5	i 1
	IGGTST		11. -11.		0.301	1.63	14.5	1.13	0.48	0.83	1.14	1.24	0.	4.82	0.979 1.038	-6. -6.	4	
		RESIDUA	11.		0.174 0.154	1.63 1.63	12.6 3.9	0.98	0.42	0.69	1.06	1.95 2.24	<u>0.</u>	5.11 4.55	0.924	0.	15	1
		RESIDUA			0.134	1.63	3.9	0.29	0.12 0.10	0.26 0.23	1.44	2.24	0. 0.	4.00	0.924	1.	21	
		RESIDUA	11. 11.		0.139	1.63	3.4	0.25	0.10	0.23	1.44	2.23	0. 0.	4.49	0.892	1.	22	
		RESIDUA	11.		0.172	1.63	3.4	0.23	0.12	0.25	1.65	2.06	0.	4.35	0.885	i.	50	
		RESIDUA	11.		0.181	1.63	4.2	0.31	0.12	0.27	1.82	1.94	0.	4.46	0.908	0.	16	
		RESIDUA	11.		0.316	1.63	6.0	0.31	0.13	0.27	2.51	0.63	0. 0.	4.40	0.857	0.	15	
		RESIDUA	11.		0.298	1.63	5.3	0.41	0.13	0.40	2.28	0.94	0,	4.20	0.854	o.	16	
		RESIDUA	11.		0.300	1.63	5.1	0.39	0.17	0.40	2.27	0.94	0. 0.	4.16	0.846	1.	17	
		RESIDUA	11.		0.259	1.63	4.7	0.35	0.15	0.37	1.92	1.48	0.	4.27	0.869	Ö.	17	
		RESIDUA	11.		0.141	1.63	7.6	0.56	0.13	0.64	3.95	0.	0.	5.39	1.097	-4.	ó	99
		RESIDUA	11.	17.98		1.63	59.2	4.38	1.86	3.79	56.38	o.	-37.74	28.68	5.830	-102.	ő	9.
		RESIDUA	11.		0.201	1.63	6.8	0.51	0.22	0.55	3.67	Ö.	0.	4.95	1.006	-3.	4	ì
			<del>- ii:</del>		0.218	1.63	8.6	0.64	0.27	0.57	5.53	Ö.	-1.47	5.55	1.128	<u>-5.</u>	<del>-</del>	**
		RESIDUA	11.		0.223	1.63	6.0	0.44	0.19	0.43	3.48	0.09	0.	4.63	0.941	-1.	10	
		RESIDUA	11.		0.292	1.63	· 8.4	0.62	0.15	0.45	3.01	0.25	o.	4.59	0.934	-2.	8	1
		RESIDUA	11.		0.231	1.63	5.9	0.44	0.19	9.37	1.68	1.84	Ö.	4.52		-1.	11	•
		DISTILL	11.		0.270	1.63	9.9	0.73	0.31	0.55	4.12	0.	<u> </u>	5.72	1.162	-6.	<u></u>	
		DISTILL	11.		0.273	1.63	10.2	0.75	0.32	0.51	4.28	Õ.	-0.12		1.168	-7.	Ö	14
		RESIDUA	ii.		0.270	1.63	9.9	0.73	0.31	0.55	3.36	Õ.	0.	4.96	1.008	-4.	4	1
		RESIDUA	11.		0.273	1.63	10.2	0.75	0.32	0.51	3.49	Õ.	-0.12	4.96	1.007	-4.	4	i
		DISTILL	11.		0.158	1.63	3.1	0.23	0.10	0.24	1,90	2.30	0.	4.77	0.969	-0.		•

DATE 06/07/79 LESE-PEO-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 54

		ENSITI	VITY OF	CAPIT	TAL COS	T *******	LANGE EVE			ORIGINAL			1014444	*****				
ENERGY CONV SYSTEM	SITE- FUEL	POWER REQD	POWER GEN/	FESRPO	WER CA	PITAL CAP				EL PU		EVNUE TO			RESNT WORTH	RO1	OROS PA	
<u>i</u>		MW	REQD	R	RATIO *	10**6	1	NSNC							15%		EAC	
28242 GTRA12	DISTILL	. 11.	0.59	0.238	1.63	5,0	0.37	0.16	0.30	2.40	1.54	ο.	4.76	0.968	-1.		8	10
28242 GTRA16	DISTILL	. 11.	0.55	0.225	1.63	5,1	0.38	0.16	0.30	2.32	1.66	0.	4.82	0.980	-1.		7	11
28242 GTR208	DISTILL	. 11.	0.46	0.187	1.63	4.1	0.36	0.13	0.27	2.12	1.99	0.	4.81	0.979	-1.		8	10
28242 GTR212	DISTILL	. 11.	0.50	0.200	1.63	4.4	0.33	0.14	0.28	2.21	1.86	0.	4.82	0.980	-1,		7	10
28242 GTR216				0.208	1.63	4.6	0.34	0.14	0.28	2.21	1.82	Ο.	4.80	0.977	÷1°,		8	fc
28242 GTRW08		<u> 11.</u>		0.239	1.63	5,8	0.43	0.18	0.33	2,97	1.07	<u>o.</u>	4.99	1.014	-2.		4	16
28242 GTRW12				0.259	1 . 63	5.9	0.44	0.19	0.33	2.95	0.99	o.	4.90	0.996	-2.		5	13
28242 GTRW16			-0.69		1.63	5.9	0.44	0.19	0.33	2.82	1.16	0.	4.94	1.003	-2.		5	14
28242 GTR308				0.173	1.63	4.6	0.34	0.14	0.29	2.55	1.71	0.	5.03	1.023	-2.		1	23
28242 GTR312				0.219	1.63	5.0	0.37	0.16	0.30	2.61	1.45	<u> </u>	4.89	0.994	<u>-2.</u>		5	12
28242 GTR316				0.215	1.63	5.2	0.38	0.16	0.31	2.60	1.48	0.	4.93	1.003	-2.		4	14
28242 FCPADS 28242 FCPADS				0.265 0.279	1.63 1.€3	8.0	0.59	0.25	1.47	4.14	0.	0. -0.82	6.46	1.313	-8.		0	67 64
28242 FCMCDS				0.354	1.63	9.7 8.1	0.72 0.60	0.31 0.26	1.82 1.36	5.29 3.64	^O. O.	0.82	7.31 5.85	1.487	-12. -6.		0	97
28242 FCMCDS				0.360	1.63	8.4	0.62	0.27	1.38	3.86	0.	-0.19	5.94	1.208	- <del>7.</del>	<del></del>	<del>~</del> _	<u>-97</u> 89
28651 ONOCGN			0.	0.300	0.03	16.5	1.22	0.52	0.81	10.48	1.34	0.19	14.37	1.000	o.		ő	09
28651 STM141			•	0.071	0.03	20.1	1.53	0.65	1.17	10.99	0.	0.	14.34	0.997	-2.		5	13
28651 STM141				0.322	0.03	22.0	1.67	0.71	1.09	14.68	o.	-5.84	12.31	0.857	4.	:	24	4
28651 STM141				0.071	0.03	35.6	2.70	1.15	2.31	6.38	0.	0.	12.54	0.872	-4.		1	
28651 STM141			7	0.322	0.03	40.1	3.04	1.29	2.29	8.53	o.	-5.84	9.31	0.647	4.	-	7	6
28651 STM141				0.071	0.03	33.9	2.57	1.09	2.22	6.38	Ö,	0.	12.27	0.854	-2.		2	7
28651 STM141	COAL-AF			0.322	0.03	34.0	2.58	1.10	2.22	8.53	Ō.	-5.84	8.58	0.597	9.		2:3	5
28651 STH088	RESIDUA	4.	1.00	0.071	0.03	19.9	1.51	0.64	1.18	10.99	0.	0.	14.32	0.997	-2.		G	12
28651 STM088	RES I DUA	4.	6.27	0.278	0.03	20.0	1.51	0.64	1.03	13.66	Ο.	-4.23	12.62	0.878	4.	2	29	4
28651 STM088	COAL-FO	4.	1.00	0.071	0.03	35.8	2.72	1.16	2.33	6.38	Ο.	Ο.	12.58	0.875	-4.	1	1	8
28651 STM088	COAL-FO	4.	6.27	0.278	0.03	37.3	2.83	1.20	2.15	7.93	ο, ·	-4.23	9.89	0.688	4.		7	6
28651 STM088			1.00	0.071	0.03	34.0	2.58	1.10	2.25	6.38	0.	0.	12.30	0.856	-2.	1	2	8
28651 STM088		• •		0.278	0.03	32.7	2.48	1.05	2.15	7.93	Ο.	-4.23	9.39	0.653	8.	2	22	5
28651 PFBSTM				0.070	0.03	34.4	2.61	1.11	2.28	6.39	Ο.	Ο.	12.38	0.862	-3.		12	8
28651 PFBSTM			12.74		0.03	47.3	3.59	1.53	3.66	9,93	<u>0.</u>	-9.42	9.28	0.646	1.		5	7
28651 TISTMI				0.070	0.03	28.7	2.18	0.93	1.36	11.00	0.	0.	15.46	1.076	-10.		0	999
28651 TISTMT			10.17		0.03	87.3	6.62	2.82	3.00	15.77	0.	-7.36	20.85	1.450	-54.		0	249
28651 TISTMT 28651 TISTMT		4. 4.	16.73	0.070	0.03 0.03	43.9 150.8	3.33 11.44	1.42 4.87	2.46 5.16	6.39 11.14	0. 0.	0. -12.63	13.60 19.98	0.946 1.390	-11. -82.		<b>'</b>	11 25
28651 TIHRSG		<u></u>		0.056	0.03	36.2	2.68	1.14	1.50	11.17	0.	0.	16.48	1.147	-16.	<del></del>	<del>-</del>	97
28651 TIHRSG			-	0.178	0.03	74.2	5.50	2.34	2.51	13.49	0.	-2.73	21.11	1.468	-18. -48.		0	83
28651 TIHRSG		4.		0.056	0.03	53.2	4.04	1.72	2.66	6.48	Ö.	0.	14.90	1.037	-20.		4	16
28651 TIHRSG		4.		0.237	0.03	128.6	9.76	4.15	4.36	8.96	Ö.	-5.01	22.23	1.547	-79.		Ö	999
28651 STIRL	DISTILL			0.051	0.03	22.8	1.69	0.72	1.16	13.76	0.	0.	17.33	1.206	-12.		<del>ŏ</del> -	58
28651 STIRL	DISTILL		11.61		0.03	42.4	3.14	1.33	1.84	23.41	õ.	-8.52	21.20	1.475	-34.		ŏ	61
28651 STIRL	RESIDUA			0.051	0.03	22.8	1.69	0.72	1.16	11.22	o.	0.	14.79	1.029	-4.		o	999
28651 STIRL	RESIDUA	4.	11.61		0.03	42.4	3.14	1,34	1.84	19.10	Ο.	-8.52	16.90	1.176	-20.		0	136
28651 STIRL	COAL	4	1.00	0.051	0.03	36.7	2.72	1.16	2,23	6.52	Ο.	0.	12.62	0.878	-4.	1	1	. 8

PAGE 55

DATE 06/07/79

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

	<del></del>		ENSIT	IVITY O	F CAPI	TAL COS	Ť		PERC	ENT OF	ORIGINA	L COS	T 100				<del></del>	
			,					****LEVE					\$ MILLION	(S)****	*****			£3
ENERGY	CONV	SITE-	POWER	POWER	FESRP			PITAL TA	XES GA	NDM FL			REVNUE TO	TAL N	ORML PE	RESNT		ROSS
SYS	TEM	FUEL	REGD	GEN/		/HEAT			+			<b>ELEC</b>				WORTH	<u> </u>	PAY
			MW	REQD	i	* DITAS	10**6	1	NSNC							15%		BACK
28651	HEGT85	COAL-AF	4.	1.00	0.025	0.03	40.0	3.04	1.29	2.21	6.70	٥.	Ο.	13.23	0.921	-8.	8	3 10
28651	HEGT85	COAL-AF	4.	59.06	0.194	0.03	256.2	19.44	8.27	9.72	42.17	0.	-46.61	32.99	2.295	-174.	C	999
28651	HEGT60	COAL-AF	4.	1.00	0.028	6.03	39.7	3.01	1.28	2.21	6.68	0.	0.	13.18	0.917	-8,		) 1:
28651	HEGT60	COAL-AF	4.	26.58	0.190	0.03	144.0	10.93	4.65	5.63	21.78	Ο.	-20.53	22.46	1.563	-87.	. 0	99:
28651	HEGT00	COAL-AF	4.	1.00	0.029	0.03	39.3	2.98	1.27	2.23	6.67	Ο.	Ο,	13.15	0.915	-7.	9	
28651	HEGT00	COAL-AF	4.	11.97	0.152	0.03	85,2	6.47	2.75	3.60	13.11	0.	-8.80	17.12		-42.	1	2.
28651	FCMCCL	COAL	4.		-0.511	0.03	43.2	3.36	1.43	2.38	10.38	0.	0,	17.55	1.221	-24.		
28651	FCMCCL	COAL	4.	2t.77	0.224	0.03	104.2	8.10	3.44		17.94	Ο.	-16.68	18.59		-57.	C	_
28651	FCSTCL	COAL	4.	1.00	-0.508	0.03	42.4	3.29	1.40	2.40	10.36	Ο.	ο.	17.45		-23.	Q	
	FCSTCL_		4.		0.339	0.03	129.9	10.10	4.29	7.23	22.24	<u> </u>	-27.44	16.43	1.143	-63.	3	
	IGGTST		4.		-0.521	0.03	40.6	3.15	1.34	2.35	10.45	ο.	0.	17.29	1.203	-21.	c	-
	IGGTST		4.		0.187		101.1	7.86	3.34	3.46	20.73	o.	-19.10	16.31	1.135	-48.	3	
		RESIDUA			0.053	0.03	21.3	1.58	0.67	1.09	11.20	٠٥.	0.	14.54	1.011	-3.	2	
		RESIDUA			0.296	0.03	32.0	2.37	1.01	1.51	20.38	0.	-10.19	15.07	1,049	-9.		
		RESIDUA			0.060	0.03	20.7	1.54	0.65	1.08	11.12	0.	0.	14.38	1.001	-2.		
		RESIDUA			0.309	0.03	26.6	1 / 97	0.84	1.35	17.37	0.	-7.93	13.62		-2.	10	
		RESIDUA			0.060	0.03	20.7	1.53	0.65	1.07	11.12	ο.	0.	14.38	1.000	-2.	5	-
		RESIDUA			0.334	0.03	30.4	2.25	0.96	1.46	19.09	<u> 0.</u>	-10.03	13.73	0.955	<u>-5.</u>	8	
		RESIDUA			0.059	0.03	20.8	1.54	0.66	1.07	11.13	0.	0.	14.40	1.002	-2.	4	
		RESIDUA			0.344	0.03	33.7	2.50	1.06	1.55	20.32	0.	-11.41	14.03		-7.	6	-
		RESIDUA			0.053	0.03	21.1	1.56	0.66	1.08	11.20	0.	0.	14.51	1.010	-3.	2	
		RESIDUA			0.315	0.03	33.0	2.45	1.04	1.55	22.04	0.	-12.12	14.96	1.041	-10.		
		RESIDUA			0.053	0.03	20.9	1.58	0.67	1.14	11.20	0.	0.	14.60	1.016	-3.	0	_
-		RESIDUA			0.361	0.03	43.3	3.29	1.40	2.00	29.76	ο.	-20.69	15.75	1.096	-17.	Q	
		RESIDUA			0.056	0.03	20.6	1.56	0.67	1.14	11.17	0.	0.	14.54	1.011	-3.	1 2	
		RESIDUA			0.369	0.03	43.3	3.28	1.40	1.96	27.12	<u>o.</u>	-18.56	15.20	1.057	<u>-16.</u>		
-		RESIDUA			0.056	0.03	20.5	1.55	0.66	1.13	11.17	0.	0.	14.51	1.010	-3. -14.	3	
		RESIDUA			0.373	0.03	41.3	3, 13	1.33	1.93	26.91	0. 0.	-18.49 0.	14.81 14.49	1.031	-14. -3.	2	
		RESIDUA			0.060	0.03	20.7	1.57	0.67	1.14	11.12	0.	-14.65	13.66		-3. -7.	8	
		RESIDUA RESIDUA			0.376	0.03	35.3	2.68 1.54	0.65	1.75	22.74 11.60	<del>0.</del>	0.	14.89	1.036	- <u>/.</u> -4.		
	- ;	RESIDUA		605.18		0.03	20.8	49.04	20.85		685.34	o.	-485.02				C	_
		RESIDUA			0.171	0.03	662.2 20.6	1.52	0.65	1.09	11.50	Ö.	-465.02 0.	14.75	1.026	1231. -3.	0	
		RESIDUA			0.028	0.03	79.0	5.85	2.49	4.22	67.24	ο.	-44.12	•		-96.	Č	
		RESIDUA	<del> </del>		0.032	0.03	20.5	1.52	0.65	1.09	11.45	<del>0.</del>	0.	14.70	1.023	-3.	<u>c</u>	
		RESIDUA			0.032	0.03	50.6	3.74	1.59	2.92	42.26	o.	~25.56	24.97	1.737	-49.	Č	
		RESIDUA			0.042	0.03	24.7	1.83	0.78	1.19	11.34	0.	0.	15.14	1.054	-6.	Č	
-		RESIDUA			0.297	0.03	105.4	7.81	3.32	3.56	39.70	o.	-26.60	27.79		-84.	Č	
		RESIDUA			0.062	0.03	24.8	1.84	0.78	1.23	11.10	0.	0.	14.95	1.040	-64. -6.		
		RESIDUA			0.368	0.03	60.1	4.45	1.89	2.38	20.66	o.	-12.41		1.181	-29.	Ċ	
		DISTILL			0.036	0.03	23.9	1.77	0.75	1,17	13.99	o.	0.	17.68	1.230	-14.	o	-
		DISTILL			0.260	0.03	146.5	10.85	4.61	4.63	57.35	o.	- <b>30</b> .62	46.82			Ö	
				<del></del>					0.75	1.17	11.41	<del>0.</del>	0.	15.10				
023T	PESCA3	RESIDUA	4.	1.00	0.036	0.03	23.9	1.77	U. /S			<u></u>	<u></u>	13.10		-6.		, 1

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGEMERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 56

		SEN	ISITI	VITY OF	CAPIT	TAL CO	ST *******				ORIGINAL			C145454	*****			
NERGY CON	V SITE		WER EQD	POWER GEN/	FESRP	WER C	APITAL CAP				EL PU		REVNUE TO			RESNT F		ØSS PAY
SISIEN	FUEL		IW	REQD			*10**6	ī	NSNC			CLLY				15%		ACK
8651 GTS0	AN NISTI		4.	1 00	0.058	/0.03	20.5	1.52	0.65	1.07	13.67	0.	0.	16.90	1.176	-10.	o	5
8651 GTSC			4.		0.315	0.03	27.5	2.03	0.86	1.39	23.45	o.	-9.59	18.15	1.263	-17.	ŏ	5
6651 GTRA			4.		0.054	0.03	21.4	1.59	0.67	1.08	13.71	Ö.	0.	17.05	1.187	<del>-ii.</del>	<u>_</u>	5
8651 GTRA			4.	20.80		0.03	43.1	3.20	1.36	1.82	30.82	Ö.	-15.90	21.30	1.482	-34.	Q	6
8651 GTRA			4.		0.055	0.03	21.3	1.58	0.67	1.08	13.70	o.	0.	17.03	1.185	-11,	ő	5
8651 GTRA			4.	20.44		0.03	41.6	3.08	1.31	1.78	30.20	٥.	-15.61	20.76	1.445	-32.	0	6
8651 GTRA			4.		0.056	0.03	21.5	1.60	0.68	1.09	13.69	0.	0.	17.05	1.187	-11.	O	5
8651 GTRA	16 DISTI	LL	4.	19.17	0.348	0.03	41.9	3.10	1.32	1.78	29.05	õ.	-14.59	20.67	1.438	-32.	0	6
8651 GTR2	OB DISTI	LL	4.	1.00	0.055	0.03	21.1	1.56	Ò.66	1.08	13.70	٥,	0.	17.01	1.183	-10.	. 0	5
28651 GTR2	OB DISTI	LL	4.	16.00	0.327	0.03	34.2	2.53	1.08	1,58	26.44	0.	-12.04	19.59	1.363	-25.	0	6
8651 GTR2	12 DISTI	LL	4.	1.00	0.055	0.03	21.2	1.57	0.67	1.08	13.70	٥.	0.	17.03	1.185	-11.	0	5
8651 GTR2			4.	17.17		0.03	36.5	2.70	1.15	1.64	27.51	Ο.	-12.98	20.02	1.393	-27.	• 0	6
8651 GTR2			4.		0.056	0.03	21.3	1.58	0.67	1.08	13.69	^O.	Ο.	17.02	1.184	-11.	o	5
8651 GTR2			4.	17.58	0.342	0.03	. 38.6	2.86	1.21	1.69	27.59	0.	-13.31	20.04	1.394	-28.	0	6
8651 GTRW	08 DISTI	LL	4.	100	0.046	0.03	21.5	1.59	0.68	1.09	13.84	٥.	0.	17.19	1.196	-11.	0	5
8651 GTRW			4.	24.92		0.03	43.1	3.19	1.36	1.86	37.56	Ο.	-19.21	24.76	1.723	-45.	0	5
8651 GTRW			4.		0.049	0.03	21.5	1.59	0.68	1.08	13.80	٥.	Ο,	17.15	1.193	-11.	0	5
8651 GTRW		-	4.	25.50		0.03	43.6	3.23	1.37	1,86	37.06	<u> 0.</u>	-19.67	23.85	1.659	-42.	<u> </u>	5
8651 GTRW			4.		0.049	0.03	21.6	1.60	0.68	1.09	13.79	ο,	0.	17.16	1.194	-11.	0	5
8651 GTRW			4.	23.78		0.03	43.3	3.21	1.,36	1.85	35.22	0.	-18.28	23.36	1.625	-41.	0	5
8651 GTR3			4.		0.043	0.03	21.2	1.57	0.67	1.08	13.88	Ο.	0.	17.20	1.196	-11.	0	5
8651 GTR3			<u>4.</u>	19.01		0.03	36.5	2.71	1.15	1.67	32.44	<u>o.</u>	<u>-14.46</u>	23.50	1.635	<u>-38.</u>		5
8651 GTR3			4.		0.050	0.03	21.2	1.57	0.67	1.08	13.78	o.	0.	17.10	1.190	-11.	0	5
28651 GTR3			4.	20.92		0.03	37.9	2.81	1.19	1.70	32.35	0,	-15.99	22.07	1.535	-34.	0	5
28651 GTR3			4.		0.049	0.03	21.4	1.59	0.68	1.09	13.79	0.	0,	17.13	1.192	-11.	0	5: 5:
28651 GTR3			<del>4.</del> ,	20.61		0.03	38.9	2.88	1,23	1.72	32.15	<u>o.</u>	-15.74	22.24	1.548	-35. -14.	<u>o</u>	<del></del>
P8651 FCPA			4.		0.037	0.03	23.0	1.70 9.19	0.72 3.91	1.43	13.96	0. 0.	0. -36.25	17.82 62.59	1.240 4.355	-204.	. 0	60
28651 FCPA			4.	46.16		0.03	124.1 23.2	1.72	0.73		64.24 13.78	o.		17.64	1.227	-13.	ő	58
18651 FCMC 18651 FCMC			4. 4.	36.51	0.050	0.03	107.5	7.96	3.38	1.41 16.24	46.87	0.	0. -28.51	45.94	3.197	-143.	ŏ	6
8653 ONOC			6.	0.	0.300	0.03	9.3	0.69	0.29	0.57	10.53	1.89		13.97	1.000	0.	<del>- </del>	
8653 STM1			6.		0.096	0.07	12.4	0.94	0.40	0.94	11.25	0.	0.	13.53	0.968	-0.	13	
8653 STM1			6.		0.179	0.07	12.0	0.91	0.39	0.75	12.13	o.	-1.39	12.78	0.915	2.	27	
8653 STM1			6.		0.096	0.07	28.0	2.12	0.90	1.92	6.53	o.	0.	11.47	0.821	-1.	13	
8653 STM1		-	6		0.179	0.07	25.3	1.92	0.82	1,58	7.04	0.	-1.39	9.97	0.713	5.	19	
8653 STM1			6.		0.096	0.07	24.5	1.86	0.79	1.80	6.53	o.	0.	10.99	0.786	2.	16	
8653 STM1			6.		0.179	0.07	18.2	1.38	0.59	1.41	7.04	Ö.	-1.39	9.03	0.646	11.	33	
8653 STMO			6.		0.096	0.07	11.8	0.90	0.38	0.92	11.25	õ.	o.	13.45	0.963	Ö.	16	
8653 STMO			6.		0.130	0.07	10.7	0.81	0.34	0.71	11.57	O.	-0.51	12.92	0.925	3.	38	
8653 STMO			6.		0.096	0.07	27.1	2.06	0.87	1.87	6.53	Ö.	o.	11.34	0.811	-1.	14	
28653 STM0			6.		0.130	0.07	23.3	1.77	0.75	1.48	6.72	0.	-0.51	10.21	0.731	5,	20	:
28653 STM0	88 COAL-	AF	6.	1.00	0.096	0.07	22.7	1.72	0.73	1.76	6.53	0.	0.	10.75	0.759	3.	19	1
2853 STM0			6		0.130	0.07	17.1	1.30	0.55	1.36	6.72	0.	-0.51	9.42	0.674	10.	34	



DATE 06/07/79 L&SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 57

			SENSIT	IVITY OF	CAPIT	TAL CO					ORIGINA			<b>6</b> \ <b>1 1 1 1 1 1 1 1 1 1</b>					
ENERGY		SITE-			FESRP		APITAL CAF		KES OA		EL PU	RCHD I	S MILLION REVNUE TO			RESNT	ROI	GRO	
SYS	TEM	FUEL	REQD MW	GEN/ REQD		/HEAT			YSNC			ELEC				WORTH 15%	<u> </u>	EA	AY CK
			1.00	ILLUD	•		-100	• •	10110									U.A	VII.
28653	PFBSTM	COAL-P	F 6.	4.06	0.256	0.07	30.8	2.34	0.99	2.37	7.90	Ο.	-3.48	10.12	0.724	1.		16	e (
28653	TISTMT	RESIDU		1.00	0.094	0.07	26.7	2.03	0.86	1.27	11.27	0.	0.	15.43	1.104	-13.		0_	999
		RESIDU	A 6.		0.308	0.07	74.9	5.68	2.42	2.37	14.67	Ο.	-5.22	19.92	1.426	-50.		0	250
	TISTMT		6.		0.094	0.07	42.9	3.26	1.39	2.24	6.54	٥.	0.	13.43	0.961	-15.		6	12
	TISTMT		6.		0.308	0.07	95.0	7.21	3.07	3.39	8.52	ο.	-5.22	16.96	1.214	-51.		2	23
		RESIDU			0.050	0.07	34.1	2.53	1.08	<u> </u>	11.82	<u>o.</u>	0.	16.81	1.203	-21.		<u> </u>	89
		RESIDU	A 6. 6.		0.125	ህ. 07 0. 07	72.8	5.39	2.29	2.19 2.42	14.97 6.86	0. 0.	~2.78	22.06 14.90	1.579	~55.		0 3	76
	TIHRSG		6. 6.		0.050	0.07	52.0 93.2	3.95 7.08	1.68 3.01	3.23	8.69	0.	0. -2.78	19.23	1.067	-24. -57.		Ö	16 999
	STIRL	DISTIL			0.064	0.07	14.2	1.05	0.45	0.92	14.28	o.	0.	16.69	1.195	-11.		ŏ	58
	STIRL	DISTIL			0.221	0.07	31.3	2.32	0.99	1.25	21.53	<del></del>	-6.02	20.06	1.436	-29.		ŏ	60
	STIRL	RESIDU			0.064	0.07	14.2	1.05	0.45	0.92	11.65	Ŏ.	Ŏ.	14.06	1.007	-3.		3	ĭ
	STIRL	RESIDU			0.221	0.07	31.4	2.32	0.99	7.25	17.57	٠٥.	-6.02	16.10	1.152	-17.		ŏ	130
28653	STIRL	COAL	6.		0.064	0.07	28.5	2.11	0.90	1.83	6.76	Ο.	0.	11.61	0.831	-2.		13	7
8653	STIRL	COAL	ક.	6.30	0.221	0.07	54.7	4.05	1.72	2.43	10.20	0.	-6.02	12.38	0.886	-16,		7	10
8653	HEGT60	COAL -A	F 6.	1.00-	0.003	0.07	35.7	2.71	1.15	1,92	7.24	Ο.	0.	13.02	0.932	-10.		7	11
8653	HEGT60	COAL-A	F 6,	25, 29-	0.014	0.07	173.2	13.14	5.59	6.92	34.63	Ο.	-27.60	32.67	2.338	-138.		0	98
		COAL-A		1.00	0.026	0.07	34.5	2,62	1.11	1.90	7,03	0.	0,	12.67	0.907	-8.		8	_ 10
		COAL-A		5.37	0.087	0.07	61.8	4.69	1.99	2.61	11.22	0.	-5.19	15.32	1.096	-30.		2	19
	FCMCCL		6,		0.081	0.07	35.2	2.74	1.16	2.00	6.63	Ο.	Ο.	12.54	0,897	-9.	·	9	10
	FCMCCL		6.		0.335	0.07	71.3	5.55	2.36	3,87	11.05	0.	-9.63	13.19	0.944	-29.		6	12
	FCSTCL		<u>         6.                           </u>		0.085	0.07	34.6	2.69	1.14	2.03	6.61	0,	<u>0.</u>	12.48	0.893	-8.		_9	
	FCSTCL		6.	13.01		0.07	82.3	6.40	2.72	4.52	12.59	0,	-13.65	12.58	0.901	-32.		6	12
	IGGTST		6.		0.065	0.07	34.1	2.65	1.13	1.98	6.75	0.	0.	12.50	0.895	-8.		9	
	IGGTST	RESIDU	6; A 6;		0.262	0.07	63.9	4.97	2.11	2.38	11.73	0.	-8.89	12.29	0.880	-22.		7	11
		RESIDU		11.11	0.060	0.07	14.3	1.06	0.45	0.87 1.12	11.69 23.40	<u>0.</u> 0.	0. -11.49	14.06	1.007	<u>-3.</u> -15.		3	<u>17</u> 94
		RESIDU			0.283	0.07	27.6 13.7	2.04 1.02	0.87 0.43	0.85	11.42	o.	0.	13.72	0.982	-15. -1.		9	94
		RESIDU			0.311	0.07	20.0	1.48	0.63	0.89	17.35	0.	-7.58	12.76	0.914	-1.		12	7
		RESIDU			0.080	0.07	13.7	1.02	0.43	0.85	11.44	o.	0.	13.73	0.983	-1.		9	10
		RESIDU			0.333	0.07	23.8	1.76	0.75	1.00	19.31	<del>0</del> .	-9.82	13.00	0.930	-4.		10	<u>}</u>
		RESIDU			0.077	0.07	13.9	1.03	0.44	0.85	11.48	Ö.	0.	13.80	0.988	-2.		ě	10
8653	GTAC16	RESIDU.	A 6,	11,25		0.07	- 27.7	2.05	0.87	1.11	21.28	Õ.	-11.65	13.66	0.978	-8.		6	12
8653	GTWC16	RESIDU	<b>4</b> 6.	1.00	0.072	0.07	14.2	1.05	0.45	0,86	11.54	Ο,	Ο.	13.90	0.995	-2,		6	12
8653	GTWC16	RESIDU	۹ 6.	11.38	0.316	0.07	26.3	1.95	0.83	1.08	22.07	0.	-11.80	14.12	1.011	-8.	~	4	15
8653	CC1626	RESIDU	A 6.	1.00	0.070	0.07	14.0	1.06	0.45	0.93	11.57	Ο.	Ο.	14.01	1.003	-2.		4	15
		RESIDU		16.52		0.07	33.4	2.54	1.08	1.43	27.69	Ο.	-17.64	15.10	1.081	-15.		0	28
		RESIDU			0.073	0.07	13.7	1.04	0.44	0.92	11.52	0.	0.	13.93	0.997	-2.		_5	13
		RESIDU		14.82		0.07	33.2	2.52	1.07	1.39	25.27	0.	-15.71	14.55	1.041	-13,		3	18
		RESIDU			0.074	0.07	13.5	1.03	0.44	0.92	11.51	0.	0.	13.90	0.995	-2-		6	12
		RESIDUA		14.72		0.07	31.4	2.38	1.01	1.36	25.04	0.	-15.59	14.21	1.017	-12.		4	15
		RESIDU			0.080	0.07	13.7	1.04	0.44	0.93	11.45	<u> </u>	<u> </u>	13.86	0.992	-2.			11
8003	000822	RESIDU	4 6,	11.58	U.351	0.07	26.0	1,97	0.84	1.20	21.16	0.	-12.02	13.16	0.942	~6.		8	11

DATE 06/07/79

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 58

ECONOMIC SENSITIVITY REPORT FOR SELECTED PROCESS-ECS MATCHES

ļ							<u></u>											
			SENSIT	IVITY OF	CAPIT	AL CO	ST ********	***! 5/5!		ENT OF				<b>S14444</b>	~~~~			٠
ENERGY	CONV	SITE-	POWER	PAVER	FESRRE	WER C	APITAL CAP						EVNUE TO			ESNT ROI	GRO	SS
	STEM	FUEL	REQD	GEN/	LON	/HEAT		TIPE 100	+		'LL 1 C	ELEC	24,102 13	106 10				YAY
	<u> </u>	- 1025	MW	REQD	R		*10**6	- 11	ISNC							15%	BA	
					•			••	10.10								-,.	
28653	DEHTPM	RESIDU	JA 6.	9,24	0.263	0.07	52.6	3.90	1.66	1.89	20.74	Ο.	-9.36	18.83	1.348	-36.	0	88
28653	GTSOAD	DISTIL	.L 6.	1,00	0.075	0.07	13.5	1.00	0.42	0.84	14.10	0.	0.	16.37	1.171	-9 <u>.</u>	0	58
28653	GTSOAD	DISTIL	L 6.	9.44	0.308	0.07	21.2	1.57	0.67	0.93	24.20	٥.	-9.59	17.78	1.273	-18.	0	59 .
28653	<b>GTRAO8</b>	DISTIL	L 6.	1.00	0.060	0.07	14.4	1.07	0.45	0.86	14.33	Ο.	Ο.	16.71	1.196	-11.	0	50 '
28653	GTRA08	DISTIL	.L 6.	19.09	0.305	0.07	42.8	3,17	1.35	1.55	40.02	Ο.	-20.55	25.54	1.828	-52.	0	59
	GTRA12				0.064	0.07	14.4	1.07	0.45	0.86	14.27	0.	0.	16,65	1.192	-11.	0	- 58
	GTRA12				0.318	0.07	40.0	2.96	1,26	1.47	37.24	Ο.	-19.10	23.84	1.706	-45.	0	59
11	GTRA16				0.065	0.07	14.7	1.09	0.46	0.87	14.25	ο.	0.	16.66	1.193	~11.	0	58
11	GTRA16			16,07		0.07	39.3	2.91	1.24	1.44	34.47	0.	-17.12	22.93	1.641	-42.	0	60
<del> </del>	GTR208			1.00		0.07	14.1	1.05	0.44	0.86	14.23	<u> 0.</u>	<u> </u>	16.58	1.186	-10.	<u> </u>	58
11	GTR208			12.67		0.07	29.6	2.19	0.93	1.17	29.65	0.	-13.26	20.68	1.480	-31.	0	59
11	GTR212				0.067	0.07	14.3	1.06	0.45	0.86	14.23	0.	0.	16.59	1.188	-11.	0	58
[]	GTR212		-	13.61		0.07	32.0	2.37	1.01	1.24	30.88	·0.	-14.33	21.17	1.515	-33.	0	59
	GTR216				0.068	<u>0.07</u>	14.4	1.07	0.45	0.86	14.21 31.20	<u>o.</u>	0.	16.59 21.31	1.187	-11. -35.	0	58
	GTR216 GTRW08			14.04		0.07 0.07	34.4	2.55 1.08	1.08 0.46	1.30 0.86	14.46	0. 0.	-14.82 0.	16.85	1.206	-35. -12.	0	60°
[f · -	GTRW08			22,19		0.07	14.5 42.1	3.12	1.33	1.57	47.32	o.	-24.07	29.26	2.094	-63.	ŏ	58
	GTRW12				0.058	0.07	14.5	1.08	0.46	0.86	14.37	0. 0.	0.	16.76	1.200	-11.	Ô	58
	GTRW12			21.65		0.07	41.3	3.06	1.30	1.54	44.53	<del>0.</del>	-23.47	26.96	1.929	-56.	<del></del>	58
	GTRW16				0.060	0.07	14.7	1.09	0.46	0.87	14.34	o.	0.	16.76	1.200	-11.	ñ	58
	GTRW16		:	19.32		0.07	39.8	2.95	1.25	1,48	40.52	o.	-20.82	25.39	1.817	-50	Ö	59
	GTR308				0.047	0.07	14.2	1.05	0.45	0.86	14.53	o.	0.	16.89	1.209	-11.	ŏ	58
	GTR308				0.229	0.07	33.7	2.49	1.06	1.32	39.38	0.	-17.39	26.87	1.923	-52.	0	58
	GTR312				0.063	3 07	34.3	1.06	0.45	0.86	14.28	õ.	0.	16.65	1.192	-11.	ō	58
28653	<b>GTR312</b>	DISTIL	.L 6.	15,89	0.305	0.07	2.6	2.41	1.03	1.28	34.78	Ō.	-16.92	22.58	1.616	-38.	0	59
28653	<b>GTR316</b>	DISTIL	.L 6.	1.00	0.063	0.07	14.5	1.07	0.46	0.86	14.29	Ο.	О.	16.68	1.194	-11.	0	58
28653	GTR316	DISTIL	.L 6.	15,60	0.30%	0.07	33.5	2.48	1.06	1.30	34.46	0.	-16.59	22.70	1.625	-39.	0	59
28653	<b>FCPADS</b>	DISTIL	L 6.	1.00	0.05	0.07	15.3	1.13	0.48	1.35	14.48	0.	٥.	17.44	1,248	-14.	0	58
28653	<b>FCPADS</b>	DISTIL	L 6.	32.76	0.273	0.07	113.7	8.42	3.58	21.02	64.53	О.	-36.08	61.47	4.400	-200.	0	60
	FCMCDS				0.067	0.07	15.6	1.15	0.49	1.31	14.23	0.	0.	17.17	1.229	-13.	0	58
ž.	FCMCDS				0.350	0.07	97.8	7.25	3.08	15.76	47.08	0,	-28.31	44.86	3.211	-140.	0	61
	ONGCGN				0.	0.01	6.5	0.48	0.20	0.47	7.44	0.21		8.81	1.000	٥.	0	0
	STM141				0.017	0.01	8.4	0.63	0.27	0.72	7.52	Ο,	Ο.	9.15	1.039	-2.	0	74
	STM141				0.103	0.01	8.6	0.65	0.28	0.62	7.99	0.	-0.75	8.79	0.998	-1.	5	13
	STM141			1.00		0.01	19.8	1.50	0.64	1.46	4.37	0.	٥.	7.96	0.904	-4.	9	9
	STM141				0.103	0.01	18.6	1.41	0.60	1.24	4.64	ο.	-0.75	7.15	0.812	-1.	14	7
	STM141			1.00		0.01	19.1	1.45	0.62	1.40	4.37	0.	0.	7.83	0.889	-3.	10	9
	STM141				0.103	0.01	13.6	1.03	0:44	1.10	4.64	<u> </u>	-0.75	6.46	0.733	4.	23	5
	PFBSTM PFBSTM				0.016	0.01	18.8	1.43	0.61	1.35	4.37	0.	0.	7.76	0.881	-3.	11	8
				17.93		0.01	23.2	1.76	0.75	1.77	5.24	0.	-2.16	7.37 9.36	0.837 1.063	-4. -4.	11 0	77
	TISTMT			1.00		0.01	10.4 55.5	0.79	0.33 1.79	0.72 1.83	7.52	0. 0.	0.	14.23	1.616	-4. -41.	0	93
	TISTMT		<u>'^ </u>	26.49 1.00		0.01	21.2	4.21 1.61	0.68	1.41	9.66 4.37	<u>0.</u>	-3,25 0.	8.07	0.916	-41. -5.	9	10
50004	113111	UUAL_		1.00	0.017	0.01	<u> </u>	1.01	. 0.00	1.41	4.3/	U.	U.	0.07	U. 310	-9.	-	

ζ"

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			SENSIT	IVITY O	F CAPI					ENT OF								
NERGY	CONV	SITE-	POWER	POWER	FESRP		PITAL CA						S MILLION REVNUE TO			RESNT	ROI GR	:05 <b>S</b> .
SYS	TEM	FUEL	REQD	GEN/		/HEAT	COST		. +			ELEC				WORTH	*	FAY ?
			MW	REQD		RATIO *		1	NSNC				······································			15%	. 6	ACK
													•					
8654	TIHRSG	RESIDUA	1.	1.00	0.009	0.01	11.3	0.84	0.36	0.69	7.58	0.	o.	9.47	1.075	-4.	0	7.
8654	TIHRSG	RESIDUA	1.	21.68	0.125	0.01	57.7	4.27	1.82	1.77	10.58	0.	-2.64	15.80	1.794	-46.	0	7
8654	TIHRSG	COAL	1.	1.00	0.009	0.01	22.4	1.70	0.72	1.38	4.40	0.	0.	8.21	0.932	-6,	8	1
	TIHRSG		i.	21.68	0.125	0.01	74.0	5.62	2.39	2.60	6.14	ο.	-2.64	14.11	1.602	-49.	0	99
8654	STIRL	DISTIL	. 1.	1,00	0.012	0,01	9.0	0.67	0.28	0.64	9.27	ο.	Ö.	10.86	1.233	-8.	0	5
8654	STIRL	DISTIL	. 1.	39.60	0.221	0.01	23.2	1.72	0.73	1.00	15.21	Ο.	-4.93	13.73	1.560	-23.	0	6
8654	STIRL	RESIDUA	1.	1.00	0.012	0.01	9.0	0.67	0.28	0.64	7.56	O.	0.	9.15	1.040	-2.	0	7
8654	STIRL	RESIDUA	1.	39.60	0.221	0.01	23.3	1.72	0.73	1.00	12.41	0.	-4.93	10.94	1.242	-15.	0	7
8654	STIRL	COAL	1.	1.00	0.012	0.01	19.4	1.44	0.61	1.30	4.39	Ο.	0.	. 7.74	0.879	-3.	: 11	
8654	STIRL	COAL	1.	39.60	0.221	0.01	41.2	3.05	1.30	1.91	7.21	0.	-4.93	8.54	0.969	-15.	5	1
8654	HEGT60	COAL-A	1.	1.00	-0.000	0.01	19.0	1.44	0.61	1.23	4.45	0.	0.	7.72	0.877	-3.	11	
8654	HEGT60	COAL-AF	1.	158.97	-0.014	0.01	139.1	10.55	4.49	5.43	24.46	0.	-20.18	24.76	2.811	-114.	0	6
8654	HEGT00	COAL-AF	1.	1.00	0.005	0.01	18.9	1.43	0.61	1.23	4.42	Ο.	0.	7.70	0.874	-3.	11	
8654	<b>HEGTOO</b>	COAL-AF		35.01	0.087	0.01	49.6	3.76	1.60	2.07	7.93	٥.	-4.34	11.02	1.252	-28.	0	91
8654	FCMCCL	COAL	1.	1.00	0.015	0.01	21.5	1.67	0.71	1.31	4.38	0.	0.	8.07	0.916	-5.	8	1
8654	FCMCCL.	COAL	1.	59.55	0.335	0.01	57.0	4.43	1.88	3.00	7.81	o.	-7.48	9.64	1.095	-28.	4	1
	FCSTCL		i.		0.015	0.01	21.4	1.66	0.71	1.35	4.38	0.	o.	8.10	0.920	-5.	8	1
	FCSTCL		1.		0.365	0.01	61.6	4.79	2.04	3,31	8.32	o.	-8.88	9.58	1.088	-30.	4	1
	IGGTST		1.		0.011	0.01	20.8	1.61	0.69	1.38	4.39	Ō.	0.	8.07	0.917	-5.	8	1
	IGGTST		1.		0.227	0.01	48.4	3.76	1.60	1.91	7.73	Ö.	-5.70	9.31	1.057	-22.	4	i
		RESIDUA			0.011	0.01	8.3	0.62	0.26	0,60	7.57	o.	. 0.	9.04	1.027	-2.	Ó	ε
		RESIDUA			0.263	0.01	21.9	1.62	0.69	0.93	16.53	Õ.	-8.79	10.98	1.247	-14.	ŏ	7
		RESIDUA			0.015	0.01	8.2	0.61	0.26	0.59	7.54	0.	0.	9.00	1.022	-1	0	10
	• • • • • •	RESIDUA			0.311	0.01	15.9	1.18	0.50	0.74	12.26	õ.	~6.03	8.65	0.982	-4.	. 6	1
		RESIDUA			0.015	0.01	8.1	0.60	0.26	0.59	7.54	o.	Ö.	8.99	1.021	-1	Ö	10
		RESIDUA			0.333	0.01	18.8	1.39	0.59	0.83	13.64	o.	-7.61	8.84	1.003	-6.	5	ì
		RESIDU/			0.014	0.01	8,1	0.60	0.26	0.59	7.55	Ö.	0.	8.99	1.021	-1.	<u>ō</u>	10
		RESIDUA			0.335	0.01	21.8	1.61	0.69	0.92	15.03	Õ.	-8.91	9.34	1.061	-ġ.	ĭ	ż
		RESIDUA			0.013	0.01	8.3	0.61	0.26	0.59	7.55	õ.	0.	9.02	1.024	-2.	ò	g
		RESIDUA			0.316	0.01	21.0	1.56	0.66	.0.90	15.59	o.	-9.01	9.70	1.102	-10	ŏ	99
		RESIDUA			0.012	0.01	9.3	0.69	0.29	0.66	7.56	0.	0.	3,20	1.045	-3.	<u>ŏ</u>	7
		RESIDUA	• • •		0.263	0.01	- 38.9	2.88	1.22	1.49	14.66	o.	-7.29	12.96	1.472	-28.	ŏ	7
		DISTILL			0.014	0.01	8,1	0.60	0.25	0.59	9.25	o.	0.	10.70	1.215	-7.	ŏ	ė
		DISTILL			0.308	0.01	16.8	1.25	0.53	0.78	17.10	o.	-7.45	12.20	1.386	-15.	ŏ	è
		DISTILL	1.		0.011	0.01	· 8.3	0.62	0.26	0.59	9.28	<u> </u>	0.	10.75	1.221	-7.	Ö	—— <u>}</u>
		DISTIL		119.96		0.01	34.0	2.52	1.07	1.28	28.27	0.	-15.19	17.96	2.039	-42.	ŏ	5
		DISTILL			0.012	0.01	8.3	0.61	0.26	0.59	9.27	o.	0.	10.73	1.219	-7.	ŏ	5
		DISTILL	. i.	111.93		0.01	31.6	2.34	0.99	1.21	26.31	õ.	-14.17	16.69	1.895	-36.	ŏ	5
		DISTILL			0.012	0.01	8.3	0.62	0.26	0.59	9.27	0.	0.	10.74	1.219	<del>-7.</del>	ŏ	<u>-</u>
		DISTILL		101.00		0.01	31.0	2.30	0.20	1.19	24.35	0.	-12.77	16.04	1.821	-34.	ŏ	ě
		DISTILL			0.012	0.01	8.2	0.61	0.26	0.59	9.27	o.	0.	10.73	1.218	-7.	ŏ	٤
		DISTILL	1.	79.65		0.01	23.4	1.73	0.74	0.97	20.94	Ö.	-10.05	14.34	1.629	-25.	ŏ	Ę
	GTR212			<u> </u>	<u> </u>	<del></del>			<u> </u>	U. 31		◡.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

		SENSI	TIVITY O	F CAPIS	(AL COS	T *******	***LEVEI			ORIGINAL NERGY CO			S)****	*****			
ENERGY CON SYSTEM	/ SITE FUEL	- POWE		FESRP	OWER CA	PITAL CAP	ITAL TA	KES OA	NDM FU		RCHD R	EVNUE TO	TAL NO	RML PR	RESNT RO		OSS PAY
SISIEM	PUEL	MW	REQD	5	RATIO *			NSNC			LLCU				15%		ACK
			KEGD	•			. ••										
28654 GTR2	6 DISTI	LL 1	. 1.00	0.012	0.01	8.3	0.61	0.26	0.59	9.26	Ο.	Ο.	10.73	1.218	-7.	C	57
28654 GTR2	6 DISTI	LL 1	. 88.27	0.318	0.01	27.2	2.01	0.86	1.08	22.04	0.	-11,15	14.84	1.685	-29.	0	. 60
28654 GTRW	B DISTI	LL 1	. 1.00	0.009	0.01	8.3	0.62	0.26	0.59	9.29	0.	0,	10.77	1.222	-7.	0	57
28654 GTRW			. 139.46	0.270	0.01	33.7	2.49	1.06	1.30	33.43	Ο.	-17.68	20.60	2.340	-50.	0	58
28654 GTRW	2 DISTI	LL 1		0.011	0.01	8.4	0.62	0.26	0.59	9,28	Ο.	Ο.	10.75	1.221	<b>-7</b> .	0	57
28654 GTRW			<u>. 136.09</u>		0.01	33.0	2.45	1.04	1.28	31.46	<u>o.</u>	-17.25	18.97	2.154	-44.	<u>o</u>	<u> </u>
28654 GTRW				0.011	0.01	8.4	0.62	0.26	0.59	9.28	0.	0.	10.76	1.222	· -7.	0	57
28654 GTRW			. 121.45		0.01	31.9	2.36	1.00	1.23	28.63	0.	-15.38	17.84	2.026	-40.	0	59
28654 GTR3				0.009	0.01	8.2	0.61	0.26	0.59	9.30	0.	0.	10.76	1.222	-7.	0	57 50
28654 GTR3			. 102.51		0.01	26.8	1.99	0.85	1.10	27.82	<u>o.</u>	<u>-12.96</u>	18.80	2.134	<u>-41.</u>	<u> </u>	<u>58</u>
28654 GTR3				0.012	0.01	8.3	0.62	0.26	0.59	9.27	0.	0.	10.74	1.220	-7.	0	57 59
28654 GTR3				0.305	0.01	26.0	1.93	0.82	1.06	24.57	0.	-12.63	15.76	1.789	-31. -7.	. 0	59 57
28654 GTR3				0.011	0.01	8.4	0.62	0.26	0.59	9,27 24,34	°O.	0. -12.40	10.75 15.86	1.221	-32.	. 0	59
28654 GTR3 28654 FCPA				0.303	0.01	<u>26.8</u> 9.0	1.99 0.66	0.84	1.08 0.63	9.30	0.	0.	10.87	1.235	-8.	0	57
28654 FCPA					0.01	9.0 84.3	6.24	2.65	15.00	9.30 45.59	o.	-26.17	43.32		-146.	0	60
28654 FCMC				0.012	0.01	9.0	0.67	0.28	0.62	9.27	0.	0.	10.84	1.231	-8.	ő	57
28654 FCMC					0.01	72.3	5.36	2.28	11.26	33.26	0.	-20.67	31.48	3.575	-103.	ő	61
28691 ONOC				0.300	0.04	4.7	0.35	0.15	9.38	0.	0.45		1.33	1.000	0.	<del>o</del>	<u>~</u> ;
28691 PFBS				1,000	0.04	15.9	1.21	0.10	1.24	0.	0.40	Č.	2.95	2,230	-11.	ŏ	77
28691 PFBS				1.000	0.04	16.0	1.21	0.52	1.24	o.	o.	-0.82	2.15	1.616	-8.	ŏ	999
26691 TIHR				-1.274	0.04	14.0	1.04	0.44	0.74	1.04	Ö.	0.02	3.26	2.457	-10.	ŏ	63
28691 TIHR		2		1.000	0.04	23.3	1.77	0.75	1.32	0.	<del>- ö.</del>	<del>0.</del>	3.83	2.888	-17.	<u> </u>	78
28691 TIHR		2		1.000	0.04	53.8	4.08	1.73	1.94	Ŏ.	0.	-1.52	6.24	4.699	-39.	ŏ	125
28691 HEGT				1.000	0.04	17.1	1.30	0.55	1.09	o.	Ö.	0.	2.94	2.214	-11.	. 0	82
28691 HEGT				1.000	0.04	35.5	2.69	1.14	1.49	o.	O.	-2.50	2.83	2.129	-20.	Ō	29
28691 FCMC		2		-9.257	0.04	18.0	1.40	0.59	1.13	2.73	0.	0.	5.85	4.409	-21.	0	60
28691 FCMC		2		-0.053	0.04	39.9	3.10	1.32	2.06	4.73	0.	-4.34	6.87	5.175	-35.	0	71
28691 GTSO				-0.103	0.04	6.8	0.50	0.21	0.54	0.51	0.	Ο.	1.76	1.325	-2.	o	65
28691 GTAC	8 RESID	UA 2	1.00	-0.185	0.04	6.5	0.48	0.20	0.53	0.54	0.	Ο.	1.76	1.324	-2.	0	63
28691 GTAC	2 RESID	UA 2	1.00	-0.049	0.04	6.4	0.48	0.20	0.52	0.48	0.	0.	1.69	1.270	-2.	0	65
28691 GTAC	6 RESID	UA 2	1.00	0.009	0.04	6.5	0.48	0.20	0.52	0.45	Ο.	Ο.	1.66	1.252	-2.	0	67
28691 GTWC	6 RESID	UA 2	1.00	-0.016	0.04	6.7	0.50	0.21	0.53	0.47	Ο.	Ο,	1.70	1.282	-2.	0	67
28691 GTS0	DISTI	LL 2	1.00	-0.096	0.04	6.4	0.47	0.20	0.52	0.62	0.	0.	1.81	1.366	-2,	0_	61
28691 GTRA	B DISTI	LL - 2	1.00	0.104	0.04	6.8	0.50	0.21	0.53	0.50	Ο.	0.	1.75	1.321	-2.	О	65
28691 GTRA	2 DISTI	LL 2		0.106	0.04	6.7	0.50	0.21	0.53	0.50	Ο.	Ο.	1.74	1.313	-2.	O	65
28691 GTRA				0.083	0.04	6.9	0.51	0.22	0.53	0.52	0.	0.	1.77	1.335	-2.	0	65
28691 GTR2				-0.000	0.04	6.7	0.50	0.21	0.53	0.56	<u>o.</u>	0.	1.80	1.356	-2,	0_	63
28691 GTR2				0.030	0.04	6.8	0.50	0.21	0.53	0.54	0.	0.	1.79	1.347	-2.	0	64
28691 GTR2				0.050	0.04	6.8	0.50	0.21	0.53	0.53	0.	0.	1.78	1.341	-2.	0	64
28691 GTRW				0.088	0.04	. 6.∤9	0.51	0.22	0.53	0.51	0.	0.	1.77	1.334	-2.	0	65
28691 GTRW				0.121	0.04	6.9	0.51	0,22	0.53	0.49	<u>0.</u>	<u> 0.</u>	1.75	1.320	-2.	<u> </u>	66
<u> 28691 GTRW</u>	6 DISTI	<u>LL 2</u>	1.00	0.104	0.04	7.0	0.52	0.22	0.53	0.50	0	<u> </u>	1.78	1.337	-2.	. 0	65

DATE 06/07/79 LESE-PEG-ADV-ENERGY-SYS

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

A			SENSITI	VITY OF	CAPIT		******	***! FVF	•		ORIGINAL NERGY C			*****	*****			
ENERGY	CONV	SITE- FUEL	POWER REQD	POWER GEN/	FESRPO		TAL CAP				EL PU				IRML PR	ESNT WORTH		ROSS PAY
		1066	MW	REQD	R	ATIO *1		11	NSNC	<del></del>	<del></del>				بيث ليحب	15%		:ACK
28691	GTR312	DISTIL	L 2.	1.00	0.064	0.04	6.8	0.50	0.21	0.53	0.53	0.	Ο.	1.78	1.338	-2.	• • • • • • • • • • • • • • • • • • •	6
28691	<b>GTR316</b>	DISTIL	_ 2.	1.00	C.056	0.04	6.9	0.51	0.22	0.53	. 0.53	0.	0.	1.79	1,351	-3.	0	6
28691	FCPADS	DISTIL	2,	1.00	0.158	0.04	7.0	0.52	0.22	0,62	0.47	0.	0.	1.82	1.374	-3.	0	G
28691	<b>ECMCDS</b>	DISTIL	_ 2.	1.00	0.223	0.04	7.0	0.52	0.22	0.60	0.44	0.	Ο.	1.78	1.343	-3,	0	e
28692	ONGCGN	RESIDU	A 6.	Ο.	0.	0.13	5.1	0.38	0.16	0.40	5.07	1.73	0.	7.74	1.000	Ο.	0	!
28692	PFBSTM	COAL-PI	<u> 6,</u>	0,83	0.116	0.13	16.2	1.23	0.52	1.29	3.33	0.29	0.	6.66	0.860	-2.	11	
		RESIDU			0.046	0.13	30:6	2.26	0.96	1.21	6.50	0.	Ο.	10.94	1.414	-22.	0	7
		RESIDU			0.073	0.13	46.5	5.45	1.47	1.46.	7.93	0.	-1.04	13.27	1.714	-37.	0	7:
	TIHRSG		6.		0.046	0,13	43.4	3.29	1.40	1.95	3.78	0.	0.	10.41	1.346	-27.	0	99
	TIHRSG		<u>6.</u>		0.073	0.13	59.8	4.54	1.93	2.14	4.51	0.	-1.04	12.18	1.574	<u>-40.</u>	0	<u> </u>
		COAL-A			0.035	0.13	26.8	2.03	0.86	1.46	3.82	0.	0.	8.18	1.057	-12.	3	1
		COAL-A			0.070	0.13	38.8	2.95	1.25	1.63	5.61	0.	-2.12	9.31	1.204	-21.	0	2
	FCMCCL		6.	1.00		0.13	25.8	2.01	0.85	1.52	3.43	0.	0.	7.80	1.009	-11.	5 4	1
	FCMCCL		<u>6.</u>	5.02		0.13	43.5	3.38	1.44	2.25	5.36	<u>0,</u>	<u>-4.18</u>	8.25 7.90	1.067	<u>-21.</u>		2
		RESIDU		1,00		0.13	9.4	0.70	0,30	0.67	6.23 12.75	0.	0. -5.84	9.59	1.240	-3. -12.	်	7
		RESIDU			0.233	0.13	17.9	1.32	0.56	0.80	5.89	0.	• • • •	7.46	0.964	-12.	10	•
		RESIDUA			0.136	0.13	8.7	0.65	0.27	0.65		0. 0.	0. -3.19	7.46	0.916	-1.	11	
		RESIDU			0.309	0.13	11.9	0.89	0.38	0.60	8.41 5.89	0.	0.	7.46	0.964	-1.	10	
		RESIDU/		5.01	0.136	0.13	8.7 13.8	1.02	0.27 0.44	0.66	9.17	Ö.	-4.17	7.40	0.921	-2.	10	
		RESIDU		1.00		0.13 0.13	8.9	0.66	0.44	0.65	5.96	Ö.	0.	7.55	0.975	-1.	9	1
		RESIDU			0.332	0.13	16.3	1.21	0.51	0.73	10.39	o.	-5.20	7.63	0.987	-5.	3	i
		RESIDU			0.332	0.13	9.2	0.68	0.29	0.66	6.00	0.	0.	7.63	0.986	-2.	<del></del>	<u>;</u>
		RESIDU			0.316	0.13	15.9	1.18	0.50	0.73	10.62	o.	-5.18	7.84	1.013	-5.	•	i
		DISTIL			0.316	0.13	8.5	0.63	0.27	0.64	7.31	O.	0.	8.84	1,143	-5.		6
		DISTIL		4.95		0.13	12.6	0.93	0.40	0.63	11.62	0.	-4.11	9.46	1.223	-9.	5	6
		DISTIL		1.00		0.13	9.5	0.71	0.30	0.67	7,68	<del>0</del> .	0.	9.35	1.209	<del></del>	<u>, , , , , , , , , , , , , , , , , , , </u>	ຣັ
		DISTIL		13.60		0.13	29.7	2.20	0.94	1.16	26.10	o.	-13.10	17.30	2.235	-41.	ŏ	5
		DISTIL		1.00		0.13	9.5	0.70	0.30	0.67	7.60	Ŏ.	o.	9.27	1.198	-7.	Ô	5
		DISTIL	-	11.69		0.13	27.5	2.04	0.87	1.09	22.37	ŏ.	-11.12	15.25	1.970	-34.	Ö	5
		DISTIL		1,00		0.13	9.8	0.72	0.31	0.67	7.56	Ö.	Ö.	9.26	1.197	<del>-7.</del>	0	. 6
		DISTIL		9.99		0.13	26.0	1.93	0.82	1.03	19.60	Õ.	-9.34	14.04	1.814	-30.	Ó	6
		DISTIL			0.102	0.13	9.3	0.69	0.29	0.66	7.51	Ō.	0.	9.14	1.182	-6.	0	€
		DISTIL		7.30		0.13	18.6	1.38	0.59	0.82	15.63	o.	-6.55	11.86	1.533	-19.	0	6
		DISTIL		1.00		0.13	9.4	0.70	0.30	0.66	7.50	0.	0.	9.16	1.184	-7.	O	G
8692	GTR212	DISTIL	<b>- 6</b> .	7.88	0.291	0.13	20.2	1.50	0.64	0.86	16.37	Ο.	-7,16	12.21	1.578	-21.	0	6
8692	GTR216	DISTIL	_ 6.	1,00		0.13	9.5	0.71	0.30	0.67	7.49	0.	ο.	9.16	1.184	-7.	0	6
8692	GTR216	DISTIL	_ 6.	8.21	0.299	0.13	21.8	1.61	0.69	0.90	16.69	0.	-7.50	12.39	1.602	-22.	0	6
3692	GTRW08	DISTIL	<b>- 6</b> ,	1.00	0.072	0.13	9.6	0.71	0.30	0.67	7.76	Ō.	0.	9.45	1.221	-8.	0	5
28692	GTRW08	DISTIL	_ 6.	15.06	0.236	0.13	30.2	2.24	0.95	1.19	29.39	0.	-14.62	19.15	2.476	-4 <b>8</b> .	0	5
8692	GTRW12	DISTIL	_ 6,	1.00	0.085	0.13	9.7	0.72	0.30	0.67	7.65	Ο.	Ο.	9.33	1.206	-7.	0	5
8692	GTRW12	DISTIL	_ 6.	13.70	0.275	0.13	28.3	2.10	0.89	1.13	25.80	0.	-13.21	16.70	2.158	-39.	0	5
8692	OTRW16	DISTIL	6.	1.00	0.091	0.13	9.9	0.73	0.31	0.67	7.60	0.	0.	9.31	1.204	-7.	0	6

•		SENSIT	IVITY O	F CAPIT					ENT OF				~ \				
ENERGY CONV	SITE	- POWER	POWER	FESRPO		PITAL CA						S MILLION REVNUE TO			RESNT	ROI GE	3058
SYSTEM	FUEL	REQD	GEN/		/HEAT	COST		+			ELEC			·	WORTH	<u> </u>	PAY
		MW	REQD	f	RATIO *	10**6	t I	NSNC		•					15%	E	BACK
28692 GTR308	DISTIL	.L 6.	1.00	0.067	0.13	9.2	0.69	0.29	0.67	7.80	О.	0.	9.44	1.220	-7.	0	5
28692 GTR308				0.202	0.13	22.2	1.64	0.70	0.95	21.89	0.	-9.26	15.92		<u>-34.</u>	0	5
28692 GTR312		-		0.101	0.13	9.4	0.70	0.30	0.66	7.51	Ο.	Q.	9.17	1.185	-7.	o	6
2869 <b>2</b> GTR312				0.297	Q. 13	20.3	1.51	0.64	0.87	17.53	O.	<b>-8</b> .06	12.49	1.614	-22.	O	€
28692 GTR316				0.101	0.13	9.7	0.71	0.30	0.67	7.51	٥.	0.	9.20	1.189	-7.	o	6
28692 GTR316				0.295	0.13	20.9	1.55	0.66	0.89	17.30	<u>0.</u>	-7.86	12.53	1.620	<u>-22.</u>		
8692 FCPADS				0.084	0.13	9.8	0.73	0.31	1.09	7.66	0.	0.	9.79	1.265	-9.	0	5
8692 FCPADS				0.279	0.13	58.1	4.30	1.83	10.30	31.08	0.	-16, 89	30.62	3,958	-98.	0	6
8692 FCMCDS				0.112	0.13	10.1	0.75	0.32	1.06	7.42	0.	0.	9.54	1.233	-8.	O	6
8692 FCMCDS				0.360		50.1	3.71	1.58	7.74	22.68	0.	<u>-13.14</u>	22.57	2.917	-68,	0	
8693 ONOCON			0.	0,	0.04	13.3	0.99	0.42	0.69	10.65	1.09		13.84	1.000	0.	0	
8693 STM141				0.059	0.04	13.7	1.04	0.44	0.96	11.07	0.	0.	13.51	0.976	1.	31	
8693 STM141				9.217	0.04	15.6	1.19	0.50	0.86	12.80	· 0.	-2.74	12.61	0.911	3.	30	
8693 STM141				0.059	0.04	28.6	2.17	0.92	1.94	6.43	<u>o.</u>	0.	11.46	0.828	<u>-0.</u>	14	
8693 STM141				0.217	0.04	29.1	2.21	0.94	1.75	7.43	0.	-2.74	9.59	0.693	6.	20	
8693 STM141		••		0.059	0.04	26.9	2.04	0.87	1.85	6.43	0.	0.	11.19	0.808	2.	16	
8693 STM141		••		0.217	0.04	20.7	1.57	0.67	1.57	7.43	0.	-2.74	8.50	0.614	13.	40	
8693 STM088				0.059	0.04	12.2	0.93	0.39	0.94	11.07	<u>o.</u>	<u> </u>	13.33	0.963	<u>2.</u>	<u> </u>	
8693 STM088				0.170	0.04	13.9	1.06	0.45	0.82	12.15	0.	-1.71	12.76	0.922	3.	62	
8693 STM088				0.059	0.04	28.9	2.19	0.93	1.96	6.43	0.	0.	11.51	0.832	-0.	14	
8693 STM088				0.170	0.04	26.9	2.04	0.87	1.64	7,05	0.	-1.71	9.89	0.715	6.	21	
8693 STM088				0.059	0.04	26.7	2.03	0.86	1.88	6.43 7.05	<u>o.</u>	0.	11.19	0.809	2.	16	
18693 STM088				0.170	0.04	19.6	1.49	0.63	1.51		0.	-1.71	8.97	0.648	12.	42	
8693 PFBSTM				0.057	0.04	27.9	2.12	0.90	1.92	6.44	0.	0.	11.37	0.822	0.	15	
8693 PFBSTM				0.290	0.04	35.0	2.66	1.13	2.65 1.21	8.39	0.	-5.12	9.71	0.702	2.	16	•
86 <b>93 TIS</b> TMT 86 <b>93 TISTM</b> T				0.058	0.04	25.0	1.90	0.81		11.08	0.	0.	15.00 20.34	1.083	<u>-9.</u>	<u>0</u>	17
8693 TISTMT		JA 4. 4.		0.058	0.04	81.2 36.9	6.16 2.80	2.62 1.19	2.71 2.09	6.43	0. 0.	• -6.37 0.	12.51	1,469 0,904	-53. -7.	9	15
8693 TISTMT		4.		0.338	0.04	109.0	8.27	3.52	3.82	9.13	0. 0.	-7.16	17.58	1.270	-58.	9	2
8693 TIHRSG				0.043	0.04	27.6	2.04	0.87	1.22	11.25	0.	0.	15.38	1.111	-12.	0	9
8693 TIHRSG				0.166	0.04	72.9	5.40	2.30	2.36	14.02	0.	-3.01	21.06	1.521	- <u>12.</u> -51.	<u>o</u>	
869 <b>3</b> TIHRSG		ж 4. 4.		0.043	0.04	43.7	3.40	1.41	2,30	6,53	0.	0.	13.48	0.974	-14.	6	1
8693 TIHRSG		4.		0.178	0.04	98.7	7.49	3.19	3.40	8.36	ο.	-3.42	19.02	1.374	-57.	ő	9'
8693 STIRL	DISTIL			0.042	0.04	18.2	1.34	0.57	0.99	13.81	0.	0.	16.72	1.208	-11.	ñ	
8693 STIRL	DISTIL			0.259	0.04	37.2	2.76	1.17	1.59	23,26	<u>0.</u>	-8.24	20.54	1.484	-32.		ì
8693 STIRL	RESIDU			0.042	0.04	18.2	1.35	0.57	0.99	11.27	Ö.	0.24	14.17	1.024	-3.	ő	9
8693 STIRL	RESIDU			0.259	0.04	37.3	2.76	1.17	1.59	18.98	Ö.	-8.24	16.26	1.175	-19.	0	11
8693 STIRL	COAL	A 4.		0.042	0.04	28.8	2.13	0.91	1.82	6.54	o.	0.	11.40	0.824	0.	15	•
8693 STIRL	COAL	4.		0.270	0.04	68.8	5.10	2.17	2.92	11.55	<del>- 0.</del>	-9.23	12.51	0.904	-22.	——- <del>  3</del>	1
8693 HEGT85				0.013	0.04	32.6	2.47	1.05	1.82	6.73	o.	0.	12.08	0.873	-4.	11	
8693 HEGT85			77.36		0.04	269.1	20.42	8.68	10.24	48.71	o.	-50.16	37.91	2.739	-199.	, ,	19
8693 HEGT60				0.018	0.04	32.3	2.45	1.04	1.82	6.71	O.	0.	12.02	0.868	-4,	11	• •
8693 HEGT60			25.39		0.04	121.0	E.45	3.90	4.69	19.41	0.	-16.02	21.17	9.000	-75.		99

DATE 06/07/79

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 63

	\$E	NSITI	VITY OF	CAPITAL		****	***LEVE			ORIGINA ENERGY C		T 100 S MILLION	S)***	******			
NERGY CONV	SITE- P		POWER FE				PITAL TA		NDM F			REVNUE TO	TAL N	ORML PE	RESNT		ROSS
SYSTEM		EQD	GEN/		EAT COST			+			ELEC				WORTH 15%	<u></u>	PAY BAGK
		MW '	REQD	KAI	10 *10**	ь	. 1	NSNÇ							10%	1.	SAVOR
8693 HEGTOO	COAL-AF	4.	10.27 0		. 04 6	6.3	5.03	2.14	2.78	11.27	О.	-6.09	15.14		-30.	3	1
8693 FCMCCL		4.	1.00-0.			4.3	2.67	1.13	1.94	7.17	<u> </u>	0.	12.91		-8.	8	.,. 1
8693 FCMCCL		4.	18.30 0.			9.4	6.17	2.62	4.28	12.34	Ο.	-11.36	14.05		-34.	5	1
8693 FCSTCL		4.	1.00-0.			3.7	2.62	1.11	1.97	7.16	Ο.	ο.	12.87		-7.	8	1
8693 FCSTCL		4.	<b>26,65</b> 0.			4.2	7.33	3,11	5,13	14.51	o.	-16.85	13.23		-38.	5	1
8693 1GGTST		<u>4.</u>	1.00-0			2.8	2.55	1.08	1.96	7.23	<u>o.</u>	<u> </u>	12.82		<u>-7.</u>	8	1
8693 IGGTST		4.	18.33 0			2.7	5.65	2.40	2.64	13.52	0.	-11.38	12.83		-26.	6	1
8693 GTSOAR		4.	1.00 0.			7.3	1.28	0.55	0.93	11.26	ο.	0.	14.02		-2.	0	2
869 <b>3</b> GTSØAR		4.	17.54 0.		_	8.5	2.11	0.90	1.30	21.35	ο.	-10.86	14.80		-10.	0	90
8693 GTAC08		4.	1.00 0.			6.8	1.25	0.53	0,92	11.17	<u>o.</u>	<u> </u>	13.87		2	4	1
8693 GTACO8		4.	13.46 0.			2.5	1.67	0.71	1.13	17.59	0.,	-8.18	12.92		-1.	12	
8693 GTAC12		4.	1.00.0			6.8	1.25	0.53	0.92	11.18	ο.	0.	13.87		-2.	4	1
8693 GTAC12		4.	16.85 0.	-	-	6.5	1.96	0.83	1.24	19.50	·0.	-10.41	13.13		-4.	9	
8693 GTAC16		4.	1.00 0.		<del></del>	6.9	1.25	0.53	0.92	11.19	0.	0.	13.89		<u>-2.</u>	4	
8693 GTAC16		4.	19,15 0.			0.1	2.23	0.95	1.34	20,93	0.	-11.92	13.52		-7.	6	1
8693 GTWC16		. 4.	1.00 0.			7.2	1.27	0.54	0.93	11.24	0.	0.	13.98		-2.	1	?
8693 GTWC16		4.	19.96 0.		_	9.1	2.15	0.92	1.33	22.37	0.	-12.46	14.31	1.034	-9.	2	2
8693 CC1626		4.	1.00 0.			6.9	1.29	0.55	0.99	11.25	<u>o.</u>	<u> </u>	14.07		<u>-3.</u>	0	99
6693 CC1626		4.	30.31 0.			7.5	2.85	1,21	1.72	28.73	0.	-19.25	15.26		-16.	0	99
6693 CC1622		4.	1.00 0.			6.7	1.27	0.54	0.98	11.22	0.	0.	14.01	1.012	-2.	0	2
8693 CC1622		. 4.	27.24 0.			7.4	2.64	1,21	1.68	26.21	0.	-17.23	14.70		-14.	1	2
8693 CC1222		4.	1.00 0.			<u> 5.6</u>	1.26	0.54	0.98	11.22	<u>o.</u>	<u> </u>	13.99		<u>-2.</u>	3	2
8693 CC1222		4.	27.08 0.	-		5.5	2.70	1.15	1.65	25.98	0.	-17.13	14.34	1.036	-12.	3	2
8693 CC0822		4.	1,00 0.			6.8	1.27	0.54	0.99	11.18	o.	0.	13.98		-2.	1	1
8693 CC0822		4.	21.43 0.		_	9.7	2.26	0.96	1.47	21.95	0.	-13.42	13.22		-6.	ń	8
8693 STIG15		4.	1,00 0.			6.9	1.25	0.53	0.94	11.56	0.	0.	14.29		-3.	<u>_</u>	5
28693 STIG15		4.	751.59 0.			1.0	49.70	21.13		696.39	0.	-493.01		22.691		~	
8693 STIG10		4.	1.00 0.			6.7	1.24	0.53	0.93	11.48	0.	0.	14.17		-3.	0	19 5
8693 STIG10		4.	69.50 0.			5.9	5.62	2.39	4.04	68.32	o. o.	-44.99	35.38		-97. -2.	0	95
869 <b>3 STIGIS</b> 869 <b>3 STIGIS</b>		4.	1.00 0.			6.6	1.23	0.52	0.93 2.73	11.44 42.95	0.	<u>0.</u> -26.13	14.13 24.51	1.771	-49.	<u> </u>	<u>_</u>
		4.	40.78 0.			7.1	3.48	1.48		11.37	0.		14.51	1.048	-49. -5.	ŏ	13
8693 DEADV3 8693 DEADV3		4. 4.	1,00 0. 46,41 0.		-	20.1	1.49	0.63 3.51	1.02 3.62	44.17	Ö.	0. -29.83	29.72		-96.	0	6
8693 DEHTPM		4. 4.	1.00 0.			1.5 0.2	8.26 1.50	3.51 0.54	1.06	11.19	0. 0.	0.	14.38		-96. -5.	0	99
8693 DEHTPM		4.	19,57 0.			6.8	4.20	1.79	2.18	21.13	0.	-12.20	17.10		-31.	0	<u>9</u>
8693 DESUA3		4.	1.00 0.			9.1		0.60	1.00	14.01	0.	0.	17.70		-13.	0	
8693 DESOA3		4.	54,14 0.			9.8	1.41 11.84	5.03	4.87	64.90	0.	-34,91	51.74	3.738	-187.	ñ	e
8693 DESOAS		4.	1.00 0.			9.1	1.41	0.60	1.00	11.43	0.	-34.51	14.44	1.043	-5.	ő	11
8693 DESGAS		4.	54.14 0.			9.8	11.84	5.03	4.87	52.95	Ö.	-34.91	39.78	2.874	-150.	<u>~</u>	···-· 'e
8693 GTSOAD		4.	1.00 0.			6.7	1.23	0.52	0.92	13.73	o.	0.	16.41		-10.	ñ	5
8693 GTSOAD		4.	16.26 0.			3.6	1.75	0.74	1.17	24.09	o.		17.73		-17.	ő	5
8693 GTRA08		4.	7.00 0.		_	7.4	1.29	0.55	0.93	13.79	0.	0.	16.56		-10.	ő	Š
8693 GTRA08		4,	27.23 0.			0.7	3.01	1.28	1.64		0.	-17.23	21.71	1.569	-37.	<del>ŏ</del>	. 6
STATE STITUTE	DIVILLE			, 200	·	<del></del>											

NATE 06/07/79

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 6

		SENSITI	VITY OF	CAPIT		T *******				ORIGINA					,		
NERGY CONV	SITE- FUEL	POWER REQD	POWER GEN/	FESRP		PITAL CAP				EL PU		REVNUE TO			RESNT WORTH	RO1	GROSS PAY
OTOTELL	1044	MW	REQD	F	RATIO *		11	NSNC					· · · · · · · · · · · · · · · · · · ·		15%	<del> </del>	DACK
8693 GTRA12	DISTIL	L 4.	26.52	0.345	0.04	38.8	2.88	1.22	1.59	32.05	ο.	-16.76	20.99	1.516	-34.		0 9
8693 GTRA16				0.044	0.04	17.6	1.30	0,55	. 0.93	13.77	0.	0.	16.55	1.196	-10.		0 5
3693 GTRA16	DISTIL	L 4.	24.70	0.341	0.04	39.0	2.89	1.23	1.59	30.62	0.	-15.57	20.76	1.500	-34.		Ö
8693 GTR208	DISTIL	L 4.	1.00	0.044	0.04	17.2	1.27	0.54	0.92	13.77	Ο.	0.	16.51	1.193	-10.		0
693 GTR208	DISTIL	L 4.	20.41	0.321	0.04	30.8	2.28	0.97	1.37	[,] 27.60	Ο.	-12.75	19.47	1.408	-26.		0
693 GTR212	DISTIL	L 4.	1.00	0.044	0.04	17.3	1.28	0.54	0.93	13.77	Ο.	0.	16.52	1.194	-10.		0 3
8693 GTR212	DISTIL	L 4.	21.89	0.327	0.04	33,1	2.45 •	1.04	1.43	28.70	0.	-13.72	19.90	1.438	-28.		0
8693 GTR216	DISTIL	L 4.	1.00	0.045	0.04	17.4	1.29	0.55	0.93	13.76	9.	0.	16.52	1.193	-10.		0
8693 GTR216	DISTIL	L 4.	22.44	Q.336	0.04	35.3	2.61	1.11	1.49	28.82	0.	-14.09	19. <b>95</b>	1.441	-29.		0
8693 GTRW08	DISTIL	L 4	1.00	0.036	0.04	17.5	1.30	0.55	0.93	13.89	0.	0.	16.67	1.204	-11.		0
6693 GTRW08	DISTIL	L 4.	32.45	0.297	0.04	40.5	3.00	1.27	1.67	40.01	0.	-20.66	25.29	1.828	-49.		0
8693 GTRW12	DISTIL	L 4.	1.00	0.039	0.04	17.5	1.30	0.55	0.93	13.85	o.	Ο.	16.63	1.201	-11.		0
3693 GTRW12	DISTIL	L 4.	32.93	0.320	0.04	40.7	3.02	1.28	1.68	39.15	<b>∙</b> 0.	-20.97	24.15	1.745	-45.		0
3693 GTRW16	DISTIL	L 4.	1.00	0.039	0.04	17.7	1.31	0.56	0.93	13.84	0.	0.	16.64	1.202	-11.		0
3693 GTRW16	DISTIL	L 4.	30.46	0.319	0.04	40.2	2.98	1.27	1 : 65	36.92	0.	-19.35	23.47	1.696	-43.		Ŏ
693 GTR308	DISTIL	L 4.	1.00	0.034	0.04	17.2	1.28	0.54	0.93	13.92	Ο.	0.	16.67	1.204	-11.		0 .
693 GTR308	DISTIL	L 4.	24.78	0,257	0.04	33.6	2.49	1.06	1.48	34.59	Ο.	-15.62	24.00	1.734	-41.		0
693 GTR312	DISTIL	L 4.	1.00	0.040	0.04	17.3	1.28	0.55	0.93	13.83	0.	0.	16.58	1.198	-10.		0
693 GTR312	DISTIL	L 4.	26.46	0.314	0.04	34.4	2.55	1.08	1.49	33.48	0.	-16.72	21.88	1.581	-35.		0
3693 GTR316	DISTIL	L 4.	1,00	0.040	0.04	17.5	1.30	0.55	0.93	13.83	С.	Ο.	16.61	1.200	-11.		0
3693 GTR316	DISTIL	L 4.	26.05	0.311	0.04	35.4	2.62	1.11	_ 1,51	33.25	Ο.	-16.45	22.05	1.593			0
693 FCPADS	DISTIL	L 4.	1.00	0.031	0.04	18.4	1.36	0.58	1.20	13.97	0.	0.	17.10	1.236	-13.		0
693 FCPADS	DISTIL	L 4.	<b>5</b> 7.32	0.279	0.04	121.2	8.98	3.82	21.59	65.28	Ο.	-\$6.99	62.67	4.528			0
693 FCMCDS	DISTIL	L 4.	1.00	0.041	0.04	18.5	1,37	0.58	1.17	13.82	Ο.	0.	16.95	1.224			0
3693 FCMCDS	DISTIL	L 4.	45.35	0.360	0.04	104.5	7.74	3.29	16.25	47.63	Ο.	-29.13	45.78	3.308	-145.		0
3694 ONOCGN	RESIDU	А 3.	Ο.	0.	0.03	14.4	1.06	0.45	0.73	11.50	1.0	o <u>o</u> .	14.75	1.000	0.		0
694 STM141	RESIDU	А 3.	1.00	0.050	0.03	14.7	1.12	0.47	1.03	11.88	0.	0.	14.50	0.983	0.	2	24
694 STM141	RESIDU	А З.	3.49	0.146	0.03	, 15.0	1.14	0.49	0.86	12.82	Ο.	-1.50	13.8	0.537	2.	5	50
694 STM141	COAL-F	О 3.	1.00	0.050	0.03	31.6	2.40	1.02	2.11	6.90	Ο.	Ο.	12.42	0.843	-1.	1	13
694 STM141			3.49	0.146	0.03	29.1	2.21	0.94	1.78	7.45	0.	-1.50	10.87	0.737			20
694 STM141			- ,	C.050	0.03	28.8	2.18	0.93	2.01	6.90	0.	0.	12.02	0.815		-	G
694 STM141			3.49	0.146	0.03	20.3	1.54	0.65	1.59	7.45	Ο.	-1.50	9.73	0.660	•		15
694 PFBSTM				0.048	0.03	30.2	2.29	0.97	2.07	6.91	C.	Ο.	12.24	0.830			14
<u>694 PFBSTM</u>				0.242	0.03	35.3	2.68	1.14	2.76	8.54	0.	-4.10	11.02	0.747		<u> </u>	15
694 TISTMT				0.049	0.03	26.8	2.03	0.86	1.28	11.89	Ο.	Ο.	16.06	1.089	•		0 1
694 TISTMT				0.279	0.03	80.8	6.13	2.61	2.73	15.26	0.	<b>-5</b> .15	21.59	1.464			0 1
694 TISTMT	-	3.		0.049	0.03	39.9	3.02	1.29	2.23	6.90	0.	0.	13.45	0.912			9
694 TISTMT		<u>. 3.</u>	11.24		0.03	112.6	8.55	3.63	3,95	9.25	0.	-6.16	19.21	1.303			0
694 TIHRSG				0.029	0.03	30.3	2.25	0.95	1.30	12.14	Ο.	0.	16.65	1.129			0
594 TIHRSG				0.136	0.03	81.1	6.00	2.55	2.61	16.01	0.	-3.59		1.600			0
694 TIHRSO		3.		0.029	0.03	. 44.4	3.37	1.43	2.29	7.05	Ο,	Ο.	14.14	0.959			6
694 TIHRSO		3.		0.150	0.03	113.8	8.63	3.67	3.89	9,76	0.	-4.33	21.62	1.466		<del> </del>	0 9
694 STIRL	DISTIL	L 3.	1.00	0.034	0.03	19.5	1.45	0.62	1.04	14.81	0.	0.	17.91	1.215	-12.		0

DATE 06/07/79 L&SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

															*			
		SE	NSITI	VITY OF	CAPIT	AL COS			,		ORIGINAL							
													MILLION					
NERGY		SITE- P			FESRP		PITAL CA	PITAL TA		NDM FU			REVNUE TO	TAL NO	IRML PF	RESNT		GROSS
SYS	TEM		REGD	GEN/		/HEAT			+			ELEC			<del></del>	WORTH	<u> </u>	PAY
			MW	REOD	F	ATIO *	10**6	I	NSNC							15%		BACK
8694	STIRL	RESIDUA	3.	1.00	0.034	0.03	19.5	1.45	0.62	1.04	12.08	Ο.	Ο.	15.18	1.030	-4.	(	0 999
8694	STIRL	RESIDUA	3.	13.70	0.231	0.03	38.9	2.88	1.23	1.66	19,49	0.	-7.65	17.62	1.195	-21.		<u>0</u> 89
8694	STIRL	COAL	3.	1.00	0.034	0.03	31.2	2.31	0.98	1.94	7.01	0.	0.	12.25	0.830	-0.	14	4
8694	STIRL	COAL	3.	16.12	0.248	0.03	73.5	5,45	2.31	3.09	12.14	Ο.	-9.10	13.89	0.942	-25.		6 1
8694	HEGT60	COAL-AF	3.	1.00	0.003	0.03	33.6	2.55	1.08	1.91	7.24	Ο.	Ο.	12.79	0.867	-3.	1	1
8694	HEGT60	COAL-AF	3,_	49.08	0.030	0.03	181.3	13.76	5.85	7.19	34,43	0.	-28.95	32.28	2.189	<u>-135.</u>		011
8694	HEGT00	COAL-AF	3.	1.00	0.015	0.03	33.2	2.52	1.07	1.92	7.15	0.	0.	12.66	0.859	-3.	12	_
28694	HEGT00	COAL-AF	3.	13.35	0.099	0.03	75.1	5.70	2.42	3.15	13.07	Ο.	-7.43	16.92	1.147	-36.	. 1	1 2
8694	FCMCCL	COAL	3.	1.00-	-0.119	0.03	36.3	2.82	1.20	2.04	8,13	Ο.	Ο.	14.19	0.962	-9.	- 7	7 1
8694	FCMCCL	COAL	3.	22.93	0.296	0.03	87.8	6.82	2.90	4.78	14.17	0.	-13.20	15.47	1.049	-39.		41
8694	FCSTCL	COAL	3.	1.00-	-0.118	0.03	36.0	2.80	1.19	2.09	8.12	0.	0.	14.20	0.963	-9.	7	7 1
8694	FCSTCL	COAL	3.	28.51	0.340	0,03	97.0	7.54	3.20.	5.35	15.44	Ο.	-16.57	14.97	1.015	-42.		5 1
8694	IGGTST	COAL	3.	1.00-	-0.129	0.03	35.0	2.72	116	2.07	8.20	٥.	Ο.	14.15	0,960	-9,		7 1
8694	IGGTST	COAL	3.	18.75	0.188	0.03	74.2	5.77	2.45	2.69	14.36	0.	-10.69	14.59	0,990	-29.		5 1
8694	GTSØAR	RESIDUA	3.	1.00	0.033	0.03	18.3	1.36	0.58	0.97	12.10	0.	Ō.	15.00	1.017	-3.		0 99
8594	GTSOAR	RESIDUA	3.	22.28	0.269	0.03	34.5	2.55	1.09	1.51	24.86	Ο.	-12.81	17.19	1.166	-17.		9 0
8694	GTACC8	RESIDUA	3,	1.00	0.043	0.03	17.9	1.32	0.56	0.96	11.97	0.	Ο.	14.81	1.005	-2.		3 1
8694	GTACO8	RESIDUA	3.	15,80	0.311	0.03	24.5	1.82	0.77	1.22	18.94	Ο.	-8.91	13.83	0.938	-2.	11	ı
8694	GTAC12	RESIDUA	3.	1.00	0.042	0.03	17.8	1.32	0.56	0.95	11.98	0.	0.	14.82	1.005	-2.		3 1
		RESIDUA	3.	19.90	0.332	0.03	28.8	2.14	0.91	1.34	21.11	Ο.	-11.38	14.12	0.958	-5.		8 1
3694	GTAC16	RESIDUA	3.	1.00	0.041	0.03	17.9	1.33	0.56	0.95	12.00	Ο.	0.	14.85	1,007	-2.	វ	2 2
		RESIDUA	3.	23.06	0.336	0.03	33.0	2.45	1.04	1.46	23.11	Ο.	-13.28	14.77	1.002	-9.		5 1
8694 (	GTWC16	RESIDUA	3.	1.00	0.038	0.03	18.2	1.35	0.57	0.96	12.03	0.	0.	14.92	1.012	-2.		0 2
8694 (	GTWC16	RESIDUA	3.	23.46	0.316	0.03	31.4	2.32	0.99	1.43	24.10	Ö.	-13.52	15.32	1.039	-10.	1	2 2
8694 1	DEHTPM	RESIDUA	3.	1.00	0.035	0.03	21.8	1.62	0.69	1.12	12.06	Ο.	O. 1	15.47	1.049	-6.	ſ	0 15
		RESIDUA	3.	20.14	0.286	0.03	62.3	4.62	1.96	2.36	22.76	٥.	-11.52	20.18	1.368	-40.		0 6
		DISTILL	3.		0.040	C. 03	17.7	1.31	0.56	0.95	14.72	0,	0.	17.54	1.190	-10.		0 5
		DISTILL	3.	19.41	0.309	0.03	25.9	1.92	0,81	1.27	26.37	0.	-11.09	19.29	1.308	-20.	1	0 5
-		DISTILL	3.		0.033	0.03	18.4	1.37	0.58	0.96	14.82	o.	0.	17.73	1.203	-11.		0 5
		DISTILL	3.	37.10		0.03	47.9	3.54	1.51	1.89	41.23	o.	-21.74	26.43	1.793	-52.		0 5
		DISTILL	3.		0.035	0.03	18.3	1.36	0.58	0.96	14.80	0.	0.	17.69	1.200	-11.		0 5
		DISTILL	3.	35.08		0.03	47.4	3.51	1.49	1.87	38.87	0.	-20.52	25.23	1.711	-48.	•	o e
		DISTILL	3.		0.035	0.03	18.5	1.37	0.58	0.97	14.79	Õ.	0.	17.71	1.201	-11.	1	0 5
		DISTILL	3.	31.96		0.03	46.9	3.47	1.48	1.85	36.33	o.	-18.64	24.48	1.660	-46.	Ć	
		DISTILL	• 3.		0.036	0.03	18.2	1.35	0.57	0.96	14.78	Ō.	0.	17.66	1.198	-11.		0 5
		DISTILL	3.	25.56		0.03	36.8	2.72	1.16	1.57	31.69	Ö.	-14,79	22.36	1.516	-34.		-
		DISTILL	3.		0.036	0.03	18.3	1.35	0.58	0.96	14.78	o.	0.	17.67	1,198	-11.	ì	5
		DISTILL	3.	27.44		0.03	39.4	. 2.91	1.24	1.64	32.99	o.	-15.92	22.86	1.550	-37.	· i	5
		DISTILL	3.		0.037	0.03	18.3	1.36	0.58	0.96	14.77	Ö.	0.	17.67	1.198	-11.		0 :
		DISTILL	3.	28.26		0.03	42.0	3.11	1.32	1.71	33.26	õ.	-16.41		1.560	-39	- 1	Ď
		DISTILL	3.		0.028	0.03	18.5	1.37	0.58	0.97	14.90	Ö.	0.	17.81	1,208	-12.	i	0 5
		DISTILL	3.	43.47		0.03	49.3	3.65	1.55	1.96	49.12	õ.	-25.57	30.72	2.083	-66.	ò	_
		DISTILL	3.		0.031	0.03	18.5	1.37	0.58		14.85	<u> </u>	0.		1,205	-11.		5

DATE 06/07/79

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 66

								<del> </del>								·		
			SENSIT	VITY OF	CAPIT						ORIGINA			161444				
ENERGY	CONV	SITE-	POWER	PAUED E	FERDOR			*****LEVE					EVNUE TO			RESNT	ROI GI	RØSS
	TEM	FUEL	REQD	GEN/		HEAT		TEINL IN	1 +	MDH FC		ELEC	EVIOL IC	TAL IN	OMIL FI	WORTH	<b>X</b>	PAY
		10-6	MW	REQD		ATIO *		· · · · · · · · · · · · · · · · · · ·	NSNC			LLLU				15%		BACK
			• • • • • • • • • • • • • • • • • • • •	7	• • •			•									_	
28694	GTRW16	DISTIL	L 3.	1,00 (	0.032	0.03	18.6	1.38	0.59	0.97	14.84	0.	0.	17.77	1.205	-11.	0	57
8694	GTRW16	DISTIL	L 3.	38.72	0.307	0.03	47.5	3.52	1.50	1.89	43.03	0.	-22.71	27.22	1.846	-55.	0	59
		DISTIL		1.00 (	0.026	0.03	18.2	1.35	0.57	0.96	14.94	0.	0.	17.82		-11.	0	
		DISTIL	_	32.45		0.03	38.6	2.86	1.22	1.67	41.52	Ο.	-18.93	28.33		-54.	0	_
		DISTIL		1.00		0.03	18.3	1.36	0.58	0.96	14.82	ο.	0.	17.71	1.201	-11.	. 0	_
		DISTIL		32,36		0.03	40.1	2.97	1,26	1.68	37.53	<u>o.</u>	-18.88	24.57		<u>-43.</u>		5
		DISTIL		1.00 0		0.03	18.5	1.37	0.58	0.97	14.82	0.	0,	17.73	• •	-11.	0	2 TO 1
		DISTIL		31,80 (		0.03	41.1	3.05	1.30	1.71	37.21	0.	-18.54	24.72		-44.	0.	- 5
		DISTIL	- ,	1.00 ( 67.50 (		0.03	19.6	1.45 9.73	0.62 4.14	1.21	14.93 70.46	0.	0. -40.04	18.21 67.61	1.235 4.585	-13, -223.	0	5
		DISTIL		1.00		0.03	131.4 19.7	1.46	0.62	1.19	14.79	<u>0.</u> 0.	0.	18.07	1.225	-223. -13.	0	6 5
		DISTIL		53.39		0.03	113.4	8.40	3.57	17,56	51.41	o.	-31.55	49.38	,	-157.	0	6
		RESIDU			0.300	0.03	22.1	1.63	0.70	0.98	23.01	1.13		27.45		0.	Ö	
		COAL-P		1.00		0.02	40.2	3.05	1.30	2.77	13.66	0.	Ŏ.	20.76		12.	25	
		COAL-P		6.36		0.02	42.3	3,21	1.37	3.72	15.25	0.	-3.64	19.92		13.	25	
		RESIDU		1.00	– –	0.02	34.9	2.58	1.10	1.49	23.94	Ċ.	0.	29.11	1.060	-11.	Ŏ	7
		RESIDU		13.87		0.02	138.6	10.26	4.36	3.96	35.98	õ.	-8.74	45.83		-112.	Ö	Ė
3731	TIHRSG	COAL	4.	1.00	0.009	0.02	61.6	4.67	1.99	3.03	13.90	Ο.	Ο.	23.59		-7.	11	
8731	TIHRSG	COAL.	4.	13.87	0.073	0.02	176.4	13.38	5.69	5.95	20.89	O.	-8.74	37.18	1.354	-105.	0	99
8731	HEGT00	COAL-A	F 4.	1.00 0	0.006	0.02	49.7	3.77	1.60	2.64	13,93	Ο.	Ο.	21.94	0.799	4.	- 17	
8731	HEGT00	COAL-A	F 4.	21.13	0.070	0.02	108.4	8.23	3.50	4.71	25.44	0.	-13,67	28.21	1.028	-44.	. 4	1
	FCMCCL.		4.	1.00 0		0.02	55.5	4.31	1.83	2.83	13.67	0.	0.	22.65		-2.	13	
	FCMCCL		4.	34.90		0.02	124.5	9.68	4.11	7.25	24.33	0.	-23.02	22.35		-35.	8	1
		RESIDU		1.00 0		0.02	26.8	1.98	0.84	1.25	23.77	Ο.	Ο.	27.84		-3.	• 0	99
		RESIDU		45.96		0.02	63.6	4.71	2.00	2.18	57.83	Ο.	-30.53	36.20		-47.	. 0	•
		RESIDU		1.00 0		0.02	26.3	1.95	0.83	1.24	23.55	<u>o.</u>	<u> </u>	27.56		<u>-2.</u>	3	1
		RESIDU	• • • • • • • • • • • • • • • • • • • •	28,23 (		0.02	38.4	2.84	1.21	1.47	38.16	0.	-18.49	25.19	0.918	-1.	14	
		RESIDU		1.00 (		0.02	26.3	1.94	0.83	1.23	23.54	0.	0.	27.54		-2.	3	1
		RESIDU		34.79 ( 1.00 (		0.02	45.5 26.4	3.37 1.95	1,43 0,83	1.66 1.23	41.62 23.59	0. 0.	-22.94	25.15 27.60		-4. -2.	12 2	2
		RESIDU		41.71		0.02	57.6	4.27	1.81	1.99	47.12	<del>-0.</del>	0. -27.64	27.55	1.003	-17.	<u> </u>	
		RES! DU		1.00		0.02	26.6	1.97	0.84	1.24	23.61	0.	0.	27.66		-3.	. 0	ż
		RESIDU		41.58		0.02	48.6	3.60	1.53	1.77	48.17	0.	-27.55	27.51	1.002	-13.	5	ĺ
		DISTIL		1.00 0		0.02	26.1	1.93	0.82	1.23	28.92	o.	6.	32.90		-19.	ŏ	5
		DISTIL		34.40		0.02	43.3	3.21	1.36	1.61	52.70	<del>0.</del>	-22.68	36.21	1.319	-37.	<u> </u>	5
		DISTIL		1.00 0		0.02	26.8	1.98	0.84	1.24	29.16	o.	0.	33.23	-	-20.	Ö	5
		DISTIL		94,49	261	0.02	114.8	8.50	3.61	3.58	118.41	Ö.	-63.48	70.62		-179.	0	5
3731	GTRA12	DISTIL	L 4.	1.00 0	0.017	0.02	26.8	1.98	0.84	1.24	29.11	Ο.	Ο.	33.17	1.208	-20.	0	5
		DISTIL		81.23		0.02	104.7	7.75	3.30	•	101.50	0.	-54.48	61.36		-145.	0	5
		DISTIL		1.00 0		0.02	27.0	2.00	0.85	1.24	29.08	0.	Ο.		1.208	-20.	0	5
		DISTIL		<b>69</b> .39 (		0.02	93.3	6.91	2,94	2.97	88.94	٥.	-46.43	55.32		-121.	0	- 5
8/31 2701	G1R208	DISTIL	<u> 4.</u>	1.00		0.02	26.6	1.97	0.84	1.24	29.05	<u>0.</u>	0.	33.10		-20.	0	5
8/31	RIK508	DISTIL	<u> </u>	50.73 C	J. 285	0.02	66.8	4.95	2.10	2.26	70.91	O.	<b>-3</b> 3.76	46.46	1.692	-81.	0	5

PAGE 67

		-	ENSIT	IVITY	OF	CAPIT	TAL CO					ORIGINA								
ENERGY	CONV	SITE-	POVER	POW	FR I	FESRP	WER C		*****LEVE					MILLION EVNUE TO			RESNT	ROI	GRO	is <b>s</b>
	STEM	FUEL	REQD '	GEN				COST	,,	+			ELEC		· · · · · · · · · · · · · · · · · · ·		WORTH			'ΑΥ
			MW	REGI	D	F		*10**6	11	NSNC							15%		BA	CK
28731	<b>GTR212</b>	DISTILL	4.	54.	78	0.291	0.02	72.4	5.36	2.28	2.41	74.26	0.	-36,52	47.80	1.741	-87,		0	58
28731	<b>GTR216</b>	DISTILL	. 4.	1.0	00	0.019	0.02	26.8	1.98	0.84	1.24	29.04	0.	0.	33.11	1.206	-20.		0	56
28731	GTR216	DISTILL	. 4.	57.6	03	0.299	0.02	78.6	5.82	2.47	2.57	75.70	0.	-38.04	48.52	1.767	-92.		0	59
		DISTILL				0.013	0.02			0.85	1.24	29.21	Ο.	Ο.	33.29	1.213			0	5€
		DISTILL				0.236	0.02		8.35	3.55		133.32	G.	-70.35	78.44	2.857			0	57
		DISTILL				0.016	0.02			0.85	1.24	29.14	0.	<u> </u>	33.22	1.210			_0	. 56
		DISTILL				0.275	0.02			3.08		117.03	0.	-63,98	66.54	2.424	•		0	58
		DISTILL				0.017	0.02		2.01	0.85	1.24	29.11	0.	0.	33.21	1.210			0	56
		DISTILL				0.284	0.02			2.86		100.39	0.	<b>-5</b> 3,72	59.21		-132.		0	58
		DISTILL	<u> </u>			0.012	0.02		1.97	0.84	1.24	29.24	<u>o.</u>	0.	33.28	1.212			0	56
		DISTILL				0.202	0.02		5.61	2.39	2.56	99.29	0.	-46.04	63.81	2.324			-	5
		DISTILL				0.019	0.02		1.98	0.84	1.24	29.05 79.52	0. - 0.	0. -40.60	33,11 48,79	1.200	•		0	5( 5)
		DISTILL				0.297 0.019	0.02			2.23 0.85	2.39 1.24	79.52 29.05	0. 0.	0.	33.14	1.207	-		0	50
		DISTILL				0.295	0.02		5.39	2.29	2.43	78.48	<del>- 0</del> .	-39.70		1.781		<del></del>	<del>-6</del>	. 50 50
		DISTILL		:		0.015	0.02		2.14	0.91	1.55	29.15	o.	0.	33.75	1.229			õ	5
		DISTILL				0.279	0.02		17.60	7.48		141.02	0.		130.85	4.766			Ö	6
		DISTILL			-	0.021	0.02		2.15	0.92	1.52		o.	0.	33.58	1.223			ŏ	5
		DISTILL				0.360	0.02		15.14	6.44	33.97		<del>0.</del>	-63.67	94.77	3.452		<u></u>	<del>-</del>	61
		RESIDUA		0.		0. 300 0.	0.15		0.27	0.12	0.32	3.11	1.22		5.04	1.000			ŏ	Č
		RESIDUA				0.176	6.15		0.51	0.22	0.62	3.57	0.	o.	4.91	0.974	- •		8	19
		RESIDUA				0.252	0.15		0.50	0.21	.0.49	3.90	Ö.	-0.52	4.58	0.908			15	•
		COAL-FG				0.176	0.15		1.04	0.44	1,11	2.07	0,	0.	4.67	0.926			7	1
		COAL-FG				0.252	0.15	•	0.94	0.40	0.88	2.27	Ö.	-0.52	3.97	0.787	- •		13	
		COAL-AF				0.176	0.15		0.93	0.40	1.03	2.07	Ö.	0.	4.43	0.879			10	ġ
		COAL-AF				0.252	0.15		0.75	0.32	0.78	2.27	Ö.	-0.52	3.59	0.711	2.		18	ŧ
28741	STMOEB	RESIDUA	4.	1.0	00	0.176	0.15	6.2	0.47	0.20	0.60	3.57	0.	0.	4.84	0.961	-1.		10	
28741	STM088	RESIDUA	4.	1.3	32	0.213	0.15	5.8	0.44	0.19	0.46	3.72	Ο.	-0.23	4.58	0.908	0.		17	(
28741	STM088	COAL-FO	4.	1.0	00	0.176	0.15	13,0	0.99	0.42	1.07	2.07	0.	Ο.	4.55	0.903	-3.		8	10
28741	STM088	COAL-FG	4,	1.5	32	0.213	0.15	11.4	0.87	0.37	0.84	2.16	Ο.	-0.23	4.00	0.794	-1.		13	•
28741	STM088	COAL-AF	4.	1.0	00	0.176	0.15	11.4	0.87	0.37	1.00	2.07	0.	0.	4.30	0.854	-2.		11	-
28741	STM088	COAL-AF	4.	1.0	32	0.213	0.15	9.3	0.71	ວ. 30	0.75	2.16	0.	-0.23	3.68	0.731	1.		19	
28741	PFBSTM	COAL-PF	4.	1.0	00	0.174	0.15	14.8	1.12	0.48	1.17	2.08	0.	Ο.	4.85	0.962	-5.		6	12
28741	PFBSTM	COAL-PF	4.	2.6	61 (	0.312	0.15	15.5	1.18	0.50	1.13	2.52	0.	-1.18	4.15	0.823	-3.		10	9
28741	TISTMT	RESIDUA	4.	1.0	00	0.174	0.15	16.2	1.23	0.52	0.85	3.58	0.	0.	6.19	1.229	-10.		0	360
		RESIDUA				0.352	0.15	•	2.56	1.09	1.19	4.72	Ο.	-1.76	7.80	1.548		-	0	213
	TISTMT		4.			0.174	0.15		1.84	0.78	1.37	. 5.08	Ο.	Ο.	6.08	1.206			0	30
	TISTMT		4.			0.352	0.15		3,25	1.38	1.68	2.74	0.	-1.76	7.29	1.447			0_	999
		RESIDUA				0.131	0.15		1.70	0.72	0.94	3.77	0.	Ο.	7.13	1.414			0	94
		RESIDUA	4.			0.170	0.15		2.10	0.89	0.94	4.07	٥.	-0,34	7,66	1.521	-20.		0	94
	TIHRSG		4.			0.131	0.15		2.41	1.02	1.46	2.19	Ο.	Ο.	7.08	1.404			0	999
	TIHRSG		4.			0.170	0.15		2.77	1.18	1.38	2.36	<u> </u>	-0.34	7.36	1.459			0	999
28741	STIRL	DISTILL	. 4,	1.0	00 (	0.126	0.15	6.7	0.50	0.21	0.57	4.65	<u> </u>	0,	5.93	<u>1.176</u>	-4.	_	0	61

PAGE 68

		SI	ENSITI	VITY OF	CAPIT						ORIGINAL			<u> </u>	Jane Lad			
			· 										S MILLICH			الأراد والمستعلق		
	CONV	SITE-			FESRF		PITAL CAF	PITAL TAX		NDM FU			REVNUE TO	TAL NO	IRML PF			GROSS
SYS	TEM	FUEL I	REQD	GEN/		/HEAT			+	<u> </u>		ELEC				WORTH		PAY
			MW	REGD	R	RATIO *	10**6	11	NSNC							15%		BACK
	STIRL	RESIDUA	4.	1.00	0.126	0.15	6.7	0.50	0.21	0.57	3,79	0.	0.	5.07	1.006	-2.		4
	STIRL	RESIDUA	4.	3,63		0.15	11.0	0.61	0.34	0.59	5.58	0.	-1.92	5.40	1.072	<u>~5.</u>		0 9
	STIRL	COAL	4.	1.00	0.126	0.15	13.7	1.02	0.43	1.05	2.20	Ο.	Ο.	4.70	0.933	-4.		7
	STIRL	COAL	4.	3.63		0.15	18.6	1.38	0.59	1.05	3.24	Ο.	-1.92	4.33	0.860	-5.		8
		COAL-AF	4.	1.00		0.15	21.6	1.64	0.70	1.17	2.40	Ο.	Ο.	5.90	1.171	-11.		0
		COAL-AF	4.	15.71		0.15	93.6	7.10	3.02	3.40	11.15	<u>o.</u>	-10.74	13.94	2.765	<u>-71.</u>		<u>0 1</u>
		COAL-AF	4.	1.00	0.058	0.15	20.9	1.59	0.68	1.16	2.37	Ο.	0.	5.79	1.149	-11.		1
		COAL-AF	4.	5.77	0.142	0.15	45.8	3.48	1.48	ຳ.76 .	5.07	Ο.	-3.48	8.31	1.648	-31.		09
3741	<b>HEGTOO</b>	COAL-AF	4.	1.00 (	0.066	0.15	19. <b>9</b>	1.51	0.64	1.13	2.35	Ο.	Ο.	5.63	1.116	-10.		1
3741	<b>HEGTOO</b>	COAL-AF	4.	2.41 (	0.114	0.15	25.7	1,95	0.83	1.10	3.12	0.	-1.03	5.97	1.184	-14.		1
	FCMCCL		4.	1.00	0.151	0.15	19.2	1.49	0.63	1.18	2.14	Ο.	0.	· 5.44	1.080	-9.	4	3
3741	FCMCCL	COAL	4.	4.33 (	0.337	0.15	30.4	2,36	1.00	1.56	3,24	Ο.	-2.43	5.74	1.138	-15.	11	2
741	FCS FG1	COAL	4.	1.00	0.157	0.15	18.6	1.45	0.61	1.21	2.12	Ο.	Ο.	5.40	1.070	-9,	9	3
3741	FOSTOL	COAL	4.	7.11	0.410	0.15	38.0	2,96	1.26	2.00	4.05	0.	-4.46	5.80	1.151	-19.		3
741	IGGTST	COAL	4.	1.00	0.127	0.15	18.8	1.47	0.62	1.22	2.20	0.	G.	5.50	1.092	-9.		2
741	IGGTST	COAL	4.	5.03 (	0.299	0.15	31.2	2.42	1.03	1.34	3.77	Ο.	-2.94	5.63	1.117	-15.		3
741	GTSOAR	RESIDUA	4.	1.00 (	0.128	0.15	6.9	0.51	0.22	0.54	3.78	Ο.	Ο.	5.06	1.004	-2.		4
3741	GTSØAR	RESIDUA	4.	4.57	0.291	0.15	10.7	0.80	0.34	0.54	6.18	Ο.	-2.60	5.25	1.041	-4.		2
741	<b>GTACO8</b>	RESIDUA	4.	1.00	0.150	0.15	6.4	0.47	0.20	0.53	3.68	0.	0.	4.89	0.970	-1.		9
3741	GTAC08	RESIDUA	4.	3.54	0.310	0.15	8.3	0.61	0.26	0.46	5.14	Ο.	-1.85	4.62	0.917	-1.	1	î
3741	GTAC12	RESIDUA	4.	1.00 (	0.148	0.15	6.4	0.47	0.20	0.53	3.69	Ο.	0.	4.90	0.971	-1.		9
741	GTAC12	RESIDUA	4.	4.42	0.333	0.15	9.5	0.71	0.30	0.50	5.69	0.	-2.50	4.70	0.932	-2.		9
3741	GTAC16	RESIDUA	4.	1.00	0.146	0.15	6.5	0.48	0.21	0.53	3.70	0.	0.	4.92	0.977	-1.		8
741	GTAC16	RESIDUA	4.	5.02	0.342	0.15	10.8	0.80	0.34	0.54	6.09	Ο.	-2,93	4.84	0.960	-3.		7
741	GTWC16	RESIDUA	4.	1.00 (	0.132	0.15	6.8	0.51	0.21	0.54	3.76	Ο.	Ο.	5.02	0.996	-1.		5
741	GTWC16	RESIDUA	4.	5.25	0.315	0.15	11.2	0.83	0.35	0.55	6.54	Ο.	-3.10	5.17	1.025	-4.		3
741	CC1626	RES! DUA	4.	1.00	0.132	0.15	6.9	0.52	0.22	0.61	3.76	0.	0.	5.12	1.016	-2.		3
741	CC1626	RESIDUA	4.	8.88	0.363	0.15	15.7	1.19	0.51	0.81	8.91	Ο.	-5.75	5.68	1.126	-8.		0 9
741	CC1622	RESIDUA	4.	1.00 0	0.138	0.15	6.7	0.51	0.22	0.60	3.74	Ο.	G.	5.06	1.004	<b>-2</b> .		4
741	CC1622	RESIDUA	4.	8.00 (	0.372	0.15	14.8	1.12	0.48	0.77	8.12	0.	-5.11	5.38	1.068	-6.		2
741	CC1222	RESIDUA	4.	1,00 0	0.140	0.15	6.5	0.50	0.21	0.60	.3.73	0.	0.	5.04	1.000	-1.		5
741	CC1222	RESIDUA	4.	7.98	0.375	0.15	14.1	1.07	0.45	0.76	8,06	Ο.	-5.09	5.25	1.042	-6.		3
3741	CC0822	RESIDUA	4.	1.00	0.149	0.15	6.7	0.51	0.22	0.61	3.69	Ο.	0.	5.02	0.996	-1.	!	5
741	CC0822	RESIDUA	4.	6.41	0.379	0.15	12.2	0.93	0.39	0.69	6.81	0.	-3.95	4.88	0.968	-4.	1	6
741	STIG15	RESIDUA	4.	1.00 0	0.049	0.15	6.9	0.51	0.22	0.58	4.12	0.	Ö.	5.43	1.077	-3.		0
741	STIG15	RESIDUA	4.	197.56	0.171	0.15	206.7	15.31	6.51	12.38	203.39	0.	-143.45	94.14	18.674	-375.	1	0
741	STIGIO	RESIDUA	4.	1.00 (	0.070	0.15	6.7	0.49	0.21	0.56	4.03	٥.	Ο.	5.30	1.051	-2.		09
		RESIDUA	4.	18.27	0.218	0.15	23.9	1.77	0.75	1.40	19.95	0.	-12.60	11.27	2.236	-29.		0
741	STIGIS	RESIDUA	4.	1.00 0	0.080	0.15	6.6	0.49	0.21	0.56	3.99	0.	O.	5.25	1.041	-2.		0 9
		RESIDUA	4.	10.72	0.228	0.15	16.2	1.20	0.51	1.00	12.54	Ο.	-7.09	8.16	1.619	-16.		0
		RESIDUA	4.	1.00 0		0.15	8.8	0.65	0.28	0.62	3.91	C.	Ο.	5.45	1.081	-4.		0 9
741	DEADV3	RESIDUA	4.	11.88	0.289	0.15	32.4	2.40	1.02	1.23	12.56	0.	-7.94	9.26	1.838	-27.		<u>0</u> 0
741	DEHTPM	RESIDUA	4	1.00 0	0.148	0.15	8.9	0.66	0.28	0,65	3.70	Q,	O,	5,28	1.047	-3,		0

