Assignment 5

AI24BTECH11008- Sarvajith

- 1: 0 < x < 1, then $\frac{3}{2}x^2 + \frac{5}{3}x^3 + \frac{7}{4}x^4 + \dots$, is equal to

 - a. $x\left(\frac{1+x}{1-x}\right) + \log_e(1-x)$ b. $x\left(\frac{1-x}{1+x}\right) + \log_e(1-x)$ c. $\frac{1-x}{1+x} + \log_e(1-x)$ d. $\frac{1+x}{1-x} + \log_e(1-x)$
- 2: If for $x, y \in \mathbf{R}, x > 0$, $y = \log_{10} x + \log_{10} x^{1/3} + \log_{10} x^{1/9} + \dots$ upto ∞ terms and $\frac{2+4+6+\dots+2y}{3+6+9+\dots+3y} = \frac{4}{\log_{10} x}$, then the ordered pair (x, y) is equal to:
 - a. $(10^6, 6)$

 - b. $(10^4, 6)$ c. $(10^2, 3)$
- 3 . Let A be a fixed point (0,6) and B be a moving point (2t,0). Let M be the mid-point of AB and the perpendicular bisector of AB meets the y-axis at C. The locus of the mid-point P of MC is
 - a. $3x^2 2y 6 = 0$
 - b. $3x^2 + 2y 6 = 0$
 - c. $2x^2 3y 9 = 0$
 - d. $2x^2 3y 9 = 0$
- 4: If $(\sin^{-1} x)^2 (\cos^{-1} x)^2 = a$; 0 < x < 1, $a \ne 0$ then the value of $2x^2 1$ is
 - a. $\cos\left(\frac{4a}{\pi}\right)$

 - b. $\sin\left(\frac{2a}{\pi}\right)$ c. $\cos\left(\frac{2a}{\pi}\right)$
- 5: If the matrix

$$\begin{bmatrix} 0 & 2 \\ K & -1 \end{bmatrix}$$

satisfies $A(A^3 + 3I) = 2I$ then the value of K is

- c. -1
- d. 1
- 6 :The distance of the point (1, -2, 3) from the plane x y + z = 5 measured parallel to a line, whose direction ratios are 2, 3, -6 is :
 - a. 3

- b. 5
- c. 2
- d. 1
- 7 : If $S = \{z \in \mathbb{C} : \frac{z-i}{z+2i} \in \mathbb{R}\}$ then:
 - a. S contains exactly two elements
 - b. S contains only one element
 - c. S is a circle in the complex plane
 - d. S is a straight line in the complex plane
- 8: Let y = y(x) be the solution of the differential equation

$$\frac{dy}{dx} = 2\left(y + 2\sin x - 5\right)x - 2\cos x$$

such that y(0)=7, then $y(\pi)$ is equal to

- a. $2e^{\pi^2} + 5$
- b. $e^{\pi^2} + 5$
- c. $3e^{\pi^2} + 5$
- d. $7e^{\pi^2} + 5$
- 9: Equation of a plane at a distance $\sqrt{\frac{2}{21}}$ from the origin, which contains the line of intersection of the planes x y z 1 = 0 and 2x + y 3z + 4 = 0, is:
 - a. 3x y 5z + 2 = 0
 - b. 3x 4z + 3 = 0
 - c. -x + 2y + 2z 3 = 0
 - d. 4x y 5z + 2 = 0
- 10: If $U_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2^2}{n^2}\right)^2 \dots \left(1 + \frac{n^2}{n^2}\right)^n$ then $\lim_{n \to \infty} (U_n)^{\frac{-4}{n^2}}$ is equal to
 - a. $\frac{e^2}{16}$ b. $\frac{4}{e}$ c. $\frac{16}{e^2}$ d. $\frac{4}{e^2}$
- 11 : The statement $(p \land (p \rightarrow) \land (q \rightarrow r)) \rightarrow r$ is
 - a. a tautology
 - b. equivalent to $p \rightarrow \neg r$
 - c. a fallacy
 - d. equivalent to $q \rightarrow \neg r$
- 12: Let us consider a curve, y = f(x) passing through the point (-2, 2) and the slope of the tangent to the curve at any point (x, f(x)) is given by $f(x) + xf'(x) = x^2$ then:
 - a. $x^2 + 2xf(x) 12 = 0$
 - b. $x^2 + xf(x) + 12 = 0$
 - c. $x^2 3xf(x) 4 = 0$
 - d. $x^2 + 2xf(x) + 4 = 0$
- 13: $\sum_{k=0}^{20} ({}^{20}C_k)^2$ is equal to
 - a. ${}^{40}C_{21}$
 - b. ${}^{40}C_{19}$

c.
$${}^{40}C_{20}$$
 d. ${}^{41}C_{20}$

- 14: A tangent and a normal are drawn at the point P(2, -4) on the parabola $y^2 = 8x$, which meet the directrix of the parabola at the points A and B respectively. If Q(a, b) is a point such that AQBP is a square, then 2a + b is equal to:
 - a. -16
 - b. -18
 - c. -12
 - d. -20
- 15: Let $\frac{\sin A}{\sin B} = \frac{\sin A C}{\sin C B}$, where A,B,C are angles of a triangle ABC. If the lengths of the sides opposite these angles are a,b,c respectively then:
 - a. $b^2 a^2 = a^2 + c^2$
 - b. b^2, c^2, a^2 are in A.P.
 - c. c^2, a^2, b^2 are in A.P.
 - d. a^2, b^2, c^2 , are in A.P.