Circuits et Systèmes Electroniques I Exercice supplémentaire: Ampli classe AB "Single Supply"

Soit le schéma simplifié d'un amplificateur classe AB intégré:

La structure particulière de l'ensemble T_2 - T_4 - T_5 tient au fait que l'on ne peut pas faire de PNP de puissance intégré.

Tous les transistors (sauf ceux de puissance T_1 et T_2) et toutes les sources de courant: $|V_{CEsat}| \approx 0.2 \text{ V}$

Le gain en tension en boucle ouverte est > 70 dB

Caractéristiques de l'amplificateur intégré.

Déterminer:

- a) la tension de sortie minimum V_{out,min}
- b) la tension de sortie maximum $V_{out,max}$ en fonction de V_S
- c) l'entrée non-inverseurse +, respectivement inverseuse -

Réponses aux questions a) à c).

Caractéristiques de l'amplificateur intégré

a)
$$V_{out,min} = V_{BE2} + V_{BE4} + V_{CE5,sat} = 1.6 [V]$$

b)
$$V_{out,max} = V_S - V_{I1,sat} - V_{BE3} - V_{BE1} = V_S - 1.6 [V]$$

c) La base de T₁₀ est l'entrée inverseuse car :

$$V_{B10}$$
 \Rightarrow I_{C10} \Rightarrow I_{C8} \Rightarrow I_{C7} \Rightarrow I_{B6} \Rightarrow I_{C6} \Rightarrow I_{B3} \Rightarrow I_{B1} \Rightarrow I_{out} \Rightarrow V_{out}

La base de T₉ est l'entrée non-inverseuse car :

$$V_{B9}$$
 \rightarrow => I_{C9} \rightarrow => I_{C10} \searrow => I_{C8} \searrow => I_{C7} \searrow => I_{B6} \searrow => I_{C6} \searrow => I_{B3} \rightarrow => I_{B1} \rightarrow => I_{out} \rightarrow => V_{out} \rightarrow

Ampli audio à une seule alimentation.

Pour faire un ampli audio d'autoradio avec une alimentation unique, on peut utiliser cet amplificateur intégré de la façon suivante:

Calculer:

- d) V_{out1} au repos, $V_{out1,max}$ et $V_{out1,min}$.
- e) En régime sinus en bande passante (impédance de C_{out} négligeable): le courant de crête de sortie, la puissance maximum dans la charge, la puissance que doit pouvoir fournir l'alimentation et la puissance que doit pouvoir dissiper l'ampli intégré (on ne tient compte que du courant dans l'étage de sortie).
- c) La valeur de C_{out} pour avoir une fréquence de coupure basse $f_L \approx 20$ Hz.
- g) Le rapport R₂/R₁ pour avoir un gain en tension de 26 dB en bande passante.
- h) Avec des signaux carrés, la puissance maximum dans la charge, la puissance que doit pouvoir fournir l'alimentation et la puissance que doit pouvoir dissiper l'ampli intégré (on ne tient compte que du courant dans l'étage de sortie).

Ampli audio en pont à une seule alimentation.

En utilisant deux de ces amplificateurs intégrés, on peut faire un montage dit en pont de la façon suivante:

Calculer:

- i) Les relations $V_{out1} = f(U_{in}, V_S)$, $V_{out2} = f(U_{in}, V_S)$ et $U_L = f(U_{in})$ en bande passante.
- j) En régime sinus en bande passante, le courant de crête de sortie, la puissance maximum dans la charge, la puissance que doit pouvoir fournir l'alimentation et la puissance que doit pouvoir dissiper chaque ampli intégré (on ne tient compte que du courant dans l'étage de sortie).
- k) Le gain en tension U_L/U_{in} en bande passante.
- Avec des signaux carrés, la puissance maximum dans la charge, la puissance que doit pouvoir fournir l'alimentation et la puissance que doit pouvoir dissiper chaque ampli intégré (on ne tient compte que du courant dans l'étage de sortie).

Réponses aux questions d) à h).

