Probability on Trees and Networks

Winter 2023

Instructor:	Luc Devroye	Time:	TBD
Email:	lucdevroye@gmail.com	Place:	McConnell Eng. 300N

Course Page: http://arthurayestas.xyz/comp480.html

Textbook: This course will follow selected sections of the following textbook:

• Lyons, R., & Peres, Y., Probability on Trees and Networks, Cambridge University Press, 2017.

Prerequisites: Comp 690 - Probabilistic Analysis of Algorithms

Tentative Course Outline:

- Random Walks and Electric Networks
 - 1. Circuit Basics and Harmonic Functions
 - 2. More Probabilistic Interpretations
 - 3. Network Reduction
 - 4. Energy
 - 5. Transience and Recurrence
 - 6. Rough Isometries and Hyperbolic Graphs
 - 7. Hitting, Commute, and Cover Times
 - 8. The Canonical Gaussian Field
- Special Networks
 - 1. Flows, Cutsets, and Random Paths
 - 2. Trees
 - 3. Growth of Trees
 - 4. Cayley Graphs
- Uniform Spanning Trees
 - 1. Generating Uniform Spanning Trees
 - 2. Electrical Interpretations
 - 3. The Square Lattice \mathbf{Z}^2

- Branching Processes, Second Moments, and Percolation
 - 1. Galton-Watson Branching Processes
 - 2. The First-Moment Method
 - 3. The Weighted Second-Moment Method
 - 4. Quasi-independent Percolation
 - 5. Transience of Percolation Clusters in \mathbf{Z}^d
 - 6. Reversing the Second-Moment Inequality
 - 7. Surviving Galton-Watson Trees
 - 8. Harris's Inequality
 - 9. Galton-Watson Networks
- Hausdorff Dimension
 - 1. Basics
 - 2. Coding by Trees
 - 3. Galton-Watson Fractals
 - 4. Hölder Exponent
 - 5. Derived Trees
- Isoperimetric Inequalities
 - 1. Flows and Submodularity
 - 2. Spectral Radius
 - 3. Nonbacktracking Paths and Cogrowth
 - 4. Relative Mixing Rate, Spectral Gap, and Expansion in Finite Networks
 - 5. Planar Graphs
 - 6. Euclidean Lattices and Entropy
 - 7. Expansion Profiles and Decay of Transition Probabilities
 - 8. Anchored Isoperimetric Profiles and Transience
 - 9. Anchored Expansion and Percolation

Evaluation: Five Oral Presentations (duration of 1 hr each) (100% = 5 * 20%)

Course Schedule: We will meet two times a week for the entirety of the semester.

Class Policy: Complete attendance is essential and expected.