Structural Causal Models

introduction

Wouter van Amsterdam

2024-08-06

Table of contents

- DAG-recap
- Structural Causal Models: definitions
- Identification
- Defining counterfactuals and the causal Hierarchy (of questions)

DAG-recap

In past lectures on DAGs

- 1. causal directed acyclic graphs (DAGs) encode assumptions on what variables cause what
- 2. an intervention is defined as a mutilation of this DAG where the treatment variable no longer 'listens' to its parents
- 3. a causal effect is the effect of an intervention
- 4. DAG patterns:
 - fork (confounding)
 - chain (mediation)
 - collider
- 5. typically:
- condition on confounders, don't condition on mediators or colliders
- 6. in more complex DAGs, use d-separation to check identifyability
- 7. backdoor criterion

In this lecture: structural causal models (SCMs)

$$U_{Z}, U_{T}, U_{Y} \sim p(U)$$

$$Z = f_{Z}(U_{Z})$$

$$T = f_{T}(Z, U_{T})$$

$$Y = f_{Y}(T, Z, U_{Y})$$

Why SCMs?

- With DAGs we can:
 - express (non-parametric) prior knowledge
 - understand that seeing ≠ doing
 - know what variables to condition on for estimating treatment effect
- However,
 - DAGs and RCTs do not cover all causal questions
 - SCMs go a level deeper than DAGs
 - DAGs naturally 'arise' from SCMs
 - some questions are not identified when only specifying a DAG, but we may have additional information that can lead to identification
 - understand 'identifyability'
 - SCM thinking aligns [^according to me] with physical thinking about the world and is a natural way to think about causality

Topics of today

- SCMs: the world as computer programs
- interventions are submodels
- bonus queries:
 - counterfactuals
- Pearl Causal Hierarchy
- other uses of DAGs: missing data, selection
- reflections on DAGs, limitations

Structural Causal Models: definitions

Think of the world as a computer program with a set of

- (endogenous) *variables*:
 - surgery = duration of surgery (hours)
 - los = length of stay in hospital post surgery (days)
 - survival = survival time (years)
- background variables (exogenous):
 - u_surgery, u_los, u_survival
- functions f_ for each variable which depend on its parents pa_ and its own background u_:
 - surgery = f_surgery(pa_surgery,u_surgery)
 - los = f_los(pa_los, u_los)
 - survival = f_survival(pa_survival, u_survival)

Together these define a *Structural Causal Model* (see definition 7.1.1 in <u>Pearl 2009</u>, and further) (notation: $M = \langle U, V, F \rangle$)

Structural Causal Model 1

```
1 f_surgery <- function(u_surgery) { # pa_surgery = {}</pre>
     u surgery
 4 f_los <- function(surgery, u_los) { # pa_los = {surgery}</pre>
     surgery + u los
 7 f_survival <- function(surgery, los, u_survival) { # pa_survival = {</pre>
     survival = los - 2 * surgery + u_survival
 9
10
   scm1 <- function(u_surgery, u_los, u_survival) {</pre>
     surgery = f_surgery(u_surgery)
12
   los = f_los(surgery, u_los)
13
   survival = f_survival(surgery, los, u_survival)
14
     c(surgery=surgery, los=los, survival=survival)
15
16 }
17 scm1(2, 1, 5)
```

```
surgery los survival 2 3 4
```


Recursive Structural Causal Models imply a Directed Acyclic Graph

An SCM is *recursive*, i.e. *acyclic* when following the chain of parents, you never end up at the same variable twice

```
1 scm1 <- function(u_surgery, u_
2 surgery = f_surgery(u_surge)
3 los = f_los(surgery, u_
4 survival = f_survival(surger)
5 c(surgery=surgery, los=los, 6)</pre>
```


Recursive Structural Causal Models imply a Directed Acyclic Graph

An SCM is *recursive*, i.e. *acyclic* when following the chain of parents, you never end up at the same variable twice

```
1 scm1 <- function(u_surgery, u_
2 surgery = f_surgery(u_surge)
3 los = f_los(surgery, u_
4 survival = f_survival(surger)
5 c(surgery=surgery, los=los, 6)</pre>
```


Recursive Structural Causal Models imply a Directed Acyclic Graph

An SCM is *recursive*, i.e. *acyclic* when following the chain of parents, you never end up at the same variable twice

```
1 scm1 <- function(u_surgery, u_
2 surgery = f_surgery(u_surge)
3 los = f_los(surgery, u_
4 survival = f_survival(surger)
5 c(surgery=surgery, los=los, 6)</pre>
```

scm1 (without specifying the f_s) and the DAG are equivalent (they describe the same knowledge of the world)

for the remainder, we assume recursiveness

Submodel and Effect of Action

• **submodel**: in **scm1** replace **f_los** with a specific *value*, e.g. 7 days

```
1 submodel7 <- function(u_surgery, u_los, u_survival) {
2    surgery = f_surgery(u_surgery)
3    los = 7
4    survival = f_survival(surgery, los, u_survival)
5    c(surgery=surgery, los=los, survival=survival)
6  }
7
8 submodel7(2, 1, 5)

surgery    los survival
2    7    8</pre>
```

