19 BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift 27

27 01 133

Ø

Aktenzeichen:

P 27 01 133.2-41

Ø (3) Anmeldetag:

13. 1.77

Offenlegungstag:

20. 7.78

3

Unionspriorität:

Ø Ø Ø

⊗

Bezeichnung:

Lagerfähige, beim Lösen in Wasser eine Lösung mit hoher

antimikrobieller Wirkung ergebende Mischung

0

Anmelder:

Schülke & Mayr GmbH, 2000 Norderstedt

0

Erfinder:

Eggensperger, Heinz, Dipl.-Chem. Dr.;

Beilfuß, Wolfgang, Dipl.-Chem. Dr.; 2000 Hamburg; Nolte, Helmut, 2000 Tangstedt; Weigand, Norbert, Dipl.-Chem. Dr., 2000 Norderstedt

Prüfungsantrag gem. § 28b PatG ist gestellt

E 27 01 133 A

Patentansprüche

Lagerfähige, beim Lösen in Wasser eine Lösung mit hoher antimikrobieller Wirkung ergebende Mischung, gekennzeichnet durch einen Gehalt an einer aromatischen Acyloxycarbonsäure der allgemeinen Formel

in der R einen niederen, gegebenenfalls durch eine Hydroxy-, niedere Alkoxy-, niedere Acyloxy-, eine Carboxygruppe oder ein Halogenatom substituierten Alkylrest oder eine gegebenenfalls durch Hydroxygruppen, Halogenatome, niedere Alkyl- oder Alkoxy-gruppen substituierte Phenylgruppe darstellt, wobei die Carboxylgruppe in o-, m- oder p-Stellung zum Acyloxyrest stehen kann, oder von deren wasserlöslichen Alkali-, Erdalkali- oder Ammoniumsalzen, in denen bis zu 4 Wasserstoffatome des Ammoniumkations durch Alkylreste substituiert sein können, H_2O_2 -Abspaltern und gegebenenfalls inerten Füllstoffen.

Mischung nach Anspruch 1, dadurch gekennzeichnet, daß das molare Gewichtsverhältnis aromatische Acyloxycarbonsäure zu H₂O₂-Abspalter 1:10 bis 10:1 beträgt.

- 3. Mischung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß sie außerdem einen Stabilisator für Persäuren enthält.
- 4. Mischung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß sie Verbindungen zur Einstellung und/oder Stabilisierung des pH-Wertes auf 4 bis 12 enthält.
- 5. Mischung nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß sie außerdem Waschaktivstoffe enthält.
- 6. Mischung nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß sie Korrosionsinhibitoren enthält.
- 7. Mischung nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß sie wasserbindende Mittel enthält.
- 8. Mischung nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß sie weitere antimikrobielle Wirkstoffe und Geruchsstoffe enthält.

sch:cm/13671

UEXKÜLL & STOLBERG

2 HAMBURG 52

PATENTANWALTE 2701133

DR. J.-D. FRHR. von UEXKÜLL DR. ULRICH GRAF STOLBERG DIPL.-ING. JÜRGEN SUCHANTKE

Schülke & Mayr GmbH Robert-Koch-Straße 2

2000 Norderstedt

(13671)

Hamburg, den 12. Januar 1977
TELE PHOTE 1040- 8930 BI
TELES 02. 14204
TELE GRAMME UEXPAT

Lagerfähige, beim Lösen in Wasser eine
Lösung mit hoher antimikrobieller Wirkung
ergebende Mischung

Es ist bekannt, daß organische Persäuren hervorragende antimikrobielle Wirkung besitzen, ihre Anwendung aber nicht problemlos
ist.

Niedere aliphatische Monocarbonsäuren, wie Peressig- und Perpropionsäure, vermögen zwar beständige Lösungen zu bilden, wenn der Persäuregehalt dieser Lösungen hoch ist. Verdünnte gebrauchsfertige Lösungen dieser Säuren, z.B. für Desinfektionszwecke, sind jedoch nicht über längere Zeiträume beständig und lassen sich daher nicht in den Handel bringen. Ein Nachteil der konzentrierten Persäurelösungen ist ihr äußerst stechender Geruch, der ihre Handhabung und Anwendung schwierig und sogar bedenklich macht. Außerdem kann es beim Verschütten dieser konzentrierten Lösungen zu Verätzungen, Materialbeschädigungen oder heftigen Zersetzungsreaktionen kommen.

