Count Triangles

Problem Statement

You are given a regular N-gon with vertices at $(\cos(2\pi i / N), \sin(2\pi i / N))$, $\forall i \in [0,N-1]$. Some of these vertices are blocked and all others are unblocked. We consider triangles with vertices at the vertices of N-gon and with at least one vertex at unblocked point. Can you find how many *pairs* of such triangles have equal area?

Input Format

The first line of input contains single integer T - number of testcases. 2T lines follow.

Each testcase has two lines.

The first line of testcase contains a single integer N - the number of vertices in N-gon. The second line contains string S with length N. If S[j] equals '1' it means that the vertex $(\cos(2\pi j / N), \sin(2\pi j / N))$ is unblocked, and if S[j] equals '0' it means that the vertex $(\cos(2\pi j / N), \sin(2\pi j / N))$ is blocked.

Output Format

For each testcase output single line with an answer.

Constraints

```
1 \le T \le 100
3 \le N \le 10^4
```

There will be no more than 50 blocked vertices in each of the testcase.

Sample Input

```
1
4
1111
```

Sample Output

6

Explanation

The testcase given is a square and there are 4 triangles that have the same area. So, the number of pairs are 4C2 = 6.