Acides-bases

Mise en solution aqueuse d'un acide l'eau se comporte comme une base

$$\begin{array}{c} \text{CH}_3\text{COOH} & \Longrightarrow \text{CH}_3\text{COO}^- + \text{H}^+ \\ \\ \text{H}_2\text{O} + \text{H}^+ & \Longrightarrow \text{H}_3\text{O}^+ \\ \\ & > \text{CH}_3\text{COOH} + \text{H}_2\text{O} & \Longrightarrow \text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+ \end{array}$$

$$K_a = rac{[ext{H}_3 ext{O}^+][ext{CH}_3 ext{COO}^-]}{c^\circ[ext{CH}_3 ext{COOH}]}$$

$$K_e = \frac{1}{c^{\circ 2}} [\text{H}_3\text{O}^+] [\text{HO}^-] = 10^{-14}$$

$$\mathrm{pH} = -\log\left(\frac{[\mathrm{H_3O^+}]}{c^\circ}\right) = \mathrm{p}K_a + \log\left(\frac{[\mathrm{B}]}{[\mathrm{A}]}\right)$$

$A_1 + H_2O \Longrightarrow B_1 + H_3O^+$	K_{a1}
$A_2 + H_2O \Longrightarrow B_2 + H_3O^+$	K_{a2}
Lorsque ${ m A_1}$ réagit avec ${ m B_2}$	

$$A_1 + B_2 \Longrightarrow A_2 + B_1$$

Constante d'équilibre : $K = \frac{K_{a1}}{K_{a2}}$

$\mathrm{H}_2\mathrm{SO}_4$	Acide sulfurique	Acide fort
HCl	Acide chlorhydrique	Acide fort
HNO_3	Acide nitrique	Acide fort
$\mathrm{H_{3}PO_{4}}$	Acide phosphorique	Acide faible
$\mathrm{CH_{3}COOH}$	Acide acétique	Acide faible
NaOH	Soude	Base forte
HCO_3^-	Ion hydrogénocarbonate	Acide faible et base faible
NH_3	Ammoniac	Base faible

Dissolution et précipitation

$$C_n A_{m(s)} \rightleftharpoons n C_{(aq)}^{m+} + m A_{(aq)}^{n-}$$

Produit de solubilité de $C_n A_{m(s)}$

$$K_S(T) = \frac{1}{c_0^{m+n}} [C^{m+}]_{\text{éq.}}^n [A^{n-}]_{\text{éq.}}^m$$

Dissolution de AgCl

$$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Quotient réactionnel

$$Q = \frac{1}{c_0^2} [Ag^+] [Cl^-]$$

Dissolution de AgCl_(s)

Précipitation de AgCl_{(s}

Acide-base et précipitation

Dissolution et précipitation

$$AgCl_{(s)} \Longrightarrow Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$
 avec $\underline{[Cl]}_{g}$

Exemple : dissolution de NaCl

	$\overline{\mathrm{NaCl}(\mathrm{s})}$	 Na ⁺ (aq)	+	$\mathrm{Cl}^{-}(\mathrm{aq})$
-1	no	n		0

État initial n_0

Équilibre $n_0 - \xi$

À l'équilibre

I'équilibre
$$\left(\frac{\xi}{c^\circ V}\right)^2 = K_S \xrightarrow{\S} \frac{\xi}{V} = c^\circ \sqrt{K_S} \approx \underline{6.2 \, \mathrm{mol} \, \ell^{-1}}$$
 Solubilité
$$S = 365.3 \, \mathrm{g} \, \ell^{-1}$$