Wrangling messy data files

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org
github.com/kbroman
@kwbroman
Course web: kbroman.org/AdvData

"In what form would you like the data?"

"In what form would you like the data?"

"In its present form!"

"In what form would you like the data?"

"In its present form!"

...so we'll have some messy files to deal with.

Challenges

Consistency

- ▶ file names
- ▶ file organization
- subject IDs
- ▶ variable names
- categorical data

Example file

Another example

Weird rounding

30.1	90	307.73144	12.27 10011009420	108.2311
37.5	89	404.04308	6.55818503449434	146.9497
41.9	90	218.343	9.55324086763758	101.9179
36	88	287.62704	4.65914900117792	91.0011
22.8	79	114.2122	32.46127	70.38872
20.8	75	166.4504	8.211126	60.96332
27.2	84	202.51284	13.1384923833842	105.07665
20.8	77	313.51314	11.1372217899707	93.32436
12.6	65	199.61718	16.7719514987531	66.61461
12.1	64	429.33954	18.9643060968415	49.52037
27.4	81	512.34846	4.31272238159915	101.51535
25.3	79	591.4965	9.70506442962546	186.98655
22	78	142.6692	14.9913480181089	53.79393
22.9	80	349.70889	17.0824838559225	180.93234
24.2	77	425.96127	5.77571495445421	151.72968
25.7	82	248.36079	14.3881991417965	99.37857
23.9	79	441.8874	17.1454129445892	70.17591
26.6	93	359.8437	11.3140598977232	152.79807
37.1	87	445.14312	10.4517	87.77684
35.3	85	183.7356	7.32103	67.86024
37.9	88	471.54792	11.8114	166.35688
27.4	07	1/2 00016	22 640	70 70204

