Estacionariedad débil en registros polisomnográficos de adultos mayores, como posible marcador de deterioro cognitivo

Julio Cesar Enciso Alva

Abstract

Los avances médicos del último siglo se han traducido en un incremento tanto en la esperanza de vida como en la calidad de la misma. Sin embargo, también se ve incrementada la presencia de enfermedades no-transmisibles tipificadas esterotipadas como propias de la edad, entre ellas la demencia. Por otro lado, los trastornos del sueño han sido señalados recientemente como posiblemente relacionados con el deterioro cognitivo. Todavía son incipientes las investigaciones para identificar los factores de riesgo modificables asociados a la demencia. [10]

En este trabajo se busca identificar patrones específicos en la actividad cerebral del adulto mayor con PDC, y que pudieran servir como marcadores neurológicos para un diagnóstico temprano del mismo. A través de un estudio de casos *a posteriori* se investigan registros de actividad cerebral durante el sueño (registros PSG) en busca de caraterísticas estadísticas específicas (estacionariedad débil) para adultos mayores con PDC diagnósticado —a través de una batería de test neuropsicológicos— además de individuos control.

Acrónimos

 \mathbf{EEG} – Electroencefalograma / Electroencefalografía

EMG Electromiograma / Electromiografía

 ${f EOG}$ Electrooculograma / Electrooculografía

MCI Deterioro Cognitivo Leve (Mild Cognitive Impairment)

MOR Movimientos Oculares Rápidos

PSG Polisomnograma / Polisomnografía

PDC Posible Deterioro Cognitivo

Índice general

1.	Ant	eceder	ntes	6
	1.1.	Justifi	cación	7
	1.2.	Pregui	nta de investigación	8
		1.2.1.	Hipótesis	8
		1.2.2.	Objetivo general	8
		1.2.3.	Objetivos específicos	8
	1.3.	Conce	ptos, fisiología	10
		1.3.1.	Adulto mayor	10
		1.3.2.	El sueño	11
		1.3.3.	Electroencefalograma	11
		1.3.4.	Ritmos de sueño en el EEG	14
		1.3.5.	Etapas del sueño	17
	1.4.	Conce	ptos, matemáticas	20
		1.4.1.	Estacionariedad débil	20
		1.4.2.	El espectro de una serie de tiempo	23
		1.4.3.	Test Priestley-Subba Rao (PSR)	25
		1.4.4.	El espectro evolutivo	25
		1.4.5.	El estimador de doble ventana	26
0	N / L - 4	. 1.1.		0.1
2.		odolog		31
	2.1.	Partic	ipantes	31
	2.2.	Prueb	as sobre deterioro cognitivo	32
	2.3.	Electro	oencefalógrafo utilizado	32

	2.4.	Registro de PSG	33
	2.5.	Clasificación de las etapas de sueño	34
	2.6.	Aplicación del test de Priestley-Subba Rao (PSR) $\ .$	35
3.	Res	ultados	39
	3.1.	Compilados gráficos	40
	3.2.	Discusión	68
	3.3.	Conclusiones	69
	3.4.	Trabajo a futuro	70
4.	(Re	ubicar)	71
	4.1.	EEG estacionario	73
Α.	Cód	igo en R del test PSR	74

Capítulo 1

Antecedentes

1.1. Justificación

El MCI se define como "un síndrome caracterizado por una alteración adquirida y prolongada de de una o varias funciones cognitivas, que no corresponde a un síndrome focal y no cumple criterios suficientes de gravedad para ser calificada como demencia" [30]. De acuerdo a la Encuesta Nacional de Salud y Nutrición (ENSANUT) efectuada en México 2002, se estima que existen 800,000 adultos mayores [35].

El cuidado de enfermedades crónicas en la población de edad avanzada representa un gran peso econónomico y de recursos humanos, que recae sobre el sistema de salud y los familiares de aquellos afectados. La mejor o menor calidad de vida del adulto mayor depende tanto de la calidad de los servicios de salud a los que tenga acceso, como de una valoración adecuada de su cuadro clínico, para un tratamiento acorde. Por ello, cobra importancia un diagnóstico temprano del deterioro cognitivo que disminuya el risgo de su avance irreversible a demencia.

En este trabajo se retoman los datos adquirido por [citar]; en aquél estudio se analizaron posibles cambios en la estructura funcional del cerebro para adultos mayores con PDC, con respecto a individuos sanos; se reporta que estos cambios son manifiestos durante el sueño profundo –etapa denominada sueño MOR o fase R– a través de la actividad eléctrica del cerebro registrada desde el cuero cabelludo¹. En su primera etapa, los individuos se sometieron a una batería de pruebas neuropsicológicas para diagnosticar PDC y depresión geriátrica², que a su vez fungieron como criterios de inclusión para una segunda fase del estudio. En la etapa posterior, los individuos se sometieron a un estudio de la actividad eléctrica cerebral durante el sueño; se realizaron registros de EEG en 22 sitios de muestreo, adicionalmente se midió actividad ocular y muscular a través de EOG y EMG –respectivamente– con el fin de detectar adecuadamente las etapas clínicas del sueño [16]. El registro simultáneo de estas señales durante el sueño recibe el nombre de PSG.

En este trabajo se modelan matemáticamente los registros de PSG como series de

¹Ver parte de Conceptos fisiológicos para más información

²Para más detalles, ver la parte de Metodología

tiempo³, y se investigan algunas de propiedades estadísticas dinámicas (dependientes del tiempo) en cuanto puedan existir diferencias entre los registros obtenidos de sujetos con PSG, con respecto a individuos sanos. Con respecto al anterior estudio, este trabajo busca un mejor entendimiento –desde las matemáticas– de las diferencias encontradas entre individuos sanos y con PSG; además, se ha buscado generar una metodología conceptualmente accesible y computacionalmente rápida que replique los resultados encontrados.

1.2. Pregunta de investigación

Considerando los registros de PSG como series de tiempo, ¿es plausible usar sus propiedades estadísticas dependientes del tiempo, específicamente la estacionariedad débil, como marcadores para el diagnóstico clínico del DC –en alguna de sus fases–en adultos mayores?

1.2.1. Hipótesis

Existen diferencias cuantificables estadísticamente significativas entre las propiedades estadísticas dependientes del tiempo, de los registros de PSG durante etapas específicas de sueño, en adultos mayores con PDC respecto a individuos control.

1.2.2. Objetivo general

Deducir a partir de pruebas estadísticas formales las propiedades estadísticas de registros de PSG en adultos mayores con PDC, así como individuos control.

1.2.3. Objetivos específicos

 Investigar las definiciones de estacionariedad⁴ y sus posibles consecuencias dentro de un modelo para los datos considerados

³Ver la parte de Conceptos matemáticos para más detalles

⁴Estacionariedad fuerte, estacionariedad de orden finito, estacionariedad local, cuasi-estacionariedad, ciclo-estacionariedad, procesos estocásticos ergódicos

- Investigar en la literatura cómo detectar si es plausible que una serie de tiempo dada sea una realización de un proceso débilmente estacionario, y bajo qué supuestos es válida esta caracterización
- Usando los análisis hallados en la literatura para determinar si las series de tiempo, obtenidas a partir de los datos considerados, provienen de procesos debilmente estacionarios. Revisar si la información obtenida en los diferentes sujetos muestra diferencias entre sujetos con y sin PDC

1.3. Conceptos, fisiología

En esta sección se exponen conceptos propios de la biología y que ayudarán a definir al sujeto de estudio: registros de PSG en adultos mayores con y sin PDC. Se pretende que la exposición sea accesible aún sin una preparación especializada en fisiología, especialmente considerando que el autor pertenece a tal grupo.

1.3.1. Adulto mayor

Se define como adulto mayor a un individuo de 60 años o más que habite un país en vías de desarrollo, o 65 años en países desarrollados [14]. En esta etapa el organismo sufre cambios fisioloógicos y psicológicos que dificultan la capacidad de adaptación al ambiente, teniendo como consecuencia una mayor suceptibilidad a padecer enfermedades y morir en consecuencia [14].

El envejecimiento considerado normal viene determinado por una serie de procesos moleculares, celulares, fisiológicos y psicológicos que conducen directamente al deterioro de funciones cognitivas, específicamente en la atención y memoria [24, 27]. La funcionalidad durante la vejez no es homogénea en general; se relaciona con el estilo de vida, los factores de riesgo, el acceso a la educación y las acciones de promoción a la salud realizadas en edades más tempranas [25, 32].

En un principio se consideraba que el envejecimiento cerebral ocurría fundamentalmente por una muerte neuronal programada [7], sin embargo, estudios realizados con tejido cerebral post mortem de adultos mayores que en vida fueron sanos, mostraron que dicha muerte neuronal no alcanza un 10 % en su totalidad [11]. En este sentido, los cambios morfolgicos que sufren las neuronas durante el envejecimiento son abundantes, observándose una importante disminución de la arborización dendrítica así como en la densidad y volumen [14]. Con el paso del tiempo, la organización anátomo-funcional del cerebro sufre modificaciones que traen como consecuencia la afectación de diferentes capacidades cognitivas, sin embargo, la vulnerabilidad de los circuitos neuronales ante los procesos que ocurren durante el envejecimiento no suceden de forma homogénea en todo el cerebro [14].

