节选第六章

- 6.13. For the repair model presented in Section 6.7:
- (b) Use your program to estimate the mean crash time in the case where $n=4, s=3, F(x)=1-e^{-x}$,and $G(x)=1-e^{-2x}$

解:这里介绍两种方法:一种基于过程考虑,代码比较长,但算法的效率比较高(就是书上的方法);另一种方法基于状态考虑,代码只有二十来行,但算法的效率比较低.

法一: 基于过程, 流程图如下 (书上 P108 可参考):

图 1:13 题 (法一) 流程图

法一全过程解释:

系统正常工作所需要的机器数量为n,初始备用机器数量为s.系统初始化: 先模拟生成第一批工作的机器的工作时长,并进行升序排序,最先坏掉的机器,其坏掉的时间为errT[1],记为tmin.进入循环: 机器坏掉就要拿去修理,由于同时在修理的机器最多只能有一台,因此如果前一台机器没有修理好又有新机器坏掉了(tfix>tmin),那么新坏掉的机器只能加入等待队列(r=r+1);如果机器修好时,还没有新机器坏掉 $(tfix\leq tmin)$,则(待修理+修理中的机器数)-1,即(r=r-1).再看此时是否还有机器在等待队列中未修理,如果有就生成修理机器所需的时间Y,再计算出此机器修理好的时间(pt+Y).机器坏掉需要立刻从备用池里取出一台替补上,如果备用池里没有机器(c)意味着坏掉的机器全在以下两种状态: 待修理或正在修,即r=s),则系统崩溃退出.如果备用池里还有机器,这时需要模拟生成新加入机器的工作时间X、计算其下次坏掉的时间(pt+X),与所有正在工作机器下次坏掉的时间进行升序排序,取最小的记为tmin.上述工作完成后,进入下一轮循环,直到程序退出为止.因此法一(b)

```
f \leftarrow function(n,s) {
  m <- 66666
  result <- vector (length = m)
  g \leftarrow function(n, s) {
     \mathbf{t} < 0
     r < -0
     errT \leftarrow sort(rexp(n, rate = 1))
     tfix \leftarrow 1e9
     for (k in 1:10000) {
       tmin <- errT[1]
       if(tfix <= tmin) {</pre>
          t \leftarrow t fix
          r < -r-1
          if(r==0) {
             tfix \leftarrow 1e9
          if(r > 0)
            Y \leftarrow rexp(1, rate = 2)
             t fix \leftarrow t+Y
```

```
}
      } else {
         t \leftarrow tmin
         if(r==s) {
           return(t)
         } else {
           X \leftarrow rexp(1, rate = 1)
           errT <- sort(append(errT[2:length(errT)], t+X))
           if(r==0) {
             Y \leftarrow rexp(1, rate = 2)
             t fix \leftarrow t+Y
           r < - r+1
      }
    }
  for(i in 1:m) {
    result[i] \leftarrow g(n,s)
  hist(result, freq = F, breaks = 30,
       xlab = "持续时间", ylab = "频率",
       main = "持续时间分布图")
  print(mean(result))
  print(sd(result))
}
f(4,3)
```

> f(4,3) [1] 1.529677 [1] 1.063099

图 2: 13 题 (法一) 运行截图

图 3:13 题 (法一) 持续时间分布图

由输出结果: 经过 66666 次的模拟, 发现整个系统持续时间 (首次崩溃的发生时间) 的均值为 1.529677, 标准差为 1.063099

法二: 基于状态, 流程图如下:

图 4: 13 题 (法二) 流程图

法二全过程解释:

这个思路其实很简单,举个例子就能明白了,就拿本题来说:需要 4 台机器同时工作,初始时备用池里有 3 台机器,那么意味着:第四台机器坏掉的时间不能小于第一台机器修好的时间,第五台机器坏掉的时间不能小于第二台机器修好的时间 (第 i 台机器坏掉的时间不能小于第 i – 3 台机器修好的时间),否则意味着没有一台机器处于备用状态.因此:整个算法中只需要两个核心的状态变量:errT 和 fixed,分别记录机器坏掉的时间和机器修好的时间就行了.无需考虑更多的细节,就无脑算每台机器的 errT 和 fixed 就行了,循坏到直至整个工作系统崩溃.(但不要忘记一点:前三台机器坏掉是无论如何都可以有机器替补的,因此 fixed 变量的前三个值都计为 0) 因此法二 (基于状态)的代码如下:

