Proof Strategies

based on How to Prove It (chapter 3)

Few terms

- A proof of a theorem is simply a deductive argument whose premises are the hypotheses of the theorem and whose conclusion is the conclusion of the theorem.
- We will refer to the statements that are known or assumed to be true at some point in the course of figuring out a proof as givens, and the statement that remains to be proven at that point as the goal.

Proofs Involving Conditionals: -> 1st strategy

To prove a goal of the form $P \rightarrow Q$: Assume P is true and then prove Q.

Givens: - Goal: $P \rightarrow Q$

transformed into:

Givens: P Goal: Q

Thm 1. Suppose a and b are real numbers. Prove that if o < a < b then $a^2 < b^2$.

Proofs involving Conditionals : →

- Proof.
- Suppose o < a < b.
- Multiplying the inequality a < b by the positive number a we can conclude that a² < ab, and similarly multiplying by b we get ab < b².
- Therefore $a^2 < ab < b^2$, so $a^2 < b^2$, as required.
- Thus, if o < a < b then $a^2 < b^2$.

Proofs Involving Conditionals: -> Second Strategy.

Because any conditional statement $P \to Q$ is equivalent to its contrapositive $\neg Q \to \neg P$, you can prove $P \to Q$ by proving $\neg Q \to \neg P$ instead, using the strategy discussed earlier.

To prove a goal of the form $P \rightarrow Q$: Assume Q is false and prove that P is false.

Givens: - Goal: $P \rightarrow Q$

transformed into:

Givens: ? Goal: ?

Thm 2. Suppose a, b, and c are real numbers and a > b. Prove that if $ac \le bc$ then $c \le o$.

Proofs Involving Conditionals : -> Second Strategy.

Proof. We will prove the contrapositive. Suppose c > o. Then we can multiply both sides of the given inequality a > b by c and conclude that ac > bc. Therefore, if ac \le bc then $c \le o$.

Thm 3

Suppose that x and y are real numbers and $x \neq 3$.

If x^2 y = 9y then y = 0.

Proof. Suppose that $x^2 y = 9y$.

Then $(x^2 - 9) y = 0$.

Since $x \ne 3$, $x^2 \ne 9$, so $x^2 - 9 \ne 0$.

Therefore, we can divide both sides of the equation $(x^2 - 9) y = 0 by x^2 - 9$

which leads to the conclusion that y = 0.

Thus, if x^2 y = 9y then y = 0.

- What's wrong with the proof of the theorem? a)
- Show that the theorem is incorrect by finding a counterexample.

Incorrect Theorems or Proofs

Theorem. Suppose n is a natural number larger than 2, and n is not a prime number. Then 2n + 13 is not a prime number.

Show that the theorem is incorrect:

find a counterexample: n>2, n-natural, not prime, but 2n + 13 is a prime number.

Section 3.1 Exercise 15

Proofs Involving Negations: ¬

To prove a **goal of the form** ¬ **P**:

- If possible, reexpress the goal in some other form (without ¬) and then use one of the proof strategies for this other goal form.
- 2) To prove a **goal of the form** ¬ **P**: **Assume P is true and try to reach a contradiction**. Once you have reached a contradiction, you can conclude that P must be false.

Proofs Involving Negations: ¬

Example 1. Suppose $A \cap C \subseteq B$ and $a \in C$.

Prove that $a \notin A \setminus B$.

Given	Goal
$A \cap C \subseteq B$ $a \in C$	$a \notin A \setminus B$
	$\neg(a\in A \land a\notin B)$
	$a \notin A \lor a \in B$

We will look into this proof when we study proofs involving disjunctions (slide 19-21 of this lecture).

Proof by contradiction

Example: Prove that if $x^2 + y = 13$ and $y \ne 4$ then $x \ne 3$.

Givens
$$x^2 + y = 13$$

$$y \neq 4$$

Goal
$$x \neq 3$$

Givens

$$x^{2} + y = 13$$

$$y \neq 4$$

$$x = 3$$

Goal Contradiction

Proofs of set properties

Suppose A and B are sets. Prove that if $A \cap B = A$ then $A \subseteq B$.

