114 學年度資訊學科能力競賽臺南一中校內複選 試題本

競賽規則

- 1. 競賽時間: 2025/9/25 13:00 ~ 17:00, 共 4 小時。
- 2. 本次競賽試題共 6 題,每題皆有子任務。
- 3. 為了愛護地球,本次競賽題本僅提供電子檔,不提供紙本。
- 4. 每題的分數為該題所有子任務得分數加總;單筆子任務得分數為各筆繳交 在該筆得到的最大分數。
- 5. 本次初選比照南區賽提供記分板,複選比照全國賽不提供記分板。
- 6. 全部題目的輸入皆為標準輸入。
- 7. 全部題目的輸出皆為標準輸出。
- 8. 所有輸入輸出請嚴格遵守題目要求,多或少的換行及空格皆有可能造成裁 判系統判斷為答案錯誤。
- 9. 每題每次上傳間隔為 120 秒,裁判得視情況調整。
- 10. 所有試題相關問題請於競賽系統中提問,題目相關公告也會公告於競賽系統,請密切注意。
- 11. 如有電腦問題,請舉手向監考人員反映。
- 12. 如有如廁需求,須經過監考人員同意方可離場。
- 13. 不得攜帶任何參考資料,但競賽系統上的參考資料可自行閱讀。
- 14. 不得自行攜帶隨身碟,如需備份資料,請將資料儲存於電腦 D 槽。
- 15. 競賽中請勿交談。請勿做出任何會干擾競賽的行為。
- 16. 如需使用 C++ 的 std::cin 或 std::cout 可將以下程式碼插入 main function 以及將 endl 取代為 '\n' 來優化輸入輸出速度。唯須注意不可與 cstdio 混用。

```
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
```

A. 部落衝突

Problem ID: tribe Time Limit: 1.0s Memory Limit: 512MiB

- 題目描述 -

細胞國內有 N 棟房子,第 i 棟房子隸屬於編號 C_i 的部落,這些部落因為沒有手機而時常發生部落衝突。

野豬騎士身為細胞國的首領,為了減少部落衝突發生,打算在這 N 棟房子間鋪設 N-1 條道路,使得任兩棟房子間都能通過一或多條道路互相抵達,如此一來,可以增進各個部落間的友誼,使得細胞國變為超級細胞國。

為了避免鋪設完道路後遇到不受控的野蠻人抗議,野豬騎士想要讓這 N-1 條道路中,恰好 K 條道路 (不能多也不能少) 兩端的房子隸屬於**不同**部落。身為野豬騎士,他還忙著用橡皮筋狩獵山豬,因此將設計道路的重責大任交給了你,請你告訴野豬騎士,是否存在一種方法可以滿足條件,如果有,你還必須告訴他要怎麼鋪設。

我們說兩棟房子 a, b 能經過道路互相抵達,代表存在一系列相異的房子 $p_0, p_1, ..., p_t$ 滿足 $p_0 = a$, $p_t = b$,且所有 1 到 t 之間的整數 i,第 p_{i-1} 棟房子和第 p_i 棟房子之間皆有鋪設道路。換句話說,由房子作為點而道路作為邊的圖上,兩個點是連通的。

第一行有兩個整數 N , K 第二行有 N 個以空白分開的正整數,第 i 個為 C_i 。

- 輸出 -

如果有滿足條件的鋪設道路方式,第一行輸出"Yes",接著輸出 N-1 行,第 i 行兩個數字 U_i,V_i ,代表要將第 U_i 棟房子和第 V_i 棟房子之間鋪設一條道路,如果有多種鋪設道路的方式都可以滿足條件,回答其中一種即可。

