Tutor: Daniel Yu Tutorium: Do. 10-12 Diskrete Strukturen für Informatik Ubung 2 schleckter Kuchen kan- auch Von: Harie dinke Antonia Heidlaß 1.a) t1: = Max: "Guter Kuchen, ist nicht billig." Sie meinen das of "E1: = Max: "Schlechter Kuchen ist billig." L gleiche L nehmen eine Kontraposition ein Durch Ez := Katharina: "Billiger Kuchen, ist nicht gut." eine Verneinung der beiden Aussagen wird die jeweilige Ex := Katharina: "Teurer Kuchen ist gut." Ursprungsaussage bestätigt. Tener Kuhan kann schledt sin > das sind nicht de Negntion $A.b) \quad (i) := r \vee 7p$ (ii): 9=>r~p (iii): ⁷9<=>⁷r \ 2. a) t1:= h (a v c) v (a x c)

a	6	C	(avc)	(arc)	br(avc)	6 r (avc) vlarc)
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	1	1
1	0	0	1	0	0	0
1	0	1	1	1	0	1
1	1	O	1	0	1	1
1	1	1	1	1	1	1

Diskrete Strukturen für Informatik

Ubung 2

Tutor: Daniel Yu Tutorium: Do. 10-12

Von: Marie Linke Antonia Heidlaß

 $\mathcal{L} \cdot \alpha)$ $\mathcal{L}_2 := (^{7}\alpha \wedge b) r(^{7}c r b)$

a	Ь	C	7a	(anb)	10	(c v b)	(7anb)v/7c v6)
0	0	0	1	0	1	1	1
0	0	1	1	0	0	0	0
0	1	0	1	0 1 1	1	1	1
0	1	1	1	1	0	1	1
1	0	0	0	0	1	1	1
1	0	1	0	0	0	0	0
1	1	0	0	0	1	1	1
1	1	1	0	0	0	1	<u> </u>

t3:=((a ~ b) r (b ~ c))r(a ~ c)

a	6	C	(a n b)	(6 nc)	((a 1 b) v(b 1 c))	(arc)	£3_
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	0	1	1	0	1 /
1	0	0	0	0	0	0	0 /
1	0	1	0	0	0	1	1 /
1	1	0	1	0	1	0	1
1	1	1	1	1	1	1	1

Diskrete Strukturen für Informatik

Ubung 2

Tutor: Daniel Yu Tutorium: Do. 10-12

Von: Marie dinke Antonia Heidlaß

 $\mathcal{L}.a)$ $\mathcal{L}_{4}:=(a \wedge b) \vee ((c \vee a) \vee \neg a)$

\underline{a}	6	c	(a r b)	(Cva)	1a	((cva)vza)	L 4
0	0	0	0	0	1	Λ	1
0	0	1	0	1	1	1	1
0	1	0	0	0	1	1	1
0	1	1	0	1	1	1	1
1	0	0	0	1	0	0	Λ
1	0	1	1	1	0	1	1 /
1	1	0	1	0	0	0	1 /
1	1	1	1	1	0	1	1

t4 => Tautologie t1, t2, t3, t4 => Sind erfullbar

$$(2.6)$$
 $(1 = £3)$

Diskrete Strukturen für Informatik Übung 2 Tutor: Vaniel Yu.
Von: Marie dinke
Motonia Heidlaß

3. a)

(p_1 ^ p_2) ^ (p_1 ^ p_3) ^ (p_2 ^ p_4) ^ (p_2 ^ p_3) ^ (p_2 ^ p_4) ^ (p_3 ^ p_4)

PNP2 N (1P3 V 1P4) = alleftiert P1 = P3 = 1,

((p_1 ^ p_2) ^ (p_3 ^ p_4)) ^ ((p_4 ^ p_3) ^ (p_2 ^ p_4)) ^ ((p_4 ^ p_4) ^ (p_2 ^ p_3)) ^ (p_2 ^ p_4)) ^ ((p_4 ^ p_4) ^ (p_4 ^ p_3)) ^ (p_4 ^ p_4) ^

(P11P2 17P3 17P4) V....

16/20