Uebungsblatt 07

Truong (Hoang Tung Truong), Testfran (Minh Kien Nguyen), Hamdash

Aufgabe 1

```
a. Behauptung: \forall e \in REG(\Sigma) \exists e^r \in REG(\Sigma) : L(e^r) = L(e)^r
```

Induktionsbeweis

IA:

Falls $e \equiv \emptyset$: Setze $e^r \equiv \emptyset$. Es gilt:

$$L(e^r) = L(\emptyset) = \{\} = L(\emptyset)^r = L(e)^r$$

Falls $e \equiv \epsilon$: Setze $e^r \equiv \epsilon$. Es gilt:

$$L(e^r) = L(\epsilon) = \{\epsilon\} = \{\epsilon^r\} = L(\epsilon)^r = L(e)^r$$

(da $\epsilon^r = \epsilon$ aus der ersten Definition von Reversewort)

Falls $e \equiv a \ (a \in \Sigma \text{ beliebig})$. Setze $e^r = a$. Es gilt:

$$L(e^r) = L(a) = \{a\} = \{a^r\} = L(a)^r = L(e)^r$$

(da $a^r = a$ für jedes $a \in \Sigma$).

IV:

Seien $e, f \in REG(\Sigma)$ sodass $\exists e^r, f^r \in REG(\Sigma) : L(e^r) \equiv L(e)^r$ und $L(f^r) = L(f)^r$

IS:

Fall 1: Alternative

Sei g = e + f, also $g \in REG(\Sigma)$. Setze $g^r = e^r + f^r$ (daher ist $g^r \in REG(\Sigma)$). Es gilt:

$$L(g)^r = L(e+f)^r = \{w^r : w \in L(e) \cup L(f)\}$$
 //Definition von L^r und $L(e+f)$

$$L(g^r) = L(e^r + f^r) = \{w : w \in L(e^r) \cup L(f^r)\}$$
 //Definition von und $L(e + f)$

$$= \{w : w \in L(e)^r \cup L(f)^r\} //IV$$

$$= \{w^r : w \in L(e) \cup L(f)\}$$
 //Definition von L^r

$$\Rightarrow L(g)^r = L(g^r)$$

Fall 2: Konkatenation

Sei g = ef, also $g \in REG(\Sigma)$. Setze $g^r = f^r e^r$ (daher ist $g^r \in REG(\Sigma)$). Es gilt:

$$L(g)^r = L(ef)^r = \{w^r : w \in L(e) \circ L(f)\}$$
 //Definition von L^r und $L(ef)$

$$L(g^r) = L(f^r e^r) = \{w : w \in L(f^r) \circ L(e^r)\}$$
 //Definition von $L(ef)$

$$= \{w : w \in L(f)^r \circ L(e)^r\} //IV$$

=
$$\{uv : u \in L(f)^r, v \in L(e)^r\}$$
 //Definition von $L_1 \circ L_2$

$$= \{m^r n^r : m \in L(f), n \in L(e)\} / \text{Definition von } L^r$$

$$=\{(nm)^r:n\in L(e),m\in L(f)\}$$
 Definition von Reversewort

$$= \{w^r : w \in L(e) \circ L\{f\}\}\ // \text{Definition von } L_1 \circ L_2$$

$$\Rightarrow L(g^r) = L(g)^r$$

Fall 3: Kleene-Star

Sei
$$g=e^*$$
, also $g\in REG(\Sigma)$. Setze $g^r=(e^r)^*$ (daher ist $g^r\in REG(\Sigma)$). Es gilt: $L(g)^r=L(e^*)^r=\{w^r:w\in L(e^*)\}$ Definition von L^r $L(g^r)=L((e^r)^*)$ = $\{w:w\in L(e^r)^*\}$ //Definition von $L(e^*)$ = $\{w:w\in (L(e)^r)^*\}$ //IV = $\{w^r:w\in L(e)^*\}$ //Basiert auf Fall 2 mit $f\equiv e$ = $\{w^r:w\in L(e)^*\}$ //Definition von $L(e^*)$

Damit wird die Behauptung bewiesen \square

b.

 $\Rightarrow L(g)^r = L(g^r)$

c.
$$L(e) = L(A) \cap L(A)^r$$

$$= \{w : w \in L(A) \land w \in L(A)^r\}$$

$$= \{ w : w \in L(A), w = w^r \}$$
 ist die Sprache der Palindrome von $L(A)$

Da die Sprache der Palindrome nicht von einem endlichen Automat erkennt werder kann (als bewiesen im Übungszettel 6, Aufgabe 4 mithilfe der Pumpinglemmas) ist es unmöglich, einen regulären Ausdruck e mit $L(e) = L(A) \cap L(A)^r$ zu finden.

Aufgabe 2

• Aus dem NFA A:

	a	b
q_0	q_1, q_4	q_0
q_1		q_2
q_2	q_3	
q_3	q_7	q_3
q_4	q_0, q_5	q_4
q_5		q_6
q_6	q_7	
q_7	q_3	q_7

- Mache einen DFA (Mit dem Anfangszustand q_0 anfangen):

	a	b
q_0	$\{q_1,q_4\}$	q_0
$\{q_1,q_4\}$	$\{q_0,q_5\}$	$\{q_2,q_4\}$
$\{q_0,q_5\}$	$\{q_1,q_4\}$	$\{q_0,q_6\}$
$\{q_2,q_4\}$	$\{q_3,q_0,q_5\}$	q_4
$\{q_0,q_6\}$	$\{q_1,q_4,q_7\}$	q_0
$\{q_3, q_0, q_5\}$	$\{q_7,q_1,q_4\}$	$\{q_3, q_0, q_6\}$
q_4	$\{q_0,q_5\}$	q_4
$\{q_1,q_4,q_7\}$	$\{q_0,q_5,q_3\}$	$\{q_2,q_4,q_7\}$
$\{q_3, q_0, q_6\}$	$\{q_7,q_1,q_4\}$	$\{q_3,q_0\}$
$\{q_2,q_4,q_7\}$	$\{q_3,q_0,q_5\}$	$\{q_4,q_7\}$
$\{q_3,q_0\}$	$\{q_7,q_1,q_4\}$	$\{q_3,q_0\}$
$\{q_4,q_7\}$	$\{q_0,q_5,q_3\}$	$\{q_4,q_7\}$

Aufgabe 3

Aufgabe 4

Eliminitre q_2 : Es gibt 2 laufe über q_2 :

Sette Bereichner $r = (b^*(a+b) + a)a^*$. Dann: $q_0 (r+a)(ba^*)^*ba^*b$ q_0 und $q_0 (r+a)(ba^*)^*E$ q_1 $(r+a)(ba^*)^*ba^*b + rb$ $(r+a)(ba^*)^*ba^*b + rb$ 4. Ersete den Antomet durch regulairen Ansdruch. $((r+a)(ba^*)^* + r)b)^*((r+a)(ba^*)^* + b^*)$ $(r+a)(ba^*)^* + r)b)^*((r+a)(ba^*)^* + b^*)$ $((r+a)(ba^*)^* + r)b)^*((r+a)(ba^*)^* + b^*)$ $((r+a)(ba^*)^* + r)b)^*((r+a)(ba^*)^* + b^*)$