<u>Prawdopodobieństwo</u>

Jeśli nie ma N() to będzie rozkład dwumianowy

Statystyka -> Analiza Mocy Testu -> rozkłady prawdopodobieństwa -> Rozkład dwumianowy

Liczność próby: ilość ziaren np. 50

Frakcja w populacji: 0,006 jeśli liczymy chwasty np.

Ewentualnie dla ziaren: 0,994 i dodatkowo (1-p)

Obserwowane X : jeśli liczymy chwasty to dajemy 5 bo badamy czy jest mniej niż 5, a jeśli badamy

ziarna to 45

Następnie oblicz i dodajemy do raportu

Kolejny typ zadania:

N()

N(średnia, odch. standardowe)

Statystyka -> Kalkulator prawdopodobieństwa -> rozkłady -> rozkłady z(normalny)

W wykresie te czarne to to co nas interesuje

P: nasz wynik prawdopodobieństwa

Zadanie tabelka robimy w excelu

xi	ni	xi*ni	(xi - sre)^2 * ni	=>	=(C4-\$G\$14)^2 *D4
1	5	5	262,0250473		, , ,
3	5	15	137,2424386		
5	6	30	62,95179584		
7	29	203	44,5278828		
9	23	207	13,31521739		
11	11	121	83,84640832		
13	9	117	203,9929112		
15	4	60	182,8374291		
		n = suma(ni)	n =	92	
		suma xi*ni / n	Średnia	8,23913	
		Suma (xi-sre)^2 *ni /(n-1)	wariancja	9,768904	
		pierwiastek z wariancji	odchylenie	3,125525	<u> </u>
		rozkład normalny s odwrotny	ualfa	1,644854	
		=G14-(G17*G16/PIERWIASTEK(G13))	a poczatek	7,703141	
		=G14+(G17*G16/PIERWIASTEK(G13))	b koniec	8,77512	
		Przedział od	7,703140968	do	8,775119901
		w 90% wyjaśnia nam nieznaną wartość średniej wielkości gospodarstwa			

Dwie niezależne próby

Jeżeli nie mamy danych surowych tylko średnią odchylenie itp. To

Statystyka -> Statystyki podstawowe -> inne testy istotności -> wybieramy rubryczkę -> wpisujemy

wartości z zadania: n: ilość prób x: średnia s: odchylenie

Tworzymy hipotezę przykładowo

H0: x1 = x2

H1: x1>x2

Bo x to ubytek wagi

Test jednostronny bo przy h1 stoi znak większości lub mniejszości

Test dwustronny tylko wtedy kiedy mam znak różne

p/2 - tylko dla testu jednostronnego

alfa = 0.05

p/2 jest mniejsze niż alfa zatem odrzucamy h0 na rzecz h1

Średni ubytek wagi jest wyższy przy stosowaniu pierwszej kuracji

Hipotezy:

H0: średnia = 30

H1: średnia > 30

Statystyka -> Statystyki podstawowe -> inne testy istotności

Zaznaczamy <u>średnia z pomiarów 1 a średnia z populacji 2</u> jeśli w zadaniu mamy podane 2 średnie 1 odchylnie i N1

1średnia to ta z hipotez

Zaznaczymy jednostronne bo jest znak większy

p/2 < alfa

zatem odrzucamy H0 na rzecz h1

Hipoteza o rozkładzie normalnym

H0: rozkład jest normalny

H1: rozkład nie jest normalny

Wykresy -> wykresy 2w -> wykresy normalności

Zaznaczamy zmienną i test wilka

Pod wykresem mamy p i jeśli p>alfy to h0 jest prawdziwe a jeśli p<alfy to H0 jest fałszywe

Przedziały

Statystyka -> statystyki podstawowe -> statystyki opisowe

Klikamy więcej i zaznaczmy przedział ufności średniej

Kwartyle górne i dolne

Statystyka -> statystyki podstawowe -> statystyki opisowe -> więcej -> dolny i górny kwartyl Interpretacja

Kwartyl dolny znaczy że wartość tego kwartylu jest większa równa niż 25% innych wartości i mniejsza równa niż 75% innych

Kwartyl Górny znaczy że wartość tego kwartylu jest większa równa niż 75% innych wartości i mniejsza równa niż 25% innych

Wykres ramka-wąsy

Wykres -> wykres ramka-wąsy -> więcej -> zmieniamy w rubryce odstające zmieniamy odst.iekstrem na odstające

Niżej zaznaczamy podaj dane surowe i jeszcze niżej w dziale seperacja punktów zaznaczamy dane losowe

Jeśli mamy usunąć ramke i wąsy to

Prawym przyciskiem na wykres -> opcje wykresu -> rozrzut -> odznacz opcje wyświetl rozrzut zewnętrzny i wewnętrzny