Andere Percarbonsäuren, wie z.B. die Perbenzoesäure, sind bereits als solche unbeständig und lassen sich aus diesem Grund nicht in

809829/0128

den Handel bringen.

Beständige Percarbonsäuren, wie die p-tert.-Butylperbenzoesäure und die p-Methoxyperbenzoesäure, sind in Wasser verhältnismäßig schwer löslich, so daß die Einstellung eines bestimmten Persäuregehaltes aufgrund der geringen Lösungsgeschwindigkeit beträchtliche Zeit erfordert.

Hinzu kommt, daß im neutralen und alkalischen Bereich organische Persäuren generell über längere Zeiträume nicht beständig sind.

Es wäre daher sehr vorteilhaft, wenn man eine feste Formulierung herstellen könnte, die vor unmittelbarem Gebrauch in Wasser gelöst, eine Lösung mit hohem Gehalt an Percarbonsäure und guter desinfizierender Wirkung ergibt. Vorteilhaft wäre auch, wenn diese Lösung alkalisch reagieren würde, da bei vielen Anwendungszwecken neben der desinfizierenden Wirkung eine durch ein alkalisches Milieu begünstigte reinigende Wirkung verlangt wird.

Organische Persäuren sind jedoch wie oben erwähnt in alkalischem Milieu unbeständig.

Uberraschenderweise wurde nun gefunden, daß eine feste Mischung aus aromatischen Acyloxycarbonsäuren der allgemeinen Formel

٠,٠

in der R einen niederen,gegebenenfalls durch eine Hydroxy-, niedere Alkoxy-, niedere Acyloxy-, eine Carboxygruppe oder ein Halogenatom substituierten Alkylrest oder eine gegebenenfalls durch Hydroxy-gruppen, flalogenatome, niedere Alkyl- oder Alkoxygruppen substituierte Phenylgruppe darstellt, wobei die Carboxylgruppe in o-, moder p-Stellung zum Acyloxyrest stehen kann, oder von deren wasserlöslichen Alkali-, Erdalkali- oder Ammoniumsalzen, in denen bis zu 4 Wasserstoffatome des Ammoniumkations durch Alkylreste substituiert sein können, und einem H₂O₂-Abspalter beim Lösen in Wasser eine alkalischreagierende Lösung mit hervorragender antimikrobieller Wirkung ergibt, die auch gegen Pilze wirksam ist, während organische Persäuren sonst keine befriedigende Wirkung gegenüber Pilzen besitzen. Dabei weisen die aromatischen Acyloxycarbonsäuren mit einer freien COOH-Gruppe (Carboxygruppe) im Rest R eine besonders gute Löslichkeit auf.

Während des Lösens dieser Mischung und auch noch einige Zeit nachdem bereits eine klare Lösung entstanden ist, erfolgt offensichtlich eine Umsetzung zwischen der Acyloxycarbonsäure und dem H₂O₂ in der Weise, daß unter Aufspaltung der Esterbindung freie Hydroxycarbonsäure und Percarbonsäure gebildet und in der alkalischen Lösung über längere Zeit ein bestimmter Persäuregehalt aufrechterhalten wird, der sich beim Lösen von Persäure allein nicht über einen vergleichbaren Zeitraum aufrechterhalten läßt. Wesentlich hierfür scheint ^{Zu sein}, daß die Esterspaltung nicht spontan verläuft, sondern eine gewisse Zeit erfordert und damit über längere Zeit einen hohen Persäuregehalt gewährleistet. Würde man dagegen die beim Lösen der erfindungsgemäßen Mischung entstehenden Einzelkomponenten, d.h. die Percarbonsäure und die aromatische Hydroxycarbonsäure,

.6

miteinander kombinieren, so würde man weder in fester noch in flüssiger Form ein lagerstabiles Produkt erhalten, insbesondere nicht in dem erfindungsgemäß für die Lösung bevorzugten pH-Bereich von 4 bis 12. Die Mischungen gemäß der Erfindung und die aus ihr erhältlichen Lösungen besitzen somit Eigenschaften, die einer Kombination der beim Lösen der Mischung entstehenden Einzelkomponenten nicht zukommt.

