COMP90042 LECTURE 7

SEQUENCE TAGGING: UNSUPERVISED HMMS

COPYRIGHT 2018, THE UNIVERSITY OF MELBOURNE

HMMS FOR POS TAGGING - RECAP

- Previous lecture: supervised POS tagging using HMMs
 - Assume we have a corpus with annotated POS tags (for instance, Penn Treebank)
 - Learning via MLE (counting)
 - At test/prediction time, uses Viterbi algorithm to find most probably sequence
- Sometimes we do not have such a corpus
 - Different domains (Twitter, TED talks)
 - Different languages, especially low-resource ones
- Solution: unsupervised learning

UNSUPERVISED HMMS

- Suppose you have a corpus of (unannotated) tweets.
- Simple idea: start with an HMM with **random** parameters (emission and transition matrices)
 - Using Viterbi, tag the data using this model.
 - Pretend this is training data. Obtain counts via MLE.
 - Repeat
- Rationale: the model will learn the actual POS distribution based on the word patterns seen in the data
 - This is a simple version of the **Expectation-Maximisation (EM)** algorithm

EXPECTATION MAXIMIZATION

► Janet/NNP will/NNP back/RB the/DT bill/NN

$$P(will|\mathbf{t}) = \begin{bmatrix} P(will|NNP) \\ P(will|RB) \\ P(will|DT) \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{c(will,NNP)}{c(NNP)} \\ \frac{c(will,RB)}{c(RB)} \\ \frac{c(will,DT)}{c(DT)} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{0}{1} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

EXPECTATION MAXIMIZATION

- ► This approach, sometimes referred as **hard EM**, can perform well depending on the setting.
- ► However, it is still too naïve, as it does not take into account **distributions** on each word and each tag transition.
- A better approach would be to incorporate such distributions by:
 - Obtaining marginal emission and transition distributions.
 - Using weighted (expected) counts to train via MLE.

VITERBI EXAMPLE REVISITED

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	2.5e-17	0
MD	0	3.004e-8	0	0	0
VB	0	2.231e-13	1.6e-11	0	1.0e-20
JJ	0	0	5.1e-15	5.2e-16	0
NN	0	1.034e-10	5.4e-15	5.9e-18	2.0e-15
RB	0	0	5.3e-11	0	0
DT	0	0	0	1.8e-12	0

VITERBI EXAMPLE REVISITED

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	2.5e-17	0
MD	0	3.004e-8	0	0	0
VB	0	2.231e-13	1.6e-11	0	1.0e-20
JJ	0	0	5.1e-15	5.2e-16	0
NN	0	1.034e-10	5.4e-15	5.9e-18	2.0e-15
RB	0	0	5.3e-11	0	0
DT	0	0	0	1.8e-12	0

MLE WITH EXPECTED COUNTS

$$P(will|\mathbf{t}) = \begin{bmatrix} P(will|NNP) \\ P(will|RB) \\ P(will|DT) \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\hat{c}(will,NNP)}{\hat{c}(NNP)} \\ \frac{\hat{c}(will,RB)}{\hat{c}(RB)} \\ \frac{\hat{c}(will,DT)}{\hat{c}(DT)} \\ \vdots \end{bmatrix} = ?$$

- $\hat{c}(will, NNP) = \sum_{w} \sum_{i=1; i=will}^{l_{w}} \hat{P}(t_{i} = NNP | \mathbf{w})$
 - "i = will" means we iterate only when the observed word is "will"
- $\hat{c}(NNP) = \sum_{w} \sum_{i=1}^{l_{w}} \hat{P}(t_{i} = NNP|w)$
- $\hat{P}(t_i = NNP|\mathbf{w}) = \frac{\hat{P}(t_i = NNP, \mathbf{w})}{\hat{P}(\mathbf{w})}$

MLE WITH EXPECTED COUNTS

- Key quantities for emission probabilities:
 - $\hat{P}(\mathbf{w})$
 - $\hat{P}(t_i = NNP, \mathbf{w})$
- Let's start with $\hat{P}(w)$
 - $\hat{P}(w) = \sum_{t} \hat{P}(w,t) = \sum_{t} \hat{P}(w|t) \hat{P}(t)$
 - Exponential number of tag sequences: can we use DP again?

