Notes on Set Theory

Qi'ao Chen

December 11, 2019

Contents

1	Fore	eword	2
2	Models of Set - Sertraline		2
	2.1	Some mathematical logic	2
	2.2	Cumulative Hierarchy	3
	2.3	Relativization	5
	2.4	Absoluteness	6
	2.5	Relative consistence of the axiom of foundation	8
	2.6	Induction and recursion based on well-order relation	9
	2.7	Absoluteness under the axiom of foundation	11
	2.8	Unaccessible cardinal and models of ZFC	12
	2.9	Reflection theorem	14
3	Constructable Set - Venlafaxine		16
	3.1	Definablity and Gödel operation	16
	3.2	Gödel's L	17
	3.3	Axiom of constructibility and relativization	19
4	The	end	21

1 Foreword

Notes for the entrance examination

2 Models of Set - Sertraline

2.1 Some mathematical logic

Theorem 2.1 (Gödels second incompleteness theorem). If a consistent recursive axiom set T contains **ZFC**, then

$$T \not\vdash \mathsf{Con}t$$

especially, **ZFC** ⊬ Con**ZFC**

Definition 2.2. Suppose (M, E_M) and (N, E_N) are two models of set theory, then

- 1. if for any formula σ , $M \models \sigma$ if and only if $N \models \sigma$, then M and N are **elementary equivalent**, denoted by $M \equiv N$
- 2. If bijection $f: M \to N$ satisfies: for any $a, b \in M$, aE_Mb iff $f(a)E_Nf(b)$, then $f: M \cong N$ is an **isomorphism**
- 3. If $M \subseteq N$ and $E_M = E_N \upharpoonright M$, then M is N's submodel
- 4. If M is isomorphic to a submodel of N by injection f, and for any formula $\varphi(x_1,\ldots,x_n)$, for any $a_1,\ldots,a_n\in M$, $M\models\varphi[a_1,\ldots,a_n]$ iff $N\models\varphi[f(a_1),\ldots,f(a_n)]$, then f is called an **elementary embedding** from M to N, written as $f:M\prec N$
- 5. If $M \subseteq N$ and $M \prec N$, then M is a **elementary submodel** of N

Lemma 2.3. Suppose $N \models \mathbf{ZFC}$, $M \subseteq N$, then $M \prec N$ iff $\forall \varphi(x, x_1, \ldots, x_n)$, $\forall (a_1, \ldots, a_n) \in M$, if $\exists a \in N$ s.t. $N \models \varphi[a, a_1, \ldots, a_n]$, then $\exists a \in M$ s.t. $M \models \varphi[a, a_1, \ldots, a_n]$

Definition 2.4. Suppose $(M, E) \models \mathbf{ZFC}$

- 1. $h_{\varphi}: M^n \to M$ is φ 's **Skolem function** if $\forall a_1, \ldots, a_n \in M$, if $\exists a \in M$ s.t. $M \models \varphi[a, a_1, \ldots, a_n]$, then $M \models \varphi[h_{\varphi}(a_1, \ldots, a_n), a_1, \ldots, a_n]$ requires **AC**
- 2. Let $\mathcal{H} = \{h_{\varphi} \mid \varphi \text{ is a formula on set theory}\}$. For any $S \subseteq M$, **Skolem** hull $\mathcal{H}(S)$ is the smallest set consisting of S and closed under \mathcal{H}

Lemma 2.5. $N \models \mathbf{ZFC}$, $S \subseteq N$, if $M = \mathcal{H}(S)$, then $M \prec N$

Theorem 2.6 (Löwenheim-Skolem theorem). Suppose $N \models \mathbf{ZFC}$ and is infinite, then there is a model M s.t. $|M| = \omega$ and $M \prec N$

2.2 Cumulative Hierarchy

This section works in \mathbf{ZF}^{-} (a.k.a. \mathbf{ZF} – axiom of foundation)

Definition 2.7. For any α , define sequence V_{α}

- 1. $V_0 = \emptyset$
- $2. \ V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
- 3. For any limit ordinal λ , $V_{\lambda} = \bigcup_{\beta < \lambda} V_{\beta}$

And WF =
$$\bigcup_{\alpha \in \mathbf{On}} V_{\alpha}$$

Lemma 2.8. For any ordinal α

- 1. V_{α} is transitive
- 2. if $\xi \leq \alpha$, then $V_{\xi} \subseteq V_{\alpha}$
- 3. if κ is inaccessible cardinal, then $|V_{\kappa}|=\kappa$

Proof. 1. Obviously $\kappa \leq V_{\kappa}$. Since κ is inaccessible, then for any $\alpha < \kappa$, $|V_{\alpha}| < \kappa$.

