Regular Expression

Regular Language and Expression

- The language accepted by DFA, NFA and ENFA is called Regular Language.
- A regular language can be described using regular expression.
- Regular Expression consists of symbols such as alphabet Σ, operators
 '.', '+', '*'
- Operators used to obtain regular expression:
 - + operator used for union operation (least precedence)
 - Operator used for concatenation (next least precedence)
 - *(kleene closure), +(positive closure) operator is used for closure operation (highest precedence)

Regular Language, Regular Expression and Finite Automata

- Regular Expressions are useful tools for defining patterns
- The language defined by RE are Regular Language
- Any language defined by RE is accepted by Finite Automata
- Any language accepted by FA can be define by some RE
- RE is generator that generate Regular Language
- FA is acceptor that accepts Regular Language generated by RE

Regular Expression

A regular expression can be formally define as follows

- φ is RE denoting empty language
- € (epsilon) is RE denoted the language containing empty string
- a is RE indicating the language containing {a}
- ullet If R is RE denoting the language L_R and S is RE denoting the language L_S then
 - R+S is a RE corresponding to the language $L_R \cup L_S$
 - R.S is a RE corresponding to the language L_R . L_S
 - R^* is a RE corresponding to the language L_R^*
 - R^+ is a RE corresponding to the language L_R^+

Kleene Closure L* (zero or more number of concatenation of string in L)

- $L^* = \bigcup_{i=0}^{\infty} L^i$
- $L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \dots$
- $L^0 = \{\epsilon\}$
- $L^1 = L$
- $L^2 = L.L$
- $L^3 = L^2$. L = L.L.L
- Ex $a^* = a^0 U a^1 U a^2 U a^3 \dots$ = { $\epsilon_i a_i a a_i a a a_i a a a a_i \dots }$

Positive Closure L^+ (one or more number of concatenation of string in L)

$$\bullet L^+ = \bigcup_{i=1}^{\infty} L^i$$

•
$$L^+ = L^1 \cup L^2 \cup L^3 \dots$$

$$L^* = \{\epsilon\} \cup L^+$$

•
$$L^1 = L$$

•
$$L^2 = L.L$$

•
$$L^3 = L^2$$
 . L = L.L.L

•
$$Ex - a^+ = a^1 U a^2 U a^3 \dots$$

= $\{a,aa,aaa,aaaa,\dots \}$

R.E	Meaning	
a*	String consisting of any number of a's (including ε) (zero or more)	
a^+	String consisting of any number of a's (one or more)	
(a+b)	String consisting of either a or b	
a.b	String consisting of ab	
(a+b)*	String consisting of any combination of a & b including null	
(a+b)*abb	String of a and b ending with abb	
ab(a+b)*	String of a and b starting ab	
(a+b)*aa(a+b)*	String of a and b having substring aa	
a*b*c*	Any number of a followed by any number of b followed any number of c	
$a^+b^+c^+$	At least one a followed by at least one b followed by at least one c	
aa*bb*cc*	At least one a followed by at least one b followed by at least one c $a.a^* = a. \{\varepsilon, a, aa, aaa, aaaa\} = \{a, aa, aaa, aaaa, aaaaaaaaaaaaaaaaaa$	

R.E	Meaning	
(aa)*(bb)*b	Even number of a followed by odd number of b	
(11)*	Even number of 1	
01*+1	Either 1 or starting with 0 followed by any number of 1	
(01)*+1	Either 1 or any number of 01	
0 (1* + 1)	Zero followed by any number of 1	
(a+b).c	String length of 2, first symbol is either a or b followed by c	
(a+b)(a+b)	String of a and b whose length is 2	
(1+00)*	Any combination of 1 and 00	
a (a+b)* b	Start with a and end with b	
(a+b)*(a+bb)	String of a and b ending with either a or bb	

Obtain RE representing string of a and b having length 2
 String – {aa,ab,ba,bb}
 R.E – (a+b)(a+b)

• Obtain RE representing string of a and b having length ≤ 2 String – $\{\varepsilon,a,b,ab,ba,aa,bb\}$ RE – $(\varepsilon+a+b)$ $(\varepsilon+a+b)$ L = $\{(a+b)^n \ n \leq 2\}$

- Obtain RE representing string of a and b having even length String = {ε,aa,bb,ab,ba,aaaa,bbbb,abab,baba......}
 RE =((a+b)(a+b))*
- Obtain RE representing string of a and b having odd length
 String = {a,b,aaa,aba,bbb,bab,abb,baa......}
 RE ((a+b)(a+b))* (a+b) or (a+b) ((a+b)(a+b))*

 Obtain a RE representing a language consisting of strings of a and b with alternate a and b or no two consecutive same letter

- Obtain RE representing a language consisting of strings of 0 and 1 with at most one pair of consecutive 0.
- CASE 1: at most zero 0 RE1 - 1*
- CASE 2: at most one 0 RE2 – (1+01)* (ε+0)
- CASE 3: at most two 0
 RE3 (1+01)*00 (1+10)*
- CASE 1 + CASE 2+ CASE 3 (RE1+RE2+RE3)
- $= 1^* + (1+01)^* (\varepsilon+0) + (1+01)^*00 (1+10)^*$

