

1d) 
$$\{\neg p_0, \neg (p_1 \land \neg p_2)\} \not\vdash p_2 \rightarrow p_0$$
 Demostración: 
$$\{\neg p_0, \neg (p_1 \land \neg p_2)\} \not\vdash p_2 \rightarrow p_0$$
  $\Leftrightarrow$  {Teorema de correción y completitud} 
$$\{\neg p_0, \neg (p_1 \land \neg p_2)\} \not\models p_2 \rightarrow p_0$$

 $\Leftrightarrow$ 

 $\Leftrightarrow$ 

 $\Leftrightarrow$ 

 $\Leftrightarrow$ 

 $\Leftrightarrow$ 

 $\Leftrightarrow$ 

 $\Leftrightarrow$ 

$$\exists v : \neg p_0 = 1 \& \neg (p_1 \land \neg p_2) = 1 \& \max\{1 \neg p_0\} = 0$$

 $\langle \exists v : \{ \llbracket p_0, \neg (p_1 \land \neg p_2) \} \rrbracket = 1 \& p \llbracket \rightarrow p_0 \rrbracket = 0 \rangle$ 

$$\exists v : v(p_0) = 0 \& \min[p_0] 1 - p_0] = 0 \& v(p_2) = 1 \& v(p_0) = 0$$

$$\langle \exists \, v : v(p_0) = 0 \, \& \, p[\![ ] \!] \! = 0 \, \mid \mid \, 1 - p[\![ ] \!] \! = 0 ) \, \& \, \, v(p_2) = 1 \rangle$$

$$\langle \exists v : v(p_0) = 0 \& (v(p_1) = 0 || v(p_2) = 1) \& v(p_2) = 1 \rangle$$

$$\langle \exists v : v(p_0) = 0 \& v(p_2) = 1 \rangle$$

$$\Leftrightarrow \{\text{Es claro que si existe}\}$$

True

- 2. Decida cuáles de los siguientes conjuntos son consistentes:
  - a)  $\{\neg p_1 \land p_2 \rightarrow p_0, p_1 \rightarrow (\neg p_1 \rightarrow p_2), p_0 \leftrightarrow \neg p_2\}.$
  - b)  $\{\neg p_1 \lor \neg p_2 \to \neg p_0, p_1 \land p_0, p_1 \to (\neg p_0 \lor \neg p_2), \neg p_0 \leftrightarrow \neg p_2\}.$
  - c)  $\{p_0 \to p_1, p_1 \to p_2, p_2 \to p_3, p_3 \to \neg p_0\}.$
  - d)  $\{p_0 \to p_1, p_0 \land p_2 \to p_1 \land p_3, p_0 \land p_2 \land p_4 \to p_1 \land p_3 \land p_5, \dots\}$  ("pares implican impares").
  - e)  $\{p_{2n}: n \geq 0\} \cup \{\neg p_{3n+1}: n \geq 0\}.$
  - f)  $\{p_{2n}: n \geq 0\} \cup \{\neg p_{4n+1}: n \geq 0\}.$

(1) 
$$P_0 \rightleftharpoons 7P_2$$
  $O$   $F(P_0) \rightleftharpoons O$   $F(\neg P_2) \rightleftharpoons S$   $P_0 \rightarrow \neg P_2$   $Q$   $P_2 \rightarrow P_0$   $F(P_2) \rightleftharpoons L$   $P(P_2) \rightleftharpoons O$ 

$$\begin{array}{c} (1) \\ (2) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\$$



