DL 4 - inspiré d'EDHEC 2013 Correction

On dispose d'une urne contenant au départ n boules blanches et (n+2) boules noires. $(\acute{e}tat \, n)$ Le contenu de l'urne évolue au cours d'une succession d'épreuves.

À chaque épreuve, on tire une boule de l'urne dans l'état $j \ge 1$ (j blanches, j + 2 noires), puis :

- Si la boule est blanche, alors cette boule n'est pas remise dans l'urne et on enlève de plus une boule noire de l'urne. (nouvel état : j-1).
- Si la boule est noire, elle est remise dans l'urne avec en plus une boule blanche et une boule noire dans l'urne. (nouvel état : j + 1).

Lorsque, à une étape quelconque, l'urne atteint l'état 0, on arrète définitivement l'expérience. En particulier, si n=0 (départ de l'état 0), l'expérience est sans objet, car aucun tirage n'a lieu. On note X le nombre de boules blanches présentes dans l'urne après la première épreuve.

1. a) Montrer que la variable X vérifie : $X(\Omega) = \{n-1, n+1\}$.

Suite au premier tirage, l'urne peut être \rightarrow dans l'état n-1 (tirage d'une boule blanche)

• dans l'état n + 1 (tirage d'une boule noire)

Ainsi, on a bien : $X(\Omega) = \{n - 1, n + 1\}.$

- **b)** Calculer $\mathbb{P}(X = n 1)$ et $\mathbb{P}(X = n + 1)$.
 - ► **Calcul de** $\mathbb{P}(X = n 1)$ Il s'agit de la probabilité de tirer une boule blanche. Par équiprobabilité, il vient donc $\mathbb{P}(X = n 1) = \frac{\sharp \text{ blanches}}{\sharp \text{ total}} = \frac{n}{2n + 2}$
 - ► Calcul de $\mathbb{P}(X = n + 1)$ De même, on trouve : $\mathbb{P}(X = n + 1) = \frac{\sharp \text{ noires}}{\sharp \text{ total}} = \frac{n+2}{2n+2}$

On fixe maintenant un entier $m \ge 1$.

On s'intéresse à l'événement *E* : «l'urne atteint l'état *m* **avant** l'état 0. »

La probabilité de cet événement dépend de l'état initial de l'urne.

On note donc e_n la probabilité de E lorsque l'état de l'urne est l'entier $n \in [0, m]$.

- **2.** Montrer que $e_0 = 0$. Combien vaut e_m ?
 - ▶ Détermination de *e*₀

Si n = 0 (départ de l'état 0), l'expérience s'arrète immédiatement, et aucun tirage n'a lieu. Il est alors impossible d'atteindre l'état m. Ainsi : $e_0 = 0$.

▶ Détermination de e_m

Si n = m, l'état m est atteint immédiatement d'une façon certaine. Ainsi : $e_m = 1$.

- **3. a)** Justifier que: $\mathbb{P}_{[X=n-1]}(E) = e_{n-1} \text{ et } \mathbb{P}_{[X=n+1]}(E) = e_{n+1}.$
 - **▶** Conditionnement par [X = n 1]

On suppose que suite au premier tirage, l'urne est dans l'état (n-1).

L'événement *E* requiert d'atteindre l'état *m*.

Conditionnellement, tout se passe comme si on partait initialement de l'état (n-1).

On a donc bien : $\mathbb{P}_{[X=n-1]}(E) = e_{n-1}$

▶ Conditionnement par [X = n + 1] C'est le même principe, mais pour l'état (n + 1).

On trouve : $\mathbb{P}_{[X=n+1]}(E) = e_{n+1}$

b) Montrer, pour $n \in [1, m-1]$ que: $e_n = \frac{n}{2n+2} \cdot e_{n-1} + \frac{n+2}{2n+2} \cdot e_{n+1}$.

On applique la formule des probabilités totales selon la valeur de X.

Il vient : $\mathbb{P}(E) = \mathbb{P}(X = n - 1) \cdot \mathbb{P}_{[X = n - 1]}(E) + \mathbb{P}(X = n + 1) \cdot \mathbb{P}_{[X = n + 1]}(E)$.

