

Figure 37.4: The relationship between the closed unit balls centered at (0,0,0).

Definition 37.4. Let (E, d) be a metric space. A subset $U \subseteq E$ is an *open set* in E if either $U = \emptyset$, or for every $a \in U$, there is some open ball $B_0(a, \rho)$ such that, $B_0(a, \rho) \subseteq U$. A subset $F \subseteq E$ is a *closed set* in E if its complement E - F is open in E. See Figure 37.5.

Figure 37.5: An open set U in $E = \mathbb{R}^2$ under the standard Euclidean metric. Any point in the peach set U is surrounded by a small raspberry open set which lies within U.

The set E itself is open, since for every $a \in E$, every open ball of center a is contained in E. In $E = \mathbb{R}^n$, given n intervals $[a_i, b_i]$, with $a_i < b_i$, it is easy to show that the open n-cube

$$\{(x_1, \dots, x_n) \in E \mid a_i < x_i < b_i, 1 \le i \le n\}$$

is an open set. In fact, it is possible to find a metric for which such open n-cubes are open balls! Similarly, we can define the closed n-cube

$$\{(x_1, \dots, x_n) \in E \mid a_i \le x_i \le b_i, 1 \le i \le n\},\$$

which is a closed set.

The open sets satisfy some important properties that lead to the definition of a topological space.

¹Recall that $\rho > 0$.