Aufgabe 3.2 (10 Punkte). Es sei $\sigma \colon \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ eine Hermite'sche Form. Zeigen Sie, dass die folgenden Aussagen äquivalent sind
i) σ ist regulär
(ii) $Rg(\sigma) = n$
(iii) $Re(\sigma)$ ist regulär
(iii) Te(o) ist regular
(i) =) (ii) or int regular. Es gilot eine Basis B, so dass MB(o) in Normal tormist
Die Normalton hat der Typ (r+,r-,tr).
Du o regular ist, foly and 3.4.55 , Lass K=0 ist. Also Kat Lie
Matrix Lurstellung der voller Rong n. Der Rong eine Matrix darstellung eine
Hernite'schen Form hings nicht von der gewählten Basis ab.
Estolyt: Ry(o)= Ry(My(o)) >n
19101-19101-191011-11
$(i) \Rightarrow (i)$
Ry(o)=n. Also hade alle Matrixdurstellungen der Rung n. Also auch
Lie Normal form mit Typ(rt,1-,4). On o vollen Rang Kat jut K=0
und nuch 3.4.53 ist o repulier.
$(i \cdot i) \leftarrow i \cdot (i)$
5atz 3.4.29