1.3.2. El sueño

El sueño se define como "un proceso vital cíclico complejo y activo, compuesto por varias fases y que posee una estructura interna característica, con diversas interrelaciones en los sistemas hormonales y nerviosos" [12]. El sueño en el ser humano se puede caracterizar por las siguientes propiedades [2]

- 1. Disminución de conciencia y reactividad a estímulos externos
- 2. Fácilmente reversible⁵
- 3. Inmovilidad y relajación muscular
- 4. Periodicidad típica circadiana (diaria)
- 5. Los individuos adquieren una postura estereotipada
- 6. La privación induce alteraciones conductuales y fisiológicas, además de que genera una "deuda" acumulativa

1.3.3. Electroencefalograma

La actividad eléctrica en el cerebro de animales ya había sido descrita desde finales del siglo XIX, pero se le atribuye al psiquiatra alemán Hans Berger ser el primero en analizar este fenómeno sistemáticamente además de acuñar el término "electroencefalograma" (EEG) para referirse a las fluctuaciones en los potenciales de acción registradas en el cerebro. De manera convencional, la actividad eléctrica del cerebro se registra en tres locaciones diferentes: en la corteza cerebral expuesta (electrocorticograma, ECoG), a través de agujas incrustadas en el tejido nervioso (registro profundo), o el cuero cabelludo (EEG).

Así la actividad eléctrica cerebral se mida en el cuero cabelludo, la corteza cerebral o las profundidades del mismo, las fluctuaciones de potenciales registrados representan una superposición de potenciales de campo producidos por una amplia variedad de generadores de corriente dentro de un medio conductor volumétrico –es

⁵Lo cual lo diferencia de otros estados patológicos como el estupor y el coma

decir, los elementos neuronales activos generan, cada cual, corrientes que son conducidas y disipada a través del espacio. A su vez, estos generadores de campos eléctricos corresponden a agregados de elementos neuronales con interconexiones complejas: dendritas, somas y axones. A ello hay que adicionar que la arquitectura cerebral es altamente no homogénea.

Debido a que los axones en la corteza cerebral tienen orientaciones muy diversas –con respecto a la superficie— y a que disparan de manera asíncrona, el aporte neto de estos campos al potencial registrado es negligible bajo condiciones normales. Una excepción, muy importante, ocurre en caso de una respuesta evocada por un estímulo simultáneo (síncronizado) del del núcleo talámico o de las aferentes nerviosas. Estas respuestas sincronizadas suelen tener una amplitud relativamente alta, y son referidas como 'potenciales evocados'.

EEG clínico

El sistema más usado para la colocación de los electrodos en el EEG con fines clínicos es el 'International Federation 10–20 system' [16, 18] mostrado en la figura 1-1. Este sistema usa varios referentes anatómicos estandarizados para la ubicación de los electrodos.

La representación de los canales de EEG es referida como un **montaje** En un montaje bipolar, cada canal mide la diferencia entre dos electrodos adyacentes. En un monntaje referencial, cada canal mide la diferencia entre un electrodo y un electrodo de referencia, usualmente la oreja. ⁶ Aunque los mismos eventos eléctricos se registran en cada uno de los montajes, aparecen en un diferente formato según el caso. Los potenciales cambiantes son amplificados por amplificadores diferenciales acoplados de alta ganancia. La señal resultante es grabada y graficada.

En el EEG clínico de rutina, los electrodos son un problema: deben ser pequeños, deben estar fijados al 'scalp' de manera sencilla con una distorsión mínima debido al

 $^{^6}$ Existen otros tipos de montaje, como el promedio (promedio sobre electrodos adyacentes, como los sistemas $5\,\%$ y $10\,\%$) o el Laplaciano (parecido al promedio, pero usando un filtrado basado en pesos relacionados con la distancia entre electrodos). Sólo hablo del referencial y diferencial porque uno se usa en el estudio y otro es importante históricamente.

Figura 1-1: El sistema 10–20, recomendado por la International Federation of EEG Societies.

cuero cabelludo, deben ser cómodos, y deben permanecer en el mismo sitio por largos periodos de tiempo. El [encargado del registro] prepara la superficie del 'scalp' desengrasando el área de registro limpiándola con alcohol, aplica una pasta conductora, pega los electrodos no-polarizables (Ag/AgCl) al scalp con pegamento (coloidón), y los sostiene en el sitio con cintas de caucho –o se usa una gorra de caucho que contiene todos los electrodos.

El EEG usualmente se registra con el sujeto despierto pero relajado, descansando en una cama con los ojos cerrados; la posición debe ser tal que los artefactos debidos al movimiento de electrodos en el 'scalp' sean mínimas. La actividad muscular, de la cara, cuello, orejas, etc., es quizá la forma más sutil de contaminación de los registros de EEG cuando se busca actividad espontánea del cerebro durante una actividad, o la actividad evocada por estímulos sensoriales. Por ejemplo, el espectro de frecuencias del potencial de campo producido por músculos faciales medianamente contraídos, incluye componentes de frecuencia que bien cuadran en el rango usual del EEG (0.5–100 Hz). Una vez se ha conseguido el estado de reposo en un adulto normal, sus registros de scalp muestran un ritmo alfa dominante en el área parietal-occipital,

mientras que en área frontal ha un ritmo beta con baja amplitud y alta frecuencia –además del ritmo alfa. En un sujeto normal hay cierta simetría entre los registros de los hemisferios derecho e izquierdo. La variedad de artefactos conocidos es muy basta.

En general hay una relación entre el grado de actividad cerebral y la 'frecuencia promedio' del EEG: la frecuancia incrementa progresivamente cuando hay altos grados de actividad. Por ejemplo, las ondas delta se encuentran frecuentemente durante el estupor, anestesia quirúrgica, y sueño; las ondas theta son comunes en infantes; las ondas alfa ocurren en estado de relajación; las ondas beta aparecen durante actividad mental intensa. Sin embargo, durante periodos de actividad mental las ondas se vuelven más asíncronas que sincronizadas, de modo que la magnitud del potencial integrado de superficie decrece a pesar de la alta actividad cortical.

1.3.4. Ritmos de sueño en el EEG

Los registros de EEG desde el cuero cabelludo muestran una actividad eléctrica oscilatoria continua y cambiante. Tanto la intensidad como los patrones de esta actividad están determinados por los eventos de excitación conjunta del cerebro, resultante de las funciones en el sistema reticular de activación del tallo cerebral [4]. Estas 'ondas' observadas en los registros de potenciales eléctricos en el cerebro (1-2) son referidas como **ondas cerebrales**, mientras que

La frecuencia de las ondas cerebrales varía entre 0.5 y 100 Hz, se ha identificado que su composición está fuertemente relacionada con el grado de actividad cerebral, habiendo –por ejemplo– diferencias claras entre registros durante vigilia y sueño. Aunque la mayor parte del tiempo el EEG es irregul y no muestra patrones claros, es relativamente común que muestre ondas cerebrales relativamente organizadas; para su estudio, estas se clasifican en cuatro grandes grupos: alfa, beta, gamma, delta.

Las ondas alfa ocurren en frecuencias entre 8 y 13 Hz. Se encuentran en los EEG –bajo condiciones normales– de sujetos despiertos en un estado de quietud del pensamiento. Estas ondas ocurren más intensamente en la región occipital, pero también pueden ser registradas en las regiones frontal y parietal. Su voltaje aproximado está

Figura 1-2: (a) Diferentes tipos de ondas normales en el EEG. (b) Supresión del ritmo alfa debido a una descarga dessincronizada cuando el paciente abre los ojos. [Estos gráficos serán reconstruidos]

entre 20 y 200 mV. Cuando el sujeto duerme, las ondas alfa desaparecen completamente. Cuando el sujeto está despierto y su atención se dirige a una actividad mental específica, las ondas alfa son reemplaxadas por ondas dessincronizadas de mayor frecuencia y menor voltaje.

Las ondas beta ocurren en el rango de frecuencias de 14 a 30 Hz. Normalmente se registran en las regiones parietal y frontal. A veces se les divide en dos tipos: beta I y beta II. Las ondas beta I tienen una frecuencia de cerca del doble a las ondas alfa, y son afectadas de manera similar por la actividad mental —desaparecen y son reemplazadas por ondas dessincronizadas de menor amplitud. Las ondas beta II, en cambio, aparecen durante una activación intensa del sistema nervioso central y durante tensión.

Las ondas theta tienen frecuencias entre 4 y 7 Hz. Ocurren principalmente en las regiones parietal y temporal en niños, pero pueden aparecer en algunos adultos durante estrés emocional, sobre todo durante periodos de decepsión y frustración.

Las ondas delta incluyen todas las ondas del EEG 'abajo de' 3.5 Hz. Ocurren generalmente en el sueño profundo en infantes, y después de enfermedades orgánicas serias del cerebro. También pueden ser registradas en cerebros de animales a los cuales se ha hecho transsección subcortical, produciendo una separación funcional entre la corteza cerebral y el sistema reticular de activación del tallo cerebral.

When an individual in a relaxed, inattentive state becomes drowsy and falls asleep, the alpha rhythm is replaced by slower, larger waves (1-3, [17]). In deep sleep, very large, somewhat irregular delta waves are observed. Inter- spersed with these waves—during moderately deep sleep—are bursts of alpha- like activity called sleep spindles. The alpha rhythm and the patterns of the drowsy and sleeping subject are synchronized, in contrast with the low-voltage desynchronized, irregular activity seen in the subject who is in an alert state. The high-amplitude, slow waves seen in the EEG of a subject who is asleep are sometimes replaced by rapid, low-voltage irregular activity resembling that obtained in alert subjects. However, the sleep of a subject with this irregular pattern is not interrupted; in fact, the threshold for arousal by sensory stimuli is elevated. This condition has therefore come to be called paradoxi-

Figura 1-3: Los cambios en el EEG que ocurren durante el sueño en un sujeto. Las marcas de calibración corresponden a 50 mV. [Estos gráficos serán redibujados]

cal sleep. During paradoxical sleep, the subject exhibits rapid, roving eye movements. For this reason, it is also called rapid-eye-movement sleep, or REM sleep. Conversely, spindle or synchronized sleep is frequently called nonrapid-eye- movement (NREM), or slow-wave sleep. Human subjects aroused at a time when their EEG exhibits a paradoxical (REM) sleep pattern generally report that they were dreaming, whereas individuals wakened from spindle sleep do not. This observation and other evidence indicate that REM sleep and dreaming are closely associated. It is interesting that during REM sleep, there is a marked reduction in muscle tone, despite the rapid eye movements.

