Probability Theory Homework 1

Michael Nelson

Problem 3

Solution 1. labelsol Suppose $x \in \limsup(A_n \cup B_n)$. Then x belongs to infinitely many of the $A_n \cup B_n$'s. In particular, this implies x belongs to infinitely many of the A_n 's or it belongs to infinitely many of the B_n 's. Without loss of generality, say x belongs to infinitely many of the A_n 's. In other words, $x \in \limsup A_n$. It follows that

$$\limsup (A_n \cup B_n) \subseteq \limsup A_n \cup \limsup B_n$$
.

Conversely, suppose $x \in \limsup A_n \cup \limsup B_n$. Then either $x \in \limsup A_n$ or $x \in \limsup B_n$. Without loss of generality, say $x \in \limsup A_n$. Then x belongs to infinitely many of the A_n 's. This implies x belongs to infinitely many of the $A_n \cup B_n$'s. In other words, $x \in \limsup (A_n \cup B_n)$. It follows that

$$\limsup (A_n \cup B_n) \supseteq \limsup A_n \cup \limsup B_n$$
.

Now we answer the second part of the question. Suppose $A_n \to A$ and $B_n \to B$ where

$$\liminf A_n = A = \limsup A_n$$
 and $\liminf B_n = B = \limsup B_n$.

Then observe that

$$A \cup B = \liminf A_n \cup \liminf B_n$$

 $\subseteq \liminf (A_n \cup B_n)$
 $\subseteq \limsup (A_n \cup B_n)$
 $= \limsup A_n \cup \limsup B_n$
 $= A \cup B$.

It follows that $A_n \cup B_n \to A \cup B$. Similarly, we have

$$A_n \cap B_n = (A_n^c \cup B_n^c)^c$$
$$\to A^c \cup B^c$$
$$= (A \cap B)^c.$$

Problem 5

Solution 2. labelsol For each $k, n \in \mathbb{N}$, set $A_{k,n} = \{\omega \mid f_n(\omega) - f(\omega) \ge 1/k\}$. We want to show that

$$\{\omega \mid f_n(\omega) \not\to f(\omega)\} = \bigcup_{k=1}^{\infty} \limsup_{n \to \infty} (A_{k,n}).$$

To see this, observe that

$$\omega \in \{\omega \mid f_n(\omega) \not\to f(\omega)\} \iff \exists k \in \mathbb{N} \text{ such that } |f_n(\omega) - f(\omega)| \ge 1/k \text{ for infinitely many } n \in \mathbb{N}$$

$$\iff \exists k \in \mathbb{N} \text{ such that } \omega \in A_{k,n} \text{ for infinitely many } n \in \mathbb{N}$$

$$\iff \exists k \in \mathbb{N} \text{ such that } \omega \in \limsup_{n \to \infty} (A_{k,n})$$

$$\iff \omega \in \bigcup_{k=1}^{\infty} \limsup_{n \to \infty} (A_{k,n}).$$

Problem 10

Solution 3. labelsol We have

$$1_{A_n} \to 1_A \iff \liminf 1_{A_n} = \limsup 1_{A_n}$$
 $\iff 1_{\liminf A_n} = 1_{\limsup A_n}$
 $\iff \liminf A_n = \limsup A_n$
 $\iff A_n \to A$

Problem 24

Solution 4. labelsol First we show \mathcal{A} is a field. We have $\emptyset \in \mathcal{A}$ since \emptyset is finite. Clearly \mathcal{A} is closed under compliments since $A \in \mathcal{A}$ implies either A or A^c is finite which implies $A^c \in \mathcal{A}$. It remains to show that \mathcal{A} is closed under finite intersections. Let $A, B \in \mathcal{A}$ and suppose that $A \cap B$ is infinite. We must show that $(A \cap B)^c = A^c \cup B^c$ is finite. In other words, we need to show that both A^c and B^c are finite. Assume for a contradiction that A^c is infinite. Then A must be finite since $A \in \mathcal{A}$. But this implies $A \cap B$ is finite, which is a contradiction. Thus A^c must be finite. Similarly, we can prove by contradiction that B^c is finite too. This shows that \mathcal{A} is a field. To see that \mathcal{A} is not a σ -field, consider the set of all positive even numbers A. If \mathcal{A} were a σ -field, then we must have $A \in \mathcal{A}$ since it can be expressed as a countable union of singleton sets (with each singleton set clearly belonging to \mathcal{A}):

