CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS

Space & Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

(Theme for Advanced Nuclear Power Plant Lectures at CSU-Spring '07)

by Dr. Albert J. Juhasz

In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available.

However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the "Next Generation Nuclear Plant Project" (NGNP) has been established by DOE under the "Generation IV Nuclear Systems Initiative". Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series..

As an attractive alternate heat source the "Liquid Fluoride Reactor" (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U₂₃₃ fuel cycle and a fission process with a negative temperature coefficient of reactivity.

The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H₂) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H₂ for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is expected within the next 30 to 50 years, as predicted by the Hubbert model and confirmed by other global energy consumption prognoses.

Having invested national resources into the development of NGNP, the technology and experience accumulated during the project needs to be documented clearly and in sufficient detail for young engineers coming on-board at both DOE and NASA to acquire it. Hands on training on reactor operation, test rigs of turbomachinery, and heat exchanger components, as well as computational tools will be needed.

Senior scientist/engineers involved with the development of NGNP should also be encouraged to participate as lecturers, instructors, or adjunct professors at local universities having engineering (mechanical, electrical, nuclear/chemical, and/or materials) as one of their fields of study.

CSU Lecture on Thorium -LFR NUCLEAR POWER PLANTS

Space & Terrestrial Power System Integration

Optimization Code BRMAPS

for

Gas Turbine Space Power Plants with Nuclear Reactor Heat Sources

Dr. Albert J. Juhasz

February 13th, 2007

INTRODUCTION

- Focus of Talk on Numerical Methods (BRMAPS to analyze Power Systems composed of
- Thermal Energy Source
- (ie. Fission Reactor, Solar Conc.& Heat Receiver, Chemical)
- Energy Conversion (ECS) via Brayton cycle (Compressor, Turbine, Alternator/Generator, Electr. Controls)
- Heat Source Heat Exchangers Coupled to Reactor & ECS
- Heat Sink Heat Exchangers Connecting ECS to Heat Sink
- Heat Rejection Subsystems (Radiator for Space, Bodies of Water for Ground Based Plants)
- Pumps and Controls as Parasitic Loads
- Selected Output Results

Topical Outline - Power System Design Drivers

Space (Lunar) Power Systems

- Emphasis is on Minimum System Mass
- High System Reliability, Autonomy and long Operational Life required to compensate for little or no maintenance
- Need least complex systems w. minimum components
- Thermal Efficiency can be traded to achieve Low Mass, i.e. non-regenerated and direct heated/cooled cycles eliminate heat exchanger (regenerator HX, HSHX, CSHX) mass

Terrestrial Nuclear Power Systems

- Emphasis is on Maximizing Thermal Efficiency and thus Power Output, Revenue, Profit & Return on Investment
- System Maintenance during regularly scheduled Periods
- High System Mass and Complexity are acceptable as long as high Power Plant Availability/Reliability is assured

BRMAPS System Code Highlights

- Wide operating range capability allows efficient narrowing of design space: Turb, Inlet Temp., Cycle Temp. Ratio, Press. Ratio
- Code Models Interacting Principal Sub-systems of Closed Cycle Gas Turbine (CCGT) Space Power Systems
- Heat Source (Nuclear Reactor + Shield)
- Solar Concentrator + Heat Receiver)
- Thermal-to-Electric Energy Converter Turbo-Alternator
- Heat Rejection Subsystem *Thermal Loop and Space Radiator*
- Operating Conditions for Maximum Cycle Efficiency, Minimum Radiator Area, Minimum Overall System Mass Code Incorporates new Triple Objective Optimization – PR Variable
- Global Optimization Loops for Systematic Variation of Cycle Temp. Ratio and Peak Cycle Temperature – TIT
- Rapid Visualization of Sys. Mass trends with Turbine Inlet Temp. TIT
- Code results validated against Aero and Ground Based Power Plants Sub-Codes for Space Environment and System Reliability Issues
 - Turbomachine Size & Speed; Compressor & Turbine Power; Recuperator & HX, Heat Rejection Subsystem

Synopsis of Closed Brayton Cycle Code - BRMAPS

Thermodynamic System Block Diagram Comprising three major Subsystems

Space environment temperature at $T_{\rm SINK}$

- ullet Heat Source sends Thermal Energy (Heat) to $E \mathrel{C} U$
- E C U Subsystem Transforms Part of Heat Source Thermal Energy, $\mathrm{W_t}$, to Electric Work - $\mathrm{W_e}$
 - Unconverted "Low Grade" Heat, W_t W_e, is Rejected to Space at T_{SINK} by Thermal Radiation Heat Transfer

Regenerated Brayton Cycle Configurations w. Fission Reactor Heat Sources

Non-regenerated Brayton Cycle Configurations w. Fission Reactor Heat Sources

MASAN

Traditional CBC Configuration for Space (Contains 3 Heat Exchangers, 2 Pumps)

2. Indirect Heating with Indirect Heat Rejection

W.

