

https://powcoder.com

Robind We Chat powcoder
DePaul University
Chicago, IL

Thanks to Professor Matthew Jackson for his notes on this topic.

• • Announcements

- Due tonight
 - Assignment Broject Exam Help
- Next week//powcoder.com
 - First visualization Add WeChat powcoder

• • First visualization

- A network visualization of your project data in Gephi
- Could be a subset if the data is large Assignment Project Exam Help
 Aim
- - Convelled importantes.com
- Choose appropriate layout and mappings
- Two Powerboin sheat powcoder
 - visualization
 - one paragraph description
- Submit
 - to D2L

Cool result

- Online dating reduces homophily
- o Ortegianament Perigot Teta, n2 Help

https://powcoder.com

• • Random networks

- Why do we study random networks?
 - Alsei same reasjont that is taltisticians study random variables https://powcoder.com
- If we want to know if something is not happening by chat powcoder
 - "is significant"
- we have to know what chance looks like

• • Previous examples

- transitivity
 - Awtightisethe trainsilivity of lalpandom network of the same size?"
 https://powcoder.com
- reciprocity
 - "is a social network more reciprocal than a random network?"
- assortativity
 - "what if the edges were random?"

• • What is a random network?

- Static model
 - Acolegoticanto Projecte Exam Help
 - edgesprandomlydelaced
- Dynamic model
 Add WeChat powcoder
 nodes arrive

 - linked to existing network with random connections
- etc.

Erdos-Renyi Random Network

- Specify n, p
- StaAswitgmmedeProject Exam Help
- Go through all possible pairs of nodes https://powcoder.com
 - n(n-1)/2 for undirected network
- Create eagles With probability pder
- o In R
 - erdos.renyi.game(n, p, mode="gnp")
 - also erdos.renyi.game(n, m, mode="gnm")
 - place m edges randomly

• • ER Random Network

- Simplest network specification
 - Assignment Broject Exam Help
- Formed the basis of compathematical study of networks

 Add WeChat powcoder

 for most of the 20th century

Examples

• ER n=50, p=0.02

Assignment Project Exam Help

https://powcoder.com

• ER n=50 p=0.05 powcoder

• ER n=50, p=0.1

• Characteristics of random networks

- Sparse networks
 - sandenti Project Exam Help
- Dense networks https://powcoder.com
 disordered looking
- Giant component happing point
 - as p increases
 - probability of all nodes being one component →
 - tipping point: p ≈ 1/n

• • Properties of social networks

- High clustering / transitivity
 - transitiva en Pureject Exam Help
 - not in random networks
- Skewed degree distributions
 - A fewAktighty@Chateptewtoodkvirduals
 - not in random networks
- High closeness
 - "six degrees of separation"
- Are social networks "special" in this?

• • Small world hypothesis

- People in social networks
 - Asvienment Prigher Close Helps than you might expect https://powcoder.com
- We don't expect "six degrees of separation"
 - but we see it
 - is this a significant effect?

• • Small world hypothesis

- Restatement
 - A the average quath length limits random network is large https://powcoder.com
 O(n), maybe
 - As opposed to to resident of the control of the contr
- If this is true
 - then the shorter path lengths in social networks are "interesting"

• • Some preliminaries

- The network can't be too dense
 - Atseignithis realisy its talchieve by average path length https://powcoder.com
 - p = 1.0?
- The network can't be too sparse
 - no connected component
- We will talk about large networks

• • Conditions

- $d(n) >= (1+\epsilon)\log(n)$ for some $\epsilon > 0$
 - Atnigmake Pthje ot et work Helpse enough for connectivity https://powcoder.com
- d(n)/n → 0
 Add WeChat powcoder
 This makes the network sparse enough
 - Sequences of networks

• • Theorem

- If the conditions are met
 - Alfaigament-Enlagent-Fransbale e>0
 - d(n)/ftps://powcoder.com
- Then
 Add WeChat powcoder
 for large n, average path length is proportional to log(n) / log(d)

Restatement

- If the conditions are met
 - Alfrigament-Entrigent-Frams-Unip e>0
 - d(n)/nps://powcoder.com
- Then Add WeChat powcoder
 - as n → ∞

$$AveDist(n) \propto \frac{\log(n)}{\log(d(n))} \rightarrow 1$$

Simpler than a random graph

- A regular structure
- Eachigwdenh Brojdetg Feend Help
 - excepts excoder.com
- Caylex tree Chat powcoder

• • Path lengths

- 1 step: d nodes
- o 2 stepignation of Project Exam Help
- 3 stephtology/powcoder.com
- Add WeChat powcoder
- k steps: roughly d^k

• • Diameter

- Diameter is 2k
- o Howsignament Brotes? Exam Help
 - d+d(dp1)/pod(dde)k-com
 - d((d-1)^k-1)/(d-2)
 Add WeChat powcoder

 roughly (d-1)^k

 - $(d-1)^k = n$
 - k on the order of log(n)/log(d)

Cayley Tree: Diameter

- Diameter is 2k
- O Howsignament Brotiss? Exam Help
 - d+d(dps)/pod(dde)k-1com
 - d((d-1)^k-1)/(d-2)
 Add WeChat powcoder
 roughly (d-1)^k

 - $(d-1)^k = n$
 - k on the order of log(n)/log(d)

• • But random graph?