Definition 2.9. For any set $x \in WF$,

$$\operatorname{rank}(x) = \min\{\beta \mid x \in V_{\beta+1}\}$$

Lemma 2.10. 1. $V_{\alpha} = \{x \in \mathbf{WF} \mid \text{rank}(x) < \alpha\}$

- 2. **WF** is transitive
- 3. For any $x, y \in \mathbf{WF}$, if $x \in y$, then $\mathrm{rank}(x) < \mathrm{rank}(y)$
- 4. for any $y \in \mathbf{WF}$, $rank(y) = \sup\{rank(x) + 1 \mid x \in y\}$

Lemma 2.11. Supoose α is an ordinal

1. $\alpha \in \mathbf{WF}$ and $\mathrm{rank}(\alpha) = \alpha$

2.
$$V_{\alpha} \cap \mathbf{On} = \alpha$$

Lemma 2.12. 1. If $x \in \mathbf{WF}$, then $\bigcup x, \mathcal{P}(x), \{x\} \in \mathbf{WF}$, and their ranks are all less than $\mathrm{rank}(x) + \omega$

- 2. If $x,y\in \mathbf{WF}$, then $x\times y, x\cup y, x\cap y, \{x,y\}, (x,y), x^y\in \mathbf{WF}$, and their ranks are all less than $\mathrm{rank}(x)+\mathrm{rank}(y)+\omega$
- 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega+\omega}$
- 4. for any set x, $x \in \mathbf{WF}$ iff $x \subset \mathbf{WF}$

Lemma 2.13. Suppose AC

- 1. for any group G, there exists group $G' \cong G$ in **WF**
- 2. for any topological space T, there exists $T' \cong T$ in **WF**

Definition 2.14. Binary relation < on set A is **well-founded** if for any nonempty $X \subseteq A$, X has minimal element under <

Theorem 2.15. If $A \in \mathbf{WF}$, then \in is a well-founded relation on A

Lemma 2.16. If set *A* is transitive and \in is well-founded on *A*, then $A \in \mathbf{WF}$

Lemma 2.17. For any set x, there is a smallest transitive set $\operatorname{trcl}(x)$ s.t. $x \subseteq \operatorname{trcl}(x)$

Proof.

$$x_0 = x$$

$$x_{n+1} = \bigcup_{n < \omega} x_n$$

$$\operatorname{trcl}(x) = \bigcup_{n < \omega} x_n$$

trcl(x) is called **transitive closure** of x

Lemma 2.18. Without axiom of power set

- 1. if x is transitive, then trcl(x) = x
- 2. if $y \in x$, then $trcl(y) \subseteq trcl(x)$
- 3. $\operatorname{trcl}(x) = x \cup \bigcup \{\operatorname{trcl}(y) \mid y \in x\}$

Theorem 2.19. For any set X, the following are equivalent

- 1. $X \in \mathbf{WF}$
- 2. $\operatorname{trcl}(X) \in \mathbf{WF}$
- 3. \in is a well-founded relation on trcl(X)

Theorem 2.20. The following propositions are equivalent

- 1. Axiom of foundation
- 2. For any set X, \in is a well-founded relation on X
- 3. V = WF

2.3 Relativization

Definition 2.21. Let **M** be a class φ a formula, the **relativization** of φ to **M** is $\varphi^{\mathbf{M}}$ defined inductively

$$(x \in y)^{\mathbf{M}} \leftrightarrow x = y$$
$$(x \in y)^{\mathbf{M}} \leftrightarrow x \in y$$
$$(\varphi \to \psi)^{\mathbf{M}} \leftrightarrow \varphi^{\mathbf{M}} \to \psi^{\mathbf{M}}$$
$$(\neg \varphi)^{\mathbf{M}} \leftrightarrow \neg \varphi^{\mathbf{M}}$$
$$(\forall x \varphi)^{\mathbf{M}} \leftrightarrow (\forall x \in \mathbf{M}) \varphi^{\mathbf{M}}$$

Note $\varphi^{\mathbf{V}} = \varphi$ and

$$f^{\mathbf{M}} = \{(x_1, \dots, x_n, x_{n+1}) \in \mathbf{M} \mid \varphi^{\mathbf{M}}(x_1, \dots, x_n, x_{n+1})\}$$

Definition 2.22. For any theory T, any class ${\bf M}$, ${\bf M} \models T$ iff for any axiom φ of T, $\varphi^{\bf M}$ holds

Theorem 2.23 ($\mathbb{Z}F^-$). WF $\models \mathbb{Z}F$

Proof. • Axiom of existence

 $(\exists x(x=x))^{\mathbf{M}} \leftrightarrow \exists x \in \mathbf{M} \ (x=x)$, which is equivalent to \mathbf{M} being nonempty

• Axiom of extensionality

$$\forall X \forall Y \forall u ((u \in X \leftrightarrow u \in Y) \to X = Y)^{\mathbf{M}} \Leftrightarrow$$
$$\forall X \in \mathbf{M} \ \forall Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ ((u \in X \leftrightarrow u \in Y) \to X = Y)$$

Lemma 2.24. If \mathbf{M} is transitive, then axiom of extensionality holds in \mathbf{M}

• Axiom schema of specification

$$\forall X \in \mathbf{M} \exists Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ (u \in Y \leftrightarrow u \in X \land \varphi^{\mathbf{M}} (u))$$

