

This course was developed as a part of the VLIR-UOS Cross-Cutting projects:

•Statistics: 2011-2016, 2017.

Statistics: 2017.

Statistics for development: 2018-2022.

The >eR-Biostat initiative Making R based education materials in statistics accessible for all

Basic concepts in statistical modeling using R: A Simple Logistic Regression

Developed by

Legesse Kassa Debusho (UNISA, South Africa), Ziv Shkedy (Hasselt University, Belgium) and

Tadele Worku Mengesha (Gondar University), Abdisa Gurmessa (Jimma University)

https://erbiostat.wixsite.com/erbiostat

UPDATED: 2022

ER-BioStat

Email: erbiostat@gmail.com

Contents

- Logistic regression:
 - Notation and model formulation.
 - Zero/one data.
 - Data in frequency tables.
 - Examples.
 - The glm() function in R.
 - Fitting logistic regression models using the glm() function in R: 5 examples.

Recommended reading

Introductory Statistics for the Life and Biomedical Sciences First Edition

Julie Vu Preceptor in Statistics Harvard University

David Harrington

Professor of Biostatistics (Emeritus)

Harvard T.H. Chan School of Public Health

Dana-Farber Cancer Institute

This book can be purchased for \$0 on Leanpub by adjusting the price slider.

Purchasing includes access to a tablet-friendly version of this PDF where margins have been minimized.

- In this part of the course, we cover mainly Section 9.5.
- The examples that are used for illustration are not the same as the examples in the book.
- The book is available for free online:

https://www.openintro.org/book/biostat/

Section 9.5: introduction to logistic regression

Introduction

Introduction

- In health, education, medical and social sciences, we frequently deal with dichotomous or binary outcomes.
- For example, we may have data on presence (Yes) or absence
 (No) of an event.
- For example; presence or absence of :
 - > Anaemia.
 - ➤ Ebola.
 - ➤ Diabetes.

The response variabel

A binary variable:

$$Y_i = \begin{cases} 1 & \text{presence} \\ 0 & \text{absence} \end{cases}$$

An example:

$$Y_i = \begin{cases} 1 & \text{Diabetes} \\ 0 & \text{Healthy} \end{cases}$$

Bernoulli random variables

Let Y₁,Y₂,...,Y_n represent a sample of Bernoulli random variables from n trials:

$$Y_i = \begin{cases} 1 \text{ if the outcome is postive/success} \\ 0 \text{ if the outcome is negative/failure} \end{cases}$$

- Let $p = P(Y_i = 1)$ be the probability of success
- Let $(1 p) = P(Y_i = 0)$ be the probability of failure

The predictor(s)

Our aim is to model the dependence of the probability of success upon known predictors (=explanatory variable(s)).

$$Y_i = \begin{cases} 1 & \text{presence} \\ 0 & \text{absence} \end{cases}$$
 $P(Y_i = 1) = P(Y_i = \text{presence}) = P(\text{success})$

$$P(Y_i = 1) = f(predictors) = f(X_1, X_2,...)$$

Logistic regression model

Our aim is to model the dependence of the probability of success on known predictors.

Example:

$$Y_i = \begin{cases} 1 & \text{Diabetes} \\ 0 & \text{Healthy} \end{cases}$$

$$P(Y_i = Diabetes) = f(predictors) = f(diet, age,...)$$

The model that we use to model the dependence between diabetes and the predictors is a logistic regression model.

Model formulation

Model formulation for zero/one (binary data)

$$Y_i \sim B(1, \pi_i)$$
 The distribution of Y_i

$$\pi = P(Y_i = 1) = f(predictor(s))$$

$$\pi = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$$

The probability of success.

Dependency of Y_i on the predictor X_i

Our aim is to model the dependency of the response on the predictor, i.e., to estimate the unknown parameters α and β

The model consists of three components: the distribution of Y, the dependency of predictor(s) and the structure of the probability of success.

Binary data in frequency tables

Predictor	Response	Sample size
X ₁	У ₁	n ₁
X ₂	У ₂	n ₂
XI	Y _I	n _I

A frequency table with I categories.

