

Talk Outline:

- Introduction to Barred Owls and Spotted Owls
- Some findings from our Barred Owl radiotelemetry study
 - Home Range Size
 - Within-home range forest structure
 - Landscape-scale habitat selection
- Provincial-scale Barred Owl habitat assessment & comparison with Spotted Owls
- How this information is being used to model effects of interactions between Spotted Owls, Barred Owls, and disturbance in dry forests

Introduction: The Problem

- Northern Spotted Owl (NSO) populations declined 7% annually in WA demography study areas from 1985-2003
- Barred Owl (BO) first detected in WA in 1970s, now abundant
- Substantial anecdotal information suggesting that BO displace NSO
- Ecological interactions poorly understood

Barred Owls & Spotted Owls

Northern Spotted Owl (Strix occidentallis Caurina)

	Male	Female
Wing Length:	32 cm	33 cm
Tail Length:	22 cm	22 cm
Weight:	579 g	663 g

Barred Owl
(Strix varia varia)

	Male	Female
Wing Length:	33 cm	34 cm
Tail Length:	22 cm	23 cm
Weight:	621 g	872 g

Measurements from Johnsgard 2002, North American Owls

Introduction: Barred Owl Range Expansion

Barred Owl Range Expansion

Spotted Owl Distribution

Introduction: Risks to spotted owls in dry forests

Chumstick –
Chiwawa
Barred Owl
Radiotelemetry
Study Area

Total area: 309 km²

Methods: Field Methods

Capture

The Chumstick-Chiwawa Barred Owl Study 2004 – 2006

Call survey results: 21 Barred Owl Sites 2 Spotted Owl Sites

Radiotelemetry data from 14 individuals at 12 pair sites

Singleton et al. 2010.
Journal of Wildlife
Management 74(2)

Barred Owl Telemetry Results

Barred Owl Home Range Sizes:

	<u>Season</u>	KHR (Ha)		<u>n</u>
Female	BR	218	217	6
	NB	279	322	5
Male	BR	199	198	15
	NB	337	428	7

Barred Owl Within Home Range Forest Structure

Field Methods – Forest Structure Sampling

Code	Description	Units	Min	Max
SLOPE	Slope	Degrees	0	45
SOLR	Solar energy (annual daily mean watt hours/m²)	Degrees	972	2787
CANOPY1	Layer 1 (<0.6 m) canopy closure	Percent	10	99
CANOPY2	Layer 2 (0.6-1.8 m) canopy closure	Percent	5	92
CANOPY3	Layer 3 (1.8-4.9 m) canopy closure	Percent	5	90
CANOPY4	Layer 4 (>4.9 m) canopy closure	Percent	0	90
TR_HT_MN	Mean tree height	Meters	0	51.6
TR_HT_SD	Std. Dev. Of tree height	Meters	0	17.2
TR_ULC_MN	Mean height to unconsolidated live crown	Meters	0	21.3
TR_ULC_SD	Std. Dev. Of height to unconsolidated live crown	Meters	0	56.8
TH_S2	Trees per ha., size class 2 (12.7-22.9 cm dbh)	Count	0	167
TH_S3	Trees per ha., size class 3 (23.0-50.8 cm dbh)	Count	0	187
TH_S4	Trees per ha., size class 4 (50.9-101.6 cm dbh)	Count	0	147
TH_S5	Trees per ha., size class 5 (>101.6 cm dbh)	Count	0	79
TH_TOT	Total Trees per ha.	Count	0	305
PCT_ABGR	Percent of dom. and subdom. trees that are ABGR	Percent	0	1.00
PCT_PIPO	Percent of dom. and subdom. trees that are PIPO	Percent	0	1.00
PCT_PSME	Percent of dom. and subdom. trees that are PSME	Percent	0	1.00
SW_DIV	Shannon – Weiner tree diversity	Index	0	1.67
SN_HA	Snags (>22.9 cm dbh) per hectare	Count	0	138
	Count of logs (>22.9 cm diameter at mid-point)			
LOG_CNT2	encountered along a 22 m transect	Count	0	7
MTOE_PCT	Hawksworth mistletoe index	Index	0	0.79

Within Home Range Forest Structure Results

Mean (95% CI) UD Probability by forest structure type

Open PIPO Dense PSME Mixed ABGR

Breeding Season (Mar-Sep)

Mixed Effects Model – test of equal use across the groups:

Estimate¹ Std. Error¹ P value²

Open PIPO Dense PSME

Mixed ABGR

P value²
Preliminary Results Removed

¹ From a no-intercept linear mixed effects model using the individual owl as the random effect

² From an intercept-included model, same as above

Landscape Scale Barred Owl Habitat Mapping

Landscape Scale Habitat Mapping – Vegetation

Landscape Scale Habitat Mapping – Vegetation

Provincial Scale Barred Owl Habitat

Model Validation Surveys

Barred Owl Detections:

Habitat: None Single Pair Total

Poor

Moderate

Good

Grand Total

Preliminary Results Removed

Non-habitat Poor Moderate Good

Maxent Niche Modeling Comparison of Spotted Owl and Barred Owl Pair Sites

We used Maximum Entropy Niche Modeling to compare habitat characteristics at 240 historic Spotted Owl pair sites and 29 Barred Owl Pair Sites

Model Covariates:

Vegetation (from 2010 GNN data)

Mean DBH (cm)

Canopy Cover (%)

Percent of basal area in grand fir (%)

Percent of basal area in Douglas fir (%)

Topographic Characteristics (from 10m DEM)

Slope (degrees)

Solar Radiation

Topographic Position

Preliminary Results Removed

Maxent Results

Maxent Covariate Effects (with percent contribution):

Spotted Owl

Preliminary Results Removed

Barred Owl

Maxent Habitat Suitability Maps:

Preliminary Results Removed

NSO Habitat Minus BDOW Habitat

Maxent Niche Modeling Results

Spotted Owl and Barred Owl Habitat Overlap (ha):

Spotted Owl

Poor (<0.4) Good (>0.4)

Preliminary Results Removed

```
Parred Ow (<0.4)
Good (>0.4)
```

Total landscape area: 984,541 ha

Ecological Differences Between Barred and Spotted Owls

	Barred Owl	Spotted Owl
Annual Home Range Size	~450 ha	~2500 ha
Prey Preference	Ground Dwelling Vertebrates and Invertebrates	Medium-sized Arboreal Mammals (i.e. Northern Flying Squirrels and Woodrats)
Behavior	Very Aggressive, Little Con- specific Home Range Overlap	Less Aggressive, More Con- specific Home Range Overlap
Within Home Range Habitat Characteristics	Closed Canopy, Structurally Diverse Mixed Conifer Forest	Closed Canopy, Structurally Diverse Mixed Conifer Forest
Landscape Scale Habitat Associations	Generally Use Flat Ground in Valley Bottoms	Less Strongly Associated with Topographic Characteristics

Discussion

What does this information mean in terms of conservation planning?

- Do these results suggest niche partitioning or displacement?
- Is there adequate niche space to allow for spotted owl population persistence?

Interactions between spotted owl and barred owl populations are spatially complex.

Next Steps...

Modeling interactions between spotted owl and barred owl populations in a dynamic landscape: The Vegetation – Fire – Owl Project.

 Use individual-based population models (HexSim) to evaluate spotted owl vulnerability to disturbance and interactions with barred owls

Vegetation – Fire – Owl Modeling

Modeling Approach:

- Landsum forest growth models to project vegetation at 10 year increments (Kennedy)
- 4 to 7 management scenarios to evaluate different management approaches
- Fire risk and fire spread modeling to simulate effects of fire each decade
- Individual-based Spotted Owl population modeling, including effects of Barred Owls
- Run the models out 100 years, 100 times for each scenario...

Acknowledgements:

Telemetry Study Co-Investigators:

William Gaines
John Lehmkuhl

Field Personnel:

Scott Graham

Aja Woodrow

Marlene Farrell

MaryEllen Haggard

John Meriwethe

Gail Roberts

Tom Walker

Elizabeth Goulet

James Begley

Danielle Clay

Scott Heller

Contact Information:

Peter Singleton

psingleton@fs.fed.us 509-664-1732

VFO Project Co-Investigators:

Rebecca Kennedy, Alan Agar, Paul Hessburg, John Lehmkuhl, Bruce Marcot, Martin Raphael, Thomas Spies,

Funding Agencies:

Joint Fire Science Program
USFS Pacific Northwest Research Station
U.S. Fish and Wildlife Service
Okanogan and Wenatchee National Forests

Additional Support:

Tom Hamer, Eric Forsman, Stan Sovern