Inconsistent IDs

	A	В	C		D	E	F	G	н	1	J	K	L	M	N	0	P	Q
1	mouse #	hirthdate	SPX	coat	color	6 wk glu	6 wk ins	6 wk TG	10 wk glu	10 wk ins	10 wk TG	14 wk glu	14 wk ins	14 wk TG	GTT date	GTT weight	sac date	sac wk glu
2	121	10/15/14	F	ago	rti	149.37426	0.8442	139.2379	60.12283	0.6957333	120.88583	105.82285	0.2120998	211.87862	2/9/15	24.5		115.7408
3	122	10/15/14	F	ago	rti	95.326808	1.481575	202.05441	74.487115	0.7096667	132.7588	82.242928	0.5339661	121.14418	2/9/15	18.9		191.4312
4	123	10/15/14	F	ago	rti	97.490984	0.408725	79.373226	98.03989	0.7610667	142.69479	119.71168	0.6829993	93.352632	2/9/15	24.7		132.5157
5	124	10/15/14	F	ago	rti	116.96857	2.0537	143.44967	80.069995	1.3096333	145.20569	96.90912	1.4193986	141.42944	2/9/15	25.1		135.8199
6	125	10/15/14	F	whi	e	108.0271	1.246475	125.88264	76.17361	0.6123667	98.07251	72.603664	0.5343661	101.70108	2/9/15	23.2		166.4722
7	126	10/15/14	F	ago	rti	148.97559	1.3875	172.42806	122.5813	0.9788667	165.29289	162.46648	1.5992651	179.18054	2/9/15	29.1		197.4803
8	127	10/15/14	F	ago	rti	169.36441	0.689275	89.812646	70.2418	0.8910333	67.76236	103.85354	0.6974326	99.32104				
9	128	10/15/14	F	whit	e	107.11587	1.2042	274.3024	112.69495	1.1338	261.56797	76.283168	0.6091661	146.44583	2/9/15	21.8		172.6738
10	129	10/15/14	F	whit	e	94.643384	0.830975	181.13957	101.76181	1.4178	148.97204	124.11672	2.1157646	118.10505	2/9/15	23.6		170.58969
11	130	10/15/14	F	ago	rti	96.351944	1.1899	150.36128	85.12948	1.0738	100.69102	86.907088	0.9270324	105.47253	2/9/15	22.6		196.4128
12	131	10/15/14	F	ago	rti	76.077032	0.5684	96.40028	89.78188	0.6778	117.11948	99.293024	0.3135997	126.96612	2/9/15	22.8		170.7930
13	132	10/15/14	F	blac	(164.92215	0.81265	80.777148	83.326675	0.9203	71.09827	121.21458	0.8231658	74.934784	2/11/15	25.1		170.69136
14	133	10/15/14	F	ago	rti	138.15471	0.2814	136.28606	111.53185	0.4980667	94.23442	115.77306	0.2903997	130.1151	2/11/15	23.5		154.17063
15	134	10/15/14	F	ago	rti	147.7796	0.964775	114.29129	113.85805	0.9436	139.39475	113.4928	0.5289661	91.704912				
16	135	10/15/14	F	ago	rti	91.511024	0.5702	73.577548	88.793245	1.1656	78.34401	120.54086	1.3810986	97.966248	2/11/15	20.4		
17	136	10/15/14	F	whit	e	82.740416	0.920675	85.132906	75.01051	0.8757	98.10838	107.68851	1.1119656	96.098832	2/11/15	23.9		
18	137	10/15/14	F	whit	e	87.866096	1.093125	146.65349	94.78321	0.9767	114.39336	83.486704	0.7033993	101.37154	2/11/15	24.9		156.0514
19	138	10/15/14	F	ago	rti	84.164216	0.7453	121.2389	103.50646	0.6329667	135.41318	107.99946	0.962399	114.80961	2/11/15	20		147.00318
20	139	10/15/14	F	ago	rti	71.406968	0.5858	111.73543	85.94365	0.4654	148.11116	100.22586	1.0999656	112.90558	2/11/15	21.8		
21	140	10/15/14	F	ago	rti	77.102168	0.6512	111.41145	105.71635	0.8600667	147.32202	103.80171	0.4851328	108.43842	2/11/15	21		108.522
22	141	10/15/14	F	whit	e	105.52122	1.20255	212.45783	120.08064	2.1076	106.03565	86.855264	0.3471663	100.49275	2/11/15	25.8		105.11679
23	142	10/15/14	F	ago	rti	127.61859	1.20365	90.46061	123.56994	1.7958	90.7909	133.70416	2.7086973	141.39282	2/11/15	32.2		256.70079
24	143	10/15/14	F	chin	:hilla	94.187768	0.7509	191.54299	92.747785	0.8498333	137.67299	117.27595	2.008198	154.50135	2/13/15	21.8		218.1185
25	144	10/15/14	F	whit	e	104.66694	1.2506	117.6391	112.05525	1.2141	227.77843	87.684448	0.8403325	100.23644	2/13/15	28.2		133.37993
26	145	10/15/14	F	ago	rti	88.777328	1.290625	83.225012	100.42425	0.9828	108.0085	94.266096	1.0286656	124.51285	2/13/15	30.1		214.6619
27	146	10/15/14	F	chin	hilla	92.991776	0.683275	80.20118	89.491105	0.722	61.7362	128.98818	1.1048656	102.06724	2/13/15	23.3		157.2714
28	147	10/15/14	F	blac		68.502416	0.55135	104.89581	63.84475	0.4654	113.56835	83.745824	0.379133	112.10002	2/13/15	22.9		202.15698
29	148	10/15/14	F	ago	rti	85.588016	0.8417	187.58321	72.858775	1.4085667	179.82024	75.868576	0.5696661	263.14102	2/13/15	24.4		127.1274

