第三章 三角函數的性質與應用

§3-1 三角函數的圖形

(甲)弧度制

我們觀察量角器,發現整個半圓分成 180 等分,1 等分所對應的角度大小就定義成 1 度。這種定義方式是人為的,就像重量的單位有公斤、磅、台斤等,有時候是某些習慣用法或歷史上的因素,同理,我們對於角度的大小也可以定義不同的度量的單位,去表示角度的大小。

[觀察]:

觀察上圖,計算P'Q'的弧長= $\frac{\theta^\circ}{360^\circ} \times 2\pi r = \frac{\pi\theta r}{180}$,PQ的弧長= $\frac{\theta^\circ}{360^\circ} \times 4\pi r = \frac{\pi\theta r}{90}$,觀察這個結果可以發現P'Q'的弧長: PQ的弧長=1:2=r:2r,因此**只要圖心負固定,狐長與半徑的比值是一個定值**。數學上就利用這個定值來定義角度,這個比值本身是一個實數,有別於用特定的單位去定義角度,也因此能將三角函數視爲定義在實數或實數的子集合上的函數,對於後續的應用與理論的發展有很重要的影響。

(1)弧度的定義:

設有一圓,圓心爲 \mathbf{O} ,半徑爲r。在圓周上取一段圓弧 \mathbf{P} ,

使得圓弧 \mathbf{PQ} 的長度等於r,規定這一段圓弧 \mathbf{PQ} 所對的 圓心角 $\angle \mathbf{POQ}$ 就定義成 1 **狐度**。符號: $\angle \mathbf{POQ}$ =1 弧度=1 弳=1。

- ①當 \overrightarrow{PO} 的長度爲r時,就說 $\angle POO = 1$ 弧度。
- ②當 \overrightarrow{PQ} 的長度為 2r時,就說 $\angle POQ = _____$ 孤度。
- ③當 \overrightarrow{PQ} 的長度爲 3r時,就說 $\angle POQ = ______ 孤度。$
- ④當 \overrightarrow{PQ} 的長度爲xr時 就說 $\angle POQ = _____$ 弧度。

由此可得:半圓的周長爲 πr ,是半徑r的 π 倍,所以半圓的圓周角爲 π 孤度, 又半圓的圓周角也是 180 度(以國中所學 "。" 度爲單位)。所以用 180 度與 π 孤 度所代表的角度大小都是一樣的。這個情形就好像重量單位中,1 磅與 0.454公斤所代表的重量是相同的。

(2)度與弧度之互換:

設x弧度相當於 y° ,因爲π弧度相當於 180 $^{\circ}$,所以 $\frac{x}{\pi} = \frac{y}{180}$ \circ

 $1^{\circ} = \frac{\pi}{180}$ 弧度約等於 0.01745 弧度

1 弧度= $(\frac{180}{\pi})^{\circ}$ 約等於 57.2958 $^{\circ}$ (57 $^{\circ}$ 17 $^{\prime}$ 45 $^{\prime\prime}$),注意弧度可以省略。即 1= $(\frac{180}{\pi})^{\circ}$ 結論:

(a)π不論用在什麼場合,始終要堅持其近似值為 3.1416,當π用在角度時,由於 是省略弧度,才會變成 180°,也就是π弧度 = 3.1416(弧度) = 3.1416×(1 弧度) $= 3.1416 \times (57^{\circ}17^{\prime}45^{\prime\prime}) = 180^{\circ}$

例如: π °表 3.1416° \Rightarrow π °小於一直角。但 π (單位故意不寫)表 180°。 π°≠π弧度。

書寫上,如果一個數字沒有加度或°,我們都視爲是弧度,即x°≠x因此在角 度符號上的使用要特別注意。

(b) x弧度相當於 $y^{\circ} \Leftrightarrow \frac{x}{\pi} = \frac{y}{180}$ \circ

①度化弧度⇒去度"°",乘以 $\frac{\pi}{180}$ 即可。 ②弧度化度⇒乘 $\frac{180}{\pi}$

(c) 象限角的情形

①度度量

②弧度制

③弧度制的近似值

[例題1] 將下列各度數化爲弧度:

 $(3)42^{\circ}24^{\prime}36^{\prime\prime}$

Ans: $(1)\frac{\pi}{3}$ $(2)\frac{19\pi}{75}$ $(3)\frac{4241\pi}{18000}$

[例題2] 將下列各弧度化爲度數:

$$(1)\frac{5\pi}{6}$$
 (2)-2(弧度) $(3)\frac{\pi+1}{6}$ Ans : (1)150° (2) - $\frac{360^{\circ}}{\pi}$ (3)30°+ $\frac{30^{\circ}}{\pi}$

(練習1) 完成下表中的角度單位的互換:

度	10°	15°	18°		45°	60°		90°	120°	135°
弧度				$\frac{\pi}{6}$			$\frac{5\pi}{12}$			
n te	1,500	1000	2100	2250	2400	2700		2150		2600
度	150°	180°	210°	225°	240°	270°		315°		360°

(練習2) 在直角坐標上, (cos4, tan6)所表的點 P 在那一個象限?

Ans:第三象限

(練習3) 下列最大的數爲?

(A) $\sin 1$ (B) $\sin 2$ (C) $\sin 3$ (D) $\sin 4$ (E) $\sin 5$

Ans:(B)

(練習4) 寫出下列各角的最小正同界角 (1)50(2)-60Ans: (1)50-14 π (2)20 π -60

(練習5) 請問下列關係何者正確?

(A) $\sin(180-\theta) = \sin\theta(B)\cos(\pi-\theta) = -\cos\theta$ (C) $\sin(\theta + \frac{\pi}{2}) = \cos\theta$

 $(D)\tan(\theta+\pi)=\tan\theta(E)\sin(\theta+360)=\sin\theta \circ Asns : (B)(C)(D)$

(3)扇形的弧長與面積:

(a)弧長公式與扇形面積公式:

若設有一圓O,其半徑爲r,扇形OPQ中的圓心角 $\angle POQ$ 爲 θ (**弧度**),

則① \overrightarrow{PQ} 的弧長 $s=\cdot r\cdot\theta$ ②扇形OPQ的面積 $A=\frac{1}{2}r^2\theta=\frac{1}{2}r\cdot s$

注意:單位是弧度,而不是度

證明:

例如:有一扇形,其半徑爲 15 公分,圓心角爲 $\frac{\pi}{3}$, 試求面積與其弧長。

解答:弧長= $15 \cdot \frac{\pi}{3} = 5 \cdot \pi$ (約 15.7 公分) 面積= $\frac{1}{2}(15)^2 \cdot \frac{\pi}{3} = \frac{225}{6} \cdot \pi$ (約 117.81 公分)

結論:半徑爲r,中心角爲 θ 弧度之扇形(POQ)

- (1)弧長L=r·θ
- (2)周長= $2 \cdot r + r \cdot \theta$
- (3)面積= $\frac{1}{2}$ · r^2 · θ = $\frac{1}{2}$ ·r·L

[**例題3**] AB =10cm,求斜線部分的面積。

分別以A,B 爲圓心,以 \overline{AB} 爲半徑所作的兩個圓的相交部分。

Ans: $\frac{200\pi}{3} - 50\sqrt{3}$

[**例題4**] 有一輪子直徑爲 30 公分,讓它在地上自 A 點逆時針滾動 $20 \cdot \pi$ 公分的長度,問輪子繞軸轉動幾度?問此時 A 點離地面幾公分?

