HW 6 - Virtual Memory

9.18 Virtual memory Space = 2 Physical memory = 2 18

10 11 12 13 14 A B C D E Page Size = 4096 = 212

User process generates (Virtual address hexidecimal) = 11123456

Hexidecimal: 11123456Binary Convert: 0001 0001 0001 0010 0011 0100 0101 0110

Page table Size: $\frac{2^{32}}{12} = \frac{2^{00}}{12} = 0001 0001 0001 0001 0011$

Logical address calculation parts are equivalent to the solvare operation. Wheras the physical calculation is equivalent to hardware

	Page	Page Frame	Reference Bit	
cimal that results in a page \$5.P.	haveil	9 0	0	
16 bits - 17 bits 16-bit Physical & Virtimal	Stage .	(0	
4 bits (Page #) 12 bits (offset) 4096 (212) byte pages	2	0 14/2	0	
(a) Ox E12 ([12 bits] All	3	10	0	
Hexidecimal - Binary A those	Ч		6	
E (14) - 1110 / Equal	1500)	1.3	0	
1 - 0001 / 12 bits	6	8 -	0	
1 × 0010 €	7	15	0	
(D) → 1100 ×	8	111 1	0	
Page Number: E(1110)	q	0	0	
Offset: 126 (0001 0010 1100)	16	5	0	
[312]	1 0	4	0	
Log 2	12		0	
3 2	13		0	
E-a	14	3	0	W. 1000 100 - 4 W
	15	234 . 12	0	

```
B) 0x3A9D -> 3 (0011) Page Number: 3(0011)
                      A (1010) offset: A9D (1010 1001 1101)
12288
2560
                      9 (1001) PAPD
                      D (1101)
        c) 0x7001 -> 7(0111) Page Numbers: 7(0111)
       162 16 16 0 0000) offset: 001 (0000 0000 0001)
                      0 (0000)
                                       F 001
                      1 (0001)
                  - A (1010) Page Number: A (1010)
       D) Ox A(A)
                      ((1100) Offset: (A1 (1100 1010 0001)
                      A (1010) [5CAI]
                      1 (0001)
       Provide a Hexadecimal that results in a page fault
       B) Ox 4 A I D leads to a page fault...
              Consider a demand-paging system with the following
       9.27
              time-measured utilizations
                                            CPU Vitilization 20%
                                            Paging disk 97.7%
        A. No
       · B. Yes
                                            Other 1/6 devices 5%
           N.
       . D. No
        E. Yes
        F. Yes
       6. No
       · H.
           Yes
```