1/1 WPAT - ©Thomson Derwent - image

Accession Nbr:

2003-278626 [27]

Related Acc. Nbrs:

2003-201213

Sec. Acc. CPI:

C2003-072940

Title:

Novel Group VIII metal complexes are useful for hydroformylation, carbonylation, hydrocyanation or hydrogenation

Derwent Classes:

E19 J04

Patent Assignee:

(BADI) BASF AG

Inventor(s):

AHLERS W; MACKEWITZ T; PACIELLO R; VOLLAND M

Nbr of Patents:

2

Nbr of Countries:

101

Patent Number:

WO200318192 A2 20030306 DW2003-27 B01J-031/18 Ger 85p *

AP: 2002WO-EP09455 20020823

DSNW: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW DSRW: AT BE BG CH CY CZ DE DK EA EE ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SK SL SZ TR TZ UG ZM ZW

AU2002324067 A1 20030310 DW2004-52 B01J-031/18

FD: Based on WO200318192 AP: 2002AU-0324067 20020823

Priority Details:

2001DE-1041494 20010824

IPC s:

B01J-031/18 C07C-029/141 C07C-029/16 C07C-045/50 C07C-051/14

THIS PAGE BLANK (USPTO)

C07C-253/10 C07F-009/572 C07F-015/00

Abstract:

WO200318192 A

NOVELTY - Novel Group VIII metal complexes are claimed.

DETAILED DESCRIPTION - Catalysts comprising complexes of a Group VIII metal and a ligand of formula (1), excluding compounds of formula (2)-(6);

R1-R4 = H, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, WCOORa, WCOO-M+, W(SO3)Ra, W(SO3)-M+, WPO3(Ra)(Rb), W(PO3)2-(M+)2, WNE1E2, W(NE1E2E3)+X-, WORa, WSRa, (CHRbCH2O)xRa, (CH2NE1)xRa, (CH2CH2NE1)xRa, halogen, trifluoromethyl, nitro, acyl or cyano:

W = a single bond, heteroatom or a divalent bridging group having 1-20 atoms;

Ra, E1, E2,E3 = H, alkyl, cycloalkyl or aryl;

Rb = H, methyl or ethyl;

M+ = cation equivalent;

X- = anion equivalent;

x = 1-240 whereby two neighboring R1-R4 together with the carbon atom of the pyrrole ring to which they are bonded may form a condensed ring system of 1-3 rings and R1-R4 are not H and R5 and R6 are not linked to each other; R5,R6 = cycloalkyl, heterocycloalkyl, aryl or heteroaryl whereby one of R5 or R6 may be a divalent bridging group Y that covalently bonds two similar or different ligands or formula (1);

a, b = 0 or 1;

RI,RIII,RIV, RV,RVI,RVIII = substituents that are not H;

Rc.Rd.Re.Rf = formula (7)

where for formula (2) a: Rc,Rd,Re,Rf=(1-indolyl) b: Rc,Re=(1-Indolyl); Rd,Rf=(0-phenyl) c: Rc,Rd,Re,Rf=(1-carbazolyl) d: Rc,Rd,Re,Rf=(3,4,5,6-tetrahydrocarbazol-1-yl) e: Rc,Rd,Re,Rf=(isoindol-1-yl); for formula (3) a: Rc,Rd,Re,Rf=(1-indolyl) b:Rc,Re=(1-Indolyl); Rd,Rf= phenyl c: Rc,Re=(1-Indolyl); Rd,Rf=(0-(2-isopropyl-5-methyl-phenyl)) e: Rc,Re=(1-Indolyl); Rd,Rf=(0-phenyl) f: Rc,Re=(1-Indolyl); Rd,Rf=(0-phenyl).

An INDEPENDENT CLAIM is included for the hydroformylation of compounds having at least one ethylenically unsaturated double bond by reaction with CO and H2 in the presence of a hydroformylation catalyst (I). USE - The catalyst (I) is useful for hydroformylation, carbonylation, hydrocyanation or hydrogenation (claimed).

ADVANTAGE - The catalyst (I) has improved stability under hydroformylation conditions. (Dwg.0/0)

Manual Codes:

CPI: E05-G E05-L02B E05-M E05-N E10-A15E E10-C04 E10-D01C E10-D03 E10-G02 E10-J02D E11-D E11-F02 E11-F03 J04-E01 J04-E04B N02 N02-B N02-E01 N02-E02 N02-E04 N05-D N07-B N07-D02A N07-D03

THIS PAGE BLANK (USPTO)

N07-D04

Update Basic:
2003-27

Update Basic (Monthly):
2003-04

Update Equivalents:
2004-52

Update Equivalents (Monthly):

6

2004-08

Search statement

THIS PAGE BLANK (USPTO)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 6. März 2003 (06.03.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/018192 A2

- (51) Internationale Patentklassifikation⁷: B01J 31/18, C07F 9/572, 15/00, C07C 29/16, 29/141, 45/50, 253/10, 51/14
- (21) Internationales Aktenzeichen:

PCT/EP02/09455

(22) Internationales Anmeldedatum:

23. August 2002 (23.08.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 41 494.3

24. August 2001 (24.08.2001) I

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): AHLERS, Wolfgang [DE/DE]; Brauereistrasse 3, 67549 Worms (DE). PA-CIELLO, Rocco [US/DE]; Seebacherstrasse 70, 67098 Bad Dürkheim (DE). MACKEWITZ, Thomas [DE/DE]; Schmitzstrasse 8, 68219 Mannheim (DE). VOLLAND, Martin [DE/DE]; Schiffgasse 4, 69117 Heidelberg (DE).

- (74) Anwalt: POHL, Michael; Reitstötter, Kinzebach & Partner (GbR), Ludwigsplatz 4, 67059 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR THE PRODUCTION OF 2-PROPYLHEPTANOL

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON 2-PROPYLHEPTANOL

(57) Abstract: The invention relates to a method for the production of 2-propylheptanol, comprising the hydroformylation of butene, aldol condensation of the hydroformylation product thus obtained and the catalytic hydrogenation thereof. The invention also relates to novel catalysts for the hydroformylation step and to the use thereof.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 2-Propylheptanol, umfassend die Hydroformylierung von Buten, eine Aldolkondensation der so erhaltenen Hydroformylierungsprodukte und deren katalytische Hydrierung. Die Erfindung betrifft weiterhin neue Katalysatoren für den Hydroformylierungsschritt und deren Verwendung.

Verfahren zur Herstellung von 2-Propylheptanol

Beschreibung

5

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 2-Propylheptanol, umfassend die Hydroformylierung von Buten, eine Aldolkondensation der so erhaltenen Hydroformylierungsprodukte und deren katalytische Hydrierung. Die Erfindung betrifft 10 weiterhin neue Katalysatoren für den Hydroformylierungsschritt und deren Verwendung.

Zur Modifizierung der thermoplastischen Eigenschaften einer Vielzahl großtechnisch wichtiger Produkte, wie speziell Kunststoffe,

15 aber auch Lacke, Beschichtungsmittel, Dichtungsmassen etc. werden
in großen Mengen so genannte Weichmacher eingesetzt. Eine wichtige Klasse von Weichmachern sind die Ester-Weichmacher, zu denen
unter anderem Phthalsäureester, Trimellithsäureester, Phosphorsäureester etc. zählen. Die zur Herstellung der Ester-Weichmacher

20 eingesetzten Alkohole werden allgemein als Weichmacheralkohole
bezeichnet. Zur Herstellung von Ester-Weichmachern mit guten anwendungstechnischen Eigenschaften besteht ein Bedarf an Weichmacheralkoholen mit etwa 6 bis 12 Kohlenstoffatomen, die zu einem
geringen Grad verzweigt sind (so genannte semilinearer Alkohole),

25 und an entsprechenden Gemischen davon. Dazu zählt insbesondere
2-Propylheptanol und es enthaltende Alkoholgemische.

Die DE-A-100 03 482 beschreibt ein integriertes Verfahren zur Herstellung von C₉-Alkoholen und C₁₀-Alkoholen aus Buten und Butan 30 enthaltenden C₄-Kohlenwasserstoffgemischen, bei dem man unter anderem das Kohlenwasserstoffgemisch einer Hydroformylierung unterzieht und die dabei erhaltenen C₅-Aldehyde einer Aldolkondensation und anschließenden katalytischen Hydrierung zu C₁₀-Alkoholen unterzieht.

35

Allgemein kommt es bei der Hydroformylierung von Olefinen mit mehr als 2 C-Atomen aufgrund der möglichen CO-Anlagerung an jedes der beiden C-Atome einer Doppelbindung zur Bildung von Gemischen isomerer Aldehyde. Zusätzlich kann es auch zu einer Doppelbin-40 dungsisomerisierung kommen, d. h. zu einer Verschiebung interner Doppelbindungen auf eine terminale Position und umgekehrt. Bei der Herstellung von 2-Propylheptanol oder von Alkoholgemischen

mit hohem Anteil von 2-Propylheptanol durch Hydroformylierung von Buten und anschließender Aldolkondensation kann es somit bei der Hydroformylierung leicht nicht nur zur Bildung von n-Valeraldehyd, sondern auch von unerwünschten Produktaldehyden kommen, wodurch das gesamte Verfahren wirtschaftlich benachteiligt wird.

Werden zur Hydroformylierung technische Gemische, beispielsweise C4-Schnitte eingesetzt, die in großen Mengen sowohl aus FCC-Anlagen als auch aus Steamcrackern zur Verfügung stehen und die im 10 Wesentlichen aus einem Gemisch von 1,3-Butadien, Isobuten, 1-Buten und 2-Buten sowie im Allgemeinen Butan bestehen, so muss der eingesetzte Hydroformylierungskatalysator möglichst selektiv die Hydroformylierung terminaler Olefine (1-Buten) ermöglichen und/ oder zu einer Verschiebung interner Doppelbindungen auf eine ter-15 minale Position befähigt sein. An der Bereitstellung solcher Hydroformylierungskatalysatoren besteht auch allgemein ein großes technisches Interesse. Eine weitere Forderung, die an Hydroformylierungskatalysatoren gestellt wird, ist eine gute Stabilität, sowohl unter den Hydroformylierungsbedingungen als auch bei der 20 Aufarbeitung, da Katalysatorverluste sich in besonderem Maße negativ auf die Wirtschaftlichkeit des entsprechenden Verfahrens auswirken.

- L. A. van der Veen et al. beschreiben in Organometallics 1999,
 18, S. 4765-4777 den Einsatz phosphacyclischer Diphosphine mit Rückgraten vom Xanthen-Typ zur Rhodium-katalysierten Hydroformy-lierung.
- S. C. van der Slot et al. beschreiben in Organometallics 2000, 30 19, S. 2504-2515 Phosphordiamid-Chelatliganden mit Bisphenoloder Xanthen-Rückgrat, deren Diamid-Einheit durch Biuret-Gruppen gebildet wird.

Die WO 98/42716 beschreibt ein Verfahren zur Herstellung von 35 2,2'-Bisphosphino-1,1'-binaphthylen, deren Phosphoratome neben einer Vielzahl weiterer Reste auch Pyrrolgruppen tragen können.

Die US 3,816,452 beschreibt die Herstellung unterschiedlich substituierter Pyrrolyl-Monophosphane und deren Verwendung als 40 Flammschutzmittel.

K. G. Moloy et al. beschreiben in J. Am. Chem. Soc. 117, S. 7696-7710 (1995) unsubstituierte bzw. nicht anellierte einund zweikernige Pyrrolylverbindungen und deren Rh- und Mo-Kom-45 plexe.

- D. C. Smith et al. beschreiben in Organometallics 19, S. 1427-1433 (2000) Platinkomplexe des Bis(dipyrrolylphosphino)ethans. Eine konkrete Anwendung dieser Verbindungen und ihrer Metallkomplexe für katalytische Zwecke wird nicht erwähnt.
- A. M. Trzeciak et al. beschreiben in J. Organomet. Chem. 552, S.159-164 (1998) Trispyrrolylphosphan-Rhodium-Komplexe als Katalysatoren zur Hydrierung von Olefinen und Arenen. Diese Komplexe basieren auf unsubstituierten bzw. nicht anellierten Pyrrolre10 sten.
 - A. M. Trzeciak et al. beschreiben in J. Chem. Soc., Dalton Trans. 1997, S. 1831-1837 Rhodiumkomplexe mit N-Pyrrolylphosphinen und deren Einsatz als Liganden für Hydroformylierungskatalysatoren.
- A. M. Trzeciak et al. beschreiben in C. R. Acad. Sci., Série IIc, S. 235-239 (1999) die Hydroformylierung von Vinylsilanen mit Trispyrrolylphosphan-modifizierten Rhodiumkatalysatoren.
- 20 Die EP-A-0 754 715 beschreibt eine Katalysatorzusammensetzung, umfassend ein Metall der VIII. Nebengruppe und ein Alkylen-verbrücktes Di(pyrrolyl-phenyl-phosphin) und deren Einsatz zur Herstellung von Polyketonen. Katalysatoren auf Basis von phosphorhaltigen Liganden mit substituierten bzw. anellierten Pyrrolresten sind nicht beschrieben.

Die WO 00/56451 (DE-A-199 13 352) betrifft am Phosphoratom mit Pyrrolderivaten substituierte, cyclische Oxaphosphorine und die Verwendung dieser Liganden in Katalysatoren zur Hydroformylie-30 rung.

Die WO-A-96/01831 beschreibt chirale Diphosphine biheterocyclischer Verbindungen von aromatischen, 5-atomigen Heterocyclen und deren Verwendung in chiralen Katalysatoren für stereoselektive 35 Reaktionen. Dabei sind die heterocyclischen Kerne über eine Einfachbindung zwischen zwei Ringkohlenstoffatomen miteinander verknüpft.

- Die WO-A-99/52915 beschreibt chirale phosphoratomhaltige Liganden auf Basis von bicyclischen Verbindungen von carbocyclischen und heterocyclischen 5- bis 6-atomigen Verbindungen. Dabei sind die den Bicyclus bildenden aromatische Ringe über eine Einfachbindung zwischen zwei Ringkohlenstoffatomen miteinander verknüpft.
- 45 Die WO-A-99/52632 betrifft ein Verfahren zur Hydrocyanierung unter Einsatz phosphorhaltiger Chelatliganden mit 1,1'-Bisphenylenoder 1,1'-Bisphenylenzückrat, in denen das Phosphoratom mit un-

substituierten Pyrrol-, Indol- oder Imidazolgruppen substituiert sein kann, die über ein Ringstickstoffatom an das Phosphoratom gebunden sind.

- 5 J. Shen et al. beschreiben in Organometallics 1998, 17, S. 3000-3005 kalorimetrische Studien an Diphosphin-Chelatliganden, wobei unter anderem Hydrazid-verbrückte Diphenylphosphine und Alkylen-verbrückte Dipyrrolphosphine eingesetzt werden.
- 10 H. Brunner und H. Weber beschreiben in Chem. Ber. 118, S. 3380-3395 (1985) optisch aktive Aminophosphane und deren Einsatz in der enantioselektiven Hydrosilylierung. Diese Liganden werden durch Kondensation von 2-Pyrrolcarbaldehyd bzw. 2-Acetylpyrrol mit 1-Phenylethylamin und gegebenenfalls weiteren Folge-15 reaktionen hergestellt und können Pyrrolstickstoff-phosphonierte Gruppen aufweisen.

