Isometric Path Cover : complexité et algorithmes sur les graphes cordaux

Dibyayan Chakraborty¹, Antoine Dailly², Sandip Das³, Florent Foucaud², Harmender Gahlawat^{3,4}, Subir Kumar Ghosh⁵

JGA 2022

LIP, Lyon
LIMOS, Clermont-Ferrand
Indian Statistical Institute, Kolkata, Inde
Ben-Gurion University of the Negev, Beer-Sheva, Israel
Ramakrishna Mission Vivekananda Edu. and Res. Institute, Kolkata, Inde

Isometric Path Cover

Un ensemble de plus courts chemins couvrant tous les sommets d'un graphe.

Isometric Path Cover

Un ensemble de plus courts chemins couvrant tous les sommets d'un graphe.

Isometric Path Cover

Un ensemble de plus courts chemins couvrant tous les sommets d'un graphe.

On cherche à minimiser le nombre de chemins.

Isometric Path Cover

Un ensemble de plus courts chemins couvrant tous les sommets d'un graphe.

On cherche à minimiser le nombre de chemins.

Isometric Path Cover

Un ensemble de plus courts chemins couvrant tous les sommets d'un graphe.

On cherche à minimiser le nombre de chemins.

Lemme [Aigner & Fromme, 1983]

Lemme [Aigner & Fromme, 1983]

Dans un jeu de poursuite, un policier peut « protéger » un plus court chemin.

⇒ La taille minimale d'une Isometric Path Cover est une borne supérieure pour le nombre de policiers nécessaire

Contexte : problèmes liés

Lemme [Aigner & Fromme, 1983]

Dans un jeu de poursuite, un policier peut « protéger » un plus court chemin.

⇒ La taille minimale d'une Isometric Path Cover est une borne supérieure pour le nombre de policiers nécessaire

Couverture:

► PATH COVER (NP-complet)

Packing:

- ▶ *k* DISJOINT PATHS (NP-complet [Karp, 1975], polyomial pour *k* fixé [Robertson & Seymour, 1995])
- ▶ k DISJOINT SHORTEST PATHS (W[1]-dur, algo XP en $O(kn^{16k \cdot k! + k + 1})$ [Bentert et al., 2021])

État de l'art sur ISOMETRIC PATH COVER

Étonnamment peu de résultats!

État de l'art sur ISOMETRIC PATH COVER

Étonnamment peu de résultats!

Valeurs exactes

- ► Arbres, cycles, graphes bipartis complets, certains produits cartésiens de chemins [Fitzpatrick, 1997 & 1999]
- ► Graphes *k*-partis complets [Pan & Chang, 2006]
- ► Divers produits cartésiens [Manuel, 2018]

État de l'art sur ISOMETRIC PATH COVER

Étonnamment peu de résultats!

Valeurs exactes

- ► Arbres, cycles, graphes bipartis complets, certains produits cartésiens de chemins [Fitzpatrick, 1997 & 1999]
- ► Graphes k-partis complets [Pan & Chang, 2006]
- ► Divers produits cartésiens [Manuel, 2018]

Algorithmes

- ► Algorithme linéaire pour les arbres de cliques [Pan & Chang, 2005]
- ▶ log(d)-approximation (algorithme polynomial) pour graphes de diamètre d [Thiessen & Gaertner, 2021]
- ► Algorithme XP pour *k* fixé [Dumas, Foucaud, Perez, Todinca, 2022]

Complexité

ISOMETRIC PATH COVER est NP-complet, même sur les graphes cordaux avec un sommet universel.

Complexité

ISOMETRIC PATH COVER est NP-complet, même sur les graphes cordaux avec un sommet universel.

Approximation

Algorithme polynomial donnant une 4-approximation pour les graphes cordaux.

Complexité

ISOMETRIC PATH COVER est NP-complet, même sur les graphes cordaux avec un sommet universel.

Approximation

Algorithme polynomial donnant une 4-approximation pour les graphes cordaux.

FPT

Algorithme exact en $2^{k2^{\mathcal{O}(w)}}n$ et $2^{2^{\mathcal{O}(k)}}n$ sur les graphes cordaux (k taille de la solution, w treewidth).

Théorème [CDDFGG, 2022]

ISOMETRIC PATH COVER est NP-complet, même sur les graphes cordaux avec un sommet universel.

Théorème [CDDFGG, 2022]

ISOMETRIC PATH COVER est NP-complet, même sur les graphes cordaux avec un sommet universel.

Preuve

Réduction depuis INDUCED P_3 -Partition (NP-complet même sur les graphes cordaux avec 3k sommets [van Bevern $et\ al.,\ 2017$])

Théorème [CDDFGG, 2022]

ISOMETRIC PATH COVER est NP-complet, même sur les graphes cordaux avec un sommet universel.