$$A=\bigcup_{n\in\mathbb{N}}\{2n\}.$$

However $A \notin \mathcal{A}$ since both A and A^c are infinite: A^c is the set of all positive odd integers).

Problem 26

Problem 26.a

Solution 5. labelsol Let $\mathcal{B} = \{\bigcup_{i \in I} A_i \mid I \subseteq [k]\}$ where $[k] = \{1, ..., k\}$. First note that $\mathcal{B} \subseteq \mathcal{A}(\mathcal{C})$ since $\mathcal{A}(\mathcal{C})$ contains all finite unions of members of \mathcal{C} . To show $\mathcal{A}(\mathcal{C}) \subseteq \mathcal{B}$, it suffices to show that \mathcal{B} is an algebra. We have $\emptyset \in \mathcal{B}$. Given $\bigcup_{i \in I} A_i$ and $\bigcup_{j \in J} A_j$ in \mathcal{B} , we have

$$\left(\bigcup_{i\in I} A_i\right) \cap \left(\bigcup_{j\in J} A_j\right) = \bigcup_{i\in I, j\in J} A_i \cap A_j$$
$$= \bigcup_{i\in I\cap J} A_i,$$

since $A_i \cap A_j = \emptyset$ for all $i \neq j$. It follows that \mathcal{B} is closed under finite intersections. Also, denoting $I^* = [k] \setminus I$, we have

$$\left(\bigcup_{i\in I}A_i\right)^c=\bigcup_{i^*\in I^*}A_{i^*}$$

since \mathcal{C} forms a partition of Ω . It follows that \mathcal{B} is closed under complements. Therefore \mathcal{B} is algebra, and since \mathcal{B} contains \mathcal{C} , we see that $\mathcal{A}(\mathcal{C}) \subseteq \mathcal{B}$.

Problem 26.b

Solution 6. labelsol This σ -algebra generated by \mathcal{C} is precisely $\mathcal{A}(\mathcal{C})$. This is because $\mathcal{A}(\mathcal{C})$ contains only finitely many members. In particular, a countable union of members of $\mathcal{A}(\mathcal{C})$ can be reexpressed as a finite union of members of $\mathcal{A}(\mathcal{C})$. For instance,

$$\bigcup_{n\in\mathbb{N}}\bigcup_{i\in I_n}A_i=\bigcup_{i\in I}A_i$$

where $I = \bigcup_{n \in \mathbb{N}} I_n$.

Problem 26.c

Solution 7. labelsol The induced σ -algebra is given by $\mathcal{D} = \{\bigcup_{i \in I} A_i \mid I \subseteq \mathbb{N}\}$. Indeed, we have $\emptyset \in \mathcal{D}$. Let $\{\bigcup_{i \in I_n} A_i\}_{n \in \mathbb{N}}$ be a countable collection of members of \mathcal{D} . Then we have

$$\bigcup_{n\in\mathbb{N}}\bigcup_{i\in I_n}A_i=\bigcup_{i\in I}A_i$$

where $I = \bigcup_{n \in \mathbb{N}} I_n$. Thus \mathcal{D} is closed under countable unions. Finally, given $\bigcup_{i \in I} A_i$ in \mathcal{D} , set $I^* = \mathbb{N} \setminus I$ and observe that

$$\left(\bigcup_{i\in I}A_i\right)^c = \bigcup_{i^*\in I^*}A_{i^*}$$

since $\{A_1, A_2...\}$ forms a countable partition of Ω .