Die erfindungsgemäßen Mischungen lösen sich besonders rasch, wenn wasserlösliche Salze der aromatischen Acyloxycarbonsäure verwendet werden.

Die in dieser Mischung enthaltenen aromatischen Acyloxycarbonsäuren bzw. ihre Salze und die H₂O₂-Abspalter sind nicht so
reaktionsfähig, daß sie bereits in festem Zustand miteinander
reagieren, sie sind aber reaktionsfähig genug, um sich beim
Lösen in Wasser oder wässrigen Systemen sofort zu schnell
wirkender hochwirksamer Percarbonsäure und zu Hydroxycarbonsäure
mit antimikrobieller Langzeitwirkung umzusetzen.

Die Aufspaltung der Esterbindung wird durch ein alkalisches
Milieu begünstigt. Besonders geeignet ist der pH-Bereich 8 bis 12,

der auch für eine Reinigungswirkung der erfindungsgemäßen Mischung
optimal ist.

Der Anteil der alkalisch reagierenden Bestandteile der Mischung

kann jedoch auch so bemessen werden, daß nach der Aufspaltung des Esters die alkalischen Bestandteile durch Neutralisation der Percarbonsäure und der Hydroxycarbonsäure verbraucht werden und somit eine neutrale Lösung entsteht. Unter "neutraler Lösung" wird vorliegend eine Lösung mit einem pH-Wert von 4 bis 8 verstanden. Dieser pH-Bereich ist für die Beständigkeit der organischen Persäuren vorteilhafter als ein alkalischer pH-Bereich.

In den erfindungsgemäß verwendeten aromatischen Acyloxycarbonsäuren kann R insbesondere die Methyl-, Äthyl-, Hydroxymethyl-, Acetoxymethyl-, Methoxymethyl-, Äthoxymethyl-, 1-Hydroxyäthyl-, 2-Hydroxyäthyl-, 2-Carboxyäthyl-, 3-Carboxypropyl-, 3-Carboxy-2-oxa-propyl-, Chlormethyl-, Phenyl-, 2-Methyl-phenyl-, 3-Methyl-phenyl-, 4-Methylphenyl-, 2-tert.-Butylphenyl-, 3-tert.-Butyl-phenyl-, 4-tert.-Butylphenyl-, 2-Methoxyphenyl-, 3-Methoxyphenyl-, 4-Methoxyphenyl-, 2-Äthoxyphenyl-, 3-Äthoxyphenyl-, 4-Äthoxyphenyl-, 2-Chlorphenyl-, 3-Chlorphenyl-, 4-Chlorphenyl-, 2-Hydroxyphenyl-, 3-Hydroxyphenyl- und 4-Hydroxyphenylgruppe sein. Geeignete wasserlösliche Salze der aromatischen Acyloxycarbonsäuren sind Lithium-, Natrium-, Kalium-, Ammonium- und Magnesiumsalze, wobei im Ammonium-kation 1, 2, 3 oder auch alle 4 Wasserstoffatome durch Alkylreste substituiert sein können. Die Natrium-, Kalium-, Ammonium- und substituierten Ammoniumsalze werden bevorzugt.

Beispiele für erfindungsgemäß verwendbare aromatische Acyloxy-

Hongauren sind

(4-tert.-Butylbenzoyl)- und (4-Methylbenzoyl)-salicylsäure,

- 6 -. 8.

3-Acetoxy-, 3-Propionyloxy-, 3-Benzoyloxy-, 3-(4-Methoxybenzoyl-oxy)-, 3-(3-Chlorbenzoyloxy)-, 3-(4-tert.-Butylbenzoyloxy)- und 3-(4-Methylbenzoyloxy)-benzoesäure sowie 4-Acetoxy-, 4-Propionyloxy-, 4-Benzoyloxy-, 4-(4-Methoxybenzoyloxy)-, 4-(3-Chlorbenzoyloxy)-, 4-(4-tert.-Butylbenzoyloxy)- und 4-(4-Methylbenzoyloxy)-benzoesäure,

wobei die Acetyl-, Benzoyl-, (4-Methoxybenzoyl)- und (4-tert.- Butylbenzoyl)-salicylsäure

die 3-Acetoxy-, 3-Benzoyloxy- und 3-(4-Methoxybenzoyloxy)-benzoesäure sowie

die 4-Acetoxy-, 4-Propionyloxy-, 4-Benzoyloxy- und 4-(4-Methoxy-benzoyloxy)-benzoesäure bevorzugt werden.

