Tema 12 Práctica de SDD II

Sistemas Dinámicos Discretos y Continuos

Dra. Neus Garrido Sàez

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología

Contenido

Introducción

- 2 Representaciones gráficas de dinámica compleja
 - Órbitas
 - Planos dinámicos
 - Planos de parámetros

1

Introducción

Introducción

Sistemas dinámicos discretos complejos

- La variable es compleja: $z \in \mathbb{C}$
- \blacksquare Se representan por $f:\mathbb{C}\longrightarrow\mathbb{C}$
- Las soluciones tienen parte real y parte imaginaria

Dinámica de SDD complejos

- Órbitas
- Puntos fijos
- Dinámica de los puntos fijos: atractores, superatractores, repulsores, neutros
- Puntos periódicos
- Cuencas de atracción ⇒ Planos dinámicos
- Puntos críticos libres
- Familias de funciones:
 - Planos de parámetros

Introducción

Sistemas dinámicos discretos complejos

- La variable es compleja: $z \in \mathbb{C}$
- \blacksquare Se representan por $f:\mathbb{C}\longrightarrow\mathbb{C}$
- Las soluciones tienen parte real y parte imaginaria

Dinámica de SDD complejos

- Órbitas
- Puntos fijos
- Dinámica de los puntos fijos: atractores, superatractores, repulsores, neutros
- Puntos periódicos
- Cuencas de atracción ⇒ Planos dinámicos
- Puntos críticos libres
- Familias de funciones:
 - Planos de parámetros

Introducción

2

Representaciones gráficas de dinámica compleja

Contenidos

- Introducción
- 2 Representaciones gráficas de dinámica compleja
 - Órbitas
 - Planos dinámicos
 - Planos de parámetros

Representaciones gráficas de dinámica compleja >> Órbitas

Órbita

$$\mathcal{O}(z) = \{z, f(z), f^2(z), \dots, f^n(z), \dots\}$$

Criterios de parada

- $d_{k+1} = |x_{k+1} x_k|$
- Tolerancia (t)
- Máximo número de iteraciones (maxiter)

```
Órbitas
function [iter, d, z] = orbita(f, z0, tol, maxiter)
    iter=1;
    d=1:
    z=z0;
    while iter<maxiter && d(end)>tol
      zk=feval(f,z(end));
      d=[d abs(zk-z(end))]:
      z=[z zk];
      iter=iter+1;
    end
end
```

 Se recomienda incluir la expresión explícita de la función dentro del código en lugar de feval

Representaciones gráficas de dinámica compleja Órbitas

Ejemplo 1. Determinar la órbita del sistema dado por el método de Newton sobre $f(z)=z^2-1$ para las semillas $x_0=\{0.5,0.5i,1,1i\}$. Se considerará que el método ha convergido cuando la diferencia entre iterados sea de 10^{-6} . El máximo número de iteraciones permitido es de 50.

- t=1e-6
- maxiter=50
- Operador de punto fijo:

$$N(z) = z - \frac{f(z)}{f'(z)} = \frac{z^2 + 1}{2z}$$

- $zk = (z(end). \land 2+1)/(2*z(end))$
- Para $x_0 = 0.5$: [iter,d,z]=orbita(.5,1e-6,50);

plot(real(z),imag(z),'o');
plot(real(z),imag(z));

Contenidos

- Introducción
- 2 Representaciones gráficas de dinámica compleja
 - Órbitas
 - Planos dinámicos
 - Planos de parámetros

Representaciones gráficas de dinámica compleja - Planos dinámicos

¿Qué representan los planos dinámicos?

- Cuencas de atracción de los puntos fijos atractores
- Conjuntos de Fatou y de Julia
- Estimaciones iniciales del plano complejo que convergen
- A qué punto fijo atractor convergen las estimaciones iniciales

Representaciones gráficas de dinámica compleja - Planos dinámicos

Planos dinámicos con Matlab

Variables de entrada: parte real de las semillas, parte imaginaria de las semillas, tolerancia, máximo de iteraciones.

- 1. Inicializar contador de iteraciones.
- 2. Definir los puntos fijos.
- 3. Crear mallado de puntos en el plano complejo.
- 4. Mientras las iteraciones no superen el máximo:
 - Aplicar el operador.
 - Incrementar iteraciones.
- 5. Almacenar los puntos del plano donde hay convergencia a los puntos fijos.
- 6. Representar cuencas de atracción y puntos fijos.

