

Universidad Nacional del Litoral

PROYECTO FINAL DE CARRERA

Diseño de un sistema de detección de anomalías en redes de computadoras.

Informe Final

Pineda Leandro Córdoba 13 de mayo de 2018

1. Introducción

En la actualidad, *BigData* es uno de los tantos conceptos de moda en el mundo informático. Este se usa para hacer referencia a grandes colecciones de datos que pueden crecer a volúmenes enormes y a un ritmo tan alto que resulta difícil o imposible manejarlos con las herramientas tradicionales, como las bases de datos relaciones convencionales. El desafío que presenta el *BigData* no solo está limitado a los aspectos técnicos de almacenar cantidades masivas de datos, sino en cómo obtener de estos información relevante que permitan asistir a la toma de decisiones. Este concepto comenzó a tomar fuerza a principios del año 2000 cuando Doug Laney, vicepresidente y analista distinguido de Gartner¹, caracterizó al *BigData* mediante tres V:

- Volumen: Las organizaciones recolectan cantidad masivas de datos de diversas fuentes (transacciones, social-media, sensores, etc). En el pasado, almacenar tal volumen de datos hubiese sido un problema, pero nuevas tecnologías como *Hadoop* surgieron para hacer frente al desafío.
- Velocidad: Los datos se generan cada vez a mayor velocidad, y deben ser manejados en un tiempo aceptable. Etiquetas RFID, sensores y dispositivos IoT, entre otros, hacen que sea necesario procesar estos flujos de datos rápidamente.
- Variedad: Los datos vienen en todo tipo de formatos (estructurados, semi-estructurados o sin estructura).

Dependiendo de la necesidad de negocios particular de cada empresa o entidad y la naturaleza de los datos, una de las tres V descritas puede ser más importante que las otras. Si se quiere hacer un pronóstico para cierta actividad, por ejemplo, será necesario contar con grandes volúmenes de datos del pasado. Por el contrario, si es necesario entender cómo varía cierto patrón en los datos en una ventana de tiempo cercana a la presente, será necesario procesarlos de manera instantánea, obviando tal vez su almacenamiento dado que contar con esta información del pasado no genera valor alguno, o su almacenamiento es inviable.

De la misma manera que surgieron técnicas para procesar datos almacenados en soportes distribuidos como MapReduce[1], donde grandes volúmenes de información permanecen estáticos y pueden ser accedidos de manera aleatoria, la necesidad del procesamiento on-line de flujos de datos originó el surgimiento de un conjunto de técnicas conocido como Data Streaming. Haciendo uso de las mismas, es posible identificar en tiempo real la ocurrencia de ciertos patrones de interés en los flujos de datos, sin necesidad de almacenar su totalidad para procesarlos. Estas técnicas, que serán desarrolladas más adelante, tienen características especiales que hacen que su implementación sea sencilla, de forma que no demanden grandes cantidad de recursos computacionales y no introduzcan así demoras en la producción de resultados (pero, en algunos casos, al coste de sacrificar precisión).

Las técnicas de *Data Streaming* pueden aplicarse en diversos campos. En particular, la detección en tiempo real de ciertos patrones en los flujos de datos de una red de computadoras (que en algunos casos pueden ayudar a determinar incidentes tales como escaneo de puertos, ataques de denegación de servicio, expansión de *malware* entre otros), es de vital importancia para salvaguardar la integridad de dicha infraestructura informática. Estas anomalías pueden encontrarse analizando los flujos de datos y llevando cuenta de todos los paquetes que atraviesan los puntos de acceso a la red. En la capa de transporte, el protocolo TCP (que provee conexión host a host sobre IP) provee información suficiente para identificar estos patrones. Para llevar a cabo el análisis en tiempo real de los segmentos TCP que son transportados, utilizaremos el modelo de *Data Streaming*.

Además, se describirá la arquitectura de un sistema basado en microservicios que implementa un algoritmo basado en *sketches* y las tecnologías empleadas para su desarrollo. Finalmente, se mostrarán los resultados de las pruebas realizadas.

¹Gartner Inc. es una empresa consultora y de investigación de las tecnologías de la información con sede en Stamford, Connecticut, Estados Unidos

50 2. Detección de anomalías

La detección de anomalías puede ser considerada como un problema de clasificación, donde comportamientos anómalos deben ser diferenciados de eventos normales[2]. A continuación se describen los distintos enfoques analizados:

2.1. Métodos de detección

55 2.1.1. Enfoque estadístico

Este enfoque es usado cuando los comportamientos normales pueden ser ubicados en regiones de alta probabilidad de algún modelo estocástico, mientras que las anomalías pueden encontrarse en regiones de baja probabilidad de ese modelo[3]. El modelo estocástico es determinado a priori o es inferido a partir de un conjunto de datos. Bajo este enfoque, una anomalía es una observación que puede ser total o parcialmente irrelevante porque no está generada por un modelo estocástico dado.

Estos métodos de detección de anomalías ajustan un modelo estadístico (usualmente de comportamiento normal) a un conjunto de datos y luego, usando inferencia estadística, determinan si una nueva instancia pertenece a este modelo. Las instancias que tienen una baja probabilidad de ser generadas por el modelo ajustado son consideradas como anómalas.

2.1.2. Enfoque espectral

En algunas ocasiones muchas características de los patrones analizados son altamente independientes. Utilizar solo las dimensiones que son dependientes para describir los datos incrementa la precisión del modelo y reduce el costo computacional de los algoritmos. Matemáticamente, esta formulación es referida como reducción de dimensionalidades[4]. Podemos pensar esta reducción como una representación de los datos en un espacio de menos dimensiones, de forma que instancias normales y anómalas se vean drásticamente diferentes. Una técnica popular de reducción de dimensionalidad es PCA (*Principal Component Analysis*).

2.1.3. Enfoque basado en Machine Learning

En este enfoque se *entrena* un algoritmo con datos de entrenamiento de forma que este "aprenda" cómo debería ser un comportamiento normal en el tráfico de red. Así, las anomalías son identificadas en base a la experiencia previa. Un algoritmo de *machine learning* "aprende" una función que mapea todos las instancias de datos con alguno de los dos estados (usualmente representados con 0 y 1).

De acuerdo con la caracterización realizada en [3], podemos diferenciar los siguientes tipos de algoritmos basados en *machine learning*:

- Basados en clasificación: El objetivo de estos algoritmos es asignar cada dato a una clase (en este caso normal/anómalo), basandose en la información provista por un conjunto de características.
- Algoritmos de vecino más cercano²: Estos algoritmos usan diferentes funciones (basadas en alguna métrica como distancia o densidad) para medir la diferencia entre una instancia de los datos y su *k-ésimo* vecino más cercano[3]. Esta diferencia o distancia es un puntaje que puede ser utilizado para decidir si la instancia es o no una anomalía.
- Clustering: Estos algoritmos buscan en los datos de entrenamiento grupos de instancias muy similares o cercanas entre si. Las anomalías pueden formar grupos de muy pocos elementos o no pertenecer a ningún grupo. Mapas auto-organizativos[5] y algorítmos de k-medias[6] son algoritmos clásicos de clustering.

²En la literatura se encuentra como nearest-neighbor

2.1.4. El enfoque de streaming

En muchos casos, detectar anomalías en una red significa llevar registro de cambios significativos en los patrones de tráfico de red, como número de flujos activos o volumen de tráfico actual. Esto hace que sea necesario aplicar técnicas de detección que sean escalables, puesto que en redes donde circulan grandes volúmenes de información, registrar estos cambios en cada flujo de tráfico puede ser una tarea con un gran costo computacional. El enfoque de *streaming* analiza flujos continuos de datos y extrae información de cada uno, utilizando algoritmos discretos para detectar anomalías[7] y evitar así tomar muestras del tráfico cada cierto tiempo, práctica típicamente utilizada en los algoritmos de detección de anomalías para solucionar el problema de la escalabilidad. Sin embargo, atacar el problema de la escalabilidad con muestreo involucra una disminución en la precisión de los sistemas de detección de anomalías ya que los paquetes que no son tenidos en cuenta pueden contener información importante para determinar la existencia de tales eventos.

2.2. Comparación de los métodos

Los métodos supervisados (sin importar que enfoque utilicen) necesitan de grandes dataset de comportamiento normal o un conjunto de datos anómalos conocidos e identificados. Construir un modelo basado en una base de datos hace que calidad de las clasificaciones realizadas por el mismo dependa directamente de la calidad de los datos: un modelo no puede ser mejor que el dataset con el cual se lo construyó. Más aún, la implementación en diferentes ámbitos de producción hace necesario que el modelo sea recalculado para un conjunto de datos que son propios de la infraestructura de red los cuales, en general, no están disponibles.

Una desventaja de los métodos basados en modelos estadísticos es que pueden ser "entrenados" gradualmente de forma que el tráfico generado durante un ataque se identificado como
normal. Además, la puesta en funcionamiento de este tipo de sistemas toma períodos largos de
tiempo dado que la construcción de los modelos estocásticos involucra analizar grandes volumenes de datos. Por otro lado, los modelos no requieren conocimiento previo ya que tiene la
habilidad de "aprender" el comportamiento esperado procesando los datos del tráfico de red[8].

Los enfoques de clustering y vecindad utilizan métodos no supervisados. Aunque esto es una gran ventaja con respecto a los *dataset*, su precisión es muy dependiente de las métricas utilizadas: el uso de una medida poco adecuada de proximidad afecta negativamente la capacidad de detección de los algoritmos de vecindad.

Las técnicas on-line generalmente muestrean los datos para reducir la carga computacional de los algoritmos, descartando información que puede ser importante para que el sistema clasifique adecuadamente un evento. En los últimos años, las arquitecturas de streaming distribuido (por ejemplo Flume[9], Apache Storm[10] y Spark Streaming[11]) permitieron desarrollar algoritmos que aprovechen la capacidad de cálculo paralelo para mejorar la eficiencia en la clasificación y solucionar el problema de la escalabilidad[12]. La ventaja más importante de estas técnicas es la posibilidad de realizar las tareas de detección en forma distribuida: esto permite combinar múltiples resultados de detección de forma de reducir la cantidad de falsos positivos, aspecto de gran importancia en los sistemas de detección de anomalías y que además permite escalabilidad. Este último aspecto es también de gran importancia: la reciente aparición de ataques distribuidos masivos³ hace que sea necesario pensar el diseño de los nuevos sistemas de detección de anomalías para que funcionen en arquitecturas escalables y tolerante a fallas.

 $^{^2}$ término que refiere a los algoritmos que procesan la información del tráfico de red mientras se genera, opuesto a los algoritmos batch

3. Data Streaming

170

175

Antes de comenzar a desarrollar el modelo de Data Streaming, es necesario introducir dos definiciones que con frecuencia son usadas indistintamente debido a su similitud, pero que significan conceptos diferentes: Streaming Data hace referencia a los datos que son generados continuamente por un conjunto de orígenes de datos de forma simultáneamente. Estos datos son de diferente naturaleza como logs de cliente usando aplicaciones móviles o web, compras en plataformas virtuales, actividad de usuarios en juegos, información de redes sociales, telemetría de dispositivos, entre otros. Por otra parte, Data Streaming o Stream Processing hace referencia a las técnicas de procesamiento utilizada para Streaming Data. En el paradigma de Streaming Data, los datos son procesados directamente mientras son producidos o recibidos. Antes del surgimiento del Stream Processing, la información era almacenada en bases de datos, sistemas de archivos u otra forma de almacenamiento masivo para luego ser procesada. El termino BigData hace referencia a este otro paradigma, en el cual grandes volúmenes de datos permanecen estáticos en algún soporte de almacenamiento masivo, mientras que diferentes algoritmos permiten realizan consultas o ejecutar procesos en la medida que lo necesitan.

