Generators of Jacobians of Graphs

David Brandfonbrener, Yuxuan Ke, Hal Reichard, Ethan Sciamma Mentors: Pat Devlin, Nati Friedenberg, Steffen Marcus

Yale University

arXiv Number 1708.03069

November 13, 2017

Overview

- Defining the Jacobian
- 2 Results
- Methods
- Random Graphs

Outline

- Defining the Jacobian
- 2 Results
- Methods
- 4 Random Graphs

Divisor

Definition (Divisor)

An assignment of integer values to the vertices of a graph G.

 $\mathsf{Div}(G) \cong \mathbb{Z}^{|V(G)|} = \mathbb{Z}^n$ denotes the group of all divisors.

Divisor

Definition (Divisor)

An assignment of integer values to the vertices of a graph G. Div $(G) \cong \mathbb{Z}^{|V(G)|} = \mathbb{Z}^n$ denotes the group of all divisors.

Definition (Degree)

The sum of the integer values in a divisor.

Let $d \in \text{Div}(G)$, then $deg(d) = \sum_{v \in V(G)} d(v)$

Chip Firing Equivalence

Chip Firing Equivalence

Chip Firing Equivalence

Properties of Chip Firing

Chip Firing defines an equivalence relation

We say that $d_1 \sim d_2$ if there exists a sequence of chip firing moves to get from d_1 to d_2 .

Properties of Chip Firing

Chip Firing defines an equivalence relation

We say that $d_1 \sim d_2$ if there exists a sequence of chip firing moves to get from d_1 to d_2 .

The equivalence respects addition of divisors

If $d_1 \sim d_2$ and $e_1 \sim e_2$, then $d_1 + e_1 \sim d_2 + e_2$.

Jacobian group

Definition (degree 0 divisors)

 $Div^0(G) < Div(G)$ is the subgroup of divisors of degree 0.

Jacobian group

Definition (degree 0 divisors)

 $\mathrm{Div}^0(G)<\mathrm{Div}(G)$ is the subgroup of divisors of degree 0.

Definition (Jacobian Group)

$$\operatorname{\mathsf{Jac}}(G) := \operatorname{\mathsf{Div}}^0(G)/\sim$$

Outline

- Defining the Jacobian
- 2 Results
- Methods
- 4 Random Graphs

Theorem (Lorenzini, 1989)

Let G be a simple, connected, undirected graph. Let G_1 be the graph obtained by the removal of an edge (x, y). Then if $gcd(|Jac(G)|, |Jac(G_1)|) = 1$, then Jac(G) is cyclic.

Theorem (Lorenzini, 1989)

Let G be a simple, connected, undirected graph. Let G_1 be the graph obtained by the removal of an edge (x, y). Then if $gcd(|Jac(G)|, |Jac(G_1)|) = 1$, then Jac(G) is cyclic.

Open Question (Becker & Glass, 2014)

Let δ_{xy} be the divisor that takes the value -1 on the vertex x, 1 on the vertex y, and 0 elsewhere. Then if $\gcd(|\operatorname{Jac}(G)|,|\operatorname{Jac}(G_1)|)=1$, does δ_{xy} generate $\operatorname{Jac}(G)$?

Open Question (Becker & Glass, 2014)

Let δ_{xy} be the divisor that takes the value -1 on the vertex x, 1 on the vertex y, and 0 elsewhere. Then if $\gcd(|\operatorname{Jac}(G)|,|\operatorname{Jac}(G_1)|)=1$, does δ_{xy} generate $\operatorname{Jac}(G)$?

Results - Edge Deletion and Insertion

Theorem (BKRS, 2017)

 $[\mathsf{Jac}(G):\langle\delta_{xy}\rangle] \mid \mathsf{gcd}(|\mathsf{Jac}(G)|,|\mathsf{Jac}(G_1)|)$

Results – Edge Deletion and Insertion

Theorem (BKRS, 2017)

 $[\operatorname{\mathsf{Jac}}(G):\langle\delta_{xy}\rangle]\mid\gcd(|\operatorname{\mathsf{Jac}}(G)|,|\operatorname{\mathsf{Jac}}(G_1)|)$

Corollary (Answer to Open Question)

Suppose that $gcd(|Jac(G)|, |Jac(G_1)|) = 1$. Then δ_{xy} generates Jac(G).

