SI231b: Matrix Computations

Lecture 4: Solving Linear Equations (Squared Systems)

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Sept. 17, 2020

MIT Lab, Yue Qiu

Solving Squared Linear System

- ► Forward substitution, backward substitution
- ► Row-oriented implementation
- ► LU factorization
- Existance and uniqueness of LU factorization

MIT Lab, Yue Qiu

The System of Linear Equations

Consider the system of linear equations

$$Ax = b$$
,

where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ are given, and $x \in \mathbb{R}^n$ is the solution to the system.

- ► A will be assumed to be nonsingular (unless specified)
- we consider the real case for convenience; extension to the complex case is simple

Numerical Solution of the Linear System

Problem: compute the solution to Ax = b in a numerically efficient manner.

- ► the problem is easy if A⁻¹ is known
 - but computing A⁻¹ also costs computations...
 - do you know how to compute A^{-1} efficiently?
- ► A is assumed to be a general nonsingular matrix.
 - the problem may become easy in some special cases, e.g., orthogonal A, or A is triangular.

Forward Substitution

Consider the following 2-by-2 triangular system

$$\begin{bmatrix} \ell_{11} & \\ \ell_{21} & \ell_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

If $\ell_{11}\ell_{22} \neq 0$, then the unknowns can be determined sequentially

$$x_1 = b_1/\ell_{11},$$

 $x_2 = (b_2 - \ell_{21}x_1)/\ell_{22}.$

The general procedure of solving Lx = b

$$x_1 = b_1/\ell_{11},$$

 $x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right)/\ell_{ii}, \quad i = 2, \dots, n$

Backward Substitution

Consider the following 2-by-2 triangular system

$$\begin{bmatrix} u_{11} & u_{12} \\ & u_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

If $u_{11}u_{22} \neq 0$, then the unknowns can be determined sequentially

$$x_2 = b_2/u_{22},$$

 $x_2 = (b_1 - u_{12}x_2)/u_{11}.$

The general procedure of solving Ux = b

$$x_n = b_n/u_{nn},$$

$$x_i = \left(b_i - \sum_{j=i+1}^n u_{ij}x_j\right)/u_{ii}, \quad i = 1, \dots, n-1$$

Forward substitution:

```
x(1)=b(1)/L(1,1);
for i=2:n
x(i)=(b(i)-L(i,1:i-1)*x(1:i-1))/L(i,i);
end
```

Backward substitution:

```
x(n)=z(n)/U(n,n);
for i = n-1:-1:1
x(i)=(b(i) - U(i, i+1:n)*x(i+1:n))/U(i,i);
end
```

LU Factorization

LU Factorization given $A \in \mathbb{R}^{n \times n}$, find two matrices $L, U \in \mathbb{R}^{n \times n}$ such that

$$A = LU$$
,

where

- $L \in \mathbb{R}^{n \times n}$ is lower triangular with unit diagonal elements (i.e., $\ell_{ii} = 1$),
- ▶ $U \in \mathbb{R}^{n \times n}$ is upper triangular.

Suppose that A has an LU factorization. Then, solving Ax = b can be made easy:

- 1. solve Lz = b for z,
- 2. solve Ux = z for x.

Question

- 1. Does LU factorization exist?
- 2. How to perform A = LU?

Building Block: Gauss Transformation

Observation: given $x \in \mathbb{R}^n$ with $x_k \neq 0$, $1 \leq k \leq n$,

$$\begin{bmatrix}
1 & & & & \\
& \ddots & & \\
& & 1 & \\
& -\frac{x_{k+1}}{x_k} & 1 & \\
\vdots & & \ddots & \\
& & -\frac{x_n}{x_k} & & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ x_n
\end{bmatrix} = \begin{bmatrix}
x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0
\end{bmatrix}.$$

Outer-product form of M_k :

$$M_k = I - \tau^{(k)} e_k^T, \qquad \tau^{(k)} = [0, \dots, 0, x_{k+1}/x_k, \dots, x_n/x_k]^T.$$

MIT Lab, Yue Qiu SI231b: Matrix Computations, ShanghaiTech

Finding U with Gaussian Elimination

Problem: find Gauss transformations $M_1, \ldots, M_{n-1} \in \mathbb{R}^{n \times n}$ such that

 $M_{n-1} \cdots M_2 M_1 A = U$, U being upper triangular.