Inconsistent IDs

	Α	В		С	D		Е	F	G	н	1	1	K	L	M	N	0	P	Q		
1	mouse#	hirthdate	SPX		coat col	or 6	wk glu	6 wk ins	6 wk TG 1	0 wk glu	10 wk ins	10 wk TG	14 wk glu	14 wk ins	14 wk TG	GTT date	GTT weigh	sac date	sac wk glu		
2	121	10/15/1	4 F		ago iti	14	19.37426	0.8442	139.2379	60.12283	0.6957333	120.88583	105.82285	0.2120998	211.87862	2/9/15	24.5		115.74088		
3	122	10/15/1	4 F		ago iti	9	5.326808	1.481575	202.05441	74.487115	0.7096667	132.7588	82.242928	0.5339661	121.14418	2/9/15	18.9		191.43122		
4	123	10/15/1	4 F		ago iti	9	7.490984	0.408725	79.373226	98.03989	0.7610667	142.69479	119.71168	0.6829993	93.352632	2/9/15	24.7		132.51577		
5	124	10/15/1	4 F		ago iti	10	16.96857	2.0537	143.44967	80.069995	1.3096333	145.20569	96.90912	1.4193986	141.42944	2/9/15	25.1		135.81992		
6	125	10/15/1	4 F		while		108.0271	1.246475	125 88264	76 17361	0.6123667	98.07251	72 603664	0.5343661	101.70108	2/9/15	23.2		166 47222		
7	126	10/15/		A	-	В	C	D	E	F	G	H	1	J	K	L	M	N	0	Р	Q
8	127	10/15/	1 m	ouse #	birthd	late	sex	coat colo	r 6 wk glu	6 wk ins	6 wk TG	10 wk glu	10 wk ins	10 wk TG	14 wk glu	14 wk ins	14 wk TG	GTT date	GTT weight	sac date	sac wk glu
9	128	10/15/	2 D	0-461	6,	/21/16	F	black	91.64380	8 0.3550	5 83.5171	95 93.59484	9 0.898932	4 239.4559	6 80.50138	7 0.3877628	155.39943	10/17/	16 20.2	11/14/16	88.7025
10	129	10/15/	3 D	0-462	6,	/21/16	F	agouti	111.600	2 0.52812	138.468	91 107.9226	5 0.387632	9 114.3512	8 123.3526	8 0.2861638	185.66623	10/17/	16 19	11/14/16	106.197
11	130	10/15/	4 D	0-463	6,	/21/16	F	black	94.67841	4 0.93467	5 97.7299	02 99.02433	3 0.71336	6 113.6419	6 91.36096	1 1.1118889	119.85253	10/17/	16 32.3	11/14/16	140.0993
12	131	10/15/	5 D	0-464	6,	/21/16	F	chinchilla	120.6011	5 2.17632	25 121.805	74 111.7936	8 1.833631	5 126.8683	16 142.7238	1 1.5440512	126.22909	10/17/	16 40.3	11/14/16	129.671
13	132	10/15/	6 D	0-465	6,	/21/16	F	agouti	90.82086	4 1.0278	85 95.2181	74 110.6876	7 2.479530	9 173.774	12 116.8467	2 2.436609	146.68582	10/17/	16 37.4	11/16/16	142.9656
14	133	10/15/	7 D	O-466	6,	/21/16	F	agouti	112.1659	7 0.60767	5 80.2703	27 123.8089	2 0.718999	3 106.1249	8 127.8041	3 0.5506278	64.195097	10/17/	16 20.8	11/16/16	136.2939
15	134	10/15/	8 D	O-467	6.	/21/16	F	agouti	100.9019	3 1.0787	5 119.539	06 114.6592	4 0.376466	3 125.6745	4 104.0793	8 0.8151585	171,41285	10/17/	16 24.7	11/16/16	117,4649
16	135	10/15/	9 D	O-468	6,	/21/16	F	agouti	93.70116	8 0.55572	5 73.1639	73 102.3926	2 0.64126	6 173.2580	04 105.2044	7 0.9074243	168.46984	10/17/	16 24.6	11/16/16	121.6162
17	136	10/15/	10 D	0-469	6,	/21/16	F	black	100.9019	3 1.78692	183.680	02 104.8057	3 2.30373	1 244.262	23 105.008	8 0.8191251	214.05758	10/17/	16 21.6	11/18/16	118.0085
18	137	10/15/	11 D	0-470	6,	/21/16	F	agouti	98.58739	8 0.81647	5 97.1785	47 99.82870	1 0.399766	3 84.897	79 78.78929	2 0.3717629	80.323924	10/17/	16 19.1	11/18/16	107.1361
19	138	10/15/	12 D	0-471	6,	/21/16	F	agouti	137.5229	4 1.01677	5 52.0286	98 107.6712	9 0.654499	3 177.1292	24 113.2268	6 1.3451199	99.222639	10/19/	16 33.8	11/18/16	144.250
