# Life insurance convexity

Christian Kubitza $^1$ , Nicolaus Grochola $^2$ , Helmut Gründl $^2$ 

 $^1\mbox{University}$  of Bonn,  $^2\mbox{Goethe-University}$  Frankfurt & ICIR

January 5, 2021 ARIA-AEA session

## Life insurers are important

- 6 trn EUR invested in financial assets
  → significant price impact (Ellul et al. (2011))
- 40% of households' net worth
  - $\rightarrow$  long-term savings policies with guaranteed minimum payout & early withdrawal ("surrender") option
  - ightarrow liquidity risk: annual surrender payments > 300 bn EUR



Figure: Annual surrender payments / cash flows (across European countries).

# This paper: interest rates $\rightarrow$ surrender activity $\rightarrow$ asset sales

- (I) **Empirics:** market interest rate $\uparrow \rightarrow$  surrender activity $\uparrow \Rightarrow \frac{\partial \text{duration(life insurance policy)}}{\partial \text{interest rate}} < 0 \Rightarrow \text{convexity (Hanson (2014))}$
- (II) **Model:** surrender activity  $\rightarrow$  forced asset sales  $\Rightarrow$  price impact ( $\approx 1\% \downarrow$ ) & costs (15bps of insurer equity capital p.a.)

#### Contribution:

- (A) Financial fragility of insurers traditionally: non-insurance business & asset side (e.g., Foley-Fisher et al. (2016, 2018)) recently: insurance business (Ellul et al. (2020), Koijen and Yogo (2015, 2016, 2020)) here: life insurance business → liquidity risk ↔ interest rates
- (B) Surrender options in life insurance traditionally: interest rate hypothesis (e.g., Kuo et al. (2003), Eling and Kiesenbauer (2014)) recently: collective run when PV(insurer's assets) ≤ guaranteed payout (Förstemann (2019)) here: causal identification & calibrated model with cash flows

## Overview

Motivation

**Empirics** 

Model

### Interest rates and surrender rates

**Hypothesis:** Surrender if cash value 
$$\cdot \frac{\mathbb{E}[1 + r_{policy}]}{1 + r_f}$$
 < cash value

- (1) cash value  $\perp r_f$  (in short/medium run)
- (2) insurer's long-term investments insulate  $r_{policy}$ :  $r_f \uparrow \Rightarrow \frac{\mathbb{E}[1+r_{policy}]}{1+r_f} \downarrow \Rightarrow$  surrender incentive  $\uparrow$

**Data:** German insurer-year panel, 1996-2019, 163 life insurers

Source: Federal Supervisor (BaFin)'s insurance statistics

Surrender rate = % life insurance surrendered annually (mean: 4.9%)

Interest rate ( $r_f$ ) = 10-year German government bond rate (mean: 3.1%)

# Empirical results: OLS

|                                                                                     | (1)      | (2)      | (3)            | (4)      | (5)      |
|-------------------------------------------------------------------------------------|----------|----------|----------------|----------|----------|
| Dependent variable:                                                                 |          |          | Surrender rate |          |          |
| Interest rate <sub>t</sub>                                                          | 0.354*** |          |                | 0.308*** |          |
|                                                                                     | (0.000)  |          |                | (0.005)  |          |
| Interest rate <sub>t-1</sub>                                                        |          | 0.366*** | 0.254***       |          |          |
|                                                                                     |          | (0.000)  | (0.001)        |          |          |
| Interest rate $t \times Exc$ . Guaranteed $return_{t-1}$                            |          |          |                | -0.109** |          |
|                                                                                     |          |          |                | (0.037)  |          |
| interest rate $t$ $	imes$ Exc. Guaranteed $return_{t-1}$ $	imes$ New business $t-1$ |          |          |                |          | -0.015** |
|                                                                                     |          |          |                |          | (0.002)  |
| Insurer FE                                                                          | Yes      | Yes      | Yes            | Yes      | Yes      |
| Year FE                                                                             | No       | No       | No             | No       | Yes      |
| Macro controls                                                                      | Yes      | Yes      | Yes            | Yes      | No       |
| Controls for aggregate new business                                                 | No       | No       | Yes            | Yes      | No       |
| Inv return <sub>t-1</sub> & New business <sub>t-1</sub>                             | No       | No       | Yes            | Yes      | Yes      |
| Exc. Guaranteed return $_{t-1}$                                                     | No       | No       | No             | Yes      | No       |
| Interest rate <sub>t</sub> $\times$ New business <sub>t-1</sub>                     | No       | No       | No             | No       | Yes      |
| Exc. Guaranteed return $_{t-1}$ × New business $_{t-1}$                             | No       | No       | No             | No       | Yes      |
| No. of obs.                                                                         | 2,263    | 2,255    | 2,232          | 2,232    | 2,232    |
| R <sup>2</sup> within                                                               | 0.224    | 0.220    | 0.216          | 0.223    | 0.067    |

Standard errors clustered at year and insurer level. p-values in parentheses. \*\*\*, \*\*, \* are significance at 1%, 5% and 10% levels.

