PUTTING A COVARIANCE INTO AN UNCERTAINTY BUDGET

Assume you have two variables X_i by both with determined uncertainties S_i and S_i (i.e., standard devictions by type-A assessments — of hecessity)

And fisher assume that there is an established coveriance correlation between X_i and Y_i (as given by winkler in his eggli) as $CoRR(X_i,Y_i)$?

Then the propagation of uncertainties considering the correlation between X_i by is $\left[\frac{S_i}{X_i} + \frac{S_i}{Y_i} - 2 \frac{CORR(X_i,Y_i)}{Y_i} + \frac{S_i}{Y_i} +$

N.B. CORR(X,Y) CAN BE POSITIVE OR NEGATIVE

IF THE UNCERTAINTY BUDGET WILL BE
TREATED BY COMBINING AU COMPONENTS
AS SUM OF SQUARES & THEN MULTIPLYING
BY K=2, IT IS ADVISABLE TO
USE (to.95,v) AS COEFFICENT ON ALL

(50) 4 (51) VALUES FOR LESS THAN 12 DEGREES
FREEDOM.

BUDGET TABLE (component SY/Y (2 CORR(X)Y)(5x)(5x) X, Y correlation RELANS [Zuiz] /2 COMBINED UNCERPANM expanded Unc. 2 (Z vi 2) /2 左(Sx) \$\frac{1}{2}\langle \frac{1}{2}\corr \corr \corr \langle \frac{1}{2}\langle \frac{1}{2}\corr \frac{1}{2}\cor