Package 'pistar'

September 30, 2013

Type Package

Title Rudas, Clogg and Lindsay Mixture Index of Fit
Version 0.5.2
Date 2013-09-30
Author Juraj Medzihorsky <juraj.medzihorsky@gmail.com></juraj.medzihorsky@gmail.com>
Maintainer Juraj Medzihorsky <juraj.medzihorsky@gmail.com></juraj.medzihorsky@gmail.com>
Depends methods
Description Functions for estimating the Rudas, Clogg and Lindsay mixture index of fit.
License GPL (>= 2)
R topics documented: pistar-package

Fienberg 1980a

pist	ar-package	Rı	ıda	ıs, (Cle	ogg	g, <i>u</i>	ane	dL	in	ds	ay	M	l ix	tui	re .	In	de	x e	of .	Fit	t .						
Index																											3	14
	SummaryPistar-cla																											
	rcl.s summary.Pistar .																											
	PistarUV-class pool.jack rcl.em																										. 2	

Description

Functions for the Rudas, Clogg and Lindsay π^* mixture index of fit.

Details

Package: pistar
Type: Package
Version: 0.5.2
Date: 2013-09-30
License: GPL (>= 2)

Functions for the Rudas, Clogg and Lindsay π^* mixture index of fit.

Note

The author would like to thank Tamas Rudas for invaluable advice in the development of this package.

Work on the package was supported in part by Central European University grant BPF/5182/20123/R.

Author(s)

Juraj Medzihorsky < juraj.medzihorsky@gmail.com>

Fienberg1980a Citation Practices in Two Operations Research Journals

Description

Citation practices in two operations reserch journals from Fienberg (1980a) analyzed by Rudas (2002) using the mixture index of fit.

Reprinted by permission of The Applied Probability Trust. First published in Fienberg, S. E. (1980a) Using loglinear models to analyze cross-classified categorical data, *The Mathematical Scientist*, 5, 13-30. Copyright (c) Applied Probability Trust 1980.

freq.table 3

Usage

```
data(Fienberg1980a)
```

Format

A 2-dimensional 2-by-4 array cross-tabulating observations of 336 papers in two operations research journals, *Management Science* (MS) and *Operations Research* (OR), from their 1969 and 1970 issues. Each papers is classified into one of four categories based on whether it refers to other papers from these two journals.

The variables and their levels are as follows:

```
No Name Levels
1 citing MS, OR
2 cited none, MS, OR, both
```

Source

Fienberg, S. E. (1980a) Using loglinear models to analyze cross-classified categorical data, *The Mathematical Scientist*, 5, 13-30.

References

Fienberg, S. E. (1980a) Using loglinear models to analyze cross-classified categorical data, *The Mathematical Scientist*, 5, 13-30.

Rudas, T. (2002) 'A Latent Class Approach to Measuring the Fit of a Statistical Model' in Hagenaars, J. A. and McCutcheon, A. L. (eds.) Applied Latent Class Analysis. Cambridge University Press. 345-365.

Examples

```
data(Fienberg1980a)
Fienberg1980a
```

freq.table

Frequency Table of Integers in a Vector

Description

freq.table is used to obtain a frequency table of values from a numeric vector. Unlike table it includes the frequency of each integer value on the interval from the smallest to the largest observed value, and thus can contain also zeros.

Usage

```
freq.table(x)
```

Arguments

x a numeric vector.

4 pearson2pistar

Details

freq. table first coerces the input vector into type integer and then creates a table of frequencies of all integers on the closed interval from the smallest to the largest inputed integer.

Value

A named vector of frequencies.

Author(s)

Juraj Medzihorsky

See Also

table

Examples

```
set.seed(1989)
y <- c(rpois(1e1, 3), rpois(1e1, 1e1))
freq.table(y)
# compare with table()
table(y)</pre>
```

pearson2pistar

Pearson to π^* *Conversion*

Description

pearson2pistar is used to convert Pearson product-moment correlation coefficient into the π^* mixture index of fit using the relationship between them described by Rudas, Clogg, and Lindsay (1994).

Usage

```
pearson2pistar(coeff)
```

Arguments

coeff

value of Pearson product-moment correlation coefficient to be converted.

Details

The relationship between π^* and Pearson ρ is:

$$\pi^* = 1 - \sqrt{\frac{1 - |\rho|}{1 + |\rho|}}$$

Value

Value of π^* corresponding to the supplied value of Pearson product-moment correlation coefficient.

piplot.ct 5

Author(s)

Juraj Medzihorsky

References

Rudas, T., Clogg, C. C., Lindsay, B. G. (1994) A New Index of Fit Based on Mixture Methods for the Analysis of Contingency Tables. *Journal of the Royal Statistical Society. Series B (Methodological)*, Vol. 56, No. 4, 623-639.

See Also

```
cor pistar.bvn
```

Examples

piplot.ct

Pre-analysis Plot for pistar.ct

Description

piplot.ct is used to inform the choice of the interval on which to look for π^* with pistar.ct. It plots log-likelihood ratio statistic values of a two-point mixture of a user-supplied model and an unrestricted component fit to a contingency table on a specified number of equally-spaced points on a supplied interval.

Usage

Arguments

fn	a user-supplied function that inputs a contingency table of observed values and outputs a contingency table of predicted values. The function must output a named list with the contingency table of predicted values named 'fit'.
data	a contingency table.
	further arguments passed to the user-supplied function.
from	numeric: lower bound of the interval of out-of-model proportions to be explored.
to	numeric: upper bound of the interval of out-of-model proportions to be explored.
n	numeric: number of equally-spaced points from the interval of out-of-model proportions to be explored.
draw	logical: draw a plot or lines?

