Computer Vision Image Filtering

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

Today's Agenda

- Image Filtering
 - Smoothing
 - Sharpening

Linear Filtering

Motivation: Image denoising

How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for the average of a 3x3 neighborhood?

1	1	1	1
9	1	1	1
9	1	1	1

"box filter"

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

11 C Coi:

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]$$
 $\frac{1}{9}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

13

Defining convolution

Let f be the image and g be the kernel. The
output of convolving f with g is denoted f * g.

$$(f * g)[m,n] = \sum f[m-k,n-l]g[k,l]$$

Key properties

• Shift invariance: same behavior regardless of pixel location:

filter(shift(f)) = shift(filter(f))

• Linearity:

filter
$$(f_1 + f_2)$$
 =
filter (f_1) + filter (f_2)

 Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],a * e = a

Dealing with edges

 If we convolve image f with filter g, what is the size of the output?

Dealing with edges

- If the filter window falls off the edge of the image, we need to pad the image
 - Zero pad (or clip filter)
 - Wrap around
 - Copy edge
 - Reflect across edge

0	0	0
0	1	0
0	0	0

Original

Source: D. Lowe

Original

Filtered (no change)

0	0	0
0	0	1
0	0	0

Original

Source: D. Lowe

Original

1

Shifted *left*By 1 pixel

Original

1	1	1	1
) 	1	1	1
9	1	1	1

Original

Blur (with a box filter)

Original

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{2}$	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Source: D. Lowe

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before after

Source: D. Lowe

SharpeningWhat does blurring take away?

Let's add it back:

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Source: D. Forsyth

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

I					
	0.003	0.013	0.022	0.013	0.003
	0.013	0.059	0.097	0.059	0.013
	0.022	0.097	0.159	0.097	0.022
	0.013	0.059	0.097	0.059	0.013
	0.003	0.013	0.022	0.013	0.003

 5×5 , $\sigma = 1$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Source: C. Rasmussen

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Standard deviation σ : determines extent of smoothing

Choosing kernel width

 The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Gaussian filters

- Remove high-frequency components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small-σ kernel, repeat, and get same result as larger-σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Source: K. Grauman

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an n×n image with an m×m kernel?
 - $O(n^2 m^2)$
- What if the kernel is separable?
 - $O(n^2 m)$

Noise

Original

Salt and pepper noise

Impulse noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Source: M. Hebert

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

What's wrong with the results?

Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the

Is median filtering linear?

Median filter

Is median filtering linear?

Let's try filtering

```
      É
      1
      1
      1
      û
      é
      0
      0
      0
      û

      ê
      1
      1
      2
      ú
      ê
      0
      1
      0
      ú

      ê
      1
      1
      2
      ú
      ê
      0
      1
      0
      ú

      ê
      2
      2
      2
      ½
      ê
      0
      0
      0
      ½
```

- Median filter
 What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Median filter Median filtered

Gaussian vs. median filtering

3x3 7x7 5x5 Median

Gaussian

Sharpening revisited

before after

Sharpening revisited • What does blurring take away?

Let's add it back:

+ α

Unsharp mask filter

Application: Hybrid Images

A. Oliva, A. Torralba, P.G. Schyns, <u>Hybrid Images</u>, SIGGRAPH 2006

Changing expression

Sad ---- Surprised

Application: Hybrid Images

Gaussian Filter

Laplacian Filter

 A. Oliva, A. Torralba, P.G. Schyns, <u>Hybrid Images</u>, SIGGRAPH 2006 Thank you: Question?