PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-145183

(43) Date of publication of application: 04.06.1996

(51)Int.CI.

F16J 15/12

(21)Application number: 06-308255

F16L 19/03

(22)Date of filing:

17.11.1994

(71)Applicant: ULVAC JAPAN LTD

(72)Inventor: SAITO KAZUYA

SATO YUKIE

(54) GASKET FOR VACUUM SEAL AND VACUUM SEAL STRUCTURE

(57)Abstract:

PURPOSE: To provide a gasket for vacuum seal and a vacuum seal structure which is small in gas discharge rate and capable of using repeatedly.

CONSTITUTION: A Viton rubber sheet of 0.5mm in thickness is combined with the external surface of an elastic structural body of ring-shaped stainless steel provided with W-shaped vertical cross section in circumferential direction, and a rubber ring 14 is fitted closely into the bottom of an external surface. Also it follows a nonuniform seal clearance by the elastic structural body 11, repeated use is enabled by the rubber sheet high in form recovering capability, and the thickness of the rubber sheet is small, and thus the gas discharge rate is small.

LEGAL STATUS

[Date of request for examination]

25.06.2001

[Date of sending the examiner's decision of

19.11.2002

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

庁内整理番号

(11)特許出願公開番号

特開平8-145183

(43)公開日 平成8年(1996)6月4日

(51) Int.Cl.⁶

識別記号

FΙ

技術表示簡所

F 1 6 J 15/12 F16L 19/03

審査請求 未請求 請求項の数13 FD (全 7 頁)

(21)出願番号

特願平6-308255

(22)出願日

平成6年(1994)11月17日

(71)出顧人 000231464

日本真空技術株式会社

神奈川県茅ヶ崎市萩園2500番地

(72)発明者 斎藤 一也

茨城県つくば市東光台5-9-7 日本真

空技術株式会社筑波超材料研究所内

(72)発明者 佐藤 幸恵

茨城県つくば市東光台5-9-7 日本真

空技術株式会社筑波超材料研究所内

(74)代理人 弁理士 飯阪 泰雄

(54) 【発明の名称】 真空シール用ガスケット及び真空シール構造

(57)【要約】

[目的] ガス放出量が小さく、かつ繰り返し使用の可 能な真空シール用ガスケット及び真空シール構造を提供 すること。

[構成] 周方向に関しW字形状の縦断面を有するリン グ状のステンレス鋼による弾性構造体11の外表面に厚 さ0.5mmのバイトンのゴムシート32を組み合わ せ、外表面の谷部分にゴムリング14を嵌め込む。弾性 構造体11によって不均一なシール間隙に追従し、形状 復元性の高いゴムシート32によって繰り返し使用が可 能であり、ゴムシート32の厚さが薄いのでガス放出量 が小さい。

30

【特許請求の範囲】

【請求項1】 シール面に厚さ0.1μmないし0.5 mmのゴム膜を組み合わせた金属の弾性構造体であることを特徴とする真空シール用ガスケット。

1

【請求項2】 前記金属の弾性構造体が周方向に関しV字形状またはW字形状の縦断面を有するリングである請求項1に記載の真空シール用ガスケット。

【請求項3】 前記周方向に関しV字形状またはW字形 状の縦断面の谷部分に前記金属の弾性構造体の弾性を補 助するためのゴムリングが嵌め込まれている請求項2に 記載の真空シール用ガスケット。

【請求項4】 前記金属の弾性構造体が中空リングである請求項1に記載の真空シール用ガスケット。

【請求項5】 前記ゴム膜が前記金属の弾性構造体のシール面に貼り合わされているか、または塗膜として形成されている請求項1から請求項4までの何れかに記載の真空シール用ガスケット。

【請求項6】 前記ゴム膜の材料が弗素ゴム、ニトリルゴム、クロロプレンゴム、シリコンゴムの中の何れかである請求項1から請求項5までの何れかに記載の真空シ 20ール用ガスケット。

【請求項7】 真空シールされるべき2個の部材において、少なくとも一方の部材に固定された金属の弾性構造体のシール面と、他方の部材のシール面との間に、厚さ0.1 μ mないし0.5 μ mのゴム膜が挟持して組合わされ押圧されることを特徴とする真空シール構造。

