

Report No. : EED32I00275901 Page 1 of 74

TEST REPORT

Product: Wireless monitor

Trade mark : N/A

Model/Type reference: DXR-6

Serial Number : N/A

Report Number : EED32I00275901 FCC ID : 2AAAM-DXR-6BU

Date of Issue: : Nov. 30 , 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Standard Merit Industrial Limited
2/A Harrison Court Stage 6, 10 Man Wan Road,
Kowloon, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tested By:

Reviewed by: 000

Reviewed by: 000

Report Seal

Tom-chen

Compiled by:

Approved by:

Kevin lan (Project Engineer)

Tom chen (Test Project)

Kevin yang (Reviewer)

Nov. 30 , 2016

Sheek Luo (Lab supervisor)

Check No.: 2392185320

2 Version

Version No.	Date	Description	(
00	Nov. 30 , 2016	Original		
		(P)		

3 **Test Summary**

Test Requirement	Test method	Result	
47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
	47 CFR Part 15, Subpart C Section 15.203/15.247 (c) 47 CFR Part 15, Subpart C Section 15.207 47 CFR Part 15, Subpart C Section 15.247 (b)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b)(4)&TCB Exclusion List (7 July 2002) 47 CFR Part 15, Subpart C Section 15.247(d) 47 CFR Part 15, Subpart C Section	47 CFR Part 15, Subpart C Section 15.203/15.247 (c) 47 CFR Part 15, Subpart C Section 15.207 47 CFR Part 15, Subpart C Section 15.247 (b)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b) 47 CFR Part 15, Subpart C Section 15.247 (b) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b)(4)&TCB Exclusion List (7 July 2002) 47 CFR Part 15, Subpart C Section 15.247(d) 48 CFR Part 15, Subpart C Section 15.247(d) 49 CFR Part 15, Subpart C Section 15.247(d) 40 CFR Part 15, Subpart C Section 15.247(d)	

The tested samples and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage. Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

Page 4 of 74

4 Content

1 COVER PAGE					
2 VERSION			•••••	•••••	2
3 TEST SUMMARY		•••••	•••••	•••••	3
4 CONTENT			•••••		4
5 TEST REQUIREMENT.					5
5.1 TEST SETUP					
	test setup				
	Emissions test setup				
5.1.3 For Conducted	d Emissions test setup.				6
5.2 TEST ENVIRONMENT					
5.3 TEST CONDITION					
6 GENERAL INFORMAT	ION	••••••	••••••	•••••	7
6.1 CLIENT INFORMATION					
6.2 GENERAL DESCRIPT					
6.3 PRODUCT SPECIFICA					
6.4 DESCRIPTION OF SU					
6.5 TEST LOCATION					
6.6 TEST FACILITY					
6.7 DEVIATION FROM ST 6.8 ABNORMALITIES FRO					
6.9 OTHER INFORMATION					
6.10 MEASUREMENT UN					
7 EQUIPMENT LIST					10
8 RADIO TECHNICAL RI					
Arra and a Ala Codo	Occupied Bandwidth	/II 10/411014		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.0
Appendix A): 200B (occupied Bandwidtn r Frequency Separation				13 1 <i>E</i>
	Time				
	ng Channel Number				
	cted Peak Output Pow				
	edge for RF Conducted				
	onducted Spurious Em				
Appendix H): Pseud	orandom Frequency H	opping Sequence			29
Appendix I): Antenna	a Requirement				30
Appendix J): AC Pov	wer Line Conducted Er	nission			31
	cted bands around fund				
	ed Spurious Emissions				
PHOTOGRAPHS OF TES					
PHOTOGRAPHS OF EU	T CONSTRUCTIONAL	DETAILS	•••••	•••••	59

Report No.: EED32I00275901 Page 5 of 74

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

Ground Reference Plane

Test Receiver Analysis Controller

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Report No. : EED32I00275901 Page 6 of 74

