

Impact of Big Data on SoC Design CPU Architecture in SoC Design

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

CPU Architecture in SoC Design

CPU and ISA	
CPU in Servers & PCs	
CPU in HPC (AI-Big Data) & Mobiles	
OS and Co-Design of HW/SW	
Discussion	

Von Neumann Architecture & Its Improvement

Central Processor Unit & Its Variants

CPU Central Processing Unit

MCU Microcontroller Unit

MPU Microprocessor Unit

DSP Digital Signal Processor

Various CPU Architectures

- •CISC, RISC, RISC-V
 - CSIC (Complex Instruction Set Computer)
 - RISC (Reduced Instruction Set Computer)
- CISC: x86 and IA-64
- •RISC:
 - POWER/ PowerPC
 - MIPS
 - UltraSPARC
 - ARM
 - Other CPUs

19th C.: "difference engine" by Babbage, read, store, calculate, output 1943-45, Colossus Computer, ele.+mech. Alan Turing cryptanalysis → Enigma ENIAC (1946-1955), by J Mauchly & J Eckert 18000 tubes, 140 kW, 30t... (U Penn) 1952, von Neumann joined on EDVAC 1953, IBM 701 1957, DEC PDP-1 1964, IBM-360

List of Architectures and a Comparison

- •X86/ IA-64
- POWER/ PowerPC
- MIPS
- ARM
- UltraSPARC
- C-SKY/ Loongson, PKU, VIA, Shuguang (Sugon), ...

- CPU and ISA: Background and Introduction
- CPU in Servers & PCs: Sun, IBM, HP; IBM, Dell, Mac

- CPU in HPC & Mobiles: Intel, IBM, Arm
- OS and Co-Design of HW/SW: Linux(Unix), iOS/Android
- Discussion: DSL, DSA

Intel's x86

- **8086**
- •IA-64 (EPIC)

Components in System-on-Chip

CPU Memory I/O (of SoC) Logic & IP

IBM's POWER

- POWER
 - RS/6000 (CISC)
 - POWER, PowerPC, Power ISAs
- PowerPC

- AIM Alliance
- Power.org

MIPS

- •1984, MIPS estab. John Hennessy
- •1992, SGI (Silicon Graphics Inc.) merger
- •1998, MIPS IPO, spun off from SGI
- 2013, Imagination
- •2017, Tallwood
- 2018, Wave Computing

*Architecture of Microprocessor

- Tested with VHDL Simulation
- Random Logic Architecture (MSPARC)
- Micro-code, Pipelined Structure and Conflicts
- Cache
- Virtual Memory
- Superscalar

ARM

- Architecture
 - Armv7-A/R/M
 - Armv8-A/R/M
- BUS
 - AMBA/2/3/4/5
 - ASB,APB;
 - AHB;
 - AXI,ATB;
 - AXI4,ACE;
 - CHI

架构名称	技术特征	应用场合	处理器案例	
Armv7-A	A32(32b),	(1~4)多核设计	Cortex-A5/A7/A9/A15/A17	
	T32(32b,16b混合)		(A8: 单核)	
Armv7-R	32b	高新能应用	Cortex-R4/R5/R7	
Armv7-M	32b	低功耗场合	Cortex-M0/M0+/M3/M4/M7	
Armv8-A	32b/64b	Smartphones	Cortex-A53/A57/A72	
Armv8-R	32b	MMU , MPU	Cortex-R 系列	
Armv8-M	32b (16b)	MCU/IoT	Cortex-M0/M0+/M3/M4/M7/M	

发布年代	版本	新增总线/接口	英文全名	应用举例
1996	AMBA	ASB, APB	Advanced System Bus, and Advanced Peripheral Bus	
1999	AMBA2	AHB	High-performance Bus	A7, A9, Cortex-M系列
2003	AMBA3	AXI, ATB	Advanced Extensible Interface, Advanced Trace Bus	Cortex-A 系列, 包括 Cortex-A9
2010/11	AMBA4	AXI4, ACE	Advanced Extensible Interface 4, AXI Coherency Extensions	Cortex-A 系列, 包括 Cortex- A7/15
2013	AMBA5	СНІ	Coherent Hub Interface	支持(验证)VIP, SystemVerilog语言等

Server CPUs

- Server and CPU Providers in C20
 - SUN/ Solaris, IBM/ AIX, HP/
 - UNIX
- Server and CPU Providers in C21
 - Linux/Inter, IBM/POWER
 - Linux

Multi-thread multi-CPU

Computer Farm and Supercomputer

16 (June 2018) Al-Big Data and SoC Design

- CPU and ISA: Background and Introduction
- CPU in Servers & PCs: Sun, IBM, HP; IBM, Dell, Mac

