|                           | $\sigma_{1}^{\#1}{}_{+}\alpha\beta$ | $\sigma_1^{\#2}$               | $\tau_1^{\#1}{}_+\alpha\beta$    | $\sigma_{1}^{\#1}{}_{\alpha}$     | $\sigma_{1}^{\#2}{}_{lpha}$           | $\tau_{1^{-}\alpha}^{\#1}$ | $	au_1^{\#2}$                        |
|---------------------------|-------------------------------------|--------------------------------|----------------------------------|-----------------------------------|---------------------------------------|----------------------------|--------------------------------------|
| $+^{\alpha\beta}$         | 0                                   | $-\frac{\sqrt{2}}{t_1+k^2t_1}$ | $-\frac{i\sqrt{2}k}{t_1+k^2t_1}$ | 0                                 | 0                                     | 0                          | 0                                    |
| $r_1^{#2} + \alpha \beta$ | $-\frac{\sqrt{2}}{t_1+k^2t_1}$      | $\frac{1}{(1+k^2)^2 t_1}$      | $\frac{ik}{(1+k^2)^2 t_1}$       | 0                                 | 0                                     | 0                          | 0                                    |
| $\dagger^{\alpha \beta}$  | $\frac{i\sqrt{2}k}{t_1+k^2t_1}$     | $-\frac{ik}{(1+k^2)^2t_1}$     | $\frac{k^2}{(1+k^2)^2 t_1}$      | 0                                 | 0                                     | 0                          | 0                                    |
| +α                        | 0                                   | 0                              | 0                                | $\frac{6}{(3+4 k^2)^2 t_1}$       | $\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$     | 0                          | $\frac{12ik}{(3+4k^2)^2t_1}$         |
| $+^{\alpha}$              | 0                                   | 0                              | 0                                | $\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$ | $\frac{12}{(3+4k^2)^2t_1}$            | 0                          | $\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$ |
| +α                        | 0                                   | 0                              | 0                                | 0                                 | 0                                     | 0                          | 0                                    |
| $+^{\alpha}$              | 0                                   | 0                              | 0                                | $-\frac{12ik}{(3+4k^2)^2t_1}$     | $-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$ | 0                          | $\frac{24 k^2}{(3+4 k^2)^2 t_1}$     |

| $f_{1^-}^{\#2}$                   | 0                                         | 0                                 | 0                         | <u>i kt1</u><br>3                              | $\frac{1}{3}\bar{l}\sqrt{2}kt_1$ | 0                              | $\frac{2k^2t_1}{3}$                         |
|-----------------------------------|-------------------------------------------|-----------------------------------|---------------------------|------------------------------------------------|----------------------------------|--------------------------------|---------------------------------------------|
| $f_{1^-}^{\#1} \alpha$            | 0                                         | 0                                 | 0                         | 0                                              | 0                                | 0                              | 0                                           |
| $\omega_{1^{^{-}}\alpha}^{\#2}$   | 0                                         | 0                                 | 0                         | $\frac{t_1}{3\sqrt{2}}$                        | 1 <u>7</u><br>3                  | 0                              | $-\frac{1}{3}$ i $\sqrt{2}$ kt <sub>1</sub> |
| $\omega_{1^-}^{\#1}{}_{\alpha}$   | 0                                         | 0                                 | 0                         | 6<br>6                                         | $\frac{t_1}{3\sqrt{2}}$          | 0                              | $-\frac{1}{3}ikt_1$                         |
| $f_1^{\#1}$                       | $-\frac{ikt_1}{\sqrt{2}}$                 | 0                                 | 0                         | 0                                              | 0                                | 0                              | 0                                           |
| $\omega_1^{\#2}$                  | $-\frac{t_1}{\sqrt{2}}$                   | 0                                 | 0                         | 0                                              | 0                                | 0                              | 0                                           |
| $\omega_1^{\#1}_+ _{\alpha\beta}$ | - <u>t1</u>                               | $-\frac{t_1}{\sqrt{2}}$           | $\frac{ikt_1}{\sqrt{2}}$  | 0                                              | 0                                | 0                              | 0                                           |
| ,                                 | $\omega_{1+}^{\#1} \dagger^{\alpha\beta}$ | $\omega_1^{\#2} + \alpha^{\beta}$ | $f_1^{#1} + \alpha \beta$ | $\omega_{1^{\text{-}}}^{\#1} \dagger^{\alpha}$ | $\omega_{1}^{\#2} +^{\alpha}$    | $f_{1^-}^{\#1} \dagger^\alpha$ | $f_1^{\#2} +^{\alpha}$                      |

