Lecture 4: Convergence and Consistency

Tianpei Xie

Jul. 26th., 2015

Contents

1	Rec	call: Modes of Convergence	2				
	1.1	Definitions	2				
	1.2	Modes of Convergence via Tail Support and Width	3				
	1.3	Relationships between Different Modes of Convergence	4				
	1.4	Comparison	6				
2	Consistency						
	2.1	Weak and Strong Consistency	7				
		Consistency in Statistical Learning Theory					
3	Laws of Large Number						
	3.1	Weak Laws of Large Number	10				
	3.2	Strong Laws of Large Number	10				
	3.3	Fisher Consistency	10				
4	Weak Convergence						
	4.1	Definitions	11				
		Properties					

1 Recall: Modes of Convergence

1.1 Definitions

• Remark (Two Basic Modes of Convergence) [Royden and Fitzpatrick, 1988, Tao, 2011]

1. Definition (Pointwise Convergence)

We say that f_n converges to f **pointwise** if, for any $x \in X$ and $\epsilon > 0$, there exists N > 0 (that **depends** on ϵ and x) such that for all $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$. Denoted as $f_n(x) \to f(x)$.

2. Definition (*Uniform Convergence*)

We say that f_n converges to f <u>uniformly</u> if, for any $\epsilon > 0$, there exists N > 0 (that **depends** on ϵ only) such that for all $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$ for every $x \in X$. Denoted as $f_n \to f$, uniformly.

Unlike pointwise convergence, the time N at which $f_n(x)$ must be permanently ϵ -close to f(x) is not permitted to depend on x, but must instead be chosen uniformly in x.

• Remark (Modes of Convergence of Measurable Functions)

When the domain X is equipped with the structure of a measure space (X, \mathcal{B}, μ) , and the functions f_n (and their limit f) are measurable with respect to this space. In this context, we have some additional modes of convergence:

1. Definition (Pointwise Almost Everywhere Convergence)

We say that f_n converges to f pointwise almost everywhere if, for μ -almost everywhere $x \in X$, $f_n(x)$ converges to f(x). It is denoted as $f_n \stackrel{a.e.}{\longrightarrow} f$. In probability, it is called almost sure convergence or convergence with probability 1. It is denoted as $f_n \stackrel{a.s.}{\longrightarrow} f$.

In other words, there exists a null set E, $(\mu(E) = 0)$ such that for any $x \in X \setminus E$ and any $\epsilon > 0$, there exists N > 0 (that depends on ϵ and x) such that for all $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$.

2. Definition (Uniformly Almost Everywhere Convergence) [Tao, 2011]

We say f_n converges to f <u>uniformly almost everywhere</u>, <u>essentially uniformly</u>, or $\underline{in\ L^{\infty}\ norm}$ if, for every $\epsilon > 0$, there exists N such that for every $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$, for μ -almost every $x \in X$.

That is, $f_n \to f$ uniformly in $x \in X \setminus E$, for some E with $\mu(E) = 0$.

We can also formulate in terms of L^{∞} norm as

$$||f_n(x) - f(x)||_{L^{\infty}(X)} \stackrel{n \to \infty}{\longrightarrow} 0,$$

where $\|f\|_{L^{\infty}(X)} = \operatorname{ess\,sup}_x |f(x)| \equiv \inf_{\{E: \mu(E)=0\}} \sup_{x \in X \setminus E} |f(x)|$ is the *essential bound*. It

is denoted as $f_n \stackrel{L^{\infty}}{\to} f$.

3. **Definition** (Almost Uniform Convergence) [Tao, 2011]

We say that f_n converges to f <u>almost uniformly</u> if, for every $\epsilon > 0$, there exists an **exceptional set** $E \in \mathcal{B}$ of measure $\mu(E) \leq \epsilon$ such that f_n converges **uniformly** to f on the **complement** of E.

That is, for arbitrary δ there exists some E with $\mu(E) \leq \delta$ such that $f_n \to f$ uniformly in $x \in X \setminus E$.

4. Definition (Convergence in L^1 Norm)

We say that f_n converges to f <u>in L^1 norm</u> if the quantity

$$||f_n - f||_{L^1(X)} = \int_X |f_n(x) - f(x)| d\mu \stackrel{n \to \infty}{\longrightarrow} 0.$$

In probability theory, it is called the <u>convergence in mean</u>. Denoted as $f_n \stackrel{L^1}{\to} f$.

5. Definition (Convergence in Measure)

We say that f_n converges to f in measure if, for every $\epsilon > 0$, the measures

$$\mu\left(\left\{x \in X : |f_n(x) - f(x)| \ge \epsilon\right\}\right) \stackrel{n \to \infty}{\longrightarrow} 0.$$

Denoted as $f_n \stackrel{\mu}{\to} f$.

In probability theory, it is called *convergence in probability* and is denoted as $f_n \stackrel{p}{\to} f$.

1.2 Modes of Convergence via Tail Support and Width

• Remark (Tail Support and Width)

Definition Let $E_{n,m} := \{x \in X : |f_n(x) - f(x)| \ge 1/m\}$. Define the N-th tail support set

$$T_{N,m} := \{x \in X : |f_n(x) - f(x)| \ge 1/m, \ \exists n \ge N\} = \bigcup_{n \ge N} E_{n,m}.$$

Also let $\mu(E_{n,m})$ be the <u>width</u> of n-th event $\mathbb{1}\{E_{n,m}\}$. Note that $T_{N,m} \supseteq T_{N+1,m}$ is **monotone nonincreasing** and $T_{N,m} \subseteq T_{N,m+1}$ is **monotone nondecreasing**.