20	139	10/15/	13 D	0-472	6,	/21/16	F	white	102.8049	9 1.149	109.369	52 123.658	1 0.547966	1 229.4872	22 93.51330	9 1.2255211	284.14152	10/19/	16 24.1	11/18/16	108.4705
21	140	10/15/	14 D	0-473	6,	/21/16	F	white	94.3698	1 0.7664	5 73.1027	11 143.4656	7 0.479166	2 78.6717	2 141.5987	2 0.5927274	69.388637	10/19/	16 20.6	11/22/16	128.1396
22	141	10/15/	15 D	0-474	6,	/21/16	F	agouti	110.9829	9 1.41592	5 62.3206	58 92.941	3 0.836365	8 86.4141	12 113.618	2 0.4423956	74.582177	10/19/	16 20.4	11/22/16	108.7176
23	142	10/15/	16 D	0-475	6,	/21/16	F	black	86.24323	8 0.7860	96.8722	39 95.05276	6 0.595666	1 62.3483	6 93.61114	3 0.3843295	80.035394	10/19/	16 18.5	11/30/16	134.9102
24	143	10/15/	17 D	0-476	6,	/21/16	F	agouti	136.9057	3 0.97972	5 117.517	42 118.9827	1 0.349799	7 134.3524	18 161.9971	0.836625	109.3789	10/19/	16 25.2	11/30/16	119.1946
25	144	10/15/	18 D	0-477	6,	/21/16	F	agouti	128.3162	5 0.6931	5 249.352	53 112.5477	7 0.793599	2 233.455	2 138.4191	2 0.8584914	234.08156	10/19/	16 26.1	11/30/16	135.5526
26	145	10/15/	19 D	0-478	6,	/21/16	F	agouti	115.8177	9 0.401032	9 48.8430	91 109.4308	4 0.267599	7 95.0279	4 132.7447	4 0.2432976	91.6343	10/19/	16 21.2	11/30/16	120.1336
27	146	10/15/	20 D	0-479	6,	/21/16	F	agouti	113.6061	3 1.38207	5 114.883	17 105.0068	2 1.95309	8 141.2561	12 113.5692	8 1.3259534	132.37474	10/19/	16 33.3	12/2/16	145.3872
28	147	10/15/	21 D	O-480	6,	/21/16	F	black	167.0974	9 2.240	8 57.2972	01 123.8089	2 2.536964	1 122.9324	14 136.364	6 1.6026506	128.53729	10/19/	16 31.4	12/2/16	156.9515
29	148	10/15/	22 D	0-481	6,	/21/16	F	agouti	105.5309	9 0.47877	5 64.8936	48 110.2352	1 0.138133	2 73.768	32 113.3736	0.6286604	74.495618	10/21/	16 27.3	12/2/16	123.8895
	-			0-482	6,	/21/16	F	agouti	101.9820	4 0.82092	5 82.7820	55 90.82983	4 0.575299	4 84.9624	12 103.3456	3 0.2304644	87.969969	10/21/	16 21.7	12/2/16	113.7090
			24 D	0-483	6,	/21/16	F	agouti	82.95146	2 0.345	3 78.4937	38 95.40467	7 0.556666	1 101.4472	8 90.08911	9 1.5080183	107.67657	10/21/	16 21.4	12/6/16	93.1503
			25 D	0-484	6,	/21/16	F	agouti	126.4131	9 0.6771	5 98.2812	57 100.1806	1 0.922099	1 139.804	12 114.4497	9 1.3265201	154.67811	10/21/	16 28.2	12/6/16	132.389
			26 D	O-485	6,	/21/16	F	agouti	93.75260	2 1.609	95 90.8685	95 89.37191	7 0.67556	6 86.510	9 83.04507	1 0.3703296	102.85812	10/21/	16 25.4	12/6/16	98.9818
			27 D	0-486	6,	/21/16	F	agouti	100.9019	3 0.6416	55 83.5784	57 102.9456	3 0.781565	9 80.3169	8 103.6391	3 0.6679933	88.200793	10/21/	16 24.4	12/6/16	114.9939
			28 D	O-487	6,	/21/16	F	agouti	113.1946	5 0.31802	5 71.0198	15 96.10849	9 0.521566	1 151.4825	125.2604	4 0.3840295	125.70969	10/21/	16 24.7	12/8/16	128.7327
			29 D	O-488	6,	/21/16	F	agouti	91.69524	2 0.593	7 115.128	22 104.0516	3 0.898432	4 205.5180	93.90464	5 0.5686943	129.22976	10/21/	16 23.2	12/8/16	87.417
			30 D	0-489	6	/21/16	E	agouti	50,49660	8 0.38502	5 73.041	45 72.93264	6 0 542766	1 100 447	2 08 70634	5 0 9109595	56.058551	10/21/	16 21	12/9/16	86.7751