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			
Temperature:	22 °C		
Humidity:	53 % RH	100	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test Mode	Tx	RF Channel			
rest wode		Low(L)	Middle(M)	High(H)	
GFSK	2410.875MHz ~2471.625MHz	Channel 1	Channel 10	Channel19	
Gran	24 IU.87 SIVIM2 ~247 I.02 SIVIM2	2410.875MHz	2441.250MHz	2471.625MHz	
Transmitter mode:	The EUT transmitted the continuchannel(s).	ious modulation t	est signal at the s	pecific	

Report No. : EED32I00275901 Page 7 of 74

6 General Information

6.1 Client Information

Applicant:	Standard Merit Industrial Limited
Address of Applicant:	2/A Harrison Court Stage 6, 10 Man Wan Road, Kowloon, Hong Kong
Manufacturer:	Foshan Shunde Alford Electronics Co., Ltd,
Address of Manufacturer:	Xinjian Industrial Park, Daliang, Shunde, Foshan City, Guangdong Province, China.

6.2 General Description of EUT

Product Name:	Wireless monitor	
Model No.(EUT):	DXR-6	
Trade mark:	N/A	$(C_{L_{\nu}})$ $(C_{L_{\nu}})$
EUT Supports Radios application:	2410.875MHz ~2471.62	25MHz
Davies Overslav	AC adapter 1(Camera)	Model: BLJ06W059055P1-U Input: 100-240V~50/60Hz, 0.2A Output: 5.9V 550mA
Power Supply:	AC adapter2 (Camera)	Model: CS3B059055FU Input: 100-240V~50/60Hz, 200mA Output: 5.9VDC 550mA
Camera Power Line:	270cm(Unshielded)	
Sample Received Date:	Oct. 26, 2016	
Sample tested Date:	Oct. 26, 2016 to Nov. 30), 2016

6.3 Product Specification subjective to this standard

Operation	Frequency:	2410.87	5MHz ~2471.6	325MHz	/*>		/°>	
Modulatio	n Technique:	Frequen	requency Hopping Spread Spectrum(FHSS)					
Modulatio	n Type:	GFSK	SFSK SFSK					
Number o	f Channel:	19						
Hopping C	Channel Type:	Adaptive	e Frequency H	opping syste	ms			
Sample T	уре:	Mobile p	production					
Test Power	er Grade:	N/A		6.		6.		
Test Softv	vare of EUT:	N/A						
Antenna 1	Гуре:	Integral						
Antenna C	Gain:	0dBi		1		1		
Test Volta	ige:	AC 120\	V/60Hz, AC 24	0V/50Hz	(0))	(6)	
Operation	Frequency ea	ch of channe	el					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1/%	2410.875	6	2427.750	11	2444.625	16	2461.500	
2	2414.250	7	2431.125	12	2448.000	17	2464.875	
3	2417.625	8	2434.500	13	2451.375	18	2468.250	
4	2421.000	9	2437.875	14	2454.750	19	2471.625	
5	2424 375	10	2441 250	15	2458 125			

6.4 Description of Support Units

The EUT has been tested independently.

Report No. : EED32I00275901 Page 8 of 74

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Page 9 of 74

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563. Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty(95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE acusa conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
2	Dedicated Courier to emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32I00275901 Page 10 of 74

7 Equipment List

RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017			
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017			
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017			

	Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017			

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019		
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017		
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017		
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018		
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017		
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018		
Horn Antenna	A.H.SYSTEMS	SAS-574 374		06-30-2015	06-28-2018		
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017		
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017		
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017		
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017		
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017		
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017		
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017		
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(07)	01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017		