For each category X_i , there are n_i observations, each observation if a binary indicator:

$$Y_{ij} = \begin{cases} 1 & \pi \\ 0 & 1 - \pi \end{cases}$$

The response Y_i is the sum of all 1s in the category:

$$Y_i = \sum_{i=1}^{n_i} Y_{ij}$$

Model formulation for data in frequency tables

$$Y_{ij} = \begin{cases} 1 & \pi \\ 0 & 1 - \pi \end{cases}$$

 $Y_{ij} = \begin{cases} 1 & \pi \\ 0 & 1-\pi \end{cases}$ When data are given in frequency tables, there are \mathbf{n}_i observations per category in the table.

$$Y_i = \sum_{j=1}^{n_i} Y_{ij}$$

Y_i is the number of 1s in the category.

 $Y_i \sim B(n_i, \pi_i)$ The distribution of Y_i

$$\pi = P(Y_i = 1) = f(predictor(s))$$

$$\pi = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$$

Examples & notaions

Example 1: Smoked mice

- In order to investigate the influence of smoking on lung cancer a group of 55 mince were randomized into two treatment groups.
- In the first group (the treated group), each mouse was closed in a chamber that was filled with the smoke of one cigarette every hour in 12 hours day.
- The second group (the control group) were kept in their cambers for 12 hours with out smoke.
- After one year an autopsy was carried out.
- The response is the present and absent of a tumour.
- The second variable in the data is the treatment group.

Smoked mice: the response variable

The question of primary interest is:

DOSE THE SMOKE INCREDSE THE RISK FOR CANCER?

$$Y_i = \begin{cases} 1 & tumour & present \\ 0 & tumour & absent \end{cases}$$

The response variable

Smoked mice: the data

	Tumour present	Tumour absent	Total
Treated	21	2	23
Contol	19	13	32
Total	20	15	55

Smoked mice

	Tumour present	Tumour absent	Total
Treated	21	2	23
Contol	19	13	32
Total	20	15	55

We want to model the probability to develop a tumour given the treatment group.

- This is an example of grouped data.
- We do not have information about individuals in the sample, but only about the counts in different combinations of the experiment.
- Individual data can be extracted from the table.
- In terms of statistical modelling, the response is binary (tumour absent/tumour present).
- The predictor, the treatment group, is also binary.

Response and predictor

- In the treated group, 21/23 (91%) of the mice develop tumour. In the control group only 19/32 (59%).
- The aim of the analysis is to determine if this difference is only due to chance or if the smoke increase the risk for tumour.

Response:

$$Y_i = \begin{cases} 1 & tumour & present \\ 0 & tumour & absent \end{cases}$$

Predicator:

 $Treatment_i(treated/control)$

$$P(Y_i = 1) = P(tumour) = f(treatment)$$

- Antibodies produced in response to an infectious disease like malaria remain in the body after the individual has recovered from the disease.
- A serological test detects the presence or absence of such antibodies.
- An individual with such antibodies is called seropositive.

- A sample which taken at a certain time point.
- The information for each individual:
- 1. Age at test.
- 2. Infected or not.
- Prevalence of seropositivity In the sample:

 $\pi(a)$

This is the probability to become infected before the age at test.

Sero-prevalnce data

Current status data: sero-negative

• Sero-Negative: infected after the test.

Current status data: sero-positive

•Sero-Positive: infected after the test.

Malaria in Brasil

Age group	Mid age	Sero positive	Sample size
1	1.5	8	123
2	4.0	6	132
3	7.5	18	182
4	12.5	14	140
5	17.5	20	138
6	25.0	39	161
7	35.0	19	133
8	47.0	25	92
9	60.0	44	74

What is the relationship between infection and age?

$egin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	Mid age		•	Response:
$egin{array}{cccccccccccccccccccccccccccccccccccc$	1	1.5	8	123	ſ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	4.0	6	132	$Y_{ij}=iggl\{$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	3	7.5	18	182	(
$n_i = \frac{1}{6}$	4	12.5	14	140	Number of Serc
$egin{array}{cccccccccccccccccccccccccccccccccccc$	5	17.5	20 _	138	$\longrightarrow Y_i = \sum_{i=1}^{n} Y_i$
8 47.0 25 92 n_i	6	25.0	39	161	
n_i	7	35.0	19	133	Sample size at a
	8	47.0	25	92	n_i
9 60.0 44 74	9	60.0	44	74	·

$$Y_{ij} = \begin{cases} 1 & Sero + \\ 0 & Seto - \end{cases}$$

o+ in age group i:

$$ightharpoonup Y_i = \sum_{j=1}^{n_i} Y_{ij}$$

age group i:

What is the relationship between the age and the probability to be infected?

Response: number of infected (sero+):

$$Y_i = \sum_{j=1}^{n_i} Y_{ij}$$

Predictor: age.

We want to model the probability to be infected as a function of the age.

$$P(Y_i = 1) = P(sero+) = f(age)$$

Example 3: Bioassay data

 A bioassay experiment is an experiment designed to assess the potency of a compound by means of the response produced when it is administrated to a living organism.

- In this example the protective effect of a particular serum (serum 32) on the bacterium associated with the occurrence of pneumonia is under investigation.
- Study design:
 - The experiment consist of 5 groups of 40 mice.
 - Each group was injected with combination of an infecting dose of a culture of pneumococci and one of five doses of the anti pneumococcus serum.

Bioassay data: response and predictor

- The response of the number of deaths within 7 days from injection.
- The dose level is the predictor.
- The question of primary interest:

What is the relationship between the injected dose and the number of deaths?

Example 3: the data

Dose of serum	Number of deaths	Sample size
0.0028	35	40
0.0056	21	40
0.0112	9	40
0.0225	6	40
0.0450	1	40

Example 3: the data

Dose of serum	Number of deaths	Sample size
0.0028	35	40
0.0056	21	40
0.0112	9	40
0.0225	6	40
0.0450	1	40

- A frequency table with 5 categories.
- 40 subjects per category.

Response:

$$Y_{ij} = \begin{cases} 1 & dead \\ 0 & alive \end{cases}$$

Number of deaths in dose level i:

$$Y_i = \sum_{j=1}^{n_i} Y_{ij}$$

Sample size at dose level i:

$$n_i$$

Example 3: response and predictor

Response: number of deaths at each dose level:

$$Y_i = \sum_{j=1}^{n_i} Y_{ij}$$

Predictor: dose.

The model:

$$P(Y_{ij} = 1) = P(death) = f(dose)$$

Example 4: determination of ESR

- The erythocte sedimentation rate (ESR) is the rate at which red blood cells settle out of suspension in blood plasma when measured under standard condition.
- The ESR increase if the levels of certain proteins in the blood increase.
- Rheumatic diseases, chronic diseases and infections increase these proteins level.
- From that reason the determination of the ESR is one of the most commonly used screening tests performed on samples bloods.

Determination of ESR: the data

```
Individual Fib Glob Y
      1 2.52 38 0
1
      2 2.56 31 0
      3 2.19 33 0
     4 2.18 31 0
      5 3.41 37 0
5
      19 2.60 38 0
19
      20 2.23 37 0
20
     21 2.88 30 0
21
     22 2.65 46 0
22
      23 2.09 44 1
      24 2.28 36 0
24
      25 2.67 39 0
25
      26 2.29 31 0
26
27
      27 2.15 31 0
      28 2.54 28 0
28
29
      29 3.93 32 1
30
      30 3.34 30 0
31
      31 2.99 36 0
32
      32 3.32 35 0
```

- An example of individual data.
- For each subject we have the response and the proteins level.
- Main interest:

Does the Fibrinogen level (proteins in the blood) influence the ESR rate?

- Data:
 - Fib: Fibrinogen level.
 - Glob:
 - Y: 0/1 indicator for ESR.

Example 4: determination of ESR

Response:

$$Y_i = \begin{cases} 1 & ESR > 20 \\ 0 & ESR \le 20 \end{cases}$$

Predictor: Fibrinogen

level.

A model for the probability that ESR>20:

$$P(Y_i = 1) = P(ESR > 20) = f$$
(Fibrinogen level)

Example 5: Pneumoconiosis amongst coal miners

- Pneumoconiosis amongst groups of coal miners with varying exposure time to coal dust.
- Does exposure time increase the probability to have the disease?

