CS 577- Intro to Algorithms

Greed (Part 2)

Dieter van Melkebeek

October 8, 2020

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Discrete multivariate optimization

- System consisting of *n* components.
- ▶ Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Correctness argument

- Greed stays ahead
- Exchanges

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Correctness argument

- Greed stays ahead: interval scheduling
- Exchanges

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Correctness argument

- Greed stays ahead: interval scheduling, shortest paths
- Exchanges: interval scheduling

Specification

Input: (di)graph G = (V, E); lengths $\ell : E \to [0, \infty)$

Specification

```
Input: (di)graph G = (V, E); lengths \ell : E \to [0, \infty)
s, t \in V
```

Specification

```
Input: (di)graph G=(V,E); lengths \ell:E \to [0,\infty) s,t \in V
```

Ouput: path P from s to t with minimum length $\ell(P) \doteq \sum_{e \in P} \ell(e)$

Specification

```
Input: (di)graph G = (V, E); lengths \ell : E \to [0, \infty) s, t \in V

Ouput: path P from s to t with minimum length \ell(P) \doteq \sum_{e \in P} \ell(e)
```

Variants

- Single pair
- Single source

Specification

```
Input: (di)graph G = (V, E); lengths \ell : E \to [0, \infty) s, t \in V

Ouput: path P from s to t with minimum length \ell(P) \doteq \sum_{e \in P} \ell(e)
```

Variants

- ► Single pair
- ► Single source

Distance d(s, t)

- $= \min\{\ell(P) \mid P \text{ path from } s \text{ to } t\}$
- $=\infty$ if there is no path from s to t

Approach

Grow set S of $v \in V$ for which we know d(s, v).

Approach

Grow set S of $v \in V$ for which we know d(s, v).

Initialization

Approach

Grow set S of $v \in V$ for which we know d(s, v).

Initialization

$$S = \{s\} \text{ as } d(s,s) = 0.$$

Approach

Grow set S of $v \in V$ for which we know d(s, v).

Initialization

$$S = \{s\} \text{ as } d(s,s) = 0.$$

Claim

Every path P from s to some vertex in \overline{S} satisfies

$$\ell(P) \ge \min_{(u,v) \in E \cap S \times \overline{S}} (d(s,u) + \ell(u,v))$$

Approach

Grow set S of $v \in V$ for which we know d(s, v).

Initialization

$$S = \{s\} \text{ as } d(s,s) = 0.$$

Claim

Every path P from s to some vertex in \overline{S} satisfies

$$\ell(P) \ge \min_{(u,v) \in E \cap S \times \overline{S}} (d(s,u) + \ell(u,v))$$

Proof

- ▶ P has to include an edge $(u, v) \in E \cap S \times \overline{S}$.
- $\ell(P) = \ell(P|_{s \leadsto u}) + \ell(u,v) + \ell(P|_{v \leadsto}) \ge d(s,u) + \ell(u,v) + 0$

Claim

Every path P from s to some vertex in \overline{S} satisfies

$$\ell(P) \ge \min_{(u,v) \in E \cap S \times \overline{S}} (d(s,u) + \ell(u,v))$$

Claim

Every path P from s to some vertex in \overline{S} satisfies

$$\ell(P) \ge \min_{(u,v) \in E \cap S \times \overline{S}} (d(s,u) + \ell(u,v))$$

Extending S

▶ Let $(u^*, v^*) = \operatorname{arg\,min}_{(u,v) \in E \cap S \times \overline{S}} (d(s, u) + \ell(u, v))$

Claim

Every path P from s to some vertex in \overline{S} satisfies

$$\ell(P) \ge \min_{(u,v) \in E \cap S \times \overline{S}} (d(s,u) + \ell(u,v))$$

Extending S

- ▶ Let (u^*, v^*) = arg min $_{(u,v) \in E \cap S \times \overline{S}}(d(s, u) + \ell(u, v))$
- $d(s, v^*) = d(s, u^*) + \ell(u^*, v^*)$

Claim

Every path P from s to some vertex in \overline{S} satisfies

$$\ell(P) \ge \min_{(u,v) \in E \cap S \times \overline{S}} (d(s,u) + \ell(u,v))$$

Extending *S*

- ▶ Let (u^*, v^*) = arg min $_{(u,v) \in E \cap S \times \overline{S}}(d(s, u) + \ell(u, v))$
- $d(s, v^*) = d(s, u^*) + \ell(u^*, v^*)$
- Shortest path $s \rightsquigarrow u^*$ followed by (u^*, v^*) is shortest path $s \rightsquigarrow v^*$.