Report No.: EED32I00275901 Page 12 of 74

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test method	Test item	Verdict	Note
ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
ANSI 63.10	Dwell Time	PASS	Appendix C)
ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
ANSI 63.10	Antenna Requirement	PASS	Appendix I)
ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)
	ANSI 63.10 ANSI 63.10	ANSI 63.10 ANSI 63.10 Carrier Frequencies Separation ANSI 63.10 Dwell Time ANSI 63.10 Hopping Channel Number Conducted Peak Output Power ANSI 63.10 Band-edge for RF Conducted Emissions ANSI 63.10 RF Conducted Spurious Emissions Pseudorandom Frequency Hopping Sequence ANSI 63.10 ANSI 63.10 ANSI 63.10 ANSI 63.10 ANSI 63.10 Restricted bands around fundamental frequency (Radiated) Emission) Radiated Spurious	ANSI 63.10 20dB Occupied Bandwidth ANSI 63.10 Carrier Frequencies Separation ANSI 63.10 Dwell Time PASS ANSI 63.10 Hopping Channel Number PASS ANSI 63.10 Conducted Peak Output Power ANSI 63.10 Band-edge for RF Conducted Emissions ANSI 63.10 RF Conducted Spurious Emissions PASS ANSI 63.10 ANSI 63.10 ANSI 63.10 Antenna Requirement ANSI 63.10 Restricted bands around fundamental frequency (Radiated) Emission) Restricted Spurious ANSI 63.10 Rediated Spurious RASS Restricted bands around fundamental frequency (Radiated) Emission) Rediated Spurious RASS

Report No.: EED32l00275901 Page 13 of 74

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	3.791	3.4835	PASS	-05
GFSK	MCH	3.613	3.4349	PASS	Peak
GFSK	НСН	3.804	3.4516	PASS	detector

Remark: Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph

Report No.: EED32l00275901 Page 15 of 74

Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	3.392	PASS
GFSK	MCH	3.392	PASS
GFSK	НСН	3.376	PASS

Remark: Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph

Report No.: EED32I00275901 Page 17 of 74

Appendix C): Dwell Time

Result Table

Mode	Channel	Observe time[s]	one set of pulses[ms]	pulses within 1s	Dwell Time[s]	Verdict
GFSK	LCH	7.6	2.52	18	0.345	PASS
GFSK	MCH	7.6	2.52	18	0.345	PASS
GFSK	НСН	7.6	2.50	13	0.247	PASS

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph

Report No. : EED32I00275901 Page 21 of 74

Appendix D): Hopping Channel Number

Result Table

	Mode	Channel.	Number of Hopping Channel	Verdict
A.	GFSK	Нор	19	PASS

Test Graph

Report No.: EED32I00275901 Page 22 of 74

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	13.158	PASS
GFSK	MCH	12.530	PASS
GFSK	НСН	12.815	PASS

Remark: Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph

Report No.: EED32l00275901 Page 24 of 74

Appendix F): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power [dBm] Frequency Hopping		Max Spurious Level [dBm]	Limit [dBm]	Verdict
0501	C	6.137	Off	-45.638	-13.86	PASS
GFSK	LCH	10.190	On	-43.265	-9.81	PASS
05014	11011	6.010	Off	-38.048	-13.99	PASS
GFSK	HCH	10.234	On	-34.994	-9.77	PASS

Remark : Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Page 25 of 74

Report No.: EED32l00275901 Page 26 of 74

Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	8.187	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	7.479	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	7.078	<limit< td=""><td>PASS</td></limit<>	PASS

Remark: Pretest the two adapter and found the adapter 1 which is worst case, so only the worst case is recorded in the report.

Test Graph

Page 28 of 74

Report No. : EED32I00275901 Page 29 of 74

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The embedded FHSS engine uses 19 hopping frequencies. Each channel frequency is selected from a pseudorandom ordered list of hopping frequencies, from 2410.875MHz to 2471.625MHz with separating in 3.375MHz apart from each of the channels. A single data frame is transmitted on each frequency location before skipping to the next hopping frequency in the list. Each channel is occupied 3.45milliseconds.

Typically, the initiation of an FHSS communication is as follows:

- 1. The initiating party sends a request via a predefined frequency or control channel.
- 2. The receiving party sends a number, known as a seed back to the initiating party.
- 3. The initiating party sends a synchronization signal acknowledging to the receiving party as it has successfully established a transmission link.
- 4. The communication begins, and both the receiving and the sending party change their frequencies along an unpredictable hopping sequence with pseudorandom properties.

Pseudorandom Frequency Hopping Sequence:

2410.875; 2414.250; 2417.625; 2421.000; 2424.375; 2427.750; 2431.125; 2434.500; 2437.875; 2441.250; 2444.625; 2448.000; 2451.375; 2454.750; 2458.125; 2461.500; 2464.875; 2468.250; 2471.625.