Non-regenerated Cycle Configuration (No Heat Exchangers)

7. Direct Heating Cycle with Direct Heat Rejection

Closed Brayton Cycle with Solar Heat Source

Closed Cycle Gas Turbines (a)10 kWe Radial BRU; (b) 30 MWe Axial Machines

(b) 30 MWe Axial Turbines

Glenn Research Center at Lewis Field

EFFECT OF MOLECULAR WEIGHT ON TURBOMACHINERY

POWER
TECHNOLOGY
DIVISION

AJJ96-002.5

EFFECT OF MOLECULAR WEIGHT ON HEAT-EXCHANGER SIZE

POWER
TECHNOLOGY
DIVISION

Turbine Materials Technology Map

Isentropic and Polytropic Efficiency Relationships

Isentropic Compressor Efficiency - $\eta_{ m c}$

Isentropic Turbine Efficiency - η_t

A function of pressure ratio, γ , η_{pc}

A function of pressure ratio, y, η_{pt}

$$\eta_C = \frac{\left(\frac{P_{OC}}{P_{IC}}\right)^{\frac{(\gamma - 1)}{\gamma}}}{\left(\frac{P_{OC}}{P_{IC}}\right)^{\gamma - \eta_{PC}}}$$

$$\eta_t = \frac{1 - \left(\frac{P_{TT}}{P_{OT}}\right)^{\frac{\eta_{pt}(1-\gamma)}{\gamma}}}{1 - \left(\frac{P_{TT}}{P_{OT}}\right)^{\frac{\gamma}{\gamma}}}$$

 γ Is specific heat ratio

 η_{pc} is polytropic or infinitesimal compressor stage efficiency

 η_{pt} is polytropic or infinitesimal compressor stage efficiency

1

as a Function of Pressure Ratio for various Infinitesimal Stage Isentropic Efficiency for Compressors and Turbines Efficiencies (ETAPC and ETAPT)

