Procesy stochastyczne Zestaw zadań nr 3

Zadanie 1. Znajdź postać filtracji generowanej przez proces $X(n,\omega) = \omega^2 \mathbf{1}_{[0,2+1/n]}$.

Zadanie 2. Niech dana będzie filtracja $\{\mathcal{F}_n\}$ i całkowalna zmienna losowa X. Udowodnij, że martyngałem względem tej filtracji jest proces określony następująco

$$\mathbb{E}(X|\mathcal{F}_m), m > 0.$$

Zadanie 3. Określmy proces Z(n) w następujący sposób

$$Z(n) = Z(n-1) + L(n), Z(0) = 0, \ \mathbb{P}(L(n) = 1) = \mathbb{P}(L(n) = -1),$$

 $gdzie\ zmienne\ L(n)\ sa\ niezależne\ między\ soba.$

Udowodnij, że następujące procesy są martyngałami względem filtracji $\mathcal{F}=$ $\sigma(Z(0), Z(1), \dots, Z(n))$:

- -Z(n), n = 0, 1, ... $-Z(n)^2 n, n = 0, 1, ...,$ $-(-1)^2 \cos(\pi Z(n)), n = 0, 1,$

Zadanie 4. Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie $\mathcal{N}(-a,1)$, a > 0.

- Dla jakiej wartości $h \in \mathbb{R}$ proces $Y_n = \exp\left(h\sum_{i=1}^n X_i\right)$ względem filtracji
- Dal jakich wartości h proces ten jest sub- lub supermartyngałem?
- Niech h = 2a i niech x > 0. Określmy $S_n = \sum_{i=1}^n X_i$. Udowodnij, że zachodzi

$$\mathbb{P}\left(\sup_{n} S_n > x\right) \le e^{-2ax}.$$

Zadanie 5. Niech X_1, X_2, X_3, \ldots będą niezależnymi, całkowalnymi i o wartości oczekiwanej równej 1. Niech $S_n = X_1 \cdot X_2 \cdot \cdots \cdot X_n$. Udowodnij, że S_n jest $martyngalem \ względem \ filtracji \ generowanej \ przez \ zmienne \ X_i$.

Zadanie 6. Niech X_1, X_2, X_3, \ldots będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie, odpowiednio całkowalnych i o średniej zero. Niech $S_n = X_1 + X_2 + \dots + X_n$. Pokaż, że proces $S_n^2 - n\mathbb{E}X_1^2$ jest martyngałem. Czy proces S_n^3 jest martyngałem? Jaką postać komensacji A_n należy zaproponować, by proces $S_n^3 - A_n$ by martyngalem? Co gdy S_n^3 zastąpimy przez S_n^m ?

Zadanie 7. Niech X_1, X_2, X_3, \ldots będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie zadanym przez

$$\mathbb{P}(X_i = 1) = p = 1 - \mathbb{P}(X_i = -1) = 1 - q$$

oraz niech $\{\mathcal{F}_n\}$ będzie filtracją generowaną przez zmienne losowe X_i . Niech

- $S_n = X_1 + X_2 + \dots + X_n$. Udowowdnij $M_n = (q/p)^{S_n}$ jest martyngałem względem $\{\mathcal{F}_n\}$, $dla \ \lambda > 0$ wyznacz stałą $C = C(\lambda)$ taką, że proces $Z_n^{\lambda} = C^n \lambda^{S_n}$ jest amrtyngałem względem $\{\mathcal{F}_n\}$.

Zadanie 8. Udowodnij, że suma martyngałów jest martyngałem.

Zadanie 9. Udowodnij, że wartość oczekiwana martyngału względem zadanej filtracji jest stała w czasie.

Zadanie 10. Niech M_t będzie martyngałem całkowalnym z kwadratem względem filtracji $\{\mathcal{F}_n\}_{n=1}^{\infty}$. Niech proces Y_t będzie skonstruowany na tej samej przestrzeni probabilistycznej co proces M_t i niech będzie procesem przewidywalnym. Określmy proces N jako

$$N_t = N_0 + \sum_{k=1}^{t} Y_k (M_k - M_{k-1})$$

jest martyngalem pod warunkiem, że N_0 jest \mathcal{F}_0 -mierzalna. Co trzeba założyć na temat całkowalności procesu Y?

Zadanie 11. Wykazać, że przy odpowiednich założeniach co do całkowalności funkcja wypukła martyngały względem pewnej filtracji jest submartyngałem względem tej filtracji oraz że funkcja wypukła i niemalejąca przekształca submartyngał w submartyngał.

Zadanie 12. Udowodnij, że przyrosty martyngału są parami nieskorelowane.

Zadanie* 13. Pokaż, że filtracja naturalna jest najmniejszą filtracją taką, że dany proces jest do niej adaptowany.