Wide & Deep Learning for Recommender Systems

By Heng-Tze Cheng et al in Google Inc

Lab Intern 정재원

Contents

- 1. Abstract
- 2. Introduction
- 3. Wide & Deep Recommendation system
- 4. System Implementation
- 5. Experiment Result
- 6. Related Work
- 7. Conclusion

Abstract

What is wide & deep

- Generalized linear models with nonlinear feature transformations
- -> large-scale regression and classification problems with sparse inputs.
 - Simple & scalability

Wide set of cross-product feature transformation

- Strength: <u>memorization</u> of feature interaction
- Weak: need more feature engineering

DNN (Deep Neural Network)

- Strength: **generalizing** by low-dimensional dense embedding learned for the sparse features (less feature engineering)
- Weak: over generalize -> recommend less relevant items (interaction sparse & high-rank)

Wide & Deep learning: jointly train wide linear & deep neural networks for recommender system (benefit of Memorization & Generalization)

Intro

- # Recommender system = search ranking system
- main task: find relevant items & rank based on action (click, purchase etc)
- input query: set of user and contextual information
- output: ranked list of items
- # Use generalized linear model (logistic regression) for massive-scale online recommendation and ranking system why? simple, scalable, interpretable
- # Goal: Achieve both **Memorization & Generalization** (similar to general search ranking system)

Memorization & Generalization

Intro

Memorization

Intro

Generalization

Intro

Memorization

&

Generalization

Memorization

- 1. Memorization: learning frequency of co-occurrence items (features) & exploiting correlation in historical data
- -> more topical & directly relevant items (already performed)
- Use <u>cross-product transformation</u> over sparse features
- Explain how <u>co-occurrence</u> of feature pair correlates with the target label
- ex) AND(user_installed_app="Netflix", impression_app="pandora")
- -> 1 if the user installed Netfix and then is later shown Pandora.
- Transformation can't generalize unseen pair (= learn only performed pair)
- => Embedding based model can ex) FM (Factorization Machine), DNN (Deep Neural Network)

8

Generalization

- 2. Generalization: explore new combination based on transitivity of correlation
- -> **improve diversity** of recommended items
- Use less granular feature(= have less detail)
- Manual engineering needed ex) Netflix -> category: video
- ex) AND(user_installed_category=video, impression_category=music)
- Query-item matrix sparse& high rank (= specific preference, niche items)
- -> no interaction between pair but make embedding -> recommend not relevant items
- ⇒ Linear model with cross-product transformation memorize these "exception rules" with fewer parameters

9

Recommendation system overview

User action

- Visit app -> **generate query** (include user & context features)
- Action in app (click, purchase etc) -> system return list of apps (= impressions)
- => These action recorded in logs (= training data)
- # Recommendation system
- 1. retrieval (검색): return candidates items by ML & human-defined rule
- 2. ranking: ranks all item by their score(= P(y | x))
 - y = user action label
 - x = features
 - user features (country, language)
 - contextual features (device, hour of day)
 - impression features (app age, historical statistic of an app)

Figure 2: Overview of the recommender system.

Recommendation system overview

Wide & Deep Recommendation system's component

- Wide: Generalized linear model with cross-product transformation
- Deep: Neural Network model

Figure 1: The spectrum of Wide & Deep models.

Learning – The Wide Component

- Generalized linear model: $y = w^T x + b$
 - feature x = raw feature + cross-product-transformed feature
- Cross-product transformation

 - Example
 - Features: Gender = [male, female] = [1,0], age = [young, old] = [1,0], Country = [kor, usa] = [1,0]
 - If 1st (k =1)transformation = "AND(gender=male, age=young)" (using gender & age features)

 - If user's feature vector $\mathbf{x} = [\text{male, young, usa}] = [1,1,0] => \varphi_1 = 1^1 1^1 1^0 = 1$
 - Capture binary features' interaction & add non-linearity to generalized linear model

Learning – The Wide Component

- In Wide model, Cross-product transformation by using installation & impression features
 - Let) user_installed_app = [A,B] & user_impressed_app = [A,C]

Install	Impression	(install, impression)	Target
А	А	(1,1)	1
А	В	(1,0)	0
С	В	(0,0)	0
С	С	(0,1)	0

- Model train all data which target value is 1
 - Good memorization & can train niche combination and user's specific preference
 - Can't train all data which target value is 0 -> weak generalization

Learning - The Deep Component

- Feedforward Neural Network
- High dimension Categorical string features -> low dimension and dense real value embedding vector
 - Often embedding O(10) to O(100)
- Equation: $a^{(l+1)} = f(W^{(l)}a^{(l)} + b^{(l)})$
 - l = layer number, f = activation function (= ReLUs)
 - $a^{(l)}$, $b^{(l)}$, $W^{(l)}$ = activations, biases, weights at l-th layer
- Embedding all pair of data = (install, impression)
 - Train unseen pair(=new combination) by embedding vector (generalization)
 - Too sparse & high rank feature -> make less relevant recommendation (over generalized)

