Matrix Expressions and BLAS/LAPACK

Matthew Rocklin

June 27th, 2013

Need For High Level Compilers

Math is Important

Evan Miller http://www.evanmiller.org/mathematical-hacker.html

```
x = matrix(ones(10000, 1))
```

x*x.T*x Elapsed time is ? seconds. (x*x.T)*x Elapsed time is 0.337711 seconds. x*(x.T*x) Elapsed time is 0.000956 seconds.

If \boldsymbol{A} is symmetric positive-definite and \boldsymbol{B} is orthogonal:

Question: is $\mathbf{B} \cdot \mathbf{A} \cdot \mathbf{B}^{\top}$ symmetric and positive-definite?

Answer: Yes.

Question: Could a computer have told us this?

Answer: Probably.

http://scicomp.stackexchange.com/questions/74/symbolic-software-packages-for-matrix-expressions/

$$\beta = (X^T X)^{-1} X^T y$$

Python/NumPy

beta = (X.T*X).I * X.T*y

MatLab

beta = inv(X'*X) * X'*y

$$\beta = (X^T X)^{-1} X^T y$$

Python/NumPy

beta = solve(X.T*X, X.T*y)

MatLab

beta = X'*X \ X'*y

$$\beta = (X^T X)^{-1} X^T y$$

 $\mathsf{Python}/\mathsf{NumPy}$

beta = solve(X.T*X, X.T*y, sym_pos=True)

MatLab

 $beta = (X'*X) \setminus (X'*y)$

Numeric libraries for dense linear algebra

▶ DGEMM - Double precision **GE**neral Matrix Multiply – $\alpha AB + \beta C$

- ▶ DGEMM Double precision **GE**neral Matrix Multiply $\alpha AB + \beta C$
 - ► SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

- ▶ DGEMM Double precision **GE**neral Matrix Multiply $\alpha AB + \beta C$
 - ► SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- ▶ DSYMM **D**ouble precision **SY**mmetric **M**atrix **M**ultiply $\alpha AB + \beta C$

- ▶ DGEMM Double precision **GE**neral Matrix Multiply $\alpha AB + \beta C$
 - ► SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- ▶ DSYMM Double precision **SY**mmetric Matrix Multiply $\alpha AB + \beta C$
 - ► SUBROUTINE DSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

Numeric libraries for dense linear algebra

- ▶ DGEMM Double precision **GE**neral Matrix Multiply $\alpha AB + \beta C$
 - ► SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- ▶ DSYMM Double precision **SY**mmetric Matrix Multiply $\alpha AB + \beta C$
 - ► SUBROUTINE DSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

>

- lacktriangle DGEMM **D**ouble precision **GE**neral **M**atrix **M**ultiply lphaAB + etaC
 - ► SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- ▶ DSYMM Double precision **SY**mmetric Matrix Multiply $\alpha AB + \beta C$
 - ► SUBROUTINE DSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- ▶ DPOSV **D**ouble symmetric **PO**sitive definite matrix **S**ol**V**e $A^{-1}y$

- ▶ DGEMM Double precision **GE**neral **M**atrix **M**ultiply $\alpha AB + \beta C$
 - ► SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- ▶ DSYMM **D**ouble precision **SY**mmetric **M**atrix **M**ultiply $\alpha AB + \beta C$
 - ► SUBROUTINE DSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- **>**
- ▶ DPOSV Double symmetric **PO**sitive definite matrix **S**ol**V**e $A^{-1}y$
 - ▶ SUBROUTINE DPOSV(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

Naive : (X.T*X).I * X.T*y

Expert : solve(X.T*X, X.T*y, sym_pos=True)

 $\verb|subroutine| least_squares(X, y)|\\$

. . .

endsubroutine

Matrix Expressions and SymPy

SymPy Expressions

Operators (Add, log, exp, sin, integral, derivative, ...) are Python classes Terms (3, x, log(3*x), integral(x**2), ...) are Python objects

```
>>> x = Symbol('x')
>>> expr = log(3*exp(x + 2))
>>> simplify(expr)
x + 2 + log(3)
```


