

# Identification des appareils dans la consommation domestique

Projet: energy monitoring



#### I. Introduction:



Identification des appareils allumés























#### I. Introduction:



#### Méthodes mises en place:

- Régression logistique multiple
- Support Vector Machine
- Convolutional Neural Network

#### I. Introduction:

#### A. Jeu de données initial





60 signaux



60 signaux



HairDryer



60 signaux





55555 Heater



60 signaux

#### B. Suppression du 60Hz



Représentation fréquentielle du signal initial (haut), du filtre et du signal filtré (bas)

#### II. Création de données réalistes:

Choix aléatoire



On obtient un jeu de données contenant 300 signaux

Vecteur associé au signal créé, pour connaître les appareils allumés

#### II. Création de données réalistes: Bruit additionnel



Signal initial de ventilateur (orange) et signal bruité (bleu)



Entraînement d'un modèle

Vecteurs associés pour indiquer les appareils allumés

prediction

d'identification





-12

-14

100

200

300

400

Input vector: dimension 20000







Features

### Regression logistique multiple

- On effectue une PCA sur le signal temporel pour réduire les dimensions du problème
- On effectue une régression logistique sur chacune des catégories (5 en tout)
- Chaque régression prévoit la présence ou l'absence d'un type d'appareil



#### CNN





RMSE for training set (red) and test set (blue)

## III. Méthodes d'identification: Support Vector Machine

- On effectue une extraction des harmoniques des signaux pour réduire la dimension du problème.
- Ensuite on utilise un algorithme de support vector machine sur ces données, nous permettant de détecter les divers appareils.

#### IV. Conclusion:

#### Meilleurs résultats:

|           | feature                    | f1 score | accuracy |
|-----------|----------------------------|----------|----------|
| SVM       | Time<br>signal             | 0.85     | 0.87     |
|           | Harmonics                  | 0.97     | 0.97     |
|           | Spectrum                   | 0.55     | 0.55     |
| CNN       | Time signal                | 0.97     | 0.97     |
| Multi Reg | Time signal<br>+ PCA (n=5) | 0.65     | 0.74     |

#### IV. Conclusion:

#### Robustesse:

|           | feature                       | f1 score | accuracy |
|-----------|-------------------------------|----------|----------|
| SVM       | Time<br>signal                | 0.55     | 0.54     |
|           | Harmonics                     | 0.68     | 0.68     |
| CNN       | Time<br>signal                | 0.7      | 0.7      |
| Multi Reg | Time<br>signal +<br>PCA (n=5) | 0.       | 0.5      |



#### IV. Conclusion:

#### Pistes d'améliorations:

- Augmenter le jeu de données
- Validation et tests avec jeu de données réaliste
- Combinaison de modèles