Derwent Record

SE0518383C2 = 2002-10-01 200314 SV SV B23K 3/00

Local appls.: SE2001000001689 Filed:2001-05-15 (2001SE-0001689)

Derwent Title:

Cable shoe fabrication method for railway track, involves pressing conductive tube and solder material to form connecting piece with compact plate and larger soldering clip

Assignee: SAFETRACK BAAVHAMMAR AB Non-standard company SAFETRACK BAAVHAMMER AB Non-standard company

PETTERSEN O Individual

Inventor: PETTERSEN O;

Derwent Abstract: Novelty - An electrically conductive tube (9) and surrounding solder material comprising intermediate flux material are pressed between upper and lower portions (2,3) of a tool to form a connecting piece (1) with a soldering clip (4). Holes are provided in upper and rear portions of the soldering clip which is larger than compact plate (5). The lower and rear portions of the soldering clip are separated by a beveled section (8).

Use - For fabricating cable shoe connected to metal surfaces on rails of railway track. Advantage - By forming the compact plate in the connecting piece of the conductive tube during pressing, electric arc formed during soldering cable shoe to flat metal surface on rail is prevented from directly contacting with the rails, thereby eliminating martensite/structural changes underneath the soldered joint. The large sized soldering clip prevents penetration of water between the cable shoe and the rails due to capillary force, and hence prevents corrosion and also produces low electrical contact resistance due to its larger joint surface and hence prevents interferences in the railway signal and cathode protection system.

#3194215\1

DELPHION

High

Reso

PRODUCTS

INSIDE DELPHION

Search: Quick/Number Boolean Advanced Derwent

The Delphion Integrated View: INPADOC Record

Tools: Add to Work File: Create new Work File Get Now: PDF | More choices... View: Jump to: Top Go to: Derwent

SE0518383C2: FOERBINDNINGSSTYCKE AV ELEKTRISKT LEDANDE MATERIAL, FOERETRAEDESVIS EN KABELSKO SAMT SAETT FOER DES

FRAMSTAELLNING

Prwent Title:

Cable shoe fabrication method for railway track, involves pressing conductive tube and solder material to form connecting piece with compact plate and

larger soldering clip [Derwent Record]

[♀]Country:

SE Sweden

ଟKind:

C2 Granted Patent i

OLA PETTERSEN;

PAssignee:

SAFETRACK BAAVHAMMAR AB Sweden

News, Profiles, Stocks and More about this company

Published / Filed:

2002-10-01 / 2001-05-15

PApplication

SE2001000001689

Number:

§ IPC Code: B23K 3/00;

@ECLA Code:

None

Priority Number:

2001-05-15 SE2001000001689

VINPADOC Legal Status:

None

Get Now: Family Legal Status Report

PDF	Publication	Pub. Date	Filed	Title
22	<u>US20020173207A1</u>	2002-11-21	2002-05-15	Connecting piece of electrically conducting material, preferably a cable shoe, together wi a method for its implementation
23	<u>US6800000</u>	2004-10-05	2002-05-15	Connecting piece of electrically conducting material, preferably a cable shoe, together wi a method for its implementation
Ø	SE0518383C2	2002-10-01	2001-05-15	FOERBINDNINGSSTYCKE AV ELEKTRISKT LEDANDE MATERIAL, FOERETRAEDESVIS EN KABELSKO SAMT SAETT FOER DESS FRAMSTAELLNING
Ø	SE0101689A0	2001-05-15	2001-05-15	FOERBINDNINGSSTYCKE AV ELEKTRISKT LEDANDE MATERIAL FOERETRAEDESVIS EN KABELSKO SAMT SAETT FOER DESS FRAMSTAELLNING
Ø	SE0101689A	2002-10-01	2001-05-15	FOERBINDNINGSSTYCKE AV ELEKTRISKT LEDANDE MATERIAL, FOERETRAEDESVIS EN KABELSKO SAMT SAETT FOER DESS FRAMSTAELLNING
				JUNCTION FIXTURE OF CONDUCTIVE MATERIAL BEING PREFERABLY CABLE

SVERIGE

PATENTSKRIFT (12)

(13) **C2**

(11) 518 383

(19) SE

(51) Internationall klass 7 B23K 3/00

REGISTRERINGSVERKET

(45) Patent meddelat

2002-10-01

nummer 0101689-8

(41) Ansökan allmänt tillgänglig 2002-10-01

fullföljd internationell patentansökan

(22) Patentansökan inkom

2001-05-15

2001-05-15 Ansökan inkommen som:

svensk patentansökan

(24) Löpdag

(62) Stamansökans nummer

(86) Internationall ingivningsdag

(86) Ingivningsdag för ansökan om europeisk patent

(83) Deposition av mikroorganism

omvandlad europeisk patentansökan med nummer

(21) Patentansöknings-

(30) Prioritetsuppgifter

(73) PATENTHAVARE Safetrack Baavhammar AB, Pl 319 Lilla Mölleberga 245 93 Staffanstorp SE

(72) UPPFINNARE

Ola Pettersen, Lund SE

(74) OMBUD

PATENT- OCH

Bertil Lundh

(54) BENÄMNING

Förbindningsstycke av elektriskt ledande material,

företrädesvis en kabelsko samt sätt för dess framställning

(56) ANFÖRDA PUBLIKATIONER: - - -

(57) SAMMANDRAG:

Föreliggande uppfinning (figur 1) avser ett förbindningsstycke (1) av elektriskt ledande material med ett påpressat lodclips (4) på en kompakt platta (5) med ett flussmedel (12) och sätt för dess framställning.

