Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov¹, David Ruhe*,^{1,2,3}, Maurice Weiler*,¹, Ana Lucic⁴, Johannes Brandstetter^{5,6}, Patrick Forré^{1,2}

*equal contribution, ¹AMLab, University of Amsterdam, ²Al4Science Lab, University of Amsterdam, ³Anton Pannekoek Institute for Astronomy, ⁴Al4Science, Microsoft Research, ⁵ELLIS Unit Linz, ⁴NXAl GmbH

Preliminaries

Pseudo-Euclidean spaces $\mathbb{R}^{p,q}$: generalization of Euclidean spaces \mathbb{R}^n to negative distances. Includes Euclidean space and Minkowski spacetime as special cases.

Pseudo-Euclidean group E(p,q): set of isometries, includes translations, spatial rotations, reflections, and also boosts.

Steerable CNNs

Known recipe to build E(n)-equivariant CNNs:

E(n)-equivariant CNNs = CNNs + O(n)-equivariant kernels

1. define input/output

2. solve the kernel constraint for ρ_{in} , ρ_{out}

 $k(g.x) = \rho_{\text{out}}(g)k(x)\rho_{\text{in}}(g)^T \quad \forall g \in G$

3. use in convolution

- Don't want to solve the constraint analytically for each ρ,q.
- → Use Clifford group equivariant NNs [Ruhe et al. 2023] to parameterize O(p,q)-equivariant convolutional kernels.
- → [Zhdanov et al. 2023] guarantees that the resulting CNN is E(p,q)-equivariant.

Clifford-Steerable CNNs

→ The kernel can be used with nn.ConvNd → efficient and fast.

Steerable kernel.

Clifford MLP 5120 trajectories \rightarrow \nearrow \uparrow \nwarrow \leftarrow \swarrow \downarrow \searrow

grid' relative positions

multivector kernels

Experiments

Task: predict the next state of a system given previous states.

- 1) Fluid dynamics on \mathbb{R}^2 incompressible Navier-Stokes eq. (PDEarena).
- 2) Electrodynamics on \mathbb{R}^3 Maxwell eq. (PDEarena).
- 3) Electrodynamics on $\mathbb{R}^{1,2}$ Maxwell eq., relativistic.
 - EM field is generated by multiple charged particles moving with relativistic velocities.
- → In 1) and 2), time is given as channels, in 3), as a grid dimension.

- → CS-ResNets significantly and consistently outperform baselines.
- → CS-ResNets are 100x sample efficient than standard ResNets.
- → Allows for relativistic equivariant convolutions on spacetime.

