SCHOOL OF MATHEMATICS, D.A.V.V., Indore.

Some useful results on functions of several variables

Book: Chapter 9: Principles of Mathematical Analysis, Walter Rudin

9.7 Theorem:

- (a) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $||A|| < \infty$ and A is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
- (b) If $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and c is a scalar, then

$$||A + B|| \le ||A|| + ||B||, \qquad ||cA|| = |c| ||A||.$$

With the distance between A and B defined as ||A - B||, $L(\mathbb{R}^n, \mathbb{R}^m)$ is a metric space.

(c) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, then

$$||BA|| \le ||B|| \, ||A|| \, .$$

9.8 **Theorem:**

Let Ω be the set of all invertible linear operators on \mathbb{R}^n .

(a) If $A \in \Omega$, $B \in L(\mathbb{R}^n)$, and

$$||B - A|| \, ||A^{-1}|| < 1,$$

then $B \in \Omega$.

- (b) Ω is an open subset of $L(\mathbb{R}^n)$, and the mapping $A \to A^{-1}$ is continuous on Ω . (This mapping is also obviously a one-one mapping of Ω onto Ω , which is its own inverse.)
- 9.9 **Theorem:** If S is a metric space, if a_{11}, \ldots, a_{mn} are real continuous functions on S, and if, for each $p \in S$, A_p is the linear transformation of \mathbb{R}^n into \mathbb{R}^m whose matrix has entries $a_{ij}(p)$, then the mapping $p \to A_p$ is a continuous mapping of S into $L(\mathbb{R}^n, \mathbb{R}^m)$.

9.10 Differentiation

If f is a real function with domain $(a, b) \subset \mathbb{R}$ and if $x \in (a, b)$, then f'(x) is usually defined to be the real number

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h},\tag{1}$$

provided, of course, that limit exists. Thus

$$f(x+h) - f(x) = f'(x)h + r(h)$$
 (2)

where the "remainder" r(h) is small, in the sense that

$$\lim_{h \to 0} \frac{r(h)}{h} = 0. \tag{3}$$

Note that equation (2) expresses the difference f(x+h) - f(x) as the sum of the linear function that takes h to f'(x)h, plus a small remainder.

We can therefore regard the derivative of f at x, not as a real number, but as the linear operator on \mathbb{R} that takes h to f'(x)h.

Observe that every real number α gives rise to a linear operator on \mathbb{R} , simply a multiplication by α . Conversely, every linear function that carries \mathbb{R} to \mathbb{R} is multiplication by some real number. It is a natural correspondence between \mathbb{R} and $L(\mathbb{R})$ which motivates the preceding statements.

Let us next consider a function \mathbf{f} that maps $(a, b) \subset \mathbb{R}$ into \mathbb{R}^m . In that case, $\mathbf{f}'(x)$ is defined to be the vector $\mathbf{y} \in \mathbb{R}^m$ (if there is one) for which

$$\lim_{h \to 0} \left\{ \frac{\mathbf{f}(x+h) - \mathbf{f}(x)}{h} - \mathbf{y} \right\} = 0 \tag{4}$$

We can again rewrite this in the form

$$\mathbf{f}(x+h) - \mathbf{f}(x) = h\mathbf{y} + \mathbf{r}(h), \tag{5}$$

where $\mathbf{r}(h)/h \to \mathbf{0}$ as $h \to 0$. The main term on the right side of (5) is again a linear function of h.

Note that every $\mathbf{y} \in \mathbb{R}^m$ induces a linear transformation of \mathbb{R} into \mathbb{R}^m , by associating to each $h \in \mathbb{R}$ the vector $h\mathbf{y} \in \mathbb{R}^m$. This identification of \mathbb{R}^m with $L(\mathbb{R}, \mathbb{R}^m)$ allows us to regard $\mathbf{f}'(x)$ as a member of $L(\mathbb{R}, \mathbb{R}^m)$.

Thus, if **f** is a differentiable mapping of $(a, b) \subset \mathbb{R}$ into \mathbb{R}^m , and if $x \in (a, b)$, then $\mathbf{f}'(x)$ is the linear transformation of \mathbb{R} into \mathbb{R}^m that satisfies

$$\lim_{h \to 0} \frac{\mathbf{f}(x+h) - \mathbf{f}(x) - \mathbf{f}'(x)h}{h} = \mathbf{0}$$
(6)

or equivalently.

$$\lim_{h \to 0} \frac{|\mathbf{f}(x+h) - \mathbf{f}(x) - \mathbf{f}'(x)h|}{|h|} = 0 \tag{7}$$

Now we define differentiation for the case n > 1.