PRV Patent använder följande dokumentkoder för sina patentskrifter

kod	klartext	kod	klartext	
A B B5 C C1 C2 C3 C5 C8	allmänt tillgänglig patentansökan utläggningsskrift * rättad utläggningsskrift * patentskrift * patentskrift * patentskrift rättad patentskrift rättad patentskrift korrigerad förstasida till patentskrift	L T1 T2 T3 T4 T5 T8 T9	allmänt tillgänglig översättning av kraven i europeisk patentansökan rättelse av översättning av kraven i europeisk patentansökan översättning av europeisk patentskrift översättning av europeisk patentskrift i ändrad avfattning rättad översättning av europeisk patentskrift korrigerad översättning av europeisk patentskrift	
E E8	patentskrift i ändrad lydelse korrigerad förstasida till patentskrift i ändrad lydelse			
E9	rättad patentskrift i ändrad lydelse			

Nationskoder

ΑP	•	CN	Kina	KI	Kiribati	RU	Ryska Federationen
	Industrial Property		Colombia	KM	Comorema	RW	Ruanda
	Organization (ARIPO)		Costa Rica	KN	St Kitts	S.A	Saudi-Arabien
EA	Euroasian Patent Office	CU	Kuba	KP	Dem. Folkrepubliken Korea	SB	Salomonõama
	(EAPO)	CA.	Kap Verde	KR	Republiken Korea	SC	Seychellerna
EP		CY	Cypern	KW	Kuwait	SD	Sudan
	(EPO)	CZ	Tjeckiska republiken	KY	Cayman-ōarna	SE	Sverige
OA	African Intellectual	DE	Tyskland	ĸz	Kazachstan	SG	Singapore
	Property Organization	Dì	Djibouti	LA	Laos	SH	St Helena
	(OAPI)	DK		LB	Libanon	SI	Slovenien
wo	World Intellectual		Dominica	LC	Saint Lucia	SK	Slovakien
	Property Organization		Dominikanska republiken	LI	Liechtenstein	SL	Sierra Leone
	(WIPO)	DZ	Algeriet	LK	Sri Lanka	SM	San Marino
IB	WIPO (i vissa fall)	EC	Ecuador	LR	Liberia	SN	Senegal
		EE	Estland	LS	Lesotho	SO	Somalia
AD	Andorra	EG	Egypten	LT	Litauen	SR	Surinam
AE	Forenade Arabemiraten	ES	Spanien	LU	Luxembourg	ST	São Thomé
AF	Afghanistan	ET	Etiopien	ĽV	Lettland	sv	El Salvador
AG	Antigua	Fl	Finland	LY	Libyen	SY	Syrien
AI	Anguilla	FJ	Fiji-ðarna	MA	Marocko	SZ	Swaziland
AL	Albanien	FK	Falklandsöarna	MC	Monaco	TD	Tchad
AM		FR	Frankrike	MD	Moldavien	TG	Togo
AN	Nederländska Antillerna		Gabon		Madagaskar	TH	Thailand
AO	Angola	GB	Storbritannien		Makedonien	ŢJ	Tadzjikistan
AR	Argentina	GD	Grenada		Mali	TM	Turkmenistan
AT	Osterrike	GE	Georgien	MM	Mayanmar	TN	Tunisien
AU	Australien			MN	Mongoliet	TO	Tonga
AZ	Azerbajdzjan	GI	Gibraltar	MR	Mauretanien	TR	Turkiet
BA	Bosnien och		Gambia	MS	Monsterrat	TT	Trinidad och Tobago
	Hercegovina			MT	Malta	TV	Tuvalu
BB		•	Ekvatorial Guinea		Mauritius	TW	Taiwan
BD	•	GR	Grekland	MV	Maldiverna	TZ	Tanzania
BE	Belgien	GT	Guatemala	MW	/ Malawi	UA	Ukraina
BF	Burkina Faso		Guinea-Bissau	MX	Mexiko	UG	Uganda
BG	•	GY	Guyana	MY	Malaysia	US	Förenta Staterna (USA)
-BH		HK	Hongkong	MZ	Mocambique	UΥ	Uruguay
BI	Burundi	HN	Honduras	NA	Namibia	UZ	Uzbekistan
BJ	Benin	HR	Kroatien	NG	Nigeria	VA	Vatikanstaten
	Bermuda	HT	Haiti	NI	Nicaragua	VC	St Vincent
BO		ΗU	Ungern	NL	Nederländerna	VE.	Venezuela
	Brasilien	ID	Indonesien	NO	Norge	VG	Jungfruðarna
BS	Bahamaðarna	ΙE	Irland	NP	Nepal	VN	Viet Nam
BT		IL	Israel	NR	Nauru	VU	Vanuatu
	Botswana	IN	Indien	NZ	Nya Zeeland	ws	Samoa
BY	•	IQ	Irak	OM	Oman	YD	Syd-Jemen
	Belize	IR	Iran	PA	Panama	YE	Jemen
	Kanada	IS	Island	PE	Peru	YU	Yugoslavien
CF	Centralafrikanska	π	Italien	PG	Papua Nya Guinea	ZA	Sydafrika
	Republiken	JM	Jamaica	PH	Filippinema	ZM	Zambia
	Kongo	10	Jordanien	PK	Pakistan	ZR	Zaire
	Schweiz	JP	Japan	. PL	Polen	zw	Zimbabwe
CI	Elfenbenskusten	ΚE	Kenya	PT	Portugal		
CL		KG	Kirgistan	PY	Paraguay		
CM	Kamerun	KH	Kambodja	RO	Rumānien		