【請求項8】 前記金属の弾性構造体が中心部を前記一方の部材に固定され周縁部を前記他方の部材に対するシール面とする可撓性の金属ディスクであるか、または周縁部を前記一方の部材に固定され中心部を前記他方の部材に対するシール面とする可撓性の金属ディスクである請求項7に記載の真空シール構造。

【請求項9】 前記金属の弾性構造体が周方向に関しV字形状またはW字形状の縦断面を有するリングである請求項7に記載の真空シール構造。

【請求項10】 前記周方向に関しV字形状またはW字形状の縦断面の谷部分に前記金属の弾性構造体の弾性を補助するためのゴムリングが嵌め込まれている請求項7に記載の真空シール構造。

【請求項11】 前記金属の弾性構造体が中空リングで 40 ある請求項7に記載の真空シール構造。

【請求項12】 前記ゴム膜が前記金属の弾性構造体のシール面に貼り合わされているか、または塗膜として形成されている請求項7から請求項11までの何れかに記載の真空シール構造。

【請求項13】 前記ゴム膜の材料が弗素ゴム、ニトリルゴム、クロロブレンゴム、シリコンゴムの中の何れかである請求項7から請求項12までの何れかに記載の真空シール構造。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は真空シール用ガスケット 及び真空シール構造に関するものである。

2

[0002]

【従来の技術及びその問題点】従来、真空装置のシールにはO-リングに代表されるゴムガスケット、または金属ガスケットが使用されている。

【0003】図9は0-リング61による真空シール構 造60の一例を示す断面図であり、真空シールすべきパ イプ62のフランジ63、およびパイプ64のフランジ 65に設けたガスケット溝66にゴムからなる〇ーリン グ61が組み込まれ、フランジ63とフランジ65とを 貫通するボルト孔67にボルトを挿入しナットで締め付 けて真空シールが行なわれる。なお、〇-リング61の 縦断面として得られる円形部分の外径Wは最も細いもの で2mm ø程度のものが市販されている。O-リング6 1はその弾性によって形状復元性が高く、真空シールさ れていたフランジ63、65をバラした後に再度組み付 けを行なう場合にも、0-リング61をそのまま再使用 することができる。しかし、〇-リング61はその表面 や内部に吸着されていたガスが脱着することによる脱ガ ス量や〇ーリング61の内部を透過するガス透過量が大 きく、すなわち、ガス放出量が大きく真空装置の到達真 空度の上限を制限している。

【0004】一方、図10に示すような金属ガスケット71による真空シール構造70も多用されている。フランジ73とフランジ75とに設けたエッジ72、74を金属ガスケット71に噛み込ませることによって真空シールを行なう方法である。金属ガスケット71としては通常、厚さTが2mmの無酸素銅が使用されている。材料が金属であるためにガス放出量は小であるが、エッジ72、74による組み付け圧力によって塑性変形するので、金属ガスケット71は繰り返して使用すると完全な真空シールが得られず、厳密には1回のみしか使用できない。従って真空シール部を頻度高くバラすような個所には経済面から使用しにくい。

【0005】上述したように、ゴムガスケットからのガス放出には、ゴムガスケットの主として内部に吸着されているガスの脱着、すなわち脱ガスによるものと、圧力差による大気側から真空側への透過、すなわち透過ガスによるものとがあり、前者は真空装置を特に脱ガス操作またはベーキングしないで排気する場合に見られ、後者はベーキングした後においても、特に真空装置を高温で使用しガスケットのゴムが高温になってそのガス透過度が大きくなる場合に顕著に見られる。

【0006】図11はゴムとして弗素ゴム(商品名バイトン)の厚さ $0.5 \, mm$ 、 $1 \, mm$ 、 $4 \, mm$ のシートについて、表面積を $200 \, cm^2$ とし、 150° Cの温度で所定時間の加熱 (ベーキング)を行なった時に測定され たガス放出量とバイトンゴムシートの厚さとの関係を示

3

す図である。放出されたガスの主成分は水であった。図 **11において、ガス放出量はバイトンゴムシートの厚さ** とほぼ比例しているので、放出された水の殆どはバイト ンゴムシートの表面からではなく、内部から脱ガスされ て放出されたものと理解される。

【0007】図12は同じくパイトンゴムシートのガス 透過量を示す図である。すなわち、バイトンゴムシート の両側を真空排気し、十分に圧力が低下した時点で一方 に大気を導入すると、バイトンゴムシートを透過する大 気によって他方の圧力が上昇する。この圧力上昇からガ 10 ス透過量を求めることができる。

