Сингулярное разложение

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Содержание

- 1 Определение сингулярного разложения
- 2 Сокращенное сингулярное разложение
- ③ Применения сингулярного разложения
- 4 Простейшая рекомендательная система

Сингулярное разложение

Сингулярное разложение (singular value decomposition, SVD): Каждая матрица $X \in \mathbb{R}^{NxD}$, $\operatorname{rank} X = R$, может быть разложена:

$$X = U\Sigma V^T$$

где

- $U \in \mathbb{R}^{NxR}$, $\Sigma \in \mathbb{R}^{RxR}$, $V^T \in \mathbb{R}^{RxD}$
- $\Sigma=diag\{\sigma_1,\sigma_2,...\sigma_R\},\ \sigma_1\geq\sigma_2\geq...\geq\sigma_R\geq0$ сингулярные числа X .
- ullet $U^TU=I,\,V^TV=I,\,I\in\mathbb{R}^{RxR}$ единичная матрица.

Эквивалентно:

$$X = \sum_{i=1}^{R} \mathbf{u}_i \sigma_i \mathbf{v}_i^T$$

где u_i - і-й столбец U, а v_i^T - і-ая строка V^T .

Интерпретация сингулярного разложения

- ullet Столбцы U ортонормированный базис столбцов X
- ullet Строки V^T ортонормированный базис строк X
- ullet важности базисных векторов.

SVD дает компактное представление низкоранговой матрицы.

Столбцы V=главные компоненты X

$$\boldsymbol{X}^T\boldsymbol{X} = \left(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\right)^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = (\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T)\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T$$

Столбцы V=главные компоненты X

$$\boldsymbol{X}^T\boldsymbol{X} = \left(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\right)^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = (\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T)\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T$$

Домножая на V, получим

$$X^T X V = V \Sigma^2 V^T V = V \Sigma^2 \tag{1}$$

Столбцы V=главные компоненты X

$$\boldsymbol{X}^T\boldsymbol{X} = \left(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\right)^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = (\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T)\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T$$

Домножая на V, получим

$$X^T X V = V \Sigma^2 V^T V = V \Sigma^2 \tag{1}$$

- ullet V состоит из CB X^TX , отвечающих C3 $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$ это R главных компонент.
- ullet U коэффициенты разложения объектов-строк X по главным компонентам.

Haxox дение U

$$XX^T = U\Sigma V^T \left(U\Sigma V^T\right)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$

Домножая справа на U, получим

$$XX^TU = U\Sigma^2U^TU = U\Sigma^2.$$

U состоит из CB XX^T , отвечающих C3 $\sigma_1^2, \sigma_2^2, ... \sigma_{R^*}^2$

SVD: существование & единственность

Теорема 1

Для $\forall X \in \mathbb{R}^{NxD}$ сингулярное разложение существует.

Теорема 2

Сингулярное разложение единственно с точностью до знака $<=>X^TX \in \mathbb{R}^{DxD}$ содержит D уникальных CB.

C точностью до знака означает, что мы всегда можем одновременно поменять знаки u_i и v_i^T для $\forall i=1,2,...R.$

Содержание

- Определение сингулярного разложения
- 2 Сокращенное сингулярное разложение
- ③ Применения сингулярного разложения
- 4 Простейшая рекомендательная система

Сокращенное сингулярное разложение

Сокращенное сингулярное разложение порядка K (truncated SVD): убрать наименее важные столбцы U и строки V^T .

