Mg Thank In Win BC9-1690 Computer Anhitecture Assignment I

1. let X (x, x0) be the first 2 bit binary number. let Y (y, y0) be the second 2 bit binary number.

The summation of xo and yo can be done using half adder circuit because there is no carry input.

impuls		Outputs	
×.	40	30	Ce
0	0	0	0
0	1	11	0
1	0	1	0
1	1	0	1

$$3_{n} = \overline{x}_{n} y_{n} + x_{n} \overline{y}_{n}$$

$$C_{n} = x_{n} y_{n}$$

The summation of a and y must be the full adder circuit because there is carry input.

inputs			outputs	
×,	4,	Co	13,	C,
0	0	0	0	0
0	0	1	1	0
0	i.	0	1	0
1	0	0	1	0
0	1	1	0	1
1	1	0	0	1
1	0	1	0	1
1	1	1	1	1

$$\begin{split} s_{1} &= \overline{x}_{1} \overline{y}_{1} C_{0} + \overline{x}_{1} y_{1} \overline{C}_{0} + x_{1} \overline{y}_{1} \overline{C}_{0} + x_{1} y_{1} C_{0} \\ &= \overline{x}_{1} \overline{y}_{1} x_{0} y_{0} + \overline{x}_{1} y_{1} \overline{x}_{0} y_{0} + x_{1} \overline{y}_{1} \overline{x}_{0} y_{0} + x_{1} y_{1} (\overline{x}_{0} + \overline{y}_{0}) + x_{1} \overline{y}_{1} (\overline{x}_{0} + \overline{y}_{0}) \\ &= \overline{x}_{1} \overline{y}_{1} x_{0} y_{0} + \overline{x}_{1} y_{1} (\overline{x}_{0} + \overline{y}_{0}) + x_{1} \overline{y}_{1} (\overline{x}_{0} + \overline{y}_{0}) \\ &+ x_{1} y_{1} x_{0} y_{0} \\ &= \overline{x}_{1} \overline{y}_{1} x_{0} y_{0} + \overline{x}_{1} y_{1} \overline{x}_{0} + \overline{x}_{1} y_{1} \overline{y}_{0} + x_{1} \overline{y}_{1} \overline{x}_{0} + x_{1} \overline{y}_{1} \overline{y}_{0} + x_{1} \overline{y$$

$$C_1 = x_1 y_1 + y_1 C_0 + x_1 C_0$$

= $x_1 x_1 y_1 + y_1 x_0 y_0 + x_1 x_0 y_0$