The data

Years Cases Miners 1 5.8 0 98

2 15.0 1 54 3 21.5 3 43

4 27.5 8 48

5 33.5 9 51

6 39.5 8 38

7 46.0 10 28

8 51.5 5 11

- Response: disease.
- Data:
 - Cases: number of miners with disease (Y_i).
 - Miners: number of miners in the category (n_i).

Example 5: response and predictor

Response:

$$Y_{ij} = egin{cases} 1 & ext{Pneumoconiosis} \ 0 & ext{healthy} \end{cases}$$

$$Y_i = \sum_{j=1}^{n_i} Y_{ij} \iff Y_i \sim B(n_i, \pi_i)$$

Predictor: years of exposure to coal dust.

$$P(Y_i = 1) = P(\text{Pneumoconiosis}) = f(time)$$

Summary: a logistic regression model

Data in table format

$$Y_{ij} = \begin{cases} 1 & \pi \\ 0 & 1 - \pi \end{cases}$$

$$Y_i = \begin{cases} 1 & \pi \\ 0 & 1 - \pi \end{cases}$$

$$Y_i = \sum_{i=1}^{n_i} Y_{ij} \iff Y_i \sim B(n_i, \pi_i)$$

$$Y_i \sim B(1, \pi_i)$$

The model for the probability (as a function of the predictor):

$$\pi_i = \frac{e^{\alpha + \beta X_i}}{1 + e^{\alpha + \beta X_i}}$$

Fitting logistic regression models using the glm() function in R

The glm() Function in R

 Generalized linear models can be fitted in R using the glm() function, which is similar to the lm() function for fitting linear models.

Arguments in the glm() call are as follows:

glm(formula,family,link,data,...)

The glm() Function in R

 For binary data, the general call of the glm() function has the form:

this defines a logistic regression model, i.e. a model for binary data with logit link function.

$$Y_{ij} = \begin{cases} 1 & \pi \\ 0 & 1 - \pi \end{cases}$$

$$Y_i = \sum_{i=1}^{n_i} Y_{ij} \iff Y_i \sim B(n_i, \pi_i)$$
 family=binomial

$$\pi_i = \frac{e^{\alpha + \beta X_i}}{1 + e^{\alpha + \beta X_i}} \Rightarrow \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \alpha + \beta X_i$$
 link = "logit"

The glm() Function: zero/one data.

For a zero/one data (for example the ESR data):

glm(formula,family,link,data,...)

respone~predictor 1 + predictor 2+....

The glm() Function: grouped data

• For grouped data (for example, the serological data):

positive/sample size~ predictor 1 + predictor 2+....

Number of successes

Sample size in the category

$$Y_i = \sum_{i=1}^{n_i} Y_{ij} \qquad \qquad n_i$$

Fitting logistic regression models using the glm() function in R: 5 examples

Example 1: Smoked mice

The question of primary interest is:

DOSE THE SMOKE INCREASE THE RISK FOR CANCER?

$$Y_i = \begin{cases} 1 & tumour & present \\ 0 & tumour & absent \end{cases}$$
 The response variable

Data structure in R

```
> mice <- data.frame(Treatm=c("Treated", "Control"),
+ Tumour = c(21,19), Total = c(23,32))
> attach(mice)
> mice
```

Treatm Tumour Total

1 Treated 21 23

2 Control 19 32

Tumour

Model formulation

	Tumour present	Tumour absent	Total
Treated	21	2	23
Contol	19	13	32
Total	20	15	55

- We want to model the probability to develop a tumour (i.e. cancer) given the treatment group.
- Predictor: treatment group (X_i).

$$X_i = \begin{cases} 1 & Treatment \\ 0 & Control \end{cases}$$

The individual data

$$Y_{ij} = \begin{cases} 1 & Cancer \\ 0 & No \ cancer \end{cases}$$

Number of subjects with tunour

$$Y_i = \sum_{i=1}^{n_i} Y_{ij}$$

Distribution of Y

$$Y_i \sim B(n_i, \pi_i)$$

The model for the probability:

$$\pi_i = \frac{e^{\alpha + \beta X_i}}{1 + e^{\alpha + \beta X_i}} \Rightarrow \log\left(\frac{\pi_i}{1 - \pi_i}\right) = \alpha + \beta X_i$$

