Dans tout l'exercice, on notera $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 et I la matrice

identité d'ordre 3. On considère la matrice
$$A$$
 définie par :
$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{bmatrix}$$

L'objet de cet exercice est déterminer l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$.

Partie A : Étude de la matrice A

- 1. (Calculer les matrices $(A I)^2$ et $(A I)^3$.)

 Calcul de (A I) On a : $A I = \begin{bmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{bmatrix}$.
 - ► Calcul de $(A I)^2$ On trouve : $(A I)^2 = \begin{bmatrix} -6 & 6 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - ► Calcul de $(A I)^3$ On trouve alors $(A I)^3 = 0$
- 2. (En déduire l'ensemble des valeurs propres de A.)
 - Restriction des valeurs propres

On a vu : $(A-I)^3 = 0$. Le polynôme $\Pi(X) = (X-1)^3$ est donc annulateur de A. Les seules valeurs propres possibles pour A sont donc les racines de ce polynôme.

Or la seule racine de Π est 1.

La seule valeur propre possible de A est donc 1.

▶ Vérification pour $\lambda = 1$ On a : $A - I = \begin{bmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{bmatrix}$.

Cette matrice est de rang = 2 (deux premiers vecteurs colonnes opposés).

Ainsi:
$$\dim(\operatorname{Ker}(A-I)) = \underbrace{\dim(\mathbb{R}^3)}_{3} - \underbrace{\operatorname{rg}(A)}_{2} = 1.$$

 $Ker(A - I) \neq \{\vec{0}\},$ donc 1 est bien valeur propre de A.

- ▶ Conclusion L'ensemble des valeurs propres de A est : $Sp(A) = \{1\}$.
- **3.** (La matrice A est-elle inversible? Est-elle diagonalisable?)
 - ▶ Inversibilité (oui) Le réel 0 n'est pas valeur propre de A, donc A est inversible.
 - ▶ Diagonalisabilité (non) La matrice A n'a qu'une valeur propre, c'est 1.

Ainsi :
$$\sum_{\lambda \in \text{Sp}(A)} \dim \left(E_{\lambda}(A) \right) = \dim \left(\text{Ker}(A - I) \right) = 1 \neq 3.$$

La somme des dimensions des sous-espaces propres n'est pas le nombre de colonnes : la matrice A n'est donc pas diagonalisable.

Partie B: Recherche d'une solution particulière

On note, pour tout $x \in]-1; 1[, \varphi(x) = \sqrt{1+x}]$.

- **4.** (Justifier que la fonction φ est de classe C^2 sur]-1;1[et déterminer les valeurs de $\varphi'(0)$ et $\varphi''(0)$.)
 - Caractère \mathcal{C}^{∞}

La fonction $t \mapsto \sqrt{t}$ est une fonction de référence de classe \mathcal{C}^{∞} sur $]0; +\infty[$.

On compose par $x \mapsto 1 + x$, qui est affine donc C^{∞} sur]-1;1[, et à valeurs > 0.

Ainsi, par composition $\varphi: x \mapsto \sqrt{1+x}$ est \mathcal{C}^{∞} sur]-1;1[. En particulier, elle est de classe $\mathcal{C}^{2,>0}$

Dérivation

On dérive, en remarquant que (1+x)'=1

On a
$$\forall x \in]-1; 1[$$
 l'expression : $\varphi(x) = \sqrt{1+x} = (1+x)^{\frac{1}{2}}$
d'où : $\varphi'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{1+x}} = \frac{1}{2} \cdot (1+x)^{-\frac{1}{2}}$
enfin : $\varphi''(x) = -\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{(\sqrt{1+x})^3} = -\frac{1}{2} \cdot \frac{1}{2} \cdot (1+x)^{-\frac{3}{2}}$
 $= -\frac{1}{4} \cdot \frac{1}{(\sqrt{1+x})^3} = -\frac{1}{2} \cdot \frac{1}{2} \cdot (1+x)^{-\frac{3}{2}}$

- **5.** (En utilisant la formule de Taylor-Young pour φ en 0 à l'ordre 2, déterminer un réel α non-nul tel que : $\sqrt{1+x'} = 1 + \frac{1}{2} \cdot x + \alpha \cdot x^2 + x^2 \cdot \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$.)
 - ▶ Énoncé de la formule de Taylor-Young

Si $f: I \to \mathbb{R}$ est une fonction de classe C^2 au voisinage de x_0 , alors, pour $x \to x_0$, on a: $f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \frac{1}{2} \cdot f''(x_0) \cdot (x - x_0)^2 + o((x - x_0)^2)$.