Als H₂O₂-Abspalter für die erfindungsgemäßen Zwecke eignen sich Alkaliperborate, Alkalipercarbonate, Alkaliperphosphate, Alkalipercarbonate, Alkaliperphosphate, Alkalipercarbonate, Alkalipercarbonate, Alkaliperphosphate, Alkalipercarbonate, A

Dieser hohe Schmelzpunkt ist für die praktische Anwendung von besonderer Bedeutung. Anderenfalls könnte während der Lagerung eine Verklumpung des Gemisches, z.B. durch Sonneneinstrahlung oder Lagerung bei höherer Temperatur, eintreten. Das Natriumsalz der Benzoylsalicylsäure hat z.B. einen Schmelzpunkt von über 300°C. Damit erfüllen die Salze der aromatischen Acyloxycarbonsäuren in idealer Weise die Forderung einer problemlosen Lagerung ohne Verklumpung, die sich auf die rasche und gleichmäßige Lösung der erfindungsgemäßen Mischung in Wasser oder wässrigen Systemen sehr nachteilig auswirken würde.

Die beim Lösen entstehende organische Persäure besitzt hervorragende, sehr rasch eintretende antimikrobielle Wirksamkeit. Diese
sofort einsetzende keimtötende Wirkung der Persäure ist für die
praktische Anwendung der erfindungsgemäßen Mischungen als Desinfektionsmittel sehr wichtig, da unter den Bedingungen der
Praxis die organischen Persäuren nicht lange beständig sind,
sondern allmählich unter dem katalytischen Einfluß von Metallionen,
Enzymen oder anderen katalytisch wirkenden Stoffen in Sauerstoff
und in die zugrundeliegende Carbonsäure zerfallen.

Von besonderer Bedeutung für die praktische Anwendung der erfindungsgemäßen Mischungen ist ferner, daß die zweite Komponente der Esterspaltung, d.h. die aromatische Hydroxycarbonsäure selbst antimikrobielle Wirkung besitzt. Ihre Wirkungsweise ist nicht mit der der Percarbonsäure, die zu einer raschen Keimtötung führt, vergleichbar. Jedoch übertrifft die aromatische Hydroxycarbonsäure die Percarbonsäure in ihrer Langzeitwirkung.

Das Mengenverhältnis aromatische Acyloxycarbonsäure zu H₂O₂Abspalter kann in den erfindungsgemäßen Mischungen in weiten
Bereichen variiert werden. So kann ein molares Gewichtsverhältnis
von 1:10 bis 10:1 verwendet werden. Vorzugsweise beträgt dieses
Verhältnis 1:4 bis 4:1.

Die erfindungsgemäße Mischung kann auch organische und anorganische Salze zur Einstellung und Stabilisierung des pH-Wertes der aus der Mischung hergestellten Lösung enthalten. Solche Salze sind z.B. Alkaliphosphate, Alkalipyrophosphate, Alkalipolyphosphate, Alkalipolyphosphate, Alkalitripolyphosphate, Alkalicarbonate, Alkalibicarbonate, Alkaliborate, Alkaliacetate, Alkalicitrate, Alkalilacetate und Alkalitartrate. Diese anorganischen und/oder organischen Salze können in einer Menge von 1 bis 90 Gew.% und vorzugsweise von 5 bis 80 Gew.% in den erfindungsgemäßen Mischungen enthalten sein.

Auch waschaktive Stoffe können zugesetzt werden, die die Benetzungsfähigkeit und die Reinigungswirkung der aus ihnen hergestellten Lösung erhöhen, z.B.

anionaktive Waschaktivstoffe, nämlich Alkylsulfate, wie Cocosfettalkylsulfate und Talgfettalkylsulfate; Alkylsulfonate, wie Laurylsulfonat; Alkylarylsulfonate, wie Alkylbenzolsulfonate, deren
Alkylreste 8 bis 14 C-Atome enthalten; Seifen aus natürlichen
oder synthetischen Fettsäuren; Alkyläthersulfate; Alkylphenoläthersulfate und Alkylsulfosuccinate, wie Laurylalkoholsulfosuccinat.

