

Universitatea Națională de Știință si Tehnologie POLITEHNICA București

FACULTATEA DE ELECTRONICĂ, TELECOMUNICAȚII ȘI TEHNOLOGIA INFORMAȚIEI

STABILIZATOR DE TENSIUNE CU ELEMENT DE REGLAJ SERIE

Proiect 1-DCE

Student: Năftănăilă Bianca-Elena

Grupa 431E

Tema 7

$$(N=16)$$

1) Date de proiectare

- Să se proiecteze și realizeze un stabilizator de tensiune cu ERS având următoarele caracteristici:
 - ◆ Tensiunea de ieșire reglabilă în intervalul: 8÷16 [V]
 - ♦ Element de reglaj serie;
 - Sarcina la ieșire RL= $800 [\Omega]$;
 - ♦ Deriva termică < 2mV/°C;
 - ◆ Protecție la suprasarcină prin limitarea temperaturii tranzistorului element de reglaj serie la 100°C, si a curentului maxim la 0,4A;
 - ◆ Tensiune de intrare în intervalul: 28,8÷32 [V]
 - ♦ Domeniul temperaturilor de funcționare: 0°-70°C (verificabil prin testare în temperatură);
 - ♦ Amplificarea în tensiune minimă (în buclă deschisă) a amplificatorului de eroare: minim 200;
 - ♦ Semnalizarea prezenței tensiunilor de intrare/ieșire cu diodă de tip LED

2) Schema bloc stabilizator de tensiune cu ERS

- ➤ REF Referința de tensiune asigură o mare stabilitate în timp la variația tensiunii de intrare și a temperaturii;
- > ERS Elementul de reglaj serie menține tensiunea de ieșire la nivelul specificat sub controlul amplificatorului de eroare (controlează curentul de ieșire în circuit);
- > RR Rețeaua de reacție negativă are rolul de a prelua semnalul de la ieșirea amplificatorului în sensul scăderii amplitudinii acestuia;
- > AE Amplificatorul de eroare compară tensiunea de ieșire pentru a acționa asupra elementului de reglaj.

3)Schema electrică

Rolul principalelor elemente din circuit:

- Grupul QESR-QESR2 (Darlington) constituie elementul de reglaj serie, unde QESR2 este un tranzistor de putere (βF redus) care dă curentul prin sarcină. Tranzistorul QESR are rolul de demultiplicare a curentului de bază al lui QESR2 si face posibilă funcționarea amplificatorului de eroare la curenți acceptabili.
- Etajul diferențial Q2 și Q3, împreună cu sursa de curent Q5, R8 și oglinda de curent Q1, Q4, R10 și R11 (ce are rolul de a asigura curenți egali prin cele două ramuri) formează amplificatorul de eroare.
- Dioda Zener este referința de tensiune și este polarizată la curent constant de sursa de curent D4 și R2.
- Q21 reprezintă senzorul de temperatură. Acest tranzistor va fi plasat pe radiatorul tranzistoarelor QESR, QESR2, cât mai aproape de acestea pentru a realiza un bun contact termic. Tensiunea VBE la care acest tranzistor poate să conducă un curent semnificativ scade cu 2mV/°C. Astfel, se va ajusta valoarea divizorului de tensiune R29, R34, R30, P2, R28. P2, prin urmare, are rolul de a ajusta acest divizor astfel încât tensiunea din emitorul lui Q22 să deschidă pe Q21 la circa 100°C.
- Q20 și gruparea de rezistoare RC1-RC4 îndeplinesc rolul de protecție la scurtcircuit, deoarece, pentru a forța un curent mare prin tranzistorul QESR2 și când sarcina circuitului este mare am conectat aceste rezistențe de valori mici care să asigure un curent optim pentru a ține tensiunea de ieșire constantă.
- Gruparea de rezistoare RLOAD, RLOADI-RLOAD7 formează rezistența de sarcină, alese astfel încât puterea disipată pe o rezistență să nu depășească 125mW.
- Potențiometrul P1 și rezistențele R6, R12, R9, R27 formează rețeaua de reacție negativă și au rolul de a regla tensiunea de la ieșirea stabilizatorului astfel încât să se acopere plaja de reglaj a acesteia.
- Valoarea diodei Zener (referința de tensiune) a fost aleasă astfel încât coeficientul de variație cu temperatura să fie mic, sub 2mV/°C, această diodă de 5.1V având un drift termic foarte mic.

