

Application No.: 09/849,457

Docket No.: JCLA6623

In The Claims

Please amend claims as follows.

Claims 1-13 (canceled)

Claim 14. (currently amended) A method for forming a light emitting device, the method comprising:

providing a covering layer;

providing a light emitting unit, comprising a metal cathode layer;

performing an evaporation depositing process, to form an active gas-moisture absorption layer on a surface of the covering layer; and

putting the covering layer with the surface having the active gas-moisture absorption layer, over at least a portion of the light emitting unit above the metal cathode layer.

Claim 15. (original) The method of claim 14, wherein the metal cathode layer comprises one selected from the group consisting of Li, Mg, and Ca.

Claim 16. (currently amended) The method of claim 14, wherein the active gas-moisture absorption layer comprises one selected from the group consisting of Li, Mg, and Ca.

Claims 17-20 (canceled)

Application No.: 09/849,457

Docket No.: JCLA6623

Claim 21. (currently amended) The method of claim 14, wherein the step of providing a light emitting unit further comprises:

providing a transparent substrate, wherein a transparent anode layer, a light emitting layer and the metal cathode layer are sequentially formed on the substrate; and

forming a sealant layer, at least covering the light emitting layer and the metal cathode layer;

wherein the covering layer is putputted, by the a covering surface, over at least a portion of the sealant layer above the metal cathode layer.

Claim 22. (currently amended) The method of claim 14, wherein before the step of performing the evaporation deposition process, the method further comprises:

forming a recess region on the covering surface of the covering layer, wherein the active gas-moisture absorption layer is formed on a recessed surface of the recess region.

Claim 23. (previously added) The method of claim 14, wherein in the step of providing the covering layer, the covering layer comprises a cap-like layer to completely cover over the sealant layer, the transparent anode layer, light emitting layer, and the metal cathode layer.

Claim 24. (previously added) The method of claim 23, wherein before the step of performing the evaporation depositing process, further comprises:

Application No.: 09/849,457

Docket No.: JCLA6623

forming a recess region on the covering surface of the covering layer, whereby the active absorption layer is formed on a recessed surface of the recess region.

Claim 25. (previously added) The method of claim 23, wherein further comprises a clearance between the cap-like covering layer and the sealant layer.

Claim 26. (currently amended) The method of claim 14, wherein the step of providing a light emitting unit further comprises:

providing a transparent substrate, wherein a transparent anode layer, a light emitting layer and the metal cathode layer are sequentially formed on the substrate; and

wherein in the step of performing an evaporation deposition process, the active absorption layer is formed at least covering the metal cathode layer;

forming a sealant layer, at least covering the light emitting layer and the metal cathode layer;

wherein the covering layer is putputted, by a the covering surface, over at least a portion of the sealant layer above the metal cathode layer.

Claim 27. (currently amended) The method of claim 14, wherein the step of providing a light emitting unit further comprises:

providing a transparent substrate, wherein a transparent anode layer, a light emitting layer and the metal cathode layer are sequentially formed on the substrate;

Application No.: 09/849,457

Docket No.: JCLA6623

optionally-forming a sealant layer, at least covering the metal cathode layer;
etching the covering layer to form a recess region on the covering layer at a covering
surface with respect to the metal cathode layer, and forming a trench enclosing the recess region;
wherein in the step of performing an evaporation deposition process, the active
absorption layer is formed on the covering layer within the recess region;
coating a gluing layer on a portion of the covering layer between the trench and the
recess region; and
adhering the covering layer onto the transparent substrate.

Claim 28. (previously added) The method of claim 27, wherein the step of etching
covering layer comprises performing a sand-jet etching process.

Claim 29. (previously added) The method of claim 28, wherein the step of etching
covering layer comprises performing a sand-jet etching process with etchant of aluminum oxide
particles.

Claim 30. (currently amended) The method of claim 14, wherein the step of providing a
light emitting unit further comprises:
105

providing a transparent substrate, wherein a transparent anode layer, a light emitting
layer and the metal cathode layer are sequentially formed on the substrate;

Application No.: 09/849,457

Docket No.: JCLA6623

-optionally forming a sealant layer, at least covering the light emitting layer and the metal cathode layer;

wherein in the step of performing an evaporation deposition process, the active gas-moisture absorption layer is formed on the covering layer within the a recess region;

forming two frit lines on the covering layer, enclosing the active gas-moisture absorption layer, wherein a clearance between the two frit lines is reserved;

properly dripping a sealant material on the clearance; and

adhering the covering layer on the transparent substrate layer through the sealant material, wherein the active gas-moisture absorption layer is above the metal cathode layer.