# КРИПТОГРАФІЯ

# КОМП'ЮТЕРНИЙ ПРАКТИКУМ №4

# Побудова регістрів зсуву з лінійним зворотним зв'язком та дослідження їх властивостей

#### Мета роботи

Ознайомлення з принципами побудови регістрів зсуву з лінійним зворотним зв'язком; практичне освоєння їх програмної реалізації; дослідження властивостей лінійних рекурентних послідовностей та їх залежності від властивостей характеристичного полінома регістра.

#### Необхідні теоретичні відомості

#### 2. Регістри зсуву з лінійним зворотним зв'язком

Лінійна рекурентна послідовність (ЛРП) порядку п над полем  $F_q$  — це послідовність  $(s_i)$ ,  $i \ge 0$ , що визначається за таким правилом:

- 1) початкові значення  $s_0, s_1, ..., s_{n-1} \in F_q$  є довільними;
- 2) наступні значення обчислюються за формулою:

$$s_{i+n} = a_{n-1}s_{i+n-1} + a_{n-2}s_{i+n-2} + \dots + a_1s_{i+1} + a_0s_i, \ \forall i \ge 0,$$
 (1)

де  $a_{\scriptscriptstyle t} \in F_{\scriptscriptstyle q}$  ,  $0 \le t \le n$ -1— фіксовані коефіцієнти, а всі операції виконуються у полі  $F_{\scriptscriptstyle q}$  .

Формула (1) називається лінійним рекурентним співвідношенням для ЛРП.

Одержувати лінійні рекурентні послідовності на практиці можна за допомогою спеціальних апаратних пристроїв — *регістрів зсуву з лінійним зворотним зв'язком* (або просто *лінійних регістрів зсуву*, відповідна абревіатура ЛРЗ). Регістр зсуву описується схемою, наведеною на рис. 1.



Рис 1. – Схема регістра зсуву з лінійним зворотним зв'язком

На кожному такті роботи регістр повертає значення нульової комірки на вихід, зсуває значення комірок на одну комірку в бік виходу, а в останню комірку заносить наступне обчислене за формулою (1) значення, яке відповідає наступному елементу рекурентної послідовності. Формула (1) є також лінійним рекурентним співвідношенням для відповідного ЛРЗ.

Станом регістра у деякий момент часу називається заповнення комірок у цей момент. Стан регістра природно розглядати як вектор над  $F_q$ . Зрозуміло, що послідовність, яку генерує регістр, повністю визначається коефіцієнтами зворотного зв'язку  $a_t$ ,  $0 \le t \le n$ -1 та початковим станом регістру.

Властивості ЛРЗ та породжуваних ними лінійних рекурентних послідовностей добре вивчені. Так, лінійні рекурентні послідовності є періодичними. Дійсно, так як кількість різних станів ЛРЗ скінченна, то рано чи пізно деякий стан ЛРЗ повториться, а вся подальша послідовність залежить тільки від стану регістра у даний момент.

Якщо в деякий момент часу стан регістру стає нульовим вектором, то регістр надалі буде генерувати послідовність нулів. Таку послідовність вважають тривіальною, а цей випадок — небажаним. Втім, доведено, що якщо  $a_0 \neq 0$ , то послідовність, яку генерує регістр, буде суто періодичною (тобто не матиме передперіоду) за довільного початкового стану, і більш того, за цієї умови із ненульового стану регістр ніколи не потрапить у нульовий.

Властивості послідовностей, які генерує лінійний регістр зсуву, можна визначити аналітично за допомогою спеціального поліному, який називається характеристичним поліномом  $\Pi P3$ ; він також є характеристичним поліномом будь-якої лінійної рекурентної послідовності, що генерується даним регістром.

Порядком полінома f(x) степеня n над  $F_q$  (позначається ord f(x)) називається найменше натуральне T таке, що  $x^T-1$  ділиться націло на f(x); таке  $T \le q^n-1$  завжди існує. Якщо f(x) незвідний над  $F_q$ , то ord f(x) є дільником  $q^n-1$ . Якщо ж при цьому ord  $f(x) = q^n-1$ , тобто приймає найбільше значення, то поліном f(x) називається примітивним поліномом степеня n над  $F_q$  (також примітивний поліном має бути нормованим, тобото мати старший коефіцієнт 1; ця умова не є обтяжливою, до того ж, як видно з наступної формули, для характеристичного полінома вона завжди виконується).