Results – Edge Deletion and Insertion

Question (Converse of Above)

Suppose that δ_{xy} generates Jac(G). Is it true that $gcd(|Jac(G)|, |Jac(G_1)|) = 1$?

Results - Edge Deletion and Insertion

Question (Converse of Above)

Suppose that δ_{xy} generates Jac(G). Is it true that $gcd(|Jac(G)|, |Jac(G_1)|) = 1$?

Theorem (BKRS, 2017)

 $\gcd(|\mathsf{Jac}(G)|, |\mathsf{Jac}(G_1)|) \mid [\mathsf{Jac}(G) : \langle \delta_{xy} \rangle]^2$

Results - Edge Deletion and Insertion

Question (Converse of Above)

Suppose that δ_{xy} generates Jac(G). Is it true that $gcd(|Jac(G)|, |Jac(G_1)|) = 1$?

Theorem (BKRS, 2017)

 $\gcd(|\mathsf{Jac}(G)|, |\mathsf{Jac}(G_1)|) \mid [\mathsf{Jac}(G) : \langle \delta_{xy} \rangle]^2$

Corollary (Answer to Question)

If δ_{xy} generates Jac(G), then $gcd(|Jac(G)|, |Jac(G_1)|) = 1$.

Results - Edge Contraction

Corollary (BKRS, 2017)

Let G be a graph and let e=(x,y) be an edge. Let G/e denote the graph obtained by identifying the vertices x and y. Then $[\operatorname{Jac}(G):\langle\delta_{xy}\rangle]\mid\gcd(|\operatorname{Jac}(G)|,|\operatorname{Jac}(G/e)|)$.

Results - Edge Contraction

Corollary (BKRS, 2017)

Let G be a graph and let e=(x,y) be an edge. Let G/e denote the graph obtained by identifying the vertices x and y. Then $[\operatorname{Jac}(G):\langle\delta_{xy}\rangle]\mid\gcd(|\operatorname{Jac}(G)|,|\operatorname{Jac}(G/e)|)$.

Proposition (BKRS, 2017)

Let G be a graph, and e, G/e defined as above. Let z be the vertex obtained by identifying x and y, and let $\operatorname{val}_G(x)$ denote the valency of x in G. If $|\operatorname{Jac}(G)|$ and $|\operatorname{Jac}(G/e)|$ are relatively prime and

$$D_z(v) = \begin{cases} 0 & (v,x) \notin E(G) \\ (\operatorname{val}_G(x) - 1) & v = z \\ -1 & (v,x) \in E(G), v \neq z, \end{cases}$$

then Jac(G/e) is cyclic and D_z generates it.

Theorem (GJRWW, SUMRY 2014)

Let G be an undirected, biconnected multigraph, and let (x, y) be an edge of G. Then $|\delta_{xy}| \ge \text{val}(x)$.

Theorem (GJRWW, SUMRY 2014)

Let G be an undirected, biconnected multigraph, and let (x,y) be an edge of G. Then $|\delta_{xy}| \ge \operatorname{val}(x)$.

Proposition (BKRS, 2017)

Let G be a graph with n = |V(G)| vertices and $\epsilon = |E(G)|$ edges.

- **1** There exists some edge (x, y) such that $|\delta_{xy}| \ge \epsilon/(n-1)$.
- 2 There exists some edge (u, v) such that $|\delta_{uv}| \ge \epsilon/(\epsilon n + 1)$.

Note that in the first inequality the bound is tight for a spanning tree on n vertices, and in the second the bound is tight for an n-cycle.

Proposition (BKRS, 2017)

Define G as before. Then if G is biconnected, we have:

$$|\delta_{xy}| \ge val(x) + \frac{val(x) - 1}{val(y) - 1}.$$

Proposition (BKRS, 2017)

Define G as before. Then if G is biconnected, we have:

$$|\delta_{xy}| \ge val(x) + \frac{val(x) - 1}{val(y) - 1}.$$

Conjecture - Improved Bound

For any vertex $x \in G$, there exists some vertex $y \in G$ such that $|\delta_{xy}| \ge n$.