Typical Code Output from Global Minimum Mass Scan

											200	TIT-K	909	472	REAT	6.00 4.10 6.14						
	(006.										K-X	H	н	TIC-K -	ETAC	.834						
TSIMK-K 200	1									-	TRINK	TISAN	006.	TT	TOT-X	31						
T X-TI	(RUSGEN ICFF	8. MA88 (W/KG)	1000000 000000 010000 010000 11000 10000 1		2002 2003 2003 2003 244 244 264 264 264 264	199.65				1600	MWE.	z	0	2.370		1231						
		SPEC. SYS (KG/KW) (0000000		0000	40.				1	000	MILE	. 950	068.	TOC-1	669.71 763.49 696.10						
EPSIL	1600 K		04444		प्यव्	តព				CRR-CK		LFC	940	rs es	X-7	570.30 592.93 576.78						
PERM 9 S O	TIE =	. RAD. AREA (M2/MW)	0.000000 0.00000 0.00000	;	2000 2000 2000 2000 2000 2000	414.				MPERAG	R LEVEL		•	2.180	TREEF	200						
ŭ e	MW.	e d	400000	RATIO	សេស្ត្ត	6.2				THE THE TRIEF CANDERSONS (K)	K- POWER	GAMMA	1.667		TREJ-K	725.87 798.03 745.87						
.940	10,000	YS. MASS	04444 04444 660 660 660 660 660 660 660	THE PERSON	48.998 49.459 49.400	50.087				NI ME	- 1600 K	Q	c	988								
3.667	LEVEL -	MIN SYS (METRIC		AT ABOVE							TED	ERG	. 900	ARP, MAGG	(XM/8-MW)	.2581 .2881	TEM	4				
000 000	POWER I	N RADIATOR AREA (M2)	000044 000044 000004 0000000 0400000		242 242 242 242 242 242 242 242 243 243	5747.8 6034.9		3.40		NOR FOR	REGENERATED	TAVASI	006.	HEFF, MIN	(MG) W	900 150 150	ER SYSTEM	0400000	0 2.	,	£	
4.0	POR	MAIN RAD AREA	WWW 444	SYSTEM MASS	4400	93	1600			CONDITTIONS	12	151	•) MSY8 (MS)	49.0002	MW POWER	40000000000000000000000000000000000000	4491.1	204.44	PERCHAE	44 4 4 44 64 64 64 64 64 64 64 64 64 64
. 900	SEARCH		000000 404000 600000 640400	GLOBAL S	88844 88844 840704	20	TIT (K) -	ALUA -	0			ETAPO	.900	MAN THERM	P (M2/KW)	3234 3234	10.000	8 4504 XX XX	(M2) 2.0) (R0/KW)	(M/MG)	02	## 4000 00 24 0
ETAPC.	MASS	E THERMAL KUVIC		MIN GE		.4330		MASS AT ALFA	S.438 B	MINIMUM MASS	CALCULATIONS	ń	0	RATIOS (, AR	פיפית		TEMPERATURE ONE RATIO S FLOWRATE- SSOURE RATIO ESPICIENCY EFFICIENCY		POWIER (W	H	4
ETAB 990	L MIN.	. PRESSURE RATIO	8888888 146888 488787	;	4400 4400 4400	9.0	COMPLETED FOR	SYSTEM MA	TIME - S	GLOBAL MI	5	ETAB	066.		THERM BFF	3516	OWN PO	TREAD THE TREAD TO THE TREAD THE TREAD TO THE TREAD TO THE TREAD TO THE TREAD TO THE TREAD THE TREAD TO THE TREAD TO THE TREAD TO THE TREAD THE TREAD TO THE TREAD TO THE TREAD TO THE TREAD	NG AN		WEIGHTE	#UMP # 2 / 1) 2
	CLOBAL MIN	LE TEMP.P	000000		2000 2000 0000	4.00		MIN. SYS			õ	RATIO	.400	PRICEGORE	RATIO TH	2.3700	MASS BREAKDOWN FOR	INLET INTERA INF. MA. SOR PR CARNO	ADIATI BPECI	SPECIFIC	COMPONENT	HACTOR HISTOR HI
TEMP RATIO	BRAYTON	CYCLE	લાંતનનનન		નનન	नं चं	BRUNMI	M	MXXCOTION	MAP	BRAYTON	TEMP RA	ń	OPPINGUE	PR RA	N N N	MA88	TURBLINE INLET TEMBERATURE- GYGLE TEMBERATURE PAULO COMPERSONE RATIO COMPRESON PRESENTE AND PERCENT CARNOT REPLICENCY- SYSTEM THREMAL EPFICIENCY-	TOTAL RADIATING AREA (KG/M3 = 2.0 8YSTEM SPECIFIC MASS	BELLEXE	ő	REACTOR SHIZED HX, PUMP EMCUPERATOR TURBINE (2/1) ALTERNATOR (2/1) ALTERNATOR (2/1) FOR ELIN HX, PUMP FOR ELIN HX, PUMP FOR ELIN HABLATOR MAIN RABLATOR P. RADIATOR AT 3 K STRUCTURE HARDIATOR DUCT
																			•			

Influence of Regenerator Effectiveness (ERG) on Cycle Efficiency at Cycle Temp. Ratio of 3.0 and 4.0

$$\eta_{PC} = \eta_{PT} = 0.9; \quad \gamma = 1.666$$

(a) Temp. Ratio = 3.0

4

Overall Heat Transfer Coefficient U as a Parameter Regenerator Specific Mass vs. Effectiveness with for He Working Fluid

Space System Mass for 10 MWe CBC vs. Cycle Temperature Ratio with Turbine Inlet Temperature TIT as a Parameter

Space System Mass for 10 MWe CBC vs. Cycle Efficiency with Turbine Inlet Temperature TIT as a Parameter

23

Carbon-Carbon Heat Pipe and SP-100 Radiator Assembly

Segmented Radiator Characteristics for Survival Probability S=0.999

$$S = \sum_{n=N_s}^{n=N} \frac{N!}{n!(N-n)!} (1-p)^{N-n} p^n$$

Brayton Cycle Mapping Code - BRMAPS

Optimization Code - TST3

Brayton Cycle Code BRCY1

Theoretical Basis for Space Sink Temperature Analysis Code TSCALC (developed by author)

A giant sphere, 1 AU in radius, would catch all the Sun's radiative energy.

