Perform the following operation on Autompg.csv of XYZ Custom Cars company using Pandas

```
In [4]: #Importing libraries import numpy as np import pandas as pd
```

Read data from an existing file

```
In [10]: import pandas as pd
  import numpy as np
  df = pd.read_csv('auto_mpg.csv')
  df.head()
```

Out[10]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite
3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst
4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino

Engineers at XYZ Custom Cars want to know how many cars are Fuel efficient

MPG > 29, Horsepower < 93.5,

Weight < 2500

<pre>In [7]: df.loc[(df['mpg'] > 29) & (df['horsepower'] < 93.5) & (df['weight'] < 2500)]</pre>	
Out[7]:	

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
51	30.0	4	79.0	70.0	2074	19.5	71	europe	peugeot 304
52	30.0	4	88.0	76.0	2065	14.5	71	europe	fiat 124b
53	31.0	4	71.0	65.0	1773	19.0	71	japan	toyota corolla 1200
54	35.0	4	72.0	69.0	1613	18.0	71	japan	datsun 1200
129	31.0	4	79.0	67.0	1950	19.0	74	japan	datsun b210
384	32.0	4	91.0	67.0	1965	15.7	82	japan	honda civic (auto)
385	38.0	4	91.0	67.0	1995	16.2	82	japan	datsun 310 gx
391	36.0	4	135.0	84.0	2370	13.0	82	usa	dodge charger 2.2
394	44.0	4	97.0	52.0	2130	24.6	82	europe	vw pickup
395	32.0	4	135.0	84.0	2295	11.6	82	usa	dodge rampage

81 rows × 9 columns

Engineers at XYZ Custom Cars want to know how many cars are Muscle cars

Displacement >262, Horsepower > 126, Weight in range[2800, 3600]

In [8]: df.loc[(df['displacement'] > 262) & (df['horsepower'] > 126) & (df['weight'] >=2800) & (df['weight'] <= 3600)]
Out[8]:</pre>

name	origin	model_year	acceleration	weight	horsepower	displacement	cylinders	mpg	
chevrolet chevelle malibu	usa	70	12.0	3504	130.0	307.0	8	18.0	0
plymouth satellite	usa	70	11.0	3436	150.0	318.0	8	18.0	2
amc rebel sst	usa	70	12.0	3433	150.0	304.0	8	16.0	3
ford torino	usa	70	10.5	3449	140.0	302.0	8	17.0	4
dodge challenger se	usa	70	10.0	3563	170.0	383.0	8	15.0	10
buick estate wagon (sw)	usa	70	10.0	3086	225.0	455.0	8	14.0	13
dodge dart custom	usa	73	11.0	3399	150.0	318.0	8	15.0	121
ford mustang ii	usa	75	12.0	3169	129.0	302.0	8	13.0	166
mercury monarch ghia	usa	78	12.8	3570	139.0	302.0	8	20.2	251
chevrolet monte carlo landau	usa	78	13.2	3425	145.0	305.0	8	19.2	262
ford futura	usa	78	11.2	3205	139.0	302.0	8	18.1	264

Engineers at XYZ Custom Cars want to know how many cars are SUVs

Horsepower > 140, Weight > 4500

In [9]: df.loc[(df['horsepower'] > 140) & (df['weight'] >=4500)]

Out[9]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
25	10.0	8	360.0	215.0	4615	14.0	70	usa	ford f250
28	9.0	8	304.0	193.0	4732	18.5	70	usa	hi 1200d
42	12.0	8	383.0	180.0	4955	11.5	71	usa	dodge monaco (sw)
43	13.0	8	400.0	170.0	4746	12.0	71	usa	ford country squire (sw)
44	13.0	8	400.0	175.0	5140	12.0	71	usa	pontiac safari (sw)
67	11.0	8	429.0	208.0	4633	11.0	72	usa	mercury marquis
68	13.0	8	350.0	155.0	4502	13.5	72	usa	buick lesabre custom
90	12.0	8	429.0	198.0	4952	11.5	73	usa	mercury marquis brougham
94	13.0	8	440.0	215.0	4735	11.0	73	usa	chrysler new yorker brougham
95	12.0	8	455.0	225.0	4951	11.0	73	usa	buick electra 225 custom
103	11.0	8	400.0	150.0	4997	14.0	73	usa	chevrolet impala
104	12.0	8	400.0	167.0	4906	12.5	73	usa	ford country
105	13.0	8	360.0	170.0	4654	13.0	73	usa	plymouth custom suburb
137	13.0	8	350.0	150.0	4699	14.5	74	usa	buick century luxus (sw)
156	16.0	8	400.0	170.0	4668	11.5	75	usa	pontiac catalina
159	14.0	8	351.0	148.0	4657	13.5	75	usa	ford Itd

