Tutorial 2

Q1:

```
(1)
  <integer_literal, 2>
  <*>
 <id, r>
(2)
  <while>
  <(>
  <integer_literal, 1>
  <)>
  <{>
  <id, x>
  <=>
  < integer_literal, 0>
  <;>
(3)
  <string_literal, "This is a test program.">
(4)
  <id, A>
  <[>
  <id, i>
  <]>
  <+>
  <id, j>
```

Q2:

According to the diagram, we can draw the transition table as follows:

	a	b
0	$\{0,1\}$	{0}
1	Ø	{2}
2	Ø	{3}
3	Ø	Ø

From the table, we know that: when we are in State 0, and the input is 0, the next state we can

move to can be State 0 or State 1, so the next state we will go to is infinite, so this diagram is NFA instead of DFA.

Q3:

(1)

(1) According to the RE (1/0)*1, we get the NFA: ϵ

(2)

I	1.	I,
{0,1,2,4,7}A	{5,6,1,2,4,7}	{3,6,1,7,2,4,8}
		{8.3,6,1,2,4,7}
{3,6.1,7,2,4,8}	{5,6,1,7,2,4}	43,6,6,2,7,4,8}C

Asuma $A = \{0.1, 2, 4, 7\}$ $B = \{5, 6, 1.2, 4, 7\}$ $C = \{3, 6, 1, 7, 2, 4, 8\}$

Then we get the DFA

Q4:

(1) NFA	0	
1	I.	I,
{AF}0	(BEF)2	Ø®
(BEF) @	ØS	{D}3
{D}3	{CAF}@	Ø ⑤
{CAF}@	{BEF} (2)	Ø (S)

Then, we can get the DFA:

