A short course on Approximate Bayesian Computation

Simon Tavaré

February 2017

What is ABC about?	2
Overview of Course	3
Bayesian Preliminaries	4
Notation (1)	
Notation (2)	
Example (1)	7
Example (2)	8
Example (3)	9
The Rejection Algorithm	10
Rejection method	11
Hitting the target	12
Hitting the target quicker	13
Example from Population Genetics	14
The coalescent (1)	15
The coalescent (2)	16
Coalescent trees (1)	
Coalescent trees (2)	
Mutations in the coalescent (1)	
Mutations in the coalescent (2)	
The posterior distribution of $T_{ m MRCA}$ (1)	
Homework	
Likelihood-free Inference	23
What, no likelihood?	_
Rejection method, revisited (1)	
Rejection method, revisited (2)	
The posterior distribution of T_{MRCA} (2)	

What is ABC about?

- Stochastic models of biological phenomena are often complicated
- Statistical inference for such models is a challenge
- Likelihood-based methods are commonly used . . .
- ... but likelihoods are often intractable
- What do we do?

2

Overview of Course

- Bayesian preliminaries. Rejection methods. Population genetics example. Likelihood-free inference.
- ABC. Connection with sufficiency. Examples. Regression-based methods.
- Bayesian model choice. MCMC methods. Sequential MC methods.
- Hierarchical models, substantive examples.

-

Bayesian Preliminaries

Notation (1)

 \mathcal{D} — data (usually discrete)

 θ — parameters (often high-dimensional)

 $\pi(\theta)$ — prior for θ

Aim is to study the *posterior* $f(\theta|\mathcal{D})$ given by

$$f(\boldsymbol{\theta}|\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D}|\boldsymbol{\theta}) \, \pi(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}$$

where

$$\mathbb{P}(\mathcal{D}) = \int \mathbb{P}(\mathcal{D}|\theta) \, \pi(\theta) \, d\theta$$

is the normalising constant

Posterior is proportional to likelihood times prior

5

Notation (2)

The marginal likelihood is

$$f(\mathcal{D}) = \int f(\mathcal{D}|\theta) \, \pi(\theta) \, d\theta$$

The *prior predictive distribution* of a random variable $Y = h(\mathcal{D})$ is

$$f_{\text{prior}}(y) = \int f_Y(y|\theta) \, \pi(\theta) \, d\theta$$

The posterior predictive distribution of Y is

$$f_{\text{post}}(y) = \int f_Y(y|\theta) f(\theta|\mathcal{D}_0) d\theta$$

where \mathcal{D}_0 denotes the observed data, and f_Y the distribution of Y.

Example (1)

Suppose X is a Poisson random variable with mean θ , so that

$$\mathbb{P}(X = j) := f(j|\theta) = \frac{e^{-\theta}\theta^{j}}{j!}, j = 0, 1, \dots$$

We write $X \sim \text{Po}(\theta)$.

Recall that $\mathbb{E}X = \theta = \operatorname{Var}(X)$

Assume π is the gamma density with parameters r and λ

$$\pi(\theta) = \frac{\lambda^r \, \theta^{r-1} e^{-\lambda \theta}}{\Gamma(r)}, \quad \theta > 0$$

We write $\theta \sim \operatorname{Gamma}(r, \lambda)$.

Recall that $\mathbb{E}\theta = r/\lambda$ and $Var(\theta) = r/\lambda^2$.

Example (2)

It is easy to show that

$$\mathcal{L}(\theta|j) \sim \text{Gamma}(j+r, \lambda+1)$$

and that the normalising constant is

$$\mathbb{P}(j) = \frac{\Gamma(r+j)}{\Gamma(r)\,j!} \left(\frac{1}{\lambda+1}\right)^j \, \left(\frac{\lambda}{\lambda+1}\right)^r \tag{1}$$

We say X has a Negative Binomial distribution with parameters r and p if

$$\mathbb{P}(X=j) = \binom{j+r-1}{j} (1-p)^r p^j, \quad j = 0, 1, 2, \dots$$

Example (3)

We write $X \sim \operatorname{NegBin}(r, p)$. Recall that $\mathbb{E}X = rp/(1-p)$ and $\operatorname{Var}(X) = rp/(1-p)^2$.

(1) shows that the prior predictive distribution is Negative Binomial with parameters r and $p=1/(1+\lambda)$.

You should check that the posterior predictive distribution is Negative Binomial with parameters $r+j_0$ and $p=1/(\lambda+2)$, where j_0 is the observed value.

9

The Rejection Algorithm

10

Rejection method

We now turn to methods for simulating observations from the posterior $f(\theta|\mathcal{D})$ The simplest is the *Rejection Method*:

- 1. Generate $\theta \sim \pi(\cdot)$
- 2. Accept θ with probability $h = \mathbb{P}(\mathcal{D}|\theta)$; return to [1.]

