

# Simulateur de conduite moto pour l'étude de comportements

Présenté par Pauline MICHEL

Dans le cadre de la journée « Outils logiciels et matériels pour la recherche sur les véhicules terrestres autonomes »

## Les conducteurs de deux-roues motorisés : des usagers vulnérables de la route

### Répartition des usages :



Mixité du parc 2RM et des véhicules légers des ménages français (ONISR, bilan 2021, publié en 2022)

### Répartition de l'accidentalité :



Parts dans la mortalité et dans le total de blessés MAIS3+ par catégorie d'usagers de la route en France (ONISR, bilan 2021, publié en 2022)







### Simulateurs de conduite







### Contrôle d'une moto

deux couples pour maintenir l'équilibre et contrôler la trajectoire :

couple de direction





couple de roulis



### Simulateurs de conduite moto

Prototype n°1 du simulateur de moto Honda (world.honda.com)



5/20





Simulateur EF Bike d'ECA FAROS (ecagroup.com)



Simulateur MOTORIST de TU Delft (Grottoli, 2021)



Simulateur de moto de l'Université de Padoue (Cossalter, et al., 2011)







Contributions

Conclusion & Perspectives

### Notre simulateur de conduite moto





Simulateur SIMACOM (ANR)







### Architecture de calcul distribuée pour simulateur de conduite

Colonne de direction





Plate-forme

### Architecture distribuée pour simulateur de conduite : cohérence physique et temporelle



| Bus CAN                           | Nombre de trames/s | Taux<br>d'occupation |
|-----------------------------------|--------------------|----------------------|
| CAN local n°1                     | 800                | 9,6%                 |
| CAN local n°2                     | 800                | 9,6%                 |
| CAN locaux<br>500 kbits/s<br>(x4) | 200                | 4,8%                 |
| CAN global                        | 1600               | 19,2%                |
|                                   |                    |                      |

mais pic de débit!



500 kbits/s

Contributions

Conclusion & Perspectives

## Architecture distribuée pour simulateur de conduite : cohérence physique et temporelle

| Мо                           | dèle               | Contrainte principale                                    | Période de calcul souhaitée | Période de calcul           |
|------------------------------|--------------------|----------------------------------------------------------|-----------------------------|-----------------------------|
| Modèle de moto               | Modèle dynamique   | Stabilité de la moto                                     | ≤ 5 ms                      | 5 ms                        |
| Modele de Moto               | Modèle cinématique | virtuelle                                                | ≤ 10 ms                     | 10 ms                       |
| Modèle de guidon             |                    | Sensibilité de la<br>perception haptique<br>humaine      | ≤ 1 ms                      | 5 ms                        |
| Modèle de plate-forme mobile |                    | Sensibilité de la<br>perception<br>kinesthésique humaine | ≤ 10 ms                     | 10 ms                       |
| Modèle de l'environnement    |                    | Sensibilité de la<br>perception visuelle<br>humaine      | ≤ 16 ms (60 Hz)             | Variable<br>≤ 16 ms (60 Hz) |





### Moto: système bi-corps

couple de direction



Colonne de direction + roue avant Châssis + roue arrière

couple de roulis











### Système guidon



### La question des simulateurs de conduite moto



#### Difficultés de :

- mesure du couple de direction sans modifier la position du guidon ;
- contrôle à couple élevé sans vibration ;
- actionnement sans jeu, avec une latence acceptable pour la perception haptique.







Contributions

Conclusion & Perspectives

### Restitution haptique au guidon

| Objectif de conception                                                      | Choix de conception                                               |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Mesure du couple de direction sans<br>modification de la position du guidon | Servo-moteur « non réversible »<br>(rapport de réduction R = 160) |  |
| Contrôle à couple élevé sans vibration                                      | (rapport de reduction N = 100)                                    |  |
| Actionnement                                                                |                                                                   |  |
| sans jeu                                                                    | Servo-moteur à réducteur « sans jeu »<br>(HarmonicDrive)          |  |
| avec une latence acceptable pour la perception haptique                     | Fréquence de pilotage adaptée                                     |  |



### Mesure de l'action humaine : couple de direction









### Système couple de roulis

15/20



### La question des simulateurs de conduite moto

#### Difficultés de :

- gestion de l'inclinaison de la plate-forme en virage ?
- mesure du couple de roulis avec poids et attitude du conducteur à prendre en compte.





Mesure de l'action humaine : couple de roulis









Contributions

Conclusion & Perspectives

### Conclusion générale : mesures disponibles

- position sur la route (longitudinale, latérale),
- attitude du véhicule (cap, tangage, roulis),
- vitesses, accélérations,
- angle de guidon,
- couples appliqués.







18/20

### Perspectives techniques : évolution de l'architecture de calcul



| Modèle                       |                       | Contrainte principale                                       | Période de<br>calcul<br>souhaitée |
|------------------------------|-----------------------|-------------------------------------------------------------|-----------------------------------|
| Modèle de                    | Modèle<br>dynamique   | Stabilité de la                                             | ≤ 5 ms                            |
| moto                         | Modèle<br>cinématique | moto virtuelle                                              | ≤ 10 ms                           |
| <b>Modèle</b> (              | de guidon             | Sensibilité de<br>la perception<br>haptique<br>humaine      | ≤ 1 ms                            |
| Modèle de plate-forme mobile |                       | Sensibilité de<br>la perception<br>kinesthésique<br>humaine | ≤ 10 ms                           |
| Modèle de l'environnement    |                       | Sensibilité de<br>la perception<br>visuelle<br>humaine      | ≤ 16 ms<br>(60 Hz)                |
|                              | 05/10/2023            | SATIE moss                                                  | UNIVERSITE PARIS-SACLAY           |



Merci!