```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import warnings
warnings.filterwarnings('ignore')

df=pd.read_csv('/content/Mall_Customers.csv')
```

df.head()

$\overline{\Rightarrow}$	Cus	tomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	=
	0	1	Male	19	15	39	11.
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	
Next	steps:	Genera	te code w	 ith df	View recomn	nended plots New intera	active sheet

∨ Univariate Analysis

df.describe()

→		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000	200.000000
	mean	100.500000	38.850000	60.560000	50.200000
	std	57.879185	13.969007	26.264721	25.823522
	min	1.000000	18.000000	15.000000	1.000000
	25%	50.750000	28.750000	41.500000	34.750000
	50%	100.500000	36.000000	61.500000	50.000000
	75%	150.250000	49.000000	78.000000	73.000000
	may	200 000000	70 000000	137 በበበበበበ	99 กกกกกก

sns.distplot(df['Annual Income (k\$)']);

df.columns

sns.kdeplot(data=df, x='Annual Income (k\$)', hue='Gender', shade=True)

columns = ['Age', 'Annual Income (k\$)', 'Spending Score (1-100)']
for i in columns:
 plt.figure()
 sns.kdeplot(data=df, x=i, hue='Gender', shade=True)


```
0.002 - 0.000 -25 0 25 50 75 100 125 Spending Score (1-100)
```

```
columns = ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']
for i in columns:
   plt.figure()
   sns.boxplot(data=df, x='Gender', y=df[i], palette=['lightblue', 'lightcoral'])
```


df['Gender'].value_counts(normalize=True)

→		proportion
	Gender	
	Female	0.56
	Male	0.44

dtype: float64

→ Bivariate Analysis

sns.scatterplot(data=df, x='Annual Income (k\$)', y='Spending Score (1-100)', hue='Gender')

#df=df.drop('CustomerID',axis=1)
sns.pairplot(df,hue='Gender')

df.groupby(['Gender'])[['Age', 'Annual Income (k\$)', 'Spending Score (1-100)']].mean()

→		Age	Annual Income (k\$)	Spending Score (1-100)	
	Gender				ılı
	Female	38.098214	59.250000	51.526786	
	Male	39.806818	62.227273	48.511364	

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Gender'] = le.fit_transform(df['Gender'])
sns.pairplot(df, hue='Gender')

<seaborn.axisgrid.PairGrid at 0x788f3e3658d0>

df.corr()

	•	_
-	7	$\overline{}$
	•	-

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1- 100)
CustomerID	1.000000	0.057400	-0.026763	0.977548	0.013835
Gender	0.057400	1.000000	0.060867	0.056410	-0.058109
Age	-0.026763	0.060867	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	0.056410	-0.012398	1.000000	0.009903
Spending Score (1-	N N1202E	0 050100	n 227227	വ വവവവാ	1 00000

 \blacksquare

ılı

sns.heatmap(df.corr(),annot=True,cmap='coolwarm')

Start coding or generate with AI.

Clustering - Univariate, Bivariate, Multivariate

df['Income Cluster'] = clustering1.labels_
df.head()

→		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	
	0	1	1	19	15	39	2	ıl.
	1	2	1	21	15	81	2	
	2	3	0	20	16	6	2	
	3	4	0	23	16	77	2	
	4	5	0	31	17	40	2	

Next steps:

Generate code with df

New interactive sheet

df['Income Cluster'].value_counts()

count

Income Cluster	
0	86
2	58
1	56

dtype: int64

clustering1.inertia_

25640.457784396807

intertia_scores=[]
for i in range(1,11):
 kmeans=KMeans(n_clusters=i)
 kmeans.fit(df[['Annual Income (k\$)']])
 intertia_scores.append(kmeans.inertia_)

intertia_scores

[137277.2800000002, 49761.737012987025, 24361.259213759215, 14647.235170393054, 8481.49619047619, 5430.245925925928, 3989.608946608945, 3021.5955988456008, 2426.67332112332, 2013.230710466005]

df.columns

- 6	_	_
		_
-	⇁	$\overline{}$

	Age	Annual Income (k\$)	Spending Score (1-100)	
Income Cluster				ıl.
0	41.279070	60.906977	50.337209	
1	36.910714	92.142857	50.517857	
2	37.120690	29.551724	49.689655	

→ Bivariate Clustering

```
clustering2 = KMeans(n_clusters=5)
clustering2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
df['Spending and Income Cluster'] =clustering2.labels_
df.head()
```

→		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster	
	0	1	1	19	15	39	2	0	Ш
	1	2	1	21	15	81	2	1	
	2	3	0	20	16	6	2	0	
	3	4	0	23	16	77	2	1	
	4	5	0	31	17	40	2	0	

Next steps: Generate code with df View recommended plots New interactive sheet

```
intertia_scores2=[]
for i in range(1,11):
    kmeans2=KMeans(n_clusters=i)
    kmeans2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
    intertia_scores2.append(kmeans2.inertia_)
plt.plot(range(1,11),intertia_scores2)
```

[<matplotlib.lines.Line2D at 0x788f3d7fd810>]


```
centers =pd.DataFrame(clustering2.cluster_centers_)
centers.columns = ['x','y']
```

```
plt.figure(figsize=(10,8))
plt.scatter(x=centers['x'],y=centers['y'],s=100,c='black',marker='*')
sns.scatterplot(data=df, x ='Annual Income (k$)',y='Spending Score (1-100)',hue='Spending and Income Clust
plt.savefig('clustering_bivaraiate.png')
```


pd.crosstab(df['Spending and Income Cluster'],df['Gender'],normalize='index')

Mulivariate clustering

from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
df.head()

→		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster	
	0	1	1	19	15	39	2	0	Ш
	1	2	1	21	15	81	2	1	
	2	3	0	20	16	6	2	0	
	3	4	0	23	16	77	2	1	
	4	5	0	31	17	40	2	0	

Next steps: Generate code with df View recommended plots New interactive sheet

dff = pd.get_dummies(df,drop_first=True)
dff.head()

→		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster	
	0	1	1	19	15	39	2	0	115
	1	2	1	21	15	81	2	1	
	2	3	0	20	16	6	2	0	
	3	4	0	23	16	77	2	1	
	4	5	0	31	17	40	2	0	

B

```
→ Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k$)',
             'Spending Score (1-100)', 'Income Cluster',
             'Spending and Income Cluster'],
            dtype='object')
dff = dff[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']]
dff.head()
\overline{\Rightarrow}
         Age Annual Income (k$) Spending Score (1-100)
                                                                \blacksquare
      0
         19
                                15
                                                           39
                                                                ılı
      1
          21
                                15
                                                           81
```

dff = scale.fit_transform(dff)