

Application No. 09/519,246

Stuart K. Williams et al.

For: Endovascular Graft Coatings

Filed: March 6, 2000

APPENDIX B

**Grant Application; and
Notice of Award**

Progress in Hemostasis and Thrombosis

VOLUME 7

Edited by
Theodore H. Spaet, M.D.

*Head, Hematology Division
Montefiore Hospital and Medical Center
Professor of Medicine
Albert Einstein College of Medicine
Bronx, New York*

GRUNE & STRATTON, INC.
(Harcourt Brace Jovanovich, Publishers)
Orlando San Diego
New York London Toronto
Montreal Sydney Tokyo

© 1984 by *Grune & Stratton, Inc.*

All rights reserved. No part of this publication
may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including
photocopy, recording, or any information storage
and retrieval system, without permission in
writing from the publisher.

*Grune & Stratton, Inc.
Orlando, Florida 32887*

Distributed in the United Kingdom by
Grune & Stratton, Ltd.
24/28 Oval Road, London NW 1

Library of Congress Catalog Number 72-2917
International Standard Book Number 0-8089-1688-2
Printed in the United States of America
84 85 86 87 10 9 8 7 6 5 4 3 2 1

Marian A. Packham, Ph.D.
and J. Fraser Mustard, M.D., Ph.D.

Platelet Adhesion

INTRODUCTION

For the purposes of this review, platelet adhesion is defined as platelet adherence to cells, tissues, surfaces, and particles, but platelet-to-platelet adhesion, that is, platelet aggregation, is excluded.

It seems appropriate to begin a discussion of platelet adhesion by emphasizing that platelets do not adhere to the intact, undamaged endothelial surface of a normal blood vessel.(1-6) The reasons for this are not yet fully understood, but the inability of platelets to adhere to this surface is essential for the maintenance of a vascular tree through which blood can flow freely. Platelet adhesion, therefore, is generally the response to an abnormal state of a blood vessel, or to the presence of an abnormal surface.

Platelet adhesion plays a central role in the formation of hemostatic plugs and thrombi, particularly arterial thrombi, although venous thrombi may be initiated by a mass of aggregated platelets that accumulate on adherent platelets in a valve pocket of an injured vein. Platelets may also adhere to diseased vessel walls and to abnormal or diseased cardiac valves, but this aspect of platelet adhesion has received little attention since most experimental work has been done with normal vessels of comparatively young animals. The release of platelet-derived growth factor from platelets that adhere to an injured vessel wall has been implicated in the initiation of the smooth muscle cell proliferation that characterizes atherosclerotic lesions. Platelet adhesion appears to have a role in some aspects of wound healing. Maintenance of the integrity of the endothelial lining of blood vessels is also one of the major roles of blood platelets as is well illustrated by the easy bruising that is characteristic of thrombocytopenia.

Platelets adhere readily to the subendothelium, to the injured neointima that forms when a vessel has been repeatedly damaged, to the deeper constituents of a vessel wall when these are exposed, to monocytes, macrophages and some other cells, to polymeriz-

ing fibrin, to a wide variety of particulate material, and to artificial surfaces. All these aspects of platelet adhesion except adhesion to artificial surfaces will be discussed in turn.

ADHESION IN HEMOSTATIC PLUGS

When a small vessel is severed, or a larger vessel is punctured, platelets accumulate rapidly at the site and form a hemostatic plug composed of aggregated platelets.(7-14) Within a few minutes, fibrin forms around the plug and stabilizes it. The platelets in contact with the cut edges of the tissue have been shown to be adherent to collagen fibers with gaps in their membranes that are adjacent to the collagen fibers.(10) Some of these platelets are swollen, and have lost their internal structures. The platelets at the periphery of the plug become adherent to polymerizing fibrin (15) formed under the influence of thrombin that is likely generated upon activation of the extrinsic coagulation pathway by tissue thromboplastin from the damaged cells of the vessel wall (see Fig. 1, p. 224).

ADHESION TO THE SUBENDOTHELIUM IN VIVO

The adhesion of platelets to the injured site is one of the first events that follows removal of the endothelial lining of a normal blood vessel that has not been injured previously.(5, 16-22) These observations have been made with rabbits, rats, monkeys, pigs, and dogs. The subendothelium becomes completely covered by a layer of adherent platelets within minutes, probably as quickly as platelets can be brought into contact with the surface by the hemodynamic forces of flowing blood. If blood flow is rapid and laminar, thrombi do not form on this initial layer of adherent platelets. In regions where flow is disturbed and vortices and eddies can form, however, additional platelets adhere to the platelets on the wall and to each other, forming an aggregate, or platelet thrombus.

The reactions that are triggered in the platelets as a result of their adhesion to the constituents of the subendothelium play a major part in the formation of a thrombus where blood flow is disturbed. The contents of the alpha and amine storage (dense) granules are released and the ADP and serotonin from the latter act synergistically to cause platelet aggregation. Phospholipases are activated, freeing arachidonate, which is converted to products that cause aggregation and may affect adhesion. The surface of the platelets is altered so that phospholipid becomes available and allows binding of coagulation factors to the platelets to accelerate the intrinsic coagulation pathway. In addition, binding sites are exposed for proteins that are involved in platelet adhesion and platelet aggregation. These reactions will be discussed in detail in subsequent sections of this article. Activation of the coagulation pathways at the injury site, and on the surface of the adherent and aggregating platelets, causes the local formation of thrombin, which influences thrombus formation and stabilization in several ways: thrombin causes further platelet aggregation, further release of platelet granule contents, further formation of the aggregating agents that arise from arachidonate, and the same changes in the surface of platelets that result from their adherence to the injury site; thrombin causes fibrin to form around and among the platelets, stabilizing the aggregate since platelets adhere to polymerizing fibrin; thrombin may also limit thrombus formation by activating protein C and stimulating PGI₂ formation by intact endothelium adjacent to the injury site. The eventual fate of a thrombus varies from dissolution, as the platelets deaggregate and fibrin is lysed by plasmin, to

organization and incorporation of a persistent thrombus into the wall, thus contributing to vessel wall thickening.

Detailed morphologic studies by electron microscopy have revealed several stages in the process of platelet adhesion to the subendothelium of previously uninjured vessels. The platelets first contact the surface, then become adherent as further interactions between their plasma membrane and the surface occur, and finally spread out on the surface, forming a layer of flattened platelets. Electron micrographs taken at high magnifications reveal periodic bridges between adherent platelets and the dense bands of collagen fibrils.(13, 23) Platelets that have merely contacted the surface and have not yet changed their shape to an appreciable extent, as well as some platelets in the initial stages of adhering, may be removed by the force of blood flow, but platelets that have spread on the surface do not appear to detach readily. Most of them remain on the surface for several days. The observations supporting this conclusion have been obtained *in vivo* with experimental animals, mainly rabbits and rats, into which ^{51}Cr -labeled platelets have been injected before the removal of the endothelium from the aorta with a balloon catheter. Examination of the radioactivity of the aorta of animals killed at time intervals ranging from 10 minutes to 7 days has revealed that most of the platelets that adhere initially remain on the surface for several days.(5) If the endothelium is removed before injection of labeled platelets, much less ^{51}Cr becomes associated with the wall because the labeled platelets do not replace the unlabeled platelets that adhere immediately following the exposure of the subendothelium. If the animals (rabbits or rats) are given heparin intravenously immediately before the aortae are perfusion-fixed *in situ*, fibrin is not seen on the subendothelium in association with the adherent platelets.(2, 5, 24, 25) Investigators who describe fibrin in association with a vessel subjected to injury with a balloon catheter either have not taken precautions to prevent fibrin formation during removal of the blood and fixation of the vessel, or have injured deeper tissues in the vessel wall as well as removing the endothelium. This latter assessment of their finding arises from the observations that injury of smooth muscle cells causes thrombi to form with a significant fibrin component as well as with aggregated platelets. A further indication that fibrin is not involved in the adherence of platelets to the subendothelium of a previously uninjured vessel is the observation that the administration of heparin before, and for 24 hours, after removal of the endothelium with a balloon catheter does not significantly influence the number of platelets that are associated with the surface during this time.(5)

The initial layer of platelets that forms on the subendothelium of large vessels within the first few minutes of removal of the endothelium does not present a surface to the blood that attracts additional platelets in the way that the exposed subendothelium initially attracted platelets.(3, 5, 26) The reason for this is not clear, but is undoubtedly related to the surface characteristics of the platelets that cover the de-endothelialized area. Possibly because laminar blood flow rapidly removes the ADP and thromboxane A_2 that are lost from the adherent platelets, insufficient amounts of these aggregating agents can accumulate at the site to make the fibrinogen receptors on the surface of the circulating platelets available for platelet aggregation on the adherent platelets. Adhesion on the subendothelium reaches a maximum *in vivo* in rabbits by 10 minutes, although a large proportion of the platelets are likely adherent well before this time.(5) Evidently adhesion stops when the reactive areas of the subendothelium become completely covered with platelets.

To answer the question of whether the subendothelium becomes less attractive to platelets with time even if it is not covered by platelets, platelet adhesion was inhibited by administration of dipyridamole or PGI₂ before removal of the endothelium.(27) Treatment

with dipyridamole was continued for several hours afterwards. Inhibition of the initial platelet adhesion by dipyridamole over a 4 hour period, or PGI₂ over 10 minutes, did not inhibit platelet accumulation when the treatment was discontinued, but treatment of the rabbits with dipyridamole for 8 hours did decrease the number of platelets that accumulated after the concentration of dipyridamole in plasma fell to ineffective concentrations. It is apparent that even without complete coverage with spread platelets, the subendothelium eventually loses its reactivity to circulating platelets, although this change in its properties requires more than 4 hours.(27) In experiments in which no treatments are given, platelets are gradually lost from the subendothelium and, by 48 hours, the subendothelium is poorly reactive to circulating platelets.(3, 5) If ⁵¹Cr-labeled platelets are reinjected at this time, few of them adhere to the subendothelium.(5, 27) The changes in the subendothelium that cause it to become less and less attractive to platelets are not understood. PGI₂ production by the vessel wall can be ruled out because treatment of the rabbits with aspirin in doses sufficient to block PGI₂ formation completely does not influence the number of platelets adherent to the subendothelium at any time after the injury.(6) It is unlikely that a coating with a plasma protein (such as albumin, which tends to passivate artificial surfaces) is responsible for the gradual loss of reactivity to platelets, because much more rapid adsorption of circulating proteins would be expected. Possibly enzymatic reactions occur to change the adhesive properties of the components of the subendothelium to which platelets adhere. Enzymes that might be present include collagenase and elastase from platelets or leukocytes (28-30) and the Ca²⁺-activated protease from disrupted platelets.(31)

Electron microscopy of platelets adherent to the subendothelium reveals that most of them have lost many of their storage granules.(32) Baumgartner and co-workers (33) have shown that platelets adhere to collagen fibers, basement membrane, and the microfibrils around elastin in the subendothelium, but not to elastic fibers, proteoglycans, or amorphous material. In their electron micrographs, only platelets adherent to collagen seem to have released their granule contents, although this may be open to reinterpretation, since Fauvel and colleagues (34) have shown that in the presence of von Willebrand factor, platelets that adhere to microfibrillar material isolated from vessel walls also release their granule contents. Huang and Benditt (35) have also shown that, although platelets adhere to the glomerular basement membrane and spread on it, they do not release their granule contents. Other investigators, however, have observed release and aggregation when platelets adhere to glomerular basement membrane.(36, 37)

Many detailed studies have been done *in vitro* of platelet adhesion to the subendothelium or to its constituents, particularly to collagen. These will be discussed in later sections.

ADHESION TO DAMAGED NEOINTIMA IN VIVO

The response of the blood to reinjury, that is, injury of the neointima that forms after de-endothelialization, differs in a number of ways from the response to exposed subendothelium. In 1973, Stemerman observed that thrombi composed of both platelets and fibrin formed on the injured neointima of rabbit aortae.(18) These findings have been confirmed and extended.(38, 39) The neointima that forms 4 to 7 days after removal of

the endothelium is largely composed of smooth muscle cells, so that a second injury with a balloon catheter after this time damages these cells. It seems likely that tissue thromboplastin becomes available for the extrinsic pathway of coagulation and is responsible for the extensive formation of fibrin under these circumstances. The number of platelets that accumulate is similar to the number that adhere to the subendothelium after an initial injury (38); some of them are trapped in the fibrin meshwork, whereas others appear to be adherent as a single layer of platelets to connective tissue and noncellular, amorphous material in the injured vessel wall. (The term *platelet accumulation* is used to indicate that some of the platelets associated with the wall may be aggregated platelets trapped in fibrin rather than platelets actually adherent to the damaged wall.) The thrombi tend to be oriented in the direction of blood flow, and this is particularly evident at vessel orifices where they are distributed in a pattern that curves toward the opening of the branch. In some areas leukocytes can also be observed on the surface, many of them in a zone distal to the orifices of small vessels. Some of the leukocytes are adherent to the platelets that are attached to the injured surface. As would be expected, administration of heparin inhibits platelet accumulation on the damaged neointima by about 50 percent and fewer platelet-fibrin thrombi are observed.(38) It seems likely that in the presence of heparin, only the adhesion of platelets to connective tissue occurs since this process is not dependent on blood coagulation. Heparin evidently inhibits platelet accumulation that is mediated by fibrin. These observations indicate that fibrin formation under the influence of thrombin, and platelet adhesion to polymerizing fibrin, may play a much larger part in the initiation and growth of thrombi on repeatedly injured vessels than has been apparent from studies of thrombosis on normal vessels subjected to removal of the endothelium. Indeed, at sites where hemodynamic forces would be expected to cause repeated vessel injury, fibrin has been observed in contact with the wall, with platelets and other formed elements of the blood adherent to it, in sections taken from otherwise normal experimental animals or from humans at autopsy (see Fig. 2, p. 241).(40) Injuries that damage tissue deep in the vessel wall cause the formation of thrombi that have fibrin at their point of attachment.(41) If some thrombi are formed largely under the influence of thrombin, it is apparent that anticoagulants would be more effective than drugs that inhibit platelet aggregation, in limiting thrombosis, and that the combination of an anticoagulant with a drug that inhibits platelet adhesion as well as aggregation would be most effective, providing the risk of hemorrhage is not increased unduly.

The accumulation of platelets on the injured neointima is at its maximum within 60 minutes after passage of the balloon catheter.(38) However, the loss of radioactive platelets that have become associated with the injured surface of the neointima occurs somewhat more rapidly than their loss from the subendothelium, and by 24 hours, only about one third of the initial number are present.(38) By this time, very few thrombi can be found on the surface and it seems likely that fibrinolysis has a role in their removal.

⁵¹Cr-labeled platelets were injected into rabbits at different times after the neointima was injured to examine the ability of the damaged surface to attract fresh platelets and continue to activate coagulation. Platelet accumulation was greatly reduced one hour after injury, and by 4 days, only about 10 percent of the number of platelets accumulated, if the number of platelets that accumulated immediately after injury was taken as 100 percent.(38) Piepgras and colleagues have also observed that endarterectomy of the carotid arteries of cats exposes a surface that becomes nonthrombogenic in about 6 hours if the initial deposition of thrombi on the surface is inhibited.(42)

PLATELET ADHESION TO DISEASED ARTERIES

Atherosclerotic lesions frequently have thrombi associated with their surface,(43-45) and the formation of these thrombi must involve platelet adhesion, probably occurring after loss of the endothelium covering the plaque. Thrombi in coronary arteries are almost always associated with breaks in the vessel wall at atherosclerotic plaques.(46-51) Platelet aggregates have frequently been described in direct contact with materials in atherosclerotic lesions,(48, 52, 53) although the components of the lesions vary considerably. Lipid-rich plaques that contain cholesterol crystals are likely to promote platelet adhesion, since platelets have been shown to interact with cholesterol crystals.(54) In monkeys fed hypercholesterolemic diets, platelets have been observed adherent to macrophages in lesions on the surface of large arteries.(55)

In general, our understanding of platelet adhesion to the contents of atherosclerotic plaques is limited. There have been very few experimental studies and most of the observations come from examination of post mortem material.

PLATELET ADHESION IN VEINS

Venous thrombi are similar to a blood clot in that they consist mainly of red blood cells trapped in a fibrin mesh. Usually they are not adherent to the vessel wall except, under some circumstances, at the point of initiation where a white head of aggregated platelets is demonstrable.(56, 57) This may occur in a valve pocket. Many venous thrombi are stasis thrombi that form because blood coagulation occurs. Stasis results in adhesion of polymorphonuclear leukocytes to the endothelium and their migration into the wall. However, these events do not necessarily cause obvious endothelial cell damage or loss, and platelet adherence does not occur when blood flow is restored.(58) Under circumstances in which there is extensive tissue damage, however, such as that resulting from hip surgery, injury to the vessel wall does play a major part in the initiation of venous thrombi.(59) Extensive adhesion of leukocytes to the walls of veins has been reported following surgery (60, 61); endothelial cells separate from each other and are lost at some sites. This can promote platelet adhesion and thrombus formation on the injured surface.

MAINTENANCE OF THE INTEGRITY OF THE ENDOTHELIUM

Platelets are necessary to maintain normal vessel wall integrity.(62, 63) It is well known that in severe thrombocytopenia, the vascular walls become more permeable,(64) and easy bruising occurs as red cells escape from capillaries.(62) The early estimate that a turnover of 8000 to 12,000 platelets/ $\mu\text{L}/\text{day}$ was a critical number, below which spontaneous bleeding is likely to occur readily,(65) has recently been confirmed by Hanson and co-workers,(66) who have calculated that 10 to 15 percent of the circulating platelets in normal subjects are randomly consumed in maintaining vascular integrity (7300 platelets/ $\mu\text{L}/\text{day}$). They point out that this platelet requirement produces predictably shortened platelet survival in the patients with aplastic thrombocytopenia whom they studied, and may contribute to shortened platelet survival in other thrombocytopenic states. It should be pointed out that shortened platelet survival is demonstrable in such patients only if the

studies are done at a low platelet count.(65) In order to maintain the endothelial lining it is apparent that platelets must adhere to the vessel wall, but practically nothing is known about this process. Electron micrographs illustrate that platelets interact with the vessel wall if there are gaps between endothelial cells.(67-70) The early suggestion that the endothelial cells actually engulf platelets (62) is no longer accepted.

CONDITIONS THAT RESULT IN PLATELET ADHESION TO CULTURED ENDOTHELIAL CELL MONOLAYERS

Although unstimulated platelets do not adhere to normal endothelium, nor to damaged endothelium *in vivo*,(26, 71, 72) they apparently can adhere to damaged or altered endothelium in culture.(73-75) Booyse and colleagues damaged endothelium cells in culture in various ways and observed that platelets did not interact with the damaged cells per se, but rather with an extracellular matrix of microfilaments produced by the endothelial cells.(73) In the experiments of Curwen and coworkers,(74, 75) platelets were shown to adhere to virally transformed endothelial cells in culture. Although exogenous PGI₂ had a partial inhibitory effect on platelet adhesion to these endothelial cells, it did not depress platelet adhesion to the basal level observed with normal endothelial cells in culture. The investigators concluded that exposure to the virus altered the property of endothelial cells that prevents platelet adhesion. They also concluded that generation of PGI₂ by the normal endothelium is not the key factor that prevents platelet adherence to the intact vessel wall.

Other investigators have reached the opposite conclusion, although their results are open to alternative explanations. Czervionke and colleagues (76, 77) reported that ⁵¹Cr-labeled platelets that were exposed to thrombin adhered as aggregates to cultured endothelial cells, providing PGI₂ production by these cells was blocked by aspirin. This thrombin-induced adhesion was inhibited by the addition of PGI₂ (5 to 25 nM). Curwen and colleagues (74) have pointed out, however, that platelet adherence cannot be readily distinguished from platelet aggregation in such a test system, and PGI₂ may have been preventing platelet aggregation or causing deaggregation rather than inhibiting platelet adhesion. An additional explanation for the observations of Czervionke and associates (76, 77) may be that thrombin also causes the release of platelet fibrinogen and converts it to fibrin, which has been shown to bind to both platelets (15) and endothelial cells,(78, 79) and would form an adhesive bridge between them. Yet another possibility is that thrombin damaged the endothelium, as shown by Lough and Moore,(79) resulting in a surface to which platelets could adhere.

INTERACTION OF PLATELETS WITH CONSTITUENTS OF THE VESSEL WALL

Platelets have been shown to adhere to collagen, basement membrane, microfibrils, damaged smooth muscle cells, and components of atherosclerotic plaques. Adherence to damaged endothelial cells and other injured cells such as fibroblasts is less well established. By far the greatest number of studies have been devoted to investigating the adhesion of platelets to collagen, with *in vitro* studies of the interactions of platelets with collagen outnumbering the *in vivo* studies. Much less is known about the reactions that

occur as a result of the adhesion of platelets to other constituents of the vessel wall. It seems likely that although platelets may initially contact only one constituent of the vessel wall, when they spread on the surface they may become adherent to several vessel wall constituents.

INTERACTION OF PLATELETS WITH COLLAGEN, AND RELEASE OF GRANULE CONTENTS

More than 20 years ago, Hughes,(80) Bounameaux,(81) and Roskam (82) observed that vessel wall injury exposed subendothelial constituents that initiated platelet aggregation. Kjaerheim and Hovig (83) demonstrated that platelets were adherent to collagen when mesenteric blood vessels were injured. Zucker and Borrelli (84) and Hovig (85) showed that connective tissue or tendons contained material that caused platelets to aggregate, and collagen was identified as a platelet aggregating agent. These observations were made shortly after Gaarder and coworkers (86) had shown that ADP is an aggregating agent and Hovig,(87) Spaet and Cintron,(88) and Spaet and Zucker (89) went on to demonstrate that ADP was released from the platelets when they were stimulated with collagen. As a result of the experiments of Haslam (90) with enzyme systems that converted the released ADP to compounds that did not cause platelet aggregation, the concept arose that collagen and other aggregating agents such as thrombin caused aggregation because they induced the release of ADP from platelets. Although we now know that released ADP is not solely responsible for platelet aggregation induced by collagen because the aggregating agents formed from arachidonate also play a part,(91-97) the release of the contents of platelet granules when platelets adhere to collagen is an important aspect of this interaction.

From electron micrographs of hemostatic plugs, thrombi, and platelets on the subendothelium, the degranulation of platelets adherent to collagen *in vivo* is well established.(10, 12, 32) In regions where blood flow conditions are such that the materials released from the granules of platelets adherent to an injury site can accumulate, released ADP and serotonin are thought to act synergistically to contribute to platelet aggregation on the adherent platelets. Released ATP is converted to ADP by enzymes in plasma and thus increases the amount of ADP that accumulates.

In addition to the aggregating agents released from the amine storage granules of platelets adherent to collagen, several proteins are released from the α -granules. Recently, some evidence has accumulated that release of α -granule contents occurs more readily than the release of the contents of the dense granules.(98-100) The materials in the α -granules include platelet factor 4, β -thromboglobulin, fibrinogen, fibronectin, thrombospondin, von Willebrand Factor, albumin, Factor V, antiplasmin, α_1 -antitrypsin, α_2 -macroglobulin, the platelet-derived growth factor that is mitogenic for smooth muscle cells, cationic proteins that increase vessel wall permeability, bactericidal factor, chemoattractant factor, proteoglycans, and other proteins.(101, 102) Some of these, notably von Willebrand Factor, thrombospondin, and fibronectin, may be bound to the membrane of platelets that have undergone the release reaction, and these proteins have been implicated in platelet adhesion, particularly to collagen and microfibrillar material.(34, 103-111) In contrast, fibrinogen is required for platelet aggregation and binds to platelets on which the complex of glycoproteins IIb and IIIa have formed a receptor as a result of exposure of the platelets to aggregating agents.(112-119) It should be pointed out, however, that seem-

ingly adequate concentrations of von Willebrand's Factor, fibrinogen, and fibronectin exist in plasma to take part in adhesion and aggregation, and unless local high concentrations at the point of release from platelets are required to enhance these processes, it is difficult to understand how release of these proteins from platelets could be crucial. Thrombospondin has been identified as the lectin-like material from platelets that binds to the surface of platelets that have released their granule contents, and interacts with fibrinogen.(108, 109) It may have a role in platelet aggregation, particularly aggregation that is caused by release-inducing agents, and is not readily reversible, and possibly has a role in platelet adhesion. No role has been suggested for released β -thromboglobulin, but because this protein seems to be unique to platelets, its appearance in plasma is taken as an indication that platelets have released granule contents.(120) Platelet factor 4, also called *antiheparin factor* interferes with the inhibition of thrombin caused by the antithrombin III complex with heparin. How it functions in the absence of heparin is unclear. Abnormally high concentrations in plasma occur when platelets have undergone the release reaction, but since platelet factor 4 becomes associated with the endothelial surface and is freed by heparin,(120) its concentration in plasma *in vivo* is less useful as an indicator of the extent of release of platelet granule contents than is the concentration of β -thromboglobulin. Immunofluorescent studies have shown that, at a site where platelets adhere to exposed subendothelium, platelet factor 4 penetrates the outer layers of the vessel wall.(121) The other proteins released from adherent platelets undoubtedly also enter the injured wall.

The platelet-derived growth factor released from platelets adherent to an injured vessel wall stimulates the migration and proliferation of smooth muscle cells in the intima, and thus contributes to vessel wall thickening and the development of atherosclerotic lesions.(122, 123) If experimental animals are kept thrombocytopenic during repeated vessel wall injury, the lesions do not develop, indicating that platelet-derived growth factor is essential for the stimulation of smooth muscle cell proliferation under these experimental conditions.(124, 125)

Factor V that is released from adherent platelets may become associated with their surface, although in this case also, seemingly adequate concentrations are present in plasma. Activated Factor V on the platelet surface serves as the receptor for Factor Xa, and thus takes part in the prothrombinase complex that catalyses the conversion of prothrombin to thrombin.(126, 127)

Platelets that adhere to collagen may also release the contents of some of their lysosomal granules. Legrand and colleagues have shown that when platelets are incubated with collagen they convert their proelastase to elastase, which appears in the medium surrounding the platelets.(29) When this enzyme enters the injured wall to which platelets are adherent, it may lyse elastin. The proteolytic enzyme in platelets that exerts a limited hydrolytic effect on proelastase was not characterized in their study.

Formation of Aggregating Agents from Arachidonate

In the 1970s, several groups of investigators showed that when platelets interact with release-inducing agents, including collagen, the platelets form short-lived aggregating agents that affect other platelets in the vicinity.(91-94) These active substances were identified as the prostaglandin endoperoxides, G₂ and H₂ (PGG₂, PGH₂), and their product, thromboxane A₂. Thromboxane A₂ has an *in vitro* half-life of approximately 30 seconds in plasma at 37°C, and the half-lives of PGG₂ and PGH₂ are similarly short.(128, 129) They are formed from platelet arachidonate that is freed from platelet phospholipids

under the influence of phospholipases. It is not known how the process of platelet adhesion to collagen or to other surfaces, activates phospholipase, nor is it clear whether phospholipase A₂ or phospholipase C followed by diglyceride lipase is primarily responsible for freeing arachidonate.(130-132) The phospholipids from which arachidonate is hydrolyzed are mainly phosphatidyl inositol and phosphatidyl choline. The reactions involved in the conversion of arachidonate to thromboxane A₂ have been thoroughly described by several groups of investigators.(128, 129, 133) The enzymes responsible for the reactions are cyclo-oxygenase, which converts arachidonate to PGG₂, and thromboxane synthetase, which converts PGH₂ to TXA₂.

Because cyclo-oxygenase is inhibited by nonsteroidal antiinflammatory drugs such as aspirin, indomethacin, ibuprofen, and many others, these drugs prevent the formation of the prostaglandin endoperoxides PGG₂ and PGH₂, and thromboxane A₂, and thus inhibit collagen-induced platelet aggregation. Most investigators have found, however, that these drugs do not inhibit platelet adhesion to collagen or to other subendothelial components,(94, 134-138) nor do they inhibit the release of granule contents from platelets that adhere to collagen.(97) The failure of aspirin to inhibit release from adherent platelets has been shown morphometrically by *in vivo* experiments by Weiss and colleagues,(135) who described degranulated platelets adherent to collagen in sections taken from animals given sufficient aspirin to inhibit thromboxane A₂ formation and prevent collagen-induced aggregation, tested *in vitro* in citrated platelet-rich plasma. Further evidence for the conclusion that the formation of active compounds from arachidonate is not required for platelet adhesion to collagen or the release of granule contents from the adherent platelets comes from the experiments of Kinlough-Rathbone and coworkers,(97) and Cazenave and colleagues.(137) In these studies, platelets doubly-labeled with ⁵¹Cr (a cytoplasmic label) and ¹⁴C-serotonin (a label for the amine storage granule contents, which is rapidly taken up and sequestered in these granules) were used to quantify platelet adhesion and the extent of release of ¹⁴C-serotonin from the adherent platelets. Since ⁵¹Cr is not lost from the cytoplasm when platelets adhere, because they do not lyse, this label indicates the number of adherent platelets. When ¹⁴C-serotonin is released, the ratio of ⁵¹Cr to ¹⁴C increases in the adherent platelets, and the extent of release can be calculated. *In vitro* experiments showed that aspirin did not affect the number of platelets that adhered nor did it decrease the release of ¹⁴C-serotonin from the platelets adherent to collagen or to the subendothelium.(97) Results obtained by Cazenave and colleagues (137) demonstrated that other nonsteroidal antiinflammatory drugs also did not lessen adhesion or decrease the release of granule contents from adherent platelets, with the exception of indomethacin and high concentrations of sulfinpyrazone, which had small inhibitory effects on platelet adhesion. All these experiments with doubly-labeled platelets were done under conditions in which platelet aggregates were not present on the surfaces so that only platelets that were directly adherent to collagen or the subendothelium were examined. In the experiments of Legrand and associates,(139) aspirin did not affect platelet adhesion to collagen, but it did diminish the release of serotonin from the platelets, although this effect of aspirin may have been on platelets that were not adherent to collagen. Other studies of the effects of nonsteroidal antiinflammatory drugs on platelet adhesion are discussed under *Inhibitors of Platelet Adhesion*.

It must be emphasized that the situation in an aggregometer cuvette when collagen is added to citrated platelet-rich plasma or to a suspension of platelets in artificial media is quite different from the situation in the adherence experiments described above. In an aggregometer cuvette, a relatively small proportion of the platelets actually adhere to

collagen. By far, the majority of them do not contact collagen and are induced to aggregate by the synergistic effect of thromboxane A₂, formed by the adherent platelets, and the ADP and serotonin released from them. Nonadherent platelets stimulated by thromboxane A₂ also release granule contents and form more thromboxane A₂, amplifying the reaction. When aggregation is due to a synergistic effect of ADP and thromboxane A₂, aggregation can be largely prevented either by inhibiting the action of cyclo-oxygenase with nonsteroidal antiinflammatory drugs, or by removing ADP rapidly with an enzyme system such as creatine phosphate-creatinine phosphokinase, which converts ADP to ATP.(140) Since neither ADP nor TXA₂ is a strong agonist, release of the contents of the amine storage granules rarely exceeds 50 to 60 percent, even when maximum aggregation occurs in an aggregometer cuvette. In contrast, a strong agonist such as thrombin can cause more than 90 percent release. Less than maximal release in response to collagen in an aggregometer cuvette is in accord with the principle pointed out by Huang and Detwiler (141) that a combination of agonists that act synergistically does not cause a greater response than the response evoked by a high concentration of the stronger of the two agonists.

If a very large amount of collagen is added, so that nearly all the platelets can adhere to it, massive aggregation occurs and release of granule contents to the extent of more than 80 percent takes place.(97) This represents release from the platelets that are actually adherent to the collagen, rather than release caused by thromboxane A₂. If a large amount of collagen is added to platelets in which cyclo-oxygenase has been inhibited, in an aggregometer cuvette, a gradual increase in light transmission occurs as the platelets adhere to collagen and, although the platelets do not aggregate, release of granule contents can be demonstrated.(97)

Although there are contradictory reports in the literature,(142) the most convincing studies indicate that ADP is not required for the adherence of platelets to collagen or to the subendothelium.(143, 144) Enzyme systems, such as creatine phosphate-creatinine phosphokinase, which rapidly converts released ADP to ATP (an inhibitor of ADP-induced platelet aggregation), do not inhibit the adhesion of platelets to collagen or the subendothelium.(143, 144) Such an enzyme system does inhibit platelet aggregation on the adherent platelets. It seems likely that in studies in which removal of ADP has been reported to inhibit platelet adhesion, both adhesion and aggregation were occurring. Conversely, the demonstration of enhancement of platelet adhesion by the addition of ADP undoubtedly represents ADP-induced aggregation on the adherent platelets. Inhibition of platelet adhesion to collagen by pretreatment of the platelets with ADP has been reported.(145)

The ability of nonsteroidal antiinflammatory drugs to inhibit collagen-induced aggregation was recognized a number of years before the involvement of arachidonate was suspected and the enzyme that these drugs affected was shown to be cyclo-oxygenase. In contrast, most of the drugs that inhibit thromboxane synthetase and prevent TXA₂ formation from PGH₂ were developed after the arachidonate pathway and the action of thromboxane synthetase were understood.(146) The majority of these drugs are derivatives or analogs of imidazole. Although they prevent thromboxane A₂ formation, they do not affect the formation of PGG₂ or PGH₂, which have also been identified as aggregating agents.(92, 93, 128, 147) Few studies of the effects of thromboxane synthetase inhibitors on platelet adhesion have been reported. Menys and Davies (148) have obtained data indicating that dazoxibenz does not affect platelet accumulation on collagen-coated glass, but does inhibit platelet accumulation on damaged rabbit aorta, tested in vitro with ⁵¹Cr-labeled rabbit platelets and a rotating probe.

Several investigators have used radioimmunoassays of thromboxane B₂, the relatively stable product formed from thromboxane A₂, as an indicator of platelet activation *in vivo* and *in vitro*. Although this is justifiable *in vitro*, the *in vivo* situation may be complicated by the fact that cells other than platelets (e.g., macrophages) produce thromboxanes (149) and thromboxane B₂ is cleared from the circulation so its concentration may not reflect episodic platelet activation. It should be emphasized that all the release-inducing agents that stimulate platelets activate the arachidonate pathway so that the demonstration of a high concentration of thromboxane B₂ in plasma gives no information about the agent that stimulated the cells to form it. It is certainly inappropriate to conclude that TXB₂ has been formed only by platelets adherent to an injury site, although if platelets have adhered they will contribute to the amount of TXB₂ in plasma.

Role of Platelet Ca²⁺

There appears to be a close relationship between activation of the arachidonate pathway and activation of the release of platelet granule contents. Aggregating agents such as ADP, which do not cause the release of granule contents in a medium with a physiologic concentration of Ca²⁺, do not cause the formation of thromboxane A₂. All of the release-inducing agents also activate the arachidonate pathway. It may be that a common reaction such as mobilization of internal platelet Ca²⁺ activates both processes. Many investigations have indicated that shape change, aggregation, and release of granule contents depend on an increase in the concentration of Ca²⁺ in the platelet cytosol from between 0.01–0.1 μM to between 1–10 μM, in most cases by mobilization of Ca²⁺ from sites of sequestration within the platelet.(150–160) These sites have not been determined, although suggestions include the dense tubular system (159, 161, 162) and the open canalicular system.(163) With the advent of the reagent "quin-2," it has become possible to determine the concentration of Ca²⁺ in platelets and the changes that occur when platelets are stimulated.(160) Although most aggregating agents cause an increase in the concentration of Ca²⁺ in the cytosol, Sanchez and Rink (164) have reported that collagen stimulates platelets without raising cytoplasmic Ca²⁺. This observation is difficult to interpret, however, because platelets exposed to collagen release ADP, which does cause an increase in the concentration of cytosolic Ca²⁺, according to Sanchez and co-workers.(165)

Stimulation of platelets with collagen appears to activate Ca²⁺-dependent protein kinases in platelets, resulting in selective phosphorylation of specific proteins of mol wt 40,000 (P40) and 20,000 (P20).(156, 166) Phosphorylation correlates quantitatively with the extent of release of the contents of the amine storage granules, both of which occur even if aggregation is blocked by chelation of external Ca²⁺ with EDTA. One of the phosphorylated proteins, P20, is thought to be the light chain of platelet myosin; phosphorylation of myosin light chain is necessary for actin-induced activation of myosin ATPase activity.(167) A calmodulin-dependent protein kinase is thought to be responsible for this reaction.(168) Phosphorylation and dephosphorylation of this myosin subunit are considered to regulate the contractile functions of platelets that are mediated by actin-myosin interactions and are activated when platelets adhere to collagen or are stimulated by other aggregating agents. Since PGE₁, which raises the concentration of cyclic AMP in platelets and thus causes the sequestration of cytosolic Ca²⁺,(169) decreased the collagen-induced phosphorylation of these proteins, it seems likely that the effect of collagen on the phosphorylation of these proteins is mediated by an increase in cytosolic Ca²⁺.

It has been suggested that protein kinase C may be responsible for the phosphorylation of the 40K protein.(170, 171) This protein kinase is activated by diacylglycerol produced from phosphatidyl inositol, phosphatidylinositol 4-phosphate, or phosphatidyl-inositol 4,5-bisphosphate, and activation requires Ca^{2+} and phospholipid. However, it is active at physiologically low concentrations of Ca^{2+} . Collagen causes the formation of diacylglycerol and the phosphorylation of this 40K protein. Michell (171) has suggested that there is an intracellular synergism between the effects of elevated cytosolic Ca^{2+} and of activated protein kinase C in platelets.

Activation of the PI Cycle

Another effect of collagen on platelets is activation of the phosphatidylinositol (PI) cycle in a manner that appears to be similar to its activation by thrombin.(172) This cycle is initiated by the action of phospholipase C, which causes the formation of inositol phosphates and 1,2-diacylglycerol from phosphatidylinositols.(130, 173-175) Diglyceride and monoglyceride lipases can free arachidonic acid from 1,2-diacylglycerol and it has been suggested that these reactions are important in freeing this precursor of thromboxane A₂.(131, 176, 177) If platelets are suspended in media that simulate physiologic conditions, however, little arachidonic acid is freed by this enzymatic pathway.(176, 178) Another proposal concerning this pathway is that 1,2-diacylglycerol may stimulate the Ca^{2+} -activated, phospholipid-dependent protein kinase that catalyses protein phosphorylation and results in the contractile reactions of stimulated platelets.(179) This is Ca^{2+} independent and phospholipase C is thought by some to not require Ca^{2+} .

How platelet adhesion to collagen stimulates a phospholipase, be it phospholipase C or phospholipase A₂, is not known. One of the consequences, however, is the freeing of arachidonic acid. To date, nearly all studies have been concentrated on the conversion of arachidonic acid to prostaglandins and thromboxane A₂ under the influence of cyclo-oxygenase and subsequently, thromboxane synthetase. Only recently has interest quickened in the effects of products formed from arachidonate if it is acted upon by lipoxygenase instead of cyclo-oxygenase in platelets. One of the products of the lipoxygenase pathway, 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), is currently receiving attention because of the suggestion that it may promote platelet adhesion to collagen.(180) This theory is based on experiments comparing the effect of aspirin, which inhibits cyclo-oxygenase, with that of salicylate, which inhibits the formation of 12-HETE from 12-L-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12-HPETE). Further testing of this hypothesis by other approaches is necessary before it can be accepted.

MECHANISM OF PLATELET ADHESION TO COLLAGEN

How platelets adhere to collagen is not established, although many studies have been done and several different theories have been advanced. Neither a receptor (if such exists) on the platelet membrane nor the components of the collagen fibers that take part in adhesion have been definitely identified.

Morphologic examination by electron microscopy of platelets adherent to collagen in hemostatic plugs and thrombi has shown that the distance between the surface membrane of the platelets and the collagen fibers is less than that between the surface membranes of aggregated platelets.(181, 182) A regular pattern of breaks in the membrane of adherent

A

B

platelets has been observed, matching the cross-striations of the collagen fibers.(70, 182, 183) In hemostatic plugs, platelets that are adherent to collagen are swollen and degranulated. In contrast, when adhesion to the subendothelium is complete, both transmission and scanning electron micrographs show that the platelets are flattened and spread on the surface, in addition to being degranulated (Fig. 1). (2, 5, 32)

STRUCTURE OF COLLAGEN AND PLATELET AGGREGATION

Collagen is composed of three helical polypeptide chains of equal molecular weight, called α -chains, linked by hydrogen bonds and intramolecular covalent crosslinks into a triple-stranded, coiled helix that is referred to as monomeric collagen or tropocollagen.(184-186) It has a mol wt of about 300,000.(187) Upon being warmed to 25°C, tropocollagen gradually polymerizes into soluble, microfibrillar collagen by intermolecular crosslinking. Further heating to 37°C results in the formation of larger fibrils (macrofibrils) that are insoluble.(187) The fibrils have also been described as "multimers," and the process of their formation as *multimerization*.(188) The term *quaternary structure* is also used.(187, 189)

At least five distinct types of collagen have been recognized, differing in amino acid composition and sequence, and in carbohydrate content.(186, 189, 190) Four of these types are found in vascular tissue (Table 1). The α 1 chains in the various types of collagen differ from each other and are designated by the roman numerals assigned to the types of collagen. Type I collagen has two identical α 1(I) chains in a triple helical conformation with one α 2 chain (α 1(I))₂ α 2(I). Type II collagen is composed of three identical α 1(II) chains, (α 1(II))₃. Type III collagen has three identical α 1(III) chains (α 1(III))₃. Type IV collagen may also have three identical chains (α 1(IV))₃, (189); although other investigators list its chain composition as "unknown,"(191) the most recent evidence indicates that it contains two genetically distinct α (IV) chains, (α 1(IV) and α 2(IV)).(186) Type V collagen contains α -chains that have been designated as A and B chains.(192, 193) The α -chains of types I, II, III, and V usually contain glycine in every third position, whereas type IV collagen has other sequences as well.(191)

Most studies of platelet aggregation have been done with type I collagen from tendon or skin. Soluble collagen has been prepared in neutral salt solution (188) or as acid soluble collagen (194) for studies of platelet adhesion and aggregation. Soluble monomeric collagen (tropocollagen) does not cause platelet aggregation,(188, 195) and tropocollagen does not bind to platelets to a measurable extent.(196, 197) The observation that monomeric collagen does not inhibit aggregation induced by chemically identical fibrillar collagen indicates that monomeric collagen may have a lower affinity for the platelet surface.(190)

Fig. 1. Electron micrographs of a hemostatic plug in a severed mesenteric vessel of a normal dog. The site from which the section was taken for examination is illustrated in the diagram of the plug in the upper right-hand corner of each picture. (A) At the periphery of the plug there are swollen platelet pseudopodia in contact with each other and with degranulated platelets. Interspersed among these platelets are dark patches of fibrin, many of them closely adherent to the surfaces of platelets. The large solid dark cells are red blood cells (magnification $\times 10,500$). (B) At the point where the plug is in contact with the connective tissue around the vessel, the platelets are degranulated and swollen. The platelets are adherent to collagen fibers (magnification $\times 31,400$) (from Mustard JF, Packham MA: Normal and abnormal haemostasis. Br Med Bull 33:187, 1977 with permission).

Table 1
Types of Collagen in Vascular Tissue

Type of Collagen	Types of Chains	Location*	Ability to Induce Platelet Adhesion
Type I	($\alpha 1(I)_2\alpha 2(I)$)	adventitia, media, subendothelium	yes
Type III	($\alpha 1(III)_3$)	media, subendothelium, adventitia	yes
Type IV	($\alpha 1(IV)_3$) or $\alpha 1(IV)$ and $\alpha 2(IV)$	basement membrane	controversial
Type V	($\alpha 1(V)_2\alpha 2(V)$)	media, subendothelium, adventitia	controversial

Data from Weiss and Ayad (186); Barnes et al. (207); Rhodes (202)

* In decreasing order of abundance.

In contrast to the lack of effect of tropocollagen, multimers do bind strongly with a dissociation constant of less than 10 nM.(197) Muggli and Baumgartner (188) found a correlation between the development of a collagen structure capable of causing platelet aggregation, and the process of fibril precipitation. Simons and coworkers (198) observed that preformed collagen multimers were required for platelet aggregation. Kronick and Jimenez (197) also concluded that platelet-stimulating activity is not found in collagen solutions that are undergoing fibrillogenesis until well developed banded fibrils appear, but this can occur before the solution becomes visibly turbid. Some authors use the term "quaternary structure" to describe these fibrils that are reactive with platelets.(189, 199) However, Muggli (200) reported that the native quaternary structure is not necessary for platelet aggregation; he found that platelet aggregation could be induced by collagen fibrils with different quaternary structures. There is no doubt that much of the confusion and many of the apparent contradictions in the literature have arisen from the use of soluble collagen preparation in which fibril formation had occurred only partially, or was retarded by prior modifications of tropocollagen or by the conditions under which the collagen was incubated during fibril formation.(188, 195) Thus many of the reported observations are artefacts of *in vitro* experiments in which soluble collagen preparations were made for the purpose of purification, but steps were not taken to ensure that the collagen had regained its native state before its reactivity toward platelets was determined.

