

Introduction to Data Management

SQL, Keys, and Joins

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

- Section and TA OH start tomorrow
 - Double check your section, it may have changed in MyUW:

```
<u>AA</u> Thursday 2:20 - 3:20PM <u>MOR 234</u>

<u>AB</u> Thursday 1:10 - 2:10PM <u>MOR 221</u>
```

HW1 will be released soon via GitLab

Last time's takeaways!

- Elements of the relational data model
- How a basic SELECT-FROM-WHERE query works

Recap - SQL and RA

- SQL
 - "What data do I want"
- RA
 - "How do I get the data"

(Next several lectures)

(After SQL)

FROM Payroll AS P
WHERE P.Job = 'TA';

Name UserID

Jack 123

Allison 345

Payroll

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

SELECT P.Name, P.UserID

FROM Payroll AS P

Payroll

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

Name	UserID
Jack	123

SELECT P.Name, P.UserID

FROM Payroll AS P

Payroll

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

Name	UserID
Jack	123

SELECT P.Name, P.UserID

FROM Payroll AS P

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000 ←
567	Magda	Prof	90000
789	Dan	Prof	100000

Name	UserID
Jack	123
Allison	345

SELECT P.Name, P.UserID

FROM Payroll AS P

Payroll

UserID	Name	Job	Salary	
123	Jack	TA	50000	
345	Allison	TA	60000	
567	Magda	Prof	90000	
789	Dan	Prof	100000	

Name	UserID
Jack	123
Allison	345

SELECT P.Name, P.UserID

FROM Payroll AS P

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Name	UserID
Jack	123
Allison	345

SELECT P.Name, P.UserID

FROM Payroll AS P

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Name	UserID
Jack	123
Allison	345

SELECT P.Name, P.UserID

FROM Payroll AS P

Recap - The Relational Model

- Flat tables, static and typed attributes, etc.
 - "It's a spreadsheet with rules"

Characteristics of the Relational Model

- Set semantics
 - No duplicate tuples
- Attributes are typed and static
 - INTEGER, FLOAT, VARCHAR(n), DATETIME, ...
- Tables are flat

Today's Outline

- Creating Tables
- Keys → Identification
- Foreign Keys → Relationships
- Joins in SQL
 - Inner joins
 - Outer joins
 - Self joins

Create Table Statement

Payroll (Userld, Name, Job, Salary)


```
CREATE TABLE Payroll (
   UserID INT,
   Name VARCHAR(100),
   Job VARCHAR(100),
   Salary INT);
```

Create Table Statement

Payroll (Userld, Name, Job, Salary)


```
CREATE TABLE Payroll (
   UserID INT,
   Name VARCHAR(100),
   Job VARCHAR(100),
   Salary INT);
```

Create Table Statement

Payroll (Userld, Name, Job, Salary)


```
CREATE TABLE Payroll (
  UserID INT,
  Name VARCHAR(100),
  Job VARCHAR(100),
  Salary INT);
```

Case insensitive, but useful for readability

Key

A **Key** is one or more attributes that uniquely identify a row.

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

Definitely not a key

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

Key

A **Key** is one or more attributes that uniquely identify a row.

Is this a good candidate for a key?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

Is this a good candidate for a key?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Key

A **Key** is one or more attributes that uniquely identify a row.

Is this a good candidate for a key?

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
913	Peter	TA	60000

Key

A **Key** is one or more attributes that uniquely identify a row.

Data comes from the real world so models ought to reflect that

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000
913	Peter	TA	60000

```
CREATE TABLE Payroll (
  UserID INT,
  Name VARCHAR(100),
  Job VARCHAR(100),
  Salary INT);
```

Payroll(Userld, Name, Job, Salary)

```
CREATE TABLE Payroll (
UserID INT,
Name VARCHAR(100),
Job VARCHAR(100),
Salary INT);
```

Payroll(UserId, Name, Job, Salary)

```
CREATE TABLE Payroll (
UserID INT PRIMARY KEY,
Name VARCHAR(100),
Job VARCHAR(100),
Salary INT);
```

Payroll(<u>UserId</u>, Name, Job, Salary)

Payroll(UserId, Name, Job, Salary)

Payroll(<u>UserId</u>, <u>Name</u>, Job, Salary)

- Databases can hold multiple tables
- How do we capture relationships between tables?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

- Databases can hold multiple tables
- How do we capture relationships between tables?

UserID Job Salary Name 123 Jack TA 50000 345 Allison TA 60000 Prof 567 Magda 90000 Prof 100000 789 Dan

Foreign Key

UserID	Car
123	Charger
567	Civic
567	Pinto

- Databases can hold multiple tables
- How do we capture relationships between tables?

Foreign Key

A **Foreign Key** is one or more attributes that uniquely identify a row in another table.