Preuve

Réduction depuis INDUCED P_3 -Partition (NP-complet même sur les graphes cordaux avec 3k sommets [van Bevern $et\ al.,\ 2017$])

On cherche une ISOMETRIC PATH COVER de taille k + 1.

Théorème [CDDFGG, 2022]

 $\label{eq:sometric} {\rm Isometric} \ \ {\rm Path} \ \ {\rm Cover} \ \ {\rm est} \ \ {\rm NP\text{-}complet}, \ \ {\rm m\^{e}me} \ \ {\rm sur} \ \ {\rm les} \\ {\rm graphes} \ \ {\rm cordaux} \ \ {\rm avec} \ \ {\rm universel}.$

Preuve

Réduction depuis INDUCED P_3 -Partition (NP-complet même sur les graphes cordaux avec 3k sommets [van Bevern $et\ al.$, 2017])

On cherche une ISOMETRIC PATH COVER de taille k + 1.

Observation

Montre aussi la NP-complétude de ISOMETRIC PATH PARTITION!

Théorème [CDDFGG, 2022]

Il existe un algorithme polynomial donnant une 4-approximation pour ${\tt ISOMETRIC}$ ${\tt PATH}$ ${\tt COVER}$ sur les graphes cordaux.

Théorème [CDDFGG, 2022]

Il existe un algorithme polynomial donnant une 4-approximation pour $\operatorname{ISOMETRIC}$ PATH COVER sur les graphes cordaux.

Algorithme et preuve

1. Faire un BFS de G

Théorème [CDDFGG, 2022]

Il existe un algorithme polynomial donnant une 4-approximation pour ${\tt ISOMETRIC}$ ${\tt PATH}$ ${\tt COVER}$ sur les graphes cordaux.

- 1. Faire un BFS de G
- Graphe de parcours ≡ diagramme de Hasse d'un poset

Théorème [CDDFGG, 2022]

Il existe un algorithme polynomial donnant une 4-approximation pour ${\tt ISOMETRIC}$ ${\tt PATH}$ ${\tt COVER}$ sur les graphes cordaux.

- 1. Faire un BFS de G
- 2. Graphe de parcours \equiv diagramme de Hasse d'un poset \Rightarrow Couverture par chaines du poset \mathcal{C}_{min} [Fulkerson, 1956]

Théorème [CDDFGG, 2022]

Il existe un algorithme polynomial donnant une 4-approximation pour ${\tt ISOMETRIC}$ PATH ${\tt COVER}$ sur les graphes cordaux.

- 1. Faire un BFS de G
- 2. Graphe de parcours \equiv diagramme de Hasse d'un poset \Rightarrow Couverture par chaines du poset \mathcal{C}_{min} [Fulkerson, 1956]
- 3. Lemme : un plus court chemin du graphe contient au plus quatre sommets d'une même antichaine *A*

Théorème [CDDFGG, 2022]

Il existe un algorithme polynomial donnant une 4-approximation pour ${\rm ISOMETRIC}$ ${\rm PATH}$ ${\rm COVER}$ sur les graphes cordaux.

- 1. Faire un BFS de G
- 2. Graphe de parcours \equiv diagramme de Hasse d'un poset \Rightarrow Couverture par chaines du poset \mathcal{C}_{min} [Fulkerson, 1956]
- Lemme : un plus court chemin du graphe contient au plus quatre sommets d'une même antichaine A
- 4. $|\mathcal{C}_{\mathsf{min}}| = |A_{\mathsf{max}}|$ [Dilworth, 1950] $\leq 4 \cdot \mathit{OPTI}$

Théorème [CDDFGG, 2022]

Il existe un algorithme polynomial donnant une 4-approximation pour ${\tt ISOMETRIC}$ PATH ${\tt COVER}$ sur les graphes cordaux.

- 1. Faire un BFS de G
- 2. Graphe de parcours \equiv diagramme de Hasse d'un poset \Rightarrow Couverture par chaines du poset \mathcal{C}_{min} [Fulkerson, 1956]
- Lemme : un plus court chemin du graphe contient au plus quatre sommets d'une même antichaine A
- 4. $|\mathcal{C}_{\mathsf{min}}| = |A_{\mathsf{max}}|$ [Dilworth, 1950] $\leq 4 \cdot \mathit{OPTI}$

Preuve par contradiction

Preuve par contradiction

Cas 1: un plus court chemin contient cinq sommets d'une antichaine sur le même niveau de l'arbre de parcours

Preuve par contradiction

Cas 1 : un plus court chemin contient cinq sommets d'une antichaine sur le même niveau de l'arbre de parcours

Preuve par contradiction

Cas 1 : un plus court chemin contient cinq sommets d'une antichaine sur le même niveau de l'arbre de parcours

