EE2011 Engineering Electromagnetics (Semester II of Academic Year 2011/2012)

Yeo SP (eleyeosp) and Chen XD (elechenx) Electrical & Computer Engineering Department

General Overview

special considerations required for designing integrated circuit (IC)

- when packing density keeps increasing for higher functionality
- when operating frequency keeps rising for broader bandwidth

General Overview

- transmission-line and mutual-coupling effects
 - → novel microwave / RF components
- radiation (antennas, propagation, scattering, etc)
- electromagnetic interference / compatibility

coaxial cable

- --- Magnetic field lines
- Electric field lines

twin wires (without shielding) usually d » a

$$E_{r} = \frac{V}{2 \ln \frac{d}{a}} \left(\frac{1}{r} + \frac{1}{d-r} \right)$$

$$H_{\phi} = \frac{I}{2\pi} \left(\frac{1}{r} + \frac{1}{d-r} \right)$$

$$C = \frac{\pi \epsilon}{\ln \frac{d}{a}}$$

$$L = \frac{\mu \ln \frac{d}{a}}{\pi}$$

$$Z_o = \frac{1}{\pi} \sqrt{\frac{\mu}{\epsilon}} \ln \frac{d}{a}$$

planar lines (such as micostrip lines) for use in microwave integrated circuit (MIC) monolithic microwave integrated circuit (MMIC)

extension to multi-conductor lines three-phase lines (EE2022 Electrical Energy Systems)

1. Transmission Lines (CXD)

transmission line equations Smith Chart stub-matching

2. Review of Vector Calculus (YSP)

scalar and vector fields line and surface integrals grad, div and curl operators

3. Electric Fields (YSP)

electric potential (*scalar*)

Coulomb's and Gauss's Laws, Laplace and Poisson equations capacitance and resistance

4. Magnetic Fields (YSP)

magnetic potential (*vector*) Biot-Savart's Law, Ampere's Law and Faraday's Law

5. Electromagnetic Waves (CXD)

mutual and self inductance

Maxwell's Laws, wave equation, Poynting's Theorem plane waves in source-free and lossless medium attenuation losses reflection and transmission at normal incidence

6. Case Studies

industrial applications research developments

Fundamentals of Applied Electromagnetics

6th edition

(International Edition)

Michielssen, Ravaioli and Ulaby

Publisher: Pearson

ISBN: 9780132550086

x Antennas (also covered in textbook)

parameters — radiation impedance, gain, effective area retarded potential radiating structures array antennas

x <u>Electromagnetic Interference</u> (not covered in textbook)

metallic shield — effectiveness, high/low-impedance waves multi-laminar shields aperture leakage inductive / capacitive couplings

Microwave-Related Modules

EE2011	Engineering Electromagnetics
EE3104	Introduction to RF/Microwave Systems and Circuits
EE4101	RF Communications
EE4104	Microwave Circuits and Devices
EE4110	RFIC and MMIC Design
EE4111	HF Techniques

Historical Background

BC centuries magnetostatics

18th century electrostatics / electricity

1820 Oersted: current → magnetic field

(Ampere and Biot-Savart)

1831 Faraday: changing magnetic field → EMF

1862 Maxwell: electromagnetic equations

1888 Hertz: experimental demonstration

1895 Marconi: commercialization (Nobel prize)

WW2 boost to microwaves because of radar

1960s laser (several Nobel Prizes)

1970s optical fiber (recent Nobel Prize for Prof Kao)

Electromagnetic Spectrum