Since for any $X \in \mathbf{WF}$, $\mathcal{P}(X) \subseteq \mathbf{WF}$

- Axiom of paring
- Axiom of union
- Axiom of power set

$$\forall X \in \mathbf{M} \ \exists Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ (u \in Y \leftrightarrow (u \subseteq X)^{\mathbf{M}})$$

and

$$(u \subseteq X)^{\mathbf{M}} \leftrightarrow \forall x \in \mathbf{M} \ (x \in u \to x \in X) \leftrightarrow u \cap \mathbf{M} \subseteq X$$

- Axiom of foundation
- Axiom schema of replacement

2.4 Absoluteness

Definition 2.25. For any formula $\psi(x_1,\ldots,x_n)$ and any class ${\bf M}$, ${\bf N}$, ${\bf M}\subseteq {\bf N}$, if

$$\forall x_1 \dots \forall x_n \in \mathbf{M} \left(\psi^{\mathbf{M}} \left(x_1, \dots, x_n \right) \leftrightarrow \psi^{\mathbf{N}} \left(x_1, \dots, x_n \right) \right)$$

then $\psi(x_1,\dots,x_n)$ is absolute for ${\bf M}$,cn. If ${\bf N}={\bf V}$, then ψ is absolute for ${\bf M}$

Lemma 2.26. Suppose $\mathbf{M} \subseteq \mathbf{N}$ and φ, ψ are formulas, then

- 1. if φ , ψ are absolute for **M** ,cn, then so are $\neg \varphi$, $\varphi \rightarrow \psi$
- 2. if φ doesn't contain any quantifiers, then φ is absolute for any **M**
- 3. if **M** ,**N** are transitive and φ is absolute for them, then so are $\forall x \in y\varphi$

Definition 2.27. Δ_0 formula

- 1. $x = y, x \in y$ are Δ_0 formulas
- 2. if φ , ψ are Δ_0 , then so are $\neg \varphi$, $\varphi \rightarrow \psi$
- 3. if φ is Δ_0 , y is any set, then $(\forall x \in y)\varphi$ is Δ_0

If φ is Δ_0 , then $\exists x_1 \dots \exists x_n \varphi$ is Σ_1 formula, $\forall x_1 \dots \forall x_n \varphi$ is Π_1

Lemma 2.28. M \subseteq N are both transitive, $\psi(x_0,\ldots,x_n)$ is a formula, then

- 1. if ψ is Δ_0 , then it's absolute for **M**, cn
- 2. if ψ is Σ_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{M}} (x_1, \dots, x_n) \to \psi^{\mathbf{N}} (x_1, \dots, x_n))$$

3. if ψ is Π_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{N}}(x_1, \dots, x_n) \to \psi^{\mathbf{M}}(x_1, \dots, x_n))$$

Lemma 2.29. If $\mathbf{M} \subseteq \mathbf{N}$, $\mathbf{M} \models \Sigma$, $\mathbf{N} \models \Sigma$ and

$$\Sigma \vdash \forall x_1 \dots \forall x_n (\varphi(x_1, \dots, x_n) \leftrightarrow \psi(x_1, \dots, x_n))$$

then φ is absolute for **M**, **N** if and only if ψ is absolute for **M**, **N**

Definition 2.30. Suppose $\mathbf{M} \subseteq \mathbf{N}$, $f(x_1, \dots, x_n)$ is a function. f is **absolute** for \mathbf{M} and \mathbf{N} if and only if $\varphi(x_1, \dots, x_n, x_{n+1})$ defining f is absolute.

Theorem 2.31. Following relations and functions can be defined in \mathbf{ZF}^- Pow – Inf and are equivalent to some Δ_0 formulas. So they are absolute for any transitive model \mathbf{M} on \mathbf{ZF}^- – Pow – Inf

- 1. $x \in y$
- 2. x = y
- 3. $x \subset y$
- 4. $\{x, y\}$
- 5. {*x*}
- 6. (x, y)
- **7**. ∅

- 8. $x \cup y$
- 9. x y
- 10. $x \cap y$
- 11. x^+
- 12. x is a transitive set
- 13. LJ*x*
- 14. $\bigcap x (\bigcap \emptyset = \emptyset)$

Lemma 2.32. Absoluteness is closed under operation composition

Theorem 2.33. Following relations and functions are absolute for any transitive model M on $\mathbf{Z}\mathbf{F}^-$ – Pow – Inf

- 1. z is an ordered pair
- 2. $A \times B$
- 3. R is a relation
- 4. dom(R)
- 5. ran(R)
- 6. *f* is a function
- 7. f(x)
- 8. *f* is injective

2.5 Relative consistence of the axiom of foundation

Lemma 2.34. Suppose transitive class $\mathbf{M} \models \mathbf{Z}\mathbf{F}^- - \mathrm{Pow} - \mathrm{inf}$ and $\omega \in \mathbf{M}$, then the axiom of infinity is true in \mathbf{M} . Hence the axiom of infinity is true in $\mathbf{W}\mathbf{F}$

Theorem 2.35. Let T be a theory of set theory language and Σ a set of sentences. Suppose \mathbf{M} is a class and $T \vdash \mathbf{M} \neq \emptyset$, then if $\mathbf{M} \models_T \Sigma$, then

- 1. for any sentences φ , if $\Sigma \vdash \varphi$, then $T \vdash \varphi^{\mathbf{M}}$
- 2. if *T* is consistent, then so is $Cn(\Sigma)$

Theorem 2.36. The axiom of foundation is consistent with **ZF**⁻.