Inconsistent layout

	Α	В	С	D	Е	F
1		GTT date	GTT weight	time	glucose mg	insulin ng/ml
2	DO-121	2/9/15	24.5	0	99.165552	lo off curve
3				5	349.30355	0.2052
4				15	286.09221	0.12895
5				30	312.0477	0.17545
6				60	99.871824	0.12165
7				120	217.93696	lo off curve
8	DO-122	2/9/15	18.9	0	185.80158	0.25145
9				5	297.39256	2.2281
10				15	439.0001	2.0778
11				30	362.25187	0.7746
12				60	232.65096	0.50015
13				120	260.72527	0.5234
14	DO-123	2/9/15	24.7	0	198.45562	0.15135
15				5	530.63889	lo off curve
16				15	614.15555	0.62425
17				30	647.46805	0.12085
18				60	531.05088	0.19775
19				120	388.0308	0.1853

/	Α	В	С	D
1	DO-221	0	145.74279	0.74455
2		5	206.45264	2.0264
3		15	216.64061	1.13205
4		30	299.55501	0.78475
5		60	242.65912	0.3326
6		120	186.23344	0.53575
7	DO-222	0	138.01038	0.70715
8		5	342.86694	1.1049
9		15	339.83668	0.8284
10		30	276.1488	0.5935
11		60	248.30168	0.4905
12		120	303.42121	1.0419
13	DO-223	0	138.21936	1.1223
14		5	407.443	2.1029
15		15	336.85865	1.8585
16		30	235.50141	1.50985
17		60	246.21184	0.86705
18		120	247.62249	0.89315

	Α	В	С	D	Е	F	G	Н
1	date	mouse #	weight	heart	Lliver lobe	remaining liver	R fat pad	I fat pad
2	3/9/15	121	26.7	0.136	0.325	0.655	0.383	0.317
3		122	19.3	0.103	0.231	0.548	0.279	0.261
4		123	28.2	0.116	0.317	0.668	0.736	0.706
5		124	26.4	0.121	0.346	0.694	0.646	0.541
6	3/10/15	171	40.5	0.158	0.518	1.07	1.38	1.38
7		172	48.6	0.199	0.505	1.405	0.804	0.868
8		173	36	0.187	0.406	0.965	0.785	0.712
9		174	25	0.109	0.264	0.6	0.308	0.308
10	3/11/15	125	24.3	0.12	0.303	0.556	0.536	0.508
11		126	30.5	0.113	0.376	0.992	0.777	0.972
12		128	24.3	0.101	0.307	0.715	0.34	0.461
13		129	22.2	0.123	0.304	0.799	0.343	0.293
14	3/12/15	175	34.7	0.159	0.454	0.892	0.886	0.9
15		176	29.6	0.166	0.388	0.753	0.656	0.638
16		177	31.8	0.189	0.375	0.762	0.702	0.62
17		178	36.8	0.156	0.459	1.22	0.602	0.637

	Α		В	С		D		E		F		G		Н		
1	date	mou	ise#	weight	hear		Llive	r lobe	rei	maining live	r	R fat pad L		fat n	ad	
2	3/9/15		121	26.7	7	0.136		0.325		0	.655	C	0.383	(0.317	
3			A		В	(D		E		F	0	â	-	Н
4		1	mouse	nun date		weigh	t	heart		L liver lobe	rema	aining l	R fat	pad	L fat	pad
5		2	DO-22	1 7	/20/15		24.1	0.1	36	0.339		0.743		0.289		0.262
6	3/10/15	3	DO-22				21.4	0.1	47	0.318		0.614		0.07		0.053
7		4	DO-22	3			22.2	0.1	17	0.252		0.663		0.133		0.157
8		5	DO-22	4			23.3	0.1	42	0.314		0.667		0.048		0.047
9		6	DO-22	5 7	/22/15		24.8	0.1	34	0.252		0.633		0.337		0.285
10	3/11/15	7	DO-22	6			22.9	0.1	36	0.269		0.574		0.247		0.192
11		8	DO-22	7			20.8	0.1	18	0.32		0.767		0.1		0.094
12		9	DO-22	8			23.1	0.	12	0.27		0.649	-	0.249		0.286
13		10	DO-22	9 7	/24/15		25.8	0.1	12	0.329		0.801	-	0.591		0.589
14	3/12/15	11	DO-23	0			20.9	0.1	37	0.307		0.61	(0.112		0.105
15		12	DO-23	1			18.2	0.1	04	0.227		0.567	-	0.111		0.126
16		13	DO-23	2			26.4	0.1	24	0.343		0.776		0.194		0.194
17		14	DO-23	3 7	/28/15		17.8	0.1	08	0.235		0.496		0.054		0.057
		15	DO-23	4			29	0.1	68	0.393		0.737		0.823		0.783
		16	DO-23	5			22.6	0.1	37	0.35		0.72		0.407		0.383
		17	DO-23	6			21.3	0.1	32	0.287		0.622		0.19		0.187