Claim

Every path P from s to some vertex in \overline{S} satisfies

$$\ell(P) \ge \min_{(u,v) \in E \cap S \times \overline{S}} (d(s,u) + \ell(u,v))$$

Extending *S*

- ▶ Let (u^*, v^*) = arg min $_{(u,v) \in E \cap S \times \overline{S}}(d(s, u) + \ell(u, v))$
- $d(s, v^*) = d(s, u^*) + \ell(u^*, v^*)$
- Shortest path $s \rightsquigarrow u^*$ followed by (u^*, v^*) is shortest path $s \rightsquigarrow v^*$.
- ▶ $S \leftarrow S \cup \{v^*\}$

Priority queue

 $\text{Key for } v \in \overline{S} \colon \ \lambda(v) \doteq \mathsf{min}_{u \in S : (u,v) \in E}(d(s,u) + \ell(u,v))$

Priority queue

 $\text{Key for } v \in \overline{S} \colon \ \lambda(v) \doteq \min_{u \in S: (u,v) \in E} (d(s,u) + \ell(u,v))$

Running time with binary heap

Priority queue

Key for $v \in \overline{S}$: $\lambda(v) \doteq \min_{u \in S:(u,v) \in E} (d(s,u) + \ell(u,v))$

Running time with binary heap

▶ Initialization: O(n)

Priority queue

 $\text{Key for } v \in \overline{S} \colon \ \lambda(v) \doteq \min_{u \in S: (u,v) \in E} (d(s,u) + \ell(u,v))$

Running time with binary heap

▶ Initialization: O(n)

ightharpoonup n min extractions: $O(n \log n)$

Priority queue

 $\text{Key for } v \in \overline{S} \colon \lambda(v) \doteq \min_{u \in S: (u,v) \in E} (d(s,u) + \ell(u,v))$

Running time with binary heap

- ▶ Initialization: O(n)
- ightharpoonup n min extractions: $O(n \log n)$
- ► $m = \sum_{v \in V} \text{outdeg}(v)$ key updates: $O(m \log n)$

Priority queue

 $\text{Key for } v \in \overline{S} \colon \lambda(v) \doteq \min_{u \in S: (u,v) \in E} (d(s,u) + \ell(u,v))$

Running time with binary heap

- ▶ Initialization: O(n)
- ightharpoonup n min extractions: $O(n \log n)$
- ▶ $m = \sum_{v \in V} \text{outdeg}(v)$ key updates: $O(m \log n)$
- ► Total: $O((n+m)\log n)$

Priority queue

$$\text{Key for } v \in \overline{S} \colon \ \lambda(v) \doteq \mathsf{min}_{u \in S : (u,v) \in E}(d(s,u) + \ell(u,v))$$

Running time with binary heap

- ▶ Initialization: O(n)
- ightharpoonup n min extractions: $O(n \log n)$
- ▶ $m = \sum_{v \in V} \text{outdeg}(v)$ key updates: $O(m \log n)$
- ► Total: $O((n+m)\log n)$

Better algorithms

Priority queue

$$\text{Key for } v \in \overline{S} \colon \lambda(v) \doteq \min_{u \in S: (u,v) \in E} (d(s,u) + \ell(u,v))$$

Running time with binary heap

- ▶ Initialization: O(n)
- ightharpoonup n min extractions: $O(n \log n)$
- ▶ $m = \sum_{v \in V} \text{outdeg}(v)$ key updates: $O(m \log n)$
- ► Total: $O((n+m)\log n)$

Better algorithms

▶ Improved data structures (Fibonacci heaps): $O(m + n \log n)$

Priority queue

$$\text{Key for } v \in \overline{S} \colon \lambda(v) \doteq \min_{u \in S: (u,v) \in E} (d(s,u) + \ell(u,v))$$

