1.1 映射

1.1.1 映射的概念

定义 1.1.1: 映射定义

设 X,Y 是两个非空集合, 如果**存在**一个<mark>法则 f</mark>, 使得对 X 中**每个元素** x, 按法则 f, 在 Y 中有**唯一确定的元素** y 与之对应, 那么称 f 为从 X 到 Y 的映射, 记作

$$f: X \to Y$$

其中 y 称为元素 x(在映射 f 下) 的像, 并记住 f(x), 即

$$y = f(x)$$

而元素 x 称为元素 y(在映射 f 下) 对一个原像;

需要注意的是,从映射的概念可以看出,映射法则 f 可以有多个,但是只要有一个满足即可.

1.1.2 逆映射和复合映射

定义 1.1.2: 逆映射的定义

设 f 是 X 到 Y 的单射,则由定义,对每个 $g \in R_f$,有唯一的 $x \in X$,适合 f(x) = g,于 是,我们可定义一个从 R_f 到 X 的新映射 g,即

$$g:R_f\to X$$

对每个 $y \in R_f$, 规定 g(y) = x, 这个 x 满足 f(x) = y. 这个映射 g 称为 f 的逆映射, 记作 f^{-1} , 其定义域为 $D_{f^{-1}} = R_f$, 值域 $R_{f^{-1}} = X$. 根据上述定义可知,只有单射才存在逆映射.

定义 1.1.3: 复合映射的定义

设有两个映射

$$g: X \to Y_1$$
 $f: Y_2 \to Z$

其中 $Y_1 \subset Y_2$,则由映射 g 和 f 可以定出一个从 X 到 Z 的对应法则,它将每个 $x \in X$ 映成 $f[g(x)] \in Z$. 显然,这个对应法则确定了一个从 X 到 Z 的映射,这个映射称为映射 g 和 f 构成的复合映射,记作 $f \circ g$,即

$$f \circ g : X \to Z, (f \circ g)(x) = f[g(x)], x \in X.$$

由复合映射的定义可知, 映射 g 和 f 构成复合映射的条件是:g 的值域 R_g , 必须包含在 f 的定义域内,即 $R_g \subset D_f$. 否则, 不能构成复合映射. 由此可以知道, 映射 g 和 f 复合是有顺序的.

1.1.3 映射的分类

- 设 f 是从集合 X 到集合 Y 的映射, 若 $R_f = Y$, 即 Y 中任一元素 Y 都是 X 中某元素 的像, 则称 f 为 X 到 Y 上的映射或满射;
- 若对 X 中任意两个不同元素 $x_1 \neq x_2$, 它们的像 $f(x_1) \neq f(x_2)$, 则称 f 为 X 到 Y 的单射;
- 若映射 f 既是单射, 又是满射, 则称 f 为——映射 (或双射)

1.2 函数的基本概念与特性

1.2.1 函数的概念

定义 1.2.1: 函数定义

设**数集** $D \subset \mathbb{R}$, 则称映射 $f: D \to \mathbb{R}$ 为定义在 D 上的函数, 通常简记为

$$y = f(x), x \in D$$
,

其中 x 称为自变量,y 称为因变量,D 称为定义域,记作 D_f ,即 $D_f = D$.

函数的定义中, 对**每个** $x \in D$, 按对应法则 f, 总有**唯一确定**的值 g 与之对应, 这个值称为函数 f 在 x 处的函数值, 记作 f(x), 即 g = f(x). 因变量 g = g 与自变量 g = g 之间的这种依赖关系, 通常称为函数关系. 函数值 g = g 的全体所构成的集合称为函数 g = g 的值域, 记作 g = g 即:

$$R_f=f(D)=\{y|y=f(x), x\in D\}$$

定义 1.2.2: 自然定义域

约定函数的定义域是使算式有意义的一切实数组成的集合。

例如: 函数 $y=\frac{1}{x-1}$,即使没有指出函数的定义域是多少,但是通过分析可得,函数的自然定义域是 $(-\infty,1)\cup(1,\infty)$ 。同理对于函数 $y=\sqrt[2]{1-x^2}$,其自然定义域是 (-1,1)。

注 1.2.1: 单值函数与多值函数

事实上上述定义的函数为**单值函数**, 若给定一个 x_1 , 对应一个 y_1 。给另外一个 x_2 , 对应 另外一个 y_2 , 即"一对一". 其图像如下图所示

若给定 x_1 和 x_2 , 且他们对应同一个 y, 则称"多对一".