Die WO 01/58589 beschreibt Verbindungen des Phosphors, Arsens und des Antimons, basierend auf Diaryl-anellierten Bi-

- 20 cyclo[2.2.2]-Grundkörpern und Katalysatoren, die diese als Liganden enthalten. Dabei können an das Atom der 5. Hauptgruppe prinzipiell auch Hetarylreste gebunden sein.
- Die DE-A-100 23 471 beschreibt ein Verfahren zur Hydroformylie25 rung unter Einsatz eines Hydroformylierungskatalysators, der wenigstens einen Phosphinliganden umfasst, der zwei Triarylphosphingruppen aufweist, wobei jeweils ein Arylrest der beiden Triarylphosphingruppen über eine Einfachbindung an eine nichtaromatische 5- bis 8-gliedrige carbocyclische oder heterocyclische
 verbrückende Gruppe gebunden ist. Dabei können die Phosphoratome
 als weitere Substituenten unter anderem auch Hetarylgruppen aufweisen.
- Die DE-A-100 46 026.7 beschreibt ein Hydroformylierungsverfahren, 35 bei dem man als Katalysator einen Komplex auf Basis einer Phosphor-, Arsen- oder Antimon-haltigen Verbindung als Liganden einsetzt, wobei diese Verbindung jeweils zwei ein P-, As- oder Sb-Atom und wenigstens zwei weitere Heteroatome aufweisende Gruppen gebunden an ein Xanthen-artiges Molekülgerüst aufweist.
- R. Jackstell et al. beschreiben in Eur. J. Org. Chem. 2001, S. 3871-3877 (veröffentlicht am 10.09.2001) die Synthese von Pyrrol-, Indol- und Carbazolphosphanen und deren Einsatz als einzähnige Liganden bei der Hydroformylierung von 2-Penten.

Die US 5,710,344 beschreibt phosphoratomhaltige Liganden mit 1,1'-Biphenylen- oder 1,1'-Binaphthylenrückrat, die mit unsubstituierten Pyrrol-, Imidazol- oder Indolgruppen substituiert sein können, die über ein Ringstickstoffatom an das Phosphoratom gebunden sind. Diese Liganden eignen sich für Hydroformylierungskatalysatoren auf Basis von Metallen der VIII. Nebengruppe.

Die JP-A-2002 047294 beschreibt Phosphorchelatverbindungen mit Rückgraten vom Biphenylen-Typ, bei denen an die Phosphoratome zu10 dem jeweils zwei Stickstoff-Heterocyclen gebunden sind. Sie eignen sich als Liganden für Hydroformylierungskatalysatoren. Dabei werden als Stickstoffheterocyclen sowohl unsubstituierte als auch substituierte und in anellierte Ringsysteme integrierte Pyrrolgruppen eingesetzt. Eine Bevorzugung von substituierten sowie von in ein anelliertes Ringsystem integrierten und insbesondere zusätzlich substituierten Pyrrolgruppen ist diesem Dokument nicht zu entnehmen. Der Einsatz von Liganden vom Biphenylen-Typ, bei denen an die Phosphoratome wenigstens ein 3-Alkylindol-1-ylrest gebunden ist, wird in diesem Dokument nicht beschrieben.

20

Die unveröffentlichte internationale Anmeldung PCT/EP02/03543 beschreibt Pnicogenchelatverbindungen (d. h. Verbindungen des P, As oder Sb), die eine über das Stickstoffatom an das Pnicogenatom gebundene Pyrrolgruppe aufweisen. Sie eignen sich für den Einsatz in Hydroformylierungskatalysatoren.

Die unveröffentlichte deutsche Patentanmeldung P 102 05 361.8 beschreibt Phosphorchelatverbindungen, bei denen an beide Phosphoratome jeweils drei Stickstoffatome kovalent gebunden sind, welsone selbst Teil eines aromatischen Ringsystems sind.

Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, ein verbessertes Verfahren zur Herstellung von 2-Propylheptanol zur Verfügung zu stellen. Der Erfindung liegt weiterhin die Aufgabe zu 35 Grunde, neue Liganden zur Verfügung zu stellen, die sich bei einem Einsatz in Hydroformylierungskatalysatoren durch eine besonders hohe Stabilität unter den Hydroformylierungsbedingungen und/oder bei der Aufarbeitung auszeichnen.

40 Überraschenderweise wurde jetzt gefunden, dass die erste Aufgabe durch ein Verfahren gelöst wird, das die Hydroformylierung von Buten, eine Aldolkondensation der so erhaltenen Hydroformylierungsprodukte und deren anschließende katalytische Hydrierung umfasst, wobei als Hydroformylierungskatalysator ein Komplex eines Metalls der VIII. Nebengruppe des Periodensystems mit wenigstens einer Pyrrol-Phosphor-Verbindung als Liganden eingesetzt wird.

15

20

25

30

35

40

Dementsprechend wurde ein Verfahren zur Herstellung von 2-Propylheptanol gefunden, bei dem man

a) Buten oder ein Buten enthaltendes C₄-Kohlenwasserstoffgemisch in Gegenwart eines Hydroformylierungskatalysators mit Kohlenmonoxid und Wasserstoff unter Erhalt eines n-Valeraldehyd enthaltenden Hydroformylierungsprodukts hydroformyliert, wobei der Hydroformylierungskatalysator wenigstens einen Komplex eines Metalls der VIII. Nebengruppe mit wenigstens einem Liganden der allgemeinen Formel I

$$R^{5}-(0)_{a}$$
 P $(0)_{b}-R^{6}$ R^{1} R^{4} (1) R^{2} R^{3}

umfasst, worin

R¹, R², R³ und R⁴ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, WCOORa, WCOO-M+, W(SO₃)Ra, W(SO₃)-M+, WPO₃(Ra)(Rb), W(PO₃)²-(M+)₂, WNE¹E², W(NE¹E²E³)+X-, WORa, WSRa, (CHRbCH₂O)_XRa, (CH₂NE¹)_XRa, (CH₂CH₂NE¹)_XRa, Halogen, Trifluormethyl, Nitro, Acyl oder Cyano stehen,

worin

- w für eine Einfachbindung, ein Heteroatom oder eine zweiwertige verbrückende Gruppe mit 1 bis 20 Brükkenatomen steht,
- R^a , E^1 , E^2 , E^3 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder Aryl bedeuten,
- Rb für Wasserstoff, Methyl oder Ethyl steht,
- M+ für ein Kationäquivalent steht,
- 45 X- für ein Anionäquivalent steht und

5

10

15

x für eine ganze Zahl von 1 bis 240 steht,

wobei jeweils zwei benachbarte Reste R¹, R², R³ und R⁴ zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die sie gebunden sind, auch für ein kondensiertes Ringsystem mit 1, 2 oder 3 weiteren Ringen stehen können,

mit der Maßgabe, dass wenigstens einer der Reste R¹, R², R³ oder R⁴ nicht für Wasserstoff steht, und dass R⁵ und R⁶ nicht mit einander verknüpft sind,

R⁵ und R⁶ unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen, wobei einer der Reste R⁵ oder R⁶ auch für eine zweiwertige verbrückende Gruppe Y stehen kann, die zwei gleiche oder verschiedene Liganden oder Formel I kovalent miteinander verbindet, und

a und b unabhängig voneinander die Zahl 0 oder 1 bedeuten,

- 20 b) gegebenenfalls das Hydroformylierungsprodukt einer Auftrennung unter Erhalt einer an n-Valeraldehyd angereicherten Fraktion unterzieht,
- c) das in Schritt a) erhaltene Hydroformylierungsprodukt oder die in Schritt b) erhaltene an n-Valeraldehyd angereicherte Fraktion einer Aldolkondensation unterzieht,
 - d) die Produkte der Aldolkondensation mit Wasserstoff katalytisch zu Alkoholen hydriert, und
- e) gegebenenfalls die Hydrierprodukte einer Auftrennung unter Erhalt einer an 2-Propylheptanol angereicherten Fraktion unterzieht.
- Die Erfinder haben weiterhin gefunden, das Pyrrolphosphorverbindungen, bei denen eine oder mehrere unsubstituierte Pyrrolgruppen über ihr Stickstoffatom an das Phosphoratom gebunden sind, leicht zur Zersetzung bzw. zur Ausbildung von unerwünschten Umsetzungsprodukten neigen. So wird eine merkliche Zersetzung bereits von sichtbarem Licht und/oder Temperaturen im Bereich der Raumtemperatur induziert und kann durch den Einsatz eines Schutzgases nicht verhindert werden. Speziell in Gegenwart von Aldehyden kommt es zu einer merklichen Bildung von polymeren Verunreinigungen. Beim Einsatz von Pyrrolphosphorverbindungen mit unsubstituierten Pyrrolgruppen als Liganden für Hydroformylierungskatalysatoren kommt es somit zu einem Verlust an Katalysator und Wert-

produkt, der sich insbesondere bei mehrstufigen Verfahren, die

einen solchen Hydroformylierungsschritt umfassen, negativ auf die Wirtschaftlichkeit auswirkt. Überraschenderweise wurde nun gefunden, dass beim Einsatz von Phosphorverbindungen, bei denen eine substituierte und/oder in ein anelliertes Ringsystem integrierte Pyrrolgruppe über ihr pyrrolisches Stickstoffatom kovalent mit dem Phosphoratom verknüpft ist, die Bildung unerwünschter Produkte im Wesentlichen unterbleibt.

Im Rahmen der vorliegenden Anmeldung steht die verbrückende 10 Gruppe Y nicht für eine Gruppe der Formel

$$R^{7}$$
 $(D)c$
 R^{10}

worin

15

20

25

R⁷, R⁸, R⁹ und R¹⁰ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Alkoxy, Halogen, SO₃H, Sulfonat, NE⁴E⁵, Alkylen-NE⁴E⁵, Trifluormethyl, Nitro, Alkoxycarbonyl, Carboxyl oder Cyano stehen, worin E⁴ und E⁵ jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl und Aryl bedeuten,

 ${\tt A^1}$ und ${\tt A^2}$ unabhängig voneinander für O, S, Si ${\tt R^{15}R^{16}}$, ${\tt NR^{15}}$ oder ${\tt CR^{17}R^{18}}$ stehen, wobei

R¹⁷ und R¹⁸ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen oder die Gruppe R¹⁷ gemeinsam mit einer weiteren Gruppe R¹⁷ oder die Gruppe R¹⁸ gemeinsam mit einer weiteren Gruppe R¹⁸ eine intramolekulare Brückengruppe D bilden,

D eine zweibindige Brückengruppe, ausgewählt aus den Gruppen

40
$$R^{19}$$
 $CH - CH$ R^{20} R^{19} R^{20} R^{21} R^{22} R^{23} R^{24}

ist, in denen

5

10

- R²¹, R²², R²³ und R²⁴ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Halogen, Trifluormethyl, COOH, Carboxylat, Cyano, Alkoxy, SO₃H, Sulfonat, NE⁴E⁵, Alkylen-NE⁴E⁵E⁶⁺X-, Acyl oder Nitro stehen, wobei X- für ein Anionäquivalent steht, und
- c 0 oder 1 ist.

Derartige Verbindungen sind Gegenstand der internationalen Anmel-15 dung PCT/EP02/03543.

Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck Alkyl
geradkettige und verzweigte Alkylgruppen. Vorzugsweise handelt es
sich dabei um geradkettige oder verzweigte C₁-C₂₀-Alkyl-, bevorzugterweise C₁-C₁₂-Alkyl- und besonders bevorzugt C₁-C₈-Alkyl- und
ganz besonders bevorzugt C₁-C₄-Alkylgruppen. Beispiele für Alkylgruppen sind insbesondere Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl,
2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1-Z-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, nHeptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl, 1-Propylbutyl, Octyl,
Nonyl, Decyl.

Der Ausdruck Alkyl umfasst auch substituierte Alkylgruppen. Substituierte Alkylreste weisen vorzugsweise 1, 2, 3, 4 oder 5, insbesondere 1, 2 oder 3 Substituenten, ausgewählt unter Cycloalkyl, Aryl, Hetaryl, Halogen, NE¹E², (NE¹E²E³)⁺, Carboxyl, Carboxylat, -SO₃H und Sulfonat auf.

Der Ausdruck Cycloalkyl umfasst unsubstituierte und substituierte 40 Cycloalkylgruppen. Bei der Cycloalkylgruppe handelt es sich vorzugsweise um eine C₅-C₇-Cycloalkylgruppe, wie Cyclopentyl, Cyclohexyl oder Cycloheptyl.

Wenn die Cycloalkylgruppe substituiert ist, weist sie vorzugs-45 weise 1, 2, 3, 4 oder 5, insbesondere 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy oder Halogen auf. Der Ausdruck Heterocycloalkyl im Sinne der vorliegenden Erfindung umfaßt gesättigte, cycloaliphatische Gruppen mit im Allgemeinen 4 bis 7, vorzugsweise 5 oder 6 Ringatomen, in denen 1 oder 2 der Ringkohlenstoffatome durch Heteroatome, ausgewählt aus den Elesmenten Sauerstoff, Stickstoff und Schwefel, ersetzt sind und die gegebenenfalls substituiert sein können, wobei im Falle einer Substitution, diese heterocycloaliphatischen Gruppen 1, 2 oder 3, vorzugsweise 1 oder 2, besonders bevorzugt 1 Substituenten, ausgewählt aus Alkyl, Aryl, COORa, COO-M+ und NE¹E², bevorzugt

10 Alkyl, tragen können. Beispielhaft für solche heterocycloaliphatischen Gruppen seien Pyrrolidinyl, Piperidinyl, 2,2,6,6-Tetramethyl-piperidinyl, Imidazolidinyl, Piperidinyl, Oxazolidinyl, Morpholidinyl, Thiazolidinyl, Isothiazolidinyl, Isoxazolidinyl, Piperazinyl-, Tetrahydrothiophenyl, Tetrahydrofuranyl, Tetrahydropyranyl, Dioxanyl genannt.

Aryl steht vorzugsweise für Phenyl, Tolyl, Xylyl, Mesityl, Naphthyl, Anthracenyl, Phenanthrenyl, Naphthacenyl und insbesondere für Phenyl oder Naphthyl.

20.

Substituierte Arylreste weisen vorzugsweise 1, 2, 3, 4 oder 5, insbesondere 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy, Carboxyl, Carboxylat, Trifluormethyl, -SO₃H, Sulfonat, NE¹E², Alkylen-NE¹E², Nitro, Cyano oder Halogen auf.

25

Hetaryl steht vorzugsweise für Pyrrolyl, Pyrazolyl, Imidazolyl, Indolyl, Carbazolyl, Pyridyl, Chinolinyl, Acridinyl, Pyridazinyl, Pyrimidinyl oder Pyrazinyl.

- 30 Substituierte Hetarylreste weisen vorzugsweise 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy, Carboxyl, Carboxylat, -SO₃H, Sulfonat, NE¹E², Alkylen-NE¹E², Trifluormethyl oder Halogen auf.
- 35 Die obigen Ausführungen zu Alkyl-, Cycloalkyl- und Arylresten gelten entsprechend für Alkoxy-, Cycloalkyloxy- und Aryloxyreste.

Die Reste NE¹E² und NE⁴E⁵ stehen vorzugsweise für N,N-Dimethylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Diisopropylamino,

40 N,N-Di-n-butylamino, N,N-Di-tert.-butylamino, N,N-Dicyclohexylamino oder N,N-Diphenylamino.

Halogen steht für Fluor, Chlor, Brom und Iod, bevorzugt für Fluor, Chlor und Brom.

Carboxylat und Sulfonat stehen im Rahmen dieser Erfindung vorzugsweise für ein Derivat einer Carbonsäurefunktion bzw. einer Sulfonsäurefunktion, insbesondere für ein Metallcarboxylat oder -sulfonat, eine Carbonsäure- oder Sulfonsäureesterfunktion oder eine Carbonsäure- oder Sulfonsäureamidfunktion. Dazu zählen z. B. die Ester mit C₁-C₄-Alkanolen, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec.-Butanol und tert.-Butanol.

M+ steht für ein Kationäquivalent, d. h. für ein einwertiges Kat10 ion oder den einer positiven Einfachladung entsprechenden Anteil
eines mehrwertigen Kations. Vorzugsweise steht M+ für ein Alkalimetallkation, wie z. B. Li+, Na+ oder K+ oder für ein Erdalkalimetallkation, für NH4+ oder eine quartäre Ammonium-Verbindung, wie
sie durch Protonierung oder Quarternierung von Aminen erhältlich
15 ist. Bevorzugt handelt es sich um Alkalimetallkationen, insbesondere um Natrium- oder Kaliumionen.