1

Föreliggande uppfinning avser ett sätt att framställa en ny typ av förbindningsstycke av metall eller annat elektriskt ledande material, företrädesvis en kabelsko, vilket skall förenas med ett annat föremål av metall eller annat elektriskt ledande material medelst lödning och där värme tillförs via en elektrisk ljusbåge. Utformning och konstruktion av det elektriskt ledande förbindningsstycket förhindrar uppkomsten av strukturförändringar (martensitbildning) under lödstället. Uppfinningen avser även ett sådant förbindningsstycke, företrädesvis en kabelsko, av metall eller annat elektriskt ledande material.

Utvecklingen inom rälsbunden trafik går mot allt högre hastigheter och tyngre axellaster. Detta ställer större krav på järnvägsrälens hållfasthet och slitageförmåga och därför tillverkar man rälen av mer höglegerat stål för att klara dessa högre krav. Rälmaterialet är känsligt för värmepåverkan som kan orsaka strukturförändringar som kallas för martensitbildning (härdeffekt).

Martensitbildning kan orsaka sprickbildning i rälmaterial och genom de högre belastningarna kan rälsbrott uppstå med katastrofala följder för tågtrafiken. Således är det mycket viktigt att signal- och andra ledningar fastlödes till rälen på ett sätt som ej orsakar martensit i rälen.

Fram till idag har man endast kunnat minimera martensitbildning eller strukturförändringar genom en pinnlödningsmetod, vilken är beskriven i det svenska patentet 9003708-6 (469 319). Hittills har man inte genom någon pinnlödningsmetod kunnat helt eliminera martensitbildning vid elektriska kontaktförbindningar som medelst en elektrisk ledning skall förbinda två eller flera föremål.

Det största problemet med dagens pinnlödningsmetoder vid användning på järnvägsräl, är den kraftiga värmeutveckling under lödstället som orsakas av den i lödprocessen uppkomna ljusbågen och som skapar en ogynnsam strukturförändring eller martensitbildning. Problemet är mycket beroende på den pinnlödningsmetod som används idag. Det flussmedel och silverlod som behövs vid lödningen tillföres via en lodpinne som är fäst i lödpistolen och som samtidigt utgör en elektrod.

För att åstadkomma en förbindning mellan metallytan på järnvägsrälen/rörledningar och kabelskon har man idag en . kabelsko försedd med ett hål så att fluss- och lodmaterial kan tränga fram från lodpinnen genom kabelskon och sedan fastlöda kabelskon mot den plana metallytan. Inledningsvis i lödprocessen arbetar ljusbågen direkt mot järnvägsrälen och orsakar lokalt en mycket hög temperatur vilken sedan indirekt kommer att fortplantas via

lodsmältan och överföra höga temperaturer direkt mot järnvägsrälen vilket kommer att påverka denna ogynnsamt. Det finns också en risk för att en inlegering av elektrodmaterialet i lodet föreligger vid dagens befintliga pinnlödningssystem, vilket påverkar både lödningen och arbetsstycket negativt. Slutfasen i dagens pinnlödning är att trycka ned lodpinnen i lödningen och därefter bryta av pinnen vilket är negativt för själva lodfogen.

Ytterligare en nackdel i dagens lödprocesser är både det flussmedel och lodmaterial som används för att fästa det elektriska förbindningsstycket, företrädesvis en kabelsko. Eftersom lödprocessen sker under en kort tid krävs hög värme, vilken kommer att fortplantas från ljusbåge via lod genom kabelsko till arbetsstycket eller järnvägsrälen. Problemet har varit att en tillfredsställande fastlödning måste åstadkommas samtidigt som man inte ska åstadkomma några strukturförändringar under lödstället.

