Laboratorium 14

Metody Numeryczne

Wydział Fizyki i Informatyki Stosowanej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Maciej Piwek

12 czerwca 2021

1 Wstęp

Na zajęciach został omówiony problem generowania ciągu liczb pseudolosowych o rozkładzie jednorodnym i trójkątnym.

2 Opis metody

Generatory liniowe tworza ciag liczb według schematu:

$$X_{n+1} = (a_1 X_n + a_2 X_{n-1} + \dots + a_k X_{n-k+1} + c) mod m$$
(1)

gdzie: $a_1, a_2, ..., a_k, c, m$ – parametry generatora (ustalone liczby)

Funkcję gęstości prawdopodobieństwa dla rozkładu trójkątnego $T(\mu, \Delta)$ zdefiniowano następująco:

$$f(x;\mu,\Delta) = -\frac{|x-\mu|}{\Delta^2} + \frac{1}{\Delta}$$
 (2)

gdzie: μ to środek rozkładu, a Δ to jego szerokość.

Rysunek 1: Funkcja gęstości prawdopodobieństwa rozkładu trójkątnego.

Dystrybuanta tego rozkładu jest następująca:

$$F(a) = P(x < a) = \int_{\mu - \Delta}^{a} f(x; \mu, \Delta) dx = \begin{cases} -\frac{1}{\Delta^{2}} \left(-\frac{x^{2}}{2} + \mu x\right) + \frac{x}{\Delta}, & x \le \mu \\ -\frac{1}{\Delta^{2}} \left(-\frac{x^{2}}{2} - \mu x + \mu^{2}\right) + \frac{x}{\Delta}, & x > \mu \end{cases}$$
(3)

Jeśli $\xi_1 \in U(0,1)$ i $\xi_2 \in U(0,1)$ to zmienną o rozkładzie trójkątnym oraz parametrach μ i Δ generujemy stosując formułę:

$$x = \mu + (\xi_1 + \xi_2 - 1) \cdot \Delta \tag{4}$$

3 Opis Problemu

Startując od $x_0 = 10$ wygenerowano $n = 10^4$ liczb pseudolosowych przy użyciu generatora mieszanego:

$$x_{n+1} = (ax_n + c)modm (5)$$

o parametrach:

1. a = 123, c = 1, $m = 2^{15}$

2.
$$a = 69069$$
, $c = 1$, $m = 2^{32}$

W obu przypadkach sporządzono rysunek $X_{i+1} = f(X_i)(X_i = x_i/(m+1.0)$ z warunku normalizacji do rozkładu U(0,1)).

Wygenerować $n=10^3$ liczb o rozkładzie trójkątnym o parametrach $\mu=4$ i $\Delta=3$. Podzielono przedział $[\mu-\Delta,\mu+\Delta]$ na k=10 podprzedziałów. Dla rozkładu trójkątnego przeprowadzono test χ^2 tj. określono wartość statystyki testowej.

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - n \cdot p_{i})^{2}}{n \cdot p_{i}}$$
 (6)

gdzie: n_i to ilość liczb znajdujących się w podprzedziale o indeksie i, p_i to prawdopodobieństwo teoretyczne, że zmienna losowa X znajdzie się w i - tym przedziale.

$$p_i = F(x_{i,max} - x_{i,min}) \tag{7}$$

We wzorze powyżej F(x) jest wartością dystrybuanty. Wartości: p_i oraz $n \cdot p_i$ dla każdego z podprzedziałów zapisano do pliku.

4 Wyniki

Rysunek 1: a = 123, c = 1, $m = 2^{15}$

Rysunek 2: a = 123, c = 1, $m = 2^{15}$

Rysunek 3: a = 69069, c = 1, $m = 2^{32}$

Rysunek 4: a = 69069, c = 1, $m = 2^{32}$

Rysunek 5: Histogram dla n_i/n od p_i

5 Wnioski

- Łatwo dostrzec, że generator mieszany działa lepiej dla pierwszego zestawu parametrów, patrząc na wygenerowane wykresy.
- Kształt wygenerowanego histogramu dla liczb o rozkładzie trójkątnym, jest zgodny z oczekiwaniami, co może świadczyć o poprawności wykonanego ćwiczenia.