Predicting Terror Attacks? A Network Story

Enea Figini, Axel Nilsson, Nicolas Bollier, Elias Le Boudec Team 29

January 17, 2019

- Introduction 1
- **Exploring the Data** 2
- **Relationships Dataset** 2.1

- nent ID
- (a) Terrorist relations graph, colouring by compo- (b) Ten biggest components from the terrorist relation graph

Figure 1: Graphs of the terrorist relations dataset

2.2 Terror Attacks Dataset

Figure 2: Graphs from the terror attacks dataset

The formation of the network implies a transitive relation between most of the nodes. Indeed, if for most nodes, take a b and c in the network, we have

$$a \sim b$$
 and $b \sim c$ then $a \sim c$ (1)

Equivalently, if attack a took place close to b, and attack b took place close to c, then it is probable that attack a took place close to c.

3 Data Quality

3.1 Terror Attacks Dataset

Multiple issues regarding data quality have been found in this dataset:

Broadness The dataset comprises attacks ranging from 1969 to 1950 and spanning the entire globe. Simple and relevant explanations for the graph formation or properties are not likely to be found, since the mechanisms behind two different attacks can be entirely different.

Structure Half of the nodes are isolated, hence the topological information they carry in the graph is very limited. What is more, because of the transitivity relation described in Section 2.2, connected components are in most of the cases complete, hence isotropic.

Reliability Errors have been found in the data. For example nodes Djibouti_Youth_-Movement_19900927 and Armed_Islamic_Group_19950711 have been connected, whereas the first attack took place in Djibouti [1] and the second one in Paris [2]. Hence algorithms using the data must tolerate some error in order to avoid overfitting.

Predictions 4

The algorithm used to predict the terror attack location is the following:

- 1. From the dataset, select the 10 biggest connected components ("component" in what follows).
- 2. Sort the dataset by date of terror attack.
- 3. At this point, a component represents a location, and the nodes are the terror attacks in chronological order.
- 4. Select one node per component that is strongly connected to the others, the "lead" node.
- 5. Find the lead node l^* that is the most strongly linked to the new node (i.e. the next terror attack).
- 6. The predicted location of the next terror attack is the location of the component l^* belongs to.

The determination of the lead node uses the features vector supplied with each node, and a weighting function w. Let w be the application that returns a weight for each pair of nodes (n_1, n_2) in the graph \mathcal{G} , defined as

$$w: \mathcal{G}^2 \to \mathbb{R}^+ \tag{2}$$

$$(n_1, n_2) \mapsto f(|n_1 - n_2|)$$
 (3)

where

$$|n_1 - n_2| = \|\text{features}(n_1) - \text{features}(n_2)\|_2 \tag{4}$$

features(n) is a binary features vector for each node n in \mathcal{G} and $f: \mathbb{R}^+ \to \mathbb{R}^+$ is the node distance weighting. Examples for f are given in Table 1.

For each connected component, the lead node is determined as described below.

Algorithm 1: Finding the lead node of a connected component with weighted edges

Data: Connected component C

Result: Lead node n_l

Initialise s(n) to zero. s is a dictionary mapping a score s(n) for each node n

for *each edge e from C* **do**

```
Let e = (n_1, n_2), w be the weight of e
    s(n_1) \leftarrow s(n_1) + w
    s(n_2) \leftarrow s(n_2) + w
end
```

return $n_l = \arg \max_{n \in C} s(n)$

Finally, the prediction algorithm is presented below.

Algorithm 2: Finding the predicted location of the next terror attack

Data: Set of connected components $\{C_i^t\}$, $i=1,\ldots,10$, and the features vector of the next terror attack n_{t+1} , i.e. feature (n_{t+1}) , at each timestep t

Result: Location prediction p_t for time t+1 at time t, at each timestep t

for *each timestep t* **do**

```
Compute the lead component l(C_i^t) for each component C_i^t
p_t = \arg\max\nolimits_{i=1,\dots,10} w(n_{t+1}, l(C_i^t))
```

end

return p_t

4.1 Justification

- topology
- formation, not labelling
- -robustness

4.2 Results

Table 1: Prediction accuracy for different node distance weightings f

Weighting		Best skewness ζ	Accuracy
Gaussian:	$f(d) = e^{-d^2/\zeta} - e^{-1/\zeta}$	0.01	50.5%
Log-Exponential:	$f(d) = e^{-d} \log \left(\frac{1+\zeta}{d+\zeta} \right)$	0.1	50 %
Linear:	f(d) = 1 - d	N.A.	47%
Square:	$f(d) = \begin{cases} 1 & d < \zeta \\ 0 & \text{otherwise} \end{cases}$	0.1	43 %

5 Conclusion

References

- [1] Amnesty Internation Publications, 1 Easton Street, London, *Amnesty Internation Report* 1991, 1991.
- [2] L'Obs, "Attentats de 1995 : chronologie." [fr] Online. https://bit.ly/2ASwNQP, last checked 17 January 2019, October 2007.