Word recognition

Introduction

- Home automation system
- Disable persons
- Games

Introduction

Game by voice control

Contents

- I. Sound treatment
 - a. From signal to spectrogram
 - b. Mel's scale and filter bank
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results
- III. Human Machine Interface
 - a. Menu
 - b. How to play

Sound treatment

I. Sound treatment

- a. From signal to spectrogram
- b. Mel's scale and filter bank
- II. Comparison
- III. Human Machine Interface

Sound recording

Time split

MAM₄

Treatment of each slice

From signal to spectrogram

time (seconds)

Spectrogram

- I. Sound treatment
 - a. From signal to spectrogram
 - b. Mel's scale and filter bank
- II. Comparison
- III. Human Machine Interface

2D view spectrogram

« gauche »

- I. Sound treatment
 - a. From signal to spectrogram
 - b. Mel's scale and filter bank
- II. Comparison
- III. Human Machine

Interface

- Mel's scale:
 - Reduce the importance of high frequencies
 - From Hz to Mel

Mel's scale

$$M = \frac{1000}{\log(2)} * \log\left(1 + \frac{F}{1000}\right)$$

Guénon Marie Achard Jean-Paul Favreau Jean-Dominique

MAM₄

- I. Sound treatment
 - a. From signal to spectrogram
 - b. Mel's scale and filter bank
- II. Comparison
- III. Human Machine

Interface

- Filter bank:
 - Reduce the number of frequencies considered
 - Uniform on the Mel's scale, non uniformly on the frequency scale

- I. Sound treatment
 - a. From signal to spectrogram
 - b. Mel's scale and filter bank
- II. Comparison
- III. Human Machine Interface

• Example:

Guénon Marie Achard Jean-Paul Favreau Jean-Dominique

 MAM_4

I. Sound treatment

- a. From signal to spectrogram
- b. Mel's scale and filter bank
- II. Comparison
- III. Human Machine

Interface

Guénon Marie

Achard Jean-Paul Favreau Jean-Dominique

 MAM_4

Comparison

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results

III. Human Machine Interface

- "Bas"
- "Gauche"
- "Haut"
- "Droite"

Guénon Marie Achard Jean-Paul Favreau Jean-Dominique

MAM₄

Existing methods

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results
- III. Human Machine Interface

Artificial neuronal networks:

Existing methods

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results

III. Human Machine Interface

Hidden Markov model

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results

III. Human Machine Interface

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results

III. Human Machine Interface

Example of minimal path

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results
- III. Human Machine

Interface

- Limits:
 - Euclidean distance
 - Slower for big vocabularies
 - Word width

Method amelioration

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results

III. Human Machine Interface

- DTW parameters modifications
- Word beginning detection

Global approach on DTW

Results

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results
- III. Human Machine Interface

Local DTW

Median DTW

Global DTW

Results

- I. Sound treatment
- II. Comparison
 - a. Existing methods
 - b. Dynamic Time Warping
 - c. Method amelioration
 - d. Results

III. Human Machine Interface

Words Method	"gauche", "droite", "haut", "bas"	"Bonjour", "Hello", "Maison", "Placard"	"vacherin", "tiramisu", "moelleux", "bûche"	"Riri", "Fifi", "Loulou", "toto"
DTW local	62,5%	80%	70%	70%
DTW local and beginning detection	62,5%	80%	70%	70%
DTW median and beginning detection	85%	85%	98%	65%
DTW global and beginning detection	95%	90%	98%	85%

- I. Sound treatment
- II. Comparison

III. Human Machine Interface

- a. Menu
- b. How to play

- I. Sound treatment
- II. Comparison
- III. Human Machine Interface
 - a. Menu
 - b. How to play

- I. Sound treatment
 II. Comparison
 III. Human Machine
 Interface
 - a. Menu
 - b. How to play

I. Sound treatment
II. Comparison
III. Human Machine
Interface

a. Menu

b. How to play

- I. Sound treatmentII. ComparisonIII. Human Machine
 - a. Menu

Interface

b. How to play

- I. Sound treatment
 II. Comparison
 III. Human Machine
 Interface
 - a. Menu
 - b. How to play

I. Sound treatment

II. Comparison

III. Human Machine

Interface

a. Menu

b. How to play

Way in:

I. Sound treatment

II. Comparison

III. Human Machine

Interface

a. Menu

b. How to play

Moving:

Waiting:

Wall:

Fire:

Guénon Marie Achard Jean-Paul Favreau Jean-Dominique

MAM₄

- I. Sound treatment
 II. Comparison
 III. Human Machine
 Interface
 - a. Menu
 - b. How to play

Conclusion

- Interesting project
- Apply our courses(TNS, Infographie, C++)
- Deepen our knowledge
- Others upgrades?

References

- J. Leroux « Dynamic time warping », « HMI », TNS
- Wikipedia
- J. Mariani « Advances and trends in automatic speech recognition », p245-252, 1990
- •

Let's practice!

Do you have any question?

Guénon Marie Achard Jean-Paul Favreau Jean-Dominique

MAM₄

