Algèbre linéaire et bilinéaire I – TD₅ 18 Octobre 2022

Partie 1 : Projecteurs et symétries

Exercice 1:

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ définie par f(x, y, z) = (2x - 2z, y, x - z) pour tout $(x, y, z) \in \mathbb{R}^3$. Montrer que f est un projecteur puis calculer g(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$ où g est la symétrie associée à f.

Exercice 2 (Exercice 1.10 du livre):

On pose $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$. Soit l'application :

$$\phi: E \to E
f \mapsto (x \mapsto f(-x))$$

Montrer que ϕ est une symétrie. Par rapport à quel espace et parallèlement à quel espace ?

Exercice 3:

Soit p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E.

- 1. Montrer que p et q ont même noyau si et seulement si $p \circ q = p$ et $q \circ p = q$.
- 2. Enoncer une condition nécessaire et suffisante semblable pour que p et q aient même image.

Exercice 4:

Soit E un \mathbb{K} -espace vectoriel et soit $u \in \mathcal{L}(E)$ vérifiant

$$u^2 - 5.u + 6. \operatorname{id}_E = 0_{\mathcal{L}(E)}.$$

On pose $F = \text{Ker}(u - 3. \text{id}_E)$ et $G = \text{Ker}(u - 2. \text{id}_E)$.

- 1. Montrer que F et G sont deux sous-espaces vectoriels de E.
- 2. Montrer que F et G sont supplémentaires.
- 3. Soit p le projecteur sur F parallèlement à G et soit q la symétrie associée. Exprimer p et q en fonction de u.
- 4. Montrer que u est un automorphisme et exprimer u^{-1} en fonction de u.

Partie 2: Images et noyaux d'endomorphismes

Exercice 5:

Soit E un K-espace vectoriel et soit $f \in \mathcal{L}(E)$

- 1. Montrer que $Ker(f) \subset Ker(f^2)$ et $Im(f^2) \subset Im(f)$.
- 2. Montrer que $Ker(f) \cap Im(f) = \{0_E\}$ si et seulement si $Ker(f) = Ker(f^2)$
- 3. Montrer que Ker(f) + Im(f) = E si et seulement si $Im(f) = Im(f^2)$

Exercice 6:

Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E dans lui-même par : u(P) = P + (1 - X)P'.

- 1. Donner une base de E.
- 2. Montrer que u est un endomorphisme de E.
- 3. Déterminer l'image de u et donner une base de Im(u).
- 4. Déterminer le noyau de u et donner une base de $\mathrm{Ker}(u)$. Soit $E^* = \mathcal{L}(E, \mathbb{R})$ l'espace dual de E. On considère les formes linéaires :

$$\forall i \in [0,3], \ f_i : P \mapsto \int_{-1}^1 t^i P(t) dt$$

5. Montrer que $B^* = (f_0, f_1, f_2, f_3)$ est une base de E^* .

Exercice 7:

On considère un \mathbb{K} - espace vectoriel noté E, et l'on note :

$$\mathcal{S}(E) = \left\{ u \in \mathcal{L}(E), \ u^3 = u^2 \ \right\}$$

1. Soit l'endomorphisme f de \mathbb{R}^3 défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, \ f(x, y, z) = (0, x, z).$$

- Montrer que $f \in \mathcal{S}(\mathbb{R}^3)$.
- Déterminer Ker(f).
- Déterminer $\operatorname{Im}(f)$.
- 2. On suppose dans cette question que $Ker(u) = \{0_E\}$. Montrer que $u = id_E$.
- 3. On suppose dans cette question que $Ker(u) = Ker(u^2)$. Montrer que u est un projecteur. **Dans la suite, on suppose que** $Ker(u) \neq \{0_E\}$ **et que** $Ker(u) \neq Ker(u^2)$.
- 4. Déterminer pour $n \geq 3$, u^n . En déduire que : $E = \text{Ker}(u^2) \bigoplus \text{Im}(u^2)$.
- 5. Montrer que : $Ker(u^2)$ est stable par u.

Exercice 8:

Soit E un \mathbb{K} -espace vectoriel et soit $u \in \mathcal{L}(E)$.

- 1. Soit $v \in \mathcal{L}(E)$ qui commute avec u (c'est-à-dire que $u \circ v = v \circ u$). Montrer que $\operatorname{Im}(v)$ et $\operatorname{Ker}(v)$ sont stables par u (c'est-à-dire $u(\operatorname{Im}(v)) \subset \operatorname{Im}(v)$ et $u(\operatorname{Ker}(v)) \subset \operatorname{Ker}(v)$).
- 2. Soit p un projecteur de E tel que Im(p) et Ker(p) sont stables par u. Montrer que u commute avec p.

Partie 3 : Résultats importants

Exercice 9:

Le but de cet exercice est de redémontrer le théorème du rang différent de la méthode en classe .

Soient E et E' deux \mathbb{K} -espaces vectoriels tels que E soit de dimension finie et soit $u \in \mathcal{L}(E, E')$.

- 1. Soit H un supplémentaire de Ker(u) dans E. Montrer que u induit une bijection entre H et Im(u).
- 2. En déduire le théorème du rang :

$$rang(u) + dim(Ker(u)) = dim E.$$

Exercice 10:

Le but de cet exercice est de redémontrer la formule de Grassman à partir du théorème du rang.

Soit E un \mathbb{K} -espace vectoriel, soient F et G deux sous-espaces vectoriels de E de dimension finie et soit $\phi \colon F \times G \to F + G$ définie par

$$\forall (f, g) \in F \times G, \quad \phi(f, g) = f + g.$$

- 1. Montrer que rang $(\phi) = \dim(F + G)$.
- 2. Montrer que $Ker(\phi)$ est isomorphe à $F \cap G$.
- 3. En déduire la formule de Grassman :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$