X- steht für ein Anionäquivalent, d. h. für ein einwertiges Anion oder den einer negativen Einfachladung entsprechenden Anteil ei20 nes mehrwertigen Anions. Vorzugsweise steht X- für ein Carbonat, Carboxylat oder Halogenid, besonders bevorzugt für Cl- und Br-.

Die Werte für x stehen für eine ganze Zahl von 1 bis 240, vorzugsweise für eine ganze Zahl von 3 bis 120.

Kondensierte Ringsysteme können durch Anellierung verknüpfte (ankondensierte) aromatische, hydroaromatische und cyclische Verbindungen sein. Kondensierte Ringsysteme bestehen aus zwei, drei oder mehr als drei Ringen. Je nach der Verknüpfungsart unterscheidet man bei kondensierten Ringsystemen zwischen einer ortho-Anellierung, d. h. jeder Ring hat mit jedem Nachbarring jeweils eine Kante, bzw. zwei Atome gemeinsam, und einer peri-Anellierung, bei der ein Kohlenstoffatom mehr als zwei Ringen angehört. Bevorzugt unter den kondensierten Ringsystemen sind ortho-kondensierte Ringsysteme.

a) Hydroformylierung

Als Einsatzmaterial für die Hydroformylierung eignet sich sowohl
40 im Wesentlichen reines 1-Buten als auch Gemische von 1-Buten mit
2-Buten und technisch erhältliche C₄-Kohlenwasserstoffströme, die
1-Buten und/oder 2 Buten enthalten. Vorzugsweise eignen sich
C₄-Schnitte, die in großen Mengen aus FCC-Anlagen und aus Steamcrackern zur Verfügung stehen. Diese bestehen im Wesentlichen aus
45 einem Gemisch von 1,3-Butadien, der isomeren Butene und Butan.

Als Einsatzmaterial geeignete C₄-Kohlenwasserstoffströme enthalten z. B. 50 bis 99, vorzugsweise 60 bis 90 Mol-% Butene und 1 bis 50, vorzugsweise 10 bis 40 Mol-% Butane. Vorzugsweise umfasst die Butenfraktion 40 bis 60 Mol-% 1-Buten, 20 bis 30 Mol-% 2-Buten 5 und weniger als 5 Mol-%, insbesondere weniger als 3 Mol-% Isobuten (bezogen auf die Butenfraktion). Als besonders bevorzugter Einsatzstoff wird das sogenannte Raffinat II verwendet, bei dem es sich um ein Isobuten-abgereicherten C₄-Schnitt aus einer FCC-Anlage oder einen Steamcracker handelt.

Hydroformylierungskatalysatoren auf Basis der erfindungsgemäß eingesetzten Phosphorpyrrolverbindungen als Liganden weisen vorteilhafterweise eine hohe n-Selektivität, auch beim Einsatz von 2-Buten und 2-butenhaltigen Kohlenwasserstoffgemischen als Einsatzmaterial auf. Somit können in dem erfindungsgemäßen Verfahren auch solche Einsatzstoffe wirtschaftlich eingesetzt werden, da der angestrebte n-Valeraldehyd in guten Ausbeuten resultiert.

Bevorzugt wird in Schritt a) des erfindungsgemäßen Verfahrens

20 eine Verbindung der allgemeinen Formel I eingesetzt, worin einer oder zwei der Reste R¹, R², R³ und R⁴ für einen der zuvor genannten, von Wasserstoff verschiedenen Substituenten stehen und die übrigen für Wasserstoff stehen. Bevorzugt sind Verbindungen der Formel I, die in 2-Position, 2,5-Position oder 3,4-Position einen von Wasserstoff verschiedenen Substituenten tragen.

Vorzugsweise sind die von Wasserstoff verschiedenen Substituenten R¹ bis R⁴ unabhängig voneinander ausgewählt unter C₁- bis C8-, vorzugsweise C₁- bis C4-Alkyl, speziell Methyl, Ethyl, Isopropyl 30 und tert.-Butyl, Alkoxycarbonyl, wie Methoxycarbonyl, Ethoxycarbonyl, Isopropyloxycarbonyl und tert.-Butyloxycarbonyl sowie Trifluormethyl.

Bevorzugt wird in Schritt a) des erfindungsgemäßen Verfahrens
35 eine Verbindung der allgemeinen Formel I eingesetzt, worin die
Reste R¹ und R² und/oder R³ und R⁴ zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die sie gebunden sind, für ein kondensiertes Ringsystem mit 1, 2 oder 3 weiteren Ringen stehen. Wenn R¹
und R² und/oder R³ und R⁴ für ein ankondensiertes, also anellier40 tes Ringsystem stehen, so handelt es sich bevorzugt um Benzoloder Naphthalinringe. Anellierte Benzolringe sind vorzugsweise
unsubstituiert und weisen 1, 2 oder 3, insbesondere 1 oder 2 Substituenten auf, die ausgewählt sind unter Alkyl, Alkoxy, Halogen,
SO3H, Sulfonat, NE¹E², Alkylen-NE¹E², Trifluormethyl, Nitro, COOR²,
45 Alkoxycarbonyl, Acyl und Cyano. Anellierte Naphthalinringe sind
vorzugsweise unsubstituiert oder weisen im nichtanellierten Ring
und/oder im anellierten Ring je 1, 2 oder 3, insbesondere 1 oder

WO 03/018192

2 der zuvor bei den anellierten Benzolringen genannten Substituenten auf. Wenn R¹ und R² für ein ankondensiertes Ringsystem stehen, so stehen R³ und R⁴ vorzugsweise für Wasserstoff oder steht R⁴ für Wasserstoff und R³ für einen Substituenten, der ausgewählt ist unter C₁- bis C₀-Alkyl, vorzugsweise C₁- bis C₀-Alkyl, speziell Methyl, Ethyl, Isopropyl oder tert.-Butyl.

Ist der Einsatz der Verbindungen der Formel I in einem wässrigen Hydroformylierungsmedium vorgesehen, steht wenigstens einer der 10 Reste R¹, R², R³ und/oder R⁴ für eine polare (hydrophile) Gruppe, wobei dann in der Regel bei der Komplexbildung mit einem Gruppe VIII Metall wasserlösliche Komplexe resultieren. Bevorzugt sind die polaren Gruppen ausgewählt unter COOR^a, COO-M⁺, SO₃R^a, SO₃-M⁺, NE¹E², Alkylen-NE¹E², NE¹E²E³⁺X⁻, Alkylen-NE¹E²E³⁺X⁻, OR^a, SR^a, 15 (CHR^bCH₂O)_xR^a oder (CH₂CH₂N(E¹))_xR^a, worin R^a, E¹, E², E³, R^b, M⁺, X⁻ und x die zuvor angegebenen Bedeutungen besitzen.

Bevorzugt wird in dem erfindungsgemäßen Verfahren ein Hydroformylierungskatalysator eingesetzt, der wenigstens einen Liganden der 20 Formel I umfasst, in dem die über das pyrrolische Stickstoffatom an das Phosphoratom gebundene Pyrrolgruppe der Formel

$$\begin{array}{c|c}
R^1 & R \\
R^2 & R^3
\end{array}$$

30 ausgewählt ist unter Gruppen der Formeln I.a bis I.k

10

20

worin

Alk eine C₁-C₄-Alkylgruppe ist und

25 Rg, Rh, Ri und Rk unabhängig voneinander für Wasserstoff, C_1 - C_4 -Al-kyl, C_1 - C_4 -Alko-xycarbonyl oder Carboxyl stehen.

Zur Veranschaulichung werden im Folgenden einige vorteilhafte
30 Pyrrolgruppen aufgelistet:

35

$$H_{3}C$$
 N
 $C_{2}H_{5}$
 N
 $C_{2}H_{5}$
 N
 $C_{2}H_{5}$
 N
 $C_{2}C_{2}H_{5}$
 N
 $C_{2}C_{2}C_{3}$
 N
 $C_{2}C_{3}$
 N
 C

Besonders vorteilhaft ist die 3-Methylindolylgruppe (Skatolyl-45 gruppe) der Formel I.fl. Hydroformylierungskatalysatoren auf Basis von Liganden, die eine oder mehrere 3-Methylindolylgruppe(n) an das Phosphoratom gebunden aufweisen, zeichnen sich durch eine

besonders hohe Stabilität und somit besonders lange Katalysatorstandzeiten aus.

In einer geeigneten Ausführungsform kann der Substituent R¹ ge5 meinsam mit dem Substituenten R⁵ oder kann der Substituent R² gemeinsam mit dem Substituenten R⁵ für eine zweibindige Gruppe -I-Wstehen, worin

- I für eine chemische Bindung oder für O, S, Si $R^{\alpha}R^{\beta}$, NR $^{\gamma}$ oder gegebenenfalls substituiertes C_1 - C_{10} -Alkylen, bevorzugt $CR^{\delta}R^{\epsilon}$ steht, worin R^{α} , R^{β} , R^{γ} , R^{δ} und R^{ϵ} unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen, und
- 15 W für Cycloalkyl, Cycloalkoxy, Aryl, Aryloxy, Hetaryl oder Hetaryloxy steht.

Beispielsweise kann die Pyrrolgruppe gemeinsam mit der Gruppe -I-W- für

20

25

30

$$CF_3$$
; N

35

40 stehen.

Bevorzugt werden in dem erfindungsgemäßen Verfahren Hydroformylierungskatalysatoren eingesetzt, die wenigstens einen Liganden der Formel I umfassen, worin die über das pyrrolische Stick-

45 stoffatom an das Phosphoratom gebundene Pyrrolgruppe gemeinsam mit R^5 eine Gruppe der Formel

5

15

20

$$R^1$$
 N I N R^1 oder R^2 R^2 R^2

bildet, worin

10 I für eine chemische Bindung oder für O, S, SiR $^{\alpha}$ R $^{\beta}$, NR $^{\gamma}$ oder gegebenenfalls substituiertes C_1 - C_{10} -Alkylen, bevorzugt CR^{δ} R $^{\epsilon}$, steht, worin R $^{\alpha}$, R $^{\beta}$, R $^{\gamma}$, R $^{\delta}$ und R $^{\epsilon}$ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,

R¹, R¹, R², R², R³, R³, R⁴ und R⁴ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, WCOOR^a, WCOO-M⁺, W(SO₃)R^a, W(SO₃)-M⁺, WPO₃(R^a)(R^b), W(PO₃)²-(M⁺)₂, WNE¹E², W(NE¹E²E³)+X-, WOR^a, WSR^a, (CHR^bCH₂O)_xR^a, (CH₂NE¹)_xR^a, (CH₂CH₂NE¹)_xR^a, Halogen, Trifluormethyl, Nitro, Acyl oder Cyano stehen,

worin

- 25 w für eine Einfachbindung, ein Heteroatom oder eine zweiwertige verbrückende Gruppe mit 1 bis 20 Brükkenatomen steht,
- Ra, E¹, E², E³ jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder Aryl bedeuten,
 - Rb für Wasserstoff, Methyl oder Ethyl steht,
- 35 M+ für ein Kationäquivalent steht,
 - x- für ein Anionäquivalent steht und
 - x für eine ganze Zahl von 1 bis 240 steht,

wobei jeweils zwei benachbarte Reste R¹ und R² und/oder R¹' und R²' zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die sie gebunden sind, auch für ein kondensiertes Ringsystem mit 1, 2 oder 3 weiteren Ringen stehen können.

Vorzugsweise steht I für eine chemische Bindung oder eine $C_1-C_4-Alkylengruppe$, besonders bevorzugt eine Methylengruppe.

Zur Veranschaulichung werden im Folgenden einige vorteilhafte 5 "Bispyrrolylgruppen" aufgelistet:

10

$$R^{\lambda}$$
 R^{μ}
 R^{λ}
 R^{μ}
 R^{μ}

Vorzugsweise ist die Verbindung der allgemeinen Formel I ausgewählt unter Verbindungen der allgemeinen Formeln I.1 bis I.4

25
$$R^{5}-(0)a$$
 P $R^{5}-(0)$ P $R^{5}-(0$

45

40

$$R^{5}-(0)a$$
 p $(0)b-Y-(0)a$ p $(0)b-R^{6}$

10 worin

15

5

 R^1 , R^2 , R^3 , R^4 , Y, a und b die zuvor angegebenen Bedeutungen besitzen und

R⁵ und R⁶ unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.

Vorzugsweise stehen in den Formeln I.1 und I.3 die Reste R¹ bis R⁴
20 (falls vorhanden) alle für Wasserstoff. Des Weiteren vorzugsweise stehen R¹ und R⁴ für Wasserstoff und sind R² und R³ ausgewählt unter C₁- bis C₈-Alkyl, vorzugsweise C₁- bis C₄-Alkyl, wie Methyl, Ethyl, Isopropyl und tert.-Butyl. Des Weiteren vorzugsweise sind R¹, R², R³ und R⁴ unabhängig voneinander ausgewählt unter C₁-C₈-Al-25 kyl, vorzugsweise C₁-C₄-Alkyl, wie Methyl, Ethyl, Isopropyl und tert.-Butyl.

Vorzugsweise ist die Verbindung der allgemeinen Formel I ausgewählt unter Verbindungen der allgemeinen Formeln I.5 oder I.6
30

$$R^{5}-(O)_{a}$$
 P
 $(O)_{b}-R^{6}$
 R^{2}
 R^{3}
 $(I.5)$

40

35

worin

5

10

R² und R³ die zuvor angegebenen Bedeutungen besitzen, wobei wenigstens einer der Reste R² oder R³ nicht für Wasserstoff steht,

R⁵ und R⁶ unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.

Vorzugsweise sind in den Formeln I.5 und I.6 die Reste R^2 und R^3 ausgewählt unter C_1 - C_8 -Alkyl, besonders bevorzugt C_1 - C_4 -Alkyl, wie Methyl, Ethyl, Isopropyl und tert.-Butyl, sowie COOR^a, worin R^a für C_1 - C_4 -Alkyl, wie Methyl, Ethyl, Isopropyl und tert.-Butyl, 25 steht.

Nach einer ersten bevorzugten Ausführungsform handelt es sich bei den Liganden der Formel I um einzähnige Liganden. Dann sind die Reste R⁵ und R⁶ unabhängig voneinander ausgewählt unter Cycloal30 kyl, Heterocycloalkyl, Aryl und Hetaryl, vorzugsweise unter Aryl und Hetaryl. Bevorzugt stehen R⁵ und R⁶ für gegebenenfalls substituierte Phenylreste. Des Weiteren bevorzugt steht R⁵ für einen gegebenenfalls substituierten Phenylrest und R⁶ für einen gegebenenfalls substituierten Hetarylrest. Vorzugsweise sind die Hetarylreste ausgewählt unter Resten der allgemeinen Formel III

$$\begin{array}{c|c}
R^1 & R^4 \\
\hline
 R^2 & R^3
\end{array}$$
(III)

40

worin

45 R¹, R², R³ und R⁴ wie zuvor beschrieben definiert sind, wobei wenigstens einer der Reste nicht für Wasserstoff steht.

Lediglich zur Veranschaulichung der erfindungsgemäß eingesetzten einzähnigen Liganden werden im Folgenden einige vorteilhafte Verbindungen aufgelistet:

5

Ph Ph

II

Ph MeO₂C CO₂Me III

15

20

10

IV

V

25

MeO₂C CO₂Me⁻ ₂

VIII

35

40

45

Ph

XI

Nach einer zweiten bevorzugten Ausführungsform handelt es sich bei den Liganden der allgemeinen Formel I um zweizähnige Liganden. Dann steht einer der Reste R⁵ oder R⁶ für eine zweiwertige verbrückende Gruppe Y, die zwei gleiche oder verschiedene Ligan-5 den der Formel I kovalent miteinander verbindet. Vorzugsweise ist die verbrückende Gruppe Y ausgewählt unter Gruppen der Formeln II.a bis II.t

35 (II.e)

(II.t)

35 worin

40

(II.r)

RI bis RXII unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Alkoxy, Halogen, SO₃H, Sulfonat, NE⁴E⁵, Alkylen-NE⁴E⁵, Trifluormethyl, Nitro, Alkoxycarbonyl, Carboxyl oder Cyano stehen, worin E⁴ und E⁵ jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl und Aryl bedeuten,

(II.s)

Z für O, S, NR¹⁵ oder SiR¹⁵R¹⁶ steht, wobei R¹⁵ und R¹⁶ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen, 10

oder Z für eine C_1 - bis C_4 -Alkylenbrücke steht, die eine Doppelbindung und/oder einen Alkyl-, Cycloalkyl-, Heterocycloalkyl-, Aryl- oder Hetaryl-Substituenten aufweisen kann,

oder Z für eine C_2 - bis C_4 -Alkylenbrücke steht, die durch O, S oder NR^{15} oder $SiR^{15}R^{16}$ unterbrochen ist,

wobei in den Gruppen der Formeln II.g bis II.m einer der Reste $R^{\rm I}$ bis $R^{\rm IV}$ auch für Oxo oder ein Ketal davon stehen kann.

