Cheng- Rue i Chiu

DSCI - 552: Machine Learning for Data Science Assignment - 4 Decision Tree

Using the following dataset:

	Holiday	Discount	Purchase
1	No	Yes /	Yes ı
٦	No	Yes 2	Yes 2
3	No	No	No
4	Yes 1	Yes 3	Yes 3
J	Yes 2	Yes 4	Yes 4
6	Yes 3	No	No
7	Yes 4	Yes 5	Yes 5
8	No	Yes L	Yes 6
9	Yes <	Yes 7	Yes 7
10	Yes 6	Yes }	Yes 8
11	Yes 7	No ①	Yes q
12	Yes {	No	No
13	Yes ⁰	Yes 9	Yes or
14	Yes (0	Yes , o	Yes
15	Yes (\	Yes (/	Yes 12
(6	No	Yes D	Yes 13
17	Yes (2)	No ②	Yes _{I 4}
18	No	Yes 13	Yes 15
9	Yes \y	No 3	Yes [[
70	Yes (4	No (4)	Yes パ

71	No		Yes 14	Yes us
95	Yes	15	Yes 15	No
23	Yes	(6	No 💍	Yes 19
24	No		Yes b	Yes 40
>3	yes	17	No	No
96	No		No	No
47	No		Yes ≀}	Yes >1
78	No		Yes ₈	Yes 22
29	yes	18	Yes 19	Yes & b
3t	yes	19	Yes 2-6	Yes ₂ 4

Create a decision tree based on the "Discount" and "Holiday" variables to predict the value of "Purchase". Using weighted gini index as the splitting criteria and show the resulting leaf nodes for each branch of the tree. For the root and each node of the decision tree, calculate the gini index, sample size, and sample distribution.

Hint: Sample distribution = [a,b] where a is the number of "yes" of target value in the current sample, b is the number of "no" of target value in the current sample.

purchase = [24,6]
givi of root =
$$1 - (\frac{24}{30})^2 - (\frac{6}{30})^3$$

= $\frac{8}{75}$

Attribute "Holiday"

YES: 13

NO

YES: 13

NO: 4

$$1 - (\frac{15}{19})^2 - (\frac{4}{19})^2$$
 $1 - (\frac{9}{14})^2 - (\frac{2}{11})^2$
 $1 - (\frac{15}{19})^2 - (\frac{4}{19})^2$
 $1 - (\frac{9}{14})^2 - (\frac{2}{11})^2$
 $1 - (\frac{15}{14})^2 - (\frac{2}{11})^2$
 $1 - (\frac{15}{14})^2 - (\frac{2}{11})^2$
 $1 - (\frac{15}{14})^2 - (\frac{2}{11})^2$

Sample State = 19

Sample State = 19

weighted = $(\frac{19}{50}) \times 0.332 + (\frac{11}{30}) \times 0.29$
 $1 - (\frac{11}{30}) \times 0.29$
 $1 - (\frac{11}{30}) \times 0.332 + (\frac{11}{30}) \times 0.29$

