

AD24N

V1.0.0 SDK培训

作者 杰理AD应用研发组

2025 / 3 / 10

目录

→ 芯片规格介绍

介绍AD24N芯片基本规格与指标

SDK应用框架与新增功能介绍

介绍SDK框架以及一些新增功能

3 SDK应用配置说明 介绍应用功能配置文件以及其作用

01

芯片规格介绍

介绍AD24N芯片基本规格与指标

一、芯片规格介绍

Audio DAC ADC

Clock Manager

Memory Management
Flash
Contro RAM
36K CRAM
16K

Pi32-CPU Up to 240MHz AD24N i-Cache

◆ AD24N 芯片规格:

- ◆ 1、拥有单声道DAC, SNR最高可达96dB;
- ◆ 2、拥有单声道AUDIO_ADC,单端SNR最高可达97dB,支持数字麦和APA口差分输入;
- 3、HSB max 240MHz, LSB max 120MHz;
- ◆ 4、32+4K字节SRAM, 16K i-Cache;
- ◆ 5、支持常见外设功能;

一、芯片规格介绍

0x10000000	
	Flash 64M Byte RXP AXI S1
0xC000000	
0x1000000	Reserved
	SYSSFR 1KK RW
0xF00000	
	Reserved
0x310000	
	CACHE+RAM0+RAM1 RWXP
0x300000	
	Reserved
0x0F3800	
	ROM 14K RX 32bit
0x0F0000	
0x000000	Reserved

◆ AD24N Memory 映射:

- ◆ 1、拥有32+4K字节SRAM;
- ◆ 2、拥有16K字节的CACHE;
- ◆ 3、拥有64M字节的FLASH寻址空间;

一、芯片规格介绍

杰理科技AD系列芯片主要差异-芯片

芯片	AD14N	AD24N	AD15N	AD17N	AD18N	AD16N	AW30N
成本			低	最低		高	
CPU	32位	32位	32位	32位	32位	32位	32位
最高运行时钟	192MHz	240MHz	160MHz	160MHz	160MHz	160MHz	240MHz
cache最大flash寻址空间	32M字节	64M字节	64M字节	64M字节	64M字节	64M字节	64M字节
RAM	32K	36K	20K	14K	40K	40K	64K
Cache ram	16K	16K	8K	4K	16K	16K	16K
AUDIO_ADC	A-MIC/AUX	A-MIC/D-MIC/AU		无	无	A-MIC/AUX	A-MIC/AUX
AUDIO ADC采样率	8K~24K	8K~48K	无	无	无	8K~48K	8K~48K
CLASS-D直驱喇叭	支持	支持	支持	支持	支持	无	支持
APA THD	-33dB	-71 dB	-33dB	-70+dB	-70+db	无	-72+dB
模拟AUDIO DAC	単声道	单声道	无	无	单声道	立体声	单声道
模拟AUDIO DAC SNR	83db	93dB	无	无	81 dB	>97db	>92dB
AUDIO DAC/APA采样率	8K~32K	8K~96K/48K	8K~32K	32K~48K	AUDIO_DAC:8K~96K APA:32K~48K	8K~96K	AUDIO_DAC:8K~96K APA:32K~48K
gpio	25MAX	27MAX	33MAX	22MAX	47MAX	33MAX	25MAX
io映射	2 out 4 input	I/O Crossbar+ 8 input+8 out		I/O Crossbar+ 8 input+8 out	I/O Crossbar+ 8 input+8 out	I/O Crossbar+ 8 input+8 out	I/O Crossbar+ 4 input+4 out
MCPWM	4路	4路	4路	2组(每1组有2路)	2组(每1组有2路)	2组(每1组有2路)	3组(每1组有2路)
TIMER_PWM	1路(Timer2)	4路	1路(Timer2)	3路	4路	3路	4路
RTC功能	不支持		软件RTC	不支持	软件RTC (v1.8.0SDK不支持)	硬件RTC	软件RTC
RTC(32K晶振时钟源)	不支持	不支持	不支持	不支持	v1.8.0 SDK不支持	部分封装支持	部分封装支持
SDMMC	支持	支持	支持	不支持	不支持	支持	支持
USB	支持	支持	不支持	不支持	暂不支持	支持	支持
SRC (重采样)	硬件(多路)	硬件(多路)	硬件(多路)	硬件(多路)	软件(2路)	硬件(多路)	硬件(多路)

