3.1. Linear chain with two atoms per unit cell

$$M_1\ddot{s}_{n1} + 2f \ s_{n1} - f \ s_{(n-1)2} - f \ s_{n2} = 0$$

 $M_2\ddot{s}_{n2} + 2f \ s_{n2} - f \ s_{(n+1)1} - f \ s_{n1} = 0$

3.1. Linear chain

3. Crystal vibrations

Ansatz:

$$s_{n\alpha} = \frac{1}{M_{\Omega}} u_{\alpha}(q) e^{i(qna - \omega t)}$$

$$\begin{pmatrix} \frac{2f}{M_1} - \omega^2 & -\frac{f}{\sqrt{M_1 M_2}} (1 + e^{-iqa}) \\ -\frac{f}{\sqrt{M_1 M_2}} (1 + e^{iqa}) & \frac{2f}{M_2} - \omega^2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = 0$$

 $det(\)=0$:

$$\omega_{1,2}^2 = f(\frac{1}{M_1} + \frac{1}{M_2} \pm \sqrt{(\frac{1}{M_1} + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \frac{qa}{2}})$$

$\omega_{1,2}^2 = f(\frac{1}{M_1} + \frac{1}{M_2} \frac{+}{-} \sqrt{(\frac{1}{M_1} + \frac{1}{M_2})^2 - \frac{4}{M_1 M_2} \sin^2 \frac{qa}{2}})$

3.1. Linear chain – atomic displacements

3. Crystal vibrations

78

Dispersion relation for the diatomic linear chain.

Displacement of atoms in a diatomic linear chain for $q \sim 0$ and $q = \pi/a$.

Note: to understand this figure most of us will need at least 10 minutes!

source: Th. Fauster

lattice planes

Longitudinal mode

Transversal mode

3.2. Lattice vibrations (3 dim.)

3. Crystal vibrations

 $M_{\alpha}\ddot{s}_{n\alpha i} + \sum_{m\beta j} \Phi_{m\beta j}^{n\alpha i} s_{m\beta j} = 0$ \vec{R}_{n} $s_{n\alpha i} = \frac{1}{\sqrt{M_{\alpha}}} u_{\alpha i}(q) e^{i(\vec{q}\vec{R}_{n} - \omega t)}$

$$M_{\alpha}\ddot{s}_{n\alpha i} + \sum_{m\beta j} \Phi_{m\beta j}^{n\alpha i} s_{m\beta j} = 0$$

$$s_{n\alpha i} = \frac{1}{\sqrt{M_{\alpha}}} u_{\alpha i}(q) e^{i(\vec{q}\vec{R}_n - \omega t)}$$

$$-\omega^{2}u_{\alpha i} + \sum_{\beta j} \sum_{m} \frac{1}{\sqrt{M_{\alpha}M_{\beta}}} \Phi_{m\beta j}^{n\alpha i} e^{i\vec{q}(\vec{R}_{n} - \vec{R}_{m})} u_{\beta j} = 0$$

Dynamische Matrix : $D_{\beta i}^{\alpha i}(q)$

Loesung: $\det(D_{\beta j}^{\alpha i}(q) - \omega^2 \cdot 1) = 0 \Rightarrow 3N_{\alpha}$ Zweige $\omega(\vec{q}) = \omega(-\vec{q}), \ \omega(\vec{q} + \vec{G}) = \omega(\vec{q})$

3.2. Lattice vibrations (3 dim.)

3. Crystal vibrations

Example: (Si, Ge, diamond) fcc lattice with basis of 2 atoms (a = 2)

1x LA + 2x TA 6 branches: 1x LO + 2x TO

Data points stem from inelastic neutron diffraction

3.3. Thermal properties

3. Crystal vibrations

Bose Verteilung

$$\langle n \rangle_T = \frac{1}{e^{\frac{\hbar \omega_q}{k_B T}} - 1}$$

$$U(\omega_q, T) = \hbar\omega(\frac{1}{2} + \langle n \rangle_T)$$

$$\int_{BZ} d^3q = 4\pi \int_0^{q_D} q^2 dq = \frac{4\pi}{3} q_D^3 = V_{BZ} = \frac{(2\pi)^3}{V_{WS}}$$

q_D Debye wave-vector

 $\hbar cq_D = k_B \Theta_D$ Debye temperature (material property)

3.3. Debye specific heat

3. Crystal vibrations

 $c_v = \frac{9N_\alpha}{V_{WS}} k_B \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\frac{\Theta_D}{T}} dx \frac{x^4 e^x}{(e^x - 1)^2}$

Good approximation for small and large T

T³ – law at low temperatures

Specific heat of solid argon $\Theta_D = 92 \text{ K}$

DEBYE TEMPERATURES FOR SELECTED ELEMENTS^a

ELEMENT	$\Theta_D(K)$	ELEMENT	$\Theta_D(K)$
Li	400	A	85
Na	150	Ne	63
K	100		
		Cu	315
Be	1000	Ag	215
Mg	318	Au	170
Ca	230		
		Zn	234
В	1250	Cd	120
Al	394	Hg	100
Ga	240		
In	129	Cr	460
Ti	96	Mo	380
		W	310
C (diamond)	1860	Mn	400
Si	625	Fe	420
Ge	360	Co	385
Sn (grey)	260	Ni	375
Sn (white)	170	Pd	275
Pb	88	Pt	230
As	285	La	132
Sb	200	Gd	152
Bi	120	Pr	74

"The temperatures were determined by fitting the observed specific heats c_c to the Debye formula (23.26) at the point where $c_c = 3nk_B/2$. Source: J. de Launay, Solid State Physics, vol. 2, F. Seitz and D. Turnbull, eds., Academic Press, New York, 1956.

3.4. Density of states

3. Crystal vibrations

$$Z(\omega)d\omega = \frac{1}{(2\pi)^3}d\omega \sum_{s} \int_{\omega = const.} \frac{df_{\omega}}{|\nabla_q \omega|}$$

Example: Si

regions with low dispersion $\omega(q) \leftrightarrow$ high density of states

Zustandsdichte:

$$Z(\omega) = 3\frac{4\pi}{(2\pi)^3} \frac{\omega^2}{c^3}$$

Volumen eines Zustands im q-Raum:

$$\frac{(2\pi)^3}{V}$$

3.4. Density of states

3. Crystal vibrations

 $Z(\omega)d\omega = \frac{1}{(2\pi)^3}d\omega \sum_{s} \int_{\omega = const.} \frac{df_{\omega}}{|\nabla_{g}\omega|}$

Example: Si

regions with low dispersion $\omega(q) \leftrightarrow high$ density of states

Zustandsdichte:

$$Z(\omega) = 3 \frac{4\pi}{(2\pi)^3} \frac{\omega^2}{c^3}$$

Volumen eines Zustands im q-Raum:

$$\frac{(2\pi)^3}{V}$$

3.5. Anharmonic Effects

3. Crystal vibrations

Thermal Expansion

$$T\ll\Theta_D, q\ll q_D$$

No umklapp: $\vec{q}_3 = \vec{q}_1 + \vec{q}_2$

$$T < \Theta_D, q \simeq q_D$$

Umklapp: $\vec{q}_3 = \vec{q}_1 + \vec{q}_2 - \vec{G}$