Proof strategy: **Take arbitrary** $x \in A$ and prove that $x \in B$, using $A \cap B = A$

Givens
$$Goal$$
 $A \cap B = A$ $\forall x (x \in A \rightarrow x \in B)$

Givens $Goal$
 $A \cap B = A$ $x \in B$
 $x \in A$

Proofs Involving Quantifiers: 3, V

Example 3.3.3. Prove that for every real number x, if x > 0 then there is a real number y such that y(y + 1) = x.

We need to prove the property for every x. Let x be arbitrary positive real number.

Givens Goal
$$x > 0$$
 $\exists y[y(y+1) = x]$

$$y(y+1) = x$$
 \Rightarrow $y^2 + y - x = 0$ \Rightarrow $y = \frac{-1 \pm \sqrt{1 + 4x}}{2}$.

Proofs involving Conjunctions: A

- To use a given of the form P ∧ Q: treat this given as two separate givens: P, and Q.
- To prove a goal of the form P ∧ Q: prove P, and Q separately.
- Example: Suppose A and C are disjoint and $A \subseteq B$,
- Prove that $A \subseteq B \setminus C$

 $x \in A$

Next, prove that each goal is following from givens.

- To use a given in the form P ∨ Q:
- Break your proof into cases.
- For case 1, assume that P is true and use this assumption to prove the goal.
- For case 2, assume Q is true and give another proof of the goal.

• **Example.** Suppose that A, B, and C are sets. Prove that if $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$.

Givens	Goal
$A \subseteq C$	$\forall x (x \in A \cup B \to x \in C)$
$B \subseteq C$	

```
Givens Goal
A \subseteq C \qquad x \in C
B \subseteq C \qquad x \in A \lor x \in B
```

- Case 1: from $A \subseteq C$, $B \subseteq C$, and $x \in A$ prove that $x \in C$.
- Case 2: from $A \subseteq C$, $B \subseteq C$, and $x \in B$ prove that $x \in C$.

 To prove a goal of the form P V Q: Break your domain (described by givens) into cases. In each case, either prove P or prove Q.

• **Example 3.5.3**. Prove that for every integer x, the remainder when x² is divided by 4 is either 0 or 1.

Givens Goal $x \in \mathbb{Z}$ $(x^2 \div 4 \text{ has remainder } 0) \lor (x^2 \div 4 \text{ has remainder } 1)$

х	x^2	quotient of $x^2 \div 4$	remainder of $x^2 \div 4$
1	1	0	1
2	4	1	0
3	9	2	1
4	16	4	0
5	25	6	1
6	36	9	0

Let's break into 2 cases: x is even and x is odd; then prove each part of the original goal involving disjunction.

Givens Goal
$$x \in \mathbb{Z}$$
 $x^2 \div 4$ has remainder 0 $\exists k \in \mathbb{Z}(x=2k)$

Givens Goal
$$x \in \mathbb{Z}$$
 $x^2 \div 4$ has remainder 1 $\exists k \in \mathbb{Z}(x = 2k + 1)$

To prove a goal of the form P V Q:

- If P is true and does not contradicts to the givens, then of course P V Q is true.
- Next, suppose P is false and prove Q.
- Thus, P V Q is true.

Before using strategy:

 $\begin{array}{ccc} \textit{Givens} & & \textit{Goal} \\ --- & & P \lor Q \\ --- & & \end{array}$

After using strategy:

Givens Goal

— Q
— ¬P

• **Example.** Prove that for every real number x, if $x^2 \ge x$ then either $x \le 0$ or $x \ge 1$.

Givens Goal
$$x^2 \ge x \qquad x \ge 1$$

$$x > 0$$

- Proof. Suppose $x^2 \ge x$. It is true that $x \le 0$ or x > 0.
- If $x \le 0$, then it does not contradict to $x^2 \ge x$, and $x \le 0$ or $x \ge 1$ is true.
- Now suppose x > 0. Then we can divide both sides of the inequality $x^2 \ge x$ by x to conclude that $x \ge 1$.
- Thus, either $x \le 0$ or $x \ge 1$.