所以函数可以一对一,也可以多对一,统称为单值函数.

但是, 如果一个 x 对应一个 y_1 , 同时对应另一个 y_2 , 也就是一对多, 这叫做多值函数.(高等数学中研究对象主要是单值函数) a

[&]quot;多值函数是不是函数取决于对于函数的定义。可以说狭义的函数特指单值函数,但是广义的函数既包含单值函数,也包含多值函数。

1.2.2 函数的表示

表格

x	1	2	3	4	5	6
y = 2x	2	4	6	8	10	12

图像

图 1.1: 对数函数图像

解析式

y = 2x

1.2.3 反函数

定义 1.2.3: 反函数定义

设函数 y=f(x) 的定义域为 D, 值域为 R. 如果对于每一个 $y\in R$, 必存在唯一的 $x\in D$ 使得 y=f(x) 成立, 则由此定义了一个新的函数 $x=\varphi(y)$, 这个函数称为函数 y=f(x) 的**反函数**^a, 一般记作 $x=f^{-1}(y)$, 它的定义域为 R, 值域为 D. 相对于反函数来说, 原来的函数也被称为**直接函数**.

a一般地, $y = f(x), x \in D$ 的反函数记成 $y = f^{-1}(x), x \in f(D)$

注 1.2.2: 解释

以函数 y = 2x + 1 为例:

y = 2x + 1	自变量:x:[1,2]	
	因变量:y:[3,5]	
$x = \frac{y-1}{2}$	自变量:y:[3,5]	变量
	因变量:x:[1,2]	改变
$y = \frac{x-1}{2}$	自变量:x:[3,5]	方程
	因变量:y:[1,2]	改变

5

定义 1.2.4: 反函数的性质

- $f^{-1}f(x) = x$
- 严格单调函数必有反函数,但是有反函数的函数不一定是单调函数. 如函数 $f(x) = \begin{cases} x, & x \ge 0, \\ 1, & x \ge 0 \end{cases}$

 $\begin{cases} x, & x \ge 0, \\ \frac{1}{x}, & x < 0, \end{cases}$ 其函数图像为

图 1.2: 分段函数 f(x) 图像

- 若函数 f(x) 有反函数,则 f(x) 与任意水平线有且仅有一个交点.
- 若把 $x=f^{-1}(y)$ 与 y=f(x) 的图形画在同一坐标系中,则它们完全重合. 只有 把 y=f(x) 的反函数 $x=f^{-1}(y)$ 写成 $y=f^{-1}(x)$ 后,它们的图形才关于 y=x 对称 a .

[&]quot;这是因为在 $x = f^{-1}(y)$ 中 y 是自变量而 x 是因变量,而在 y = f(x) 中恰恰相反 (这个时候的图像 应该一个是 x-y 坐标系函数图像,一个是 y-x 坐标系函数图像),因此如果此时不交换变量,那么其域没有变化,画在一起会重合,只有交换了变量之后才不会重合.

题目 1. 求函数 $y = f(x) = \ln(x + \sqrt{x^2 + 1})$ 的反函数的表达式以及定义域

题目 1 的注记.

• 在上面的例子中,函数 $f(x) = \ln(x + \sqrt{x^2 + 1})$ 为反双曲正弦函数,其反函数为双曲正弦函数. 除此之外,函数 $y = \frac{e^x + e^{-x}}{2}$ 是双曲余弦函数.

-4 -2 2 4 x

图 1.3: 双曲正弦函数 $y = \frac{e^x - e^{-x}}{2}$

图 1.4: 双曲余弦函数 $y = \frac{e^x + e^{-x}}{2}$

• 下列结论需要记住

$$-x \to 0$$
时, $\ln\left(x + \sqrt{x^2 + 1}\right) \sim x$.

$$-\left[\ln\left(x+\sqrt{x^2+1}\right)\right]' = \frac{1}{\sqrt{x^2+1}}$$
, 于是 $\int \frac{1}{\sqrt{x^2+1}} dx = \ln\left(x+\sqrt{x^2+1}\right) + C$.