|                                             | $\sigma_{2^{+}lphaeta}^{\!\#1}$     | $	au_2^{\#1}_{lphaeta}$              | $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$ |
|---------------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|
| $\sigma_{2^+}^{\sharp 1} \dagger^{lphaeta}$ | $\frac{2}{(1+2k^2)^2t_1}$           | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                                      |
| $	au_{2^{+}}^{\#1}\dagger^{lphaeta}$        | $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | $\frac{4k^2}{(1+2k^2)^2t_1}$         | 0                                      |
| $\sigma_2^{\#1} \dagger^{lphaeta\chi}$      | 0                                   | 0                                    | $\frac{2}{t_1}$                        |

| _                         | $\omega_0^{\#1}$ | $f_{0^{+}}^{#1}$ | $f_{0}^{#2}$ | $\omega_0^{\sharp 1}$ |
|---------------------------|------------------|------------------|--------------|-----------------------|
| $\omega_{0}^{\sharp 1}$ † | 0                | 0                | 0            | 0                     |
| $f_{0}^{#1}\dagger$       | 0                | 0                | 0            | 0                     |
| $f_{0}^{#2} \dagger$      | 0                | 0                | 0            | 0                     |
| $\omega_{0}^{\sharp 1}$ † | 0                | 0                | 0            | $k^2 r_2 - t_1$       |
|                           |                  |                  |              |                       |

| SO(3) irreps                                                                   | #  |
|--------------------------------------------------------------------------------|----|
| $\tau_{0^{+}}^{\#2} == 0$                                                      | 1  |
| $\tau_{0^{+}}^{\#1} == 0$                                                      | 1  |
| $\sigma_{0+}^{\#1} == 0$                                                       | 1  |
| $\tau_{1}^{\#2\alpha} + 2  i  k  \sigma_{1}^{\#1\alpha} == 0$                  | 3  |
| $\tau_{1}^{\#1}{}^{\alpha} == 0$                                               | 3  |
| $\sigma_{1}^{\#1\alpha} == \sigma_{1}^{\#2\alpha}$                             | 3  |
| $\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$ | 3  |
| $\tau_{2+}^{\#1\alpha\beta} - 2\bar{\imath}k\sigma_{2+}^{\#1\alpha\beta} == 0$ | 5  |
| Total #:                                                                       | 20 |

Source constraints

| $\omega_2^{*1}$ $\omega_2^{*1}$ $\omega_2^{*1}$ $\omega_2^{*1}$ | 0                             | 0                           | <u>t1</u><br>2                     |  |
|-----------------------------------------------------------------|-------------------------------|-----------------------------|------------------------------------|--|
| $f_{2}^{\#1}_{\alpha\beta}$                                     | $-\frac{ikt_1}{\sqrt{2}}$     | $k^2 t_1$                   | 0                                  |  |
| $\omega_2^{\#1}{}_{\alpha\beta}$                                | $\frac{t_1}{2}$               | $\frac{ikt_1}{\sqrt{2}}$    | 0                                  |  |
| ,                                                               | $\omega_2^{\#1} + ^{lphaeta}$ | $f_{2}^{#1} + \alpha \beta$ | $\omega_{2}^{\#1} +^{lphaeta\chi}$ |  |

|                            | $\sigma_{0}^{\#1}$ | $	au_{0}^{\#1}$ | $	au_{0}^{\#2}$ | $\sigma_0^{\sharp 1}$     |
|----------------------------|--------------------|-----------------|-----------------|---------------------------|
| $\sigma_{0}^{\#1} \dagger$ | 0                  | 0               | 0               | 0                         |
| $\tau_{0}^{\#1}$ †         | 0                  | 0               | 0               | 0                         |
| $\tau_{0}^{\#2}$ †         | 0                  | 0               | 0               | 0                         |
| $\sigma_{0}^{\#1}$ †       | 0                  | 0               | 0               | $\frac{1}{k^2 r_2 - t_1}$ |



(No massless particles)