

A cada dia uma quantidade enorme de dados é gerada.

 Segundo o McKinsey Global Institute (fev, 2020) é esperado que em 2030, o mundo consuma até 20 vezes mais dados do que hoje.

 Conforme <u>a revista Forbes</u> (abr,2021) estima-se que uma única fábrica pode gerar mais de 2 terabytes de dados em um mês.

Dele se encante mais meu pensamento.

XXXX

- Os dados podem assumir formatos diferentes.
- Podem ser:
 - Series temporais;
 - Conjuntos de itens;
 - Transações;
 - Grafos ou redes sociais;
 - Textos;
 - Páginas web;
 - Imagens;
 - Vídeos;
 - e áudios.

 Todos os dados existentes já foram analisados e compreendidos ?

 Todos os dados existentes já foram analisados e compreendidos ?
 Não

 Todos os dados existentes já foram analisados e compreendidos ?
 Não

 E o que é necessário para analisar dados ?
 Preparação desses dados

• E o que é necessário para analisar dados ?

• E o que é necessário para analisar dados ?

Preparação de dados

Agora que vimos as categorias dos dados, vamos analisá-los.

Nosso foco serão os dados estruturados.

Vamos estudar:

- Caracterização dos Dados
- Exploração de Dados

- Dados estruturados s\(\tilde{a}\) representados por matrizes de objetos da forma \(n \times d\), chamadas tabelas atributo-valor, onde:
 - n é o número de objetos
 - d é o número de atributos de cada objeto

8 objetos

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

- Dados estruturados são representados por matrizes de objetos da forma n x d, chamadas tabelas atributo-valor, onde:
 - n é o número de objetos
 - d é o número de atributos de cada objeto

10 atributos

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

- Quanto ao tipo, os dados podem ser:
 - Quantitativos: numéricos;
 - Qualitativos: simbólico ou categórico.

Esta Foto de Autor Desconhecido está licenciado em CCBY-SA

Atributo	Tipo
ld.	Qualitativo
Nome	Qualitativo
Idade	Quantitativo discreto
Sexo	Qualitativo
Peso	Quantitatico continuo
Manchas	Qualitativo

Atributo	Tipo
Temp.	Quantitatico continuo
#Int.	Quantitativo discreto
Est.	Qualitativo
Diagnostico	Qualitativo

- Quanto ao tipo, os dados podem ser:
 - Quantitativos: numéricos;
 - Qualitativos: simbólico ou categórico.

	Atributo	Tipo	Atributo	Tipo	
X	ld.	Qualitativo	Temp.	Quantitativo continuo	Atributos de entra
X	Nome	Qualitativo	#Int.	Quantitativo discreto	
	Idade	Quantitativo discreto	Est.	Qualitativo	
	Sexo	Qualitativo	Diagnostico	Qualitativo	
	Peso	Quantitativo continuo			
	Manchas	Qualitativo	Atributos de entra	ıda	

- Quanto ao tipo, os dados podem ser:
 - Quantitativos: numéricos;
 - Qualitativos: simbólico ou categórico.

Atributo	Tipo
ld.	Qualitativo
Nome	Qualitativo
Idade	Quantitativo discreto
Sexo	Qualitativo
Peso	Quantitatico continuo
Manchas	Qualitativo

Atributo	Tipo			
Temp.	Quantitatico continuo			
#Int.	Quantitativo discreto			
Est.	Qualitativo			
Diagnostico	Qualitativo			

Atributo de saida, Atributo alvo Classe

- Quanto `a escala, os dados podem ser:
 - Intervalares e racionais: para os quantitativos;
 - Nominais e ordinais: para os qualitativos.

Atributo	Escala		
ld.	Nominal		
Nome	Nominal	Atributo	Tipo
Idade	Racional	Temp.	Intervalar
Sexo	Nominal	#Int.	Racional
Peso	Intervalar	Est.	Nominal
Manchas	Nominal	Diagnostico	Nominal

Intervalar: os números variam dentro de um intervalo.