Figura 1: Gráfica conceptual de BigData vs Streaming Data

En la figura 1 (izquierda) puede observarse un diagrama esquematizado del enfoque clásico de BigData, donde todos los datos son almacenados en algún tipo de base de datos, y luego se realizan consultas sobre estos mediante algún proceso particular que permita extraer información relevante. A la derecha de la figura 1 se puede observar un esquema de las partes relevantes del enfoque de Data Streaming; la diferencia más importante entre estos dos paradigmas es no existe la persistencia de datos. Las consultas se realizan sobre datos 'en movimiento', en lugar de utilizar datos estáticos.

En los últimos años, los avances en las tecnologías de hardware han posibilitado colectar datos de forma continua. Transacciones que hacemos en nuestra vida cotidiana como el uso de una tarjeta de crédito, un teléfono o navegar la web generan grandes cantidades de datos. De la misma manera, los avances en las tecnologías de la información hicieron que los flujos de información en las redes IP sean cada vez mayores. En muchos casos, los datos generados pueden ser minados para obtener información relevante que puede ser utilizada en gran cantidad de aplicaciones. Sin embargo, cuando el volumen de datos es muy grande, se presentan algunos problemas:

- No es posible un procesamiento eficiente de los datos usando métodos que requieran varias pasadas sobre el dataset (por ejemplo, aquellos usados en BigData). En su lugar, dada la velocidad a la que se producen estos datos, uno puede permitirse procesar cada dato a lo sumo una vez, lo que impone ciertas restricciones en la implementación de los algoritmos de procesamiento. Por lo tanto, las técnicas de procesamiento de Streaming Data deben ser diseñadas de forma que los algoritmos cumplan su cometido con una única pasada por el conjunto de datos.
- En muchos casos, el proceso de minar Streaming Data tiene una componente temporal inherente: los datos puede evolucionar a medida que pasa el tiempo. Este comportamiento de los streams de datos es llamado localidad temporal[13]. Por esta razón, una adaptación directa de los algoritmos de una pasada para minar Streaming Data puede no se una

solución efectiva para esta tarea. Estos deben diseñados cuidadosamente haciendo foco en la evolución de los datos que están siendo procesados.

Antes de presentar algunas de las técnica existentes para procesar *streams* de datos, es conveniente introducir la notación que utilizada para describirlos.

3.1. El modelo de Data Streaming

180

190

En el modelo de *Data Streaming*, los datos que van a ser procesados no están disponibles para ser accedidas aleatoriamente desde disco o memoria, sino que llegan como uno o mas flujos continuos de datos. Los *streams* de datos son diferentes de los modelos relacionales convencionales en varios aspectos:

- Los elementos del *stream* deben ser procesados de manera *online*, esto es, sin ser persistidos en ningún soporte de almacenamiento.
- Los sistemas que procesan los datos no tienen control sobre el orden en los elementos de la entrada.
- \blacksquare Los stream de datos pueden ser infinitos.
- Una vez que un elemento es procesado, este se descarta.⁴

Otra característica de este modelo que es conveniente remarcar se relaciona con las consultas a los datos procesados: podemos hacer una distinción entre consultas únicas y consultas continuas[14]. Las primeras (como aquellas que se hacen mediante un DBMS tradicional) son evaluadas una vez sobre un conjunto de datos en un instante de tiempo particular (los datos no cambian durante la duración de la consulta). La consultas continuas, por otro lado, son evaluadas continuamente mientras el stream de datos esta ocurriendo. Las respuestas a estas consultas pueden ser almacenadas y actualizadas en la medida que llegan nuevos flujos de datos, o pueden ser origen de otro stream de datos.

Existen tres modelos diferentes para describir *Streaming Data*. Supongamos que se quiere analizar un *stream* de datos que está siendo generado por cierta aplicación. Los datos t_1, t_2, \ldots llegan secuencialmente, elemento por elemento, y describe una señal **a** como una función unidimensional $\mathbf{a}:[1\ldots N]\to R$. Los modelos difieren en cómo los t_i describen a la señal **a**.

3.1.1. Modelo de series de tiempo

Dado los elementos t_i que se presentan en orden creciente de i, la señal \mathbf{a} esta conformada por $\mathbf{a}[i] = t_i$. Este modelo es adecuado para ser usado cuando los elementos del *stream* forman series de tiempo. Por ejemplo, si se quiere realizar observaciones sobre el volumen de transacciones del NASDAQ cada minuto.

3.1.2. Modelo de caja registradora

En este modelo, los t_i modifican el estado de los $\mathbf{a}[j]$. Podemos pensar cada elemento t_i como una tupla $t_i = (j, I_i), \ I_i \geq 0$ que provoca una actualización $\mathbf{a}_i[j] = \mathbf{a}_{i-1}[j] + I_i$ donde \mathbf{a}_i es el estado de la señal luego de procesar el i-ésimo elemento del *stream*. Es importante observar que múltiples t_i pueden incrementar un $\mathbf{a}[j]$ a lo largo del tiempo. Este es tal vez el más popular de los modelos de *streams* de datos. Es útil para aplicaciones como monitoreo de direcciones IP que acceden un servidor, direcciones IP de origen que envían paquete en un enlace dado, etc, dado que la misma dirección IP puede acceder al servidor muchas veces o puede enviar multiples paquetes en un período de tiempo dado.

⁴En algunas aplicaciones los elementos pueden ser almanacenados para procesamiento posterior, pero en un modelo de *streaminq* "puro" los elementos son procesados una única vez.

3.1.3. El modelo Turnstile

De la misma forma que en el modelo anterior, los t_i actualizan a los $\mathbf{a}[j]$. Cada elemento $t_i = (j, U_i)$ produce $\mathbf{a}_i[j] = \mathbf{a}_{i-1}[j] + U_i$ donde \mathbf{a}_i es la señal luego de la ocurrencia del i-ésimo elemento en el stream, y U_i puede ser positivo o negativo. Este modelo es el mas general de todos (notar que es igual al modelo de caja registradora, pero admite valores de I_i negativos). Es apropiado para estudiar situaciones completamente dinámicas donde puede haber inserción y borrado de elementos.

Realizar consultas sobre streams de datos presenta desafíos únicos. Dado que los flujos de datos son potencialmente infinitos, la cantidad de espacio de almacenamiento requerido para calcular la respuesta exacta de una consulta acerca de los datos también podría crecer infinitamente. Si bien se han estudiado algoritmos para procesar conjuntos de datos que exceden la memoria principal de una computadora[15], estos no son útiles para aplicaciones de Data Streaming dado que no soportan consultas continuas y son típicamente muy lentos para generar resultados en tiempo real. El modelo en discusión es aplicable a problemas donde es importante que los resultados de las consultas realizadas se obtengan rápidamente y donde hay grandes volúmenes de datos que están siendo producidos continuamente a gran velocidad. Nuevos datos continúan llegando mientras los datos previos están siendo procesados; el tiempo de cómputo por dato debe ser bajo, de lo contrario, se introduce latencia y el algoritmo no será capaz de procesar los datos en tiempo real. Por este motivo, estos algoritmos deben ser capaces de funcionar haciendo uso únicamente de la memoria principal, sin realizar accesos a disco.

Cuando la cantidad de memoria disponible es finita, no siempre es posible producir respuestas exactas a las consultas realizadas a *streams* de datos (recordemos, potencialmente de duración infinita). Sin embargo, es posible obtener muy buenas aproximaciones a las mismas, que son aceptables cuando no se dispone de la respuesta exacta. Si bien distintos algoritmos para aproximar respuestas a consultas realizadas sobre *streams* de datos han sido estudiados en los últimos años, para este trabajo haremos foco en una estructura de datos conocida como *sketch*[16][17] debido a las bondades que presentan. Además, introduciremos algunas técnicas de conteo de gran utilidad para resolver ciertos problemas de minado de *Streaming Data*.

4. El problema de los elementos frecuentes

El problema de los elementos frecuentes es uno de los más estudiados desde los años 80 dada su importancia en el minado de *Data Streams*. Muchas de las técnica utilizadas en este área se basan directa o indirectamente en encontrar elementos frecuentes en *streams* de datos. Enunciado de forma sencilla, el problema consta en determinar aquellos elementos que tienen mayor frecuencia de ocurrencia dado un *stream* de elementos. Aquí asumimos que el *stream* es lo suficientemente largo como para que las soluciones convencionales, intensivas en uso de recursos, como ordenar los elementos o mantener un contador por cada uno estos, sean inviables.

Podemos dividir los algoritmos para encontrar elementos frecuentes en tres clases. Los **algoritmos basados en conteo** operan sobre un subconjunto de elementos y mantienen un contador asociado a los mismos. Por cada entrada nueva, el algoritmo decide si actualizar o no el contador del elemento, y de hacerlo, con que valor lo afecta. La segunda clase de algoritmos, que no será analizada en este documento, es una derivación de los **algoritmos de cuantiles**; el problema de encontrar cuantiles en la distribución de un *stream* de datos nos permite encontrar elementos frecuentes. Finalmente, los algoritmos basados en *sketchs* utilizan proyecciones lineales aleatorias de las entradas[18] (vistas como vectores de características) y por lo tanto, no almacenan explícitamente los elementos de entrada. Estos últimos tienen ciertas propiedades que son de gran utilidad para procesamiento de múltiples *streams* de datos.

4.1. Elementos frecuentes en data streams

Antes de describir los algoritmos para encontrar elementos frecuentes es necesario enunciar formalmente el problema.

4.1.1. Elementos frecuentes

Dado un stream S de n elementos t_1, t_2, \ldots, t_n , la frecuencia del elemento i es $f_i = |\{j|t_j = i\}|$ (es decir, la cantidad de índices j donde el jth elemento es i). Los ϕ elementos frecuentes están dados por $\{i|f_i > \phi n\}$.

Ejemplo: El stream $S = \{a, a, b, a, c, b, a\}$ tiene $f_a = 4$, $f_b = 2$ y $f_c = 1$. Para $\phi = 0.2$ los elementos frecuentes son a y b.

Encontrar exactamente los ϕ elementos frecuentes puede ser costoso en términos de recursos: un algoritmo que resuelve el problema de los elementos frecuentes debe usar una cantidad lineal de espacio[19]. Para relajar el requerimiento de recursos se utiliza una aproximación a la solución del problema.

4.1.2. ϵ -aproximación de elementos frecuentes

Dado un stream S de n elementos una ϵ -aproximación de los elementos frecuentes esta dada por el conjunto F tal que todos los elementos $i \in F$ tengan frecuencia $f_i > (\phi - \epsilon)n$, y que no exista $i \notin F$ con $f_i > \phi n$. Dicho de otra manera, una ϵ -aproximación de los elementos frecuentes consiste en encontrar todos los elementos con frecuencia mayor o igual a ϕn , de los cuales ninguno tiene frecuencia menor que $(\phi - \epsilon)n$.