Ejemplo 2. El color azul A

Es combinación lineal de los colores rojo R, verde G v azul B puros.

$$A = 0R + 0.60G + 0.80B$$

Notación de colores para las cuencas de atracción de dos puntos fijos

$$z_1^F$$

$$(0) \quad \Rightarrow \quad R_1 = (1, 0.5, 0)$$

√ (R, G, B) =
$$(0, 0, 255)$$
 → $R_2 = (0, 0, 1)$

$$R_2 = (0, 0, 1)$$

Por tanto:

$$R = 1 \cdot R_1 + 0 \cdot R_2$$

$$G = 0.5 \cdot R_1 + 0 \cdot R_2$$

$$B = 0 \cdot R_1 + 1 \cdot R_2$$

Ejemplo 3. Plano dinámico del método de Steffensen para el polinomio $f(z)=z^2+i$

Operador de punto fijo:

$$S(z) = z - \frac{f(z)^2}{f(z + f(z)) - f(z)}$$
$$= \frac{z^3 + z^2 + iz - i}{z^2 + 2z + i}$$

■ Puntos fijos:

$$z_1^* = \frac{\sqrt{2}}{2}(1-i), \quad z_2^* = \frac{\sqrt{2}}{2}(-1+i)$$

 z_1^* y z_2^* son superatractores

Contenidos

- Introducción
- 2 Representaciones gráficas de dinámica compleja
 - Órbitas
 - Planos dinámicos
 - Planos de parámetros

Representaciones gráficas de dinámica compleja - Planos de parámetros

¿Qué representan los planos de parámetros?

- Valores del parámetro con mejores condiciones de estabilidad
- Cada punto del plano complejo está asociado a un valor del parámetro, y por tanto a una función de la familia
- Los valores del parámetro en la misma componente conexa dan lugar a miembros con comportamientos dinámicos similares
- Cada punto crítico libre del sistema tiene asociado un plano de parámetros

Representaciones gráficas de dinámica compleja - Planos de parámetros

Planos de parámetros con Matlab

Variables de entrada: parte real del parámetro, parte imaginaria del parámetro, tolerancia, máximo de iteraciones.

- 1. Inicializar contador de iteraciones.
- 2. Crear mallado de puntos en el plano complejo para valores del parámetro.
- 3. Definir el punto crítico.
- 4. Definir los puntos fijos.
- 5. Mientras las iteraciones no superen el máximo:
 - Aplicar el operador.
 - Incrementar iteraciones.
- 6. Almacenar los puntos del plano donde hay convergencia a los puntos fijos.
- 7. Representar los valores del parámetro donde hay convergencia a los puntos fijos.

Ejemplo 4. Estudio dinámico del método de Steffensen cuando se aplica sobre la familia de polinomios $f_\lambda(z)=z^2+\lambda$

Operador de punto fijo:

$$S_{\lambda}(z) = z - \frac{f_{\lambda}(z)^2}{f_{\lambda}(z + f_{\lambda}(z)) - f_{\lambda}(z)}$$
$$= \frac{z^3 + z^2 + \lambda z - \lambda}{z^2 + 2z + \lambda}$$

■ Puntos fijos:

$$z_1^* = -i\sqrt{\lambda}, \qquad z_2^* = i\sqrt{\lambda}$$

- lacksquare z_1^* y z_2^* son superatractores
- Puntos críticos libres:

$$z_1^C = -2 + \sqrt{2 - \lambda}, \qquad z_2^C = -2 - \sqrt{2 - \lambda}$$

Planos dinámicos del método de Steffensen con $f_{\lambda}(z) = z^2 + \lambda$

(b) $\lambda = -0.3i$

(c) $\lambda = 1$

Ejemplo 5. Estudio dinámico del método de Cordero-Torregrosa sobre la familia de polinomios $f_{\lambda}(z)=z^2+\lambda$

Operador de punto fijo:

$$\begin{split} CT_{\lambda}(z) &= y - \frac{f_{\lambda}(y)f_{\lambda}[z,v]}{f_{\lambda}[z,y]f_{\lambda}[y,v]} \\ &= \frac{z^6 + 2z^5 + (\lambda+1)z^4 - 4\lambda z^3 - \lambda(\lambda+6)z^2 - 6\lambda^2 z - \lambda^3 + \lambda^2}{2z^5 + 6z^4 + 4(\lambda+1)z^3 + 4\lambda z^2 + 2\lambda(\lambda-2)z - 2\lambda^2}, \end{split}$$

donde
$$v = z + f_{\lambda}(z)$$
, $y = z - \frac{[f_{\lambda}(z)]^2}{f_{\lambda}(v) - f_{\lambda}(z)}$

■ Puntos fijos:

$$z_1^* = -i\sqrt{\lambda}, \quad z_2^* = i\sqrt{\lambda}, \qquad z_3^*, z_4^*, z_5^*, z_6^*$$

Puntos críticos libres:

$$z_1^C = -2 - \sqrt{2-\lambda}, \quad z_2^C = -2 + \sqrt{2-\lambda}, \quad z_3^C = -1 - i\sqrt{\lambda}, \quad z_4^C = -1 + i\sqrt{\lambda}$$

- ⇒ Planos de parámetros
- ⇒ Planos dinámicos

Para finalizar...

No dejes de leer...

F. I. Chicharro, A. Cordero, J. R. Torregrosa, *Drawing Dynamical and Parameters Planes of Iterative Families and Methods*, The Scientific World Journal, Article ID 780153, 2013. https://doi.org/10.1155/2013/780153

...Y por supuesto:

TEST DE APRENDIZAJE!!

