

AMENDMENTS TO THE CLAIMS:

The following listing of claims replaces all prior listings of claims in the present application.

What is claimed is:

1. (Currently Amended) A quadrature modulator comprising:

~~a local oscillator for oscillating at an oscillation frequency equal to $4/(2N+1)$ times a carrier frequency where N is a natural number; and~~

~~a frequency conversion block for multiplying converting said oscillation frequency to output a converted oscillation frequency by a factor of $(2N+1)/2$; and~~

~~a quadrature modulation block for receiving a baseband signal and said converted oscillation frequency, said quadrature modulation block including a first frequency divider to divide an output from said frequency conversion block for dividing said converted oscillation frequency by a factor of two to output a pair of carrier waves orthogonal signals having therebetween a phase difference of 90 degrees, first and second multipliers for modulating said carrier waves with a digital pair of orthogonal signals with said baseband signal to output a pair of modulated signals, and an adder for adding said modulated signals together to output a digital carrier signal having said carrier frequency, said frequency conversion block including only one frequency divider for dividing said oscillation frequency by a factor of two to generate a divided frequency,~~

wherein said carrier signal has a frequency different from said oscillation frequency and said converted oscillation frequency.

2. (Previously Presented) A quadrature modulator comprising a local oscillator for oscillating at an oscillation frequency equal to $4/(2N+1)$ times a carrier frequency where N is a natural number, a frequency conversion block for multiplying said oscillation frequency by a factor of $(2N+1)/2$, a first frequency divider to divide an output from said frequency conversion block by a factor of two to output a pair of carrier waves having therebetween a phase difference of 90 degrees, first and second multipliers for modulating said carrier waves with a digital baseband signal to output a pair of modulated signals, and an adder for adding said modulated signals together to output a digital carrier signal having said carrier frequency, wherein said N is equal to "1", and said frequency conversion block includes a second frequency divider for dividing said oscillation frequency by a factor of two to generate a divided frequency, a frequency mixer for mixing outputs from said local oscillator and said frequency divider to generate a first signal having a frequency equal to a sum of said oscillation frequency and said divided frequency.

3. (Original) The quadrature modulator as defined in claim 2, wherein said frequency conversion block further includes a band-pass-filter (BPF) for removing an image signal from said first signal.

4. (Original) The quadrature modulator as defined in claim 2, wherein said frequency mixer is a double-balanced mixer.

5. (Currently Amended) A quadrature modulator comprising a local oscillator for oscillating at an oscillation frequency equal to $4/(2N+1)$ times a carrier frequency where N is a natural

number, a frequency conversion block for multiplying said oscillation frequency by a factor of $(2N+1)/2$, a first frequency divider to divide an output from said frequency conversion block by a factor of two to output a pair of carrier waves having therebetween a phase difference of 90 degrees, first and second multipliers for modulating said carrier waves with a digital baseband signal to output a pair of modulated signals, and an adder for adding said modulated signals together to output a digital carrier signal having said carrier frequency, wherein said N is equal to or more than "2", and said frequency conversion block includes a second frequency divider for dividing said oscillation frequency by a factor of two to output a divided frequency, one of N frequency mixers cascaded from one another ~~for mixing said oscillation frequency and said divided frequency or an output from a preceding one of said frequency mixers to output a first signal, which is connected to said second divider, outputs a signal~~ having a frequency equal to a sum of said oscillation frequency and said divided frequency ~~or a frequency of another first signal output from said preceding one of said frequency mixers from said second divider, and each of the remaining (N-1) frequency mixers of said N frequency mixers outputs a sum of said oscillation frequency and an output frequency from a preceding frequency mixer of said N cascaded frequency mixers.~~

6. (Original) The quadrature modulator as defined in claim 5, wherein said frequency conversion block further includes a BPF cascaded from an N-th one of said frequency mixers to remove an image signal from said first signal from said N-th one of said frequency mixers.

7. (Original) The quadrature modulator as defined in claim 5, wherein each of said frequency mixers is a double-balanced mixer.

8. (Previously Presented) A method comprising the steps of generating a oscillation frequency equal to $4/(2N+1)$ times a carrier frequency where N is a natural number greater than or equal to two, multiplying said oscillation frequency by a factor of $(2N+1)/2$ using N frequency mixers, dividing said multiplied oscillation frequency by a factor of two to generate a pair of orthogonal carrier waves having said carrier frequency, modulating said orthogonal carrier waves with a digital baseband signal to output a carrier signal having said carrier frequency.

9. (Previously Presented) A quadrature modulator comprising:

 a digital signal generator for generating a digital baseband signal;

 a local oscillator for oscillating at an oscillation frequency equal to $4/(2N+1)$ times a carrier frequency where N is a natural number;

 a frequency conversion block for multiplying said oscillation frequency by a factor of $(2N+1)/2$; and

 a quadrature modulation block including:

 a first frequency divider to divide an output from said frequency conversion block by a factor of two to output a pair of carrier waves having therebetween a phase difference of 90 degrees;

 first and second multipliers for modulating said carrier waves with said digital baseband signal to output a pair of modulated signals; and

 an adder for adding said modulated signals together to output a digital carrier signal having said carrier frequency,

wherein said frequency conversion block includes a band-pass-filter (BPF) for removing an image signal from said first signal, and

wherein an output signal from said band-pass-filter (BPF) of said frequency conversion block is supplied directly as an input signal to said first frequency divider of said quadrature modulation block,

said quadrature modulator not including a frequency multiplier.

10. (New) The quadrature modulator as defined in claim 1, wherein said frequency conversion block includes a frequency divider for dividing said oscillation frequency by a factor of two, a frequency mixer for generating a mixed frequency signal having a frequency equal to a sum of said oscillation frequency and said converted oscillation frequency, and a band-pass filter for removing an image signal component from said mixed frequency signal.

11. (New) The quadrature modulator as defined in claim 1, wherein said frequency conversion block includes a frequency divider for dividing said oscillation frequency by a factor of two, a first frequency mixer for generating a first mixed frequency signal having a frequency equal to a sum of said oscillation frequency and said converted oscillation frequency, a second frequency mixer for generating a second mixed frequency signal having a frequency equal to a sum of said oscillation frequency and said first mixed frequency signal to output a second mixed frequency signal, and a band-pass-filter for removing an image signal component from said second mixed frequency signal.

12. (New) The quadrature modulator as defined in claim 1, wherein:

the oscillation frequency is equal to $4/(2N+1)$ times a carrier frequency where N is a natural number,

the frequency conversion block multiples said oscillation frequency by a factor of $(2N+1)/2$,

the first frequency divides an output from said frequency conversion block by a factor of two to output a pair of carrier waves having therebetween a phase difference of 90 degrees,

the first and second multipliers are adapted to modulate said carrier waves with a digital baseband signal,

the adder is adapted to add said modulated signals together to output a digital carrier signal having said carrier frequency, and

said frequency conversion block includes only one frequency divider for dividing said oscillation frequency by a factor of two to generate a divided frequency,

13. (New) A method comprising the steps of:

generating an oscillation frequency;

converting said oscillation frequency to output a converted oscillation frequency;

dividing said converted oscillation frequency by a factor of two to output a pair of orthogonal signals having therebetween a phase difference of 90 degrees;

modulating said pair of orthogonal signals with a baseband signal to output a pair of modulated signals; and

adding said modulated signals together to output a carrier signal,

wherein said carrier signal has a frequency different from said oscillation frequency and said converted oscillation frequency.

14. (New) The method as defined in claim 13, wherein said converting operation further includes removing an image signal from said first signal using a band-pass-filter (BPF).