 $f \leftarrow function(n, s)$ { m <- 66666 result <- vector (length = m) $g \leftarrow function(n, s)$ { $fixed \leftarrow rep(0, s)$ $errT \leftarrow sort(rexp(n, rate = 1))$ for(i in 1:6666) { $fixT \leftarrow rexp(1, rate = 2)$ fixed <- append (fixed, fixT+max(errT[i], fixed[i+s-1]))onT \leftarrow rexp(1, rate = 1) errT <- sort(append(errT, onT+errT[i]))</pre> if(errT[i] < fixed[i]) {</pre> return (errT [i]) **for**(i in 1:m) { $result[i] \leftarrow g(n,s)$ hist(result, freq = F, breaks = 30,

xlab = "持续时间", ylab = "频率",

```
main = "持续时间分布图")
print(mean(result))
print(sd(result))
}
f(4,3)
```

> f(4,3) [1] 1.525008 [1] 1.05804

图 5:13 题 (法二)运行截图

图 6:13 题 (法二) 持续时间分布图

由输出结果: 经过 66666 次的模拟, 发现整个系统持续时间 (首次崩溃的发生时间) 的均值为 1.525008, 标准差为 1.058040. 两种方法的模拟结果非常相近.

6.14. In the model of Section 6.7, suppose that the repair facility consists of two servers, each of whom takes a random amount of time having distribution G to service a failed machine. Draw a flow diagram for this system.

翻译: 在第 6.7 节的模型中, 假设维修设施由两台服务器组成, 每台服务器都

需要随机分配 G 的时间来维修故障机器, 绘制此系统的流程图

解:同样还是有13题的两种方法:分别基于过程和状态,前者代码量大但算法效率较高;后者代码量小但算法效率较低。除此之外,基于状态考虑的算法还有个其他的优势:这个优势当只有一台维修设施时基本体现不出来,就是不需要考虑每种情况的细节,这一题很容易对情况的细节考虑不全,因此如果使用基于状态的算法,可以为我们节约很多思考时间.

法一: 基于过程, 流程图如下:

图 7:14 题 (法一) 流程图

这里是改成了两台设施 (分别记为 A,B) 进行维修, 情况多了非常多. 一共有

以下 7 个细节需要去注意, 所以说用这种基于过程的算法是非常容易漏掉情况的

- (1):A 和 B 都闲着没事在发呆 (意味着当前系统时间没有坏掉的机器, 坏掉的都修好了)
- (2):A 在修, 且 A 修完后发现 B 在那闲着 (意味着在 A 修的期间内没有新的坏掉的机器), 那么下一台坏掉的机器默认还是给 A 修
- (3):A 和 B 有一方在修,且在其修的期间内,又出现了一台坏的机器,那么这台机器就得 A 和 B 中的另外一方去修
- (4):A 在修 B 也在修,且在他们修的期间内,又出现了一台坏的机器,那么这台机器只能暂时被放在等待队列
- (5):A 在修 B 也在修, 如果有机器在等待队列, 那么 A 和 B 先修好手中的机器的需要把等待队列中的机器拿出来修
- (6):A 在修 B 也在修, 如果没有机器在等待队列, 那么谁先修完谁先休息 (在此之前没有新的坏掉的机器)
- (7): 如果备用池里没有机器,意味着系统在此刻陷入崩溃,循环结束 Tips: 这个方法太过于死板,其实是可以通过推演获取到一些高级结论的,这 就是后面要说的基于状态的解决方案,此处流程图真全部描述一遍起码得 1500+字篇幅,所以就不描述咯......

