Série 1 : Cinématique du point matériel

Exercice 1:

Un mobile M décrit un mouvement rectiligne suivant un axe (x'Ox). La figure 1 montre son diagramme des espaces entre t = 0 s et 100 s.

- 1) Décrire qualitativement le parcours du mobile en précisant les différentes phases du mouvement et leurs natures.
- 2) Quelle est la distance parcourue entre t=0 s et t=100 s?

Figure 1

Exercice 2:

Représenter les diagrammes des espaces, des vitesses et des accélérations d'un mobile M décrivant un mouvement rectiligne le long d'un axe (x'Ox). À t=0 s, M passe par l'origine O avec une vitesse constante V=2 m/s. Lorsqu'il atteint la position x=20 m, le mobile augmentant uniformément sa vitesse de 1 m/s toutes les 5 s. Lorsque sa vitesse atteint la valeur 4 m/s, il ralentit son mouvement en diminuant uniformément sa vitesse et s'immobilise après 20 s.

Echelles: $2 \text{ cm} \rightarrow 10 \text{ s}$, $1 \text{ cm} \rightarrow 20 \text{ m}$, $1 \text{ cm} \rightarrow 2 \text{ m/s}$, $1 \text{ cm} \rightarrow 0.1 \text{ m/s}^2$.

Exercice 3:

Un piéton court vers un bus à la vitesse de 6 m/s. Quand il est à 25 m du bus, celui-ci démarre avec une accélération constante de 1m/s².

- 1) Le piéton rattrapera-t-il le bus?
- 2) À quelle vitesse minimale devrait courir le piéton pour rattraper le bus ?
- 3) Trouver la distance minimale d'approche du piéton.

Exercice 4:

Le diagramme des vitesses d'un mobile A, animé d'un mouvement rectiligne le long d'un axe (x'Ox) est représenté sur la figure 2.

- 1) Tracer le diagramme des accélérations a(t) du mobile
- 2) Déterminer la position du mobile aux instants t = 3 s. 7 s et 13 s. On donne x(t = 0 s) = 30 m.
- 3) À quel instant le mobile rebrousse-t-il chemin?
- 4) Préciser les phases du mouvement et leurs natures.
- **5)** Tracer, sur la trajectoire, les vecteurs position, vitess et accélération aux instants t = 3 s et 7 s.

Echelles: $1 \text{cm} \rightarrow 10 \text{ m}$, $1 \text{cm} \rightarrow 5 \text{ m/s}$, $1 \text{cm} \rightarrow 1 \text{ m/s}^2$

Figure 2

Exercice 5:

La courbe de la figure 3 représente le diagramme des accélérations d'un mobile A se déplaçant sur un axe (x'Ox). À t = 0 s, $x_A(0) = 0$ m et $V_A(0) = 2$ m/s.

- 1) Tracer le graphe des vitesses $V_A(t)$ du mobile en utilisant l'échelle : $1cm \rightarrow 2s$ et $1cm \rightarrow 0.5$ m/s.
- 2) Déterminer la position du mobile $x_A(t = 8 s)$.
- 3) Un deuxième mobile B passant par l'origine à l'instant t = 0 s et se déplaçant à vitesse constante, arrive à la même position $x_A(t=8s)$, à t=10 s. Quelle est alors sa vitesse V_B ?
- 4) Quelle est le mobile qui est en tête et de combien à t = 20 s?

•

Exercice 6:

Un mobile M en mouvement dans le plan horizontal (xOy) est repéré par ses coordonnées cartésiennes :

$$x(t) = 2t$$

 $y(t) = -t^2/2 + 8$ (t en secondes, x et y en mètres)

- 1) Etablir l'équation de la trajectoire du mobile et la construire pour $(x,y) \ge 0$. Echelle : $1 \text{cm} \to 1 \text{m}$.
- 2) Déterminer les expressions des composantes cartésiennes $V_x(t)$ et $V_y(t)$ du vecteur vitesse ainsi que les composantes $a_x(t)$ et $a_y(t)$ du vecteur accélération et les construire à l'instant t = 2s. Echelles : $1 \text{cm} \to 1 \text{m/s}$ et $1 \text{cm} \to 1 \text{m/s}^2$.

