제 4 교시

과학탐구 영역(생명과학Ⅱ)

성명 수험번호 제 [] 선택

1. 그림은 생명 과학자들과 그들의 주요 성과를 시간 순서에 따라 나타낸 것이다. 귀과 ①은 각각 '페니실린 발견'과 '생물 속생설 입증' 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. ⑦은 '페니실린 발견'이다.
- L. 'DNA 이중 나선 구조 규명'은 왓슨과 크릭이 이룬 성과이다.
- ㄷ. 하비가 인체에서 혈액이 순환한다는 사실을 알아낸 것은 ①보다 먼저 이룬 성과이다.
- 2. 표는 사람의 염색체와 세포막에서 구성 물질 중 ⑦∼ⓒ의 유무를 나타낸 것이다. ⑦~⑥은 단백질, 인지질, DNA를 순서 없이 나타낸 것이다.

구분	\bigcirc	(L)	Œ			
염색체	?	3	0			
세포막	×	a	?			
(○: 있음, ×: 없음)						

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. @는 '○'이다.
- L. ©의 기본 단위는 아미노산이다.

- 3. 그림은 어떤 식물 세포의 구조를, 표는 ①~ⓒ에서 합성되는 물질 중 일부를 나타낸 것이다. A~C는 리보솜, 미토콘드리아, 엽록체를 순서 없이 나타낸 것이고, ⑺~ㄸ은 A~C를 순서 없이 나타낸 것이다.

구분	합성 물질
9	?
(L)	포도당
E	ATP

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>--

- ㄱ. (L)은 A이다.
- ㄴ. ⑦은 2중막을 갖는다.
- 다. B에서 단백질 합성이 일어난다.

4. 그림은 동물과 식물의 구성 단계를 나타낸 것이다. ①~①은 기관계, 조직, 조직계를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>-

- ㄱ. ⑦은 조직이다.
- ㄴ. 꽃은 잆의 예이다.
- ㄷ. (二)은 동물의 구성 단계에 해당한다.

- 5. 그림은 효소 X에 의한 반응을, 표는 효소 (가)와 (나)의 작용을 나타낸 것이다. X는 (가)와 (나) 중 하나에 해당하며, (가)와 (나)는 연결 효소와 가수 분해 효소를 순서 없이 나타낸 것이다.

효소	작용
(가)	2개의 기질(분자)을 연결함
(나)	,

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. X는 (가)에 해당한다.
- ㄴ. (나)의 주성분은 단백질이다.
- ㄷ. (가)와 (나)는 모두 기질 특이성을 갖는다.
- (Ī) ¬
- ② L
- 3 7, 5 4 4, 5 7, 6, 5

학

6. 그림은 전자 전달이 활발하게 일어나고 있는 미토콘드리아 내막의 전자 전달계를, 표는 물질 X와 Y의 작용을 나타낸 것이다. Ⅰ과 Ⅱ는 각각 미토콘드리아 기질과 막 사이 공간 중 하나이다.

		물질	작용
		X	미토콘드리아 내막의 ATP 합성
			효소를 통한 H^+ 의 이동을 차단한다.
		Y	미토콘드리아 내막의 전자 전달계
'			에서 전자의 이동을 차단한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>--

- ¬. Ⅰ은 미토콘드리아 기질이다.
- ㄴ. Ⅱ의 pH는 X를 처리한 후가 처리하기 전보다 높다.
- ㄷ. 단위 시간당 전자 전달계를 통해 산화되는 NADH의 분자 수는 Y를 처리한 후가 처리하기 전보다 많다.

7. 다음은 리포솜을 이용한 실험이다.

[실험 과정]

- (가) 인지질 이중층의 리포솜 I과 인지질 이중층에 막단백질 X를 삽입한 리포솜 Ⅱ를 준비한다.
- (나) Ⅰ과 Ⅱ의 안쪽에 증류수를 넣는다.
- (다) 물질 ①을 녹인 ① 수용액에 Ⅰ과 Ⅱ를 각각 넣은 후 ②이 Ⅰ과 Ⅱ의 안쪽으로 이동하는 속도를 측정한다.
- (라) ① 수용액 농도를 변화시키면서 위의 과정을 반복한다.