- Exactly like Viterbi, but summing scores instead of taking the max.
 - ▶ Also no backpointers since the goal is not prediction.

	Janet	will	back	the	bill
NNP					
MD					
VB					
JJ					
NN					
RB					
DT					

	Janet	will	back	the	bill
NNP	P(Janet NNP) * P(NNP <s>)</s>				
MD	P(Janet MD) * P(MD <s>)</s>				
VB					
JJ					
NN					
RB					
DT					

	Janet	will	back	the	bill
NNP	8.8544e-06				
MD	0				
VB	0				
JJ	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	P(will NNP) * P(NNP t _{Janet}) * a(t _{Janet} Janet)			
MD	0				
VB	0				
JJ	0				
NN	0				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	P(will NNP) * P(NNP t _{Janet}) * a(t _{Janet} Janet)			
MD	0				
VB			llate this for al he sum .	I tags,	
JJ	0				
NN	//0/				
RB	0				
DT	0				

	Janet	will	back	the	bill
NNP	8.8544e-06	0			
MD	0	3.004e-8			
VB	0	2.231e-13			
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	P(back VB) * P(VB t _{will}) * s(t _{will} will)		
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	MD: 1.6e-11 VB: 7.5e-19 NN: 9.7e-17		
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	1.6e-11		
JJ	0	0			
NN	0	1.034e-10			
RB	0	0			
DT	0	0			

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0		
MD	0	3.004e-8	0		
VB	0	2.231e-13	1.6e-11		
JJ	0	0	5.42e-15		
NN	0	1.034e-10	8.17e-15		
RB	0	0	5.33e-11		
DT	0	0	0		

	Janet	will	back	the	bill
NNP	8.8544e-06	0	0	4.21e-17	0
MD	0	3.004e-8	0	0	0
VB	0	2.231e-13	1.6e-11	0	1.74e-20
JJ	0	0	5.42e-15	6.53e-16	0
NN	0	1.034e-10	8.17e-15	9.76e-18	3.44e-15
RB	0	0	5.33e-11	0	0
DT	0	0	0	3.1e-12	0

	Janet	will	back	the	bill	
NNP	8.8544e-06	0	0	4.21e-17	0	
Final probability also needs to take into account the end state						
""						
• $P(\mathbf{w}) = \alpha(\text{bill}, VB) * P(<\text{end}> VB) + \alpha(\text{bill}, NN) * P(<\text{end}> NN)$						
• P(w) = 1.74e-20 * 0.0004 + 3.44e-15 * 0.237						
• $P(\mathbf{w}) = 8.15e-16$						
DT	0	0	0	3.1e-12	0	

MLE WITH EXPECTED COUNTS

- We got $\hat{P}(\mathbf{w})$ using the forward algorithm. Now we need $\hat{P}(t_i = NNP, \mathbf{w})$.
 - $\widehat{P}(t_i = NNP, \mathbf{w}) = \widehat{P}(\mathbf{w}_{1:i}, t_i = NNP, \mathbf{w}_{i+1:l_w})$
 - $\hat{P}(t_i = NNP, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = NNP) \hat{P}(\mathbf{w}_{i+1:l_w} | \mathbf{w}_{1:i}, t_i = NNP)$
 - $\hat{P}(t_i = NNP, \mathbf{w}) = \hat{P}(\mathbf{w}_{1:i}, t_i = NNP) \hat{P}(\mathbf{w}_{i+1:l_w} | t_i = NNP)$
- $\widehat{P}(\mathbf{w}_{1:i}, t_i = NNP) = \alpha(i, NNP)$
 - We got this from the forward algorithm!
- $\hat{P}(\mathbf{w}_{i+1:l_{\mathbf{w}}}|t_{i}=NNP)=\beta(i,NNP)$
 - ▶ We will get these through the **backward** algorithm.

