

Global United Technology Services Co., Ltd.

Report No.: GTS201704000002F01

FCC REPORT

Applicant: The Singing Machine Company, Inc.

Address of Applicant: 6301 NW 5th Way, Suite 2900, Fort Lauderdale, FL 33309,

Shenzhen Junian Electronic Ltd. Manufacturer:

Address of No.277 PingKui Road, Shijing Community, Pingshan Street

Shenzhen China (Peoples Republic Of) Manufacturer:

Equipment Under Test (EUT)

Product Name: Bluetooth CDG Karaoke with Special Light Effects

SML625BTW, SML625BTBK, SML625BTXX (X means unit Model No.:

colour, it can be A to Z or N/A)

Trade Mark: Singing Machine

2AAXO-SML625BT FCC ID:

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249:2016

Date of sample receipt: April 01, 2017

Date of Test: April 01-06, 2017

Date of report issued: April 07, 2017

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	April 07, 2017	Original

Prepared By:	Zolward.Pan	Date:	April 07, 2017	
	Project Engineer			_
Check By:	Andy wa	Date:	April 07, 2017	
	Reviewer			_

3 Contents

		Page
1	I COVER PAGE	1
2	2 VERSION	2
	. , _ , () ,	
3	CONTENTS	3
4	4 TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.4 TEST FACILITY	
	5.5 TEST LOCATION	
	5.6 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TEST INSTRUMENTS LIST	8
7	7 TEST RESULTS AND MEASUREMENT DATA	9
	7.1 ANTENNA REQUIREMENT	9
	7.2 CONDUCTED EMISSIONS	
	7.3 RADIATED EMISSION METHOD	
	7.3.1 Field Strength of The Fundamental Signal	
	7.3.2 Spurious emissions	
	7.3.3 Bandeage emissions	
8		
9	EUT CONSTRUCTIONAL DETAILS	25
3	1 EUT GUNGTRUGTIUNAL DETAILS	Zə

Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Test Item Frequency Range Measurement U		Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission	± 3.45dB	(1)			
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.		

5 General Information

5.1 General Description of EUT

•			
Product Name:	Bluetooth CDG Karaoke with Special Light Effects		
Model No.:	SML625BTW, SML625BTBK, SML625BTXX (X means unit colour, it can be A to Z or N/A)		
Test Model:	SML625BTW		
	s are identical in the same PCB layout, interior structure and electrical circuit se is the model name for commercial purpose.		
Operation Frequency:	2402MHz~2480MHz		
Channel numbers:	79		
Channel separation:	1MHz		
Modulation type:	GFSK, Pi/4QPSK, 8DPSK		
Antenna Type:	PCB antenna		
Antenna gain:	0 dBi(declare by Applicant)		
Power supply:	Adapter:		
	Model No.: GKYPS0150058UL1		
	Input: AC 100-240V, 50/60Hz, 0.5A		
	Output: DC 5.8V, 1.5A		

Operation l	peration Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz		
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz		
		:	::				:		
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz		
20	2421MHz	40	2441MHz	60	2461MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Pre-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Υ	Z	
Field Strength(dBuV/m)	93.56	95.79	94.21	

Final Test Mode:

The EUT was tested in GFSK, π /4QPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup":

Y axis (see the test setup photo)

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

6 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 29 2016	June 28 2017			
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2016	June 28 2017			
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 29 2016	June 28 2017			
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2016	June 28 2017			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 29 2016	June 28 2017			
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
9	Coaxial Cable	GTS	N/A	GTS213	June 29 2016	June 28 2017			
10	Coaxial Cable	GTS	N/A	GTS211	June 29 2016	June 28 2017			
11	Coaxial cable	GTS	N/A	GTS210	June 29 2016	June 28 2017			
12	Coaxial Cable	GTS	N/A	GTS212	June 29 2016	June 28 2017			
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 29 2016	June 28 2017			
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 29 2016	June 28 2017			
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 29 2016	June 28 2017			
16	Band filter	Amindeon	82346	GTS219	June 29 2016	June 28 2017			
17	Power Meter	Anritsu	ML2495A	GTS540	June 29 2016	June 28 2017			
18	Power Sensor	Anritsu	MA2411B	GTS541	June 29 2016	June 28 2017			

