MENU

KNN Numerical Example (hand computation)

Ad closed by Google

Stop seeing this ad Why this ad? (i)

By Kardi Teknomo, PhD (../../copyright.html).

(purchase.html)

< <u>Previous (HowTo_KNN.html)</u> | <u>Next (KNN_TimeSeries.htm)</u> | <u>Contents (index.html)</u> >

Read it off line on any device. Click here to purchase the complete E-book of this tutorial (purchase.html)

Numerical Exampe of K Nearest Neighbor Algorithm

Here is step by step on how to compute K-nearest neighbors KNN algorithm:

- 1. Determine parameter K = number of nearest neighbors
- 2. Calculate the distance between the query-instance and all the training samples
- 3. Sort the distance and determine nearest neighbors based on the K-th minimum distance
- 4. Gather the category *y* of the nearest neighbors
- 5. Use simple majority of the category of nearest neighbors as the prediction value of the query instance

We will use again the <u>previous example (WhatisKNN.html)</u> to calculate KNN by hand computation. If you want to <u>download the MS excel</u> <u>companion of this tutorial, click here (purchase.html)</u>

Example

We have data from the questionnaires survey (to ask people opinion) and objective testing with two attributes (acid durability and strength) to classify whether a special paper tissue is good or not. Here is four training samples

X2 = Strength
X1 = Acid Durability (seconds) Y = Classification
(kg/square meter)

7 Bad

7	4	Bad
3	4	Good
1	4	Good

Now the factory produces a new paper tissue that pass laboratory test with X1 = 3 and X2 = 7. Without another expensive survey, can we guess what the classification of this new tissue is?

1. Determine parameter K = number of nearest neighbors

Suppose use K = 3

2. Calculate the distance between the query-instance and all the training samples

Coordinate of query instance is (3, 7), instead of calculating the distance we compute square distance which is faster to calculate (without square root)

3. Sort the distance and determine nearest neighbors based on the K-th minimum distance

X1 = Acid Durability (seconds)	X2 = Strength (kg/square	Square Distance to query instance (3 7)	, Rank minimum distance	Is it included in 3-Nearest neighbors?
	meter)			
7	7	$(7-3)^2 + (7-7)^2 = 16$	3	Yes
7	4	$(7-3)^2 + (4-7)^2 = 25$	4	No
3	4	$(3-3)^2 + (4-7)^2 = 9$	1	Yes
1	4	$(1-3)^2 + (4-7)^2 = 13$	2	Yes

4. Gather the category Y of the nearest neighbors. Notice in the second row last column that the category of nearest neighbor (Y) is not included because the rank of this data is more than 3 (=K).

X1 = Acid Durability (seconds)	X2 = Strengtl (kg/square meter)	n Square Distance to query instance (3, 7)	Rank minimum distance	Is it included in 3-Nearest neighbors?	Y = Category of nearest Neighbor
7	7	$(7-3)^2 + (7-7)^2 = 16$	3	Yes	Bad
7	4	$(7-3)^2 + (4-7)^2 = 25$	4	No	-
3	4	$(3-3)^2 + (4-7)^2 = 9$	1	Yes	Good

5. Use simple majority of the category of nearest neighbors as the prediction value of the query instance

We have 2 good and 1 bad, since 2>1 then we conclude that a new paper tissue that pass laboratory test with X1 = 3 and X2 = 7 is included in **Good** category.

(i) ×

Download PDF - [Free]

To View PDF, Download Here

ProPDFConverter

OPEN

Read it off line on any device. Click here to purchase the complete E-book of this tutorial (purchase.html)

Give your feedback and rate this tutorial (../Rating/RateTutorial.php?TutorialName=KNN)

< <u>Previous (HowTo_KNN.html)</u> | <u>Next (KNN_TimeSeries.htm)</u> | <u>Contents (index.html)</u> >

This tutorial is copyrighted (../../copyright.html).

Preferable reference for this tutorial is

Copyright © 2017 Kardi Teknomo Revoledu Design