Outline

- Defining the Jacobian
- 2 Results
- Methods
- 4 Random Graphs

Constructing Maps into $\mathbb{Z}/m\mathbb{Z}$

Goal

Characterize homomorphisms $\phi: \mathrm{Div}^0(G) \to \mathbb{Z}/m\mathbb{Z}$, where $m = |\mathrm{Jac}(G)|$. Determine which ϕ descend to maps from $\mathrm{Jac}(G) \to \mathbb{Z}/m\mathbb{Z}$

Constructing Maps into $\mathbb{Z}/m\mathbb{Z}$

Goal

Characterize homomorphisms $\phi: \mathrm{Div}^0(G) \to \mathbb{Z}/m\mathbb{Z}$, where $m = |\mathrm{Jac}(G)|$. Determine which ϕ descend to maps from $\mathrm{Jac}(G) \to \mathbb{Z}/m\mathbb{Z}$

Method

Associate each map ϕ with an assignment of integer weights to the vertices of ${\it G}$.

Example of Vertex Weights

Example of Vertex Weights

Example of Vertex Weights

Weight map

$$\phi: \mathsf{Div}^0(G) o \mathbb{Z}/m\mathbb{Z}$$

$$\phi(d) := w \cdot d \pmod{4} \equiv 0(-3) + 1(0) + 2(3) + 3(0) \equiv 6 \equiv 2$$

Example of Vertex Weights - Invariance Under Chip-Firing

Example of Vertex Weights - Invariance Under Chip-Firing

Example of Vertex Weights - Invariance Under Chip-Firing

Weight map

$$\phi(d) = w \cdot d \pmod{4} \equiv 0(-3) + 1(0) + 2(3) + 3(0) \equiv 2$$

$$\phi(d') = w \cdot d' \pmod{4} \equiv 0(-3) + 1(1) + 2(1) + 3(1) \equiv 2$$

Monodromy Weights

Monodromy weight definition

If $w \cdot d = w \cdot d'$ whenever $d \sim d'$, we say that w is a monodromy weight. This corresponds to the associated map $\phi : \mathrm{Div}^0(G) \to \mathbb{Z}/m\mathbb{Z}$ descending to a well-defined map from $\mathrm{Jac}(G) \to \mathbb{Z}/m\mathbb{Z}$.

Monodromy Weights

Monodromy weight definition

If $w \cdot d = w \cdot d'$ whenever $d \sim d'$, we say that w is a monodromy weight. This corresponds to the associated map $\phi : \mathrm{Div}^0(G) \to \mathbb{Z}/m\mathbb{Z}$ descending to a well-defined map from $\mathrm{Jac}(G) \to \mathbb{Z}/m\mathbb{Z}$.

Correspondence with $Hom(Jac(G), \mathbb{Z}/m\mathbb{Z})$

If we consider monodromy weights modulo m and require that the weight on the nth vertex of G is zero, we obtain a bijection between monodromy weights and homomorphisms $\phi \in \operatorname{Hom}(\operatorname{Jac}(G), \mathbb{Z}/m\mathbb{Z})$.

Self-Duality of G

Self-duality of Jac(G)

Since Jac(G) is a finite abelian group, it is self-dual. i.e. $Jac(G) \cong Hom(Jac(G), \mathbb{Z}/m\mathbb{Z})$. But, there is no "canonical" isomorphism.

Self-Duality of G

Self-duality of Jac(G)

Since Jac(G) is a finite abelian group, it is self-dual. i.e. $Jac(G) \cong Hom(Jac(G), \mathbb{Z}/m\mathbb{Z})$. But, there is no "canonical" isomorphism.

Canonical isomorphism between Jac(G) and $\mathbb{Z}/m\mathbb{Z}$

We can construct an isomorphism F from Jac(G) to the group of monodromy weights. This can be extended to a canonical isomorphism $\Phi \circ F : Jac(G) \to Hom(Jac(G), \mathbb{Z}/m\mathbb{Z})$.