Idag är det förbjudet i Frankrike, Italien, Schweiz, Spanien och Tyskland att använda pinnlödning på järnvägsräl på grund av uppkomsten av martensit.

Vissa andra länder där pinnlödning på järnvägsräl idag är tillåten kommer att ändra sina krav och således kommer befintliga pinnlödningsmetoder inte att få lov att användas i framtiden.

·::::

·:··:

Föreliggande uppfinning avser en ny typ av ett elektriskt ledande förbindningsstycke av metall eller annat elektriskt ledande material, företrädesvis en kabelsko, vilken ingår i en ny metod för temperaturmässigt kontrollerad lödning där man löst problemen med martensit som andra metoder är behäftade med.

Uppfinning avser även ett sätt att framställa denna nya typ av förbindningsstycke av metall eller annat elektriskt ledande material, företrädesvis en kabelsko.

Ett ändamål med uppfinningen är att framställa ett förbindningsstycke av elektriskt ledande material företrädesvis en kabelsko, vilken har en heltäckande kompakt platt ände av elektriskt ledande material mot vilken ljusbågen i lödprocessen arbetar och att ljusbågen i lödprocessen förhindras att komma i direkt beröring med arbetsstycket, exempelvis järnvägsräl, samt att förbindningsstycket med den kompakta plattan ingår som en del i en temperaturmässigt kontrollerad lödprocess där man erhåller en lödning som under lödstället är helt fri från martensit.

Ytterligare ett ändamål med uppfinningen är att vid tillverkningen kunna sammanpressa ett lodmaterial i form av ett clips på förbindningsstycket samt att det mellan förbindningstycket och lodclipset i tillverkningen placeras ett flussmedel. Detta sparar arbetsmoment och problem vid själva lödningstillfället ute på arbetsplatsen.

Ytterligare en fördel är då att man inte behöver tillföra lodmaterial från andra enheter till själva lödstället för att löda fast förbindningsstycket, ej heller behöver ytorna mellan förbindningsstycket och lodmaterialet rengöras vid arbetsmomentet.

En väsentlig fördel av att vid tillverkningen av förbindningsstycket pressa fast ett lodmaterialclips på undersidan är att man får en jämn tjocklek på lodclipset. Detta är utformat så att det är större än själva förbindningsstycket företrädesvis en kabelsko och stick-

•:••:

er ut utanför kanterna. Detta skapar en fastare och mer hel sammansättning av kabelskon och arbetsstycket, samt förhindrar vatten att medelst kapillärkraft tränga in mellan kabelskon och det underliggande arbetsstycket och förhindrar korrosion. Inträngande vatten kan negativt påverka lödfogens mekaniska hållfasthet. Vidare kan detta nedsätta förbindningens elektriska egenskaper. Att lodclipset är större än kabelskon ger en större fogyta, vilket ger lägre elektriskt övergångsmotstånd.

Vid järnvägssignal- och katodskyddssystem som arbetar med låga spänningar och strömmar är det speciellt viktigt att ha ett lågt totalt övergångsmotstånd i lödfogarna för att förhindra störningar i systemen. Vid stora strömmar och spänningar ger ett högt övergångsmotstånd upphov till värmeutveckling i lödfogen, vilket kan skada och/eller smälta densamma. Eftersom förbindningen även ska klara höga returströmmar i järnvägsdriftssystemen är det viktigt med ett lågt övergångsmotstånd i lödfogen.

Av motsvarande skäl är det också viktigt att övergångsmotståndet är lågt vid skyddsjordningar.

En annan fördel med uppfinningen är att man inte behöver jorda i järnvägsrälen under lödningen. I lödprocessen utgör elektroden den ena polen av ljusbågen och den andra polen utgörs av förbindningsstycket exempelvis en kabelsko. I det fall det elektriska förbindningsstycket utgör minuspol kallas anslutningen traditionellt för jordning. I föreliggande uppfinning kan elektroden utgöra pluspol eller minuspol eller omväxlande plus/minus. Det är en fördel att inte använda järnvägsrälen som en pol eftersom det kan skapas sekundära ljusbågar

::::

mellan kabelsko och järnvägsräl som kan påverka järnvägsrälen negativt i form av martensitbildning. I och med att vi undantar järnvägsrälen från den slutna strömkretsen eliminerar vi uppkomsten av eventuella störsignaler i järnvägsrälen och till denna ansluten apparatur. Att använda kabelsko som ena pol eliminerar även arbetsmoment och i vissa lägen jordningsutrustning i samband med lödningen. Kabelskon kan anslutas till den elektriska kretsen via skyddsringen i lödpistolen eller via kabelskons anslutna kabel.

