Examen parcial de Matemática Discreta 2

IMERL/FIng/UdelaR

28 de junio de 2018

- 1. (a) Definir subgrupo, subgrupo normal y grupo cociente.
 - (b) Sea G un grupo, $H \triangleleft G$ y $\pi_H : G \rightarrow G/H$ la proyección al cociente. Sea $\varphi : G \rightarrow G'$ un morfismo de grupos tal que $H < \operatorname{Ker}(\varphi)$.
 - i. Probar que existe un único morfismo $\widehat{\varphi}:G/H\to G'$ tal que $\varphi=\widehat{\varphi}\circ\pi_H$; es decir, tal que el siguiente diagrama conmuta:

Probar que $\operatorname{Im}(\widehat{\varphi}) = \operatorname{Im}(\varphi)$ y que $\operatorname{Ker}(\widehat{\varphi}) = \pi_H(\operatorname{Ker}(\varphi))$.

- ii. Concluir que $G/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$.
- (c) Se consideran los grupos $G = (\mathbb{R}, +, 0)$ y $G' = (\mathbb{C}^*, ., 1)$. Se define $\varphi : G \to G'$ como $\varphi(x) := e^{2\pi xi} = \cos(2\pi x) + i\sin(2\pi x)$.
 - i. Probar que φ es un morfismo de G en G'.
 - ii. Hallar el núcleo y la imagen de φ . Justificar.
 - iii. Sean los grupos $H:=(\mathbb{Z},+,0)$ y $K=(\{z\in\mathbb{C}\mid |z|=1\},.,1)$. Probar que G/H es isomorfo a K.
- 2. (a) Describir el criptosistema RSA, explicando:
 - i. Cómo se define la clave pública (n, e).
 - ii. Cuál es la función de cifrado y cuál la de descifrado.
 - (b) Explicar el método de Fermat para atacar al criptosistema RSA con clave (n, e), cumpliendo las siguientes etapas:
 - i. Definir el algortimo de factorizaci
íon de n. Justificar que el algoritmo termina.
 - ii. Probar que el resultado del algoritmo descompone a n en factores primos.
 - Explicar cómo se usa la factorización hallada para calcular la función nde descifrado.
 - (c) Aplicando el método de Fermat, hallar la función de descifrado para la clave pública (1073287, 385).

- 3. (a) i. Definir raíz primitiva para un módulo n. Enunciar (en función de los factores primos de n) una condición necesaria y suficiente para que existan raíces primitivas módulo n (teorema de la raíz primitiva).
 - ii. Supongamos que conocemos g, una raíz primitiva módulo p con p primo impar. Describir un algoritmo que permita hallar a partir de q una raíz primitiva módulo p^k .
 - (b) Probar que si $n \in \mathbb{N}$ es un impar y existe una raíz primitiva módulo n, entonces también existe una raíz primitiva módulo $2 \times n$.
 - (c) i. Decir para cuáles de los siguientes naturales n existen raíces primitivas módulo n, justificando la respuesta:
 - n = 41.
 - $n = 115856201 = 41^5$.
 - $n = 2 \times 115856201$.
 - n = 256.
 - ii. Cuando sea posible, para cada uno de los naturales n de la parte 3.(c)i., hallar una raíz primitiva módulo n. Justificar.

SOLUCIÓN:

- 1. (a) Ver las notas de Solotar, Farinatti & Suárez-Álvarez en el sitio EVA del curso: https://eva.fing.edu.uy/mod/resource/view.php?id=76989
 - (b) Ver las notas de Solotar, Farinatti & Suárez-Álvarez en el sitio EVA del curso: https://eva.fing.edu.uy/mod/resource/view.php?id=76989
 - (c) φ es un morfismo, ya que $\varphi(x+y)=e^{2\pi(x+y)i}=e^{2\pi xi}\times e^{2\pi yi}=\varphi(x)\times\varphi(y)$. El núcleo de φ son los reales x tales que $\cos(2\pi x)+i\sin(2\pi x)=1$, es decir, los reales x tales que $\begin{cases}\cos(2\pi x)=1\\\sin(2\pi x)=0\end{cases}$

Estas dos ecuaciones se satisfacen a la vez cuando $2\pi x$ es múltiplo entero de 2π , es decir, cuando $x \in \mathbb{Z}$. Concluimos que $\operatorname{Ker}(\varphi) = \mathbb{Z}$. Por otra parte:

$$|e^{2\pi xi}| = |\cos(2\pi x) + i\sin(2\pi x)| = \sqrt{\cos^2(2\pi x) + \sin^2(2\pi x)} = 1$$