Model with Binomial family and logit link function: the glm() function

Fitting the model with the glm() function:

$$Y_{i} \sim B(n_{i}, \pi_{i})$$

$$\pi_{i} = \frac{e^{\alpha + \beta X_{i}}}{1 + e^{\alpha + \beta X_{i}}}$$

R output

```
> summary(fit2.mice)

Call:
glm(formula = cbind(Tumour, Total - Tumour) ~ factor(Treatm),
    family = binomial("logit"), data = mice)

Deviance Residuals:
[1] 0 0
```

Coefficients: Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.3795 0.3599 1.054 0.2917 factor(Treatm)Treated 1.9719 0.8229 2.396 0.0166 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7.6349 on 1 degrees of freedom Residual deviance: 0.0000 on 0 degrees of freedom

AIC: 10.421

Number of Fisher Scoring iterations: 4

The odds ratio

	Tumour present	Tumour absent	Total
Treated	21	2	23
Contol	19	13	32
Total	20	15	55

$$OR = \frac{21 \times 13}{19 \times 2}$$

> OR1<-(21*13)/(19*2)

> OR1

[1] 7.184211

✓ log(OR1)

[1] 1.971886

> summary(fit2.mice)\$coeff

Estimate Std. Error z value Pr(>|z|)

(Intercept)

0.3794896, 0.3599370 1.054322 0.2917354

factor(Treatm)Treated 1.9718856 08229056 2.396248 0.0165639

$$\hat{\beta} = \log(OR)$$
 $OR = \exp(1.971886) = 7.184.$

Example 2 (Serological data): Data structure in R

```
Serolog <- read.table('c:/... /Serological.txt',
          header = TRUE, na.strings = "NA", dec = ".")
> attach(Serolog)
> print(Serolog)
 Age N pos
1 1.5 123 8
2 4.0 132 6
3 7.5 182 18
4 12.5 140 14
5 17.5 138 20
6 25.0 161 39
7 35.0 133 19
8 47.0 92 25
9 60.0 74 44
```

Example 2: Serological data

```
p <- pos/N
plot(p ~ Age, xlab = "Age", ylab = "Prevalence")
```


Model formulation

Mid age	Sero positive	Sample size
1.5	8	123
4.0	6	132
7.5	18	182
12.5	14	140
17.5	20	138
25.0	39	161
35.0	19	133
47.0	25	92
60.0	44	74

$$Y_{ij} = \begin{cases} 1 & sero & pos. \\ 0 & sero & neg. \end{cases}$$

$$Y_i = \sum_{j=1}^{n_i} Y_{ij}$$

$$\sim B(n_i, P_i)$$

Number of sero-positive at each age group

n_i: sample size at each age group

P_i is the probability to be infected (the prevalence). We use logistic regression in order to model the prevalence as a function of age

$$\log it(P_i) = \alpha + \beta \times age$$

glm() function in R

$$Y_i \sim B(n_i, P_i)$$
pos/N

> fit.Sero <- glm(pos/N ~ Age, data = Serolog, family = binomial)

$$\log it(P_i) = \alpha + \beta \times age_i$$
 model pos/N=age

Parameters estimate

> summary(fit.Sero)

Call:

glm(formula = pos/N ~ Age, family = binomial, data = Serolog)

Deviance Residuals:

Min 1Q Median 3Q Max -0.24363 -0.09726 0.01479 0.06756 0.19568

Coefficients:

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.31775 on 8 degrees of freedom Residual deviance: 0.18094 on 7 degrees of freedom

AIC: 8.0619

Number of Fisher Scoring iterations: 5

$$\log it(\hat{P}_i) = \hat{\alpha} + \hat{\beta} \times age$$

$$\downarrow \qquad \qquad \downarrow$$

$$\log it(\hat{P}_i) = 2.71 + 0.044 \times age$$

Data and predicted values

- > p <- pos/N
- > plot(p ~ Age, xlab = "Age", ylab = "Prevalence")
- > lines(Age, fit.Sero\$fit)

Predicted values:

$$\log it(\hat{P}_i) = 2.71 + 0.044 \times age$$

$$\hat{P}_i = \frac{e^{2.71 + 0.044 \times age}}{1 + e^{2.71 + 0.044 \times age}}$$

fit.Sero\$fit

Example 3: Bioassay

The response of the number of deaths within 7 days from injection. The dose level is the predictor.

