10 March 2020

Name:

6.9 Do Now Quiz: Tangents, systems of equations, law of cosines Calculator practice H

1. A cubic function $f(x) = -x^3 + 3x^2 + x - 4$ is shown on the axes below.

A tangent to the function at x = 2 is drawn with the point of tangency P.

(a) Write down the derivative of the function, f'(x).

[2]

(b) Show that the gradient of the tangent line is 1.

[1]

(c) Find the equation of the tangent line.

[2]

(d) Write down the slope of the perpendicular to the tangent line (the "normal") [1]

(e) Find the x values of

i. the local minimum and

ii. the local maximum of f.

[2]

Working:

b)
$$f'(2) = -3(2^2) + 6(2) + 1$$

= 1
c) $f(2) = -2^3 + 3(2^2) + 2 - 4$

c)
$$f(z) = -2^3 + 3(z^2) + 2 - 4$$

(a)
$$5'(x) = -3x^2 + 6x + 1$$

(c)
$$y-2=1(x-2)$$

$$(e)(i)$$
 - 0.155

2. The function $\sin 2x$ equals $-\frac{\sqrt{2}}{2}$ twice in each period. Set your calculator for radians, and find the solutions for the system (x such that f(x) = g(x)) over the domain $0 \le x \le \pi$. Sketch the graph to show working.

$$f(x) = \sin 2x \qquad \qquad g(x) = -\frac{\sqrt{2}}{2} \tag{2}$$

3. Apply the law of cosines, $c^2 = a^2 + b^2 - 2ab \cos C$; $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

(a)
$$a = 12.3, b = 14.6, \hat{C} = 62^{\circ}$$
. Find the third side length, c. [3]

(b)
$$a = 15.4, b = 11.1, c = 10.1$$
. Find \hat{C} (the angle opposite side c). [3]

Working:

$$q$$
) $e^{2} = 12.3^{2} + 14.6^{2} - 2(12.7)(14.6)$ (35.62
 $e = \sqrt{195.834...}$
 $= 13.99409...$
6) $cos = \frac{15.4^{2} + 11.1^{2} - 10.1^{2}}{2(15.4)(11)}$
 $= 0.7552...$ Answers:
 $c = 40.91305...$ (a) $\frac{14.0}{40.9}$