SymPy Expressions

Operators (Add, log, exp, sin, integral, derivative,...) are Python classes Terms (3, x, log(3*x), integral(x**2),...) are Python objects

```
>>> x = Symbol('x')
>>> expr = log(3*exp(x + 2))
>>> simplify(expr)
x + 2 + log(3)
```


Inference

```
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> facts = Q.real(x) & Q.positive(y)
>>> query = Q.positive(x**2 + y)
>>> ask(query, facts)
True
```

Matrix Expressions

```
>>> X = MatrixSymbol('X', n, m)
>>> y = MatrixSymbol('y', n, 1)
>>> beta = (X.T*X).I * X.T*y
```


Matrix Inference

If **A** is symmetric positive-definite and **B** is orthogonal: **Question**: is $\mathbf{B} \cdot \mathbf{A} \cdot \mathbf{B}^{\top}$ symmetric and positive-definite? Answer: Yes. Question: Could a computer have told us this? Answer: Probably. sympy.matrices.expressions >>> A = MatrixSymbol('A', n, n) >>> B = MatrixSymbol('B', n, n) >>> facts = Q.symmetric(A) & Q.positive_definite(A) & Q.orthogonal(B) >>> query = Q.symmetric(B*A*B.T) & Q.positive_definite(B*A*B.T) >>> ask(query, facts) True

Computations

- ▶ DGEMM Double precision GEneral Matrix Multiply $-\alpha AB + \beta C$
 - ► SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- DSYMM Double precision SYmmetric Matrix Multiply αAB + βC
 SUBROUTINE DSYMM(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
- **>**
- ▶ DPOSV Double symmetric POsitive definite matrix SolVe A⁻¹y
 - ► SUBROUTINE DPOSV(UPLO, N, NRHS, A, LDA, B, LDB, INFO)

```
(X'*X)^-1*X'*y
                   GEMM
                                      POSV
                                                 UofCholesky(X'*X)
                  ▶ GEMM
                                                     INFO
comp = (GEMM(1, X.T, X, 0, 0))
      + GEMM(1, X.T, y, 0, 0)
      + POSV(X.T*X, X.T*y))
class GEMM(Computation):
    """ Genreral Matrix Multiply """
    inputs = [alpha, A, B, beta, C]
    outputs = [alpha*A*B + beta*C]
    inplace = \{0: 4\}
    fortran
              = ....
class POSV(Computation):
    """ Symmetric Positive Definite Matrix Solve """
    inputs = [A, y]
    outputs = [UofCholesky(A), A.I*y]
    inplace = \{0: 0, 1: 1\}
    condition = Q.symmetric(A) & Q.positive_definite(A)
    fortran
              = ....
```

http://github.com/mrocklin/computations


```
subroutine f(X, y, var_7, m, n)
implicit none
integer, intent(in) :: m
integer, intent(in) :: n
real*8, intent(in) :: v(n)
real*8, intent(out) :: var_7(m) ! 0 -> X'*y -> (X'*X)^-1*X'*y
real*8 :: var 8(m, m)
                                / O -> X'*X
integer :: INFO
                                 I TNFO
call dgemm('N', 'N', m, 1, n, 1.0, X, n, y, n, 0.0, var_7, m)
call dgemm('N', 'N', m, m, n, 1.0, X, n, X, n, 0.0, var_8, m)
call dposv('U', m, 1, var_8, m, var_7, m, INFO)
RETURN
F.ND
```

Logic Programming

TODO

- http://github.com/mrocklin/term
 An interface for terms
 Composable with legacy code via Monkey patching
 Supports pattern matching via Unification
- http://github.com/logpy/logpy
 Implements miniKanren, a logic programming language
- http://github.com/logpy/strategies
 Partially implements Stratego, a control flow programming language