Example. Suppose $A \cap C \subseteq B$ and $a \in C$.

Prove that $a \notin A \setminus B$.

Givens	Goal
$A \cap C \subseteq B$ $a \in C$	$a \notin A \setminus B$
	$\neg(a\in A\wedge a\notin B)$
	$a \notin A \lor a \in B$

Givens	Goal
$A \cap C \subseteq B$	$a \in B$
$a \in C$	
$a \in A$	

Proofs Involving Biconditionals:←>

- $P \leftrightarrow Q$ is equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$.
- According to our strategies a given or goal of the form
 P ↔ Q should be treated as two separate givens or
 goals: P → Q, and Q → P.
- To prove a goal of the form $P \leftrightarrow Q$:
 - Prove $P \rightarrow Q$ and $Q \rightarrow P$ separately.
- To use a given of the form $P \leftrightarrow Q$:
 - Treat this as two separate givens: $P \rightarrow Q$, and $Q \rightarrow P$.

Proofs Involving Biconditionals:←>

Example 3.4.2. Suppose x is an integer. Prove that x is even iff x^2 is even.

- The goal is (x is even) ↔ (x² is even), so we prove the two goals separately:
 - 1. $(x \text{ is even}) \rightarrow (x^2 \text{ is even})$
 - 2. $(x^2 \text{ is even}) \rightarrow (x \text{ is even})$

Proofs Involving Biconditionals: ↔

Example 3.4.4. Suppose A, B, and C are sets.

Prove that $A \cap (B \setminus C) = (A \cap B) \setminus C$.

 $x \in A \cap (B \setminus C)$ iff $x \in A \land x \in B \setminus C$ iff $x \in A \land x \in B \land x \notin C$;

 $x \in (A \cap B) \setminus C \text{ iff } x \in A \cap B \wedge x \notin C \text{ iff } x \in A \wedge x \in B \wedge x \notin C.$

Proofs Involving Biconditionals:↔

Theorem 3.4.6. For every integer n, 6|n iff 2|n and 3|n.

Proof. Let n be an arbitrary integer.

- (\rightarrow) Suppose 6|n.
 - Then we can choose an integer k such that 6k = n.
 Therefore n = 6k = 2(3k), so 2|n, and similarly n = 6k = 3(2k), so 3 | n.
- (←) Suppose 2|n and 3|n.
 - Then we can choose integers j and k such that n = 2 j and n = 3k.
 - 6(j k) = 6j 6k = 3(2j) 2(3k) = 3n 2n = n, so 6|n.

Proofs of Existence and Uniqueness

- To prove a goal of the form $\exists ! x P(x)$:
 - Prove existence: $\exists x P(x)$
 - Prove uniqueness: $\forall y (P(y) \rightarrow (y = x))$
- **Theorem.** For every real number x, if x ≠ 2 then there is a unique real number y such that 2y/(y + 1) = x.
- **Proof.** Let x be an arbitrary real number, and suppose $x \ne 2$. Let y = x/(2 x), which is defined since $x \ne 2$. Then

$$\frac{2y}{y+1} = \frac{\frac{2x}{2-x}}{\frac{x}{2-x}+1} = \frac{\frac{2x}{2-x}}{\frac{2}{2-x}} = \frac{2x}{2} = x.$$

• To see that this solution is unique, suppose 2z/(z+1) = x. Then 2z = x(z+1), so z(z-x) = x. Since $x \ne 2$ we can divide both sides by z - x to get z = x/(z-x) = y.

Proofs of Existence and Uniqueness

- **Theorem.** There is a unique set A such that **for every set** B, A \cup B = B.
- Proof.
- Existence:
- Clearly \forall B($\emptyset \cup$ B = B), so \emptyset has the required property.
- Uniqueness:
- Suppose \forall B(C U B = B) and \forall B(D U B = B). Applying the first of these assumptions to D we see that C U D = D, and applying the second to C we get D U C = C. But clearly C U D = D U C, so C = D.