Vessel walls contain collagen of types I, III, IV, and V (Table 1).(192, 201) Type I is present mainly in the adventitia,(184) although smaller amounts are found in the media and subendothelium.(202) Types III and IV are present in the subendothelium; types IV and V are the collagen of the basement membrane. The initial belief that type III collagen is more reactive with platelets than type I collagen (203, 204) has been questioned because some of the differences have been shown to have been caused by variations in the rates of formation of fibrillar collagen *in vitro*.(190, 197, 205, 206) As noted earlier, monomeric collagen has little or no effect on platelets; the collagen triple helix must be assembled into fibrils before platelets will adhere.(188, 195) Gordon (205) has pointed out that although type III collagen appears to be more reactive with platelets than type I collagen when they are added to platelets in the monomeric form,(204) the difference practically disappears if preformed collagen fibrils are added.(207) The diameter of the fibrils also affects the amount of collagen required to cause platelet aggregation because it is surface area, rather than weight, that determines the extent of interaction with platelets.

Most investigators agree that type IV collagen, which is a component of basement membrane, does not cause platelet aggregation or the release of the contents of platelet granules.(192, 193, 208) Huang and Benditt (35, 209) have observed that platelets do not

adhere to the basal lamina after partial cleavage of its noncollagenous component by treatment with pepsin. They conclude that platelets do not adhere to collagen in the basal lamina, but rather, to the noncollagenous components of it, although this adhesion is not accompanied by loss of platelet granule contents. It seems likely that the primary structure of the chains of type IV collagen in basement membrane prevents the formation of fibrils with the highly ordered quaternary structure that characterizes the other types of collagen.(192) By electron microscopy, basement membrane collagen can be shown to lack any periodicity similar to the 67 nm banding that is characteristic of other collagens. Although type IV collagen has been reported by some investigators to interact weakly with platelets,(36, 201) other authors have questioned these findings and suggested that the type IV collagen preparations used may have been contaminated with type III collagen (35, 189, 209) see section on Basement Membrane.

Chemical Modifications of Collagen

A number of early experiments were done in which various prosthetic groups on collagen were chemically modified in attempts to determine those that are involved in platelet adhesion. For example, Wilner and coworkers (210) showed that acetylation of free carboxyl groups by treatment with methanol had little effect on the interaction between platelets and collagen, whereas blocking the epsilon-amino groups of lysine in collagen diminished its ability to cause platelet aggregation (and presumably its ability to adhere to platelets). Acetylation of the N and O groups of collagen by treatment with glacial acetic acid and acetic anhydride resulted in loss of the ability of collagen to cause platelet aggregation; this has been confirmed by Chesney and colleagues (211) for both soluble and fibrillar collagen. The situation became less clear, however, when Wilner and colleagues (212) went on to show that replacing the epsilon-amino groups with negatively-charged succinyl groups did not affect the ability of collagen to aggregate platelets, whereas esterification of the succinylated collagen strongly inhibited its ability to cause platelet aggregation. These observations led to the development of a theory that collagen must have rigidly spaced polar sites in order to interact with platelets, and that these sites may be either positively or negatively charged. The results with succinylated collagen have been questioned by Chesney and coworkers,(211) who found that succinylation of collagen completely abolished its ability to cause platelet aggregation, although the fibrillar structure was maintained. They pointed out that Nossal and colleagues did report about 75 percent inhibition of platelet aggregation in one of their studies in which they used succinylated collagen,(213) although later they reported no effect of succinylation.(212) They did find, however, that blocking the ϵ -amino groups of lysine with 2,4,6-trinitrobenzene sulfonic acid inhibited platelet adhesion to collagen as well as collagen-induced platelet aggregation.(212) Chesney, and coworkers (211) also obtained contradictory results to those of Wilner and associates (210) regarding the effect of esterification of the carboxyl groups of collagen; Chesney and colleagues observed enhanced aggregation whereas Wilner and associates reported that acetylation of the free carboxyl groups did not significantly affect the platelet aggregating activity of collagen. In agreement with the early work of Wilner and associates,(210) however, Chesney and coworkers (211) concluded that ϵ -amino groups of lysine are of major importance in the interaction of platelets with collagen. This is in accord with the formation of bridges between platelets and collagen at the dense bands of collagen, which are thought to represent the polar regions of collagen molecules.(23)

In the experiments of Chesney and colleagues,(211) care was taken to determine whether the collagen was in the fibrillar or soluble form, and both types were modified and tested. Although some earlier studies may be criticized on the basis that modification of the side chains of the amino acid residues of collagen may have affected the formation of fibrils, rather than the interaction with platelets,(188, 205, 214) these objections are not relevant to the work of Chesney and associates.(211)

As pointed out by Santoro and Cunningham,(190) the modifications of collagen that have the greatest inhibitory effect on platelet adhesion are the modifications that reduce the positive charge on collagen. Although this might be expected because of the net negative charge on the surface of platelets, adhesion probably does not occur solely on the basis of charge, since red blood cells, which also have a net negative charge, do not adhere to collagen.

Role of Carbohydrate Side Chains of Collagen

The collagen glycosyltransferase theory of platelet adhesion that originally attracted a great deal of interest, is now known to be unacceptable. This theory was originally proposed by Jamieson and colleagues (215); it held that a glycosyltransferase on the platelet surface formed an enzyme-substrate complex with incomplete collagen-saccharide chains, since as many of 60 percent may be incomplete galactosyl-hydroxylysine.(187) This would normally be the first step in the transfer of glucose from uridine disphosphate glucose to galactose, although the completion of the reaction was not necessary for the theory.(216) Evidence against this theory includes the demonstration that collagens that lack galactosylhydroxylysine, or in which the carbohydrate has been altered, cause platelet adherence and aggregation.(184, 206, 217) Jamieson and coworkers (215) used the findings that glucosamine inhibited platelet adhesion to collagen, and inhibited collagen-glucosyl transferase activity in an assay using soluble collagen, as support for their theory. Legrand and colleagues, however, have shown that glucosamine inhibits the in vitro polymerization of soluble collagen, but has no direct effect on the interaction of platelets with collagen.(218) In keeping with their observations are the findings of Brass and Bensusan (199) that glucosamine does not affect platelet aggregation by collagen that is already in the fibrillar form. Glucosamine does not inhibit the adherence of platelets to a surface coated with fibrillar collagen.(219) The finding that treatment of collagen with galactose oxidase inhibits platelet adhesion to collagen (220) was originally used to support the theory, but the observation of Muggli and Baumgartner (188) and Harper and coworkers (221) that galactose oxidase delays polymerization of collagen would account for the effect of this enzyme. Further evidence against the collagen glucosyl-transferase theory came from the results of Menashi and coworkers,(222) who showed that synthesis of glucosylgalactosyl-hydroxylysine took place in the presence of the platelet enzyme when denatured collagen was used as substrate, whereas no synthesis occurred with native collagen. They concluded that adhesion of platelets to native collagen in vessel walls was unlikely to be mediated by collagen glucosyltransferase. Furthermore, they pointed out that the fact that the enzyme can be found not only on the membrane of platelets, but also in the cytosol and in high amounts in freshly prepared platelet-free plasma "casts further doubts" on its role in platelet-collagen adhesion. One would think that the collagen-glucosyltransferase theory would have been laid to rest several years ago, but it is still mentioned occasionally as if it were an acceptable theory.

According to several investigators, the sites on collagen required for interaction with

platelets do not appear to involve the carbohydrate portion of collagen.(206, 211, 217) Santoro and Cunningham (206) showed that the ability of types I, II, and III collagen to induce platelet aggregation does not correlate with their carbohydrate content, which differs widely. These investigators also showed that collagen that had been modified by periodate oxidation of its carbohydrate side chains, as well as the oxidized material that was subsequently reduced with sodium borohydride, were fully effective in inducing platelet aggregation.

It is of interest, however, that glycosylated collagen obtained from rats made diabetic with streptozotocin, or by nonenzymatic glycosylation of type I collagen from rats, is a more potent platelet aggregating agent than collagen from normal rats.(223) The amounts of bound glucose were 3 to 4 times greater in the glycosylated collagens and the conditions used lead to identical fibrillar structures of the collagens. Reactivity of platelets from diabetics to glass bead columns is also enhanced.(224) These observations lead to the suggestion that glycosylated collagen in the vessel wall may promote platelet interactions at sites of vessel injury to a greater extent than normal collagen does, and that this may play a part in the thrombotic complications of diabetes.

Telopeptide Regions of Collagen

There appear to have been no detailed studies of a possible role of the telopeptide regions of collagen in platelet adhesion, although they have been studied in relation to platelet aggregation and release. The telopeptide regions at both ends of the collagen molecule lack the typical proline structure that is involved in the formation of the triple helix. The telopeptides can be removed by treatment with pepsin, trypsin, or elastase, but this does not block the ability of collagen to cause platelet aggregation, providing fibrils form.(206, 210, 220, 225-227) Again, some of the contradictory results in the literature (227) may have arisen from experiments in which telopeptides were removed from soluble or monomeric collagen, but fibril formation from this modified collagen did not occur normally. Removal of telopeptides from monomeric collagen does interfere with its ability to form fibrils in plasma.(227)

Treatment of Collagen with Collagenase

It is to be expected that treatment of collagen with collagenase would destroy its ability to interact with platelets, and a number of investigators have demonstrated this.(28, 84, 210, 226) Baumgartner's group have used collagenase in a number of their studies of the interaction of platelets with the noncollagenous components of the subendothelium (32, 33) and others have also adopted this approach.(36, 228) When Chesney and associates (28) demonstrated that platelets contain a collagenase that can destroy the platelet-aggregating activity of collagen, they suggested that this enzyme may function as a negative feedback mechanism limiting thrombus formation. It is tempting to speculate that it may also be involved in the eventual loss of platelets from the surfaces of damaged vessels to which they have adhered and that the surface is altered by the degradation of collagen so that the surface becomes less thrombogenic.

Peptide Fragments of Collagen and Collagen-like Peptides

Several groups of investigators are studying fragments of collagen and other polypeptides to determine the parts of the collagen molecule involved in its adhesion to platelets.

Poly-L-hydroxyproline has been shown to bind to platelets and to inhibit platelet adhesion to collagen.(145, 229) It has been suggested that the proline and hydroxyproline recognition sites on the platelet surface may not be used in adhesion to other surfaces.

The findings of Chiang, Beachey, Kang, and their coworkers are difficult to interpret.(230-233) They have reported that monomeric, purified $\alpha 1(I)$ chains of denatured chick skin collagen, and also a fragment from them [$\alpha 1$ -CB5, a glycopeptide containing 36 amino acids and one residue of Glc-Gal-Lys(OH)], bind to platelets and cause platelet aggregation and the release of platelet granule contents. These findings are difficult to reconcile with the well established requirement for fibril formation for platelet-aggregating activity. Michaeli and Orloff (201) have suggested that some of the α -chains may have renatured before their effect on platelets was tested. Also puzzling are the observations of Beachey's group that α -chains of collagen from the skin of other species (rat, cow) or from other organs did not have the same effect as α -chains from chick skin, despite the close similarity in amino acid composition.(189)

In an extension of this work, Chiang and Kang (234) have reported the solubilization, purification by affinity chromatography, and characterization of a receptor on the platelet membrane for this $\alpha 1$ -chain. It is a protein of apparent mol wt of 65,000.

Legrand and coworkers (235) have reviewed their own findings concerning cyanogen bromide fragments of type I collagen from calf skin.(236, 237) They have localized the site of adhesion to platelets on the C-terminal $\alpha 1(I)$ -CB6 peptide (216 amino acids) of type I collagen.

Fauvel and colleagues, working with Legrand, have published more detailed studies of the adhesion site on type III collagen.(235, 238-240) They first isolated a central $\alpha 1(III)$ -CB4 peptide of 149 amino acids by cyanogen bromide cleavage. This peptide was further degraded by treatment with chymotrypsin, hydroxylamine, and trypsin, and a nonapeptide (Gly-Lys-Hyp-Gly-Glu-Hyp-Gly-Pro-Lys) was identified as the segment responsible for adhesion of the $\alpha 1(III)$ chain to platelets.(239) In further studies, these investigators have shown that a synthetic nonapeptide with this sequence inhibits platelet aggregation induced by type III collagen in vitro.(235, 241) Inhibition by this nonapeptide of aggregation of type I collagen was much less pronounced. Other aggregating agents were not affected by the presence of the nonapeptide. From these observations they have suggested that the adhesion of platelets to collagen may involve repetitive staggering of short amino acid sequences (such as this nonapeptide) along the rigid structure formed by a collagen fiber.(239)

More recently, Karniguan and coworkers (242) have identified an octapeptide from type III collagen (Lys-Pro-Gly-Glu-Pro-Gly-Pro-Lys) that is adjacent to the nonapeptide described above. When this peptide was synthesized, it was found to inhibit specifically platelet aggregation and release of granule contents induced by type III collagen, although it did not inhibit platelet adhesion to collagen. In these experiments, the observation that the octapeptide inhibited the increase in platelet cyclic AMP caused by PGI₂ is puzzling because this inhibitory effect is usually observed when platelets are exposed to aggregating agents, not to inhibitory agents.(243) The possibility exists, however, that the octapeptide may inhibit the interaction of PGI₂ with its receptor, although this was not suggested.

Multiple Interactions Between Platelets and Collagen

Despite the large number of investigations of the interaction of platelets with collagen, the precise nature of the binding is not known. Most investigators agree, however,

that collagen must be in the form of fibrils in order to bind to platelets,(196, 197, 244) to induce platelets to change shape,(245) to cause platelet aggregation, and to induce the release of granule contents.(188, 195, 198, 199, 211) As mentioned previously, the results of many of the early studies were misinterpreted because the treatments used to modify soluble collagen interfered with subsequent fibril formation, rather than with the adhesion of platelets to fibrillar collagen. It now seems to be established that neither the carbohydrate side chains of collagen nor the telopeptide regions are involved in platelet adhesion, whereas the ϵ -amino groups of lysine seem to be required.

Santoro and Cunningham (190) have advanced the theory that "multiple, simultaneous, linked interactions" are necessary for collagen-induced aggregation. They have pointed out that despite variations in amino acid sequence, fibrils of types I, II, and III collagen are all effective aggregating agents, although it is quite unlikely that these collagens are all capable of forming an identical, specific, multimolecular binding site. Like Muggli,(200) they have found that randomly crosslinked polymeric forms of collagen, which cannot form active type fibrils, can cause platelet aggregation. In their opinion, these observations eliminate the possibility that a macromolecular binding site recognized by the platelet is formed by the quarter-staggered arrangement of collagen molecules characteristic of the native type of collagen fibril. If their concept is valid, the inhibitory peptides described above must block the multiple sites required for the interaction of collagen with platelets.

Some of the wide variety of techniques used to measure the interaction of platelets with collagen will be described below. The conditions differ so markedly with respect to the medium in which the platelets were suspended (particularly the chelating agents present, or the concentration of Ca^{2+} and Mg^{2+}), the flow conditions, and the hematocrit, that it is often difficult to compare the results obtained by different investigators. Much more attention has been paid to the interaction of platelets with collagen because it was easier to study, than to their reaction with other constituents of damaged or diseased vessel walls, which may be equally, or even more important.

RECEPTOR ON PLATELETS FOR COLLAGEN

The nature of the receptor on platelets for collagen (assuming such a receptor exists) has not been established. Indeed, as noted above, Santoro and Cunningham (190) have proposed that, instead of an interaction with a specific, high-affinity receptor, multiple simultaneous and linked interactions occur between sites on the platelet surface and several sites on the collagen fibril. The signal for platelet activation would be the crosslinking of sites on the platelets by the collagen fibril. The receptor isolated by Chiang and Kang (234) for the 1-chain of chick skin collagen may not be a common receptor for other types of collagen. Nevertheless, the technique that they used of affinity chromatography to a peptide that reacts with platelets will undoubtedly be applied to the reactive peptides identified by Legrand's group in type III collagen, and more information about proteins or glycoproteins in the platelet membrane that interact with collagen will be obtained.

Lahav (246) used Sepharose® (Pharmacia) columns containing immobilized collagen to isolate adherent platelets, which were then lysed with Triton X-100. None of the proteins retained on the collagen was identifiable as a major membrane glycoprotein. In contrast, using the cross-linking reagent 3-3' dithiobis (sulfosuccinimidyl propionate), and platelets labeled by the periodate, tritiated borohydride method, Kotite and coworkers (247) isolated two polypep-

tides that were crosslinked to collagen. In SDS gels, these polypeptides ran in the position of glycoproteins Ib and IIa. However, further characterization of the platelet polypeptides that become associated with collagen is required before the nature of the proteins or glycoproteins that are receptors for collagen can be determined.

It is well established that platelets from patients with the Bernard Soulier syndrome lack glycoprotein Ib on their membrane,(248-251) and that adherence to the subendothelium is defective.(252, 253) However, these platelets aggregate normally in response to collagen (254, 255) and it therefore seems unlikely that this glycoprotein is the receptor for collagen. Suggestions concerning reasons for impaired adhesion to the subendothelium and the possible role of von Willebrand Factor are discussed in the section, *Binding of von Willebrand Factor to Platelets*.

PLATELET ADHESION TO OTHER SUBENDOTHELIAL CONSTITUENTS

Although the interaction of platelets with collagen has been studied extensively, their reactions with the other individual components of the subendothelium have received relatively little attention. In addition to some fibrillar collagen with typical cross-striations, the subendothelium contains elastin, microfibrils around elastin, basement membrane and its associated proteoglycans, and a number of proteins (including laminin, fibronectin, von Willebrand Factor, and thrombospondin). The basement membrane is the main material present on the surface of the subendothelium of blood vessels. Much of the information about platelet adhesion to the structural components of the subendothelium comes from morphologic studies and has been reviewed previously by Stemerman.(26) The majority of the investigations have been done with rabbit platelets and rabbit aortas. In the few studies in which human vessels and platelets have been used, similar results were obtained despite the fact that the composition of the subendothelium of adult human arteries differs from that of young rabbits in that it is largely made up of smooth muscle cells with connective tissue between them.(256, 257)

Elastin and Microfibrils

Platelets appear to have little ability to adhere to elastin in the subendothelium.(2, 33, 258) This conclusion was derived in part from experiments with collagenase-digested subendothelium on which the initial deposition of contact platelets was similar to that on the subendothelium, but spreading was inhibited and only 5 percent of the surface was covered by platelets, whereas coverage of the subendothelium was 100 percent.(33) The platelets that did adhere lost their storage granules very slowly, in comparison with platelets adherent to a collagenous surface produced by digesting the subendothelium with α -chymotrypsin. Baumgartner and colleagues (33) have classified elastin and its surrounding microfibrils as "virtually inactive" in inducing platelet degranulation.

Spaet and Erichson (71) found no adhesion of platelets to isolated elastin. Similarly, using isolated elastin and microfibrils in an EDTA-containing system, Barnes and MacIntyre (192) reported little adhesion of platelets to elastin (7 percent) compared to adhesion to type I collagen (78 percent), and even less adhesion to the microfibrils (1 percent). Elastin, therefore, appears to be relatively inert.

More recently, however, Fauvel and coworkers (34) have isolated a microfibrillar

extract of bovine aorta. This noncollagenous material caused platelet aggregation that depended on the presence of von Willebrand Factor, and was inhibited by a monoclonal antibody to glycoprotein Ib on the platelet surface. This direct evidence indicates that these microfibrils may play a part in the interaction of platelets with the subendothelium. Possibly the platelet interactions that did occur in the experiments by Baumgartner's group involved these microfibrils. In the early experiments in which platelets did not appear to adhere to isolated microfibrils, the requirement for von Willebrand Factor was not appreciated. It is not clear, however, whether von Willebrand Factor is required for adhesion, or for the subsequent release of granule contents and aggregation.

Basement Membrane

The basement membrane forms a thin sheet beneath the endothelial cells.(191) Type IV collagen, which has already been discussed, is a major structural component,(259-262) but it is not present in the form of fibrils and does not activate platelets. The main proteoglycan associated with the basement membrane is heparan sulfate.(262-264) Several glycoproteins are also localized on this structure.(262, 265)

Most studies of platelet reactions with basement membrane (basal lamina) have been done with glomerular basement membrane.(35-37, 209, 266) Although there is some disagreement, most investigators have found that platelets do not interact to an appreciable extent with type IV collagen, a major constituent of the basement membrane (see section on *Structure of Collagen and Platelet Aggregation*). Huang and Benditt (35) treated human glomerular basal lamina (HGBL) with either collagenase or pepsin. Removal of noncollagenous proteins with pepsin left a surface composed of residual collagen with little reactivity toward platelets. In contrast, after removal of collagen, platelet adhesion and spreading occurred to the same extent as on intact basal lamina, but no degranulation or aggregation was observed. Divalent cations were required for platelet adhesion to HGBL.(35, 266) In contrast, Freytag and colleagues (36) reported that both collagenous and noncollagenous components of bovine glomerular basement membrane caused aggregation of human or sheep platelets, but their observations have been criticized on the grounds that the systems were heterologous and that their preparations may have been contaminated with collagen fibers.(266) However, in a completely bovine system, Davis and associates (37) also observed adhesion of platelets to basement membrane; this occurred in the absence of added calcium, but release and aggregation did not take place until Ca^{2+} was added. It should be noted that the platelets were suspended in a most unsuitable medium containing 15 mM Tris buffer,(267) which may have affected their reactivity.

In one *in vitro* study of the reactivity of platelets in citrated blood or plasma with the basement membrane of rabbit heart valves, little or no platelet adhesion was observed.(268) In contrast, platelets have been observed to adhere to capillary basement membrane *in vivo* when endothelial cells have separated.(67-69, 269)

On the basis of the available information, it is not possible to decide whether the differences among experimental results are attributable to variations in experimental approaches, or are partly caused by differences in the reactivity toward platelets of basement membrane from different sources. Contamination with type III collagen has not always been ruled out in the preparations of basement membrane, and may account for some of the observations of aggregation and release of granule contents. Some of the discrepancies between *in vitro* and *in vivo* results may arise because of loss of loosely

associated components (proteoglycans, glycoproteins) during the isolation and purification of basement membrane preparations.

TECHNIQUES USED TO MEASURE PLATELET ADHESION

A great many methods have been described for quantifying platelet adhesion to collagen in vitro; this is a sure indication that none of them is entirely satisfactory. Nevertheless, some discussion of the different techniques seems warranted. They vary in many ways, including the platelet suspending medium, the method used to immobilize collagen, the type of collagen tested, and the method of quantitation. Platelet adhesion to the subendothelium has also been quantified by some of the same techniques. Table 2 outlines some of the reported methods.

The two main methods that can be used to quantify platelet adhesion either to collagen, or to the damaged surface of a blood vessel, are the morphometric and the isotopic methods. The most popular morphometric method was developed by and has been used extensively by Baumgartner and colleagues.(3, 32, 258, 270, 271) In this method, sections are prepared from blood vessels for direct examination by light microscopy or by scanning or transmission electron microscopy. Other investigators have adopted this method, or combined it with the isotopic method by perfusing the Baumgartner chamber with ^{51}Cr -labeled platelets.(136, 272) The advantages of the morphometric method are that both the adhesion of single platelets and of platelet thrombi can be determined separately and the area of the surface that is not covered by platelets can be estimated. In addition, adherent platelets that have contacted the wall but maintained their

Table 2
Methods used to Quantify Platelet Adhesion to Collagen or the Subendothelium

Method	References
Direct observation by light microscopy or by scanning or transmission electron microscopy of the surface to which platelets and thrombi have adhered	1-3, 5, 32, 33, 271, 276
Measurement of the amount of radioactivity associated with the surface after interaction with ^{51}Cr - or ^{111}In -labeled platelets	5, 38, 136, 272, 273, 276
Enumeration of platelets before and after adhesion to surfaces coated with collagen or to columns of collagen/Sepharose	182, 225, 279, 280, 283
Measurement of change in light transmission as platelets adhere to a concentrated suspension of collagen	281, 282
Separation of collagen with adherent, labeled platelets from non-adherent platelets by: passage through Sepharose 2B	139
filtration on a membrane with 5 μm pores	285
Separation of ^{125}I -collagen adherent to platelets from unbound ^{125}I -collagen by centrifugation through Ficoll	196

The first two methods can be used in vitro or in vivo. For in vivo experiments, the experimental animals are exsanguinated and the vessels fixed by perfusion with a glutaraldehyde solution; fibrin formation during these procedures should be prevented by the prior administration of heparin. (5, 38)

shape, can be differentiated from platelets that have spread on the surface. The major disadvantages are the time-consuming and tedious nature of the process of preparing and examining the sections and the limited area that can be examined.

The main advantage of isotopic techniques is that the accumulation of platelets on a large surface area can be examined and measured easily and rapidly. The major disadvantage is that single, adherent platelets cannot be distinguished from platelet aggregates or thrombi on the surface. If aggregate formation on the adherent platelets is prevented or reversed, it is possible to measure accurately the number of platelets that are actually adherent to the surface. In the method originally described by Cazenave and colleagues,(194) the collagen-coated surfaces were merely rinsed in Tyrode solution, which would not have removed aggregated platelets. In later experiments, the surfaces were rinsed in EDTA to remove platelet aggregates and to leave only the platelets that were actually adherent to collagen.(273) This technique is suitable for rabbit platelets, which are readily disaggregated by EDTA, but it is unsuitable for human platelets, which are not disaggregated by EDTA if they have undergone the release reaction.(274)

A variety of devices has been used to study platelet adherence to collagen, the damaged surface of a blood vessel, or to artificial surfaces. The "Baumgartner chamber" has been mentioned earlier. In it, a central core is either coated with collagen or used as a mount for an everted vessel segment. In this annular chamber, blood or suspensions of platelets can be passed over the surface under controlled conditions of flow, and the shear rates can be adjusted to approximate those in vessels of various diameters.(275) One limitation is that blood vessels of different thicknesses cause variations in the distance between the core and the walls of the chamber and thus influence the shear rate.

Sakariassen and coworkers have developed a flat perfusion chamber to investigate the interaction of ¹¹¹indium-labeled platelets in flowing blood with human vessel wall cells in culture, their extracellular matrix, or isolated connective tissue components (collagen) at defined shear rates (276); they measured adhesion both morphometrically and by measuring radioactivity.

In the device used by Cazenave and colleagues, a cylindrical glass probe is coated with collagen or used as a mount for an everted vessel segment. The probe is rotated at constant speed for a predetermined time (usually 10 minutes) in a suspension of washed platelets to which a variety of additions can be made.(273) In the studies of Feuerstein and colleagues (277) and Cazenave and associates,(273) probes of this nature were rotated at low speeds (200 rpm) to give low shear rates (40 sec^{-1} , which is the shear rate in veins). In addition, materials released or formed by the platelets accumulate in the suspending medium during the time that the probe is rotated in the platelet suspension.

These two systems are suitable for measuring platelet adhesion to either a collagen-coated surface or the surface of a damaged vessel. With the exception of the system developed by Barnhart and associates (228) in which umbilical veins are used, most of the other devices developed to study platelet adhesion are not suitable for studying platelet adhesion to the subendothelium, but only to surfaces coated with collagen (or other proteins). These methods have been reviewed recently by Turitto and Baumgartner (275) and include flow chambers of flat plate, parallel plate, and stagnation point varieties. Since most of these have been used mainly to study platelet adhesion to artificial surfaces, they will not be discussed in detail in this chapter. It should be pointed out, however, that some investigators such as Muggli and associates (278) have used devices of this sort to investigate platelet interactions with a collagen-coated surface.

Several investigators have counted the number of platelets in suspension before and after adhesion has been allowed to occur.(182, 225, 279, 280) Spaet and Lejnieks (281) adapted the aggregometer to measure the small changes in light transmission that occurred as platelets in plasma that were anticoagulated with EDTA adhered to connective tissue fragments that were rich in collagen. Castellan and Steiner (282) used a variation of this technique. In all these studies, EDTA was used to prevent platelet aggregation. Unfortunately, EDTA or high concentrations of citrate partially inhibits platelet adhesion to collagen and strongly inhibits platelet adhesion to the subendothelium.(1, 97, 142, 273) The techniques employing EDTA permit the measurement of only the aspect of platelet interaction with collagen that does not require divalent cations in the suspending medium.

Brass and colleagues (283) have measured platelet adhesion to polymeric collagen that has been covalently linked to agarose (Sepharose 2B). Suspensions of washed radiolabeled platelets in a medium including Tris and EDTA were passed through a short chromatography column of collagen/Sepharose. Measurement of adhesion was based on ⁵¹Cr labeling; measurement of release of granule contents was based on ¹⁴C-serotonin released from prelabeled platelets. The major criticism of this technique is that EDTA must be used to prevent platelet aggregation in the column. In addition, Tris has been shown recently to inhibit collagen-induced platelet aggregation,(267) although its effect on platelet adhesion to collagen has not been investigated. Using the collagen/Sepharose system, Cowan and coworkers (142) have recently presented evidence that Mg²⁺ may have an important role in the adherence of platelets to collagen covalently linked to Sepharose. Shadie and Barondes (284) coupled collagen covalently to plastic slides and observed that adhesion was absolutely dependent on Mg²⁺, whereas Ca²⁺ was ineffective. It should be recognized that this is an unusual system, however, since no platelet aggregation was observed in the presence of calcium, and PGE, did not inhibit adhesion. Thus measurements of adhesion to this surface may have little relation to adhesion to the subendothelium.

Legrand and coworkers (139) have devised a quantitative method for estimating platelet adhesion to fibrillar collagen, using platelets labeled with ⁵¹Cr and ¹⁴C-serotonin. A mixture of platelets and collagen is layered above a Sepharose 2B column, which retains the collagen fibrils with their adherent platelets and allows platelets and released serotonin to pass through. This technique suffers from the same problems as that of Brass and associates (283) in that the platelet suspending medium contains both EDTA and Tris.

In the method of Santoro and Cunningham,(285) ⁵¹Cr-labeled platelets that were adherent to collagen fibers were separated on polycarbonate membrane filters with 5 μm etched pores. Again, EDTA was present in the suspending medium to prevent platelet aggregation.

Although a number of investigators have used platelets labeled with radioactive materials to study platelet adhesion to collagen and the subendothelium, the reverse of this technique has also been used. Gordon and Dingle (196) labeled the tyrosine residues of collagen with ¹²⁵I, added the labeled collagen to citrated platelet-rich plasma, and centrifuged the mixture through Ficoll. Platelets with bound collagen separated below the Ficoll, whereas collagen that was not attached to platelets did not penetrate. Their results indicated that collagen does not bind to platelets unless it is in the form of microfibrils. They were able to establish that collagen microfibrils are required for the initial interaction of platelets with collagen, and not merely for the subsequent stage of collagen-induced aggregation.

Role of Ca^{2+} and Mg^{2+} in Platelet Adhesion

Many of the methods used to measure platelet adhesion have employed media containing EDTA to prevent platelet aggregation, despite the demonstrations that EDTA inhibits platelet adhesion. As pointed out by Turitto and Baumgartner,(275) it would be preferable if unanticoagulated whole blood could be used for studies of platelet adhesion, but the problems of platelet aggregation and the generation of thrombin in such a system have greatly limited this approach. In a few ex vivo studies, Baumgartner and colleagues (286-288) have studied adhesion using native blood (no anticoagulant) in their annular perfusion chambers, modified so that the blood was not recirculated. They found that platelet adhesion to the subendothelium was less in native blood than in blood anticoagulated with citrate, probably because fewer thrombi formed with citrated blood and thus more surface area was available for the adhesion of single platelets. Adhesion-induced aggregation was increased in native blood. In addition, higher shear rates were required in native blood to demonstrate decreased adhesion caused by von Willebrand Factor deficiency.(287) It may be that citrate, at the concentrations that are usually used to anticoagulate blood, does not have a major inhibitory effect on platelet adhesion to the subendothelium. It must be emphasized, however, that citrate also does not prevent aggregate formation on the adherent platelets.

Since some adherence of platelets to collagen and the subendothelium does occur in the presence of strong chelating agents, but platelet aggregation is blocked by EDTA or EGTA, many investigators have chosen to use these strong chelators so they could be sure they were studying only platelet adhesion without the confounding effect of aggregate formation on the adherent platelets.(139, 142, 281, 283, 289) Problems in the use of strong chelating agents has been pointed out in several sections of this chapter, since lack of divalent cations must be considered in the interpretation of results of adhesion experiments.

There appear to be differences in the requirements for adhesion to collagen and to the other constituents of the vessel wall; lack of divalent cations is more inhibitory of platelet adhesion to the subendothelium than to collagen.(1, 273) Little attention has been paid to the cation required (Ca^{2+} or Mg^{2+}). Using washed rabbit platelets suspended in Eagle's medium containing 2 mM Ca^{2+} , 1 mM Mg^{2+} , 4 percent albumin, and blood cells to give a hematocrit of 40 percent, Cazenave and associates (273) found that 13 mM citrate, 4.5 mM EDTA, or 4.5 mM EGTA reduced platelet adhesion to a collagen-coated surface to 21 percent of control values, whereas these concentrations of chelating agents reduced adhesion to the subendothelium to less than 10 percent of control values. Using rabbit blood, Baumgartner's group (33) has shown that increasing the plasma concentrations of citrate from the usual 14.7 mM to 91.5 mM inhibits platelet adhesion to fibrillar collagen in the subendothelium and the formation of platelet aggregates, as does the use of EDTA at a plasma concentration of 5.7 mM (3 mM in blood). Surface coverage in 10 minutes was reduced from 80 percent (in 14.7 mM citrate) to 20 percent when chelation was increased in these ways. The ability of platelets to spread on the surface was also strongly impaired, but, nevertheless, both dense and α -granules disappeared, albeit at a slower rate, from the platelets that did adhere to fibrillar collagen, indicating that release from adherent platelets was not entirely dependent on divalent cations. In contrast to these observations, Kinlough-Rathbone and colleagues (97) observed that 5 mM EDTA blocked release of ^{14}C -serotonin from rabbit platelets that were adherent to the subendothelium, but so few platelets adhered in the presence of EDTA that a small extent of release would not have been detected.

Turitto and Baumgartner (275) have emphasized that, in the presence of EDTA, adherent platelets are predominately only in contact with the surfaces, rather than are spread out on them. Apparently only the contact phase is independent of divalent cations. Cazenave and associates have also observed that EDTA inhibits platelet spreading.(273) Much more extensive adhesion of platelets to collagen occurs in the presence of Ca^{2+} .(271, 275) It is likely that the inhibitory effect of EDTA is most apparent when there is a shear rate effect that would tend to remove platelets that have merely contacted the surface.

To study the effect of divalent cations on platelet adhesion, it is necessary to isolate platelets from plasma and to resuspend them in an artificial medium so that any possibility of thrombin formation is prevented when physiologic concentrations of divalent cations are present. If only adhesion is to be investigated, aggregate formation on the adherent platelets must be prevented, or the aggregates must be removed, leaving only the platelets that are actually adherent to the surface. Protein concentration, ionic composition, glucose concentration, pH and hematocrit should be similar to those in blood. In the system eventually devised by Cazenave and associates,(273) an enzyme system (apyrase) that degrades released ADP is also included to minimize the formation of platelet aggregates. As mentioned elsewhere, it is possible to remove aggregated rabbit platelets from the adherent platelets by rinsing the surface in a solution containing EDTA, but this is not effective with human platelets because they differ from rabbit platelets in that they are not disaggregated by EDTA if the release reaction has occurred.(274)

Effect of Red Blood Cells on Platelet Adhesion

There is general agreement that the presence of red blood cells increases the rate of platelet adhesion to collagen or to the subendothelium.(273, 291-295) Increased adhesion of platelets is attributed to two effects of red blood cells. First, in flowing blood they physically enhance the diffusion of platelets to the surfaces (277, 291, 293, 294, 296) and second, red blood cells may also contribute to platelet accumulation, on a surface if the red blood cells lose some of the ADP they contain.(293, 297-299) However, this ADP is likely to promote platelet aggregation, not platelet adherence. It has been shown recently that the large red blood cells of humans are more effective in promoting platelet adhesion to the subendothelium than are the smaller red blood cells of rabbits or goats,(295) and this is undoubtedly a physical effect.

Effect of Flow on Platelet Adhesion

The effect of blood flow on platelet adhesion has been the subject of numerous investigations; several comprehensive reviews have been published.(300-302) The rate of adhesion increases as the flow rate is increased.(3, 277, 303) In perfusion systems such as the annular Baumgartner chamber, this dependence holds for flow rates that give wall shear rates of less than approximately 650 sec^{-1} , the values typical of large veins and arteries.(275) Shear rates are highest in vessels of the smallest diameter. Turitto and Baumgartner (303) have pointed out that the adhesion rate is influenced by both platelet transport to the surface and by platelet reactivity with the surface. With shear rates above 1000 sec^{-1} , the latter effect may predominate. Most of these studies by Turitto and Baumgartner have been done under conditions of laminar flow.

In contrast, Goldsmith and Karino (301, 304) have done extensive studies of the

effects on platelet adhesion and aggregation of the disturbed blood flow that occurs around vessel orifices and downstream from stenotic-type obstructions in models of blood vessels. Their diagrams of reverse flow and vortices at such sites illustrate how platelets are trapped and accumulate, forming aggregates that diffuse to the wall and adhere to it. Their findings and theoretical analyses provide explanations for the early observations of the areas where platelets accumulated on the walls of arteriovenous extracorporeal shunts that contained bifurcations and branches.(305) The sites of platelet accumulation corresponded to the sites where atherosclerotic lesions are observed around vessel orifices, leading to the theory that platelet interaction with the arterial wall at sites of disturbed flow may be an early event in the development of atherosclerosis.(305) This theory gained much more support when Ross and colleagues (306, 307) showed that platelet-derived growth factor (PDGF) is released from platelets when they interact with collagen, and that PDGF is mitogenic for smooth muscle cells.

As pointed out by Turitto and Baumgartner,(275) the role of blood flow in the removal of platelets from surfaces has received little attention. Many investigators have shown that platelet-thrombi can be dislodged,(1, 32, 303, 308, 309) but it is unlikely that the layer of platelets actually adherent to collagen or the subendothelium is ever removed in this way. Probably only the platelets that have aggregated on the adherent platelets are removed by the force of flowing blood.

ROLE OF PLASMA PROTEINS AND THROMBOSPONDIN IN PLATELET ADHESION

The roles in platelet adhesion of plasma proteins and proteins released from the α -granules of platelets are being investigated by many groups. The proteins of interest are those that have been shown to interact with the surface of stimulated platelets: von Willebrand Factor, fibrinogen, fibronectin, and thrombospondin. All of these are present in platelet α -granules, and all except fibrinogen are secreted by endothelial cells. In many studies, these proteins have been used individually to study their binding to platelets that have been isolated and resuspended in artificial media, often very unphysiologic media. Under these circumstances, the interactions among the proteins and their interference with, or promotion of the binding of, each other to platelets, or to injured vessel walls cannot be assessed. Since their concentrations in plasma vary widely, the situation *in vivo* may be quite different from that in the *in vitro* systems. At least two groups of investigators have demonstrated that fibronectin and thrombospondin interact with each other.(310, 311) Interactions with glycosaminoglycans in the subendothelium also deserve consideration.

Role of von Willebrand Factor in Platelet Adhesion to the Subendothelium

Although the statement has been made repeatedly in the literature that von Willebrand Factor is necessary for adhesion of platelets to the subendothelium of normal vessels, it is rarely pointed out that this is so only under certain defined conditions. First, von Willebrand Factor has a role in platelet adhesion only when the wall shear rates are high (greater than 1000 sec^{-1}).(275) When shear rates are similar to those in large arteries, that is in the range 500 to 1000 sec^{-1} , a deficiency of von Willebrand Factor does not affect the

number of platelets that adhere to the subendothelium either *in vitro* or *in vivo*.⁽³¹²⁾ In the coronary arteries of pigs deficient in von Willebrand Factor, removal of the endothelium did not result in decreased platelet adhesion to the subendothelium after a 30 minute period, in comparison to normal animals.⁽²²⁾ It is not surprising that the bleeding disorder in von Willebrand Factor deficiency is a disorder of smaller vessels where the shear rates are higher than in arteries.^(275, 300) Second, in most assessments of the role of von Willebrand Factor in platelet adhesion to the subendothelium, citrated blood has been used. In this suspending medium, the effect of a lack of von Willebrand Factor can be shown at lower shear rates ($500\text{--}1000\text{ sec}^{-1}$) than in native blood in which no impairment of adhesion is present unless the shear rate is greater than 1300 sec^{-1} .⁽²⁸⁷⁾

In all the studies done by Baumgartner, Weiss, and their coworkers, subendothelial surfaces that may have considerably changed by storage in 0.2 M Tris buffer at 4°C for 2 to 4 weeks were used.^(135, 287, 313) In early reports from this group,⁽¹³⁵⁾ penicillin and streptomycin were included in the storage medium, but it is not clear that they were used in later investigations. The effect that storage in this way may have on proteins that are normally present in the subendothelium⁽³¹⁴⁾ has apparently not been investigated; it is not known whether normal amounts of von Willebrand Factor remain after storage. Since adhesion of platelets at high shear rates is impaired in the absence of von Willebrand Factor in the blood used to perfuse the vessel segments, it must be concluded that in the experiments done by Baumgartner's group, insufficient von Willebrand Factor is present on the subendothelium of the segments to support platelet adhesion at a normal level. Information is not available on the question of whether fresh vessel segments would have enough von Willebrand Factor to promote a normal extent of platelet adhesion from blood deficient in von Willebrand Factor. Segments of human renal arteries obtained 12 hours after death that were prepared in Tris buffer have been found to bind ^{125}I -labeled von Willebrand Factor.⁽²⁷²⁾ When platelets were suspended in a medium without von Willebrand Factor and perfused over these segments, the number of platelets that adhered was directly related to the amount of bound von Willebrand Factor. These observations indicate that the subendothelial surface prepared in this way lacks sufficient von Willebrand Factor to support the adhesion of platelets in normal numbers.

Nevertheless, some von Willebrand Factor must remain in the subendothelium prepared by the method of Baumgartner and associates, since pretreatment of the de-endothelialized surface of the rabbit aortas with antiserum to von Willebrand Factor diminishes the adhesion of human platelets in citrated blood to the surface.⁽³¹⁵⁾ From this observation Turitto and colleagues concluded that von Willebrand Factor in the vessel wall may be important in hemostasis. This is in accord with earlier findings of others^(316, 317) who reported that von Willebrand Factor was lacking in the vessel wall of patients with severe von Willebrand's disease. The relative importance in platelet adhesion of von Willebrand Factor in the vessel wall and von Willebrand Factor in plasma has not been established.

Two groups of investigators have shown that von Willebrand Factor enhances platelet spreading on the subendothelium of human vessels in *in vitro* test systems.^(318, 319) Although Baumgartner and colleagues,⁽³²⁰⁾ using the subendothelium or the collagenous surface produced by digesting the subendothelium of rabbit aortas with α -chymotrypsin, concluded that decreased adhesion to fibrillar collagen was associated with normal spreading, their data indicate that spreading was defective with blood from patients with von Willebrand disease.^(287, 320) Since one would expect spread platelets to be more strongly adherent than platelets that are merely in contact with the surface, enhancement of spreading by von Willebrand Factor would account for the observations that its effect

Fig. 2. The base of a thrombus in the aorta of a pig at the orifice of the second intercostal artery where blue staining was evident, following the administration of Evans blue. The thrombus rests upon basement membrane material (BM) and cellular debris (CD). Fibrin (FIB) predominates along the thrombus-vessel wall interface. EL, Elastic tissue; COL, collagen fibers; PLT, platelets (magnification $\times 17,200$) (from Jørgensen L, Packham MA, Rowsell HC, et al: Deposition of formed elements of blood on the intima and signs of intimal injury in the aorta of rabbit, pig and man. Lab Invest 27: 341, 1972 with permission of *Laboratory Investigation*, ©1972 by the United States-Canadian Division of the International Academy of Pathology).

on platelet adhesion is only demonstrable at high shear rates, which would be less likely to remove spread platelets than "contact" platelets. More recently, however, the same group has reported a defect in the initial attachment of platelets from patients with von Willebrand's disease to de-endothelialized segments of vessel walls.(321) These results were obtained with blood that contained EDTA as an anticoagulant to inhibit platelet spreading, and subendothelium that had been digested with chymotrypsin. Since these investigators (1, 33) as well as others (273) have shown that EDTA strongly inhibits platelet adhesion to the subendothelium, it may be that lack of von Willebrand Factor affects only the aspect of platelet adhesion that is not dependent on divalent cations.

Somewhat different conclusions than those resulting from the use of the Baumgartner chamber have been reached by other investigators who have studied platelet adhesion *in vivo* in pigs that are congenitally lacking in von Willebrand Factor. In large arteries, such as the carotid arteries of these pigs, lack of von Willebrand Factor was found to have no significant effect on the number of platelets that adhered *in vivo* following injury by air drying, although platelet activation as indicated by spreading and degranulation was not observed.(322) Reddick and associates (22) also observed no difference in platelet adhesion to coronary arteries denuded of endothelium in normal pigs and pigs with von Willebrand's disease. These observations may be attributable to low shear rates in the vessels that were examined. As pointed out by Meyer and Baumgartner,(312) at low shear rates, other pathways for adhesion, not requiring von Willebrand Factor, may exist and be sufficient to support the adhesion of normal numbers of platelets. This concept is in keeping with the observations that platelets can cover the subendothelium or interact with

collagen at low shear rates without added von Willebrand Factor.(273) It also provides a rational explanation for the development of atherosclerosis and thrombosis in large vessels of patients with von Willebrand's disease,(323, 324) because if platelet adhesion were defective in these vessels, one would expect less stimulation of smooth muscle cell proliferation by the mitogen released from platelets at naturally-occurring sites of injury, and hence less atherosclerosis.