Vorzugsweise ist die verbrückende Gruppe Y ausgewählt unter Gruppen der Formeln II.1 bis II.5

30 worin

35

R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ und R¹⁴ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Alkoxy, Halogen, SO₃H, Sulfonat, NE⁴E⁵, Alkylen-NE⁴E⁵, Trifluormethyl, Nitro, Alkoxycarbonyl, Carboxyl oder Cyano stehen, worin E⁴ und E⁵ jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl und Aryl bedeuten,

Z für O, S, NR¹⁵ oder SiR¹⁵R¹⁶ steht, wobei 40 R¹⁵ und R¹⁶ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,

oder Z für eine C₁- bis C₃-Alkylenbrücke steht, die eine Doppelbindung und/oder einen Alkyl-, Cycloalkyl-, Heterocycloalkyl-, Aryl- oder Hetaryl-Substituenten aufweisen kann, oder Z für eine C_2 - bis C_3 -Alkylenbrücke steht, die durch O, S oder NR^{15} oder $SiR^{15}R^{16}$ unterbrochen ist,

Die Substituenten R⁷, R⁸, R⁹ und R¹⁰ stehen im Allgemeinen für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl und Hetaryl. Bevorzugt stehen R⁷ und R⁹ für Wasserstoff und R⁸ und R¹⁰ für C₁-bis C₄-Alkyl, wie z. B. Methyl, Ethyl, n-Propyl, n-Butyl oder tert.-Butyl. Es versteht sich von selbst, dass die nicht mit Substituenten besetzten Positionen der Phenylringe der Brücken-10 gruppe Y ein Wasserstoffatom tragen.

Die Substituenten R^7 , R^8 , R^9 und R^{10} stehen bevorzugt für Wasserstoff.

15 Wenn R⁷ und/oder R⁹ für ein ankondensiertes, also anelliertes, Ringsystem stehen, so handelt es sich bevorzugt um Benzol- oder Naphthalinringe. Anellierte Benzolringe sind vorzugsweise unsubstituiert oder weisen 1, 2 oder 3, insbesondere 1 oder 2 Substituenten auf, die ausgewählt sind unter Alkyl, Alkoxy, Halogen, SO₃H, Sulfonat, NE¹E², Alkylen-NE¹E², Trifluormethyl, Nitro, COORf, Alkoxycarbonyl, Acyl und Cyano. Anellierte Naphthalinringe sind vorzugsweise unsubstituiert oder weisen im nicht anellierten Ring und/oder im anellierten Ring insgesamt 1, 2 oder 3, insbesondere 1 oder 2 der zuvor bei den anellierten Benzolringen genannten Substituenten auf.

Bevorzugt steht Y für eine Gruppe der Formel II.a, worin R^I und R^{IV} unabhängig voneinander für C₁-C₄-Alkyl oder C₁-C₄-Alkoxy stehen. Vorzugsweise sind R^I und R^{IV} ausgewählt unter Methyl, Ethyl, 30 Isopropyl, tert.-Butyl und Methoxy. Bevorzugt stehen in diesen Verbindungen R^{II} und R^{III} für Wasserstoff.

Bevorzugt steht Y für eine Gruppe der Formel II.b, worin R^{IV} und R^V unabhängig voneinander für C₁-C₄-Alkyl oder C₁-C₄-Alkoxy ste35 hen. Vorzugsweise sind R^{IV} und R^V ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy. Bevorzugt stehen in diesen Verbindungen R^I, R^{II}, R^{III}, R^{VI}, R^{VII} und R^{VIII} für Wasserstoff.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.b,

40 worin RI und RVIII unabhängig voneinander für C1-C4-Alkyl oder
C1-C4-Alkoxy stehen. Besonders bevorzugt stehen RI und RVIII für
tert.-Butyl. Besonders bevorzugt stehen in diesen Verbindungen
RII, RIII, RIV, RV, RVI, RVII für Wasserstoff. Des Weiteren bevorzugt stehen in diesen Verbindungen RIII und RVI unabhängig vonein45 ander für C1-C4-Alkyl oder C1-C4-Alkoxy. Besonders bevorzugt sind
RIII und RVI unabhängig voneinander ausgewählt unter Methyl,

Ethyl, Isopropyl, tert.-Butyl und Methoxy.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.b, worin R^{II} und R^{VII} für Wasserstoff stehen. Bevorzugt stehen in 5 diesen Verbindungen R^I, R^{III}, R^{IV}, R^V, R^{VI} und R^{VIII} unabhängig voneinander für C₁-C₄-Alkyl oder C₁-C₄-Alkoxy. Besonders bevorzugt sind R^I, R^{III}, R^{IV}, R^V, R^{VI} und R^{VIII} unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy.

10 Weiterhin bevorzugt steht Y für eine Gruppe der Formel II.c, worin Z für eine C₁-C₄-Alkylengruppe, insbesondere Methylen, steht. Bevorzugt stehen in diesen Verbindungen R^{IV} und R^V unabhängig voneinander für C₁-C₄-Alkyl oder C₁-C₄-Alkoxy. Besonders bevorzugt sind R^{IV} und R^V unabhängig voneinander ausgewählt unter Methyl,
15 Ethyl, Isopropyl, tert.-Butyl und Methoxy. Die Reste R^I, R^{II}, R^{III}, R^{VI}, R^{VII} und R^{VIII} stehen vorzugsweise für Wasserstoff.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.c, worin Z für eine C₁-C₄-Alkylenbrücke steht, die wenigstens einen 20 Alkyl-, Cycloalkyl- oder Arylrest aufweist. Besonders bevorzugt steht Z für eine Methylenbrücke, die zwei C₁-C₄-Alkylreste, insbesondere zwei Methylreste, aufweist. Vorzugsweise stehen in diesen Verbindungen die Reste R^I und R^{VIII} unabhängig voneinander für C₁-C₄-Alkyl oder C₁-C₄-Alkoxy. Besonders bevorzugt sind R^I und 25 R^{VIII} unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy.

Weiterhin bevorzugt steht Y für eine Gruppe der Formel II.d, worin R^I und R^{XII} unabhängig voneinander für C₁-C₄-Alkyl oder

30 C₁-C₄-Alkoxy stehen. Insbesondere sind R^I und R^{XII} unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy. Besonders bevorzugt stehen in diesen Verbindungen die Reste R^{II} bis R^{XI} für Wasserstoff.

35 Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.e, worin R^I und R^{XII} unabhängig voneinander für C₁-C₄-Alkyl oder C₁-C₄-Alkoxy stehen. Insbesondere sind R^I und R^{XII} unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy. Besonders bevorzugt stehen in diesen Verbindungen 40 die Reste R^{II} bis R^{XI} für Wasserstoff.

Weiterhin bevorzugt steht Y für eine Gruppe der Formel II.f, worin Z für eine C₁-C₄-Alkylengruppe steht, die wenigstens einen Alkyl-, Cycloalkyl- oder Arylsubstituenten aufweist. Besonders be45 vorzugt steht Z für eine Methylengruppe, die zwei C₁-C₄-Alkylreste, speziell zwei Methylreste, aufweist. Besonders bevorzugt
stehen in diesen Verbindungen die Reste R^I und R^{VIII} unabhängig

voneinander für C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy. Insbesondere sind R^I und R^{VIII} unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy. Die Reste R^{II} , R^{III} , R^{IV} , R^V , R^{VI} und R^{VII} stehen vorzugsweise für Wasserstoff.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.g, worin R^{I} , R^{II} und R^{III} für Wasserstoff stehen.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.g, 10 worin das Ringkohlenstoffatom, das den Rest R^{II} trägt, kein zusätzliches Wasserstoffatom, sondern eine Oxo-Gruppe oder ein Ketal davon trägt und R^I und R^{III} für Wasserstoff stehen.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.h, 15 worin R^I, R^{II} und R^{III} für Wasserstoff stehen.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.h, worin das Ringkohlenstoffatom, das den Rest R^{II} trägt, kein zusätzliches Wasserstoffatom, sondern eine Oxo-Gruppe oder ein Ke20 tal davon trägt und R^I und R^{III} für Wasserstoff stehen.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.i, worin R^{I} , R^{II} , R^{III} und R^{IV} für Wasserstoff stehen.

25 Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.k, worin R^I, R^{II} und R^{IV} für Wasserstoff stehen.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.1, worin R^{I} , R^{II} , R^{III} und R^{IV} für Wasserstoff stehen.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.m, worin R^{I} , R^{II} , R^{III} und R^{IV} für Wasserstoff stehen.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.n, 35 worin R^I, R^{III} und R^{IV} für Wasserstoff stehen.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.n, worin einer der Reste R^{I} bis R^{IV} für C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy steht. Besonders bevorzugt steht dann wenigstens einer der Reste 40 R^{I} bis R^{IV} für Methyl, Ethyl, Isopropyl, tert.-Butyl oder Methoxy.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.o, worin R^{I} , R^{II} , R^{III} und R^{IV} für Wasserstoff stehen.

45 Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.o, worin einer der Reste R^{I} , R^{II} , R^{III} oder R^{IV} für für C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy steht. Besonders bevorzugt steht dann einer der

Reste RI bis RIV für Methyl, Ethyl, tert.-Butyl oder Methoxy.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.p, worin R^I und R^{VI} unabhängig voneinander für C₁-C₄-Alkyl oder

5 C₁-C₄-Alkoxy stehen. Besonders bevorzugt sind R^I und R^{VI} unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy. Besonders bevorzugt stehen in diesen Verbindungen R^{II}, R^{III}, R^{IV} und R^V für Wasserstoff. Des Weiteren bevorzugt stehen in den Verbindungen II.p R^I, R^{III}, R^{IV} und R^{VI} unabhängig voneinander für C₁-C₄-Alkyl oder C₁-C₄-Alkoxy. Besonders bevorzugt sind R^I, R^{III}, R^{IV} und R^{VI} dann unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy.

Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.q,

15 worin R^I und R^{VI} unabhängig voneinander für C₁-C₄-Alkyl oder

C₁-C₄-Alkoxy stehen. Besonders bevorzugt sind R^I und R^{VI} unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.
Butyl und Methoxy. Besonders bevorzugt stehen in diesen Verbindungen R^{II}, R^{III}, R^{IV} und R^V für Wasserstoff. Des Weiteren bevorzugt stehen in diesen Verbindungen R^{III} und R^{IV} unabhängig voneinander für C₁-C₄-Alkyl oder C₁-C₄-Alkoxy. Besonders bevorzugt sind R^{III} und R^{IV} dann unabhängig voneinander ausgewählt unter Methyl, Ethyl, Isopropyl, tert.-Butyl und Methoxy.

25 Des Weiteren bevorzugt steht Y für eine Gruppe der Formel II.r, II.s oder II.t, worin Z für CH2, C2H2 oder C2H4 steht.

Lediglich zur Veranschaulichung der erfindungsgemäß eingesetzten zweizähnigen Verbindungen werden im Folgenden einige aufgelistet:

XI

XII

XIV

CH₃ CH₃

N—P P N

CH₃

CH₃

CH₃

XVI

IIVX

15

XVIII

XIX

30 35

IIIXX

45

xxvi

XXVII

XXX

15

30

IXXX

XXXII

XXXIII

15

30

XXXV

XXXIV

XXXVI

15

XXXVIII

30

XXXIX

10

• 'C >

XLI

CH₃

H₃C

XLII

CH₃

10 XLIII

$$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \end{bmatrix}_{2}$$

XLVI

45 XLVII

H₃C CH₃ CH₃

LII

LIII

LVI 45

LVIII

LIX

15

10

5

LXI

20

EtO₂C

N P P N CO₂Et

EtO₂C

CO₂Et

CO₂Et

LXVII

10

15

20

25

LXX

LXXI

2 CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃ CH₃ CH₃
CH₃ CH₃ CH₃ CH₃ CH₃ CH₃
CH₃ CH₃

LXXVI

LXXVII

LXXX

LXXVIII

LXXIX

15 LXXXI

LXXXIV

LXXXVIII

45 **LXXXXI**

LXXXXIII

30

LXXXXVI

Me = Methyl

Et = Ethyl

15 R9 = H, Carboxylat

 $R^h = H$, Carboxylat

Die Herstellung der erfindungsgemäß eingesetzten einzähnigen Phosphorpyrrolverbindungen der allgemeinen Formel I kann bei-20 spielsweise gemäß folgendem Schema 1 erfolgen:

25

10

30

35

40

Schema 1

$$P(Hal)_3 = \frac{1 \text{ aq. } HX^1}{-HHal} X^1P(Hal)_2$$

5

10

$$\begin{array}{c} 1 \ \, \ddot{a}q. \ \, R^5-(O)_aL^1 \\ 1 \ \, \ddot{a}q. \ \, R^6-(O)_bL^2 \\ \hline \times^1 \ \, P(Hal)_2 \end{array} \qquad \times^1 P((O)_aR^5)((O)_bR^6) \end{array}$$

15 $(X^1)_2PHal$ 1 äq. $R^5-(O)_aL^1$ $(X^1)_2P((O)_aR^5)$

$$Hal = Cl, Br$$

20

25

$$x^{1} = \bigcap_{\mathbb{R}^{2}} \bigcap_{\mathbb{R}^{3}} \mathbb{R}^{4}$$

 $L^1, L^2 = Abgangsgruppen$

30 Darin haben R¹, R², R³, R⁴, R⁵ und R⁶ die zuvor genannte Bedeutung. L¹ und L² stehen für eine Abgangsgruppe, die falls a bzw. b für die Zahl O steht, beispielsweise ausgewählt ist unter Halogen, insbesondere Fluor, Chlor, Brom, SO₃M mit M = Wasserstoff oder Alkalimetall, insbesondere Li, Na oder K, oder falls a bzw. b für 35 die Zahl 1 stehen, beispielsweise für Wasserstoff, C(O)CF₃, SO₂CH₃, SO₂-Tolyl oder SO₂CF₃ stehen kann.

Die Herstellung der erfindungsgemäß eingesetzten zweizähnigen phosphorpyrrolverbindungen der Formel I kann analog zu Schema 1 40 ausgehend von Verbindungen $L^1-(0)_b-Y-(0)_a-L^1$ erfolgen.

So kann die Herstellung von Verbindungen der Formel II.2 beispielsweise ausgehend von Verbindungen der Formel II.2a

10 erfolgen, in denen R⁷, R⁸, R⁹, R¹⁰, a und b die genannte Bedeutung haben und L für eine Abgangsgruppe steht, die falls a und b für die Zahl O stehen, beispielsweise für Wasserstoff, Halogen, insbesondere Fluor, Chlor, Brom, SO₃M mit M = Wasserstoff oder Alkalimetall, insbesondere Li, Na oder K, stehen kann, oder falls a und b für die Zahl 1 stehen, beispielsweise für Wasserstoff, C(O)CF₃, SO₂CH₃, SO₂-Tolyl oder SO₂CF₃ stehen kann.

Die Ausgangsverbindungen der allgemeinen Formel II.2a mit a, b = 0 können gemäß den von van Leuwen et al., Organometallics <u>14</u>, 20 3081 (1995) angegebenen Methoden hergestellt werden.

