Week 12 Problems

Alex Skeldon

- 1. (Bass 2.3) We give a counterexample. Let $X = \mathbb{N}$. Let \mathcal{A}_n be the σ -algebra consisting of all sets of natural numbers less than or equal to n, as well as the complements of each of those sets, and \emptyset and \mathbb{N} . Then for every set A in the algebra, we can say that either A or A^c is finite. For $i \in \mathbb{N}$, every singleton set $\{2i\}$ lies in at least one of \mathcal{A}_n , but the infinite countable union of all such sets, which is all of the evens, does not lie in any of the \mathcal{A}_n collections, so our nested union fails the property to be a σ -algebra.
- 2. (H1.4) Let the Lebesgue measure be defined as usual, with the set $X = \mathbb{R}$. By Theorem 4.16 in Bass there exists a subset $E \subset \mathbb{R}$ which is non-measurable. By Theorem 4.6, the collection of measurable sets under an outer measure is a σ -algebra, so the complement E^c must also be non-measurable. The union of these two sets is the entire set \mathbb{R} , which is measurable due to the aforementioned σ -algebra property.
- 3. (H3) Let $A \subset \mathbb{R}$. If A is open, then for any point $x \in A$, there is an open interval (an open ball in \mathbb{R}) around x of some size $\varepsilon > 0$ that is contained in A. This ball $(x \varepsilon, x + \varepsilon)$ has lebesgue measure $2\varepsilon > 0$, and since it is a subset of A, then by property (2) of outer measures, $m(A) \ge 2\varepsilon > 0$ (this includes the case where $m(A) = \infty$, which we consider larger than 0 for inequality purposes).

If A is compact, then by the Heine-Borel theorem, A is closed and bounded. Since A is bounded, there is some $n \in \mathbb{R}$ such that $A \subset [-n, +n]$. The measure of this bounding interval is $2n < \infty$, and by the same subset inequality property of outer measures, $m(A) \le 2n < \infty$.