Tema 3: Variables Aleatorias.

ESTADÍSTICA

3.2.4. Distribuciones Marginales.

3.3.5. Independencia de variables.

3.3.6. Distribuciones Condicionales.

Distribuciones Marginales (I).

Definición: Dada una v. a. bidimensional (X, Y), se llama distribución marginal de X (de Y) a la distribución unidimensional que tiene X (Y) cuando se prescinde de los valores que puede tomar Y (X).

La función de distribución marginal de X será:

$$F_{I}(x) = P(X \le x) = P(X \le x, Y \le +\infty) = F(x, +\infty)$$

La función de distribución marginal de Y será:

$$F_2(y) = P(Y \leq y) = P(X \leq +\infty, \ Y \leq y) = F(\ +\infty, \ y)$$

ESTADÍSTICA

Distribuciones Marginales (II).

Definición: Si (X, Y) es discreta, se llama función de probabilidad marginal de X (de Y) a:

$$f_1(x) = \sum_j f(x, y_j) = \sum_j P(X = x, Y = y_j) \quad \forall x$$

$$f_2(y) = \sum_i f(x_i, y) = \sum_i P(X = x_i, Y = y) \quad \forall y$$

ESTADÍSTICA

ESTADÍSTICA

Definición: Si (X, Y) es continua, se llama función de densidad marginal de X (de Y) a:

$$f_1(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
 $f_2(y) = \int_{-\infty}^{+\infty} f(x, y) dx$

Distribuciones Marginales (III).

Dada la función de probabilidad $f(x, y)=P(X=x, Y=y) \quad \forall (x, y)$

 $La \ funci\'on \ de \ probabilidad \ marginal \ de \ X \ ser\'a:$

$$f_1(x) = \sum_j f(x, y_j) = \sum_j P(X = x, Y = y_j) \quad \forall x$$

$$f_1(2) = P(X=2, Y=1) + P(X=2, Y=2) = 1/4 + 0 = 1/4$$

$$f_1(3) = P(X=3, Y=1) + P(X=3, Y=2) = 0 + 2/4 = 2/4$$

$$f_1(4) = P(X=4, Y=1) + P(X=4, Y=2) = 0 + 1/4 = 1/4$$

X	2	3	4
$f_I(x)$	1/4	2/4	1/4

Distribuciones Marginales (IV).

Dada la función de probabilidad $f(x, y)=P(X=x, Y=y) \quad \forall (x, y)$

La función de probabilidad marginal de Y será:

$$f_2(y) = \sum_i f(x_i, y) = \sum_i P(X = x_i, Y = y) \quad \forall y$$

$$f_2(1) = P(X=2, Y=1) + P(X=3, Y=1) + P(X=4, Y=1) =$$

= $1/4 + 0 + 0 = 1/4$

$$f_2(2) = P(X=2, Y=2) + P(X=3, Y=2) + P(X=4, Y=2) = 0 + 2/4 + 1/4 = 3/4$$

Y	1	2
$f_2(y)$	1/4	3/4

ESTADÍSTICA

ESTADÍSTICA

Independencia de Variables.

Definición: Diremos que X e Y son independientes si

$$P(X \le x, Y \le y) = P(X \le x) P(Y \le y)$$

$$F(x, y) = F_1(x) F_2(y) \quad \forall x, \forall y$$

Si la variable es discreta, son independientes si la función de probabilidad

$$f(x, y) = f_1(x) f_2(y) \quad \forall x, \ \forall y$$

Si la variable es continua, son independientes si la función de densidad

$$f(x, y) = f_1(x) f_2(y) \quad \forall x, \ \forall y$$

Distribuciones Condicionales (I).

Definición: Sea (X, Y) una v. a., definimos la función de distribución de X (de Y) condicionada a Y (a X) como:

ESTADÍSTICA

$$F(x/y) = P(X \le x/Y \le y) = \frac{P(X \le x, Y \le y)}{P(Y \le y)} = \frac{F(x, y)}{F_2(y)}$$

$$F(y/x) = P(Y \le y/X \le x) = \frac{P(X \le x, Y \le y)}{P(X \le x)} = \frac{F(x, y)}{F_1(x)}$$

Distribuciones Condicionales (II).

Definición: Sea (X, Y) una v. a. discreta, definimos la función de probabilidad de X (de Y) condicionada a Y (a X) como:

ESTADÍSTICA

$$g_1(x/y) = P(X = x/Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f(x, y)}{f_2(y)}$$

$$g_2(y/x) = P(Y = y/X = x) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{f(x, y)}{f_1(x)}$$

$$\forall x$$

$$g_2(y/x) = \frac{f(x,y)}{f_1(x)}$$