Для рекуренти, що описується співвідношенням (1), характеристичний поліном  $p(x) \in F_a[x]$  має вид

$$p(x) = x^{n} - a_{n-1}x^{n-1} - a_{n-2}x^{n-2} - \dots - a_{1}x - a_{0}.$$

За допомогою характеристичного полінома можна визначати періоди послідовностей, які генерує ЛРЗ, зокрема:

- а) регістр генерує послідовності максимального періоду  $q^n-1$  тоді і тільки тоді, коли його характеристичний поліном є примітивним над  $F_q$ . У цьому випадку він пройде на протязі періоду через усі можливі ненульові стани;
- б) якщо характеристичний поліном  $\epsilon$  незвідним над  $F_q$ , то послідовності, які генерує регістр при будь-якому ненульовому початковому стані, матимуть однаковий період, який співпадає із порядком полінома ord p(x) над  $F_q$ ; отже, період будь-якої ЛРП, згенерованої таким регістром ділить  $q^n-1$ . Зворотне твердження не  $\epsilon$  вірним: за звідного характеристичного полінома можлива ситуація, коли всі ЛРП, згенеровані регістром, мають однаковий період, що ділить  $q^n-1$ . Таким чином, якщо всі вихідні послідовності ЛРЗ мають однаковий період, то його характеристичний поліном може бути незвідним (і, скоріш за все, так і  $\epsilon$ );
- в) якщо характеристичний поліном  $\epsilon$  звідним над  $F_q$  (тобто розкладається на нетривіальні множники), то довжина періоду, взагалі кажучи, залежить від початкового стану.

Відомо, однак, що послідовність максимального (серед усіх послідовностей, що генерує даний регістр) періоду задається початковим станом  $\overline{d}=(0,0,...,0,1)$ . Ця послідовність називається *імпульсною функцією*. У випадку звідного характеристичного полінома множина можливих періодів лінійних рекурентних послідовностей має складну будову, але існує теорія, що повністю її описує. Принаймні, якщо період імпульсної функції не ділить  $q^n-1$ , то характеристичний поліном є звідним.

Отже, стани регістра, що змінюють один одного підчас його роботи, утворюють замкнені цикли. Кількість циклів та їх довжини (тобто періоди можливих послідовностей) будемо називати *цикловою структурою* множини послідовностей, що генерує регістр (або, коротше, цикловою структурою регістра). Послідовність  $s^t = s_t, s_{t+1}, s_{t+2}...$  називають *t-м* зсувом послідовності s. Очевидно, що усі зсуви даної послідовності належать одному й тому ж циклу. Якщо ЛРЗ генерує послідовності максимального періоду  $q^n - 1$ , то всі вони є зсувами одна одної і утворюють один цикл. Тому регістри з примітивними характеристичними поліномами називають *повноцикловими*.

Послідовності максимального періоду  $q^n-1$  виявились настільки важливими в теорії кодування, теорії обробки сигналів, задачах нелінійної локації та криптографії, що вони одержали окрему назву — M-послідовності. Серед іншого, доведено, що M-послідовності мають багато добрих статистичних властивостей, наприклад:

- всі символи зустрічаються у послідовності майже рівноімовірно, зокрема, у двійкових М-послідовностях кількість одиничок завжди на 1 більше за кількість нулів;
- всі k-грами, k≤n розподілені на періоді настільки рівномірно, наскільки це можливо;
- функція автокореляції від послідовності приймає усього два значення (що свідчить про вкрай низьку залежність наступних символів від попередніх).

На практиці найчастіше розглядаються двійкові рекурентні послідовності, тобто лінійні рекуренти над  $F_2$ . Надалі ми будемо розглядати саме такі послідовності.

Функцією автокореляції зі зсувом d,  $0 \le d < T$  періодичної двійкової послідовності  $s = (s_i)$ , що має період T, називається функція  $A_d(\mathbf{s}) = \sum_{i=0}^{T-1} [(s_i + s_{(i+d) \text{mod } T}) \text{ mod } 2]$ , тобто  $A_d(\mathbf{s})$  - це кількість неспівпадаючих бітів на періоді послідовності s з циклічним зсувом того самого періоду на d позицій вперед.

## Порядок виконання роботи

- 0. Уважно прочитати методичні вказівки до виконання комп'ютерного практикуму.
- 1. Вибрати свій варіант завдання згідно зі списком. Варіанти завдань містяться у файлі Crypto\_CP4 LFSR\_Var.
- 2. За даними характеристичними многочленами  $p_1(x)$ ,  $p_2(x)$  скласти лінійні рекурентні співвідношення для ЛРЗ, що задаються цими характеристичними многочленами.
  - 3. Написати програми роботи кожного з ЛРЗ  $L_1$ ,  $L_2$ .
- 4. За допомогою цих програм згенерувати імпульсні функції для кожного з ЛРЗ і підрахувати їх періоди.

