Informe de Trabajo Práctico N° 2 - Kernel

Grupo 20 - Alfieri, Di Candia, Díaz Varela

Introducción

Este informe destaca únicamente aspectos a tener en cuenta durante la corrección que no sean evidentes al ejecutar el TP.

Instrucciones de Compilación y Ejecución

Para compilar y correr el proyecto, utilizar los siguientes comandos desde la raíz del proyecto:

cd Toolchain

make all

cd ..

./run.sh

Al compilar el proyecto se usa como predeterminado el Memory Manager básico (al que referenciamos como OUR a lo largo del proyecto).

Para compilar el proyecto con el Buddy Memory Manager, utilizar el siguiente comando:

./run.sh buddy

En caso de que no funcione el script:

sudo make buddy

sudo make our

sudo qemu-system-x86_64 -hda Image/x64BareBonesImage.qcow2 -m 512

Decisiones de Diseño

- Implementación de Semáforos:

Cada semáforo tiene su propio spinlock para evitar condiciones de carrera y se utiliza una lista de espera para los procesos bloqueados. Se decidió barrer procesos muertos al reanudar para evitar *memory leaks* en la cola de espera.

Asignación de memoria:

Se implementaron dos estrategias de gestión de memoria: Buddy System (BUDDY) y un heap simple con bloques enlazados (OUR). La selección se realiza mediante macros de compilación.

Instrucciones para demostrar el funcionamiento

Ingresando el comando:

help

en la shell, se despliega la lista de comandos para el usuario a través de los cuales se demuestran los funcionamientos requeridos.

Limitaciones

1. Fragmentación Interna

El gestor de memoria simple (OUR) puede sufrir de fragmentación interna.

2. Ausencia de Protección de Memoria

 Actualmente, el sistema no implementa un mecanismo de protección de memoria entre procesos. Esto significa que un proceso malicioso o con errores podría potencialmente corromper el espacio de memoria de otro proceso si intenta acceder fuera de sus límites asignados. Esto se debe a que todos los procesos comparten un espacio de memoria.

3. Alcance de Pipes

 La implementación actual de *pipes* no soporta la conexión de más de dos procesos (p1 | p2 | p3), limitándose a un encadenamiento simple (p1 | p2).

4. Cantidades Máximas

- Como por ejemplo la limitación definida a la cantidad de semáforos por MAX_SEMAPHORES.
- limitación de cantidad máxima de procesos a crear, definida como MAX_PROCESSES.

Consideramos que cualquier aspecto no mencionado en este informe es evidente a partir de la lectura del código fuente en sí.