LSML #4

Рекомендательные системы

Рекомендательные системы

Вам также могут понравиться

User-based CF

- **n** пользователей, **m** товаров
- r_{ui} оценка пользователя и товару і
- r_u средняя оценка пользователя и
- Похожесть пользователей и и v:

$$corr(u,v) = \frac{\sum_{i=1}^{m} (r_{ui} - r_u)(r_{vi} - r_v)}{\sqrt{\sum_{i=1}^{m} (r_{ui} - r_u)^2 \sum_{i=1}^{m} (r_{vi} - r_v)^2}}$$

• Предсказание:

$$\widehat{r_{ui}} = r_u + \frac{\sum_{v=1}^{n} corr(u, v)(r_{vi} - r_v)}{\sum_{v=1}^{n} |corr(u, v)|}$$

User-based CF

Прикинем на примере

- 10000 рейтингов
- 1000 пользователей
- 100 товаров
- Рейтинги распределены равномерно в таблице

- Сколько общих оценок в среднем у двух случайных юзеров?
- А у двух случайных товаров?

Item-based CF

Item-based CF

- Похожие формулы
- Более уверенные оценки похожести товаров
- Медленнее устаревают похожести товаров
- Как работает:
 - Посчитали заранее Item-Item похожести
 - Приходит пользователь, делает новый клик
 - По его кликам можно найти похожие товары в real-time

Параллелим Item-based CF

- **n** пользователей, **m** товаров, **n** \sim **m** \sim 10^6
- Нужно посчитать заранее Item-Item похожести:

$$corr(i,j) = \frac{\sum_{u=1}^{n} (r_{ui} - r_u)(r_{uj} - r_u)}{\sqrt{\sum_{u=1}^{n} (r_{ui} - r_u)^2 \sum_{u=1}^{n} (r_{uj} - r_u)^2}}$$
 adjusted cosine similarity

- Наивный подход O(m²n)
- Матрица оценок сильно разрежена, можно лучше?
- Вклад в похожесть двух товаров ненулевой только от пользователей, которые оценили оба этих товара

Инвертированный индекс

$$(1, 3) \rightarrow 5 * 4$$

$$(1, 6) \rightarrow 5 * 1$$

$$(1, 3) \rightarrow 5 * 4$$

 $(1, 6) \rightarrow 5 * 1$
 $(3, 6) \rightarrow 4 * 1$

Как посчитать все числители на Spark

```
corr(i,j) = \frac{\sum_{u=1}^{n} (r_{ui} - r_u)(r_{uj} - r_u)}{\sqrt{\dots}}
def emit pairs(x):
    user, items = x
    items = sorted(items)
    if len(items) < 300:</pre>
         for i in range(len(items) - 1):
             for j in range(i + 1, len(items)):
                  yield (
                       (items[i][0], items[j][0]),
                      items[i][1] * items[j][1]
dot product = (
    ratings
    .map(lambda x: (x.user, (x.product, x.rating)))
    .groupByKey()
    .flatMap(emit pairs)
    .reduceByKey(lambda x, y: x + y)
```

Решение на Spark SQL

```
ic1.itemId,
  ic2.itemId AS jointItemId,
  SUM(ic1.val * ic2.val) AS cosine
FROM ic AS ic1
  JOIN ic AS ic2 ON ic1.clientId = ic2.clientId
WHERE ic1.itemId < ic2.itemId
GROUP BY ic1.itemId, ic2.itemId;</pre>
```

Похожести для неявных рейтингов

• Например, рассмотрим покупку (неявный рейтинг)

Что такое «часто покупают вместе»?

Количество совместных покупок?

- Бестселлеры типа «Гарри Поттер» много кто купил
- Получается, что «Гарри Поттер» часто покупают со всеми остальными книгами
- Но не рекомендовать же всем «Гарри Поттер» к любой книге?