如果無法滿足條件,輸出"No"。

- 輸入限制 -

- $2 \le N \le 10^5$
- $1 \le C_i \le N$
- $0 \le K \le N 1$

	分數	額外限制
1	0	
2	3	K = 0
3	13	K = N - 1
4	47	$C_i \in \{1, 2\}$
5	37	無額外限制

5 3 1 1 5 3 3

- 範例輸出 1 -

Yes

2 5

5 3

1 5

4 5

- 範例輸入 2 -

5 2

1 1 1 1 1

- 範例輸出 2 -

No

B. 分蛋糕 2

Problem ID: cake2 Time Limit: 1.0s Memory Limit: 512MiB

- 題目描述 -

由於上次製作的蛋糕受到朋友們的一致好評,巴漆又製作了一條長度為 N 的蛋糕,由左到右編號為第 1 段到第 N 段,巴漆利用神秘的蛋糕透視儀器得到了每一段蛋糕的真實好吃程度,第 i 段的好吃程度為 C_i 。

巴漆為了讓朋友們品嘗他親手做的蛋糕,打算將蛋糕切成一些區間後送給他們。蛋糕有限,所以 每段蛋糕最多只能送給一位朋友。

俗話說「朋友多蛋糕少」,所以巴漆一定找的到朋友送給他蛋糕。而每個朋友可以收到一個**連續區間**的蛋糕。

也就是說,如果一個朋友有第 l 段蛋糕和第 r 段蛋糕,則他也必須收到第 k 段蛋糕,其中 k 為 l 到 r 之間的所有整數。

對於每個有收到蛋糕的朋友,都會對巴漆有好感值,這次計算方式為:如果那個朋友收到小於K段蛋糕,則好感值為0,否則,那個朋友對巴漆的好感值為他收到所有蛋糕的好吃程度的**最小值**

更具體的來說,如果那個朋友收到的蛋糕區間為第 l 段到第 r 段,則

- 若 r-l+1 < K,好感值為 0
- 否則,好感值為 $\min_{l < i < r}(C_i)$

巴漆也可以選擇自己吃掉某些區段的蛋糕,自己吃掉的蛋糕不需要是連續的,也不會產生任何好 感值。

巴漆想要找到一種分蛋糕的方式,使得所有朋友對他的好感值總和最大,而巴漆不會寫程式,因 此請你來幫助他算出答案。

第一行有兩個整數 N , K 。 第二行有 N 個以空白分開的整數 ,第 i 個為 C_i 。

- 輸出 -

輸出所有朋友對巴漆的好感值總和最大可能是多少。

- 輸入限制 -

- $\quad \ \ 1 \leq K \leq N \leq 5 \times 10^5$
- $-10^9 \le C_i \le 10^9$

編號	分數	額外限制
1	0	範例輸入輸出
2	4	K = 1
3	23	$N \le 3000$
4	29	$ C_i \le 1$
5	44	無額外限制

10 3

2 2 3 3 3 2 -1 9 9 -1

- 範例輸出 1 -

4

- 範例解釋 1 -

可以將蛋糕切成 [2,2,3], [3,3,2], [-1,9], 9,-1, 其中 [2,2,3] 產生的好感值為 2, [3,3,2] 產生的好感值為 2, [-1,9] 產生的好感值為 0, 好感值總和為 4, 可以證明沒有總和大於 4 的分法。

- 範例輸入 2 -

6 3

1 3 3 3 1 1

- 範例輸出 2 -

3

C. 手錶

Problem ID: clock Time Limit: 1.0s Memory Limit: 512MiB

- 題目描述 -

矮歐哀是著名的手錶收藏家,他有 N 個**不會動**的手錶,每個手錶有 M 個刻度,第 i 個手錶的 長針指向刻度 A_i ,短針指向刻度 B_i 。

矮歐哀發現有些手錶長針指向的刻度竟然比短針還小,他覺得這不是好兆頭,於是他打算將手錶拿去廠商調整,他希望調整後所有長針指向的刻度都大於等於短針指向的刻度,也就是說,調整後需滿足所有的 $A_i \geq B_i$ 。

而每次調整可以將一些手錶的長針同時順時針轉相同的距離,也就是說,每次調整可以選擇一個整數 k 和一些手錶,並將這些手錶的長針從 A_i 變為 $(A_i+k)\mod M$,而短針對矮歐哀有獨特的意義,因此短針是不能被調整的。

