

Introduction to BTRFS --- focus on usage

王坤山、王少岩 Taobao R&D Core-Sys

Content

The Fundamental Functionality of Hard Disk File System

Limitation and Challenge of Existed Linux File Systems

New File Systems Breakthrough

BTRFS, Next Generation Linux File System Candidate

Concepts of BTRFS

BTRFS Usage & Live Demo

Exploring BTRFS from Taobao

The Fundamental Functionality of File System

From end users' view

- FileThe data constructed by DATA
- Directory
 Contains other files and subdirectories
- Files creation/deletion, access permission management

The Fundamental Functionality of File System (Cont.)

For hard disk file systems,

– <logical, physical> location mapping

Hard disk space management

Limitation and Challenge of Existed Linux File Systems

Flexibility Limitation

- Max physical media capacity
- Max files number
- Max file size

Storage efficiency

- Big/small files

Access efficiency

- large directory

Challenge

- High concurrent workload for random I/O
- Huge storage space
- Application bound I/O patterns
- Security, stability, disaster recovery
- Etc

Limitation and Challenge of Existed Linux File Systems (Cont)

Status of existing Linux hard disk file systems,

- FATSingle link list storageFragment and performance bottleneck
- Ext2Multiple level indirect block pointers
 - Faster random I/O
 - Linear directory lookup
- Ext3JournalingFaster file system check/recovery
- Ext4
 Extent based blocks management
 More efficient for big files storage

Limitation and Challenge of Existed Linux File Systems (Cont)

Challenges of existing file systems,

- Max file system size (PB level)
- Max individual file size (PB level)
- Higher I/O and storage efficiency for (small) files
- Online file system check
- Online high efficient file system defragmentation
- Faster directory lookup
- More flexible data/metadata allocation
- Cross physical volumes file system
- File system level data concurrency and redundancy
- Data and metadata check-sum

New File Systems Breakthrough

There are some breakthrough from new file system development efforts

- ZFS
 Copy-on-write, snapshot, EB (1024P) level large capacity
- LogFS
 Special optimization for flash based storage (SSD, Flash disk)
- ReiserFS
 Tree structure on disk
 Optimized for small files I/O and storage
- BTRFS

The most promising candidate for next generation Linux hard disk file system

The one this talk is focused on

BTRFS, Next Generation Linux File System Candidate

Larger storage capacity

- Max volume size 16EB
- Max file size 16EB (comparing Ext4 max file size 16TB)

Faster directory lookup

- Btree structure
 - for hashed directory entries order
 - inode order

Higher storage effiency

- COW (Copy On Write)
- Extent for large files
- Inline data for small files

Multiple device support

Increase storage capacity and stability

BTRFS, Next Generation Linux File System Candidate (Cont.)

Snapshot

- Backup all files of a file system at a given moment
- No extra space consumed
- Faster, more convenient backup/restore

File compress

For text based files, save more disk space

Checksum

Data corruption detection

Online file system check

- No mandatory offline
- More flexible task schedule
- Run time data consistency check

BTRFS, Next Generation Linux File System Candidate (Cont.)

Optimization for Solid State Disk

- Wear-out leveling
- Delay write-back for large (2M) SSD data chunk

Concepts of BTRFS

Mount point

Subvolume

- like directory
- can contain files and directories
- can be created as directory

Snapshot

- What we want ?
 - Complete backup
 - Accessible and recoverable
 - Frequently access

BTRFS' Implementation

- Snapshot is a subvolume
- Created by copying another subvolume
- Share most data and metadata
- Writable snapshot (Copy On Write)

Snapshot illustration

COW

snapshot

Original subvolume

Original subvolume

snapshot

Original subvolume

BTRFS Usage & Live Demo

- Create file system
- Mount & umount
- Subvolume create, delete
- Snapshot create
- Writable snapshot
- Compress
- Multiple device support

Exploring BTRFS from Taobao

Most promising Linux disk file system for enterprise environment.

We are working on a research between existing BTRFS features and application requirement from Taobao's deployment.

More upstream efforts to make BTRFS to be a enterprise usage ready file system.

Exploring BTRFS from Taobao (Cont.)

Something we can improve to make BTRFS fit Taobao's requirement

Subvolume Compress

- Requirement
 - automatic compress when place data in a specific directry
 - friendly usage experience for end user and developers
- Current status
 - global compress option provided
 - no per-subvolume compress supported
 - OPPORTUNITY

Exploring BTRFS from Taobao (Cont.)

Something we can improve to make BTRFS fit Taobao's requirement

Metadata on SSD

- Requirement
 - Metadata allocation on dedicated SSD
- Current status
 - Metadata on first device of file system
 - Can not prevent data allocation on a specific device
 - Single point of failure problem
 - OPPORTUNITY

Exploring BTRFS from Taobao (Cont.)

Something we can improve to make BTRFS fit Taobao's requirement

Underlying Media Topology Aware allocation

- Requirement
 - RAID, 4K sector hard disk ...
- Current status
 - not implementated yet
 - OPPORTUNITY

- OPPORTUNITY			
Hard disk	4k	4k	
partition	4k		Taohae

Thank you