What I learned at school, Grandma

Presented by:

Lanting Su Preetham Reddy Pathi Rushil Manglik

Linear Regression

Let's talk about the question you care about a lot:

WHEN WOULD I GET MARRIED? So I thought why not explain it based on a very interesting topic I learnt at school.

Grandma an age old fact that everyone knows is that salary ~ years of experience.

Simple Linear Regression

salary = $\beta_0 + \beta_1$ (years of exp)

But do you know what concept was behind this?

Linear Regression! How does it relate to this topic?

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + ... + b_n^* x_n$$

What is MLR???

Multiple Linear Regression (MLR)

[ˈməl-tə-pəl ˈli-nē-ər ri-ˈgre-shən]

A statistical technique that uses several explanatory variables to predict the outcome of a response variable.

What does a Multiple Regression Model looks like?

Multiple Regression Model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

- Y_i is the value of the response variable for the ith case
- β_0 is the intercept
- $\beta_1, \beta_2, \dots, \beta_{p-1}$ are the regression coefficients for the explanatory variables

Apparently, I can create a MLR model about marriage age

```
Marriage_age = b0 + b1*education_level

+ b2*salary

+ b3*race

+ b4*parents_marriage_age

+ b5*COVID

+ b6*region

+ b7*friends_marriage_age + ei
```

2 variables Linear Regression

Some Issues with Regression

If she loves you more each and every day, by linear regression she hated you before you met.

Contd.

Why is such an old model still used?

Basically

References

- https://www.statology.org/linear-regression-real-life-examples/
- https://www.slideshare.net/CodeOps/understanding-ml-through-memes-harsh-ccdays
- https://seaborn.pydata.org/tutorial/regression.html
- https://stats.stackexchange.com/questions/219579/what-is-wrong-with-extrapolation
- https://medium.com/data-science-group-iitr/linear-regression-back-to-basics-e4819829d78b