DUALITY BETWEEN UNIFORM SPACES AND BOOLEAN ALGEBRAS

JOSEPH VAN NAME

ABSTRACT. In this note we shall generalize the Stone duality between compact totally disconnected spaces and Boolean algebras to a duality between all complete non-Archimedean uniform spaces and Boolean algebras.

1. Boolean algebras

In this note, if $f: X \to Y$ is a function and $A \subseteq X, B \subseteq Y$, then we shall let f''(A) be the image of A and $f_{-1}(B)$ denote the inverse image of B.

Let P be a poset. Then $x,y\in P$ are said to be incompatible if there does not exist an $r\in P$ with $r\leq x, r\leq y$. A subset $A\subseteq P$ is said to be cellular if every pair of elements in A is incompatible.

If $(A, \wedge, 0)$ is a semilattice, then we shall say $x, y \in A \setminus \{0\}$ are incompatible if $x \wedge y = 0$, and we shall say $A' \subseteq A \setminus \{0\}$ is cellular if $x \wedge y = 0$ for $x, y \in A', x \neq y$.

Theorem 1.1. Let P be a poset. Then every cellular family is contained in a maximal cellular family (ordered under \subseteq).

Proof. This is a simple application of Zorn's lemma. If $(R_b)_{b\in B}$ is a chain of cellular families, then $\cup_{b\in B} R_b$ is cellular.

Let P be a poset(semilattice), the write c(P) for the collection of cellular families on P. If $A, B \in c(P)$, then write $A \leq B$ if for each $a \in A$, there is a $b \in B$ with $a \leq b$. Since B is cellular, the $b \in B$ with $a \leq b$ is unique, so let's write $\phi_{A,B} : A \to B$ for the unique function with $a \leq \phi_{A,B}(a)$.

Theorem 1.2. c(P) is a poset under the ordering \leq , and c(P) is an inverse system with the mappings $\phi_{A,B}$.

Proof. Clearly $A \leq A$, and for each $a \in A$: $\phi_{A,A}(a) = a$ since $a \leq a$. If $A \leq B, B \leq A$, then for each $a \in A$, we have $a \leq \phi_{A,B}(a) \leq \phi_{B,A}\phi_{A,B}(a)$, so since A is cellular, we have A be an antichain, so $a = \phi_{B,A}\phi_{A,B}(a)$, so $a = \phi_{A,B}(a)$, so $A \subseteq B$. Similarly, we have $B \subseteq A$, so A = B. Now if $A \leq B, B \leq C$, then $a \leq \phi_{A,B}(a) \leq \phi_{B,C}\phi_{A,B}(a)$, so $A \leq C$, and $\phi_{A,C} = \phi_{B,C}\phi_{A,B}$.

Let B be a Boolean algebra. Then a partition P of B is a subset of $B \setminus \{0\}$ where $\forall P = 1$ and where $x \land y = 0$ for $x \neq y$. The partitions of a Boolean algebra are precisely the maximal elements of c(B) with the inclusion ordering \subseteq . We shall write $\mathbb{P}(B)$ for the collection of all partitions of a Boolean algebra B.

Lemma 1.3. For Boolean algebras B the collection of partitions of B form a lower semilattice where if $P, Q \in \mathbb{P}(B)$, then $P \wedge Q = \{p \wedge q | p \in P, q \in Q, p \wedge q \neq 0\}$.

Theorem 1.4. Let $p, q \in \mathbb{P}(B)$ and $p \leq q$. Then if $p = \{a_i | i \in I\}, q = \{b_j | j \in J\}$, then for each $j \in J$ we have $b_j = \vee \{a_i | a_i \leq b_j\}$

Proof. Let's assume that for some j we do not have $b_j = \vee \{a_i | a_i \leq b_j\}$, then there is an $r \in B$ with $r \geq a_i$ for $i \in I$ and $r < b_j$. We therefore have $b_j \wedge r' \neq 0$. If $a_i \leq b_j$, then $a_i \leq r$, so $(b_j \wedge r') \wedge a_i \leq (b_j \wedge r') \wedge r = 0$, and if $a_i \not\leq b_j$, then $a_i \leq b_{j'}$ for some $j' \neq j$, so $(b_j \wedge r') \wedge a_i \leq (b_j \wedge r') \wedge b_{j'} = 0$, so $(b_j \wedge r') \wedge a_i = 0$ for each $i \in I$, so $\{a_i | i \in I\}$ is not a partition of B. This is a contradiction.

A partition p on a Boolean algebra B is said to be subcomplete if whenever $r \subseteq p, \forall r$ exists.

Theorem 1.5. If a partition p of a Boolean algebra B is subcomplete and $p \leq q$, then q is subcomplete as well.

Proof. Since $p \leq q$ for each $a \in q$ there is a $P_a \subseteq p$ with $a = \vee P_a$. If $Q \subseteq q$, then $\vee (\cup_{a \in Q} P_a) = \vee_{a \in Q} \vee P_a = \vee Q$, so q is subcomplete as well.

Theorem 1.6. Let A be a subcomplete partition of a Boolean algebra B. Then the map $\phi: P(A) \to B$ given by $\phi(R) = \forall R$ is an injective Boolean algebra homomorphism with $\phi(\cup_{i \in I} R_i) = \bigvee_{i \in I} \phi(R_i)$ i.e. ϕ preserves all least upper bounds.