Racional: números com mais informação, representam quantidades, distancias, tempo, ...

Nominal: apenas nomes diferentes. **Ordinal:** Há uma relação de ordem entre os nomes, tal como: pequeno, médio e grande

Exploração dos Dados

Exploração dos Dados:

Conhecer os dados ajuda na seleção das técnicas mais apropriadas de préprocessamento e de aprendizado de máquina.

Outliers são dados que se diferenciam drasticamente de todos os outros, são pontos fora da curva.

Influenciam a análise dos dados. Fique atento!

A estatistica descritiva é muito útil pois permite resumir dados quantitativos, tais como:

Idade média dos pacientes;

• Percentual de pacientes do genero masculino.

O processamento estatistico permite capturar informações como:

- Frequência
- Localização ou tendência central (por exemplo, média)
- Dispersão ou espalhamento (por exemplo, desvio padrão)
- Distribuição ou formato

- Univalorados: Possui apenas 1 atributo.
- Multivalorados: Possuem mais de 1 atributo.

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

Altura
1.60
1.80
1.89
1.67
1.95
1.70
1.62
1.89
1.75

Altura	
Baixo	
Alto	
Alto	
Baixo	
Alto	
Medio	
Baixo	
Alto	
Medio	

- Univalorados: Possui apenas 1 atributo.
- Multivalorados: Possuem mais de 1 atributo.

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

Altur	a
1.60	
1.80	
1.89	
1.67	
1.95	
1.70	
1.62	
1.89	
1.75	

Altura

Baixo

Alto

Alto

Baixo

Alto

Medio

Baixo

Alto

Medio

- Univalorados: Possui apenas 1 atributo.
 - A análise de dados mais simples;
 - Não lida com causas ou relações entre os dados;
 - Exemplo: altura.

Altura
1.60
1.80
1.89
1.67
1.95
1.70
1.62
1.89
1.75

Altura
Baixo
Alto
Alto
Baixo
Alto
Medio
Baixo
Alto
Medio

Medidas de Localidade:

Pontos de referência dos dados

- Univalorados: Possui apenas 1 atributo.
 - A análise de dados mais simples;
 - Não lida com causas ou relações entre os dados;
 - Exemplo: altura.
 - Dados nominais
 - Moda: valor que mais frequente.
 Ex: Alto
 - Dados numéricos:
 - Média: fácil mas adequado apenas se há distribuição simétrica dos dados, pois é sensível a outliers;
 - Mediana: valor central dos dados;
 - Percentil e quartis: permitem ver como os dados estão distribuídos.

Altura
1.60
1.80
1.89
1.67
1.95
1.70
1.62
1.89
1.75

Altura
Baixo
Alto
Alto
Baixo
Alto
Medio
Baixo
Alto
Medio

Medidas de Localidade:

Pontos de referência dos dados

- Univalorados: Possui apenas 1 atributo.
 - A análise de dados mais simples;
 - Não lida com causas ou relações entre os dados;
 - Exemplo: altura.
 - Dados nominais
 - Moda: valor que mais frequente.
 Ex: Alto
 - Dados numéricos:
 - Média: fácil mas adequado apenas se há distribuição simétrica dos dados, pois é sensível a outliers;
 - Mediana: valor central dos dados;
 - Percentil e quartis: permitem ver como os dados estão distribuídos.

Altura
1.60
1.80
1.89
1.67
1.95
1.70
1.62
1.89
1.75

Altura
Baixo
Alto
Alto
Baixo
Alto
Medio
Baixo
Alto
Medio

Medidas de Localidade:

Pontos de referência dos dados

- Univalorados: Possui apenas 1 atributo.
 - A análise de dados mais simples;
 - Não lida com causas ou relações entre os dados;
 - Exemplo: altura.
 - Dados nominais
 - Moda: valor que mais frequente.
 - Dados numéricos:
 - Média: fácil mas adequado apenas se há distribuição simétrica dos dados, pois é sensível a outliers; Ex: 1.76
 - Mediana: valor central dos dados;
 - Percentil e quartis: permitem ver como os dados estão distribuídos.

