【模型推理】谈谈为什么卷积加速更喜欢 NHWC Layout

本文主要讨论一下为什么卷积加速更加喜欢 NHWC 的数据排布。

我目前接触过的数据排布类型(主要针对卷积)有 NCHW (pytorch、caffe), NHWC (Tensorflow, 也是 TVM GPU 和 寒武纪 MLU Core 上更喜欢的 data Layout), CHW (TensorRT里不考虑动态batch的话是把 N 拿出来了,只剩三维), NCHWCO (华为昇腾 AI Core 的五维 Layout, C0 INT8时为32, FP16时为16)。为什么会有这么多数据类型排布呢,原因可能是源于不同的训练框架,比如 pytorch 和 tensorflow (大部分人的炼丹炉)就不一样,而在推理时,更多的会考虑硬件/推理性能更喜欢什么样的数据类型排布。

这里主要谈谈对于 img2col+gemm 和 winograd 卷积加速算法来说,为什么 NHWC 比 NCHW 更合适 (GPU上),也是我个人的理解。

1、img2col+gemm 和 winograd 算法原理

img2col+gemm 的详细原理可以看我的这篇《【模型推理】一文看懂Img2Col卷积加速算法》,就是先把 feature map 按卷积核走过的 "踪迹" 展开、拼接 与 拉扁拉长的卷积核 进行 gemm 就好了。winograd 应该是比较常用的,Cudnn 里也会用到,这里大致说一下,后面会写篇详细的。winograd 做 conv_2d_3x3 加速的本质是降低乘加计算次数 (主要是乘),最开始还是会做img2col,然后进行计算切块、转换及卷积核常量先计算,最终达到降低乘加次数的目的,也就是能加速。

2、为什么 NHWC 更好

我的观点是 NHWC 相比 NCHW 优化了 feature map 数据取的过程,因为不管 img2col+gemm 还是winograd,最开始就是把 feature map 和 kernel 展开,类似这样:

卷积过程最开始会涉及到你是怎么取 feature map 中卷积块数据的问题。NCHW 的实际存储方式是 "RRRGGGBBB",同一通道的所有像素存储在一起;而 NHWC 的实际存储方式是 "RGBRGBRGB",多个通道的同一位置的像素值顺序存储在一起。 (本来想画个图的,懒得画了哈哈,用代码替代吧)

```
# feature map NCHW 通道C=3
# 通道C=0
                通道C=1
                              通道C=2
              a1 b1 c1 d1
a0 b0 c0 d0
                            a2 b2 c2 d2
e0 f0 g0 h0
              e1 f1 g1 h1
                            e2 f2 g2 h2
i0 j0 k0 l0
              i1 j1 k1 l1
                            i2 j2 k2 l2
m0 n0 o0 p0
              m1 n1 o1 p1
                            m2 n2 o2 p2
# kernel
A0 B0 C0
               A1 B1 C1
                             A2 B2 C2
                             D2 E2 F2
D0 E0 F0
               D1 E1 F1
G0 H0 I0
               G1 H1 I1
                             G2 H2 I2
```

如果用 NCHW 的 Layout, 行主序存储 (row major) 来说, feature map 的数据存储方式为 a0b0c0d0e0f0g0h0i0j0k0l0m0no0p0a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1a2b2c2d2e2f2g2h2i2j2k2l2m2n2o 2p2。以 3_x_3 的卷积核, 对于一次卷积动作来说, feature map 需要 n * kernel_size 次数据取动作, 分别是 a0b0c0、e0f0g0、i0j0k0、a1b1c1、e1f1g1、i1j1k1、a2b2c2、e2f2g2、i2j2k2, 这里 n=3, kernel_size=3 就是 9 次取数据。

```
下面来看看 NHWC 的情况,如下
# feature map NHWC C=3
a2 b2 c2 d2
a1 b1 c1 d1 h2
a0 b0 c0 d0 h1 12
e0 f0 g0 h0 l1 p2
i0 j0 k0 l0 p1
m0 n0 o0 p0
```

把上面的想象成长方体,画的是三维的,哈哈,能想象吗,直观上看就是第一个平面是第一个通道,也就是 c=0,往后第二个平面是第二个通道 c=1,最后是第三个通道 c=2,有点抽象哈哈。kernel 还是一样,如下:

# kerr	nel						
A0 B0	C0	Α1	В1	C1	Α2	В2	C2
D0 E0	F0	D1	E1	F1	D2	E2	F2
G0 H0	10	G1	Н1	I1	G2	H2	12

对于 NHWC Layout 来说, feature map 的数据存储方式为

a0a1a2b0b1b2c0c1c2d0d1d2e0e1e2f0f1f2g0g1g2h0h1h2i0i1i2j0j1j2k0k1k2l0l1l12m0m1m2n0n1n2o0o1o2p0 p1p2。以 3_x_3 卷积,对于一次卷积动作来说,feature map 只需要 3 次数据取动作,分别是 a0a1a2b0b1b2c0c1c2、e0e1e2f0f1f2g0g1g2、i0i1i2j0j1j2k0k1k2。这样,仅一个卷积动作,NHWC 就比 NCHW 减少了 6 次数据取操作。

分析得出,对于一次卷积动作来说,NHWC 取数据的次数为 kernel_size 次,而 NCHW 取数据的次数为 kernel_size * n 次,所以 NHWC 对于卷积加速数据访存来说是更好的,而且这种好,随着 n 的增大会更更加好。

收工了~

【csdn 传送】