THE BACKWARD ALGORITHM

	Janet	will	back	the	bill
NNP					
MD					
VB					
JJ					
NN					
RB					
DT					

THE BACKWARD ALGORITHM

	J	lanet	will	back		the	bill
NNP							1
MD			2.4				1
VB	• β(i	i, NN	$P) = \hat{P}(\mathbf{w}_{i+})$	$_{1:l_{w}} t_{i}=NN$	P)		1
JJ	$\bullet \beta(5, NNP) = \widehat{P}(\mathbf{w}_{6:5} t_5 = NNP)$						1
NN	• Thi	is is a	a "non-event'	'. $P(\emptyset) = 1$			1
RB							1
DT							1

THE BACKWARD ALGORITHM

	Janet	will	back	the	bill
NNP					1
MD				$\sum \begin{array}{c} P(\text{bill} t_{\text{bill}}) * \\ P(\text{MD} t_{\text{bill}}) * \\ \beta(\text{bill},t_{\text{bill}}) \end{array}$	1
VB					1
JJ					1
NN					1
RB					1
DT					1

OBTAINING THE PROBABILITIES

- After running forward and backward, we obtain two matrices containing α's and β's,
- $\hat{P}(\mathbf{w}) = \sum_{t} \alpha(l_{\mathbf{w}}, t) * \hat{P}(< end > |t)$
- $\hat{P}(t_i = NNP, \mathbf{w}) = \alpha(i, NNP) * \beta(i, NNP)$
- $\hat{c}(will, NNP) = \sum_{w} \sum_{i=1; i=will}^{l_{W}} \frac{\alpha(i, NNP) * \beta(i, NNP)}{\sum_{t} \alpha(l_{w}, t) * \hat{P}(\langle end \rangle | t)}$
- $\hat{c}(NNP) = \sum_{w} \sum_{i=1}^{l_{w}} \frac{\alpha(i,NNP) * \beta(i,NNP)}{\sum_{t} \alpha(l_{w},t) * \hat{P}(\langle end \rangle | t)}$
- $P(will|NNP) = \frac{\hat{c}(will,NNP)}{\hat{c}(NNP)}$

TRANSITION PROBABILITIES

- Transition probabilities are also updated using expected counts.
 - ▶ We can use the values from forward-backward as well.

$$\xi_i(NN,DT) = \frac{\alpha(i,DT) * \alpha[DT,NN] * b(w_{i+1},NN) * \beta(i+1,NN)}{P(w)}$$

- $\hat{c}(NN, DT) = \sum_{w} \sum_{i=1}^{l_w} \xi_i(NN, DT)$
- $\hat{c}(DT) = \sum_{w} \sum_{i=1}^{l_w} \sum_{t} \xi_i(t, DT)$
- $P(NN|DT) = \frac{\hat{c}(NN,DT)}{\hat{c}(DT)}$

EM - FINAL ALGORITHM

- Initialise emission and transition matrices
- **E-step:**
 - Run forward-backward, obtaining α's and β's
- M-step:
 - Update emission and transition matrices using the expected counts.

EM – IMPORTANT POINTS

- In our example, we initialised the parameters (matrices) at random. In practice initialisation matters so care must be taken.
 - Take values from a previous known tagger.
 - Use dictionaries to initialise some values ("the" is never a verb).
- Forward scores can be **conditional** instead of joint. Mitigates underflow.
- ► How to evaluate?
 - Need some annotated data for that.

A FINAL WORD

- Unsupervised learning is key to generalise sequence tagging to other domains and languages
- ► HMMs can easily do that using EM.
- Some annotated data is always necessary for evaluation.

READINGS

- ► JM3 Ch 9.3, 9.5
- [Optional] Rabiner's HMM tutorial, for more details
 - http://tinyurl.com/2hqaf8