System Receiver Input Bandwidth:

The receiver bandwidth is equal to the receiver bandwidth in the 19 hopping channel mode. The receiver bandwidth was verified during RF hopping to the relative channel.

Receiver Hopping Capability:

The associated receiver has the ability to shift frequencies in synchronization with the transmitted signals, with they start connect with a same channel and then hop to next channel with a same formula among each other.

Report No.: EED32I00275901 Page 30 of 74

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 31 of 74 Report No.: EED32I00275901

MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data	reference plane. And for horizontal ground refere 4) The test was performed EUT shall be 0.4 m from reference plane was bo 1 was placed 0.8 m from ground reference plane plane. This distance wa All other units of the EU	floor-standing arrangen nce plane, with a vertical ground r the vertical ground refe nded to the horizontal gr m the boundary of the	nent, the EUT was plane reference plane. The grence plane. The vert cound reference plane unit under test and b	rear of the tical ground e. The LISN ponded to a						
EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 or conducted measurement. Limit: Frequency range (MHz)	EUT shall be 0.4 m from reference plane was bo 1 was placed 0.8 m from ground reference plane plane. This distance wa All other units of the EU	the vertical ground refe nded to the horizontal gr m the boundary of the i	rence plane. The vert round reference plane unit under test and b	tical ground e. The LISN conded to a						
all of the interface cables must be changed according to ANSI C63.10 of conducted measurement. Limit: Frequency range (MHz) Limit (dBµV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.1s MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency		s between the closest po		nd the EUT.						
Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 * The limit decreases linearly with the logarithm of the frequency in the range 0.1s MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data	all of the interface cal	oles must be changed		•						
O.15-0.5 66 to 56* 56 to 46* O.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.1st MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data	Limit:	Limit (Limit (dBµV)							
0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.19 MHz to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency Measurement Data	Frequency range (Wiriz)	Quasi-peak	Average							
5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.1s MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data	0.15-0.5	66 to 56*	56 to 46*							
* The limit decreases linearly with the logarithm of the frequency in the range 0.1s MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data	0.5-5	56	46							
MHz to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency Measurement Data	5-30	60	50	(0,)						
	MHz to 0.50 MHz.									
An initial pre-scan was performed on the live and neutral lines with peak detector.			(11)							
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission wer										

Page 32 of 74

Adapter 1(Camera): BLJ06W059055P1-U

AC 120V/60Hz

Live line:

Reading_Level No. Freq. (dBuV)		Correct Factor	Measurement (dBuV)		Limit (dBuV)		Margin (dB)							
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1819	43.26		16.47	9.80	53.06		26.27	64.39	54.39	-11.33	-28.12	Р	
2	0.2300	38.24		15.08	9.80	48.04		24.88	62.45	52.45	-14.41	-27.57	Р	
3	0.3460	33.38		11.58	9.85	43.23		21.43	59.06	49.06	-15.83	-27.63	Р	
4	0.5540	35.55		17.90	9.90	45.45		27.80	56.00	46.00	-10.55	-18.20	Р	
5	0.9980	22.54		8.21	9.70	32.24		17.91	56.00	46.00	-23.76	-28.09	Р	
6	5.1220	21.66		5.62	10.00	31.66		15.62	60.00	50.00	-28.34	-34.38	Р	

Page 33 of 74

	No.	Freq.		ling_LedBuV)	evel	Correct Factor	M	leasurem (dBuV)	ent	Lin (dB			rgin dB)		
-		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.1539	44.94		19.62	9.80	54.74		29.42	65.78	55.78	-11.04	-26.36	Р	
_	2	0.1819	40.83		15.51	9.80	50.63		25.31	64.39	54.39	-13.76	-29.08	Р	
2	3	0.2700	35.17		12.51	9.80	44.97		22.31	61.12	51.12	-16.15	-28.81	Р	
	4	0.3339	30.90		13.74	9.83	40.73		23.57	59.35	49.35	-18.62	-25.78	Р	
-	5	0.4060	29.65		9.28	9.90	39.55		19.18	57.73	47.73	-18.18	-28.55	Р	
_	6	0.5580	34.50		24.48	9.90	44.40		34.38	56.00	46.00	-11.60	-11.62	Р	