6 piplot.ct

color color of the line.

zero_line logical: plot a horizontal line at 0?

add logical: add the line to a plot?

values logical: return a dataframe with explored out-of-model proportions and their

corresponding log-likelihood ratio statistics?

Details

Developed from John M. Grego's clr.plot

Value

A plot. If values = TRUE returns also an object of class 'PiplotCT' with the following slots:

pi numeric vector of explored out-of-model proportions

1r numeric vector of corresponding log-likelihood ratio statistics

Author(s)

Juraj Medzihorsky, developed from John M. Grego's clr.plot

References

```
Grego, J.M. \ clr. plot \ function \ available \ at \ http://www.stat.sc.edu/~grego/courses/stat770/CLR.txt
```

See Also

```
pistar.ctrcl.em
```

```
data(Fienberg1980a)

mf <- function(data) loglin(data, list(1, 2), fit=TRUE, print=FALSE)

a <- piplot.ct(fn=mf, data=Fienberg1980a, values=TRUE)

a
plot(a, color="red")</pre>
```

PiplotCT-class 7

PiplotCT-class

Class "PiplotCT"

Objects from the Class

Objects can be created by calls of the form new("PiplotCT", ...).

Slots

```
call: Object of class "language" ~~
pi: Object of class "numeric" ~~
lr: Object of class "numeric" ~~
lr_plus_eps: Object of class "numeric" ~~
```

Methods

```
plot signature(x = "PiplotCT"): ...
print signature(x = "PiplotCT"): ...
show signature(object = "PiplotCT"): ...
```

Examples

```
showClass("PiplotCT")
```

pistar

The Mixture Index of Fit

Description

pistar is a wrapper function for all functions estimating the Rudas-Clogg-Lindsay π^* mixture index of fit from package **pistar**.

Usage

```
pistar(proc, ...)
```

Arguments

```
"uv" for pistar.uv
"ct" for pistar.ct
"11" for pistar.11
"2by2" for pistar.2by2
"mvn" for pistar.mvn
"bvn" for pistar.bvn
...
```

8 Pistar-class

Value

```
An object of class "Pistar".
```

Author(s)

Juraj Medzihorsky

Examples

```
# create data in a 2-by-2 table
H <- matrix(rpois(4, 20), ncol=2)

# find pi* for independence (i.e. odds ratio of 1)
h <- pistar(proc="2by2", data=H, alpha=1, jack=FALSE)
h</pre>
```

Pistar-class

Class "Pistar"

Objects from the Class

Objects can be created by calls of the form new("Pistar", ...).

Slots

```
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
```

Methods

```
print signature(x = "Pistar"): ...
show signature(object = "Pistar"): ...
summary signature(object = "Pistar"): ...
```

```
showClass("Pistar")
```

pistar.2by2

	FFT 3.61 X 7		D
pistar.2by2	The Mixture Index of	of Fit for Odds	Ratios in 2-by-2 Tables
p10ta: .2012	THE HILLION C THURST (J I W JOI CHAS	recitos in 2 o , 2 recotes

Description

pistar. 2by2 is used to estimate π^* for a given cross-product ratio (i.e. odds ratio) in a 2-by-2 table using the method devised by Clogg, Rudas, and Xi (1995).

Usage

```
pistar.2by2(data, alpha = 1, jack = FALSE, verbose = TRUE)
```

Arguments

data a 2-by-2 contingency table.

alpha numeric: cross-product ratio

jack logical: perform jackknife?

verbose logical: print during estimation?

Value

Object of class "Pistar", "PistarCT", and "Pistar2by2" with the following slots:

call the matched call.

pistar a list of estimated values of the mixture index of fit.

est for the supplied data and odds ratio.jack vector of values from jackknife.

pred a list of predicted values with three items:

model the model component multiplied by $(1 - \pi^*)$ **unres** the unrestricted component multiplied by π^* **combi** the two-point mixture, i.e. $(1 - \pi^*)M + \pi^*U$

data the supplied data.

param a list of with a single item

est numeric: the supplied value of cross-product ratio.

References

Clogg, C. C., Rudas, T., & Xi, L. (1995). A new index of structure for the analysis of models for mobility tables and other cross-classifications. *Sociological Methodology*, 197-222.

Rudas. T., Zwick. R., (1997) Estimating the Importance of Differential Item Functioning. *Journal of Educational and Behavioral Statistics*, Vol. 22, No. 1 (Spring, 1997), pp. 31-45

10 pistar.bvn

Examples

```
H <- matrix((1:4)*1e1, byrow=TRUE, ncol=2)
h <- pistar.2by2(H, alpha=1, jack=TRUE)
h
str(h)
plot(h)
summary(h)</pre>
```

pistar.bvn

The Mixture Index of Fit for Bivariate Normal Independence

Description

pistar.bvn is used to estimate the π^* mixture index of fit for independence in a bivariate normal distribution using the relationship between π^* and Pearson correlation coefficient.

Usage

```
pistar.bvn(x, y, conf = 0.95, na.action, alt = "two.sided", verbose = TRUE)
```

Arguments

x a numeric vector containing the first variable.y a numeric vector containing the second variable.

conf confidence level.
na.action passed to cor.test.

alt alternative hypothesis, determines the shape of the confidence interval; passed

to cor.test.

verbose logical: print during estimation?

Value

Object of class "Pistar", and "PistarBVN" with the following slots:

call the matched call.

pistar a list of estimated values of the mixture index of fit:

est for the supplied data.

jack vector of values from jackknife.

pred not yet implemented.

data a data. frame with the supplied data.

param not yet implemented. interval confidence interval for pi*.

conf confidence level.

alt the supplied alternative hypothesis.

pistar.ct 11

Author(s)

Juraj Medzihorsky

References

Rudas, T., Clogg, C. C., Lindsay, B. G. (1994) A New Index of Fit Based on Mixture Methods for the Analysis of Contingency Tables. *Journal of the Royal Statistical Society. Series B (Methodological)*, Vol. 56, No. 4, 623-639.