It seems reasonable to conclude that the major importance of von Willebrand Factor is in hemostasis involving small diameter vessels in which shear rates are high. Indeed, direct observation by electron microscopy of hemostatic plugs in patients with von Willebrand's disease reveals defective adherence of platelets to the severed vessel wall.(11, 325)

Methods of Quantitation of von Willebrand Factor Activity

The hemorrhagic disorder first described by von Willebrand (326) was later shown by von Willebrand and Juergens (327) to be associated with abnormal platelet function. They used a "capillary thrombometer" to demonstrate this abnormality. Measurement of the skin bleeding time is a nonspecific and imprecise, but generally reliable, way of detecting that an abnormality exists, and this method is still in use, although it may reflect not only abnormal platelet adhesion but also the low concentrations of Factor VIII that are characteristic of von Willebrand's disease. In the 1960s, columns packed with glass beads were developed to measure platelet adhesiveness upon passage of blood through them under defined conditions.(328, 329) Low values for platelet "adhesion" were observed with blood from patients with von Willebrand's disease. The addition of normal plasma or fractions of plasma containing von Willebrand Factor resulted in normal platelet "adhesion." Experimental conditions had to be rigidly controlled to obtain reproducible and valid results with this technique, and values tended to vary greatly among different laboratories. Other abnormalities influence platelet "adhesion" to glass beads, so the test is not specific for either von Willebrand Factor or indeed adhesion itself. The discovery that platelets from most normal individuals are agglutinated by the antibiotic ristocetin only if von Willebrand Factor is present (330) provided another test for von Willebrand Factor, although it is now known that platelets from about 30 percent of patients with von Willebrand's disease agglutinate normally with ristocetin.(331) Several types of von Willebrand's disease are known, and in type IIB agglutination of platelets by ristocetin is greater than normal.(332) An additional complication is that the ristocetin test is not specific since platelets from patients with the Bernard Soulier syndrome also do not agglutinate in response to ristocetin.(333, 334) There are some conditions in which ristocetin cofactor activity (VIII R:RCO) does not correlate with the bleeding time, which may remain prolonged after VIII R:RCO has been corrected by infusion of Factor VIII concentrates.(332) In addition, Bowie and colleagues (335) have obtained evidence, from studies with several different monoclonal antibodies directed against von Willebrand Factor, that the part of the molecule involved in ristocetin cofactor activity is not identical to the parts that determine the bleeding time.

The participation of von Willebrand Factor in platelet adhesion to the subendothelium at high shear rates has been demonstrated with the perfusion chamber developed by Baumgartner and colleagues in which blood is passed over everted segments of de-endothelialized rabbit aorta and the number of adherent platelets is determined morphometrically.(32, 287) Other investigators have used human renal arteries with ⁵¹Cr-labeled platelets (256, 272, 318) or umbilical veins.(228) Platelet adhesion is defective with

blood from patients with von Willebrand's disease or reconstituted blood lacking von Willebrand Factor,(272, 287, 334, 336) and can be corrected by the addition of von Willebrand Factor (256, 272, 337)

The von Willebrand Factor protein can be assayed by several immunologic techniques involving specific heterologous antibodies, quantitative or radioquantitative immuno-electrophoretic techniques, or immunoradiometric assays. The literature concerning these has been reviewed in detail by Zimmerman and Ruggeri.(332) These authors point out that single quantitation of the antigen may not give a measure of the true von Willebrand Factor protein activity because von Willebrand Factor exists in plasma in the form of multimers of various sizes with different von Willebrand Factor activities. Although the small multimers are measured by the quantitative immunologic techniques, they do not have the von Willebrand Factor activity that is required for normal hemostasis. When the large multimers are lacking, as they are in types IIA and IIB von Willebrand's disease, the concentration of Factor VIII-related antigen may be normal, as measured by these assays, although the bleeding times are prolonged. These assays are informative, however, for type I von Willebrand's disease, in which the amount of von Willebrand Factor protein is reduced, but the multimeric composition is normal, and for type III, in which von Willebrand Factor protein is practically undetectable in plasma by sensitive radioimmunoassays.(338)

*Role of Large M, Multimers of von Willebrand Factor
in Platelet Adhesion*

As indicated above, von Willebrand Factor consists of a series of multimers ranging in molecular weight from approximately $M_r 800,000$ to over $M_r 12 \times 10^6$,(332) perhaps as large as $M_r 20 \times 10^6$.(339) The ability of the multimers to correct the hemostatic defect in von Willebrand disease is directly related to their size. In type IIA and type IIB von Willebrand disease, the large multimers are absent from plasma, and the bleeding time is prolonged even if high amounts of the small multimers are present. It seems likely, therefore, that it is the large multimers that take part in platelet adhesion to connective tissue at the ends of severed blood vessels in normal individuals. Furthermore, the large multimers bind preferentially to platelets on which von Willebrand Factor receptors have been exposed by treatment of the platelets with thrombin,(340) the large multimers take part more readily in ristocetin-induced agglutination of platelets,(341-343) and they bind preferentially to fibrillar collagen.(344)

Unusually large multimers of von Willebrand Factor have been found in the plasma of some patients with chronic relapsing thrombotic thrombocytopenic purpura (TTP).(345) During relapses, in vivo platelet agglutination and thrombocytopenia were associated with decreased quantities of these large multimers in plasma, in comparison with their amounts during remission. Moake and colleagues (345) suggested that the large von Willebrand Factor multimers may be "consumed" during relapse (presumably by taking part in the formation of platelet aggregates that are removed from the circulation), and that the abnormality responsible for the presence of the abnormal multimers in these patients may be a defect in processing after their synthesis and secretion by endothelial cells. They related their findings to the platelet agglutination activity detected in the plasma of some patients with TTP (346, 347); normal plasma inhibits this agglutinating activity in vitro.(346) It seems likely that these large multimers may play a part in the thrombotic episodes in this condition.

In the recently described "pseudo" von Willebrand's disease, the patients have a mild

bleeding disorder, intermittent thrombocytopenia, decreased amounts of Factor VIII/von Willebrand Factor in their plasma, and a deficiency of the high molecular weight multimers in their plasma.(339, 348-351) As in type IIB von Willebrand's disease, ristocetin-induced agglutination of platelets is enhanced; this has been attributed to a platelet membrane abnormality that results in the adsorption to the platelets of high molecular weight multimers. The increased binding of these multimers to platelets may deplete plasma of these multimers and may be responsible for the thrombocytopenia.(339) The observation that the abnormal platelets are aggregated by normal human von Willebrand Factor is in accord with this interpretation. Lack of the large molecular weight multimers in plasma in this disorder is likely to be responsible for the bleeding diathesis.

Binding of von Willebrand Factor to Collagen

Several groups of investigators have demonstrated that von Willebrand Factor is adsorbed by collagen.(344, 352-357) Legrand and associates (353) reported that type III collagen, which is found in the subendothelium, bound von Willebrand Factor much more effectively than type I collagen. This difference between the types of collagen was subsequently confirmed by Nyman.(352) According to Santoro and Cowan,(355) binding of von Willebrand Factor to fibrillar type I collagen from skin is independent of temperature and does not require divalent cations or other plasma proteins. A preferential binding by collagen of the higher molecular weight forms of von Willebrand Factor has been observed.(344) In view of these findings and the observations to be discussed later that stimulated platelets can bind von Willebrand Factor, it is not surprising that adsorption of von Willebrand Factor on the surface of exposed collagen at a site of vessel injury is considered to be involved in platelet adhesion to damaged vessel walls.

Role of von Willebrand Factor in Platelet Adhesion to Collagen

Although the participation of von Willebrand Factor in platelet adherence to the subendothelium under conditions of high shear rates is well established,(272, 287, 336) the possibility that von Willebrand Factor has a role in platelet adhesion and spreading on a collagenous surface is not entirely settled. Most investigators have reported that platelet aggregation induced by collagen is normal in patients with a deficiency of von Willebrand Factor (254, 255); these observations indicate that although the direct interaction of some platelets with collagen must occur during collagen-induced aggregation, von Willebrand Factor may not be essential for this interaction. It should be pointed out, however, that Baumgartner and colleagues (313) found that antibodies to von Willebrand Factor that had been prepared in rabbits, as well as homologous antibodies, inhibited platelet adhesion to collagen fibrils at high shear rates. No inhibition was apparent at low shear rates, but with increasing shear rates, inhibition also increased until at shear rates that are typical of the microvasculature ($1300-5200\text{ sec}^{-1}$) platelet adhesion was practically abolished by the antibodies. The collagen fibrils were actually the exposed surface of α -chymotrypsin-digested subendothelium, and other materials are undoubtedly present on this surface. The rabbit antiserum directed against human Factor VIII:vWF also inhibited ^{14}C -serotonin release induced by platelet adhesion to collagen in EDTA-PRP in an aggregometer cuvette in which stirring was rapid.(358) As much as 70 percent inhibition was observed. The investigators suggest that the vWF antigen-antibody complexes could sterically hinder collagen fibrils from gaining access to their receptors on the platelets, thereby directly interfering with the adhesion of platelets to collagen.(358) To reconcile their observations with the fact that collagen-induced aggregation of platelets from patients with von Wille-

brand's disease is normal, they pointed out that inhibition by the antiserum was small and significant only on a paired basis and apparent only with low collagen concentrations.(358) Santoro and Cowan (355) also found that an antibody to human von Willebrand Factor, raised in goats, inhibited platelet adhesion to collagen in the absence of added von Willebrand Factor, although von Willebrand Factor released from the platelets may have been present on their surface. By using fluorescein-conjugated rabbit antiserum to goat immunoglobulin, these investigators showed that the antibodies to von Willebrand Factor that inhibited adhesion were bound to the platelet surface. They suggested that the interactions of multiple von Willebrand Factor molecules on the platelet surface with multiple sites on the collagen fibril could give rise to high affinity adhesion despite the rather weak individual interactions.(206, 355) In the studies by Santoro and colleagues (206, 355), and that of Morin and coworkers,(359) who showed that platelet adhesion to collagen was diminished in von Willebrand's disease, platelet adhesion was studied in the presence of EDTA to prevent platelet aggregation. As discussed elsewhere in this chapter, platelet adhesion to collagen in a medium containing EDTA is much less than in a medium containing physiologic concentrations of Ca^{2+} , under conditions in which platelet aggregates are not present.(142, 273) It may be that von Willebrand Factor affects only the small part of platelet-to-collagen adhesion that is not dependent on divalent cations. The findings with antibodies to von Willebrand Factor are not readily reconciled with the observations that suspensions of washed platelets that have been induced to release their granule contents by treatment with thrombin, and presumably have lost their releasable von Willebrand Factor, are readily aggregated by collagen.(360) Most of the evidence indicates that at low shear rates von Willebrand Factor appears to be unnecessary for platelet adhesion to collagen, although it does have a role at high shear rates.

Role of von Willebrand Factor in Interaction of Platelets with Noncollagenous Microfibrils

Fauvel and coworkers (34) have produced a noncollagenous microfibrillar extract of bovine aorta that caused platelet aggregation; this interaction was diminished by a deficiency of von Willebrand Factor in the plasma, or by a monoclonal antibody to glycoprotein Ib on the platelet surface, indicating that there may be another thrombogenic constituent of the vessel wall that is not collagenous and is dependent on von Willebrand Factor for its interaction with platelets. It is not clear, however, whether von Willebrand Factor is required for platelet adherence to these microfibrils; it may be necessary only for the induction of the release of platelet granule contents, which leads to platelet aggregation.

Binding of von Willebrand Factor to Platelets

Glycoprotein Ib and Ristocetin

In the Bernard Soulier syndrome, glycoprotein Ib on the membrane of platelets is absent or reduced in amount (246-249) and platelet adhesion to the subendothelium is impaired, resulting in prolongation of the bleeding time.(252, 253) Platelet aggregation in response to collagen is normal.(255) As in von Willebrand Factor deficiency, the effects of the lack of glycoprotein Ib are most apparent in vitro under conditions of high shear rates, according to Weiss and associates.(287) Caen and colleagues,(361) however, demonstrated that a human IgG developed in a Bernard Soulier patient inhibited human

platelet adhesion to rabbit subendothelium at low shear rates.(362) Platelets from patients with the Bernard Soulier syndrome also fail to agglutinate in response to the antibiotic ristocetin in plasma containing normal amounts of von Willebrand Factor.(333,334) Several groups of investigators have shown that in the presence of ristocetin, von Willebrand Factor binds to a receptor on the surface of normal platelets, and that this binding is impaired with platelets from patients with the Bernard Soulier syndrome.(363-365) These findings have led to the theory that glycoprotein Ib may function as a receptor for von Willebrand Factor on the platelet surface. However, ristocetin is not present in vivo, and no molecule with a similar function has been identified in blood or tissues, so the physiologic significance of the binding of von Willebrand Factor induced by ristocetin is not clear. Nevertheless, Legrand and coworkers (366) have suggested that in the Bernard Soulier syndrome there is a defective interaction between platelets and the microfibrils in the subendothelium, in which von Willebrand Factor normally takes part by binding to glycoprotein Ib on the platelet membrane. A monoclonal antibody to human platelet glycoprotein I has been shown to inhibit platelet interactions with microfibrils and with collagenase-treated subendothelium.(367)

Binding of von Willebrand Factor to Stimulated Platelets

It has been suggested that stimulation of platelets by aggregating and release-inducing agents such as ADP, thrombin, or collagen may be involved in making a receptor for von Willebrand Factor available on the platelet surface. Specific binding sites for von Willebrand Factor have been reported to become available on the surface of platelets that have been treated with thrombin.(104, 340) George and Onofre (105) have shown that platelets suspended in an artificial medium release von Willebrand Factor in response to thrombin, and bind the released protein by means of a calcium-dependent mechanism. They suggest that this may provide a way in which platelets can concentrate and organize their secreted proteins for subsequent physiologic reactions such as hemostasis. Nachman (368) has suggested that subendothelial proteases may act like thrombin and induce von Willebrand Factor-receptor function in adhering platelets.

However, the observations of Ruggeri and colleagues (103) with platelets from patients with Glanzmann's thrombasthenia provide evidence against the theory that the receptor for von Willebrand Factor that is exposed by thrombin treatment of platelets is involved in platelet adhesion to the subendothelium. They found that the specific binding of von Willebrand Factor to thrombin-stimulated platelets from thrombasthenic patients is less than 20 percent of normal;(103) this is an indication that von Willebrand Factor binds to thrombin-stimulated normal platelets through glycoproteins IIb and IIIa. Nevertheless, thrombasthenic platelets adhere in undiminished numbers to the subendothelium,(320, 369) although they do not aggregate in response to any aggregating agent, and they agglutinate and bind von Willebrand Factor in the normal way in response to ristocetin.(103, 370, 371) Thrombasthenic platelets lack glycoproteins IIb and IIIa, which results in their inability to bind fibrinogen and aggregate when they are activated by aggregating agents.(372) Since the adherence of thrombasthenic platelets to the subendothelium is not impaired if the amount of von Willebrand Factor in plasma is normal,(320, 369) it is questionable whether the binding of von Willebrand Factor to the receptor exposed by thrombin treatment of platelets (assuming this receptor is the glycoprotein IIb/IIIa complex) is involved in the adhesion of platelets to the subendothelium.

Ruggeri and coworkers (106) also point out the difficulty of explaining why binding of von Willebrand Factor to thrombasthenic platelets stimulated with ristocetin is normal,

whereas binding to these platelets after they have been exposed to thrombin is abnormally low. It seems likely that under certain conditions, binding of von Willebrand Factor to platelets can occur in two different ways. Glycoprotein Ib has been identified as the binding site on platelets for von Willebrand Factor in the presence of ristocetin (373) and platelets from patients with Glanzmann's thrombasthenia have normal amounts of glycoprotein Ib.(374) Another possibility is that glycoproteins IIb and IIIa are involved in binding von Willebrand Factor to thrombin-treated, normal platelets, and that this binding differs from that involving glycoprotein Ib and ristocetin.

At least two attempts have been made to determine the relative contributions of these two binding sites. Green and Muller (375) found that 70 to 90 percent of labeled von Willebrand Factor bound to platelets during ristocetin-induced agglutination, whereas only 21.5 percent bound to platelets aggregated with thrombin (2.5 U/ml). Using suspension of washed platelets in a medium that did not contain any proteins, Harrison and McKee (376) also quantitated the binding of labeled von Willebrand Factor to platelets stimulated with ristocetin or thrombin. The amount of von Willebrand Factor that bound to platelets treated with thrombin in their experiments was only 6 percent of the amount that bound to platelets exposed to ristocetin. However, in neither of these studies was the release of platelet α -granule contents measured. If the thrombin caused more release of von Willebrand Factor than did ristocetin (which seems likely), the released von Willebrand Factor would dilute the labeled von Willebrand Factor, resulting in deceptively lowered estimates of binding to thrombin-stimulated platelets.

Thrombin is not the only aggregating agent that induces the binding of von Willebrand Factor to platelets. Fujimoto and Hawiger (377, 378) have reported that treatment of platelets with ADP or the ionophore A23187 also leads to increased binding of von Willebrand Factor to them. Lahav and Hynes (379) have observed that when platelets adhere to collagen and spread on the surface, they become able to bind von Willebrand Factor, probably in association with the release reaction induced by the platelet-collagen interaction, which reveals binding sites on the surface of platelets. Di Minno and coworkers (380) have reported binding of "Factor VIII" (undoubtedly von Willebrand Factor) to platelets stimulated by arachidonic acid, collagen, U-46619 (a stable analog of prostaglandin endoperoxide/thromboxane A₂), thrombin, or ADP.

Recent observations that von Willebrand Factor does not bind to ADP-stimulated or thrombin-stimulated platelets in the presence of fibrinogen at concentrations normally present in plasma, although it binds in the absence of fibrinogen,(381) cast doubt on a role for von Willebrand Factor binding to the glycoprotein IIb/IIIa complex under physiologic conditions. It is evident that binding studies in the absence of other plasma proteins may yield deceptive results.

There appear to be at least two sites on platelets with which von Willebrand Factor can interact, namely glycoprotein Ib and the glycoprotein IIb/IIIa complex. A monoclonal antibody against glycoprotein Ib had no effect on the binding of von Willebrand Factor to platelets stimulated with thrombin or a combination of ADP with epinephrine, whereas a monoclonal antibody against the glycoprotein IIb/IIIa complex had no effect on ristocetin-induced binding of von Willebrand Factor to normal platelets.(106) It seems likely, however, that glycoprotein Ib is a binding site involved in platelet adhesion. Evidence against a major role for the glycoprotein IIb/IIIa complex is that thrombasthenic platelets, which lack this complex, adhere to the subendothelium in essentially normal numbers, and von Willebrand Factor does not bind appreciably to the complex in the presence of fibrinogen. Since the adhesion of platelet lacking glycoprotein Ib is impaired at high shear

rates, binding of von Willebrand Factor at this site is probably involved in platelet adhesion under normal conditions.

Role of Fibronectin

There has been considerable interest in the possibility that fibronectin may be involved in the binding of platelets to collagen, or to other constituents of the subendothelium. One group of investigators (382) has suggested that it may even be the receptor for collagen on platelets, but this seems unlikely. It is well established that fibronectin can bind to collagen.(382-385) Indeed, fibronectin is such an adhesive protein that it binds to almost everything with which it comes in contact.(386) Its role in cell adhesion and spreading in other systems has been demonstrated repeatedly. The domain of fibronectin that binds to collagen does not mediate cell interactions, however.(386) The questions are, does fibronectin bind to collagen under *in vivo* conditions when collagen is exposed, and if so, to what extent does this binding promote platelet adhesion? The alternative possibility, that fibronectin on the platelet surface takes part in adhesion to collagen seems less likely because very little fibronectin is present on unstimulated platelets (387) to take part in the initial stages of adhesion. A role in the later stages, however, cannot be ruled out.

As pointed out by Hynes,(388) three sources of fibronectin are available to platelets when the subendothelium is exposed. Fibronectin is synthesized by endothelial cells, and large amounts are found in the basement membrane (387); plasma contains fibronectin at a concentration of 300 µg/ml;(388) and the α -granules of platelets contain fibronectin.(110, 379, 389-392)

Fibronectin Binding to Stimulated Platelets

Unstimulated platelets, and presumably the normal, circulating platelets, do not have appreciable amounts of fibronectin bound to their surface.(110, 385) When platelets are stimulated with thrombin, however, released fibronectin becomes bound to their surface (110, 387) and fibronectin added to the suspending medium will also bind to the platelet surface.(393) This binding is inhibited by EDTA.(393) Stimulation of platelets with ADP or epinephrine apparently does not reveal these fibronectin-binding sites,(393) but interaction with collagen may do so.(379, 390) In the experiments of Zucker and colleagues (390) with collagen, it was not established that fibronectin-binding sites became available; these investigators showed only that collagen caused the release of fibronectin and that aspirin inhibited its release. The results with aspirin indicate that thromboxane A₂ was probably responsible for the release of fibronectin, but the effect of thromboxane A₂ (or its precursor, arachidonic acid) has not been tested to determine whether stimulation of platelets in this way will make fibronectin-binding sites available. Fibronectin binds in undiminished amounts to thrombin-stimulated platelets from patients with the gray platelet syndrome.(394) Since these platelets are deficient in α -granule contents, including fibrinogen and thrombospondin, it is unlikely that binding of fibronectin is mediated solely by fibrin or thrombospondin.

It seems probable that any agent that causes the release of platelet granule contents will reveal the binding sites for fibronectin since the release reaction in response to thrombin and the appearance of fibronectin on the surface occur at similar rates.(111) If thrombin were found to be the only stimulus that would make these sites available (and this seems unlikely), then in order for platelets to adhere to collagen through bound fibronectin, thrombin would have to be generated at a site of vessel injury before fibronec-

tin could bind to the platelet surface. A more reasonable hypothesis is that the surface of platelets that adhere to collagen is altered so that fibronectin can bind to them, and that this fibronectin takes part in the spreading of platelets on collagenous surfaces.(379, 395-397)

Site of Fibronectin Binding to Platelets

The site on the surface of stimulated platelets to which fibronectin binds has not been definitely identified although there have been some investigations directed at determining its nature. (The possibility that thrombospondin may have a role is discussed later.) A fibronectin-binding glycoprotein has been isolated from human platelet membranes.(398) The observations of Ginsberg and associates (399) that thrombasthenic platelets, upon stimulation with thrombin, bind very little fibronectin (either fibronectin released from the platelets or fibronectin added to the suspending medium) points to a role for the complex of glycoproteins IIb and IIIa that becomes available when platelets interact with aggregating agents. This complex has been recognized as the receptor for fibrinogen on the surface of stimulated platelets and it has also been suggested as a binding site for von Willebrand Factor as a result of similar experiments with thrombasthenic platelets.(103) Whether or not fibronectin and von Willebrand Factor bind to this glycoprotein complex in the presence of normal plasma concentrations of fibrinogen has not been established, nor indeed, has the effect of fibrinogen been studied on the binding of fibronectin to normal platelets that have undergone a release reaction. This type of experiment could not be done with thrombin, of course, and it would have to be shown that other strong release-inducing agents make the fibronectin-binding sites available before the effect of fibrinogen on the binding could be assessed.

The complex of glycoproteins IIb and IIIa of aggregated platelets has been shown to be attached to the platelet cytoskeleton (400) and fibronectin can bind to actin.(401) Thus the demonstration by Bensusan and associates (382) that when washed platelets were reacted with collagen fibers and then sonicated, fibronectin and the contractile proteins myosin, actin, and tropomyosin remained attached to the collagen, may indicate that the fibronectin took part in the binding via attachment to the complex of glycoproteins IIb and IIIa, although these glycoproteins were not identified in the mixture after sonication.

Effect of Fibronectin on Platelet Adhesion to Collagen

Bensusan and colleagues (382) have suggested that fibronectin is the collagen receptor on platelet membranes. There are now several pieces of evidence indicating that this is unlikely. Santoro and Cunningham (285) have demonstrated that treatment of platelets with purified antibody or Fab' fragments to fibronectin only slightly reduces platelet adhesion to collagen, and Sochynsky and coworkers (402) also found that pretreatment of platelets with antibodies to fibronectin did not inhibit the adhesion of platelets to collagen. As Mosher (389) has pointed out, the sequence of the $\alpha 1(III)$ chain of type III collagen that has been shown to be involved in platelet adhesion to collagen (239) does not resemble the sequence of the site on type I collagen that is recognized by plasma fibronectin. Very little fibronectin is present on unstimulated platelets (110, 387) to take part in the initial stages of adhesion; platelets suspended in artificial media without fibronectin, however, do adhere to purified preparations of collagen, and fibronectin released from the platelets could be involved in the later stages of spreading of platelets on the surface.(395-397) It will be of interest to find out whether gray platelets that lack α -granules, and therefore presumably lack releasable fibronectin, will adhere normally to collagen in a plasma-free system. This possibility does not seem to have been investigated. The experi-

ments of Reimers and associates (360) with platelets that were degranulated with thrombin do not provide a definitive answer, although these platelets had presumably released their fibronectin. These platelets aggregated normally in response to collagen and adhered to a collagen-coated surface, but the possibility cannot be ruled out that released fibronectin remained bound to their surface and took part in the interaction with collagen.

Several groups of investigators have reported that preincubation of collagen with fibronectin interferes with the interaction of collagen with platelets; these findings have been interpreted in different ways. Bensusan and colleagues (382) used them as evidence that fibronectin on the platelet surface was involved in the adhesion of platelets to collagen, and that this platelet fibronectin could not bind to collagen to which fibronectin was already attached. In contrast, Moon and Kaplan (403) took the observation that added fibronectin prolonged the lag time of collagen-induced aggregation to support a theory that plasma fibronectin was an inhibitor of the reaction of platelets with collagen. Sochysnsky and coworkers, (402) on the basis of results similar to Bensusan and associates, (382) concluded that plasma fibronectin would inhibit the adhesion of platelets to collagen. In contrast, Chazov and colleagues (404) have reported that fibronectin enhances the adhesion and spreading of platelets on a surface coated with fibrillar collagen.

Although the report that fibronectin corrected defective collagen-induced aggregation in a relative with a variant of Ehlers-Danlos syndrome has been taken as support for the theory that fibronectin is required for the interaction of platelets with collagen, (405, 406) the platelets from these patients were abnormal in other ways. (405) For example, they did not undergo the second phase of aggregation in response to ADP in citrated platelet-rich plasma. Since fibronectin is not required for ADP-induced aggregation, (390, 407) the failure of these platelets to aggregate in response to collagen may not be entirely attributable to a lack of functional fibronectin.

What is to be concluded from these studies of fibronectin? There is no doubt that fibronectin binds to collagen and binds to the surface of stimulated platelets. It is unlikely, however, to be the "receptor" for collagen on the platelet surface, or to take part in the initial interaction of platelets with collagen. Fibronectin may be involved in platelet spreading on collagen and firm attachment to it. If so, its role may be limited and there may be other adhesion mechanisms that are equally or more important. (285) The role of fibronectin in platelet adhesion to collagen in the presence of normal plasma concentrations of the other proteins that may compete for its binding site on platelets remains to be determined. A possible role for fibronectin in platelet adhesion to other constituents of the vessel wall has received little attention, probably because of the technical difficulties of such studies.

Role of Fibronectin in the Interaction of Platelets with Fibrin

The possibility of a role for fibronectin in platelet adhesion to fibrin has not been explored, although it is known that fibronectin becomes covalently crosslinked to fibrin during clotting (408) and that platelets adhere to polymerizing fibrin (15) and are required for clot retraction. During fibrin formation, the platelets are stimulated by thrombin, and their fibronectin-binding sites would become available, as well as their fibrinogen-binding sites, regardless of whether or not these sites are identical. It is not known whether crosslinking of fibronectin to fibrin enhances the adhesion and spreading of platelets as it does fibroblasts. (409) Several interactions could take place simultaneously. These interactions could be of importance in the adhesion of platelets to repeatedly damaged vessels, or

to diseased vessels, where thrombin and fibrin appear to have major roles in the accumulation of platelets.(17, 38)

The Role of Thrombospondin in Platelet Interactions with Collagen

Thrombospondin has been identified as the lectin-like material that becomes available on the surface of platelets that have released their granule contents under the influence of strong release-inducing stimuli such as thrombin or the divalent cation ionophore A23187.(107, 109, 410-412) Thrombospondin appears to be the α -granule protein that has been identified by Phillips and colleagues (108) as glycoprotein G, and earlier, by Baenziger and associates as thrombin-sensitive protein.(413) It has been suggested that thrombospondin on one platelet may form links with fibrinogen on an adjacent platelet to contribute to platelet aggregation in response to release-inducing agents.(107, 311) Thrombospondin is synthesized and secreted by endothelial cells (414, 415) and fibroblasts.(416) Since thrombospondin can bind to fibronectin (310, 311) and both of these proteins are present at sites of vessel injury, it may be that thrombospondin on the surface of activated platelets can bind to fibronectin that is attached to collagen or is present in the subendothelium. As mentioned previously, however, fibronectin binds in normal amounts to thrombin-stimulated platelets from patients with the gray platelet syndrome that lack thrombospondin and fibrinogen.(394) This observation indicates that thrombospondin on the surface of activated platelets is not essential for the binding of fibronectin to them.

Role of Complement in Platelet Interactions with Collagen

Although complement bound to the platelet membrane does not appear to be involved in platelet adhesion to collagen, it may have a role in the subsequent events of release of granule contents, and aggregation.(417) Platelets from dogs decomplicated with cobra venom factor do not aggregate in response to collagen, but do adhere to collagen fibers.(417) Platelets from C6-deficient rabbits aggregate normally in response to collagen,(418) but platelets from guinea pigs lacking C4 do not.(419) The platelets from the C-4 deficient animals, however, adhere normally to collagen.(419) Antisera to C1, C3, and C5 was also shown to inhibit collagen-induced platelet aggregation, but adhesion was not studied under these conditions.(417) One theory that has been advanced is that collagen to which platelets are adherent may activate their membrane-bound complement,(417) since collagen has been shown to activate C1.(420) (See section on "Inhibitors with Structural Similarities to Collagen" for a discussion of the effects of C1q and C1s.)

ROLE OF PROTEOGLYCANS IN THE INTERACTION OF PLATELETS WITH COLLAGEN

Little attention has been paid to the fact that *in vivo*, collagen is usually coated with proteoglycan,(421, 422) which undoubtedly modifies its interaction with platelets and affects its binding with fibronectin to which some proteoglycans also bind.(386, 389, 422-425) Heparin, highly sulfated heparan sulfate and hyaluronic acid have been reported to enhance the interaction of fibronectin with collagen.(426-428) Proteoglycans can also interact with thrombospondin.(429) Methods used to extract collagen from tissue (such as

extraction with high molar salt solutions) remove proteoglycans so that their effects are not present in the *in vitro* test systems of platelet adhesion or aggregation.(423) Rich and coworkers (430) have shown that proteoglycans from cartilage inhibit the adhesion and spreading of fibroblasts on collagenous surfaces, but similar experiments do not appear to have been done with platelets. The few reports concerning proteoglycans, collagen, and platelets are concerned with collagen-induced aggregation rather than adhesion. Muir and Mustard (431) showed that a chondroitin-4-sulfate-peptide potentiated collagen-induced platelet aggregation, but other investigators have reported inhibition by high concentrations of chondroitin sulfate.(23) Zucker-Franklin and Rosenberg (23) found that platelets did not adhere to unextracted bovine or human cartilage and that cartilage did not aggregate platelets, but after removal of proteoglycan by extraction with 3 M guanidine hydrochloride, the collagen that remained caused aggregation. They isolated a proteoglycan subunit that inhibited collagen-induced aggregation, but did not affect ADP-induced aggregation. Since this subunit also inhibited polylysine-induced agglutination, they suggested that platelet interaction with collagen may involve suitably spaced polar groups on collagen and platelets rather than a specific receptor on the platelet surface. More recently, Ts'ao and Eisenstein (423) showed that preincubation of human collagen from skin with proteoglycan from bovine cartilage inhibited the ability of the collagen to aggregate human platelets, whereas preincubation with proteoglycan from bovine aorta did not. It is apparent that the information currently available is insufficient to permit the development of a clear picture as to the possible role of proteoglycans in regulating platelet interactions with collagen or other components of the subendothelium.

ENZYMATIC MODIFICATIONS OF THE PLATELET SURFACE

A few investigators have examined the effect of modification of the surface of platelets on their ability to adhere to collagen and on collagen-induced aggregation of platelets. Removal of over 50 percent of the sialic acid residues on the platelet surface by neuraminidase treatment does not inhibit platelet adherence to a collagen-coated surface and does not diminish, but slightly enhances, the extent of collagen-induced aggregation.(432) Adherence to the subendothelium is also unaffected by treatment of platelets with neuramindase.(89, 432) Treatment of platelets with periodate to oxidize terminal sialic acid residues, however, diminishes platelet adherence to collagen and the subendothelium, and inhibits collagen-induced aggregation.(433) It must be emphasized, however, that periodate undoubtedly oxidizes other components of the platelet membrane and, in this way may affect the ability of platelets to adhere to collagen. In the experiments of Cazenave and associates, pretreatment of platelets with the proteolytic enzymes thrombin, plasmin, chymotrypsin, and trypsin reduced platelet adhesion to a collagen-coated surface or to the subendothelium.(137, 434) The pretreatment of the platelets with chymotrypsin (which did not cause release of amine storage granule contents) diminished the extent of platelet aggregation and release of granule contents caused by collagen, but did not prevent the responses completely, although the PAS-staining of glycoprotein I was completely abolished, indicating that the PAS-staining glycopeptide of glycoprotein I had been removed by the treatment with chymotrypsin.(435) Santoro and Cunningham,(285) using a different assay system, also found that treatment of platelets with chymotrypsin reduced their ability to adhere to collagen by more than 50 percent. More recently, however, Lahav and Meyer (436) reported that pretreatment of platelets with chymotryp-

sin did not affect platelet adhesion to collagen fibers coated onto a glass surface. One can only speculate that these contradictory results are attributable to the differences in the systems used to measure platelet adhesion or the extent of the pretreatment with chymotrypsin.(435) Cazenave and colleagues (137, 273) used platelets in a Ca^{2+} -containing medium with apyrase to degrade released ADP and a hematocrit of 40 percent; after adhesion had taken place, the surfaces were rinsed in EDTA to remove platelets that might have aggregated on the platelets that had adhered to collagen. Lahav and Meyer (436) used platelets suspended in a solution containing EGTA to prevent platelet aggregation. Chelation of Ca^{2+} with EGTA and EDTA is known to inhibit platelet adhesion to a large extent,(1, 33, 273, 434) so these investigators may have been studying only part of the platelet-adhesion reactions. Chelation of divalent cations cannot provide a complete explanation for the discrepancy, however, because Santoro and Cunningham (285) studied adhesion in a medium containing EDTA and obtained results with chymotrypsin-treated platelets that agree with those of Cazenave and associates.(137, 434)

A similar discrepancy was observed with thrombin-treated platelets. Cazenave and coworkers found partial inhibition of platelet adhesion to collagen or the subendothelium,(137, 434) whereas Lahav and Meyer (436) reported no inhibition of adhesion to collagen fibers. Both groups agreed, however, that pretreatment of platelets with trypsin decreased the ability of platelets to adhere to collagen.

EFFECT OF PLATELET AGE ON PLATELET ADHESION

A possible relationship between the changes of platelet membrane glycoproteins that may occur as platelets age, and their ability to adhere to collagen has not been established. Hirsh and colleagues,(290) using rabbit platelets labeled *in vivo* with ^{35}S to obtain labeled populations of young or old platelets, found that the young platelets preferentially adhered to collagen in platelet-rich plasma anticoagulated with EDTA. They also demonstrated that the infusion of collagen into rabbits with young ^{35}S -labeled platelets caused a fall in the specific radioactivity of the circulating platelets, whereas infusion into rabbits in which the ^{35}S -labeled platelets had been allowed to age did not change the specific radioactivity of the circulating platelets. They concluded that young platelets adhered to collagen more readily than older platelets. Although Spaet and Lejnieks (281) interpreted their own results, showing that all the platelets in suspension adhered to collagen, as an indication that platelets of all ages could adhere, the two studies are not necessarily contradictory. Spaet and Lejnieks (281) used a large excess of collagen whereas Hirsh and colleagues (290) used a lesser amount so that all of the platelets did not adhere. This permitted them to identify the ones that adhered less readily as the older platelets. Since these early studies, Castellan and Steiner (282) have reported that young platelets adhere more readily to collagen fibers than randomly aged platelets.

PLATELET ADHESION TO FIBRIN

The ability of platelets to adhere to fibrin has been recognized for some time, because of evidence arising from morphologic examination of hemostatic plugs and thrombi, and from the phenomenon of clot retraction. Hemostatic plugs and thrombi are stabilized by the fibrin that forms on their surface and among the aggregated platelets at the periphery

of the plug or thrombus.(10, 41, 70) This fibrin is formed under the influence of thrombin generated at the surface of platelets that have undergone the release reaction; platelet factor 3 becomes available on their surface and accelerates two steps of the intrinsic coagulation pathway, leading to local formation of thrombin. Platelets appear to adhere to fibrin as it polymerizes (15, 437, 438); they do not adhere to fully polymerized fibrin if the thrombin that caused its formation has been neutralized.(182) The interaction of platelets with polymerizing fibrin is inhibited by EDTA, but adhesion of platelets to the polymerizing fibrin is not inhibited by agents such as PGE₁ or apyrase, which inhibit aggregation. Electron micrographs have shown platelets adherent to fibrin in retracting clots (439, 440); in some sections, platelets appear to have engulfed fibrin particles.(440)

Several investigators have observed fibrin between platelet aggregates and damaged vessel walls in deep injuries, or on repeatedly injured sites where a neointima composed of smooth muscle cells has formed.(18, 38-41) The conclusions from these findings are that thromboplastin from the damaged cells accelerates the extrinsic coagulation pathway and that, as fibrin polymerizes, it adheres to the damaged cells; platelets in the blood flowing past the polymerizing fibrin then adhere to it, so the plug or thrombus is initiated by platelet adhesion to the polymerizing fibrin adherent to the injured vessel wall.

The fact that activated platelets and polymerizing fibrin are required for clot retraction is strong evidence that platelets adhere to polymerizing fibrin during this process. Clot retraction occurs under the influence of thrombin in whole blood, in platelet-rich plasma, or in suspensions of isolated platelets, provided fibrinogen is present. It seems likely that the fibrinogen receptor on platelets is involved in their interaction with fibrin because thrombasthenic platelets, which lack the glycoprotein IIb/IIIa complex that, with Ca²⁺, constitutes this receptor, are unable to cause clot retraction.(441) In addition, if this reversible receptor is not made available on the platelets, clot retraction does not occur. This has been demonstrated in experiments in which fibrin has been formed under the influence of reptilase, which does not stimulate platelets; unless the platelets in the clot are stimulated by an aggregating agent such as ADP or arachidonic acid, which makes the fibrinogen receptor available, clot retraction does not occur.(437, 442-445) Inhibitors such as PGE₁ that prevent the fibrinogen receptor becoming available in response to aggregating agents,(112, 446) also inhibit clot retraction.(447, 448)

The *in vivo* equivalent of clot retraction is the consolidation of hemostatic plugs and thrombi. The adhesion of polymerizing fibrin to platelets and other cells such as fibroblasts, leukocytes, and endothelial cells (437, 449) is probably important in repair processes after vessel wall injury. It has also been suggested that clot retraction may pull the sides of a wound together or facilitate recanalization of thrombosed vessels by pulling the clot away from one side of the vessel wall, and based on *in vitro* experiments, a possible role in clot lysis has received recent support.(450)

It is evident that under circumstances in which fibrin formation plays a major part in the initiation of thrombi, drugs that inhibit the generation of thrombin or prevent its action on fibrinogen and platelets are likely to be more effective in limiting thrombus formation than drugs that affect only platelet function.

PLATELET ADHESION TO WHITE BLOOD CELLS

Normally, platelets do not interact with leukocytes *in vivo*. However, as pointed out by Needleman and Hoak,(451) the abundance of these two cell types in white bodies is

too great to result from passive adsorption. These authors suggest that their mutual affinity for polymerizing fibrin (437) may be responsible for their occurrence together, or that chemotactic factors formed or released by platelets may attract leukocytes.(452-455) Alternatively, leukocytes may further platelet adhesion by damaging the endothelium.(451)

Platelets have been observed adherent to the large number of macrophages that become associated with the vessel wall lesions of animals given hypercholesterolemic diets for prolonged periods of time.(55)

In the rare abnormal condition variously termed platelet satellitism, granulocyte-platelet rosette formation, platelet neutrophil adherence, or platelet-to-leukocyte adherence phenomena (PLAP), platelets in plasma anticoagulated with EDTA adhere to polymorphonuclear leukocytes and are phagocytosed by them.(456-464) The rosettes are not observed in blood that does not contain an anticoagulant, so any *in vivo* significance is obscure. PLAP has been described in association with thrombocytopenia,(458) with an inherited platelet defect that is similar to that of storage pool-deficient platelets,(464) with diabetes,(463) with Behcet's disease,(457) with thrombocytopenic purpura associated with malignant lymphoma,(462) and with several other diverse conditions, but no consistent pattern related to specific disease states has emerged. The abnormality appears to be caused by a factor in plasma in some cases,(462) and in others, by a platelet abnormality.(463)

PLATELET INTERACTIONS WITH TUMOR CELLS

Platelets are aggregated by some tumor cells and by membrane fragments isolated from these cells.(465-469) It is apparent that platelet adhesion to the tumor cells must occur, but this aspect of the interaction does not appear to have been examined in detail. Aggregation is demonstrable in heparinized, but not in citrated platelet-rich plasma, and a requirement for Mg^{2+} has been identified.(468) According to Donati and associates,(466) the binding of tumor membrane fragments or vesicles to platelets requires activation of the first four components of the complement system. It has been suggested that platelet aggregation then results from the generation of thrombin by the tumor-vesicle-platelet complex.(470)

ADHESION TO PARTICULATE MATERIALS AND PHAGOCYTOSIS BY PLATELETS

Early observations of the ability of platelets to adhere to and, in some cases, phagocytose particulate matter have been reviewed previously.(471) Among the materials that have been investigated are thorotrast, polystyrene (latex) particles, ferritin, viruses, fat particles, silicone dioxide, colloidal carbon, antigen-antibody complexes, malarial parasites, and a number of types of bacteria.(406, 472-488)

Many investigators have studied the phagocytosis of latex particles by platelets. In citrated platelet-rich plasma, these particles adhere to platelets, are found in invaginations in the membrane and, within a few minutes, can be observed within the platelets.(471, 481) This process causes the release of the contents of platelet granules and results in platelet aggregation.(471, 489, 490) White (480) has emphasized, however, that uptake of

latex particles by platelets differs from phagocytosis by leukocytes, in that bacteria enter neutrophils in sealed vacuoles derived from the cell wall, and the products deposited in the vacuoles during neutrophil degranulation remain in the vacuoles and are not released to the exterior.

Inhibitors of aggregation (AMP, adenosine) do not interfere with phagocytosis by platelets (471), nor do inhibitors of cyclo-oxygenase that prevent the formation of thromboxane A₂,(481) but metabolic inhibitors do inhibit phagocytosis of latex particles.(475, 478, 479) In early studies, it was observed that EDTA greatly diminished phagocytosis and prevented aggregation, although it did not prevent the adherence of the particles to the platelets, nor the release of granule contents.(471, 475, 491) These observations were taken as indicating that divalent cations are required for phagocytosis, but not for adhesion. More recently, Lewis and colleagues (481) reported that they observed no difference in the extent of phagocytosis of latex particles in plasma from blood anticoagulated with citrate or EDTA. Zucker-Franklin (482) also was able to study phagocytosis in the presence of EDTA. The reason for this discrepancy concerning a requirement for divalent cations is not clear. With isolated platelets in artificial media, coating the latex particles with fibrinogen increased adhesion in comparison to uncoated, or albumin-coated particles, but had little effect on the release of platelet constituents, whereas coating the particles with γ -globulin resulted in extensive release of the contents of platelet granules.(489) This observation is undoubtedly related to similar events resulting from the phagocytosis of antigen-antibody complexes by platelets.(476) Lewis and coworkers (481) have concluded that the phagocytosis of latex particles by platelets is chronologically similar to that reported for polymorphonuclear leukocytes. This conclusion is based on their observations that there was a progressive accumulation of the particles in the open canalicular system of platelets, followed by localization in electron-opaque vacuoles; after 60 minutes, acid phosphatase (a lysosomal granule marker) was localized within the latex-containing vacuoles, indicating that these vacuoles are phagosomes, whereas these vacuoles did not stain with alkaline-bismuth, which stained the external membranes and the membranes of the open canalicular system. Lewis and associates (481) suggested that the sequence of events is adhesion of the particles to the surface of the platelets, sequestration into the open canalicular system, and finally the formation of phagocytic vacuoles through a process requiring metabolic energy.(475, 478, 479) These conclusions differ from the earlier suggestion of White (480) that most of the latex particles remained in channels of the open canalicular system that are not pinched off to form sealed phagocytic vacuoles.