• Obtain RE representing a language containing at least one a and at least one b where $\Sigma = \{a,b,c\}$

Obtain RE for the language L = {w | w ∈ {0,1}* with at least three consecutive 0}

$$RE - (0+1)^* 000 (0+1)^*$$

 Obtain RE representing string of a and b ending with b and has no substring aa

```
String = \{b,ab,bab,abb,abab,....\}
RE - (b+ab)*(b+ab) = (b+ab)*
```

Obtain RE representing string of 0 and 1 having no two consecutive 0
 RE – (1+01)* (ε+0)

 Obtain RE representing string of a and b containing not more than three a

RE –
$$b^*(\varepsilon + a) b^*(\varepsilon + a)b^* (\varepsilon + a)b^*$$

Obtain RE for the set of all string that do not end with 01 over {0,1}*

RE
$$- \varepsilon + (0+1) + (0+1)*(00+11+10)$$

OR
 $\varepsilon + (0+1) + (0+1)*(0+11)$

 Obtain RE representing string of a and b whose second symbol from right is a

$$RE - (a+b)*a(a+b)$$

 Obtain RE representing string of a and b whose tenth symbol from right is a

$$RE - (a+b)*a(a+b)^9$$

 Obtain RE representing string of a and b whose second symbol from left is b and second symbol from right is a

$$RE - (a+b)b(a+b)*a(a+b)$$

• Obtain RE representing the words with two or more letters but beginning and ending with same letter where $\Sigma = \{a,b\}$

$$RE - a(a+b)*a + b(a+b)*b$$

- Obtain RE for L = {vuv | u,v ∈ {a,b}* and |v|=2}
 RE aa(a+b)*aa + ab(a+b)*ab + bb(a+b)*bb + ba(a+b)*ba
- Obtain RE representing string of a and b whose length is either even or multiple of 3 or both

 Obtain RE representing string of a and b such that every block of four consecutive symbols contains at least two a

RE =
$$(aa(a+b)(a+b) + a(a+b)a(a+b) + a(a+b)(a+b)a + (a+b)aa(a+b) + (a+b)a(a+b)a + (a+b)(a+b)aa) +$$

• Obtain RE for the language L = $\{a^nb^m \mid n + m \text{ is even}\}$ RE = (aa)*(bb)* + a(aa)*b(bb)*

• Obtain RE for the language L = $\{a^nb^m \mid n \ge 1, m \ge 1, nm \ge 3\}$

n=1, m>=3

a bbb b*

n>=3, m=1 aaa a* b

n>=2, m>=2 aa a* bb b*

 $RE = a bbb b^* + aaa a^* b + aa a^* bb b^*$

• Obtain RE for the language L = $\{a^{2n}b^{2m} \mid n \ge 0 \ m \ge 0\}$ $RE = (aa)^*(bb)^*$

- Obtain RE for the language L = {w | |w| mod 3 = 0 and w ∈ {0,1}* }
 RE ((0+1) (0+1) (0+1))*
- Obtain RE for the language L = {w | n_a (w)mod 3 =0 and w \in {a,b}* } RE (b*ab*ab*ab*)*

Are (ab)*a and a(ba)* equal?
 (ab)*a = {a,aba,ababa,abababa,ababababa.....}
 a(ba)*= {a,aba,ababa, abababa, ababababa,.....}

```
Prove that (1+00*1)+(1+00*1)(0+10*1)*(0+10*1) = 0*1(0+10*1)*

LHS = (1+00*1)+(1+00*1)(0+10*1)*(0+10*1)

= (1+00*1)[\varepsilon + (0+10*1)*(0+10*1)]

= (1+00*1)(0+10*1)*

= (\varepsilon +00*)1(0+10*1)*

= 0*1(0+10*1)*

= RHS
```

Regular Expression (RE)

- \rightarrow Any terminal symbol (i.e. an element of Σ) E, φ are regular expressions.
- -) The union of two RES, R, and R2, writter as RITR2 is also a RE.
- -> The concatenation of two REs, R, and R2, written as R,R2 is also a RE.
- The iteration (closure) of a regular expression, of R, withen as R* is also a RE.
- -) If R is a RE over E, CR) is also a RE.
- The RK over & are precisely those obtained reconsively by the application of above five roles.

Definition

Any set represented by a RE is called as a regular set.

<u>Examples</u>: Consider $\Sigma = \{a,b\}$

- (i) a denotes the set ¿az
- (in atb denotes the set {a,b}
- (iii) ab represents the set 2 ab 3
- (iv) at dustes the set 20 E, a, aa, aan, - 3
- (v) (atb)* denotes the set $3 \in [a,b]$, ab, ba, aab, ... 3 All the strings over 5 = 2933.

Q Describe the following sets by REs.

