

Data Science

Machine Learning

Agenda

Machine learning is a field of study that provides systems the ability to automatically learn and improve from experience without being explicitly programmed

Understanding Machine Learning through an Example

Evaluating how much the machine has learnt from the data Car New Data Machine Result

Types of Machine Learning

Types of Machine Learning Algorithms

Supervised Learning Models

Supervised Learning Models

Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output

$$Y = f(X)$$

The goal is to approximate the mapping function so well that when you have new input data (x) that you can predict the output variables (Y) for that data

Supervised Learning

Here, the input variable is "Gender" and the output variable is "Result" and we are mapping a function between "Result" & "Gender"

Supervised Learning Models

Supervised learning problems can be further grouped into regression and classification problems

Types of Supervised Learning

Unsupervised Learning Models

Unsupervised Learning Models

Unsupervised learning is where you only have input data (X) and no corresponding output variables

The goal for unsupervised learning is to model the underlying structure or distribution in the data in order to learn more about the data

Some common use-cases for unsupervised learning are **exploratory analysis, clustering and dimensionality reduction**

Unsupervised Learning Models

Copyright IntelliPaat. All rights reserved

Introduction to Linear Regression

Linear Regression

It helps in understanding the *linear* relationship between **dependent** & **independent** variables

$$\left[y = b_0 + b_1 x\right]$$

Linear Regression Example

I want to know how do the monthly charges of a customer vary with respect to tenure

Linear Regression Example

Estimating the value of "Monthly Charges" when "Tenure" of the customer changes

Error Term in Linear Regression Equation

In general, the data doesn't fall exactly on a line, so the regression equation should include an implicit **error term**

The **fitted values** (predicted values) are typically denoted by Y-hat

$$Y_i = b_0 + b_1 X_i + e_i$$

$$\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_i$$

Exploring b1

If b1 > 0, then x(predictor) and y(target) have a positive relationship. That is increase in x will increase y

Exploring b1

If b1 < 0, then x(predictor) and y(target) have a negative relationship. That is increase in x will decrease y

b1 < 0 — · · — Negative Relationship

Residuals

The difference between the observed value of the dependent variable (y) and the predicted value (\hat{y}) is called the residual. Each data point has one residual

Residual = Observed value - Predicted value

Line of Best Fit

Line of Best Fit

There could be multiple fit lines passing through the points

Line of Best Fit

The line with the lowest value of Residual sum of Squares would be the best fit line

$$RSS = \sum_{k=1}^{n} (Actual - Predicted)^{2}$$

Math Behind Linear Regression

Math Behind Linear Regression

In practice, the regression line is the estimate that minimizes the sum of the squared residual values, also called the **residual sum of squares (RSS)**

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{b}_0 - \hat{b}_1 X_i)^2$$

Math Behind Linear Regression

Sum of squared Errors is given by:

$$SS_{(residuals)} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

If
$$\hat{y} = b_0 + b_1 x$$
 then error in estimate for x_i is $e_i = y_i - \hat{y}_i$

Minimize Sum of Squared Errors (SSE)

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

To minimize the error, 1st order derivative should be equal to zero:

$$\delta e/\delta b_0 = 0$$

$$\delta e/\delta b_1 = 0$$

So, we get 2 equations and 2 unknowns – b_0 and b_1

Math Behind Linear Regression

So we get:

$$\delta e/\delta b_0 = \sum_{i=1}^{n} 2 (y_1 - b_0 - b_1 x_1) (-1) = 0 \dots (1)$$

$$\delta e/\delta b_1 = \sum_{i=1}^{n} 2 (y_1 - b_0 - b_1 x_1) (-x_1) = 0 \dots (2)$$

Expanding these equations, can calculate the b_0 & b_1

Math Behind Linear Regression

$$\hat{b}_{1} = \frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})(X_{i} - \overline{X})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$\hat{b}_{0} = \overline{Y} - \hat{b}_{1}\overline{X}$$

Coefficient of Determination (R Squared)

Coefficient of Determination(R Squared)

R Squared is interpreted as the proportion of the variance in the dependent variable that is predictable from the independent variable

An **R Squared of 0** means that the dependent variable cannot be predicted from the independent variable

An **R Squared of 1** means the dependent variable can be predicted without error from the independent variable

An R Squared between 0 and 1 indicates the extent to which the dependent variable is predictable. An R Squared of 0.10 means that 10 percent of the variance in Y is predictable from X; an R Squared of 0.20 means that 20 percent is predictable; and so on

Coefficient of Determination(R Squared)

SST (Total Sum of Squares) =

SSR (Sum of Squares Regression) + SSE (sum of squared errors of prediction)

$$SST = SSR + SSE \Rightarrow \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = R^2$$

$$SST = \sum (y_i - \bar{y})^2 \quad SSR = \sum (\hat{y}_i - \bar{y})^2 \quad SSE = \sum (y_i - \hat{y}_i)^2$$

Coefficient of Determination(R Squared)

Adjusted R Squared

Adjusted R Squared

The **adjusted R-squared** is a modified version of R-squared that has been adjusted for the number of predictors in the model

The adjusted R-squared increases only if the new term improves the model more than would be expected by chance

