PatchCamelyon Challenge

Rodrigo Chavez, Ioanna Gogou, Christelle Klein, Alexia Muresan and Sina Taslimi

Introduction

Breast Cancer & Metastasis

- → One of the leading causes of female **mortality** worldwide
- → Abnormal cells in the breast grow in an uncontrolled manner
- → Metastasis is a **severe case** of cancer where the cancerous cells spread to the rest of the body, among others in the **lymph nodes**
- → Timely detection plays a crucial role in effective treatment

Why computer-aided diagnosis?

۰,

- → Diagnosing cancer metastasis in lymph nodes is a challenging task
- → Potentially **more accurate** than trained pathologists
- → Faster diagnosing

Dataset: PatchCamelyon Benchmark

- → Image classification dataset
- → 300k **96x96 patches** from 400 scans of lymph node sections of Camelyon16

Dataset: PatchCamelyon Benchmark

327,680

Colour images

96x96 px

Image resolution

2 classes

Presence of metastatic tissue or not

Lymph node sections

Research Questions

۰,

- 1. Which pre-trained model is most suitable for the challenge based on the Accuracy/Complexity trade-off?
- 2. Can we improve the model using **Data Augmentations**?
- 3. Can medical expert trust the model's predictions?
 - a. Model Explainability
 - b. **Model Uncertainty**

Experiment 1: Accuracy/Complexity trade-off

→ Model Selection

48 Conv Layers, 1 FC Layer, and

Inception Modules

161 Conv Layers, 1 FC Layer and Inception Modules

12 Transformer Layers: 16x16 Patches, Positional Encodings, and Multi-head Self-Attention

MLP, LayerNorm, and Multi-head Self-Attention

12 Swin Transformer blocks:

Experiment 1: Accuracy/Complexity trade-off

→ Experiment Setup

- → Metrics: **AUC** for accuracy, **GFLOPs** for complexity
- → All models pre-trained on **ImageNet 1k**
- → Training on **last fully connected layer** only
- → Hyperparameters:
 - **5** Epochs, Batch size = **256** (128 for Inception)
 - Optimizer: **Adam** (learning rate = 0.01)
- → Loss function: Cross Entropy Loss

$$ext{Loss} = -\sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i$$

Experiment 1: Accuracy/Complexity trade-off

→ Results

Experiment 2: Data Augmentations

→ Ablation Study

- Compared three augmentations on Swin Transformer:
 - Random horizontal and vertical **flipping** (p=0.5)
 - Random **cropping** (p=1, random location)
 - **Color Jitter** (p=1, random fluctuations)
- Hyperparameters:
 - **10** Epochs, Batch size = **512**

Color litter

Experiment 2: Data Augmentations

→ Results

Experiment 3: Explainability

→ Grad-CAM

→ Idea

- Find parts of the image that have more influence on the model's decision
 - Idealistically the metastatic parts of the tissue
 - Want to see if we change an area in the input how much the output differs
 - More change → More influence on the decision
- Can be used as a guide for doctors and radiologists to locate the disease easier

Experiment 3: Explainability

→ Grad-CAM

→ Method

- Take the last block of the last layer (before linear layers) in Swin Transformer
- Take the gradient of the class logit with respect to those activation maps
- Pool the gradients
- Weight the channels of the map by the corresponding pooled gradients
- Interpolate the heat-map

Experiment 3: Explainability

→ Results

Experiment 3: Uncertainty

→ Monte-Carlo Dropout

- → Apply dropout during testing (p=0.3)
- → Perform **multiple test runs** on each image (10 runs).
- → Each run will generate a **different output probability** due to randomized dropout.
- → The uncertainty on a sample is measured as the variance of its output probability across the multiple runs.

Experiment 3: Uncertainty

→ Results

Experiment 3: Uncertainty

→ Results

Uncertain Samples

O3 Conclusion

Conclusion

- → The **Swin Transformer** performed best compared to other classifiers in terms of both **accuracy** and **complexity**.
- → The data augmentation of **flipping** was useful for the PCAM Challenge.
- → Our Swin Transformer model with data augmentations **ranked 62th out of 179** models with **92,92% AUC** in the leaderboard. The top models had a perfect AUC score.
- Using explanations and uncertainty, medical expert can reliably understand model
 predictions and filter down the patients for manual diagnosis.

Future plans

- Test out bigger Transformer models, due to our current resource limitations.
- Improve performance with other techniques
 (e.g. model ensembling, stain normalization, complex data augmentations, etc.).
- Test and compare more explainability methods.
- Understand the pattern behind uncertain and certain predictions.

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