Ytterligare ett ändamål med uppfinningen är att kolpulver från kolelektroden avges under lödprocessen och lägger sig på ovansidan av det elektriskt ledande förbindningsstycket exempelvis en kabelsko och förhindrar en urgröpning i kabelskon under lödförloppet. Dessutom kommer ljusbågen att upprätthållas mellan två kolpoler, vilket verkar stabiliserande för ljusbågen och motverkar tendensen till fallande strömkurva över tiden. Dessutom har kolet värmebuffrande egenskaper och får en temperaturfördelande funktion. Kolpulvret från kolelektroden blir således ytterligare ett buffertmaterial som ser till att inte för hög temperatur uppstår i exempelvis järnvägsrälen under lödprocessen.

Det kännetecknande för föreliggande uppfinning framgår av efterföljande patentkrav.

Föreliggande uppfinning skall nu närmare beskrivas med hänvisning till bifogade ritningar, vilka visar några olika utföringsformer av uppfinningen där figur 1 visar ett tillverkningsverktyg för framställning av ett förbindningsstycke av elektriskt ledande material och figur 2 visar underdelen av samma tillverkningsverktyg.

•:••:

Figur 3 visar ett förbindningsstycke i form av en kabelsko och figur 4 visar ett separat lodclips efter det sammanpressats på förbindningsstycket. Figur 5 är en sidovy av ett färdigt förbindningsstycke och figur 6 visar ett förbindningsstycke av lödbart material med en annan design. I figur 7 ser man förbindningsstycket/kabelskon rakt ovanifrån och figur 8 visar densamma ur snittet A-A och figur 9 ur snittet B-B. Figur 10 åskådliggör förbindningsstycket av elektriskt ledande material med vilket två kablar av elektriskt ledande material är anslutna. Figur 11 visar förbindningsstycket med kabel med ett påkopplat jorddon. Figur 12 är en vy av en kontaktförbindning där båda ändar är försedda med förbindningsstycke i form av kabelskor. En variant av fastsättning av lodclipset på förbindningsstycket visas i figur 13 och i figur 14 återfinnes själva lodclipset av denna variant. Figur 15 är en ytterligare en variant av ett lodclips påsatt på en kabelsko och figur 16 visar samma kabelsko med lodclips bakifrån. Figur 17 är en vy av samma kabelsko snett ovanifrån. I figur 18 är en vy underifrån av föregående variant av förbindningsstycket med lodclips. Figur 19 visar ett förbindningsstycke av elektriskt ledande material med en bult och figur 20 visar en variant av ett förbindningsstycke med en bult och figur 21 är ytterligare en variant av ett förbindningsstycke med en bult. Figur 22 är ett mellankopplingssstycke.

Figur 1 visar ett tillverkningsverktyg för framställning av av ett förbindningsstycke 1 av elektriskt ledande material runt vilket ett lodmaterial med jämn tjocklek placeras, vilket vid sammanpressandet av verktygets ovandel 2 (hanen) med verktygets underdel 3 (honan) kommer att resultera i ett påpressat lodclips 4. Ett elek-

triskt ledande material i form av ett rör 9 kommer att sammanpressas mellan verktygets ovandel 2 och underdel 3 och ge en kompakt platta 5 av elektriskt ledande material mot vilket lodclipset 4, med minst en sida med påstruket flussmedel, kommer att pressas. Figuren visar också att lodclipset 4 är större än den kompakta plattan 5 och således kommer lodclipset 4 att sticka ut runt om den kompakta plattan 5. Av figuren framgår också att lodclipsets 4 ovandel kommer att vara nedpressat i den kompakta plattan 5 och två hål 6 och 7, genom vilka det underliggande elektriskt ledande materialet kommer att uppträngas, kommer att låsa fast lodclipset 4 och bevara det flussmedel som nu finnes mellan lodclipset 4 och den kompakta plattan 5. När det gäller underdelen av lodclipset 4 kommer endast den del som avskiljes från fasningen 8 att tränga upp i förbindningsstyckets 1 material.

Figur 2 visar tillverkningsverktygets underdel 3 för framställning av ett förbindningsstycke 1 av elektriskt ledande material runt vilket ett lodmaterial med jämn tjocklek placeras, vilket vid sammanpressandet kommer att resultera i ett påpressat lodclips 4. Ett elektriskt ledande material i form av ett rör kommer vid sammanpressandet ätt ge en kompakt platta 5 av elektriskt ledande material mot vilket lodclipset 4, med minst en sida med påstruket flussmedel, kommer att pressas. Figuren visar också att lodclipset 4 är större än den kompakta plattan 5 och således kommer lodclipset 4 att sticka ut runt om den kompakta plattan 5. Av figuren framgår också att lodclipsets 4 ovandel kommer att vara nedpressat i den kompakta plattan 5 och två hål 6 och 7, genom vilka det underliggande elektriskt ledande materialet kommer att uppträngas, kommer att låsa fast lodclipset 4 och

bevara det flussmedel som nu finnes mellan lodclipset 4 och den kompakta plattan 5. När det gäller underdelen av lodclipset 4 kommer endast den del som avskiljes från fasningen 8 att tränga upp i förbindningsstyckets 1 material.

