DOUBLE INTEGRALS IN POLAR COORDINATES

dxdy ~ rdrd0

range if 8 A d for the shalls region

$$x = x \sin \theta$$

$$\Delta = x \sin \theta$$

$$\Delta = x \sin \theta$$

$$\Delta = \frac{9x}{9x} \frac{9x}{9x} = 2$$

$$\Delta = \frac{9x}{9x} \frac{90}{9x} = 2$$

$$\frac{1}{\text{area}} \left(ABCD \right) = \frac{1}{\text{rdl}} \left($$

EXAMPLE 1 Evaluate $\iint_R (3x + 4y^2) dA$, where R is the region in the upper halfplane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

~drd0 area (Aaca) ~ (Add) (dr)
= rardu

$$AB = YAV$$

$$AD = AY$$

EXAMPLE 2 Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 1 - x^2 - y^2$.

EXAMPLE 3 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane, and inside the cylinder $x^2 + y^2 = 2x$.