Proof. Let $R_i \subseteq A$ for $i \in I$. Then $\phi(\cup_{i \in I} R_i) = \vee \cup_{i \in I} R_i = \vee_{i \in I} \vee R_i = \vee_{i \in I} \phi(R_i)$. Furthermore, $\phi(R) \vee \phi(R^c) = \phi(R \cup R^c) = \phi(A) = 1$ and $\phi(R) \wedge \phi(R^c) = (\vee R) \wedge (\vee R^c) = \vee_{a \in R, b \in R^c} (a \wedge b) = 0$, so $\phi(R^c) = \phi(R)^c$. Therefore ϕ is a Boolean algebra homomorphism preserving all least upper bounds, and ϕ is injective since $Ker(\phi)$ is trivial.

A Boolean partition algebra is a pair (B, F) where B is a Boolean algebra and F is a (possibly improper) filter on $\mathbb{P}(B)$ where $\{b, b'\} \in F$ for each $b \in B \setminus \{0, 1\}$.

Lemma 1.7. Let $F \subseteq \mathbb{P}(B)$ be a filter. Then the following are equivalent.

- 1. (B, F) is a Boolean partition algebra.
- 2. For each $b \in B \setminus \{0\}$ there is a $P \in F$ with $b \in P$.
- 3. F contains all partitions of B into finitely many sets.

Proof. $1 \to 2$ Let $b \in B \setminus \{0\}$. If b = 1, then $b \in \{b\} \in F$. If $b \neq 1$, then $\{b,b'\} \in F$. $2 \to 3$ Let $\{b_1, ..., b_n\}$ be a partition of B. If n = 1, then $\{b_1\} \in F$. If n > 1, then $\{b_1, ..., b_n\} \succeq \{b_1, b_1'\} \land ... \land \{b_n, b_n'\} \in F$. $3 \to 1$ This is trivial.

Example 1.8. If B is a Boolean algebra, and λ is an infinite cardinal, then define $\mathbb{P}_{\lambda}(B) = \{P \in \mathbb{P}(B) : |P| < \lambda\}$. Then $(B, \mathbb{P}_{\lambda}(B))$ is Boolean partition algebra.

Theorem 1.9. If B is a Boolean algebra, and $F \subseteq \mathbb{P}(B)$ is a filter, $\{0\} \cup \cup F$ is a subalgebra of B and $(\{0\} \cup \cup F, F)$ is a Boolean partition algebra.

Proof. Let $a, b \in \{0\} \cup \cup F$. If $a \wedge b = 0$, then $a \wedge b \in \{0\} \cup \cup F$. If $a \wedge b \neq 0$, then $a \neq 0, b \neq 0$, so there are $p, q \in F$ with $a \in p, b \in q$, so $a \wedge b \in p \wedge q$, so $a \wedge b \in \{0\} \cup \cup F$.

Clearly $0 \in \{0\} \cup \cup F$ and $1 \in \{1\}$, so $1 \in \{0\} \cup \cup F$.

If $a \in \{0\} \cup \cup F, a \neq 0, a \neq 1$, then $a \in p$ for some $p \in F$, so $a' \in \cup F$. Therefore $\{0\} \cup \cup F$ is a subalgebra of B.

Clearly F is closed under \wedge . Now assume $p, q \in \mathbb{P}(\{0\} \cup \cup F), p \in F$ and assume $p \leq q$. Then we claim that q is a partition of B. Clearly q is a cellular family. If

 $x \in B$ and $x \ge b$ for each $b \in q$, then for each $a \in p$ we have a $b \in q$ with $a \le b \le x$, so x = 1. We therefore have q be a partition of B, so $q \in F$. We therefore have F be a filter on $\mathbb{P}(\{0\} \cup \cup F, F)$. If $a \in (\{0\} \cup \cup F) \setminus \{0\}$, then $a \in p \in F$ for some $p \in F$, so $(\{0\} \cup \cup F, F)$ is a Boolean partition algebra.

If B is a Boolean algebra and F is a filter on $\mathbb{P}(B)$, then write $\mathfrak{B}^*(B,F)$ for the Boolean partition algebra $(\{0\} \cup \cup F, F)$. If B = P(X) for some set X, then we shall write $\mathfrak{B}^*(X,F)$ for $\mathfrak{B}^*(P(X),F)$.

Given a Boolean partition algebra (B, F), and an ultrafilter $\mathcal{U} \subseteq B$, then we shall call \mathcal{U} an F-ultrafilter if for each $P \in F$ there is an $a \in P \cap \mathcal{U}$ i.e. $|P \cap \mathcal{U}| = 1$ for each $P \in F$. We shall write $S_F(B)$ or $S^*(B, F)$ for the collection of all F-ultrafilters on B, and we shall write $S^*(B)$ for the collection of all ultrafilters on B.