Nicht-ionogene Waschaktivstoffe, nämlich Alkylphenolpolyglykoläther, wie Nonylphenolpolyglykoläther; Fettalkoholpolyglykoläther; Fettsäurepolyglykolester, Polyoxypropylenglykole (Pluronics);
Aminoxide, wie Dodecyldimethylaminoxide und Betaine, wie
Carboxy-, Sulfat- oder Sulfonat-betaine.

Der Gewichtsanteil dieser Stoffe kann in der erfindungsgemäßen Mischung 0,5 bis 80 Gew.% und vorzugsweise 1 bis 50 Gew.% betragen.

Ferner können Stoffe enthalten sein, die die Stabilität der bei der Hydrolyse gebildeten organischen Persäure erhöhen, z.B.

Komplexbildner, wie Äthylendiamintetraessigsäure und deren Alkalisalze, Nitrilotriessigsäure und deren Alkalisalze, Alkalisalze der Metaphosphorsäure, Alkalisalze der Polyphosphorsäure, wasserlösliche Salze höher molekularer Polycarbonsäuren, Alkylphosphonsäuren, Dialkylphosphonsäuren, wie Methylendiphosphonsäure, Polyphosphonsäuren,Harnstoff, Pyridin-2,3-dicarbonsäure oder Pyridin-2,6-dicarbonsäure.

Einige dieser Stoffe haben gleichzeitig die Aufgabe, Schwermetallionen, die mit den aromtischen Hydroxycarbonsäuren farbige
Komplexe ergeben können, durch Komplexbildung zu binden, während
andere durch Bindung der die Wasserhärte verursachenden Erdalkaliionen das Wasser weich machen. Die genannten Stoffe können
in einer Menge von 0,5 bis 80 Gew.% und vorzugsweise von 2 bis
20 Gew.% in der erfindungsgemäßen Mischung enthalten sein.

Auch inerte Füllstoffe können zugesetzt werden, z.B. Alkalisulfate, Alkalichloride, Alkalisilikate, Carboxymethylcellulose und wasserlösliche Salze aromatischer Sulfonsäuren, wie der Benzol-, Toluol-, Xylol- und der Cumolsulfonsäure. Diese Stoffe, die auch die Aufgabe haben können, Wasser zu binden um ein Verklumpen der Mischung durch Luftfeuchtigkeit, freiwerdendes Kristallwasser oder andere H₂O-Quellen zu unterbinden, können in einer Menge von O,5 bis 80 Gew.% und vorzugsweise 2 bis 50 Gew.% in der Mischung verwendet werden.

Ferner können Korrosionsinhibitoren, Parfüms sowie weitere antimikrobielle Wirkstoffe zugesetzt werden. Geeignete Korrosionsinhibitoren sind Benzotriazol, Alkaliphosphate, Alkalihen hexametaphosphate, Alkalinitrate, Alkylphosphate, Aminoxide, Ammoniumseifen, Natriumsilikat, Natriumbenzoat, Natriumfluorid und Alkylsulfamidocarbonsäure. Die Menge der Korrosionsinhibitoren kann 0,5 bis 30 Gew.%, vorzugsweise 1 bis 20 Gew.% betragen.

Als zusätzliche antimikrobielle Wirkstoffe eignen sich Carbonsäuren, wie Benzoesäure, Salicylsäure und Sorbinsäure, Phenole, wie 2,6-Dimethyl-4-bromphenol und o-Phenylphenol.

Die aus den erfindungsgemäßen Mischungen hergestellten Lösungen eignen sich zur Desinfektion und Reinigung von Instrumenten,

Geräten, Gebrauchsgegenständen, Wand- und Boden- sowie anderen Oberflächen im Krankenhausbereich, in der ärztlichen Praxis, im tierärztlichen Bereich, im Haushalt, in industriellen und öffentlichen Arbeitsbereichen sowie im Sanitärbereich.

Die Mischungen können in Form von Pulvern, Granulaten, Tabletten oder anderen geformten Festkörpern vorliegen. Die Mischungen und die aus ihnen hergestellten wässrigen Lösungen sind praktisch geruchlos. Hinzu kommt als weiterer Vorteil, daß die Lösungen geschmacklich, physiologisch und toxikologisch unbedenklich sind.