Conduc	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 29 2016	June. 28 2017		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 29 2016	June. 28 2017		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 29 2016	June. 28 2017		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 29 2016	June. 28 2017		

C	General used equipment:								
lte	em	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
	1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto							
Limit:	Francisco de (MILE)	Limit (d	lBuV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5 66 to 56* 56 to 46*								
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithm of the frequency.								
Test setup:	Reference Plane								
	AUX Equipment E.U.T Remark: E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m								
Test procedure:	 The EUT and simulators are line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). Both sides of A.C. line are content for the product of the product of the photographs. 	n network (L.I.S.N.). The edance for the measuri also connected to the n/50uH coupling impec to the block diagram of checked for maximum	nis provides a ng equipment. main power through a dance with 50ohm the test setup and conducted						
	interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								

Measurement data

Line:

Freq MHz	Reading level dBuV	1ISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.546	40.84	0.34	0.11	41.29	56.00	-14.71	QP
0.546	19.19	0.34	0.11	19.64	46.00	-26.36	Average
0.788	36.20	0.27	0.13	36.60	56.00	-19.40	QP
0.788	15.04	0.27	0.13	15.44	46.00	-30.56	Average
1.129	36.71	0.25	0.13	37.09	56.00	-18.91	QP
1.129	16.11	0.25	0.13	16.49	46.00	-29.51	Average
2.358	32.54	0.20	0.15	32.89	56.00	-23.11	QP
2.358	15.76	0.20	0.15	16.11	46.00	-29.89	Average
6.805	32.43	0.21	0.17	32.81	60.00	-27.19	QP
6.805	19.21	0.21	0.17	19.59	50.00	-30.41	Average
15.885	34.56	0.23	0.22	35.01	60.00	-24.99	QP
15.885	17.45	0.23	0.22	17.90	50.00	-32.10	Äverage

Neutral:

Freq MHz	Reading level dBuV	factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.317 0.317 0.440 0.440 0.567 0.567	33. 78 24. 18 38. 18 21. 57 42. 16 27. 13	0.42 0.42 0.38 0.38 0.30	0. 10 0. 10 0. 11 0. 11 0. 12 0. 12	34.30 24.70 38.67 22.06 42.58 27.55	59.80 49.80 57.07 47.07 56.00 46.00	-25.50 -25.10 -18.40 -25.01 -13.42 -18.45	QP Average QP Average QP Average QP Average
1. 106 1. 106 6. 878 6. 878 16. 839 16. 839	32. 29 20. 35 35. 22 21. 10 35. 29 21. 16	0.21 0.21 0.21 0.21 0.21 0.26 0.26	0. 13 0. 13 0. 17 0. 17 0. 22 0. 22	32. 63 20. 69 35. 60 21. 48 35. 77 21. 64	56.00 46.00 60.00 50.00 60.00 50.00	-23.37 -25.31 -24.40 -28.52 -24.23 -28.36	QP Average QP Average QP Average QP Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

 Madiated Ellission Me								
Test Requirement:	FCC Part15 C S	Section 15.20	9					
Test Method:	ANSI C63.10:20	013						
Test Frequency Range:	30MHz to 25GH	łz						
Test site:	Measurement D	Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz- 1GHz	Quasi-peal	(120KHz	300KHz	Quasi-peak Value			
	Above 1CHz	Peak Value						
	Above 1GHZ	Above 1GHz						
Limit:	Freque	ency	Limit (dBuV	m @3m)	Remark			
(Field strength of the	2400MHz-2483.5MHz 94.00 Average Value							
fundamental signal)	114.00 Peak Value							
Limit:	Frequency Limit (dBuV/m @3m) Remark							
(Spurious Emissions)	30MHz-88MHz 40.00 Quasi-peak Value							
,	88MHz-216MHz 43.50 Quasi-peak Value							
	216MHz-960MHz 46.00 Quasi-peak Value							
	960MHz-	·1GHZ	54.0 54.0		Quasi-peak Value			
	Above 1	GHz	74.0		Average Value Peak Value			
Limit: (band edge)	harmonics, shall	II be attenuat to the genera	ed by at least al radiated emi	50 dB belov	bands, except for w the level of the in Section 15.209,			
Test setup:	Below 1GHz	EUT		Antenna	fier+			
	Above 1GHz							