The question of primary interest:

What is the relationship between the injected dose and the number of deaths?

Data structure in R

Dose of serum	Number of deaths	Sample size
0.0028	35	40
0.0056	21	40
0.0112	9	40
0.0225	6	40
0.0450	1	40

The data

data = serum, xlab = "Dose",

ylab = "Proportion of deaths")

Using log(dose) as predictor

Original scale

Log scale

$$Y_i \sim B(n_i, P_i)$$
 Y: Number of deaths

$$\log it(P_i) = \alpha + \beta \times \frac{\log(dose)}{\log(dose)}$$

The model is fitted with dose on log scale:

$$P_{i} = \frac{e^{\alpha + \beta \times \log(dose_{i})}}{1 + e^{\alpha + \beta \times \log(dose_{i})}}$$

R script for the model

> fit.serum <- glm(death/N ~ ldose, data = serum, family = binomial)

Logistic regression with logit link.

Response: number of deaths.

 $\log it(P_i) = \alpha + \beta \times \log(dose_i)$

Sample size at each dose level

```
print(serum)
dose death N
1 0.0028 35 40
2 0.0056 21 40
3 0.0112 9 40
4 0.0225 6 40
5 0.0450 1 40
```

Outout

```
> summary(fit.serum)
Call:
glm(formula = death/N ~ Idose, family = binomial, data = serum)
Deviance Residuals:
         2 3 4
   1
                          5
0.13193 -0.09818 -0.11361 0.17236 -0.02366
Coefficients:
      Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.189 7.938 -1.158 0.247
ldose
         -1.830 1.610 -1.136 0.256
(Dispersion parameter for binomial family taken to be 1)
  Null deviance: 2.251289 on 4 degrees of freedom
Residual deviance: 0.070222 on 3 degrees of freedom
```

Data and fitted model

- > plot(death/N ~ ldose) data = serum, xlab = "Dose", ylab = "Proportion of deaths")
- > lines(serum\$Idose, fit.serum\$fit)

Fitted values:

$$\hat{P}_i = \frac{e^{-9.189 - 1.830 \times \log(dose)}}{1 + e^{-9.189 - 1.830 \times \log(dose)}}$$

ED50

Consider the follwoing logistic regression model:

$$\log it(P_i) = \alpha + \beta \times \log(dose)$$

With

$$P_i = \frac{e^{\alpha + \beta \times dose}}{1 + e^{\alpha + \beta \times dose}}$$

The ED50 is the dose level for which the probability for a response is equal to 0.5, this means that

$$0.5 = \frac{e^{\alpha + \beta \times \log(dose)}}{1 + e^{\alpha + \beta \times \log(dose)}}$$

This dose level is the ED50 (on log scale)

How to calculate the ED50?

Logit of 0.5:

$$\log it(0.5) = \log \left(\frac{0.5}{1 - 0.5}\right) = \log(1) = 0$$

Logit of P:

$$\log it(P) = \log \left(\frac{P}{1 - P}\right) = \alpha + \beta \times dose$$

For P=0.5, dose=ED50, this maens that

$$\alpha + \beta \times ED50 = 0$$

Example 4: Determination of ESR

- The erythocte sedimentation rate (ESR) is the rate at which red blood cells settle out of suspensin in blood plasme when measured under standard condition.
- Response: binary (zero/one).

