

VL Deep Learning for Natural Language Processing

16. Contextual Word Embeddings

Prof. Dr. Ralf Krestel AG Information Profiling and Retrieval

Semester Schedule

Week	1st Date	2nd Date	Hand-in at start of week	Hand-out at end of Week
1	Introduction	Python/Keras/Colab	Start of Week	Cha or Week
				4. Assissans
2	NLP	Neural Networks Recap		1. Assignment
3	Text Mining	Text Classification		
4	Word Embeddings I	Word Embeddings II		
5	Word Embeddings III	Assignment 1 Discussion	1. Assignment	
6	Named Entity Recognition	Language Models		2. Assignment
7	Recurrent Neural Networks	Holiday		
8	Long Short-Term Memory	Convolutional Neural Networks		
9	Deap Learning in Practice	Assignment 2 Discussion	2. Assignment	
10	Contextual Word Embeddings	Sequence-to-Sequence Models		3. Assignment
11	Transformer Models	Enhanced Language Models		
12	Natural Language Generation	Deep Reinforcement Learning		
13	No lecture	Assignment 3 Discussion	3. Assignment	

Importance of (Pre-Trained) Word Vectors

- In the beginning: learning word embeddings as part of the final task
 - Not competitive!
- First efforts with pre-rraining
 - Collobert et al. 2011
 - Unsupervised training of WE using 850M tokens (Wikipedia + Reuters)
 - Training lasted 7 weeks
- Breakthrough of DL for NLP
 - The holy grail

Ansatz	POS (ACC)	CHUNK (F1)	NER (F1)	SRL (F1)
SOTA	97.24	94.29	89.31	77.92
Supervised NN	96.37	90.33	81.47	70.99
+ pre-training	97.20	93.63	88.67	74.15
+ hand-crafted	97.29	94.32	89.59	74.72

https://de.wikipedia.org/wiki/Heiliger_Gral

VI DI 4NI P

Leibniz Leibniz Gemeinschaft

SS 2022

Learning Word Representations

From Scratch

- As part of the target task
- Word vectors are additional parameters of the overall model

Pre-training

- Word vectors are learnt independently of a particular task:
 - 1. From a large external, general coprus
 - 2. As a pre-processing step on the (domain-specific) training data

Fine-Tuning

 Initializing of word vectors with pre-trained embeddings and then continuing to learn on (domain-specific) training data

Retrofitting

 Learnt word vectors are improved/adapted using external (semantic) knowledge, e.g. WordNet similaritities

Word Representations

- So far: one representation for one word:
 - Word vectors are trained with RNN or CNN
 - Word2vec, GloVe, fastText
- Two Problems:
 - 1. Words can be ambiguous
 - Always the same representation for a word (type) regardless of the context of its mention (token) is not enough (e.g., "Bank", "Jaguar",...)
 - We need word disambiguation

Vectors Learned from Local and Global Context

Word Representations

- So far: one representation for one word:
 - Word vectors are trained with RNN or CNN
 - Word2vec, GloVe, fastText

Bank_1, bank_2 -> different semantics
Arrival, arriving -> different syntactic, similar semantics
Restroom, toilet, shitter -> different connotation, same semantics

- Two Problems:
 - 1. Words can be ambiguous
 - Always the same representation for a word (type) regardless of the context of its mention (token)
 - One representation per type is not enough (e.g., "Bank", "Jaguar",...)
 - We need word disambiguation
 - But even then, subtle differences in meaning not captured (e.g., FED vs DB)
 - 2. Words have different aspects
 - Semantics, syntactic behaviour, register/connotation

Did We Already Compute Contextualized WEs?

- In an LSTM language model, we input word vectors (possibly trained on only the training data)
- The LSTM layer learns to predict the next word for each word
- These language models generate contextdependent word representations at each position!

Model	Source	Nearest Neighbor(s)
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
BiLM	Chico Ruiz made a spectacular play on Alusik 's grounder	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch , as well as his all-round excellent play .
BiLM	Olivia De Havilland signed to do a Broadway play for Garson	they were actors who had been handed fat roles in a successful play , and had talent enough to fill the roles competently, with nice understatement.

ELMo & ULMFiT

- Dai and Le (2015)
 - Semi-supervised approach: train a NLM (instead of word vectors) on an unlabeled corpus; then use the pre-trained NLM for supervised sequence learning
- Peters et al. (2017)
 - Idea TagLM: We want to capture the meaning of a word in context. To this end, we (additionally) train a task-specific RNN on a small dataset labeled for a particular task, e.g., NER
- Peters et al. (2018) ELMo
- Howard & Ruder (2018) Universal Language Model Fine-tuning for Text Classification (ULMFiT)
 - Same general idea of transferring NLM knowledge (here applied to text classification)

Lerning Goals for this Chapter

- Understand the idea of contextualized word embeddings
- Follow the development of contextualized word embeddings
 - Pre-ELMo
 - ELMo
 - ULMfit

- Relevant chapters:
 - S13 (2019): https://www.youtube.com/watch?v=S-CspeZ8FHc

Topics Today

- 1. TagLM
- 2. ELMo
- 3. ULMFiT

TagLM I

- Semi-supervised approach:
 - Step 1: unsupervised
 - Step 3: supervised, task-specific (here NER)

VI DI 4NI P

TagLM II

$$\mathbf{h}_{k,1} = [\overrightarrow{\mathbf{h}}_{k,1}; \overleftarrow{\mathbf{h}}_{k,1}; \mathbf{h}_k^{LM}].$$

Peters, Matthew, et al. "Semi-supervised sequence tagging with bidirectional language models." Proceedings of ACL. 2017.

CoNLL 2003 NER (en news testb)

Name	Description	Year	F1	

TagLM	LSTM BiLM in BiLSTM tagger	2017	91.93
Ma & Hovy	BiLSTM + char CNN + CRF layer	2016	91.21
Ratinov & Roth	Categorical CRF+Wikipeda+word cls	2009	90.80
Finkel et al.	Categorical feature CRF	2005	86.86
IBM Florian	Linear/softmax/TBL/HMM ensemble, gazettes++	2003	88.76
Stanford	MEMM softmax markov model	2003	86.07

https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003

eibniz eiemeinschaft

Peters et al. (2017): TagLM-"Pre-ELMo"

- Language model trained on 800 million training words of "Billion word benchmark"
- Language model observations
 - An LM trained on supervised data does not help
 - Having a bidirectional LM helps over only "forward", by about 0.2
 - Having a huge LM design (perplexity=30) helps over a smaller model (perplexity=48) by about 0.3
- Task-specific BiLSTM observations
 - Using just the LM embeddings to predict isn't great: 88.17 F1
 - Well below just using an BiLSTM tagger on labeled data

Libriz eibniz emeinschaft

Topics Today

- 1. TagLM
- 2. ELMo
- 3. ULMFiT

ELMo: Embeddings from Language Models I

- Deep contextualized word representations
 - NAACL 2018
 - https://arxiv.org/abs/1802.05365
- Initial breakout version of word token vectors or contextual word vectors
 - Learn word token vectors using long contexts not context windows (here, whole sentence, could be longer)
 - Learn a deep Bi-NLM and use all its layers in prediction

VL DL4NLP 17

Leibniz Gemeinsc

ELMo: Embeddings from Language Models II

ELMo: Embeddings from Language Models III

- Train a bidirectional LM
- Aim at performant but not overly large LM:
 - Use 2 biLSTM layers
 - Use character CNN to build initial word representation (only)
 - 2048 char n-gram filters and 2 highway layers, 512 dim projection
 - Use 4096 dim hidden/cell LSTM states with 512 dim projections to next input
 - Use a residual connection
 - Tie parameters of token input and output (softmax) and tie these between forward and backward LMs

ELMo: Embeddings from Language Models IV

- ELMo learns task-specific combination of biLM layer representations
 - This is an innovation that improves on just using the top layer of the LSTM stack

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

Each token gets 2*2+1 representations

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}$$

- γ^{task} scales overall usefulness of ELMo to task;
- s_j^{task} are j softmax-normalized mixture model weights

ELMo: Use with a Task

- First run biLM to get representations for each word
- Then let (whatever) end-task model use them
 - Freeze weights of ELMo for purposes of supervised model
 - Concatenate ELMo weights into task-specific model

ELMo: Use with a Task

- Concatenate ELMo weights into task-specific model
 - Details depend on task
 - Concatenating into intermediate layer as for TagLM is typical
 - Can provide ELMo representations again when producing outputs, as in a question answering system
- Where to insert ELMo?

Task	Input	Input &	Output	
Task	Only	Output	Only	
SQuAD	85.1	85.6	84.8	
SNLI	88.9	89.5	88.7	
SRL	84.7	84.3	80.9	

 Which layers of the biLM to use and how to weight them?

Task	Baseline	Last Only		layers λ =0.001
SQuAD	80.8	84.7	85.0	85.2
SNLI	88.1	89.1	89.3	89.5
SRL	81.6	84.1	84.6	84.8

ELMo as Part of an NER-Taggers

Breakout version of deep contextual word vectors

Use learned, taskweighted average of 2 hidden layers

$$\mathbf{h}_{k,1} = [\overrightarrow{\mathbf{h}}_{k,1}; \overleftarrow{\mathbf{h}}_{k,1}; \mathbf{h}_k^{LM}].$$

CoNLL 2003 NER (en news testb)

Name Description Year F1

https://www.zdf.de/nachrichten/panorama/sesamstrassenmonster-talkshow-elmo-100.html

ELMo	BiLSTM-CRF + ELMo	2018	92.22
TagLM	LSTM BiLM in BiLSTM tagger	2017	91.93
Ma & Hovy	BiLSTM + char CNN + CRF layer	2016	91.21
Ratinov & Roth	Categorical CRF+Wikipeda+word cls	2009	90.80
Finkel et al.	Categorical feature CRF	2005	86.86
IBM Florian	Linear/softmax/TBL/HMM ensemble, gazettes++	2003	88.76
Stanford	MEMM softmax markov model	2003	86.07

https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003

ELMo Results

Baseline + ELMo

- SQuAD: question answering
- SNLI: textual entailment
- SRL: semantic role labeling
- Coref: coreference resolution
- NER: named entity recognition
- SST-5: sentiment analysis

ELMo: Weighting of Layers

- The two biLSTM NLM layers have differentiated uses/meanings
 - Lower layer is better for lower-level syntax, etc.
 - Part-of-speech tagging, syntactic dependencies, NER
 - Higher layer is better for higher-level semantics
 - Sentiment, Semantic role labeling, question answering, SNLI

First Layer > Second Layer

Second Layer > First Layer

 This seems interesting, but it'd seem more interesting to see how it pans out with more than two layers of network

Exercise

 What are the advantages and disadvantages of contextualized vs. static word embeddings?

SS 2022

VL DL4NLP

Überblick

- TagLM
- ELMo
- ULMFiT

Universal Language Model Fine-Tuning (ULMFiT)

- Howard and Ruder (2018) Universal Language Model Fine-tuning for Text Classification
 - https://arxiv.org/pdf/1801.06146.pdf
 - Same general idea of transferring
 NLM knowledge
 - Here applied to text classification

ULMFiT II

- a) Train LM on big general domain corpus (use biLM)
- Two-fold fine-tuning
 - b) Tune LM on target task data
 - c) Fine-tune as classifier on target task (LM or Softmax are frozen)

ULMFiT Focus

- Use reasonable-size "1 GPU" language model
- A lot of care in LM fine-tuning
- Different per-layer learning rates
- Slanted triangular learning rate (STLR) schedule
- Gradual layer unfreezing and STLR when learning classifier
- Classify using concatenation $[h_T, maxpool(h), meanpool(h)]$

ULMFiT Performance

 Text classifier error rates

Model	Test	Model	Test
CoVe (McCann et al., 2017)	8.2	CoVe (McCann et al., 2017)	4.2
춤 oh-LSTM (Johnson and Zhang,	, 2016) 5.9	TBCNN (Mou et al., 2015)	4.0
∀ Virtual (Miyato et al., 2016)	5.9		3.9
ULMFiT (ours)	4.6	ULMFiT (ours)	3.6

Transfer learning works!

Let's Scale it Up!

It would cost ~\$4,600,000 to train GPT-3 using he cloud

ULMfit	GPT	BERT	GPT-2	GPT-3	cheapest GPU c provider
Jan 2018	June 2018	Oct 2018	Feb 2019	Juni 2020	
Training: 1 GPU day	Training 240 GPU days	Training 256 TPU days ~320–560 GPU days	Training ~2048 TPU v3 days	Training 355 years on Tesla V100 GPU	а

https://lambdalabs.com/blog/demystifying-gpt-3/

GPT-3 Example Applications

Text generation

Question answering

Why it is important to be grate

Q: What is human life expectancy in the United States?

A: Human life expectancy in the United States is 78 years.

Q: Who was president of the United States in 1955?

A: Dwight D. Eisenhower was president of the United States in 1955.

Q: What party did he belong to?

A: He belonged to the Republican Party.

Chatbot

Information

Text classif

Translation

Virtual assis

• ...

The following is a list of companies and the categories they fall into and their most recent market cap

Facebook: 'Social media, Technology' '\$683.95B'

LinkedIn: 'Social media, Technology, Enterprise, Careers' '\$14.2B'

Uber: 'Transportation, Technology, Marketplace' '\$56.3B'

Unilever: 'Conglomerate, Consumer Goods' '\$144.2B'

McDonald's: 'Fast Food, Restaurants' '\$98.6B'

Google: 'Technology, Internet' '\$542.8B'

Apple: 'Technology, Consumer Electronics' '\$724.8B'

VL DL4NLP

Leibniz Gemeinschaft

SS 2022

GPT-3 in the News

SPORT ENTERTAINMENT SOAPS Elon Musk-founded OpenAI builds artificial intelligence so powerful it must be kept locked up for the good of humanity Jasper Hamill Friday 15 Feb 2019 10:06 am 295 Scientists at an organisation founded and sponsored by Elon Musk have announced the creation of a terrifying artificial intelligence that's so smart they refused to release it to the public. OpenAI's GPT-2 is designed to write just like a human and is an impressive leap forward capable of penning chillingly convincing text. OpenAI wrote: 'Due to our concerns about malicious applications of the technology, we are not releasing the trained model. Elon is one of the world's most famous doom-mongers and fears the rise of the machines will end

METRO

https://metro.co.uk/2019/02/15/elon-musks-openai-builds-artificial-intelligence-powerful-must-kept-locked-good-humanity-8634379/

VL DL4NLP

CoNLL 2003 NER (en news testb)

Name	Description	Year	F1	
------	-------------	------	----	--

BERT Large	Transformer bidi LM + fine tune	2018	92.8
BERT Base	Transformer bidi LM + fine tune	2018	92.4
ELMo	BiLSTM-CRF + ELMo	2018	92.22
TagLM	LSTM BiLM in BiLSTM tagger	2017	91.93
Ma & Hovy	BiLSTM + char CNN + CRF layer	2016	91.21
Ratinov & Roth	Categorical CRF+Wikipeda+word cls	2009	90.80
Finkel et al.	Categorical feature CRF	2005	86.86
IBM Florian	Linear/softmax/TBL/HMM ensemble, gazettes++	2003	88.76
Stanford	MEMM softmax markov model	2003	86.07

https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003

Libriz eibniz emeinschaft

RTa (Microsoft)	Optimized BERT + fine tune
RTa (Facebook)	Optimized BERT + fine tune

2021 96.1 2021

Name	Description	Year	F1
LUKE	Entity-aware self attention	2020	94.3
ACE	Automated concat. of embeddings + doc context	2020	94.14
Strakova et al.	LSTM-CRF+ELMo+BERT+Flair	2019	93.38
Flair (Zalando)	Character-level language model	2018	93.09
BERT Large	Transformer bidi LM + fine tune	2018	92.8
BERT Base	Transformer bidi LM + fine tune	2018	92.4
ELMo	BiLSTM-CRF + ELMo	2018	92.22
TagLM	LSTM BiLM in BiLSTM tagger	2017	91.93
Ma & Hovy	BiLSTM + char CNN + CRF layer	2016	91.21
Ratinov & Roth	Categorical CRF+Wikipeda+word cls	2009	90.80
Finkel et al.	Categorical feature CRF	2005	86.86
IBM Florian	Linear/softmax/TBL/HMM ensemble, gazettes++	2003	88.76
Stanford	MEMM softmax markov model	2003	86.07

https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003

DeBEF

Lerning Goals for this Chapter

- Understand the idea of contextualized word embeddings
- Follow the development of contextualized word embeddings
 - Pre-ELMo
 - ELMo
 - ULMfit

- Relevant chapters:
 - S13 (2019): https://www.youtube.com/watch?v=S-CspeZ8FHc

Literature

- Collobert, Ronan, et al. "Natural Language Processing (Almost) from Scratch."
 Journal of Machine Learning Research 12 (2011): 2493-2537.
- Faruqui, Manaal, et al. "Retrofitting word vectors to semantic lexicons."
 In Proc. of NAACL, 2015.
- Dai, Andrew M., and Quoc V. Le. "Semi-supervised sequence learning." In Proc. of NIPS, 2015.
- Peters, Matthew, et al. "Semi-supervised sequence tagging with bidirectional language models." In *Proc. of ACL*, 2017.
- Peters, Matthew, et al. "Deep Contextualized Word Representations."
 In Proc. of NAACL, 2018.

SS 2022

 Howard, Jeremy, and Sebastian Ruder. "Universal Language Model Fine-tuning for Text Classification." In *Proc. of ACL*, 2018.