【0008】図12は試料として厚さ1mmのバイトン ゴムシートを用い、ガス透過面積を8cm2 として測定 温度と単位面積当りのガス透過量との関係を示したもの である。なお、透過しているガスは主として窒素、酸 素、水、アルゴンであったが何れも大気の成分であり、 これらが大気中に存在する比率をほぼそのまま維持して 透過している。また、その透過量は温度の上昇と共に増 大する。図12に見られるように各成分の和、すなわち 大気の透過量は25°Cにおいても単位面積当り約9× 10-5 Pa·m·s-1であり、超高真空領域では問題と なる透過量である。

[0009]

【発明が解決しようとする問題点】本発明は上述の問題 に鑑みてなされ、ガス放出量が小さく、かつ繰り返し使 用が可能な真空シール用ガスケット及び真空シール構造 を提供することを目的とする。

[0010]

【問題点を解決するための手段】以上の目的は、シール 面に厚さ0. 1μ mないし0. 5mmのゴム膜を組み合 30 わせた金属の弾性構造体であることを特徴とする真空シ ール用ガスケット、によって達成される。

【0011】又、以上の目的は、真空シールされるべき 2個の部材において、少なくとも一方の部材に固定され た金属の弾性構造体のシール面と、他方の部材のシール 面との間に、厚さ $0.1\mu m$ ないし0.5mmのゴム膜 が挟持して組合わされ押圧されることを特徴とする真空 シール構造、によって達成される。

[0012]

【作用】請求項1の真空シール用ガスケットは、金属の 40 弾性構造体が不均一なシール間隙に追従し、これに組み 合わせる形状復元性の高いゴム膜の厚さを薄くしている ので、超高真空領域においてもガス放出量が小さく、か つ繰り返し使用が可能である。

【0013】請求項2の真空シール構造は、真空シール すべき少なくとも一方の部材に固定された金属の弾性構 造体が不均一なシール間隙に追従し、そのシール面と他 方の部材のシール面との間に介在させる形状復元性の高 いゴム膜の厚さを薄くしているので、超高真空領域にお ある。

[0014]

【実施例】以下、本発明の実施例による真空シール用ガ スケット及び真空シール構造について、図面を参照して 具体的に説明する。

【0015】 (実施例1) 図1は真空シール用ガスケッ ト10の縦断面を示す部分斜視図である。縦断面が横に 寝たW字形状のステンレス鋼によるリング状の弾性構造 体11の外表面に0.5mm厚さのバイトンゴムシート 12を取り付けたものである。その外面側の屈曲の谷部 分には、ステンレス鋼の弾性構造体11の弾性を補助す るためと、組み合わせたバイトンシートの脱落を押える ために、バイトンゴムによる〇ーリング14を嵌め込ん でいる。 〇 - リング14はバイトンゴムである必要はな く、単なるゴムリングであればよい。

【0016】この真空シール用ガスケット10を図2に 示す測定装置80に組み込んで、その真空シール性を測 定した。図2において、測定装置80はベース部材81 とそれに積み重ねたリング状部材82、83、84、8 5と蓋87とからなり、ベース部材81と各リング状部 材82、・・・、85の表面には0-リングまたはガス ケットを嵌め込むためのガスケット溝86が形成されて いる。すなわち、5個の〇ーリングまたはガスケットを 同時に測定するようになっている。図2は〇-リングを 組み込んだ図として示されている。そして各リング状部 材82、・・・、85はベース部材81と蓋87との間 において複数のボルト91とナット92とによって締め 付けられる。

【0017】ベース部材81の底面の排気口88には真 空排気用のロータリポンプ95とターボ分子ポンプ96 とが直列に接続されており、排気口88とターボ分子ポ ンプ96との中間には熱陰極電離型の真空計97が取り 付けられている。

【0018】上述の真空シール用ガスケット10の5個 を上記の測定装置80のガスケット溝86に組込んで、 その真空シール性を常温において測定した。又、比較の ために、同等サイズのバイトンゴムからなる従来の〇一 リングについても同様に真空シール性を測定した。図3 にそれらの測定結果を示す。横軸は真空排気時間