- Calculul PSF-ului de mai jos s-a realizat pentru o rezistență de sarcină de 800 Ω, dar aceasta a fost înlocuită cu un grup de mai multe rezistoare înseriate deoarece puterea disipată printr-o rezistență de această valoare era prea mare.
- Pentru a asigura un curent optim aprinderii celor două led-uri care semnalizează tensiunile de intrare/ieșire, pentru led-ul de la intrare (D2) s-a ales o valoare a rezistenței de 1.32k Ω, iar pentru led-ul de ieșire (D8) s-a ales rezistența de 590 Ω. Aceste rezistențe au rolul de a prelua o mare parte a tensiunii de intrare/iesire.
- Rezitențele ce fac parte din oglinda de curent (rezistențe de degenerare) au rolul de a egala curenții prin cele două ramuri, având o cădere de tensiune mică pe acestea.

~ Itabilizator de tensiume ~

- · RL= 8001
- · VO € [8:16] V
- . Vi € [28,8;32] V

· Verificarea tolerantei diodei Zoner asspra circuitului

→ Toleranta: ±5%

Am ales diada Zener BZX84-C5V1 => Vz €[5,1-5.5,1; 5,1+5.5,1]

(=) Vz € [4,845; 5,355][V]

► Vomin= Vz . R6+R12+R9+R27+RP1
R9+R27+RP1

Vomax = VZ. R6+R12+R9+R27+RP1
R9+R27

Pentru $Vz = 4.845 \ V$: $Vomin = 4.845 \cdot \frac{2.7+3.3+4.7+0.47+5}{4.7+0.47+5} = 4.4 \ V$ $Vomax = 4.845 \cdot \frac{2.7+3.3+4.7+0.47+5}{4.7+0.47} = 15.15 \ V$

Pentrus VZ=5,355 V: { Vormin=5,355. 2,7+3,3+4,7+0,47+5=8,5 V 4,7+0,47+5 = 8,5 V ... Vormox = 5,355. 2,7+3,3+4,7+0,47+5 = 16,7 V ... 4,7+0,47

smita true or writing eletimil #1/4) (=

· Lunctul static de functionare teoretic (PSF)

CATUL 1: VCC = 28,8V SETR=1

> VCC = Vbg + 6g (R17+R18+R19) => 109 = VCC-Vb9 = 28,8-3,2 = R17+R18+R19 0,91+0,91+0,91

= 25,6 = 9,34mA lbg = 9,34mA

Conform fois de catalog a led-ului, tensimea acestria este de 3,2 V. Prezidentele RIF, RIB, RIB au jost alese în mod convorabil, artiel încât avientul prin led-ul Dg se fie optim conform joi de catalog, tinand cont si de puterile maxime admise pe rezistente (125 mw).

-> Ealewley currentel prin Q19 si D7, notat cu i2: VD4= 12R2+ VEB19 => 1 = VZ4- VEB19 = 2,7-0,6 = 9,54 mA 12= 9,54 mA

-> Ealeulez eventul prin D4 xi D5, notat eu i1: Vcc= Vz4+ 11 (R4+R14+R15)+Vz5=> 11= Vcc-Vz4-VZ5 = R4+R14+R15 = 28,8-2,7-2,7 = 7,8 mA = 11=7,8 mA

→ Vzs = VeEs + iQs · R8 => iQs = <u>Vz5 - VeEs</u> = <u>2.3-0.6</u> = 9.54mA 105 = 9,54mA

→ iq2=iq3 = iq5 => iq2=iq3=4,77mA

-> 1Q1. RIO + VEBI = 104. RII+VEB4, DON RIO=RII=22012 =>

=) ia=iaz (1) Vcc = 12R2 + VEC19 + VZ1=> VEC19 = Vcc - 12R2 - VZ1 = 28,8 - 9,54.0,22 - 2,4 = = 26,1-2,0988 = 24V => VEC19= 24V