法一(基于过程)的代码如下:

```
f <- function(n,s) {
    m <- 16666
    result <- vector(length = m)
    g <- function(n, s) {
        t <- 0
        r <- 0
        errT <- sort(rexp(n, rate = 1))
        tfixA <- 1e9
        tfixB <- 1e9
        for(k in 1:10000) {
        tmin <- errT[1]
        if((tfixA <= tmin) && (tfixB <= tmin)) {
            t <- min(tfixA, tfixB)
            if((r == 3)||(r == 2)) {</pre>
```

```
r < -r-2
  } else {
    r < -r-1
  if(r==0) {
    tfixA \leftarrow 1e9
    tfixB \leftarrow 1e9
  if(r>0) {
    Y \leftarrow rexp(1, rate = 2)
    if(tfixA \le tfixB) {
       t fix A \leftarrow t + Y
       if(r==1) {
         tfixB \leftarrow 1e9
       }
    } else {
       t fix B \leftarrow t+Y
       if(r==1) {
         tfixA \leftarrow 1e9
       }
    }
  }
else\ if((tfixA \le tmin) || (tfixB \le tmin)){
  t <- min(tfixA, tfixB)</pre>
  r < -r-1
  if((r==1)||(r==0)) {
    if(tfixA \le tfixB) {
       tfixA <- 1e9
    } else {
       tfixB <- 1e9
    }
  }
  if(r > 1) {
```

```
Y \leftarrow rexp(1, rate = 2)
          if(tfixA \le tfixB) {
             t fix A \leftarrow t + Y
          } else {
             t fix B \leftarrow t + Y
          }
        }
     } else {
        t \leftarrow tmin
        if(r==s) {
          return(t)
        } else {
          X \leftarrow rexp(1, rate = 1)
          errT <- sort(append(errT[2:length(errT)], t+X))
          Y \leftarrow rexp(1, rate = 2)
          if(r==0) {
             t fix A \leftarrow t + Y
          }
          if(r==1) {
             if(tfixA==1e9) {
                t fix A \leftarrow t + Y
             if(tfixB==1e9) {
                t fix B \leftarrow t + Y
             }
          }
          r < - r+1
for(i in 1:m) {
  result[i] \leftarrow g(n,s)
```

> f(4,3) [1] 2.117459 [1] 1.69511

图 8: 14 题 (法一) 运行截图

图 9:14 题 (法一) 持续时间分布图

由输出结果: 经过 16666 次的模拟, 发现当系统有两台维修设施时, 整个系统持续时间 (首次崩溃的发生时间) 的均值提升到了 2.117459, 标准差为 1.695110

法二: 基于状态, 流程图如下:

图 10: 14 题 (法二) 流程图

法二全过程解释:

这个 14 题相较于上面的 13 题, 其实就只改变了一层逻辑:"重新计算机器开始维修的时间". 所以完全可以继承 13 题法二的解决方案, 在此之上改变这一层逻辑就行了. 具体该如何计算呢? 首先机器要维修的前提是它必须是坏掉, 因此需要判断机器啥时候坏, 坏掉时的系统时间记为 errT[i]. 其次, 一台机器想要被修, 必须确保 A 和 B 两方维修设施有一方率先完成了手里正在维修的机器, A 和 B 手里机器的情况有: 其中一方手里必定是上一台坏掉的机器; 另一方手里是除开上一台坏掉的机器外, 其他所有已坏掉的机器都有可能. 举个例子: 假如第 11 台坏掉的机器准备维修, 那么 A 和 B 其中一方的手里必定是第 10 台坏掉的机器 (这个其实不难理解: 假如两方手里正在修的都不是第 10 台机器, 比方说 A 和 B 分别维修的是第 8 台和第 9 台机器吧, 那么先修好的那一方必定要拿第 10 个坏掉的机器来修, 而不是拿第 11 台坏掉的机器过来修, 即先坏的必定比后坏的更早修, 因此两方手里正在维修的必定有第 10 台坏掉的机器); 而另一方是第 1 到 9 台坏掉的机器都有可能 (这里很容易

会误会为: 另一方只能是第9台坏掉的机器, 其实不是的, 你遗漏了以下这种极端情况: 第1台机器坏掉了A去维修, 需要七七四十九个小时才能修好, 而第2到第10台坏掉的机器可能分别都只需要6小时, 意味着B修了第2到第10台坏掉的机器, 而在B正在修第10台坏掉的机器时, A终于把第1台坏掉的机器修好了. 你说第11台坏掉的机器应该谁去修? 明显是A去修啊), 因此第i台坏掉的机器还跟以下这两个变量扯上关系: 第i-1台机器修理完成的时间和第1到第(i-2)台坏掉的机器中最晚修理好的时间. 两者取个最小值, 再与errT[i]取个最大值, 就是第i台坏掉的机器开始维修的时间, 最后再加上这台机器的维修所需时间Y, 即为最终修理好的时间.

