Computer Architecture and Organization CS 115

Lecture 4

Instructor: Gerald John M. Sotto

Last Updated: September 30, 2025

Table of Contents

Unit II: Machine Level Representation of Data

Fixed and Floating-Point Systems

These two systems are how computers represent **real numbers**—numbers that can have a fractional component. The choice between them is a classic **trade-off between speed/simplicity** and **precision/range**.

The fixed-point system is a method for **representing real numbers** (numbers that include fractional parts, like 3.14 or -0.5) in binary format, where the position of the radix point (**binary point**) is **fixed** or **implied**.

In this system, a number is represented by a sequence of bits, where a certain number of bits are allocated to the **integer part** and the remaining bits are allocated to the **fractional part**.

$$(N)_{10} \rightarrow (b_{i-1}...b_1b_0.b_{-1}\ b_{-2}...b_{-f})_2 \qquad \textbf{base of the number}$$
 Integer Part Fractional Part

Representation Example:

$$V = \sum_{j=-f}^{i-1} b_j^* 2^j$$

Above is a universal mathematical formula used to calculate the decimal value of any fixed-point binary number. It's not just a setup for a specific problem; it's the formal definition of how a fixed-point binary value is calculated.

$$(N)_{10} \rightarrow (b_{i-1}...b_{1}b_{0}.b_{-1}\ b_{-2}...b_{-f})_{2} \qquad \text{base of the number}$$

$$V = \sum_{j=-f}^{-1} b_{j} * 2$$
Integer Part Fractional Part

For example, the binary number $(101.11)_2$ with i=3 integer bits and f=2 fractional bits is:

Bit Position (j)	Bit Value (b _i)	Positional Weight (2 ^j)	Calculation (b _i ·2 ^j)	Decimal Value
2 (i-1)	1	2 ²	1.4	4
1	0	2 ¹	0.2	0
0	1	2 ⁰	1.1	1
-1	1	2 ⁻¹	1.0.5	0.5
-2 (-f)	1	2 ⁻²	1 .0.25	0.25
Sum			V	5.7510

$$V = (1 \cdot 2^{2}) + (0 \cdot 2^{1}) + (1 \cdot 2^{0}) + (1 \cdot 2^{-1}) + (1 \cdot 2^{-2})$$

$$V = 4 + 0 + 1 + 0.5 + 0.25 = (5.75)_{10}$$

$$(N)_{10} \rightarrow (b_{i-1}...b_1b_0.b_{-1}\ b_{-2}...b_{-f})_2 \qquad \text{base of the number}$$

$$V = \sum_{j=-f} b_j * 2$$
Integer Part Fractional Part

Another example, the binary number $(11.01)_2$ with i=2 integer bits and f=2 fractional bits is:

$$V = \sum_{j=-2}^{1} b_{j}^{*} 2^{j} = (b_{1} \cdot 2^{1}) + (b_{0} \cdot 2^{0}) + (b_{-1} \cdot 2^{-1}) + (b_{-2} \cdot 2^{-2})$$

$$= (1 \cdot 2^{1}) + (1 \cdot 2^{0}) + (0 \cdot 2^{-1}) + (1 \cdot 2^{-2})$$

$$= (1 \cdot 2) + (1 \cdot 1) + (0 \cdot 0.5) + (1 \cdot 0.25)$$

$$= 2 + 1 + 0 + 0.25$$

$$= 3.25_{10}$$

Therefore, the fixed-point binary number (11.01)2 is equal to 3.25 in the decimal system.

Relevance: It provides predictable precision and avoids the performance overhead of complex floating-point units.

Example: Using an 8-bit system with the binary point fixed after the 4th bit (4 bits for integer, 4 bits for fraction).

Floating-Point Systems

A system that represents a number as a sign, a **significand** (or **mantissa**), and an exponent. This is the computer's equivalent of scientific notation (e.g., 6.02×10^{23}). The widely accepted standard is the **IEEE 754 standard**.

Allows for a vast range of values, from extremely tiny fractions to enormous integers, at the expense of a constant number of significant digits (precision). It's essential for scientific computing, 3D graphics, simulations, and virtually all modern high-level programming.

Floating-Point Systems

Single Precision
IEEE 754 Floating-Point Standard

M×B^E

Where:

- M is the Mantissa (or coefficient), holding the significant digits.
- B is the Base (typically 2 for computers, or 10 for standard scientific notation).
- E is the Exponent, determining the number's magnitude (where the decimal point "floats").

Floating-Point Systems

M×B^E

Where:

- M is the Mantissa (or coefficient), holding the significant digits.
- B is the Base (typically 2 for computers, or 10 for standard scientific notation).
- E is the Exponent, determining the number's magnitude (where the decimal point "floats").

570,000 this number is represented as: 5.7×10⁵

M = 5.7

E = 5

0.00000000032 this number is represented as: 3.2×10⁻¹⁰

M = 3.2 (The significant digits)

E = -10 (Pulls the decimal point 10 places left)

Data Type	Size (Bytes)	Total Bits (W)	Sign Bit	Integer Bits (i)	Fractional Bits (f)	Qi.f Notation
char	1	8	1	7	0	Q7.0
unsigned char	1	8	0	8	0	Q8.0
short int	2	16	1	15	0	Q15.0
unsigned short int	2	16	0	16	0	Q16.0
int	4	32	1	31	0	Q31.0
unsigned int	4	32	0	32	0	Q32.0
long long int	8	64	1	63	0	Q63.0
unsigned long long int	8	64	0	64	0	Q64.0
float	4	32	1	N/A	N/A	N/A (IEEE 754)
double	8	64	1	N/A	N/A	N/A (IEEE 754)

Data Type	Total Bits (W)	Standard Name	Mantissa Bits	Approximate Significant Decimal Digits	Maximum Exact Integer Digits (Approx.)
float	32 bits	Single-Precision	23 bits	≈7 digits	7 to 8 digits
double	64 bits	Double- Precision	52 bits	≈15–17 digits	15 to 16 digits

End of Presentation

Questions...?