Functional Dependency Problems

1. For relation R{A,B,C,D,E,F,G} $\{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\} \models ACF \rightarrow DG$ Source of the RHS

So we need to show that $ACF \rightarrow BC$ and AEF

Notice $A \rightarrow B$ can be augmented to $AC \rightarrow BC$ that transitively yields DE.

By the 'shootover rule' (augmentation), $AC \rightarrow DE$ yields $AC \rightarrow ACDE$

And with more augmentation we get $ACF \rightarrow ACDEF$

1. For relation R{A,B,C,D,E,F,G}

$$\{ A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G \} \models ACF \rightarrow DG$$

- 4. AC \rightarrow BC (1, aug.)
- 6. ACF \rightarrow DEF (5, aug.)

- 1. $A \rightarrow B$ (given) 7. ACF \rightarrow ACDEF (6, aug.)
- 2. BC \rightarrow DE (given) 8. ACF \rightarrow AEF (7, decomp)
- 3. AEF \rightarrow G (given) 9. ACF \rightarrow G (8,3 trans)
 - 10. ACF \rightarrow D (6, decomp)
- 5. AC \rightarrow DE (4,2 trans) 11. ACF \rightarrow DG (9,10 union)

2. For R {ABCDEF}

$$\{A \rightarrow BC, B \rightarrow E, CD \rightarrow EF\} \models AD \rightarrow F$$

- 1. $A \rightarrow BC$ (given)
- (given) $2. B \rightarrow E$
- 3. CD \rightarrow EF (given)
- 4. AD \rightarrow BCD (1, aug)
- 5. AD \rightarrow CD (4, decomp)
- 6. AD \rightarrow EF (5,3 trans)
- 7. AD \rightarrow F (6, decomp)

NOTE: Proof Strategies

- Suppose you have to prove AB → CD
- Try deducing a functional dependency with CD on the RHS (right hand side)
 - Augmentation, Union or Decomposition can modify RHS of FDs.
 - result: x → CD

Strategies (cont.)

- Try deducing a functional dependency with AB on the LHS.
 - Augmentation, Reflexivity, Pseudo- transitivity can affect LHS.
 - result: AB \rightarrow y
- Now try to deduce $y \rightarrow x$
- Try disproof first: it is mechanical.

Are 2 sets of FDs Equivalent?

First method:

- Compute the closure of F
- Compute the closure of G
- See if they are equal

Second method

- Show every FD in F can be proven from G
- Show every FD in G can be proven from F

3. Equivalent sets of FDs?

$$F = \{ B \rightarrow CD, AD \rightarrow E, B \rightarrow A \}$$

$$G = \{ B \rightarrow CDE, B \rightarrow ABC, AD \rightarrow E \}$$

$$\triangleright$$
 F \models G ? (AD \rightarrow E in both.)

1.
$$B \rightarrow CD$$
 (given)

2.
$$B \rightarrow A$$
 (given)

3. AD
$$\rightarrow$$
 E* (given)

4. B
$$\rightarrow$$
 ACD (1,2, union)

5. B
$$\rightarrow$$
 AD (4, decomp)

6. B
$$\rightarrow$$
 E (5,3, trans)

7. B
$$\rightarrow$$
 ACDE (4,6,union)

8. B
$$\rightarrow$$
 CDE* (7,decomp)

9. B
$$\rightarrow$$
 AC (4, decomp)

10.
$$B \rightarrow ABC^*$$
 (9,aug)

*FD in G to be Proven

3. Continued

$$F = \{ B \rightarrow CD, AD \rightarrow E, B \rightarrow A \}$$

 $G = \{ B \rightarrow CDE, B \rightarrow ABC, AD \rightarrow E \}$

- G **F** F ? (prove F from G?)
- Obviously

4. What is the key for R?

- {KEY} → {REST} because key must determine all fields
- KEY must include all NOT on RHS of ANY functional dependency
 - Only fields on RHS are determined.
 - An undetermined field must be in the key.
- REST must include all NOT on LHS
 - They don't determine anything
 - so they can not be part of key.
- If field is not in ANY FD, it must be part of the key

4. What is the key for R?

- R=(A,B,C,D,E,F,G,H,I,J) FDs: AB \rightarrow C, BD \rightarrow EF, AD \rightarrow GH, A \rightarrow I, H \rightarrow AJ
- NOT on RHS: Key must include BD
- NOT on LHS: Rest must include CEFGIJ
- Unknown: A and H
- Is BD a Key? No: it only determines EF which don't determine anything else
- If BD were a key, we would stop here.
- So Key might include A or H
 - But not both, Why not?

FDs: AB \rightarrow C, BD \rightarrow EF, AD \rightarrow GH, A \rightarrow I, H \rightarrow AJ

- Try adding A: is ABD a key?
 - ABD \rightarrow EF because BD \rightarrow EF (aug)
 - $ABD \rightarrow C$ because $AB \rightarrow C$ (aug)
 - ABD \rightarrow GH because AD \rightarrow GH (aug)
 - ABD \rightarrow I because A \rightarrow I (aug)
 - ABD → J because AD → GH & H → AJ (aug, decomp, trans)

FDs: AB \rightarrow C, BD \rightarrow EF, AD \rightarrow GH, A \rightarrow I, H \rightarrow AJ

- Try adding H: is BDH a key?
- Since $H \rightarrow AJ$, $H \rightarrow A$.
- So BDH → BDA, which is a key.
 - So BDH determines all that ABD determines.
- BDH is another key
- 2 overlapping keys: ABD and BDH.

5. Counter example:

$$\{XY \rightarrow Z, Z \rightarrow X\} \models Y \rightarrow XZ?$$

- Method: Set up a database in which LHS is NOT Violated but RHS IS violated
- Why? Because is a form of implication and implication is only false when LHS is True and RHS is false
- When is RHS (Y → XZ) false?
 - It too is a kind of implication!
 - When 2 tuples agree in Y and disagree in XZ

counter: { XY
$$\rightarrow$$
 Z, Z \rightarrow X } \models Y \rightarrow XZ

- Requirements for counter:
- two tuples
 - agree in Y, disagree in X and/or Z
 - do not violate LHS.
- Important Note: given A → B
 - two tuples which disagree in A cannot violate $A \rightarrow B$.
 - Why? Because implication is false only when A is true and B is false.

counter: $\{XY \rightarrow Z, Z \rightarrow X\} \models Y \rightarrow XZ$

- X Y Z (attributes)
 - a b c (first tuple)
 - ? b ? (y must be the same)
- What about X? If X is the same:
 - X Y Z
 - a b c
 - a b ?
- Problem: Cannot violate LHS (XY → Z)
 - so Z must be the same
 - but cannot have 2 identical tuples.
 - Therefore, make X different

counter: $\{XY \rightarrow Z, Z \rightarrow X\} \models Y \rightarrow XZ$

- X Y Z
 - a b c
 - H b ? (y the same & x different)
- What about Z? Suppose Z is the same.
 - Maybe OK since $Y \rightarrow XZ$ still violated.
 - -X Y Z
 - a b c
 - H b c
- But this would violate the LHS. Why?

counter: $\{XY \rightarrow Z, Z \rightarrow X\} \models Y \rightarrow XZ$

- Solution:
 - X Y Z
 - a b c
 - H b K
- Check:
 - RHS violated?
 - Yes: Same in Y, different in X and/or Z
 - LHS not violated?
 - XY → Z: no two the same in XY
 - $Z \rightarrow X$: no two the same in Z