Page 34 of 74

Adapter 2(Camera): CS3B059055FU

AC 120V/60Hz

Live line:

	Nο	Eroa	Reading_Level			Correct	Measurement			Limit		Margin			
	INO.	. Freq. (dBuV)		Factor	(dBuV)		(dBuV)		(dB)						
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
3	1	0.1580	32.30		11.95	9.80	42.10		21.75	65.56	55.56	-23.46	-33.81	Р	
	2	0.2162	27.60		11.04	9.80	37.40		20.84	62.96	52.96	-25.56	-32.12	Р	
-	3	0.7380	25.76		9.59	9.90	35.66		19.49	56.00	46.00	-20.34	-26.51	Р	
_	4	1.8100	20.24		4.02	9.94	30.18		13.96	56.00	46.00	-25.82	-32.04	Р	
	5	3.7700	25.74		9.83	10.00	35.74		19.83	56.00	46.00	-20.26	-26.17	Р	
	6	19.3580	21.75		3.97	9.84	31.59		13.81	60.00	50.00	-28.41	-36.19	Ρ	

Page 35 of 74

Neutral line:

	Reading_Level			evel	Correct	Measurement			Limit		Margin			
No.	Freq.	(0	dBuV)		Factor		(dBuV)		(dB	uV)	(0	dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	31.55		10.19	9.80	41.35		19.99	64.96	54.96	-23.61	-34.97	Р	
2	0.5980	27.66		13.92	9.90	37.56		23.82	56.00	46.00	-18.44	-22.18	Р	
3	0.8340	30.92		16.40	9.83	40.75		26.23	56.00	46.00	-15.25	-19.77	Р	
4	2.5260	23.43		5.43	10.00	33.43		15.43	56.00	46.00	-22.57	-30.57	Р	
5	3.8540	27.43		13.56	10.00	37.43		23.56	56.00	46.00	-18.57	-22.44	Р	
6	16.8980	22.12		5.24	9.99	32.11		15.23	60.00	50.00	-27.89	-34.77	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32I00275901 Page 36 of 74

Appendix K): Restricted bands around fundamental frequency (Radiated)

adiated)			1	/			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	Remark	
	30MHz-1GHz	Quasi-peak	Quasi-peak 120kHz		Quasi-peal	-peak	
	Al 4011-	Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz	Average	13	
Test Procedure:	Below 1GHz test procedu	ire as below:	(6)			(0)	
	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 meters was mounted on the total c. The antenna height is determine the maximu polarizations of the antenna was tuned table was turned from e. The test-receiver system Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest to fully Anechoic Chammetre (Above 18GHz to the EUT in the italian test in the radiation measure Transmitting mode, an j. Repeat above procedu.	on the top of a rochoic camber. To of the highest raters away from op of a variable-lyaried from one myalue of the fittenna are set to mission, the EUT of to heights from 0 degrees to 360 mm was set to Peum Hold Mode. The modern of the restrict of the test site of the test site of the distance is 1 lowest channel ments are perford found the X axis of the distance of the X axis of the distance of the X axis of the distance of the X axis of the X axis of the distance of the X axis of the distance of the X axis of the Axis of the X axis of the X axis of the Axis of the X axis of the Axis of the X axi	the table was adiation. the interfer neight ante meter to for eld strengtly make the room of the table and the table meter and the Higher med in X, kis position.	ence-receinna tower. Four meters Sence Both hore Sence Both Sence Bot	above the grizontal and vent. worst case a and the rotat maximum reind Specified the transmit is in the restrower and modern of the transmit ower and modern of the transmit of the transmit ower and modern of the transmit o	to a, where the control of the cont	
Limit:	Frequency	Limit (dBuV	 	- (mark		
	30MHz-88MHz	40.0			eak Value		
	88MHz-216MHz	43.		·	eak Value		
	216MHz-960MHz	46.0	0	Quasi-pe	oak Value		
	2 101VII 12-3001VII 12	10.		<u>'</u>	cak value		
	960MHz-1GHz	54.0		·	eak Value		
			0	Quasi-pe			