Euro 101=102, 102=103, Q4 siQ1 formeaga oplinda de curent, ion register tele Rio si Rii sunt eggle (sugistente de degenerare), aurentii pe cele douc P992

→ VZ5 = VBE22 + iQ22 (R29+ R34+ R30+ RP2+ R28) => iQ22 = VZ5- VBE22
R29+ R34+R30+RB+R28 0,22+0,22+0,15+0,15 0,84 => i@22=2,5mA - Calculez eventul prin reteaua de reactie negativa: IREACTIE - VO _ = 0,986 mA | IREACTIE = 0,986 mA | M R6+ R12+RA+R9+R27 27+3,3+5+4,7+0,47 → Colculy curentul prin registenta de sarcina, notat ILOAD: ILOAD = VD = 15,95 = 20,06 mA ILOAD = 20,06 mA Nalorile registentelor RIDAD 8, RIDADS, RIDAD10, RIDAD11 au fort alere artfel incat registenta echivalenta a sustora rá fie sea impusa sin covintele de projectore (RL = 800.R). Acutea au fort grupate ûn PLOADH paralel pentru ca putirea diripata pe dielare ruzistos à nu deparearca puterea maxima admira specificato REGERAGE in Joais de cotalog (125 mw). -> diotatie: RCI+RCZ+(RC311RC4)=RC RC=1,47+0,47-0,47 = 1,705. Considerand sa, surentel de baza al tranzisterelui 020 este meglijabil =) IRESR2= IRC = IREACTIE + ILOAD = 0,986+20,06 = 21,04 mA =) iRC = 21,04 mA = iCESR2 → VBE20 = iRC·RC = 24,04.10=3 1,705 = 0,035V < 0,6 => tranzistarul Q20 se Alla in blocare => 1020=0A -> VECI = VBEI = 0,6 V → VCC = VCE22 + iQ22 (R29 + R34 + R30+ RA + R28) =) VCE22=VCC - iQ22(R29+ B4+B0+B4+R2) =28,8-2,5(0,22+0,22+0,15+0,1+0,15)=28,8-2,1 = 26,7V VCE22 = 26,7 V > VZ ++VBE 2= VCES + iQ5R8 => VCES = VZ++VBE2 - iQ5R8 = = 5,1-0,6-2,0988 = 2,4V => VCE5 = 2,4V -> Voc=ia, RIO+VEC(+VCE2+VCE5+iasR8 =) =) VCE2 = VCC - ia, RIO - VEC1 - VCE 5 - ias R8 = 28,8 - 1,0494 - 0,6 -2,4-