Ans:
$$\frac{4\pi}{3}$$
, $15(1+\frac{\sqrt{3}}{2})$

- (練習7) 有一扇形的面積為 1 ,弧長為 2 ,則此扇形所對的圓心角 爲_______ 弧度。 Ans: 2

(練習8) 如圖,有一輪子,直徑 80 公分,外接於一正△ABC, 切地面於 A。讓它向右滾動,則BC於下一次平行地面時, 輪子繞軸轉動了【 】弧度, 此時輪子向右滾動了【 】公分。Ans:π,40π

- (練習9) 若一扇形周長等於所在圓的周長,則扇形的中心角為____。 $Ans: 2\pi-2$
- (練習10) 半徑爲 1 的三個圓互相外切,則此三圓間所圍成的面積爲____。

- **(練習11)** 如右上圖,圓C的圓心爲O,半徑爲 1, $\angle AOB = 60$ °,則陰影部分的面積爲 $\underline{\hspace{1cm}}$ 。Ans: $\frac{\pi}{6} \frac{\sqrt{3}}{4}$
- (練習12) 一直圓錐面底之半徑為 5,高為 12,若將此直圓錐沿一斜高剪開成一扇形,則中心角為 ______ 孤度。 Ans: $\frac{10\pi}{13}$
- (練習13) 如圖的直圓錐,ĀB=12,BC=6,ĀD=4,若 C 處有一隻螞蟻,則: (1)繞一圈又回到 C 的最短路線長爲【 】。 (2)繞一圈至 D 的最短路線長爲【 】。

Ans: $(1)12\sqrt{2}(2)4\sqrt{10}$

(乙)三角函數的圖形

(1)週期函數:

定義:一函數 y=f(x)的圖形,若每隔一固定單位長都一樣,即可以找到固定的正數 α ,使得對於每個定義域中的元素 x, $f(x+\alpha)=f(x)$,我們就稱這個函數 f(x) 爲一個週期函數。如果又可以找到滿足上述性質的最小正數 p,稱 p 爲週期函數 f(x)的週期。

例如:

 $f(x)=\sin x$ 因爲 $\sin(x+2k\pi)=\sin x$,即 $a=2k\pi$,當 k=1 時, $p=2\pi$ 最小。 因此 $f(x)=\sin x$ 爲週期函數且週期爲 2π 。

 $f(x)=\tan x$ 因爲 $\tan(x+k\pi)=\tan x$,即 $a=k\pi$,當 k=1 時, $p=\pi$ 最小。 因此 $f(x)=\tan x$ 爲週期函數且週期爲 π 。

[例題5] 求下列各三角函數的週期:

 $(1)f(x) = \sin 2x$ $(2)f(x) = 2 - \tan 3x$ $(3)f(x) = |\sin x|$

Ans : $(1)\pi$ $(2)\frac{\pi}{3}$ $(3)\pi$

結論:

(1)正弦、餘弦、正割、餘割函數的週期爲 2π 。正切、餘切函數的週期爲 π 。

(2)設 F表 sin, cos, sec, csc 中某一個函數,

則(a)形如 aF(kx+b)+c 的函數週期爲 $\frac{2\pi}{k}$,其中 a,b,c 爲實數,k 爲正實數。

(b)形如|F(kx+b)|的函數週期爲 $\frac{\pi}{k}$ 。

(3)設 F 表 $tan\theta$, cot 中之某一個函數,

則(a)形如 aF(kx+b)+c 的週期爲 $\frac{\pi}{k}$,其中 a,b,c 爲實數,k 爲正實數。

(b)形如|F(kx+b)|的函數週期爲 $\frac{\pi}{2k}$ 。

(2)三角函數的圖形:

我們知道廣義角的三角函數是一個角對應到一個數的函數,例如sinA正弦函數是一個把角A對應到sinA的函數。在前一段中,介紹了角的另一個單位:弧度,而且還強調角度爲x弧度時可以把單位省略不寫。對於任一個實數x,必有一個實數x,必有一個實數x,必有一個有數不不可能,因此,我們可以從另一個角度來看三角函數,我們可將三角函數看成把實數對應到實數的函數。換句話說,對於任意實數x,我們先取x弧度的角,然後再考慮此角的三角函數值,例如sin2 是代表

2 弧度角的正弦函數值;對於實數 $\frac{\pi}{6}$ 而言, $\sin\frac{\pi}{6}$ 是代表 $\frac{\pi}{6}$ 弧度角,即 30°角的正弦

函數值,所以 $\sin \frac{\pi}{6} = \frac{1}{2}$ 。

(a)正弦函數的圖形:

(法一)描點法:

描繪函數圖形最直接的方法就是描點法:先求出某些特殊的 x 值所對應的 $\sin x$ 值,並列表如下:

х	•••	$\frac{-\pi}{4}$	$\frac{-\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	•••
sinx		$\frac{-\sqrt{2}}{2}$	$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	

再依此標出圖形上的點,然後用平滑曲線將這些線連結起來。

(法二)利用廣義角之正弦値作圖:

以座標原點爲圓心作一個單位圓,對於任一個有向角 θ ,假設此角度的終邊爲OP,其中P在圓上,則P點的縱座標爲 $\sin\theta$,因此若過(θ ,0)點且垂直於x軸的直線L與過P點且平行x軸的直線M相交於P $^{\prime}$,則P $^{\prime}$ 的座標爲(θ , $\sin\theta$),因此P $^{\prime}$ 點在y= $\sin x$ 的函數圖形上。

根據前面兩個方法可得正弦函數的圖形:

正弦函數y=sinx之作圖法

Step1:**描點**⇒五點法描點(即 $x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi$)

Step2:作圖⇒描點於坐標系中(橫軸表角度,縱軸表函數值)

Step3: 複製 \Rightarrow 週期爲 2π ,故沿x軸向左,右兩邊,每隔 2π 單位,重複描出相

同之圖形,即得y=sinx全部圖形。

(a)圖形的對稱中心爲 $(n\pi,0)$,圖形的對稱軸爲 $x=\frac{\pi}{2}+k\pi$,k 爲整數。

- (b)圖形與x軸的交點 $(n\pi,0)$,圖形與y軸的交點(0,0)。
- (c)正弦函數 $y=\sin x$ 的週期爲 2π 。
- (d)正弦函數 $y=\sin x$ 的振幅為 1

正弦函數的特色

- (a)正弦函數 $y=\sin x$ 的定義域爲 R。
- (b)正弦函數 $y=\sin x$ 的值域爲 $\{y \mid -1 \le y \le 1\}$,即 $-1 \le \sin x \le 1$,最大值=1,最小值=-1。
- (c)正弦函數 $y=\sin x$ 為奇函數。即 $\sin(-x)=-\sin x$ 。

- (a)圖形的對稱中心爲 $(\frac{\pi}{2} + k\pi, 0)$,圖形的對稱軸爲 $x = n\pi$,n 爲整數。
- (b)圖形與x軸的交點($\frac{\pi}{2}+k\pi,0$),圖形與y軸的交點(0,1)。
- (c)餘弦函數 $y=\cos x$ 的週期爲 2π 。
- (d)餘弦函數 y=cosx 的振幅爲 1
- (e) $y=\cos x$ 的圖形是由 $y=\sin x$ 的圖形向左平移 $\frac{\pi}{2}$ 單位所成的圖形。

餘弦函數的特色

- (a)餘弦函數 y=cosx 的定義域爲 R。
- (b)餘弦函數 $y=\cos x$ 的值域爲 $\{y \mid -1 \le y \le 1\}$,即 $-1 \le \sin x \le 1$,最大值=1,最小值=-1。
- (c)餘弦函數 $y=\cos x$ 爲偶函數。即 $\cos(-x)=\cos x$ 。

(c)正切函數的圖形:

結論

正切函數圖形的特色:

- (a)圖形的對稱中心爲 $(n\pi,0)$ 。
- (b)圖形與x軸的交點 $(n\pi,0)$,圖形與y軸的交點(0,0)。
- (c)圖形在 $x=\frac{\pi}{2}+k\pi(k$ 為整數)處不連續。
- (d)圖形的漸近線: $x=\frac{\pi}{2}+k\pi$,k 爲整數。

正切函數的特色:

- (a)正切函數 $y=\tan x$ 的定義域爲 $\{x|x\neq k\pi+\frac{\pi}{2}, k$ 爲整數, $x\in \mathbb{R}\}$ 。
- (b)正切函數 $y=\tan x$ 的值域為 R。
- (c)正切函數 $y=\tan x$ 的週期為 π 。
- (d)正切函數 y=tanx 為奇函數。即 tan(-x)=-tanx。