1. The **pointwise convergence** of f_n to f indicates that for every x, every $m \ge 1$, there exists some $N \equiv N(m,x) \ge 1$ such that $T_{N,m}^c \ni x$ or $T_{N,m} \not\ni x$. Equivalently, **the tail** support shrinks to emptyset:

$$\bigcap_{N\in\mathbb{N}} T_{N,m} = \lim_{N\to\infty} T_{N,m} = \limsup_{n\to\infty} E_{n,m} = \emptyset, \quad \text{for all } m.$$

2. The pointwise almost everywhere convergence indicates that there exists a null set F with $\mu(F) = 0$ such that for every $x \in X \setminus F$ and any $m \geq 1$, there exists some $N \equiv N(m,x) \geq 1$ such that $(T_{N,m} \setminus F) \not\ni x$. Equivalently, the tail support shrinks to a null set. Note that it makes no assumption on $(T_{N,m} \cap F)$.

$$\lim_{N \to \infty} T_{N,m} \setminus F = \limsup_{n \to \infty} E_{n,m} \setminus F = \emptyset, \quad \text{for all } m.$$

$$\Leftrightarrow \bigcap_{N \in \mathbb{N}} T_{N,m} = \lim_{N \to \infty} T_{N,m} = F$$

$$\Leftrightarrow \mu \left(\lim_{N \to \infty} T_{N,m} \right) = \mu \left(\bigcap_{N \in \mathbb{N}} T_{N,m} \right) = 0$$

- 3. The *uniform convergence* indicates that for each $m \geq 1$, there exists some $N(m) \geq 1$ (not depending on x) such that $T_{N,m} = \emptyset$. (i.e. $T_{N,m} \not\ni x$ for all $x \in X$.) So **the tail** support is an empty set
- 4. The *uniformly almost everywhere convergence* indicates that there exists some null set F with $\mu(F) = 0$ such that for each $m \ge 1$, there exists some $N(m) \ge 1$ (not depending on x) such that $(T_{N,m} \setminus F) = \emptyset$. (i.e. $T_{N,m} \not\ni x$ for all $x \in X \setminus F$.) Equivalently, the tail support is a null set:

$$T_{N,m} = F$$

$$\Leftrightarrow \mu(T_{N,m}) = 0$$

5. The **almost uniform convergence** indicates that for every δ , there exists some measurable set F_{δ} with $\mu(F_{\delta}) < \delta$ such that for each $m \geq 1$ there exists some $N(m) \geq 1$ (not depending on x) such that $(T_{N,m} \setminus F_{\delta}) = \emptyset$. (i.e. $T_{N,m} \not\ni x$ for all $x \in X \setminus F_{\delta}$.) Equivalently, **the measure of tail support shrinks to zero**:

$$\mu\left(T_{N,m}\right) \leq \delta \quad \Leftrightarrow \quad T_{N,m} = F_{\delta}$$

$$\lim_{N \to \infty} \mu\left(T_{N,m}\right) = 0$$

6. The *convergence in measure* indicates that for any $m \ge 1$ and any $\delta > 0$, there exists $N \equiv N(m, \delta) \ge 1$ such that for all $n \ge N$, the <u>width</u> of n-th event <u>shrinks to zero</u>:

$$\mu(E_{n,m}) \le \delta$$

$$\lim_{n \to \infty} \mu(E_{n,m}) := \lim_{n \to \infty} \mu\left(\left\{x \in X : |f_n(x) - f(x)| \ge \epsilon\right\}\right) = 0$$

1.3 Relationships between Different Modes of Convergence

• **Remark** This diagram shows the *relative strength* of different *modes of convergence*. The direction arrows $A \to B$ means "if A holds, then B holds".

Moreover, here are some counter statements:

- $-L^{\infty} \not\to L^1$: see the "Escape to Width Infinity" example below.
- uniform $\neq L^1$: see the "Escape to Width Infinity" example below.
- $-L^1 \not\rightarrow uniform$: see the "Typewriter Sequence" example below.

- **pointwise** $\neq L^1$: see the "Escape to Horizontal Infinity" example below.
- **pointwise** \rightarrow **uniform**: see the " $f_n = x/n$ " example above.
- For finite measure space, $pointwise\ a.e.\ \rightarrow almost\ uniform$: see the Egorov's theorem.
- almost uniform $\neq L^1$: see the "Escape to Vertical Infinity" example below.
- almost uniform $\not\to L^{\infty}$: see the "Escape to Vertical Infinity" example below. The converse is true, however.
- For bounded $f_n \leq G$, a.e. $\forall n$, then **pointwise a.e.** $\rightarrow L^1$: see *Dominated Convergence Theorem*.
- $L^1 \not\to pointwise \ a.e.$: see the "Typewriter Sequence" example below.
- in measure \neq pointwise a.e.: see the "Typewriter Sequence" example below.
- $-L^1 \rightarrow$ convergence in integral: by triangle inequality. Note that the other modes of convergence does not directly lead to convergence in integral.
- Remark For finite measure space such as the probability space,