Арр	2-D Embedding
А	
В	
С	

Joint Training of Wide & Deep Model

Ensemble

- Train separately without knowing each other
- Only combine at inference time (= not training time)
- Disjoint train -> size larger (more feature and more transformation)

Subset Model Original Subset Model Subset Model

Joint training

- · Optimize all parameter simultaneously (both wide and deep) at training time
- Deep part with small number of Wide part's cross-product transformation (size smaller)
 - Wide part complement weak point of deep part (= over generalization)

15

Joint Training of Wide & Deep Model

Joint training of Wide & Deep model

- Back propagating gradient simultaneously both the Wide and Deep part by Mini Batch Gradient
 - Wide part by FTRL(Online Gradient Descent + Regularized Dual Average) algorithm with L1 regularization
 - Online Gradient Descent: stochastic gradient descent but use "most recent data"
 - Deep part by **Ada-Grad algorithm** (= learning rate decay each element)

$$h \leftarrow h + \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$$
, \odot : elementwise prouct
$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

[Ada-Grad Equation]

- Combined weighted sum of output log odds (common logistic loss function)
 - Equation: $P(Y = 1|\mathbf{x}) = \sigma(\mathbf{w}_{wide}^T[\mathbf{x}, \phi(\mathbf{x})] + \mathbf{w}_{deep}^T a^{(l_f)} + b)$
 - Y = binary class label, $a^{(l_f)}$, b, $W^{(T)}$ = final activations, biases, weights
 - σ = sigmoid function, $\varphi(x)$ = cross-product transformation of original feature x

Apps Recommendation pipeline overview

- 3 stages exist
 - Data Generation
 - 2. Model Training
 - 3. Model Serving

Figure 3: Apps recommendation pipeline overview.

1) Data Generation

- The label = app acquisition: 1 if the impressed app was installed
- Vocabularies: mapping categorical string feature -> integer ID, normalized [0, 1]
 - normalized value in i-th quantiles = $\frac{i-1}{n_q-1}$, n_q quantiles

2) Model Training

- **Embedding**
 - wide component -> cross product transformation
 - categorical string features -> integer ID = Vocabularies
 - continuous feature
- Concatenate all embedding together
- Concatenated vector into 3 ReLUs layers => logistic output unit

Joint training with common logistic loss function

- 4th Logistic Loss ReLU (256) 3rd ReLU (512) ReLU (1024) Cross Product 2nd Concatenated Embeddings (~1200 dimensions) Transformation Embeddings Embeddings Embeddings Embeddings #App #Engagement Device Impression Installs Demographics **Continuous Features Categorical Features**

Figure 4: Wide & Deep model structure for apps recommendation.

- Retrain every time is expensive and delays (because every time new data arrival)
- -> implement warm-starting system (= initialize embedding & weight from previous model)

3) Model Serving

- Receive set of app candidates from retrieval system
- Score calculated by Wide & Deep model
- To optimize performance time, multithreading parallelism by running smaller batches in parallel
 - multithread = multiple processing server
 - parallel processing with multiple server -> decrease performance time

20

Experiment Result

1) App Acquisitions

Compare Wide & deep with only wide, only deep

- Online: randomly select 1% users each group & implement A/B test
 - significant increase of gain with Wide & Deep

[A/B test]

Group	Control	experiment
Indicators	5,000	6,000(20%)

- Offline: not have impact than online but slightly increase than others
 - offline -> fixed label
 - online -> generate new exploratory recommendation, learn from new user

Table 1: Offline & online metrics of different models. Online Acquisition Gain is relative to the control.

Model	Offline AUC	Online Acquisition Gain
Wide (control)	0.726	0%
Deep	0.722	+2.9%
Wide & Deep	0.728	+3.9%

Experiment Result

2) Serving Performance

Compare Wide & deep along batch size & # of threads

- At same throughput, more threads and smaller batch size -> lower latency
 - Throughput = the amount processed by digital data transmission per unit hour (= Batch size x # of threads)
 - Latency = delay time

Table 2: Serving latency vs. batch size and threads.

Batch size	Number of Threads	Serving Latency (ms)
200	1	31
100	2	17
50	4	14

Related Work

- Wide & Deep's idea from FM(Factorization machines)
 - FM: add generalization to linear model by factorizing the interaction

- Joint training
 - In NLP reduce RNN's complexity by learning direct weight between input and output
 - It also apply to graphical models

- Previous recommender system used content information & CF(collaborative filtering) for rating matrix
 - Wide & Deep is different (use jointly training with user and impression data)

Conclusion

- Keyword in recommendation system
 - Memorization: learning co-occurrence and correlation -> more topical & directly relevant
 - Generalization: explore unseen combination -> improve diversity
- Component of model
 - Wide linear model -> Memorize sparse feature by using cross product transformation
 - Deep Neural Network(DNN) -> Generalize unseen feature interaction by low dimensional embedding
- => Wide & Deep model -> Combine these models' strengths

- Experiment at Google Play, (a massive-scale commercial app store)
- => Wide & Deep make significant result compared to only deep, only-wide model in Online experiment

Thank you For listening