3D Placement with D2D Vertical Connections

B10732014 何雨澂

B10732027 吳秉寰

B10715041 馬孝傑

B10732040 李宇哲

Flow

- Global placement
- Partition
- Cell Legalization
- Detail Placement
- Terminal Placement

Global Placement (1/3)

Use the gradient method to solve the objective function

min
$$W(x,y) + \lambda \sum (D(x,y) - Mb)^2$$

wirelength density

By the "λ" increasing round by round

```
round 1: \lambda = 0 stepSize = (dieWidth + dieHeight) x 4
round 2: \lambda = \beta stepSize /= 8
round 3: \lambda = 2 \times \lambda
round 4: \lambda = 2 \times \lambda
```

Global Placement (2/3)

Global Placement (3/3)

Cell Legalization (1/2)

- Solve quadratic program based on one linear equation
 - Assuming '=' constraint

min
$$\sum_{i=1}^{N_r} e(i)[x(i) - x'(i)]^2$$
 (1)

s.t.
$$x(i) - x(i-1) \ge w(i-1)$$
, $i = 2, ..., N_r$

$$x(i) = x(1) + \sum_{k=1}^{i-1} w(k), i = 2, ..., N_r$$
 (2)

Cell Legalization (2/2)

- Partition netlist into two dies with minimal terminals
- Sort cells according to x-position
 - Dynamic programming
- Insert each cell to rows
 - Determine the best row
 - Collapse clusters if there is overlap

Detailed Placement (1/9)

- Classify instances with their location (die and row)
- Cells in each row are sorted by their coordinate

Top Die

Detailed Placement (2/9)

- In each row, construct segments by selecting three consecutive instances
- Segments are independent

Detailed Placement (3/9)

Adjust segments' size

Detailed Placement (4/9)

- For each segment, do DFS branch-and-bound (red→blue)
- Initialize "best_WL" by the HPWL before DP

Detailed Placement (5/9)

- For each segment, do DFS branch-and-bound (red→blue)
- Initialize "best_WL" by the HPWL before DP

Detailed Placement (6/9)

- For each segment, do DFS branch-and-bound (red→blue)
- Initialize "best_WL" by the HPWL before DP

Detailed Placement (7/9)

- For each segment, do DFS branch-and-bound (red→blue)
- Initialize "best_WL" by the HPWL before DP

Detailed Placement (8/9)

- For each segment, do DFS branch-and-bound (red→blue)
- Initialize "best_WL" by the HPWL before DP

Detailed Placement (9/9)

- Result (final HPWL)
- Running detailed placement for 1 iteration

	Without DP	With DP	reduction
case1	123	118	4%
case2	10272799	10076549	2.5%

Terminal Placement (1/2)

Find the best boundary to insert terminal

- Scenario1: no axis overlap
- Scenario2: one axis overlap
- Scenario3: two axes overlap

no axis overlap

one axis overlap

Terminal Placement (2/2)

Remove overlap between terminals

- Build horizontal and vertical constraint graph
- Transform to non-overlapping constraints
- Solved by linear programming
 - » Minimizing total displacement

Thank you for listening!