1.4 Comparison

 Table 1: Comparison of Modes of Convergence

	tail support	width	$\begin{array}{c} maximum \\ variation \end{array}$	subgraph
definition	$T_{N,\epsilon} = \bigcup_{n \ge N} E_{n,\epsilon}$	$\mu(E_{n,\epsilon})$	$\sup_{x \in X} \{ f_n(x) - f(x) \}$	$\Gamma(f_n) = \{(x, t) : 0 \le t \le f_n(x)\}$
pointwise	$\bigcap_{N=1}^{\infty} T_{N,\epsilon} = \emptyset$		$or, \to 0 \text{ on } X$	
$point ext{-}wise \ a.e.$	$\mu\left(\bigcap_{N=1}^{\infty} T_{N,\epsilon}\right) = 0$		$or, \to 0 \text{ on } X \setminus E$	
uniform	$T_{N,\epsilon} = \emptyset$		equivalently, $\rightarrow 0$ on X	
$egin{array}{c} uniform \ a.e. \ / \ L^{\infty} \ norm \end{array}$	$\mu\left(T_{N,\epsilon}\right) = 0$		equivalently, $\rightarrow 0$ on $X \setminus E$	
$almost \ uniform$	$\lim_{N\to\infty}\mu\left(T_{N,\epsilon}\right)=0$		$\begin{array}{c} \text{or,} \to 0 \text{ on} \\ X \setminus E \end{array}$	
in measure		$\lim_{n\to\infty}\mu\left(E_{n,\epsilon}\right)=0$	or, $\to 0$ on $X \setminus E$	
L^1 $norm$			$\rightarrow 0$ and support fixed or non-increasing	area of $\Gamma(f_n) = \mathcal{A}(\Gamma(f_n))$ $\lim_{n \to \infty} \mathcal{A}(\Gamma(f_n - f)) = 0$

2 Consistency

2.1 Weak and Strong Consistency

• **Definition** (*Weak Consistency*) [Lehmann and Casella, 1998, Resnick, 2013] Suppose X_1, \dots, X_n, \dots are *i.i.d. random variables* on $(\Omega, \mathcal{F}, \mathcal{P}_{\theta})$ with $\theta \in \Theta$ being parameter of distribution \mathcal{P}_{θ} . Let the *estimand* be $g(\theta)$ and the estimator be $\delta_n \equiv \delta_n(X_1, \dots, X_n)$, which is also a random variable.

A sequence of estimator δ_n of $g(\theta)$ is **(weak)** consistent if for every $\theta \in \Theta$,

$$\delta_n \stackrel{p}{\to} q(\theta)$$
.

i.e. δ_n converges to $g(\theta)$ in probability for every parameter θ .

• Remark In other word, the statistic

$$\widehat{g}_n := \widehat{g}_n(X_1, \dots, X_n)$$

is **consistent**, if for every $\theta \in \Theta$, any $\epsilon, \delta > 0$, $\exists N = N(\epsilon, \delta) \in \mathbb{N}$, such that for all $n \geq N$

$$\mathcal{P}\left(\left\{\omega \in \Omega : |\widehat{g}_n(\omega, \theta) - g(\theta)| \ge \epsilon\right\}\right) < \delta.$$

• In constrasts, we can define the strong consistency based on *pointwise almost everywhere* (almost sure) convergence.

Definition (*Strong Consistency*) [Lehmann and Casella, 1998, Resnick, 2013] A sequence of estimator δ_n of $g(\theta)$ is *strong consistent* if for every $\theta \in \Theta$,

$$\delta_n \stackrel{a.s.}{\to} g(\theta).$$

i.e. δ_n converges to $g(\theta)$ almost surely for every parameter θ .

• Remark In other word, the statistic

$$\widehat{g}_n := \widehat{g}_n(X_1, \dots, X_n)$$

is **strong consistent**, if for every $\theta \in \Theta$, any $\epsilon > 0$,

$$\mathcal{P}\left(\bigcap_{N\geq 1} \left\{\omega \in \Omega : \exists n \geq N \text{ such that } |\widehat{g}_n(\omega, \theta) - g(\theta)| \geq \epsilon \right\}\right) = 0.$$

$$\Rightarrow \mathcal{P}\left(\limsup_{n \to \infty} \left\{\omega \in \Omega : |\widehat{g}_n(\omega, \theta) - g(\theta)| \geq \epsilon \right\}\right) = 0.$$

• Remark (Consistency = Asymptotic Analysis)

The **consistency** property of a statistic is based on **the asymptotic analysis** of the \mathscr{F} -measurable functions (X_1, X_2, \ldots) . It states that **the statistical estimator** will **converge** to <u>the true value</u> of the <u>estimand</u>, given <u>infinite amount</u> of data. So the consistency statement is to say that the estimator will **reveal the ground truth** given enough data.

The asymptotic random variable such as $(\limsup_n X_n)$, $(\liminf_n X_n)$, $\lim_{n\to\infty} \frac{S_n}{n}$ are all tail random variables, i.e. they are measurable with respect to tail σ -algebra \mathscr{T} . They tends to behave regularly given that all samples are i.i.d.