4.1.3. Estimación de la frecuencia de un elemento

Un problema relacionado a los anteriores consiste en estimar la frecuencia de los elementos al momento que se están procesando los datos. Dado un stream S de n elementos con frecuencias f_i , el problema de estimación de frecuencia consiste en procesar el stream de forma que para cualquier i se pude obtener un \hat{f}_i tal que $\hat{f}_i \leq f_i \leq \hat{f}_i + \epsilon n$.

Los elementos frecuentes, también llamados **heavy hitters**, son problemas muy estudiados por sus aplicaciones en bases de datos y data streaming. Son también conocidos como top-k, frequent items, elephants o iceberg queries. Usualmente, cuando se busca identificar estos elementos de forma on-line se trabaja en ventanas de tiempo acotadas o épocas de detección con el objetivo de encontrar heavy hitters en momentos particulares del tiempo. Otro patrón

que resulta de interés para caracterizar los datos en tránsito son los **heavy changers**: podemos decir que los *heavy changers* son aquellos elementos que varían de forma significativa en épocas consecutivas, es decir, presentan inconsistencias significativas entre el comportamiento observado y el comportamiento normal del flujo de datos (el cual se basa en lo ocurrido en el pasado) en un período de tiempo acotado[20].

Elementos frecuentes: un escenario de aplicación Los dispositivos conectados a Internet y a grandes redes privadas transfieren paquetes IP. Para manejar estas redes es necesario entender en existencia de fallas, la ocurrencia de ciertos patrones de uso y actividades poco usuales en progreso. Esto hace necesario el análisis del tráfico y fallas en tiempo real.

Consideremos el trafico de datos en redes TCP/IP. Este puede ser visto en varios niveles:

310

315

- En el nivel más granular tenemos logs de capa de red: cada paquete IP tiene una cabecera que contiene dirección IP de origen y destino, puertos, etc.
- En un nivel más de agregación tenemos los logs de flujos: cada flujo es una colección de paquetes con el mismo valor para cierto atributo, como la dirección IP de origen y destino, y el log contiene información acumulada del número de bytes y paquetes enviados, tiempo de comienzo y fin de la transmisión, protocolo, etc.
- Al nivel más alto, tenemos logs SNMP, que son los datos agregados del número de bytes enviados a través de cada nodo cada cierta cantidad de minutos.

Si bien procesar datos agregados no demanda el uso de recursos computacionales de forma intensiva, utilizar información de mas bajo nivel nos permite tenes más precisión en los resultados de los algoritmos dado que estamos procesando mayor cantidad de información, lo que representa de mejor manera la realidad. Por ejemplo, podemos pensar a los segmentos TCP que pasan por un gateway como los elementos de un stream de datos. Aunque estos ocurren de manera secuencial, pertenecen a diferentes sesiones que están activas al mismo tiempo. De esta manera se puede analizar el comportamiento del tráfico de red de todas las sesiones en búsqueda de elementos frecuentes.

Consideremos el problema de determinar la frecuencia de ocurrencia de cierto evento, perteneciente a algún universo de eventos posibles U. Para obtenerla basta con llevar registro de la frecuencia f_i por cada elemento $i \in U$: dado $U_0 = \{a,b,c\}$ y una serie o stream de eventos $S = \{a,a,b,a,c,b,a\}$, la frecuencia de ocurrencia de cada elemento de U_0 es $f_a = 4$, $f_b = 2$ y $f_c = 1$. A pesar de su simpleza, el costo de memoria de este algoritmo crece exponencialmente cuando la cantidad de eventos posibles |U| aumenta. En términos de implementación, el |U| esta dado por la cantidad de bits que se usen para representar el conjunto. Así, si usamos contadores de 32 bits y $|U| = 2^{16}$ tenemos que se necesita almacenar en memoria $2^{16} * 32 \ bits \equiv 8 \ \mathrm{KB}$ en contadores, uno por cada evento posible de U.

Sin embargo, como podemos ver en la figura 2, el uso de memoria crece exponencialmente a medida que nuestro universo de posibles elementos se hace más grande. Este tipo de problemas y similares llevaron al desarrollo de diferentes técnicas de conteo: bajo esta abstracción, los algoritmos procesan la entrada una única vez y deben calcular de manera precisa varios resultados usando recursos (espacio y tiempo por elemento) de forma estrictamente sublineal al tamaño de la entrada[21]. Existen diferentes algoritmos para procesar y obtener información acerca de los eventos usando estructuras de datos que utilizan el espacio de memoria eficientemente. Sin embargo, estos métodos no calculan la frecuencia exacta de cada evento sino que la estiman: en general, para cantidades masivas de eventos basta con tener una buena aproximación de las frecuencias para identificar anomalías.

Figura 2: Uso de memoria en función del tamaño del universo de elementos posibles.

5. Técnicas para encontrar elementos frecuentes

En algunos escenarios, resolver exactamente el problema de los *phi* elementos frecuentes que se enunció en la sección 4.1.1 es inviable dado a los requerimientos de espacio que presenta[22]. Se han propuesto gran variedad de algoritmos para la resolución del mismo y sus variaciones [22][23][24][25]. Cómo se mencionó anteriormente, esta técnicas pueden se clasificas en dos tipos, que se describen a continuación.

5.1. Técnicas basadas en conteo

Los algoritmos basados en técnicas de conteo mantienen contadores para un subconjunto T del universo de elementos posibles U. A continuación se describen algunos algoritmos de conteo existentes y sus características.

55 **5.1.1.** MAJORITY

360

El problema de los elementos frecuentes fue estudiado por primera vez en la década del 80, y fue enunciado de esta manera:

Supongamos una lista de n números, representando los "votos" de n procesadores en el resultado de cierto cálculo. Queremos determinar si hay un voto mayoritario y cual es ese voto. [26]

Para solucionar el problema, los autores desarrollaron un algoritmo de una pasada llamado MAJORITY. Este puede ser descrito de la siguiente manera: se inicializa una elemento cualquiera con su contador en 0. Por cada elemento subsecuente del stream, si es el mismo que el elemento almacenado, se incrementa el contador en 1. Si el elemento es diferente y el contador es 0, entonces se reemplaza el elemento y se incrementa el contador en 1. De lo contrario, se decrementa el contador. Luego de procesar todos los elementos, el algoritmo garantiza que si hay un voto mayoritario, entonces este debe ser presentado por el algoritmo. En el peor caso, si se procesa un stream de n elementos, el algoritmo realiza 2n comparaciones.

Sea cada elemento $t_i = (j, I_i)$ con $I_i = 1$, el pseudocódigo de MAJORITY es como sigue:

Algorithm 1: Algoritmo MAJORITY para encontrar el elemento mas frecuente

```
1 function MAJORITY ();
   Input: Un stream de elementos t_i \in S
    Output: El elemento con mayor frecuencia de ocurrencia
 e \leftarrow \emptyset;
 c \leftarrow 0;
 4 foreach t_i do
        if j = e then
            c \leftarrow c + 1;
 6
 7
        else
            if c = 0 then
 8
 9
                 e \leftarrow j;
10
11
            else
              c \leftarrow c - 1;
12
13
            end
       \quad \text{end} \quad
14
15 end
```

Usando un argumento de paridad podemos concluir que el resultado del algoritmo es el correcto: si por cada elemento que no es el mayoritario tomamos uno de los mayoritarios, al final van a quedar solo elementos del conjunto mayoritario. Como puede observarse en el algoritmo 1 no existe valor de retorno. En general, los algoritmos para procesar *streams* de datos actualizan su estado con cada elemento procesado, evitando retornar valor alguno e interrumpir su ejecución.

Esto es característico de los algoritmos de *Data Streaming* dado que se suponen *streams* de datos infinitos.

5.1.2. FREQUENT

Este algoritmo, que es una generalización de MAJORITY, fue presentado simultáneamente en [27] y [24]. Permite encontrar todos los elementos en el *stream* de datos cuya frecuencia excede cierto umbral $\phi = 1/(k+1)$ dado un $k \in \mathbb{Z}$.

Teorema Existe un algoritmo de una pasada que usa k contadores y puede determinar un conjunto de a lo sumo k elementos incluyendo aquellos que ocurren más de N/(k+1) veces en un stream de elementos de longitud N.

Prueba Sea un elemento x que ocurre t>N/(k+1) veces. Supongamos que x fue visto t_f veces cuando los k elementos ya estaban siendo usados con otros elementos distintos de x, y t_i veces cuando aún existía lugar para agregar su contador o este estaba siendo usado. Así, el contador de x se incrementa t_i veces, y $t_f+t_i=t>N/(k+1)$. Además, sea t_d el número de veces que el contador de x es decrementado dada la ocurrencia de un elemento distinto de x. Dado que un contador nunca es negativo, $t_i \geq t_d$. Si la desigualdad es estricta, x es siempre positivo cuando el algoritmo termina. Con cada uno de los t_f+t_d decrementos, podemos inferir la ocurrencia de otros k elementos, además de x. Así, $(k+1)(t_f+t_d) \leq N$. Si el valor final de x es 0, entonces $t_d=t_i$, y por lo tanto $t=t_f+t_i=t_f+t_d>N/(k+1)$. Multiplicando a ambos lados por (k+1), que es siempre positivo, tenemos $(m+1)(t_f+t_d)>N$ que es una contradicción. Finalmente, concluimos que $t_i>t_d$, por lo que el contador de x permanece positivo y x es al menos uno de lo k candidatos restantes. *

Dada una secuencia elementos $S = \{t_1, t_2, ..., t_N\}$ y un universo U de elementos posibles, tal que $t_i \in U$, |U| = n, $\phi \in R$ y $0 < \phi < 1$. Suponemos ademas que $N \gg n \gg k$. Queremos encontrar el conjunto $H \subset U$ cuyos elementos tengan una frecuencia de ocurrencia mayor a ϕN , esto es, aquellos elementos $e \in H$ tal que $f_H(e) > \phi N$ donde $f_H(x)$ es el número de ocurrencias $\forall x \in S$.

En lugar de guardar solo un elemento y un contador FREQUENT almacena una lista $\bf A$ de l elementos (es implementado mediante un diccionario), cada uno con un contador asociado tal que $|{\bf A}| \equiv |H|$. Cada nuevo elemento es comparado contra los elementos existentes en $\bf A$ y se incrementa el contador correspondiente. Si el elemento no está presente en la lista puede suceder lo siguiente: si algún contador está en cero se reemplaza el elemento asociado y se inicializa el contador en 1. Si los contadores de todos los elementos están siendo utilizados, entonces todos son decrementados en 1. Este algoritmo asegura que, al finalizar su ejecución, cada contador asociado a cada elemento esta a lo sumo ϵN unidades por debajo del valor real si $k=1/\epsilon$.[28].

FREQUENT puede resolver el problema de estimación de frecuencia desarrollado en la sección 4.1.1 con $\epsilon = 1/k$. El algoritmo O(n) en tiempo y O(1) en memoria.

5.2. Técnicas basadas en sketches

410

Muchas técnicas desarrolladas para procesar grandes volúmenes de datos y realizar consultas sobre los mismos asumen que los datos son estáticos, almacenados en algún soporte físico. Sin embargo, para ciertas aplicaciones este enfoque no es viable. Esta restricción es la que más importancia tuvo en relación al nacimiento de los métodos de data streaming e impulso el desarrollo de algoritmos livianos sumamente eficientes (sublineales en el uso de memoria), y estructura de datos probabilistas que pueden usarse para responder ciertas preguntas sobre los datos, de manera precisa y con una probabilidad razonablemente alta. Este nuevo enfoque utiliza una representación comprimida (con cierta pérdida) de los datos en lugar de almacenarlos en su totalidad.

Los *sketch* son estructuras de datos compactas, capaces de representar vectores de alta dimensionalidad y responder consultas realizadas sobre estos vectores con garantía de alta precisión en la respuesta[29]. Son usadas en situaciones donde el costo de almacenar la totalidad de los

Algorithm 2: Algoritmo FREQUENT para encontrar los k-elementos frecuentes

```
1 function FREQUENT (l, k);
   Input: Un stream de elementos t_i \in S
    Output: Los elementos cuya frecuencia excede 1/k
 n \leftarrow 0;
   A \leftarrow \emptyset;
 3
 4 foreach t_i do
        n \leftarrow n + 1;
 5
        if t_i \in A then
 6
            A[t_i] \leftarrow A[t_i] + 1;
 7
 8
        else
             if |A| < l then
 9
                A[t_i] \leftarrow 1;
10
             else
11
12
                 forall t_i \in A do
                      A[t_j] \leftarrow A[t_j] - 1;
13
                     if A[t_j] \leq 0 then
14
                          A[t_j] \leftarrow \emptyset
15
16
                 end
17
             end
18
        end
19
20 end
```

datos es prohibitivo (al menos en soporte de acceso rápido como la memoria en contraposición de disco rígido). La estructura de datos mantiene una proyección lineal del vector junto con un conjunto de vectores aleatorios (definidos implícitamente por funciones simples de hash). Al incrementar el rango de las funciones de hash se incrementa la precisión de la representación, y al incrementar el número de funciones de hash disminuye la probabilidad de realizar malas estimaciones. Si representamos las entradas como vectores, estos pueden ser multiplicados por una $matriz\ sketch$. El $vector\ sketch$ resultado contiene la información suficiente para responder de forma aproximada ciertas preguntas sobre los datos procesados. Por ejemplo, si codificamos los elementos del stream de datos como vectores cuya i-ésima entrada es su frecuencia f_i , el sketch es el producto de este vector y una matriz⁵.

Los algoritmos basados en *sketches* resuelven el problema de estimación de frecuencia descrito en 4.1, pero necesitan información adicional para resolver el problema de los elementos frecuentes. Por esto, se suele aumentar la estructura de datos de los *sketches* con algún método de conteo para estimar la frecuencia de los elementos de manera eficiente.

Dado que el funcionamiento de estas estructuras puede parecer contra intuitivo, es conveniente introducir una estructura de datos similar (especialmente en las variantes que realizan conteo de elementos) llamada filtro de *Bloom*, de forma de ganar intuición acerca del funcionamientos de los *sketches*.

5.2.1. Filtros Bloom

Un filtro de *Bloom* es una estructura de datos probabilista, eficiente en uso de memoria, utilizada para determinar si un elemento pertenece o no a un conjunto o *set*. La misma puede reportar falsos positivos cuando se consulta por la existencia de cierto elemento al conjunto[30]; en otras palabras, una consulta puede retornar que es *posible que el elemento sea parte del conjunto* o que *definitivamente no esta presente en el conjunto*. La ventana principal de esta estructura de datos sobre las tradicionales es la eficiencia en el uso de memoria.

⁵Existen diferentes formas de definir la *matriz sketch*, cada una con aplicaciones particulares. Para conteo de eventos se usan familias de funciones de *hash* con ciertas propiedades para definir la proyección lineal.

Para representar un conjunto U de n elementos posibles, un filtro Bloom clásico hace uso de un vector de m bits con $m \ll n$. Al comienzo todos los bits están en 0. Deben existir un conjunto de k funciones de hash diferentes, las cuales mapean elementos del conjunto U a una de las m posiciones del vector: $h_i(e): U \to m, \ e \in U, \ m \in \mathbf{Z} \ y \ 0 < i < k$.

Para insertar un elemento e en el filtro se calcula las posiciones en el array evaluando las k funciones de hash $h_1(e), h_2(e), \ldots, h_k(e)$. Luego se asigna un 1 a cada posición del array. Para consultar si un elemento e' está presente o no en el conjunto se deben evaluar las k funciones de hash $h_1(e'), h_2(e'), \ldots, h_k(e')$ para obtener k posiciones en el filtro. Si al menos un bit de los apuntados por las funciones de hash es 0, entonces el elemento e' no existe en el conjunto. Si todos los bits que indican las funciones de hash están en 1 es probable que el elemento sea parte del conjunto.

Figura 3: Filtro Bloom

La imagen muestra un filtro de Bloom luego que los elementos e_1 y e_2 fueron insertados. El elemento e_3 no se encuentra en el conjunto dado que al menos uno de los bits a los que apuntan las funciones de hash es 0. La pertenencia de un elemento e' al conjunto puede ser reportada erróneamente si las k funciones de hash $h_i(e')$ apuntan a bits con valor 1.

La ventaja principal de los filtros de *Bloom* es evidente cuando se la compara con otras estructuras de datos usadas para implementar *sets* (listas, tablas de *hash*, arboles binarios de búsqueda, etc). Estas requieren almacenar el elemento en sí, lo cual puede requerir una cantidad pequeña de bits si los elementos son números enteros, hasta un número arbitrario de bits en el caso que los elementos sean *strings*. Sin embargo, estas estructuras probabilísticas no necesitan almacenar el elemento en sí, y tampoco introducen el *overhead* generado por los punteros que utilizan las estructuras enlazadas como las listas.

La cantidad óptima de funciones de hash k puede deducirse como sigue. Sea la probabilidad que uno de los bits del filtro de Bloom sea 0:

$$\mathcal{P}[h_i(x) = 0] = (1 - \frac{1}{m})^{kn} \approx e^{-\frac{kn}{m}} = p$$
 (1)

La probabilidad de tener un falso positivo está dada por:

475

$$(1 - e^{-\frac{kn}{m}})^k = (1 - p)^k = \varepsilon \tag{2}$$

El valor óptimo de \hat{k} se obtiene al minimizar la ecuación anterior, de forma que $\hat{k} = \ln(2) \frac{m}{n}$. La probabilidad de falso positivo está dada por la fórmula[31]:

$$\varepsilon = (0.5)^{\hat{k}} = (0.6185)^{\frac{m}{n}} \tag{3}$$

Un filtro de Bloom con un error de 1% y un valor óptimo de k requiere alrededor de 10 bits por elemento, sin importar el tamaño del elemento. Para reducir el error a un 0,1% se deben emplear alrededor de 15 bits.

Esta estructura de datos, en su versión clásica, no resuelve el problema de los elementos frecuentes (para esto se utiliza una variante llamada *filtros de conteo*). Sin embargo, resulta útil para ganar intuición: los algoritmos de *sketches* son similares a los filtros de *Bloom* en el uso de las funciones de hash para representar conjuntos de elementos. Utiliza estructuras auxiliares que permiten aproximar el número de elementos que fueron vistos en el *stream* de datos.

5.2.2. CountMin Sketch

485

495

Los sketches son menos conocidos que los filtros Bloom pero comparten ciertas similitudes. Son estructuras de datos que permiten sumarizar un stream de datos y pueden utilizarse para resolver el problema de los elementos frecuentes. Esto puede ser llevado a cabo usando menos espacio del que se utilizaría almacenando un contador por elemento, pero permitiendo que los contadores tengan cierto error en algunas ocasiones. Si bien existen otras implementaciones cómo Count Sketch[22] y AMS Sketch[16], CountMin Sketch es una estructura de datos mas sencilla, fácil de construir, que asegura muy buenas garantías de precisión cuando se hacen consultas sobre los datos procesados.

Un CM Sketch es simplemente una matriz de contadores de d filas y w columnas, cuyo valor inicial es 0. Además, se escogen aleatoriamente d funciones de hash de una familia de funciones de hash independientes de a pares (ver Sección 8.1):

$$h_1 \dots h_d : \{1 \dots n\} \rightarrow \{1 \dots w\}$$

Una vez que w y d son definidos, el espacio alocado no varía: la estructura de datos es representada por wd contadores y d funciones de hash (que puede ser representado en O(1) variables[32]).

Sea **a** un vector de dimensión n cuyo estado en el tiempo t es $\mathbf{a}(t) = [a_1(t), a_2(t), \dots, a_n(t)]$. Inicialmente **a** es el vector **0**, es decir $a_i(0) = 0 \ \forall i$. Las actualizaciones a los elementos de **a** se representan mediante un *stream* de tuplas. De forma general, la tupla (i_t, c_t) representa el t-ésimo elemento procesado⁶:

$$a_{i_t}(t) = a_{i_t}(t-1) + c_t$$

 $a_{i_{t'}}(t) = a_{i_{t'}}(t-1) \ \forall t' \neq t$

Por cada elemento del *stream* se calculan las d posiciones de los contadores mediante $(j, h_j(i_t))$ para $j \in \{0, 1 \dots d-1\}$ y se los actualiza con el valor de c_t :

Formalmente, dado (i_t, c_t) , se realizan las siguientes modificaciones:

$$\forall \ 0 \le j < d : CM[j, h_i(i_t)] \leftarrow CM[j, h_i(i_t)] + c_t \tag{4}$$

Como computar cada función de hash es O(1), el proceso completo de actualización es O(d) (independiente de w). Por este motivo, esta estructura de datos es ideal para procesar datos que son generados a gran velocidad.

Los sketches pueden ser usados para estimar el valor de a_i en cualquier instante de tiempo. El proceso de consulta es similar al de actualización: dado un i_t , podemos estimar el valor a_i de la siguiente forma:

$$\hat{a}_i = \min_{\{0,1...d-1\}} CM[j, h_j(i_t)]$$
(5)

Teorema Sea $w = \lceil e/\varepsilon \rceil$ y $d = \lceil \ln(1/\delta) \rceil$, la estimación \hat{a}_i tiene las siguientes garantías: $a_i \leq \hat{a}_i$ y, con probabilidad al menos $1 - \delta$:

$$\hat{a}_i = a_i + \varepsilon ||\mathbf{a}||_1 \tag{6}$$

El desarrollo y la demostración de este teorema puede encontrarse en [29]. Es importante remarcar cómo se comporta la estimación de los contadores cuando variamos el tamaño de la matriz.

⁶Para conteo de elementos $c_t = 1$.

Figura 4: COUNTMIN Sketch

La figura muestra el proceso de actualización de un sketch COUNTMIN. Se calcula la posición de los contadores para cada fila evaluando la función de hash correspondiente con el elemento i_t . Luego, los contadores de las posiciones $(j, h_j(i_t))$ se actualizan con el valor de c_t .

A medida que agregamos filas, el valor de δ tiene que disminuir, por lo que la probabilidad que \hat{a}_i este acotado como se muestra en el teorema aumenta. Además, cuando la cantidad de columnas w aumenta, el valor de ε tiene que disminuir, haciendo que la estimación \hat{a}_i se aproxime cada vez más a el valor real.