PAGE 69

			· ·				<u> </u>		<del> </del>						•				
			SENSITI	VITY OF	CAPIT	TAL COS					ORIGINA								
ENERGY	CONV	SITE-	POWER	PAVED	FESRP		******** PITAL CAP						EVNUE TO			ESNT	ROI	<b>G</b> ROS	e <b>c</b>
	STEM	FUEL	REOD	GEN/	LOIGIC	HEAT (	• • • • • • • • • • • • • • • • • • • •	1105 107	+	mori i c		ELEC	EAHOL 10	16E 189	441 III	WORTH	አሪ፣	17	
1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , ,	MW	REQD		RATIO *		11	NSNC							15%		BAG	
*			,		•			••											
28741	DESOA3	DISTIL	L 4.	1.00	0.084	0.15	7.8	0.58	0.25	0.60	4.87	Ο.	Ο.	6.29	1.248	~6.		0	60
28741	<b>DESCA3</b>	DISTIL	L 4.	13.79	0.251	0.15	46.0	3.41	1.45	1.60	18.37	Ο.	-9.33	15.49	3.073	-53.		0	61
28741	<b>DESOA3</b>	RESIDU	JA 4.	1.00	0.084	0.15	7.8	0.58	0.25	0.60	3.97	0.	0.	5.40	1.070	-3.		0	999
28741	<b>DESCA3</b>	RESIDU	JA 4.	13.79	0.251	0.15	46.0	3.41	1.45	1.60	14.98	Ο.	-9.33	12.11	2.401	-42.		0	67
1	GTSØAD				0.141	0.15	6.2	0.46	0.20	0.52	4.56	Ο.	Ο.	5.75	1.140	-3.		0	61
<del></del>	GTSGAD				0.313	0.15	8.6	0.64	0.27	0.48	7.02	0.	-2.38	6.02	1.194	-5.		0	63
1	GTRA08				0.131	0.15	7.1	0.53	0.22	0.54	4.62	0.	0.	5.91	1.173	-4.		0	62
	GTRA08				0.341	0.15	14.5	1.07	0.46	0.65	9.49	Ο,	-4.41	7.26	1.440	-12.	1	0	63
	GTRA12				0.134	0.15	7.0	0.52	0.22	0.54	4,60	ο.	0.	5.89	1.168	-4.		0	62
	GTRA12				0.347	0.15	14.5	1.07	0,46	0.65	9.24	0.	-4.29	7.13	1.414	<u>-12.</u>		0	6/1
is a second	GTRA16				0.135	0.15	7.2	0.54	0.23	0.55	4.60	0.	0.	5.91	1.172	-4.		0	62
	GTRA16 GTR208				0.343	0.15 0.15	14.6 6.8	1.08 0.50	0.46	0.65 0.54	8.85 4.60	0. 0.	-3.96 0.	7.08 5.86	1.405	-12. -4.		0 0	64 62
	GTR208				0.323	0.15	11.5	0.85	0.21 0.36	0.54	8.00	0.	-3.16	6.62	1.312	-4. -9.		ο O	63
	GTR212				0.134	0.15	6.9	0.51	.0.22	0.54	4.60	0.	0.	5.87	1.165	-4.		0	- 62
	GTR212				0.329	0.15	12.4	0.92	0.39	0.59	8,32	0.	-3.44	5.78	1.345	-10.		Ö	63
	GTR216				0.137	0.15	7.0	0.52	0.22	0.54	4.59	Ö.	0.	5.87	1.165	-4.		Ô	62
	GTR216				0.338	0.15	13.1	0.97	0.41	0.61	8.35	õ.	<b>-3</b> .54	6.80	1.348	-10.		ñ	64
	<b>OTRWO8</b>				0.110	0.15	7.2	0.53	0.23	0.55	4.73	0.	0.	6.04	1.198	-5.		ō	61
	<b>GTRWG8</b>				0.300	0.15	15.9	1.18	0.50	0.71	11.52	O.	-5.41	8.50	1.687	-17.		0	60
28741	GTRW12	DISTIL	.L 4.	1.00	0.118	0.15	7.2	0.53	0.23	0.55	4.69	0.	Ó.	6.00	1.189	-5.		0	61
28741	GTRW12	DISTIL	L 4.	8.56	0.322	0.15	16.0	1.19	0.50	0.71	11.30	0.	-5.51	8.19	1.625	-16.		0	61
28741	GTRW16	DISTIL	L 4.	1.00	0 120	0.15	7.4	0.55	0.23	0.55	4.68	0.	Ō.	6.01	1.192	-5.		O	61
28741	GTRW16	DISTIL	L 4.	7.93	0.321	0.15	15.9	1.18	0.50	0.70	10.68	Ο.	<b>-5</b> .06	8.01	1.589	-15.		0	61
	GTR308				0.103	0.15	6.9	0.51	0.22	0.54	4.77	О.	Ο.	6.04	1.198	-5.		0	60
	GTR308				0.260	0.15	12.8	0.95	0.40	0.62	9.96	0.	-3.96	7.98	1.583	-14.		0	59
	GTR312				0.122	0.15	7.0	0.52	0.22	0.54	4.67	0.	Q.	<b>5</b> .95	1.180	-4.		0	61
	GTR312				0.315	0.15	13.4	0.99	0.42	0.63	9.73	0.	-4.32	7.45	1.478	-12.		0	61
	GTR316				0.121	0.15	7.2	0.53	0.23	0.55	4.67	0.	0.	5.97	1.185	-5.		0	61
	GTR316				0.312	0.15	13.9	1.03	0.44	0.64	9.66	<u> </u>	-4.24	7.53	1.493	-13.		0	61
	FCPADS FCPADS				0.092	0.15	7.1	0.52	0.22	0.83	4.83	0.	0.	6.40	1.269	-6.		0	60
	FCMCDS			15.07	0.123	0.15	36.5	2.70	1.15	6.39	19.07	0.	-10.27	19.04	3.776	-60.		0	60
	FCMCDS				0.123	0.15 0.15	7.2 31.1	0.53 2.31	0.23 0.98	0.80 4.80	4.66 13.91	0. 0.	0. -7.97	6,22 14,03	1.234 2.784	-5. -42.		0	61 62
	ONOCON			0.	0.360	0.68	1.4	0.10	0.98	0.18	0.68	1.22		2.22	1,000	0.	<del></del>	<del>~</del> ~	- 6:
	STM141				0.146	0.68	2.6	0.19	0.04	0.10	0.84	0.77		2.16	0.975	-0.		8	10
	STM141				0.146	0.60	4.4	0.13	0.14	0.43	0.49	0.77		2.17	0.978	-1.		6	12
	STM141				0.146	0.68	4.0	0.30	0.13	0.38	0.49	0.77		2.07	0.935	-1.		9	10
	STM088				0.111	0.68	2.2	0.17	0.07	0.26	0.80	0.88		2.17	0.981	-0.		<del>5</del>	10
	STM088				0.111	0.68	4.0	0.30	0.13	0.42	0.47	0.88		2.19		-1.		6	13
28951	STM088	COAL-A			0.111	0.,68	3.7	0.28	0.12	0.37	0.47	0.88		2.12	0.955	-1.		8	10
28951	PFBSTM	COAL-R	F 4.	0.56	0.221	0.68	5.9	0.45	0.19	0.48	0.55	0.54		2.20	0.992	-2.		5	13
28951	TISTMT	RESIDU	Δ 4	0.73	0.289	0.68	11.0	0.83	0.35	0.49	1.02	0.33	0.	3.03	1.368	-7.		0	999
																			<b></b>

DATE 06/07/79 &SE-PEO-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			SENSIT	IVITY OF	F CAPIT						RIGINAL			<del></del>				
							******											
	A CQNA		POWER		FESRPO		PITAL CAP	ITAL TAX		NDM FU			EVNUE TO	TAL NO				oss
SY	STEM	FUEL	REQD	GEN/	<del> </del>	/HEAT			<u>+</u>	<del> </del>		ELEC		· · · · · · · · · · · · · · · · · · ·		WORTH		PAY
			MW	REQD	.F	RATIO *	10**6	11	NSNC		. /			**		15%	8.	ACK
28951	TIHRSG	RESIDUA	A 4.	0.31	0.101	0.68	9.1	0.67	0.29	0.36	0.86	0.84	0,	3.02	1.363	-6.	o	97
	TIHRSG		4.		0.101	0.68	11.7	0.89	0.38	0.53	0.50	0.84	Õ.	3.14	1.417	-8,	Ŏ	435
	STIRL	DISTIL			0.247	0.68	2.7	0.20	0.08	0.25	1.53	0.19	Ō.	2.24	1.012	-1.	3	17
	STIRL	RESIDU			0.247	0.68	2.7	0.20	0.08	0.25	1.24	0.19	o.	1.96	0.885	0.	17	6
	STIRL	COAL	4.		0.247	0.68	5.0	0.37	0.16	0.42	0.72	0.19	Ö.	1.85	0.837	-1.	12	8
	HEGT85	-			0.164	0.68	15.5	1.18	0.50	0.79	0.92	0.	o.	3.39	1.530	-11.	0	900
28951	HEGT85	COAL-A	F 4.		0.203	0.68	23.3	1.77	0.75	0.89	1.56	0.	-0.88	4.09	1.847	-16.	0	999
28951	HEGT60	COAL-A	F 4.	1.00	0.174	0.68	14.0	1.06	0.45	0.68	0.91	Ο,	0.	3.11	1.403	-9.	0	9.)9
28951	HEGT60	ContAl	F 4.	1.09	0.180	0.68	14.2	1.08	0.46	0.59	0.96	Ο.	-0.07	3.02	1.364	-9.	0	990
28951	HEGT00	CUA Al	F 4.	0.51	0.086	0.68	8.6	0.65	0.28	0.41	0.66	0.60	0.	2.60	1.173	-5.	0	999
28951	FOMOCL	COAL	4.	0.94	0.324	0.68	10.3	0.80	0.34	0.56	0.70	0.08	0.	2.48	1.120	-5.	2	20
28951	FCSTCL	COAL	4.	1.00	0.359	0.68	11.3	0.88	0.37	0.79	0.71	٥.	0.	2.75	1.242	-7.	0	999
28951	FCSTCL	COAL	4.	1.53	0.409	0.68	12.9	1.00	0.43	0.74	0.88	<b>`</b> 0.	-0.39	. 2.66	1.199	-7.	, 1	23
28951	IGGTST	COAL	4.	1.00	0.289	0.68	11.4	0.89	0.38	0.73	0.79	0.	0.	2.78	1.255	<u>-7.</u>	0_	999_
28951	IGGTST	COAL	4.	1.08	0.297	0.68	11.3	0.88	0.38	0.64	0.82	0.	-0.06	2.65	1.197	-6,	1	25
28951	GTSOAR	RESIDU	A 4.	0.96	0.292	0.68	3.6	0.27	0.11	0.24	1.30	0.05	Ο,	1.97	888.0	-0.	12	7
	GTAC08			0.77	0.263	0.68	2.7	0.20	0.09	0.21	1.12	0,28	0.	1.90	0.859	٥.	19	5
	GTAC12				0.325	<b>0.68</b>	3.0	0.22	0.10	0.23	1.23	0.06	0	1.83	0.826	<u> </u>	19	5
	GTAC16			;	0.338	0,68	3.4	0.26	0.11	9.30	1.26	Ο.	Ο.	1.92	0.866	-0.	14	7
	GTAC16				0.346	0.68	3.4	0.25	0.11	0.24	1.30	Ο.	-0.05		0.832	0.	17	6
	GTWC16				0.301	0.68	3.8	0.28	0.12	0.32	1.33	Ο.	Ο.	2.05	0.926	-1,	10	9
28951		RESIDU			0.315	0.68	3.8	0.28	0.12	0.25	1.42	<u>o.</u>	-0.10	1.97	0.890	-0.	12	8
28951		RESIDU			0.301	0.68	₫.2	0.32	0.14	0.43	1.33	ο.	0.	2.22	1.002	-1.	5	14
	CC1626			•	0.362	0.68	5.3	0.40	0.17	0.40	1.93	0.	-0.67	2.23	1.007	-2.	5	14
	CC1622				0.315	0.68	4.0	0.30	0.13	0.42	1.30	0.	0,	2.15	0.971	-1.	7	11
	CC1622				0.370	0.68	4.7	0.36	0.15	0.37	1.76	<u>0.</u>	<u>-0.53</u>	2.11	0.952	<u>-1</u> -		11 11
	CC1222				0.318	0.68	3.8	0.29	0.12	0.42	1.30	0.	0.	2.13	0.961	-1.	8	10
	001222				0.374	0.68	4.5	0.34	0.15	0.37	1.74	0.	-0.52	2.07	0.936	-1. -1.	9	10
	000822				0.340	0.68 0.68	3.9 4.1	0.29 0.31	0.13 0.13	0.41 0.35	1.25 1.47	0. 0.	0. -0.28	2.09 1.99	0.941 0.897	-1.	10	8
~	STIG15				0.111	0.68	4.5	0.33	0.13	0.43	1.69	0.	0.	2.59	1.166	-3	<u></u>	94
	ST1615			42.95		0.68	51.1	3.78	1.61	3.19	44.22	0.	-30.61		10.005	-86.	ő	59
	ST1010				0.160	0.68	4.1	0.31	0.13	0.40	1.60	0.	0.	2.43	1.097	-2.	ő	900
	STIGIO				0.218	0.68	7.8	0.58	0.15	0.52	4.34	0.	-2.17	3.51	1.585	-7.	ŏ	6.1
	STIGIS				0.182	0.68	4.0	0.29	0.12	0.39	1.56	<del>0.</del>	0.	2.36	1.066	-2.	<u>ŏ</u>	999
	STIGIS			•	0.228	0.68	5.4	0.40	0.17	0.39	2.73	o.	-0.97	2.72	1.225	-3.	Š	82
	DEADV3				0.241	0.68	5.7	0.42	0.18	0.43	1.44	Ŏ.	o.	2.47	1.116	-3.	ō	999
28951		RESIDUA			0.303	0.68	7.9	0.58	0.25	0.43	2.46	o.	-0.97	2.75	1.242	-5.	Ō	999
28951		RESIDU			0.356	0.68	5.3	0.39	0.17	0.42	1.22	0.	0.	2,20	0.993	-2.	5	13
28951		RESIDUA		1.19	0.378	0.68	5.4	0.40	0.17	0.35	1.33	Ο.	-0.14	2.12	0.955	-2.	7	11
28901	DESGA3	DISTIL		1.00	0.207	0.68	4.8	0.35	0.15	0.41	1.85	Ο.	Ο.	2.77	1.248	-3,	0	70
28951		DISTIL		2.65	0.266	0.68	9.3	0.69	0.29	0.48	3.53	0.	-1.20	3.79	1.709	-9.	0_	64
28951	DESCA3	RESIDU	A 4	1.00	0.207	0.68	4.8	0.35	0.15	0.41	1.51	0.	0.	2.43	1.094	-2.	. 0	999

DATE 06/07/79 &SE-PEC-ADV-ENERGY-SYS

#### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE

			SENSI	TIVITY O	F CAPI	TAL COST					ORIGINAL							
ENERG	Y CONV	SITE-	POWE	R POWER	FESRP		TAL CAP						MILLION VNUE TO			RESNT RO	l GE	oss
	STEM	FUEL	REQD	GEN/		/HEAT C			+			ELEC	VIII.		, , , , , , , , , , , , , , , , , , ,	WORTH		PAY
<u></u>	<u> </u>		MW	REQD		RATIO *1		1.0	NSNC	<del></del>						15%		ACK
28951	GTSGAD	DISTIL	L 4	. 0.91	0.299	0.68	2.8	0.21	0.09	0.22	1.50	0,11	· · · · O .	2.13	0.959	-0.	9	9
	GTRA08				0.313	0.68	4.3	0.32	0.13	0.35	1.60	_ 0.	0.	2.40	1.084	-2.	0_	999
	GTRA08	: - • • -			0.351	0.68	4.7	0.35	0.15	0.28	1.95	Ο.	-0.32	2.40	1.083	-2.	0	999
	GTRA12				0.318		4.2	0.31	0.13	0.35	1.59	0.	Ο,	2.38	1.073	-2.	0	909
	GTRA12		_		0.356		4.6	0.34	0.14	0.28	1.91	0.	-0.31	2.37	1.068	-2.	0	29
	GTRA16				0.319		4.4	0.32	0.14	0.35	1.59	<u>o.</u>	<u>0.</u>	2.39	1.080	<u>-2.</u>	<u>o</u> _	999
	GTRA16				0.351	'O . 68	4.7	0.35	0.15	0.28	1.85	0.	-0.25	2.37	1.069	-2.	0	29
	GTR208 GTR208				0.317	0.68	3.8	0.28 0.28	0.12	0.32 0.25	1.59 1.69	0,	0.	2.31	1.041	-1.	4	24 15
	GTR212		-		0.330	0.68 0.63	3.8 4.0	0.28	0.12 0.13	0.23	1.60	0. 0.	-0.09 0.	2.24 2.35	1.012	-1. -2.	0	30
	GTR212				0.335	0.68	4.0	0.30	0.13	0.33	1.75	0.	-0.15	2.29	1.034	<u></u>	2	20
	GTR216				0.333	0.68	4.1	0.30	0.13	0.33	1.58	0.	0.13	2.35	1.058	-2.	ő	29
	9TR216		-		0.344	0.68	4.2	0.31	0.13	0.26	1.76	0.	-0.17	2.30	1.036	-2.	2	20
	GTRW08				0.262	0.68	4.5	0.33	0.14	0.37	1.72	o.	0.	2.56	1.153	-3.	ō	102
	GTRW03				0.308	0.68	5.3	0.40	0.17	0.31	2.38	0.	-0.54	2.71	1.224	-3.	0	78
	GTRW12				0.278	0.68	4.5	0.33	0.14	0.36	1.68	Ö.	o.	2.52	1.136	-2.	ŏ	162
	GTRW12				0.329	0.68	5.4	0.40	0.17	0.31	2.35	õ.	-0.57	2.67	1.202	-3.	ŏ	89
_	GTRW16		-		0.280	0.68	4.6	0.34	0.14	0.37	1.68	o.	0.	2.53	1.140	-2.	Ö	174
28951	GTRW16	DISTIL	L 4	. 1.66	0.327	0.68	5.4	0.40	0.17	0.31	2.24	O,	-0.49	2.64	1.190	-3.	0	101
28951	GTR308	DISTIL	L 4	. 1.00	0.249	0.68	4.0	0.30	0.13	0.34	1.75	O.	0.	2.52	1.135	-2.	0	96
28951	GTR308	DISTIL	L 4	. 1.32	0.272	0.68	4.2	0.31	0.13	0.27	2.05	Ο.	-0.23	2.53	1.141	-2.	0	90
28951	GTR312	DISTIL	L 4	. 1.00	0.283	0.68	4.1	0.31	0.13	0.35	1.67	0.	0.	2.46	1.109	-2.	0	999
28951	GTR312	DISTIL	L 4	1.47	0.319	0.68	4.6	0.34	0.14	0.28	2.07	0.	-0.34	2.49	1.122	-2.	0	753
28951	GTR316	DISTIL	L 4	. 1.00	0.281	0.68	4.3	0.32	0.14	0.35	1.68	Ο.	Ο.	2.48	1.121	-2.	n	443
	GTR316			. 1.45	0.316	0.68	4.7	0.35	0.15	0.29	2.06	Ο.	-0.33	2.52	1.135	-3.	Ó	217
	FCPADS				0.210	0.68	4.0	0.30	0.13	0.65	1.84	0.	0.	2.92	1.316	-3	0	64
	FCPADS				0.279	0.68	8.6	0.64	0.27	1.47	4.14	0.	-1.66	4.86	2.194	-12.	0	61
1	FCMCDS		-		0.281	0.68	4.2	0.31	0.13	0.62	1.68	Ο.	Ο.	2.73	1.233	-3.	0	72
	FCMCDS		-		0.360	0.68	7.3	0.54	0.23	1.12	3.02	0.	-1.16	3.75	1.691	-8.	0	64
	ONOCGN				0.	0.13	13.9	1.03	0.44	0.71	14.06	4,72	<u> 0.</u>	20.95	1.000	0.	0	0
	STM141				0.158	0.13	15.1	1.15	0.49	1.05	15.85	0.	0.	18.53	0.884	7.	76	2
	STM141				0.186	0.13	15.9	1.21	0.51	0.88	16.31	0.	-0.73	18.18	0.868	8.	61	2
	STM141				0.158 0.186	0.13	33.4	2.53	1.08	2.21	9.20 9.47	0. 0.	0. -0.73	15.03 13.80	0.717	9.	22	5
	STM141 STM141				0.158	0.13	29.8	£, 20	0.96	1.83 2.05	9.47	<u>0.</u>	0.	14.10	0.659	14.	29 33	4
	STM141				0.186	0.13 0.13	26.3 21.1	1.99 1.60	0.85 0.68	1.66	9.47	0. 0.	-0.73	12.69	0.606	15. 22.	53 57	3 2
	STM088				0.132	0.13	14.1	1.07	0.46	0.83	9.47 15.56	0. 0.77	0.73	18.68	0.891	22. 7.	57 179	1
	STM088				0.132	0.13	27.5	2.09	0.48	1.72	9,03	0.77	0.	14.50	0.692	13.	29	4
	STMO88				0.132	0.13	19.9	1.51	0.64	1.60	9,03	0.77	<del>0.</del>	13.55	0.647	20.	60	2
	PFDSTM				0.153	0.18	35.9	2.72	1.16	2.64	9.25	0.	o.		0.753	5.	19	5
	PFBSTM				0.261	0.13	35.9	2.73	1.16	2.89	10.61	o.	-3.52	13.86	0.662	11.	22	5
	TISTMT				0.155	0.13	44.4	3.37	1.43	1.80	15,90	õ.	0.	22.51	1.074	-20.	0	30
		RESIDU					89.1			2.77	19.73	0.	-5.87	<u> </u>				999

		SENSIT	IVITY OF	CAPI						ORIGINA		-					
ENERGY CONV	SITE-	POWER	POVER	FESRPO			****LEVE( PITAL TA)					\$ MILLION REVNUE TO			RESNT	ROI GI	)08 <b>8</b>
SYSTEM	FUEL	REQD	GEN/	, 40	/HEAT			+	,		ELEC				WORTH	**	PAY
		MW	REQD	F	RATIO *		11	NSNC	-						15%		MIK
29111 TISTM	T COAL	14.	3.07	0.312	0.13	112.8	8.56	3.64	3.99	11,45	ο.	-5.87	21.77	1.039	-50.	4	15
9111 TIHRS	G RESIDU	A 14.	1.00	0.088	0.13	58.8	4.35	1,85	2.07	17.17	0.	0.	25.44	1.214	<u>-35.</u>	0	113
9111 TIHRS	G RESIDU	A 14.	1.82	0.132	0.13	85.2	6.31	2.68	2.52	19.72	0.	-2.33	28.91	1.380	-58.	0	87
29111 TIHRS	G COAL	14.	1.00	0.088	0.13	82.4	6.25	2.66	3.39	9.97	Ο.	0.	22.26	1.052	-37.	3	17
9111 TIHRS	G COAL	14.	1.82	0.132	0.13	109.0	8.27	3.52	3.77	11.45	Ο.,	-2.33	24.68	1.178	-58.	1	24
9111 STIRL	DISTIL	<u>L 14.</u>		0.106	0.13	22.1	1.63	0.70	1.20	20.62	0.	0.	24.15	1.152	<u>-14.</u>	0	<u> </u>
29111 STIRL				0.228	0.13	39.3	2.91	1.24	1.49	29.06	Ο.	-7.07	27.62	1,318	-33.	0	6
29111 STIRL				0.106	0.13	22.1	1.64	0.70	1.20		0,	0.	20.35	0.971	-2.	10	
29111 STIRL	••			0.228	0.13	39.3	2.91	.1.24	1.49	23.71	ο.	-7.07	22.27	1.063	-16.	0	903
9111 STIRL	COAL	14.		0.106	0.13	41.3	3.06	1.30	2.39	9.77	<u> 0.</u>	<u> </u>	16.51	0.768	<del>!·</del>		
9111 STIRL		14.		0.228	0.13	69.4	5.14	2.19	2.99	13.77	0.	-7.07	17.00	0.812	-14.	10	
9111 HEGT6				0.005	0.13	52.3		1.69	2.61	10.87	0.	0.	19.14	0.913	-13.	8	10
9111 HEGT6			11.63		0.13	182.0	13.81	5.87	7.44	39.68	· 0.	-30.10	36.70	1.752	-130.	0	256
9111 HEGTO				0.045	0.13	49.6	3,77	1.60	2.55	10.43	<u>o.</u>	0.	18.34	0.875	<u>-9.</u>	10	1:
9111 HEGTO				0.090	0.13	72.0	5.46	2.32	3.10	14.87	0.	-5.56	20.20	0.964	-26.	6	
9111 FCMCC		14.		0.134	0.13	48.4	3.77	1.60	2.72	9.46	0.	0.	17.55	0.837	-7.	11	
9111 FCMCC		14.		0.335	0.13	83.8	6.51	2.77	4.75	14.74	0.	-11.53	17.25	0.823	-23.	8	10
9111 FCSTC		14.		0.139	0.13	47.4	3.69	1.57 3.22	2.72 5.57	9.40	0. 0.	0. -17.20	17.37 16.09	0.829 0.768	-6. -27.	12	
9111 FCSTC		14.		0.389	0.13	97.4	7.57	1.54	2.46	16.93 9.74	o.	0.	17.35	0.788	-5.	12	į
9111 IGGTS 9111 IGGTS	,	14. 14.		0.108	0.13 0.13	46.5 74.9	3.61 5.82	2.47	2.40	9.74 15.77	0.	-10.81	15.96	0.762	-15.	10	
9111 GTSCA				0.102	0.13	21.9	1.62	0.69	1.13	16.90	0.	0.	20.34	0.971	-2.	10	
9111 GTSCA				0.102	0.13	34.3	2.54	1.08	1.32	30.68	0.	-13.72	21.90	1.045	-13.	- 10	2
9111 GTACO				0.135	0.13	17.7	1.31	0.56	1.03	16.28	ŏ.	0,	19.17	0.915	4.	30	
9111 GTACO				0.311	0.13	23.5	1.74	0.74	1.01	23.16	o.	-8.80	17,84	0.852	<b>5</b> .	24	
9111 GTAC1				0.132	0.13	20.9	1.54	0.66	1.10	16.33	Ŏ.	0.	19.63	0.937	1.	17	
9111 GTAC1				0.332	0.13	28.2	2.09	0.89	1.14	25.81	Ō.	-11.81	18.11	0.865	2.	17	and the second
9111 GTAC1				0.127	0.13	21.3	1.58	0.67	1.11	16.43	0.	0.	19.79	0.945	ō.	15	-
9111 GTAC1				0.336	0.13	32.8	2.43	1.03	1.27	28.31	Ο.	-14.18	18.87	0.900	-2.	12	
9111 GTWC1	6 RESIDU	A 14.	1.00	0.119	0.13	21.5	1.59	0.68	1.12	16.59	0.	0.	19.98	0.954	-1.	13	
9111 GTWC1	6 RESIDU	A 14.	6.10	0.316	0.13	30.8	2.28	0.97	1.23	29,47	Q.	-14.44	19.51	0.931	-3.	11	
9111 00162	6 RESIDU	A 14.	1.00	0.115	0.13	21.6	1.64	0.70	1.21	16.64	0.	Ο.	20.19	0.964	-2.	11	
9111 00162	6 RESIDU	A 14.	8.97	0.344	0.13	41.8	3.17	1.35	.1 . 69	37.24	Ο.	-22.57	20.88	0.996	-13.	5	1:
9111 CC162	2 RESIDU	A 14.	1.00	0.121	0.13	21.4	1.62	0.69	1.20	16.53	0.	0	20.05	0.957	<u>-1.</u>	12	
9111 CC162	2 RESIDU	A14.	8.05	0.351	0.13	39.9	3.03	1.29	1.60	33,98	0.	-19.97	19.92	0.951	-9.	8	1
9111 CC122	2 RESIDU	A 14.	1.00	0.122	0.13	21.0	1.59	0.68	1.20	16.51	Ο.	Ο.	19.98	0.954	-1.	13	
9111 CC122				0.354	0.13	37.7	2,86	1.22	1.57	33.67	Ο.	-19.82	19.50	0.931	-7.	9	3
<del></del>	2 RESIDU			0.131	0.13	21.1	1,60	0.68	1.20	16.34	0.	0.	19.82	0.946	-0.	14.	
9111 CC082				0.354	0.13	31.0	2.35	1.00	1.37	28,46	Ο.	-15.01	18.16	0.867	0.	15	,
9111 DEHTP				0.111	0.13	27.6	2.04	0.87	1.37	16.73	0,	Ο	21.02	1.003	-7.	4	1.
9111 DEHTP				0.278	0.13	65.5	4,85	2.06	2.26	27,80	Ο,	-11.73	25.25	1.205	-38.	. 0	99:
9111 GTSCA				0.124	0.13	20.2	1,50	0.64	1.09	20.21	0.	0.	23.44	1.119	<u>-11.</u>	<u>0</u> .	59
9111 GTSOA	D DISTIL	L 14.	5,05	0.309	0.13	25.0	1.85	0.79	1.06	32.28	<u> </u>	-11.47	24.50	1,169	-16.	. 0	59

	SE	NSITI	VITY OF	CAPIT	AL COS	<del>.</del>		PERC	ENT OF	ORIGINA	L COS	Г 100						
						*****								-				
ENERGY CONV	SITE- P	π - •				PITAL CA	PITAL TA		NDM FU			REVNUE TO	ITAL N	ORML F	RESNT	ROI	GROS	
SYSTEM		<u>REUD</u> MW	GEN/		<u>/HEAT</u> ATIO *			HSNC			ELEC	<del></del>	<del></del>	<del>i</del> -	15%		<u>P/</u> BAC	
		LIM	REGD	K	A110 *	10446	1.	NONC							10%		DAN.	<b>N</b>
29111 GTRA08	DISTILL	14.	9.83	0.311	0.13	54.2	4.02	1.71	1.87	51.40	0.	-25.02	33.98	1.622	-60.		O	59
29111 GTRA12		14.	1.00		0.13	22.4	1.66	0.70	1,14	20.59	Ö.	0.	24.08				Ö	59
29111 GTRA12		14.	9.26		0.13	48.7	3.60	1.53	1.72	48.26	Ö,	-23.39	31.73	1.514	-50.		0	60
29111 GTRA16	DISTILL	14.	1.00	0.110	0.13	22.8	1.69	0.72	1.15	20.53	Ο.	Ο.	24.09	1.150	-14.		0	59
29111 GTRA16	DISTILL	14.	8.41		0.13	48.0	3.55	1.51	1.69	44.96	Ο.	-20.98	30.73	1.467			0	60
29111 GTR208		14.	1.00		0.13	21.7	1.60	0.63	1.12	20.49	0.	<u>O.</u>	23.90				0	559
29111 GTR208		14.	6.69		0.13	36.9	2.73	1.16	1.39	39.04	. 0.	-16.13	28.19	1.34			0	59
29111 GTR212		14.	1.00		0.13	22.0	1.63	0.69	1.13	20.49	0.	0.	23.94	1.143			0	59 60
29111 GTR212 29111 GTR216		14. 14.	7.19 (		0.13 0.13	39.7 22.3	2.94 1.65	1,25 0,70	1.47 1.14	40.64 20.44	0. 6.	-17.53 0.	28.77 23.93			-1.	0	59
29111 GTR216		14.	7.41		0.13	42.6	3.16	1.34	1.54	41.01	<del>0</del> .	-18.14	28.90		·		0	60
29111 GTRW08		14.	1.00		0.13	22.4	1.66	0.70	1.14	21.05	o.	0.	24.55				ŏ	58
29111 GTRW08		14.	11.49		0.13	57.2	4.24	1.80	1.98	61.09	õ.	-29.72	39.40				Ö	58
29111 GTRW12		14.	1.00		0.13	22.4	1.66	0.70	1.14	20.84	o.	0.	24.33	1.16			ŏ	59
29111 GTRW12		14.	11.30		0.13	49.9	3.69	1.57	1.79	57.95	0,	-29.19	35.82				0	58
29111 GTRW16		14.	1.00	0.100	0.13	22.7	1.68	0.72	1.15	20.77	Ο.	0.	24.31	1.160	-15.		0	59
29111 GTRW16	DISTILL	14.	10.16	0.306	0.13	48.4	3.58	1.52	1.73	53.12	0.	-25.95	34.00	1.623	3 −57.		0	59
29111 GTR308	DISTILL	14.	1,00	0.079	0.13	21.8	1.61	0.69	1.13	21.24	0.	0.	24.67	1.17	7 -15.		0_	58
29111 GTR308	DISTILL	14.	8.54	0.233	0.13	39.0	2.89	1.23	1.49	51.39	0.	-21.35	35.65	1.70	-58.		0	57
29111 GTR312	DISTILL	14.	1.00	0.105	0.13	21.8	1.62	0.69	1.13	20.65	Ο.	Ο.	24.08	1.149			0	59
29111 GTR312		14.	8.45		0.13	40.3	2.98	1.27	1.50	46.09	Ο.	-21.09	30,75	1.468			0	59
<u> 29111 GTR316</u>		14.	1.00 (		0.13	22.2	1.65	0.70	1.14	20.66	<u> </u>	0.	24.15	1.152			0	59
29111 GTR316		14.	8.30		0.13	41.4	3.06	1.30	1.53	45.68	0.	-20.67	30.90				0	59
29111 FCPADS		14.	1.00		0.13	24.7	1.83	0.78	2,45	21.16	Ο.	0.		1.251			0	59
29111 FCPADS		14.	17.55		0.13	141.3	10.46	4.45	27.75	96.17 20.52	0.	-46.87 0.	81.95 25.54	3.911 1.219			0	60 00
29111 FCMCDS 2911! FCMCDS		14. 14.	13.88		0.13	25.2 121.2	1.87 8.98	0.79 3.82	2.35	62.87	<u>0.</u>	-36.49	59.92				<del>0</del>	61
29112 ONOCGN		52.		0.380 0.	0.13	41.1	3.04	1.29	1.57	49.98	17.5		73.42				Ö	0
29112 STM141		52.	1.00		0.13	44.9	3.41	1.45	2.08	56.63	0.	o.	63.57			10	oo	ĭ
29112 STM141		52.	1,16		0.13	44.0	3.34	1.42	1.80	57.70	õ.	-1.70	62.57			-	31	i
29112 STM141		52.	1.00		0,13	90.4	6.86	2.92	4.99	32.88	Ō.	0.	47.65				32	3
29112 STM141		52.	1.16		0.13	93.8	7.11	3.02	4.69	33.50	Õ.	-1.70	46.64	0.63			31	2
29112 STM141	COAL-AF	52.	1.00	0.163	0.13	72.0	5.47	2.32	4.87	32.88	Ο.	0.	45.55	0.620	72.		48	2
29112 STM141	COAL-AF	52.	1.16	0.181	0.13	69.6	5.28	2.25	4.50	33.50	0.	-1.70	43.84	0.597			54	ä
29112 STM088		52.	0.76		0.13	39.8	3.02	1.29	1.69	55.0 <b>5</b>	4.15		65.20	0.888		-	99	•
9112 STM088		52.	0.75		0.13	87.7	6.66	2.83	4.36	31.97	4.15		49.97				31	4
29112 STM088		52.	0.76		0.13	61.3	4.65	1.98	4.20	31.97	4.15		46.94	0.639			64	2
29112 PFBSTM		52.	1.00		0.13	91.5	6.95	2.95	6.57	33.08	<u> </u>	0.	49.55	0.675			30	. 4
29112 PFBSTM		<b>5</b> 2.	2.10		0.13	84.8	6.43	2.73	7.86	37.56	0.	-11.60	42.99			;	39	- 3
29112 TISTMT 29112 TISTMT		52. 52.	1.00 ( 2.89 (		0.13	126.0 234.2	9.56 17.77	4.06 7.55	4.21 6.71	56.83 69.79	0. 0.	0. -19.90	74.66 81.92				0	16 26
29112 TISTMT		52. 52.	1.00		0,13	177.6	13.48	7.55 5.73	7.18	33.00	0. 0.	0.	59.39				12	20 8
29112 TISTMT		52.	2,89		0.13	294.5	22.35	9.50	9.91	40.52	0.	-19.90	62.38				្នែ	10
ESTIE ITAMI	77UF		E. U.S.	0.310	<u> </u>	234.0	- 25.33	*	3.31	70.02	<u> </u>	13.30	JE. 30	0.000	, 00.			

PAGE 7

	· · · · · · · · · · · · · · · · · · ·	SENSITI	VITY OF	CAPIT	AL CES	<del></del>		PERC	ENT OF	ORIGINA	COS	T 100	<del></del>		·		
		orno:	<b>V</b> 1 1 1 0 1	VAI 11			****LEVE					S MILLION	IS)****	*****	k		
ENERGY CONV		POWER		FESRPO			PITAL TA		NDM FL			REVNUE TO	TAL NO	DRNL F	PRESNT		GROSS
SYSTEM	FUEL	REQD	GEN/	· <u>-</u>	/HEAT			+			ELEC				WORTH		PAY
		MW	REQD	F	RATIO *	10**6	11	NSNC							15%		BACK
29112 TIHRSG	RESIDU	A 52.	1.74	0.132	0.13	226.2	16.76	7.12	6.28	70.10	ο.	-7.83	92.42	1 259	-146		0 10
29112 TIHRSG		52.		0.091	0.13	213.4	16.20	6.89	8.09	35.72	Õ.	0.	66.89	0.911			8 1
29112 TIHRSG		52.		0.132	0.13	286.8	21.76	9.25	9.61	40.70	Ö.	-7.83	73.49	-1.001			5 1
29112 STIRL	DISTIL		1.00	0.110	0.13	76.7	5.68	2.42	2.92	73.82	0.	Ο.	84.85	1.156	-53.		0 6
29112 STIRL	DISTIL	L 52.	3.35	0.228	0.13	133.8	9.91	4.21	4.15	103.30	Ο.	-24.70	96.88	1.319	9 -117.	. 1	0 6
29112 STIRL	RESIDU	A 52.	1.00	0.110	0.13	76.8	5,69	2.42	2.92	60.22	0.	0.	71.25	0.970	-10.		9
29112 STIRL	RESIDU			0.228	0.13	134.0	9.93	4.22	4.15	84.27	0.	-24.70	77.88	1.061			0 2
29112 STIRL	COAL	52.		0.110	0.13	130.0	9.63	4.09	6.06	34.97	0.	0.	54.75	0.748			8
29112 STIRL	COAL	52.		0.228	0.13	239.3	17.72	7.53	8.92	48.93	Ο.	-24.70	58.42	0.796			0
9112 HEGT60				0.005	0.13	147.7	11.21	4.77	6.64	39.09	<u> </u>	<u> </u>	61.70	0.840		1	
29112 HEGT60			11.13		0.13	545.7	41.41	17.61		141.06	0.		116.13	1.582			0 99
29112 HEGTOO				0.047	0.13	130.7	9.92	4.22	6.25	37.43	ο.	0.	57.82	0.787		1	-
29112 HEGTOO				0.090	0.13	176.8	13.42	5,71	8.12	52.87	٠O.	-19.30	60.82	0.828		1	
29112 FCMCCL		<u>52.</u>		0.139	0.13	131.1	10.19	4.33	6.95	.33.84	<u> </u>	0.	55.31	0.753			<u>6</u> 4
9112 FCMCCL		52.		0.335	0.13	212.3	16.50	7.02	13.65	52.40	0.	-40.52	49.05	0.668		-	
9112 FCSTCL 9112 FCSTCL		52.		0.144	0.13	128.9	10.02	4.26	6.79	33.63	0.	0.	54.70	0.745		-	7 4
29112 FCSTCL 29112 IGGTST		52. 52.		0.387	0.13 0.13	245.9 121.7	19.11 9.47	8.13 4.02	15.82 5.43	59.91 34.90	0. 0.	-60.01 0.	42.97 53.82	0.585 0.733		1· 1:	
29112 IGGTST		52.		0.263	0.13	206.4	16.04	6.82	6.38	55.80	0.	-37.38	47.66	0.649			
29112 GTSOAR				0.105	0.13	58.3	4.32	1.84	2.36	60.54	o.	0.	69.05	0.940		2	-
29112 GTSØAR				0.267	0.13	110.6	8.19	3.48		109.06	0.	-48.32	75.91	1.034			ĭ 2
29112 GTAC08				0.140	0.13	55.1	4.08	1.74	2.28	58.21	Ö.	0.	66.30	0.903		3	
9112 GTAC08				0.311	0.13	76.3	5.65	2.40	2.57	82.34	<u> </u>	-30.84	62.12	0.846		2	
29112 GTAC12				0.136	0.13	56.6	4.19	1.78	2.31	58.42	Ö.	0.	66.70	0.908		2	
29112 GTAC12				0.332	0.13	92.2	6.83	2.90	2.99	91.74	Ö.	-41.54	62.92	0.857		1	
29112 GTAC16	RESIDU	A 52.	1.00	0.131	0.13	58.1	4.30	1.83	2.34	58.79	o.	0.	67.26	0.916		2	5
9112 GTAC16	RESIDU	A 52.	5.75	0.336	0.13	111.3	8.25	3.51	3.49	100.64	0.	-49.96	65.93	0.898	-9,	1:	2
29112 GTWC16	RESIDU	A 52.	1.00	0.122	0.13	57.1	4.23	1.80	2.32	59.36	Ο.	0.	67.71	0.922	2 10.	2	5
9112 GTWC16	RESIDU	A 52.	5.84	0.316	0.13	97.2	7.20	3.06	3.15	104.77	Ο.	~50.88	67.29	0.916	5 <b>-</b> 7.	1:	2
9112 CC1626	RESIDU	A 52.	1.00	0.119	0.13	57.3	4.35	1.85	2.44	59.59	0.	٥.	68.23	0.929	8.	2	2
9112 CC1626				0.342	0.13	128.9	9.78	4.16	4.23	131.74	0.	-78.98	70.93	0.966	-35.		7 1
29112 CC1622				0.125	0.13	57.9	4.39	1.87	2.44	59.18	Ο.	Ο,	67.89	0.925		2	
29112 CC1622				0.350	0.13	132.0	10.02	4.26		120.25	Ο.	-69.80	68.90	0.938			9 1
9112 CC1222				0.126	0.13	56.8	4.31	1.83	2.43	59.10	0.	0.	67.68	0.922		2.	
29112 001222				0.352	0.13	123.2	9.35	3.98		119.14	0,	-69.24	67.27	0.916	•	10	-
29112 CC0822				0.136	0.13	56.1	4.25	1.81	2.42	58.48	0.	0.	66.95	0.912		5.	
29112 CC0822	. —		-	0.352	0.13	\$4.0	7.13	3.03		100.68	0.	<b>-52</b> .25	61.86	0.843		. 13	
29112 DEHTPM				0.114	0.13	86.0	6.37	2.71	3.21	59.90	0.	0.	72.20	0.983			<u>7                                    </u>
29112 DEHTPM 29112 OTSOAD				0.278	0.13	225.6	16.71	7.10	6.63	98.80	С.	-41.23	88.01	1.199			0 99 0 5
9112 GTSOAD				0.309	0.13 0.13	54.4 84.3	4.03 6.25	1.71 2.66	2.26	72.33	0. ·	0. -40.33	80.33 86.10	1.094			0 5 0 6
29112 GTRA08				0.309	0.13	59.8	4.43	1.88	2.80	114.74 74.17	0.	-40.33 0.	82.86	1.173			0 5
29112 GTRA08				0.108	0.13	171.6	12.71	5.40		182.71	0.	-88,49		1.500			0 5 0 5
WILE GIVHOO	DISTIF	<u> </u>	<del>7.41</del>	<u> </u>	0.13	171.0	16./1	5.40	J. 1 I	102.71	<del></del>	-00,49	117.44	1,000	. 199.	··	

DATE 06/07/79 L&SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 75

	SENSIT	IVITY OF	CAPITAL CO		****LEVE			ORIGINA			W ( 214)	*****			-
ENERGY CONV	SITE- POWER		FESRPOWER C	APITAL CA		XES OA			IRCHD F	REVNUE T			PRESNT	ROI	GROSS
SYSTEM	FUEL REQD	GEN/	/HEAT			+			ELEC	<del></del>			WORTH		PAY
	- MW	REOD	RATIO	*10**6	ì	NSNC .							15%		BACK
29112 GTRA12			0.322 0.13	165.6	12.27	5.22		171.54	0.				15 -177.		0 6
29112 GTRA16			0.114 0.13	<u>·61.4</u>	4.55	1.93	2.43	73.51	<u> 0, </u>	<u> </u>	82.4				0 5
29112 GTRA16			0.322 0.13	163.5	12.11	5.15		159.80	0.		107.8				0 6
29112 GTR208			0.115 0.13	58.2	4.31	1.83	2.35	73.36	0.	0. -56.88	81.8				0 5
29112 GTR208			0.306 0.13 0.115 0.13	119.3 59.0	6.84 4.37	3.76 1.86	2.37	138.76 73.36	0. 0.	-36.66 G.	98.2 81.9				0 5
<u>29112 GTR212</u> 29112 GTR212			0.313 0.13	128.7	9.53	4.05		144.47	<u>0.</u>		100.1				0 6
29112 GTR216			0.117 0.13	60.2	4.46	1.90		73.19	o.	0.	81.9				0 5
29112 GTR216		7.09		139.0	10.29	4.38		145.77	Ö.		100.6		70 -13 <b>1</b> .		0 6
29112 GTRW08			0.090 0.13	62.5	4.63	1.97		75.44	Õ.	0.	84.5				0 5
29112 GTRW08		11.00		159.9	11.84	5.03		217.17	0.	-105.18					0 5
9112 GTRW12			0.100 0.13	62.5	4.63	1.97		74.64	Ο.	0.	83.6	9 1.14	10 -42.		0 5
29112 GTRW12		10.82		158.1	11.71	4.98		206.01	٠٥.	-103.30	124.2		92 -214.		0 5
29112 GTRW16			0.103 0.13	59.8	4.43	1.88	2.39	74.38	0.	0.	83.0	8 1.1	32 -39.		0 5
29112 GTRW16	DISTILL 52.	9.73	0.306 0.13	153.3	11.36	4.83	4.66	188.81	0.	-91.79	117.6	36 1.6	5 -192.		0 5
29112 GTR308	DISTILL 52.	1,00	0.082 0.13	58.0	4.30	1.83	2.36	76,12	Ο.	0.	84.€	0 1.1	52 -43.		0 5
29112 GTR308	DISTILL 52.	8.17	0.233 0.13	130.0	9,63	4.09	4.07	182,67	Ο.	-75.43	125.0	3 1,7	03 -203.		0 5
9112 GTR312	DISTILL 52.	1.00	0.108 0.13	57.8	4.28	1.82	2.34	73,95	0.	0.	82.3	39 1.1	22 -36.		0 5
9112 GTR312	DISTILL 52.	8.08	0.307 0.13	129.7	9.60	4.08	4.03	163.84	0.	-74.53	107.0		58 -147.		0 5
29112 GTR316		1.00	0.108 0.13	58.7	4.35	1.85	2.36	73,99	Ο.	0.	82,5		-, -,		0 5
29112 GTR316		7.94	0.304 0.13	133.3	9.87	4.20		162.38	Ο.		107.5				0 5
29112 FCPADS			U.085 0.13	77.8	5.76	2.45	7.71	75.85	<u> </u>	0.	91.7				0 5
9112 FCPADS		16.79		459.1	34.01	14.46		306.31	0.	-166.16					0 6
29112 FCMCDS		1.00		79.6	5.90	2.51		73.47	0.	0.	89.2				0 5
29112 FCMCDS		13.28		397.3	29.43	12.51		223.49	0.	-129.24					0 6
29113 ONOCGN			0. 0.14	90.5	6.71	2.85		114.05	42.49		169.0				0
29113 STM141			0.170 0.14	100.3	7.61	3.24		130.17	o.	0.	144.7	-			9
	RESIDUA 126.		0.189 0.14	96.1	7.29	3.10		132.72	o.		142.3 107.2			16	13
9113 STM141	COAL-FO 126.		0.170 0.14 0.189 0.14	202.1 206.5	15.33 15.67	6.52 6.66	9.85 9.50	75.58 77.06	0. 0.	0°.	107.2				3
	COAL-AF 126.		0.170 0.14	150.5	11.42	4.86	9.51	75,58	<del>0,</del>	0.	101.3				7
	COAL-AF 126.	1.16		145.2	11.02	4.69	9.10	77.06	Ö.	-4.03			, , , , , , , , , , , , , , , , , , , ,		i4
	RESIDUA 126.	0.78		84.5	6.41	2.73		126.61	9.39		148.1			99	
29113 STM088			0.133 0.14	182.0	13.81	5.87	8.49	73.51	9.39		111.0				7
	COAL-AF 126.		0.133 0.14	137.8	10.46	4.45	8.70	73.51	9.39		106.5		30 172.	6	5
9113 PFBSTM	COAL-PF 126.	1.00	0.165 0.14	174.4	13.24	5.63	12.85	76.03	0.	Ο.	107.7	5 0.6	37 150.	4	1
9113 PFBSTM	COAL-PF 126.	2.05	0.263 0.14	191.1	14.50	6.16	17.06	86.32	0.	-26.74	97.3	0.5	75 174.	4	0
	RESIDUA 126.	1,00		251.8	19.11	8.13	7.71	130.64	٥.	0.	165.5	9 0.9	79 -68.		6 1
9113 TISTMT	RESIDUA 126.	2.80	0.314 0.14	566.8	43.01	18.29	15.39	160.54	0.	-45.93	191.2	9 1.1	31 -299.		0 2
9113 TISTMT	COAL 126.	1.00	0.167 0.14	352.7	26.77	11.38	13.55	75.86	Ο.	Ο.	127.5			1	5
9113 TISTMT		2.80		715.0	54.26	23.07	22.61	93.21	Ο,	-45.93					7 1
	RESIDUA 126.		0.095 0.14	368.9	27.32	11,62	10.45		0.	0.	191.3				0 99
9113 TIHRSG	RESIDUA 126.	1.64	0.132 0.14	545.4	40,40	17.17	14.47	159.97	0.	-16,39	215.6	2 1.2	75 -359.		0 10

PAGE 76

		SENSITI	VITY OF	CAPIT	AL COS		*****LEVE		ENT OF				Ne v v v v v				
ENERGY CONV		POWER		FESRPO		PITAL (	CAPITAL TA	XES OA			JRCHD	REVNUE T			RESNT		038
SYSTEM_	FUEL	REQD	GEN/		/HEAT			+			ELEC				WORTH		PAY
		MW	REQD	R	ATIC *	10**6	i	NSNC							15%	В	Ack
9113 TIHRS		126.			0.14	693.2		22.37		92.88	Ο.	-16.39	173.43			4	1
9113 STIRL	DISTIL			0.115	0.14	167.0		5.26		170.24	<u> </u>	0.	193.38	1.144	-112.	0	_ 5
9113 STIRL	DISTIL	L 126.	3.15	0.228	0.14	284.	5 21.07	8.96	8.19	235.75	0.	-54.87	219.09	1.296	-248.	0	•
9113 STIRL	RESIDU		1.00	0.115	0.14	167.2	2 12.38	5.26	<b>5</b> .52	138.88	Ο.	Ο.	162.04	0.958	-14.	11	
9113 STIRL	RESIDU		3.15	0.228	0.14	284.9	21.10	8.97	8.20	192.32	Ο.	-54.87	175.72	1.039	-112.	1	
9113 STIRL	COAL	126.	1.00	0.115	0.14	295.	2 21.87	9.30	12.33	80.64	0.	0,	124.13	0.734	44.	18	
9113 STIRL	COAL	126	3.15	0.228	0.14	524.2	2 38.83	16.51	18.69	111.67	O.	-54.87	130.82	0.774	-84.	11	
9113 HEGT60	COAL-A	NF 126.	1.00	0.005	0.14	286.	7 21.76	9.25	12.73	90.62	Ο.	Ο.	134.35	0.795	13.	16	
9113 HEGT60	COAL-A	NF 126.	10.48	0.015	0.14	1279.0	6 97.10	41.28	51.49	321.90	Ο.	-241.67	270.11	1.598	-890.	. 0	9
9113 HEGTOO	COAL-A	IF 126.	1.00	0.049	0.14	256.	3 19.45	8.27	12.09	86.61	0.	0.	126.42	_ 0.748	52.	20	
9113 HEGTOO	COAL-A	F 126.	2.67	0.090	0.14	387.4	4 29.40	12.50	17.45	120.65	0.	-42.55	137.45	0.813	-45.	12	
9113 FCMCCL	COAL	126.	1.00	0.145	0.14	272.0	B 21.21	9.02	14.12	77.90	Q.	0.	122.25	0.723	54.	19	
9113 FCMCCL	. COAL	126.	4.57	0.335	0.14	367.0	28.54	12.13	27.43	119.58	Ο.	-90.99	96.68	0.572	86.	19	
9113 FCSTCL	COAL	126.	1.00	0.151	0.14	269.0	6 20.96	8.91	13.65	77.37	Ο.	Ο.	120.90	0.715	60.	20	
113 FCSTCL	COAL	126.	6.42	0.390	0.14	430.	33.50	14.24	32.01	137.77	Ö.	-138.08	79.44	0.470	109.	20	
113 IGGTST	COAL	126.	1.00	0.117	0.14	255.	19.89	8.46	10.27	80.41	O.	0.	119.02	0.704	73.	21	
113 IGGTST	COAL	126.	4.38	0.267	0.14	419.		13.87	12.06		Ö.	-86.12	100.76			17	
113 GTSCAR				0.110	0.14	129.3	-	4.07		139.65	õ.	0.	157.73	0.933		22	
113 GTSOAR				0.267	0.14	228.0		7.20		248.88	Ö.	-108.80		1.011	-70.	4	
113 GTACOS				0.146	0.14	115.4		3.63		134.00	Ö.	0.	150.25	0.889		44	
9113 GTAC08				0.311	0.14	153.0		4.82		187.90	ŏ.		139.87	0.827		30	
9113 GTAC12				0.143	0.14	119.		3.75		134.50	o.	0.30	151.25			38	
9113 GTAC12				0.332	0.14	188.3		5.93		209.37	0.		141.56	0.837	40.	21	
DITS GTACIE				0.137	0.14	125.8		3.96		135.41	o.	0.	153.01	0.905		30	
9113 GTAC16				0.336	0.14	225.1		7.09		229.68	o.	-112.54		0.872		15	
9113 GTWC16				0.128	0.14	121.0		3.83		136.80	0.	0.	153.87			31	
113 GTWC16				0.316	0.14						<u>0.</u>					16	
113 CC1626						191.3		6.02		239.09		-114.64		0.890			
9113 CC1626		-		0.125	0.14	122.1		3.94		137.29	0.	0.	154.87	0.916		28	
					0.14	258.3		8.33		303.01	0.	-181.79				10	
1113 CC1622				0.131	0.14	125.3		4.04		<u>136.31</u>	<u> </u>	0.	154.29	0.913	29.	27	
113 CC1622				0.352	0.14	275.7		8.90		276.53	0.	-160.62		0.909	. — .	10	
0113 CC1222				0.132	0.14	122.9		3.97		136.11	0.	0.	153.60			29	
0113 CC1222				0.355	0.14	256.0		8.26		274.03	0.	-159.40		0.888		12	
113 CC0822				0.142	0.14	120.5		3.89		134.60	<u>o.</u>	<u> </u>	151.98	0.899	38.	33	
113 CC0822				0.355	0.14	199.4		6.43		231.58	0.	<b>-120</b> .30		0.823	41.	21	
113 DEHTPM				0.120	0.14	192.4		6.06		138.10	o.	0.	164.64	0.974	-34.	8	_
113 DEHTPM				0.278	0.14	483.4		15.22	13.41		0.		197.31	1.167		0	9
113 GTSGAD				0.134	0.14	117.0		3.69		<u>166.61</u>	<u>o.</u>	0.	183.08	1.083		0	
113 GTSOAD				0.309	0.14	162.7		5.12		261.84	ο.		193.45	1.144	-110.	0	
9113 GTRAO8				0.110	0.14	132.9	•	4.19		171.07	Ο.	0.		1.121	-84,	0	!
113 GTRA08				0.311	0.14	361.2		11.37	10.13		Ο.	-200.45		1.566		0	
9113 GTRA12				0.116	0.14	129.4		4.07		169.95	0.	0.	188.04	1.112	-78.	0_	
1113 OTRA12	DISTIL	L_126	8.34	0.322	0.14	345.6	25.60	10.88	9.72	391.46	0.	-187.22	250.43	1.481	-374.	0	

DATE 06/07/79

### GENERAL ELECTRIC COMPANY COGENERATION REPORT 5.4

ECONOMIC SENSITIVITY REPORT FOR SELECTED PROCESS-ECS MATCHES

PAGE 77

			ENSITI	VITY OF	CAPI	TAL COS					ORIGIN							
NERGY	CONV	SITE-	PAVER	POVER	FESRP	OWER CA		*****LE\					\$ MILLI: REVNUE			** PRESNT	ROI G	eross
	TEM	FUEL		GEN/	. I LOISI V	/HEAT	·· - · · · · -	ON TIME	+	ANDII I	· ·	ELEC	MEVIOL	IOIAL	MOMIL	WORTH		PAY
			MW	REGD	1	RATIO :			INSNC							15%		DACK
29113	GTRA16	DISTILL	. 126.	7.58	0.322	0.14	338.	1 25.04	10.65	9.50	364.69	0.	-167.7	0 242.1	8 1.43	32 -345.	o	) G
9113	GTR208	DISTILL	. 126.	1.00	0.121	0.14	129.	2 9.57	4.07	4.42	169.12	0.	0.	187.1	7 1.10	7 -75.		5 5
9113	<b>GTR208</b>	DISTILL	. 126.	6.03	0.308	0.14	248.	5 18.41	7.83	7.21	316.66	0.	-128.3	1 221.7	79 1.31	2 -239.	0	5
9113	<b>GTR212</b>	DISTILL	. 126.	1,00	0.121	0.14	126,	7 9.38	3.99	4.36	169.12	0.	Ο.	186.8	35 1.10	5 -73.	0	
9113	GTR212	DISTILL	. 126.	6.48	0.313	0.14	269.	0 19.93	8.47	7.74	329.69	0.	-139.6	5 226.1	18 1.33	86 -263.	0	-
9113	<b>GTR216</b>	DISTILL	. 126,	1.00	0.123	0.14	129.	<u>5 9,59</u>	4.08	4.42	168.70	0.	0.	186.7		<u> 5 -74.</u>	0	
9113	GTR216	DISTILL	. 126.	6.68	0.321	D. 14	292.	2 21.65	9.20	8.32	332.65	Ο.	-144.6	7 22 <b>7</b> .1	15 1.34	l4 <b>-276</b> .	G	
9113	GTRW08	DISTILL	. 126.	1.00	0.094	0.14	127.	0 9.41	4.00	4.37	174.15		0.	191.9			0	-
9113	<b>GTRW08</b>	DISTILL	. 126.	10.36	0.275	0.14	347.	3. 25.73	10.94	9.85	495.59		-238.5	5 30 <b>3</b> .5			0	
		DISTILL			<u>0.104</u>	0.14	126.				172.22		0.	189.9			0	<b>-</b> ·
•		DISTILL		10.19			335.				470.12			5 280.6			0	
		DISTILL			0.108		130.				171.58	-	0.	189.7			0	
		DISTILL			0.306		318.				430.87			9 265.5			0	
		DISTILL			0.086		121.				175.81	0.	<u> </u>	192.6			0	
	-	DISTILL			0.233		259.				416.87			6 281.2			Q	
		DISTILL			0.113		123.				170.55		0.	187.8			0	
		DISTILL			0.307		261.				373.88			s 240.4			0	
		DISTILL			0.113		124.				170.66		0.	188.1			0	
		DISTILL			0.304		269.				370.55		-165.1			29 -311.	0	-
		DISTILL			0.089		170.				175.16		0	210.€		6 -170.	0	-
		DISTILL		15.82		0.14	1007.				699.03			0 647.3		29-1957.	0	
		DISTILL			0.119	0.14	175.				169.39		0.	201.		0 -153.	0	
		DISTILL	—		0.360		880.				510.02			5 473.4		00-1344.	0	
		RESIDUA		0.	0.	2.20	3.							18.8			. 0	
		RESIDUA			0.027		5.4			0.45			_	18.6				
		CGAL-FO			0.027		10.			0.80				18.3				
		COAL-AF			0.027		8.			0.70				18.0				
		RESIDUA			0.014	2.20	4.0			0.42				18.8			9	
		COAL-FO			0.014	2.20 2.20	9.4 7.5			ℚ.76 ℚ.67				18.5 18.2			14	
		COAL-AF			0.014	2.20	13.			1.00				18.2			9	
,		RESIDUA			0.078		30.			1.09				21.1			0	
	TISTMT		60.		0.078	2.20	38.			1.53				20.9			0	
		RESIDUA			0.033		29.			0.98				21.6			ő	
	TIHRSG		60.		0.033		38.			1.43				21.5			ŏ	
	STIRL	DISTILL			0.077		10.			0.57		-		19.4			ő	
	STIRL	RESIDUA			0.077		10.			0.57				18.4			9	
	STIRL	COAL	60.		0.077		17.			1.01	2.64			17.7			10	
		COAL - AF			0.029	2.20	61.			2.28				21.9				
		COAL-AF			0.023		26.			1.11					64 1.04			
	FCMCCL		60.		0.133		30.			1.50				18.6			5	
	FCSTCL		60.			2.20	34.			1.75					32 0.97		Ğ	
	IGGTST		60.		0.087		28.			1.25					7 1.00			

DATE 06/07/79 I&SE-PEC-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 78

	<del></del>	SE	NSITI	VITY OF	CAPIT	TAL COS		•			ORIGINA							
ENERGY CO	IV SITI	E- P	OWER	POWER	FESRPO		********* Pital caf					:OSTS(\$ IRCHD RE				RESNT	ROI GRO	oss
SYSTEM	FUE	_ R	EQD	GEN/		/HEAT	COST		+			ELEC			_	WORTH		PAY (
			MW	REQD		RATIO *	10**6	\$1	NSNC							15%	· i':	ick -
33121 GTA			60.		0.108	2.20	8.3	0.62	0.26	0.46	4.39	11.80	0.	17.53	0.930	2.	22	5
33121 GTA			60.		0.133	2.20	9.7	0.72	0.30	<u>0.50</u>	4.90	10.84	<u>o.</u>	17.26	0.915	<u>2.</u>	21	5
33121 GTA			60.		0.149	2.20	11.1	0.82	0.35	0.55	5.35	10.12	0.	17.18	0.911	2.	19	5
33121 GTW			60.		0.141	2.20	11.3	0.83	0.35	0.56	5.59	10.01	0.	17.35	0.920	1.	17	<b>6</b> .:
33121 CC16			60.		0.183	2.20	13.7	1.04	0.44	0.75	6.76	8.09	0.	17.08	0.906	1.	16	6 .
33121 CC10			<u>60.</u>		0.173	2.20	12.9	0.98	0.41	0.71	6.17	8.87	<u> </u>	17.14	0.909	<u>!.</u>	16	6
33121 CC12			60.		0.173	2.20	12:2	0.92	0.39	0.70	6.11	8.93	0.	17.05	0.904	2.	17	6
33121 CCO			60.		0.144	2.20	10.5	0.80	0.34	0.64	5.16	10.38	0.	17.31	0.918	2.	18	.6
33121 DEAL	· · · · · · · · · · · · · · · · · · ·		60.		0.262	2.20	46.1	2.97	1.26	1.46	13,31	0.16	0.	19.16	1.016	-18.	4	15
33121 DEH			60.		0.121	2.20	17.0	1.26	0.53	0.80	5.20	10.69	<u>o.</u>	18.57	0.985	<u>-5.</u>		11
33121 DESC			60.		0.218	2.20	51.1	3.79	1.61	1.87	17.50	0.	0.	24.76	1.313	-41.	0	78
33121 DESC			60,		0.224	2.20	59.8	4.43	1.88	1.99	20.39	0.	-1.89	26.80	1.421	-51.	0	71
33121 DESC			60.		0.218	2.20	51,1	3.79	1.69	1,87	14.27	· 0.	0.	21.54	1.142	-31.	0	999
33121 DESC			60.		0.224	2.20	59.8	4.43	1.88	1.99	16.63	<u> </u>	<u>-1.89</u>	23.05	1.222	<u>-39.</u>	0	939
33121 GTS			60.		0.122	2.20	8.8	0.65	0.28	0.48	6.11	10.96	0.	18.48	0.980	-1.	10	9
33121 GTR/			60,		0.194	2.20	16.0	1.19	0.50	0.71	9.35	7.03	0.		0.996	· -6.	5	13
33121 GTR			60.		0.193	2.20	15.8	1.17	0.50	0.70	8.86	7.45	0.	18.67	0.990	-5.	6	12
33121 GTR			60.		0.180	2.20	15.7	1.16	0.49	0,69	8.31	8.13	<u> 0.</u>	18.79	0.996	<u>-5.</u>	5	13
33121 GTR	–		60.		0.146	2.20	12.1	0.89	0.38	0.58	7.29	9.57	0.	18.72	0.993	-3.	6	12
33121 OTR			60.	-	0.157	2.20	13.0	0.96	0.41	0.61	7.59	9.14	0. 0.	18.71	0.992	-4.	6 6	12
33121 GTR			60.		0.164	2.20	13.8 17.4	1.02	0.43	0.63	7.64	8.96	•	18.69	0.991 1.025	-4.	6	12
33121 GTRI			<u>60.</u>		0.194	2.20		1.29	0.55	0.76	11.18	5,55	0.	19.32	1.002	<u>-8.</u> -6.		14
33121 GTRV			60.	-		2.20	17.2	1.28	0.54		10.69	5.63	-				3	
3		,	60.		0.197	2.20	16.9	1.25	0.53	0.74	9.87	6.56	0.	18.95	1.005	-6.	4	14
33121 GTR			60.		0.133	2.20	13.9 13.9	1.03	0.44	0.66	9.50	8,03	Ö.	19.64	1.042 0.994	-7.	0	599
33121 GTR			60. 60.		0.173	2.20	14.3	1.06	0.44	0.65	8.66 8.59	7.98 8.11	0. 0.	18.75 18.87	1.001	<u>-4.</u> -5.	<u> </u>	12
33121 FCP/			60.		0.169	2.20	36.3	2.69	1.14	5.62	16.15	0.11	0. 0.	25.60	1.357	-37.	0	69
33121 FCP/			60.		0.279	2.20	36.8	2.73		5.64	16.35	0.	-0.14	25.73	1.365	-37. -38.	Ö	69
33121 FCM			60.		0.299	2.20	31.4	2.33	1.16 0.99	4.26	11.93	3.04	0.14	22.55	1.196	-25.	0	97
33251 0NO				0.00	0.233	1.05	30.3	2.24	0.95	1.24	13.25	72.21	0,	89.90	1.000	0.	<del></del>	
33251 0M00					0.056	1.05	31.6	2.40	1.02	1.24	16.15	64.57	0.	85.55	0.952	13.	102	9
33251 STM					0.056	1.05	62.1	4.72	2.00	3.13	9.38	64.57	0. 0.	83.80	0.932	3.	16	6
33251 STM1					0.056	1.05	42.3	3,21	1.36	2.78	9.38	64.57	0.	81.30	0.904	21.	3)	3
33251 STM					0.031	1.05	28.1	2.13	0.91	1.31	14.83	68.03	0.	87.22	0.970	9.	935	0
33251 STM					0.031	1.05	57.6	4.37	1.86	2.92	8.61	68.03	0.	85.79	0.954	-1.	14	7
33251 STMC					0.031	1.05	40.1	3.04	1.29	2.67	8.61	68.03	0.	83.65	0.931	14.	35	3
33251 PFBS					0.112	1.05	62.0	4.71	2.00	4.80	11.49	56.14	o.	79.13	0.880	18.	23	5
33251 TIST					0.083	1.05	113.0	8.58	3.65	3.78	17.79	60.63	<del>- 0.</del>	94.42	1.050	-54.		999
33251 TIS1			280. 280.		0.164	1.05	211.4	16.04	6.82	6.99	12.90	49.35	0.	92.10	1.024	-94.	4	15
33251 TIHE					0.104	1.05	111.7	8.27	3.52	3.60	18.30	64.23	0.	97.92	1.089	-63.	0	117
33251 TIHE			280. 280.		0.069	1.05	210.7	15.99	6.80	6.88	13.49	56.45	0.	99.59	1.108	-117.	n	999
33251 STIF			280. 280.		0.081	1.05	65.9	4.88	2.07	2.58	27.72	56.03	0.	93.28	1.038	-27.	<del>0</del>	152
22521 2111	r DISLI		<u> </u>	0,22	0.001	1.05	05.5	7.00	<u> </u>	2.00	<u> </u>	<u> </u>	<u></u>	33.20	1.000	~ ( ;	· ·	102

PAGE 79

		;	SENSITI	VITY OF	CAPI	TAL CO					ORIGINA							33	
NERGY	CONV	SITE-	POWER	POWER	FESRP	OWER C	APITAL CA	****LEVE				- ,	MILLIO EVNUE TO			RESNT	ROI	GRO	iss
SYS	STEM	FUEL	REQD	GEN/		/HEAT	COST		+			ELEC				WORTH	<u> </u>	<u>F</u>	YAY
			MW	REQD	ı	RATIO	*10**6	i	NSNC							15%		D.A	\CK
3251	STIRL	COAL	280.	0.44	0.159	1.05	167.2	12.39	5.27	6.16	18.43	40.26	0.	82.50	0.918	-41.		9	9
3251	HEGT60	COAL-A	F 280.	1.00	0.049	1.05	279.5	21.21	9.02	11.27	47.48	0	0.	88.98	0.990	-11B.		5	13
3251	HEGT60	COAL A	F 280.	1.22	0.051	1.05		28.57	12.15	13.86	56.35	Ο.	-9.66	101.27	1.126	-202.		2	21
		COAL-A			0.057	1.05		10.19	4.33	5.53	19.93	46.44	o.	86.41	0.961	-39.		7	11
	FCMCCL		280.		0.127	1.05		12.46	5.30	8.67	27.38	27.75		81.56	0.907	-39.		9	9
	FCSTCL		280.		0.214	1.05		13.92	5.92	9.73	30.19	15.51	0.	75.28	0.837	<u>-29.</u>		<u> 11                                   </u>	8
	IGGTST		280.		0.032	7.05		11.04	4.70	4.63	28.09	34.62	o.	83.08	0.924	-34.		9	9
		RESIDU			0.123	1.05		4.08	1.74	2.26	28.34	46.73	ο.	83.14	0.925	9.		21	5
		RESIDU			0.114	1.05		3.37	1.43	1.97	21.83	53.94	0.	82.53	0.918	16.		31	4
		RESIDU			0.141	1.05	51.2	3.79	1.61	2.13	24.33	49.20	<u> </u>	81.06	0.902	18.		28	4
		RESIDU		-	0.157	1.05		4.18	1.78	2.28	26.56	45,60	0.	80.41	0.894	17.		25	4
		RESIDU			0.149	1.05		3.98	1.69	2.22	27.78	45.07	0.	60.75	0.898	18.		27	4
		RESIDU			0.232	1.05	86.4	6.56	2.79	3.09	66.07	0.	0.	78.51	0.873	8.		17	6
		RESIDU.			0.194	1.05	61.4	4.66	1.98	2.60	33.60	35.49	<u> </u>	78.33	0.871	<u>21.</u>		25	. 4 5
		RESIDU		-	0.182	1.05	62.2	4.72	2.01	2.57	30.69 30.38	39.34	0. 0.	79.33	0.882 0.879	17. 20.		23	-
		RESIDU				1.05	59.6	4.52	1.92	2.53		39.63	•	78.99 80.13	0.891	20. 21.		25 31	4
3251	-	RESIDU			0.153		49.5	3.76 14.69	1.60	2.24	25.68	46.85				-81.		31 5	
		RESIDU.			0.262 0.265	1.05	198.4		6.25	6.14 6.37	63.44 66.13	0. 0.	0. -2.32	90.52 92.06	1.007	-90.		4	. 14 15
		RESIDU			0.127	1.05	207.3 97.2	15.35 7.20	6.53 3.06	3,49	26.27	48,43		88.44	0.984	-30. -27.		4	11
		DISTIL			0.127	1.05	244.0	18.07	7.68	7.31	82.63	0.	0. 0.	115.69	1.287			ó	80
		DISTIL			0.216	1.05	303.5	22.48	9.56		101.28	0.	-12.17		1.446			n	70
		RESIDU			0.216	1.05	244.0	18.07	7.68	7.31	67.41	0.	0.	100.47	1.118			<del>-</del> 6	999
		RESIDUA			0.224	1.05	303.5	22.48	9.56	8.65	82.62	0.		111.33	1.238			Ö	999
		DISTIL			0.129	1.05	47.2	3.49	1.49	2.04	30.36	49.79	0.	87.16	0.970	1.		15	999
		DISTIL			0.123	1.05	107.8	7.99	3.40	3.61	79.96	0.	Ğ.	94.95	1.056	-52.		ŏ	990
$\overline{}$		DISTIL			0.205	1.05	79.3	5.87	2.50	2.92	46.47	30.24	<del>0.</del>	88.00	0.979	-17.		-ĕ	10
		DISTIL			0.244	1.05	108.2	8.02	3.41	3.59	79.73	0.	Ö.	94.75	1.054	-52.		ŏ	939
-		DISTIL			0.204	1.05	76.9	5.70	2.42	2.85	44.03	32.33	Ö.	87.33	0.971	-14.		ğ	9
		DISTIL			0.190	1.05	76.4	5.66	2.41	2.82	41.30	35.75	Õ.	87.94	0.978	-16.		8	10
		DISTIL		0.41		1.05	58.3	4.32	1.83	2.34	36.21	42.90	Ö.	87.60	0.974	-6.		11	<u></u>
		DISTIL			0.165	1.05	61.5	4.55	1.94	2.43	37.68	40.75	ŏ.	87.35	0.972	-7.		ii	8
		DISTIL			0.173	1.05	64.9	4.81	2.04	2.52	37.97	39.84	Ŏ.	87.18	0.970	-8.		10	8
		DISTIL			0,229	1.05	94.4	6.99	2.97	3.35	81.32	0.	Ŏ.	94.63	1.053	-45.		Õ	999
		DISTIL		0.68		1.05	80.4	5.95	2.53	2.98	55.53	22,90	Ö,	89.90	1.000	-24.		5	13
		DISTIL			0.256	1.05	94.1	6.97	2.96	3.33	78.42	0.	ő.	91.68	1.020	-36.		ž	20
		DISTIL			0.223	1.05	79.9	5.92	2.52	2.96	53.11	23.30	o.	87.81	0.977	-17.		8	10
		DISTIL			0.242	1.05	96.8	7.17	3 05	3.36	79.96	0.	o.	93.54	1.040	-43.		ŏ	999
		DISTIL			0.208	1.05	70.9	5.25	2.23	2.72	49.05	27.91	Ö.	87.16	0.970	-10,		10	9
		DISTIL			0.127	1.05	88.9	6.58	2.80	3.04	92.08	0.	į <b>0</b> .		1.162	-73.		Ö	61
3251	<b>GTR308</b>	DISTIL	280.		0.140	1,05	62.4	4.63	1.97	2.50	47.18	35.21	0.	91.48	1.018	-20.		Ō	30
3251	<b>GTR312</b>	DISTIL	_ 280.	1.00	0.208	1.05	87.9	6.51	2.77	3.01	83.46	0.	0.	95.75	1.065	-45.		0	108
3251	<b>GTR312</b>	DISTIL	280.	0.52	0.182	1.05	62,1	4.60	1.95	2.47	43.04	34.97	O.	87.04	0.968	-6.		11	8

PATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

PAGE 80

-		\$1	ENSITI	VITY OF	CAPIT							L COST						
NEDOV	COLU	OLTE I		DAUED	CCCCC			****LEVE								RESNT	ROI GR	oes
NERGY SYS]		SITE- (	REGD	GEN/	FESKPC	ZHEAT		PITAL TA	AES UA	MUM FU		ELEC	VMUE 13	OTAL NO	HUIL F	WORTH		PAY
3131	IEM,	FUEL I	MW	REQD		ATIO *			NSNC			ELEU				15%		<u>VCK</u>
			1300	1/LUD		W110 ~	,00	• 1	10110				•					• 1.2.1
3251 0	3TR@P6	DISTILL	280.	0.51	0.178	1.05	63.3	4.69	1.99	2,50	42.68	35.61	Ο.	87.47	0.973	-8.	10	g
		DISTILL			0.276	1.05	177.7	13.16	5.59	25,99	76.33	0.	o.	121.08	1.347	-170.	0	69
		DISTILL			0.279	1.05	189.7	14.05	5.97	27.97	81 20	0.	-3.51	125.69	1.398	-190.	୍	6
3251 F	FCMCDS	DISTILL	280.	1.00	0.343	1.05	188.0	13.92	5, 92	24.59	69.28	Ο,	0	113.71	1.265	-151.	0	8
3251 F	FCMCDS	DISTILL	280,	0.86	0.316	1.05	165.5	12.26	5.21	21.25	59.24	10.46	0.	108.42	1.206	-124.	0	9
3254 (	DNOCGN	RESIDUA	40.	0.	0	1,50	3.7	0.27	0.12	0.32	2.61	10.32	0.	13.64	1.000	0.	0	
3254 \$	STM141	RESIDUA	40.	0.07	0.037	1.50	5.3	0.41	0.17	0.44	2.90	9.56	0.	13.48	0.988	-0.	11	
3254 \$	STM141	COAL-FO	40.	0.07	0.037	1.50	10.6	0.81	0.34	0.79	1.68	9.56	Ο.	13.18	0.967	~2.	. 9	
3254 \$	STM141	COAL-AF	40.	0.07	0.037	1.50	8.4	0.64	0.27	0.69	1.68	9.56	Ο.		-0.942	0.	15	
3254 5	880MT	RESIDUA	40.	0.04	0.020	1,50	4.6	0.35	0.15	0.42	2.77	9.90	0.	13.59	0.996	-0,	8_	1
3254 \$	880MT8	COAL-FO	40	0.04	0.020	1.50	9.7	0.73	0.31	0.76	1.61	9.90	Ο.	13,31	0.976	-2.	9	1
3254 \$	880MT8	COAL-AF	40.	0.04	0.020	1.50	7.8	0.59	0.25	0.67	1.61	9.90	Ο.	13.02	0.955	-0,	14	
3254 F	PFBSTM	COAL-PF	40.		0.074	1,50	13.6	1.03	0.44	0.99	1.89	·8.72	Ο.	13.07	0.956	-3,	. 9	
		RESIDUA	<u>40.</u>		0.108	1.50	29.8	2.26	0,96	1.08	3.50	8.04	<u> </u>	15.85	1.162	-20.	<u>o</u>	_ 99
	TISTMT		40.		0.108	1.50	38.1	2.89	1.23	1.51	2.03	8.04	0.	15.71	1.152	-23.	0	95
		RESIDUA	40.		0.045	1.50	29.3	2.17	0.92	0.97	3.61	8.74	Ο.	16.41	1.203	-21.	o	9
	TIHRSG		40.		0.045	1.50	37.7	2.86	1.22	1.41	2.09	8.74	0.	16.32	1.197	-25.	Q	99
	STIRL	DISTILL	40.		0.105	1.50	10.3	0.76	0.32	0.56	5.46	7.13	<u>o,</u>	14.23	1.044	-5.		. 23
	STIRL	RESIDUA	40.		0.105	1.50	10.3	0.76	0.32	0.56	4.45	7.13	0.	13.23	0.970	-2.	9	
	STIRL	COAL	40.		0.105	1.50	17.6	1.31	0.56	0.99	2.59	7, 13	O.	12.57	0.922	-3.	10	
		COAL-AF	40.		0.040	1.50	60.4	4.59	1.95	2.25	6.37	1.50	0,	16.66	1.222	-37.	0	99
		COAL-AF	40.		0.038	1,50	26.3	1.99	0.85	1.09	2.74	7.74	<u>0.</u>	14,42	1.057	-13.	2	
	FCMCCL		40.		0.183	1.50	30.2	2.35	1.00	1.48	2.73	5.88	0,	13.44	0.986	-13.	5	1
	CSTCL		40.		0.240	1.50	33.8	2.62	1.12	1.72	3.01	4,67	0.	13.14	0.964	-13.	6	1
	IGGTST		40.		0.120	1.50	27.7	2.15	0.91	1.23	2.80	6.57	0.	13.67	1.003	-12.	5	1
		RESIDUA	<u>40.</u>		0.160	1,50	11.2	0.83	0.35	0.56	5,58	5,30	<u>0.</u>	12.61	0.925	<u>-0.</u>	14	
		RESIDUA	40.		0.149	1.50	8.2	0.61	0.26	0.46	4.30	6.72	٥.	12.34	0.905	2.	2.2	
		RESIDUA	40.		0.183	1.50	9.5	0.70	0.30	0.50	4.79	5.78	0.	12.08	0.886	₹.	21	
		RESIDUA	40.	•	0.204	1,50	10.9	0.81	0.34	0.54	5,23	5.08	0.	12.00	0.880	2.	19	
		RESIDUA	40.		0.194	1.50	<u> 11.1</u>	0.82	0.35	0.55	5.47	4.97	<u> </u>	12.17	0.892	<del>!</del>	<u>17</u> 16	•
		RESIDUA	40.		0.252	1.50	13.5	1.02	0.44 0.41	0.74	6,61	3.09	0. 0.	'11.91 11.96	0.873 0.877	1.		
		RESIDUA RESIDUA	40. 40.	0.63	0.237	1,50 1,50	12.6 12.0	0.96 0.91	0.41	0.70 0.69	6.04 5.98	3,85 3,91	0. 0.	11.88	0.871	1. 1.	16 17	
		RESIDUA	40. 40.		0.237	1.50	10.3	0.78	0.33	0.63	5.05	5.33	0.	12.13	0.890	1.	18	
		RESIDUA	· 40.		0.248	1.50	29.2	2.16	0.92	1.28	9.78	0.	0.	14.14	1.037	-14.	<u>'3</u> _	
		RESIDUA	40.		0.265	1.50	39.3	2.10	1.24	1.43	13.02	0. 0.	-2.80	15.80	1.159	-24.	Ö	÷
		RESIDUA	40.		0.166	1.50	16.6	1.23	0.52	0.79	5.17	5.63	0.	13.35	C. 979	-5.	· 💃	9,
		DISTILL	40.		a. 204	1.50	35.9	2.66	1.13	1.47	12.68	0.	0. 0.	17.95	1.316	-29.	ő	7
		DISTILL	40.		0.224	1.50	58.6	4.34	1.84	1.95	19.95	<u> </u>	-4.74	23.34	1.712	<b>-5</b> 6.	<del>~~~~</del>	
		RESIDUA	40.		0.204	1.50	35.9	2.66	1.13	1.47	10.35	o.	0.		1.145	-21.	ŏ	99
		RESIDUA	40.		0.224	1.50	58.6	4.34	1.84	1.95	16.27	Ö.	-4.74	19.67	1.442	-45.	ő	ç
		DISTILL	40.		0.168	1.50	8.6	0.64	0.27	0.48	5.98	5.90	0.	13.27	0.973	-1.	10	•
		DISTILL	40.	0.80		1.50	15.8	1.17	0.50	0.70	9.15	2.05	0.	13.57	0.995	-5,		

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

	•					en e						The same					
		SENSITI	VITY OF	CAPITA	AL COS	iT	<del></del>	PERC	ENT OF	ORIGINA	L COST	100	Sister		······································		
						*******							_				
NERGY CONV		POWER				PITAL CAF	PITAL TAX		NDM FU		RCHD RE	VNUE TO	TAL NO	IRML PR	RESNT RO		oss
SYSTEM	FUEL	REOD	GEN/		/HEAT			<u>+</u>			ELEC				WORTH:		PAY
		MW	REQD	R/	ATIO *	10**6	11	NSNC					_: _:		15%	E.	ACK
3254 GTRA16	DISTIL	L 40.	0.70	247	1.50	15.4	1.14	0.49	0.68	8.13	3, 13	0.	13.58	0.996	-5.	5	13
3254 GTR208			0.56 0		1.50	. 11.9	0.88	0.37	0.58	7.13	4.54	o.	13.50	0.990	-3.	6	12
3254 GTR212			0.60 0		1.50	12.8	0.95	0.40	0.60	7.42	4.12	0.	13.50	0.990	-4.	6	1
3254 GTR216			0.62 0		1.50	13.6	1.01	0.43	0.62	7.48	3.94	Ö.	13.48	0.988	-4.	5	1:
3254 GTRW08			0.94 0		1.50	17.1	1.27	0.54	0.75	10.94	0.60	Ö.	14.10	1.034	-8.	ĭ	2
3254 GTRW12			0.93 0		1.50	17.0	1.26	0.53	0.75	10.46	0.68	Ŏ.	13.68	1.003	-6.	5	1
3254 GTRW16			0.85 0		1.50	16.6	1.23	0.52	0.73	9.66	1.59	0.	13.73	1.007	-6.	4	<u>_</u>
3254 GTR308			0.71 0	<b>a</b> 1	1.50	13.6	1.01	0.43	0.65	9.29	3.03	Ö.	14.41	1.057	-7.	Ó	99
3254 GTR312	DISTIL	L 40.	0.71 0		1.50	13.6	1.01	0.43	0.64	8.48	2.98	Ö.	13.54	0.993	-4.	6	1
3254 GTR316	DISTIL	L 40.	0.70 0		1.50	14.1	1.05	0.44	0.65	8.41	3.11	Ö.	13.65	1.001	-5.	5	1
254 FCPADS			1.00 0		1.50	26.2	1.94	0.83	3.96	11.78	0.	0.	18.51	1.357	-26.	0	6
254 FCPADS	DISTIL	L 40.	1.49 0		1.50	35.8	2.65	1.13	5.52	15.99	Ö.	-3.04	22.26	1.632	-43.	0	6
254 FCMCDS	DISTIL	L 40.	1.00 0	. 349	1.50	27.4	2.03	0.86	3.71	10.38	O.	Ο.	16.99	1.246	-22.	0	8
254 FCMCDS	DISTIL	L 40.	1.18 0	. 360	1.50	30.8	2.28	0.97	4.17	11.67	Ο.	-1.11	17.99	1.319	-27.	0	7
314 ONOCGN	RESIDU	A 10.	0. 0	<u> </u>	0.86	2.2	0.16	0.07	0.23	1.30	2.9€	0.	4.73	1.000	0.	0	
314 STM141	RESIDU	A 10.	0.21 0	. 092	0.86	3.6	0.27	0.12	0.34	1.54	2,33	Ο.	4.60	0.974	-0.	10	
314 STM141	COAL-F	G 10.	0.21 0	. 092	0.35	6.6	0.50	0.21	0.57	0.90	2.33	Ο.	4.51	0.953	-1.	8	1
314 STM141	COAL-A	F 10.	0.21 0	.092	0.86	5.6	0.42	0.18	0.50	0.90	2.33	0.	4.33	0.917	-0.	12	
314 STM088	RESIDU	A 10.	0.15.0	. 065	0.86	3.1	0:23	0.10°	0.32	1.47	2.52	0.	4.65	0.983	-0.	10	
314 STM088	COAL-F	<b>G</b> 10.	0.15.0	.065	0.86	6.0	0.45	0.19	0.54	0.85	2.52	ο.	4.57	0,966	-1".	8	1
314 STM088	COAL-A	F 10.	0.15 0	. 065	0.86	5.2	0.40	0.17	0.48	0.85	2.52	Ο.	4.43	0.936	-1.	11	
314 PFBSTM	COAL-P	F 10.	0.36 0	. 153	0.86	8,6	0.65	0.28	0.66	1.00	1.89	<u>o</u> .	4.49	0.950	-2.	_ 7	1
314 TISTMT	RESIDU	A 10.	0.49 0	. 208	0.86	17.3	1.32	0.56	0,70	1.87	1.52	٥.	5.96	1.261	-11.	0	99
314 TISTMT		10.	0,49 0	. 208	0.86	22.1	1.68	0.71	0,98	1.08	1.52	О.	5.98	1.264	-14.	0	99
314 TIHRSG	RESIDU	A 10.	0.25 0	. 080	0.86	15.4	1.14	0.49	0.56	1.72	2.21	0.	6.11	1.293	-11.	0	9
<u>314 TIHRSG</u>		10.	0.25 0	. 080	0.86	19.9	1.51	0.64	0.82	1.00	2.21	0.	6.18	1.307	-13,	0	99
314 STIRL	DISTIL		0.61 0	. 190	0.86	5.0	0.37	0.16	0.35	2.85	1.14	Ο.	4.87	1.030	-2.	0	99
314 STIRL	RESIDU	·	0.61 0		0.86	5.0	0.37	0.16	0.35	2.33	1.14	Ο.	4.35	0.919	-0.	14	
314 STIRL	COAL	10.	0.61 0		0.86	8.4	9.62	0.26	0.61	1.35	1.14	Ο.	3.99	0.843	-1.	13	
314 HEGT85		<del></del>	1.00 0		0.86	29.6	2.24	0.95	1.34	2.24	0.	<u>0.</u>	6.77	1.432	-20.	0	99
314 HEGT85			3.07 0		0.86	56,8	4.31	1.83	2.06	5.31	o.	-3.68	9.83	2.079	-42.	0	19
314 HEGT60			1.00 0		0.83	26.1	1.98	0.84	1.11	2.16	0.	0.	6.10	1.290	-16.	.0.	98
314 HEGT60			1.03 0		0.86	26.1	1.98	0.84	1.03	2.20	0.	-0.05	6.00	1.270	-1 <u>6</u> .	0	99
314 HEGTOO			0.42 0		0.86	14.3	1.09	0.46	0,64	1.32	1.72	<u>o.</u>	5.23	1.107	<u>-7.</u>		?
BI4 FCMCCL		10.	0,75 0	-	0.86	16.9	1.31	0.56	0.87	1.36	0.75	0.	4.85	1.026	-8.	4	1
BI4 FOSTOL		10.	1.00 0		0.86	19.9	1.55	0.66	1.18	1.53	0.	0.	4.92	1.041	-9.	4	1
BI4 FCSTCL		10,	1.09 0	•	0.86	20.0	1.55	0.66	1.08	1.60	0,	-0.16	4,74	1.003	-9, -0	5	1
314 IGGTST		10.	0.75 0		0.86	17.0	1.33	0.56	0.86	1,49	0.74	<u>0.</u>	4.98	1.053	-8.	4	1
314 GTSØAR 314 GTACOB			0.79 0 0.61 0		0.86	6.0	0.45	0.19	0.35	2.61	0.61	0.	4.21 4.10	0.891 0.867	-0.	14	
314 GTACUS 314 GTAC12			0.61 0		0.86	4.6	0.34	0.14	0.30 0.32	2.16	1.16	O. O.		0.867	1.	20 20	
314 GTAC12			0.76 0		0.86 0.86	5.2 5.8	0.38 0.43	0,16 0,18	0.32	2.39 2.56	0.70 0.40	O.	3.96 3.92	0.829	1. 1.	20 18	
314 GTWC16			0.90 0		0.86	6.3	0.45	0.20	0.34	2.74	0.29	0.	4.05	0.856	<del>- b</del> :	15	1
VIT GINVIO	1753100	- 10-	0,30 0	. 234	J. 00	0.5	0.40	<u> </u>	<u> </u>	E. 14	0.29		4.00	0.000	<u> </u>	19	

DATE 06/07/79 18SE-PEC-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			SENSITI	VITY OF	CAPI1	AL COS	r		PERC	ENT OF	ORIGINAL	COST	100					
							******	***LEVE	IZED A	NNUAL E	NERGY CO	STS(\$	MILLION					
ENERGY		SITE-			FESRPO		PITAL CAP	ITAL TA	KES OA	NDM FU		-	EVNUE TO	TAL NO	RML P			oss
SYS	TEM	FUEL	REGD	GEN.		/HEAT			<u>+</u>			ELEC		· · · · · · · · · · · · · · · · · · ·		WORTH		PAY
			MW	REQD	F	RATIO *	10**6	11	NSNC							15%	В	ACK
3314	CC1626	RESIDU	A 10.	1.38	0.349	0.86	8.1	0.62	0.26	0.52	3.52	ο.	-0.67	4.26	0.901	-1.	10	9
3314	CC1622	RESIDU	A 10.	1.00	0.336	0.86	7.0	0.53	0.23	0.57	2.85	<u>     0 .                              </u>	0	4.18	0.884	-1.	12	e
3314	CC1622	RESIDU	A 10.	1.24	0.356	0.86	7.4	0.56	0.24	0.49	3.22	0.	-0.42	4.09	0.865	1.,	13	7
3314	CC1222	RESIDU	A 10.	1.00	0.339	0.86	6.7	0.51	0.22	0.56	2.84	Ο.	0.	4.13	0.873	-0.	13	
3314	CC1222	RESIDU	A 10,	1.23	0.359	0.86	7.0	0.53	0.23	0.49	3.19	0.	-0.41	4.03	0.852	-0.	14	7
3314	CC0822	RESIDU	A 10.	0.97	0.354	0,86	6.3	0.48	0.20	0.45	2.69	0.08	0.	3.90	0.825	1.	17	
3314	STIG15	RESIDU	A 10.	1.00	0.120	<b>'</b> 0.86	7.9	0.59	0.25	0.65	3.77	Ο.	٥.	5.26	1.113	-4.	0	862
3314	STIG15	RESIDU	A 10.	34.02	0.171	0.86	99.7	7.39	3.14	5.82	85.30	Ο.	-58.69	42.96	9.087	-166.	0	59
3314	STIGIO	RESIDU	A 10.	1,00	0.172	0,86	7.3	0.54	0.23	0.59	3.55	Ο.	Ο.	4.92	1.040	-3.	1	23
3314	STIGIO	RESIDU	A 10.	3,15	0.218	0.86	12.9	0.96	0.41	0.79	8.37	_0	-3.81	6.71	1.419	<u>-11.</u>	0	66
3314	STIGIS	RESIDU	A 10.	1.00	0.196	0.86	7.0	0.52	0.22 .	0.58	3.45	Ο.	Ο.	4.76	1.007	-2.	4	15
3314	STIGIS	RESIDU	A 10.	1.85	0.228	0.86	8.8	0.66	0.28	0.58	5.26	Ο.	-1.50	5.27	1.115	-5.	0	999
3314	DEADV3	RESIDU	A 10.	1.00	0.241	0.86	9.8	0.73	0.31	0.63	3.26	· O.	Ο.	4.92	1.041	-4.	2	15
3314	DEADV3	RESIDU	A 10.	2,09	0.286	0,86	14.8	1.10	0.47	0.68	5.39	0.	-1.94	5.69	1.205	-9.	<u> </u>	999
3314	DEHTPM	RESIDU	A 10.	0.89	0.319	0.86	8.5	0.63	0.27	0.49	2.59	0.33	Ο.	4.31	0.913	-2.	10	•
3314	DESGA3	DISTIL	L 10.	1.00	0.204	0.86	10.6	0.78	0.33	0.66	4.19	0.	Ο.	5.96	1.260	-8.	O	7:
3314	DESGA3	DISTIL	L 10.	2.44	0.248	0.86	21.1	1.56	0.66	0.86	7.91	0.	-2.56	8.44	1.785	-20.	0 ::	64
3314	DESOA3	RESIDU	A 10.	1.00	0.204	0,86	10.8	0.78	0.33	0.66	3.42	0.	0.	5.19	1.097	-5.	0	999
3314	DESOA3	RESIDU	A 10.	2.44	0.248	0.86	21.1	1.56	0.66	0.86	6.45	0.	-2.56	6.98	1.476	-16.	0	82
3314	GTSGAD	DISTIL	L 10.	0.74	0.255	0.86	4.8	0.35	0.15	Q.31	2.95	0.78	0.	4.55	0.963	-1.	10	•
3314	GTRA08	DISTIL	L 10.	1.00	0.320	0.86	7.7	0.57	0.24	0.50	3.58	Ο.	Ο.	4.89	1.034	-3.	2	20
3314	GTRA08	DISTIL	L 10.	1.23	0.339	0.86	8.1	0.60	0.25	0.42	4.03	0	-0.41	4.89	1.035	-3.	2	20
3314	GTRA12	DISTIL	L 10.	1.00	0.328	0.86	7.6	0.57	0.24	0.49	3.54	0.	Ō.	4.83	1.023	-3.	3	17
3314	GTRA12	DISTIL	L 10.	1.20	0.345	0.86	8.0	0.59	0.25	0.41	3.92	Ο.	-0.35	4.82	1.020	-3.	3	16
3314	GTRA16	DISTIL	L 10.	1.00	0.330	0.86	7.9	0.59	0.25	0.49	3.52	Ο.	Ο.	4.84	1.025	-3.	3	17
3314	GTRA16	DISTIL	L 10.	1.12	0.341	0.86	8.0	0.59	0.25	0.41	3.74	0.	-0.21	4.80	1.015	-3.	4	15
3314	GTR208	DISTIL	L 10.	0.92	0.304	0.86	6.4	0.47	0.20	0.36	3.38	0.23	0.	4.64	0.981	-2.	6	11
3314	9TR212	DISTIL	L 10.	0.99	0.325	0.86	6.9	0.51	0.22	0.38	3.51	0.03	Ο.	4.64	0.982	-2.	6	12
3314	GTR216	DISTIL	L 10.	1.00	0.335	0.86	7.2	0.54	0.23	0.43	3.50	0.	Ο,	4.69	0.993	-2.	5	1:
3314	GTR216	DISTIL	L_10.	1.01	0.336	0.86	7.2	0.53	0.23	0.39	3.53	0.	-0.03	4.64	0.982	-2.	6	12
3314	GTRW08	DISTIL	L 10.	1.00	0.269	0.86	7.9	0.59	0.25	0.53	3.84	0.	0.	5.21	1.102	-4.	0	999
3314	GTRW08	DISTIL	L 10.	1.47	0.298	0.86	9.0	0.67	0.28	0.46	4.89	Ο.	-0.83	5.47	1.158	-6.	0	9:
3314	GTRW12	DISTIL	L 10.	1.00	0.289	0.86	7.9	0.59	0.25	0.52	3.74	Ο.	Ο.	5.10	1.080	-4.	0	999
3314	GTRW12	DISTIL	L 10.	1.49	0.320	0.86	9, 1	0.67	0.29	0.46	4.79	0.	-0.87	5,34	1.129	-5.	0	316
3314	GTRW16	DISTIL	L - 10.	1,00	0.293	0.86	8.2	0.60	0.26	0.52	3.72	0.	0.	5.10	1.079	-4.	0	999
3314	GTRW16	DISTIL	L 10.	1.38	0.320	0.86	9.0	0.67	0.28	0.45	4.52	Ο.	-0.67	5.25	1.111	-5.	. 0	999
3314	GTR308	DISTIL	L 10.	1.00	0.249	0.86	7.2	0.53	0.23	0.48	3.95	0.	Ο.	5.18	1.096	-4.	0	311
3314	GTR308	DISTIL	L 10,	1.12	0.258	0.86	7.2	0.53	0.23	0.40	4.23	0.	-0.21	5.18	1.096	-4.	0	_ 243
		DISTIL			0.299	0.86	7.3	0.54	0.23	0.49	3.69	0.	0.	4.95	1.047	-3.	0	20
3314	GTR312	DISTIL	L 10.	1.20	0.315	0.86	7.5	0.56	0.24	0.41	4.10	Ο,	-0.35	4.95	1.048	-3.	1	2
3314	GTR316	DISTIL	L 10.	1.00	0.297	0.86	7.6	0.56	0.24	0.49	3.70	Ο,	0.	4.99	1.056	~3.	0	30
		DISTIL			0.311	0.86	7.8	0.58	0.25	0.41	4.07	0.	-0.32	4.99	1.057	-3.	0	29
	FCPADS			1.00		0.86	8.5	0.63	0.27	1.32	4.06	Ō.		6.28	1.328	-8.	0	65

DATE 06/07/79 L&SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		SENSIT	VITY OF	CAPIT	AL COS	T T		PERC	ENT OF	ORIGINAL	L COST	100	•		;		
				· ·	1	******		LIZED A	NNUAL E	ENERGY CO	STS(\$	MILLION					
ENERGY CONV		POWER				PITAL CAI	PITAL TA		NDM F			EVNUE TO	ITAL NO	RML F	RESNT		COSS
SYSTEM	FUEL_	REGD	GEN/		/HEAT			+			ELEC				WORTH	<u>x</u>	PAY
		MW	REQD	K	ATIO *1	10**6	1.1	NSNC							15%	· E	SACK
33314 FCMCDS	DISTIL	_ 10.	1.00	0.304	0.86	8.6	0.64	0.27	1.24	3.66	Ο.	Ο.	5,81	1.230	-7.	. 0	70
33314 FCMCDS	DISTIL	. 10,	2.05	0.360	0.86	14.0	1.03	0,44	2.09	5.83	0.	-1.87	7.53	1.593		0	66
33315 ONOCGN	RESIDU	19.	0.	0.	1.05	2.8	0.21	ວ.09	0.27	1.96	5.43	0.	7.95	1.000	0,	C	
3315 STM141	RES! DU	<b>19.</b>	0.17	0.079	1.05	4.6	0.35	0.15	0.39	2.31	4.49	0.	7.70	0.968	-0.	13	100
3315 STM141				0.079	1.05	8.6	0.66	0.28	0.68	1.34	4.49	Ο.	7.45	0.937		11	•
3315 STM141				0.079	1.05	7.1	0.54	0.23	0.60	1.34	4.49	<u>o.</u>	7.20	0.908		15	
3315 STM088		7		0.055	1.05	4.0	0.30	0.13	0.38	2.20	4.77	0.	7.78	0.979		13	
3315 STM088				0.055	1.05	7.9	0.60	0.26	0.65	. 1.28	4.77	0.	7.56	0.951		10	
33315 STM088				0.055	1.05	6.7	0.51	0.21	0.58	1.28	4.77	0.	7.36	0.925		14	
3315 PFBSTM 3315 TISTMT			0.29	0.131 0.179	1.05 1.05	11.1 23.3	0.84	0.36 0.75	0.83	1.50 2.80	3.84	<u>0,</u>	7.37 9.47	0.927	<del></del>	10 0	99
3315 TISTMT		19. 19.		0.179	1.05	23.3 29.7	1.77 2.25	0.75	1.24	1.62	3.27	0. 0.	9.47	1.176		. 0	89
3315 TIHRSG				0.069	1.05	20.8	1.54	0.65	0.72	2.58	4.30	0. 0.	9.79	1.231		ŏ	10
3315 TIHRSG		19.		0.069	1.05	26.8	2.03	0.86	1.05	1.50	4.30	0. 0.	9.75	1.226		0	99
3315 STIRL	DISTIL		0.50		1.05	7.2	0.54	0.23	0.45	4.27	2.70	<u> </u>	8.19	1.030		ŏ	99
3315 STIRL	RESIDUA		0.50		1.05	7.3	0.54	0.23	0.45	3.49	2.70	o.	7.40	0.931		13	33
3315 STIRL	COAL	19.	0.50		1.05	13.1	0.97	0.41	0.80	2.02	2.70	Č.	6.91	0.869		12	
3315 HEGT85			1.00		1.05	44.1	3.35	1.42	1.87	3.86	6.	Ö.	10.50	1.320		0	99
3315 HEGT85				0.125	1.05	77.1	5,85	2.49	2.78	8.17	0.	-5.15	14.14	1.778		0	20
3315 HEGT60			0.85		1.05	34.9	2.65	1.13	1.35	3.32	0.83	0.	9.28	1.167		ĭ	2
3315 HEGTOC	COAL -AF	19.	0.34		1.05	19.1	1.45	0.62	0.83	1.98	3,57	0.	8.44	1.061	-9.	2	2
3315 FCMCCL	COAL	19.	0.61	0.240	1.05	22.4	1.74	0.74	1.14	2.04	2.11	0.	7.78	0.979	-9.	5	1:
3315 FCSTCL	COAL	19.	0.89	0.362	1.05	26.6	2.07	Q.88	1.41	2.40	0.60	0.	7.36	0.925	-10.	7	1
3315 IGGTST	COAL	19.	0.61	0.195	1.05	22.2	1.73	0.73	1.04	2.24	2.11	Ο.	7.85	0.987	· -9,	5	1
3315 GTSØAR	RESIDUA	19.	0.65	0.214	1.05	8.0	0.59	0.25	0.43	3.92	1.90	Ο.	7.10	0.893	0.	15	
3315 GTAC08	RESIDUA	19.	0.50	0.196	1.05	6.1	0.45	0.19	0.37	3.23	2.72	Ø.	6.97	0.877	2.	22	
3315 GTAC12			0.62	0.241	1.05	7.0	0.52	0.22	0.40	3.58	2.04	Ο.	6.76	0.850		22	
3315 GTAC16			0.71		1.05	7.9	0.58	0.25	0.43	3.85	1.57	Ο.	6.68	0.840		20	!
3315 GTWC16			0.74		1.05	8.3	0.62	0.26	0.44	4.11	1.41	0.	6.84	0.861		17	
3315 CC1626			1.00		1.05	10.6	0.81	0.34	0.71	4.91	0.	0.	6.78	0.852		14	-
3315 CC1626			1.12		1.05	10.8	0.82	0.35	0.63	5.28	0.	-0.40	6.68	0.840		15	
3315 CC1622			1.00		1.05	10.1	0.76	0.32	0.64	4.79	0.	0.	6.52	0.820		17	
3315 CC1622			1.01		1.05	10.0	0.76	0.32	0.60	4.81	0.	-0.03	6.46	0.813		17	
3315 CC1222 3315 CC1222			1.00	0.359	1.05	9.6 ° 9.5	0.72 0.72	0.31 0.31	0.62	4.76 4.77	<u>0.</u> 0.	<u>0.</u> -0.01	6.42	0.807		18	+
3315 CC0822			0.79		1.05	9.3 8.3	0.72	0.31	0.54	4.77	1.12	0.01	6.59	0.829		19	
3315 STIG15			1.00		1.05	11.6	0.86	0.37	0.88	6.48	0.	Ö.	8.58	1.080		0	99
3315 STIG15			27.86		1.05	145.9	10.81	4.60		127.94	0.	-87.44	64.31	8.087	-	ŏ	5 5
3315 STIGIO				0.182	1.05	10.7	0.79	0.34	0.79	6.07	0.	0.	7.99	1.004			1
3315 STIG10			2.58		1.05	17.4	1.29	0.55	1.03	12.55	o.	-5.13	10.29	1.294		., 0	6
3315 STIGIS			1.00		1., 05	10.1	0.75	0.32	0.76	5.88	Ö.	0.	7.71	0.969		7	ĭ
3315 STIGIS				0.228	1.05	11.9	0.88	0.37	0.75	7.89	Ö.	1.67	8.23	1.034			ż
3315 DEADV3			1.00		1.05	14.7	1.09	0.46	0.82	5.54	0.	0.	7.91	0.995			1:

DATE 06/07/79 &SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

		SENSIT	IVITY OF	F-CAP11		<b>Г</b> ********				ORIGINAL							
NERGY CONV		POWER		FESRPO	WER CA	PITAL CAP		XES GA		EL PUI	RCHD RE		TAL NO		- to the same of t	• • • • • • • • • • • • • • • • • • • •	:09 <b>S</b>
SYSTEM	FUEL	REGD	GEN/		/HEAT			+			ELEC				WORTH		PAY
		MW	REQD	1	RATIO *	10**6	11	NSNC						tan je	15%	19.	ACK
3315 DEHTPM	RESIDU	A 19.	0.73	0.275	1.05	11.1	0.82	0.35	0.60	3.88	1.49	Ο.	7.15	0.899	-1.	11	
3315 DESGA3				0.215	1.05	17.9	1.32	0.56	0.91	7,15	0	0.	9.94	1.250	-13,	0	7
3315 DESOA3				0.248	1.05	31.3	2.32	0.99	1.17	11.92	Ο.	-3.28	13.12	1.651	-30,	0	
331 <b>5</b> DESØA3				0.215	1.05	17.9	1.32	0.56	0.91	5.83	Ο.	Ο.	8.62	1.085	-9,	0	:
3315 DESGA3				0.248	1.05	31.3	2.32	0.99	1.17	9.73	0.	-3.28	10.93	1.374	-23.	0	11
<u>331<b>5</b> GTSOAD</u>				0.221	1.05	6.4	0.47	0.20	0.38	4.43	2.16	0.	7.64	0.961	<u>-1.</u>	<u> </u>	
33 <b>15</b> GTRA08				0.337	1.05	10.8	0.80	0.34	0.57	6.03	Ο.	Ο.	7.74	0.974	-3.	7	•
3315 GTRA08				0.338	1.05	10.8	0.80	0.34	0.52	6.06	0.	-0.03	7.69	0.967	-3.	7	
3315 GTRA12				0.340	1.05	10.7	0.79	0.34	0.52	5.89	0.09	0.	7.63	0.959	-3.	8	
3315 GTRA16				0.320	1.05	<u>10.8</u>	0.80	0.34	0.52	5.63	0.46		7.74	0.973	<u>-3.</u>	. 7	
3315 GTR208				0.264	1.05	8.5	0.63	0.27	0.45	5.07	1.32	0.	7.74	0.973	-2.	8	
3315 GTR212				0,282	1.05	9.2	0.68	0.29	0.47	5.27	1.02	0.	7.73	0.973	-2.	7	
3315 GTR216				0.294	1.05	9.6	0.71	0.30	0.48	5.29	^0.91	0.	7.71	0.969	-2.	8	
3315 GTRW08				0.284	1.05	11.4	0.84	0.36	0.65	6,52	<u>o.</u>	0.	8.37	1.052	<u>-5.</u>	0_	
3315 GTRW08				0.297	1.05	12.0	0.89	0.38	0.57	7.35	0.	-0.66	8.52	1.072	-6.	0	9
3315 GTRW12				0.305	1.05	11.4	0.84	0.36	0.65	6.33	0.	O.	8.18	1.028	-5.	. 2	
315 GTRW12				0.320	1.05	12.0	0.89	0.38	0.57	7.19	0.	-0.72	8,31	1,045	-5.	1	
315 GTRW16				0.310	1.05	11.6	0.86	0.37	0.64	6.28	<u> </u>	<u> </u>	8.15	1.026	-5.	3	
315 GTRW16				0.319	1.05	11.9	0.88	0.38	0.56	6.78	0.	-C.42	8.18	1.029	-5.	2	_
3315 GTR308				0.242	1.05	9.6	0.71	0.30	0.50	6.36	0.44	0.	8.31	1.045	-4.	0	9
3315 GTR312 3315 GTR316				0.310	• :	10.0 10.4	0.74	0.31	0.50	6.15	0.10	0.	7.82	0.983	-3.	6 5	
315 FCPADS				0.240	1.05	13.7	0.77	0.33	0.51 2.20	6.11 6.91	0.19	<u>0.</u> 0.	7.90	0.994	-3.		
3315 FCPADS				0.279	1,05	24.0	1.01	0.43			0.		10.55	1.327	-13,	0	
3315 FCMCDS				0.321	1.05	14.2	1.75	0.76	4.09	11.99	0.	-3.66		1.881	-32.	0	
3315 FCMCDS				0.360	1.05	20.7	1.53	0.45 0.65	2.07 3.09	6.18 8.75	0, 0.	0,	9.75 11.81	1.226	-11.	o	
3316 ONOCEN			0.	0.360	0.91	2.8	0.21	0.09	0.27	1.96	4.69	- <u>2</u> .22	7.22	1.485	-21. 0.	<u>0</u>	
3316 STM141				0.088	0.91	4.6	0.35	0.09	0.39	2.31	3.76	0.	6.96	0.965		-	
3316 STM141				0.088	0.91	8.6	0.66	0.13	0.68	1.34	3.76	0. 0.	6.72	0.931	-0.	13 11	
3316 STM141				0.088	0.91	7.1	0.54	0.23	0.60	1.34	3.76	0.	6.47	0.896	-1. O.	15	
316 STM088				0.061	0.91	4.0	0.30	0.13	0.38	2.20	4.04	<del>- 0.</del>	7.05	0.977	-0.	13	
316 STM088				0.061	0.91	7.9	0.60	0.13	0.65	1.28	4.04	0.	6.83	0.946	-1.	10	**
316 STM088				0.061	0.91	6.7	0.51	0.21	0.58 0.58	1.28	4.04	o.	6.62	0.917	-0.	14	
316 PFBSTM				0.146	0.91	11.1	0.84	0.36	0.83	1.50	3.10	o.	6.64	0.920	-2.	10	
316 TISTMT				0.199	0.91	23.3	1.77	0.75	0.88	2.80	2.54	0.	8.74	1.211	-15.		ີ 9
316 TISTMT		16.		0.199	0.91	29.7	2.25	0.96	1.24	1.62	2.54	o.	8.62	1.194	-17.	ŏ	Ģ
316 TIHRSG				0.077	0.91	20.8	1.54	0.65	0.72	2.58	3.57	0.	9.06	1.255	-14.	ő	1
316 TIHRSO		16.	•	0.077	0.91	26.8	2.03	0.86	1.05	1.50	3.57	0.	9.02	1.249	-17.	ő	9
316 STIRL	DISTIL			0.182	0.91	7.2	0.54	0.23	0.45	4.27	1.97	<del>0.</del>	7.46	1.033	-3.	o	9
316 STIRL	RESIDU			0.182	0.91	7.3	0.54	0.23	0.45	3.49	1.97	Ö,	6.67	0.924	-0.	13	9
316 STIRL	COAL	16.		0.182	0.91	13.1	0.97	0.41	0.80	2.02	1.97	o.	6.17	0.855	-2.	12	
316 HEGT85			-	0.100	0.91	40.5	3.08	1.31	1.75	3.49	0.	o.	9.63	1.333	-26.	ő	9:
316 HEGT85				0, 125	0.91	77.1	5.85			<u> </u>	<u>~ ·                                    </u>	<u> </u>	3.00	1.000	<u> </u>		

DATE 06/07/79 LASE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

AGE 8

NERGY																		
eve:	, _ ,		POWER		FESRP		APITAL C	*****LEVE APITAL TA	XES GA		EL PU	RCHD RE	VNUE TO	1.5		RESNT		ROSS
SYS	1EM	FUEL	REQD MW	GEN/ REQD			<u> </u>	1	NSNC			ELEC				WORTH 15%	<u>X</u>	PAY
2216	UEOTOO	COAL-A	F 16.	0.40	0.063	0.91	19.1	1.45	0.62	0.83	1.98	2, 63	ο.	7,70	1.067	-9.	_ 2	2
	FCMCCL		16.		0.063		22.4		0.74	1.14	2.04	1.38	0.	7.05	0.977	-9.	5	
3316	FCSTCL	COAL	16,	1,00	0.391	0.91	26.7	2.08	0.88	1.50	2.36	0.	0.	6.83	0.946	-11.	6	. •
3316	FOSTOL	COAL	16,	1.03	0.394	0.91	26.6	2.07	0.88	1.41	2.40	0.	-0.08	6.68	0.925	-10.	. 7	
316	IGGTST	COAL	16.	0.71	0.217	0.91	22.2	1.73	0.73	1.04	2.24	1.37	Ο.	7.12	0.986	-9.	5	
316	GTSØAR	RESIDUA	A 16.	0.75	0.238	0.91	8.0	0.59	0.25	0.43	3.92	1.17	0.	6.37	0.882	Ο.	15	
316	GTACO8	RESIDU	4 16.	0.58	0.217	0.91	6.1	0.45	0.19	0.37	3.23	1.99	0.	6.24	0.864	2.	22	
316	GTAC12	RESIDU	A 16.	0.72	0.268	0.91	7.0	0.52	0.22	0.40	3.58	1.30	Ο.	6.02	0.835	2.	22	
316	GTAC16	RESIDU	A 16.	0.82	0.298	0.91	7.9	0.58	0.25	0.43	3.65	0.84	Ο.	5.95	0.824	2.	20	
316	GTWC16	RESIDU	A 16.	0.86	0.283	0.91	8.3	0.62	0.26	0.44	4.11	0.68	Ο.	6.11	0.847	1.	17	
316	CC1626	RESIDU	4 16.	1.00	0.325	0.91	10.0	0.76	0.32	0.71	4.51	0.	0.	6.31	0.874	-1.	13	
316	CC1626	RESIDU	A 16.	1.30	0.348	, 0.91	10.8	0.82	0. 35	0.63	5.28	Ο.	-0.84	6.24	0.865	1.	13	
316	CC1622	RESIDU	A 16.	1.00	0.341	0.91	9.7	0.73	0.31	C.68	4.41	Ο.	Ο.	6,13	0.850	0.	15	
316	CC1622	RESIDU	4 16.	1.17	0.356	0.91	10.0	0.76	0.32	0.60	4.81	0.	-0.47	6.02	0.834	0.	15	
316	CC1222	RESIDU	A 16.	1.00	0.344	0.91	9.2	0.70	Ü. 30	0.67	4.38	0.	0.	6.06	0.839	0.	16	
316	CC1222	RESIDU	<b>A</b> 16.	1.16	0,359	0.91	9.5	Ú. 72	0.31	0.59	4.77	Ο.	-0.45	5.94	0.823	1.	16	
316	CC0822	RESIDU	A 16.	0.92	0.339	0.91	8.3	0.63	0.27	0.54	- 4.03	0.38	Ο.	5.86	0.812	2.	19	
316	ST1615	RESIDU	A 16.	1.00	0.122	0.91	10.8	0.80	0.34	0.82	5.87	0	0	7.83	1 085	-6.	0	
316	STIG15	RESIDU	A 16.	32.21	0.171	0.91	145.9	10.81	4.60	8.40	127.94	0.	-87.88	63.87	8.848	-245.	0	
316	STIGIO	RESIDU	<b>4 16.</b>	1,00	0.175	0.91	10.0	0.74	0.31	0.75	5.51	Ο.	0.	7.31	î.013	-4.	4	
316	STIGIO	RESIDU	A 16.	2.98	0.218	0.91	17.4	1.29	0.55	1.03	12.55	Ο.	-5.57	9.85	1.364	-15.	0	
316	STIGIS	RESIDU	16.	1.00	0.200	0.91	9.5	0.70	0.30	0.72	5.35	0	0.	7.08	0.980	-3.	6	
316	STIGIS	RESIDU	A 16.	1.75	0.228	0.91	11.9	0.88	0.37	0.75	7.89	· O.	-2.11	7.79	1.079	-6.	0	9
316	DEADV3	RESIDU	<b>A</b> 16.	1.00	0.244	0.91	13.3	0.98	0.42	0.78	5.05	Ο.	Ο,	7.23	1.001	-5,	5	
316	DEADV3	RESIDU	A 16.	1.99	0.286	0.91	22.0	1.63	0.69	0.91	8.11	Ο.	-2.79	8.56	T.186	-13.	0	:
316	DEHTPM	RESIDU	16.	0.84	0.305	0.91	11.1	0.82	0.35	0.60	3.88	0.76	0.	6.41	0.888	<u>-1.</u>	11	
		DISTIL		1.00	0.206	0.91	16.0		0.50	0.85	6.50	O.	0.	9.04	1.253	-12.	0	
		DISTIL			0.248		31.3		0.99	1.17	11.92	Ο.	-3.72	12.68	1.757	-31.	0	
		RESIDU			0.206		16.0		0.50	0.85	5.31	Ο.	Ο.	7.84	1.087	-8.	0	
		RESIDU		2.32	0.248	0.91	31.3		0.99	1.17	9.73	<u> </u>	<u>-3.72</u>	10.49	1.453	-24.	0	
		DISTIL			0.245		6.4		0.20	0.38	4.43	1.48	0.	6.91	0.957	-1.	11	
-		DISTIL			0.324		10.4		0.33	0.61	5.54	Ο.	0.	7.25	1.004	-4.	5	
		DISTIL			0.338		10.8		0.34	0.52	6.06	0.	-0.47	7.25	1,005	-4.	4	
		DISTIL			0.333		10.4		0.33	0.60	5.47	<u> </u>	<u>. 9.                                   </u>	7.17	0.994	<u>-3.</u>	5	
		DISTIL			0.345		10.7		0.34	0.52	5.89	0.	-0.38	7.15	0.991	-3.	5	
		DISTIL		• •	0.335		10.6		0.34	0.59	5.45	0.	0.	7.17	0.994	-4.	5	
_ : : : .		DISTIL			0.341		10.8		0.34	0.52	5.63	0.	-0.16	7.12	0.986	-3.	6	
		DISTIL			0.293		8.5		0.27	0.45	5.07	0.59	<u> </u>	7.00	0.970	<u>-2.</u>	<u>8</u>	
		DISTIL			0.313		9.2		0.29	0.47	5.27	0.29	0.	7.00	0.970	-2.	7	
		DISTIL			0.327		9.6		0.30	0.48	5.29	0.18	0.	6.97		-2.	8	_
		DISTIL			0.273		10.7		0.34	0.64	5.96	0.	0.	7.73	1.071	-5.	0	9
		DISTIL			0.297		12.0 10.7		0.38	0.57 0.64	7.35 5.80	<u>0.</u>	-1.10 0.	8.08 7.57	1.120	<u>-7.</u> -5.	0	1

DATE 06/07/79 L&SE-PEG-ADV-ENERGY-SYS

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.4

			BENSITI	VITY OF CA	PITAL CO					ORIGINA			~ \					
ENERGY SYS		SITE- FUEL	REQD	POWER FES GEN/	/HEAT	APITAL CA		XES OA	NDM FU	EL PU		REVNUE TO		RML PR	WORTH	ROI X	-	ΥΫ́
			MW	REGD	RATIO	*10**6	ī	NSNC			:				15%		DA	ACK
33316	GTRW16	DISTIL	_ 16.	1.00 0.2	98 0.91	11.0	0.81	0.35	0.64	5.76	0.	0.	7.56	1.047	-5.		1	. 25
33316	GTRW16	DISTIL	16.	1.31 0.3	19 0.91	11.9	0.38	0.38	0.56	6.78	0.	-0.86	7.74	1.073	-6.		0	999
33316	GTR308	DISTIL	16.	1.00 0.2		9.7	0.71	0.30	0.57	6.12	0.	0.	7.72	1.069	-5.		Ö	900
33316	GTR308	DISTIL	_ 16.	1.06 0.2	57 0.91	9.6	0.71	0.30	0.50	6.36	O.	-0.17	7.69	1.066	-5.		0	459
33316	<b>GTR312</b>	DISTIL	. 16.	1,00 0.3	04 0.91	9.8	0.73	0.31	0.59	5.71	Ο.	Ο.	7.34	1.016	-4.		3	16
33316	GTR312	DISTIL	_ 16.	1.13 0.3	14 0.91	_ 10.0	0.74	0.31	0.50	8.15	0.	-0.38	7.33	1.016	-4.		3	_ 16
33316	GTR316	DISTIL	_ 16.	1.00 0.3	02 0.91	10.2	0.76	0.32	0.60	5.72	0.	0.	7.40	1.025	-4.		3	19
33316	GTR316	DISTIL	_ 16.	1.12 0.3	11 0.91	10.4	0.77	0.33	0.51	6.11	Ο.	-0.33	7.39	1.024	-4.		3	18
33316	FCPADS	DISTIL	_ 16.	1.00 0.2	31 0.91	12.4	0.92	0.39	1.95	6.30	0.	Ο.	9.57	1.325	-12.		0	- 66
33316	FCPADS	DISTIL	_ 16.	2.46 0.2	79 0.91	24.0	1.78	0.76	4.09	11.99	_0.	-4.10	14.51	2.011	-33.		0	62
33316	FCMCDS	DISTIL	16.	1.00 0.3	09 0.91	12.9	0.95	0.41	1.85	5.67	٥.	0.	8.87	1.229	-10.		0	78
33316	FCMCDS	DIST!	16.	1.94 0.3	60 0.91	20.7	1.53	0.65	3.09	8.75	0.	-2.66	11.37	1.575	-22.	•	O.	66

### RESIDUAL-FIRED NOCOGENERATION PROCESS BOILER

6.1 - FUEL & EMISSIONS SAVINGS BY PROCESS-ECS MATCH

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS ISE PEO AES ALTERNATIVES STUDY FUEL UNITS = (SAVINGS ARE U

EMISSION UNITS= TIME 1990 LEVEL ALL

COST TYPE MATCH=POWR =\$*10**9

	<u> </u>		-3*10	**9					<del></del>					1	TE MAIL	H= PUNK		
PROCS	ECS				·TOT	INGS** ALFES COAL				****	SAVI **TOTAL* SOX	NGS- ******	-		CAPITL- SAVIŅG	-ELECTRI TOTAL EXPORT	C POME	
								•								MNH		
20111	STM141	RESIDU	Ο.	-0.002	Ο.	0.003	0.26	-1.	-1.	-0.	1.	2.	0.	0.28	-0.	0.	137.	-0.
20111	STM141	RESIDU	0.	-0.002	Ο.	0.003	0.28	1.	-1.	-0.	1.	2.	0.	0.29	0.	Ο.	105.	-0.
20111	STM141	COAL-F	0.	-0.002	0.	0.003	0.26	·-1.	-2.	-0.	1.	0.	0.	0.18	-2.	0.	311.	-1.
20111	STM141	COAL-F	0.	-0.002	0.	0.003	0.28	-1.	-2.	-0.	1.	1.	Ō.	0.20	-2.	O.	239.	-0.
20111	STM141	COAL-A	o.	-0.002	O.	0.003	0.26	1.	-2.	-0.	2.	o.	o.	0.36	-2.	o.	270.	-O.
	STM141		Ö.	-0.002	Ö.	0.003	0.28	1.	-2,	-o.	3.	i.	Õ.		-1.	o.	198.	-0.
	STM088		Ö.	-0.001	o.	0.002	0.23	-o.	-1.	-0.	ĩ.	i.		0.24	ö.	ă.	103.	-0.
	STM088		0.	-0.001	<del>o</del> .	0.002	0.23	-0.	-2.	-o.	1.	Ò.	<del>0.</del>		-2.	0.	245.	<del>-0.</del>
	STMOSS		õ.	-0,001	o.	0.002	0.23	1.	·2.	-ŏ.	ż.	o.		0.32	-1.	o.	210.	-ò.
	PFBSTM		Ö.	-0.002	o.	0.003	0,26	1.	-2:	õ.	3.	Ö.		0.41	-4.	o.	395.	-1.
	PFBSTM		o.	-0.003	Ŏ.	0.004	0.33	1.	-3:	ŏ.	4.	1.	i.	0.49	-3.	ö.	223.	-1.
	TISTMT		0.	-0.003	<del>-0.</del>	0.003	0.33	<del>-1:</del>	<del>-1</del> :-	<del>- 3.</del>	<del>- 4.</del>	2.		0.28	<u>-6.</u>	<del>0.</del>	462.	<del>-1:</del>
	TISTMT		0. 0.	-0.002	0. 0.	0.005	0.20	-1.	-1:	-ð.	2.	2. 3.		0.20			462. 348.	-1.
	TISTIT			-0.003	0.	0.003									-8. -0	0.		
			0.				0.26	-1.	-2.	-0. -0	1.	0.		0.18	-9.	0.	703.	-2.
	TISTMT		0.	-0.003		- 0.005	0.37	<u>-1.:</u>	<u>-3.</u>	-0.	2.	2.	<del></del>	0.30	<u>-12.</u>	0.	<u>457.</u>	-2.
	TIHRSG		0.	-0.001	0.	0.002	0.17	-1.	-1.	· -0	1.	1.		0.19	-8.	0.	<b>539</b> .	-1.
-	TIHRSG		0.	~0.001	0.	0.002	0.17	-1.	-2.	-0.		-0.		0.09	-10.	0.	727.	-1.
	STIRL	DISTIL	0.	-0.002	0.	0.002	0.21	0.	Q.	0.	2.	3.	_	0.54	0.	o.	114.	-0.
	STIRL	DISTIL	0.	-0.005	<u>0.</u>	0.005	0.32	<u>-o.</u>	<u>-1.</u>	<u>o.</u>	<u>3.</u>	5.	<u>1.</u>	0.61	<u>2.</u>	<u> </u>	<u>86.</u>	<u>-c.</u>
	STIRL	RESIDU	0.	-0.002	0.	0.002	0.21	-1.	-1.	-0.	1.		-0.	0.22	٥.	o.	110.	-0.
	STIRL	RESIDU	0.	-0.005	0.	0.005	0.32	-2.	-2.	-1.	2.			0.33	2.	1.	62.	-0.
	STIRL	COAL	0.	-0.002	0.	0.002	0.21	-1.	-2.	-0.	1.	o.	-	0.13	-3.	C	318.	-1.
	STIRL	COAL	0.	-0.005	0.	0.005	0.32	-2.	-4.	-0.	2.	2.	1.	0.26	-1.	1.	128.	-0.
	HEGT85		0.	-0.002	Ο.	0.002	0.19	1.	-3.	-0.	2.	-0.	0.	0.27	-8.	0.	<b>594</b> .	-1.
20111	HEGT85	COAL-A	Ο.	-0.007	Ο.	0.006	0.31	-G.	-6.	-0.	4.	2.	1.	0.37	-31.	Ť.,	318.	- <u>2</u> .
20111	HEGT60	COAL-A	Ο.	-0.003	Ο.	0.001	0.13	1.	-3.	-0.	2.	-0.	0.	0.22	-8.	♦.	387.	-1.
20111	HEGT60	COAL-A	Ο.	-0.007	Ο.	0.003	0.20	-0.	-6.	-0.	3.	0.	1.	0 :37	-10.	1 .	337.	-2.
20111	HEGTOO	COAL-A	0.	-0.003	0.	0.001	0.12	0.	-3.	-0.	2.	-0.	0.	<u>o 9</u>	-6.	0.	513.	-1.
:0111	HEGT00	COAL-A	Ο.	-0.004	0.	0.002	0.14	0.	-3.	·~O,	2.	-0.	0.	0.20	-6.	G.	397.	-1.
0111	FCMCCL	COAL	٥.	-0.002	٥.	0.002	0.23	1.	0.	Ο.	2.	3.	1.	0.63	-Ė.	O.	512.	- 7 .
0111	FCMCCL	COAL	0.	-0.005	0.	0.005	0.34	2.	2.	0.	5.	8.	1.	1.00	-7.	1.	272.	-1.
0111	FCSTCL	COAL	0.	-0.002	0.	0.002	0.24	<del></del>	-0.	Ö.	2.	2.		0.51	·6.	Ö.	512.	-1.
	FCSTCL		0.	-0.008	0.	0.010	0.42	2.	2.	Ö.		12.		1.00	-7.	i.	213.	~ <b>2</b> .
	IGGTST		a.	-0.002	Ö.	0.002	0.19	-1.	-3.	Ö.		-0.	1.		-6.	ò.	552.	-1.
	IGGTST		o.	-0,007	Ŏ.	0.006	0.31	-2.	-5.	Ö.	ż.	2.	i.		-7.	1.	259.	-ż.
	GTSUAR			0.	-0.002		0.21	<del>-ī:</del>	<del>-1.</del>	-0.	0.	<del>- <u>2</u> :</del>		0.32	-0.	Ö.	144.	-0.
	GTSØAR				-0.005		0.31	-2.	-2.	-0.	1.	4.	1.		1.	1.	80.	-0.
	GTACO8			-0.002	0.000	0.002	0.22	-2.	-1.	-0.	-1.		-o.		o.	o.	119.	-0.
	GTACOB		0.	-0.004	0.	0.002	0.31	-4.	-2.	-0. -0.	-1.		-	0.12	_	0. 0.	64.	-0. -0.
	GTAC12		0.	-0.002	0.	0.002	0.23	-2.	-1:	<del>-0.</del>	<del>-0:</del>		<del>-0.</del>	0.12	1. 0.	0.	120.	-0. -0.
	GTAC12		0.	-0.002	o.	0.002	0.23	-2. -4.	-2.	-0. -1.			-0. -0.				64.	-0.
	GTAC12		Ö.	-0.003	Ö.	0.003	0.23	-4. -2.	-1.	-0.	-1. -0.				2.	1.	125.	-0. -0.
	GTAC16		0.	-0.002	o.	0.002					_		-0.	3 3 3	0.	0.		
							0.35	-5. -3	-2.	<u>-1.</u>	<del>-<u>-</u>1.</del>			0.18	2.	1.	68.	<u>-0.</u>
	GTWC16			-0.002	0.	0.002	0.20	-2.	-1.	-0.	-1.		-0.		-0.	Q.	142.	~0.
THU.	GTWC16	KESIDU	Ο.	-0,007	Ο.	0.008	0.31	-5.	-3.	-1.	-2.	4.	-0.	0.13	2.	1.	76.	-0.

	6/08/79									IC COMPANY							PAG	<u>E 2</u>
ISE PE	FUEL (	INI TO	=		•		NERATION ORT 6.1	TECHNOI FUEL /		EMISSIONS		ERNATIVES	5 S		VINGS A	DE .		U
	_	ON UNIT					E 1990	FUEL /	AIND		ALL	195		( SF	WINGS A	NE.		u
	COST		=\$*10*	×9		,					~~~			T	PE MATC	H=POVR		
							<del></del>			<del>201</del>		· · · · · · · · · · · · · · · · · · ·						
	1	* £ *	**F U E	EL			***				SAV	INGS -				-ELECTRI		
PROCS	ECS									****			K	emsr	SAVING	TOTAL	COST L	
<del></del>	<del></del>	FUEL OI	L+GAS	COAL OI	L+GAS	COAL	XON	SOX	!	PART NOX	SOX	PART				EXPORT	<u> </u>	AVED
20111	001626	RESIDU	Ο.	-0.002	0.	0.002	0.20	-2.	-1.	-0	-0.	1.	-0	0.11	-0,	MVH O.	165.	-0.
		RESIDU	o. o.	-0.012	0.	0.010		-2. -8.	-5		-1.	7.		0.11	3.	2.	79.	-1.
		RESIDU	o.	-0.002	0	0.002		-2.	-1	• • • •	-0.	i.		0.12	-0.	ō.	75. 153.	-0.
		RESIDU	0.	-0.010	0.	0.010		-8.	-4		<del>-i.</del>	<del>7.</del> ·	<del>-0.</del>	0.22	3.	1.	75.	-1.
20111	CC1222	RESIDU	o.	-0.002	0.	0.002	0.21	-2.	-1	o.	-ò.	1.		0.13	-0.	ò.	148.	-ò.
20111	CC1222	RESIDU	0.	-0.010	0.	0.010	0.38	-7.	-4.	1.	-1.	7.	-0.	0.22	3.	1.	72.	-1.
	CC0822		0.	-0.002	0.	0.002		-2.	-1.	0.	-0.	2.	-0,	0.13	-0.	0.	154	-0.
	CC0822		0.	-0.008	0.	0.009		-6.	-3	- • •	-1.	6.	-0.	0.23	2.	1.	75.	-9.
	STIG15		0.	-0.004	0.	0.001	0.07	-2.	-1.		-1.	. 1.		0.00	-0.	0.	167.	-0.
		RESIDU	0.	-0.382	0.	0.080			-153		-85.	88.		0.01	102.	43.	65.	-13.
	STIGIO	RESIDU	<u>0.</u> 0.	-0.003 -0.032	<u>0.</u>	0.001	0.10	-2. -21.	-1 -13		<del>-1.</del> -7.	10.	<u>0.</u>	0.03	-0. 8.	<u>0.</u> 4.	<u>154.</u> 73.	<u>-0.</u> -1.
	STIGIS		0.	-0.003	0.	0.001	0.12	-2.	-13	•	-1.	10.		0.04	-0.	۹. 0.	73. 148.	-0.
	STIGIS		Ö.	-0.018	o.	0.007		-12.	-7		-4.	6.		0.07	4.	2.	74.	~1.
	DEADV3		o.	-0.002	.0.	0.002		-3.	-1		-2.	1.		-0.03	-1.	Õ.	212.	-o.
	DEADV3		0.	-0.009	0.	0.008		-12.	-4		-7.	6.		-0.06	1.	1.	101.	-1.
20111	DEHTPM	RESIDU	0.	-0.002	Ο.	0.003	0.24	-3.	-1.	o.	-2.	2.	-0.	0.00	-1.	o.	209.	-0.
	DEHTPM		0.	-0.006	Ο.	0.008		-9.	-2.	1.	-5.	<b>5</b> .	-0.	0.01	0.	1.	106.	-1.
		DISTIL		0.	-0.002	0.004		<del>-7.</del>	1.		-5.	3.		-0.35	-0.	0,	154.	-0.
			-0.010	0.	-0.010	0.018		-30.	-0.		-24.	9.		-0.74	1.	1.	106.	-1.
		RESIDU		0.	-0.002	0.004		-15.	-1,		-14.	1.		-1.77	-0.	o.	149.	-0.
		RESIDU		0. 0.	-0.010 -0.002	0.018	0.33 0.22	-64. -1.	-4. -0.		-58. 0.	6.		-2.60	1.	1.	102.	-1. -0.
			-0.005	<del>0.</del>	-0.005	0.010		- <u>-</u> -2.	1		<del>- ĭ.</del>	<u>2.</u> 4.		0.47	<u>0.</u> 2.	<u> </u>	119. 63.	-0.
	GTRA08		0.	-0.002	0.	0.002		-ō.	o.		i.	3.		0.46	-0	o.	158.	-0.
	GTRA08	-	Ö.	-0.007	0.	0.007		-3.	-1		2.	Ž.		0.51	Ž.	1.	84.	-o.
20111	GTRA12	DISTIL	0.	-0.002	0.	0.002	0.21	-0.	Ö.		1.	3.		0.47	-0.	ò.	152.	-0.
	GTRA12		0.	-0.007	0.	80C.0		-3.	-1.	. 0.	2.	7.	1.	0.51	2.	1.	83.	-0.
	GTRA16		0.	-0.002	0.	0.002		-0.	0.	. О.	1.	3.		0.46	-0.	Ο.	158.	-0.
	GTRA16		0.	-0.007	0.	0.007		-3.	-1.		1.	7.		0.51	1.	1.	88.	-0.
	GTR208		0.	-0.002	0.	0.002		<u>-1.</u>	0		1.	3.		0.46		0.	143.	-0.
	GTR208 GTR212		0.	-0.008	0.	0.006		-3.	-1.		1.	6.	1.	0.49	2.	1.	79.	-0.
	GTR212		0. 0.	-0.002	0. 0.	0.002		-1. -3.	0, -1,		1. 1.	3. 6.		0.46	-0. 2.	0.	148. 82.	-0. -0.
	GTR216		0.	-0.002	o.	0.008	-	-0.	0.		i.	3.		0.49	-0.	1. Q.	150.	-0. -0.
	GTR216		<del>- 0.</del>	-0.006	<del>0.</del>	0.007	0.35	<del>-3.</del>	-1.		<del>- i:</del> -	6.		0.50	1.	1.	83.	-0.
	GTRW08		Õ.	-0.003	Ŏ.	0.002		-1.	-0.		i.	3.		0.44	-0.	ò.	166.	-o.
	GTRW08		o.	-0.010	Ö.	0.008		-4.	-2		i.	8.		0.48	2.	1.	88.	-i.
20111	GTRW12	DISTIL	0.	-0.002	0.	0.002	0.19	-0.	Ō.		1.	3.		0.45	-ō.	ö.	165.	-0.
	GTRU12		0.	-0.010	0.	0.008		-4.	-2.		2.	8.	1.	0.49	2.	1.	86.	-1.
	GTRW16		0.	-0.002	O.	0.002		-1.	0.		1.	3.		0.45	-1.	Ο.	170.	-0.
	GTRW16		0.	-0.010	0.	0.008		-4,	-2.		1.	8.	_	0.49	2.	1.	90.	-1.
	GTR308		0	-0.003	0.	0.002		<u>-1.</u>	-0.			<u>3.</u>	<u></u>	0.43	<u>-o.</u>	<u>0.</u>	152.	<u>-0.</u>
	GTR308 GTR312		0.	-0.008	0. 0.	0.005		-4.	-2.		1,	6.	1.	0.45	2.	1.	84.	-0.
	GTR312		0. : 0.	-0.002 -0.009	0. 0.	0.002		-1. -4.	0. -2.		1. 1.	3. 7.		0.45	-0.	0. 1.	155. 83.	-0. "1.
	VIII012	DIGHT	♥.	0,003	<b>U</b> ,	0.007	U, 3E		-2,	. ,	٠.	<i>r</i> .	٠.	J. 40	2.	₹.	<b>5</b> 3.	~ 1 •

A CONTROL OF THE STATE OF THE S

See .

DATE 06/08/79

ISE PEO AES

FUEL UNITS =

REPORT 6.1 FUEL AND EMISSIONS SAVINGS

EMISSION UNITS:

TIME 1990

LEVEL ALL

	COST	TON U	=\$*10	)**9		TYPE MATCH									H=POWR			
		4	****F U	e i	e a v	ING S≈*		E M 1 e	6 1 6	N 6	6 A V I	NGS-			CARLTI -	-EL TOTOL	C DOL	
PROCS	ECS					ALFES						******	_		SAVING	-ELECTRI TOTAL		LAEC
			OIL+GAS		IL+GAS		NOX	SOX	PART		SOX	PART			<b>47.17.1.10</b>	EXPORT	••••	SAVED
																MWH		
	GTR316			-0.002		0.002	0.19	-1.	0.	0.	1.	3.		0.45	-0.	0.	162.	-0.
	GTR316			-0,009		0.007	0.32	-4.	-2.	Ο.	1.	, 7. <i>,,</i>		0.48	2.	1.	€7.	-1.
	FCPADS			-0.002		0.002	0.19	0.	1	0.	2	4.		0.66	<u> </u>	0.	128.	-0.
	FCPADS			-0.011		0.009	0.35	-1.	2.	0.	5.	14.	-	0.86	3.	1.	86.	-1.
	FCMCDS			-0.002		0.002	0.18	-2.	1.	0.	-0.	4.		0.43	-0.	0.	138.	-0.
	FCMCDS			-0.016	7 7	0.012	0.36	-14.	2.	-0,	-5.	18.		0.46	3.	2.	97.	-1.
	STM141			-0.001	?	0.001	0.24	-0.	<u>-0.</u>	<u>-o.</u>	<u>0.</u>	<u></u>		0.25	-0.	<u> </u>	139.	<u>-o.</u>
	STM141 STM141			-0.001 -0.001		0.001	0.24	-0.	-1,	-O.	0.	0.		0.17	-1.	0.	263.	-0.
	STM086			-0.001		0.001 0.001	0.24 0.19	0. -0.	-1. -0.	-0. -0.	1.	0.		0.52	-1.	0.	237.	-0. -0
	STMOBB			-0.001	0.	0.001	0.19	-0. -0.	-0. -1.	-0.	0. 0.	1. 0.		0.2C 0.12	-0.	0. 0.	130. 252.	-0. -0.
	STM088			-0.001	<del>0.</del>	0.001	0.19	<u> </u>	-1.	-0.	1.	0.	0.	0.12	-1. -1.	<del>~ 0.</del>	234.	-0. -0.
	PFBSTM			-0.001	o.	0.002	0.32	1.	-i.	o.	2.	ö.		9.48	-2.	e.	374.	-1.
	PFBSTM			-0.001	a.	0.002	0.33	i.	-i.	o.	2.	1.		0.49	-2.	õ.	306.	-ò.
	TISTMT			-0.001	o.	0.002	0.32	-ò.	-ò.	-0.	1.	i.		0.34	-4.	Õ.	511.	-1.
	TISTMT			-0.002		0.002	0.37	-1.	-1.	-o.	1.	2.		0.39	-5.	0.	429.	-i.
	TISTMT		0.	-0.001	o.	0.002	0.32	-0.	-1.	-o.	i.	ō.		0.25	-6.	õ.	737.	-1.
20261	TISTMT	COAL	0.	-0.002	o.	0.002	0.37	-1.	-1.	-0.	1.	1.		0.30	- <b>7</b> .	o.	572.	-1.
20261	THRSG	RESID	OU O	-0.001	Ο.	0.001	0.14	-0.	-0.	-o.	o.	1.		0.15	-4.	o.	476.	-1.
20261	TIHRSG	COAL	0.	-0.001	0.	0.001	0.14	-0.	-1.	-0.	Ō.	-0.		0.07	-6.	0,	637.	-1.
20261	STIRL	DIST	L 0.	-0.001	Ο.	0.002	0.27	-0.	-0.	G.	1.	2.	0.	0.57	0.	Ο.	110.	-0.
20261	STIRL	DISTI	L O.	-0.002	Ο.	0.003	0.33	-0.	-0.	Ο.	1.	2.	0.	0.61	1.	Ο.	60.	-0.
	STIRL	RESIE	ou o.	-0.001	0.	0.002	0.27	-0.	-1.	-0.	0.	1.	-0.	0.27	0.	0.	106.	-0.
20261	STIRL	RESIC	ou o.	-0.002	0.	0.003	0.33	-1.	-1.	-0.	1.	2.	-0.	0.34	1.	0.	56.	-c.
	STIRL	COAL	Ο.	-0.001		0.002	0.27	-0.	-1.	<b>-0.</b>	Ο.	Ο.	0.	0.19	-1.	Ο.	303.	-0.
	STIRL	COAL.	0.	-0.002		0.003	0.33	-1.	-2.	-0.	1.	1.	Ο.	0.27	-0.	Ű.	146.	-0.
	HEGT85			-0.002		0.001	0.25	0.	<u>-1.</u>	-0.	1.	0.		0.32	-5.	0.	621.	<u>-1.</u>
	HEGT85			-0.003		0.003	0.32	-0.	-2.	-0.	2.	1.		0.38	-7.	0.	400.	-1.
	HEGT60			-0.002		0.001	0.16	0,	-2.	-0.	1.	-0.		0.24	-5.	o.	613.	-1.
	HEGT60			-0.003		0.002	0.20	-0.	-3,	-0.	1.	0.		0.27	-6.	0.	420.	-1.
	HEGTOO			-0.002		0.001	0.13	<u> </u>	-2.	<u>-o.</u>	<u>1.</u>	<u>-0.</u>		0.19	-4.	<u>o.</u>	428.	-1.
	FCMCCL		0.	-0.001	0.	0.002	0.28	1.	0.	0.	2.	2.		0.80	-4,	Ο.	520.	-1.
	FCMCCL FCSTCL		0.	-0.002 -0.001		0.002	0.34	1.	1.	0.	2.	4.		1.00	-4.	0.	342.	-1.
	FCSTCL		0. 0.	-0.004		0.002 0.005	0.29 0.42	0. 1.	0. 1.	0. 0.	1. 4.	2. 6.		0.66	-4.	0. 0.	537. 270.	-1.
	IGGTST		<del></del>	-0.002		0.001	0.24	<del>-i:</del>	-1:	<del>0.</del>	0.	0.		C. 18	<u>-5.</u> -5.	<del></del>	<u>593.</u>	-1. -1.
	IGGTST		õ.	-0.002		0.003	0.31	-1.	-2.	0.	1.	1.		0.28	-5.	0. 0.	345.	-1.
			0.002		-0.002		0.25	-1.	-1.	-o.	o.	1.		0.37	-0.	0. 0.	152.	-0.
			0 -0.002		-0.002		0.31	-1.	-1.	-o.	ĭ.	2.		0.43	Ö.	o.	95.	-0.
	GTAC08			-0.001		0.002	0.27	<u>-i:</u>	<del>-i:</del>	-0.	-0.		<del>-0.</del>	0.10	ŏ∴	· ö.	118.	-0.
	GTACO8			-0.002		0.002	0.31	-2.	-1.	-0.	-1.			0.12	1.	õ.	73.	-0.
	GTAC12			-0,001	0.	0.002	0.28	-1.	-1.	-0.	-o.			0.13	ò.	Ŏ.	123.	-0.
	GTAC12			-0.002		0.002	0.34	-2.	-i.	-o.	-0.			0.16	1.	Õ.	71.	-0.
20261	GTAC16	RESIE	o.	-0.001	0.	0.002	0.28	-1.	-1.	-0.	-0.			0.14	ð.	Ō.	130.	-0.
20261	GTAC16	RESID	ou o.	-0.002	Ο.	0.003	0.35	-2.	-1.	-0.	-0.			0. 28	1.	o.	75.	-0.
20261	GTWC16	RESID	OU O.	-0.002	0.	0.001	0.24	-1.	-1.	-0.	-0.			0.70	-0.	o.	152.	-0.

GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS
TIME 1990 LEVEL ALL

ALTERNATIVES STUDY

(SAVINGS ARE

EMISSION UNITS= COST =\$*10**9

TYPE MATCH=HEAT

	CUST		=3×10	J**9											PE MATC	H=HEAT		·
		***	**F U	E L	SAV	ING S#	***	FM I	SSIC	INS	SAV	INGS			CAPITI -	-ELECTRI	C POVE	<b>79</b> ≥
PROCS	ECS					ALFE						\L*****			SAVING	TOTAL	CUST	
		FUEL OI				COAL	NOX							LHON	344 (110	EXPORT		SAVED
1	····	TOEL OF	LTOAS	COAL OI	LTGAS	COAL	HOV	30	A PAP	1 1107	30/	C PART						SAVED
20261	GTR312	DICTII	•	-0.004	_	0.000	0 00	•		_		•			_	MMH		_
			0.			0.003	0.32	-2.	-1.	0.	1.	3.		0.48	0.	0.	98.	-0.
	GTR316		0.	-0.002	0.	0.001	0.23	-1.	-0.	0.	0.	2.		0.46	-0.	0.	178.	-0.
N	GTR316		<u>0.</u>	-0.004	0.	0.003	0.32	<u>-2.</u>	<u>-1.</u>	0.	1.	<u>       3.                             </u>	1,	0.48	<u>0.</u>	<u> </u>	104.	<u>-o.</u>
	FCPADS		0.	-0.002	0.	0.001	0.25	0.	1.	0.	1.	2.		0.72	0.	0.	121.	-0.
	FCPADS		Ο.	-0.004	Ο.	0.004	0.36	-0.	1.	Ο.	2.	6.	3.	0,86	1	1.	79.	-0.
	FCMCDS		0.	-0.002	0.	0.001	0.23	-1.	Ο,	0.	-0.	2.	0.	0.44	-0.	0.	138.	-0.
20261	FCMCDS	DISTIL	O	-0.007	0	0.006	0.36	-7.	1	-0,	-2.	8	_1.	0.46	1	1.	95.	-1
20461	STM141	RESIDU	0.	-0.076	0.	0.125	0.18	-26.	-30.	-4,	38.	77.	5,	0.19	16.	0.	24.	3.
20461	STM141	RESIDU	Ο.	-0.154	Ο.	0.255	0.28	-54.	-62.	-8.	76.	157.	10.	0.29	41.	20.	17.	5.
20461	STN141	COAL-F	0.	-0.076	0.	0.125	0.18	-26.	-148.	-4.	42.	-23.	29.	0.08	-7.	ø.	51.	8.
20461	STM141	COAL-F	0.	-0.154	0.	0.255	0.28	-54.	-195.	-8.	81.	44.	37.	0.20	10.	20.	33.	10.
20461	STM141	COAL-A	0.	-0.076	0.	0.125	0.18	100.	-148.	-4.	168.	-23.		0.27	2.	0.	41.	9.
	STM141		0.	-0.154	0.	0.255	0.28	69.	-195.	-8.	225.	44.		0.37	27.	20.	22.	13.
20461	STM088	RESIDU	٥.	-0.076	0.	0.125	0.18	-25.	-30.	-4.	38.	77.		0.19	20.	0.	18.	4.
	STMOSS		Ŏ.	-0.121	Ö.	0.201	0.24	-43.	-49.	-6.	60.	124.		0.26	33.	11.	16.	5.
	STM088		0.	-0.076	0.	0.125	0.18	26.	-148.	-4	42.	-23.		0.08	<del>-6.</del>	Ö.	50.	8.
	STM088		o.	-0.121	Ö.	0.201	0.24	-43.	÷175.	-6.	65.	17.		0.15	4.	11.	36.	10.
	STM088		o.	-0.076	o.	0.125	0.18	100.	-148.	-4.	168.	-23.		0.13	3.	o.	39.	9.
	STM088		0.	-0.121	0.	0.201	0.24	94.	-175.	-6.	201.	17.		0.34	i9.	11.	25.	12.
	PFBSTM		<del>- 0.</del>	-0.077	0.	0.124	0.17	115.	-148.	5.	183.	-23.			<del>-7.</del>		54.	
•	PFBSTM		0.		0.	0.366	0.17							0.31		0.		8.
				-0.226				124.	-238.	15.	318.	101.		0.49	31.	37,	27.	12.
	TISTMT		O.	-0.077	0.	0.123	0.17	~27.	-31.	-4.	37.	76.		0.19	-24.	_0,	74.	-2.
	TISTMT		<u> </u>	-0.294	0.	0.469		<u>-103.</u>	-118.	<u>-15.</u>	140.	291.		0.39	<u>-42.</u>	<u>53.</u>	56.	<u>-9.</u>
	TISTMT		0.	-0.077	0.	0.123	0.17	-27.	-149.	-4,	41.	-24.		0.07	-50.	0.	106.	2.
	TISTMT		0.	-0.294	0.	0.469		-103.	-279.	-15.	146.	154.		0.30	-81	53.	64.	-2.
	TIHRSG		0.	-0.092	0.	0.109	0.15	-32.	-37.	-5.	32.	70.		0.17	-52.	Q.	111.	<b>-6</b> .
	TIHRSG		0.	-0.129°		0.152	0.19	<u>-45.</u>	-52.	<u>-6.</u>	44.	99.		0.21	<u>-65.</u>	8.	103.	-8.
	TIHRSG		0.	-0.092	0.	0.109	0.15	-32.	-158.	-5.	36.	-33.		0.05	-87.	0.	152.	-3.
	TIHRSG		0.	-0.129	0.	0.152	0.19	-45.	-180.	-6.	49.	-10.		0.10	-98.	8.	128,	-4.
_1 .	STIRL	DISTIL	0.	-0.109	Ο.	0.092	0.13	36 <i>.</i>	30.	15.	105.	155.	47.	0.48	7.	٥.	45.	-4.
	STIRL	DISTIL	0.	-0.450	0	0.381	0.28	-42.	-66.	9.	229.	404.	79.	0.58	41.	59,	39.	11.
•		RESIDU	0.	-0.109	0.	0.092	0.13	-38.	-43.	-12.	25.	63.	-4.	0.13	7.	0.	41.	1.
20461	STIRL	RESIDU	Ο.	-0.450	٥.	0.381	0.28	-158 <i>.</i>	-180.	-48.	106.	261.	-17.	0.29	41.	<b>59</b> .	35.	-3.
20461	STIRL	COAL	Ο.	-0.109	Ο.	0.092	0.13	-38.	-168.	-5.	30.	-42.	27.	0.02	-19.	0.	70.	6.
20461	STIRL	COAL	Ο.	-0.450	Ο.	0.381	0.28	-158.	-372.	-23.	114.	97.	47.	0.21	-17.	<b>59</b> .	46.	3.
20461	HEGT85	COAL-A	0.	-0.136	0.	0.065	0.09	82.	-184.	-7.	151.	-59.		0.18	-36.	Ō.	94.	3.
20461	HEGT85	COAL-A	0.	-1.088	Ο.	0.517	0.24	-111.	-755.	-54.	409.	138.	61.	0.31	-29.	132.	48.	-8.
20461	HEGT60	COAL-A	0.	-0.137	0.	0.064	0.09	80.	-185.	-7.	148.	-60.		0.18	-34.	Ö.	91.	3.
	HEGT60		o,	-0,633	o,	0.293	0.20	-29.	-482.	-32.	273.	40.		0.27	-29.	68.	52.	-2.
			Ö.	-0.142	Ō.	0.058	0.08	74.	-188.	-7.	142.	-63.		0.17	-31	· · · · · · · · · · · · · · · · · · ·	88.	4.
	HEGTOO		Ö.	-0.327	Ö.	0.134	0.14	27.	-299.	-16.	179.	-31.		0.20	-25	24.	59.	2.
*	FCMCCL		Õ.	-0.093	o.	0.108	0.15	41.	-32.	5.	110.	93.		0.38	-30.	ō.	83.	4.
	FCMCCL		Õ.	-0.403	Õ.	0.466	0.34	179.	204.	23.	462.	695.		1.00	-4.	63.	43.	4.
•	FCSTCL		<del>0.</del>	-0.088	<del>0.</del>	0.112	0.16	23.	-62.	3.	92.	63.			-27.	0.	79.	5.
	FCSTCL		Ö.	-0.677	o.	0.857	0.42	178.	204.	23.	676.			1.00	34.	125.	75. 35.	6.
•	IGGTST		0.	-0.109	Ö.	0.092	0.13	-38.	-168.	23. 4.	30.	-43.		0.04	-24.	0.	35. 75.	5.
20401	.00131	JUAL	٠.	0.103	<b>U</b> .	J. U3E	0.15	JO.	. 100,	⊸.	3 <b>0</b> .	-43.	JO.	J. 04	-24.	υ.	73.	<b>J</b> ,
23																		

SE PE	O AES						COG	ENERATIO	N TECH	NOLOGY		AL	TERNATI	VES S	TUDY				
	FUEL I		= "				REI	ORT 6.1	FUEL	AND	EMISSION	S SAVI	NGS		(SA	VINGS A	<b>NRE</b>		
		ION: UN					TII	1E 1990			LEVEL	ALL							
	COST		=\$*	10**9				<del></del>							T)	PE MATO	CH=HEAT		
	+1	**	***F	UEI		SAVI	N G S	S****	- F M	1.5.5	IONS	SAV	/ 1 N G	s	_	CAPITI -	ELECTRI	C POWE	'R
RØCS	ECS				**						***					SAVING	TOTAL	COST	
			IL+GAS				COAL			man a comment	PART NO						EXPORT		SAVED
												···					MVH		
0461	IGGTST	COAL	Ο.	-0.	596	Ο.	0.50	0.31	-209.	-460	. 20.	149.	156.	106.	0.28	18.	84.	3€.	7.
0461	GTSØAR	RESID	J -0.18	03 0.		-0.103	0.20	0.14	-42.	-39	1.	22.	71.	11.	0.24	13.	٥.	32.	2.
0461	GTSGAR	RESID	-0.4	44 0.		-0.444	0.86	0.31	-183.	-167	4.	96.	307.	48.	0.43	69.	62.	26.	2
	GTACO8			-0.	095	0.	0.10	0.15	-93.	-38	13:.	-29.	69.	-3.	0.06	15.	0.	28.	2
	GTAC08				343	Ο.	0.37		-334.	-137		-104.	247.	-11.		65.	49.	22.	4
	GTAC12				093	ο.	0.107		-85.	-37		-21 <i>.</i>	70.		0.07	14.	0.	28.	2
	GTAC12				409	<u>o.</u>	0.469		-373.	-163		-94.	304.	<u>-9.</u>	0.16	<u>76.</u>	63.	23.	4
	GTAC16				094	0.	0.107		-82.	-38		-19,	69.	-2.	0.08	13.	0.	29.	2
	GTAC16			•	457	0.	0.52		-402.	-183. -40		-91.	338.	-9.		78.	73.	25.	3
	GTWC16				107 567	0. 0.	0.093 0.493		-88. -468.	-43. -227.		~25. -131.	64. 337.	-3. -17.		94.	0. 81.	32. 25.	2
	CC1626				106	<del>0.</del>	0.09		-46 <u>6.</u> -77.	-42		-131. -13.	64.	-2.	0.13	13.	0.	<u>25.</u> 32.	<u> </u>
	CC1626				008	0.	0.898		-733.	-403		-127.	609.		0.21	161.	160.	32. 26.	-0
	CC1622				102	o.	0.099		-76.	-41		-12.	66.		0.08	13.	0.	31.	2
	CC1622				871	Ö.	0.848		-651.	-348	. ,	-104.	566.		0.22	139.	142.	26.	ī
	CC1222				101	Ö.	0.100		-75.	-40		-12.	66.		0.08	14.	<u></u>	31.	- 2
	CC1222				862	Ö.	0.85		-645.	-345		-99.	568.		0.22	143.	142.	25.	ī
	CC0822				094	Ο.	0.10		-75.	-38		-11.	69.		0.09	14.	o.	29.	2
	CC0822				650	0.	0.73		-518.	-260		-76.	480.	-	0.23	119.	111.	23.	4
0461	STIG15	RESID	0.	-0.	166	0,	0.03	0.05	-100.	-66	-5.	-37.	38.	0.	0.00	10.	0.	47.	-1
0461	STIG15	RESIDU	ı o.	-32.	945	٥.	6.889	0.17	-19895.	-13178.	978.	-7326.	7619.	62.	0.01	3180.	3717.	38.	-548
0461	STIGIO	RESIDU	0,	-0.	151	0.	0.050	0.67	-97.	-60.	4.	-34.	45.	2.	0.02	11.	Ο,	43.	-0
2461	STIGIO	RESID	J Q,	-2.	771	0.	0.91	0.22	-1790.	-1108	73.	-626.	823 <i>.</i>	34.	0.06	296.	327.	35.	-37
	ST1615				144	0.	0.05		-98.	-58	3.	-35.	48.	3.	0.02	14.	0.	38.	. 0
	STIGIS				552	0.	0.610		-1059.	-621.	36 <i>.</i>	-375.	515.	30.	0.07	177.	184.	34.	-17
	DEADV3				121	0.	0.079		-146.	-49		-83.	58.		-0.05	4.	Ο.	46.	0
	DEADV3				200	0.	0.78			-480.		-818.	<b>5</b> 69.		-0.12	66.	167.	41.	-19
	DEHTPM				085	0.	0.110		-135.			-71.	73.		0.00	5.	0.	39.	1
	DEHTPM				478	0.	0.65		-761.	-191		-401.	412.		0.01	43.	87.	34.	-1
	DESCA3					-0.132	0.20		-293.	88.		-233.	178.		-0.15	-0.	0.	<b>59</b> .	-6
	DESCA3					-1.465 -0.132	2.230			-129		-2997.	1032.		-0.82	22.	190.	<u>54.</u>	-49
	DESUA3					-1.465	2.23	-	-715. -794 <b>9</b> .	-50. -552.		-650. -7231.	60. 668.		-1.32 -2.77	-0. 22.	0. 190.	54. 49.	-1 -33
	GTSOAD					-0.097	0.20		-/549.	-16		23.	91.		0.38	15.	0.	31.	-3
	GTSOAD					-0.402	0.83		-170.	- 65.		25. 95.	378.		0.56	77.	59.	26.	-3 -4
	GTRÃOS				100	0.402	0.100		8.	32		<del>76.</del>	157.	48.		12.	0.	36,	-3
	GTRA08			- •	643	Ö.	0.64	•	-263.	-120		136.	600.	•	0.51	98.	102.	31.	-9
	GTRA12				099	o.	0.102		8.	33.		77.	158.		0.44	12.	Q.	36.	-3
	GTRA12			-0.	630	0.	0.64		-278.	-117		137.	597.		0.51	97.	101.	31.	-8
1461	GTRA16	DIST	0.	-0.	099	0.	0.102	2 0.14	7.	33.		76.	158.	48.		11.	Ö.	37.	-3
	GTRA16				594	0.	0.612		-263.	-107	7.	129.	568.	99.	0.51	88.	94.	31.	-8
	GTR208			- •	099	0.	0.10		4.	33.		73.	158.	48.	0.44	13.	ο.	35.	-3
	<b>GTR208</b>				504	0.	0.512		-227.	-81		103.	489.	89.		82.	76.	30.	-6
	GTR212				100	0.	0.10		5.	32		74.	157.	48.		13.	0.	35.	-3
	GTR212				546	O,	0.54		-244.	-93		111.	519.	93.		86.	83.	30.	-7
461	<b>GTR216</b>	DISTIL	. 0.	-0,	098	Ο,	0.102	0.14	6.	33.	. 15.	75.	158.	48.	0.44	12.	0.	36.	-3

<b></b>	TITE IMIGITALITY																	
PRECS	ECS	ECS ***		T****	TOT	INGS**	R	DIREC	T	******	***TOT	I N G S	* * X		CAPITL- SAVING	-ELECTRI	C POWE	LAEC
		FUEL DI	L+GAS	COAL OI	L+GAS	COAL	NC	X SOX	. PA	ART NOX	SO.	X PAF	<del>र 1</del>			EXPORT		SAVED
i																MVH		
20461	GTR216	DISTIL	0.	-0.547	0.	0.568	0.35	-245.	-93.	8.	118.	532.	94.	0.50	84.	86.	31.	-7.
20461	GTRW08	DISTIL	Ο.	-0.117	0.	0.084	0.12	3.	28.	15.	72.	153.	47.	0.43	12.	0.	39.	-4.
20461	GTRW08	DISTIL	Ο.	-0.903	Ο.	0.649	0.31	-387.	-193.	2.	116.	<b>670</b> .	114.	0.48	126.	127.	33.	-15.
20461	GTRW12	DISTIL	0.	-0.112	0.	0.088	0.12	6.	29.	15.	74.	154.		0.43	12.	0.	38.	-4.
•	GTRV12		o.	-0.896	0.	0.705	0.33	-384.	-191.	2.	135.	699.		0.49	130.	131.	32.	-14.
	GTRW16		Ö.	-0.112.		0.089	0.12	5.	29.	15.	74.	154.		0.43	12.	Ö.	39.	-4.
	GTRW16		o.	-0.836	ŏ.	0.668	0.33	-360.	-175.	3.	128.	663.		0.49	119.	122.	32.	-13.
li	GTR308		0.	-0.119	0.	0.081	0.11	<del>-1.</del>	27.	15.	67.	152.		0.42	13.	0.	39.	-4.
	GTR308		o.	-0.693	o.	0.474	0.28	-303,	-135.	5.								-12.
											77.	519.		0.45	96.	91.	33.	
	GTR312		0.	-0.111	0.	0.090	0.13	4.	29.	15.	72.	154.		0.43	13.	0.	37.	<del>-</del> 3.
	GTR312		0.	-0.742	0.	0.598	0.32	-322.	<u>-148.</u>	<u>4.</u>	113.	600.		0.48	<u> 111.</u>	107.	<u>31.</u>	<u>-11.</u>
	GTR316		0.	-0.112		0.089	0.12	4.	29.	15.	72.	154.		0.43	13.	0.	38.	-4.
	GTR316		0.	-0.735	0,	0.586	0.32	-319.	-146.	4.	109.	591.		0.48	107.	105.	32.	-11.
•	FCPADS		0.	-0.135	0.	0.065	0.09	36.	70.	17.	105.	195.		0.55	3.	Ο.	66.	-8.
	FCPADS		0.	-2.047	0.	0.991	0.28	-320.	205.	<u> 26.</u>	661.	1882.	226.	0.85	123.	<u> 266.</u>	<u>58.</u>	-87.
20461	FCMCDS	DISTIL	0.	-0.113	0.	0.087	0.12	-46.	72.	15.	22.	197.	48.	0.42	1.	Ο.	62.	-7.
20461	FCMC <b>DS</b>	DISTIL	Ο.	-1.355	Ο.	1.048	0.36	-1230.	202.	-2,	-453.	1532.	160.	0.46	85.	207.	54.	-57.
20631	STM141	RESIDU	Ο.	-0.005	Ο.	0.009	0.10	-2.	-2.	-0.	3.	5.	0.	0.10	4.	Ο.	23.	0.
20631	STM141	RESIDU	Θ.	-0.030	Ο.	0.049	0.31	-10.	-12.	-1.	15.	30.	2.	0.33	17.	6.	27.	Ο.
20631	STM141	COAL-F	0.	-0.005	0.	0.009	0.10	-2.	-19.	-0.	3.	-9.		-0.02	-11.	0.	314.	-1.
20631	STM141	COAL-F	Ο,	-0.030	0.	0.049	0.31	-10.	-33.	-1.	16.	12.	6.	0.24	4.	6.	67.	-0.
	STM141		O.	-0.005	o.	0.009	0.10	16.	-19.	-0.	21.	-9.		0.20	-9.	o.	283.	-1.
	STM141		O.	-0.030	0.	0.049	0.31	13.	-33.	-1.	39.	12.	6.		12.	6.	41.	1.
	STM088		0.	-0.005	Ö.	0.009	0.10	-2.	-2.	-0.	3.	5.	0.	0.10	4.	0.	20.	Ö.
	STM088		Ö.	-0.024	o.	0.039	0.28	-8.	-9,	-1.	12.	24.		0.30	14.	<b>5</b> .	25.	0.
	STM088		Ŏ.	-0.005	o.	0.009	0.10	-ž.	-19.	-ò.	3.	-9.		-0.02	-11.	õ.	315.	-1.
	STM068		o.	-0.024	o.	0.039	0.28	-8.	-30.	-1.	12.	7.		0.20	2.	5.	75.	-o.
	STM038		0.	-0.005	<del>0.</del>	0.009	0.10	16.	-19.	<del>-0.</del>	21.	<del></del>	4.	0.20	- <u></u>	<del>0.</del>	282.	<u> </u>
	S1M088		o.	-0.024	o.	0.039	0.28	14.	-30.	-0. -1.	34.	7.	• -	0.27	9.	5.	46.	
-1	PFBSTM		o.	-0.005	0.	0.009	0.09			1, 1							306.	1.
_	PFBSTM		o.					16.	-19.	-0.	21.	-9.		0.20	-10.	0.		-1.
				-0.044	<u>o.</u>	0.071	0.37	18.	<u>-42.</u>	<u>2.</u>	<u>56.</u>	<u>23.</u>		0.52	<u>8.</u>	9.	63.	<u> </u>
	TISTMT		0.	-0.005	0.	0.009	0.09	-2.	-2.	-0.	3.	5.		0.10	-6.	0,	210.	~ <u>1</u> .
-	TISTMT		0.	-0.045	0.	0.071	0.37	-18.	-18,	-2.	21.	44.		0.39	-29.	10.	146.	-7.
	TISTMT		0,	-0.005	0.	0.009	0.09	-2.	-19.	-o.	3.	-9.		-0.02	-20.	0.	481.	-2.
	TISTMT		0.	-0.057	0.	0.091	0.40	-20.	<u>-50.</u>	<u>-3.</u>	<u> 28.</u>	<u> 33.</u>	9.		-54.	<u> 13.</u>	170.	-10.
-	TIHRSG		0,	-0.006	0.	0.008	0.08	-2.	-3.	-0.	2.	5.		0.09	-14.	Ο.	339.	-2.
	TIHRSG		0.	-0.020	Ο,	0.023	0.19	-7.	-8.	-1.	7.	15.	1.	0.21	-34 .	З.	287.	-6.
-	TIHRSG		Ο.	-0.006	Ο.	0.008	0.08	-2.	-19.	-0.	3.	-9.	4.	-0.04	-30.	Ο.	663.	-4.
	TIHRSG		Ο.	-0.025	0.	0.030	0.22	-9.	-31.	-1.	9.	2.	5.	0.14	<u>-5</u> 8.	4.	350.	-8.
4		DISTIL	0.	-0.008	0.	0.006	0.07	8.	7.	2.	13.	17.	6.	0.44	2.	Ō.	74.	-1.
20631	STIRL	DISTIL	0.	-0.068	Ο.	0.058	0.28	-6.	-10.	1.	35.	61.	12.	0.58	15.	11.	64.	-4.
20631	STIRL	RESIDU	Ο.	-0.008	Ο.	0.006	0.07	-3.	-3.	-0.	2.	4.	0.	0.08	2.	0.	70.	-0.
20631	STIRL	RESIDU	Ο.	-0.068	0.	0.058	0.28	-24.	-27.	-7.	16.	40.	-2.	0.29	15.	11.	60.	-2.
20631		COAL	0.	-0.008	0,	0.006	0,07	-3.	-20.	-0.	2.	-10.		-0.05	-11.	Ö.	317.	<del>-1.</del>
		COAL	0.	-0.087	0.	0.074	0.31	-31.	-68.	-4.	22.	23.	8.	0.24	-7.	14.	93.	-4.
<b>.</b>		COAL-A		-0.010	0.	0.005	0.05	15.	-21.	-0.	21.	-11.		0.16	-17.	o.	417.	-2.
,	.,									Ψ.		- • •				•		·

20631 GTRAOS DISTIL

20631 GTRAOS DISTIL

20631 GTRA12 DISTIL 0.

20631 GTRA12 DISTIL 0.

-0.007 0.

-0.007 0.

Ω.

-0.098

-0.096

0

0.007

0.098

0.007

0.098

0.08

C. 36

0.08

0.36

8.

8.

-39.

-39.

· Ż.

-18.

7.

-18.

13.

24.

13.

24.

1.

2.

1.

17.

91.

17.

91.

6. 0.45

16. 0.52

6. 0.45

16. 0.53

61.

48.

59.

46.

-1.

-3.

-1.

-3.

2.

33.

34.

2.

0.

٥.

17.

ALTERNATIVES STUDY

(SAVINGS ARE

TYPE MATCH=POWR

PAGE

£1

COST =\$*10**9 ****F U E L SAVINGS****---EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS ECS ****DIRECT*****TOTAL----FESR ------DIRECT------***************************** EMSR SAVING TOTAL COST LAEC FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX PART EXPORT SAVED HWH 20631 GTRA16 DISTIL 0. -0.007 0. 0.007 0.08 8. 7. 2. 13. 17. 6. 0.45 2. O. 63. -1. 20631 GTRA16 DISTIL 0. -0.090 0. 0.093 0.36 -36. -16. 23. 15. 0.52 48. -3. 1. 86. 30. 16. -0,007 0. 20631 GTR2C8 DISTIL n. 0.007 0.08 8. 7. 17. 6. 0.45 55. 13. 2. 0 -1. 20631 GTR208 DISTIL -0.077 0. 0.078 0.34 19. 14. 0.51 -2. -31. -12. 1. 74. 28. 13. 44. 20631 GTR212 DISTIL 0. -0.007 0. 0.007 0.08 8. 7. 2. 13. 17. 6. 0.45 2. ٥. 58. -1. 20631 GTR212 DISTIL 0. -0.083 0. 0.083 0.34 -33. -14. 1. 20. 79. 14. 0.51 30. 14. 45. -3. 20631 GTR216 DISTIL -0.007 Ο. Ω 0.007 0.08 8. 7. 13. 17. 6. 0.45 2. 0. 59. -1 -0.083 20631 GTR216 DISTIL 0. O. 0.086 0.35 -34. -14. 1. 22. 81. 14. 0.52 29. -3. 15. 47. 20631 GTRWOE DISTIL O: -0.008 0. 0.006 0.06 7. 7. 2. 13. 17. 6. 0.44 2. 0. 66. -1. 20631 GTRW08 DISTIL 0. -0.137 0. 0.099 0.31 -55. -29. Ö. 21. 102. 17. 0.49 43. 21. 47. -4. 20631 GTRW12 DISTIL 0. -0.008 ٥. 0.006 0.07 8. 13. 17. 6. 0.44 2. 0. 64. -1. 20631 GTRW12 DISTIL O. -0.136 Ō. 0.107 0.33 -55. -29. 0. 24. 106. 18. 0.50 45. 21. 46. -4. 20631 GTRW16 DISTIL 0. -0.008 0. 0.006 0.07 8. 7. 2. 13. 17. 6. 0.44 2. ٥. 67. -1. 20631 GTRW16 DISTIL 0. -0.127 0.101 0.33 Ο. -51. -27. 0. 23. 101. 17. 0.50 41. 20. 47. -4. 20631 GTR308 DISTIL n. -0.008 n 0.006 0.06 7. 7. 13. 17. 6. 0.44 0. 61. -1. 20631 GTR308 DISTIL -0.105 O. 0.072 0.28 -42. -20. 15. 79. 14. 0.47 -3. 1. 33. 15. 47. 20631 GTR312 DISTIL 0. -0.008 0. 0.006 0.07 8. 2. 6. 0.44 -1. 7. 13. 17. 2. 0. 60 20631 GTR312 DISTIL 0. -0.113 0. 0.091 0.32 -45. -23. 21. 16. 0.50 45. -3. 1. 91. 38. 18. 7. 20631 GTR316 DISTIL -0.008 Ο. 0.006 0.07 8. 13. 17. 6. 0.44 2. 0. 64. -1. -4. 20631 GTR316 DISTIL -0.112 O. 0.089 0.32-45. -22. 1 20. 90. 16. 0.49 37. 17. 47. 20631 FCPADS DISTIL 0. -0.009 0. 0.005 0.05 7. 7. 2. 12. 17. 6. 0.43 88. -1. 1. 0. 20631 FCPADS DISTIL 0. -0.311 0. 0.151 0.28 -49. 100. -20. 25. 4. 285. 34. 0.83 84. 43. 42. 20631 FCMCDS DISTIL -0.008 0. O. 0.006 0.07 8. 7. 2. 12 17. 6. 0.44 1. Ò. 86. -1. 20631 FCMCDS DISTIL -0.206 0. 0.159 0.36 24. 0.48 -14. -176. 25. -0. -58. 227. 30. 33. 81. 20821 STN141 RESIDU O. -0.016 0. 0.027 0.24 -6. -6. -1. 8. 16. 1. 0.26 1. 0. 38. 0. 20821 STM141 RESIDU O. -0.020 0. 0.033 0.28 -7. -8. -1. 10. 21. 1. 0.29 3. 29. 1. 1. 20821 STM141 CGAL-F Ο. -0.016 0. 4. 0.16 0.027 0.24 -6. -23. -1. 9. 80. -5. n. n. 20821 STM141 COAL-F -0.020 Ö. 0.033 0.28 -7. -25. -1. 11. 6. 5. 0.20 1. 55. 1. 20821 STM141 COAL-A 0. -0.016 0. 0.027 0.24 12. -23. -1. 26. 4. 0.34 -3. 67. 2. ٥. 1. 20821 STM141 COAL-A O. -0.020 0. 0.033 0.28 12. -25. -1. 29. 5. 0.37 -0. 43. 6. 1. 1. 20821 STM088 RESIDU -0.016 0. 0.026 0.24 -6. -6. -1. 8. 16. 1. 0.26 n. 30. -1. 4. 0.15 20821 STM088 COAL-F -0.016 0. 0.026 0.24 -23. 8. 62. -6. 2. -3. 0. 1. 20821 STM068 COAL-A 0. -0.016 0. 0.026 26. 4. 0.33 0.24 12. -23. -1. 2. -1. 0. 49. 1. 20821 PFBSTM COAL-P Ω. -0.016 0. 0.026 0.24 15. -23. 30. 2. 6. 0.39 -7. 92. 1. 0. 0. 20821 PFBSTM CGAL-P -0.030 0.048 9. 0.49 0. 0.33 42. -3. 52 16. -31. 13. -7. -1. 20321 TISTMT RESIDU -0.016 0. 0.026 0.24 -6. 8. 16. 1. 0.26 -11. 0. 115. -1. 20821 TISTMT RESIDU O. 0.061 -18. -0.038 0. 0.37 -13. -2. 38. 2. 0.39 -15. 18. 5. 89. -3. 20821 TISTMT COAL 0.026 Λ. -0.016 0. 0.24 -23. -1. 2. 4. 0.15 -20. -6. 8. 0. 167. -2. 20621 TISTMT COAL 0 -0.038 0. 0.061 0.37 -13. -36. -2. 19. 20. 7. 0.30 -27. 109. -3. 20821 TIHRSG RESIDU -0.017 0.020 0. 0. 0.18 -6. <del>-7.</del> -1. 6. 13. 1, 0.20 -18. 155. -2. O. 20821 TIHRSG COAL ٥. -0.017 0. 0.020 0.18 -6. -23. -1. 6. -1. 4. 0.09 -26. ٥. 197. -2. 20821 STIRL DISTIL 0. -0.020 0. 0.022 0.20 3. 2. 2. 18. 27. 7. 0.53 45. 1. 0. -1. 20821 STIRL -0.058 DISTIL 0. 0. 0.065 0.34 -5. -9. 35. 11. 0.62 61. 8. 36. -1. 20821 STIRL RESIDU 0. -0.020 0. 0.022 0.20 -7. -8. -2. 6. 15. -0. 0.21 1. Ō. 42. 0. 20821 STIRL RESIDU O. -0.058 0. 0.065 0.34 -20. -23. -6. -1.0.3519. 42. 7. 8. 32. 0. 20821 STIRL COAL ٥. -0.020 0. 0.022 0.20 -7. -25. -11. 7. -0. 4. 0.11 -6. 0. 83. 0.

GENERAL ELECTRIC COMPANY

FUEL AND EMISSIONS SAVINGS

LEVEL ALL

COGENERATION TECHNOLOGY

REPORT 6.1

TIME 1990

DATE 06/08/79

FUEL UNITS

EMISSION UNITS=

ISE PEO AES

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 10 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS Ð (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL =\$*10**9 TYPE MATCH=HEAT ****F U E L S A V I N G S**** - - E M I S S I O N S SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS ECS ****DIRECT*****TOTAL ----FESR ------DIRECT-----****************************** EMSR SAVING TOTAL COST LAEC FUEL OIL+GAS COAL OIL+GAS COAL PART NOX NOX SOX SOX PART EXPORT MWH 20821 STIRL COAL -0.058 0. 0.065 0.34 -20. -48. 20. 21. 7. 0.28 -1. 8. 43. 1. -1_. 20821 HEGT85 COAL-A -0.021 0. 0.021 0.20 10. -26. -1. 24. -1. 4. 0.28 -16. Q. 141. 20321 HEGT85 COAL-A -0.066 Ω 0.067 0.34 -1. -53. -3. 43. 22. 7. 0.39 -21. 8. 80. -2. -1. 20821 HEGT60 COAL-A -0.029 0. 0.013 0.12 8. -31. 22. -6. 4. 0.21 -16. ℧. 145. 7. 20821 HEGT60 COAL-A -0.083 0. 0.038 0.20 -63. 36. 5. 5. 0.27 -20. 86. -2. -4 -4. 20821 HEGTOO COAL-A -0.030 0. 0.012 7. -31. - 2. 21. 4. 0.19 0.11 -6. -14. 0. 133. -1. 20821 HEGTOO COAL-A -0.043 0.018 -39. 4. 0.20 ο. 0.14 4. -2. 23. -4. -13. 101. -1. 20821 FCMCCL COAL -0.020 0. 0.023 0.21 9. 2. 23. 27. 6. 0.57 1. -13. O. 126. 91. 20821 FCMCCL COAL ٥. -0.053 0. 0.061 3. 0.34 23. 27. 60. 12. 1.00 -12. 7. 70. -1. 20821 FCSTCL COAL 0. -0.019 0. 0.024 0.22 5. -5. 19. 20. 6. 0.46 -12. 0. 123. -1. 1. 20821 FCSTCL COAL ٥. -0.088 27. Ω 0.112 0.42 138. 23. З. 88. 17. 1.00 -11. 55. 20821 IGGTST COAL -0.023 Ō. 0. 0.019 0.18 -8. -27. 1. 6. -2. 6. 0.10 -12. O. 126. - 8 20821 IGGTST COAL 0. -0.078 0. 0.066 -27. -60. 20. 0.31 3. 19. 14. 0.28 -11. 9. 61. -1. 20821 GTSOAR RESIDU -0.022 0. -0.022 0.043 0.19 -9. -8. -0. 5. 15. 2. 0.30 0. 45. 0. 1. 20821 GTSØAR RESIDU -0.058 0. ~0.058 0.113 -22. 0.31 -24. -0. 13. 40. 6. 0.43 32. 0. 20821 GTACOS RESIDU -0,020 0. 0.022 -8. 15. 0.20 -20. -6. -1. 0.08 2. Ō. 40. 0. 20821 GTACOS RESIDU 0. -0.045 0. 0.049 0.31 -44. -18. -5. -14. 32. -1. 0.12 6. 5. 28. 0. 20821 GTAC12 RESIDU -0.020 0. 0. 0.023 0.21 -18. -8. -2. -5. 15. -0. 0.10 1. n. 40. 0. 20821 GTAC12 RESIDU -0.053 0. 0. 0.061 0.34 -49. -21. -6. 40. -1. 0.16 -12. 28. Ω. 20821 GTAC16 RESIDU n. -0.020 O. 0.023 0.21 -8. -0. 0.11 -17. -4. 15. O. 41. 0. 20821 GTAC16 RESIDU -0.060 0. 0.068 0.35 -52. -24. -6. -12. 44. -1.0.188. 8. 29. n 20821 GTWC16 RESIDU -0.023 0.020 -9. n. 0.18 -19. -2. -5. 13. -1.0.081. 0. 46. 0. 20821 GTWC16 RESIDU -0.074 0. 0.065 0.31 -61. -30. -7. -17. -2. 0.13 9. 32. -0. 44. 9. 20821 CC1626 RESIDU -0.022 0. 0.020 0.18 -9. -2. -3. <del>-16.</del> 14. <del>-0. 0.11</del> 1. O. 48. -0 0.37 -1. 20821 CC1626 RESIDU Ω -0.132 0. 0.117 -96. -53. -12. -17. 79. -2.0.2131. 16. 19. 20821 CC1622 RESIDU ٥. -0.022 ٥. 0.021 0.19 -9. -0. 0.11 0. -16. -2. -3. 14. 1. 46. 0. 20821 CC1622 RESIDU -0.114٥. 0.111 0.38 -45. Ω -85. -10. -14. 74. -2. 0.22 14. 17. 31. -0. -2. 20821 CC1222 RESIDU -0.021 n 0.021 0.19 -16. -9. -2. -0. 0.12 14. <u>45.</u> 0. 1. 0. 20821 CC1222 RESIDU -0.113 0. 0.112 0.38 -45. -10. -2. 0.22 -0. -84. -13. 74. 15. 17. 30. 20821 CC0822 RESIDU Λ -0.020 0. 0.023 0.21 -16. -8. -2. 15. 45. 0. -2. -0. 0.12 1. 0. 20821 CC0822 RESIDU Ω -0.085 0.096 -34. 0. 0.39 -8. -63. -10. 63. -1. 0.23 12. 13. 29. O. 20821 STIG15 RESIDU -0.035 0.007 O. 0.07 -21. -14. -8. 8. 0. 0.00 1. 0. 58. -0. -4.299 20821 STIG15 RESIDU 0. 0.899 0.17 -2596. 1720. -128. -956. 994. 8. 0.01 398. 484. 39. -74. 20821 STIG10 RESIDU -0.032 0. 0.011 0.10 -21. -13. -1. -7. 9. 0. 0.03 1. ٥. 53. -0. 20821 STIG10 RESIDU -0.362 107. Ο. 0.119 0.22 -234. -145. -10. -82. 4. 0.06 35. 41. 37. -5. 20821 STIGIS RESIDU -0.0310.012 0.11 -12. -7 1. 0.03 <u>..O.</u> ~21. -1. 10. 1. 51. 20821 STIG1S RESIDU -0.202 0.080 0.23 -138. -81. -5. -49. 67. 4. 0.07 20. 22. 37. -3. 20821 DEADV3 RESIDU -0.021 0.022 0.20 -29. -8. -2. -16. 14. -0. -0.02 -1. 0. 56. -0. 20821 DEADV3 RESIDU -0.085 0. 0.091 0.37 -34. -1.-0.03 -121. -65. 60. 6. 13. 37. 20821 DEHTPM RESIDU -0.0180.025 0.22 -29. -7. -2. -15. 16. -0. 0.00 -1. O. 54. -0. 20821 DEHTPM RESIDU -0.062 Ο. 0.085 0.40 -99. -25. -7. -52. 54. -0. 0.01 5. 10. 35. -0. 20821 DESGAS DISTIL -0.021 0. -0.021 0.043 0.19 -66. 11. -52. 31. -0. -0.30 -0. 0. 57. -1. 1 20821 DESCA3 DISTIL -0.088 Ω. -0,088 0.175 0.36 -288. -0. -232. 91. 5. -0.70 2. 12. 48. -3. 20821 DESUA3 RESIDU -0.021 0. -0.0210.043 0.19 -151. -8. -137. 15. 2. -1.65 53. -0. <u>-0.</u> <del>-0.</del> 0. -1. 20321 DESGA3 RESIDU -0.088 0. -0.088 0.175 0.36 -33. -565. 10. -2.52 2. 44. -621. -1. 62. 12. 20821 GTSOAD DISTIL -0.020 -0.020 0.043 0.20 2. 43. -0. -9. .-3. Ω. 5. 19. 2. 0.45 Ω.

DATE 06/08/79 GENERAL ELECTRIC COMPANY ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 TYPE MATCH=HEAT ****F U E L SAVINGS - - -CAPITL -- ELECTRIC POWER ---SAVINGS****- - - EMISSIONS PROCS ECS ECS ****DIRECT*****TOTAL********* EMSR SAVING TOTAL COST LAEC FUEL GIL+GAS COAL GIL+GAS COAL NOX SOX PART NOX SØX PART EXPORT MAH 20821 GTSOAD DISTIL -0.052 0. 0.32 -22. -0.052 0.109 -9. ٥. 12. 49. 4. 0.56 6. 31. 8. 20821 GTRAOS DISTIL O. -0.021 0. 0.021 0.19 -3. 2. 27. 7. 0.46 ٥. 51. 2. 11. 0. 20821 GTRA08 DISTIL 0. -37. -0.084 0. 0.084 0.36 78. 13. 0.51 36 -16. 18. 10. 12 20821 GTRA12 DISTIL O. -0.021 0. 0.20 27. 0.022 -3. 2. 11. 7. 0.46 1. ο. 50. 20821 GTRA12 DISTIL 0. -0.082 0. 0.084 0.36 -36. 78. 13. 0.51 -15. 18. 12. 36. 1. 9. 20821 GTRA16 DISTIL O. -0.021 0. 0.022 0.20 2. 27. -3. 7. 0.46 0. 51. 2. 11. ٥. 20821 GTRA16 DISTIL -0.078 0. Ω 0.080 0.36 -34. -14. 17. 74 13. 0.51 8. 11. 37 20821 GTR208 DISTIL -4. -0.021 O. 0.021 0.20 2. 2. 27. 7. 0.45 10. 1. 0. 48. 0.067 20821 GTR208 DISTIL 0. -0.066 0. 0.34 -30. 12. 0.49 35. -11. 14. 64. 8. 8. -4. 20821 GTR212 DISTIL Ω -0.021 0. 0.021 0.19 27. 49. 2. 10. 7. 0.45 0. 1. 20821 GTR212 DISTIL n -0.071 Q. 0.071 0.34 -32. 12. 0.49 35 -12. 14 68. 8. 20821 GTR216 DISTIL -0.021 0. 0.20 2. 0.022 -4. 27. 7. 0.46 11. 1. 20821 GTR216 DISTIL 0. -0.071 0. 0.074 0.35 -32. -12. 1. 15. 69. 12. 0.50 8. 10. 36. 20821 GTRWOS DISTIL 0.16 -0.025 0. 0.018 -4. 7. 0.44 1. 10. 26. 0. ٥. 55. 20821 GTRW08 DISTIL n -0.118 0. 0.085 0.31 -50. ~25. n 15. 87. 15. 0.48 12. 15. 39 20821 GTRW12 DISTIL -0.024 0. 0.019 0.17 -4. 7. 0.45 54 1. 2. 26. 10. 0. ο. 20821 GTRW12 DISTIL 0. -0.117 0. 0.092 37. 0.33 -50. -25. 0. 18. 91. 15. 0.49 13. 16. 20821 GTRW16 DISTIL Ω. -0.024 0. 0.019 0.17 -4. 1. 2, 10. 27. 7. 0.45 Ο. ٥. 53. 20821 GTRW16 DISTIL -0.109 0. Λ 0.087 0.33 -47. 17. 15. 0.49 -23. 87 11. 14 38 20821 GTR308 DISTIL -0.025 7. 0.43 0.017 0.16 -5. 1. 9. 26. **1.** 53. 20821 GTR308 DISTIL 0. -0.090 0. 0.062 0.28 -40. 68. 12. 0.45 39. -18. 10. 9. 10. 20821 GTR312 DISTIL 0. -0.024 0. 0.019 0.17 27. 7. 0.44 -4. 1. 10. 1. 0. 52. 20821 GTR312 DISTIL -0.097 ٥. 0.078 0.32 -42. -19. 15. 78. 14. 0.48 11. 12 37. 20821 GTR316 DISTIL -0.024 27. 7. 0.44 53. 0. 0.019 0.17 -4. ٦. 10. 0. 0. 20821 GTR316 DISTIL 0. -0.096 0. 0.076 77. 13. 0.48 0.32 -42. -19. 14. 10. 12. 38. 20821 FCPADS DISTIL -0.021 0. 0.022 0.20 5. 12. 19. 37. 8. 0.65 1. 0. 57. 20821 FCPADS DISTIL -0.092 0. 132. 17. 0.87 n 0.096 0.38 -8. 27. 54. 8. 14 49 -1. 7. 0.43 20821 FCMCDS DISTIL -0.024 0. 2. 36. O 0.019 0.17 -15. 10. O. 0 63. 20821 FCMCDS DISTIL 0. -0.177 0. 0.137 0.36 -161. 26. -0. -59. 200. 21. 0.46 10. 25. 55. 5090. 0.20 20 FCMCDS DISTIL -5.275-87.761 -5.275 55.337 -2301.-16311. 43882. 8396. 10922. 27.70-62147.-33568. 58342. -0.016 0. 22601 STM141 RESIDU . 0. 0.026 0.16 -5. -6. 8. 16. 1. 0.18 0. 43 12. 2. 0.24 22601 STM141 RESIDU -0.025 0. 0.041 0.23 -9. -10. -1. 26. 4. 28. 22601 STM141 COAL-F -0.016 0. 0.026 0.16 -5. -33. -1. 9. -6. 6. 0.06 -9. 0. 110. 22601 STM141 COAL-F -0.025 0. 0.041 0.23 -9. -38. -1. 13. 2. 7. 0.14 -4. 2. 60, 22601 STM141 COAL-A -0.016 0. 0.026 -33. 37. 6. 0.26 93. 0.16 23. -1. -6. -6. O. 22601 STM141 COAL-A -0.025 O. 0.041 44. 2. 7. 0.32 2. 43. 0.23 22. -38. -1. 22601 STM088 RESIDU -0.016 0. 8. C 0.026 0,16 -5. -6. -1. 16. 1. 0.18 2. 0. 38. 22601 STM088 RESIDU -0.018 0. 0.030 0.18 -6. -7. -1. 9. 19. 1. 0.20 3. 28. 1. 22601 STM088 COAL-F -0.016 0. 0.026 0.16 -5. ~33. -1. 9. -6. 6. 0.06 -8. 0. 101. STMO88 COAL-F 0.030 0. -0.018 <u>n</u>. 0.18 -6. -34. -1. 10. -4. 7. 0.09 -5. 1. 71. 22601 STM088 COAL-A 37. -6. 0. -0.016 0. 0.026 0.16 23. ~33. -1. 6. 0.26 -5. 0. 81. 22601 STM088 COAL-A 0. -0.018 0. 0.030 0.18 22. -34. -1. 39. -4. 7. 0.28 -1. 1. 52. 22601 PFBSTM COAL-P -7.

n.

n.

0.

22601 PERSTM COAL-P

22601 TISTMT RESIDU

22601 TISTMT RESIDU O.

-0.016 0.

-0.016 0.

-0.055 0.

<u>o.</u>

-0.041

0.025

0.065

0.025

0.087

0.16

0.29

0.16

0.34

26.

29.

-6.

-19.

~33.

-48.

-6.

-22.

1.

3.

-1.

41.

64.

8.

26.

14.

16.

54.

8. 0.30

14. 0.46

1. 0.17

3. 0.36

-10.

-3.

-13.

-27.

0.

6.

0.

119.

52.

129.

92.

PAGE

11

SAVED

-1.

-1

-1.

-1.

-1,

-1-,

<del>-1</del>.

-1.

-1.

-1.

-1.

-1.

-1.

-2.

-2.

-1.

-2. -1.

-2.

-1.

-2.

-1.

-2.

-1.

-4.

-1.

-7.

0.

1.

0.

1.

1.

2.

0.

1.

1.

1.

1.

2.

0.

1.

-2.

-4.

-1534.

O

	6/08/79									C COMPAN								AGE 12
E PE	O AES	MIT =0					ERATION		AGLGGA	EM1001 =11		TERNATIV	E\$ \$					
	FUEL (		<b>=</b>				RT 6.1	FUEL	AND	EMISSION		NGS		(5)	AVINGS A	RE		-Ø
		ION NAI				TIME	1990			l.EVEL	ALL			_				
	COST		=\$*10	**9					<del></del>					17	PE MATO	H=POWR		
		. **	***F U E	- ı	SAV	I N G S*	***	- E M 1		6 N S	A V	INGS		_	CAPITI -	-ELECTRI	c Paul	FD
ecs	ECS			_						***					SAVING	TOTAL		LAEC
	00		IL+GAS	COAL OI		COAL	NO.			ART NO			-		On the	EXPORT		SAVED
	<del></del>	1000	1L.One	OOAL OI	L. OAO	OOAL		<u>`                                     </u>		110.	<u> </u>					MWH		<u> </u>
601	TISTMT	COAL	···· o.	-0.016	٥.	0.025	0.16	-6.	-33.	-1.	9.	-7.	6.	0.06	-25.	0.	204.	-2.
	TISTMT		o.	-0.055	Ö.	0.087	0.34	-19.	-56.		27.	25.		0.27	-40.	9.	112.	-4
	TIHRSG			-0.022	Ο.	0.020	0.12	-8.	-9.		6.	13.	0.		-22.	0.	185.	-3
	TIHRSG			-0.035	0.	0.032	0.17	-12.	-14.		9.	21.	1.	0.19	-29.	2.	158.	-4.
2601	TIHRSG	COAL	Ο.	-0.022	0.	0.020	0.12	-8.	-36.	-1.	7.	-10.	€.	0.02	-34.	ō.	264.	-3.
2601	TIHRSG	COAL	Ο.	-0.035	Ο.	0.032	0.17	-12.	-44.	-2.	10.	-4.	7.	0.08	-41.	2.	200.	-4.
	STIRL	DISTIL	Ο.	-0.023	0.	0.018	0.12	9.	7.	3.	23.	33.	11.		0.	Õ.	58.	-1.
	STIRL	DISTIL		-0.093	0.	0.075	0.26	-8.	-12.		48.	83.	17.		7.	12.	44.	-3.
2601	STIRL	RESIDU	0.	-0.023	Ο.	0.018	0.12	-8.	-9,	-2.	5.	13.	-1.	0.12	0.	Ο.	54.	-0.
	STIRL	RESIDU	Ο.	-0.093	Ο.	0.075	0.26	-33.	÷37,		21.	52.	-4,	0.27	7.	12.	40.	-1.
	STIRL	COAL	0	-0.023	0.	0.018	0.12	<u>-8.</u>	-37.		6	-11.	6.	0.01	-10.	0.	115.	0.
	STIRL	COAL	0.	-0.093	0.	0.075	0.26	-33.	-79.		22.	17.	10.		-7.	12.	55.	0.
	HEGT85			-0.034	0.	0.008	0.05	18.	-43.		33,	-17.		0.15	-20.	0.	178.	-1,
	HEGT85			-0.519	0.	0.118	0.16	-75.	-335.		131.	17.		0.24	-44.	56.	66.	-12.
	HEGT60			-0.032	0.	0.009	0.06	18.	-43.		32.	-16.		0.15	-19.	<u> </u>	<u> 173.</u>	<u>-1</u>
	HEGT60			-0.199	0.	0.056	0.15	-16.	-142.		66.	0.	10,	_	~30,	20.	77.	-5
	HEGT00			-0.031	O.	0.010	0.06	17.	-42.		31.	-16.		0.15	-18.	o.	165.	-1.
	HEGT00			-0.083	Ο.	0.026	0.12	4.	-73.		41.	-10.		0.19	-19,	6.	92.	-2
	FCMCCL		0.	-0.019	0.	0.022	0.14	<u> </u>	-9.	<u>_1.</u> _	23.	17.	<u>8.</u>		<u>-17.</u>	<u> </u>	<u> 156.</u>	-1
	FCMCCL		0.	-0.092	0.	0.106	0.34	40.	46.	5.	105.	158.	22.	1.00	-16,	15.	64.	-1
	FOSTCL		0.	-0.018	0.	0.023	0.15	5.	-14.		20.	12.	8.		~16.	0.	153.	-1.
	FCSTCL		0. 0.	-0,136 -0,023	0, 0.	0.169	0,40 0,12	40.	46. -37.		139.	217.		1.00	-13.	25.	53. 155.	-2. -1.
2601	IGGIST		0.	-0.119	0.	0.018	0.12	-8. -42.	-37. -94.		6.	-11.	<u>8,</u> 22.	0.02	-16. -13.	<u>0.</u> 16.	155. 58.	<del>-1</del>
			-0.022	0.119	-0.022	0.094	0.29	-42. -9.	-94. -8.		28. 4.	25. 14.		0.25	-13. 0.	19. 0.	56. 51.	-0
			-0.022		-0.113		0.12	-44.	-42.		22.	71.		0.22	14.	16.	32.	-0
	GTACO8			-0.019	0.	0.022	0.14	-19.	-8.		-6.	14.		0.42	14.	0.	44.	0.
	GTACO8			-0.076	0.	0.086	0.31	<del>-75.</del>	-30.		-23.	<del>- 13.</del> - 56.	-2.		12.	11.	27.	- ŏ
	GTAC12			-0.020	o.	0.022	0.14	-18.	-B.		-23. -5.	14.		0.07	1.	o.	44.	0
	GTAC12			-0.096	o.	0.106	0.33	-87.	-38.		-22	69.		0.15	15.	15.	28.	Ŏ.
	GTAC16			-0.020	Õ.	0.021	0.14	-17.	-8.	-2.	-4.	14.		0.07	1.	Ö.	46.	. 0
	GTAC16			-0.110	0.	0.118	0.34	-95.	-44		-2 <del>3.</del>	77.	-2.		16.	18.	29.	0.
	GTWC16			-0.022	ō.	0.019	0.12	-18.	-9.		-5.	13.		0.05	1.	o.	49.	-0
	GTWC16			-0.128	ō.	0.112	0.32	-106.	-51		-29.	76.		0.13	18.	19.	30.	-0.
	CC1626			-0.022	٥.	0.019	0.12	-16.	-9.		-3.	13.	-0.		1.	0.	52.	-0
2601	CC1626	RESIDU	0.	-0.206	0.	0.178	0.36	-152.	-82.	-19.	-31.	121.	-4.	0.19	29.	32.	30.	-1
2601	CC1622	RESIDU	Ο.	-0.021	0.	0.020	0.13	-16.	-8.	-2.	-3.	13.	-0.	0.07	1.	0.	49.	-0
	CC1622		•	-0.177	0.	0.168	0.36	-135.	-71,		-26.	112.	-3.	0.20	25.	28.	30.	-1
	CC1222			-0.021	0.	0.020	0.13	-16.	-8.		-3.	14.		0.07	1.	0.	48.	-0
	CC1222			-0.175	0.	0.168	0.37	-134.	-70.		-25.	113.	-3.		26.	28.	29.	-1
	CC0822			-0.020	0.	0.022	0.14	-16.	-8.	· . — ·	-3.	14.		0.08	1,	0.	48.	-0.
	CC0822			-0.130	0.	0.144	0.37	-107.	-52.		-20.	94.		0.20	21.	22.	28.	-0
	STIG15			-0.034	<u>0.</u>	0.007	0.05	-21.	-14.	-1.	-8.	8.	0.		1.	<u> </u>	61.	-1.
	STIG15			-7,468	0.	1.562		-4510.	-2987.		-166 <u>1</u> .	1727.	14.		746.	843.	39.	-129.
	STIG10			-0.031	0.	0.010	0.07	-20.	-12.		-7.	9,	0.		1.	0.	56.	-0.
F(1)3	STIGIO	RESIDU	Ο.	-0.628	Ο.	0.207	0.22	-406.	-251.	-17.	-142.	187.		0.06	66.	74.	37.	-9.

DATE 06/08/79

PAGE 13

O

ISE PEO AES FUEL UNITS EMISSION UNITS= CUST =\$*10**9 GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS
TIME 1990 LEVEL ALL

ALTERNATIVES STUDY

(SAVINGS ARE

TYPE MATCH=POWR

					<del></del>										11 6 110 9	11-1 0411		
PROCS	ECS	ECS **		T****	TOT	ALF1		DIRE	CT		*****		**		CAPITL- SAVING	-ELECTRI		LAEC .
		FUEL O	L+GAS	COAL OI	L+GAS	COAL	NO	ix se	X PA	ART NO	X SOX	K PAR	lT			EXPORT		SAVED
																MWH		
22601	STIGIS	RESIDU	Ο.	-0.030	0.	0.012	0.07	-20.	-12.	-1.	-7.	10.	1.	0.02	1.	Ο.	54.	-0.
22601	STIGIS	RESIDU	Ο.	-0.352	Ο.	0.138	0.23	-240.	-141.	-8.	-85.	117.	7.	0.07	40.	42.	36.	-5.
22601	DEADV3	RESIDU	Ο.	-0.027	Ο.	0.015	0.09	-31.	-11.	-2.	-18.	11.	-1.	-0.05	-2.	0.	69.	-1.
22601	DEADV3	RESIDU	0.	-0.341	O.	0.189	0.29	-394.	-137.	-29.	-226.	143.	-11.	-0.16	16.	46.	46.	-7.
22601	DEHTPM	RESIDU	Ο.	-0.019	Ο.	0.022	0.14	-30.	-8.	-2.	-17.	14.	-0.	-0.02	-2.	0.	64.	-0.
22601	DEHTPM	RESIDU	Ο.	-0.113	Ο.	0.128	0.36	-177.	-45.	-12.	-101.	83.	-2.	-0.06	6.	19.	41.	-1.
22601	DESGAS	DISTIL	-0.029	0.	-0.029	0.041	0.08	-59.	20.	1.	-47.	38.	-2.	-0.12	-1.	ο.	74.	-2.
22601	DESOA3	DISTIL	-0.427	0.	-0.427	0.613	0.25	-1019.	-45.	1.	-826,	274.	15.	-0.86	3.	54.	59.	-16.
22601	<b>DESGA3</b>	RESIDU	-0,029	0.	-0.029	0.041	0.08	-147.	-11.	-0.	-134,	12.	2.	-1.25	-1.	Ο.	68.	-1,
22601	DESCAS	RESIDU	-0.427	Ο.	-0.427	0.613	0.25	-2187.	-161.	-3.	-1989.	174.	33.	-2.85	3.	54.	54.	-11.
22601	GTSOAD	DISTIL	-0.021	Ο.	-0.021	0.041	0.13	-8.	-3.	0.	5.	19.	2.	0.36	1.	0.	47.	-1.
22601	GTSCAD	DISTIL	-0.097	O.	-0.097	0.194	0.31	-40.	-16.	Ō.	22.	88.	8.	0.56	16.	14.	31.	-2.
22601	GTRA08	DISTIL	Ο.	-0.022	0.	0.019	0.12	3.	8.	3.	17.	34.		0.43	O.	0.	56.	-1.
22601	GTRA08	DISTIL	o.	-0,169	Ο.	0.149	0.34	-73.	-34.	1.	30.	143.		0.50	22.	26.	36.	-3.
	GTRA12		Ö.	-0.021	0.	0.020	0.13	3.	8.	э.	17.	34.		0.44	0.	Ŏ.	55.	-1.
	GTRA12		0.	-0,162	Ö.	0.149	0.35	<del>-71.</del>	-32.	1,	30.	142.		0.50	21.	25.	36.	-3.
	GTRA16		Õ.	-0.021	o.	0.020	0.13	3.	8.	3.	17.	34.		0.44	Ö.		56.	-i.
	GTRA16		Ö.	-0.151	Ö.	0.140	0.34	-66.	-29.	1.	28.	134.		0.50	18.	23.	37.	-3.
	GTR208		o.	-0.021	o.	0.020	0.13	2.	8.	3.	16.	34.		0.43	1.	0.	53.	-1.
	GTR208		<del>0.</del>	-0.126	<del>0.</del>	0.116	0.32	-56.	-22.	2.	23.	114.		0.48	17.	19.	35.	-2.
	GTR212		o.	-0.022	o.	0.020	0.13	2.	8.	3.	16.	34.		0.43	é.	۱ <b>۶</b> . ٥.	54.	-1.
	GTR212		o.	-0.135	o	0.124	0.13	-60.	-24.	2.	24.	121.		0.49		20.	35.	-3.
	GTR216		0. 0.	-0.133	0.	0.020	0.33	- <del>6</del> 0. 2.	-24. 8.	3.	17.	34.		0.43	18. O.	20. 0.	54.	-3. -1.
	GTR216			-0.136	<del>- 0.</del>					2.	26.							-3.
			0.			0.129	0.34	-60.	-25.			124.		0.49	18.	21.	36.	
	GTRW08		0.	-0.025	0.	0.016	0.10	2.	7.	3.	16.	33.		0.42	0.	0.	59.	-1.
	GTRW08		0.	-0.230	0.	0.150	0.30	-98.	-5 <u>1</u> .	-0.	25.	160.		0.47	28.	32.	38.	-5.
	GTRW12		0.	-0.024	<u>0.</u>	0.017	0.11	2.	7.	3.	<u>16.</u>	<u>33.</u>		0.43	<u> </u>	<u> </u>	<u> 58.</u>	<u>-1.</u>
22601		DISTIL	0.	-0.224	0.	0.163	0.32	-95.	-49.	0.	36.	166.		0.48	28.	32.	37.	-4.
	GTRW16		o.	-0.024	0.	0.018	0.11	2.	7.	3.	16.	33.		0.43	-0.	0.	59.	-1.
	GTRW16		0.	-0.206	0.	0.153	0.32	-88,	-44.	0.	28.	156.		0.48	25.	30.	37.	-4.
	GTR308		<u>0.</u>	-0.026	<u> </u>	0.015	0.10	<u> </u>	6.	<u>3.</u>	15.	32.		0.41	<u> </u>	<u>0.</u>	<u>58.</u>	<u>-1, </u>
	GTR308		0.	-0.183	0.	0.107	0.26	-79.	-38.	1.	15.	124.		0.44	21.	23.	39.	-4.
	GTR312		0.	-0.023	0.	0.018	0.11	2.	7.	3.	16.	33.		0.43	0.	0.	56.	-1.
	GTR312		0.	-0.179	0.	0.136	0.32	-77.	-37.	1.	25.	139.		0.48	23.	26.	36.	-3.
	GTR316		0.	-0.024	0.	0.018	0.11	2.	7.	3.	<u> 16.</u>	33.		0.43	<u> </u>	<u> </u>	<u>57.</u>	<u>-1.</u>
			0.	-0.177	0.	0.133	0.31	-76.	-36.	1.	24.	137.		0.48	22.	25.	37.	-4.
	FCPADS		0.	-0.028	0.	0.013	0.09	_9.	16.	4.	23.	42.		0.54	-0.	0.	73.	-2.
	FCPADS		0.	-0.464	0.	0.225	0.28	-72.	46.	6.	150.	427.		0.85	27.	61.	60.	-21.
	FCMCDS		0.	-0.023	0.	0.018	0.11	-8.	16.	3.	6.	42.		0.42	-0.	0.	69.	-2.
	FCMCDS			-0.307	0.	0.238	0.36	-279.	46.	-1.	-103.	347.		0.46	18.	47.	56.	-14.
			-1.164	-15.668				11680.	-6109.	-417.	-3645.	7468.		0.17	874.	1958.	6918.	-329,
	STM141		Ο.	-0.000	0.	0.006	0.99	-0.	-0.	-0.	2.	3.		0.99	-0.	Ο.	81.	-0.
	STM141		0.	-0.000	0.	0.007	0.95	-0.	-0.	-0.	2.	4.		0.95	0.	0.	<u>55.</u>	-0.
	STM141		0.	-0.000		0.006	0.99	-0.	70.	-0.	2.	3.	0.		-3.	O.	220.	-1.
24211	STM141	COAL-F	C.	-0.000	0.	0.007	0.95	-0.	-0.	-0.	2.	4.	0.		-2.	٥.	155.	-0.
24211	STM141	COAL-A	0.	-0.000	0.	0.006	0.99	-0.	-0.	-o.	2.	3.	0.	0.99	-3.	Ο.	190.	-1.

24361 STM141 RESIDU O.

-0.001 0.

0.020

0.97

-0.

-0.

· -O.

11.

1. 0.97

٥.

1.

27.

0.

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 15 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL AND EMISSIONS SAVINGS FUEL UNITS REPORT 6.1 (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 TYPE MATCH=POWR SAVINGS***--- EMISSIONS SAVINGS--- CAPITL--ELECTRIC POMER---****F U E L PART MOX FUEL CIL+GAS COAL CIL+GAS COAL NOX SOX SCIX PART EXPORT SAVED MUH 0. 24361 STM141 COAL-F 0. -0.000 O. 0.019 0.99 -0. 1. 0.99 118. -0. -0. 6. 10. -5. -1. 24361 STM141 COAL-F 0. -0.001 0. 0.020 0.97 -0. -O. -0. 6. 11. 1. 0.97 -4. ٥. 94. -0. 24361 STM141 CGAL-A -0.000 0. 1. 0.99 0. 0.015 0.99 -0. -0. -0. 10. -3. -0. -0.001 0. 24361 STM141 COAL-A -2. 0. 0.020 0.97 -0. -O. -0. 11. 1. 0.98 68. -0. ٥. 24361 STM088 RESIDU 0. 0. 0. 0.013 0.68 0. Ο. 7. 1. 0.68 1. 0. 40. 0. 0. 0. 0. 0. 24361 STMO88 COAL-F 0. 0.013 0.68 ٥. 0. ٥. 7. 1. 0.68 105. 4. -4. -1. 0. 24361 STM088 COAL-A Ω. 0.013 0.68 0. 7. 1. 0.68 82. -0. -0.001 0. -0. 24361 PFBSTM COAL-P 0.019 -0. 0. 0.97 -0. 10. 1. 0.97 154. -1. -0. -4. 24361 PFBSTM COAL-P 0. -0.008 0. 0.030 0.79 -1. -5. 2. 0.84 75. 12. 16. -1. -O. -a. 24361 TISTMT COAL Ω. -0.000 O. 0.019 0.98 -0. 6. 10. 1. 0.98 -16. 270. -2. 24361 TISTMT COAL ٥. -0.013 0. 0.039 0.75 -5. -8. -1. 21. 2. 0.73 -24. 158. -3. 24361 TIHRSG COAL -0,004 0. 0.015 -2. 8. 0.78 -0. 1. 0.77 -21. 329. -3. -4. 24361 TIHRSG COAL 0. -0.011 0. 0.020 0.64 -7. -1. 10. 1. 0.61 245. -3. 6. 24861 STIRL COAL 0. -0.004 .0. 0.015 -1. -0. 0.80 -2. 1. 0.79 -6. 138. 5. 8. -1. ٥. -0.032 0. 24361 STIRL COAL 0.037 0.54 -19. -2. 19. 3. 0.50 -3. 57. -1. 24361 HEGT60 CGAL-A 0. -0.010 C. 0.010 0.50 -6. -0. 5. -12. -1. 1. 0.57 219. -2. 24361 HEGT60 COAL-A 0. -0.120 0. 0.026 -22. -72. 0.18 -6. 25. 3. 0.26 -24. 92. -5. 24361 HEGTOO COAL-A O. -0.008 0. -5. 0.011 0.58 -1. -0. 5. 1. 0.64 -11. 205. -2. 24361 HEGTOO COAL-A 0. -0.034 0. -20. 0.018 0.34 -2. 10. 1. 0.41 -13. 111. -0.108 0. 24361 FCSTCL COAL 0.015 0.12 -0. -0. 40. 7. 1.00 -12. 77. -0.019 0. 24361 GTAC16 RESIDU O. 0.000 0.01 -7. -1. -1. 0.06 73. -0. -1. -7. 24361 CC1626 RESIDU -0.017 0. 0.002 0.12 -6. -1. 0. -0. 0.16 -0. 76. . -0. 24361 CC1622 RESIDU ~0.017 0. 0.002 0.10 -6. -1. -0. 0.15 -0. 0. -0. 24361 CC1222 RESIDU -0.017 0.002 0.10 -0. 0.15 72. -1. 0. 0. -0. 24361 CC0822 RESIDU -0.019 0. 0.001 0.03 -6. -7. ** 集。 . -0. -1. 0.09 -0. 76. -1. -1. 0. 24361 STIG15 RESIDU -0.016 0. 0.003 0.16 -6. -6. -0. 0.21 -0. 72. -0. 24361 STIG10 RESIDU -0.017 0. 0.002 -7. 0.11 -6. 0. -0. 0.16 -0. 71. -0. 24361 STIGIS RESIDU -0.018 0. 0.001 0.05 -6. -0. -1. 0.10 O, -0-24361 DEADV3 RESIDU O. -0.017 0. 0.003 0.14 -6. **-7**. -1. 0. -0. 0.18 -2. Ö. 94. -1. 3. -3. -1. 24361 DESGAS DISTIL -0.017 0. -0.017 0.019 -0. ο. 88. 0.11 6. 0. 0.75 -1. 7. ٥. -0.017 0.019 -0. 24361 DESCAS RESIDU -0.017 0. 0.11 -6. 82. -2. 1. 0.53 -1. -1 24361 GTRAOS DISTIL O. -0.017 0. 0.002 0.10 -0. 1, 0,49 -0. 83. 24361 GTRA12 DISTIL O. -0.017 0. 0.002 -5. -O. -0. 82. 0.11 -4. 2. 6. 1. 0.49 -1. 24361 GTRA16 DISTIL O. -0.018 0. 0.002 0.08 -4. -5. -0. 2. 6. 1. 0.48 -1. 0. 85. -1. 24361 GTR212 DISTIL -0.019 0. 0.001 0.03 -0. 1. 0.45 -0. 84. 24351 GTR216 DISTIL -0.018 0. 0.05 -0. 2. 84. 0.001 1. 0.46 <del>-0.</del> 24361 GTRWOS DISTIL -0.017 0. 0.002 0.09 -4. -5. -O. 85. 2. 6. 1. 0.48 -1. -1. 24361 GTRW12 DISTIL -0.017 0. 0.002 -5. -0. 6. 83. 0.12 -4. 2. 1. 0.50 -1. 9. -1. -0.017 0. 24361 GTRV16 DISTIL 0.002 0.10 -0. 1. 0.49 86. 24361 GTR312 DISTIL -0.018 0.001 0.06 -0. 2. 1. 0.47 -0. 83. -1. 0. 24361 GTR316 DISTIL -0.018 0. 0.001 -5. -0. 2. -1. 85. 0.06 -4. 5. 1. 0.46 ٥. -1. -5. 24361 FCPADS DISTIL O. -0.016 0. 0.003 0.16 -4. -0. 2. 6. 1. 0.52 -0. 25. -1. 24361 FCMCDS DISTIL -0.015 0. 0.004 0.22 -0. 1. 0.56 -0. 83. -1. -2. 24921 STM141 RESIDU -2. -0. -J.005 Ō. 0.008 0.19 3. 0. 0.19 0. 54. Ō. 24921 STM141 COAL-F 0. -0.005 0. 0.008 0.19 -2. -3-. -0. 3. 1. 0.17 -3. 0. 62. -0. 24921 STM141 COAL-A 0. -3. -0.005 0. 0.008 0.19 -0. -0. 4. 1. 0.21 -2. -0.

