Модуль «Прикладная космонавтика» Л2. Расчет маневров АМС

Габзетдинов Р.И. Университетская гимназия

Eсли в этой, или других методичках и материалах вы найдете ошибку или опечатку, просъба написать об этом t.me/Samnfuter vk.com/gabzetdinoff crispuscrew71@gmail.com crispuscrew@outlook.com

Характеристики планет для задачи:

Планета	Меркурий	Венера	Земля	Mapc
a, a.e.	0.387	0.723	1	1.52
i, °	7°	3.39°	0	$\approx 0^{\circ}$
Планета	Юпитер	Сатурн	Уран	Нептун
a, a.e.	5.2	9.54	19.19	30.07
i, °	$\approx 0^{\circ}$	2.48°	$\approx 0^{\circ}$	$\approx 0^{\circ}$

Формулировка и рисунок к задаче

Необходимо совершить ряд орбитальных маневров для перевода автоматической межпланетной станции (AMC) со стартовой (start), на целевую (final) орбиту.

Задача также подразумевает минимизацию затрачиваемой характеристической скорости $(\Sigma|_{\Delta}V|)$, и не превышение $\Sigma|_{\Delta}V_{after}|$ суммой затраченной характеристической скорости после первого маневра.

АМС имеет независимую систему электропитания и стабильную связь с Землей. Во время пролета около планет нельзя сближаться меньше, чем на их эффективный радиус. Для упрощения расчетов влиянием иных тел, кроме планет и Солнца, магнитными явлениями, атмосферой, а также несферичностью тел и неравномерностью распределения массы пренебречь.

Дано

$$a_{start} = R_{\oplus} + 400 \; \mathrm{km}$$
 $R_{\oplus} = 6371 \; \mathrm{km}$ $Body_{start} = 3\mathrm{em}$ ля $i = 23^{\circ}26'$ $Body_{final} = \mathrm{Mapc}$ $0 \leq q(p)_{final} \leq 60 \; \mathrm{km}$ над поверхностью $\Sigma |_{\Delta} V_{after}| \leq 400 \; \mathrm{m/c}$

$$2. \ Body_{final} = ext{Меркурий}$$

4.
$$\frac{Body_{final} = \text{Нептун}}{\Sigma|_{\Delta}V| <= 7.5 \text{ км/c}}$$

5.
$$Body_{final} =$$
Солнце $q(p)_{final} = 0.1$ a.e.

Найти

Описать положение планет, опционально вычислить дату. Описать траекторию последовательностью орбит и маневров.