INTRODUÇÃO AO BANCO DE DADOS GEOGRÁFICO

Prof. Sérgio Souza Costa

Sobre mim

- ☐ Home: https://profsergiocosta.github.io
- □ Email: prof.sergio.costa@gmail.com

Introdução

- Arquiteturas de sistemas de informação geográfica.
- Modelagem de dados
- □ Linguagem de consulta

Arquiteturas de sistemas de informação geográfica

- Arquitetura baseada em arquivos proprietários e de intercâmbio.
 - Primeira geração
- Arquitetura dual e banco de dados relacionais.
 - Segunda geração
- Arquitetura integrada e banco de dados objeto relacionais
 - Terceira geração

Sistema de gerenciamento de banco de dados

- O que é um sistema de gerenciamento de banco de dados ?
- □ Por que usar sistema de gerenciamento de banco de dados ?

Sistema de gerenciamento de banco de dados

- Um banco de dados é uma coleção de dados relacionados.
- Um sistema gerenciador de banco e dados é uma coleção de programas que permite aos usuários criar e manter um banco de dados.

Sistema de gerenciamento de banco de dados

- Restringir acesso não autorizado.
- ▼ Tornar as consultas mais eficientes.
- 🛛 Backup e recuperação.
- 🗶 Controlar a redundância.
- Representar relacionamentos complexos.
- Impor restrições de integridade.

Exemplos de SIGs "open source"

Modelagem de dados

A modelagem de dados tem como objetivo criar modelos que descrevam como os dados estão organizados e como se relacionam entre si.

Nesta aula, vou discutir separadamente:

- Modelagem de dados tradicionais
- Modelagem de dados espaciais

Modelagem de dados tradicionais

- Modelo Entidade-Relacionamento
- Modelo Relacional
- Modelo Orientado a Objetos

Modelo de entidade e relacionamento

Entidades, relacionamentos e atributos:

Modelo relacional

Entidades e relacionamentos são mapeados para tabelas, atributos são nominados como campos. Além disso todo campos possui um dado domínio.

Modelo orientado a objetos

Os bancos de dados relacionais são dominantes. Contudo, existem hoje alguns bancos de dados de objetos e mais comumente os bancos de dados objeto-relacionais.

Os objeto-relacionais integram alguns recursos dos banco de dados de objetos aos bancos de dados relacionais já existentes.

Tanto os banco de dados de objetos, quanto os objeto-relacionais têm usado os diagramas de classes que já são conhecidos pelos programadores.

Modelo orientado a objetos

Nesse modelo, as entidades são mapeadas como classes. As relações são nomeadas como associação e podem ser classificadas como composição (as partes não existem de modo independente) ou agregação (as partes existem de modo independente).

Modelagem de dados espaciais

Extensões através de pictogramas

Modelo OMT-G

Extensões através de pictogramas

Em SHEKHAR (2005) o autor apresenta alguns pictogramas que podem agregar informações aos modelos de entidade e relacionamento ou diagrama de classes:

Formas básicas

Ponto

Linha

Polígono

Part-de (partição)

Part-de (rede)

Relações espaciais

Extensões através de pictogramas

Em SHEKHAR (2005) o autor apresenta alguns pictogramas que podem agregar informações aos modelos de entidade e relacionamento ou diagrama de classes:

Modelo OMT-G

Borges et al. (2001), desenvolveu uma extensão para modelagem orientada a objetos, provendo primitivas para modelar a geometria, topologia, múltiplas representações e relacionamentos espaciais. Essa extensão foi então denominada de OMT-G.

Modelo OMT-G

Borges et al. (2001), desenvolveu uma extensão para modelagem orientada a objetos, provendo primitivas para modelar a geometria, topologia, múltiplas representações e relacionamentos espaciais. Essa extensão foi então denominada de OMT-G.

Essa extensão, utiliza pictogramas similares aos apresentados em SHEKHAR (2005), porém muito mais rica.

Modelo OMT-G

O modelo OMT-G dá suporte as duas diferentes visões de dados geográficos: os geo-campos e geo-objetos.

Veja mais em:

https://pt.slideshare.net/skosta/modelagem-de-dados-geogrficos

Linguagem de consulta

- Linguagem de consulta (SQL)
- Extensões espaciais
 - Tipos de dados espaciais
 - Operadores espaciais

Linguagem de consulta

Linguagem padrão para consulta e manipulação de dados

Structured Query Language

Desenvolvida pela IBM na década de 70, inicialmente chamada de SEQUEL.

Tem evoluído, e vários padrões já foram desenvolvidos:

ANSI SQL, SQL92 (SQL2), SQL99 (SQL3), SQL2003 ...

Linguagem de consulta (SQL)

Produto ←	N	ome da tabela	Campos (ou atributos)
Nome	Preço	Categoria	Marca	as)
Galaxy A9 SM-A910	1198	Celular	Samsung	(ou tuplas)
SO4 Modo Expresso	299.99	Eletrodoméstico	Três Corações	Linhas (
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial	
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung	

Linguagem de consulta (SQL)

Linguagem de consulta (SQL)

□ Todo campo tem um domínio, ou seja, ele precisa ter um tipo de dados definido:

Os tipos básicos são:

- Caracteres: CHAR(20), VARCHAR(50)
- Números: INT, BIGINT, SMALLINT, FLOAT
- Outros:: MONEY, DATETIME, ...

