东 南 大 学 考 试 卷 (A卷)

高等数学 B 期末 考试 学期 09-10-3 得分

請用专业 选修高数 B 的各专业 考 试 形 式

考试时间长度 150 分钟

题号	-	11	Ш	四	五	六	t		
得									
分									

- 一.填空题(本题共9小题,每小题4分,满分36分)
- 1.幂级数 $\sum_{n=2^n}^{\infty} \frac{(x-1)^n}{n}$ 的收敛域为______;
- **2.**球面 $x^2 + y^2 + z^2 3x = 0$ 在点(1,1,1) 处的切平面方程为______;
- 3.已知两条直线 $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-1}{m}$ 与 x = y = 3z 相交, m =_____;
- **4.**交换积分次 $\int_{0}^{1} dx \int_{x-1}^{\sqrt{1-x^2}} f(x, y) dy = _____;$
- 5.将 $\int_{-2}^{2} dx \int_{0}^{\sqrt{4-x^2}} dy \int_{0}^{\sqrt{4-x^2-y^2}} f(x^2+y^2+z^2) dz$ (其中f(t)为连续函数)写成球面坐标系下

7.已知 $(axy^3 - y^2\cos x)dx + (1 + by\sin x + 3x^2y^2)dy$ 为某个二元函数 f(x, y) 的全微分,则

 $a = ___$, $b = ___$;

- 8.设 $\mathbf{r} = \{x, y, z\}, r = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$, 则散度 div(e'r) =
- 9.设Σ 是锥面 $z = \sqrt{x^2 + y^2}$ (0 ≤ z ≤ 1) 下侧,则

 $\iint 3x dy \wedge dz + 2y dz \wedge dx + (z-1)dx \wedge dy = \underline{\qquad}.$

- 二. 计算下列各题(本题共 4 小题, 每小题 7 分, 满分 28 分)
- 10. 设 z = z(x, y) 是由方程 $ze^z = xe^y + ye^x$ 所确定的隐函数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.
- 11. 计算二重积分 $\iint y dx dy$, 其中 $D = \{(x,y) | x^2 + y^2 \ge 2, x^2 + y^2 \le 2y \}$.

12. 计算
$$\int_0^{\sqrt{2}} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\sqrt{2}}^2 e^{-y^2} dy \int_0^{\sqrt{4-y^2}} e^{-x^2} dx$$
.

13. 计算三重积分
$$\iint\limits_{\Omega} \mathrm{e}^y \mathrm{d}x \mathrm{d}y \mathrm{d}z$$
, 其中 Ω 由曲面 $x^2 - y^2 + z^2 = 1$, $y = 0$, $y = 2$ 所围成.

三(14).(本题满分 7 分) 求由抛物面 $x^2 + y^2 = 2z$ 与平面 z = 1, z = 2 所围成的密度均匀(密度 $\mu = 1$)的立体对 z 轴的转动惯量

四(15)。(本题满分 7 分)计算第二型曲面积分 $\iint_S x^2 dy \wedge dz + y^2 dz \wedge dx + z^2 dx \wedge dy$,其中 S 为球面 $x^2 + y^2 + z^2 = 1$ 在第二卦限部分的外侧.

五(16)(本题满分 7 分) 计算 $\int_{C} \frac{(x-y)dx+(x+y)dy}{x^2+y^2}$, 其中 C 为 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=\left(\frac{1}{\pi}\right)^{\frac{2}{3}}$, 方 向为逆时针.

六 (17) (本题满分 7 分) 将函数 $f(x) = \frac{3x}{x^2 + x - 2}$ 展开为 x - 2 的幂级数,并指明收敛域.

七(18)(本题满分 8 分)计算由柱面 $x^2 + y^2 = 2x$ 、锥面 $2z = \sqrt{x^2 + y^2}$ 及 xoy 平面所围立体的表面积.

09-10-3 高数 B 期末试卷 (A) 参考答案

一.填空题(本题共9小题,每小题4分,满分36分)

1,
$$[-1,3)$$
 2, $x-2y-2z+3=0$ 3, $m=\frac{1}{9}$

$$4 \int_{0}^{1} dx \int_{x-1}^{\sqrt{1-x^{2}}} f(x,y) dy = \int_{-1}^{0} dy \int_{0}^{y+1} f(x,y) dx + \int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} f(x,y) dx$$

5,
$$\int_0^{\pi} d\varphi \int_0^{\frac{\pi}{2}} \sin\theta d\theta \int_0^2 f(r^2) r^2 dr$$
 6, 25 7, $a = \underline{2}$, $b = \underline{-2}$

8.
$$\operatorname{div}(e^{r}\mathbf{r}) = \underbrace{e^{r}(3+r)}_{z}$$
 9. $\iint_{\Sigma} 3x \, dy \wedge dz + 2y \, dz \wedge dx + (z-1) \, dx \wedge dy = \underline{2\pi}$

二. 计算下列各题(本题共 4 小题, 每小题 7 分, 满分 28 分)

10. **AZ**:
$$\frac{\partial z}{\partial x}(1+z)e^z = e^y + ye^x$$
, $\frac{\partial z}{\partial x} = \frac{e^{y-z} + ye^{x-z}}{1+z}$, $\frac{\partial z}{\partial y} = \frac{e^{x-z} + xe^{y-z}}{1+z}$

11. **AZ:**
$$\iint_{D} y \, dx \, dy = 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin \theta \, d\theta \int_{\sqrt{2}}^{2 \sin \theta} \rho^{2} d\rho = \frac{2}{3} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (8 \sin^{3} \theta - 2 \sqrt{2}) \sin \theta \, d\theta = \frac{\pi}{2}$$

12, **A**:
$$D = \{(x, y) | x^2 + y^2 \le 4, 0 \le x \le y \}$$

原式=
$$\iint_{\mathcal{D}} e^{-(x^2+y^2)} dx dy = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2} e^{-\rho^2} \rho d\rho = \frac{\pi}{8} (1 - e^{-4})$$

13, **M**:
$$\Sigma_y : x^2 + z^2 \le 1 + y^2, 0 \le y \le 2$$
,

$$\iiint_{\Omega} e^{y} dx dy dz = \int_{0}^{2} e^{y} dy \iint_{\Sigma_{y}} dx dz = \pi \int_{0}^{2} (1 + y^{2}) e^{y} dy = 3\pi (e^{2} - 1)$$

三(14). (本题满分7分)

解: 题中的立体记为 Ω ,则

$$I_z = \iiint_{\Omega} (x^2 + y^2) dv = \int_1^2 dz \iint_{x^2 + y^2 \le 2z} (x^2 + y^2) d\sigma = 2\pi \int_1^2 dz \int_0^{\sqrt{2z}} \rho^3 d\rho = \frac{14}{3}\pi$$

四(15)。(本题满分7分)

M:
$$(\cos \alpha, \cos \beta, \cos \gamma) = (x, y, z)$$
,

$$\iint_{S} x^{2} dy \wedge dz + y^{2} dz \wedge dx + z^{2} dx \wedge dy = \iint_{S} (x^{3} + y^{3} + z^{3}) dS$$

$$= \iint_{D_{T}} \left(\frac{x^3 + y^3}{\sqrt{1 - x^2 - y^2}} + 1 - x^2 - y^2 \right) d\sigma = \frac{\pi}{8}$$

五(16)(本题满分7分)

解:
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = \frac{y^2 - x^2 - 2xy}{\left(x^2 + y^2\right)^2}$$
, 取正数 ε 很小,使 C_{ε} : $x^2 + y^2 = \varepsilon^2$ 含于

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = \left(\frac{1}{\pi}\right)^{\frac{2}{3}}$$
 $\not r$, $\int_{C} \frac{(x-y)dx + (x+y)dy}{x^2 + y^2} = 2\varepsilon^{-2} \iint_{D_x} dx dy = 2\pi$

六(17)(本题满分7分)

A:
$$f(x) = \frac{3x}{x^2 + x - 2} = \frac{1}{x - 1} + \frac{2}{x + 2} = \frac{1}{1 + x - 2} + \frac{1}{2} \cdot \frac{1}{1 + \frac{x - 2}{4}}$$

$$=\sum_{n=0}^{\infty} (-1)^n \left(1 + \frac{1}{2^{2n+1}}\right) (x-2)^n , \quad x \in (1,3)$$

七(18)(本题满分8分)

解: 记 S_1 为锥面 $2z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2x$ 所截部分,其面积记为 A_1 ,记 S_2 为柱面 $x^2 + y^2 = 2x$ 被锥面 $2z = \sqrt{x^2 + y^2}$ 和xoy 平面所截部分,其面积记为 A_2 ,记 S_3 为底面,其面积记为 A_3 ,表面积 $A = A_1 + A_2 + A_3$

$$A = \iint_{x^2 + y^2 \le 2x} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial x}\right)^2} \, d\sigma + \frac{1}{2} \iint_{x^2 + y^2 - 2x} \sqrt{x^2 + y^2} \, ds + \pi = \left(\frac{\sqrt{5}}{2} + 1\right) \pi + 2 \int_0^{\pi} \cos \frac{\theta}{2} \, d\theta$$

$$= \left(\frac{\sqrt{5}}{2} + 1\right) \pi + 4$$