Observations accepted by this algorithm have density

$$\propto \pi(\theta) \mathbb{P}(\mathcal{D}|\theta) = f(\theta|\mathcal{D})$$

Hitting the target

How long does it take to get an accepted observation?

$$\mathbb{P}(\text{ accept first observation}) = \int_{\theta} \pi(\theta) \, \mathbb{P}(\mathcal{D}|\theta) d\theta$$
$$= \mathbb{P}(\mathcal{D}) := p$$

Because the simulations are independent, it follows that

 $\mathbb{P}(\text{first observation accepted on the } r \text{th trial}) = (1-p)^{r-1} p, r=1,2,\dots$

The expected number of trials to get n accepted observations is n/p

12

Hitting the target quicker

If you can find a constant c such that

$$\mathbb{P}(\mathcal{D}|\theta) \le c, \quad \forall \theta \tag{2}$$

then can replace step [2.] with

2. Accept θ with probability h/c

The mean number of trials to get n accepted observations is then nc/p

Note: the acceptance rate can be used to estimate the normalizing constant $\mathbb{P}(\mathcal{D})$.

The coalescent (1)

The setting: a random sample of n sequences is taken at random from a population and the locations of the segregating sites (or SNPs) are recorded.

Think of the sequences as copies of the unit interval. SNPs in them arise as a consequence of mutation. We will ignore all sorts of things, such as recombination, variable population size, and selection.

For a sample from a stationary population of constant size, the genealogy of the sample is provided by Kingman's *coalescent*.

We model the ancestry of the n sequences as a random tree. It starts from n tips, waits a time T_n and then chooses two sequences at random to join. There are now n-1 ancestors of the sample.

15

The coalescent (2)

We then wait time T_{n-1} and choose two of the ancestral sequences to merge. Continuing in this way, the sample spends a time T_2 with two ancestors, finally tracing back to the most recent common ancestor (MRCA).

In this simple model, the random variables T_n, T_{n-1}, \dots, T_2 are independent and exponentially distributed, with

$$\mathbb{E}T_j = \frac{2}{j(j-1)}$$

The time scale is measured in units of 2N generations, N being the population size.

Mutations in the coalescent (1)

Mutations are superimposed on the coalescent tree according to points of independent Poisson processes of rate $\theta/2$. In the *infinitely-many sites model*, each mutation introduces a segregating site into the sample. In this setting, θ is the compound parameter $\theta=4Nu$, where u is the per generation mutation rate.

Note that, given the times $T_n, T_{n-1}, \ldots, T_2$, the number of segregating sites introduced while the sample has $n, n-1, \ldots, 2$ distinct ancestors have independent Poisson distributions with means

$$n\frac{\theta}{2}T_n, (n-1)\frac{\theta}{2}T_{n-1}, \dots, 2\frac{\theta}{2}T_2.$$

19

Mutations in the coalescent (2)

It follows that, given T_n, \ldots, T_2 , the total number of SNPs, S_n , in the sample satisfies

$$\mathcal{L}(S_n|T_n,\ldots,T_2) \sim \text{Po}\left(\frac{\theta}{2}\sum_{j=2}^n jT_j\right)$$

This gives what we need to find the posterior distribution of θ, T_n, \dots, T_2 given $S_n = s$, the observed number of segregating sites.

The posterior distribution of $T_{ m MRCA}$ (1)

Our rejection algorithm is

- 1. Generate $\theta \sim \pi(\cdot)$
- 2. Generate T_n,\dots,T_2 from model. Calculate $L_n=\sum_{j=2}^n jT_j$
- 3. Accept θ, T_n, \dots, T_2 with probability

$$h = \operatorname{Po}\left(\frac{\theta}{2}L_n\right)\{s\}$$

Return to [1.]

We get the posterior of $T_{\mathrm{MRCA}} = T_2 + \cdots + T_n$ from the accepted values in this algorithm

21

Homework

See problem set on course moodle.

What, no likelihood?

In our earlier examples, we were able to calculate the *likelihood* $\mathbb{P}(\mathcal{D}|\theta)$

What if we can't?

This leads us to the field of likelihood-free inference, and this relies on our ability to simulate observations from the underlying model.

We begin with a result from Don Rubin (1984)

24

Rejection method, revisited (1)

The analogue of the rejection method is:

- 1. Generate $\theta \sim \pi(\cdot)$
- 2. Generate \mathcal{D}' from the model with parameter θ
- 3. Accept θ if $\mathcal{D}' = \mathcal{D}$; return to [1.]

Observations accepted by this algorithm have density

$$\propto \pi(\theta) \mathbb{P}(\mathcal{D}' = \mathcal{D}|\theta)
= \pi(\theta) \mathbb{P}(\mathcal{D}|\theta)
= f(\theta|\mathcal{D})$$

Rejection method, revisited (2)

- No likelihoods . . .
- No analogue of c (?)
- Rubin DB (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. *Ann Statist* 12: 1151-1172

26

The posterior distribution of $T_{\rm MRCA}$ (2)

To implement this in our genetics example we replace the h step with a simulation step:

- 1. Generate $\theta \sim \pi(\cdot)$
- 2. Generate T_n,\dots,T_2 from model. Calculate $L_n=\sum_{j=2}^n jT_j$
- 3. Simulate S' from $\operatorname{Po}(\theta L_n/2)$
- 4. Accept θ, T_n, \dots, T_2 if S' = s