

Estimating counterfactual treatment outcomes over time through adversarially balanced representations

The **Alan Turing** Institute

Ioana Bica*, † , Ahmed M. Alaa † , James Jordon*, & Mihaela van der Schaar $^{+,\dagger,\ddagger}$

*University of Oxford, [‡]The Alan Turing Institute, [†]UCLA, ⁺University of Cambridge

This work was supported by the Alan Turing Institute, Office of Naval Research and the National Science Foundation.

INTRODUCTION

Problem

- Estimate the effects of time-dependent treatments from observational data.
- Need to handle the bias from time-dependent confounders: patient covariates that are affected by past treatments which then influence future treatments and outcomes.

Main Ideas

- Construct treatment invariant representations at each timestep in order to reduce the bias from time-dependent confounders.
- Use domain adversarial training (Ganin et al., 2016) to trade-off between building balancing representations and predicting patient outcomes.

PROBLEM FORMULATION

Observational dataset

$$\mathcal{D} = \left\{ \left\{ \mathbf{x}_{t}^{(i)}, \mathbf{a}_{t}^{(i)}, \mathbf{y}_{t+1}^{(i)} \right\}_{t=1}^{T^{(i)}} \cup \left\{ \mathbf{v}^{(i)} \right\} \right\}_{i=1}^{N}$$

for *N* independent patients consisting of:

- ullet Time-dependent covariates $\mathbf{X}_t \in \mathcal{X}_t$ and baseline features $V \in \mathcal{V}$.
- Time-dependent treatments $A_t \in \{A_1, \dots A_K\}$.
- Observed outomes $\mathbf{Y}_{t+1} \in \mathcal{Y}_{t+1}$.

Counterfactual estimation

- Use potential outcomes framework (Neyman, 1923; Rubin, 1978; Robins & Hernán, 2008).
- Estimate patient outcomes for any sequence of treatments: $\bar{\mathbf{a}}(t, t + \tau - 1) = [\mathbf{a}_t, \dots \mathbf{a}_{t+\tau-1}]$:

$$\mathbb{E}(\mathbf{Y}_{t+\tau}[\bar{\mathbf{a}}(t,t+\tau-1)]|\bar{\mathbf{H}}_t),$$

given patient history $\bar{\mathbf{H}}_t = (\bar{\mathbf{X}}_t, \bar{\mathbf{A}}_{t-1}, \mathbf{V})$.

- Assumptions: consistency, positivity, sequential strong ignorability (no hidden confounders).
- History \mathbf{H}_t contains time-varying confounders X_t that bias the treatment assignment A_t .

TRAINING CRN

Adversarial training procedure for each timestep t:

• Treatment (domain) loss:

$$\mathcal{L}_{t,a}^{(i)}(\theta_r, \theta_a) = -\sum_{j=1}^{K} \mathbb{I}_{\{\mathbf{a}_t^{(i)} = a_j\}} \log(G_a^j(\Phi(\bar{\mathbf{H}}_t; \theta_r); \theta_a))$$

Outcome loss:

$$\mathcal{L}_{t,y}^{(i)}(\theta_r, \theta_y) = \|\mathbf{Y}_{t+1}^{(i)} - (G_y(\Phi(\bar{\mathbf{H}}_t; \theta_r), \theta_y))\|^2$$

• Overall objective:

$$\mathcal{L}_{t}^{(i)}(\theta_r, \theta_y, \theta_a) = \sum_{i=1}^{N} \mathcal{L}_{t,y}^{(i)}(\theta_r, \theta_y) - \lambda \mathcal{L}_{t,a}^{(i)}(\theta_r, \theta_a)$$

where λ controls this trade-off between treatment discrimination and outcome prediction.

RELATED WORK

- Use inverse probability of treatment weighting (Robins et al., 2000; Lim et al., 2018) as part of the training objective.
- Creates a pseudo-population where the probability of treatment does not depend on the timevarying confounders.
- Problems: numerically unstable due to extreme weights, high variance.

COUNTERFACTUAL RECURRENT NETWORK (CRN)

Encoder for building the balancing representation

Decoder for sequence prediction of treatments effects

- Encoder builds a representation of the patient history $\Phi(\bar{\mathbf{H}}_t)$ that is both invariant to the treatment given at timestep t, A_t , and that achieves low error in estimating the outcome Y_{t+1} .
- Decoder updates the balancing representation while estimating counterfactual outcomes for a sequence of future treatments.

OF TUMOUR GROWTH

The volume of tumour t+1 days after diagnosis is modelled as follows:

$$V(t+1) = \left(1 + \underbrace{\rho \mathrm{log}\left(\frac{K}{V(t)}\right)}_{\text{Tumor growth}} - \underbrace{\beta_c C(t)}_{\text{Chemotherapy}} - \underbrace{\left(\alpha_r d(t) + \beta_r d(t)^2\right)}_{\text{Radiotherapy}} + \underbrace{e_t}_{\text{Noise}}\right) V(t).$$

Time-varying confounding is introduced by modelling chemotherapy and radiotherapy assignments as Bernoulli random variables, with probabilities p_c and p_r depending on the tumour diameter:

$$p_c(t) = \sigma \left(\frac{\gamma_c}{D_{\text{max}}} (\bar{D}(t) - \delta_c) \right)$$

$$p_c(t) = \sigma \left(\frac{\gamma_c}{D_{\text{max}}} (\bar{D}(t) - \delta_c) \right) \qquad p_r(t) = \sigma \left(\frac{\gamma_r}{D_{\text{max}}} (\bar{D}(t) - \delta_r) \right)$$

The parameters γ_c , γ_r control the amount of time-dependent confounding.

RECOMMENDING THE RIGHT TREATMENT AND TIMING

		$\gamma_c = 5, \gamma_R = 5$			$\gamma_c = 5, \gamma_R = 0$			$\gamma_c = 0, \gamma_R = 5$		
	$\mid au$	CRN	RMSN	MSM	CRN	RMSN	MSM	CRN	RMSN	MSM
Treatment	3	83.1%	75.3%	73.9%	83.2%	78.6%	77.1%	92.9%	87.3%	74.9%
Accuracy	4	82.5%	74.1%	68.5%	81.3%	77.7%	73.9%	85.7%	83.8%	74.1%
-	5	73.5%	72.7%	63.2%	78.3%	77.2%	72.3%	83.8%	82.1%	72.8%
	6	69.4%	66.7%	62.7%	79.5%	76.3%	71.8%	78.6%	69.7%	64.5%
Treatment	3	79.6%	78.1%	67.6%	80.5%	76.8%	77.5%	79.8%	75.7%	60.6%
Timing	$\mid 4 \mid$	73.9%	70.3%	63.1%	79.0%	77.2%	73.4%	75.4%	71.4%	58.2%
Accuracy	5	69.8%	68.6%	62.4%	78.3%	73.3%	63.6%	66.9%	31.3%	29.5%
-	6	66.9%	66.2%	62.6%	73.5%	72.1%	63.9%	65.8%	24.2%	15.5%