Experiment No. 4

Adders and Subtractors

Hardware runs

Run 1: Half adder (30 mins)

A half adder is a circuit capable of adding two 1-bit numbers to produce a 1-bit sum and a 1-bit carry. Write down the truth table of a half adder and draw its diagram

<u>Diagram</u>

Truth Table

A	B	SUM	CARRY
0	0	0	0
0]	1	S
1	0	١	0
1	1	0	1

Run 2: Half subtractor (20 mins)

Analogous to adders, a half subtractor performs subtraction on 2-bits while a full subtractor operates on 3-bits. Write the truth table of a Half subtractor below and Draw the circuit diagram

Diagram

Truth Table

A	В	DIFFERENCE	BORROW
0	0	0	0
3	-	t	1
1	0	1	0
l	1	٥	0

Software runs

Run 3: Full adder and 4-bit adder (20 Mins)

- Write the Verling code and testbench of Full adder using data flow modeling. (Hint: Sum = A^B^C, Carry = C(A^B) + AB)
- Write the Verilog code and testbench for 4- bit parallel adder using structural modeling, use full adder as a building block defined in above code file.

(This is using or calling module from another file)

Run 4: BCD adder (25 Mins)

 Write the verilog code and testbench for BCD adder using structural modeling, use 4-bit parallel adder and other gates as building blocks. Use parallel adder code from above file)(Hint refer the image below)

- https://www.edaplayground.com/x/BMaW
- https://www.edaplayground.com/x/axR9
- https://www.edaplayground.com/x/gMD_