5.3. Estructura de datos propuesta

A lo largo de los años, la comunidad ha estudiado y publicado numerosas mejoras a estas estructuras de datos. En particular, los LD-Sketch [33] hacen uso de las técnicas de conteo tratadas en 5.1, mejorando así la precisión de las estimaciones. Además, sus autores proponen una arquitecta donde cada objeto puede ser almacenado y actualizado de forma distribuida, permitiendo procesar un conjunto de sketches en paralelo, brindando redundancia y la posibilidad de escalar el sistema para hacer frente a volúmenes masivos de datos.

La idea principal es hacer que cada celda del sketch utilice una técnica de conteo para mantener conjunto de potenciales elementos anómalos en una lista asociativa. La detección local⁷ garantiza la ausencia de falsos negativos y permite identificar elementos anómalos (con algunos falsos positivos) en un único nodo de cómputo.

Para la técnica de conteo FREQUENT (ver 5.1.2) el siguiente lema muestra la cota de error para el valor estimado[34].

Lema 1 Sea un stream de datos $\{(j, I_i)\}$ con $I_i = 1$, S(x) representa la cantidad de elementos x que ocurrieron en una época y U todos los elementos procesados en esa época. Si j se mantiene en A, entonces $A[j] \leq S(x) \leq A[j] + \frac{U}{l}$. Si x no se mantiene en A, su valor estimado es 0 y $0 \leq S(x) \leq \frac{U}{l}$

⁷Únicamente se trabajará con detección local. La detección distribuida reduce la cantidad de falsos positivos combinando los resultados de varios sketches procesados en paralelo.

Las técnicas basadas en conte
o pueden identificar todos los heavy hitters (sin incurrir en falsos negativos) que excedan el umbra
l $\phi=\frac{U}{I}$ consultando los elementos de la lista asociativa.

Consideremos ahora un sketch con r filas. A cada fila i $(1 \le i \le r)$ se le asocian w cubetas y una función de hash 2-universal independiente f_i que mapea un elemento o key a una de las w cubetas. Hacemos referencia a la j-ésima cubeta $(1 \le j \le w)$ de la fila i usando (i,j). Cada cubeta tiene un contador $V_{i,j}$ que se inicializa en 0. Por cada elemento (x, v_x) en el stream de datos, el proceso de actualización calcula el valor de hash de x para cada una de las r filas, incrementando el valor del contador en v_x (como se mencionó anteriormente, $v_x = 1$).

Las técnicas basadas en sketches pueden identificar todos los heavy hitters (sin falsos negativos) cuyo valor exceda el umbral ϕ comprobando si la cubeta correspondiente de todas las r filas tiene valores por encima de ϕ . Para detectar heavy changers, se debe computar la diferencia entre los contadores de cada cubeta en dos sketches adyacentes en el tiempo. Por la propiedad lineal de los mismos, la diferencia de cada cubeta es también la suma de las diferencias de los elementos hasheados a la misma. Si un elemento difiere en más de ϕ en todas las cubetas correspondientes a las r filas, este es reportado como heavy changer.

50 5.3.1. Proceso de actualización

535

Los sketches implementados en este desarrollo (a los que referiremos como LP-Sketch) están inspirados en los LD-Sketch y usan de base la estructura de los CM-Sketch: consisten en una matriz de contadores de r filas y w columnas donde en cada cubeta (i,j) se mantiene un contador $V_{i,j}$, pero además se agregan 3 componentes adicionales:

- Un vector asociativo o diccionario A_{i,j} usado para implementar uno de los métodos de detección basado en conteo descrito anteriormente.
- Una variable $l_{i,j}$ que define la longitud máxima del vector asociativo $A_{i,j}$.
- El error máximo de estimación de la suma real de los elementos cuyo hash apunta a la cubeta (i, j), que representado por $e_{i,j}$.

El vector $A_{i,j}$ es usado para mantener el conjunto de heavy keys candidatos en la cubeta (i,j). Por lo tanto, en el procedimiento de detección solo inspeccionamos los heavy keys candidatos almacenados solo en los $A_{i,j}$ lo cual mejora la velocidad y la precisión del método de detección. El algoritmo 4 detalla el proceso de actualización de un LP-Sketch.

Inicialmente $V_{i,j}$, $l_{i,j}$ y $e_{i,j}$ se inicializan en 0 y $A_{i,j}$ esta vacía para cada cubeta (i,j) donde $(1 \le i \le r)$ y $(1 \le j \le w)$. Para cada elemento del *stream* de datos (x, v_x) , se calcula para cada fila i el valor de hash mediante la función $j = f_i(x)$ y se actualiza cada cubeta (i,j) usando el algoritmo UPDATEBUCKET (ver algoritmo 3).

Dada la cubeta (i,j), si el elemento x está en $A_{i,j}$ incrementamos el contador $A_{i,j}[x]$, o si $A_{i,j}$ aún tiene espacio libre insertamos x en $A_{i,j}$. De lo contrario $A_{i,j}$ esta completo y se calcula el valor de decremento \hat{e} como el mínimo entre v_x y el mínimo valor de $A_{i,j}$. Luego, sumamos el valor de \hat{e} a $e_{i,j}$ (para ser usado posteriormente en el proceso de detección), restamos a todos los elementos de $A_{i,j}$ el valor de \hat{e} y eliminamos aquellos cuyos valores son menores o iguales a 0.

Podemos usar los LP-Sketch para estimar la suma real S(x) de cada elemento x. La estructura produce un par de estimaciones para cada elemento x y cada cubeta (i,j): una cota inferior $S_{i,j}^{low}(x)$ y una cota superior $S_{i,j}^{up}(x)$. Si x está en $A_{i,j}$, entonces $S_{i,j}^{low}(x) = A_{i,j}[x]$, de lo contrario $S_{i,j}^{low}(x) = 0$. Además, $S_{i,j}^{up}(x) = S_{i,j}^{low}(x) + e_{i,j}$.

5.3.2. Detección de heavy keys

Para detectar heavy hitters, es decir, elementos con alta frecuencia de ocurrencia, utilizamos un único sketch. Al final de cada época, se examinan cada una de las cubetas (i,j). Se identifican aquellas cuyo contador $V_{i,j} \geq \phi$ y se examinan los elementos en $A_{i,j}$. Un elemento x es reportado como heavy hitter si $S_{i,j}^{up}(x) \geq \phi$ para todas las filas i, donde $1 \leq i \leq r$, y $j = f_i(x)$.

Para detectar heavy changers se necesitan dos sketches adyacentes en el tiempo. Al final de la segunda época, se identifican todas las cubetas (i,j) con $V_{i,j} \ge \phi$ en al menos una época, y

 $^{^8}$ La posición que define el valor de hash de un elemento suele referirse en la literatura como bucket

Algorithm 3: Proceso de actualización de un LP-Sketch

```
Input: Un elemento del stream (x, v_x)
 1 <u>UPDATEBUCKET</u>(x, v_x, i, j);
 2 if x \in A_{i,j} then
         A_{i,j}[x] \leftarrow A_{i,j}[x] + v_x;
 4 else
         if |A_{i,j}| < l then
 5
 6
           A_{i,j}[x] \leftarrow v_x;
 7
         else
              \hat{e} = min(v_x, min(A_{i,j}));
 8
              e_{i,j} = e_{i,j} + \hat{e};
 9
              forall x \in A_{i,j} do
10
                   A_{i,j}[x] \leftarrow A_{i,j}[x] - \hat{e};
11
                   if A_{i,j}[x] \leq 0 then
12
                    A_{i,j}[x] \leftarrow \emptyset
13
                   end
14
              \mathbf{end}
15
         end
16
17 end
```

Algorithm 4: Proceso de actualización de un LP-Sketch

```
Input: Un stream de elementos \{(x, v_x)\}

1 \underline{\text{UPDATE}}(x, v_x);

2 forall (x, v_x) do

3 | forall row \ i = 1, 2, \dots, r do

4 | j = f_i(x);

5 | \underline{\text{UPDATEBUCKET}}(x, v_x, i, j)

6 | end

7 end
```

se examinan los elementos de $A_{i,j}$ en ambos sketches. Se calculan las cotas para la estimación de la suma en ambas épocas: $S_{i,j}^{low,1}(x), \, S_{i,j}^{up,1}(x), \, S_{i,j}^{low,2}(x)$ y $S_{i,j}^{up,2}(x)$. El cambio estimado está dado por $D_{i,j}(x) = \max\{S_{i,j}^{up,1}(x) - S_{i,j}^{low,2}(x), S_{i,j}^{up,2}(x) - S_{i,j}^{low,1}(x)\}$. Un elemento x es reportado como $heavy\ changer\ si\ D_{i,j}(x) \geq \phi$ para todas las filas i, donde $1 \leq i \leq r$, y $j = f_i(x)$.

Lema 2 $S_{i,j}^{low}(x) \leq S(x) \leq S_{i,j}^{up}(x)$ para cada elemento x y cubeta (i,j). Del algoritmo 3, $S(x) \geq A_{i,j}[x] = S_{i,j}^{low}(x)$ dado que $A_{i,j}[x]$ no se incrementa nunca dado otro elemento que no sea x. Además, $A_{i,j}[x]$ es decrementado a lo sumo en $e_{i,j}$, por lo que $A_{i,j}[x] \geq S(x) - e_{i,j}$ y por lo tanto $S(x) \leq S_{i,j}^{up}(x)$.

Con esto se concluye el desarrollo de los fundamentos del método de detección de anomalías que será empleado en el sistema. Luego de introducir el modelado del problema que se pretende resolver, se tratarán los detalles de implementación de las técnicas tratadas.

5.4. Detección de anomalías en tráfico de red

El concepto de *kill chain* fue originalmente usado por los militares para describir los pasos que deben realizarse para atacar un objetivo dado. En 2011, Lockheed Martin publica un trabajo donde hace uso de la *cyber kill chain*[35] para definir los pasos usados por ciber atacantes en los ciber ataques que ocurren en la actualidad. La teoría dice que entendiendo cada uno de estos pasos, aquellos responsables de mantener los sistemas seguros pueden identificar y detener los ataques en cada uno de estos niveles: contar con más puntos para interceptar al atacante aumenta las posibilidades de frustrar su objetivo.

1. **Reconocimiento**: El atacante recolecta información de su objetivo antes de comenzar con el ataque en sí. Puede hacerlo buscando información pública disponible en Internet.

605

610

615

- 2. Weaponization⁹: El atacante utiliza una vulnerabilidad y crea un programa malicioso para enviar a la víctima. Este ocurre sin interacción alguna con el objetivo.
- 3. Entrega: El atacante envía el malware a su víctima usando un correo electrónico o cualquier otro medio de transmisión que el atacante disponga (llave USB, acceso físico, etc).
- 4. Explotación: Representa la acción por la cual se abusa de la vulnerabilidad mencionada.
- 5. **Instalación**: En esta etapa el atacante persiste una copia del malware en el sistema objetivo. No todos los ataques requieren pasar por esta etapa.
- 6. Comando y Control (C2): El atacante crea un canal de comando y control donde puede continuar operando los recursos internos de la empresa de manera remota.
- 7. Acción sobre los objetivos: Una vez dentro de la red de la víctima, el atacante logra el objetivo por el que diseña el ataque en primer lugar.

Una práctica muy común en la etapa reconocimiento es el escaneo de puertos. Una serie de mensajes son enviados por el atacante de forma de descubrir los servicios o puertos que el dispositivo expone públicamente. Este accionar genera un rastro visible en la infraestructura de red y en los dispositivos dado el incremento en el volumen de tráfico de paquetes.