7

• We distinguish the consistency with the unbiasedness

Definition (Unbiasedness)

An estimator $\delta(X)$ of $g(\theta)$ is **unbiased** if

$$\mathbb{E}_{\mathcal{P}_{\theta}}\left[\delta(X)\right] = g(\theta), \quad \forall \, \theta \in \Theta$$

• Remark The statistic is unbiased if it fits a linear functional equation

$$\int_{\Omega} \delta(X(\omega)) \ d\mathcal{P}_{\theta}(\omega) = g(\theta), \quad \forall \theta \in \Theta$$

ullet Remark ($Consistency\ vs.\ Unbiasedness$)

In general, there is **no direct relationship** between consistency and unbiaseness:

- An estimator is **unbiased** if it is **centered** around the true value. It does not guarantee that when the sample size increases, the estimator **itself** will **converge** to its **mean** value $g(\theta)$ for any choice of $\theta \in \Theta$.

For instance, the samples (X_n) are independent uniformly distributed in a unit circle centered at 0, each sample is an estimator of constant $\theta_0 = 0$. The expected value of X_n is 0 so each X is **unbiased**. But X_n does not converge to 0 in any sense.

- An estimator is **consistent** if it **converges to** the true value. It does not guarantee that (X_n) are distributed around the true value for each n.

For instance, the sample $X_n(\omega) = \frac{1}{n}\omega$. We see that $X_n \to 0$ almost surely, but

$$\int_{\Omega} \left[X_n(\omega) - g(\theta) \right] d\mathcal{P}_{\theta}(\omega) = \frac{1}{n}$$

is **nonzero** for each n. So (X_n) is **consistent** but **biased**.

In other word, the *unbiasedness* is about the *distribution* of estimators $\{\widehat{g}_n\}$, while the *consistency* is about the *trends* of estimators \widehat{g}_n .

• Remark (Consistency is just Approximation)

The notion of consistency describes the ideal behavior of estimator. But a consistency performance just provides an approximation in theory, since most asymptotic result only works when $n \to \infty$, which is impractical.

• Theorem 2.1 (Gilvenko-Cantelli Theorem)[Devroye et al., 2013, Resnick, 2013] Let Z_1, \ldots, Z_n be i.i.d. real valued random variables with distribution functional $F(\lambda) = \mathcal{P}[Z \leq \lambda]$. Denote the standard empirical distribution functional by

$$\widehat{F}_n(\lambda) \equiv \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ [Z_i \le \lambda] \right\}.$$

Then for any $\lambda \in \mathbb{R}$,

$$\widehat{F}_n(\lambda) \stackrel{a.s.}{\to} F(\lambda),$$

that is, $\widehat{F}_n(\lambda)$ is strongly consistent.

• Remark It is shown that

$$\mathcal{P}\left\{\sup_{\lambda\in\mathbb{R}}\left|F(\lambda)-\widehat{F}_n(\lambda)\right|\geq\epsilon\right\}\leq 8(n+1)\exp\left(-n\epsilon^2/32\right),\,$$

and, in particular, by the Borel-Cantelli lemma,

$$\mathcal{P}\left(\limsup_{n\to\infty}\left\{\omega:\sup_{\lambda\in\mathbb{R}}\left|F(\lambda)-\widehat{F}_n(\lambda,\omega)\right|\geq\epsilon\right\}\right)=0$$

Note that we may define $\nu(A) = \mathcal{P} \circ Z^{-1}(A)$ as the induced measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, and let $\mathcal{A} = \{(-\infty, \lambda], \lambda \in \mathbb{R}\}$, then it is equivalent to

$$\mathcal{P}\left\{\sup_{A\in\mathcal{A}\subset\mathcal{B}}|\nu(A)-\nu_n(A)|\geq\epsilon\right\}\leq 8(n+1)\exp\left(-n\epsilon^2/32\right)$$

2.2 Consistency in Statistical Learning Theory

• Finally, we introduce similar notion of consistency used in *statistical learning*.

Definition (Bayes Error) [Devroye et al., 2013]

Given a sequence of i.i.d. training variables $\mathcal{D}_n \equiv \{(X_i, Y_i), 1 \leq i \leq n\}$ on $(\Omega, \mathscr{F}, \mathcal{P})$ and a sequence of **classification rules** $g_n \equiv g_n(X; X_1, \ldots, X_n)$ such that the error probability is defined as

$$L_n \equiv \mathcal{P} \left\{ g_n(X, \mathcal{D}_n) \neq Y | \mathcal{D}_n \right\}.$$

The optimal error probability is given by the **Bayes error**

$$L^* = \inf_{g} \mathcal{P} \left\{ g(X) \neq Y \right\}.$$

• Definition (Consistent Classification Rules)

A classification rule is *consistent (asymoptotically Bayes-risk efficient)* for a certain distribution $\mathcal{P}(X,Y)$ if

$$\mathbb{E}_{\mathcal{P}}[L_n(g_n)] \equiv \mathcal{P}\{g_n(X,\mathcal{D}_n) \neq Y\} \to L^*, \text{ as } n \to \infty$$

Since $1 \ge L_n \ge L^*$, the above is equivalent to **convergence** in **probability**

$$\lim_{n \to \infty} \mathcal{P}\left\{L_n(g_n) - L^* \ge \epsilon\right\} = 0.$$

Also the classification rule is the **strongly consistent** if

$$L_n \to L^*$$
 a.s.