*Economically significant:* 1sd interest rate  $\uparrow \leftrightarrow 0.3$ sd surrender rate  $\uparrow (\approx 4$ bn EUR)

**Identification challenge:** surrender  $\rightarrow$  asset sales  $\rightarrow$  prices  $\rightarrow$  interest rate

# Empirical results: OLS

| Dependent variable:                                                              | (1)      | (2)      | (3)<br>Surrender rate | (4)      | (5)       |
|----------------------------------------------------------------------------------|----------|----------|-----------------------|----------|-----------|
| Interest rate <sub>t</sub>                                                       | 0.354*** |          |                       | 0.308*** |           |
|                                                                                  | (0.000)  |          |                       | (0.005)  |           |
| Interest $rate_{t-1}$                                                            |          | 0.366*** | 0.254***              |          |           |
|                                                                                  |          | (0.000)  | (0.001)               |          |           |
| Interest rate $t \times Exc.$ Guaranteed $return_{t-1}$                          |          |          |                       | -0.109** |           |
|                                                                                  |          |          |                       | (0.037)  |           |
| Interest rate $_t 	imes Exc.$ Guaranteed $return_{t-1} 	imes New business_{t-1}$ |          |          |                       |          | -0.015*** |
|                                                                                  |          |          |                       |          | (0.002)   |
| Insurer FE                                                                       | Yes      | Yes      | Yes                   | Yes      | Yes       |
| Year FE                                                                          | No       | No       | No                    | No       | Yes       |
| Macro controls                                                                   | Yes      | Yes      | Yes                   | Yes      | No        |
| Controls for aggregate new business                                              | No       | No       | Yes                   | Yes      | No        |
| Inv return <sub>t-1</sub> & New business <sub>t-1</sub>                          | No       | No       | Yes                   | Yes      | Yes       |
| Exc. Guaranteed return $_{t-1}$                                                  | No       | No       | No                    | Yes      | No        |
| Interest rate <sub>t</sub> $\times$ New business <sub>t-1</sub>                  | No       | No       | No                    | No       | Yes       |
| Exc. Guaranteed return $_{t-1} \times \text{New business}_{t-1}$                 | No       | No       | No                    | No       | Yes       |
| No. of obs.                                                                      | 2,263    | 2,255    | 2,232                 | 2,232    | 2,232     |
| R <sup>2</sup> within                                                            | 0.224    | 0.220    | 0.216                 | 0.223    | 0.067     |

Standard errors clustered at year and insurer level. p-values in parentheses. \*\*\*, \*\*, \* are significance at 1%, 5% and 10% levels.

**Mechanism:** interest rate-sensitivity smaller when guaranteed policy return larger ⇒ consistent with yield-oriented policyholders

## Empirical results: IV

Instrument for German government bond rate: US federal funds rate (FFR)

- ullet FFR $\uparrow \to$  US bond rates $\uparrow \to$  DE bond rates $\uparrow$
- ullet DE insurers  $\Rightarrow$  US monetary policy (< 1% of US treasuries held by DE life insurers)

| Dependent variable:                                        | (1)      | (2)<br>Surreno      | (3)<br>der rate    | (4)                |
|------------------------------------------------------------|----------|---------------------|--------------------|--------------------|
| Interest rate <sub>t</sub>                                 | 0.351*** |                     |                    | 0.427*             |
| $Interest\ rate_{t-1}$                                     | (0.000)  | 0.362***<br>(0.000) | 0.256**<br>(0.036) | (0.071)            |
| Interest rate $t \times Exc$ . Guaranteed $return_{t-1}$   |          | (0.000)             | (0.000)            | -0.236*<br>(0.065) |
| Insurer FE                                                 | Yes      | Yes                 | Yes                | Yes                |
| Year FE                                                    | No       | No                  | No                 | No                 |
| Macro controls                                             | Yes      | Yes                 | Yes                | Yes                |
| Controls for aggregate new business                        | No       | No                  | Yes                | Yes                |
| Inv return <sub>t-1</sub> & New business <sub>t-1</sub>    | No       | No                  | Yes                | Yes                |
| Exc. Guaranteed return $_{t-1}$                            | No       | No                  | No                 | Yes                |
| FFR <sub>t</sub> (1st stage)                               | 0.680*** | 0.620***            | 0.349***           | 0.282**            |
|                                                            | (0.000)  | (0.000)             | (0.000)            | (0.013)            |
| $FFR_t \times Exc.$ Guaranteed return $_{t-1}$ (1st stage) |          |                     |                    | 0.424***           |
|                                                            |          |                     |                    | (0.002)            |
| No. of obs.                                                | 2,263    | 2,255               | 2,232              | 2,232              |