See Also

```
cor.test pearson2pistar
```

Examples

```
# simlate data
set.seed(1989)
n <- 1e2
a <- rnorm(n)
b <- rnorm(n)
# find pi*
o <- pistar.bvn(x=a, y=b)</pre>
```

pistar.ct

The Mixture Index of Fit for a Contingency Table

Description

pistar.ct is used to find the value of the π^* for any user-supplied model fit to a contingency table. The only requirements are (1) that the model inputs only a contingency table with non-negative continuous cell values, and (2) outputs a named list in which the predicted values are a contingency table named "fit". Optionally parameter estimates of interest can be outputed as a vector named "param" in the output list.

 π^* for the model of interest is estimated using the algorithm of Rudas, Clogg, and Lindsay (1994). Standard errors for π^* and any other parameter estimates of interest can be obtained by jackknife as proposed by Dayton (2003).

Usage

12 pistar.ct

Arguments

data a contingency table. fn a user supplied function that estimates the model of interests. Must input only the observed values as a contingency table containing non-negative continuous cell values. Must output the predicted values as a contingency table as item named "fit" in a named list. Optionally can output parameter estimates of interest as a vector named "param" in the output named list. from numeric: lower bound of the interval of out-of-model proportions to be explored. numeric: upper bound of the interval of out-of-model proportions to be explored. to jack logical: perform jackknife? method character: method with to look for π^* . "uniroot" uses uniroot, can be expected to be faster "split" uses a simple binary search from rcl.s. u_iter maximum number of iterations for method uniroot if method "uniroot". weighing constant; default is 1. The EM algorithm might crash due to very low zeta cell values and in such case increasing the zeta might help. penalty for finding π^* , the largest small positive number that can be still considlr_eps ered practically indistinguishable from 0. max_dif largest acceptable difference, passed to rcl.em and rcl.s. χ^2 statistic penalty; default 0. Supply a different e.g. if you want to find the chi_stat lower endpoint of a one-sided confidence interval for π^* .

Details

verbose

The EM algorithm implemented here was proposed by Rudas, Clogg and Lindsay (1994). The jackknife procedure was proposed by Dayton (2003). The function is developed from J.M.Grego's clr and clr.root functions.

Value

Object of class "Pistar", "PistarCT", and "PistarRCL" with the following slots:

call the matched call.

pistar a list of estimated values of the mixture index of fit.

logical: print during estimation?

est for the supplied data.

jack vector of values from jackknife.

pred a list of predicted values with three items:

model the model component multiplied by $(1 - \pi^*)$ **unres** the unrestricted component multiplied by π^* **combi** the two-point mixture, i.e. $(1 - \pi^*)M + \pi^*U$

data an array with the supplied data.

param a list of requested estimates of the parameters of interest of the model fit to an

unscaled model density, i.e. to M and **not** $(1 - \pi)M$.

est the estimated values.

jack from each jackknife replication.

11rs a list of values of log-likelihood ratio statistics

pistar.ct 13

```
est for the supplied data.jack vector of values from each jackknife.a list of the numbers of iterations of either uniroot or rcl.sest for the supplied data.
```

Author(s)

iter

Juraj Medzihorsky

Developed from J.M.Grego's clr and clr.root functions.

jack from each jackknife replication.

References

Dayton, C. M. (2003) Applications and computational strategies for the two-point mixture index of fit. *British Journal of Mathematical & Statistical Psychology*, 56, 1-13.

Grego, J. M. clr and clr.root functions available at http://www.stat.sc.edu/ \sim grego/courses/stat770/CLR.txt

Rudas, T., Clogg, C. C., Lindsay, B. G. (1994) A New Index of Fit Based on Mixture Methods for the Analysis of Contingency Tables. *Journal of the Royal Statistical Society. Series B (Methodological)*, Vol. 56, No. 4, 623-639.

Rudas, T. (2002) 'A Latent Class Approach to Measuring the Fit of a Statistical Model' in Hagenaars, J. A. and McCutcheon, A. L. (eds.) Applied Latent Class Analysis. Cambridge University Press. 345-365.

See Also

```
piplot.ct rcl.em rcl.s
```

```
# load data
data(Fienberg1980a)

# define a function: log-linear model of independence in a
# 2-way table
mf <- function(x){
loglin(table=x, margin=list(1,2), fit=TRUE, print=FALSE)
}

# find pi*
p <- pistar(proc="ct", data=Fienberg1980a, fn=mf, jack=FALSE)
p
summary(p)
plot(p)</pre>
```

14 pistar.II

pistal.ii Inc mixine maex of the for Box uncar model	pistar.ll	The Mixture Index of Fit for Log-linear Mode	els
--	-----------	--	-----

a contingency table.

Description

pistar.11 is used to find the value of the π^* index of fit for any log-linear model estimated with loglin; π^* is estimated using the algorithm of Rudas, Clogg, and Lindsay (1994). Standard errors for π^* and any other estimates of parameters of interest can be obtained by jackknife as proposed by Dayton (2003).