|                                           | 4. D                | m emo          | stra             | r qu         | ie "        | Γ⊢             | $\neg \varphi'$ | eq.             | uiv               | ale | e a  | " $\Gamma$ | Ů { | $\varphi\}$ | es               | in          | con   | sist | ent   | e". | 1   | 1  | ı |     |    |    |     |     |  |
|-------------------------------------------|---------------------|----------------|------------------|--------------|-------------|----------------|-----------------|-----------------|-------------------|-----|------|------------|-----|-------------|------------------|-------------|-------|------|-------|-----|-----|----|---|-----|----|----|-----|-----|--|
| Fs                                        |                     |                | <b>-</b>         | `` ^ _ /     | , , , , ,   | er-            |                 |                 | /_                | 2   | . // | 40         |     | _ ^/        | 1                |             | 2.00  | 1 2  | )<br> | 10  | 9   |    |   |     |    |    | Pus | 9/0 |  |
| 55 (                                      |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       | 10  | 7   | سو |   | - e | وع | ne | Cac | 75  |  |
|                                           | ع ر                 | lξ             | es               | r r          | ıco         | ~ S }          | 8 Le            | 2 m             | 4e                | , . | ر پ  | •          | 1   | l-          | 7                | ı Q         | -     |      |       |     |     |    |   |     |    |    |     |     |  |
| 50.                                       | <u></u>             | D.             | +0               | 1 a          | بمد         |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           | P ()                |                |                  |              | ع ا         | ŒŚ             |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| Ø                                         | reli                | D0 .           | _ ح (            | L            |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| Sec                                       | <b>-</b>            |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| 6                                         | \<br>\              |                | $\int_{0}^{\pi}$ | >            |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           | ) z                 | Ė              | 10               | -2           | L           |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| Pou                                       | zh∈                 | . 2            | ue               | 0            | Ve          | st .           | م ا             | 1               | <u>-</u>          | 70  | D    |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| C                                         | ore                 | 10             | D) >             | 7 9          | P           |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              | +           |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| 14                                        | ŗρ                  |                | <u>.</u> D       | ->           | I)          | )              |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     | 7              | e                |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| <u> </u>                                  | l'ρ (               |                | D <sub>C</sub>   | 1            | }           | φ}             |                 | 2 (1            | r                 | J X | 95   | )          | 86  | ,}          |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                | 0                |              |             | C3             |                 |                 |                   |     |      |            |     | ا           |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                | ڪ               |                 | -                 |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| 5.                                        | Demo                | strar          | que              | $\Gamma^{+}$ | := -        | $\{\varphi\in$ | PR              | $\overline{OP}$ | :                 | no  | o oc | urre       | en  | $\varphi$ } | es               | co          | nsist | tent | e (A  | Ayu | da: | se |   |     |    |    |     |     |  |
|                                           | puede               | e dar          | una              | f ex         | plíc        | ita t          | al qu           | ıe [[ς          | $\rho  bracket_f$ | =   | 1 pa | ara 1      | tod | a $\varphi$ | $\in \mathbb{R}$ | $\Gamma^+)$ | ).    |      |       |     |     |    | _ |     |    |    |     |     |  |
| sea                                       | i ·                 |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| P.                                        | (L)<br>(Pi)<br>(401 | OP             | ->               | § c          | 3 13        |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| P                                         | (1)                 | = 0            |                  |              |             |                |                 | . ۲۰۰۰          | <b>-</b> /        | 12  |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| 0 (                                       | (Pi)                | = 1<br>//\ =   | P                | (4)          | Q i         | 0/4            | • )             | 2               | E //              | <   |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| Ρ (                                       | 4 .                 |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| <b>~</b> +                                | 5                   | 10 0           | DO               |              | )<br>)      | 0 /            | ۶ _ ۲           |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           | 2                   | $\ell^{\circ}$ | -16              | J 1          | <u>ا</u> ر  | W (            | Q)              |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           | r                   | - 4-           | es               | رم           | us.         | ~s +           | ent             | e               |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| 1)4<br>51                                 | ea.                 | ، مو<br>٦٦     | ρ(ρ,             | <u> </u>     | 1           |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     | <b>-</b>       |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| (V)                                       | ruet                | , 0            | g ne             | _ 7          | ノレ          | all            | de              | 1               |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| 1                                         | 4                   | <u>]</u> ] n   | = 1              | ,            |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| <≈>                                       | 1.                  |                |                  |              |             |                | .\              |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
| De 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | (V                  | 064            | 160              | oρ           | "! <b>/</b> | '(U            | リ >.            | ⊈ د             | Q.                | IJ  | =1,  |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |
|                                           |                     |                |                  |              |             |                |                 |                 |                   |     |      |            |     |             |                  |             |       |      |       |     |     |    |   |     |    |    |     |     |  |

Pil 
$$P(P_i) \Rightarrow TP_iP_i = 1$$

Since  $P(P_i) \Rightarrow TP_iP_i = 1$ 

(QOY)

P(U) & P(W)

P(U) & P(W)

[Q) = 1

(QVY) = 1







$$Hip(D) = \{\neg(p_1 \rightarrow p_2)\}$$

$$\subseteq \Gamma$$

8. Dar al menos dos conjuntos  $\Gamma$  diferentes que sean consistentes maximales y contengan al conjunto  $\{p_0, \neg(p_1 \to p_2), p_3 \lor p_2\}$ 

