Практическая работа № 2.

Тема: «Настройка VLAN на устройствах CISCO»

Цель работы: научиться использовать технологию VLAN.

Используемые средства и оборудование: IBM/PC совместимый компьютер с пакетом Cisco Packet Tracer; лабораторный стенд Cisco.

Ход работы

Схема с одним коммутатором:

1. Открываем Cisco Packet Tracer и перетаскиваем в рабочую область коммутатор 2960 и 4 компьютера Generic. Переходим во вкладку Connections и выбираем тип кабеля: Copper Straight-Through. Подключаем каждый компьютер к коммутатору (рис. 1).

Рис. 1. Схема подключения к коммутатору

					ИКСИС.09.03.02.030000.ПР			
Изм	Лист	№ докум.	Подпись	Дата				
Разр	аб.	Воликов И.Д.				Лит	Лист	Листов
Про	вер.	Берёза А.Н			Практическая работа № 2.		1	
					Тема: «Настройка VLAN на устройствах	И	СОиП(ф)	ДГТУ
Н.контр.					CISCO»		ИСТ-Ть	
Утв					313.50%			

2. Предположим, что компьютера PC0 и PC1 принадлежат одному сегменту бухгалтеров. Выберем фигуру прямоугольник и определяем сегмент. Далее аналогично определяем сегмент обычных пользователей (рис. 2).

Рис. 2. Схема разбиения на сегменты

3. Разделим трафик сегментов. Открываем настройки коммутатора, входим в Console. С помощью команды configure terminal задаем режим глобального конфигурирования. Определяем vlan, в котором будут находиться пользователи. Затем создаем vlan 2. Выходим.

Изм	Лист	№ локум.	Полпись	Лата

4. Переходим к настройке интерфейса. Наводим мышку на соединение и видим, что 1 компьютер подключается через FastEthernet0/1, а 2 - через FastEthernet0/2. Данные порты определяем в vlan 2. Заходим в настройки FastEthernet0/1 и видим, что порт функционирует в режиме access и определяем его в vlan 2. Настройка окончена. Аналогично настраиваем FastEthernet0/2.

Изм Лист № докум. Подпись Дата

 $09.03.02.030000.000 \; \Pi P$

При помощи команды show vlan проверяем работу.

5. Аналогично настраиваем другой сегмент.

При помощи команды show vlan проверяем работу.

			·	
·	·			
Изм	Лист	№ докум.	Подпись	Дата

6. Задаем IP-адреса 1 и 2 компьютерам (192.168.2.1 и 192.168.2.2), а 3 и 4 компьютерам (192.168.3.1 и 192.168.3.2). Проверяем командой ping соединение 1 компьютера со 2, а затем с 3.

7. Если посмотреть в коммутаторе таблицу mac-адресов, можно увидеть, что

Изм	Лист	№ докум.	Подпись	Дата

в ней стал указываться и vlan - адрес, с которого приходит mac-адрес.

Схема с двумя коммутаторами:

1. Рассмотрим пример с использованием 2 коммутаторов. Для этого удаляем сегменты и дублируем оборудование. Соединяем коммутаторы типом кабеля: Copper Cross-Over GigabitEthernet 1/1 (рис. 3).

Рис. 3. Схема с двумя коммутаторами

2. Задаем ІР-адреса компьютеров и объединяем их в сегменты (рис. 4).

Изм	Лист	№ докум.	Подпись	Дата

Рис. 4. Разбиение на сегменты схемы с двумя коммутаторами

3. Так, как коммутатор скопирован, он уже настроен. Проверяем с помощью команды show run.

4. Настраиваем trunk-port. Входим в режим конфигурирования, затем в interface GigabitEthernet 1/1 и указываем режим.

					00.02.0
					09.03.0
Изм	Лист	№ докум.	Подпись	Дата	

Задаем нужные vlan.

Аналогично настраиваем другой коммутатор.

Изм	Лист	№ докум.	Подпись	Дата

5. Проверяем взаимодействие компьютеров командой ping.

6. Исключаем из trunk-port vlan 3.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что собой представляет VLAN? Какими преимуществами и недостатками обладает VLAN?
- 2. Какие существуют способы организации VLAN?
- 3. Охарактеризуйте способы, позволяющие устанавливать членство в VLAN.
- 4. Охарактеризуйте протокол VTP. Какие преимущества и ограничения возникают при использовании протокола VTP?
- 5. Какие существуют режимы работы протокола VTP?

Изм	Лист	№ докум.	Полпись	Дата