Report No.: EED32I00275901 Page 37 of 74

Test plot as follows:

Adapter 1(Camera): BLJ06W059055P1-U

Worse case mode:	GFSK		(6.)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

	Worse case mode:	GFSK		
0	Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Page 38 of 74

Worse case mode:	GFSK			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Page 39 of 74

Worse case mode:	GFSK	Cin .	Cin .
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Page	40	of	74
------	----	----	----

Worse case mode:	GFSK			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Report No. : EED32I00275901 Page 41 of 74

Adapter 2(Camera): CS3B059055FU

Worse case mode:	GFSK			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Page 42 of 74

Worse case mode:	GFSK			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Page	12	~£	71
Page	4.0	OI	14

Worse case mode:	GFSK		Cin
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Page 44 of 74

Worse case mode:	GFSK			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32I00275901 Page 45 of 74

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Ab av a 401 la	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

ir		

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/:D	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32I00275901 Page 46 of 74

Radiated Spurious Emissions test Data:

Radiated Emission below 30MHz

9KHz-1.705MHz		(6)	
Worse case mode:GFSK	Test Frequency: Lowest	Transmitting	Polarization: X

Page 47 of 74

1.705MHz-30MHz		G	
Worse case mode:GFSK	Test Frequency: Lowest	Transmitting	Polarization: X

Remark: For 9kHz~30MHz test, The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case X axis with Adapter 1 is shown in the report. Adapter 1 and Adapter 2, lowest,middle,highest channel are tested, only show worst data in the report.

Page 48 of 74

Radiated Emission 30MHz-1GHz

Adapter 1: BLJ06W059055P1-U

408.946

432.546

16.45

16.83

2.84

2.93

20.67

19.10

39.96

38.86

46.00

46.00

-6.04 Horizontal

-7.14 Horizontal

Adapter 2: CS3B059055FU

	rreq	ractor	LUSS	rever	rever	LINE	LIMIT	ru1/riiase	Kelliank
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	49.014	15.02	1.32	5.79	22.13	40.00	-17.87	Horizontal	
2	103.080	12.94	1.57	5.57	20.08	43.50	-23.42	Horizontal	
3	317.701	13.98	2.50	12.74	29.22	46.00	-16.78	Horizontal	
4	360.448	15.13	2.73	17.11	34.97	46.00	-11.03	Horizontal	
5	432.546	16.83	2.93	18.20	37.96	46.00	-8.04	Horizontal	
6 рр	827.493	21.77	4.03	12.39	38.19	46.00	-7.81	Horizontal	

Page 52 of 74

Transmitter Emission above 1GHz

Adapter 1: BLJ06W059055P1-U

Worse case	mode:	GFSK		Test char	Test channel:		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	34.97	48.27	46.03	74.00	-27.97	Pass	Н
1450.122	30.77	2.78	34.72	47.35	46.18	74.00	-27.82	Pass	Н
1842.139	31.46	3.11	34.41	47.46	47.62	74.00	-26.38	Pass	Н
4821.750	34.73	5.11	34.35	41.75	47.24	74.00	-26.76	Pass	Н
7232.625	36.42	6.69	34.90	40.04	48.25	74.00	-25.75	Pass	Н
9643.500	37.92	7.70	35.07	39.06	49.61	74.00	-24.39	Pass	Н
1204.210	30.24	2.52	34.96	48.25	46.05	74.00	-27.95	Pass	V
1424.511	30.72	2.76	34.74	47.48	46.22	74.00	-27.78	Pass	V
1630.264	31.11	2.94	34.57	46.18	45.66	74.00	-28.34	Pass	V
4821.750	34.73	5.11	34.35	40.62	46.11	74.00	-27.89	Pass	V
7232.625	36.42	6.69	34.90	38.55	46.76	74.00	-27.24	Pass	V
9643.500	37.92	7.70	35.07	37.57	48.12	74.00	-25.88	Pass	V