Foreign Key

A **Foreign Key** is one or more attributes that uniquely identify a row in another table.

Is this valid?

R	е	fo	е	r	е	n	C	е	5
	_	- '	_	-	_		_	_	7

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Foreign Key

A **Foreign Key** is one or more attributes that uniquely identify a row in another table.

Is this valid? Nope References Job Salary **UserID** Name **UserID** Car Charger 123 Jack TA 50000 123 345 Allison TA 60000 567 Civic Prof 567 Magda 90000 567 **Pinto** 100000 Prof 789 Dan

```
CREATE TABLE Payroll ( CREATE TABLE Regist (
UserID INT PRIMARY KEY, UserID INT,
Name VARCHAR(100), Car VARCHAR(100));
Job VARCHAR(100),
Salary INT);
```

Payroll(<u>UserId</u>, Name, Job, Salary)

Regist(UserId, Car)

Foreign Keys

```
CREATE TABLE Payroll ( CREATE TABLE Regist (
UserID INT PRIMARY KEY, UserID INT REFERENCES Payroll,
Name VARCHAR(100), Car VARCHAR(100));
Job VARCHAR(100),
Salary INT);
```

Payroll(<u>Userld</u>, Name, Job, Salary)

Regist(UserId, Car)

Joins

- Foreign keys are able to describe a relationship between tables
- Joins are able to realize combinations of data

Inner Joins

- Bread and butter of SQL queries
 - "Inner join" is often interchangeable with just "join"

UserID	Name	Job	Salary
<mark>123</mark>	Jack	TA	50000
345	Allison	TA	60000
<mark>567</mark>	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
<mark>123</mark>	Charger
<mark>567</mark>	Civic
<mark>567</mark>	Pinto

FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID;

How do we algorithmically get our results?

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P JOIN Regist AS R
ON P.UserID = R.UserID;
```

```
for each row1 in Payroll:
   for each row2 in Regist:
      if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name Car

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

	UserID	Name	Job	Salary
>	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

	UserID	Name	Job	Salary
\Longrightarrow	123	Jack	TA	50000
	345	Allison	TA	60000
	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

	UserID	Name	Job	Salary
	123	Jack	TA	50000
	345	Allison	TA	60000
\Rightarrow	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

	UserID	Name	Job	Salary
	123	Jack	TA	50000
	345	Allison	TA	60000
\rightarrow	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

	UserID	Name	Job	Salary
	123	Jack	TA	50000
	345	Allison	TA	60000
>	567	Magda	Prof	90000
	789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car	
123	Charger	
567	Civic	
567	Pinto	

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
      if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Magda	Civic
Magda	Pinto

```
for each row1 in Payroll:
   for each row2 in Regist:
     if (row1.UserID = row2.UserID):
        output (row1.Name, row2.Car)
```

Inner Joins

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
```

Explicit FROM Payroll AS P JOIN Regist AS R

ON P.UserID = R.UserID;

SELECT P.Name, R.Car

Implicit FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

Now I want to include everyone, even if they don't drive.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Now I want to include everyone, even if they don't drive.

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P LEFT OUTER JOIN Regist AS R
ON P.UserID = R.UserID;
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Allison	NULL
Magda	Civic
Magda	Pinto
Dan	NULL

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Name	Car
Jack	Charger
Allison	NULL
Magda	Civic
Magda	Pinto
Dan	NULL

NULL is a value placeholder. Depending on context, it may mean unknown, not applicable, etc.

- LEFT OUTER JOIN
 - All rows in left table are preserved
- RIGHT OUTER JOIN
 - All rows in right table are preserved
- FULL OUTER JOIN
 - All rows are preserved

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
Will this work?
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
    R.Car = 'Civic' AND
    R.Car = 'Pinto';
```

Will this work?
Nope, empty set is returned

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto
789	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
```

Discuss with the people around you how you would solve this.

June 26, 2019 Joins 69

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
    P.UserID = R2.UserID AND
    R1.Car = 'Civic' AND
    R2.Car = 'Pinto';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

All pairs of cars a person can drive

```
SELECT P.Name, R1.Car
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
P.UserID = R2.UserID AND
```

```
R1.Car = 'Civic' AND
R2.Car = 'Pinto';
```

A little extra SQL

 ORDER BY – Orders result tuples by specified attributes (default ascending)

```
SELECT P.Name, P.UserID
  FROM Payroll AS P
WHERE P.Job = 'TA'
ORDER BY P.Salary, P.Name;
```

DISTINCT – Deduplicates result tuples

```
SELECT DISTINCT P.Job
FROM Payroll AS P
WHERE P.Salary > 70000;
```

Takeaways

- We can describe relationships between tables with keys and foreign keys
- Different joining techniques can be used to achieve particular goals
- Our SQL toolbox is growing!
 - Not just reading and filtering data anymore
 - Starting to answer complex questions