= 22,65 V => VCE2 = 22,65 V

```
-> VCC = 184. RII + VEC4 + VBEESR + VBEESR2+ VBE20 + IREACTIE · RC =>
=> VEC4= VCC-IR4-RII-BVBE-IREACTIE-RC=28,8-1,0494-1,8-15,94=
  = 10 V => VEC4=10V
-> VCC=184. RU+ VEC4+VCE3 +VCE5 +185. R8 =>
 ⇒ VCE3= 28,8 - 1,0494 - 10- 2,4 - 2,0988 = 13,25 V =) VCE3=13,25 V
→ VCC = 184.811 + VCE21+VEC4 => VCE21 = 28,8 - 1,0494-10 = 17,75 V
  =) VCE21=17,75 V
→ VCEESRZYVO= (5,95 V VCEESR= VCEESRZ-VOEESRZ=) VCEESR= (5,35 V
→ IEESR= IBESR2
   Dan iBESR2 = iCESR2 = 21,04 = 168,3 MA => iRESR = 168,3 MA
                           125
                  POESR 2
→ 1021=10EGR = ICESR = 168,3 = 16,83 JLA (1021=16,83 JLA
 Gentralizare PSE:
                                 Q2: ( iaz = 4,77mA
  Q1: 101=477mA
      VEB=0,6V>0 => limita RAN
                                                     =1 RAN
                                     VEB = 0,6V >0
                                      VCE = 22,65V>VBE
       VEC = 0,6V=VEB
                                Q4: (104=4,77 mA
  Q3: 1Q3=4,77mA
                                     UEB=0,6V>0 => RAN
                    => RAN
      VBE=0,6V>0
                                     VECH = 10V >VEB
      VCE = 13,25 V > VOE
                                                      erweld (=
   Q5: 105 = 9,54mA
                                 Q20 1 1020=OA
       VBE = 0,6V > 0 => RAN
                                      VBE =0,035V<0,6
       VCE = 2,4U > VAE
                                  Q22: (1022=2,5mA
                                       VBE=0,6V>0 =) RAN
   Q21: 1621=16,83 JLA
                     => RAN
       VBE=0,6V>0
                                        VCE = 26,7V>VBE
       (VCE = 1775 V >VBE
                         => RAN GESR2: SIGESR2 = 21,04MA => RAN
    QESR IDESR = 168,3 JUA
         VBE =0,6V > 0
                                         VCE = 15,95V
         VCE = (5,35 V)VBE
         (iz=i=7,8mA)izmin=5mA (paia de catalog) =) stabilizare
   D4,D5: \ UZ=2,7V
       (12 = 5,1 V => stabilizare Q19: 1013 = 9,54mA => RAN

(12 = 9,54mA>izmin=5mA
```

+ Unificane puteri-carel 1- componente active:

	V	i	P
Da (20120)	3,2 V	9,37 mA	29,98 mw < 114 mw
04,05 (BZX84-C2V7)	2,7-1	7.8 mA	21,06mW < 250mW
Qig	24V	9,54 mA	228,96mw<310mv
D7 (BZX84-C5VI)	5,1 V	9,54mA	48,65mw < 300mw
GI	0,61	4,77 mA	2,862mw < 310mw
Q2	22,65V	4,77mA	(08,04mw< 310mu
Q ₅	2,47	9,54rmA	22,896mw<310mw
Q4	101	AMFF14	47,7mW<310mW
R3	13,25	477mA	63,2mW < 310mW
QZZ	26,7V	2,5 mA	66,75 mw < 310 mw
RESR2	15,95 V	21,04mA	335,58mW< 15W
DESE	15,35 V	168,3JLA	2,583 mW < 310 mW
Q21	17775 V	16,83 JuA	0,298mW < 310mW

