OS Avoidance

Which OS?

Heavyweight

Lightweight

Heavyweight OS Features

- Separate address spaces
 - virtual memory
- System calls
 - user/privileged-mode distinction

Weight

	API call	Thread yield	Message ping/pong	Process creation
Singularity	80	365	1,040	388,000
FreeBSD	878	911	13,300	1,030,000
Linux	437	906	5,800	719,000
Windows	627	753	6,340	5,380,000

Shedding Weight ...

- Software-isolated processes (SIPs)
 - use type safety and memory safety to isolate processes
 - all processes run in same address space
 - all run in privileged mode
- IPC via "contract-based channels"
 - bi-directional, reliable message conduits with exactly two endpoints
 - one thread per endpoint
 - formally specified interaction "contract"
 - no other IPC mechanism
 - act as capability mechanism

Channels Between Network Driver and Network Stack

NIC Driver Contract (1)

```
contract NicDevice {
                                   in message StartIO();
  out message DeviceInfo(...);
  in message
                                   in message
    RegisterForEvents (
      NicEvents.Exp:READY c);
  in message
    SetParameters (...);
  out message
                                   in message
    InvalidParameters (...);
  out message Success();
```

```
in message ConfigureIO();
  PacketForReceive(
    byte[] in ExHeap p);
out message BadPacketSize(
 byte[] in ExHeap p, int m);
  GetReceivedPacket();
out message ReceivedPacket(
  Packet * in ExHeap p);
out message NoPacket();
```

NIC Driver Contract (2)

```
state START: one {
                                            state IO CONFIGURED: one {
 DeviceInfo! →
                                              StartIO? → IO RUNNING;
                                              ConfigureIO? →
    IO CONFIGURE BEGIN;
                                                IO CONFIGURE BEGIN;
state IO CONFIGURE BEGIN: one {
 RegisterForEvents? →
                                            state IO RUNNING: one {
    SetParameters? →
                                              PacketForReceive? →
      IO CONFIGURE ACK;
                                                 (Success!
                                                  or BadPacketSize!) →
state IO CONFIGURE ACK: one {
                                                     IO RUNNING;
  InvalidParameters! →
                                              GetReceivedPacket? →
    IO CONFIGURE BEGIN;
                                                 (ReceivedPacket!
 Success! → IO CONFIGURED;
                                                  or NoPacket!)
                                                    → IO RUNNING;
```

NIC Device Events Contract

```
contract NicEvents {
  enum NicEventType {
    NoEvent, ReceiveEvent, TransmitEvent,
      LinkEvent
  out message NicEvent(NicEventType e);
  in message AckEvent();
  state READY: one {
      NicEvent! → AckEvent? !READY;
```

Manifest

- Each program has a manifest
 - details
 - code resources
 - system resources
 - desired capabilities
 - dependencies on other programs

Scenario

I/O-intensive app

Disk driver

File system

Kernel

Costs

OS's are not Dead

- Linux, MacOS, Windows are flourishing
- The "cloud" consists of
 - virtual machines
 - containers
 - large-scale storage systems
- Security concerns have never been greater
 - isolation is key
 - (controlled) sharing is pretty important too

The End

Not quite:
Homework 4 out today, due April 30
S5FS due May 14
Weenix due May 14
Happy Coding and Good Luck!