Markov processes - I

- checkout counter example
- Markov process definition
- n-step transition probabilities
- classification of states

$$tate(t+1) = f(state(t), noise)$$

1

checkout counter example

- discrete time $n = 0, 1, \dots$
- customer arrivals: Bernouilli (p)
- customer service times: geometric(q)

• "state" X_n : number of customers at time n

discrete-time finite state Markov chains

- iattime "
- (X_n) state after n transitions
 - belongs to a finite set
 - initial state X_0 either given or random
 - transition probabilities:

$$p_{ij} = P(X_1 = j \mid X_0 = i)$$
 $= P(X_{n+1} = j \mid X_n = i)$
 $= P(X_{n+1} = j \mid X_n = i)$
 $= P(X_{n+1} = j \mid X_n = i)$

Markov property/assumption:

"given current state, the past doesn't matter"

$$p_{ij} = P(X_{n+1} = j \mid X_n = i)$$

= $P(X_{n+1} = j \mid X_n = i, X_{n-1}, ..., X_0)$

model specification: identify states, transitions, and transition probabilities

n-step transition probabilities

state probabilities, given initial state i:

$$r_{ij}(n) = P(X_n = j \mid X_0 = i)$$

$$= P(X_n + s) = j \mid X_s = i)$$

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

random initial state:

$$P(X_n = j) = \sum_{i=1}^m P(X_0 = i)_{ij}(n)$$

example

$$r_{ij}(n) = P(X_n) = j \mid X_0 = i$$

$$\int \Gamma_{11}(n) = \Gamma_{11}(n-1) \times 0.5 + \Gamma_{12}(n-1) \times 0.2$$

$$\Gamma_{12}(n) = 1 - \Gamma_{11}(n)$$

	n = 0	n = 1	n=2	n = 100	n = 101
$r_{11}(n)$	1	0.5	25,0.25 0.10 0.35	×(24)	?(3)4
$r_{12}(n)$	0	0.5	0.65	25/7	? 5/2
$r_{21}(n)$	0	0-2		2 2/7	
$r_{22}(n)$	1	0.8		2 5/4	-

generic convergence questions

• does $r_{ij}(n)$ converge to something?

$$n \text{ odd}: r_{22}(n) = 0$$

$$n \text{ even: } r_{22}(n) = 1$$

does the limit depend on initial state?

$$r_{11}(n) = 1$$

$$r_{31}(n) = 0$$

$$r_{21}(n) = \frac{1}{2}$$

recurrent and transient states

 state i is recurrent if "starting from i, and from wherever you can go, there is a way of returning to i"

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a p articular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.