Página Principal / Mis cursos / Métodos Numéricos 2022 - 1S / Grupo 4 y 5 / Tarea 4, grupo 5.

Comenzado el jueves, 23 de junio de 2022, 17:07

Estado Finalizado

Finalizado en jueves, 23 de junio de 2022, 19:07

Tiempo 1 hora 59 minutos

empleado

Calificación 4.3 de 5.0 (**86**%)

Pregunta **1**

Correcta

Se puntúa 0.6 sobre 0.6

Al resolver el siguiente problema elíp<u>tic</u>o por el método de diferencias finitas de cinco puntos con tamaño de paso $h = \frac{1}{4} = k$:

 $u_{xx} + u_{yy} = y$ en la región $R = \{(x, y) : 0 < x < 1, 0 < y < 1\}$

con condiciones de frontera

$$u(x, 0) = x^3$$
 y $u(x, 1) = x^3$ para $0 \le x \le 1$,

$$u(0, y) = 0$$
 y $u(1, y) = 1$ para $0 \le y \le 1$

la aproximación que se obtiene para $u(\frac{1}{2},\frac{1}{4})$ usando format short es:

0.2684

Pregunta 2 Correcta Se puntúa 0.6 sobre 0.6

Pregunta **3**

Incorrecta

Se puntúa 0.0 sobre 0.7

Utilice format short para los cálculos

Un cierto sistema resonante de muelles sobre el que se ejerce una fuerza externa periódica, se modela mediante la ecuación diferencial:

 $x''(t) + 25x(t) = 8 \cdot mathrm{sen}(5t)$

con x(0)=0 y x'(0)=0.

Si usa el método de Runge-Kutta clásico de orden cuatro para aproximar (2) con (2) subintervalos, se obtiene

-0.1157

×

Pregunta 4

Correcta

Se puntúa 0.6 sobre 0.6

Utilice format short para los cálculos

Aplique el método de diferencias finitas centradas de orden $\bigcirc_{\underline{O(h^2)}}$ dado por la rutina **findiff.m** con $\bigcirc_{\underline{h=0.05}}$ para aproximar $\bigcirc_{\underline{V(1.15)}}$ en el siguiente problema con valores en la frontera:

 $\frac{y^{\left(\frac{4}{x}y^{\left(\frac{2}{x}\right)} + \frac{2}{x^{2}}\right)}{y(1)=-1/2}, \frac{y}{2}=\ln 2}$

se obtiene

-0.0288

~

Pregunta 5
Correcta
Se puntúa 0.7 sobre 0.7

Correcta

Se puntúa 0.5 sobre 0.5

format short

Utilice el método del disparo lineal para hallar el valor aproximado de $\mathbb{Z}_{\underline{X}(\underline{z})}$, si $\mathbb{Z}_{\underline{X}(\underline{t})}$ es la solución del siguiente problema con valores en la frontera:

 $x''(t) = -\frac{2}{t}x'(t) + \frac{2}{t^2}x(t) + \frac{10\operatorname{mathrm}\{\cos(\ln(t))\}\{t^2\}}{t^2}$

Utilice una discretización de 40 pasos.

La aproximación obtenida es:

Pregunta 7

Correcta

Se puntúa 0.6 sobre 0.6

Un modelo presa-depredador: En un cierto hábitat viven conejos y lobos, cuyas poblaciones en un instante $\mathbb{Z}_{\underline{t}}$ denotamos por $\mathbb{Z}_{\underline{X}(\underline{t})}$ e $\mathbb{Z}_{\underline{y}(\underline{t})}$, respectivamente. El modelo matemático correspondiente establece que $\mathbb{Z}_{\underline{X}(\underline{t})}$ e $\mathbb{Z}_{\underline{y}(\underline{t})}$ verifican el sistema:

x'(t) = Ay(t) - Bx(t)y(t)

y'(t) = Cx(t)y(t) - Dx(t)

Si $\mathbb{Z}_{A=2}$, $\mathbb{Z}_{B=0.01}$, $\mathbb{Z}_{C=0.0001}$, $\mathbb{Z}_{D=0.4}$, al aplicar el método clásico de Runge-Kutta de cuarto orden con \mathbb{Z}_{50} pasos para aproximar $\mathbb{Z}_{X(3)}$ e $\mathbb{Z}_{y(3)}$ ($\mathbb{Z}_{0 \setminus \text{leq t \setminus \text{leq 3}}}$) en el caso $\mathbb{Z}_{x(0)=100}$ e $\mathbb{Z}_{y(0)=300}$, usando **format short y expresando la respuesta en números enteros (con redondeo)**, se obtiene:

y(3)=

85

0/22, 20.22	area 4, grupo 5 Revision dei intento
Pregunta 8	
Correcta	
Se puntúa 0.7 sobre 0.7	
5 11 1 11 11 11 11 11 11 11	
Considere el problema con valores en la frontera (P.V.F.)	
	+ s(x)_\qquad 3\leq x\leq 6 \\ y\left(3\right) = 3, \\ y\left(6\right) =
\beta.	\ <u>end{array}\right.</u>
Sabemos que, para 3 \leq x \leq 6, la aproximación a la solución de los P.V.I's:	
$3z''(x) + \cos(\pi x)z'(x) = 2e^{x}z(x), 3 \le x$	\lea 6\
	<u>1104 01</u> /.
<u> Z(3)=</u>	
0	
✓ ,	
<u>z'(3)=</u>	
1	
•	
~	
у	
3w"(x)+\cos(\pi x)w'(x)= 2e^{x}w(x) + s(x)_\qquad	d 3\leg x\leg 6\ ,
<u> </u>	
3	
✓ ,	
<u>w'(3)=</u>	
0	
.	
•	
obtenidas por el método de Runge-Kutta 4 con tamaño de	paso h=\dfrac{3}{5} , está dada por:
	x 4 & x 5 \\ \hline z\left(x\right) & z(x 0)&0.7525 & 1.4257 & 1.9032
<u>& 2.6083 & 3.4116 \\ \hline w\left(x\right) &w(x_0)& 5.1283 & 10.8873 & 20.8984 & 46.4218& 84.9763\\ \hline \end{array}</u>	
Si la aproximación a la solución del P.V.F. obtenida con el método del disparo en $\mathbb{Z}_{\underline{X}}$ es $\mathbb{Z}_{\underline{-20.2695}}$, es decir,	
y(x 4)\approx -20.2695, entonces el valor de √beta para este P.V.F. es:	
-2.2545	
✓ .	

→ Taller 16 Ecuaciones hiperbólicas

Ir a...

Quiz 3 - Grupo 5 - TANDA 2: 9-9.50am ►