Exercise 1 (6 points). Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{3p}}$. For what values of $p \in \mathbb{R}$ does the series **converge**?

By the p-series test, it must hold that 3p>1. Therefore p>1/3.

Exercise 2 (6 points). Suppose $q \in \mathbb{R}$ and consider the geometric series $\sum_{n=1}^{\infty} \frac{2^{qn}}{3^n}$.

Find the common ratio and determine for what values of q does the series converge. [Your answer should be an inequality depending of q.]

The geometric series in question has as a general term

$$\frac{2^{qn}}{3^n} = \frac{(2^q)^n}{3^n} = \left(\frac{2^q}{3}\right)^n.$$

So the common ratio is $\frac{2^q}{3}$. By the geometric series test, the common ratio should be smaller than one in absolute value, so

$$\left|\frac{2^q}{3}\right| < 1 \Longleftrightarrow 2^q < 3 \Longleftrightarrow q < \frac{\log(3)}{\log(2)}.$$

Exercise 3 (8 points). The series $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ is divergent. **Explain why** it diverges using one of the convergence tests we've seen in class. [*Hint*: $\sqrt[n]{n} \to 1$ as $n \to \infty$.]

Rewriting the general term as $\frac{1}{n^{1+\frac{1}{n}}} = \frac{1}{n\sqrt[n]{n}}$ we can limit-compare to $b_n = \frac{1}{n}$. It holds that $a_n = n = 1$

$$\frac{a_n}{b_n} = \frac{n}{n\sqrt[n]{n}} = \frac{1}{\sqrt[n]{n}} \to 1 > 0.$$

By the Limit Comparison Test, our series behaves as the harmonic series which is divergent. It holds that our series diverges.