Proof. By 2.35, let T be
$$\mathbf{ZF}^-$$
, Σ be \mathbf{ZF} and \mathbf{M} be \mathbf{WF}

Lemma 2.37 (ZF⁻). Suppose transitive model $\mathbf{M} \models \mathbf{ZF}^- - \text{Pow} - \text{Inf.}$ If $X, R \in \mathbf{M}$ and R is a well-order on X, then

$$(R \text{ is a well-order on } X)^{\mathbf{M}}$$

Theorem 2.38 (ZF⁻).
$$V_{\omega} \models \mathbf{ZFC} - \mathbf{Inf} + \neg \mathbf{Inf}$$

Proof. For any $X \in V_{\omega}$, X is finite hence there is a well-ordering on X

Corollary 2.39. $ConZF^- \rightarrow ConZFC - Inf + \neg Inf$

2.6 Induction and recursion based on well-order relation

Definition 2.40. R is a well-founded relation on X if and only if

$$\forall U \subset \mathbf{X}(U \neq \emptyset \to \exists y \in U(\neg \exists z \in U(z\mathbf{R}y)))$$

Definition 2.41. Relation \mathbf{R} is **set-like** on \mathbf{X} iff for any $x \in \mathbf{X}$, $\{y \in \mathbf{X} \mid y\mathbf{R}x\}$ is a set

Definition 2.42. If R is a set-like relation on X and $x \in X$, define

$$\operatorname{pred}^{0}(\boldsymbol{X}, x, \boldsymbol{R}) = \{ y \in \boldsymbol{X} \mid y\boldsymbol{R}x \}$$
$$\operatorname{pred}^{n+1}(\boldsymbol{X}, x, bR) = \bigcup \{ \operatorname{pred}(\boldsymbol{X}, y, \boldsymbol{R}) \mid y \in \operatorname{pred}^{n}(\boldsymbol{X}, x, \boldsymbol{R}) \}$$
$$\operatorname{cl}(\boldsymbol{X}, x, \boldsymbol{R}) = \bigcup_{n \in \omega} \operatorname{pred}^{n}(\boldsymbol{X}, x, \boldsymbol{R})$$

Lemma 2.43. If R is a set-like relation on X, then for any $y \in cl(X, x, R)$, $pred(X, y, R) \subseteq cl(X, x, R)$

Theorem 2.44 (Induction on well-founded set-like relation). If R is a well-founded set-like relation on X, then every nonempty $Y \subseteq X$ has minimal element under R

Theorem 2.45. Suppose R is a well-founded set-like relation on X. If $F: X \times V \to V$, then there is a unique $G: X \to V$ s.t.

$$\forall x \in \boldsymbol{X}(\boldsymbol{G}(x) = \boldsymbol{F}(x, \boldsymbol{G} | \text{pred}(\boldsymbol{X}, x, \boldsymbol{R})))$$

Definition 2.46. If R is a set-like well-founded relation on X, define

$$rank(x, \boldsymbol{X}, \boldsymbol{R}) = \sup\{rank(y, \boldsymbol{X}, \boldsymbol{R}) + 1 \mid y\boldsymbol{R}x \wedge y \in \boldsymbol{X}\}\$$

Note that

$$F(x,h) = \sup\{\alpha + 1 \mid \alpha \in \operatorname{ran}(h)\}\$$

Lemma 2.47 (**ZF**⁻). If X is transitive and \in is well-founded on X, then $X \subseteq WF$ and for any $x \in X$, rank $(x, X, \in) = \operatorname{rank}(x)$

Definition 2.48. R is a set-like well-founded relation on X, **Mostowski** function G on (X,R) is

$$\mathbf{G}(x) = \{ \mathbf{G}(y) \mid y \in \mathbf{X} \land y\mathbf{R}x \}$$

 $\mathbf{M} = \operatorname{ran}(\mathbf{G})$ is called the **Mostowski collapse** of (\mathbf{X}, \mathbf{R})

Lemma 2.49. 1.
$$\forall x, y \in X(xRy \rightarrow G(x) \in G(y))$$

- 2. **M** is transitive
- 3. If the axiom of power set holds, $\mathbf{M} \subseteq \mathbf{WF}$
- 4. if the axiom of power set holds and $x \in X$, then ${\rm rank}(x,X,R) = {\rm rank}(G(x))$

Definition 2.50. R is extensional on X iff

$$\forall x, y \in X (\forall z \in X (zRx \leftrightarrow zRy) \rightarrow x = y)$$

Lemma 2.51. If X is transitive then \in is extensional on X

Lemma 2.52. Let R be a set-like well-founded relation on X, G is a Mostowski function on it. If R is extensional, then G is an isomorphism

Theorem 2.53 (Mostowski collapse theorem). Suppose R is set-like well-founded extensional on X, then there are unique transitive class M and bijection $G: X \to M$ s.t. $G: (X, R) \cong (M, \in)$

2.7 Absoluteness under the axiom of foundation

Theorem 2.54. The following relations and functions can be defined by formulas in **ZF** – Pow and are equivalent to some Δ_0 formulas

- 1. x is an ordinal
- 2. x is a limit ordinal
- 3. x is a successor ordinal
- 4. ω
- 5. x is a finite ordinal
- 6. $0, 1, 2, \ldots, 20, \ldots$

Theorem 2.55. If transitive model $M \models \mathbf{ZF}$ – Pow, then every finite subset of M belongs to M

Proof. prove

$$\forall x \subset \mathbf{M} \ (|x| = n \to x \in \mathbf{M})$$

Theorem 2.56. The following concepts are absolute for any transitive model of $\mathbf{ZF} - Pow$

- 1. x is finite
- 2. X^{n}
- 3. $X^{<\omega}$
- 4. R is a well-ordering on X
- 5. type(X, R)
- 6. $\alpha + 1$
- 7. $\alpha 1$
- 8. $\alpha + \beta$
- 9. $\alpha \cdot \beta$

Class \boldsymbol{X} is in fact a formula $\boldsymbol{X}(x)$. It's absolute for \boldsymbol{M} if and only if $\forall x \in \boldsymbol{M} \ (\boldsymbol{X^M} \ (x) \leftrightarrow \boldsymbol{X}(x))$, which is equivalent to $\{x \in \boldsymbol{M} \ | \ \boldsymbol{X}(x)\} = \{x \in \boldsymbol{M} \ | \ \boldsymbol{X^M} \ (x)\}$. Hence \boldsymbol{X} is absolute for \boldsymbol{M} if and only if $\boldsymbol{X^M} = \boldsymbol{M} \cap \boldsymbol{X}$

Theorem 2.57. Suppose R is a well-founded set-like relation on X, $F: X \times V \to V$,

$$\forall x \in \boldsymbol{X}(\boldsymbol{G}(x) = \boldsymbol{F}(x, \boldsymbol{G} | (\boldsymbol{X}, x, \boldsymbol{R})))$$

transitive model $M \models ZF - Pow$ and

- 1. **F** is absolute for **M**
- 2. X, R are absolute for M , (R is set-like on $X)^M$ and

$$\forall x \in \mathbf{M} (\operatorname{pred}(\mathbf{X}, x, \mathbf{R}) \subseteq \mathbf{M})$$

then G is absolute for M

Theorem 2.58. The following concept is absolute for any transitive model of \mathbf{ZF} – Pow

- 1. α^{β}
- 2. rank(x)
- 3. trcl(x)

Lemma 2.59. transitive $M \models ZF$

- 1. if $x \in \mathbf{M}$, then $\mathcal{P}^{\mathbf{M}}(x) = \mathcal{P}(x) \cap \mathbf{M}$
- 2. if $\alpha \in \mathbf{M}$, then $V_{\alpha}^{\mathbf{M}} = V_{\alpha} \cap \mathbf{M}$

2.8 Unaccessible cardinal and models of ZFC

$$Z = ZF - Rep, ZF^- = ZFC - Rep$$

Theorem 2.60. If $\gamma > \omega$ is a limit ordinal, then $V_{\gamma} \models_{\mathbf{ZF}} \mathbf{Z}$ and $V_{\gamma} \models_{\mathbf{ZFC}} \mathbf{ZC}$

Corollary 2.61. $V_{\omega+\omega}$ doesn't satisfies the axiom of replacement

Theorem 2.62. ZC
$$\not\vdash \exists x(x = V_{\omega}), \textbf{ZC} \not\vdash \forall x \exists y(\text{trcl}(x) = y)$$

Theorem 2.63. If κ is an inaccessible cardinal, then $V_{\kappa} \models_{\mathbf{ZF}^{-}} \mathbf{ZF}$, $V_{\kappa} \models_{\mathbf{ZFC}^{-}} \mathbf{ZFC}$

Proof. Since κ is inaccessible, $|V_{\kappa}| = \kappa$. For any $A \in V_{\kappa}$, $|A| < \kappa$. Since κ is regular, any $f: A \to V_{\kappa}$ is bounded. Hence there exists $\alpha < \kappa$ s.t. $\operatorname{ran}(f) \subseteq V_{\alpha}$

Corollary 2.64. We cannot prove "there is some inaccessible cardinals" in **ZFC**

Proof. Suppose we could. Then we have $V_{\kappa} \models \mathbf{ZFC}$, which contradicts Gödels second incompleteness theorem

Lemma 2.65. Suppose κ is inaccessible. The following concepts are absolute for V_{κ}

- 1. x is a cardinal
- 2. x is a regular cardinal
- 3. *x* is an inaccessible cardinal

Lemma 2.66. $Con(\mathbf{ZFC}) \rightarrow Con(\mathbf{ZFC} + "there is no inaccessible cardinal")$

Proof. If κ is the smallest inaccessible cardinal, then

 $V_{\kappa} \models \mathbf{ZFC}$ + "there is no inaccessible cardinal". Define

$$\mathbf{M} = \bigcap \{V_{\kappa} \mid \kappa \text{ is inaccessible}\}\$$

If there are, then $\mathbf{M} = V_{\kappa}$

Corollary 2.67. Con(**ZFC**) $\neg \rightarrow$ Con(**ZFC**+"there are some inaccessible cardinals")