(d)餘切函數的圖形:

結論

餘切函數圖形的特色:

(a)圖形的對稱中心爲($\frac{\pi}{2} + k\pi$,0)。(k 爲整數)

(b)圖形與x軸的交點($\frac{\pi}{2} + k\pi$,0)(k 爲整數)。

(c)圖形在 $x=k\pi(k$ 爲整數)處不連續。

(d)圖形的漸近線: $x=k\pi$, k 爲整數。

餘切函數的特色:

(a)餘切函數 y=cotx 的定義域爲 $\{x|x\neq k\pi, k$ 爲整數, $x\in R\}$ 。

(b)餘切函數 $y=\cot x$ 的值域爲 R。

(c)餘切函數 y=cotx 的週期爲 π 。

(d)餘切函數 $y=\cot x$ 為奇函數。即 $\cot(-x)=-\cot x$ 。

(e) 正割函數的圖形:

結論:

正割函數圖形的特色

(a)圖形的對稱軸為 $x=n\pi$, n 為整數。

(b)圖形的漸近線: $x=\frac{\pi}{2}+k\pi$,k 爲整數。

(c)圖形在 $x=\frac{\pi}{2}+k\pi(k$ 為整數)處不連續。

(d)正割函數 $y=\sec x$ 的週期爲 2π 。

正割函數的特色

(a)正割函數 $y=\sec x$ 的定義域爲 $\{x|x\neq k\pi+\frac{\pi}{2}, k$ 爲整數, $x\in R\}$ 。

(b)正割函數 *y*=sec*x* 的值域爲{*y* | *y*≥1 或 *y*≤−1}。|sec*x*|≥1

(c)正割函數 y=secx 爲偶函數。即 sec(-x)=secx。

(f)餘割函數的圖形:

結論:

餘割函數圖形的特色

- (a)圖形的對稱軸爲, $x=\frac{\pi}{2}+k\pi$,k 爲整數。
- (b)圖形的漸近線: $x=k\pi$, k 爲整數。
- (c)圖形在 $x=k\pi(k$ 爲整數)處不連續。
- (d)正割函數 y=cscx 的週期爲 2π 。

餘割函數的特色

- (a)正割函數 $y=\csc x$ 的定義域爲 $\{x|x\neq k\pi, k$ 爲整數, $x\in R\}$ 。
- (b)正割函數 *y*=csc*x* 的值域爲{*y* | *y*≥1 或 *y*≤−1}。|csc*x*|≥1
- (c)正割函數 $y=\csc x$ 爲奇函數。即 $\csc(-x)=-\csc x$ 。

[**例題**6] 【平移法作圖問題 \Rightarrow 作 $y=\sin(x-\theta)+b$ 的圖形】

Step1: 先作基本圖形 y=sinx

Step2:上下平移 b 單位 Step3:左右平移θ單位

試利用正弦函數 y=sinx 的圖形,描繪下列各三角函數的圖形。

「**例題7**] 【伸縮法作圖問題⇒作 y=a sinkx 的圖形】

Step1: 先作基本圖形 y=sinx

Step2: y=sinx 上每一點的縱坐標乘以 a (a>0)

Step3:每一點的橫坐標乘以 $\frac{1}{k}$ 。

試利用正弦函數 y=sinx 的圖形,描繪下列各三角函數的圖形。

 $(1)y=2\sin x$

 $(2)y=\sin 3x$

 $(3)y=3\sin 2x$

[**例題9**] 試繪出函數 $f(x)=\sin x-|\sin x|$,

[**例題**10] 求方程式 10sinx=x 有幾個實數解?(A)4 (B)5 (C)6 (D)7個。 Ans:(D)

[**例題**11] 請描繪 y=|tanx|的圖形。

(練習14) 試作 $y = \sin(x + \frac{\pi}{4})$ 之圖形, 並說明與 $y = \sin x$ 的圖形間的關係。 Ans:

【作法】 $y=\sin(x+\frac{\pi}{4})$ 的圖形,

係將 $y=\sin x$ 的圖形沿著 x 軸方向向左平行移動 $\frac{\pi}{4}$ 單位。

(練習15) 若 $\sin x \le \frac{-1}{2}$ 且 $0 \le x \le 2\pi$,試求 x 的範圍。 Ans: $\frac{7\pi}{6} \le x \le \frac{11\pi}{6}$

(練習16) 請求出函數 $y=3\sec(\frac{x}{4}+8)-12$ 的週期與振幅。 Ans:週期= 8π ,振幅=3

(練習17) 請繪出函數 $f(x)=\cos x+|\cos x|$, 並求出它的週期。 Ans: 2π

(練習18) 請繪出 $y=|\cos x|$ 的圖形,並求出它的週期。 Ans: π

(練習19) 求方程式 tanx=-x 在 $-\pi < x < \pi$ 間解的個數。Ans: 3

(練習20) 請繪出 $y=\sin|x|$ 的圖形,並請問它是否爲週期函數 ? Ans: 否

綜合練習

(1) 下列敘述何者正確?

(A)sin9.8>0 (B)sin9.8= $\sin(3\pi-9.8)$ (C)sec $\frac{\pi}{2}$ 無意義 (D)(csc2,cot2)在第四象 限 (E) $\cos(\alpha - \pi) = \cos \alpha$ ∘

- (2) 設 $0 \le x \le 2\pi$,-1 < k < 0 是一個常數。已知 y = k 和 $y = \sin x$ 的圖形交於兩點,此二點 的 x 坐標和爲(A)0 (B) $\frac{\pi}{2}$ (C) 3π (D) $\frac{3\pi}{2}$ (E) 2π 。(93 大考中心研究用試題)
- (3) 下列那些值是有意義的?

(A)sin90 (B)tan90 (C)sec $\frac{\pi}{2}$ (D)cos100° (E)cos100 °

- (4) 設 $a=\sin 1$, $b=\sin 2$, $c=\sin 3$, $d=\cos 4$, $e=\cos 5$ 請比較 a,b,c,d,e 的大小。
- (5) 小萍拿一個周長為 60 公分的輪子在地上滾動, 它共滾動了1公尺20公分的長度,設輪子繞軸滾動 了 θ ,求 θ =?
- (6) 如下圖所示,每個小方格的邊長為1,圓O的圓心為O: 半徑爲ZOA;AC與BD均爲圓O的切線,切點分別爲 C點與D點。

(a)試求∠COD。 (b)求線段AC、圓弧CD及線段BD的長度和。 (88 計)

(7) 兩條公路 k 及 m ,如果筆直延伸將交會於 C 處成 60° 夾角,如圖所 示。爲銜接此二公路,規劃在兩公路各距 C 處 450 公尺的 A、B 兩點間開拓成圓弧型公路,使 k, m 分別在 A, B 與此圓弧相切, 則此圓弧長=____公尺。(90學科)

(公尺以下四捨五入)【 $\sqrt{3}$ ≈ 1.732, π ≈ 3.142】

(8) 設一扇形之周長為 10,則此扇形面積最大為何?此時中心角為何?

(9) 一直圓錐面底之半徑爲 3, 高爲 4, 若將此直圓錐沿一斜高剪開成-

(10) 正方形ABCD邊長爲 2,分別以A,B,C爲圓心,2 爲半徑,在正方形內部作三 個圓弧如下圖,則

- (a) BPD與BQD兩弧圍成眼形區域面積爲=_____。
- (b) BP , PC 與BC 軍成區或面積爲=

 $y = 1 - 2\cos 2x$

- (12) 考慮函數 $f(x)=2\sin 3x$, 試問下列選項何者爲真?
 - $(A)-2 \le f(x) \le 2$ (B) f(x)在 $x = \frac{\pi}{6}$ 時有最大值 (C) f(x)的週期爲 $\frac{2\pi}{3}$ (D) y = f(x)的圖形對稱於直線 $x = \frac{\pi}{2}$ (E) f(2) > 0 (88 社)
- (13) 求下列各函數的週期:
 - (a) $-2\sin\frac{x}{3}$ (b) $|\sec 3x|$ (c) $4+3\sin(5x+2)$ (d) $\tan(\frac{\pi-2x}{3})$
- (14) 把函數 $y = \cos x$ 圖形向右平移 $\frac{\pi}{6}$ 單位,成爲函數_____之圖形,接著向上平移 $\frac{1}{2}$ 單位,成爲函數_____之圖形。