Lemma 1.10. Let (B, F) be a Boolean partition algebra, and let $x = (x_p)_{p \in F} \in \stackrel{Lim}{\leftarrow} F$. Then

- 1. If $p, q \in F$, then $x_{p \wedge q} = x_p \wedge x_q$
- 2. $b \in \{x_p | p \in F\}$ iff b = 1 or $x_{\{b,b'\}} = b$.
- 3. $\{x_p|p\in F\}$ is an F-ultrafilter on B.
- *Proof.* 1. We have $x_{p \wedge q} = a \wedge b$ for some $a \in p, b \in q$, so $a \wedge b = x_{p \wedge q} \leq x_p$ and $a \wedge b \leq x_q$. If $a \neq x_p$, then $a \wedge b = a \wedge b \wedge x_p = 0$ a contradiction. If $b \neq x_q$, then $a \wedge b = a \wedge b \wedge x_q = 0$ a contradiction. We therefore have $x_{p \wedge q} = a \wedge b = x_p \wedge x_q$.
- 2. \leftarrow is trivial. For \rightarrow assume $p \in F$. If |p| = 1, then $x_p = 1$. If |p| > 1, then let $q = \{x_p, x_p'\}$, the $p \leq \{x_p, x_p'\} = q$, so $x_q = \phi_{p,q}(x_p) = x_p$.
- 3. Assume $p \in F$ and $x_p \leq a$ and $a \notin \{x_p | p \in F\}$. Then $x_{\{a,a'\}} = a'$, so $x_{p \wedge \{a,a'\}} = x_p \wedge x_{\{a,a'\}} = x_p \wedge a' = x_p \wedge a \wedge a' = 0$ a contradiction. We therefore have $\{x_p | p \in F\}$ be an upper set. If $p, q \in F$, then $x_p \wedge x_q = x_{p \wedge q}$, so $\{x_p | p \in F\}$ is a filter. If $b \in B \setminus \{0,1\}$, then $x_{\{b,b'\}} = b$ or $x_{\{b,b'\}} = b'$, so $\{x_p | p \in F\}$ is an ultrafilter. $\{x_p | p \in F\}$ is an F-ultrafilter since $\{x_p | p \in F\} \cap p$ is nonempty for each $p \in F$.

Given F-ultrafilter \mathcal{U} , let $f: F \to B$ be the mapping where f(p) is the unique element in $\mathcal{U} \cap p$. If $p \leq q$, then $\phi_{p,q}(f(p)) \in q$ and $\phi_{p,q}(f(p)) \geq f(p) \in \mathcal{U}$, so $\phi_{p,q}(f(p)) = f(q)$. We therefore have $f \in_{\leftarrow}^{Lim} \mathcal{U}$.

Define maps $L :_{\leftarrow}^{Lim} F \to S_F(B), M : S_F(B) \to_{\leftarrow}^{Lim} F$ by letting $L(x_p)_{p \in F} = \{x_p | p \in F\}$ and where $M(\mathcal{U})(p) \in p \cap \mathcal{U}$ for $p \in F$.

Theorem 1.11. The functions L and M are inverses.

Proof. If $(x_p)_{p\in F} \in_{\leftarrow}^{Lim} F$, then for $p \in F$ we have $M(L((x_p)_{p\in F}))(p) = M(\{x_p | p \in F\})(p) = x_p$. Let \mathcal{U} be an F-ultrafilter. If $a \in \mathcal{U}$, then let $p \in F$ be a partition with $a \in p$. Then $M(\mathcal{U})(p) = a$, so $a \in L(M(\mathcal{U}))$. We therefore have $\mathcal{U} \subseteq L(M(\mathcal{U}))$, so $\mathcal{U} = L(M(\mathcal{U}))$.

A Boolean partition algebra (B, F) is said to be stable if for each $b \in B \setminus \{0\}$, there is an $(x_p)_{p \in F} \in \stackrel{Lim}{\leftarrow} F$ and a $p \in F$ with $b = x_p$.

Theorem 1.12. Let (B, F) be a Boolean partition algebra, then the following are equivalent.

- 1. (B, F) is stable.
- 2. The projections $\pi_p : \stackrel{Lim}{\leftarrow} F \to p$ are all surjective.
- $3. \cup S_F(B) = B \setminus \{0\}$
- 4. $\cap S_F(B) = \{1\}$

Proof. $3 \leftrightarrow 4$. This is trivial.

- $2 \to 1$ Let's assume that π_p is surjective. Then for each $b \in B \setminus \{0\}$, there is a $p \in F$ with $b \in p$ and an $(x_p)_{p \in F} \in \stackrel{Lim}{\leftarrow} F$ with $x_p = b$.
- $3 \to 2$ Let's assume that $p \in F$. Then for each $b \in p$ there is a $\mathcal{U} \in S_F(B)$ with $b \in \mathcal{U}$, so $M(\mathcal{U})(p) = b$, so π_p is surjective.
- $1 \to 3$ Let's assume (B,F) is stable, then for each $b \in B \setminus \{0\}$ there is an $(x_p)_{p \in F} \in \stackrel{Lim}{\leftarrow} F$ and a $p \in F$ with $b = x_p$. We therefore have $b \in \{x_p | p \in F\} \in S^*(B,F)$.