Definition 2.68. For any infinite cardinal κ , $H_{\kappa} = \{x \mid |\mathrm{trcl}(x)| < \kappa\}$ is the collection of sets which **hereditarily have size less than** κ . Element of H_{ω} is called **hereditarily finite set**. Element of H_{ω_1} is called **hereditarily countable set**

Lemma 2.69. For any infinite cardinal κ , $H_{\kappa} \subseteq V_{\kappa}$

Lemma 2.70. If κ is regular, then $H_{\kappa} = V_{\kappa}$ if and only if κ is inaccessible

Proof. which implies
$$|V_{\kappa}| = \kappa$$

Lemma 2.71. For any infinite cardinal κ

1. H_{κ} is transitive

- 2. $H_{\kappa} \cap \mathbf{On} = \kappa$
- 3. If $x \in H_{\kappa}$, then $\bigcup x \in H_{\kappa}$
- 4. If $x, y \in H_{\kappa}$, then $\{x, y\} \in H_{\kappa}$
- 5. If $x \in H_{\kappa}$, $y \subseteq x$, then $y \in H_{\kappa}$
- 6. if κ is regular, then $\forall x (x \in H_{\kappa} \leftrightarrow x \subset H_{\kappa} \land |x| < \kappa)$

Theorem 2.72. If κ is uncountable regular cardinal, then $H_{\kappa} \models_{\mathbf{ZFC}} \mathbf{ZFC} - \mathbf{Pow}$

Theorem 2.73. If κ is uncountable regular cardianl, then the following propositions are equivalent

- 1. $H_{\kappa} \models \mathbf{ZFC}$
- 2. $H_{\kappa} = V_{\kappa}$
- 3. κ is inaccessible

Corollary 2.74. Con(**ZFC**) \rightarrow Con(**ZFC** – pow + $\forall x(x \text{ is countable}))$

2.9 Reflection theorem

Lemma 2.75. $\mathbf{M} \subseteq \mathbf{N}$ are classes. $\varphi_1, \dots, \varphi_n$ is a sequence closed under subformula, then the following propositions are equivalent

- 1. $\varphi_1, \ldots, \varphi_n$ are absolute for **M** and **N**
- 2. if $\varphi_i = \exists \varphi_i(x, y_1, \dots, y_m)$, then

$$\forall y_1, \dots, y_m \in \mathbf{M} \ (\exists x \in \mathbf{N} \ \varphi_j^{\mathbf{N}} \ (x, y_1, \dots, y_m) \to \exists x \in \mathbf{M} \ \varphi_j^{\mathbf{M}} \ (x, y_1, \dots, y_m))$$

Theorem 2.76 (reflection theorem(**ZF**)). For any finite formula set $F = \{\varphi_1, \ldots, \varphi_n\}$, for any V_{α} , there exists V_{β} s.t. $V_{\alpha} \subseteq V_{\beta}$ and $\varphi_1, \ldots, \varphi_n$ are absolute for V_{β}

Corollary 2.77 (ZF). $F = \{\sigma_1, \dots, \sigma_n\}$ are finite subsets of **ZF**, then

$$\forall \alpha \exists \beta > \alpha(\sigma_1^{V_\beta} \wedge \dots \wedge \sigma_n^{V_\beta})$$

Corollary 2.78. $F = \{\sigma_1, \dots, \sigma_n\}$ is a finite subset of **ZF** . Unless **ZF** is unconsistent, F cannot prove all axioms of **ZF**

Theorem 2.79 (ZFC). For any finite formula set $F = \{\varphi_1, \dots, \varphi_n\}$, for any set N, there exists set M s.t.

- 1. $N \subseteq M$
- 2. $\varphi_1, \ldots, \varphi_n$ are absolute for (M, \in)
- 3. $|M| \leq |N| \cdot \omega$

Corollary 2.80 (ZFC). For any finite formula set $F = \{\varphi_1, \dots, \varphi_n\}$, for any set N, there exists set M s.t.

- 1. $N \subseteq M$
- 2. $\varphi_1, \ldots, \varphi_n$ are absolute for (M, \in)
- 3. $|M| \leq |N| \cdot \omega$
- $4. \, M$ is transitive

3 Constructable Set - Venlafaxine

3.1 Definablity and Gödel operation

Definition 3.1. M is a set, $\psi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ is a formula, $X\subseteq M^n$ is **definable in** M **from parameters from** ψ if and only if there are $y_1,\ldots,y_m\in M$ s.t.

$$X = \{(x_1, \dots, x_n) \mid (\psi^M(x_1, \dots, x_n, y_1, \dots, y_m))\}$$

$$\mathsf{Def}(M) = \{X \subseteq M \mid \exists \psi, X \text{ is definable in } M \text{ from } \psi\}$$

