- 1. Oblicz $\nabla f(x, y, z)$ dla następujących funkcji:
 - (a) $f(x, y, z) = 2xz + z^3 + \cos[x]\sin[y]$,
 - (b) $f(x, y, z) = 2xyz + \cos[xyz]$.
- 2. Naszkicuj funkcję wektorową $\vec{A}(x,y,z)$ na płaszczyźnie xy oraz oblicz $\nabla \cdot \vec{A}(x,y,z)$ i $\nabla \times \vec{A}(x,y,z)$ dla:
 - (a) $\vec{A}(x, y, z) = -y\hat{x} + x\hat{y}$,
 - (b) $\vec{A}(x, y, z) = x\hat{x} + y\hat{y}$.
- 3. Siła Coulomba pomiędzy dwoma ładunkami elektrycznymi q_1 and q_2 oddalonymi od siebie o r wyraża się wzorem

$$F_C = \frac{q_1 q_2}{4\pi\varepsilon_0} \frac{1}{r^2} \,,$$

gdzie $\varepsilon_0 = 8.55 \cdot 10^{-12} \text{Fm}^{-1}$ jest przenikalnością elektryczną próżni, natomiast siła oddziaływania grawitacyjnego pomiędzy dwoma masami m_1 i m_2 oddalonymi od siebie o r jest równa

$$F_G = \frac{Gm_1m_2}{r^2} \,,$$

gdzie stała grawitacji $G=6.67\cdot 10^{-11} \rm Nm^2 kg^{-2}$. Znajdź odległość pomiędzy dwoma ładunkami $q_1=q_2=1\rm C$, dla których siła wzajemnego oddziaływania odpowiada sile oddziaływania grawitacyjnego pomiędzy Słońcem o masie $m_S=1.989\cdot 10^{30} \rm kg$ i Ziemią o masie $m_S=5.972\cdot 10^{24} \rm kg$ (średnia odległość Ziemia-Słońce wynosi $d=149.6\cdot 10^6 \rm m$).

4. Siła Coulomba wywierana na ładunek q_1 znajdujący się w położeniu $\vec{r_1}$ w wyniku istnienia ładunku q_2 w położeniu $\vec{r_2}$ wynosi

$$\vec{F}_1 = \frac{q_1 q_2}{4\pi\varepsilon_0} \frac{\vec{r}_1 - \vec{r}_2}{|\vec{r}_1 - \vec{r}_2|^3} \,,$$

gdzie $\varepsilon_0 = 8.55 \cdot 10^{-12} \mathrm{Fm^{-1}}$ jest przenikalnością elektryczna próżni.

- (a) Załóżmy, że dwa ładunki elektryczne oddalone są od siebie o 2cm w lini prostej. Znajdź wartość siły wywieranej na każdy z tych ładunków i narysuj wektory tych sił w zależności od tego, czy ładunki q_1 i q_2 są ujemne, czy dodatnie.
- (b) Znajdź siłę działającą na ładunek q_1 dla przypadków przedstawionych na poniższych rysunkach:

