ANOVA- In Class Activity

Roll No: 2021102016

```
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.stats.multicomp import pairwise tukeyhsd
# Data extracted from the image
home school = np.array([89, 75, 49, 84, 88, 77, 73, 67, 69, 88, 91])
boarding school = np.array([85, 78, 59, 88, 71, 69, 72, 72, 68, 59,
701)
regular day school = np.array([91, 88, 84, 91, 95, 93, 85, 87, 83, 80,
77])
# 1. Check for Normality (Shapiro-Wilk Test)
shapiro home = stats.shapiro(home school)
shapiro boarding = stats.shapiro(boarding school)
shapiro regular = stats.shapiro(regular day school)
print("### Normality Check (Shapiro-Wilk Test)")
print(f"Home School: p-value = {shapiro home.pvalue:.4f}")
print(f"Boarding School: p-value = {shapiro boarding.pvalue:.4f}")
print(f"Regular Day School: p-value = {shapiro regular.pvalue:.4f}\n")
# 2. Check Homogeneity of Variance (Levene's Test)
levene test = stats.levene(home school, boarding school,
regular day school)
print("### Homogeneity of Variance (Levene's Test)")
print(f"Levene's Test p-value = {levene test.pvalue:.4f}\n")
# 3. Perform One-Way ANOVA
anova test = stats.f oneway(home school, boarding school,
regular_day_school)
print("### ANOVA Test Results")
print(f"ANOVA p-value = {anova test.pvalue:.4f}\n")
# 4. Compute Effect Size (Only if ANOVA is significant)
if anova test.pvalue < 0.05:
    SS between = anova test.statistic * (len(home school) - 1) # Sum
of squares between
    SS total = np.var(np.concatenate([home school, boarding school,
regular day school]), ddof=1) * (len(home school) * 3 - 1)
    eta squared = SS between / SS total
```

```
print(f"### Effect Size (Eta Squared) for Significant ANOVA")
    print(f"Effect Size = {eta squared:.4f}\n")
# 5. Visualization (Box Plot)
plt.figure(figsize=(8, 5))
sns.boxplot(data=[home school, boarding school, regular day school])
plt.xticks([0, 1, 2], ["Home School", "Boarding School", "Regular Day
School"1)
plt.ylabel("Exam Performance")
plt.title("Exam Performance Across School Types")
plt.show()
# 6. Perform Post-hoc Test (if ANOVA is significant)
if anova test.pvalue < 0.05:
    # Combine data and create group labels
    all scores = np.concatenate([home school, boarding school,
regular day school])
    groups = (["Home School"] * len(home school)) + (["Boarding")
School"] * len(boarding_school)) + (["Regular Day School"] *
len(regular day school))
    # Perform Tukey's HSD test
    tukey result = pairwise tukeyhsd(all scores, groups, alpha=0.05)
    print("### Tukey's HSD Test Results")
    print(tukey result)
### Normality Check (Shapiro-Wilk Test)
Home School: p-value = 0.1752
Boarding School: p-value = 0.3620
Regular Day School: p-value = 0.9488
### Homogeneity of Variance (Levene's Test)
Levene's Test p-value = 0.1225
### ANOVA Test Results
ANOVA p-value = 0.0037
### Effect Size (Eta Squared) for Significant ANOVA
Effect Size = 0.0171
```

Exam Performance Across School Types

### Tukey's HSD Test Results Multiple Comparison of Means - Tukey HSD, FWER=0.05							
	:========	==========			=====		
group1 reject	group2	2 meandiff	p-adj lo	ower uppe	r		
Boarding Scho	ool Home	School 5.3636	0.3971 -4.	6775 15.404	1 7		
Boarding Scho True	ool Regular Day	School 14.8182	0.0029 4.	7771 24.859	93		
Home Scho False	ool Regular Day	School 9.4545	0.0681 -0.	5866 19.495	57		

Analysis of Exam Performance Across School Types

1. Normality Check (Shapiro-Wilk Test)

The Shapiro-Wilk test checks whether the data in each group follows a normal distribution.

- **Home School:** (p = 0.1752) (Normally distributed)
- Boarding School: (p = 0.3620) (Normally distributed)
- **Regular Day School:** (p = 0.9488) (Normally distributed)

Interpretation: Since all p-values are **greater than 0.05**, we fail to reject the null hypothesis, meaning that the data is normally distributed for all groups.

2. Homogeneity of Variances (Levene's Test)

Levene's test checks whether the variances of the three groups are equal.

Levene's Test p-value: (p = 0.1225)

Interpretation: Since (p > 0.05), we fail to reject the null hypothesis, meaning the variances are **equal** across all groups. This satisfies the assumption for ANOVA.

3. ANOVA Test Results

ANOVA tests whether there is a significant difference in mean exam scores among the three school types.

ANOVA p-value: (p = 0.0037)

Interpretation: Since (p < 0.05), we reject the null hypothesis, meaning at least one school type has a significantly different mean performance.

4. Effect Size (Eta Squared)

Effect size (Eta Squared) measures the strength of the relationship between school type and exam performance.

Effect Size (Eta Squared): (\eta^2 = 0.0171)

Interpretation:

- (n^2 < 0.01) → Small effect
- $(0.01 \le n^2 \le 0.06) \rightarrow$ **Medium effect** (Our effect size is in this range)
- (n^2 >= 0.06) → Large effect

Conclusion: The difference in exam scores between school types has a **moderate effect size**.

5. Tukey's HSD Test (Post-hoc Analysis)

Since ANOVA was **significant**, we perform Tukey's test to identify which groups differ significantly.

Comparison	Mean Difference	p-value	Significant?
Boarding vs. Home School	5.36	0.3971	No
Boarding vs. Regular Day	14.82	0.0029	Yes
Home vs. Regular Day	9.45	0.0681	No

Interpretation:

- Boarding vs. Regular Day School: Significant difference (p = 0.0029).
- Home vs. Boarding & Home vs. Regular Day: No significant difference.

Findings

All groups are normally distributed.

Variances are equal (Levene's test).

ANOVA shows significant differences in exam performance.

Effect size indicates a moderate difference.

Post-hoc analysis:

- Regular Day School performs significantly better than Boarding School.
- **No significant difference** between Home School and the other groups.

Conclusion

- Students from **Regular Day Schools** performed **significantly better** than those from **Boarding Schools**.
- No significant difference was found between **Home School** and the other groups.
- The effect size suggests **moderate differences** in performance based on school type.