	Altura
	1.60
	1.80
	1.89
,	1.67
	1.95
	1.70
	1.62
	1.89
	1.75

Altu	ra
Baix	0
Alto	
Alto	
Baix	0
Alto	
Med	lio
Baix	0
Alto	
Med	lio

Medidas de Localidade:

Pontos de referência dos dados

- Univalorados: Possui apenas 1 atributo.
 - Mediana: valor central dos dados;
 - Exige que os valores sejam ordenados
 - Quantidade ímpar de elementos: valor central
 - Quantidade par de elementos: media dos 2 valores centrais

(1,62+1,67)/2 = 1,645

Medidas de Localidade:

Pontos de referência dos dados

- Univalorados: Possui apenas 1 atributo.
 -
 - Percentil e quartis: permitem ver como os dados estão distribuídos.
 - O quartil é uma representação/delimitação para o percentil.

[1,60; **1,62; 1,67**; 1,70; **1,75**; 1,80; **1,89; 1,89;** 1,95]

1,64

1,75

1,89

1.70

1.62

1.89

1.75

Q1(25) = 1,645

Q2(50) = 1,75

Q3(75) = 1,89

Medidas de Espalhamento:

Medem a dispersão dos dados

- Univalorados: Possui apenas 1 atributo.
 - Medidas de espalhamento: permite verificar se os valores estão espalhados ou concentrados em torno de um valor.
 - Medidas mais comuns:
 - Intervalo
 - Variância
 - Desvio Padrão

Altura
1.60
1.80
1.89
1.67
1.95
1.70
1.62
1.89
1.75

Medidas de Espalhamento:

Medem a dispersão dos dados

- Univalorados: Possui apenas 1 atributo.
 - Medidas de espalhamento: permite verificar se os valores estão espalhados ou concentrados em torno de um valor.

Min

Max

Medidas mais comuns:

• Intervalo: simples. Exemplo: [1,60; 1,95]

- Variância
- Desvio Padrão

Se houver concentração em um ponto, não será uma boa medida.

Altura
1.60
1.80
1.89
1.67
1.95
1.70
1.62
1.89
1.75

Medidas de Espalhamento:

Medem a dispersão dos dados

- Univalorados: Possui apenas 1 atributo.
 - Medidas de espalhamento: permite verificar se os valores estão espalhados ou concentrados em torno de um valor.
 - Medidas mais comuns:
 - Intervalo
 - Variância (σ): é útil para determinar o afastamento da média. Para isso, determina-se o valor médio das diferenças quadradas em relacao a média.

σ =	$\sum_{i=1}^{n} (\times_{i} - \overline{\times})^{2}$
0 –	n – 1

onde:

- x_i é o dado;
- \overline{x} é a média;
- n é o total de dados.

 σ (altura) =0,01605

Como usa a média e sensivel a outliers.

Altura

1.60

1.80

1.89

1.67

1.95

1.70

1.62

1.89

1.75

Medidas de Espalhamento:

Dp(altura) = 0,126689

Medem a dispersão dos dados

- Univalorados: Possui apenas 1 atributo.
 - Medidas de espalhamento: permite verificar se os valores estão espalhados ou concentrados em torno de um valor.
 - Medidas mais comuns:
 - Intervalo
 - Variância
 - Desvio Padrão:
 - indica quão homogêneos são os dados.
 - quando menor, menos dispersos são os dados.
 - é calculado aplicando a raiz quadrada na variância.

Altura

1.60

1.80

1.89

1.67

1.95

1.70

1.62

1.89

1.75

Medidas de Distribuição:

Medem com os dados estão distribuidos.

Medidas de distribuicao:..

 Um histograma é uma espécie de gráfico de barras que demonstra uma distribuição conforme as frequências dos dados em "cestas".

Altura

1.60

1.80

1.89

1.67

1.95

1.70

1.62

1.89

1.75

Medidas de Distribuição:

Medem com os dados estão distribuidos.

