

Multiple Linear Regression in R

Fitting Models to Data Not Data to Models Model Fitting Series - With Applications in R

Jesse Ghashti

October 16, 2025

Centre for Scholarly Communication

The University of British Columbia | Okanagan Campus | Syilx Okanagan Nation Territory

Welcome, feel free to get ready while we wait to start...

Install Required Packages

```
packages <- c("dplvr", "mgcv", "ggplot2",</pre>
              "gratia", "daggity", "leaps", "car")
toInstall <- packages[!(packages %in%
                          installed.packages()[,"Package"])]
if(length(toInstall)) install.packages(toInstall)
library('dplyr') # for data wrangling
library('mgcv') # for modeling
library('ggplot2') # for fancy plots
library('daggity') # for DAGs
library('gratia') # qqplot-based graphics
library('leaps') # for best subset regression
library('car') # for variance inflation factors
```

Workshop Series Overview

Session	Topic	Date/Time
1	Simple Linear Regression	Oct 7, 9:00 AM
2	Fitting Linear Models in R	Oct 8, 10:30 AM
3	Multiple Linear Regression in R	Oct 16, 4:00 PM
4	Interaction Terms & Hierarchical Linear Models	Oct 21, 11:00 AM
5	Generalized Linear Models	Oct 23, 4:00 PM
6	Generalized Additive Models (GAMs)	Oct 28, 11:00 AM
7	Interpreting & Predicting from GAMs	Oct 29, 10:30 AM
8	Hierarchical GAMs	Nov 4, 12:00 PM
9	Penalized Models	Nov 18, 11:00 AM
10	Survival Models	Nov 25, 11:00 AM
11	Nonparametric Models	Dec 2, 11:00 AM

New Here?

New to R? Check out the Fundamentals of R series!

GitHub code and slides for today's workshop (and previous workshops)

Alternatively, code/slides available at the bottom of https://csc-ubc-okanagan.github.io/workshops/

Last Time (Workshop 2) — Quick Recap

Key Concepts

- Built a diagnostics function to check all 5 assumptions
- Fitted models to real datasets: ChickWeight, prostate, state.x77
- Saw how outliers can dominate inference, skew predictions.

Today: Multiple Linear Regression in R

Today we will...

- Extend from simple $(Y = \beta_0 + \beta_1 x + \epsilon)$ to multiple regression
- Use DAGs (Directed Acyclic Graphs) to visualize relationships
- Interpret coefficients when predictors are correlated
- ullet Understand R^2_{adj} and model selection
- Work with state.x77 data: Life expectancy modeling

Today we require...

```
library('dplyr')  # for data wrangling
library('mgcv')  # for modeling
library('ggplot2')  # for fancy plots
library('gratia')  # for ggplot-based model graphics
library('dagitty')  # for drawing Directed Acyclical Graphs (DAGs)
library('leaps')  # for best subset regression
library('car')  # for variantion inflation factors
```

Multiple Linear Regression: The Model

From Simple to Multiple

Simple Linear Regression:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Multiple Linear Regression:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$

where:

- ullet Y_i is the response for observation i
- ullet x_{ij} is the value of predictor j for observation i
- $\bullet \hspace{0.2cm} \beta_{j}$ is the coefficient for predictor j
- ullet $\epsilon_i \sim N(0,\sigma^2)$ (same assumptions as before)

Least Squares Estimates: SLR vs MLR

Simple Linear Regression

Model: $Y = \beta_0 + \beta_1 x + \epsilon$ Estimates:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

Multiple Linear Regression

Model: $Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$ Matrix form: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$ Estimates:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y},$$

where \mathbf{X} is the model matrix.

Estimates for both are solved via least squares, but MLR requires matrix derivatives. In MLR, $\hat{\beta}_j$ is the effect of x_j holding all other predictors constant, while in SLR, $\hat{\beta}_1$ is the total effect of x on Y

Data Preparation: US States (1970s)

Preparing state.x77 data

Variables include Life expectancy, Income (per capita, 1974), Murder rate (per 100k, 1976), High school graduation %

Directed Acyclic Graphs (DAGs)

What are DAGs?

- Visual representation of causal relationships
- Arrows show direction of causation
- Help identify confounders
- Guide model specification

```
dag_1 <- dagitty('Income -> Life_exp')
plot(dag_1)
```


Model 1: Income → **Life Expectancy**

Model 1: Income → **Life Expectancy**


```
summary(m_1) # relatively low R^2_adj
```

Acceptable fit but relatively low R^2_{adj} — suggests we might be missing important predictors

Model 2: Adding Murder Rate

DAG with two predictors

```
dag_2 <- dagitty(
  'Income -> Life_exp
  Murder_1e5 -> Life_exp
  Income -> Murder_1e5')
plot(dag_2)
```

Income affects life expectancy both directly AND indirectly through murder rate

Model 2: Results I

Model 2: Results II

draw(m_2, parametric = TRUE)

Model 2: Results III


```
summary(m_2) # relatively good R^2_adj
# the p-value for Income went up. Why?
```

Understanding Multicollinearity

When predictors are correlated, coefficient interpretation changes: each β represents the effect **holding** other variables constant

Model 3: Adding High School Graduation Rate

Complex DAG

```
dag_3 <- dagitty(
  'Income -> Life_exp
  Income -> Murder_1e5
  Murder_1e5 -> Life_exp
  HS_grad_perc -> Life_exp
  HS_grad_perc -> Murder_1e5
  HS_grad_perc -> Income')
plot(dag_3)
```

Notice that HS graduation affects all other variables — a potential confounder!

