### Bachelor of Information System

**IS2109 - Information System Security** 

**Additional Lecture - 1** 

Kasun de Zoysa kasun@ucsc.cmb.ac.lk





### What do we mean by "secure"?

- At one time Bank robbery was common.
   Now its very rare. What has changed or been implemented to provide this security?
  - Sophisticated alarms
  - Criminal investigation techniques (DNA testing)
  - Change in "assets" (cash was/is inherently insecure)
  - Improvements in communication and transportation
- Risk becomes so high that it is no longer beneficial.



## Security is all about protecting valuables

- In our case the "valuables" are computer related assets instead of money
  - Though these days money is so electronic that one can argue that the protection of money is a subset of computer asset security
- Information seems to be the currency of the 21<sup>st</sup> century.



### Trends in Usage of Information Systems

**Business (international) transactions** 

Storage of business documents

**Financial flows** 

Industrial cooperation

Functionality and Dependability



### Money vs. Information

- Size and portability
  - Banks are large and unportable.
  - Storage of information can be very small and extremely portable.
     (So small that an entire corporations intellectual property can be stored on something the size of a postage stamp.) Ability to avoid physical contact
  - Banks: physical interaction with the bank and the loot is unavoidable or impossible to circumvent
  - Computers: require no physical contact to either gain access to, copy or remove data.
- Value of assets:
  - Bank: generally very high (or why would somebody bother to put it in a bank?)
    - Computers: Variable, from very low (useless) to very high.

### Required Properties of Information Systems

**Availability** 

Reliability (accountability)

**New functionalities** 

Resistance to attacks

Information System Security



### Security!!

- Information Security focuses on data in all forms.
- Information System Security focuses on the systems managing data.
- Cybersecurity focuses on defending against threats in the cyberspace (The internet and connected systems).



### Cybersecurity

- The definition of cybersecurity is often confused with the definition of information security.
- Information security, often referred to as 'IT security', looks to protect all information assets, whether as a hard copy or in digital form.
- \* Cyber security is a subset of information security. It specifically focuses on protecting computer systems and their components from Cyberattacks.



## Life Cycle of the Information





## Past Situation (Single Systems)



Physical security and control of access to computers

## Current Situation (Int'l networks and open systems)



Authentication, message protection, authorization



### Method, Opportunity and Motive

- Method: The skills knowledge and tools that enable the attack
- Opportunity: The time, access and circumstances that allow for the attack
- Motive: The reason why the perpetrator wants to commit the attack



## Eye-Opening Information Security Statistics

- 70% of employees don't understand information security.
- 30% of the world's top websites unsecure
- Outdated and unpatched software constitutes 22% of security issues
- 60% of organizations use cloud technology for sensitive or confidential data





# Cybercrime will create over \$1.5 trillion in profits in 2018





Amateurs ...

**Crackers** 

**Criminals** 

Regular users

Accidental access
to unauthorized resources
and execution of
unauthorized operations
(no harm to regular users)



**Amateurs** 

Crackers ...

**Criminals** 

Regular users

Active attempts to access sensitive resources and to discover system vulnerabilities (minor inconveniences to regular users)



**Amateurs** 

**Crackers** 

Criminals ...

Regular users

Active attempts to utilize weaknesses in protection system in order to steal or destroy resources (serious problems to regular users)



**Amateurs** 

**Crackers** 

**Criminals** 

Regular users . . .

Special requirements: authentication in open networks, authorization, message integrity, non-repudiation, special transactions



## Vulnerability, Attack, Threats, Problems, Risks and Control

- Vulnerability: A weakness in the security system.
- Attack: A human exploitation of a vulnerability.
- Threat: a set of circumstances that has the potential to cause loss or harm.
- Problems: Consequences of unintentional accidental errors
- Risks: Probabilities that some threat or problem will occur due to system vulnerabilities
- Control: A protective measure. An action, device or measure taken that removes, reduces or neutralizes a vulnerability.



### Types of Concerns

Attacks on hardware or software (Active threats)

Problems with data and software transfer and manipulation (Accidental errors)

Requirements for reliable, trusted and authorized transactions



### Categories of Attacks

#### Attacks on hardware : destruction

#### Attacks on software:

- Software deletion
- Software modification
- Software theft

#### Attacks on data:

- Data secrecy
- Data integrity



### Categories of Threats

Interruption : A resource is lost,unavailable or unusable

Interception : Unauthorized access to some computer
resource

Modification: Illegal or accidental change (tampering) with a resource

Fabrication: Creation of illegal or incorrect resources



## Threats with a single system





### Threats with international networks



# Security is not always about locks, firewalls, virus scanner and hardware

- Public Image often gets in the way of defeats security.
  - Would you deposit your money in a bank that just revealed that it lost fifteen million dollars due to a computer security oversight?
  - Things like this probably happen a lot more often than we care to have nightmares about.