	6/08/79	<u> </u>		<del></del>							C COMPANY		BB114 B111-5						<u>GE 16</u>
SE PE	O AES			_				NERATION		ICLOGY	======================================		ERNATIVES	3	TUDY				
	FUEL U			=			7.4	5RT 6.1	FUEL	AND	emissions		GS		(SA	VINGS A	RE		
	EMISS	ON U	41 TS				TIM	E 1990			LEVEL	ALL							
	COST			=\$*10*	*9											PE MATC	H=HEAT		
		,	***	**F U E		SAVI	NR	·;" . ****	E M I		6 N S	VAP	INGS-	_	_	CAPITI -	-ELECTRI	C PAUF	P
ROCS	ECS												L*****			SAVING	TOTAL	COST	_
1000	200				COAL O		COAL	NOX			ART NOX				LIION	571110	EXPORT		SAVED
		FOLL	011		OUAL O	ILTOAG	COAL	1307	- 30	<u>, , , , , , , , , , , , , , , , , , , </u>	AIL 110A	307	FART				MWH		ONVED
1921	STH088	RESI	311	٥.	-0.003	0.	0.005	0.12	-1.	-1.	-0.	2.	3.	n	0.12	0.	6.	56.	0
	STMOSS		-	0.	-0.003		0.005		-i.	-2.	7.5	2.	Ž.		0.11	-3.	o.	63.	-0
	STMOSS		-	Ω.	-0.003	Ö.	0.005	0.12	-o.	-2.	-0.	3.	2.	o.	0.14	-2.	o.	58.	-0
	PFBSTM			0.	-0.010		0.015		<del>- ö.</del>	<u>-6.</u>	<del>-0.</del>	8.	<del>- 5.</del>	<del>Ĭ.</del>	0.40	-4.	<del>- 0</del> -	64.	-0
	TISTMT			0.	-0.001	o.	0.001	0.03	-0.	-o.	-0.	o.	í:		0.03	-1.	ŏ.	70.	-0
	TISTMT		-	0.	-0.013		0.021	0.47	-5.	-8.	-1.	6.	11.	ĭ.		-15.	Õ.	128.	-2
	THRSG		าน	o.	-0.001	o.	0.000	0.01	-0.	-0.	-0.	o.	o.	o.	0.01	-1.	o.	69.	-0
	TIHRSG	COAL		0.	-0.012		0.009		-4.	-8.	-1.	<del>2.</del>	4.	<del>- ĭ.</del>	0.17	-15.	<del>ŏ.</del>	133.	-2
	STIRL	DIST	I.L.	o.	-0.001	o.	0.003	0.02	-0.	-0.	ö.	1.	1.		0.05	-0.	ŏ.	71.	-ō
	STIRL	RESI		0.	-0.001	o.	0.001	0.02	-0.	-1.	-0.	o.	i.		0.03	-0.	ŏ.	63.	-ŏ
	STIRL	COAL	_	0.	-0.024	o.	0.019		-8.	-15.	-1.	<b>5</b> .	9.	ĩ.	0.37	-2.	ŏ.	5 <b>5</b> .	-0
	STIRL	COAL		0.	-0.026	0.	0.020		<u>-9.</u>	-16.	<u>-i:</u>	6.	9.		0.37	-1.	Ö.	47.	Ō
	HEGT'60		-A	o.	-0.037		0.005		-6.	-23.	-2.	8.	ī.		0.23	-13.	Ö.	125.	-2
•	HEGT60			0	-0.084	Ο.	0.012		-15.	-50.	-4.	16.	2.		0.22	-17.	5.	87.	-3
	HEGT00			0.	-0.027	o.	0.007	0.16	-5.	-17.	-1.	6.	2.	1.		-9.	0.	93.	-1
	FCSTCL			0.	-0.069		0.012		1.	1.	-9.	27.	45.	5.	1.00	-9,	4.	73.	-2
•	GTSGAR		ou -	-0.002	0.	-0.002		0.03	-0.	-1.	-0.	1.	1.	Ο.	C.06	-1.	Ö.	63.	-0
4921	GTACO8	RESI	)Ü	0.	-0.001	Ο.	0.001	0.03	-0.	-0.	-0.	Ö.	1.	0.	0.03	-0.	0.	62.	0
4921	GTAC12	RESI	U	0.	-0.002	0.	0.002	0.04	-1.	<u>-1.</u>	-0.	0	1.	0.	0.04	-0.	0.	62.	-0
4921	GTAC16	RESI	Ü	Ō.	-0.040		0.002		-21.	-16.	-3.	-8.	6.	-2.	-0.09	1.	0.	53.	-0
-	GTAC16			0.	-0,002		0.002		-1.	-1.	-0.	1.	1.		0.05	-0.	٥.	62.	-0
	GTWC16			Ο.	-0,041	Ο.	0.001	0.03	-22.	-17.	-3.	-8.	6.		-0.12	1.	Ο.	56.	-1
	GTWC16			0.	-0.002		0.002	0.04	<u>-1.</u>	<u>-1.</u>	<u>-o.</u>	<u>       1 .                            </u>	<u> </u>		0.04	<u>-1.</u>	0.	<u>63.</u>	<u>-0</u>
	CC1626	-		0.	-0.036		0.007	0.15	-17.	-14.	-2.	-3.		-1.	0.08	1.	Ō.	54.	-0
	CC1626			0.	-0.003		0.003	and the second second	-1.	-1.	-0.	1.	2.		0.06	÷0.	0.	<b>63</b> .	-0
	CC1622			0.	-0.036		0.006		-18.	-15.	-2.	-4.			0.05	1.	0.	53.	-0
	CC1622			0.	-0.003		0.002		<u>-1.</u>	<u>-1.</u>	<u>-o.</u>	<u> </u>	<u>2.</u>	<u>0.</u>		-0,	<u> </u>	<u>63.</u>	-0
	CC1222		-	0.	-0.036		0./65	•	-18.	-15.	-2.	-4.		-1.	0.05	1.	0.	52.	-0
	CC1222		_	0.	-0.003		0 002		-1.	-1.	-0,	1.	2.		0.06	-0.	0.	63.	-0
	CC0822			0.	-0.039		0.003		-20.	-16.	-3.	-7.	7.		-0.06	1.	0.	<b>55</b> .	-0
	CC0822			0.	-0.002		<u>0.002</u>		<del>-1.</del>	<u>-1.</u>	<u>-o.</u>	<del></del>	<u></u>		0.05	<u>-0.</u>	<u>0.</u>	<u>63.</u>	<u>-0</u> 0-
	STIG15			0.	-0.035 -0.121		0.007	0.17	-13.	-14.	-2.	0.		-1.	0.19	0.	0.	55.	-0 -2
	STIG15			0. 0.		0. 0.	0.025		-65.	-48.	-4. -2.	-19. -1		-0.		5.	10.	46. 53.	-2
	STIGIO			0. 0.	-0.036		0.007	0.15 0.08	-15.	-14:	-2. -1.	-1.		-1. -0.		1.	<u>0</u> .	53. 61.	-0
	STIGIO STIGIS			0.	-0.010 -0.039		0.003	0.08	<u>-4.</u> -18.	-4. -16.	<u>-1.</u> -2.	<u>1.</u> -4.		<del>-0.</del> -1.	0.09	<u>-0.</u> 1.	<u> </u>	<u>51.</u>	<del>-0</del>
	STIGIS			0.	-0.006		0.004		-10.	-10.	-0.	1.			0.04	-0.	0. 0.	62.	-0
	DEADV3			0.	-0.035		0.002		-18.	-14.	-0. -2.	-5.			0.06	-0. -1.	0. 0.	63.	-1
	DEADV3			0.	-0.007	0. 0.	0.003		-10.	-3.	-0.	1.		-0.		-1.	0. 0.	68.	-0
	DEHTPM			0.	-0.042		0.003	0.01	- <u>2.</u> -33.	-1 <del>7.</del>	<del></del>	-20.			-0.41		<del>- 0.</del>	69.	<u>-i</u>
	DEHTPM			0.	-0.002		0.002		-33. -1.	-1.	-3. -0.	-20. 1.	3. 1.		0.04	-1.	0.	64.	-0
	DESCA3				0.002	-0.036	0.002		~19.	-5.	0.	-6.	17.		0.30	-0.	0.	66.	-1
	DESCAS				o.	-0.009	0.012		-0.	-J.	0. 0.	-0. 4.	5.	Ö.		-0.	0.	70.	-0
	DESCA3				<del>0</del> .	-0.036	0.043		-43.	-14:	<del>-0.</del>	<del>-29.</del>	10.		-0.42	<del>ö:</del> -	<del>- ŏ:</del>	60.	-1
	DESCA3				0.	-0.009	0.012		-1.	-3.	-a.	3.	3.		0.16	-0.	i õ.	62.	-0
, . <del></del> !										~ ,	•	→.	<del>-</del> .		<b></b>	~.	. •	J-:	-ŏ

# # 3

GENERAL ELECTRIC COMPANY

PAGE 17

DATE 06/08/79
TSE PEG AES
FUEL UNITS =
EMISSION UNITS=

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS

ALTERNATIVES STUDY NS SAVINGS (

(SAVINGS ARE

U

	EMISS	ON UNITS=			TIM	E 1990			LEVEL	ALL							
	COST	=\$1	*10**9										T	YPE MATC	H=POWR		
PROCS	ECS	*****F ECS ****DII	RECT****	TO	TALF		DIREC	T	****	****TOTA	_	**		CAPITL- SAVING	TOTAL	COST	LAEC
	· _ · · · · · · · · · · · · · · · · · ·	FUEL OIL+G	AS COAL	OIL+GAS	COAL	NOX	SO)	<u> </u>	ART NOX	C SOX	PAR	<u>ፕ</u>	· · · · · · · · · · · · · · · · · · ·		EXPORT		SAVED
24921	GTRAOS	DISTIL O.	-0.03	6 0.	0.006	0.14	-11.	-10.	-1.	3.	13.	2	0.44	٥.	MWH O.	61.	-1.
		DISTIL O.		3 0.	0.002		-o.	-1.	ò.	1.	2.		0.10		o.	71.	-o.
24921	GTRA12	DISTIL O.	-0.03	6 0.	0.006	0.14	-11.	-10.	-1.	3.	13.	2.	0.44	0.	0.	60.	-1.
		DISTIL O.	-0.00		0.002	0.06	-0.	-1.	0.	1.	2.	0.	_ ,		0.	70.	-0,
		DISTIL O.	-0.03		0.005		-12.	-10.	-1.	2.	13.		0.41		0,	63.	-1.
		DISTIL O.	-0.00		0.002		-0.	-1.	0.	1.	2.		0.09		0.	71.	-0.
		DISTIL 0.	-0.04 -0.00		0.002		-14. -0.	-11. -0.	-1. 0.	<u>-o.</u>	12. 2.		0.34		<u> </u>	<u>63.</u> 70.	-1. -0.
		DISTIL O.	-0.03		0.002		-13.	-11.	-1.	1.	12.		0.00		o.	62.	-0. -1.
		DISTIL O.	-0.00		0.002		-o.	-0.	ö.	i.	2.		0.08		Õ.	70.	-ò.
	GTR216		-0.03		0.004		-13.	-11.	-1.	i.	13.		0.38		Õ.	62.	-1.
24921	OTR216	DISTIL O.	-0.00		0.002		-0.	-0.	Ō.	1.	2.	Ō,	0.09		Ō.	70.	-0.
	GTRV08		-0.03		0.006		-11.	-10.	-1.	3,	13.		0.43	0.	0.	63.	-1.
		DISTIL O.	-0.00		0.002		-1.	-1.	-0.	1.	3.		0.11	-1.	o.	71.	-0.
	GTRW12		-0.03		0.007		<del>-10.</del>	<u>-10.</u>	<u>-1.</u>	<u>       3.                             </u>	<u> 14.</u>		0.46		<u>o.</u>	<u>61.</u>	<u>-1.</u>
		DISTIL O.	-0.00		0.003		-1.	-1.	-o.	1.	3.		0.12		0.	71.	-0. -1.
		DISTIL O.	-0.03 -0.00		0.006		-11. -1.	-10. -1.	-1. O	3. 1.	13. 3.		0.44	0. -1.	0. 0.	63. 71.	-1. -0.
	GTR308		-0.04		0.003		-14.	-12.	-1.	o.	12.		0.33		0. 0.	65.	-0. -1.
		DISTIL O.	-0.00		0.002		<del>-1.</del>	-1.	<del>0.</del>	<del>- ĭ.</del>	2.	0.	0.09		0.	71.	-0.
	GTR312		-0.03		0.005		-12.	-10.	-1.	Ž.	13.	-	0.40		Ö.	62.	-1.
4921	<b>GTR312</b>	DISTIL O.	-0.00	3 0.	0.002		-0.	-1.	0.	1.	2.		0.10		0.	71.	-0.
	GTR316		-0.03	8 0.	0.004	0.10	-12.	-11.	-1.	2.	13.	2.	0.40	0.	0.	63.	-1.
		DISTIL O.	-0.00		0.002		-0.	-1.	0.	1.	2.		0.09	-1.	0,	71.	-0.
	FCPADS		-0.03		0.009		-7.	-7.	-0.	6.	16.		0.61	1.	0.	67.	-1.
	FCPADS		-0.00		0.004		-2.	-2.	-0.	2.	4.	1	0.17		0.	<b>69</b> .	-0.
		DISTIL O.	-0.03 -0.00		0.011		- <u>11.</u> -1.	-7. -1.	-0. -0.	<u>3.</u> 2.	<u>17.</u> 4.		0.53 0.15		<u>0.</u> 0.	<u>64.</u> 69.	-1. -0.
		DISTIL -0.					-808.	- <b>9</b> 69.	-87.		1025.		0.13			18147.	-116.
		RESIDU O.		9 0.	0.263		-56.	-64.	-8.	79.	163.		0.30	,	Ö.	20.	8.
		COAL-F O.	~0.15		0.263		-56.	-190.	-8.	84.	55.		0.21		o.	33.	13.
6212	STM141	COAL-A O	-0.15	9 0.	0.263	0.29	81.	-190.	-8,	220.	55.	36.	0.37	20.	0.	23.	15.
		RESIDU O.	-0.11		0.191		-40.	-46.	-6.	57.	118.		0.22		Ο.	28.	7.
		COAL-F O.	-0.11		0.191		-40.	-164.	-6.	62.	18.		0.13		Q.	40.	10.
		COAL-A O.	<u>-0.11</u>		0.191		86.	-164.	<u>-6.</u>	189.	18.		0.29		<u> 0.</u>	<u> 31.</u>	12.
		COAL-P O.	-0.17 -0.26		0.273 0.419		101. 110.	-199. -255.	5. 13.	249. 335.	60. 134.		0.43		0. 22.	36. 26.	12. 15.
		RESIDU O.	-0.20		0.419		-61.	-255. -69.	-9.	82.	170.		0.31		22. 0.	60.	-1.
		RESIDU O.	-0.21		0.346		-76.	-87.	-11.	104,	215.		0.35		11.	56.	-2.
	TISTMT		-0.17		0.275		-61.	-199.	-9.	87.	60.		0,22		<del></del>	· 76.	3.
6212	TISTMT	COAL O.	-0.35		0.562		-124.	-307.	-18.	174.	208.		0.35		44.	58.	1.
		RESIDU O.			0.125		-53.	-60.	-8.	35.	86.		0.15		0.	80.	-6.
	TIHRSG		-0.24		0.202		-85.	-241.	-12.	62.	17.		0.13		0.	101.	<u>-4.</u>
	STIRL	DISTIL O.	-0.25		0.198		-0.	-14.	11.	147.	245.		0.54		0.	41.	-3.
	STIRL	DISTIL O. RESIDU O.	-0.37	'1 0. 60 0.	0.295 0.198		-28. -87.	-48. -100.	9. -2	189. 55.	330. 138.		0.57 0.23		20. 0.	39. 37.	-5. 3.

DATE 06/08/79 PAGE 18 GENERAL ELECTRIC COMPANY ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 CEST TYPE MATCH=HEAT SAVINGS - - - CAPITL -- ELECTRIC POWER ---****F U E L SAVINGS****---EMISSIONS PROCS ECS ECS ****DIRECT*****----TOTAL----FESR ------DIRECT------******TOTAL******** EMSR SAVING TOTAL COST LAEC PART NOX FUEL DIL+GAS COAL DIL+GAS COAL NOX SOX SOX EXPORT MWH 26212 STIRL RESIDU O. -0.371 O. 0.295 0.26 -130 -148. -35: 82. 204. -9. 0.27 20. 26212 STIRL COAL ٥. -0.250 O. 0.198 0.22 -87. -245. -12. 60. 15. 33. 0.13 -27. 53. n 26212 STIRL COAL ٥. **-0.602** 0. 0.479 0.31 -211. -456. -30. 141. 149. 53. 0.24 -29. 26212 HEGT85 COAL-A -0.384 0. 0.063 0.07 43. -325. -19. 191. **75. 0.18** -56. 75. 26212 HEGT85 COAL-A O. -4.771 0. 0.788 0.13 -786. -2957. -239 1006. 97. 110. 0.22 -131. 47. 26212 HEGT60 COAL-A 0. -0.364 0. 0.084 0.09 41. -313. -18. 189. 27. 0.19 -50. Ω. 71. -54. 26212 HEGT60 COAL-A -1.484 0. 0.341 0.15 -189. -985. -74. 401. 27. 53. 0.23 -26. AA. -6 62. 26212 HEGTOO COAL -A -0.346 0. 0.101 31. -303. -17. 28. 0.20 0.11 179. -44. -36. 0 -0.571 0. 26212 HEGTOO COAL-A O. 0.167 0.14 -24. -437. -29. 217. -20. 34. 0.21 -26. 50. 81. 26212 FCMCCL COAL Ο. -0.910 0. 0.405 0.23 165. 189. 20. 592. 922. 1:7, 1.00 -0. 40. 26212 FCSTCL COAL -1.187 0. 0.810 0.33 165. 189. 20. 811. 1295. 157. 1.00 31. 26212 IGGTST COAL -1.074 0. 16. 74. 0. 0.314 0.17 -376. -739. 34. 117. 0.13 11. 37. 5. 26212 GTSØAR RESIDU -0.248 0. -0.248 0.448 -55. -93. -2. 89. 152. 0.22 25. 0.41 25. ٥. 29. 26212 GTSOAR RESIDU -0.476 0. -0.476 0.862 0.29 -144. -179. 47. 0.46 27. -4. 133. 292. 53. 39. 26212 GTACOS RESIDU O. -0.209 0. 0.238 0.26 -132. -84. -17. 11. 155. 1. 0.20 28. 26212 GTACOS RESIDU -0.309 O. -20. 7. 0.352 0.31 -230. -124. -28. 229. -2. 0.20 44 23. 26212 GTAC12 RESIDU O. -0.213 0. 0.235 0.25 -118. -85. -15. 24. 153. 3. 0.22 26. 0. 25. 26212 GTAC12 RESIDU -0.394 0. 0.434 0.33 -281. -158. -35. -18. 283. -2. 0.22 53. 36. 23. 7. -0.218 0. 26212 GTAC16 RESIDU 0.230 0.25 -15. 3. 0.22 n. 26. n. -113. -87. 29. 151. -40. 26212 GTAC16 RESIDU -0.458 O. -2. 0.23 58. 0.483 0.34 -319. -183. -20. 318. 24. -0,238 0. 26212 GTWC16 RESIDU O. 0.209 0.23 -123. -95. -16. 19. 142. 1. 0.20 26. 27. Ω. -0.522 0. 26212 GTWC16 RESIDU O. 0.459 0.32 -358. -209. -45. -46. -7. 0.19 64. 312. 50. 25. 26212 CC1626 RESIDU -0.241 0. 0.207 0.22 -105. -93. -14. 38. 141. 3. 0.22 22. O. 30. -0.832 0. 26212 CC1626 RESIDU 0.715 0.35 -544. -333. -68. -52. -10. 0.23 102. 103. 25. 488. -0.231 0. 26212 CC1622 RESIDU O. -102. 29. 0.217 0.24 -92. -14. 40. 146. 3. 0.23 21. D. -32. 26212 CC1622 RESIDU -0.717 0. 0.675 0.36 ~475. -287. -60. 453. -6. 0.24 86. 89. 25. 26212 CC1222 RESIDU -0.229 0. 0.219 4. 0.23 29. 0.24 -101. -91. -14. 41. 147. n -0.707 0. 26212 CC1222 RESIDU 0.678 -283. -59. -5. 0.25 0.36 -469. -28. 453. 24. 26212 CC0822 RESIDU 0. -0.213 C. 0.235 0.25 -102. -85. -14. 41. 153. 4. 0.24 26. 0. 25. 26212 CC0822 RESIDU -0.524 0. 0.578 0.37 -359. -210. -45. -8. 377. -1.0.2672. 61. 23. -0.370 0. 26212 STIG15 RESIDU 0.077 0.08 -150. .148. -17. -B. 86. -5. 0.09 21. 0. 41. -30.541 0.17-18369.-12216. 26212 STIG15 RESIDU 0. 6.387 -913. -6718. 7063. 52. 0.01 2311. 36. -470. -0.337 0. 22. 26212 STIG10 RESIDU O. 0.111 0.12 -144. -135. -15. -2. 100. -2. 0.12 37. n. 1. **-2.569** 0. 26212 STIG10 RESIDU O. 0.846 0.22 -1586. -1027. -74. -506. 763. 26. 0.08 214. 278. -28. 26212 STIG1S RESIDU 3. -0.321 0. 0.126 0.14 - 145-129. -13. -4. 107. 0. 0.12 23. ٥. 36. 2. 26212 STIGIS RESIDU 0. -1.438 O. 0.565 0.23 -907. -40. -274. 21. 0.10 32. 477. 26212 DEADV3 RESIDU O. -0.293 0. 0.155 0.17 -156. -17. -15. Ω. 44. ٥. -117. 119. -2. 0.12 4. 26212 DEADV3 RESIDU O. -1.493 0. 0.788 0.29 -1525. -597. -119. -802. 605. -44. -0.09 53. 172. 40. -19. 26212 DEHTPM RESIDU -0.217 0. 0.230 0.25 -161. -87. -15. -19. 151. 3. 0.16 . 0. 37. 3. 26212 DEHTPM RESIDU O. -0.467 O. 0.495 0.34 -550. -187. -40. -244. 325. -2. 0.06 18. ٦. 26212 DESCAS DISTIL -0.317 Q. -0.317 0.448 -4. 0.14 -156. 50. 4. -18. 271. -1. 0.39 · ο... 56. -8. 26212 DESGA3 DISTIL -1.884 O. -1.884 2.660 C.25 -3872. -205. 4. -3034. 1180. 67. -0.66 14. 207. 52. -54. 26212 DESGA3 RESIDU -0.317 0. -0.317 0.448 -287. 126. Ω. 50. -2. 0.14 -119. 24. -0.21 -4. 26212 DESGAS RESIDU -1.884 O. 14. -1.884 2.660 0.25 -8330. -15. -7474. -709. 746. 142. -2.44 26212 GTSUAD DISTIL -0.225 0. -0.225 0.448 -40. -37. 0. 103. 202. 28. 29. 0. 0.24 18. 0.59 Ο. 26212 GTSOAD DISTIL -0.401 0. -0.401 0.799 -65. 0. 0.31 -111. 143. 31. 0.62

DATE 06/08/79

ISE PEO AES

FUEL UNITS =

EMISSION UNITS=

GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY

REPORT 6.1 FUEL AND EMISSIONS SAVINGS

LEVEL ALL

PAGE 19

ALTERNATIVES STUDY

REPORT 6.1 FUEL AND EMISSIONS SAVINGS

(SAVINGS ARE

LEVEL ALL

COST =\$*10**9 TYPE MATCH=POHR

]	7031		-3-10	<u> </u>			·								PE MAIL	H-FUNK		
PROC	ECS		***F U **DIREC			I N G S*:						I N G :	_		CAPITL-	-ELECTRI	COST	
N		FUEL O					NO:								-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EXPORT		SAVED
		<u> </u>													<del>,</del>	MVH		
26212	2 GTRAOS	CISTIL	0.	-0,243	0.	0.205	0.22	-17.	-12.	12.	131.	247.	57.	0.52	20.	0.	35.	-1.
26212	GTRAO8	DISTIL	0.	-0.725	o.	0.613	0.34	-263.	-148.	3.	171.	598.		0.53	74.	83.	32.	-7.
2621	2 GTRA12	DISTIL	o.	-0.237	0.	0.211	0.23	-15.	-11.	12.	132.	249.		0.53	20.	Õ.	35.	-1.
	2 GTRA12		0.	-0.690	0.	0.613	0.34	-249.	-138.	4.	173.	589.		0.53	73.	80.	31.	-6.
	2 GTRA16		0.	-0.236	Ο.	0.212	0.23	-17.	-10.	12.	131.	249.		0.53	18.	o.	35.	-1.
26213	2 GTRA16	DISTIL	٥.	-0.638	Ο.	0.575	0.34	-229.	-123.	5.	165.	554.	96.		65.	72.	32.	-6.
26213	2 GTR208	DISTIL	0.	-0.236	Ó.	0.212	0.23	-23.	-10.	12.	125.	249.	57.	0.52	25.	0.	32.	-1.
26212	2 GTR208	DISTIL	0.	-0.528	0.	0.474	0.32	-185.	-93.	7,	141.	470.	85.	0.52	63.	52.	30.	-3.
26213	2 GTR212	DISTIL	٥.	-0.237	Ο.	0.211	0.23	-21.	-10.	12.	127.	249.	57.	0.52	24.	Ο.	32.	-1.
2621	2 GTR212	DISTIL	Ο.	-0.569	Ο.	0.507	0.33	-201	-104.	6.	149.	499.	89.	0.52	66.	<b>59</b> .	30.	-4.
2621	2 GTR216	DISTIL	0.	-0.233	0,	0.215	0,23	<u>-18.</u>	<u>-9.</u>	12.	129.	250.	<u>57.</u>	0.52	23.	0.	32.	<u>-1.</u>
	2 GTR216		0.	-0.573	0.	0.530	0.34	-202	-105.	6.	156.	512.	90.	0.53	65.	61.	30.	-4.
	2 GTRWO8		0.	-0.275	Ο.	0 <i>.</i> 173	0.19	-25.	-21.	11.	122.	238.	56.	0.50	20.	Ο.	38.	-3.
	2 GTRWO8		0.	-0.979	٥.	0.615	0.30	~365.	-219,	-1.	152.	667.	112.	0.49	96.	108.	34.	-13.
n	2 GTRW12		0.	-0.262	0	0.185	0.20	-20.	-10.	11.	128.	241.	57.	0.51	20.	0.	37.	-2.
	2 GTRW12		Ο.	-0.948	Ο.	0.670	0.32	-352.	-211.	-0.	172.	688.		0.51	97.	110.	33.	-11.
	2 GTRW16		0.	-0.259	Ο.	0.188	0.20	-21.	-17.	11.	127.	242.		0.51	20.	ο.	37.	-2.
	2 GTRW16		0.	-0.867	Ο.	0.629	0.32	-320.	-188.	1.	165.	645.		0.51	95.	98.	32.	-9.
	2 GTR308		<u> 0.</u>	-0.288	0.	0.160	0.17	<u>-37.</u>	<u>-25.</u>	11.	110.	234.	<b>5</b> 6.		22	<u> </u>	<u> 38.</u>	<u>-3.</u>
	2 GTR308		0.	-0.783	Ο.	0.435	0.26	-286.	-164.	2.	109.	516.	93.		79.	72.	34.	-10. ·
	2 GTR312		٥.	~0.256	ο.	0.192	0.21	-23.	-16,	11.	125.	243.		0.51	22.	0.	35.	-2.
	2 GTR312		0.	-0.742	0.	0.558	0.31	-270.	-153.	3.	152.	573.	-	0.51	85.	80.	31.	-7.
	2 GTR316		<u>o.</u>	-0.257	<u> 0.</u> _	0.191	0.21	-24.	<u>-16.</u>	<u> 11.                                   </u>	124.	243.		0.51	21.	0	<u>36.</u>	<u>-2.</u>
	2 GTR316			-0.734	0.	0.546	0.31	-267	-150.	3.	148.	564.		0.51	82.	78.	31.	-7.
	2 FCPADS			-0.302	ο.	0.146	0.16	-10.	-6.	12.	138.	253.		0.54	8.	0.	58.	-10.
<b>.</b>	2 FCPADS		0.	-1.897	0.	0.919	0.28	-307.	106.	19.	603.	1661.		0.81	87.	222.	<b>55</b> .	-72.
	2 FCMCDS		<u> </u>	-0.252	<u>o.</u>	0.195	0.21	<u>-28.</u>	-0.	<u> 11.</u>	120.	<u> 259.</u>		0.52	<u>6.</u>	0.	<u>54.</u>	-8.
	2 FCMCDS		0.	-1.256	0.	0.972	0.36	-985	104.	-3.	-264.	1337.		0.49	<b>5</b> 9.	167.	50.	-45.
_	4 STM141 4 STM141		0. 0.	-0.098 -0.132	o.	0.162 0.218	0.25	-34. -46.	-39. -53.	-5. -7	49.	100.		0.27	20.	0,	17.	<b>5</b> :
_1	4 STM141		o.	-0.132	0. 0.	0.162	0.30 0.25	-45. -34.	-33. -136.	-7. -5.	65. 52.	135. 18.		0.32	29. -4.	8. 0.	15. 39.	6. 8.
	1 STM141		<del>- ö.</del>	-0.132	<del>0.</del>	0.218	0.30	-46.	-156.	<del>3.</del>	69.	47.		0.22	0.	<del>- 8.</del>	33.	9,
	4 STM141		o.	-0.132	o.	0.162	0.25	70.	-136.	-5.	156.	18.		0.25	1.	0.	35.	9. 9.
	4 STM141		0.	-0.132	0.	0.218	0.30	65.	-156.	-7.	180.	47.		0.39	16.	8.	22.	11.
-	1 STM088		o.	-0.097	0.	0.161	0.25	-34.	-39.	-5.	48.	99.		0.27	ž3.	0.	14.	6.
	1 STN088		<del>0.</del>	-0.097	<del>0.</del>	0.161	0.25	-34.	-135	-5.	52.	17.		0.16	-4.	0.	38.	9,
=1	4 STM088		o.	-0.097	õ.	0.161	0.25	70.	-135.	-5.	156.	17.		0.34	9.	ŏ.	26.	10.
·	PFBSTM		Ö.	-0.101	Õ.	0.159	0.25	79.	-138.	1.	166.	16.		0.37	-6.	o.	45.	7.
	1 PFBSTM		Ŏ.	-0,216	Ŏ,	0.341	0.36	90.	-207.	10.	272.	109.	59.		19.	28.	27.	10.
	TISTHT		Ō.	-0,100	Ō.	0.159	0.25	-35.	-40.	· -5.	48.	99.		0.26	-29.	0.	65.	-2.
. 4	TISTMT			-0.183	õ.	0.290	0.34	-64.	-73.	-9.	87.	180.		0.36	-37.	20.	57.	-4.
	1 TISTMT		0.	-0.100	Ο.	0.159	0.25	-35.	-137.	-5.	51.	16.		0.16	-55.	o.	89.	1.
	1 TISTNIT		0.	-0.286	0.	0.454	0.40	-100.	-249.	-14.	141	168.		0.34	-82.	45.	60.	-1.
26214	1 TIHRSG	RESIDU	0.	-0.205	0.	0.054	0.08	-72.	-82.	-10.	10.	54.	-3.	0.11	-53.	O.	102.	-8.
2621	TIHRSG	RESIDU	Ο.	-0.122	Ο.	0.101	0.16	-43.	-49.	· -6.	28.	70.	2.	0.17	-47.	Ο.	91.	-5.
26214	1 TIHRSG	COAL	Ο.	-0.142	Ο.	0.118	0.18	-50.	-162.	-7.	37.	-9.	24.	0.09	-87.	0.	123.	-4.
_																		

-166.

3.

-2509.

958.

54. -0.68

13.

178.

51.

-45.

26214 DESGAS DISTIL -1.531

-1,531

2.161

0.25 -3190.

DATE 05/08/79 GENERAL ELECTRIC COMPANY ISE PEG AES ALTERNATIVES STUDY COGENERATION TECHNOLOGY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS П (SAVINGS ARE FMISSION UNITS: TIME 1990 LEVEL ALL CRIST =\$x10xx9 TYPE MATCH=POWR S A V I N G S***- - - E M I S S I O N S SAVINGS - - - CAPITL -- ELECTRIC POMER---****F U E I PROCS ECS EMSR SAVING TOTAL ECS ****DIRECT******TOTAL******* COST LAEC FUEL GIL+GAS COAL GIL+GAS COAL NOX SOX PART NOX SØX PART EXPORT SAVED HUM 26214 DESOA3 RESIDU -0.184 O. -0.184 0.260 0.12 -71. -69. -1. 13. 73. 14. 0.23 -1. ۵. 49. -1 26214 DESGA3 RESIDU -1.531 Ω ~1.531 2.161 0.25 -6861 -576. -12 -6165 606. 116. -2.48 13 178. 46. -29. 26214 GTSØAD DISTIL -0.130 n. -0.1300.260 0.20 -15 -21. G 68 117. 10. 0.57 O. 30. -1. 16 26214 GTSGAD DISTIL -0.326 0. -0.326 0.649 0.31-95 -53. ñ 112. 292 25. 0.61 47 26. -2. 11. 0. 26214 GTRAOS DISTIL O. -0.141 0. 0.119 0.18 6. 10. 98. 160. 41. 0.52 12. 35. -2. 26214 GTRA08 DISTIL 0. -0.589 0. 0.498 0.34 135. 486. 82. 0.52 30 -6 -218. -120. 3 67. 78 34. 26214 GTRA12 DISTIL n -0.138 Ω 0.122 0.19 12. 7. 10. 99. 161 41. 0.52 12. Ω -2 26214 GTRA12 DISTIL ñ -0.561 n. 0.498 0.34-207 -112 3. 137. 81. 0.53 75 30 478. -6 -0.137 Q. 26214 GTRA16 DISTIL 0. 0.123 0.19 41. 0.52 0. 35. -2. 11. 7. 10. 98. 161. 11. 26214 GTRA16 DISTIL 0. -0.519 78. 0.53 Ω 0.467 0.34 -190. -100. 4. 130. 450. 57. 68 31. -6. 26214 GTR208 DISTIL O. -0.137Ω 0.123 0.19 8. 10. 41. 0.51 33. 7. 94. 161 13. Ω. 26214 GTR208 DISTIL -0.429  $\overline{\mathbf{n}}$ 0.385 0.32 -154. 5. 111. 382. 69. 0.51 52. 52. 29. 26214 GTR212 DISTIL 0. -0.1370. 0.122 0.19 9. 7. 10. 95. 161. 41. 0.51 13. 0. 34. -2. -0.462 0. 30. 26214 GTR212 DISTIL 0.412 0.33 -167. -84. 5. 117. 405. 72. 0.52 54. 58. -5. 26214 GTR216 DISTIL -0.135 0. 0.125 0.19 10. 8. 10. 97. 161. 41. 0.52 12. Ď. 34. 26214 GTR216 DISTIL -0.465 0.431 0.34 123. 73. 0.52 53 60. 20. -5. 26214 GTRVOS DISTIL -0.160 0.100 0.16 93. 41. 0.50 ٥. 38. -3 6. 1. 10. 154. 13. 26214 GTRUOS DISTIL -0.796a. 0.500 0.30 -301. -178. 119. 542. 91. 0.49 97. 33. -1. 83 -11. 26214 GTRW12 DISTIL -0.152 0. 0.108 0.17 3. 156 41. 0.51 36. -2. 19. 96 13 n. 31. 26214 GTRW12 DISTIL -0.770 0.544 0 32 -290. -171. -0 135 93. 0.51 -10. 26214 GTRW16 DISTIL -0.150 0.109 37. 0.17 Q. 3 10. 95. 157. 41. 0.51 12. ο. -2. 26214 GTRW16 DISTIL -0.704 1. -9. Ω 0.511 0.32 -264. -153. 130. 524. 88. 0.51 77. 90. 32. 26214 GTR308 DISTIL -0.1670.093 0.14 - 1 -1. 10. 86. 152. 41. 0.48 13. n 38. -3 26214 GTR308 DISTIL -237.. -0.636 0.3530.26 -133. 2. 419. 76. 0.46 68. 33. -10. 66 26214 GTR312 DISTIL -0.148 41, 0.51 0. 35. -2. n 0.111 0.17 8. 4. 10. 94 158 13 26214 GTR312 DISTIL -0.603 0. 0.453 0.31 -224. -124. 2. 119. 465 80. 0.50 69 75. 31. -7. 26214 GTR316 DISTIL -0.149 0.111 157 41. 0.50 ۵. 36. -2. n 0.17 4 10. 94 13 -0.596 26214 GTR316 DISTIL 80. 0.50 73. 31. 0.444 0 31 -221 -122. 117. 458 26214 FCPADS DISTIL -C. 175 0.065 -3. 93. 150. 41. 0.49 n 57. -7. O. 0.13 6. 10. 6. 26214 FCPADS DISTIL -1.542 0.747 93. 491. 1356. 166. 0.82 72. 54. -60. ٥. 0.28 16. 190. -248. 26214 FCNCDS DISTIL -0.1460. 0.113 0.18 13 10. 99 158 41. 0.51 n 52 -5 26214 FCMCDS DISTIL -1.021 0.790 0.36 91. -2. -227. 1093. 120. 0.49 50. 145. 50. 0 813. -38 26216 STM141 RESIDU 4. 0.22 -0.061 30. 19. 3. Ο. 0.101 0.21 -21. -24. -3. 63. 14. Ω. 26216 STM141 COAL-F -0.061 -97. 33. 19, 0.12 -0. 35. 7. 0. 0.101 0.21 -21. -3. 1. Ω. 26216 STM141 COAL-A -0.0610. 0.101 0.21 57. -97. -3. 111. 19. 0.30 Ω. 25. 8. 26216 STM088 RESIDU 3. 0.16 -0.0440. 0.073 0.15 -15. -18. -2. 22. 45. 10. O. 31. 2. 26216 STM088 COAL-F -0.044 ٥. 0.073 0.15 -15. -87. -2. 25. -14. 17. 0.06 -2. ٥. 42. 6. 26216 STM088 COAL-A -0.044 ٥. 0.073 0.15 59. -87. -2. 99. -14. 17. 0.24 4. 0. 33. 6. 26216 PFBSTM COAL-P -0.070 0. 0.109 0.23 72 -103 6. 132. 29. 0.38 -6 47. 5. 26216 PFBSTM COAL-P -0.1040.162 -123. 32. 37. 0.45 Ō. 0.29 76 <del>a</del> 163. 3 8. 32 26216 TISTMT RESIDU -0.069 0. 0.110 0.23 -24. -28. -3. 33. 68. 4. 0.24 -23. 0. 70. -2. 26216 TISTMT RESIDU -0.138 Ο. 0.218 0.33 -48. -55. -7. 65. 136. 9. 0.35 -35. 17. 61. -4. 26216 TISTMT COAL -0.069 19. 0.14 0. 0.110 0.23 -24. -102. -3. 36. 5 -44. 97. 26216 TISTMT COAL -0.138Ō. 0.218 0.33 -48. -143. 69. 61. 26. 0.26 -56. 72. -0. a. 17.

> -0.096 0. -0.096 0.

0.080

0.080

0.17

0.17

-34.

-34.

-38.

-118.

-5.

~5.

22.

25.

55.

-13.

2. 0.18

18. 0.07

-42.

-61.

0.

0.

100.

123.

-5.

-2.

0.

26216 TIHRSG RESIDU

26216 TIHRSG COAL

	6/08/7	7			<u> </u>							C COMPAN								<u>GE 22</u>
SE PE	U AES								ENERATION		NOLOGY			TERNATI	ES S	TUDY		25		
	FUEL (			=					PORT 6.1	FUEL	AND	EMISSION		NGS		(S)	VINGS_A	KE		
	EMISS:	ION U	MI 12	= =\$*10	A 11 11 A			1.11	ME 1990			LEVEL	. ALL				.ne	U-06110		
	<u> </u>			-3*10	J**9		<del></del>		<del></del>		<del></del>	<del></del>					PE MATO	H-FOWK		
			***	*F U	FI		S A V I	NO	S***	- E M	1 2 2 1	e n e	S A 1/	INGS		_	CAPITI -	-ELECTRI	c paue	R
ROCS	ECS								FESR								SAVING	TOTAL	CUST	
1000				+GAS				COAL	Na			ART NO				211011	<i>0</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EXPORT		SAVED
	<del></del>		<u> </u>	. 0,,0				0000		<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	<del></del>	7.0	··········	· · · · · · · · · · · · · · · · · · ·	<del>'</del>			MWH		
3216	STIRL	DIST	14.	٥.	-0.1	00	0.	0.079	9 0.16	13.	8.	8.	73.	115.	31.	0.51	7.	0.	38.	-2
	STIRL	DIST		o.	-0.2		Ö.	0.18		-18.	-31.		121.	211.		0.57	16.	23.	37.	-4
216	STIRL	RESI	DU	ο.	-0.1	00	0.	0.07	9 0.16	-35.	-40.	-11.	22.	55.	-4.	0.17	7.	0.	34.	1
	STIRL	RESI		o.	-0.2		O.	0.18		-83.	-95.	-26.	52.	131.	-10.		16.	23.	33.	Ö
	STIRL	COAL	_	ο,	-0.1	00	0.	0.07		-35.	-121.	-5.	25.	-13.	18.	0.07	-13.	0,	57.	4
5216	STIRL	COAL		0.	-0.2	237	O.	0.18		-83.	-203.	-12.	56.	39.	25.	0.18	-10.	23.	42.	. 4
5216	HEGT85	COAL	~A	٥.	-0.1	54	Ο.	0.02	5 0.05	36.	-153.	-8.	96.	-46.	15.	0.15	-31.	0.	88.	1
216	HEGT85	COAL	-A	Ō.	-1.8	78	0.	0.31	0.12	-290.	-1187.	-94.	417.	18.	48.	0.21	-37.	188.	45.	-19
216	HEGT60	COAL	~A	Ο.	-0.1	46	Ο.	0.03	3 0.07	35.	-148.	-7.	95.	-41.	15.	0.16	-29.	0.	84.	1
216	HEGT60	COAL	-A	Ο.	-0.5	84	Ο.	0.13	4 0.13	-55.	-411.	-29.	178.	-9.	25.	0.21	-34.	51.	52.	-4
	HEGT00			٥.	-0.1		0.	0.04		31.	-144.	<u>-7.</u>	91.	-37.	16.		<u>-25.</u>	0.	78.	2
216	HEGTOD	COAL	-A	0.	-0.2	225	0.	0.06	0.11	10.	-195.	-11.	106.	-28.	18.	0.18	-22.	10.	60.	2
	FCMCCL			Ο.	-0.0		Ο,	0.09		37.	2.	5.	97.	109.	28.		-22.	Ο,	70.	3
	FCMCCL			Ο,	-0.2		ο.	0.27		106.	121.		275.	413.		1.00	-14.	32.	42.	3
	FCSTCL			0.	-0.0		0,	0.09		24.	-19.	<u> </u>	84.	.38		0.46	-21.	0.	68.	3
	FCSTCL			0.	-0.3		0.	0.43		106.	121.		359.	557.	72.		-5.	56.	36.	4
	IGGTST			0.	-0.1		0.	0.07		-35.	-121,		25.	-14.		0.09	-20.	0.	66.	3
	IGGTST			0.	-0.3	304	0.	0.23		-106.	-243,	12.	70.	62.		0.25	-7.	34.	38.	5
	GTSCAR						-0.099	0.17		<u>-39.</u>	<u>-37.</u>	<u>-1.</u>	19.	61.		0.28	10.	<u> </u>	29.	2
-	GTSCAR			0.305			-0.305	0.55		-119.	-115.	-2.	59.	187.	30.		36.	35.	26.	2
	GTACO8			o.	-0.0		0.	0.09		-82.	-34.	-10.	-25.	62.	-3,		12.	0.	23.	3
	GTACO8			0.	-0.1		0.	0.22		-195.	-79.		-60.	146.	-6.		30.	23.	21.	9
	GTAC12			<u>o.</u>	-0.0		<u>0.</u>	0.09		<u>-77.</u>	-34.	<u>-9.</u>	-20. -59.	61.	<u>-2.</u>		<u>11.</u> 36.	<u>0.</u> 33.	24. 22.	3
	GTAC12 GTAC16			0. 0.	-0.2 -0.0		0. 0.	0.27		-227. -75.	-101. -35.	-27. -9.	-59. -18.	181. 60.	-6.	0.15	36. 11.	33. 0.	26.	2
	GTAC16			0.	-0.2		0.	0.30		-252.	-117.	-	-60.	203.		0.03	39.	40.	23.	3
	GTWC16			Ö.	-0.0		o.	0.08		-79.	-38.	-10.	-22.	203. 57.		0.07	11.		27.	2
	GTWC16			<del>0.</del>	-0.3		<del>0.</del>	0.29		-276.	-134.	-34.	-77.	200.	-10.		42.	42.	24.	
	CC1626			o.	-0.0		o.	0.08		-72.	-39.	-9.	-15.	57.		0.09	11.	ō.	28.	2
	CC1626			o.	-0.5		o.	0.45		-393.	-212.		-81.	310.		0.18	64.	75.	25.	ī
	CC1622			o.	-0.0		Ö.	0.08		-71.	-37.	-9.	-14.	58.	-2.		11.	Ö.	27.	à
	CC1622			<del>o</del> .	-0.4		0.	0.42		-349.	-182.	-43.	-68.	287.	<del>-9.</del>		56.	66.	25.	
	CC1222			o.	-0.0		o.	0.08		-70.	-37.		-13.	59.		0.10	11.	Ö.	26.	ā
_	CC1222			o.	-0.4		Ö.	0.43		-345.	-180.		-66.	288.	-8.		57.	66.	24.	2
	CC0822			o.	~0.0		o.	0.09		-71.	-34.	-9.	-14.	61.		0.11	11.	0.	25.	2
	CC0822			0.	-0.3		0.	0.36		-275.	-133.	-33.	-53.	239.	-5.	0.20	47.	49.	22.	3
_	STIG15			0.	-0.1		o.	0.03		-89,	-59.	-4.	-33.	34.	o.		6.	0.	45.	-1
216	STIG15	RESI	DU	Ο.	-19.5	34	0.	4.08	5 0.17-	11796.	-7813.	-580.	-4344.	4517.	37.	0.01	1471.	2198.	37.	-303
216	STIGIO	RESI	DU	0,	-0.1	35	0.	0.04	4 0.09	-87.	-54.	-4.	-30.	40.	2.	0.03	10.	0.	37.	. 0
216	STIGIO	`RESI	DŪ	0.	-1.6	43	0.	0.54	1 0.22	-1062.	-657.	-43.	-371.	488.	20.	0.06	135.	188.	34.	-19
216	STIGIS	RESI	DU	Ο.	-0.1	29	0.	0.05	0.10	-88.	-51.	-3.	-31.	43.	2.	0.03	10.	0.	35.	1
3216	STIGIS	RESI	DU	Ο,	-0.9	20	0.	0.36	1 0.23	-628.	-368.	-22.	-222.	305.	18.	0.07	83.	103.	32.	-8
	DEADV3			0	-0.1		0.	0.06		-134.	-47.	-10.	-77.	48.		-0.08	4.	0.	41.	0
	DEADV3			0.	-0.9	-	0.	0.50		-1089.	-382.	-81.	-627.	387.		-0.17	36.	120.	39.	-13
	DEHTPM			0.	-0.0		ο.	0.09		-136.	-35.		-79.	61.		-0.05	5.	٥.	35.	1
216	DEHTPM	RESI	DU	0.	-0.2	298	0.	0.31	7 0.34	~466.	-119.	-31.	-270.	208.	-6.	-0.08	14.	41.	34.	-1

The property of the property o

DATE 06/08/79 ISE PEO AES FUEL UNITS EMISSION UNITS= GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS
TIME 1990 LEVEL ALL

ALTERNATIVES STUDY

(SAVINGS ARE

IJ

PAGE 23

COST

TYPE MATCHEPHUR

	<u> COST</u>		=\$×10	**9						<del></del>				1.1	PE MATC	H=POWR		
		**	***F U	F L	SAV	N G S*	***	- FM 1	SSIO	Ne	SAV	INGS		_	CARITI -	-ELECTRI	C PAUS	·
ROCS	ECS				TAT	Al FE	SR	DIPE	CT		V A V Tatement	AL****			SAVING	TOTAL	COST	
	200													EMOR	SAA III40			
	<del></del>	FUEL U	ILTUAS	COAL O	IL+GAS	COAL	NC.	X SC	X PAR	T NO	<u>&lt; 50</u>	X PART	<u> </u>			EXPORT		SAVED
									_							MWH		
	DESØA3				-0.127	0.179	0.11	-275.	44.	2.	-221.	129.	-4.	-0.30	1.	0.	<b>53</b> .	-4
26216	DESGA3	DISTIL	-1,205	Ο.	-1.205	1.701	0.25	-2832.	-131.	2	-2296.	754.	43.	-0.87	10.	143.	51.	-36
26216	DESGA3	RESIDU	-0.127	Ο.	-0.127	0.179	0.11	-640.	-48.	-1.	-582.	50.	10.	-1.65	1.	0.	48.	-0
26216	DESOAS	RESIDU	-1.205	0.	-1.205	1.701	0.25	-6075.	-454.	-10	5528.	477.		-2.87	10.	143.	46.	-23
	GTSØAD				-0.090	0.179	0.18	-37.	-15.	Ö.	20.	81.		0.44	12.	0.	28.	-1
	GTSOAD				-0.257		0.31	-104.	-42.	o.	58.	230.		0.56	37.	31.	26.	-2
	GTRA08			-0.097		0.082	0.31	-13.	9.		47.	230. 116.						_
	GTRAO8									<u>B.</u>				0.45	10.	0.	<u> 33.</u>	-1
				-0.464	0.	0.392	0.34	-201.	-95.	2.	77.	382.		0.49	51.	63.	31.	-6
	GTRA12			-0.095		0.084	0.17	-13.	9.	8.	47.	116.		0.45	10.	0	33.	1
	GTRA12			-0.441		0.392	0.34	-192.	-88.	3.	79.	377.		0.50	51.	61.	30.	
	GTRA16			-0.094		0.085	0.18	-13.	9,	8.	47.	116.	31.	0.45	9.	0.	· 34.	1
26216	GTRA16	DISTIL	0.	-0.408	0.	0.368	0.34	-178.	-79.	3.	74.	355.	61.	0.50	45.	56.	30.	-5
26216	<b>GTR208</b>	DISTIL	Ο.	-0.094	Ο.	0.085	0.18	-16.	9.	8.	44.	116.	31	0.44	11.	0.	31.	-1
26216	<b>GTR208</b>	DISTIL	Ο.	-0.338		0.303	0.32	-150.	-59:	4.	58.	301.		0.48	41.	43.	29.	-3
	GTR212			-0.095		0.084	0.17	-15.	9.	8.	45.	116.		0.45	10.	0.	32.	-1
	GTR212			-0.364		0.324	0.33	-161.	-66.	<del></del>	63.	319.		0.48	43.	48.	29.	<u></u>
	GTR216			-0.093		0.086												-
							0.18	-14.	10.	8.	46.	117.		0.45	10.	0.	32.	-1
	GTR216			-0.366		0.339	0.34	-162.	-6 <u>7</u> .	4.	67.	328.		0.49	43.	49.	30.	-4
	GTRI/08			-0.110		0.069	0.14	<u>-17.</u>	5	8.	<u>43.</u>	112.		0.43	10.	<u> </u>	<u>36.</u>	-2
	GTRV/08			-0.626		0.393	0.30	-266.	-140.	-1.	65.	426.		0.46	66.	79.	33.	-9
26216	GTRW12	DISTIL	ο.	-0.105	Ο.	0.074	0.15	-15.	6.	8.	45.	113.	31,	0.44	10.	Ο,	35.	-2
26216	GTRW12	DISTIL	Ο.	-0.606	o.	0.428	0.32	-258.	-135.	-0.	77.	440.	73.	0.48	67.	80.	31.	-8
26216	GTRW16	DISTIL	Ο.	-0.104	Ο.	0.075	0.16	-15.	7.	8.	45.	114.	31.	0.44	9.	٥.	35.	-2
26216	GTRW16	DISTIL	0.	-0.555	0.	0.403	0.32	-237.	-120.	1.	73.	412.	69	0.48	60.	73.	31.	-7
26216	<b>GTR308</b>	DISTIL	o.	-0.115		0.064	0.13	-22.	4.	8.	38.	111.		0.42	10.	ŏ.	37.	-ż
	GTR308			-0.500		0.278	0.26	-215.	-105.	2.	37.	330.		0.43	51.	56.	34.	-8
	GTR312			-0.102		0.077	0.16	-16.										
									7.	8.	<u>44.</u>	114.		0.44	<u> 16.</u>	0.	34.	-2
	GTR312			-0.475		0.357	0.31	-205.	-98.	2.	65.	366.		0.48	55.	61.	30.	-6
	GTR316			-0.103		0.076	0.16	-16.	7.	8.	44.	114.		0.44	10.	Ο.	34.	-2
	GTR316			-0.469	Ο,	0.349	0.31	-203.	-96.	2.	63.	361.	63.	0.47	53.	60.	31.	-6
	FCFADS			-0.121	0.	0.058	0.12	14.	44.	11.	74.	152.	33.	0.60	5.	0.	55.	-5
26216	FCPADS	DISTIL	0.	-1.214	Ó.	0.588	0.28	-190.	121.	15.	392.	1116.	134	0.85	57.	152.	54.	-47
26216	FCMCDS	DISTIL	0.	-0.101	0.	0.078	0.16	-60.	46.	9.	0.	154.		0.43	5.	0.	51.	-4
	FCHCDS			-0.803		0.622	0.36	-729.	120.	-1.	-269.	908.		0.46	40.	117.	50.	-30
	STM141			-0.033		0.055	0.12	-12.	-13.	-2,	16.	34.		0.13	4.	0.	48.	1
	STM141			-0.033		0.055	0.12	-12.	-56.	-2.	18.	-2.		0.06	-5.	<del>0.</del>	46.	3
	STI1141		0.	-0.033												= -		
			• •			0.055	0.12	34.	-56.	-2.	64.	-2.		0.17	-0.,	₫.	42.	4
	STM088			-0.023		0.038	0.08	-8.	-9.	-1.	12.	24.		0.09	3.	0.	51.	1
	STM088		0.	-0.023		0.038	0.08	<u>-8.</u>	-50.	<u>-1.</u>	13.	-11.		0.03	-6.	<u> </u>	48.	3
	STM088		0.	-0.023		0.038	0.08	36.	-50.	-1.	57.	-11.	10,	0.13	-2.	0.	44.	3
6217	PFBSTM	COAL-P	Ο.	-0.058	O.	0.091	0.20	45.	-71.	5.	95.	16.	22.	0.32	-4.	0.	44.	4
6217	TISTMT	RESIDU	Ο.	-0.078	Ο.	0.124	0.27	-27.	-31.	-4.	37.	77.	5.	0.28	-29.	0.	69.	-2
	TISTMT		o.	-0.078		0.124	0.27	-27.	-83.	-4.	39.	33.		0.21	-44	ŏ.	75.	-6
	TIHRSG			-0.057		0.047	0.10	-20.	-23.	-3.	13.	33.		0.11	-32.	<del>o.</del>	81.	<del></del>
	TIHRSG		0.	-0.057		0.047	0.10	-20.	-70.	-3.	15.	-8.		0.04	-32. -46.	0,	83.	-2
				-0.037	-	0.112	0.10	-11.	-70. -18.	-3. 4.	72.	126.		0.53	-46. 8.	0.	42.	-2 -1
061/	STIRL																	- 1

E PEC	5/08/79	<u> </u>	<del></del>	<u> </u>		COGEN	GE ERATION		LECTRI GLOGY	C COMPANY		TERNATIVE	<del>e e</del>	TUDY		<del></del>	PAG	BE 24
	FUEL (	INITS	= -				RT 6.1	FUEL		EMISSIONS					AVINGS A	RE		
	EMISSI	ON UNIT	S=			TIME	1990			LEVEL	ALL							
·	COST		=\$*10×	**9	·	· .								<u>T</u> \	PE MATC	H=HEAT_		
		***	**F U E		SAVI	NG S*	***	- <b>F</b> M I		, M - N - C	S A 1	/INGS			CADITI -	-ELECTRI	C PRUEE	>
ROCS	ECS											TAL******			SAVING	TOTAL	COST L	
		FUEL ØI			IL+GAS	CCAL	NO			PART NOX						EXPORT		SAVED
			_		2											MMH		
3217		RESIDU	0.	-0.141		0.112	0.24	-49.	-57.		31.	78.		0.25	7.	o.	37.	2.
5217 S		COAL-A	0. 0.	-0.141 -0.241		0.112 0.040	0.24 0.09	-49. -7.	-121.		34. 85.	23. -22.		0.17	-8. -00	o.	44.	4.
		COAL-A	0.	-1.119		0.185	0.12	-173.	-181. -708.	-12. -56.	248.	11.		0.18	-38. -46.	<u>0.</u> 96.	<u>77.</u> 50.	-1. -12.
		COAL-A	Ö.	-0.228		0.052	0.11	-8.	-173.	-11.	84.	-14.		0.20	-33.	Õ.	71.	-1.
5217 F	HEGT60	COAL-A	Ο.	-0.348	0.	0.080	0.13	-33.	-245.	-17.	106.	-5.	_ `	0.21	-33.	14.	60.	-1.
		COAL-A	0.	-0.134		0.039	0.09	6.	<u>-117.</u>	-7.	63.	-16.		0.14	-21.	0.	<u>61.</u>	1.
	FCMCCL		0.	-0.131		0.150	0.32	57.	62.		149.	221.		0.96	-19.	0.	53.	3.
	FCMCCL		0. 0.	-0.144 -0.125		0.165	0.34	63.	72.		164.	246.		1.00	-16.	3,	49. 54	3.
	FCSTCL		a.	-0.120		0.155 0.249	0.34 0.39	39. 63.	31. 72.	8.	131. 209.	190. 324.		0.83	-19. -13.	0. 16.	54. 42.	3. 4.
		COAL	0.	-0.159		0.122	0.26	-55.	-131.		36.	27.	30.		-16.	0.	50.	3.
6217	IGGTST	COAL	0.	-0.176	0.	0.135	0.27	-61.	-141.		40.	34.		0.24	-13.	3.	46.	4.
		RESIDU		0.	-0.155	0.280	0.27	-60.	-58.		30.	95.	15.	0.40	13.	0.	30.	3.
			-0.182	0.	-0.182	0.329	0.29	<u>-71.</u>	<u>-68.</u>	<u>-1.</u>	<u>35.</u>	111.	<u> 18.</u>		17.	5,	29.	<u> 3.</u>
		RESIDU	0.	-0.116		0.134	0.29	-116.	· -47.	-14.	-36.	87.	-4.		14.	0.	28.	4.
		RESIDU	0. 0.	-0.134 -0.150		0.147 0.165	0.32 0.33	-120. -135.	-53. -60.	-14. -16.	-31. -35.	96. 108.		0.15 0.15	15. 18.	0. 3.	26. 25.	4. 4.
		RESIDU	o.	-0.136		0.144	0.31	-117.	-5 <b>5</b> .	-14.	-28.	95.	-3.		13.	o.	28.	3.
		RESIDU	Ō.	-0.17		0.184	0.34	-150.	-7G,	-18.	-36.	121.	-4.		19.	7.	26.	4.
		RESIDU	Ο.	-0.149	ο.	0.131	0.28	-123.	-60.	-15.	-34.	89.	-4.	0.12	14.	0.	30.	3.
		RESIDU	0.	-0, 199		0.175	0.32	-165.	-80.	-20.	-46.	119.		0.13	21.	9.	27.	3.
		RESIDU	0.	<u>-0.151</u>		0.129	0.28	<u>-113.</u>	<u>-61.</u>	<u>-14.</u>	<u>-24.</u>	88.	<u>-3.</u>		13.	<u>0.</u>	<u>31.</u>	<u>3.</u>
		RESIDU RESIDU	0. 0.	-0.308 -0.145		0.262 0.135	0.35 0.29	-230. -112.	-123. -58.	-28. -14.	-49. -23.	179. 91.	-7.	0.18 0.16	33.	27.	27.	3. 3.
		RESIDU	O.	-0.265		0.133	0.25	-204.	-106.	-14. -25.	-41.	166.		0.19	13. 28.	0. 22.	30. 27.	3. 3.
		RESIDU	Ŏ.	-0.144		0.137	0.30	-111.	-58.	-14.	-22.	91.		0.16	13.	0.	30.	3.
3217 C	CC1222	RESIDU	0.	-0.261		0.248	0.36	-202.	-104.	-25.	-40.	166.	-5.		29.	21.	26.	3.
		RESIDU	Ο.	-0.134		0.146	0.32	-112.	-54.	-14.	-23.	96.		0.17	14.	ο.	28.	3.
		RESIDU	0.	-0.193		0.210	0.36	-161.	-77.		-33.	138.		0.19	23.	11.	25.	4.
		RESIDU	<u>o.</u>	-0.232		0.048	0.11	-140.	-93.	<u>-7.</u>	-52.	54.		0.01	12.	<u> </u>	42.	<u>-1.</u>
		RESIDU	0 0.	-11.644 -0.211		2.435 0.069	0.17 0.15	-7031. -136.	-4658. -84.	-346 -6.	2589. -48.	2693. 63.	22.	0.01	867. 13.	1294. 0.	37. 39.	-180. 0.
		RESIDU	0.	-0.979		0.323	0.13	-633.	-392.	-26.	-221.	291 <i>.</i>		0.04	78.	96.	34.	-9.
		RESIDU	o.	-0.201		0.079	0.17	-137.	-81.	-5.	-49.	67.	4.		14.	90. 0.	37.	1.
217	STIGIS	RESIDU	0.	-0.548		0.215	0.23	-374.	-219.	-13.	-133.	182.		0.07	47.	45.	33.	-3.
		RESIDU	0.	-0.183		0.097	0.21	-209.	-73.		-120.	74.		-0.13	4.	0.	43.	0.
		RESIDU	0.	-0.569		0.300	0.29	-649.	-228.		-374.		_	-0.17	19.	<b>55</b> .	40.	-6.
		RESIDU RESIDU		-0.136 -0.178		0.144	0.31	-212. -278.	<u>-54.</u> -71.	-14. -18.	-123. -161.	95. 124.		<u>-0.07</u> -0.08	3. 6.	<u> </u>	<u>37.</u> 36.	<u>2.</u> 2.
		DISTIL		0.	-0.199	0.189	0.34	-276. -456.	-/I. 6.		-161. -368.	148.		-0.62	-1.	8. O.	36. 55.	-4.
		DISTIL		Ö.	-0.718	1.014		-1688.	-78.		1369.	450		-0.87	4.	69.	52.	-19.
		RESIDU		o.	-0.199	0.280	0.18		75.		-911.	79.		-2.34	-1.	o.	49.	-1.
217 [	DESCA3	RESIDU DISTIL		0.	-0.718 -0.141	1.014 0.280	0.25 0.30	-3621. - <b>5</b> 7.	-270. -23.		3295. 32.	284. 126.	54.	-2.87 0.55	4.	69. O.	46. 30.	-12 1

GENERAL ELECTRIC COMPANY DATE 06/08/79 COGENERATION TECHNOLOGY ISE PEG AES ALTERNATIVES STUDY REPORT 6.1 FUEL AND EMISSIONS SAVINGS FUEL UNITS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL =\$*10**9 CEIST TYPE MATCH=POWR ****F U E L SAVINGS**** - - EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS ECS ****DIRECT*****TOTAL----FESR ------DIRECT-----*******TOTAL****** EMSR SAVING TOTAL COST LAEC FUEL DIL+GAS COAL DIL+GAS COAL NOX SØX PART NOX SOX PART EXPORT SAVED MUH 26217 GTRAOS DISTIL O. -0.152 0. 0.128 0.28 -56. -21. 36. 27. 0.48 36. -D. 3. 137. 12. 26217 GTRAOS DISTIL O. -0.276 0. 0.234 0.34 -120. -56. 46. 228. 39. 0.49 27. 22. 32. -1. 1. 26217 GTRA12 DISTIL -0.149 0. O. 0.132 0.29 -55. - 20. 36. 138. 27. 0.48 0. 11 36. 26217 GTRA12 DISTIL 0. -0.263 0. 0.234 0.34 -114. -53. 47. 224. 38. 0.50 26. 20. 32. -1. 1. 26217 GTRA16 DISTIL 0. -0.147 0. 0.133 0.29 -56. -20. 3. 36. 139. 27. 0.48 11. ٥. 36. -0. 26217 GTRA16 DISTIL 0. -0.243 0. 36. 0.50 0.219 0.34 ~103. -47. 44. 211. 22. 17. 33. -1. 26217 GTR208 DISTIL 0. -0.148 -20 Ο. 0.133 0.29 -60. 32. 139. 27. 0.47 13. 0. 0. 26217 GTR20E DISTIL O. -0.201 0. -90. -35. 35. 0.181 0.32 3. 179. 32. 0.48 21. 10. 31. 0. 26217 GTR212 DISTIL 0. -0.148 0. 0.132 0.29 -59. -20. 33. 138. 27. 0.47 3. 12. 0. 35. 0. 26217 GTR212 DISTIL O. -0.217 0. 190. 34. 0.48 0.193 0.33 -96 -40. 2. 38. 22. 12. 32. -0. 26217 GTR216 DISTIL 0. -0.146 ο. 0.135 0.29 -57. -20. 35. 27. 0.48 139. 35. 0. 12. 0. 26217 GTR216 DISTIL 0. -0.218 0. 0.202 0.34 - 93 -40. 40. -0. 2. 195. 34. 0.49 21. 32. 13. 0. 26217 GTRWOS DISTIL O. -0.172 0. 0.108 0.23 -61. -27. 3. 30. 132. 27, 0.45 12. 39. -1. 26217 GTRWOS DISTIL O. -0.373 0. 0.235 0.30 -158. 39. 43. 0.46 31. -84. ~n 254. 34. 35. -4. 26217 GTRW12 DISTIL 0. -0.164 ٥. 0.116 0.25 -53. -25. 34. 134 27. 0.46 3 12. 0. 38. -1 26217 GTRW12 DISTIL 0. -0.361 Ō. 0.255 0.32 -154. -80. -0. 46. 262. 44, 0.48 35. 32. -3. 26217 GTRV16 DISTIL 0. -0,162 0. 0.118 0.26 -58. -24. 3. 33. 134. 27. 0.46 0. 38. -1. 11. 26217 GTRV16 DISTIL 0. -0.331 0. 0.240 0.32 -141. -72. 0. 44. 246. 41. 0.48 31. 27. 34. -3. 26217 GTR308 DISTIL Ω -0.180 ٥. 0.100 0.22 -69. -29. 23. 129. 27. 0.43 0. 39. -1. 13. 26217 GTR308 DISTIL -0.298 0.166 0. 0.26 -128. -63. 22. 197. 36. 0.43 26. 17. 36. -3. 1. 26217 GTR312 DISTIL 0. -0.160 0. 0.120 0.26 -60. -24. 3. 32. 135. 27. 0.46 13. 0. 36. -0. 26217 GTR312 DISTIL 0. -0.283 0. 0.2130.31 -122. -58. 39. 218. 38. 0.48 23. 20. 33. -2. 1. 26217 GTR316 DISTIL Ω. -0.161 ٥. 0.120 0.26 -60. -24 31. 135: 27. 0.46 12. 0. 37. -0. 26217 GTR316 DISTIL Ω. -0.280 Ō. 0.208 0.31 -121. -57. 37. 215. 37. 0.47 33. -2. 27. 19. 26217 FCPADS DISTIL O. -O.189 O. 0.091 0.20 -13. 35. 78. 193. 31. 0.72 ٥. 57. -5. 7. 6. 26217 FCFADS DISTIL O. -0.723 0. 0.350 0.28 -113. 72. 9. 234. 665. 80. 0.85 31. 74. 55. -26. 26217 FCMCDS DISTIL -0.158 0. 0.122 0.27 -129. 38. -37. 197. 28. 0.45 ٥. 53 -4.

5. 26217 FCMCDS DISTIL -0.479 0.371 0.36 -435. 57. 0.46 0. Ö. 71. -160. 541. 53. 50, -16. 21 26218 STM141 RESIDU O. -0.046 0. 0.077 0.20 -16. -19. -2. 23. 47. 3. 0.22 7. Ο. 26. 2. 26218 STM141 COAL-F ٥. -0.046 0. 0.077 0.20 25. -2. -16. -76. -2. 15. 0.11 -5. Ο. 45. 4. 26218 STM141 COAL-A 0. -0.046 0.077 0.20 87. 15. 0.30 a. 46 -76. -2. 0. 34. 26218 STM088 RESIDU O. -0.033 Ō. 0.054 0.15 -12. 16. 34. 0.16 O. <u>36.</u> -13. 2. 5. 1. -2. 26218 STH088 COAL-F 0. -0.033 0. 0.054 0.15 -68. 18. -13. 13. 0.06 ٥. 51. -12. -6. 4. 26218 STH088 COAL-A -0.033 Ω. 0.054 0.15 47. -68. -2. 77. -13. 13. 0.23 -1. 0. 41. 4. 26218 PFBSTM COAL-P -0.053 0.082 0.22 22. 0.37 Λ ٥. 57. -80. 102. -10. ٥. 59. 26218 PFBSTM COAL-P -0.080 0.125 29. 0,45 39. 0. 0 28 60. -96 128. 23. -3. 4. 26218 TISTMT RESIDU O. -0.052 0.082 0.22 -21. -3. 3. 0.24 -24. 0. 82. n. -18. 25. 51. -2. 26218 TISTMT RESIDU 0. -0.1070. 0.169 0.33 -37. -43. -5. 51. 105. 7. 0.35 -35. 13. 68. -4. 26218 TISTMT COAL 0. -0.052 0. 0.082 0.22 -18 -79. 15, 0.13 -41 n. 113. -0. 26218 TISTHT COAL -0.1070.169 Ō. Ō. 0.33 -37, -112. -5. 53. 46. 21. 0.26 -52. 13. 80. -2. 26218 TIHRSG RESIDU O. -0.073 0. 0.061 0.16 -26. -29. -4. 17. 42. 1. 0.18 -39. 0. 115. -5. 26218 TIHRSG RESIDU O. -0.076 0. 0.063 0.17 -27. -31. -4. 18. 44. 1. 0.18 -39. 0. 112. ~5. 26216 TIHRSG COAL -0.073 0.061 14. 0.06 O. െ വ. 0.16 -26 -92. 19 -12. -56. 0. 144. -3, 26218 TIHRSG COAL -27. -94. 20. Ō. -0,076 0. 0.063 0.17 0.07 138. -3. -4. -10. 14. -56. 26218 STIRL DISTIL O. 0.059 -0,075 0. 0.16 12. 8. 7. **57**. 88. 24. 0.50 2. 0. 45. -2. 34. 0.57 26218 STIRL DISTIL O. -0.188 0. 0.150 0.26 -14. -24. 5. 96. 168. 10. 19. 39. -4.

	6/08/79	<u> </u>						YEKAL E	LECIRI	IC COMPAN							PA	<u> 36 20</u>
SE PE	O AES	(N) TO	_				ERATION	TECHN		EW COLON		LTERNATIVI		TUDY				
	FUEL (	ION UNIT	<b>=</b>				RT 6.1 1990	FUEL	AND	EMISSION LEVEL		I NGS	*	(5)	AVINGS A	IKE		
	COST	ON ONL	=S*1	n±±a		ITTE	1990			LEVEL	ALL			т,	YPE MATO	U=DAUD		
			- • • •	<u> </u>			<del></del>	<del></del>		<del></del>		<del></del>			IFE HATE	HIT OWK		
			**F U			I N G S*						VINGS				-ELECTRI		
OC\$	ECS					'ALFE		_	-			TAL*****		EMSR	SAVING	TOTAL	COST	
	<u> </u>	FUEL OI	L+GAS	COAL O	IL.+GAS	COAL	NO	<b>( 5</b> 0	X F	PART NO	<u>x s</u>	OX PAR	<u> </u>			EXPORT		SAVED
~4 ~	07101	5501511	_		•	0.050							_		_	MWH		
	STIRL	RESIDU	0.	-0.075	-	0.059	0.16	-26.	-30.		16.	41.		0.16		.0.	41.	1
	STIRL	RESIDU COAL	0. 0.	-0.188 -0.075		0.150 0.059	0.26	-66. -26.	-75. -93.		41.	104. -12.		0.26	10.	19. 0-	35. 63.	-0 3
	STIRL	COAL.	<del>0.</del>	-0.188		0.150	0.16	- <u>6</u> 6.	-161		19. 45.	31.		0.06 0.18	-15. -12.	19.	44.	3
		COAL-A	o.	-0.115		0.019	0.25	30.	-117.		75.	-37.		0.15	-30.	0.	102.	-0
		COAL-A		-1.492		0.247	0.12	-230.	-944.		331.	15.		0.13	-46.	150.	48.	-17
		COAL-A	Ŏ.	-0.109		0.025	0.12	23.	-114.		74.	-33.		0.16	-28.	0.	98.	'n
		COAL-A	<del>- 0.</del>	-0.464		0.107	0.13	-44.	-327.		142.	<del>-7.</del>	20.		-36.	41.	56.	-4
		COAL-A	Ö.	-0.104		0.030	0.08	26	-111:		71.	-30.		0.16	-25.	Ö.	91.	1
		COALA	Ō,	-0.179		0.052	0.11	8.	-155.		84.	-22.		0.18	-24.	9.	67.	Ó
218	FCMCCL	COAL	Ο.	-0.063	0.	0.072	0.19	27.	-1.	4	73.	80.	21.	0.52	-23.	0.	63.	1
218	FCMCCL.	COAL	0.	-0.192	0.	0.219	0.34	84.	96.	. 11.	218.	328.	45.	1.00	-17.	26.	46.	2
	FCSTCL		Ο,	-0.060		0.074	0.20	19.	-16.		64.	64.		0.44	-22.	Ο.	61.	2
	FCSTCL.		Ο.	-0.272		0.337	0.40	84.	96.	. 11.	282.	437.		1.00	-12.	45.	39.	2
	IGGTST		0.	-0.076		0.059	0.16	-26.	-94.		19.	-13.		0.08	-21.	0.	<u> </u>	
-	IGGTST		0.	-0.237		0.184	0.28	-83.	-191.		54.	47.	44.		-13.	27.	42.	2
		RESIDU			-0.074		0,16	-29.	-28.		14.	46.		0.28	4.	0.	36.	1
		RESIDU			-0.242		0.29	-94.	-91.		47.	148.		0.42	24.	28.	28.	1
		RESIDU	<u> </u>	-0,063		0.072	0.19	-62.	<u>-25.</u>	-7.	<u>-19.</u>	46.	-2.		<u>5.</u>	<u>0.</u>	31.	
		RESIDU	0. 0.	-0.157 -0.064		0.179 0.070	0.31 0.19	-155. -58.	-63.		-48.	116.	-5.		20.	19.	24. 32.	2
		RESIDU	O.	-0.200		0.220	0.19	-181.	-26. -80.		-15. -47.	46. 144.		0.09 0.15	5. 24.	0. 27.	32. 25.	1
		RESIDU	O.	-0.065		0.069	0.18	-56.	-26.		-13.	45.	-J.		4.	27. O.	33,	1
		RESIDU	<del>0.</del>	-0.233		0.246	0.34	-200.	<u>-93.</u>		-48.	162.	-5.		27.	32.	<u>25.</u>	
		RESIDU	o.	-0.072		0.063	0.17	-59.	-29		-16.	43.		0.07	4.	Õ.	35.	1
		RESIDU	o.	-0.265		0.233	0.32	-220.	-106.		-61.	159.		0.13	29.	34.	27.	i
218	CC1626	RESIDU	Ο.	-0.072	Ο.	0.062	0.16	-54.	-29.	-7.	-11.	42.	-2.	0.09	4.	O.	36.	1
218	CC1626	RESIDU	0.	-0.415	0.	0.354	0.35	-309.	-166.		-65.	242.	-9.	0.18	46.	60.	27.	0
218	CC1622	RESIDU	Ο.	-0.069	Ο.	0.065	0.17	-53.	-28.	-7.	-11.	44.	-1.	0.09	4.	Ο.	35.	1
		RESIDU	Ο.	-0.357		0.334	0.36	-275.	-143.		-55.	225.	-7.	0.19	39.	52.	26.	
		RESIDU	0.	-0,069		0.066	0.17	-53.	-28.		-10.	44.		0.10	5.	0.	34.	1
		RESIDU	0.	-0.352		0.336	0.36	-272.	-141.		-53.	225.	-7.		40.	52.	26.	1
		RESIDU	0.	-0.064		0.070	0.19	-53.	-26.		-11.	46.	-1.		5.	0.	33.	1
		RESIDU	0.	-0.260		0.285	0.36	-216.	-104.		-43.	187.		0.19	32.	39.	24.	2
		RESIDU	<u> </u>	-0.111	<u>0.</u>	0.023	0.06	-67.	-44.		-25.	26.		0.00	4.	0.	<u>46.</u> 37.	-1
		RESIDU RESIDU	0. 0.	-15.525 -0.101		3.247 0.033	0.17	-9375. -65.	-6210. -40.		-3452. -23.	3590. 30.	29.	0.01	1163. 5.	1748. 0.	37. 42.	-242 -0
		RESIDU	0. 0.	-1.306	- •	0.430	0.09	-65. -844.	-40. -522.		-23. -295.	30. 388.		0.03		150.	34.	-16
		RESIDU	0. 0.	-0.096		0.430	0.10	-644. -66.	-322.		-295.	366. 32.	_	0.03	5.	0.	41.	- 10
		RESIDU	<del>0.</del>	-0.731	0.	0.287	0.23	-499.	-292		-177.	243.		0.07	61.	83.	33.	<del></del>
		RESIDU	0.	-0.088		0.046	0.12	-100.	-35.		-58.	245. 36.		-0.07	-2.	0.	51.	-ó
		RESIDU	ŏ.	-0.759		0.400	0.29	-866.	-304		-498.	308.		-0.17	25.	96.	40.	-11
		RESIDU	o.	-0.065		9.069	0.18	-102.	-26.		-59.	45.		-0.04	-0.	o.	42.	i
		RESIDU	Ō.	-0.237		0.252	0.34	-370.	-95.		-215.	165.		-0.08	8.	33.	36.	-1
218	<b>DESCIA3</b>	DISTIL	-0.09	5 0.	-0.095		0.10	-205.	36.		-164.	100.	-4.	-0.28	-2.	Ο.	58.	-3
218	DESGA3	DISTIL	-0.95	8 0.	-0.958	1.352	0.25	-2251.	-104.	. 2.	-1825.	600.	34.	-0.87	5.	114.	52.	-29

GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS
TIME 1990 LEVEL ALL DATE 06/08/79 ISE PEO AES ALTERNATIVES STUDY

FUEL UNITS EMISSION UNITS=

(SAVINGS ARE

PAGE 27

0

	COST		=\$×10	**9										T	YPE MAT	CH=POWR		
		40.00	**F U I	= ( .	SAV	. N G e-	***	- E M I		ANS	6 A 1/		s		CADIT	ELECT	) (	ED
ROCS	ECS							DIRE										
1003	EUG				IL+GAS									EMON	SAVING			LAEC
		FUEL UI	LTGAS	COAL U	ILTUAS	COAL	140	X SO	N FM	RT NO	ox so	<u> </u>	ART			EXPORT	<u> </u>	SAVED
6010	DECGAO	RESIDU	-0.005	^	O OOF	0.104	0 10	100			400		_			MAH		
				- •	-0.095	0.134	0.10	-480.	-36.	-1.	-436.	38.		-1.61		0.	53.	-1.
		RESIDU			-0.958	1.352		-4828.	-361.		-4393.	379.		-2.87		114.	46.	-19.
		DISTIL			-0.067	0.134	0.18	-27.	<u>-11.</u>	<u>o.</u>	15.	60.		0.43		0.	35.	<u>-1.</u>
		DISTIL			-0.204	0.406	0.31	-83.	-33.	Ō.	46.	183.		0.56		25.	28.	-2.
		DISTIL		-0.073		0.062	0.16	-8.	_8.	7.	37.	89.		0.45		0.	41.	-2.
		DISTIL		-0.368		0.312	0.34	-159.	-75.	2.	61.	304.		0.49		51.	33.	-5.
	GTRA12		0.	-0.071	0.	0.063	0.17	-8.	9.	7.	37.	89.		0.45		0.	40.	-2.
		DISTIL		-0.351	Ο.	0.311	0.34	-152.	-70.	2.	62.	299.	51.	0.50	36.	50.	32.	-5.
		DISTIL		-0.071	ο.	0.064	0.17	-8.	9.	7.	37.	89.	24.	0.45	3.	0.	41.	-2.
		DISTIL	Ο.	-0.324		0.292	0.34	-142.	-63.	2.	5 <b>8</b> .	282.	49.	0.50	31.	45.	32.	-4.
		DISTIL	0.	-0.071	0.	0.064	0.17	-10.	9.	7.	35.	89.		0.44		0.	39.	-2.
		DISTIL	0.	-0.269		0.241	0.32	-119.	-47.	3.	46.	239.	43.	0.48	29.	35.	31.	-3.
		DISTIL	Ο.	-0.071	0.	0.063	0.17	-10.	9.	7.	- 35.	89.	24.	0.44	1 4.	0.	40.	-2.
3218	GTR212	DISTIL	ο.	-0.289	Ο.	0.258	0.33	-123.	-53.	3.	50.	253.	45.	0.48	30.	39.	31.	-4.
3218	GTR216	DISTIL	Ο.	-0.070	Ο.	0.065	0.17	-9.	9.	7.	36.	90.	24.	0.45	3.	0.	40.	-2.
218	GTR216	DISTIL	0.	-0.291	0.	0.269	0.34	-129.	-53.	3.	54.	260.	46.	0.49	30.	40.	31.	-4.
315	GTRW08	DISTIL	Ο.	-0.C83	ο.	0.052	0.14	-11.	5.	7.	34.	86.	24.	0.43	3.	0.	44.	-2.
218	GTRW08	DISTIL	Ο.	-0.498	0.	0.313	0.30	-211.	-112.	-1.	51.	339.	57.	0.46	47.	63.	34.	-8.
218	GTRW12	DISTIL	Ο.	-0.079	ο.	0.056	0.15	-9.	€.	7.	36.	87.	24.	0.44	3.	0.	43.	-2.
218	GTRW12	DISTIL	0.	-0.482	0.	0.341	0.32	-205.	-107.	-0.	62.	350.		0.48		65.	33.	-7.
6218	GTRW16	DISTIL	0.	-0.078	Ο.	0.057	0.15	-9.	7.	7.	36.	87.		0.44		Ö.	43.	-2.
218	GTRW16	DISTIL	o.	-0.441	0.	0.320	0.32	-183.	-95.	o.	58.	328.		0,48		59.	33.	-7.
6218	<b>GTR308</b>	DISTIL	ο.	-0.086	0.	0.048	0.13	-14.	4.	6.	31.	85.		0.42		o.	44.	-2.
		DISTIL	0.	-0.398		0.221	0.26	-171.	-83.	1.	30.	262.		0.43		45.	35.	-7.
	GTR312		o.	-0.077		0.058	0.15	-10.	7.	7.	35.	88.		0.44		0.	41.	-2
		DISTIL		-0.377		0.284	0.31	-163.	-78.	Ž.	51.	291.		0.48		49.	32.	-5.
	GTR316		0. :	-0.077		0.057	0.15	-10.	7.	7.	35.	88.		0.44		Õ.	42.	-2.
		DISTIL	Ö.	-0.373		0.278	0.31	-161.	<del>-76.</del>	2.	50.	287.		0.47		48.	33.	-5.
	FCPADS		o.	-0.091	o.	0.044	0.12	12.	35.	8.	57.	116.		0.59		Ö.	60.	-4.
		DISTIL	o.	-0.965		0.467	0.28	-151.	96.	12.	312.	887.		0.85		122.	55.	-38.
		DISTIL	o.	-0,076		0.059	0.16	-43.	36.	7.	2.	117.		0.43		0.	56.	-3.
		DISTIL		-0.639		0.494	0.36	-580.	95.	<del>-1.</del>	-214.	722.	76.			94.	50.	-24
					-18.7381			*****			-42145.1				13861.	25072		-2553
		RESIDU		-0.062		0.103	0.08	-22.	-25.	-3.	31.	64.		0.08		0.	53.	3.
	STM141		0.	-0.062		0.103	0.08	-22.	-20. -90.	-3. -3.	33.			0.05		0.	43.	
	_ `	COAL-A		-0.062		0.103	0.08	<u>-22.</u> 49.	-90. -90.	<u>-3.</u> -3.	104.	<u>8.</u> 8.		0.10		0.	43.	<u> 6.</u> 7.
		RESIDU	0.	-0.047		0.103	0.06	-16.	-90. -19.	-3. -2.	23.	48.		0.06			54.	
	STM088			-0.047												0.		2.
			0.			0.078	0.06	-16.	-81.	-2.	26.	-5.		0.03		0.	44.	5.
	STMO88		<u>0.</u>	-0.047	<u>o.</u>	0.078	0.06	<u>51.</u>	<u>-81,</u>	-2.	93.	<u>-5.</u>		0.08		0.	42.	<u>6.</u>
		CUAL-P		-0.100		0.158	0.12	65.	-113.	8.	150.	36.		0.18		0.	42.	7.
		RESIDU		-0.131	0.	0.209	0.15	-46.	-52.	-7.	62.	129.		0.16		0.	59.	-1.
	THISIT		0.	-0.131	0.	0.209	0.15	-46.	-132.	-7.	65.	62.		0.12		0.	53.	2.
		RESIDU		-0.079		0.072	0.05	-26.	-32.	<u>-4.</u>	<u> 20.</u>	49.		0.06		<u> </u>	<u>65.</u>	-4.
	TIFIRSG		0.	-0.079		0.072	0.05	-28.	-100.	-4.	23.	-10.		9.02		0.	<b>5</b> 6.	-2,
121		DISTIL RESIDU	0.	-0.214 -0.214		0.173	0.13	-17.	-29.	5.	109.	191.		0.27		٥.	56.	-1.
1101	STIRL		0,			0.173	0.13	-75.	-85.	-23.	48.	120.		0.13	12.	0.	<b>50.</b>	3.

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE COGENERATION ISE PEO AES ALTERNATIVES STUDY TECHNOLOGY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE **13** EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 TYPE NATCH-HEAT SAVING S***- - - EMISSIONS ****F U E L SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS ****DIRECT******TOTAL----FESR ------DIRECT-----***************************** EMSR SAVING TOTAL COST LAEC FUEL DIL+GAS COAL DIL+GAS COAL NOX SOX PART NOX SOX EXPORT 28121 STIRL COAL -0.214 0. 0.173 0.13 -75. -181. -11. 52. 38. 23. 0.09 -10. Ω 43. 7. 28121 HEGT85 COAL-A -0.881 0. 0.207 0.15 -112. -581. 240. 21. 31. 0.24 -50. n 52. 3. Ω -44. -1.147 28121 HEGT85 COAL-A 0.269 -164 -741. -57. 37. 0.24 -45. Ω ΰ. 0.16 294 48. 41. 28121 HEGT60 COAL-A -0.448 ō. 0.129 0.10 -37. -322. -22. 151. 22. 0.14 -34. 50. 3. 2. Ō. -0.190 0. 0.060 28121 HEGTOO COAL-A -167. 0. 0.04 10. -9. 93. 16. 0.07 -23. 0. 48. -22. 2. -0.210 0. 28121 FCMCCL COAL 0.241 0.18 93. 106. 49. 0.52 -16. a. 12. 240. 361. 0. 44. 7. 28121 FCSTCL COAL ٥. -0.320 0. 0.400 0.30 92. 106 326. 507. 65. 0.72 -8. 39 12. 11. 28121 IGGTST COAL -0.280 O. 0.225 -221. 0.17 -98. 11. -9. 42. Ō. 67. 63. 51. 0.15 9. -96. -101. 28121 GTSOAR RESIDU -0.256 0. -0.256 0.472 0.16 -2. 51. 162. 26. 0.21 27. 45. 6. -0.174 0. 28121 GTACOB RESIDU O. 0.196 0.15 -170. -69. -20. -53. 126. -5. 0.06 23. 46. 6. 28121 GTAC12 RESIDU -0.219 0. 0.242 0.18 -198 -88 158. 28. -24 -51. -5, 0,08 44. 28121 GTAC16 RESIDU -0.252 0. 0.270 0.20 -217. -101. -26. -51. 177. -5, 0.10 42. 30. 8. 28121 GTWC16 RESIDU -0.292 0. 0.19 -241. 0.256 -117. -29. 33. -67. 174. -9. 0.08 42. 7. 28121 CC1626 RESIDU -0.482 0. 0.420 0.31 -356. 35. -193. -44. -69. 286. -10, 0,17 31. 11. 28121 CC1622 RESIDU -0.416 0. 0.396 0.29 -316 -166 -39. -58. 265. 48. -7. 0.16 34. 11. 28121 CC1222 RESIDU 0.398 0.29 -313. -38 34. -0.411 -164 -56. -7. 0.16 266. 49. 11. -0.306 0. 0.25 -250. -30. 28121 CC0822 RESIDU 0.341 -122. -44. 222. -4. 0.14 40. 38. 10. 28121 STIG15 RESIDU -0.899 0. 0.168 0.14 -543. -360. -27. -200. 208. 2. 0.01 59. 39. ٥. n -17.062 0.17-10303. -6825 28121 STIG15 RESIDU 0. 3.568 -507. -3794 3946. 32. 0.01 37. 251. 1264. -0.818 O. -22. 29121 STIGIO RESIDU 0.269 0.20 -529. -327 -165. 243. 10. 0.06 62. 4. -1.435 0. -927. -574. -38. 28121 STIGIO RESIDU 0.473 0.22 -324. 426. 13. 0.06 114. -4. -0.781 0. 28121 STIG1S RESIDU 0.307 0.23 -533. -312. -18. -189. 259. 15. 0.07 65. 33. 6. 23121 STIGIS RESIDU -0.804 0.23 -548 -19 0.316 -321 -194 267. 15. 0.07 68. 33. 28121 DEADV3 RESIDU -0.699 0.389 0.29 -807. -280. -60 -463. 294. -23, -0, 15 24. 39. 0.29 ~894. -31Q. -66. -512. 326. 28121 DEADV3 RESIDU -0.774 O. 0.431 -26. -0.16 27. 39. 3. 28121 DEHTPM RESIDU -0,259 0. 0.294 0.22 -405. -104. -27. -229. -4.-0.03 191. 11. 46. 5. 28121 DESGAS DISTIL -0.757 2. -0.757 1.088 0.24 -1804 -66 -1462 0. 498 26.-0.82 4. 51. -S. 28121 DESCAS DISTIL -0.967 σ. 1.390 0.26 -2312. -100. -1874.623. 35. -0.86 6. 51. -15. 28121 DESØA3 RESIDU -0.757 0. -0.7571.088 0.24 - 3882.-285. -3532. 310. 58. -2.77 46. -1. 4. 28121 DESCAS RESIDU -0.967 -0.967 1.390 0.26 -4961. Ö. -364. -8. -4513. 396. 75. -2.85 6. 28. 45. -5. -0.221 GTSCAD DISTIL -0.221 Ο. 0.443 0.16 -91. -36. 50. 200. 17. 0.25 29. 50. 3. 28121 GTRAOS DISTIL O. -0.383 D. 0.25 ~76. 0.340 -166. 68. 327. 56. 0.36 39. -0.368 0. 28121 GTRA12 DISTIL 0.340 0.25 -160. ~72. 69. 323. 55. 0.36 39. 43. 28121 GTRA16 DISTIL -0.342 0.. 0.320 0.24 -150. -65. 65. 305. 53. 0.34 35. 45. 3. 28121 GFR208 DISTIL -0.286 0.20 0.265 -128. -49. 260. 47. 0.29 32. 48. 28121 GTR212 DISTIL -0.308 0.283 0.21 -137. 276. 49. 0.31 34. 47. 3. 28121 GTR216 DISTIL -0.310 0. 0.296 0.22 -137. -56. 60. 283. 50. 0.32 33. 3. -223 28121 GTRWOS DISTIL -0.523 0.341 0.25 -116. -G. 58. 365. 62. 0.33 51. 40. 2. GTRW12 DISTIL -0.510 0.372 0.27 -217. ·112. 68. 378. 63. 0.41 53. 38. 28121 GTRW16 DISTIL -0.470 0.350 0.26 60. 0.39 47. 3. 356. 41. 28121 GTR308 DISTIL -0.417 0. 0.244 0.18 -180. -86. 35. 51, 0.30 283. 39. 47. 1. 28121 GTR312 DISTIL -0.407 0.311 0.23 -176. -83. 57. 318. 55. 0.35 43. 43. 3. 28121 GTR316 DISTIL -0.403 0.305 0,23 -174 -82. 55. 313. 54. 0.34 42. 44. 3. 28121 FCPADS DISTIL -0.7330.355 -105. 83. 12. 55. -16 247. 686. 87. 0.82 <u>31.</u> 28121 FCPADS DISTIL 0.513 0.28 -166. 106. 13. 54. -28. -1.060 0. 343. 974. 117. 0.85 47. 46. 25121 FCMCDS DISTIL -0.613 0.474 0.35 -553. 95. 0. -10. -201. 698. 75. 0.46 27.

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 29 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL AND EMISSIONS SAVINGS FUEL UNITS REPORT 6.1 (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL CEIST =\$*10**9 TYPE MATCH=HEAT ****F U E L SAVINGS****- -- EMISSIONS SAVINGS --- CAPITL--ELECTRIC POWER---ECS ****DIRECT****** EMSR SAVING TOTAL PROCS ECS. COST LAEC FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX PART EXPORT MWH 28121 FCMCDS DISTIL O. -0.702 0. 0.543 -637. 105. -235. 793. 83. 0.46 50. 0.36 -1. 32. -13. 28191 STM141 RESIDU O. -0.099 0. -35. 0.164 0.14 -40. -5. 49. 101. 7. 0.15 21. 0. 18. 5. 28191 STM141 RESIDU O. -0.113 Ο. 0.187 0.15 -39. -45. -6. 56. 115. B. 0.16 25. 15. 28191 STN141 COAL-F -0.099 Ö. 0.164 0.14 -35. -247. -5. 57. -75. 48. 0.03 -15. 0. 52. 15. 28191 STM141 COAL-F 0. -0.113 0. 0.187 0.15 -39. -255. -6. 64. -63. 50. 0.05 -7. 3. 41. 16. 28191 STM141 COAL-A ø. -0.099 ٥. 0.164 -247. -5. 280. 48. 0.24 0.14 188. -75. 4. 0. 34... 17. 23191 STM141 COAL-A O. -0.113 n 0.187 0.15 186. -255. -6. 290. -63. 50. 0.25 8. 18. 28191 STMO88 RESIDU O. -0.065 0. 0.108 0.09 -23. -26. -3. 32. 67. 4. 0.10 17. Ō. 4. 23191 STM088 COAL-F 0. -0.065 0. -227. -104. 0. 0.108 0.09 -23. -3. 40. 45. -0.02 53. -14. 14. 28191 STN088 COAL-A 0. -0.065 0. 0.108 0.09 193. -227. -3. 256. -104. 45. 0.18 -1. ٥. 43. 15. 28191 PFBSTM COAL-P 0. -0.1060. 0.157 0.13 218. -251. 13. 310. -79 66. 0.28 -10. 0. 51. 14. 28191 PFBSTM COAL-P -0.243 0. 0.362 0.23 240. -334. 29. 442. 103. 0.41 7 26. 22. 32. 18. -41. 28191 TISTMT RESIDU O. -0.102 0. 0.161 0.13 -36. -5. 6. 0.14 0. 48. 100. -37. 74. -3. 28191 TISTMT RESIDU O. -0.332 0. 0.523 0.29 -133. 325. 57. -116. -17. 156. 21. 0.31 -68. 56. -10. 28191 TISTMT COAL -0.102 0.13 ٥. 0.161 -36. -249. -5. 56. -77. 48. 0.03 -77. 0. 111. 6. 28191 TISTMT COAL -0.332 0. 0.523 -387. Ō. 0.29 -116. -17. 166. 109. 72. 0.21 -115. 56. 66. 2. 28191 TIHRSG RESIDU O. -0.179 Ο. 0.083 0.07 -63. -72. -9. 20. 67. -1. 0.08 -56. 0. 101. -8. 28191 TIHRSG RESIDU O. -0.402 0. 0.187 0.12 -141. -161. -20. 46. 149. -1. 0.14 -94. 31. 87. -18. -0.179 28191 TIHRSG COAL -295. -9. 29. 0. 0.083 0.07 -63. -123. 44. -0.05 -95. ٥. 134. 2. 28191 TIHRSG COAL -0.402 Ö. 0.187 0.12 -141. -429. -20. 56. -78. 52. 0.02 -143. 31. 100. -5. 28191 STIRL DISTIL O. -0.154 0.109 0.09 77. 68. 28. 169. 240. 47. -8. 81. 0.46 3. 0. 28191 STIRL DISTIL O. -0.622 O. 0.437 0.22 -30. -64. 20. 317. 121. 0.54 -18. 543. 31. 75. 41. 28191 STIRL RESIDU O. -0.154 0.109 0.09 -54. -62. -18. 29. 77. -9. 0.09 3. ٥. 43. 28191 STIRL RESIDU -0.622 a. 0.437 0.22 -218. -249. -72. 118. 312. -35. 0.22 31. 75. 36. -5. 0. 28191 STIRL COAL 0. -0.154 ٥. 0.109 -54. -280. -8. 38. -108. 45, -0, 02 -38. 78. 0.09 11. 28191 STIRL COAL Ω. -0.622 a. 0.437 0.22 -218. -561. -31. 130. 47. 69. 0.14 -46. 75. 48. 7. 42. 0.13 28191 HEGTOO COAL-A -0.2180. 0.045 242. 0. 0.04 150. -318. -11. -147. -43. O. 87. 28191 HEGTOO COAL-A O. -0.788 0. 0.161 0.09 15. -660. -39. 327. -113. 54. 0.16 -24. 64. 49. 5. 28191 FCMCCL COAL 0. -0.124 0. 0.139 7. 60. 0.26 0.12 53. -26. 145. 76. 0. 83. 10. -44. 28191 FCMCCL COAL -0.758 374. 0. Ο. 9.853 0.33 327. 43. 853. 1284. 176. 1.00 11. 126. 35. 13. 28191 FCSTCL COAL 0. -0.119 0. 0.144 0.12 41 -117. 133. 55. 58. 0.23 -42. 0. 81. 10. 28191 FCSTCL COAL -0.942 0. 0. 15. 1.144 0.38 327. 374. 42. 1006. 1544. 203. 1.00 34. 171. 31. -0.153 0. 28191 IGGTST COAL 0. 0.109 0.09 -54. -280. 7. 38. -108. 60, -0.01 -38. 0. 77. 10. 28191 IGGTST COAL 0. -0.812 0. 0.579 0.25 -284. -675. 38. 170. 158. 0.21 34. 14. 114. 8. 106. 28191 GTSOAR RESIDU -0.160 0. -0.160 0.263 0.09 -58. -60. 14. 0.18 -1. 26. 83. 13. 0. 33. 28191 GTSOAR RESIDU -1.159 0. -1.159 1.900 0.26 -421. -436. -9. 190. 603. 103. 0.40 119. 154. 29. -5. 28191 GTACO8 RESIDU O. -0.122 0. -37. -4. 0.05 0.140 0.12 -121. -49. -14. 91. 15. 0. 26. 4. 28191 GTACO8 RESIDU O. -0.608 0. 0.696 -599. -18. 0.12 0.31 -243. -71. -184. 452. 93. 98. 22. 6. 28191 GTAC12 RESIDU O. -0.125 0. 0.137 0.11 -113. -50. -14. -29 90. -3. 0.05 14. ٥. 27. 3. 28191 GTAC12 RESIDU -0.782 0. Ō. 0.857 0.33 -703. -313. -85. -182. 560. -19. 0.15 112. 129. 23. 6. 28191 GTAC16 RESIDU O. 0. -0.132 0. 0.131 0.11 -111. -53. -13. -28. 87. -3. 0.05 13. 29. 3. 28191 GTAC16 RESIDU O. -0.959 0. 0.956 0.33 -810. -384. -98. -201. 635. -23. 0.16 126. 155. 24. 4. 0.123 84. 28191 GTWC16 RESIDU O. -0.140 0. 0.10 -116. -55. -14. -32 -4. 0.04 ٥. 30. 14. 3 28191 GTWC16 RESIDU O. -1.028 0. 0.907 0.32 -851. -411. -103. -236. 616. -30. 0.13 134. 157. 24. 2. -58. 28191 CC1626 RESIDU O. -0.144 0. 0.119 0.10 -110. -13. -26. 82. -4. 0.05 e. 31. 14. 2.

-584.

-137.

-265.

828.

-37. 0.16

185.

225.

-1,461 0.

1.202

0.33 -1111.

28191 CC1626 RESIDU O.

Andrew or House of

- Compression Associa

-0.

	06/08/79	)								C COMPAN							PA	GE 30
ISE PE							ERATION		<b>IOLOGY</b>			TERHATI	VES S					
	FUEL L		=				RT 6.1	FUEL	AND	emission		NGS		(5/	AVINGS A	RE		Ū
		ON UNIT				TIME	1990			LEVEL	ALL							
<u> </u>	COST		=\$*10	**9			<u></u>							Y	YPE MATO	H=POVR	<u></u>	
		:		<u>.</u> .									_				· A DOLLE	_
	=		**F U			INGS*						ING				-ELECTRI		
PROCS	ECS					ALFE								EMSR	SAVING	TOTAL	CUST	
		FUEL OI	L+GAS	CUAL OF	L+GAS	COAL	NO	X SC	X P	ART NO	X SC	X PA	RT			EXPORT		SAVED
			_									4.5				MWH		_
		RESIDU	0.	-0.138		0.125	0.10	-109.	-55,	-13.	-25.	84.		0.05	14.	0.	30.	3.
	CC1622		0.	-1.253		1.132	0.34	-986.	-501.	-121.	-228.	766.		0.17	157.	199.	25.	1.
	CC1222		0	-0.137	<u>o.</u>	0.126	0.10	<u>-108.</u>	<u>-55.</u>	-13.	-25.	<u>85.</u>		0.05	14.	<u>0.</u>	29.	3.
		,	0.	-1.231	0.	1.134	0.34	-973.	-493.	-119,	-222.	764.		0.17	162.	197.	24.	2.
	CC0822		0.	-0.127	0.	0.135	0.11	-110.	-51.	-13,	-26.	89.		0.06	15.	0.	28.	3.
	CC0322		0.	-0.895	0.	0.950	0.34	-772.	-358.	-93.	-185.	624.		0.17	133.	148.	22.	6.
	DEHTPM		0.	<u>-0.154</u>	0.	0.109	0.09	-241.	-62.	<u>-16.</u>	<u>-158.</u>	<u>78.</u>		-0.08	<u>-4.</u>	0	<u>49.</u>	-0.
	DEHTPM		0.	-0.908	0.	0.643	0.26	-1425.	-363.	-94.	-933.	458.		-0.23	8.	121.	42.	-14.
		DISTIL		13 T T T T T T T T T T T T T T T T T T T	-0.134		0.11	<b>-54</b> .	-22.	0.	30.	118.		0.32	16.	0.	31.	-6.
		DISTIL			-0.821		0.31	-328.	-133.	0.	182.	720.		0.55	117.	126.	27.	-10.
	GTRA08		0.	-0.161 -2.009	<u>0.</u>	0.102	0.09	<u>36.</u>	<u>66.</u>	<u>28.</u> -3.	127.	238.		0.42	9.	<u> </u>	<u>42.</u> 34.	<u>-8.</u> -36.
	GTRA12		0. 0.	-0.154	0. 0.	1.279	0.30	-850. 37.	-454. 68.	-3. 28.	214. 129.	1372. 240.		0.47	197. 12.	284. 0.	34. 38.	-36. -7.
	GTRA12	-	0.	-1.795	0.	1.263	0.32	-765.	-394.	0.	226.	1306.		0.42	186.	262.	3 <b>3</b> .	-30.
	GTRA16		0.	-0.151	0. 0.	0.111	0.02	-763. 37.	-394. 69.	28.	128.	240.		0.48	11.	202. O.	38.	-30. -7.
	GTRA16		<del>0.</del>	-1.586	<del>-0.</del>	1.167	0.32	-681.	-335.	4.	211.	1198.		0.48	160.	234.	33.	<del>-27.</del>
	GTR208		0.	-0.149	0.	0.114	0.09	34.	69.	28.	125.	241.		0.42	13.	234.	36.	-7.
	GTR208		o.	-1.226	0.	0.938	0.30	- <b>5</b> 37.	-234.	10.	166.	978.		0.47	137.	178.	31.	-20.
	GTR212		o.	-0.149	o.	0.114	0.09	35.	69.	28.	127.	241.		0.42	13.	0.	36.	-7.
	GTR212		0.	-1.317	0.	1.009	0.31	-574.	-260.	9.	181.	1040.		0.47	144.	193.	32.	-22.
	GTR216		Õ.	-0.147	Ö.	0.116	0.10	36.	70.	28.	128.	242.		0.42	12.	0.	37.	-7.
	GTR216		Ō.	-1.341	Õ.	1.059	0.32	-583.	-266.	8.	196.	1074.		0.48	143.	200.	32.	-22.
	GTRW08		Ö.	-0.175	Ö.	0.088	0.07	32.	62.	28.	.23.	234.		0.41	9.	0.	44.	-8.
	<b>GTRWC8</b>		0.	-2.540	Ō.	1.275	0.27	-1063.	-604.	-12.	172.	1511.		0.44	250.	333.	35.	-48.
	GTRW12		0.	-0.165	Ö.	0.098	0.08	35.	65:	28.	127.	237.		0.42	9.	0.	42.	-Ü.
28191	GTRW12	DISTIL	Ο.	-2.326	Ō.	1.387	0.30	-977.	-544.	-9.	224.	1515.		0.47	244.	324.	3 <b>3</b> .	-40.
28191	GTRW16	DISTIL	0.	-0.161	0.	0.102	0.08	36.	66.	28.	127.	238.		0.42	9.	0.	42.	-8.
28191	GTRW16	DISTIL	0.	-2,025	0.	1.281	0.30	-857.	-459.	-3.	214.	1377.	230.	0.47	211.	285.	33.	-35.
28191	<b>GTR308</b>	DISTIL	Ο.	-0.183	0.	0.080	0.07	24.	60.	28.	116.	231.	81.	0,40	13.	٥.	41.	-8.
28191	<b>GTR308</b>	DISTIL	Ο.	-1.946	0.	0.848	0.23	-825.	-437.	-2.	81.	1119.	201.	0.41	185.	237.	36.	-40.
28191	GTR312	DISTIL	0	-0.155	Q.	0.108	0.09	35.	68.	28.	127.	239.	81.	0.42	13.	0.	37.	<u>-7.</u>
	GTR312		0.	-1.596	G.	1.112	0.31	-685.	-338.	4.	193.	1171.	202.	0.47	185.	229.	31.	-25.
	GTR316		0.	-0.155	٥.	0.107	0.09	35.	67.	28.	126,	239.		0. 12	13.	Ο.	37.	-7.
	GTR316		0,	-1.572	0.	1.087	0.30	-676.	-331.	4.	187.	1151.		0.47	178.	225.	32.	-25.
	FCPADS		0.	~0.177	0.	0.086	0.07	80.	124.	32.	171.	295.		0.52	1.	0.	63.	-12.
	FCPADS		Ů.	-3.752	0.	1.817	0.28	-586.	375.	47.	1213.	3449.		0.85	206.	498.	54.	-149.
-	FCMCDS		<b>3</b> .	-0, 148	0.	0.115	0.10	-29.	127.	29.	63.	298.		0.42	-0.	0,	58.	-11.
	FCMCDS		0.	-2.454	0.	1.922	0.36	-2255.	370.	-4.	-831.	2808.		0.46	134.	389.	<b>50</b> .	-97.
	STM141		0.	-0.198	0.	0.328	0.14	-69.	-79.	-10.	98.	202.		0.15	<u>46.</u>	<u> </u>	15.	<u> 11.</u>
	STM141		0.	-0.226	0.	0.374	0.15	-79.	-90.	-11.	112.	231.	15.		54.	7.	14.	12.
	STM141		0.	-0.198	0.	0.328	0.14	-69.	-494.	-10.	114.	-150.		0.03	-19.	<u>o.</u>	45.	32.
	STM141		0.	-0.226	٥.	0.374	0.15	-79.	-5.11.	-11.	128.	-127.		0.05	-15.	7.	41.	33.
20192	STM141		0.	-0.198	0.	0.328	0.14	377.	<u>-494.</u>	<u>-10.</u>	<u>560.</u>	-150.		0.24	11.	<u> </u>	32.	<u>35.</u>
	STM141		0.	-0.226	0.	0.374	0.15	373.	-511.	-11.	580.	-127.		0.25	22.	7.	27.	37.
	STM088		0.	-0.130	0.	0.216	0.09	-46.	-52.	-7.	<b>65</b> .	133.		0.10	37.	0.	27.	8.
20192	STMOSS	CUAL-F	Ο.	-0.130	Ο.	0.216	0.09	-46.	-454.	-7.	80.	-208.	89.	-0.02	-30.	0.	54.	28.
										_								

,

DATE 06/08/79

GENERAL ELECTRIC COMPANY

ISE PEG AES

COGENERATION TECHNOLOGY
FUEL UNITS =

EMISSION UNITS =

EMISSION UNITS =

COST =\$*10**9

EX****FUEL SAVING S****- - EMISSIONS SAVINGS - - CAPITL--ELECTRIC POWER---

	CUST		=\$*10*	**9										<u> </u>	PE MATC	H=HEAT		
4									_			_						
			**F U E		SAVI	N G S*	***	- E M	ISSI	Ø N S	S A V	/ I N G :	5			-ELECTRI		
PROCS	ECS											TAL****		emsr	Saving	TOTAL .	CUST	LAEC
· <u>L</u>		FUEL 01	L+GAS	COAL O	L+GAS	COAL	Ne	X S	OX P	ART NO	X SC	X PA	RT			EXPORT		SAVED
- <b>5</b>																HWM		
	STMOSS		0.	-0.130		0.216	0.09	386.	-454.	-7.	511.	-208.		0.18	2.	Ο.	40.	31.
	PFBSTM		ο.	-0.211		0.314	0.13	437.	-502.	25.	620.	-158.		0.28	-9.	Ο.	45.	31.
	PFBSTM		0.	-0.487	0.	0.725	0.23	<u>480.</u>	-668.	58,	884.	52.		0.41	<u>53.</u>	64.	26.	37.
	TISTMT		0.	-0.204	Ο.	0.321	0.13	-71.	-82.	-10.	96.	200.		0.14	-52.	Ο.	63.	-3.
	TISTMT		o.	-0.665	o.	1.046	0.29	-233.	-266.	-33.	313.	650.		0.31	-138.	111.	57.	-19.
	TISTMT		0.	-0.204	Q.	0.321	0.13	-71.	-498.	-10.	112.	-154.		0.03	-120.	Ο.	94.	18.
	TISTMT		0.	-0.665	<u>o.</u>	1.046	0.29	-233.	<u>-774.</u>	-33.	<u>332.</u>	217.		0.21	<u>-231.</u>	<u> 111.                                  </u>	<u>66.</u>	5.
	TIHRSG		0.	-0.359	Ο.	0.167	0.07	-125,	-143.	-18.	41.	133.		0.08	-86.	0,	89.	-12.
	TIHRSG		0.,	-0.804	ο.	0.375	0.12	-282.	-322.	-40.	92.	299.		0.14	-192.	61.	88.	-36.
	TIHRSG		0.	-0.359	0.	0.167	0.07	-125.	-591.	-18.	58.	-247.		-0.05	-156.	0.	117.	10.
	TIHRSG		<u> </u>	-0.804	<u>0.</u>	0.375	0.12	-282.	<u>-858.</u>	-40.	112.	-157.		0.02	<u>-290.</u>	61.	101.	<u>-11.</u>
28192		DISTIL	0.	-0.309	0.	0.217	0.09	154.	136.	57.	337.	479.		0.46	7.	0.	46.	-16.
28192		DISTIL	0.	-1.244	0.	0.875	0.22	-61.	-128.	- 41.	635.	1087.		0.54	62.	149.	41.	-3 <b>5</b> .
	STIRL	RESIDU	0.	-0.309	0.	0.217	0.09	-108.	-123.	-36.	59.	155.		0.09	7.	0.	41.	2.
28192		RESIDU	0.	-1.244	0	0.875	0.22	<u>-435.</u>	-498.	-145.	237.	624.		0.22	62.	149.	<u> 36.</u>	<u>-9.</u>
28192		COAL	0.	-0.309	0.	0.217	0.09	-108.	-561.	-15.	75.	-217.		-0.02	-69.	0.	73.	23.
	STIRL	COAL	0.	-1.244	Ű.	0.875	0.22	-435.	-1122.		260.	93.		0.14	-91.	149.	47.	15.
	HEGT00		0.	-0.436	0.	0.089	0.04	300.	-637.	-22.	483.	-293.		0.13	-60.	0.	75.	21.
	HEGTOO		<u>0.</u>	-1.576	<u>o.</u>	0.323	0.09	30.	<u>-1321.</u>	-79.	655.	-226.		0.16	-0,	129.	42.	16.
	FOMCOL		0.	-0.247	0.	0.278	0.12	107.	-192.	14.	290.	152.		0.26	-65.	0,	71.	23.
	FCMCCL		0.	-1.517	0.	1.707	0.33	655.	749.	85.	1707,	2569.		1.00	73.	253.	30.	<b>33</b> .
	FOSTOL		0.	-0.237	0.	0.288	0.12	82.	-234.	11.	266.	110.		0.23	-64.	0.	70.	23.
	FCSTCL TGGTST		<u>0.</u>	-1.836	<u> </u>	2.290	0.38	655.	749.	84.	2012.	3089.		1.00	<u> 126.</u>	342.	<u> 28.</u>	<u>39.</u>
			0.	-0.307	0.	0.219	0.09	-107.	-559.	14.	76.	-216.		-0.01	-53.	0.	<b>65</b> .	25.
	IGGTST		0,	-1.625	0,	1.159	0.25	-569.	-1350.	76.	341.	228.		0.21	36.	212.	32.	31.
		RESIDU RESIDU		0. 0.	-0.320	0.526 3.802	0.09	-116,	-121.	-3.	53.	167.		0.18	28.	0.	32.	4.
	GTACO8		0.	-0.245	-2.319 0.	0.281	0.26	<u>-842.</u> -241.	<u>-673.</u> -98.	-19. -29.	<u>381.</u> -74.	1207. 182.		0.40	252. 31.	307.	28.	<u>-8.</u> 7.
48	GTACO8		0. 0.	-1.217	0.	1.394		-1199.	-487.	-143.	-74. -369.	904.		0.05		0. 196.	<b>25</b> .	
=1	GTAC12		0.	-0.251	0.	0.275	0.11	-1199. -226.	-100.	-143. -27.	-309, -58.	180.		0.12	190. 30.	0.	21. 26.	13. 7.
	GTAC12		0.	-1.564	0.	1.716		-1408.	-626.	-169.	-364.			0.05				12.
	GTAC12		0.	-0.263	0.	0.262	0.33	-1408. -222.	-105.	-169. -27.	-364. -5 <b>5</b> .	1121. 174.		0.15	<u>229.</u> 28.	258. 0.	<u>22.</u> 28.	<u> 12.</u> 6.
	GTAC16		o.	-1.920	0. 0.	1.913		-1621.	-768.	-197.	-403.	1270.		0.05	253.	310.	20. 24.	7.
	GTWC16		0. 0.	-0.279	0.	0.246	0.33	-231.	-112.	-28.	-64.	167.		0.04	293. 29.	310. 0.	24. 28.	6.
	GTWC16		o.	-2.056	0.	1.816		-1703.	-823.	-207	-473.	1233.		0.13	276.	314.	24.	6.
	CC1626		0.	-0.288	<del>- ö.</del>	0.237	0.10	-1703. -219.	-115.	-27.	-52.	163.		0.13	30.	0.	29.	<del>5.</del>
_	CC1626		o.	-2.923	0.	2.406		-2223.	-1169.	-273.	-531.	1657.		0.16	- 384.	451.	24.	2.
-	CC1622		Ö.	-0.276	Õ,	0.249	0.10	-217.	-110.	-27.	-50.	169.		0.05	29.	0.	29.	<b>6</b> .
	CC1622		o.	-2.507	o.	2.266		-1974.	-1003.	-242.	-457.	1532.		0.17	329.	398.	24.	4.
	CC1222		<del>0.</del>	-0.274	<del>- ŏ.</del>	0.252	0.10	-216.	-109.	-26.	-49.	170.		0.05	30.	0.	28.	6.
	CC1222		o.	-2.464	0,	2.269		-1948.	-986.	-238.	-444.	1529.		0.17	337.	395.	23.	7.
	CC0822		o.	-0.255	0.	0.271	0.11	-220.	-102.	-27.	-53.	178.		0.06	31.	0.	26.	7.
	CC0822		Õ.	-1.792	Ŏ.	1.901		-1544.	-717.	-187.	-370.	1249.		0.17	270.	297.	22.	12.
	DEHTPM		<u>0.</u>	-0,308	0.	0.218	0.09	-483.	-123.	-32.	-316.	155.		-0.08	-6.	0.	49.	-0.
	DEHTPM		Ö.	-1.817	õ.	1.288		-2852.	-727.		-1867.	917.		-0.23	16.	242.	42.	-27.
		DISTIL		Ö,	-0.269	0.526	0.11	-108.	-44.	0.	60	236.		0.32	32.	0.	30.	-11.
7		· · · · · ·	· <del>-</del>				- •		**			<b>-</b>		- · · · ·				• • •

				4														
					•										•			
TE O	6/08/79	9					GE	NERAL I	ELECTRI	C COMPANY	,			Ġ.		, 45 ₀	PA	GE 32
E PEC	3 AES					COGEN	ERATION		NOLOGY			TERNATI	VES S	TUDY				
	FUEL I		=				RT 6.1	FUEL	AND	EMISSIONS		NGS		(5)	AVINGS A	RE		
	COST	וטא הא	11S= =\$*:0	w <b>w</b> Q		TIME	1990			LEVEL	ALL			T	PE MATO	U-UEAT		
			-44.10	**3	:		· · · · · · · · · · · · · · · · · · ·								PE MAIL	H-HEAL		
			****F U			ING S*				ONS	SAV	/ 1 N G	s	-	CAPITL-	-ELECTRI	C POHE	R
ocs	ECS					ALFE						AL. ***		EMSR	SAVING	TOTAL	COST	
		FUEL	BIL+GAS	COAL O	IL+GAS	COAL	NO.	X SI	<u>5X F</u>	PART NOX	So.	X PA	KI			EXPORT MWH		SAVED
192 (	STSCAD	DISTI	L -1.643	0.	-1.643	3.212	0.31	-657.	-267	ο.	364.	1440.	124.	0.55	235.	252.	27.	-20
	GTRAO8			-0.321		0.204	0.09	71.	132		254.	476.		0.42	23.	ō.	39.	-14
	GTRA08			-4.020		2.559		-1702.	-909		429.	2745.		0.47	416.	568.	<u> 33.</u>	-70
	GTRA12			-0.309		0.217	0.09	74.	136		258.	479.		0.42	26.	0.	37.	-14
	GTRA12			-3.592		2.527		-1531.	-789.		452.	2614.		0.48	389.	525.	32.	-59
	STRATE			-0.303 -3.174		0.223 2.335	0.09 0.32	74. -1364.	137. -671.		257. 423.	481. 2398.		0.42	24. 343.	0. 467.	37. 32.	-13 -52
	GTR208			-0.298		0.228	0.09	67.	139		251.	482.		0.42	28.	0.	35.	-13
192 (	GTR208	DISTI	L 0.	-2.454		1.877	0.30	-1075.	-468		332.	1957.	352.	0.47	288.	357.	31.	-38
	3TR212			-0.298		0.228	0.09	70.	139		253.	492.		0.42	27.	0.	35.	~13
	3TR212			-2.636		2.018		<u>-1148.</u>	-519		<u> 363.</u>	2082.		0.47	<u>307.</u>	387.	<u>31.</u>	-41
	GTR216 GTR216			-0.294 -2.683		0.232 2.119	0.10 0.32	73. -1167.	140. -533.		256. 392.	483. 2150.		0.42	26. 305.	0. 401.	35. 31.	-13 -42
	STRW08			-0.350		0.176	0.07	63.	124		246.	468.		0.41	24.	401. O.	41.	-16
	3TRW08			-5.082		2.551		-2127.	-1208	-24.	343.	3023.		0.44	521.	667.	34.	-93
192 (	GTRW12	DISTI	L 0.	-0.329	0.	0.196	0.08	71.	130.	. 56.	254.	473.	163.	0.42	24.	0.	39.	-15
	GTRW12			-4.654		2.775		-1955.	-1088		449.	3032.		0.47	515.	647.	32.	-77
	GTRW16			-0.322		0.204	0.08	71.	132		<b>254</b> .	476.		0.42	23.	0.	39.	-15 -67
	GTRW16 GTR308			-4.051 -0.366		2.562 0.160	0.30	49.	<u>-91,8.</u> 119.	7. . 56.	<u>428.</u> 232.	2755. 463.		0.47	<u>448.</u> 28.	<u>571.</u> 0.	<u>32.</u> 40.	-67 -16
	3TR308			-3.893		1.697		-1651.	-873		161.	2240.		0.41	394.	475.	35.	-77
	GTR312			-0.310		0.216	0.09	70.	135		254.	479.		0.42	29.	0.	35.	-13
	GTR312			-3.194		2.226	0.31	<u>-1372.</u>	-677.	8.	386.	2344.	404.	0.47	385.	459.	30.	-48
	9TR316			-0.311		0.215	0.09	69.	135.		253.	479.		0.42	28.	0.	36.	-13
	STR316 FCPADS			-3.146 -0.354		2.175		-1352,	-663		374.	2303.		0.47	371.	450.	31.	-49
	FCPADS			-7.508		0.171 3.637	0.07 0.28	159. -1173	247. 751.		342. 2427.	591. 6902.		0.52 0.85	4. 427.	0. 996.	61. 53.	-24 -296
	FCMCDS			-0.296		0.229	0.10	<del>- 175.</del>	253		126.	597.		0.42	2.	0.	<del>57.</del>	-21
	FCMCDS			-4.970		3.846		-4513.	741		1662.	5618.		0.46	293.	778.	49.	-191
	STM141			-0.013		0.022	0.09	-5.	-5.	-1.	7.	14.		0.10	-0.	0.	46.	0
	STM141			-0.035		0.059	0.20	-12	-14		18.	36.		0.21	5.	5.	24.	1
	STM141 STM141			-0.013 -0.035		0.022 0.059	0.09 0.20	-5.	-48		8.	-23. -4		-0.02	-12.	0.	139. 50.	1
	STM141			-0.035		0.022	0.20	-12. 42.	-62. -48.		19. 5 <b>5</b> .	-4. -23.		0.10	-5. -10.	5. 0.	123.	3
	STM141			-0.035		0.059	0.20	39.	-62		70.	-4.		0.30	-10. -0.	5.	36.	3
	STMOB8			-0.013	0.	0.022	0.09	-5.	-5.		7.	14.		0.10	0.	Q ₂₂	44.	0
	830MT8		_	-0.024		0.040	0.15	-9.	-10.	-1.	12.	25.		0.16	3.	<b>š</b> .	24.	1
	880NT2			-0.013		0.022	0.09	-5.	-48.		8.	-23.		-0.02	-12.	0.	137.	1
	STMO88			-0.024 -0.013		0.040	0.15	-9. 42.	-55. -48.		<u>14.</u> 55.	-14. -23.		0.05	-6. -9,	<u>3.</u> 0.	<u>63.</u> 118.	<u> 2</u>
	STMOOS			-0.024		0.022	0.15	42. 40.	-46. -55.		62.	-23. -14.		0.25	-2.	3.	45.	3.
	PFBSTM			-0.014		0.021	0.09	45.	-49		58.	-23.		0.22	-12.	Ö.	141.	1
212	PFBSTM	COAL-	P 0.	-0.064	0.	0.098	0.27	<u>51.</u>	-79	6.	104.	16.	_	0.44	-4.	12.	43.	2.
	TISTMT			-0.014		0.022	0.09	-5.	-5.		6.	13.		0.10	-10.	0.	116.	-1.
	C C C TRAT	RESID	UO.	-0.085	_	0.135	0.32	-30.	-34.	4.	40.	84.		0.34	-32.	17.	73.	-5.

