B.B.1. Simplified Master Theorem

The master theorem is used for solving divide - and - conquer recurrence relations.

While the master theorem does not solve all types of divide — and — conquer recurrences, it can solve the majority of recurrence equation.

At preliminary stage, we are provided with the formula:

$$T(n) = aT\left(\frac{n}{h}\right) + cn^{k}.$$

This implies that the problem is divided into `a` subproblems at every level and every subproblems is of the size $\frac{cn^k}{h^k}.$

The total cost of the recurrence tree is calculated by adding the costs of all the levels .

Level	No. of problems	Problem Size	Work done = Problem Size × No. of Problems
0	1	cn^k	$1 \times cn^k = cn^k$
1	а	$\frac{cn^k}{b^k}$	$a \times \left(\frac{cn^k}{b^k}\right)$
2	a^2	$\left(\frac{cn^k}{b^k}\right)^2$	$a^2 imes \left(\frac{cn^k}{b^k}\right)^2$
n – 1	a^k	$\left(\frac{cn^k}{b^k}\right)^k$	$a^k imes \left(\frac{cn^k}{b^k}\right)^k$
$k = \log_b n$	$a^{\log_b n}$	$\left(\frac{cn^k}{b^k}\right)^{\log_b n}$	$ \begin{array}{c} a^{\log_b n} \\ \times \left(\frac{cn^k}{b^k}\right)^{\log_b n} \end{array} $

Therefore, the total cost of the recurrence tree can be given as follows:

$$T(n) = cn^k + a \times \left(\frac{cn^k}{b^k}\right) + a^2 \times \left(\frac{cn^k}{b^k}\right)^2 + \dots + a^{\log_b n} \times \left(\frac{cn^k}{b^k}\right)^{\log_b n}$$

$$\Rightarrow cn^k \left(1 + a \times \left(\frac{1}{b^k}\right) + a^2 \times \left(\frac{1}{b^k}\right)^2 + \dots + a^{\log_b n} \times \left(\frac{1}{b^k}\right)^{\log_b n}\right)$$

$$\Rightarrow cn^{k}\left(1+\left(\frac{a}{b^{k}}\right)+\left(\frac{a}{b^{k}}\right)^{2}+\cdots+\left(\frac{a}{b^{k}}\right)^{\log_{b}n}\right)$$

if $d = \left(\frac{a}{b^k}\right)$, then we can rewrite the equation as:

$$T(n) = cn^{k}(1 + (d) + (d)^{2} + \cdots + (d)^{\log_{b} n})$$

Case 1:
$$\rightarrow \frac{a}{b^k} < 1$$

When d < 1 i. e. $\frac{a}{b^k} < 1$ hence,

To prove the geometric series is infinite:

$$\lim_{n\to\infty} \left(1+d+d^2+d^3+\cdots+d^{\log_b n}\right)$$

As this is a geometric series which yields to:

$$=\lim_{n\to\infty}\left(\frac{d^{n+1}-1}{d-1}\right)$$

$$=\frac{1}{d-1}\times \lim_{n\to\infty}d^{n+1}-\lim_{n\to\infty}1$$

$$=\frac{1}{d-1}\times(\infty-1)$$

$$= \frac{1}{d-1} \times (\infty - 1)$$
$$= \frac{1}{d-1} \times \infty$$

The series is infinite geometric series, as n goes infinite:

The series can be expressed as a common ratio `d` and a is 1 , Hence by formula of infinite geometric series we we get:

$$S=\frac{a}{1-r}=\frac{1}{1-d}.$$

To prove the series is convergent:

$$\lim_{n\to\infty}\left(\frac{1}{1-d}\right)=\frac{1}{1-0}=1 \text{ , hence series is covergent i.e.}$$
 finite and unique.

As the condition is d < 1, the series becomes convergent i.e. finite and unique i.e.:

$$1 + d + d^2 + \dots = \frac{1}{1 - d}$$

Even if the sequence goes infinite, one can observe that the sequence reduces to constant factors only, when d < 1.