# So what does information security concernitself with?

### The entire system:

- Hardware
- Software
- Storage media
- Data
- Memory
- People
- Organizations
- Communications



### The Dimensions of Information Security





### Security Goals (Requirements)

- What makes a "secure" system?
  - Financial "Security" requirements
  - Home "security"
  - Country "security"
  - Physical "security"
  - Computer "security"
- All these concepts of security have different requirements. We are, of course, interested mostly on information security; which requires three items.



### Presence of all three

 The presence of all three things yields a secure system:





### Thing one:

## Confidentiality:

Computer related assets are only available to authorized parties. Only those that should have access to something will actually get that access.

- "Access" isn't limited to reading. But also to viewing, printing or...
- Simply even knowing that the particular asset exists (steganography)
- Straight forward concept but very hard to implement.



### Thing two:

- Integrity
  - Can mean many things: Something has integrity if it is:
    - Precise
    - Accurate
    - Unmodified
    - Consistent
    - Meaningful and usable



### Integrity

- Three important aspects towards providing computer related integrity:
  - Authorized actions
  - Separation and protection of resources
  - Error detection and correction.
- Again, rather hard to implement; usually done so through rigorous control of who or what can have access to data and in what ways.



### Thing three:

### Availability

- There is a timely response to our requests
- There is a fair allocation of resources (no starvation)
- Reliability (software and hardware failures lead to graceful cessation of services and not an abrupt crash)
- Service can be used easily and in the manner it was intended to be used.
- Controlled concurrency, support for simultaneous access with proper deadlock and access management.



### Principles of Information Security

Confidentiality . . .

Integrity

**Availability** 

**Functionality** 

Threats to Data and Programs: illegal read, illegal access, data (files) deletion, illegal users, criminal acts, sabotage, etc.



### Principles of Information Security

Confidentiality

Integrity ...

**Availability** 

**Functionality** 

Threats to software and data: technical errors, software errors, processing errors, transmission correctness, etc.



### Principles of Information Security

Confidentiality

Integrity

Availability ...

**Functionality** 

Requirements for: timely response, fair allocation, fault tolerance, usability, controlled concurrency



## Principles of Information Security

Confidentiality

Integrity

**Availability** 

Functionality ...

New functions needed for electronic data transactions: authentication, digital signature, confidentiality, and others



# . . . in Single Systems

Confidentiality

Integrity

**Availability** 

**Functionality** 







## . . . in Global Networks



## "Definition" of Information System Security

# Information System security are methods and technologies for protection, integrity, availability, authenticity and extended functionality of software and data



## Goals and Principles

Simplicity . . . to understand, develop and use

Consistency . . . policies and existing schemes

Scalability ... in a single WS, LAN, WAN, Internet

Independence ... of technologies



## Hierarchy Model of Protection Mechanisms





**Encryption** 

**SW & HW Controls** 

**Policies** 

**Physical controls** 



Encryption . . .

**SW & HW Controls** 

**Policies** 

Physical controls

Effective for: confidentiality, users and messages authentication, access control



**Encryption** 

**SW & HW Controls** 

**Policies** 

**Physical controls** 

Available methods: software and hardware controls (internal SW, OS controls, development controls, special HW devices)



**Encryption** 

**SW & HW Controls** 

Policies ...

Physical controls

Precise specifications: special procedures, security methods, security parameters, organizational issues



**Encryption** 

**SW & HW Controls** 

**Policies** 

**Physical controls** 

Measures for: isolation of equipment, access to equipment, authorization for personnel, backup and archiving



## "Definition" of Information Security

## Information security

are methods and technologies for protection, integrity, availability, authenticity and extended functionality of computer programs and data



# **Sec\_rity** is not Complete without **U**

You, as a Device User, have to make your contribution to Information Security: You are responsible for the security and protection of your computers, the operating systems you run, the application you install, the software you program, the data you own - and the services and systems you manage.



#### **Brute Force Search**

- Always possible to simply try every key
- Most basic attack, proportional to key size
- Assume either know/recognize plaintext

| Key Size (bits) | Number of Alternative Keys     | Time required at 10 <sup>6</sup> Decryption/µs |
|-----------------|--------------------------------|------------------------------------------------|
| 32              | $2^{32} = 4.3 \times 10^9$     | 2.15 milliseconds                              |
| 56              | $2^{56} = 7.2 \times 10^{16}$  | 10 hours                                       |
| 128             | $2^{128} = 3.4 \times 10^{38}$ | 5.4 x 10 <sup>18</sup> years                   |
| 168             | $2^{168} = 3.7 \times 10^{50}$ | 5.9 x 10 <sup>30</sup> years                   |





## **Unconditional/Computational Security**

#### **Unconditional security**

no matter how much computer power is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

#### **Computational security**

given limited computing resources (e.g. time needed for calculations is greater than age of universe), the cipher cannot be broken



## http://password-checker.online-domaintools.com





# **Discussion**