And the second s DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 33 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE П EMISSION UNITS= TIME 1990 COST =\$*10**9 TYPE MATCH=HEAT ****F U E L S A V I N G S*** - - - E M L S S I O N S SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS ECS ****DIRECT***** EMSR SAVING TOTAL COST LAEC FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX PART **EXPORT** SAVED MIH 28212 TISTMT COAL -0.085 0. 0.135 0.32 -30. -92. -4. 42. 35. 17. 0.25 -47. 17. 87 -3 28212 TIHRSG RESIDU O. -0.021 0. 0.014 0.06 -7. -9. -1. 4. 10. 0. 0.07 0. 163. -16. -2. 28212 TIHRSG RESIDU O. -0.073 0. 0.048 0.15 -25. -29. -4. 13. 35. 1. 0.17 -36. 119. -6. -1. 28212 TIHRSG COAL -0.021 ο. 0.014 0.06 -7. -53. 5. 9. -0.06 -30. -28. Ō. 265. -1. -25. -84. 28212 TIHRSG COAL -0.073 0. 0.048 0.15 -4. 15. -12. 12. 0.05 -51. 8. 145. -4. 28212 STIRL DISTIL O. -0.020 0. 0.015 0.06 20. 18. 6. 33. 44. 17. 0.44 -1. 0. 59. -2. 28212 STIRL DISTIL O. -0.148 n 0.112 0.24 -10. 75. 28. 0.56 -18. 131. 4. 41. -4. 4. -0,020 0. -2. 28212 STIRL RESIDU 0.015 0.06 -7. -8. 11. -1. 0.07 -1. 0. 55. -0. 28212 STIRL RESIDU O. -0.148 0. 0.112 0.24 -52. -7. 0.24 -59. -17. 31. 79. 7. 21. 36. -2. 28212 STIRL COAL -0.020 0. Λ 0.015 -7. -52. -27. 139. 0.06 -1. 6. 9.-0.06 -12. 0. 1. 28212 STIRL COAL -0.148 Ο. 0.112 0.24 ~52. -129. -7. 33. 16. 0.16 19. -11. 47. 28212 HEGT60 COAL-A -0.032 Ō. 0.004 37. -59. -2. 50. 0.02 -34. 9. 0.12 -18. O. 184. Ö. 28212 HEGT60 COAL-A 0. -0.537 O. 0.061 0.08 -63. -363. -27. 131. -29. 17. 0.16 -37. 53. 58. -8. 28212 HEGTOO COAL-A O. -0.028 0. 0.007 0.03 37. -57. -1. 50. -32. 9. 0.13 -17. 0. 177. 0. 28212 HEGTOU COAL-A 0.040 a. -0.159 0. 0.10 5. -136. -8. 71 -21. 12. 0.17 -22. 15. 70. 28212 FCMCCL COAL -0.017 O. 0.019 0.08 -28. 1. 20. -3. 11. 0.14 -18. 0. 175. 1.

28212 FCMCCL COAL -0.162 0. ٥. 0.184 276. 0.34 71. 81. 9. 183. 38. 1.00 -17. 29. 48. -O. 28212 FCSTCL COAL -0.016 0. 0. 0.020 0.08 5. -32. 1. 18. -6. 11. 0.11 -17. 0. 173. 1. 28212 FCSTCL COAL -0.222 ٥. 0. 0.274 0.39 71. 81. 232. 358. 47. 1.00 -13. 43. 42. 0. 28212 IGGTST COAL -0.020 0. 0.015 0.06 -7. -52. 6. -27. 11.-0.05 -17. 0. 174. 1. 28212 IGGTST COAL ٥. -0.193 0. 0.147 0.27 -68. -156. 8. 43. 36. 36. 0.23 -14: 29. 45. Ω. 28212 GTSGAR RESIDU -0.020 0. -0.020 0.035 0.06 -8. -8. -0. 4. 12. 2. 0.13 -1. 0. 51. -0. 28212 GTSØAR RESIDU -0.221 -0.221 0.383 0. 0.28 -83. -83. -2. 40. 126. 21. 0.41 21. 33. 29. -1. 28212 GTACOS RESIDU -0.016 0. 0.019 0.08 -16. -7. -2. -5. 12. -1.0.03-0. D. 44. 0. 28212 GTACOS RESIDU -0.131 0. 0.150 0.31 -129. -52. -40. 97. -4. 0.12 -15. 17. 23. 24. ١. 28212 GTAC12 RESIDU 0. -0.017 0. 0.018 0.08 -15. -7. -2. -4. -0. 0.04 12. -0. 0. 44. 0. 28212 GTAC12 RESIDU ٥. -0.169 Ο. 0.185 0.33 -152. -68. -18. -39. 121. -4. 0.15 20. 30. 25. 0. 28212 GTAC16 RESIDU -0.017Ō. 0.018 30.0 -15. -2. -0. 0.04 -7. -4. 12. -0. 0. 45. O. 28212 GTAC16 RESIDU -0.201 0. 0.206 0.34 -171.-42. -5. 0.16 -80. -21. 136. 23. 35. 26. 0. 28212 GTVC16 RESIDU ٥. -0.019 0. 0.017 0.07 -8. -16. -2. -4. 11. -1.0.03-0. 0. 49. -0. 28212 GTWC16 RESIDU -0.222 ٥. 0.196 0.32 -51. -184. -89. -22. 133. -7. 0.13 24. 36. 27. -0. 28212 CC1626 RESIDU O. -0.019 O. 0.016 0.07 -14. -8. -2. -3. 11. -O. O.04 -0. O. 50. <del>-</del>0. 28212 CC1626 RESIDU -0.340 -255. 37. O. 0.288 0.35 -136. -31. -55. 197. -8. 0.18 56. 27. -1. 28212 CC1622 RESIDU -0.018 -2. 0. 0. 0.017 0.07 -14. -7. -3. 11. -0. 0.04 -0. 0. 48. -0. 28212 CC1622 RESIDU n. -0.293 0. 0.272 0.35 -226 -117. -28. -47. 183. -6. 0.19 32. 50. 27. -1. 28212 CC1222 RESIDU -0.018 0. 0.017 0.07 -14. -2. -3. 12. -0. 0.04 O. O. 47. -0. 28212 CC1222 RESIDU -0.288 0. 0.273 0.36 -223. -115. -27. -45. 183. -6. 0.19 33. 49. 26. -0. 28212 CC0822 RESIDU ٥. -0.017 Ω. 0.018 0.08 -14. -7. -2. -3. 12. -0. 0.04 -0. ٥. 47. -0. 28212 CC0822 RESIDU -0.212 ٥. ٥. 0.231 0.36 -178 +85. -22. -37. 151. -4. 0.19 26. 38. 25. 0. 28212 STIGIS RESIDU -0.029 0 O. 0.006 0.03 -18. -12. -1. -7. 0. 0.00 -0. O. 59. -0. 28212 STIG15 RESIDU 0. -13.014 0. 2.721 0.17 -7859. -5206. -386. -2894. 3010. 25. 0.01 986. 1472. 37. -205. 28212 STIG10 RESIDU O. -0.027 Ω. 0.009 0.04 -17. -11. -1. -6. 8. 0. 0.01 -0. 0. 54. -0. 28212 STIG10 RESIDU O. -1.095 0. -707. -29. 0.361 0.22 -438. -247. 325. 14. 0.06 89. 133. 34. -15. 28212 STIGIS RESIDU -17. -0.025 0. 0.010 0.04 -10. -1. -6. 8. 0. 0.01 0. 0. 53. -0. 28212 STIG1S RESIDU O. 54. -0.613 0. 0.241 0.23 -418. -245. -14. -148. 203. 12. 0.07 77. 33. -7. 28212 DEADV3 RESIDU O. -0.024 0. 0.011 0.05 -27. -10. -2. -16. 9. -1.-0.04 -3. O. 71. -1.

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE ISE PEO AES CUGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE IJ ENISSION UNITS= TIME 1990 LEVEL ALL =\$*10**9 TYPE MATCH=HEAT ***** U E L SAVINGS****---EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS ECS ****DIRECT***** EMSR SAVING TOTAL COST LAEC FUEL GIL+GAS COAL GIL+GAS COAL NOX SOX PART NOX SOX EXPORT SAVED MIJH 28212 DEADV3 RESIDU O. -482. 23. -13. -0.746 0. 0.353 0.27 -830. -298. -62. 280. -27. -0.19 100. 41. 28212 DEHTPM RESIDU O. -0.019 0. -2. 70. 0.017 0.07 -29. -7. -18. 11. -1, -0.03 -3. 0. -0. 26212 DEHTPM RESIDU -0.199 0.182 0.31 -311. -80 -21. -190. 123. -6.-0.14 39. 0. ο. 4 32. -3. 52. 28212 DESCA3 DISTIL -0.026 -0,026 39. 2. -33. -5. 0.10 -2. 72. -2. Ο. 0.035 0.04 -42. 0. 28212 DESGA3 DISTIL -0.964 ٥. -0.964 1.316 0.23 -2194. -113. 2. -1779. 571. 33. -0.89 4. 120. 53. -31. 28212 DESGA3 RESIDU -0.026 0. -0.026 0.035 0.04 -126. -10. -0. -115. 10. 2. -0.78 -2. 0. 67. -1. 28212 DESGA3 RESIDU -0.964 0. -0.964 1.316 0.23 -4702. -363. -4279. 357. 70. -2.92 48. -21. -8. 4. 120. 28212 GTSCAD DISTIL -0.018 ο. -0.018 0.035 0.07 -7. -3. <u>a.</u> 4. 16. 1. 0.25 Ω. ۵. 48. -2. 28212 GTSGAD DISTIL -0.175 0. -0.175 0.344 -28. 13. 0.56 29. 0.31 -70. Ω. 39. 154 21. 29. -3. 28212 GTRA08 DISTIL 0. -0.020 0. 0.015 14. 27. 17. 0.42 0. 56. -2. 0.06 18. 6. 44. -1. 28212 GTRAOS DISTIL -0.351 0. 0.266 0.32 -151. -75. 50. 269. 45. 0.48 55. 34. -7. 28212 GTRA12 DISTIL -0.020 0.016 18. 27. 44. 17. 0.42 0. 0. 0.0714 -1. O. 55. -2. 28212 GTRA12 DISTIL 0. -0.327 0.265 44. 0.49 0. 0.33 -141. -68. 1. 51. 262. 32. 52. 33. -6. 28212 GTRA16 DISTIL O. -0.019 ٥. 0.016 0.07 14. 19. 6. 27. 44. 17. 0.42 -1. 0. 56. -2. 28212 GTRA16 DISTIL 0. -0.298 0. 0.247 0.33 -129. -60. 48. 244. 42. 0.49 28. 48. 33. -6 14. 27. 44. 28212 GTR208 DISTIL 0. -0.019 0. 0.016 0.07 19. 6. 17, 0.41 -0. C. 53. -2. 28212 GTR208 DISTIL O. . -0.241 0. 0.202 0.31 -106. 38. 204. 37. 0.47 25. 32. -44 3 38 -A. -1. 44. 28212 GTR212 DISTIL 0. -0.019 0. 0.016 0.07 14. 19. 27. 17. 0.42 0. 54. -2. 6. 28212 GTR212 DISTIL n. -0.258 ٥. 0.217 0.32 -113. -49 41. 217. 38. 0.48 26. 41. 32. -5 28212 GTR216 DISTIL O. -0.019 0. 0.07 17. 0.42 0.016 14. 19. 27. 54. -2. 6. 44. -1. ٥. -0.261 0. 0.227 28212 GTR216 DISTIL 0. 0.33 -115. -50. 44. 223. 39. 0.49 25. 42. 33. -5. 28212 GTRW08 DISTIL 0. -0.022 0. 0.013 0.05 14. 18. 6. 27. 43. 16. 0.41 -1. 0. 60. -2. -0.463 0. 299. 28212 GTRV08 DISTIL 0.267 0.29 -195. -106. 41. 50. 0.46 35. -9. 28212 GTRW12 DISTIL -0.021 27. -2. 0. Ο. 0.014 0.06 14. 18. 6. 43. 16. 0.41 -1. 0. 58. -0.439 0. 28212 GTRW12 DISTIL 0. 0.290 0.31 ~186. -100. -1. 50. 305. 50. 0.48 42. 34. -8. 28212 GTRW16 DISTIL -0.021 0. 0.014 0.06 14. 18. 27. 43. 16. 0.41 0. **59**. -2. 6. -1. 28212 GTRW16 DISTIL -0,395 O. 0.271 0.31 -168. -87. -n. 48. 47. 0.48 -7. 28212 GTR308 DISTIL -0.024 0.012 0.05 13. 17. 6. 26. 43. 16. 0.40 -0. O. -2. 28212 GTR308 DISTIL 0. -0.363 0. 0.184 0.24 -157. -80. 22. 228. 41. 0.42 37. -8. Ω. 32. 48. 28212 GTR312 DISTIL 0. -0.020 0. 0.015 .0.06 27. 44. 17. 0.41 ٥. -2. 14. 18. 6. -1. 56. 28212 GTR312 DISTIL -0.328 0.239 0.31 43, 0.47 O. Ω. -141. -68. 42. 248. 33. 33. 50. -6. 28212 GTR316 DISTIL -0.021 0.015 17. 0.41 Ο. 0.06 14. 18. 27. 44. -1. 0, <u>57.</u> 0.233 42. 0.47 28212 GTR316 DISTIL 0. -0.324 0. 0.31 -140. -67. 41. 244. 31. 33. -6. 1. 49. 26212 FCPADS DISTIL -0.024 0.012 0.05 17. 0.48 0. 20. 26. 33. 51. Ο. 72. -2. 7. -1. 28212 FCPADS DISTIL 0 -0.809 Ο. 0.392 0.28 -126. 81. 10. 261. 743. 89. 0.85 35. 109. 55. -33. 28212 FCMCDS DISTIL -0,020 0.015 0.07 17. 0.41 -2. 0. ۵. 5. 26. 6. 18. 51. O. 68. -0.535 24. 28212 FCMCDS DISTIL 0. 0. 0.414 0.36 -486. 80. -1. -179. 605. 63. 0.46 86. 51. -22. 28213 STM141 RESIDU -0.002 0. 0.003 0.01 -1. -0. 2. 0. 0.01 -0. 60. -0. Ο. - <u>C</u> 1. 0. 28213 STM141 COAL-F -0.002 ٥. 0.003 0.01 -0. -0. 1. 0.00 -2. 47. 28213 STM141 CUAL-A 0. -0.002 σ. 0.003 0.01 3. -4. -0. -1. 1. 0.01 O. 46. -0. 28213 STM088 RESIDU -0.0010. 0.001 0.00 -0. -0. -0. 0. 0.00 60. -0. Ο. 1. -0. 0. 28213 STM088 COAL-F -0.001 0.001 0.00 -0. 47. Ο. -0. -3. 1. -2. 1.-0.00 -2. 0. -0. 28213 STM088 COAL-A -0.001 ο. 0.001 0.00 3. -3. -0. -2. 1. 0.01 -1. n. 46. -0. 26213 PFBSTM COAL-P -0.0040.005 0.01 Ō. 4. 0. 0. 2. 0.02 -2. O. 47. <del>-0</del>.

5.

0. 0.02

1. 0.01

-6.

-8.

0.

63.

-1.

2.

28213 TISTMT RESIDU O.

28213 TISTMT COAL

-0,005

-0.005

ο.

0.008

0.008

0.02

0.02

-2.

-2.

-6.

-0.

-0.

DATE 06/08/79 PAGE GENERAL ELECTRIC COMPANY 35 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 6.1 FUEL AND EMISSIONS SAVINGS FUEL UNITS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 · TYPE MATCH=HEAT *****FUEL SAVINGS****---EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS ECS ****DIRECT***** EMSR SAVING TOTAL COST LAEC FUEL CIL+GAS COAL CIL+GAS COAL NOX SOX PART NOX SOX PART EXPORT SAVED MWH -0. 28213 TIHRSG RESIDU O. -0.006 0. 0.003 0.01 3. 0. 0.01 0. -2. -2. -6. 63. 1. -1. -0.006 0. -0. 28213 TIHRSG COAL Ω. 0.003 0.01 -2. -6. 1. -1. 1. 0.00 -8. 0. 50. -1. 28213 STIRL DISTIL ۵. -0.011 0. 0.008 0.02 -1. 2. 0.04 -1. O. 9. -0. -4. 26213 STIRL RESIDU O. -0.011 0. 0.008 0.02 -1. 0.02 -1. 0. 28213 STIRL COAL ٥. -0.011 0. 0.008 0.02 -4. -9. -1. 2. 1. 0.01 -1. 46. 0. 28213 HEGT60 COAL-A 0. -0.048 0. 0.003 0.01 -32. -2. 10. -3. 1. 0.02 -12. 52. -1. -0.012 0. 28213 HEGTOO COAL-A O. 0.003 0.01 -10. -1. 5. 1. 0.01 -5. -0. 28213 FCMCCL COAL -0.012 0. 0.014 0.03 6. 13. 3. 0.08 ٦. 48. -0. 28213 FCSTCL COAL -0.015 0. 0.018 0.04 3. 0.10 6. 1. 16. 24. -6. 48. -0. 28213 IGGTST COAL Ο. -0.013 0. 0.009 0.02 -4. -11. 1 . 3. 2. 2. 0.02 -6. 49. -0. 28213 GTSOAR RESIDU -0.017 0. -0.017 0.029 0.02 2. 0.03 -6. -6. -0. 59. 0. <del>-</del>1. 28213 GTACOB RESIDU 0. -0.010 0. 0.011 0.02 -3. -0. 0.01 Ō. -1. 28213 GTAC12 RESIDU 0. -0.012 0. 0.014 0.03 -11. -5. -3. 9. -0. 0.01 ٥. 58. ۵. 1. 28213 GTAC16 RESIDU O. -0.015 0. 0.015 0.03 -13. -6. -3. -0. 0.01 -2. 10. Ω. 58 n 1. 28213 GTWC16 RESIDU -0.016 0. 10. 0.014 0.03 -14. -7. -2. -4. -0. 0.01 58. n. -17. -4. 28213 CC1626 RESIDU -0.023 0. 0.019 0.04 -2. 13. -1. 0.02 58 O. -0. 0.02 28213 CC1622 RESIDU 0. -0.020 0. 0.018 0.04 -15. -8. 0. -2. -4. 12. 58. 0. 1. -0. 0.02 28213 CC1222 RESIDU O. -0.019 0. 0.018 0.04 -15. -8. 0. -2. -4. 12. 1. 58. 0. -0. 0.<u>01</u> 28213 CC0822 RESIDU -0.014 0. 0.015 0.03 -12. -6. -3. 10. 59. 0. 28213 DEADV3 RESIDU -0.059 0. -65. -2.-0.04 0.027 -24. 0.06 -38. 22. 1. 57. -0. 28213 DEHTPM RESIDU O. -0.015 0. 0.012 0.03 -23. -6. -2. -14. 8. -1.-0.01 -1. 0. 60. -0. 28213 DESGAS DISTIL -0.078 0. -0.078 0.105 0.06 -175. -142. 3.-0.22 -9. 0. 45. Ο. 0. 65. -1. 28213 DESØA3 RESIDU -0.078 -0.078 0.105 0. 0.06 -374. -29. -340. 28. 6, -0, 70 ٥. 58. -0. -0.013 0.025 28213 GTSOAD DISTIL -0.013 Ō. 0.03 -5. -2. Ō. 3. 11. 1. 0.04 66. 0. 28213 GTRAOS DISTIL 0. -0.028 0. 0. 0.020 0.04 -12. -6. 4. 20. 3. 0.06 1. 65. -0. 28213 GTRA12 DISTIL 0. -0.025 0. 0.020 0.04 -11. -5. 20. 3. 0.06 65. -0. ٥. 4. 1. 28213 GTRA16 DISTIL 0. -0.023 0. 0.018 0.04 -10. 3. 0.06 -0. -5. 0. 18. 66. 28213 GTR206 DISTIL O. ~0.018 Ö. 0.015 0.03 -8. -3. 0, 3. 15. 3. 0.05 1. 66. -0. 26213 GTR212 DISTIL 0. -0.020 0. 0.016 0.03 -9. -4. 0. 3. 16. 3. 0.05 1. 0. 66. -0. 28213 GTR216 DISTIL 0. -0.020 0. 0.G17 0.03 -9. 3. 0.05 1. -0. -4. 0. 3. 17. 0. 66. 28213 GTRW08 DISTIL 0. -0.036 0.020 . n 0.04 -15. -8. -0. 3. 23. 4. 0.07 65. -0. 28213 GTRW12 DISTIL O. -0.034 0.022 O. 0.05 -14. -8. -0. 23. 4. 0.07 1. 65. -0. -0.030 0. 0. 28213 GTRV16 DISTIL 0. 0.020 0.04 -13. -7. -0. 21. 4. 0.06 65. -0. 3. 1. 28213 GTR308 DISTIL 0. -0.028 0. 0.014 0.03 -12. -6. 0. 2. 17. 3. 0.05 0. 66. -0. 1. 28213 GTR312 DISTIL 0. -0,025 Ω. 0.018 0.04 -11. · -5. 0. 3. 0.06 -0. 18. 66. 28213 GTR316 DISTIL 0. -0.024 0. 0.017 0.04 -10. -5. 0. 3. 18. 3. 0.05 66, -0. 28213 FCPADS DISTIL 0. -0.059 0. 0.029 0.06 -9. 7. 0.18 6. 1. 19. 55. 3. €6. -1. 28213 FCMCDS DISTIL O. -0.039 O. 0.030 0.06 -36. 45. 5. 0.08 6. -0. -13. 65. -1. 28221 STM141 RESIDU 0. -0.007 0. 0.011 0.12 0. 0.12 -3. -0. 3. 0. 0. 28221 STM141 COAL-F 0. -0.007 Q. 0.011 0.12 -2. -11. -0. 4. n. 2. 0.07 0. 28221 STM141 COAL-A O. -0.007 0. 0.011 0.12 6. -11: -0. 12. Ο. 2. 0.17 51. 0. 26221 STN088 RESIDU O. -0.005 0. 0.008 0.09 -2. -0. 2. 5. 0. 0.09 ٥. 55. 0. 28221 STM088 COAL-F 0. -0.005 0. 0.008 0.09 -9. -0. 2. 0.04 56. 28221 STM088 COAL-A O. -0.005 0. 0.008 0.09 -9. -0. 11. 2. 0.13 Ō. 28221 PFBSTM COAL-P 0. -0.011 0. 0.018 0.19 8. -13. 1. 4. 0.29 -3. 18. 4. 57. 0. 28221 TISTMT RESIDU O. -0.015 0. 0.024 0.25 -6. -1. 7. 15. 1. 0.26 -10. 89. -1.

TOP DE	G AFC	9								C COMPANY							PA	<u> 36</u>
ISE PE	FUEL (	INITE	ż				ERATION RT 6.1	TECHNO FUEL		EHISSIONS		ERNATIVES	5	TUDY	VINGS A	oe		e e e
		JALIS ION UNIT					1990	FUEL	SUL	LEVEL	ALL	103		(SP	WINGS A	KE		L
	COST	0,000	=\$*10*	*9			. 1550		•	LEVEL	7LL			TY	PE MATC	H=HFAT		
															1 2 1	77 1144711		
			**F U E				***					INGS -		-	CAPITL-	-ELECTRI	C POWE	R
PROCS	ECS	ECS ***	*DIRECT	****	TOT/	LFE	SR	DIREC	ST:		***TOTA	L * * * * * * * * * * * * * * * * * * *		<b>EMSR</b>	SAVING	TOTAL	COST	LAEC
		FUEL 01	L+GAS	COAL O	IL+GAS	COAL	NOX	SØ)	< P	ART NOX	SØX	PART				EXPORT	;	SAVED
			_		_											MWH		
	TISTMT		0.	-0.015		0.024	0.25	-5.	-16.	• •	7.	7.		0.20	-15.	0.	100.	-1.
		RESIDU		-0.010		0.009	0.09	-3.	-4.		3.	6.	0.		-10.	0.	95.	-1.
	TIHRSG		<u> </u>	<u>-0.010</u>	<u>0.</u>	0.009	0.09	<u>-3.</u>	<u>-12.</u>	<u>-o.</u>	<u> 3.</u>	<u>-1.</u>	<u>2.</u>	0.04	<u>-14.</u>	<u> </u>	100.	<u>-1.</u>
	STIRL	DISTIL	0.	-0.026	0.	0.021	0.22	-2.	-4.		13.	23.	. 5.		2.	o.	45.	-0.
28221		RESIDU COAL	0. 0.	-0.026 -0.026	0. 0.	0.021	0.22	-9. -0	-10.		6.	15.		0.22	2.	0.	40.	0.
	HEGT85		0.	-0.051	0.	0.012	0.22	-9. -3.	-22. -37.	-1. -2	6.	5. - 2		0.16	-1, -16	0.	46.	1.
	HEGT65		0.	-0.031 -0.141	<u>0.</u>	0.012	0.16	-3. -20.	-37. -91.	<u>-3.</u> -7.	18. 36.	<u>-2.</u> 5.	<u>2.</u> 5.	0.21	-16. -24.	<u>0.</u> 10.	111. 77.	<u>-2.</u> -4.
	HEGT60		0.	-0.049	o.	0.014	0.15	-3.	-36.	-7. -2.	17.	-0.		0.22	-14.		9 <b>9</b> .	-4. -1.
	HEGT60		0.	-0.055	0.	0.014	0.15	-4.	-30. -39.		#7. 19.	-0. 0.	3. 3.	0.22	-14.	0. 1.	99. 91.	-1. -1.
	HEGTOO		o.	-0.023	0.	0.007	0.08	1.	-20.		11.	-3.	2.	0.23	-8.	Ò.	76.	-0.
	FCMCCL		0.	-0.026	0.	0.030	0.31	11:	13.	<del></del>	29.	44.	<del>- 6.</del>	0.12	-8.	<del>0.</del>	71.	-0.
	FCSTCL		o.	-0.028	o.	0.035	0.37	8.	8.	• • •	29.	44.	6.	0.90	-9.	o.	77.	-o.
	FCSTCL.		ā.	-0.038	õ.	0.047	0.40	11.	13.		39.	60.		1.00	-9.	2.	63.	-0.
	IGGTST		Ö.	-0.033		0.026	0.27	-12	-26.	1	8.	7.	6.	0.24	-8.	ō.	73.	-0.
			-0.031	0.	-0.031	0.058	0.28	-12.	-12.	-0,	6.	20.	3.	0.39	. 2.	<del>- ö.</del>	36.	Ö.
	GTAC08		0.	-0.021	0.	0.024	0.25	-21.	-9.	-2.	-6.	16.	-1.		2.	o.	37.	ĩ.
	GTAC12		o.	-0.027	0.	0.030	0.31	-24.	-11.		-6.	19.		0.14	3.	o.	32.	i.
	GTAC16		0.	-0.030	o.	0.033	0.34	-26.	-12.	-3.	-6.	• - :	-1.	0.17	3.	Ŏ.	31.	i.
	GTAC16		0.	-0.031	0.	0.033	0.34	-27.	-12.	-3.	-6.	22.	-1.		3.	0.	30.	1.
28221	GTWC16	RESIDU	0.	-0.034	Ο.	0.030	0.31	-23.	-13.		-8.	20.		0.13	2.	O.	35.	0.
28221	GTWC16	RESIDU	0.	-0.036	Ο.	0.031	0.32	-30.	-14.	-4.	-8.	21.	-1.	0.13	3.	o.	32.	1.
28221	CC1626	RESIDU	Ο.	-0.034	Ο.	0.029	0.31	-25.	-14.	·-3.	-5.	20.	-1.		2.	O.	40.	o.
28221	CC1626	RESIDU	0.	-0.057	0.	0.049	0.35	-42.	-23.	-5.	-9.	34.	-1.	0.19	5.	4.	33.	<u> 0.</u>
28221	CC1622	RESIDU	Ο.	-0.033	Ο.	0.031	0.32	-25.	-13.	-3.	-5.	21.	-1.	0.17	2.	0.	37.	0.
28221	CC1622	RESIDU	Ο.	-0.049	Ο.	0.046	0.36	-38.	-20.	-5.	-7.	31.	-1.	0.20	4.	3.	32.	Ο.
28221	CC1222	RESIDU	0.	-0.032	0.	0.031	0.32	-25.	-13.	-3.	<b>~5</b> .	21.	-1.	0.18	2.	0.	36.	O
28221	CC1222	RESIDU	0.	-0.049	0.	0.047	0.37	-37.	-19.	-5.	-7.	31.	-1.	0.20	4.	3.	31.	0.
	CC0822		0.	-0.030	0.	0.033	0.35	-25.	-12.	-3.	-5.	22.	-0.	0.19	2.	Ο.	35.	0.
	CC0822		Ο.	-0.036	Ο.	0.040	0.37	-30.	-14.	-4.	-6.	26.	-1.	0.20	3.	1.	31.	1.
	STIG15		0.	-0.052	0	0.011	0.11	-32.	-21.	-2.	-12.	12.	0.	0.01	1.	0.	<u>51.</u>	-0.
	STIG15		Ο.	-2.094	Ο.	0.438		1265.	-638.		-466.	484.	4.	0.01	152.	232.	39.	-35.
	STIG10		0.	-0.048	0.	0.016	0.16	-31.	-19.	• •	-11.	14.		0.05	2.	0.	46.	-0.
		RESIDU	0.	-0.176	0.	0.058	0.22	-114.	-70.	-5.	-40.	<b>52</b> .		0.06	13.	16.	38.	-2.
	STIGIS		0.	<u>-0.045</u>	0.	0.018	0.19	-31.	<u>-18.</u>	<u>-1.</u>	<del>-11.</del>	15.	1.		2.	0.	44.	<u>-o.</u>
	STIGIS		0.	-0.099	0.	0.039	0.23	-67.	-39.	<b>-</b> ·	-24.	33.		0.07	7.	7.	37.	-1.
		RESIDU	0.	-0.041	0.	0.023	0.24	-47.	-16.		-27.	17.		-0.13	-0.	0.	51.	-0.
	DEADV3		0.	-0.095	0.	0.053	0.29	-110.	-38.		~63.	40.		-0.16	4.	8.	41.	-1.
	DEHTPM		0.	-0.030	0.	0.034	0.35	<u>-46.</u>	·-12.	<u>-3.</u>	-26.			-0.06	<u>0.</u>	<u> </u>	42.	<u> </u>
	DEHTPM		0.	-0.032	0.	0.036	0.36	-50.	-13.		-28.	23.		-0.06	1.	0.	39.	0.
		DISTIL		0.	-0.044	0.063	0.20	-103.	-0.		-84.	32.		-0.68	-0.	0.	58.	-1.
		DISTIL		0.	-0.119	0.171	0.26	-284.	-12.		-230.	76.		-0.86	1.	10.	53.	-3. -0
	DESUNS	RESIDU	-0,044	Ο.	-0.044	0.063	0.20	<b>~225</b> .	<u>-17.</u>	-0.	-205.	18.	ა.	<u>-2.46</u>	-0.	0	<u>52.</u>	-0.
		BESINI	-0 110	<u> </u>	-0 110	0 171	0 20	-600	4 🕿	4	EE./	40	_	-0 0-		10	AO	-2
28221	DESCA3	RESIDU DISTIL		0. 0.	-0.119 -0.027	0.171 0.054	0.26 0.29	-609. -11.	-45. -4.		-554. 6.	49. 25.		-2.85 0.49	1. 3.	10. 0.	48. 37.	-2. 0.

en de la composition La composition de la

DATE 06/03/79 ISE PEO AES GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS
TIME 1990 LEVEL ALL

FUEL UNITS

EMISSION UNITS=

ALTERNATIVES STUDY

(SAVINGS ARE

PAGE 37

D

	EMISSI COST	OIA OIV	:: 15= =\$*10	)**a		TIME	1990			LEVEL	ALL			T	YPE MATC	H=HFAT		
*******************	3001		-0-10	<del>,</del>									-	<u> </u>	ITE HATO	::-!!60!		
			****F U			1 N G S**					SAVI					-ELECTRI		
PROCS	ECS					TALFES								EMSR	SAVING		COST	LAEC
		FUEL	OIL+GAS	COAL O	LTGAS	COAL	XOM	SOX	PART	NOX	SOX	PART				EXPORT MWH		SAVED
8221	GTRA08	DISTI	ı o.	-0.047	ο:	0.042	0.34	-20.	-9.	٥.	8.	40.	7	0.50	3.	2.	38.	-0.
	GTRA12			-0.033		0.030	0.32	-13.	- <b>5</b> .	1.	7.	30.		0.49	2.	ō.	42.	-0.
	GTRA12			-0.045		0.042	0.35	-20.	-9.	ò.	9.	40.		0.50	3.	2.	37.	-0.
				-0.033	Ō.	0.031	0.32	-13.	-5.	1.	7.	30.	6.		1.	Ö.	43.	-0.
8221	GTRA16	DIST	L 0.	-0.042	0.	0.039	0.35	-18.	-8.	0.	8.	37.	6.	0.50	3.	2.	38.	-0.
8221	GTR208	DISTI	L 0.	-0.033	Ο.	0.030	0.32	-14.	-5.	1.	6.	<b>30</b> .	6.	0.48	2.	0.	:38.	-0.
	GTR208			<b>-0.03</b> 5	0.	0.033	0.32	-16.	-6.	0.	6.	32.	6.	0.48	3.	0.	36.	<u> </u>
	GTR212			-0.033		0.030	0.32	-14.	-5.	1.	6.	30.	6.	0.48	2.	o.	40.	-0.
	GTR212			-0.038	0.	0.035	0.33	-17.	-7.	ο.	7.	34.		0.49	3.	1.	37.	-0.
	GTR216			-0.032		0.031	0.32	-14.	-5.	1.	7.	30.		0.49	2.	0.	40.	-0.
	GTR216			-0.038	0.	0.036	0.34	<u>-17.</u>	<u>-7.</u>	<u>0.</u>	<del>7</del> _	<u>35.</u>		0.49	<u> 3.</u>		<u> 37.</u>	<u>-0.</u>
	GTRV08			-0.038	0.	0.025	0.26	-15.	-7.	0.	6.	29.		0.46	1.	0.	47.	-0.
	GTRW08			-0.064 -0.037	0. 0.	0.042 0.027	0.30 0.28	-27. -14.	-14. -6.	-0. 0.	7. 7.	45. 29.		0.47 0.47	4. 1.	4. 0.	40. 46.	-1. -0.
	GTRW12			-0.063	0.	0.027	0.20	-27.	-14.	0.	á.	46.		0.48	4.	4.	39.	-0. -1.
	GTRW16			-0.036	<del>0.</del>	0.027	0.28	-14.	-6.	<del>- 0.</del>	<del></del>	29.	5.	0.47	<del>- 7:</del>	0.	46.	- <u>0.</u>
	GTRW16			-0.058	o.	0.043	0.32	-25.	-12.	Ŏ.	8.	44.		0.48	3.	4.	40.	-i.
	GTR308			-0.040		0.023	0.24	-16.	-7.	Ŏ.	4.	28.		0.43	ž.	õ.	45.	-o.
	GTR308			-0.051	o.	0.030	0.26	-22.	-11.	õ.	4.	35.		0.44	3.	2.	41.	-0.
	<b>GTR312</b>			-0.036	Ō.	0.027	0.29	-14.	-6.	Ö.	6.	29.	6.		Ž.	0.	43.	-0.
8221	<b>GTR312</b>	DISTI	L 0.	-0.050	0.	0.038	0.32	-22.	-1Ò.	Ο,	7.	39.	7.	0.48	4.	2.	38.	-0.
8221	GTR316	DIST	LO.	-0.036	Ο.	0.027	0.28	-15.	-6.	Ο.	6.	29.	6.	0.47	2.	Ο.	44.	-0.
28221	<b>GTR316</b>	DIST	L 0.	-0.049	0.	0.037	0.31	-21.	-10.	0.	7.	38.	7.	0.48	3.	2.	39.	-0.
	FCPADS			-0.043		0.021	0.22	-4.	7.	1.	17.	42.		0.75	1.	0.	6C.	-1.
	FCPADS			-0.130		0.063	0.28	-20.	13.	2.		120.		0.85	6.	12.	56.	-5.
	FCHCDS			-0.036		0.028	0.29	-30.	8.	1.	-9.	43.		0.45	1.	0.	55.	-1.
	FCHCDS			-0.086	0.	0.067	0.36	-78.	<u> 13.</u>	-0.	-29.	97.		0.46	<u>4.</u>	8.	<u>51.</u>	<u>-3.</u>
	STH141			-0.004	0.	0.007	0.02	-1.	-2.	-0.	2.	4.		0.02	-0.	0.	59.	0.
	STM141			-0.004	0.	0.007	0.02	- <u>1</u> .	-8.	-0.	2.	-1.		0.01	-2.	0.	48.	Q.
	STM141 STM088			-0.004 -0.003	0. 0.	0.007 0.004	0.02	5.	-8.	-0. -0.	9.	-1. 3.		0.03	-2, 0.	0.	47. 60.	0. 0.
	STM088			-0.003		0.004	0.01	-1. -1.	-1. -7.	<del>-0.</del>	1. 2.	<del>-3.</del>		0.01	<del>-2.</del>	<u>0.</u>	48.	<del>0.</del>
	STM088			-0.003		0.004	0.01	6.	-7.	-0.	8.	-3. -3.		0.03	-2.	0. 0.	47.	o.
	PFBSTM			-0.008		0.004	0.04		-10.	1.	14.	1.		0.07	-3.	Ö.	48.	o.
	TISTMT			-0.011	o.	0.017	0.06	-4.	-4	-1.	5.	10.		0.06	~9,	õ.	67.	-1.
	TISTMT		0.	-0.011	0.	0.017	0.06	-4.	-12.	-1.	5.	4.		0.04	<del>-13.</del>	Ŏ.	<del>57.</del>	-1.
	TIHRSG			-0.010		0.007	0.02	-3.	-4.	-o.	Ž.	<b>5</b> .		0.02	-9.	õ.	68.	-1.
	TIHRSG		0.	-0.010		0.007	0.02	-3.	-11.	-0.	2.	-2.		0.01	-13.	o.	57.	-1.
8241	STIRL.	DIST	L 0.	-0.021	Ο.	0.016	0.05	-1.	-3.	1.	11.	18.	4.	0.12	2.	ο.	64.	-0.
0241	STIRL.	RESIL	U O.	-0.021	0.	0.016	0.05	-7.	-8.	-2.	4.	11.	-1.	0.05	2.	0.	56.	0.
	STIRL	COAL	Ο.	-0.021	Ο.	0.016	0.05		-18.	<b>- 1</b> :.	5.	3.		0.04	-1.	0.	46.	1.
	HEGT60			-0.067		0.010	0.03		-46	-3.	17.	-3.		0.06	-15.	Ο.	59.	-1.
	HEGT00			-0.022		0.006	0.02		-19.	<u>-1.</u>	10.	-3.		0.03	-7.	0.	52.	-0.
	FCMCCL		0.	-0.022		0.025	0.09	10.	11.	1.	25.	38.		0.25	-7.	0.	51.	-0.
	FCSTCL		0.	-0.029		0.036	0.12	10.	11.	1.	31.	47.		0.31	-8.	o.	51.	-0.
6241	IGGTST	CUAL	Ο.	-0.025	U.	0.019	0.06	-9.	-21.	1.	5.	4.	ວ.	0.05	-8.	Ο.	52.	-0.

DATE 06/08/79 39 GENERAL ELECTRIC COMPANY PAGE ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY (SAVINGS ARE REPORT 6.1 FUEL AND EMISSIONS SAVINGS FUEL UNITS EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$x10xx9 TYPE MATCH=HEAT ****F U E L SAVINGS****- -- EMISSIONS SAVINGS -- - CAPITL--ELECTRIC POWER---PROCS ECS ****DIRECT*****----TOTAL----FESR ------DIRECT-----********TOTAL******* EMSR SAVING TOTAL COST LAEC FUEL OIL+GAS COAL OIL+GAS COAL Nax SOX PART NOX SOX EXPORT MV/H 28242 HEGT85 COAL-A 0. **-0.059** 0. 0.024 0.19 -7. -40. -3. 20. 3. 0.25 -15. 0. 28242 HEGT60 COAL-A 0. -0.032 0. 0.013 0.10 -24. -2. -2. 13. 2. 2. 0.14 -10. 0. 65. -1. 28242 HEGTOO COAL-A O. -0.016 0. 0.006 0.05 1. -14. 8. -2. 1. 0.07 -6. 57. -0 28242 FCMCCL COAL 0. -0.019 0. 0.022 0.17 8. 9. 1. 21. 32. 4. 0.50 -6. 56. -0. 28242 FCSTCL COAL 0. -0.030 O. 0.038 -7. 0.30 8. 9. 30. 48. 6. 0.72 0. 55. 0. 1. -7. 0. 7. 28242 IGGTST COAL -0.027 0. 0.022 ~21. 0.17 -9. 7. 5. 0.15 0. 58. -0. 1. 28242 GTSGAR RESIDU -0.021 0. -0.021 0.041 0.15 -8. 2. 0.20 0. -9 -O. 14. 48. 28242 GTACOS RESIDU O. -0.016 0. -6. -5. -0. 0.05 0.018 0.14 -15. 11. 1. 48. 0. 0. 0.022 -8. -0. 0.08 28242 GTAC12 RESIDU O. -0.019 0. 0.17 -17. -2. -4. 14. 2. ٥. 46. 1. 28242 GTAC16 RESIDU O. -0.022 0. -0. 0.09 0.024 0.19 -9. -2. -19. -4. 16. 2. 45. Ò. 1. 28242 GTWC16 RESIDU O. -0.026 ٥. 0.023 -22. -10. 0 18 -3. -6. 16. -1. 0.08 46. O. 28242 CC1626 RESIDU -0.045 Ō. 0.040 0.32 -33. -18. -6. 27. -1. 0.17 3. 37. 1. 0. 28242 CC1622 RESIDU O. -0.039 0. 0.038 -5. 0.30 -16. -4. 25. -1.0.173. -29. 0. 38. 1. 28242 CC1222 RESIDU O. -0.039 0. 0.038 25. 0.30 -29. -15. -4. -5. -1.0.173. 0. 38. 1. 28242 CC0822 RESIDU O -0.029 ٥. 0.033 0.26 -12. -3. 21. -23 -4 -0.0.15Ω 42 28242 STIG15 RESIDU -0.085 0.018 0.14 -51. -34. -19. 20. 0. 0.01 n. 3. O. 47. -D. 28242 STIG15 RESIDU O. **-1.526** 0. 0.319 0.17 -922. -610. -45. -339. 353. 3. 0.01 100. 163. 38. -24. 28242 STIG10 RESIDU -0.077 O. 0.025 0. 0.20 -50. -31. -2. -17. 23. 1. 0.06 3. 0. 42. -0. 28242 STIG10 RESIDU -0.128 0. 0.042 0.22 -83. -51. -3. -29. 38. 2. 0.06 38. -1. 28242 STIGIS RESIDU -0.072 0. 0.028 0.22 -49. -29. -17. 24. 1. 0.07 Ō. 38. Ò. 28242 DEADV3 RESIDU O. -0.059 0. 0.037 0.29 -70. -24. -5. -40. 27. -2. -0.13 42. 0. 1. 26242 DEHTPM RESIDU O. -0.022 0. 0.029 0.23 -36. -9. -2. -19. 19. -0. -0.01 48. 0. Ω. 28242 DESGAS DISTIL -0.069 0. -0.069 0.103 0.27 -170.-6. 0. -138. 47. 3.-0.82 0. 51. -1. 28242 DESCAS DISTIL -0.072 -0.072 0.108 0. 0.27 -180. -7. O. -146. 50. 3. -0.83 50. -1. 1. 28242 DESGAS RESIDU -0.069 0. -26. -0.069 0.103 0.27 -366. -1. -333. 30. 6.-2.78 0. 0. 45. -0. 28242 DESCAS RESIDU -0.072 0. -27. -0.072 0.108 0.27 -386. -1. -351. 32. 6. -2.79 1. 44. -0. 1 . 28242 GTSCAD DISTIL -0.019 0. -0.019 0.039 0.16 -8. -3. ο. 18. 2. 0.23 53. 0. 0. 4. -0.031 0. 5. 0.34 28242 GTRAOS DISTIL O. 0.030 0.24 -13. -6. Ō. 6. 28. 2. Ö. 49. Ō. 28242 GTRA12 DISTIL 0. -6. 5. 0.34 -0.030 O. 0.030 0.24 28. 2. 0. -13. 0. 6. 0. 49. 28242 GTRA16 DISTIL O. -0.028 0. -5. 0.028 0.22 27. 5. 0.32 0. -12. 0. 1. 0. 50. 28242 GTR208 DISTIL 0. -0.024 0. 0.024 0.19 -4. ٥. 23. 4. 0.27 52. 0. -11. 28242 GTR212 DISTIL 0. -0.026 0. 0.025 0.20 -12. -4. Ō. 5. 24. 4. 0.29 <u>51.</u> 1, 0. n. 28242 GTR216 DISTIL O. -0.026 0. 0.026 0.21 -12. -4. 0. 25. 4. 0.30 1. 51. 0. 28242 GTRWOS DISTIL O. -0.043 0. 0.030 0.24 -18. -9. Ο. 31. 5. 0.36 0. 48. -0. 28242 GTRV12 DISTIL 0. -0.042 0.033 0.26 -9. 33. 5. 0.38 46. 0. -18. 28242 GTRW16 DISTIL -0.040 0.031 0.25 -17. -8. 31. 5. 0.36 0. -0. 28242 GTR308 DISTIL 0. -0.033 0. -7. -0. 0.022 0.17 -15. 0. 3. 24. 4. 0.28 0. 52. 28242 GTR312 DISTIL 0. -0.035 -7. 0. Ο. 0.028 0.22 -15. 0. 5. 28. 5. 0.33 2. 0. 49. 28242 GTR316 DISTIL -0.035 ٥. 0.027 0.21 -15. -Ż. 0. 28. 5. 0.32 ٥. 50. -n. 5. 28242 FCPADS DISTIL O. -0.069 0.034 0.27 -10. 8. 23. 8, 0.83 Ō. 56. -2. n 1. ο.

Au lend

Section .

28242 FCPADS DISTIL O.

28242 FCMCDS DISTIL O.

28651 STM141 RESIDU O.

28651 STM141 COAL-F 0.

28242 FCMCDS DISTIL

28651 STM141 RESIDU

-0.095

-0.058

-0.063

-0.014

-O.115 O.

-0.014 0.

ο.

0.

0.046

0.045

0.049

0.023

0.191

0.023

0.28

0.35

0.36

0.07

0.32

0.07

-15.

-52.

-57.

-40.

-5.

-5.

9.

9.

9.

-6.

-46.

-66.

1.

-0.

-0.

-1.

-6.

-1,

31.

-19.

-21.

7.

9,

57.

87.

66.

71.

14.

118.

-37.

10. 0.85

7. 0.46

7. 0.46

1. 0.08

8. 0.34

13.-0.05

4.

2.

3.

-0.

24.

-16.

4.

0.

1.

0.

0.

25.

54.

51.

49.

45.

18.

166.

-2.

-1.

-1.

0.

2.

2.

and the way weather a reserved to the property of the

Kaning !

	06/08/79 0 AES	<u></u>	<del></del>			COGEN	ERATION		<b>WILCOY</b>	C COMPANY		TERNATIV	ES S	TUDY			<del></del>	AGE 40
	FUEL	UNITS	.=				RT 6.1	FUEL		EMISSIONS			•		AVINGS A	RE		
		ION UNIT	S=				1990			LEVEL	1000 1717							
	COST		=\$*10*	k * 9										T۱	PE MATO	H=HEAT		
	<del></del>					·				<del></del>								
		***	**F U E	EL	SAV	I N G S*	***	- E 14 I	SSI	ONS	SAV	INGS		<b>-</b>	CAPITL-	-ELECTRI	C POWE	ER
RUCS	ECS	ECS ***	*DIRECT	[****	TOT	ALFE	SR	DIRE	ECT		***TOT	AL****	**	<b>EMSR</b>	SAVING	TOTAL	COST	LAEC
		FUEL ØI	L+GAS	COAL O	L+GAS	COAL	NO	ં કલ	5X P	ART NOX	Se	K PAR	T	- 4 4.		EXPORT		SAVED
																MWH		
651	STM141	COAL-F	Ο.	-0.115	Ο.	0.191	0.32	-40.	-127.	-6.	60.	49.	24.	0.25	6.	25.	30.	5.
651	STM141	COAL-A	Ο.	-0.014	Ο.	0.023	0.07	60.	-66,	-1.	74.	-37.	13.	0.17	-14.	Ο.	154.	2.
651	STM141	COAL-A	0,	-0.115	0.	0.191	0.32	46.	-127.	-6.	147.	49.	24.	0.41	12.	25.	25.	ି 6
3651	STM088	RESIDU	0.	-0.014	<del>-</del> ō.	0.023	0.07	-5.	-6.	-1.	7.	14,	1.	0.08	0.	0.	44.	0,
8551	STM088	RESIDU	Ο.	-0.087	0.	0.145	0.28	-31.	-35.	-4.	43.	89,	6.	0.30	19.	18.	17.	2.
3651	STM088	COAL-F	Ο.	-0.014	0.	0.023	0.07	-5.	-66.	-1.	9.	-37.	13.	-0.05	-16.	0.	168.	2.
	STM088		0,	-0.087	0.	0.145	0.28	-31.	-110.	-4.	46.	26	21.		1	18.	<u>34.</u>	4.
			0.	-0.014	0.	0.023	0.07	60.	-66,	-1.	74.	-37.	13.		-14.	0.	154.	2
			Ο.	-0.087	Ο.	0.145	0.28	50.	-110.	-4.	127.	26.		0.37	6.	18.	29.	5
	PFBSTM		0.	-0.014	0.	0.023	0.07	60.	-66.	- <u>1</u> .	74.	-37.		0.17	-14.	0.	158.	2
			0.	-0.182	0.	0.290	0.38	<u>66.</u>	<u>-167.</u>	<u>7.</u>	220.	100.		0.53	<u>14.</u>	41.	<u> 29.</u>	5
	TISTMT		0.	-0.014	0.	0.023	0.07	-5.	-6.	- <u>1</u> .	7.	14.	1,		-9.	0.	103.	-1
	TISTMT		0.	-0.145	0.	0.231	0.35	-51.	-58.	-7.	69.	144.		0.37	-35.	32.	62.	-6
			0.	-0.014	0.	0.023	0.07	-5.	-66.	-1.	9.	-37.		-0.05	-24.	. 0.	221.	1
	TISTMT		<u>0.</u>	-0.239	0,	0.381	0.42	<u>-84.</u>	-201.	<u>-12.</u>	118.	147.		0.36	<u>-75.</u>	55.	64.	<u>-6</u>
			0.	-0.019	0.	0.018	0.06	-7.	-8.	-1.	5.	12.	1.		-16.	0.	156.	-2
		RESIDU	0.	-0.083	0.	0.080	0.18	-29.	⁻ -33.	-4:	23.	54.		0.19	-42.	12.	108.	-7
	TIHRSG		0,	-0.019	0.	0.018	0.06	-ÿ.	-69.	-1.	7.	-40.		-0.07	-33.	0.	286.	-1
	TIHRSG		<u>o.</u>	<u>-0.136</u>	<u>o.</u>	0.132	0.24	<u>-48.</u>	<u>-139.</u>	<u>-7.</u>	<u>41.</u>	<u> 16.</u>		0.15	<u>-87.</u>	22.	118.	<u>-8</u>
	STIRL	DISTIL	0.	-0.020	0.	0.017	0.05	30.	28.		44.	57.	23.		-3.	0.	72.	-3
	STIRL	DISTIL	0.	-0.237	0.	0.194	0.27	-20.	-33.	5.	121.	212.		0.57	15.	37.	39.	-7
	STIRL	RESIDU	0.	-0.020	0.	0.017	0.05	<b>∽7.</b>	-8.	-1.	5.	12.	<u>o</u> .		-3.	0.	67.	-0
	STIRL	RESIDU	<u> </u>	-0.237	<u>o.</u>	0.194	0.27	<u>-83.</u>	<u>-95.</u>	-21.	<u>54.</u>	134.	<u>-5.</u>		15.	<u>37.</u>	<u>35.</u>	<u>-3</u>
	STIRL	COAL	0.	-0.020	0.	0.017	0.05	-7.	-70.		7.	-41.		-0.07	-17.	0.	174.	2
	STIRL	COAL	Q.	-0.390	0.	0.319	0.32	-136.	-291.	-19.	94.	105.		0.26	-17.	63.	43.	-0
		COAL-A	0.	-0.029	0.	0.008	0.03	58.	-75.	-1.	72.	-46.		0.13	-20. -20	0.	198.	-19
	HEGT85		<u>0.</u>	-1.708 -0.028	<u>0.</u>	0.481	0.19 0.03	<i>-</i> 262. 58.	-1083. -74.	-85.	445.	123.		0.27	<u>-32.</u> -20.	202.	<u>45.</u> 195.	-13
	HEGT60		0, 0.	-0.743	0. 0.			-86.	-74. -503.	-1. -37.	72.	-45.	12.			0.	49.	-8
		COAL-A	0. 0.	-0.743	0.	0.242 0.009	0.19 0.03	58.	-74.		233. 72.	44. -45.		0.27	-34. -19.	89. O.	194.	-0
		COAL-A	0. 0.	-0.332	0.	0.009	0.03 0.15	-12.	-74. -257.	-17.	133.	-45. -6.		0.14	-19. -27.	38.	57.	-3
	FCMCCL		<del>0.</del>	-0.561	0.	0.246	0.22	100.	115.	12.	362.	565.		1.00	-11.	72.	45.	-4
			o.	-0.765	0.	0.539	0.34	100.	115.		522.	836.		1.00	10.	119.	37.	-2
651	IGGTST		o.	-0.693	0.	0.225	0.19	~243.	-474.	9.	55.	37.		0.15	3.	83.	39.	-2
		RESIDU		0.030	-0.020		0.05	-2.	-7.	-0.	10.	13.	-	0.14	-1.	o.	55.	-0
		RESIDU	-0.272		-0.272		0.30	-82.	-102.	-2.	81.	175.	28.		33.	44.	27.	-1
		RES! DU	0.	-0.017	0.	0.020	0.06	-6.	-7.		6.	13.		0.07	-1.	Ŏ.	50.	-o.
	GTACO8		ã.	-0.189	o.	0.213	0.31	-139.	-76.	-17.	-11.	139.		0.20	28.	34.	23.	1
651		RESIDU	Õ.	-0.018	Ö.	0.020	0.06	-6.	-7.	-1.	6.	13.	i.		-1.	o.	49.	-0
	GTAC12		0.	-0.237	O.	0.264	0.33	-168.	-95.	-21.	-8.	172.	<del>-i.</del>		34.	43.	24.	1
	GTAC16		Ö.	-0.018	ō.	0.019	0.06	-6.	-7.		6.	13.		0.07	-1.	o.	50.	-0
		RESIDU	0.	-0.271	õ.	0.293	0.34	-188.	-108.	-23.	-8.	192.		0.24	36.	49.	25.	0
	GTWC16		0.	-0.020	0.	0.017	0.05	-7.	-8.	1	5.	12.	0.	0.06	-1.	0.	54.	0
	GTWC16		Ö.	-0.318	Ō.	0.279	0.32	-216.	-127.		-27.	190.	-4.		40.	52.	26.	-1
651	CC1626	RESIDU	0.	-0.020	0.	0.017	0.05	-7.	-8.	-1.	5.	12.	0.		-1,	0.	54.	-0
												1 50 1	•					

From the state of the state of

PAGE 41

GENERAL ELECTRIC COMPANY

ALTERNATIVES STUDY

DATE 06/08/79
ISE PEO AES
FUEL UNITS = EMISSION UNITS=

COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS
TIME 1990 LEVEL ALL

(SAVINGS ARE

0

COST =\$*10**9	TYPE MA	TCH=POUR
----------------	---------	----------

	COST		=\$*10	**9										TY	PE MATO	H=PO\/R		
		a de la companya de	**F U						SSI			INGS	-			-ELECTRI		
ROCS	ECS											TAL****		EMSR	SAVING	TOTAL	CUST	
		FUEL 01	L+GAS	COAL OI	IL+GAS	COAL	NC	X SC	DX PA	RT NO	ox se	OX PAF	₹T			EXPORT	·	SAVED
																MWH		tara a series
28651	CC1622	RESIDU	Ο.	-0.019	Ο.	0.018	0.06	-7.	-8.	-1.	5.	12.	0.	0.06	-1.	0.	52.	-0.
28651	CC1622	RESIDU	Ο.	-0.457	0.	0.437	0.37	-300.	-183.	-38.	-16.	292.	-3.	0.25	58.	80.	26.	-1.
		RESIDU	Ö.	-0.019	o.	0.018	0.06	-7.	-8.	-1.	5.	12.		0.06	-0.	0.	51.	-0.
		RESIDU	<del>0.</del>	-0.452	Ö.	0.439	0.37	-297.	-181.	-37.	-13.	293.		0.26	60.	80.	25.	-0.
	CC0622		o.	-0.018	Ö.	0.020	0.06	-6.	-7.	-1.	6.	13.		0.07	-1.	o.	51.	-0.
		RESIDU		-0.337	Ö.	0.377	0.38	-228.	-135	-28.	-1.	245.		0.27	49.	63.	24.	Ĭ.
			_															
		RESIDU	0.	-0.031	<u>0.</u>	0.006	0.02	-11.	-12.	<u>-2.</u>		7.		0.03	<del>1</del>	0.	63.	<u>-1.</u>
		RESIDU		-18.550	0.	3.879		11156.	-7420.	-554.		4290.		0.01	1485.	2100.	37.	-295.
		RESIDU		-0.028	ο.	0.009	0.03	-10.	-11.	-1,	2.	8.		0.03	-1.	0.	59.	-0.
		RESIDU	Ο.	-1.560	Ο.	0.514	0.22	-962.	-624.	-45.	-306.	463.		0.08	135.	191.	35.	-21.
		RESIDU	0.	- <u>0, 027</u>	0.	0.010	0.03	-9.	-11.	<u>-1.</u>	2.	9.		0.04	-0.	0.	57.	<u>-o.</u>
8551	STIGIS	RESIDU	0.	-0.874	0.	0.343	0.23	-550.	-349.	-24.	-165.	290.	13.	0.10	82.	111.	33.	-11.
8651	<b>DEADV3</b>	RESIDU	Ο.	-0.024	G.	0.014	0.04	-8.	-9.	-1,	4.	10.	0.	0.05	-5.	o.	83.	-1.
8651	<b>DEADV3</b>	RESIDU	0.	-0.803	Ο.	0.462	0.30	-824.	-321.	-64.	-423.	347.	-21.	-0.07	31.	115.	40.	-13.
8651	DEHTPM	RESIDU	0.	-0.017	Ο,	0.020	0.06	-6.	-7.	-1.	6.	13.		0.07	-5.	ο.	78.	-1.
		RESIDU	0.	-0.280	0.	0.330	0.37	-327.	-112.	-24.	-133.	213.	1.	0.10	14.	54.	35.	-3.
		DISTIL			-0.025	0.037	0.04	24.	58.	2.	33.	68.		0.53	-4.	o.	84.	-3.
		DISTIL			-0.998	1.451	0.26	-2063.	-100.	2.	-1606.	654.		-0.61	8.	133.	52.	-32.
		RESIDU			-0.025	0.037	0.04	-3.	-10.	-0.	9.	11.		0.12	-4.	0.	79.	-1.
		RESIDU			-0.998	1.451	0.26	-4444.	-376.	-8.	-3977.	418.		-2.34	8.	133.	47.	-22.
		DISTIL			-0.018	0.037	0.06	-0.	-370.	0.	11.	17.		0.27	-1.	0.	53.	-3.
		DISTIL			-0.018	0.480	0.32		-39.	0,	87.	217.			35.	42.	28.	-3. -4.
		DISTIL		-0.019	0.236	0.480	0.32	-65. 30.	-39. 29.	9.	44.	58.		0.62 0.43	-1.	42. 0.	60.	-4. -3.
		DISTIL	<u>0.</u>									351.				69.		
			0.	-0.403	0.	0.368	0.35	-144.	-79.	3.	106.			0.53	47.		31.	-7.
	GTRA12		0.	-0.019	0.	0.018	0.06	30.	29.	9.	44.	- 58.		0.43	-1.	0.	59.	-3.
		DISTIL		-0.389	0.	0.369	0.35	-138.	-75.	3.	107.	348.		0.54	47.	68.	31.	-6.
	GTRA16		0.	-0.019	0.	0.018	0.06	30.	29.	9.	44.	<u>58.</u>		0.43	-2.	0.	60.	-3.
		DISTIL	0.	-0.363		0.347	0.35	-128.	-68.	3.	103.	329.		0.54	42.	63.	31.	-6.
:8651	GTR208	DISTIL	Ο.	-0.019	0.	0.018	0.06	30.	29.	9.	44.	58.	23.	0.43	-1.	0.	58.	-3.
8651	GTR208	DISTIL	Ο.	-0.305	0.	0.288	0.33	-105.	-52 <i>.</i>	4.	88.	281.	51.	0.52	39.	52.	30.	-5.
8651	<b>GTR212</b>	DISTIL	0	-0.019	Ο.	0.018	0.06	30.	29.	9.	44.	58.	23.	0.43	-1	0,	58.	-3.
8651	<b>GTR212</b>	DISTIL	0.	-0.329	0.	0.307	0.33	-114.	-58.	4.	93.	298.	53.	0.53	40.	56.	30.	-6.
		DISTIL	0.	-0.019	0.	0.018	0.06	30.	29.	9.	44.	58.		0.44	-1.	0.	59.	-3.
		DISTIL	Ö.	-0.330	o.	0.321	0.34	-115.	-59.	4.	97.	306.		0.53	40.	58.	31.	-6.
	GTRW08		o.	-0.022	o.	0.015	0.05	29.	28.	9.	44.	57.		0.43	-1.	o.	64.	-3.
		DISTIL	<del>0.</del>	-0.554	<del>- 0.</del>	0.370	0.31	-204.	-122.	<del></del>	95.	392.		0.50	61.	83.	33.	<del>-10.</del>
		DISTIL	0.	-0.021	o.	0.016	0.05	30.	28.	9.	44.	57.		0.43	-1.	<b>0</b> .	62.	-3.
		DISTIL	0.	-0.543	o.	0.402		-200.	-119.	0.	106.	407.	_	0.43	63.	85.	32.	-9.
							0.33							7,7				
	GTRW16		<u>0.</u>	-0.021	<u> </u>	0.016	0.05	30.	28.	<u>9.</u>	44.	<u>57.</u>		0.43	<u>-2.</u>	<u> </u>	<u>63.</u>	<u>-3.</u>
		DISTIL	0.	-0.502	0,	0.379	0.32	-184.	-107.	1.	102.	383.		0.51	57.	79.	32.	-9.
	GTR308		0.	-0.023	Ο,	0.014	0.04	29.	28.	9.	43.	57.		0.43	-1.	<b>o</b> .	63.	-3.
•	GTR308		Ο.	-0.439	ο.	0.265	0.27	-159.	-90.	2.	70.	305.		0.47	47.	63.	34.	-9.
	GTR312		0.	-0.021	0.	0.016	0.05	30.	28.	9.	44.	<u>57.</u>		0,43	<u>-1.</u>	0.	<u>61.</u>	-3.
8651	GTR312	DISTIL	∙0.	-0.437	0.	0.338	0.32	-158.	-89.	2.	94.	344.	60.	0.51	52.	69.	31.	-8.
8651	<b>GTR316</b>	DISTIL	0.	-0.021	0.	0.016	0.05	30.	28.	9.	44.	<b>57.</b>	23.	0.43	-1.	Ο.	62.	-3.
		DISTIL	0.	-0.433	Ο.	0.331	0.31	-156.	-88.	2.	92.	339.	59.	0.51	50.	68.	32.	-8.
	· · · · · · · · · · · · · · · · · · ·		-					- *										

	06/08/79	)								COMPANY							<u> </u>	<u>CE 42</u>
E PE	FUEL U		=			REPOR	ERATION RT 6.1	TECHN FUEL	AND E	MISSIONS	SAVI	.TERMATIVI NGS	ES S		AVINGS A	RE		
	CUST	ON UNI	5=   =\$*10:	2 2 9		TIME	1990			LEVEL	ALL			T	PE MATO	H=PMHR		
		· · · · · · · · · · · · · · · · · · ·			<u> </u>						<del></del>				1 2 1411	ALC: OHIC		
			***F U E			I N G Sx						INGS				-ELECTRI		
CCS	ECS			CGAL OI		ALFES	SR NOX			***** \RT NOX		TÄL***** X PAR		EMSR	SAVING	TOTAL EXPORT	COST	LAEC SAVED
		FUEL O	LTGAS	CUAL U	LTOAS	COAL	NUA	· 30	Λ F?	ACI IN	<u> </u>	A PAR	<u> </u>			MIH		SHAED
651	FCFADS	DISTIL	Ο.	-0.025	0.	0.012	0.04	29.	27.	9.	43.	56.	23.	0.42	-3.	0.	86.	-3
	<b>FCPADS</b>		0.	-1.152		0.558	0.28	-187.	63.	11.	366.	1007.		0.81	<b>5</b> 5.	157.	56.	-48
651	FCMCDS	DISTIL	0.	-0.021	0.	0.016	0.05	30.	28.	9.	44.	57	23.	0.43	-3.	0.	82.	-3.
	FCMCDS		0.	-0.763		0.590	0.36	-595.	62.	-2.	-158.	810.		0.49	38.	123.	51.	-32
	STM141		0.	-0.020	0.	0.033	0.10	-7.	-8.	-1.	10.	20.		0.10	2.	0.	34.	0.
	STM141		0.	-0.044	0.	0.073	0.18	-15.	-18.	-2.	22.	45.		0.19	8,	6.	20.	1.
	STM141		<u> </u>	-0.020	<del>_0.</del> _	0.033	0.10	-7. -15.	-70. -84.	-1. -2.	<u>12.</u> 24.	<u>-32.</u>		-0.0 <u>2</u> 0.08	<u>-14.</u> -5.	<u> </u>	115. 48.	<u>2</u>
	STM141		0. 0.	-0.020	0. 0.	0.073	0.10	60.	-70.	-2. -1.	79.	-12. -32.		0.00	-10.	0. 0.	98.	3
	STM141		Ö.	-0.020	o.	0.033	0.18	56.	-84.	-2.	96.	-32. -12.		0.28	2.	6.	32.	5
	STM086		õ.	-0.020	Ŏ.	0.033	0.10	-7.	-8.	-1.	10.	20.		0.10	2.	Õ.	31.	1
	STMOSE		O.	-0.029	0.	0.047	0.13	-10.	-11.	-1.	14.	29.		0.14	6.	2.	19.	1
<b>6</b> 53	STM088	COAL-F	Ο.	-0.020	0.	0.033	0.10	-7.	-70.	-1.	12.	-32.	14.	-0.02	-13.	0.	110.	3
353	STMOSS	COAL-F	Ο.	-0.029	0.	0.047	0.13	-10.	-75.	-1.	17.	-25.	15.	0.02	-7.	2.	62.	4
	STM088		0.	-0.020	0.	0.033	0.10	60.	-70.	<u>-1.</u>	79.	-32.		0.20	-9.	О.	89.	3
	STM088		ο.	-0.029		0.047	0.13	58.	-75.	-1.	85.	-25.		0.23	-1.	2.	42.	5
	PFBSTM		0.	-0.021	0.	0.032	0.09	<b>65</b> .	-70.	2.	84.	-33.		0.22	-14.	0.	117.	2
	PFBSTM		0.	-0.084	<b>⊙</b> .	0.129	0.26	73.	-108.	9.	144.	17.		0.43	-2.	15.	40.	4
	TISTMT		<u>0.</u> 0.	-0.020 -0.114	0.	0.032	0.09	-7. -40.	-8. -46.	- <u>1.</u> -6.	10. 54.	<u>20.</u> 112.		0.10	<u>-13.</u> -39.	0. 23.	102. 70.	- <u>1</u> -6
	TISTMT		Ö.	-0.020	o.	0.032	0.09	-7.	-70.	-10.	12.	-33.		-0.02	-29,	0.	185.	1.
	TISTMY		o.	-0.114	o.	0.180	0.31	-40.	-126.	-6.	57.	43.		0.23	-59.	23.	84.	-3
	TIHRSG		0.	-0.035	o.	0.017	0.05	-12.	-14.	-2.	4.	13.		0.06	-20.	0.	146.	-3
	TIHRSO		0.	-0.122	ō.	0.059	0.13	-43.	-49.	-6.	15.	46.		0.14	-47.	12.	112.	-8
<b>653</b>	TIHRSG	COAL	0.	-0.035	Ο.	0.017	0.05	-12.	-79.	-2.	7.	-42.	13.	-0.07	-38.	0.	234.	-1
	TIHRSG	COAL	Ο.	-0.122	Ο.	0.059	0.13	-43.	-131.	-6.	18.	-24.	16.	0.02	-67.	12.	133.	-5
	STIRL	DISTIL	0.	-0.031	0.	0.022	0.06	28.	<u> 26.</u>	9.	47.	63.		0.44	-0.	<u> </u>	<u>53.</u>	-3
	STIRL	DISTIL	0.	-0.193	_	0.137	0.22	-10.	-20.	6.	99,	169.		0.54	8.	26.	42.	-6
	STIRL	RESIDU	0.	-0.031	0.	0.022	0.06	-11.	-12.	-4.	6.	15.		0.07	-0.	0.	49. 27	-0
	STIRL	RESIDU	0. 0.	-0.193 -0.031		0.137 0.022	0.22	-68. -11	-77.	-22. -2	37. 8.	98. -30		0.22	8. -14.	26. 0.	37. 120.	-2 2
	STIRL	COAL	<del>-0.</del>	-0.031 -0.193	0. 0.	0.022	0.06	-11. -68.	-76. -174.	- <u>2.</u> -10.	41.	<u>-39.</u> 15.		-0.06 0.14	-14. -15.	<u>26.</u>	49.	2
	HEGTOO		0.	-0.043		0.009	0.03	52.	-84.	-10. -2.	71.	-47.		0.12	-20.	20. 0.	152.	1
	HEGT00		o.	-0.242	Ŏ.	0.050	0.09	5.	-203.	-12.	101.	-34.		0.16	-26.	22.	64.	-1
	FCMCCL		õ.	-0.025	o.	0.028	0.08	11.	-40.	1.	30.	-2.		0.14	-21.	Ō.	149.	i
	FCMCCL		0.	-0.234	0.	0.263	0.33	101.	116.	13.	263.	396.		1.00	-17.	42.	45.	1
	FCSTCL		Ο,	-0.024	· O. ·	0.029	0.08	8.	-45.	1.	27.	-7.		0.12	-21.	0.	147.	1.
	FCSTCL		0.	-0.307		0.376	0.39	101.	115.	13.	323.	497.		1.00		<b>59.</b>	39.	1.
	IGGTST		0	-0.030		0.022	0.07	<u>-11.</u>	-76.	<u> </u>	9.	-39.		-0.05	-20.	<u> </u>	<u> 146.</u>	
	TGGTST		0.	-0.266		0.197	0.26	-93.	-217.	12.	58.	45.		0.22	-12.	39.	42.	2
			-0,032		~0.032		0.06	-12.	-12.	-0.	5.	17.		0.13	-0.	O. #0	49.	-0.
	GTSOAR GTACOE		-0,354		~0.354		0.26	-129	-133.	-3.	59. -7	186.		0.40	35.	<b>5</b> 0.	29. 41.	-2. 0.
	GTACOS			-0.024 -0.188		0.028	0.08	-24. -185.	-10. -75.	-3. -22.	-7. -57.	18. 139.		0.63	<u>0.</u> 26.	<u> </u>	23.	<u></u>
	GTAC12			-0.025		0.027	0,08	-23.	-75. -10.	-3.	-57. -6,	18.		0.04	20. 0.	0.	41.	o.
	- , , , , , , i &,		o.	-0.241		V. VE 1	0.00	20.	ru,	<b>.</b>	σ.			~. ~~	♥.	◡.	7	•

Tiggi ving a firmer to the form of the control of t

PAGE 43 DATE 06/08/79 GENERAL ELECTRIC COMPANY COGENERATION ISE PED AES TECHNOLOGY ALTERNATIVES STUDY 17 FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 TYPE MATCH=POWR CAPITL -- ELECTRIC POWER ---**** U E L SAVINGS***---EMISSIONS SAVINGS - - -PROCS ECS EMSR SAVING TOTAL COST LAEC FUEL GIL+GAS COAL GIL+GAS COAL NOX SOX PART NOX SOX PART EXPORT SAVED MUH 28653 GTAC16 RESIDU -0.026 0. 0.026 30.0 -22. -11. -3--6. 17. -1.0.040. 43. n. 25. 0. 28653 GTAC16 RESIDU -0.295 0. 0.295 0.34 -250. -118. -30. -62. 196. -7. 0.16 36. 50. -0.028 45. 28653 GTWC16 RESIDU 0. 0.025 0.07 -23 -11. -3. -6. 17. -1.0.03-0. 0. 0. 28653 GTWC16 RESIDU -0.3170. 0.280 0.32 -263. -127. -32, -73. 190. **-9.** 0.13 38. 26. -0. 51. 28653 CC1626 RESIDU -0.029 0. 0.024 0.07 -22. -11. -3. -5. 16. -1.0.040. ٥. 46. -0. 28653 CC1626 RESIDU -0.472 0.395 0.34 -355. -189. -44. -80. -11. 0.17 26. -1. Ω. 271. 55. 76. 28653 CC1622 RESIDU -0.0270.025 0.07 -3. -1.0.040. O: -21. -11. -5. 17. Ω. 44. 28653 CC1622 RESIDU -0.4050.372 0.35 -162. -39. **-9.** 0.18  $\overline{\Omega}$ -316. - RR 251. 47. 68. 26. -1 28653 CC1222 RESIDU -0.027 0.025 0.07 -21. -11. -3. -5. 17. -1.0.041. O. 43. 0. 28653 CC1222 RESIDU -0.399 0.373 0.35 -312. -160. -38. -66. 251. -8. 0.18 49. 67. 25. -0. 28653 CC0822 RESIDU -0.025 0.027 0.08 -21. -10. -3. -5. 18. -0. 0.04 ο. 43. 0. 28653 CC0622 RESIDU -0.292 0.315 0.35 -248. -117. -30. -55. 206. -6. 0.18 39. 52. 24. 1. 28653 DEHTPM RESIDU -0.030 -31. -1.-0.06 0. 0.022 0.06 -48. -12. -3. 16. -4. ٥. 67. -1. 28653 DEHTPM RESIDU -12. -0.22 -5. -0.281 0. 0.204 0.26 -440. -112. -29. -287. 144. 1. 41. 43. -0.027 0.052 2. 0.25 -2. 28653 GTSCAD DISTIL -0.027 0. 0.07 -11. -4. ٥. 6. 24. a. 45. -41. 28653 GISCAD DISTIL -0.253 0. -0.253 0.4950.31-101. 56 222. 19. 0.55 33. 42. 28. -4. 28653 GTRAOS DISTIL O. -0.032 0. 25. 24. 0.41 -0. 54. -3. 0.021 0.06 - 19. 9. 38. 63. Ο. 28653 GTRAOS DISTIL -0.608 0.393 -137. 70. 0.47 -12. 0.30 -258. -1. 67. 419. 58. 89. 34. 28653 GTRA12 DISTIL -0.031 24. 0.41 0.022 0.06 20. 26. 9. 39. 63. -0 ٥. -3. 28653 GTRA12 DISTIL -0.546Ō. 0.389 0.32 -233. -119. O. 70. 400. 67. 0.48 55. 83. <u> 33.</u> -10. 28653 GTRA16 DISTIL -0.030 0.022 0.07 20. 26. 39. 63. 24. 0.42 -1. 0. 53. -3. 0. 9. -9. 28653 GTRA16 DISTIL -0.4830. 0.359 0.32 -208. -102. 66. 368. 63. 0.48 47. 74. 33. 1. 26653 GTR208 DISTIL -0.030 0.023 0.07 19. 26. 38. 63. 24. 0.41 -0. 0. 51. -3. 28653 GTR208 DISTIL -0.375-7. <u>0.289</u> 0.30 51. 301. 54. 0.47 41. 57. 32. -165. -71. 28653 GTR212 DISTIL -0.030 Ο. 0.023 0.07 19. 26. 9. 38. 63. 24. 0.41 -Ð. 0. 51. -3. 28653 GTR212 DISTIL -0.403 0.311 320. 57. 0.47 32. -7: ٥. 0.31 -176. -79. 56. 43. 62. 3. 28653 GTR216 DISTIL -0.029 0.023 0.07 39. 63. 24. 0.42 ÷٥. 52. -3. O 20. 26. ۵. 9. -81. -7. 28653 GTR216 DISTIL -0.410<u>o</u>. 0.327 0.32 -179. 3. 61. 330. 58. 0.48 42. 64. 32. 28653 GTRYOS DISTIL -0.035 0.018 24. 0.41 -3. n 0.05 19. 25. 9. 38. 62. -n. G. 57. 26653 GTRWOS DISTIL -0.772 n. 0.392 0.27 -183. 53. 462. 77. 0.44 74. 104. 35. -15. ~323. -4. 28653 GTRW12 DISTIL -0.033 n 0.020 0.06 25 38. 62. 24. 0.41 -n 55. -3. 19 0 76. 0.47 28653 GTRW12 DISTIL -0.709 72. 102. 0.427 0.30 -3. 69. 465. 34. -13. σ. -298. -165. -1. 28653 GTRW16 DISTIL -0.032 Ο. 0.020 0.06 19. 25. 9. 38. 63. 24. 0.41 0. 55. -3. 28653 GTRW16 DISTIL -0.619 O. 0.394 0.30 -140. 56. 423. 71. 0.47 62. 90. 34. -11. -262. -1. 24. 0.40 28653 GTR308 DISTIL -0.036n 0.016 0.05 24 9. 36. 61. -0 0. 57. -3. 17. 0.23 28653 GTR308 DISTIL -0.594Ō. 0.262 -252. -133. -1. 344. 62. 0.41 54. 75. 37. -13. 28653 GTR312 DISTIL -D. -0.031 0.06 0. 0.022 26. 38. 63. 24. 0.41 0. 52. -3. 19. 9. 28653 GTR312 DISTIL -0.49162. 0.47 53. O 0.343 0.31 -211. -104. 1. 60. 361. 73. 32. -9. 28653 GTR316 DISTIL -0.0310.021 24. 0.41 Ω 0.06 19. 26 9 38. 63. -0. O 53. -3. 61. 0.47 -0.483-102. 51. -9. 28653 GIR316 DISTIL O. 0.335 0.30 58. 355. 72. 33. -208. -1. 28553 FCPADS DISTIL -0.035 47. 74. 24. 0.48 70. -3. 0. 0.017 0.05 28. 37. 10. 0. 28653 FCPADS DISTIL -1.158 n. 0.561 374. 1064. 128. 0.85 53. -48. 0.28 14. 156. 55. 0. -181. 116. -0.030 26. 28653 FCMCDS DISTIL Ο. 0.023 37. 75. 24. 0.41 -1 66. 0.07 7. Q. 0. -3. -0.766 -256. 36. -31. 28653 FCMCDS DISTIL O. 0.593 0.36 -696. 114. 866. 91. 0.46 123. 51. 28654 STM141 RESIDU -0.002 0. 0.004 0.02 -0. 2. 0. 0.02 -1. -0. 0. -1. -1. 1. 0. 130. -0.015 Ο. 0.025 0.10 1. 0.11 0. 28654 STM141 RESIDU -6. -11. 2. 29. -5. 8. 16. 3.

									•								
ATF N	6/08/79	<b>a</b>					CEN	EDAL EL	ECTD!	COMPANY						DA	OF 44
	O AES FUEL U		= 'S= =\$*10*	*9		REPU	ERATION RT 6.1 1990	TECHNO FUEL	U.OGY	EMISSIONS LEVEL	SAVIN	ERNATIVES GS		AVINGS A		<u></u>	<u>GE 44</u>
				·····			<del></del>				<del></del>	··	•	IFE IIAIG	711-1 OUK		
ROCS	ECS				TOT		SR NGX	DIREC	:T		***TOTA	F******	EMSR	CAPITL- SAVING	TOTAL EXPORT	COST	
6654	STM141	COAL-F	0.	-0.002	0.	0.004	0.02	-1.	-42.	-0.	3.	-33.	80.12	-13.	MWH O.	690.	1.
		COAL-F	Ο.	-0.015	.0.	0.025	0.10	-5.	-50.	-1.	9.		00.01	-8.	3.	95.	2.
		COAL-A	0.	-0.002	0.	0.004	0.02	44.	-42.	<u>-o.</u>	47.	<u>-33.</u>	8. 0.12	-12.	<u> </u>	<u>655.</u>	<u>. 1.</u>
		COAL-A	0. 0.	-0.015 -0.002	O. O.	0.025 0.003	0.10 0.02	42. 44.	-50. -42.	-1. 0.	56.	-22. 1 -33.	10. 0.21 9. 0.13	-3. -12	3.	63. 635.	2.
		COAL-P	0.	-0.002		0.062	0.02	53.	-67.	7.	48. 88.		9. U.13 21. O.38	-12. -7.	0. 9.	533. 57.	1. 1.
		RESIDU	Ŏ.	-0.002	ŏ.	0.004	0.02	-1.	-1.	-o.	1.	2.	0. 0.02	-3.	ō.	206.	-i.
		RESIDU	0.	-0.061	0.	0.095	0.26	-21.	-24.	-3.	28.	59.	4. 0.28	-34.	14.	93.	-5.
	TISTMT		0.	-0.002	0.	0.004	0.02	-1.	-42.	-0.	3.	-33.	80.12	-14.	0.	735.	1.
-	TISTMT	RESIDU	0. 0.	-0.061 -0.004	0. 0.	0.095 0.002	0.26 0.01	-21. -1.	-77. -2.	-3. -0.	30. 0.		14. 0.18 -0. 0.01	-49. -4.	14. 0.	115. 246.	-4. -1.
		RESIDU	<del>- ö.</del>	-0.086	<del>ö.</del>	0.042	0.13	-30.	-35.		10.		0. 0.01	-39.	11:	124.	<del></del>
	THRSG		Ö.	-0.004	õ.	0.002	0.01	-1.	-43.	-0.	2.	-34.	80.13	-15.	Ο.	782.	i.
654	TIHRSG	COAL	Ο.	-0.086	Ο.	0.042	0.13	-30.	-93.	-4.	12.	-	1. 0.02	-55.	11.	150.	-5.
	STIRL	DISTIL	0.	-0.003	0.	0.002	0.01	24.	23.	7.	27.		5. 0.41	-2.	0.	151.	-2.
	STIRL	DISTIL	0.	-0.137	0.	0.097	0.22	-7.	-14.	4.	70.		26. 0.54	5.	21.	43.	-5.
	STIRL STIRL	RESIDU	0. 0.	-0.003 -0.137	0. 0.	0.002 0.097	0.01 0.22	-1. -48.	-1. -55.	-0. -16.	1. 26.		·0. 0.01 ·8. 0.22	-2. 5.	0. 21.	146. 39.	-0. -2.
4.1	STIRL	COAL	o.	-0.003	o.	0.002	0.01	-1.	-43.	-0.	2.	-34	80.12	-12.	ō.	653.	1.
	STIRL	COAL	0.	-0.137	Ō.	0.097	0.22	-48.	-123.	-7.	29.		5. 0.14	-13.	21.	52.	Ö.
		COAL-A	0.	-0.005	Ο.	0.001	0.00	43.	-44.	-0.	46.	-34.	8. 0.11	-12.	Ο.	625.	1.
		COAL-A	0.	-0.171	0.	0.036	0.09	3.	-143.	-9.	71.		2. 0.16	-23.	19.	72.	-2.
	FCMCCL	COAL	<u>0.</u>	-0.003 -0.165	0.	0.003	0.01	<del>- 1.</del> 71.	<u>-39.</u> 82.	<u>0.</u> 9.	<u>5.</u> 186.	-29. 280. 3	90.09 8. 1.00	<u>-14.</u> -17.	0,	731. 49.	- <u>1</u>
	FCSTCL		o.	-0.003	o.	0.003	0.02	1.	-39.	o.	4.	-30.	90.09	-14.	32. 0.	736.	1.
	FCSTCL		0.	-0.189	o.	0.226	0.36	71.	82.	9.	207.		12. 1.00	-16.	38.	46.	-i.
654	IGGTST	COAL	œ.	-0.004	0.	0.002	0.01	<u>-1.</u>	-43.	0.	2.	-34.	90.12	-14.	0.	718.	1.
	IGGIST		0.	-0.162	0.	0.107	0.23	-57.	-138.	8.	32.		32. 0.19	-16.	25.	53.	-0
		RESIDU	-0.004 -0.250	0. 0.	-0.004 -0.250	0.006	0.01 0.26	-1. -01	-1	-0. -3	1.	2.	0. 0.03	-1.	0.	113.	-0.
		RESIDU	0.250	-0.003	0.250	0.412	0.25	-91. -3.	-94. -1.	-2. -0.	41. -1.		22. 0.40 -0. 0.01	24. ~1.	38. O.	31. 103.	-2. -0.
		RESIDU	<u> </u>	-0.133	<del>0.</del>	0.152	0.31	<del>-131.</del>	-53.	<del>-16.</del>	-40.		4. 0.12	18.	26.	25.	<del>-</del> 0.
654	GTAC12	RESIDU	Ο.	-0.003	0.	0.003	0.01	-3.	-1	-0.	-1.		0. 0.01	-1.	o.	100.	-0.
		RESIDU	0.	-0.171	0.	0.187		-153.	-68	-18.	-40.		4. 0.15	22.	33.	25.	-0.
		RESIDU	<u>0.</u>	-0.003	0.	0.003	0.01	<u>-2.</u>	-1.	-0. -21.	<u>-1.</u>		0. 0.01	-1.	<u> </u>	101.	<u>-0.</u>
		RESIDU	0. 0.	-0.209 -0.003	0.	0.208	0.01	-176. -3.	-83. -1.	-21. -0.	-44. -1.		5. 0.16 0. 0.01	24. -1.	39. 0.	27. 108.	-1. -0.
654	GTWC16	RESIDU	o.	-0.224		0.198		-186.	-90.	-23.	-52.		7. 0.13	26.	39.	27.	- J.
654	DEHTPM	RESIDU	0.	-0.003	0	0.002	0.01	-5.	-1.	-0.	-3.	2	<u>00. 01</u>	-z.	0.	160.	<u>- 3.</u>
		RESIDU		-0.198		0.144		-311.	-79.		-202.		80.22	ō.	32.	44.	-4.
		DISTIL		0.	-0.003	0.006	0.01	-1. -72	~0. ~20	0.	1.	3.	0. 0.06	-1.	0.	104.	-2.
		DISTIL		0. -0.004	-0.179 0.	0.350 0.002	0.31 0.01	-72. 23.	-29. 23.	0. 7.	40. 26.		4. 0.55 5. 0.40	23. -1.	32. 0.	29. 117.	-3. -2.
		DISTIL		-9.430		0.278		-182.	<del>-97.</del>	<del>i:</del>	47.		19. 0.47	40.	<del>66.</del>	36.	- <del>9.</del>
		DISTIL		-0.003	0.	0.002	0.01	23.	23.	7.	26.		5. 0.40	-1.	Õ.	113.	-2.
CEA .	GTRA12	DISTIL	0.	-0.385	0.	0.275	0.32	-164.	84.	0,	49.		17. 0.48	38.	61.	35.	-8.

•*

in the second of the second of

A STATE OF THE SECOND STAT

Marie Comme

DATE 06/08/79 GENERAL ELECTRIC COMPANY 45 PAGE ISE PEO AES ALTERNATIVES STUDY COGENERATION TECHNOLOGY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE П EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$ × 10 × × 9 TYPE MATCH=POWR ****F U E L SAVING S**** - - - EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS ECS ****DIRECT*****TOTAL----FESR -----DIRECT-----*******TOTAL****** EMSR SAVING TOTAL COST LAEC FUEL CIL+GAS COAL CIL+GAS COAL PART NOX NOX SOX SOX PART **EXPORT** SAVED HWN 7. -1. 28654 GTRA16 DISTIL O. -0.003 O. 0.003 0.01 23. 23. 26. 33. 15. 0.40 n 116. -2. 28654 GTRA16 DISTIL 0. -0.342 0. 0.254 0.32 -147. -72. 260. 44. 0.48 32. 35. -7. 46. 55 1. 28654 GTR208 DISTIL Ω -0.003 0. 0.003 0.01 23. 23. 26. 33. 15. 0.40 -1. 0. 112 -2. 28654 GTR208 DISTIL O. -0.265 n. 0.204 0.30 -116. -50. 2. 38, 0.47 28. 33 -6. <u>36.</u> 213. 43. -0.003 -1. 28654 GTR212 DISTIL ñ. O. 0.003 0.01 23. 23. 7. 26. 33. 15, 0.40 -2. n. 113. -0.285 28654 GTR212 DISTIL Ο. 0. 0.220 0.31 -124. -56. 2. 40. 226. 40. 0.47 29. 47. 34. -6. -0.003 28654 GTR216 DISTIL n ٥. 0.003 0.01 23. 23. 33. 15. 0.40 -1. -2. 26 Ω 113. -0.290 28654 GTR216 DISTIL Ō. Ō. 0.231 0.32 -126. -57. 2. 43. 233. 41. 0.48 29. 34. -6. AR 28654 GTRWOS DISTIL ٥. -0.004 0. 0.002 0.01 23. 23. 7. 26. 32. 15. 0.40 -1. 0. 121. -2. 28654 GTRVOS DISTIL -0.545 54. 0.44 ٥. 0.277 0.27 -228. -129. -3. 38. 327. 51. 77. 37. -12. 28654 GTRW12 DISTIL -0.00423. 15. 0.40 ٥. 0.002 0.01 23. 26. 33. -1. Ω 119. -2. 28654 GTRW12 DISTIL -0.5010.301 0.30 54. 0.47 n -211. 117. 49. 328. 50. 75. 35. -10. 28554 GTRW16 DISTIL -0.004 0. 0.002 0.01 7. 15. 0.40 O. 23. 23. 26. 33. -1. n 121. -2. 26654 GTRV16 DISTIL -0.437 Ω. 0.279 0.30 -185. -99. -1. 47. 299. 50. 0.47 43. 67. 35. -9. 28654 GTR308 DISTIL -0.004 0.002 0.01 23. 15. 0.40 -1. Ο. 23 26. 32. 0 118. 28654 GTR308 DISTIL -0.419 Ō. 0.185 0.23 -178. -94. -0. 18. 243. 44. 0.41 37. 56. 38. -10. 26654 GTR312 DISTIL 0. -0.003 Q. 0.002 0.01 23. 23. 7. 26. 33. 15. 0.40 -1. ٥. 116. -2. -149. 28654 GTR312 DISTIL O -0.347 0. 0.242 0.31 -73. 1. 42. 255. 44. 0.47 36. 55. 34. -7. 28654 GTR316 DISTIL -0.003 n 0. 0.002 0.01 23. 23. 26. 33. 15. 0.40 -1. G. 118 28654 GTR316 DISTIL Ō. -0.341Ō. 0.237 0.30 -147. -72. ٦. 41. 251. 43. 0.47 35. 34. 28654 FCPADS DISTIL 0. -0.004 0. 0.002 0.01 24. 25. 7. 27. 34. 15. 0.41 -2. 0. 152. -2. 28654 FCPADS DISTIL 0. -0.318 0. 0.396 0.28 -128. 82, 10. 264. 752. 90. 0.85 38. 113. 56. -35. 28654 FCMCDS DISTIL Ω -0.003 0. 0.003 0.01 21. 25. 25. 34. 15. 0.40 -2 147. -2. 0 28654 FCICOS DISTIL -0.541 0.  $\overline{\mathbf{a}}$ 0.419 0.36 -492. 81. · 181. 612. 64. 0.46 25. 90. 51. -23. 28691 PFBSTM COAL-P ٥. Ο. 0. 0.013 1.00 0. 0. 0. 7. 1. 1.00 -10. 0. 272. -2. 4. 28691 PFBSTM COAL-P -7. Ω. O. 0. 0.051 1.00 0. 0. 0. 16. 28. 3. 1.00 4. 68. -1. 28691 TIHRSG COAL Ω 0.013 -17. 0. 0. 1.00 0. 0 O 7. 1.00 410 -3. 28691 TIHRSG COAL O. Ŏ. 1.00 27. 5. 1.00 -5. O. 0.083 Ō. 0. 0. 45. -41. 153. 28691 HEGTOO COAL-A 0. 0. 0.013 Ο. 1.00 0. 0. 0. 4. 7. 1. 1.00 -11. 0. 281. -2. 28691 HEGTOO COAL-A 0. 0. 0. 0.128 1.00 0. 0. 0. 41. 70. 8. 1.00 -19. 63. -1. 11. 28691 GTAC16 RESIDU -0.012 0. Ω 0.000 0.01 -5. -0. -0. 0.06 -1 0 79 -0. 28691 GTRAOS DISTIL -0.011 0. -1. -0. 0.001 0.10 -3. -3, -0 1. 4. 1. 0.49 Ο. 89. 28691 GTRA12 DISTIL -0.011 -0. -1. 87. -0. ۵. Ο. 0.001 0.11 -3. -3. 1. 4. 1. 0.49 0. 28691 GTRA16 DISTIL -0.012 1. 0.48 0.001 -0. -1. 91. -0. a n 0.08 -3. -3. 0. 28691 GTR212 DISTIL -0.012 -1. n 0. 0.000 0.03 -3. -3. -0 1. 0.45 n 91 -0. <del>-</del>1. 28691 GTR216 DISTIL -0.012 Ō. -3. -0. 1. 0.46 -0. 0.001 0.05 -3. Ö. 9n -1. -0.011 28691 GTRWOS DISTIL 0.001 O. ο. 0.09 -3. -3. -0. 1. 4. 1. 0.48 0. 91. -0. -1. -0.011 28691 GTRW12 DISTIL O. n C.002 0.12 -3. -3. -O. 2. 1. 0.50 0. 89. -0. 28691 GTRW16 DISTIL Ω -0.011 n 0.001 -3 -0 1. 0.49 - 1 92 -0. 0.10 -3. n. 28691 GTR312 DISTIL 0.06 -0. 1. 0.47 -1. 91. -0. Ō. -0.012 0. 0.001 -3. n. 0.001 -1. 28691 GTR316 DISTIL n. -0.012 0. 0.06 -3. -3. -0. 1. 4. 1. 0.46 Ω. 93. -0. 28691 FCPADS DISTIL -0.011 0.002 0.16 -3. -0. 2. 1. 0.52 -1. 97. -0. n. Ω. -2. n. 28591 FCMCDS DISTIL -0.010 Ω. 0.003 0.22 -2 -3. -0. 1. 0.56 -1. n. 94 -0. -7. 28692 PFBSTM COAL-P ñ. -0.018 0. 0.022 0.12 37. -39. 5. 51. -13. 13. 0.30 0. 87. 1.

28692 THRSG RESIDU O.

28692 TIHRSG RESIDU

-0.039 0.

-0.079 0.

0.009

0.017

0.05

0.07

-14.

-28.

-16.

-31.

-2.

-4.

1.

3.

9.

19.

-21.

-32.

0.

4.

165.

137.

-3.

-6.

-1. 0.06

-1, 0.09

TE O	6/08/79	•						GEI	MERAL E	LECTR	C COMPANY		·		ş.	a' . 		- PA	GE 4
E PE	O AES FUEL U EMISSI		=   TS=				REPO	ERATION RT 6.1 1990	FUEL		EMISSIONS LEVEL	SAVII	TERNATIVES NGS	S	TUDY (S/	VINGS A	ं RE		
·	COST		=\$*	10**	9			<del> </del>							T\	PE MATC	H=POWR		
			***F		-		N G S*							-	1.5		-ELECTRI		
ocs	ECS		***DIR				LFE	SR			PART NOX	***TOT/ SO	AL******* X PART		EMSR	SAVING	TOTAL EXPORT MWH	CEST	LAEC SAVED
8692	TIHRSG	COAL	υ.	-(	0.039	0.	0.009	0.05	-14.	-52	2.	3.	-21.	6.	-0.07	-34.	0.	230.	-3.
	TIHRSG		0.		0.079	0.	0.017	0.07	-28.	-75		4.	-18.		-0.03	-46.	4.	164.	-4
	HEGTOO		~		0.041	<u> </u>	0.007	0.04	20.	-53		37.	-22.		0.12	<u>-17.</u>	<u> </u>	142.	<u></u>
	HEGTOO FCMCCL		4 O. O.		0.126 0.023	0. 0.	0.020	0.07 0.13	10.	-104 -11		49. 26.	-19. 19.		0.14	-20. -16.	·9. 0.	78. 131.	-2 -0
	FCMCCL		ö.		0.114	o.	0.127	0.33	49.	56		127.			1.00	-16.	18.	54.	-1
692	GTSCAR	RESID	J -0.0	32 (	0	-0.032	0.048	0.09	-11.	-12	<u>o.</u>	5.	14.	3.	0.19	0.	0.	49.	-0
	GTSCAR				0.	-0.211	0.318	0.23	-72.	-79		30.			0.39	17.	25.	33.	-2
	GTACO8				0.023 0.092	0. 0.	0.025 0.103	0.14 0.31	-22. -90.	-9 -37		-7. -28.	17 <i>.</i> 67.		0.05	1. 12,	0. 14.	39. 25.	0
	GTAC12				0.092	0. 0.	0.103	0.31	-90. -20.	-37 -9	11. -2.	-26. -5.			0.12	14.	0.	39.	Ġ
	GTAC12				0.113	o.	0.128	0.34	-103.	-45		-26.	83.		0.16	14.	18.	26.	ī
	GTAC16				0.024	0.	0.024	0.13	-20.	-10		-5.	16.		0.06	1.	0.	41.	0
	GTAC16				0.146	0.	0.142	0.33	-123.	-58		-31. -6			0.15	16.	23.	28.	Ŏ
	GTWC16				0.025 0.152	0. 0.	0.023	0.12	-21. -126.	- <u>10</u> -61		<u>-6.</u> -35.	15. 92.	<del>-1.</del> -4.	0.05	<u>0.</u> 16.	<u>0.</u> 22.	<u>44.</u> 28.	<u>0</u>
	GTSOAD					-0.024	0.133	0.32	-10.	-4		<b>5</b> .	22.	2.		1.	0.	43.	-1
	GTSCAD				Ó.	-0.121	0.238	0.31	-49.	-20	·	27.	107.		0.55	15.	18.	30.	-a
	GTRA08				0.033	<u>0.</u>	0.015	0.08	<u>2.</u>	7		18.			0.41	0.	<u>0.</u>	<u>56.</u>	<u>-2</u>
	GTRA06 GTRA12				0.445 0.031	0. 0.	0.207 0.017	0.26 0.09	-185. 2.	-109		26. 19.			0.44	37.	57. 0.	39. 54	-10 -2
	GTRA12				0.362	0.	0.117	0.09	-152.	8 -85		30.			0.42 0.46	0. 31.	48.	54. 38.	-8
	GTRA16				0.030	Ŏ	0.018	0.10	2.	. 8	4.	19.	36.	13.		-o.	ō.	55	<u>-2</u>
	GTRA16				0.300	0.	0.179	0.29	-127.	-68		28.		33.	0.46	25.	40.	38.	-6
	GTR208				0.029	0.	0.019	0.10	2.	8		18.			0.42	0.	0.	51.	-1
	GTR208 GTR212				0.211 0.029	0.	0.139	0.28	-91.	-43		22. 19.		27. 13.	0.45	20. 0.	28.	36.	-4 -1
	GTR212				0.029	<u>0.</u>	0.019 0.151	0.10 0.29	<u>2.</u> -98.	-48	<u>. 4.</u> . 1.	25.		<del>29.</del>		21.	<u>0.</u> 31.	<u>52.</u> 36.	-4
	GTR216				0.029	Ö.	0.019	0.10	2.	8		19.			0.42	Ö.	0.	52.	-1
	GTR216			-(	0.235	0.	0.159	0.30	-101.	-50		27.			0.46	21.	32.	36.	-5
	GTRWOE				0.035	0.	0.014	0.07	1.	7		18.		12.		<u>-0.</u>	0.	<u>58.</u>	<u>-2</u>
	GTRW08 GTRW12				0.520 0.032	0. 0.	0.203	0.24 0.09	-215. 2.	-130 8		19. 19.		44. 12	0.42 0.41	44. -0.	63. 0.	40. 56.	-11 -2
	GTRW12	-			0.439	0. 0.	0.219	0.09	-183.	-107		30.			0.45	39.	57.	38.	-9
	GTRW16				0.031	Ŏ. :	0.017	0.09	2.	8		19.			0.42	-o.	0.	56	-2
	GTRW16				0.357		0.197	0.28	-150.	-84		29.			0.45	31.	47.	37.	-7
	GTR308				0.035		0.013	0.07	0.	7		17.			0.40	0.	0.	57.	-2
	GTR308. GTR312				0.351 0.029	0. 0.	0.124 0.019	0.20 0.10	-143. 2.	-82 8		6. 19.			0.39 0.42	28. 0.	40. 0.	41. 52.	-8 -1
	GTR312				0.254		0.166	0.30	-108.	-55		28.			0.46	25.	35.	35.	-5
	GTR316				0.029		0.019	0.10	2.	8		19.			0.42	-0.	o.	<b>53</b> .	-1
	GTRS16				0.249		0.162	0.30	-106.	-53		27.			0.46	23.	34.	36.	-5
	FCPADS				0.032		0.016	0.08	11.	19		27.			0.54	<u>-0.</u>	<u>0.</u>	<u>66.</u>	-2
	FCPADS FCNCDS				0.558 0.027		0.270 0.021	0.28 0.11	-87. -9.	56 19		180. 7.			0.85	26. -0.	73. 0.	56. 62.	-23 -2
	FCHCDS				0.369		0.021	0.36	-335.	55		-123.			0.46	17.	57.	51.	-15

and the first transfer of the first transfer

The state of the s

DATE 05/08/79 GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ISE PEO AES ALTERNATIVES STUDY FUEL AND EMISSIONS SAVINGS (SAVINGS ARE FUEL UNITS REPORT 6.1 EMISSION UNITS= TIME 1990 LEVEL ALL =\$*10**9 TYPE MATCH=POUR *****FUEL SAVINGS****- -- EMISSIONS SAVINGS --- CAPITL--ELECTRIC POWER---PROCS ECS ****DIRECT*****----TOTAL----FESR ------DIRECT-----*******TOTAL******* EMSR SAVING TOTAL COST LAEC NOX SOX PART NOX SOX FUEL GIL+GAS COAL GIL+GAS COAL PART EXPORT -1. 28693 STM141 RESIDU O. -0.011 0. 0.019 0.06 -4. -5. 6. 12. 1. 0.06 3. Ο. 25. n. 28693 STM141 RESIDU O. -0.059 0. 0.098 0.22 -21. -24. 60. 4. 0.23 18. -3. 29. 13. 12. 1. 28693 STM141 COAL-F Ω. -0.011 0. 0.019 0.06 -65. -40. 13.-0.07 -4. -12. n. 165. 28693 STM141 COAL-F 0. -0.059 0. 0.098 0.22 -21. -94. -3. 32. 18. 0.13 1. -1. 37. 28693 STM141 COAL-A O. -0.011 0. 0.019 0.06 -65. -1. 13. 0.16 -11. 149. 73. -40. 0. 3. 28693 STM141 COAL-A O. -0.059 0. 0.098 0.22 55. -94. -3. 24. 108. 1. 18. 0.31 7. 12. 5 26693 STM088 RESIDU -0.011 Ω 0. 0.019 0.06 -5. -4 6. 1. 0.06 28693 STM088 RESIDU -0.041 0. -14. -16. 0.068 0.17 20. 42. 3. 0.18 10. 7. 28693 STM086 COAL-F 0. -0.011 0. 0.019 0.06 -4. -65. -1. -40. 13.-0.07 8. ~13. 167. 26693 STM068 COAL-F 0. -0.041 0. 0.068 -14. -83. 0.17 -15. 16. 0-07 -3. 23. 7. 45. 28693 STN088 COAL-A -0.011 0. 0.019 0.06 -65. 73. -40. 13. 0.16 -11. 148. 28693 STM038 COAL-A -0.041 Ö. 0.068 0.17 57. -83. 95. -15. 16. 0.27 26693 PFBSTM COAL-P -0.012 0. 0.018 -66. 0.06 -0. 74. -40. 13. 0.17 159. -12. 28693 PFBSTM COAL-P **-0.105** 0. 0.162 0.29 73. -121. 161. 36. 0.46 33. 4. 22. 34. 4. 28593 TISTMT RESIDU -0.0120.019 0.06 -4. -3. 6. 12 1. 0.06 -9. Ω. 118. 20693 TISTMT RESIDU -0.126 0.199 0.32 -44. 8. 0.34 -37. 28. 67.

28598 TISTMT COAL -0.012 0. 0.019 0.06 -66. 8. -21. -4. -1. -40. 13. -0.07 O. 231. 1. 28693 TISTMT COAL -0.140 0 0.221 0.34 -49. -142. -7. 26. 0.27 64. -61. 31. 76. -4. 28693 TIMRSG RESIDU O. -0.017 0. 0.014 0.04 -6. -7. 0. 0.05 -11. 143. 28593 THRSG RESIDU O. -0.093 0.077 0.17 21. 2. 0.18 -44 108. 28693 TIHRSG COAL -0.017 O. 0.014 0.04 -6. -68. -1. 6. 13. -0.09 -28. 269. -43. 0. Ω. 28693 TIHRSG COAL -0.1030. 0.085 0.18 -36. -120. -5. 27. -9. 18. 0.08 ~68. 128. 15. -5. 28693 STIRL DISTIL -0.0170.013 n 0.04 31. 30. 43. 23. 0.43 -2. ٥. 70. -3. 28593 STIRL DISTIL -0.229 0.182 0.26 -17. 204. 42. 0.57 15. 36. 28693 STIRL RESIDU O. -0.017 0. 0.013 0.04 -6. -7. -1. 9. 0. 0.05 0. 66. -0. 4. -2. 28693 STIRL RESIDU -0.229 0.182 0. 0.26 -80. -92. -24. 50. 126. -9. 0.26 35. 15. 36. -2. 28693 STIRL COAL -0.017 O. 0.013 0.04 -6. -69. -1. 6. -43. 13.-0.09 -13. ٥. 165. 28693 STIRL COAL -0.254 0.202 0.27 -89. -211. -13. 26, 0.20 47. -12. 44. 40. -1. 28693 HEGT85 COAL-A 0. -0.0260.004 0.01 . -74. 71. -16. ο. 59. 12. 0.12 199. -49 0. 2. 28693 HEGT85 COAL-A 0. -2.013 . n 0.333 0.13 -316. -1267. -101. 441. 25. 50. 0.21 -33. 217. 46. -24. 28693 HEGT60 COAL-A 12. 0.13 -0.025 0. 0.006 0.02 -73. -1. 71. 59. -48. -16. n. 196. 20693 HEGTGO COAL-A -C. 626 0.144 0.14 -64. -434. 186. 26. 0.21 -35. 69. 53. -1. 28693 HEGTOO COAL-A O. -0.023 0. 0.007 0.02 -73. 71. 12. 0.13 59 -47. -16. О. 193. 2. 28693 HEGTOO COAL-A O. -0.241 0. 0.071 -203. 18. 0.19 0.12 · 6. -12. -24. -23. 108 26. 61. -1. 28693 FCNCCL COAL 0. -0.291 0.264 0. 0.31 102. 117. 13. 283. 429. 58. 1.00 -13. 49. 44 -0. 28693 FCSTCL COAL -0.394 0. 0.414 0.38 102. 364. 567. 72. 1.00 -4. 73. 38. 1. 28693 IGGTST COAL -0.347 0. Ο. 0.209 0.25 -267. **-7**. -122. 60. 56. 0.21 -11. 46. 49. 40. 28693 GTSOAR RESIDU -0.017 0. -0.017 28693 GTSOAR RESIDU -0.294 0. -0.294 0.030 0.04 -2. -6. -0. 8 10. 2. 0.11 -1. 0. 57. -0. 0.532 0.29 -110. -111. -2. 61 180. 29. 0.42 35. 47. -0.014 0. 28693 GTACOS RESIDU O. 0.016. 0.05 -6. 10. 0. 0.05 -1. 50. -0. 0. -5. 0.14 28593 GTACOS RESIDU O. -0.191 0. 0.217 0.31 -180. -76. -21. -50. 30. 141. 35. 22. 1. 28593 GTAC12 RESIDU O. -0.014 0. 0.016 5. 0. 0.05 0.05 -5. -6. -1. -1. 10. 0. 50. -0. 28693 GTAC12 RESIDU -0.2430.268 -97. -26. n 0.33 -211. -5. 0.17 -43. 175. -6. -1. 28693 GTAC16 RESIDU -0.015 0. 0.016 0.05 0. 0.05 -5. 10. -1. 51. -0. 28693 GTAC16 RESIDU 0. -0.283 0. 0.298 -29. -50. 0.34 -235. -113. 38. 196. -5. 0.18 52. ٥. -1. 28693 GTWC16 RESIDU O. -0.016 0. 0.014 0.04 -6. -6. 10. 0. 0.05 -1.

FAGE 48 DATE 06/08/79 GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ISE PEO AES ALTERNATIVES FUEL AND EMISSIONS SAVINGS  $\Box$ FUEL UNITS (SAVINGS ARE REPORT 6.1 EMISSION UNITS= TIME 1990 LEVEL . ALL COST =\$#10**9 TYPE MATCH=HEAT ****F U E L SAVINGS****---EMISSIONS SAVINGS - - - CAPITL -- ELECTRIC POWER ---ECS ****DIRECT***** EMSR SAVING TOTAL COST LACC PROCS ECS PART NOX FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX SØX PART EXPORT MWH 28693 GTWC16 RESIDU O. -0.322 0. 0.283 -258. -129. -32. -66. 193. 25. -0. 0.32 -9. 0.14 42. 54. -0.016 0. 28693 CC1626 RESIDU O. 0.014 -7. 0. 0.05 56. -0. 0.04 -6. -1. 4. 10. -1. 0. 28693 CC1626 RESIDU n. -0.497 0.422 -363. -199 -45. -71. 289. -10. 0.19 63 26. -1. 0. 0.35 -1. 28693 CC1622 RESIDU -1. -0. -0.016 0.015 0.05 -5. -6. 1G. 0. 0.05 0. 53. 0. 4. 26. 28693 CC1622 RESIDU O. -0.428 0. 0.398 0.36 -171.. 54. -1. -322. · -40. -59. 268. -8. 0.20 75. 28593 CC1222 RESIDU -0.016 -1. 0. n. 0. 0.015 0.03 -5. -6. 4. 10. 0. 0.05 -0. 52. -0. 26693 CC1222 RESIDU -0.421Ω 0. 0.400 0.36 -318. -169 -39. -57. 268. -7. 0.20 -11 28693 CC0822 RESIDU -0.014 Ö. 0.016 0.05 5. 10.  $\cdot 0, 0.05$ -1. 0. -0. -6. -31. 28693 CC0822 RESIDU O. -0.311 0. 0.339 -251. 222. -5. 0.20 24. 1. 0.36 -124. -45. 45. 58. 1. -0.025 0.005 -1. -0. 0.02 -1.0 28693 STIG15 RESIDU 0. 0.02 -10. 6. 0. 64. -O. O. -9. 28693 STIG15 RESIDU Ο. -18.850 O. 3.942 0.17-11375. -7540. -560. -4184 4359. 35. 0.01 1507. 2135. 37. -300. -8. -1. 28693 STIGIO RESIDU -0.023 0. 0.008 0.02 2. -0. 0.03 -ō. O. -0. -9. 28693 ST1010 RESIDU 0. -1.585 O. 0.522 0.22 -1016. -634. -42. -350. 471. 19. 0.06 138. 34. -22. 1 95 28693 STIGIS RESIDU O. -0.022 0. 0.009 0.03 -9. -1. 2. -0. 0.03 -0. 58. -0. -8 7. n. 28693 STIGIS RESIDU 84. -0.888 ٥. 0.349 0.23 -598. -21. 295. 16. 0.07 -11. 113. -7. -8. -1. 28693 DEADV3 RESIDU -0.020 0. 0.010 0.03 3. 8. 0. 0.04 0 -1. -1031. 41. 28693 DEADV3 RESIDU O. -0.921 0. 0.486 0.29 -368. -77. -585. 374. -31.-0.16 35. 129. -16. 4. 28693 DEHTPM RESIDU O. -0.015 0. 0.016 0.05 -5. -6. -1. 0. 0.05 -4. 0. -1. 10. 81. 28693 DEHTPM RESIDU -0.288 0. 0.305 0.34 -430. -115. -29. -241. 201. -5. -0.06 13. 53. 36 -3. 28693 DESGAS DISTIL -0.021 0. -0.021 -8. 0.52 O. 0.030 0.03 24. 59. 2. 32. 66. -3. -3. -1.163 1.642 28693 DESCAS DISTIL -1.163 O. 0.25 -126. 2. -2155. 728. 41.-0.83 9. 53. -38. 151. 28693 DESCAS RESIDU -0.021 0. -0.021 0.030 0.03 -2. -8. 7. 8. 2. 0.10 ٥. 78. -1. -0. -3. 28693 DESCAS RESIDU -1.163 0. -1.163 1.642 0.25 -5734. -438. -9. 460. 88. -2.79 9. 47 -26. 151. 9. 28693 GTSOAD DISTIL -0.015 -2. Ō. -0.015 0.030 0.05 0. 14. 1. 0.23 -0. O. -3. -95. 0. 222. 37. 28893 GTSØAD DISTIL -0.248 0. -0.248 0.493 0.31 -40. 62. 19. 0.57 43. 27. -4. 31. -12 28693 GTRAOB DISTIL O. -0.016 0. 0.014 0.04 30. 23. 0.43 0. 62. -3. 9. 43. 55. 28693 GTRAOS DISTIL -0.447 O. 0.378 0.34 -183. -91. 80. 369. 63. 0.50 75. -8. 28693 GTRA12 DISTIL -0.016 0. 0.014 0.04 43. 23. 0.43 -3. 30. 56. 0. 0.378 81. 28693 GTRA12 DISTIL 0. -0.426 0. 0.34 -180. 2. 62. 0.50 51. 73. 31. -7. -85. 363. 28693 GTRA16 DISTIL O. -0.016 0. 0.014 0.0431. 30. 23. 0.43 -1. -3. 9. 43. 56. 0. 62. 28693 GTRA16 DISTIL -0.394 ٥. 0.355 0.34-167. 76. 59. 0.50 45. -7. -76. 3. 342. 67. 31 28693 GTR208 DISTIL -0.316 ℧. 0.014 0.04 30. 43. 56. 23. 0.43 Ō. -3. 28693 GTR208 DISTIL O. -0.326 0. 0.293 0.32 -140. -57. 62. 52. 0.49 41. 30. -6. 4. 290. 55. 31. 28693 GTR212 DIST.L O. -0.016 0. 0.014 0.04 30. 43. 23. 0.43 60. -3. 9. 56. -1. 0. 28693 GTR212 DISTIL n. -0.351 Ω. 0.313 0.33 -149. 66. 55. 0.49 43. 30. -6. -64. 308. 59. 28693 GTR216 DISTIL -0.016 Ō. 0.015 23. 0.43 -3. 0.05 30. 43. 56. 0. -0.354 0. 0.327 -6. 28693 GTR216 DISTIL 0. 0.34 -151. -65. 4. 71. 316. 56, 0.50 43. 61. 31. -0.019 0. 0.012 31. 0. 66. -3. 28693 GTRWOS DISTIL O. റ റം 23. 0.42 29. 9. 43. 55. -1. 28693 GTRWOS DISTIL -0.604 0.380 0.30 69. 0.47 66. -11. Ω Ω -251. -135. 68. 412. 89. 33. 31. 23. 0.42 23693 GTRWIZ DISTIL -0.018 0. 0.013 0.04 30. 43. 55. 0. -3. 28693 GTRV12 DISTIL 0. -0.585 0. 0.413 0.32 -243. -130. 80. 425. 71. 0.49 67. 91. 32. -10. -0. 26693 GTRW16 DISTIL O. -1. -0.018 0. 0.013 0.04 31. 30. 9. 43. 23. 0.42 ٥. 65. -3. 55. 28693 GTRW16 DISTIL 0. -0.535 0.388 0.32 -223. -116. 76. 67. 0.49 61. 84. 32. -10. 398. -0.019 0.011 0.03 29. 23. 0.42 65. -3. 28693 GTR308 DISTIL 31. 55. O. 43. 28693 GTR308 DISTIL C. -0.483 0. 0.269 0.26 51. 68. 35. -10. -202. -101. 1. 42. 319. 58. 0.44 28693 GTR312 DISTIL -0.017 0.013 0.04 31. 30. ٥. 62. -3. 23. 0.43 -1. 43. 55.

C'ind

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 49 ISE PEU AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS FUEL AND EMISSIONS SAVINGS REPORT 6.1 (SAVINGS ARE  $\mathbf{\Pi}$ EMISSION UNITS= TIME 1990 LEVEL ALL CUST =\$*10**9 TYPE MATCH=HEAT **** I E L SAVINGS****---EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS COST LAEC EMSR SAVING TOTAL FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX PART EXPORT SAVED HWM 28693 GTR312 DISTIL 0. -0.458 0. 0.344 0.31 -192. 353. 61. 0.48 -94 2. 6A 55. 72. 31. -8 28693 GTR316 DISTIL 0. -0.017 0. 0.013 0.04 31. 30. 43. 55. 9. 23. 0.42 -1. 0. 64. -3. 28693 GTR316 DISTIL n. -0.453 О. 0.337 0.31 -190. 348. 71 -93. 2. 66. 60. 0.48 53. 32. -8 28693 FCPADS DISTIL O. -0,020 0. 0.010 0.03 30. 29. 42. 54. 9. 23. 0.42 -2. ٥. 84. -3. 28693 FCPADS DISTIL O. -1.171 0. 0.567 0.28 -184. 108. 14. 377. 1067. 129. 0.84 57. 160. 55. -49. 28693 FCMCDS DISTIL O. -0.017 0. 0.013 0.04 31. 30. 9. 43. 55. 23. 0.43 -2. ο. 79. -3. 28693 FCMCDS DISTIL -0.775 0.600 0. 0.36 -687. 106. -242. 867. 92. 0.47 39. 126. -32. -1. 51. 28694 STM141 RESIDU -0.010 0.017 0.05 -4. -4. 1. 0.05 -1. 5. 11. 2. 0. 27. 0. 26694 STN141 RESIDU O. -0.037 O. 0.060 0.15 6. -13. -15. -2. 18. 37. 2. 0.16 9. 16. 1. 28694 STM141 COAL-F 0. -0.010 0. 0.017 0.05 -4. -69. -1. 8. -45. 14.-0.08 -15. ٥. 199. 2. 28694 STM141 COAL-F -0.037 0.060 O. 0. 0.15 -13. -85. -2. 21. -23. 17. 0.04 -5. 53. 4. -1. 28694 STM141 COAL-A -0.010 0. 0.017 0.05 67. -69. 78. -45. 14. 0.15 173. -12. O 3. 28694 STM141 COAL-A O. -0.037 0. 3. 0.060 0.15 63. -85. -2. 97. -23. 17. 0.25 6. 31. 5. 28694 PFBSTM COAL-P 0. -0.011 0. 0.016 0.05 67. -70. -0. 78. -45. 14. 0.15 0. 187. 3. -13. 28694 PEBSTM COAL-P 0. -0.088 ٥. 0.129 0.24 80. 152. 35. 0.42 -116. 10. 12. -0. 40. 18. 4. 28694 TISTMT RESIDU -4. -1. O. -0.011 0. 0.017 0.05 -4. 5. 11. 1. 0.05 -10. 0. 134. -1. 28694 TISTMT RESIDU O. -41. -0.103 0. 0.162 0.28 -36. -5. 48. 6. 0.30 22. 78. 101. -41. -7. 23694 TISTMT COAL n. -0.011 0. 0.017 0.05 -4. -70. 8. -45. 14.-0.08 -23. -1. 0. 271. 1. -0.122 28694 TISTMT COAL 0. Ο. 0.191 0.30 -43. -136. 44. 25. 0.23 -69. -6. 89. -4. 28694 TIHRSG RESIDU n. -0.018 0. 0.010 0.03 -6. 3. 0. 0.03 -7. -1. 8. -13. 0. 173. -2. 28694 TIHRSG RESIDU O. -0.124 0. 0.069 0.14 -43. -50. -6. 18. 52. 0. 0.15 -48. 16. 110. -9. 28694 TIHRSG COAL -0.018 0. 0.010 0.03 -6. -74. -1. 5. -49. 13.-0.10 -27. ٥. 315. ١. 28694 TIHRSG COAL -0.146 0. 0.082 0.15 -51. -151. 25. 19. 0.05 -78. -7. -17. 19. 126. -7. 28694 STIRL DISTIL O. -0.016 0.012 0.03 34. 33. 10. 46. 58. 24. 0.42 0. 78. -3. 28694 STIRL DISTIL O. 7. -0.220 0. 0.161 0.23 -13. 42. 0.55 -7. -24. 112. 193. 12. 33. 42. 28694 STIRL RESIDU O. -0.016 0. 0.012 0. 0.04 0.03 -6. -6. -1. 3. 8. -3. 0. 74. -0. 28694 STIRL RESIDU O. -0.220 0. 0.161 0.23 -77. -88. -24. 44. 114 -10. 0.23 12. 33. 37. -3 28694 STIRL COAL -0.016 -1. 3. 0.012 0.03 -6. -73. 6. -48. 13. -0.10 Ō. -14. 193. 28694 STIRL COAL -0.259 O. 26. 0.17 0.189 0.25 -91. -218. -13. 56. 36. -17. 39. 47. 1. 28694 HEGT60 CGAL-A 0. -0.027 0. 0.001 64. -79. -1. 13. 0.11 0.00 76. -17. 0. 220. 2. -55. 28694 HEGT60 COAL-A 28. 0.12 -1.314 0. 0.050 -185. -66. 0.03 -852. 256. -96 -37. 52. -18. 28594 HEGTOO COAL-A 0.01 -0,023 0.005 65. -77. -1. 76. -52. 13. 0.12 -16. 0. 214. 2. 28694 HEGTOO COAL-A O. -0.303 0. 0.068 0.10 -2. -245. -15. 120. 19. 0.17 -26. -33. 32. 60. -2. 28694 FCMCCL COAL -0.355 0. 0.30 0. 0.282 110. 126. 14. 318. 484. 64. 1.00 -13. 57. 44. -1. 28694 FCSTCL COAL 0. -0.415 0. 0.377 0.34 110. 569. 74. 1.00 -7. 126. 14. 368. 72 40. -0. 28694 IGGTST COAL -0.364 0. -127. Ō. 0.157 0.19 -282. 12. 13. 56. 0.15 -10. 43. 46. 44. 0. 28694 GTSGAR RESIDU -0.016 0. -0.016 0.028 0.03 -2. -6. -0. 7. 9. 2. 0.10 -1. ٥. 61. -0. 28694 GTSØAR RESIDU -0.367 -0.367 0.619 0. 0.27 -128. -138. -3. 71. 200. 34. 0.42 39. 55. 29. -2. 28694 GTACOS RESIDU O. -0.013 0. 0.015 0.04 -5. -5. -1. 4. 10. 0. 0.05 -1. Ω. 53. -0. 28694 GTACOS RESIDU O. -0.205 0. 0.235 0.31 -188. -82. -23. -48. 152. -5. 0.15 32. 39. 23. 1. 28694 GTAC12 RESIDU O. -0.013 0. 0.015 0.04 -5. -5. -1. 9. 0. 0.05 4. -1. ٥. 53. -0. 28694 GTAC12 RESIDU 0. -0.264 0. 0.289 0.33 -224. -106. -27. -48. 189. -5. 0.17 38. 49. 24. 1. 28694 GTAC16 RESIDU -0.014 0. 0.014 0.04 -5. -6. -1. 4. 9. 0. 0.05 -1. 0. 55. -0. 28694 GTAC16 RESIDU -0.319 0.322 0.34 -257. -128. -31. -53. 213. -6. 0.18 42. 58. 25. -0.

28694 GTWC16 RESIDU O.

28694 GTWC16 RESIDU

-0.015 0.

-0.347 0.

0.013

0.306

0.04

0.32

-5.

-273.

-6.

-139.

-1.

-33.

4.

-66.

9.

208.

0. 0.04

-9. 0.15

-1.

45.

0.

**59**.

58.

25.

-0.

-1.

DATE 06/08/79 GENERAL ELECTRIC COMPANY 50 ISE PEU AES ALTERNATIVES STUDY COGENERATION TECHNOLOGY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS  $\mathbf{D}$ (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$x10xx9 TYPE MATCH=POWR CAPITL -- ELECTRIC POWER ---**** L SAV I N G S**** - - - E M I S S I O N S SAVINGS ---PROCS ECS ****D!RECT*****TOTAL---FESR -----D!RECT----******TOTAL******* EMSR SAVING TOTAL COST LAEC COAL OIL+GAS COAL **EXPORT** FUEL GIL+GAS NOX SOX PART NOX SOX **PART** SAVED MWH 28694 DEHTPM RESIDU 0.04 -0.015 0. 0.012 -5. 3. 9. O. -6. -1. 0. 0.04 -5. n 94. 28694 DEHTPM RESIDU -0.310 U. 0.250 0. 0.29 -450. -124. -31. -272. 173. -10. -0.14 50. 42. -5. 5. 28694 GTSOAD DISTIL -0.014 0. -0.014 0.028 0.04 -0. -2 0 12. 1. 0.20 0. 57. -3 -1. 28694 GTSOAD DISTIL -0.275 -0.275 0.540 0.31 <del>71.</del> -45. Ō. 242. 28 -5. 0. -101. 21. 0.57 40. 48. 28694 GTRAOS DISTIL -0.016 0. 33. 0.011 0.03 34. 10. 45. 58. 24. 0.42 -1. 0. 67. -3. 28694 GTRAOS DISTIL -0.608 0. 0.423 0.31 -250. -134. 0. 84. 440. 74. 0.48 64. 94. 34. -12. 20694 GTRA12 DISTIL -0.016٥. 0.012 0.03 34. 33. 10. 46. 58 24. 0.42 65. -3. -1. 0. 28694 GTRA12 DISTIL -0.556 O. 0.420 0.32 -229. -119. 1. 88. 424. 71. 0.49 89. 33. -10. 60. 28694 GTRA16 DISTIL O. -0.016 0. 0.012 0.04 34. 33. 10. 46. 58. 24. 0.42 -1. 0. 66. -3. 28694 GTRA16 DISTIL -0.499 0.390 0.32 0. O. -206. -103. 2. 82. 392. 67. 0.49 81. 33. -10. 52. 28694 GTR208 DISTIL 0. -0.015 0. 0.012 0.04 34. 33. 10. 46. 58. 24. 0.42 63 -3. - 1 n. 28694 GTR208 DISTIL Ō. -0.395 0. 0.316 0.31 -164. -74. 4 67. 324. 58. 0.48 32 -8. 64. 45. 28694 GTR212 DISTIL 24. 0.42 -0.015 0. 0.012 0.04 34. 33. 10. 46. 58. -3. Ω -1. n 64 28694 GTR212 DISTIL 0. -0.424 0. 0.339 0.31 -176. -82. 3. 72. 345. 61. 0.49 47. 69. 32. -8. 28694 GTR216 DISTIL -0.015 0. 0.013 0.04 33. -3 O 34. 10. 46. 58 24. 0.42 0. 64 - 1 28694 GTR216 DISTIL -0.430 O. 0.32 0.356 -178. -84. 3. 77. 356. 62. 0.49 47. 33. -8. 28694 GTRW08 DISTIL 0. -0.018 0. 0.010 0.03 32. -3. 34. 10. 45. 57. 24. 0.42 70. -1. O. 28694 GTRWOS DISTIL O. -0.786 0. 0.28 -3. 71. 81. 0.46 0.423 -321. -184. 487. 35. -16. 80. 111. 28694 GTRV12 DISTIL 33. -0.017 0. 0.011 0.03 34 10. 45. 57. 24. 0.42 68. -3 28694 GTRW12 DISTIL -0.733 0. 0.30 0.460 -300. -169. -2. 493. 79. 87. 81. 0.48 109. 34. -14. 28694 GTRW16 DISTIL -0.017 0. 0.011 33. 0.03 34. 10. 45. 57. 24. 0.42 -2. 0. 69. -3. 28694 GTRW16 DISTIL -0.649 0. 0.428 0.31 -266. -145. -1. 83. 453. 76. 0.48 -12. 69. 98. 34. 28694 GTR308 DISTIL -0.019 0. 0.009 0.03 32. 34. 10. 45. 57. 24. 0.42 -1. ٥. 69 -3. 28594 GTR308 DISTIL -0.615 0. 0.287 0.24 -252. -0. 40. 367. 66. 0.42 <u>61.</u> 82. 36 -14. 28694 GTR312 DISTIL -0.016 0. 0.012 24. 0.42 -1. 0.03 34. 33. 10. 45. 58. -3. 0. 66. 28694 GTR312 DISTIL -0.526 0. 1. 0.374 0.31 -217. -111. 75. 391. 67. 0.48 60. 32. -10. 82. 286% | GTR316 DISTIL -0.016 0. 0.011 0.03 34. 33. 10. 45. 58. 24. 0.42 67 -3. -1 Λ 28694 GTR316 DISTIL -0.518 0. 0.366 0.30 -108. 73. -10. -214. 2. 384. 67. 0.48 80. 33. 28694 FCPADS DISTIL -0.019 0. 0.009 0.03 34. 32. 45. -3. O. 10. 57. 24. 0.42 -3. 0. 89 28694 FCPADS DISTIL -1.264 0. 0.612 n. 0.28 -199. 111. 15. 407. 1146. 139. 0.84 61. 173. 55. -53. 28694 FCMCDS DISTIL -0.016 ٥. 0.012 0.04 34. 33. 10 46. 58 24. 0.42 -3. 0. 65 -3. -0.837 28694 FCMCDS DISTIL Ō. 0.647 0.36 -730. 109. -2. 251. 930. 99. 0.47 42. 137. 51. -35. 28731 PFBSTM COAL-P 0. -0.014 0. 0.017 0.03 141. -135. 3. 156. -99. 30. 0.15 ٥. 200. 7. -15. 28731 PFBSTM COAL-P -0.090 0. 0.110 0.13 167. -180. 236. -52. 58. 0.33 8. 21. -2. 16. 47. 28731 TIHRSG RESIDU -0.026 0. 0.006 0.01 -9. -10. -1. 1. 6. -0. 0.01 -10. ۵. 137. -2. -6. 0.09 28731 TIHRSG RESIDU -0.357Ö. 0.078 0.07 -125. -143. -18. 12. 85. -78. 38. 96. -18. 28731 TIHRSG COAL -0.026 0. 0.006 n. 0.01 -9. -142. -1. 6. -106. 26. -0.13 -37. 0. 368. 4. 28731 TIHRSG COAL -0.357 0. 0.078 0.07 -125. -340. -18: 20. -84. 33.-0.03 108. -10. -115. 38. 28731 HEGTOO COAL-A -0.027 U. 0. 0.004 0.01 130. -143. -1. 145. -107. 26. 0.11 -25 271 6. n -27. -1. 28731 HEGTOO CUAL-A Ö. -0.572 Ö. 0.091 0.07 3. -470. -29. 221. -88. 36. 0.14 59. 53. 28731 FCMCCL COAL 0. -0.015 0. 0.016 0.02 6. -116. 21. -80. 28.-0.05 1. -31. 0. 311. 5. 28731 FCMCCL COAL 0. -0.519 0. 0.575 0.33 252. 870. 119. 1.00 221. 29. 578. -5. 100. 37. 5. -0.021 28731 GTSØAR RESIDU -0.021 n. 0.031 0.02 -7. -8. -0. 3. 9 2. 0.04 -2 0. 66. -0. 28731 GTSOAR RESIDU -0.957 Ō. -0.9571.441 0.23 -328. 360. -8. <u> 136.</u> 428. 78. 0.39 -9. 87. 132. 30. 28731 GTACOS RESIDU O. -O.015 O. 0.03 -14. -6. -2. **55**. -0. 0.017 -4. 11. -0. 0.01 -1. 0. 28731 GTACO8 RESIDU 0.469 0.31 -408. -167. -49. -126. 305. -13. 0.12 63. 80. 2.

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 51 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS FUEL AND EMISSIONS SAVINGS REPORT 6.1 (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 TYPE MATCH=POWR SAVINGS***- - EMISSIONS SAVINGS - - CAPITL--ELECTRIC POWER---****F U E L ECS ****DIRECT*****TGTAL----FESR ------DIRECT-----*******TGTAL=:****** PROCS ECS EMSR SAVING TOTAL COST LAEC FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX PART EXPORT 28731 GTAC12 RESIDU O. -0.015 0. 0.017 0.03 -13. -6. . -2. -3. -0. 0.01 55. 11. -1. Ω. -0. 28731 GTAC12 RESIDU O. -0.512 0. 0.579 0.34 -465. ~205. -56. -118. 376. -12. 0.16 99. 22. 2. 28731 GTAC16 RESIDU O. -0.016 0. 0.015 0.02 -13 -6. -2. -3. 10. -0. 0.01 -1. 0. 57. -0. 28731 GTAC16 RESIDU O. -0.663 O. 0.645 -556, -265. -140. 430. 0.33 -67. -17. 0.15 120. 25. -0. -0.017 0. 28731 GTWC16 RESIDU O. 0.015 0.02 -14. -7. -2. -4. 10. -0. 0.01 ŭ. -0. -2. 28731 GTWC16 RESIDU O. -0.692 0. -573. -277. 0.612 0.32 -70. -159. 415. -20. 0.13 90. 119. 24. -0. 28731 GTS6AD DISTIL -0.016 0. -0.016 0.031 0.02 -6. -3. Ο. 4. 14. 1. 0.10 -1. 0. -5. 28731 GTSGAD DISTIL -0.549 0. -0.549 1.078 0.31 -221. -89. 0. 122. 484. 42. 0.55 98. -9. 28731 GTRA08 DISTIL 0. -0.021 0. 0.010 0.01 66. 69. 21. 81. 105. 48. 0.40 -2. 0. 72. -6. 28731 GTRAOS DISTIL O. -2.023 0. 0.939 0.26 -841. -494. -14. 117. 1145. 187. 0.44 172. 275. 37. -43. 28731 GTRA12 DISTIL O. -0.020 0. 0.011 0.02 66. 69. 21. 81. 105. 48. 0.40 -2. ٥. 70. -6. 28731 GTRA12 DISTIL -1.644 0. 0.903 0.28 ~689. -388. 135. 1024. 169, 0,46 145. -34. 236. 36. 28731 GTRA16 DISTIL O. -0.020 0. 0.012 21. 81. 70. 0.02 66. 69. 106. 48. 0.40 -2. 0. -6. 28731 GTRA16 DISTIL 0. -1.362 0. 0.813 0.29 -576. -308. -2. 128. 900. 152. 0.46 123. 201. 35. -28. 28731 GTR208 DISTIL -0.019 0. 0.012 0.02 66. 70. 21. 81. 106 48. 0.40 -2. 0. 67. -6. 26731 GTR208 DISTIL -0.958 0. 0.632 0.28 -415. 102. 694. 124. 0.45 -195. 146. 33. -19. 28731 GTR212 DISTIL O. 0.02 0. -0.019 0. 0.012 66. 70. 21. 81. 106. 48. 0.40 -2. 68. -6. 28731 GTR212 DISTIL 0. -1.033 0. 0.685 0.29 742. -445. ~216. 3. 112. 130. 0.46 103. 158. 33. -20. 28731 GTR216 DISTIL -0.019 0. 0.013 67. n 0.02 70. 81. 48. 0.40 21. 106. -2 0. -6. 28731 GTR216 DISTIL -1.065 Q. 0.723 0.30 -453. 3. 122. 772. 134, 0.46 -225. 103. 165. 33. -21. 28731 GTRWOS DISTIL O. -0.023 0. 0.009 66. 0.01 69, 20. 81. 105. 48. 0.40 -2. Ο. 74. -6. 28731 GTRW08 DISTIL O. -2.357 0. 0.922 -975. 0.24 -589. -19. 85. 1224. 200. 0.42 202. 305. 38. -51. 28731 GTRW12 DISTIL -0.021 0. 0.010 0.02 66 69. 21. 81. 105 48. 0.40 Ω. 72 -6. -1.992 0. 28731 GTRW12 DISTIL 0.27 0.993 -828. -486. -13. 137. 1166. 189. 0.45 191. 277. 35. -39. 28731 GTRW16 DISTIL 0. -0.020 0. 0.011 0.02 66. 69. 21. 81. 105. 48. 0.40 -2. 0. 72. -6. 28731 GTRW16 DISTIL O. -1.619 0. 0.893 0.28 -679. -381. -7. 134. 1012. 167. 0.45 233. -32. 155. 34. 28731 GTR308 DISTIL ٥. -0.023 0. 0.008 0.01 65. 68. 20. 80. 105. 48. 0.40 -2. ٥. 72. -6. 28731 GTR308 DISTIL -1.594 Ō. 0.563 0.20 -669 -374. -6. 29. 825. 147. 0.39 139. 199. -36. 28731 GTR312 DISTIL 0. -0.019 0. 0.012 0.02 67. 70. 81. 106. 48, 0.40 21. -2. 0. 68. -6. 28731 GTR312 DISTIL 0. -1.151 0. 0.755 0.30 -492. 139. 0.46 -249. ı. 126. 812. 121. 176. 32. -21. 28731 GTR316 DISTIL -0.019 0. 0.012 0.02 67. 70. 21. 81. 106. 48. 0.40 -2. 0. 69. -6. -1.127 28731 GTR316 DISTIL Ō. 0.737 0.30 ·483. -242. 2. 122. 796. 137. 0.46 116. 172. 33. -21. 23731 FCPADS DISTIL 0. 0. -0.021 0. 0.010 0.02 72. 76. 21. 87. 113. 48. 0.42 -4. 97. -6. 20731 FCPADS DISTIL O. -2.530 0. 1.225 0.28 -395. 253. 32. 818. 2326. 279. 0.85 120. 349. 54. -103. 23731 FCNCDS DISTIL O. 48. 0.40 -0.018 0. 0.014 0.02 59. 77. 21. 74. 113. 0. 92. -4. -6. 28731 FCHCDS DISTIL O. 198. 0.46 -1,675 0. 1.296 0.36 -1521. 250. -3, -560. 1893. <u>276.</u> 50. -67. 0.021 28741 STM141 RESIDU O. -0.013 0. 0.18 -4. -5. 6. 1. 0.19 -1. 13. О. 0. 42. n. 28741 STM141 RESIDU O. -0.022 0. 0.036 -9. 0.25 -8. 22. 1. 0.27 2. -1. 11. 3. 27. 0. 28741 STM141 COAL-F 0. -0.013 0. 0.021 -25. 0.18 -4 5. 0.08 99 28741 STM141 COAL-F 0. -0.022 0. 0.036 0.25 -8. -30. 12. 6. 0.17 -3. 52. 28741 STM141 COAL-A O. -0.013 0. -25. 0.021 0.18 17. -1. 28. 5. 0.27 -5. 87. 1. 28741 STM141 COAL-A O. -0.022 0. 6. 0.35 0.036 0.25 15. -30. -1. 35. -1. 40. 1. 28741 STN088 RESIDU O. -0.013 0. -5. 0.021 0.18 6. 1. 0.19 1. 28741 STM088 RESIDU O. -0.017 0. 0.028 0.21 -7. 1. 0.23 1. 0. 28741 STM088 COAL-F 0. -0.013 0. 0.021 0.18 -25. -1. 7. -4. 5. 0.08 -6. 93. ٥. 28741 STM088 COAL-F 0. -0.017 0. 0.028 0.21 -27. -1. -0. 5. 0.12 -4.

DATE 06/08/79 GENERAL ELECTRIC COMPANY ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS D REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL =\$*10**9 TYPE MATCH=POWR **** U E L SAVINGS****---EMISSIONS SAVINGS--- CAPITL--ELECTRIC POWER---PROCS ECS ECS ****DIRECT***** EMSR SAVING TOTAL COST LAEC PART NOX SOX FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART EXPORT HWM 28741 STM088 COAL-A 0. -0.013 0. 0.021 -25. 0.18 17. -1. 28. 5. 0.27 -5. 0. 80. 1. 28741 STM008 COAL-A 0. -0.017 0. 0.028 0.21 16. -27. -1. 31. -0. 5. 0.31 -1. 46. 1. 1. 28741 PFBSTM COAL-P -0.013 0. 0.021 0.17 -25. 19. 1. 31. -4. 6. 0.31 -8. 108. 0. 28741 PERSTM COAL-P -0.034 0. 0.054 0.3121. -37. 2. 50. 13. 11. 0.47 -3. 48. 1. 6. 28741 TISTMT RESIDU O. -0.013 0. 0.021 -1. 1. 0.19 0.17 -5. -5. 13. -9. 0. 114. -1. -2. 28741 TISTMT RESIDU O. -0.044 0. 0.071 0.35 -16. -18. 21. 44. 3. 0.37 -19. 8. 80. -3. 28741 TISTMT COAL -0.013 0. 0.021 0.17 -5. -25. -1. -4. 5. 0.07 -17. 178. -1. 28741 TISTMT COAL -0.044 0. 0.071 0.35 -44. -2. 22. 22. 8. 0.29 -28. 97. -2. -16. 28741 TIHRSG RESIDU O. -0.018 0. 0.016 0.13 -6. -7. -1. 4. 11. 0. 0.15 -16. 0. 166. -2. 28741 TIHRSG RESIDU O. -0.026 0. 0.023 0.17 -9. 1. 0.19 -20. -3. -11. -1. 16. 144. 28741 TIHRSG COAL -1. -0.018 0. 0.016 0.13 -28. -25. -6. -7. 5. 0.03 233. 28741 TIHRSO COAL -1. -3. -33. -0.026 0. 0.023 0.17 5. 0.07 183. -2. 28741 STIRL DISTIL O. 0.13 -0.019 0. 0.015 6. 5. 3. 17. 26. 8. 0.48 0. 0. 52. -1. 26741 STIRL DISTIL O. -0.068 0. 0.054 0.26 -5. -9. 2. 35. 60. 12. 0.57 39. -2. 28741 STIRL RESIDU O. -0.019 0. 0.015 0.13 -7. 10. -1. 0.13 47. -0. 287/1 STIRL RESIDU -0.068 0. -3. 0.26 0.054 0.26 -24. -27. 35. 38. -0. 28741 STIRL COAL -0.019 0. 0.015 Ω. -7. 0.13 -28. -1. -7. 4. 0.02 -7. 101. 0. 28741 STIRL COAL Ω. -0.068 0. 0.054 7. 0.19 0.26 -24. -58. -3. 12. -3. 45. 1. 0.006 28741 HEGT85 COAL-A -0.028 0. n 0.05 13. -34. -1. -13. 4. 0.15 -15. 28741 HEGT 65 COAL-A -0.442 0. 0.087 -22. 0.14 -282. 105. 10. 13. 0.23 -40. 61. -9. 26741 HEGT60 COAL-A O. -0.027 0. 0.007 0.06 -33. -1. 13. 4. 0.15 -14. 0. 157. -1. 28741 HEGT60 COAL-A 0. -0.155 0. 0.040 0.14 -110. -8. -1. 7. 0.22 73. -3. -14. -24. 28741 HEGTOO COAL-A -0.026 0. 0.008 0.07 -33. -1. 4. 0.15 -13. 148. 28741 HEGTOO COAL-A -0.062 0. 0.019 0.11 -7. 5. 0.18 -14. 4. 86. -1. 28741 FCMCCL COAL -0.016 0. 0.018 0.15 7. -5. 1. 18. 16. 6. 0.38 -12. ٥. 139. -0. 28741 FCMCCL COAL **-0.068** 0. 0.078 0.34 34. 77. 116. 16, 1.00 -13. -1. 59. 11. 28741 FCSTCL COAL -0.015 0. 0.019 0.16 4. -10. 16. 6. 0.31 -12. 11. n 136. -O. 28741 FCSTCL COAL -0.106 0. 0.133 0.41 108. 168. 21. 1.00 -12. 49. -1. 28741 IGGTST COAL -0.019 0. 5. -7. 0.015 0.13 -28. 6. 0.04 -6. 1. -12. 0. 140. -0. 26741 IGGTST COAL -0.093 0. 0.076 0.30 -33. -73. 22. 17. 0.26 3. 23. -11. 13. 54. -1. 28741 GTSCAR RESIDU -0.018 0. -0.018 0.034 0.13 -7. -7. -O. 4. 11. 2. 0.23 48. -0. -0. O. 28741 GYSOAR RESIDU -0.084 0. -0.084 0.154 0.29 52. -33. 8. 0.42 -0. 31. 28741 GTACOS RESIDU O. -0.016 0. 0.018 0.15 -16. -6. -2. -5. 12. -0. 0.06 1. 0. 41. 0. 28741 GTACOS RESIDU O. -0.056 0. 0.063 0.31 -55. -22. -7. -17. 41. -2. 0.12 0. 8. 26. 28741 GTAC12 RESIDU 0. -0.016 0. 0.018 0.15 -6. -14. -4. 12. -0. 0.07 0 O. 41. 28/41 GTAC12 RESIDU -0.071 0. 0.078 0.33 -2. 0.15 0. 28741 GTAC16 RESIDU O. -0.016 0. 0.017 -7. 0.15 -2. -14. -3. 11. -0. 0.07 0. 42. 0. 28741 GTAC16 RESIDU 0. -0.082 0. 0.087 0.34 -71. -33. -9. 57. -2. 0.17 -17. 13. 28. 0. 28741 GTWC16 RESIDU O. -0.018 0. 0.016 0.13 -7. -15. -4. 11. -1. 0.06 ٥. 28741 GTVC16 RESIDU -0.094 0. 0.083 0.32 -38. -9. 56. -3. 0.13 -78. Ю. 28741 CC1626 RESIDU O. -0.018 0. 0.016 0.13 -13. -7. -2. -2. 11. -0. 0.07 -0. 0. 49. -0. 26741 CC1626 RESIDU O. -0.160 0. 0.140 0.36 -117. -64. -14. 95. -3. 0.20 -22. 16. 29. -1. 0.016 28741 CC1622 RESIDU O. -0.017 0. 0.14 -13. -7 -2. -2. 11. -0. 0.08 0. -0. 0. 46. 28741 CC1622 RESIDU O. -0.138 O. 0.132 0.37 -104. -2. 0.21 -13. 88. 29. -0. 28741 CC1222 RESIDU O. -0.017 0. -7.

0.017

0.133

**-0.136** 0.

28741 CC1222 RESIDU O.

0.14

0.37

-13.

-103.

-2.

-13.

-54.

-2.

-18.

11.

89.

-0. 0.08

-2. 0.21

0.

Ο.

45.

28.

0.

-0.

ALTERNATIVES STUDY

FUEL UNITS EMISSION UNITS= CUST

DATE 06/08/79 ISE PEO AES

GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERN
REPORT 6.1 FUEL AND EMISSIONS SAVINGS
TIME 1990 LEVEL ALL

(SAVINGS ARE

U

PAGE 53

<del>-</del>	,	
=\$*10**9		TYPE MATCH=POWR
	2 2 2 2 2 2	

RGCS	ECS			*F U E				**** ESR				S A V Töt***	INGS AL*****			CAPITL- SAVING	-ELECTRI		ER Laec
		FUEL	OIL	+GAS	COAL C	IL+GAS	COAL	NO	X S	OX PA	ART N	OX SO	X PAR	<u>T</u>			EXPORT		SAVED
0741	CC0822	DECI	Dir	0.	-0.016		0.018	0.15	-13.	-6.	-2.	-2.	12.	·- o	0.09	· · · o.	MWH O.	45.	О.
	CC0822				-0.102		0.114		-13. -82.	-41.	-10.	-14.	74.		0.22	_	17.	27.	Ö.
	STIG15			0.	-0.028		0.006		-17.	-11	-1.	-6.	6.		0.00	0.	Ö.	58.	-0.
	S11015			0.	-5.505		1.151		-3325.	-2202.	-163.	-1224.	1273.		0.01	429.	621.	37.	-89.
	STIGIO			0,	-0.025		0.008		-16.	-10.	-1.	-6,	8.		0.02		0.	53.	-0.
8741	STIGIO	RESI	DU	0.	-0.463	0.	0.153	0.22	-299.	-185.	-12.	-105.	138.		0.06	38.	55.	≎5.	-6.
8741	STIGIS	RESI	DU	0.	-0.024	0.	0.010	0.08	-17.	-10.	-1,	-6.	8.	0.	0.02	0.	0.	52.	-0.
8741	STIGIS	REST	υU	0.	-0.259	-	0.102	0.23	-177.	-104.	-6.	-63.	86.	5.	0.07	22.	31.	35.	-3.
	DEADVS			0.	-0.022		0.012		-25.	-9.	-2.	-14.	9.	-	-0.06		_0.	66.	-0.
	DEADV3			0.	-0.260		0.141		-298.	-104.	-22.	-171.	107.		-0.16		34.	41.	-4.
	DEHTPM			0.	-0.016		0.018		-25.	<u>-6.</u>	<u>-2.</u>	<u>-14.</u>	12.		<u>-0.03</u>	<u>-2.</u>	<u> </u>	<u>61.</u>	<u>-o.</u>
	DEHTPM	_		0.	-0.084		0.092		-131.	-34.	-9,	-75.	60.		-0.07	4.	13.	36.	-1.
	DESCA3				0.	-0.024 -0.326	0.034		-49. -773.	14.	1.	-39,	30.		-0.15	-1.	0. 40.	66. 53.	-1. -10.
	DESCAS DESCAS				0. 0.	-0.024	0.465 0.034		-120.	-35. -9.	1. -0.	-627. -109.	207. 10.		-0.86 -1.33	2, -1,	40. 0.	53. 61.	-10.
	DESOA3				<del>-0.</del>	-0.326	0.465		-1659.	-123.	- <u>3.</u>	-1509.	131.		-2.86	2.	40.	48.	<del>-7.</del>
	GTSCAD				o.	-0.017	0.034	- ,	-7.	-3.	õ.	4.	15.	1.		1.	٦ <u>٠</u> .	44.	-1.
	GTSOAD				Õ.	-0.072			-29.	-12.	ŏ.	16.	65.	• •	0.56	9.	10.	30.	-1.
	GTRA08				-0.018		0.016	_	1.	5.	3.	12.	26.	8.		-0.	o.	53.	-1.
	GTRA08			Ō.	-0.127		0.110		-55.	-26.	1.	22.	107.	18.		12.	19.	34.	-2.
	GTRA12			0.	-0.018		0.016		1.	5.	3.	13.	26.	8.	0.44	-0.	Ο.	52.	-1.
8741	GTRA12	DIST	IL	0.	-0.122	o. •	0.110	0.35	-53.	-24.	1.	22.	105.	18.	0.50	11.	19.	34.	-2.
8741	GTRA16	DIST	IL :	0.	-0.018	0.	0.016	0.14	1.	5.	3.	12.	26.	8.	0.44	-0.	٥.	53.	-1.
8741	GTRA16	DIST	π.	0.	-0.113	0.	0.103	0.34	-49.	-22.	1.	21.	9 <b>9</b> .	17.	0.50	10.	17.	35.	-2.
8741	GTR208	DIST	IL	0.	-0.018	0.	0.016	0.13	٥.	5.	3.	12.	26.	8.	0.43	0.	Ο.	50.	-1.
	GTR208			0.	-0.094		0.086		-42.	-16.	1.	17.	84.		0.48	9.	14.	33.	-2.
	GTR212			0.	-0.018		0.016		<u> </u>	<u>5.</u>	3.	12.	26.		0.43	-0.	0.	<u>51.</u>	-1.
	G1R212			0.	-0.101		0.091	- ,	-45.	-18.	1.	18.	89.		0.49	10.	15.	34.	-2.
	GTR216			0.	-0.017		0.016		1.	5.	3.	12.	26.		0,44		0.	51.	-1.
	GTR216			0.	-0.102		0.095		~45.	-18.	1.	19.	92.		0.49	9.	15.	34.	-2.
	GTRWOS GTRWOS			0.	-0.021		0.013		<u>0.</u> -73.	<u>4.</u> -39.	<u> </u>	12. 18.	25. 119.		0.42	-0. 15.	<u>0.</u> 23.	<u>56.</u> 37.	- <u>1.</u> -3.
-	GTRW12			0. 0.	-0.173 -0.020		0.111		-/3. 1.	-39. 5.	-0. 2.	12.	26.		0.47		23. 0.	57. 55.	-3. -1.
	GTRW12			0.	-0.020		0.120		-71.	-37.	-0.	22.	123.	-	0.48	15.	24.	35. 36.	-3.
	GTRW16			0.	-0.019		0.014		1.	5.	2.	12.	26.		0.43	-0.	- ō.	56.	-1.
	GTRWIE			0.	-0.154		0.113		-66.	-33.	<del>0.</del>	21.	116.	<del>- 19.</del>		13.	<u> </u>	36.	-3.
	GTR308	:		Ö.	-0.021		0.012		-1.	4.	2.	11.	25.		0.41	ò.	0.	5 <b>5</b> .	-1.
	GTR308			0.	-0.138		0.079		-59.	-29.	ō.	11.	92.		0.43	11.	17.	38.	-3.
	GTR312			0,	-0.019		0.015		0.	5.	2.	12.	26.		0.43	-0.	0.	53.	-1.
8741	<b>GTR312</b>	បានរ	IL.	0.	-0.133	0.	0.101	0.32	-57.	-27.	1.	18.	103.	18,	0.48	12.	19.	35.	-2.
8741	GTR316	DIST	TL.	0.	-0.019		0.014		0.	5.	2.	12.	26.		0.43	-0.	0.	54.	-1.
	GTR316			0.	-0.131		0.098		-57.	-27.	1.	18.	101.		0.47	12.	18.	36.	-2.
	FCPADS			0.	-0.023		0.011		6.	12.	3.	18.	33.		0.55	-0.	0.	67.	-1.
	FCPADS			0.	-0.342		0.166		-53.	34.	4.	111.	314.	38.			44.	56.	-14.
	FCMCDS			0.	-0.019		0.015		-8.	12.	3.	4.	33.		0.42	-0.	0.	62.	-1.
3741	FCMCDS	DIST	I L	0.	-0.226	0.	0.175	0.36	-206.	34.	-0.	-76.	256.	27.	0.46	11.	35.	51.	-9.

	6/08/7	<del></del>		<del></del>						C COMPANY							FA	<u>GE 54</u>
SE PE	O AES		•				HERATION	TECHNO				ERNATIVES	S					
	FUEL		-				PORT 6.1	FUEL.	AND	EMISSIONS		igs :		(SA	ivings a	RE		
		ION UN				TIN	IE 1990		1	LEVEL	ALL							
	COST		=\$*10	**9					:	·				<u> </u>	PE MATC	H=HEAT		
																		_
			****F U				****					INGS -				-ELECTR		
RUCS	ECS			•			ESR							emsr	SAVING	TOTAL	COST	
		FUEL	TIL+GAS	COAL O	IL+GAS	COAL	NOX	SOX	<u> </u>	PART NO	K SOX	PART				EXPORT		SAVED
					_				_	_	_		_		_	MMII		±.
	STM141			-0,005		0.008		-2.	-2.	• • •	2.	5.		0.15	0.	0.	54.	0.
	STM141			-0.005		0.008		-2.	-6.	•	2.	1.		0.09	-2.	0.	60.	0.
	STM141			-0.005		0.008		3.	-6.		<u>7.</u>	<u> </u>		0.20	<u>-1.</u>	<u> </u>	<b>55</b> .	0
	STM086			-0.004	0.	0.006		-1.	-1.		2.	4.	0.		0.	0.	5 <b>5</b> .	0
	STH088			-0.004	0.	0.006		-1.	-6.		2.	-0.	1.	0.06	-2.	0,	60.	0.
	STMOSS			-0.004	Ο.	0.006		4.	-6.	-0.	7.	-0.		0.16	-1.	Ο,	56.	0.
	PFBSTM			-0.007	0	0.012		5.	-8.	1.	11.	3.		0.33	-3.	0.	<u>64.</u>	0
	TISTMT			-0.010		0.015		-3.	-4.		5.	9.	1.		-7.	0.	100.	-1
	TISTMT		0.	-0.010	0.	0.015	- · <del>-</del> - ·	-3.	-9.		5.	5.		0.23	-10.	0.	118.	-1
	TIHRSG			-0.005	0.	0.005		-2.	-2.		2.	3.		0.11	-7.	0.	104.	-1.
	TIHRSG		0.	-0.005	0.	0.00		-2.	-7.		2	-1.	_	0.05	-9.	0.	114.	<u>-1</u> .
	STIRL	DISTI		-0.016		0.013		-1.	-2.		8.	14.	3.		1.	0.	41.	-0
	STIRL	RESID		-0.016		0.013		-5	-6.		4.			0.25	1.	0.	36.	0.
	STIRL	COAL	0.	-0.016		0.013	– .	-5.	-13.		4.	3.		0.18	-1.	0.	48.	0
	HEGT85			-0.025	0.	0.009		<u>-1.</u>	<u>-19.</u>	<u>-1.</u>	10.	0.		0.25	-11.	0.	128.	<u>-1</u>
	HEGT85			-0.055	0.	0.019		-7.	-37.	• • •	17.	4.	2.		-15.	4.	91.	-2
	HEGT60			-0.025	0.	0.009		-1.	-18.		10.	1.	2.	0.25	-9.	Ο.	115.	-1
	HEGT60			-0.027		0.010		-2.	-20.		10.	1.	2.	0.25	-9.	0.	105.	-1
	HEGT00			-0.013	0.	0.00		1.	<u>-11.</u>		<u> </u>	<u>-1.</u>		0.13	<u>-6.</u>	<u> </u>	<b>85</b> .	-0
	FCMCCL		0.	-0.015	0.	0.017		6.	7.		17.	25.	3.	0.96	-6.	0.	83.	-0
	FCSTCL		ο.	-0.015	0.	0.019		4.	4.		15.	23.		0.86	-7.	Ο.	94.	-1
	FCSTCL		Ο.	-0.023	0.	0.029		6.	7.		23.	36.		1.00	-7.	2.	71.	-0.
	IGGTST		0.	-0.019		0.015		<u>-7.</u>	<u>-15.</u>		4.	4.		0.25	<u>-7.</u>	0.	<u>95.</u>	1
	IGGTST		Ο.	-0.020		0.016		<del>-</del> 7.	-16.		5.	5.	4.		-6.	0.	86.	-0.
			U -0.017		-0.017	0.032		-7.	-6.		4.	. 11.	2.	0.41	1.	0.	37.	0.
	GTAC08		-	-0.012		0.014		-12.	-5.		-4.			0.10	1.	٥.	36.	0
	GTAC12			-0.015		0.017		-14.	-6.		-4.			0.15	<u> </u>	0.	<u>31.</u>	0
	GTAC16			-0.016		0.018		-14.	-6.		-3.	•	-0.	0.17	1.	0.	34.	0
	GTAC16			-0.017	o.	0.019		-15.	-7.		-3.			0.17	1.	0.	31.	0.
	GTWC16			-0.018	0.	0.016		-15.	-7.		-4.			0.13	1.	o.	39.	0.
	GTWC16			-0.021	0.	0.018		<u>-17.</u>	-8.		-5.			0.13	<u> </u>	0.	<u>35.</u>	0,
-	CC1626			-0.018		0.016		-13.	-7.		-3.	• • •	-0.		0.	0.	46.	<b>~</b> 0,
	CC1626			-0.034	Ο.	0.030	_	-25.	-14.		-5.			0.20	2.	3.	36.	-0
	CC1622			-0.017	o.	0.016		-13.	-7.		-2.			0.18	1.	o.	43.	0
	CC1622			-0.030	<u>o.</u>	0.028		-22.	-12.		<u>-4.</u>		_	0.21	<u>2.</u>	<u>2.</u>	34.	0
	CC1222			-0.017	0.	0.017		-13.	-7.		-2.		-0.		1.	0.	41.	0
	CC1222			-0.029	0.	0.029		-22.	-12.		-4.			0.21	2.	2.	33	0,
	000822		- :	-0.016	0.	0.018		-13.	-6.		-2.			0.19	1.	o.	40.	0
	CC0822			-0.022	- T. IIII III I	0.025		<u>-18.</u>	-9.		-3.			0.21	2.	<u>_</u> 1	<u> 33.</u>	0
	STIGIS			-0.028	0.	0.006		-17.	-11.		-6.	6.	0.		0.	0.	57.	-0
	STIG15			-1.197	0.	0.250		-723.	-479.		-266.	277.		0.01	88.	133.	39.	-20
	STIGIO			-0.025	0.	0.008		-16.	-10.		-6.	8.		0.04	0.	<u>o</u> .	51.	-0
	STIG10			-0.101	0	0.033		<u>-65.</u>	-40.		<u>-23.</u>	30.		0.06	<u>6.</u>	9.	40.	-1
	STIGIS			-0.024	0.	0.010		-17.	-10,		-6.	8.		0.06	1.	0.	49.	-0
	STIGIS	RESID		-0.056 -0.021	0.	0.022		-38.	-23.	_	-14.	19.	1.	0.07	3.	4.	39	-0. -0.
					0.		0.24	-25.	-8.	-2.	-14.	9.		-0.11	-1.	٥.	58.	

The state of the s

_____

1 m 11 m * 2 m 1 m *

DATE 06/08/79

ISE PEO AES

FUEL UNITS = COGENERATION TECHNOLOGY ALTERNATIVES STUDY

FUEL UNITS = REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE []

EMISSION UNITS = TIME 1990 LEVEL ALL

COST =\$*10**9 TYPE MATCH=HEAT SAVING S*** - - EMISSIONS ****F U E L SAVINGS - - -CAPITL -- ELECTRIC POWER ---ECS ****DIRECT*****TOTAL----FESR ------DIRECT-----********TOTAL******* PROCS ECS EMSR SAVING TOTAL COST LAEC FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX EXPORT PART SAVED HWM 28951 DEADV3 RESIDU O. -0.049 0. 0.029 0.30 -58. -20. -4. -33. 22. -2, -0, 14 1.. 4. 44. 28951 DEHTPM RESIDU O. -0.015 0. 0.019 0.36 -24. -6, -2. -13. 12. -0. -0.03 -1. ٥. 49. 0. -0.018 0. 26951 DEHTPM RESIDU O. 0.022 0.38 -23. -7. -2. -15. 14. -0. -0,03 43. 0. 23951 DESGA3 DISTIL -0.023 0. -0.023 0.034 0.21 -55. 0. 0. -44. 17. 0. -0. 66 -0. Ö. 59. -1. 28951 DESGA3 DISTIL -0.061 0. -0.061 0.089 0.27 -148. -6. 0. -120. 41. 2. -0.84 5. 52. -2. 1. 28951 DESGAS RESIDU -0.023 0. -0.023 0.034 0.21 -120. -9. -0. -109. 10. 2. -2.42 -0. 0. 54. -0. 28951 DESCAS RESIDU -0.061 -0.061 0.089 0. 0.27 -23. -318. -0. -290. 26. 5. -2.81 47. 28951 GTSCAD DISTIL -0.015 0. -0.015 0.031 0.30 -6. -2. O. 4. 14. 1. 0.51 0. 36. 0. 28951 GTRAOS DISTIL O. -0.017 0. 0.016 0.31 -7. -3. 0. 16. 3. 0.49 47. -0. 4. 0. 0. 28951 GTRAOS DISTIL O. -0.025 Ο. 0.024 0.35 -11. -5. 0. 22. 4. 0.50 -0. 5. 1. 1. 39. 28951 GTRA12 DISTIL -0.017 0.017 0. 0. 0.32 -7. 4. 16. 3. 0.50 Ω. 46. -0. 28951 GTRAIZ DISTIL O. -0.024 0.024 0. 0.36 -11. -5. Ō. 22. 0.51 1. 39. -0. 28951 GTRA16 DISTIL 0. -0.017 0. 0.017 0.32 -7. -3. 0. 16. 3. 0.49 47. -0. 4. 0. 0. 28951 GTRA16 DISTIL 0. -0.023 0. 0.022 0.35 -10. -4. 0. 5. 21. 4. 0.50 1. 1. 40. -0. 28951 GTR208 DISTIL -0.017 0. 0.017 0.32 -7. ٥. 16. 3. 0.48 42. -0. 28951 GTR208 DISTIL 0. -0.019 0. 0.019 0.33-9. -3: 0. 18. 3. 0.49 Ō. 38. -0. 28951 GTR212 DISTIL 0. -0.017 0. 0.016 0.31 -7. -3. 0. 4. 16. 3. 0.49 1. 0. 44. -0. 28951 GTR212 DISTIL 0. -0.021 ٥. 0.020 0.33 -9. -4. 0. 4. 19. 3. 0.49 39. -0. 1.. 1. 28951 GTR216 DISTIL -0.017 0.017 0.32 0. Ο. -7. -3. 0. 16. 3. 0.49 44. -0. 28951 GTR216 DISTIL 0. -0.021 0. 0.021 0.34 -9. -4. O. 20. 3. 0.50 -0. 1. 39. 1. 28951 GTRV08 DISTIL 0. -0.020 0. ٥. 0.014 0.26 -8. -3. 16. -O. 3. 3. 0.46 0. 0. 52. 28951 GTRW08 DISTIL 0. -8. -0.035 0. 0.024 0.31 -15. ٥. 4. 25. 4. 0.47 2. 43. -0. -7. 28951 GTRW12 DISTIL O. -0.019 0. 0.015 0.28 -3. 0. 16. 3. 0.47 0. 51. -0. 0. 28951 GTRW12 DISTIL O. -0.034 C. 0.026 0.33 -15. Ō. 26. 4. 0.49 2. 5. 42. -0. 28951 GTRW16 DISTIL O. -0.019 0. 0.015 0.28 -7. -3. 0. ٥. 51. 16. 3. 0.47 0. -n. 28951 GTRW16 DISTIL 0. -0.032 0. 0.024 -7. ٥. 0.33 -14. 25. 4. 0.49 2. -0. 43. 28951 GTR308 DISTIL O. -0.021 0. 0.013 0.25 -8. -4. 0. 15. 3. 0.44 ٥. 49. -0. 28951 GTR308 DISTIL 0. -0.027 0. 0.017 0.27 -5. -12. 0. 19. 4. 0.44 1. 43. -0. 28951 GTR312 DISTIL 0. -0.019 0. 0.015 0.28 -7. · -3. 0. 16. 3. 0.47 48. -0. 28951 GTR312 DISTIL O. -0.028 0. 0.022 0.32 -12. -6. 0. 22. 4. 0.48 40. -0. 4. 1. 26951 GTR316 DISTIL O. 0.015 -0.019 0. 0.28 -8. 0. 16. 3. 0.47 49. -0. 28951 GTR316 DISTIL 0. -0.028 0. 0.021 0.32 -12. -6. 0. 4. 22. 4. 0.48 1. 42. ~Ö. 28951 FCPADS DISTIL O. -0.023 0. 0.011 0.21 -2. 4. 1. 3. 0.74 0. 61. -1. 1. 28951 FCPADS DISTIL O. -0.074 0. 0.036 0.28 -12. 7. 68. 1. 24. 8. 0.85 3. 7. 56. -3. 28951 FCMCDS DISTIL O. -0.019 0. 0.015 0.28 -16 0. -5 23. 3. 0.45 56 -1. 28951 FCMCDS DISTIL O. -0.049 0. 0.038 0.36 -45. 7. -0. -16. 56. 6. 0.46 2. 51. -2. 28 FCMCDS DISTIL-24.694*****-24.694277.749 47.01*********** -6991. -7515.242822. 36607. 0.31 23697. 49098. 83960. -5366. 29111 STM141 RESIDU O. -0.049 0. 0.082 0.16 -17. -20. -2. 24. 50. 3. 0.17 10. 0. 18. 2. 29111 STM141 RESIDU O. -0.062 0. 0.102 0.19 -25. -3. 3. -22. 31. 63. 4. 0.20 12. 17. 29111 STM141 COAL-F 0. -0.049 0. -107. -2. -8. 0.082 0.16 -17. 28. -24. 21. 0.05 O. 53. 6. 29111 STM141 COAL-F 0. -0.062 0. 0.102 0.19 -22. -114. -3. 34. -13. 22. 0.09 -2. 3. 37. 7. 29111 STM141 COAL-A 0. -0.049 0. -107. -2. 7. 0.082 0.16 76. 121. -24. 21. 0.26 -1. Ω. 40. 29111 STM141 COAL-A 0. -0.062 0. 0.102 0.19 75. -114. 130. -13. 22. 0.28 3. 24 A. 29111 STM088 RESIDU O. -0.041 0. 0.13 -16. -2. 0.068 -14. 20. 42. 3. 0.14 9. 22. 2. 29111 STM088 COAL-F 0. -0.041 0. 0.068 0.13 -14. -102. -2. 24. -31. 20. 0.03 -4. 0. 45. 6.

29111 STM088 COAL-A 0.

-0.041 0.

0.068

0.13

78.

-102.

-2.

116.

-31.

20. 0.23

3.

٥.

31.

7.

	6/08/79	<u> </u>								COMPANY							PAG	E 56
SE PE	FUEL U	JNITS	= S=		·	REPO	ERATION RT 6.1 1990	FUEL		MISSIONS LEVEL	SAVIN	ERNATIVE GS	S S	TUDY (SA	VINGS A	RE		
	COST		=\$*10	* <b>*9</b>	3 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a	7 11 16-	1330			,				TY	PE MATO	H=POWR		
		***	**F U	EL	SAVI	NG S*	***	· F M I	S S 1	ONS	SAV	INGS		_	CAPITL -	-ELECTRI	C POVER	
ROCS	ECS		*DIREC	T*****	TOT/	LFE		DIRE	CT		***TOTA	L*****		EMSR	SAVING	TOTAL EXPORT	COST L	
	<del></del>	TOLL OF	LIONO	OOAL OI	L.ONO	OOAL	1407	. 30	<u> </u>	IN HOA	30/	FARI				MWH		MAED
		COAL-P	0.	-0.052		0.079	0.15	90.	-108.	5.	135.	-25.		0.30	-11.	0.	61.	5.
		COAL-P	0.	-0.116	0.	0.177	0.26	98.	-147.	12.	195.	<b>25</b> .		0.43	3.	15.	33.	7.
		RESIDU	<u>0.</u> 0.	-0.051 -0.156	<u>0.</u>	0.060	0.15	<u>-18.</u> -55.	<u>-20.</u> -62.	<u>-3.</u> -8.	24. 74.	<u>50.</u> 153.	3. 10.		<u>-19.</u> -41.	<u>0.</u> 25.	<u>75.</u> 61.	<u>-2.</u> -5.
	TISTMT		Õ.	-0.051	0.	0.080	0.15	-18.	-108.	-3.	27.	-25.	21.	0.05	-41.	23. 0.	115.	2.
	TISTMT		Ŏ.	-0.156	0.	0.246	0.31	-55.	-171.	-8.	78.	61.		0.24	-65.	25.	72.	-1.
		RESIDU	0.	-0.085	0.	0.045	0.09	-30.	-34.	-4.	12.	35.	0.	0.10	-34.	0.	111.	-4.
		RESIDU	0.	-0.156	0.	0.083	0.13	-54.	-62.	-8.	21.	63.	0.		-51	10.	98.	-8.
	TIHRSG		0.	-0.085	0.	0.045	0.09	-30.	-129. -171	-4.	15.	-45.		-0.02	-57.	0.	152.	-1.
	STIRL	DISTIL	0. 0.	-0.156 -0.076	0. 0.	0.083 0.055	0.13 0.11	-54. 29.	-171. 24.	-8. 11.	25. 74.	-29. 108.		0.03	-75. 3.	10. 0.	116. 43.	-4. -3.
	STIRL	DISTIL	0.	-0.265	<del>0.</del>	0.192	0.23	-15.	-29.	8.	135.	233.	<u>55.</u>		14.	31.	<del>43.</del> 39.	<del>-3.</del>
	STIRL	RESIDU	o.	-0.076	Ö.	0.055	0.11	-27.	-30.	-9.	15.	39.	-4.		3.	o.	38.	i.
111 :	STIRL	RESIDU	0.	-0.265	ō.	0.192	0.23	-93.	-106.	-31.	52.	136.		0.23	14.	31.	34.	-1.
	STIRL	COAL	0.	-0.076	0.	0.055	0.11	-27.	-123.	-4.	18.	-40.		-0.00	-16.	0.	72.	4.
	STIRL	COAL	0.	-0.265	0.	0.192	0.23	-93.	-236.	-13.	57.	25.	29.		-16.	31.	44.	4.
		CGAL-A	0.	-0.128	0.	0.002	0.00	58.	-154.	-6.	103.	-71.		0.11	-27.	0.	101.	2.
		COAL-A	0. 0.	-1.492 -0.107	0. 0.	0.028 0.024	0.01 0.05	-206. 58.	-973. -142.	-75. -5.	286. 103.	-129. -59.		0.11	-38. -25.	130. 0.	49. 93.	-16. 3.
	HEGTOO		<del>0.</del>	-0.318	<del>0.</del>	0.070	0.09	<del>- 33.</del> 7.	-268.	-16,	135.	-44.	23.		-25.	24.	<del>57.</del>	<del>- j.</del>
	FCMCCL.		Ō.	-0.061	0.	0.069	0.13	27.	-32.	3.	72.	51.		0.33	-23.	Ō.	85.	3.
111 (	FCI1CCL_	COAL	Ο.	-0.311	0.	0.352	0.34	135.	154.	18.	351.	528.	72.	1.00	-13,	50.	40.	4.
	FCSTCL		0.	-0.059	0.	0.072	0.14	19.	-45.	2.	64.	39.		0.28	-22.	0.	83.	4.
	FCSTCL		0.	-0.415	0.	0.510	0.39	135.	154.	17.	435,	672.	88.		-4.	74.	35.	5.
	IGGTST IGGTST		.0. 0.	-0.075 -0.360	0. 0.	0.056 0.270	0.11 0.27	-26.	-122. -293.	3.	19,	-39.		0.01	-21.	0.	82.	4.
		RESIDU			-0.078	0.270	0.10	-126. -29.	-293.	16. -1.	80. 13.	63. 42.		0.23	-7. 3.	47. 0.	37. 38.	5. 1.
		RESIDU	-0.457	Ö.	-0.457	0.764	0.27	-168.	-172.	-4:	78.	246.	42.		<u>45.</u>	<del>- 39.</del>	28.	<del>-i:</del>
		RESIDU	0.	-0.061	0,	0.070	0.14	-60.	-24.	-7.	-18.	45.		0.05	7.	o.	25.	2.
111 (	GTACO8	RESIDU	Ο.	-0.250	0.	0.287	0.31	-247.	-100.	-29.	-76.	186.	-8.		36.	38.	21.	3.
		RESIDU	0.	-0.062	0.	0.068	0.13	<u>-5a.</u>	-25.	-7.	-15.	45.	-2.		4.	0.	32.	1.
		RESIDU	0.	-0.323	0.	0.353	0.33	-290.	-129.	-35.	-75.	231.	-8.	0.15	44.	51.	22.	3.
		RESIDU RESIDU	0. 0.	-0.065 -0.392	0.	0.066 0.394	0.13	-55.	-26. -157.	-7. -40	-14.	43.	-2.	-	4.	0.	33.	1.
		RESIDU	0. 0.	-0.069	0. 0.	0.394	0.34 0.12	-332. -58.	-157. -28.	-40. -7.	-82. -16.	261. 42.	-9.	0.16	48. 4.	61. Ü.	23. 35.	2. 1.
		RESIDU	<del>-0.</del>	-0.424	<del>- 6.</del>	0.374	0.32	-351.	-169.	-43.	<del>-97.</del>	254.	-12.		51.	63.	24.	<del>- i:</del>
		RESIDU		-0.071		0.060	0.12	-53.	-28.	-7.	-12.	41.	_	0.06	3.	Õ.	36.	i.
111	CC1626	RESIDU	Ο.	-0.637	0.	0.536	0.34	-479.	-255.	-59.	-106.	367.	-15.	0.17	73.	98.	25.	o.
		RESIDU	0.	-0.068		0.063	0.12	-53.	<u>-27.</u>	-6.	-11.	42.		0.06	4.	0,	35.	1.
		RESIDU	0.	-0.548		0.505	0.35	-425.	-219.	-52.	-91.	340.		0.18	64.	86.	25.	1.
		RESIDU RESIDU		-0.067 -0.539		0.063 0.507	0.12 0.35	-53. -420.	-27. -216.	-6. -51	-11. -88.	43. 340		0.07 0.18	4. ee	0. 86	34.	1.
		RESIDU		-0.063		0.068	0.33	-53.	-216. -25.	-51. -6.	~11.	340. 45.		0.10	66. 4.	86. O.	24. 33.	1.
		RESIDU		-0.396		0.428		-334.	-158.	-41.	-72.	280.		0.18	53.	<u>65.</u>	22.	3.
111	DEHTPM		o.	-0.073		0.057		-115.	-29.	-8.	-73.	40.		-0.08	-3.	Õ.	48.	-0.

inger of the second of the sec

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 57 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL AND EMISSIONS SAVINGS FUEL UNITS = REPORT 6.1 (SAVINGS ARE LEVEL ALL EMISSION UNITS= TIME 1990 =\$*10**9 TYPE MATCH=POWR ****F U E L SAVINGS****- - EMISSIONS SAVINGS- - CAPITL--ELECTRIC FOHER---ECS ****DIRECT***** EMSR SAVING TOTAL PROCS ECS CUST LAEC FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX PART EXPORT SAVED HWM 29111 GTSCAD DISTIL -0.067 0. -0.067 0.131 0.12 -27. -11. 0. 15. **59**. 5. 0.35 5. Ω. 36. -2. 29111 GTSUAD DISTIL -0.337 0. -0.337 0.660 26. 0.31 -135. -55. 0. 75. 296. 26. 0.55 45. 50. -4. 29111 GTRA08 DISTIL 0. -0.078 0. 0.053 0.10 9. 24. 53. 107 35. 0.42 0. 43 -3 11: 3 91. 0.47 29111 GTRAOS DISTIL O. -0.766 0. 0.520 0.31 -326. -170. -0. 91. 545. 70. 108. 33. -13. -0.075 0. 35, 0.43 29111 GTRA12 DISTIL 0. 0.056 25. 43. -3. 0.11 9. 11. 54. 108. 3. 0. 83. 0.48 29111 GTRA12 DISTIL 0. -0.696 0. 95. 101. 32. -11. 0.515 0.32 ~298. -150. 1. 524. 69. 29111 GTRA16 DISTIL 0. -0.074 0. 0.057 0.11 25. 108. 35. 0.43 43. -3 9. 11. 54. n. -0.622 0. 91. 29111 GTRA16 DISTIL O. 0.478 0.32 -268. -129. 2. 89. 484. 83. 0.48 60. 32. -10. 7. -0.073 0. 29111 GTR208 DISTIL 0. 0.058 0.11 25. 12. 52. 108. 35. 0.42 3. 0. 41. -3. -7. 29111 GTR208 DISTIL 0. -0.489 0. 0.386 0.31 -215. -92. 4. 70. 395. 72. 0.47 52. 70. 30. • 29111 GTR212 DISTIL 0. -0.073 0. 0.058 35. 0.43 -3. 0.11 8. 25. 12. 53. 108. 3. ٥. 41. 4. 29111 GTR212 DISTIL 0. -0.525 0. 0.415 0.31 -229. -102. 76. 424. 75. 0.47 76. 31. -8. -3. 29111 GTR216 DISTIL 0. -0.072 0. 0.059 0.11 26. 12. 54. 109. 35. 0.43 3. ٥. 41. -104 31. 29111 GTR216 DISTIL O. -0.533 0. 0.435 0.32 -233. 82. 437. 76. 0.48 79. -8. 4. 54. 29111 GTRW08 DISTIL 0. -0.086 0. 0.045 0.09 6. 22. 51. 105. 34. 0.41 3. 0. 46. -4. 11. 29111 GTRWOS DISTIL -0.984 0. 0.519 0.27 -413. -231. -4. 74. 602. 100, 0.45 85. 129. 35. -18. 29111 GTRW12 DISTIL 0. 35. 0.42 -0.081 0. 0.050 0.10 8. 23. 11. 53. 106. 3. 0. 44. -3. 29111 GTRW12 DISTIL 0. -0.913 0. 0.565 0.30 -385. -211. -3. 94. 809. 100. 0.47 91. 126. 33. -15. 29111 GTRW16 DISTIL 35. 0.42 45. -3. 0. -0.079 0. 0.052 0.10 8. 24. 11. 53. 107 0. -341. 29111 GTRW16 DISTIL Ō. -0.805 Ō. 0.524 0.31 -181. -1. 89. 558. 93. 0.47 79. 112. 32. -13. 29111 GTR308 DISTIL 0. -0.090 0. 0.041 0.08 3. 21. 11. 48. 104. 34. 0.40 3. 0. 46. -4. 0.350 29111 GTR308 DISTIL 0. -0.766 0. 0.23 -326. -170. -O. 36. 452. 81. 0.41 70. 92. 35. -15. 29111 GTR312 DISTIL 0. -0.077 ٥. 0.054 0.10 8. 24. 11. 53. 107. 35. 0.42 3. 0. 42 -3. 29111 GTR312 DISTIL -136. -0.647 0. 0.458 0.31 -278. 2. 80. 479. 83. 0.47 68. 91. 31. -10. ٥. 29111 GTR316 DISTIL 0. -0.077 0. 0.054 24. 107. 35. 0.42 3. 43. -3. 0.10 8. 11. 53. 29111 GTR316 DISTIL 0. -0.638 0. 82. 0.47 32. -10. 0.447 0.30 -274. -134. 2. 78. 471. 65. 90. 29111 FCPADS DISTIL O. -0.088 0. 36. 0.54 -5. 0.043 0.08 30. 75. 135. 0. 61. 52. 13. 0. 29111 FCPADS DISTIL O. -1.546 0. 0.749 0.28 -242. 155. 19. 500. 1421. 171. 0.85 69. 203. 54. -61. 29111 FCMCDS DISTIL O. 35. 0.42 57. -5. -0.074 0. 0.057 0.11 -24. 53. 12. 21. 137. -0. 0. 29111 FCNCDS DISTIL O. -1.023 0. 0.792 0.36 -929. 152. -2. -342. 1157. 121. 0.46 48. 158. 49. -39. 2 29112 STM141 RESIDU O. -0.183 0.303 0.16 -73. -9. 187. 12. 0.18 38. 16. 10. 0. -64. 91. 0. 11. 1 29112 STM141 RESIDU -0.212 0.352 0.18-74. -85. -11. 106. 217. 14. 0.19 45. 7. 15. 29112 STM141 COAL-F 0. 0.303 75. 0.06 -0.183 0. 0.16 -64. -384. -9. 103. -78. -8. ٥. 38. 26. -74. ₩ 29112 STM141 COAL-F 0. -0.212 0. 0.352 0.18 -402. -11. 117. -52: 78. 0.08 -4. 7. 34. 27. 29112 STM141 COAL-A -0,183 0.303 271. 75. 0.26 28. 0.16 -384. -9 437. -78. 11. 29. Ó. 29112 STM141 COAL-A -0.212 0.352 0.18 267. -402. <del>-11.</del> 458. -52. 78. 0.28 20. 24. 30. Ō. 29112 STM088 RESIDU O. 9. 0.13 23. -0.140 0. 0.231 -56. -7. 69. 143. 33. C. 8. 0.12 -49. 29112 STM088 COAL-F -358. -7. -115. 70. 0.02 **~15**. 44. 23. 0. -0.140 0. 0.231 0.12 -49. 81. 0. 29112 STM088 COAL-A -358. -7. 70. 0.22 -0.140 0. 0.231 0.12 277. 406. -115. 12. 31. 26. 29112 PFBSTM COAL-P -0.192 <u>o.</u> 0.293 0.16 -390. 20. 487. -83. 104. 0.31 -9. 0. 42. 24. 320. 29112 PFBSTM COAL-P 0. -0.404 0. 0.617 0.26 347. -517. 42. 686. 82. 157. 0.43 44. 50. 24. 30. 29112 TISTMT RESIDU O. -0.188 0. 0.297 0.16 -66. -75. -9. 89. 185. 12. 0.17 -43. 0. 58. -1. 29112 TISTMT RESIDU O. **-0.545** 0. 0.860 -218. -27. 257. 534. 34. 0.33 -73. 48. -9. 0.31 -191. 29112 TISTMT COAL -0.188 Ö. 0.297 0.16 -66. -388. -9. 101. -81. 74. 0.06 -95. Ō. 83. 14. -27. 11. 29112 TISTMT COAL 0. **-0.545** 0. 0.860 0.31 -191. -601. 272. 208. 111. 0.24 -133. 86. 55. 29112 TIHRSG RESIDU O. -0.317 0. 0.169 0.09 -111. -127. -16. 43. 129. 0. 0.10 -78. 0. 85. -10.

0.196

1.848

0.207

1.831

0.211

0.11

0.31

0.11

0.32

0.11

24.

27.

26.

-1158

-1058.

81.

64.

85.

-604.

-533.

40.

- 1

41.

41.

3. -

-0.289 0.

O.

0.

n.

-2.723

-0.279

-2.473

-0.275

29112 GTRAOS DISTIL O.

29112 GTRA12 DISTIL 0.

29112 GTRAOS DISTIL

29112 GTRA12 DISTIL

29112 GTRA16 DISTIL

191.

323.

193.

337.

193.

388.

391.

1861.

392.

1937.

0.43

124. 0.42

325. 0.47

313. 0.48

124. 0.43

124.

23.

22.

21.

261.

244.

0.

0.

0.

383.

358.

36.

33.

35.

32.

35.

-9.

-44.

-9.

-38.

-9

IJ

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 59 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS IJ (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 TYPE MATCH=HEAT ***** U E L SAVINGS**** - - EMISSIONS SAVINGS - - - CAPITL--ELECTRIC POWER---PROCS ECS ECS ****DIRECT***** EMSR SAVING TOTAL CUST LAEC FUEL DIL+GAS COAL DIL+GAS COAL NOX SOX PART NOX SOX PART **EXPORT** SAVED MWH 29112 GTRA16 DISTIL 0. -2.210 0. 1.699 0.32 -953. -459. 8. 315. 1719. 294. 0.48 212. 32. -34. 321. 29112 GTR208 DISTIL 0. -0.271 0. 0.214 0.12 20. 86. 41. 186. 393. 124. 0.43 25. 0. 33. -8. 29112 GTR206 DISTIL -1.738 0. 1.374 0.31 -764. -326. 248. 1417. 255, 0.47 188. 30. -25. 16. 246. 29112 GTR212 DISTIL -0.271 0. 0.214 0.12 22. 86. 41. 169. 393. 124. 0.43 34. -9. 24. 0. 29112 GTR212 DISTIL 0. -1.866 0. 1.475 0.31 -815. -362. 270. 1506. 266. 0.47 199. 30. -27. 14. 268. 29112 GTR216 DISTIL 0. -0.267 0. 0.218 0.12 25. 88. 41. 192. 394. 124. 0.43 23. 0. 34 . -9. 29112 GTR216 DISTIL 0. -1.895 ο. 1.547 0.32 -827. -371. 13. 291. 1553. 272. 0.48 197. 277. 31. -27. 29112 GTRWC8 DISTIL 0. -0,318 0. 0.168 0.09 16. 73. 40. 183. 380. 124. 0.41 20. 40. 7 -11. 29112 GTRWOB DISTIL O. -3,498 0. 1.846 0.27 - 1467.-821. -14. 262. 2141. 357. 0.45 339. 455. 34. -60. 29112 GTRW12 DISTIL 0. -0.300 0. 0.186 0.10 23. 78. 40. 190. 385. 124. 0.42 20. 0. 38. -1G. 29112 GTRW12 DISTIL 0. -3.246 O. 2.009 0.30 -1367. -751. -10. 334. 2164. 356. 0.47 333. 32. -51. 447. 29112 GTRW16 DISTIL -0.294 0. 0.192 0.10 23. 80. 40. 190. 387. 124. 0.42 23.  $\overline{\mathbf{n}}$ 36. - * C. 292. 29112 GTRW16 DISTIL 0. -2.860 0. 1.863 0.31 -1213. -642. -3. 317. 1982. 331. 0.47 32. -44. 397. 29112 GTR308 DISTIL 0. -0.333 0. 69. 0.152 0.08 3. 170. 376. 123. 0.40 25. 40. Ο. 39. -11. 29112 GTR308 DISTIL 0. -2.723 0. 1.246 0.23 -1158. -604. -1. 129. 1608 289. 0.41 -52. 251. 327. 35. 29112 GTR312 DISTIL -0.285 22. 124. 0.42 -9. 0. 0.201 0.11 83. 40. 189. 390. 34. 25. Ō. 29112 GTR312 DISTIL 0. -2.300 0. 1.626 0.31 -989 -485. 6. 285. 1704. 294. 0.47 -34. 248. 323. 31. 29112 GTR316 DISTIL G. -0.285 0. 0.200 0.11 21. 82. 188. 389. 124. 0.42 40. 24. 35. -9. 0. 29112 GTR316 DISTIL ٥. -2.267 0. 1.590 0.30 -976. -475. 276. 1675 290. 0.47 7. 238. 316. 31. -34. -0.327 29112 FCPADS DISTIL O. 0. 0.158 0.09 104. 186. 47. 270. 493. 130. 0.54 5. 59. -18. n. 29112 FCPADS DISTIL O. **-5**.495 0. 2.662 0.28 -859. 550. 1776. 5052. 607. 0.85 -212. 69. 281. 719. 53. 29112 FCMCDS DISTIL 0. -0.274 0. 0.212 0.11 -96. 191. 41. 70. 498. 125. 0.42 54. -16. 3. ٥. 0. 29112 FCMCDS DISTIL -3.638 O. 2.815 0.36 -3303. 542. -1217. 430. 0.46 -135. -6. 4112. 196. 560. 48. 29113 STH141 RESIDU O. -0.443 0. 0.734 0.17 -22. -155. -177. 220. 453. 30. 0.18 91. Ō. 16. 24. 29113 STM141 RESIDU O. -0.513 0. 0.850 0.19 -180. -205. -26. 255. 525. 35. 0.20 111. 17. 14. 27. 29113 STM141 COAL-F 0. -0.443 0. 0.734 0.17 -155. -893. -22. 247. -155. 173. 0.07 35. 62. -11. Ο. 29113 STM141 COAL-F 0. -0.513 0. 0.850 0.19 -160. -935. -26. 282. -95. 180. 0.09 1. 17. 32. 64. 29113 STM141 COAL-A -0.443 0. 0.734 0.17 614. -893. -22. 1016. -155. 173. 0.27 41. O. 25. 68. 29113 STM141 COAL-A O. -0.513 0. 0.850 0.19 605 -935. 1067. -26. -95. 180. 0.29 62. 21. 71. 17. 29113 STM088 RESIDU -0.345 0. 0.572 172. 0.13 -121. -138. -17. 353. 23. 0.14 85. 0. 22. 21. 29113 STM083 COAL-F 0. **-0.345** 0. 0.572 0.13 -121. -634. -17. 198. -239. 162. 0.03 -13. n. 38. 58. 29113 STM088 COAL-A -0.345 0. 0.572 0.13 627. -834. -17. 946. -239. 162. 0.23 31. Ō. 30. 63. 29113 PERSTM COAL-P **-0.464** 0. 0.713 0,17 731. -906. 47. 1133. -168. 242. 0.31 17. ٥. 33. 61. 29113 PEBSTH COAL-P -0.951 0. 1.460 0.26 791. -1198. 95. 1590. 215. 364. 0.43 106. 116. 24. 72. 29113 TISTMT RESIDU -0.456 n 0.721 0.17 -160. -182. -23. 216. 448. 29. 0.18 -61. Ω. 48. 3. 29113 TISTMT RESIDU -1.278 0. 2.020 0.31 -447. -511. -64. 604. 1254. 80. 0.33 ~194. <del>50</del>. -22. 199 29113 TISTMT COAL 0. -0.456 0. 0.721 -901. -23. 243. 172. 0.07 -161. 0.17 -160. -163. ٦. 67. 42. -64. 29113 TISTHT COAL a. -1.278 0. 2.020 0.31 -447. -1394. 637. 504. 257. 0.24 -342. led. 57. 22. 29113 THRSG RESIDU Ø. -0.768 Ο. 0.409 0.09 -269. -307... -38 104. 313 1. 0.11 -178. 82. -22. C. 29113 THRSG RESIDU -1.262 0. 0.671 -442. 171. 1. 0.15 0.13 -505. -63. 515. -47. -289. 82. 29113 TIHRSG COAL 0. -0.768 0. 0.409 0.09 -269. -1088. -38. 133. -350. 157. -0.02 -305. 0. 103. 16. 29113 TIHRSG COAL О. -1.262 0. 0.671 -442. -1384. -63. 204. -233. 177. 0.03 -437. 71. 0.13 93. -4. 29113 STIRL DISTIL -0.682 0. 0.494 287. 0.48 n. 219. 179. 92. 621. 917. 0.11 24. n. 42. -24 29113 STIRL DISTIL -2.151 1.559 -119. Ö. 0.23 -234. 67. 1099. 1889. 412. 0.55 124. 238. 38. -50. 29113 STIRL RESIDU O. -0,682 0. 0.494 0.11 -239. -273. -79. 135. 350. -36. 0.12 24. 37. 7. 0.

29113 STIRL RESIDU

-2.151 0.

1.559

0.23

-753.

-861.

-248.

425.

1104.

-114. 0.23

238.

123.

-7.

33.

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 60 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY U FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL =\$*10**9 TYPE MATCH=POWR **** E L SAVINGS****--- EMISSIONS SAVINGS--- CAPITL-ELECTRIC POWER---PROCS ECS ECS ****DIRECT***** EMSR SAVING TOTAL COST LAEC SOX PART NOX FUEL GIL+GAS COAL GIL+GAS COAL NOX PART SOX EXPORT MWH 29113 STIRL COAL -104. n -0.682 0. 0.494 0.11 -239. -1036. -34. 163. -299. 161. 0.01 0. 59. 45. 29113 STIRL COAL 0. -2.151 0. 1.559 0.23 - 753 - 1918-108. 464. 205. 237. G.15 -116. 42. 38. -95. 35. 29113 HEGT60 COAL-A 0 -1.155 0. 0.022 0.01 451. -1320. -58. 853. -582. 137. 0.11 0. 0.01 -1669. -7889. -12,104 C. -133. 29113 HEGT60 COAL-A 0.230 -605. 2323. -1050. 250. 0.11 1046. 46. -101. 444. -1206. 29113 HEGTOO COAL-A 0. **-0.965** 0. 0.212 0.05 -48. 846. -469. 147. 0.14 -65. 0. 56. 43. 29113 HEGTOO COAL-A O. -2.577 C. 61. -2173. -129. 1095. -361. 183. 0.16 -28. 32. 0.565 0.09 184. 43. 29113 FCNCCL COAL -0.553 0. 240. -216. 226. 0.36 n 0.624 0.14 31. 522 -81. ٥. 47. 642. 29113 FCMCCL COAL -2.526 O. 2.852 1251. 4286. 586, 1,00 394. 72. 0.34 1094. 143. 2848. 184. 26. 0. -78. 29113 FCSTCL COAL 0. -0.528 0. 0.649 0.15 170. -334. 22. 573. 403. 217. 0.31 53. 48. 1094. 1251. 306. 598. 29113 FCSTCL COAL 0. **-3.387** O. 4.165 0.39 140. 3547. 5475. 713. 1.00 23. 90. 29113 IGGTST COAL -292. -0.672 0. 0.505 0.12 -235. -1030. 29. 167. 224. 0.03 -64. 0. 50. 50. 0.27 -1029. -2391. 521. 557, 0.23 29113 IGGTST COAL 0. -2.940 O. 2.212 652. <u>373.</u> 126. 112. 28. 68. 29113 GTSOAR RESIDU -0.704 O. -0.704 1.177 0.11 -259. -265. -6. 119. 379. 64. 0.21 62. 0. 29. 11. 29113 GTSØAR RESIDU +3.706 0. -3.706 6.200 337. 0.41 471. 0.27 -1365. -1395. -30. 629. 1995. 393. 26. -2. -0.548 O. 29113 GTAC08 RESIDU O. 0.629 0.15 -541. -219. -64. -166. 408. -17. 0.06 76. n 22. 19. 29113 GTACOS RESIDU Ō. -2.030 O. 2.328 0.31 -2002. -812. -238. -615. 1510. -62, 0.12 311. 298. 20. 29. 29113 GTAC12 RESIDU 0. -0.562 0. 0.615 0.14 -505. -225. -61. -131. 402. -14. 0.07 72. 0. 23. 18. 29113 GTAC12 RESIDU O. **-2.620 0.** 2.865 0.33 -2356. -1048. -284. -611. 1873. -64. 0.15 372. 404. 21. 28. 29113 GTAC16 RESIDU O. -0.587 0. 0.590 0.14 -497. -235. -60. -123. 391. -14. 0.07 66. ٥. 25. 16. -76. 0.16 0.34 -2691. -1271. 29113 GTAC16 RESIDU O. -3.178 0. 3.194 -326. -664. 2118. 411. 487. 23. 22. 29113 GTWC16 RESIDU O. -0.625 C. 0.552 0.13 -518. -250. -63. -144. 375. -18. 0.06 70. C. 26. 15. 29113 GTWC16 RESIDU 0. -3.437 O. 3.032 0.32 -2846. -1375. -346. -790. 2060. -101. 0.13 453. 496. 22. 19. 0. 14. 29113 CC1626 RESIDU ٥. -0.639 0.538 0.12 -480. -256. -59. -106. 369. -15. 0.06 69. ٥. 26. 29113 CC1626 RESIDU -5.194 0. 4.376 0.34 -3900. -2078. -480. -860. 3000. -122. 0.17 652. 787. 23. 12. 0.13 -474. -245. -58. -100. 381. -13, 0.07 29113 CC1622 RESIDU 0. -0.612 0. 0.565 66. 0. 26. 15. -4.466 0. 0.35 -3463. -1786. -425. -733. 2779. -95. 0.18 695. 15. 29113 CC1622 RESIDU 0. 4.126 551. 24. 29113 CC1222 RESIDU O. -0.606 0. 0.571 0.13 -472. -243. -58. -98. 383. -12. 0.07 68. 0. 25. 15. 0.35 -3422. -1759. -709. 2777. -90. 0.12 690. 29113 CC1222 RESIDU O. -4.397 0. 4.138 -419. 566. 19. 29113 CC0822 RESIDU O. -0.565 0. 0.612 0.14 -476. -226. -58. -102. 401. -11, 0.08 71. 0. 24. 17. 29113 CC0822 RESIDU O. -3.231 0. 3.501 0.35 -2722. -1292. -330. -581. 2292. -61. 0.18 521. 21. 30. 468. 29113 DEHTPM RESIDU O. -0.661 0. 0.516 0.12 -1034. -264. -660. 359. -25. -0.08 -69. -1. 0. 42. 4. 29113 DEHTPN RESIDU O. -3.063 0. 2.389 0.28 -4791. -1225. -317. -3060. 1665. -117, -0, 19 401. 38. -28. 46. 0.37 74. 29113 GTSGAD DISTIL -0.601 0, -0.601 1.177 0.13 -241. 133. 528. 0. 28. -14. -98. 0. 29113 GTSOAD DISTIL -2.737 O. -2.737 5.358 0.31 -1096. -445. Ο. 607. 2403. 208. 0.55 387. 392. 25. -24. 29113 GTRAOS DISTIL -0.701 0. 0.476 36. 174. 92. 438. 912. 287. 0.43 58. ٥. -21. 0.11 -96. 29113 GTRAOS DISTIL -6.215 0. 4.216 0.31 -2643. -1378. -2. 737. 4421. 741. 0.47 623. 868. 32. 919. 287. 0.43 29113 GTRA12 DISTIL -0.676 0. 0.501 0.12 42. 181. 92. 444. 62. 0. 33. -19. 0.32 -2414. -1217. 29113 GTRA12 DISTIL 0. **-5.643 0.** 4.177 8. 769. 4248. 714. 0.48 586. 811. 31. -81. -0.665 0. 0.511 922. 287. 0.43 29113 GTRA16 DISTIL 0.12 40. 184. 92. 442. 60. 0. 33. -19 719. 29113 GTRAIG DISTIL -5.043 0. 3.876 0.32 - 2174-1043. 18. 3924. 671. 0.48 516. 726. 31. -73. 29113 GTR208 DISTIL 0. -0.657 0. 0.520 0.12 25. 186. 92. 427. 924. 287. 0.43 62. 0. 32. • -18. 29113 GTR208 DISTIL 0. **-3**.966 0. 3.135 0.31 -1743. -745. 36. 565. 3233. 582. 0.47 450. 29. -53. 556. 29113 GTR212 DISTIL 0. -0.657 0.  $0.520 \cdot 0.12$ 31. 186. 92. 433. 924. 287. 0.43 65. 0. 32. -18. -827. -57. 29113 GTR212 DISTIL 0. -4.258 0. 3.366 0.31 -1860. 31. 616. 3437. 608, 0.47 475. 605. 30. -18. 29113 GTR216 DISTIL 0. -0.648 0. 0.529 0.12 37. 189. 92. 439. 927. 288. 0.43 62. 0. 32. 29113 GTR216 DISTIL 0. -4.324 0. 3.531 0.32 -1887. -846. 30. 664. 3545. 620. 0.48 471. 626. 30. -58.

DATE 06/08/79 ISE PEO AES

FUEL UNITS = EMISSION UNITS= GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERNA
REPORT 6.1 FUEL AND EMISSIONS SAVINGS
TIME 1990 LEVEL ALL

ALTERNATIVES STUDY

(SAVINGS ARE

	COST		=5×1	0**9										1	YPE MAT	CH=POWR		
ROCS	ECS		****F U	J E L ECT****		I N G S*							S		CAPITL SAVING	ELECTF		ER
				COAL OI			NO.						ART			EXPORT		SAVED
											<del></del>					HWH	######################################	
9113	GTRV08	DISTI	L 0.	-0.770	0.	0.407	0.09	17.	155.	90.	419.	892.	285.	0.42	64.	0.	36.	-23
9113	GTRW08	DISTI	L 0.	-7.978	Ο.	4.212	0.27	-3348.	-1674.	-32.	597.	4836.	815.	0.45	787.	1033,	33.	-134
9113	GTRW12	DISTI	L 0.	-0.727	Ο.	0.450	0.10	33.	167.	91.	435.	905.	286.	0.42	64.	0.	34.	-21
9113	GTRW12	DISTI	L 0.	-7.407	0.	4.585	0.30	-3120.	-1714.	-22.	762.	4939.	813.	0.47	782.	1014.	31.	-112
9113	GTRW16	DISTI	L O.	-0.713	Ο,	0.464	0.11	33.	. 171.	91.	435.	909.	286.	0.42	61.	0.	35.	-21
9113	GTRW16	DISTI	L 0.	-6.527	Ο.	4.252	0.31	-2768.	-1466.	-8.	724.	4523.	756.	0.47	695.	901.	31.	-96
9113	<b>GTR308</b>	DISTI	L 0.	-0.807	0.	0.369	0.09	-16.	144.	90.	386.	882.	285.	0.40	70.	0.	36.	-24
9113	<b>9TR308</b>	DISTI	L 0.	-6.213	0.	2.843	0.23	-2642.	-1377.	-2.	295.	3669.	659.	0.41	606.	739.	34.	-112
9113	GTR312	DISTI	L 0. :	-0.689	0.	0.487	0.11	30.	177.	92.	433.	915.	287.	0.43	68.	0.	32.	-19
9113	GTRS12	DISTI	L 0.	-5.249	0.	3.711	0.31	-2256.	-1106.	14.	650.	3888.	670.	0.47	597.	730.	30.	-71
9113	GTR316	DISTI	L O.	-0.692	0.	0.485	0.11	28.	177.	92.	430.	914.	287.	0.42	67.	0.	33.	-19
9113	GTR316	DISTI	L 0.	-5.174	0.	3.628	0.30	-2227.	-1085.	15.	629.	3823.		0.47		715.	30.	-73
9113	<b>FCPADS</b>	DISTI	L 0,	-0.793	0.	0.384	0.09	229.	427.	107.	631.			0.55		0.	57.	-42
9113	FCPADS	DISTI	L 0.	-12.540	Ο.	6.074	0.28	-1959.	1254.	157.	4053.	11528.	1384.	0.85		1635.	52.	-478
9113	FCHCDS	DISTI	L 0.	-0.664	Ο.	0.513	0.12	-256.	441.	94.	146.	1178.		0.42		0.	53.	-35
9113	FCMCDS	DISTI	L. O.	-8.302		6.423	0.36	-7538.	1237.	-15.	-2777.			0.46		1271.	48.	-304
				8******	-12.048				-91142.	-5118.		197232.					10331.	
	STM141			-0.008		0.013	0.03	-3.	-3.	-9.	4.	8.		0.03		0,	62.	0
3121	STM141	COAL-	F 0.	-0,008	o.	0.013	0.03	-3.	-19.	-0.	5.	-6.		0.01		o.	52.	Ŏ
	STM141			-0.008	O.	0.013	0.03	15.	-19.	-0.	22.			0.04		0.	51.	
	STMOSE			-0.004	0.	0.007	0.01	-2.	-2.	-o.	2.			0.02		o.	63.	-
	STMOSS			-0.004	Ö.	0.007	0.01	-2.	-17.	-0.	3.			-0.01		ŏ.	52.	_
	STI1088			-0.004	Ö.	0.007	0.01	15.	-17.	-0.	19.	-9.		0.03		Ŏ.	51.	ĭ
	PFBSTM			-0.018	Ö.	0.027	0.05	19.	-26.	<u>ž:</u>	34.	1.	8.			O.	52.	
	TISTMT			-0.025	o.	0.039	0.08	-9.	-10.	-1.	12.			0.08		ŏ.	72.	
	TISTMT		Ö.	-0.025	Ö.	0.039	0.08	-9.	-30.	- i .	12.	:		0.06		õ.	64.	_
	TIHRSG			-0.028	Õ.	0.017	0.03	-10.	-11.	-i.	4.	12.		0.04		Ŏ.	75.	-3
	TIHRSG		0.	-0.028	Ö.	0.017	0.03	-10.	<u>-31.</u>	<del>-i:</del>	5.	-5.		0.01		0.	66.	-3
		DISTI	A CONTRACTOR OF THE PARTY OF TH	-0.052		0.038	0.08	-3.	-6.	ż.	26.	46.		0.18		ŏ.	66.	-1
	STIRL	RESID		-0.052		0.038	0.08	-18.	-21.	-6.	11.	27.		0.08		o.	59.	
	STIRL	COAL	Ŏ.	~6.052		0.038	0.08	-18.	-46.	-3.	ii.	6.		0.05		o.	50.	ĭ
	HEGT50			-0.235		0.015	0.03	-30.	-156.	-12.	51.					0.	67.	
	HEGTOO			-0.059		0.014	0.03	2.	-50.	-3.	26.	-8.		0.05		o.	53.	
	FCMCCL		Ö.	-0.059		0.067	0.13	26.	29.	3.	67.	100.		0.39		Ö.	55.	-
	FCSTCL		Ö.	-0.072		0.088	0.17	26.	29.	3.	78.	119.		0.46		o.	54.	ĭ
	IGGTST		<del>0.</del>	-0.062		0.044	0.09	-22.	-52.	3.	13.	8.		0.07		0.	<del>55.</del>	<u>-</u>
	GTSCAR				-0.084		0.12	-31.	-31.	-1.	15.	46.	8.			Ŏ.	54.	_
	GTAC08			-0.047		0.054	0.11	-47.	-19.	-6.	-14.	35.		0.04		Ŏ.	55.	i
	GTAC12			-0.061	ö.	0.067	0.13	-55.	-25.	-7.	-14.	44.		0.06		o.	53.	ż
	GTAC16			-0.074	0.	0.075	0.15	-63.	-29.	-8.	-15.	49.				<del>- ö.</del>	<del>52.</del>	
	GTWC16			-0.080	Ö.	0.071	0.14	-67.	-32.	-8.	-18.	48.	- 1	0.06	• • •	o.	52.	2
	CC1626			-0.112		0.092	0.18	-86	-32. -45.	-11.	-21.	63.		0.09		0. 0.	49.	
	CC1622			-0.096	Ö.	0.087	0.17	-76.	-39.	-9.	-18.	59.		0.08		0. 0.	50.	2
	CC1222			-0.095		0.087	0.17	-75.	-38.	<u>-9.</u>	-17.			0.08		0.	50.	
		RESID		-0.069	o.	0.072	0.14	-60.	-30, -27.	-7.	-15.	48.		0.07		o.	50. 53.	_
3121																		

DATE 06/08/79 PAGE GENERAL ELECTRIC COMPANY ISE PEO AES ALTERNATIVES STUDY COGENERATION TECHNOLOGY FUEL UNITS U REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL CUST =\$*10**9 TYPE MATCH=HEAT ****F U E L SAVINGS****---EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---ECS ****DIRECT*****TOTAL****** EMSR SAVING TOTAL COST LAEC PROCS ECS FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX PART **EXPORT** SAVED HWM -0.072 0. -2.-0.07 58. 33121 DEHTPM RESIDU O. 0.061 0.12 -112. -29. -7. -70. 42. 2. ۵. n. 10.-0.88 33121 DESCAS DISTIL -0.319 0. -0.319 0.429 0.22 -714. -36. 1. -579. 186. 1. ٥. 60. -6. 222. 13.-0.90 33121 DESCA3 DISTIL -0.384 -0.384 0.516 0.22 -47. -698. 59 -8 0. -861 -3. -1394. -3. 33121 DESOA3 RESIDU -0.319 -0.319 0.22 -1532. -120. 114. 23.-2.90 0. 54. 0. 0.429 1. 33:21 DESCAS RESIDU -0.384 0. -0.384 0.516 0.22 -1843. -145 -3. -1678. 138. 27. -2.94 54. 2. 8. -4. 5. 0.18 33121 GTSØAD DISTIL -0.064 0. -0.064 0.125 60. 0. 0.12 -26. -10. ٥. 14. 56. 9,, ٥. -0.136 0. 33121 GTRAOS DISTIL O. 0.098 0.19 ~58. **-30.** 0. 18. 100. 17. 0.29 14. 53. 33121 GTRA12 DISTIL 0.19 -0.125 0. 0.097 -54. -27. 18. 97. 16. 0.29 13. 0. 54. O. Ο. 33121 GTRA16 DISTIL O. -0.113 0. 15. 0.27 0.090 0.18 -23. Ω. 17. 90. 56. 0. -49. 11. Ω. 1. 33121 GTR208 DISTIL O. **-0.090** 0. 0.073 0.15 -40. -17. 13. 75. 13. 0.22 10. ٥. 58. 0. 33121 GTR212 DISTIL -0.097 0.079 15. 80. 14. 6.23 10. 58 O. 0. 0.16 -42 -19. 0. ٥. 33121 GTR216 DISTIL -0.098 ٥. 0.082 0.16 -43. -19. 1. 16. 82. 14. 0.24 10. Ō. 57. n. 33121 GTRWOS DISTIL O -0.177 0. 0.098 0.19 -75. -41. -1. 14 111 19. 0.31 17. n. 52. -۵. -70. 33121 GTRW12 DISTIL -0.166 0. 0.106 -0. 18. 113. 19. 0.32 17. 51. -0. 0.21 -38. Ω. 33121 GTRW16 DISTIL -0.148 0. 0.099 0.20 -33. -0. 17. 104. 17. 0.30 15. 53 -O. n. -63. 0 -31. 7. 33121 GTR308 DISTIL -0.140 0. 0.067 0.13 -60. 0. 84. 15. 0.23 13. 0. 57. -1. 33121 GTR312 DISTIL 0. -0.121 0. 0.087 0.17 -25. Ö. 90. 16. 0.26 13. 55. -52. 15. O. 33121 GTR316 DISTIL -0.119 0. 0.085 0.17 -25. 0. 15. 89. 15. 0.26 12. 56. -a. -51. O. 33121 FCPADS DISTIL -0.289 0. 0.140 0.23 29. 93. 266. 32. 0.85 59 -7. 0. -45. 15. ٥. 33121 FCPADS DISTIL -7. -0.293 0. 0.142 0.28 -45. 29. 95. 270. 32. 0.85 16. 59. 1. 33121 FCMCDS DISTIL -0.194 0. 0.1500.30 -176. 29. -n. -65. 219. 23. 0.38 11. Ω. 58. -4. 22. 33251 STM141 RESIDU Ο. -0.080 0. 0.132 0.06 -28. -32. 40. 81. 5. 0.06 Ω. 59. 4. -4. 33251 STM141 COAL-F -0.080 0. 0.132 0.06 -28. -121. -4 43. 6. 23. 0.03 -8. 0. 49. 33251 STM141 COAL-A -0.080 0. 0.132 0.06 68. -121. 138. 6. 23. 0.08 12. O. 47. 9. 33251 STM088 RESIDU -0.044 0. 0.072 0.03 22. 3. 0.03 3. -15. -17. 45. 15. 61. n. 33251 STH088 COAL-F -0.0440.072 19. 0.01 O. 0.03 -15. -99. -2. 25. -25. -14. О. 51. 4. 33251 STM088 COAL-A -0.044 0.072 0.03 -25. 19. 0.05 3. Ω Ω. 72. -99. -2. 112. ٥. 49 33251 PFBSTM COAL-P -0.180 O. 0.265 0.11 87. -181. 10. 74. 51. 0.16 18. 46. 11. 233. 9. 33251 TISTMT RESIDU -0.125 0. 0.196 0.08 -44. -50. -6. 59. 122. 8. 0.09 -47. 0. 66. -5. 40. 0.14 33251 TISTMT COAL Ο. -0.246 Ο. 0.387 0.16 -86. -221. -12. 120. 137. -110. 60. -2. 0. 33251 TIHRSO RESIDU -0.139 0.082 0.03 -56. -7. 70. -8. a Ω. -49. 21. 61. 1. 0.04 -57. Q. 33251 TIHRSG COAL -0.274 O. 0.162 0.07 -96. -237. 47. 27. 0.04 -131. 65. -10. 12. ٥. 33251 STIRL DISTIL O. -0.257 0. 131. 227. 0.191 0.08 -16. -29. 8. 49. 0.19 66. -3. 15. 0. 0.191 33251 STIRL RESIDU -0.257 2. n Ω 0.08 -90. -103. -20. 52. 135. -4. 0.08 15. ٥. 59. -0.508 0.377 -173. -25. 33251 STIRL COAL n n 0.16 -378. 110. 117. 42. 0.12 -38. 0. 51 1. 39. 0.14 33251 HEGT60 CUAL-A -1.884 0. 0.117 0.05 -274. -1203. <del>-94.</del> 372. -25. 52. -98. 0. 33251 HEGT60 COAL-A 44. 0.14 0. -2.304 0. 0.143 0.05 -357. -1455. ~115. 433. -106. -72. 56. -11. 42. 33251 HEGTOO CCAL-A -0.579 28. 0.09 0.135 0.06 -44. -420. -29. 189. -19. -24. 51. 3. 0. Ο. 0. 33251 FCMCCL COAL -0.932 127. B. n. n. 0.299 0.13 145. 15. 526. 829. 102. 0.67 47. 8. n. 33251 FCSTCL COAL -1.065 0. 0.505 0.21 127. 145. 15. 1015. 122. 0.81 <del>27.</del> 43. 15. 0. 635. 0. 0.076 33251 IGGTST COAL 0. -0.966 0. 0.03 -338. -652. 12. -n. -72. 88. 0.01 5. 0. 48. 7. 230. 38. 0.19 33251 GTSUAR RESIDU -0.415 0. -0.415 0.706 -105. 7. 0.12 -156. -3, 122. 54. 0. 52. 33251 GTACOS RESIDU O. -0.236 0. 0.270 0.11-144 -94. -18. 17. 175. 2. 0.09 42. 54. <del>5</del>1. 2. 0.11 9. 33251 GTAC12 RESIDU -0.305 O. 0.333 0.14 -185. -122. -24. 18. 218. 52. 33251 GTAC16 RESIDU O. -222. -146. -28. 12. 1. 0.12 50. 9. -0.366 0. 0.371 0.16 246. 56. ٥. 33251 GTWC16 RESIDU O. 0.352 -160. -31. -2. 0.11 61. -0.400 0. 0.15 -242. 239. -3.

