Departamento de Matemática - Facultad de Ciencias Exactas - UNLP

Álgebra lineal

Trabajo práctico N°6 - 2022

Formas canónicas elementales II

Proyecciones, subespacios invariantes y operadores nilpotentes

- 1. Sea A una matriz tal que $A^2 = A$ pero $A \neq I, 0$.
 - a) Hallar el polinomio minimal de A.
 - b) Probar que A es semejante a la matriz diagonal $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, donde $r = \operatorname{Rg}(A)$.
- 2. Sea $T \in L(\mathbb{R}^4)$ tal que

$$[T]_{\mathcal{E}} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- a) Probar que los únicos autovalores de T son 0 y 1, pero T no es una proyección.
- b) ¿Es diagonalizable T?
- c) Sea S un operador diagonalizable que tiene como únicos autovalores al 0 y al 1 ¿Se puede afirmar que S es una proyección?
- 3. Probar que los siguientes operadores son proyecciones:
 - a) $T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ dado por $T(ax^2 + bx + c) = c$.
 - b) diag : $\mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ dado por

$$(\operatorname{diag}(A))_{ij} = \begin{cases} A_{ii} & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases} \quad \text{para } i, j = 1, \dots, n.$$

4. Sea

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

(la matriz del ejercicio 1 del TP 5) y supongamos que $A = [T]_{\mathcal{E}}$ para $T \in L(\mathbb{C}^3)$. Hallar tres subespacios no nulos de \mathbb{C}^3 que sean invariantes por T y tales que \mathbb{C}^3 se pueda escribir como suma directa de ellos.

5. a) Descomponer a \mathbb{R}^3 como suma de directa de subespacios W_1, W_2, W_3 .

- b) Hallar las proyecciones P_1, P_2, P_3 correspondientes a cada uno de los subespacios del inciso a, respectivamente.
- c) Hallar el polinomio minimal y el característico de $\sqrt{2}P_1 + \pi P_2 + 3P_3$.
- d) ¿Es $\sqrt{2}P_1 + \pi P_2 + 3P_3$ un operador diagonalizable? Hallar sus autovalores y autoespacios correspondientes.
- 6. Sea

$$A = \begin{pmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & -1 & 0 & 1\\ -1 & 0 & 0 & 0 \end{pmatrix},$$

una representación matricial de $T \in L(\mathbb{C}^4)$ (pensando a \mathbb{C}^4 como $\mathbb{C}\text{-EV}$)

- a) Hallar el polinomio característico de T y el minimal. ¿Es T diagonalizable?
- b) Hallar dos subespacios de \mathbb{C}^4 que sean T-invariantes y tales que su suma directa sea \mathbb{C}^4 .
- 7. Sea $T \in L(\mathbb{R}^2)$ tal que

$$[T]_{\mathcal{E}} = A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} .$$

- a) Probar que $W_1 = \overline{\{(1,0)\}}$ es T-invariante.
- b) Probar que no existe un subespacio W_2 de \mathbb{R}^2 que sea T-invariante y que además $\mathbb{R}^2 = W_1 \oplus W_2$.
- 8. Sea $A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$.
 - a) Si $T \in L(\mathbb{R}^2)$ es tal que $[T]_{\mathcal{E}} = A$ ¿existe algún subespacio propio de \mathbb{R}^2 que sea T-invariante?
 - b) Si $S\in L(\mathbb{C}^2)$ (pensando a \mathbb{C}^2 como \mathbb{C} -EV), es tal que $[S]_{\mathcal{E}}=A$ ¿existe algún subespacio propio de \mathbb{C}^2 que sea S-invariante?
- 9. Sean V un \mathbb{K} -EV y $T, S \in L(V)$.
 - a) Sea W un subespacio de V que es invariante por T y S. Probar que W también es invariante por los operadores T+S y $T\circ S$.
 - b) Supongamos que $S \circ T = T \circ S$. Probar que si λ es un autovalor de T, entonces el autoespacio asociado a λ es S-invariante.
- 10. ¿Se puede afirmar que un operador lineal tiene como único autovalor al cero, es nilpotente?
- 11. Se
a $N\in\mathbb{C}^{2\times 2}$ tal que $N^2=0.$ Probar que, o bien
 N=0,o bien Nes semejante a la matriz

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} .$$

12. Sea V un \mathbb{K} -EV tal que $\dim(V) = n$ y $B = \{b_1, \dots, b_n\}$ es una base (ordenada) de V. Sea $T \in L(V)$ dado por

$$T(b_j) = \begin{cases} b_{j+1} & \text{si } j = 1, \dots, n-1, \\ 0 & \text{si } j = n. \end{cases}$$

- a) Probar que el único autovalor de T es cero.
- b) Probar que T es nilpotente.
- c) ¿Cuánto vale la traza de T? ¿Y el determinante?

Sugerencia: recordar el ejercicio optativo del TP 4.

13. Sea V un \mathbb{K} -EV tal que $\dim(V) = n$. Probar que si $N \in L(V)$ es nilpotente, entonces $p_N(x) = x^n$.