1 2変数関数のグラフ,極限

問題 **1.1.** 関数 $f(x,y) = x^2 + y^2$ のグラフ z = f(x,y) がどのような形をしているか考えよ.

ヒント: 平面の極座標表示 $(x,y) = (r\cos\theta, r\sin\theta)$.

問題 **1.2.** 関数 $f(x,y) = \sqrt{x^2 + y^2 - 1}$ について以下の間に答えよ.

- (1) f(x,y) の定義域を求めよ (どのような領域で定義可能か).
- (2) 問題 1.1 を参考にして、グラフ z = f(x, y) がどのような形をしているか考えよ.

問題 **1.3.** 関数 $f(x,y) = x^2 - y^2$ の等高線を書いて、グラフ z = f(x,y) がどのような形をしているか考えよ。

問題 **1.4.** 次の関数 f(x,y) の極限 $\lim_{(x,y)\to(0,0)} f(x,y)$ が存在しないことを示せ、つまり、原点 (0,0) への近づけ方によって、f(x,y) が異なる値に近づくことを示せ、

(1)
$$f(x,y) = \frac{y^2}{x^2 + y^2}$$

(2)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

(3)
$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$

問題 **1.5.** 次の関数 f(x,y) に対して, $\lim_{(x,y)\to(0,0)}f(x,y)=0$ であることを示せ. つまり, $\sqrt{x^2+y^2}$ の値が十分小さいとき, |f(x,y)| の値も十分小さくできることを示せ.

(1)
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$

(2)
$$f(x,y) = \frac{xy^2}{x^2 + y^2 + y^4}$$