Step 1: choose M_1 such that $M_1a_1 = [a_{11}, 0, \dots, 0]^T$

▶ if $a_{11} \neq 0$, then we can choose

$$M_1 = I - \boldsymbol{\tau}^{(1)} \boldsymbol{e}_1^T, \qquad \boldsymbol{\tau}^{(1)} = [0, a_{21}/a_{11}, \dots, a_{n1}/a_{11}]^T.$$

result:

$$M_1A = \begin{bmatrix} a_{11} & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix}$$

Finding U with Gaussian Elimination

Step 2: let $A^{(1)} = M_1A$. Choose M_2 such that

$$\mathsf{M}_2\mathsf{a}_2^{(1)} = \left[\begin{array}{cc} \mathsf{a}_{12}^{(1)}, \ \mathsf{a}_{22}^{(1)}, \ 0, \dots, 0 \end{array} \right]^T.$$

▶ if $a_{22}^{(1)} \neq 0$, then we can choose

$$\mathsf{M}_2 = \mathsf{I} - \boldsymbol{\tau}^{(2)} \boldsymbol{e}_2^\mathsf{T}, \qquad \boldsymbol{\tau}^{(2)} = [\ 0,\ 0,\ a_{32}^{(1)}/a_{22}^{(1)},\ \dots,\ a_{n,2}^{(1)}/a_{22}^{(1)}\]^\mathsf{T}.$$

result:

$$M_2A^{(1)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \times & \dots & \times \\ 0 & a_{22}^{(1)} & \times & \dots & \times \\ \vdots & 0 & \times & & \times \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \times & \dots & \times \end{bmatrix}$$

Finding U with Gaussian Elimination

Let $A^{(k)} = M_k A^{(k-1)}$, $A^{(0)} = A$. Note $A^{(k)} = M_k \cdots M_2 M_1 A$.

Step k: Choose M_k such that

$$M_k a_k^{(k-1)} = [a_{1k}^{(k-1)}, \dots, a_{kk}^{(k-1)}, 0, \dots, 0]^T.$$

ightharpoonup if $a_{kk}^{(k-1)} \neq 0$, then

$$\mathsf{M}_k = \mathsf{I} - \boldsymbol{\tau}^{(k)} \mathbf{e}_k^\mathsf{T}, \quad \boldsymbol{\tau}^{(k)} = [0, \dots, 0, a_{k+1,k}^{(k-1)} / a_{kk}^{(k-1)}, \dots, a_{n,k}^{(k-1)} / a_{kk}^{(k-1)}]^\mathsf{T},$$

result:

$$A^{(k)} = M_k A^{(k-1)} = \begin{bmatrix} a_{11}^{(k-1)} & \cdots & a_{1k}^{(k-1)} & \times & \cdots & \times \\ & \ddots & & & \ddots & & \ddots \\ & & \ddots & & \ddots & & \ddots \\ \vdots & & & a_{kk}^{(k-1)} & \vdots & & \ddots \\ \vdots & & & 0 & \times & & \times \\ \vdots & & & \ddots & & \ddots \\ \vdots & & & \ddots & & \ddots \\ 0 & \cdots & 0 & \times & \cdots & \times \end{bmatrix}$$

- $A^{(n-1)} = U$ is upper triangular
- $a_{\mu\nu}^{(k-1)}$ is called the **pivot**

How to Obtain L

We have seen that under the assumption of the pivot $a_{kk}^{(k-1)} \neq 0$ for all k,

$$U = M_{n-1} \cdots M_2 M_1 A$$
 is upper triangular.

But where is L?

Suppose that every M_k is invertible. Then,

$$L = M_1^{-1} M_2^{-1} \cdots M_{n-1}^{-1}$$

satisfies A = LU.

Questions:

- 1. Is M_k invertible for all k?
- 2. Is L lower triangular with unit diagonal entries?

Computations of L

Is M_k invertible?

Fact:
$$M_k^{-1} = I + \boldsymbol{\tau}^{(k)} \boldsymbol{e}_k^T$$
.

Hint: applying the Woodbury matrix identity,

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}.$$

Using the fact that $e_i^T \tau^{(k)} = 0$ for $k \ge i$, we obtain

$$L = M_1^{-1} \dots M_{n-1}^{-1} = I + \sum_{k=1}^{n-1} \boldsymbol{\tau}^{(k)} \boldsymbol{e}_k^T$$

You can easily verify that \boldsymbol{L} is a lower triangular matrix with unit diagonal entries.

4□ > 4□ > 4□ > 4 = > 4 = > 9 < ○</p>

Computations of L

L is lower triangular with unit diagonal entries can also be verified using the following properties.

Let $A, B \in \mathbb{R}^{n \times n}$ be lower triangular. Then, AB is lower triangular. Also, if A, B have unit diagonal entries, then AB has unit diagonal entries.

How to prove?

Let $A \in \mathbb{R}^{n \times n}$ be nonsingular lower triangular. Then, A^{-1} is lower triangular with $[A^{-1}]_{ii} = 1/a_{ii}$.

Hands-on exercise

Existence and Uniqueness of LU Factorization

Theorem

The matrix $A \in \mathbb{R}^{n \times n}$ has an LU factorization if every principal submatrix

 $A_{\{1,...,k\}}$ satisfies

$$\det(\mathsf{A}_{\{1,\ldots,k\}})\neq 0,$$

for k = 1, 2, ..., n - 1.

▶ the proof is essentially about when $a_{kk}^{(k-1)} \neq 0$.

Theorem

If the LU factorization of A exists and A is nonsingular, then (L,U) is unique.