

Przemysław Kleszcz Informatyka II st. Niestacjonarne Wybrana funkcja to:

$$f(x)=\sin(x+2)+\cos^2(x+3), n \in [0,10]$$

Jej wykres prezentuje się następująco:

Zadanie 1.

Wartości parametrów: a = 0 , b = 10

Ścisła wartość całki (wyznaczona przez inttria.m, dla n = 1000) = 4,00049450873999

	INTTRIA.M			
N	10	20	40	80
Inttria.m	4,01405295205695	4,00477431641970000	4,00161234678761000	4,00077559304456000
Błąd	0,01355844331695980	0,00427980767970926	0,00111783804761956	0,00028108430456974
log(błędu)	-1,87	-2,37	-2,95	-3,55
log(n)	1,00	1,30102999566398000	1,60205999132796000	1,90308998699194000

Współczynnik kierunkowy $tan(\alpha)$ – inttria.m = -1,87129693036402000000

INTPARA.M				
N	10	20	40	80
Intpara.m	4,00168143787395000	4,00055835691025000	4,000496675130210	4,000492939003910000
Błąd	0,00118874597386043	0,00006566501016003	0,000003983230119	0,000000247103820072
log(błędu)	-2,924910940955190	-4,182665984204230	-5,399764602718580	-6,607120540621590
log(n)	1,0000000000000000	1,301029995663980	1,602059991327960	1,903089986991940

Współczynnik kierunkowy $tan(\alpha)$ – intpara.m = -4,07392206562788000000

Wykres zależności log10(błąd całkowania) od log10(n)

Zadanie 2.

$$\frac{d}{dx}(\sin(x+2) + \cos^2(x+3)) = \cos(x+2) - 2\sin(x+3)\cos(x+3)$$

Skrypt	Wynik	Parametry
newton.m	1,301682134785911	x0 = 1, eps = 1.e-14
bisect.m	1,301682134785914	a = 1, b = 5, eps = 1.e-14
siecz.m	1.301682134785911	a = 0, b = 1, eps = 1.e-14

Zadanie 3.

$$\mathbf{A} = \begin{bmatrix} 5 & 8 & 2 & 4 \\ 7 & 1 & 4 & 8 \\ 3 & 8 & 5 & 2 \\ 9 & 7 & 1 & 4 \end{bmatrix}$$

[V, M] = eig(A)

V =

M =

	•			_	
ſ	19,647809954003073	0	0	0	
	0	3,726194396768066	0	0	
	0	0	-2,184870199777491	0	
	0	0	0	-6,189134150993652	

q _i	q _j	q _i x q _j
1	2	-0.154489135735009
2	1	
1	3	0.044692926353595
3	1	
1	4	
4	1	-0.063595071926812

AxV-VxM

-1.77635683940025e-015	2.22044604925031e-016	0.00000000000000e+000	-8.88178419700125e-016
-1.42108547152020e-014	-2.96984659087229e-015	-7.77156117237610e-016	-8.88178419700125e-016
-5.32907051820075e-015	-1.06581410364015e-014	-8.88178419700125e-016	0.0000000000000e+000
0.00000000000000e+000	1.11022302462516e-015	-6.66133814775094e-016	-1.22124532708767e-015

Zadanie 4.

$$A = \begin{bmatrix} 9 & 3 & 1 & 2 \\ 3 & 7 & 1 & 1 \\ 1 & 1 & 5 & 2 \\ 2 & 1 & 2 & 7 \end{bmatrix}, b = \begin{bmatrix} 13 \\ 4 \\ 9 \\ 5 \end{bmatrix}$$

Wykres zależności log10(błędu) od numeracji iteracji:

Jacobi

 $tg(\alpha) = -6,83682643064722$