Deep learning & application – Practice #1

Author: 김영진 2016025241

Time comparison

element-wise version: 5.78 secs

vectorized version: 0.36 secs

Estimated unknown function parameters W & b

W: [666.88, 666.67]

■ b: 0.18

Empirically determined (best) hyper parameter, alpha

■ alpha: 0.01

m=100,n=100,k=20 을 기준으로 실험했을 때, 대부분 20 iterations 만으로 99에 가까운 accuracy를 보였으며 0.1, 0.01, 0.001, ... 의 값들을 시험해본 결과 0.01보다 큰 값이기만 하면 대체로 비슷한 결과를 보였고, 심지어 10, 100, 1000 등의 값에서도 잘 작동하였다.

이 문제 에서의 정답 파라미터는 W[0] == W[1], b == 0 인 것을 쉽게 알 수 있고, alpha (learning rate) 값이 적당히 크기만 하면 적절한 상태에 도달했다

Accuracy

	m=10,n=100,K=2000	m=100,n=100,K=2000	m=1000,n=100,K=2000
Accuracy (with 'm' train set)	100	100	100
Accuracy (with 'n' test samples)	92	99	100

	m=1000,n=100,K=20	m=1000,n=100,K=200	m=1000,n=100,K=2000
Accuracy (with 'm' train set)	98	100	100
Accuracy (with 'n' test samples)	98	100	100

Discussion

Cross entropy loss 에서 사용되는 log함수로 인해서, 마지막 output값이 0초과 1미만인 상태를 항상 유지해주어야 하는데, sigmoid 함수에서 부동소수점 표현력의 한계로 인하여 0이나 1값이 나올 수 있다는 것을 확인하였다. 이를 해결하기 위해, 기존의

$$\sigma(x) = rac{1}{1+e^{-x}}$$

로 정의된 sigmoid 함수를

$$\sigma(x) = 0.01 + rac{0.98}{1 + e^{-x}}$$

로 바꾸어 사용해서 y=0, y=1 선으로 부터 각각 0.01씩 멀어지도록 하였다.

Loss와 W의 변화를 살펴보면, Loss는 빠르게 수렴한 뒤에 거의 변화가 없지만, W의 경우 특정 방향으로 끝 없이 발산하는 것으로 보인다. K가 늘어날 수록 최종 결과의 W의 값이 계속 늘어나는 것을 확인할 수 있으며, 너무 많이 학습할 경우 overflow가 발생하여 오히려 문제가 될 것으로 추측된다.

이 모델이 구분하는 영역은 명백히, 선으로 구분되는 영역인 것으로 보이며, 학습 전후로 이 선의 방향과 위치가 변화하는 것으로 보인다.

before

after

