Credit Card Fraud Analysis with Machine Learning

Tackling Class Imbalance for Robust Detection

Problem

Credit card fraud: Significant financial losses for banks, merchants, and consumers.

Erodes trust in financial systems.

Traditional rule-based systems struggle with evolving fraud patterns.

Core Problem: Highly imbalanced datasets – fraud is a rare event (e.g., 0.17% of transactions).

Our Goal: Build accurate ML models to identify fraud, minimizing both False Positives (customer inconvenience) and False Negatives (financial loss).

Understanding the Data

Source: Kaggle credit card transaction dataset (Sept 2013, 48 hours).

Features:

- Time, Amount (original scale)
- V1-V28 (PCA-transformed for confidentiality)

Target (Class): Binary (0: Non-Fraud, 1: Fraud).

Key Challenge: Extreme Class Imbalance: Fraud is only 0.17% of transactions (e.g., \sim 492 fraud vs. \sim 284k non-fraud in full dataset).

Initial Data Insights

Confirmed severe class imbalance.

Fraud Distribution: More evenly spread across the 48-hour period.

Non-Fraud Distribution: Peaks during typical working/daytime hours.

Transaction Amount: Fraudulent transactions tend to be for smaller amounts.

Correlation: Some PCA features show correlation with the 'Class' variable.

Separability (t-SNE): Visual exploration with t-SNE suggested distinct clusters, indicating potential for classification.

Data Preprocessing

Data Cleaning: Removed 1,081 duplicate rows (no missing values found).

Train-Test Split:

- 80% Training, 20% Testing.
- Crucial: Used stratification to preserve class proportions in both sets.

Feature Scaling:

- Time: StandardScaler (consistent range).
- Amount: RobustScaler (less sensitive to outliers in transaction values).
- Key Prevention: Scalers fitted only on training data then transformed on both, preventing data leakage.

Data Preprocessing

Why resample? Prevent models from being biased towards the majority class (leading to poor fraud recall).

1. Random Oversampling:

- Duplicates random instances of the minority (fraud) class.
- Simple, but risks overfitting by creating exact copies.

2. SMOTE (Synthetic Minority Over-sampling Technique):

- Creates synthetic new minority samples by interpolating between existing ones.
- Introduces more diversity than simple duplication, helping generalization.

Data Preprocessing

3. Random Undersampling:

- Randomly removes instances from the majority (non-fraud) class.
- Reduces dataset size (faster training), but risks losing valuable information.

4. SMOTE + Tomek Links (Hybrid):

- Combines SMOTE oversampling with Tomek Links undersampling.
- SMOTE creates synthetic samples, then Tomek Links removes "noisy" majority samples close to minority ones.
- Aims to create a cleaner decision boundary.

Data Modeling

1. Logistic Regression (Baseline):

- Simple, interpretable, computationally efficient.
- Used as a baseline for comparison.
- class_weight='balanced' parameter to handle imbalance internally.

2. Random Forest Classifier:

- Ensemble of decision trees.
- Handles high-dimensional data well.
- class_weight='balanced' parameter.

3. XGBoost Classifier:

- Gradient Boosting Machine (strong ensemble method).
- Highly efficient and performs well on structured data.
- scale_pos_weight parameter to address imbalance (weights positive class).

Precision-Recall Curves

X-axis: Recall (True Positive Rate): Ability to find all actual fraud cases (minimize false negatives).

Y-axis: Precision (Positive Predictive Value): Proportion of identified fraud cases that are *actually* fraudulent (minimize false positives).

AUC (Area Under Curve): Higher AUC indicates better overall performance.

Interpretation: The closer the curve is to the top-right corner, the better the model's performance trade-off.

Evaluation & Key Findings

Logistic Regression: Decent Recall (~0.91) but very low Precision (~0.06), flagging many legitimate transactions. Resampling had minimal impact.

Random Forest: Strong performance with original (class_weight='balanced') and Random Oversampled data.

• Example (Random Oversampled): Recall 0.82, Precision 0.98, F1-Score 0.89.

XGBoost: Consistent strong performance across sampling methods, particularly Random Oversampling.

• Example (Random Oversampled): Recall 0.84, Precision 0.93, F1-Score 0.88.

Key Insight: Both Random Forest and XGBoost performed best when trained on randomly oversampled data, despite SMOTE/SMOTETomek being theoretically more advanced. Recommendation: XGBoost is preferred due to its comparable performance to Random Forest but significantly faster training time.

Challenges & Limitations

Dataset Limitations: Anonymized PCA features limit deep interpretation and rich feature engineering.

"Advanced" Sampling Surprises: SMOTE / SMOTE + Tomek links did not universally outperform random oversampling; requires further investigation for optimal application.

Overfitting Risk (Synthetic Data): Care must be taken to ensure synthetic data doesn't lead to overfitting to artificial patterns.

Concept Drift: Fraud patterns constantly evolve; models degrade over time. Requires continuous learning/adaptation.

Data Privacy & Sharing: Real-world data is highly sensitive, limiting cross-institutional research.

Conclusion

Successfully developed and evaluated machine learning models for credit card fraud detection.

Implemented and compared various data imbalance handling techniques (oversampling, undersampling, hybrid).

Identified **XGBoost** as the top-performing model for this dataset, achieving strong Recall, Precision, and F1-Score, especially with **randomly oversampled training data**, while also being computationally efficient.

Highlighted critical real-world challenges: extreme imbalance, concept drift, data privacy, and interpretability.

Reinforced the importance of balancing false positives and false negatives for real-world application.