- 由于
$$y = \ln(x + \sqrt{x^2 + 1})$$
 是奇函数, 于是 $\int_{-1}^{1} \left[\ln(x + \sqrt{x^2 + 1}) + x^2\right] dx = \int_{-1}^{1} x^2 dx = \frac{2}{3}$.

解答. 已知 $y = f(x) = \ln(x + \sqrt{x^2 + 1})$, 则 $-y = \ln \frac{1}{x + \sqrt{x^2 + 1}} = \ln(\sqrt{x^2 + 1} - x)$ 对两边可以进行如下操作

$$e^{-y} = \sqrt{x^2 + 1} - x$$

 $e^y = \sqrt{x^2 + 1} + x$

那么可以得到 $x=\frac{1}{2}(e^y-e^{-y})$ 交换之后可以得到函数 f(x) 的反函数, 即 $y=f^{-1}(x)=\frac{1}{2}(e^x-e^{-x})$.

1.2.4 复合函数

设函数 y = f(u) 的定义域为 D_1 , 函数 u = g(x) 在 D 上有定义, 且 $g(D) \subset D_1$, 则由

$$y = f[g(x)](x \in D)$$

确定的函数, 称为由函数 u = g(x) 和函数 y = f(u) 构成的**复合函数**, 它的定义域为 D,u 称为中间变量. 内层函数的值域是外层函数的子集.

1.2.5 函数的四种特性及重要结论

有界性

有界性分为三种情况,一种是有上界,一种是有下界,一种是有界。其中有界包含了有上 界和有下界。

定义 1.2.5: 有上界的定义

设函数 f(x) 的定义域为 D, 数集 $X \in D$ 。如果存在数 K_1 , 使得

$$f(x) \leq K_1$$

对任一 $x \in X$ 都成立, 那么称函数 f(x) 上有上界, 而 K_1 称为函数 f(x) 在 X 上的一个上界。

定义 1.2.6: 有下界的定义

设函数 f(x) 的定义域为 D, 数集 $X \in D$ 。如果存在数 K_2 , 使得

$$f(x) \ge K_2$$

对任一 $x \in X$ 都成立, 那么称函数 f(x) 上有下界, 而 K_2 称为函数 f(x) 在 X 上的一个下界。

定义 1.2.7: 有界性的定义

设 f(x) 的定义域为 D, 数集 $I \subset D$. 如果存在某个正数 M, 使对任一 $x \in I$, 有 $|f(x)| \le M$, 则称 f(z) 在 I 上有界; 如果这样的 M 不存在, 则称 f(x) 在 I 上无界.

- 有界是指,同时有上界和下界
- 从几何上看, 如果在给定的区间, 函数 y = f(x) 的图形能够被直线 y = -M 和 y = M" 完全包起来", 则为有界; 从定义上说, 找到某个正数 M, 使得 $|f(z)| \leq M$, 则为有界.
- **在讨论有界还是无界的时候首先要指明区间**, 如果没指名区间, 则无法讨论有界性. 如函数 $y = \frac{1}{x}$ 则 $(2, +\infty)$ 上有界, 但是在 (0, 2) 上无界.

单调性

定义 1.2.8

设 f(x) 的定义域为 D, 区间 $I \subset D$. 如果对于区间上任意两点 x_1, x_2 当 $x_1 < x_2$ 时, 恒 有 $f(x_1) < f(x_2)$, 则称 f(x) 在区间 I 上**单调增加**. 如果对于区间 I 上任意两点 x_1, x_2 当 $x_1 < x_2$, 时, 恒有 $f(x_1) > f(x_2)$, 则称 f(x) 在区间 I 上**单调减少**.

虽然单调性的证明一般用求导, 但是定义法也需要掌握.

对任意
$$x_1, x_2 \in D, x_1 \neq x_2,$$
有
$$f(x)$$
是单调增函数 $\Leftrightarrow (x_1 - x_2) \Big[f(x_1) - f(x_2) \Big] > 0;$
$$f(x)$$
是单调减函数. $\Leftrightarrow (x_1 - x_2) \Big[f(x_1) - f(x_2) \Big] < 0;$
$$f(x)$$
是单调不减函数 $\Leftrightarrow (x_1 - x_2) [f(x_1) - f(x_2)] \geq 0;$
$$f(x)$$
是单调不增函数 $\Leftrightarrow (x_1 - x_2) [f(x_1) - f(x_2)] \leq 0.$

奇偶性

定义 1.2.9

设 f(x) 的定义域 D 关于原点对称 (即若 $x \in D$, 则 -xinD). 如果对于任一 $x \in D$, 恒 有 f(-x) = f(x), 则称 f(x) 为**偶函数**. 如果对于任一 $x \in D$, 恒有 f(-x) = -f(x), 则称 f(x) 为**奇函数**.