Automation

Have

```
(X.T*X).I*X.T*y
Q.fullrank(X)
```

Want

Accomplish Using Pattern Matching

```
# Source Expression, Target Computation, Condition

(alpha*A*B + beta*C, SYMM(alpha, A, B, beta, C), Q.symmetric(A) | Q.symmetric(B)
(alpha*A*B + beta*C, GEMM(alpha, A, B, beta, C), True),
(A.I*B, POSV(A, B), Q.symmetric(A) & Q.positive_definite(A)
(A.I*B, GESV(A, B), True),
(alpha*A + B, AXPY(alpha, A, B), True),
```

Pattern Matching done with LogPy, a composable Logic Programming library

(X'*X)^-1*X'*y

```
# Source Expression, Target Computation, Condition
(alpha*A*B + beta*C, SYMM(alpha, A, B, beta, C), Q.symmetric(A) | Q.symmetric(B)
(alpha*A*B + beta*C, GEMM(alpha, A, B, beta, C), True),
(A.I*B, POSV(A, B), Q.symmetric(A) & Q.positive_definite(A)
(A.I*B, GESV(A, B), True),
(alpha*A + B, AXPY(alpha, A, B), True),
```



```
# Source Expression, Target Computation, Condition
(alpha*A*B + beta*C, SYMM(alpha, A, B, beta, C), Q.symmetric(A) | Q.symmetric(B)
(alpha*A*B + beta*C, GEMM(alpha, A, B, beta, C), True),
(A.I*B, POSV(A, B), Q.symmetric(A) & Q.positive_definite(A)
(A.I*B, GESV(A, B), True),
(alpha*A + B, AXPY(alpha, A, B), True),
```



```
# Source Expression, Target Computation, Condition
(alpha*A*B + beta*C, SYMM(alpha, A, B, beta, C), Q.symmetric(A) | Q.symmetric(B)
(alpha*A*B + beta*C, GEMM(alpha, A, B, beta, C), True),
(A.I*B, POSV(A, B), Q.symmetric(A) & Q.positive_definite(A)
(A.I*B, GESV(A, B), True),
(alpha*A + B, AXPY(alpha, A, B), True),
```



```
# Source Expression, Target Computation, Condition
(alpha*A*B + beta*C, SYMM(alpha, A, B, beta, C), Q.symmetric(A) | Q.symmetric(B)
(alpha*A*B + beta*C, GEMM(alpha, A, B, beta, C), True),
(A.I*B, POSV(A, B), Q.symmetric(A) & Q.positive_definite(A)
(A.I*B, GESV(A, B), True),
(alpha*A + B, AXPY(alpha, A, B), True),
```

Kalman Filter

f = fortran_function([mu, Sigma, H, R, data], [newmu, newSigma], *assumptions)

Kalman Filter

```
implicit none
 real(kind=8), intent(in) :: mu(:)
 real(kind=8), intent(in) :: Sigma(:,:)
 real(kind=8), intent(in) :: H(:,:)
 real(kind=8) :: R(:,:)
 real(kind=8) :: data(:)
 real(kind=8), intent(out) :: mu_2(:)
 real(kind=8), intent(out) :: Sigma_2(:,:)
! Variable Declarations ! -- Cut for space --
 call dcopy(n**2, Sigma, 1, Sigma_2, 1)
 call dgemm('N', 'N', k, 1, n, 1.0d+0, H, k, mu, n, -1.0d+0, data, k)
 call dcopy(n, mu, 1, mu_2, 1)
 call dcopy(k*n, H, 1, H_2, 1)
 call dsymm('R', 'U', k, n, 1.0d+0, Sigma, n, H, k, 0.0d+0, var_17, k)
 call dgemm('N', 'T', k, k, n, 1.0d+0, H, k, var_17, k, 1.0d+0, R, k)
 call dposv('U', k, n, R, k, H_2, k, INFO)
 call dpotrs('U', k, 1, R, k, data, k, INFO)
 call dgemm('T', 'N', n, 1, k, 1.0d+0, H, k, data, k, 0.0d+0, var_12, n)
 call dsymm('L', 'U', n, 1, 1.0d+0, Sigma, n, var_12, n, 1.0d+0, mu_2, n)
 call dgemm('T', 'N', n, n, k, 1.0d+0, H, k, H_2, k, 0.0d+0, var_19, n)
 call dsymm('R', 'U', n, n, 1.0d+0, Sigma, n, var_19, n, 0.0d+0, var_18, n)
 call dsymm('L', 'U', n, n, -1.0d+0, Sigma_2, n, var_18, n, 1.0d+0, Sigma_2, n
```

subroutine f(mu, Sigma, H, R, data, mu_2, Sigma_2)