[실험 결과]

이 실험에서 얻은 결과는 그림과 같다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

-----<! !! 기>---

- ㄱ. X는 ⑦의 이동을 촉진한다.
- L. C일 때 리포솜 안쪽으로 이동하는 ①의 양은 I에서가 Ⅱ에서보다 많다.
- ㄷ. Ⅱ에서 ①의 이동 방식은 Na⁺-K⁺ 펌프를 통한 Na⁺의 이동 방식과 동일하다.
- ① 7 ② ∟
- 3) = 4 7, L 5 7, =
- 8. 다음은 이중 가닥 DNA에 대한 자료이다.
 - o 그림은 서로 상보적인 단일 가닥 I과 Ⅱ로 구성된 이중 가닥 DNA의 염기쌍을 나타낸 것이다. I과 Ⅱ는 각각 16개의 염기로 구성된다.

- 전체 이중 가닥 DNA에서 $\frac{A+T}{G+C} = \frac{3}{5}$ 이다.
- Ⅱ에서 피리미딘 계열 염기의 개수는 8개이다.
- \circ (가)에서 $\frac{T+C}{A+G} = \frac{3}{2}$ 이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.)

- ¬. 은 타이민(T)이다.
- L. I 에서 아데닌(A)의 개수는 3개이다.
- ㄷ. (나)에서 염기 간 수소 결합의 총개수는 13개이다.
- (I) ¬ ② L

9. 표는 세포 호흡에서의 물질 전환 과정 Ⅰ~Ⅲ에서 물질 ①~ⓒ 중 생성되는 물질을 모두 나타낸 것이다. A~D는 포도당, 시트르산, 피루브산, 과당 2인산을 순서 없이 나타낸 것이고, ⑦~⑥은 ADP, FADH₂, NADH를 순서 없이 나타낸 것이다.

과정	물질 전환	생성되는 물질
I	$A \rightarrow B$	9
П	$C \rightarrow D$	0
III	4탄소 화합물→B	(T), (E)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>-

- ¬. A는 과당 2인산이다.
- ㄴ. Ⅱ는 세포질에서 일어난다.
- 다. TCA 회로에서 1분자의 B가 1분자의 옥살아세트산으로 전환되는 과정에서 생성되는 □의 분자 수는 2이다.
- ① 7 ② ∟

- 3 = 4 = 5 = =
- 10. 그림은 대장균에 대해 인공지능 서비스와 대화한 내용을 나타낸 것이다.

ⓐ∼ⓓ 중 대장균에 대한 설명으로 옳은 것만을 있는 대로 고른 것은?

- ① a, b
- ② a, d
- 3 b, c
- 4 a, c, d
- (5) (b), (c), (d)
- 11. 그림은 광합성이 활발하게 일어나는 어떤 식물의 명반응에서 전자가 이동하는 경로를 나타낸 것이다. ⊙과 ○은 광계 Ⅰ과 광계 Ⅱ를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----- <보 기>-

- ¬. 경로 B에서 O₂가 생성된다.
- ∟. ¬의 반응 중심 색소는 P₆₈₀이다.
- c. 경로 A에서 2개의 전자가 @에 전달될 때 생성되는 NADPH의 분자 수는 1이다.
- ② L
- 3 = 4 7, = 5 =, =

12. 그림 (가)는 발효에서 일어나는 과정 I 과 Ⅱ를, (나)는 O₂와 포도당이 모두 포함된 배양액에 어떤 미생물을 넣고 밀폐시킨후 시간에 따른 배양액 내 물질의 농도를 나타낸 것이다. A~D는 에탄올, 젖산, 포도당, 피루브산을 순서 없이 나타낸 것이고, □과 □은 각각 젖산과 포도당 중 하나이다. I 에서 CO₂가 생성되고, Ⅱ에서 NADH가 산화된다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>-

- ¬. Ⅰ에서 ATP가 생성된다.
- ㄴ. (나)의 구간 @에서 Ⅱ가 일어난다.
- □의 탄소 수
 B의 탄소 수
- 13. 다음은 어떤 동물의 세포 $I \sim IV$ 에서 유전자 (가), (나), (다), (라)의 전사 조절에 대한 자료이다.
 - 유전자 (가)~(라)의 프로모터와 전사 인자 결합 부위 A~D 는 그림과 같다.