1.3.5. Etapas del sueño

El sueño normal se divide en dos etapas: sueño MOR (fase R) y sueñ no-MOR (fase N), los cuales se diferencian fundamentalmente por sus rasgos electroencefalográficos y una serie de características fisiológicas –de los cuales surgen sus nombres. Cabe mencionar que la nomenclatura acerca de las fases del sueño ha sido recientemente

modificada por la Academia Americana de Medicina del Sueño en 2007, de modo que en este trabajo se usarán ambas nomenclaturas siempre que sea posible, por fines de compatibilidad con la terminología usual.

Sueño no-MOR (N)

Fase 1 (N1) Corresponde con la somnolencia o el inicio del sueño ligero, en ella es muy fácil despertarse. La actividad muscular disminuye paulatinamente y pueden observarse algunas breves sacudidas musculares súbitas que a veces coinciden con una sensación de caída (mioclonías hípnicas). En el EEG se observa actividad de frecuencias mezcladas, pero de bajo voltaje y algunas ondas agudas (ondas agudas del vértex).

Fase 2 (N2) En el EEG se caracteriza por que aparecen patrones específicos de actividad cerebral llamados husos de sueño y complejos K. Físicamente la temperatura, la frecuencia cardiaca y respiratoria comienzan a disminuir paulatinamente.

Fases 3 y 4 (N3) Sueño de ondas lentas, es la fase de sueño no-MOR más profunda, y en el EEG se observa actividad de frecuencia muy lenta (¡2 Hz).

Sueño MOR (R)

Se caracteriza por la presencia de movimientos oculares rápidos. Físicamente el tono de todos los músculos disminuye (con excepción de los músculos respiratorios y los esfínteres vesical y anal), así mismo la frecuencia cardiaca y respiratoria se vuelve irregular. Durante el sueño MOR se producen la mayoría de las ensoñaciones (lo que conocemos coloquialmente como sueños), y la mayoría de los pacientes que despiertan durante esta fase suelen recordar vívidamente el contenido de sus ensoñaciones [3].

Un adulto jóven pasa aproximadamente entre 70–100 min en el sueño no-MOR para después entrar al sueño MOR, el cual puede durar entre 5–30 min; este ciclo se repite cada hora y media. A lo largo de la noche pueden presentarse normalmente entre 4 y 6 ciclos de sueño MOR. En los ancianos se va fragmentando el sueño nocturno

con frecuentes episodios de despertar, y se reduce mucho el porcentaje de sueño en fase 4 y no tanto el de sueño MOR, que se mantiene más constante. Adicionalmente, muchos adultos mayores dormitan durante el día varias siestas cortas [2].

1.4. Conceptos, matemáticas

En esta sección se describen los conceptos básicos de la teoría espectral 'clásica' para procesos estacionarios y no-estacionarios. De forma más bien pragmática, la descripción está fuertemente inspirada por el libro 'Spectral Analysis and Time Series' de M. Priestley [28], ya que este está explícitamente dirigido a un público sin un trasfondo matemático.

Esta redacción supone conocidos los temas básicos de probabilidad y estadística: variables aleatorias, valores esperados y momentos, estimadores y sus propiedades. Con el fin de presentar la notación usada, se incluyen algunos conceptos previos a la definición per se de estacionariedad y estimadores en el dominio de frecuencias.

1.4.1. Estacionariedad débil

Para hablar formalmente de procesos estocásticos como modelos, antes conviene escribir su definición desde el punto de vista matemático. Las siguientes definiciones son aplicables tanto para procesos en tiempo continuo como para procesos a tiempo discreto; aunque el objeto de estudio, el EEG, se considera un fenómeno continuo, sólo es posible registrarlo durante un conjunto finito de puntos en el tiempo.

Definición 1 (Proceso estocástico) Un proceso estocástico $\{X(t)\}$ es una familia de variables aleatorias en los reales indexadas por el t que pertenece a algún conjunto $T \in \mathbb{R}$.

Como notación, una realización de X(t) será denota por x_t . Las funciones de densidad de probabilidad y de probabilidad acumulada para X(t) serán referidas, respectivamente, como $f_{X(t)}$ y $F_{X(t)}$ Cabe enfatizar que para cada valor de t, X(t) es una variable aleatoria; no se presupone ninguna conexión entre ellas.

La característica principal investigada en este trabajo hace referencia a la "estacionariedad". De manera informal, esta propiedad se refiere a que las variables aleatorias que conforman un proceso estocástico no cambien en el tiempo. Una definición que satisface fielmente está descripción es la de estacionariedad en el sentido fuerte o estricto. El término "tiempos admisibles" simplemente indica que la definición es la misma para procesos a tiempo discreto o continuo, bajo restricciones obvias.

Definición 2 (Estacionariedad fuerte) Un proceso estocástico $\{X(t)\}$ es fuertemente estacionario si, para cualquier conjunto de tiempos admisibles t_1, t_2, \ldots, t_n y cualquier $\tau \in \mathbb{R}$ se cumple que

$$F_{(X(t_1),X(t_2),...,X(t_n))} \equiv F_{(X(t_1+\tau),X(t_2+\tau),...,X(t_n+\tau))}$$

Donde $F_{(X(t_1),X(t_2),...,X(t_n))}$ es la función de distribución de probabilidad conjunta de $(X(t_1),X(t_2),...,X(t_n))$

Esta definición, sin embargo, no resulta muy útil en el contexto de la estadística: si se supone que el registro de un fenómeno puede interpretarse como **una** realización de un proceso estocástico, entonces para cada tiempo se tiene una única observación de cada variable aleatoria. A esto hay que añadir que, para un fenómeno continuo, no todas los tiempos son registrables. Luego, si no existe la garantía de que las propiedades de estas variables aletorias sean "similares", entonces es virtualmente imposible obtener mayor información de ellas.

Es bajo estas limitaciones que se motiva un concepto de estacionariedad más débil, pero que satisfaga "suficientes teoremas importantes" y que sea relevante bajo las restricciones propias de diferentes campos. En este trabajo se ha optado por la llamada "estacionariedad débil" o estacionariedad de orden 2, que recibe su nombre como caso particular de la "estacionariedad de orden m".

Definición 3 (Estacionariedad de orden m) Un proceso estocástico $\{X(t)\}$ se dice estacionario de orden m si, para cualquier conjunto de tiempos admisibles t_1, t_2, \ldots, t_n y cualquier $\tau \in \mathbb{R}$ se cumple que

$$E[X^{m_1}(t_1)X^{m_2}(t_2)\cdots X^{m_n}(t_n)] = E[X^{m_1}(t_1+\tau)X^{m_2}(t_2+\tau)\cdots X^{m_n}(t_n+\tau)]$$

Para cualesquiera enteros m_1, m_2, \dots, m_n tales que $m_1 + m_2 + \dots + m_n \le m$

La estacionariedad débil no pide que la función de distribución conjunta tenga determinada forma, sino que los momentos conjuntos sean invariantes ante traslaciones en el tiempo. Para entender mejor esta diferencia, considérense tres procesos $\{X(t)\}, \{Y_1(t)\}\ y \{Y_2(t)\},\ de modo que el primero es estacionario en el sentido fuerte, el segundo es estacionario de orden 1 y el tercero es estacionario de orden 2.$

- Como por definición $F_{X(t)} \equiv F_{X(t+\tau)}$ para cualesquieras $t, t+\tau$ admisibles, entonces claramente $\mathrm{E}\left[X(t)\right] = \mu_X$ es una constante
- De igual manera, por definición, para cualesquieras t, $t + \tau$ admisibles se tiene que $E[Y_1(t)] = E[Y_1(t+\tau)]$ y $E[Y_2(t)] = E[Y_2(t+\tau)]$. Se deduce entonces que $E[Y_1(t)] = \mu_{Y_1}$, $E[Y_2(t)] = \mu_{Y_2}$ son constantes
- Usando nuevamente que $F_{X(t)} \equiv F_{X(t+\tau)}$ para cualesquieras $t, t+\tau$ admisibles, entonces se deduce que $\text{Var}(X(t)) = \varsigma_X$ es una constante
- Para i = 1, 2 se puede notar que

$$\operatorname{Var}(Y_i(t)) = \operatorname{E}[Y_i^2(t)] - (\operatorname{E}[Y_i(t)])^2 = \operatorname{E}[Y_i^2(t)] - \mu_{Y_i}$$

luego, por la sola definición de Y_1 y Y_2 , se puede deducir que $E[Y_2^2(t)]$ es constante en el tiempo mientras que no ocurre lo mismo para Y_1 . Se concluye que la varianza de Y_2 es constante en el tiempo mientras que la de Y_1 no necesariamente lo es

Hay una especie de consenso según el cual la estacionariedad de orden 2, también llamada **estacionariedad débil** es suficiente para que se cumplan los teoremas más comunes sobre medias y varianzas. Algunas consecuencias que un proceso sea estacionario debilmente son las siguientes:

- \bullet Para todo $t,\, E[X(t)]=\mu,$ una constante
- Para todo t, $Var(X(t)) = \sigma^2$, una constante
- Para cualesquiera t, τ , $Cov(X(t+\tau), Cov(X(t))) = E[X(t+\tau)X(t)] \mu^2$, una función de τ pero no de t

El recíproco también es cierto: si un proceso cumple las tres condiciones anteriores, entonces es estacionario de orden 2. A su vez tres condiciones son más usuales en la literatura y tienen una interpretación más clara como modelo, pues se exige que el proceso tenga media y varianza constante, y que la función de autocorrelación no dependa de dónde se mida —lo cual simplifica la estimación de estas cantidades.