Ampli audio classe B à une seule alim

d) au repos (en continu) les capacités sont des circuits ouverts :

Le diviseur de tension formé des deux résistance R_p polarise l'entrée + de A1 à $V_{+,redos} = V_S/2 = 7~V$

en continu A1 est en montage suiveur \Rightarrow $V_{out1,repos} = V_S/2 = 7 V$ selon a) et b) précédemment :

$$V_{out1,min} = 1.6 \text{ V}$$
 $V_{out1,max} = V_S - 1.6 = 12.4 \text{ V}$

e) En régime sinus : $V_{out1} = V_S/2 + \hat{U}_{sin\omega t}$

Comme C_{out} élimine la composante continue, et que $|Z_{cout}| = 1/\omega C_{out} << R_L$ en bande passante :

=>
$$U_C = cst = V_S/2$$
 et $U_L = \hat{U}sin\omega t$

Tout se passe comme si on avait deux alimentations symétriques $+V_S/2$ et $-V_S/2$

Un sinus étant symétrique :

 \hat{U}_{max} = la plus petite des valeurs $[(V_S/2 - V_{out1,min}) \text{ et } (V_{out1,max} - V_S/2)] = 5.4 \text{ V}$

$$\hat{I}_{out,max} = \hat{U}_{max} / R_L = 5.4/4 = 1.35 \text{ A}$$

$$P_{out.max} = U_{eff.max}^2 / R_L = \hat{U}_{max}^2 / 2R_L = 3.6 \text{ W}$$

La source d'alimentation +V_S fournit les alternances positives de I_{out} (et accroît de ΔQ la charge de C_{out} qui fournit les alternances négatives en restituant ce ΔQ):

$$\Rightarrow$$
 $P_{alim} = V_S \cdot I_{S,moy} = V_S \cdot \hat{I}_{out} / \pi$

$$P_{alim,max} = V_S \cdot I_{S,moy,max} = V_S \cdot \hat{I}_{out,max} / \pi = 6 \text{ W}$$

La puissance dissipé par A1 est maximum lorsque $\hat{U} = V_S/\pi = 4.46 \text{ V}$ et non pour \hat{U}_{max} (théorie de la classe B, voir cours avec $V_S = 2V_{CC}$):

$$P_{Q,max} = V_S^2 / 2\pi^2 R_L = 2.5 \text{ W}$$

Note: pour un ampli classe B, la puissance dissipée par l'étage de sortie est maximum lorsque la puissance de sortie est inférieure à son maximum, et donc :

 $P_{O,max} \neq P_{alim,max} - P_{out,max}$

$$f) \quad \frac{\underline{U}_L}{\underline{V}_{out1}} = \frac{j \omega R_L C_{out}}{1 + j \omega R_L C_{out}} \qquad \Rightarrow \qquad f_L = \frac{1}{2 \pi R_L C_{out}}$$

$$f_L = 20 \text{ Hz avec } R_L = 4 \Omega$$
 => $C_{out} = 2000 \mu \text{M}$

g) En bande passante (C_1 = court-circuit pour les signaux alternatifs) A1 est monté en ampli inverseur, le gain en tension en boucle fermée est :

$$U_L/U_{in} = -R_2/R_1 = -20$$
 (26 dB) => $R_2 = 20 \cdot R_1$

h) Avec des signaux carrés : $U_L = \pm U$ avec $U_{max} = 5.4 \text{ V}$

$$P_{out,max} = U_{eff,max}^2 / R_L = U_{max}^2 / R_L = 7.3 \text{ W}$$

$$P_{alim,max} = V_S \cdot I_{S,moy,max} = V_S \cdot I_{out,max} / 2 = 9.5 \text{ W}$$

La puissance (moyenne) dissipé par A1 est maximum lorsque $U = V_S/4 = 3.5 \text{ V}$ et non pour \hat{U}_{max} (= la puissance instantanée, car un carré a une valeur instantanée constante durant une demi-période):

$$P_{Q,max} = V_S^2/16R_L = 3.1 \text{ W}$$

Réponses aux questions i) à l).

