Statistics Ph.D. Qualifying Exam: Part I

November 12, 2005

Student Name:		
Student Name		
DUUCEIU Naine.		

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Let X and Y be two independent random variables following $\operatorname{Beta}(a,b)$ and $\operatorname{Beta}(a+b,c)$ distributions, respectively. Consider the transformation U=XY and V=X.
 - (a) Find the joint p.d.f. of U and V.
 - (b) Find the marginal p.d.f. of U.

- 2. Suppose that the conditional distribution of Y given θ is a Poisson distribution of mean θ and the distribution of θ is an exponential distribution with mean 1.
 - (a) Find the mean and variance of Y.
 - (b) Find the marginal distribution of Y.

- 3. Let X_1, X_2, \dots, X_n be a random sample of size n from $N(\theta, c\theta^2)$, where c is a known constant.
 - (a) Find a minimal sufficient statistics for θ .
 - (b) Is the above minimal sufficient statistics for θ complete ? You need to justify your answer.

- 4. Let X_1, X_2, \dots, X_n be a random sample of size n from a U(0,1) distribution.
 - (a) Find the p.d.f. of $Y_i = -\ln(X_i)$.
 - (b) Find the p.d.f. of $Y = \sum_{i=1}^{n} [-\ln(X_i)]$.
 - (c) Find the p.d.f. of $\prod_{i=1}^{n} X_i$.

- 5. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent samples from Exponential(λ) and Exponential(μ) populations with mean λ and μ , respectively.
 - (a) Derive a likelihood ratio test for testing $H_0: \lambda = \mu$ versus $H_1: \lambda \neq \mu$,
 - (b) Give a critical value of the test in terms of some commonly used/well-known statistics table.

- 6. Let $\{X_1, \ldots, X_n\}$ be a random sample from the normal distribution with mean μ and variance σ^2 . Put $Q_i = X'A_iX$, i = 1, 2, where $X' = (X_1, \ldots, X_n)$ and the A_i are symmetric matrices of real numbers.
 - (a) Show that if $A_1A_2=0$, then Q_1 and Q_2 are distributed independently of each other stochastically.
 - (b) Show that if $A_i^2 = A_i$ and if $A_i = 0$, where 1 is a column vector of 1's and 0 a column vector of 0's, then Q_i is distributed as $\sigma^2 \chi_{r_i}^2$, where $r_i = Rank A_i$ and $\chi_{r_i}^2$ is a central chi-square random variable with degrees of freedom r_i .

- 7. Let $\{X_1, \ldots, X_n\}$ be a random sample from the normal distribution with mean μ_1 and variance $4\sigma^2$ and $\{Y_1, \ldots, Y_m\}$ a random sample from the normal distribution with mean μ_2 and variance $9\sigma^2$, where σ^2 is unknown.
 - (a) Derive a $(1 \alpha)\%$ confidence interval for $\delta = \mu_1 \mu_2$.
 - (b) Assuming Jeffrey's non-informative prior $P(\mu_1, \mu_2, \sigma^2) \propto \sigma^{-2}$, derive a (1α) % HPD (Highest Posterior Density) Bayesian interval for $\delta = \mu_1 \mu_2$. How is this HPD interval comparing with the confidence interval obtained in (a) above?
 - (c) Illustrate how you will use the above results to test the hypothesis $H_0: \mu_1 = \mu_2$.

- 8. Let $\{X_1, \ldots, X_n\}$ be a random sample from the density $f(x, \theta) = \theta(1 \theta)^x, x = 0, 1, \ldots, \infty; 0 < \theta < 1.$
 - (a) Obtain a sufficient and complete statistic for θ .
 - (b) Obtain the UMVUE (Uniformly Minimum Varianced Unbiased estimator) of θ . What is the UMVUE for $\phi = 1/\theta$?
 - (c) Let the prior distribution of θ be given by:

$$p(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}, 0 < \theta < 1, a > 0, b > 0.$$

derive the Bayese estimator of θ and the Bayese estimator of $\phi = 1/\theta$ by assuming squared loss function.

(d) If the loss function of $\hat{\theta}$ is $l(\hat{\theta}, \theta) = |\hat{\theta} - \theta|$, what is the Bayese estimator of θ ?.

- 9. Let $\{X_1, \ldots, X_n\}$ be a random sample from the probability distribution with density $f(x, \theta, \phi) = \phi(x \theta)^{\phi 1}, \theta < x < 1 + \theta, \phi > 0$. Assume that θ is known.
 - (a) Derive the level- α UMP (Uniformly Most Powerful) test for testing $H_0: \phi=1$ versus $H_1: \phi>1$.
 - (b) Derive the sampling distribution of your testing statistic under H_0 .
 - (c) Derive the sampling distribution of your testing statistic under H_1 and hence the power function of your test.

- 10. Let X_1, \ldots, X_n be a random sample from a $\mathcal{U}(\lambda, \theta)$.
 - (a) Find the jointly sufficient statistics for the (λ, θ)
 - (b) Find the MLE's of (λ, θ) and show that they are jointly complete and sufficient.
 - (c) Find the best unbiased estimator of $(\lambda + \theta)/2$.

- 11. Let X_1, \ldots, X_n be a random sample from \mathcal{P} oisson (θ) .
 - (a) Find an unbiased estimator $d(\mathbf{X})$ of $\theta e^{-2\theta}$.
 - (b) Find the Cramer-Rao lower bound for all unbiased estimator of $\theta e^{-2\theta}$, and show that $d(\mathbf{X})$ does not attain the Cramer-Rao lower bound.
 - (c) Find the UMVUE estimator of $\theta e^{-2\theta}$. Does this estimator attain the Cramer-Rao lower bound?

- 12. Suppose that X is a sample of size one from a \mathcal{B} eta $(1, \theta)$ population, $\theta > 0$.
 - (a) For testing $H_0: \theta \leq 1$ versus $H_1: \theta > 1$, find the size and sketch the power function of a test procedure which rejects H_0 when X > 0.75.
 - (b) Now take a random sample of size $n: X_1, \ldots, X_n$. Is there a UMP test of $H_0: \theta \leq 1$ versus $H_1: \theta > 1$? If so, find it explicitly. If not, prove that it does not exist.