Equations and Math Supplement

Daniel Ari Friedman ORCID: 0000-0001-6232-9096 Email: daniel@activeinference.institute

August 15, 2025

Contents

1 Eq	uations and Math Supplement (Appendix)
$1.\overline{1}$	Volume of a Tetrahedron (Lattice)
	Fisher Information Matrix (FIM)
1.3	Natural Gradient
1.4	Free Energy (Active Inference)
	1.4.1 Figures
1.5	Quadray Normalization (Fuller.4D)
1.6	Distance (Embedding Sketch; Coxeter.4D slice)
	Minkowski Line Element (Einstein.4D analogy)
	High-Precision Arithmetic Note
	1.8.1 Reproducibility artifacts and external validation
1.9	Namespaces summary (notation)

1 Equations and Math Supplement (Appendix)

1.1 Volume of a Tetrahedron (Lattice)

$$V = \frac{1}{6} \left| \det \left[P_1 - P_0, \ P_2 - P_0, \ P_3 - P_0 \right] \right| \tag{1}$$

Notes.

• P_0, \dots, P_3 are vertex coordinates; the determinant computes the volume of the parallelepiped spanned by edge vectors, with the 1/6 factor converting to tetra volume.

Tom Ace 5×5 tetravolume (IVM units):

$$V_{ivm} = \frac{1}{4} \left| \det \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & 1 \\ b_0 & b_1 & b_2 & b_3 & 1 \\ c_0 & c_1 & c_2 & c_3 & 1 \\ d_0 & d_1 & d_2 & d_3 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} \right|$$
 (2)

Notes.

• Rows correspond to Quadray 4-tuples of the vertices; the last row encodes the affine constraint. Division by 4 returns IVM tetravolume.

XYZ determinant volume and S3 conversion:

$$V_{xyz} = \frac{1}{6} \left| \det \begin{pmatrix} x_a & y_a & z_a & 1\\ x_b & y_b & z_b & 1\\ x_c & y_c & z_c & 1\\ x_d & y_d & z_d & 1 \end{pmatrix} \right|, \qquad V_{ivm} = S3 \, V_{xyz}, \quad S3 = \sqrt{\frac{9}{8}}$$
 (3)

Notes.

• Homogeneous determinant in Cartesian coordinates for tetra volume; conversion to IVM units uses $S3 = \sqrt{9/8}$ as used throughout.

See code: tetra_volume_cayley_menger. For tetrahedron volume background, see Tetrahedron - volume. Exact integer determinants in code use the Bareiss algorithm. External validation: these formulas align with implementations in tetravolume.py from the 4dsolutions ecosystem.

1.2 Fisher Information Matrix (FIM)

Background: Fisher information.

$$F_{i,j} = \mathbb{E}\left[\frac{\partial \log p(x;\theta)}{\partial \theta_i} \, \frac{\partial \, \log p(x;\theta)}{\partial \theta_j}\right] \tag{4}$$

Notes.

Defines the Fisher information matrix as the expected outer product of score functions; see Fisher information.

Figure: empirical estimate shown in the FIM heatmap figure. See code: fisher_information_matrix.

See src/information.py — empirical outer-product estimator (fisher_information_matrix).

1.3 Natural Gradient

Background: Natural gradient (Amari).

$$\theta \leftarrow \theta - \eta \, F(\theta)^{-1} \, \nabla_{\theta} L(\theta) \tag{5}$$

Explanation.

• Natural gradient update: right-precondition the gradient by the inverse of the Fisher metric (Amari); see Natural gradient.

See code: natural_gradient_step.

See $src/information.py - damped inverse-Fisher step (natural_gradient_step)$.

1.4 Free Energy (Active Inference)

$$\mathcal{F} = -\log P(o \mid s) + \text{KL}[Q(s) \parallel P(s)]$$
 (6)

Explanation.

• **Partition**: variational free energy decomposes into expected negative log-likelihood and KL between approximate posterior and prior; see Free energy principle.

See code: free_energy.

See $\operatorname{src/information.py} - \operatorname{discrete-state}$ variational free energy ($\operatorname{free_energy}$).

1.4.1 Figures

Figure 1: Figure 14: Natural gradient trajectory demonstrating information-geometric optimization. This trajectory shows natural gradient descent (Eq. 5) converging on a quadratic objective, projected

to the (w_0, w_1) parameter plane. **Mathematical setup**: Quadratic form matrix $A = \begin{bmatrix} 3 & 0.5 & 0 \\ 0.5 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, step size

 $\eta=0.5$, damped Fisher inverse $F+10^{-3}I$ for numerical stability. **Trajectory characteristics**: The curved path demonstrates curvature-adaptive steps—larger strides in low-curvature directions, smaller steps in high-curvature directions—contrasting with uniform Euclidean gradient steps. **Information geometry**: Each step follows approximate geodesics on the parameter manifold equipped with the Fisher metric, achieving more efficient convergence than standard gradient descent on ill-conditioned problems. **Data artifacts**: Complete 3D trajectory data saved as <code>natural_gradient_path.csv</code> and <code>natural_gradient_path.npz</code> for reproducibility and further analysis.

1.5 Quadray Normalization (Fuller.4D)

Given q=(a,b,c,d), choose $k=\min(a,b,c,d)$ and set q'=q-(k,k,k,k) to enforce at least one zero with non-negative entries.