注 1.2.3

- $f(\varphi(x))$ (内偶则偶, 内奇看外)^a
- 对任意的 x, y 都有 f(x + y) = f(x) + f(y), 则 f(x) 是奇函数^b.
- 求导后奇偶性互换, 求积后奇偶性互换.
- 对于任意函数 f(x), 令 $u(x) = \frac{1}{2}[f(x) + f(-x)], v(x) = \frac{1}{2}[f(x) f(-x)],$ 其中,u(x) 是偶函数,v(x) 是奇函数. 因为 $f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) f(-x)] = u(x) + v(x)$
- 连续的奇函数的一切原函数都是偶函数
- 连续的偶函数的原函数中仅有一个原函数是奇函数
- 奇函数 y = f(x) 的图形关于坐标原点对称, 当 f(x) 在 x = 0 处有定义时, 必有 f(0) = 0.
- 偶函数 y = f(x) 的图形关于 y 轴对称, 且当 f(0) 存在时, 必有 f'(0) = 0.
- 设 f(x) 是定义在 [-l, l] 上的任意函数, 则

$$F_1(x) = f(x) - f(-x)$$
必为奇函数; $F_2(x) = f(x) + f(-x)$ 必为偶函数^c

 $^{^{}a}$ 奇 [偶] \Rightarrow 偶; 偶 [奇] \Rightarrow 偶; 奇 [奇] \Rightarrow 奇; 偶 [偶] \Rightarrow 偶; 非奇非偶 [偶] \Rightarrow 偶

b证明如下: \diamondsuit x = y = 0,则 f(0) = 2 * f(0),则 f(0) = 0, \diamondsuit y = -x,则 f(0) = f(x) + f(-x).

 $[^]c$ 证明如下: 已知 f(x) 是任意函数,—1 带入可得, $F_1(-x)=f(-x)-f(x)=-F_1(x)$,同理可证 F_2 成立.

周期性

定义 1.2.10

设 f(x) 的定义域为 D, 如果存在一个正数 T, 使得对于任一 $x \in D$, 有 $x \pm T \in D$, 且 f(x+T)=f(x), 则称 f(x) 为周期函数,T 称为 f(x) 的周期. 从几何图形上看, 在周期函数的定义域内, 相邻两个长度为 T 的区间上, 函数的图形完全一样.

需要注意的是函数的周期性只与 x 的参数有关, 比如若函数 f(x) 以 T 为周期, 则 f(ax+b) 以 $\frac{T}{|a|}$ 为周期. 可以观察到其周期只与 x 的系数有关

重要结论

- 若 f(x) 是可导的周期为 T 的周期函数, 则 f'(x) 也是以 T 为周期的周期函数.
- 若连续函数 f(x) 以 T 为周期且 $\int_0^T f(x) dx = 0$, 则 $\int_0^T f(x) dx = 0$ 时, $\int_0^x f(t) dt$ 也以 T 为周期.
- 若 f(x) 在 (a,b) 内可导且 f'(x) 有界, 则 f(x) 在 (a,b) 内有界.

1.2.6 三种特殊函数

符号函数

$$y = \operatorname{sgn} x = \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0 \end{cases}$$

图 1.5: 符号函数 sqn x 图像

取整函数

1

$$y = [x]$$

¹现实生活中其实就是年龄

函数值向左移, 即 $x-1 < [x] \le x$

图 1.6: 取整函数 [x] 图像

狄利克雷函数

2

$$D(x) = \begin{cases} 1, & x \in \mathbf{Q}, \\ 0, & x \in \mathbf{Q}^c. \end{cases}$$

1.3 函数图像

1.3.1 常数函数

y = A, A 为常数, 其图形为平行于 x 轴的水平直线

图 1.7: 常数函数图像

²本函数图像无法绘制

1.3.2 幂函数

$$y = x^{\mu}(\mu$$
是实数)