Otro indicador son las fluctuaciones repentinas en los flujos de datos, que pueden indicar ataques de denegación de servicio (DoS). Incluso, sin ahondar en conceptos de seguridad informática, resulta de gran valor para los administradores de red contar con herramientas que permitan caracterizar el comportamiento del flujo de red, permitiendo entender como evoluciona a lo largo del tiempo de forma de contar con información adicional a la hora de realizar inversiones en la infraestructura.

Los dispositivos comprometidos hasta la etapa de comando y control pueden indicar un escenario crítico dado que aquellos recursos ya infectados pueden usarse para atacar otro objetivo. Genéricamente, se refiere al conjunto de dispositivos infectados como *botnet*. Recientemente la red basada en el malware *Mirai* fue utilizada para perpetrar un ataque de denegacion de servicio al portal Krebs on Security en el que se registraron picos de tráfico de hasta 665Gbps¹⁰. Además, se pueden detectar escenarios de exfiltración de datos al determinar cambios repentinos en el comportamiento normal del tráfico de red.

La lista de ataques podría extenderse, pero de forma general podemos concluir que determinar la ocurrencia de anomalías es una buena pista para comenzar a investigar si la infraestructura de una empresa o institución fue comprometida por un ataque. Más aún, mientras más rápida sea la detección y se intercepte de manera temprana la amenaza en la *kill chain*, menor será el impacto y más rápida la solución. Para lograr esto es necesario modelar el problema usando métodos de *data streaming*.

⁹No existe traducción directa al español para esta palabra

 $^{^{10} \}rm https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/$

6. Modelado del problema

El tráfico de red puede ser caracterizado de muchas maneras, dependiendo de que capa del modelo TCP/IP se esté analizando. La información que proveen las cabeceras de los segmentos TCP resulta sumamente conveniente debido a que:

- Permite identificar las conexiones punto a punto entre dispositivos, haciendo posible monitorear las comunicaciones por separado.
- Es sencilla de procesar dada su simpleza.

665

670

675

 Pueden obtenerse los flujos de red de toda una infraestructura con muy bajo impacto (port mirroring en switches).

Consideremos los segmento TCP que atraviesa un dispositivo de red que puede ser de infraestructura como también servidores de aplicación; estos pueden ser representados como un stream de eventos, donde cada elemento es una tupla (x, v_x) . El elemento x pertenece a un dominio $T = \{0, 1, 2, \ldots, n-1\}$ con |T| = n, y v_x es un valor asociado a x con $v_x = 1$ (representa la cantidad de paquetes identificados por x). Para el caso de detección de eventos en tráfico de red, cada elemento x identifica un segmento TCP y está formado por la 5-tupla IP de origen, IP de destino, puerto de origen, puerto de destino y protocolo.

$$x = < SrcIP, DstIP, SrcPort, DstPort, Prot >$$

Para el protocolo IPv4[36], las direcciones en la cabecera están representadas por 32 bits y el protocolo por un número entero de 8 bits (ver Apéndices). En las cabeceras TCP y UDP, los puertos de origen y destino usan 16 bits cada uno. Cada elemento x tiene una longitud total de 104 bits, y para el universo de elementos posibles T tenemos que $|T|=2^{104}\approx 10^{31}$. Cada uno de estos elementos debe ser transformado mediante una función de hash al momento de ser procesados por los algoritmos propuestos. Aquí se presentan dos opciones para llevar a cabo esta tarea:

- Podemos tratar a cada elemento x como un número entero de 104 bits. Luego, podemos construir una función de hash que transforme los elementos de T de forma que $f(x_i)$: $\{0,1,2,\ldots,n-1\} \rightarrow \{0,1,2,\ldots,m-1\}$ con $m \ll n$. Si bien este enfoque presenta ciertos inconvenientes por el hecho que no existen tipos estandares de datos con tal longitud en los lenguajes de programación existentes, tiene la ventaja que permite implementar la transformación como un conjunto de operaciones binarias como suma, multiplicación y división.
- Una segunda posibilidad consiste en evaluar cada elemento como una cadena de caracteres de longitud variable. Cada elemento está representado por la concatenación de los elementos que componen la 5-tupla. De esta manera, los elementos tienen semántica en si mismos. Por ejemplo, un elemento podría estar representado por la cadena de caracteres "10.0.0.1:1234-10.0.0.2:4444(6)", indicando la ocurrencia de un segmento TCP (6) entre la IP 10.0.0.1, puerto 1234 y la IP 10.0.0.2, puerto 4444. Para esta representación, la forma de construir las funciones de hash varía y resulta más costosa de evaluar en términos de recursos computacionales, lo cual no es deseable para este tipo de aplicación.

En aplicaciones reales, las redes de datos suelen estar separadas en subredes de a lo sumo un par de decenas de miles de dispositivos. Diseñar una solución que soporte un universo de 2^{104} elementos posibles significa invertir esfuerzo en construir un sistema con prestaciones que nunca serán utilizadas en su máximo potencial. En su lugar, podemos optar trabajar con un conjunto reducido de elementos acorde a lo que se observa en el mundo real.

Como el tamaño de las redes puede variar significativamente, resulta casi imposible definir a priori el tamaño del universo de elementos posibles, sin correr el riesgo que la solución no se adapte a un entorno particular. Por esto, y como será desarrollado en detalle más adelante en el documento, la forma de transformar los elementos representados por cadenas de caracteres a números enteros de forma eficiente y escalable consiste en asignar un valor numérico a cada elemento a medida que estos aparezcan, y mantener esa asociación en una base de datos que puede

ser consultada regularmente. Una vez obtenidos aquellos números enteros que representan los elementos anómalos, la transformación a cadena de caracteres se realiza mediante una consulta a dicha base de datos mediante un reverse lookup.

7. Diseño del sistema

En esta sección se describirá a alto nivel los componentes del sistema y su interacción. Luego se detallarán los distintos flujos de ejecución y cómo se integran entre sí. Finalmente, se discutirán las tecnologías utilizadas.

7.1. Arquitectura del sistema

Es importante evaluar las bondades y las desventajas de los distintos modelos de arquitectura de los sistemas distribuidos. Mediante la modularización podemos asegurarnos que su estructura satisface las demandas actuales (es decir, resuelve el problema para el cual fue construido) y puede ser adaptada para satisfacer demandas futuras. Podemos definir a los sistemas distribuidos como aquellos compuestos por varios componentes que no comparten el mismo espacio de memoria[37]. Cuando se diseñan sistemas distribuidos es conveniente considerar dos cuestiones:

- ¿Cuales son las entidades que se comunican entre si?
- ¿Cómo van a comunicarse, o para ser mas específicos, que paradigma de comunicación va a usarse?

Estas preguntas son centrales para entender los sistemas distribuidos; qué se está comunicando y cómo esas entidades se comunican entre si, definen una gran cantidad de variables a ser consideradas a la hora de construir estos sistemas.

Las entidades que se comunican en un sistema distribuido son típicamente procesos, lo que nos permite entender a los sistemas distribuidos como procesos que se relacionan mediante los paradigmas de comunicación *entre procesos* apropiados. Podemos nombrar tres paradigmas de comunicación:

- Comunicación entre procesos.
- Invocación remota.

705

710

715

730

735

Comunicación indirecta.

Comunicación entre procesos La comunicación entre procesos refiere al soporte de bajo nivel para la comunicación entre procesos en sistemas distribuidos, incluyendo primitivas para manejo de mensajes, acceso directo a las API provistas por protocolos de Internet (esto es, usando Sockets) y soporte para comunicación multicast.

Para comunicarse, un proceso envía un mensaje (una secuencia de bytes) a un receptor y un procesos ejecutandose allí recibe el mensaje. Esta actividad involucra el pasaje de datos de un proceso emisor a un proceso receptor y puede significar la sincronización de ambos procesos, generando una dependencia muy marcada entre los mismos.

- Invocación remota La invocación remota representa el paradigma de comunicación más común en sistemas distribuidos. El intercambio de mensajes entre las entidades comunicantes es bidireccional, de forma que operaciones remotas, procedimientos y métodos, pueden ser invocados como se define a continuación:
 - Protocolos request-reply: estos protocolos involucran el intercambio de mensajes desde el cliente al servidor y luego del servidor al cliente, donde el primer mensaje representa la operación que será ejecutada en el servidor (con los parámetros necesarios) y el segundo contiene cualquier resultado de dicha operación. Este paradigma es mas bien primitivo, y es utilizado generalmente en sistemas embebidos donde la performance es de suma importancia.
 - Remote procedure calls (RPC) o llamadas a procedimientos remotos: este concepto, atribuido inicialmente a Birrel and Nelson [1984], representó un gran cambio en los paradigmas de computación distribuida. En RPC, los procedimientos de los procesos ejecutandose en computadoras remotas pueden ser invocados como si se encontraran el espacio local de

memoria. De esta manera, el sistema abstrae aspectos acerca de la distribución, como la codificación de los parámetros, resultados y mecanismo de pasaje de mensajes. Este esquema soporta comunicación cliente-servidor pero depende de servidores que ofrezcan un conjunto de operaciones a través de una interfaz de servicio para que los clientes puedan llamar esas operaciones como si estuviesen disponibles localmente.

- Remote method invocation (RMI) o invocación remota de métodos: RMI es similar a RPC pero utiliza objetos distribuidos. Bajo este paradigma, un objeto cliente puede invocar métodos de un objeto remoto. De la misma forma que con RPC, ciertos detalles de como se implementa la comunicación quedan ocultos al usuario. Algunas implementaciones de RMI pueden incluir, además, soporte para darle a los objetos identidad y la habilidad de usar esos identificadores de objetos en llamadas remotas.
- Comunicación indirecta Las técnicas discutidas hasta aquí tienen una cosa en común: la comunicación representa una relación en ambos sentidos entre el emisor y receptor, con los emisores enviando explícitamente mensajes/invocaciones a los receptores asociados. Los receptores generalmente deben saber sobre la identidad de los emisores y, en la mayoría de los casos, ambas partes deben existir al mismo tiempo para que la comunicación sea exitosa. Lo descrito anteriormente no puede garantizarse en ciertos escenarios. Por esto, surgieron numerosas técnicas donde la comunicación es indirecta a través de una tercera entidad, permitiendo un gran grado de desacople entre emisores y receptores. En particular:
 - Los emisores no necesitan saber a quien le están enviando datos.
 - Emisores y receptores no necesitan existir al mismo tiempo.

