System Reset

Monolithic IC PST600

Outline

This IC operates in a variety of CPU systems and other logic systems by detecting power supply voltage, so that the system can be reset accurately when power is turned on or when power is momentarily cut. PST572 and others perform the same function as does this series, but this IC is a low reset type system resetting IC which follows load current so that circuit current flow increases for ON, and has low current consumption for both ON and OFF.

Features

1. Follows load current so that circuit current flow increases for ON, and has low current consumption for both ON and OFF.

No load : Iccl=7µA typ.; IccH=5µA typ.

Low operating limit voltage 0.65V typ.

3. Hysteresis voltage provided in detection voltage 50mV typ.

4. The following 10 ranks of detection voltages are available.

PST600 C: 4.5V typ. H: 3.1V typ.

D: 4.2V typ. I: 2.9V typ. E: 3.9V typ. J: 2.7V typ. F: 3.6V typ. K: 2.5V typ. G: 3.3V typ. L: 2.3V typ.

Package

MMP-3A (PST600 ☐ M)

TO-92A (PST600)

⋆□contains detection voltage rank.

Applications

- 1. Microcomputers, CPU, MPU reset circuits
- 2. Logic circuit reset circuits
- 3. Battery voltage check circuits
- 4. Back-up power supply switching circuits
- 5. Level detection circuits

Equivalent Circuit

Pin Assignment

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units	
Storage temperature	Tstg	-40~+125	$^{\circ}\!\mathbb{C}$	
Operating temperature	Topr	-20~+75	$^{\circ}\! \mathbb{C}$	
Power supply voltage	Vcc max.	-0.3~10	V	
Allowable loss	Pd	200 (MMP-3A) 300 (TO-92A)	mW	

Electrical Characteristics (Ta=25 $^{\circ}$ C) (unless otherwise indicated resistance unit is Ω)

ltem	Symbol	Measurement circuit	Measurement conditions		Min.	Тур.	Max.	Units
Detection voltage	Vs	1	RL=470 Vol ≤ 0.4V Vcc=H→L	PST600C	4.3	4.5	4.7	V
				PST600D	4.0	4.2	4.4	
				PST600E	3.7	3.9	4.1	
				PST600F	3.4	3.6	3.8	
				PST600G	3.1	3.3	3.5	
				PST600H	2.9	3.1	3.3	
				PST600I	2.75	2.90	3.05	
				PST600J	2.55	2.70	2.85	
				PST600K	2.35	2.50	2.65	
				PST600L	2.15	2.30	2.45	
Hysteresis voltage	∠Vs	1	R _L =470, V _C C=L→H→L		30	50	100	mV
Detection voltage	Vs/⊿T	1	Dr _470 To 2	°2− 20°C75°C		±0.01		%/°C
temperature coefficient	V S/ Z I	1	R _L =470, Ta=-20°C~+75°C			±0.01		70/ C
Low level output voltage	Vol	1	Vcc=Vs min0.05V, RL=470			0.3	0.4	V
Output leak current	Іон	1	Vcc=10V				±0.1	μA
Circuit current for ON	Iccl	1	Vcc=Vs min.	Iol=0mA		7	14	μА
			-0.05V	Iol=8mA		50	130	
Circuit current for OFF	Іссн	1	Vcc=Vs typ./0.85V, R _L =∞			5	10	μA
H transmission delay time	tplh	2	RL=4.7k, CL=100pF * 1		20	40	80	μS
L transmission delay time	t _{PHL}	2	R _L =4.7k, C _L =100pF ★1		10	20	40	μS
Operating limit voltage	VopL	1	RL=4.7k, VoL ≤ 0.4V			0.65	0.85	V
Output current 1 for ON	Iol 1	1	Vcc=Vs min0.05V, RL=0		8			mA
Output current 2 for ON	IOL 2	1	Ta=-20°C~+75°C, RL=0 ★2		6			mA

^{*1} tplh : $Vcc= (Vs typ. -0.4V) \rightarrow (Vs typ. +0.4V)$, tplh : $Vcc= (Vs typ. +0.4V) \rightarrow (Vs typ. -0.4V)$

^{*2} Vcc=Vs min. -0.15V

Measurement Circuit

[1]

* The input model is an example of PST600C (MMP-3P).

Characteristics (PST600C is used as the representative model for characteristics examples.)

■ Vcc vs. Vout

■ VoL vs. Ta

■ ⊿Vs vs. Ta

■ Vs vs. Ta

IccL vs. loL

IccH vs. Ta

loL vs. Ta

Vol vs. lol

■ IccL (IoL=0mA) vs. Ta

Application Circuits

1. Normal hard reset

Delay Time (tPLH)
$$= C_L \times R_L \times \left[ln \frac{V_{CC}}{V_{CC} - (VS_{CPU} + 0.2)} \right] + 0.040 \text{ (mS)}$$

C∟: µF Vs CPU: CPU, MPU reset threshold voltage

 $R_L: k\Omega$ Voltage: V

Note: When Vcc line impedance is high, connect a capacitor between IC Pins 1 and 2.

2. Manual Reset

Note: Prevent Manual SW chattering by using RL, CL and Rm. Rm setting conditions are as follows: $Rm \le 1/20 R_L$

Note: When Vcc line impedance is high, connect a capacitor between IC Pins 1 and 2.

3. Battery Checker (LED ON for High voltage)

Note: When Vcc line impedance is high, connect a capacitor between IC Pins 1 and 2.

4. Battery Checker (LED ON for Low voltage)

Note: When Vcc line impedance is high, connect a capacitor between IC Pins 1 and 2.