Solar Fusion Energy Generation via Proton-Proton Chain Reaction

1.
$${}_{1}H + {}_{1}H \rightarrow {}^{2}{}_{1}H + e^{+} + v(neutrino)$$
 (0.42 MeV)
2. $e^{+} + e^{-} \rightarrow v$ (radiation) (1.02 MeV)
3. ${}_{1}H + {}^{2}{}_{1}H \rightarrow {}^{3}{}_{2}$ He + v (5.49 MeV)
4. ${}_{3}He + {}_{3}He \rightarrow {}^{4}He + {}^{1}{}_{1}H + {}^{1}{}_{1}H$ (12.86 MeV)

Net Effect: $4^{1}H \rightarrow 4^{2}He + 2e^{+} + 2v$

$$4*1.0078265 u = 4.002603 u + (2 e^{+} + 2v + 2 \gamma + 12.86 MeV)$$

Total Energy Generated –
$$E = m^*c^2$$

$$E_t = (4.0313008 - 4.002603) u * 1.66*10^{-27} kg/u * (3*10^8 m/sec)^2$$

26.76 MeV/p-p cycle which checks ∑ reaction step energies, E_{RS}

$$E_{RS} = 2*(0.42 \text{ MeV} + 1.02 \text{ MeV} + 5.49 \text{ MeV}) + 12.86 \text{ MeV} = 26.76 \text{ MeV}/p-p$$

Solar Luminosity, L, is due to $9*10^{37} p-p$ cyc/sec

 $L = 26.76 \text{ MeV}^{1}.602^{13} \text{ MeV}^{3}/\text{MeV} + 9^{103}/\text{sec} = 3.86^{1026} \text{ Watts}$ Solar Mass Loss $(4.0313008 - 4.002603) u*1.66*10^{-27} kg/u * 9*10^{37}/sec = 4.3*10^{9} kg/sec$ = 4.3 Million tonnes/sec

The state of the s

Solar and Arbitrary Infrared Spectra

Equilibrium Temperatures, TS(K), at Various AU Distances

	ОКВІТ	HELIOPAUSE PLUTO	NEPTONE	URANUS	SATURN	JUPITER	ASTEROIDS	MARS	EARTH	VENUS	Moon @ Noon	MERCURY	CORONA	PHOTO SPHERE
ь	TS(K)	18.9	51.1	63.9	9.06	122.7	161.6	226.8	279.9	329.1	386	450.0	1979.3	5800.2
SPACECRAFT APPROACHING SUN	Q/A(W/M2) (at 90 deg)	.03	1.52	3.73	15.08	50.70	152.50	591.18	1372.51	2623.26	1372.5	9164.15	3431265.02	64163903.86
SPACECRAFT	AU	39.438	30.058	19.182	9.539	5.203	3.000	1.524	1.000	.723	1.00	.387	.020	.005
FOR	AE	.60	.60	.60	09.	.60	.60	.60	09.	.60	.92	.60	.60	1.00
CONDITIONS	EPS	06.	06.	06.	96.	06.	96.	06.	96.	96.	6.	06.	06.	06.
8	FV	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ILUMANG (DEG)	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	0.06	25.00	25.00	90.00

Spacecraft with Trapezoidal Heat Pipe Radiator

Thermal Energy Transfer in a Heat Pipe Radiator

Relationships Resulting from Closed Brayton Cycle Analysis

Radiator Area

$$A_r = \dot{m} \cdot C_p \cdot \left[\frac{1}{h_r} \cdot \ln \left(\frac{T_{win}^{-4} - T_s^4}{T_{wex}^{-4} - T_s^4} \right) + \frac{1}{\left(4 \cdot \sigma \cdot \varepsilon \cdot T_s^3 \right)} \cdot \left[\ln \frac{\left(T_{win} - T_s \right) \cdot \left(T_{wex} + T_s \right)}{\left(T_{win} + T_s \right)} - 2 \cdot \left(\tan^{-1} \cdot \frac{T_{win}}{T_s} - \tan^{-1} \cdot \frac{T_{wex}}{T_s} \right) \right] \right]$$

Brayton Cycle Thermal Efficiency

$$= \frac{\eta_b \left(\frac{\Theta_T - 1}{\Theta_C}\right) \left(\alpha \eta_t - \frac{\Theta_C}{\eta_C}\right)}{\alpha \left(1 - \varepsilon_R\right) + \varepsilon_R \eta_t \alpha \left(1 - \frac{1}{\Theta_T}\right) + \varepsilon_R - 1 + \frac{1}{\eta_C} \left(1 - \Theta_C + \Theta_C \varepsilon_R - \varepsilon_R\right)}$$

where

 $\Theta_{\rm C} = (P_{\rm OC} \ / \ P_{\rm IC}) \ ^{(\gamma-1)/\gamma}$ is the compressor pressure ratio parameter