- (16) 當 *x* 介於 0 與 2π 之間,直線 *y*=1-*x* 與函數 *y*=tan*x* 的圖形,共有幾個交點? (A)0 (B)1 (C)2 (D)3 (E)4 (87 學科)
- (17) 如右圖,請問ΔABC 的面積是 $(A)\frac{\pi}{3} \ (B)\frac{2\pi}{3} \ (C)\pi \ (D)\frac{4\pi}{3} \ (E)2\pi \ .$

(19) 求方程式 $\frac{2}{3}x\sin x=1$ 在 $-\pi < x < \pi$ 的區間內有多少個實根?

(21) 若 $\sin x \ge \frac{\sqrt{3}}{2}$ 且 $0 \le x \le 2\pi$,求 x 的範圍。

(22) 設x,y 爲正實數,且 $x+y\neq 0$,若 $\sec 2\theta = \frac{4xy}{(x+y)^2}$,求 $\frac{x}{y} = ?$

- (23) 如圖的直圓錐,底半徑4,高 $8\sqrt{2}$,試求:
 - (a)直圓錐之側表面積爲多少?
 - (b)若自錐底 P 點出發,沿圓錐側面繞行一圈,到達 斜高 ĀP 之中點 Q 停止,則路線長之最小値爲多少?

(24) 設 AB=a,AD=2a,在矩形 ABCD 中,以 A 爲圓心, A $\sqrt{2}a$ 及 2a 爲半徑作圓,試求斜線部分的面積。

- (25) 半徑爲 3,1 的兩圓輪相外切,如圖, 一皮帶緊繞此兩圓輪,則此皮帶長爲____。
- (26) 請問sinx=log10x之實數解有多少個?

綜合練習解答

- (1) (B)(C)(D)
- (2) (C)
- (3) (A)(B)(D)(E)
- (4) b>a>e>c>d
- (5) 4π
- (6) (a)60° (b)4 $\sqrt{6}+\frac{2\sqrt{2}}{3}$ π
- (7) 544
- (8) 中心角爲 2,面積最大爲 $\frac{25}{4}$ [提示:設扇形的圓心角 θ ,半徑爲r,根據題設可知 2r+r $\theta=10$,欲求面積 $A=\frac{1}{2}r^2\theta$ 的最大値,10=2r+r $\theta\geq 2\sqrt{2r^2\theta}$]
- $(9) \quad \frac{6\pi}{5}$
- (10) (a) $2\pi 4(b) \frac{4\pi}{3} \sqrt{3}$
- (11) (a) $2\sqrt{5}$ (b) $\frac{25\pi}{2}$ 30

- (12) (A)(B)(C)(D)
- (13) (a)6 π (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{5}$ (d) $\frac{3\pi}{2}$
- (14) (a) $y = \cos(x \frac{\pi}{6})$ (b) $y = \cos(x \frac{\pi}{6}) + \frac{1}{2}$
- (15) $(-3,\frac{3}{2})$
- (16) (D)
- (17) (C)
- (18) 4
- (19) 4
- (20) 7
- (21) $\frac{\pi}{3} \le x \le \frac{2\pi}{3}$
- (22) 1[提示: $\sec 2\theta \ge 1 \Rightarrow \frac{4xy}{(x+y)^2} \ge 1 \Rightarrow (x-y)^2 \le 0 \Rightarrow x=y$]
- (23) (a) 48π (b) $6\sqrt{7}$
- (24) $(\frac{\pi}{12} + \frac{\sqrt{3}-1}{2})a^2$ [提示:如何處理弧問題(a)遇到弧先找弧心(b)找弧徑(c)由弧的兩端到弧心作輔助線,形成扇形]
- (25) $\frac{19\pi}{3} + 4\sqrt{3}$
- (26) 3