Operációs rendszerek BSc

8. Gyak. 2022. 03. 28.

Készítette:

Siska Dávid Bsc Gazdaságinformatikus WHDDUM

Miskolc, 2022

1. Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR:10ms) ütemezési algoritmus alapján határozza meg következő teljesítmény értékeket, metrikákat (külön-külön táblázatba):

FCFS	Érkezés	CPU idő	Indulás	Refeiezés	Várakozás	Körülfordulási idő	Algoritmus nev	10
P1	0	14		,		14	CPU kihasznált	
P2	7	8	14		7	15	Körülfordulási	
P3	11				11	47	Várakozási idő	
P4	20	10	58	68	38	48	Válaszidők átla	ga
SJF	Érkezés	CPU idő	Indulás	Befeiezés	Várakozás	Körülfordulási idő	Algoritmus nev	/e
P1	0	14		•	0	14	CPU kihasznált	
P2	7	8	14	22	7	15	Körülfordulási	idő 2
P4	20	10	22	32	2	12	Várakozási idő	k átlaga
P3	11	. 36	32	68	21	57	Válaszidők átla	ga
RR 10 ms	Érkezés	CPU idő	Indulás	Befejezés	Várakozás	Körülfordulási idő	Algoritmus nev	/e
P1	0	14	0	10	0	14	CPU kihasznált	ság 98,8
P2	7	8	10	18	3	11	Körülfordulási	idő 3
P1*	10	4	18	22	8	12	Várakozási idő	k átlaga
P3	11	. 36	22	32	11	47	Válaszidők átla	ga
p4	20	10	32	42	12	22		
	20 32							
p4 P3* P3*		10	42	52	10			

Adott négy processz a rendszerbe, melynek a ready sorban a beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész. Kezdetben mindegyik processz p_uspri = 60. Az A, B, C processz p_nice = 0, a D processz p_nice = 5.

Mindegyik processz p cpu = 0, az óraütés 1 indul, a befejezés legyen 301. óraütés-ig.

- a.) Határozza meg az ütemezést RR nélkül 301 óraütésig és RR-nal 201 óraütésig különkülön táblázatba!
- b.) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után.
- c.) Igazolja a számítással a tanultak alapján

	A folyamat		B folyamat		С	D folyamat		Átütemezés		
óraütés	p_spri	p_cpu	p_spri	p_cpu	p_spri	p_cpu	p_spri	p_cpu	előtte fut	utána fu
kiindulás	60	0	60	0	60	0	60	0	Α	Α
1	60	1	60	0	60	0	60	0	Α	Α
2	60	2	60	0	60	0	60	0	Α	Α
3	60	3	60	0	60	0	60	0	Α	Α
4	60	4	60	0	60	0	60	0	Α	Α
5	60	5	60	0	60	0	60	0	Α	Α
6	60	6	60	0	60	0	60	0	Α	Α
7	60	7	60	0	60	0	60	0	Α	Α
8	60	8	60	0	60	0	60	0	Α	Α
9	60	9	60	0	60	0	60	0	Α	Α
10	60	10	60	0	60	0	60	0	Α	Α
11	60	11	60	0	60	0	60	0	Α	Α
12	60	12	60	0	60	0	60	0	Α	Α
13	60	13	60	0	60	0	60	0	Α	Α
14	60	14	60	0	60	0	60	0	Α	Α
15	60	15	60	0	60	0	60	0	Α	Α
16	60	16	60	0	60	0	60	0	Α	Α
99	60	99	60	0	60	0	60	0	Α	Α
100	85	50	60	0	60	0	60	0	Α	В
101	85	50	60	1	60	0	60	0	В	В
102	85	50	60	2	60	0	60	0	В	В
103	85	50	60	3	60	0	60	0	В	В
104	85	50	60	4	60	0	60	0	В	В
105	85	50	60	5	60	0	60	0	В	В

		I	I				l		1	I
199	85	50	60	99	60	0	60	0	В	В
200	85	50	85	50	60	0	60	0	В	С
201	85	50	85	50	60	1	60	0	С	С
202	85	50	85	50	60	2	60	0	С	С
299	85	50	85	50	60	99	60	0	С	С
300	85	50	85	50	85	50	60	0	С	D
301	85	50	85	50	85	50	60	1	D	D