Usage

```
pistar.ll(data, margin = list(1, 2), start = rep(1, length(data)), eps = 0.1,
    iter = 1e3, param = TRUE, print = FALSE,
    from = .Machine$double.neg.eps^0.25,
    to = 1 - .Machine$double.neg.eps^0.25, jack = FALSE,
    lr_eps = .Machine$double.neg.eps^0.25,
    max_dif = .Machine$double.neg.eps^0.5, chi_stat = 0, u_iter = 1e3,
    tol = .Machine$double.eps^0.25, verbose = TRUE)
```

Arguments

data

data	a contingency table.
margin	passed to loglin.
start	start argument of loglin.
eps	eps argument of loglin.
iter	maximum number of iterations for loglin.
param	logical: return parameter estimates?
print	logical: should loglin print during fitting?
from	$numeric: \ lower \ bound \ of \ the \ interval \ of \ out-of-model \ proportions \ to \ be \ explored.$
to	$numeric: \ upper \ bound \ of \ the \ interval \ of \ out-of-model \ proportions \ to \ be \ explored.$
jack	logical: perform jackknife?
lr_eps	penalty for finding π^* , the largest small positive number that can be still considered practically indistinguishable from 0 .
max_dif	largest acceptable difference, passed to rcl.em.
chi_stat	χ^2 statistic penalty; default 0. Supply a different e.g. if you want to find the lower endpoint of a one-sided confidence interval for π^* .
u_iter	maximum number of iterations for method uniroot.
tol	tolerance passed to loglin.
verbose	logical: print during estimation?

Details

This is a version of the algorithm implemented in pistar.ct for log-linear models that is speed-optimized.

pistar.II 15

Value

Object of class "Pistar", "PistarCT", , "PistarRCL", and "PistarLL" with the following slots:

call the matched call.

pistar a list of estimated values of the mixture index of fit.

est for the supplied data.

jack vector of values from jackknife.

pred a list of predicted values with three items:

model the model component multiplied by $(1 - \pi^*)$ **unres** the unrestricted component multiplied by π^* **combi** the two-point mixture, i.e. $(1 - \pi^*)M + \pi^*U$

data the supplied data.

param a list of requested estimates of the parameters of interest of the model fit to an

unscaled model density, i.e. to M and **not** $(1 - \pi)M$.

est the estimated values.

jack from each jackknife replication.

11rs a list of values of log-likelihood ratio statistics

est for the supplied data.

jack vector of values from each jackknife.

iter a list of the numbers of iterations of either uniroot or rcl.s

est for the supplied data.

jack from each jackknife replication.

Author(s)

Juraj Medzihorsky

Developed from J.M.Grego's clr and clr.root functions.

References

Dayton, C. M. (2003) Applications and computational strategies for the two-point mixture index of fit. *British Journal of Mathematical & Statistical Psychology*, 56, 1-13.

Grego, J. M. clr and clr.root functions available at http://www.stat.sc.edu/~grego/courses/stat770/CLR.txt

Rudas, T., Clogg, C. C., Lindsay, B. G. (1994) A New Index of Fit Based on Mixture Methods for the Analysis of Contingency Tables. *Journal of the Royal Statistical Society. Series B (Methodological)*, Vol. 56, No. 4, 623-639.

Rudas, T. (2002) 'A Latent Class Approach to Measuring the Fit of a Statistical Model' in Hagenaars, J. A. and McCutcheon, A. L. (eds.) Applied Latent Class Analysis. Cambridge University Press. 345-365.

See Also

```
pistar.ct loglin
```

16 pistar.mvn

Examples

```
data(HairEyeColor)
# check if the data is an "array"
is(HairEyeColor, "array")
# it is not, so it first needs to be converted:
HEC <- array(HairEyeColor,</pre>
 dim=dim(HairEyeColor),
 dimnames=dimnames(HairEyeColor))
# find pi* for independence in a 3-way table
p <- pistar(proc="ll", data=HEC, margin=list(1, 2, 3), jack=FALSE)</pre>
summary(p)
\# plot does not work for n-way tables if n > 2
# plot(p)
# create data
H \leftarrow matrix((1:4)*1e1, byrow=TRUE, ncol=2)
# find pi* and model parameter estimates and perform jackknife
h <- pistar(proc="ll", data=H, margin=list(1, 2), param=TRUE, jack=TRUE)</pre>
summary(h)
```

pistar.mvn

The Mixture Index of Fit for Multivariate Normal Independence

Description

pistar.mvn is used to estimate the value of the π^* mixture index of fit for independence in multivariate normal distribution using the procedure of Knott (2005). Standard errors can be obtained using jackknife as proposed by Dayton (2003).

Usage

```
pistar.mvn(data, cor_matrix = FALSE, max_dif = .Machine$double.neg.eps^0.5,
           jack = FALSE, seed = 1989, lag = c(5, 10), verbose = TRUE)
```

Arguments

a matrix, or a correlation matrix. data

logical: is the supplied data a correlation matrix? If TRUE jackknife cannot be cor_matrix

performed.

pistar.mvn 17

max_dif numeric: maximal acceptable difference between selected iterations for the con-

vergence diagnostic. See 'Details'.

jack logical: perform jackknife?

seed seed for random number generation.

lag parameters of the convergence diagnostic, see 'Details'.

verbose logical: print during estimation?

Details

The function was developed from code published by Knott (2005).

A simple convergence diagnostic was added to Knott's (2005) procedure. The absolute values of the differences between the value of π^* at the current iteration and between lag iterations and stops the iterations as successful if all the differences are smaller than the constant supplied as max_dif argument. To check if the algorithm has converged to a global or a local minimum check test in the output and restart the procedure with a different seed if needed (see Knott 2005 for more details).

Value

Object of class "Pistar", and "PistarMVN" with the following components:

call the matched call.

pistar a list of estimated values of the mixture index of fit:

est for the supplied data.

jack vector of values from jackknife.

pred not yet implemented.
data the supplied data.
param not yet implemented.

trace a list of traces from the iterations:

est vector from estimation with supplied data.

jack list of traces from jackknife.

iter a list of numbers of the iterations:

est from estimation with supplied data. **jack** a list of traces from jackknife.

test a test statistic to evaluate if the procedure has converged to a local or global

optimum. See Knott (2005) for more details.

est Vector from estimation with supplied data.

jack List of vectors from jackknife.

Author(s)

Juraj Medzihorsky

Developed from code published by Knott (2005).