If $(P, \wedge, 0), (Q, \wedge, 0)$ are semilattices and $f: P \to Q$ is a semilattice homomorphism and $A \subseteq P \setminus \{0\}$ is a cellular family, then for each $a, b \in A, a \neq b$ we have $f(a) \wedge f(b) = f(a \wedge b) = f(0) = 0$, so $f''(A) \setminus \{0\}$ is a cellular family. If (B, F) is a Boolean partition algebra, then write $\iota: (B, F) \to S^*(B, F)$ for the mapping where $\iota(a) = \{\mathcal{U} \in S^*(B, F) | a \in \mathcal{U}\}$. Then ι is a Boolean algebra homomorphism. If $p \in F$, then $\iota''(p) \setminus \{\emptyset\}$ is a partition of $S^*(B, F)$ for each $p \in F$. Moreover, ι is injective iff $Ker(\iota) = 0$ iff (B, F) is stable. Moreover, if (B, F) is stable, then since ι is injective, for $p, q \in F, p \neq q$ we have $\iota''(p) \neq \iota''(q)$.

Theorem 1.13. If (B, F) is a stable Boolean partition algebra, then for $p, q \in F$ we have $\iota''(p \land q) = \iota''(p) \land \iota''(q)$

Proof.
$$\iota''(p \wedge q) = \iota''(\{a \wedge b | a \in p, b \in q\} \setminus \{0\}) = \iota''(\{a \wedge b | a \in p, b \in q\}) \setminus \{\emptyset\} = \{\iota(a \wedge b) | a \in p, b \in q\} \setminus \{\emptyset\} = \{\iota(a) \wedge \iota(b) | a \in p, b \in q\} \setminus \{\emptyset\} = \iota''(a) \wedge \iota''(b)$$

Let (A,F) be a Boolean partition algebra, and let B be a Boolean algebra. Then a function $f:A\to B$ is partitional if f is a Boolean algebra homomorphism, and $f''(p)\setminus\{0\}$ is a partition of B. A partition homomorphism $f:(A,F)\to(B,G)$ is a Boolean algebra homomorphism from A to B where $f''(p)\setminus\{0\}\in G$ for each $p\in F$. A function $f:(A,F)\to B$ if partitional iff $f:(A,F)\to(B,\mathbb{P}(B))$ is a partition homomorphism. If $f:(A,F)\to B$ is an injective homomorphism, then f is partitional if and only if f''(p) is a partition of B for each $p\in F$. If $f:(A,F)\to(B,G)$ is an injective homomorphism, then f is a partition homomorphism iff $f''(p)\in G$ for each $p\in F$.

Theorem 1.14. 1. Let $f:(A,F) \to (B,G)$ be a partition homomorphism, and let $g:(B,G) \to C$ be partitional. Then $g \circ f:(A,F) \to C$ is partitional as well.

2. Let $f:(A,F) \to (B,G), g:(B,G) \to (C,H)$ be partition homomorphism, then $g \circ f$ is also a partition homomorphism.

Proof. In both case 1 and 2, we claim that $(g \circ f)''(p) \setminus \{0\} = g''(f''(p) \setminus \{0\}) \setminus \{0\}$. We have $(g \circ f)''(p) \setminus \{0\} = g''(f''(p)) \setminus \{0\} \supseteq g''(f''(p) \setminus \{0\}) \setminus \{0\}$. For the reverse inclusion, if $c \in (g \circ f)''(p) \setminus \{0\}$, then c = g(b) for some $b \in f''(p)$, but since $c \neq 0$ we have $b \neq 0$ so $c = g(b) \in g''(f''(p) \setminus \{0\}) \setminus \{0\}$.

- 1. We have $f''(p) \setminus \{0\} \in G$, so $(g \circ f)''(p) \setminus \{0\} = g''(f''(p) \setminus \{0\}) \setminus \{0\}$ is a partition of C.
- 2. We have $f''(p) \setminus \{0\} \in G$, so $(g \circ f)''(p) \setminus \{0\} = g''(f''(p) \setminus \{0\}) \setminus \{0\} \in H$, so $g \circ f$ is a partition homomorphism. \square

It can easily be seen that if $1:(B,F)\to (B,F)$ is the identity mapping, then 1 a partition homomorphism. The class of all partition Boolean algebras therefore forms a category.

An extended partition is a family $(a_i)_{i\in I} \in B^I$ such that $\forall_{i\in I} a_i = 1$ and if $i \neq j$, then $a_i \land a_j = 0$. A family $(a_i)_{i\in I}$ is an extended partition iff $\{a_i|i\in I\}$ is a partition of B and $a_i \neq a_j$ whenever $a_i \neq 0$.

Theorem 1.15.

Let A, B be Boolean algebras, then a function $f: A \to B$ is a Boolean algebra homomorphism iff whenever (a, b, c) is an extended partition of A, then (f(a), f(b), f(c)) is an extended partition of B.

 $Proof. \Rightarrow Trivial.$

 \Leftarrow First take note that since (0,0,1) is an extended partition of A, we have (f(0),f(0),f(1)) be an extended partition of B, so $f(0)=f(0)\wedge f(0)=0$. If $a\in A$, then (a,a',0) is an extended partition of A, so (f(a),f(a'),f(0))=(f(a),f(a'),0) is an extended partition of B, so f(a)'=f(a').