CAZUL 2 , Vcc = 32 V SETR = 1

Valori care mu se modifica-la schimbearea tensiunii de intrareldin

→V0= 15,95V

> iQ1=102=103=104=4,77mA > iQE5R2=21,04mA

→ i2 = 9,54mA

+ 1922= 4,77mA

→ 1820=0A

→ iQ5 = 9,54mA

> IREACTIE = 0,986 mA

+VEC1=0,6V

→ ia2= ia3=477mA

+1LOAD = 20,06 mA

→ VCE5 = 2,4 V

→ VCEESR2=15,95V

- VCEFSR=15,35V

→1058=168,3 MA

- iQ21= 16,83 µA

→ ibg = VCC-Vb9 = 32-3,7 = 10,54mA => ibg = 10,54mA

→ i1= Vcc-VZ4-VZ5 = 32-514 = 8,86mA =) i1 = 8,86mA

→ VECIS=VCC-12R2-VZI=32-2,0988-2,7=27,2V => VECIS=27,2V

→ VCE2=VCC-1@1R10-VEC1-VCE5-1@5R8=32-1,0494-0,6-2,4-2,0988= = 25,85V => VCE2=25,85V

→ VEC4 = Voc - 164-R11-3VBE - 1 REACTIE-RC=32-1,0494-1,8-15,94 = 13,2 V =) VEC4=13,2 V

→ VCE21 = VCC-104P11-VECY=32-1,0494-13,2 = 17,75 V VCE21 = 17,75 V

	PSE :	0 (1)	
VEG=0	6V>0 500000000000000000000000000000000000	AN Q2: 102 = 4	0,60>0 => RAN 25,85V>VEB
Cio - Wi	Ame		
VBE = 0,6	50>0 => RAN ,250>VBE	Q4 : 104 = 41 VEB=01 VEC4 = 1	6V20 => RAN 3,2V>VEB
105 = 9	154 ma => RAN 6V>0 => RAN 14V > VEE	Qua: Siala = 9	
		one Q21: [121 =	16,83 JLA =) RAN
(Alse =	0,033,4740	(VCE =	142 A 246E
122: 1622 VAE	=2,5mA =) RAN	QESR: SIGESR	=16813 JUA =1 RAN
VCF:	= 26,74>VBE	VAE:	15,35 V NBE
	A		1
PESRZ SIBE	382=21,04mm -\na	1: No. 05:1 VZ	=2,74 =) 1/2
ESR2 JIBE	582=21,04(MA =)RA	M D41D5: V3	=2,7V == 5mA
1.110	E=0.6V>0	IN D4105:) VZ	=2,7V =) ata =8,86 max izmin=5mA
VO	E=0,60 > VBE		
Vo	E=0,60 > 0 E=15,95 V > VeE	+ 0 -0-0	
A: \ \ AS=	E=0,60 > 0 E=15,95 V > VeE 5,1 V	ma =) stabiliz	
A: \ \ AS=	E=0,60 > 0 E=15,95 V > VeE	ma =) stabiliz	
12=5 12=5 12=5 12=5	E=0,60 > 0 E=15,95 V > VeE 5,1 V 3,54m A > iz, min=5 putori - carel 2-ce	ma =) stabiliz	ohe P
V6)	E=0,60 > 0 E=15,95 V > VeE 5,1 V 3,54m A > 12, min = 5 puturi - cazul 2-ce V	sma =) stabiliz	
12=5 12=5 12=5 12=5	E=0,60 > 0 E=15,95 V > V = E 5,1 V 3,54 m A > 12, min = 5 putori - correl 2 - ce 3,2 V 2,7 V	mponente active:	33,72mw<114mw 23,92mw<250mw
VB VCI VZ= Varificans D9 D4,D5 Q13	E=0,60 > 0 E=15,95 V > VeE 5,1 V 3,54m A > iz, min = 5 putori - corul 2 - ce 3,2 V 27,2 V	mponente active: 10,54 mA 8,86 m A	23,92mw<250mw 259,48mw<310mw
VB VCI VZ= VZ= V2= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ	E=0,60 > 0 E=15,95 V > V & E 5,1 V 3,54m A > iz, min = 5 putori - carul 2 - ce 3,2 V 27,2 V 5,1 V	mpmonte active: 10,54 mA 8,86 mA 9,5 4 mA	23,92mw<250mw 259,48mw<310mw 48,65mw<300mw
VB VCI VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ=	E=0,60 > 0 E=15,95 V > V	sma =) stability mponente active: i 10,54 mA 8,86 mA 9,54 mA	23,92mw<250mw 259,48mw<310mw 48,65mw<300mw
VB VCI VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ=	E=0,60 > 0 E=15,95 V > V & E 5,1 V 3,54m A > iz, min = 5 putori - carul 2 - ce 3,2 V 27,2 V 5,1 V	mponente active: 10,54 mA 8,86 m A 9,54 mA 9,54 mA	23,92mw<250mw 259,48mw<310mw 48,65mw<310mw
VB VCI VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ=	E=0,60 > 0 E=15,95 V > V & E 5,1 V 3,54m A > iz, min = 5 putori - carul 2 - ce 3,2 V 27,2 V 5,1 V 0,6 V 25,85 V 2,4 V	mponente active: 10,54 mA 8,86 m A 9,5 4 mA 9,5 4 mA 4,77 mA	23,32mw < 250mw 259,48mw < 310mw 48,65mw < 300mw 2,862mw < 310mw
VB VCI VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ=	E=0,60 > 0 E=15,95 V > V & E 5,1 V 3,54m A > iz, min = 5 putini - carul 2 - ce 3,2 V 27,2 V 5,1 V 0,6 V 25,85 V 2,4 V 13,2 V	10,54 mA 8,86 mA 9,54 mA 9,54 mA 4,77 mA	23,32mw < 114mw 23,92mw < 250mw 259,48mw < 310mw 48,65mw < 300mw 2,862mw < 310mw 123,3 mw < 310mw 22896mw < 310mw
VB VCI VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ=	E=0,60 > 0 E=15,95 V > V & E 5,1 V 3,54m A > iz, min = 5 putori - carul 2 - ce 2,2 V 27,2 V 5,1 V 0,6 V 25,85 V 2,4 V 13,25 V	mponente active: 10,54 mA 8,86 m A 9,54 mA 4,77 mA 4,77 mA 4,77 mA 4,77 mA	23,32mw < 114mw 23,92mw < 250mw 259,48mw < 310mw 48,65mw < 300mw 2,862mw < 310mw 123,3 mw < 310mw 24896mw < 310mw
VB VCI VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ=	E=0,60 > 0 E=15,95 V > V & E 5,1 V 3,54m A > iz, min = 5 putori - correl 2 - ce 3,2 V 27,2 V 5,1 V 0,6 V 25,85 V 2,4 V 13,2 5 V 25,85 V 25,85 V	mponente active: 10,54 mA 8,86 m A 9,54 mA 9,54 mA 4,77 mA 4,77 mA 4,77 mA 4,77 mA 4,77 mA	23,32mw < 114mw 23,32mw < 250mw 259,48mw < 310mw 48,65mw < 300mw 2,862mw < 310mw 123,3 mw < 310mw 22896mw < 310mw 62,96mw < 310mw 63,2mw < 310mw
VB VCI VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ= VZ=	E=0,60 > 0 E=15,95 V > V & E 5,1 V 3,54m A > iz, min = 5 putori - carul 2 - ce 2,2 V 27,2 V 5,1 V 0,6 V 25,85 V 2,4 V 13,25 V	mponente active: 10,54 mA 8,86 m A 9,54 mA 4,77 mA 4,77 mA 4,77 mA 4,77 mA	23,92mw < 250mw 259,48mw < 310mw 48,65mw < 300mw 2,862mw < 310mw 123,3 mw < 310mw 22896mw < 310mw 62,96mw < 310mw