Problem 26.d

Solution 8. labelsol The atoms of the collection of half intervals are of the form (n, n+1] where $n \in \mathbb{Z}$. For the converse of part a of this problem, note that the atoms of \mathcal{A} are disjoint from one another: if A and B are distinct atoms of \mathcal{A} , then $A \cap B \in \mathcal{A}$ and $A \cap B \subseteq A$ implies $A \cap B = \emptyset$. Moreover, since \mathcal{A} is finite, it has finitely many atoms, say A_1, \ldots, A_n , and we must have $\Omega = A_1 \cup \cdots \cup A_n$. In particular, $\{A_1, \ldots, A_n\}$ forms a finite partition of Ω .

Problem 31

Solution 9. labelsol Assume for a contradiction that \mathcal{G} is countably generated, say by $\mathcal{C} = \{A_n \mid n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, either A_n is countable or A_n^c is countable. By replacing A_n with its complement if necessary, we may assume that each A_n is countable. Let $X = \bigcup_{n=1}^{\infty} A_n$ and define \mathcal{H} to be the collection of sets B such that either $B \subseteq X$ or $B^c \subseteq X$. By construction, we have

$$C \subseteq \mathcal{H} \subset \mathcal{G}$$
,

where the inclusion $\mathcal{H} \subset \mathcal{G}$ is strict since for any $\omega \in \Omega \backslash X$ we have $\{\omega\} \in \mathcal{G} \backslash \mathcal{H}$ (such an ω exists since Ω is uncountable). We claim that \mathcal{H} is a σ -algebra (which will contradict our assumption that \mathcal{G} is the smallest σ -algebra which contains \mathcal{C}). Indeed, we clearly have $\emptyset \in \mathcal{H}$. Also \mathcal{H} is clearly closed under complements. To show \mathcal{H} is closed under countable unions, let $\{B_n\}$ be a countable collection of members of \mathcal{H} . If each B_n is contained in X, then their union is contained in X; hence in this case their union belongs to \mathcal{H} . On the other hand, if one of the B_n 's is not contained in X, say B_1 , then B_1^c is contained in X, and in this case we have

$$\left(\bigcup_{n=1}^{\infty} B_n\right)^c = \bigcap_{n=1}^{\infty} B_n^c \subseteq X.$$

This also implies that their union belongs to \mathcal{H} . Thus \mathcal{H} is closed under countable unions.

Problem 32

Solution 10. labelsol The Borel σ -algebra $\mathcal{B}(\mathbb{R})$ contains all countable subsets of \mathbb{R} . In particular, if we define \mathcal{G} to be the σ -algebra consisting of subsets $A \subseteq \mathbb{R}$ such that either A or A^c is countable, then $\mathcal{G} \subseteq \mathcal{B}(\mathbb{R})$. However, $\mathcal{B}(\mathbb{R})$ is countably generated but \mathcal{G} is not countable generated (by problem 31). To see why $\mathcal{B}(\mathbb{R})$ is countable generated, for each $q, r \in \mathbb{Q}$ and $n \in \mathbb{N}$, let

$$B_{1/n}(q) = \{x \in \mathbb{R} \mid |x - q| < 1/n\}$$

Then the collection

$$C = \{B_{1/n}(q) \mid n \in \mathbb{N} \text{ and } q \in \mathbb{Q}\}$$

forms a countable basis for the usual topology on \mathbb{R} . In particular, if U be an open subset of \mathbb{R} , then we can express U as a union of the form

$$U=\bigcup_{\lambda\in\Lambda}B_{\lambda}$$

where $B_{\lambda} \in \mathcal{C}$ and where the index set Λ is *countable*. In particular, since $\mathcal{B}(\mathbb{R})$ is the smallest σ -algebra which contains all open sets, we see that $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C})$.