Dataset description

Turbulent Ekman flow ($Re_D = 1000$, Ri = 0)

Direct numerical simulation - Set-up and vertical profiles

Jonathan Kostelecky ¹*, [♠], Cedrick Ansorge ²*

* Freie Universität Berlin, Institut für Meteorologie

[♠] Universität zu Köln, Institut für Geophysik und Meteorologie

May 7, 2024

1 Metadata

© This work is licensed under the creative commons CC BY 4.0 license.

You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Collection This dataset is part of the collection *Turbulent wall-bounded flow*³.

The collection is freely available and hosted by Refubium, the institutional repository of Freie Universität Berlin.

DOI 10.17169/refubium-42509

HPC systems The data was generated under the project TrainABL on the supercomputer HAWK at Höchstleistungsrechenzentrum Stuttgart (HLRS, in Germany).

Code The data was generated by the tool-suite for turbulence simulation tLab⁴.

2 The dataset

2.1 Contents

The dataset files, collectively named with grid information and the date of creation of the data on the High-Performance Computing (HPC) system. Each file of the collection contains time-series of a namelist files name dns.ini which is a plain text file holding the configuration of the tLab code (for documentation, please refer to open-source code available under github.com/turbulencia/tlab).

2.2 Physical case

This dataset contains 4 simulation cases (ID: s, r1, r2, r3), with a similar computational grid, domain size and driven by the same large-scale forcing, but differ in the surface condition. Case s has a smooth surface and the rough cases r1, r2, r3 feature each 56^2 square blocks on the lower domain boundary with a uniform height and width distribution. The

¹j.kostelecky@posteo.de

 $^{^2}$ cedrick@posteo.de

³refubium.fu-berlin.de/handle/fub188/42710

⁴github.com/turbulencia/tlab

mean height of the roughness elements increases from case r1 via r2 to r3. These simulation cases, conducted with a Reynolds number of $Re_D=1000$ ($Re_D=DG/\nu$, with the laminar Ekman-layer depth $D=\sqrt{2\nu/f}$, Coriolis parameter f, geostrophic wind G and the kinematic viscosity ν), corresponding to a friction Reynolds number Re_{τ} of 1408 for the smooth case s, delves into the study of the turbulent flow with small-scale surface roughness. Utilizing a computational grid measuring 3072 x 656 x 3072 collocation points with a spatial resolution of 2.3 x 1.0 x 2.3 wall units (smooth case), the domain size is scaled to $L_x = L_z = 0.27 \Lambda$, where $\Lambda = G/f$ is the Rossby radius.

2.3 Variable information

The statistical data is available in self-documented netCDF format, and it contains a wide array of parameters, encompassing vertical profiles of velocity and scalar variables (temperature/buoyancy as active and for some cases also passive scalars), scalar and momentum budget terms, as well as statistical moments up to the fourth order of velocities, scalars, and derivatives. These parameters provide a comprehensive perspective on Ekman flow dynamics. They are organized into distinct groups. Within the subsequent table, you will find numerous variables grouped together, accompanied by their descriptions and associated equations. In order to fully describe the geometry of the surface roughness, there are horizontal domain slices for each of the rough cases (r1, r2, r3) in netCDF format, that describe the positions and heights of the roughness elements in grid points.

Vertical profiles flow Mean rRdensity (RA) $\mathrm{r}\mathrm{U}$ u, x-component of the velocity (RA) \overline{u} rV \overline{v} v, y-component of the velocity (RA) rWw, z-component of the velocity (RA) \overline{w} rP $\overline{\pi}$ π dynamic, reduced pressure (RA) \overline{T} rTT, caloric temperature (RA) \overline{e} e, internal energy (RA) re $e + (\Gamma_0 - 1)Ma^2\frac{p}{a}$ $_{\rm rh}$ h, enthalpy (RA) s, entropy (RA) \overline{s} rs \overline{B} B, buoyancy (RA) rBu, x-component of the velocity (FA) fU $\langle u \rangle$ v, y-component of the velocity (FA) fV $\langle v \rangle$ fW w, z-component of the velocity (FA) $\langle w \rangle$ T, caloric Temperature (FA) fΤ $\langle T \rangle$ e, internal energy (FA) fe $\langle e \rangle$ $\left\langle e + (\Gamma_0 - 1) M a^2 \frac{p}{\rho} \right\rangle$ fh h, enthalpy (FA) s, entropy (FA) fs**Fluctuations** Tke $\frac{1}{2}u_i'u_i'$ turbulence kinetic energy Rxx Reynolds stress R_{11} u'u'Reynolds stress R_{22} $\overline{v'v'}$ Ryy Reynolds stress R_{33} $\overline{w'w'}$ RzzReynolds stress R_{12} $\overline{u'v'}$ Rxy RxzReynolds stress R_{13} $\overline{u'w'}$ Reynolds stress R_{23} $\overline{v'w'}$ Ryz rP2 $\pi'\pi'$ pressure fluctuation (RA) rR2density fluctuation (RA) $\rho'\rho'$ $\overline{T'T'}$ rT2temperature fluctuation (RA) $\langle T'T' \rangle$ fT2temperature fluctuation (FA) internal energy fluctuation (RA) $\overline{e'e'}$ re2fe2internal energy fluctuation (FA) $\langle e'e' \rangle$ rh2enthalpy fluctuation (RA) $\overline{h'h'}$ enthalpy fluctuation (FA) fh2 $\langle h'h' \rangle$ entropy fluctuation (RA) $\overline{s's'}$ rs2 $\langle s's' \rangle$ fs2entropy fluctuation (FA) DerivativeFluctuations U_{y1} $\overline{\partial_y u}$ $V_{-y}1$ $\overline{\partial_y v}$ $\overline{\partial_y w}$ $W_{-}y1$ U_ii2 U_x2 $\overline{(\partial_x u')^2}$ $U_{-y}2$ $\overline{(\partial_y u')^2}$ U_z2 $\overline{(\partial_z u')^2}$ $\overline{(\partial_x v')^2}$ V_x2 $\overline{(\partial_y v')^2}$ $V_{-y}2$ $\overline{(\partial_z v')^2}$ V_z2 W_x2 $\overline{(\partial_x w')^2}$ $W_{-y}2$ $\overline{(\partial_y w')^2}$ W_z2 $\overline{(\partial_z w')^2}$ $\overline{(\partial_x u')^3}$ U_x3 $\overline{(\partial_y u')^3}$ $U_{-y}3$ $\overline{(\partial_z u')^3}$ U_z3 $\overline{(\partial_x v')^3}$ V_x3 $\overline{(\partial_y v')^3}$ V_{y3} $\overline{(\partial_z v')^3}$ V_z3 W_x3 $\overline{(\partial_x w')^3}$ $\overline{(\partial_y w')^3}$ $W_{-y}3$ $(\overline{\partial_z w')^3}$ W_z3 U_x4 $(\partial_x u')^4$ U_{-y4} $\overline{(\partial_y u')^4}$ U_z4 $(\partial_z u')^4$ V_x4 $\overline{(\partial_x v')^4}$ $\overline{(\partial_y v')^4}$ $V_{-}y4$ V_z4 $\overline{(\partial_z v')^4}$ W_x4 $(\partial_x w')^4$ $(\partial_y \overline{w')^4}$ $W_{-}y4$ $(\partial_z \overline{w'})^4$ W_z4 Vorticity Wxvorticity (x-component) $\partial_z v - \partial_y w$ Wy $\overline{\partial_x w - \partial_z u}$ vorticity (y-component) $\overline{\partial_y u - \partial_x v}$ Wzvorticity (z-component) Wx2 $\overline{\partial_z v' - \partial_y w'}$ fluctuation of x-Vorticity $\frac{\overline{\partial_x w' - \partial_z u'}}{\partial_y u' - \partial_x v'}$ Wy2fluctuation of y-Vorticity Wz2fluctuation of z-Vorticity RxxBudget Rxx_t time-rate of change of R_{11} $\partial_t R_{11}$ $2b_x\overline{u'B'}$ Bxxbuoyancy production Cxxadvection in y-direction $-\overline{v} \partial_y \overline{u'u'}$ Pxx shear-production $-2 \overline{u'v'} \partial_y \overline{u}$ viscous dissipation ExxPIxx pressure-velocity correlation Π_{11} $2 \overline{u'p'}$ Fxx $2f_y\overline{u'w'}$ Coriolis production $Txxy_y$ $\partial_y R_{112}$ divergence of T_{112} turbulent transport $\overline{u'u'v'} - 2\nu \overline{\partial_y(\overline{u - \langle u \rangle})}$ Txxy vertical transport T_{112} Gxxpressure variable-density term Dxxviscous variable-density term RyyBudget Ryy_t time-rate of change of R_{22} $\overline{\partial_t R_{22}}$ $2b_{y}\overline{v'B'}$ Byy buoyancy production of Ryy $\overline{v} \partial_u \overline{v'v'}$ Суу advection in y-direction Pyy shear production $-2\overline{v'v'}\partial_y\overline{v}$ Eyy viscous dissipation Plyy $2\overline{v'p'}$ pressure–velocity correlation Π_{22} Fyy Coriolis production $Tyyy_{-\!}y$ divergence of T_{222} turbulent transport $\partial_y R_{222}$ $\overline{v'v'v'} + 2\overline{v'p'} - 2\nu\overline{(\partial_y v)(v - \langle v \rangle)}$ Тууу vertical transport T_{222} pressure variable-density term Gyy $2(\overline{v}-\langle v\rangle)\partial_y\overline{p}$ Dyy viscous variable-density term RzzBudget $\overline{\partial_t R_{33}}$ Rzz_t time-rate of change of R_{33} $2b_z\overline{w'B'}$ Bzzbuoyancy production Czz $-\overline{v} \partial_y \overline{w'w'}$ advection in y-direction Pzzshear production $-2v'w'\partial_y \overline{w}$ Ezzviscous dissipation PIzzpressure–velocity correlation Π_{33} $2\overline{w'p'}$ FzzCoriolis production of Rzz $-2f_{y}\overline{u'w'}$ $\partial_y R_{332}$ $Tzzy_y$ divergence of T_{332} turbulent transport Tzzy vertical transport T_{332} $\overline{w'w'v'} - 2\nu (\partial_y w)(w - \langle w \rangle)$ Gzz pressure variable-density term Dzzviscous variable-density term RxyBudget $\overline{\partial_t R_{12}}$ Rxy_t time-rate of change of R_{12} Bxy $b_x \overline{u'B'} + b_y \overline{v'B'}$ buoyancy production advection in y-direction Cxy $-\overline{v}\partial_y u'v'$ $-\overline{u'v'}\partial_u\overline{v}-\overline{v'v'}\ \partial_u\overline{u}$ Pxy shear production viscous dissipation Exy pressure-velocity correlation Π_{12} PIxy $p'\left(\partial_y u - \partial_x v\right)$ Fxy Coriolis production of Rxy $f_y \overline{v'w'}$ divergence of T_{122} turbulent transport $\partial_y