On the basis of electron microscopy of freeze-fractured platelets, Zucker-Franklin (482) has proposed that large particles (such as latex particles) are taken up in a different fashion from small particles, although both must adhere to platelets initially. She has suggested that large particles are taken up by membrane invaginations that are apparently independent of the pits believed to represent entrances to the open canalicular system; this process is thus similar to phagocytosis by leukocytes, and would require metabolic energy. However, she was unable to observe any fusion of granules with the vacuoles formed by the invagination of the plasma membrane, although this has been observed repeatedly in other cells. In contrast to the route of entry of large particles, Zucker-Franklin (482) observed that small particles (such as cationized ferritin) appeared to enter the open canalicular system through a process of membrane flow that is not dependent on metabolic energy. Earlier investigators had come to a similar conclusion regarding the uptake of small particles.(492-494)

Interactions of Platelets with Bacteria

Many investigators have demonstrated that platelets adhere to a wide variety of bacteria and interact with them, but only a few have claimed that platelets actually phagocytose bacteria in a manner similar to phagocytosis by leukocytes. Many kinds of bacteria (both gram-positive and gram-negative) have been shown to induce platelet aggregation and cause the release of platelet granule contents. As pointed out by Herzberg and colleagues (488) interactions between platelets and bacteria are likely involved in septicemia, disseminated intravascular coagulation, and bacterial endocarditis. Studies with ¹¹¹In-labeled platelets show that platelets localize at sites of bacterial infection induced in experimental animals.(495) Clawson and White have shown by electron microscopy that platelets bind irreversibly to some bacteria (for example, *Staphylococcus aureus*) and as a result, the platelets aggregate and release granule contents.(486, 487) Adhesion requires divalent cations and the platelet changes are similar to those that occur when platelets adhere to collagen.(487) The bacteria are trapped within the platelet aggregates, but they are seldom seen within the platelets themselves.(487, 496) Although platelet interaction with bacteria can occur to some extent in the absence of plasma,(406, 496) it is potentiated by plasma proteins such as fibrinogen,(406, 496-498) immunoglobulin G,(499, 500) or components of the complement system.(501) Herzberg and associates (488) showed that the adhesion step of the interaction of platelets with *Streptococcus sanguis* was mediated by protease-sensitive components on the surfaces of the streptococci and of the platelets, involving surface microfibrils on *Streptococcus sanguis*, and that Ca^{2+} was not required.

With some bacteria, it may be the antigen-antibody complex, formed between the bacteria and antibodies in plasma, with which the platelets interact.(499) Thrombocytopenia is a frequent complication of bacterial infections, and Zimmerman and colleagues have suggested that the reaction among organisms such as pneumococci, antibodies present in most normal plasmas, and platelets, may be responsible for thrombocytopenia accompanying infections with such microorganisms.(499)

Endotoxin also interacts with platelets, but this aspect of platelet adhesion is beyond the scope of this review.

Reaction with Antigen-Antibody Complexes

The literature concerned with the reaction of platelets with antigen-antibody complexes is too extensive to be reviewed here. There is no doubt that platelets adhere to antigen-antibody complexes and are activated by them. In some species (e.g., man) adherence is through Fc receptors on the platelet membrane. In species that lack Fc receptors (e.g., rabbit), adherence appears to be mediated through C3 of the complement system.(502)

PHAGOCYTOSIS OF PLATELETS

Platelets are phagocytosed by polymorphonuclear leukocytes and monocytes in citrated plasma,(475) and by polymorphonuclear leukocytes and macrophages in thrombi.(183, 503, 504) As pointed out previously,(471) it may be only platelets that have

been altered by ingesting particulate matter, or by other stimuli, that can subsequently be removed by other phagocytic cells. Under some circumstances, opsonization of platelets by antiplatelet antibodies has been found to promote phagocytosis of platelets by leukocytes.(505, 506) This has been shown in vitro, but it may be involved in vivo in idiopathic thrombocytopenic purpura (ITP), in which antiplatelet antibodies are present and may promote the clearance of the sensitized platelets by the liver and spleen. Corticosteroids interfere with phagocytosis of platelets in ITP,(507) possibly by interfering with the initial adhesion reaction.(508)

The ability of macrophages to phagocytose platelets has been used as a means of delivering vinblastine-loaded platelets to these cells to destroy them. This technique has been reported to be successful in some cases of immune thrombocytopenia or autoimmune hemolytic anemia by Ahn and colleagues,(509, 510) although other investigators have found it to be beneficial in only an occasional patient with immune thrombocytopenia.(511) Panasci and coworkers have used vinblastine-loaded platelets to treat patients with thrombocytopenia associated with tumors that phagocytose platelets.(512)

Removal of Platelets from the Circulation

When it is time for a platelet to die, it undoubtedly adheres to phagocytic constituents of the reticulo-endothelial system that are responsible for its removal from the circulation. This process is not well understood, but, by analogy with the removal of desialylated red blood cells, it may be carried out by the Kupffer cells of the liver and by mononuclear spleen cells.(513) It is known that platelets that have been treated with neuraminidase to remove surface sialic acid, or with proteolytic enzymes that remove glycopeptides from membrane glycoproteins, are rapidly cleared from the circulation.(432, 514) It is not known whether loss of these membrane components is responsible for removal of platelets at the end of their life span. It may be that the shortened platelet survival associated with continuous vessel injury is a result of the action of proteolytic enzymes on platelets, since administration of epsilon aminocaproic acid, an inhibitor of proteolytic enzymes such as plasmin, prolongs the shortened platelet survival caused by continuous vessel injury.(515)

Platelet survival is shortened in idiopathic immune thrombocytopenia and the amount of IgG associated with the platelets is greater than normal.(516) Adhesion of platelets to phagocytic cells is enhanced when IgG is bound to the platelets.(517) It has been suggested that if old platelets were altered in such a way that they could bind more IgG than young platelets, this opsonization might play a part in the clearance of the older platelets by macrophage phagocytosis.(517, 518)

ABNORMALITIES RESPONSIBLE FOR DECREASED ADHESION

Several congenital abnormalities effect platelet adhesion to collagen or the subendothelium. At high shear rates, lack of plasma von Willebrand Factor diminishes platelet adhesion. Platelets from patients with the Bernard Soulier syndrome lack glycoprotein Ib and fail to bind von Willebrand Factor in the presence of ristocetin. Their ability to adhere to the subendothelium at high shear rates is also impaired. Antibodies to glycoprotein I inhibit platelet adhesion to the subendothelium (361) and to collagenase-treated subendothelium.(367) Both of these abnormalities are discussed in detail elsewhere in this chapter (see section on *Binding of von Willebrand Factor to Platelets*).

In Glanzmann's thrombasthenia, platelet adhesion to the subendothelium was shown to be normal, as tested in the Baumgartner perfusion chamber.(320, 369) As would be expected, no platelet aggregates formed. Baumgartner and associates (320) also investigated the adhesion of thrombasthenic platelets to the fibrillar collagen of the subendothelium after it had been digested with chymotrypsin. They observed that platelet adhesion (contact plus spread platelets) tended to be low, but they suggested that low platelet counts and a low hematocrit may have been responsible. Surface coverage with "contact" platelets was higher than in controls and their detailed morphologic study showed that fewer platelets were spread on the surface, although the "contact" platelets had lost their granule contents. These observations were interpreted as an indication that thrombasthenic platelets do not move along the collagen fibrils to the solid surface of the internal elastic lamina as normal platelets do.(320) It is evident, however, that glycoproteins IIb and IIIa, which are missing from thrombasthenic platelets, do not have a significant role in platelet adhesion to the subendothelium or to collagen.

In storage-pool disease (deficiency of dense granules) platelet adhesion was found to be decreased by about 40 percent in 4 of the 6 patients studied by Weiss and colleagues.(135) Although large thrombi did not form, some small thrombi were observed. Adhesion to the collagen fibrils of chymotrypsin-treated subendothelium was also impaired in 3 of 6 patients tested.(320) The investigators concluded that these storage pool-deficient platelets had a defect in their ability to spread on the surface. Similar observation were obtained with storage pool-deficient rat platelets.(519)

Probably because individuals with the gray platelet syndrome (α -granule deficiency) are extremely rare, no reports have appeared concerning the ability of these platelets to adhere to the subendothelium.

In the single patient with a variant of Ehlers-Danlos syndrome in which fibronectin corrected the defect in collagen-induced platelet aggregation,(405) no attempt was made to measure platelet adhesion. As mentioned earlier, aggregation responses to other aggregating agents were also abnormal so the nature of the defect is not entirely clear.

INHIBITORS OF PLATELET ADHESION

Many inhibitors of platelet aggregation have been examined for their effects on platelet adhesion. These studies have had at least two aims: to determine whether drugs can be used to inhibit the first event in thrombus formation on injured blood vessel, and to investigate the biochemical reactions involved in platelet adhesion.

Inhibitors with Structural Similarities to Collagen

The peptide fragments of collagen that block the interaction of platelets with collagen have been discussed earlier (235, 241) and the inhibitory effect of poly-L-hydroxyproline has been mentioned.(145, 229) Another molecule that is structurally similar to part of the collagen molecule is C1q, a subcomponent of the first component (C1) of the complement system.(520, 521) Several investigators have shown that C1q inhibits collagen-induced platelet aggregation.(522-526) Platelet adhesion to collagen (types I and III) is also inhibited.(522, 525) It appears that the portion of C1q responsible for these effects is the A chain of C1q, which contains collagen-like amino acid sequences.(525) In contrast to monomeric C1q, aggregated C1q behaves like collagen and induces the release of the

contents of platelet granules (522) It seems probable that C1q becomes associated with the sites on the platelet membrane that normally interact with collagen and hence, prevents platelet adhesion to collagen and the subsequent reactions.

C1s (another subcomponent of C1) has also been shown to inhibit platelet adhesion to types I and III collagen, and collagen-induced platelet aggregation.(527) Since C1s binds to C1q through the collagen-like moiety of the latter, it has been suggested that C1s exerts its inhibitory effect by binding to collagen and preventing platelet adhesion by blocking the sites on the collagen molecule to which platelets adhere.

Inhibition by Chelation of Divalent Cations

The inhibitory effect of chelation of divalent cations on platelet adhesion to collagen or the subendothelium has already been described (see *Role of Ca²⁺ and Mg²⁺ in Platelet Adhesion*).

Inhibition by Sulfhydryl Inhibitors

Some years ago, Al-Mondhiry and Spaet (528) showed that the penetrating sulfhydryl inhibitors N-ethyl maleimide (NEM) and p-hydroxymercuribenzoate (PCMB) immediately blocked the ability of platelets in EDTA-platelet-rich plasma to adhere to connective tissue, whereas the more slowly penetrating p-hydroxymercuriphenosulfonate (PCMBS) was inhibitory only after prolonged incubation. Cazenave and associates (143) also observed inhibition by NEM of platelet adhesion to a collagen-coated surface with platelets in a calcium-containing suspending medium, but could not demonstrate inhibition by PCMB at concentrations that did not cause release of granule contents and lysis. Al-Mondhiry and Spaet (528) had suggested that the sulfhydryl group inhibitors affected internal platelet reactions, and Cazenave and colleagues (143) implicated the platelet contractile protein because other inhibitors of platelet shape change and clot retraction also diminished platelet adhesion. These included prostaglandin E₁, caffeine, adenosine, cytochalasin B, and colchicine.

Inhibition by Nonsteroidal Antiinflammatory Drugs

There has been much interest in the effects of nonsteroidal antiinflammatory drugs, particularly aspirin, on platelet adhesion, and contradictory reports have appeared.

Inhibition of adhesion by aspirin was reported by Jamieson and colleagues,(215) using the technique of Spaet and Lejnieks,(281) although these investigators had found no effect of aspirin on platelet adhesion in EDTA-platelet-rich plasma. Others who have observed inhibition by aspirin *in vitro* include Sheppard,(529) Cowan,(530) and Cazenave in early experiments (see below). Reports of no inhibition of platelet adhesion *in vitro* by aspirin have come from MacKenzie,(279) MacIntyre and Gordon,(531) Legrand and colleagues,(139) Morin and coworkers,(359) Weiss and Tschopp,(135, 136) Tschopp,(136) Cazenave and coworkers,(137, 532) and Davies and colleagues.(533) In vivo, aspirin does not appear to inhibit adhesion to the subendothelium (6, 529, 534) although it inhibits aggregate formation on the adherent platelets.

In early experiments, Cazenave and colleagues (535, 536) observed that aspirin inhibited the adhesion of washed platelets to a collagen-coated glass surface or the subendothelium; but in later studies using the rotating probe technique and a hematocrit of

40 percent, no effect of aspirin ($100 \mu M$) on adhesion of ^{51}Cr -labeled rabbit platelets was demonstrable.(532, 533) In contrast, $100 \mu M$ indomethacin inhibited adhesion to collagen-coated glass by about 30 percent in this system, but similar inhibition by sulfinpyrazone was evident only at 1 mM , which is too high to be relevant to the *in vivo* situation.(137) The later studies with a 40 percent hematocrit in the platelet suspending medium were done in media containing 2 mM Ca^{2+} and 1 mM Mg^{2+} , but the surfaces were rinsed in solutions containing EDTA after adherence had taken place. This technique removes any rabbit platelets that have aggregated on the adherent platelets, and therefore measures only platelet adhesion. In the earlier experiments, the surfaces were rinsed repeatedly in modified Tyrode solution without added Ca^{2+} or Mg^{2+} , and apyrase was present to remove released ADP, but these experiments have been criticized on the grounds that a few aggregates may have remained on the surfaces (320); the formation of aggregates would be inhibited by aspirin and therefore it would appear that aspirin had inhibited adhesion.

In nearly all of the reports by Baumgartner, Weiss, and their colleagues, with citrated or native whole blood, aspirin has not been found to inhibit platelet adhesion to the subendothelium. They did find, however, that at high shear rates, aspirin was slightly inhibitory, although no effect was observed with native blood.(138) Thus there now seems to be general agreement that platelet adherence to collagen or the subendothelium is not appreciably inhibited by aspirin *in vivo*, or *in vitro* in whole blood, or in platelet suspensions containing red blood cells at a hematocrit of 40 percent.* It is evident that conditions of flow, hematocrit, and anticoagulant affect the results of experiments in which the techniques used have varied widely. Even when precautions have been taken to avoid platelet aggregation on the adherent platelets, consistent observations have not been obtained. It does not seem likely, however, that aspirin has a large inhibitory effect on platelet adhesion to damaged vessel walls *in vivo*.*

As mentioned earlier, the nonsteroidal antiinflammatory drugs do not inhibit the release of granule contents from adherent platelets.(97, 135, 137) Thus it is not surprising that aspirin has not been found to inhibit the smooth muscle cell proliferation that follows removal of the endothelium.(24, 537)

Other nonsteroidal antiinflammatory drugs that have been found to inhibit platelet adhesion under some conditions are sulfinpyrazone and indomethacin.(137)

Inhibition of Adhesion by Prostaglandins that Increase Platelet cAMP

Inhibition of platelet adhesion *in vitro* by PGE₁ was demonstrated some time ago by Cazenave and colleagues (143, 434) and by Baumgartner and coworkers,(33) and attributed to its ability to increase the concentration of cyclic AMP in platelets. The potential importance of agents that raise the concentration of cyclic AMP in platelets did not become apparent until the discovery of PGI₂ (prostacyclin). This compound is produced by the endothelium upon stimulation and it not only inhibits platelet aggregation and the release of the contents of platelet granules, but it inhibits platelet adhesion to collagen and the subendothelium.(538-542) The concentration required to inhibit adherence is higher than that required to inhibit aggregation, however, and only approximately 50 percent inhibition was achieved at concentrations as high as $10 \mu M$.(538) Weiss and Turitto (540)

*References 97, 134-138, 280, 532, and 533.

were also unable to inhibit platelet adhesion to the subendothelium completely at any of the concentrations they tested. Stable analogs of prostacyclin also inhibit adhesion.(541, 543) Although high concentrations of PGE₁ or PGI₂ inhibited the release of granule contents from adherent rabbit platelets, they did not affect human platelets in this way.(538) Thus PGI₂ may decrease platelet adhesion at an injury site, but it may not inhibit the release of platelet-derived growth factor from the platelets that do adhere. Any effect of PGI₂ *in vivo* is likely to be a local effect because the concentration of circulating PGI₂ is now known to be too low to affect either platelet adhesion or aggregation.(544)

Karnigian and coworkers (542) observed inhibition of adhesion of human platelets by PGI₂, PGD₂, PGE₁, and dibutyryl cyclic AMP. They also reported inhibition of release, but in the system they used this may have been inhibition of release from platelets that were not adherent to collagen.(139)

The thromboxane synthetase inhibitor, dazoxiben, has been shown to inhibit platelet adhesion to the subendothelium of the rabbit aorta.(148) It was suggested that prostaglandin endoperoxides liberated from platelets in the presence of this inhibitor contributed to PGI₂ formation by the vessel wall, and that this PGI₂ was responsible for the inhibitory effect on adhesion.

In experiments in which PGI₂ was infused into rabbits, Adelman and colleagues (21) showed prevention of platelet adhesion to the subendothelium of rabbit aortas from which the endothelium had been removed with a balloon catheter. At an infusion rate of 650 to 850 ng/kg/min, surface coverage by platelets was reduced by 84 percent and attachment by 63 percent. They also found that secretion of platelet factor 4 into the underlying vessel wall was prevented by the infusion. These observations with rabbit platelets *in vivo* are in agreement with the *in vitro* results of Cazenave and colleagues (538) with rabbit platelets.

It should be emphasized, however, that PGI₂ is unlikely to be responsible for the nonthrombogenic nature of the vascular endothelium, or for the development of a non-thrombogenic surface after vascular injury, because inhibition of PGI₂ formation with aspirin *in vitro* or *in vivo* does not promote platelet adhesion to those surfaces.(6) In addition, aspirin or indomethacin does not increase the adherence of platelets to altered endothelial cells in tissue culture.(74, 76)

An additional consideration concerning the role of endogenously produced PGI₂ in limiting platelet adhesion to damaged vessel walls is the well established observation that the cells in the vessel wall underlying the endothelium have much less ability to form PGI₂ than the endothelial cells.(545-548) It may be that the endothelial cells surrounding an injury site where the endothelium has been lost are mainly responsible for the production of any PGI₂ that limits thrombus formation.

When the neointima that forms on a vessel wall after an initial injury is damaged, platelets adhere to collagen, and also to fibrin at the site.(18, 38) Thus it is not surprising that the combination of PGI₂ and heparin is more effective than either agent alone in limiting platelet accumulation on the injured neointima.(39)

Effect of Dipyridamole on Platelet Adhesion *In Vitro*

Platelet adhesion to the subendothelium of the rabbit aorta, to collagen, or to a collagen-coated glass surface, is inhibited by high concentrations of dipyridamole.*

*References 33, 173, 359, 434, 535, and 549.

Although dipyridamole is a cAMP phosphodiesterase inhibitor that can increase the concentration of cAMP in platelets when adenylate cyclase has been stimulated by agents such as PGE₁ or PGI₂, it is not clear that this is its mode of action in inhibiting platelet adhesion because, by itself, it has no detectable effect on the concentration of cAMP in platelets.(550)

Baumgartner and colleagues (33) showed that dipyridamole (1 mM) inhibits the initial attachment of platelets to the subendothelium by about 50 percent. Approximately 50 percent inhibition by 100 μM dipyridamole, but little or no inhibition by 10 μM was observed by Groves and colleagues (549) with a rotating probe system in which the adherence of ⁵¹Cr-labeled platelets to the subendothelium was assessed; the platelets had been washed and resuspended in Eagle's medium containing 4 percent albumin and red blood cells at 40 percent hematocrit. At a concentration of 100 μM , dipyridamole also partially inhibited the release of ¹⁴C-serotonin from the adherent platelets, and reduced the extent of collagen-induced platelet aggregation to 66 percent of the control value.

In Vivo and Ex Vivo

In experiments with rabbits in which the endothelium of the aorta was removed with a balloon catheter, Groves and colleagues (549) found that dipyridamole (12.5 or 2.5 mg/kg), given intravenously 10 minutes before removal of the endothelium, significantly reduced the number of platelets that accumulated on the injured surface during the 10 minute period immediately following exposure of the subendothelium. The plasma concentration of dipyridamole 15 minutes after administration of the higher dose was 27 μM . The effect of dipyridamole on adherence appeared to be a consequence of the action of dipyridamole alone, since inhibition of PGI₂ formation with aspirin did not influence the effect of dipyridamole. These observations indicate that PGI₂ formed by injured vessels does not potentiate inhibition of adhesion by dipyridamole.

In contrast to the in vivo findings of Groves and colleagues, Weiss and coworker (138) could not demonstrate an effect of dipyridamole on adhesion, but the experimental design was quite different. In their studies, human subjects ingested 150 mg of dipyridamole and then continued to take the drug (100 mg q.i.d.) for 6 days. Tests of platelet adhesion were done before the first dose, 1.5 hours after the first dose and 1.5 hours after the last dose. Citrated or native blood was circulated through an annular Baumgartner chamber on whose inner core were mounted everted segments of de-endothelialized rabbit aorta. The wall shear rate was 2600 sec⁻¹. Adherent platelets, and platelet thrombi, were assessed morphometrically. Total serum dipyridamole concentrations were 2.6 and 3.6 μM , at 1.5 hours and 6 days, respectively. The lack of effect of dipyridamole in these experiments is probably attributable to the low concentration in the plasma, although species differences and the ex vivo system with its high shear rate may also contribute to the discordance with the results obtained in vivo by Groves and colleagues.(549) It is also difficult to understand the results of McCollum and coworkers (551) on platelet adhesion to Dacron vascular grafts in an ex vivo system. Human blood from volunteers who had ingested 100 mg q.i.d. of dipyridamole for 1 week was collected into heparin and pumped through circuits containing preclotted woven Dacron. The effect of the drug on the fall in platelet count during passage through the graft material was determined. The plasma concentration of dipyridamole was 2.7 μM . In this system, dipyridamole reduced platelet adherence, but it was less effective than aspirin. The surface of the Dacron prosthesis, however, differs greatly from the subendothelium, so comparisons of the effects of drugs may not be valid. Nevertheless, it is apparent that under some conditions, both in vitro

and *in vivo*, dipyridamole can partially inhibit platelet adhesion to the subendothelium, collagen, or Dacron grafts, particularly when the drug is used at high concentrations.

Clinical Effects of Dipyridamole

It is tempting to speculate that at least part of the beneficial effect of dipyridamole observed by the group at the Mayo Clinic may be attributable to inhibition of platelet adhesion and release at sites of vascular injury. They observed that administration of dipyridamole before and after surgery combined with aspirin after surgery, reduced the amount of intimal thickening that developed after the insertion of coronary bypass vein grafts in dogs,(552) and reduced the deposition of ^{111}In -labeled platelets.(553) A reduction in the number of adherent platelets would diminish the amount of platelet-derived growth factor that entered the vessel wall and thus lessen intimal thickening. In similar experiments, Josa and associates (554) observed that this drug treatment reduced the incidence of early thrombosis on this type of graft in dogs. In endarterectomized carotid arteries from dogs, thrombus formation was also decreased by this treatment.(555) In a clinical trial, the group at the Mayo Clinic administered dipyridamole preoperatively, and the combination of dipyridamole and aspirin postoperatively. This treatment reduced the incidence of occlusion of coronary artery bypass grafts.(556, 557)

Other Inhibitory Drugs

Other drugs that inhibit platelet adhesion *in vitro* under physiologic conditions of divalent cation and protein concentrations, hematocrit, and blood flow, include methylprednisolone, penicillin G, and cephalothin,(137) but in most cases the concentrations required are higher than those likely to be achieved *in vivo* in man. Platelets from subjects receiving high doses of α -tocopherol adhere less readily to collagen in a system containing EDTA.(558)

VESSEL WALL INJURY

Platelets do not adhere to the vessel wall unless it has been injured in some way. Many methods have been devised to injure vessels in experimental animals for the purpose of studying platelet adhesion and thrombus formation. These will not be discussed in detail here. They include passage of a balloon-catheter through large blood vessels, placement of indwelling catheters in the aorta, air-drying, chemical, electrical, or laser injury, infusion of homocysteine, administration of diets enriched with cholesterol, and many others.

Most interesting are the naturally-occurring conditions that cause repeated damage of vessel walls and may be responsible for platelet adhesion to the wall and the contribution of platelets to the development of atherosclerosis. This subject has been reviewed recently.(559, 560) Repeated injury of vessel walls, regardless of how it is caused, has been shown to shorten platelet survival, undoubtedly as a result of changes in platelets that have adhered to the injury sites and then been freed to recirculate. Some injury may be caused by hemodynamic forces at vessel branches, curves, and stenoses.(561) Vessel wall injury and shortened platelet survival are associated with smoking (562, 563); although the injurious substance has not been identified, suggestions include carbon monoxide, nicotine, and tobacco antigen.(564-566) Diets rich in cholesterol have been

shown to cause vessel injury, platelet adherence, and shortened platelet survival in monkeys,(567, 568) and diets rich in animal fats shorten platelet survival in man.(569) Endothelial injury and shortened platelet survival have been described in homocystinemia by some investigators,(570, 571) although others have not detected shortened platelet survival.(572, 573) Vessel wall injury and early development of atherosclerosis and its clinical complications is a feature of diabetes; shortened platelet survival and platelet hypersensitivity have been reported in some diabetics.(574-577) Some arterial wall injury may result from immunologic reactions; serum sickness and systemic lupus erythematosus may be examples of this.(578-580) Viruses may also contribute to vessel wall injury.(581)

The reason for shortened platelet survival in association with vessel wall injury and platelet adhesion is not established. It may be that platelets that have adhered to the surface of an injured vessel can be freed by proteolysis of their membrane proteins or glycoproteins that are involved in adhesion. Enzymes that might be responsible for the cleavage of membrane glycoproteins are plasmin, leukocyte elastase, and the proteases associated with the subendothelium.(28-31, 368, 514, 582) Several lines of evidence support this theory: cleavage of glycopeptides from platelet membrane glycoproteins by treatment with plasmin, chymotrypsin, or trypsin shortens the survival of the platelets when they are returned to the circulation (514); epsilon amino caproic acid, an inhibitor of plasmin and other proteases, prolongs shortened platelet survival caused by continuous vessel injury (515); Bernard Soulier platelets, which lack glycoprotein Ib, show an abnormally short platelet survival time.(583, 584) It is not known whether the ability of dipyridamole to inhibit platelet adhesion (33, 549) is related to the observation that this drug prolongs shortened platelet survival.(585)

SUMMARY

Platelets do not adhere to surfaces to which flowing blood is normally exposed *in vivo*. When the lining of a blood vessel is altered or damaged, however, platelets do adhere to the injured site. Platelet adhesion is one of the first events in the formation of hemostatic plugs and thrombi, and plays a part in the development of atherosclerotic lesions. Other surfaces to which platelets adhere include particulate matter in the blood stream, bacteria and other microorganisms, the artificial surfaces of prosthetic devices, and some altered cells in the blood, particularly macrophages. The majority of investigators have studied the interaction of platelets with the subendothelium of normal vessels of young animals, or with isolated vessel wall constituents such as collagen. There are very few studies of platelet adhesion to repeatedly damaged or diseased blood vessels, although it is generally assumed that platelets interact with the connective tissue, fibrin, and cholesterol crystals in atherosclerotic lesions.

Underlying the endothelium of blood vessel is the basement membrane, which has been shown to contain type IV collagen, elastin with its associated microfibrils, von Willebrand Factor, fibronectin, thrombospondin, laminin, and heparan sulfate. If only the endothelium is removed, the main structure exposed is the basement membrane with its associated proteins, but deeper injuries expose fibrillar type III collagen and microfibrils. In most studies in which large arteries have been injured by passage of a balloon catheter, basement membrane, type III collagen and the microfibrils around elastin have been exposed. Platelets do not react strongly with basement membrane and the type IV colla-

gen in it is relatively inert. In contrast, platelets adhere firmly to type III (and type I) collagen and spread on it. Although *in vitro* studies have shown that platelets can interact with collagen in artificial media without plasma proteins, investigations of platelet adhesion at high shear rates indicate that von Willebrand Factor is necessary for firm platelet adhesion under these conditions. Fibronectin and thrombospondin may also have a role in platelet adhesion. However, platelets do not bind von Willebrand Factor or fibronectin until the platelets have been stimulated to release their granule contents, so these binding sites probably do not become available until the platelets have interacted with collagen or another release-inducing agent such as thrombin. Studies with platelets from patients with the Bernard Soulier syndrome in which glycoprotein Ib on the platelet membrane is missing have demonstrated that this glycoprotein takes part in platelet adhesion at high shear rates.

Type I and type III collagen have been studied extensively to determine the characteristics required for platelet adhesion and the subsequent release of granule contents, formation of products such as thromboxane A₂ from arachidonate freed from membrane phospholipids, and aggregation. To induce platelet adhesion and the resulting platelet reactions, triple helical collagen must be assembled into a quaternary structure that is described as fibrillar or multimeric. The epsilon amino groups of lysine on collagen are of major importance in binding to platelets, whereas the telopeptide regions and the carbohydrate side chains have little or no effect. Some investigators have isolated peptide fragments of collagen that interact with platelets, and others have advanced the theory that there are multiple, simultaneous, linked interactions between platelets and collagen. No receptor for collagen has been identified on the platelet surface. A number of techniques have been used to quantify platelet adhesion to collagen or the subendothelium under a variety of conditions of suspending medium, flow, hematocrit, and divalent cation concentration. All of these variables affect the extent of platelet adhesion. The hemodynamic forces of blood flow, including the effect of red blood cells, determine the rate of adhesion of platelets to a surface. When blood flow is disturbed, extensive aggregation can occur on the adherent platelets, with fibrin formation around the aggregates.

When small blood vessels are cut, the exposed collagen provides a strong stimulus for platelet adhesion and aggregation. This process is enhanced by the high shear rates in the microcirculation. Under these conditions, a deficiency of von Willebrand Factor leads to decreased adhesion of platelets and less spreading on the injured surface. This is undoubtedly the reason for the hemostatic defect in von Willebrand's disease. In medium to large arteries where the shear rates are lower, the defect is not apparent. There have been many studies of the binding of von Willebrand Factor to platelets and its role in platelet adhesion. Recent evidence indicates that von Willebrand Factor may be involved in the reaction of platelets with the microfibrils around elastin as well as with collagen.

Platelets adhere to fibrin in hemostatic plugs and thrombi; this reaction is involved in clot retraction and the consolidation of hemostatic plugs.

The exposed subendothelium remains reactive to circulating platelets for only a short time. When it becomes covered with platelets, the surface of the adherent platelets does not attract circulating platelets under conditions of laminar flow. After several days, platelets are no longer apparent on the surface and it is relatively inert.

The neointima that forms in large arteries after removal of the endothelium is composed of smooth muscle cells that present a nonthrombogenic surface to the blood. When these cells are damaged, thrombi composed of platelets and fibrin form on the surface, and fibrin is often apparent between the platelets and the injured surface. Thrombin plays

a major role in the formation of these thrombi by affecting both fibrinogen and platelets. Platelet adhesion to fibrin as well as to collagen occurs on such a surface. As with the exposed subendothelium, however, the surface rapidly becomes nonreactive to further platelet deposition.

Many drugs have been examined for their effects on platelet adhesion, since it would be beneficial if this first reaction in thrombus formation could be inhibited. Drugs that inhibit the change in the shape of platelets that occurs upon stimulation have been shown to inhibit adhesion. The most effective drugs that act in this way are those that increase the concentration of cAMP in platelets (PGE₁, PGI₂, dipyridamole). The nonsteroidal antiinflammatory drugs that inhibit the formation of thromboxane A₂ do not affect platelet adhesion under conditions similar to those *in vivo*, nor do they prevent the release of granule contents from the adherent platelets. When thrombin and fibrin, as well as collagen, are involved in platelet adhesion and thrombus formation, a combination of heparin with PGE₁ or PGI₂ is more inhibitory than either agent by itself.

REFERENCES

1. Baumgartner HR, Stemerman MB, Spaet TH: Adhesion of blood platelets to subendothelial surface distinct from adhesion to collagen. *Experientia* 27:283, 1971
2. Stemerman MB, Baumgartner HR, Spaet TH: The subendothelial microfibril and platelet adhesion. *Lab Invest* 24:179, 1971
3. Baumgartner HR: The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. *Microvasc Res* 5:167, 1973
4. Mason RG, Sharp D, Chuang HYK, et al: The endothelium. Roles in thrombosis and hemostasis. *Arch Pathol Lab Med* 101:61, 1977
5. Groves HM, Kinlough-Rathbone RL, Richardson M, et al: Platelet interaction with damaged rabbit aorta. *Lab Invest* 40:194, 1979
6. Dejana E, Cazenave J-P, Groves HM, et al: The effect of aspirin inhibition of PGI₂ production on platelet adherence to normal and damaged rabbit aortae. *Thromb Res* 17:453, 1980
7. Zucker HD: Platelet thrombosis in human hemostasis; histologic study of skin wounds in normal and purpuric individuals. *Blood* 4:631, 1949
8. Jørgensen L, Borchgrevink CF: The platelet plug in normal persons. I. The histological appearance of the plug 15 to 20 minutes and 24 hours after the bleeding and its rôle in the capillary haemostasis. *Acta Pathol Microbiol Scand* 57:40, 1963
9. French JE, Macfarlane RG, Sanders AG: The structure of haemostatic plugs and experimental thrombi in small arteries. *Br J Exp Pathol* 45:467, 1964
10. Hovig T, Rowsell HC, Dodds WJ, et al: Experimental hemostasis in normal dogs and dogs with congenital disorders of blood coagulation. *Blood* 30:636, 1967
11. Hovig T, Stormorken H: Ultrastructural studies on the platelet plug formation in bleeding time wounds from normal individuals and patients with von Willebrand's disease. *Acta Path Microbiol Scand (suppl)* 248:105, 1974
12. Wester J, Sixma JJ, Geuze JJ, et al: Morphology of the early hemostasis in human skin wounds. Influence of acetylsalicylic acid. *Lab Invest* 39:298, 1978
13. Mustard JF, Packham MA: The reaction of the blood to injury, in Movat HZ (ed): *Inflammation, Immunity and Hypersensitivity* (ed 2) New York, Harper and Row, 1979, p 557
14. Sixma JJ: The haemostatic plug, in Poller L (ed): *Recent Advances in Blood Coagulation*, vol 3. New York, Churchill Livingstone, 1981, p 175
15. Niewiarowski S, Regoeczi E, Stewart GJ, et al: Platelet interaction with polymerizing fibrin. *J Clin Invest* 51:685, 1972
16. Sheppard BL, French JE: Platelet adhesion in the rabbit abdominal aorta following the removal of the endothelium. A scanning and transmission electron microscopical study. *Proc R Soc Lond (Biol)*:176:427, 1971
17. Stemerman MB, Ross R: Experimental atherosclerosis. I. Fibrous plaque formation in primates, an electron microscope study. *J Exp Med* 136:769, 1972
18. Stemerman MB: Thrombogenesis of the rabbit arterial plaque. An electron microscopic study. *Am J Pathol* 73:7, 1973
19. Fishman JA, Ryan GB, Karnovsky MJ: Endo-

- thelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. *Lab Invest* 32:339, 1975
20. Schaub RG, Rawlings CA, Keith JC Jr: Platelet adhesion and myointimal proliferation in canine pulmonary arteries. *Am J Pathol* 104:13, 1981
 21. Adelman B, Stemerman MB, Mennell D, et al: The interaction of platelets with aortic subendothelium: Inhibition of adhesion and secretion by prostaglandin I₂. *Blood* 58:198, 1981
 22. Reddick RL, Griggs TR, Lamb MA, et al: Platelet adhesion to damaged coronary arteries: Comparison in normal and von Willebrand disease swine. *Proc Natl Acad Sci USA* 79:5076, 1982
 23. Zucker-Franklin D, Rosenberg L: Platelet interaction with modified articular cartilage. Its possible relevance to joint repair. *J Clin Invest* 59:641, 1977
 24. Clowes AW, Karnovsky MJ: Failure of certain antiplatelet drugs to affect myointimal thickening following arterial endothelial injury in the rat. *Lab Invest* 36:452, 1977
 25. Groves HM, Richardson M, Kinlough-Rathbone R: Ultrastructural examination of the wall of the aorta after a single balloon catheter injury. *Scan Electron Microsc* 2:491, 1978
 26. Stemerman MB: Vascular intimal components: Precursors of thrombosis, in Spaet TH (ed): *Progress in Hemostasis and Thrombosis*, vol 2. New York, Grune & Stratton, 1974, p 1
 27. Kinlough-Rathbone RL, Groves HM, Mustard JF: Factors influencing vessel wall reactivity following injury. *Thromb Haemost* 50:380, 1983
 28. Chesney CM, Harper E, Colman RW: Human platelet collagenase. *J Clin Invest* 53:1647, 1974
 29. Legrand Y, Pignaud G, Caen JP: Human blood platelet elastase and proelastase. Activation of proelastase and release of elastase after adhesion of platelets to collagen. *Haemostasis* 6:180, 1977
 30. Ehrlich HP, Gordon JL: Proteinases in platelets, in Gordon JL (ed): *Platelets in Biology and Pathology*, vol 1. New York, Elsevier North-Holland, 1976, p 353
 31. Phillips DR, Jakábová M: Ca²⁺-dependent protease in human platelets. Specific cleavage of platelet polypeptides in the presence of added Ca²⁺. *J Biol Chem* 252:5602, 1977
 32. Baumgartner HR, Muggli R: Adhesion and aggregation: Morphological demonstration and quantitation in vivo and in vitro, in Gordon JL (ed): *Platelets in Biology and Pathology*, vol 1. New York, Elsevier North-Holland, 1976, p 23
 33. Baumgartner HR, Muggli R, Tschopp TB, et al: Platelet adhesion, release and aggregation in flowing blood: Effects of surface properties and platelet function. *Thromb Haemost* 35:124, 1976
 34. Fauvel F, Grant ME, Legrand YJ, et al: Interaction of blood platelets with a microfibrillar extract from adult bovine aorta: Requirement for von Willebrand factor. *Proc Natl Acad Sci USA* 80:551, 1983
 35. Huang TW, Benditt EP: Mechanisms of platelet adhesion to the basal lamina. *Am J Pathol* 92:99, 1978
 36. Freytag JW, Dalrymple PN, Maguire MH, et al: Glomerular basement membrane. Studies on its structure and interaction with platelets. *J Biol Chem* 253:9069, 1978
 37. Davis JL, Chandler DKF, Riquetti P, et al: Interaction of bovine platelets with bovine glomerular basement membrane. *Thromb Haemost* 42:1217, 1979
 38. Groves HM, Kinlough-Rathbone RL, Richardson M, et al: Thrombin generation and fibrin formation following injury to rabbit neointima: Studies of vessel wall reactivity and platelet survival. *Lab Invest* 46:605, 1982
 39. Adelman B, Stemerman MB, Handin RI: Interaction of platelets and fibrin with injured rabbit aortic neointima. Effect of prostaglandin I₂ and heparin. *Arteriosclerosis* 3:141, 1983
 40. Jørgensen L, Packham MA, Rowsell HC, et al: Deposition of formed elements of blood on the intima and signs of intimal injury in the aorta of rabbit, pig and man. *Lab Invest* 27:341, 1972
 41. Chandler AB: The anatomy of a thrombus, in Sherry S, Brinkhous KM, Genton E, et al (eds): *Thrombosis*. Washington DC, National Academy of Sciences, 1969, p 279
 42. Piegras DG, Sundt TM Jr, Didisheim P: Effect of anticoagulants and inhibitors of platelet aggregation on thrombotic occlusion of endarterectomized cat carotid arteries. *Stroke* 7:248, 1976
 43. Woolf N: Thrombosis and atherosclerosis, in Chandler AB, Eurenus K, McMillan GC, et al (eds): *The Thrombotic Process in Atherogenesis. Advances in Experimental Medicine and Biology*, vol 104. New York, Plenum, 1978, p 145
 44. Crawford T: Thrombotic occlusion and the plaque, in Jones RJ (ed): *Evolution of the Atherosclerotic Plaque*. Chicago, University of Chicago Press, 1963, p 279
 45. Chandler AB, Chapman I, Erhardt LR, et al:

- Coronary thrombosis in myocardial infarction. Report of a workshop on the role of coronary thrombosis in the pathogenesis of acute myocardial infarction. *Am J Cardiol* 34:823, 1974
46. Crawford T: Pathology of ischaemic heart disease. London, Butterworths, 1977, p 1
47. Friedman M: Pathogenesis of coronary thrombosis, intramural and intraluminal hemorrhage, in: *Thrombosis and Coronary Heart Disease. Advances in Cardiology*, vol 4. New York, Karger, 1970, p 20
48. Constantides P: Plaque fissure in human coronary thrombosis. *J Atheroscler Res* 6:1, 1966
49. Jørgensen L, Haerem JW, Chandler AB, et al: The pathology of acute coronary death. *Acta Anaesthesiol Scand (suppl)* 29:193, 1968
50. Jørgensen L: Mechanisms of thrombosis, in Ioachim HL (ed): *Pathobiology Annual*. New York, Appleton-Century-Crofts, 1971, p 139
51. Davies MJ, Woolf N, Robertson WB: Pathology of acute myocardial infarction with particular reference to occlusive coronary thrombi. *Br Heart J* 38:659, 1976
52. Friedman M, Byers SO: Induction of thrombi on pre-existing arterial plaques. *Am J Pathol* 46:567, 1965
53. Sinäpius D: Häufigkeit und Morphologie der Coronarthrombose und ihre Beziehungen zur antithrombotischen und fibrinolytischen Behandlung. *Klin Wochenschr* 43:37, 1965
54. Warren BA, Lytton DG: The effects and morphology of atheroembolism in limb arteries: An experimental study. *Pathology* 8:231, 1976
55. Fagiotti A, Ross R, Harker L: Early arterial changes in the hypercholesterolemic non-human primate. *Circulation* 66:2, 1982
56. Paterson JC: The pathology of venous thrombi, in Sherry S, Brinkhous KM, Genton E, et al (eds): *Thrombosis*. Washington DC, National Academy of Sciences, 1969, p 321
57. Salzman EW: Prevention of venous thromboembolism by agents affecting platelet function. *Thromb Diath Haemorrh (suppl)* 54:347, 1973
58. Thomas DP, Merton RE, Hockley DJ: The effect of stasis on the venous endothelium: An ultrastructural study. *Br J Haematol* 55:113, 1983
59. Harris WH, Salzman EW, Athanasoulis CA, et al: Aspirin prophylaxis of venous thromboembolism after total hip replacement. *N Engl J Med* 297:1246, 1977
60. Stewart GJ, Ritchie WGM, Lynch PR: Venous endothelial damage produced by massive sticking and emigration of leukocytes. *Am J Pathol* 74:507, 1974
61. Stewart GJ, Lynch PR, Reichle FA, et al: The adhesion of leukocytes, erythrocytes, and non-cellular material to the luminal surface of natural and artificial blood vessels *in vivo*. *Ann NY Acad Sci* 283:179, 1977
62. Johnson SA: Endothelial supporting function of platelets, in Johnson SA (ed): *The Circulating Platelet*. New York, Academic Press, 1971, p 283
63. Gimbrone MA, Aster RH, Cotran RS, et al: Preservation of vascular integrity in organs perfused *in vitro* with platelet-rich medium. *Nature* 222:33, 1969
64. Kitchens CS, Weiss L: Ultrastructural changes of endothelium associated with thrombocytopenia. *Blood* 46:567, 1975
65. Mustard JF, Rowsell HC, Murphy EA: Platelet economy (platelet survival and turnover). *Br J Haematol* 12:1, 1966
66. Hansson SR, Slichter SJ, Harker LA: The platelet requirement for normal hemostasis in man. *Thromb Haemost* 50:189, 1983
67. Majno G, Palade GE: Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study. *J Biophys Biochem Cytol* 11:571, 1961
68. Tranzer IP, Baumgartner HR: Filling gaps in the vascular endothelium with blood platelets. *Nature* 216:1126, 1967
69. French JE: The fine structure of experimental thrombi, in Sherry S, Brinkhous KM, Genton E, et al (eds): *Thrombosis*. Washington DC, National Academy of Sciences, 1969, p 301
70. Hovig T, Dodds WJ, Rowsell HC, et al: The transformation of hemostatic platelet plugs in normal and factor IX deficient dogs. *Am J Pathol* 53:355, 1968
71. Spaet TH, Erichson RB: The vascular wall in the pathogenesis of thrombosis. *Thromb Diath Haemorrh (suppl)* 21:67, 1966
72. Stemerman MB: Anatomy of the blood vessel wall, in Colman RW, Hirsh J, Marder VJ, et al (eds): *Hemostasis and Thrombosis. Basic Principles and Clinical Practice*, Philadelphia, Lippincott, 1982, p 525
73. Booyse FM, Bell S, Sedlak B, et al: Development of an *in vitro* vessel wall model for studying certain aspects of platelet-vessel (endothelial) interactions. *Artery* 1:518, 1975
74. Curwen KD, Gimbrone MA Jr, Handin RI: *In vitro* studies of thromboresistance. The role of prostacyclin (PGI_2) in platelet adhesion to cultured normal and virally transformed human vascular endothelial cells. *Lab Invest* 42:366, 1980
75. Curwen KD, Kim H-Y, Vazquez M, et al:

- Platelet adhesion to cultured vascular endothelial cells. A quantitative monolayer adhesion assay. *J Lab Clin Med* 100:425, 1982
76. Czervionke RL, Hoak JC, Fry GL: Effect of aspirin on thrombin-induced adherence of platelets to cultured cells from blood vessel wall. *J Clin Invest* 62:847, 1978
 77. Czervionke RL, Smith JB, Fry GL, et al: Inhibition of prostacyclin by treatment of endothelium with aspirin. Correlation with platelet adherence. *J Clin Invest* 63:1089, 1979
 78. Kadish JL, Butterfield CE, Folkman J: The effect of fibrin on cultured vascular endothelial cells. *Tissue Cell* 11:99, 1979
 79. Lough J, Moore S: Endothelial injury induced by thrombin or thrombi. *Lab Invest* 33:130, 1975
 80. Hugues J: Accrolement des plaquettes aux structures conjonctives périvasculaires. *Thromb Diath Haemorrh* 8:241, 1962
 81. Bounameaux Y: L'accrolement des plaquettes aux fibres sous endothéliales. *CR Séances Soc Biol* 153:865, 1959
 82. Roskam J: Du rôle de la paroi vasculaire dans l'hémostase spontanée et la pathogénie des états hémorragiques. *Thromb Diath Haemorrh* 12:338, 1964
 83. Kjaerheim A, Hovig T: The ultrastructure of haemostatic blood platelet plugs in rabbit mesenterum. *Thromb Diath Haemorrh* 7:1, 1962
 84. Zucker MB, Borrelli J: Platelet clumping produced by connective tissue suspension and by collagen. *Proc Soc Exp Biol Med* 109:779, 1962
 85. Hovig T: Aggregation of rabbit blood platelets produced in vitro by saline extract of tendons. *Thromb Diath Haemorrh* 9:248, 1963
 86. Gaarder A, Jonsen J, Laland S, et al: Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. *Nature* 192:531, 1961
 87. Hovig T: Release of platelet-aggregating substance (adenosine diphosphate) from rabbit blood platelets induced by saline extract of tendons. *Thromb Diath Haemorrh* 9:264, 1963
 88. Spaet TH, Cintron J: Induction of adenosine-diphosphate release from human platelets by connective tissue fragments. *Thromb Diath Haemorrh* (suppl) 13:335, 1963.
 89. Spaet TH, Zucker MB: Mechanism of platelet plug formation and role of adenosine diphosphate. *Am J Physiol* 206:1267, 1964
 90. Haslam, RJ: Mechanism of blood platelet aggregation, in Johnson SA, Seegers WH (eds): *Physiology of Hemostasis and Thrombosis*. Springfield, Illinois, Thomas, 1967, p 88
 91. Smith JB, Ingberman C, Kocsis JJ, et al: Formation of an intermediate in prostaglandin biosynthesis and its association with the platelet release reaction. *J Clin Invest* 53:1468, 1974
 92. Hamberg M, Svensson J, Wakabayashi T, et al: Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. *Proc Natl Acad Sci USA* 71:345, 1974
 93. Malmsten C, Hamberg M, Svensson J, et al: Physiological role of an endoperoxide in human platelets: Hemostatic defect due to platelet cyclo-oxygenase deficiency. *Proc Natl Acad Sci USA* 72:1446, 1975
 94. Hamberg M, Svensson J, Samuelsson B: Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. *Proc Natl Acad Sci USA* 72:2994, 1975
 95. Kinlough-Rathbone RL, Packham MA, Reimers H-J, et al: Mechanisms of platelet shape change, aggregation and release induced by collagen, thrombin or A23, 187. *J Lab Clin Med* 90:707, 1977
 96. Packham MA, Kinlough-Rathbone RL, Reimers H-J, et al: Mechanisms of platelet aggregation independent of adenosine diphosphate, in Silver MJ, Smith JB, Kocsis JJ (eds): *Prostaglandins in Hematology*. New York, Spectrum, 1977, p 247
 97. Kinlough-Rathbone RL, Cazenave J-P, Packham MA, et al: Effect of inhibitors of the arachidonate pathway on the release of granule contents from rabbit platelets adherent to collagen. *Lab Invest* 42:28, 1980
 98. Zucker MB, Broekman MJ, Kaplan KL: Factor VIII-related antigen in human blood platelets. Localization and release by thrombin and collagen. *J Lab Clin Med* 94:675, 1979
 99. Kaplan KL, Broekman MJ, Chernoff A, et al: Platelet α -granule proteins: Studies on release and subcellular localization. *Blood* 53:604, 1979
 100. Malpass TW, Hanson SR, Savage B, et al: Prevention of acquired transient defect in platelet plug formation by infused prostacyclin. *Blood* 57:736, 1981
 101. Holmsen H: Mechanisms of platelet secretion, in Rotman A, Meyer FA, Gitler C, et al (eds): *Platelets: Cellular Response Mechanisms and Their Biological Significance*. New York, Wiley, 1980, p 249
 102. Niewiarowski S: Platelet release reaction and secreted platelet proteins, in Bloom AL, Thomas DP (eds): *Haemostasis and Thrombosis*. New York, Churchill Livingstone, 1981, p 73.
 103. Ruggeri ZM, Bader R, De Marco L: Glanz-

- mann thrombasthenia: Deficient binding of von Willebrand factor to thrombin-stimulated platelets. *Proc Natl Acad Sci USA* 79:6038, 1982
104. Fujimoto T, Ohara S, Hawiger J: Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets. *J Clin Invest* 69:1212, 1982
105. George JN, Onofre AR: Human platelet surface binding of endogenous secreted factor VIII-von Willebrand factor and platelet factor 4. *Blood* 59:194, 1982
106. Ruggeri ZM, De Marco L, Gatti L, et al: Platelets have more than one binding site for von Willebrand factor. *J Clin Invest* 72:1, 1983
107. Gartner TK, Gerrard JM, White IG, et al: Fibrinogen is the receptor for the endogenous lectin of human platelets. *Nature* 289:688, 1981
108. Phillips DR, Jennings LK, Prasanna HR: Ca^{2+} -mediated association of glycoprotein G (thrombin-sensitive protein, thrombospondin) with human platelets. *J Biol Chem* 255:11629, 1980
109. Jaffe EA, Leung LLK, Nachman RL, et al: Thrombospondin is the endogenous lectin of human platelets. *Nature* 295:246, 1982
110. Ginsberg MH, Painter RG, Forsyth J, et al: Thrombin increases expression of fibronectin antigen on the platelet surface. *Proc Natl Acad Sci USA* 77:1049, 1980
111. Ginsberg MH, Plow EF, Forsyth J: Fibronectin expression on the platelet surface occurs in concert with secretion. *J Supramol Struct Cell Biochem* 17:91, 1981
112. Mustard JF, Packham MA, Kinlough-Rathbone RL, et al: Fibrinogen and ADP-induced aggregation. *Blood* 52:453, 1978
113. Bennett JS, Vilaire G: Exposure of human platelet fibrinogen receptors by ADP and epinephrine. *J Clin Invest* 64:1393, 1979
114. Marguerie GA, Plow EF, Edgington TS: Human platelets possess an inducible and saturable receptor specific for fibrinogen. *J Biol Chem* 254:5357, 1979
115. Peerschke EI, Zucker MB, Grant RA, et al: Correlation between fibrinogen binding to human platelets and platelet aggregability. *Blood* 55:841, 1980
116. Harfenist EJ, Packham MA, Mustard JF: Reversibility of the association of fibrinogen with rabbit platelets exposed to ADP. *Blood* 56:189, 1980
117. Niewiarowski S, Budzynski AZ, Morinelli TA, et al: Exposure of fibrinogen receptor on human platelets by proteolytic enzymes. *J Biol Chem* 256:917, 1981
118. Nachman RL, Leung LLK: Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. *J Clin Invest* 69:263, 1982
119. Kunicki TJ, Pidard D, Rosa J-P, et al: The formation of Ca^{2+} -dependent complexes of platelet membrane glycoproteins IIb and IIIa in solution as determined by crossed immunoelectrophoresis. *Blood* 58:268, 1981
120. Kaplan KL, Owen J: Plasma levels of β -thromboglobulin and platelet factor 4 as indices of platelet activation in vivo. *Blood* 57:199, 1981
121. Goldberg ID, Sternerman MB, Handin RI: Vascular permeation of platelet factor 4 after endothelial injury. *Science* 209:611, 1980
122. Ross R, Glomset JA: The pathogenesis of atherosclerosis. *N Engl J Med* 7:369, 1976
123. Ross R: Atherosclerosis: A problem of the biology of arterial wall cells and their interactions with blood components. *Arteriosclerosis* 1:293, 1981
124. Moore S, Friedman RJ, Singal DP, et al: Inhibition of injury-induced thromboatherosclerotic lesions by anti-platelet serum in rabbits. *Thromb Haemost* 35:70, 1976
125. Friedman RJ, Sternerman MB, Wenz B, et al: The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. I. Smooth muscle cell proliferation and reendothelialization. *J Clin Invest* 60:1191, 1977
126. Jackson CM, Nemerson Y: Blood coagulation. *Annu Rev Biochem* 49:765, 1980
127. Kane WH, Marjonus PW: The interaction of human coagulation factor V_a with platelets. *J Biol Chem* 257:3963, 1982
128. Smith JB: The prostanoids in hemastasis and thrombosis. A review. *Am J Pathol* 99:741, 1980
129. Moncada S, Vane JR: Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A₂, and prostacyclin. *Pharmacol Rev* 30:293, 1978
130. Rittenhouse-Simmons S: Production of di-glyceride from phosphatidylserine in activated human platelets. *J Clin Invest* 63:580, 1979
131. Bell RL, Kennerly DA, Stanford N, et al: Di-glyceride lipase: A pathway for arachidonate release from human platelets. *Proc Natl Acad Sci USA* 76:3238, 1979
132. Bills TK, Smith JB, Silver MJ: Selective release of arachidonic acid from the phospholipids of human platelets in response to thrombin. *J Clin Invest* 60:1, 1977
133. Marcus AJ: The role of prostaglandins in platelet function, in Brown EB (ed): *Progress in Hematology II*. New York, Grune & Stratton, 1979, p 147

134. Baumgartner HR, Muggli R: Effect of acetylsalicylic acid on platelet adhesion to subendothelium and on the formation of mural platelet thrombi. *Thromb Diath Haemorrh (suppl)* 60:345, 1974
135. Weiss HJ, Tschoopp TB, Baumgartner HR: Impaired interaction (adhesion-aggregation) of platelets with the subendothelium in storage-pool disease and after aspirin ingestion. *N Engl J Med* 293:619, 1975
136. Tschoopp TB: Aspirin inhibits platelet aggregation on but not adhesion to, collagen fibrils: An assessment of platelet adhesion and deposited platelet mass by morphometry and ^{51}Cr -labeling. *Thromb Res* 11:619, 1977
137. Cazenave J-P, Packham MA, Kinlough-Rathbone RL, et al: Platelet adherence to the vessel wall and to collagen-coated surfaces, in Day HJ, Molony BA, Nishizawa EE, et al (eds): *Thrombosis: Animal and Clinical Models*, vol 102. New York, Advances in Experimental Medicine and Biology, 1978, p 31
138. Weiss HJ, Turitto VT, Vicic WJ, et al: Effect of aspirin and dipyridamole on interaction of human platelets with sub-endothelium: Studies using citrated and native blood. *Thromb Haemost* 45:136, 1981
139. Legrand YJ, Fauvel F, Kartalis G, et al: Specific and quantitative method for estimation of platelet adhesion to fibrillar collagen. *J Lab Clin Med* 94:438, 1979
140. Kinlough-Rathbone RL, Packham MA, Mustard JF: Synergism between platelet aggregating agents: The role of the arachidonate pathway. *Thromb Res* 11:567, 1977
141. Huang EM, Detwiler TC: Characteristics of the synergistic actions of platelet agonists. *Blood* 57:685, 1981
142. Cowan DH, Robertson AL, Shook P, et al: Platelet adherence to collagen: Role of plasma, ADP and divalent cations. *Br J Haematol* 47:257, 1981
143. Cazenave J-P, Packham MA, Guccione MA, et al: Inhibition of platelet adherence to a collagen-coated surface by agents that inhibit platelet shape change and clot retraction. *J Lab Clin Med* 84:483, 1974
144. Tschoopp TB, Baumgartner HR: Enzymatic removal of ADP from plasma: Unaltered platelet adhesion but reduced aggregation on subendothelium and collagen fibrils. *Thromb Haemost* 35:334, 1976
145. Meyer FA, Frojmovic MM: Characteristics of the major platelet membrane site used in binding to collagen. *Thromb Res* 15:755, 1979
146. Packham MA: Platelet function inhibitors. *Thromb Haemost* 50:610, 1983
147. Bertele V, Cerletti C, Schieppati A, et al: Inhibition of thromboxane synthetase does not necessarily prevent platelet aggregation. *Lancet* 1:1057, 1981
148. Menys VC, Davies JA: Selective inhibition of thromboxane synthetase with dazoxiben—basis of its inhibitory effect on platelet adhesion. *Thromb Haemost* 49:96, 1983
149. Morley J, Bray MA, Jones RW, et al: Prostaglandin and thromboxane production by human and guinea-pig macrophages and leukocytes. *Prostaglandins* 17:730, 1979
150. Holmseen H: Are platelet shape change, aggregation, and release reaction tangible manifestations of one basic platelet function? The general sequence of events, in Baldini MG, Ebbe S (eds): *Platelets: Production, Function, Transfusion and Storage*. New York, Grune & Stratton, 1974, p207
151. Charo IF, Feinman RD, Detwiler TC: Inhibition of platelet secretion by an antagonist of intracellular calcium. *Biochem Biophys Res Commun* 72:1462, 1976
152. LeBreton GC, Dinerstein RJ: Effect of the calcium antagonist TMB-6 on intracellular calcium redistribution associated with platelet shape change. *Thromb Res* 10:521, 1977
153. Detwiler TC, Charo IF, Feinman RD: Evidence that calcium regulates platelet function. *Thromb Haemost* 40:207, 1978
154. Gerrard JM, White JC: Prostaglandins and thromboxanes: Molecules modulating platelet function in hemostasis and thrombosis, in Spaet TH (ed): *Progress in Hemostasis and Thrombosis*, vol 4. New York, Grune & Stratton, 1978, p87
155. Massini P, Käser-Glanzmann R, Lüscher EF: Movement of calcium ions and their role in the activation of platelets. *Thromb Haemost* 40:212, 1978
156. Haslam RJ, Lynham JA, Fox JEB: Effects of collagen, ionophore A23187 and prostaglandin E₁ on the phosphorylation of specific proteins in blood platelets. *Biochem J* 178:397, 1979
157. Feinstein MB: Release of intracellular membrane-bound calcium precedes the onset of stimulus-induced exocytosis in platelets. *Biochem Biophys Res Commun* 93:593, 1980
158. Feinstein MB, Walenga R: The role of calcium in platelet activation, in Becker EL, Simon AS, Austen KF (eds): *Biochemistry of the Acute Allergic Reactions*. New York, Alan R Liss, 1981, p 279
159. Gerrard JM, Peterson DA, White JG: Calcium

- mobilization, in Gordon JL (ed): *Platelets in Biology and Pathology*, vol 2. New York, Elsevier North-Holland, 1981, p 407
160. Rink TJ, Smith SW, Tsien RY: Intracellular free calcium in platelet shape change and aggregation. *J Physiol (London)* 324:53P, 1982
161. White JG: Interaction of membrane systems in blood platelets. *Am J Pathol* 66:295, 1972
162. Cutler L, Rodan G, Feinstein MB: Cytochemical localization of adenylate cyclase and of calcium ion, magnesium ion-activated ATPases in the dense tubular system of human blood platelets. *Biochim Biophys Acta* 542:357, 1978
163. Daimon T, Mizuhira V, Uchida K: Ultrastructural localization of calcium around the membrane of the surface connected system in the human platelet. *Histochemistry* 55:271, 1978
164. Sanchez A, Rink TJ: Collagen stimulates platelets without raising cytoplasmic free Ca^{2+} . *Thromb Haemost* 50:125, 1983
165. Hallam TJ, Sanchez A, Rink TJ: ADP increases cytoplasmic free Ca^{2+} in quin 2-loaded human platelets, mainly by influx across the plasma membrane. *Thromb Haemost* 50:76, 1983
166. Haslam RJ, Lynham JA: Relationship between phosphorylation of blood platelet proteins and secretion of platelet granule constituents. I. Effects of different aggregating agents. *Biochem Biophys Res Commun* 77:714, 1977
167. Hathaway DR, Adelstein RS: Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. *Proc Natl Acad Sci USA* 76:1653, 1979
168. Daniel JL, Holmsen H, Adelstein RS: Thrombin-stimulated myosin phosphorylation in intact platelets and its possible involvement in secretion. *Thromb Haemost* 38:984, 1977
169. Haslam RJ, Davidson MML, Davies T: Regulation of blood platelet function by cyclic nucleotides, in George WJ, Ignarro LJ (eds): *Adv Cyclic Nucleotide Res*, vol 9. New York, Raven Press, 1978, p 533
170. Nishizuka Y: Phospholipid degradation and signal transduction for protein phosphorylation. *TIBS* 8:13, 1983
171. Michell RH: Ca^{2+} and protein kinase C: Two synergistic cellular signals. *TIBS* 8:263, 1983
172. Rittenhouse SE, Allen CL: Synergistic activation by collagen and 15-hydroxy- $9\alpha,11\alpha$ -peroxidoprosta-5,13-dienoic acid (PGH_2) of phosphatidylinositol metabolism and arachidonic acid release in human platelets. *J Clin Invest* 70:1216, 1982
173. Lapetina EG, Billah MM, Cuatrecasas P: The initial action of thrombin on platelets. Conversion of phosphatidylinositol to phosphatidic acid preceding the production of arachidonic acid. *J Biol Chem* 256:5037, 1981
174. Michell RH, Kirk CJ: The unknown meaning of receptor-stimulated inositol lipid metabolism. *TIPS* 3:140, 1982
175. Imai A, Yano K, Kameyama Y, et al: Evidence for predominance of phospholipase A_2 in release of arachidonic acid in thrombin-activated platelets. Phosphatidylinositol-specific phospholipase C may play a minor role in arachidonate liberation. *Jpn J Exp Med* 52:99, 1982
176. Lapetina EG: Regulation of arachidonic acid production: Role of phospholipases C and A_2 . *TIPS* 3:116, 1982
177. Chap H, Mauco G, Perret B, et al: Studies on topological distribution of arachidonic acid replacement in platelet phospholipids and on enzymes involved in the phospholipid effect accompanying platelet activation. *Agents Actions* 11:538, 1981
178. Broekman MJ, Ward JW, Marcus AJ: Fatty acid composition of phosphatidylinositol and phosphatidic acid in stimulated platelets. Persistence of arachidonoyl-stearyl structure. *J Biol Chem* 256:8271, 1981
179. Kishimoto A, Takai Y, Mori T, et al: Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. *J Biol Chem* 255:2273, 1980
180. Buchanan MR, Butt RW, Markham B, et al: Effects of aspirin and salicylate on platelet function. *Thromb Haemost* 50:101, 1983
181. Hovig T: The ultrastructure of blood platelets in normal and abnormal states. *Ser Haematol* 1:2:3, 1968
182. Hovig T, Jørgensen L, Packham MA, et al: Platelet adherence to fibrin and collagen. *J Lab Clin Med* 71:29, 1968
183. Jørgensen L, Rowsell HC, Hovig T, et al: Resolution and organization of platelet-rich mural thrombi in carotid arteries of swine. *Am J Pathol* 51:681, 1967
184. Jaffe RM: Interaction of platelets with connective tissue, in Gordon JL (ed): *Platelets in Biology and Pathology*, vol 1. New York, Elsevier North-Holland, 1976, p 261
185. Miller EJ: Biochemical characteristics and biological significance of the genetically-distinct collagens. *Mol Cell Biochem* 13:165, 1976
186. Weiss JB, Ayad S: An introduction to collagen, in Weiss JB, Jayson MIV (eds): *Collagen in Health and Disease*. New York, Churchill Livingstone, 1982, p 1

187. Legrand Y, Fauvel F, Caen JP: Platelet-collagen interactions. *Compr Ther* 3:59, 1977
188. Muggli R, Baumgartner HR: Collagen induced platelet aggregation: Requirement for tropocollagen multimers. *Thromb Res* 3:715, 1973
189. Beachey EH, Chiang TM, Kang AH: Collagen-platelet interaction, in Hall DA, Jackson DS (eds): *International Review of Connective Tissue Research*, vol 8. New York, Academic Press, 1979, p 1
190. Santoro SA, Cunningham LW: The interaction of platelets with collagen, in Gordon JL (ed): *Platelets in Biology and Pathology*, vol 2. New York, Elsevier North-Holland, 1981, p 249
191. Martinez-Hernandez A, Amenta PS: The basement membrane in pathology. *Lab Invest* 48:656, 1983
192. Barnes MJ, MacIntyre DE: Platelet-reactivity of isolated constituents of the blood vessel wall. *Haemostasis* 8:158, 1979
193. Treistad RL, Carvalho ACA: Type IV and type A-B collagens do not elicit platelet aggregation or the serotonin release reaction. *J Lab Clin Med* 93:499, 1979
194. Cazenave J-P, Packham MA, Mustard JF: Adherence of platelets to a collagen-coated surface: Development of a quantitative method. *J Lab Clin Med* 82:978, 1973
195. Jaffe R, Deykin D: Evidence for a structural requirement for the aggregation of platelets by collagen. *J Clin Invest* 53:875, 1974
196. Gordon JL, Dingle JT: Binding of radiolabelled collagen to blood platelets. *J Cell Sci* 16:157, 1974
197. Kronick P, Jimenez SA: The size of collagen fibrils that stimulate platelet aggregation in human plasma. *Biochem J* 186:5, 1980
198. Simons ER, Chesney CM, Colman RW, et al: The effect of the conformation of collagen on its ability to aggregate platelets. *Thromb Res* 7:123, 1975
199. Brass LF, Bensusan HB: The role of collagen quaternary structure in the platelet:collagen interaction. *J Clin Invest* 54:1480, 1974
200. Muggli R: Collagen-induced platelet aggregation: Native collagen quaternary structure is not an essential structural requirement. *Thromb Res* 13:829, 1978
201. Michaeli D, Orloff KG: Molecular considerations of platelet adhesion, in Spaet TH (ed): *Progress in Hemostasis and Thrombosis*, vol 3. New York, Grune & Stratton, 1976, p 29
202. Rhodes RK: The blood vessel, in Weiss JB, Jayson MIV (eds): *Collagen in Health and Disease*. New York, Churchill Livingstone, 1982, p 376
203. Balleisen L, Gay S, Marx R, et al: Comparative investigation on the influence of human and bovine collagen types I, II and III on the aggregation of human platelets. *Klin Wochenschr* 53:903, 1975
204. Hugues J, Héron F, Nusgens B, et al: Type III collagen and probably not type I collagen aggregates platelets. *Thromb Res* 9:223, 1976
205. Gordon JL: Mechanism of platelet-collagen interaction. *Nature* 278:13, 1979
206. Santoro SA, Cunningham LW: Collagen-mediated platelet aggregation. Evidence for multi-valent interactions of intermediate specificity between collagen and platelets. *J Clin Invest* 60:1054, 1977
207. Barnes MJ, Gordon JL, MacIntyre DE: Platelet-aggregating activity of type I and type III collagens from human aorta and chick skin. *Biochem J* 160:647, 1976
208. Balleisen L, Rauterberg J: Platelet activation by basement membrane collagens. *Thromb Res* 18:725, 1980
209. Huang TW, Benditt EP: Human platelets and glomerular basal lamina interaction, in Lubec G (ed): *The Glomerular Basement Membrane: Renal Physiol*, vol 3. Basel, Karger, 1980, p 205
210. Wilner GD, Nossel HL, LeRoy EC: Aggregation of platelets by collagen. *J Clin Invest* 47:2616, 1968
211. Chesney CM, Pifer DD, Crofford LJ, et al: Reevaluation of the role of the polar groups of collagen in the platelet-collagen interaction. *Am J Pathol* 112:200, 1983
212. Wilner GD, Nossel HL, Procupez TL: Aggregation of platelets by collagen: Polar active sites of insoluble human collagen. *Am J Physiol* 220:1074, 1971
213. Nossel HL, Wilner GD, LeRoy EC: Importances of polar groups for initiating blood coagulation and aggregating platelets. *Nature* 221:75, 1969
214. Balleisen L, Marx R, Kühn K: Platelet-collagen interaction. The influence of native and modified collagen (type I) on the aggregation of human platelets. *Haemostasis* 5:155, 1976
215. Jamieson GA, Urban CL, Barber AJ: Enzymatic basis for platelet:collagen adhesion as the primary step in haemostasis. *Nature (New Biol)* 234:5, 1971
216. Jamieson GA, Smith DF, Kosow DP: Possible role of collagen: glucosyltransferase in platelet adhesion. Mechanistic considerations. *Thromb Diath Haemorrh* 33:668, 1975
217. Puett D, Wasserman BK, Ford JD, et al: Collagen-mediated platelet aggregation. Effects of

- collagen modification involving the protein and carbohydrate moieties. *J Clin Invest* 52:2495, 1972
218. Legrand Y, Caen JP, Robert L: Effect of glucosamine on platelet-collagen reaction. *Proc Soc Exp Biol Med* 127:941, 1968
219. Cazenave J-P, Guccione MA, Mustard JF, et al: Lack of effect of UDP, UDPG and glucosamine on platelet reactions with collagen. *Thromb Diath Haemorrh* 31:521, 1974
220. Chesney CM, Harper E, Colman RW: Critical role of carbohydrate side chains of collagen in platelet aggregation. *J Clin Invest* 51:2693, 1972
221. Harper E, Simons ER, Chesney CM, et al: The effect of chemical or enzymatic modifications upon the ability of collagen to form multimers and to initiate platelet aggregation. *Thromb Res* 7:113, 1975
222. Menashi S, Harwood R, Grant ME: Native collagen is not a substrate for the collagen glycosyltransferase of platelets. *Nature* 264:670, 1976
223. Le Pape A, Guitton JD, Gutman N, et al: Non-enzymatic glycosylation of collagen in diabetes: Incidence on increased normal platelet aggregation. *Haemostasis* 13:36, 1983
224. Heath H, Brigden WD, Canever JV, et al: Platelet adhesiveness and aggregation in relation to diabetic retinopathy. *Diabetologia* 7:308, 1971
225. Wojtecka-Lukasik E, Sopata I, Wize J, et al: Adhesion of platelets to collagen devoid of telopeptides. *Thromb Diath Haemorrh* 18:76, 1967
226. Fujimori T, Kobayashi S, Tajima T, et al: The interaction of platelets with native, elastase-treated and collagenase-treated collagens. *Biomed Res* 3:487, 1982
227. Chesney CM, Pifer DD, Dabbous MK, et al: The role of the telopeptide region of collagen in the platelet-collagen interaction. *Thromb Res* 14:445, 1979
228. Barnhart MI, Chen S-T: Vessel wall models for studying interaction capabilities with blood platelets. *Semin Thromb Hemostas* 5:112, 1978
229. Meyer FA, Weisman Z: Adhesion of platelets to collagen. The nature of the binding site from competitive inhibition studies. *Thromb Res* 12:431, 1978
230. Kang AH, Beachey EH, Katzman RL: Interaction of an active glycopeptide from chick skin collagen (α_1 -CB5) with human platelets. *J Biol Chem* 249:1054, 1974
231. Chiang TM, Beachey EH, Kang AH: Interaction of a chick skin collagen fragment (α_1 -CB5) with human platelets. Biochemical studies during the aggregation and release reaction. *J Biol Chem* 250:6916, 1975
232. Chiang TM, Kang AH: Binding of chick skin collagen α_1 chain by isolated membranes from human platelets. *J Biol Chem* 251:6347, 1976
233. Chiang TM, Beachey EH, Kang AH: Binding of collagen α_1 chains to human platelets. *J Clin Invest* 59:405, 1977
234. Chiang TM, Kang AH: Isolation and purification of collagen α_1 (I) receptor from human platelet membrane. *J Biol Chem* 257:7581, 1982
235. Legrand Y, Karnigian A, Fauvel F: The adhesion of blood platelets to collagen: Molecular features of collagen. *Nouv Rev Fr Hematol* 23:143, 1981
236. Fauvel F, Legrand YJ, Caen JP: Platelet adhesion to type I collagen and alpha 1(I)3 trimers: Involvement of the C-terminal alpha 1(I) CB6A peptide. *Thromb Res* 12:273, 1978
237. Legrand Y, Fauvel F, Caen JP: Adhesion of platelets to collagen: Platelet interaction with particular amino acid sequences of type I and type III collagens. *C R Acad Sci (Paris)*, 290:1115, 1980
238. Fauvel F, Legrand YJ, Bentz H, et al: Platelet-collagen interaction: Adhesion of human blood platelets to purified (CB4) peptide from type III collagen. *Thromb Res* 12:841, 1978
239. Fauvel F, Legrand YJ, Kühn K, et al: Platelet adhesion to type III collagen: Involvement of a sequence of nine amino acids from α_1 (III) CB4 peptide. *Thromb Res* 16:269, 1979
240. Fauvel F, Legrand YJ: Inhibition of type III collagen induced platelet aggregation by active α_1 (III) CB4 peptide fragments. *Thromb Res* 17:285, 1980
241. Legrand YJ, Karnigian A, Le Francier P, et al: Evidence that a collagen-derived nonapeptide is a specific inhibitor of platelet-collagen interaction. *Biochem Biophys Res Commun* 96:1579, 1980
242. Karnigian A, Legrand Y, Lefrancier P: Collagen octapeptide: Its effect on platelet collagen interaction and platelet cAMP level. *Thromb Haemost* 50:403, 1983
243. Haslam RJ: Roles of cyclic nucleotides in platelet function, in Elliott R, Knight J (eds): *Biochemistry and Pharmacology of Platelets*. Ciba Foundation Symposium 35 (new series). New York, Elsevier North-Holland, 1975, p 121
244. Kronick P, Jimenez S: Collagen structure and binding to platelets. *Fed Proc* 34:855, 1975
245. Brown JA, Jimenez SA, Colman RW: Colla-

- gen-induced platelet shape change. *J Lab Clin Med* 95:90, 1980
246. Lahav J: Platelet membrane components involved in adhesion to collagen fibers. *Thromb Haemost* 42:162, 1979
247. Kotite NJ, Staros JV, Cunningham LW: Identification of a collagen receptor on the membrane of human platelets. *Circulation* 66:ii, 1982
248. Nurden AT, Caen JP: Specific roles for platelet surface glycoproteins in platelet function. *Nature* 255:720, 1975
249. Caen JP, Nurden AT, Kunicki TJ: Inherited abnormalities of platelet glycoproteins. *Philos Trans R Soc Lond Biol* 294:281, 1981
250. Nurden AT, Dupuis D, Kunicki TJ, et al: Analysis of the glycoprotein and protein composition of Bernard-Soulier platelets by single and two-dimensional SDS-polyacrylamide gel electrophoresis. *J Clin Invest* 67:1431, 1981
251. Hagen I, Nurden A, Bjerrum OJ, et al: Immunohistochemical evidence for protein abnormalities in platelets from patients with Glanzmann's thrombasthenia and Bernard-Soulier syndrome. *J Clin Invest* 65:722, 1980
252. Weiss HJ, Tschoopp TB, Baumgartner HR, et al: Decreased adhesion of giant (Bernard-Soulier) platelets to subendothelium: Further implications on the role of the von Willebrand factor in hemostasis. *Am J Med* 57:920, 1974
253. Caen JP, Nurden AT, Jeanneau C, et al: Bernard-Soulier syndrome: A new platelet glycoprotein abnormality. Its relationship with platelet adhesion to subendothelium and with the factor VIII von Willebrand protein. *J Lab Clin Med* 87:586, 1976
254. Hoyer LW: Von Willebrand's disease, in Spaet TH (ed): *Progress in Hemostasis and Thrombosis*. New York, Grune & Stratton, 1976, p 231
255. Triplett DA: *Platelet Function. Laboratory Evaluation and Clinical Application*. Chicago, American Society of Clinical Pathologists, 1978, Appendix B, p 264
256. Bolhuis PA, Sakariassen KS, Sixma JJ: Adhesion of blood platelets to human arterial subendothelium: Role of factor VIII-von Willebrand factor. *Haemostasis* 8:312, 1979
257. Tschoopp TB, Baumgartner HR, Silberbauer K, et al: Platelet adhesion and platelet thrombus formation on subendothelium of human arteries and veins exposed to flowing blood in vitro. A comparison with rabbit aorta. *Haemostasis* 8:19, 1979
258. Baumgartner HR, Haudenschild C: Adhesion of platelets to subendothelium. *Ann NY Acad Sci* 201:22, 1972
259. Kefalides NA, Alper R, Clark CC: Biochemistry and metabolism of basement membranes. *Int Rev Cytol* 61:167, 1979
260. Timpl R, Wiedemann H, Van Delden V, et al: A network model for the organization of type IV collagen molecules in basement membranes. *Eur J Biochem* 120:203, 1981
261. Kefalides NA: Basement membrane collagen, in Weiss JB, Jayson MIV (eds): *Collagen in Health and Disease*. New York, Churchill Livingstone, 1982, p 313
262. Stanley JR, Woodley DT, Katz SI, et al: Structure and function of basement membranes. *J Invest Dermatol* (suppl 1) 79:69, 1982
263. Kanwar YS, Farquhar MG: Presence of heparan sulfate in the glomerular basement membrane. *Proc Natl Acad Sci USA* 76:1303, 1979
264. Kanwar YS, Farquhar MG: Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. *Proc Natl Acad Sci USA* 76:4493, 1979
265. Stenman S, Vaheri A: Distribution of a major connective tissue protein, fibronectin, in normal human tissues. *J Exp Med* 147:1054, 1978
266. Huang TW, Lagunoff D, Benditt EP: Nonaggregative adherence of platelets to basal lamina in vitro. *Lab Invest* 31:156, 1974
267. Packham MA, Guccione MA, Nina M, et al: Effect of Tris on responses of human and rabbit platelets to aggregating agents. *Thromb Haemost* 81:140, 1984
268. Suresh AD, Stemerman MB, Spaet TH: Rabbit heart valve basement membrane: Low platelet reactivity. *Blood* 41:359, 1973
269. Movat HZ, Fernando NVP: Allergic inflammation. I. The earliest fine structural changes at the blood-tissue barrier during antigen-antibody interaction. *Am J Pathol* 42:41, 1963
270. Muggli R, Baumgartner HR: Collagen coated gelatine tubes for the investigation of platelet adhesion and subsequent platelet aggregation under controlled flow conditions. *Thromb Diath Haemorrh* 34:333, 1975
271. Baumgartner HR: Platelet interaction with collagen fibrils in flowing blood. I. Reaction of human platelets with α chymotrypsin-digested subendothelium. *Thromb Haemost* 37:1, 1977
272. Sakariassen KS, Bolhuis PA, Sixma JJ: Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-von Willebrand factor bound to the subendothelium. *Nature* 279:636, 1979
273. Cazenave J-P, Blondowska D, Richardson M, et al: Quantitative radioisotopic measurement and scanning electron microscopic study of platelet adherence to a collagen-coated surface

- and to subendothelium with a rotating probe device. *J Lab Clin Med* 93:60, 1979
274. Kinlough-Rathbone RL, Mustard JF, Perry DW, et al: Factors influencing the deaggregation of human and rabbit platelets. *Thromb Haemost* 49:162, 1983
275. Turitto VT, Baumgartner HR: Platelet-surface interactions, in Colman RW, Hirsh J, Marder VJ, et al (eds): *Hemostasis and Thrombosis. Basic Principles and Clinical Practice*. Philadelphia, Lippincott, 1982, p 364
276. Sakariassen KS, Aarts PAMM, de Groot PG, et al: A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components. *J Lab Clin Med* 102:522, 1983
277. Feuerstein IA, Brophy JM, Brash JL: Platelet transport and adhesion to reconstituted collagen and artificial surfaces. *Trans Am Soc Artif Intern Organs* 21:427, 1975
278. Muggli R, Baumgartner HR, Tschoop TB: Automated microdensitometry and protein assays as a measure for platelet adhesion and aggregation on collagen-coated slides under controlled flow conditions. *J Lab Clin Med* 95:195, 1980
279. MacKenzie RD, Thompson RJ, Gleason EM: Evaluation of a quantitative platelet-collagen adhesiveness test system. *Thromb Res* 5:99, 1974
280. Mant MJ: Platelet adherence to collagen. The influence of acetylsalicylic acid. *Haemostasis* 12:262, 1982
281. Spaet TH, Lejnieks I: A technique for estimation of platelet-collagen adhesion. *Proc Soc Exp Biol Med* 132:1038, 1969
282. Castellan RM, Steiner M: Effect of platelet age on adhesiveness to collagen and platelet surface charge. *Thromb Haemost* 36:392, 1976
283. Brass LF, Faile D, Bensusan HB: Direct measurement of the platelet:collagen interaction by affinity chromatography on collagen/Sepharose. *J Lab Clin Med* 87:525, 1976
284. Shadie PJ, Barondes SH: Adhesion of human platelets to immobilized trimeric collagen. *J Cell Biol* 95:361, 1982
285. Santoro SA, Cunningham LW: Fibronectin and the multiple interaction model for platelet-collagen adhesion. *Proc Natl Acad Sci USA* 76:2644, 1979
286. Baumgartner HR: Effects of anticoagulation on the interaction of human platelets with subendothelium in flowing blood. *Schweiz Med Wochenschr* 106:1367, 1976
287. Weiss HJ, Turitto VT, Baumgartner HR: Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. I. Shear rate-dependent decrease of adhesion in von Willebrand's disease and the Bernard-Soulier syndrome. *J Lab Clin Med* 92:750, 1978
288. Baumgartner HR, Turitto VT, Weiss HJ: Effects of shear rate on platelet interaction with subendothelium in citrated and native blood. II. Relationships among platelet adhesion, thrombus dimensions, and fibrin formation. *J Lab Clin Med* 95:208, 1980
289. Mant MJ: Platelet adherence to collagen: A simple, reproducible, quantitative method for its measurement. *Thromb Res* 11:729, 1977
290. Hirsh J, Glynn MF, Mustard JF: The effect of platelet age on platelet adherence to collagen. *J Clin Invest* 47:466, 1968
291. Turitto VT, Baumgartner HR: Platelet interaction with subendothelium in a perfusion system: Physical role of red blood cells. *Microvasc Res* 9:335, 1975
292. Dosne AM, Merville C, Drouet L, et al: Importance of transport mechanisms in circulating blood for platelet deposition on arterial subendothelium. *Microvasc Res* 14:45, 1977
293. Turitto VT, Weiss HJ: Red blood cells: Their dual role in thrombus formation. *Science* 207:541, 1980
294. Goldsmith HL: The flow of model particles and blood cells and its relation to thrombogenesis, in Spaet TH (ed): *Progress in Hemostasis and Thrombosis*, vol 1. New York, Grune & Stratton, 1972, p 97
295. Aarts PAMM, Bolhuis PA, Sarkariassen KS, et al: Red blood cell size is important for adherence to blood platelets to artery subendothelium. *Blood* 62:214, 1983
296. Leonard EF, Grabowski EF, Turitto VT: The role of convection and diffusion on platelet adhesion and aggregation. *Ann NY Acad Sci* 201:329, 1972
297. Born GVR, Bergqvist D, Arfors K-E: Evidence for inhibition of platelet activation in blood by a drug effect on erythrocytes. *Nature* 259:233, 1976
298. Zawilska KM, Born GVR, Begent NA: Effect of ADP-utilizing enzymes on the arterial bleeding time in rats and rabbits. *Br J Haematol* 50:317, 1982
299. Schmid-Schönbein H, Born GVR, Richardson PD, et al: Rheology of thrombotic processes in flow: The interaction of erythrocytes and thrombocytes subject to high flow forces. *Biorheology* 18:415, 1981
300. Turitto VT: Blood viscosity, mass transport, and thrombogenesis, in Spaet TH (ed): Pro-

- gress in Hemostasis and Thrombosis, vol 6. New York, Grune & Stratton, 1982, p 139
301. Goldsmith HL, Karino T: Mechanically induced thromboemboli, in Hwang NHC, Gross DR, Patel DJ (eds): Quantitative Cardiovascular Studies. Clinical and Research Applications of Engineering Principles, Baltimore, University Park Press, 1979, p 289
302. Richardson PD: Rheological factors in platelet-vessel wall interactions. *Philos Trans R Soc Lond Biol* 294:251, 1981
303. Turitto VT, Baumgartner HR: Platelet interaction with subendothelium in flowing rabbit blood: Effect of blood shear rate. *Microvasc Res* 17:38, 1979
304. Karino T, Goldsmith HL: Adhesion of human platelets to collagen on the walls distal to a tubular expansion. *Microvasc Res* 17:238, 1979
305. Murphy EA, Rawsell HC, Downie HG, et al: Encrustation and atherosclerosis: The analogy between early *in vivo* lesions and deposits which occur in extracorporeal circulations. *Can Med Assoc J* 87:259, 1962
306. Ross R, Glomset J, Kariya B, et al: A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells *in vitro*. *Proc Natl Acad Sci USA* 71:1207, 1974
307. Ross R, Vogel A: The platelet-derived growth factor. *Cell* 14:203, 1978
308. Begent N, Born GVR: Growth rate *in vivo* of platelet thrombi, produced by iontophoresis of ADP, as a function of mean blood flow velocity. *Nature* 227:926, 1970
309. Adams GA, Brown SJ, McIntire LV, et al: Kinetics of platelet adhesion and thrombus growth. *Blood* 62:69, 1983
310. Lahav J, Schwartz MA, Hynes RO: Analysis of platelet adhesion with a radioactive chemical cross-linking reagent: Interaction of thrombospondin with fibronectin and collagen. *Cell* 31:253, 1982
311. Leung LLK, Nachman RL: Complex formation of platelet thrombospondin with fibrinogen. *J Clin Invest* 70:542, 1982
312. Meyer D, Baumgartner HR: Role of von Willebrand factor in platelet adhesion to the subendothelium. *Br J Haematol* 54:1, 1983
313. Baumgartner HR, Tschoopp TB, Meyer D: Shear rate dependent inhibition of platelet adhesion and aggregation on collagenous surfaces by antibodies to human factor VIII/von Willebrand Factor. *Br J Haematol* 44:127, 1980
314. Rand JH, Sussman II, Gordon RE, et al: Localization of Factor-VIII-related antigen in human vascular subendothelium. *Blood* 55:752, 1980
315. Turitto V, Weiss H, Sussman I, et al: Factor VIII in vessel wall influences platelet interaction with subendothelium. *Thromb Haemost* 46:199, 1981
316. Bloom AL, Giddings JC, Wilks CJ: Factor VIII on the vascular intima: Possible Importance in haemostasis and thrombosis. *Nature [New Biol]* 241:217, 1973
317. Holmberg L, Mannucci PM, Turesson I, et al: Factor VIII antigen in the vessel walls in von Willebrand's disease and haemophilia A. *Scand J Haematol* 13:33, 1974
318. Bolhuis PA, Sakariassen KS, Sander HJ, et al: Binding of factor VIII-von Willebrand factor to human arterial subendothelium precedes increased platelet adhesion and enhances platelet spreading. *J Lab Clin Med* 97:568, 1981
319. Barnhart MI: Platelet responses in health and disease. *Mol Cell Biochem* 22:113, 1978
320. Baumgartner HR, Tschoopp TB, Weiss HJ: Platelet interaction with collagen fibrils in flowing blood. II. Impaired adhesion-aggregation in bleeding disorders. A comparison with subendothelium. *Thromb Haemost* 37:17, 1977
321. Turitto VT, Weiss HJ, Baumgartner HR: Decreased platelet adhesion on vessel segments in von Willebrand's disease: A defect in initial platelet attachment. *J Lab Clin Med* 102:551, 1983
322. Fuster V, Badimon L, Rosemark J, et al: Platelet-arterial wall interaction: Quantitative and qualitative study following selective carotid endothelial injury in normal and von Willebrand pigs. *Clin Res* 31:459A, 1983
323. Silwer J, Cronberg S, Nilsson IM: Occurrence of arteriosclerosis in von Willebrand's disease. *Acta Med Scand* 180:475, 1966
324. Kernoff LM, Rose AG, Hughes J, et al: Autopsy findings in an elderly man suffering from severe von Willebrand's disease. *Thromb Haemost* 46:714, 1981
325. Jørgensen L, Borchgrevink CF: The haemostatic mechanism in patients with haemorrhagic diseases. A histological study of wounds made for primary and secondary bleeding time tests. *Acta Pathol Microbiol Scand* 60:55, 1964
326. von Willebrand EA: Hereditäre Pseudohämophilie. *Finska läk-sällsk handl* 68:87, 1926
327. von Willebrand EA, Juergens R: Ueber ein neues vererbares Blutungsuebel: Die konstitutionelle Thrombopathie. *Deutsches Arch f klin Med* 175:453, 1933

