Epreuve écrite

Examen de	fin d'études secondaires 2005	Nom et prénom du candidat
Section:	c	
Branche:	Biologie	

Question 1 (14 points) Evolution: Formation de nouvelles molécules

Le tableau montre l'évolution des hormones posthypophysaires des Agnathes (Vertébrés sans mâchoire) aux Mammifères.

Tableau 1

Âge des premiers représentants de Vertébrés (en millions d'années)	Groupes actuels de Vertébrés		lormone	
- 190	Mammifères	AVT	ОТ	AVP
- 300	Reptiles	AVT	OT	MT
- 360	Amphibiens	AVT	OT	MT
- 410	Poissons osseux	AVT	OT	
- 440	Poissons cartilagineux	AVT	OT	:
- 450	Agnathes	AVT		

AVT : Vasotocine.

MT : Mésotocine.

OT : Ocytocine.

AVP: Vasopressine (hormone antidiurétique ADH).

Tableau 2

	1	2	3	4	5	6	7	8	9
AVT	Cys	Tyr	lle	Gln	Asp	Cys	Pro	Arg	Gly
OT	Cys	Tyr	lle	Gln	Asp	Cys	Pro	Leu	Gly
MT	Cys	Tyr	lle	Gln	Asp	Cys	Pro	lle	Gly
AVP	Cys	Tyr	Phe	GIn	Asp	Cys	Pro	Arg	Gly

Cys : Cystéine.

Tyr: Tyrosine.

lle: Isoleucine.

Asp: Asparagine.

Pro: Proline.

Arg : Arginine.

Gly: Glycine.

Phe: Phénylalanine.

Gln: Glutamine.

- 1. Quelles informations vous apporte le tableau 1 en ce qui concerne l'évolution de ces différentes hormones?
- 2. Le tableau 2 indique la séquence en acides aminés de ces différentes hormones. Faites une étude comparative de ces séquences.
- 3. En utilisant les réponses aux questions 1 et 2, proposez une hypothèse quant aux mécanismes génétiques de mise en place de ces différentes hormones.

Biologie p 1/3

Epreuve écrite

Examen de	fin d'études secondaires 2005	Nom et prénom du candidat
Section:	С	
Branche:	Biologie	

Question 2 (16 points) Hormones: Fonctionnement d'un système de régulation

Il s'agit d'étudier quelques aspects des mécanismes qui contrôlent le fonctionnement cyclique de l'ovaire chez la femme. On réalise pour cela différentes expériences :

- expérience 1 : une injection intraveineuse de 50 μg de GnRH entraîne une libération immédiate de FSH et de LH ;
- ▶ expérience 2 : chez une guenon Rhésus, dont les cycles sexuels sont semblables à ceux de la femme, on pratique une ovariectomie. On maintient alors à partir du temps t₀, par un dispositif adéquat, un taux plasmatique d'œstrogènes égal à 60 pg.mL⁻¹. Au temps t₁, on injecte, en plus, une forte dose d'œstrogènes. Le document suivant donne les résultats des dosages de LH et d'œstrogènes.
- **1.** Précisez les structures cellulaires qui sécrètent les différentes hormones citées.
- **2.** Expliquez les deux types de contrôle mis en évidence par ces expériences.
- **3.** Au cours d'une phase folliculaire normale, replacez les différents contrôles mis en évidence par les expériences 1 et 2.

Question 3 (16 points) Immunologie: Cellules immunitaires et immunité acquise

- 1. Donnez une définition de l'immunité acquise.
- 2. Expliquez le rôle des lymphocytes T4, qui sont les pivots des réactions d'immunité acquise.
- 3. Décrivez la phase effectrice suite à l'introduction d'un agent pathogène:
- formation d'un complexe immun et élimination de l'antigène
- élimination d'une cellule infectée.

Epreuve écrite

Examen de f	in d'études secondaires 2005	Nom et prénom du candidat
Section:	С	
Branche:	Biologie	

Question 4 (14 points) Génétique: Transmission de la phényicétonurie

La phényicétonurie est une affection héréditaire rare (un cas sur 10 000 naissances) liée à une perturbation du métabolisme d'un acide aminé, la phényialsanine. Dans l'organisme normal, cet acide aminé se transforme en tyrosine sous l'action d'une enzyme : la phényialanine hydroxylase. Chez le maiade, cette enzyme manque par suite d'une mutation affectant le gène responsable de sa synthèse; en conséquence, la phényialanine s'accumule dans le sang et entraîne de graves troubles psychomoteurs.

L'arbre généalogique ci-contre présente les cas de phényicétonurie observés dans une famille.

- ☐ Homme normal
- Femme normale
- Homme malade
- Femme malade
- 1. Indiquez le mode de transmission de la maladie (dominant ou récessif); justififiez votre choix.
- 2. Le gène de la phénylcétonurie est-il porté par un chromosome sexuel? Envisagez et discutez chaque éventualité.
- 3. Sans manifester d'anomalie apparente d'ordre psychomoteur, les parents III 4 et III 5 possèdent dans leur sang une teneur en phénylalanine supérieure à la normale. Cette constatation est-elle en accord avec la solution que vous proposez à la question 2? Comment interprétez-vous ces faits?
- 4. Suite à une cure d'amaigrissement la personne IV 3 fait une dépression nerveuse. Sachant qu'elle a remplacé le sucre par l'aspartame, un additif alimentaire qui contient de la phénylalanine, que pouvez-vous dire de son génotype?
- 5. Voici les bases azotées d'une portion du brin transcrit correspondant à l'enzyme responsable de la transformation de la phénylalanine:

CCAAACATATAAAAC

En vous appuyant sur le code génétique, montrez quelles peuvent être les conséquences d'une mutation ponctuelle au niveau de la neuvième base. Est-ce qu'une telle mutation peut être la cause de la phénylcétonurie?

UAU pyrosine UAA non-sens UAG histidine CAU	G UGU cystéine UGA non-sens UGG tryptophane CGU CGC arginine CGA	U C A G U C
UAA DON-SENS UAA DON-SENS CAU Distidine CAA D	UGC cysteine UGA non-sens UGG tryptophane CGU CGC arginine	CAGUU
CAU histidine	UGG tryptophane CGU CGC arginine	G U C
CAC I nistidine	CGC arginine	c
CAG glutamine	cgg	A G
AAU asparagine	AGU sérine	0040
AAG lysine	AGG arginine	c
GAU acide GAC aspartique	GGU glycine	U C A
	GGG	G
		GAC aspartique GGC glycine GAA acide GGA

Biologie

*p 3/*3