

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ЕТ Фундаментальные науки
КАФЕДРА	ФН2 «Прикладная математика»
	Домашняя контрольная работа
	по курсу «Уравнения математической физики»
	Вариант №13
Γ	руппа: СМ1-81
C	тудент: Новиков А.Р.
Γ	реподаватель: Деревич И.В.

(Подпись, дата)

1 Задача 1

1.1 Условие

Найти неизвестную стационарную температуру границ двух сферических слоев из разных материалов. При этом на внутренней границе (отстоящей от центра) происходит теплообмен с внешней средой заданной температуры по закону Ньютона, а на внешней температура задана.

1.2 Решение

Рисунок 1.1 — Условие задачи

Запишем основное уравнение теплопроводности:

$$\frac{\partial^2 U}{\partial t^2} = a^2 \Delta U \tag{1.1}$$

Запишем общий вид граничных условий:

$$-\lambda \frac{\partial U}{\partial \vec{n}}\Big|_{r \in S} = \alpha \left(U\Big|_{r \in S} - U_{\infty} \right) \tag{1.2}$$

Поскольку слоя сферические, запись уравнений будем вести в сферической системе координат. Также, поскольку задача стационарная, то левая часть уравнения (1.1) равна нулю:

$$a^2 \Delta U = 0 \tag{1.3}$$

На внутренней поверхности теплообмен происходит по закону Ньютона:

$$-\lambda_1 \frac{\partial U_1}{\partial r}\Big|_{r=R_1} = \alpha (U_1 - U_1\Big|_{r=R_1}) \tag{1.4}$$

Запишем граничное условие для внешней поверхности:

$$U_2\Big|_{r=R_{cr}} = U_2 \tag{1.5}$$

Запишем условие сопряжения:

$$U_1 \Big|_{r=R_{cr}-0} = U_2 \Big|_{r=R_{cr}+0} \tag{1.6}$$

Запишем условие равенства мощностей тепловых потоков через границу раздела двух слоев:

$$\lambda_1 \frac{\partial U}{\partial r} \Big|_{r=R_{cr}-0} = \lambda_2 \frac{\partial U}{\partial r} \Big|_{r=R_{cr}+0} \tag{1.7}$$

Запишем лапласиан для сферической системы координат:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta^2} \frac{\partial^2}{\partial \varphi^2}$$
 (1.8)

Тогда распишем выражение (1.3), используя (1.8):

$$a^2 \left(\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dU}{dr} \right) \right) = 0 \tag{1.9}$$

$$\frac{d}{dr}\left(r^2\frac{dU}{dr}\right) = 0\tag{1.10}$$

Получили дифференциальное уравнение для обоих слоев. Решим его:

$$r^2 \frac{dU}{dr} = C' \quad \Longrightarrow \quad \frac{dU}{dr} = \frac{C'}{r^2} \tag{1.11}$$

$$U = -\frac{C'}{r} + C'' \tag{1.12}$$

Получим решения для двух участков:

• Первый участок $R_1 \le r \le R_{\rm cr}$:

$$U_1 = -\frac{C_1}{r} + C_2 \tag{1.13}$$

$$\frac{dU_1}{dr} = \frac{C_1}{r^2} \tag{1.14}$$

• Второй участок $R_{\rm cr} \le r \le R_2$:

$$U_2 = -\frac{C_3}{r} + C_4 \tag{1.15}$$

$$\frac{dU_2}{dr} = \frac{C_3}{r^2} \tag{1.16}$$

Запишем условие сопряжения:

$$U_1(R_{\rm cr}) = U_2(R_{\rm cr}) = U_{\rm cr}$$
 (1.17)

$$-\frac{C_1}{R_{\rm cr}} + C_2 = -\frac{C_3}{R_{\rm cr}} + C_4 \tag{1.18}$$

Запишем условие равенства мощностей тепловых потоков:

$$\lambda_1 \frac{dU_1}{dr} = \lambda_2 \frac{dU_2}{dr} \tag{1.19}$$

$$\lambda_1 \frac{C_1}{R_{\rm cr}^2} = \lambda_2 \frac{C_3}{R_{\rm cr}^2} \tag{1.20}$$

Используя (1.18), (1.20), (1.5) и (1.4) Получим систему уравнений для нахождения констант интегрирования:

$$\begin{cases}
-\frac{C_1}{R_{\text{cr}}} + C_2 = -\frac{C_3}{R_{\text{cr}}} + C_4 \\
\lambda_1 \frac{C_1}{R_{\text{cr}}^2} = \lambda_2 \frac{C_3}{R_{\text{cr}}^2} \\
-\frac{C_3}{R_2} + C_4 = U_2 \\
-\lambda_1 \frac{C_1}{R_1^2} = \alpha \left(U_1 + \frac{C_1}{R_1} - C_2 \right)
\end{cases}$$
(1.21)

Из второго уравнения (1.21) выразим C_3 :

$$C_3 = \frac{C_1 \lambda_1}{\lambda_2} \tag{1.22}$$

Из третьего уравнения (1.21) выразим C_4 :

$$C_4 = \frac{R_2 U_2 \lambda_2 + C_1 \lambda_1}{R_2 \lambda_2} \tag{1.23}$$

Из первого уравнения (1.21) выразим C_2 :

$$C_2 = \frac{(R_2 R_{\text{cT}} U_2 + C_1 R_2) \lambda_2 + (C_1 R_{\text{cT}} - C_1 R_2) \lambda_1}{R_2 R_{\text{cT}} \lambda_2}$$
(1.24)

Из четвертого уравнения (1.21) выразим C_1 :

$$C_{1} = \frac{\left(R_{1}^{2}R_{2}R_{cT}U_{2} - R_{1}^{2}R_{2}R_{cT}U_{1}\right)\alpha\lambda_{2}}{\left(R_{2}R_{cT}\lambda_{1} + \left(R_{1}R_{2}R_{cT} + R_{1}^{2}R_{2}\right)\alpha\right)\lambda_{2} + \left(R_{1}^{2}R_{2} - R_{1}^{2}R_{cT}\right)\alpha\lambda_{1}}$$
(1.25)

Тогда коэффициент C_2 равен:

$$C_{2} = \frac{\left(R_{2}R_{\text{cT}}U_{2}\lambda_{1} + \left(R_{1}R_{2}R_{\text{cT}}U_{2} - R_{1}^{2}R_{2}U_{1}\right)\alpha\right)\lambda_{2} + \left(R_{2} - R_{\text{cT}}\right)R_{1}^{2}U_{1}\alpha\lambda_{1}}{\left(R_{2}R_{\text{cT}}\lambda_{1} + \left(R_{1}R_{2}R_{\text{cT}} - R_{1}^{2}R_{2}\right)\alpha\right)\lambda_{2} + \left(R_{2} - R_{\text{cT}}\right)R_{1}^{2}\alpha\lambda_{1}}$$
(1.26)

Подставим полученные коэффициенты в выражение (1.13) и найдем его значение при $r=R_{\rm cr}$:

$$U_{\rm cr} = U_1(R_{\rm cr}) = \frac{R_1^2 \alpha \lambda_1 (R_{\rm cr} - R_2) (U_2 - U_1)}{(R_2 R_{\rm cr} \lambda_1 + (R_1 R_2 R_{\rm cr} - R_1^2 R_2) \alpha) \lambda_2 + (R_2 - R_{\rm cr}) R_1^2 \alpha \lambda_1} + U_2$$
(1.27)

2 Задача 2

2.1 Условие

Решить краевую задачу $U_t=aU_{xx}$ на промежутке $0\leq x\leq l$, если $U_x(0,t)=0,$ $U_x(l,t)+\beta U(l,t)=0.$ Начальные условия $U(x,0)=\varphi(x).$

2.2 Решение