Worse case mo	ode:	GFSK		Test channel:		Middle	Remark: Peak		
Frequency F	ntenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1201.149	30.23	2.52	34.96	48.52	46.31	74.00	-27.69	Pass	Н
1634.419	31.12	2.95	34.56	46.67	46.18	74.00	-27.82	Pass	S H
1856.261	31.48	3.13	34.40	47.04	47.25	74.00	-26.75	Pass	Н
4882.500	34.85	5.08	34.33	42.76	48.36	74.00	-25.64	Pass	Н
7323.750	36.43	6.77	34.90	39.61	47.91	74.00	-26.09	Pass	Н
9765.000	38.05	7.60	35.05	37.87	48.47	74.00	-25.53	Pass	Н
1198.095	30.22	2.51	34.97	48.26	46.02	74.00	-27.98	Pass	V
1659.574	31.16	2.97	34.54	46.57	46.16	74.00	-27.84	Pass	V
2081.550	31.89	3.47	34.32	46.81	47.85	74.00	-26.15	Pass	V
4882.500	34.85	5.08	34.33	41.26	46.86	74.00	-27.14	Pass	V
7323.750	36.43	6.77	34.90	38.35	46.65	74.00	-27.35	Pass	V
9765.000	38.05	7.60	35.05	37.80	48.40	74.00	-25.60	Pass	V

Worse case	mode:	GFSK		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1216.534	30.27	2.53	34.95	47.69	45.54	74.00	-28.46	Pass	Н
1621.985	31.10	2.94	34.57	47.76	47.23	74.00	-26.77	Pass	Н
1851.542	31.48	3.12	34.40	47.03	47.23	74.00	-26.77	Pass	ЭН
4943.250	34.98	5.06	34.32	41.90	47.62	74.00	-26.38	Pass	Н
7414.875	36.44	6.85	34.90	38.89	47.28	74.00	-26.72	Pass	Н
9886.500	38.18	7.50	35.02	38.41	49.07	74.00	-24.93	Pass	Н
1213.441	30.26	2.53	34.95	47.70	45.54	74.00	-28.46	Pass	V
1464.963	30.80	2.79	34.70	47.38	46.27	74.00	-27.73	Pass	V
1865.735	31.50	3.13	34.39	46.99	47.23	74.00	-26.77	Pass	V
4943.250	34.98	5.06	34.32	42.32	48.04	74.00	-25.96	Pass	V
7414.875	36.44	6.85	34.90	38.72	47.11	74.00	-26.89	Pass	V
9886.500	38.18	7.50	35.02	38.43	49.09	74.00	-24.91	Pass	V

Adapter 2: CS3B059055FU

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1204.210	30.24	2.52	34.96	47.89	45.69	74.00	-28.31	Pass	*H
1424.511	30.72	2.76	34.74	46.74	45.48	74.00	-28.52	Pass	H
1663.803	31.17	2.97	34.54	47.08	46.68	74.00	-27.32	Pass	H
4821.750	34.73	5.11	34.35	42.28	47.77	74.00	-26.23	Pass	Н
7232.625	36.42	6.69	34.90	39.67	47.88	74.00	-26.12	Pass	Н
9643.500	37.92	7.70	35.07	37.98	48.53	74.00	-25.47	Pass	Н
1204.210	30.24	2.52	34.96	48.26	46.06	74.00	-27.94	Pass	V
1392.247	30.65	2.72	34.77	46.92	45.52	74.00	-28.48	Pass	V
1642.761	31.13	2.95	34.56	47.38	46.90	74.00	-27.10	Pass	V
4821.750	34.73	5.11	34.35	42.34	47.83	74.00	-26.17	Pass	V
7232.625	36.42	6.69	34.90	40.89	49.10	74.00	-24.90	Pass	V
9643.500	37.92	7.70	35.07	38.45	49.00	74.00	-25.00	Pass	V