Adjusted R Squared will always be less than or equal to R Squared

Problem Statement

Building simple linear regression model on top of the customer_churn dataset

Tasks to be performed

1

Divide the "customer_churn" data into train & test sets with split ratio 65:35

2

Build a Simple Linear Regression model where the dependent variable is "Monthly_Charges" and the independent variable is "tenure"

3

Build a Simple Linear Regression model where the dependent variable is "Monthly_Charges" and the independent variable is "InternetService"

sample.split(customer_churn\$Churn,SplitRatio = 0.65)-> split_tag
subset(customer_churn, split_tag==T)->train
subset(customer_churn, split_tag==F)->test

Im(MonthlyCharges~tenure, data=train)-> model1

predict(model1, newdata=test)->predicted_values

cbind(Actual=test\$MonthlyCharges,Predicted=predicted_values)->final_data

as.data.frame(final_data)->final_data

sqrt(mean((final_data\$error)^2))->rmse1

Im(MonthlyCharges~InternetService, data=train)-> model2

predict(model2, newdata=test)->result

cbind(Actual=test\$MonthlyCharges,Predicted=result)->final_data2

as.data.frame(final_data2)->final_data2

sqrt(mean((final_data2\$error2)^2))->rmse2

Multiple Linear Regression helps in modelling a relationship between *two or more explanatory variables* & *a response variable*!

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

1

Divide the "customer_churn" data into train & test sets with split ratio 65:35

2

Build a Multiple Linear Regression model where the dependent variable is "tenure" and the independent variables are "Monthly_Charges", "gender", "InternetService" & "Contract"

3

Build a multiple Linear Regression Model where the dependent variable is "tenure" & the independent variables are "Partner", "PhoneService", "TotalCharges" & "PaymentMethod"

predict(mod1,test)->result1

cbind(Actual=test\$tenure,Predicted=result1)->final_data1

 ${\bf as.data.frame} (final_data1) \hbox{->} final_data1$

final_data\$Actual - final_data\$Predicted ->error1
 cbind(final_data1,error1)-> final_data1

sqrt(mean((final_data1\$error1)^2))->rmse1

predict(mod2,test)-> result2

cbind(Actual=test\$tenure,Predicted=result2)->final_data2

 ${\bf as.data.frame} (final_data2) -> final_data2$

sqrt(mean((final_data2\$error2)^2))->rmse2

Assumptions in Linear Regression

Assumptions in Regression - Linearity

There should be a *linear* & *additive* relationship between the dependent & independent variables!

Satisfies the assumption

Doesn't Satisfy the assumption

Assumptions in Regression – Equal Error Variance

The residuals must have *constant variance*!

If there is no pattern, data is random and hence, satisfies the condition

If there is a pattern, the data is not random and hence, doesn't satisfy the condition

Assumptions in Regression – Normality of Errors

The residuals must have *normally distributed*!

Build a normal probability plot. If the residuals are closer to the fit line, the more normal they are

Checking the Assumptions in R

Checking Assumptions in R

1

Make a scatter-plot between "tenure" & "TotalCharges" and find out if there's a linear relationship between them

2

Make a "residual vs fit" graph to check for equal error variance

3

Build a "normal probability plot" to check for normality of errors

Checking for Linearity

Using ggplot2 to make a scatter plot between "tenure" & "TotalCharges"

Checking for Equal Error Variance

Make a linear model between "tenure" & "TotalCharges" & predict the values

Im(TotalCharges~tenure, data = customer_churn)->mod1
 predict(mod1,data=customer_churn)-> result1

Checking for Equal Error Variance

cbind(Actual=customer_churn\$TotalCharges, Predicted=result1)-> final_data1 as.data.frame(final_data1)->final_data1

> final_data1\$Actual -final_data1\$Predicted -> error1 cbind(final_data1,error1)-> final_data1

Checking for Equal Error Variance

ggplot(data= final_data1, aes(x=Predicted, y=error1)) + geom_point()

Checking for Normality of Errors

qqnorm(final_data1\$error1)

Linear Regression on 'Boston' dataset

Problem Statement

Building linear regression model on top of the 'Boston' dataset

str(Boston)

!

*

summary(Boston)

subset(Boston,split_tag==T) -> train subset(Boston,split_tag==F) -> test

Bind the actual and predicted values and find the RMSE value

•

sqrt(mean((final_data1\$error1)^2))

predict(lin_mod2,test) -> lin_result2

. . .

cbind(Actual=test\$medv,Predicted=lin_result2) -> final_data2 as.data.frame(final_data2) -> final_data2

> | |-|

sqrt(mean((final_data1\$error1)^2))

A correlation between age and health of a person was found to be -1.09. On the basis of this you would tell the doctors that:

- a) A. The age is good predictor of health
- b) B. The age is poor predictor of health
- c) C. None of these

Which of the following metrics can be used for evaluating regression models?

1) R Squared

2) Adjusted R Squared

3) F Statistics

4) RMSE

/ MSE / MAE

- a) 2 and 4
- b) 1 and 2
- c) 2, 3 and 4
- d) All of the above

A residual is defined as:

- a. Observed value Predicted value
- b. Error sum of square
- C. Regression sum of squares
- d. Type I Error

Thank You

US: 1-800-216-8930 (TOLL FREE)

sales@intellipaat.com

24X7 Chat with our Course Advisor