Contents

Problem Statement	2
Binomial Log-Likelihood	3
Confidence Intervals	4
Confidence Intervals Based On Likelihood Ratio	5
Estimating The Likelihood Ratio Confidence Interval	6
Coverage Probability	7
Properties of $C(p,x,n)$	8
Coverage Probability For Several Methods	9
Confidence Intervals At The Boundaries	10
Adjusting Confidence Intervals At The Boundaries	11
Optimal Coverage	12
Coverage Using Optimal " α_0 "	13
Adjustments To Significance Probabilities	14
Summary	15
The binom package	16
References	17

Adjusting Likelihood Ratio Confidence Intervals for Parameters Near Boundaries Applied to the Binomial

Sundar Dorai-Raj (sundar.dorai-raj@pdf.com)
Spencer Graves (spencer.graves@pdf.com)

August 10, 2006

Problem Statement

- Interval estimation on p is not simple and there seems to be no agreement on which is best
- Intervals when there are 0% or 100% passes tend to be too short
 - A standard adjustment for "parameter at a boundary" assumes 2 * log(likelihood ratio) is a mixture of chi-squares
 - For binomial confidence intervals, this is equivalent to using $\chi^2_{1-\alpha/2}$ in place of $\chi^2_{1-\alpha}$
 - How well does this work?
 - Can we find something better that is almost as simple?

Binomial Log-Likelihood

The binomial log-likelihood is given by

$$\ell(p, x, n) = \log \binom{n}{x} + x \log(p) + (n - x) \log(1 - p)$$

where n is the number of independent Bernoulli trials, x is the number of successes out of n, and p is the probability of success

■ The Maximum Likelihood Estimate (MLE) of p is given by

$$\widehat{p} = \frac{x}{n}$$

Confidence Intervals

- Interval estimates of p are difficult to achieve due to the discreteness and skewness (for $p \neq 0.5$) of the binomial distribution
- Many methods have been devised to estimate confidence intervals on p
 - Likelihood methods: generalized linear models, likelihood ratio, asymptotic
 - Bayesian
 - Inversion methods: Wilson, Agresti-Coulls, Fleiss, Clopper-Pearson
- The asymptotic method is woefully poor but still part of most standard statistics curricula

Confidence Intervals Based On Likelihood Ratio

The likelihood ratio test statistic is define by

$$\Lambda(p_0, \widehat{p}, x, n) = \ell(\widehat{p}, x, n) - \ell(p_0, x, n) \sim \chi_1^2,$$

where

$$\widehat{p} = \frac{x}{n}$$

is the MLE and p_0 is the probability of success under the null hypothesis

Inverting L, we obtain a confidence interval on p:

$$LCL = \underset{0
$$UCL = \underset{0$$$$

Estimating The Likelihood Ratio Confidence Interval

The method requires an iterative root-finding algorithm to find the lower and upper confidence bound

■ We will refer to this interval estimate as "LRT"

Coverage Probability

Coverage probability determines the expected value of any interval estimate over the binomial density function

$$C(p, x, n) = \sum_{x=0}^{n} I(LCL$$

where p is the true probability of success, and (LCL, UCL) is an interval estimate of p

Properties of C(p, x, n)

- Should be close to the level of confidence (1α)
- Oscillates due to the discreteness and skewness of the binomial distribution
- There are $2 \cdot n$ discontinuities (jumps) which exist at the each confidence interval endpoint

Coverage Probability For Several Methods

- The LRT method has the best coverage probability
 - The standard (asymptotic) method is absolutely the worst
 - The complimentary log-log is not symmetrical

Confidence Intervals At The Boundaries

- Coverage of intervals when x = 0 or n is not optimal
 - Expected coverage is much less than $1-\alpha$ for p close to the interval end
 - Adjusting the α
 downward improves
 coverage by
 increasing the interval
 length

Adjusting Confidence Intervals At The Boundaries

- Changing the signficance probability from 0.05 to 0.025 improves the coverage
 - Still not optimal as the discontinuity is too large
 - Coverage is too high because length of intervals when $x \neq 0$ or n seem to be too long

Optimal Coverage

Minimize the squared area between the expected coverage and the desired level of confidence

$$\alpha_0 = \underset{0 < \alpha < 1}{\arg\min} \int_0^1 \left[C(p, x, n) - (1 - \alpha) \right]^2 dp$$

- Minimizing latter objective function can be achieved by adjusting α for all x or simply for x=0 and n
 - ullet Adjusting only the boundary intervals is computationally fairly fast for relatively small n
 - ullet Adjusting all the intervals can be slow even for small n

Coverage Using Optimal " α_0 "

- Using an optimal " α_0 " improves coverage
- **Example with** n = 10
 - Adjusting boundary intervals only, α_0 is 0.023 when x = 0 or 10
 - Adjusting all intervals, α_0 is 0.012 for the boundary intervals but monotonically increasing to 0.095 when x=5

Optimal Probability Coverage for n = 10

x	0	1	2		4	
α_0	0.012	0.030	0.050	0.061	0.070	0.095

Adjustments To Significance Probabilities

■ Optimal confidence level asymptotes around 0.14 for x = 0 or n

Summary

- Using the LRT confidence interval produces the best coverage but are not computable by hand
- Confidence intervals for p when the observed number of successes are close to 0 or n are too short using a constant level of confidence
- There is no solution independent of n for adjusting a confidence intervals at the boundaries
- Final recommendation:
 - Use the LRT confidence interval (see next slide for software)
 - For x = 0 or n set α between 0.015 and 0.025
 - For obtaining all confidence interval adjustments use the binom package in

The binom package

- An package for constructing confidence intervals on the probability of success in a binomial experiment via several parameterizations
 - Bayes, LRT, probit, logit, cloglog
 - Coverage plotting
 - Optimal coverage
 - Sample size calculation and Power curves
 - Tcl/Tk interface for Power curves

References

- Pinheiro and Bates (2000) Mixed-Effects Models in S and S-PLUS (Springer, sec. 2.4)
- Crainiceanu, Ruppert and Vogelsang (2003) "Some properties of Likelihood Ratio tests in linear mixed models"
- Crainiceanu, Ruppert, Claeskens, and Wand (2005) "Exact Likelihood Ratio Tests for Penalized Splines", Biometrika, 92(1)
- Brown, Cai, and DasGupta (2003) "Interval estimation in exponential families", Statistica Sinica, 13: 19-49.
- Jenö Jeiczigel (2000) "Confidence Intervals for the Binomial Parameter: Some new considerations" (tech report downloaded from http://bio.univet.hu/qp/Reiczigel_conf_int.pdf, 2006.05.01)
- Sauro and Lewis (2005) "Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations", Proceedings of the Human Factors and Ergonomics Society, 49th annual meeting, 2100-2104.