一、芯片规格介绍-AD24N与AD14芯片硬件规格对比

AD24N

- ◆ 1、32bit pi32架构 CPU,HSB max 240MHz;
- 2、32K + 4K RAM + 16K CACHE;
- 3、SFC SUPPORT 64M FLASH;
- 4、27 I/O max, with I/O Crossbar;
- 5、GPIO上下拉都支持10K/100K/1M档位
- 6、16bit 单声道 APA+DAC, 支持两者同时输出声音;
- ▼ 7、16bit单声道AUDIO_ADC,模拟麦支持单端/差分输入,支持数字麦;
- 8、支持在APA口接入的喇叭做为输入采集外部音频信号
- 9、AUDIO OUT & AUDIO IN更高的指标性能
- ◆ 10、AUDIO 支持更多采样率 (但软件编解码及算法未支持 到这么多)

AD14N

- 1、32bit pi32架构 CPU,HSB max 160MHz;
- 2、32K RAM + 16K CACHE
- 3、SFC SUPPORT 32M FLASH
- 4、25 I/O max, 2 out / 4 input channel
- ◆ 5、GPIO上拉支持10K,下拉支持60K
- ◆ 6、16bit 单声道 APA + DAC;
- ▶ 7、16bit单声道AUDIO_ADC,模拟麦仅支持单端输入

一、芯片规格介绍-功耗指标介绍

◆ AD24N低功耗性能对比其他芯片

模式 / CPU	AD14N / AC104N	AD15N	AD17N	AD18N	AD24N
Soft off	1.7uA+	1.7uA+	1.4uA+	3.3uA+	2uA+
Power down	27uA+	27uA+	23uA+	33uA+	19uA+
Power off	/	/	/	/	约10uA+
支持最多唤醒口	8个	12个	8个	81	8个

注: AD24N首版SDK暂不支持poweroff, 后续版本会发布;

一、芯片规格介绍-音频指标介绍

◆ AUDIO_ADC性能指标 (MIC_PGA=27dB)

测试参数	value/UNIT
input swing	40 mVrms
SNR	71 dB
DR	70 dB
THD+N	-71 dB
THD	-76 dB
Noise Ratio	-72 dB

◆ AUDIO_DAC性能指标

测试参数	value/UNIT	
Output Swing	680 mVrms	
SNR	93 dB	
DR	92 dB	
THD+N	-75 dB	
THD	-75 dB	
Noise floor	15 uVrms	

◆ AUDIO_APA性能指标

测试参数	value/UNIT (APA空载)
Output Swing	2.59 Vrms
DR	92 dB
THD+N	-71 dB
THD	-71 dB
Noise floor	36 uVrms

SDK应用框架与新 02 增功能介绍

介绍SDK应用框架以及一些新增功能

二、SDK应用框架介绍 - 启动与初始化

涉及函数: 涉及文件:

1、工程主循环入口 int c_main(int cfg_addr); app/bsp/start/sh58/main.c

2、系统初始化 void system_init(void); app/bsp/start/sh58/init.c

3、应用主循环入口 void app(void); app/src/voice_toy/toy_main.c

二、SDK应用框架介绍 - 工程主循环入口

1、工程主循环入口

- int c_main(int cfg_addr);
- app/bsp/start/sh58/main.c

```
anagement
                                  app\bsp\start\sh58\main.c ×
         Files FSymbols Resch
  Projects
                                              int c_main(int cfg_addr)
                                      79
Workspace
                                      80
                                              Mif defined(ICACHE RAM TO RAM ENABLE) && (ICACHE RAM TO RAM ENABLE == 1)
AD24N voice toy
                                      81
                                                  change icache ();
                                      82
                                              #endif
    Sources
                                                  maskrom init();
                                      83
     app
                                      84
                                                  efuse init()
                                      85
                                                  critical hook init();
        B bsp
                                                  early system init();
           ⊕ common
                                                  clock_set_sfc_max_freq(SPI_MAX_CLK);
           ⊕ ... cpu
                                                  clk_voltage_init(CLOCK_MODE_ADAPTIVE, DVDD_VOL_123V);
clk_early_init(PLL_REF_LRC, 200000, PLL_MAX_LIMIT);
                                      90
           ∄ 🍃 lib
                                      91
           92
                                                  register_handle_printf_putchar(putchar);
                                      93
                                                  log init (1000000):
           94
             95
                                                  wdt init(WDT 8S);
                                      96
                     bsp loop.c
                                      97
                                                  log info("------\n");
                     device list
                                      98
                                                  clock dump();
                                                  efuse dump ();
                                      99
                     init.c
                                     100
                     main.c
                                                  power_early_flowing();
                                     101
                                     102
                                                  sys pll ldo trim check();
        ± Src
                                                  board power init();
                                     103
   Headers
                                     104
                                                  log info("hello world\n");
                                     105
                                     106
                                     107
                                                  system init();
                                     108
                                                  power_later_flowing();
                                     109
                                     110
                                                  app ():
                                     111
                                                  while (1)
                                     112
                                     113
                                                      wdt clear():
                                     114
                                     115
                                                  return 0:
                                     116
                                     117
```

二、SDK应用框架介绍 - 系统初始化

2、系统初始化

- void system init(void);
- app/bsp/start/sh58/init.c

```
Management
                                     app\bsp\start\sh58\init.c ×
                  FSymbols Resc
   Projects Files
                                         216
                                                  void system_init(void)
                                         217

    ₩orkspace

                                                      /* clock_2_64m(): */d_key_voice_init();
                                         218
 AD24N voice toy
                                         219
                                         220
                                                      message_init();
      Sources
                                         221
                                         222
223
224
265
26
227
      ⊟ app
                                                       adc_init();
          □ bsp
                                                       app_power_init();
            i common
                                                      tick_timer_init();
            🖹 🍃 cpu
                                         228
                                                      key_init();
            ∄ 🍃 lib
                                         229
            230
                                                      devices_init();
                                         231
            232
                                                      norfs_init_api();
               /* dac mode init(16, 0); */
/* dac power on(SR_DEFAULT, 1); */
                                         233
                                         234
                        bsp loop.d
                                                      /* test_audio_dac(); */
audio_init();
                                         235
                        device list.c
                                         236
                                         237
                                                      dac_mode_init(31, NULL);
                        init.c
                                                      dac_init_api(SR_DEFAULT, 0);
                                         238
                        main.c
                                         239
                                                       /* test fs(): */
                                                      d mio module init();
                                         240
                                         241
    Headers
                                         242
```