Assume $a, b \in A$ are incompatible, then $(a, b, (a \lor b)')$ is an extended partition of A, so $(f(a), f(b), f(a \lor b)')$ is an extended partition of B, so $f(a) \lor f(b) = f(a \lor b)$ and $f(a) \land f(b) = 0$.

Now assume $a \leq b$, then $f(b) = f((b \wedge a') \vee a) = f(b \wedge a') \vee f(a)$, so $f(a) \leq f(b)$. Therefore for arbitrary $a, b \in B$ one has $f(a) \leq f(a \vee b), f(b) \leq f(a \vee b)$, so $f(a) \vee f(b) \leq f(a \vee b) = f((a \wedge b') \vee b) = f(a \wedge b') \vee f(b) \leq f(a) \vee f(b)$. Therefore f is a Boolean algebra homomorphism.

Corollary 1.16. Let (A, F) be a Boolean partition algebra, and let B be a Boolean algebra. Then a function (not necessarily a Boolean algebra homomorphism) $f: (A, F) \to B$ is partitional iff f(0) = 0 and $(f(a))_{a \in p}$ is an extended partition of B.

Proof. f satisfies the hypothesis of theorem 1.15, so f is a Boolean algebra homomorphism.

2. Uniform Spaces and Duality

Given a set X, $\mathbb{P}(P(X))$ is the lattice of partitions on X. We shall write $\mathbb{P}P(X)$ for $\mathbb{P}(P(X))$. A uniform space (X, F) is said to be non-Archimedean if it is generated by equivalence relations.

A partition space is a pair (X, M) where M is a filter on the lattice $\mathbb{P}P(X)$. We shall call the elements of M crevasses. Partition spaces are essentially non-Archimedean uniform spaces, but in many circumstances partition spaces are easier to work with than non-Archimedean uniform spaces. We shall require every complete uniform space and complete partition space to be separating.

Theorem 2.1. A separating partition space (X, M) is complete iff whenever $\phi \in \stackrel{Lim}{\leftarrow} M$, then there is an $x \in X$ with $x \in \phi(P)$ for each $P \in M$.

Proof. → Let's assume (X, M) is complete. Then let $\phi \in Lim_{\leftarrow}M$. Then $\{\phi(R)|R \in M\}$ is an ultrafilter on $\emptyset \cup \cup M$, so $\{\phi(R)|R \in M\}$ is a filterbase on X, and $\{\phi(R)|R \in M\}$ is clearly Cauchy. Since (X, M) is complete, $\{\phi(R)|R \in M\}$ converges to some $x \in X$, so for each $P \in M$ we have $x \in \phi(P)$.

 \leftarrow Let F be a Cauchy filter. Then for each $P \in M$, there is a unique $R \in P$ with $R \in F$. Let $\phi : M \to \mathfrak{B}^*(X, M)$ be the function with $\phi(P) \in P$, $\phi(P) \in F$ for each $P \in M$. If $P \preceq Q$, then $\phi_{P,Q}(\phi(P)) \in P$, and $\phi_{P,Q}(\phi(P)) \supseteq \phi(P) \in F$, so $\phi(Q) = \phi_{P,Q}(\phi(P))$. Therefore $\phi \in Lim_{\leftarrow}M$, so there is an $x \in X$ with $x \in \phi(P)$ for each $P \in M$. Therefore for each neighborhood U of x, there is a $P \in M$ and an

 $R \in P$ with $x \in R \subseteq U$, but we must have $R = \phi(P) \in F$, so $U \in F$ as well. We therefore conclude that $F \to x$.

Theorem 2.2. Let (B,F) be a stable Boolean partition algebra. Then

- 1. $\{\iota''(p)|p\in F\}$) generates a partition space structure on $S^*(B,F)$.
- 2. If (B,F) is subcomplete, then $(S^*(B,F),\{\iota''(p)|p\in F\}))$ is a partition space when $S^*(B,F)$ is nonempty.
- *Proof.* 1. $\{\iota''(p)|p\in F\}$) is a filterbase since $\iota''(p)\wedge\iota''(q)=\iota''(p\wedge q)$.
- 2. Let's assume that (B, F) is subcomplete. Then assume $p \in F$ and let Z be a partition of $S^*(B, F)$ with $\iota''(p) \leq Z$.

For each $R \in Z$, let $P_R = \{a \in p | \iota(a) \subseteq R\}$. Then let $r = \{ \lor P_R | R \in Z \}$. Then r is a partition of B refining p, so r must be subcomplete as well. If $\mathcal{U} \in R$, then $\mathcal{U} \in \iota(a)$ for some $a \in p$ with $\iota(a) \subseteq R$, so $a \in \mathcal{U}$, so $\lor P_R \in \mathcal{U}$, so $\mathcal{U} \in \iota(\lor P_R)$. We therefore have $R \subseteq \iota(\lor P_R)$, but since $\iota''(r) = \{\iota(\lor P_R) | R \in Z \}$ and $Z = \{R | R \in R\}$ are both partitions, we must have $\iota''(r) = Z \succeq p$. We therefore have $(S^*(B, F), \{\iota''(p) | p \in F\})$ be a partition space.