Software Design

BLAS/LAPACK

Syntax includes/libs

Predicates Objective Function DFT

invertible, symmetric, orthogonal

 $\begin{array}{ccc} \text{Block Matrices} & \text{Unification} & \text{FFTW} & \text{Terms} \\ & & & \text{Transpose, Inverse, Trace} \end{array}$

Directed Acyclic Graphs

Many-to-One Matching Fortran Code Generation Determinants

Greedy Search

Dynamic Programming Inplace Computations s-expressions Travesals ${\bf Associative/Commutative\ Matching}$

F-----

 ${\color{red}{\rm LogPy}}$ Coding Style

Linear Algebra Computations Predicates BLAS/LAPACK Coding Style invertible, symmetric, orthogonal Inplace Computations Terms includes/libs Fortran Code Generation $$\operatorname{\textsc{Directed}}$$ Acyclic Graphs Syntax Transpose, Inverse, Trace DFT Determinants FFTW Block Matrices Algorithm Search Pattern Matching Unification Greedy Search Dynamic Programming Associative/Commutative Matching Laziness Many-to-One Matching Travesals Objective Function LogPy s-expressions

git@github.com/sympy/sympy.git git@github.com/mrocklin/computations.git Linear Algebra Computations Predicates BLAS/LAPACK Coding Style invertible, symmetric, orthogonal Inplace Computations Terms includes/libs Fortran Code Generation $$\operatorname{\textsc{Directed}}$$ Acyclic Graphs Syntax Transpose, Inverse, Trace DFT Determinants Block Matrices Algorithm Search Pattern Matching Unification Greedy Search Dynamic Programming Associative/Commutative Matching Laziness Many-to-One Matching Travesals Objective Function LogPy s-expressions

git@github.com/logpy/strategies.git

git@github.com/logpy/logpy.git

```
X = MatrixSymbol('X', n, m)
y = MatrixSymbol('y', n, 1)
inputs = [X, y]
outputs = [(X.T*X).I*X.T*y]
facts = fullrank(X)
```



```
X = MatrixSymbol('X', n, m)
y = MatrixSymbol('y', n, 1)
inputs = [X, y]
outputs = [(X.T*X).I*X.T*y]
facts = fullrank(X)
```


(alpha*A*A.T + beta*D, SYRK(alpha, A, beta, D), True), (A*A.T, SYRK(1.0, A, 0.0, 0), True),

Separation promotes Comparison and Experimentation

Separation promotes Comparison and Experimentation

Kalman Filter - Theano v. Fortran

```
newmu = mu + Sigma*H.T * (R + H*Sigma*H.T).I * (H*mu - data)
newSigma = Sigma - Sigma*H.T * (R + H*Sigma*H.T).I * H * Sigma
```

f = fortran_function([mu, Sigma, H, R, data], [newmu, newSigma], *assumptions)

Kalman Filter - Theano v. Fortran

```
f = theano_function( [mu, Sigma, H, R, data], [newmu, newSigma])
```


Final Thoughts

- Modularity is good!
 - Cater to single-field experts
 - ► Eases comparison and evolution
 - ► This project might die but the parts will survive
- ► Intermediate Representations are Good!
 - Fortran code doesn't depend on Python
 - Readability encourages development
 - Extensibility (lets generate CUDA)
- ▶ Read more! http://matthewrocklin.com/blog
- ► Listen more!
 - Dynamics with SymPy Mechanics, Jason Moore, Room 204 - 2:10pm
 - SymPy Gamma and SymPy Live: Python and Mathematics Online, David Li Room 203 - 3:50pm

Multiple Results

Multiple Results