A			D	프로모터	유전자 (가)
I	3	С	D	프로모터	유전자 (나)
AllI	3		D	프로모터	유전자 (다)
A		С		프로모터	유전자(라)

- 이 유전자 w, x, y, z는 각각 단백질 W, X, Y, Z를 암호화한다. $w \sim z$ 는 $(\Upsilon) \sim (\Upsilon)$ 를 순서 없이 나타낸 것이고, $w \sim z$ 의 전사에 관여하는 전사 인자는 ①, ①, ⓒ, ②이다.
- ①은 A에만 결합하고, Û~②은 각각 B~D 중 서로 다른 한 부위에만 결합한다.
- $w \sim z$ 각각의 전사는 전사 인자가 $A \sim D$ 중 적어도 두 부위에 결합했을 때 촉진된다.
- ①~② 중 I 에서는 ①과 ⓒ만, Ⅱ에서는 ①과 ②만, Ⅲ에서는 ②과 ⓒ만, Ⅳ에서는 ②과 ②만 발현된다.
- $\circ w \sim z$ 중 I 에서는 x와 y만, II에서는 w만, II에서는 y와 z만, IV에서는 z만 전사된다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

- ¬. (다)는 *x*이다.
- ㄴ. ②의 결합 부위는 D이다.
- ㄷ. 이 동물의 세포에서 $\bigcirc \sim$ \bigcirc 중 \bigcirc 과 \bigcirc 만 발현되면 y가 전사된다.

14. 그림은 세포 내 공생설을 나타낸 것이다. ¬과 □은 엽록체와 미토콘드리아를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. 광합성 세균은 독립 영양 생물이다.
- ㄴ. ⓒ은 크리스타 구조를 갖는다.
- ㄷ. ㈜과 ⓒ에는 모두 유전 물질이 있다.

15. 효소 E는 기질 A가 생성물 B로 전환되는 반응을 촉매한다. 표는 E에 의한 반응에서 실험 I ~IV의 조건과 초기 반응 속도를 나타낸 것이다. ③과 ⑥은 각각 저해제와 A 중 하나이고, I ~IV에서 A가 있는 경우 A의 농도는 충분하다. @는 1과 2 중 하나이다.

구분	I	П	Ш	IV
①의 유무	있음	없음	있음	없음
©의 유무	없음	있음	?	있음
E의 농도(상댓값)	1	a	2	1
초기 반응 속도(상댓값)	?	100	50	50

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외의 다른 조건은 동일하다.) [3점]

-----<보 기>-

- ㄱ. ⓐ는 2이다.
- ㄴ. ⓒ은 E의 활성 부위에 결합한다.
- □ E에 의한 반응의 활성화 에너지는 Ⅱ에서가 IV에서보다□ 크다.
- 16. 표 (가)는 생물 A~C에서 특징 I~Ⅲ의 유무를 나타낸 것이고, (나)는 I~Ⅲ을 순서 없이 나타낸 것이다. A~C는 각각 거머리, 달팽이, 지네를 순서 없이 나타낸 것이다.

구분	Α	В	С
I	?	0	×
П	?	a	0
III	0	×	

특징(I~Ⅲ)
○ 체절이 있다.
○ 탈피를 한다.
○ 원구가 입이 된다.

(○: 있음, ×: 없음)

(가) (나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>--

- ㄱ. (a)는 '○'이다.
- ㄴ. Ⅲ은 '탈피를 한다.'이다.
- ㄷ. C는 촉수담륜동물에 속한다.

17. 그림은 광합성이 일어나고 있는 어떤 녹조류에서 CO₂ 농도를 변화시켰을 때 시간에 따른 물질 ①과 ⓒ의 농도를, 표는 ①과 ⓒ의 1분자당 탄소 수와 인산기 수를 나타낸 것이다. ①과 ⓒ은 각각 3PG와 RuBP 중 하나이고, 구간 Ⅰ과 Ⅱ에서 CO₂ 농도는 각각 0.003 %와 1 % 중 하나이다.

구분	\bigcirc	Ū
1분자당 탄소 수	3	a
1분자당 인산기 수	1	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, ③과 ⓒ은 이 녹조류의 엽록체 내에 존재하며, CO₂ 농도 이외의 조건은 일정하다.) [3점]

-----<보 기>-

- ㄱ. @는 5이다.
- ㄴ. I 에서 CO₂ 농도는 0.003 %이다.
- □. 캘빈 회로에서 つ이 ○으로 전환되는 과정에 NADPH가 사용된다.