Data structure in R

```
> serum <- read.table('c:/..../Serum.txt',
+ header = TRUE, na.strings = "NA", dec = ".")
> print(serum)

dose death N
1 0.0028  35 40
2 0.0056  21 40
3 0.0112  9 40
4 0.0225  6 40
5 0.0450  1 40
```

The data: zero/one data

> plot(Y ~ Fib, data = esr, xlab = "Level of Fibrinogen", ylab = "ESR > 20")

R script for the model

R output

```
Call:
glm(formula = Y ~ Fib, family = binomial, data = esr)
Deviance Residuals:
  Min
         1Q Median 3Q Max
-0.9298 -0.5399 -0.4382 -0.3356 2.4794
Coefficients:
      Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.8451 2.7703 -2.471 0.0135 *
Fib
        1.8271 0.9009 2.028 0.0425 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
  Null deviance: 30.885 on 31 degrees of freedom
Residual deviance: 24.840 on 30 degrees of freedom
AIC: 28.84
Number of Fisher Scoring iterations: 5
```

Data and fitted model

> plot(Y ~ Fib, data = esr, xlab = "Level of Fibrinogen",
 ylab = "ESR > 20")
> lines(Fib, fit.esr\$fit)

$$-\hat{P}_i = \frac{e^{\hat{\alpha} + \beta \times Fib_i}}{1 + e^{\hat{\alpha} + \hat{\beta} \times Fib_i}} = \text{fit.esr}$$
\$fit

> summary(fit.esr)\$coeff

Estimate Std. Error z value Pr(>|z|) (Intercept) -6.845075 2.7702849 -2.470892 0.01347765 Fib 1.827081 0.9008553 2.028162 0.04254367

$$\hat{\alpha} = -6.845075$$

$$\hat{\beta} = 1.827081$$

Example 5: Pneumoconiosis amongst coal miners

Pneumoconiosis amongst groups of coal miners with varying exposure to coal dust.

Does exposure time increase the probability to have the disease?

A YouTube tutorial:

Statistics with R: Example of logistic regression (host by Phil Chan): https://www.youtube.com/watch?v=xEllScuasns

Data structure in R

```
> Years<-c(5.8,15.0,21.5,27.5,33.5,39.5,46.0,51.5)
```

- > Cases<-c(0,1,3,8,9,8,10,5)
- > Miners<-c(98,54,43,48,51,38,28,11)
- > CW<-cbind(Cases, Miners-Cases)
- > CW

Cases

- [1,]0 98
- [2,] 1 53
- [3,] 3 40
- [4,] 8 40
- [5,] 9 42
- [6,] 8 30
- [7,] 10 18
- [8,] 5 6

Variables and model formulation

> data.frame(Years,Cases,Miners)

$$Y_{ij} = \begin{cases} 1 & \text{Pneumoconiosis} \\ 0 & \text{healthy} \end{cases}$$

$$Y_i = \sum_{j=1}^{n_i} Y_{ij}$$
 Number of infected at each exposure group

$$Y_i \sim B(n_i, P_i)$$
 n_i : sample size at each exposure group

We use logistic regression to model the probability of infection a function of exposure time in years:

$$\log it(P_i) = \alpha + \beta \times Exposure_i$$

R script for the model

Predictor: exposure time in years

R output

```
> summary(fit.miners2)
Call:
glm(formula = CW ~ Years, family = binomial)
Deviance Residuals:
       1Q Median 3Q Max
-1.6625 -0.5746 -0.2802 0.3237 1.4852
Coefficients:
     Estimate Std. Error z value Pr(>|z|)
Years
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
 Null deviance: 56.9028 on 7 degrees of freedom
Residual deviance: 6.0508 on 6 degrees of freedom
AIC: 32.877
Number of Fisher Scoring iterations: 4
```

$$\log it(\hat{P}_i) = \hat{\alpha} + \hat{\beta} \times \exp osure$$

$$\downarrow \qquad \qquad \downarrow$$

$$\log it(\hat{P}_i) = -4.79648 + 0.09346 \times \exp osure$$

Data and predicted model

> plot(Years,Cases/Miners, xlab = "Exposure year",
 ylab = "Proportion of cases",ylim=c(0,0.6))
> lines(Years,fit.miners2\$fit)

Coefficients:

$$\hat{\alpha} = -4.79648$$

$$\hat{\beta} = 0.09346$$

$$\hat{P}_i = \frac{e^{\hat{\alpha} + \hat{\beta} \times Exposure_i}}{1 + e^{\hat{\alpha} + \hat{\beta} \times Exposure_i}} = \text{fit.miners} 2 \text{fit}$$