Die Ausgangsverbindungen der allgemeinen Formel II.2a mit a, b = 1 und L = H, können z. B. aus den entsprechenden 2,2'-Dibromverbindungen der allgemeinen Formel II (a, b = 0; L = Br) z. B.

25 durch Metallierung mit Alkalimetallorganylen, wie n-Butyllithium, tert. Butyllithium oder dergleichen, anschließende Umsetzung mit einem Boran, wie B(OCH₃)₃ oder B(OCH(CH₃)₂)₃ und Oxidation der dabei gebildeten Diboranverbindung mit einem Peroxid, vorzugsweise Wasserstoffperoxid in Gegenwart von wässrigem Alkalimetall
30 hydroxid, vorzugsweise Lithium-, Natrium- oder Kaliumhydroxid, erhalten werden.

Zur Anknüpfung der Gruppen $PX^1((O)_aR^5)$ und $PX^1((O)_bR^6)$ werden die Ausgangsverbindungen der allgemeinen Formel II.2a vorteilhaft mit 35 einer Halogenverbindung der Formel Hal $PX^1((O)_aR^5)$ und Hal $PX^1((O)_bR^6)$ in Gegenwart einer Base umgesetzt. Hal steht hierbei vorzugsweise für Chlor oder Brom.

Die Verbindungen HalPX¹((O)aR⁵) und HalPX¹((O)bR⁶) können

40 beispielsweise in Analogie zur Methode von Petersen et al, J. Am.

Chem. Soc. 117, 7696 (1995) durch Umsetzung der betreffenden substituierten und/oder anellierten Pyrrolverbindung mit dem betreffenden Phosphortrihalogenid, z. B. Phosphortrichlorid, in Gegenwart eines tertiären Amins, z. B. Triethylamin, erhalten werden,

45 wobei die Stöchiometrie dieser Umsetzung zu beachten ist.

In Analogie zu dieser Vorgehensweise können z. B. aus den betreffenden Hydroxyaryl-pyrrolyl-Verbindungen durch Umsetzung mit dem Phosphortrihalogenid in Gegenwart eines tertiären Amins die entsprechenden Ausgangsverbindungen $HalPX^1((O)_aR^5)$ und $HalPX^1((O)_bR^6)$ 5 erhalten werden.

Durch stufenweise Synthese sind weitere Ausgangsverbindungen HalPX¹((O)aR⁵) und HalPX¹((O)bR⁶) erhältlich. So kann z. B. durch Umsetzung von Phenol mit Phosphortrichlorid in Gegenwart eines

10 tertiären Amins, z. B. Triethylamin, das Phenoxyphosphordichlorid erzeugt werden, das nach Umsetzung mit einem Äquivalent der betreffenden Pyrrolverbindung, z. B. Pyrrol, in Gegenwart eines tertiären Amins, Phenoxy-pyrrolyl-phosphorchlorid ergibt.

15 Die Herstellung der 2,2'-Bisindol-Ausgangsverbindungen kann in Analogie zu Tetrahedron 51, 5637 (1995) und Tetrahedron 51, 12801 (1995) erfolgen, die Herstellung der Bis-2,2'-pyrrolyl-methane entsprechend den Angaben von J. Org. Chem. 64, 1391 (1999) und die Herstellung der 2'-Pyrrolyl-o-phenoxy-methane nach J. Org. 20 Chem. 46, 5060 (1981).

zur Herstellung der Phosphorchelatverbindungen der allgemeinen Formel II.6 aus den Verbindungen der allgemeinen Formel II.2a durch deren Umsetzung mit den Verbindungen HalPX¹((O)aR⁵) und 25 HalPX¹((O)bR⁶) müssen die Verbindungen der allgemeinen Formel II.2a zunächst aktiviert werden.

Für Verbindungen der allgemeinen Formel II.2a mit a, b = 0 gelingt dies vorteilhaft durch Metallierung mittels einer Alkalime30 tallorganyl-Verbindung, vorzugsweise mit einer Alkyllithiumverbindung, wie n-Butyllithium, tert.-Butyllithium oder Methyllithium, wobei die Abgangsgruppe L in separater Umsetzung durch
das betreffende Alkalimetallatom, vorzugsweise Lithium, ersetzt
wird.

Nach Zugabe von $HalPX^1((O)_aR^5)$ und $HalPX^1((O)_bR^6)$ zu dieser metallierten Verbindung bilden sich die entsprechenden Phosphorchelatverbindungen der allgemeinen Formel I mit a, b = 0.

40 Für die Aktivierung der Verbindungen der allgemeinen Formel II.2a mit a, b = 1 ist in der Regel keine separate Aktivierung mit Alkalimetallorganyl-Verbindungen erforderlich. Im Allgemeinen führt die Umsetzung dieser Verbindungen mit den Verbindungen Halpx $^1((0)_aR^5)$ und Halpx $^1((0)_bR^6)$ in Gegenwart einer Base, vorzugsweise einem tertiären Amin, wie Triethylamin, oder einem Alkalimetall- oder Erdalkalimetallhydrid, beispielsweise Natriumhydrid, Kaliumhydrid oder Calciumhydrid, direkt zu den erfindungsgemäßen

Pnicogenchelatverbindungen der allgemeinen Formel I mit a, b = 0.

Anstelle von Verbindungen der Formel II.2a (mit a, b = 0) mit L = Halogen oder SO₃Me können auch solche Verbindungen mit L = Wasser-5 stoff lithiiert werden, in denen in der meta-Position von A² (A² = 0 oder S) sich jeweils Wasserstoff, eine Alkoxygruppe oder Alkoxycarbonylgruppe befindet. Derartige Reaktionen sind unter dem Begriff "ortho-Lithiierung" in der Literatur beschrieben (siehe z. B. D. W. Slocum, J. Org. Chem., 41, 3652-3654 (1976);

10 J. M. Mallan, R. L. Bebb, Chem. Rev., 1969, 693ff; V. Snieckus, Chem. Rev., 1980, 6, 879-933). Die dabei erhaltenen Organolithiumverbindungen können dann mit den Phosphorhalogenverbindungen in der oben angegebenen Weise zu den Chelatverbindungen der Formel I umgesetzt werden.

15

Im Allgemeinen werden unter Hydroformylierungsbedingungen aus den jeweils eingesetzten Katalysatoren oder Katalysatorvorstufen katalytisch aktive Spezies der allgemeinen Formel HgZd(CO)eGf gebildet, worin Z für ein Metall der VIII. Nebengruppe, G für einen 20 phosphorhaltigen Liganden der Formel I und d, e, f, g für ganze Zahlen, abhängig von der Wertigkeit und Art des Metalls sowie der Bindigkeit des Liganden G, stehen. Vorzugsweise stehen e und f unabhängig voneinander mindestens für einen Wert von 1, wie z. B. 1, 2 oder 3. Die Summe aus e und f steht bevorzugt für einen Wert 25 von 2 bis 5. Dabei können die Komplexe des Metalls Z mit den erfindungsgemäßen Liganden G gewünschtenfalls zusätzlich noch mindestens einen weiteren, nicht-erfindungsgemäßen Liganden, z.B. aus der Klasse der Triarylphosphine, insbesondere Triphenylphosphin, Triarylphosphite, Triarylphosphinite, Triarylphospho-30 nite, Phosphabenzole, Trialkylphosphine oder Phosphametallocene enthalten. Derlei Komplexe des Metalls Z mit erfindungsgemäßen und nicht-erfindungsgemäßen Liganden bilden sich z.B. in einer Gleichgewichtsreaktion nach Zusatz eines nicht-erfindungsgemäßen Liganden zu einem Komplex der allgemeinen Formel HgZa(CO)eGf.

35

Nach einer bevorzugten Ausführungsform werden die Hydroformylierungskatalysatoren in situ, in dem für die Hydroformylierungsreaktion eingesetzten Reaktor, hergestellt. Gewünschtenfalls können die erfindungsgemäßen Katalysatoren jedoch auch separat hergestellt und nach üblichen Verfahren isoliert werden. Zur in situ-Herstellung der erfindungsgemäßen Katalysatoren kann man wenigstens eine Verbindung der allgemeinen Formel I, eine Verbindung oder einen Komplex eines Metalls der VIII. Nebengruppe, gewünschtenfalls einen oder mehrere weitere zusätzliche, nichterfindungsgemäße Liganden und gegebenenfalls ein Aktivierungsmittel in einem inerten Lösungsmittel unter den Hydroformylierungs-

bedingungen umsetzen.

Geeignete Rhodiumverbindungen oder -komplexe sind z. B.
Rhodium(II) - und Rhodium(III) -salze, wie Rhodium(III) -chlorid,

5 Rhodium(III) - nitrat, Rhodium(III) -sulfat, Kalium-Rhodiumsulfat,
Rhodium(II) - bzw. Rhodium(III) -carboxylat, Rhodium(II) - und
Rhodium(III) -acetat, Rhodium(III) -oxid, Salze der Rhodium(III) säure, Trisammoniumhexachlororhodat(III) etc. Weiterhin eignen
sich Rhodiumkomplexe, wie Rhodiumbiscarbonylacetylacetonat, Acetylacetonatobisethylenrhodium(I) etc. Vorzugsweise werden Rhodiumbiscarbonylacetylacetonat oder Rhodiumacetat eingesetzt.

Ebenfalls geeignet sind Rutheniumsalze oder -verbindungen.
Geeignete Rutheniumsalze sind beispielsweise Ruthenium(III)chlo15 rid, Ruthenium(IV)-, Ruthenium(VI)- oder Ruthenium(VIII)oxid,
Alkalisalze der Rutheniumsauerstoffsäuren wie K₂RuO₄ oder KRuO₄
oder Komplexverbindungen, wie z. B. RuHCl(CO)(PPh₃)₃. Auch können
die Metallcarbonyle des Rutheniums wie Trisrutheniumdodecacarbonyl oder Hexarutheniumoctadecacarbonyl, oder Mischformen, in
20 denen CO teilweise durch Liganden der Formel PR₃ ersetzt sind, wie
Ru(CO)₃(PPh₃)₂, im erfindungsgemäßen Verfahren verwendet werden.

Geeignete Kobaltverbindungen sind beispielsweise Kobalt(II)chlorid, Kobalt(II)sulfat, Kobalt(II)carbonat, Kobalt(II)nitrat,

25 deren Amin- oder Hydratkomplexe, Kobaltcarboxylate, wie Kobaltacetat, Kobaltethylhexanoat, Kobaltnaphthenoat, sowie der KobaltCaprolactamat-Komplex. Auch hier können die Carbonylkomplexe des
Kobalts wie Dikobaltoctacarbonyl, Tetrakobaltdodecacarbonyl und
Hexakobalthexadecacarbonyl eingesetzt werden.

Die genannten und weitere geeignete Verbindungen des Kobalts, Rhodiums, Rutheniums und Iridiums sind bekannt, kommerziell erhältlich oder ihre Herstellung ist in der Literatur hinreichend beschrieben oder sie können vom Fachmann analog zu den bereits 35 bekannten Verbindungen hergestellt werden.

Geeignete Aktivierungsmittel sind z. B. Brönsted-Säuren, Lewis-Säuren, wie z. B. BF₃, AlCl₃, ZnCl₂, und Lewis-Basen.

40 Als Lösungsmittel werden vorzugsweise die Aldehyde eingesetzt, die bei der Hydroformylierung der jeweiligen Olefine entstehen, sowie deren höher siedende Folgereaktionsprodukte, z. B. die Produkte der Aldolkondensation. Ebenfalls geeignete Lösungsmittel sind Aromaten, wie Toluol und Xylole, Kohlenwasserstoffe oder Gemische von Kohlenwasserstoffen, auch zum Verdünnen der oben genannten Aldehyde und der Folgeprodukte der Aldehyde. Weitere Lösungsmittel sind Ester aliphatischer Carbonsäuren mit Alkano-

len, beispielsweise Essigester oder Texanol®, Ether wie tert.-Butylmethylether und Tetrahydrofuran. Bei ausreichend hydrophilisierten Liganden können auch Alkohole, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, Ketone, wie Aceton und Methylethylketon etc., eingesetzt werden. Ferner können als Lösungsmittel auch sogenannte "Ionische Flüssigkeiten" verwendet werden. Hierbei handelt es sich um flüssige Salze, beispielsweise um N,N'-Di-alkylimidazoliumsalze wie die N-Butyl-N'-methylimidazoliumsalze, Tetraalkylammoniumsalze wie die Tetran10 n-butylammoniumsalze, N-Alkylpyridiniumsalze wie die N-Butylpyridiniumsalze, Tetraalkylphosphoniumsalze wie die Trishexyl(tetradecyl)phosphoniumsalze, z.B. die Tetrafluoroborate, Acetate, Tetrachloroaluminate, Hexafluorophosphate, Chloride und Tosylate.

Weiterhin ist es möglich die Umsetzungen auch in Wasser oder wässrigen Lösungsmittelsystemen, die neben Wasser ein mit Wasser mischbares Lösungsmittel, beispielsweise einen Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, ein Keton wie Aceton und Methylethylketon oder ein anderes Lösungs-20 mittel enthalten. Zu diesem Zweck setzt man Liganden der Formel I ein, die mit polaren Gruppen, beispielsweise ionischen Gruppen wie SO₃M, CO₂M mit M = Na, K oder NH₄ oder wie N(CH₃)₄+ modifiziert sind. Die Umsetzungen erfolgen dann im Sinne einer Zweiphasenkatalyse, wobei der Katalysator sich in der wässrigen Phase befindet und Einsatzstoffe und Produkte die organische Phase bilden. Auch die Umsetzung in den "Ionischen Flüssigkeiten" kann als Zweiphasenkatalyse ausgestaltet sein.

Das Molmengenverhältnis von Verbindung I zum Metall der VIII. Ne-30 bengruppe im Hydroformylierungsmedium liegt im Allgemeinen in einem Bereich von etwa 1:1 bis 1000:1, vorzugsweise von 1:1 bis 100:1, insbesondere von 1:1 bis 50:1.

Die Hydroformylierungsreaktion kann kontinuierlich, semikonti-35 nuierlich oder diskontinuierlich erfolgen.

Geeignete Reaktoren für die kontinuierliche Umsetzung sind dem Fachmann bekannt und werden z.B. in Ullmanns Enzyklopädie der technischen Chemie, Bd. 1, 3. Aufl., 1951, S. 743 ff. beschrie-40 ben.

Geeignete druckfeste Reaktoren sind dem Fachmann ebenfalls bekannt und werden z.B. in Ullmanns Encyklopädie der technischen Chemie, Bd. 1, 3. Auflage, 1951, S. 769 ff. beschrieben. Im All-45 gemeinen wird für das erfindungsgemäße Verfahren ein Autoklav verwendet, der gewünschtenfalls mit einer Rührvorrichtung und einer Innenauskleidung versehen sein kann.

Die Zusammensetzung des im erfindungsgemäßen Verfahren eingesetzten Synthesegases aus Kohlenmonoxid und Wasserstoff kann in wei-5 ten Bereichen variieren. Das molare Verhältnis von Kohlenmonoxid und Wasserstoff beträgt in der Regel etwa 1:99 bis 80:20, bevorzugt etwa 40:60 bis 60:40. Insbesondere bevorzugt wird ein molares Verhältnis von Kohlenmonoxid und Wasserstoff im Bereich von etwa 1:1 eingesetzt.

10:

Die Temperatur bei der Hydroformylierungsreaktion liegt im Allgemeinen in einem Bereich von etwa 20 bis 180 °C, bevorzugt etwa 50 bis 150°C. Die Reaktion wird in der Regel bei dem Partialdruck des Reaktionsgases bei der gewählten Reaktionstemperatur durchge-15 führt. Im Allgemeinen liegt der Druck in einem Bereich von etwa 1 bis 700 bar, bevorzugt 1 bis 600 bar, insbesondere 1 bis 300 bar. Der Reaktionsdruck kann in Abhängigkeit von der Aktivität des eingesetzten erfindungsgemäßen Hydroformylierungskatalysators variiert werden. Im Allgemeinen erlauben die erfindungsgemäßen Ka-20 talysatoren auf Basis von phosphorhaltigen Verbindungen eine Umsetzung in einem Bereich niedriger Drücke, wie etwa im Bereich von 1 bis 100 bar.

