Algorithms and Tools in Bioinformatics

Algorithms: Sequence Alignment (adapted from Prof. Stephan Winkler)

Julia Vetter julia.vetter@fh-hagenberg.at

(4) Heuristic Methods

BLAST and **FASTA**

Heuristics

- heuristic methods
 - based on (simplifying) rules of thumb
 - do not necessarily produce an exact (optimal) result
 - but are fast and based on reasonable assumptions
- exact sequence comparison
 - dynamic programming: optimal alignment (relative to model / evaluation scheme)
 - runtime and space complexity: O(n²)
 - too slow for DB search
- heuristic sequence comparison
 - FAST, BLAST...
 - linear runtime and memory requirements, i.e. O(n)
 - at least about 10-100 times faster than Smith-Waterman

Heuristic DB Search

- rule of thumb: almost all homologous sequences contain short partial sequences with a high degree of similarity
- goal: find those DB sequences with very highly rated, short local alignments (highly conserved sequence sections) –
 and find them fast!
- Calculate as few cells of the alignment matrix as possible
- Collect all of these high scoring segments
- Extend these sections into longer alignments
- The best known and most frequently used program for searching sequence databases is BLAST
- Altschul, Gish, Miller, Myers and Lipman [1990]: Journal of Molecular Biology
- Gapped BLAST and PSI-BLAST: Altschul, Madden, Schäffer, Zhang, Zhang, Miller and Lipman [1997]: Nucleic Acids Research
- BLAST is also based on the idea of hot spot search.

BLAST - Definition

- Let S be the database (a long sequence) and P the pattern.
- A segment pair consists of two equally long subsequences of S and P:

$$s_i s_{i+1} ... s_{i+1}$$

 $p_j p_{j+1} ... p_{j+1}$

- A pair of segments that is maximal with respect to a given scoring function, i.e., the value of the pair does not increase as it is lengthened or truncated, is referred to as a maximal pair of segments.
- All segment pairs with a fixed predetermined length k are called word pairs.

(1) Find all words of length k in the alphabet whose similarity to any word of length k is greater than a bound.

P: EDPME
EDP
DPM
NPM
EPM
PME
PMD

(2) How can one determine all occurrences of the word list in S? For each word of length k in S, test whether it belongs to P's word list using an efficient data structure.

BLAST uses a deterministic finite automaton for this (see Mealy [1955], Hopcroft & Ullman [1979]).

P: EDPME EDP

DPM

NPM

EPM

PME

PMD

PMQ

Mealy Automat (nicht vollständig)

P values, E values

p value (probability) – A. M. Lesk

- P ≤ 10⁻¹⁰⁰ exact match

- P between 10⁻¹⁰⁰ and 10⁻⁵⁰ almost identical sequences

P between 10⁻⁵⁰ and 10⁻¹⁰ closely related sequences,

homology sure

P between 10⁻¹⁰ and 10⁻¹ distant relatives

 $-P > 10^{-1}$ similarity probably not significant

e value (expectancy)

E ≤ 0,02 sequences probably homologous

E between 0,02 und 1
 Homology cannot be ruled out

E ≥ 1
 good match might probably be random hit

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

BLAST Programmsuite

Program	Database	Query	Typical uses
BLASTN	Nucleotide	Nucleotide	Mapping oligonucleotides, cDNAs and PCR products to a genome, screening repetitive elements; cross-species sequence exploration; annotating genomic DNA; clustering sequencing reads
BLASTP	Protein	Protein	Identifying common regions between proteins; collecting related proteins for phylogenetic analyses
BLASTX	Protein	Nucleotide	Finding protein-coding genes in genomic DNA; determining translated into if a cDNA corresponds to a known protein protein
TBLASTN	Nucleotide translated into protein	Protein	Identifying transcripts, potentially from multiple organisms, similar to a given protein; mapping a protein to genomic DNA
TBLAST	Nucleotide translated into protein	Nucleotide translated into protein	Cross-species gene prediction at the genome or transcript level; searching for genes missed by traditional methods protein or not yet in protein database

BLAST (NCBI)

	NIH National Library of N National Center for Biotechnology I	ledicine nformation		
	BLAST [®] » blastn suite			
blastn bla	astp blastx tblastn tblastx			
Enter Query S	Saguence	BLASTI		
	number(s), gi(s), or FASTA sequence(s) ? Clear Query subrange ?			
	From			
Or, upload file	Browse No file selected.			
Job Title				
	Enter a descriptive title for your BLAST search ?			
Align two or mo	ore sequences 😲			
Choose Searc	ch Set			
Database	● Standard databases (nr etc.): ○ rRNA/ITS databases ○ Genomic + transcript databases ○ Betacoronavirus			
	Try experimental taxonomic nt databases For more info see What are taxonomic nt databases? Download Download			
	Nucleotide collection (nr/nt)			
Organism Optional	Enter organism name or id—completions will be suggested exclude Add organism			
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown 3			
Exclude Optional	☐ Models (XM/XP) ☐ Uncultured/environmental sample sequences			
Limit to	Sequences from type material			
Optional Entrez Query	You Tube: Create custom database			
Optional	Enter an Entrez query to limit search ?			
Program Sele	ection			
Optimize for	● Highly similar sequences (megablast)			
BLAST	Search database nt using Megablast (Optimize for highly similar sequences) Show results in a new window			
+ Algorithm pa	arameters			

