Chapter 02

Mingjia Huo

Problem 2.3. Refute: Assume $\mathcal{M} = \{0, 1\}$ with uniform distribution, define (Gen, Enc, Dec):

- Gen: $\varnothing \to \mathcal{K}$, where $\mathcal{K} = \{k_1 k_2 \mid k_1 \in \{0, 1\}, k_2 \in \{0, 1, 2\}\}, \Pr[K = k_1 k_2] = \frac{1}{6}$.
- Enc: $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$, where $\mathcal{C} = \{c_1c_2 \mid c_1, c_2 = 0, 1\}$. Here, $c_1 = k_1 \oplus m$, and

$$c_2 = \begin{cases} 0, & k_2 = 0, 1 \\ 1, & k_2 = 2 \end{cases}$$

• Dec: $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$, where $m = c_1 \oplus k_1$.

In this construction, $\Pr[M = m \mid C = c] = \frac{1}{2} = \Pr[M = m]$. But

$$\Pr[C = 00] = \Pr[c_1 = 0] \times \Pr[c_2 = 0] = \frac{1}{3},$$

$$\Pr[C = 01] = \Pr[c_1 = 0] \times \Pr[c_2 = 1] = \frac{1}{6},$$

a contradiction.

Problem 2.11. Part 1:

Assume $|\mathcal{C}|=|\mathcal{M}|=n$, $|\mathcal{K}|=l$, there exists a encryption scheme (Gen,Enc,Dec). Let $\mathcal{M}=\{m_1,\cdots,m_n\}$, $\mathcal{K}=\{k_1,\cdots,k_l\}$, $\mathcal{C}=\{c_1,\cdots,c_n\}$, and

• Gen: $\{0,1\}^* \to \mathcal{K}$

$$\Pr[\text{Gen} = k_j] = \begin{cases} \frac{1}{n}, & j \in \{1, \dots, l-1\} \\ \frac{n-l+1}{n}, & j = l \end{cases}$$

- Enc: $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ For $j \in \{1, \dots, l-1\}$, $\operatorname{Enc}_{k_j}(m_i) = c_{(i+j \mod n)}$. For j = l, and $\forall t \in \{l, l+1, \dots, n\}$, $\Pr[\operatorname{Enc}_{k_l}(m_i) = c_{(i+t \mod n)}] = \frac{1}{n-l+1}$.
- Dec: $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$ For $j \in \{1, \dots, l-1\}$, $\operatorname{Dec}_{k_j}(c_i) = c_{(i-j \mod n)}$. For j = l, and $\forall t \in \{l, l+1, \dots, n\}$, $\operatorname{Pr}[\operatorname{Dec}_{k_l}(m_i) = c_{(i-t \mod n)}] = \frac{1}{n-l+1}$.

Then $\forall i, j \in [n], m_i \in \mathcal{M}$,

• when $j \in \{(i+1) \mod n, \dots, (i+l-1) \mod n\}$:

$$\Pr[\operatorname{Enc}_K(m_i) = c_j] = \Pr[\operatorname{Enc}_{k_{(j-i \mod n)}}(m_i) = c_j] = \frac{1}{n};$$

• otherwise,

$$\Pr[\operatorname{Enc}_K(m_i) = c_j] = \Pr[\operatorname{Enc}_{k_l}(m_i) = c_j] \times \Pr[K = k_l] = \frac{1}{n - l + 1} \frac{n - l + 1}{n} = \frac{1}{n},$$

which means $\forall m, m' \in \mathcal{M}, c \in \mathcal{C}$,

$$\Pr[\operatorname{Enc}_K(m) = c] = \Pr[\operatorname{Enc}_K(m') = c] = \frac{1}{n}.$$

So the construction ensures perfect secrecy.

And for message m_i , when

- 1. $k \in \{k_1, \dots, k_{l-1}\}$, then $Dec_k(Enc_k(m)) = m$.
- 2. $k = k_l$, assume $C_m = \{c \mid c \in \mathcal{C}, \Pr[\operatorname{Enc}_{k_l}(m) = c] \neq 0\}$, then

$$\Pr[\operatorname{Dec}_k(\operatorname{Enc}_k(m)) = m] = \sum_{c \in C_m} \Pr[\operatorname{Enc}_{k_l}(m) = c] \Pr[\operatorname{Dec}_{k_l}(c) = m]$$
$$= (n - l + 1) \times \frac{1}{n - l + 1} \times \frac{1}{n - l + 1}$$
$$= \frac{1}{n - l + 1}.$$

To sum up,

$$\Pr[\operatorname{Dec}_{K}(\operatorname{Enc}_{K}(m)) = m]$$

$$= \sum_{k=k_{1}}^{k_{l-1}} \Pr[K = k] \times \Pr[\operatorname{Dec}_{k}(\operatorname{Enc}_{k}(m)) = m] + \Pr[K = k_{l}] \times \Pr[\operatorname{Dec}_{k_{l}}(\operatorname{Enc}_{k_{l}}(m)) = m]$$

$$= (l-1) \times \frac{1}{n} + \frac{n-l+1}{n} \times \frac{1}{n-l+1}$$

$$= \frac{l}{n}.$$

Let $l = \lceil 2^{-t}n \rceil$, so when n is large enough, we have l < n, which means $|\mathcal{K}| < |\mathcal{M}|$. Then

$$\Pr[\operatorname{Dec}_K(\operatorname{Enc}_K(m)) = m] = \frac{\lceil 2^{-t} n \rceil}{n} \ge 2^{-t},$$

which satisfies the condition.

Part 2:

From Part 1 we have $|\mathcal{K}| = l = \lceil 2^{-t}n \rceil$. Then we proof l must $\geq \lceil 2^{-t}n \rceil$. By condition, $\Pr[\operatorname{Dec}_K(\operatorname{Enc}_K(m)) = m] \geq 2^{-t}$. So

$$\sum_{m} \Pr[\mathrm{Dec}_K(\mathrm{Enc}_K(m)) = m] \ge 2^{-t}n$$

. Let $C_{k,m}=\{c\mid \Pr[\operatorname{Enc}_k(m)=c]\neq 0\}.$ Then we have

$$\begin{split} &\sum_{m} \Pr[\operatorname{Dec}_{K}(\operatorname{Enc}_{K}(m)) = m] \\ &= \sum_{m} \sum_{k} \Pr[K = k] \Pr[\operatorname{Dec}_{k}(\operatorname{Enc}_{k}(m)) = m] \\ &= \sum_{m,k} \Pr[K = k] \sum_{c \in C_{k,m}} \Pr[\operatorname{Enc}_{k}(m) = c] \times \Pr[\operatorname{Dec}_{k}(c) = m \mid \operatorname{Enc}_{k}(m) = c] \\ &= \sum_{m,k} \sum_{c \in C_{k,m}} \Pr[K = k] \Pr[\operatorname{Enc}_{k}(m) = c] \Pr[\operatorname{Dec}_{k}(c) = m \mid \operatorname{Enc}_{k}(m) = c] \end{split}$$

When $\Pr[\operatorname{Enc}_k(m) = c] \neq 0$, $\Pr[\operatorname{Dec}_k(c) = m \mid \operatorname{Enc}_k(m) = c] = \Pr[\operatorname{Dec}_k(c) = m]$. And when $c \notin C_{k,m}$, we have $\Pr[\operatorname{Enc}_k(m) = c] = 0$. Thus,

$$2^{-t}n$$

$$\leq \sum_{m} \Pr[\operatorname{Dec}_{K}(\operatorname{Enc}_{K}(m)) = m]$$

$$= \sum_{m,k} \sum_{c \in C_{k,m}} \Pr[K = k] \Pr[\operatorname{Enc}_{k}(m) = c] \Pr[\operatorname{Dec}_{k}(c) = m \mid \operatorname{Enc}_{k}(m) = c]$$

$$= \sum_{m,k} \sum_{c \in C_{k,m}} \Pr[K = k] \Pr[\operatorname{Enc}_{k}(m) = c] \Pr[\operatorname{Dec}_{k}(c) = m]$$

$$= \sum_{m,k,c} \Pr[K = k] \Pr[\operatorname{Enc}_{k}(m) = c] \Pr[\operatorname{Dec}_{k}(c) = m]$$

On the other hand, by perfect secrecy,

$$\forall m, m' \in \mathcal{M}, \Pr[\operatorname{Enc}_K(m) = c] = \Pr[\operatorname{Enc}_K(m') = c] = \Pr[C = c].$$

Thus,

$$\sum_{c,m} \Pr[C=c] \Pr[\operatorname{Dec}_k(c)=m] = \sum_{c} \Pr[C=c] \times 1 = 1.$$

Obviously,

$$\forall m, \Pr[C = c] = \sum_{k' \in \mathcal{K}} \Pr[K = k'] \Pr[\operatorname{Enc}_{k'}(m) = c].$$

Then,

$$\begin{split} l &= \sum_{k \in \mathcal{K}} 1 \\ &= \sum_{k} \sum_{c,m} \Pr[C = c] \Pr[\operatorname{Dec}_k(c) = m] \\ &= \sum_{k,c,m} \sum_{k' \in \mathcal{K}} \Pr[K = k'] \Pr[\operatorname{Enc}_{k'}(m) = c] \Pr[\operatorname{Dec}_k(c) = m] \\ &= \sum_{k = k',c,m} \Pr[K = k'] \Pr[\operatorname{Enc}_{k'}(m) = c] \Pr[\operatorname{Dec}_k(c) = m] \\ &+ \sum_{k,c,m} \sum_{k' \neq k} \Pr[K = k'] \Pr[\operatorname{Enc}_{k'}(m) = c] \Pr[\operatorname{Dec}_k(c) = m] \\ &\geq \sum_{k = k',c,m} \Pr[K = k'] \Pr[\operatorname{Enc}_{k'}(m) = c] \Pr[\operatorname{Dec}_k(c) = m] \\ &= \sum_{k,c,m} \Pr[K = k] \Pr[\operatorname{Enc}_k(m) = c] \Pr[\operatorname{Dec}_k(c) = m] \\ &\geq 2^{-t} n. \end{split}$$

So the lower bound is $\lceil 2^{-t} \mid \mathcal{M} \mid \rceil$.