3. Information digitale et codage de l'information

Principes de fonctionnement des ordinateurs

Jonas Lätt Centre Universitaire d'Informatique

Trouvé une erreur sur un transparent? Envoyez-moi un message

- sur Twitter @teachjl ou
- par e-mail jonas.latt@unige.ch

Contenu du cours

Partie I: Introduction

Partie II: Codage de l'information

Partie III: Circuits logiques

Partie IV: Architecture des ordinateurs

- 1. Introduction
- 2. Histoire de l'informatique
- 3. Information digitale et codage de l'information
 - 4. Codage des nombres entiers naturels
 - 5. Codage des nombres entiers relatifs
 - 6. Codage des nombres réels
 - 7. Codage de contenu média
 - 8. Portes logiques
 - 9. Circuits logiques combinatoires et algèbre de Boole
 - 10. Réalisation d'un circuit combinatoire
 - 11. Circuits combinatoires importants
 - 12. Principes de logique séquentielle
 - 13. Réalisation de la bascule DFF
 - 14. Architecture de von Neumann
 - 15. Réalisation des composants
 - 16. Code machine et langage assembleur
 - 17. Réalisation d'un processeur
 - 18. Performance et micro-architecture
 - 19. Du processeur au système

Information stockée par un ordinateur

- Des nombres (valeurs entières ou réelles)
- Du texte
- Des images
- Des films
- Du son

•

- L'ordinateur est un appareil digital.
- La plupart des appareils électroniques qui nous entourent sont digitaux.
- A l'opposé des appareils digitaux: les appareils analogiques.
- Mais que veut dire analogique / digital?

Analogique vs digital

Thermomètre analogique

- Information analogique: variations continues
- Lecture approximative du résultat

Thermomètre digital

- Information digitale: variations discrètes (nombre fini d'états)
- Lecture exacte du résultat

Une information digitale ...

- Prélève ses éléments dans un ensemble fini d'états.
- Peut-être représentée par une séquence de nombres entiers bornés.

Information digitale véhiculée par un signal électrique

Signal électrique ...

- «Signal électrique»: Une tension, un courant, une fréquence...
- Un signal électrique est une quantité analogique: il varie de manière continue.
- On peut aussi l'utiliser pour véhiculer une information digitale.

Persistance de l'information digitale

Dégradation d'un signal au cours du temps, à cause d'influences extérieures.

Dégradation d'une quantité électrique: le signal d'origine ne peut pas être reconstitué.

Information digitale: le signal peut être rafraîchit. On reconstitue exactement l'information d'origine.

Conséquence importante: reproductibilité des calculs.

Représentation de l'information par des états binaires

- Représentation binaire de l'information: deux états 1/0, vrai/faux
- Un chiffre binaire s'appelle Bit ("Binary Digit").
- Pour plus d'états: groupes de bits. Exemple: 2 bits représentent quatre états (00, 01, 10, 11).
- n bits représentent 2ⁿ états.

- 2 bits représentent quatre états (00, 01, 10, 11)
- Exemple: codage de l'humeur d'un chat

```
Content
Affectueux
Vexé
                10
Affamé
```

L'Octet

- Ordinateurs modernes: regroupements par 8 bits, les octets (byte)
- Un octet représente une information à 2⁸=256 états.
- On peut se représenter chacun des 8 bits d'un octet comme un interrupteur qui est en position ouvert (on) ou fermé (off).

Le nombre 77

La lettre «A» en codage UTF-8

- Monde réel: informations de différente nature: nombres, texte, images, vidéos, données scientifiques, etc.
- Dans un ordinateur, toute donnée est représentée par des séquences de bits.

Un codage établit une correspondance qui permet sans ambiguïté de passer d'une représentation externe de l'information à une représentation interne.

Codage de l'information

Représentation externe ("Monde réel") Représentation interne (Espace des états binaires)

Grâce au codage, une séquence de bits reçoit une signification particulière.

Décodage

Représentation externe ("Monde réel") Représentation interne (Espace des états binaires)

Une **fonction de décodage** applique la une séquence d'états binaires sur la représentation externe de l'information.