Мера Жаккара (похожесть множеств юзеров)

• Учитывает популярности сравниваемых товаров:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$

Пример

Similar to 'Kanye West' by Overlap:

Artist	Overlap
Coldplay	8061
Jay-Z	6851
The Beatles	6139
Radiohead	6135
Eminem	5454

Kanye West Coldplay Jay-Z

Similar to 'Kanye West' by Jaccard:

Jaccard	
0.217	
0.163	
0.156	
0.156	
0.139	
	0.217 0.163 0.156 0.156

more ...

https://www.benfrederickson.com/distance-metrics/

Content-based рекомендации

- Используем свойства товаров и пользователей
 - Возраст, пол, ...
 - Жанр, режиссер, ...
- Можем рекомендовать товары, не имея статистики

Content-based: похожесть текстов

TFIDF Normed Vectors	۵	Accelerating	and	applications	art	behavior	Building	Consumer	CRM	customer	data	for	Handbook	Introduction	Knowledge	Managemen	Marketing	Mastering	mining	of	relationship	Research	science	technology
Building data mining applications for CRM				0.502			0.502		0.344		0.251	0.502							0.251					
Accelerating customer relationships: using CRM and relationship technologies		0.432	0.296						0.296	0.216											0.468			0.432
Mastering Data Mining: the art and science of Customer Relationship Management Data Mining your			0.256		0.374					0.187	0.187					0.256		0.374	0.187	0.374	0.256		0.374	
Data Mining your website Introduction to Marketing											0.316	1		0.636			0.436		0.316					

Content-based: похожесть текстов

- Похожесть как косинус между векторами TF-IDF
- Используем инвертированный индекс

SVD для матрицы рейтингов

Столбцы V описывают разные «характеристики» товаров

Интерпретация для рейтингов

- Юзеры и товары погружаются в новое пространство (малой размерности k).
- Координаты в этом пространстве «характеристики» товаров и юзеров.
- Похожесть в этом пространстве это взвешенное (Σ) скалярное произведение!

Интерпретация для рейтингов (k=2)

ALS: матричные факторизации

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} (r_{ij} - w^T f[j])^2 + \lambda ||w||_2^2$$

Наивный параллельный ALS

- R = XY, обновляем X
- Join R и Y по товарам \rightarrow (u, r_{ui}, y_i)
- Группируем по u
- На каждой машине пересчитываем x_n
- Один и тот же вектор y_i может понадобится нескольким юзерам на машине, и будет отправлен несколько раз!

Может быть спасет broadcast Y?

- Не сильно быстрее
- Имеет предел масштабирования (Y должен влезать в память)

Блочный ALS

- Пользователи и товары бьются на группы, каждая группа обрабатывается на своей машине
- Перед началом итераций вычисляем на какие машины отправлять новые y_i и x_u (хранится в памяти, линейно относительно измерений)
- Пересылаются только нужные части матриц

Блочный ALS

ALS B MLlib

```
from pyspark.mllib.recommendation import ALS, Rating
sc.setCheckpointDir("/checkpoints/")
model = ALS.train(train_scores_for_als, 100, 30, seed=42)
```

```
import math
RMSE = math.sqrt(
    model
    .predictAll(test scores for als
                .map(lambda x: (x.user, x.product)))
    .map(lambda x: ((x.user, x.product), x.rating))
    .join(test scores for als
          .map(lambda x: ((x.user, x.product), x.rating)))
    .map(lambda x: (x[1][0] - x[1][1]) ** 2)
    .mean()
print RMSE
```

Д3: Outbrain Click Prediction

- https://www.kaggle.com/c/outbrain-click-prediction
- Персональные рекомендации в Интернете
- 100 ГБ несжатых данных

Ссылки

- https://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf
- ДЗ Baseline (можно сделать такие же запросы в Spark SQL): https://www.kaggle.com/tkm2261/outbrain-click-prediction/bigquery-is-cool-lb-0-63692
- http://cs229.stanford.edu/proj2016/report/JaiswalGopinathLimaye-OutbrainClickPrediction-report.pdf
- https://data-artisans.com/how-to-factorize-a-700-gb-matrix-with-apache-flink/