Exercice 7:

Un mobile, assimilé à un point matériel, se déplace dans le plan (xOy). À l'instant $t_0 = 0$ s, il se trouve à la position M_0 de coordonnées $x_0 = 0$ m et $y_0 = 5$ m. L'évolution, en fonction du temps, des composantes V_x et V_y de son vecteur vitesse \vec{V} est donnée sur la figure 4.

- 1) Calculer les composantes $a_x(t)$ et $a_y(t)$ du vecteur accélération \vec{a} entre les instants t = 0 s et t = 6 s.
- 2) Donner les équations horaires x(t) et y(t) entre t = 0 s et t = 6 s.
- 3) Tracer la trajectoire du mobile entre t = 0 s et t = 6 s. Echelle: 1 cm \rightarrow 1 m.
- 4) Ecrire les vecteurs vitesse \vec{V} et accélération \vec{a} à t = 4 s et les représenter sur la trajectoire.

Echelles: $1 \text{ cm} \rightarrow 0.5 \text{ m/s} \text{ et } 1 \text{ cm} \rightarrow 0.25 \text{ m/s}^2$.

- 5) Donner l'expression du module du vecteur vitesse $\|\vec{V}(t)\|$ entre t = 2 s et t = 6 s.
- 6) a) Déterminer l'expression de l'accélération tangentielle $a_t(t)$ entre t = 2 s et t = 6 s.
- **b)** Déduire le rayon de courbure ρ à t = 4 s.

Exercice 8:

Un mobile se déplace sur une trajectoire curviligne. À tout instant t, son abscisse curviligne est donné par la loi $s(t) = t^3 + 3t^2$ (s en mètres et t en secondes).

- 1) Donner l'expression du module du vecteur vitesse.
- 2) En déduire l'expression de la composante tangentielle at du vecteur accélération.
- 3) Si à t = 4 s l'accélération du mobile est a = 50 m/s², calculer le rayon de courbure de la trajectoire à cet instant.

Exercice 9:

Un mobile se déplace sur une trajectoire circulaire (voir figure 5) de centre O et de rayon $R=110/\pi$ m. Son accélération tangentielle est donnée sur la figure 6. À $t_0=0$ s, le mobile se trouve en M_0 d'abscisse curviligne $s_0=0$ m et sa vitesse est $V_0=4.5$ m/s.

1) Représenter les vecteurs vitesse et accélération aux instants $t_1 = 10$ s et $t_2 = 20$ s, correspondant respectivement aux positions M_1 et M_2 .

Echelles: $1 \text{ cm} \rightarrow R/4 \text{ m}$, $1 \text{ cm} \rightarrow 1 \text{ m/s}$ et $1 \text{ cm} \rightarrow 0.25 \text{ m/s}^2$.

2) Déterminer l'instant où la particule rebrousse chemin. En déduire son abscisse curviligne à cet instant.

Exercice 10:

Un mobile M se déplace dans un plan (xOy). Il est repéré par ses coordonnées polaires r et θ . Les équations paramétriques du mouvement en coordonnées polaires sont données par :

$$\begin{cases} r(t) = t^2 \\ \theta(t) = (\pi/12)t^2 \end{cases}$$
 (r en mètres, θ en radians et t en secondes).

- 1) Représenter, dans le plan (xOy), le vecteur position à l'instant t = 3s, à l'échelle $1cm \rightarrow 3m$.
- 2) a) Déterminer les composantes radiale v_r et transversales v_θ du vecteur vitesse du mobile M en fonction de t.
 - **b)** Représenter le vecteur vitesse à l'instant t = 3s à l'échelle $1cm \rightarrow 3m/s$.

Exercice 11:

Un mobile M se déplace dans un plan (xOy). Il est repéré par ses coordonnées polaires r et θ . Les équations paramétriques du mouvement en coordonnées polaires sont données par :

$$r(t) = t^3$$
, $\theta(t) = (\pi/4) t$.

Les distances sont exprimées en mètres et les angles en radian.

- 1) Déterminer les composantes radiale $V_r(t)$ et transversale $V_{\theta}(t)$ du vecteur vitesse à un instant t.
- 2) Déterminer les composantes radiale $a_r(t)$ et transversale $a_{\theta}(t)$ du vecteur accélération à un instant t.
- 3) Représenter, à l'instant t=2s, les vecteurs position, vitesse et accélération.