Montage en pont à une alimentation

i) Comme vu précédemment sous d) et e):

l'entrée + de AO1 est à
$$V_{1+} = V_S/2$$

A1 est en suiveur en continu et en ampli inverseur pour les signaux alternatifs en bande passante :

$$=> V_{out1} = V_S/2 + G \cdot U_{in}$$
 avec : $G = -R_2/R_1$

A2 a son entrée + à un potentiel fixe $V_{2+} = V_S/2$,

c'est un ampli non-inverseur pour V_{2+} et un ampli inverseur pour V_{out1} (continu + signaux alternatifs) :

$$=> V_{out2} = \frac{V_S}{2} \frac{R_2 + R_2}{R_2} - \frac{R_2}{R_2} V_{out1} = V_S - V_{out1} = \frac{V_S}{2} - G \cdot U_{in}$$

$$\Rightarrow$$
 U_L = V_{out1} - V_{out2} = 2G·U_{in}

j) En régime sinus : $V_{out1} = V_S/2 + \hat{U}sin\omega t$ $V_{out2} = V_S/2 - \hat{U}sin\omega t$ $U_L = 2\hat{U}sin\omega t$

Tout se passe comme si on avait deux alimentations symétriques +V_S/2 et -V_S/2

Comme vu précédemment sous a) b) et e) : $\hat{U}_{max} = 5.4 \text{ V}$

$$\hat{I}_{out,max} = 2\hat{U}_{max}/R_L = 2.7 \text{ A}$$

$$P_{out.max} = 4\hat{U}_{max}^2/2R_L = 14.6 \text{ W}$$

Note : pour la même charge et avec la même tension d'alimentation ce montage en pont peut fournir 4 fois plus de puissance que le montage simple, en plus on économise la grosse capacité C_{OUT} .

Lorsque $I_{out} > 0$, il sort de A1 en provenance de +V_S et entre dans A2 pour aller à la masse.

Lorsque I_{out} < 0, il sort de A2 en provenance de +V_S et entre dans A1 pour aller à la masse.

La source d'alimentation $+V_S$ fournit donc un courant en forme de sinus redressé à double alternance :

$$P_{alim,max} = V_S \cdot I_{S,moy,max} = V_S \cdot \hat{I}_{out,max} \cdot 2/\pi = 24 \text{ W}$$

Par rapport au montage simple précédant, la puissance d'alimentation est multipliée par 4 comme la puissance dans la charge. La tension d'alimentation étant inchangée, le courant d'alimentation moyen est quadruplé.

La puissance dissipée par A1 (respectivement A2) est maximum lorsque :

$$\hat{U} = V_S/\pi = 4.46 \text{ V}$$
 (théorie de la classe B avec $V_S = 2V_{CC}$ et une charge $R_{IJ}/2$)

$$P_{O,max} = V_S^2 / \pi^2 R_L = 5 \text{ W}$$

Par rapport au montage simple précédant, chaque ampli dissipe le double puisque le courant est double. La puissance totale dissipée par les deux amplis du pont est quadruplée, comme la puissance fournie à la charge R_L .

j) Comme vu au point i) le gain en tension en boucle fermée en bande passante
(C = court-circuit pour les signaux alternatifs) :

$$U_{I}/U_{in} = 2 \cdot G = -2 \cdot R_2/R_1 = -40$$
 (32 dB)

k) Avec des signaux carrés :

$$V_{out1} = V_S/2 \pm U$$
, $V_{out2} = V_S/2 \mp U$ et $U_L = \pm 2U$ avec $U_{max} = 5.4 \text{ V}$

$$P_{out,max} = 4U_{max}^2/R_L = 29 \text{ W}$$

$$P_{alim,max} = V_S \cdot I_{S,mov,max} = V_S \cdot I_{out,max} = 37.8 \text{ W}$$

La puissance dissipée par A1 (respectivement A2) est maximum lorsque :

$$U = V_S/4 = 3.5 \text{ V}$$

$$P_{Q,max} = \frac{V_S^2/16}{R_L/2} = 6.1 \text{ W}$$