 $\Theta_{\rm T} = \left(P_{\rm IT} \ / \ P_{\rm OT} \right)^{(\gamma-1)/\gamma}$ is the turbine pressure ratio parameter

Sample Power Plant Analyzed for Large Inter-planetary Spacecraft

Dual Loop 200 MWe Closed Cycle (He) Gas Turbine (CCGT) Power System with Nuclear Fusion Reactor Heat Source

Interplanetary Crew Transport Vehicle

Advanced Power System Applications

(CCGT) Systems with Nuclear can achieve Specific Mass (SPM) < 5 kg/kw For Space Nuclear Powered Multi-Megawatt Closed Cycle Gas Turbine

- By utilizing aircraft engine axial compressor/turbine technology
- Higher pressure ratios allow removing heavy regenerator
- Axial turbo-machinery has higher efficiency than radial
- Turbine Inlet temperatures (TIT) can be increased to ~1600 K using He working fluid and ceramic turbine technology
- Using High Temperature Gas Reactors (HTGR-VHTR)
- Direct heating of He working fluid makes heavy heat source liquid/gas heat exchanger and liquid circulating pump unnecessary
- High TIT permits high cycle efficiency while permitting elevated heat ejection temperatures, thus reducing radiator area
- By direct cooling of turbine exhaust gas via Heat Pipe (HP) Radiator
- Direct cooling of He working fluid makes heavy heat sink gas/liquid heat exchanger and liquid circulating pump unnecessary
- Inherent redundancy of HP radiator permits reducing radiator specific mass while increasing overall system reliability
- Use of aircraft engine technology (modified for He working fluid as per CFD codes) lowers development costs.

Terrestrial Nuclear Power Plant w. LFR and HP, MP, LP Heat Exchangers for Reheat/Intercool Brayton Cycle

Ground Based Nuclear Power System (1000-MWe Helium Plant) With Turbine Reheat and Compressor Intercooling

CD-06-82887-2

Three Stage Reheat & Intercool Brayton Cycle Temperature - Entropy Diagram

4

Power Cycle Schematic and T-S Diagram for Single Expansion Inter-Cooled Triple Compression System

Fig. 2 Cycle and entropy diagram of the first closed-cycle gas turbine plant AK 36, Escher Wyss 1939.

(FrutSchi) V Compressors, T Turbines, E Air Heater (Heat Input), R Recuperator, K Coolers (Heat Rejection), A Usable Work, G Generator.

Typical Machine Sizes for 1000 MWe He Plant

- Single Turbo-Alt at 10 MP a and Pr=2; (TIT=1200K; TR=4)
- Mass Flowrate ~ 1420 kg/sec
- Dia. = 6.5 m; L = $\sim 20 \text{ m}$; Speed = 1800 rpm
- Recuperator Volume ~ 360 m³
- Thermal Eff. = 48%
- Three Reheat/Intercooled Turbo-Alt's
- Mass Flowrate ~ 474 kg/sec
- P=20 Mpa (Pr=2); Dia = 1.9 m, L = 4.5m, Speed = 8000 rpm
- P=10 Mpa (Pr=2); Dia = 2.7 m, L = 6.3m, Speed = 5670 rpm
- P= 5 Mpa (Pr=2); Dia = 3.8 m, L = 8.5m, Speed = 4000 rpm
- Recuperator Volume ~ 120 m³
- Thermal Eff. = 51.5%

Typical Machine Sizes for 300 MWe He Plant

- Single Turbo-Alt at 10 MP a and Pr=2; (TIT=1200K; TR=4)
- Mass Flowrate ~ 434 kg/sec (One 300 MWe Turbo-Gen.)
- Dia. = 3.8 m; L = ~8.8 m; Speed = 3600 rpm
- Recuperator Volume ~ 96 m³
- Thermal Eff. = 48%
- Three Reheat/Intercooled Turbo-Alt's (TIT=1200K; TR=4)
- Mass Flowrate ~ 142 kg/sec (Three 100 MWe Turbo-Gens.)
- P=20 Mpa (Pr=2); Dia = 1.4 m, L = 3.3 m, Speed = 8700 rpm
- P=10 Mpa (Pr=2); Dia = 1.9 m, L = 4.4 m, Speed = 6200 rpm