二、SDK应用框架介绍 - 工程主循环入口

3、工程主循环入口

- void app(void);
- app/src/voice toy/toy main.c

```
Management
                                                                                         app\src\voice toy\toy main.c X
                            Files FSymbols Resc
     Projects
                                                                                                                       void app(void)
                                                                                                    72
                                                                                                   73

    ₩orkspace

                                                                                                                                 log_info("voice toy app run!!!\n");
                                                                                                    74
 AD24N voice toy
                                                                                                   75
                                                                                                                                 if (get_up_suc_flag()) {
                                                                                                                                            log info("----device update end----\n");
                                                                                                    76
        77
                                                                                                                                            wdt close();
                                                                                                    78
              app
                                                                                                                                            while (1):
                                                                                                    79
                       ⊟ bsp
                                                                                                   80
                                                                                                   81
                                                                                                                                 vm_isr_response_index_register(IRQ_AUDIO_IDX);
                             ± common
                                                                                                   82
                                                                                                                       #ifdef IRQ AUDIO B IDX
                             ⊕ Cpu
                                                                                                   83
                                                                                                                                  vm isr response index register(IRQ AUDIO B IDX);
                                                                                                   84
                            ib lib
                                                                                                                       #endif
                                                                                                   85
86
87
8
                                                                                                                                 vm_isr_response_index_register(IRQ_TICKTMR_IDX);
                             ⊕ modules
                                                                                                                                 u8 \text{ vol} = 0:
                             + start
                                                                                                                                 u32 res = vm_read(VM_INDEX_VOL, &vol, sizeof(vol));
                       = src
                                                                                                                                 if ((vol <= 31) && (res == sizeof(vol))) {
                                                                                                                                           dac vol(0, vol);
                             in participation with the property of the prop
                                                                                                                                            log info("powerup set vol : %d\n", vol);
                                    E common
                                                                                                   93
                                    ⊕ sh58
                                                                                                   94
                                                                                                                                 work_mode = TOY_MUSIC;
                                    toy idle
                                                                                                                                 /* work mode = TOY MIDI: */
                                                                                                    95
                                                                                                                                 /* work mode = TOY_MIDI_KEYBOARD; */
                                                                                                   96
                                    toy linein
                                                                                                   97
                                                                                                                                 /* work mode = TOY_SPEAKER: */
                                                                                                                                 /* work mode = TOY_LINEIN: */
/* work mode = TOY_RECORD: */
/* work mode = TOY_IDLE: */
                                    toy midi
                                                                                                    98
                                                                                                   99
                                    toy music
                                                                                                 100
                                    toy record
                                                                                                 101
                                                                                                 102
                                                                                                                                 while (1) {
                                    toy softoff
                                                                                                 103
                                                                                                                                           clear all message();
                                                                                                                                           vm_pre_erase();
                                                                                                 104
                                    toy speaker
                                                                                                 105
                                                                                                                                           switch (work mode) {
                                    toy usb slave
                                                                                                                       #if SIMPLE DEC EN
                                                                                                 106
                                                                                                 107
                                                                                                                                            case TOY MUSIC
                                                app config.c
                                                                                                 108
                                                                                                                                                      tov music app():
                                                toy main.c
                                                                                                 109
                                                                                                                                                      break
                                                                                                 110
                                                                                                                       #endif
        Headers
                                                                                                                       #if defined(DECODER_MIDI_EN) && (DECODER_MIDI_EN)
                                                                                                 111
                                                                                                 112
                                                                                                                                            case TOY MIDI:
                                                                                                                                                     toy midi app();
                                                                                                 113
                                                                                                 114
                                                                                                                                                      break:
```

二、SDK应用框架介绍 - 应用循环的作用

涉及文件:

toy_main.c

涉及函数:

- void app(void);
- void toy_music(void);
- void toy_midi(void);
- void toy_midi_keyboard(void);
- void toy_speaker(void);
- void toy_linein(void);
- void toy_record(void);
- void toy_idle(void);
- void toy_usb_slave(void);

二、SDK应用框架介绍 - TickTimer系统节拍的作用

二、SDK应用框架介绍 - TickTimer系统节拍的作用

```
app\bsp\modules\timer\tick timer sys.c X
            void tick_timer_loop()
    75
    76
                g tick cnt ++;
    78
                sys_tick_timer(g_tick_cnt);
    80
                app_timer_loop();
                modules_tick_timer(g_tick_cnt);
    82
    83
                if (0 == (g_tick_cnt % 250)) { //500ms
    84
                    g_tick_cnt = 0;
    86
```

涉及文件:

- tick_timer_sys.c
- tick_timer_modules.c
- toy_main.c

涉及函数:

- void tick_timer_loop(void);
- void tick_timer_ram_loop(void);
- void app_timer_loop(void);

二、SDK新增功能介绍 - ANS降噪算法

主要函数:

void *link_ans_sound(void *p_sound_out, void *p_ans_obuf, u32 sr)

主要参数:

- ◆ ANS_AggressFactor: 噪声前级动态压制
- ◆ ANS_MinSuppress: 噪声后级动态压制
- ◆ ANS_NoiseLevel: 噪声初始等级

涉及文件:

- ans_api.c
- NoiseSuppressLib.h
- libNoiseSuppress_pi32_OnChip.a
- lib_SW_FFT_pi32_OnChip.a