因此不难发现, 还是只需要两个状态变量:errT 和 fixed, 分别记录每台机器 坏掉的时间和修好的时间就行了 (注意, fixed 变量初始化时前 s 个值都为 0). 无需考虑更多的细节, 就无脑算每台机器的 errT 和 fixed 就行了, 无非就是多了个临时变量用来记录第 1 到 (i-2) 个坏掉的机器谁最晚修理完成而已其实还有一个需要注意的点: 何时退出循环? 这跟 13 题只有一台维修设备时还不太一样, 不过举例例子肯定能懂了 (还是 13 题 (b) 的例子): 第 5 台机器坏掉了, fixed 数组中前 7 个数据大于第 5 台机器坏掉的时间的不能大于等于 3 个 (第 i 台机器坏掉了, fixed 数组中前 i+s-1 个数据大于第 i 台机器坏掉的时间的不能大于等于 s 个)

```
errT <- sort(append(errT, onT+errT[i]))</pre>
      if(sum(fixed[1:i+s-1]>errT[i]) >= s) {
         return (errT[i])
      }
    }
  }
  for(i in 1:m) {
    result[i] \leftarrow g(n,s)
  hist (result, freq = F, breaks = 20,
       xlab = "持续时间", ylab = "频率",
       main = "持续时间分布图")
  print(mean(result))
  print(sd(result))
f(4,3)
                        > f(4,3)
[1] 2.111064
                        [1] 1.70365
```

图 11: 14 题 (法二) 运行截图

持续时间分布图

※※※※※※がが

图 12: 14 题 (法二) 持续时间分布图

持续时间

由输出结果: 经过 16666 次的模拟, 发现当系统有两台维修设施时, 整个系统持续时间 (首次崩溃的发生时间) 的均值提升到了 2.111064, 标准差为 1.703650. 两种方法的模拟结果近似.

附图:14 题(法一)单次运行过程变量输出值:

从上到下,首先三个一行的,从左到右依次是:A 维修完成手上坏掉的机器时的系统时间,B 维修完成手上坏掉的机器时的系统时间,系统中正在维修和等待维修的机器数量之和;有 14 个数据的那串是 errT 变量

```
> f(4,3)
[1] 5.4324e-01 1.0000e+09 1.0000e+00
[1] 1e+09 1e+09 0e+00
[1] 1e+09 1e+09 0e+00
[1] 1.63911e+00 1.0000e+09 1.00000e+00
[1] 1.63911e+00 1.00000e+09 1.00000e+00
[1] 1.63911e+00 1.0000e+09 1.00000e+00
[1] 2.7242e+00 1.0000e+09 1.0000e+00
[1] 2.72420 2.25972 2.00000
[1] 2.72420 2.25972 3.00000
[1] 2.72420 2.25972 3.00000
[1] 1.00000e+09 2.31923e+00 0.00000e+00
[1] 1e+09 1e+09 0e+00
[1] 1e+09 1e+09 0e+00
[1] 1e+09 1e+09 0e+00
[1] 1e+09 1e+09 0e+00
[1] 3.7339e+00 1.00000e+09 1.00000e+00
[1] 3.7339e+00 1.00000e+09 1.00000e+00
[1] 3.73396 3.61743 2.00000
[1] 3.73396 3.61743 3.00000
[1] 0.7033605 0.8665268 1.5567655 2.0496092 2.0609883 2.1030118 2.8011386
[8] 3.2913410 3.5067346 3.5453207 3.5482135 3.8198374 4.5743351 5.0413919
```

图 13: 14 题 (法一) 单次运行过程变量输出结果

附图:14 题(法二)单次运行过程变量输出值:

从上到下: 首先一行一个数据的, 是每个坏掉的机器需要修理的时间; 有 13 个数据的那串是 errT 变量; 有 12 个数据的那串是 fixed 变量

图 14: 14 题 (法二) 单次运行过程变量输出结果