Figur 3 en variant av ett förbindningsstycke 1 av elektriskt ledande material företrädesvis en kabelsko med en rördel 11 av större längd i vilket en ledning av elektrisk ledande material kommer att införas. Figuren visar också den kompakta plattan 5 av elektriskt ledande material vilken, i en helt ny lödprocess, kommer att vara den enhet mot vilken ljusbågen från kolelektroden i en lödpistol arbetar. I lödprocessen används en kolelektrod där det kolpulver som avges från kolelektroden lägger sig på den underliggande förbindningsstyckets 1 kompakta platta 5 som ett tunt lager och är temperaturbuffrande och värmefördelande.

I samverkan resulterar detta i en lödning som är fri från strukturförändringar eller martensit. Dessutom kommer ljusbågen att upprätthållas mellan två kolpoler, vilket verkar stabiliserande för ljusbågen och motverkar tendensen till varierande strömkurva över tiden.

Förbindningsstycket 1 har minst en kompakt platt ände 5 av elektriskt ledande material. På sin undersida har förbindningsstycket 1 ett clips 4 av lodmaterial, vilket fastsättes genom exempelvis sammanpressning vid tillverkningen. Lödningsresultatet ger en större area i lodfogen vilket ger ett lägre totalt elektriskt övergångsmotstånd. Mellan förbindningsstycket 1 och lodclipset 4 finnes ett flussmedel 12 och mellan lodclipset 4 och ett arbetsstycke finnes ett flussmedel, där fluss-

medel, lodmaterial och lödprocess är anpassade till varandra. Flussmedlet 12 är avsett för mjuklödning och är så- ledes aktivt inom ett lägre temperaturområde, för uppnående av en martensitfri lödning.

En lödning som överstiger ca 500 °C betecknas som en hårdlödning i motsats till en mjuklödning som sker vid lägre temperaturer. Lodmaterialet i lodclipset 4 som används i lödprocessen är avsett för hårdlödning. Flussmedel som är avsett för hårdlödning fungerar ej bra för den nya processen eftersom processen är alltför snabb, ca 2 sekunder. I den nya lödprocessen användes ett flussmedel som är avsett för mjuklödning och således aktiveras vid en lägre temperatur, men ej hinner disintegrera innan lödningen är slutförd, beroende på det korta tidsförloppet. Figuren visar även hålen 6 och 7 för fastsättning av lodclipset 4 i förbindningsstycket 1 samt fasningen 8.

Figur 4 visar ett separat lodclips efter det sammanpressas på förbindningsstycket. Figuren visar hålen 6 och 7 på ovansidan av lodclipsets 4 ovandel 15. Figuren visar också underdelen 16 på vilken finnes placerat ett flussmedel 12 som är inbakat mellan förbindningsstycket 1 och lodclipset 4. Efter en fasning 8 kommer en bakdel 17 av lodclipset 4 att vara inpressad i förbindningsstycket 1.

Figur 5 är en sidovy av ett förbindningsstycke 1 av elektriskt ledande material med en rördel 9 och en kompakt platta 5 på vilken ett lodclips 4 är påpressat och man ser lodclipsets 4 ovandel 15, underdel 16 och bakdel 17 samt fasningen 8. Figuren visar att lodclipset 4 har en jämn tjocklek.

• ; • • •

Figur 6 visar ett förbindningsstycke i form av en klammer av lödbart material. I figuren visas den kompakta plattan 5 samt det flussmedel 12 som är inbakat mellan den kompakta plattan 5 och lodclipset 4. Vidare ser man hålen 6 och 7 för fastsättning och fasningen 8.

Förbindningsstycket 1 i form av en kabelsko visas i figur 7 rakt ovanifrån. Figuren visar rördelen 9 och lodclipset 4. Av figuren framgår det att lodclipset 4 är utformat så att det är större än själva förbindningsstycket 1 och dess kompakta platta 5 och sticker ut utanför kanterna. Detta skapar en fastare och mer hel sammansättning av kabelskon och arbetsstycket, samt förhindrar vatten att medelst kapillärkraft tränga in mellan kabelskon och det underliggande arbetsstycket och förhindrar korrosion. Inträngande vatten kan negativt påverka lödfogens mekaniska hållfasthet. Vidare kan detta nedsätta förbindningens elektriska egenskaper. Att lodclipset är större än kabelskon ger en större fogyta, vilket ger lägre elektriskt övergångsmotstånd. Figuren visar även bakdelen 17 och ovandelen 15 av lodclipset 4 samt hålen 6 och 7.

Figur 8 visar ett snittet A-A av föregående figur. Detta snitt visar uppträngande material 19 i lodclipshålet i lodclipset 4 med dess ovandel 15, underdel 16 och bakdel 17 samt fasningen 8 rördelen 9 i förbindningsstycket 1.