(s)、縦軸は真空計97の示した圧力 (Pa)であ り、実線は実施例1の真空シール用ガスケット10、破 線は従来の〇ーリングである。

【0019】図3に見られるように、真空シール用ガス ケット10は従来の0-リングと比較して、排気開始し た時点から低い圧力を示しガス放出量が小さいことを示 している。又、その圧力低下の度合いは、特に圧力の低 い領域で大きいが、このことはバイトゴムシート12の 厚さが薄いこと、換言すれば、バイトンゴムの体積が小 であることにより、内部に吸着されているガスに由来す いてもガス放出量が小さく、かつ繰り返し使用が可能で 50 る脱ガス量が小さく、かつガス透過量も小さいためと理

30

5

解される。

【0020】又、真空シール用ガスケット10は測定装置80のベース部材81、リング状部材82、・・・、85、蓋87などの歪によって生じる不均一なシール間隙にはステンレス鋼による弾性構造体11が追従するほかバイトンゴムシート12の高い形状復元性もあり、繰り返し使用しても真空シール性が低下することはなかった。

【0021】(実施例2)図4は図1と同様な縦断面を示す部分斜視図であるが、このような縦断面を有するチューブ状リングの真空シール用ガスケット20も実施例1の真空シール用ガスケット20は、図4において、ステンレス鋼のチューブ状リング21のシール個所となる表面の上下に相対して厚さ0.5mmのパイトンゴムシート22、23を貼り合わせたものである。

【0022】上記ではバイトンゴムシート22、23をシール面となる個所に貼り合わせたが、ステンレス鋼のチューブ状リング21の全面にバイトンゴムシートを被 20 覆してもほぼ同等な効果が得られる。又、バイトンゴムシート22、23をステンレス鋼チューブ状リング21の表面に貼り合わせるのではなく、真空シールすべき配管のフランジのシール面にあらかじめ貼り合わせて固定しておいてもよい。

【0023】(実施例3)図5は一例としての真空シール構造30を示す断面図である。小径パイプ状部材35の下端に可撓性のステンレス鋼のディスク31の中心部が一体的に熔接固定されており、ディスク31の周縁部の下面には、真空シールするべき大径パイプ部材36の肉厚よりは大きい巾とした厚さ0.5mmのリング状シート32が貼り合わされている。大径パイプ部材36の端面、すなわちシール面37には小径パイプ部材35を相対的に押し下げて真空シールする時のディスク31の撓みに対応する僅かな傾斜が付されている。

【0024】この真空シール構造30は、例えば小径パイプ部材35を矢印で示すように相対的に下方へ移動させることにより、空間mと空間nとが真空シールされる。この時、ステンレス鋼のディスク31はその撓みによって不均一なシール間隙に対する大きい変形に追従し、パイトンゴムのリング状シート32は、その高い形状復元性によってクリープを起こさず、繰り返し使用しても真空シール性は低下しない。又、パイトンゴムのリング状シート32の厚さが薄いので、脱ガス量、ガス透過量は共に小さく、超高真空領域で使用してもガス放出量は小さい。この真空シール構造30を例えばパルブのシールに適用してガス放出量の小さいパルブを作成し得るし、この構造はその他の真空部品も適用し得る。

【0025】図6は図5の真空シール構造30の第1の 部材35'を矢印で示すように相対的に下方へ移動させ変形例を示し、パイトンゴムのリング状シート32'が 50 ることにより、空間 \underline{n} と空間 \underline{n} とを真空シールすること

大径パイプ部材36の端面37に固定された真空シール構造30°であって、図5の真空シール構造30°と全く同等の真空シール性を示す。

【0026】以上、本発明の各実施例について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基いて種々の変形が可能である。

【0027】例えば、各実施例においてはゴムの材料としてバイトンゴムを採用したが、真空シールに使用され得るゴムであれば、その種類は問わない。例えばニトリルゴム、クロロブレンゴム、シリコンゴムなどを使用し得る。

【0028】又、各実施例においてはバイトンゴムの厚さ0.5 mmのシートを採用したが、ガス放出量を小さくするという観点からはゴム膜の厚さは0.5 mmが上限と考えられる。一方、真空シールを確実に行なうためには、シール面の表面粗さ以上の厚さが必要であり、シール面が鏡面研磨されている場合であっても0.1 μm以上の厚さは必要である。