1.6 Distance (Embedding Sketch; Coxeter.4D slice)

Choose linear map M from quadray to \mathbb{R}^3 (or \mathbb{R}^4) consistent with tetrahedral axes; then $d(q_1,q_2) = \|M(q_1) - M(q_2)\|_2$.

1.7 Minkowski Line Element (Einstein.4D analogy)

$$ds^{2} = -c^{2} dt^{2} + dx^{2} + dy^{2} + dz^{2}$$
(7)

Figure 2: Figure 15: Variational free energy functional for discrete binary states (Eq. 6). This curve illustrates the free energy landscape $\mathcal{F} = -\log P(o|s) + \mathrm{KL}[Q(s)||P(s)]$ for a 2-state system as a function of variational posterior probability $q(\mathrm{state} = 0) \in [0.001, 0.999]$. Model specification: True likelihood $\log P(o|s) = \log[0.7, 0.3]$, uniform prior P(s) = [0.5, 0.5], variational posterior Q(s) = [q, 1-q]. Free energy interpretation: The convex curve shows the trade-off between likelihood accuracy (observation explanation) and complexity penalty (KL divergence from prior). Optimization: The global minimum represents the optimal variational approximation where beliefs match the true posterior distribution. Active Inference: This functional drives belief updating in the four-fold partition framework, with the minimum achieved through gradient-based inference or discrete lattice descent methods. The convex structure ensures reliable convergence for variational optimization in discrete state spaces.

Discrete path (final state)

Figure 3: Figure 16: Discrete IVM descent optimization path (final converged state). This static frame shows the final position of a discrete variational descent algorithm operating on the integer Quadray lattice. Algorithm: discrete_ivm_descent performs greedy optimization using the 12 canonical IVM neighbor moves (permutations of $\{2,1,1,0\}$), ensuring all iterates remain on integer lattice points with proper Quadray normalization. Objective: Simple quadratic function $f(q) = (x-0.5)^2 + (y+0.2)^2 + (z-0.1)^2$ where (x,y,z) are the embedded Euclidean coordinates of Quadray q. Convergence: The final point represents the best lattice approximation to the continuous optimum, demonstrating discrete convergence within the integer-constrained feasible region. Fuller.4D significance: This method exemplifies optimization directly on the Quadray integer lattice without continuous relaxation, maintaining exact arithmetic and leveraging the discrete "energy level" structure of integer tetravolumes. Animation: The complete optimization trajectory is available as discrete_path.mp4 with corresponding trajectory data in discrete_path.csv and discrete_path.npz.

CSV with exact values: quadmath/output/bridging_vs_native.csv

Figure 4: Figure 17: Bridging (CM+S3) vs Native (Ace) IVM tetravolumes across canonical integer-quadray examples. Bars compare V_{ivm} computed via Cayley-Menger on XYZ edge lengths with $S3=\sqrt{9/8}$ conversion (bridging) against Tom Ace's native 5×5 determinant (IVM). The overlaid bars coincide to numerical precision, illustrating the equivalence of length-based and Quadray-native formulations under synergetics units. Source CSV: bridging_vs_native.csv.

Background: Minkowski space.

1.8 High-Precision Arithmetic Note

When evaluating determinants, FIMs, or geodesic distances for sensitive problems, use quad precision (binary128) via GCC's libquadmath (_float128, functions like expq, sqrtq, and quadmath_snprintf). See GCC libquadmath. Where possible, it is useful to use symbolic math libraries like SymPy to compute exact values.

1.8.1 Reproducibility artifacts and external validation

- This manuscript's artifacts: Raw data in quadmath/output/ for reproducibility and downstream analysis:
 - fisher_information_matrix.csv / .npz: empirical Fisher matrix and inputs
 - fisher information eigenvalues.csv / fisher information eigensystem.npz: eigenspectrum and eigenvectors
 - natural_gradient_path.png with natural_gradient_path.csv / .npz: projected trajectory and raw coordinates
 - bridging_vs_native.csv: Ace 5×5 vs CM+S3 tetravolume comparisons
 - ivm_neighbors_data.csv / ivm_neighbors_edges_data.npz: neighbor coordinates (Quadray and XYZ)
 - polyhedra quadray constructions.png: synergetics volume relationships schematic
- External validation resources: The 4dsolutions ecosystem provides extensive cross-validation:
 - Ovolume.ipynb: Independent Tom Ace 5×5 implementations with random-walk demonstrations
 - VolumeTalk.ipynb: Comparative tetravolume algorithm analysis
 - Cross-language implementations in Rust and Clojure for algorithmic verification

1.9 Namespaces summary (notation)

- Coxeter.4D: Euclidean E⁴; regular polytopes; not spacetime (cf. Coxeter, Regular Polytopes, Dover ed., p. 119). Connections to higher-dimensional lattices and packings as in Conway & Sloane.
- Einstein.4D: Minkowski spacetime; indefinite metric; used here only as a metric analogy when discussing geodesics and information geometry.
- Fuller.4D: Quadrays/IVM; tetrahedral lattice with integer tetravolume; unit regular tetrahedron has volume 1; synergetics scale relations (e.g., S3).