References

Dayton, C. M. (2003) Applications and computational strategies for the two-point mixture index of fit. *British Journal of Mathematical & Statistical Psychology*, 56, 1-13.

Knott, M. (2005) A measure of independence for a multivariate normal distribution and some connections with factor analysis, *Journal of Multivariate Analysis*, 96, 374-383.

18 pistar.uv

Examples

```
# simulate data
set.seed(1989)
n <- 1e2
A <- cbind(rnorm(n), rnorm(n))
# find pi*
a <- pistar(proc="mvn", data=A, jack=FALSE)
a
summary(a)
plot(a)</pre>
```

pistar.uv

The Mixture Index of Fit for Univariate Distributions

Description

pistar.uv is used to estimate the π^* index of fit for any user-supplied univariate distribution. The user must supply a probability mass or density function that inputs the data as the first argument and the parameters as the next arguments. See 'Details' for the estimation procedures. Standard errors available via jackknife as suggested by Dayton (2003).

Usage

Arguments

data	a vector or a frequency table.
dfn	function: probability mass or density function that inputs the data as the first argument and the parameters as the arguments that immediately follow it.
n_par	numeric: number of parameters. Either n_par or inits must be supplied. If only n_par is supplied initial values are generated internally and might not always be suitable.
inits	a vector or list of initial values of parameters supplied to optim. If named the parameter names are preserved in the output.
discrete	logical: is the distribution discrete?
freq	logical: is the supplied data a frequency table? Relevant only if discrete is $\ensuremath{TRUE}.$
lower	numeric: a vector of lower bounds for parameters.
upper	numeric: a vector of upper bounds for parameters.
jack	logical: perform jackknife?

pistar.uv 19

method argument for optim. Default "Brent" for mono-parameter functions method

and "Nelder-Mead" for multi-parameter functions. See optim for details on

methods.

control list supplied to optim, see optim. logical: print during estimation? verbose

an integer indicating the number of points for density; used if discrete = FALSE. npk eps

numeric: the smallest number practically indistinguishable from 0. Used only if

discrete = TRUE.

Details

The general procedure for discrete and continuous distributions is the same: a general purpose optimization method is used to find such values of the parameters of the supplied distribution that minimize the following quantity: 1 minus the inverse of the ratio of the model and the observed density at the point of their supports where this ratio is highest. This quantity is π^* .

The procedure for discrete distributions differs from the one for the continuous distributions in the method used to obtain the observed density. In the discrete case the observed frequencies are used for the observed density. In the continuous case a kernel density is estimated using density with gaussian kernel.

Value

Object of class "Pistar", and "PistarUV" and depending on the discrete argument of the function either "PistarDUV" or "PistarCUV" with the following slots:

the matched call. call.

a list of estimated values of the mixture index of fit. pistar

est for the supplied data.

jack vector of values from jackknife.

if discrete = TRUE a list of predicted values with three items: pred

> **model** the model component multiplied by $(1-\pi^*)$ **unres** the unrestricted component multiplied by π^* **combi** the two-point mixture, i.e. $(1 - \pi^*)M + \pi^*U$

if discrete = FALSE the list also contains three components with the same names, but they contain the values of the scaled densities at npk (i.e. by default

1e3) points.

the supplied data. data

a list of parameter estimates of interest: param

est the estimated values.

jack from each jackknife replication.

meth method of optim used.

a list of integer codes from optim that indicate convergence of the optimization conv

algorithm. Any value that is not 0 suggests problems. See optim for details.

est from estimation with the supplied data.

jack from jackknife replications.

a list of messages pased from optim. See optim for details. mess

> est From the main estimation. **jack** From jackknife replications.

20 pistar.uv

Note

The application of the mixture index of fit for discrete distributions was proposed by Dayton (2003).

Author(s)

Juraj Medzihorsky

References

Dayton, C. M. (2003) Applications and computational strategies for the two-point mixture index of fit. *British Journal of Mathematical & Statistical Psychology*, 56, 1-13.

See Also

```
optim density freq.table
```

```
# (1) discrete
# simulate data
set.seed(1989)
e <- c(rpois(1e3, 2), rpois(2e2, 5))
# make a frequency table
te <- freq.table(e)</pre>
# define a funcion for a slice from Poisson
md \leftarrow function(x, 1, 1o=0, up=5){
z \leftarrow dpois(x, 1)
z[x<lo] <- 0
z[x>up] <- 0
z <- z/sum(z)
return(z)
# find pi*
pe <- pistar(proc="uv", data=te, dfn=md, n_par=1,</pre>
discrete=TRUE, freq=TRUE, jack=FALSE)
pe
summary(pe)
plot(pe)
# (2) continuous
# simulate data
set.seed(1989)
y \leftarrow c(rnorm(1e2, 0, 2), runif(2e1, -1, 1))
# find pi* and parameters for normal dist.
py <- pistar(proc="uv", data=y, dfn=dnorm, n_par=2, discrete=FALSE,</pre>
jack=FALSE)
```

Pistar2by2-class 21

```
summary(py)
plot(py)
```

Pistar2by2-class

Class "Pistar2by2"

Objects from the Class

Objects can be created by calls of the form new("Pistar2by2", ...).

Slots

```
data: Object of class "array" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
param: Object of class "list" ~~
```

Extends

```
Class "PistarCT", directly. Class "Pistar", by class "PistarCT", distance 2.
```

Methods

No methods defined with class "Pistar2by2" in the signature.

Examples

```
showClass("Pistar2by2")
```

PistarBVN-class

Class "PistarBVN"

Objects from the Class

Objects can be created by calls of the form new("PistarBVN", ...).

