

Chapter2: Boolean Algebra and Logic Gates

Lecture 2- Boolean Functions, Different Representations, and Complement of a Function

Engr. Arshad Nazir, Asst Prof Dept of Electrical Engineering SEECS

Objectives

- Study Boolean Functions and different representations of a Boolean function
- Algebraic manipulations of Boolean functions
- Complement of a function

Fall 2021

Boolean Functions

- A Boolean function is an expression described by:
 - binary variables
 - > constants 0 and 1
 - ➤ logic operation symbols
- For a given value of the binary variables the result of the function can either be 0 or 1.
- An example function:
 - $F_1 = x + y'z$
 - \triangleright F₁ is equal to 1 if x is equal to 1 or if both y' and z equal to 1. F₁ is equal to 0 otherwise

Function as a Truth Table

- A Boolean function can be represented in a truth table.
 - ➤ A truth table is a list of combinations of 1's and 0's assigned to the binary variables and a column that shows the value of the function for each binary combination

x	y	Z	$\mathbf{F_1} = \mathbf{x} + \mathbf{y}'\mathbf{z}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Fall 2021

Function as a Gate Implementation

• A Boolean function can be transformed from an algebraic expression into circuit diagram composed of logic gates.

$$F_1 = x + y'z$$

> The logic-circuit diagram for this function is shown below:

Fig. 2-1 Gate implementation of $F_1 = x + y'z$

Gate Implementation (Examples)

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Fall 2021

Gate Implementation (Examples)

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Fall 2021

Functions Minimization

- Functions in algebraic form can be represented in various ways.
 - Remember the postulates and theorems that allow us to represent a function in various ways.
- We must keep in mind that the algebraic expression is representative
 of the gates and circuitry used in a hardware piece.
 - > We want to be able to minimize circuit design to reduce cost, power consumption, and package count, and to increase speed.
- By manipulating a function using the postulates and theorems, we may be able to minimize an expression.

Non-Minimized Function

• The following is an example of a non-minimized function:

$$F_2 = x'y'z + x'yz + xy'$$

Minimization of the F₂

The function can be minimized as follows:

$$X'y'z + x'yz + xy' =$$

$$= x'z \cdot (y' + y) + xy' \qquad \text{postulate} \qquad 4(a)$$

$$= x'z \cdot 1 + xy' \qquad 5(a)$$

$$= x'z + xy' \qquad 2(b)$$

Fall 2021

Implementations of Boolean Function F₂

Non-minimized
 Function

Minimized Function

Fig. 2-2 Implementation of Boolean function F_2 with gates

Fall 2021

Algebraic Manipulation

- By reducing the number of terms, the number of literals (single variable) or both in a Boolean function, it is possible to obtain a simpler circuit, as each term requires a gate and each variable within the term designates an input to the gate.
- For example consider the following function F_1 $F_1 = x'y'z + x'yz + xy' \text{ which contains 3 terms and 8 literals}$ After simplification the minimized function is $F_2 = x'z + xy'$ and it contains 2 terms and 4 literals.
- The reduced function contains lesser terms and literals. It can now be implemented with fewer gates i.e optimized design.

Example Manipulations

The following are some example manipulations:

1.
$$x(x' + y) = xx' + xy = 0 + xy = xy$$

2. $x + x'y = (x + x')(x + y) = 1(x + y) = x + y$
3. $(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$
4. $xy + x'z + yz = xy + x'z + yz(x + x')$
 $= xy + x'z + xyz + x'yz$
 $= xy(1 + z) + x'z(1 + y)$
 $= xy + x'z$
5. $(x + y)(x' + z)(y + z) = (x + y)(x' + z)(y + z + x.x')$
 $= (x + y)(x' + z)(y + z + x)(y + z + x')$
 $= (x + y)(x' + z)(x' + z)(x' + z + y)$
 $= (x + y)(x' + z)$

Complement of a Function

- The complement of a function F is F'.
 - ➤ It is obtained by interchanging 0's for 1's and 1's for 0's in the value of F.
- The complement of a function may be derived algebraically through DeMorgan's theorem.
 - \triangleright Theorem 5(a) (DeMorgan): $(x + y)' = (x' \cdot y')$
 - Theorem 5(b) (DeMorgan): $(x \cdot y)' = (x' + y')$
- Example:

>
$$F_1 = x'yz' + x'y'z$$

 $F_1' = (x'yz' + x'y'z)'$
 $= (x + y' + z)(x + y + z')$

Complement of a Function (Example)

```
• If F_1 = A+B+C

• Then F_1'=(A+B+C)'

= (A+X)' let B+C=X

= A'X' by DeMorgan's

= A'(B+C)'

= A'(B'C') by DeMorgan's

= A'B'C' associative
```

 The generalized expression for DeMorgan's law for a function with multiple terms is

Complement of a Function (More Examples)

```
    F=x'yz' + x'y'z
    F'=(x'yz' + x'y'z)'
    F'= (x'yz')' (x'y'z)'
    = (x+y'+z) (x+y+z')
    F=[x(y'z'+yz)]
    F'=[x(y'z'+yz)]'
    F'= x' + (y'z'+yz)'
    = x' + (y'z')'.(yz)'
    = x' + (y+z) (y'+z')
```

- A simpler procedure
 - ➤ take the dual of the function (interchanging AND and OR operators and 1's and 0's) and complement each literal. {DeMorgan's Theorem}
 - > x'yz' + x'y'zThe dual of function: $F_{D=}(x'+y+z')(x'+y'+z)$ Complement of each literal: F' = (x+y'+z)(x+y+z')

Representation Conversion

- Need to transition between Boolean expression, truth table, and circuit (symbols).
- Converting between truth table and expression is easy.
- Converting between expression and circuit is easy.
- More difficult to convert to truth table.

Different Representations of a Boolean Function

- Standard Forms are sum-of-products and product-of-sums
 - ➤ Sum-of-Products (SOP) i.e F(X,Y,Z)=X'+YZ
 - \triangleright Product-of-Sums (POS) i.e F(X,Y,Z)=(X'+Y)Z
- Canonical Forms are sum-of-minterms (SSOP) and product-of-maxterms (SPOS)
 - > Standard Sum-of-Products (SSOP) i.e F(X,Y,Z)=X'Y'Z+X'YZ'+XYZ
 - \triangleright Standard Product-of-Sums (SPOS) i.e F(X,Y,Z)=(X'+Y'+Z')(X'+Y'+Z)(X+Y+Z)
- Non-Standard or Mixed Forms are those neither in standard nor canonical forms
 i.e F(X,Y,Z)=X'(Y'Z+YZ')+YZ

The End