图 1.8: 常数函数图像

注 1.3.1: 幂函数常用技巧

- 当 x > 0 时, 由 y = x 与 $y = \sqrt{x}, y = \sqrt[3]{x}, y = \ln x$ 具有相同的单调性, 因此可以利用这一特性来研究最值
- 见到 \sqrt{u} , $\sqrt[3]{u}$ 时, 可用 u 来研究最值
- 见到 | u | 时,由 | u |= $\sqrt{u^2}$,可用 u^2 来研究最值
- 见到 $u_1,u_2,u_3,\ln(u_1+u_2+u_3)=\ln u_1+\ln u_2+\ln u_3$ 来研究最值
- 见到 $\frac{1}{u}$ 时, 可用 u 来研究最值 (结论相反), 即 $\frac{1}{u}$ 与 u 的最大值点、最小值点相反

1.3.3 指数函数

$$y = a^x (a > 0, a \neq 1)$$

图 1.9: 指数函数图像

注 1.3.2: 指数函数相关性质

- 定义域: $(-\infty, +\infty)$. 值域: $(0, +\infty)$.
- 单调性: 常用的指数函数 $y = e^x$
- 极限: $\lim_{x\to-\infty} e^x = 0$, $\lim_{x\to+\infty} e^x = +\infty$ (由于极限的唯一性,因此在趋于不同的无穷时,极限值的不同).
- 特殊函数值: $a^0 = 1$, $e^0 = 1$
- 指数运算法则:

$$a^{\alpha}\times a^{\beta}=a^{\alpha+\beta}, \frac{a^{\alpha}}{a^{\beta}}=a^{\alpha-\beta a}, (a^{\alpha})^{\beta}=a^{\alpha\beta}, (ab)^{\alpha}=a^{\alpha}b^{\alpha}, \left(\frac{a}{b}\right)^{\alpha}=\frac{a^{\alpha}}{b^{\alpha}},$$

 $^{a}eg: e^{\tan x} - e^{\sin x} = e^{\sin x} (e^{\tan x - \sin x} - 1)$

1.3.4 对数函数

$$y = \log_a x (a > 0, a \neq 1)$$

图 1.10: 对数函数图像

注 1.3.3: 对数函数相关性质

- 定义域: $(0,+\infty)$. 值域: $(-\infty,+\infty)$.
- 单调性: 当 a>1 时, $y=log_a x$ 单调增加; 当 0< a<1 时, $y=log_a x$ 单调减少;
- 常用对数函数: $y = \ln x$
- 特殊函数值: $\log_a 1 = 0$, $\log_a = 1$, $\ln 1 = 0$, $\ln e = 1$
- 极限 $\lim_{x\to 0^+} x = -\infty$, $\lim_{x\to +\infty} x = +\infty$.
- 对数运算法则
 - $\log_a{(MN)} = \log_a{M} + \log_a{N}$ (积的对数 = 对数的和) .
 - $-\log_a \frac{M}{N} = \log_a M \log_a N ($ = 对数的差).
 - $-\log_a M^n = n\log_a M$, $\log_a \sqrt[n]{M} = \frac{1}{n}\log_a M$ (幂的对数 = 对数的倍数).
- 常用公式: $x = e^{\ln x} (x > 0), u^{\upsilon} = e^{\ln u^{\upsilon}} = e^{\upsilon \ln u} (u > 0)$
- 当 x > 0 时, 常用于中值定理:

$$\ln \sqrt{x} = \frac{1}{2} \ln x; \ln \frac{1}{x} = -\ln x; \ln \left(1 + \frac{1}{x}\right) = \ln \frac{x+1}{x} = \ln(x+1) - \ln x.$$

1.3.5 三角函数

正弦和余弦函数

$$y = \sin x$$
 $y = \cos x$

图 1.11: 正余弦函数图像

注 1.3.4: 正余弦函数相关性质

- 定义域: $(-\infty, +\infty)$, 值域:[-1, 1]
- 奇偶性: $y = \sin x$ 是奇函数, $y = \cos x$ 是偶函数, $x \in (-\infty, +\infty)$
- 周期性: $y = \sin x$ 和 $y = \cos x$ 均以 2π 为最小正周期. $x \in (-\infty, +\infty)$
- 有界性: $|\sin x| \leq 1$, $|\cos x| \leq 1$