Slots

```
data: Object of class "data.frame" ~~
interval: Object of class "numeric" ~~
conf: Object of class "numeric" ~~
alt: Object of class "character" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
param: Object of class "list" ~~
```

22 PistarCT-class

```
Extends
```

```
Class "Pistar", directly.
```

Methods

```
plot signature(x = "PistarBVN"): ...
```

Examples

```
showClass("PistarBVN")
```

PistarCT-class

Class "PistarCT"

Usage

```
## S4 method for signature 'PistarCT'
plot(x, y, ...)
```

Arguments

```
x object of class PistarCTy ignored... optional
```

Objects from the Class

Objects can be created by calls of the form new("PistarCT", ...) or PistarCT(...).

Slots

```
data: Object of class "array" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
```

Extends

```
Class "Pistar", directly.
```

Methods

```
plot signature(x = "PistarCT"): ...
```

Author(s)

Juraj Medzihorsky

```
showClass("PistarCT")
```

PistarCUV-class 23

PistarCUV-class

Class "PistarCUV"

Usage

```
## S4 method for signature 'PistarCUV'
plot(x, model_col = "blue", unres_col = "grey", combi_col = "black",
lty = 1, lwd = 1, pos = "topright", bty = "n", ...)
```

Arguments

```
object of class "PistarCUV".
Х
model_col
                  color for the model component.
                  color for the unrestricted component.
unres_col
combi_col
                  color for the predicted values from the two-point mixture.
lty
                  line type.
lwd
                  line width.
                  position of the legend, see legend.
pos
bty
                  box type of the legend, see legend.
                  optional arguments passed further to plot.
```

Objects from the Class

Objects can be created by calls of the form new("PistarCUV", ...) or PistarCUV(...).

Slots

```
data: Object of class "numeric" ~~
meth: Object of class "character" ~~
conv: Object of class "list" ~~
mess: Object of class "list" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
param: Object of class "list" ~~
```

Extends

```
Class "PistarUV", directly. Class "Pistar", by class "PistarUV", distance 2.
```

Methods

```
plot signature(x = "PistarCUV"): ...
```

```
showClass("PistarCUV")
```

24 PistarDUV-class

PistarDUV-class

Class "PistarDUV"

Usage

```
## S4 method for signature 'PistarDUV'
plot(x, model_col = "blue", unres_col = "grey", combi_col = "black",
pos = "topright", bty = "n", ...)
```

Arguments

```
x object of class "PistarDUV".

model_col color for the model component.

unres_col color for the unrestricted component.

combi_col color for the predicted values from the two-point mixture.

pos position of the legend, see legend.

bty box type of the legend, see legend.

... optional arguments passed further to plot.
```

Objects from the Class

Objects can be created by calls of the form new("PistarDUV", ...) or PistarDUV(...).

Slots

```
data: Object of class "table" ~~
meth: Object of class "character" ~~
conv: Object of class "list" ~~
mess: Object of class "list" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
param: Object of class "list" ~~
```

Extends

```
Class "PistarUV", directly. Class "Pistar", by class "PistarUV", distance 2.
```

Methods

```
plot signature(x = "PistarDUV"): ...
```

```
showClass("PistarDUV")
```

PistarLL-class 25

PistarLL-class Class "PistarLL"

Objects from the Class

Objects can be created by calls of the form new("PistarLL", ...).

Slots

```
llrs: Object of class "list" ~~
iter: Object of class "list" ~~
data: Object of class "array" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
```

Extends

```
Class "PistarRCL", directly. Class "PistarCT", by class "PistarRCL", distance 2. Class "Pistar", by class "PistarRCL", distance 3.
```

Methods

No methods defined with class "PistarLL" in the signature.

Examples

```
showClass("PistarLL")
```

PistarMVN-class

Class "PistarMVN"

Usage

```
## S4 method for signature 'PistarMVN'
plot(x, lty = 1, lwd = 1, col = "black", ... )
```

Arguments

```
x object of class "PistarMVN".

lty line type.

lwd line width.

col color of the line.

... optional arguments passed further.
```

26 PistarRCL-class

Objects from the Class

Objects can be created by calls of the form new("PistarMVN", ...) or PistarMVN().

Slots

```
data: Object of class "data.frame" ~~
trace: Object of class "list" ~~
iter: Object of class "list" ~~
test: Object of class "list" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
param: Object of class "list" ~~
```

Extends

```
Class "Pistar", directly.
```

Methods

```
plot signature(x = "PistarMVN"): ...
```

Examples

```
showClass("PistarMVN")
```

PistarRCL-class

Class "PistarRCL"

Objects from the Class

Objects can be created by calls of the form new("PistarRCL", ...).

Slots

```
llrs: Object of class "list" ~~
iter: Object of class "list" ~~
data: Object of class "array" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
```

Extends

```
Class "PistarCT", directly. Class "Pistar", by class "PistarCT", distance 2.
```

PistarUV-class 27

Methods

No methods defined with class "PistarRCL" in the signature.

Examples

```
showClass("PistarRCL")
```

PistarUV-class

Class "PistarUV"

Objects from the Class

Objects can be created by calls of the form new("PistarUV", ...).

Slots

```
meth: Object of class "character" ~~
conv: Object of class "list" ~~
mess: Object of class "list" ~~
call: Object of class "language" ~~
pistar: Object of class "list" ~~
pred: Object of class "list" ~~
param: Object of class "list" ~~
```

Extends

```
Class "Pistar", directly.
```

Methods

No methods defined with class "PistarUV" in the signature.

```
showClass("PistarUV")
```

28 pool.jack

pool.jack	Jackknife Standard Errors and Confidence Intervals	
pool.jack	Jackknife Standard Errors and Confidence Intervals	

Description

pool. jack is used to obtain standard errors and confidence intervals from the output of jackknife procedures.