【0029】又、各実施例においてはバイトンゴムのシートを利用したが、ゴム膜を塗布して形成させてもよい。すなわち架橋剤を含む生ゴムの溶液をシール面に塗布して生ゴムの膜を形成させた後に加熱架橋させてゴム膜とする。このような塗布によって、又はこのような塗布を重ねることによって、厚さ0.1 μ m以上のゴム膜を形成し得る。

【0030】又、実施例1において金属の弾性構造体11の縦断面を横に寝たW字形状として、内表面を真空側としたが、外表面を真空側とするようなリングとしてもよい。ゴムシート32は同様に外表面に設けられ、谷部分に嵌め込むゴムリング14は真空側となるが何等の支障もない。更には、横に寝たW字形状を横に寝たV字形状としてもよいし、谷部分に弾性を補助するためのゴムリングを挟持させることはより好ましい。なお、この周方向に関しV字形状は横に寝たU字形状を含むものとする。

【0031】又、実施例2において説明したように、ゴム膜は金属の弾性構造体のシール面に固定させてもよく、又、シールすべきフランジのシール面に固定させてもよい。又、金属の弾性構造体のシール面とフランジのシール面との間で単に挟持させるようにしてもよい。

【0032】又、実施例2において説明したように、ゴム膜は金属の弾性構造体の全面を被覆するように組み合わせてもよく、又、必要なシール面のみに組み合わせてもよい。

【0033】又、特に真空シール構造において、図5の真空シール構造30の第2変形例として、図7に示すように、小径のパイプ部材35,を金属ディスク31の下面に熔接固定した真空シール構造40とし、小径パイプ部材35,を矢印で示すように相対的に下方へ移動させることにより、空間mと空間nとを真空シールすること

ができる。更には又、図5の真空シール構造30の第3 変形例として、図8に示すように、金属ディスク31を 大径パイプ部材36"に熔接し、小径パイプ部材35" にゴムの小径リング状シート32"を固定させた真空シール構造50としてもよい。この場合には小径パイプ部材35"の端面に、ディスク31の撓みに対応する傾斜が付される。そして小径パイプ部材35"を矢印で示すように相対的に下方へ移動させることにより、空間<u>m</u>と空間<u>n</u>とを真空シールすることができる。勿論、この小径パイプ部材35"をゴムシート32"と共に大径パイ 10プ部材36"の内部で押し上げるような真空シールも可能である。

[0034]

【発明の効果】以上述べたように、本発明の請求項1による真空シール用ガスケット及び請求項7による真空シール構造によれば、金属の弾性構造体がシール部分における不均一なシール間隙に追従し、これに組み合わせる形状復元性の高いゴム膜の厚さを薄くしているので、超高真空領域においてもガス放出量が小さく、かつ繰り返し使用が可能である。

【図面の簡単な説明】

【図1】実施例1による真空シール用ガスケットの縦断面を示す部分斜視図である。

【図2】真空シール性の測定装置の概略を示す断面図で ある。

【図3】実施例1による真空シール用ガスケット及び従来の0-リングの真空シール性を示す図である。

【図4】実施例2による真空シール用ガスケットの縦断面を示す部分斜視図であり、図1に対応する。

【図5】実施例3による真空シール構造の断面図であ

る。

【図6】実施例3の真空シール構造の第1変形例を示す 断面図である。

【図7】実施例3の真空シール構造の第2変形例を示す断面図である。

【図8】実施例3の真空シール構造の第3変形例を示す 断面図である。

【図9】従来のO-リングによるフランジのシール構造を示す断面図である。

10 【図10】従来の金属ガスケットによるフランジのシール構造を示す部分断面図である。

【図11】バイトンゴムシートの厚さとガス放出量との 関係を示す図である。

【図12】バイトンゴムシートの温度とガス透過量との関係を示す図である。

【符号の説明】

10 真空シール用ガスケット

11 ステンレス鋼の弾性構造体

12 バイトンゴムシート

20 14 ゴムリング

20 真空シール用ガスケット

21 ステンレス鋼の弾性構造体

22 バイトンゴムシート

23 バイトンゴムシート

30 真空シール構造

31 ステンレス鋼のディスク

32 バイトンゴムのリング状シート

35 小径パイプ部材

36 大径パイプ部材

【図3】

30

【図4】

【図5】

【図6】

【図7】

