# funções heurísticas de procura



## a situação

problemas difíceis

formulação difícil

espaço de procura de dimensão muito grande

a função heurística pode ajudar muito se for bem escolhida



## dimensão do espaço de estados

ex: o puzzle de deslizar de 3x3

espaço de estados da procura

fator de ramificação (médio) 2,67 ~ 3

vazio: 2 movimentos nos cantos

3 movimentos nos lados

4 movimentos no centro

média de movimentos até à solução ~22

expansão exaustiva da árvore:  $\sim 3^{22} \sim 3.1 \times 10^{10}$ 

em grafo (estados únicos possíveis): 9!/2 = 181.440



só metade das configurações de um *array* abstrato de 3x3



## dimensões grandes do EE

puzzle de 4x4

| 1 | 2  | 8  | 11 |  |
|---|----|----|----|--|
| 9 | 3  | 6  | 14 |  |
| 4 | 7  | 12 | 10 |  |
| 5 | 15 | 13 |    |  |

em grafo (estados únicos possíveis):  $16!/2 \sim 10^{13}$ 

crescimento exponencial com n de EE de puzzle  $n \times n$ 



# A\* vs. custo uniforme (recapitulando)



custo uniforme: f(n) = g(n)



a importância da função heurística

$$A^*: f(n) = g(n) + h(n)$$

admissível:

≥ 0 nunca sobrestima o custo até ao objetivo



## heurística do puzzle $n \times n$

•  $h_1$  = número de peças mal colocadas

neste caso  $h_1 = 13$ 

admissível:  $h_1 \ge 0$  e otimista!

| 1 | 2  | 8  | 11 |  |
|---|----|----|----|--|
| 9 | 3  | 6  | 14 |  |
| 4 | 7  | 12 | 10 |  |
| 5 | 15 | 13 |    |  |

•  $h_2$  = soma das distâncias das peças à posição final

neste caso 
$$h_2 = 0+0+2+3+1+2+1+4+5+2+1+2+2+1+2=28$$

admissível:  $h_2 \ge 0$  e

menor ou igual ao nº de movimentos necessários



# qualidade da heurística

uma medida da qualidade é
 fator de ramificação efetivo b\*
 se A\* gera N nós na procura
 e a profundidade da solução é d

uma boa heurística tem  $b^* \sim 1 + \Delta$ (próximo de 1)

 $N + 1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$ 

ex: se A\* encontra a solução a prof. 5 com 52 nós,  $b^* = 1,9$ 

então (contando com a raiz) a árvore completa de prof. d



| Search Cost (nodes generated) |        |            | Effective Branching Factor |      |            |            |
|-------------------------------|--------|------------|----------------------------|------|------------|------------|
| d                             | BFS    | $A^*(h_1)$ | $A^*(h_2)$                 | BFS  | $A^*(h_1)$ | $A^*(h_2)$ |
| 6                             | 128    | 24         | 19                         | 2.01 | 1.42       | 1.34       |
| 8                             | 368    | 48         | 31                         | 1.91 | 1.40       | 1.30       |
| 10                            | 1033   | 116        | 48                         | 1.85 | 1.43       | 1.27       |
| 12                            | 2672   | 279        | 84                         | 1.80 | 1.45       | 1.28       |
| 14                            | 6783   | 678        | 174                        | 1.77 | 1.47       | 1.31       |
| 16                            | 17270  | 1683       | 364                        | 1.74 | 1.48       | 1.32       |
| 18                            | 41558  | 4102       | 751                        | 1.72 | 1.49       | 1.34       |
| 20                            | 91493  | 9905       | 1318                       | 1.69 | 1.50       | 1.34       |
| 22                            | 175921 | 22955      | 2548                       | 1.66 | 1.50       | 1.34       |
| 24                            | 290082 | 53039      | 5733                       | 1.62 | 1.50       | 1.36       |
| 26                            | 395355 | 110372     | 10080                      | 1.58 | 1.50       | 1.35       |
| 28                            | 463234 | 202565     | 22055                      | 1.53 | 1.49       | 1.36       |

**Figure 3.26** Comparison of the search costs and effective branching factors for 8-puzzle problems using breadth-first search,  $A^*$  with  $h_1$  (misplaced tiles), and  $A^*$  with  $h_2$  (Manhattan distance). Data are averaged over 100 puzzles for each solution length d from 6 to 28.

fonte: AIMA 4ª ed.