Las técnicas más usadas para comunicación indirecta incluyen:

740

745

765

770

- Sistemas publish-suscribe: en estos sistemas, un gran número de productores (o publishers) distribuyen eventos (elementos de información de interés) a un número similar de consumidores (o suscribers). Usar cualquier de los paradigmas discutidos anteriormente hubiera sido complejo e ineficiente y por lo tanto los sistemas publish-suscribe (a veces llamados sistemas basados en eventos) surgieron para cubrir esta demanda[37]. Todos los sistemas publish-suscribe comparten la característica crucial de proveer un servicio intermedio que asegura que la información generada por los productores es enrutada eficientemente a los consumidores que deseen dicha información.
- Colas de mensajes: de la misma forma que los sistemas *publish-suscribe* proveen un estilo de comunicación uno a muchos, las colas de mensajes ofrecen un servicio punto a punto mediante el cual los procesos de los productores pueden enviar mensajes a una cola especifica y los procesos consumidores pueden recibir los mensajes o ser notificados de la llegada de nuevos mensajes a la cola. Las colas, entonces, ofrecen una indirección entre los procesos productores y consumidores.
- La implementación del sistema se basa en la interacción de 4 componentes. La lógica de detección de eventos fue encapsulada en un servicio que expone sus recursos usando una interfaz REST mediante la cual se pueden consultar el estado del servicio, los resultados de los algoritmos de detección y sus parámetros de configuración. REST (REpresentational State Transfer) fue introducido en el año 2000 por Roy Fielding en su tesis doctoral[38]. REST es un estilo de arquitectura para el diseño de sistemas distribuidos. Define un conjunto de restricciones como ser *stateless* o no mantener estado, tener una relación cliente/servidor e interfaces uniformes. REST no esta estrictamente relacionado al protocolo HTTP, pero usualmente está asociado al mismo. Los principios de REST son los siguientes:
 - Los recursos expuestos son fáciles de entender dado que están estructuradas en URIs (Uniform Resource Identifiers).
 - Las transiciones de estado se representan mediante objetos JSON o XML.

- Los mensajes usan métodos HTTP explícitos (por ejemplo, GET, POST, PUT y DELE-TE).
- Las interacciones sin estado evitan almacenar el contexto del cliente en el servidor. Las dependencias de estado limitan y restringen la escalabilidad de las aplicaciones. Es el cliente el que almacena el estado de la sesión.

Además, el sistema utiliza una base de datos clave-valor para persistir las asociaciones entre elementos y su identificador, y esta suscripto a un tópico de una cola de mensaje esperando nuevos eventos a ser procesados. La figura 5 muestra una vista de los componentes del sistema.

Figura 5: Componentes del sistema

La interfaz web consume los recursos REST expuestos por el servicio principal para presentarlos de manera convenientemente. La interacción entre el servicio y el resto de los componentes se realiza usando los conectores correspondientes disponibles para el lenguaje de programación utilizado.

7.2. Implementación del sistema

790

810

A continuación se describirán las entidades que conforman el sistema y los mensajes que intercambian, así como sus responsabilidades. Como se mencionó anteriormente, el proceso de detección de *heavy keys* involucra dos flujos:

- Actualización de la estructura de datos con cada nuevo elemento que llega al sistema.
- Detección de elementos anómalos en las estructuras de datos.

El segundo flujo debe ocurrir a intervalos regulares de tiempo, a los que llamamos épocas de detección. Al finalizar cada época, se deben ejecutar los algoritmos de detección descritos en la sección 5. Como el algoritmo de detección de heavy changers requiere dos sketches adyacentes en el tiempo, el sistema debe mantener una historia de los objetos generados para ejecutar este algoritmo. Esta lógica de manejo de sketches está contenida en la entidad SketchManager.

En la figura 6 se detallan las entidades del servicio y sus relaciones.

Cada vez que un nuevo evento es publicado en la cola de mensajes, la entidad *BrokerClient* (encargada de abstraer la lógica de conexión y manejo de errores en la interacción con la cola de mensajes) notifica a *SketchManager* enviando el evento codificado como una cadena de caracteres. El valor entero asociado al evento se obtiene mediante *RedisManager*, cuya responsabilidad es la de asignar un nuevo valor o retornar uno previamente asignado. La figura 7 se muestra el diagrama de secuencia de la entidad.

Para determinar el valor que será asociado al evento, *RedisManager* utiliza una base de datos clave-valor donde persistir las asociaciones. Para reducir la carga, se utiliza una cache intermedia cuyo tamaño puede ser configurado a la hora de iniciar el servicio. De esta forma, cuando se consulta por el elemento a la cache, esta retorna el valor inmediatamente (si fue consultado previamente) o realiza la consulta a la base de datos y mantiene localmente el resultado de dicha consulta.

Figura 6: Entidades del sistema y su interacción

Figura 7: Diagrama de secuencia asociación de valor entero a evento.

La segunda parte del flujo ocurre solo cuando un evento sucede por primera vez, es decir, no existe en la base de datos. Como el proceso de detección utiliza números enteros, una vez que se obtiene el conjunto de *heavy keys* es necesario transformar los números enteros a las cadenas de caracteres correspondientes. Para hacer esta transformación de manera eficiente, se almacenan dos asociaciones en la base de datos:

■ Una directa: $string \rightarrow entero$.

■ Una inversa: $entero \rightarrow string$.

830

835

Si bien esto tiene un costo adicional en términos de espacio, permite realizar los reverse lookup de manera directa, evitando tener que recorrer la lista de asociaciones $string \rightarrow entero$ hasta encontrar el entero buscado. Además, el motor de base de datos utilizado permite obtener un conjunto de asociaciones en una única consulta, lo cual evita establecer una conexión por cada heavy key identificado.

La figura 8 muestra la interacción entre las tres entidades descritas anteriormente.

Figura 8: Diagrama de secuencia nuevo evento.

Los procesos que deben ocurrir a intervalos de tiempo regulares para la detección de *hevy keys* son orquestados por la entidad *DetectionScheduler* (ver figura 6). Al final de cada época se invocan dos procesos:

- El primero provoca la generación de un nuevo *sketch* que reemplaza al activo. Este último se almacena en una cola, que es manejada por la entidad *SketchHistoryQueue*.
- El segundo proceso encapsula toda la lógica de detección de *heavy keys* en la entidad *HeavyKeyDetector*.

Dado que estos procesos son centrales es necesario detallar su funcionamiento y resaltar algunos puntos relacionados a implementación. La figura 9 muestra el diagrama de secuencia de la rotación de un sketch. Para mantener un sketch activo e implementar el método de rotación se utilizó una cache de un único elemento. Cada vez que DetectionScheduler envía la señal de fin de época a SketchManager el elemento de la cache es invalidado, provocando su remoción. La cache está configurada para que cada vez que un elemento es invalidado, se ejecute un callback que provoca la inserción del objeto en SketchHistoryQueue. Cuando un elemento es añadido usando el método correspondiente en SketchManager, primero se intenta recuperar el sketch disponible en la cache. Si este existe es devuelto inmediatamente; de lo contrario, es decir, si todavía no se generó ningún objeto o si fue invalidado, la cache invoca la generación de un nuevo objeto sketch, el cual va a ser utilizado por todo lo que dure la época de detección.

Figura 9: Diagrama de secuencia rotación de sketches.

8. Apéndices

875

8.1. Funciones de hash k-independientes

El objetivo de las funciones de hash es asociar elementos de un gran conjunto a otro más pequeño. En las estructuras de datos probabilísticas, usualmente es deseable que los códigos de hash se comporten de manera aleatoria, pues si se usan funciones de hash determinísticas un adversario podría escoger un conjunto de datos con las mismas pre-imágenes. Ademas, es posible que la elección de una función de hash determinística sea una mala elección para un conjunto de entrada dado (muchas colisiones): escoger aleatoriamente funciones de hash de una familia de funciones evita este problema dado que si bien puede escogerse una función con esta característica, lo más probable es que solo sea un caso asilado. Existe una familia de funciones que asegura baja probabilidad de colisiones para un conjunto dado de elementos y comportamiento uniforme en la distribución de las pre-imágenes de los elementos[39].

La familia de funciones $\mathcal{H} = \{h: U \to \{0,1,\ldots,m-1\}\}$ es k-independiente si para k elementos diferentes (x_1,x_2,\ldots,x_k) y k códigos de hash (no necesariamente diferentes) $(y_1,y_2,\ldots,y_k) \in \{0,1,\ldots,m-1\}$ tenemos que:

$$\mathcal{P}[h(x_1) = y_1 \hat{\ } h(x_2) = y_2 \dots h(x_k) = y_k] = \frac{1}{m^k}$$
 (7)

La ecuación anterior puede interpretarse de dos maneras:

- Para un elemento dado $x \in U$, h(x) se distribuye de forma uniforme en $\{0, 1, ..., m-1\}$ siempre que h se elija aleatoriamente de H.
- Para un conjunto dado de elementos $(x_1, x_2, ..., x_k) \in U$, si h se elije aleatoriamente de H, entonces $h(x_1), h(x_2), ..., h(x_k)$ son variables aleatorias independientes.

0 3	4 7	8 15	16 18	19 23	24	31	
Version	IHL	Type of Service	Total Length				
Identification			Flags	Fragi	ment Offset		
Time to Live		Protocol	Header Checksum				
Source Address							
Destination Address							
		Options			Padding		

Figura 10: Cabecera IP

0 15	31
Source Port	Destination Port
Sequence Number	Acknowlegment Number

Figura 11: Cabecera UDP

Figura 12: Cabecera TCP

Referencias

880

885

895

905

- [1] J. Dean y S. Ghemawat, «MapReduce: Simplified Data Processing on Large Clusters», en Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation Volume 6, ép. OSDI'04, San Francisco, CA: USENIX Association, 2004, págs. 10-10. dirección: http://dl.acm.org/citation.cfm?id=1251254.1251264.
- [2] S. A.-H. Baddar, A. Merlo y M. Migliardi, «Anomaly detection in computer networks: A state-of-the-art review»,
- [3] V. Chandola, A. Banerjee y V. Kumar, «Anomaly Detection: A Survey», *ACM Comput. Surv.*, vol. 41, n.º 3, 15:1-15:58, jul. de 2009, ISSN: 0360-0300. DOI: 10.1145/1541880. 1541882. dirección: http://doi.acm.org/10.1145/1541880.1541882.
 - [4] J. Wang, Geometric Structure of High-Dimensional Data and Dimensionality Reduction. Springer Berlin Heidelberg, 2012, ISBN: 9783642274978. dirección: https://books.google.com.ar/books?id=0RmZRb2fLpgC.
- Eso [5] T. Kohonen, ed., Self-organizing Maps. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1997, ISBN: 3-540-62017-6.
 - [6] J. A. Hartigan y M. A. Wong, «A K-Means Clustering Algorithm», Applied Statistics, vol. 28, págs. 100-108, 1979.
 - [7] G. Cormode y M. Thottan, Algorithms for Next Generation Networks, 1st. Springer Publishing Company, Incorporated, 2010, ISBN: 1848827644, 9781848827646.
 - [8] M. H. Bhuyan, D. K. Bhattacharyya y J. K. Kalita, «Network Anomaly Detection: Methods, Systems and Tools.», IEEE Communications Surveys and Tutorials, vol. 16, n.º 1, págs. 303-336, 2014. dirección: http://dblp.uni-trier.de/db/journals/comsur/comsur16.html#BhuyanBK14.
 - [9] Apache Flume. dirección: https://flume.apache.org/.
 - [10] Apache Storm. dirección: http://storm.apache.org/.
 - [11] Apache Spark Streaming. dirección: http://spark.apache.org/streaming/.
 - [12] Q. Huang y P. P. Lee, «Ld-sketch: A distributed sketching design for accurate and scalable anomaly detection in network data streams», en *IEEE INFOCOM 2014-IEEE Conference on Computer Communications*, IEEE, 2014, págs. 1420-1428.
 - [13] C. C. Aggarwal, Data Streams: Models and Algorithms (Advances in Database Systems). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006, ISBN: 0387287590.
 - [14] D. Terry, D. Goldberg, D. Nichols y B. Oki, «Continuous Queries over Append-only Databases», SIGMOD Rec., vol. 21, n.º 2, págs. 321-330, jun. de 1992, ISSN: 0163-5808. DOI: 10.1145/141484.130333. dirección: http://doi.acm.org/10.1145/141484.130333.
 - [15] J. S. Vitter, «External Memory Algorithms and Data Structures: Dealing with Massive Data», ACM Comput. Surv., vol. 33, n.º 2, págs. 209-271, jun. de 2001, ISSN: 0360-0300. DOI: 10.1145/384192.384193. dirección: http://doi.acm.org/10.1145/384192.384193.