Usage

Arguments

the data. data logical: is the data a contingency table? ct the value of the estimate. estimate jack_est the vector of estimates from jackknife replications. NULL for a two-sided c.i., "lower" or "upper" for a one-sided interval. "auto" side selects "lower" if the estimate is larger than 0 and "upper" if it is smaller than confidence level expressed as a number between 0 and 1. e.g. for a 95% conficonf dence interval supply 0.95 lower lowest possible value for one-sided c.i. largest possible value for one-sided c.i. upper

logical: apply bias correction? Bias correction currently not implemented.

Value

bias

A named list with the following components:

se standard error.

low lower endpoint of c.i.

upp upper endpoint of c.i.

conf confidence level of the c.i.

side "lower" and "upper" for one-sided c.i., "both" for a two-sided c.i.

bias implementation of bias correction not finished.

Author(s)

Juraj Medzihorsky

References

Efron, Bradley, and Robert Tibshirani. (1993). An introduction to the bootstrap. Vol. 57. CRC press.

rcl.em 29

rcl.em	Rudas-Clogg-Lindsay EM Algorithm	
--------	----------------------------------	--

Description

rcl.em is used to fit a two-point mixture composed of a user-supplied model of interest and an unrestricted distribution fit to a contingency table with supplied mixing proportions using the Rudas-Clogg-Lindsay (1994) EM algorithm.

Usage

```
rcl.em(pi_out, FNEM, data, max_dif = .Machine$double.neg.eps^0.5,
    zeta = 1, lr_only = TRUE, chi_stat = 0,
    lr_eps = .Machine$double.neg.eps^0.25)
```

Arguments

pi_out	out-of-model proportion, i.e. the mixing weight of the unrestricted component
FNEM	user-supplied function that estimates the model of interests. Must input only the observed values as a contingency table. Must output the predicted values as a contingency table as item named "fit" in a named list. Optionally can output parameter estimates of interest as a vector named "param" in the outputed named list.
data	a contingency table.
max_dif	largest acceptable difference, i.e. the largest number practically indistinguishable from $\boldsymbol{0}.$
zeta	weighing constant; default is 1. The EM algorithm might crash due to very low cell values; in such case increasing the zeta might help.
lr_only	logical: return only the value of the log-likelihood ratio statistic?
chi_stat	χ^2 statistic penalty; default 0. Supply a different value e.g. if you want to find the lower endpoint of a one-sided confidence interval for π^* .
lr_eps	penalty for finding π^* , the largest small positive number that can be still considered practically indistinguishable from 0.

Value

A named list with the following components: (if lr_only is TRUE then the list contains only the "lr" component)

pi_out	the out-of-model proportion, i.e. the mixing weight of the unrestricted component
param	a vector of the estimated parameter values fit to an ${\bf unscaled}$ model density, i.e. to M and ${\bf not}\;(1-\pi)M.$
lr	$general\ contingency\ table\ log-likelihood\ ratio\ statistic\ for\ the\ two-point\ mixture.$
model	scaled density of predicted values following the model of interest, i.e. $(1-\pi)M$.
unrestricted	Scaled density of predicted values following unrestricted component, i.e. πU
predicted	values predicted by the two-point mixture, i.e. $(1-\pi)M + \pi U$.

rcl.s

Author(s)

Juraj Medzihorsky

Developed from J.M.Grego's functions, see 'References'

References

Rudas, T., Clogg, C. C., Lindsay, B. G. (1994) A New Index of Fit Based on Mixture Methods for the Analysis of Contingency Tables. *Journal of the Royal Statistical Society. Series B (Methodological)*, Vol. 56, No. 4, 623-639.

 $Grego, J. \, M. \, clr \, and \, clr. \, root \, functions \, available \, at \, \mbox{http://www.stat.sc.edu/~grego/courses/stat770/CLR.txt}$

See Also

```
pistar.ct
```

rcl.s

Simple Line-Splitting Function

Description

'rcl.s' is used to find the input values under which a user-supplied function outputs a specified value by searching on a user-specified interval

Usage

```
rcl.s(FNS, ..., y_goal = .Machine$double.neg.eps^0.5,
    x_lo = .Machine$double.neg.eps^0.25,
    x_up = 1 - .Machine$double.neg.eps^0.25,
    s_tol = .Machine$double.neg.eps^0.5,
    s_mit = 1e2, trace_plot = FALSE)
```

Arguments

FNS	user-supplied function. Must input only a single number and output only a single number.
	arguments passed to the user-supplied function.
y_goal	the goal output value.
x_lo	the lower endpoint of the interval for the input value.
x_up	the upper endpoint of the interval for the input value.
s_tol	tolerance value for convergence diagnostic. If the absolute value of the difference between the output value at the current iteration and the goal output value is less than this tolerance value the algorithm terminates successfully.
s_mit	maximum number of iterations.
trace_plot	logical: return also a traceplot?

summary.Pistar 31

Value

A dataframe with the following columns:

input values. рi lr output values. If trace_plot = TRUE also a plot.

Author(s)

Juraj Medzihorsky

summary.Pistar

Summarizing "Pistar" Objects

Description

summary method for class "Pistar"

Usage

```
## S4 method for signature 'Pistar'
summary(object, conf = 0.95, pi_side = NULL, par_side = NULL,
        lower = NULL, upper = NULL, bias = FALSE, ...)
## S4 method for signature 'SummaryPistar'
print(x, digits = 2, ...)
```

Arguments

object	an object of class "pistar"
x	an object of class "summary.pistar"
digits	integer indicating the number of decimal places to print
conf	Confidence level expressed as a number between 0 and 1. e.g. for a 95% confidence interval supply 0.95
pi_side	Sidedness of c.i. for π^* . NULL for a two-sided c.i., "lower" or "upper" for a one-sided interval. "auto" selects "lower" if the estimate is larger than 0 and "upper" if it is smaller than 0.
par_side	Sidedness of c.i. for reported estimates of parameters other than π^* . NULL for a two-sided c.i., "lower" or "upper" for a one-sided interval. "auto" selects "lower" if the estimate is larger than 0 and "upper" if it is smaller than 0.
lower	lowest possible value for one-sided c.i.
upper	largest possible value for one-sided c.i.
bias	logical: Apply bias correction? Bias correction currently not implemented.
• • •	arguments to be passed to methods; not used