- degree of nodes not identical
- o But swiggement of Repject Exam Help
 - the fraction of nodes with nearly average degree
 - approaches 1
- Add WeChat powcoder
 This is the reason for the bound
 - $E[d] > (1 + \varepsilon)log(n)$
- Also have to deal with edges pointing "backwards"

• • We can show

 Probability that a node has degree close to averagenment Project Exam Help

From Chebyshev inequality

- (Jackson's book has details)
- Pr(d/3 \square di \square 3d) \square 1 \square e^d \com
- For nodesidf wedenteps wooder
 - $Pr(d/3 \le all degrees \le 3d) \ge (1 e^{-d})^n$
- Use our substitution
 - $Pr(d/3 ≤ all degs ≤ 3d) ≥ (1 − 1/n^{1+ε})^n$
 - exp(-n-ε) → 1

n is large so 1/n ε is small.

• • • So

- If $d(n) > (1+\epsilon)\log(n)$ then
 - Arrighment Project sx smithelp 1
- A corollary//powcoder.com
- log(n)/log(3d) < k < log(n)/log(d/3)
 Add WeChat powcoder
 k is on the order of log(n)/log(d)

• • What about doubling back?

- Remember we are expanding outward
 - factorgofrdenerProjees Eachretelp
- After k steps https://powcoder.com
 d^k nodes reached

 - n-dk nodes Whredomenowcoder
- If k < log(n)/log(d) then
 - n-d^k much bigger than d^k
 - most nodes are not reached until the last step
 - think about n=10⁶, d=10

Diameter vs ave. distance

- Since most of the nodes are at maximgumedistance Exam Help
 - average distance is the same order as diameter
 - (again, for large in) wcoder

• • Small world hypothesis

- Even in a random network, we should expectnment Project Exam Help
 - a small diameter a small diameter.com
- a small average path length
 Add WeChat powcoder
 These properties are not special to social networks
 - properties of networks that are sparse, but not too sparse

It isn't an ER randomignaph roject Exam Help

https://powcoder.com

It is too dense for that powcoder the results to apply

• • ER graph

- Model
 - Assignee ent Project Exam Help
 - edgespadded with probability p
- What does this mean for the degree distribution?
 - we've seen that it has a different shape than many social netw

• • Degree distribution

- Binomial distribution

 - # of heads when we flip a coin k times
 with spigning of heads when we flip a coin k times
 With spigning of heads when we flip a coin k times

- k = n-1
 - other nodes for any given node
 - # of trials to add an edge
- d = degree

$$\frac{(n-1)!}{d!(n-d-1)!}p^d(1-p)^{n-d-1}$$

• • Poisson distribution

- For large n and small p
 - Carsige approximated Existant Helpoisson distribution https://powcoder.com
 (n-1) Add We Chat powcoder
- ER random graphs
 - sometimes called "Poisson random graphs"

ER (50, 0.02)

ER (50, 0.05)

• • ER (50, 0.1)

• • Prediction

- Networks will have a degree distribution centered around the

 - average https://powcoder.com
 few low degree nodes
 few high degree nodes

Doesn't match

WWW degree distribution

Albert, Jeong, Barabasi 1999

Assignment Project Exam Help

• • Not Poisson

- This finding is repeated in many other networkment Project Exam Help
 - bibliographic citation
 - email networks
 - Add WeChat powcoder
 online social networks
- We need another model

• • Growing random network

- Nodes arrive over time
- National meter region to live a material meter region a material meter region to live a material meter region a m
 - olderupsdestavæmore edges
- We can parameterize hat powcoder

• • Simple model

- One node is "born" at a time
- Formsignlinks to existing randerelp
 - with equal probability
- Like ERhttps://powcoder.com
 - but we're not dealing with all the nodes at once
- Start with an m node clique
 - (the math is easier!)
- In R
 - sample growing(n, m)

• • Growing (50, 1)

• • Growing (50, 2)

• • Degree distribution

- At time 0
- first nodes n₀ each have degree m-1
 At timessignment Project Exam Help

 - node n₁ arrives makes m connections
 n₀ have degree m powcoder.com
- At time 2 Add WeChat powcoder
 node n₂ arrives degree m

 - each other node has a m/m+1 chance of getting another edge
- At time k
 - node k arrives degree m
 - each other node has a m/(m+k) chance of getting an edge
- Probabilities vary over time

• • Degree distribution

- Expected degree for node i born at m Assighient Project Exam Help
- m + m/(i+1) + m/(i+2) + .. + m/t
 https://powcoder.com
 Approximately
- - m(1+Aob(tM)) Chattan mondon denumbers
- For any d
 - nodes that have degree less than d at time
 - $m(1+\log(t/i)) < d$

Degree distribution by time

Degree time 100

- How many with degree < 35
- 20(1+log(100)/i) < 35
 i > 1005
 Exam Help

https://powcoder.com Degree time 100 Add WeChat powcoder 100 80 60 →Degree time 100 40 20 Nodes with degree < 35</p> 0 50 100

• • Distribution

- Nodes with expected degree < d at t
 - AksstbæædrPræeenElyam Help
 - i > t e^{-(d-m)/m} https://powcoder.com
- We want the degree distribution at time t
 how many nodes have i > t e-(d-m)/m

 - t t e-(d-m)/m
 - divide by t to get a fraction
- \circ F_t(d) = 1 e^{-(d-m)/m}

Distribution of expected degree

- Not the same as the actual distribution
- Needigoranguerthat Formaldent
 - we approximate the smooth curve
- within some bounds Add WeChat powcoder
 See Jackson's book

• • Break

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder