Optimal design of continuous crystallizers

Marcella Porru*, Leyla Özkan*, Alex Kalbasenka+.

- *Eindhoven University of Technology, Control Systems Group
- +Corbion, Gorinchem, Netherlands

Scope of the project IMPROVISE

Closing the gap between offline and online use of rigorous process models in daily operation of chemical plants.

www.ISPT.eu/media/PSE-20-01-IMPROVISE.pdf

Project goals with respect to crystallization

- Batch crystallization operation and modelling studies.
- Online model-based monitoring and control.
- Optimal design of continuous crystallizers.

Motivation

Overcome typical drawbacks of the (semi) batch operation (low batch to batch reproducibility, controllability, observability, and scale up problems).

Process configurations under study

Analysis of C1 through simulations

Analysis of C2 through simulations

The recycle ratio does not have influence on yield and PSD.

Analysis of C3 through simulations

Optimization problem

subject to: $D50 > \varepsilon_{D50}$ model

maximize D50Pressure P1

subject to: $\max_{P2} Yield$

model

At high yields there is margin to improve the dimension of the crystals

Conclusion and future work

- C1: The optimal pressure for the single MSMPR is the result of a compromise between high yield and large D50.
- C2: The addition of a recycle stream does not improve the crystallization performance.
- C3: Optimal setting of pressures of the first and second crystallizer allows to operate at the maximum yield and obtain larger crystals compared with the use of a single unit.
- Cost estimation under study to evaluate the costs/profits associated with the addition of a second crystallizer.