二、SDK新增功能介绍 - ANS降噪算法

```
app\bsp\common\sound effect list\ans\ans api.c X
    117
              void *ans api(void *obuf, void **ppsound, u32 sr)
    118
    119
    120
                   const u32 ans_supprt_sr[2] = {8000, 16000};
                   if (sr != ans_supprt_sr[NS_IS_WIDEBAND]) {
    121
    122
                        log error ("ans not support curr sr %d\n", sr);
    123
                         return NULL:
    124
    125
                   int tolbufsize = NoiseSuppress_QueryBufSize(NS_MODE, NS_IS_WIDEBAND);;
                   log_info("tolbufsize %d %d\n", tolbufsize, sizeof(ans_runbuf));
    126
                  ASSERT (ANS RUN_BUFFSIZE >= tolbufsize) ~ 65536
声后级动态压制,对应定点范围0~65536
int maxtmpbufsize = NoiseSuppress_QueryTempBufSize(NS_MODE, NS_IS_WIDEBAND);
log_info("maxtmpbufsize %d %d\n", maxtmpbufsize, sizeof(ans_tmpbuf));
    127
    128
    129
    130
                   ASSERT (ANS TMP BUFSIZE >= maxtmpbufsize)
   131
    132
                   Int ANS_AggressFactor → (int)(125 * 65536 / 100):/*范围: 1°2, 动态调整, 越大越强(1.25f)*/
    133
                   int ANS_MinSuppress = (int)(10 * 65536 / 100); /*范围: 0~1, 静态定死最小调整, 越小越强(0.1f)*/
    134
                   int ANS_NoiseLevel = (int)(1429 * 1024); /*范围: -100dB -40dB (-75dB) (1429 = (10 (-75/20))*2 23)*/
噪声初始等级,影响算法启动性能
NoiseSuppress_Init(ans_runbuf, ANS_AggressFactor, ANS_MinSuppress, NS_MODE, NS_IS_WIDEBAND, ANS_NoiseLevel);
    135
    136
    137
    138
                   return ans_phy(obuf, ppsound);
    139
    140
    141
    142
               /**@brief 录音文件seek函数
    143
```

二、SDK新增功能介绍 - AUDIO_ADC使用APA口输入

- ◆ 主要流程
- 1、关闭APA

2、初始化Audio ADC

3、使能Audio ADC

二、SDK新增功能介绍 - AUDIO_ADC使用APA输入

1、关闭APA

- ◆ 调用apa_close(),关闭APA功能模 块
- 2、初始化Audio ADC
- ▶ 调用函数audio_adc_init_api(sr, ADC_MIC_APA, MIC_INPUT_ANA3_APAP)初始化Audio ADC

- 3、使能Audio ADC
- ◆ 调用audio_adc_enable(1),使能 audio_adc。
- ◆ 注:
- ◆ a、在第2步,需要关闭APA功能,APA口设置成高阻态;
- ◆ b、使用此功能时,APA不能输出、声音只能从模拟DAC输出;

二、SDK新增功能介绍 - AUDIO_ADC使用DMIC

- **◆ DMIC的使用方法**
- 1、选择数字麦引脚和通道

2、初始化Audio ADC

3、使能Audio ADC

二、SDK新增功能介绍 - AUDIO_ADC使用DMIC

- 1、选择数字麦引脚和通道
- ◆ 修改audio_adc_dmic_hdl结构体, 选择需要数字麦使用的引脚和通道

2、初始化Audio ADC

● 调用函数audio_adc_init_api(sr, DIGITAL_MIC, 0)初始 化Audio_ADC

3、使能Audio ADC

● 调用audio_adc_enable(1),使能
Audio_ADC。声音从数字麦输入
到Audio_ADC

03

SDK应用配置说明

介绍应用功能配置文件以及其作用

三、SDK应用配置说明 - 与过往SDK配置文件差异

◆ AD24N_SDK配置文件

- 1 app_modules.h
- 2 app_config.h
- 3 app_config.c
- 4 cpu_config.c
- ◆ 5、board_cfg.h (新增)

◆过往玩具系列SDK配置文件

- 1 app_modules.h
- 2 app_config.h
- 3 app_config.c
- ◆ 4、cpu_config.c(AW30N_SDK开始沿用)

注:新增的 board_cfg.h文件集合了工程绝大多数的 IO配置;

三、SDK应用配置说明 - app_modules.h

- ◆ app_modules.h 部分配置说明
- ◆ (详情请看SDK文档)
- ◆ 1、各编解码算法、音效算法使能
- ◆ 2、app应用模式使能
- 3、芯片差异相关外设功能使能
- ◆ 4、isd_config_ini.c功能使能

