Roll Number:		mber: I	Branch :	Group :
TIET Patiala Department of Mathematics Course Coordinators: Dr.Amit Kumar, Dr. Tina Verma				
UG Feb ,	202	24		nalysis (UMA011/UMA007) Time: 3 Hrs; M. Marks: 100
Note: Total five questions are there. All questions are compulsory.				
1.	(i)	The quadratic formula is used for is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Use approximation of roots of equation	four digit rounding arit	equation $ax^2 + bx + c = 0$, $a \neq 0$ hmetic to find the most accurate
	(ii) Find the largest eigen value of the matrix			
			$A = \begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{bmatrix}$	
		Taking initial guess $(1,1,1)^t$		10
2.	(i)	Find the real root of equation x^3 decimal places	$-x^2 - x - 3 = 0$, by E	Bisection method, correct to three 12
	(ii)	Compute first two iterations of $x_0 = 1 \& x_1 = 1.1$.	secant iteration to sol	we the equation $xe^x = 3$, using 8
3.	(i)	Apply Gauss-elimination method $2x_1+3x_2-x_3=5$, $4x_1+4x_2-3x_3$	107.0	
	(ii)	Suppose that \overline{x} is an approximate and r is residual vector of \overline{x} then		
			$ x - \overline{x} \le r . A^{-1} $	
		and if $x \neq 0 \& b \neq 0$,	$\frac{ x - \overline{x} }{ x } \le A . A^{-1} \frac{ x }{ x }$	<u>^[[</u> .
				8
4.	(i)	Use Runge-Kutta method of ord take $h = 0.2$.	ler four to solve $\frac{dy}{dx} = \frac{y}{y}$	$\frac{y^2-x^2}{y^2+x^2}$, $y(0) = 1$ at $x = 0.2 \& 0.4$, 12
	(ii)	Use the numbers $x_0 = 2$, $x_1 = 2$. polynomial for $f(x) = \frac{1}{x}$.	75, & $x_2 = 4$ to find second	ond degree Lagrange interpolating 8

..... PTO.....

- 5. Evaluate $\int_1^7 \frac{1}{x} dx$, by subdividing the interval [1,7] into six equal parts, by using
 - (i) Composite trapezoidal rule
 - (ii) Composite Simpson's rule.

Hence compare the results with the actual value of the integral.

10 + 10