▶ **Application** Ici, on a trouvé : ▶
$$\varphi(0) = 1$$

•
$$\varphi'(0) = \frac{1}{2}$$

•
$$\varphi''(0) = -\frac{1}{4}$$

Il vient donc : $\varphi(x) = 1 + \frac{1}{2} \cdot x + \frac{1}{2} \cdot \left(-\frac{1}{4} \right) \cdot x^2 + o(x^2).$

C'est la formule demandée avec $\alpha = -\frac{1}{8}$. (et α est bien non-nul!)

On note : $P(x) = 1 + \frac{1}{2} \cdot x + \alpha \cdot x^2$ la fonction polynomiale de degré 2 ainsi obtenue.

6. $(Développer(P(x))^2.)$

Soit C = A - I.

- **7.** (En utilisant les résultats de la question 1., vérifier que $(P(C))^2 = A$. Expliciter alors une matrice M telle que $M^2 = A$.)
 - ▶ Rappel de la question 1. On a trouvé $(A I)^3 = C^3 = 0$, d'où aussi $C^4 = 0$.
 - Calcul de P(C)

Ces deux puissances s'annulent dans l'expression de la question précédente.

Il vient :
$$\left(P(C)\right)^2 = I + C - \frac{1}{8} \cdot \underbrace{C^3}_0 + \frac{1}{64} \cdot \underbrace{C^4}_0.$$

$$= I + C$$

Ainsi, on a bien $(P(C))^2 = I + C = A$.

• Explicitation d'une solution à $M^2 = A$

On vient de trouver pour solution à cette équation : M = P(C)

C'est-à-dire :
$$M = I + \frac{1}{2} \cdot C - \frac{1}{8} \cdot C^2$$

= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \frac{1}{2} \cdot \begin{bmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ -3 & 3 & 0 \end{bmatrix} - \frac{1}{8} \cdot \begin{bmatrix} -6 & 6 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Tous calculs effectués, on trouve : $M=\frac{1}{4}\cdot\begin{bmatrix}5 & -1 & 4\\1 & 3 & 4\\-6 & 6 & 4\end{bmatrix}$. (et on vérifie $M^2=A$.)

Partie C : Résolution complète de l'équation

On munit l'espace vectoriel \mathbb{R}^3 de sa base canonique $\mathcal{B} = (e_1, e_2, e_3)$.

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice représentative dans la base \mathcal{B} est la matrice A.

Dans cette partie, on pose : $T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 8. Soient u, v, w les vecteurs définis par : $\begin{cases} w = (1, 0, 1), \\ v = f(w) w, \\ u = f(v) v. \end{cases}$
 - ► Interprétation de fPour $\vec{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, on a : $f(\vec{X}) = A \cdot \vec{X} = \begin{pmatrix} y+2z \\ -x+2y+2z \\ -3x+3y+z \end{pmatrix}$ ► $f(\vec{X}) - \vec{X} = \underbrace{C}_{A-I} \cdot \vec{X} = \begin{pmatrix} -x+y+2z \\ -x+y+2z \\ -3x+3y \end{pmatrix}$ ► Application • On a $w = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.
 - **b)** (Démontrer que la famille $\mathcal{B}' = (u, v, w)$ est une base de \mathbb{R}^3 .)
 - La famille $\mathcal{B}' = (u, v, w)$ est libre?

Cherchons les relations de dépendance linéaire satisfaites par cette famille \mathcal{B}' .

On résout :
$$\begin{bmatrix} a \cdot u + b \cdot v + c \cdot w = \vec{0} \end{bmatrix} \iff \begin{cases} -6a + b + c = 0 \\ -6a + b = 0 \\ -3b + c = 0 \end{cases}$$
$$\iff \begin{cases} -6a + b + c = 0 \\ -3b + c = 0 \\ c = 0 \quad (L_1 - L_2) \end{cases}$$

Ce système est triangulaire, avec des coefficients diagonaux non-nuls. (3 pivots)

La seule solution est donc a = b = c = 0.

Ainsi, la seule relation de dépendance linéaire est triviale.

La famille $\mathcal{B}' = (u, v, w)$ est donc libre.

▶ Conclusion : « c'est une base »

La famille \mathcal{B}' est libre de trois vecteurs dans \mathbb{R}^3 .

Il s'agit donc d'une base de \mathbb{R}^3 . (« bon nombre » de vecteurs.)

c) (Déterminer la matrice représentative de f dans la base \mathcal{B}' .)

On a
$$f(u) = A \cdot \begin{pmatrix} -6 \\ -6 \\ 0 \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ 0 \end{pmatrix}$$
. Ainsi, on obtient : $f(u) = u$
 $f(v) = A \cdot \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -5 \\ -5 \\ -3 \end{pmatrix}$ $f(w) = u + v$
 $f(w) = A \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$

 $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = T.$ La matrice qui représente f dans la base \mathcal{B}' est donc :

d) (En déduire qu'il existe une matrice $P \in \mathcal{M}_3(\mathbb{R})$ inversible telle que $T = P^{-1} \cdot A \cdot P$.) Dans la base \mathcal{B}' , l'endomorphisme f est représenté par la matrice T.