 $\sin x$

• $\sin^2 \alpha + \cos^2 \alpha = 1$

正切和余切函数

$$y = \tan x = \frac{\sin x}{\cos x}$$

$$y = \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$$
Tan Function
$$y = \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$$
(a) 正切函数图像
$$y = \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$$

 $\cos x$

图 1.12: 正余切函数图像

注 1.3.5: 正余切函数相关性质

• $y = \tan x$ 的定义域为 $\{x \mid x \neq k\pi + \frac{\pi}{2} (k \in \mathbf{Z})\};$ $y = \cot x$ 的定义域为 $\{x \mid x \neq k\pi + (k \in \mathbf{Z})\};$ 值域均为 $(-\infty, +\infty)$

• 奇偶性: 均为奇函数

• 周期性: 均以 π 为最小正周期

正割和余割函数

图 1.13: 正余割函数图像

注 1.3.6: 正余割函数相关性质

- 定义域: $y = \sec x$ 的定义域是 $\{x \mid x \neq k\pi + \frac{\pi}{2} (k \in \mathbf{Z})\}$; $y = \csc x$ 的定义域为 $\{x \mid x \neq k\pi, (k \in \mathbf{Z})\}$ 值域均为: $(-\infty, -1] \cup [1, +\infty)$
- 奇偶性: $y = \sec x$ 为偶函数, $y = \csc x$ 为奇函数
- 周期性: 最小正周期均为 2π
- $1 + \tan^2 \alpha = \sec^2 \alpha$; $1 + \cot^2 \alpha = \csc^2 \alpha$

反三角函数

反正弦和反余弦函数

 $y = \arcsin x$

 $y = \arccos x$

(a) 反正弦函数图像

(b) 反余弦函数图像

图 1.14: 反正余弦函数图像

由于这两个函数分别是 $\sin x$ 和 $\cos x$ 的反函数,因此可以知道的是, $\sin x$ 的值域是 $\arcsin x$ 的定义域. 因此可以得到下面的结论

注 1.3.7: 反正余弦函数相关性质

- 定义域 $[-1,1],y=\arcsin x$ 值域 (主值区间) $[-\frac{\pi}{2},\frac{\pi}{2}],y=\arccos x$ 值域 (主值区间) $[0,\pi]$
- 性质: $\arcsin x + \arccos x = \frac{\pi}{2}($ 求导后可以发现导数为 0)

注 1.3.8: 反三角函数恒等式

$$\sin(\arcsin x) = x, x \in [-1, 1], \sin(\arccos x) = \sqrt{1 - x^2}, x \in [-1, 1];$$

 $\cos(\arccos x) = x, x \in [-1, 1], \cos(\arcsin x) = \sqrt{1 - x^2}, x \in [-1, 1]^a;$

上述两个式子可抽象为 $f^{-1}f(x) = x$. 需要注意的是其值需要在值域内.

$$\begin{aligned} \arcsin(\sin y) &= y, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \\ \arccos(\cos y) &= y, y \in [0, \pi] \end{aligned}$$

 a 证明如下: 令 $t=\arccos x\in[0,\pi],\cos t=x$, 又 $\sin^2 t+\cos^2 t=1$, 那么 $\sin t=\sqrt[3]{1-x^2}$, 即 $\sin(\arccos x)=\sqrt{1-x^2}$

反正切和反余切函数

图 1.15: 反正余切函数图像

注 1.3.9: 反正余切函数相关性质

- 定义域 $[-\infty, +\infty], y = \arctan x$ 值域 $(-\frac{\pi}{2}, \frac{\pi}{2}), y = \operatorname{arccot} x$ 值域 $(0, \pi)$
- 性质: $\arctan x + \operatorname{arccot} x = \frac{\pi}{2} ($ 求导后可以发现导数为 0)

1.3.6 初等函数

由基本初等函数经过有限次的四则运算,以及有限次的复合步骤所构成的并且可以由一个式子所表示的函数称为初等函数.

注 1.3.10

幂指函数 $u(x)^{\nu(x)} = e^{\nu(x)\ln u(x)}$ 也是初等函数, 如 x > 0 时, $f(x) = x^x = e^{x\ln x}$. 其函数 图像如下所示:

图 1.16: 函数 x^x 图像

1.3.7 图像绘制

极坐标下的图像

• 用描点法绘制函数图像: 就是把每一个点求出来, 然后连接起来即可, 但是需要点足够多

• 用直角坐标系观点画极坐标系的图像, 以函数 $r = 2(1 + \cos \theta)$ 为例.