三、SDK应用配置说明 - app_config.h

- ◆ app_config.h 部分配置说明
- ◆ (详情请看SDK文档)
- ◆ 1、按键音开关
- ▶ 2、各种按键功能开关,如AD、红外、矩阵按 键等配置
- ◆ 3、红外驱动选择
- ◆ 4、系统记忆功能驱动选择
- 5、外挂flash功能配置
- ◆ 6、SD卡功能开关
- ◆ 7、USB模块配置
- ▶ 8、PMU功能配置

```
app\src\voice toy\app config.h X
    12
    13
    14
    15
    16
    17
    18
    19
           #define KEY_AD_EN
    20
           #define KEY MATRIX EN
    21
            #define KEY IR EN
    23
            #define KEY TOUCH EN
    24
    25
    26
    27
    28
    29
            #define STANDARD IR
    30
            #define SEL IR MODE
    31
    32
    33
    34
    35
            #define NO VM
    36
            #define USE NEW VM
    37
            #define USE OLD VM
           #define SYS MEMORY SELECT
    38
    39
    40
    41
                                                       1//1:flash 选择硬件spi; 0:flash use soft spi
    43
           #define TCFG_FLASH_SPI_TYPE_SELECT
            #define SPI SD IO REUSE
                                                       DISABLE // SPI FLASH与SD卡模块IO复用使能
    45
                                                       DISABLE//外挂flash运行1bit模式
    46
            #define TFG_SPI_UNIDIR_MODE_EN
           #if TFG SPI_UNIDIR_MODE_EN
            #define HW_SPI_WORK_MODE
                                                        SPI MODE UNIDIR 1BIT
           #define SOFT SPI WORK MODE
                                                       SPI MODE UNIDIR 1BIT//只支持双向或单线
    50
            #define SPI READ DATA WIDTH
    51
            #define HW SPI WORK MODE
                                                        SPI MODE BIDIR 1BIT
                                                       SPI_MODE_BIDIR_1BIT//只支持双向或单线
            #define SOFT SPI WORK MODE
           #define SPI_READ_DATA_WIDTH
    55
            #endif
    56
    57
            #if TCFG_FLASH_SPI_TYPE_SELECT
    58
           #define SPI HW NUM
    59
           #else
    60
            #define SPI_HW_NUM
```

三、SDK应用配置说明 - app_config.c

- app_config.c 部分配置说明
- (详情请看SDK文档)
- 1、中断优先级配置
- 2、系统flash_dtr功能配置
- 3、malloc内部断言配置
- 4、midi与midi琴相关配置
- 5、sd挂起时间配置
- 6、异常配置
- 通用定时器功能配置

```
打印开关
```

```
app\src\voice toy\app config.c X
            const int IRQ_AUDIO_IP
            const int IRQ AUDAC IP
    11
            const int IRQ AUAPA IP
            const int IRQ_AUADC_IP
            const int IRQ_DECODER_IP =
            const int IRQ WFILE IP
            const int IRQ ADC IP
            const int IRQ_ENCODER_IP = 0
            const int IRQ TICKTMR IP = 3;
            const int IRQ USB IP
            const int IRQ_SD_IP
            const int IRQ PMU TIMER1 IP = 0;
            const int IRQ_UARTO_IP
            const int IRQ UART1 IP
            const int IRQ ALINKO IP
    25
    26
    27
28
            const u8 config_spi_code_user_cache = 1;//sfchtcode \( \square\)
    30
    31
           #if (CONFIG FLASH DTR EN)
            const u8 sfc0 dtr mode en = 1
            const u8 sfc0_dtr_mode_en = 0;
    34
            #endif
            const s8 sfc0_dtr_dummy_num = -1;//查看flash文档填入ini对应线宽的dummy
            const u32 sfc0_dtr_clk_freq = 1920000000;//查看flash文档*2
    37
            const u8 sfc0 continue mode en = 0;
```

三、SDK应用配置说明 - cpu_config.c

- ◆ cpu_config.c 部分配置说明
- ◆ (详情请看SDK文档)
- ◆ 1、audio模块高/低电压模式配置
- ◆ 2、audio模块工作依赖常量配置
- ◆ 3、audio_adc配置

```
app\src\voice toy\sh58\cpu config.c X
          #include "typedef.h"
                    供电场是下config adda voltage mode配置不同的值:
                     世里到iovdd&vbat,丁作更压在1.8v
英里时,jovdd需要和vabt短接;
                              《响到audio dac & audio adc的性能;不会对APA性能产生影响
    10
          const unsigned char config_adda_low_voltage_mode = 0;
    11
   12
   13
    14
    15
    16
   17
                          18
                    AD24N AUDIO & APA 工作依赖常里
    19
   20
                                        Audio DAC
                                                     Audio ADC
                                                                   Audio APA
   21
22
23
24
                                                                    4
              au const apa en
              au const dac digital en
                                        1
   25
   26
27
              au const dac analog en
                                        1
   28
29
30
              au const adda common en
   31
          const u8 au_const_apa_en = 1;
   32
33
          const u8 au const dac digital en = 1;
          const u8 au const dac analog en = 1;
    34
          const u8 au_const_adda_common_en = 1;
```