#### comparação

- A\* muito melhor do que procura em largura (BFS)
- $h_2$  melhor do que  $h_1$ porquê?  $h_2(n) \ge h_1(n)$ , para qualquer nó  $n \mid h_2$  domina  $h_1$ qualquer nó com  $f(n) < C^*$  é expandido i.e. com  $h(n) < C^* - g(n)$  $=>h_1(n)$  expande pelo menos tantos nós como  $h_2(n)$ e em muitos casos ainda mais alguns



#### heurísticas limite

se h(s) = 0, então A\* é idêntico a procura de custo uniforme



se h(s) = CustoFuturoMínimo(s), então A\* só expande nós num caminho de custo mínimo

em geral h(s) está entre estes dois extremos





#### compromissos

uma heurística dominante é uma melhor estimativa do custo até ao objetivo

mais bem dirigida expande menos nós



#### hélas!

normalmente é mais demorada de calcular

=> avaliar se compensa o ganho na expansão de nós...



#### como obter boas heurísticas?

basta relaxar...



## geração de heurísticas

frequentemente, heurísticas admissíveis correspondem a soluções de problemas relaxados

com menos restrições

com ações mais grosseiras

e pode até ser útil começar por uma heurística inadmissível e "repará-la"



#### relaxar o puzzle *n* x *n*

#### ações no puzzle real

uma peça pode mover-se da casa A para a casa B se
A for adjacente, vertical ou horizontalmente, a B **e** B vazia

#### relaxando cada uma e as duas:

- a) uma peça pode mover-se da casa A para a casa B se A e B adjacentes
- b) uma peça pode mover-se da casa A para a casa B se B vazia
- c) uma peça pode mover-se da casa A para a casa B

heurística  $h_1$  heurística  $h_2$ 



#### heurística de problema relaxado

- custo exato do problema relaxado tem de verificar a desigualdade triangular, logo usar esse custo como heurística do problema real produz uma heurística consistente
- problema relaxado adiciona arcos ao grafo do EE
  - uma solução ótima do problema original é também solução do problema relaxado
  - mas o problema relaxado pode ter melhores soluções
  - logo, custo da solução exata do problema relaxado é uma heurística **admissível** do problema original (é sempre ≤ custo real)



#### e se?...

tivermos várias heurísticas admissíveis mas nenhuma domina qualquer das outras? qual escolher?

uma que as usa a todas!

$$h(n) = \max \{h_1(n),...,h_m(n)\}$$

é admissível, consistente e domina todas as componentes



# heurísticas a partir de subproblemas

 podem obter-se heurísticas admissíveis a partir do custo da solução de um subproblema

ex: resolver a colocação de 1, 2, 3 e 4

é claramente um limite inferior da solução do problema original

em alguns casos é mais exata do que a dist. Manhattan

e gerar bases de dados de padrões

com soluções exatas para subproblemas que devem depois ser adicionáveis (padrões disjuntos)





## subproblemas disjuntos

solução de 1-2-3-4 deve mover 5-6-7-8

não são problemas disjuntos

logo, a soma das heurísticas não é uma heurística admissível





mas se só contarmos os movimentos de 1, 2, 3 e 4 e de 5, 6, 7 e 8, nos respetivos subproblemas

a soma dos dois custos é um limite inferior do custo do problema original (heurística admissível)

bases de dados de padrões disjuntos (só em alguns probls.)



#### aprendizagem de heurísticas

um agente ao resolver um problema obtém o custo real até ao objetivo desde cada estado usado na solução

dados de várias resoluções podem permitir aprender h(n)

torna-se a tarefa mais fácil se forem definidas propriedades relevantes dos estados, úteis para a heurística

ex: nº de peças mal colocadas no puzzle

agente pode vir a inferir que custo médio de 5 peças mal colocadas é, p.ex. 14

heurística admissível pode ser (p.ex.) dividir por 2 a média do custo



#### exercício

- um agricultor tem de atravessar um rio com um lobo, uma cabra e uma couve
- o bote só pode levar o agricultor e mais 2 deles
- o lobo não pode ficar só com a cabra
- a cabra não pode ficar só com a couve





#### atravessar o rio

- uma heurística
- outra heurística?

 comparar A \* com PL, PF, PCU

• e considerar pedir uma redefinição do problema!...