On traduit avec les probabilités trouvées : $e_n = \frac{n}{2n+2} \cdot e_{n-1} + \frac{n+2}{2n+2} \cdot e_{n+1}$.

On définit la suite $(u_n)_{n \in [0,m]}$ par : $u_n = (n+1) \cdot e_n$.

a) Pour $n \in [1, m-1]$ une expression de u_n en fonction de u_{n-1} et u_{n+1} .

Pour $n \in [0, m]$, on a: $e_n = \frac{u_n}{n+1}$.

Pour $n \in [0, m]$, on a. $c_n - \frac{1}{n+1}$. Pour $n \in [1, m-1]$, on injecte dans l'équation : $e_n = \frac{n}{2n+2} \cdot e_{n-1} + \frac{n+2}{2n+2} \cdot e_{n+1}$. Il vient : $\frac{u_n}{n+1} = \frac{n}{2n+2} \cdot \frac{u_{n-1}}{n} + \frac{n+2}{2n+2} \cdot \frac{u_{n+1}}{n+2}$.

On simplifie, et on trouve : $u_n = \frac{1}{2} \cdot u_{n-1} + \frac{1}{2} \cdot u_{n+1}$.

b) En déduire une relation entre $u_{n+1} - u_n$ et $u_n - u_{n-1}$.

Pour $n \in [1, m-1]$, on a: $u_n = \frac{1}{2} \cdot (u_{n-1} + u_{n+1})$

d'où: $u_{n+1} - 2u_n + u_{n-1} = 0$

soit: $(u_{n+1} - u_n) - (u_n - u_{n-1}) = 0$

Ainsi: $u_{n+1} - u_n = u_n - u_{n-1}$.

La suite $(u_n - u_{n-1})_{n \in [\![1,m]\!]}$ est donc **constante**.

c) Montrer que la suite (u_n) est arithmétique sur [0,m].

La suite $(u_n - u_{n-1})_{n \in [1,m]}$ est constante.

Pour $n \in [1, m]$, on peut donc écrire donc : $u_n - u_{n-1} = u_1 - u_0 = a \in \mathbb{R}$.

La suite (u_n) est donc arithmétique de raison $a \in \mathbb{R}$.

On peut donc écrire pour $\forall n \in [0,m]$, $u_n = a \cdot n + u_0$.

5. **a)** Grâce aux valeurs trouvées à la question 2., trouver l'expression de u_n pour $n \in [0, m]$.

On connaît deux valeurs pour e_n , que l'on traduit pour u_n : $\begin{cases} e_0 = 0 & \leadsto & u_0 = 0 \\ e_m = 1 & \leadsto & u_m = (m+1) \end{cases}$

Par la formule $u_n = a \cdot n + u_0$, on trouve donc la raison arithmétique : $a = \frac{m+1}{m}$.

Il vient donc : $u_n = \frac{m+1}{m} \cdot n$.

b) En déduire, pour $n \in [0,m]$, l'expression : $e_n = \frac{m+1}{m} \cdot \frac{n}{n+1}$. On obtient en effet : $e_n = \frac{u_n}{n+1} = \frac{m+1}{m} \cdot \frac{n}{n+1}$.

On s'intéresse au passage à la limite $m \to \infty$.

a) Déterminer la limite, pour $n \in \mathbb{N}$: $\lim_{m \to \infty} e_n$. 6.

Il vient: $\lim_{m \to \infty} e_n = \lim_{m \to \infty} \frac{m+1}{m} \cdot \frac{n}{n+1} = \frac{n}{n+1}.$

b) Si on part de l'état 1 (1 boule blanche et trois noires), quelle est la probabilité que l'urne finisse par contenir un nombre arbitrairement élevé de boules blanches?

La probabilité d'atteindre une valeur m donnée est : $e_1 = \frac{m+1}{m} \cdot \frac{1}{2}$.

La probabilité d'avoir des valeurs arbitrairement élevées correspond à la limite $m \to \infty$. La probabilité cherchée est donc $\frac{1}{2}$.