Yakeen NEET 2.0 2026

Physics By Saleem Sir

DPP: 02

Motion in a Plane

- $\bf Q1$ The range of a particle when launched at an angle of 15° with the horizontal is 1.5~km . What is the range of the projectile when launched at an angle of 45° to the horizontal
 - (A) 1.5 km
 - (B) 3.0 km
 - (C) 6.0 km
 - (D) 0.75 km
- **Q2** A projectile fired with initial velocity u at some angle θ has a range R. If the initial velocity be doubled at the same angle of projection, then the range will be
 - (A) 2R
 - (B) $\mathrm{R}/2$
 - (C) R
 - (D) 4R
- Q3 If the initial velocity of a projectile be doubled, keeping the angle of projection same, the maximum height reached by it will
 - (A) Remain the same
 - (B) Be doubled
 - (C) Be quadrupled
 - (D) Be halved
- Q4 During projectile motion, acceleration of a particle at the highest point of its trajectory is
 - (A) g
 - (B) Zero
 - (C) less than g
 - (D) dependent upon projection velocity

- Q5 The maximum range of a projectile is $22~\mathrm{m}$. When it is thrown at angle of 15° with the horizontal, its range will be-
 - (A) 22 m
 - (B) 6 m
 - (C) 15 m
 - (D) 11 m
- **Q6** The angle of projection of a body is 15° . The other angle for which the range is the same as the first one is equal to
 - (A) 30°
 - (B) 45°
 - (C) 60°
 - (D) 75°
- Q7 Two objects are thrown up at angles of 45° and 60° respectively, with the horizontal. If both objects attain same vertical height, then the ratio of magnitude of velocities with which these are projected is ;
 - (A) $\sqrt{\frac{5}{3}}$
 - (B) $\sqrt{\frac{3}{5}}$
 - (C) $\sqrt{\frac{2}{3}}$
 - (D) $\sqrt{\frac{3}{2}}$
- **Q8** For an object projected from ground with speed u, horizontal range is two times the maximum height attained by it. The horizontal range of object is

- (A) $\frac{2u^2}{3g}$ (B) $\frac{3u^2}{4g}$ (C) $\frac{3u^2}{2g}$ (D) $\frac{4u^2}{5g}$
- The velocity at the maximum height of a projectile is $\frac{\sqrt{3}}{2}$ times its initial velocity of projection (u). Its range on the horizontal plane is
 - (A) $\frac{\sqrt{3}u^2}{2g}$ (B) $\frac{3u^2}{2g}$ (C) $\frac{3u^2}{g}$ (D) $\frac{u^2}{2g}$
- Q10 A projectile is thrown into space so as to have a maximum possible horizontal range of 400 metres. Taking the point of projection as the origin, the co-ordinates of the point where the velocity of the projectile is minimum are;
 - (A)(400,100)
 - (B)(200,100)
 - (C)(400,200)
 - (D)(200,200)

Answer Key

Q1	(B)	Q6	
Q2	(D)	Q7	(D)
Q3	(C)	Q8	(D)
Q4	(A)	Q9	(A)
Q5	(D)	Q10	(B)

Master NCERT with PW Books APP

