Druckberechnung am Pleuellager

Keywords

√ Mathe

1 Druckberechnung am Pleuellager

Kolbenflächenberechnung: $A = \frac{d^2}{4} \cdot \pi$

Kolbendurchmesser d = 80 mm = 8 cm

 $A_{Kolben} = \frac{(80 \text{ mm})^2}{4} \cdot \pi = 5026,55 \text{ mm}^2 = 50,27 \text{ cm}^2$

Kolbenkraftberechnung: $Druck = \frac{Kraft}{Fläche}$

 $p = \frac{F}{A} \quad p[N/cm^2] \quad F[N] \quad A[cm^2] \quad \boxed{10 \ N/cm^2 = 1 \ bar}$

Verbrennungsdrücke:

Benzin \rightarrow 65 $bar = 650 \ N/cm^2$ Diesel \rightarrow 180 $bar = 1800 \ N/cm^2$

 $F = p \cdot A$ $F_{Kolben_B} = 50,27 \text{ cm}^2 \cdot 650 \text{ N/cm}^2 = 32675,5 \text{ N}$ $F_{Kolben_D} = 50,27 \text{ cm}^2 \cdot 1800 \text{ N/cm}^2 = 90486 \text{ N}$

Kreisbogenberechnung: $A = \frac{d \cdot \pi}{2} \cdot b$

 $d_{Kurbelwelle} = 60 \text{ mm} = 6 \text{ cm}$ $d_{Lager} = 25 \text{ mm} = 2.5 \text{ cm}$

 $A_{Krb} = \frac{6 \ cm \cdot \pi}{2} \cdot 2,5 \ cm = 23,56 \ cm^2$

Druckberechnung Pleuelfuß:

 $p_{Pleuel_{Benzin}} = \frac{F}{A} = \frac{32675,5 \ N}{23,56 \ cm^2} = 1386,91 \ N/cm^2 = 138,69 \ bar$ $p_{Pleuel_{Diesel}} = \frac{F}{A} = \frac{90486 \ N}{23,56 \ cm^2} = 3840,66 \ N/cm^2 = 384,07 \ bar$

Versorgungsdruck (Öldruck) max. 5 bar

 $\rightarrow p_{Pleuel_{Benzin}}: 138,69 \ bar$

Quelle: Jan Unger Datum: 29. Mai 2022

 $\rightarrow p_{Pleuel_{Diesel}}:$ 384,07 bar

 $Vgl.\ Kapitel\ "Motormechanik" / \ Hydrodynamischer\ Schmierkeil "$