Die erfindungsgemäß eingesetzten und die erfindungsgemäßen Hydro-25 formylierungskatalysatoren lassen sich nach üblichen, dem Fachmann bekannten Verfahren vom Austrag der Hydroformylierungsreaktion abtrennen und können im Allgemeinen erneut für die Hydroformylierung eingesetzt werden.

30 b) Auftrennung

Nach einer geeigneten Verfahrensvariante wird die in Schritt a) nach Abtrennung des Katalysatorsystems erhaltene produktangereicherte Fraktion einer weiteren Auftrennung zum Erhalt einer an n-35 Valeraldehyd angereicherten Fraktion unterzogen. Die Auftrennung des Hydroformylierungsprodukts in eine n-Valeraldehyd angereicherte Fraktion und eine n-Valeraldehyd abgereicherte Fraktion erfolgt nach üblichen, dem Fachmann bekannten Verfahren. Bevorzugt ist die Destillation unter Einsatz bekannter Trennapparatu-40 ren, wie Destillationskolonnen, z. B. Bodenkolonnen, die gewünschtenfalls mit Glocken, Siebplatten, Siebböden, Ventilen etc. ausgerüstet sein können, Verdampfer, wie Dünnschichtverdampfer, Fallfilmverdampfer, Wischblattverdampfer etc.

c) Aldolkondensation

zwei Moleküle C5-Aldehyd können zu α,β-ungesättigten C10-Aldehyden kondensiert werden. Die Aldolkondensation erfolgt auf an sich be-5 kannte Weise z. B. durch Einwirkung einer wässrigen Base, wie Natronlauge oder Kalilauge. Alternativ kann auch ein heterogener basischer Katalysator, wie Magnesium- und/oder Aluminiumoxid, verwendet werden (vgl. z. B. die EP-A 792 862). Dabei resultiert bei der Kondensation von zwei Molekülen n-Valeraldehyd 2-Pro-10 pyl-2-heptenal. Sofern das in Schritt a) bzw. nach der Auftrennung in Schritt b) erhaltene Hydroformylierungsprodukt noch weitere C5-Aldehyde, wie 2-Methylbutanal und gegebenenfalls 2,2-Dimethylpropanal aufweist, so untergehen diese ebenfalls eine Aldolkondensation, wobei dann die Kondensationsprodukte aller mögli-15 chen Aldehydkombinationen resultieren, beispielsweise 2-Propyl-4-methyl-2-hexenal. Ein Anteil dieser Kondensationsprodukte, z. B. von bis zu 30 Gew.-%, steht einer vorteilhaften Weiterverarbeitung zu als Weichmacheralkoholen geeigneten 2-Propylheptanol-haltigen C10-Alkoholgemischen nicht entgegen.

d) Hydrierung

20

Die Produkte der Aldolkondensation können mit Wasserstoff katalytisch zu C_{10} -Alkoholen, wie insbesondere 2-Propylheptanol, hy25 driert werden.

Für die Hydrierung der C10-Aldehyde zu den C10-Alkoholen sind prinzipiell auch die Katalysatoren der Hydroformylierung zumeist bei höherer Temperatur geeignet; im Allgemeinen werden jedoch se-30 lektivere Hydrierkatalysatoren vorgezogen, die in einer separaten Hydrierstufe eingesetzt werden. Geeignete Hydrierkatalysatoren sind im Allgemeinen Übergangsmetalle, wie z. B. Cr, Mo, W, Fe, Rh, Co, Ni, Pd, Pt, Ru usw. oder deren Mischungen, die zur Erhöhung der Aktivität und Stabilität auf Trägern, wie z. B. Aktiv-35 kohle, Aluminiumoxid, Kieselgur usw. aufgebracht werden können. Zur Erhöhung der katalytischen Aktivität können Fe, Co und bevorzugt Ni, auch in Form der Raney-Katalysatoren, als Metallschwamm mit einer sehr großen Oberfläche verwendet werden. Die Hydrierung der C10-Aldehyde erfolgt in Abhängigkeit von der Aktivität des Ka-40 talysators, vorzugsweise bei erhöhten Temperaturen und erhöhtem Druck. Vorzugsweise liegt die Hydriertemperatur bei etwa 80 bis 250 °C, bevorzugt liegt der Druck bei etwa 50 bis 350 bar.

Das rohe Hydrierungsprodukt kann nach üblichen Verfahren, z. B. 45 durch Destillation, zu den C_{10} -Alkoholen aufgearbeitet werden.

e) Auftrennung

Gewünschtenfalls können die Hydrierprodukte einer weiteren Auftrennung unter Erhalt einer an 2-Propylheptanol angereicherten 5 Fraktion und einer an 2-Propylheptanol abgereicherten Fraktion unterzogen werden. Diese Auftrennung kann nach üblichen, dem Fachmann bekannten Verfahren, wie z. B. durch Destillation, erfolgen.

10 Hydroformylierungskatalysatoren, die einen Komplex wenigstens eines Metalls der VIII. Nebengruppe des Periodensystems aufweisen, der als Liganden mindestens eine Pyrrolphosphorverbindung der allgemeinen Formel I mit substituiertem und/oder anelliertem Pyrrolgerüst aufweist, eignen sich in vorteilhafter Weise für den 15 Einsatz in einem Verfahren zur Herstellung von 2-Propylheptanol. Dabei weisen die Katalysatoren eine hohe n-Selektivität auf, so dass sowohl beim Einsatz von im Wesentlichen reinem 1-Buten als auch beim Einsatz von 1-Buten/2-Buten-haltigen Kohlenwasserstoffgemischen, wie beispielsweise C4-Schnitten eine gute Ausbeute an 20 n-Valeraldehyd erhalten wird. Des Weiteren eignen sich die erfindungsgemäß eingesetzten Katalysatoren auch zur Doppelbindungsisomerisierung von einer innenständigen auf eine endständige Position, so dass auch beim Einsatz von 2-Buten und höhere Konzentrationen an 2-Buten-haltigen Kohlenwasserstoffgemischen n-Valeral-25 dehyd in guten Ausbeuten erhalten wird. Vorteilhafterweise zeigen die erfindungsgemäß eingesetzten Katalysatoren auf Basis von substituierten bzw. anellierten Pyrrolgerüsten im Wesentlichen keine Zersetzung unter den Hydroformylierungsbedingungen, d. h. in Anwesenheit von Aldehyden. Vorteilhafterweise werden auch in Gegen-30 wart von Luftsauerstoff und/oder Licht und/oder Säuren und/oder bei Raumtemperatur und erhöhten Temperaturen, wie bis zu etwa 150 °C, im Wesentlichen keine Zersetzungsprodukte gebildet, so dass auf den Einsatz aufwendiger Maßnahmen zur Stabilisierung des eingesetzten Hydroformylierungskatalysators, insbesondere bei der 35 Aufarbeitung, verzichtet werden kann.

Ein weiterer Gegenstand der Erfindung sind Katalysatoren, umfassend Komplexe mit einem Metall der VIII. Nebengruppe des Periodensystems der Elemente, die als Liganden mindestens eine Verbindung der Formel I, wie zuvor beschrieben, enthalten, ausgenommen Verbindungen der Formel

worin

10

5

 R^{I} , R^{IV} , R^{V} , R^{V} und R^{VIII} für von Wasserstoff verschiedene Substituenten stehen und

Rc, Rd, Re und Rf für Gruppen der Formel

15

$$R^1$$
 R^4
 R^3

20

stehen, worin \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 und \mathbb{R}^4 die in Anspruch 1 angegebenen Be-25 deutungen besitzen;

30

35

worin

 $\mathbf{R^{I}}$, $\mathbf{R^{VI}}$ und $\mathbf{R^{VIII}}$ für von Wasserstoff verschiedene Substituenten stehen und

40

Rc, Rd, Re und Rf für Gruppen der Formel

10

25

30

$$R^1$$
 R^2
 R^3

stehen, worin R^1 , R^2 , R^3 und R^4 die in Anspruch 1 angegebenen Bedeutungen besitzen.

Bezüglich geeigneter und bevorzugter Liganden der Formel I wird auf die diesbezüglichen Ausführungen unter Verfahrensschritt a) in vollem Umfang Bezug genommen.

15 Bevorzugt sind Katalysatoren, umfassend Komplexe mit einem Metall der VIII. Nebengruppe des Periodensystems, die als Liganden mindestens eine Verbindung der Formel I, wie zuvor definiert, aufweisen, in denen in wenigstens einer der Gruppen der Formel

$$\begin{array}{c|c}
R^1 & R^4 \\
 & R^2 & R^3
\end{array}$$

die Reste R^3 und R^4 unabhängig voneinander ausgewählt sind unter $C_1-C_4-Alkylresten$, insbesondere unter Methyl, Ethyl, Isopropyl und tert.-Butyl.

Vorzugsweise weisen diese Katalysatoren 2, 3 oder 4 dieser Gruppen auf.

Besonders bevorzugt sind Katalysatoren, umfassend Komplexe mit 35 einem Metall der VIII. Nebengruppe des Periodensystems, die als Liganden mindestens eine Verbindung der Formel I, wie zuvor definiert, aufweisen, in denen wenigstens eine der Gruppen der Formel

$$\begin{array}{c|c}
R^1 & R^4 \\
\hline
 & R^2 & R^3
\end{array}$$

für 3-Alkylindol-1-yl, insbesondere für 3-Methylindol-1-yl, steht.

64

Vorzugsweise weisen diese Katalysatoren 2, 3 oder 4 2,3-Dial-5 kylindol-1-ylgruppen, wie 2,3-Dimethylindol-1-ylgruppen auf.

Vorzugsweise weisen diese Katalysatoren 2, 3 oder 4 3-Alkylindol-1-ylgruppen, wie 3-Methylindol-1-ylgruppen (1-Skatolylgruppen), auf.

Katalysatoren auf Basis von 3-Alkylindol-1-ylgruppen zeichnen sich durch eine besondere Stabilität aus.

Vorzugsweise ist das Metall der VIII. Nebengruppe ausgewählt un-15 ter Kobalt, Rhodium, Ruthenium oder Iridium.

Die erfindungsgemäßen Katalysatoren eignen sich ganz allgemein in Verfahren zur Hydroformylierung von Verbindungen, die wenigstens eine ethylenisch ungesättigte Doppelbindung enthalten, durch Um20 setzung mit Kohlenmonoxid und Wasserstoff.

Vorteilhafterweise wird bei einem Einsatz von Phosphorverbindungen, bei denen substituierte und/oder in ein anelliertes Ringsystem integrierte Pyrrolgruppen über ihr pyrrolisches Stickstoffa25 tom kovalent mit dem Phosphoratom verknüpft sind, als Liganden in Hydroformylierungskatalysatoren eine Zersetzung bzw. die Bildung unerwünschter Nebenprodukte vermieden. Dies betrifft insbesondere die bei Katalysatoren auf Basis von unsubstituierten Pyrrolgruppen zum Teil beobachtete Zersetzung an Licht bzw. bei Temperaturen im Bereich der Raumtemperatur. Auch unter den Hydroformylierungsbedingungen und bei der Aufarbeitung der Reaktionsprodukte zeichnen sich Katalysatoren auf Basis von Liganden, die substituierte und/oder in ein anelliertes Ringsystem integrierte Pyrrolgruppen aufweisen, durch eine höhere Stabilität gegenüber Katalysatoren auf Basis von Liganden, die unsubstituierte Pyrrolgruppen aufweisen, aus.

Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Hydroformylierung von Verbindungen, die wenigstens eine ethyle40 nisch ungesättigte Doppelbindung enthalten durch Umsetzung mit Kohlenmonoxid und Wasserstoff in Gegenwart eines Hydroformylierungskatalysators, umfassend wenigstens einen Komplex eines Metalls der VIII. Nebengruppe mit wenigstens einem Liganden der allgemeinen Formel I, wie zuvor definiert.

. .*

Bezüglich geeigneter und bevorzugter Bedingungen der Hydroformylierung und speziell der eingesetzten Liganden der Formel I wird auf das zuvor zu Schritt a) Gesagte Bezug genommen.

5 Als Substrate für das erfindungsgemäße Hydroformylierungsverfahren kommen prinzipiell alle Verbindungen in Betracht, welche eine oder mehrere ethylenisch ungesättigte Doppelbindungen enthalten. Dazu zählen z. B. Olefine, wie α-Olefine, interne geradkettige und interne verzweigte Olefine. Geeignete α-Olefine sind z. B.

10 Propen, 1-Buten, Isobuten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Undecen, 1-Dodecen, Allylalkohole etc.

Geeignete verzweigte, interne Olefine sind vorzugsweise C4- bis C20-Olefine, wie 2-Methyl-2-Buten, 2-Methyl-2-Penten, 3-Methyl-15 2-Penten, verzweigte, interne Hepten-Gemische, verzweigte, interne Octen-Gemische, verzweigte, interne Nonen-Gemische, verzweigte, interne Decen-Gemische, verzweigte, interne Undecen-Gemische, verzweigte, interne Dodecen-Gemische etc.

- 20 Geeignete zu hydroformylierende Olefine sind weiterhin C_5 bis C_8 -Cycloalkene, wie Cyclopenten, Cyclohexen, Cyclohepten, Cycloocten und deren Derivate, wie z. B. deren C_1 bis C_{20} -Alkylderivate mit 1 bis 5 Alkylsubstituenten. Geeignete zu hydroformylierende Olefine sind weiterhin Vinylaromaten, wie Styrol, α -Methylstyrol,
- 25 4-Isobutylstyrol etc. Geeignete zu hydroformylierende Olefine sind weiterhin α,β-ethylenisch ungesättigte Mono- und/oder Dicarbonsäuren, deren Ester, Halbester und Amide, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Itaconsäure, 3-Pentensäuremethylester, 4-Pentensäuremethylester, Ölsäu-
- 30 remethylester, Acrylsäuremethylester, Methacrylsäuremethylester, ungesättigte Nitrile, wie 3-Pentennitril, 4-Pentennitril, Acrylnitril, Vinylether, wie Vinylmethylether, Vinylethylether, Vinylpropylether etc., C₁- bis C₂₀-Alkenole, -Alkendiole und -Alkadienole, wie 2,7-Octadienol-1. Geeignete Substrate sind weiterhin
- 35 Di- oder Polyene mit isolierten oder konjugierten Doppelbindungen. Dazu zählen z. B. 1,3-Butadien, 1,4-Pentadien, 1,5-Hexadien, 1,6-Heptadien, 1,7-Octadien, Vinylcyclohexen, Dicyclopentadien, 1,5,9-Cyclooctatrien sowie Butadienhomo- und -copolymere.
- 40 Bevorzugt ist die zur Hydroformylierung eingesetzte ungesättigte Verbindung ausgewählt unter internen linearen Olefinen und Olefingemischen, die wenigstens ein internes lineares Olefin enthalten. Geeignete lineare (geradkettige) interne Olefine sind vorzugsweise C4- bis C20-Olefine, wie 2-Buten, 2-Penten, 2-Hexen,
- 45 3-Hexen, 2-Hepten, 3-Hepten, 2-Octen, 3-Octen, 4-Octen etc. und Mischungen davon.