- Remark Note that for bounded continuous L_n , $\mathbb{E}_{\mathcal{P}}[L_n(g_n)] \to L^*$, as $n \to \infty$ means that $L_n \leadsto L^*$ in distribution. It implies convergence in probability since the limiting random variable L^* is a constant.
- \bullet A stronger version of consistency when the underlying distribution $\mathcal P$ is unknown

Definition (Universal Consistency)

A sequence of classification rules is called <u>universally consistent</u> (strongly) consistent if it is (strongly) consistent for any distribution $\mathcal{P}(X,Y)$, i.e.

$$\lim_{n \to \infty} \mathcal{P}\left\{L_n(g_n) - L^* \ge \epsilon\right\} = 0, \quad \forall \, \mathcal{P} \text{ on } (\Omega, \mathscr{F})$$

and

$$\mathcal{P}\left\{\limsup_{n\to\infty}\left\{L_n-L^*\geq\epsilon\right\}\right\}=0,\quad\forall\,\mathcal{P}\text{ on }(\Omega,\mathscr{F}).$$

3 Laws of Large Number

3.1 Weak Laws of Large Number

3.2 Strong Laws of Large Number

3.3 Fisher Consistency

• A different type of consistency is *Fisher consistency*:

Definition Fisher Consistency

Suppose X_1, \dots, X_n, \dots are i.i.d. random variables on $(\Omega, \mathcal{F}, \mathcal{P}_{\theta})$ with $\theta \in \Theta$ being parameter of distribution \mathcal{P}_{θ} . If an estimator of $g(\theta)$, $\delta_n \equiv \delta_n(X_1, \dots, X_n)$ can be represented as functional of empirical distributions

$$\widehat{\mathcal{P}}_n X(\lambda) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ X_i \le \lambda \right\}$$

such as $\delta'_n \equiv \delta'(\widehat{\mathcal{P}}_n X)$. Then the estimator δ'_n of $g(\theta)$ is **Fisher consistent** if

$$\delta'(\mathcal{P}_{\theta}) = g(\theta)$$

or equivalently under the strong law of large numbers, $\widehat{\mathcal{P}}_nX(\lambda) \to \mathcal{P}_{\theta}(\lambda)$ almost surely, so

$$\delta' \left(\lim_{n \to \infty} \widehat{\mathcal{P}}_n X \right) = g(\theta)$$

• **Remark** As long as the X_i are exchangeable, an estimator δ defined in terms of the X_i can be converted into an estimator δ' that can be defined in terms of $\widehat{\mathcal{P}}_n$ by averaging δ over all permutations of the data. The resulting estimator will have the same expected value as δ and its variance will be no larger than that of δ .

4 Weak Convergence

4.1 Definitions

• Remark (Weak* Convergence)

<u>Convergence</u> in <u>distribution</u> is also called <u>weak convergence</u> in probability theory [Folland, 2013]. In general, we can see that it is actually <u>not</u> a mode of <u>convergence</u> of <u>random variables</u> X_n itself but instead is <u>the convergence of their distributions</u> $\int f d\mu_n$. Equivalently, it is the <u>convergence of probability measures</u> $\mathcal{P}_{X_n} = \mathcal{P} \circ X_n^{-1}$ on $\mathcal{B}(\mathbb{R})$.

Note that in functional analysis, however, **weak convergence** is actually for a different mode of convergence (i.e. $\int f_n d\mu \to \int f d\mu$ for all $\mu \in \mathcal{M}(X)$), while **the convergence in distribution** is **the weak* convergence**.

Definition (Weak* Topology on Banach Space)

Let X be a normed vector space and X^* be its dual space. The <u>weak* topology</u> on X^* is the weakest topology on X^* so that f(x) is continuous for all $x \in X$.

The weak* topology on space of regular Borel measures $\mathcal{M}(X) \simeq (\mathcal{C}_0(X))^*$ on a **compact Hausdorff** space X, is often called **the vague topology**. Note that $\mu_n \stackrel{w^*}{\to} \mu$ if and only if $\int f d\mu_n \to \int f d\mu$ for all $f \in \mathcal{C}_0(X)$.

• **Definition** (*Cumulative Distribution Function*) [Van der Vaart, 2000] Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space. Given any real-valued measurable function $\xi : \Omega \to \mathbb{R}$, we define the *cumulative distribution function* $F : \mathbb{R} \to [0, \infty]$ of ξ to be the function

$$F_{\xi}(\lambda) := \mathcal{P}\left(\left\{\omega \in \Omega : \xi(\omega) \leq \lambda\right\}\right) = \int_{X} \mathbb{1}\left\{\xi(\omega) \leq \lambda\right\} d\mathcal{P}(\omega).$$

• Definition (Converge in Distribution) [Van der Vaart, 2000]

Let $\xi_n : \Omega \to \mathbb{R}$ be a sequence of real-valued measurable functions, and $\xi : \Omega \to \mathbb{R}$ be another measurable function. We say that ξ_n converges in distribution to ξ if the cumulative distribution function $F_n(\lambda)$ of ξ_n converges pointwise to the cumulative distribution function $F(\lambda)$ of ξ at all $\lambda \in \mathbb{R}$ for which F is continuous. Denoted as $\xi_n \xrightarrow{F} \xi$ or $\xi_n \xrightarrow{d} \xi$ or $\xi_n \leadsto \xi$.