9.11 **Definition**:

Suppose E is an open set in \mathbb{R}^n , \mathbf{f} maps E into \mathbb{R}^m , and $x \in E$. If there exists a linear transformation A of \mathbb{R}^n into \mathbb{R}^m such that

$$\lim_{h \to 0} \frac{|\mathbf{f}(x+h) - \mathbf{f}(x) - Ah|}{|h|} = 0$$
 (8)

then we say that \mathbf{f} is differentiable at x, and we write

$$\mathbf{f}'(x) = A \tag{9}$$

Note:

Note that in (8) $h \in \mathbb{R}^n$. If |h| is small enough, then $x + h \in E$, since E is open. Thus $\mathbf{f}(x+h)$ is defined, $\mathbf{f}(x+h) \in \mathbb{R}^m$, and since $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, $Ah \in \mathbb{R}^m$. Thus

$$\mathbf{f}(x+h) - \mathbf{f}(x) - Ah \in \mathbb{R}^m$$

The norm in the numerator of (8) is that of \mathbb{R}^m . In denominator we have the \mathbb{R}^n norm of h

9.12 **Theorem:**

Suppose E and \mathbf{f} are as in the definition 9.11, $x \in E$, and (8) holds with $A = A_1$ and with $A = A_2$. Then $A_1 = A_2$.

9.13 Remarks:

(a) The relation (8) can be rewritten in the form

$$\mathbf{f}(x+h) - \mathbf{f}(x) = \mathbf{f}'(x)h + \mathbf{r}(h) \tag{10}$$

where the remainder $\mathbf{r}(h)$ satisfies

$$\lim_{h \to 0} \frac{|\mathbf{r}(h)|}{|h|} = 0 \tag{11}$$

we may interpret (10) by saying that for fixed x and small h, the left side of (10) is approximately equal to $\mathbf{f}'(x)h$, that is, to the value of a linear transformation applied to h.

- (b) $\mathbf{f}'(x)$ is then a function, namely, a linear transformation of \mathbb{R}^n into \mathbb{R}^m . But \mathbf{f}' is also a function: \mathbf{f}' maps E into $L(\mathbb{R}^n, \mathbb{R}^m)$.
- (c) The equation (10) shows that \mathbf{f} is continuous at any point at which \mathbf{f} is differentiable.
- (d) The derivative defined by (8) or by (10) is called the differential of \mathbf{f} at x, or the total derivative of \mathbf{f} at x.

9.14

If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ then $\mathbf{A}'(x) = A$.

9.15 Theorem:(Chain rule)

Suppose E is an open set in \mathbb{R}^n , \mathbf{f} maps E into \mathbb{R}^m , \mathbf{f} is differentiable at $x_0 \in E$, \mathbf{g} maps an open set containing $\mathbf{f}(E)$ into \mathbb{R}^k , and \mathbf{g} is differentiable at $\mathbf{f}(x_0)$. Then the mapping \mathbf{F} of E into \mathbb{R}^k defined by

$$\mathbf{F}(x) = \mathbf{g}(\mathbf{f}(x))$$

is differentiable at x_0 , and

$$\mathbf{F}'(x_0) = \mathbf{g}'(\mathbf{f}(x_0))\mathbf{f}'(x_0).$$

Note that on the right hand side we have the product of two linear transformations (matrices).

9.16 Partial Derivatives

Consider a function **f** that maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Let $\{e_1, e_2, \ldots, e_n\}$ and $\{u_1, u_2, \ldots, u_m\}$ be the standard bases of \mathbb{R}^n and \mathbb{R}^m . The components of **f** are the real functions f_1, f_2, \ldots, f_m defined by

$$\mathbf{f}(x) = \sum_{i=1}^{m} f_i(x)u_i \tag{12}$$

or equivalently, by $f_i(x) = \mathbf{f}(x) \cdot u_i$, $1 \le i \le m$.