Antes de proseguir, cabe mencionar que la estacionariedad fuerte se define en términos de las funciones de densidad de probabilidad conjunta, mientras que la estacionariedad se define según los momentos; luego, la estacionariedad débil excluye procesos cuyos momentos no estén definidos. Por ejemplo, una colección de variables independientes idénticamente distribuidos —con distribución de Cauchy— será fuertemente estacionario, pero no estacionario de orden m para ningún m.

Por el momento se asumirán procesos con segundos momentos finitos **debido a que** hay motivaciones en el modelo para ello: energía finita, cambios finitos de energía, respuestas suaves, etc.

1.4.2. El espectro de una serie de tiempo

Quiero y me siento obligado a citar la excelente discución filosófica de Loynes [21], resaltando la frase "Los espectros instantáneos no existen". También quiero citar una discusión más moderna de Mélard [23], donde una frase a favor es "El supuesto de estacionariedad ha sido válido previamente debido a la corta duración de las series y la baja capacidad de cómputo".

Pues la mayor parte de mi trabajo se ha centrado en el concepto de **espectro** de una serie de tiempo. La mejor forma de introducir el espectro evolutivo —en el sentido que estoy usando— es presentar un proceso estacionario de orden 2, $\{X(t)\}$, en su representación de Cramér [28] [la existencia de esta representacion esta garantizada por el teorema de Khinchin-Wiener —para procesos a tiempo continuos— y por una extension del mismo por Wold —para procesos a tiempo discreto, por ahora solo cito el resultado, pero quiza sea buena idea escribir la demostracion como apendice, una demostracion citada ya que es bastante tecnica]

$$X(t) = \int_{\Lambda} A(\omega) e^{i2\pi\omega t} dZ(\omega)$$

Donde el proceso $\{Z(\omega)\}$ tiene incrementos ortogonales, es decir

$$Cov(dZ(\omega_1, dZ(\omega_2))) = \delta(\omega_1, \omega_1)d\omega$$

Con δ la función delta de Dirac. Cabe mencionar que es suficiente si los incrementos son independientes, pero se puede debilitar ese requerimiento; incluso es de notarse que no se exige que el proceso sea al menos continuo –en el sentido estocástico.

El espectro de potencia de $\{X(t)\}$ se define como

$$f(\omega) = |A(\omega)|^2$$

Citaré de Adak [1] una tabla donde compara varias definiciones de espectro, para procesos no-estacionarios.

Table 1: Cohen's class of time-frequency distributions

Table 1: Conen b class of time-nequency distributions							
Author	Definition of $f(t,\lambda)$	G(t, au): time - lag kernel					
Wigner-Ville	$\int_{-\infty}^{\infty} R_X(t+\tau/2,t-\tau/2)e^{-i2\pi\lambda\tau}d\tau$	$G(t,\tau) = \delta(t)$					
Page(1952)	$\int_0^\infty R_X(t,t- au)e^{-i2\pi\lambda au}d au$	$G(t,\tau) = \delta(t-\tau/2) \text{ if } \tau \geq 0.$					
	$+ R_X(t,t+ au)e^{-i2\pi\lambda au}d au$	$G(t,\tau) = \delta(t+\tau/2) \text{ if } \tau \leq 0.$					
Levin(1967)	$\int_0^\infty \frac{1}{2} R_X(t,t-\tau) e^{-i2\pi\lambda\tau} d\tau +$	$G(t,\tau) = \frac{1}{2}\delta(t-\tau/2) +$					
	$\int_0^\infty \frac{1}{2} R_X(t,t+ au) e^{-i2\pi\lambda au} d au$	$\frac{1}{2}\delta(t+\tau/2)$					
Spectrogram — Windowed	$E[\int w(t-u)X(u)e^{-i2\pi\lambda u}du ^2]$	$G(t, \tau) =$					
Spectral Analysis		$w(t-\tau/2)w^*(t+\tau/2)$					
Priestley(1965)	$ A(t,\lambda) ^2$, where $R_X(t+\tau/2,t-\tau/2)$	Relation to Cohen's class					
	$= \int A(t+\tau/2,\theta) A^*(t-\tau/2,\theta)e^{i2\pi\theta\tau}d\theta$	shown in Hammond(1992)					
Choi-Williams(1989)	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_X(u+\tau/2,u-\tau/2).$	$G(t, \tau) =$					
	$\left \frac{1}{\sqrt{4\pi\tau^2\sigma}} exp\left[\frac{-(t-u)^2}{4\tau^2\sigma} \right] \cdot e^{-i2\pi\lambda\tau} du d\tau \right $	$\left[rac{1}{\sqrt{4\pi au^2\sigma}} exp\left[rac{-t^2}{4 au^2\sigma} ight]$					

Dos identidades muy importantes para estimar el espectro son la *equivalencia* entre el espectro y la función de autocorrelación

$$f(\omega) = \int R_X(\tau) e^{-i2\pi\omega t} d\tau$$

Donde función de autocorrelación se ha definido como

$$R_X(\tau) = E[X(t)X(t+\tau)] = \int_0^\infty X(t)X(t+\tau)dt$$

[la demostracion es corta, batsa con reescribir una composicion de integrales como convolucion, la incluire mas tarde]

Por otro lado, se tiene la Identidad de Parseval

$$\int X^2(t)dt = \int f(\omega)d\omega$$

[esta demostracion se basa en la convergencia dominada del modulo de la integral de X^2 por la integral del modulo (...), la incluire mas tarde]

1.4.3. Test Priestley-Subba Rao (PSR)

(seccion en proceso de re-redaccion)

A muy grosso modo, el test PSR estima localmente el espectro evolutivo y revisa si estadísticamente cambia en el tiempo.

Para ello, usa un estimador para la función de densidad espectral que es aproximadamente (asintóticamente) insesgado y cuya varianza está determinada aproximadamente. La estimación se lleva a cabo en puntos en el tiempo y la frecuencia tales que en conjunto son aproximadamente no-correlacionados. Se aplica logaritmo para que la varianza de todos los estimadores sea aproximadamente la misma (el logaritmo ayuda a), amen que los errores conjuntos tengan una distribución cercana a una multinormal con correlación cero. Finalmente se aplica una prueba ANOVA de varianza conocida.

1.4.4. El espectro evolutivo

Considérese un proceso estocástico a tiempo continuo $\{X(t)\}$, tal que E[X(t)] = 0 y $E[X^2(t)] < \infty$ para todo t. Es decir que su media es constante y sus segundos momentos están bien definidos, aunque estos últimos pueden cambiar con el tiempo.

Por el momento se supondrá que acepta una representación de la forma

$$X(t) = \int_{-\pi}^{\pi} A(t; \omega) e^{i\omega t} dZ(\omega)$$

Con $\{Z(\omega)\}\$ una familia de procesos ortogonales⁷ tales que

- $E[|dZ(\omega)|^2] = d\omega$
- Para cada t el máximo de $A(t;\cdot)$ se encuentra en 0

Esta representación es análoga a la representación de Cramér para un proceso estacionario, salvo que se permite que la función A cambie con el tiempo. Siguiendo la analogía, se define el **espectro evolutivo** de $\{X(t)\}$, con respecto a la la familia $\mathcal{F} = \{e^{i\omega t}A(t;\omega)\}$ como

$$dF(\omega;t) = |A(t;\omega)|^2 d\omega$$

Ahora bien, si se supone que $\{X(t)\}$ es estocásticamente diferenciable, entonces se puede definir una función de densidad espectral

$$f(t;\omega) = |A(t;\omega)|^2$$

Cabe destaca que si la función $A(t;\omega)$ fuera constante con respecto a t, se obtendría un proceso estacionario de orden dos tal cual fue descrito en la sección anterior.

1.4.5. El estimador de doble ventana

Esta técnica fue presentada por Priestley en 1965. Muy a grosso modo, es un estimador de la función de densidad espectral con ciertas propiedades y que parte de la idea que un proceso no-estacionario puede verse localmente como un proceso lineal generalizado.

Como meta-nota, yo empecé a estudiar este tipo de estimadores porque es *el qeu* venía con el método ya que el test esta implementado en R; desde un punto de vista

⁷De nuevo, esto implica que Cov $(dZ(\omega_1, dZ(\omega_2))) = \delta(\omega_1, \omega_1)d\omega$, una condición más débil que la independencia

de difusión, es una ventaja usar un método implementado en un software gratuito y de código abierto —y no una mera excusa para no explorar otros métodos. En todo caso, he revisado varios otros test, pero de momento solo este ha arrojado suficientes resultados para llenar un informe.

Para construir el estimador se reuieren dos funciones, g y w_T , que servirán como ventanas para extraer información local de los datos. Debido a que sus propiedades tienen una interpretación física desde la teoría de circuitos, absorben su terminología

nota al pie: deberia incluir una motivacion de estos nombres, que en parte tiene relevancia en la interpretacion. Los Linear Invariant Systems (LIS) suponen dependencia lineal –constante– respecto a todos los tiempos anteriores; a tiempo continuo son equivalentes a una ecuacion diferencial ordinaria lineal, y a su vez a modelos AR. Un modelo fisico para ello son los circuitos RC, que fueron usables en radios, y para los cuales las palabras 'filtro' y 'frecuencia' tienen una interpretacion clara. Esta terminologia de circuitos electricos tiene sentido para mi ya que todos los modelos de neuronas y poblaciones de neuronas que he visto hasta ahora, por ejemplo de Ermentrout (falta citar), Clark98, Priestley81, PARTEN de considerar circuitos equivalentes a los componentes neuronales, lo cual me hace pensar que es buena idea mantener esta vision conjunta.