Engineers at XYZ Custom Cars want to know how many cars are Racecars

Weight <2223, acceleration > 17

In [61]: | df.loc[(df['acceleration'] > 17) & (df['weight'] < 2223)]</pre>

Out[61]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
19	26.0	4	97.0	46.0	1835	20.5	70	europe	volkswagen 1131 deluxe sedan
51	30.0	4	79.0	70.0	2074	19.5	71	europe	peugeot 304
53	31.0	4	71.0	65.0	1773	19.0	71	japan	toyota corolla 1200
54	35.0	4	72.0	69.0	1613	18.0	71	japan	datsun 1200
55	27.0	4	97.0	60.0	1834	19.0	71	europe	volkswagen model 111
56	26.0	4	91.0	70.0	1955	20.5	71	usa	plymouth cricket
79	26.0	4	96.0	69.0	2189	18.0	72	europe	renault 12 (sw)
102	26.0	4	97.0	46.0	1950	21.0	73	europe	volkswagen super beetle
117	29.0	4	68.0	49.0	1867	19.5	73	europe	fiat 128
129	31.0	4	79.0	67.0	1950	19.0	74	japan	datsun b210
131	32.0	4	71.0	65.0	1836	21.0	74	japan	toyota corolla 1200
145	32.0	4	83.0	61.0	2003	19.0	74	japan	datsun 710
181	33.0	4	91.0	53.0	1795	17.5	75	japan	honda civic cvcc
195	29.0	4	85.0	52.0	2035	22.2	76	usa	chevrolet chevette
196	24.5	4	98.0	60.0	2164	22.1	76	usa	chevrolet woody
198	33.0	4	91.0	53.0	1795	17.4	76	japan	honda civic
216	31.5	4	98.0	68.0	2045	18.5	77	japan	honda accord cvcc
218	36.0	4	79.0	58.0	1825	18.6	77	europe	renault 5 gtl
244	43.1	4	90.0	48.0	1985	21.5	78	europe	volkswagen rabbit custom diesel
246	32.8	4	78.0	52.0	1985	19.4	78	japan	mazda glc deluxe
247	39.4	4	85.0	70.0	2070	18.6	78	japan	datsun b210 gx
303	31.8	4	85.0	65.0	2020	19.2	79	japan	datsun 210
310	38.1	4	89.0	60.0	1968	18.8	80	japan	toyota corolla tercel
322	46.6	4	86.0	65.0	2110	17.9	80	japan	mazda glc
324	40.8	4	85.0	65.0	2110	19.2	80	japan	datsun 210
325	44.3	4	90.0	48.0	2085	21.7	80	europe	vw rabbit c (diesel)
331	33.8	4	97.0	67.0	2145	18.0	80	japan	subaru dl
346	32.3	4	97.0	67.0	2065	17.8	81	japan	subaru
347	37.0	4	85.0	65.0	1975	19.4	81	japan	datsun 210 mpg
348	37.7	4	89.0	62.0	2050	17.3	81	japan	toyota tercel
376	37.0	4	91.0	68.0	2025	18.2	82	japan	mazda glc custom l
377	31.0	4	91.0	68.0	1970	17.6	82	japan	mazda glc custom
379	36.0	4	98.0	70.0	2125	17.3	82	usa	mercury lynx l
394	44.0	4	97.0	52.0	2130	24.6	82	europe	vw pickup

XYZ Custom cars want the data sorted according to the number of cylinders.

In [63]: df.s	t_values(by = 'cylinders')	
Out[63]:	nng cylinders displacement hereanower weight acceleration model year origin	

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
243	21.5	3	80.0	110.0	2720	13.5	77	japan	mazda rx-4
334	23.7	3	70.0	100.0	2420	12.5	80	japan	mazda rx-7 gs
111	18.0	3	70.0	90.0	2124	13.5	73	japan	maxda rx3
71	19.0	3	70.0	97.0	2330	13.5	72	japan	mazda rx2 coupe
237	30.5	4	98.0	63.0	2051	17.0	77	usa	chevrolet chevette
86	14.0	8	304.0	150.0	3672	11.5	73	usa	amc matador
85	13.0	8	350.0	175.0	4100	13.0	73	usa	buick century 350
285	17.0	8	305.0	130.0	3840	15.4	79	usa	chevrolet caprice classic
92	13.0	8	351.0	158.0	4363	13.0	73	usa	ford ltd
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu

392 rows × 9 columns

There is a requirement in which the cars that have lowest acceleration must be assessed. It is also to be checked that which cars have higher horsepower despite having lower acceleration.