-29.

-1.

12.

8.

5. 0.08

-27.

0.

72.

-2.

33254 TISTMT COAL

0.

-0.025 0.

0.038

0.11

 						•												
	6/08/79	9		·		2022				C COMPANY				<del></del>			PAGE	64
SE PE	U AES	INITS	<b>E</b> .				ERATION RT 6.1	TECHNO FUEL		EMI SS I ONS		ERNATIVE GS	S S	TUDY	AVINGS A	RF		
		ION NNI	TS=				1990	1 0	C1112	LEVEL			***	(0)	1411105 7			
	COST	<del></del>	=\$*10	**9	<del></del>									T\	PE MATO	H=HEAT		
		**	**#F U I	FI	SAV	I N G S*	***	- F M I	S S 1	ans	SAV	INGS		_ /	CAPITI -	-ELECTRI	C POVER-	
ROCS	ECS				тот	ALFE	SR	DIREC	CT			L******			SAVING	TOTAL	COST LA	
		FUEL 0	L+GAS	COAL O	L+GAS	COAL	NG	( SC)	<u> </u>	ART NOX	SOX	PART				EXPORT	SA	VED
)OE 4	TIUDEO	RESIDU	•	-0.027	^	0.016	0.05	-10	- 4 4	•		10	^	0.05		MMH	90	- 0
	TIHRSG		0. 0.	-0.027		0.016 0.016	0.05 0.05	-10. -10.	-11. -31.	-1. -1.	4. 5.	12. -5.		0.05	-21. -29.	0. 0.	80. 74.	-3. -3.
	STIRL	DISTIL	o.	-0.051	o.	0.038	0.11	-3.	-6.	2.	26.	45.		0.24	3.	Ö.	63.	-1.
	STIRL.	RESIDU		-0.051	0.	0.038	0.11	-18.	-20.	-6,	10.	26.		0.10	3.	Ö.	56.	0.
	STIRL	COAL	0.	-0.051	0.	0.038	0.11	-18.	-45.	-3.	11.	6.		0.07	-4.	0.	51.	1.
		COAL-A		-0.230	-	0.014	0.04	-30.	-152.	-11. -2	49.	-17.		0,12	-29.	0.	75.	-3.
	HEGTOO FCMCCL		<u>0.</u>	-0.058 -0.058	<u>0.</u>	0.013	0.04 0.18	2. 25.	-49. 29.	-3. 3.	25. 65.	<u>-8.</u> 98.		0.07	-15. -13.	<u>0.</u> 0.	<u>62.</u> 57.	<u>-1.</u> 0.
	FCSTCL		Ö.	-0.071	o.	0.086	0.18	25. 25.	29.	3,	76.	116.		0.63	-13.	Ö.	56.	Ö.
3254	IGGTST	COAL	Ο.	-0.061		0.043	0.12	-21.	-51.	3.	13.	8.		0,10	-12.	Ö.	58.	-0.
			-0.082		-0.082		0.16	-30.	-31.	-1.	14.	45.		0.22	8.	0.	49.	1.
		RESIDU		-0.046	0.	0.053	0.15	-46.	-19.	-5.	-14.	<b>35.</b> .		0.06	7.	0.	<b>51</b> .	1.
		RESIDU		-0.060 -0.072		0.066 0.073	0.18 0.20	~54. -61.	-24. -29.	-6. -7.	-14. -15.	43. 48.		0.08 0.10	8. 9.	0. 0.	48. 47.	2. 2.
		RESIDU		-0.072	o.	0.069	0.19	-65.	-31.	-3	-18.	47.		0.18	9.	Ö.	47.	1.
		RESIDU		-0.110		0.090	0.25	-84.	-44.	-10.	-20.	62,		0.12	13.	Ō.	42.	2.
		RESIDU		-0.094	Ο.	0.085	0.24	-75.	· -38.	-9.	-18.	<b>57</b> .		0.11	11.	Ο.	44.	2.
		RESIDU		-0.093	0.	0.085	0.24	-74.	-37.	-9.	-17.	<b>57.</b>		0.12	12.	0.	43.	2.
		RESIDU		-0.067 -0.197	<u>0.</u> 0.	0.071	0.20	<u>-58.</u> -217.	<u>-27.</u> -79.	<u>-7.</u> -16.	-14. -126.	<u>47.</u> 72.		0.09	<u>9.</u> 6.	<u> </u>	<u>48.</u> 48.	<u>2.</u> -1.
		RESIDU		-0.286	0.	0.129	0.26	-315.	-115.	-24.	-184.	104.		-0.19	11.	12.	46.	-2.
		RESIDU		-0.070		0.059	0.17	-110.	-28.	-7.	-69.	41.		-0.09	2.	ō.	55.	Õ.
			-0.213	0.	-0.213		0.20	-474.	-19.	1.	-384.	129.	6.	-0.83	-0.	0.	61.	-4.
			-0.376	ī0.	-0.376		0.22	-842.	-46.	1.	-683.	217.		-0.90	2.	21.	60.	-10.
			-0.213	0.	-0.213		0.20 -		-80.	*	-929.	76.		-2.79	-0.	0.	55.	-2.
			-0.376 -0.062	0. 0.	-0.376 -0.062		0.22 - 0.17	·1304. -25.	-141. -10.	-3 0.	1641. 14.	135. 55.		-2.94 0.26	2. 9.	21. 0.	54. 55.	-6. 0.
		DISTIL		-0.134	0.002	0.095	0.27	-57.	- <u>29.</u>	0.	<del>- 17.</del>	98.		0.40	14.	<del>- 0.</del>	45.	Ö.
		DISTIL	O.	-0.123	0.	0.095	0.27	-53.	-26.	o.	18.	95.		0.39	13.	o.	46.	0.
		DISTIL	0.	-0.111	0.	0.068	0.25	-48.	-23.	o.	17.	88.		0.37	11.	o.	49.	0.
		DISTIL		-0.088	0.	0.072	0.20	-39.	<u>-16.</u>		13.	73.		0.30	10.	<u> </u>	52.	<u>o.</u>
		DISTIL		-0.095 -0.096	0. 0.	0.077	0.22 0.23	-41. -42.	-18. -19.	1.	14. 15.	78. 80.		0.32	10. 10.	0. 0.	51. 51.	0. 0.
		DISTIL	Ö.	-0.174	o.	0.095	0.27	-73.	-40.		14.	109.		0.43	17.	ö.	42.	-o.
		DISTIL	Ο.	-0.163	Ο.	0.104	0.29	-69.	-37.	-0.	18.	111.	18.	0.45	17.	0.	41.	-0.
		DISTIL		-0.145		0.097	0.27	-62.	-32.	-0.	17.	102.		0.41	14.	0.	44.	-0.
		DISTIL		-0.137		0.065	0.18	-58. -51	-30.		7. 18	83.		0.32	13.	0.	50.	-1:.
		DISTIL		-0.118 -0.117		0.085 0.083	0.24 0.23	-51 <i>.</i> -50.	-25. -24.		15. 14.	88. 87.		0.36 0.36	13. 12.	0. 0.	47. 48.	0. -0.
		DISTIL		-0.193		0.093	0.26	<del>-27.</del>	22.		65.	180.		0.82	9.	<del>0.</del>	60.	-5.
		DISTIL		-0.287	Ο.	0.139	0.28	-45.	29.		93.	264.		0.85	16.	13.	59.	-9
		DISTIL	_	-0.161		0.125	0.35	-145.	25.		-52.	184.		0.46	8.	0.	55.	-3.
		DISTIL		-0.190		0.147	0.36	<del>-172.</del>	<u>28.</u>		-64.	215.		0.46	11.	<u>5.</u>	<u>54.</u>	<u>-4.</u>
		RESIDU COAL-F		-0.007 -0.007		0.011 0.011	0.09 0.09	-2. -2.	-3. -11.		3. 4.	7. -0.		0.10 0.05	0. -3.	0. 0.	56. 34.	0. 0.
/ J   M	O 00 11 44 1	JUNE-L	<b>U</b> .	J. 007	♥.	U 1 U 1.1	J, UJ	<b>-</b> .		∵ .	<del>-7</del> •	◡.	€.	· · · ·	- J.,	u,	<b></b> .	v.

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 65 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 TYPE MATCH=HEAT ****F U E L CAPITL -- ELECTRIC POWER ---SAVINGS****---EMISSIONS SAVINGS ---PROCS ECS EMSR SAVING TOTAL COST LAEC FUEL OIL+GAS COAL OIL+GAS COAL NOX SCX PART NOX SOX PART **EXPORT** SAVED MWH 33314 STM088 RESIDU O. -0.005 0. 0.008 0.06 -2. -2. -0. 2. 5. 0. 0.07 Ò. 0. 57. 0. 33314 STM088 COAL-F 0. -0.005 0. 0.008 0.06 -2. -10. -0. 3. -2. 2. 0.02 -3. Ω. 55. 0. 33314 STM088 COAL-A 0. -0.005 0. 0.008 0.06 -10. -0. -2. 2. 0.10 -2. 52. 7. 11. 0. n. 33314 PERSTM COAL-P 0. -0.012 O. 0.018 0.15 9. -14. 1. 19. 3. 4. 0.24 -4. 0. 56. 0. -1. 33314 TISTMT RESIDU O. -0.015 0. 0.025 0.21 -5. -6. 7. 15. 1. 0.22 -11. ٥. 65. -1. -1. 33314 TISTMT COAL ٥. -0.015 0. 0.025 0.21 -5. -16. 8. 6. 3. 0.16 -16. ٥. 92. -1. 0.08 33314 TIHRSG RESIDU Λ -0.011 0. 0.009 -5. 6. 0. 0.09 -11. 91. -4 - 1 3. -4. <del>-</del>1, 33314 TIHRSG COAL -0.011 Ō. 0.009 0.08 2. 0.03 O. o. -14. 3. -2. -16. 93. 33314 STIRL DISTIL O. -0.028 0. 0.022 0.19 -2. 25. 5. 0.41 2. 0. 50. -0. -4. 1. 14. 33314 STIRL RESIDU O. -0.028 0. 0.022 0.19 -10. -11. -3. 6. 16. -1. 0.19 2. 0 45. 0. 33314 STIRL COAL ο. -0.028 0. 0.022 -24. 0.19 -10. 5. 3. 0.13 47. 0. 33314 HEGT85 COAL-A O. -0.070 0. 21. 3. 0.19 0.012 0.10 -6. -49. -4. -3. -19. 0. 106. -2. 33314 HEGT85 COAL-A 0. -0.215 0. -33. 0.037 0.13 -136. -11. 48. 3. 6. 0.21 -30. 16. 74. -5. 33314 HEGT60 COAL-A 0. -0.066 0. 0.016 0.13 -6. -47. -3. 21. -1. 3. 0.21 -16. 0. 93. -1. 33314 HEGT60 COAL-A ٥. -0.068 O. 0.016 0.13 -6. -48. -3. 21. -1. 3. 0.21 -16. 90. 33314 HEGTOO COAL-A Ō. -0.026 0. 0.008 0.07 1. -23. <del>-1.</del> 13. -3. 2. 0.11 -9. 0. 72. -1. 33314 FCMCCL COAL -0.029 0. 0.033 0.28 13. 14. 2. 32. 49. 7. 0.82 **-9**. 67. -0. 33314 FCSTCL COAL -0.037 0. 0.045 0.38 13. 38. 59. 8. 0.97 -10. ٥. 70. -0. 11. 1. 33314 FCSTCL COAL 0. -0.040 0. 0.049 0.3913. 14 2. 42. 64. 8. 1.00 -9. 64. -0. 33311 IGOTST COAL 0. -0.035 0. 0.027 0.23 -12. -28. 8. 7. 7. 0.20 -9. 0. 69. -0. 1. 33314 GTSØAR RESIDU -0.036 0. -0.036 0.065 0.25 -0. 22. 4. 0.35 3. ٥. 1. -14. -14. 7. 40. 33314 GTACO8 RESIDU O. -0.023 0. -1. 0.09 0.027 0.23 -23. -9, -3. -7. 17. 2. O. 41. 1. 33314 GTAC12 RESIDU O. -0.030 0. 21. 36. 0.033 0.28 -27. -12. -3. -7. -1. 0.13 3. Ω. 1 33314 GTAC16 RESIDU -0.035 O. 0.037 -14. -4. 24. -1. 0.15 Π. 0.31 -30. 3. Ō. 34. 33314 GTWC16 RESIDU O. -0.039 0. 0.035 -33. -9. -1. 0.12 35. 0.29 -16. -4. 24. З. ٥. 33314 CC1626 RESIDU O. -0.044 0. 0.038 0.32 -33. -18. -4. -7. 26. -1.0.173. 38. ٥. 33314 CC1626 RESIDU n -0.061 0. 0.052 0.35 -46. -24. -6. -10. 36. -1. 0.18 5. 33. 0. 33314 CC1622 RESIDU O. -0.042 0. 0.040 0.34 -33. -17. -7. <del>27.</del> -1. 0.18 3. 36. 33314 CC1622 RESIDU O. -0.053 0. 0.049 0.36 -5. -8. 33. -1.0.195. 32. -40. -21. 2. 1. 33314 CC1222 RESIDU -0.042 0. 0.040 0.34 -33. -17. -4. -6. 27. -1.0.184. ٥. 35. 1. 33314 CC1222 RESIDU -0.052 0. 0.049 0.36 -40. -21. -5. -8. 33. -1. 0.19 5. 31. 33314 CC0822 RESIDU 27, -1. 0.19 -0.038 0. 0.042 0.35 -32. -15. -6. 4. Ö. 32. 1. 2. 33314 STIG15 RESIDU O. -0.068 0. 0.014 -27. -2. -15. 0. 0.01 ٥. 50. 0.12 -41. 16. -1. 4. 0.01 -38. 33314 STIG15 RES!DU O. -2.309 0. 0.483 0.17 -1394. -924. -69. ~513. 534. 254. 39. 177. -0.062 33314 STIG10 RESIDU 0. 0. 0.020 -25. 1. 0.05 45 0.17 -40. -2. -14. 18. 3. ٥. -0. 33314 STIGIO RESIDU O. -78. -0.194 0. -125. -5. -44. 2. 0.06 38. -2. 0.064 0.22 58. 15. 17. 33314 STIGIS RESIDU O. -0.059 0. 0.023 0.20 -24. -14. 20. 1. 0.06 3. 43. -40. -1. 0. -0. 33314 STIGIS RESIDU O. -0,109 0. 0.23 -74. -43. -26. 36. 2. 0.07 37. 0.043 -3. 8. 7. -1. 33314 DEADV3 RESIDU O. -0.054 ٥. -21. -5. ~35. 0.028 0.24 -61. 22. -2. -0.140. 49. -0. 33314 DEADV3 RESIDU O. -0.112 0. 0.059 0.29 -128. -45. -10. -74. 46. -4. -0.17 42. 4. 8. -1. 33314 DEHTPM RESIDU O. -0.035 0. 0.038 -14. -32. 25. -1.-0.07 0.32 -55. -4. 1. 0. 43. 0. 33314 DESCAS DISTIL -0.058 0. -0.058 0.082 0.20 -135. -2. 0. -109. 40. 1.-0.72 -0. ٥. 59. -1. 33314 DESGAS DISTIL -0.142 ٥. -0.142 0.200 0.25 -333. -15. 0. -270. 89. 5. -0.87 55. 1 . 11. -4. 33314 DEGGA3 RESIDU -0.058 -0.058 0.082 -293. -22. -0. -267. 23. 4. -2.55 Õ. 53. -0.  $\overline{\mathbf{n}}$ 0.20 -0. 33314 DES 3A3 RESIDU -0.142 0. -0.142 0.200 0.25 -714. -53. -1. -650. 56. 11. -2.87 49. -2. 1. 11.

-5.

0.

27.

2. 0.43

3.

0.

42.

7.

33314 G1 3AD DISTIL -0.030 0.

-0.030

0.060

0.26

-12.

1

0.

	6/08/7	<u> </u>							1121201111	C COMPANY								1 <u>GE</u> 66
SE PE	O AES						ERATION		OLOGY	=======================================		ERNATIVES	S	TUDY				
	FUEL (		_ = .				RT 6.1	FUEL	AND	EMISSIONS		IGS		(S/	VINGS A	RE		
		ION UNIT		_		TIME	1990			LEVEL	ALL			_				
	COST		=\$×10	**9									•	<u>T\</u>	PE MATC	H=POWR		
					0 A W			- 4 .		<b>4</b> N C	0.4.1/				04B171 -	-51 50701	C DAUE	*D
200	-		**F U			INGS						INGS -				-ELECTRI		
୧୯୯୫	ECS					TALFES						/L*******		EMSK	SAVING	TOTAL	COST	
	<del></del>	FUEL 01	L+GAS	COAL OI	L+GAS	CGAL	KON	se se	X P	ART NOX	SOX	PART				EXPORT		SAVED
										_			_			MWH		_
		DISTIL	Ο.	-0.044	Ο.	0.038	0.32	-18.	-8.	Ο.	8.	38.	7.	0.49	ℑ.	Ο.	42.	-0
3314	GTRA08	DISTIL	Ο.	-0.055	Ο.	0.046	0.34	-24.	-11.	Ο.	9.	45.	8.	0.49	4.	2.	38.	-0
3314	GTRA12	DISTIL	0.	-0.043	0	0.039	0.33	-18.	-8.	0.	9	38.	7.	0.49	3.	0.	41.	-0
3314	GTRA12	DISTIL	0.	-0.052	0.	0.046	0.35	-23.	-10.	0.	9.	44.	8.	0.50	4.	2.	38.	-0
3314	GTRA16	DISTIL	Ο.	-0.043	Ο.	0.039	0.33	-18.	-8.	0.	8.	38.	7.	0.49	2.	o.	41.	-0.
3314	GTRA16	DISTIL	Ο.	-0.048	Ο,	0.043	0.34	-21.	-9.	O.	9.	42.	7.	0.50	3.	11.	39.	-0.
	<b>GTR208</b>		O.	-0.040	Ö.	0.036	0.30	-18.	-7.	1.	7.	36.		0.45	3.	ο.	39.	0.
		DISTIL	Ö.	-0.043	Ō.	0.038	0.32	-19.	-8.		7.	38.	7.		3.	0.	38.	Ō.
		DISTIL	Ŏ.	-0.043	Ö.	0.039	0.33	-19.	-8.	Ŏ.	8.	38.		0.49	3.	o.	39.	Ŏ.
		DISTIL	Ŏ.	-0.043	õ.	0.040	0.34	-19.	-8.		В.	39.		0.49	3.	o.	38.	ŏ
		DISTIL	Õ.	-0.050	Ö.	0.032	0.27	-20.	-10.	ŏ.	7.	36.		0.46	2.	õ.	46.	-0
		DISTIL	<del>0.</del>	-0.074	<del>0.</del>	0.046	0.30	-31.	-17.		<del>- '8.</del>	50.	8.	0.46	5.	4.	41.	<u></u>
		DISTIL	Õ.	-0.048	o.	0.034	0.29	-19.	-9.		8.	37.		0.47	ž.	ŏ.	44.	-o
		DISTIL	Ö.	-0.071	ŏ.	0.051	0.32	-30.	-16:		9.	52.	9.		5.	4.	40.	-1
		DISTIL	0.	-0.048	_		0.32		-9.					0.47	2.		45.	-ò
					<u> </u>	0.035		<u>-19.</u>		0.	8.	37.				<u>0.</u>		<del>-1</del>
		DISTIL	0.	-0.065	0.	0.048	0.32	-28.	-14.		9.	49.	8.	0.48	4.	3.	40.	
		DISTIL	0.	-0.053	0.	0.029	0.25	-22.	-11,		4.	35.		0.43	3.	0.	44.	-0
		DISTIL	0.	-0.059	0.	0.033	0.26	-25.	-12.		4.	39.		0.43	4.	1.	42.	-0
		DISTIL	0.	-0.047	<u> </u>	0.035	0.30	-20.	<u>-9.</u>		<u> </u>	<u> 37.</u>		0.47	<u>3,</u>	<u>o.</u>	42.	-0
		DISTIL	Ο.	-0.056	Ο.	0.042	0.31	-24.	-12.		8.	43.	7.		4.	2.	38.	-0
		DISTIL	Ο.	-0.047	Ο.	0.035	0.30	-20.	-9.	0.	7.	37.		0.47	3.	Ο.	43.	-0
3314	GTR316	DISTIL	0.	-0.055	Ο,	0.041	0.31	-24.	-11.	Ο,	7.	43.	7.	0.47	4.	1.	40.	-0
3314	<b>FCPADS</b>	DISTIL	0.	-0.055	0	0.027	0.23	-6	8.	1.	21.	<u>54.</u>	8.	0.77	2.	0.	60.	-2
3314	FCPADS	DISTIL	0.	-0.143	0.	0.069	0.28	-22.	14.	2.	46.	132.	16.	0.85	7.	12.	56.	-5.
		DISTIL	Ο.	-0.046	Ο.	0.036	0.30	-40.	9.	· 1.	-13.	55.	7.	0.45	2.	Ο.	55.	-1
3314	<b>FCMCDS</b>	DISTIL	Ο.	-0.095	0.	0.073	0.36	-86.	14.	-0.	-32.	107. ·	11.	0.46	5.	8.	51.	-3
3315	STM141	RESIDU	Ο.	-0.010	Ο.	0.016	0.08	-3.	-4.	-0.	5.	10.	1.	0.08	1.	ο.	56.	0
		COAL-F	0.	-0.010	Ō.	0.016	0.08	-3.	-17.	-0.	5.	-1.	3.		-3.	0.	51.	Ō.
		COAL-A	o.	-0.010	o.	0.016	0.08	10.	-17.		19.	-1.	3.	0.11	-2.	o.	48.	1
		RESIDU	Ö.	-0,007	Ŏ.	0.011	0.06	-2.	-3.		3.	7.		0.06	ī.	Ŏ.	58.	Ö
		COAL-F	o.	-0.007	Õ.	0.011	0.06	-2.	-15.		4.	-3.		0.02	-3.	õ.	52.	Ŏ
		COAL-A	Ö.	-0.007	0.	0.011	0.06	11.	-15.		17.	-3.	3.		-2.	Ö.	50.	<u> </u>
		COAL-P	o.	-0.017	o.	0.027	0.13	13	-21.		28.	5.		0.21	-4.	ŏ.	51.	i
		RESIDU	o.	-0.023	Õ.	0.037	0.18	-8.	-9.		11.	23.		0.19	-15.	Ö.	77.	-2
	TISTMT		Ö.	-0.023	Õ.	0.037	0.18	-8.	-25.	-1.	12.	10.		0.14	-21.	o.	78.	-1
		RESIDU	0.	-0.017	<del>0.</del>	0.014	0.07	-6.	<u>-23.</u> -7.		4.	10.		0.07	-15.	<del>- ö.</del>	82.	-2
	TIHRSG		0.	-0.017	0.	0.014	0.07	-6.	-21.	_	4.	-2.	3.		-13. -21.	Ö.	80.	-2
	STIRL	DISTIL	o.	-0.017	0. 0.	0.033	0.16	-3.			_ :	37.				_ :	54.	-0
									-5. -17.		21. 9.		8. -2		3.	0.	4 <b>8</b> .	-0 1
	STIRL	RESIDU	0.	-0.042	<u> </u>	0.033	0.16	-15.						0.16	3.	<u> </u>		
	STIRL		0.			0.033	0.16	-15.	-36,	-2.	10.	7.		0.11	-3.	o.	48.	1
		COAL-A	0.	-0.129	0.	0.021	0.10	-13.	-88.		36.	-4.		0.19	<i>-</i> 27.	Ç.	90.	-3
		COAL-A	0.	-0.333		0.055	0.12	-51.	-211.		74.	3.		0.21	-36.	22.	67.	-6
		COAL-A	0.	-0.104		0.024	0.12	<u>-10.</u>	<u>-73.</u>		<u> 32.</u>	<u>-2.</u>		0.18	-20.	<u>o.</u>	<u>76.</u>	-1
		COAL-A		-0.040		0.012	0.06	2.	-35.		19.	-5.		0.09	-11.	0.	64.	-0
	FCMCCL		0.	-0.043		0.049	0.24	19.	21.		49.			0.71	-11.	o.	<b>59</b> .	0
3315	FCSTCL	COAL	0.	-0.060	Ο.	0.074	0.36	19.	21.	2.	62.	96.	12.	0.91	-11.	0.	57.	1

, .

Security Sec

ನ್ ಕ್ರಾಂತ್ ಈ ಕಿ. ಈ ಆರ್. ಕರ್ಯ ಕಿ. ಆಫ್ರಾಡ್ ಚಿಕೆ ಆಫ್ರಾ

TO THE RESERVE THE PARTY OF THE

er a market and the

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 67 COGENERATION TECHNOLOGY ISE PEO AES ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL CUST =\$*10**9 TYPE MATCH=HEAT ****F U E L SAVINGS***---EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC FOWER ---PROCS ECS FUEL GIL+GAS COAL GIL+GAS COAL NOX SOX PART NOX SOX EXPORT PART HWM 33315 IGGTST COAL -0.052 0. 0.040 0.20 -18. -42. 2. 12. 10. 10. 0.17 -10. 59. 0. 0. 33315 GTSCAR RESIDU -0.054 0. -0.054 0.098 0.21 -21. -20. -0. 10. 33. 5. 0.29 0. 43. 4. 1. 33315 GTACOS RESIDU O. -0.035 0. 0.040 0.20 -14. -34. 26. -4 -11. -1, 0.08 44 33315 GTAC12 RESIDU -0.045 0. 0.049 0.24 -40. -18. -10. 32. -1. 0.11 0. 40. 1. -21. 33315 GTAC16 RESIDU -0.052 Q. 0.055 0.27 -45. -5. -11. 36. -1. 0.13 5. 0. 38. 1. 33315 GTWC16 RESIDU -0.059ο. 0.052 0.25 -49. -24. -14. -6. 35. -2. 0.11 5. 0. 39. 1. 33315 CC1626 RESIDU -0.081 0.069 0.34 -61. -33. -2. 0.17 0. -13. 47. -0.091 0. 0.35 33315 CC1626 RESIDU 0.078 -68. -37. -8. -15. 53. -2. 0.18 2. 9. 32. 1. 33315 071622 RESIDU -0.078 0. 0.072 0.36 -60. -31. -7. -12. 49. -2. 0.19 B. n. 31. 1. 33315 CC1622 RESIDU -0.079 0.073 0.36 -31. ٥. -61. -7. 31. -12. 49. -2. 0.19 8. 0. 1. -0.077 33315 CC1222 RESIDU Ω. 0.073 0.36 -60. -31. -2. 0.19 -12. 49. ٥. 30. 33315 CC1222 RESIDU -0.077 0. 0.073 0.36 -60. -31. -12. 49. -2. 0.19 Ō. 8. 30. 33315 CC0822 RESIDU ~G. 057 O. 0.062 0.31 -23. -1. 0.16 -48. -6. -10. 41. 6. 0. 36. 1. -1. 33315 STIG15 RESIDU -0.124 0. 0.026 0.13 -75. -50. -4. -28. 29. 0. 0.01 46. 6. 0. -56 33315 STIG15 RESIDU -3.463 0. 0.724 0.17 -2091. -1385. -103. -770. 7. 0.01 269. 379. 38 801. 33315 STIG10 RESIDU -0.113 0.037 0.18 -73. 0. -45 -26. 1. 0.05 42. -0 0. 33315 STIG10 RESIDU -0.291 0. 0.096 0.22 -188. -117. -8. -66. 87. 4. 0.06 24 22. 37. -2. 33315 STIGIS RESIDU -0.108Ο. 0.042 0.21 -74. -43 -3. -26. 2. 0.06 39. 0. 36 7. n 33315 STIGIS RESIDU -0.163 0.064 0. 0.23 -111. -65. -4. -39. 3. 0.07 36. -0. 13. 33315 DEADV3 RESIDU -0.098 0. 0.052 0.25-112. -39. -8. -65. 40. -3, -0, 15 3. 0. 44. 0. -6. -0.17 33315 DEADV3 RESIDU O. -0.169 0. 0.089 0.29 -193. -68. -14. -111. 42. 69. 6. 10. -1. · -5. 33315 DEHTPM RESIDU -0.053 0. 0.056 0.27 -83. -21. -48. 37. -1.-0.06 2. 0. 44. 1. 3.-0.76 33315 DESCAS DISTIL -0.106 0. ... -0.106 0.150 0.21 -248. -6. Ω. -201. 72. 0. 57. -2. ÷n. 33315 DESOA3 DISTIL -0.214 0. -0.2140.302 0.25 -502. -23. O. -407. 134. 8.-0.87 14. 55. -5. 33315 DESCA3 RESTDU -0.106 0. -0.106 -40. 0.150 0.21 -537. -1. -488. 42. 8. -2.64 -0. 0. 52. -1. 33315 DESGA3 RESIDU -0.214 0. -0.214 0.302 0.25 -980. 16. -2.87 -1077. -80. -2. 85. 1. 49. -3. 14. -7. 33315 GTSGAD DISTIL -0.045 0. 4. 0.36 -0.045 0.091 0.22 -13. 0. 0. 10. 41. 46. -0.081 0. 33315 GTRAOS DISTIL O. 0.069 0.34 -35. -17. 0. 14. 67. 11. 0.49 Ō. 0. 33315 GTRA08 DISTIL 0. -0.082 O. 0.070 0.34 -17. -36. 0. 68. 12. 0.49 7, 37. 0. 14. 0. 33315 GTRA12 DISTIL -0.078 0. 0.069 0.34 -16. 11. 0.49 -34. 0. 14. 67. 7. ٥. 37. 0. 33315 GTRA16 DISTIL -0.072 n 0.065 0.32 -32. -14. 13. 63. 11. 0.46 40. 6. 0. 33315 GTR208 DISTIL ~0.060 -27. Ō. 0.054 0.26 -10. 10. 53. 10. 0.39 **6**. 0. 43. 0. 33315 GTR212 DISTIL -0.064 0. 0.057 0.28 -12. ~28. 1. 11. 57. 10. 0.42 6. 0. 42. 0. 33315 GTR216 DISTIL -0.065 ο. 0.060 0.29 10. 0.43 -29. · -12. 12. 58. 1. 5. 0. 42. Ω. 33315 GTRWOS DISTIL -0.092 0.058 0. 0,28 -20. -38 11. 0.46 Ω. 11. 64. 0. 42. -0. 33315 GTRWOS DISTIL -0.1110. 0.070 0.30 -47. -25. -0. 11. 76. 13. 0.46 9. 3. 39. -1. 33315 GTRW12 DISTIL -0.088 0. 0.062 0.30 -36. -18. 0. 12. 65. 11. 0.48 6. ٥. 40. -0. 33315 GTRW12 DISTIL -0.107 Λ Ο. 0.076 0.32 -24. 78. -46. -0. 14. 13. 0.48 9. 3. 38. -0. 33315 GTRW16 DISTIL -0.087 Ω 0.063 0.31 -18. -36. 0. 12 66. 11. 0.48 0. 40. -0. 33315 GTRW16 DISTIL -0.098 0.071 73. 0.32 -21. 13. -42. Ω. 12. 0.48 8. 2. 39. -0. 0.049 33315 GTR308 DISTIL -0.089 Ο. 0.24 -38. -19. О. 7. 59. 11. 0.41 0. 42. -0. 33315 GTR312 DISTIL -0.084 0. 0.063 n. 0.31 ~36. -17. 0. 11. 65. 11. 0.47 7. 0. 38. 0. 33315 GTR316 DISTIL -0.083 0.062 0.30 Ω n. -36. -17. Ο. 64 11. 0.46 ٥. 39. 0. 33315 FCPADS DISTIL -0.101 O. 0.049 0.24 -12. 14. 36. 97. 13. 0.79 Ō. 59. -3. 33315 FCPADS DISTIL 0. -0.215 0. 0.104 0.28 22. 70. -34. 3. 198. 24. 0.85 10. 16. 56. -7, 0.066

33315 FCMCDS DISTIL

-0.085

0.

0.32

-74.

15.

-26.

99.

12. 0.46

3.

0.

54.

	6/08/79	9								C COMPANY							PA	<u>GE 68</u>
E PE	C AES	TC					ERATION	. — .	OLUGY			TERNATIVES	S	TUDY				
	FUEL U		= -				RT 6.1	FUEL	AND	EMISSIONS		NGS		(SA	avings a	KE		
	COST	ION UNIT		**0		TIME	1990			LEVEL	ALL				OF MATA	U-UEAT		
	CUST	<del></del>	=\$*10				······								YPE MATC	n=ITEA I		
		***	**F U !	EL	SAV	I N G S*	***	ЕМ	SSI	e n s	SAV	INGS -		_	CAPITL-	-ELECTRI	C POWE	R
ROCS	ECS	ECS ***	*DIREC									AL::::::::::::::::::::::::::::::::::::			SAVING	TOTAL	COST	
		FUEL OIL		COAL OI		COAL	NOX			ART NOX						EXPORT		SAVED
																MWH		
		DISTIL	Ο.	-0.142		0.110	0.36	-129.	21.	-0.	-48.	161.		0.46	7.	10.	<b>52.</b>	-4.
		RESIDU	0.	-0.010		0.016	0.09	~3.	-4.	-0.	5.	10.		0.09	1.	0.	<b>55</b> .	0.
		COAL-F	<u>0.</u>	-0.010		0.016	0.09	<u>-3.</u>	<u>-17.</u>	<u>-o.</u>	<u> </u>	<u>-1.</u>	<u>   3.                                 </u>		<u>-3.</u>	<u> </u>	52.	<u> </u>
	STM141		0.	-0.010	0.	0.016	0.09	10.	-17.	-0.	19.	-1.	3.		-2.	Q	49.	1.
		RESIDU COAL-F	0. 0.	-0.007 -0.007	0. 0.	0.011 0.011	0.06 0.06	-2. -2.	-3. -15.	-0. -0.	3. 4.	7. -3.	0.	0.06	1. -3.	0. 0.	57. 53.	0. 0.
		COAL-A	0.	-0.007	0.	0.011	0.06	11.	-15.	-0.	4. 17.	-3. -3.	3. 3.	0.02	-3. -2.	O.	50.	1.
		COAL A	<del>0</del> .	-0.017	0.	0.027	0.15	13.	-21.	2.	28.	5.	6.		-4.	0.	52.	<del></del>
		RESIDU	Õ.	-0.023	o.	0.037	0.20	-8.	-9.	-1.	11.	23.		0.21	-15.	o.	79.	-2.
	TISTMT		o.	-0.023	o.	0.037	0.20	-8.	-25.	-1.	12.	10.		0.15	-21.	0.	83.	-1.
		RESIDU	0.	-0.017	0.	0.014	0.08	-6.	-7.	-1.	4.	10.	0.		-15.	0	85.	-2.
	TIHRSG		0.	-0.017	0.	0.014	0.08	-6.	-21.	-1.	4.	-2.	3.		-21.	0.	86.	-2.
	STIRL	DISTIL	0.	-0.042	0.	0.033	0.18	-3.	-5.	1.	21.	37.		0.40	3.	0.	52.	-0
	STIRL	RESIDU	0.	-0.042		0.033	0.18	-15.	-17.	-5.	9,	23.		0.18	3.	o.	46.	1.
	STIRL	COAL	<u>o.</u>	-0.042	<u>0.</u>	0.033	0.18	<u>-15.</u>	<del>-36.</del> -78.	<u>-2.</u> -6.	10.	<u> </u>		0.13	-3.	<u>0.</u>	<u>48.</u> 94.	- <u>1</u>
		COAL-A	0. 0.	-0.112 -0.333	O. O.	0.018 0.055	0.10	-10. -51.	-78. -211.	-6. -17.	33. 74.	-5. 3.	4.	0.19 0.21	-25. -36.	0. 24.	94. 67.	-6.
		COAL-A	0.	-0.104	0.	0.033	0.12	-10.	-73.	-5.	32.	-2.	5.		-20.	24. 0.	81.	-1
		COAL A	ő.	-0.040	· 0.	0.012	0.06	2.	-35.	-ž.	19.	-5.	3.		-11.	o.	67.	-0
	FCMCCL		<del>0</del> .	-0.043	<u> </u>	0.049	0.27	19.	21.	2.	49.	<del>73.</del>	10.		-11.	<del>- ö.</del>	61.	0.
	FCSTCL		0.	-0.058	o.	0.072	0.33	18.	21.	2.	60.	93.		0.99	-11.	ō.	60.	o.
316	FCSTCL	COAL	0.	-0.060	0.	0.074	0.39	19.	21.	2.	62.	96.	12.	1.00	-11.	0.	58.	1.
	IGGTST		0.	-0.052		0.040	0.22	-18.	-42.	2.	12.	10.		0.19	-10.	0.	<u>61.</u>	0.
			-0.054	0.	-0.054	0.098	0.24	-21.	-20.	-0.	10.	33.	5.		4.	0.	40.	1.
		RESIDU	0.	-0.035		0.040	0.22	-34.	-14.	-4.	-11.	26.		0.08	4.	0.	42.	1.
		RESIDU	0.	-0.045	- •	0.049	0.27	-40.	-18.	-5.	-10,	32.		0.12	5.	0.	37.	1.
		RESIDU	0.	-0.052 -0.059	0.	0.055	0.30	<u>-45.</u> -49.	-21. -21.	<u>-5.</u> -6.	<u>-11.</u> -14.	<u>36.</u> 35.	<del>-1.</del> -2.	0.14	<u>5.</u> 5.	<u> </u>	<u>35.</u> 36.	- 1
		RESIDU	0. 0.	-0.039	0.	0.052	0.32	-49. -53.	-24. -28.	-6. -6.	~14. -11.	41.		0.12	5. 6.	0. 0.	ან. 35.	1.
		RESIDU	0.	-0.091	o.	0.078	0.35	-68.	-37.	-8.	-15.	53.		0.17	9.	4.	33. 32.	1.
		RESIDU	o.	-0.067	Ö.	0.063	0.34	-52.	-27.	-6.	-11.	42.	-1.		6.	õ.	33.	i.
		RESIDU	Ō.	-0.079	Ö.	0.073	0.36	-61.	-31.	<del>-7.</del>	-12.	49.	-2,		8.	2.	31.	1
		RESIDU	Ö.	-0.067	o.	₽ 263	0.34	-52.	-27.	-6.	-10.	42.		0.18	6.	ō.	32.	1
		RESIDU	0.	-0.077	0	0.233	0.36	-60.	-31.	-7.	-12.	49.		0.19	8.	2.	30.	1.
		RESIDU	0.	-0.057	<u></u>	<u> </u>	0.34	<u>-48.</u>	-23.	<u>-6.</u>	-10.	41.	<u>-1.</u>		6.	<u> 0.</u>	<u>32.</u>	
		RESIDU	0.	-0.108	2.	222	0.12	-65.	-43.	-3.	-24.	25.	0.		5.	0.	47.	-1.
		RESIDU	0.	-3,463 -0.098	ပ. ၁	0.724 0.032	0.17 - 0.18	-63.	-1385. -39.	-103. -3.	-770. -22.	801.		0.01	269. 6.	381.	ଃ <b>8</b> . 42.	-57. -0.
		RESIDU	0. 0.	-0.099	0.	0.096	0.18	-63. -188.	-117.	-3. -8.	-22. -66.	29. 87.		0.05	ъ. 24.	0. 24.	42. 37.	-0. -3.
		RESIDU	0.	-0.093	0.	0.037	0.20	-64.	-37.	-2.	-23.	31.	<del>2.</del>		<u> </u>	0.	40.	0.
		RESIDU	0.	-0.053	0.	0.037	0.23	-111.	-65.	-4.	-23. -39.	54.		0.07	13.	9.	36.	-1.
		RESIDU	o.	-0.085	o.	0.045	0.24	-97.	-34.	-7.	-56.	35.		-0.14	2.	o.	45.	-ò.
		RESIDU	o.	-0.169	o.	0.089	0.29	-193.	-68.	-14.	-111.	69.		-0.17	6.	12.	42.	-1
3316	DEHTEM	RESIDU	0.	-0.053	0.	0.056	0.31	-83.	-21.	-5.	-48.	37.		-0.07	2.	O.	41.	1.
3316	DESOA3	DISTIL	-0.092	0.	-0.092		0.21	-214.	-3.	0.	-173.	63.	2.	-0.73	-0.	٥.	58.	-2.
3316	<b>DESGA3</b>	DISTIL	-0.214	0.	-0.214	0.302	0.25	-502.	-23.	0.	-407.	134.	Ω	-0.87	1.	16.	55.	-5.

DATE 06/08/79 GENERAL ELECTRIC COMPANY PAGE 69 ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS REPORT 6.1 FUEL AND EMISSIONS SAVINGS (SAVINGS ARE EMISSION UNITS= TIME 1990 LEVEL ALL COST =\$*10**9 TYPE MATCH=POWR ****F. U.E.L SAVINGS****- -- EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS ECS EMSR SAVING TOTAL CUST LAEC FUEL OIL+GAS COAL OIL+GAS COAL NOX SOX PART NOX SOX PART EXPORT SAVED MWH 33316 DESUA3 RESIDU -0.092 0. -0.092 0.130 0.21 -464. -35. -422. 7. -2.57 -D. · O . 52. -1. 36. -1. 33316 DESØA3 RESIDU -0.214 0. -0.214 0.302 0.25 - 1077-80: -2. -980. 16. -2.87 16. 49. -3. 85. 1. 33316 GTSGAD DISTIL -0.045 O. -0.045 0.091 0.25 -19 -7. 0. 10. 4. 0.40 43. 0. 41 33316 GTRAOS DISTIL O. -0.070 0. 0.060 -13. 0.32 -30. 1. 13. 59. 10. 0.49 5. 0. 39. -0. 33316 GTRAOS DISTIL O. -0.082 0. 0.070 -36... -17. 7. 37. 0.34 14. 68. 12. 0.49 -0. 33316 GTRA12 DISTIL 0. -0.069 0. 0.061 0.33 -29. -13. 10. 0.50 5. 38. 13. 60. 0. 1. 33316 GTRA12 DISTIL -0.078 0. 0.069 0.34 -34. -16. 14. 67. 11. 0.50 36. 0. 33316 GTRA16 DISTIL 0. -0.068 0. 0.062 -13. 10. 0.49 5. 0.34 -30. 1 . 13. **50**. 39. 0. 33316 GTRA16 DISTIL 0. -0.072 0. 0.065 -32. -14. 11. C.50 37. 0.34 1. 13. 63. 6. 1. 0. 33316 GTR208 DISTIL O. -0.060 0. 0.054 0.29 -27. -10. 1. 10. 53. 10. 0.44 6. 39. 0. 33316 GTR212 DISTIL 0. -0.064 0. 0.057 0.31 -28. -12. 11. 57. 10. 0.46 0. 33316 GTR216 DISTIL O. -0.065 0. 0.060 0.33 -29. -12. ٦. 12. 58. 10. 0.48 5. 0. 37. 0. 33316 GTRWOS DISTIL O. -0,080 0. 0.050 0.27 -32. -16. 0. 10. 57. 10. 0.46 43. -1. -0.111 0. 33316 GTRWOS DISTIL O. 0.070 0.30 -47. -25. -0. 11. 76. 13. 0.46 39. -1. 33316 GTRW12 DISTIL 0. -0.076 0. 0.054 0.29 -30. -15. 0. 12. 58. 10. 0.47 42. -0. 33316 GTRV12 DISTIL O. -0.107 0. 0.076 0.32 -46. -24. -0. 14. 78. 13. 0.48 9. 5. 38. -1. 33316 GTRW16 DISTIL O. -0.075 0. 0.055 0.30 -31. -15. 12. 58. 10. 0.48 5. 42. -0. 33316 GTRW16 DISTIL O. -0.098 0. 0.071 0.32 -42. -21. 0. 13. 73. 12. 0.48 8. 39. -1. 33316 GTR308 DISTIL 0. -0.084 0. 0.046 0.25 -36. -17 56 10. 0.43 42. -0. 33316 GTR308 DISTIL 0. -0.089 0. 11. 0.43 0.049 0.26 -38. -19. Ö. <del>59</del>. 7. 40. 1. -0. 33316 GTR312 DISTIL 0. -0.074 0. 0.056 0,30 -15. -31. 11. 58. 10. 0.47 39. -0. 33316 GTR312 DISTIL 0. -0.084 0. 0.063 0.31 2. -36. -17. 11. 65. 11. 0.48 7. 37. -0. 33316 GTR316 DISTIL 0. -0.075 0. 0.055 0.30 ~32. -15. 11. 58. 10. 0.47 40. -0. 33316 GTR316 DISTIL O. -0.083 0. 11. 0.47 -0. 0.062 0.31 -36. -17. O. 11. 38. 64. 33316 FCPADS DISTIL O. -0.088 0. 0.042 0. 0.23 -10. 13. 32. 85. 12. 0.77 3. 59. -2. 33316 FCPADS DISTIL O. -0.215 0. 0.104 0.28 -34. 22. 70. 198. 24. 0.85 10. 18. 56. -7. 33316 FCMCDS DISTIL 0. -0.073 0. 0.31 0.057 -63 14 -21 87. 11. 0.45 54 -2.

21.

ALL FCMCDS DISTIL-74.369******-74.369771.823 14.96**********23343.-46283.649967. 94009. 0.29 69694.123090.216749.-11941.

-0.

-48.

161.

1.27-68006.-25902. -1853.-26886. 43855. 5385. 0.11 4157. 1676. 19274.

17. 0.46

52.

-4.

12.

33316 FCMCDS DISTIL. O.

-0.142 0.

33 FCMCDS DISTIL-12.312-73.143-12.312 54.860

0.110

0.36

-129.

RESIDUAL-FIRED NOCOGENERATION PROCESS BOILER

6.1 - Fuel & Emissions Savings - Nationally

<b></b>	5 AES					COGEN	KAIION	TECHN	IOLOGY			LTERNATIN	/£5 S	TUDY				
	FUEL 1		=			REPOR	RT 6.1	FUEL	AND	EMISSIONS	SAV	INGS		(5/	VINGS A	RE POSI	TIVE)	
		ON UNIT				TIME	1990			LEVEL	ALL							
	COST		=\$*10	**8										T\	PE MATO	H=HEAT	. =	
- <del></del>				EL						ONS		VINGS						
ROCS	ECS	FUEL OI					SR NOX			**** PART NOX	***TO	ITAL***** IOX PAI		EMSR	SAVING	TOTAL EXPORT		LAEC SAVED
		FOEL OI	LTUNG	COAL O	LTUAS	COAL	HOX	30	, , ,	-ARI NOA		OUA FAI	<b>V.</b> 1			MWH		SAVED
		COAL-A		-0.107		0.177	0.43	58.	132.	- "	152.				-2204.	9.	-1488.	
		COAL-A		-0.004		0.007	0.14	4.	-7.		8.		-	0.32	1.	0.	4.	33
		COAL-A		-0.018		0.250	0.82	-2.	-11		84.				-4401.		-1288.	-675
		COAL-A		-0.043		0.071	0.13	26.	-55		64.			0.34	444.	1.	247.	408
		COAL-A		-0.182		0.302	0.51	226.	-342.		390.			0.27	748.	16.	756.	
		COAL-A	0.	-0.025		0.041	0.10	30.	-46.		53.			0.28	272.	• 1.	148.	343
		COAL-A		-0.006		0.010	0.01	6.	-10.		11.			0.08	43.	0.	-17.	61
<u>-L</u>	5TM141	COAL-A	0.	-0.454	0.	1.010	0.19	409.	<u>-710</u> .	-23.	896.	156.	151.	0.29	-6032.	36.	<u>-1927.</u>	2212
			•															
20	STM141	COAL-F	٥.	-0.107	٥.	0.177	0.43	-37.	-132.	-5.	57.	34.	25.	0.20	-4383.	9.	-2139.	-850
		COAL-F		-0.004		0.007	0.14	-2.	-7.		2.			0.14		o.	-14.	22
24	STM141	COAL-F	0.	-0.018	Ō.	0.250	0.82	-6.	-11	-1.	80.	135.	15.	0.77	-6867.	2.	-1989.	-1128
		COAL-F	0.	-0.043		9.071	0.13	-15.	-55		23.			0.18	-70.	1.	130.	344
28	STM141	COAL-F	0.	-0.182	0.	0.302	0.51	-64.	-342	-9.	101.	-42.	66.	0.09	-1777.	16.	174.	1805
29	STM141	COAL-F	0.	-0.025		0.041	0.10	-9.	-46	-1.	14.	-5.	9.	0.09	-33.	1.	81.	307
33	STM141	COAL-F	ō.	-0.006	Ō.	0.010	0.01	-2.	-10	-0.	3.	-0.	2.	0.03	-102.	O.	-51.	42
		COAL-F		-0.454		1.010		-159.	-710		328.				15654.	36.	-4480.	
20	STMIZI	RESIDU	0.	-0.107	<u> </u>	0.177	0.43	-37.	-43.	5.	53.	110.	7	0.30	2473.	9.	-338.	-267
		RESIDU		-0.004		0.007	0.14	-2.	-2.		2.			0.24	79.	o.	21.	10
		RESIDU		-0.018		0.250	0.82	-6.	-7.		80.			0.78	604.	2.	50.	203
		RESIDU	0.	-0.043		0.230	0.13	-15.	-17		21.			0.73	838.	1.	297.	205
		RESIDU	0.	-0.182		0.302	0.51	-64.	-73		91.			0.19		16.	690.	
		RESIDU		-0.025		0.041	0.10	-9.	-10		12.			0.19	525.	10.	197.	125
		RESIDU		-0.006		0.010	0.10	-2.	-2		3.			0.06	143.	Ġ.	-188.	28
		RESIDU		-0.454		1.010		-159.	-181		309.			0.22		36.	859.	1109
	0111141	INEO I DO	<u> </u>	0.404	<u> </u>	1.010	J. 13	133.	- 101	<u> </u>	<u> </u>			<u> </u>	3007.		003.	1103
-	074000	0011 -			_						456					_		•
		COAL-A		-0.093		0.155	0.38	68.	-131		150.				-2774.		-1637.	
		COAL-A		-0.004		0.006	0.11	4.	<u>-7</u>		8.			0.28	-26.	<u>0.</u>	-5.	34
		COAL-A		-0.005		0.184	0.61	-0.	-3.		61.				-5080.		-1555.	-836
		COAL-A		-0.032		0.054	0.10	28.	-50.		57.			0.28	232.	0.		359
		COAL-A		-0.086		0.142	0.24	156.	-208		235.			0.22		6.		1274
		COAL-A		-0.017		0.029	0.07	<u> 33.</u>	-43.		49.			0.22	150.	0.	90.	320
		COAL-A	0.	-0.004		0.006	0.00	7.	-9.		10.			0.06	-16.	0.	-45.	
	S I MO88	COAL-A	O.	-0.262	0.	0.626	0.12	322.	-490	13.	621.	46.	106.	0.24	-8377.	13.	-3018.	892
														·				
20	STM088	COAL-F	0.	-0.093	0.	0.155	0.38	-33.	-131	5.	50.	16.	25.	0.16	-4614.	6.	-2210.	-769

The second secon

	6/21/79	•			•	COCENI	GEI ERATION			C COMPANY		TERMATIN	re e	T-10V			P	AGE 2
ISE PE	FUEL (	INITS	<b>8</b>	<del></del>	· · · · · · · · · · · · · · · · · · ·	REPO	RT 6.1 1990			EMISSIONS LEVEL	SAVI		/ <u>E</u>		AVINGS A	RE POSI	TIVE)	
	COST	CON CINT	= <b>3</b> ×10	**9		TTPE	1930			LEVEL	OLL			T	PE MATO	H=HEAT		
			**F U (			INGS						ING						•
PROCS	EC3			COAL O			SR NO			PART NOX				EMSR	SAVING	TOTAL EXPORT MWH	COST	LAEC SAVED
22	STM088	COAL-F	0.	-0.004	0	0.006	0.11	-1.	-7.	-0.	2.	-1.	1.	0.09	-96.	0.	-22.	24.
	STM088		0.	-0.005	Ο.	0.184	0.61	-2.	-3.		<b>59</b> .	100.			-7042.			-1227.
	STM088		0,	-0.032	0.	0.054	0.10	-11.	-50.		17.	2.		0.12		0.	54.	303.
	STM088		<u>0.</u> 0.	-0.086 -0.017	<u>0.</u>	0.142	0.24	-30. -6.	-208. -43.	<u>-4.</u> -1.	<u>49.</u> 10.	-60. -13.		0.03	<u>-1597.</u> -132.	<u>6.</u>	-98. 30.	1099. 288.
		COAL-F	0. 0.	-0.004	o.	0.025	0.00	-0. -1.	-43. -9.		2.	-13.		0.03		0. 0.	-78,	200. 33.
		COAL-F			ŏ.	0.626	0.12	-92.	-490.		206.	46.			-15091.		-4863.	
		RESIDU	0.	-0.093	0.	0.155	0.38	-33.	-37.		46.	96.		0.26	2645.	6		-153.
		RESIDU	0.	-0.004	. 0.	0.006	0.11	-1.	-1.		2.	4.		0.20	65.	0.	17.	10.
		RESIDU	<u>0.</u>	-0.005	<u>0.</u>	0.184	0.61	-2.	-2.		<u>59.</u>	101.		0.58	<u>616.</u>	<u>0.</u>	<u>-124.</u>	155.
		RESIDU RESIDU	0. 0.	-0.032 -0.086	0. 0.	0.054 0.142	0.10 0.24	-11. -30.	-13. -34.		16. 43.	33. 88.		0.21	701. 1749.	0. 6.	216. 161.	176. 343.
		RESIDU	0.	-0.017	O.	0.029	0.07	-6.	-7.		9.	18.		0.14	413.	0.	135.	102.
		RESIDU	o.	-0.004	Õ.	0.006	0.00	-1.	-1.	*	2.	4.		0.04	111.	ŏ.	-247.	20.
ALL		RESIDU	0.	-0.262	Ō.	0.626	0,12	-92.	-105.	-13.	192.	373.		0.17		13.	-162.	711.
		COAL-P		-0.130	ο.	0.211	0.52	67.	-134.		179.	61.	39.	0.49	-5468.	17.	-2352.	-1115.
		COAL-P	75 .55	-0.006	0.	0.009	0.18	4.	-7.		9.	2.		0.46	-49.	1.	-8.	15.
	PFBSTM		0.	-0.067	0.	0.227	0.75	-4.	-41.		90.	120.			-5662.		-1570.	-969.
	PFBSTM		0.	-0.061	0.	0.095	0.17	30.	-62.		81.	27.		0.48	379.	6.	258.	324.
	PFBSTM PFBSTM		0.	-0.501 -0.038	<u>0.</u>	0.697 0.058	1.18 0.14	64 <b>9.</b> 32.	-800. -48.		1053. 64.	-70. 8.		0.42	-5868. 345.	<u>49.</u> 5.	-655. 188.	2954. 273.
	PFBSTM		o.	-0.012	o.	0.017	0.01	7.	-12		16.	4.		0.43	343. 45.	o.	-6.	64.
	PFBSTM		o.	-1.081	o.	1.744	0.33		-1464.		1980.	203.			-21593.		-5498.	2051.
20	TISTMT	COAL	0.	-0.145	0.	0.231	0.56	-51.	-135.	-7.	72.	78.	25.	0.31	-25821.	22.	-7207.	-3988.
	TISTMT		0.	-0.007	Ο.	0.011	0.20	-2.	-7.		3.	3.			-501.	1.	-109.	-47.
	TISTMT		0.	-0.086	0.	0.232	0.77	-30.	-52.		72.	122.			-19809.		<u>-4833.</u>	
26	TISTMT		0.	-0.071	0.	0.112	0.20	-25.	-65.		35.	39.			-2350.	9.	-298.	-24.
28	TISTMT		0. 0.	-0.366 -0.044	0. 0.	0.578 0.069	0.98 0.17	-128. -15.	-399. -48.		182. 22.	145. 17.			-16940. -1280		-2698. -133.	-523. 58.
53	TISTMT		0. 0.	-0.015	o.	0.024	0.17	-15. -5.	-40. -14.		22. 8.	8.			-1289. -851.	7. 0.	-133. -192.	-32.
ALC	TISTHT		<del>0.</del>	-0.946		1.621	0.30	-331.	-928		508.	530.			-87021.			-9527.
	TISTMT	RESIDU	0.	-0.135	0.	0.216	0.53	-47.	-54.	7.	<u>65.</u>	134.	9.	0.39	-16964.	20.	-4991.	-3075.

.

1				. Portugue de la constante de	y birman, j						
				s t Telephor			į,	min. )	•	ل	

ISE PE	6/21/71					COCEN	ERATION			C COMPANY		TERNATIV	<b>EO C</b>	TIEN			•	AGE :
SE PE	FUEL U	INITS	*		<del></del>		RT 6.1			EMISSIONS			<u> </u>		AVINGS A	RE POS	TIVE)	
	EMISS	ON UNIT	S=				1990			LEVEL						-		
	COST		= <b>\$</b> *10	**9 ···										T	YPE MATO	HEAT		
			**F U			I N G S						INGS		-	CAPITL-	-ELECTA	RIC POW	ER
ROCS	ECS	FUEL OI					R NOX			PART NOX				EMSR	SAVING	TOTAL EXPORT		SAVED
		· · ·				·			<del> </del>							MWH		
		RESIDU	- •	-0.007		0.011	0.20	-2.	-3.		3.	7.		0.36		1.	-75.	-54
		RESIDU		-0.002		0.003	0.01	-1.	-1.		1.	2.		0.03		0.	-239.	-74
		RESIDU	0.	-0.06	-	0.103	0.19	-23.	-26		31.	64.			-1551.	6.	-209.	-138
		RESIDU	0.	-0.350		0.552	0.94	<u>-122.</u>	-140.		165.	343.			<u>-10616.</u>	54.		-1440
		RESIDU	0.	-0.044		0.069	0.17	-15.	-18		21.	43.		0.33		7.	-53.	-90
		RESIDU	0.	-0.014		0.022	0.01	-5.	-6,	•	7.	14.			-680.	0.	-430.	-71
LL	HISIMT	RESIDU	0.	-0.868	0.	1.374	0.26	-304.	-347.	43.	411.	853. 	55. 	0.32	-43999.	124	11497.	-6952
20	TIHRSG	COAL	0.	-0.10	0.	0.123	0.30	-37.	-141	5.	40.	-5.	24.	0.10	-36321.	5.	<b>-94</b> 70.	-4733
22	TIHRSG	COAL	Ο.	-0.006	i 0.	0.006	0.11	-2.	-8.	0.	2.	-1.	1.	0.08	-729.	O.	-170.	-67
24	TIHRSG	COAL	0.	-0.089	0.	0.183	0.60	-31.	-54.	4.	56.	95.			-31905.	7.	-7716.	-4387
26	TIHRSG	COAL	0.	-0.067	0.	0.056	0.10	-23.	-70.	3.	17.	1.	10.	0.11	-3661.	1.	-738.	-157
28	TIHRSG	COAL	Ο.	-1.35	0.	0.488	0.83	-474.	-1368	68.	140.	-277.			-72137.	101.	15953.	-6051
29	TIHRSG	COAL	Ο.	-0.055	0.	0.030	0.07	-19.	-61	3.	9.	-10.	8.	0.03	-2027.	3.	-399.	-39
33	TIHRSG	COAL	0.	-0.016	o.	0.010	0.01	-6.	-15	-1.	3.	0.	2.	0.03	-937.	õ.	-238.	-74
LL	TIHRSG	COAL	0.	-2.242	0.	1.185	0.22	-785.	-2274	-112.	353.	-260,	276.	0.08	*****	155	45929.	-20537
20	TIHRSG	RESIDU	0.	-0.093	0.	0.110	0.27	-33.	-37	5.	32.	71.	4.	0.21	-23528.	4.	-6264.	-3332
22	TIHRSG	RESIDU	0.	-0.000	0.	0.006	C. 11	2.	-2.		2.	4.		0.19		ō.	-123.	-72
24	TIHRSG	RESIDU	0.	-0.002	2 0.	0.001	G. 00	-1.	-1.	o.	ō.	1.		0.01		ö.	-229.	-61
26	TIHRSG	RESIDU	Ο.	-0.056	0.	0.047	0.09	-20.	-22		13.	32.	1.	0.16	-2370.	Ö.	-553.	-272
28	TIHRSG	RESIDU	Ο.	-0.822	2 0.	0.292	0.50	-288.	-329	-41.	65.	256.	-8.	0.14	-30666.	60.	-7895.	-5277
29	TIHRSG	RESIDU	0.	-0.05	o.	0.030	0.07	-19.	-22.	3.	8.	23.			-1346.	3.	-296.	-218
33	TIHRSG	RESIDU	Ο,	-0.015	0.	0.009	0.01	-5.	-6.	-1.	2.	7.			-748.	o.	-473.	
LL	TIHRSO	RESIDU	0.	-1.485	0.	0.699	0.13	-520.	-594	74.	172.	556.	-4.	0.15	-84242.	96	22404.	
20	STIRL	COAL	0.	-0.187	0.	0.183	0.45	-66.	-153.	g.	55.	56.	21.	0.22	-1401.	24.	-1383.	-716
22	STIRL	COAL	0.	-0.011		0.009	0.16	-4.	-9.		3,	2.		0.19		1.	-14.	0
	STIRL	COAL	o.	-0.159	-	0.177	0.58	-56.	-96.		53.	88.			-1591.	18.	-565.	-454
	STIRE	COAL	0.	-0.112		0.089	0.16	-39.	-88	·	26.	25.	11.			11.	88.	139
28	STIRL	COAL	٥.	-0.633		0.470	0.80	-221.	-552		140.	78.		0.16		70.	135.	779
29	STIRL	COAL	0.	-0.070	Ŏ,	0.051	0.12	-25.	-62		15.	7.		0.15		8.	39.	115
33	STIRL	COAL	ō.	-0.031	- •	0.023	0.01	-11.	-23	• • •	7.	7.		0.11		9.	-47.	48
	STIRL	COAL	Ö.	-1.556		1.296	0.24	-544.	-1272.		386.	338.			-10927.	171.	-2259.	-114
		DISTIL	_	-0.176		0.172	0.42	-16,	-26.	. 4.	97.	170.			4210.		-178.	-626

		"S" =\$*10	**9			RATION T 6.1		AND	EMISSIONS		TERNATI NGS	VES S		AVINGS A	RE POSI	TIVE) .	<b>,</b>
MISS	***	S=  = <b>3</b> *10	**9		,		FUEL	AND		SAVI	NG3		(5)	ALIMB2 L	IKE POSI	(IIVE)	•
OST	***	=\$*10	)** <b>9</b>		I I ITE.				1.67.16.1	A1 1							
						1000			LEVEL	ALL			T	YPE MATO	W-UEAT		
:cs		H		1 v,									•	ITE IMIC	HI-TIEN I		
:CS	ECS ***	· ~ +1 · · · ·	EL	SAV	I N G 3 = =	**	- E M	331	ONS	SAV	ING	<del>3</del>	-	CAPITL-	ELECTR	IC PON	ER
			T*****		TALFES					***TOT			EMSR	SAVING	TOTAL		LAEC
	FUEL OI	L+GAS	COAL O	IL+GAS	COAL	NO	X St	DX P	ART NOX	SC	X PA	RT			EXPORT	i i	SAVED
															MWH		
IRL.	CISTIL	0.	-0.011		0.009	0.16	-1.	-1.		5.	9.		0.57	81.	1.	5.	
I RL	DISTIL	0.	-0.004		0.003	0.01	-0.	-0.		2.	3.	- "	0.05	-118.	0.	-250.	-40.
IRL	DISTIL	0.	-0.105		0.083	0.15	-8.	-14.	3.	53.	93.		0.56	615.	8.	142.	-168.
IRL	DISTIL	0.	-0.608 -0.070		0.452 0.051	0.77	-37.	-70. -8.	18. 2.	311. 36.	536. 61.		0.52	<u>3242.</u> 374.	67. 8.	-153. 93.	-1515. -170.
		0.				0.12	-4.					,		374. 166.	0. 0.	-360.	-170, -35,
TRL TRL	DISTIL	0. 0.	-0.028 -1.408		U. 021	0.01 0.21	-2. -96.	-3. -171.	1. 39.	14. 729.	25. 1263,		0.24		149.		-363 <b>3</b> .
IKL	DISTIL	<u> </u>	-1.406	<u> </u>	1.111	0.21	-yo.	-171.		729,	1203,	204.	0.55	12052.	143.	-304.	-3033.
IRL	RES I DU	0.	-0.176	0.	0.172	0.42	-61.	-70.	-18.	49.	115.	-5.	0.30	4202.	22.	-51.	-318,
IRL	RESIDU	Ο.	-0.011	0.	0.009	0.16	-4.	-4.	-1.	2.	6.	-0.	0.27	80.	1.	13.	-11.
IRL	RESIDU	0.	-0.004	0.	0.003	0.01	<u>-1.</u>	<u>-1.</u>	-0.	1.	2.	0.		-118.	<u> </u>	-171.	-33.
TRL		0.				0.15	-37.										
IRL		0.															
IRL																	-29.
IRL																	20.
IRL	RESIDU	0.	-1.408	0.	1.111	0.21	-493,	-563.	-153.	307.	772.	-60.	0.23	12016.	149.	754,	-920.
GT85	COAL-A	0.	-0.225	0.	0.158	0.39	-16.	-165.	-11.	109.	49.				27.	-4552.	
GT85	COAL-A	0.	-0.022	0.	0.005	0.10	-3.	-14.	-1.	6.	1.	-1.	0.24	-191.	2.		-51.
GT85	COAL-A	Ο.			0.015	0.05	-11.	-37.	-3,	13.	5.	1.	0.28	<b>-2111</b> .	7.		
		Ο.			0.041	0.08	-41.	-157.			4.				25.		
		0.															-236.
		- •															
:GT85	COAL-A	Ο.	-1.031	Ο.	0.335	0.06	-138.	-677.	-52.	304.	79.	41.	0.24	-22289.	91.	-5928.	-3969.
		0.	-0.274		0.127	0.31	-14,	-207.		117.	19.				26.	-5292.	
		0.															-117.
		- •															
									- •								
<b>GT60</b>	COAL-A	0,	-1,770	0.	0.405	0.08	-207.	-1198.	-89.	498,	12.	67.	0.20	-36769.	130.	-9548.	-6029.
отоо Этоо	COAL-A	Ο.	-0.215	ο.	0.088	0.22	15.	-193.	-11.	115.	-17.	20.	0.21	-16750.	12.	-4829.	-2357.
	RL RL RL RL RL RL RL RL RL T85 T85 T85 T60 T60 T60 T60 T60 T60	RL RESIDU RT RES	RL RESIDU O. RL RE	RL RESIDU 00.176 RL RESIDU 00.011 RL RESIDU 00.004 RL RESIDU 00.004 RL RESIDU 00.608 RL RESIDU 00.608 RL RESIDU 00.070 RL RESIDU 00.028 RL RESIDU 01.408  0785 CGAL-A 00.225 0785 CGAL-A 00.022 0785 CGAL-A 00.062 0785 CGAL-A 00.062 0785 CGAL-A 00.062 0785 CGAL-A 00.063 0785 CGAL-A 00.051 0785 CGAL-A 00.051 0786 CGAL-A 00.017 0786 CGAL-A 00.196 0786 CGAL-A 00.191 0786 CGAL-A 00.191 0786 CGAL-A 00.191 0786 CGAL-A 00.191	RL RESIDU 00.176 0.  RL RESIDU 00.011 0.  RL RESIDU 00.004 0.  RL RESIDU 00.105 0.  RL RESIDU 00.608 0.  RL RESIDU 00.070 0.  RL RESIDU 00.028 0.  RL RESIDU 01.408 0.  RL RESIDU 01.408 0.  RL RESIDU 00.022 0.  RL RESIDU 00.022 0.  RL RESIDU 00.051 0.  RESIDU 00.363 0.  RESIDU 00.363 0.  RESIDU 00.363 0.  RESIDU 00.363 0.  RESIDU 00.051 0.  RESIDU 00.017 0.  RESIDU 00.028 0.  RESIDU 00.02	RL RESIDU 00.176 0. 0.172 RL RESIDU 00.011 0. 0.009 RL RESIDU 00.004 0. 0.003 RL RESIDU 00.105 0. 0.083 RL RESIDU 00.608 0. 0.452 RL RESIDU 00.070 0. 0.051 RL RESIDU 00.028 0. 0.021 RL RESIDU 01.408 0. 1.111  0185 CGAL-A 00.225 0. 0.158 0185 CGAL-A 00.022 0. 0.005 0185 CGAL-A 00.062 0. 0.015 0185 CGAL-A 00.363 0. 0.090 0185 CGAL-A 00.363 0. 0.090 0185 CGAL-A 00.363 0. 0.090 0185 CGAL-A 00.051 0. 0.009 0185 CGAL-A 00.051 0. 0.009 0186 CGAL-A 00.051 0. 0.009 0187 CGAL-A 00.051 0. 0.009 0188 CGAL-A 00.051 0. 0.009 0188 CGAL-A 00.051 0. 0.009 0188 CGAL-A 00.017 0. 0.005 0189 CGAL-A 00.191 0. 0.045 0160 CGAL-A 00.196 0. 0.045 0160 CGAL-A 00.174 0. 0.003 0160 CGAL-A 00.174 0. 0.003 0160 CGAL-A 00.191 0. 0.012	RL RESIDU O0.176 O. 0.172 O.42 RL RESIDU O0.011 O. 0.009 O.16 RL RESIDU O0.004 O. 0.003 O.01 RL RESIDU O0.105 O. 0.083 O.15 RL RESIDU O0.608 O. 0.452 O.77 RL RESIDU O0.070 O. 0.051 O.12 RL RESIDU O0.070 O. 0.051 O.12 RL RESIDU O0.028 O. 0.021 O.01 RL RESIDU O1.408 O. 1.111 O.21  0185 COAL-A O0.225 O. 0.158 O.39 0185 COAL-A O0.062 O. 0.015 O.05 0185 COAL-A O0.062 O. 0.015 O.05 0185 COAL-A O0.363 O. 0.090 O.15 0185 COAL-A O0.363 O. 0.090 O.15 0185 COAL-A O0.363 O. 0.090 O.15 0185 COAL-A O0.051 O. 0.009 O.01 0185 COAL-A O0.051 O. 0.009 O.01 0186 COAL-A O0.017 O. 0.005 O.09 0160 COAL-A O0.017 O. 0.005 O.09 0160 COAL-A O0.239 O. 0.064 O.21 0160 COAL-A O0.196 O. 0.045 O.08 0160 COAL-A O0.196 O. 0.045 O.08 0160 COAL-A O0.196 O. 0.045 O.08 0160 COAL-A O0.174 O. 0.003 O.01 0160 COAL-A O0.191 O. 0.012 O.01 0160 COAL-A O0.191 O. 0.012 O.01 0160 COAL-A O0.191 O. 0.012 O.01	RL RESIDU 00.176 0. 0.172 0.42 -61. RL RESIDU 00.011 0. 0.009 0.16 -4. RL RESIDU 00.004 0. 0.003 0.01 -1. RL RESIDU 00.105 0. 0.083 0.15 -37. RL RESIDU 00.608 0. 0.452 0.77 -213. RL RESIDU 00.070 0. 0.051 0.12 -25. RL RESIDU 00.028 0. 0.021 0.01 -10. RL RESIDU 01.408 0. 1.111 0.21 -493.  RT RESIDU 00.025 0. 0.158 0.39 -16. RT RESIDU 00.062 0. 0.005 0.10 -3. RT RESIDU 00.062 0. 0.015 0.05 -11. RT RESIDU 00.051 0. 0.041 0.08 -41. RT RESIDU 00.051 0. 0.009 0.15 -52. RT RESIDU 00.051 0. 0.009 0.15 -52. RT RESIDU 00.051 0. 0.009 0.1 -8. RT RESIDU 00.016 0. 0.005 0.09 -1. RT RESIDU 00.017 0. 0.005 0.005 0.005 0.005 0.005 0	RL RESIDU O0.176 O. 0.172 0.42 -6170. RL RESIDU O0.011 O. 0.009 0.16 -44. RL RESIDU O0.004 O. 0.003 0.01 -11. RL RESIDU O0.105 O. 0.083 0.15 -3742. RL RESIDU O0.608 O. 0.452 0.77 -213243. RL RESIDU O0.070 O. 0.051 0.12 -2528. RL RESIDU O0.028 O. 0.021 0.01 -1011. RL RESIDU O1.408 O. 1.111 0.21 -493563.  RESIDU O0.022 O. 0.158 0.39 -16165. RESIDU O0.062 O. 0.005 0.10 -314. RESIDU O0.062 O. 0.015 0.05 -1137. RESIDU O0.062 O. 0.005 0.09 -112. RESIDU O0.051 O. 0.009 0.15 -52234. RESIDU O0.017 O. 0.005 0.09 -112. RESIDU O0.017 O. 0.005 0.09 -113. RESIDU O0.017 O. 0.005 0.09 -113. RESIDU O0.017 O. 0.005 0.09 -113. RESIDU O0.017 O. 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.0	RL RESIDU 00.176 0. 0.172 0.42 -617018. RL RESIDU 00.011 0. 0.009 0.16 -441. RL RESIDU 00.004 0. 0.003 0.01 -110. RL RESIDU 00.105 0. 0.083 0.15 -374210. RL RESIDU 00.608 0. 0.452 0.77 -213 -24368. RL RESIDU 00.070 0. 0.051 0.12 -25288. RL RESIDU 00.028 0. 0.021 0.01 -10112. RL RESIDU 01.408 0. 1.111 0.21 -493563153.  RESIDU 00.028 0. 0.021 0.01 -10112. RESIDU 01.408 0. 1.111 0.21 -493563153.  RESIDU 00.022 0. 0.005 0.10 -3141. RESIDU 00.062 0. 0.015 0.05 -11373. RESIDU 00.051 0. 0.001 0.08 -4115713. RESIDU 00.051 0. 0.009 0.1 -8323. RESIDU 00.051 0. 0.009 0.1 -8323. RESIDU 00.051 0. 0.005 0.09 -1121. RESIDU 00.051 0. 0.005 0.09 -1121. RESIDU 00.017 0. 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.00	RL RESIDU 00.176 0. 0.172 0.42 -617018. 49. RL RESIDU 00.011 0. 0.009 0.16 -441. 2. RL RESIDU 00.004 0. 0.003 0.01 -110. 1. RL RESIDU 00.004 0. 0.003 0.01 -110. 1. RL RESIDU 00.608 0. 0.452 0.77 -21324368. 124. RL RESIDU 00.070 0. 0.051 0.12 -25288. 14. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. RL RESIDU 01.408 0. 1.111 0.21 -493563153. 307.  0785 CGAL-A 00.225 0. 0.158 0.39 -1616511. 109. 0785 CGAL-A 00.062 0. 0.005 0.10 -3141. 6. 0785 CGAL-A 00.062 0. 0.015 0.05 -11373. 13. 0785 CGAL-A 00.363 0. 0.091 0.08 -4115713. 54. 0785 CGAL-A 00.363 0. 0.090 0.15 -5223418. 94. 0785 CGAL-A 01.031 0. 0.335 0.06 -13867752. 304. 0786 CGAL-A 01.031 0. 0.335 0.06 -13867752. 304. 0786 CGAL-A 00.274 0. 0.099 0.1 -8323. 11. 0786 CGAL-A 00.274 0. 0.005 0.09 -1121. 6. 0786 CGAL-A 00.274 0. 0.005 0.09 -1121. 6. 0786 CGAL-A 00.274 0. 0.005 0.09 -1121. 6. 0786 CGAL-A 00.196 0. 0.045 0.08 -2313210. 55. 0786 CGAL-A 00.174 0. 0.003 0.01 -2912210. 37. 0786 CGAL-A 00.179 0. 0.005 0.09 -207119889. 498.	RL RESIDU 00.176 0. 0.172 0.42 -617018. 49. 115. RL RESIDU 00.011 0. 0.009 0.16 -441. 2. 6. RL RESIDU 00.004 0. 0.003 0.01 -110. 1. 2. RL RESIDU 00.004 0. 0.083 0.15 -374210. 23 58. RL RESIDU 00.608 0. 0.452 0.77 -21324368. 124. 318. RL RESIDU 00.070 0. 0.051 0.12 -25288. 14 36. RL RESIDU 00.070 0. 0.051 0.12 -25288. 14 36. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6, 15. RL RESIDU 01.408 0. 1.111 0.21 -493563153. 307. 772.  RTSS CGAL-A 00.225 0. 0.158 0.39 -1616511. 109. 49. RTSS CGAL-A 00.062 0. 0.005 0.10 -3141. 6. 1. RTSS CGAL-A 00.062 0. 0.015 0.05 -11373. 13. 5. RTSS CGAL-A 00.062 0. 0.015 0.05 -11373. 13. 5. RTSS CGAL-A 00.062 0. 0.015 0.05 -11373. 13. 5. RTSS CGAL-A 00.051 0. 0.041 0.08 -4115713. 54. 4. RTSS CGAL-A 00.363 0. 0.090 0.15 -5223418. 94. 16. RTSS CGAL-A 00.051 0. 0.009 0.1 -8323. 11. 1. RTSS CGAL-A 00.051 0. 0.009 0.0 -8323. 11. 1. RTSS CGAL-A 00.051 0. 0.009 0.0 -8323. 11. 1. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.017 0. 0.005 0.09 -1121. 6. 0. RTSS CGAL-A 00.019 0. 0.045 0.08 -2313210. 55. 2. RTSS CGAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. RTSS CGAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. RTSS CGAL-A 00.191 0. 0.012 0.01 -2912210. 3710. RTSS CGAL-A 00.191 0. 0.012 0.01 -2912210. 3710. RTSS CGAL-A 01.770 0. 0.0405 0.08 -207119889. 498. 12.	RL RESIDU 00.176 0. 0.172 0.42 -617018. 49. 1155. RL RESIDU 00.011 0. 0.009 0.16 -441. 2. 60. RL RESIDU 00.004 0. 0.003 0.01 -110. 1. 2. 0. RL RESIDU 00.105 0. 0.083 0.15 -374210. 23. 583. RL RESIDU 00.608 0. 0.452 0.77 -21324368. 124. 31830. RL RESIDU 00.070 0. 0.051 0.12 -25288. 14. 364. RL RESIDU 00.070 0. 0.051 0.12 -25288. 14. 364. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. RL RESIDU 01.408 0. 1.111 0.21 -493563153. 307. 77260. TR. RESIDU 01.408 0. 1.111 0.21 -493563153. 307. 77260. TR. RESIDU 00.022 0. 0.055 0.10 -3141. 6. 11. TR. RESIDU 00.022 0. 0.005 0.10 -3141. 6. 11. TR. RESIDU 00.062 0. 0.015 0.03 -11373. 13. 5. 1. TR. RESIDU 00.051 0. 0.005 0.10 -3141. 6. 11. TR. RESIDU 00.062 0. 0.015 0.03 -11373. 13. 5. 1. TR. RESIDU 00.051 0. 0.009 0.15 -5223418. 94. 16. 12. TR. RESIDU 00.051 0. 0.009 0.15 -5223418. 94. 16. 12. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 11. 1. 1. TR. RESIDU 00.051 0. 0.009 0.01 -8323. 111. TR. RESIDU 00.051 0. 0.009	RL RESIDU 00.176 0. 0.172 0.42 -617018. 49. 1155. 0.30 RL RESIDU 00.011 0. 0.009 0.16 -441. 2. 60. 0.27 RL RESIDU 00.004 0. 0.003 0.01 -110. 1. 2. 0. 0.23 RL RESIDU 00.004 0. 0.003 0.01 -110. 1. 2. 0. 0.03 RL RESIDU 00.105 0. 0.083 0.15 -374210. 23. 563. 0.26 RL RESIDU 00.608 0. 0.452 0.77 -21324368. 124. 31830. 0.22 RL RESIDU 00.070 0. 0.051 0.12 -25268. 14 364. 0.23 RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. 0.11 RL RESIDU 01.408 0. 1.111 0.21 -493563153. 307. 77260. 0.23 RL RESIDU 01.408 0. 1.111 0.21 -493563153. 307. 77260. 0.23 RL RESIDU 00.025 0. 0.055 0.10 -3141. 6. 11. 0.24 RT RESIDU 00.022 0. 0.005 0.10 -3141. 6. 11. 0.24 RT RESIDE RE	RL RESIDU 00.176 0. 0.172 0.42 -617018. 49. 1155. 0.30 4202. RL RESIDU 00.011 0. 0.009 0.16 -441. 2. 60. 0.27 80. RL RESIDU 00.004 0. 0.003 0.01 -110. 1. 2. 60. 0.27 80. RL RESIDU 00.105 0. 0.083 0.15 -374210. 23. 563. 0.26 613. RL RESIDU 00.608 0. 0.452 0.77 -21324368. 124. 31830. 0.22 613. RL RESIDU 00.070 0. 0.051 0.12 -25286. 14 364. 0.23 373. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. 0.11 166. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. 0.11 166. RE RESIDU 00.028 0. 0.021 0.01 -493563153. 307. 77260. 0.23 12016.  ST85 COAL-A 00.225 0. 0.158 0.39 -1616511. 109. 49. 17. 0.32-15338. ST85 COAL-A 00.022 0. 0.005 0.10 -3141. 6. 11. 0.24 -191. ST85 COAL-A 00.025 0. 0.015 0.03 -11373. 13. 5. 1. 0.28 -2111. ST85 COAL-A 00.051 0. 0.041 0.08 -4115713. 54. 4. 6. 0.21 -658. ST85 COAL-A 00.363 0. 0.090 0.15 -5223418. 94. 16. 12. 0.25 -2181. ST85 COAL-A 00.051 0. 0.033 0.00 -13867752. 304. 79. 41. 0.24-22289.  ST60 COAL-A 00.074 0. 0.035 0.09 -1121. 6. 0. 1. 0.23 -259. ST60 COAL-A 00.075 0. 0.045 0.08 -2313210. 55. 2. 7. 0.22 -743. ST60 COAL-A 00.096 0. 0.045 0.08 -2313210. 55. 2. 7. 0.22 -743. ST60 COAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. 7. 0.22 -743. ST60 COAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. 7. 0.22 -743. ST60 COAL-A 00.174 0. 0.003 0.01 -241149. 3315. 4. 0.11 -230. ST60 COAL-A 00.174 0. 0.003 0.01 -2411499. 3315. 4. 0.11 -230. ST60 COAL-A 00.174 0. 0.003 0.01 -2411499. 3315. 4. 0.11 -230. ST60 COAL-A 00.174 0. 0.003 0.01 -2411499. 3315. 4. 0.11 -230. ST60 COAL-A 00.174 0. 0.003 0.01 -2411499. 3315. 4. 0.11 -230. ST60 COAL-A 00.174 0. 0.003 0.01 -2411499. 3315. 4. 0.11 -230. ST60 COAL-A 00.174 0. 0.003 0.01 -2411499. 3315. 4. 0.11 -230. ST60 COAL-A 00.174 0. 0.003 0.01 -2411499. 3315. 4. 0.11 -230.	RL RESIDU 00.176 0. 0.172 0.42 -617018. 49. 1155. 0.30 4202. 22. RL RESIDU 00.011 0. 0.009 0.16 -441. 2. 60. 0.27 80. 1. RL RESIDU 00.004 0. 0.003 0.01 -110. 1. 2. 0. 0.03 -118. 9. RL RESIDU 00.105 0. 0.083 0.15 -374210. 23 563. 0.26 613. 6. RL RESIDU 00.608 0. 0.452 0.77 -21324368. 124. 31830. 0.22 3229. 67. RL RESIDU 00.070 0. 0.051 0.12 -25286. 14. 364. 0.23 373. 8. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. 0.11 166. 0. RL RESIDU 01.408 0. 1.111 0.21 -493563153. 307. 77260. 0.23 12016. 149. TRESIDU 00.022 0. 0.025 0. 0.025 0.101493563153. 307. 77260. 0.23 12016. 149. TRESIDU 00.062 0. 0.015 0.03 -11373. 13. 5. 1. 0.24 -191. 2. 1785 COAL-A 00.062 0. 0.015 0.03 -11373. 13. 5. 1. 0.28 -2111. 7. 1785 COAL-A 00.062 0. 0.015 0.03 -11373. 13. 5. 1. 0.28 -2111. 7. 1785 COAL-A 00.255 0. 0.041 0.08 -4115713. 54. 4. 6. 0.21 -658. 25. 1785 COAL-A 00.063 0. 0.090 0.15 -5223418. 94. 16. 12. 0.25 -2181. 21. 1785 COAL-A 00.051 0. 0.090 0.15 -5223418. 94. 16. 12. 0.25 -2181. 21. 1785 COAL-A 00.051 0. 0.009 0.01 -8323. 11. 1. 1. 0.21 -2589. 91. 1785 COAL-A 00.051 0. 0.009 0.01 -8323. 11. 1. 1. 0.21 -2586. 4. 1785 COAL-A 00.051 0. 0.009 0.01 -8323. 11. 1. 1. 0.21 -558. 25. 1785 COAL-A 00.051 0. 0.009 0.01 -8323. 11. 1. 1. 0.21 -5586. 4. 1785 COAL-A 00.051 0. 0.009 0.01 -8323. 11. 1. 1. 0.21 -5586. 4. 1785 COAL-A 00.074 0. 0.08 -41157152. 54. 22. 6. 0.27 -2281. 22. 1780 COAL-A 00.196 0. 0.045 0.08 -2313815310. 55. 2. 7. 0.22 -743. 17. 1780 COAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. 7. 0.22 -743. 17. 1780 COAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. 7. 0.22 -743. 17. 1780 COAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. 7. 0.22 -743. 17. 1780 COAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. 7. 0.22 -743. 17. 1780 COAL-A 00.196 0. 0.045 0.08 -2313210. 55. 2. 7. 0	RL RESIDU 00.176 0. 0.172 0.42 -617018. 49. 1155. 0.30 4202. 2251. RL RESIDU 00.011 0. 0.009 0.16 -441. 2. 60.027 80. 1. 13. RL RESIDU 00.004 0. 0.003 0.01 -110. 1. 2. 0. 0.27 80. 1. 13. RL RESIDU 00.105 0. 0.083 0.15 -374210. 23. 583. 0.26 613. 8. 220. RL RESIDU 00.608 0. 0.452 0.77 -21324368. 124. 31830. 0.22 3229. 67. 604. RL RESIDU 00.070 0. 0.051 0.12 -25288. 14 364. 0.23 373. 8. 144. RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. 0.11 166. 0223. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. 0.11 166. 0223. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. 0.11 166. 0223. RL RESIDU 00.028 0. 0.021 0.01 -10112. 6. 151. 0.11 166. 0223. RL RESIDU 00.028 0. 0.005 0.10 -3141. 6. 11. 0.24 -191. 249. 1785 COAL-A 00.022 0. 0.005 0.10 -3141. 6. 11. 0.24 -191. 249. 1785 COAL-A 00.022 0. 0.005 0.10 -3141. 6. 11. 0.24 -191. 249. 1785 COAL-A 00.022 0. 0.015 0.05 -11973. 13. 5. 1. 0.28 -2111. 7635. 1785 COAL-A 00.251 0. 0.041 0.08 -4115713. 54. 4. 6. 0.21 -658. 25. 0. 1785 COAL-A 00.033 0. 0.090 0.15 -5223418. 94. 16. 12. 0.25 -2181. 21246. 1785 COAL-A 00.0551 0. 0.090 0.15 -5223418. 94. 16. 12. 0.25 -2181. 21246. 1785 COAL-A 00.0551 0. 0.009 0.01 -8323. 11. 1. 1. 0.21 -586. 4121. 1780 COAL-A 00.077 0. 0.055 0.09 -15223418. 94. 16. 12. 0.25 -2181. 21246. 1785 COAL-A 00.077 0. 0.055 0.09 -15223418. 94. 16. 12. 0.25 -2181. 21246. 1780 COAL-A 00.077 0. 0.055 0.09 -15223418. 94. 16. 12. 0.25 -2181. 21246. 1780 COAL-A 00.077 0. 0.055 0.09 -1121. 6. 0. 0. 0.023 -259. 263. 1780 COAL-A 00.077 0. 0.055 0.09 -1121. 6. 0. 0. 0.023 -259. 263. 1780 COAL-A 00.077 0. 0.055 0.09 -1121. 6. 0. 0. 0.023 -259. 263. 1780 COAL-A 00.077 0. 0.055 0.09 -1121. 6. 0. 0. 0.023 -259. 263. 1780 COAL-A 00.077 0. 0.055 0.09 -112.

**,** , € .

٠

become a consideration with

	Annual towns of the second of	Democraty 1 Security alternating		
--	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------	--	--

The second secon

the second secon

The state of the s

SE PE	O AES					COGEN	ERATION	TECHN	MOLOGY		AL	<u>.TERNATI\</u>	/ES S					
	FUEL L		3				JRT 6.1	FUEL.	AND	EMISSIONS		NGS		(5/	AVINGS A	RE POSI	TIVE)	
		UN UNI				TIME	1990			LEVEL	ALL			-				
	COST		=\$*10*	. # 3	•									1.	YPE MATC	n=HEA I		
	<del></del>		***F U E							ONS					CAPITL-			
ROCS										***				EMSR	SAVING	TOTAL		LAEC
	•	FUEL 0	IL+GAS	COAL C	IL+GAS	COAL	NOX	so	)X	PART NO	c sc	X PAF	C I			EXPORT MWH		SAVED
22	HEGTO0	COAL-A	0.	-0.012	0.	0.004	0.07	1.	-11	1.	6.	-1.	1.	0.19	-273.	1.	-67.	-23
	HEGT00			-0.194	0.	0.105	0.34	-35.	-117	10.	61.	46.	8.	0.38	-11593.	13.	-2931.	-1780
26	HEGT00	COAL-A	0.	-0.128	0.	0.037	0.07	-2.	-101		52.	-7.	8.	0.20	-919,	7.	-118.	52
	HEGT00			-2.040		0.397	0.68		-1693		827.	-290			<u>-22470.</u>		<u>-4280.</u>	
	HEGTO0			-0.091		0.020	0.05	2.	-77		39.	-13.		0.16		7.	6.	
	HEGT00	-		-0.034	-	0.008	0.01	-2.	-26		12.	-2.	:		-261.	0.	-83.	10.
LL 	HEGTO0	COAL-A	0.	-3.714	0.	0.902	0.17	٥.	-3034	186.	1520.	-369. 	249.	0.20	-71865. 	2/5	16833.	-6953
20	FCMCCL	COAL	٥.	-0.168	0.	0.174	0.42	67.	76	. <b>9</b> .	178.	269.	37.	1.00	-10529.	21.	-3383.	-1903
22	FCMCCL	COAL	Ο,	-0.010	0.	0.011	0.20	4.	5	. 1.	11.	16.	2.	1.00	-162.	2.	-32.	-15
	FCMCCL		0.	-0.160		0.096	0.18	38.	44		122.	188.		1.00		16.	112.	62
	FCMCCL		0.	-0.699		0.751	1.28	289.	330		761.	1148.			-5380.	106.	129.	-
	FCMCCL		o.	-0,066		0.075	0.18	29.	33		75.	112.		1.00		10.	210.	149
	FCMCCL		0.	-0.080		0.033	0.02	13.	15		50.	78.			-131.	0.	-44.	67.
<u>LL</u>	FCMCCL	COAL	<u> </u>	-1.764	0.	1.700	0.32	657.	751	. 85.	1785.	2702.	365.	0.9/	-24400,	232.	<u>-4487.</u>	-2021
20	FCSTCL	COAL	٥.	-0.195	. o.	0.232	0.57	47.	54	. 6.	186.	292.	37.	1.00	-7677.	33.	-2940.	-1869
22	FCSTCL	COAL	Ο.	-0.010	o.	0.013	0.24	3.	4	. 0.	11.	17.		1.00		2.	-14.	-13
	FCSTCL		ο.	-0.287		0.048	0.16	0.	1		108.	184.		1.00			-1624.	
	FCSTCL		O,	-0.147		0.121	0.22	27.	30		114.	180.	_	1.00	108.	19.	285.	87
	FCSTCL		۵.	-0.622		0.726	1.23	191.	218		629.	972.	. —	0.97		91.	1293.	
	FCSTCL		<u>0.</u>	-0.070		0.087	0.21	23.	26		74.	114.		1.00		13.	284.	149
	FCSTCL		0, 0.	-0.083 -2.014		0.047 1.812	0.03 0.34	12. 432.	14 493		54. 1672.	86. 2623.		0.80	17, -18631.	0. 257	21. -3833.	108 -2950
LL	FCSTCL	COAL	U.	-2.014	U.	1.612	0.34	432,	493	. 54.	1672.	2623.	330.	0.98	-18631.	257.	-3633.	-2950
20	IGGTST	COAL	0.	-0.210		0.162	0.39	-73.	-159	. 6.	47.	49.			-9293.		-3329.	
	IGGTST		0.	-0.012		0.009	0.17	-4.	-9		3.	3.		0.25		2,	-23.	-11
	IGGTST		0,	-0.189		0.078	0.14	-66.	-135		20.	14.		0.19		17.	212.	114
	IGGTST		<u> 0.</u>	-0.639		0.439		<u>-224.</u>	<u>-513</u>		128.	97.			<u>-2090.</u>	<u>71.</u>	<u>657.</u>	688
	TOOTST		0.	-0.079		0.059	0.14	-28.	-64		17.	14.		0.23	145.	10.	208.	158
	IGGTST		0. 0.	-0.154 -1.839		0.023 1.104	0.01 0.21	-54. -644.	-107 -1415		4. 315.	-8. 241.		0.10	-277. -16837.	0. 170	-108. -3418.	96
<b>LL</b>	100131		<b>U</b> .	1,038	· U.	1.104	U.ZI	-044.	- 1415	. 01.	315.	<b>24</b> 1.	<b>29</b> /.	0.21		1/9.	-3410.	-1420
20	GTSCAR	RESIDU	-0.189	o.	-0.189	0.369	0.44	-76.	-71	2.	43.	131.	20.	0.43	3710.	23.	-181.	-381

DATE 06/21/79 GENERAL ELECTRIC COMPANY PAGE ISE PEO AES COGENERATION TECHNOLOGY ALTERNATIVES STUDY FUEL UNITS EMISSIONS SAVINGS REPORT 6.1 FUEL AND (SAVINGS ARE POSITIVE) EMISSION UNITS= TIME 1990 LEVEL ALL =\$*10**9 COST TYPE MATCH=HEAT ****F U E L SAVINGS****---EMISSIONS SAVINGS - - -CAPITL -- ELECTRIC POWER ---PROCS EMSR SAVING TOTAL COST LAEC FUEL GIL+GAS COAL GIL+GAS COAL NOX SOX PART NOX SOX PART **EXPORT** SAVED MWH 22 GTSOAR RESIDU -0.011 0. -0.0110.021 0.18 -4. -4. 7. 1. 0.42 143. 2, 29 -5. 24 GTSGAR RESIDU -0.005 -0.005 0.009 -1. -2. -0. 2. 0.01 3. 0. 0.06 -147. ٥. -172. -33. 12. 0.44 26 GTSGAR RESIDU -0.117 ٥. -0.117 0.211 -39. -1. 29. 0.17 -44. 71. 1275. 11. 395. 80. 28 GTSGAR RESIDU -1.067 0 -1.0671.700 -377. 402 170. 1.08 528. 92. 0.39 9793. 129. 2264 553. 29 GTSOAR RESIDU -0.088 О. -0.088 0.148 0.15 -33 -33, -1. 15. 48. 8. 0.41 275. 906. 11. -11. 0. -12. -0. 33 GTSØAR RESIDU -0.041 -0.041 0.070 0.02 -16. 11. 23. 4. 0.22 500. ٥. -88. 63. ALL GTSGAR RESIDU -2.202 O. -2.202 3.663 0.27 -784. -18. 1175. -829. 394. 199. 0.40 23440. 255. 3653. -1216. 20 GTACOS RESIDU -0.164 Q. 180 n. Ο. 0.44 -156 -65. -19. -46. 118. -5. 0.12 4513. 19. 129 -128. 22 GTACOS RESIDU 0. -0.009 0. 0.19 0.010 -9. -4. . – 1 . -3. 7. -0. 0.12 144. 34. 4. 1. 24 GTACOS RESIDU 0.004 0 -0.003 0 0.01 -1 - 1 -0. 2 0. 0.03 -109 -162 -25. 26 GTACOS RESIDU -72. Ō. -0.088 Ō. 0.100 0.18 -35. -9. -13. 65. -1. 0.16 177. 1250. 8. 428 28 GTACOS RESIDU 0, -0.641 0. 0.726 1.23 -623. -256. -74. -188. 472. -19. 0.12 8751. 97. 2671. 576. -0.060 29 GTACOS RESIDU O. 0. 0.069 0.17 -60, -24. -7. -18. 45. -2. 0.12 895. 9. 321. 81. 33 GTACOS RESIDU ٥. -0.023 0. 0.027 0.02 -17. -9 -2. -1. 17. -0. 0.08 387. -121. 71. GTACOS RESIDU -1.452 0. 1,639 0.31 -1378. -165. 581. -394. 1066. -40. 0.13 23267. 196. 4849. 1111. 20 GTAC12 RESIDU a -0.173 0 0.198 0.48 -155 -69 -19 -37. 129 -4. 0.16 23. 139 -172. 4833 22 GTAC12 RESIDU -0.010 O. 0. 0.011 0.20 -9. -2. 7. -0. 0.15 2. 2. 36 24 GTAC12 RESIDU O. -0.004 0. 0.004 0.01 -2. -1. -0. 1. 3. 0. 0.04 -101. 0. -158. -24. 26 GTAC12 RESIDU O. -0.039 Ο. 0.20 -77. 0.109 -40. -9. -11. 71. -1. 0.19 153. 1331. 10. 459 28 GTAC12 RESIDU Q. -9.708 ٥. 1.34 -636 -77. 0.790 283. -159. 515. -16. 0.15 9303. 110. 2898 518. -0.068 29 GTAC12 RESIDU 0. Ō. 0.074 0.18 -61. -27. -7. -18. 48. -2. 0.15 934. 11. 335. 65. 33 GTAC12 RESIDU O. -0.030 Ο. -21. 0.033 0.02 -12. -3. -1. 22. -0. 0.10 474. 0. -80. 85. GTAC12 RESIDU O. -1.601 Ο. 1.789 0.34 -1407. -170. -641. -328. 1166. -33. 0.16 24835. 228. 5324. 921. 20 GTAC16 RESIDU 0.205 n. -0.180 0 0.50 -156. .-72. -19. -33. 133. -3. 0.18 4664. 25. 56. -250. 22 GTAC16 RESIDU O. -0.010 0. 0.011 0.21 -9. -4. -1. -2. 7. -0. 0.17 154. 2. 35. · 0. 24 GTAC16 RESIDU -0.005 Ω 0.005 0.02 -2. -2 -0. -25. 3 0. 0.05 -104 -158 26 GTACTE RESIDU O. -0.106 σ. 0.112 0.20 -80. -42. -10. -10. 73. -1. 0.20 127. 1336 12. 460 28 GTAC16 RESIDU O. -0.808 0. 0.805 -677. 1.37 323. -82. -165. 534. 9508. 283. -19. 0.16 121. 2885. 29 GTAC16 RESIDU O. -0.074 0. 0.075 0.18 -63. -8. -30. -16. 50. -2. 0.16 933. 12. 330. 44. 33 GTAC16 RESIDU ٥. -0.036 0. 0.037 0.02 -24 -14. -3. -1. 24. -0. 0.12 526. 0. -54. 91. ALL GTACIE RESIDU O. 1.830 -1.786 Ö. 0.34 -714. -1480. -330, -180. 1210. -37. 0.16 24925. 251. 5207. 397. 20 GTWC16 RESIDU O. -0.212 0. 0.185 0.45 -172 -85 -21. -46. 126. -114. **-6. 0.14 4462.** 27.

124

ţ....