Primeramente se toma una función g(u) normalizada, que en conjunto a su transformada inversa de Fourier⁸ Γ tiene las siguientes propiedades

$$2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)|^2 d\omega = 1$$

A partir de g y Γ se define el filtro U como una convolución con las realizaciones del proceso

$$U(t,\omega) = \int_{t-T}^{t} g(u)X(t-u)e^{i\omega(t-u)}du$$

Un ejemplo que está en el libro de Priestley es tomar funciones del tipo

⁸ Esta función $\Gamma(u) = \int_{-\infty}^{\infty} g(u)e^{iu\omega}du$ es referida como **frequency-response function**, nombre tiene un poco de encanto cuando g adopta ciertas formas particulares (senos y cosenos).

$$g_h(u) = \begin{cases} 1/2\sqrt{\pi h} &, |u| \le h \\ 0 &, |u| > 0 \end{cases}$$

Su correspondiente función de respuesta de frecuencia es complicada [me falta escribirla]. Es referida como la **ventana de Bartlett** y está totalmente caracterizada la siguiente propiedad

$$|\Gamma_h(\omega)|^2 = \frac{1}{\pi h} \left(\frac{\operatorname{sen}(h\omega)}{\omega}\right)^2$$

Cabe mencionar que puede entenderse al par g y Γ como ventanas en el tiempo y las frecuencias para la serie.

Ahora bien, se toma una segunda ventana W_{τ} con las siguientes restricciones para su función de respuesta ante frecuencia w_{τ}

• $w_{\tau}(t) \geq 0$ para cualesquiera t, τ

• $w_{\tau}(t) \to 0$ cuando $|t| \to \infty$, para todo τ

■ Existe una constante C tal que [T está relacionado con el 'tiempo 0', pero para tiempos de muestreo grandes se puede reemplazar por $-\infty$ EXCEPTO cerca del inicio y el final dle muestreo]

$$\lim_{\tau \to \infty} \left[\tau \int_{t-T}^t \lvert W_\tau(\lambda) \rvert^2 d\lambda \right] = C$$

[posteriormente annadire mas detalles sobre el papel que juega el par w_{τ} , W_{τ}] Como ejemplo, se puede tomar la siguiente función llamada **ventana de Daniell**

$$W_{\tau}(t) = \begin{cases} 1/\tau & , -1/2\tau \le t \le 1/2\tau \\ 0 & , \text{ otro caso} \end{cases}$$

La cual se puede demostrar [tengo en algun lado esa demostracion]

$$\lim_{\tau \to \infty} \left[\tau \int_{t-T}^t \lvert W_\tau(\lambda) \rvert^2 d\lambda \right] = 2\pi$$

Se define el estimador para f_t , con $0 \le t \le T$

$$\widehat{f}_t(\omega) = \int_{t-T}^t w_{T'}(u) |U(t-u,\omega)|^2 du$$

Fue demostrado por Priestley (1965, falta citar) que

[aqui van las expresiones para el valor esperado y la varianza de \hat{f}_t , me falta escribirlas]

Pero, bajo varios supuesto adicionales [que me falta trascribir] se puede aproximar

$$E\left[\widehat{f}_t(\omega)\right] \sim f_t(\omega)$$

$$\operatorname{Var}\left(\widehat{f}_t(\omega)\right) \sim \frac{C}{\tau} \left(f_t(\omega)\right)^2 \int_{-\infty}^{\infty} |\Gamma(\theta)|^4 d\theta$$

Se advierte claramente que \hat{f}_t es unnestimados aproximadamente insesgado. Para las ventanas de Bartlett y Daniell usadas como ejemplo, se tiene

$$\operatorname{Var}\left(\widehat{f}_{t}\right) \sim \frac{4h}{3\tau} \left(f_{t}(\omega)\right)^{2}$$

Cabe mencionar que hay una expresión explícita para la covarianza de \hat{f}_t en para diferentes puntos en el tiempo y las frecuencias. Lamentablemente, aun me falta escribirlas, son complicadas, y se describen situaciones bajo las cuales estas covarianzas son negligibles; cabe destacar que TODAS las condiciones que se usan para aproximar son básicamente las mismas, y dependen de que la distancia entre los tiempos y las

frecuencias sean tan grandes como sea posible.

El último ingrediente del test PSR es una transformación logarítmica para regular la varianza, y quiza para cortar los bordes de las aproxiamciones. Se define $Y_{i,j} = \log\left(\widehat{f_{t_i}}(\omega_j)\right)$, con las siguientes propiedades

$$E[Y_{i,j}] \sim \log(f_{t_i}(\omega_j))$$
 $Var(Y(t,\omega)) \sim \sigma^2$

Luego así, puede escribirse aproximadamente que

$$Y_{i,j} = \log (f_{t_i}(\omega_j)) + \varepsilon_{i,j}$$

donde $\varepsilon_{i,j}$ va iid tales que

$$E\left[\varepsilon_{i,j}\right] = 0$$
 $\operatorname{Var}\left(\varepsilon_{i,j}\right)\sigma^2$

Priestley cita que con esta información incluso se puede considerar que los $\varepsilon_{i,j}$ siguen una distribución normal cada uno; Nason (2015, falta citar) comenta que este supuesto no tiene por que cumplirse, y que es una popsible fuente de falsos positivos para el test. Yo he hecho pruebas de normalidad a los datos, que incluire como anexos mas tarde.

El test PSR per se son tres test ANOVA –en su versión en la que la varianza es conocida– sobre si los $\varepsilon_{i,j}$ son estadísticamente negligibles en total, sobre el tiempo y sobre las frecuencias. Para el fin de estudiar la estacionariedad, basta con que sean estadíticamente no-negligibles sobre el tiempo.

[Por supuesto que los otros dos test tienen interpretacion: la negigibilidad total da informacion sobre las marginales, y si estas pueden ser estimadas adecuadamente usando el estimador, si se combina con negativo para no-estacionariedad es **efectivamente positivo** para estacionariedad y toma una forma muy particular (proceso uniformemente modulado). Si sobre las frecuencias resulta significativo (no-negligible) da informacion sobre la 'aeatoridad total' del proceso. De tener tiempo, lo incluire como anexo, ya que ninguna de estas caracteristicas es estudiada :(]

Lo detalles de la implementación en R estarán en la sección de resultados.

Capítulo 2

Metodología

El presente trabajo se llevó a cabo *a posteriori*, usando los datos obtenidos en un estudio previo [38, Vázquez Tagle, 2016]; se espera que los resultados encontrados sean una extensión de los resultados hallados previamente. En esta sección se cita la metodología manejada en [38], por respeto a los autores y debido a su relevancia en el reciente anaálisis sobre los mismos datos. Adicionalmente se describen los análisis realizados sobre los datos a nivel de implementación, usando el software estadístico R y el paquete fractal [8, 29].

2.1. Participantes

Los registros de PSG analizados en este trabajo fueron obtenidos de 11 adultos mayores; sus caraqcterísticas se describen en la tabla []

En el protocolo para la obtención de estos datos [citar] declara la participación informada y libre de los sujetos bajo los siguientes términos:

La participación en el estudio es completamente voluntaria, pudiendo los sujetos abandonar las intervenciones en cualquier momento. Todos los participantes firmaron un consentimiento informado previamente a su inclusión en el estudio. Los protocolos experimentales empleados en esta investigación fueron previamente aprobados por el Comité Ético de Investigación en humanos de la Universidad Autónoma del Estado de Hidalgo.

2.2. Pruebas sobre deterioro cognitivo

La calidad de 'deterioro cognitivo' y 'depresión geriátrica' en los participantes fue determinada a partir de la aplicación de una pila de pruebas neuropsicológicas, que se listan a continuación.

- Mini Mental State Examination (MMSE) [39]
- Escala de Depresión Geriátrica (Gds) [9,13]
- Escala breve para la detección de ansiedad del anciano (SATS) [37]
- Escala sobre las actividades cotidianas de la vida diaria (KATZ) [31]
- Neuropsi. Evaluación Neuropsicológica. [34]

2.3. Electroencefalógrafo utilizado

Electroencefalógrafo digital MEDICID 5. [Neuronic mexicana S.A. de C.V. MEDICID. MEDICID 5. 2016; : 1.] Es un electroencefalógrafo digital de 32 canales, 24 de ellos monopolares con posibilidades de programación y 8 bipolares con la posibilidad de conexión monopolar para conformar 32 canales con referencia común. Esto hace posible preparar por software los montajes que comunmente son conocidos en los equipos tradicionales de poligrafía en papel. Los amplificadores bipolares son especialmente diseñados para la conexión sensorial o la transducción de la medición por signos biofísicos, (esfuerzo respiratorio abdominal y torácico, flujo aéreo nasal y bucal) cuando los registros poligráficos están hechos.

Especificaciones Técnicas:

- 24 canales monopolares (0.05-100) Hz
- 8 canales bipolares para poligrafía (0,0.5100) Hz
- 3 canales de C.C. (0-160) Hz
- 1 canal de temperatura (30-40) C

■ 1 estimulador fotico (0.5-33) Hz

■ Sistema A/D: 16 bits

• Frec. Muestreo: Hasta 500 Hz (36 canales)

■ Voltaje Alimentación: (100-240) V 50/60 Hz

■ Interfaz: USB

■ Dimensiones: Bloque de control: (257x315x55) mm

■ Peso: Bloque de control: 2.5 kg

■ Bloque amplificadores: (110x187x50) mm

■ Bloque amplificadores: 1.0 kg

Seguridad eléctrica: Clase I Tipo BF (Certificado según EN60601-1)

2.4. Registro de PSG

Una vez aplicado el Neuropsi y toda la batería de pruebas ya mencionada, los adultos mayores participantes fueron invitados a acudir a las instalaciones de la Clínica Gerontológica de Sueño, ubicada en las instalaciones del Instituto de Ciencias de la Salud de la Universidad Autónoma del Estado de Hidalgo.