图 1.17: 函数 $r = 2(1 + \cos \theta)$ 图像

可以看到 $\theta-r$ 的坐标系的关键点为 $(0,4),(\frac{\pi}{2},2),(\pi,0),(\frac{3}{2}\pi,2),(2\pi,4)$ 这五个点, 那么在极坐标系下可以绘制出这些点, 比如在 x=4 时, $\theta=0,x=2$ 时, $\theta=\frac{\pi}{2},x=0$ 时, $\theta=\pi$.

参数方程

通过第三个变量即参数来表示别的两个变量.

摆线参数方程:

$$\begin{cases} x = r(t - \sin t) \\ y = r(1 - \cos t). \end{cases}$$

星型线参数方程:

$$\begin{cases} x = r\cos^3 t \\ y = r\sin^3 t \end{cases}$$

1.4 常用函数知识

1.4.1 数列

等差数列

首项为 a_1 , 公差为 $d(d\neq 0)$ 的数列 $a_1,a_1+d,a_1+2d,\cdots,a_1+(n-1)d,\cdots$

注 1.4.1: 等差数列相关性质

- 通项公式 $a_n = a_1 + (n-1)d$
- 前 n 项的和 $S_n = \frac{n}{2}[2a_1 + (n-1)d] = \frac{n}{2}(a_1 + a_n)$

19

等比数列

首项为 a_1 , 公比为 $r(r \neq 0)$ 的数列 $a_1, a_1r, a_2r^2, ..., a_1r^{n-1}, ...$

注 1.4.2: 等比数列相关性质

- 通项公式 $a_n = a_1 r^{n-1}$
- 前 n 项的和 $S_n = \begin{cases} na_1, & r = 1, \\ \frac{a_1(1-r^n)}{1-r}, & r \neq 1. \end{cases}$
- $1 + r + r^2 + \dots + r^{n-1} = \frac{1-r^n}{1-r} (r \neq 1)$.

常见数列前 n 项和

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

1.4.2 三角函数

三角函数基本关系

$$\cos \alpha = \frac{1}{\sin \alpha} \quad \sec \alpha = \frac{1}{\cos \alpha} \quad \cot \alpha = \frac{1}{\tan \alpha} \\
\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \quad \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

倍角公式

$$\sin 2a = 2\sin a \cos a, \quad \cos 2a = \cos^2 a - \sin^2 a = 1 - 2\sin^2 a = 2\cos^2 a - 1$$

$$\sin 3\alpha = -4\sin^3 a + 3\sin \alpha, \quad \cos 3a = 4\cos^3 a - 3\cos a$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}, \quad \cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha}.$$

半角公式

$$\sin^2 \frac{\alpha}{2} = \frac{1}{2} (1 - \cos \alpha), \quad \cos^2 \frac{\alpha}{2} = \frac{1}{2} (1 + \cos \alpha),$$

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}, \quad \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}},$$

$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}},$$

$$\cot \frac{\alpha}{2} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}.$$

和差公式

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$
$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha}.$$

积化和差公式

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right], \cos \alpha \sin \beta = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right],$$
$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right], \sin \alpha \sin \beta = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right].$$

和差化积公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}, \sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}, \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}.$$

万能公式

$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$
$$\cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

1.4.3 指数运算法则

$$\boxed{a^a \times a^\beta = a^{a+\beta}, \quad \frac{a^a}{a^\beta} = a^{a-\beta}, \quad (a^a)^\beta = a^{a\beta}, \quad (ab)^a = a^a b^a, \quad \left(\frac{a}{b}\right)^a = \frac{a^a}{b^a}}$$

1.4.4 对数运算法则

$$\begin{split} \log_a(MN) &= \log_a M + \log_a N \\ \log_a \frac{M}{N} &= \log_a M - \log_a N \\ \log_a M^n &= n \log_a M. \\ \log_a \sqrt[n]{M} &= \frac{1}{n} \log_a M. \end{split}$$

1.4.5 一元二次方程基础

- 一元二次方程组: $ax^2 + bx + c = 0 (a \neq 0)$
- 根的公式: $x_{1,2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- 根与系数的关系: $x_1 + x_2 = -\frac{b}{a}, x_1 x_2 = \frac{c}{a}$.
- 判別式: $\Delta = b^2 4ac$
- 抛物线顶点坐标: $(-\frac{b}{2a}, c \frac{b^2}{4a})$

