## **Topics: Descriptive Statistics and Probability**

**1.** Look at the data given below. Plot the data, find the outliers and find out  $\mu$ ,  $\sigma$ ,  $\sigma^2$ 

| _                |           |
|------------------|-----------|
| Name of company  | Measure X |
| Allied Signal    | 24.23%    |
| Bankers Trust    | 25.53%    |
| General Mills    | 25.41%    |
| ITT Industries   | 24.14%    |
| J.P.Morgan & Co. | 29.62%    |
| Lehman Brothers  | 28.25%    |
| Marriott         | 25.81%    |
| MCI              | 24.39%    |
| Merrill Lynch    | 40.26%    |
| Microsoft        | 32.95%    |
| Morgan Stanley   | 91.36%    |
| Sun Microsystems | 25.99%    |
| Travelers        | 39.42%    |
| US Airways       | 26.71%    |
| Warner-Lambert   | 35.00%    |

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
x=pd.Series([24.23,25.53,25.41,24.14,29.62,28.25,25.81,24.39,40.26,32.95,91.36,25.99,39.42,26.71,35.00])
```

```
# Box Plot to find outliars
sns.boxplot(x)
```

## <AxesSubplot:>



```
# Mean
x.mean()
33.271333333333333
# Vairance
x.var()
287.1466123809524
# Standard Deviation
x.std()
```

16.945400921222028

Outlier is 91.36%, Morgan Stanley.

2.



Answer the following three questions based on the box-plot above.

- What is inter-quartile range of this dataset? (please approximate the numbers) (i) In one line, explain what this value implies.
  - IQR=Q3-Q1=12-5=7(Approximately)
  - This value implies that most of the data lies in this range.
- (ii) What can we say about the skewness of this dataset?
  - > Skewness of the data is ppositive.
- (iii) If it was found that the data point with the value 25 is actually 2.5, how would the new box-plot be affected?
  - In thaty case the value 2.5 will liw in lower whisker part and positiveness of skew will decrease slightly.
  - Median value will also increase slightly.



Answer the following three questions based on the histogram above.

- (i) Where would the mode of this dataset lie?
  - > Between 4 to 8.
- (ii) Comment on the skewness of the dataset.
  - Skewness is positive.
- (iii) Suppose that the above histogram and the box-plot in question 2 are plotted for the same dataset. Explain how these graphs complement each other in providing information about any dataset.
  - ➤ Above histogram & boxplot are positively skewed.
  - > Both of them have the value 25 as outlier.
  - ➤ Both of them are likely to have mode & median in similar interval.

4 AT&T was running commercials in 1990 aimed at luring back customers who had switched to one of the other long-distance phone service providers. One such commercial shows a businessman trying to reach Phoenix and mistakenly getting Fiji, where a half-naked native on a beach responds incomprehensibly in Polynesian. When asked about this advertisement, AT&T admitted that the portrayed incident did not actually take place but added that this was an enactment of something that "could happen." Suppose that one in 200 long-distance telephone calls is misdirected. What is the probability that at least one in five attempted telephone calls reaches the wrong number? (Assume independence of attempts.)

Ans-

Probability that at least one in 5 attempted call reaches the wrong number is 0.025

Let us assume

E= The call is misdirected

F= The call is not misdirected

then probability of the event E is

p(E)=1/200

Therefore,

P(F)=1-p(E)=199/200

Probability that at least one in 5 attempted call reaches the wrong number

= 1 - Probability that no attempted call reaches the wrong number

 $=1-(199/200)^5$ 

=0.025

5 Returns on a certain business venture, to the nearest \$1,000, are known to follow the following probability distribution

| Х      | P(x) |
|--------|------|
| -2,000 | 0.1  |
| -1,000 | 0.1  |
| 0      | 0.2  |
| 1000   | 0.2  |
| 2000   | 0.3  |
| 3000   | 0.1  |

- (i) What is the most likely monetary outcome of the business venture?
  - It can be seen from the above table that for x = 2000, the value of P(X) most. Hence, the most likely monetary outcome of the business venture is x = 2000.
- (ii) Is the venture likely to be successful? Explain
  - Yes, the venture is likely to be successful as the weighted average is positive.
- (iii) What is the long-term average earning of business ventures of this kind? Explain

| Х      | P(x) | X*p(x)                |
|--------|------|-----------------------|
| -2,000 | 0.1  | -200                  |
| -1,000 | 0.1  | -100                  |
| 0      | 0.2  | 0                     |
| 1000   | 0.2  | 200                   |
| 2000   | 0.3  | 600                   |
| 3000   | 0.1  | 300                   |
|        |      | Long-term average=800 |

As per the data given the long-term average is 800.

- (iv) What is the good measure of the risk involved in a venture of this kind? Compute this measure
  - > Standard Deviation is a good measure of the risk involved in a venture, because standard deviation and risk is vice-versa.