If (B,F) is a Boolean partition algebra, then let $\psi:(B,F)\to \mathfrak{B}^*(S^*(B,F))$ be the mapping given by $\psi(x)=\iota(x)$. Given a partition space (X,M), and $x\in X$, let $\mathcal{C}(x)=\{R\in \mathfrak{B}^*(X,M)|x\in R\}$, then $\mathcal{C}(x)$ is an ultrafilter on $\mathfrak{B}^*(X,M)$, and for each $P\in M$ there is a unique $R\in P$ with $x\in R$, so $R\in \mathcal{C}(x)$. We therefore have $\mathcal{C}(x)\in S^*(\mathfrak{B}^*(X,M))$ for each $x\in X$.

Theorem 2.3. 1. Let (B, F) be a stable Boolean partition algebra, then $S^*(B, F)$ is a complete partition space.

- 2. If (X, M) is a partition space, then $\mathfrak{B}^*(X, M)$ is a subcomplete and stable Boolean partition algebra.
- 3. Let (B,F) be a stable Boolean partition algebra, then $\psi:(B,F)\to \mathfrak{B}^*(S^*(B,F))$ is an injective partition homomorphism, and if (B,F) also subcomplete, then ψ is a partition isomorphism.
- 4. Let (X,M) be a partition space, then $\mathcal{C}:(X,M)\to S^*(\mathfrak{B}^*(X,M))$ is uniformly continuous, and $\mathcal{C}''(X,M)$ is dense in $S^*(\mathfrak{B}^*(X,M))$. If (X,M) is separated, then \mathcal{C} is a uniform embedding. If (X,M) is complete, then \mathcal{C} is a uniform homeomorphism.
- *Proof.* 1. To show that $S^*(B, F)$ is separated, assume $\mathcal{U}, \mathcal{V} \in S^*(B, F)$ are distinct ultrafilters. Then let $a \in \mathcal{U} \setminus \mathcal{V}$. Then $\{a, a'\} \in F$, but since $a \in \mathcal{U}, a' \in \mathcal{V}$ we have $\mathcal{U} \in \iota(a), \mathcal{V} \in \iota(a')$, so \mathcal{U}, \mathcal{V} are in distinct blocks of the partition $\{\iota(a), \iota(a')\}$.

Let M be the partition structure generated by $\{\iota''(p)|p\in F\}$, and let $\varphi\in \stackrel{Lim}{\leftarrow} M$. Then for $p\in F$ we have $\iota''(p)\in M$, and $\varphi(\iota''(p))\in \iota''(p)$, so let $x_p=\iota^{-1}(\varphi(\iota''(p)))$. Then $x_p\in p$ for $p\in F$. Moreover, if $p\preceq q$, then $\iota''(p)\preceq \iota''(q)$, so $\varphi(\iota''(p))\subseteq \varphi(\iota''(q))$, so $x_p=\iota^{-1}(\varphi(\iota''(p)))\leq \iota^{-1}(\varphi(\iota''(q)))=x_q$, so $\varphi_{p,q}(x_p)=x_q$. We therefore have $(x_p)_{p\in F}\in \stackrel{Lim}{\leftarrow} F$.

Let $\mathcal{U} = \{x_p | p \in F\}$. Then $\mathcal{U} \in S^*(B, F)$. Given $P \in M$ there is a $p \in F$ with $\iota''(p) \leq P$, so since $x_p \in \mathcal{U}$ we have $\mathcal{U} \in \iota(x_p) = \varphi(\iota''(p)) \subseteq \varphi(P)$. We therefore have $S^*(B, F)$ be complete.

2. If $P \in M$ and $Z \subset P$ is non-empty, then $P \leq \{\cup Z, \cup (P \setminus Z)\}$, so $\cup Z \in M$, so $\mathfrak{B}^*(X, M)$ is subcomplete.

To prove stability, assume $P \in M$. Then for each $R \in P$, let $x \in R$, then let $\varphi : M \to \cup M$ be the function where $x \in \varphi(Q) \in Q$ for each $Q \in M$. Then

 $\varphi \in \stackrel{Lim}{\leftarrow} M$ and $\varphi(P) = R$. We therefore have the projection map $\pi_P : \stackrel{Lim}{\leftarrow} M \to P$ be surjective. We therefore have $\mathfrak{B}^*(X, M)$ be stable.

3. ψ is injective since $Ker\psi = Ker\iota = \{0\}$. Let M be the partition structure on $S^*(B,F)$. Then for $p \in F$ we have $\psi''(p) = \iota''(p) \in M$ for each $p \in F$, so ψ is a partition homomorphism.

If (B, F) is subcomplete, then $M = \{\iota''(p)|p \in F\} = \{\psi''(p)|p \in F\}$ and $B^*(S^*(B, F)) = B^*(S^*(B, F), M) = (\{\emptyset\} \cup \cup M, M)$, but $\{\emptyset\} \cup \cup M = \{\iota(b)|b \in B\} = \psi''(B)$, so ψ is a partition isomorphism.