Vorzugsweise wird in dem erfindungsgemäßen Hydroformylierungsverfahren ein großtechnisch zugängliches Olefingemisch eingesetzt, das insbesondere wenigstens ein internes lineares Olefin enthält. Dazu zählen z. B. die durch gezielte Ethen-Oligomerisierung in 5 Gegenwart von Alkylaluminiumkatalysatoren erhaltenen Ziegler-Olefine. Dabei handelt es sich im Wesentlichen um unverzweigte Olefine mit endständiger Doppelbindung und gerader Kohlenstoffatomanzahl. Dazu zählen weiterhin die durch Ethen-Oligomerisierung in -Gegenwart verschiedener Katalysatorsysteme erhaltenen Olefine, 10 z. B. die in Gegenwart von Alkylaluminiumchlorid/Titantetrachlorid-Katalysatoren erhaltenen, überwiegend linearen α -Olefine und die in Gegenwart von Nickel-Phosphinkomplex-Katalysatoren nach dem Shell Higher Olefin Process (SHOP) erhaltenen α -Olefine. Geeignete technisch zugängige Olefingemische werden weiterhin bei 15 der Paraffin-Dehydrierung entsprechender Erdölfraktionen, z. B. der sog. Petroleum- oder Dieselölfraktionen, erhalten. Zur Überführung von Paraffinen, vorwiegend von n-Paraffinen in Olefine, werden im Wesentlichen drei Verfahren eingesetzt:

- 20 thermisches Cracken (Steamcracken),
 - katalytisches Dehydrieren und
 - chemisches Dehydrieren durch Chlorieren und Dehydrochlorieren.
- 25 Dabei führt das thermische Cracken überwiegend zu α-Olefinen, während die anderen Varianten Olefingemische ergeben, die im Allgemeinen auch größere Anteile an Olefinen mit innenständiger Doppelbindung aufweisen. Geeignete Olefingemische sind weiterhin die bei Metathese- bzw. Telomerisationsreaktionen erhaltenen Olefine.
 30 Dazu zählen z. B. die Olefine aus dem Phillips-Triolefin-Prozess, einem modifizierten SHOP-Prozess aus Ethylen-Oligomerisierung, Doppelbindungs-Isomerisierung und anschließender Metathese (Ethenolyse).
- 35 Geeignete in dem erfindungsgemäßen Hydroformylierungsverfahren einsetzbare technische Olefingemische sind weiterhin ausgewählt unter Dibutenen, Tributenen, Tetrabutenen, Dipropenen, Tripropenen, Tetrapropenen, Mischungen von Butenisomeren, insbesondere Raffinat II, Dihexenen, Dimeren und Oligomeren aus dem
 40 Dimersol®-Prozess von IFP, Octolprozess® von Hüls, Polygas®-prozess etc.
- Bevorzugt ist ein Verfahren, das dadurch gekennzeichnet ist, dass der Hydroformylierungskatalysator in situ hergestellt wird, wobei 45 man mindestens eine Verbindung der Formel I, eine Verbindung oder einen Komplex eines Metalls der VIII. Nebengruppe und gegebenenfalls ein Aktivierungsmittel in einem inerten Lösungsmittel unter

den Hydroformylierungsbedingungen zur Reaktion bringt.

Die zuvor beschriebenen, erfindungsgemäßen Katalysatoren, die chirale Verbindungen der allgemeinen Formel I umfassen, eignen 5 sich zur enantioselektiven Hydroformylierung.

Die zuvor beschriebenen Katalysatoren können auch in geeigneter Weise, z. B. durch Anbindung über als Ankergruppen geeignete funktionelle Gruppen, Adsorption, Pfropfung, etc. an einen geei10 gneten Träger, z. B. aus Glas, Kieselgel, Kunstharzen etc., immobilisiert werden. Sie eignen sich dann auch für einen Einsatz als Festphasenkatalysatoren.

Überraschenderweise haben die aus den erfindungsgemäßen Verbin15 dungen der allgemeinen Formel I hergestellten Katalysatoren nicht
nur eine hohe Aktivität bezüglich der Hydroformylierung endständiger Olefine, sondern ebenfalls bezüglich der isomerisierenden
Hydroformylierung von Olefinen mit internen Doppelbindungen zu
Aldehydprodukten mit hoher Linearität. Vorteilhafterweise findet
20 unter den Bedingungen der Hydroformylierung mit den erfindungsgemäßen Katalysatoren eine Hydrierung der Olefine nur in sehr geringem Ausmaß statt.

Ein weiterer Gegenstand der Erfindung ist die Verwendung von Ka25 talysatoren, umfassend wenigstens einen Komplex eines Metalls der
VIII. Nebengruppe mit wenigstens einer Verbindung der allgemeinen
Formel I, wie zuvor beschrieben, zur Hydroformylierung, Hydrocyanierung, Carbonylierung und zur Hydrierung.

30 Wie erwähnt stellt die Hydrocyanierung von Olefinen ein weiteres Einsatzgebiet für die erfindungsgemäßen Katalysatoren dar. Auch die erfindungsgemäßen Hydrocyanierungskatalysatoren umfassen Komplexe eines Metalls der VIII. Nebengruppe, insbesondere Cobalt, Nickel, Ruthenium, Rhodium, Palladium, Platin, bevorzugt Nickel, 35 Palladium und Platin und ganz besonders bevorzugt Nickel. In der Regel liegt das Metall im erfindungsgemäßen Metallkomplex nullwertig vor. Die Herstellung der Metallkomplexe kann, wie bereits für den Einsatz als Hydroformylierungskatalysatoren zuvor beschrieben, erfolgen. Gleiches gilt für die in situ-Herstellung der erfindungsgemäßen Hydrocyanierungskatalysatoren.

Ein zur Herstellung eines Hydrocyanierungskatalysators geeigneter Nickelkomplex ist z. B. Bis(1,5-cyclooctadien)nickel(0).

45 Gegebenenfalls können die Hydrocyanierungskatalysatoren, analog zu dem bei den Hydroformylierungskatalysatoren beschriebenen Ver-

fahren, in situ hergestellt werden.

Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Nitrilen durch katalytische Hydrocyanierung, in 5 dem die Hydrocyanierung in Gegenwart mindestens eines der zuvor beschriebenen erfindungsgemäßen Katalysatoren erfolgt. Geeignete Olefine für die Hydrocyanierung sind allgemein die zuvor als Einsatzstoffe für die Hydroformylierung genannten Olefine. Eine spezielle Ausführungsform des erfindungsgemäßen Verfahrens betrifft 10 die Herstellung von Gemischen monoolefinischer C5-Mononitrile mit nichtkonjugierter C=C- und C≡N-Bindung durch katalytische Hydrocyanierung von 1,3-Butadien oder 1,3-Butadien-haltigen Kohlenwasserstoffgemischen und die Isomerisierung/Weiterreaktion zu gesättigten C4-Dinitrilen, vorzugsweise Adipodinitril in Gegenwart min-15 destens eines erfindungsgemäßen Katalysators. Bei der Verwendung von Kohlenwasserstoffgemischen zur Herstellung von monoolefinischer C5-Mononitrilen nach dem erfindungsgemäßen Verfahren wird vorzugsweise ein Kohlenwasserstoffgemisch eingesetzt, das einen 1,3-Butadiengehalt von mindestens 10 Vol.-%, bevorzugt mindestens 20 25 Vol.-%, insbesondere mindestens 40 Vol.-%, aufweist.

1,3-Butadien-haltige Kohlenwasserstoffgemische sind in großtechnischem Maßstab erhältlich. So fällt z. B. bei der Aufarbeitung von Erdöl durch Steamcracken von Naphtha ein als C4-Schnitt bezeichnetes Kohlenwasserstoffgemisch mit einem hohen Gesamtolefinanteil an, wobei etwa 40 % auf 1,3-Butadien und der Rest auf Monolefine und mehrfach ungesättigte Kohlenwasserstoffe sowie Alkane entfällt. Diese Ströme enthalten immer auch geringe Anteile von im Allgemeinen bis zu 5 % an Alkinen, 1,2-Dienen und Vinylacetylen.

Reines 1,3-Butadien kann z. B. durch extraktive Destillation aus technisch erhältlichen Kohlenwasserstoffgemischen isoliert werden.

Die erfindungsgemäßen Katalysatoren lassen sich vorteilhaft zur Hydrocyanierung solcher olefinhaltiger, insbesondere 1,3-Butadien-haltiger Kohlenwasserstoffgemische einsetzen, in der Regel auch ohne vorherige destillative Aufreinigung des Kohlenwasser-40 stoffgemischs. Möglicherweise enthaltene, die Effektivität der Katalysatoren beeinträchtigende Olefine, wie z. B. Alkine oder Cumulene, können gegebenenfalls vor der Hydrocyanierung durch selektive Hydrierung aus dem Kohlenwasserstoffgemisch entfernt werden. Geeignete Verfahren zur selektiven Hydrierung sind dem Fachmann bekannt.

Die erfindungsgemäße Hydrocyanierung kann kontinuierlich, semikontinuierlich oder diskontinuierlich erfolgen. Geeignete Reaktoren für die kontinuierliche Umsetzung sind dem Fachmann bekannt
und werden z. B. in Ullmanns Enzyklopädie der technischen Chemie,
5 Band 1, 3. Auflage, 1951, S. 743 ff. beschrieben. Vorzugsweise
wird für die kontinuierliche Variante des erfindungsgemäßen Verfahrens eine Rührkesselkaskade oder ein Rohrreaktor verwendet.
Geeignete, gegebenenfalls druckfeste Reaktoren für die semikontinuierliche oder kontinuierliche Ausführung sind dem Fachmann be10 kannt und werden z. B. in Ullmanns Enzyklopädie der technischen
Chemie, Band 1, 3. Auflage, 1951, S. 769 ff. beschrieben. Im Allgemeinen wird für das erfindungsgemäße Verfahren ein Autoklav
verwendet, der gewünschtenfalls mit einer Rührvorrichtung und einer Innenauskleidung versehen sein kann.

15

Die erfindungsgemäßen Hydrocyanierungskatalysatoren lassen sich nach üblichen, dem Fachmann bekannten Verfahren vom Austrag der Hydrocyanierungsreaktion abtrennen und können im Allgemeinen erneut für die Hydrocyanierung eingesetzt werden.

20

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Carbonylierung von Verbindungen, die wenigstens eine ethylenisch ungesättigte Doppelbindung enthalten, durch Umsetzung mit Kohlenmonoxid und wenigstens einer Verbindung mit einer nucleophilen 25 Gruppe in Gegenwart eines Carbonylierungskatalysators, in dem man als Carbonylierungskatalysator einen Katalysator auf Basis eines Liganden der allgemeinen Formel I einsetzt.

Auch die erfindungsgemäßen Carbonylierungskatalysatoren umfassen 30 Komplexe eines Metalls der VIII. Nebengruppe, bevorzugt Nickel, Cobalt, Eisen, Ruthenium, Rhodium und Palladium, insbesondere Palladium. Die Herstellung der Metallkomplexe kann wie bereits zuvor bei den Hydroformylierungskatalysatoren und Hydrocyanierungskatalysatoren beschrieben erfolgen. Gleiches gilt für die in situ-Herstellung der erfindungsgemäßen Carbonylierungskatalysatoren.

Geeignete Olefine für die Carbonylierung sind die allgemein zuvor als Einsatzstoffe für die Hydroformylierung und Hydrocyanierung 40 genannten Olefine.

Vorzugsweise sind die Verbindungen mit einer nucleophilen Gruppe, ausgewählt unter Wasser, Alkoholen, Thiolen, Carbonsäureestern, primären und sekundären Aminen.

45

Eine bevorzugte Carbonylierungsreaktion ist die Überführung von Olefinen mit Kohlenmonoxid und Wasser zu Carbonsäuren (Hydrocar-

boxylierung). Dazu zählt insbesondere die Umsetzung von Ethylen mit Kohlenmonoxid und Wasser zu Propionsäure.

Ein weiterer Gegenstand der Erfindung ist die Verwendung von Ka-5 talysatoren, umfassend eine erfindungsgemäße P-haltige Verbindung, wie zuvor beschrieben, zur Hydroformylierung, Hydrocyanierung, Carbonylierung, Hydrierung, Olefinoligomerisierung und -polymerisierung und zur Metathese.

10 Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.

Es wurden die folgenden Liganden eingesetzt:

15 Vergleichsbeispiel 1
Lagerung von Vergleichsligand A bei Raumtemperatur

20

Vergleichsligand A

25

Vergleichsligand A wurde gemäß K.G. Moloy et al., J. Am. Chem. Soc. 117, S. 7696-7710 (1995) hergestellt. Die Synthese führt zu 30 sauberem Produkt mit einer 31 P-NMR-Verschiebung von +79 ppm (C_6D_6). Nach Lagerung der Verbindung unter Argon für 5 Tage bei Raumtemperatur konnte eine merkliche Dunkelfärbung festgestellt werden. Nach acht Wochen bildete sich eine teerartige Verbindung, die in der Katalyse nicht mehr eingesetzt werden konnte.

35

Hydroformylierung von 2-Octen mit Vergleichsligand A

0,9 mg Rh(CO)₂acac und 8 mg Vergleichsligand A (60 ppm Rh, Ligand/Rhodium = 10/1) wurden separat eingewogen, in je 1,5 g Xylol ge-40 löst, vermischt und bei 100 °C mit 10 bar Synthesegas (CO:H₂ = 1:1) begast. Nach 30 min wurde entspannt, dann wurden 3,0 g 2-Octen zugegeben und 4 h bei 100 °C und 10 bar hydroformyliert. Die Umsatz betrug 74 %, die Aldehydselektivität 44 % und die Linearität 51 %. Der α-Anteil (n-Nonanal + iso-Nonanal) betrug 45 85 %.

Vergleichsbeispiel 2 Lagerung von Vergleichsligand B bei Raumtemperatur

5

Vergleichsligand B

15

10

Vergleichsligand B wurde gemäß US 5,710,344 hergestellt. Die Synthese führt zu sauberem Produkt mit einer ³¹P-NMR-Verschiebung von +69 ppm (C₆D₆). Nach Lagerung der Verbindung unter Argon für 20 10 Tage bei Raumtemperatur konnte eine merkliche Dunkelfärbung festgestellt werden. Eine ³¹P-NMR-Untersuchung zeigte einen Ligandabbau von 20 %.

Hydroformylierung von 1-Octen vor Lagerung bei Raumtemperatur

25

1,6 mg Rh(CO)2acac (Rhodiumbiscarbonylacetylacetonat) und 36,9 mg
Vergleichsligand B (106 ppm Rh, Verhältnis Ligand : Metall =
10:1) wurden separat eingewogen, in je 1,5 g Palatinol-AH®
 (Phthalsäureester von 2-Ethylhexanol der BASF Aktienges.) gelöst,
30 vermischt und in einem 100 ml-Autoklaven bei 100 °C mit 10 bar
 Synthesegas (CO:H2 = 1:1) begast. Nach 30 min. wurde entspannt,
 dann wurden 3 g 1-Octen zugegeben und 4 h bei 100 °C und 10 bar
 hydroformyliert. Der Umsatz betrug 98 %, die Aldehydselektivität
59 % und die Linearität 99 %. Die Selektivität zu internen Octe35 nen betrug 41 %.

Hydroformylierung von 1-Octen nach Lagerung bei Raumtemperatur

1,6 mg Rh(CO)2acac und 36,9 mg Vergleichsligand B (106 ppm Rh,
40 Verhältnis Ligand : Metall = 10:1) wurden separat eingewogen, in
je 1,5 g Palatinol-AH® gelöst, vermischt und bei 100 °C mit
10 bar Synthesegas (CO:H2 = 1:1) begast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen mit der Spritze zugegeben und 4 h
bei 100 °C und 10 bar hydroformyliert. Der Umsatz betrug 20 %, die
45 Aldehydselektivität 5 % und die Linearität 71 %. Die Selektivität
zu internen Octenen betrug 95 %.

72

Beispiel 1
Lagerung von Ligand C bei Raumtemperatur

5

Ligand C

15

10

Ligand C wurde analog K.G. Moloy et al., J. Am. Chem. Soc. 117, S. 7696-7710 (1995) hergestellt. Die Synthese führt zu sauberem Produkt mit einer ³¹P-NMR-Verschiebung von +67 ppm (C₆D₆). Nach Lagerung der Verbindung unter Argon für 3 Monate bei Raumtemperatur konnte keine Dunkelfärbung festgestellt werden. Weder Erhitzen noch Behandlung mit Wasser führte zu einer stofflichen Veränderung.

