mpi* - lycée montaigne informatique

DM3 (éléments de réponses)

Question 1. Le langage $\mathcal{L}(f_1)$ est l'ensemble des mots sur l'alphabet $\{a,b\}$ qui contiennent exactement deux a. Il est reconnu par l'automate suivant.

Question 2. Le langage $\mathcal{L}(f_2)$ contient les mots de la forme :

- $b^{2p+1}ab^{2q+1}=b^{2p}babb^{2q}$, caractérisés par l'expression régulière (bb)*a(bb)*.

Après factorisation, $\mathcal{L}(f_2)$ est caractérisé par l'expression régulière (bb)*(bab+a+b)(bb)*. $\alpha=\beta=(bb)*$ conviennent.

Question 3.

Question 4.

Question 5. On applique l'algorithme de déterminisation. On établit le tableau des transitions et on dessine l'automate déterministe émondé correspondant.

Question 6. Supposons que f ne soit pas majorée par une constante et que $\mathcal{L}(f)$ soit un langage régulier. D'après le lemme de l'étoile, on peut choisir n tel que $\forall w \in \mathcal{L}(f)$ tel que $|w| \ge n$, alors il existe $(x, y, z) \in (\Sigma^*)^3$ tel que :

mpi* - lycée montaigne informatique

- w = xyz
- $|xy| \leqslant n$
- y ≠ ε
- $\forall p \in \mathbb{N}, \quad xy^p z \in \mathcal{L}(f)$

Pour un tel entier n, on choisit $p \in \mathbb{N}$ tel que q = f(p) > n. Par construction $w = a^q b^p$ appartient à $\mathcal{L}(f)$. Comme $|aqb^p| = p + q \geqslant n$, on peut décomposer w sous la forme xyz comme décrit précédemment. Comme $|xy| \leqslant n < q$, le mot y est uniquement composé de a. On a $xz \in \mathcal{L}(f)$ avec $|xz|_a = |xyz|_a - |y|_a = |w|_a - |y| = q - |y| = f(p) - |y| < f(p)$. Par ailleurs $|xz|_b = |xyz|_b = |w|_b = p$. On a donc $|xz|_a \neq f(|xz|_b) \Rightarrow xz \notin \mathcal{L}(f)$, ce qui est contradictoire. Par conséquent, $\mathcal{L}(f)$ n'est pas régulier si f n'est pas majorée par une constante.

Question 7. Le langage $L_{=}$ est caractérisé par la fonction $f = Id_{\mathbb{N}}$ qui n'est pas majorée par une constante. Donc, d'après la question précédente, $L_{=}$ n'est pas un langage régulier.

Question 8. Supposons que L_\leqslant soit un langage régulier. Pour des raisons de symétrie évidente, en permutant les rôles de a et $b, L_\geqslant = \{u \in \Sigma^* \text{ avec } |u|_b \leqslant |u|_a\}$ est un langage régulier. Dans ce cas, $L_= L_\geqslant \cap L_\leqslant$ serait un langage régulier comme intersection de langages réguliers, ce qui est faux d'après la question précédente. Par conséquent, L_\leqslant n'est pas un langage régulier.

Question 9. Si $L_>$ est un langage régulier alors $L_\leqslant = \Sigma^2 \setminus L_>$ est un langage régulier comme complémentaire d'un langage régulier. Or, d'après la question précédente, L_\leqslant n'est pas un langage régulier, donc par contraposition, $L_>$ n'est pas un langage régulier.

Question 10. On considère l'application :

$$f(n) = \begin{cases} 0 & \text{si } n \text{ premier} \\ 1 & \text{sinon} \end{cases}$$

et on pose :

$$P = \{b^n \, / \, n \text{ nombre premier}\} = \mathcal{L}(f) \cap \mathcal{L}(b^*)$$

Le langage $\mathcal{L}(b^*)$ est régulier, si $\mathcal{L}(f)$ est régulier alors P est régulier comme intersection de langages réguliers. Comme il est admis que P n'est pas régulier, par contraposition, on en déduit que $\mathcal{L}(f)$ n'est pas régulier. On en déduit que la réciproque de la proposition énoncée dans la question est fausse puisque l'on a mis en évidence une fonction majorée f telle que le langage $\mathcal{L}(f)$ soit non régulier.

Remarque. Pour prouver que P n'est pas régulier, on raisonne par l'absurde. On suppose qu'il l'est et on applique le lemme de l'étoile (cf question). On considère un n qui va bien. Puis on considère p un nombre premier supérieur strict à (n+1) et le mot $w=b^p$. On décompose w comme indiqué dans le lemme de l'étoile. On a w=xyz avec $y\neq\varepsilon$ et $\forall q\in\mathbb{N},\ xy^qz\in P$. En particulier, c'est vrai pour $q=|xz|=|w|-|y|\geqslant p-n>1$. On a alors |xy|qz=|xz|+q.|y|=|xz|+|xz||y|=(p-|y|)(1+|y|) qui n'est pas un nombre premier puisque $1+|y|\geqslant 2$ et $(p-|y|)\geqslant 2$. On aboutit à une contradiction. P n'est pas régulier.