Введение в анализ данных: Классификация текста

Юля Киселёва juliakiseleva@yandex-team.ru Школа анализа данных

План на сегодня

- Постановка задачи, подходы и применения
- Построение и обучение классификатора

• Оценка качества классификации

Виды классификации

Вид ответа:

- точная классификация F : C x D -> {0,1}
- ранжирование ответа классификатора: *F : C x D-> [0,1]*

Необходимые входные данные:

- Корпус, коллекция документов
- Таксономия (категории)

Соотношение категорий:

- Категории не пересекаются
- Категории могут пересекаться
- Бинарная классификация: две непересекающиеся категории

Постановка задачи

Дано:

Категории: $C = \{c_1, ..., c_n\}$

Документы: $D = \{d_1, ..., d_m\}$

Неизвестная целевая функция: $F: C \times D \rightarrow \{0,1\}$

Цель:

Построить классификатор F' максимально близкий к F

Уточнение:

Построение списка категорий для документа Построение списка документов для данной категории

Напоминание

Коллекция документов:

- Обучающая коллекция документов
- Дополнение: иногда требуется проверочная коллекция документов для тьюнинга
- Тестовая коллекция документов

Приложения

- Фильтрация документов: распознавание спама
- Автоматическая система управления
- Составление каталогов для веб-страниц
- Классификация новостей
- Интернет реклама
- Выявление плагиата

Этапы классификации

- 1. Представление документов в едином формате
- 2. Обучение классификатора
 - Общая форма классифицирующего правила
 - Настройка параметров
- 3. Оценка качества
 - Оценка абсолютного качества
 - Сравнение с другими классификаторами

Базовый подход

Исходный документ:

Документ = коллекция слов (термов)

Терм имеет вес по отношению к документу

Mножество всех термов T

Каждый терм имеет вес *wij* по отношению к документу

Вес терма:

Известный подход: wij = TFij*IDFij

Новые подходы

- По-другому выбирать термы
 - Есть ли варианты?

• По-другому выбирать вес терма в документе

• Использовать дополнительные термы

Уменьшение размерности документов

- Виды уменьшения размерностей (Единый метод для коллекции /Свой для каждой категории)
 - Выбор термов
 - «Средне встречающиеся» термы
 - Использование различных коэффициентов полезности
 - Искусственные термы
 - Кластеризация термов

План на сегодня

- Постановка задачи, подходы и применения
- Построение и обучение классификатора

• Оценка качества классификации

Ранжирование и четкая классификация

- Строим функцию *CSV: D -> [0, 1]*
- Выбираем пороговое значение ti

Классификация:

- Пропорциональный метод
- Каждому документу выбрать k- ближайших категорий

Потоковый линейный классификатор

- Документ: $d = (d_1, ..., d_n)$
- Вектор полезности каждого терма для категории: $c_i = (c_1, ..., c_n)$

$$CSV_i(d) = \vec{d} \cdot \vec{c}_i = \prod c_{ij}d_j$$

$$CSV_i(d) = \frac{\vec{d} \cdot \vec{c}_i}{|\vec{d}| |\vec{c}_i|}$$

Как подобрать характеризующий вектор $c_i = (c_1,...,c_n)$?

Потоковый линейный классификатор (2)

Схема обучения:

- 1. Начинаем: $\vec{c}_i = (1,...,1)$
- 2. Для каждого документа из обучающей выборки применяем текущее правило
- 3. При неудаче вносим поправки +α,-β в координаты, соответствующие словам неудавшегося документа

Потоковый линейный классификатор (2)

- Вариации
 - Поправки при удачной классификации
 - Поправки в неактивные слова
- проверочное множество это индикатор остановки обучения
- Преимущества:
 - Есть обратная связь обучение можно продолжать и за пределами обучающей коллекции

Метод регрессии

- Обучающая коллекция в матричном виде:
 - Каждый документ это вектор из весов термов
 - Документы образуют матрицу І размера |Tr| x |T|
 - Степень принадлежности документа к категориям вектор => для всех документов матрица О размера |С| x |TR|
- Найти:

$$MI - O = 0 = > min | | |MI - O| |$$

$$M = \underset{M}{\operatorname{arg\,min}} \| MI - O \|$$

Пример для метода регрессии

Метод Rocchio

Профайл категории (прототип документа): список взвешенных термов, присутствие или отсутствие которых наиболее хорошо отличает категорию *Сі* от других.