Definition 3.2. Gödel operation

1.
$$G_1(X,Y) = \{X,Y\}$$

2.
$$G_2(X,Y) = X \times Y$$

3.
$$G_3(X,Y) = \in \uparrow X \times Y$$

4.
$$G_4(X,Y) = X - Y$$

5.
$$G_5(X,Y) = X \cap Y$$

6.
$$G_6(X, Y) = \bigcap X$$

7.
$$G_7(X, Y) = dom(X)$$

8.
$$G_8(X,Y) = \{(x,y) \mid (y,x) \in X\}$$

9.
$$G_9(X,Y) = \{(x,y,z) \mid (x,z,y) \in X\}$$

10.
$$G_{10}(X,Y) = \{(x,y,z) \mid (y,z,x) \in X\}$$

Class C is closed under Gödel operation if for any $X, Y, X, Y \in \mathbb{C}$ \$ implies $G_i(X,Y) \in C$. For any set M, $\operatorname{cl}_G(M)$ is the closure under Gödel operation

Definition 3.3. ψ is a normal form if

- 1. only \neg , \land , \exists are logical symbol
- 2. = doesn't appear
- 3. if $x_i \in x_j$ then $i \neq j$
- 4. \exists only shown as: $\exists x_{m+1} \in x_i \varphi(x_1, \dots, x_{m+1}), 1 \leq i \leq m$

Lemma 3.4. Any Δ_0 formula can be transformed into normal form

Theorem 3.5. For any Δ_0 formula $\psi(x_1, \dots, x_n)$, there is Gödel operations' composition G s.t. for any X_1, \dots, X_n

$$G(X_1, \dots, X_n) = \{(x_1, \dots, x_n) \mid x_1 \in X_1 \land \dots \land x_n \in X_n \land \psi(x_1, \dots, x_n)\}$$

Corollary 3.6. If M is transitive and $M = \operatorname{cl}_G(M)$, then for any Δ_0 formula $\psi(x, y_1, \dots, y_m)$, any set $X \in M$, any $y_1, \dots, y_m \in M$ if

$$Y = \{x \in X \mid \psi(x, y_1, \dots, y_m)\}\$$

then $Y \in M$. Hence Δ_0 schema of specification holds in M

Lemma 3.7. If $G(X_1, ..., X_n)$ is Gödel operations' composition, then $Z = G(X_1, ..., X_n)$ is equivalent to a Δ_0 formula

Theorem 3.8. For any transitive set M, $Def(M) = cl_G(M \cup \{M\}) \cap \mathcal{P}(M)$

Lemma 3.9. If transitive $\mathbf{M} \models \mathbf{ZF}$, then for any transitive set $M \in \mathbf{M}$, $\mathrm{Def}(M)$ is absolute for \mathbf{M}

Lemma 3.10. For any transitive set M

- 1. $Def(M) \subseteq \mathcal{P}(M)$
- 2. $M \subseteq Def(M)$
- 3. for any $X \subseteq M$, if X is finite, then $X \in Def(M)$
- 4. assume **AC** and $|M| \ge \omega$, then |Def(M)| = |M|

3.2 Gödel's L

Definition 3.11. for any α

- 1. $L_0 = \emptyset$
- 2. $L_{\alpha+1} = \text{Def}(L_{\alpha})$
- 3. For any limit α , $L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta}$
- $\mathbf{L} = \bigcup_{\alpha \in \mathbf{On}} L_{\alpha}$. Element of \mathbf{L} is called constructible set

Lemma 3.12. For any ordinal α

- 1. L_{α} is transitive
- 2. If $\alpha < \beta$, then $L_{\alpha} \subseteq L_{\beta}$
- 3. $L_{\alpha} \subseteq V_{\alpha}$

Definition 3.13. $x \in \mathbf{L}$

$$\operatorname{rank}_{\mathbf{L}}(x) = \min\{\beta \mid x \in \mathbf{L}_{\beta+1}\}\$$

Lemma 3.14. For any α

$$L_{\alpha} = \{ x \in \mathbf{L} \mid \operatorname{rank}_{\mathbf{L}}(x) < \alpha \}$$

Lemma 3.15. For any ordinal α

- 1. $L_{\alpha} \cap \mathbf{On} = \alpha$
- 2. $\alpha \in \mathbf{L} \cap \operatorname{rank}_{\mathbf{L}}(\alpha) = \alpha$

Proof. since " α is a cardinal" is absolute for any transitive set.

$$\begin{split} \alpha &= L_{\alpha} \cap \mathbf{On} \ = \{ \eta \in L_{\alpha} \mid \eta \text{ is a ordinal} \} \\ &= \{ \eta \in L_{\alpha} \mid (\eta \text{ is an ordinal}^{L_{\alpha}}) \} \in \mathrm{Def}(L_{\alpha}) \end{split}$$

Lemma 3.16. for any ordinal α

- 1. $L_{\alpha} \in L_{\alpha+1}$
- 2. any finite subset of L_{α} belongs to $L_{\alpha+1}$

Lemma 3.17. 1. $\forall n \in \omega(L_n = V_n)$

2. $L_{\omega} = V_{\omega}$

Lemma 3.18. If **AC**, then for any $\alpha \geq \omega, |L_{\alpha}| = |\alpha|$

