

基于卡尔曼滤波的故障识别和分类

Hi战队 赵建波 华为技术有限公司

2022 CCF国际AIOps挑战赛决赛暨AIOps研讨会

2022 CCF国际AIOps挑战赛决赛 暨AIOps研讨会

目录 CONTENTS

团队介绍 赛题分析 方案介绍 方案检验 总结

团队介绍

队伍名称

Hi战队,取自华为智能运维解决方案HiOps (Huawei Intelligent Operation Service)

主要成员

赵建波、徐广垚、张建科

团队简介

华为中国政企产品技术与运维服务部-智能运维团队致力于将更好的AlOps能力产品化并服务客户,为客户提供客户支持服务、提升服务、智能运维服务、业务感知运维服务等乐高模式的多内容组合,为中国数字化转型建设保驾护航。

赛题分析

赛题: 微服务架构电商系统下故障识别和分类

难点1

数据量大、数据维度高、数据差异大措施:聚合、筛选等数据处理方法

数据集

应用服务的动态拓扑

实时调用链数据

实时业务黄金指标

实时性能指标(容器、Linux系统等)

实时日志

难点2

单指标异常检测容易受数据波动影响

措施: 方案基于多指标联合检测

难点3

同类型故障的区分难度大

措施: 针对性的特征衍生

问题简化

方案介绍-总体架构

方案介绍-数据处理

聚合

分组求和或均值:针对多状态值指标;¹

指标筛选

去除无效指标:针对配置类指标、常

量指标(方差为0);

无量纲化

转化为使用率百分比的形式:由于不同CMDB的配置差异,某些指标的取值不具有可比性;

近似归一化

指标值除以均值:某些指标在不同pod差异较大,甚至相差一个数量级;

stl分解

消除周期性波动影响:某些指标存在周期性

波动,这与故障表现极为相似;

方案介绍-特征工程

卡尔曼滤波

卡尔曼滤波在时序信号分析中表现优异,在团队内部 有诸多<mark>实践</mark>;它通过递推实现,能满足<mark>实时</mark>性的要求,契 合挑战赛在线分析场景;

基本原理:状态方程有偏差,观测值不可靠,卡尔曼 能够根据过程方差和测量方差对系统状态做出最优估计;

2个过程:通过状态方程得到先验估计;然后结合观测值,得到后验估计;

特征提取

- 1)原数据+一阶差分
- 2) kalman一阶差分(间隔1-4时刻,共4组)
- 3)原数据与kalman差值

过程方差/测量方差=1/1000

方案介绍-样本生成

窗口标记法

样本生成流程(半监督学习)

- 1) 所有故障窗口标记出来;
- 2) 在正常数据集中通过随机采样生成正常样本数据;
- 3)假设故障发生后2个时刻表现为故障,标记为故障样本,结合正常样本,训练模型;
- 4)运用模型检验故障窗口内数据,预测值与当前窗口故障类型一致的标记为故障样本,重新训练模型;
- 5) 重复过程4), 直到故障样本基本不变;

方案介绍-模型验证

分类模型: XGBoost

验证方法: K折交叉验证

评价指标: 故障类别F1

Node分类模型

数据类型: node性能指标

样本数&特征数: 13425*292

node模型验证结果表					
故障类别	准确率	召回率	F1值		
node 磁盘空间消耗	0.9733	0.9865	0.9799		
node节点CPU故障	0.9889	0.9515	0.9703		
node 内存消耗	1.0000	0.9386	0.9683		
node 磁盘写IO消耗	0.9695	0.9521	0.9607		
node 磁盘读IO消耗	0.9709	0.9346	0.9524		
node节点CPU爬升	0.9571	0.8933	0.9241		
均值	0.9766	0.9428	0.9593		

问题:两个模型的召回率<准确率?

Pod分类模型

数据类型: container性能指标、istio流量、调用链、业务指标

样本数&特征数: 92488*394

pod模型验证结果表				
故障类别	准确率	召回率	F1值	
k8s容器cpu负载	0.9908	1.0000	0.9954	
k8s容器读io负载	0.9936	0.9920	0.9928	
k8s容器写io负载	0.9932	0.9899	0.9915	
k8s容器网络资源包损坏	0.9969	0.9702	0.9834	
k8s容器内存负载	0.9828	0.9828	0.9828	
k8s容器网络延迟	0.9798	0.9368	0.9578	
k8s容器网络丢包	0.9805	0.9211	0.9499	
k8s容器进程中止	0.9331	0.9294	0.9312	
k8s容器网络资源包重复发送	0.9943	0.8567	0.9204	
均值	0.9828	0.9532	0.9672	

方案介绍<mark>-提交策</mark>

基本思路

基于滑动窗口(从当前时刻向前推10个时刻), 计算窗口内各个故障的累计得分,得分最高者即为故障,满足一定条件提交;

方案检验

竞赛成绩是检验方案效果的重要依据

初赛排行榜

复赛排行榜

得分比

R=2411.75/3200=75.37%

总结

● 方案创新性

- 将故障识别和故障分类两个问题简化为一个多分类问题;
- ▶ 采用窗口标记法+半监督学习生成样本数据;
- ▶ 将卡尔曼滤波应用到AIOps领域,并取得优异的效果;

● 方案通用性

- ▶ 方案中的数据处理方法都是基于配置实现的,灵活度较高,通用性较好;
- ▶ 方案中的分析方法都是基于数据本身的,没有配置任何的人工规则;
- 本方案针对不同业务场景、不同数据、不同故障,只需微调,就能快速适应;

总结

● 改进方向

- ▶ 方案中各对象故障诊断都是独立进行的,忽略了对象之间的动态拓扑关系,后续考虑把拓扑关系融入方案;
- ▶ 模型召回率整体偏低,可能是故障标注问题,通过交叉验证,舍弃表现不明显的故障样本;
- ▶ 结合模型验证结果,针对召回率偏低的故障类型,新增二分类模型,适当降低阈值,对原模型做增强;

"业务为本 知识驱动 人机协同 数智一体"

2022 CCF国际AIOps挑战赛决赛暨AIOps研讨会

特别感谢主办方致力于推动aiops发展所做的努力,希望大家共同努力,积极探索,大胆创新,将AI技术更好的应用在运维领域,更好的服务客户,为客户创造价值。

THANKS