- Uma tabela pode ser descrita textualmente pelo seu nome, e dos seus campos:
 - Produto (Nome, Preco, Categoria, Marca)

- Um dos campos pode ser escolhido como chave primária, um campo que pode ser usado para identificar. Nesse caso ele é usualmente sublinhado:
 - Produto (Nome, Preco, Categoria, Marca)

- Definição de dados: criação das estruturas
 - Data Definition Language (DDL)
 - create, alter, drop
- Manipulação de dados: atualização e consultas
 - Data Manipulation Language (DML)
 - select, insert, update, delete ...
- Controle de acesso
 - Data Control Language (DCL)
 - grant Revoke, etc

Linguagem de consulta (SQL) - Select

□ Forma básica

```
SELECT lista de campos
FROM lista de tabelas
WHERE condição.
```

Nome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
SO4 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung

г

Nome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
S04 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung

SELECT *
FROM produto
WHERE categoria =
'Eletrodoméstico'

Nome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
SO4 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung

Nome	Proce	Catogoria	Marca
Nome	Preço	Categoria	Marca
SO4 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial

SELECT *
FROM produto
WHERE categoria =
'Eletrodoméstico'

Nome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
S04 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung

Nome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
S04 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung

SELECT Nome, Marca FROM produto WHERE preco > 1000

Nome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
S04 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung

Nome	Marca
Galaxy A9 SM-A910	Samsung
Smart TV HD Série 4 LED 32 polegadas	Samsung

SELECT Nome, Marca **FROM** produto **WHERE** preco > 1000

Linguagem de consulta (SQL) - Select (chaves)

Chave estrai	ngeira
--------------	--------

Chave primária

PNome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
S04 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial
Smart TV HD Série 4	1250	TV	Samsung

LED 32 polegadas

País	
Coréia do Sul	
Brasil	
Brasil	

Linguagem de consulta (SQL) - Select (chaves)

PNome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
S04 Modo Expresso	299.99	Eletrodoméstico	Três Corações
Bella Arome II C-09	149.99	Eletrodoméstico	Mondial
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung

		ENome	Pais	
_		Samsung	Coréia do Sul	
	—	Três Corações	Brasil	
		Mondial	Brasil	

PNome	Preço
S04 Modo Expresso	299.99
Bella Arome II C-09	149.99

PNome, Preço
Produto, Empresa
WHERE
Marca=ENome
AND Pais='Brasil'

Linguagem de consulta (SQL) - Select (agregação)

- SQL suporta várias operações de agregação para os dados básicos:
 - sum, count, min, max, avg

```
SELECT avg (Preco)
FROM Produto
```

```
SELECT count(*)
FROM Produto
where marca = 'samsung
```

Linguagem de consulta (SQL) - Select (agregação)

PNome	Preço	Categoria	Marca
Galaxy A9 SM-A910	1198	Celular	Samsung
S04 Modo Expresso 299.99		Eletrodoméstico	Três Corações
Bella Arome II C-09		Eletrodoméstico	Mondial
Smart TV HD Série 4 LED 32 polegadas	1250	TV	Samsung

ENome	País
Samsung	Coréia do Sul
Três Corações	Brasil
Mondial	Brasil

SELECT sum (Preco)

FROM Produto, Empresa

WHERE Marca=EName

AND Pais='Brasil'

149.99+299.99 = 449.98

Extensões espaciais

Extensões espaciais

- Alguns gerenciadores de banco de dados dão suporte a manipulação de dados espaciais, sendo referido como banco de dados espaciais (ou geográficos).
 - Banco de dados espaciais armazenam e manipulam objetos espaciais como qualquer outro objeto.
- Onde um banco de dados espacial é:

"Spatial database system is a database system that offers spatial data types in its data model and query language and supports spatial data types in its implementation, providing at least spatial indexing and spatial join methods" (Guting, 1994).

Extensões espaciais

Essas extensões espaciais tem que dar suporte a três aspectos principais dos gerenciadores de banco de dados: dados espaciais, funções espaciais e índices.

Convencionais

- Tipos
 - char, integer, real, date
- Índices
 - b-tree, hash
- Funções
 - strlen(char)
 - pow(real, real),
 - now()

PostGIS

- □ Tipos
 - geometry, geography
- Índices
 - r-tree, quad-tree, kd-tree
- Funções
 - ST_Length(geometry),
 - ST_X(geometry)

Extensões espaciais – tipos de dados

Extensões espaciais – tipos de dados

Geometry primitive	es (2D)						
Type Examples							
Point	POINT (30 I0)	0					
LineString	LINESTRING (30 I0, 10 30, 40 40)						
	POLYGON ((30 10, 10 20, 20 40, 40 40, 30 10))	4					
<u>Polygon</u>	POLYGON ((35 10, 10 20, 15 40, 45 45, 35 10), (20 30, 35 35, 30 20, 20 30))						

Os dados estão descritos no formato textual Well-known text (**WKT**).

