Laws of set algebra

For any sets A, B, C with universal set \mathcal{U} and empty set \emptyset , we have the following laws of set algebra:

Commutativity:

$$A \cup B = B \cup A$$
,
 $A \cap B = B \cap A$.

Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C,$$

$$A \cap (B \cap C) = (A \cap B) \cap C.$$

Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Absorption:

$$A \cup (A \cap B) = A$$
,
 $A \cap (A \cup B) = A$.

Idempotence:

$$A \cup A = A$$
,
 $A \cap A = A$.

We also have the following definitions:

Difference:

$$A - B = A \cap B^c$$
.

Identity:

$$A \cup \varnothing = A$$
,
 $A \cap \mathcal{U} = A$

Domination:

$$A \cup \mathcal{U} = \mathcal{U}$$
, $A \cap \emptyset = \emptyset$.

Complement law:

$$A \cup A^c = \mathcal{U},$$

 $A \cap A^c = \emptyset$

Double complement law:

$$(A^c)^c = A.$$

$$(A \cup B)^c = A^c \cap B^c,$$

 $(A \cap B)^c = A^c \cup B^c.$

Symmetric difference:

$$A\ominus B=(A\cup B)-(A\cap B).$$