Los participantes recibieron instrucciones de realizar una rutina normal de actividades durante la semana que precedió al estudio. También se les recomendó que no ingirieran bebidas alcohólicas o energizantes como café o refrescos durante las 24 horas previas al experimento, ni durmieran siesta el día del estudio.

El protocolo de PSG incluYE 19 electrodos de EEG: Fp1, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P07, P03, P0z, P04, P08, O1 y O2; 4 electrodos de EOG para registrar movimientos oculares horizontales y verticales,

Figura 2-1: El sistema 10–20, recomendado por la International Federation of EEG Societies.

y 2 electrodos de EMG colocados en los músculos submentonianos para registrar la actividad muscular. La colocación de los electrodos para registrar la actividad EEG se realizó siguiendo las coordenadas del Sistema Internacional 10-20 [7].

Las señales electrofisiológicas de cada registro PSG fueron amplificadas, filtradas y digitalizadas con el programa para ordenador Registro de sueño para su posterior interpretación. El registro se llevó a cabo con una tasa de muestreo de 500 Hz o 200 Hz (puntos por segundo) según la disponibilidad del electroencefalógrafo.

2.5. Clasificación de las etapas de sueño

La clasificación de las diferentes fases del sueño en el registro PSG se realizó manualmente sobre épocas de EEG de 30 segundos (filtro paso de banda de 0.5-30 Hz) siguiendo los criterios estandarizados que se exponen a continuación [15]:

Vigilia relajada con ojos cerrados Presencia de ritmo alfa continúo con máxima

amplitud sobre regiones de la corteza parieto-occipital. Tono muscular relativamente alto y ausencia de movimientos oculares.

- Fase 1 Transición entre la vigilia y el sueño ligero. Presencia intermitente de actividad alfa en menos del 50 % de la época junto con movimientos oculares lentos y una ligera reducción del tono muscular respecto al de vigilia.
- Fase 2 Presencia de complejos K y husos de sueño. Puede aparecer hasta un 20 % de ondas lentas (ritmo delta, 0.5-3 Hz) en la época. Ausencia de actividad ocular y tono muscular bajo.
- Fase 3 Presencia de ondas lentas con amplitudes superiores a 75 μ V en más del 20 % y menos del 50 % de la época. Pueden también aparecer complejos K y husos de sueño de forma esporádica. Ausencia de actividad ocular y tono muscular bajo.
- Fase 4 Presencia de ondas lentas en más del 50 % de la época. Las demás características son similares a las de la fase 3.
- Fase MOR Presencia de actividad EEG de baja amplitud y frecuencias entremezcladas (theta-alfa-beta) similar a la observada en el estado de vigilia activa con ojos abiertos.

2.6. Aplicación del test de Priestley-Subba Rao(PSR)

Para el análisis de los registros de PSG se usó el software estadístico R [29], así como el paquete fractal [8].

Los registros digitalizados de PSG fueron convertidos a formato de texto (.txt) bajo la codificación ASCII, a razón de un archivo por cada canal. Posteriormente fueron importados en el ambiente R y segmentados en sub-series de 30 segundos [10 segundos para algunos registros] acordes al concepto de épocas, y tomando en cuenta la tasa de muestreo de 512 [200] puntos por segundo. En una primera etapa del trabajo solamente fueron incluidas sub-series correspondientes a épocas de sueño MOR

Como se mencionó anteriormente, el test PSR está pensado para series de tiempo con valor esperado constante 0, y varianza finita en todo momento. Si bien la segunda condición se satisface claramente en los sistemas biológicos [buscar respaldo para esta afirmación], la primera condición no tiene por qué cumplirse, de modo que es forzada usando el filtro no-paramétrico STL [5] sobre cada una de las sub-series¹.

Los detalles teóricos del test PSR fueron discutidos con anterioridad. A modo de resumen: se calcula el logaritmo del módulo de la función de densidad espectral para algunos puntos en el tiempo y las frecuencias, para lo cual se usa un estimador local cuya varianza es conocida; posteriormente se procede a probar, como prueba de hipótesis, que las cantidades obtenidas anteriormente son estadísticamente constantes en el tiempo. Este test se encuentra implementado en R bajo la función stationarity del paquete fractal; en la figura 2-2 puede verse la forma en que se visualizan los resultados.

Una vez se hubo realizado el test para todas las épocas consideradas, se dispuso de los resultados de manera gráfica como se muestra en las figuras 2-3. Por cada canal de PSG (EEG, EOG y EMG), se colocan en línea horizontal un cuadro por cada época en blanco o negro según el segmento referido haya sido clasificado como no-estacionario o posiblemente estacionario; posteriormente se han colocado verticalmente las líneas así obtenidas de todos los canales. Esta disposición gráfica pretende ser consistente con las representaciones gráficas usuales de EEG, tomando en cuanta una escala más amplia de tiempo gracias a que por cada época sólo se ha obtenido un dato. Los gráficos así obtenidos se incluyen como anexo.

¹En la sección de discusión se abordarán las consecuencias de tal fitrado, mientras que en un anexo se describen los detalles en sí de este filtro.

```
Priestley-Subba Rao stationarity Test for datos
  Samples used
                              : 3072
  Samples available
                             : 3069
  Sampling interval
                             : 1
  SDF estimator
                              : Multitaper
    Number of (sine) tapers: 5
    Centered
                              : TRUE
    Recentered
                             : FALSE
  Number of blocks
                               11
                               279
  Block size
12 Number of blocks
                               11
13 p-value for T
                             : 0.4130131
14 p-value for I+R
                             : 0.1787949
15 p-value for T+I+R
                             : 0.1801353
```

Figura 2-2: Resultado de una ejecución típica de la función stationarity. El número de bloques ${\tt n.blocks}$ define la cantidad de puntos en el tiempo para los cuales se calculará el estimador de la función de densidad espectral (SDF), se calcula por default como máx $(2, \lfloor \log_2(N) \rfloor)$, donde N es la cantidad de datos en la serie, aunque puede ingresarse un valor arbitrario. Los filtros tapers son usados para compensar el efecto de frecuencias más altas que la tasa de muestreo, o de aquellas cuya longitud de onda sea mayor que la longitud de la serie; para mayor información vea la ssección [?]. Cabe señalar el antepenúltimo renglón (p-value for T), que refleja el rechazo de la prueba de hipótesis de estacionariedad.

Figura 2-3: Disposición gráfica para los resultados del test PSR en el sujeto MJNN, para 1032 épocas de sueño y 22 canales. En el eje horizontal se muestra el tiempo desde el inicio de registro, en el eje vertical se muestra al nombre del canal. Se han resaltado con color verde las épocas clasificadas como sueño MOR (ver texto), que son 127. Para este gráfico se consideró con un p-valor crítico de 0.01 para la hipótesis de estacionariedad. Ver texto para más detalles.

Capítulo 3

Resultados

Como se mencionó previamente, este trabajo se ha basado en los registros de PSG de 6 adultos mayores con deterioro cognitivo (DC) y 3 sin este padecimiento. La calidad de deterioro cognitivo fue medida a través de una batería de pruebas neuro-psicológicas; adicionalmente, se midió su posible depresión geriátrica. En e cuadro 3.1 se resume esta información.

Estos gráficos muestran una distribución temporal y pseudo-espacial de las épocas que fueron clasificadas como no-estacionarias según el test PSR (ver sección [?] para más detalles).

Sujeto	Deterioro cogn.	Depresión
MJNN		
RLMN	X	
JANA		X
CLMN	X	
JGMN	X	
RRMN	X	
VCNN		
FGH	X	?
GURM	?	?

Cuadro 3.1: Características de los adultos mayores considerados en el estudio, en cuanto a deterioro cognitivo y depresión geriátrica. Para más detalles consultar [38]

3.1. Compilados gráficos

Figura 3-1: Sujeto: MJNN — Total épocas: 1032 — Épocas MOR: 127

Figura 3-2: Sujeto: MJNN — Épocas MOR: 127 — (Únicamente épocas MOR)

Figura 3-3: Sujeto: MJNN — Porcentaje de épocas posiblemente estacionarias

Figura 3-4: Sujeto: RLMN — Total épocas: 846 — Épocas MOR: 99

Figura 3-5: Sujeto: RLMN — Épocas MOR: 99 — (Únicamente épocas MOR)

Figura 3-6: Sujeto: RLMN — Porcentaje de épocas posiblemente estacionarias

Figura 3-7: Sujeto: JANA — Total épocas: 907 — Épocas MOR: 103

Figura 3-9: Sujeto: JANA — Porcentaje de épocas posiblemente estacionarias

Figura 3-10: Sujeto: CLMN — Total épocas: 944 — Épocas MOR: 132

Figura 3-11: Sujeto: CLMN — Épocas MOR: 132 — (Únicamente épocas MOR)

Figura 3-12: Sujeto: CLMN — Porcentaje de épocas posiblemente estacionarias

Figura 3-13: Sujeto: JGMN — Total épocas: 1207 — Épocas MOR: 33

Figura 3-14: Sujeto: CLMN — Épocas MOR: 33 — (Únicamente épocas MOR)

Figura 3-15: Sujeto: JGMN — Porcentaje de épocas posiblemente estacionarias

Figura 3-16: Sujeto: RRMN — Total épocas: 1244 — Épocas MOR: 114

Figura 3-17: Sujeto: RRMN — Épocas MOR: 114 — (Únicamente épocas MOR)

Figura 3-18: Sujeto: RRMN — Porcentaje de épocas posiblemente estacionarias

Figura 3-19: Sujeto: VCNN — Total épocas: 2586 — Épocas MOR: 200

Figura 3-20: Sujeto: VCNN — Épocas MOR: 200 — (Únicamente épocas MOR)

Figura 3-21: Sujeto: VCNN — Porcentaje de épocas posiblemente estacionarias

Figura 3-22: Sujeto: FGH — Total épocas: 405 — Épocas MOR: 22

Figura 3-24: Sujeto: FGH — Porcentaje de épocas posiblemente estacionarias

Figura 3-25: Sujeto: GURM — Total épocas: 3281 — Épocas MOR: 267

Figura 3-26: Sujeto: GURM — Épocas MOR: 267 — (Únicamente épocas MOR)

Figura 3-27: Sujeto: GURM — Porcentaje de épocas posiblemente estacionarias

3.2. Discusión

Esta parte tiene material ya que se ha discutido plenamente el trabajo; sin embargo, por esto mismo es difícil de redactar.