Model 3: Results I

Model 3: Results II

draw(m_3, parametric = TRUE)

Model 3: Results III


```
summary(m_3) # R^2_adj did not improve much
```

Adding more predictors doesn't always improve the model!

Quick Sidenote on Model Matrix ${\bf X}$

Recall that

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y},$$

where ${\bf X}$ is an $n \times (p+1)$ matrix, n is the number of observation in your data and p is the number of predictors (the +1 corresponds to an extra column for the intercept term β_0 .

Correlation Structure


```
# % grad and income are correlated
ggplot(states, aes(Income, HS_grad_perc)) +
  geom_point() +
  geom_smooth(method = 'lm', formula = y ~ x)
```

```
# same for % grad and murder rate
ggplot(states, aes(Murder_1e5, HS_grad_perc)) +
  geom_point() +
  geom_smooth(method = 'lm', formula = y ~ x)
```


Caution High correlations between predictors make coefficients unstable and harder to interpret

Variance Inflation Factor (VIF)

VIFs

The VIF is given by

$$\mathsf{VIF}_i = \frac{1}{1 - R_i^2},$$

which is used for each independent variable i in a multiple regression model. Here, R_i^2 is the R-squared value obtained from regressing that variable against all the other independent variables in the model.

A VIF ≥ 10 indicates severe multicollinearity, consider removing that variable, whereas $5 \leq$ VIF < 10 should be investigated.

```
> vif(m_3.1)
               Murder 1e5 HS arad perc
      Income
   1.642581
                 1.327381
                              2.041819
> vif(m 3.2)
 Population
                            Illiteracy
                                         Murder_1e5 HS_arad_perc
                  Income
    1.499915
                 1.992680
                              4.403151
                                           2.616472
                                                         3.134887
       Frost
                     Area
    2.358206
                 1.789764
```

Interpreting Multiple Regression Coefficients

Key Concepts

- Partial effects: Each β_j represents the effect of x_j holding all other predictors constant
- R^2_{adj} : Adjusts for number of predictors: $R^2_{adj} = 1 \frac{(1-R^2)(n-1)!}{n-p-1}$
- Multicollinearity: When predictors are correlated:
 - Standard errors increase
 - Coefficients become unstable
 - Individual p-values may be misleading

Statistical significance \neq Causal effect; use DAGs to think about causality.

Model Selection: Do's and Don'ts

Good Reasons to Add Variables

- Theory/domain knowledge suggests causality
- ullet Substantial improvement in R^2_{adj}
- Reduces omitted variable bias
- Improves predictions on new data

Bad Reasons to Add Variables

- Just to increase R^2 (not adjusted)
- "Fishing" for significance
- Without theoretical justification
- When it creates severe multicollinearity

Next time: We'll explore interaction terms — when the effect of one variable depends on another.

A Handy Little Function

Well, turns out possibly the most obvious model is the "best" according to best subset regression

```
1 subsets of each size up to 5
Selection Algorithm: exhaustive
        Population Income Illiteracy Murder 1e5 HS and perc Frost Area
5 (1) "*"
> best ss <- gam(Life exp~Murder 1e5, data = states, method = "ML")
> summary(best_ss)
Family: gaussian
Link function: identity
Formula:
Life_exp ~ Murder_1e5
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 72.97356
                       0.26997 270.30 < 2e-16 ***
Murder 1e5 -0.28395
                       0.03279 -8.66 2.26e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sa.(adi) = 0.602 Deviance explained = 61%
-ML = 61.642 Scale est. = 0.71794 n = 50
```

Key Takeaways

- Multiple regression extends simple regression: $Y = \beta_0 + \overline{\beta_1}x_1 + \beta_2x_2 + \cdots + \overline{\epsilon}$
- DAGs help visualize and reason about causal relationships
- Correlated predictors complicate interpretation but are often unavoidable
- ullet R^2_{adj} penalizes model complexity more predictors isn't always better
- Each coefficient represents a partial effect, holding others constant
- Think causally, not just statistically!

You Try: Practice Multiple Linear Regression

Exercise: Choose a dataset and fit a MLR model

```
# Option 1: mtcars - Motor Trend Car Road Tests
?mtcars # Predict mpg by finding a good combination of predictors
# Option 2: airquality - New York Air Quality
?airquality # Predict Ozone by finding a good combination of predictors
# Option 3: swiss - Swiss Fertility and Socioeconomic Data
?swiss # Predict Fertility by finding a good combination of predictors
# Option 1: attitude - Chatteriee-Price Attitude Data
?attitude # Predict rating by finding a good combination of predictors
# 1. Draw a DAG for your chosen variables
# 2. Fit the model using gam()
# 3. Check diagnostics with appraise()
# 4. Interpret coefficients and R^2 adi
# 5. Try adding/removing predictors - does it improve the model?
```

What's Next?

Additional Questions? Book an Appointment!

Next Workshop

Interaction Terms & Hierarchical Linear Models

October 21, 11:00 AM

- When effects depend on context
- Random effects
- Mixed models