Extensões espaciais – tipos de dados

Multipart geometries (2D)					
Туре	Examples				
MadaiDaine	MULTIPOINT ((10 40), (40 30), (20 20), (30 10))				
MultiPoint	MULTIPOINT (10 40, 40 30, 20 20, 30 10)				
MultiLineString	MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))	35			
	MULTIPOLYGON (((30 20, 10 40, 45 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5)))				
MultiPolygon	MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)), ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20)))				

Os dados estão descritos no formato textual Well-known text (**WKT**).

Criando a extensão em um dado banco de dados:

create extension postgis;

Verificando a tabela do sistema de referência:

Data O	Data Output Explain Messages History					
	srid integer	auth_name character varying(256)	auth_srid integer	srtext character varying(2048)		
1	3819	EPSG	3819	GEOGCS["HD1909",DATUM["Hungarian_Datum_1909",SPHEROID[
2	3821	EPSG	3821	GEOGCS["TWD67",DATUM["Taiwan_Datum_1967",SPHEROID["GRS		
3	3824	EPSG	3824	GEOGCS["TWD97",DATUM["Taiwan_Datum_1997",SPHEROID["GRS		
4	3889	EPSG	3889	<pre>GEOGCS["IGRS",DATUM["Iraqi_Geospatial_Reference_System</pre>		
5	3906	EPSG	3906	GEOGCS["MGI 1901",DATUM["MGI_1901",SPHEROID["Bessel 18		
6	4001	EPSG	4001	GEOGCS["Unknown datum based upon the Airy 1830 ellipso		
7	4002	EPSG	4002	GEOGCS["Unknown datum based upon the Airy Modified 184		

Criando uma tabela de pontos:

```
CREATE TABLE pontos (
    geom_pt geometry(POINT,0),
    nome varchar
);
```

Considerem três pontos no plano cartesiano:

Inserindo os três pontos na tabela pontos:

INSERT INTO pontos **VALUES** ('POINT(0 0)', 'Origem');

INSERT INTO pontos **VALUES** ('POINT(5 0)', 'Eixo X');

INSERT INTO pontos **VALUES** ('POINT(0 5)', 'Eixo Y');

Consulta:

SELECT nome, geom_pt **FROM** pontos;

	nome	geom_pt	<i>WKB</i> (<i>Well-</i> Known
	character varying	geometry(Point)	Binary)
1	Origem	010100000000000000000000000000000000000	Diriary)
2	Eixo X	010100000000000000000144000000000000000	
3	Eixo Y	010100000000000000000000000000000000000	

	nome character varying	st_astext text	4	Text)
1	Origem	POINT(0	0)	
2	Eixo X	POINT(5	Θ)	
3	Eixo Y	POINT(0	5)	

Consulta:

SELECT nome, ST_AsText(geom_pt),
ST_Distance(geom_pt, 'POINT(5 5)')

FROM pontos;

Função PostGIS

	nome	st_astext	st_distance	
	character varying	text	double precision	
1	Origem	POINT(0 0)	7.07106781186548	
2	Eixo X	POINT(5 0)	5	
3	Eixo Y	P0INT(0 5)	5	

O mais comum é utilizarmos um banco de dados integrado com um sistema de informação geográfica, por exemplo o QGis:

O mais comum é utilizarmos um banco de dados integrado com um sistema de informação geográfica, por exemplo o QGis:

Exemplo de uso das funções Within (dentro) e de transformações entre projeções:

Todas as sedes que estão localizadas em São Luís (186):

```
select distinct "Name", ma.id from sedes, ma where ma.id = 186 and ST_Within( ST_Transform(sedes.geom, 4326), ST_Transform(ma.geom, 4326))
```

Exemplo de uso das funções Within (dentro) e de transformações entre projeções:

Todas as sedes que estão localizadas em São Luís (186):

select distinct "Name", ma.id **from** sedes, ma **where** ma.id = 186 and

ST_Within(ST_Transform(sedes.geom, 4326),

ST_Transform(ma.geom, 4326))

Duta Ot	explain ivie	essages	HISTO
	Name	id	
	character varying	bigint	
1	Ponto 1	186	
2	Ponto 2	186	
3	Ponto 4	186	

Referências

GÜTING, Ralf Hartmut. An introduction to spatial database systems. **The VLDB Journal—The International Journal on Very Large Data Bases**, v. 3, n. 4, p. 357-399, 1994.

Borges, K. A. V.; Davis JR., C. A.; Laender, A. H. F., OMT-G: an object-oriented data model for geographic applications. *GeoInformatica*, v. 5, n.3, p. 221-260, 2001

SHEKHAR, Shashi; CHAWLA, Sanjay. **Spatial databases: a tour**. Upper Saddle River, NJ: prentice hall, 2005.