Report No.: GTS201704000002F01 < 1m ... 4m > EUT. Tum Table <150cm; Preamplifier-Receiver+ Test Procedure: The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

Measurement data:

Test results:

Pass

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	96.80	27.58	5.39	34.01	95.76	114.00	-18.24	Vertical
2402.00	94.40	27.58	5.39	34.01	93.36	114.00	-20.64	Horizontal
2441.00	96.84	27.48	5.43	33.96	95.79	114.00	-18.21	Vertical
2441.00	94.61	27.48	5.43	33.96	93.56	114.00	-20.44	Horizontal
2480.00	96.13	27.52	5.47	33.92	95.20	114.00	-18.80	Vertical
2480.00	93.98	27.52	5.47	33.92	93.05	114.00	-20.95	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	86.60	27.58	5.39	34.01	85.56	94.00	-8.44	Vertical
2402.00	84.54	27.58	5.39	34.01	83.50	94.00	-10.50	Horizontal
2441.00	86.89	27.48	5.43	33.96	85.84	94.00	-8.16	Vertical
2441.00	84.48	27.48	5.43	33.96	83.43	94.00	-10.57	Horizontal
2480.00	86.55	27.52	5.47	33.92	85.62	94.00	-8.38	Vertical
2480.00	83.93	27.52	5.47	33.92	83.00	94.00	-11.00	Horizontal

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

7.3.2 Spurious emissions

■ Below 1GHz

- Delow I	0112							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
51.12	49.52	15.20	0.78	29.99	35.51	40.00	-4.49	Vertical
135.03	53.38	10.56	1.47	29.49	35.92	43.50	-4.08	Vertical
143.83	53.61	10.22	1.53	29.44	35.92	43.50	-4.08	Vertical
151.60	53.77	10.32	1.58	29.40	36.27	43.50	-3.73	Vertical
159.78	53.02	10.64	1.63	29.36	35.93	43.50	-4.07	Vertical
175.65	52.60	11.36	1.72	29.30	36.38	43.50	-3.62	Vertical
58.82	51.12	14.76	0.85	29.93	36.80	40.00	-3.20	Horizontal
135.03	54.32	10.56	1.47	29.49	36.86	43.50	-3.14	Horizontal
162.61	53.60	10.74	1.65	29.35	36.64	43.50	-3.36	Horizontal
181.92	51.77	11.84	1.75	29.27	36.09	43.50	-3.91	Horizontal
191.75	51.02	12.56	1.80	29.23	36.15	43.50	-3.85	Horizontal
227.69	50.14	13.51	2.01	29.46	36.20	46.00	-3.80	Horizontal