R_{122}$ $Txyy_{-}y$ $\overline{u'v'v'} + \overline{u'p'}$ Txyy vertical transport T_{122} pressure variable-density term Gxy $(\overline{u} - \langle u \rangle) \partial_y \overline{p}$ Dxy viscous variable-density term RxzBudget $\overline{\partial_t R_{13}}$ Rxz_t time-rate of change of R_{13} Bxzbuoyancy production $b_x \overline{u'B'} + b_z \overline{u'B'}$ $-\overline{v} \partial_y \overline{u'w'}$ Cxzadvection in y-direction $-\overline{u'w'} \ \partial_y \ \overline{w} - \overline{v'w'} \ \partial_y \overline{u}$ Pxzshear production Exz viscous dissipation PIxz pressure–velocity correlation Π_{13} $p'\left(\partial_z u - \partial_x w\right)$ $f_y(\overline{w'w'-u'u'})$ FxzCoriolis production divergence of T_{132} turbulent transport $\partial_y R_{132}$ $Txzy_y$ Txzy vertical transport T_{132} $\overline{u'w'v'}$ pressure variable-density term 0 Gxzviscous variable-density term DxzRyzBudget $\overline{\partial_t R_{23}}$ time-rate of change of R_{23} Ryz_t $b_y \overline{v'B'} + b_z \overline{w'B'}$ Byzbuoyancy production Cyzadvection in y-direction $-\overline{v}\partial_y\overline{v'w'}$ $-\overline{v'v'}$ $\partial_{y} \overline{w} - \overline{v'w'}$ $\partial_{y} \overline{v}$ Pyz shear production Eyz viscous dissipation PIyz pressure–velocity correlation Π_{23} $p'\left(\partial_z v - \partial_y w\right)$ Fyz Coriolis production $-f_y\overline{u'v'}$ $\partial_y R_{232}$ $Tyzy_y$ turbulent transport divergence Tyzy vertical transport T_{232} $\overline{v'w'v'} + \overline{w'p'}$ pressure variable-density term Gyz $(\overline{w} - \langle w \rangle) \partial_u \overline{p}$ Dyz viscous variable-density term TkeBudget time-rate of change of Tke $\overline{\partial_t \frac{1}{2} R_{ii}}$ Tke_{-t} Tke $\begin{array}{c} \frac{1}{2}\bar{R}_{ii} \\ \frac{1}{2}B_{ii} \\ \frac{1}{2}C_{ii} \\ \frac{1}{2}P_{ii} \\ \frac{1}{2}E_{ii} \\ \frac{1}{2}\Pi_{ii} \end{array}$ turbulence kinetic energy B_{ii} Buo buoyancy production of Tke Con advection in y-direction Prd shear production Eps dissipation Ρi pressure-velocity correlation $\frac{1}{2}T_{ii2}$ Trp sum of transport terms Trp1 transport due to triple correlation terms $\overline{u_i'u_i'v'}$ Trp2 transport by pressure-velocity correlation $2\overline{v'p'}$ Trp3viscous transport $-2\nu(\partial_y u_i)(u_i - \langle u_i \rangle)$ $Trp1_y$ divergence of triple correlations $\partial_y u_i' u_i' v'$ $Trp2_y$ divergence of pressure–velocity correltion $2\partial_u \overline{v'p'}$ $Trp3_y$ divergence of viscous transport $-2\nu\partial_y(\partial_y u_i)(u_i - \langle u_i \rangle)$ $\frac{1}{2}G_{ii}$ Gpressure variable-density term \mathbf{D} viscous variable-density term $\frac{1}{2}D_{ii}$ Phi mean viscous dissipation rate UgradP $u_i \partial_{x_i} p$ **HigherOrder** rU3rU4rV3rV4rW3rW4Acoustics gamma C2Rho_ac Rho_en T_ac T_en $M_{-}t$ rRP