18. 다음은 메셀슨과 스탈의 DNA 복제 실험이다.

[실험 과정 및 결과]

- (가) 모든 DNA가 15 N로 표지된 대장균 (G_0) 을 14 N가 들어 있는 배양액에서 배양하여 1세대 대장균 (G_1) 과 2세대 대장균 (G_2) 을 얻는다.
- (나) G₀~G₂의 DNA를 추출하고 각각 원심 분리하여 상층 (¹⁴N-¹⁴N), 중층(¹⁴N-¹⁵N), 하층(¹⁵N-¹⁵N)에 존재하는 이중 나선 DNA의 상대량을 확인한 결과는 표와 같다. A∼C는 각각 상층, 중층, 하층 중 하나이다.

구분	G_0	G_1	G_2	
A	1	?	3	
В	?	a	2	
С	?	2	(b)	

이 실험에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]

----<보 기>-

- ¬. A는 상층이다.
- L. @와 b를 더한 값은 2이다.
- ㄷ. DNA의 반보존적 복제를 확인한 실험이다.

- 19. 다음은 3역 6계 분류 체계에 따른 3개의 역 A~C에 대한 자료이다. A~C는 각각 세균역, 고세균역, 진핵생물역 중 하나이다.
 - A와 B의 유연관계는 B와 C의 유연관계보다 가깝다.
 - B에는 셀룰로스 성분의 세포벽을 갖는 생물이 있다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>-

- ㄱ. 메테인 생성균은 A에 속한다.
- ㄴ. B에는 히스톤 단백질을 갖는 생물이 있다.
- ㄷ. 원생생물계는 C에 속한다.
- **20.** 다음은 어떤 진핵생물의 유전자 x와, 돌연변이 유전자 y, z의 발현에 대한 자료이다.
 - \circ x, y, z로부터 각각 폴리펩타이드 X, Y, Z가 합성된다.
 - *x*의 DNA 이중 가닥 중 전사 주형 가닥의 염기 서열은 다음과 같다. ⑦와 ⑭는 각각 5' 말단과 3' 말단 중 하나이다.
 - → TCTACCGCTCAAAAGTTA
 ② GATCTCGCATTG ④
 - X는 2개의 아르지닌을 가지며, ②는 I과 II 중 하나이다.

구분	염기 서열
I	5'-TCTCCGA-3'
П	5'-AGCCTCT-3'

○ *y*는 *x*의 전사 주형 가닥에서 ① <u>연속된 2개의 염기</u>가 1회 결실된 것이며, Y의 아미노산 서열은 다음과 같다.

메싸이오닌-아르지닌-글루탐산-글루탐산-알라닌

- *z*는 *y*의 전사 주형 가닥에서 2개의 타이민(T)이 각각 염기 ⓒ으로 치환된 것이고, Z는 10개의 아미노산으로 구성되며 3개의 류신을 가진다.

-	UUU	페닐알라닌	UCU	세린	UAU	타이로신	UGU	시스테인
	UUA	류신	UCA	시킨	UAA	종결 코돈	UGA	종결 코돈
	UUG	ㅠ건	UCG		UAG	O Z 보는	UGG	트립토판
-	CUU		CCU		CAU	히스티딘	CGU	
	CUC	류신	CCC	프롤린	CAC	이프니다	CGC	아르지닌
-	CUA	T-C	CCA	_20	CAA	글루타민	CGA	이르시간
1	CUG		CCG		CAG	2구의간	CGG	
1	AUU		ACU		AAU	아스파라진	AGU	세린
	AUC	아이소류신	ACC	트레오닌	AAC	어프레디션	AGC	세근
	AUA		ACA	프네포근	AAA	라이신	AGA	아르지닌
	AUG	메싸이오닌	ACG		AAG	니이근	AGG	이프지근
	GUU		GCU		GAU	아스파트산	GGU	
	GUC	발린	GCC	알라닌	GAC	01 <u></u>	GGC	글리신
	GUA	20	GCA	크니다	GAA	글루탐산	GGA	크니다
	GUG		GCG		GAG	2762	GGG	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려하지 않는다.) [3점]

一 <보 기>-

- ㄱ. @는 ∐이다.
- ∟. ①은 5'-AG-3'이다.
- ㄷ. Z는 타이로신을 가진다.
- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.