BLAST (EMBL-EBI Ensembl)

FASTA

- FASTA (Fast All)
 - by Pearson & Lipman (1985/88), Department of Biochemistry, University of Virginia
- 4 phases
 - simple index search (indices = short exact match sequences)
 - 2. 'rough' evaluation of locally optimal sections
 - 3. connect sections to larger regions
 - 4. calculation of a local optimal narrow stripe alignment around the best regions

FASTA Phase 1: Index Search

- Separation into (overlapping) "words" of fixed length
 - word length is called ktup parameter; ktup for k-tuple: protein 1-3, DNA 4-6
- Example: Sequence R K T U R K (word length 2)
 - 1st word R K
 - 2nd word K T
 - 3rd word T U etc.
- all positions of a word in table (lookup-table)
 - (Example: Word RK at sequence positions 1 and 5, ...)
- Compare identical words (hot spots) from query and DB sequences quickly using hashing or lookup tables (sorted array of all ktup)
- initial score between query and DB sequence: number of hot spots within a narrow region

FASTA Phase 1: Index Search

Query Sequenz: FLWRTWS

• DB-Sequenz: SWKTWT

Aminosäure	F	L	W	R	Т	S
Index	1	2	3,6	4	5	7

Aminosäure	S	W	K	Т	W	Τ
Position	1	2	3	4	5	60

Hot-spots und deren relative Lage (Query zu DB-Seq.):

A.säure,	S, 1	W, 2		K, 3	T, 4	W, 5		T, 6
Position								
Abstand	7-1=6	3-2=1	6-2=4	-	5-4 =1	3-5=-2	6-5= 1	5-6=-1

→ Tabelle ,entspricht Dotplot

FASTA Phase 1: Index Search (Diagonals on a Dotplot)

hot spots mit gleicher Differenz der Positionen: auf einer Diagonalen

Differenz nennt man *Offset*

FASTA Phase 1: Index Search Location of all k-tuple matches

1. Sequenz: RKTURKRKTU 2. Sequenz: ARKURWKTUR

vertika	vertikal: target Sequenz (aus DB) - horizontal: Query Sequenz								
	1	2	3	4	5	6	7	8	9
	RK	KT	TU	UR	RK	KR	RK	KT	TU
AR									
RK	*				*		*		
KU									
UR				*					
RW									
WK									
KT		*						*	
TU			*						*
UR				*					

Hash 7	able 1. Seq.
key	address
RK	1,5,7
KT	2,8
TU	3,9
UR	4
KR	6

Hash T	able 2. Seq.
key	address
AR	1
RK	2
KU	3
UR	4,9
RW	5
WK	6
KT	7
TU	8

FASTA Phase 1: Index Search Diagonals

- Sort hot spots by diagonals
- diagonal sequence = consecutive hot spots
- Evaluation of a diagonal sequence: Sum of positive score according to the number of hot spots and negative score: number and length of 'inter-spot' areas; the longer these areas, the higher the score
- Determine ten best diagonal sequences (gap-free sections of potentially high-scoring alignments)
- Complexity: O(#hot-spots) << O(n*m)

FASTA Phase 2: init1 Score

- Re-evaluation of all diagonal sequences
- all matches and mismatches according to PAM or BLOSUM
- associated sections of the diagonals are called initial regions
- init1 Score: best so received re-evaluation

FASTA Phase 3: initn Score

- only consider initial regions with score
 cutoff (parameter)
- Sequence of regions is compatible if all related parts of a sequence do not overlap
- distance between regions < join (parameter, e.g. 36)
- Scoring a compatible episode
 - positive: sum of the scores of the initial regions
 - negative: relative position (distance of the regions) of the initial regions according to a gap penalty
- initn Score: maximum score of a compatible sequence

FASTA Phase 4: opt Score

- If initn score is sufficiently large, calculation of opt score (optimal local alignment score)
- Restriction to narrow, diagonal stripes
- fixed width around init1 region
- Perform Smith-Waterman inside this strip
- Determining the stripe width (parameter)
- Heuristic: the stronger the identities, the less likely an optimal alignment path is far away from the init1 diagonal (i.e. contains a lot of gaps)
 - ktup=2: 16 diagonals
 - ktup=1: 32 diagonals
- opt score (formerly initn score) as the basis for ranking the DB sequences (ranking)

FASTA Program Suite

- FASTA
 - Query Protein vs Protein DB
 - Query DNA vs DNA DB
- FASTX
 - Query DNA vs Protein DB
- TFASTX
 - Query Protein vs DNA DB
- FASTS
 - Query Protein (MALDI analyses) vs Protein DB

FASTA Weaknesses

- 1. Example: Two protein sequences:
 - ABABABABAB
 - ACACACACAC
 - 50% identity, but with ktup=2 no hot-spots
- 2. The narrow band of e.g. 32 residues in phase 4 can be too narrow: two proteins can be identical except for a gap of length >32 in the middle of one of the sequences. In phase 4, only half of the identity would be found.
- 3. FASTA only considers perfect matches but not conserved substitutions in proteins. As a result, sequences that are functionally homologous but have little identity cannot be found.