experiment 3

1.

```
Blocks A B C D E effect
       00 0 0 0 0 0
1
2
       00 0 1 1 0 0
                          bc
3
       00 1 1 0 1 0
                         abd
4
       00 1 0 1 1 0
                         acd
5
       00 1 1 0 0 1
                         abe
6
       00 1 0 1 0 1
                         ace
7
       00 0 0 0 1 1
                          de
8
       00 0 1 1 1 1
                        bcde
9
       01 1 1 0 0 0
                          ab
10
       01 1 0 1 0 0
                          ac
11
       01 0 0 0 1 0
                           d
12
       01 0 1 1 1 0
                         bcd
13
       01 0 0 0 0 1
                           e
14
       01 0 1 1 0 1
                         bce
15
       01 1 1 0 1 1
                        abde
16
       01 1 0 1 1 1
                        acde
17
       10 0 1 0 0 0
                           b
18
       10 0 0 1 0 0
                           C
19
       10 1 0 0 1 0
                          ad
20
       10 1 1 1 1 0
                        abcd
21
       10 1 0 0 0 1
                          ae
22
       10 1 1 1 0 1
                        abce
23
       10 0 1 0 1 1
                         bde
24
       10 0 0 1 1 1
                         cde
25
       11 1 0 0 0 0
                           а
26
       11 1 1 1 0 0
                         abc
27
       11 0 1 0 1 0
                          bd
28
       11 0 0 1 1 0
                          \mathsf{cd}
29
       11 0 1 0 0 1
                          be
30
       11 0 0 1 0 1
                          ce
31
       11 1 0 0 1 1
                         ade
32
       11 1 1 1 1 1
                       abcde
```

```
m2 <- m2 %>% arrange(block)
m2
library(readr)
group_response <- read_csv("group project/group_response.csv")
y2<- group_response["y2"][complete.cases(group_response["y2"]), ]
y2

df<- cbind(d25, y2)
df</pre>
```

```
Blocks A B C D E effect
                                y2
1
       00 0 0 0 0 0
                              1.68
2
       00 0 1 1 0 0
                              1.98
                         bc
3
       00 1 1 0 1 0
                        abd
                             4.98
4
                             5.70
       00 1 0 1 1 0
                        acd
5
       00 1 1 0 0 1
                        abe
                             3.24
6
       00 1 0 1 0 1
                             3.44
                        ace
7
       00 0 0 0 1 1
                             9.97
                         de
8
       00 0 1 1 1 1
                       bcde
                             9.07
9
       01 1 1 0 0 0
                             2.07
                         ab
10
       01 1 0 1 0 0
                             2.44
                         ac
                             7.77
11
       01 0 0 0 1 0
                          d
12
       01 0 1 1 1 0
                             9.43
                        bcd
13
       01 0 0 0 0 1
                             4.09
                          e
14
       01 0 1 1 0 1
                             4.53
                        bce
       01 1 1 0 1 1
                       abde 11.75
15
16
       01 1 0 1 1 1
                       acde 16.30
17
       10 0 1 0 0 0
                          b
                             2.69
18
       10 0 0 1 0 0
                              2.30
                          C
19
                              6.35
       10 1 0 0 1 0
                         ad
20
       10 1 1 1 1 0
                       abcd
                              6.75
21
       10 1 0 0 0 1
                         ae
                             4.34
22
       10 1 1 1 0 1
                       abce 4.20
23
       10 0 1 0 1 1
                        bde 10.06
24
                             9.35
       10 0 0 1 1 1
                        cde
25
       11 1 0 0 0 0
                             3.22
                          а
26
       11 1 1 1 0 0
                             3.55
                        abc
       11 0 1 0 1 0
27
                             9.33
                         bd
28
       11 0 0 1 1 0
                             9.52
                         cd
29
       11 0 1 0 0 1
                             5.91
                         be
30
       11 0 0 1 0 1
                             5.83
                         ce
31
       11 1 0 0 1 1
                        ade 13.23
32
       11 1 1 1 1 1 abcde 16.40
```

ABC, ADE are confounded with blocks => it means BCDE = (ABC)(ADE) is also confounded with blocks

2.

```
m4<-aov(y2 \sim A*B*C*D*E + Error(Blocks), data=df) summary(m4)
```

```
meanall<-mean(df$y2)
meanall
summ<-df %>% group_by(Blocks) %>% summarise(meanblk=mean(y), nobs=n()) %>% mutate(ssbl=nobs*(meanblk-meanall)^2)
summ
sum(summ$ssbl)
```

Error: Blocks

	Df	Sι	ım Sq	Me	ean Sq
A:B:C	1		6.65	;	6.65
A:D:E	1	4	18.19)	48.19
B:C:D:E	1		0.22		0.22
Error: V	Vit	nir	ı		
	[ρf	Sum	Sq	Mean Sq
Α		1	0.	62	0.62
В		1	0.	01	0.01
C		1	3.	19	3.19
D		1	315.	32	315.32
E		1	84.	34	84.34
A:B		1	0.	65	0.65
A:C		1	2.	58	2.58
B:C		1	0.	09	0.09
A:D		1	2.	80	2.80
B:D		1	0.	05	0.05
C:D		1	2.	03	2.03
A:E		1	17.	60	17.60
B:E		1	0.	32	0.32
C:E		1	0.	27	0.27
D:E		1	13.	33	13.33
A:B:D		1	0.	06	0.06
A:C:D		1	2.	06	2.06
B:C:D		1	0.	17	0.17
A:B:E		1	0.	01	0.01
A:C:E		1	2.	51	2.51
B:C:E		1	0.	10	0.10
B:D:E		1	0.	16	0.16
C:D:E		1	0.	35	0.35
A:B:C:D		1	0.	20	0.20
A:B:C:E		1	0.	02	0.02
A:B:D:E		1	0.	02	0.02
A:C:D:E		1	3.	89	3.89
A:B:C:D	: E	1	0.	39	0.39
I					

```
> summ
# A tibble: 4 × 4
 Blocks meanblk nobs ssbl
  <fct> <dbl> <int> <dbl>
          0.593 8 3.08
-0.151 8 0.124
 1 00
2 01
3 10 -0.224 8 0.312
4 11 -0.326 8 0.713
> sum(summ$ssbl)
[1] 4.227558
> summ<-df %>% group_by(Blocks) %>% summarise(meanblk=mean(y2), nobs=n()) %>% mutate(ssbl=nobs*(meanblk-meanall)^2)
> summ
 # A tibble: 4 \times 4
  Blocks meanblk nobs ssbl
  <fct> <dbl> <int> <dbl>
1 00 5.01 8 20.5
2 01 7.30 8 3.80
3 10 5.76 8 5.83
4 11 8.37 8 24.9
 > sum(summ$ssbl)
 [1] 55.05993
```

3. based on anova table and SSBL, factors D, E are significant, while blocks are not significant.

A is confounded with BCDE and ABE.

B is confounded with ACDE and ABE.

C is confounded with ABDE.

D is confounded with ABCE and ADE.

E is confounded with ABCD and ADE.

```
m1<-lm(data=df, y2 ~ D+E)
points<-get_regression_points(m1)
points
shapiro.test(points$residual)
ggplot(data=points, aes(sample=residual)) + stat_qq() + stat_qq_line()</pre>
```

Shapiro-Wilk normality test

```
data: points$residual
W = 0.93009, p-value = 0.0394
```


no obvious violation of assumptions.