Figur 9 visar ett snittet B-B av figur 7. Snittet visar lodclipset 4 med dess ovandel 15, underdel 16 och bakdel 17 samt fasningen 8 rördelen 9 i förbindningsstycket 1.

Figur 10 åskådliggör förbindningsstycket av elektriskt ledande material med vilket två kablar av elektriskt

ledande material är anslutna, ett så kallat Y-förbindningsstycke. Figuren visar den kompakta plattan 5 samt bakdelen 17, underdelen 16 och ovandelen 15 av lodclipset 4 och hålen 6 och 7. Två olika kablar 21 och 22 av elektriskt ledande material går in i ett multiförbindningsstycke 20 för att där fastlödas. Inuti multiförbindningsstycke 20 tillsättes en pasta av flussmedel och lodmaterial före lödningsfasen.

Figur 11 visar förbindningsstycket 1 med en kabel 23 med en påkopplad anslutningsklämma 24 och därtill hörande anslutningskabel 25 utgörande jorddon. Figuren visar även den kompakta plattan 5 samt bakdelen 17, underdelen 16 och ovandelen 15 av lodclipset.4 och hålen 6 och 7. Avslutningsvis ser man fasningen 8.

I den nya lödprocessen utgör elektroden den ena polen av ljusbågen och den andra polen utgörs av förbindningsstycket exempelvis en kabelsko. Det är en fördel att inte använda järnvägsrälen som en pol eftersom det kan skapas sekundära ljusbågar mellan kabelsko och järnvägsräl som kan påverka järnvägsrälen negativt i form av martensitbildning. I och med att vi undantar järnvägsrälen från den slutna strömkretsen eliminerar vi uppkomsten av eventuella störsignaler i järnvägsrälen och till denna ansluten apparatur. Att använda kabelsko som ena pol elimineras även arbetsmoment och i vissa lägen jordningsutrustning i samband med lödningen. Kabelskon 1 kan anslutas till den elektriska kretsen via kabelskons 1 anslutna kabel 23.

Figur 12 är en vy av en kontaktförbindning där båda ändar är försedda med förbindningsstycke 1 i form av kabelskor. Figuren visar en kabel 23 av elektriskt led-

ande material mellan två förbindningsstycken 1 där vardera förbindningsstycket 1 har en kompakt platta 5 och på lodclipset 4 återfinnes bakdelen 17, underdelen 16 och ovandelen 15 och hålen 6 och 7 samt fasningen 8.

I figur 13 visas en vy underifrån av fastsättning av lodclipset 4, med sina delar 15,16 och 17, på förbindningsstycket 1. På lodclipsets 4 bakdel 17 ser man två hål 13 och 14 för utträngande material från förbindningsstycket 1. Även rördelen 9 visas i figuren.

I figur 14 återfinnes själva lodclipset 4 av föregående figur och där visas hålen 6,7 på lodclipsets ovandel 15 och hålen 13 och 14 på lodclipsets bakdel 17 där material från förbindningsstycket 1 kommer att tränga ut vid sammanpressning av lodclipset på förbindningsstycket. Även fasningen 8 och lodclipsets underdel 16 visas.

Figur 15 är en ytterligare en variant av ett lodclips påträtt på en kabelsko 1 med en rördel 9 och man ser det påtryckta lodclipset 26 en kompakt platta 27 som är avsmalnande inåt.

Figur 16 visar samma kabelsko med samma lodclips 26 bakifrån. Man ser även rördelen 9 bakifrån.

Figur 17 är en vy av samma kabelsko 1 med en rördel 9 snett ovanifrån. Av figuren framgår det att lodclipset 26 är så utformat att det kan trädas på den kompakta avsmalnande plattan 27.

Figur 18 är en vy underifrån av föregående variant av förbindningsstycket med lodclipset 26, vilket sitter på den kompakta plattan 27. På undersidan av lodclipset 26

finnes två hål 28 och 29 som möjliggör för flussmedelsinträngning från det underliggande arbetsstycket. I
denna variant av förbindningsstycke med lodclips finns
inget flussmedel inbakat mellan dessa. Således är det
flussmedlet från arbetsstycket som tränger upp och arbetar innan lodclipset 26 smälter vi lödningen.

Figur 19 visar ett bultförbindningsstycke av elektriskt ledande material. På figuren visas den kompakta plattan 31 som utgör ett singellödställe samt underliggande lodplatta 32 som kan vara påsmält eller även utformat som ett clips. Avslutningsvis ser man en bult 30.

Figur 20 visar ett bultförbindningsstycke med dubbla lödställen och man ser bulten 30 mitt på den kompakta plattan 33 och på dess undersida återfinnes två påsmälta lodplattor 32 vilka även kan vara utformade som clips.

Figur 21 är ytterligare en variant av ett förbindningsstycke med en bult ett så kallat bultförbindningsstycke. Figuren visar en på förbindningsstycket 34 centrerad bult 30. Figuren visar också fyra lodplattor 32 som är antingen påsmälta eller kan vara utformade som clips.