$$\xi_n \stackrel{d}{\to} \xi \iff F_n(\lambda) \to F(\lambda), \text{ for all } \lambda \in \mathbb{R}$$

- Theorem 4.1 (Portmanteau Theorem). [Van der Vaart, 2000] For any random vectors X_n and X the followings are equivalent
 - 1. $\mathcal{P}\left\{X_n \leq \lambda\right\} \to \mathcal{P}\left\{X \leq \lambda\right\}$ for all **continuity point** $\lambda \mapsto \mathcal{P}\left\{X \leq \lambda\right\}$;
 - 2. $\mathbb{E}_{\mathcal{P}}[f(X_n)] \to \mathbb{E}_{\mathcal{P}}[f(X)]$ for all **bounded**, **continuous** function f;
 - 3. $\mathbb{E}_{\mathcal{P}}[f(X_n)] \to \mathbb{E}_{\mathcal{P}}[f(X)]$ for all bounded, Lipschitz continuous function f;
 - 4. $\liminf_{n\to\infty} \mathbb{E}_{\mathcal{P}}[f(X_n)] \geq \mathbb{E}_{\mathcal{P}}[f(X)]$ for all nonnegative continuous function f;
 - 5. $\liminf_{n\to\infty} \mathcal{P}\left\{X_n\in G\right\} \geq \mathcal{P}\left\{X\in G\right\}$ for every open set G;
 - 6. $\limsup_{n\to\infty} \mathcal{P}\left\{X_n\in F\right\} \leq \mathcal{P}\left\{X\in F\right\}$ for every closed set F;

- 7. $\mathcal{P}\{X_n \in B\} \to \mathcal{P}\{X \in B\}$ for all Borel sets B with $\mathcal{P}\{X \in \delta B\} = 0$, where $\delta B = \overline{B} int(B)$ is the boundary of B.
- **Proof:** 1. 1) \Rightarrow 2) Assume that the distribution function F_X of X is continuous. Then condition 1) implies that $\mathcal{P}\{X_n \in I\} \to \mathcal{P}\{X \in I\}$ for any box $I \in \mathbb{R}^d$. Choose I be sufficiently large and compact, so that $\mathcal{P}(X \notin I) < \epsilon$. A continuous function f is uniformly continuous on compact I and $I = \bigcup_{k=1}^n I_k$ has partition into finitely many boxes I_k such that f varies at most ϵ in I_k .

Define a simple function $f_{\epsilon}(x) = \sum_{k=1}^{n} f(x_k) \mathbb{1} \{I_k\}$ where $x_k \in I_k$ is arbitrary chosen. Then $|f - f_{\epsilon}| < \epsilon$ for $x \in I$, given that f is bounded e.g. within [-1, 1].

$$|\mathbb{E}_{\mathcal{P}}[f(X_n)] - \mathbb{E}_{\mathcal{P}}[f_{\epsilon}(X_n)]| \le \epsilon + \mathcal{P}\{X_n \notin I\}$$

$$|\mathbb{E}_{\mathcal{P}}[f(X)] - \mathbb{E}_{\mathcal{P}}[f_{\epsilon}(X)]| \le \epsilon + \mathcal{P}\{X \notin I\} < 2\epsilon$$

For sufficiently large n, the right side of the first equation is smaller than 2ϵ as well (convergence in distribution). We combine this with

$$|\mathbb{E}_{\mathcal{P}}\left[f_{\epsilon}(X_n)\right] - \mathbb{E}_{\mathcal{P}}\left[f_{\epsilon}(X)\right]| \leq \sum_{k=1}^{n} |f(x_k)| |\mathcal{P}\left\{X_n \in I_k\right\} - \mathcal{P}\left\{X \in I_k\right\}|$$

$$\to 0$$

together with the triangle inequality we can get $|\mathbb{E}_{\mathcal{P}}[f(X_n)] - \mathbb{E}_{\mathcal{P}}[f(X)]|$ is bounded by 5ϵ eventually for any $\epsilon > 0$, so the result hold.

- 2. 1) to 3) is similar to 1) to 2).
- 3. 3) to 5) For every open set G there exists a sequence of Lipschitz functions with $0 \le f_m \uparrow \mathbb{1}\{G\}$. For instance $f_m = \min\{1, m d(x, G^c)\}$. For every fixed m, by assumption on convergence in expectation,

$$\liminf_{n\to\infty} \mathcal{P}\left\{X_n \in G\right\} \ge \liminf_{n\to\infty} \mathbb{E}_{\mathcal{P}}\left[f_m(X_n)\right] = \mathbb{E}_{\mathcal{P}}\left[f_m(X)\right].$$

As $m \to \infty$, the RHS increases to $\mathcal{P}\{X \in G\}$ by monotone convergence theorem.

- 4. 5) to 6) take the complements.
- 5. 5) + 6) to 7). Let int(B) and \overline{B} be the interior and closure of B, respectively. By 5) and 6)

$$\mathcal{P}\left\{X \in \operatorname{int}(B)\right\} \leq \liminf_{n \to \infty} \mathcal{P}\left\{X_n \in \operatorname{int}(B)\right\}$$
$$\leq \limsup_{n \to \infty} \mathcal{P}\left\{X_n \in \overline{B}\right\}$$
$$\leq \mathcal{P}\left\{X \in \overline{B}\right\}.$$

If $\mathcal{P}\{X \in \delta B\} = 0$ then the LHS and RHS will be equal. Note that by remark below, we can almost find such B in practice. The probability $\mathcal{P}\{X \in B\} = \lim_{n \to \infty} \mathcal{P}\{X_n \in B\}$, since they lies in between these inequalities.

