

Systems Engineering: Design and Development

ENGR 387

Agenda

- PAR Diagrams
- Purpose of PAR Diagrams
- Diagram Layout
- BDD/IBD Refresher
- Binding Connectors

PAR Diagrams

- Display instances of types that exist in a particular configuration of the Block that you defined in a BDD.
- IBDs provide an internal view of a block's structure by displaying:
 - Elements of Usage owned by the block named in the header of the diagram
 - Mainly the Part Properties, Reference Properties, and sometimes Ports
 - How those elements of usage are connected to each other
 - Displayed by using Connectors
 - The services that are provided and required across the connections
 - Displayed by using Standard Ports
 - The types of matter, energy, or data that flow across those connections
 - Displayed by using Flow Ports and/or Item Flows
- NOTE:
 - IBDs <u>CANNOT</u> display elements of definition (blocks or other)

PAR Diagrams 101

- Refresher of Constraint Blocks: "Special kind of block that encapsulates a constraint expression: the equation or inequality you need to model"
- PARs allow you to impose a fixed mathematical relationship on a block's value properties
- Allows you to:
 - Specify assertions about valid system values within an operational system (and detect exceptional conditions)
 - Use the blocks in your system model to provide the inputs for (and capture the outputs of) engineering analyses and simulations

Purpose of PAR Diagrams

- diagramKind = ibd
- modelElementType = block

diagramKind [modelElementType] modelElementName [diagramName]
ibd [block] modelElementName [diagramName]

PAR Purpose

- Diagram Purposes:
 - Display the bindings between constraint parameters in different constraint expressions to create a composite system of equations (or inequalities)
 - Display the bindings between constraint parameters and value properties to apply a constraint expression to a block

PAR Diagram Layout

- Remember from BDDs that a Block can own 5 kinds of structural features:
 - Features come in two varieties Structural and Behavioral
 - 5 Kinds of structural features (aka **properties**)
 - Part properties
 - Reference properties
 - Value properties
 - Constraint properties
 - Ports
- IBDs generally show three of those 5 kinds of features:
 - Part Properties
 - Reference Properties
 - Ports
- Note: the other two kinds (Value and Constraint Properties) are shown on Parametric Diagrams!

Key Takeaway #1: PAR Diagram Layout

- Diagram Kind: "par" is a Parametric Diagram
- Model Element Type: either [block] or [constraintBlock]

<u>Constraint Properties</u> Lenny - "round-angle" (rounded corner rectangle)

BDD/IBD Refresher

- Graphical Notation:
 - Rectangle with a solid line border
- Namestring:
 - <part name> : <type> [<multiplicity>]
 - Default multiplicity when not shown = 1
- Note: It is an option to display multiplicity either at the end of the namestring or in the upper right-hand corner of the rectangle
- Remember:
 - Part property means a thing (block) that is internal to the block that owns the part property

Key Takeaway #2: BDD/IBD Refresher

- Constraint Property
- Displayed as round-angle on PAR
- Type must be constraint block
- Constraint Parameter
- Formal term for variable appearing in constraint expression
- Small square attached to the boundary on the inside of a constraint property
- Typed by Value Types
- ▼ Value property
- Usage of a value type in context of an owning block
- Supply values to constraint parameters

Binding Connectors

- Connector IBDs
 - SysML defines default multiplicities of 1 on each end of a connector. These multiplicities may be assumed if not shown on a diagram. To avoid confusion, any multiplicity other than the default should always be shown on a diagram.

EXAMPLE

Key Takeaway #3: Binding Connectors

- Can appear ONLY on a PAR diagram
- Convey no notion of direction
- One of two bound elements must be constraint parameter
- Other element must be a value property or another constraint parameter

Questions

References

- Additional information can be obtained by reviewing:
 - SysML Distilled (Delligatti)
 - Chapter 4: Internal Block Diagrams
 - A Practical Guide to SysML (Friedenthal)
 - Chapter 7: Modeling Structure with Blocks
 - The Block section covers both BDDs and IBDs
 - OMG SysML Spec v1.2
 - Section 8: Blocks
 - The Block section covers both BDDs and IBDs
 - Section 9: Ports and Flows

Summary

Review Questions

Question 1

- What model element can an IBD represent?
 - A. Reference Association
 - B. Part Property
 - C. Block
 - D. Value Type
 - E. Reference Property
 - F. Operation
 - G. Constraint Block
 - H. Connector
 - I. Value Property
 - J. Port

Review Question N.PAR.1

- Which of the below items are possible model element types represented in a PAR diagram frame (choose all that apply):
 - A. package
 - B. stateMachine
 - C. block
 - D. interaction
 - E. constraintBlock
 - F. modelLibrary

Review Question N.PAR.1 (ANSWER in Green)

- Which of the below items are possible model element types represented in a PAR diagram frame (choose all that apply):
 - A. package
 - B. stateMachine

- C. block
- D. interaction

- E. constraintBlock
- F. modelLibrary

See SysML Distillied Section 9.4

Question 2

- On an IBD, ___ appear as solid boundary rectangles and ___ appear as dashed boundary rectangles.
 - A. Reference Properties, Reference Associations
 - B. Part Properties, Reference Properties
 - C. Part Properties, Value Types
 - D. Reference Properties, Constraint Blocks

Review Question N.PAR.2

- Which types of SysML diagrams will never contain binding connectors (choose all that apply):
 - A. ibd
 - B. bdd
 - C. par
 - D. uc
 - E. act
 - F. pkg

Review Question N.PAR.2 (ANSWER in Green)

 Which types of SysML diagrams cannot contain binding connectors (choose all that apply):

```
A. ibd
B. bdd
C. par
D. uc
E. act
F. pkg
See SysML Distillied Section 9.8
```

Question 3

- All solid lines on an IBD are:
 - A. Associations
 - B. Constraints
 - C. Connectors
 - D. Reference Associations
 - E. Sometimes they are Connectors (when they are not typed) and sometimes they are associations (when they are typed)

Review Question N.PAR.3

- What two elements are binded together in a parametric diagram:
 - A. Constraint Parameters & Constraint Blocks
 - B. Constraint Parameters & Value Types
 - C. Constraint Parameters & Value Properties
 - D. Constraint Properties & Value Types
 - E. Constraint Properties & Value Properties

Review Question N.PAR.3 (ANSWER in Green)

- What two elements are binded together in a parametric diagram:
 - A. Constraint Parameters & Constraint Blocks
 - B. Constraint Parameters & Value Types

- C. Constraint Parameters & Value Properties
- D. Constraint Properties & Value Types
- E. Constraint Properties & Value Properties

See SysML Distillied Section 9.3