• effect of action: resulting SCM of submodel (notation: $M_x = \langle U, V, F_x \rangle$)

Submodel and Effect of Action as a mutilated DAG

In scm1 replace f_{los} with a specific *value*, e.g. 7 days (notation: M_x)

```
1 submodel7 <- function(u_surger
2    surgery = f_surgery(u_surger
3    los = 7
4    survival = f_survival(surger
5    c(surgery=surgery, los=los,
6 }
7
8 submodel7(2, 1, 5)</pre>
```

```
surgery los survival 7 8
```

The DAG describes a submodel where T no longer 'listens' to any variables but is controlled to be equal to a specific value (e.g. 7)

The Effect of Action do(X = x) is defined as the submodel M_x .

Specifying a distribution for exogenous variables U

- Exogenous variables U represent random variation in the world.
- We can specify a distribution for them (e.g. Gaussian, Uniform)

```
1 sample_u <- function() {
2    u_surgery = runif(1, 2, 8)
3    u_los = runif(1, -1, 7)
4    u_survival = runif(1, 8, 13)
5    c(u_surgery=u_surgery, u_los=u_los, u_survival=u_survival)
6 }
7 sample_u()

u_surgery    u_los u_survival
4.317931    3.909789    11.331566</pre>
```

Figure 1: 1000 random samples of U

A Probabilistic Causal Model is a SCM with a distribution over U

```
1 sample_pcm <- function() {
2   U <- sample_u()
3   V <- scm1(U[['u_surgery']], U[['u_los']], U[['u_survival']])
4   c(U, V)
5  }
6
7 sample_pcm()

u_surgery   u_los u_survival   surgery   los   survival
2.034069  5.222650  12.690868  2.034069  7.256719  15.879449</pre>
```

Figure 2: Realisations of endogenous variables V over random samples of U in

Figure 1

Calculating a treatment effect in a fully specified probabilistic causal model

• take random samples from U, push forward through submodel7 and submodel3

```
1 \# N = 1e3
2 # us <- map(1:N, ~sample_u())</pre>
 4 v3s <- map(us, ~do.call(submodel3, as.list(.x)))
  v7s <- map(us, ~do.call(submodel7, as.list(.x)))</pre>
 7 v3df <- v3s |> map(~data.table(t(.x))) |> rbindlist()
 8 v7df <- v7s |> map(~data.table(t(.x))) |> rbindlist()
 9 v3df[, idx:=.I]
10 v7df[, idx:=.I]
11
12 dfa <- rbindlist(list(</pre>
13 scm1=vdf,
14 submodel3=v3df,
15 submodel7=v7df
16
  ), idcol='model')
17
18 dfa[, list(mean_survival=mean(survival)), by="model"]
```


	model	mean_survival
	<char></char>	<num></num>
1:	scm1	8.613519
2:	submodel3	3.585969
3:	submodel7	7.585969

Identification

Recap of definitions

- Structural Causal model:
 - endogenous variables V
 - exogenous (noise) variables U
 - deterministic functions f_i(pa_i,u_i)
- Effect of Action do(T = t): submodel where f_T replaced with fixed value t
- Probabilistic Causal Model: SCM + distribution over U

In the real world

- knowing the SCM is a super-power: you basically know everything revelant about the system, but in the real world:
- we do not observe U
- we typically do not know f_
 - we may be willing to place assumptions on f_ (e.g. generalized linear models)
- ullet we are presented with realizations V_i of this SCM over a random sample of U
 - this is another assumption on the sampling but this is largely orthogonal to causal inference
- we may be interest in knowing:
 - 1. what is the expected survival time if we *always* admit patients for exactly 7 days?

When and how might we learn the answer to such questions?

Identification

Causal effect identification:

Definition 3.2.3 (Identifiability)

Let Q(M) be any computable quantity of a model M.

We say that Q is **identifiable** in a class M of models if, for any pairs of models M_1 and M_2 from M,

 $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(y) = P_{M_2}(y)$.

If our observations are limited and permit only a partial set F_M of features (of $P_M(y)$) to be estimated,

we define Q to be identifiable from F_M if $Q(M_1) = Q(M_2)$ whenever $F_{M_1} = F_{M_2}$.

Idenfitication in pictures

Someone killed the priest (†), we want to know who-dunnit (= Q) Based on prior knowledge on *5 suspects* (all the SCMs compatible with our DAG)

.

If we had full data, we would know it was M_3

Idenfitication in pictures

Someone killed the priest {{< iconify ph:knife >}}, we want to know who-dunnit (= Q) Based on prior knowledge on *5 suspects* (all the SCMs compatible with our DAG)

.

