Моделирование движения спутника по орбите

Поляков Даниил, Б23-Ф3

В начальный момент времени спутник находится на расстоянии $R=6371~\rm km$ от Земли и движется с первой космической скоростью $v=7909.53835~\rm m/c$. Время моделирования выбрано равным 5061 с. Чтобы оно совпадало с теоретическим периодом полного оборота спутника вокруг Земли, выберем массу Земли $m=5.9720532\cdot 10^{24}$.

Моделирование методом Эйлера

График 1.1. Траектория движения спутника при моделировании методом Эйлера с различным временным шагом

График 1.2. Приближенный график движения спутника при моделировании методом Эйлера в окрестности начального положения спутника

Видно, что при шаге моделирования $\Delta t = 1$ с конечное положение спутника отклоняется от начального примерно на 500 км. При выборе более точного шага моделирования происходит сближение начальной и конечной точки.

Моделирование методом Верле

График 2.1. Траектория движения спутника при моделировании методом Верле с различным временным шагом

При таком масштабе вообще не видно отклонения начального и конечного положений спутника при любом из выбранных шагов интегрирования, из чего сразу можно сделать вывод о гораздо большей точности метода Верле по сравнению с методом Эйлера.

График 2.2. Приближенный график движения спутника при моделировании методом Верле в окрестности начального положения спутника

Отклонение по координате \mathbf{y} составляет всего лишь 1.5 м! При этом траектории при всех Δt до сих пор сливаются в одну линию. Приблизим график ещё больше, чтобы увидеть отклонение по оси \mathbf{x} при различных Δt .

График 2.3. Приближенный график движения спутника при моделировании методом Верле в окрестности конечного положения спутника при $\Delta t = 1$.

При $\Delta t = 1$ отклонение по **у** больше — примерно 22 м. При этом график при данном Δt имеет конечную координату **х**, равную 6371 км с точностью 4 мкм! Графики при остальных Δt отклоняются в данном месте графика просто потому, что они ещё не достигли своего конечного положения.

Конечные координаты графиков при $\Delta t = 1$ и 0.5 с оказались равными *точно* 6371000 м. Таким образом, алгоритм Верле гораздо точнее алгоритма Эйлера. (отклонение по координате **у** по алгоритму Верле примерно в 30000 раз меньше отклонения при методе Эйлера).

Приложение. Формат ввода

В файле в первой строке указываются по порядку через пробел значения n (количество тел), Δt (шаг моделирования), t (время моделирования), dprint (шаг вывода данных).

В остальных строчках указываются по порядку параметры тел: x, y, v_x , v_y , $m \cdot M$ (произведение массы спутника и массы очередного тела).