Running time with binary heap

- ▶ Initialization: O(n)
- ightharpoonup n min extractions: $O(n \log n)$
- ▶ $m = \sum_{v \in V} \text{outdeg}(v)$ key updates: $O(m \log n)$
- ► Total: $O((n+m)\log n)$

Better algorithms

- ▶ Improved data structures (Fibonacci heaps): $O(m + n \log n)$
- ► Other approaches: O(n+m) undirected, $O(m+n\log\log n)$ directed

From DP to Greed

From DP to Greed

- ▶ $\mathsf{OPT}(k, v) = \mathsf{length} \ \mathsf{shortest} \ \mathsf{path} \ s \leadsto v \ \mathsf{using} \le k \ \mathsf{edges}$
- $ightharpoonup \mathsf{OPT}(v) = d(s,v) = \lim_{k \to \infty} \mathsf{OPT}(k,v)$
- ightharpoonup OPT(s) = 0
- ▶ $\mathsf{OPT}(v) = \mathsf{min}_{(u,v) \in E}(\mathsf{OPT}(u) + \ell(u,v))$ for $v \neq s$
- ▶ Let *S* be set of $u \in V$ for which we know OPT(u).
- Expanding *n* levels until we hit *S* expresses $\mathsf{OPT}(v)$ for $v \notin S$ as min of:
 - (a) $\mathsf{OPT}(u) + \ell(u, v)$ for each $u \in S$ with $(u, v) \in E$
 - (b) $\mathsf{OPT}(u) + \ell(u, v') + \ell(P)$ for some $(u, v') \in E \cap S \times \overline{S}$ and P
 - (c) $\mathsf{OPT}(u) + \ell(P)$ for some $u \notin S$ and P containing n edges
- ▶ Minimum of terms over all $v \in \overline{S}$ achieved by term of type (a).
- ► Finding $(u^*, v^*) = \arg\min_{(u,v) \in E \cap S \times \overline{S}} (\mathsf{OPT}(u) + \ell(u, v))$ allows extending S.
- ▶ Time complexity: $O((n+m)n) \rightarrow O((n+m)\log n)$.

Greed stays ahead

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- For a full solution, optimal quality measure implies optimal objective value.

Greed stays ahead

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- ► For a full solution, optimal quality measure implies optimal objective value.

Exchange argument

Greed stays ahead

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- ► For a full solution, optimal quality measure implies optimal objective value.

Exchange argument

Consider an optimal solution S. Establish a sequence of local transformations (exchanges) such that:

Greed stays ahead

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- ► For a full solution, optimal quality measure implies optimal objective value.

Exchange argument

Consider an optimal solution S. Establish a sequence of local transformations (exchanges) such that:

Each transformation maintains validity and does not deteriorate the objective value.

Greed stays ahead

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- ► For a full solution, optimal quality measure implies optimal objective value.

Exchange argument

Consider an optimal solution S. Establish a sequence of local transformations (exchanges) such that:

- Each transformation maintains validity and does not deteriorate the objective value.
- ▶ The sequence ends in the greedy solution *G*.

Interval Scheduling

Interval Scheduling

Problem

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$ and end time $e_i \in \mathbb{R}$.

Ouput: $S \subseteq [n]$ such that no distinct intervals $[s_i, e_i)$ for $i \in S$ overlap and |S| is maximized.

Interval Scheduling

Problem

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$ and end time $e_i \in \mathbb{R}$.

Ouput: $S \subseteq [n]$ such that no distinct intervals $[s_i, e_i)$ for $i \in S$ overlap and |S| is maximized.

Greedy algorithm

- Order: earliest end time first
- Local criterion

Exchange Argument

Exchange Argument

- Consider an optimal solution S that differs from G.
- ► There exists a first meeting i in the greedy order on which S differs from G.
- ▶ It has to be the case that $i \in G$ and $i \notin S$.
- ▶ There exists a meeting j > i such that $j \in S$.
- ▶ $S' \doteq S \setminus \{j\} \cup \{i\}$ is an optimal solution.
- The first meeting i' on which S' differs from G (if any) satisfies i' > i.
- As there are only a finite number of meetings, the process has to end in *G*.