If we had full data, we would have know it was M_3 Unfortunately, it was dark an we only got a gray-scale image of the perpetrator All our suspects (models) lead to the same partial observations Based on *observed data* and *assumptions* we cannot *identify* the answer to our question Q,

i.e. multiple models with different answers for Q fit the observed data equally well

Not identified vs estimand

The backdoor adjustment in this DAG means the correct estimand is:

$$P(Y|do(T)) = \sum_{z} P(Y|T,z)P(Z=z)$$

- If we did not observe Z, we could still come up with a latent-variable model for Z and a model for $Y \mid T$, Z and get a value.
- However, we can formulate multiple distinct latent variable models that each yield a different treatment effect (i.e. the output of the estimand)
- But these latent variable models all fit the observed data equally well
- So we cannot identify the treatment effect

Seeing is not doing

Figure 3:

$$P(Y|T) = \sum_{z} P(Y|T,z)P(Z = z|T)$$

$$P(Y|T) = \sum_{z} P(Y|T,z)P(Z = z|T)$$
$$=^{2} \sum_{z} P(Y|T,z)P(Z = z)$$

Figure 4: ² because in the intervened DAG, Z is independent of T

- $P(Y|do(T)) \neq P(Y|T)$ is Pearl's definition of confounding (def 6.2.1)
- this shows why RCTs are special (i.e. no backdoor paths into T)

Another path to identification: parametric assumptions

- for example:
 - assumption 1: M₁, all SCMs with same DAG
 - assumption 2: M₂ SCMs with linear functions and Gaussian error terms
 - assumption 1+2: $M = M_1 \cap M_2$ (DAG + linear gaussian)
- many more effects are identified in this setting
- 'works' with unobserved confounding, positivity violations
- caveats:
 - much harder to determine identifyability (no backdoor-rule)
 - prefer weaker assumptions over stronger assumption

Defining counterfactuals and the causal Hierarchy (of questions)

Counterfactuals

- all of the above can be achieved with DAGs, but we haven't used SCMs *super-power* yet: counterfactuals
- RCT / DAG questions: What is the expected survival if we keep all patients in the hospital for 7 days?

Take it one level higher: counterfactuals

For patient Adam we had this data:

- surgery duration: 4 hours
- length of stay: 3 days
- survival: 4 years

For patient Zoe we had this data:

- surgery duration: 4 hours
- length of stay: 3 days
- survival: 7.5 years
- we do not observe Adam's/Zoe's U
- What would the expected survival have been had Adam/Zoe been kept in the hospital for 7 days?

Adam versus Zoe

- Average causal effects in subgroup with surgery=4:
 - 3-days LOS: 5.7
 - 7-days LOS: 9.7
- what do we expect for Adam and Zoe if they would have been kept in the hospital for 7 days?

Computing counterfactuals with SCMs

- Given our information on the structural equation for survival: $survival = los 2 * surgery + u_{survival}$
- and observed values on Adam's and Zoe's surgery AND survival following los=3
- we can compute their individual u_{survival}:

patientatientpetisunglersyurgeryivallorvivaturviivaturvisualvival7

Adam	Adam4	Adam4	3	4	43	43	9 4	9	8
Zoe	Zoe 4	Zoe 4	3	4	735	7.5	12.४.5	12.5	11.5

and (counterfactual) survival under 7 days LOS

Computing counterfactuals

- notation: $P(Y_{t'} = y' | T = t, Y = y)$ where $Y_{t'}$ means "set T = t' through intervention"
- steps:
 - 1. Abduction (update P(U) from observed evidence)
 - 2. Action (modify the treatment)
 - 3. Prediction (calculate outcomes in submodel, putting in the updated P(U))

Pearl's Causal Hierarchy (of questions)

If you have data to solve the upper, you can solve the lower ranks too (<u>Bareinboim et al. 2022</u>)

- 1. counterfactuals
- 2. interventions
- 3. associations

Where do we get this knowledge from?

- not from observational data
- not from RCTs
- from assumptions
- can get bounds from combinations of RCT data and observational data
- caveat: some say the hierarchy is upside down because you go further away from data and closer to unverifiable assumptions the 'higher' you get

Not covered but also possible:

- DAGs:
 - soft intervention: don't set treatment to fixed value but replace function with other function of variables
 - express patterns for missing data by including missingness indicators
- SCMs:
 - probability of sufficiency
 - probability of necessity

References

Bareinboim, Elias, Juan Correa, Duligur Ibeling, and Thomas Icard. 2022. "On Pearl's Hierarchy and the Foundations of Causal Inference (1st Edition)." In *Probabilistic and Causal Inference: The Works of Judea Pearl*, edited by Hector Geffner, Rita Dechter, and Joseph Halpern, 507–56. ACM Books. Pearl, Judea, ed. 2009. "The Logic of Structure-Based Counterfactuals." In *Causality*, 2nd ed., 201–58. Cambridge: Cambridge University Press.

https://doi.org/10.1017/CBO9780511803161.009.