План

- 1. Аудиофайлы как мы привыкли
- 2. Feature extraction для обработки звука
 - a. STFT
 - **b.** Фрейминг
 - с. Мел спектрограммы
 - d. wav2vec
- 3. Примеры больших задач
- 4. Примеры маленьких (но важных) задач
- 5. Данные для обучения

Аналоговый сигнал

Каждый из представляющих параметров описывается непрерывным множеством значений

Цифровой сигнал

Можно представить в виде последовательности дискретных значений

- >компактнее
- >точнее

Как хранится аудиофайл?

sample rate — число отсчетов в секунду. Типичные значения: 16000, 22050, 44100

Изображения vs Аудио

- 1. 2d (чб)
- 2. $256x256 \sim 65k pix$

Изображения vs Аудио

- 1. 2d (чб)
- 2. $256x256 \sim 65k pix$

- 1. 1d (mono)
- 2. 1 sec ~ 44100

Трюк: будем работать с аудио как с картинками

Трюк: будем работать с аудио как с картинками

Вопрос: как перевести аудио в картинку (тензор)?

Definition [edit]

The discrete Fourier transform transforms a sequence of N complex numbers $\{\mathbf{x_n}\} := x_0, x_1, \dots, x_{N-1}$ into another sequence of complex numbers, $\{\mathbf{X_k}\} := X_0, X_1, \dots, X_{N-1}$, which is defined by

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn}$$
 $= \sum_{n=0}^{N-1} x_n \cdot \left[\cos\Bigl(rac{2\pi}{N}kn\Bigr) - i\cdot\sin\Bigl(rac{2\pi}{N}kn\Bigr)
ight],$ (Eq.1)

where the last expression follows from the first one by Euler's formula.

The transform is sometimes denoted by the symbol \mathcal{F} , as in $\mathbf{X}=\mathcal{F}\left\{\mathbf{x}\right\}$ or $\mathcal{F}\left(\mathbf{x}\right)$ or $\mathcal{F}\mathbf{x}$. [A]

Framing

Image from Bryan Pellom

https://medium.com/@jonathan_hui/speech-recognition-feature-extraction-mfcc-plp-5455f5a69dd9

Windowing (with smoothing)

Blackman window

Альтернативы?

Wav2vec

Figure 1: Illustration of pre-training from audio data \mathcal{X} which is encoded with two convolutional neural networks that are stacked on top of each other. The model is optimized to solve a next time step prediction task.

What's hot?

Распознавание речи

Генерация речи

Speaker features

Перенос стиля голоса

Как работает ASR

Распознавание речи

Генерация речи

Speaker features

Перенос стиля голоса

Как работает TTS

Как работает TTS

Распознавание речи Генерация речи

Speaker features

Перенос стиля голоса

Speaker features

- 1. Идентификация
- 2. Диаризация
- 3. Speaker embeddings
- 4. ...

Распознавание речи

Генерация речи

Speaker features

Перенос стиля голоса

Intro

What if you could imitate a famous celebrity's voice or sing like a famous singer? This project started with a goal to convert someone's voice to a specific target voice. So called, it's voice style transfer. We worked on this project that aims to convert someone's voice to a famous English actress Kate Winslet's voice. We implemented a deep neural networks to achieve that and more than 2 hours of audio book sentences read by Kate Winslet are used as a dataset.

Что еще?

Jukebox

We're introducing Jukebox, a neural net that generates music, including rudimentary singing, as raw audio in a variety of genres and artist styles. We're releasing the model weights and code, along with a tool to explore the generated samples.

TREAD PAPER

♦ VIEW CODE

APRIL 30, 2020 12 MINUTE READ, 10 DAY LISTEN

Spleeter by deezer

Маленькие, но важные задачи

- 1. Spotter
- 2. Voice Activity Detection (VAD)
- 3. End of Utterance
- 4. Поиск акустических событий (декомпозиция)
- 5. Биометрические задачи
 - а. пол
 - **b.** возраст
 - c. whatever you want

Данные

Больше данных!

Больше данных!

benchmark datasets (EN)

- 1. TIMIT (4 hours)
- 2. LibriSpeech (1000 hours)
- 3. Librivox
- 4. TED
- 5.

40 hours 1 way

40*60*6 дорожек по 10 sec (можно получить с помощью aligner)

Russian Open Speech To Text (STT/ASR) Dataset

Arguably the largest public Russian STT dataset up to date:

- ~16m utterances (1-2m with less perfect annotation, see #7);
- ~20 000 hours;
- 2,3 TB (in .wav format in int16), 356G in .opus;
- A new domain public speech;
- A huge Radio dataset update with 10 000+ hours;
- (new!) Utils for working with OPUS;
- (new!) New OPUS torrent;
- (new!) New OPUS direct links;

Prove us wrong! Open issues, collaborate, submit a PR, contribute, share your datasets! Let's make STT in Russian (and more) as open and available as CV models.

Planned releases:

Working on a new project with 3 more languages, stay tuned!

TORCHAUDIO

This library is part of the PyTorch project. PyTorch is an open source machine learning framework.

SoundFile

https://vk.cc/bVC2Hb

https://colab.research.google.com/drive/1yvCAPJquyDWQBjNPC8Vv96aITUBLI15I?usp=sharing

https://github.com/CorentinJ/Real-Time-Voice-Cloning

https://github.com/auspicious3000/autovc

https://github.com/NVIDIA/waveglow

https://github.com/NVIDIA/NeMo/tree/main/examples/asr/experimental

https://openai.com/blog/jukebox/ (musenet)