Therefore:
$$cn^{k}\left[\frac{1}{1-d}\right] = \frac{cn^{k}}{1-d} = \Theta\left(\frac{cn^{k}}{1-d}\right)$$

$$= \left(\frac{1}{1-d}\right) \times \ \Theta \big(c n^k \big) = \ \Theta \big(c n^k \big) = \ \Theta \big(n^k \big) \,.$$

Case 2:
$$\rightarrow \frac{a}{b^k} = 1$$

When d = 1, this implies $a = b^k$. Therefore we will have:

$$T(n) = cn^{k}(1 + (d) + (d)^{2} + \cdots + (d)^{\log_{b} n})$$

Substuting d with 1 we get:

$$T(n) = cn^{k}(1 + (1) + (1)^{2} + \cdots + (1)^{\log_{b} n})$$

$$T(n) = cn^{k}(1 + (1 + 1 + \cdots + \log_{b} n \ times))$$

$$T(n) = cn^k(1 + 1 \times \log_b n)$$

$$T(n) = cn^k(1 + \log_b n)$$

$$T(n) = (cn^k + cn^k \times \log_b n)$$

Here dominant term is $cn^k \times \log_b n$, hence result is: $\Theta(n^k \log_b n)$ or $\Theta(n^k \log n)$.

Case 3:
$$\rightarrow \frac{a}{b^k} > 1$$

When $d \neq 1$, this implies that $\frac{a}{b^k} > 1$, that is $a > b^k$, then:

$$T(n) = cn^{k}(1 + (d) + (d)^{2} + \cdots + (d)^{\log_{b} n})$$

We can write this as:

$$T(n) = cn^{k} \times d^{\log_{b} n} \left(\frac{1}{d^{\log_{b} n}} + \dots + \frac{1}{d} + 1 \right)$$

$$Constant$$

i.e.,
$$\left(\frac{1}{d^{\log_b n}} + \cdots + \frac{1}{d} + 1\right)$$
 will lead to constant, as the

series converges to a finite , as n tends to inifinity , each term in the summation tends to 0 when d>1.

If n tends to infinity , the terms , $\frac{1}{d^{\log_b n}}$, $\frac{1}{d^{\log_b n-1}}$, ... etc. will become very small .

We can write it as:

$$\frac{1}{d^{\log_b n}} + \frac{1}{d^{\log_b n - 1}} + \dots + \frac{1}{d} + 1$$

$$= \left(\frac{1}{d}\right)^{\log_b n} + \left(\frac{1}{d}\right)^{\log_b n - 1} + \dots + \left(\frac{1}{d}\right)^1 + 1$$

Now lets consider common ratio of the series r, which is equal to $\frac{1}{d}$.

Since 0 < d < 1 and n is infinite, we can apply the formula for the sum of an geometric series:

$$S=\frac{a}{1-r}$$

Substituting the values of $a = \left(\frac{1}{d}\right)^{\log_b n}$ and $r = \frac{1}{d}$ into the formula for the sum of an infinite geometric series:

$$S = \frac{\left(\frac{1}{d}\right)^{\log_b n}}{1 - d}$$

$$S = \frac{\left(\frac{1}{d}\right)^{\log_b n}}{1 - \frac{1}{d}}$$

$$S = \frac{\left(\frac{1}{d}\right)^{\log_b n}}{\frac{d-1}{d}}$$

$$S = \left(\frac{1}{d}\right)^{\log_b n} \times \frac{d}{(d-1)}$$

As n tends to inifinity: $\left(\frac{1}{d}\right)^{\log_b n}$ approaches to zero, since any positive base raised to a negative exponent tends to zero. i.e. Suppose take an example:

$$\left(rac{1}{10}
ight)^{\log_b 100}$$
 , then $\log_{10} 100=2$

$$\left(rac{1}{10}
ight)^{\log_b 100} = \left(rac{1}{10}
ight)^2 = rac{1}{100}$$
 , and the value is

less than one, hence exponent is negative i.e. 10^{-2} .