Posons $P = \begin{pmatrix} -6 & 1 & 1 \\ -6 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix}$ la matrice de la famille $\mathcal{B}' = (u, v, w)$.

On a alors la relation : $\stackrel{'}{A} \cdot P = P \cdot T$, soit : $A = P \cdot T \cdot P^{-1}$, ou : $T = P^{-1} \cdot A \cdot P$.

- 9. Soit $N \in \mathcal{M}_3(\mathbb{R})$.
 - a) (Montrer que si $N^2 = T$, alors NT = TN. En déduire que N est de la forme : $N = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}$, où a,b,c sont trois réels.)
 - ▶ Si $N^2 = T$, alors NT = TN Soit N telle que $N^2 = T$. Alors, on a bien : $N \cdot T = N \cdot (N^2) = N^3 = (N^2) \cdot N = T \cdot N$.
 - ▶ **Résolution de** NT = TN Posons $N = \begin{bmatrix} m & n & o \\ p & q & r \\ s & t & u \end{bmatrix}$. (On rappelle que : $T = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.)

 Alors $N \cdot T = \begin{bmatrix} m & m+n & n+o \\ p & p+q & q+r \\ s & s+t & t+u \end{bmatrix}$ et $T \cdot N = \begin{bmatrix} m+p & n+q & o+r \\ p+s & q+t & r+u \\ s & t & u \end{bmatrix}$.

 On résout enfin : $\begin{bmatrix} N \cdot T = T \cdot N \end{bmatrix}$ \iff $\begin{cases} p = s = t = 0 \\ m = q = u \\ n = r. \end{cases}$

Ainsi, une condition nécessaire est que N s'écrive $N = \begin{bmatrix} a & b & c \\ 0 & a & c \\ 0 & 0 & c \end{bmatrix}$.

On vérifie que c'est une condition suffisante. (ie, qu'on a alors bien : NT = TN.)

b) (Démontrer alors que l'équation matricielle $N^2 = T$ admet exactement deux solutions : N_1 et N_2 .)

On résout l'équation $N^2 = T$ pour $N = \begin{bmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{bmatrix}$. On a alors : $N^2 = \begin{bmatrix} a^2 & 2ab & b^2 + 2ac \\ 0 & a^2 & 2ab \\ 0 & 0 & a^2 \end{bmatrix}$.

 $\begin{bmatrix} N^2 = T \end{bmatrix} \iff \begin{cases} a^2 = 1 \\ 2ab = 1 \\ b^2 + 2ac = 0 \end{cases} \iff \begin{cases} a = \pm 1 \\ b = \pm \frac{1}{2} \\ c = \pm 1 \end{cases}$ On résout pour avoir :

Ainsi, on a trouvé deux solutions : $N_{\pm} = \pm \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$

- **10.** (Montrer que l'équation matricielle $M^2 = A$, d'inconnue $M \in \mathcal{M}_3(\mathbb{R})$ admet exactement deux solutions que l'on écrira en fonction de P, P^{-1}, N_1 et N_2 .)
 - ▶ Retour à l'équation précédente On sait que : $A = P \cdot T \cdot P^{-1}$. On transforme l'équation : $A = M^2 \iff P \cdot T \cdot P^{-1} = M^2$

$$\iff T = P^{-1} \cdot M^2 \cdot P$$

$$\iff T = \underbrace{P^{-1} \cdot M \cdot P}_{N} \cdot \underbrace{P^{-1} \cdot M \cdot P}_{N}$$

$$\iff T = N^2$$

$$\iff$$
 $T = N^2$

Conclusion

En ayant posé, $N = P^{-1} \cdot M \cdot P$, la question précédente donne deux solutions : $N = N_1$ et $N=N_2$.

Les deux solutions associées sont donc $ightharpoonup M_1 = P \cdot N_1 \cdot P^{-1}$

$$M_2 = P \cdot N_2 \cdot P^{-1}$$

(et, comme N_1 et N_2 , elles sont opposées : $M_1 + M_2 = 0$.)

- **11.** (L'ensemble E des matrices M appartenant à $\mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$ est-il un espace vectoriel?) Un sous-espace vectoriel est un ensemble F qui vérifie :
 - F est non-vide (et on doit en particulier avoir : $\vec{0} \in F$.)
 - ightharpoonup F est stable par combinaison linéaire

L'ensemble E des solutions de l'équation $M^2=A$ est bien non-vide $(car, par\ exemple, M_1\in E.)$

Mais, en revanche : $0 \notin E$, car : $0^2 \neq A$.

Remarquons aussi que E n'est pas stable par combinaison linéaire.

En effet: $M_1 \in E$,

 $M_2 \in E$,

▶ mais $M_1 + M_2 = 0 \notin E!$

Ainsi l'ensemble E n'est pas un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.