For $x \in E$, $1 \le i \le m$, $1 \le j \le n$, we define

$$(D_j f_i)(x) = \lim_{t \to 0} \frac{f_i(x + te_j) - f_i(x)}{t}$$
 (13)

provided the limit exists. We see that $D_j f_i$ (called partial derivative) is the derivative of f_i with respect to x_j , keeping the other variables fixed.

9.17 **Theorem:**

Suppose **f** maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , and **f** is differentiable at a point $x \in E$. Then the partial derivatives $(D_i f_i)(x)$ exist, and

$$\mathbf{f}'(x)e_j = \sum_{i=1}^{m} (D_j f_i)(x)u_i \quad (1 \le j \le n)$$
(14)

Remark:

 $\mathbf{f}'(x)e_j$ is the j^{th} column vector of the matrix that represents $\mathbf{f}'(x)$ i.e., the number $(D_jf_i)(x)$ occupies the spot in the i^{th} row and j^{th} column of the matrix of $\mathbf{f}'(x)$. Thus

$$\mathbf{f}'(x) = \begin{bmatrix} (D_1 f_1)(x) & \cdots & (D_n f_1)(x) \\ \cdots & \cdots & \cdots \\ (D_1 f_m)(x) & \cdots & (D_n f_m)(x) \end{bmatrix}.$$

If $h = \sum h_j e_j$ is any vector in \mathbb{R}^n , then (14) implies that

$$\mathbf{f}'(x)h = \sum_{i=1}^{m} \left\{ \sum_{j=1}^{n} (D_j f_i)(x)h_j \right\} u_i.$$
 (15)

9.18 Example:

Let γ be a differentiable mapping of the segment $(a,b) \subset \mathbb{R}$ into an open set $E \subset \mathbb{R}^n$, in other words, γ is a differentiable curve in E. Let f be a real valued differentiable function with domain E. Thus f is a differentiable mapping of E into \mathbb{R} . Define

$$g(t) = f(\gamma(t)) \qquad (a < t < b). \tag{16}$$

The chain rule asserts that

$$g'(t) = f'(\gamma(t))\gamma'(t) \qquad (a < t < b). \tag{17}$$

Since $\gamma'(t) \in L(\mathbb{R}, \mathbb{R}^n)$ and $f(\gamma'(t)) \in L(\mathbb{R}^n, \mathbb{R})$, (17) defines g'(t) as a linear operator on \mathbb{R} . However g'(t) can also be regarded as a real number. This number can be computed in terms of the partial derivatives of f and the derivatives of the components of γ .

With respect to the standard basis $\{e_1, e_2, \ldots, e_n\}$ of \mathbb{R}^n , $\gamma'(t)$ may be viewed as the n by 1 matrix which has $\gamma'_i(t)$ in the i^{th} row, where $\gamma_1, \ldots, \gamma_n$ are the components of γ . For every $x \in E$, f'(x) may be viewed as the 1 by n matrix which has $(D_j f)(x)$ in the j^{th} column. Hence g'(t) is the 1 by 1 matrix whose only entry is the real number

$$g'(t) = \sum_{i=1}^{n} (D_i f)(\gamma(t)) \gamma_i'(t)$$
(18)

We can look this formula in following manner.

Associate with each $x \in E$ a vector, the so called "gradient" of **f** at x, defined by

$$(\nabla \mathbf{f})(x) = \sum_{i=1}^{n} (D_i f)(x) e_i.$$
(19)

Since

$$\gamma'(t) = \sum_{i=1}^{n} \gamma_i'(t)e_i, \tag{20}$$

(18) can be written in the form

$$g'(t) = (\nabla \mathbf{f})(\gamma(t)) \cdot \gamma'(t) \tag{21}$$

the scaler product of the vectors $(\nabla \mathbf{f})(\gamma(t))$ and $\gamma'(t)$.

Directional Derivative:

Fix an $x \in E$, let $u \in \mathbb{R}^n$ be a unit vector and specialize γ so that

$$\gamma(t) = x + tu \qquad (-\infty < t < \infty) \tag{22}$$

Then $\gamma'(t) = u$ for every t. Hence (21) shows that

$$g'(0) = (\nabla \mathbf{f})(x) \cdot u \tag{23}$$

On the other hand. (22) shows that

$$g(t) - g(0) = f(x + tu) - f(x)$$

Hence (23) gives

$$\lim_{t \to 0} \frac{f(x+tu) - f(x)}{t} = (\nabla \mathbf{f})(x) \cdot u \tag{24}$$

the limit in (24) is called the *directional derivative* of f at x, in the direction of the unit vector u, and may be denoted by $(D_u f)(x)$.