Entonces, $\operatorname{Im}(\varphi) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}$. Recíprocamente, todo complejo z de módulo 1 es de la forma $z = \cos(\alpha) + i\sin(\alpha)$ para algún $\alpha \in [-\pi, \pi)$. Se tiene que $\cos(\alpha) + i\sin(\alpha) = e^{\alpha i} = e^{2\pi(\frac{\alpha}{2\pi})i} = \varphi(\frac{\alpha}{2\pi})$. Concluimos entonces que $\operatorname{Im}(\varphi) = \{z \in \mathbb{C} \mid |z| = 1\}$. Entonces, $\operatorname{Ker}(\varphi) = H$ y $\operatorname{Im}(\varphi) = K$. Aplicando la parte 1.(b).

Entonces, $\operatorname{Ker}(\varphi) = H$ y $\operatorname{Im}(\varphi) = K$. Aplicando la parte 1.(b), concluimos que $G/H \cong K$.

- 2. (a) Ver las notas de Pereira, Qureshi & Rama en el sitio EVA del curso: https://eva.fing.edu.uy/mod/resource/view.php?id=62664
 - (b) Ver las notas de Pereira, Qureshi & Rama en el sitio EVA del curso: https://eva.fing.edu.uy/mod/resource/view.php?id=62664
 - (c) Aplicamos Fermat, buscando el primer cuadrado perfecto de la forma $t^2=n+s^2.$ Tenemos:
 - 1073287 + 1 = 1073288 no es un cuadrado perfecto.
 - $1073287 + 2^2 = 1073291$ no es un cuadrado perfecto.
 - $1073287 + 3^2 = 1073296 = 1036^2$.

Sean t = 1036 y s = 3. Tenemos entonces que $n = (t - s)(t + s) = 1033 \times 1039$.

Entonces $\varphi(n)=1032\times 1038=1071216$. Buscamos el inverso d de e=385 módulo 1071216 mediante el algoritmo de Euclides extendido, obteniendo d=80689:

Las sucesivas divisiones enteras son:

Esto da como resultado las siguiente matrices de transición:

$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix} \qquad \begin{pmatrix} 1 & -1 \\ -3 & 4 \end{pmatrix} \qquad \begin{pmatrix} -1 & 2 \\ 4 & -7 \end{pmatrix} \qquad \begin{pmatrix} 2 & -3 \\ -7 & 11 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 1 & -2782 \end{pmatrix} \\ \begin{pmatrix} 2 & -3 \\ -7 & 11 \end{pmatrix} & \begin{pmatrix} -3 & 8 \\ 11 & -29 \end{pmatrix} & \begin{pmatrix} 8 & -22259 \\ -29 & 80689 \end{pmatrix}$$

Entonces tenemos:

$$\begin{pmatrix} 1071216 \\ 385 \end{pmatrix} \\ \begin{pmatrix} 8 & -22259 \\ -29 & 80689 \end{pmatrix} & \begin{pmatrix} 13 \\ 1 \end{pmatrix}$$

En particular, tenemos $(-29) \times 1071216 + 80689 \times 385 = 1$, de lo que se concluye que $80689 \equiv_{1071216} 385^{-1}$.

La función de cifrado es entonces $E(x):\equiv_{1071216} x^{385}$ y la de descifrado es $D(y):\equiv_{1071216} y^{80689}$.

3. (a) Ver las notas de Pereira, Qureshi & Rama en el sitio EVA del curso: https://eva.fing.edu.uy/mod/resource/view.php?id=62664.

También está en los apuntes sobre el teorema de la raíz primitiva, en el sitio EVA del curso:

https://eva.fing.edu.uy/mod/resource/view.php?id=77461

(b) Ver los apuntes sobre el teorema de la raíz primitiva, en el sitio EVA del curso:

https://eva.fing.edu.uy/mod/resource/view.php?id=77461

(c) Primero observamos que $\varphi(41)=40=2^3\times 5$. Una raíz primitiva módulo 41 es un entero g tal que $1\leq g\leq 40,\ g^{\frac{40}{2}}=g^{20}\not\equiv_{41}1$ y $g^{\frac{40}{5}}=g^8\not\equiv_{41}1$. El menor entero positivo que cumple esto es 6, de modo que es raíz primitiva módulo 41.

Como $6^{40} \equiv_{41^2} 124 \not\equiv_{41^2} 1$ (exponenciación rápida), entonces 6 es raíz primitiva módulo 41^5 .

Como 6 es par, entonces $6+41^5$ es raíz primitiva módulo 2×41^5 . Por otra parte, $256=2^8$, que según el teorema de la raíz primitiva, no admite raíz primitiva.