 $Standard\ errors\ clustered\ at\ year\ and\ insurer\ level.\ p-values\ in\ parentheses.\ ***,\ **,\ ** are\ significance\ at\ 1\%,\ 5\%\ and\ 10\%\ levels.$ 

# Overview

Motivation

**Empirics** 

Model

# Model: Key ingredients



### Model: Surrender decision

Policyholder surrenders if

$$\mathsf{cash\ value}_t \cdot \underbrace{\frac{1 + r_{policy,t}}{1 + r_{f,T-t}}}_{\mathsf{benefit\ of\ staying}} < \mathsf{cash\ value}_t \cdot (1 - \mathsf{net\ costs})$$

with net costs  $\sim F(c_0, \mu, \sigma^2)$  across policyholders.

### Calibration (2015):

- ullet yield curve  $r_{f,T-t}$  and policy return  $r_{policy,t}$ : dynamic financial market model and balance sheet
- costs  $(c_0, \mu, \sigma^2)$ : matching model-implied surrender rate to BaFin data

Simulation: interest rate rise by  $\approx 20 \text{bps/year}$ 

## Simulation: Interest and surrender rates

Long-term assets  $\Rightarrow$  investment return insulated from interest rate changes  $\Rightarrow$  (policy return - interest rate)  $\downarrow$   $\Rightarrow$  surrender more attractive:





(b) % policies surrendered.

### Simulation: Fire sales

Large surrender payouts  $\Rightarrow$  insurers forced to sell assets

Using size of similar European insurance business (5trn EUR) and Greenwood et al. (2015)'s  $\partial$ price:  $\rightarrow$  price impact: 80 - 100bps



# Sensitivity

Long-term investments drive fire sales:

longer asset duration  $\rightarrow$  policy return more insulated  $\rightarrow$  more surrender activity  $\rightarrow$  larger price impact



#### Conclusion

- Guaranteed surrender cash values + long-term investments
  ⇒ surrender activity increases with interest rates
- Life insurance surrender ≈ bank deposit withdrawals
  ⇒ fragility & (fire sale) externalities
- Trade-off between:
  value from asset insulation ↔ long-term investments (Chodorow-Reich et al. (2020))
  vs. fragility due to surrender option
- Fire sale externalities significant ( $\approx 0.8-1\%$  price impact)  $\Rightarrow$  surrender options may contribute to systemic risk

Motivation Empirics Model References

Thank you.

### References I

- Chodorow-Reich, G., Ghent, A., and Haddad, V. (2020). Asset insulators. Review of Financial Studies, forthcoming.
- EIOPA (2014). Insurance stress test 2014. European Insurance and Occupational Pensions Authority.
- Eling, M. and Kiesenbauer, D. (2014). What policy features determine life insurance lapses? An analysis of the German market. Journal of Risk and Insurance, 81(2):241–269.
- Ellul, A., Jotikasthira, C., Kartasheva, A., Lundblad, C. T., and Wagner, W. (2020). Insurers as asset managers and systemic risk. Working Paper, European Systemic Risk Board.
- Ellul, A., Jotikasthira, C., and Lundblad, C. T. (2011). Regulatory pressure and fire sales in the corporate bond market. *Journal of Financial Economics*, 101:596–620.
- Foley-Fisher, N., Gissler, S., and Verani, S. (2018). Over-the-counter market liquidity and securities lending. Working Paper.
- Foley-Fisher, N., Narajabad, B., and Verani, S. (2016). Securities lending as wholesale funding: Evidence from the U.S. life insurance industry. *NBER Working Paper*, 22774.
- Förstemann, T. (2019). How a positive interest rate shock might stress life insurers. *Deutsche Bundesbank Working Paper*. German Insurance Association (GDV) (2016). Statistical yearbook of German insurance 2016.
- Gottlieb, D. and Smetters, K. (2016). Lapse-based insurance. Working Paper.
- Greenwood, R., Landier, A., and Thesmar, D. (2015). Vulnerable banks. Journal of Financial Economics, 115:471-485.
- Hanson, S. G. (2014). Mortgage convexity. Journal of Financial Economics, 113:270-299.
- Ho, C. and Muise, N. S. (2012). U.S. individual life insurance persistency. Technical report, Society of Actuaries and LIMRA.
- Koijen, R. S. J. and Yogo, M. (2015). The cost of financial frictions for life insurers. American Economic Review, 105(1):445–475.
- Koijen, R. S. J. and Yogo, M. (2016). Shadow insurance. Econometrica, 84(3):1265-1287.
- Koijen, R. S. J. and Yogo, M. (2020). The fragility of market risk insurance. Working Paper.
- Kuo, W., Tasi, C., and Chen, W. K. (2003). An empirical study on the lapse rate: The cointegration approach. *Journal of Risk and Insurance*, 70(3):489–508.