Multiple rectangles

	Α	В	С	D	E	F	G	Н	1	J	K	L
1	Wave 2 ID	Adiponectin (ug/mL)	collection date	BW	sex			Wave 1 ID	Adiponectin (ug/mL)	collection date	BW	sex
2	DO-121	25.28521548	3/9/15	26.7	F			DO-21	58.70791021	10/20/14	21.1	F
3	DO-122	8.589388212	3/9/15	19.3	F			DO-22	6.141839632	10/20/14	30.4	F
4	DO-123	16.45348107	3/9/15	28.2	F			DO-23	37.34270189	10/20/14	29.9	F
5	DO-124	22.86891765	3/9/15	26.4	F			DO-24	5.805316486	10/20/14	21.1	F
6	DO-125	37.13273594	3/11/15	24.6	F			DO-25	5.48942198	10/22/14	22.9	F
7	DO-126	18.76181517	3/11/15	31	F			DO-26	7.550740533	10/22/14	29.4	F
8	DO-128	11.50813114	3/11/15	23.9	F			DO-27	7.633411071	10/22/14	26.6	F
9	DO-129	7.447558701	3/11/15	22.6	F			DO-28	0.049261069	10/22/14	24.6	F
10	DO-130	10.48386039	3/13/15	25.9	F			DO-30	8.841227011	10/24/14		F
11	DO-131	8.471601718	3/13/15	25.6	F			DO-31	8.170986006	10/24/14	26.6	F
12	DO-132	3.04690223	3/13/15	27.4	F			DO-32	12.67835566	10/24/14	24.6	F
13	DO-133	0.099577938	3/13/15	24.8	F			DO-33	17.75682222	10/24/14	34.2	F
14	DO-137	11.20577459	3/17/15	27.7	F			DO-34	24.29713573	10/28/14	28.9	F
15	DO-138	12.72099796	3/17/15	20	F			DO-35	11.74448642	10/28/14	19.7	F
16	DO-140	23.68048642	3/17/15	22.3	F			DO-36	9.310303972	10/28/14	22.6	F
17	DO-141	14.64889349	3/17/15	26.2	F			DO-37	18.45679929	10/28/14	34.3	F
18	DO-142	42.30217756	3/19/15	37.8	F			DO-38	65.906108	10/30/14	34.1	F
19	DO-143	14.54807857	3/19/15	22.8	F			DO-39	55.95587133	10/30/14	30.8	F
20	DO-144	10.57159252	3/19/15	28.7	F			DO-40	20.5376597	10/30/14	29.6	F
21	DO-145	9.465243507	3/19/15	33.5	F			DO-41	26.11849635	10/30/14	21.4	F
22	DO-146	6.278729256	3/23/15	23.1	F			DO-42	14.58745555	11/3/14	27.4	F
23	DO-147	4.894797158	3/23/15	26.6	F			DO-43	21.77644658	11/3/14	33.3	F
24	DO-148	11.33704889	3/23/15	25.8	F			DO-44	12.48999428	11/3/14	25.4	F

Stuff moving around

Stuff moving around

Being self-sufficient

- **▶** C
- ► Perl (or python or ruby)
- ► R

Being self-sufficient

- **▶** C
- ► Perl (or python or ruby or R)
- ► R

Key techniques

- stepping through a file
- ► regular expressions
 - search and replace patterns
- ► parsing individual lines in a file
- matching vectors
- ► construct meta data
- system calls

Stepping through a file in R

```
filecon <- open("huge_data.txt", "r")
while(TRUE) {
    line <- readLines(filecon, n=1)
    if( grepl("^\\[Data\\]", line) ) break
}
data <- readLines(filecon)
close(filecon)</pre>
```

Regular expressions

Regular expressions

Regular expressions

```
grep(), grepl(), sub(), gsub()
```

- ▶ ^ and \$ match the beginning and end of a line
- ► [034] for any one of several things; [0-9] for a range
- ► [^034] for something other than this set of things
- ► \s for white space
- ▶ . match any one character
- ► + match the last bit 1 or more times
- * match the last bit 0 or more times
- parentheses to group bits for use with + and *
- ▶ when substituting, can use \1, \2, ... in place of matched groups
- ▶ In R, most backslashes need to be made double-backslashes.

Parsing strings

- ► I use a lot of strsplit()
- ► The output is a list of vectors so is not pretty
- ► Also look at the stringr package
- ► To put things back together, use paste(), paste0(), or the glue package.

