Sam Tay Professor Milnikiel Math 335 Section 15: 10, 12, 16, 33, 40, 41 1/7/11

Well, I'm getting a little worried about this stuff. The winter break is coming to a close and this stuff is starting to seem pretty opaque. I just really want to have some intuition for these computational problems, and in some cases I do, but not with the majority. I have the starred problems all solved, and most of the unstarred. However, I find it very difficult to find homomorphisms with the right kernel for using the Fundamental Homomorphism Theorem. When I can't, I just try to stab in the dark by finding elements (of the factor group) with certain order- although this method can provide a valid proof, it just seems so haphazard. Its not like I can really see why the factor group collapses the way it does, and I feel like I should be able to.

Problem 10: To compute $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_8)/\langle (0,4,0) \rangle$, we will use the Fundamental Homomorphism Theorem. Consider the homomorphism $\phi: \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_8 \to \mathbb{Z} \times \mathbb{Z}_4 \times \mathbb{Z}_8$ defined by

$$\phi(x, y, z) = (x, y \mod 4, z).$$

Then

$$\ker \phi = \{(0, 4n, 0) : n \in \mathbb{Z}\} = \langle (0, 4, 0) \rangle,$$

and since ϕ is onto, we have

$$(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_8)/\langle (0,4,0) \rangle \cong \mathbb{Z} \times \mathbb{Z}_4 \times \mathbb{Z}_8.$$

Problem 12: Similarly, to compute $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})/\langle (3,3,3) \rangle$, consider the homomorphism $\phi : \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}$ defined by

$$\phi(x, y, z) = (x \mod 3, y - x, z - x).$$

Then

$$\ker \phi = \{(3n, y, z) : n \in \mathbb{Z} \text{ and } 3n = y = z\} = \{(3n, 3n, 3n) : n \in \mathbb{Z}\} = \langle (3, 3, 3) \rangle,$$

and since ϕ is onto, we have

$$(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})/\langle (3,3,3) \rangle \cong \mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}.$$

Problem 16: The six cyclic subgroups of order 4 of $G = \mathbb{Z}_4 \times \mathbb{Z}_4$ are

$$H_1 = \langle (1,0) \rangle, H_2 = \langle (0,1) \rangle, H_3 = \langle (1,2) \rangle, H_4 = \langle (2,1) \rangle, H_5 = \langle (1,3) \rangle, H_6 = \langle (1,1) \rangle.$$

• By Theorem 15.8, $G/H_1 \cong G/H_2 \cong \mathbb{Z}_4$.

- Since $|G/H_3| = |G/H_4| = 4$ and in the respective factor groups, $|(1,1) + H_3| = |(1,1) + H_4| = 4$, we know that these factor groups must be cyclic and isomorphic to \mathbb{Z}_4 . We know that those cosets have order 4 because $(1,1)^n$ is an ordered pair of equal elements (of \mathbb{Z}_4) for all n, and the only element in H_3, H_4 that is an ordered pair of equal elements is the identity (0,0), so the order of the coset is just the order of the element |(1,1)| = 4.
- Similarly, since (1,2)ⁿ ∈ H₅ only when (1,2)ⁿ = (0,0), we see that the order of the coset |(1,2)+H₅| is equal to the order of the element |(1,2)| =
 4. Since this is exactly the order of the factor group, we know that G/H₅ is cyclic and isomorphic to Z₄.
- We see that the homomorphism $\phi: G \to \mathbb{Z}_4$ given by $\phi(x,y) = y x$ yields $\ker \phi = H_6$, and since ϕ is onto, by the FHT we have $G/H_6 \cong \mathbb{Z}_4$.

The only subgroup of order 4 that is not cyclic is

$$H_7 = \{(0,0), (0,2), (2,0), (2,2)\},\$$

and the homomorphism from G onto $\mathbb{Z}_2 \times \mathbb{Z}_2$ given by $\phi(x,y) = (x \mod 2, y \mod 2)$ has $\ker \phi = H_7$, so again by the FHT we have $G/H_7 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

The three subgroups of order 2 are

$$H_8 = \langle (0,2) \rangle, H_9 = \langle (2,0) \rangle, H_{10} = \langle (2,2) \rangle.$$

Each of these subgroups form a factor group of order 8 and since each element in G has at most order 4, we know that these factor groups are either isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

- Since $(1,1)^n \in H_8$, H_9 only when $(1,1)^n = (0,0)$, we see that the cosets $(1,1)+H_8$ and $(1,1)+H_9$ have order |(1,1)|=4 in each of their respective factor groups. From above, we must have $G/H_8 \cong G/H_9 \cong \mathbb{Z}_4 \times \mathbb{Z}_2$.
- Similarly, $(1,2) + H_{10}$ has order 4, so $G/H_{10} \cong \mathbb{Z}_4 \times \mathbb{Z}_2$.