Theorem 3.19. $L \models ZF$

3.3 Axiom of constructibility and relativization

Theorem 3.20 (Axiom of constructibility). V = L

Lemma 3.21. function $\alpha \mapsto L_{\alpha}$ is absolute for any transitive model of **ZF**

Theorem 3.22.
$$L \models ZF + V = L$$

Proof.
$$(\mathbf{V} = \mathbf{L})^{\mathbf{L}}$$
 is $\forall x \in \mathbf{L} \exists \alpha \in \mathbf{L} (x \in L_{\alpha})^{\mathbf{L}}$. By 3.21, $(x \in L_{\alpha})^{\mathbf{L}} \Leftrightarrow x \in L_{\alpha}$. Hence $\mathbf{L} \models \mathbf{V} = \mathbf{L}$

Hence

Theorem 3.23. $Con(\mathbf{ZF}) \rightarrow Con(\mathbf{ZF} + \mathbf{V} = \mathbf{L})$

Theorem 3.24. Suppose transitive proper class $M \models \mathbf{ZF}$ – Pow, then $L = L^M \subseteq M$

Proof. For any ordinal α , since \mathbf{M} is proper, $\mathbf{M} \not\subseteq V_{\alpha}$. Hence there is $x \in \mathbf{M}$ s.t. $\mathrm{rank}(x) \geq \alpha$. Since rank is absolute, $\mathrm{rank}(x) \in \mathbf{M}$. And \mathbf{M} is transitive, hence $\alpha \in \mathbf{M}$. By 3.21, $L_{\alpha} \in \mathbf{M}$

$$\mathbf{L}^{\mathbf{M}} = \{ x \in \mathbf{M} \mid (\exists \alpha \in \mathbf{On} \ (x \in L_{\alpha}))^{\mathbf{M}} \}$$

$$= \{ x \mid \exists \alpha \in \mathbf{On} \ \cap \mathbf{M} (x \in L_{\alpha} \cap \mathbf{M}) \}$$

$$= \{ x \mid \exists \alpha \in \mathbf{On} \ (x \in L_{\alpha}) \}$$

$$= \mathbf{L}$$

Definition 3.25. If transitive model $M \models \mathbf{ZF}$ contains all ordinals, then it's an **inner model**

Lemma 3.26. there is a finite set of axioms $\{\psi_1, \dots, \psi_n\}$ of **ZF** – Pow s.t. ordinals, rank and L_{α} are absolute for any model of $\{\psi_1, \dots, \psi_n\}$

Lemma 3.27. If set M is transitive, then $M \cap \mathbf{On}$ is a ordinal and is the least that doesn't belong to M, denoted by α^M

Theorem 3.28. There is a finite subset $\{\psi_1, \dots, \psi_n\}$ of axioms of **ZF** – Pow satisfying

$$\forall M(M \text{ is transitive } \wedge \psi_1^M \wedge \dots \wedge \psi_n^M \to (L_{\alpha^M} = \mathbf{L}^M \subseteq M))$$

Theorem 3.29. The is a finite subset $\{\psi_1, \dots, \psi_{n+1}\}$ of axioms of **ZF** – Pow + **V** = **L** satisfying

- 1. If **M** is a transitive proper class and $\psi_1^{\mathbf{M}} \wedge \cdots \wedge \psi_{n+1}^{\mathbf{M}}$, then $\mathbf{M} = \mathbf{L}$
- 2. $\forall M(M \text{ is transitive } \land \psi_1^M \land \dots \land \psi_n^m \rightarrow (L_{\alpha^M} = M))$

Theorem 3.30. There is a well-ordering on L. Hence $V=L \to AC$

If
$$\mathbf{V}=\mathbf{L}$$
, hence $\aleph_{\alpha}\subseteq L_{\aleph_{\alpha+1}}$. Because $\left|L_{\alpha_{\alpha+1}}\right|=\aleph_{\alpha+1}, 2^{\aleph_{\alpha}}\leq \aleph_{\alpha+1}$

Theorem 3.31. If V = L, then for any infinite ordinal α , $\mathcal{P}(L_{\alpha}) \subseteq L_{|\alpha|^+}$

Corollary 3.32 (ZF). $(AC + GCH)^L$

Theorem 3.33 (ZF). $Con(\mathbf{ZF}) \rightarrow Con(\mathbf{ZFC} + \mathbf{GCH})$

Theorem 3.34 (ZF). Suppose $S_0 = \{\psi_1, \dots, \psi_n\} \subseteq \mathbf{ZF} + \mathbf{V} = \mathbf{L}$, then

$$\mathbf{ZF} \vdash \exists M (\!(M) = \omega \land M \text{ is transitive} \land (\psi_1^M \land \dots \land \psi_n^M))$$

Lemma 3.35. Suppose V=L. For any uncountable regular cardinal κ , $L_{\kappa}=H_{\kappa}$

Corollary 3.36. If κ is a uncountable regular cardinal, then $\kappa \models \mathbf{ZF} - \mathrm{Pow} + \mathbf{V} = \mathbf{L}$. If κ is inaccessible, then $L_{\kappa} \models \mathbf{ZF} + \mathbf{V} = \mathbf{L}$

4 The end

Learn and forget