Echelles: $1 \text{ cm} \rightarrow 2 \text{ m}$, $1 \text{ cm} \rightarrow 2 \text{ m/s}$ et $1 \text{ cm} \rightarrow 2 \text{ m/s}^2$.

4) Déduire le rayon de courbure ρ de la trajectoire au point où se situe le mobile à l'instant t=2s.

Rappel:
$$a_r = \ddot{r} - r\dot{\theta}^2$$
 et $a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$.

Exercice 12:

Un mobile A, assimilé à un point matériel, se déplace sur un plan (xOy). Son rayon polaire r(t) et sa vitesse angulaire $\omega(t) = d\theta / dt$ sont donnés sur la figure 7.

- 1) Pour $0 \le t \le 3s$:
 - a) Exercise les équations paramétriques $\theta(t)$, sachant qu'à t = 0s, $\theta(t = 0s) = \theta_0 = \pi rd$.
 - **b)** Tracer la trajectoire du mobile à l'échelle : $1cm \rightarrow 1m$.
 - c) Donner les expressions des composantes radiale $v_r(t)$ et transversale $v_{\theta}(t)$ du vecteur vitesse \vec{v} en fonction du temps. Déduire celle du module de \vec{v} .
 - d) Déterminer les composantes tangentielle a_i et normale a_n du vecteur accélération \vec{a} .
 - e) Donner les phases du mouvement et leur nature, Justifier.
- 2) Représenter les vecteurs vitesse \vec{v} et accélération \vec{a} à $t_1 = 0.5 s$ et $t_2 = 3 s$.

Echelles: 1 cm \rightarrow 2 m/s et 1 cm \rightarrow 4 m/s².

Exercice 13:

La figure 8 représente la trajectoire circulaire (à l'échelle 1/100) d'un corps M. À l'instant $t_0 = 0$ s le corps M se trouve à la position M_0 et sa vitesse angulaire est donnée par :

$$\omega(t) = \begin{cases} \alpha t & \text{pour } t \leq 2s \\ \pi & \text{pour } t \geq 2s \end{cases}$$

où ω est exprimée en rd/s et t en secondes ; α est une constante.

- 1) a) Déterminer la valeur, la dimension et l'unité de la constante α . À quelle grandeur physique correspond-t-elle ?
 - b) Trouver, en fonctions du temps, les expressions du rayon polaire r(t) et de l'angle polaire $\theta(t)$ décrivant le mouvement.

- 2) Calculer l'abscisse curviligne de M, s(t = 2.5 s).
- 3) a) Donner, en fonction du temps, les expressions des composantes radiale v_r et transversale v_{θ} du vecteur vitesse \vec{v}_{M} .
- b) Représenter sur la trajectoire le vecteur \vec{v}_M à l'instant $t_1 = 1$ s en utilisant l'échelle $1 \text{ cm} \rightarrow \pi/2 \text{ m/s}$.
- 4) a) Déterminer les expressions, en fonction du temps, des composantes intrinsèques a_t et a_n du vecteur accélération \vec{a}_M .
 - **b)** En déduire les expressions des composantes radiale a_r et transversale a_θ .
 - c) Déterminer les phases du mouvement et leurs natures?
 - d) Représenter sur la trajectoire le vecteur $\vec{a}_{\rm M}$ à l'instant t_1 en utilisant l'échelle : 1 cm $\rightarrow \pi^2/2$ m/s².
- 5) À t = 2 s, un mobile A se met en mouvement sur l'axe (Ox). Sa coordonnée x_A est donnée par la coordonnée cartésienne x_M du mobile M. (La position de A est obtenue en projetant celle du mobile M sur l'axe (Ox)).
- a) Donner l'équation horaire $x_A(t)$ et décrire le mouvement de A en précisant sa période T.
- b) Tracer le diagramme des espaces de A pour 2s≤t≤4s. Déduire la distance parcourue par A entre ces instants
- c) Déterminer les expressions de la vitesse et de l'accélération de A.
- d) Donner l'expression de la vitesse de A par rapport à celle de M.