27. a.	Consider	the follo	owing	tran	sactio	n tal	ole:										
	Trans					isets		H									
	11	В	D) (I	B,E) (D.E)	(B.I).E)										
	12							E) (C	E)								
								,C,E)	,_,								
	13				TF. 20 YE			E) (D	E)								
	10	,						,D,E)	-								
	(i)	Calcula								nıım	nnn	ort of	67%	5	4	2	4
	(1)	using A					isci ,	WILL I	1111111	iluili i	suppe	nt Oi	0770	5	4	2	4
	(ii)	Calcula					lue f	or the	mile	"TE E	TIT	ENI C	or and	5	1	2	4
	(11)	derive 1												3	4		4
		delive	003310	no as	Socia	uon i	uics .	li OIII i	nc ac	00101	rcque	111 11C	mset.				
					(O	D)											
hi	Explain a	ahout th	ne nr	ocedi			nvort	horiz	onto1	frag	nont	itom	not to	5	3	2	3
0.1.	vertical fr							110112	Omai	neq	uem	HEIII	set to			_	J
	vertical II	cquem.	ILCIIIS	Ct WI	ш сха	mpic	J.										
;;	Compara	atrona	nd w	مماد م	aaooi	otion	m1100	with	07r 0 to	1 ₋				5	3	2	3
11.	Compare	strong a	iiid w	cak a	SSUCI	auon	Tutes	WILLI	exam	ipie.				J	3	2	J
28 0	Construct	the de	nigion	troo	for tl	ho oi	TION t	ahla u	i cin c	m .	1~~~	61a.aa	W7	10	4	3	3
20. a.	Construct the stepw										ugon	ınm.	write	10		5	,
								e stru	cture	•							
	IIIS		Class	ificat	ion	a ₁	a ₂										
		1		+		T	T										
		2		+		T	T										
		3		3-0		T	F										
		4		+		F	F										
	-	5		-		F	T										
		6		.=-		F	T										
					(O)	,											
b.i.	Explain a	bout ens	sembl	e met	thod i	n dat	a mir	iing w	ith ex	xamp	les.			5	3	3	1
ii.	List out v	arious c	lassif	ier ev	aluat	ion n	netric	s in de	etail.					5	3	3	1
29. a.	Consider									clust	er va	lues	using	10	3	4	2
	K-means								•			wi-					
	Height (I	H) 185	170	168	179	182	188	180	180	183	180	180	177				
	Weight	72	56	60	68	72	77	71	70	84	88	67	76				
	(W)												1 1				

					(O)	R)											
b.	Explain al	out the	follo	wing	cluste	ering	techi	niques	in d	etail							
	(i)	DBSAC	CN											5	3	4	3
	(ii)	BIRCH												5	3	4	3
30. a.	Explain al	oout var	ious (outlie	r dete	ection	appi	oache	s wit	h exa	mple.	d		10	3	5	3
					(0)	D)											
1	Errolain al	- avst +1- a	f-11-		(O)	K)											
D.	Explain al			_		1 .		•						5	3	6	3
		Recomi		-				_						5	3	6	
	(ii)	Intrusio	n dete	ection	ı usın	g dat	a mir	ung						3	3	U	3
						a	* * * *	* *									
age 4 of 4													4.0	074.77 4.57	2.610.0	OE of	-m

Reg. No.								
						11		

B.Tech. DEGREE EXAMINATION, MAY 2022 Fifth & Sixth Semester

18CSE355T – DATA MINING AND ANALYTICS
candidates admitted from the academic year 2018-2019 to 2019-20

N 7 ((For the candidates admitted from the academic year					
Note: (i)		Part - A should be answered in OMR sheet within first	40 minutes and OMR sheet s	shoul	d he	han	đeđ
		over to hall invigilator at the end of 40 th minute.		110 41		11411	uou
(ii))	Part - B should be answered in answer booklet.					
Time	. 91	½ Hours		Λ.) (1	a .c
1 11110	· F	72 110th 5	IV	Iax.	Ma	rks:	/5
		$PART - A (25 \times 1 = 25 Marks)$	М	Iarks	BL	со	PO
		Answer ALL Questions					
	1.	Select the most appropriate way of handling missing	data	1	1	1	1
		(A) Data integration (B) Data redu	iction				
		(C) Use of global constant (D) Data cube	e technique				
	2.	used to measure the linear relationship	between the objects	1	2	1	1
		(A) Mean value (B) Standard					
		(C) Covariance (D) Correlation					
	2	A.F.					_
	٥.	A E-commerce company wants to segment their of	sustomers into distinct	1	2	1	2
		groups to promote offers, select appropriate method					
		(A) Unsupervised learning (B) Supervise					
		(C) Data transformation (D) Reinforce	ement learning				
	4.	Data visualization techniques are used to		1	1	1	1
		(A) Calculate accuracy (B) Detect ou	tliers				
		(C) Improve training accuracy (D) Integrate	data				
	5	Manimizing transit of the state of		1	•		
	٥.	Maximizing intra-class similarity and minimizing in	ter-class similarity are	1	2	1	1
		the objectives of (A) Classification (B) Outlier ar	1 .				
			_				
		(C) Clustering (D) Sequence	pattern				
	6.	In ensemble method, each new model	is influenced by the	1	1	2	2
		performance of those built previously.					
		(A) Bagging (B) Boosting					
		(C) Stacking (D) Learning					
		I have been been been been been					
	7.	used to minimize the misclassification err	or in decision tree	1	2	3	2
		(A) Boosting (B) Overfitting	g				
		(C) Pruning (D) Bagging					
	8.	How do you calculate confidence $(X \rightarrow Y)$?		1	2	2	2
	-		$X \cup Y$)/ support(X)				
		(0)	$X \cup Y$)/ support(X)				
		(-) support (321 11), support (1) (D) support (2	x∪1 // support(1)				