32 SummaryPistar-class

Value

Object of class "SummaryPistar", a list with the following slots

oldcall the matched call inherited from the input object of class "Pistar"

pred inherited from the input object of class "Pistar"

est A data.frame with the parameter estimates, optionally also with standard er-

rors, lower and upper endpoints of c.i., sidedness of the c.i., and bias (the last is

not currently fully implemented)

Author(s)

Juraj Medzihorsky

Examples

```
# create data:
H <- matrix((1:4)*1e1, byrow=TRUE, ncol=2)

# pi* for independence in a 2-by-2 table
h <- pistar(proc="2by2", data=H, alpha=1, jack=TRUE)

# print 'pistar' object
h

# summarize 'pistar' object
s <- summary(h)

# print 'summary.pistar' object
s

# print the 'summary.pistar' object to 4 decimal places print(s, digits=4)

# compare the structure of the objects
str(h)
str(s)</pre>
```

SummaryPistar-class Class "SummaryPistar"

Objects from the Class

Objects can be created by calls of the form new("SummaryPistar", ...) or SummaryPistar.

Slots

```
oldcall: Object of class "language" ~~
pred: Object of class "list" ~~
est: Object of class "data.frame" ~~
```

SummaryPistar-class 33

Methods

```
print signature(x = "SummaryPistar"): ...
show signature(object = "SummaryPistar"): ...
```

```
showClass("SummaryPistar")
```

Index

*Topic LCA	piplot.ct, 5
pistar.ct, 11	pistar, 7
*Topic classes	pistar-package, 2
PiplotCT-class, 7	pistar.2by2, <mark>9</mark>
Pistar-class, 8	pistar.bvn, 10
Pistar2by2-class, 21	pistar.ct,11
PistarBVN-class, 21	pistar.ll,14
PistarCT-class, 22	pistar.mvn, 16
PistarCUV-class, 23	pistar.uv,18
PistarDUV-class, 24	summary.Pistar,31
PistarLL-class, 25	*Topic table
PistarMVN-class, 25	freq.table, 3
PistarRCL-class, 26	*Topic univariate
PistarUV-class, 27	pistar.uv,18
SummaryPistar-class, 32	_
*Topic correlation	cor, 5
pearson2pistar, 4	cor.test, 11
*Topic datasets	donaity 20
Fienberg1980a, 2	density, 20
*Topic frequency	Fienberg1980a, 2
freq.table, 3	freq.table, 3, 20
*Topic index of fit	110410422, 0, 20
pistar, 7	loglin, 15
*Topic jackknife	
pool.jack, 28	optim, 20
*Topic latent class analysis	2 4 . 1
pistar.ct, 11	pearson2pistar, 4, 11
*Topic line-splitting	piplot.ct, 5, 13
rcl.s, 30	PiplotCT (PiplotCT-class), 7
*Topic loglin	PiplotCT-class, 7
pistar.11, 14	Pistar, 21–27
*Topic mixture	Pistar (Pistar-class), 8
pistar.ct, 11	pistar, 7 Pistar-class, 8
pistar.11,14	pistar-package, 2
rcl.em, 29	pistar.2by2, 7, 9
*Topic multivariate normal	pistar.bvn, 5, 7, 10
pistar.mvn, 16	pistar.ct, 5–7, 11, 15, 30
*Topic package	pistar.11, 7, 14
pistar-package, 2	pistar.mvn, 7, 16
*Topic pearson	pistar.uv, 7, 18
pearson2pistar, 4	Pistar 2by2 (Pistar 2by 2-class), 21
*Topic pistar	Pistar2by2-class, 21
pearson2pistar, 4	PistarBVN (PistarBVN-class), 21
pear surizpistar, 4	ristal DVN (ristal DVN-Class), 21

INDEX 35

```
PistarBVN-class, 21
PistarCT, 21, 25, 26
PistarCT (PistarCT-class), 22
PistarCT-class, 22
PistarCUV (PistarCUV-class), 23
PistarCUV-class, 23
PistarDUV (PistarDUV-class), 24
PistarDUV-class, 24
PistarLL (PistarLL-class), 25
PistarLL-class, 25
PistarMVN (PistarMVN-class), 25
PistarMVN-class, 25
PistarRCL, 25
PistarRCL (PistarRCL-class), 26
PistarRCL-class, 26
PistarUV, 23, 24
PistarUV (PistarUV-class), 27
PistarUV-class, 27
plot,PiplotCT-method(PiplotCT-class), 7
plot,PistarCT-method(PistarCT-class),
        22
plot,PistarCUV-method
        (PistarCUV-class), 23
plot,PistarDUV-method
        (PistarDUV-class), 24
plot,PistarMVN-method
        (PistarMVN-class), 25
pool.jack, 28
print,PiplotCT-method(PiplotCT-class),
print,Pistar-method(Pistar-class), 8
print, Summary Pistar-method
        (summary.Pistar), 31
rcl.em, 6, 13, 29
rcl.s, 13, 30
show,PiplotCT-method(PiplotCT-class), 7
show, Pistar-method (Pistar-class), 8
\verb|show,SummaryPistar-method|\\
        (SummaryPistar-class), 32
summary,Pistar-method(summary.Pistar),
        31
summary.Pistar, 31
SummaryPistar (SummaryPistar-class), 32
SummaryPistar-class, 32
table, 4
```