# Microbiome data science with R/Bioconductor

#### CSC course 2022

## Welcome!

## Target audience

- Advanced MSc, PhD & postdoctoral researchers who wish to learn new skills in scientific programming and multi-omic data analysis
- Focus on microbiome research
- Earlier experience with R is expected
- Questionnaire overview

#### Learning goals

- microbiome data science with R/Bioconductor, a popular open-source environment for life science informatics
- key concepts in microbiome bioinformatics
- open & reproducible data science workflow

After the course you will know how to approach new tasks in the analysis of taxonomic profiling data by taking advantage of available documentation and R tools.

#### Overview of the week

- Day 1 Basic (microbiome) data wrangling
- Day 2 Key concepts in microbiome data science
- Day 3 Community-level analysis and visualization
- Day 4 Advanced topics (time series, multi-omics integration)



Figure 1: Moreno-Indias et al. (2021) Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions. Frontiers in Microbiology.

## Daily program

09:00-09:30: Overview lecture

09:30-12:00: Practical session

• Hands-on practice with supervision

• Joint demonstration sessions

12:00-12:30: Recap, Q & A

# **Prerequisites**

#### Google Doc

Questions at the end of the gdoc are welcome!

# Day 1: Basic data wrangling

| Time  | Theme                                          |
|-------|------------------------------------------------|
|       | reproducible reporting & data science workflow |
| 10-11 | data import & data containers                  |
| 11-12 | data wrangling basics                          |

| Time | Theme          |
|------|----------------|
| 12-  | Summary, Q & A |

## **Software & learning environment**

- Temporary access to the notebook cloud environment provided by CSC with preinstalled software.
- We also encourage to test the installation on your own system; limited support for this will be available.

#### **Acknowledgments**

#### Lecturers:

- Leo Lahti, Assoc. Prof.
- Chouaib Benchraka, Scientific programmer

Department of Computing, University of Turku, Finland datascience.utu.fi

## **Organizers:**

• Finnish IT Center for Science (CSC)





#### **Funding sources**

Development work has received support from several sources.











# **MICROBIOME**



# **Support**

- Breakout rooms
- Online chat (Gitter) https://gitter.im/microbiome/miaverse
- Practical info (gdoc)
- If you need a small break, take it

#### **Teaching material**

- Teaching follows the open online book (beta version) created by the course teachers, Orchestrating Microbiome Analysis.
- The openly licensed teaching material, exercises and slides will be available online during and after the course.

# Learning goals for today

- Set up reproducible data science workflows with Quarto
- Understand the structure of the microbiome data container
- Carry out basic data operations (e.g. subsetting, aggregation)

## **Getting started**

- CSC notebook access OK?
- R, Rstudio, R packages installation OK?
- First task: reproducible workflow & Quarto documents (in a moment)

# Questions?



Figure 2: Moreno-Indias et al. (2021) Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions. Frontiers in Microbiology.

# Data containers in R/Bioconductor

# TreeSummarizedExperiment

Huang et al. F1000, 2021



# Alternative data container: phyloseq

Current standard for (16S) microbiome bioinformatics in R (J McMurdie, S Holmes et al.)



#### **Demonstration data**

# Loading an example data set

- Task 2: load and summarize example data (TreeSE container)
- Troubleshooting
- Brief overview on data containers (video slides revisited)

## Open microbiome data sets

- R package data (mia, miaViz, miaTime)
- Human studies: curatedMetagenomicData (Pasolli et al Nat Meth 2017)
- Other studies: microbiomeDataSets (Lahti et al.)

#### **Task**

- Task 3: Explore TreeSE components (OMA Chapter 18.2)
- assays, colData, rowData (trees, metadata)
- Troubleshooting
- Summary on data containers (selected video slides revisited)

#### **Further tasks**

If you complete the task fast, check out other OMA Exercises on data containers.

# **Data wrangling**

#### Overview so far

By now, you are supposed to be able to:

- understand the basic structure of the TreeSE data container
- extract specific components from the object (assays, sample & feature info, trees)
- -> How to manipulate & operate with this data object?

## Basic data operations

- Subsetting
- Components
- -> See the example solutions.

#### **Transformations**

- Presence/absence
- Compositional (percentages)
- $Log_{10}$
- ullet CLR and other Aitchison transformations
- Phylogenetic transformations (e.g. philr)
- Custom transformations

#### Workflow

Data containers support collaborative development of analysis methods & workflows

## **Understanding literate programming**

Programming paradigm in which a computer program is given as an explanation of its logic in a natural language, embedded with code chunks, from which compilable source code can be generated.

(Adapted from Wikipedia)





Figure 3: Domenick Braccia, EuroBioc 2020 (microbiome.github.io)