Colle **27** • INDICATIONS Dimension finie

Exercice 27.1 Noyaux et images itérés, cœur et nilespace.

Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Soit $u \in L(E)$.

1. Montrer que

$$\forall k \in \mathbb{N}, \quad \mathsf{Ker}(u^k) \subset \mathsf{Ker}(u^{k+1}) \ \ \mathsf{et} \ \ \ \mathsf{Im}(u^{k+1}) \subset \mathsf{Im}(u^k).$$

- **2.** Montrer qu'il existe $k \in \mathbb{N}$ tel que $\operatorname{Ker}(u^k) = \operatorname{Ker}(u^{k+1})$. On notera p le plus petit entier k vérifiant cette propriété.
- 3. Montrer que

$$\forall k \in \mathbb{N}, \quad \mathsf{Ker}(u^{p+k}) = \mathsf{Ker}(u^p) \ \ \mathsf{et} \ \ \ \mathsf{Im}(u^{p+k}) = \mathsf{Im}(u^p)$$

4. Montrer que $E = \operatorname{Ker}(u^p) \oplus \operatorname{Im}(u^p)$.

Les sous-espaces $Im(u^p)$ et $Ker(u^p)$ s'appellent respectivement « cœur » et « nilespace » de u.

indication

- **1.** Essentiellement, $u^{k+1}(\cdots) = u^k(u(\cdots))$.
- **2.** Raisonner avec la suite $\left(\dim(\operatorname{Ker}(u^k))\right)_{k\in\mathbb{N}}$
- 3. L'égalité des noyaux peut se démontrer par récurrence.
 - ♦ L'égalité des images peut se démontrer à l'aide d'une inclusion et de l'égalité des dimensions, obtenue par le théorème du rang.
- 4. Utiliser les dimensions et montrer que l'intersection est nulle.

Exercice 27.2

Soit E un espace vectoriel de dimension finie.

Montrer que

$$\exists f \in L(E) : Ker(f) = Im(f) \iff dim(E) \text{ est paire.}$$

indication

- \implies Utiliser le théorème du rang.
- En se donnant $(e_1, ..., e_{2p})$ une base de E, construire les $f(e_i)$, en distinguant par exemple les $i \in [1, p]$ et $i \in [p+1, 2p]$.

1

Exercice 27.3

Soit E un espace vectoriel de dimension finie. Soient $u, v \in L(E)$. On note $w := u_{|\operatorname{Im}(v)}$.

1. Montrer que

$$\mathsf{Ker}(w) \subset \mathsf{Ker}(u)$$
 et $\mathsf{Im}(w) \subset \mathsf{Im}(u \circ v)$.

2. En déduire que

$$\dim (\operatorname{\mathsf{Ker}}(u \circ v)) \leqslant \dim (\operatorname{\mathsf{Ker}}(u)) + \dim (\operatorname{\mathsf{Ker}}(v)).$$

- indication –

2. Utiliser le théorème du rang pour $w: \text{Im}(v) \longrightarrow E$ et utiliser les inclusions précédentes pour obtenir des inégalités sur les dimensions.

Exercice 27.4

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Soient $f, g \in L(E)$. Montrer que

$$rg(f) + rg(g) - n \leqslant rg(g \circ f) \leqslant min(rg(f), rg(g)).$$

indication

- ♦ Pour l'inégalité de droite, commencer par montrer que $Im(g \circ f) \subset Im(g)$ pour majorer par rg(g). Ensuite, majorer $rg(g \circ f)$ par rg(f) en utilisant l'application $g_{|Im(f)}$.
- ♦ Appliquer le théorème du rang à $g_{|\operatorname{Im}(f)}$ et utiliser que $\operatorname{Ker}(g_{|\operatorname{Im}(f)}) \subset \operatorname{Ker}(g)$.

Exercice 27.5

Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$. Soit $f \in L(E)$ tel que $f^{n-1} \neq 0_{L(E)}$ et $f^n = 0_{L(E)}$.

- **1.** Soit $x \in E$ tel que $f^{n-1}(x) \neq 0_E$. Montrer que $(x, f(x), \dots, f^{n-1}(x))$ est une base de E.
- **2.** Soit $g \in L(E)$. Montrer que

$$g \circ f = f \circ g \iff g \in \text{Vect}(\text{Id}_E, f, \dots, f^{n-1}).$$

- indication -

- **1.** On peut écrire une relation de liaison, raisonner par l'absurde et fixer p tel que $\lambda_p \neq 0$, puis composer par f^{n-1-p} .
- **2.** À x fixé, $g(x) = \sum_{k=0}^{n-1} a_k f^k(x)$. Pour prouver que $g = \sum_{k=0}^{n-1} a_k f^k$, il suffit de prouver que

$$\forall k \in [0, n-1], \quad g(f^k(x)) = a_0 f^k(x) + \dots + a_{n-1} f^{n-1}(f^k(x)).$$

2

Exercice 27.6

Soit E un espace vectoriel de dimension finie. Soit $u \in L(E)$.

Montrer que les assertions suivantes sont équivalentes :

- (i) $E = Ker(u) \oplus Im(u)$
- (ii) $\operatorname{Ker}(u) = \operatorname{Ker}(u^2)$
- (iii) $\operatorname{Im}(u) = \operatorname{Im}(u^2)$.

— indication -

- $lack (i) \implies (ii)$ et $(ii) \implies (iii)$: montrer une inclusion et l'égalité des dimensions par le théorème du rang.
- \blacklozenge (iii) \Longrightarrow (i) : pour $x \in E$, $u(x) \operatorname{Im}(u) = \operatorname{Im}(u^2)$ donc $u(x) = u^2(z)$, et écrire

$$x = x - u(z) + u(z),$$

pour montrer que E = Ker(u) + Im(u).

Exercice 27.7

Soit *E* un espace vectoriel de dimension finie.

Déterminer l'ensemble des endomorphismes de E qui commutent avec tous les autres.

indication -

lack On commence par montrer que $f \in L(E)$ est une homothétie si, et seulement si,

$$\forall x \in E$$
, $(x, f(x))$ est liée.

 \blacklozenge On pourra penser, étant donné un vecteur x non nul, à la projection sur la droite Vect $\{x\}$.

– résultat –

Il s'agit des homothéties.