1.4.6 因式分解公式

$$(a+b)^2 = a^2 + 2ab + b^2 \qquad (a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \qquad (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$a^2 - b^2 = (a+b)(a-b) \qquad (a^3 - b^3) = (a-b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})(n$$
是正奇数时, $a^n + b^n = (a+b)(a^{n-1} - a^{n-2}b + \dots - ab^{n-2} + b^{n-1})$

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k}b^k = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \dots + \frac{n(n-1)\cdots(n-k+1)}{k!}a^{n-k}b^k + \dots + nab^{n-1} + b^n$$

1.4.7 阶乘与双阶乘

- $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$, 规定0! = 1.
- $(2n)!! = 2 \cdot 4 \cdot 6 \cdot \cdot \cdot (2n) = 2^n \cdot n!$
- $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdots (2n-1)$

1.4.8 常用不等式

1. 设 a, b 为实数, 则 $|a+b| \le |a| + |b|$; $|a| - |b| \le |a-b|$

注 1.4.3

可以将第一个式子推广为:

离散情况: 设 $a_1, a_2, ..., a_n$ 为实数, 则 $|a_1 \pm a_2 \pm \cdots \pm a_n| \leqslant |a_1| + |a_2| + \cdots + |a_n|$ 连续情况: 设 f(x) 在 [a,b](a < b) 上可积, 则 $\left| \int_a^b f(x) \, \mathrm{d}x \right| \leqslant \int_a^b |f(x)| \, \mathrm{d}x$

22

2. $\sqrt{ab} \leqslant \frac{a+b}{2} \leqslant \sqrt{\frac{a^2+b^2}{2}}(a,b>0)$

注 1.4.4

还有一个不等式是 $|ab| \leqslant \frac{a^2+b^2}{2}$

3.
$$\sqrt[3]{abc} \leqslant \frac{a+b+c}{3} \leqslant \sqrt{\frac{a^2+b^2+c^2}{3}}(a,b,c>0)$$

注 1.4.5

- 6. $\sin x < x < \tan x \left(0 < x < \frac{\pi}{2} \right)$
- 7. $\sin x < x(x > 0)$

注 1.4.6

当
$$x_n > 0$$
 时, $x_{n+1} = \sin x_n < x_n$, 故 x_n 单调减少

- 8. $\arctan x \le x \le \arcsin x (0 \le x \le 1)$
- 9. $e^x \geqslant x + 1(\forall x)$

注 1.4.7

当
$$x_{n+1}=\mathrm{e}^{x_n}-1$$
 时, 由 $\mathrm{e}^{x_n}-1\geqslant x_n$, 得 $x_{n+1}\geqslant x_n$, 即 $\{x_n\}$ 单调不减

10. $x - 1 \ge \ln x (x > 0)$

注 1.4.8

当 $x_n>0$ 时, 若 $x_{n+1}=\ln x_n+1$,由 $\ln x_n+1\leqslant x_n$,得 $x_{n+1}\leqslant x_n$,即 $\{x_n\}$ 单调不增

11.
$$\frac{1}{1+x} < \ln(1+\frac{1}{x}) < \frac{1}{x}(x>0)$$

注 1.4.9

令 $f(x) = \ln x$, 并在区间 [x, x+1] 上对其使用拉格朗日中值定理, 有

$$\ln\left(1+\frac{1}{x}\right) = \ln(1+x) - \ln x = \frac{1}{\xi}$$

其中 $0 < x < \xi < x + 1$,因此对任意的 x > 0,有 $\frac{1}{1+x} < \ln\left(1 + \frac{1}{x}\right) = \frac{1}{\xi} < \frac{1}{x}$

12. 在处理如下数列时,可以在前面加一个减项,如 $(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})$,可化为 $(1-\frac{1}{4})(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})*\frac{4}{3}$

1.4.9 绝对值等式

$$\varphi(x) = \max \left\{ f(x), g(x) \right\} = \frac{1}{2} [f(x) + g(x) + |f(x) - g(x)|]$$

$$\psi(x) = \min \left\{ f(x), g(x) \right\} = \frac{1}{2} [f(x) + g(x) - |f(x) - g(x)|]$$