

Classe: 4ème maths

Série physique N°13

Prof: Haffar Samí

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Figure-3

Exercice 1

(S) 30 min

I- On considère le circuit électrique de la **figure-3** comportant un condensateur de capacité **C**, une bobine d'inductance **L** et de résistance négligeable, un interrupteur K et un conducteur ohmique de résistance variable.

On fixe R à la valeur R= R₀.

- 1° On ferme le commutateur K sur la position (1) et on visualise à l'aide d'un oscilloscope à mémoire la tension $u_c(t)$. On obtient l'une des courbes (a) ou (b) de la **Figure-4** suivante :
 - a- Préciser en le justifiant, la courbe visualisée.
- **b-** Exprimer la charge maximale $\mathbf{Q0}$ du condensateur et l'énergie maximale $\mathbf{E_0}$ emmagasinée par le condensateur en fonction de \mathbf{C} et \mathbf{E} .
- 2° A t=0 on bascule l'interrupteur sur la position 2. L'oscilloscope à mémoire permet d'enregistrer la tension $u_c(t)$ aux bornes du condensateur on obtient la courbe de la figure5 ci-dessous :
 - a- De quel régime d'oscillations s'agit-il?
- **b-** Expliquer pourquoi ces oscillations sont dites **libres** amorties ?
- **c-** Déterminer à partir du graphe la valeur de la fem **E** du générateur.
- 3° a- Etablir l'équation différentielle à laquelle satisfait la tension u_c Montrer qu'elle s'écrit de la

forme:

$$\frac{d^{2}u_{C}}{dt^{2}} + \frac{1}{\tau} \frac{du_{C}}{dt} + \omega_{0}^{2}u_{c} = 0.$$

Identifier les expressions de ω_0 et τ .

 4° a- En admettant que la valeur de la pseudo-période T est égale à celle de la période propre T_0 , montrer que l'énergie emmagasinée par la bobine à l'instant t_1 = 2ms,

indiqué sur le graphe, s'écrit :
$$E_{L1} = \frac{T^2C}{8\pi^2} (\frac{du_c}{dt})^2$$

- **b-** Sachant que $E_{L1} = 11,25.10^{-5}J$, trouver la valeur de la capacité C du condensateur puis déduire celle de l'inductance L de la bobine.
- 5°a- Montrer que l'énergie de l'oscillateur n'est pas conservée.
 - b- Déterminer l'énergie dissipée par effet joule entre les instants t = 0 et t₁ = 2ms.
- c- Sachant que l'énergie décroit de **71,6**% de sa valeur initiale chaque période, déterminer la tension U_{c2} aux bornes du condensateur à l'instant $t_2 = 2T$.
- 6° Sachant qu'à la date \mathbf{t}_1 la tension aux bornes de la bobine est $\mathbf{u}_L = 2\mathbf{V}$, déduire la valeur de \mathbf{R}_0 .
- 7° On représente les oscillogrammes C_1 , C_2 , et C_3 de $u_c(t)$ pour trois résistances respectives R_1 , R_2 , et R_3 de R. voir figure
 - a- Comparer ces résistances.
 - **b-** Nommer le régime dans chaque cas.

- II- On enlève le résistor et on charge de nouveau le condensateur puis on bascule le commutateur à la position K_2 à l'origine des dates t=0.
 - 1° En utilisant l'équation de la question I-3-a :
 - a- Déduire la nouvelle équation différentielle vérifiée par la tension u_c(t).

- **b** Vérifier que $\mathbf{u}_{c}(\mathbf{t}) = \mathbf{E} \sin(\omega_{0}\mathbf{t} + \phi)$ est solution de la nouvelle équation différentielle.
 - **c** Déterminer φ.
- 2- Une étude expérimentale a permis de tracer les courbes (1) et (2) de la figure-6 traduisant les variations de l'énergie magnétique EL respectivement en fonction de i et en fonction du temps.
 - a- Montrer que l'expression de cette énergie magnétique E₁ en fonction du temps s'écrit :

$$E_L = \frac{E_0}{2} [1 + \cos(2\omega_0 t + \pi)]$$

- **b-** En déduire l'expression de la période *T* de cette énergie en fonction de L et C
- c- En exploitant les deux courbes(1) et (2), retrouver les valeurs de L et
- **d- d**₁- Déterminer par calcul les dates $t \in [0; T_0]$ pour lesquelles l'énergie magnétique est égale à la moitié de sa valeur maximale.

d₂- Déterminer les valeurs possibles de l'intensité du courant i pendant ces dates.

Exercice 2

(S) 20 min

Dans une première expérience, on réalise l'estérification de n_1 mol d'acide éthanoïque CH_3CO_2H par n_2 mol d'éthanol C_2H_5OH en présence d'un catalyseur. L'analyse de la composition du mélange au cours du temps permet de dresser le tableau descriptif d'évolution du système suivant:

Equation de la réaction		$CH_3CO_2H + C_2H_5OH \leftrightarrows CH_3CO_2C_2H_5 + H_2O$			
Etat du système	Avancement	Quantité de matière (mol)			
Initial	0	n ₁	n_2	0	0
Intermédiaire	X ₁	9,25.10 ⁻³	4.10 ⁻³	2.10 ⁻³	2.10 ⁻³
(t ₁ = 30 min)					
Final	Xf	6,25.10 ⁻³	10 ⁻³		

- 1° Le tableau d'avancement met en évidence deux caractères de la réaction d'estérification. Lesquels?
- 2° En exploitant le tableau descriptif d'évolution du système
 - a- Montrer que $n_1 = 11,25.10^{-3}$ et $n_2 = 6.10^{-3}$ mol.
 - b- Déterminer l'avancement final x_f de la réaction.
 - c- Déduire le taux d'avancement final τ_f . Vérifier que le résultat est en accord avec 1°.
- 3°a- Enoncer la loi d'action de masse.
 - b- Exprimer la constante d'équilibre K associée à la réaction d'estérification en fonction de x_f.
 - c- Vérifier que K = 4.
- 4° La quantité de matière d'acide présent à l'instant t_1 est déterminée à partir d'un dosage avec une solution d'hydroxyde de sodium de concentration $C_B = 0.5$ mol.L⁻¹ en présence de phénolphtaléine.
 - a- Que doit-on faire avant le dosage pour déterminer la quantité de matière de l'acide à l'instant t₁ ?
 - b- Comment repère-t-on l'équivalence au cours du dosage?
 - c- Déterminer le volume de la solution d'hydroxyde de sodium ajouté à l'équivalence.
- 5° Dans une deuxième expérience, on introduit dans un erlenmeyer, a mol d'éthanol, 2 moles d'éthanoate d'éthyle, et 2 moles d'eau.

a- Prévoir, en justifiant, le sens dans lequel la réaction évolue spontanément.

b- Lorsque le nouvel état d'équilibre s'établit la somme des nombres de moles de tous les constituants du système est n_T = 4,5 mol. Déterminer la valeur de a ainsi que la composition du mélange réactionnel à l'équilibre

