Training Multi-bit Quantized and Binarized Networks with A Learnable Symmetric Quantizer

Лукьянов Павел Александрович МГУ им. М. В. Ломоносова

20 апреля 2021 г.

Neural network compression

Problem of the computational complexity and memory size. Examples of methods for neural network compression:

- Pruning
- Quantization

20 апреля 2021 г.

Pruning

000

Pruning removes redundant parameters or neurons that do not significantly contribute to the accuracy of results.

Quantization

Quantization is known as the process of approximating a continuous signal by a set of discrete symbols or integer values.

Learnable Symmetric Quantizer

The end points of the intervals are referred to as decision levels, the output is called the reconstruction level.

 Δ (step size) - the length of the intervals, N - the total number of reconstruction levels. $clip_N(x) = min(max(x,0), N-1)$ - clip function

Uniform symmetric quantizer:

$$Q_w(x) = [clip_N((x+\alpha)/\Delta)]\Delta - \alpha$$
, where $\alpha = \Delta(N-1)/2$

 Q_w can be rewritten as:

$$Q_w(x)=q_w(\Delta/2)$$
, where $q_w=2[clip_N((x+\alpha)/\Delta)]-N+1$; q_w can be encoded into $[log_2(N)]$ bits using ± 1 encoding.

Lukianov Pavel (MSU)

The authors make the step size Δ a learnable parameter. How to calculate gradient:

$$\frac{\partial Q_w(x)}{\partial \Delta} = \begin{cases} -\frac{x}{\Delta} + \left[\frac{x}{\Delta} - 0.5\right] + 0.5 & |x| < \alpha \\ sign(x)\alpha & \text{otherwise}. \end{cases}$$

Let X be the random variable for a quantizer input and its pdf is denoted by p(x). The optimal step size for Qw is defined in the mean squared error (MSE) sense by

$$\Delta_w^* = argmin_{\Delta}D_w(\Delta)$$
, where

$$D_w(\Delta) = E[(x - Q_w(x, \Delta))^2]$$

$$\frac{dD_w}{d\Delta} = -\sum_{i=1}^{N/2-1} (2i-1) \int_{(i-1)\Delta}^{i\Delta} 2(x - [\frac{2i-1}{2}]\Delta) p(x) dx - \frac{dD_w}{d\Delta} = -\sum_{i=1}^{N/2-1} (2i-1) \int_{(i-1)\Delta}^{i\Delta} 2(x - [\frac{2i-1}{2}]\Delta) p(x) dx$$

-
$$(N-1)\int_{(N/2-1)\Delta}^{\infty} 2(x-[\frac{N-1}{2}]\Delta)p(x)dx$$

Lukianov Pavel (MSU)

7 / 10

ImageNet

	ResNet-18 (FP: 71.57)				ResNet-34 (FP: 75.11)			MobileNet-V2 (FP: 71.53)				
Method	Bit-width (W/A)											
	4/4	3/3	2/2	1/1	4/4	3/3	2/2	1/1	4/4	3/3	2/2	1/1
PACT [5]	69.2	68.1	64.4	-	-	-	-	-	61.4	-	-	-
DoReFa-Net [55]	68.1	67.5	62.6	-	-	-	-	-	-	-	-	-
DSQ [16]	69.6	68.7	65.2	-	72.8	72.5	70.0	-	-	-	-	-
QIL [14]	70.1	69.2	65.7	-	73.7	73.1	70.6	-	64.8	-	-	-
LSQ [11]	71.1	70.2	67.6	-	74.1	73.4	71.6	-	-	-	-	-
LSQ+ [2]	70.8	69.3	66.8	-	-	-	-		-	-	-	-
SAT [26]	70.3	69.3	65.5	-	-	-	-	-	-	-	-	-
QKD [29]	71.4	70.2	67.4	-	74.6	73.9	71.6	-	67.4	62.6	45.7	-
UniQ (Ours)	71.5	70.5	67.8	60.5	75.0	74.2	72.1	65.8	68.2	65.0	50.5	23.2

Рис. 1: Top-1 accuracy (%) on ImageNet dataset

Lukianov Pavel (MSU) 20 апреля 2021 г.

Binarization

Network	Method	Acc(%)	Original
	ABC-Net [34]	42.7	
ResNet-18	XNOR-Net [42]	51.2	
	BNN+ [9]	53.0	✓
	DoReFa-Net [55]†	53.4	✓
	Bi-Real [36]	56.4	
	XNOR-Net++[3]	57.1	
(FP: 71.57)	IR-Net [41]	58.1	✓
	ProxyBNN [20]	58.7	✓
	RBNN [33]	59.9	✓
	BinaryDuo [28]	60.4	
	UniQ (Ours)	42.7 51.2 53.0 53.4 56.4 57.1 58.1 58.7 59.9	✓
	ABC-Net	52.4	
ResNet-34 (FP: 75.11)	Bi-Real	62.2	
	IR-Net	62.9	✓
	RBNN	63.1	✓
	UniQ (Ours)		√

Рис. 2: Top-1 accuracy comparison to the existing stateof-the-art binarization methods on ImageNet.

Lukianov Pavel (MSU) 20 апреля 2021 г.

8 / 10

Step Size Initialization

Bit-width	Step Size Initialization						
(W/A)	0.1	0.2	LSQ Init	Our Init			
2/2	67.1	68.6	68.3	69.3			
3/3	70.7	70.9	71.0	71.4			

Рис. 3: Comparison of different methods for step size initialization.

References

- Training Multi-bit Quantized and Binarized Networks with A Learnable Symmetric Quantizer
 Phuoc Pham , Jacob A. Abraham, Jaeyong Chung https://arxiv.org/pdf/2104.00210.pdf
- A Survey of Quantization Methods for Efficient Neural Network Inference
 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer https://arxiv.org/pdf/2103.13630.pdf
- Pruning and Quantization for Deep Neural Network Acceleration: A Survey Tailin Liang, John Glossner, Lei Wang, Shaobo Shi https://arxiv.org/pdf/2101.09671.pdf

Lukianov Pavel (MSU) 20 апреля 2021 г.

10 / 10