- N. Alon, Y. Matias y M. Szegedy, «The Space Complexity of Approximating the Frequency Moments», en *Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing*, ép. STOC '96, Philadelphia, Pennsylvania, USA: ACM, 1996, págs. 20-29, ISBN: 0-89791-785-5. DOI: 10.1145/237814.237823. dirección: http://doi.acm.org/10.1145/237814.237823.
- [17] P. Flajolet y G. N. Martin, «Probabilistic Counting Algorithms for Data Base Applications», J. Comput. Syst. Sci., vol. 31, n.º 2, págs. 182-209, sep. de 1985, ISSN: 0022-0000. DOI: 10.1016/0022-0000(85)90041-8. dirección: http://dx.doi.org/10.1016/0022-0000(85)90041-8.
 - [18] G. Cormode y M. Hadjieleftheriou, «Finding Frequent Items in Data Streams», *Proc. VLDB Endow.*, vol. 1, n.º 2, págs. 1530-1541, ago. de 2008, ISSN: 2150-8097. DOI: 10.14778/1454159.1454225. dirección: http://dx.doi.org/10.14778/1454159.1454225.

925

935

950

- [19] —, «Methods for Finding Frequent Items in Data Streams», *The VLDB Journal*, vol. 19, n.º 1, págs. 3-20, feb. de 2010, ISSN: 1066-8888. DOI: 10.1007/s00778-009-0172-z. dirección: http://dx.doi.org/10.1007/s00778-009-0172-z.
- [20] D. Tong y V. Prasanna, «High Throughput Sketch Based Online Heavy Hitter Detection on FPGA», SIGARCH Comput. Archit. News, vol. 43, n.º 4, págs. 70-75, abr. de 2016, ISSN: 0163-5964. DOI: 10.1145/2927964.2927977. dirección: http://doi.acm.org/10.1145/2927964.2927977.
 - [21] S. Muthukrishnan, «Data Streams: Algorithms and Applications», Found. Trends Theor. Comput. Sci., vol. 1, n.º 2, págs. 117-236, ago. de 2005, ISSN: 1551-305X. DOI: 10.1561/0400000002. dirección: http://dx.doi.org/10.1561/0400000002.
 - [22] M. Charikar, K. Chen y M. Farach-Colton, «Finding Frequent Items in Data Streams», en *Proceedings of the 29th International Colloquium on Automata, Languages and Programming*, ép. ICALP '02, London, UK, UK: Springer-Verlag, 2002, págs. 693-703, ISBN: 3-540-43864-5. dirección: http://dl.acm.org/citation.cfm?id=646255.684566.
 - [23] G. Cormode y S. Muthukrishnan, «What's Hot and What's Not: Tracking Most Frequent Items Dynamically», *ACM Trans. Database Syst.*, vol. 30, n.º 1, págs. 249-278, mar. de 2005, ISSN: 0362-5915. DOI: 10.1145/1061318.1061325. dirección: http://doi.acm.org/10.1145/1061318.1061325.
- E. D. Demaine, A. López-Ortiz y J. I. Munro, «Frequency Estimation of Internet Packet Streams with Limited Space», en *Proceedings of the 10th Annual European Symposium on Algorithms*, ép. ESA '02, London, UK, UK: Springer-Verlag, 2002, págs. 348-360, ISBN: 3-540-44180-8. dirección: http://dl.acm.org/citation.cfm?id=647912.740658.
 - [25] G. S. Manku y R. Motwani, «Approximate Frequency Counts over Data Streams», en *Proceedings of the 28th International Conference on Very Large Data Bases*, ép. VLDB '02, Hong Kong, China: VLDB Endowment, 2002, págs. 346-357. dirección: http://dl.acm.org/citation.cfm?id=1287369.1287400.
 - [26] L. J. Guibas, «Problems», Journal of Algorithms, vol. 2, n.º 2, págs. 208-210, 1981, ISSN: 0196-6774. DOI: http://dx.doi.org/10.1016/0196-6774(81)90022-5. dirección: http://www.sciencedirect.com/science/article/pii/0196677481900225.
 - [27] R. M. Karp, S. Shenker y C. H. Papadimitriou, «A Simple Algorithm for Finding Frequent Elements in Streams and Bags», *ACM Trans. Database Syst.*, vol. 28, n.º 1, págs. 51-55, mar. de 2003, ISSN: 0362-5915. DOI: 10.1145/762471.762473. dirección: http://doi.acm.org/10.1145/762471.762473.
- E. Kranakis, P. Morin e Y. Tang, «Bounds for Frequency Estimation of Packet Streams», en *In SIROCCO*, 2003, págs. 33-42.
 - [29] G. Cormode y S. Muthukrishnan, «An Improved Data Stream Summary: The Count-min Sketch and Its Applications», *J. Algorithms*, vol. 55, n.º 1, págs. 58-75, abr. de 2005, ISSN: 0196-6774. DOI: 10.1016/j.jalgor.2003.12.001. dirección: http://dx.doi.org/10.1016/j.jalgor.2003.12.001.

- [30] F. Putze, P. Sanders y J. Singler, «Cache-, Hash-, and Space-efficient Bloom Filters», J. Exp. Algorithmics, vol. 14, 4:4.4-4:4.18, ene. de 2010, ISSN: 1084-6654. DOI: 10.1145/1498698.1594230. dirección: http://doi.acm.org/10.1145/1498698.1594230.
- [31] B. H. Bloom, «Space/Time Trade-offs in Hash Coding with Allowable Errors», Commun.

 ACM, vol. 13, n.º 7, págs. 422-426, jul. de 1970, ISSN: 0001-0782. DOI: 10.1145/362686.

 362692. dirección: http://doi.acm.org/10.1145/362686.362692.
 - [32] R. Motwani y P. Raghavan, *Randomized Algorithms*. New York, NY, USA: Cambridge University Press, 1995, ISBN: 0-521-47465-5, 9780521474658.
- [33] Q. Huang y P. P. Lee, «A Hybrid Local and Distributed Sketching Design for Accurate and Scalable Heavy Key Detection in Network Data Streams», *Comput. Netw.*, vol. 91, n.° C, págs. 298-315, nov. de 2015, ISSN: 1389-1286. DOI: 10.1016/j.comnet.2015.08.025. dirección: http://dx.doi.org/10.1016/j.comnet.2015.08.025.

975

990

- [34] J. Misra y D. Gries, «Finding repeated elements», Science of Computer Programming, vol. 2, n.º 2, págs. 143-152, 1982, ISSN: 0167-6423. DOI: 10.1016/0167-6423(82)90012-0.
- [35] E. M. Hutchins, M. J. Cloppert y R. M. Amin, «Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains», *Leading Issues in Information Warfare & Security Research*, vol. 1, pág. 80, 2011.
- [36] J. Postel, ed., RFC 791 Internet Protocol DARPA Inernet Programm, Protocol Specification, Internet Engineering Task Force, 1981. dirección: http://tools.ietf.org/html/rfc791.
- [37] G. Mühl, L. Fiege y P. Pietzuch, *Distributed Event-Based Systems*. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006, ISBN: 3540326510.
- [38] R. T. Fielding, «Architectural Styles and the Design of Network-based Software Architectures», AAI9980887, Tesis doct., 2000, ISBN: 0-599-87118-0.
- [39] M. N. Wegman y J. Carter, «New hash functions and their use in authentication and set equality», *Journal of Computer and System Sciences*, vol. 22, n.° 3, págs. 265-279, 1981, ISSN: 0022-0000. DOI: https://doi.org/10.1016/0022-0000(81)90033-7. dirección: http://www.sciencedirect.com/science/article/pii/0022000081900337.
- 995 [40] R Braden, RFC 1122 Requirements for Internet Hosts Communication Layers, 1989. dirección: http://tools.ietf.org/html/rfc1122.
 - [41] J. Postel, *Transmission Control Protocol*, RFC 793 (Standard), Updated by RFCs 1122, 3168, Internet Engineering Task Force, 1981. dirección: http://www.ietf.org/rfc/rfc793.txt.
- 1000 [42] —, User Datagram Protocol, RFC 768 (Standard), Internet Engineering Task Force, 1980. dirección: http://www.ietf.org/rfc/rfc768.txt.
 - [43] B. Krishnamurthy, S. Sen, Y. Zhang e Y. Chen, «Sketch-based change detection: methods, evaluation, and applications», en *Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement*, ACM, 2003, págs. 234-247.
- ⁵⁰⁵ [44] S. Muthukrishnan, Data streams: Algorithms and applications. Now Publishers Inc, 2005.
 - [45] C. Estan y G. Varghese, New directions in traffic measurement and accounting, 4. ACM, 2002, vol. 32.
 - [46] E. Liberty, «Simple and deterministic matrix sketching», en Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2013, págs. 581-588.
 - [47] A. Goyal, J. Jagarlamudi, H. Daumé III y S. Venkatasubramanian, «Sketching techniques for large scale NLP», en *Proceedings of the NAACL HLT 2010 Sixth Web as Corpus Workshop*, Association for Computational Linguistics, 2010, págs. 17-25.
- [48] K. M. Chandy y L. Lamport, «Distributed snapshots: determining global states of distributed systems», ACM Transactions on Computer Systems (TOCS), vol. 3, n.° 1, págs. 63-75, 1985.

[49] J. S. Vitter y M. Wang, «Approximate Computation of Multidimensional Aggregates of Sparse Data Using Wavelets», SIGMOD Rec., vol. 28, n.º 2, págs. 193-204, jun. de 1999, ISSN: 0163-5808. DOI: 10.1145/304181.304199. dirección: http://doi.acm.org/10.1145/304181.304199.

1020

- [50] A. Metwally, D. Agrawal y A. El Abbadi, «Efficient Computation of Frequent and Topk Elements in Data Streams», en *Proceedings of the 10th International Conference on Database Theory*, ép. ICDT'05, Edinburgh, UK: Springer-Verlag, 2005, págs. 398-412, ISBN: 3-540-24288-0, 978-3-540-24288-8. DOI: 10.1007/978-3-540-30570-5_27. dirección: http://dx.doi.org/10.1007/978-3-540-30570-5_27.
- [51] Y. E. Ioannidis y V. Poosala, «Histogram-Based Approximation of Set-Valued Query-Answers», en *Proceedings of the 25th International Conference on Very Large Data Bases*, ép. VLDB '99, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, págs. 174-185, ISBN: 1-55860-615-7. dirección: http://dl.acm.org/citation.cfm?id=645925.671527.
- [52] S. Acharya, P. B. Gibbons y V. Poosala, «Congressional Samples for Approximate Answering of Group-by Queries», SIGMOD Rec., vol. 29, n.º 2, págs. 487-498, mayo de 2000, ISSN: 0163-5808. DOI: 10.1145/335191.335450. dirección: http://doi.acm.org/10.1145/335191.335450.