- Medidas de distribuicao:.
 - Graficos de barra e pizza tambem são uteis para ver a distribuicao dos dados quanto a frequencia.

Altura

Baixo

Alto

Alto

Baixo

Alto

Medio

Baixo

Alto

Medio

- Univalorados: Possui apenas 1 atributo.
- Multivalorados: Possuem mais de 1 atributo.

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

Altura
1.60
1.80
1.89
1.67
1.95
1.70
1.62
1.89
1.75

Altura

Baixo

Alto

Alto

Baixo

Alto

Medio

Baixo

Alto

Medio

Dados Multivalorados

Medidas de Localidade, Espalhamento e Distribuição

- Multivalorados: Possuem mais de 1 atributo.
 - Dados nominais
 - Moda
 - Dados numéricos:
 - Média
 - Mediana
 - Percentil e quartis

Calculadas para cada atributo separadamente.

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	М	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

- Multivalorados: Possuem mais de 1 atributo.
 - Covariância: mede a relação entre dois ou mais atributos.
 - A covariância entre 2 atributos mede o grau com que os atributos variam juntos.
 - Um valor próximo de zero indica que os atributos não tem um relacionamento linear;
 - Um valor positivo indica que os atributos aumentam juntos;
 - Um valor negativo indica que os atributos reduzem juntos.
 - E afetada pela dimensão dos atributos, por isso a correlação acaba sendo mais usada.

Covariancia(x,y)=
$$1/(n-1)\sum_{i=1}^{n} ((x_i - \bar{x}_i)(y_i - \bar{y}_i))$$

- Multivalorados: Possuem mais de 1 atributo.
 - Exemplo de Covariância

Covariancia(x,y)=
$$1/(n-1)\sum_{i=1}^{n} ((x_i - \bar{x}_i)(y_i - \bar{y}_i))$$

			X	Y	
#	Altura	Peso	Altura-MediaAltura	Peso-MediaPeso	X * Y
1	1,95	93,1	-0,038	-1,34	0,05092
2	1,96	93,9	-0,028	-0,54	0,01512
3	1,95	89,9	-0,038	-4,54	0,17252
4	1,98	95,1	-0,008	0,66	-0,0053
5	2,1	100,2	0,112	5,76	0,64512
soma	9,94	472,2			0,8784
media	1,988	94,44		Covariancia	0,2196

- Multivalorados: Possuem mais de 1 atributo.
 - Como a covariância e afetada pela dimensão dos atributos, a correlação acaba sendo mais usada.
 - Correlação de Pearson

$$ho = rac{\sum_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i-ar{x})^2}\cdot\sqrt{\sum_{i=1}^{n}(y_i-ar{y})^2}}$$

- 0.9 para mais ou para menos indica uma correlação muito forte.
- 0.7 a 0.9 positivo ou negativo indica uma correlação forte.
- 0.5 a 0.7 positivo ou negativo indica uma correlação moderada.
- 0.3 a 0.5 positivo ou negativo indica uma correlação fraca.
- 0 a 0.3 positivo ou negativo indica uma correlação desprezível.

- Multivalorados: Possuem mais de 1 atributo.
 - Exemplo: Correlação de Pearson

$$ho = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2} \cdot \sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

			X	Υ			
#	Altura	Peso	Altura-MediaAltura	Peso-MediaPeso	X * Y	χ^2	Y ²
1	1,95	93,1	-0,038	-1,34	0,05092	0,001444	1,7956
2	1,96	93,9	-0,028	-0,54	0,01512	0,000784	0,2916
3	1,95	89,9	-0,038	-4,54	0,17252	0,001444	20,6116
4	1,98	95,1	-0,008	0,66	-0,00528	6,4E-05	0,4356
5	2,1	100,2	0,112	5,76	0,64512	0,012544	33,1776
soma	9,94	472,2			0,8784	0,01628	56,312
media	1,988	94,44			raiz	0,127593	7,504132
					Pearson	0,917412	