Beispiel 2 25 Synthese von Ligand D

30

35

Ligand D

40

8,2 g (60 mmol) PCl₃ wurden bei -70 °C unter Argon in Tetrahydrofuran vorgelegt. Anschließend wurden unter Rühren 11,7 g
(120 mmol) 2-Ethylpyrrol langsam zugegeben und danach 18,2 g
(180 mmol) Triethylamin ebenfalls langsam zugetropft. Dann wurde
45 die Reaktionsmischung langsam auf Raumtemperatur gebracht und
weitere 16 h bei Raumtemperatur gerührt. Danach wurden 6 g
(21 mmol) 2,2'-Dihydroxy-1,1'-binaphthyl gelöst in 50 ml Tetrahy-

drofuran langsam zugetropft, wobei die Temperatur bis auf 35 °C anstieg. Nach vollendeter Zugabe wurde 16 h bei Raumtemperatur gerührt, ein farbloser Feststoff (Et₃N*HCl) abgesaugt und das Filtrat bis zur Trockene eingeengt. Der Rückstand wird mit Methanol gewaschen, wobei ein Feststoff zurückbleibt, der im Vakuum getrocknet wird. ^{31}P -NMR (CDCl₃): δ = 133.

Hydroformylierung von 1-Octen

10 1,6 mg Rh(CO)2acac und 44,8 mg Ligand D wurden separat eingewogen, in je 1,5 g Palatinol AH® gelöst, vermischt und bei 100 °C mit 10 bar Synthesegas (CO:H2 = 1:1) begast. Nach 30 min. wurde entspannt, dann wurden 3 g 1-Octen zugegeben und 4 h bei 100 °C mit 10 bar Synthesegas (CO:H2 = 1:1) hydroformyliert. Der Umsatz betrug 91 %, die Aldehydselektivität 63 % und die Linearität 91 %. Die Selektivität zu internen Olefinen betrug 37 %.

Hydroformylierung von 1-Octen nach Lagerung des Liganden bei Raumtemperatur

20

Nach Lagerung des Liganden bei Raumtemperatur unter Argon für 10 Tage wurde nur eine leichte Farbvertiefung beobachtet.

1,6 mg Rh(CO)2acac und 44,8 mg Ligand D (nach 10-tägiger Lagerung
25 unter Argon bei Raumtemperatur) wurden separat eingewogen, in je
1,5 g Palatinol AH® gelöst, vermischt und bei 100 °C mit 10 bar
Synthesegas (CO:H2 = 1:1) begast. Nach 30 min. wurde entspannt,
dann wurden 3 g 1-Octen zugegeben und 4 h bei 100 °C mit 10 bar
Synthesegas (CO:H2 = 1:1) hydroformyliert. Der Umsatz betrug 92 %,
30 die Aldehydselektivität 60 % und die Linearität 89 %. Die Selektivität zu internen Olefinen betrug 40 %.

Die erfindungsgemäßen Beispiele belegen, dass durch geeignete Substituenten am Pyrrolring eine erhebliche Erhöhung der Ligand-35 stabilität erzielt werden kann.

40

Patentansprüche

- 1. Verfahren zur Herstellung von 2-Propylheptanol, bei dem man 5
 - a) Buten oder ein Buten enthaltendes C4-Kohlenwasserstoffgemisch in Gegenwart eines Hydroformylierungskatalysators
 mit Kohlenmonoxid und Wasserstoff unter Erhalt eines
 n-Valeraldehyd enthaltenden Hydroformylierungsprodukts
 hydroformyliert, wobei der Hydroformylierungskatalysator
 wenigstens einen Komplex eines Metalls der VIII. Nebengruppe mit wenigstens einem Liganden der allgemeinen Formel I

15

10

$$\begin{array}{c|c}
R^5 - (O)_a & (O)_b - R^6 \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\$$

25

20

umfasst, worin

R¹, R², R³ und R⁴ unabhängig voneinander für Wasserstoff,
Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl,
WCOOR^a, WCOO-M⁺, W(SO₃)R^a, W(SO₃)-M⁺, WPO₃(R^a)(R^b),
W(PO₃)²-(M⁺)₂, WNE¹E², W(NE¹E²E³)+X⁻, WOR^a, WSR^a,
(CHR^bCH₂O)_xR^a, (CH₂NE¹)_xR^a, (CH₂CH₂NE¹)_xR^a, Halogen,
Trifluormethyl, Nitro, Acyl oder Cyano stehen,

35

worin

- W für eine Einfachbindung, ein Heteroatom oder eine zweiwertige verbrückende Gruppe mit 1 bis 20 Brückenatomen steht,
- Ra, E1, E2, E3 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder Aryl bedeuten,

45

5

30

- Rb für Wasserstoff, Methyl oder Ethyl steht,
- M+ für ein Kationäquivalent steht.
- x- für ein Anionäquivalent steht und
- x für eine ganze Zahl von 1 bis 240 steht,
- wobei jeweils zwei benachbarte Reste R¹, R², R³ und R⁴ zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die
 sie gebunden sind, auch für ein kondensiertes Ringsystem
 mit 1, 2 oder 3 weiteren Ringen stehen können,
- mit der Maßgabe, dass wenigstens einer der Reste R¹, R²,

 15 R³ oder R⁴ nicht für Wasserstoff steht, und dass R⁵ und R⁶
 nicht mit einander verknüpft sind,
- R⁵ und R⁶ unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen, wobei einer der
 Reste R⁵ oder R⁶ auch für eine zweiwertige verbrückende Gruppe Y stehen kann, die zwei gleiche oder
 verschiedene Liganden oder Formel I kovalent miteinander verbindet, und
- a und b unabhängig voneinander die Zahl 0 oder 1 bedeuten,
 - b) gegebenenfalls das Hydroformylierungsprodukt einer Auftrennung unter Erhalt einer an n-Valeraldehyd angereicherten Fraktion unterzieht,
 - c) das in Schritt a) erhaltene Hydroformylierungsprodukt oder die in Schritt b) erhaltene an n-Valeraldehyd angereicherte Fraktion einer Aldolkondensation unterzieht,
 - d) die Produkte der Aldolkondensation mit Wasserstoff katalytisch zu Alkoholen hydriert, und
- e) gegebenenfalls die Hydrierprodukte einer Auftrennung unter Erhalt einer an 2-Propylheptanol angereicherten Fraktion unterzieht.
- Verfahren nach Anspruch 1, bei dem man wenigstens einen Liganden der Formel I einsetzt, in dem die über das pyrrolische Stickstoffatom an das Phosphoratom gebundene Pyrrolgruppe ausgewählt ist unter Gruppen der Formeln I.a bis I.k

35 worin

Alk eine C₁-C₄-Alkylgruppe ist und

- Rg, Rh, Ri und Rk unabhängig voneinander für Wasserstoff,

 C1-C4-Alkyl, C1-C4-Alkoxy, Acyl, Halogen, Trifluormethyl,
 C1-C4-Alkoxycarbonyl oder Carboxyl stehen.
- Verfahren nach Anspruch 2, bei dem man wenigstens einen Liganden der Formel I einsetzt, in dem die über das pyrrolische Stickstoffatom an das Phosphoratom gebundene Pyrrolgruppe für

30

eine 3-Alkylindolylgruppe, bevorzugt eine 3-Methylindolyl-gruppe, steht.

 Verfahren nach Anspruch 1, bei dem man wenigstens einen Liganden der Formel I einsetzt, worin die über das pyrrolische Stickstoffatom an das Phosphoratom gebundene Pyrrolgruppe gemeinsam mit R⁵ eine Gruppe der Formel

10

$$R^{1}$$
 N I N R^{1} R^{1} R^{2} R^{2} R^{2} R^{2} R^{2} R^{2} R^{2} R^{2}

15

bildet, worin

für eine chemische Bindung oder für O, S, $SiR^{\alpha}R^{\beta}$, NR^{γ} oder gegebenenfalls substituiertes C_1-C_{10} -Alkylen, bevorzugt $CR^{\delta}R^{\epsilon}$, steht, worin R^{α} , R^{β} , R^{γ} , R^{δ} und R^{ϵ} unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,

25

20

R¹, R², R², R³, R³, R⁴ und R⁴ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, WCOOR^a, WCOO-M⁺, W(SO₃)R^a, W(SO₃)-M⁺, WPO₃(R^a)(R^b), W(PO₃)²-(M⁺)₂, WNE¹E², W(NE¹E²E³)⁺X⁻, WOR-a, WSR^a, (CHR^bCH₂O)_xR^a, (CH₂NE¹)_xR^a, (CH₂CH₂NE¹)_xR^a, Halogen, Trifluormethyl, Nitro, Acyl oder Cyano stehen,

30

worin

__

W für eine Einfachbindung, ein Heteroatom oder eine zweiwertige verbrückende Gruppe mit 1 bis 20 Brückenatomen steht,

35

Ra, E1, E2, E3 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder Aryl bedeuten,

- Rb für Wasserstoff, Methyl oder Ethyl steht,
- M+ für ein Kationäquivalent steht,
- 45 X- für ein Anionäquivalent steht und

ę,

für eine ganze Zahl von 1 bis 240 steht,

wobei jeweils zwei benachbarte Reste R^1 und R^2 und/oder R^1 ' und R^2 ' zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die sie gebunden sind, auch für ein kondensiertes Ringsystem mit 1, 2 oder 3 weiteren Ringen stehen können.

Verfahren nach Anspruch 1, wobei die Verbindung der Formel I
 ausgewählt ist unter Verbindungen der allgemeinen Formeln I.1
 bis I.4

15

5

$$R^{5}-(O)$$
 P (O)

25

30

20

(I.3)

35

40

$$R^{5}-(0)a$$
 p $(0)b-Y-(0)a$ p $(0)b-R^{6}$

5

worin

 R^1 , R^2 , R^3 , R^4 , Y, a und b die in Anspruch 1 angegebenen Bedeutungen besitzen und

R⁵ und R⁶ unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.

6. Verfahren nach Anspruch 1, wobei die Verbindung der allgemeinen Formel I ausgewählt ist unter Verbindungen der allgemeinen Formeln I.5 und I.6

worin

 R^2 und R^3 die in Anspruch 1 angegebenen Bedeutungen besitzen, wobei wenigstens einer der Reste R^2 oder R^3 nicht für Wasserstoff steht,

R⁵ und R⁶ unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei in der Formel I die verbrückende Gruppe Y ausgewählt ist unter Gruppen der Formeln II.a bis II.t

RIU RV RVIII RIX
RIII RX RXII
RII RXII

(II.e)

(II.c)

40 RIII RIII

45

35

RII RIII

(II.1)

RII

(II.m)

10

5

RIII

RIII RIV
RV

RIII RIV RV

15

(II.O)

(II.p)

(II.q)

20

25

30

(II.s)

(II.t)

(II.r)

worin

RI bis RXII unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Alkoxy, Halogen, SO₃H, Sulfonat, NE⁴E⁵, Alkylen-NE⁴E⁵, Trifluormethyl, Nitro, Alkoxycarbonyl, Carboxyl oder Cyano stehen, worin E⁴ und E⁵ jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl und Aryl bedeuten,

35

g für O, S, NR¹⁵ oder SiR¹⁵R¹⁶ steht, wobei R¹⁵ und R¹⁶ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,

40

oder Z für eine C_1 - bis C_4 -Alkylenbrücke steht, die eine Doppelbindung und/oder einen Alkyl-, Cycloalkyl-, Heterocycloalkyl-, Aryl- oder Hetaryl-Substituenten aufweisen kann,

45

oder Z für eine C_2 - bis C_4 -Alkylenbrücke steht, die durch O, S oder NR^{15} oder $SiR^{15}R^{16}$ unterbrochen ist,

wobei in den Gruppen der Formeln II.g bis II.m einer der Reste R^{I} bis R^{IV} auch für Oxo oder ein Ketal davon stehen kann.

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei in der Formel I die verbrückende Gruppe Y ausgewählt ist unter Gruppen der Formeln II.1 bis II.5

25 worin

- R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ und R¹⁴ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Alkoxy, Halogen, SO₃H, Sulfonat, NE⁴E⁵, Alkylen-NE⁴E⁵, Trifluormethyl, Nitro, Alkoxycarbonyl, Carboxyl oder Cyano stehen, worin E⁴ und E⁵ jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl und Aryl bedeuten,
- Z für O, S, NR¹⁵ oder SiR¹⁵R¹⁶ steht, wobei R¹⁵ und R¹⁶ unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
- oder Z für eine C₁- bis C₃-Alkylenbrücke steht, die eine

 Doppelbindung und/oder einen Alkyl-, Cycloalkyl-, Heterocycloalkyl-, Aryl- oder Hetaryl-Substituenten aufweisen
 kann,
- oder Z für eine C_2 bis C_3 -Alkylenbrücke steht, die durch 0, S oder NR^{15} oder $SiR^{15}R^{16}$ unterbrochen ist.

9. Katalysatoren, umfassend Komplexe mit einem Metall der VIII. Nebengruppe des Periodensystems der Elemente, die als Liganden mindestens eine Verbindung der Formel I gemäß Anspruch 1 enthalten, ausgenommen Verbindungen der Formeln

worin

10

5

 R^{I} , R^{III} , R^{IV} , R^{V} , R^{VI} und R^{VIII} für von Wasserstoff verschiedene Substituenten stehen und

Rc, Rd, Re und Rf für Gruppen der Formel

15

$$\begin{array}{c|c}
R^1 & R^4 \\
R^2 & R^3
\end{array}$$

20

stehen, worin R^1 , R^2 , R^3 und R^4 die in Anspruch 1 angegebenen Bedeutungen besitzen;

25

30

worin

35

 $R^{\rm I}$, $R^{\rm VI}$ und $R^{\rm VIII}$ für von Wasserstoff verschiedene Substituenten stehen und

Rc, Rd, Re und Rf für Gruppen der Formel

40

$$\begin{array}{c|c}
R^1 & R^4 \\
R^2 & R^3
\end{array}$$

stehen, worin R^1 , R^2 , R^3 und R^4 die in Anspruch 1 angegebenen Bedeutungen besitzen.

10. Katalysatoren, umfassend Komplexe mit einem Metall der VIII.
5 Nebengruppe des Periodensystems, die als Liganden mindestens eine Verbindung der Formel I, wie in einem der Ansprüche 1 bis 8 definiert, aufweisen, in denen wenigstens eine der Gruppen der Formel

10

$$R^1$$
 R^4
 R^2
 R^3

15

für 3-Alkylindol-1-yl, insbesondere für 3-Methylindol-1-yl, steht.

- 20 11. Katalysatoren nach einem der Ansprüche 9 oder 10, in denen das Metall ausgewählt ist aus Kobalt, Rhodium, Ruthenium oder Iridium.
- 12. Verfahren zur Hydroformylierung von Verbindungen, die wenigstens eine ethylenisch ungesättigte Doppelbindung enthalten durch Umsetzung mit Kohlenmonoxid und Wasserstoff in Gegenwart eines Hydroformylierungskatalysators, umfassend wenigstens einen Komplex eines Metalls der VIII. Nebengruppe mit wenigstens einem Liganden der allgemeinen Formel I, wie in einem der Ansprüche 1 bis 8 definiert.
- 13. Verfahren zur Hydroformylierung von Verbindungen, die wenigstens eine ethylenisch ungesättigte Doppelbindung enthalten durch Umsetzung mit Kohlenmonoxid und Wasserstoff in Gegenwart eines Katalysators, wie in einem der Ansprüche 9 bis 11 definiert.
- 14. Verwendung eines Katalysators, wie in einem der Ansprüche 9
 bis 11 definiert, zur Hydroformylierung, Carbonylierung, Hydrocyanierung oder Hydrierung.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:	
	BLACK BORDERS	
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
	FADED TEXT OR DRAWING	•
	BLURRED OR ILLEGIBLE TEXT OR DRAWING	
	☐ SKEWED/SLANTED IMAGES	
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
	☐ GRAY SCALE DOCUMENTS	
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
	□ other.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)