Optimization for Training Deep Models

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics in Optimization

- Overview of Optimization in Deep Learning
- How learning differs from optimization
 - Risk, empirical risk and surrogate loss
 - Batch, minibatch, data shuffling
- Challenges in neural network optimization
- Basic Algorithms
- Parameter initialization strategies
- Algorithms with adaptive learning rates
- Approximate second-order methods
- Optimization strategies and meta-algorithms²

Optimization in Deep Learning

- Optimization is encountered often in ML
 - 1. Inference with PCA requires optimization
 - Encoding: f(x) = c, Decoding: $x \approx g(f(x)), g(c) = Dc$
 - Optimal $c^* = \operatorname{argmin}_c ||x g(c)||_2$, Reconstruction: $g(f(x) = DD^Tx)$
 - 2. Optimization to write proofs or design algorithms
 - In linear regression: sum-of-squared errors objective is same as obtained using maximum likelihood with Gaussian noise
 - 3. Neural network training
 - Most difficult optimization is neural network training
 - Weight decay minimization:

$$\left|J(\boldsymbol{w}) = \lambda \left| \left| \boldsymbol{w} \right| \right|_2^2 - E_{\boldsymbol{x}, \boldsymbol{y} \sim \widehat{p}_{data}} \log p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x}) \right|$$

Neural network optimization is difficult

- Commonly months of time on 100s of machines to solve a single instance of neural network training
- So specialized optimization techniques developed

Our focus on particular case of optimization

- Find parameters θ of a neural network that significantly reduce a cost function $J(\theta)$
 - Which typically includes:
 - a performance measure evaluated on training set, e.g.,
 - $\left| J(\boldsymbol{w}) = E_{\boldsymbol{x}, \boldsymbol{y} \sim \hat{p}_{data}} \log p_{\text{model}}(\boldsymbol{y} \,|\, \boldsymbol{x}) \right| \text{ where } p_{\text{model}}(\boldsymbol{y} |\, \boldsymbol{x}) \text{ is a likelihood function}$
 - For linear regression $p_{\text{model}}(y \mid x) = N(y; x^T w + b, 1)$ and J(w) is same as sum-of-squared errors
 - additional regularization terms, e.g., $\lambda ||w||_2^2$

Deep Learning Plan of Discussion of Optimization

- 1. How training optimization differs from pure optimization
- 2. Challenges that make optimization of neural networks difficult
- 3. Several practical algorithms including
 - 1. Optimization algorithms
 - 2. Strategies for initializing parameters
 - Most advanced algorithms
 - adapt learning rates or
 - leverage second derivatives of cost function
- 4. Combine simple optimization algorithms into higher-level procedures

Summary of Optimization Methdos

Movies:

http://hduongtrong.github.io/2015/11/23/coordinate-descent/

Gradient Descent

$$\boxed{ \begin{split} \boldsymbol{g} = \frac{1}{M} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{M} L \Big(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta} \Big) \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \varepsilon \boldsymbol{g} \end{split}}$$

Coordinate Descent

Minimize f(x) wrt a single variable, x_i , then wrt x_j etc

SGD

$$\boxed{ \boldsymbol{g} = \frac{1}{m'} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m'} L \Big(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}, \boldsymbol{\theta} \Big) }$$

$$\theta \leftarrow \theta - \varepsilon g$$