328. Salzman EW: Measurement of platelet adhesiveness: A simple in vitro technique demonstrating an abnormality in von Willebrand's disease. *J Lab Clin Med* 62:724, 1963
329. Bowie EJ, Owen CA Jr, Thompson TH, et al: Platelet adhesiveness in von Willebrand's disease. *Am J Clin Pathol* 52:69, 1969
330. Howard MA, Firkin BG: Ristocetin—a new tool in the investigation of platelet aggregation. *Thromb Diath Haemorrh* 26:362, 1971
331. Meyer D, Zimmerman TS: von Willebrand's disease, in Colman RW, Hirsh J, Marder VJ, et al (eds): *Hemostasis and Thrombosis: Basic Principles and Clinical Practice*. Philadelphia, Lippincott, 1982, p 64
332. Zimmerman TS, Ruggeri ZM: von Willebrand's disease, in Spaet TH (ed): *Progress in Hemostasis and Thrombosis*, vol 6. New York, Grune & Stratton, 1982, p 203
333. Howard MA, Hutton RA, Hardisty RM: Hereditary giant platelet syndrome: A disorder of a new aspect of platelet function. *Br Med J* 2:586, 1973
334. Caen JP, Levy-Toledano S: Interaction between platelets and von Willebrand factor provides a new scheme for primary haemostasis. *Nature [New Biol]* 244:159, 1973
335. Bowie EJW, Fass DN, Katzmann JA: Functional studies of Willebrand factor using monoclonal antibodies. *Blood* 62:146, 1983
336. Tschopp TB, Weiss HJ, Baumgartner HR: Decreased adhesion of platelets to subendothelium in von Willebrand's disease. *J Lab Clin Med* 83:296, 1974
337. Weiss HJ, Baumgartner HR, Tschopp TB, et al: Correction by factor VIII of the impaired platelet adhesion to subendothelium in von Willebrand disease. *Blood* 51:267, 1978
338. Italian Working Group: Spectrum of von Willebrand's disease: A study of 100 cases. *Br J Haematol* 35:101, 1977
339. Hoyer LW: Pseudo-von Willebrand disease. *N Engl J Med* 306:360, 1982
340. Ruggeri ZM, Bader R, Coppola R, et al: The multimeric structure of factor VIII/von Willebrand factor influences binding to a specific thrombin-induced receptor on the platelet surface. *Blood (suppl)* 58:204, 1981
341. Ruggeri ZM, Zimmerman TS: Variant von Willebrand's disease. Characterization of two subtypes by analysis of multimeric composition of factor VIII/von Willebrand factor in plasma and platelets. *J Clin Invest* 65:1318, 1980
342. Doucet-de Bruine MHM, Sixma JJ, Over J, et al: Heterogeneity of human factor VIII. II. Characterization of forms of factor VIII binding to platelets in the presence of ristocetin. *J Lab Clin Med* 92:96, 1978
343. Gralnick HR, Williams SB, Morisato DK: Effect of the multimeric structure of the factor VIII/von Willebrand factor protein on binding to platelets. *Blood* 58:387, 1981
344. Santoro SA: Preferential binding of high molecular weight forms of von Willebrand factor to fibrillar collagen. *Biochim Biophys Acta* 756:123, 1983
345. Moake JL, Rudy CK, Troll JH, et al: Unusually large plasma factor VIII/von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. *N Engl J Med* 307:1432, 1982
346. Lian EC-Y, Harkness DR, Byrnes JJ, et al: Presence of a platelet aggregating factor in the plasma of patients with thrombotic thrombocytopenic purpura (TTP) and its inhibition by normal plasma. *Blood* 53:333, 1979
347. Lian EC-Y, Savaraj N: Effects of platelet inhibitors on the platelet aggregation induced by plasma from patients with thrombotic thrombocytopenic purpura. *Blood* 58:354, 1981
348. Takahashi H: Studies on the pathophysiology and treatment of von Willebrand's disease. IV. Mechanism of increased ristocetin-induced platelet aggregation in von Willebrand's disease. *Thromb Res* 19:857, 1980
349. Weiss HJ, Meyer D, Rabinowitz R, et al: An intrinsic platelet defect with aggregation by unmodified human factor VIII/von Willebrand factor and enhanced adsorption of its high-molecular-weight multimers. *N Engl J Med* 306:326, 1982
350. Gralnick HR, Williams SB, Shafer BC, et al: Factor VIII/von Willebrand factor binding to von Willebrand's disease platelets. *Blood* 60:328, 1982
351. Miller JL, Castella A: Platelet-type von Willebrand's disease: Characterization of a new bleeding disorder. *Blood* 60:790, 1982
352. Nyman D: von Willebrand factor dependent platelet aggregation and adsorption of factor VIII related antigen by collagen. *Thromb Res* 17:209, 1980
353. Legrand YJ, Rodriguez-Zeballos A, Kartalis G, et al: Adsorption of factor VIII antigen-activity complex by collagen. *Thromb Res* 13:909, 1978
354. Kaye AD, Cronlund M, Rickles FR: Reduced platelet adhesion to collagen agarose affinity columns in von Willebrand's disease. *Blood (suppl)* 50:272, 1977

355. Santoro SA, Cowan JF: Adsorption of von Willebrand factor by fibrillar collagen—implications concerning the adhesion of platelets to collagen. *Collagen Rel Res* 2:31, 1982
356. Santoro SA: Adsorption of von Willebrand factor/factor VIII by the genetically distinct interstitial collagens. *Thromb Res* 21:689, 1981
357. Scott DM, Griffin B, Pepper DS, et al: The binding of purified factor VIII/von Willebrand factor to collagens of differing type and form. *Thromb Res* 24:467, 1981
358. Tschopp TB, Baumgartner HR, Meyer D: Antibody to human factor VIII/von Willebrand factor inhibits collagen-induced platelet aggregation and release. *Thromb Res* 17:255, 1980
359. Morin RJ, Chen AFT, Narayanan AS, et al: Platelet adhesion to collagen in normal and von Willebrand's disease subjects. *Thromb Res* 17:719, 1980
360. Reimers H-J, Kinlough-Rathbone RL, Cazenave J-P, et al: In vitro and in vivo functions of thrombin-treated platelets. *Thromb Haemost* 35:151, 1976
361. Caen JP, Michel H, Sultan Y, et al: Comparison of von Willebrand disease and Bernard-Soulier syndrome. *Thromb Haemost* 38:586, 1977
362. Tobelem G, Levy-Toledano S, Bredoux R, et al: New approach to determination of specific functions of platelet membrane sites. *Nature* 263:427, 1976
363. Kao K-J, Pizzo SV, McKee PA: Platelet receptors for human factor VIII/von Willebrand protein: Functional correlation of receptor occupancy and ristocetin-induced platelet aggregation. *Proc Natl Acad Sci USA* 76:5317, 1979
364. Moake JL, Olson JD, Troll JH, et al: Binding of radioiodinated human von Willebrand factor to Bernard-Soulier, thrombasthenic and von Willebrand disease platelets. *Thromb Res* 19:21, 1980
365. George JN, Reiman TA, Moake JL, et al: Bernard-Soulier disease: A study of four patients and their parents. *Br J Haematol* 48:459, 1981
366. Legrand YJ, Fauvel F, Gutman N, et al: Microfibrils (MF) platelet interaction: Requirement of von Willebrand factor. *Thromb Res* 19:737, 1980
367. Ruan C, Tobelem G, McMichael AJ, et al: Monoclonal antibody to human platelet glycoprotein I. II. Effects on human platelet function. *Br J Haematol* 49:511, 1981
368. Nachman RL: Platelet membrane protein interactions in hemostasis, in Marchesi VT, Gallo RC (eds): *Differentiation and Function of Hematopoietic Cell Surfaces*, UCLA Symposia on Molecular and Cellular Biology, New Series, vol 1. New York, Alan R Liss, 1982, p 213
369. Tschoop TB, Weiss HJ, Baumgartner HR: Interaction of thrombasthenic platelets with subendothelium: Normal adhesion, absent aggregation. *Experientia* 31:113, 1975
370. Weiss HJ: Abnormalities of factor VIII and platelet aggregation—use of ristocetin in diagnosing the von Willebrand syndrome. *Blood* 45:403, 1975
371. Chediak J, Telfer MC, Van der Laan B, et al: Cycles of agglutination-disagglutination induced by ristocetin in thrombasthenic platelets. *Br J Haematol* 43:113, 1979
372. Phillips DR: An evaluation of membrane glycoproteins in platelet adhesion and aggregation, in Spaet TH (ed): *Progress in Hemostasis and Thrombosis*, vol 5. New York, Grune & Stratton, 1980, p 81
373. Jenkins CSP, Phillips DR, Clemetson KJ, et al: Platelet membrane glycoproteins implicated in ristocetin-induced aggregation. Studies of the proteins on platelets from patients with Bernard-Soulier syndrome and von Willebrand's disease. *J Clin Invest* 57:112, 1976
374. Phillips DR, Agin PP: Platelet membrane defects in Glanzmann's thrombasthenia. Evidence for decreased amounts of two major glycoproteins. *J Clin Invest* 60:535, 1977
375. Green D, Muller HP: Platelet-binding of the von Willebrand factor. *Thromb Haemost* 39:689, 1978
376. Harrison RL, McKee PA: Comparison of thrombin and ristocetin in the interaction between von Willebrand factor and platelets. *Blood* 62:346, 1983
377. Fujimoto T, Hawiger J: Adenosine diphosphate induces binding of von Willebrand factor to human platelets. *Nature* 297:154, 1982
378. Hawiger J, Fujimoto T: Binding of von Willebrand factor to platelet receptors induced by ionophore A23187. *Circulation* 66:ii, 1982
379. Lahav J, Hynes RO: Involvement of fibronectin, von Willebrand factor, and fibrinogen in platelet interaction with solid substrata. *J Supramol Struct Cell Biochem* 17:299, 1981
380. Di Minno G, Shapiro SS, Catalano PM, et al: The role of ADP secretion and thromboxane synthesis in factor VIII binding to platelets. *Blood* 62:186, 1983
381. Piétu G, Cherel G, Marguerie G, et al: A new role for fibrinogen: Inhibition of von Willebrand factor-platelet interaction. *Nature* 308: 648, 1984
382. Bensusan HB, Koh TL, Henry KG, et al: Evi-

- dence that fibronectin is the collagen receptor on platelet membranes. *Proc Natl Acad Sci USA* 75:5864, 1978
- 383 Engvall E, Ruoslahti E: Binding of soluble-form of fibroblast surface protein, fibronectin, to collagen. *Int J Cancer* 20:1, 1977
- 384 Dessau W, Adelmann BC, Timpl R, Martin GR: Identification of the sites in collagen α -chains that bind serum anti-gelatin factor (cold-insoluble globulin). *Biochem J* 169:55, 1978
- 385 Hynes RO, Ali IU, Destree AT, et al: A large glycoprotein lost from the surfaces of transformed cells. *Ann NY Acad Sci* 312:317, 1978
- 386 Hynes RO, Yamada KM: Fibronectins: Multi-functional modular glycoproteins. *J Cell Biol* 95:369, 1982
- 387 Ginsberg MH, Painter RG, Birdwell C, et al: The detection, immunofluorescent localization, and thrombin induced release of human platelet-associated fibronectin antigen. *J Supramol Struct Cell Biochem* 11:167, 1979
- 388 Hynes RO: Fibronectins: Cell-matrix ligands, in Marchesi VT, Gallo RC (eds): *Differentiation and Function of Hematopoietic Cell Surfaces*, UCLA Symposia on Molecular and Cellular Biology, New Series, vol 1. New York, Alan R Liss, 1982, p 157
- 389 Mosher DF: Fibronectin-Relevance to hemostasis and thrombosis, in Colman RW, Hirsh J, Marder VJ, et al (eds): *Hemostasis and Thrombosis. Basic Principles and Clinical Practice*, Philadelphia, Lippincott, 1982, p 174
- 390 Zucker MB, Mosesson MW, Broekman MJ, et al: Release of platelet fibronectin (cold-insoluble globulin) from alpha granules induced by thrombin or collagen; lack of requirement for plasma fibronectin in ADP-induced platelet aggregation. *Blood* 54:8, 1979
- 391 Plow EF, Birdwell C, Ginsberg MH, et al: Identification and quantitation of platelet-associated fibronectin antigen. *J Clin Invest* 63:540, 1979
- 392 Giddings JC, Brookes LR, Piovella F, et al: Immunohistological comparison of platelet factor 4 (PF4), fibronectin (Fn) and factor VIII related antigen (VIIIIR:Ag) in human platelet granules. *Br J Haematol* 52:79, 1982
- 393 Plow EF, Ginsberg MH: Specific and saturable binding of plasma fibronectin to thrombin-stimulated human platelets. *J Biol Chem* 256:9477, 1981
- 394 Ginsberg MH, Wencel JD, White JG, et al: Binding of fibronectin to α -granule-deficient platelets. *J Cell Biol* 97:571, 1983
- 395 Koteliansky VE, Leytin VL, Sviridov DD, et al: Human plasma fibronectin promotes the adhesion and spreading of platelets on surfaces coated with fibrillar collagen. *FEBS Lett* 123:59, 1981
- 396 Grinnell F, Feld M, Snell W: The influence of cold-insoluble globulin on platelet morphological response to substrata. *Cell Biol Int Rep* 3:585, 1979
- 397 Booyse FM, Feder S, Quarfoot AJ: Culture-produced subendothelium. II. Effect of plasma, F VIIIIR:WF and fibronectin on interaction of normal platelets with normal and von Willebrand porcine aortic subendothelium. *Thromb Res* 28:299, 1982
- 398 Hansen MS, Clemmensen I: A fibronectin-binding glycoprotein from human platelet membranes. *Biochem J* 201:629, 1982
- 399 Ginsberg MH, Forsyth J, Lightsey A, et al: Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets. *J Clin Invest* 71:619, 1983
- 400 Phillips DR, Jennings LK, Berndt MC: Studies of inherited bleeding disorders to identify platelet membrane glycoproteins involved in adhesion and aggregation, in Sheppard JR, Anderson VE, Eaton JW (eds): *Membranes and Genetic Disease. Progress in Clinical and Biological Research*, vol 97. New York, Alan R Liss, 1982, p 151
- 401 Keski-Oja J, Sen A, Todaro GJ: Direct association of fibronectin and actin molecules in vitro. *J Cell Biol* 85:527, 1980
- 402 Sochynsky RA, Boughton BJ, Burns J, et al: The effect of human fibronectin on platelet-collagen adhesion. *Thromb Res* 18:521, 1980
- 403 Moon DG, Kaplan JE: Inhibition of collagen and ADP-induced platelet aggregation by plasma fibronectin. *Thromb Haemost* 46:84, 1981
- 404 Chazov EI, Alexeev AV, Antonov AS, et al: Endothelial cell culture on fibrillar collagen: Model to study platelet adhesion and liposome targeting to intercellular collagen matrix. *Proc Natl Acad Sci USA* 78:5603, 1981
- 405 Arneson MA, Hammerschmidt DE, Furcht LT, et al: A new form of Ehlers-Danlos syndrome. Fibronectin corrects defective platelet function. *JAMA* 244:144, 1980
- 406 Clawson CC, White JG, Herzberg MC: Platelet interaction with bacteria. VI. Contrasting the role of fibrinogen and fibronectin. *Am J Haematol* 9:43, 1980
- 407 Harfenist EJ, Izzotti MJ, Packham MA, et al: Plasma fibronectin is not involved in ADP-induced aggregation of rabbit platelets. *Thromb Haemost* 44:108, 1980
- 408 Mosher DF: Action of fibrin-stabilizing factor on cold-insoluble globulin and α_2 -macroglobulin in clotting plasma. *J Biol Chem* 251:1639, 1976

409. Grinnell F, Feld M, Minter D: Fibroblast adhesion to fibrinogen and fibrin substrata: Requirement for cold-insoluble globulin (plasma fibronectin). *Cell* 19:517, 1980
410. Gartner TK, Williams DC, Phillips DR: Platelet plasma membrane lectin activity. *Biochem Biophys Res Commun* 79:592, 1977
411. Gartner TK, Williams DC, Minion FC, et al: Thrombin-induced platelet aggregation is mediated by a platelet plasma membrane-bound lectin. *Science* 200:1281, 1978
412. Gartner TK, Phillips DR, Williams DC: Expression of thrombin-enhanced platelet lectin activity is controlled by secretion. *FEBS Lett* 113:196, 1980
413. Baenziger NL, Brodie GN, Majerus PW: Isolation and properties of a thrombin-sensitive protein of human platelets. *J Biol Chem* 247:2723, 1972
414. Mosher DF, Doyle MJ, Jaffe EA: Synthesis and secretion of thrombospondin by cultured human endothelial cells. *J Cell Biol* 93:343, 1982
415. McPherson J, Sage H, Bornstein P: Isolation and characterization of a glycoprotein secreted by aortic endothelial cells in culture. Apparent identity with platelet thrombospondin. *J Biol Chem* 256:11330, 1981
416. Jaffe EA, Ruggiero JT, Leung LLK, et al: Cultured human fibroblasts synthesize and secrete thrombospondin and incorporate it into extracellular matrix. *Proc Natl Sci USA* 80:998, 1983
417. Chater BV: The role of membrane bound complement in the aggregation of mammalian platelets by collagen. *Br J Haematol* 32:515, 1976
418. Christian FA, Gordon JL: Platelet function in C6-deficient rabbits. Aggregation and secretion induced by collagen and zymosan. *Immunology* 29:131, 1975
419. Tiffany ML, Penner JA: Effect of complement on collagen-induced platelet aggregation. *J Lab Clin Med* 96:796, 1980
420. Takahashi M, Kawachi-Takahashi S, Matsuuwa M: Interaction of collagen with serum complement: Inhibition of complement-mediated hemolysis. *Int Archs Allergy Appl Immunol* 48:642, 1975
421. Wight TN, Ross R: Proteoglycans in primate arteries. I. Ultrastructural localization and distribution in the intima. *J Cell Biol* 67:660, 1975
422. Yamada KM, Kennedy DW, Kimata K, et al: Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. *J Biol Chem* 255:6055, 1980
423. Ts'ao C-H, Eisenstein R: Attachment of proteoglycans to collagen fibrils. Effect on human platelet aggregation. *Lab Invest* 45:450, 1981
424. Culp LA, Murray BA, Rollins BJ: Fibronectin and proteoglycans as determinants of cell-substratum adhesion. *J Supramol Struct Cell Biochem* 11:401, 1979
425. Stamatoglou SC, Keller JM: Interactions of cellular glycosaminoglycans with plasma fibronectin and collagen. *Biochim Biophys Acta* 719:90, 1982
426. Jilek F, Hörmann H: Fibronectin (cold-insoluble globulin). VI. Influence of heparin and hyaluronic acid on the binding of native collagen. *Hoppe-Seyler's Z Physiol Chem Phys* 360:597, 1979
427. Johansson S, Höök M: Heparin enhances the rate of binding of fibronectin to collagen. *Biochim J* 187:521, 1980
428. Ruoslahti E, Engvall E: Complexing of fibronectin, glycosaminoglycans and collagen. *Biochim Biophys Acta* 631:350, 1980
429. Lawler JW, Slayter HS: The release of heparin binding peptides from platelet thrombospondin by proteolytic action of thrombin, plasmin and trypsin. *Thromb Res* 22:267, 1981
430. Rich AM, Pearlstein E, Weissmann G, et al: Cartilage proteoglycans inhibit fibronectin-mediated adhesion. *Nature* 293:224, 1981
431. Muir HM, Mustard JF: Enhancement of platelet aggregation by glycosaminoglycans (mucopolysaccharides), in Le Rôle de la Paroi Artérielle dans l'Athérogénèse. *Colloq Int Centre Nat Rech Sci* 169, p 589, 1968
432. Greenberg J, Packham MA, Cazenave J-P, et al: Effect on platelet function of removal of platelet sialic acid by neuraminidase. *Lab Invest* 32:476, 1975
433. Cazenave J-P, Reimers H-J, Kinlough-Rathbone RL, et al: Effects of sodium periodate on platelet functions. *Lab Invest* 34:471, 1976
434. Cazenave J-P, Packham MA, Davies JA, et al: Studies of platelet adherence to collagen and subendothelium, in Day HJ, Holmsen H, Zucker MB (eds): *Platelet Function Testing*, DHEW Publication No (NIH) 78-01087. Washington, DC, US Government Printing Office, 1978, p 181
435. Greenberg JP, Packham MA, Guccione MA, et al: The effect of pretreatment of human or rabbit platelets with chymotrypsin on their responses to human fibrinogen and aggregating agents. *Blood* 54:753, 1979
436. Lahav J, Meyer FA: On the role of the major platelet membrane glycoproteins in platelet

- adhesion to collagen. *Thromb Res* 22:457, 1981
437. Niewiarowski S, Regoeczi E, Mustard JF: Platelet interaction with fibrinogen and fibrin: Comparison of the interaction of platelets with that of fibroblasts, leukocytes and erythrocytes. *Ann NY Acad Sci* 201:72, 1972
438. Solum NO: Platelet aggregation during fibrin polymerization. *Scand J Clin Lab Invest* 18:577, 1966
439. White IG, Kravit W, Vernier RL: The platelet-fibrin relationship in human blood clots: An ultrastructural study utilizing ferritin-conjugated anti-human fibrinogen antibody. *Blood* 25:241, 1965
440. Erichson RB, Katz AJ, Cintron JR: Ultrastructural observations on platelet adhesion reactions. I. Platelet-fibrin interaction. *Blood* 29:385, 1967
441. Caen JP: Glanzmann's thrombasthenia. *Clin Haematol* 1:383, 1972
442. de Gaetano G, Bottechia D, Vermylen J: Retraction of reptilase-clots in the presence of agents inducing or inhibiting the platelet adhesion-aggregation reaction. *Thromb Res* 2:71, 1973
443. Kubisz P, Suranova J: Reptilase clot retraction test. Its cofactors and relation to other platelet functions. *Path Biol* 23:269, 1975
444. Niewiarowski S, Stewart GJ, Nath N, et al: ADP, thrombin, and Bothrops atrox thrombinlike enzyme in platelet-dependent fibrin retraction. *Am J Physiol* 229:737, 1975
445. Di Minno G, Bertelé V, Cerletti C, et al: Arachidonic acid induces human platelet-fibrin retraction: The role of platelet cyclic endoperoxides. *Thromb Res* 25:299, 1982
446. Hawiger J, Parkinson S, Timmons S: Prostacyclin inhibits mobilization of fibrinogen-binding sites on human ADP- and thrombin-treated platelets. *Nature* 283:195, 1980
447. Murer EH: Effect of prostaglandin E₁ on clot retraction. *Nature* 229:112, 1971
448. Murer EH: Compounds known to affect the cyclic adenosine monophosphate level in blood platelets: Effect on thrombin-induced clot retraction and platelet release. *Biochim Biophys Acta* 237:310, 1971
449. Barbieri B, Balconi G, Dejana E, et al: Evidence that vascular endothelial cells can induce the retraction of fibrin clots. *Proc Soc Exp Biol Med* 168:204, 1981
450. Carroll RC, Gerrard JM, Gilliam JM: Clot retraction facilitates clot lysis. *Blood* 57:44, 1981
451. Needleman SW, Hoak JC: Platelets and leukocytes in thrombosis, in Colman RW, Hirsh J, Marder VJ, et al (eds): *Hemostasis and Thrombosis. Basic Principles and Clinical Practice*. Philadelphia, Lippincott, 1982, p 716
452. Weksler BB, Coupal CE: Platelet-dependent generation of chemotactic activity in serum. *J Exp Med* 137:1419, 1973
453. Turner SR, Tainer JA, Lynn WS: Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets. *Nature* 257:680, 1975
454. Deuel TF, Senior RM, Chang D, et al: Platelet factor 4 is chemotactic for neutrophils and monocytes. *Proc Natl Acad Sci USA* 78:4584, 1981
455. Osterman DG, Griffin GL, Senior RM, et al: The carboxyl-terminal tridecapeptide of platelet factor 4 is a potent chemotactic agent for monocytes. *Biochem Biophys Res Commun* 107:130, 1982
456. Field EJ, MacLeod I: Platelet adherence to polymorphs. *Br Med J* 2:388, 1963
457. Prchal JT, Blakely J: Granulocyte platelet rosettes. *N Engl J Med* 289:1146, 1973
458. Kjeldsberg CR, Swanson J: Platelet satellitism. *Blood* 43:831, 1974
459. Bauer HM: In-vitro platelet-neutrophil adherence. *Am J Clin Pathol* 63:824, 1975
460. Greipp PR, Gralnick HR: Platelet to leukocyte adherence phenomena associated with thrombocytopenia. *Blood* 47:513, 1976
461. Skinnider LF, Musclow CE, Kahn W: Platelet satellitism—an ultrastructural study. *Am J Hematol* 4:179, 1978
462. White LA Jr, Brubaker LH, Aster RH, et al: Platelet satellitism and phagocytosis by neutrophils: Association with antiplatelet antibodies and lymphoma. *Am J Hematol* 4:313, 1978
463. McGregor DH, Davis JW, Liu PI, et al: Platelet satellitism: Experimental studies. *Lab Invest* 42:343, 1980
464. Yoo D, Weems H, Lessin LS: Platelet to leukocyte adherence phenomena—(platelet satellitism) and phagocytosis by neutrophils associated with in vitro platelet dysfunction. *Acta Haematol* 68:142, 1982
465. Gasic GJ, Gasic TB, Galanti N, et al: Platelet-tumor cell interactions in mice. The role of platelets in the spread of malignant disease. *Int J Cancer* 11:704, 1973
466. Donati MB, Poggi A, Semeraro N: Coagulation and malignancy, in Poller L (ed): *Recent Advances in Blood Coagulation*, vol 3. New York, Churchill Livingstone, 1981, p 227
467. Bastida E, Ordinas A, Jamieson GA: Positive and negative aggregation responses to cultured

- human tumor cell lines among different normal individuals, in Jamieson GA (ed): *Interaction of Platelets and Tumor Cells*. New York, Alan R Liss, 1982, p 225
468. Steiner M: *Interaction of platelets and tumor cells*, in Jamieson GA (ed): *Interaction of Platelets and Tumor Cells*. New York, Alan R Liss, 1982, p 383
469. Jamieson GA, Bastida E, Ordinas A: Mechanisms of platelet aggregation by human tumor cell lines, in Jamieson GA (ed): *Interaction of Platelets and Tumor Cells*. New York, Alan R Liss, 1982, p 405
470. Gasic GJ, Catalfamo JL, Gasic TB, et al: In vitro mechanism of platelet aggregation by purified plasma membrane vesicles shed by mouse 15091A tumor, in Donati MB, Davidson JF, Garattini S (eds): *Malignancy and the Hemostatic System*. New York, Raven Press, 1981, p 27
471. Mustard JF, Packham MA: Platelet phagocytosis. *Ser Haematol* 12:168, 1968
472. Ferreira JF: Sur la structure et le pouvoir phagocytaire des plaquettes sanguines. *Z Zellforsch* 55:89, 1961
473. Schulz H, Wedell J: Elektronmikroskopische Untersuchungen zur Frage der Fettphagocytose und des Fetttransports durch Thrombozyten. *Klin Wochenschr* 40:1114, 1962
474. Hovig T, Grøttum KA: Lipid infusions in man. Ultrastructural studies on blood platelet uptake of fat particles. *Thromb Diath Haemorrh* 29:450, 1973
475. Movat HZ, Weiser WJ, Glynn MF, et al: Platelet phagocytosis and aggregation. *J Cell Biol* 27:531, 1965
476. Movat HZ, Mustard JF, Taichman NS, et al: Platelet aggregation and release of ADP, serotonin and histamine associated with phagocytosis of antigen-antibody complexes. *Proc Soc Exp Biol Med* 120:232, 1965
477. Donald KJ: The role of platelets in the clearance of colloidal carbon from blood in rabbits: A light and electron microscope study. *Pathology* 4:295, 1972
478. Kuramoto A, Steiner M, Baldini MG: Metabolic basis of platelet phagocytosis. *Biochem Biophys Acta* 201:471, 1970
479. Cooper IA, Cochrane P, Firkin BG, et al: Platelet metabolism during the interiorization of two different types of particulate matter. *Thromb Diath Haemorrh* 30:263, 1972
480. White JG: Uptake of latex particles by blood platelets. Phagocytosis or sequestration? *Am J Pathol* 69:439, 1972
481. Lewis JC, Maldonado JE, Mann KG: Phagocytosis in human platelets: Localization of acid phosphatase-positive phagosomes following latex uptake. *Blood* 47:833, 1976
482. Zucker-Franklin D: Endocytosis by human platelets: Metabolic and freeze-fracture studies. *J Cell Biol* 91:706, 1981
483. Danon D, Jerushalmi Z, de Vries A: Incorporation of influenza virus in human blood platelets in vitro: Electron microscopical observation. *Virology* 9:719, 1959
484. Fajardo LF: Malarial parasites in mammalian platelets. *Nature* 243:298, 1973
485. Fajardo LF: The role of platelets in infections. I. Observation in human and murine malaria. *Arch Pathol Lab Med* 103:131, 1979
486. Clawson CC, White JG: Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors. *Am J Pathol* 65:367, 1971
487. Clawson CC: Platelet interaction with bacteria. III. Ultrastructure. *Am J Pathol* 70:449, 1973
488. Herzberg MC, Brintzenhoff KL, Clawson CC: Aggregation of human platelets and adhesion of *Streptococcus sanguis*. *Infect Immun* 39:1457, 1983
489. Mustard JF, Glynn MF, Nishizawa EE, et al: Platelet-surface interactions: Relationship to thrombosis and hemostasis. *Fed Proc* 26:106, 1967
490. Packham MA, Warrior ES, Glynn MF, et al: Alteration of the response of platelets to surface stimuli by pyrazole compounds. *J Exp Med* 126:171, 1967
491. Glynn MF, Herren R, Mustard JF: Adherence of latex particles to platelets. *Nature* 212:79, 1966
492. Behnke O: Electron microscopic observations on the membrane systems of the rat blood platelets. *Anat Rec* 158:121, 1967
493. White JG: The transfer of thorium particles from plasma to platelets and platelet granules. *Am J Pathol* 53:567, 1968
494. Mant MJ, Firkin BG: Uptake of latex and thorotrast by human platelets in vitro: Effect of various chemicals demonstrating differing mechanisms and metabolic requirements. *Br J Haematol* 22:383, 1972
495. Sugerman HJ, Tatum JL, Hirsch JI, et al: Gamma scintigraphic localization of platelets labeled with Indium 111 in a focus of infection. *Arch Surg* 118:185, 1983
496. Clawson CC, White JG: Platelet interaction with bacteria. V. Ultrastructure of congenital afibrinogenemic platelets. *Am J Pathol* 98:197, 1980
497. Pfueller SL, Cosgrove LJ: Staphylococci-induced human platelet injury. *Thromb Res* 19:733, 1980
498. Kurpiewski GE, Forrester LJ, Campbell BJ, et

- al: Platelet aggregation by *Streptococcus pyogenes*. *Infect Immun* 39:704, 1983
499. Zimmerman TS, Spiegelberg HL: Pneumococcus-induced serotonin release from human platelets. Identification of the participating plasma/serum factor as immunoglobulin. *J Clin Invest* 56:828, 1975
500. Hawiger J, Steckley S, Hammond D, et al: Staphylococci-induced human platelet injury mediated by protein A and immunoglobulin G Fc fragment receptor. *J Clin Invest* 64:931, 1979
501. Semeraro N, Colucci M, Vermylen J: Complement-dependent and complement-independent interactions of bacterial lipopolysaccharides and mucopeptides with rabbit and human platelets. *Thromb Haemost* 41:392, 1979
502. Henson PM: Complement-dependent platelet and polymorphonuclear leukocyte reactions. *Transplant Proc* 6:27, 1974
503. Poole JC: Phagocytosis of platelets by monocytes in organizing arterial thrombi. An electron microscopical study. *Quart J Exp Physiol* 51:54, 1966
504. Shirasawa K, Chandler AB: Phagocytosis of platelets by leukocytes in artificial thrombi and in platelet aggregates induced by adenosine diphosphate. *Am J Pathol* 63:215, 1971
505. Handin RI, Stossel TP: Phagocytosis of antibody-coated platelets by human granulocytes. *N Engl J Med* 290:989, 1974
506. Tsubakio T, Kurata Y, Kanayama Y, et al: In vitro platelet phagocytosis in idiopathic thrombocytopenic purpura. *Acta Haematol* 70:250, 1983
507. Handin RI, Stossel TP: Effect of corticosteroid therapy on the phagocytosis of antibody-coated platelets by human leukocytes. *Blood* 51:771, 1978
508. Stossel TP: Phagocytosis: Recognition and ingestion. *Semin Hematol* 12:83, 1975
509. Ahn YS, Byrnes JJ, Harrington WJ, et al: The treatment of idiopathic thrombocytopenia with vinblastine-loaded platelets. *N Engl J Med* 298:1101, 1978
510. Ahn YS, Harrington WJ, Byrnes JJ, et al: Treatment of autoimmune hemolytic anemia with Vinca-loaded platelets. *JAMA* 249:2189, 1983
511. Kelton JG, McDonald JW, Barr RM, et al: The reversible binding of vinblastine to platelets: Implications for therapy. *Blood* 57:431, 1981
512. Panasci LC, Comis R, Ginsberg S, et al: Pharmacokinetics of vinblastine-loaded platelets utilized in treatment of platelet-phagocytizing tumors. *Cancer Treat Rep* 64:1227, 1980
513. Aminoff D, Bruegge WFV, Bell WC, et al: Role of sialic acid in survival of erythrocytes in the circulation: Interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. *Proc Natl Acad Sci USA* 74:1521, 1977
514. Greenberg JP, Packham MA, Guccione MA, et al: Survival of rabbit platelets treated in vitro with chymotrypsin, plasmin, trypsin, or neuraminidase. *Blood* 53:916, 1979
515. Winocour PD, Kinlough-Rathbone RL, Richardson M, et al: Reversal of shortened platelet survival in rats by the antifibrinolytic agent epsilon aminocaproic acid. *J Clin Invest* 71:159, 1983
516. Kelton JG, Gibbons S: Autoimmune platelet destruction: Idiopathic thrombocytopenic purpura. *Semin Thromb Hemostas* 8:83, 1982
517. Sugiura K, Steiner M, Baldini M: Physiological effects of nonimmune platelet associated immunoglobulin G. *Thromb Haemost* 45:27, 1981
518. Kelton JG, Denomme G: The quantitation of platelet-associated IgG on cohorts of platelets separated from healthy individuals by buoyant density centrifugation. *Blood* 60:136, 1982
519. Tschopp TB, Baumgartner HR: Delayed adhesion to subendothelium and defective aggregation of platelets from rats with storage pool disease. *Thromb Diath Haemorrh* 34:600, 1975
520. Müller-Eberhard HJ: Chemistry and reaction mechanisms of complement. *Adv Immunol* 8:1, 1968
521. Reid KBM: Complete amino acid sequence of the three collagen-like regions present in subcomponent C1q of the first component of human complement. *Biochem J* 179, 367, 1979
522. Cazenave J-P, Assimeh SN, Painter RH, et al: C1q inhibition of the interaction of collagen with human platelets. *J Immunol* 116:162, 1976
523. Suba EA, Csako G: C1q (C1) receptor on human platelets: Inhibition of collagen-induced platelet aggregation by C1q molecules. *J Immunol* 117:304, 1976
524. Wautier JL, Souchon H, Reid KBM, et al: Studies on the mode of reaction of the first component of complement with platelets. Interaction between collagen-like portion of C1q and platelets. *Immunochemistry* 14:763, 1977
525. Wautier JL, Reid KBM, Legrand Y, et al: Region of the C1q molecule involved in the interaction between platelets and subcomponent C1q of the first component of complement. *Mol Immunol* 17:1399, 1980
526. Csako G, Suba EA, Herp A: On the reactivity of corneal collagen and subcomponent C1q of

- the complement system with human platelets and IgG-coated latex particles. *Exp Eye Res* 36:403, 1983
527. Wautier JL, Legrand YJ, Fauvel F, et al: Inhibition of platelet collagen interactions by the C1s subcomponent of the first component of complement. *Thromb Res* 21:3, 1981
528. Al-Mondhiry H, Spaet TH: Inhibition of platelet adhesion to collagen by sulfhydryl inhibitors. *Proc Soc Exp Biol Med* 135:878, 1970
529. Sheppard BL: The effect of acetylsalicylic acid on platelet adhesion in the injured abdominal aorta. *Quart J Exp Pathol* 57:319, 1972
530. Cowan DH: Platelet adherence to collagen: Role of prostaglandin-thromboxane synthesis. *Br J Haematol* 49:425, 1981
531. MacIntyre DE, Gordon JL: Factors influencing the binding of radiolabelled collagen to blood platelets. *Thromb Diath Haemorrh* 34:332, 1975
532. Cazenave J-P, Kinlough-Rathbone RL, Packham MA, et al: The effect of acetylsalicylic acid and indomethacin on rabbit platelet adherence to collagen and the subendothelium in the presence of a low or high hematocrit. *Thromb Res* 13:971, 1978
533. Davies JA, Essien EM, Cazenave J-P, et al: The influence of red blood cells on the effects of aspirin or sulphinpyrazone on platelet adherence to damaged rabbit aorta. *Br J Haematol* 42:283, 1979
534. Ts'ao C-H: Ultrastructural study of the effect of aspirin on *in vitro* platelet-collagen interaction and platelet adhesion to injured intima in the rabbit. *Am J Pathol* 59:327, 1970
535. Cazenave J-P, Packham MA, Guccione MA, et al: Inhibition of platelet adherence to a collagen-coated surface by nonsteroidal antiinflammatory drugs, pyrimido-pyrimidine and tricyclic compounds, and lidocaine. *J Lab Clin Med* 83:797, 1974
536. Cazenave J-P, Packham MA, Guccione MA, et al: Inhibition of platelet adherence to damaged surface of rabbit aorta. *J Lab Clin Med* 86:551, 1975
537. Baumgartner HR, Studer A: Platelet factors and the proliferation of vascular smooth muscle cells, in Schettler G, Goto Y, Hata Y, et al (eds): *Atherosclerosis IV*. Berlin, Springer Verlag, 1977, 605
538. Cazenave J-P, Dejana E, Kinlough-Rathbone RL, et al: Prostaglandins I₂ and E₁ reduce rabbit and human platelet adherence without inhibiting serotonin release from adherent platelets. *Thromb Res* 15:273, 1979
539. Higgs EA, Moncada S, Vane Jr, et al: Effect of prostacyclin (PGI) on platelet adhesion to rabbit arterial subendothelium. *Prostaglandins* 16:17, 1978
540. Weiss HJ, Turitto VT: Prostacyclin (prostaglandin I₂) PGI₂) inhibits platelet adhesion and thrombus formation on subendothelium. *Blood* 53:244, 1979
541. Karnigian A, Simmons P, Legrand YJ, et al: A comparison of the inhibitory effects of prostacyclin on platelet adhesion to collagen. *Prostaglandins* 24:827, 1982
542. Karnigian A, Legrand YJ, Caen JP: Prostaglandins: Specific inhibition of platelet adhesion to collagen and relationship with cAMP level. *Prostaglandins* 23:437, 1982
543. Menys VC, Davies JA: Inhibitory effects of ZK 36374, a stable prostacyclin analogue, on adhesion of rabbit platelets to damaged aorta and serotonin release by adherent platelets. *Clin Sci* 65:149, 1983
544. Ritter JM, Barrow SE, Blair IA, et al: Release of prostacyclin *in vivo* and its role in man. *Lancet* 1:317, 1983
545. Moncada S, Herman AG, Higgs EA, et al: Differential formation of prostacyclin (PGX or PGI₂) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. *Thromb Res* 11:323, 1977
546. MacIntyre DE, Pearson JD, Gordon JL: Localisation and stimulation of prostacyclin production in vascular cells. *Nature* 271:549, 1978
547. Eldor A, Falcone DJ, Hajjar DP, et al: Recovery of prostacyclin production by de-endothelialized rabbit aorta. Critical role of neointimal smooth muscle cells. *J Clin Invest* 67:735, 1981
548. Goldsmith JC: Contribution of the subendothelium to prostacyclin release after vascular injury. *J Lab Clin Med* 100:574, 1982
549. Groves HM, Kinlough-Rathbone RL, Cazenave J-P, et al: Effect of dipyridamole and prostacyclin on rabbit platelet adherence *in vitro* and *in vivo*. *J Lab Clin Med* 99:548, 1982
550. Lam SC-T, Guccione MA, Packham MA, et al: Effect of cAMP phosphodiesterase inhibitors on ADP-induced shapechange, cAMP and nucleoside diphosphokinase activity of rabbit platelets. *Thromb Haemost* 47:90, 1982
551. McCollum CN, Crow MJ, Rajah SM, et al: Antithrombotic therapy for vascular prothesis: An experimental model testing platelet inhibitory drugs. *Surgery* 87:668, 1980
552. Metke MP, Lie JT, Fuster V, et al: Reduction of intimal thickening in canine coronary bypass vein grafts with dipyridamole and aspirin. *Am J Cardiol* 43:1144, 1979
553. Fuster V, Dewanjee MK, Kay MP, et al: Noninvasive radioisotopic technique for detection of

- platelet deposition in coronary artery bypass grafts in dogs and its reduction with platelet inhibitors. *Circulation* 60:1508, 1979
554. Josa M, Lie JT, Bianco RL, et al: Reduction of thrombosis in canine coronary bypass vein grafts with dipyridamole and aspirin. *Am J Cardiol* 47:1248, 1981
555. Deen HG, Sundt TM: The effect of combined aspirin and dipyridamole therapy on thrombus formation in an arterial thrombogenic lesion in the dog. *Stroke* 13:179, 1982
556. Chesebro JH, Clements IP, Fuster V, et al: A platelet-inhibitor-drug trial in coronary-artery bypass operations. *N Engl J Med* 307:73, 1982.
557. Chesebro JH, Fuster V: Platelets and platelet-inhibitor drugs in aortocoronary vein bypass operations. *Int J Cardiol* 2:511, 1983
558. Steiner M: Effect of alpha-tocopherol administration on platelet function in man. *Thromb Haemost* 49:73, 1983
559. Mustard JF, Packham MA, Kinlough-Rathbone RL: Platelets, atherosclerosis and clinical complications, in Moore S (ed): *Vascular Injury and Atherosclerosis*. New York, Marcel Dekker, 1981, p 79
560. Kinlough-Rathbone RL, Packham MA, Mustard JF: Vessel injury, platelet adherence and platelet survival. *Arteriosclerosis* 3:529, 1983
561. Fry DL: Hemodynamic forces in atherogenesis, in Scheinberg P (ed): *Cerebrovascular Diseases*. New York, Raven Press, 1976, p 75
562. Mustard JF, Murphy EA: Effect of smoking on blood coagulation and platelet survival in man. *Br Med J* 1:846, 1963
563. Fuster V, Chesebro JH, Frye RL, et al: Platelet survival and the development of coronary artery disease in the young adult: Effects of cigarette smoking, strong family history and medical therapy. *Circulation* 63:546, 1981
564. Hugod C, Hawkins LH, Kjeldsen K, et al: Effect of carbon monoxide exposure on aortic and coronary intimal morphology in the rabbit—A reevaluation. *Atherosclerosis* 30:333, 1978
565. Booyse FM, Osikowicz G, Quarfoot AJ: Effects of chronic oral consumption of nicotine on the rabbit aortic endothelium. *Am J Pathol* 102:229, 1981
566. Becker CG, Levi R, Zavecz J: Induction of IgE antibodies to antigen isolated from tobacco leaves and from cigarette smoke condensate. *Am J Pathol* 96:249, 1979
567. Ross R, Harker L: Hyperlipidemia and atherosclerosis. Chronic hyperlipidemia initiates and maintains lesions by endothelial cell desquamation and lipid accumulation. *Science* 193:1094, 1976
568. Armstrong ML, Peterson RE, Hoak JC, et al: Arterial platelet accumulation in experimental hypercholesterolemia. *Atherosclerosis* 36:89, 1980
569. Mustard JF, Murphy EA: Effect of different dietary fats on blood coagulation, platelet economy and blood lipids. *Br Med J* 1:1651, 1962
570. Harker LA, Slichter SJ, Scott CR, et al: Homocystinemia. Vascular injury and arterial thrombosis. *N Engl J Med* 291:537, 1974
571. Roulaud F, Boisseau MR, Collignon G, et al: Homocystinurie congenitale et antiagregants plaquettaires. Interet du Flurbiprofene dans la prevention des thromboses. XXII Reunion du groupe d'etude sur l'hemostase et la thrombose. Strasbourg, French Society of Haematology, 1982, p 23
572. Uhlemann ER, TenPas JH, Lucky AW, et al: Platelet survival and morphology in homocystinuria due to cystathione synthase deficiency. *N Engl J Med* 295:1283, 1976
573. Hill-Zobel RL, Pyeritz RE, Scheffel U, et al: Kinetics and distribution of ¹¹¹Indium-labeled platelets in patients with homocystinuria. *N Engl J Med* 307:781, 1982
574. Tindall H, Paton RC, Zuzel M, et al: Platelet life-span in diabetics with and without retinopathy. *Thromb Res* 21:641, 1981
575. Dassin E, Najean Y, Poirier O, et al: In vivo platelet kinetics in 31 diabetic patients. Correlation with the degree of vascular impairment. *Thromb Haemost* 40:83, 1978
576. Ferguson JC, MacKay N, Philip JAD, et al: Determination of platelet and fibrinogen half-life with ⁷⁵Se-selenomethionine: Studies in normal and diabetic subjects. *Clin Sci Mol Med* 49:115, 1975
577. Jones RL, Paradise C, Peterson CM: Platelet survival in patients with diabetes mellitus. *Diabetes* 30:486, 1981
578. Kniker WT, Cochrane CG: The localization of circulating immune complexes in experimental serum sickness. The role of vasoactive amines and hydrodynamic forces. *J Exp Med* 127:119, 1968
579. Sharma HM, Geer JC: Experimental aortic lesions of acute serum sickness in rabbits. *Am J Pathol* 88:255, 1977
580. Angles-Cano E, Sultan Y, Clauvel J-P: Predisposing factors to thrombosis in systemic lupus erythematosus. Possible relation to endothelial cell damage. *J Lab Clin Med* 94:312, 1979
581. Burch GE: Viruses and arteriosclerosis. *Am Heart J* 87:407, 1974
582. Starkey PM: Elastase and cathepsin G; the serine proteinases of human neutrophil leukocytes and spleen, in Barnett AJ (ed): *Protein-*

- ases in Mammalian Cells and Tissues. New York, Elsevier, North-Holland, 1979, p 57
583. Najeau Y, Ardaillou N, Caen JP, et al: Survival of radiochromium-labeled platelets in thrombocytopenias. *Blood* 22:718, 1963
584. Gröttum KA, Solum NO: Congenital thrombocytopenia with giant platelets: A defect in the platelet membrane. *Br J Haematol* 16:277, 1969
585. Harker LA: Platelet survival time: Its measurement and use, in Spaet TH (ed): *Progress in Hemostasis and Thrombosis*, vol 4. New York, Grune & Stratton, 1978, p 321

CODEN BJHEAL

Volume 102 Number 5 September–II 1998

British Journal of Haematology

The Official Journal of the British Society for Haematology
and the European Haematology Association
published by Blackwell Science

ISSN 0007-1048

Univ. of Miami.
Bio-Medical
Library

BRITISH JOURNAL OF HAEMATOLOGY

INSTRUCTIONS TO AUTHORS AND NOTICE TO SUBSCRIBERS

Papers and editorial correspondence should be sent to the Editor, Professor Mike Greaves, British Journal of Haematology Office, Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, U.K. Instructions for the preparation of manuscripts are given below. Please provide a telephone number and a Fax number to facilitate speedy handling of your manuscript.

