Calcul Numeric –Laborator #11

Ex. 1 Fie $f:[a,b]\to\mathbb{R}$ o funcție continuă.

a) Să se construiască în Python procedura **SplineC** având sintaxa **SplineC** (X, Y, fpa, fpb, x), conform metodei de interpolare spline cubice.

Datele de intrare: vectorul X, componentele căruia sunt nodurile de interpolare, i.e. $a = X_1 < X_2 < ... < X_{n+1} = b$; vectorul Y definit prin $Y_i = f(X_i)$, $i = \overline{1, n+1}$; derivata funcției f în capetele intervalului, fpa = f'(a) și fpb = f'(b); variabila scalară $x \in [a, b]$.

Obs.: Sistemului în necunoscutele, coeficienții b_i , $i = \overline{1, n+1}$ se poate rezolva conform metodei LR (vezi Tema #2) pentru sisteme tridiagonale.

Datele de ieşire: Valoarile numerice y, z, t reprezentănd valorile funcției spline cubice S(x), primei derivate S'(x) și derivatei a doua S''(x) determinate numeric. Indicație: $z = b_j + 2c_j(x - X_j) + 3d_j(x - X_j)^2$; $t = 2c_j + 6d_j(x - X_j)$.

- b) Fie datele: $f(x) = sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]; n = 2, 4, 10; X$ o diviziune echidistantă a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu n+1 noduri; Y = f(X). Să se construiască grafic funcția f, punctele de interpolare (X, Y) și funcția S calculat conform procedurilor **SplineC**, corespunzător unei discretizări x a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu 100 de noduri.
- c) Într-o altă figură să se construiască grafic derivata funcției spline și derivata funcției f.
- d) Într-o altă figură să se construiască grafic derivata a doua a funcției spline și a funcției f.
- e) Să se modifice procedura $y = \mathbf{SplineC}(X, Y, fpa, fpb, x)$, astfel încât parametrii de intrare/ieşire x şi respectiv y să poată fi vectori.
- Ex. 2 Porțiunea de sus a acestui cățel este cel mai bine aproximată de funcții spline cubice cu constrângeri. Folosiți tabelul de mai jos, obținut cu ajutorul graficului, pentru a construi cele trei curbe spline cubice cu constrângeri.

- 8																					_										
7 6 5 4 3 2		2	 - -	Slo	pe I				Cur	ve	1-									-Cı	irve	2-					Curv	Z		Slope	2
1						5				1	0			1	15		İ	2	20				2	5				30		X	2
									Cm	rve	1						C	hrv	e 2								C	urv	e 3		

		Curve 1				Curve 2				Curve 3	
i	x_i	$f(x_i)$	$f'(x_i)$	i	X_i	$f(x_i)$	$f'(x_i)$	i	x_i	$f(x_i)$	$f'(x_i)$
0	1	3.0	1.0	0	17	4.5	3.0	0	27.7	4.1	0.33
1	2	3.7		1	20	7.0		1	28	4.3	
2	5	3.9		2	23	6.1		2	29	4.1	
3	6	4.2		3	24	5.6		3	30	3.0	-1.5
4	7	5.7		4	25	5.8					
5	8	6.6		5	27	5.2					
6	10	7.1		6	27.7	4.1	-4.0				
7	13	6.7									
8	17	4.5	-0.67								