Trabalho de Álgebra Linear

Professora: Aline Brum Seibel

Alunos: Luis Alexandre Ferreira Bueno

Luiz Filipe de Jesus Nicolas Timoteu Cuerbas Vitor Bruno de Oliveira Barth

Conteúdos: Matrizes canônicas, transformações lineares, operadores lineares, autovalores, autovetores e polinômios característicos

1. Matrizes canônicas e transformações lineares

- I) Isomorfismo: Seja $\phi:V\to W$ uma transformação linear. Para que ela exista, é necessário que sejam atendidas algumas condições:
 - a) V e W precisam estar sobre o mesmo plano
- b) ϕ precisa ser bijetora, ou seja, todo elemento em W
 precisa ser necessáriamente e exclusivamente a imagem de um elemento em V
 - c) ϕ deve obedecer as regras de soma e multiplicação por escalar:

$$\overrightarrow{v_1}, \overrightarrow{v_2} \in V, \ \phi(\overrightarrow{v_1}), \phi(\overrightarrow{v_2}) \in W \ e \ c \in \mathbb{R}$$

i)
$$\phi(\vec{v_1}) + \phi(\vec{v_2}) = \phi(\vec{v_1} + \vec{v_2})$$

ii)
$$\phi(c*\overrightarrow{v_1}) = c*\phi(\overrightarrow{v_1})$$

- II) Homomorfismo: Denomina-se uma transformação linear homomórfica a transformação $T:V\to W$ em que a função T não é bijetora.
- III) Base de uma Transformação: Seja V um espaço vetorial finito onde n=dim(V) e $\beta=\{\overrightarrow{v_1},\overrightarrow{v_2},...,\overrightarrow{v_n}\}$ a base deste espaço. Sendo assim, posso escrever todos os vetores deste espaço através da combinação $\overrightarrow{v}=c_1\overrightarrow{v_1}+c_2\overrightarrow{v_2}+...+c_n\overrightarrow{v_n}$, onde c pertence, claro, ao mesmo plano que os o espaço vetorial.

Neste caso,
$$\begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
 é a matriz das coordenadas de V .

Se tenho uma a transformação linear $T:V\to W$, assim como a base de V, consigo dizer onde estão todos os vetores de T(V), pois segundo as regras c.i) e c.ii) podemos dizer que $T(\overrightarrow{v}) = T(c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \ldots + c_n\overrightarrow{v_n}) = T(c_1\overrightarrow{v_1}) + T(c_2\overrightarrow{v_2}) + \ldots + T(c_n\overrightarrow{v_n}) = c_1T(\overrightarrow{v_1}) + c_2T(\overrightarrow{v_2}) + \ldots + c_nT(\overrightarrow{v_n})$

- IV) Imagem e núcleo de uma Transformação: Sendo $T:V\to W,\ Im(T)=\{\overrightarrow{w}\in W|\ \overrightarrow{w}=T(\overrightarrow{v})\ \text{para alguns }\overrightarrow{v}\in V\}$, ou seja, a Imagem de uma Transformação corresponde ao subespaço vetorial de W que possui elementos dados por $T(\overrightarrow{v})$. Sendo assim, logicamente $Im(T)\leq W$.
- Já o núcleo de uma Transformação (denotado por Ker(T)) é dado por $Ker(T) = \{\vec{v} \in V | T(\vec{v}) = 0\}$. Se a transformação é injetora, o núcleo é trivial, afinal T(0) deve obrigatóriamente pertencer à Im(T). Porém caso ela não seja injetora, o núcleo poderá ser um conjunto vetorial. Sendo assim, obrigatoriamente, Ker(T) é um subespaço vetorial de V

V) Exemplos:

- 2. Operadores lineares
- 3. Autovalores e autovetores
- 4. Polinômios característicos
- 5. Exercícios
 - 1) Verifique se as seguintes afirmações são verdadeiras ou falsas
 - (a) Qualquer operador linear em V é tal que $V = Ker(T) \oplus Im(T)$

(b) Se $T:P_2\to\mathbb{R}^2$ uma transformação linear definida por $T:(at^2+bt+c)=(a-b+c,2a+b-c),$ então $\overrightarrow{p}(t)=5t+5\in Ker(T)$

(c) Se Ker(T) é gerado por três vetores $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}$, então a imagem de qualquer operador linear $T: \mathbb{R}^5 \to \mathbb{R}^5$ tem dimensão 2

(d) A aplicação linear $T:M(2,2)\to\mathbb{R}$ definida por $T\begin{pmatrix}\begin{bmatrix} a&b\\c&d\end{bmatrix}\end{pmatrix}=2a+c-d$ é uma transformação linear

- (e) Existem transformações lineares $T: P_1 \to P_3$ sobrejetoras
- 2) Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por T(x,y,z) = (x-y+2z,4x+3y-z) determine:
 - (a) A matriz canônica de T
 - (b) O núcleo de T, uma base e a dimensão
 - (c) A imagem de T, uma base e a dimensão
- 3) Determine a transformação linear que leva os vetores $\overrightarrow{c_1}, \overrightarrow{c_2}, \overrightarrow{c_3}$ nos vetores $\overrightarrow{w_1} = (1,0,0)$, $\overrightarrow{w_2} = (3,1,0)$ e $\overrightarrow{w_3} = (1,2,4)$ respectivamente. e responda se esta transformação linear é um isomorfismo
- 4) Dada a matriz canônica $[T]=\begin{bmatrix}1&0&0\\2&1&0\\3&-2&-1\end{bmatrix}$ de um operador linear em \mathbb{R}^3 , verifique se T é um isomorfismo e justifique se $\overrightarrow{w}=(2,-1,0)\in Im(T)$ e se $\overrightarrow{u}=(0,3,4)\in Ker(T)$?

Bibliografia: BOLDRINI, Jose Luís. *Álgebra Linear*. 3ª Edição. COELHO, Flávio Uhoa. *Um Curso de Álgebra Linear*. 2ª Edição. WIKIBOOKS. *Álgebra Linear*. Edição de 24/01/2014.