

Modeling of the Dynamic Interaction between the NHERI-UCSD 6-DOF Large High-Performance Outdoor Shake Table and TallWood Building Specimen

Chin-Ta (Kiida) Lai and Joel P. Conte

Department of Structural Engineering, University of California, San Diego, CA, USA

July 04, 2024

UC San Diego

Outline

- Performance characteristics and system configuration of LHPOST6
- Numerical model of LHPOST6 under bare table condition
 - LHPOST6 closed-loop system
 - Modeling scheme for the hydraulic and mechanical parts of LHPOST6
- Numerical model of LHPOST6 under loaded table condition
 - 10-Story NEHRI TallWood Project
 - LHPOST6 model (in Simulink) and specimen model (in OpenSees)
 - Simulation results
- Concluding remarks and on-going/future work

6-DOF Configuration – NEHRI@UCSD

1999/09/21 Chi Chi Earthquake TCU065 Station Record

	Displacement Capacity	Velocity Capacity	Acceleration Capacity
Long (X)	± 35 in (± 0.89m)	120 in/s (3 m/s)	3.7 g
Lateral (Y)	± 15 in (± 0.38m)	100 in/s (2 m/s)	1.85 g
Vertical (Z)	± 5 in (± 0.127m)	20 in/s (0.45 m/s)	3.4 g

Numerical model of LHPOST6 under

bare table condition

Introduction – LHPOST6 Closed-loop System

MTS 469D (6-DOF controller)

Accelerometers

→ Platen acceleration

Sensor feedbacks

Pressure transducers

→ Actuator forces

LVDTs

→ Actuator displacements

Plant:

Loaded (with specimen) table condition

Specimen (total) base forces and moments

Specimen

Hydraulic and mechanical components of LHPOST6

Kinematics Simulation of LHPOST6

3D view when running tri-axial earthquake ground motion

A closer view of cover plates

Hold-down struts (HDS) (Nitrogen-filled cylinders) Side view when running vertical sine wave

Closed-loop System Level Validation under Bare Table Condition

- 1. Closed-loop simulation resolved the slow displacement drift problem.
- 2. The relative root mean square error between experimental and simulated table motion is low.

Numerical model of LHPOST6 under

loaded table condition

TallWood 10-StoryMass Timber Building Project

Simulation of Closed-Loop Dynamics under Bare Table Condition

- Optimal drive file, obtained after several iterations conducted on the real LHPOST6, is used.
- 2. The relative root mean square error (RRMSE) between the numerically predicted and measured achieved table motions is low.

Simulation of Closed-Loop Dynamics under Loaded Table Condition

Closed-Loop Simulation of LHPOST6 under Loaded Table Condition

Closed-loop Simulation Results with the 10-story TallWood Building

Summary

Concluding Remarks

- The numerical model of the LHPOST6 includes the plant portion of the closed-loop system and consists of three components: (1) hydraulic dynamics (i.e., servo-hydraulic actuators), (2) hold-down strut restoring forces, and (3) 6-DOF rigid body platen dynamics.
- Comparison study (comparison between numerically simulated and measured platen responses under bare table condition) under bare table condition and the simulation results are in close agreement with the measured/experimental results.
- The simulation methodology for the loaded table condition is developed and enables the study of the table-controlspecimen interaction. OpenSees is successfully coupled with the Simulink model of the shake table system.

Future Work

- Improve, calibrate and validate the modeling of the dissipative forces and improve the overall calibration of the LHPOST6 model to improve the prediction accuracy.
- Use the closed-loop LHPOST6 model to tune, off-line, the MTS 469D controller to account for table-control-specimen interaction. The models and analysis methods developed in this study are will also prove useful when conducting real-time hybrid shake table tests.

Acknowledgements

☐ Funding support:

National Science Foundation:

- Construction of LHPOST facility (2002-2004)
- Operation and Maintenance of NEES/NHERI LHPOST facility (2004-2014; 2016-2025)
- 6-DOF Upgrade of LHPOST (2018-2022)

UC San Diego:

Matching funds towards construction of LHPOST facility and its upgrade to 6-DOF

☐ Technical Support, Insightful Discussions, and Collaboration:

Dr. Andreas Schellenberg, Maffei Structural Engineering

Dr. Massimo Petracca (ASDEA Software Technology)

Prof. Guido Camata (ASDEA Software Technology, University of Chieti-Pescara)

Prof. Shiling Pei and Dr. Da Huang, Colorado School of Mines

Prof. Andre Barbosa, Mr. Patricio Uarac Pinto, Mr. Tanner Jeffrey Field