VCC = 28,8 V SETP = 0

Valori care mu re modifica la rehimbarea tensiunii de ievire (modificarea valorii potentiomobilii Pi) (din calcul):

AmfE, 2 = 201 +

-1020=OA ->102=103=477mA

→ 12=9,54mA

-> VECI=0,6V -> VEC 19 = 24 V

Am 8, F=1i 6

→ iGI=IGZ=IGZ=IGG= 4,77mA → VCEZZ=Z6,7 V

-> 105=9,54mA -> 1022=2,5mA

→ VCE5=214 V + VCE2=22,65V

+ Vo = VZ7. R6+ R12+R9+R27+RP1 = 51. 16.17 = 8.1V => Vo=8,1V 10,17

R6+R12+R9+R27 = 16,17 =0,5 mA | IREACTIE =0,5 mA

→ iLOAD = VO = 8,1 = 10,18mA => iLOAD =10,18mA

→ IGESR2 = IREACTIE+ LICAD = 10,68 mA =) IGESR2 = 10,68 mA

→ VEC4 = VCC - 184. R11-3VBE-IREACTIE-RC = 28,8-1,0 494-1,8-8,085 =

= 17,86 V =) VEC4 = 17,86V

→ VCE3 = VCC-1@4R1-VEC4-VCE5-105R8=28,8-1,0494-17,86-2,4-2,0388=

= 5,4V =) VCE3 = 5,4V → VCE21 = 28,8-1,0494-(7,86 = 9,89 V =) VCE21 = 3,89 V

→ VCEESR2, =VO = 8,1V

→ VOEESR=VCEESR2-VGEESR2= 4,5 V => VCEESR=4,5V

+ IGESR = IBESR2

Dan IBESRZ = ICESRZ = 10,68 = 85,44 MA =) BRESRZ

=> iRESR= 85,44)LA

- iQ21 = IBESR

Donigese= icese = 85,44 = 8,544 JIA

=> 1021=8,544 MA

Dispositivele remain in aceleani regimeri de functionare ca in carurile anterioare.