P= 5 Mpa (Pr=2); Dia = 2.7 m, L = 6.3 m, Speed = 4360 rpm

- Recuperator Volume ~ 34 m³
- Thermal Eff. = 51.6%

Typical Machine Sizes for 150 MWe He Plant

- Single Turbo-Alt at 10 MPa and Pr=2; (TIT=1200K; TR=4)
- Mass Flowrate ~ 217 kg/sec (One 150 MWe Turbo-Gen.)
- Dia. = 2.3 m; L = $\sim 5.3 \text{ m}$; Speed = 5040 rpm
- Recuperator Volume ~ 48 m³
- Thermal Eff. = 48.4%
- Three Reheat/Intercooled Turbo-Alt's (TIT=1200K; TR=4)
- Mass Flowrate ~ 72 kg/sec (Three 50 MWe Turbo-Gens.)
- P=20 Mpa (Pr=2); Dia = 0.92 m, L = 2.2 m, Speed = 12,500 rpm
- P=10 Mpa (Pr=2); Dia = 1.30 m, L = 3.0 m, Speed = 8800 rpm
- P= 5 Mpa (Pr=2); Dia = 1.80 m, L = 4.2 m, Speed = 6200 rpm
- Recuperator Volume ~ 16 m³
- Thermal Eff. = 51.6%

Typical Machine Sizes for 150 MWe He Plant

- Single Turbo-Alt at 10 MPa and Pr=2; (TIT=1300K; TR=4.333)
- Mass Flowrate ~ 178 kg/sec (One 150 MWe Turbo-Gen.)
- Dia. = 2.2 m; L = $\sim 5.1 \text{ m}$; Speed = 5240 rpm
- Recuperator Volume ~ 38 m³
- Thermal Eff. = 51.4%
- Three Reheat/Intercooled Turbo-Alt's (TIT=1300K; TR=4.333)
- Mass Flowrate ~ 59.5 kg/sec (Three 50 MWe Turbo-Gens.)
- P=20 Mpa (Pr=2); Dia = 0.87 m, L = 2.0 m, Speed = 13,150 rpm
- P=10 Mpa (Pr=2); Dia = 1.23 m, L = 2.9 m, Speed = 9300 rpm
 - P= 5 Mpa (Pr=2); Dia = 1.74 m, L = 4.0 m, Speed = 6600 rpm
- Recuperator Volume ~ 13.5 m³
- Thermal Eff. = 53.7%

Energy Extraction Comparison for U₂₃₈ and Th₂₃₂

35 GW*hr/MT of natural uranium Uranium-fueled light-water reactor:

Thorium-fueled liquid-fluoride reactor: 11,000 GW*hr/MT of natural thorium

Glenn Research Center at Lewis Field

Uranium fuel cycle calculations done using WISE nuclear fuel material calculator: http://www.wise-uranium.org/nfcm.html

Summary of MMW - CCGT Power Systems & BRMAPS Potential

- power systems (10 MWe) and also \sim 1000 MWe ground based power plants. Code can be used for analysis and optimization of minimum mass space
- Utilizing aircraft power plant technology leads to light weight and high efficiency turbo-machinery
- diameter, but increases number of axial stages for a specified pressure ratio. Use of He working fluid reduces Heat exchanger size & turbo-machinery

For Space Applications

- High Temperature Gas Reactor (HTGR) allows a relatively high cycle temperature ratio, but indirect heating as with LFR and several HS heat exchangers is needed to permit turbine reheat cycle of ~50% thermal efficiency at low mass flow rate.
- of turbine gas stream permits lowering of radiator area and mass requirement For space applications higher heat rejection temperatures and direct cooling
- Heat Pipe Radiator with high inherent redundancy permits reduction of radiator specific mass with increased radiator survivability to micro-meteoroid punctures, thus enhancing overall system reliability
 - BRMAPS Code Enables Power System Optimization Studies to be Conducted Orders of Magnitude Faster than with Case by Case Codes.

For Ground Based Applications

iquid Fluoride Reactor can transfer heat to several CBC connected in series Code. Alternator windage and bearing cooling losses at specified operating Turbine Reheat configuration) via HSHX (Heat Source heat Exchangers). Thermodynamic performance can be analyzed via BRMAPS (but not NPSS) conditions can be added as computational refinements.