Matching vectors

- ▶ I spend a lot of time matching two vectors, say of subject IDs
- ► I mostly use match(), eg match(old_ids, new_ids)
- ► Check for NAs, which indicate unmatched values
- ► May want to check that the values on right are unique
- ► Often do something like olddata[match(new_ids, old_ids),]

Construct meta data

A	В	С	D	E
short_name	file	from_column	id_column	column_offset
2 mouse	Attie_DO_mice_wave2_	smouse #		
3 sex	Attie_DO_mice_wave2_	sex	:	
4 sac_date	Attie_DO_mice_wave2_	sac date		
5 coat_color	Attie_DO_mice_wave2_	coat color		
6 oGTT_date	Attie_DO_mice_wave2_	GTT date	:	
7 diet_days	ex_vivo_waves1-3.csv	Days.on.Diet		
8 num_islets	ex_vivo_waves1-3.csv	num_islets	:	
9 Ins_per_islet	ex_vivo_waves1-3.csv	IC	:	
0 Glu_0min	gtt2.csv	glucose.mg.dl.0		2
1 Ins_Omin	gtt2.csv	insulin.ng.ml.0		2
2 Glu_tAUC	gtt2.csv	glucose.mg.dl.tAUC		2
3 Glu_iAUC	gtt2.csv	glucose.mg.dl.iAUC		2
4 Ins_tAUC	gtt2.csv	insulin.ng.ml.tAUC		2
5 Ins_iAUC	gtt2.csv	insulin.ng.ml.iAUC		2
.6 Glu_6wk	Attie_DO_mice_wave2_	≤6 wk glu		
7 Ins_6wk	Attie_DO_mice_wave2_	£6 wk ins		
8 TG_6wk	Attie_DO_mice_wave2_	≤6 wk TG		
9 Glu_10wk	Attie_DO_mice_wave2_	10 wk glu		
0 Ins_10wk	Attie_DO_mice_wave2_	10 wk ins		
1 TG_10wk	Attie_DO_mice_wave2_	10 wk TG		
2 Glu_14wk	Attie_DO_mice_wave2_	14 wk glu		
3 Ins_14wk	Attie_DO_mice_wave2_	14 wk ins		
24 TG_14wk	Attie_DO_mice_wave2_	14 wk TG		
5 oGTT_weight	Attie_DO_mice_wave2_	gGTT weight		
6 Glu_sac	Attie_DO_mice_wave2_	sac wk glu		
7 Ins_sac	Attie_DO_mice_wave2_	sac wk ins	:	
8 TG_sac	Attie_DO_mice_wave2_	sac wk TG	:	
9 food_1wk	Attie_DO_mice_wave2_	11/17/14	:	1 2
0 food_2wk	Attie_DO_mice_wave2_	11/24/14	:	
1 food_3wk	Attie_DO_mice_wave2_	12/1/14	:	
32 food 4wk	Attie DO mice wave2	12/8/14		

R challenges

- ► stringsAsFactors
- ► check.names in read.csv()
- dealing with factors
 - levels
 - converting to/from strings
- ► Consider the forcats package

Further tips

- Avoid using numeric indices
 - refer to data by variable name and individual ID
 - this will be more robust
- stopifnot() to assert things that should be true
- cbind and rbind, but padding with missing values
- ► Sometimes converting excel → csv loses precision
- ▶ get() to grab an object from a character string with its name
- eval(parse()) to evaluate a charcter string as R code

Verify everything

- ▶ subject IDs unique?
- ▶ identifiers that don't match the typical pattern?
- subjects in one file but not in another?
- ► re-calculate and verify any derived values (like ratios)
- data repeated in multiple files the same?

Reproducible reports

- You want all of this work to be reproducible
- Consider combining the data reorganization with the data cleaning
 - a lot of double-checking is happening when reorganizing
- Or clean each file one at a time
 - do the detailed diagnostics and cross-checks with data that are in a more convenient form
- Include diagnostic plots
 - Plot stuff vs time or by batch
 - Scatterplots of different variables
 - Consider taking logs
 - Look at missing data pattern
- Explain your thought process and observations

Batch effect

Batch effect

Messed up units

Outliers

Summary

- ▶ Be prepared for anything
- Double-check everything
- ► Take your time and keep things organized
- ▶ Python is a good skill to have, but you can just do R