

Olimpiada Națională de Matematică Etapa Națională, Brașov, 11 aprilie 2023

CLASA a VII-a – soluții și bareme

Problema 1. Pentru *n* număr natural definim

$$a_n = \{\sqrt{n}\} - \{\sqrt{n+1}\} + \{\sqrt{n+2}\} - \{\sqrt{n+3}\}.$$

- a) Arătați că $a_1 > 0.2$.
- b) Arătați că $a_n < 0$ pentru o infinitate de valori ale lui n și $a_n > 0$ pentru o infinitate de valori ale lui n. (Notația $\{x\}$ reprezintă partea fracționară a numărului real x.)

b) Observăm că, dacă m este număr natural și $m^2 \le a < b < (m+1)^2$, atunci $[\sqrt{a}] = [\sqrt{b}] = m$ și $\sqrt{a} < \sqrt{b}$, deci $\{\sqrt{a}\} = \sqrt{a} - m < \sqrt{b} - m = \{\sqrt{b}\} \dots \mathbf{1p}$

Astfel, dacă $m \ge 2$ este un număr natural și $m^2 \le n < n+1 < n+2 < n+3 < (m+1)^2$, atunci $\{\sqrt{n}\} < \{\sqrt{n+1}\}$ și $\{\sqrt{n+2}\} < \{\sqrt{n+3}\}$, deci $a_n < 0 \dots 2p$

Apoi, dacă $m \ge 2$ este un număr natural și $m^2 < n < n+1 < n+2 < n+3 = (m+1)^2$, atunci $\{\sqrt{n+1}\} < \{\sqrt{n+2}\}, \{\sqrt{n}\} \ge 0$ și $\{\sqrt{n+3}\} = 0$, deci $a_n > 0 \dots 2p$

Problema 2. În paralelogramul ABCD punctul O este intersecția diagonalelor sale, iar M este mijlocul laturii AB. Fie P un punct al segmentului OC și Q intersecția dreptelor MP și BC. Paralela prin O la MP intersectează dreapta CD în punctul N. Arătați că punctele A, N și Q sunt coliniare dacă și numai dacă P este mijlocul segmentului OC.

Soluție. Fie R intersecția dreptelor QM și CD.

Dacă $A,\ N,\ Q$ sunt coliniare, atunci, cu teorema fundamentală a asemănării, $\frac{CR}{MB} = \frac{QC}{QB} = \frac{CN}{AB}$ și, cum $AB = 2 \cdot MB$, reiese $CN = 2 \cdot CR$**2p**

Din $RP \parallel ON$ deducem că RP este linie mijlocie în $\triangle CON$, deci P este mijlocul lui $OC \dots 2p$

Reciproc, dacă P este mijlocul lui OC, atunci RP este linie mijlocie în $\triangle CON$, deci $CN = 2 \cdot CR \cdot \dots \cdot \mathbf{1p}$

 Problema 3. Se consideră un triunghi ABC care are $\not \subset BAC = 90^\circ$ și $\not \subset ABC = 60^\circ$. Luăm punctele D și E pe laturile AC, respectiv AB, astfel încât $CD = 2 \cdot DA$ și DE este bisectoarea unghiului $\not \subset ADB$. Notăm cu M intersecția dreptelor CE și BD, iar cu P intersecția dreptelor DE și AM. Arătați că:

- a) dreptele AM și BD sunt perpendiculare;
- b) $3 \cdot PB = 2 \cdot CM$.

Soluție. a) Fie AB=a. Atunci BC=2a (teorema unghiului de 30°), $AC=\sqrt{BC^2-AB^2}=a\sqrt{3},\ AD=\frac{a}{3}\sqrt{3},\ BD=\sqrt{AB^2+AD^2}=\frac{2a}{3}\sqrt{3}=2AD$. Rezultă, conform reciprocei teoremei unghiului de 30°, că $\not ABD=30$ °, deci $\not ADB=60$ °.....**2p**

Problema 4. a) Arătați că există numerele iraționale a, b, c astfel încât numerele $a + b \cdot c, b + a \cdot c$ și $c + a \cdot b$ să fie raționale.

b) Arătați că, dacă a, b, c sunt numere reale astfel încât a+b+c=1 și numerele $a+b\cdot c$, $b+a\cdot c$ și $c+a\cdot b$ sunt raționale și nenule, atunci numerele a, b, c sunt raționale.

Soluție. a) Dacă luăm a=b=c astfel încât a să fie irațional și a^2+a să fie rațional, cerința este demonstrată. Aceasta se întâmplă dacă, de exemplu, $a=\sqrt{2}-\frac{1}{2}.....1p$

 $Soluție \ alternativă \ la \ b)$. Fie $b+ac=r,\ c+ab=q,\ cu\ r\ și\ q$ numere raționale. Atunci $b+ac-a(c+ab)=r-qa,\ sau\ b(1-a^2)=r-qa;\ analog\ c(1-a^2)=q-ra.$ Astfel, dacă a este rațional și $a\neq \pm 1,\ a$ tunci $b=\frac{r-qa}{1-a^2}$ și $c=\frac{q-ra}{1-a^2}$ sunt raționale...... ${\bf 1p}$

Dacă a=1, atunci b+c=0, deci ab+c=0 – contradicție cu ipoteza, iar dacă a=-1, atunci b+c=2 și b-c=p, deci $b=1+\frac{p}{2}$ și $c=1-\frac{p}{2}$ sunt raționale $\mathbf{1p}$

O concluzie similară funcționează dacă, în raționamentul precedent, înlocuim a cu b sau cu c. Astfel, rămâne de eliminat cazul când a, b și c sunt iraționale.

Presupunem că a, b și c sunt iraționale (†). Cum b + ac și c + ab sunt raționale, este rațional și numărul $b + c + ac + ab = (b + c)(1 + a) = (1 - a)(1 + a) = 1 - a^2$, deci a^2 este rațional, adică $a = \pm \sqrt{m}$, cu $m \in \mathbb{Q}_+$ și $\sqrt{m} \notin \mathbb{Q}$2p

Analog, $b = \pm \sqrt{n}$, $c = \pm \sqrt{p}$, cu n, p raționale și \sqrt{n} , \sqrt{p} iraționale.

Din a+b=1-c reiese $a^2+2ab+b^2=1-2c+c^2$, adică $m\pm 2\sqrt{mn}+n=1\pm 2\sqrt{p}+p$. Cum \sqrt{p} este irațional, egalitatea precedentă este posibilă doar dacă $\sqrt{mn}=\sqrt{p}$ (și cei doi termeni cu radicali au același semn), adică mn=p. La fel obținem mp=n și np=m, de unde $mnp=m^2=n^2=p^2$, deci m=n=p, ceea ce duce la m=n=p=1 – contradicție cu (†). Așadar presupunerea (†) este falsă și raționamentul se încheie...............2p