三、SDK应用配置说明 - board_cfg.h

- ◆ board_cfg.h 部分配置说明
- ◆ (详情请看SDK文档)
- ◆ 1、串口打印IO配置
- ◆ 2、按键模块IO配置
- ◆ 3、唤醒IO配置
- ◆ 4、外挂资源flashIO配置
- ◆ 5、SD模块IO配置

```
app\src\voice toy\sh58\board cfg.h X
           #define UART OUTPUT CH PORT
                                                IO PORTA 04
    10
    11
    12
    13
    14
    15
                                                ADC CH PA1
            #define AD KEY CH SEL
    16
            //IR KEY
           #define IR KEY IO SEL
                                                IO PORTA 09
    17
                                                DISABLE/TADKEY 和 红外10复用
    18
           #define TCFG ADKEY IR IO REUSE
    19
            //MATRIX KEY
    20
           ///X轴 io 要求是AD口,详细AD口看adc dry.h
    21
           #define X_ADC_CH_SEL
                                                 {ADC CH PA2, ADC CH PA3, ADC CH PA5}
            ///Y轴 io 要求是普通IO口
    22
           #define Y PORT SEL
    23
                                                {IO PORTA 10, IO PORTA 11}
    24
            //TOUCH KEY
    25
                                                {IO PORTA 09, IO PORTA 10, IO PORTA 11}
            #define TOUCH KEY SEL
    26
    27
    28
    29
    30
    31
           #define POWER WAKEUP IO
                                                IO PORTA 01
    32
    33
    34
    35
    36
    37
            //port select for hardware spi
    38
            //support any ig
    39
           #define EXFLASH CS PORT SEL
                                                IO PORTA 05
    40
           #define EXFLASH CLK PORT SEL
                                                IO PORTA 11
           #define EXFLASH DO PORT SEL
    41
                                                IO PORTA 12
           #define EXFLASH D1 PORT SEL
                                                IO PORTA 10
    42
```

三、SDK应用配置说明 - AUDIO ADC

◆ 1、AUDIO_ADC数字麦相关配置

三、SDK应用配置说明 - AUDIO DAC & APA

◆ 2、DAC&APA采样率相关配置

◆ 3、APA调制模式配置

```
include lib\cpu\sh58\audio dac cpu.h X
    66
                   DACO CHPHSET
                   DACO DITHER (3)
    68
    69
    70
            #define DAC CON1 DEFAULT
    71
    72
                   DAC1_DFIFO_SYNC
    73
74
    75
76
            #define SR DEFAULT
                                  32000
    77
    78
```

```
include lib\cpu\sh58\audio apa cpu.h X
                                            (1 << 3)
(2 << 3)
            #define APAO DIFF SNR
    31
            #define APAO DIFF THD
    33
            #define APA1 IIR PAR(n)
                                             ((n \& 0xf) << 20)
    34
35
    36
37
            #define APA_PWM_192M_EN
            #define APA DSM CLK MODE
                                                                  352.9kHz
                                                                                low glk
            // #define APA PWM MODE
    38
    39
            #define APA PWM MODE
                                          APAO DIFF SNR
    41
            #define APA_CONO_DEFAULT
                                         (APA PWM MODE)
          □ typedef struct _APA_PHY_PARA {
```


04

应用开发注意事项

介绍开发、调试、生产注意事项

四、应用开发注意事项

开发使用的样片,必须 经过我司一拖二烧写器 进行校准

烧写器需要对芯片内部LRC时钟做校准,该项在芯片出厂阶段不做校准;

谢谢观看

AD系列32位芯片 杰理开源社区 服务

此二维码365天内有效 (2025-10-08前)

