CMA211 AN - Cálculo 2 - Eng. Mecânica Noturno

16 de Outubro de 2018

Prova 2

	Q:	1	2	3	4	5	6	7	8	Total
Nome:	P:	10	10	10	15	15	15	15	15	105
	N:									

	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
GRR								

Questão 1

Apresente quais cálculos a se fazer para obter uma aproximação para $\sqrt{(4.03)^2 + (2.9)^2}$.

Seja $f(x,y) = x^3 - 3x + y^3 - 12y$. Determine os máximos e mínimos locais e os pontos de sela da função.

 $\frac{\partial x}{\partial y}(1,1) \in \frac{\partial x}{\partial z}(1,1).$

Questão 4. Mostre que $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$ onde $z = f(x, y), x = r\cos\theta$ e $y = r\sin\theta$.

 $3\vec{i} + 4\vec{j}$ e igual a $\frac{11}{5}$ na direção $4\vec{i} - 3\vec{j}$. Calcule:

- (a) $10 \nabla f\left(0, \frac{\pi}{2}\right)$.
- (b) $\boxed{5} D_u f\left(0, \frac{\pi}{2}\right)$ na direção $\vec{w} = \vec{i} + (d_8 + 1)\vec{j}$.

Questão 6 Sejam as funções $f(x,y) = yx^2$ e $g(x,y) = 2y^2 + x^2$. Encontre os valores globais de f no conjunto dos pontos que satisfazem q(x,y)=6, utilizando o Método dos Multiplicadores de Lagrange. Mostre

todos os pontos críticos.

Dada a integral

$$\int_{-1}^{2} \int_{\sqrt{4-x^2}}^{\sqrt{9-x^2}} x \, dy \, dx$$

- (a) 7 Esboce a região de integração.
- (b) 8 Calcule a integral.

Considere R a região quadricular que passa nos pontos (1,0), (1,2), (3,2), (3,4) e f(x,y) uma função arbitrária contínua em R. Expresse os dois tipos de integral para

$$\iint_{R} f(x, y) \, dA$$