6. 7) to 1) Each cell $(-\infty, x]$ such that x is a continuity point of $x \mapsto \mathcal{P}\{X \leq x\}$ is a continuity set. Then the convergence results follows as a specification $B \equiv (-\infty, \lambda]$.

7. 4) to 2). Given any f is bounded, continuous, we need to prove that $\mathbb{E}_{\mathcal{P}}[f(X)] \geq \limsup_{n \to \infty} \mathbb{E}_{\mathcal{P}}[f(X_n)]$ and $\mathbb{E}_{\mathcal{P}}[f(X)] \leq \liminf_{n \to \infty} \mathbb{E}_{\mathcal{P}}[f(X_n)]$.

Note that $(\sup\{f(x)\} - f)$ and $(f - \inf\{f(x)\})$ are nonnegative, bounded continuous. Then

$$\mathbb{E}_{\mathcal{P}}\left[\left(\sup\left\{f(x)\right\} - f(X)\right)\right] \leq \liminf_{n \to \infty} \mathbb{E}_{\mathcal{P}}\left[\left(\sup\left\{f(x)\right\} - f(X_n)\right)\right]$$

$$\Rightarrow \sup\left\{f(x)\right\} - \mathbb{E}_{\mathcal{P}}\left[f(X)\right)\right] \leq \sup\left\{f(x)\right\} + \liminf_{n \to \infty} \mathbb{E}_{\mathcal{P}}\left[-f(X_n)\right]$$

$$\mathbb{E}_{\mathcal{P}}\left[f(X)\right)\right] \geq \limsup_{n \to \infty} \mathbb{E}_{\mathcal{P}}\left[f(X_n)\right]$$

similarly

$$\mathbb{E}_{\mathcal{P}}\left[\left(f(X) - \inf\left\{f(x)\right\}\right)\right] \leq \liminf_{n \to \infty} \mathbb{E}_{\mathcal{P}}\left[\left(f(X_n) - \inf\left\{f(x)\right\}\right)\right]$$

$$\Rightarrow -\inf\left\{f(x)\right\} + \mathbb{E}_{\mathcal{P}}\left[f(X)\right)\right] \leq -\inf\left\{f(x)\right\} + \liminf_{n \to \infty} \mathbb{E}_{\mathcal{P}}\left[f(X_n)\right]$$

$$\mathbb{E}_{\mathcal{P}}\left[f(X)\right)\right] \leq \liminf_{n \to \infty} \mathbb{E}_{\mathcal{P}}\left[f(X_n)\right]$$

which completes the proof.

8. 2) to 4) Define $f_M = \min\{f, M\}$ for nonegative f and any real $M \ge 0$, so f_M is bounded continuous, as

$$\mathbb{E}_{\mathcal{P}}\left[f_M(X)\right] = \lim_{n \to \infty} \mathbb{E}_{\mathcal{P}}\left[f_M(X_n)\right]$$

$$\leq \liminf_{n \to \infty} \mathbb{E}_{\mathcal{P}}\left[f(X_n)\right]$$

Take $M \to \infty$, we have RHS $\mathbb{E}_{\mathcal{P}}[f_M(X))] \to \mathbb{E}_{\mathcal{P}}[f(X))]$ by monotone convergence theorem, so completes the proof.

- Remark A continuity set B has boundary of measure zero $\mathcal{P}\{X \in \delta B\} = 0$. Since for any collection of pairwise disjoint measureable sets, at most countable many sets can have positive measures, o.w. the total measure will be infinite. Thus given $\{B_{\alpha}\}_{{\alpha}\in A}$ all except at most countable many sets are continuity sets. For each k, at most countably sets of form $\{x: x_k \leq \alpha\}$ are not continuity sets. As a conclusion, there exists a dense subsets Q_1, \dots, Q_j so that each box with corner in $Q_1 \times Q_j$ is a continuity set. We can then choose I side this box.
- Remark The c.d.f. $F(\lambda) := \mathcal{P}_f((-\infty, \lambda]) = \mathcal{P}(\{x \in X : f(x) \leq \lambda\})$ where $\mathcal{P}_f = \mathcal{P} \circ f^{-1}$ is a *measure* on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ induced by function f. Thus $f_n \stackrel{d}{\to} f$ if and only if

$$\mathcal{P}_{f_n}(A) \to \mathcal{P}_f(A), \quad \forall A \in \mathscr{B}(\mathbb{R}).$$

• We can reformulate the definition of *convergence in distribution* as below:

Definition [Wellner et al., 2013]

Let (\mathcal{X}, d) be a metric space, and $(\mathcal{X}, \mathcal{B})$ be a measurable space, where \mathcal{B} is **the Borel** σ -**field** on \mathcal{X} , the smallest σ -field containing all the open balls (as the basis of metric topology on \mathcal{X}). Let $\{\mathcal{P}_n\}$ and \mathcal{P} be **Borel probability measures** on $(\mathcal{X}, \mathcal{B})$.