SUBSCRIPTION INFORMATION. *British Journal of Haematology* is published once per calendar month (twice in March, June, July, September and December) (4 volumes per annum) and the subscription prices for 1998 are £468.00 (Europe), £513.00 (Overseas except North America), \$852.50 (U.S.A. and Canada), in all cases post free. Personal Subscriptions: £99.50 (Europe), \$186.00 (U.S.A. and Canada), £112.00 (elsewhere). Subscribers in Canada must add 7% to the subscription price, to allow for GST. Subscribers in Europe must quote their VAT registration number or state that they are not registered. Subscribers in the following countries who are not VAT-registered must add VAT at the appropriate rate: Belgium (6% TVA/BTW), France (2.1% TVA), Germany (7%, MWST), Spain (4% IVA), The Netherlands (6% BTW). Subscriptions run on a calendar year basis, starting with the first issue of the current year in all cases and always expiring in December. Orders for current subscriptions and back issues should be sent to Blackwell Science Ltd, Journal Subscriptions, PO Box 88, Oxford OX2 0NE, U.K. Tel: +44 1865 206180 or 206038, Fax: +44 1865 206219, e-mail: journals.cs@blacksci.co.uk. All other business correspondence, including orders for offprints and advertising space should be addressed to Blackwell Science Ltd, Osney Mead, Oxford OX2 0EL, U.K. (Tel: +44 1865 206206, Fax +44 1865 721205).

DESPATCH. The journal is despatched within Europe by air mail, to other continents by various forms of air-speeded delivery: to the U.S.A. by air freight for forwarding by periodicals post, to India by air freight for guaranteed local delivery, and to all other countries by Accelerated Surface Post. Add to the cost of regular subscription \$3.00 (U.S.A. and Canada) or £2.00 (Rest of World) per issue for air mail. Add £2.50 or US \$3.75 per issue for registered post. Periodicals postage paid at Rahway, New Jersey. Postmaster, send address changes to British Journal of Haematology, c/o Mercury Airfreight International Ltd, 365 Blair Road, Avenel, NJ 07001, U.S.A. (US Mailing Agent).

SUBMISSION OF PAPERS. *The British Journal of Haematology* invites papers on original research in clinical, laboratory and experimental haematology. All papers should include only new data which have not been published elsewhere. All authors are expected to disclose in a cover letter any commercial affiliations as well as consultancies, stock or equity interests and patent-licensing arrangements that could be considered to pose a conflict of interest regarding the submitted article. Specifics of such disclosures will remain confidential. If appropriate, general statements in

the acknowledgments regarding such disclosures may be recommended by the editors.

Research papers. The majority of papers published in the Journal report original research into scientific and clinical haematology. All papers are subject to review and authors are urged to be brief; long papers with many tables and figures may require shortening if they are to be accepted for publication.

Rapid papers. Short papers of special scientific importance will be published rapidly if they are definitive and original and do not occupy more than six pages of the Journal. Authors should submit the manuscript for 'rapid publication' and must comply with the instructions below. Such papers will be subject to review and if acceptable should be edited and published within 4 months of submission. The manuscript should include a title page followed by the text which should not occupy more than 16 pages including a summary of up to 150 words, tables, figures and legends, acknowledgments and references. The original manuscript and three copies must be submitted.

Short reports. Short reports which offer significant insight into scientific and clinical haematological processes may be published. They may include up to 1000 words of text, two figures or tables and up to 12 references. A summary of up to 100 words should be followed by continuous text, subdivided if appropriate. Short reports could include important preliminary observations, short methods papers, therapeutic advances, and any significant scientific or clinical observations which are best published in this format. Publication of initial results which will lead to more substantial papers will generally be discouraged. Although submission of case reports is not encouraged, these will be considered if the report includes novel scientific material or is of especial clinical interest. Authors will receive proofs.

Annotations and reviews. These are normally invited contributions but suitable papers may be submitted to the Editor for consideration for this purpose. Previous numbers of the Journal should be consulted for style of contribution and length.

Letters to the Editor. Correspondence which relates to papers which have recently appeared in the Journal may be published. The Editor reserves the right to invite response from the original authors for publication alongside. In addition, letters dealing with more general scientific matters of interest to haematologists will be considered. Letters should be as short as possible (but no more than 600 words of text, one figure or table and up to six references). Authors will not receive proofs.

Announcements. Information about scientific meetings that are likely to be of general interest to readers of the Journal may be published at the discretion of the Editor. These should be sent to the Editor as early as possible prior to the event. Text should be as concise as possible, with a maximum of 150 words.

Preparation of manuscripts. Detailed 'Instructions to Authors' concerning abbreviations, symbols, conventions, etc., were published in Vol. 40 (1978), pp. 1-20; reprints of these

Instructions are available free of charge from the publishers. Manuscripts should be typewritten on one side of the paper only, with wide margins, be double-spaced and bear the title of the paper and name and address of the author(s), together with the name of the hospital, laboratory or institution where the work has been carried out. Authorship should be restricted to individuals who have made a significant contribution to the study. The name and full postal address of the author to whom readers should address correspondence and offprint requests should be given on the first page; this will appear as a footnote in the Journal and the publishers will send the proofs to this author at the given address unless contrary instructions are written on the manuscript. A running short title of not more than 60 characters and spaces should be included. An informative summary of not more than 200 words must be included, and should appear at the beginning of the paper. The style to be used is that of a current issue of the Journal. Papers should normally be divided into summary, introduction, methods (and/or materials), results, discussion, acknowledgments and references. SI units should be used throughout. The Editor reserves the right to make literary changes. In addition to the original typewritten manuscript *three complete copies* must be submitted. If photocopies of any photograph are not adequate for assessment by referees additional prints of the photographs must also be provided.

Keywords. Five keywords must be supplied after the summary.

Headings. The relative importance of headings must be clearly indicated. The main categories of headings are side capitals, side italics and shoulder italics. If necessary, small capitals may be used for subsidiary main headings. For examples see articles in a recent issue of the Journal.

Illustrations should be referred to in text as, e.g., Fig 2, Figs 2, 4–7, using Arabic numbers. Each figure should bear a reference number corresponding to a similar number in the text, and should be marked on the back with the name(s) of the author(s) and the title of the paper. Where there is doubt as to the orientation of an illustration the top should be marked with an arrow. Photographs and photomicrographs should be unmounted glossy prints and should not be retouched. Diagrams should be on separate sheets; they should be drawn with black Indian ink on white paper and should be about twice the size of the final reproduction. Lines should be of sufficient thickness to stand reduction. Each illustration should be accompanied by a legend clearly describing it; these legends should be grouped on a separate sheet of paper.

The Journal welcomes colour photographs. The charge for inclusion of these in any one article is £250 per page, regardless of the number of illustrations in colour on the page. Under exceptional circumstances authors may request waiver of this charge; this must be done, in writing, at the time of submission of the manuscript. Authors must justify to the Editor that inclusion of the figure(s) in colour is essential for interpretation of the results presented.

Tables should be as few as possible and should include only essential data; they should be typewritten on separate sheets and should be given Roman numerals.

References. Only papers closely related to the author's work should be cited. References should be made by giving the

author's surname with the year of publication in parentheses. Where the reference contains more than two authors it should be given at each mention in the text with only the first surname plus *et al*, e.g. Jones *et al* (1948). If several papers by the same author(s) and from the same year, or by the same author but different subsequent authors in the same year, are cited, a, b, c, etc., should be put after the year of publication, e.g. Jones *et al* (1948a, b). All references should be brought together at the end of the paper in alphabetical order, with all authors, titles of journals spelt out in full and with both first and last page numbers given. The style to be used is that of any recent issue of the Journal.

Disk. The journal welcomes submission of *accepted* manuscripts on disk. These should be IBM-compatible. An *accurate* hardcopy must accompany each disk, together with details of the type of hardware used, the software employed and the disk system, if known. DO NOT JUSTIFY. Particular attention should be taken to adhere exactly to the journal style in all respects. Further details can be obtained from the publisher and the Editorial Office will supply 'Disk Submission' forms on acceptance of a manuscript. Disks will not be returned to authors.

Proofs (except for Correspondence) will be submitted to the author responsible for proof-correction (see under 'Preparation of manuscripts') and should be returned to the Editor within 3 days. Major alterations from the text cannot be accepted.

Offprints. Fifty offprints of each paper (except Correspondence) are supplied free, but additional copies may be purchased if ordered on the printed form which will be sent to the author with the proofs.

Adonis. The journal is included in the *Adonis* service, whereby copies of individual articles can be printed out from compact disks (CD-ROM) on demand. An explanatory leaflet giving further details of the scheme is available from the publishers on request.

The British Journal of Haematology is covered by *Current Contents*, *Chemical Abstracts*, *Current Clinical Cancer*, *CABS*, *ISI/BIOMED*, *Science Citation Index* and *ASCA*.

Internet. Information on this journal and other Blackwell Science publications is available on the Blackwell Science homepage at: <http://www.blacksci.co.uk/products/journals/bjh.htm>.

Paper. The publisher's policy is to use acid-free permanent paper, to the draft standard ISO/DIS 9706, made from sustainable forests using chlorine-free pulp. The paper used in this journal has an ECO-CHECK 4 Star rating.

Copyright. Papers accepted become the copyright of the Journal (© 1998 Blackwell Science Ltd). Authorization to photocopy items for internal or personal use or the internal or personal use of specific clients is granted by Blackwell Science Ltd for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$14.00 per copy is paid directly to the CCC, 222 Redwood Drive, Suite 910, Danvers, MA 01923, U.S.A. Special requests should be addressed to the Editor. *British Journal of Haematology* 0007-1048/98 \$14.00. The Blackwell Science Logo is a trademark of Blackwell Science Ltd registered at the United Kingdom Trade Marks Registry.

Flow cytometric analysis of platelet activation by different collagen types present in the vessel wall

LORENZO ALBERIO AND GEORGE L. DALE *Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, U.S.A.*

Received 21 April 1998; accepted for publication 25 June 1998

Summary. The interaction of platelets with collagens of the vessel wall is a critical event in primary haemostasis. Although numerous studies have examined the ability of various collagen types to support platelet adhesion, little is known concerning the relative ability of different collagens to elicit specific activation markers in platelets. In this report, flow cytometric analysis has been utilized to evaluate the ability of various native collagen types to elicit secondary activation events in human platelets. Collagen types I, III, V and VI induced α -granule secretion and up-regulation of cell surface glycoprotein (GP) IIb/IIIa. In contrast, collagen type IV did not elicit these responses in the concentration ranges examined. Dose-response curves for α -granule secretion induced by the various collagen types indicated that human

type III and human type I collagens were less effective than human type V, human type VI and calf skin type I. In addition, the ability of these various collagens to activate GPIIb/IIIa to its ligand binding conformation was even more heterogeneous with only human type VI and calf skin type I readily promoting this transition. These data demonstrate that flow cytometric analysis of collagen-induced platelet activation is feasible and that collagen-mediated α -granule secretion and membrane glycoprotein redistribution in human platelets are separate events from activation of GPIIb/IIIa.

Keywords: platelet activation, collagen, P-selectin, glycoprotein IIb/IIIa, flow cytometry.

Platelet adherence to collagen is recognized as a critical initial event for generation of a haemostatic plug (Sixma *et al.* 1997). The complexity of this interaction is emphasized by the presence of at least seven different forms of collagen within the vessel wall (van der Rest & Garrone, 1991) and reports of several different collagen receptors on platelets (Moroi & Jung, 1997). To dissect the multitude of possible interactions, investigators have examined platelet binding to various forms of immobilized collagen under conditions of both flow and stasis (for reviews see Sixma *et al.* 1997; Moroi & Jung, 1997; Kehrel, 1995). These studies suggest that most fibrillar forms of collagen will support adhesion, activation and aggregation of platelets to varying degrees (Moroi & Jung, 1997).

The primary collagen receptor on platelets is considered by many to be GPIIb/IIIa (integrin $\alpha_2\beta_1$) which is present on the platelet surface at ~1000–2000 copies/cell (Saelman *et al.* 1994; Kunicki *et al.* 1993). However, there are data to suggest that GPIV (CD36) (Tandon *et al.* 1989), GPVI (Kehrel *et al.* 1998) and a 65 kD membrane protein (Chiang

et al. 1997) are also involved with collagen binding. The data for each receptor include antibody inhibition studies, direct receptor isolation and/or absence of collagen-induced responses in patients lacking specific membrane receptors. Each receptor is assumed to be constitutively active although some potentiation of receptor affinity has been reported (Wilkins *et al.* 1996), and several investigators have suggested that full activation of platelets requires synergistic cooperation between different forms of collagen receptors (Keely & Parise, 1996; Clemetson, 1995).

The examination of platelet function has been greatly facilitated by the introduction of flow cytometric techniques which allow analysis of adhesive protein binding (Jackson & Jennings, 1989; Heilmann *et al.* 1994) and secondary events elicited by activation (Johnston *et al.* 1987; Michelson *et al.* 1994; Michelson, 1992). Particularly relevant among these secondary activation events are the redistributions of membrane glycoproteins (Nurden, 1997) and activation of specific receptors (Ginsberg *et al.* 1995). However, the collagen–platelet interaction has not been considered amenable to flow cytometric study due to the polymerization of collagen in neutral solution resulting in the formation of insoluble macro-aggregates (Williams *et al.* 1978). These aggregates are large enough to interfere with light-scatter

Correspondence: Dr George L. Dale, Department of Medicine, BSEB-306, OU Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73190, U.S.A.

analysis during flow cytometry (Wierwille *et al.*, 1997) as well as to simultaneously interact with multiple platelets. One approach to this problem utilized by other investigators employs methylated collagens which are slow to aggregate and therefore can be used for flow cytometric analysis of the platelet-collagen interaction (Wierwille *et al.*, 1997).

In this report we present a flow cytometric study of activation events in platelets induced by native collagens; this was accomplished by utilizing low concentrations of unmodified collagens under experimental conditions which minimized collagen aggregation. This methodology allows an examination of the ability of various collagens to elicit α -granule secretion, glycoprotein redistribution and glycoprotein receptor activation in human platelets. These data demonstrate that several collagen types mimic traditional strong agonists whereas others do not.

MATERIALS AND METHODS

Materials. Collagens type I (calf skin), type I (human), type III (human), type IV (human), type V (human), Sepharose CL-2B, FITC-goat-anti-mouse-IgM (FITC-GAMM) and bovine serum albumin (BSA) were obtained from Sigma Chemical Co., St Louis, Mo. Collagen type VI (human) was obtained from Heyltx Corp., Houston, Texas. Fluorescein isothiocyanate (FITC) and NHS-biotin were obtained from Calbiochem, La Jolla, Calif. Phycoerythrin-labelled streptavidin (PE-SA) was obtained from Molecular Probes, Eugene, Ore. Monoclonal antibody G5 recognizes human P-selectin and was provided by Dr R. McEver, Oklahoma Medical Research Foundation, Oklahoma City, Okla.; antibody AP2 against human GPIIb/IIIa (Pidard *et al.*, 1983) was provided by Dr T. Kunicki, Scripps Research Institute, La Jolla, Calif.; antibody PAC-1 which recognizes activated GPIIb/IIIa (Shattil *et al.*, 1987) was provided by Dr S. Shattil, Scripps Research Institute, La Jolla, Calif.

Buffers. BSGC: buffered saline-glucose-citrate, 129 mm NaCl, 13.6 mm Na₃citrate, 11.1 mm glucose, 1.6 mm KH₂PO₄, 8.6 mm NaH₂PO₄, pH adjusted with NaOH to either 6.5 or 7.3. ACD: acid citrate dextrose, 38.1 mm citric acid, 74.8 mm Na₃citrate, 136 mm glucose. PBS: phosphate buffered saline, 150 mm NaCl, 10 mm NaH₂PO₄, pH 7.4. Saline: 150 mm NaCl. HEPES: 100 mm HEPES, pH 7.5.

Human platelets. Informed consent was obtained in accordance with local Institution Review Board guidelines. 5 ml blood was drawn into 0.5 ml ACD and then diluted with 5 ml of room temperature BSGC, pH 7.3. Platelet-rich plasma (PRP) was prepared in 12 × 75 mm plastic centrifuge tubes filled maximally and centrifuged at 170 g for 8 min at room temperature. 2 ml of PRP were removed and applied to a 25 × 55 mm column of Sepharose CL-2B equilibrated with BSGC, pH 6.5. Isolated platelets were counted and diluted in BSGC, pH 7.3 to a cell count of 4 × 10⁷/ml.

Collagen solutions. Collagens were dissolved at 1 mg/ml in 85 mm acetic acid overnight at 4°C. Stock solutions were prepared with a 1:5 dilution with water to yield a final collagen concentration of 200 µg/ml in 17 mm acetic acid; these optically clear stock solutions were stored at 4°C in glass tubes and were stable for at least a month. In one set of

experiments calf skin collagen at 200 µg/ml in 17 mm acetic acid was centrifuged at 100 000 g for 1 h at 4°C. The supernatant was then compared to the starting collagen solution for its ability to activate platelets utilizing the assays described below. Centrifugation did not affect the ability of collagen to mediate platelet activation, thereby indicating that there was no significant level of pre-formed collagen oligomers in these stock solutions. Further analysis of oligomerization after neutralization is discussed below.

Platelet activation markers. Binding of 5 µg/ml biotin-G5, an anti-P-selectin antibody, was used to monitor α -granule secretion by activated human platelets. GPIIb/IIIa redistribution was monitored with 5 µg/ml FITC-AP2 (Pidard *et al.*, 1983). GPIIb/IIIa activation in human platelets was monitored with 5 µg/ml PAC-1 (Shattil *et al.*, 1987) which was subsequently detected with FITC-GAMM.

Collagen activation of platelets. Reactions were performed in 17 × 100 mm polypropylene round-bottom culture tubes. For a final collagen concentration of 20 µg/ml, 50 µl of collagen (200 µg/ml stock) and 150 µl of 17 mm acetic acid in saline were added to reaction tubes and kept on ice until needed. Immediately before the assay was initiated, 250 µl of RT 100 mm HEPES, pH 7.5, with 2 mm CaCl₂ and any relevant antibody (e.g. G5 or PAC-1) was added followed by 50 µl of gel-filtered platelets. The reaction proceeded at 37°C for 10 min and was stopped with 4 ml of ice-cold 1% formalin in PBS. After 20 min of fixation at RT, 8 ml of 1 mg/ml BSA in PBS (BSA-PBS) were added, the platelets pelleted at 1500 g for 15 min, and the pellet resuspended in 400 µl BSA-PBS. 200 µl of the fixed platelets were transferred to 12 × 75 mm polypropylene tubes and labelled with the respective detection system, 5 µg/ml PE-SA for biotinylated antibodies, 10 µg/ml FITC-GAMM for PAC-1 or 5 µg/ml FITC-AP2 for GPIIb/IIIa. After 30 min of labelling at RT, the platelets were washed by addition of 3 ml of BSA-PBS and centrifuged at 1500 g for 15 min. The final pellet was resuspended in 800 µl of BSA-PBS for flow cytometric analysis.

Flow cytometry. Flow cytometric analysis was performed on a FACScan instrument (Becton Dickinson, San Jose, Calif.) utilizing ConSort 30 software. Platelets were identified by their characteristic forward scatter/side scatter or with platelet-specific antibodies (Pidard *et al.*, 1983).

Flow cytometric analysis of collagen-induced changes was possible as a result of conditions which prevented any detectable collagen polymerization during the assay. These conditions included use of dilute stock solutions of collagen in weak acid, maintenance of low collagen concentrations after acid neutralization, and immediate utilization of collagen solutions upon neutralization as detailed above. With these experimental conditions, no collagen oligomers interfering with flow cytometric examination were observed utilizing forward light scatter/side light scatter analysis. Two additional controls were performed. First, collagen at 10 µg/ml was neutralized with HEPES buffer as described above and pre-incubated at 37°C for time periods ranging from 0 to 10 min before addition of platelets; no alteration in platelet response was observed. If collagen oligomerization upon neutralization were a significant contributor to the described

Fig 1. Collagen-mediated activation of human platelets. Panel A: calf skin collagen type I ($10 \mu\text{g/ml}$) was incubated with gel-filtered human platelets at 37°C . Alpha-granule secretion in response to collagen was monitored with an anti-P-selectin antibody (biotinylated G5); bound G5 was detected with phycoerythrin-streptavidin (PE-SA, FL₂, abscissa). The shaded area represents an FL₂ histogram for control platelets, and the solid line indicates the FL₂ histogram for collagen-activated platelets. Panel B: platelets were activated with an intermediate collagen concentration ($1 \mu\text{g/ml}$) and stained for P-selectin expression as detailed. Note that only 38% of the platelets (gate M1) responded to this submaximal collagen concentration.

activation events, a pre-incubation step would be expected to modify the platelet response. These data suggest that oligomerization during the time scale of these assays is not a significant variable. Secondly, possible collagen-induced aggregation of platelets was monitored by co-incubation with an equal number of washed erythrocytes. The ratio of platelets to erythrocytes before and after incubation with

various collagen types was constant, indicating that no significant platelet aggregation occurred (data not shown).

RESULTS

Incubation of human platelets with either $10 \mu\text{g/ml}$ or $1 \mu\text{g/ml}$ of calf skin type I collagen resulted in expression of cell

Fig 2. Dose-response curves for collagen stimulation of human platelets. Graded doses of various collagen types were reacted with gel-filtered, human platelets as detailed in Fig 1. The percentage of platelets positive for surface P-selectin was then quantitated (ordinate) and plotted versus collagen concentration (abscissa). Panel A represents calf skin collagen type I (solid circle), human type I (open square) and human type III (solid triangle); panel B represents calf skin collagen type I (solid circle), human type IV (solid square), human type V (up triangle) and human type VI (down triangle). Note that five of the six collagen types elicited significant α -granule secretion. Data represent mean ± 1 SD; $n = 3-6$.

surface P-selectin on 97% or 38%, respectively, of all cells (Fig 1). The response of platelets to collagen was further analysed with graded doses of each collagen type over a concentration range of 0.03–90 µg/ml (Fig 2). Of the six different collagens tested, calf skin type I, human type V and human type VI were the most active. Human type III and human type I clearly elicited α-granule secretion although with apparent EC₅₀ values approximately 10-fold higher than that observed with calf skin type I. And finally, human type IV collagen was not appreciably active in the concentration range utilized here.

Strong platelet agonists are also known to result in a redistribution of GPIIb/IIIa to the platelet surface (Nurden, 1997). The effect of graded doses of calf skin collagen type I on the surface level of GPIIb/IIIa in human platelets is demonstrated in Fig 3. In panel A the mean fluorescence for FITC-AP2, an anti-GPIIb/IIIa monoclonal, demonstrates a collagen-dose-response curve similar to that for α-granule secretion. In panel B this response was further dissected in a dual-labelling experiment by measuring the mean FITC-AP2

Fig 3. Effect of collagen activation on surface GPIIb/IIIa levels. Gel-filtered human platelets were reacted with graded doses of calf skin collagen type I and then labelled with FITC-AP2, an anti-GPIIb/IIIa monoclonal, and biotin-G5 to detect surface P-selectin. In panel A mean FL₁ fluorescence (FITC-AP2) for the total population is presented. Note the collagen-induced increase in surface exposed GPIIb/IIIa. In panel B the same samples depicted in the first panel were analysed for P-selectin expression, and the mean FL₁ for the P-selectin-positive (hatched bars) and P-selectin-negative platelets (solid bars) was determined. Note that the mean fluorescence for the GPIIb/IIIa antibody did not change from starting values for the P-selectin negative population whereas the P-selectin-positive population always had a high anti-GPIIb/IIIa fluorescence. Data represent mean ± 1 SD; n = 6.

Fig 4. Effect of different collagens on GPIIb/IIIa redistribution. Gel-filtered human platelets were maximally stimulated with various collagen types and then stained with FITC-AP2. The mean fluorescence (ordinate) is shown for each collagen type (hatched bars); a quiescent control (Con) and thrombin-stimulated (Thr, 0.5 U/ml) sample are also shown for comparison (solid bars). Collagen types are identified by roman numerals; 'c' and 'h' signify calf and human, respectively. Data represent mean ± 1 SD; n = 3.

fluorescence for P-selectin-positive and P-selectin-negative platelets at each collagen concentration. These data demonstrated that the mean FITC-AP2 fluorescence for the P-selectin-negative population remained constant at the pre-treatment level whereas the P-selectin-positive population had an elevated level of fluorescence. This observation suggests that GPIIb/IIIa redistribution occurred concurrently with α-granule secretion. The ability of various collagen types to induce redistribution of GPIIb/IIIa is shown in Fig 4. Similar to the results with P-selectin expression, collagen types I, III, V and VI elicited GPIIb/IIIa redistribution whereas type IV did not.

Activation of GPIIb/IIIa to its fibrinogen binding conformation is promoted by both strong (e.g. thrombin) and weak (e.g. ADP) agonists (Ware & Coller, 1995). Utilizing PAC-1, a monoclonal antibody which recognizes the activated conformation of GPIIb/IIIa (Shattil *et al.*, 1987), we examined the ability of the various collagen types to activate human platelet GPIIb/IIIa. Fig 5 demonstrates that human type VI and calf skin type I were the most efficient in activating GPIIb/IIIa, whereas human collagen types I, III and V only activated GPIIb/IIIa at higher concentrations. Human type IV collagen resulted in essentially no change in PAC-1 binding. Even though there is no evidence that collagens directly bind to activated GPIIb/IIIa (De Groot & Sixma, 1997; Kehrel *et al.*, 1998), there are reports that collagens can indirectly interact with this integrin (Coller *et al.*, 1989). It was therefore necessary to consider the possibility that collagen might interfere with PAC-1 binding to activated GPIIb/IIIa. However, the fact that increased levels of these collagens potentiated PAC-1 binding (Fig 5) makes it unlikely that collagen was acting as a competitive inhibitor of PAC-1.

Fig 5. PAC-1 binding to platelets stimulated with collagen. Human platelets were activated with various collagen types and then analysed with PAC-1, an activation-dependent anti-GPIIb/IIIa monoclonal. The percentage of platelets positive for PAC-1 is indicated on the ordinate. The collagen types include: calf skin type I (open circle), human type I (solid square), human type III (open triangle), human type IV (solid triangle), human type V (open diamond) and human type VI (solid hexagon). Data represent mean ± 1 SD; $n = 3$.

DISCUSSION

In vivo platelet adhesion to collagen exposed in ruptured blood vessels occurs under flow conditions, often at high shear. As a result, most experimental analyses of the collagen–platelet interaction have mimicked this natural process, utilizing artificial flow systems with variable shear rates (Sixma *et al.*, 1997). Although these experiments are informative for many aspects of the collagen–platelet interaction, there are some parameters which do not readily lend themselves to analysis under such conditions. For example, the ability of various collagen types to promote glycoprotein redistribution as well as integrin activation is difficult to assess.

In this report we describe a technique which allows

analysis of secondary activation events resulting from a fluid-phase interaction between collagen and platelets. With this system, collagens type I, III, V and VI elicited P-selectin expression and up-regulation of surface GPIIb/IIIa, although with different efficiencies for the individual collagen types. Human collagen type IV, in the concentration range examined, did not generate a significant response. Additionally, calf skin type I and human type VI collagens were the most efficient at eliciting activation of GPIIb/IIIa to its ligand binding conformation (Fig 5); however, higher collagen concentrations were generally required for GPIIb/IIIa activation than for either α -granule secretion or up-regulation of surface GPIIb/IIIa (Fig 2). The differential response of human platelets to the various collagen types is summarized in Table I. Although it may be tempting to compare the activating potential of these various collagens and their respective platelet-adhesive capabilities (Saelman *et al.*, 1994), any correlation appears tenuous.

The different reactivities of the various collagen types may depend on one or more factors. (1) The individual collagen types may have different affinities for the relevant receptor. (2) Different receptors or sets of receptors may be responsible for responses with the various collagen types. (3) The collagens themselves may be structurally different with regards to the degree of oligomerization under the assay conditions utilized. Although it is clear that none of the collagens examined were sufficiently polymerized to interfere with flow cytometric analysis, we have not at this time conclusively addressed the question of oligomeric structure for each collagen type. However, ultracentrifugation of the collagen stock solutions did not affect their stimulatory properties, indicating that macropolymer did not form in the collagen stock solutions. In addition, a 10 min pre-incubation of neutralized collagen at the low protein concentrations utilized here did not modify the degree of platelet activation (see Methods). This finding is in agreement with a previous study examining the kinetics of collagen fibril formation which demonstrated a considerable lag time for polymerization at neutral pH (Williams *et al.*, 1978).

The dose-response curves demonstrated in Fig 2 are strikingly similar to those observed with other agonists such as thrombin (Peng *et al.*, 1994). The basis for differential reactivity within a platelet population is unclear (Thompson & Jabubowski, 1988). For thrombin, some of the variability

Table I. Summary of activation characteristics of several collagen types with human platelets.

Activation parameter	Thrombin	Agonist					
		Collagen type					
		Calf skin I	Human I	Human III	Human IV	Human V	Human VI
P-selectin expression	++	++	+	+	\pm	++	++
GPIIb/IIIa up-regulation	++	++	+	+	\pm	++	++
GPIIb/IIIa activation	++	++	+	+	—	+	++

The response of platelets to the various collagen types was monitored as detailed in Methods.

can be attributed to age differences (Peng *et al.* 1994); there are, however, other factors controlling reactivity which remain unknown regardless of the agonist.

Finally, the variation in concentration dependence for expression of different activation markers with a specific collagen type was unexpected. For example, type V collagen, which was among the strongest activators for eliciting P-selectin expression, was only a modest activator of GPIIb/IIIa. On the other hand, type VI collagen was able to elicit both changes at almost the same effector concentration. These observations indicated that α -granule secretion and GPIIb/IIIa redistribution were separate events from GPIIb/IIIa activation.

Activation events reported here represent the final steps of intracellular signalling pathways initiated by various collagens. Studies with other integrins have shown that receptor occupation can result in intracellular phosphorylation reactions culminating in platelet activation (Shattil *et al.* 1994), and occupation of the collagen receptor(s) is known to elicit a number of intracellular events, including phosphorylation of syk, src and PLC γ 2 (Keely & Parise, 1996). The role of these events in expression of the secondary activation markers monitored here is not clear; however, it does appear likely that more than one receptor, and therefore multiple intracellular signalling pathways, are involved.

The current experiments have utilized a technique which allows a fluid phase interaction between human platelets and various collagen types. The strength of this procedure is the ability to utilize flow cytometry for analysis of secondary activation events resulting from collagen stimulation. Although this methodology has shed new light on the reactivity of the various collagen types, complementary experiments investigating the receptors and intracellular signalling utilized by the different collagens are required to fully elucidate the molecular basis for these differential reactivities.

ACKNOWLEDGMENTS

This work was supported in part by the National Institutes of Health (HL53585) and the Swiss National Science Foundation (811T-49995).

REFERENCES

- Chiang, T.M., Rinaldy, A. & Kang, A.H. (1997) Cloning, characterization, and functional studies of a nonintegrin platelet receptor for type I collagen. *Journal of Clinical Investigation*, **100**, 514–521.
- Clemetson, K.J. (1995) Platelet activation: signal transduction via membrane receptors. *Thrombosis and Haemostasis*, **74**, 111–116.
- Coller, B.S., Beer, J.H., Scudder, L.E. & Steinberg, M.H. (1989) Collagen–platelet interactions: evidence for a direct interaction of collagen with platelet GPIa/IIa and an indirect interaction with platelet GPIIb/IIIa mediated by adhesive proteins. *Blood*, **74**, 182–192.
- De Groot, P.G. & Sixma, J.J. (1997) Role of glycoprotein IIb:IIIa in the adhesion of platelets to collagen under flow conditions. *Blood*, **89**, 1837.
- Ginsberg, M.H., Du, X., O'Toole, T.E. & Loftus, J.C. (1995) Platelet integrins. *Thrombosis and Haemostasis*, **74**, 352–359.
- Heilmann, E., Hynes, L.A., Burstein, S.A., George, J.N. & Dale, G.L. (1994) Fluorescein-derivatization of fibrinogen for flow cytometric analysis of fibrinogen binding to platelets. *Cytometry*, **17**, 287–293.
- Jackson, C.W. & Jennings, L.K. (1989) Heterogeneity of fibrinogen receptor expression on platelets activated in normal plasma with ADP: analysis by flow cytometry. *British Journal of Haematology*, **72**, 407–414.
- Johnston, G.I., Pickett, E.B., McEver, R.P. & George, J.N. (1987) Heterogeneity of platelet secretion in response to thrombin demonstrated by fluorescence flow cytometry. *Blood*, **69**, 1401–1403.
- Keely, P.J. & Parise, L.V. (1996) The $\alpha_2\beta_1$ integrin is a necessary co-receptor for collagen-induced activation of Syk and the subsequent phosphorylation of phospholipase C γ 2 in platelets. *Journal of Biological Chemistry*, **271**, 26668–26676.
- Kehrel, B. (1995) Platelet–collagen interactions. *Seminars in Thrombosis and Hemostasis*, **21**, 123–129.
- Kehrel, B., Wierwille, S., Clemetson, K.J., Anders, O., Steiner, M., Knight, C.G., Farndale, R.W., Okuma, M. & Barnes, M.J. (1998) Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa and von Willebrand factor do not. *Blood*, **91**, 491–499.
- Kunicki, T.J., Orzechowski, R., Annis, D. & Honda, Y. (1993) Variability of integrin $\alpha_2\beta_1$ activity on human platelets. *Blood*, **82**, 2693–2703.
- Michelson, A.D. (1992) Thrombin-induced down-regulation of the platelet membrane glycoprotein Ib-IX complex. *Seminars in Thrombosis and Hemostasis*, **18**, 18–27.
- Michelson, A.D., Wencel-Drake, J.D., Kestin, A.S. & Barnard, M.R. (1994) Platelet activation results in a redistribution of glycoprotein IV (CD36). *Arteriosclerosis and Thrombosis*, **14**, 1193–1201.
- Moroi, M. & Jung, S.M. (1997) Platelet receptors for collagen. *Thrombosis and Haemostasis*, **78**, 439–444.
- Nurden, P. (1997) Bidirectional trafficking of membrane glycoproteins following platelet activation in suspension. *Thrombosis and Haemostasis*, **78**, 1305–1308.
- Peng, J., Fries, P., Heilmann, E., George, J.N., Burstein, S.A. & Dale, G.L. (1994) Aged platelets have an impaired response to thrombin as quantitated by P-selectin expression. *Blood*, **83**, 161–166.
- Pidard, D., Montgomery, R.R., Bennett, J.S. & Kunicki, T.J. (1983) Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein IIb-IIIa complex, with intact platelets. *Journal of Biological Chemistry*, **258**, 12582–12586.
- Saelman, E.U.M., Nieuwenhuis, H.K., Hese, K.M., De Groot, P.G., Heijnen, H.F.G., Sage, E.H., Williams, S., McKeown, L., Gralnick, H.R. & Sixma, J.J. (1994) Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa ($\alpha_2\beta_1$ -integrin). *Blood*, **83**, 1244–1250.
- Shattil, S.J., Cunningham, M. & Hoxie, J.A. (1987) Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies. *Blood*, **70**, 307–315.
- Shattil, S.J., Ginsberg, M.H. & Brugge, J.S. (1994) Adhesive signaling in platelets. *Current Opinion in Cell Biology*, **6**, 695–704.
- Sixma, J.J., Van Zanten, G.H., Huizinga, E.G., Van der Plas, R.M., Verkley, M., Wu, Y.P., Gros, P. & De Groot, P.G. (1997) Platelet adhesion to collagen: an update. *Thrombosis and Haemostasis*, **78**, 434–438.
- Tandon, N.N., Kralisz, U. & Jamieson, G.A. (1989) Identification of glycoprotein IV (CD36) as a primary receptor for platelet–collagen adhesion. *Journal of Biological Chemistry*, **264**, 7576–7583.

1218 *Lorenzo Alberio and George L. Dale*

- Thompson, C.B. & Jabubowski, J.A. (1988) The pathophysiology and clinical relevance of platelet heterogeneity. *Blood*, 72, 1-8.
- van der Rest, M. & Gartner, R. (1991) Collagen family of proteins. *FASEB Journal*, 5, 2814-2823.
- Ware, J.A. & Coller, B.S. (1995) Platelet morphology, biochemistry, and function. *Williams Hematology* (ed. by E. Beutler, M. A. Lichtman, B. S. Coller and T. J. Kipps), p. 1161. McGraw-Hill, New York.
- Wierwille, S., Lahav, I., Rautenberg, J., Troyer, D., Balleisen, L. & Kehrel, B. (1997) Methylation of type I collagen results in the formation of very small fibrils that make it possible to study collagen induced platelet activation by flow cytometry. *Blood*, 90, 74b.
- Wilkins, J.A., Li, A., Ni, H., Stupack, D.G. & Shen, C. (1996) Control of β_1 integrin function: localization of stimulatory epitopes. *Journal of Biological Chemistry*, 271, 3046-3051.
- Williams, B.R., Gehman, R.A., Popple, D.C. & Piez, K.A. (1978) Collagen fibril formation: optimal in vitro conditions and preliminary kinetic results. *Journal of Biological Chemistry*, 253, 6578-6585.

The Journal of LABORATORY and CLINICAL MEDICINE

The Official Publication of the Central Society for Clinical Research

VOLUME 93

MARCH 1979

NUMBER 3

Editor
FREDERIC C. McDUFFIE

Associate Editors
E. J. WALTER BOWIE
FRANKLYN G. KNOX
CARLO M. VENEZIALE

Editorial Assistant
LeANN STARKEN

Board of editors
SIAMAK A. ADIBI
Pittsburgh, Pa.
CLARENCE P. ALFREY, JR.
Houston, Texas
WARD E. BULLOCK, JR.
Lexington, Ky.
JAY N. COHN
Minneapolis, Minn.
ROBERT P. HEANEY
Omaha, Nebr.
ANDREW H. KANG
Memphis, Tenn.
CHARLES E. MENGEL
Columbia, Mo.
JOHN A. PIERCE
St. Louis, Mo.
WILLIAM A. ROBINSON
Denver, Colo.
HAROLD H. SANDSTEAD
Grand Forks, N. D.
HOLBROOKE S. SELTZER
Dallas, Texas
ARTHUR A. SPECTOR
Iowa City, Iowa
JAY H. STEIN
San Antonio, Texas
JOHN D. STOBO
San Francisco, Calif.
ROBERT C. TARAZI
Cleveland, Ohio
ROBERT WHANG
Oklahoma City, Okla.
JAMES G. WHITE
Minneapolis, Minn.

E. V. MOSBY COMPANY

Publisher

Westline Industrial Drive
St. Louis, Missouri 63141

ISSN 0022-2143

CONTENTS

continued

- Platelet and fibrinogen production: relative sensitivities to endotoxin.** *Barbara M. Alving, Bruce L. Evatt, Jack Levin, William R. Bell, Rosemary B. Ramsey, and Francine C. Levin, Bethesda and Baltimore, Md., and Atlanta, Ga.* 437
- Erythropoietin levels in uremic nephric and anephric patients.** *Jaimie Caro, Stephen Brown, Orin Miller, Thomas Murray, and Allan J. Erslev, Philadelphia, Pa.* 449
- The interaction of C₁-esterase inhibitor and plasmin in human euglobulin.** *R. F. Highsmith, C. J. Burnett, and C. J. Weirich, Cincinnati, Ohio* 459
- Monocyte functional and metabolic activity in malignant and inflammatory diseases.** *Mitsuo Kitahara, Harmon J. Eyre, and Harry R. Hill, Salt Lake City, Utah* 472
- A simple radiometric assay for methotrexate and other folate antagonists.** *Ronald J. Hayman, Hubert Fong, and Martin B. Van der Weyden, Prahran, Victoria, Australia* 480
- A zinc tolerance test.** *James F. Sullivan, Mary M. Jetton, and Robert E. Burch, Omaha, Nebr., and Huntington, W. Va.* 485
- Activation of the alternative pathway of complement by antiserum to factor B.** *Merlin R. Wilson, Carlos M. Arroyave, and Eng M. Tan, Denver, Colo.* 493

CONTENTS CONTINUED ON PAGE 3

Vol 93, No. 3 March, 1979 The Journal of Laboratory and Clinical Medicine is published monthly by The C. V. Mosby Company, 11830 Westline Industrial Drive, St. Louis, Mo 63141.

Annual subscription rates:	U.S.	All foreign countries
Institutional*	\$47.00	\$55.50
Personal†	\$32.00	\$40.50
Student, resident†	\$25.60	\$34.10

Single copies are \$4.50 postpaid. Remittances should be made by check, draft, or post office or express money order, payable to this Journal.

*Institutional (multiple-reader) subscriptions are available to public and private libraries, schools, hospitals, and clinics; city, county, state, provincial, and national government bureaus and departments; and all commercial and private institutions and organizations.

† Personal subscriptions and all student-rate subscriptions must be in the names of, billed to, and paid by individuals.

All student-rate requests must indicate training status and name of institution.

Subscriptions may begin at any time.

Second class postage paid at St. Louis, Mo. Printed in the U.S.A. Copyright © 1979 by The C. V. Mosby Company

The appearance of a code at the bottom of the first page of an original article in this journal indicates the copyright owner's consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc., P.O. Box 765, Schenectady, N.Y. 12301, /518/374-4430, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Type IV and type "A-B" collagens do not elicit platelet aggregation or the serotonin release reaction

ROBERT L. TRELSTAD and ANGELINA C. A. CARVALHO* Boston, Mass.

Human collagens were isolated from kidney, lung, skin, aorta, cartilage, and placenta. Five different types were obtained, including two new molecular species, one characteristic of basement membranes, or type IV collagen, and the other the recently described "A-B" collagen derived from fetal membranes. All the collagens were purified and separated by combination of heat-gelation fractionation and salt fractionation. In neutral solution at 37° neither type IV nor type "A-B" collagen elicited platelet aggregation or ¹⁴C-serotonin release. Preincubation of platelets with both types IV and "A-B" collagen did not inhibit aggregation upon subsequent addition of collagen types I, II, or III. (J LAB CLIN MED 93:499, 1979.)

Abbreviations: sodium dodecyl sulfate (SDS), segment-long-spacing crystallites (SLS crystallites), carboxy methyl cellulose (CM cellulose)

The aggregation of platelets in vitro by the interstitial collagen types I, II, and III has been demonstrated,^{1, 2} and although the mechanism of this reaction is not fully understood, it is principally associated with the capacity of these collagens to undergo polymerization to higher-order multimeric structures.³⁻⁶ Recently additional vertebrate collagen species have been identified, one of which is known to be of basement membrane origin, designated type IV collagen,^{7, 8, 12} and the other of which has been temporarily designated type "A-B".^{9, 10} Type "A-B" consists of A and B chains which may be present in two separate forms (A_3 and B_3) or together (AB_2). This has not been firmly established, nor has its or their possible derivation from basement membranes.