■ Above 1GHz

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	38.84	31.78	8.60	32.09	47.13	74.00	-26.87	Vertical
7206.00	32.85	36.15	11.65	32.00	48.65	74.00	-25.35	Vertical
9608.00	32.37	37.95	14.14	31.62	52.84	74.00	-21.16	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	43.44	31.78	8.60	32.09	51.73	74.00	-22.27	Horizontal
7206.00	34.74	36.15	11.65	32.00	50.54	74.00	-23.46	Horizontal
9608.00	31.94	37.95	14.14	31.62	52.41	74.00	-21.59	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	27.36	31.78	8.60	32.09	35.65	54.00	-18.35	Vertical
7206.00	21.36	36.15	11.65	32.00	37.16	54.00	-16.84	Vertical
9608.00	20.34	37.95	14.14	31.62	40.81	54.00	-13.19	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	31.76	31.78	8.60	32.09	40.05	54.00	-13.95	Horizontal
7206.00	23.63	36.15	11.65	32.00	39.43	54.00	-14.57	Horizontal
9608.00	20.20	37.95	14.14	31.62	40.67	54.00	-13.33	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	37.40	31.85	8.67	32.12	45.80	74.00	-28.20	Vertical
7323.00	31.89	36.37	11.72	31.89	48.09	74.00	-25.91	Vertical
9764.00	31.52	38.35	14.25	31.62	52.50	74.00	-21.50	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	41.70	31.85	8.67	32.12	50.10	74.00	-23.90	Horizontal
7323.00	33.65	36.37	11.72	31.89	49.85	74.00	-24.15	Horizontal
9764.00	30.95	38.35	14.25	31.62	51.93	74.00	-22.07	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	26.21	31.85	8.67	32.12	34.61	54.00	-19.39	Vertical
7323.00	20.58	36.37	11.72	31.89	36.78	54.00	-17.22	Vertical
9764.00	19.65	38.35	14.25	31.62	40.63	54.00	-13.37	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	30.45	31.85	8.67	32.12	38.85	54.00	-15.15	Horizontal
7323.00	22.76	36.37	11.72	31.89	38.96	54.00	-15.04	Horizontal
9764.00	19.39	38.35	14.25	31.62	40.37	54.00	-13.63	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.22	31.93	8.73	32.16	44.72	74.00	-29.28	Vertical
7440.00	31.11	36.59	11.79	31.78	47.71	74.00	-26.29	Vertical
9920.00	30.83	38.81	14.38	31.88	52.14	74.00	-21.86	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	40.28	31.93	8.73	32.16	48.78	74.00	-25.22	Horizontal
7440.00	32.77	36.59	11.79	31.78	49.37	74.00	-24.63	Horizontal
9920.00	30.15	38.81	14.38	31.88	51.46	74.00	-22.54	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.29	31.93	8.73	32.16	33.79	54.00	-20.21	Vertical
7440.00	19.96	36.59	11.79	31.78	36.56	54.00	-17.44	Vertical
9920.00	19.10	38.81	14.38	31.88	40.41	54.00	-13.59	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.41	31.93	8.73	32.16	37.91	54.00	-16.09	Horizontal
7440.00	22.06	36.59	11.79	31.78	38.66	54.00	-15.34	Horizontal
9920.00	18.74	38.81	14.38	31.88	40.05	54.00	-13.95	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channel:				L	Lowest channel				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2390.00	45.40	27.59	5.38	30.18	48.19	74.00	-25.81	Horizontal	
2400.00	62.55	27.58	5.39	30.18	65.34	74.00	-8.66	Horizontal	
2390.00	46.19	27.59	5.38	30.18	48.98	74.00	-25.02	Vertical	
2400.00	64.86	27.58	5.39	30.18	67.65	74.00	-6.35	Vertical	
Average val	Average value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2390.00	35.38	27.59	5.38	30.18	38.17	54.00	-15.83	Horizontal	
2400.00	46.77	27.58	5.39	30.18	49.56	54.00	-4.44	Horizontal	
2390.00	35.51	27.59	5.38	30.18	38.30	54.00	-15.70	Vertical	
2400.00	48.66	27.58	5.39	30.18	51.45	54.00	-2.55	Vertical	

Toot shannol:					Highest channel				
Test channel:					Highest channel				
Peak value:	Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.50	47.81	27.53	5.47	29.93	50.88	74.00	-23.12	Horizontal	
2500.00	46.50	27.55	5.49	29.93	49.61	74.00	-24.39	Horizontal	
2483.50	49.07	27.53	5.47	29.93	52.14	74.00	-21.86	Vertical	
2500.00	47.74	27.55	5.49	29.93	50.85	74.00	-23.15	Vertical	
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.50	38.24	27.53	5.47	29.93	41.31	54.00	-12.69	Horizontal	
2500.00	35.88	27.55	5.49	29.93	38.99	54.00	-15.01	Horizontal	
2483.50	39.66	27.53	5.47	29.93	42.73	54.00	-11.27	Vertical	
2500.00	36.01	27.55	5.49	29.93	39.12	54.00	-14.88	Vertical	

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.4 20dB Occupy Bandwidth

Total Day Santa and	T. (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1					
Test Requirement:	FCC Part15 C Section 15.249/15.215					
Test Method:	ANSI C63.10:2013					
Limit:	Operation Frequency range 2400MHz~2483.5MHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data

Test channel	20dB bandwidth(MHz)	Result		
Lowest	1.026	Pass		
Middle	1.028	Pass		
Highest	0.972	Pass		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----