• Важность измеряется $\sigma_1, \sigma_2, ...\sigma_R$. diag $\{\sigma_1, \sigma_2, ...\sigma_K, \sigma_{K+1}, ...\sigma_R\} \longrightarrow \text{diag}\{\sigma_1, \sigma_2, ...\sigma_K, 0, 0, ...0\}$

$$X = \sum_{i=1}^{R} \mathbf{u}_{i} \sigma_{i} \mathbf{v}_{i}^{T} \approx \sum_{i=1}^{K} \mathbf{u}_{i} \sigma_{i} \mathbf{v}_{i}^{T}$$

Сокращенное сингулярное разложение

Упрощение до ранга $K \leq R$:

$$\widehat{X} = U_K \Sigma_K V_K \approx X$$

$$\begin{split} \Sigma &= \operatorname{diag}\{\sigma_1, \sigma_2, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \rightarrow \operatorname{diag}\{\sigma_1, \sigma_2, ... \sigma_K\} = \Sigma_K \\ U &= [u_1, u_2, ... u_K, u_{K+1}, ... u_R] \longrightarrow [u_1, u_2, ... u_K] = U_K \\ V &= [v_1, v_2, ... v_K, v_{K+1}, ... v_R] \xrightarrow{\text{\tiny o}/25} [v_1, v_2, ... v_K] = V_K \end{split}$$

Свойства сокращенного сингулярного разложения

Норма Фробениуса для матриц

$$||X||_F^2 = \sum_{n=1}^N \sum_{d=1}^D x_{nd}^2$$

ullet Для матрицы X и её аппроксимации \widehat{X} :

ошибка аппроксимации
$$=\left\|\widehat{X}-X
ight\|_F^2$$

Теорема 3

Пусть $X \in \mathbb{R}^{NxD}$ аппроксимируется $\widehat{X} = U_K \Sigma_K V_K$. Тогда:

- $\mathbf{\Omega}$ rank $\widehat{X} = K$.
- $\widehat{X} = \arg\min_{B: \operatorname{rank} B \leq K} \|X B\|_F^2$

Выбор порядка аппроксимации К

Теорема 4

Для
$$orall$$
 матрицы X и её разложения $X=U\Sigma V^T$, $\Sigma={\it diag}\{\sigma_1,...\sigma_R\}$:
$$\|X\|_F^2=\sum_{i=1}^R\sigma_i^2$$

$$\begin{split} X &= U \Sigma V^T \qquad \Sigma = \operatorname{diag}\{\sigma_1, ... \sigma_K, \sigma_{K+1}, ... \sigma_R\} \\ \widehat{X} &= U \Sigma_K V^T \qquad \Sigma_K = \operatorname{diag}\{\sigma_1, ... \sigma_K, 0, 0, ... 0\} \\ X - \widehat{X} &= U \left(\Sigma - \Sigma_K\right) V^T \qquad \Sigma - \Sigma_K = \operatorname{diag}\{0, 0, ... \sigma_{K+1}, ... \sigma_R\} \\ \left\| X - \widehat{X} \right\|_F^2 &= \sum_{i=K+1}^R \sigma_i^2 \end{split}$$

Выбор порядка аппроксимации К

Используя теорему 4, выберем K, дающую относительную ошибку меньше порога:

$$K = \arg\min_{K} \left\{ \frac{\left\| X - \widehat{X} \right\|_F^2}{\left\| X \right\|_F^2} = \frac{\sum_{i=K+1}^R \sigma_i^2}{\sum_{i=1}^R \sigma_i^2} < \mathsf{threshold} \right\}$$

Содержание

- Определение сингулярного разложения
- Сокращенное сингулярное разложение
- Применения сингулярного разложения

Снижение размерности

- ullet строки $(U_K\Sigma_K)$ компактное представление объектов X.
 - К-мерное разложение по главным компонентам
- Также существуют
 - неотрицательные матричные разложения (non-negative matrix factorization)
 - стохастические разложения (PLSA, LDA)

Пример: сжатие чёрно-белых изображений 1

¹Первоисточник.

Пример: сжатие цветных изображений²

 $^{^{2}}$ Сжатие - независимо по R,G,B каналам.

Экономия памяти

Рассчитайте стоимость хранения $X \in \mathbb{R}^{NxD}$, предполагая $N \geq D$:

представление X	требования по памяти
исходная X	?
полностью сингулярно разложенная Х	?
сокращенно синг. разложенная ранга K	?

Вычислительные затраты

- ullet Умножение Xq
 - ullet X нормализованное представление документов
 - q нормализованный поисковый запрос

представление X	сложность Xq
исходная X	?
полностью сингулярно разложенная Х	?
сокращенно синг. разложенная ранга K	?