Then the sequence \mathcal{P}_n <u>converges in distribution</u> to \mathcal{P} , which we write as $\mathcal{P}_n \leadsto \mathcal{P}$, if and only if

$$\int_{\Omega} f d\mathcal{P}_n \to \int_{\Omega} f d\mathcal{P}, \quad \text{for all } f \in \mathcal{C}_b(\mathcal{X}).$$

Here $C_b(\mathcal{X})$ denotes the set of all **bounded**, **continuous**, real functions on \mathcal{X} .

We can see that <u>the convergence</u> in distribution is actually a weak* convergence. That is, it is the weak convergence of bounded linear functionals $I_{\mathcal{P}_n} \stackrel{w^*}{\to} I_{\mathcal{P}}$ on the space of all probability measures $\mathcal{P}(\mathcal{X}) \simeq (\mathcal{C}_b(\mathcal{X}))^*$ on $(\mathcal{X}, \mathcal{B})$ where

$$I_{\mathcal{P}}: f \mapsto \int_{\Omega} f d\mathcal{P}.$$

Note that the $I_{\mathcal{P}_n} \stackrel{w^*}{\to} I_{\mathcal{P}}$ is equivalent to $I_{\mathcal{P}_n}(f) \to I_{\mathcal{P}}(f)$ for all $f \in \mathcal{C}_b(\mathcal{X})$.

4.2 Properties

- Theorem 4.2 (Continuous Mapping Theorem) [Van der Vaart, 2000] Let $g: \mathbb{R}^k \to \mathbb{R}^m$ be continuous at every point of a set $C \subset \mathbb{R}^k$ such that $\mathcal{P}(X \in C) = 1$. Then
 - 1. If $X_n \stackrel{a.s.}{\to} X$, then $g(X_n) \stackrel{a.s.}{\to} g(X)$;
 - 2. If $X_n \stackrel{\mathcal{P}}{\to} X$, then $g(X_n) \stackrel{\mathcal{P}}{\to} g(X)$;
 - 3. If $X_n \leadsto f$, then $g(X_n) \leadsto g(X)$.

Proof: 1. Directly by the property of continuous map, since $g(\lim_{n\to\infty} y_{n,\omega}) = \lim_{n\to\infty} g(y_{n,\omega})$, where $y_{n,\omega} = X_n(\omega)$ for $\omega \in \Omega/E$, $\mathcal{P}(E) = 0$.

2. For any $\epsilon > 0$, there exists $\delta > 0$ such that the set

$$B_{\delta} \equiv \left\{ z \in \mathbb{R}^k \mid \exists y, \|z - y\| \le \delta, \|g(z) - g(y)\| > \epsilon \right\}.$$

Clearly, if $X \notin B_{\delta}$ and $||g(X_n) - g(X)|| > \epsilon$, then $||X_n - X|| > \delta$. So

$$\mathcal{P}\left\{\left\|g(X_n) - g(X)\right\| > \epsilon\right\} \le \mathcal{P}\left\{\left\|X_n - X\right\| > \delta\right\} + \mathcal{P}\left\{X \in B_\delta\right\}$$

The first term on RHS converges to 0 as $n \to \infty$ for every fixed $\delta > 0$ due to the convergence in measure. Since $B_\delta \cap C \downarrow 0$, by continuity of g, the second term converges to 0 as $\delta \to 0$.

3. The event $\{g(X_n) \in F\} \equiv \{X_n \in g^{-1}(F)\}\$ for any closed/open set F. Note that

$$g^{-1}(F) \subseteq \overline{g^{-1}(F)} \subset g^{-1}(F) \cup C^c$$

Thus there exists a sequence of $y_m \to y$ and $g(y_m) \in F$ for every closed F. If $y \in C$, then $g(y_m) \to g(y)$, which is in F, since F is closed. Otherwise, $y \in C^c$. By the portmanteau lemma, since X_n converges to X in distribution,

$$\limsup_{n \to \infty} \mathcal{P} \left\{ g(X_n) \in F \right\} \le \limsup_{n \to \infty} \mathcal{P} \left\{ X_n \in \overline{g^{-1}(F)} \right\}$$
$$\le \mathcal{P} \left\{ X \in \overline{g^{-1}(F)} \right\}$$

Since $\mathcal{P}(C^c) = 0$, the RHS

$$\mathcal{P}\left\{X \in \overline{g^{-1}(F)}\right\} = \mathcal{P}\left\{X \in g^{-1}(F)\right\}$$
$$= \mathcal{P}\left\{g(X) \in F\right\}.$$

Again by applying the portmanteau lemma, $g(X_n)$ converges to g(X) in distribution.

References

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition, volume 31. Springer Science & Business Media, 2013.

Gerald B Folland. Real analysis: modern techniques and their applications. John Wiley & Sons, 2013.

Erich Leo Lehmann and George Casella. *Theory of point estimation*, volume 31. Springer Science & Business Media, 1998.

Sidney I Resnick. A probability path. Springer Science & Business Media, 2013.

Halsey Lawrence Royden and Patrick Fitzpatrick. *Real analysis*, volume 198. Prentice Hall, Macmillan New York, 1988.

Terence Tao. An introduction to measure theory, volume 126. American Mathematical Soc., 2011.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

Jon Wellner et al. Weak convergence and empirical processes: with applications to statistics. Springer Science & Business Media, 2013.