Problem 33: Theorem 15.18 states that M is a maximal normal subgroup of G if and only if G/M is simple. The forward direction is true because for any nontrivial proper normal subgroup $H \triangleleft G/M$, $\gamma^{-1}[H]$ is a normal subgroup of G by Theorem 15.16 where $M \triangleleft \gamma^{-1}[H] \triangleleft G$, such that M is not maximal. Similarly, if M is not maximal then there is a subgroup N such that $M \triangleleft N \triangleleft G$, where $\gamma[N] \unlhd G/M$ and

$$\gamma[N] \neq G/M$$
 and $\gamma[N] \neq \{M\},$

such that G/M is not simple.

Problem 40: Let N and H be subgroups of G where N is normal. Then the set

$$HN = \{hn : h \in H, n \in N\}$$

is also a subgroup of G, where HN is the smallest subgroup containing both N and H.

Proof. To see that $HN \leq G$, let $x_1 = h_1 n_1, x_2 = h_2 n_2 \in HN$. Then

$$x_1x_2 = h_1n_1h_2n_2$$

where $n_1h_2 \in Nh_2$, and since $Nh_2 = h_2N$ we must have $n_1h_2 = h_2n_0$ for some $n_0 \in N$. Thus

$$x_1x_2 = h_1(n_1h_2)n_2 = h_1(h_2n_0)n_2$$

where $h_1h_2 \in H$ and $n_0n_2 \in N$. So $x_1x_2 \in HN$ and therefore HN is closed. Also note that since $H, N \leq G$, we have the identity $e \in H$ and $e \in N$ so that $ee = e \in HN$. Finally, for $x = hn \in HN$, we know $x^{-1} = n^{-1}h^{-1}$ where $n^{-1}h^{-1} \in Nh^{-1}$. Since $Nh^{-1} = h^{-1}N$, there must exist $n_0 \in N$ such that

$$x^{-1} = n^{-1}h^{-1} = h^{-1}n_0 \in HN,$$

so each element has an inverse in HN. Therefore HN is a subgroup of G.

Next, suppose that $K \subseteq G$ such that $H \cup N \subseteq K$. Let $x \in HN$ so that x = hn for $h \in H$ and $n \in N$. Then since $h, n \in H \cup N \subseteq K$ and K is a closed subgroup, we have $hn = x \in K$. So $HN \subseteq K$ and this holds for all K containing both K and K. We conclude that K is the smallest such subgroup.

Problem 41: Let N and M be normal subgroups of G. Then NM is also a normal subgroup of G.

Proof. We know from Problem 40 that $NM \leq G$; to show that $NM \leq G$, suppose $g \in G$ and $x = nm \in NM$. By Theorem 14.13, $gng^{-1} \in N$ and $gmg^{-1} \in M$ so we have

$$gng^{-1}gmg^{-1} = gnmg^{-1} = gxg^{-1} \in NH.$$

Again by Theorem 14.13, NM is normal.

Questions from the Unstarred Problems (and some neither starred nor unstarred)

Problem 1: By Theorem 15.8, $(\mathbb{Z}_2 \times \mathbb{Z}_4)/\langle (0,1) \rangle \cong \mathbb{Z}_2$

Problem 2: To compute $(\mathbb{Z}_2 \times \mathbb{Z}_4)/\langle (0,2) \rangle$, we first see that the factor \mathbb{Z}_2 is left alone (identity still 0) and \mathbb{Z}_4 is collapsed by a subgroup of order 2 (identity goes to both 0 and 2), so we expect the factor group to be isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. The homomorphism $\phi(x,y) = (x,y \mod 2)$ onto our expected group confirms our suspicions, as $\ker \phi = \langle (0,2) \rangle$.

Problem 3: To compute $(\mathbb{Z}_2 \times \mathbb{Z}_4)/\langle (1,2) \rangle$, where

$$\langle (1,2) \rangle = \{ (0,0), (1,2) \},\$$

first note that the factor group must have order 4. We also find that the coset $(1,1) + \langle (1,2) \rangle$ has order 4, so the factor group is cyclic and isomorphic to \mathbb{Z}_4 . I suppose the homomorphism $\phi : \mathbb{Z}_2 \times \mathbb{Z}_4 \to \mathbb{Z}_4$ defined by $\phi(x,y) = y - 2x$ could also help.

Problem 4: To compute $(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle$, where

$$\langle (1,2) \rangle = \{(0,0), (1,2), (2,4), (3,6)\},\$$

first note that the factor group must have order 8. We also find that the coset $(1,1)+\langle (1,2)\rangle$ has order 8, so the factor group is cyclic and isomorphic to \mathbb{Z}_8 . I suppose the homomorphism $\phi: \mathbb{Z}_4 \times \mathbb{Z}_8 \to \mathbb{Z}_8$ defined by $\phi(x,y) = y-2x$ could also help.