4. Take note that $\mathfrak{B}^*(X,M) = (\emptyset \cup \cup M,M)$, so $S^*(\mathfrak{B}^*(X,M)) = S^*(\emptyset \cup \cup M,M) = (S^*(\emptyset \cup \cup M,M),\{\iota''(P)|P \in M\})$ since $\mathfrak{B}^*(X,M)$ is subcomplete. To show \mathcal{C} is uniformly continuous and dense we shall take inverse images of the partitions $\iota''(P)$ under \mathcal{C} . We have $\{\mathcal{C}_{-1}(R)|R \in \iota''(P)\} = \{\mathcal{C}_{-1}(\iota(V))|V \in P\}$. Now $x \in \mathcal{C}_{-1}(\iota(V))$ iff $\mathcal{C}(x) \in \iota(V)$ iff $V \in \mathcal{C}(x)$ iff $x \in V$, so $\mathcal{C}_{-1}(\iota(V)) = V$, so $\{\mathcal{C}_{-1}(R)|R \in \iota''(P)\} = \{\mathcal{C}_{-1}(\iota(V))|V \in P\} = \{V|V \in P\} = P$. We therefore have \mathcal{C} be uniformly continuous, and since $\emptyset \notin \{\mathcal{C}_{-1}(R)|R \in \iota''(P)\}$ for each partition $\iota''(P)$, we have $\mathcal{C}''(X,M) \subseteq S^*(\mathfrak{B}^*(X,M))$ be dense.

If (X,M) is separated, then one can clearly see that the function \mathcal{C} is injective, so since each $P \in M$ can be written as $\{\mathcal{C}_{-1}(R)|R \in \iota''(P)\}$ we have \mathcal{C} be an embedding. If (X,M) is complete, then each $\mathcal{U} \in S^*(\mathfrak{B}^*(X,M)) = S^*(\emptyset \cup \cup M,M)$, so \mathcal{U} is an ultrafilter with $|\mathcal{U} \cap P| = 1$ for each $P \in M$, so \mathcal{U} is Cauchy, so $\mathcal{U} \to x$ for some $x \in X$. We therefore have $\mathcal{U} \subseteq \mathcal{C}(x)$, so $\mathcal{U} = \mathcal{C}(x)$. We therefore have \mathcal{C} be surjective, so since \mathcal{C} is a uniform embedding we have \mathcal{C} be a uniform homeomorphism.

If (X, M)(Y, N) are uniform spaces, then a mapping $f: X \to Y$ is uniformly continuous iff $\{f_{-1}(R)|R \in Q\} \setminus \{\emptyset\} \in M$ for each $Q \in N$. If $f: X \to Y$ is uniformly continuous, then define a mapping $\mathfrak{B}^*(f): \mathfrak{B}^*(Y, N) \to \mathfrak{B}^*(X, M)$ by letting $\mathfrak{B}^*(f)(R) = f_{-1}(R)$. Then clearly $\mathfrak{B}^*(f)$ is a partition homomorphism.

Theorem 2.4. If (A, F), (B, G) are Boolean partition spaces, and $\phi : A \to B$ is a partition homomorphism, then for each $\mathcal{U} \in S^*(B, F)$ we have $\phi_{-1}(\mathcal{U}) \in S^*(A, F)$

Proof. Let's assume that $p \in F$. Then $\phi''(p) \setminus \{0\} \in G$, so there is an $a \in p$ where $\phi(a) \in \mathcal{U}$, so $a \in \phi_{-1}(\mathcal{U})$.

For each pair of Boolean partition spaces (A, F), (B, G) and partition homomorphism $\phi: (A, F) \to (B, G)$ define $S^*(\phi)$ by letting $S^*(\phi)(\mathcal{U}) = \phi_{-1}(\mathcal{U})$.

Theorem 2.5. If (A, F), (B, G) are stable Boolean partition algebras, and ϕ : $(A, F) \rightarrow (B, G)$ is a partition homomorphism, then $S^*(\phi)$ is uniformly continuous.

Proof. Let P be a crevasse in $S^*(A, F)$. Then there is a $p \in F$ with $\iota''(p) \leq P$. We shall take the inverse image of $\iota''(p)$ under $S^*(\phi)$. We have $\{S^*(\phi)_{-1}(R)|R \in \iota''(p)\} = \{S^*(\phi)_{-1}(\iota(r))|r \in p\}$. For $\mathcal{U} \in S^*(B, G)$ we have $\mathcal{U} \in S^*(\phi)_{-1}(\iota(r))$ iff $S^*(\phi)(\mathcal{U}) \in \iota(r)$ iff $r \in S^*(\phi)(\mathcal{U})$ iff $\phi(r) \in \mathcal{U}$ iff $\mathcal{U} \in \iota(\phi(r))$, so $S^*(\phi)_{-1}(\iota(r)) = \iota(\phi(r))$. We therefore have $\{S^*(\phi)_{-1}(R)|R \in \iota''(p)\} = \{S^*(\phi)_{-1}(\iota(r))|r \in p\} = \{\iota(\phi(r))|r \in p\} = \{\iota(s)|s \in \phi''(p)\}$. Therefore $\{S^*(\phi)_{-1}(R)|R \in \iota''(p)\} \setminus \{\emptyset\} = \{\iota(s)|s \in \phi''(p)\} \setminus \{\emptyset\} = \iota(s)|s \in \phi''(p)\}$ be a crevasse in $S^*(B,G)$. We therefore have $S^*(\phi)$ be uniformly continuous.