RhoBudget

Stratification

Roughness

potential energy

buoyancy frequency

buoyancy frequency

lapse rate

lapse rate

background density profile

background pressure profile

fluid fraction (grid-based approach)

solid fraction (grid-based approach)

fluid fraction (volume-based approach) solid fraction (volume-based approach)

dewpoint temperature

background temperature profile

 $-\overline{v}\partial_y\overline{\rho'\rho'}$

rRT

Pot

rRref

rTref

BuoyFreq_fr

BuoyFreq_eq

LapseRate_fr

LapseRate_eq

SaturationPressure

RelativeHumidity

PotTemp PotTemp_v

Dewpoint $LapseRate_dew$

rPref

 eps_0

 eps_1 eps_f

 eps_s

RhoFluxX RhoFluxY RhoFluxZ RhoDil1 RhoDil2 RhoTrp RhoProd RhoConv

Vertical profiles scalar			
Mean			
rS	scalar (RA)	\overline{s}	
rQ	scalar source (RA)		
rS_y fS	y-derivative of scalar (RA) scalar (FA)	$\overline{\partial_y s} \ \langle s angle$	
fSy	y-derivative of scalar (FA)	$\langle \partial_y s angle$	
fQ	scalar source (FA) Fluctuations		
Rsu	covariance R_{su} (of scalar s and velocity u)	$\overline{s'u'}$	
Rsv	covariance R_{sv} (of scalar s and velocity v)	$\overline{s'v'}$	
Rsw rS2	covariance R_{sw} (of scalar s and velocity w) scalar variance R_{ss} (RA)	$\frac{\overline{s'w'}}{\overline{s's'}}$	
rS3	Section volume 10ss (161)	$\overline{s's's'}$	
rS4 fS2	geolog voriones (FA)	s's's's'	
fS3	scalar variance (FA)	$\left\langle s's' ight angle \left\langle s's's' ight angle$	
fS4		$\langle s's's's' \rangle$	
G 0	DerivativeFluctuations	70	
S_x2 S_y2		$rac{(\partial_x s')^2}{(\partial_y s')^2}$	
S_z2		$\frac{(\partial y \mathcal{E}')}{(\partial_z s')^2}$	
S_x3		$\frac{\overline{(\partial_x s')^3}}{\overline{(\partial_x s')^3}}$	
S_y3 S_z3		$rac{(\partial_y s')^3}{(\partial_z s')^3}$	
S_x4		$\overline{(\partial_x s')^4}$	
S_y4 S_z4		$\frac{\overline{(\partial_y s')^4}}{\overline{(\partial_z s')^4}}$	
υ.Σ4	RssBudget	$\overline{(\partial_z s')^4}$	
RssBudget $\overline{\partial_t R_{ss}}$			
Css	advection in y-direction	$-\langle v \rangle \ \partial_y \overline{s's'}$	
Pss Ess	gradient production molecular dissipation	$-2\overline{s'v'} \stackrel{.}{\partial}_y \langle s angle$	
Tssy1	turbulent transport due to triple correlation	$\overline{s's'v'}$	
Tssy2 Tssy_y	transport turbulent transport	$-2\kappa_d \overline{s'} \partial_y \overline{s'} $ $\partial_y (\text{Tssy1} + \text{Tssy2})$	
Dss	diffusion variable-density term	$O_y(155y1 + 155y2)$	
Qss	source		
D. A	RsuBudget	0. D	
Rsu_t Csu	time-rate of change of R_{su} advection in y-direction	$egin{array}{l} \overline{\partial_t R_{su}} \ -\langle v angle \ \partial_y \overline{s'u'} \end{array}$	
Psu	shear and gradient production	$-\frac{\langle v' \rangle}{s'v'}\partial_y\langle u \rangle - \overline{u'v'}\partial_y\langle s \rangle$	
Esu PIsu	molecular dissipation pressure redistribution	$\overline{p'\partial_x s'}$	
Tsuy1	turbulent transport due to triple correlation	$\frac{F}{s'u'v'}$	
Tsuy2 Tsuy_y	transport turbulent transport	$\partial_y(\mathrm{Tsuy1} + \mathrm{Tsuy2})$	
Dsu	diffusion variable-density term	$O_y(1\operatorname{Suy} 1 + 1\operatorname{Suy} 2)$	
Gsu Bsu	pressure-flux buoyant production	0	
Fsu	Coriolis production	$f_y \overline{s'w'}$	
Qsu	source		
Rsv_t		$\overline{\partial_t R_{sv}}$	
Csv	advection in y-direction	$ \begin{array}{l} O_t R_{sv} \\ -\langle v \rangle \partial_y \overline{s'v'} \\ -\overline{s'v'} \partial_y \langle v \rangle - \overline{v'v'} \partial_y \langle s \rangle \end{array} $	
Psv	shear and gradient production	$-\overrightarrow{s'v'}\partial_y\langle v angle - \overrightarrow{v'v'}\partial_y\langle s angle$	
Esv PIsv	molecular dissipation pressure redistribution	$\overline{p'\partial_y s'}$	
Tsvy1	turbulent transport due to triple correlation	$\frac{1}{s'v'v'}$	
Tsvy2 Tsvy3	transport transport	$\overline{p's'}$	
$Tsvy_{-}y$	turbulent transport	$\partial_y(\text{Tsvy1} + \text{Tsvy2} + \text{Tsvy3})$	
Dsv Gsv	diffusion variable-density term pressure-flux	$\overline{s'\partial_n p'}$	
Bsv	buoyant production	$rac{\overline{s'}\partial_y p'}{ ho b' \overline{s'}}$	
Fsv Qsv	Coriolis production source	0	
RswBudget			
Rsw_t	time-rate of change of R_{sw}	$\overline{\partial_t R_{sw}}$	
Csw Psw	advection in y-direction shear and gradient production	$\begin{array}{c} -\langle v \rangle \ \partial_y \overline{s'w'} \\ -\overline{s'v'} \partial_y \langle w \rangle \ -\overline{v'w'} \partial_y \langle s \rangle \end{array}$	
Esw	molecular dissipation		
PIsw Tswy1	pressure redistribution turbulent transport due to triple correlation	$rac{\overline{p'}\partial_z s'}{s'v'w'}$	
Tswy2	transport due to triple correlation transport	ου ω	
Tswy_y Dsw	turbulent transport diffusion variable-density term	$\partial_y(\mathrm{Tswy1} + \mathrm{Tswy2})$	
Gsw	pressure-flux	0	
Bsw Fsw	buoyant production Coriolis production	$0 - f_u \overline{s'u'}$	
Qsw	source source	Jy & &	
CrossScalars			
Cs1			
Css1 Roughness			
Sbcs	scalar boundary values applied on solids		
eps_0	fluid fraction (grid-based approach)		
eps_1 eps_f	solid fraction (grid-based approach) fluid fraction (volume-based approach)		
eps_s	solid fraction (volume-based approach)		

8
HorizontalSlice

horizontal (x,z) distribution of roughness

heights of the elements in grid points

eps2d

Horizontal distribution of roughness elements