If f and x are fixed, but u varies, then (24) shows that $(D_u f)(x)$ attains its maximum when u is a positive scalar multiple of $(\nabla \mathbf{f})(x)$.

If $u = \sum u_i e_i$ then (24) shows that $(D_u f)(x)$ can be expressed in terms of the partial derivatives of f at x by the formula

$$(D_u f)(x) = \sum_{i=1}^{n} (D_i f)(x) u_i$$
 (25)

9.20 **Definition:**

A differentiable mapping \mathbf{f} of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m is said to be *continuously differentiable* in E if \mathbf{f}' is a continuous mapping of E into $L(\mathbb{R}^n, \mathbb{R}^m)$.

9.21 **Theorem:**

Suppose **f** maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then $\mathbf{f} \in \mathscr{C}'(E)$ if and only if the partial derivatives $D_i f_i$ exist and are continuous on E for $1 \leq i \leq m$, $1 \leq j \leq n$.

9.24 Inverse Function Theorem:

Suppose **f** is a \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , $\mathbf{f}'(a)$ is invertible for some $a \in E$, and $b = \mathbf{f}(a)$. Then

- (a) there exist open sets U and V in \mathbb{R}^n such that $a \in U$, $b \in V$, \mathbf{f} is one to one on U, and $\mathbf{f}(U) = V$;
- (b) if \mathbf{g} is the inverse of \mathbf{f} (which exists, by (a)), defined in V by

$$\mathbf{g}(\mathbf{f}(x)) = x \qquad (x \in U)$$

then $\mathbf{g} \in \mathscr{C}'(V)$.

9.25 Theorem: (Open Mapping Theorem)

If **f** is a \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n and if $\mathbf{f}'(x)$ is invertible for every $x \in E$, then $\mathbf{f}(W)$ is an open subset of \mathbb{R}^n for every open set $W \subset E$.

9.26 Notation:

For $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, write

$$(x,y)=(x_1,\ldots,x_n,y_1,\ldots,y_m)\in\mathbb{R}^{n+m}$$

Every $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ can be split into two linear transformations A_x and A_y , defined by

$$A_x h = A(h, 0), \qquad A_y k = A(0, k)$$

for any $h \in \mathbb{R}^n$, $k \in \mathbb{R}^m$. Then $A_x \in L(\mathbb{R}^n)$, $A_y \in L(\mathbb{R}^m, \mathbb{R}^n)$, and

$$A(h,k) = A_x h + A_y k.$$

9.27 Linear Version of the Implicit Function Theorem:

If $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ and if A_x is invertible, then there correponds to every $k \in \mathbb{R}^m$ a unique $h \in \mathbb{R}^n$ such that A(h, k) = 0. This h can be computed from k by the formula

$$h = -(A_x)^{-1} A_y k.$$

9.28 Implicit Function Theorem:

Let **f** be a \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^{n+m}$ into \mathbb{R}^n such that $\mathbf{f}(a,b) = 0$ for some point $(a,b) \in E$. Put $A = \mathbf{f}'(a,b)$ and assume that A_x is invertible.

Then there exist open sets $U \subset \mathbb{R}^{n+m}$ and $W \subset \mathbb{R}^m$, with $(a,b) \in U$ and $b \in W$, having the following property:

To every $y \in W$ corresponds a unique x such that

$$(x,y) \in U$$
 and $\mathbf{f}(x,y) = 0.$ (26)

If this x is defined to be $\mathbf{g}(y)$, then \mathbf{g} is a \mathscr{C}' -mapping of W into \mathbb{R}^n , $\mathbf{g}(b) = a$,

$$\mathbf{f}(\mathbf{g}(y), y) = 0 \qquad (y \in W) \tag{27}$$

and

$$\mathbf{g}'(b) = -(A_x)^{-1}A_y.$$

Note:

The function **g** is implicitly defined by (27). Hence the name of the theorem.