Профайл для категории $extbf{\emph{Ci}}: \vec{C}_i = < w_{1i}, ..., w_{|T|i}>$

$$w_{ik} = \beta \sum_{\{d_j \in POS_i\}} \frac{w_{kj}}{|POS_i|} - \alpha \sum_{\{d_i \in NEG_i\}} \frac{w_{kj}}{|NEG_i|}$$

$$POS_i = \{d_j \in T \mid F(d_j, c_i) = 1\}$$
 $NEG_i = \{d_j \in T \mid F(d_j, c_i) = 0\}$

Другие методы

- Вероятностные классификаторы
- Нейронные сети
- Support Vector Machines

План на сегодня

- Постановка задачи, подходы и применения
- Построение и обучение классификатора

• Оценка качества классификации

Как выбрать результат

- 1. Выбор большинства результат, который дает большинство
- 2. Взвешенная линейная комбинация степень доверия каждому классификатору:

$$\sum_{i} n_{i} F_{i}(d,c)$$

3. Динамический выбор классификатора — в зависимости от категории

Как выбрать результат(2)

4. Динамическая комбинация классификаторов – объединение «взвешенной линейной комбинации» и «динамического выбора классификатора»

Метрики из информационного поиска

• Полнота: отношение количества найденных документов из категории к общему числу документов из категории:

$$\operatorname{Re} call = \frac{|D_{rel} \bigcup D_{retr}|}{|D_{rel}|}$$

• Точность: доля документов действительно из категории а общем числе документов

$$Precision = \frac{|D_{rel} \bigcup D_{retr}|}{|D_{retr}|}$$

Метрики из информационного поиска (2)

F-мера: среднегармоническое между точностью и полнотой

$$F - measure = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}, \alpha \in [0, 1]$$

$$F - measure = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}, \beta = \frac{(1 - \alpha)}{\alpha}$$

$$F_1$$
 - measure = $\frac{2PR}{P+R}$, $\alpha = 1/2$, $\beta = 1$

Сравнение двух классификаторов

Явный метод:

- Одинаковая тестовая коллекция (например, новости Reuters)
 - для русского языка есть дорожки РОМИП
- Одинаковый обучающий набор

Неявный метод:

• Сравнить с базовым методом

Резюме

Узнали:

- Постановка задачи, подходы и применения
- Построение и обучение классификатора

• Оценка качества классификации

BFR Алгоритм

- BFR[Bradley-Fayyad-Reina] это вариант алгоритма kmeans, который был спроектирован для работы с большими объемами данных
- Предполагается, что кластеры распределены относительно центройда и имеют определенную форму:

План на сегодня

- Задача кластеризации
- Методы кластеризации
- Алгоритм k-means
- Алгоритм CURE

CURE Алгоритм

CURE = Clustering Using REpresentatives

- Евклидово пространство
- Не заботится о форме кластеров
- Кластер представляется коллекцией репрезентативных точек

Пример: зарплата в Стэндфордском Университете

CURE Алгоритм

- 1. Случайным образом выбираем набор точек, которые помещаются в память
- 2. Кластеризуем этот набор помощью иерархического метода группируем наиболее близкие точки
- 3. Для каждого кластера выбираем набор точек (представителей), которые удалены друг от друга насколько это возможно

CURE Алгоритм (2)

- 4. Из набора нужно выбрать представителей, перемещая их (скажем) 20% в сторону центра тяжести кластера
- Затем обходим каждую точку р и перемещаем ее в ближайший кластер.

Определение: «Ближайшим» к **р** называется кластер, который содержит большее число ближайших к **р** точек

Метрики для оценки

- C-index (Dalrymple-Alford, 1970)
- Gamma (Baker & Hubert, 1975)
- Adjusted ratio of clustering (Roenker et al., 1971)
- D-index (Dalrymple-Alford, 1970)
- Modified ratio of repetition (Bower, Lesgold, and Tieman, 1969)
- *Dunn's index* (Dunn, 1973)
- Variations of Dunn's index (Bezdek and Pal, 1998)
- Jagota index (Arun Jagota 2003)
- Strict separation (based on Balacan, Blum, and Vempala, 2008)
- And many more...

Оценка (1)

• Jagota предложил метрику, которая отражает однородность кластера:

$$Q = \sum_{i=1}^{k} \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \mu_i)$$

- где $|C_i|$ это число элементов в кластере I
- *Q* будет маленьким, если (в среднем) точки в кластере близки друг к другу

Gamma

- За d(+) обозначим число раз, когда две точки, которые были кластеризованы вместе в кластер С имели расстояние большее, чем другие две точки не помещенные в один кластер
- За d(-) обозначим противоположный результат

$$\gamma = \frac{d(+) - d(-)}{d(+) + d(-)}$$

Резюме

- Познакомились с задачей кластеризации
- Ввели несколько определений
- k-means
- CURE
- Ввели методы оценки