9.		ntify the frequent pattern by mining the	1	2	2	2	20. CF-Tree used under type of clustering. 1 (A) Density based (B) Grid based	3 4	4	
	conditional frequent pattern trees.	(D) N. " 1 1 11					(C) Hierarchical based (D) Model based			
	(A) Apriori algorithm						(C) Hierarchical based (D) Wodel based			
	(C) FP growth algorithm	(D) Clustering algorithm					21 Chearly recognition technique with single healterwayed noise is an example 1	2 5	5 4	1
1.0	T : 00 / 61/	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2	2	2	21. Special recognition technique with single background noise, is an example			
10.	For a given scenario, 22 out of 10	00 people are predicted as positive of					for (A) Clabal authors (B) Callactive authors			
	having a tumor, although they don	't have a tumor. This is considered as					(A) Global outliers (B) Collective outliers			
							(C) Contextual outliers (D) Large outliers			
		(B) True Negative (TN)) 5	5 4	
	(C) False Negative (FN)	(D) False Positive (FP)					22. Select the type of outlier deviates significantly from most of other dataset		, 4	
				0	^	1	(A) Graph based outlier (B) Proximity based outlier			
11.	used to measure the	e fraction of positive patterns that are	1	2	2	1	(C) Grid based outlier (D) Mean based outlier			
	classified correctly.					2			- 1	
	(A) Error rate	(B) Precision					23. Item based recommendation system using to predict user 1	2 3) 3	
	(C) Recall	(D) F-measure					preferences.			
							(A) Likes and dislikes measure (B) Mean adjusted matrix			
12.	is a statistical classific	er, which has comparable performance	1	2	3	1	(C) k-mediods (D) Recall value			
	with decision tree.									
	(A) Rule based classifier	(B) Naive Bays classifier					24 type of attacks can be identified using datamining intrusion 1	2 5	5 3	,
	(C) Sequential classifier	(D) Entropy based classifier					detection			
							(A) Information attacks (B) Denial of service (DOS) attacks			
13.	In web mining, is use	ed to know the order in which urls tend	1	2	3	2	(C) Password attacks (D) SQL injection attacks			
	to be accessed.									
	(A) Clustering	(B) Associations					25. Which is used to perform inference on the current data to make 1	2 5	5 4	ŀ
	(C) Classifications	(D) Sequential analysis					predictions?			
							(A) Data mining (B) Data pattern	-		
14.	Which one of the clustering techniq	ue needs the merging approach?	1	1	4	2	(C) Predictive (D) Descriptive			
	(A) Partitioned									
	(C) Hierarchical	(D) Decision tree								
							$PART - B (5 \times 10 = 50 \text{ Marks})$ Marks	BL C	O PO	0
15.	used to handle the	e classification problems	1	2	3	2	Answer ALL Questions			
-	(A) Linear regression	(B) Logistic regression								
	(C) k-means	(D) Preprocessing techniques					26. a. Explain about various stages of KDD process in detail with proper 10	3	1 3	3
	(e) if include	(=) 114F1000000-8					diagram.			
16.	algorithm extracts rules of	lirectly from training data	1	2	3	1				
10.	(A) k-means	(B) Partition around medoids					(OR)			
	(11) It illeans	(PAM)					b.i. Consider the following shopping mall customers details dataset.			
	(C) Sequential covering	(D) Frequent pattern					S.No Name Occupation Branch Date Price			
	(c) sequential covering	(-) I Parison					1 Ramesh Govt DD 11-Jan			
17.	example for partition	ing based clustering algorithm	1	2	4	2	2 Vivek Self CC 12-Jan 2500			
17.	(A) DBSCAN	(B) DIANA					3 Kiran			
	(C) Optics	(D) k-medoids					4 Suresh Private FF 14-Jul -300			
	(5) 5 2 2 2	()					5 Hemanth Business KK 14-Jan 1100			
18	Decompose data object into seve	ral levels of nested partitioning called	1	2	4	3	(
10	Doompood data object into seve	10.000 or neoted paramonning outloo						2	1	2
	(A) Boosting	(B) Dendrogram						3	1 3	3
	(C) Tree pruning	(D) Histogram					the missing value using the measure of central tendency? (ii) Explain about need for Data are processing and data quality in	3	1	3
		` '	1	1	4	4	(ii) Explain about need for Data-pre-processing and data quality in			
19	method used to	identity clustering structure through	1	4	+	7	mining operations.			
		identify clustering structure through								
	ordering points									
		(B) Optics (D) Clarans								

Page 2 of 4

18MA5&618CSE355T

Page 3 of 4

18MA5&618CSE355T