1	V	ī	P
D9	3,2V	AmfE,e	29,38mW<44mw
D41 D5	2,74	Ama, F	21,06mW < 250mW
Q13	24V	9,54mA	228,96mW<310mW
D7	5,11	9,54mA	48,65m W < 300mW
Q1	0,6V	4,77 mA	2,862mW<310mW
Q2	22,65V	4,77mA	108,04mW<310mW
Q5	2,44	9,54mA	22,896mW < 310mW
Q4	47,86V	4,77mA	85,192mw 4310mw
Q ₃	5,4 V	Amff.ib	25,75mw<310mw
022	26,7 V	2,5mA	66,75mW < 310mw
QESR2	8,1 V	10,68mA	86,5mW < 15W
GESR	7,50	85,44 JLA	0,64mm < 310mm
G21	9,897	8,544 MA	0,084mw< 310mw

CAZUL4: VCC=32V SETA= 0

- → Vo=8,1 V (mu re modifica Jota de carrel 3)
- + ipg = 10,54 mA (mu se modifica bità de cazul 2)
- → 12 = 9,54 mA (mu re modifica in miciunul din cazuri)
- →11= 8,86 mA (mu se modifica fata de cazul 2)
- → iQ5=9,54 mA (mu se modificat In miciumul din cazuri)
- → i02=103=105=4,77 mA
- → VEC19 = 27,2 v (muse modifica pta de cazula)
- * 101=102=103=104=477mA
- → 1622 = 2,5 mA (mu se modifica in miciumul din cazuri)
- > iFEACTIE=0,5mA (mu se modifica jata de capul3)
- * i LOAD = 1918 mA (mu se modifica Spita de cargul 3
- → IBESR2 = 10,68 mA (mu se modifica lota de capul 3)
- + 1600 € OA
- → VEC;= 0,6V
- → VCE22=25,85V (muxemodifica fato de cazul 2)
- + VCE5 = 2,4V
- -> VCE2 = 25,85 V (mure modifica fata de cazul2)
- + VEC4 = Voc-104. R11-3 VBE-IREACTIE. Rc = 32-1,0494-1,8-8,085 =
- = 21V VEC4=21V

- -> VCE3= VCC-104.R11-VEC4-VCE5-105R8=32-1,0494-21-2,4-2,0988= = 5,45V => VCE3=5,45V
- → VCE21 = Vcc-104. RII-VEC4 =32-1,0494-21= 9,95 => VCE21=9,95V
- * VCEBESR2=V0=8,1V (mu se modifica ptà de cazul3)
- * VCEBESR = 7,5 V (mu se modifica pta de cozul 3)
- + i BESR = 85,44 µA (mu remodifica fota de cazul 3)

→ i 021= 8,544 jeA (mu se modifica jata de corgul 3)

Dispozitivele raman un aceleari regimeri de functionare ca un consume antirioare.

Monisticane outeri-caruly-componente active

Tental	v	i	P
29	3,2∨	10,54 mA	33,72mwc (14mw
04,05	2,4∨	8,86mA	23,92mw< 250mw
Q19	27,2V	9,54mA	259,46mw <310mm
74	5,17	9,54mA	48,65 < 300 mw
Qı	0,60	4,7+mA	2,862mw<310mw
Q2	25,85	4,77mA	123,3mw < 310mw
Q5	2,4V	9,54mA	22,896mw<310mm
04	217	Amffib	100,17mW<310mu
Q3	5,45 V	4,77 mA	26mw < 310mw
Q22	25,85 V	- 25mA	64,62mwc310mw
QESRL	811 V	10,68mA	86,5mw < 15W
QESR	7,5V	85,44 JLA	0,64mw < 310mw
Q21	9,25 V	8,54 MA	0,084mw < 310mw

· Calculul puterilor disipate pentru componentele pasive si verificarea respectivii limitelor maxime

- VCC = 32V, SETA = 1.