Using Monodromy Weights to Prove Main Theorems

Lemma (using the $\Phi \circ F$ isomorphism)

If $d \in Jac(G)$ and $\phi = \Phi \circ F(d)$, then we have $|d| = |Im(\phi)|$.

Using Monodromy Weights to Prove Main Theorems

Lemma (using the $\Phi \circ F$ isomorphism)

If $d \in Jac(G)$ and $\phi = \Phi \circ F(d)$, then we have $|d| = |Im(\phi)|$.

Theorem (BKRS 2017)

$$[\mathsf{Jac}(G):\langle\delta_{xy}\rangle] \mid \mathsf{gcd}(|\mathsf{Jac}(G)|,|\mathsf{Jac}(G_1)|)$$

Using Monodromy Weights to Prove Main Theorems

Lemma (using the $\Phi \circ F$ isomorphism)

If $d \in Jac(G)$ and $\phi = \Phi \circ F(d)$, then we have $|d| = |Im(\phi)|$.

Theorem (BKRS 2017)

$$[\mathsf{Jac}(G):\langle\delta_{xy}\rangle]\mid\gcd(|\mathsf{Jac}(G)|,|\mathsf{Jac}(G_1)|)$$

- By linear algebra and the above lemma, we show that if $d = \delta_{xy}$, then $m/|\mathrm{Im}(\phi)| \mid \gcd(|\mathrm{Jac}(G)|, |\mathrm{Jac}(G_1)|)$.
- The converse follows with a bit of extra work (using similar methods).

Outline

- Defining the Jacobian
- 2 Results
- Methods
- Random Graphs

Research Direction: Random Graphs

Definition $(G_{n,p})$

The Erdős-Rényi random graph $G_{n,p}$ is a graph with n vertices and each edge present with probability p.

Research Direction: Random Graphs

Definition $(G_{n,p})$

The Erdős-Rényi random graph $G_{n,p}$ is a graph with n vertices and each edge present with probability p.

Theorem (Wood, 2014)

 $\lim_{n\to\infty} \mathsf{Prob}(\mathsf{Jac}(G_{n,p}) \; \mathsf{cyclic}) \leq \prod_{i=1}^{\infty} \zeta(2i+1)^{-1} \approx 0.7935$

Research Direction: Random Graphs

Definition $(G_{n,p})$

The Erdős-Rényi random graph $G_{n,p}$ is a graph with n vertices and each edge present with probability p.

Theorem (Wood, 2014)

 $\lim_{n\to\infty} \mathsf{Prob}(\mathsf{Jac}(G_{n,p}) \; \mathsf{cyclic}) \leq \prod_{i=1}^{\infty} \zeta(2i+1)^{-1} \approx 0.7935$

Conjecture (Clancy, Kaplan, Leake, Payne, Wood, 2014)

$$\lim_{n\to\infty} \mathsf{Prob}(\mathsf{Jac}(G_{n,p}) \; \mathsf{cyclic}) = \prod_{i=1}^{\infty} \zeta(2i+1)^{-1} \approx 0.7935$$

Experimental Results and Conjectures

Probability of fixed δ_{xy} generator

 $\mathbb{P}\left(\delta_{xy} \text{ generates Jac}(G_{n,p}) \mid \mathsf{Jac}(G_{n,p}) \text{ cyclic}\right) pprox .607 pprox \zeta(2)^{-1}$

Experimental Results and Conjectures

Probability of fixed δ_{xy} generator

 $\mathbb{P}\left(\delta_{xy} \text{ generates Jac}(G_{n,p}) \mid \text{Jac}(G_{n,p}) \text{ cyclic}\right) \approx .607 \approx \zeta(2)^{-1}$

Existence of some δ_{xy} generator

 $\lim_{n\to\infty} \mathbb{P}\left(\exists \ x,y \ s.t. \ \delta_{xy} \ \text{generates Jac}(G_{n,p}) \ | \ \mathsf{Jac}(G_{n,p}) \ cyclic
ight) pprox 1$

Thank You

We would like to thank our mentors for their help with our project, SUMRY for funding the research, YMC for hosting us, and you for attending our talk.