Figur 22 är ett mellankopplingsstycke som visar en plan heltäckande kompakt platta 5 med ett under plattan påsmält lod 35 som även kan vara utformat som ett clips och figuren visar även två rördelar 9.

Principen för föreliggande uppfinning är att framställa ett förbindningsstycke av elektriskt ledande material, företrädesvis en kabelsko bestående av en kompakt platta av elektriskt ledande material med en påpressad eller påtryckt jämntjockt lodclips och mellan dessa ett

inbakat flussmedel så att förbindningsstycket är klart att användas i en ny typ av temperaturmässigt kontrollerad lödprocess och där flussmedel, lodmaterial och lödprocess samverkar. Lodclipset är större än den kompakta plattan och tränger ut runt om denna, vilket förhindrar inträngande vatten samt åstadkommer en större fogyta vilket ger lägre elektriskt övergångsmotstånd. Den kompakta plattan förhindrar att ljusbågen från processen arbetar direkt mot arbetsstycket samt att jordning av den elektriska kretsen sker via förbindningsstyckets kabel så att inga sekundära ljusbågar mellan förbindningsstycket och arbetsstycket exempelvis järnvägsräl uppkommer. Den kompakta plattan samlar även upp det kolpulver som avyttras från kolelektroden i lödprocessen vilket förhindrar en urgröpning i kabelskon och verkar stabiliserande för ljusbågen. Sammantaget skapar detta en lödning som är fri från martensit under lödstället.

På ritningarna har visats endast några utföringsformer av uppfinningen men det påpekas att den kan utformas på många olika sätt inom ramen för efterföljande patentrav.

PATENTKRAV

- 1. Sätt att famställa en ny typ av förbindningsstycke av elektriskt ledande material, företrädesvis en kabelsko, vilken skall förenas med ett annat föremål av elektriskt ledande material medelst en temperaturmässigt kontrollerad lödprocess fri från strukturförändringar och martensit, kännetecknat därav, att ett rör (9) av elektriskt ledande material och ett lodmaterial avsett för hårdlödning med ett mellanliggande flussmedel (12) avsett för mjuklödning, sammanpressas mellan ett verktygs ovandel (2) och ett verktygs underdel (3) till att utgöra ett förbindningsstycke (1) med ett påpressat lodclips (4) och ett mellanliggande flussmedel (12) och där lodclipset (4) består av en ovandel (15) med två hål (6,7), en underdel (16) och en bakdel med två hål (13, 14) och där lodclipset (4) är större än en kompakt platta (5) i förbindningsstyckets (1) ena del och att lodclipset (4) i sin helhet har en jämn tjocklek samt att en fasning (8) skiljer lodclipsets (4) underdel (16) från dess bakdel (17).
- 2. Förbindningsstycke, företrädesvis en kabelsko, av elektriskt ledande material, vilket genom en temperaturmässigt kontrollerad lödprocess skall sammanfogas med ett arbetsstycke av elektriskt ledande material medelst en lödning fri från strukturförändringar och martensitbildning kännetecknammen at förbindningsstycket (1) har minst en plan kompakt heltäckande platta (5) av elektriskt ledande material upptagande kolpulver från en kolelektrod samt att den i lödprocessen befintliga ljusbågen arbetar mot den kompakta plattan (5) och att ett jämntjockt lodclips (4) är pressad på förbindningsstycket (1) och att det mellan förbind-

ningsstycket (1) och det jämntjocka lodclipset (4) finnes ett inbakat flussmedel (12) samt att lodclipset (4) är större än den kompakta plattan (5) samt att fyra hål (6,7,13, 14) i lodclipset (4) möjliggör sammanpressning av lodclipset (4) på förbindningsstycket (1).

- 3. Förbindningsstycke enligt krav 2, kännete cknaddärav, att lodclipset (4) kan tryckas på förbindningsstyckets (1) kompakta platta (5).
- 4. Förbindningsstycke enligt krav 2, kännete cknaddärav, att en anslutningsklämma (24) kan anslutas till ett förbindningsstyckes (1) anslutningskabel (25) för jordning av den elektriska kretsen.
- 5. Förbindningsstycke enligt krav 2, **kännete cknaddärav**, att lodclipset (4) kan ha två hål (28, 29) på undersidan för uppträngande av flussmedel.
- 6. Förbindningsstycke enligt krav 2, kännete cknad därav, att det på en kompakt platta (31,33,34) finnes en bult 30 och på den kompakta plattan (31,33,34) påsmält lodmaterial 32.
- 7. Förbindningsstycke enligt krav 2, **kännete cknad därav**, att det inte finnes något flussmedel mellan förbindningsstycket (1) och lodclipset (4).

::::

Fig 2

Fig 3

Fig 4

Fig 5

Fig 6

Fig 10

Fig 11

Fig 12

Fig 13

Fig 14

Fig 17

Fig 18

Fig 19

Fig 20

Fig 21

Fig 22