Pentru R4, R14, R15: P=12 R= 8,862 106 103=78,4mw < 125mw Pentru RI7, R18, R19: P=12R=10,54210- 910=101,09 mw <125mw Pentru Rz: P=12R=9,54210-6220=20,02mw < 125mw Pentru Rie: P=13R=4,773106220=5mw<125mwv Pentru R8: P=13R= 9,54310-6220 = 20,02mw < 125mw Pentru R11: P=12R=4,77210-6220=5mw<125mw Pentru R29, R34: P=12R=4,77.10.6220=5mW<125mW Pentru R30, R28: P= 12. R = 4,772. 10 : 150 = 3,41mw < 1 25 mw Pentrue RC1: P=12 R=21,042.10-6 1 = 442,68 jum <125 mw Pentru Rcz: P=12 R= 21,042,10-60,47=208,06 MW <125mW Pentru RC3, RC4: P=1? R=10,52? 10-60,47=52 JLW < 125 mw Bentrue RG: P=13R=0,986310-627.103=2,62mw<125mw Pentru Riz: P=12R=0,98621063,3.103=3,2mw <125mw/ Pentru A: P=13 R=0,98631065.103=4,86mW<125mW Pentru Pa: P=1? R=4,77210-6100=2,27mw<125mw Pentru Rg: P=12 R= 0,986210-647.103=4,57mw<125mw Pentru R27: P=1?R=0,986?10:470 = 457 LW < 125mw Pentin RLOADS, RLOADS: P=1? R = 10,03? 10-6 910=91,54mw<125mw Pentru RLOADIO, RLOADII: P=1?R=10,03?10.680=68,4mw<125mw

Deriva termica:

CONT:
$$ST = \Delta V_0 = \Delta \left(V_{ZY} \cdot \frac{R_6 + R_{12} + R_{1} + R_{2} + R_{27}}{R_{2} + R_{27} + R_{27}} \right)$$

$$CONTT: ST = \Delta V_0 = \Delta \left(V_{ZY} \cdot \frac{R_6 + R_{12} + R_{1} + R_{27}}{R_{2} + R_{27} + R_{27}} \right)$$

BODT: ST = AVO = A (VZ+ R6+R12+RA+R9+R27)

Am ales dioda Zemer D7 care variaza cu temperatura cu 0,1 mv/°C

BOTT: ST = R6+R12+RA+R9+R27 - AVZ7 = 16,17 .0,1= 0,158 mv/C

BOZIT ST = R6+R12+RP1+R9+R27 - AVZZ = 16,17 .0,1=0,31 MV/C

3.2) Punctul static de funcționare-determinat experimental (psf)

Puterea disipată pe componente la tensiunea maximă de ieșire Vout=16V

Puterea disipată pe componente la tensiunea minimă de ieșire Vout=8V

Se poate observa atât în psf-ul experimental, cât și în cel teoretic că pentru toate componentele puterea disipată nu depășește maximul puterii admisibile.

• Pentru Vin=32V și Vout=8V

• Pentru Vin=32V și Vout=16V

• Pentru Vin=28,8V și Vout=8V

• Pentru Vin=28,8V și tensiunea Vout=16V

Amplificarea rezultată din simulări

Coeficientul de variație cu temperatura

Tensiunea de ieșire în funcție de tensiunea de intrare

Layout

Layer electric TOP

Layer electric BOTTOM

Soldermask top

Soldermask bottom

Silkcreen top

Solderpaste top

- Componentele active au fost poziționate cât mai aproape de mijlocul plăcuței deoarece acestea disipă putere, iar cele pasive au fost plasate pe marginea plăcii.
- Traseele de interconectare pentru semnal au fost alese de dimensiunea : 16 mil, iar traseele de interconectare pentru VCC și masă 0 (GND) au fost alese de dimensiunea de 20 mil deoarece prin acestea trec curenți de sute de mA.
- Etajul diferențial împreună cu oglinda ce polarizează acest etaj au fost plasate astfel încât să fie realizată o împerechere termică bună.
- Conectorii au fost plasați la margini pentru a se realiza cu ușurință conexiunile din exterior.