*** Hence, the sum of series converges to a constant value. ***

Note: The above expression can also be represented as:

$$S = \frac{1}{d^{\log_b n}} \times \frac{d}{(d-1)} = \frac{1}{n^{\log_b d}} \times \frac{d}{(d-1)}$$
 also as:

$$S = \frac{1}{n^{\log_b d} \times \frac{(d-1)}{d}}$$

Also we can write:

As n tends to infinity, term $\frac{1}{n^{\log_b d}}$ approaches to zero , since any positive base raised to a negative exponent

tends to zero. Therefore, the sum of series converges to a constant value.

If we want an convergence test:

Convergence Test

$$\frac{1}{d^{\log_b n}} + \frac{1}{d^{\log_b n-1}} + \cdots + \frac{1}{d} + 1$$

Lets consider the series: $a_n = \frac{1}{d^{\log_b n}}$, to apply the limit comparison test, we need to find another series b_n , whose convergence behaviour is known.

Lets choose $b_n=\frac{1}{n^{\epsilon}}$, where ϵ is a positive constant. Now we will compare the series a_n and b_n , by taking the limit as n tends to infinity:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\left(\frac{1}{d^{\log_b n}}\right)}{\frac{1}{n^{\epsilon}}}$$

To simplify this expression, lets rewrite $\frac{1}{d^{\log_b n}}$ as $\frac{1}{n^{\log_b d}}$

$$=\lim_{n\to\infty}\frac{1}{\frac{n^{\log_b d}}{\frac{1}{n^{\epsilon}}}}$$

$$=\lim_{n\to\infty}\frac{n^{\in}}{n^{\log_b d}}$$

Since b>1 and d>1, we know that $\log_b d>0$. Therefore , as `n` tends to inifinity , $n^{\log_b d}$ grows faster than n^{\in} for any positive \in .

As a result the limit: $\lim_{n\to\infty}\frac{n^{\in}}{n^{\log_b d}}$ is equal to 0 for any positive \in . This implies that a_n and b_n have the same convergence behaviour.

Since the series:
$$\sum_{n=1}^{\infty} b_n$$
 with $b_n = \frac{1}{n^{\epsilon}}$ converges $\epsilon > 1$,

We can conclude that the series $\sum_{n=1}^{\infty} a_n$ also converges.

$$Therefore \ the \ series: \frac{1}{d^{\log_b n}} + \frac{1}{d^{\log_b n-1}} + \cdots + \frac{1}{d} + 1$$

$$converges \ for \ d > 1 \ and \ b > 1.$$

Therefore keeping out the constant:

$$\left(\frac{1}{d^{\log_b n}} + \cdots + \frac{1}{d} + 1\right)$$
 generated from: $T(n) = cn^k \times d^{\log_b n}$,

as it does not matter in time complexity, we continue:

$$T(n) = cn^k \times d^{\log_b n}$$

$$or, T(n) = cn^k \times \left(\frac{a}{b^k}\right)^{\log_b n}$$

$$= cn^k \times \left(\frac{a^{\log_b n}}{b^{k \log_b n}}\right)$$

$$= cn^k \times \left(\frac{a^{\log_b n}}{n^k}\right) \left[b^{k \log_b n} = n^{k \log_b b}\right]$$

$$= cn^{k} \times \left(\frac{a^{\log_{b} n}}{n^{k}}\right) \left[b^{k \log_{b} n} = n^{k \log_{b} b}\right]$$

$$= c \times a^{\log_b n}$$

$$\in \Theta(n^{\log_b a})$$
 [as $a^{\log_b n}$ can also be written as $n^{\log_b a}$].

Thus we get a simplified master theorem as follows:

Simplified Master Theorem:

Let the time complexity function T(n) be a positive and eventually a non – decreasing function of the following form:

$$T(n) = aT\left(\frac{n}{b}\right) + cn^k$$

$$T(1) = d$$

Here a, d, b, k are all constants.

Here $b \ge 2$, $k \ge 0$, a > 0, c > 0 and $d \ge 0$. The solution for the recurrence equation is given as follows:

Case 1:
$$T(n) \in \Theta(n^k)$$
 if $a < b^k$

Case 2:
$$T(n) \in \Theta(n^k \log n)$$
 if $a = b^k$

Case 3:
$$T(n) \in \Theta(n^{\log_b a})$$
 if $a > b^k$