Problem 5: The answer to this one is in the back of the book, but it's still driving me nuts! We are computing the factor group

$$G/H = (\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2,4) \rangle$$

where

$$\langle (1,2,4) \rangle = \{(0,0,0), (1,2,4), (2,0,0), (3,2,4)\}.$$

Clearly collapsing this subgroup to the identity does not allow for the factors $\mathbb{Z}_4, \mathbb{Z}_4, \mathbb{Z}_8$ to collapse separately. It would be nice to create a homomorphism where we insure that (x, y, z) goes to the identity if y = 2x and z = 2y = 4x, but since we are working in modular arithmetic, this does not seem possible. This factor group has order 32; I'm guessing Fraleigh doesn't expect me to analyze each element to figure it out. Noting that all $(x, y, z)^n \in \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_8$ will go to (0,0,0) at n=8, this is the maximum order of any coset in the factor group. We see that the coset $(1,1,1)+\langle (1,2,4)\rangle$ has order 8, which allows us to conclude that this factor group is isomorphic to either $\mathbb{Z}_8 \times \mathbb{Z}_4$ or $\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. I was thinking of coming up with a certain number of elements of a certain order, but there's got to be a better way to solve this.

Problem 6: The factor group $(\mathbb{Z} \times \mathbb{Z})/\langle (0,1) \rangle \cong \mathbb{Z}$ can be computed with a direct application of Theorem 15.8. The homomorphism to consider is $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(x,y) = x$, which has kernel $\langle (0,1) \rangle$.

Problem 7: I believe the factor group $(\mathbb{Z} \times \mathbb{Z})/\langle (1,2) \rangle$ can be visualized similar to Example 15.12, but representatives must be taken off of the y-axis. The homomorphism to consider is $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(x,y) = y - 2x$, which has kernel $\langle (1,2) \rangle$.

Problem 8: For the factor group $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})/\langle (1,1,1) \rangle$, we construct $\phi: \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by $\phi(x,y,z) = (y-x,z-x)$. Then $\phi(x,y,z) = (0,0)$ exactly when x = y = z, which are all of the elements in $\langle (1,1,1) \rangle$. Therefore the factor group is isomorphic to $\mathbb{Z} \times \mathbb{Z}$.

Problem 9: For the factor group $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_4)/\langle (3,0,0) \rangle$, we construct $\phi : \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_4 \to \mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}_4$ by $\phi(x,y,z) = (x \mod 3, y, z)$. Then $\ker \phi = \langle (3,0,0) \rangle$. Therefore the factor group is isomorphic to $\mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}_4$.

Problem 11: For the factor group $(\mathbb{Z} \times \mathbb{Z})/\langle (2,2) \rangle$, we recall in $\mod \langle (1,1) \rangle$, we found the factor group isomorphic to just \mathbb{Z} . This is because $\langle (1,1) \rangle \cong \mathbb{Z}$. But this time we are dividing out by $\langle (2,2) \rangle = 2\langle (1,1) \rangle \cong 2\mathbb{Z}$, which is like "half" of \mathbb{Z} . As one might expect, defining the homomorphism $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}_2 \times \mathbb{Z}$ by $\phi(x,y) = (x \mod 2, y - x)$ yields $\ker \phi = \langle (2,2) \rangle$. Therefore the factor group is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}$.

Problem 19:

- (a) True?
- (b) False
- (c) Well $(\frac{1}{2} + \mathbb{Z}) + (\frac{1}{2} + \mathbb{Z}) = \mathbb{Z}$, so false.
- (d) True, $(\frac{1}{n} + \mathbb{Z})$.
- (e) False
- (f) True
- (g) False, $C \leq H$.
- (h) False, could be $\{e\}$.
- (i) True
- (g) False, Theorem 15.15 states that A_5 is simple and clearly 5!/2 is not prime.

Problem 20: Let $K \leq F$ where K consists of all constant functions. Find $H \leq F$ such that $H \cong F/K$.

Well the cosets are just $f+K=\{f+C:C\in\mathbb{R}\}$, which contain all functions that are f just off by a constant. We can choose as representatives those functions that pass through the origin. We have the subgroup $H=\{f\in F: f(0)=0\}$. In this way, we'd define a homomorphism $\phi:F\to H$ by $\phi(f)=f-f(0)$. (It's very easy to show this is a homomorphism.) We see that $\phi(f)=0$ if f(x)=f(0) for all x, which are all constant functions! Thus $F/K\cong H$.

Problem 26: Define $\zeta_n = \cos(2\pi/n) + i\sin(2\pi/n)$ for $n \in \mathbb{Z}^+$. Consider $U/\langle \zeta_n \rangle$. We see that mapping $\langle \zeta_n \rangle$ to the identity is to create a modular addition, similar to $\mathbb{Z}/n\mathbb{Z}$. We see that each coset $e^x + \langle \zeta_n \rangle$ has a representative $e^0 \leq e^x < e^{\frac{2\pi}{n}}$, or $0 \leq x < \frac{2\pi}{n}$. Thus

$$U/\langle \zeta_n \rangle \cong \mathbb{R}_{\frac{2\pi}{n}}.$$

Problem 30: The center of a simple

- (a) abelian group is all of the group.
- (b) nonabelian group must be the trivial subgroup.