UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

Q1 /25 Q2 /25 Q3 /25 Q4 /25

/100

Total

FINAL EXAMINATION

APRIL 2001 EXAM TYPF: A First Year Programs: CIV, LME, MEC, IND, CHE, MMS

ECE 110S: ELECTRICAL FUNDAMENTALS

EXAMINERS: N.P. Kherani, B. Wang, S. Zukotynski (Co-ordinator)

NAME:			
	Last	First	
STUDENT NO	O.:		

INSTRUCTIONS:

- This is a Type A examination; no aids are allowed.
- Only non-programmable calculators are allowed.
- Answer all parts of all four questions.
- All four questions are of equal weight.
- The weight of each of the individual parts of each question is stated in the margins.
- All work is to be done on these pages.
- Place your final answers in the provided boxes unless instructed otherwise.
- When answering the questions include all the steps of your work on these pages. For additional space, you may use the back of the preceding page.
- Do not unstaple this exam.

CONSTANTS:

$$e = 1.6 \times 10^{-19} \text{C}$$
 $\epsilon_0 = 8.85 \times 10^{-12} \text{F/m}$ $\mu_0 = 4\pi \times 10^{-7} \text{H/m}$

PART A: General

Answer the following questions.

[1]	(i)	Electric and magnetic phenomena stem from a property of matter known as charge. What is the distinguishing condition of charges that gives rise to a magnetic field?
[1]	(ii)	The electric field is a conservative field. Explain this property of the electric field.
[1]	(iii)	When we speak of electrical current, the picture that comes to mind is that of electrons drifting down a copper wire. The average velocity or the drift velocity of electrons required to support a current of 1 ampere in a copper wire of 1 mm ² in cross-section is about (circle the correct answer) (a) 1000 km/s (b) 3 x 10 ⁸ m/s (c) 1/3 m/h (d) none of the above.
[1]	(iv)	The Lorentz force is used, for example, to steer electrons in a cathode ray tube (CRT) or a television tube. Clearly write the Lorentz force expression and define all the terms.

PART B: Coulomb's Law & Electric Field

Consider the two stationary point charges shown in the figure below. Point charge Q_I has a charge of 50 μ C and is located at $x_I = y_I = 0.1$ m, while point charge Q_2 has a charge of 150 μ C and is located at $x_2 = y_2 = 0.3$ m

[5] (i) Determine the electric force (magnitude and direction) on charge 2 due to charge 1.

-	<u> </u>	
$\mathbf{F}_{21} =$		
		Ï

[1] (ii) Determine the electric force (magnitude and direction) on charge 1 due to charge 2.

_	 	
$\mathbf{F}_{12} =$		

PART C: Electric Field, Potential, and Capacitance

[4] The magnitude of the electric field due to an infinite sheet of charge, of charge density σ , is given by the expression $|E| = \frac{\sigma}{2\epsilon_0}$. For $\sigma = 8.85 \times 10^{-8}$ C/m², compute the magnitude of the electric field and the electric potential for all x>0 and all x<0. Assume that the poten-

tial at the origin is zero. On the figures below clearly show the direction of the field lines and

plot the potential for all x>0 and all x<0.

[3] Find the capacitance of a parallel plate capacitor (in vacuum) having a spacing of 0.01 m and plate area of 0.01 m². Assuming a potential difference of 12 V find the strength of the electric field inside the capacitor.

PART D: Electromagnetic Induction

A thin copper wire is wound into an essentially flat coil of 100 turns. The coil has a diameter of 0.05 m. The coil is placed in a magnetic field which varies with time, t[s], according to the relation $B(t) = 0.1\cos(120\pi t)$ T. The magnetic field is normal to the surface of the coil. The ends of the coil are connected with heavy gauge copper wire to a true rns voltmeter which has a high input impedance.

$$V(t) =$$

[1] (iii) What is the voltage reading displayed on the voltmeter?

[2] (iv) If the resistance of the coil is 1Ω , what is the current?

$$I(t) =$$

[2] (v) What is the power dissipation in the coil, P(t)?

$$P(t) =$$

Question 2: DC Circuits

Consider the circuit shown below.

[7] (i) Using nodal analysis, find the Thévenin's equivalent voltage to the left of terminals a and b.

1/		
7 Th. —		
$V_{Th} =$		

[3] (ii) Determine the Thévenin's equivalent resistance of this circuit to the left of terminals a and b.

R_{eq} =

Question 2: DC Circuits

		Question 2: De ente	113
[2]	(iii)	Draw the Norton equivalent circuit to the left of te	erminals a and b .
			Norton equivalent circuit:
[3]	(iv)	What is the maximum power that can be transferre	
			P _{max} =
[3]	(v)	Assuming R is 2 Ω , what is the actual power deliv	rered to the load? $P_{R} =$

Question 2: DC Circuits

[7] (vi) Use the principle of superposition to determine the current flowing downward in the 3 Ω resistor. (The circuit has been reproduced above for your convenience.)

$$I_1$$
 (due to 6 V) =
 I_2 (due to 3 V) =
 I_3 (due to 7 A) =

Question 3: Transient Analysis

A. The switch is closed at time t=0 in the circuit shown below. Assume that the switch was open for a long time prior to time zero.

[4] (i) Find v(t) for t = 0 and $t = 0^+$.

$v(t=0^{\circ})=$	 	-
$v(t=0^+)=$		

[6] (ii) Find v(t) as a function of time for t > 0.

v(t) for $t > 0$:	

[5] (iii) Sketch v(t) for all time; clearly label the axes.

Question 3: Transient Analysis

- **B.** For the circuit shown below, the switch is closed at time t = 0. Prior to time t = 0, you may assume that the switch has been open for a long time.
- [8] (i) Derive the differential equation for $v_{c_j}(t)$ for t>0. HINT: Begin by writing the node equation (i.e., applying KCL) at node A.

[2] (ii) Find the time constant for the above circuit and the value of $v_{c_j}(t)$ a long time after the switching action.

$$\tau = v_{c_{j}}(\infty) =$$

Question 4: AC Circuits

A 1000 watt electric motor is connected to a source of $120\,\mathrm{V_{rms}}$ at $60\,\mathrm{Hz}$, which results in a lagging power factor (PF) of 0.8. (Note: lagging power factor means the current in the motor lags the voltage across the motor.)

[5] (i) Calculate the current (rms value) drawn from the source.

$i_{Motor(rms)} =$		
· Motor(rms)		

[5] (ii) The PF is increased to 0.95 lagging by placing a capacitor in parallel with the motor. Calculate the new current (rms value) drawn from the source with the capacitor connected.

Question 4: AC Circuits

[10]	10] (iii) Determine the value of the capacitor required to make the correction.		
			C =

[5] (iv) The motor can be modeled with a resistor R and an inductor L in series, determine the values of R and L.

R = L =