Collagen types IV and "A-B" can be separated from the other collagen types on the basis of their unusually high solubility at both acid and neutral pH^{9, 10} and by their inability to spontaneously aggregate at neutral pH when heated to 37° C.⁸ We report here that collagen types IV and "A-B" do not elicit platelet aggregation and the serotonin release reaction nor do they inhibit such platelet reactions induced by the other interstitial collagens.

From the Experimental Pathology Laboratory, Shriners Burns Institute, the Department of Pathology, Massachusetts General Hospital, and Special Clotting Laboratory, Department of Medicine, Massachusetts General Hospital, Boston, Mass.

This work was supported by grants from the National Institutes of Health HL-18714, HL-12460 and GM-21700 and the Shriners Burns Institute Dr Trelstad was the recipient of Faculty Research Award PRA-107 from the American Cancer Society.

This work was presented at the VIth International Congress on Thrombosis and Haemostasis, Philadelphia, Pa., 1977.

Submitted for publication Sept. 25, 1978; accepted Dec. 12, 1978

Reprint requests: Robert L. Trelstad, Shriners Burns Institute, 51 Blossom St., Boston, Mass. 02114.

*Present address: Brown University Medical School, Box G, Providence, R. I.

Fig. 1. Aggregometry of platelets upon exposure to the five different human collagens as indicated. Prolonged incubation with types IV and "A-B" (or at concentrations of 100 $\mu\text{g}/\text{ml}$) elicited less than a 10% response, whereas the collagen types I, II, and III all reacted readily at concentrations as low as 2 $\mu\text{g}/\text{ml}$.

Materials and methods

Samples of aorta, lung, kidney, skin, and cartilage were obtained at autopsy within 12 hr of death and placental membranes at time of delivery. Following homogenization in 0.5M acetic acid at 4° C the specimens were subjected to limited proteolytic digestion with pepsin (2 \times crystallized, 20 mg/gm wet weight; Worthington Biochemical Corp., Freehold, N. J.) for 72 hr at 4° C. The solubilized collagens were centrifuged, and the extract was neutralized with NaOH to pH 7.5 to inactivate peptic activity. The entire collagen mixture was then reprecipitated by rapid addition of solid NaCl to a final concentration of 20% w/v, and the precipitate was collected by centrifugation. The precipitate was then redissolved in 0.16M potassium phosphate buffer, pH 7.6, and dialyzed against the same to remove the NaCl. The solution was then heat-gelled at 35° C for 16 hr, after which it was centrifuged and separated into gelled and nongelled fractions. The types IV and "A-B" collagens do not heat-gel under these conditions and were subsequently precipitated by the addition of 20% NaCl w/v to the heat-gel supernatant.⁸ The collagens were resolubilized in the phosphate buffer, dialyzed against buffered 2.5M NaCl for 24 hr at 4° C, and centrifuged; the supernatant fraction containing either the type IV or "A-B" collagen was dialyzed against 0.1M acetic acid and stored in solution. Type IV collagen was the major species obtained by this fractionation scheme from the kidney, whereas type "A-B" was the major species obtained from the placental membranes. Collagen types I, II, and III, present in the heat-gel precipitate of skin, cartilage, and aorta, respectively, were resolubilized in phosphate buffer and fractionated by salt precipitation as previously described.¹¹ The fractionated collagens were dialyzed against 0.1M acetic acid and stored in solution. All collagens were prepared for aggregometry study by dialysis against 0.2M NaCl, 0.05M Tris-HCl, pH 7.5, and solution concentrations were determined by 6N HCl hydrolysis of aliquots and measurement of the trans-4-hydroxyproline content on an amino acid analyzer.

Human placental membranes were homogenized and pepsinized as above and then divided into two aliquots, one of which was subjected to the heat-gelation fractionation procedure and the second dialyzed against 2.5M sodium chloride, 0.08M phosphate buffer, pH 7.6, overnight. The heat-gel-fractionated material was handled as described above, and the salt-fractionated material following dialysis was centrifuged and separated into a 2.5M precipitable and 2.5M NaCl-soluble fractions. The "A-B" collagens present in the heat-gel supernatant and the 2.5M NaCl-soluble fraction were reprecipitated by rapid addition of 20% NaCl w/v, and the precipitates were resolubilized in 0.1M acetic acid and dialyzed versus the same and stored.

Purity of the various collagen types was determined by amino acid analysis, electrophoresis on polyacrylamide gels using both an acid-urea system and SDS, chromatographic properties on CM-cellulose, and electron microscopic patterns of SLS crystallites as described in detail elsewhere.^{8-10, 12}

Fig. 2. Aggregometry of platelets after 15 min preincubation with type IV collagen and subsequent addition of type I. The reaction in respect to extent and lag time for type I was unchanged. Similar negative results were obtained by preincubation with type "A-B" collagen.

Table I. ^{14}C -serotonin release elicited by exposure of prelabeled platelets to collagens at three different concentrations*

Collagens	20 $\mu\text{g}/\text{ml}$ (% of uptake)	40 $\mu\text{g}/\text{ml}$ (% of uptake)	100 $\mu\text{g}/\text{ml}$ (% of uptake)
Type I (skin)	98	—	—
Type II (cartilage)	90	—	—
Type III (aorta)	88	—	—
Type IV (kidney)	0	5	10
A-B (placenta)	4	7	12

Mean of 8 determinations

*Collagen types I, II, and III elicit release quantitatively, whereas types IV and "A-B" do not, even at high collagen concentrations.

The melting point of the collagens was determined by measurement of changes in the circular dichroism of neutral collagen solutions, pH 7.6, at 221 nm in a Cary-60 spectropolarimeter by incrementally increasing the temperature of the solution in a 1 mm path-length jacketed cell.¹²

The collagens were adjusted to a final concentration of 0.8 to 1.0 mg/ml, and from 10 to 100 µl of these solutions were added to 0.5 ml of platelet-rich plasma for aggregation studies.

Venous blood was collected from normal volunteers in plastic syringes, and 9 volumes of sample were added to 1 volume of 3.8% sodium citrate, mixed, and centrifuged at room temperature for 10 min at 100 × g.¹³ The platelet-rich plasma, containing 200,000 to 300,000 platelets/µl, was assayed for aggregation with the method described by Born.¹⁴ In some experiments normal platelet-rich plasma was preincubated with ^{14}C -serotonin (0.8 µCi/ml; New England Nuclear, Boston, Mass.) for 25 min at 25° C. The release of the radioactive material from the platelets was induced by exposure to the various collagens. The reaction was monitored by continuous recording in an aggregometer (Bio/Data Corp., Willow Grove, Pa.) for 20 min at 37° C. After centrifugation of the reactants for 15 min at 4° C, 0.1 ml of the supernatant fraction was added to 10 ml of liquid scintillation (Scintisol Complete; Isolab, Inc., Akron, Ohio), and the radioactivity was counted (Beckman scintillation counter; Beckman Instruments, Inc., Palo Alto, Calif.).¹⁵

Blood collection and tissue acquisition were done according to protocols approved by the Human Studies Committee of the Massachusetts General Hospital.

Results

Complete aggregation of the platelets and near-total release of prelabeled ^{14}C -serotonin were achieved by collagen types I, II, and III prepared respectively from skin, costal cartilage, and aorta (Fig. 1; Table I). Complete reaction was achieved with collagen types I, II, and III with as little as 2 $\mu\text{g}/\text{ml}$ collagen, but most experiments were done with 20 $\mu\text{g}/\text{ml}$ to achieve the control curves. Attention was not directed at the relative reactivities of collagen types I, II, and III or to the effects of preheating the solutions to promote aggregation. Few differences were therefore noted in the reactivity of these interstitial collagen types.

Collagen type IV derived from kidney, lung, aorta, and skin and the type "A-B" collagen derived from placenta did not elicit platelet aggregation or the release reaction in the concentration range of 20 to 100 $\mu\text{g}/\text{ml}$ collagen (Fig. 1; Table I). The incubation with platelets was allowed to continue for as long as 30 min in some circumstances, and at most 10% aggregation and 12% release were observed.

When platelets were preincubated with either type IV or type "A-B" collagen for up to 30 min at concentrations from 20 to 100 $\mu\text{g}/\text{ml}$, there was no subsequent inhibition of platelet aggregation, in that addition of collagen types I, II, or III at concentrations from 2 to 20 $\mu\text{g}/\text{ml}$ elicited prompt aggregation without substantial changes in lag time or extent of aggregation (Fig. 2).

There were no apparent differences between type "A-B" collagens prepared by heat-gelation fractionation and those obtained by salt fractionation. Both components failed to elicit aggregation following a 20 min incubation and stirring (1200 rpm), and neither preparation showed inhibition of subsequent platelet aggregation following addition of types I, II, or III.

Denaturation of collagen types I, II, and III by gentle heat treatment (10 min at 50° C) completely eliminated the capacity of these collagens to elicit aggregation and release reaction when used at the concentration of 20 to 40 $\mu\text{g}/\text{ml}$. Heat denaturation of the type IV collagen and "A-B" chains showed no change in their nonreactivity.

The purity of the types IV and "A-B" collagens was determined by the amino acid composition of the native material, SDS-gel electrophoresis, and SLS crystallite formation.^{9-10, 12} In all preparations contamination of the types IV and "A-B" chains with types I, II and III was not detectable on the SDS gels.

The native state of the types IV and "A-B" collagens was indicated by their resistance to peptic digestion under native conditions; their susceptibility to peptic digestion following brief heat denaturation; their capacity to precipitate at both low and high ionic strengths (0.01M Na₂HPO₄ and high salt, 20% NaCl); the capacity of type "A-B" collagen to form SLS crystallites; and the pronounced change in circular dichroism at 221 nM in both collagen types between 38° and 41° C.

Discussion

These observations indicate that collagens derived from basement membranes (type IV) and placental membranes (type "A-B") do not elicit platelet aggregation or the release reaction nor do they inhibit those reactions by additionally added interstitial collagens. Previous studies have indicated that the aggregation and release reaction with collagen types I, II, and III depend largely on the acquisition of higher-order states of polymerization beyond that present in the collagen monomer.¹⁻⁶ Quaternary structure, perhaps of a specific order, is therefore important for part of the platelet-collagen interac-

tion, although it is apparent that interactions with denatured chains or collagen polypeptides from some animal species can occur.¹⁶ The role of carbohydrate side chains in the platelet-collagen reaction, on reassessment,^{6, 17} appears less important than originally thought, and our observations are also inconsistent with this model because type IV collagen contains approximately 10% to 12% carbohydrate by weight.⁸

The types IV and "A-B" collagens do not heat-gel into opaque polymeric gels when heated under physiological conditions at 37° C. The circular dichroism studies conducted on these two collagens indicate that the native triple helix is not destroyed at the temperatures employed in the heat-gelation isolation procedure, and ultrastructural studies indicate that heat-gelled solutions of types IV and "A-B" do contain aggregated structures but not striated fibrils. The nongelling behavior of these new collagen species and their non-reactivity with platelets are additional evidence, albeit indirect or negative, for an important role of an ordered fibril structure in the elicitation of the platelet response. It should be emphasized that the nongelled solutions of both types "A-B" and IV do contain aggregated structures as do solutions of Type I collagen in early stages of fibril formation.^{4, 18} Differences between the gelling and nongelling collagen types are therefore apparently at the level of aggregate interactions leading to ordered fibrillar structures. Characterization of some of the structural features of these intermediate aggregate forms will be necessary in subsequent studies of the platelet-collagen interaction, and physical techniques such as laser light scattering will likely provide more detailed information about the early stages of collagen aggregation and differences among the various collagen types.¹⁹

The inability of either type IV or "A-B" collagen to inhibit platelet aggregation or release is consistent with the recent report of Santoro and Cunningham⁶ that monomeric collagen in excess does not inhibit aggregation by polymeric forms. In contrast, the inhibition of platelet aggregation which occurs with C1q²⁰ and which is dependent on the collagen-like portion²¹ is not seen with types IV and "A-B," in that rapid aggregation occurs upon addition of lesser (2 µg/ml) or equivalent amounts (20 µg/ml) of the interstitial collagens as used in the C1q studies.²¹

A number of previous reports have indicated a low level or nonreactivity of platelets with sonicated basement membranes isolated from heart valves and glomeruli.^{22, 23} Adherence of the platelets to sonicated glomerular basement membranes, however, does occur without causing aggregation or the release reaction.²³ Our preparations of types IV and "A-B" collagens do not contain the noncollagenous constituents which are present in such sonicated glomeruli. The fact that these purified collagens do not elicit the platelet aggregation and release reaction suggests that the earlier reports with sonicated basement membranes indicating nonaggregation do not reflect masking of reactive sites on the type IV (or "A-B") collagen by other basement membrane constituents. It remains to be determined whether isolated type IV or "A-B" collagen can bind platelets when assayed by affinity column techniques.

The identification of a collagen species as being derived from a basement membrane depends on the comparison of its composition with those isolated from the renal glomerulus and lens capsule. The compositions of the collagens we have used, derived from the kidney, lung, and aorta, closely resemble that obtained from purified isolated glomeruli, and antibodies against the kidney-derived material react with lung, vascular, and epidermal basement membranes by indirect immunofluorescence. The type "A-B" collagen has been tentatively identified as a basement membrane collagen because of its relatively high content of 3-hydroxyproline and its elevated levels of glycosylated hydroxyl-

ysine.⁹ This identification, however, remains tentative until further specific localization studies using type-specific antibodies have been completed.

The accumulated data concerning nonreactivity of platelets with basement membranes or their collagenous components suggest that the immediate subendothelial matrix which is initially exposed upon loss of endothelial integrity is a relatively nonthrombogenic surface. The microfibrillar and collagen fibrillar structures which lie beneath the basement membrane, however, are quite potent aggregators of platelets, and it is presumably these structures which, when exposed, elicit platelet aggregation.²⁴

REFERENCES

1. Balleisen L, Gay S, Marx R, and Kuhn K: Comparative investigation on the influence of human and bovine collagen Types I, II and III on the aggregation of human platelets. *Klin Wochenschr* 53:903, 1975.
2. Barnes MJ, Gordon JL, and MacIntyre DE: Platelet-aggregating activity of Type I and Type III collagens from human aorta and chicken skin. *Biochem J* 160:647, 1976.
3. Muggli R and Baumgartner HR: Collagen induced platelet aggregation: requirement for tropocollagen multimers. *Thromb Res* 3:715, 1973.
4. Jaffe R and Deykin D: Evidence for a structural requirement for the aggregation of platelets by collagen. *J Clin Invest* 53:875, 1974.
5. Brass LF and Bensusan HB: The role of collagen quaternary structure in the platelet: collagen interaction. *J Clin Invest* 54:1480, 1974.
6. Santoro SA and Cunningham LW: Collagen-mediated platelet aggregation. Evidence for multivalent interactions of intermediate specificity between collagen and platelets. *J Clin Invest* 60:1054, 1977.
7. Kefalides NA: Basement membranes: structural and biosynthetic considerations. *J Invest Dermatol* 65:85, 1975.
8. Trelstad RL and Lawley KR: Isolation and initial characterization of human basement membrane collagens. *Biochem Biophys Res Commun* 76:376, 1977.
9. Chung E, Rhodes RK, and Miller EJ: Isolation of three collagenous components of probable basement membrane origin from several tissues. *Biochem Biophys Res Commun* 71:1167, 1976.
10. Burgeson RE, ElAdli FA, Kaitila II, and Hollister DW: Fetal membrane collagens: identification of two new collagen alpha chains. *Proc Natl Acad Sci USA* 73:2579, 1976.
11. Trelstad RL, Catanese VM, and Rubin DF: Collagen fractionation: separation of native types I, II and III by differential precipitation. *Anal Biochem* 71:114, 1976.
12. Timpl R, Martin GR, Bruckner P, Wick G, and Wiedermann H: Nature of the collagenous protein in a tumor basement membrane. *Eur J Biochem* 84:43, 1978.
13. Carvalho ACA, Colman RW, and Lees RS: Platelet function in hyperlipoproteinemia. *N Engl J Med* 290:434, 1974.
14. Born GVR: Aggregation of blood platelets by adenosine diphosphate and its reversal. *Nature* 194:927, 1962.
15. Jerushalmi Z and Zucker MB: Some effects of fibrinogen degradation products (FDP) on blood platelets. *Thromb Diath Haemorrh* 15:413, 1966.
16. Kang AJ, Beachey EH, and Katzman RL: Interaction of an active glycopeptide from chick skin collagen (α 1-CB5) with human platelets. *J Biol Chem* 249:1054, 1974.
17. Menashi S, Harwood R, and Grant ME: Native collagen is not a substrate for the collagen glucosyl-transferase of platelets. *Nature* 264:670, 1976.
18. Trelstad RL, Hayashi K, and Gross J: Collagen fibrillogenesis: intermediate aggregates and suprafibrillar order. *Proc Natl Acad Sci USA* 73:4027, 1976.
19. Silver FH, Langley KH, and Trelstad RL: Type I collagen fibrillogenesis: initiation via reversible linear and lateral growth steps. *Biopolymers* (in press, 1979).
20. Cazanave JP, Assimeh SN, Painter RH, Packham MA, and Mustard JF: C1q inhibition of the interaction of collagen with human platelets. *J Immunol* 116:162, 1976.
21. Wautier JL, Souchon H, Reid KBM, Peltier AP, and Caen JP: Studies on the mode of reaction of

- the first component of complement with platelets: interaction between the collagen-like portion of C1q and platelets *Immunochemistry* 14:763, 1977
- 22. Suresh AD, Stemerman MB, and Spaet TH: Rabbit heart valve basement membrane: low platelet reactivity *Blood* 41:359, 1973
 - 23. Huang TW, Langunoff D, and Benditt EP: Nonaggregative adherence of platelets to basal lamina in vitro. *Lab Invest* 31:156, 1974
 - 24. Baumgartner HR: Platelet interaction with collagen fibrils in flowing blood 1. Reaction of human platelets with α -chymotrypsin-digested subendothelium. *Thromb Haemostas* 37:1, 1977.

Information for authors

Most of the provisions of the Copyright Act of 1976 became effective on January 1, 1978. Therefore, all manuscripts must be accompanied by the following written statement, signed by one author: "The undersigned author transfers all copyright ownership of the manuscript (title of article) to The C. V. Mosby Company in the event the work is published. The undersigned author warrants that the article is original, is not under consideration by another journal, and has not been previously published. I sign for and accept responsibility for releasing this material on behalf of any and all co-authors." Authors will be consulted, when possible, regarding republication of their material.

Platelet-Reactivity of Isolated Constituents of the Blood Vessel Wall

M.J. Barnes¹ and D.E. MacIntyre²

Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge

Key Words. Arterial collagens · Collagen polymorphism · Platelet aggregation · Platelet adhesion · Elastin · Microfibrillar protein

Abstract. Collagens I and III, in fibrillar form, bound platelets equally well; both readily induced platelet aggregation. In contrast, collagens IV and V, although pretreated as collagens I and III to induce fibrillogenesis, failed to produce aggregation. No binding of platelets was detected. Lens capsule, containing collagen type IV *in situ*, was also inactive. Inactivity appears due to the lack of an appropriate quaternary structure since segment-long-spacing (SLS) aggregates of collagens IV and V, as of type I, induced aggregation.

Elastin and its associated microfibrillar element did not aggregate platelets; some binding of platelets to elastin only was observed.

The interaction between blood platelets and elements of the connective tissue resulting in platelet aggregation is regarded as a basic feature of the haemostatic mechanism. More particularly, the potent platelet-aggregating activity of connective tissue collagen fibres (located either directly in the damaged blood vessel wall or elsewhere at the site of injury) is considered of fundamental importance in this mechanism. The interaction of platelets with the subendothelial connective tissue constituents of the vascular wall, particularly collagen, is also considered to play a central role in thrombogenesis as well as perhaps in atherogenesis -- for review, see (17) and references therein.

With the recognition in recent years that collagen occurs not as a single molecular entity but as a number of genetically distinct, structurally different

¹ Member of the External Scientific Staff of the Medical Research Council.

² Present address: Beth Israel Hospital, Boston, Mass., USA.

subtypes, there was an evident need to re-examine the activity of collagen fibres towards platelets in the context of collagen polymorphism. This has been undertaken by us and others and the following results are reviewed.

Chung and Miller (11) and *Trelstad* (36) first established that the blood vessel wall contains more than one collagen when they demonstrated independently the presence of substantial amounts of collagen type III as well as type I. The former collagen, of chain composition $[\alpha 1(III)]_3$, appears to be relatively abundant in the more extensible tissues such as vascular wall, skin and uterus. Type I, of chain composition $[\alpha 1(I)]_2\alpha 2$, is the most commonly occurring type of collagen and is essentially the sole species in bone and tendon. The presence of these two collagens in arterial tissue has been confirmed in a number of laboratories and their synthesis by cultured medial smooth muscle cells has been demonstrated (4, 9, 24, 25, 27, 30, 33). Immunofluorescent studies (16) have indicated that in the young blood vessel wall, type III collagen without type I occurs in the immediate subendothelial (intimal) space and that both occur in the media, type III in association with the elastic laminae and type I in the space between the laminae and with an increasing preponderance of type I in the adventitial direction. In contrast, in the older vessel, the diffusely thickened intima contains much more type I than type III (*Barnes*, unpubl.) and likewise the intimal plaque contains largely type I with relatively little type III (28).

The studies of *Trelstad* (36) have indicated that type IV collagen identified originally in classical basement membrane structures such as kidney glomerular basement membrane and lens capsule is also present in the blood vessel wall. Its location is presumed to be in vascular basement membranes, particularly that underlying the endothelium. The precise structure of type IV collagen is as yet undetermined. Its origin in the vascular wall from endothelium, which is considered to formulate the adjacent basement membrane, seems likely and indeed cultured endothelial cells have been shown to synthesize collagen (18, 22, 26) that has been described as of type IV in nature (18, 22). However, endothelial cells have also been shown to synthesize interstitial collagens in culture (6) and the possibility exists, therefore, that these cells may also be the site of origin of interstitial collagens in the intima such as the types I and III already alluded to. In general, however, the latter collagens are considered to arise from smooth muscle cells that have migrated from the media into the intimal space.

More recently another collagen believed also to be associated with basement membranes has been identified, initially in fetal membranes (10, 12, 13). This collagen, type V, containing α -chains which have been designated as A and B chains and which occur within the molecule probably in a ratio of 1:2, appears

also to occur in vascular tissue. Chung *et al.* (12) have isolated B chains (but without A chains) from the media. Mayne *et al.* (27) have detected the synthesis of both A and B chains by medial smooth muscle cells, together with a collagenous peptide of 45,000 daltons, the origin of which is unclear. Chung *et al.* (12) have also detected in the intima a high molecular weight collagenous constituent, that upon reduction yields a peptide of 55,000 daltons. The relationship of this particular constituent to the other collagen types so far described is as yet uncertain, although it is speculated that it is a component of the endothelial basement membrane.

There is, thus, a variety of collagenous elements in the blood-vessel wall distributed in a highly specific manner. As a consequence, the type of collagen exposed to blood platelets following injury is likely to depend upon the precise nature of that injury and the character of the platelet response to injury will depend upon the reactivity of the particular collagen(s) exposed.

Fig. 1. Platelet aggregation by collagens types I and III from chick skin. Platelet aggregation was measured in 0.1 ml samples of human citrated platelet-rich plasma by observing changes in optical density following the addition of known amounts of collagen. The rate of aggregation was obtained from the maximum rate of change in light transmission. (a) Platelet responses following addition of collagens in solution (10 µl or less) in 0.1 M acetic acid. \circ = type III; \bullet = type I. (b) Responses following addition of collagens in fibrillar suspension: collagen solutions were preincubated with an equal volume of cell-free plasma. From Barnes *et al.* (3) by permission of the Biochem. J.

The activity of some of these different types of collagen towards platelets will be described in the forthcoming sections of this article, not only as regards their possible aggregatory activity, the importance of which has already been stressed, but also from the point of view of their ability simply to permit platelet adhesion irrespective of any ability to induce aggregation. A number of studies have indicated that platelets can adhere to the vascular basement membrane (see 7). In particular, the electron microscopic studies of Baumgartner *et al.* (7) have demonstrated that when the endothelium is removed experimentally, platelets attach to the denuded area. There is initially a rapid build-up of these cells but this soon disperses leaving a simple monolayer of platelets bound to the subendothelium. This is thought to be a process that may occur as a normal physiological event; the implication is that a constituent of the subendothelial tissue permits platelet adhesion without aggregation. Such a constituent could be located conceivably in the basement membrane (e.g. collagens types IV or V) or alternatively in elastic fibres located in the immediate subendothelial space in areas where the basement membrane is interrupted (7, 35). We have been concerned, therefore, not only with the platelet reactivity of arterial collagens but also with the elements of the elastica, namely the protein elastin and its associated microfibrillar glycoprotein identified by electron microscopy by Ross and Bornstein (31).

Platelet Reactivity of Different Collagens

Interstitial Collagens

Several groups have now examined the relative platelet reactivity of collagens types I and III (1, 3, 21, 32). When these two collagens are presented to platelets in solution, i.e. in monomeric form, activity (aggregation) is observed only after a delay consistent with the occurrence of fibrillogenesis prior to aggregation. Type III collagen appears considerably more active than type I. However, if the collagens are presented in polymeric form as preformed fibrils (by preincubation of solutions at 37 °C, in platelet-poor plasma for example), the lag period is much reduced, platelet aggregatory activity of both types is greatly enhanced and the two collagens exhibit a comparable order of activity (fig. 1, 2). These observations are entirely in accord with the concept that a highly ordered collagen quaternary structure is an essential prerequisite for the induction of platelet aggregation by collagen (23). The greater activity of type III relative to type I solutions presumably reflects a greater facility on the

Fig. 2. Platelet aggregation by collagens types I and III from human aorta and chick skin. Platelet aggregation was measured as described in figure 1. The traces shown represent actual changes in optical transmission following addition of collagen (at the arrow) to a final concentration of $20 \mu\text{g/ml}$. (a) Chick collagen: (1) Addition of collagen in solution in $0.1 M$ acetic acid. (2) Addition after preincubation in an equal volume of 0.9% NaCl; treatment under these conditions yields inactive precipitates. (3) After preincubation in $0.38 M$ Na_2HPO_4 or cell-free plasma; preincubation under these conditions yields highly potent native-type fibrils. (b) Human collagen: (1) As a 1. (2) Addition of collagen after preincubation in an equal volume of cell-free plasma; the results suggest an inhibitor of human collagen fibrillogenesis in human plasma. (3) After preincubation in an equal volume of 0.9% NaCl. (4) After preincubation in an equal volume of $0.38 M$ Na_2HPO_4 . From Barnes *et al.* (3) by permission of Biochem. J.

Table I. Adhesion of platelets to various constituents of the extracellular matrix

Preparation		Percentage adhesion
Collagen (pig aorta)	type I polymer (i.e. native-type fibrils)	24.5 ± 2.25
	type I monomer	0
	type III polymer	25.5 ± 2.3
	type III monomer	0
	type IV	0
Collagen (human placenta)	type V	0
	type I polymer (from Ethicon Inc.)	77.8 ± 6.8
Elastin (pig aorta)		7.2 ± 1.9
Microfibrils (pig aorta)		1 ± 1.0

Adhesion was measured by the method of *Brass et al.* (8) as indicated in the text using a column of Sepharose 2B to which the constituent in question was covalently attached. The percentage adhesion refers to the proportion of the total number of platelets applied to the column that was retained by the column. Results are mean values ± SD of 4 to 6 determinations, each performed in triplicate.

part of the former collagen to undergo fibrillogenesis when incubated in monomeric form in plasma. The alternative explanation advanced by *Hugues et al.* (21) that type III collagen may, in fact, be the active species, and that the activity of type I preparations represents the presence of small amounts of type III as impurity in these preparations, seems to us improbable in view of the similar order of activity of the two collagens when in fibrillar form. Furthermore, the ability of fibrils of $\alpha_1(I)$ trimer, formed after reassociation of $\alpha_1(I)$ -chains isolated chromatographically and free of type III chains, to aggregate platelets would confirm the intrinsic activity of type I collagen (2). *In vivo*, where types I and III are both likely to occur in the blood vessel wall as fibrils with the characteristic 67 nm periodicity, as observed by electron microscopy and indicative of the highly specific quaternary structure of interstitial collagens, we assume the two collagens will reveal a similar order of platelet reactivity.

We have undertaken binding studies using the technique described by *Brass et al.* (8) in which platelets, in the presence of EDTA to inhibit aggregation, are passed down a column of Sepharose 2B to which the collagen under investigation has been covalently attached. Our results (table I) indicate that both

collagens I and III in fibrillar form have a similar platelet-binding capacity, in agreement with the findings of *Fauvel et al.* (14) using a somewhat different assay procedure. Little, if any, activity was observed with either collagen in monomeric form. The greatest binding (and aggregating) activity we have observed has been with a highly polymerized, but nevertheless highly-dispersed, preparation of bovine tendon type I collagen (kindly supplied as a gift by Ethicon, Inc., Somerville, N.J.). This confirms our belief that the quaternary structure is the over-riding feature of the collagen molecule that governs both the extent of adhesion to platelets and the ability to induce their aggregation.

In view of the location of type III collagen without type I in the immediate subendothelial space on the inner surface of the internal elastic lamina (at least in the blood vessel wall where little, if any, intimal thickening has occurred), it has been suggested that this collagen species may be particularly important in thrombogenesis. Its detection in fresh thrombi is particularly interesting in this context (16).

Basement-Membrane Collagens

As already indicated, the subendothelial basement membrane is likely to contain, or be associated with, collagens types IV and V. In collaboration with Dr. A.J. Bailey, Meat Research Institute, Bristol, UK, and Dr. J.L. Gordon, Institute of Animal Physiology, Cambridge, UK, we have undertaken an examination of the platelet-reactivity of collagens IV and V isolated not directly from vascular tissue but more conveniently from other sources. Type IV collagen isolated from bovine anterior lens capsule and type V collagen isolated from either human placenta or bovine lung tissue failed to induce platelet aggregation even when solutions were preincubated in platelet-poor plasma at 37 °C or were dialyzed against 0.02 M Na₂HPO₄, procedures known to yield active fibrils (with a 67 nm periodicity) in the case of interstitial collagens (5). This suggested that these collagens either failed to precipitate (i.e. form fibrils) under the conditions employed or they formed amorphous fibrils lacking the required quaternary structure suitable for platelet reactivity. *Trelstad and Carvalho* (37) have also reported, briefly, on the inability of isolated basement-membrane collagens to induce platelet aggregation. We observed, likewise, that dispersions of intact lens capsule were inactive although they did in some measure inhibit platelet aggregation induced by interstitial collagen — figure 3 (5). We assume this lack of activity reflects the amorphous nature of basement membranes and the absence of collagen fibrils with a highly-ordered quaternary structure such as that characteristic of the interstitial collagens.

Fig. 3. Inhibition of collagen-induced platelet aggregation by intact bovine lens capsule. Platelet aggregation was measured as indicated in figures 1 and 2. A dispersion of lens capsules or a solution of purified type IV collagen from capsules was added (at the specified concentration) to platelet-rich plasma just prior to the addition of a solution of type I collagen from human aorta. Inhibition by the lens capsule preparation is indicated by both an increase in the lag period before aggregation commences and by a reduced rate of aggregation. From Barnes and MacIntyre (5) by permission of S. Karger AG, Basel.

In order to assess if the lack of activity of basement-membrane collagens was in fact due to the absence of a suitable quaternary structure, rather than to an intrinsic inability of these collagen types as such to induce aggregation, we examined the activity of SLS aggregates of collagens types IV and V and of type I. SLS aggregates were prepared as usual by dialysis against adenosine triphosphate (ATP). It was necessary to remove ATP prior to testing for platelet-aggregatory activity. SLS aggregates were, therefore, first stabilized by treatment with formaldehyde (38) and ATP then removed by dialysis. Collagen SLS aggregates of all types examined were found to be able to induce platelet aggregation, types IV and I being active around $10 \mu\text{g}/\text{ml}$, and type V at about $35 \mu\text{g}/\text{ml}$ (fig. 4). There was, however, some variation in activity from preparation to preparation and we consider this may be due to variation in the amount of end-to-end polymerization of SLS aggregates during treatment with formaldehyde. It seems likely that stabilization with formaldehyde causes some associ-

Fig. 4. Platelet aggregation by SLS aggregates of collagens types I, IV and V. Platelet aggregation was measured as in figures 1 and 2. The concentration of collagen added (at the arrow) is indicated. The results are for two separate experiments: (a) type I collagen (native-type fibrils) was a dispersion of highly-polymerized bovine tendon collagen from Ethicon Inc.; types IV and V collagens were isolated from human placenta and SLS aggregates prepared as described in the text. Concentrations are approximately the minimal for activity. (b) All as SLS aggregates: type I collagen was from rat tail tendon, types IV and V from human placenta.

ation of the aggregates (to form F-SLS) and it is these polymerized forms that are the active species. This would be in accord with the observation of Wang *et al.* (39) that simple SLS aggregates are not active and that a polymerized structure the equivalent of at least three molecules in length is necessary for the induction of platelet aggregation. Nevertheless, irrespective of the precise nature of the active polymer (SLS or F-SLS) our results clearly imply that it is the presence of an ordered quaternary structure rather than a type as such that determines the ability of collagen to aggregate platelets.

As mentioned earlier, basement membrane collagen (type IV), *in vivo*, is thought to possess an amorphous (or at least relatively disordered) structure which fails to exhibit, under the electron microscope, a periodicity comparable

to the 67-nm periodicity characteristic of the interstitial collagen fibre which reflects the highly-organized quaternary structure of the latter. The same may also be the case for type V collagen. If this is so, platelet aggregation by these collagens *in vivo* seems improbable. This would be in accord with the observations of *Huang and Benditt* (19) and *Huang et al.* (20), who found that preparations of human glomerular basement membrane, or the collagenous matrix derived from the membrane by pepsin digestion, do not cause platelet aggregation. Adhesion of platelets to the membrane appears attributable to a non-collagenous constituent. The inhibition of collagen-induced platelet aggregation by intact lens capsule we have observed could reflect interaction between platelets and a similar non-collagenous constituent.

Compatible with the notion that the collagen(s) of basement membranes is not involved in the reaction with platelets, we have detected no binding of platelets *in vitro* to collagens types IV or V attached to Sepharose 2B (table I; collagen preparations were first dialyzed against 0.02 M Na₂HPO₄ in an attempt to form fibrils prior to their attachment to Sepharose).

The results of *Freytag et al.* (15) differ substantially from those related above. These authors report that bovine glomerular basement membrane can aggregate platelets. The non-collagenous element of the membrane (obtained after digestion with collagenase) appeared to have some platelet activity, and in this respect their results are in some measure in accord with the findings of *Huang and Benditt* (19) and *Huang et al.* (20), which indicated adhesion to a non-collagenous element. However, the collagenous component (isolated after pepsin digestion) also revealed aggregatory activity. The response of the platelets in this case was characterized by a relatively long lag period which was shortened by preincubation of the test sample at 37 °C prior to addition to platelets. This could perhaps imply the presence in the membrane preparation of trace amounts of interstitial collagen(s), a possibility that was considered previously (20) in regard to earlier reports of platelet-aggregating activity in preparations of kidney basement membranes.

Platelet-Reactivity of the Elastic Fibre

As already related, it is known that platelets can adhere to the subendothelium, a phenomenon that is thought to be important in maintaining normal vascular integrity in the event of loss of endothelium. Attachment of platelets is generally regarded as occurring to the subendothelial basement membrane (7).

However, evidence has been presented that the elastic fibre, and more particularly the microfibrillar element of this structure, also located in the subendothelium at sites where the basement membrane is absent, may be involved in this adhesion (35). We have isolated both elastin and the microfibrillar glycoprotein constituent of the elastic fibre by use of procedures (31, 34) designed to introduce only the minimal alteration in structure compatible with their isolation in a pure state and have examined the platelet reactivity of each. Neither component appeared able to induce platelet aggregation. Furthermore, we detected little, if any, binding of platelets to the microfibrillar element, although some degree of adhesion to elastin was found (table I). Our binding studies are essentially in accord with the findings of *Ordinas et al.* (29) using different methods of isolation of the components of the elastic fibre and a different means of measuring platelet adhesion. We consider our results support the concept that the basement membrane is the important structure as regards platelet adhesion to the subendothelium.

References

- 1 Balleisen, L.; Gay, S.; Marx, R., and Kuhn, K.: Comparative investigation of the influence of human and bovine collagen types I, II and III on the aggregation of human platelets. *Klin. Wschr.* 53: 903-905 (1975).
- 2 Balleisen, L.; Marx, R., and Kuhn, K.: Platelet-collagen interaction; the influence of native and modified collagen (type I) on the aggregation of human platelets. *Haemostasis* 5: 155-164 (1976).
- 3 Barnes, M.J.; Gordon, J.L., and MacIntyre, D.E.: Platelet-aggregating activity of type I and type III collagens from human aorta and chicken skin. *Biochem. J.* 160: 647-651 (1976).
- 4 Barnes, M.J.; Morton, L.F., and Levene, C.I.: Synthesis of collagens types I and III by pig medial smooth muscle cells in culture. *Biochem. biophys. Res. Commun.* 70: 339-347 (1976).
- 5 Barnes, M.J. and MacIntyre, D.E.: Collagen-induced platelet aggregation; the activity of basement membrane collagens relative to other collagen types. *Front. Matrix Biol.* 7: (in press, 1978).
- 6 Barnes, M.J.; Morton, L.F., and Levene, C.I.: Synthesis of interstitial collagens by pig aortic endothelial cells in culture. *Biochem. biophys. Res. Commun.* 84: 646-653 (1978).
- 7 Baumgartner, H.R. and Muggli, R.: Adhesion and aggregation: morphological demonstration and quantitation *in vivo* and *in vitro*; in Gordon, *Platelets in biology and pathology*, pp. 23-60 (Elsevier/North Holland Biomedical Press, 1976).
- 8 Brass, L.F.; Faile, D., and Bensusan, H.B.: Direct measurement of the platelet collagen

- interaction by affinity chromatography on collagen/Sepharose. *J. Lab. clin. Med.* **87**: 525-534 (1976).
- 9 Burke, J.M.; Balian, G.; Ross, R., and Bornstein, P.: Synthesis of types I and III procollagen and collagen by monkey aortic smooth muscle cells *in vitro*. *Biochemistry* **16**: 3243-3249 (1977).
 - 10 Burgeson, R.E.; Adli, F.A.E.; Kaitila, I.I., and Hollister, D.W.: Fetal membrane collagens. Identification of two new collagen alpha chains. *Proc. natn. Acad. Sci. USA* **73**: 2579-2583 (1976).
 - 11 Chung, E. and Miller, E.J.: Collagen polymorphism. Characterization of molecules with the chain composition $\{\alpha_1(\text{III})\}_3$ in human tissues. *Science, N.J.* **183**: 1200-1201 (1974).
 - 12 Chung, E.; Rhodes, K., and Miller E.J.: Isolation of three collagenous components of probable basement membrane origin from several tissues. *Biochem. biophys. Res. Commun.* **71**: 1167-1174 (1976).
 - 13 Duance, V.C.; Restall, D.J.; Beard, H.; Bourne, F.J., and Bailey, A.J.: The location of three collagen types in skeletal muscle. *FEBS. Lett.* **79**: 248-252 (1977).
 - 14 Fauvel, F.; Legrand, Y.J., and Caen, J.P.: Platelet adhesion to type I collagen and $\{\alpha_1(\text{I})\}_3$ trimers. Involvement of the C-terminal $\alpha_1(\text{I})\text{CB6A}$ peptide. *Thromb. Res.* **12**: 273-285 (1978).
 - 15 Freytag, J.W.; Dalrymple, P.N.; Maguire, M.H.; Strickland, D.K.; Carraway, K.L., and Hudson, B.G.: Glomerular basement membrane. Studies on its structure and interaction with platelets. *J. biol. Chem.* **253**: 9060-9074 (1978).
 - 16 Gay, S.; Balleisen, L.; Remberger, K.; Fietzek, P.P.; Adelmann, B.C., and Kuhn, K.: Immunohistochemical evidence for the presence of collagen type III in human arterial walls, arterial thrombi and in leucocytes incubated with collagen *in vitro*. *Klin. Wschr.* **53**: 899-902 (1975).
 - 17 Gordon, J.L. (ed.): *Platelets in biology and pathology* (Elsevier/North Holland Biomedical Press, 1976).
 - 18 Howard, B.V.; Macarak, E.J.; Gunson, D., and Kefalides, N.A.: Characterization of the collagens synthesized by endothelial cells in culture. *Proc. natn. Acad. Sci. USA* **73**: 2361-2364 (1976).
 - 19 Huang, T.W. and Benditt, E.P.: Mechanism of platelet adhesion to the basal lamina. *Am. J. Path.* **92**: 99-110 (1978).
 - 20 Huang, T.W.; Lagunoff, D., and Benditt, E.P.: Nonaggregative adherence of platelets to basal lamina *in vitro*. *Lab. Invest.* **31**: 156-160 (1974).
 - 21 Hugues, J.; Herion, F.; Nusgens, B., and Lapierre, C.H.: Type III collagen and probably not type I collagen aggregates platelets. *Thromb. Res.* **9**: 223-231 (1976).
 - 22 Jaffe, E.A.; Minick, C.R.; Adelmann, B.; Becker, C.G., and Nachman, R.: Synthesis of basement membrane collagens by cultured human endothelial cells. *J. exp. Med.* **144**: 209-225 (1976).
 - 23 Jaffe, R.M.: Interaction of platelets with connective tissue; in Gordon, *Platelets in biology and pathology*, pp. 261-291 (Elsevier/North Holland Biomedical Press, 1976).
 - 24 Layman, D.L.; Epstein, E.H.; Dodson, R.F., and Titus, J.L.: Biosynthesis of type I and III collagens by cultured smooth muscle cells from human aorta. *Proc. natn. Acad. Sci. USA* **74**: 671-675 (1977).

- 25 Leung, D.Y.M.; Glagov, S., and Mathews, M.B.: Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells *in vitro*. *Science*, N.Y. 191: 475-477 (1976).
- 26 Levene, C.I. and Heslop, J.: The synthesis of collagen by cultured pig aortic endothelium and its possible role in the pathogenesis of the fibrous atherosclerotic plaque. *J. mol. Med.* 2: 145-151 (1977).
- 27 Mayne, R.; Vail, M.S., and Miller, E.J.: Characterization of the collagen chains synthesized by cultured smooth muscle cells derived from rhesus monkey thoracic aorta. *Biochemistry* 15: 446-452 (1978).
- 28 McCullagh, K.A. and Balian, G.: Collagen characterization and cell transformation in human atherosclerosis. *Nature*, Lond. 258: 73-75 (1975).
- 29 Ordinas, A.; Hornebeck, W.; Robert, L., and Caen, J.P.: Interaction of platelets with purified macromolecules of the arterial wall. *Path. Biol.* 23: suppl., pp. 44-48 (1975).
- 30 Rauterberg, J.; Allam, S.; Brehmer, U.; Wirth, W., and Hauss, W.H.: Characterization of the collagen synthesized by cultured human smooth muscle cells from fetal and adult aorta. *Hoppe-Seyler's Z. physiol. Chem.* 358: 401-407 (1977).
- 31 Ross, R. and Bornstein, P.: The elastic fibre. I. The separation and partial characterization of its macromolecular components. *J. Cell Biol.* 40: 366-381 (1969).
- 32 Santoro, S.A. and Cunningham, L.W.: Collagen-mediated platelet aggregation. Evidence for multivalent interactions of intermediate specificity between collagen and platelets. *J. clin. Invest.* 60: 1054-1060 (1977).
- 33 Scott, D.M.; Harwood, R.; Grant, M.E., and Jackson, D.S.: Characterization of the major collagen species present in porcine aorta and the synthesis of their precursors by smooth muscle cells in culture. *Connect. Tissue Res.* 5: 7-13 (1977).
- 34 Starcher, B.C. and Galione, M.J.: Purification and comparison of elastins from different animal species. *Analyt. Biochem.* 74: 441-447 (1976).
- 35 Stemerman, M.B.: Platelet interaction with intimal connective tissue; in Baldini and Ebbe, *Platelets: production, function, transfusion and storage*, pp. 157-170 (Grune & Stratton, New York 1974).
- 36 Treistad, R.L.: Human aorta collagens: evidence for three distinct species. *Biochem. biophys. Res. Commun.* 57: 717-725 (1974).
- 37 Treistad, R.L. and Carvalho, A.C.: Human basement membrane collagens do not elicit platelet aggregation. (Abstr.) *Thromb. Diath. haemorrh.* 38: 81 (1977).
- 38 Veis, A. and Drake, M.P.: The introduction of intramolecular covalent cross-linkages into ichthyocol tropocollagen with monofunctional aldehydes. *J. biol. Chem.* 238: 2003-2011 (1963).
- 39 Wang, C.L.; Miyata, T.; Weksler, B.; Rubin, A.L., and Stenzel, K.H.: Collagen-induced platelet aggregation and release. II. Critical size and structural requirements of collagen. *Biochem. Biophys. Acta* 544: 568-577 (1978).

Dr. M.J. Barnes, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP (England)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.