Die antimikrobielle Wirksamkeit der aus den erfindungsgemäßen Mischungen erhältlichen Lösungen geht aus den beigefügten Tabellen 1 und 2 hervor. Die bakteriologischen Untersuchungen wurden gemäß den Richtlinien zur Prüfung chemischer Desinfektionsmittel (DGHM) durchgeführt.

Die Tabellen veranschaulichen:

das breite antimikrobielle Wirkungsspektrum, auch gegenüber Pilzen

die lange Wirkungsdauer (üblicherweise wird für eine Gebrauchsdesinfektionslösung eine Haltbarkeit von etwa 1 Tag gefordert) und

die hervorragende Belastbarkeit durch Eiweiß (Serum).

e ereanie	ad 200 g	H20 perm.	H ₂ O perm.) 	בי בים כפים							
	Suspension,		Bakterien		Suspens	Suspension, Pilze		Keimträger Granaton B.	er	Staphylo	ylo- s Flache	
Kon- zen- tr.	Staphyl.	Klebsi- ella ; pneumon.	Pyo- genes	Proteus vulgaris	Tricho- sphyton menta-	Candida albicans	Asper gillu niger	Bacil- lus sub-	Cobac-	Susaine Susaine	10), z - L.A.C.k.	C011
S 8	30		2 1/2	15	grophytes 5	15		4 ¹	7 120	4 6 h		۲.
0 9 8	2 1/2	2 1/2	2/1/2	15.	2 1/2	2 1/2	y 30	· 1h	> 120	4 9 4		4-
29 29	2 1/2	2 1/2	2 1/2	2 1/2	ż 1/2	2 1/2	3 0	l h	> 120	ا د		14
01												
28	+	20 % Ser	erum									. 1
25	2 1/2	2 1/2	2 1/2	2 1/2								-
50	2 1/2	2 1/2	2 1/2	2 1/2								
80	2 1/2	2 1/2	2 1/2	2 1/2								
	ب	= 18 Stur	tunden									
10	5	2/1/2	2/1/2	2 1/2		·						
2,5	2	2 1/2	2/1/2	2 1/2								01
80	2 1/2	2 1/2	2 1/2	2 1/2	·							133
E E	·s	2	01	'n	ុហ	0	25					
						-	-					

THIS PAGE BLANK (USPTO)

BEST AVAILABLE COPY

Tabelle ;

Zusammen- setzung	n- 2.4	ויסים	Benzoylsalicylsaure Na-perborat	lsaure.	t # 3	30 Minuten	, u	<u>.</u>					
	1		Jerm.	4.			·			:		:	
h								 Keimträger	er	Sta	Staphylo- coccus Fl	Esch Flache rich	1.4
	Suspension,	j	Bakterien		Suspensi	Suspension, Pilze		Granaten	Batist	aur		. 1	
Konzen- tration	nzen- Staphyl trationaureus	Klebsi- ella pneumon.	Pyo- genes	Proceus Tric vulgarisphyt ment	Tricho- phyton menta-	Candida albicans	As gi n1	per-Bacil- lluslus sub- ger tilis	Mycobac- terium smegmatis	by C	iolz-Lack	PVC	1012
2	2. 1/2	2	, 30	, 30	grophytes 2 1/2	S	> 30	49 [.]	, 120	, 6 ^h		, 6 ^h	
5 8 0 8	2 1/2	2 1/2	2 1/2	လ	2 1/2	2 1/2	30	3h	, 120	, 6h		6 ^h]
82 ²	2 1/2	2 1/2	2 1/2	2	2 1/2	2 1/2	2 1/2	14	15	, 6 ^h		1 h	<u> </u>
/0					•				-				ļ
28	+	20 % Serum	mr									15	<u> </u>
25	2 1/2	2 1/2	2 1/2	2 1/2								-	··
50	2 1/2	2 1/2	2 1/2	2 1/2									<u> </u>
80	2 1/2	2 1/2	2/1/2	2 1/2				·					
	υ	= 18 Stu	Stunden										
10	· 30	2 1/2	S	2	-	-				-			2
25	2 1/2	2 1/2	2 1/2	2 1/2									<u>70</u>
50	2 1/2	.2 1/2	2 1/2	2 1/2	٠								113
I I	ļs.	ا ا		L ₁	ls	25	2.5		es _{top}	-			3

THIS PAGE BLANK (USPTO)