Set set	RE
(a) {101} \(\int \)\[\tau_{\int} \]	101
(b) {abba3	abba
(c) {01,10} Z={0,1}	01+10
(d) {E, ab3 Z={a,b3	6+ab
(e) {abb, a, b, bba3 = {a,63	ab b-ta+b+bba
(f) { E, 0, 00, 000, 0000, }	O*
5= 30,13 (9) {1,11,111,1111,3	11*
Z=80,13	

Describe the following sets by RE

(a) L= Set q all binary strings ending in oo. ($\Sigma=0.13$)

L= 00,000,000,000,000,1000,1000.

(b) L2= Set & all the binary strings beginning with 1 and ending with 0.

La = 2 10, 100, 110, 1000, 1010, 1110, - - - - 3

(c) L3= 26, 11, 11111, 111111, . - - 3 (11)* a(atb)* b
t
b(atb)* a

Starting and pethos many depth of b (atb) of a

Identities for RE

$$I_1: \phi + R = R$$

$$I_2: \varphi R = R \varphi = \varphi$$

I4:
$$E^* = E$$
 and $\phi^* = E$

Is:
$$(R^*)^* = R^*$$

Is:
$$(R^*)^* = R^*$$

Iq: $E + RR^* = R^* = E + R^*R$

$$I_{\text{II}} : (P+Q)^{*} = (P^{*}Q^{*})^{*} = (P^{*}+Q^{*})^{*}$$

Q/Re) Give an RE for representing the set L of strings in which every ois immediately followed by atleast two 1's.

L= 2.6, 1, 11, 111,011, 0111, 111, 1011 --- 3

(b) prove that the RE, R= E+1*(011)*(1*(011)*)* also describes the Det (1+011)*

L= Set q all the strings over $z = \frac{2}{5}a,63$ with even number z as followed by odd number z bls.

L(RE) = $\frac{2}{5}a^{2n}b^{2m+1} | n,m7,03$ Q1 Give a RE for the following language:

L(R) = $\{w \in z^* | w \text{ has at least one pair } z \in z \in z \in 3,13$.

(0+1)*OO(0+1)*

Chive a RF for the following language.

L= $\frac{2}{4}$ w $\frac{2}{6}$ 0,13*: w has no pair $\frac{1}{4}$ conscribe zero's $\frac{3}{4}$ L= $\frac{2}{4}$ €,0,1,10,11,01,010,011,101,110, ... $\frac{3}{4}$ (1+01)*(0+E)

(1+01)*7

26) Even leight binary string where odd position contains 1.

L= } €, 10, 11, 10 10, 1011, 1110, 1111,

(1 (0+1))* (10+11)* Offering a RE Over S= {a, 13 for

Q/ Find a RE for all the strings over $\Sigma = \{9,6\}$ that do not end with aa.

L= 2E, a, b, ab, ba, bb. - - }

(atb)*ab + (atb)*ba + (atb)*bb + a+b+ E

= (atb)*(ab+ba+bb)+a+b+E

We find a RE for all the strings over $\Sigma = \{9,6\}$ that contain of most one occurrence of aa.

ab aa l

one time (b+ab)*aa(b+ba)*

ten time. (b+ab)* \(\b \) (b+ba)*

only a (b+ab)* a (b+ba)*

(b+ab)* (aa+a+\(\b \) (b+ba)*

Of Find a RE to that represents all the even length binary strings. (Here $\Sigma = \{a,b\}$).

$$\frac{((0+1)(0+1))^{*}}{(00+01+10+11)^{*}}$$

$$\frac{(0+01+10+11)^{*}}{(1+0)(1+10+11)^{*}}$$

of Find an RE that will represent all the even length strings over \$= {25,5}, where number of also and b's are also even.

= [L= EE, ab, ba, aabb, bbaa, abba, baab, abab, baba, -.. }

(aatbb)* (abtba) (abtbb)* (abtbb)* (abtbb)*

(aatbb)*

(aatbb)

(a

Find on RE for the following Here $\Sigma = \{a, b\}$.

(i) $a^{m}b^{n} \mid m$ th is even.

(ii) $a^{m}b^{n} \mid m$ th is odd.

Case 1: Win a Both m and nanceval Case I: mineren and nil odd (aa)*(bb)*

a(aa)* b(bb)*

(aa)*(bb)* + a(aa)* b (bb)*

(aa)* 666)*

case 2: Both mand nare odd | case 2: mi odd and nis even a(aa)* (bb }*

(aa) \$ 665)* + a(aa) * (bb) *

Find RE for the following over == 20,63

L= {anbm | n>2 k Am 2:3 }

[aaa!(e+b+bb+bbb)]

By the set of bihary strings whom sixth symbol from right and in 1.

Q/ Z= {a,b}, Find RE for all the strings that contain uncilly two a's.

Of Find RE for at most two als over $\Sigma = \{a,b\}$.

Of find the shortest star string that is not in the larguage represented by the following RE.

a*(ab)*b*

Any ba.

rest

Application of Regular Expression

- Automata = finite state machines (or extensions thereof) used in many disciplines
- Efficient string searching
- For recognizing the pattern using regular expressions.
- Pattern matching with regular expressions (example: Unix grep utility)
- Lexical analysis (a.k.a. scanning, tokenizing) in a compiler (the topic of a lecture later in the course)