- If (X,L),(Y,M),(Z,N) are uniform spaces, and $f:X\to Y,g:Y\to Z$ are uniformly continuous continuous, then for $R\in\mathfrak{B}^*(Z,M)$ we have $\mathfrak{B}^*(g\circ f)(R)=(g\circ f)_{-1}(R)=f_{-1}(g_{-1}(R))=\mathfrak{B}^*(f)\circ\mathfrak{B}^*(g)(R)$. Furthermore, if (A,F),(B,G),(C,H) are Boolean partition spaces, and $f:(A,F)\to(B,G),g:(B,G)\to(C,H)$ are partition homomorphisms, then $S^*(g\circ f)=(g\circ f)_{-1}(\mathcal{U})=f_{-1}\circ g_{-1}(\mathcal{U})=S^*(f)\circ S^*(g)(\mathcal{U})$. Therefore \mathfrak{B}^*,S^* are contravariant functors since \mathfrak{B}^*,S^* clearly map identity functions onto identity functions.
- **Theorem 2.6.** 1. Let (X,M), (Y,N) be uniform spaces, and let $f: X \to Y$ be uniformly continuous, then $S^*(\mathfrak{B}^*(f)) \circ \mathcal{C}_{(X,M)} = \mathcal{C}_{(Y,N)} \circ f$.
- 2. Let (A, F), (B, G) be a stable Boolean algebras, and let $f: A \to B$ be a partition homomorphism, then $\mathfrak{B}^*(S^*(f))\psi_{(A,F)} = \psi_{(B,G)}f$.
- 3. If (X, M) is a uniform space, then the functions $\mathfrak{B}^*(\mathcal{C}_X) : \mathfrak{B}^*(S^*(\mathfrak{B}^*(X, M))) \to \mathfrak{B}^*(X, M)$ and $\psi : \mathfrak{B}^*(X, M) \to \mathfrak{B}^*(S^*(\mathfrak{B}^*(X, M)))$ are inverses.
- 4. If (B, F) is a stable Boolean partition algebra, then $S^*(\psi_B) : S^*(\mathfrak{B}^*(S^*(B, F))) \to S^*(B, F)$ and $\mathcal{C} : S^*(B, F) \to S^*(\mathfrak{B}^*(S^*(B, F)))$ are inverses.
- *Proof.* 1. For $x \in X$ we have $S^*(\mathfrak{B}^*(f))C_{(X,M)}(x) = \mathfrak{B}^*(f)_{-1}(\{R \in B^*(X,M)|x \in R\}) = \{S \in B^*(Y,N)|x \in \mathfrak{B}^*(f)(S)\} = \{S \in \mathfrak{B}^*(Y,N)|x \in f_{-1}(S)\} = \{S \in \mathfrak{B}^*(Y,N)|f(x) \in S\} = \mathcal{C}_{(Y,M)} \circ f(x).$
- 2. $\mathfrak{B}^*(S^*(f))\psi_A(a) = \mathfrak{B}^*(S^*(f))(\{\mathcal{U} \in S^*(A,F)|a \in \mathcal{U}\}) = (S^*(f)_{-1}(\{\mathcal{U} \in S^*(A,F)|a \in \mathcal{U}\}) = \{\mathcal{V} \in S^*(B,G)|a \in S^*(f)(\mathcal{V})\} = \{\mathcal{V} \in S^*(B,G)|a \in f_{-1}(\mathcal{V})\} = \{\mathcal{V} \in S^*(B,G)|f(a) \in \mathcal{V}\} = \psi_B \circ f(a).$
- 3. We shall show that $\mathcal{B}^*(\mathcal{C})\psi: \mathfrak{B}^*(X,M) \to \mathcal{B}^*(X,M)$ is the identity function. If $R \in \mathfrak{B}^*(X,M)$, then $x \in \mathfrak{B}^*(\mathcal{C})\psi(R) = \mathcal{C}_{-1}\psi(R)$ iff $\mathcal{C}(x) \in \psi(R)$ iff $R \in \mathcal{C}(x)$ iff $x \in R$, so $\mathfrak{B}^*(\mathcal{C})\psi(R) = R$, so $\mathfrak{B}^*(\mathcal{C})$ is the identity function.
- 4. We shall show that $S^*(\psi)\mathcal{C}: S^*(B,F) \to S^*(B,F)$ is the identity function. Let $\mathcal{U} \in S^*(B,F)$. Then $a \in S^*(\psi)\mathcal{C}(\mathcal{U})$ iff $\psi(a) \in \mathcal{C}(\mathcal{U})$ iff $\mathcal{U} \in \psi(a)$ iff $a \in \mathcal{U}$. We therefore have $S^*(\psi)\mathcal{C}$ be the identity function.

It should be noted that every compact space has a unique uniform structure. More specifically, if X is compact, then let F be the filter on $X \times X$ where $R \in F$ if R is a neighborhood of the diagonal. Then F is the unique uniformity on X. Furthermore, (X,\mathcal{U}) is a uniform space, then X is compact iff (X,\mathcal{U}) is complete and totally bounded. The duality between compact totally disconnected spaces and Boolean algebras follows as a consequence of these facts.