CE DE	A ACC	),				AMATAK				C COMPAN	-						P	AGE
SE PE	O AES	INT TO	8:	<del></del>			ERATION RT 6.1			EMISSION		LTERNATIV	/ES S		AVINCE A	ARE POST	TIVES	
			TS=				1990	FUEL	MINU	LEVEL		11105		(3	MATINGS A	IRE FUSI	11451	
	COST	011	=\$*1C			* * * * * * * * * * * * * * * * * * * *	1340				75-			T	YPE MATO	H=HEAT		
														•				
			***F U	EL	SAV	I N G S*1	***	- E M 1	3 5 1	ONS		VINGS		-	CAPITL.	ELECTR	IC POW	ER
PROCS	ECS					TALFES								EMSR	SAVING			LAEC
		FUEL (	JIL+GAS	COAL OI	L+GAS	COAL	NO	X SC	א פ	ART NO	X SI	DX PAF	₹T			EXPORT		SAVED
																MWH		
	GTWC16			-0.012		0.010		-10.	-5.		-3.	7.		0.13		2.	33.	-3
	GTWC16			-0.005 -0.117		0,00 <b>5</b> 0.103	0.02 0.19	-2. -86.	-2. -47.		1. -16.	3. 70.		0.04		0.	-166. 448.	-30. 95.
	GTWC16			-0.856	0.	0.755	1.28	-704.	-47. -342.		-192.	70. 513.		0.17 0.13		13. 120.	440. 2829.	163
	GTWC16			-0.080		0.070	0.17	-66	-32.		-18.	48.	-2.			120.	333.	36
	GTWC16			-0.040		0.035	0.02	-26.	-16.		-3.	24.		0.10		0.	-53.	86
	GTWC16			-1.943		1.711		-1568.	-777.		-407.	1163.			25580.	255.	4871.	-105
			· -·															
20	CC1626	RESID	J 0;	-0.245	ο.	0.218	0.53	-176.	-98.	-22.	-29.	148.	-4.	0.21	5349.	37.	-194.	-663
22	CC1626	RESIDU	J 0.	-0.013	٥.	0.012	0.22	-10.	-5.	-1.	-2.	8.	-0.	0.19	188.	2.	38.	-7
	CC1626			-0.008	0.	0.007	0.02	-3.	-3,	-0.	2.	5.		0.06		0.	-172.	-45
	CC1626			-0.134		0.115	0.21	-92.	-54.		-13.	79.	-2.			18.	499.	46
	CC1626			-0.391		0.330	0.56	-291.	-156.		-62.	226.		0.17		47.	1272.	169
	CC1626			-0.091		0.077	0.19	-68.	-36.		-15.	<b>52</b> .		0.17		14.	357.	13
	CC1626			-0.054		0.045	0.03	-35.	-22.		-4.	21		0.14	752.	0.	28.	105
ALL	CC1626	KESID	0.	-1.255	0.	1.075	0.20	-905.	-502.	-112.	-164.	735.	-24.	0.18	18049.	157.	2450.	-512
20	CC1622	PESIDE	J 0.	-0.229	0	0.223	0.55	-169.	-92.	-21.	-25.	149.	-2	0.22	5356.	35.	-132.	-590.
	CC1622			-0.012		0.012	0.22	-10.	-5.		-2.	8.		0.20		2.	37.	-5
	CC1622			-0.007		0.006	0.02	-2.	-3.		2.	4.		0.06		ō.	-167.	-40
26	CC1622	RESID	J 0.	-0.125		0.118	0.22	-87.	-50.		-10.	79.		0.22		17.	486.	65
28	CC1622	RESID	٥. ا	-0.357		0.330	0.56	-274.	-143,		-56.	222.		0.18		45.	1201.	194
29	CC1622	RESID	0.	-0.095	0.	0.078	0.19	-66.	-34.		-14.	53.	-2.			13.	348.	23
33	CC1622	RESIDU	J 0.	-0.049	Ο.	0.044	0.03	-32.	-20.	-4.	-3.	30.	-0.	0.14	671.	Ο.	-6.	102
ALL	CC1622	RESIDU	J 0.	-1,,155	· 0.	1.084	0.20	-856,	-462.	-106.	-144.	728.	-19.	0.19	17153.	149.	2363.	-337
20	CC1222	DECID	J 0.	-0.227		0.225	0.55			-21		150	- ^	0 00	B676			-540
	CC1222			-0.012		0.225 0.012	0.65	-168. -9.	-91. -5.		-24. -2.	150. 8.		0.23		35. 2.	-51. 39.	-54U -4
	CC1222			-0.007		0.006	0.02	-2,	-3. -3.		2.	4.		0.20		. 0.	-163.	-38
	CC1222			-0.124		0.119	0.22	-87.	-50.		-9.	79.	-1.			16.	501.	75
	CC1222			-0.353		0.332	0.57	-272.	-141.		-54.	223.	•	0.18		45.	1243.	224
	CC1222			-0.084		0.079	0.19	-65.	-34.		-14.	53.		0.18		13.	358.	30
33	CC1222	RESID	J O.	-0.048		0.044	0.03	-32.	-19.		-2.	30.		0.14		0.	-1.	106
KLC	CC1222	RESIDI	0.	-1.142	0.	1.092	0.21	-849.	-457.	-105.	-138.	731.	-18.	0.19	17940.	149.	2572.	-195
20	CC0822	RESIDI	, , , , ,	-0.201	ο.	0.228	0.56	-158.	-80.	-19,	-21.	148.	.9	n 33	<b>5134</b> .	32.	-74.	-483
	~~~~	1750100	<i>-</i> • • •	~ ,	V.	J. LLU		100.	- 00,	179	E-1.	140.		U. E.J	V I 34 .	JE.	-,-,.	-403

and the superior was an experience of the second of the se

	6/21/79	•				252515				C COMPANY				T. 1634			P	AGE
SE PE	FUEL	INITS					RATION T 6.1		MOLOGY	EMISSIONS		TERNATIVE:	3 3		VINGS	RE POST	TIVE)	
	EMISS						1990			LEVEL		,,,,,						
	COST			0**9		, , , , , ,								T	PE MATO	H=HEAT		
			****F U	-	e A 17	INGS**		E M 1	0 6 1	a n e	9 A V	INGS			CARITI -	-ELECTR	IC PAU	-D
ROCS	ECS					TALFES				·****					SAVING	TOTAL		LAEC
11003	203			COAL O			NOX			PART NOX				LIJON	OAVINO	EXPORT		SAVE
							~ ~~									MWH		
	CC0822			-0.011		0.012	0.22	-9.	-4.		-2.	8.		0.20	173.	2.	39.	-(
	CC0822			-0.005		0.005	0.02	-2.	-2,		2.	3.		0.05	-110.	0.	-171.	-40
	CC0822			-0.108		0.119	0.22	-79.	-43.		-7,	78.		0.23	1480.	. 14.	505.	128
	CC0822			-0.295		0.320	0.54	-246.	<u>~118.</u>	-30.	<u>-50.</u>	210.		0.18	4020.	40.	1154.	289
	CC0822			-0.073		0.079	0.19	-61.	-29.		-13.	52.		0.18	1026.	12.	362.	61
	CC0822			-0.037		0.039	0.02	-25.	-15.		-1.	26.		0.12	594.	0.	-59.	99
LL 	CC0822	RESID	U 0.	-0.968	0.	1.065	0.20	~770.	-387.	-94.	-123.	696. 	-12.	0.19	16341.	132.	2331.	7:
20	STIG15	RESID	υ o,	-0.480	0.	0.100	0.25	-290.	-192.	-14.	-107.	111.	1.	0.01	8794.	54.	-212.	-118
22	STIG15	RESID	u o.	-0.026	G.	0.006	0.10	-16.	-11.	-1.	-6.	6.	0.	0.01	264.	3.	23.	-4
	STIG15			-0.094		0.020	0.06	-50.	-38.	-à.	-15.	22.		0.06	419.	8.	11.	-16
	STIGIS			-0.267		0.056		-161.	-107.		-59.	62.	ō.	0.01	2012.	30.	310.	-41
	STIG15			-0.557		0.116	0.20	-336.	-223.		-124.	129.	1.		4184.	61.	614.	-85
	STIG15			-0.056		0.012	0.01	-34.	-22.		~12.	13.		0.01	430.	6.	52.	-9
	ST1915			-1.757		0.367	0.07 -		-703.		-382.	406.			19120.	192.	947.	_
	-1.0.0	,,	- -			<u> </u>	3.31		, , , , ,		<u> </u>	700.		<u> </u>			<u> </u>	<u> </u>
	STIGIO			-0.388		0.128	0.31	-250.	-155.		-87.	115.		0.06	6895.	45.	-307.	
	STIGIO			-0.021		0.007	0.13	-14.	-9.	-1.	-5.	6.		0.06	224.	3.	25.	-3
24	STIGIO	RESID	U 0 .	-0.026	0.	0.009	0.03	-9,	<u>-11.</u>	-1.	2.	8.	-0.	0.09	-84.	0.	-149.	-5
	\$74610			-0.216		0.071	0.13	-135.	-86.	-6.	-45.	64.	2.	0.07	1777.	· 24.	348 .	-24
28	STIGIO	RESID	U O.	-0.440	0.	0.145	0.25	-283.	-176.	-12.	-98.	131.	5.	0.06	3476.	36.	628.	-33
33	STIG10	RESID	υo,	-0.045	0.	0.015	0.01	-29.	-18.	-1.	-10.	13.	1.	0.06	358.	4.	56.	-3
LL	STIGIO	RESID	υ σ.	-1.364	0.	0.449	0.08	-864.	-546.	-37.	-291.	405,	16.	0.07	15177.	133.	722.	-204
20	STIGIS	RESID	ພຸ o .	-0.341	0.	0.134	0.33	-231.	-136,	-8.	-81.	113.	6.	0.07	6102.	38.	-295.	-86
	STIGIS			-0.019		0.007	0.14	-13.	-8.		-5.	6.	ŏ.		213.	2,	27.	-2
	STIGIS			-0,015		0.006	0.02	-5.	-6.		1.	5.		0.06	-104.	ō.	-160.	-4
	STIGIS			-0.190		0.075	0.14	-123.	-76.		-39.	63.		0.08	1687.	20.	359.	-15
	STIGIS			-0.376		0.148	0,25	-254.	-151.	-9.	-88.	125.		0.08	3151.	24.	601.	-10
	STIGIS			-0.039		0.016	0.01	-27.	-16.		-10.	13.	- i :		318.	2.	54.	
	STIGIS			-1.175		0.462	0.09	-783.	-470.	• •	-265.	390.			13622.	104.		-144
	DEADV3			-0.227	0.	0.190	0.46	-291.	-91.	-21.	-159.	130.	-5.	-0.11	1374.	32.	-956.	-98
22	DEADV3	RESID	U 0.	-0.017	Ο.	0.009	0.18	-20.	-7.	-1.	-11.	7.	-1.	-0.16	78.	2	3.	-3

()

SE PE	O AES						COGEN		I TECHN	ELECTRI NGLOGY		A	LTERNATIV	IES ST	TUDY			_	
	FUEL I			=			REPO	RT 6.1			EMISSIO	SAV				AVINGS A	RE POSI	TIVE)	
	EMISS	ION N					TIME	1990			LEVE	_ ALL							
	COST			=\$*10×												YPE MATO	H=HEAT		
		*	**	*F U E	: [SAV	INGS*	***	- E M	35	ONS	SA	VINGS	3	-	CAPITL-	-ELECTR	IC POW	ER
ROCS	ECS												TAL****		EMSR	SAVING			LAEC
		FUEL	GIL	+GAS	COAL O	L+GAS	COAL	NO	ox so	DX F	PART NO	ox s	OX PAI	रा			EXPORT MWH		SAVED
	DEADV3		-		-0.017	o.	0.908	0.03	-6.	-7.	1.	2.	7.	-0.	0.08	-386.	0.	-221.	-80
	DEADV3				-0,177		0.093	0.17	-188.	-71.		-102.	72.	-5.	-0.13	631.	21.	183.	-234
	DEADV3				-C.520		0.277	0.47	-586.	-208		-333.	213.			1754.	37.	343.	
	DEADV3			0	-0.102		0.046	0.03	-101.	-41.		<u>-54.</u>	37.		-0.14	408.	<u> </u>	19.	-21
L	DEADV3	RESID	U	0,	-1.343	0,	0.791	0.15	-1509.	-537.	-113.	-833,	590.	-40.	-0.13	4886.	118.	-796.	-2140
20	DEHTPM	RESID	υ	o	-0.171	0.	0, 233	0.57	-266.	-68	-18.	-137.	148.	-1.	0.01	1098.	28.	-877.	-818
	DEHTPM				-0,010		0.012	0.22	-16.	-4		-9.	8.		-0.06	57.	2.	12.	-13
24	DEHTPM	RESID	U	٥.	-0.005	0.	0.005	0.02	-2.	-2		1.	3.		0.04	-137.	ō.	-174.	-37
26	DEHTPM	RESID	U	Ο.	-0.106	Ο,	0.113	0.21	-139.	-42	-10.	-69.	74.		-0.01	419.	12.	241.	
	DEHTPM			0.	-0.677		0.580		-1042.	-271.		-643.	396.	-22.	-0.15	1171.	83.	406.	-618
	DEHTPM		-	0.	-0.079		0.062	0.15	-124.	-32.		-79.	43.		-0.19	151.	11.	110.	-82
	DEHTPM			0.	-0.040		0.034	0.02	-45.	-16.		-22.	23.		-0.02	83.	Ο.	-210.	14
L	DEHTPM	RESID	U	0.	-1.520	0.	1.448	0.27	-2281.	-608.	153.	-1338.	970.	-38.	-0.12	3967.	189.	-685.	-2163
20	DESCAS	DISTI	L -	0.238	0.	-0.238	0.409	0.42	-664.	-12	1.	-535.	201.	11.	-0.80	1149.	31.	-1209.	-1346
22	DESØA3	DISTI	Ĺ -	0.019	o.	-0.019	0.027	0.15	-45.	-2.		-37.	12.			14.	2.	-31.	
	DESOA3				Ο.	-0.022	0.030	0.03	-0.	-3,	. О.	9.	13.	1.	0.22	-127.	Ο.	-237.	-76
	DESOA3				0.	-0.196	0.277	0.15	-424.	-21.	0.	-336.	123.	7.	-0.76	142.	22.	-123.	-571
	DESOA3				Ο.	-0.612	0.866	0.43	-1416.	-66.	. 1.	-1143.	385.	22	0.79	368,	44.	-642.	-1428
	DESOA3				Ο.	-0.114		0.02	-227.	-14.		-178.	66.	4.	-0.75	74.	3.		-246
<u>_L</u>	DESOA3	DISTI	<u>L</u> -	1.523	0.	-1.523	2.236	0.13	-3519.	-149.	4.	-2814.	1015.	57.	-0.77	2055.	131.	-3062.	-4736
20	DESCAS	RESID	U -	0.238	۵.	-0,23A	0.409	0.42	-1432.	-89.		-1300.	134.	22 .	-2 72	1149.	31	-1034.	-1041
	DESOA3		_				0.027		-97.	-7.		-88.	8.		-2.85	14.	2.	-17.	
24	DESOA3	RESID	U -	0.022	0,		0.030	0.03	- 2.	-8.		7.	8.		0.16	-127.	Ō.	-162.	-54
26	DESØA3	RESID	U -	0.196	O.	-0.196	0.277	0.15	-910.	-74.		-821.	78.		-2.64	142.	22.	21.	-369
28	DESØA3	RESID	U -	0.612	Ο.	-0.612	0.866	0.43	-3039.	-230.	-5.	-2760.	244.		-2.68	368.	44.	-117.	-797
	DESCAS				0.	-0.114	0.154	0.02	-487.	-43.	-1.	-438.	41.	8	-2.61	74.	3.	-89.	-134
	DESCA3	RESID	U -	1.523	0.	-1.523	2.236	0.13	-7564.	-573.	-12.	-6845.	650.	120.	-2.67	2055.	131.	-1773.	-3107
20 (GTSCAD	DISTI	լ -	0.175	o. ' '	-0.175	0.364	0.46	-72.	-29.	. O.	44.	165.	15.	0.56	5193.	22.	94.	-451
	GTSOAD						0.020	0.19	-4.	- <u>2</u>		2.	9.		0.56	164.	1.	30.	
24	GTSCAD	DISTI	L -	0.004	0.	-0.004	0.008	0.01	-0.	-1.		3.	4.		0,05	-98.	o.	-237.	-32
									4/										

्राणाः (४ **१ प्राप्ता**हार्यः ॥ १८८८ - १८८४

ISE PE						·		NERATION		HOLOGY			LTERNATIV	VES S	TUDY		- · <u></u>		<u></u> -
			MITC.					ORT 6.1	FUEL	. AND	EMISSIONS	S SAVI					ARE POSI	TIVE)	
	EMISSI COST	ION U	ini 7s= = \$:	\$*10**	*9		line	E 1990			LEVEL	ALL			T	YPE MATC	CH=HEAT		
							·			- A 6 7					-			2 201	
ROCS	ECS	ECS	*****	U E		5 A V . Tot	NU Se	*** ESR	BIP	FCT	I O N S	S A v	/ I N U .	3		CAPITL- SAVING	ELECTR		WER I LAEC
		FUEL	. GIL+ G/	GAS C	COAL OI	TIL+GAS	COAL	NOX	K Sf	SOX P	PART NOX	λ SC	OX PA		Entre-	VAT	EXPORT MWH		SAVED
	GTSCAD						0.205		-33.			32.		8.	0.59		10.	382.	
28 (GTSGAD	DIST	1L -0.	. 758	Ο.				-301.	123.	. 0.	173.	670.	58.	0.54	9900.	109.	2125.	-938
	GTSGAD						0.141	0.17	-29. -8			16.			0.55		10.	277.	
	GTSGAD				0.				-8. -655.			11.	28. 1509.		0.26		<u>0.</u>	-201.	
L .	313000	Dio.	.b. *1	550	U,	~1.000	3.30 0	U. 31	-635,	-Z/4,	υ,	411.	1503.	läį.	0.54	26406.	224.	3612.	2222
	GTRA08				-0.210		0.211		-91.			46.			0.51		30.	-395.	
	GTRAOS				-0.013		0.011	0.21	-5. -1			2.	11.		0.50		2.	25.	
	GTRAO8				-0.008 -0.131		0.006 0.111	0.02 0.20	~1. -51.			3. 28.			0.10		0, 16	-246. 349.	
	GTRAO8			-	-0.131 -1.317		- 0.111 0.759		-51. -551.			28. 121.	108. 845.		0.51	1382. 3 11860.	16. 165.	349. 1731.	
	GTRA08				-0.102		0.069		-43.		<u> </u>	121.			0.45		14,	230.	
33 (GTRA08	DIST	IL O.		-0.063		0.045	0.03	-23.			12.	46.		0.37		0.	-61.	
	GTRA08			-	-2.678		1.761		-1112.			326.				27546.	331.		-5166
20 1	GTRA12	DIST			-0,207	7 0.	0.213	0.52	-90.	38.	. 2.	47.	196.	34	0.51	4153.	30.	-349.	-788
	GTRA12			•	-0.012		0.213	0.32	-50. -5.			47. 2.	11.		0.50		30, 2.	-349. 25.	
24 (GTRA12	DIST	IL 0.	<u> </u>	-0.008	5 O .	0.006	0.02	-1.	-2.	. 0.	3.	6.	_	0.10		0.	-241.	
	GTRA12				-0.127		0.113	0.21	-49.	-25.	. 1.	29.	108.	18.	0.52	1369.	16.	357.	-125
	GTRA12				-1.208		0.787	1.34	-509.			137.				11249.	157.	1845.	
-	GTRA12			-	-0.097		0.072		-42.			13.			0.48		14.	243.	
	OTRA12				-0.059		0.045		-21.			13.	45.		0.37		0.	-72.	
ILL (GTRA12	DIST	IL O.	-	-2.501	1 0.	1.816	0.34	-1044.	-543.	. 2.	355.	1859.	312.	0.45	26873.	320.	2632.	4620
	4. * ** **** <u>*</u>		_		1		1 1												
	GTRA16				-0.203		0.209		-88.			46.	194.		0.51		29.	-453.	
	GTRA16				-0.012		0.011	0.21	-5.			2.			0,50		2.	22.	
	GTRA16				-0.007 -0.124		0.006	0.02	-1. -48.			3. 20	6. 107	• •	0.09		0	-245.	
	GTRA16				-0.124		0.111 0.780	0.20 1.33	-48. -481.			29. 139.	107. 819.		0.51	1282. 10255.	15. 150.	339. 1718	124 197
	GTRATE				-0.093		0.780	0.17	-481. -40.			139.	819. 73.		0.47		150. 14.		<u>-197</u> 2
	GTRA16				~0.054		0.072	0.03	-40. -19.			12.	73. 43.		0.45		14. 0.	-110.	
	GTRA16				-2.368		1.797	0.34	-994.			356.	1827.			24284.			455
		-																	•

I will stimuly your wife in the same

4 •

	06/21/79 0 AES	-,					*	COCEN	ERATION		IQL QGY	C COMPANY		TERNATI	JEO C	THE				AGE 1
<u> </u>	FUEL	INITS							RT 6.1	FUEL		EMISSIONS			7 <u>E3</u> 3		VINGS A	RE POST	TIVE	
	EMISS		NI TS					,	1990	1 OLL	AIID	LEVEL		1105		(3)	41160 A	NE 1 001		
	CCST			=\$*10	**9				1000	•	•		766			T	PE MATO	H=HEAT		
	=00			*F U				I N G S*						ING	-			-ELECTR		
ROCS	ECS							'ALFE		-, ,				TAL****		EMSR	SAVING	TOTAL	COST	LAEC
				.+GAS			L+GAS	COAL	NO)			ART NOX		X PAI	RT			EXPORT MWH		SAVED
	GTR208			0.		011	Ο.	0.011	0.20	-5.	-2.	0.	2.	10.	2.	0.48	156.	2.	25.	-21
	GTR208			0.	-0.0		0.	0.005	0.02	-1.	-1.	0.	3.	5.	• -	0.08	-137.	٥.	-244.	-39
	GTR208		_	0.	-0.		0.	0.105	0.19	-45.	-20.	1.	28.	104.		0.50	1356.	13.	353.	-94
	GTR208			0.	-1.0		0.	0.735	1.25	-435.	-195.	7	130.	777.			10217.	133.		-1656
	GTR208			0.	-0.0		0.	0.068	0.17	-38.	-16.	1.	12.	70.	13.		950.	12.	245.	-121
	GTR208			0.	-0.0		ο.	0.036	0.02	-15.	-8,	0.	11.	37.		0.30	582.	0,	-156.	19
LL	GTR208	DIST	! L	0.	-2.	130	0.	1.685	0.32	-909.	-400.	19.	331.	1737.	313.	0.46	25361.	271.	2604.	-3783
20	GTR212	DIST	IL.	0.	-0.	200	0,	0.200	0.49	-88.	-34.	3.	42.	190.	34.	0.50	4135.	27.	-302.	-741
	GTR212			o.		012	o.	0.011	0.20	-5.	-2,	Ö.	2.	10.		0.49	155.	2.	24.	-22
24	GTR212	DIST	I L	0.	-0.	006	Ŏ.	0.005	0.02	-1.	-1.	o.	3.	5.	1.		-143.	ō.	-244.	-41
26	GTR212	DIST	I L	0.	-0.	120	0.	0.107	0.20	-46.	-22.	1.	28.	105.	19.	0.50	1358.	14.	352.	-104
28	GTR212	DIST	IL	0.	-1.0	027	Ο.	0.754	1 . 28	-443.	-206.	6.	135.	789.	139.	0.46	10246.	137.	1818.	-1692
29	GTR212	DIST	I L	0.	-D.	880	Ο.	0.070	0.17	-39.	-17.	1.	13.	71.	13.	0.47	953.	13.	· 246.	-124
	GTR212			0.	-0.0	047	0	0.039	0.02	-16.	-9.	0.	12.	39.	7.	0.31	611.	0.	-138.	20
.L	GTR212	DIST	I L	0.	-2.	190	O.	1.729	0.32	-930.	-426.	16.	343.	1766.	312.	0.47	25267.	281.	2563.	-3943
20	GTR216	DIST	ı L	ο.	-0.	198	0.	0.205	0.50	-87.	-34.	3.	44.	192.	34	0.50	3931.	28.	-343.	-758
	GTR216			Ö.		012	0.	0.011	0.21	-5.	-2.	Ö.	2.	11.		0.49	149.		24.	-22
	GTR216			o.	-0.		o.	0.005	0.02	-1.	-1.	ő.	3.	5.		0.09	-145.	ō.	-243.	-40
_	GTR216			Ö.		119	O.	0.110	0.20	-46.	-22.	1.	29.	106.		0.51	1315.	14.	351.	-103
28	GTR216	DIST	I L	Ō.	-1.		o.	0.775	1.32	-442.	-208.	5.	143.	798.		0.47	9940.	139.	1800.	-1699
29	GTR216	DIST	IL.	0.		088	Ō.	0.072	0.17	-38.	-17.	1.	13.	72.		0.48	925.	13.	245.	-124
33	GTR216	DIST	I L	0.	-0.6	048	o,	0.040	0.03	-17.	-9.	Ò.	12.	40.		0.32	601.	o.	-132.	22
.L	GTR216	DIST	IL	٥.	-2.	184	٥.	1.779	0.33	-926.	-428.	15.	360.	1787.			24400.	285.	2484.	-3975
20	GTRW08	DIST	IL	0.	-0.2	257	0.	0.185	0.45	-109.	-55.	0.	35.	191.	32	0.48	4470.	34.	-512	-1003
	GTRW08			0.		015	0.	0.010	0.18	-6.	-3.	-0.	2.	10.		9.47	181.	2.	21.	-32
	GTRWO8			0.	-0.		0.	0.006	0.02	-ž.	-2.	-o.	4.	7.		0.11	-176.	ō.	-249	-54
	GTRW08			Ö.	-0.		ō.	0.097	0.18	-60.	-35.	-0.	21.	105.	18.		1545.	18.	315.	<u>-217</u>
	GTRWOB			o.	-1.4		Ö.	0.683	1.16	-607.	-353.	-9.	87.	835.		0.44	13083.	170.	1658.	-2729
	GTRW08			o.	-o.		ō.	0.081	0.15	-49.	-27.	-ō.	9.	71.		0.45	1106.	15.	217.	-202
33	GTRW08	DIST	I L	0,	-0.0	077	Ο.	0.042	0.03	-28.	-18.	-0.	10.	48.		0.38	851.	0.	-17.	-6
	GTRW08	DIST	IL.	0.	-3.		0.'	1.579	0.30	1254.	-719.	-13.	243.	1846.			30666.	347.	2088.	-6180
		DIST		_	-G.;		_	0.1 9 6	0.48		-53.	٥.	39.	195.			4556.	34.	-461.	-957

	06/21/79 0 AES					COSEN	ERATION		IOLOGY	C COMPANY		LTERNATI	VES S	TUDY				AGE 1
	FUEL		# !: TO-				RT 6.1	FUEL	AND	EMISSIONS	SAV	INGS			AVINGS A	RE POST	TIVE)	
	EMISS!	ION UN		0**9		LIME	1990			LEVEL	ALL				VDE MATA	N-UEAT		
	CO31			U###											YPE MATO	n=nea i		
			***F U			I N G S*						VING				-ELECTR		
PROCS	ECS			CT*****			SR NOX			**** PART NO		TAL**** OX PA		EMSR	SAVING	TOTAL EXPORT		LAEC
		FOEL	DIETUKS	COME	LTUAS	COME	NOX	. 30	,,, ,	AKI NO	. 31	UA PA	r, i	• * * * *		MWH		SAVED
22	GTRW12	DISTI	L 0.	-0.014	0.	0.010	0.20	-6.	-3.	0.	2.	11.	2.	0.48	183.	2.	24.	-29
	GTRW12			-0.010		0.007	0.02	-2.	-2	-o <i>.</i>	4,	7.		0.12		0.	-246.	-52
	GTRW12			-0.148	-	0.105	0.1 9	-58.	-33.		24.	108.		0.50		18.	346.	-186
	GTRW12			-1.,331	<u>0.</u>	0.755	1.28	-555.	-315		120.	841.			12766.	<u> 164.</u>	1992.	
	OTRW12			-0.109		0.068	0.16	-46.	-25		11.	73.	12.			15.	247.	-170
NLL NLL	GTRW12 GTRW12			-0.072 -2.826		0.046 1.735	0.03 0.33 -	-26.	-16. -655.		12. 309.	49. 1875.		0.40	841.	0.	-3.	12
·	GIRWIE	וופוט	L U.	-2.626	<u> </u>	1.735	0.33 -	1107.	-655	9 .	309.	10/5.	308.	0.47	30480.	341.	2//6.	-5300
20	GTRW16	DIST	L O.	-0.244	ο.	0.195	0.48	-104.	-51.	. 1.	39.	193.	33.	0.49	4090.	33,	-541.	-987
22	GTRW16	DISTI	L 0.	-0.014	Ο.	0.010	0.20	-6.	-3	ο.	2.	11.	2.	0.48	172.	2.	22.	-29
	GTRW16			-0.009	0.	0.007	0.02	-2.	-2		4.	7.	1.	0.11	-189.	0.	-251.	-52
	GTRW16			-0.144	0.	0.104	0.19	-56.	-31.		24.	107.		0.50	1519.	17.	344.	-175
	GTRW16			-1.240	0.	0.756	1.28	-521.	-284		125.	824.			11730.	156.	1888.	-2104
	GTRW16			-0.105	0.	0.068	0.17	-44.	-23		12.	72.		0,47		14.	245.	-161
LL 33	GTRW16			-0.066 -2.665	<u>0.</u>	0.044 1.732	0.03	<u>-24.</u>	-15. -599.		12. 318.	47.		0.38	805.	<u> </u>	<u>-31.</u>	16
	GIRWID	וופוע	L 0.	-2.003	U.	1.732	0.33 -	1107.	-039,	-3.	316.	1844.	300,	0.47	28103.	326.	2453.	-5106
	GTR308			-0.243		0.166		-104.	-47.		29.	182.	33.	0.45	4459.	29.	-416.	-906
	GTR308			-0.015		0.009	0.16	-6.	-3.		1.	10.		0.44	169.	2.	17.	-33
	GTR308			-0.009	0.	0.004	0.01	-1.	·-2.		3.	5,		0.09	-135.	0.	-246.	-48
•	GTR308			-0.151	0.	0.084	0.15	-59.	-32.		18.	100.		0.45	1497.	15.	279.	-220
	GTR308			-1.375 -0.114	<u>0.</u>	0.569	0.97	<u>-579.</u>	-312		<u>52.</u>	770,			11941.	152.	1200.	-2815
	GTR308			-0.114	0. 0.	0.052 0.032	0.13 0.02	-48. -24.	-25. -15.		5. 8.	67. 41.		0.41	1072. 749.	14. 0.	191. -124.	-211 -21
	GTR308			-2.851		1.325	0.02		-630.		167.	1698.		•	749. 28549.	305.		-6149
					<u> </u>	1.020				·	107.		300.	0.41	20349.	305.	1302.	
	9TR312			-0.235		0.190	0.46	-101.	-47.		37.	190.		0.48		31.	-365.	-866
	GTR312			-0.013		0.010	0.19	-6.	-3.		2.	10.		0.48	176.	2.	24.	-26
	GTR312			-0.008	<u>0.</u>	0.006	0.02	<u>-1.</u>	-2		3.	6.		0.10		0.	-246.	-4
20	GTR312 GTR312			-0.137 -1.091	-	0.103 0.750	0.19 1.28	-53.	-28. -232.		25.	105.		0.49	1522.	16.	353.	-149
20	GTR312			-0.097	-	0.750	0.17	-465. -42.	-232, -20.		132. 12.	794. 72.		0.46	11326. 1061.	142. 14.	2011. 254.	-1711 -138
	GTR312			-0.057	0. 0.	0.041	0.17	-42. -20.	-12.		11.	72. 43.		0.47	743.	0.	254. -81.	21
الركي	GTR312			-2.401		1,712	0.32 -		-504		326.	1789.	308.		<u> </u>	300.	2860.	-4272
			,		•			, , , , , ,					000,	J. 40	LULUT,	500.	2000.	76/6
20	GTR316	DISTI		-0.236	0	0.188	0.46	-101	-47.	. 1.	37.	190.	22	0.40	4224	^-	-450	_014
	GICAID	71211	<u> </u>	70.230	U.	U. 100	U.40	-101.	-4/,		37.	190.	33.	U.48	4224.	31.	-458.	-914

.

#### 22 GTR316 DISTIL 00.013 0. 0.010 0.19 -63. 0. 2. 10. 2.0.48 169. 2. 22. 24. 24. 24. 25. 24. 25. 24. 24. 25. 24. 25. 24. 25. 24. 25. 24. 25. 24. 25. 24. 25. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25		6/21/79	•				CECE				IC COMPA		I TERMATI	VER 4	- TI IOV			P	AGE 1
EMISSIGN UNITS: COST = \$x = 10 x = 9 TIME 1990 LEVEL ALL TYPE MATCH=HEAT TOTAL TOTAL TOTAL TOTAL TYPE MATCH=HEAT TYPE MATCH=HEAT TOTAL TOTAL TOTAL TOTAL TYPE MATCH=HEAT TOTAL TOTAL TOTAL TOTAL TOTAL TYPE MATCH=HEAT THE 1990 TOTAL TOTAL TOTAL TOTAL TYPE MATCH=HEAT THAT TOTAL TOTAL TOTAL TOTAL TYPE MATCH=HEAT THAT TOTAL T	SE PE		INITS								FMISSIC			VES S		AVINGS	ARE POST	TIVE)	
Type Match+HeAT COST									I OLL	nite.			711100			ATT.100 1	E 1 001		
PROCS ECS ECS ****DIRECT************************************		COST		=\$*	10**9					•					. T	YPE MAT	CH=HEAT		
FUEL DIL+9AS COAL DIL+9AS COAL NOX SOX PART NOX SOX PART EXPORT SAY MWH 22 GTR316 DISTIL 00.013 0. 0.010 0.19 -63. 0. 2. 10. 2. 0.48 169. 2. 22. 24 GTR316 DISTIL 00.008 0. 0.006 0.02 -12. 0. 3. 6. 1. 0.09 -169. 024926 GTR316 DISTIL 00.008 0. 0.006 0.02 -12. 0. 3. 6. 1. 0.09 -169. 024926 GTR316 DISTIL 01.086 0. 0.742 1.26 -464230. 3. 129. 769. 136. 0.46 1089. 14178. 16. 3411. 29 GTR316 DISTIL 01.086 0. 0.742 1.26 -464230. 3. 129. 769. 136. 0.46 1089. 141. 18941. 29 GTR316 DISTIL 00.087 0. 0.040 0.03 -2012. 0. 11. 42. 7. 0.34 713. 090. ALL GTR316 DISTIL 00.087 0. 0.040 0.03 -2012. 0. 11. 42. 7. 0.34 713. 090. ALL GTR316 DISTIL 02.394 0. 1.694 0.32 -1006500. 8. 320. 1779. 308. 0.46 26883. 297. 249740. ALL GTR316 DISTIL 00.087 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 23322. 47 FORDS DISTIL 00.019 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 23322. 24 FORDS DISTIL 00.019 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 23322. 28 FORDS DISTIL 00.019 0. 0.009 0.03 -450. 5. 11. 2. 0.17 -71. 023228 FORDS DISTIL 01.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.85 859. 232033. 28 FORDS DISTIL 01.188 0. 0.031 1.28 -237. 149. 19. 490. 1393. 167. 0.44 7269. 18218252. ALL FORDS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 1710543. ALL FORDS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 1710543. ALL FORDS DISTIL 00.019 0. 0.010 0.03 -23088. 307. 32. 0.46 3243. 40128612. 22 FORDS DISTIL 00.027 0. 0.011 0. 0.03 -10. 52245. 39088. 307. 32. 0.46 3243. 40128612. 41. 41. 41. 41. 41. 41. 41. 41. 41. 41		 				SAV	INGS	****	- EMI	3 S	IONS				-	CAPITL			
#### 22 6TR316 DISTIL 00.013 0. 0.010 0.19 -63. 0. 2. 10. 2. 0.48 169. 2. 22. 22. 24 6TR316 DISTIL 00.008 0. 0.006 0.02 -12. 0. 3. 6. 1. 0.09 -169. 0249. 26 6TR316 DISTIL 00.137 0. 0.102 0.19 -5328. 1. 24. 105. 18. 0.49 1478. 16. 3411. 28 6TR316 DISTIL 01.086 0. 0.742 1.26 -464230. 3. 129. 769. 136. 0.49 1478. 16. 3411. 29 GTR316 DISTIL 00.097 0. 0.068 0.17 -4220. 0. 12. 71. 12. 0.47 1034. 13. 2471. 33 GTR316 DISTIL 00.057 0. 0.040 0.03 -2012. 0. 11. 42. 7. 0.34 713. 093. ALL GTR316 DISTIL 02.394 0. 1.694 0.32 -1006500. 8. 320. 1779. 308. 0.46 26883. 297. 24974. 20 FCPADS DISTIL 00.019 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 23524 FCPADS DISTIL 00.019 0. 0.009 0.03 -450. 5. 11. 2. 0.17 -71. 0232. 26 FCPADS DISTIL 00.018 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.38 659. 2320328 FCPADS DISTIL 00.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.38 659. 2320328 FCPADS DISTIL 01.518 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.38 659. 2320328 FCPADS DISTIL 00.128 0. 0.092 0.15 -20. 13. 2. 42. 118. 14. 0.56 553. 171053 35 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.56 553. 171053 35 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11583 35 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11583 35 FCPADS DISTIL 00.128 0. 0.092 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171054 35 FCPADS DISTIL 00.128 0. 0.092 0.15 -20. 13. 2. 42. 118. 14. 0.46 5648. 171582 25 FCPADS DISTIL 00.128 0. 0.092 0.15 -20. 13. 2. 42. 118. 14. 0.46 5648. 171582 25 FCPADS DISTIL 00.128 0. 0.092 0.15 -20. 13. 2. 42. 118. 14. 0.46 5648. 171582 25 FCPADS DISTIL 00.128 0. 0.092 0.15 -20. 13. 2. 42. 1068. 3041. 3699. 0.84 19220. 3815169128 FCPADS DISTIL 00.129 0. 0.092 0. 0.47 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582 25 FCPADS DISTIL 00.150 0. 0.002 0.22 -14. 205. 17. 2. 0.46 89. 223. 2. 24 FCP	PROCS	ECS								CT	**	*****T(EMSR	SAVING			
24 GTR316 DISTIL 00.008 0. 0.006 0.02 -12. 0. 3. 6. 1. 0.09 -169. 024926 GTR316 DISTIL 00.137 0. 0.102 0.19 -5328. 1. 24. 105. 18. 0.49 1476. 16. 3411. 29 GTR316 DISTIL 01.086 0. 0.742 1.26 -464230. 3. 129. 789. 136. 0.46 10889. 141. 18941. 33 GTR316 DISTIL 00.087 0. 0.068 0.17 -4220. 0. 12. 71. 12. 0.47 1034. 13. 2471. 33 GTR316 DISTIL 00.087 0. 0.040 0.03 -2012. 0. 11. 42. 7. 0.34 713. 093. ALL GTR316 DISTIL 02.394 0. 1.694 0.32 -1006500. 8. 320. 1779. 308. 0.46 26883. 297. 249744. 220 FCPADS DISTIL 00.241 0. 0.173 0.42 -30. 42. 5. 104. 272. 34. 0.85 3677. 3292312. 22 FCPADS DISTIL 00.019 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 235524 FCPADS DISTIL 00.019 0. 0.009 0.03 -450. 6. 17. 2. 0.85 108. 235528 FCPADS DISTIL 00.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.83 859. 2320329 FCPADS DISTIL 01.518 0. 0.735 1.25 -237. 149. 19. 490. 1393. 167. 0.84 7269. 182185252 9FCPADS DISTIL 00.028 0. 0.064 0. 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 116523 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 116524 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 116524 FCPADS DISTIL 00.018 0. 0.009 0.3 -6. 50. 13. 2. 42. 118. 14. 0.85 653. 171054. 33 FCPADS DISTIL 00.089 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 116524 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 116524 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.84 19220. 3815169124 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.			FUEL	DIL+GA	S COAL	OIL+GAS	COAL	NO	(SD	X : ,	PART N	IOX S	SOX PA	RI					SAVED
26 GTR316 DISTIL 00.137 0. 0.102 0.19 -5328. 1. 24. 105. 18. 0.49 1478. 16. 3411 28 GTR316 DISTIL 01.086 0. 0.742 1.26 -464230. 3. 129. 799. 136. 0.46 10899. 141. 189417. 29 GTR316 DISTIL 00.097 0. 0.088 0.17 -4220. 0. 12. 71. 12. 0.47 1034. 13. 2471 33 GTR316 DISTIL 00.087 0. 0.040 0.03 -2012. 0. 11. 42. 7. 0.34 713. 093. ALL GTR316 DISTIL 02.394 0. 1.694 0.32 -1006500. 8. 320. 1779. 308. 0.46 26883. 297. 24974/ 20 FCPADS DISTIL 00.241 0. 0.173 0.42 -30. 42. 5. 104. 272. 34. 0.85 3677. 3292312. 22 FCPADS DISTIL 00.019 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 23524 FCPADS DISTIL 00.019 0. 0.009 0.03 -450. 8. 11. 2. 0.17 -71. 023222 FCPADS DISTIL 00.188 0. 0.081 0.17 -30. 13. 2. 60. 168. 20. 0.83 859. 2320322 FCPADS DISTIL 00.188 0. 0.081 0.17 -30. 13. 2. 60. 168. 20. 0.83 859. 2320322 FCPADS DISTIL 00.128 0. 0.052 1.25 -227. 149. 19. 490. 1393. 167. 0.87 659. 182185255. 25 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 17165255. 25 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 17165255. 25 FCPADS DISTIL 00.128 0. 0.062 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 381155824. 25 FCPADS DISTIL 00.130. 0.007 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 115824. 25 FCPADS DISTIL 00.158 0. 0.062 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 3815169128. 25 FCPADS DISTIL 00.158 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 2232324 FCPADS DISTIL 00.152 0. 0.165 0. 0.162 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 3811589128 FCPADS DISTIL 00.152 0. 0.118 0.22 -145. 205. 17. 2. 0.46 89. 2232324 FCPADS DISTIL 00.152 0. 0.118 0.22 -145. 39088. 307. 32. 0.46 3243. 401285162 25 FCPADS DISTIL 00.152 0. 0.118 0.22 -15616038. 155. 18. 0.48 718. 2181569128 FCPADS DISTIL 00.152 0. 0.118 0.22 -15616038. 155. 18. 0.48 718. 2116232323.									-6.										-27
28 GTR316 DISTIL 01.086 0. 0.742 1.26 -464 -230. 3. 129 789, 138, 0.46 10889, 141, 1894, -1.29 129 GTR316 DISTIL 00.097 0. 0.068 0.17 -42, -20, 0. 12, 71, 12, 0.47 1034, 13, 247 -33 GTR316 DISTIL 00.057 0. 0.040 0.03 -20, -12, 0. 11, 42, 7, 0.34 713, 093, ALL GTR316 DISTIL 02.394 0. 1.694 0.32 -1006, -500, 8, 320, 1779, 308, 0.46 26883, 297, 2497, -44, 22 FCPADS DISTIL 00.019 0. 0.013 0.42 -30, 42, 5, 104, 272, 34, 0.85 3677, 32, -923, -13, 22 FCPADS DISTIL 00.019 0. 0.009 0.17 -3, 2, 0, 6, 17, 2, 0.85 108, 2, -35, 26 FCPADS DISTIL 00.019 0. 0.009 0.03 -4, -5, -0, 5, 11, 2, 0.17 -71, 0, -232, 26 FCPADS DISTIL 00.188 0. 0.091 0.17 -30, 13, 2, 60, 168, 20, 0.83 859, 23, -203, -13, 26 FCPADS DISTIL 00.188 0. 0.091 0.17 -30, 13, 2, 60, 168, 20, 0.83 859, 23, -203, -13, 26 FCPADS DISTIL 00.128 0. 0.062 0.15 -20, 13, 2, 42, 118, 14, 0.85 653, 17, -105, -23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24										_									-47
29 GTR316 DISTIL 00.097 0. 0.068 0.17 -4220. 0. 12. 71. 12. 0.47 1034. 13. 24733 GTR316 DISTIL 00.057 0. 0.040 0.03 -2012. 0. 11. 42. 7. 0.34 713. 093. ALL GTR316 DISTIL 02.394 0. 1.694 0.32 -1006500. 8. 320. 1779. 308. 0.46 26863. 297. 249744. 20 FCPADS DISTIL 00.241 0. 0.173 0.42 -30. 42. 5. 104. 272. 34. 0.85 3677. 3292313. 22 FCPADS DISTIL 00.019 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 23524 FCPADS DISTIL 00.019 0. 0.009 0.03 -450. 5. 11. 2. 0.17 -71. 023228 FCPADS DISTIL 00.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.83 859. 232033. 28 FCPADS DISTIL 01.518 0. 0.735 1.25 -237. 149. 19. 490. 1393. 167. 0.84 7269. 182185235 3 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171054. 33 FCPADS DISTIL 00.038 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582. 33 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582. ALL FCPADS DISTIL 00.273 0. 0.211 0.52 -245. 39088. 307. 32. 0.46 3243. 40128616. 22 FCMCDS DISTIL 00.015 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 0226226. FCMCDS DISTIL 00.015 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 0226226227. 22 FCMCDS DISTIL 00.015 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 0226226227. 22 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 0226226227227228228228228228229.																			
33 GTR316 DISTIL 00.057 0. 0.040 0.03 -2012. 0. 11. 42. 7. 0.34 713. 093. ALL GTR316 DISTIL 02.394 0. 1.694 0.32 -1006500. 8. 320. 1779. 308. 0.46 26863. 297. 24974. 20 FCPADS DISTIL 00.241 0. 0.173 0.42 -30. 42. 5. 104. 272. 34. 0.65 3677. 3292313. 24 FCPADS DISTIL 00.019 0. 0.009 0.17 -30. 2. 0. 6. 17. 2. 0.65 108. 235. 24 FCPADS DISTIL 00.019 0. 0.009 0.03 -450. 8. 11. 2. 0.17 -71. 0232. 26 FCPADS DISTIL 00.186 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.83 659. 232037. 28 FCPADS DISTIL 00.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.83 659. 232037. 29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171052. 29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171052. 33 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582. ALL FCPADS DISTIL 03.259 0. 1.662 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 3815169124 60. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18																			
ALL OTR316 DISTIL 02.394 0. 1.694 0.32 -1006, -500. 8. 320. 1779. 308, 0.46 26883. 297. 24974. 20 FCPADS DISTIL 00.241 0. 0.173 0.42 -30. 42. 5. 104. 272. 34. 0.85 3677. 3292313. 22 FCPADS DISTIL 00.019 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 23524 FCPADS DISTIL 00.019 0. 0.009 0.03 -450. 8. 11. 2. 0.17 -71. 023224 FCPADS DISTIL 00.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.83 859. 232037. 28 FCPADS DISTIL 01.516 0. 0.735 1.25 -237. 149. 19. 490. 1393. 167. 0.84 7269. 182185256. 29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171053. 33 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582. ALL FCPADS DISTIL 03.259 0. 1.662 0.31 -502. 323. 42. 1068. 3041. 3699. 0.84 19220. 3815169126. 20 FCMCDS DISTIL 00.018 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 223226 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 10. 1593. 0226226 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 10. 1593. 0226226 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.46 718. 21818182. FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 595. 16232324. 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 595. 16232324. 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 5955. 16232324. 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 5955. 162324. 29 FCMCDS DISTIL 00.004 0. 0.006 0.12 69092001. 70. 0266111026112026102626262626262626																			-142 16
20 FCPADS DISTIL 00.241 0. 0.173 0.42 -30. 42. 5. 104. 272. 34. 0.85 3677. 3292313. 22 FCPADS DISTIL 00.019 0. 0.009 0.17 -3. 2. 0. 6. 17. 2. 0.85 108. 23526 FCPADS DISTIL 00.019 0. 0.009 0.03 -450. 5. 11. 2. 0.17 -71. 023226 FCPADS DISTIL 00.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.83 859. 2320328 FCPADS DISTIL 01.518 0. 0.735 1.25 -237. 149. 19. 490. 1393. 167. 0.84 7269. 182185225. 29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171054. 33 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171054. 33 FCPADS DISTIL 00.293 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11585. 1. 31. 85. 10. 0.82 545. 11585. 1. 31. 85. 10. 0.82 545. 11585. 1. 31. 85. 10. 0.82 545. 11585. 1. 32. 42. 118. 14. 0.85 653. 171054. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.																			
22 FCPADS DISTIL 00.019 0. 0.009 0.17 -3 2. 0. 6. 17. 2. 0.85 108. 235. 24 FCPADS DISTIL 00.019 0. 0.009 0.03 -450. 8. 11. 2. 0.17 -71. 0232. 26 FCPADS DISTIL 00.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.83 859. 232037. 28 FCPADS DISTIL 01.518 0. 0.735 1.25 -237. 149. 19. 490. 1393. 167. 0.84 7269. 182185256. 29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171052. 33 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582. ALL FCPADS DISTIL 03.259 0. 1.662 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 3815169128. ALL FCPADS DISTIL 00.073 0. 0.211 0.52 -245. 39088. 307. 32. 0.46 3243. 4012861822 FCMCDS DISTIL 00.015 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 22324 FCMCDS DISTIL 00.015 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 22324 FCMCDS DISTIL 00.015 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 0226226 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 218182 FCMCDS DISTIL 00.152 0. 0.18 0.22 -126. 16038. 165. 18. 0.48 718. 218182 FCMCDS DISTIL 00.074 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 162333 FCMCDS DISTIL 00.074 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 162333 FCMCDS DISTIL 00.074 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 162333 FCMCDS DISTIL 00.074 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 162333 FCMCDS DISTIL 00.074 0. 0.080 0.20 -94. 15036. 117. 12. 0.46 555. 162339 FCMCDS DISTIL 00.074 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 163333 FCMCDS DISTIL 00.074 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 162339 FCMCDS DISTIL 00.004 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 162330 FCMCDS DISTIL 00.004 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 163030 FCMCDS DISTIL 00.004 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 163030 FCMCDS DISTI	166		5101		E. 03		1.094				. 0.	- JEU	. 1779.		. 5.46		E. 7 / .		
24 FCPADS DISTIL 00.019 0. 0.009 0.03 -4, -5, -0, 5, 11, 2, 0.17 -71, 0, -232, -26 FCPADS DISTIL 00.188 0. 0.091 0.17 -30, 13, 2, 60, 168, 20, 0.83 659, 23, -203, -7, 28 FCPADS DISTIL 01.518 0. 0.735 1.25 -237, 149, 19, 490, 1393, 167, 0.84 7269, 182, -1852, -75, 29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20, 13, 2, 42, 118, 14, 0.85 653, 17, -105, -23, 35 FCPADS DISTIL 00.098 0. 0.047 0.03 -16, 5, 1, 31, 85, 10, 0.82 545, 1, -158, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 0.85 653, 17, -105, -24, 118, 14, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18					-0.24	1 0.	0.173	0.42	-30.	42	. 5.	104	272.	34.	. 0.85	3677.	32.	-923.	-1324
26 FCPADS DISTIL 00.188 0. 0.091 0.17 -30. 13. 2. 60. 168. 20. 0.83 859. 232037 28 FCPADS DISTIL 01.516 0. 0.735 1.25 -237. 149. 19. 490. 1393. 167. 0.84 7269. 182185258 29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171054 33 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582 ALL FCPADS DISTIL 03.259 0. 1.662 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 3815169126 20 FCMCDS DISTIL 00.273 0. 0.211 0.52 -245. 39088. 307. 32. 0.46 3243. 40128616 22 FCMCDS DISTIL 00.015 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 2232324 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1.015 -93. 0226226 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 21816 28 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 21816 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 5848. 16688544 ALL FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 20 STM141 COAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 07982 22 STM141 COAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 019261 26 STM141 COAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 019261 26 STM141 COAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 019261 26 STM141 COAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 019261 26 STM141 COAL-A 00.0012 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 12 28 STM141 COAL-A 00.0012 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 12 29 STM141 COAL-A 00.0012 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90. 0.												-							-83
28 FCPADS DISTIL 01.516 0. 0.735 1.25 -237. 149. 19. 490. 1393. 167. 0.84 7269. 182185256 29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171052 33 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582 ALL FCPADS DISTIL 03.259 0. 1.662 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 3815169126 20 FCMCDS DISTIL 00.273 0. 0.211 0.52 -245. 39088. 307. 32. 0.46 3243. 40128616 22 FCMCDS DISTIL 00.015 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 22324 24 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 022626 26 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 21818 28 FCMCDS DISTIL 01.192 0. 0.922 1.57 -1077. 1752393. 1345. 141. 0.46 5848. 16688544 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 5848. 16688544 29 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 363393410 20 STM141 COAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 COAL-A 00.002 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37126 STM141 COAL-A 00.004 0. 0.006 0.20 -94. 15010. 66. 11. 1. 2. 0.99 -6005. 019261 26 STM141 COAL-A 00.002 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37126 STM141 COAL-A 00.002 0. 0.020 0.04 91710. 66. 11. 1. 20. 99 -6005. 019261126 STM141 COAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103109																			-73
29 FCPADS DISTIL 00.128 0. 0.062 0.15 -20. 13. 2. 42. 118. 14. 0.85 653. 171054 33 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11562 ALL FCPADS DISTIL 03.259 0. 1.662 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 3815169126			•			-,													-725
33 FCPADS DISTIL 00.098 0. 0.047 0.03 -16. 5. 1. 31. 85. 10. 0.82 545. 11582 ALL FCPADS DISTIL 03.259 0. 1.662 0.31 -502. 323. 42. 1068. 3041. 369. 0.84 19220. 3815169126 20 FCMCDS DISTIL 00.273 0. 0.211 0.52 -245. 39088. 307. 32. 0.46 3243. 40128618 22 FCMCDS DISTIL 00.015 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 223. 24 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 0226. 26 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 21818 29 FCMCDS DISTIL 01.192 0. 0.922 1.57 -1077. 1752393. 1345. 141. 0.46 5848. 1688854 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 16233 33 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934107 20 STM141 COAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 COAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 019261 26 STM141 COAL-A 00.002 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12																			
ALL FCPADS DISTIL 03.259 0. 1.662 0.31 -502. 323. 42. 1068. 3041. 369. 0.64 19220. 3815169126 20 FCMCDS DISTIL 00.273 0. 0.211 0.52 -245. 39088. 307. 32. 0.46 3243. 40128616 22 FCMCDS DISTIL 00.015 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 223 24 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 0226 26 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 21815 28 FCMCDS DISTIL 01.192 0. 0.922 1.57 -1077. 1752393. 1345. 141. 0.46 5848. 16688544 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 16035. 117. 12. 0.46 555. 16233 31 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934103 20 STM141 CGAL-A 00.002 0. 0.006 0.12 880. 92. 2. 0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 019261 26 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 019261 28 STM141 CGAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.001 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 01031 29 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 741. 741. 741. 741. 741. 741. 741. 741																			-496 -245
20 FCMCDS DISTIL 00.273 0. 0.211 0.52 -245. 39088. 307. 32. 0.46 3243. 40128618 22 FCMCDS DISTIL 00.015 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 22324 24 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 022628 26 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 21818128 28 FCMCDS DISTIL 01.192 0. 0.922 1.57 -1077. 1752393. 1345. 141. 0.46 5848. 16888544 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 16233 33 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934107 20 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 019261 26 STM141 CGAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 28 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103. 29 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90. 59 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90. 59											<u> </u>								
22 FCMCDS DISTIL 00.015 0. 0.012 0.22 -14. 205. 17. 2. 0.46 89. 22324 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 022626 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 218152 FCMCDS DISTIL 01.192 0. 0.922 1.57 -1077. 1752393. 1345. 141. 0.46 5848. 16688544. 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 162333 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 0138141. FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934107. 107. 107. 107. 107. 107. 107. 107.	\ LL	FUFADS	DISI	iL U.	-9,20	9 0.	1.002	0.31	-502.	323	, 42.	ives.	3041.	305	. 0.64	19220.	301.	-5169.	- 12990
24 FCMCDS DISTIL 00.013 0. 0.010 0.03 -230. 5. 10. 1. 0.15 -93. 022626 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 21818 28 FCMCDS DISTIL 01.192 0. 0.922 1.57 -1077. 1752393. 1345. 141. 0.46 5848. 16688544 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12. 0.46 555. 16233 37 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934107 20 STM141 CGAL-A 00.029 0. 0.047 0.12 31491. 563. 10. 0.28 -1996. 07982 2 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 0192611 26 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103. 29 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103. 29 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90.	20	FCMCDS	DIST	IL O.	-0.27	з о.	0.211	0.52	-245.	39	. - 0.	-88.	307.	32.	0.46	3243.	40.	-1286.	-1648
26 FCMCDS DISTIL 00.152 0. 0.118 0.22 -126. 16038. 165. 18. 0.48 718. 21819 28 FCMCDS DISTIL 01.192 0. 0.922 1.57 -1077, 1752393. 1345. 141, 0.46 5848. 16688544 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12, 0.46 555. 16233 37 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934107 20 STM141 CGAL-A 00.029 0. 0.047 0.12 31491. 563. 10. 0.28 -1996. 07982 22 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 0192611 26 STM141 CGAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 28 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103. 29 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90.					•				-14.	_		-5	17.					_	-67
28 FCMCDS DISTIL 01.192 0. 0.922 1.57 -1077. 1752393. 1345. 141. 0.46 5848. 16688544 29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12, 0.46 555. 16233 33 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934103 20 STM141 COAL-A 00.029 0. 0.047 0.12 31491. 563. 10. 0.28 -1996. 07982 22 STM141 COAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 COAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 0192611 26 STM141 COAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 28 STM141 COAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103. 32 29 STM141 COAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90. 30.										-									-51
29 FCMCDS DISTIL 00.104 0. 0.080 0.20 -94. 15035. 117. 12, 0.46 555. 16233 33 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9. 0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934107 20 STM141 CGAL-A 00.029 0. 0.047 0.12 31491. 563. 10. 0.28 -1996. 07982 22 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 0192611 26 STM141 CGAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 28 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103. 32 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90.										-									
33 FCMCDS DISTIL 00.074 0. 0.057 0.04 -56. 5014. 78. 9.0.44 424. 01381 ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934107 20 STM141 CGAL-A 00.029 0. 0.047 0.12 31491. 563. 10.0.28 -1996. 07982 22 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2.0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12.0.99 -6005. 0192611 26 STM141 CGAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3.0.35 14. 0. 37. 28 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12.0.23 -520. 0103. 32 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8.0.27 115. 0. 90.																			-4418
ALL FCMCDS DISTIL 02.694 0. 2.084 0.39 -2386. 3695841. 3013. 319. 0.46 15944. 3633934107 20 STM141 CGAL-A 00.029 0. 0.047 0.12 31491. 563. 10. 0.28 -1996. 07982 22 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 0192611 26 STM141 CGAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 28 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103. 32 29 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90.																			-385
20 STM141 CGAL-A 00.029 0. 0.047 0.12 31491. 563. 10.0.28 -1996. 07982 2 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2.0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12.0.99 -6005. 0192611 26 STM141 CGAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3.0.35 14. 0. 37. 28 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12.0.23 -520. 0103. 32 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90.										_									
22 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2.0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12.0.99 -6005. 0192611 26 STM141 CGAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3.0.35 14. 0. 37. 28 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12.0.23 -520. 0103. 32. 29 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8.0.27 115. 0. 90. 33.	} L		ופוע	. U.	-2.69	4 U,	2.084	U.39 ·	-2386.	369	5,	-641		319.	. U.46	13944.	363.	-3934.	-10/48
22 STM141 CGAL-A 00.004 0. 0.006 0.12 680. 92. 2. 0.26 -159. 043. 24 STM141 CGAL-A 00.002 0. 0.204 0.67 -010. 66. 111. 12. 0.99 -6005. 0192611 26 STM141 CGAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3. 0.35 14. 0. 37. 28 STM141 CGAL-A 00.021 0. 0.035 0.06 52, -641. 7225. 12. 0.23 -520. 0103. 32 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90. 33	20	STM141	COAL.	-A O.	-0.02	9 0.	0.047	0.12	31.	-49	1.	56.	-3.	10.	0.28	-1996.	0.	-798.	-252
26 STM141 COAL-A 00.012 0. 0.020 0.04 9171. 20. 2. 3.0.35 14. 0. 37. 28 STM141 COAL-A 00.021 0. 0.035 0.06 52641. 7225. 12.0.23 -520. 0103. 32. 29 STM141 COAL-A 00.021 0. 0.035 0.08 30441. 498. 8.0.27 115. 0. 90. 33.	22	STM141	COAL	-A O.	-0.00	4 0.	0.006	0.12		-8	o.						0.	-43.	19
28 STM141 CGAL-A 00.021 0. 0.035 0.06 52641. 7225. 12. 0.23 -520. 0103. 3 29 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90. 3																	0.		-1152
29 STM141 CGAL-A 00.021 0. 0.035 0.08 30441. 498. 8. 0.27 115. 0. 90.																			110
																			341
ALL SIM141 COAL-A 0.																			313
	\LL	STM141	COAL	-A O.	-0.13	4 0.	0.523	0.10	191.	-275	<u>7.</u>	410.	113.	71.	. 0.27	-12869.	0.	<u>-4130.</u>	-933

ISE PE	8/21/79 B AES	.				COGEN	GENI ERATION			IC COMPANY	AL	TERNATIVE	s s	TUDY			F4	AGE 14
متسبابة والمستحد	FUEL	UNITS	TS=	<u> </u>			RT 6.1 1990	FUEL	AND	EMISSIONS LEVEL		NGS		(8/	AVINGS A	RE POSI	TIVE)	
	COST		=\$*10	**9		• • • • • • • • • • • • • • • • • • • •					*****			T	YPE MATO	H=POWR		
			***F U									INGS						
PROCS	ECS			COAL OI		COAL	SR			PART NOX		AL****** X PART		EMSR	SAVING	TOTAL EXPORT MWH		SAVED
22	STM141	COAL-F	0.	-0.004	0.	0.006	0.12	-1.	-8	0.	2.	-2.	2,	0.06	-223.	0.	-60.	10.
24	STM141	COAL-F	Ο.	-0.002	Ο.	0.204	0.67	-1.	-1	0.	65.	111.	12.	0.99	-7867.	0.	-2474.	-1511.
26	STM141	COAL-F	Ο.	-0.012	0.	0.020	0.04	-4.	17	1.	7.	2.	3.	0.17	-51.	0.	22.	102.
		COAL-F		-0.021	0.	0.035	0.06	<u>-7.</u>	-64		13.	-25.		0.02		0.	-180.	298.
		COAL,-F		-0.021		0.035	0.08	-7.	-44		12.	-8.			-130.	0.	36.	,
LL	STM141	COAL-F	Ο.	-0.134	٥.	0.523	0:10	-47.	-275	7.	172.	113.	71.	0.07	-17616.	0.	-5462.	-1782.
		RESIDU		-0.029		0.047	0.12	-10.	-11		14.	29.		0.20	432.	0.	-159.	-110.
		RESIDU		-0.004		0.006	0.12	-1.	-2		2.	4.		0.18	26.	o.	3,	3.
		RESIDU		-0.002		0.204	0.67	-1.	-1		65.	112.		0.99	-335.	0.	-283.	-87.
		RESIDU		-0.012		0.020	0.04	<u>-4.</u>	-5		<u>6.</u>	13.		0.27	254.	0	90.	<u>63.</u>
		RESIDU		-0.021	0.	0.035	0.06	-7.	-9		11.	22.		0.14	326.	0.	114.	80.
		RESIDU		-0.021	0.	0.035	0.08	-7.	-8		10.	21.		0.18	429.	0.	159.	112.
LL.	SIMI4I	RESIDU	0.	-0.134	0.	0.523	0.10	-47.	-53	7.	164.	302.	27,	0, 18	1704.	0.	-114.	91.
		COAL-A		-0.009		0.015	0.04	27.	-31		35.	-14.			-1488.	0.	-514.	
		COAL-A		-0.004		0.006	G.12	6.	-8	. ,	9.	-2.			-117.	0.	-32.	26.
		COAL-A		-0.012		0.020	0.03	36.	-42		47.	-19.			<u>-777.</u>	<u>o.</u>	-197.	<u>148.</u>
\LL	STMO88	COAL-A	0.	-0.048	0.	0.080	0.01	131,	-157	2.	177.	-68.	31.	0.21	-4603.	0.	-1435.	90.
		COAL-F		-0.009		0.015	0.04	-3.	-31		5.	-14.			-1751.	ο.	-586.	-172.
	_ ,,,,	COAL-F		-0.004		0.006	0.12	-1.	-8		2.	-2.		0.06		0.	-51.	15.
		COAL-F		-0.012		0.020	0.03	-4.	-42		8,	-19.		-0.02		0.	-248.	118.
\LL 	STM088	COAL-F	0.	-0.048	0.	0.080	0.01	-17.	-157	2.	29.	-68. 	31.	-0.00	-5652.	0.	-1708.	-76.
20	STMO88	RESIDU	ο.	-0.009		0.015	0.04	-3.	-4	0.	4.	9,	1.	0.10	746.	0.	58.	19.
		RESIDU		-0.004	0.	0.006	0.12	-1.	2		2.	4.	Ο.	0.18	43.	0.	8.	6.
		RESIDU		-0.012	0.	0.020	0.03	-4.	-5		6.	13.		0.11	48.	0.	21.	15.
ILL	STMOSS	RESIDU	0.	-0.048	0.	0.080	0.01	-17.	-19	2.	24.	49.	3.	0.12	1618.	0.	168.	77.
20	PFBSTM	COAL-P	0.	-0.036	0.	0.058	0.14	40.	-57	. 2.	71.	-0.	15.	0.32	-5025.	0.	-1748.	-822
																	. •	

SE PE	O AES						ERATION				AL1	TERNATIV	<u>ES S</u>	TUDY				
	FUEL		2 1 TQ=	•			IRT 6.1 1990	FUEL	AND	EMISSIONS LEVEL		NGS		(8/	AVINGS A	RE POSI	TIVE)	
	COST	ION ON	=\$*10)** 9		1 aris	1330		,	LEVEL	ALL			T	PE MATO	H=POWR		
ROCS		*	****F U	EL	SAV	I N G S*	***	EMI	\$ \$	O N S	SAV	INGS				-ELECTR		
RUCS	EUS	FUEL (DIL+GAS	COAL O	IL+GAS	COAL	NOX		ix i	PART NOX	SO			EMSK	SAVING	EXPORT MWH		SAVED
22	PFBSTM	COAL-	P 0.	-0.004	0.	0.006	0.12	6.	-8	. O.	10.	-2.	2.	0.30	-254.	0.	-68.	4.
	PFBSTM			-0.005		0.200	0.66	-1.	-3.		65 .	109.			-11548.	Ο.	-3396.	
	PFBSTM			-0.044		0.068	0.12	33.	-57		71.	9.			-25 <u>1</u> .	0.	33.	297.
	PFBSTM			-0.068		0.101	0.17	208.	-226		270.	-106.			-2691.		-650.	
	PFBSTM			-0.022		0.034	0.08	36	-44		55.	-9.			-100.	0.	23.	269.
LL	PFBSTM	COAL-	P 0.	-0.243	0.	0.638	0.12	442.	-539	. 18.	740.	1.	149,	0.33	-27152.	0.	-7935.	-1737.
	TISTMT		0.	-0.036		0.058	0.14	-13.	-57		19.	-1.			-12268.		-3514.	
	TISTMT		0.	-0.004		0.006	0.12	-1.	-8 ,		2.	-2.			-602.	0.	-149.	-41.
	TISTMT		0.	-0.004	• •	0.201	0.66	-1.	2		65.	110.			-24223.		-6417.	
	TISTMT		<u>0.</u>	-0.043 -0.022		0.069	0.13	-15.	-57. -64.		22.	9.			<u>-2365.</u>	<u> </u>	<u>-435.</u>	44.
	TISTMT		0.	-0.022		0.035 0.034	0.06 0.08	-8. -8.	-44		12. 12.	-25. -9.			-2164. -1083.	0. 0.	-486. -190.	125. 156.
	TISTMT		ö.	-0.190		0.583	0.11	-66.	-337		191.	119.	-		-61910.		16223.	
20	TISTMT	RESID	v o.	-0.036	0.	0.058	0.14	-13.	-14.	-2.	17.	36,	2.	0.20	-7237.	٥.	-2147.	-1271.
22	TISTMT	RESID	uo.	-0.004	0.	0.006	0.12	-1.	-2	. -0.	2.	4.	٥.	0.17	-319,	. 0.		
	TISTMT			-0.043		0.069	0.13	-15.	-17		21.	43.			-1287.	0.	-204.	-76.
	TISTMT			-0.022		0.035	0.06	-8.	-9		10.	22.		0.13		0.	-186.	-91.
	TISTMT			-0.022		0.034	0.08	-8.	-9.		10.	21.	•		-475.	0.	-56.	-12.
L L	TISTMT	RESID	U 0.	-0.192	0.	0.304	0.06	-67.	-77,	-10.	91.	189.	12.	0,19	-15537. 	0.	-4043. 	-2261.
	TIHRSG		٥.	-0.011		0.013	0.03	-4.	-32		5.	-16.			-5034.		-1346.	
	TIHRSG		o.	-0.005		0.005	0.09	-2.	-9		2.	-2.			-842.		-205.	-73.
	TIHRSG		<u>0.</u>	-0.039		0.166	0.55	-13.	-23		<u>52.</u>	89.			<u>-31265.</u>		-7920 .	
	TIHRSG		0.	-0.031		0.026	0.05	-11.	-36		8.	-3.			-2035.	0.	-434.	-91
	TIHRSG		0.	-0.268		0.088	0.15	-94.	-444		31.	-207.			-22585.		-5470 .	
	TIHRSG		0. 0.	-0.036 -0.530		0.019 0.430	0.05 0.08	-13. -186.	-53. -813.		6. 142.	-18. -214.			-1677. -86337.		-357. 21410.	45.
<u>.l.</u>	11 nKoo	COAL	<u> </u>	-0.530	<u> </u>	0.430	0.08	100.	-013	-2/.	142.	<u>-214.</u>	129.	0.01	-66337.	<u> </u>	21410.	-6393
	TIHRSG			-0.011		0.013	0.03	-4.	-4		4.	8.			-2247.	0.	-638.	-360
	TIHRSG			-0.005		0.005	0.09	-2.	-2		<u> 1.</u> _	<u> 3.</u>			<u>-533.</u>	<u>o.</u>	<u>-131.</u>	-72.
	TIHRSG			-0.046 -0.074		0.018 0.024	0.03 0.04	-16. -26.	-18 -30		4. 5.	15. 22.	_		-1461. -361 9 .	0. 0.	-354. -908.	-209. -539.

	06/21/79 TO AES)				COGENE	GEN ERATION	ERAL E	LECTRI	IC COMPANY	AL'	TERNATIVE	S- S	TUDY			P	AGE 16
	FUEL (UNITS	TS=			REPO	RT 6.1 1990			EMISSIONS LEVEL	SAVII				AVINGS A	RE POSI	TIVE)	
	COST	,	= \$ *10											T	YPE MATO	H=POWR		
RØCS	ECS	ECS **			TO	TALFES		DIRE	CT	IONS		AL******	*	EMSR	CAPITL- SAVING	TOTAL EXPORT	COST	ER LAEC SAVED
	TIHRSG TIHRSG			-0.036 -0.299		0.01 9 0.136	0.05 0.03	-13. -105.	-15. -120.		5. 33.	15. 11G.			-988. -15334.			-127. -2265.
20	STIRL	COAL	0.	-0.045	0.	0.046	0.11	-16.	-62	2.	15.	-7.	10.	0.04	-3567.	0.	-1407.	-619
24	STIRL STIRL STIRL	COAL COAL	0. 0. 0.	-0.006 -0.069 -0.062	0. 0. 0.	0.005 0.188 0.050	0.08 0.62 0.09	-2. -24. -22.	-9. -42. -68.	3.	2. 59. 15.	-3. 99. -2.	12.		-237. -9078. -832.	0. 0. 0.	-65. -2778. -111.	7. -1647. -215.
28 29	STIRL STIRL	COAL COAL	0. 0. 0.	-0.034 -0.032 -0.357	0. 0.	0.024 0.023 0.483	0.04 0.06	-12. -11. -125.	-72 -50 -436	2. 2.	9. 3. 154.	-33. -15. 56.	12. 8.	-0.03 0.00	-1239. -552. -22292.	0. 0.	-287. -86.	243
	STIRL			-0.045		0.046	0.11	10.	8.		41.	63.		0.49	731.	o .	-282.	
26		DISTIL DISTIL DISTIL	0.	-0.006 -0.062 -0.034	0. 0. 0.	0.005 0.050 0.024	0.08 0.09 0.04	2. 4. 23.	2. 1. 21.	. 4.	6. 41. 44.	8. 67. 61.	17.	0.48 0.52 0.45	4. 260. -20.	0. 0. 0.	-10. <u>54.</u> -25.	-32 -112 -241
	STIRL	DISTIL		-0.032 -0.269	0. 0.	0.023 0.222	0.06 0.04	11. 77.	9, 61,		30. 244.	44. 365.		0.47 0.48	102. 1622.	0. 0.	21. -364.	-125 -1310
	STIRL STIRL	RESIDU		-0.045 -0.006	0. 0.	0.046 0.005	0.11 0.08	-16. -2.	-18. -2.		13. 1.	30. 3.		0.15 0.12	729. 4.	0. 0.	-249. -6.	-181 -4
28	STIRL STIRL STIRL	RESIDU RESIDU	0.	-0.062 -0.034 -0.032	0. 0. 0.	0.050 0.024 0.023	0.09 0.04 0.06	-22. -12. -11.	-25, -13, -13,	4.	<u> 14.</u> 7.	34. 17.	-2.	0.20	259. -20.	<u>0.</u> 0.	99. -1.	-0
	STIRL			-0.269		0.222	0.04	-94.	-108	-	6. 62.	17. 153.		0.11	101. 1615.	0. 0.	45. -168.	29 -138
	HEGT85 HEGT85			-0.049 -0.008	O. O.	0.038 0.002	0.09 0.04	25. 5.	-62. -11.		54. 8.	-10. -4.			-9571. -480.	0. 0.	-2711. -124.	-1354 -30
24 26	HEGT85 HEGT85	COAL-A	0.	-0.045 -0.118	0.	0.051 0.020	0.17	-6. 19.	-27 -107	2. 6.	25. 65.	<u>26.</u> -26.	3. 9.	0.60	-11461. -2053.	0,	-3121. -454.	-1862 18
33	HEGT85 HEGT85 HEGT85	COAL-A	0.	-0.047 -0.042 -0.414	0. 0. 0.	0.011 0.007 0.172	0.02 0.00 0.03	0. -4. 53.	-37 -29 -364	2.	19. 12. 246.	-3. -2. -26.	2.	0.19	-638. -936. -33678.	0. 0. 0.	-127. -218. -9049.	-92
20	HEGT60	COAL-A	0.	-0.064	ο.	0.030	0.07	25.	-74,	, -з.	56.	-17.	9.	0.18	-10058.	0.	-2886.	-1453

)

SF PF	G AES	_				CEGENI	ERATION			IC COMPANY		TERNAT I VE	2 2	THINY			• •	AGE 1
<u> </u>	FUEL	INITS	T				RT 6.1			EMISSIONS					AVINGS A	RF PSSI	TIVE)	
		ON UNIT					1990			LEVEL		100			ATT. 100 F			
	COST		=\$×10	**9	**									Т	YPE MATO	H=POWR		
										IONS				-	CAPITL-	-ELECTR	IC PON	ER
ROCS	ECS										*******		t .	EMSR	SAVING	TOTAL		LAEC
	•			COAL OI	L+GAS	COAL	NOX	SO.	X	PART NOX	(SO)	C PART				EXPORT MWH		SAVED
		COAL-A		-0.008		0.002	0.04	4.	-10		8.	-4.			-460.		-119.	
		COAL-A		-0.139		0.116	0.38	-19.	-84		63.	56.			-20216.		-5374.	
		COAL-A		-0.112		0.026	0.05	19.	-103		64.	-22.			-1880.	Q.		54
		COAL-A		-0.042		0.010	0.02	<u>36,</u>	-66		54.	-32.			-2142.	0.		
		COAL-A	0.	-0.055		0.001	0.00	23.	-64		42.	-29.		0.11		0.	-165.	135
		COAL-A		-0.063		0.004	0.00	-9,	-40		13.	-3.	• ,		-91.	0.		3
\LL 	HEGT60	COAL-A	0.	-0.661	0.	0.258	0.05	107.	-605	33.	411.	-71.	63 .	0.18	-46780.	0	13059.	-6129
		COAL-A	o. ·	-0.054		0.022	0.05	21.	-65		47.	-18.			-6C48.		-1740.	
		COAL-A	Ο.	-0.008		0.002	0.05	4.	-10		8.	-4.			-428.		-111.	-22
		COAL-A	٥.	-0.084		0.121	0.40	-11.	-50		54.	61.			<u>-17190.</u>		<u>-4614.</u>	
		COAL-A	0.	-0.087		0.025	0.05	15,	-83		52.	-17.			-1294.	0.		
		COAL-A		-0.417		0.077	0.13	325.	-643		499.	-314.			-16151.		-4050.	
		COAL-A		-0.046		0.010	0.02	22.	-58		41.	-23.			-550.		-112.	174
LL	HEGT00	COAL-A	<u>o.</u>	-0.894	0.	0.331	0.06	486.	-1170	45.	903.	-405.	155.	0.17	-53598.	0	14014.	-3456
20	FCMCCL	CEAL	ο.	-0.033	0	0.038	0.09	14.	3	. 2.	38.	45.	* 0	0.43	-6088.		-1815.	-950
	FCMCCL		a.	-0.005		. 0.005	0.10	2.	-2		8.	45.			-410.	O.	-1013.	-17
	FCMCCL		0.	-0.034		0.039	0.07	15.	- 6		40.	50.			-919.	Ö.	-158.	83
	FCMCCL		Ö.	-0.022		0.025	0.04	9.	-20		26.	11.			-1488.	o.	-347.	74
	FCMCCL		O.	-0.026		0.029	0.07	11.	-12		30.	24.			-576.	Õ.	-89.	200
	FCMCCL		ā.	-0.194		0.222	0.04	85.	-39		226.	216.			-15375.	• •	-4074:	-989
	. 0,.002	<u> </u>		<u> </u>		<u> </u>						210:	1473		100701	<u></u>	40, 4,	
	FCSTCL		0.	-0.031		0.039	0.10	8.	-7		32.	34.			-5871.		-1827.	-983
	FCSTCL		<u>0.</u>	-0.004		0.006	0.10	<u>1.</u>	-3		5.	3.			-393.	0.	-100.	-15
	FCSTCL		0.	-0.033		0.041	0.07	10.	-5		35.	41.		0.63		0.	-150.	89
	FCSTCL		0.	-0.023		0.028	0.05	8.	-26		26.	8.			-1170.	0.	-259.	151
	FCSTCL		0.	-0.025	_	0.031	0.07	8.	-17		27.	18.		0.30		0.		207
	FCSTCL		0.	-0.013		0.017	0.01	4.	5		14.	21.		0.98		<u>0.</u>	-49.	3
LL	FCSTCL	COAL	0.	-0.204	U.	0.253	0.05	62.	-80	8.	216.	198.	/2.	0.39	-14396.	0.	-3871.	-863
	IGGTST		0.	-0.038		0.032	0.08	-13.	-44		10.	-3.			-6309.		-1989.	
	TEGIST		0.	-0.006		0.004	0.08	-2.	-9	. 0.	1.	-3.	2.	0.02	-393.	7.5	-102.	
26	IGGTST	COAL	Ο.	-0.042	0.	0.032	0.06	-15.	-45	2.	1Ö.	-1.	10.	0.15	-836.	0.	-138.	94

C

SE PE	O AES			•		COGE	NERATION	- · · · · - · - ·		IC COMPANY	ALT	ERNATIVES	ss	TUDY				
	FUEL !		7.2	·····						EMISSIONS	SAVING				VINGS A	RE POST	TIVE)	
	1 1 5	ION UNIT				TIM	E 1990			LEVEL	ALL							
•	COST		=\$*10*	(# 9										Į Į	PE MATC	H=P6WR		
			F U E				*					INGS-				-ELECTR		
ROCS	ECS												k	EMSR	SAVING	TOTAL		LAEC
		FUEL OI	L+GAS	COAL OI	IL+GAS	COAL	NOX	SO	K P	PART NOX	SOX	PART				EXPORT MWH		SAVED
	IGGTST		0.	-0.025	- •	0.018		-9.	-49.	• • •	6.	-20.			-939.	0.	-211.	
	IGGTST		0.	-0.032		0.024		-11.	-50.		8.	-15.			-485.	0.	-65.	
LL	IGOTST	COAL	0.	-0.232	໑.	0.181	0.03	-81.	-321.	9.	58.	-68.	70.	0.04-	14615.	o.	-4083.	-1100.
20	GTSGAR	RESIDU	-0 048	0.	-0.048	0.094	0.11	-18.	-18.	0.	12.	33.	5	0.25	6.	0.	-402.	-256.
		RESIDU		0.	-0.005	0.010		-2.	-2.		1.	3.		0.22	11.	Õ.	-4.	-2.
		RESIDU		o.	-0.076	0.138		-20.	-29.		25.	47.		0.37	679.	ŏ.	213.	134.
		RESIDU		Ō.	-0.049	0.077	0.05	-17.	-18.		8.	24.		0.16	90.	0.	7.	-5.
29	GTSCAR	RESIDU	-0.033	Ο.	-0.033	0.056	0.05	-12.	-13.	o. [*]	6.	18.	3.	0.21	254.	0.	79.	46.
LL	GTSOAR	RESIDU	-0.309	0.	-0.309	0.545	0.04	101.	-116.	2.	74.	182.	30.	0.25	1517.	0.	-155.	-121.
20	GTACOS	RESIDU	0.	-0.045	0.	0.049	0.12	-41.	-18.	-5.	-11.	32.	-1.	0.06	555.	0.	-254.	-165
		RESIDU		-0.005		0.005		-5.	-2.		-1.	3.		0.06	28.	Ö.	3.	3.
26	GTAC08	RESIDU	o.	-0.052	Ο,	0.060	0.11	-35.	-21.	-4.	1.	39.	0.	0.16	635.	Ō.	224.	155
		RESIDU	0.	-0.032		0.036		-31.	-13.		∾9.	24.		0.05	168.	0.	65 .	
		RESIDU	0.	-0.026		0.030		-26.	-10.		-8.	19.		0.06	334.	o.	122.	83.
LL	GTAC08	RESIDU	0.	-0.238	0. ·	0.269	0.05 -	-204.	-95.	25.	-43.	175.	-4,	0.08	2568.	0.	237.	187.
20	GTAC12	RESIDU	0.	-0.044	0.	0.050	0.12	-38.	-17.	-5.	-8.	32.	-1.	0.08	523.	0.	-264.	-170.
22	GTAC12	RESIDU	0.	-9.005	Ο.	0.005	0.10	-4.	-2.	-1.	-1.	3.	-0.	0.07	27.	Ο.	3.	3.
		RESIDU		-0.066	0.	0.072		-41.	-26,		3.	47.		0.17	742.	0.	263.	<u> 181.</u>
		RESIDU		-0.032		0.036		-29.	-13.		-7.	23.		0.05	161.	0.	63.	48.
		RESIDU		-0.027	ο.	0.029		-24.	-11.		-6.	19.		0.07	291.	0.	110.	76.
LL ———	GTAC12	RESIDU		-0.253	o	0.281	0.05	-198.	-101.	-24.	-28.	183.	-3.	0.09	2551.	0.	255.	201 .
20	GTAC16	RESIDU	Ο.	-0.044	0.	0.050	0.12	-36.	-17.	4.	-7.	32.	-1.	0.08	393.	0.	-296.	-189.
		RESIDU		-0.005	0.	0.005		-4.	-2.		-1.	3.		0.07	22.	0.	1.	2
		RESIDU	0.	-0.250	0.	0.005		-96.	<u>-100.</u>		<u>-16.</u>	32.		-0.08	<u>-85.</u>	<u>0.</u>	<u>-829.</u>	-724
26		RESIDU		-0.067	:	0.071	0.13	-39.	-27.		4.	47.		0.17	696.	0.	247.	170
28		RESIDU		-0.044	o.	0.044		-37.	-18.		-9. -8	29.		0.06	182.	0.	67. 100.	49. 68.
-		RESIDU		-0.028 -0.627	0. 0.	0.028		-23. -339.	-11. -251.		-6. -49.	18. 232. ·		0.07	268. 2114.	0.	100. -1017.	
	GIACIO	RESIDU	<u> </u>	-0.627		0.280	0.00	333.	-231,	-44,	~~ y ,	232,	13.	0. 10	<u> </u>	<u> </u>	-1017.	094
20	GTWC16	RESIDU	ο.	~0.050	O.	0.044	0.11	-39,	-20.	-5.	-9.	30.	-1.	0.06	89.	О.	-392.	-256.

Million and the state of the st

. J.

9E 0E	O AES					CECEN	ERATION	TECHNO	AL ACV		A 1:	TERNATIV	-	THE				
SE FE	FUEL	INITS					RT 6.1			EMISSIONS			<u> </u>		VINGS A	DE PARI	TIVE	
		ON UN					1990	IOLL	יייי	LEVEL		100		(3)	11103 A	WE LOST	1146/	
	COST		=\$*1	0**9			:							T	PE MATC	H=POWR		
			****F ()		SAV	1 N G S*	***	EMI	8 8	IONS	SAV	INGS		-	CAPITL-			
ROCS	ECS			CT*****- COAL O			SR NOX			****** PART NOX	Tot*** So			EMSR	SAVING	TOTAL EXPORT		LAEC SAVED
																MWH		····
	OTWC16			-0.005		0.005	0.09	-4.	-2.	1.	-3.	3.	-0.	0.05	15.	0.	-2.	-1
	GTWC16			-0.050		0.001	0.00	··26.	-20.		-10,	7.	-2.	-0.12	96.	Ο.	-43.	-62
_	GTWC16			-0.073		0.064	0.12	-43,	-29,		1.	44.		0.15	705.	0.	228.	146
	GTWC16			-0.945		0.040	0.07	-37.	-18.		-10.	27.		0.05	137.	0.	47.	33
	GTWC16			-0.030		0.026	0.06	-24.	-12		-7.	18.	-1.		278.	0.	97.	63
LL	GTWC16	RESID	U C.	-0.364	0.	0.259	0.05	-250.	-146.	31.	-52.	184.	-9.	0.08	1898.	0,	-9 3.	-107
	CC1626			-0.049		0.044	0.11	-34.	-20.	4.	-5.	30.	-1.	0.08	-80.	0.	-518.	-377
	CC1626			-0.005		0.005	0.09	-4.	-2.		-1.	3.		0.07	13.	٥.	-5.	-4
-	CC1626			-0.217	-	0.035	0.12	-81.	-87		-2.	45.		0.11	-718.	٥.	-1024.	-866
	CC1626			-0.074		0.064	0.12	-37.	-30.		7.	43.		0.17	652.	0.	208.	129
	CC1626			-0.033		0.028	0.05	-24.	-13.		-5.	19.		0.06	201.	0,	57.	
	CC1626			-0.030		0.025	0.06	-23.	-12.		-5.	17.		0.06	275.	Ο.	92.	57
	CC1626			-0.073		0.028	0.02	-48.	-29		-16.	24.		0.07	839.	0,	135.	
<u> </u>	CC1626	RESID	UO.	-0.691	0.	0.328	0.06	-361.	-276	47.	-38.	260.	-14.	0.09	1695.	0,	-1512.	-1392
20	CC1622	RESID	u o.	-0.047	0.	0.046	0.11	-34.	-19	4.	-4.	31.	-1.	0.09	161.	0.	-453.	-336
	CC1622			-0.005		0.005	0.09	-4.	-2.	0.	-1.	3.	-0.	0.07	20.	0.	-2.	-2
	CC1622			-0, 220		0.032	0.10	-83.	-88.	12.	-4.	43.	-€.	0.09	-319.	0.	-937.	-821
	CC1622			-0.071		0.067	0.12	-36.	-28		8.	45.	1.	0.18	652.	٥.	218.	141
	CC1622			-0.032		0.029	0.05	-24.	-13.		-5.	20.	-1.	0.06	211.	0.	64.	38
	CC1622			-0.029		0.027	0.07	-22.	-12.		-5.	18.		0.07	<u> 269.</u>	0.	<u>95.</u>	61
	CC1622			-0.025		0.023	0.01	-19,	-10.		-4.	16.		0.18	227.	0.	64.	42
LL	CC1622	RESID	υ ο .	-0.617	0.	0.329	0.06	-320.	-247.	42.	-20,	252,	-11,	9.11	1758.	0.	-1370.	-1264
20	CC1222	RESID	υ σ .	-0.047	0.	0.047	0.11	-33.	-19.	4.	-4.	31.	-0.	0.09	275.	0.	-425.	-319
_	CC1222			-0.005		0.005	0.09	-4.	-2.	o <i>.</i>	-1.	3.	-0.	0.07	24.	Ō.	-1.	-1
-	CC1222			-0.219		0.032	Ö. 11	-83.	-88.		-3.	43.		0.09	-89.	D.	-881.	-789
	CC1222			-0.070		0.067	0.12_	-36.	-28		8,	45.		0.18	685.	0.	228.	147
	CC1222			-0.031		0.029	0.05	-24,	-12.		-5.	20.	-1.		229.	0.	69.	41
	CC1222		-	-0.029		0.027	0.07	-22.	-11.		-5.	18.		0.07	281.	0.	99.	63
	CC1222			-0.025		0.024	0.01	-19.	-10.		-4.	16.		0.19	243.	0.	69.	45
<u> </u>	CC1222	RESID	<u>u o.</u>	<u>-≎.614</u>	0.	0.332	0.06	-318.	-246.	42.	<u>-19.</u>	254.	<u>-10.</u>	0.11	2375.	0	-1214.	-1169
20	CC0822	RESID	υ σ.	-0.044	0.	0.050	0.12	-33.	-18.	4.	-3.	32.	-0.	0,10	115.	0.	-451.	-327

SE PE	O AES						ERATION					TERNAT I VE	<u> </u>					
	FUEL						RT 6.1	FUEL	AND	EMISSIONS		NGS		(5)	AVINGS A	RE POSI	TIVE)	
	EMISS	IQN NN	TS= = \$ *1	0**0		TIME	1990			LEVEL	ALL	-		- \	OF MATO	N-Dello		
	CUST		-3+1	U**3										4.1	PE MATO	H=FOWK		
			****F U			I N G S*:						INGS			CAPITL-	-ELECTR	IC POW	ER
ROCS	ECS									****				EMSR	SAVING			LAEC
				COAL O		COAL	МОХ	SO	K P.	ART NOX	SO	X PART				EXPORT MWH_	•	SAVED
	CC0822			-0.005		0.005	0.10	-4.	-2.		-1.	3.		0.08	20.	. 0,	-1.	-1
	CC0822			-0, 226		0.016	0.05	-87.	-91.		-11.	35.		-0.01	-385.	0.	-970,	-856
	CC0822			-0.066		0.072	0.13	-36.	-26	-5.	8.	47.		0.19	733.	0.	255,	171
	CC0822			-0.029		0.031	0.05	-24.	-12.		-5.	<u>21.</u>		0.07	226.	<u> </u>	75.	49
	CC0822		•	-0.027 -0.582		0.029 0.299	0.07	-23. -304.	-11. -233.		-5. -25.	19. 231.		0.07	289. 1466.	<u> 0</u>	107. -1448.	
i-L	UUU022	KESIU	υ.	-0.902	u.	U. 233	0.08	-304.	-233.	-40.	-23.	231.	-11.	V. 11	1460.	v.	-1445.	-1312
	STIGIS			-0.077		0.016	0.04	-45.	-31.		-15.	18.		0.00	-386.	0.	-620.	-445
	ST1015			-0.008		0.002	0.03	-5.	-3.		~ 2 .	2.		0.00	14.	o.	-13.	-13
	STIG15			-0.215		0.042	0.14	-76.	-86.		5.	48.		0.20	-880.	0.	-945.	-742
	ST1015 ST1015			-0.114 -0.104		0.024	0.04	-51. -62.	<u>-46.</u>	<u>-5.</u> -3.	<u>-7.</u>	26.		0.05	<u>563.</u>	<u> </u>	49.	-32
	STIGIS			-0.104		0.022	0.04	-62. -24.	-42. -16.		-22. -9.	24.		0.01	510.	0.	38.	-35
	STIGIS			-0.719		0.146	0.03	-24. -33 9 .	-16. -288.		-65.	9. 164.		0.01	179. -1.	0.	-1. -1921.	-23
· 	311013	WE310		-0.715	<u> </u>	0.140	0.03	-335.	-200.	- £3.	-65.	104.	-7. 	0.03	-1.	<u> </u>	-1921.	-1009
	ST! 010			-0.070		0.023	G.06	-44.	-28.		-14.	21.		0.02	30.	· · · O.	-493.	-359
	STIGIO			-0.008		0.002	0.05	-5.	-3.		-2.	2.	-	0.02	22.	О.	-9,	-9
	ST1910			-0.226		0.030	0.10	-82.	-91.	-11.	<u>-1.</u>	43.		0.15	-504.	0.	-883.	-724
	STIGIO			-0.104		0.034	0.06	-49.	-41.		-5.	31.		0.08	684.	0.	115.	25
	STIGIO			-0.062		0.020	0.03	-39.	-25.		-13.	18.		0.05	358.	٥.	55.	7
	STIGIO			-0.037		0.012	0.01	-24.	-15;		-8.	11.		0.05	210.	0.	20.	-4
LL	ST1010	RESID	υ ο.	-0.658	0.	0.159	0.03	<u>-315.</u>	-263,	-26.	-57 <u>.</u>	164.	-4.	0.06	1038.	<u> </u>	<u>-1552.</u>	-1380
20	STIGIS	RESID	υo.	-0.067	٥.	0.026	0.06	-44.	-27.	-2.	-14.	22.		0.03	147.	ο.	-454.	-330
	STIGIS			-0.007		0.003	0.05	-5.	-3.	-ō.	-2.	2.		0.02	24.	Ö.	-7.	-7
	STIGIS			-0.242		0.014	0.05	-90.	-97.		5: -	36.		0.06	-365.	0.	-903.	-765
	STIGIS			-0.099		0.039	0.07	-49.	·40.		-6.	33.		0.09	707.	ŏ.	135.	45
28	STIGIS	RESID	υo.	-0.045	o.	0.018	0.03	-30.	-18.	-1.	-10.	15.		0.06	294.	õ.	54.	16
33	STIGIS	RESID	U O.	-0.035	0.	0.014	0.01	-24.	-14.	-1.	-8.	12.		0.06	228.	Õ.	30.	
LL.	STIGIS	RESID	U O .	-0.646	0.	0.148	0.03	-315.	-258.	-25.	-65,	156.	-4.	0.07	1351.	Ō,	-1493.	-1351
20	DEADV3	9F9I0	u o.	-0.047	0	0.042	0.10	-59.	-19.	-4.	-30.	29.	-1	-0 00	-1431.	O.	_786	-469
	DEADV3			-0.047		0.004	0.07	-39. -7.	-3.		-4.	3.		-0.05		<u> </u>	-/38. -21.	-469 -14
	DEADV3			-0.219		0.038	0.12	-84.	-88.	-11.	-3.	46.			-3642.	• • •	-1625.	
			J J.	J. E. 19	₩.	J. 000	V. 12.		50,	• • •	J .	70.	J.	J. 10		9.	1025.	

L -- .

8 · · · ·

	6/21/79	**								COMPANY		TEOMA T 1.4		T1 15V			•	A9E 2
SE PE	O AES	NITS					ERATION RT 6.1			MISSIONS		TERNATIV	<u>ES S</u>		AVINGS A	DE PAGI	TIVE	·
		ON UNIT					1990	FOEL	AIND E	LEVEL		1100		10	A11100 A	ME 1001		
	COST		=\$*10*	*9										T	YPE MATO	H=POWR		
	- 											INGS			CAPITL-	ELECTR	IC POW	ER
ROCS	ECS											AL*****		EMSR	SAVING			LAEC
		FUEL O		COAL OI		COAL	NOX	50	DX PA	RT NO	So	X PAR	1			EXPORT MWH		SAVED
	DEADV3			-0.090		0.048	0.09	-59.	-36.	-6.	-16.			0.03		0,	35.	
	DEADV3		- •	-0.041		0.022	0.04	-45.	-16.	-3.	-26.	17.		-0.14		0,	3.	
	DEADV3			-0.069 -0.619		0.031 0.242	0.02 0.05	-67. -421.	-28. -248.	~5. -40.	-35. -149.	25. 205.		-0.12	273. -6172.	0,	11.	-5. -2117
<u>-L</u>	DEADVS	KESIDU	<u> </u>	-0.619	<u> </u>	0.242	0.05	<u>-421.</u>	-240.	-40.	-149.	205.	-14.	-0.08	-01/2.	<u> </u>	-3003.	-2117
	DEHTPM			-0.040		0.054	0.13	-59.	-16.	-4.	-29.	34.	ο.	0.01	-1411.	0.	-764.	-467
	DEHTPM			-0.005		0.005	0.10	<u>-7.</u>	-2.	-0.	-4.	3.		-0.02		0.		-9.
	DEHTPM			-0.139		0.004	0.01	-69.	-56.	-8.	-23.	19.			-2443.		-1157.	
	DEHTPM		- •	-0.067		0.071	0.13	-61.	-27.	-5.	-17.	47.		0.07		0.	112.	92
	DEHTPM			-0.043	-	0.036	0.06	-65.	-17.	-4.	-40.	24.			-315.	٠٥.	-64	-32
	DEHTPM			-0.031 -0.468		0.024	0.06	<u>-49.</u>	-12. -187.	<u>-3.</u> -36.	-31. -208.	<u>17.</u> 208.		-0.08	-38. -5916.	<u>o.</u>	15.	13 -1773
	UENTEN	KESIDU	U .	-0.466	9.	0.280	0.05	-445.	-107.	-36.	-200.	208.	-10.	-0.02	-5916.	U.	-2099.	-17/3
20	DESGA3	DISTIL	-0.049	0.	-0.049	0.088	0.09	-120.	28.	1.	-93.	69.	-2.	-0.15	-131.	0.	-494.	-485
			-0.007		-0.007		0.06	-15.	5.	Ò.	-12.	9.		-0.12		Ö.	-25.	
24	DESOA3	DISTIL	-0.225	0.	-0.225	0.257	0.10	-28.	-36.	Ο.	53.	97.	6.	0.43	-1168.	0.	-1234.	-1026
26	DESOA3	DISTIL	-0.098	Ο.	-0.098	0.138	0.07	-80.	22.	1.	-38.	89.	-1.	0.05	-82 <i>.</i>	0.	-111.	-273
			-0.058			0.084		-128.	10.	1.	-102.	51.		-0.71		0,		-150
			-0.104		-0.104	0.140		-197.	-11.	0.	-153.	61.		-0.64		0.		-185
LL	DESOAS	DISTIL	-0.698	0.	-0.698	0.923	0.04	-732.	. 23.	5.	-446.	487.	6.	-0.47	-1829.	0.	-2699.	-2786
20	DESERVE	BESTON	-0.049		-0.049	0.088	0.09	-285.	-19.	-o.	-256.	30.		-1.34	-131.	0.	-457.	-307
			-0.007		-0.007		0.06	-265. -36.	-3.	-0.	-230. -33.	30.		-1.34 -1.25		Ö.	-20.	-307
			-0.225			0.257	0.10	-73.	-85.	-ž.	10.	56.			-1168.		-1068.	-839
			-0.098			0.138		-206.	-37.		-162.	39.		-0.92		o.	-39.	-47
			-0.058		-0.058	0.084		-289.	-22.	-ò.	-262.	24.		-2.54			-24.	-27
			-0.104		-0.104	0.140		-425.	-39.	-1.	-380.	37.		-2.40		ŏ.	-86.	-77
			-0.698		-0.698	0.923	0.04 -		-263.		1396.	242.			-1829.	o,	-2186.	-1691
	OTEGAR	DISTIL	-0.045	0	-0.045	0.004	0.10		_		10	40		0.00	657		-070	-844
			-0.045 -0.005		-0.045		0.12	-17.	-7.	0.	12.	42.		0.39	657.	0.	-270.	
			-0.069		-0.005 -0.069	0.010 0.138	0.09 0.13	-2. -15.	-1. -11.	0. 0.	1. 28.	5. 82.		0.36 0.54		0, 0,	-0. 216.	-25 -26
			-0.035		-0.035	0.138	0.13	-10. -14.	-11.	0.	<u> 28.</u> 8.	31.		0.30		0.		-26 -211
			-0.028		-0.028		0.00	-11.	-5.	o.	6.	25.		0.36		0. 0.	87.	-79
			3.320	J.		2.000	J. J.	,,,,,	.	•				3.00	U.U.	•	.	, ,

and the second

	06/21/7 Ed Aes	9				CEGEN	GENI IERATION		ELECTRIC NGLOGY	C COMPANY	At	LYERNATI	WEQ F	******			P/	PAGE 2
SE FE		UNITS	<u> </u>				RT 6.1			EMISSIONS			VES S			ARE POSI	TIVE)	
	EMISS		II TS=				1990	•	•	LEVEL						•	• • • •	
	COST		=\$*1(0**9					•					T'	YPE MATO	CH=POWR		
			***F U			I N G S*						VING		-	CAPITL	ELECTR	IC POW	/ER
PROCS	ECS			CT****	TOTA	ALFES	SR	DIRE	ECT	****	***TOT	TAL****	***			TOTAL	COST	LAEC
		FUEL	JIL+GAS	COAL O	IL+GAS	COAL	NOX	So	OX PA	ART NOX	S S O	X PA	AR'T			EXPORT MWH		SAVED
\LL	GTSOAD	DISTI	L -0.26	7 0.	-0.267	0.535	0.05	-38.	-43,	Ō.	82.	241.	21.	0.40	2933.		102.	-996
	GTRA08			-0.047		0.047	0.11	-2.		5.	29.	64.		0.45			-492.	
	GTRA08			-0.005		0.005	0.09	1.			4.	8.		0.43			-8.	
	GTRAO8			-0.228		0.029	0.10	-56.	-64.	-4.	27.	77.			-1116.		-1169.	
	GTRAOS GTRAOS			-0.075 -0.076		0.063 0.042	0.12 0.07	-4.	0.	5.	41.	81.		0.49		0. 0.	143. -58.	
	GTRAUS			-0.076		0.042	0.07	19. 2.	<u>32.</u> 9.	14. 5.	<u>61.</u> 22.	111. 44.		0.43		<u>0.</u> 0.	<u>-58.</u> 51.	
	GTRAUS			-0.033		0.022	0.05	2. -28.	-17.		22. 4.	44. 37.		0.43		0. 0.	60.	
		B DISTI		-0.740		0.329	0.02	-26. -94.	-42.	34.	260.	585.		0.45			-204 <i>4</i> .	_
·	- Ginnet			V, 1-1-						*****								
20	GTRA12	2 DISTI	L 0.	-0.046	. O.	0.047	0.12	-2.	8.	5.	29.	64.	18.	0.45	-119.	0.	-462.	-45
	GTRA12			-0.005		0.005	0.09	ĩ.			4.	8.		0.44			-7.	
	GTRA12			-0.227		0.030	0.10	-56.	-64.	-4.	27.	77.		0.45	917.	0.	-1118.	
	GTRA12			-0.073		0.065	0.12	-4.	1.		42.	81.	20.			ō.	147.	
	GTRA12			-0.070		0.044	0.07	19.	32.	13.	59.	107.		0.43		ο.	-36.	
	GTRA12			-0.032		0.024	0.06	3.	9.	- ·	22.	44.		0.43		0.	57.	
	GTRA12			-0.050		0.020	0.01	-20.	-12.	-0.	2.	26.		0.44		<u>o.</u>	43.	
ALL	GTRA12	2 DISTI	<u> </u>	-0.701	0.	0.327	0.06	-82.	-34.	34.	259.	570.	150.	0.45	573.	0.	-1913.	-282
20	GTRA16	nisti	. 0	-0.046	. ^	0.047	0.12	-3.	8.	5.	29.	65.	18	0.45	-268.		-496.	-47
	GTRA16			-0.005		0.047	0.12	<u>-3.</u> 1.			<u> 29.</u> 4.	<u> 65.</u> 8.		0.45		<u>0.</u> 0.	-496. -9.	
	GTRA16			-0.003		0.005	0.09	-58.			4. 25.	75.			-1187.		-1205.	
	GTRA16	· · · ·		-0.233		0.024	0.12	-30. -4.	-65. 1.		25. 41.	75. 81.		0.50		0.	140.	
	GTRA16			-0.072		0.043	0.12	18.	31.	13.	56.	102.		0.43		0. 0.	-40.	
	GTRA16			-0.031		0.024	0.06	3.			22.	45.		0.43			56.	
	GTRA16			-0.016		0.014	0.01	-7.			3.	14.		0.49		o.	20.	
		DISTI		-0.657		0.313	0.06	-70.			252.	547.		C.45			-2153.	
										V-1.			150.			<u> </u>		
	GTR208			-0.046		0.047	0.12	-4.		5.	28.	64.	18,	0.44	96.	0.	-411.	42
22	GTR208	DISTI'	L 0.	-0.005	, O.	0.005	0.09	O.	2.	1.	4.	8.	3.	0.43	15.	0.	-6.	2
	GTR208			-0.162		0.002	0.01	-43.	-45.	-3.	10.	45.		0.34		0.	-829.	
	GTR208			-0.073		0.065	0.12	-6.	• •		39.	81.		0.49		Ō.	173.	
20 22 24 26 28	GTR208	, DISTI	L O.	-0.053	· O.	0.038	0.07	15.	27.	11.	47.	88.	30.	0.43	139.	0.	-6,	31
											•						··· , ···	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				- 10					** :						

And the second of the second o

	FUEL	UNITS	*				RATION T 6.1			MISSIONS		TERNATI' NGS		(8/	VINGS /	RE POSI	TIVE)	
		ION UNI	TS≖		**		1990			LEVEL				• ••				
	COST		=\$*10	**9										T	PE MATO	H=PCWR		
	· · · · ·		***F U	EL	SAV	I N G S**	**	EMI	351			ING				-ELECTR	-	
ROCS	ECS			COAL OI		ALFES COAL	NOX			***** RT NOX	T©T*** S©			EMSR	SAVING	TOTAL EXPORT		LAEC SAVED
~ ~~	A+666A	BIATI														MWH		
29 LL	GTR208 GTR208			-0.031 -0.532		0.025 0.262	0.06 0.05	2. -51.	10. 2.	5. 33.	21. 214.	45. 474.		0.43	257. 1023.	0.	64. -1454.	-98
	GIRZUG	DISTIL	. 0.	-0.532	υ.	0.202		-01.	6. ;	33.	214.	4/4.	131.	0.45	1023.	0.	-1454.	-2343
	GTR212			-0.047		0.047	0.11	-3.	8.	5.	28.	64.		0.44	-15.	0.	-440.	
	GTR212			~0.005	0.	0.005	0.09	1.	2.	1.	4,	_8,		0.43	_11.	0.	-7.	-29
	GTR212			-0.246	0.	0.010	0.03	-61.	-69.	-4.	21.	71.		0.38	-77 5 .		-1162.	
	GTR212 GTR212			-0.073 -0.056	<u>0.</u>	0.065	0.12	<u>-6.</u> 16.	1. 28.	<u>5.</u> 11.	<u>40.</u> 50.	<u>81.</u> 92.		0.49	656. 117.	<u>0.</u>	<u>165.</u> ~13.	-63 -334
	GTR212			-0.036	0.	0.025	0.06	·2.	10.	5.	21.	45.		0.43	256.	Ö.	64.	-334 -98
LL	GTR212			-0.653	o.	0.023	0.05	-74.	-30.	32.	233.	515.		0.45	256. 354.		-1985.	
								· · · · · · · · · · · · · · · · · · ·										
	GTR216			-0.046		0.048	0.12	-3.	8.	5.	28.	65.		0.45	-72.	o.	-449.	-444
	GTR216			-0.005	0.	0.005	0.09	1,	2.	1.	4.	8.		0.43	7.	0.	-7.	-29
	GTR216			-0.241 -0.072	0. 0.	0.015 0.066	0.05	<u>-60.</u> -5.	<u>-68.</u>	<u>-4.</u> 5.	<u>22.</u> 41.	73. 82.		0.40	<u>-863.</u> 621.	0.	<u>-1162.</u> 162.	-993 -62
	GTR216			-0.072	0.	0.042	0.12	-5. 17.	1. 29.	12.	52.	95.		0.43	96.	o.	-16.	-345
	GTR216			-0.031	o.	0.025	0.06	3.	10.	5.	22.	45.		0.43	242.	o.	62.	-98
	GTR216			-0.007	o.	0.007	0.00	-3.	-1.	o.	1.	7.		0.49	52.	õ.	11.	1
	0TR216			-0.649	Ö.	0.295	0.06	-72.	-27.	32.	241.	529.		0.45	119.	Ö.	-1980.	
	GTRWOB			-0.054		0.039	0.10	-4.	6.	5.	27.	62.		0.43	-335.	0.	-551.	-523
	GTRW08			-0,006		0.004	G. 07	0.	2.	1.	4.	8.		0.42	3.	0.	-12.	-33
	GTRW08			-0.232	0.	0.025	0.08	-56.	-65.	-4.	26.	75.			-1276.		-1227.	
	GTRW08 GTRW08			-0.085		0.053	0.10	-7.	-3.	4.	39.	78.		0.47	601.	0.	105.	-123
	GTRW08			-0.080 -0.036	<u>0,</u>	0.036	0.06	<u>17.</u> 2.	30. 8.	<u>13.</u> 4.	<u>58.</u> 21.	107. 43.	14.	0.42	67. 238.	<u>0.</u> 0.	-83. 38.	-469 -124
	GTRW08			-0.036	0. 0.	0.019	0.03	2. -26.	-16.	-1.	3.	43. 33.		0.42	238. 708.	0. 0.	30. 62.	-124
	GTRW08				ŏ.	0.279		-103.	-53.	33.	247.	565.		0.43	9.		-2315.	
20	GTRW12	DISTIL	0.	-0.052	0.	0.041	0.10	-3.	6.	5.	28.	63.	18.	0.44	-331.	0.	-541.	-511
22	GTRW12	DISTIL	О.	-0.006	0.	0.004	0.08	1.	2.	1.	4.	8.	3.	0.43	3.	Ō.	-11.	-32
	GTRW12			-0.223	0,	0.033	0.11	-54.	-63.	-4	28.	78.			-1270.	0.	-1190.	-970
	GTRW12			-0.081		0.057	0.10	-5.	-2.	5.	40.	79.		0.48	602.	Ō.	121.	-105
28	GTRW12	DISTIL	Ο.	-0.074	Ο.	0.041	0.07	19.	31.	13.	60.	108.	38.	0.42	65 .	0.	-62.	-443

The second secon

ICE DE	06/21/79 0 AES					CECEN	ERATION			C COMPANY		TERNAT L	ice e	TIMV			•	AGE 2
JE FE	FUEL (JNI TS	*				RT 6.1			EMISSIONS			/ES S	(S	AVINGS A	RE POSI	TIVE)	
	EMISS		II TS=				1990		•	LEVEL					,			
	COST		=\$*1(0**9	•			,						יד	YPE MATC	H=POWR		
			****F U		SAV	1 N G S*	***	EMI	3 5 1	ONS	SAV	ING	5					
PROCS	ECS								T	*** **	***TOT/	1 L****	k m tik		SAVING	TOTAL		LAEC
				COAL O			NOX			ART NOX						EXPORT MWH		SAVED
	GTRW12			-0.034		0.021	0.05	2.	9.	5.	21.	44.		0.42		0.		-115
	GTRW12			-0.060		0.027	0.02	-24.	-15.	-0.	4.	33.		0.45	688.	0.		-6
ALL.	GTRW12	וופוע	L U.	-0.736	0.	0.311	0.06	-89.	-43.	33.	258.	571.	, 5U.	0.45	-7.	0.	-2165.	-3025
20	GTRW16	DISTI	L 0.	-0.052	0.	0.042	0.10	-4.	6.	5.	28.	63.	18.	0.44	-457.	0.	-559.	-526
	GTRW16		_	-0.006		0.004	0.08	1.	2.	1.	4.	8.		0.43	-2.	0.	-12.	-33
	GTRW16			-0.228		0.029	0.10	-56.	-64.	-4.	27.	77.			-1499.		<u>-1261.</u>	
	GTRW16			-0.080		0.058	0.11	-6.	-1.	5.	40.	79,		0.48	575.	0.	118.	
	OTRW16			-0.068		0.041	0.07	18.	30.	13.	57.	103.		0.42	19.	0.	-60.	
	GTRW16			-0.034 -0.065		0.022 0.027	0.05 0.02	2.	9. -16.	5. -1	21. 4.	44. 34.		0.42	238. 71.4	0. 0.	49. 67.	
	GTRW16			-0.065		0.027	0.02	-26. -97.	-16. -47.	-1. 32.	251.	566.		0.44	714. -572.		-2316.	
71-6-	CINWID	21911	<u>.</u> 0.	-0.740	σ.	0.300	5.00	-97.		JE,	EUI.	J00.	140.	J. 44	-5/2.	0.	2010.	-3030
	GTR308			-0.056		0.038	0.09	-6.	5.	5.	25.	62.		0.42	21.	0.	-472.	-481
	GTR308			-0.006		0.004	0.07	Ō.	2,	- 1.	4.	√8.		0.41	13.	0.	-11.	_
	GTR308			-0.051		0.001	0.00	-17.	-14:	-1.	0.	14.		0.33	76.	0.	-90.	
	GTR308			-0.089		0.049	0.09	-11.	-4.	4.	35.	77.		0.45	646.	o.	99.	
	GTR308			-0.076		0.028	0.05	12.	25.	11.	47.	90.		0.41	146.	<u>0.</u>	-59.	-396
	OTR308			-0.038		0.017	0.04	0.	8.	4.	19.	43.		0.40	272.	0.	39.	
	GTR308 GTR308			-0.077 -0.547	- •	0.014 0.213	0.01 0.04	-32. -75.	-20. 2.	-1.	-2.	31. 458.		0.36	751. 2717.	0. 0.	26. -659.	-66 -1909
ALL.	GIRSUS	וופוע	L U.	-0.547	U .	0.213	0.04	-75.		34.	179.	406.	132.	0.41	2/1/.	<u> </u>	-659.	-1803
20	GTR312	DISTI	L 0.	-0.052	ο.	0.042	0.10	-4.	6.	5.	27.	63.	18.	0.43	-113.	0.	-487.	-480
22	GTR312	DISTI	L 0.	-0.006	0.	0.004	0.08	0.	2.	1.	4.	8.	··· 3,	0.43	10.	0.	-9.	-3
	GTR312			-0.238		0.019	0.06	-59.	-67.	-4.	24.	74.		0.42	-922.		<u>-1166.</u>	-989
	GTR312			-0.079		0.059	0.11	-6.	-1.	5.	39.	80.		0.48	647.	0.1	139.	-
	GTR312		-	-0.058		0.040	0.07	17.	28.	11.	51.	93,		0.42	120.	0.	-18.	
	GTR312			-0.033		0.023	0.06	2.	9.	5.	21.	44.		0.42	269.	0.	61.	
	GTR312			-0.055		0.018	0.01	<u>~23.</u>	-14.	-0.	1.	26.		0.41	603.	0.	50.	
ALL	9TR312		L 0.	-0.729	0.	0.288	0.05	-101.	-50.	31.	235.	545.	143.	0.43	860.	0.	-2004.	-289
20	GTR316	DISTI	L O.	-0.052	ο.	0.041	0.10	-4.	6.	5.	27.	63.	18.	0.43	-263.	0.	-523.	-501
22	GTR316	DISTI	L 0.	-0.006		0.004	0.08	0.	2.	1.	4.	8.		0.43		Ō.	-10.	-3
24	GTR316	DISTI	L 0.	-0.240	0.	0.017	0.05	-59.	-67.	-4.	23.	73.			-1184.	0.	-1236.	-1033
															•			

and the second s

• •

	6/21/7	9									ERAL ELE										P	AGE 2
SE PE	TUEL	UNIT	S						NERA:		TECHNOL FUEL /	LOGY	FMIS	PARIS	SAVIN	ERNATI	VES S	TUDY	VINGS A	DE PESI	TIVE	
				TS=					E 19		, ,				ALL				111100			
	COST			=\$*10	**9													T	PE MATO	H=POWR		
			:	*F II	FI		SAV	INGS	****		EMIS	3 5 1	G N	<u>s</u>	Q A V	ING	9		CAPITL-	-FI FCTP	IC PAU	FR
ROCS	ECS	ECS	**	**DIREC	T***	*	TOT	ALF	ESR		DIRECT	r-1		*****	***TOTA	L****	***	EMSR	SAVING			LAEC
		FUE	LO	IL+GAS	COAL	OI.	L+GAS	COAL		NOX	SOX	F	PART	NOX	SOX	PA	RT			EXPORT		SAVED
20	GTR316	- Kie	Ŧ11		-0.0	70		0.039		. 11	-7.	-1.		5.	39.	80.		0.48	C1E	MWH		-96
	GTR316				-0.0	-		0.039	-	. 1 ! . 07	-7. 16.	28.		3. 11.	59. 50.	90. 92.		0.48		0. 0.	-28.	
	GTR316				-0.0			0.023		. 06	2.	9.		5.	21.	44.		0.42		o.	58.	
	GTR316				-0.0			0.018	_	. 01	-23.	-14.		-1.	1.	27.		0.41	505.	ō.	47.	
YLL	GTR316	DIS	TIL	0.	-0.7	35	0	0.283	0	. 05	-105.	-53.		30.	232.	543.	143.	0.43	161.	0.	-219 3.	-3004
20	FCPADS	DIS	TIL	٥.	-0.0	48	ο.	0.039	O	. 09	11.	25.		6.	40.	77.	17	0.57	293.	ο.	-382.	-417
	FCPADS				-0.0			0.003		. 06	2.	4.		1.	6.	10.		0.54	<u>-3.</u>	0.	-25.	
24	FCPADS	DIS	TIL	Ο.	-0.2	14	0.	0.043	0	. 14	-49.	-57.	,	-3.	34.	83.	12.	0.58	-335.	0.	-1077.	-951
	FCPADS				-0.0			0.045		. 08	2.	7.		5.	47.	88.		0.58	268.		-143.	
	FCPADS FCPADS				-0.1			0.050		. 09	30. 12.	<u>56.</u>		<u>14.</u>	83.	<u> 153.</u>		0.67	<u>49.</u>	<u>0.</u>	-236.	
	FCPADS				-0.0			0.018 0.043	-	. 04 . 03	12. -14.	21. 4.	-	5. 1.	31. 29.	56. 78.		0.54	66. 496.	0.	-62. -147.	
	FCPADS				-0.7			0.323	_	. 03 . 06	-8.	80.		38.	360.	728.			1113.		-2766 .	
														- - ·							,	
	FOMODO	DIS	T11		-0.0	=-		0.041		10	-05	0.5		_			1.0	0.40			476	400
	FCMCDS FCMCDS				-0.0 -0.0			0.041 0.004		. 10 . 08	-25. -2.	25. 4.		5, 1.	6, 1,	81. 10.		0.42		0. 0.	-472. -21.	
	FCMCDS				-0. t		-	0.060	_	. 20	-50.	-53.		-3.	33.	88.		0.54	-492.		-1020.	
	FCMCDS				-0.0		Ö.	0.060		. 11	-16.	10.		5.	30.	90.		0.48	207.	0.	-85.	
	FCMCDS				-0.0			0.068		. 12	-33.	58.		13.	21.	157.	39.	0.44	-18.	0.	-172.	
	FCMCDS				-0.0			0.024		. 06	-11.	22,		5.	8	57.		0,42		0.	-38.	
	FCMCDS				-0.0			0.041		. 03 . 08	-45. -245.	93.		-0. 33.	-13. 115.	<u>59.</u> 727.		0.48		<u>0.</u>	-80. -2533.	
166	FUNCUS	פוע	111	0.	-0.6	07	υ.	0.400	U	. 00	-245.	93.	•	33.	115.	121.	150.	U. 45	147.	U.	-2555.	-3335
	, .							 					· · · · · ·									
				: 																		

The state of the s