$$\mathcal{D}(\neg(P_1->P_2)) = 1 - \mathcal{V}(P_1->P_2)$$

$$= 1 - \max \{1-1, 0\}$$

$$= 1 - \max \{1-1, 0\}$$

$$= 1 - \max \{1-1, 0\}$$

```
\Leftarrow \{u = v\}
              \langle \exists v : \langle \forall \varphi \in Prop : \mathcal{V} = 1 \& \mathcal{A} = 1 : \mathcal{A} = 1 \rangle
              \langle \exists v : \mathcal{V} = 1 \& \langle \forall \varphi \in Prop : \varphi = 1 : \varphi = 1 \rangle
              \langle \exists v : \mathcal{V} | = 1 \rangle
⇔ {Existe, en particular:
                     v(p_i) = 1
              True
               \langle \forall \Gamma' \supseteq \Gamma : \Gamma' \text{ es consistente} : \Gamma' = \Gamma \rangle
\Leftrightarrow
                \forall \varphi \notin \Gamma : \{\varphi \cup \Gamma\} \text{ es inconsistente} \}
\Leftrightarrow {Teorema: \Gamma \cup \{\varphi\} es inconsistente \Leftrightarrow \Gamma \vdash \neg \varphi}
                \forall \varphi \notin \Gamma : \Gamma \vdash \neg \varphi \rangle
\Leftrightarrow {Teorema: \Gamma \vdash \varphi \Leftrightarrow \varphi \in \Gamma}
                \forall \varphi \notin \Gamma : \neg \varphi \in \Gamma \rangle
\Leftrightarrow {Teorema: \neg \varphi \in \Gamma \iff \varphi \notin \Gamma}
                \forall \varphi \notin \Gamma : \varphi \notin \Gamma \rangle
\Leftrightarrow
                True
      Teorema:
      Sea
      \Gamma \subseteq Prop
      \varphi \in Prop
                     \Gamma \cup \{\varphi\} es inconsistente \Leftrightarrow \Gamma \vdash \neg \varphi
      Demostración:
      (⇒) en el ejercicio 4
      Vuelta (⇐) suponiendo el antecedente:
      Sea:
      D_1 = \frac{1}{\neg \varphi}
      Tal que Hip(D) ⊆ Γ
      (D_1 existe por antecedente)
      D = \frac{\varphi \qquad \vdots \qquad \qquad }{\Box \varphi D_1} \to E
      Pruebo que D atestigua \Gamma \cup \{\varphi\} \vdash \bot:
                    Concl(D) = \perp es por definición
                    Hip(D)
                    \{\varphi\} \cup Hip \left( egin{array}{c} \vdots \\ \neg \varphi \end{array} D_1 
ight)
       \subseteq \{Hip(D) \subseteq \Gamma\}
                    \{\varphi\} \cup \Gamma
       =
                    \Gamma \cup \{\varphi\}
```

| 91 | o) I | La  | s t  | au   | to   | log   | gías | 5    |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|----|------|-----|------|------|------|-------|------|------|------------|------|-------|-------|---------------|-----|-------|--------------|-------|-------|------|------|-------|-------|-------|--------|-------|--------|-------|--|--|--|--|--|---|
| Ex | pla  | ina | tio  | n:   |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      | gy i | is a  | рго  | pos  | itio       | n th | at is | s tru | ıe ir         | eve | егу ( | ooss         | sible | e int | егр  | reta | ation | ı, sı | ıch a | as $p$ | · V - | eg p ( | i.e., |  |  |  |  |  |   |
|    |      | eit | her  | po   | סר ח | otj   | p"). |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
| •  | • т  | he  | sel  | t of | all  | taı   | utol | ogie | es in      | cluc | les   | evei  | гу р          | гор | ositi | ion I        | that  | isa   | alwa | ys t | rue,  | гес   | gard  | less   | of    | the    |       |  |  |  |  |  |   |
|    | t    | rut | h v  | alu  | es ( | of ii | ndiv | idu  | al pı      | орс  | ositi | ons   |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
| •  |      |     |      |      |      |       |      |      | all ta     |      | log   | ies i | is <b>c</b> o | nsi | stei  | n <b>t</b> b | eca   | use   | tau  | tolo | gie   | s are | e alv | way:   | s tru | је а   | nd    |  |  |  |  |  |   |
|    | n    | ev  | er l | eac  | d to | a c   | ont  | radi | ictio      | n.   |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
| •  |      |     |      |      |      |       |      |      | e se       |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        | t is  |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      | wo<br>tolo |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        | - of  |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      | bec        |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       | : 50   | . 01  |  |  |  |  |  |   |
|    |      |     |      |      | ncy  |       |      |      |            |      |       |       |               | -   | _     |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      | -   |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     | +    |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     | +    |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     | _    |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     | +    |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     | _    |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      | -   |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     | +    |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  | _ |
|    |      |     |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |
|    |      | _   |      |      |      |       |      |      |            |      |       |       |               |     |       |              |       |       |      |      |       |       |       |        |       |        |       |  |  |  |  |  |   |