Please note that there will be zero tolerance for dishonest means like copying solutions from others, and even letting others copy your solution, in any assignment/quiz/exam. If you are found indulging in such an activity, your answer-paper/code will not be evaluated and your participation/submission will not be counted. Second-time offenders will be summarily awarded an F grade. The onus will be on the supposed offender to prove his or her innocence.

- 1. [1 marks Diwali offer: 2 marks] Formalise the following as sentences of first order logic. Use B(x) for "x is a barber", and S(x,y) for "x shaves y".
 - (a) Every barber shaves all persons who do not shave themselves.
 - (b) No barber shaves any person who shaves himself.

Convert your answers to Skolem form and use ground resolution to show that (c), given below, is a consequence of (a) and (b).

- (c) There are no barbers.
- 2. [1.5 marks Diwali offer: 3 marks] Fix a signature σ . Consider a relation \sim on σ -assignments that satisfies the following two properties.
 - If $A \sim B$ then for every atomic formula F we have $A \models F$ iff $B \models F$.
 - If $\mathcal{A} \sim \mathcal{B}$ then for each variable x we have (i) for each $a \in U_{\mathcal{A}}$ there exists $b \in U_{\mathcal{B}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$, and (ii) for all $b \in U_{\mathcal{B}}$ there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$.

Prove that if $A \sim B$ then for any formula F, $A \models F$ iff $B \models F$. You may assume that F is built from atomic formulas using the connectives \land and \neg , and the quantifier \exists .

- 3. [1 marks Divali offer: 2 marks] Express the following by formulas of first-order logic, using predicates H(x) for "x is happy", R(x) for "x is rich", G(x) for "x is a graduate", and C(x,y) for "y is a child of x".
 - (a) Any person is happy if all their children are rich.
 - (b) All graduates are rich.
 - (c) Someone is a graduate if they are a child of a graduate.
 - (d) All graduates are happy.

Use first-order resolution to show that (d) is entailed by (a), (b), and (c). Indicate the substitutions in each resolution step.

- 4. [1 marks Diwali offer: 2 marks] Let $A(x_1, ..., x_n)$ be a formula with no quantifiers and no function symbols. Prove that $\forall x_1 ... \forall x_n A(x_1, ..., x_n)$ is satisfiable if and only if it is satisfiable in an interpretation with there being just one element in the universe.
- 5. In this question, we work with first-order logic without equality.
 - (a) [1 marks Diwali offer: 2 marks] Consider a signature σ containing only a binary relation R. For each positive integer n show that there is a satisfiable σ -formula F_n such that every model \mathcal{A} of F_n has at least n elements.

(b) [1.5 marks Diwali offer: 3 marks] Consider a signature σ containing only unary predicate symbols P_1, \ldots, P_k . Using the question 2 (above), or otherwise, show that any satisfiable σ -formula has a model where the universe has at most 2^k elements.