Visually, Rapid Eye Movement (REM) sleep is characterized by REMs, muscle atonia and desynchronized EEG activity. When quantitative analyses of the signals are carried out, usually, non-linearity and non-stationarity are assumed without an adequate analysis, especially in Old Adults (OA). Among the "weak" stationarity tests, the Priestley-Subba Rao (PSR) test calculates a "local" spectra that is "valid" only for punctual moments in time. A series of "smoothed" frequency filters give information of the time the local spectra is calculated. In here, weak REM sleep stationarity by the PSR test was compared to that from Wakefulness (W) and Non-REM (NREM) sleep. Methods: 8 Old Adults (OA) (age: 67.6 ± 5.7 ; education: 8.8 \pm 2.6) without depression neither anxiety and with intact daily living activities were selected. Also, evaluations with the Mini-Mental State Examination (MMSE, 28.1 \pm 1.8) and a one night polysomnography were performed. 30 second epochs were classified according to the AASM and every epoch of W, NREM and REM sleep was subjected to PSR tests. Percentages of stationary epochs were obtained with respect to the total number of epochs of each stage and Student t-tests were used to compare them. Results: The PSR effectively showed different proportions of stationarity according to the classification of stages in each subject. In Figure 1, in one OA, epochs with stationarity are shown in black and the classification of REM sleep is shown in green. Clearly, a lower proportion of stationarity was found in REM sleep vs the other stages. These differences reached significance in F7, Fp2, LOG and ROG (p < 0.05, Figure 2). Conclusions: In OA, REM sleep showed lower proportions of epochs with stationarity vs. W and NREM sleep at anterior areas, a result that could be explained by the tonic and phasic REM sleep. When stationarity measurements are planned, it is recommended to differentiate anterior from lateral and posterior areas.

3.3. Conclusiones

*Fyndamentalmente es muy importante checar el caso multivariado, es claro que el caso univariado es insuficiente y dice muy poco, peor es la única parte del trabajo que está cubierta.

3.4. Trabajo a futuro

*Fyndamentalmente es muy importante checar el caso multivariado, es claro que el caso univariado es insuficiente y dice muy poco, peor es la única parte del trabajo que está cubierta.

Capítulo 4

(Reubicar)

En proceso de redacción

La idea que una serie de tiempo puede no ser estacionaria, ni aún en un sentido débil, se puede rastrear en el tiempo a los años 50's [26, 33]. Sin embargo, estas interrogantes en el contexto de series electrofisiológicas —en particular EEG— no se ven claramente reflejados sino hasta los años 70's [6,19,22,36]. Esta brecha temporal se debe, quizá, a la aparición de computadoras digitales de bajo costo, gracias a las cuales es posible analizar mayores volúmenes de datos; más aún, la escasa capacidad de cómputo promovió la hipótesis de que las series de tiempo "cortas" son estacionarias —al menos débilmente—, un hecho que ha sido rebatido [1,20,23].

Debido a que mi trabajo pretende tomar una posición opesta en algún momento, en algún grado, sería incompatible que yo **simplemente suponga** que esa posición es verdadera. [Me he dado a la tarea de investigar un poco sobre el papel histrico que han jugado las hipótesis de regularidad en las series electrofisiológicas.]

Esta sección debiera partir de los comentarios expresados en 'Everything you wanted to ask about EEG (..)' (Klonowski, 2009) sobre cómo el concepto de ondas se acuña en el estudio de EEG, especilmente de cómo se entienden las frecuencias en este contexto –visión que es reforzada al citar el manual de la IAAC 2007 para detectar las etaas de sueño.

En esta visión, cabe destacar los muchos trabajos de Harmony y de Corsi-Cabrera sobre la caracterización y localización de diferentes tipos de actividad cerebral durante diversas actividades y condiciones Además de otros autores. Sinceramente, son bastantes trabajos y son la guía sobre los análisis de composición espectral que aún están por hacerse.

Peor también hay una discusión sobre el balance entre los estudios espectrales contra los avances en teoría espectral: se puede citar a Cohen, quien asume que las series cortas son básicamente estacionarias. Por supuesto que cada punto en el tiempo es técnicamente estacionario, y es completamente plausible —en el contexto de las series electrofisiológicas— suponer que para cada punto existe un abierto en el tiempo tal que el subproceso definido allí es etsacionario para todo fin práctico. Como comenta Melard, la suposición de estacionariedad para series cortas se consideró válida por mucho tiempo debido a ala escasa capacidad de cómputo; a modo de sintesis, Adak muestra un resultado negativo sobre la suposicion de estacionariedad local pero muestra una prueba para detectar y medir la así llamada 'estacionariedad local'. [escribiré tal demostración]

En este punto, es conveniente hablar sobre los modelos ARMA como la forma mas natural de estacionariedad a tiempo discreto, y como se usa en los modelos de estacionaeriedad local (citar a Adak). Se han posido generalizar estos modelos a parametros que dependen del tiempo como los modelos ARCH (quia citar a Chatfield y a Subba Rao).

Hay una historia extensa al establecer el concepto de espectro en series no-estacionarias, y para ello me servire de las revisiones de Loynes, Melard, Adak, Brillinger. En ella, brillan la funcion de autocorrelacion que depende del tiempo y el que su transformada de Fourier sea la función de densidad espectral en caso de existir. Muchas definiciones de espectro basadas en su forma de ser calculadas.

Me gustaría escribir un segundo resumen sobre el espectro de Wold-Cramér (el que se maneja en el test PSR) en contraposición al espectro de Wigner-Ville, el espectro de ondeletas de Gabor y el espectro de ondeletas de Haar. Me apoyaria mucho de una discusion hecha por Nason, de la cuakl resaltare una estimacion sobre los ordenes de tiempo de computo para los estimadores de estos espectros.

Esta sección debiera terminar nuevamente citando a Klonowski y, si bien no voy a usar en esta tesis, los nuevos enfoques que consideran al EEG fundamentalmente como un sistema sujeto a ruido pero fundamentalmente caótico.

4.1. EEG estacionario

En los ochentas, antes de que las computadoras personales fueran usadas en la medicina, las deñales de EEG eran registradas en una tira de papel. El registro se llevaba a cabo en líneas separadas entre sí por 3 cm aproximadamente, mientras que el papel se movía a razón de 1.5, 3 o 6 cm/s según el aparato. Un médico dedicado a interpetar el EEG podía observar fácilmente la frecuancia de las ondas al contar el número de espigas dibujadas en un segundo, si había entre 2 y 30 de ellas entre dos líneas verticales. De estos registros en papel vienen los nombres clásicos de las bandas, en especial las α y β ; si las ondas tenían una frecuencia muy baja no podrían distinguirse por el ojo, mientras que si su frecuencia era muy alta el aparato las registraría como un bloque indistinguible [20].

Apéndice A

Código en R del test PSR

```
1 # funcion que abre todos los archivos que contienen los registros,
2 # y realiza el test PSR sobre cada epoca; esto suponiendo que
3 # previamente ha utilizado el script 'segmentarX.R'
4 #
5 # Variables
      nombre -> nombre comun de los archivos, segun paciente;
                  se escribe entre comillas
7 #
          ch -> numero del canal, del 1 al 22 (orden alfabetico)
8 #
multipsr <- function (ch, nombre, w_dir, c_dir, r_dir,
                         frec , dur_epo) {
    # el paquete 'fractal' tiene implementado el test psr
    library (fractal)
14
    # constantes generales
16
    channel = c('C3', 'C4', 'CZ', 'EMG',
                 'F3', 'F4', 'F7', 'F8',
                 'FP1', 'FP2', 'FZ', 'LOG',
                 'O1', 'O2', 'P3', 'P4', 'PZ',
                 'ROG', 'T3', 'T4', 'T5', 'T6'
    dur_epoca = frec*dur_epo
24
```

```
# componentes de los nombres de archivo
25
    canal = channel[ch]
26
    nom_ar = paste0(nombre, '_', canal, '.txt')
27
28
   # cargar datos
29
    setwd (w_dir)
30
   DATA = read.csv(nom_ar)
   DATA = as.numeric(unlist(DATA))
33
    # cuantas epocas contiene el archivo/segmento en cuestion
34
    max_epoca = floor(length(DATA)/dur_epoca)
35
36
    # contenedores de los resitados del test
37
    pv.t = rep(0, max_epoca)
38
    pv.ir = rep(0, max_epoca)
39
    pv.tir = rep(0, max_epoca)
40
41
    # ciclo que recorre las epocas en el archivo/segmento actual
42
    for (i in 0:(\max_{e} -1))
43
      # filtro STL, robusto y forzado a periodico estandar
44
             = DATA[ (i*dur_epoca) : ((i+1)*dur_epoca) ]
45
      temp.t = ts(temp, frequency=frec, start=c(0,0))
46
             = stl(temp.t,robust=T,s.window='periodic')
             = s$time.series[,'remainder']
      te
48
             = as.numeric(unclass(te))
      te1
49
50
      # test de PSR, los archivos se recolectan
             = stationarity(te1)
      pv.t[i+1] = as.numeric(attr(z, 'pvals')[1])
53
      pv.ir[i+1] = as.numeric(attr(z, 'pvals')[2])
54
      pv.tir[i+1] = as.numeric(attr(z, 'pvals')[3])
56
      # se imprime en pantalla el porcentaje del proceso
      print( paste0(' SUJETO : ',nombre) )
58
      print( paste0(' Canal : ',
59
                     canal, '(', toString(ch), '/22)'))
60
```

```
61
      print( paste0('Progreso : ',
                     toString(floor(i/(max_epoca-1)*10000)/100),
62
                     , % ))
63
    }
64
65
    # los resultados se guardan en un archivo .csv
66
    setwd(r_dir)
    write.csv(pv.t , paste0('EST_', nombre, '_', canal, '_T.csv'))
    write.csv(pv.ir , paste0('EST_',nombre,'_',canal,'_IR.csv''))
    write.csv(pv.tir, paste0('EST_',nombre,'_',canal,'_TIR.csv'))
71 }
```

