Esercizio 1

Con riferimento al FF D-positive-edge-triggered implementato come campionatore/ritardatore,

- 1) modificare la tabella del campionatore in modo che il FF campioni *sia* sul fronte di salita *sia* sul fronte di discesa di *p*.
- 2) sintetizzare il campionatore in forma SP.

Esercizio 2

Descrivere e sintetizzare l'Unità AAA che gestisce i due Display tenendoli spenti per parameter $T_{\text{spento}}=10$ cicli di clock, poi accendendoli in modo che vi compaia, per parameter $T_{\text{acceso}}=37$ cicli di clock, una opportuna *informazione*, e così via all'infinito.

Ogni informazione che AAA fa comparire sui due Display è costituita da 2 cifre: i) la cifra che compare sul Display X rappresenta uno degli stati di ingresso della rete combinatoria; ii) la cifra che compare sul Display Z rappresenta il corrispondente stato di uscita della rete combinatoria.

Completare il diagramma temporizzazione supponendo che sia parameter parameter che la $T_{\text{spento}} = 2$ $T_{acceso} = 3$ rete ecombinatoria abbia la seguente tabella di verità:

out
11
10
00
01

Stante la semplicità dell'esercizio, il **non completamento** del diagramma o **la sua inesattezza** saranno considerati **errori gravi**, a prescindere da tutto il resto.

NOTA: Un display è acceso se *on* vale 1 e vi compare la cifra ottale 0 se riceve sugli altri ingressi 'B00, ..., la cifra 3 se riceve sugli altri ingressi 'B11

Esercizio 1 - Soluzione

La tabella di flusso, normale e priva di alee essenziali, è la seguente:

Con riferimento ad un modello con elementi neutri di ritardo (nullo) , adottando la codifica (priva di corse) S0=00, S1=01, S2=10, S3=11, si ottiene z1=a1, z0=/a1, quindi CN2 è un cortocircuito. Per quanto riguarda CN1 abbiamo:

√d	p=0		P=1		z1 z0
\	0	1	0	1	
SO	SO)	SO)	S1	S2	01
S1	S0	S3	S1	S1	01
S2	S0	S3	S2	S2	10
S3	<u>S3</u>	S3	S1	S2	10

√dp		a1a0		
y1y0	00	01	11	10
00	00	01	10	00
01	00	01	01	11
11	11	01	10	11
10	00	10	10	11

I sottocubi principali essenziali per ciascuna delle due variabili sono evidenziati nelle figure sottostanti. Per a1 si ha una sola lista di copertura di costo minimo, corrispondente a:

$$a_1 = d \cdot y_1 + d \cdot p \cdot \overline{y_0} + p \cdot y_1 \cdot \overline{y_0} + \overline{p} \cdot y_1 \cdot y_0 + d \cdot \overline{p} \cdot y_0$$

Per a0, si vede chiaramente come la seguente sintesi a costo minimo:

$$a_0 = \overline{d} \cdot y_1 \cdot y_0 + p \cdot y_1 \cdot \overline{y_0} + d \cdot \overline{p} \cdot y_1 + \overline{d} \cdot p \cdot \overline{y_1}$$

sia affetta da alee del 1° ordine. Pertanto, devono essere inseriti nuovamente anche i quattro implicanti semplicemente eliminabili che non sono parte della forma SP scritta sopra.

Esercizio 2 – Una possibile soluzione

```
module AAA(in,on,p,reset_);
 input
             p,reset_;
 output
             on;
 output [1:0] in;
reg [1:0] X;
                 assign in=X;
reg ON;
                 assign on=ON;
reg [5:0] WAIT;
reg [1:0] STAR; parameter S0=0, S1=1, S2=2, S3=3;
parameter T_spento=10, T_acceso=37;
 always @(posedge p or negedge reset_)
  if (reset_==0) begin STAR=S0; X=7; STAR=S0; end else #3
  casex (STAR)
  S0: begin X<= X+1; ON<=0; WAIT<=T_spento; STAR<=S1; end
  S1: begin WAIT<=WAIT-1; STAR<=(WAIT==2)?S2:S1; end
  S2: begin ON<=1; WAIT<=T_acceso; STAR<=S3; end
  S3: begin WAIT<=WAIT-1; STAR<=(WAIT==2)?S0:S3; end
 endcase
endmodule
```