Impossible car u_1, \ldots, u_5 dans plus court chemin

Preuve par contradiction

Preuve par contradiction

Preuve par contradiction

Cas 1 : un plus court chemin contient cinq sommets d'une antichaine sur le même niveau de l'arbre de parcours

Impossible car u_1, \ldots, u_5 dans plus court chemin

Preuve par contradiction

Preuve par contradiction

Preuve par contradiction

Impossible car graphe cordal

Preuve par contradiction

Impossible car graphe cordal

Preuve par contradiction

Impossible car graphe cordal

Preuve par contradiction

Impossible car graphe cordal

Preuve par contradiction

Preuve par contradiction

Preuve par contradiction

Impossible car graphe cordal

Preuve par contradiction

Preuve par contradiction

Cas 1 : un plus court chemin contient cinq sommets d'une antichaine sur le même niveau de l'arbre de parcours

Impossible d'avoir un ancêtre commun ⇒ contradiction

Preuve par contradiction

Cas 1 : un plus court chemin contient cinq sommets d'une antichaine sur le même niveau de l'arbre de parcours

Impossible d'avoir un ancêtre commun ⇒ contradiction

 \rightarrow En vrai, technique plus générique pour gérer tous les cas... mais elle utilise le même principe!

8/11

Théorème [CDDFGG, 2022]

L'algorithme donne les ratios d'approximation suivants :

► 4 sur les graphes cordaux

Théorème [CDDFGG, 2022]

L'algorithme donne les ratios d'approximation suivants :

- ► 4 sur les graphes cordaux
- ► 3 sur les graphes d'intervalles
- ► 2 sur les graphes d'intervalles propres

Théorème [CDDFGG, 2022]

L'algorithme donne les ratios d'approximation suivants :

- ► 4 sur les graphes cordaux
- ► 3 sur les graphes d'intervalles
- ► 2 sur les graphes d'intervalles propres
- ▶ 5 sur les graphes avec un plus court chemin dominant
- ▶ k + 7 sur les graphes k-cordaux (avec $k \ge 4$)
- ▶ $6\ell + 2$ sur les graphes de treelength au plus ℓ

Théorème [CDDFGG, 2022]

L'algorithme donne les ratios d'approximation suivants :

- ► 4 sur les graphes cordaux → tight
- ► 3 sur les graphes d'intervalles → tight
- ► 2 sur les graphes d'intervalles propres → tight
- ▶ 5 sur les graphes avec un plus court chemin dominant
- ▶ k + 7 sur les graphes k-cordaux (avec $k \ge 4$)
- $6\ell+2$ sur les graphes de treelength au plus ℓ

Théorème [CDDFGG, 2022]

L'algorithme donne les ratios d'approximation suivants :

- ► 4 sur les graphes cordaux → tight
- ► 3 sur les graphes d'intervalles → tight
- ► 2 sur les graphes d'intervalles propres → tight
- ▶ 5 sur les graphes avec un plus court chemin dominant
- ▶ k + 7 sur les graphes k-cordaux (avec $k \ge 4$)
- ▶ $6\ell + 2$ sur les graphes de treelength au plus ℓ

Observation

L'algorithme ne fonctionne pas pour $\operatorname{Isometric}$ Path Partition !

Diagramme de classes

Vert : Polynomial. Rouge : NP-complet. Pour toutes les boites : approximable à facteur constant en temps polynomial.

Contributions à ISOMETRIC PATH COVER

- ► NP-complétude sur les graphes cordaux
- ► Algorithme d'approximation sur diverses classes
- ► Algorithme FPT par la taille de la solution

Contributions à ISOMETRIC PATH COVER

- ▶ NP-complétude sur les graphes cordaux
- ► Algorithme d'approximation sur diverses classes
- ► Algorithme FPT par la taille de la solution
- ► Extension de NP-complétude et FPT à ISOMETRIC PATH PARTITION

Contributions à ISOMETRIC PATH COVER

- ► NP-complétude sur les graphes cordaux
- ► Algorithme d'approximation sur diverses classes
- ► Algorithme FPT par la taille de la solution
- ► Extension de NP-complétude et FPT à ISOMETRIC PATH PARTITION

Questions ouvertes

- ► Complexité sur graphes d'intervalles, split...
- ► Algorithme d'approximation à facteur constant sur tous les graphes?
- ► Approximation pour ISOMETRIC PATH PARTITION

Contributions à ISOMETRIC PATH COVER

- ► NP-complétude sur les graphes cordaux
- ► Algorithme d'approximation sur diverses classes
- ► Algorithme FPT par la taille de la solution
- ► Extension de NP-complétude et FPT à ISOMETRIC PATH PARTITION

Questions ouvertes

- ► Complexité sur graphes d'intervalles, split...
- ► Algorithme d'approximation à facteur constant sur tous les graphes?
- ► Approximation pour ISOMETRIC PATH PARTITION