- 5. За отриманими результатами зробити висновки щодо влавстивостей кожного з характеристичних многочленів  $p_1(x)$ ,  $p_2(x)$ : многочлен примітивний над  $F_2$ ; не примітивний, але може бути незвідним; звідний.
- 6. Для кожної з двох імпульсних функцій обчислити розподіл k-грам на періоді,  $k \le n_i$ , де  $n_i$  степінь полінома  $f_i(x)$ , i=1,2 а також значення функції автокореляції A(d) для  $0 \le d \le 10$ . За результатами зробити висновки.

#### Оформлення звіту

Звіт до комп'ютерного практикуму оформлюється згідно зі стандартними правилами оформлення наукових робіт, за такими винятками:

- дозволяється використовувати шрифт Times New Roman 12pt та одинарний інтервал між рядками;
- для оформлення фрагментів текстів програм дозволяється використовувати шрифт Courier New 10pt та друкувати тексти в дві колонки;
- дозволяється не починати нові розділи з окремої сторінки.

До звіту можна не включати анотацію, перелік термінів та позначень та перелік використаних джерел. Також не обов'язково оформлювати зміст.

Звіт має містити:

- мету комп'ютерного практикуму;
- постановку задачі та варіант завдання;
- хід роботи, опис труднощів, що виникали, та шляхів їх розв'язання;
- лінійні рекурентні співвідношення для ЛРЗ  $L_1, L_2$ ;
- підраховані довжини періодів імпульсних функцій  $L_1$ ,  $L_2$ ;
- обчислені розподіли k-грам, k≤ $n_i$ ,i=1,2 на періодах імпульсних функцій  $L_1$ ,  $L_2$ ;
- значення функцій автокореляції  $A_d(s)$  для  $0 \le d \le 10$ , для відповідних імпульсних функцій;
- висновки щодо властивостей поліномів  $p_1(x)$ ,  $p_2(x)$  та вихідних послідовностей ЛРЗ  $L_1$ ,  $L_2$ ;
- відповіді на контрольні питання.

Тексти всіх програм здаються викладачеві в електронному вигляді для перевірки на плагіат. До захисту комп'ютерного практикуму допускаються тільки ті студенти, які оформили звіт та пройшли перевірку програмного коду.

### Контрольні питання

- 1. Дайте означення лінійної рекурентної послідовності, лінійного регістра зсуву, імпульсної функції ЛРЗ.
- 2. Чим визначаються періоди послідовностей, які генерує ЛРЗ? За яких умов період набуває максимального значення?
- 3. Дайте означення порядку полінома степеня n над полем  $F_q$  та примітивного полінома степеня n над  $F_a$  .
  - 4. Що таке М-послідовність, які її властивості?
- 5. Чому у двійкових М-послідовностях кількість одиничок завжди на 1 більше за кількість нулів?
- 6. Дайте означення функцій автокореляції  $A_d(s)$  для двійкової послідовності  $s=(s_i)$ , з періодом T.

- 7. Чи  $\varepsilon$  сума двох лінійних рекурентних послідовностей (у двійковому випадку XOR), згенерованих деяким ЛР3, також лінійною рекурентною послідовностю, що може бути згенерована тим самим ЛР3?
  - 8. Які саме значення приймає функція автокореляції двійкової М-послідовності?

#### Оцінювання комп'ютерного практикуму

За виконання комп'ютерного практикуму студент може одержати до 9 рейтингових балів; зокрема, оцінюються такі позиції:

- реалізація програм до трьох балів (в залежності від правильності та швидкодії);
- теоретичний захист роботи до трьох балів;
- своєчасне виконання практикуму 1 бал;
- несвоєчасне виконання роботи (-1) бал за кожен тиждень пропуску.

Програмний код, створений під час виконання комп'ютерного практикуму, перевіряється на наявність неправомірних запозичень (плагіату) за допомогою сервісу *Stanford MOSS Antiplagiarism*. У разі виявлення в програмному коді неправомірних запозичень реалізація програм оцінюється у 0 балів, а за виконання практикуму студент одержує штраф (-10) балів.

Студенти допускаються до теоретичного захисту тільки за умови оформленого звіту з виконання практикуму та проходження перевірки програмного коду.