18/04/2019 notes.html

Chapter 6: Inferring Binomial probability

Bernoulli distribution

The bernoulli distribution can be written as

$$p(y|\theta) = \theta^y * (1-\theta)^{(1-y)}$$

- $p(y|\theta)$ is called the **likelihood function** for θ
- Likelihood function DOES NOT integrate to 1 i.e while it represents probabilities for a given value of y if does not add up to 1.
- $p(y|\theta)$ can be called one of the following
 - \circ likelihood function for heta
 - Probability for datum y
 - \circ Bernoulli distribution **IF** heta is fixed and y is a variable

Beta distribution

• To find posterior distribution numerically, we need the distribution for all values of θ in the range [0,1] i.e the prior distribution value.

Conjugate distribution

- While selecting the prior distribution, the following will make our computation easier
 - \circ If the product of $p(y|\theta)$ and $p(\theta)$ results in a function with the same form as $p(\theta)$. In this case, prior and posterior distribution will be of the same form as $p(\theta)$

18/04/2019 notes.htm

• We need to solve the denominator of the Bayes rule analytically. When $p(\theta)$ has the same form as $p(y|\theta)$, then the posterior will be of the same form as $p(\theta)$. Hence, $p(\theta)$ will be called a **conjugate prior** for p(y|\theta).

• For the bernoulli distribution, we need a prior of the form

$$\theta^a * (1-\theta)^b$$

 When we multiply the above distribution with the bernoulli distribution, we get

$$\theta^{y+a} * (1-\theta)^{1-y+b}$$

• The above prior distribution is called a **beta distribution**. It has the form:

$$p(\theta|a,b) = \beta(\theta|a,b)$$

$$p(\theta|a,b) = \frac{\theta^{a-1}(1-\theta)^{b-1}}{B(a,b)}$$

• B(a,b) is the normalizing constant that ensures the area for the beta function integrates to 1.

$$B(a,b) = \int_{0}^{1} d\theta \ \theta^{(a-1)} (1-\theta)^{(b-1)}$$

- a and b must be positive
- Beta distribution is only defined for interval (0,1)
 - $\circ\,$ As the value of $\,$ a $\,$ increases, the distribution will move towards $\,$ higher values of $\,\theta\,$
 - \circ As the value of $\, \, {\bf b} \,$ increases, the distribution will move towards $\, \, {\bf lower} \,$ values of $\, \theta \,$
 - As the values of a and b increase together, the distribution becomes narrower.

0

18/04/2019 notes.html

• a and b are called **shape parameters**

Specifying a beta prior

• The easy way to select values of a and b is to directly map them from the given data. For eg, if we have seen 4 heads and 4 tails from 8 total flips

$$n = a + b$$

• **Mean** of beta distribution

$$\mu = \frac{a}{a+b}$$

Mode

$$\omega = \frac{a-1}{a+b-2}$$

- When a = b. mean = mode
- When a > b, mean and mode > 0.5
- When a < b, mean and mode < 0.5
- Spread

$$\varkappa = a + b$$

Solving the above formulas for a and b, we get

$$a = \mu \varkappa$$
$$b = (1 - \mu) \varkappa$$
$$a = \omega(\varkappa - 2) + 1$$
$$b = (1 - \omega)(\varkappa - 2) + 1$$

 $\bullet~$ For a beta distribution with mean \mu and standard deviation $_{\sigma}$

3/4

18/04/2019 notes.h

$$a = \mu(\frac{\mu(1-\mu)}{\sigma^2} - 1)$$

$$b = (1 - \mu)(\frac{\mu(1 - \mu)}{\sigma^2} - 1)$$

Posterior Beta

• Substituing the prior in the bayes formula with the bernoulli likelihood function, we can get the posterior distribution as

$$p(\theta|z, N) = \frac{p(z|\theta, N) * p(\theta)}{p(z, N)}$$
$$= \frac{\theta^{((z+a)-1)}(1-\theta)^{((N-z+b)-1)}}{B(z+a, N-z+b)}$$

- Check section 6.3.1 again for representing the posterior as a compromise between the prior and the liklelihood
- **NOTE**: The choice of prior n (which equals a + b) should represent the size of the new data set that would sway us away from our prior toward the data proportion.

•