1s = 1,000,000 µs = 1 × 106 µs $1m = 60,000,000 \mu s = 6 \times 10^{7} \mu s$ 1h = 3,600,000,000 µs = 3.6 × 109 µs 1D= 86400,000,000 Dus = 8.64 × 1010 us 1M = 2,629,800,000,000 µs = 2.6298 × 1012 µs 1 A = 31,557,600,000,000 us = 3.15576 × 10¹³ us Axel Giuseppe Flores Aranda CU:181218

Estructuras de Datos Avanzadas

Tarea 1

1. Para cada función f(n) y tiempo t determine el tamaño máximo del problema (la n) que puede resolverse en tiempo t. Suponga que el algoritmo usado para resolver el problema toma f(n) microsegundos (reporte sólo el orden de magnitud si los números son demasiado grandes)

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 Segundo	1 Minuto	1 Hora	l Día	1 Mes	1 Año	1 Siglo
$log_2(n)$	21×106	26×107	23.6x109	28.64×1010	22.63×1012		23,15×1015
	1012	3.6×10 ¹⁵	1.3 × 10 ¹⁹				
N	1×106	6×107	3.6×109	8.64×1010	2.6×1012	3.1×10 ¹³	3.1×10 ¹⁵
$n \log_2(n)$	6.3×104	2.8×106	1.3×108	2.7×1010	7.2 × 1010		
n^2	1000	7745.97	6×104	2.9×105	1.6 × 10 ⁶	5.6 × 106	5.6×107
n^3	100	391.48	1532.62	4420.84	13803.02	31601.04	
2^n	19.93	25.83	31.74	36.33	41.25	44.84	51.48
n!							

 $n! = n \cdot (n-1) \cdot (n-2 \cdot ... \cdot 2 \cdot 1)$

2. Supongamos que estamos comparando el desempeño de dos algoritmos de ordenamiento. Para entradas de tamaño n, el algoritmo A toma $8n^2$ operaciones mientras que el algoritmo B toma 64nlog2(n). ¿Para qué valores de n es mejor el desempeño de A?

3. ¿Cuál es el valor más chico de n para el cual un algoritmo que toma $100n^2$ es

más rápido que uno que toma 2ⁿ (en la misma máquina)?

4. Demuestre que $2^n = O(n^2)$

2)
$$8n^2 = 64 \text{ plog}_2(n)$$

 $n = 8 \log_2(n)$

15 = 3.1536 × 1015 µs

=> A tiene migor desempeño en el intervalo n E[1.1,43.56] /

3)
$$2^n = 100n^2$$

⇒ n ∈[0,0.14], Despues de las 14 operaciones

4)
$$2^{n} = O(n^{2})$$

 $2^{n} = cn^{2}$
 $\Rightarrow c = \frac{2^{n}}{n^{2}}, n \neq 0$