Listing A.1: Código usado

Bibliografía

- [1] S. Adak. Time-dependent spectral analysis of nonstationary time series. *Journal* of the American Statistical Association, 93(444):1488–1501, 1998.
- [2] P. Carrillo-Mora, J. Ramírez-Peris, and K. Magaña Vázquez. Neurobiología del sueño y su importancia: antología para el estudiante universitario. Revista de la Facultad de Medicina, 56(4):5–15, 2013.
- [3] S. Chokroverty. Sleep disorders medicine: basic science, technical considerations, and clinical aspects. Elsevier Health Sciences, 2009.
- [4] J. W. Clark Jr. The origin of biopotentials. *Medical instrumentation: application and design*, 3:121–182, 1998.
- [5] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning. STL: A seasonal-trend decomposition procedure based on loess. *Journal of Official Sta*tistics, 6:3–73, 1990.
- [6] B. A. Cohen and A. Sances. Stationarity of the human electroencephalogram.

 Medical and Biological Engineering and Computing, 15(5):513–518, 1977.
- [7] P. D. Coleman and D. G. Flood. Neuron numbers and dendritic extent in normal aging and alzheimer's disease. *Neurobioly of Aging*, 8(6):521–545, 1987.
- [8] W. Constantine and D. Percival. fractal: Fractal Time Series Modeling and Analysis, 2016. R package version 2.0-1.
- [9] P. Cuijpers, M. Berking, G. Andersson, L. Quigley, A. Kleiboer, and K. S. Dobson. A meta-analysis of cognitive-behavioural therapy for adult depression, alone

- and in comparison with other treatments. The Canadian Journal of Psychiatry, 58(7):376–385, 2013.
- [10] I. N. de Geriatría / Secretaría de Salud. Plan de acción alzheimer y otras demencias. méxico, 2014, 2014. México.
- [11] M. M. Esiri. Ageing and the brain. The Journal of pathology, 211(2):181–187, 2007.
- [12] A. Fernández Conde and E. Vázquez Sánchez. El sueño en el anciano. atención de enfermería. *Enfermería Global*, 10:1–17, 2007.
- [13] S. A. Greenberg. The geriatric depression scale (gds). Best Practices in Nursing Care to Older Adults, 4:1–2, 2012.
- [14] E. M. Hita Yáñez. Caracterización de las alteraciones del sueño en personas mayores con deterioro cognitivo leve. Tesis doctoral, Universidad Pablo de Olavide, Sevilla, España, 2014.
- [15] T. Hori, Y. Sugita, E. Koga, S. Shirakawa, K. Inoue, S. Uchida, H. Kuwahara, M. Kousaka, T. Kobayashi, Y. Tsuji, et al. Proposed supplements and amendments to 'a manual of standardized terminology, techniques and scoring system for sleep stages of human subjects', the rechtschaffen & kales (1968) standard. Psychiatry and clinical neurosciences, 55(3):305–310, 2001.
- [16] C. Iber, S. Ancoli-Israel, A. Chesson, S. F. Quan, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, volume 1. American Academy of Sleep Medicine Westchester, IL, 2007.
- [17] H. H. Jasper. Epilepsy and Cerebral Localization. A. Study of the Mechanism.

 Treatment and Prevention of Epileptic Seizures, volume 35, chapter Electrocephalography. Southern Medical Journal, 1942.

- [18] H. H. Jasper. The ten twenty electrode system of the international federation. Electroencephalography and clinical neurophysiology, 10:371–375, 1958.
- [19] N. Kawabata. A nonstationary analysis of the electroencephalogram. *IEEE Transactions on Biomedical Engineering*, [revisar]:444–452, 1973.
- [20] W. Klonowski. Everything you wanted to ask about eeg but were afraid to get the right answer. *Nonlinear Biomedical Physics*, 3(1):2, 2009.
- [21] R. M. Loynes. On the concept of the spectrum for non-stationary processes. Journal of the Royal Statistical Society. Series B (Methodological), pages 1–30, 1968.
- [22] J. A. McEwen and G. B. Anderson. Modeling the stationarity and gaussianity of spontaneous electroencephalographic activity. *IEEE transactions on Biomedical Engineering*, [revisar]:361–369, 1975.
- [23] G. Melard and A. H.-d. Schutter. Contributions to evolutionary spectral theory.

 Journal of Time Series Analysis, 10(1):41–63, 1989.
- [24] H. Navarrete and I. Rodríguez-Leyva. La demencia. ¿subdiagnosticada o ignorada? Revista Mexicana de Neurociencias, 4:11–12, 2003.
- [25] M. M. Ohayon, M. A. Carskadon, C. Guilleminault, and M. V. Vitiello. Metaanalysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. SLEEP, 27:1255–1274, 2004.
- [26] C. H. Page. Instantaneous power spectra. Journal of Applied Physics, 23(1):103– 106, 1952.
- [27] D. C. Park and P. Reuter-Lorenz. The adaptive brain: Aging and neurocognitive scaffolding. *Annual of Revised Psychology*, 60:173–196, 2009.
- [28] M. B. Priestley. Spectral Analysis and Time Series, volume 1,2. Academic Press, 1981.

- [29] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2015.
- [30] A. Robles, T. Del Ser, J. Alom, J. Peña Acasanova, and [et al]. Propuesta de criterios para el diagnóstico clínico del deterioro cognitivo ligero, la demencia y la enfermedad de alzheimer. Neurología, 17(1):17–32, 2002.
- [31] B. Roumec, M. Gismondi, A. M. Gomez, and L. Sousa. Escala por interrogatorio de las actividades de la vida diaria: validación y correlación con escalas de severidad de deterioro cognitivo en pacientes con demencia tipo alzheimer. *Neurología Argentina*, 6(3):137–141, 2014.
- [32] C. Sanhueza Guzmán. Programa de entrenamiento cerebral en adultos mayores sin deterioro cognitivo: atención, memoria y funciones ejecutivas. PhD thesis, Universidad Complutense de Madrid, 2014.
- [33] R. Silverman. Locally stationary random processes. *IRE Transactions on Information Theory*, 3(3):182–187, 1957.
- [34] F. O. Solís, M. E. Gómez, E. M. Villaseñor, M. Roselli, A. Ardila, and D. A. Pineda. *Neuropsi atención y memoria 6 a 85 años*. American Book Store, 2003.
- [35] A. L. Sosa, E. Albanese, B. C. M. Stephan, M. Dewey, D. Acosta, C. P. Ferri, M. Guerra, Y. Huang, K. S. Jacob, I. Z. Jiménez-Velázquez, J. J. Llibre Rodriguez, A. Salas, J. Williams, I. Acosta, M. González-Viruet, M. A. Guerra Hernandez, L. Shuran, M. J. Prince, and R. Stewart. Prevalence, distribution, and impact of mild cognitive impairment in latin america, china, and india: a 10/66 population-based study. PLoS Med, 9(2):e1001170, 2012.
- [36] H. Sugimoto, N. Ishii, A. Iwata, N. Suzumura, and T. Tomita. On the stationarity and normality of the electroencephalographic data during sleep stages. *Computer programs in biomedicine*, 8(3-4):224–234, 1978.
- [37] B. E. Vargas Terrez, V. Villamil Salcedo, C. Rodríguez Estrada, J. Pérez Romero, and J. Cortés Sotres. Validación de la escala kessler 10 (k-10) en la detección de

- depresión y ansiedad en el primer nivel de atención. propiedades psicométricas. $Salud\ mental,\ 34(4):323-331,\ 2011.$
- [38] G. R. Vázquez-Tagle Gallegos, V. García-Muñoz, A. Rosales-Lagarde, E. Rodríguez Torres, C. Martínez-Alcalá, and O. Reséndiz-Flores. Correlación inter-hemisférica durante el sueño mor del adulto mayor con deterioro cognitivo, 2016. Congreso Nacional, Sociedad Mexicana de Ciencias Fisiológicas, Campeche, México.
- [39] S. L. Velasco, L. L. Ayuso, I. Contador, and F. B. Pareja. Versiones en español del minimental state examination (mmse). cuestiones para su uso en la práctica clínica. *Revista de neurología*, 61(8):363–371, 2015.