Нахождение похожих объектов и похожих признаков

- Похожие объекты имеют похожие признаки.
- Пример: обработка текстов.
 - сингулярное разложение дает высокоуровневое семантическое представление документов
 - можем сравнивать документы на семантическом уровне
 - синонимы объединяются
 - можем сравнивать слова (столбцы V^T) по совстречаемости в документах!

Содержание

- Определение сингулярного разложения
- 2 Сокращенное сингулярное разложение
- ③ Применения сингулярного разложения
- Простейшая рекомендательная система

Построение рекомендаций фильмов

	Терминатор	Гладиатор	Рэмбо	Титаник	История любви	Спеши любить
Андрей	4	5	5	0	0	0
Иван	4	4	5	0	0	0
Сергей	5	5	4	0	0	0
Анна	0	0	0	5	5	5
Мария	0	0	0	5	5	4
Наталья	0	0	0	4	5	4

Сингулярное разложение

$$U = \begin{pmatrix} 0. & 0.6 & -0.3 & 0. & 0. & -0.8 \\ 0. & 0.5 & -0.5 & 0. & 0. & 0.6 \\ 0. & 0.6 & 0.8 & 0. & 0. & 0.2 \\ 0.6 & 0. & 0. & -0.8 & -0.2 & 0. \\ 0.6 & 0. & 0. & 0.2 & 0.8 & 0. \\ 0.5 & 0. & 0. & 0.6 & -0.6 & 0. \end{pmatrix}$$

$$\Sigma = \text{diag}\{ \begin{pmatrix} 14. & 13.7 & 1.2 & 0.6 & 0.6 & 0.5 \end{pmatrix} \}$$

$$V^T = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \\ 0.5 & 0.3 & -0.8 & 0. & 0. & 0. \\ 0. & 0. & 0. & -0.2 & 0.8 & -0.6 \\ -0. & -0. & -0. & 0.8 & -0.2 & -0.6 \\ 0.6 & -0.8 & 0.2 & 0. & 0. & 0. \end{pmatrix}$$

Сокращенное сингулярное разложение (K=2)

$$U_2 = \begin{pmatrix} 0. & 0.6 \\ 0. & 0.5 \\ 0. & 0.6 \\ 0.6 & 0. \\ 0.6 & 0. \\ 0.5 & 0. \end{pmatrix}$$

$$\Sigma_2 = \mathsf{diag}\{ \begin{pmatrix} 14. & 13.7 \end{pmatrix} \}$$

$$V_2^T = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \end{pmatrix}$$

Перешли в на семантический уровень "тем"

- темы среди фильмов боевик / мелодрама
- темы среди людей мужчины / женщины

Построение рекомендаций

• Требуется построить рекомендации фильмов для нового человека:

$$x = \begin{pmatrix} 5 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• Отображаем x в пространство тем фильмов y (снижение размерности):

$$y = V_2^T x = \begin{pmatrix} 0 & 2.7 \end{pmatrix}$$

② Построение рекомендаций: отображаем y в исходное пространство всех оценок:

$$\hat{x} = yV_2^T = \begin{pmatrix} 1.5 & 1.6 & 1.6 & 0 & 0 \end{pmatrix}$$

Заключение

- Сингулярное разложение $X=U\Sigma V^T$, $U^TU=I,\,V^TV=I,\,$ $\Sigma=\mathrm{diag}\{\sigma_1,...\sigma_R\}$ существует $\forall X.$
- ullet Сокращенное сингулярное разложение порядка K
 - ullet решает задачу: $\widehat{X} = \arg\min_{B:\operatorname{rank} B < K} \|X B\|_F^2$
 - извлекает тематическую структуру объектов и признаков
 - разложение по темам=главным компонентам: снижение размерности
 - сокращает
 - расходы по памяти / на вычисления
 - позволяет построить простую рекомендательную систему
 - недостаток: отсутствие оценки=0 трактуется как оценка.