_	- 4	C 7 4	
Page	54	of $/4$	

Worse case	mode:	GFSK		Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1204.210	30.24	2.52	34.96	48.46	46.26	74.00	-27.74	Pass	Н
1410.080	30.69	2.74	34.75	46.98	45.66	74.00	-28.34	Pass	Н
1651.146	31.15	2.96	34.55	46.72	46.28	74.00	-27.72	Pass	₩
4882.500	34.85	5.08	34.33	41.43	47.03	74.00	-26.97	Pass	Н
7323.750	36.43	6.77	34.90	38.76	47.06	74.00	-26.94	Pass	Н
9765.000	38.05	7.60	35.05	37.64	48.24	74.00	-25.76	Pass	Н
1222.743	30.28	2.54	34.94	47.66	45.54	74.00	-28.46	Pass	V
1642.761	31.13	2.95	34.56	46.95	46.47	74.00	-27.53	Pass	V
2070.980	31.86	3.44	34.32	46.59	47.57	74.00	-26.43	Pass	V
4882.500	34.85	5.08	34.33	41.41	47.01	74.00	-26.99	Pass	V
7323.750	36.43	6.77	34.90	40.37	48.67	74.00	-25.33	Pass	V
9765.000	38.05	7.60	35.05	38.04	48.64	74.00	-25.36	Pass	V

Worse case	mode:	GFSK		Test channel:		Highest	Remark: Po	nark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1188.980	30.20	2.50	34.98	48.38	46.10	74.00	-27.90	Pass	Н
1634.419	31.12	2.95	34.56	47.00	46.51	74.00	-27.49	Pass	H
1851.542	31.48	3.12	34.40	47.00	47.20	74.00	-26.80	Pass	Н
4943.250	34.98	5.06	34.32	40.77	46.49	74.00	-27.51	Pass	Н
7414.875	36.44	6.85	34.90	40.14	48.53	74.00	-25.47	Pass	Н
9886.500	38.18	7.50	35.02	38.33	48.99	74.00	-25.01	Pass	Н
1207.279	30.24	2.52	34.96	48.03	45.83	74.00	-28.17	Pass	V
1668.044	31.18	2.98	34.54	46.75	46.37	74.00	-27.63	Pass	V
4943.250	34.98	5.06	34.32	40.95	46.67	74.00	-27.33	Pass	V
5971.290	35.88	7.37	34.30	40.73	49.68	74.00	-24.32	Pass	V
7414.875	36.44	6.85	34.90	38.90	47.29	74.00	-26.71	Pass	V
9886.500	38.18	7.50	35.02	38.16	48.82	74.00	-25.18	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32I00275901 Page 55 of 74

PHOTOGRAPHS OF TEST SETUP

Test Model No.: DXR-6

Radiated spurious emission Test Setup for adapter 1(Below 30MHz)

Radiated spurious emission Test Setup for adapter 2(Below 30MHz)

Radiated spurious emission Test Setup for adapter 1(Below 1GHz)

Radiated spurious emission Test Setup for adapter 2(Below 1GHz)

Radiated spurious emission Test Setup for adapter 1(Above 1GHz)

Radiated spurious emission Test Setup for adapter 2(Above 1GHz)

Conducted Emission for adapter 1

Conducted Emission for adapter 2

Report No.: EED32I00275901 Page 59 of 74

PHOTOGRAPHS OF EUT Constructional Details

Test Model No.: DXR-6

View of Product-1

View of Product-2

View of Product-3

View of Product-4

View of Product-5

View of Product-6

View of Product-7

View of Product-8

View of Product-9

View of Product-11

View of Product-12

View of Product-13

View of Product-14

View of Product-15

View of Product-18(Adapter 1: BLJ06W059055P1-U)

View of Product-19(Adapter 1: BLJ06W059055P1-U)

View of Product-20(Adapter 1: BLJ06W059055P1-U)

View of Product-21(Adapter 1: BLJ06W059055P1-U)

View of Product-22(Adapter 1: BLJ06W059055P1-U)

View of Product-24(Adapter 1: BLJ06W059055P1-U)

View of Product-25(Adapter 2: CS3B059055FU)

View of Product-27(Adapter 2: CS3B059055FU)

View of Product-29(Adapter 2: CS3B059055FU)

View of Product-30(Adapter 2: CS3B059055FU)

View of Product-31(Adapter 2: CS3B059055FU)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