In [64]: df.sort_values(['acceleration', 'horsepower'], ascending = (1,0))

Out[64]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name
11	14.0	8	340.0	160.0	3609	8.0	70	usa	plymouth 'cuda 340
7	14.0	8	440.0	215.0	4312	8.5	70	usa	plymouth fury iii
9	15.0	8	390.0	190.0	3850	8.5	70	usa	amc ambassador dpl
6	14.0	8	454.0	220.0	4354	9.0	70	usa	chevrolet impala
116	16.0	8	400.0	230.0	4278	9.5	73	usa	pontiac grand prix
195	29.0	4	85.0	52.0	2035	22.2	76	usa	chevrolet chevette
59	23.0	4	97.0	54.0	2254	23.5	72	europe	volkswagen type 3
326	43.4	4	90.0	48.0	2335	23.7	80	europe	vw dasher (diesel)
394	44.0	4	97.0	52.0	2130	24.6	82	europe	vw pickup
299	27.2	4	141.0	71.0	3190	24.8	79	europe	peugeot 504

392 rows × 9 columns

The board of XYZ custom cars wants to know about minimum and maximum sum, mean and median of all the numerical columns

```
list1 = [col for col in df.columns if df[col].dtype in ['float', 'int64']]
          df[list1].agg(['min', 'max', 'sum', 'mean', 'median'])
Out[65]:
                                   cylinders displacement
                           mpg
                                                            horsepower
                                                                              weight acceleration
                                                                                                    model_year
              min
                       9.000000
                                    3.000000
                                                 68.00000
                                                             46.000000 1.613000e+03
                                                                                         8.000000
                                                                                                     70.000000
              max
                      46.600000
                                    8.000000
                                                455.00000
                                                            230.000000 5.140000e+03
                                                                                        24.800000
                                                                                                     82.000000
                    9190.800000 2145.000000
                                              76209.50000 40952.000000
                                                                       1.167213e+06
                                                                                     6092.200000
                                                                                                  29784.000000
              sum
                      23.445918
                                    5.471939
                                                194.41199
                                                            104.469388 2.977584e+03
                                                                                        15.541327
                                                                                                     75.979592
             mean
            median
                      22.750000
                                   4.000000
                                                151.00000
                                                             93.500000 2.803500e+03
                                                                                        15.500000
                                                                                                     76.000000
```

In [65]: #Using list comprehension to get the numerical columns

82

16.510000

XYZ custom cars want to know the number of cars manufactured in each year.

```
In [72]: df.groupby(['model_year']).count()['horsepower'] #all values will be same, so display any one column
Out[72]: model_year
          70
                29
         71
                27
         72
                28
          73
                40
          74
                26
          75
                30
          76
          77
                28
          78
                36
          79
                29
          80
                27
          81
                28
         82
                30
         Name: horsepower, dtype: int64
```

The engineers at XYZ Custom Cars want to know about the relationship between model year and acceleration of cars.

```
In [74]: | df.groupby(['model_year']).mean()[['acceleration']]
Out[74]:
                         acceleration
            model_year
                     70
                           12.948276
                     71
                           15.000000
                     72
                           15.125000
                     73
                           14.312500
                           16.173077
                     74
                           16.050000
                     75
                           15.941176
                     76
                     77
                           15.435714
                     78
                           15.805556
                     79
                           15.813793
                     80
                           17.018519
                     81
                           16.325000
```

distribution of different number of cylinders across different years.

```
In [75]: pd.crosstab(df['model_year'], df['cylinders'])
Out[75]:
          cylinders 3 4 5 6 8
        model_year
              70 0 7 0 4 18
               71 0 12 0 8 7
               72 1 14 0 0 13
               73 1 11 0 8 20
               74 0 15 0 6 5
               75 0 12 0 12 6
               76 0 15 0 10 9
               77 1 14 0 5 8
               78 0 17 1 12 6
               79 0 12 1 6 10
               80 1 23 1 2 0
               81 0 20 0 7 1
               82 0 27 0 3 0
```

The engineers at XYZ custom cars want to know the mean of all the numerical attributes of cars for each year

	acceleration	cylinders	displacement	horsepower	mpg	weight
model_year						
70	12.948276	6.758621	281.413793	147.827586	17.689655	3372.793103
71	15.000000	5.629630	213.888889	107.037037	21.111111	3030.592593
72	15.125000	5.821429	218.375000	120.178571	18.714286	3237.714286
73	14.312500	6.375000	256.875000	130.475000	17.100000	3419.025000
74	16.173077	5.230769	170.653846	94.230769	22.769231	2878.038462
75	16.050000	5.600000	205.533333	101.066667	20.266667	3176.800000
76	15.941176	5.647059	197.794118	101.117647	21.573529	3078.735294
77	15.435714	5.464286	191.392857	105.071429	23.375000	2997.357143
78	15.805556	5.361111	177.805556	99.694444	24.061111	2861.805556
79	15.813793	5.827586	206.689655	101.206897	25.093103	3055.344828
80	17.018519	4.148148	116.074074	77.481481	33.803704	2441.592593
81	16.325000	4.642857	136.571429	81.035714	30.185714	2530.178571
82	16.510000	4.200000	128.133333	81.466667	32.000000	2434.166667