- CPU in HPC & Mobiles: Intel, IBM, Arm
- OS and Co-Design of HW/SW: Linux(Unix), iOS/Android
- Discussion: DSL, DSA

Summit (supercomputer) by IBM

- Summit at ORNL
 - June 8, 2018 at ORNL
 - Clock: 200 PFLOPS
 - 9216 POWER9 22-core **CPUs**
 - 27,648 Nvidia Tesla V100 **GPUs**
 - Power: 15 MW
 - Storage: 250 PB
 - Purpose: Sci. Research

- Design
 - Each node: >500GB coherent HBM, plus DDR4
 - 800GB of NVRAM
 - Nvidia's NVLink
 - HSA model

Blue Gene

Blue Gene by IBM

- Blue Gene at ORNL
 - Blue Gene/L, /P, /Q
 - All nodes on 1 SoC (except ext. DRAM of 512 MB)
 - 2009 Nat Medal Tech & Inno
 - Ended on 2015?
- History
 - 1999, \$100M, 5-yr (at T.J. Watson Res. Ctr.)
 - Parallel computing for study of protein folding

- 2004: 70.72 TFLOPS (16rack x 1024 compute nodes)
- 2004-2007 at LLNL (104rack) 478 TFLOPS

Also see Summit

Systems and Operating Systems by IBM

- Systems
 - System I, System p, Power Systems servers, & BlueGene
 - Power Mac, iBook, eMac...
 - GameCube, Wii, Xbox 360...
- OS
 - Linux
 - Red Hat, SUSE, Ubuntu
 - AIX (Unix)
 - IBM i, ...

- Other OS
 - Linux from various vendors
 - FreeBSD
- Historical OS
 - Mac OS from Apple
 - OpenSolaris from Sun
 - Windows NT from MS (till W2k)
 - HP-UX (Unix)
- iOS, Android

Types of System Bus in SoC Design

- CoreConnect Bus (IBM for PowerPC)
 - No-fee, no-royalty, used by >1500 companies
- **AMBA Bus** (1996, Arm)
 - 1996 AMBA1 (ASB/APB);1999 AMBA2 (AHB);2003 AMBA3 (AXI/ATB);
 - 2010-2011 AMBA4 (AXI4, ACE); 2013 AMBA 5 (CHI)
- Wishbone Bus (Open Source, OpenCores)
 - Defines 8, 16, 32, 64-bit Bus
- OCP (Open Core Protocol) Bus
 - Neither <u>Altera</u> nor <u>Xilinx</u> supports this protocol

- CPU and ISA: Background and Introduction
- CPU in Servers & PCs: Sun, IBM, HP; IBM, Dell, Mac

- CPU in HPC & Mobiles: Intel, IBM, Arm
- OS and Co-Design of HW/SW: Linux(Unix), iOS/Android
- Discussion: DSL, DSA

OS

- Unix
- Linux

- •iOS
- Android

23 (June 2018)

RISC-V

- An Open ISA: 32b, 64b,128b; v2.2/2017 (2010-, UCB)
 - Prof Krste Asanovic (UCB), Martin Fink (WD);
 - RISC-I, -II, -III aka SOAR, -IV aka SPUR, -V aka Raven-1
 - 28nm FDSOI 2011
- A partial list of orgs. support the RISC-V Foundation:
 - AMD, HP, Huawei, IBM, Nvidia, NXP, QCOM, WD, SiFive ...
- SiFive (2015-), 2017 First SoC/RISC-V/64b

RISC-V

25 (June 2018) Al-Big Data and SoC Design

TPU Architecture and the TensorFlow

26 (June 2018) Al-Big Data and SoC Design

- CPU and ISA: Background and Introduction
- CPU in Servers & PCs: Sun, IBM, HP; IBM, Dell, Mac

- CPU in HPC & Mobiles: Intel, IBM, Arm
- OS and Co-Design of HW/SW: Linux(Unix), iOS/Android
- Discussion: DSL, DSA

Al-Chip and HSA

- CPU + GPU
 - GPU by Nvidia (GeForce), AMD, Intel, ARM etc.
 - SW: CUDA (Nvidia), OpenVX (Intel), OpenCL
- CPU+ DSP
 - DSP from Cadence; SW/OS
- CPU+FPGA
 - eFPGA, reconfig FPGA, FPGA/ASIC
- CPU+ASIC
 - Customized ASIC

References

- Computer Architecture: A Quantitative Approach
 - John L. Hennessy & David A. Patterson
 - First Edition, 1990 (α 1988-89/ β 1989-90);
 - Third Edition, 2003
 - Sixth Edition, 2017

Summary

- Turing 2017, John Hennessy & David Patterson
 - https://mp.weixin.qq.com/s/xLDKSgRmPcJ-eHRxF9b_SA

30 (June 2018) Al-Big Data and SoC Design