然而,每次調整手錶需要花費一些時間,矮歐哀已經等不及了,因此**每支手錶最多只能被送去調整一次**。並且調整手錶需要高額的費用,矮歐哀不想花太多錢,所以希望花**越少次調整手錶越好**。你,身為矮歐哀的財務管理員,幫他分配一下要怎麼將手錶送去給廠商調整才能滿足條件。

第一行有兩個整數 N M。

接著有 N 行,第 i 行有兩個整數 A_i, B_i ,分別代表矮歐哀第 i 支手錶長針和短針指向的刻度。

- 輸出 -

第一行輸出一個整數 T,代表打算花 T 次調整手錶。

接著對於第 i 次調整,輸出兩個整數 t_i k_i ,接著下一行輸出 t_i 個整數,第 j 個整數為 $v_{i,j}$ 。 代表這次要將這 t_i 個手錶的長針從 $A_{v_{i,j}}$ 變為 $(A_{v_{i,j}}+k_i)\mod M$ 。

輸出需要滿足

- $1 \le t_i \le N$
- $0 \le k_i \le M 1$
- $1 \le v_{i,j} \le N$
- v_{i,j} 兩兩相異

若有多種方式皆可滿足條件,輸出任一種皆可。

題目指的用越少次調整及為輸出的T為最小,送去調整的手錶數量並**不需要**是最少的。

- 輸入限制 -

- $1 \le N \le 2 \times 10^5$
- $1 \le M \le 10^9$
- $0 \le A_i, B_i < M$

編號	分數	額外限制
1	0	範例輸入輸出
2	3	A_i 皆相同
3	26	$M \le 5000$
4	47	B_i 皆相同
5	24	無額外限制

在每個子任務中,如果你輸出格式符合上述輸出格式,且調整後滿足所有 $A_i \geq B_i$,但並非是最少次調整 (T 並非最小) ,你可以獲得那個子任務的總分乘以 0.3 的分數。

- 5 10
- 1 4
- 5 8
- 0 9
- 2 1
- 9 0

- 範例輸出 1 -

- 2
- 2 4
- 2 1
- 1 9
- 3

- 範例解釋 1 -

經過調整後,第 1 到 5 個手錶的 (A_i,B_i) 分別變為 (5,4), (9,8), (9,9), (2,1), (9,0) \circ

- 範例輸入 2 -

- 5 5
- 0 4
- 1 4
- 2 4
- 3 4
- 4 4

- 範例輸出 2 -

- 4
- 1 1
- 4
- 1 2
- 3
- 1 3
- 2
- 1 4
- 1

D. 隱藏的排列 2

Problem ID: permutation2
Time Limit: 1.0s
Memory Limit: 512MiB

本題為**互動題**

- 問題描述 -

Alice 和 Bob 正在遊玩猜謎遊戲,由 Alice 負責出題目、Bob 負責猜謎。

遊戲過程如下:

- Alice 會先在心中想好一個 $1 \sim n$ 的排列。也就是說,Alice 心中已經有一個隱藏的序列 p_1, p_2, \ldots, p_n ,滿足這些數字都介在 $1 \sim n$ 之間,且每個數字出現恰好一次。
- 接著,Bob 可以詢問 q 個問題,每個問題都會是以「請問有多少數對 (i,j) 滿足 $l \leq i < j \leq r$,且 $p_i > p_j$ 」這種形式呈現。Alice 在收到問題後,必須如實回答。
- 在 Bob 問完所有問題後,Alice 會問 Bob k 個問題,每個問題都會是以「請問 p_i 是多少?」這種形式呈現。Bob 在收到問題後,必須給出回答。

這個遊戲的目的就是要讓 Bob 詢問的問題數量 q 儘量小來使得 Bob 能正確回答出 Alice 的所有詢問。請協助 Bob,在 q **儘量小**的情況下,正確回答所有 Alice 的 k 個問題。

- 實作細節 -

你需要實作兩個函式 bob_init() 與 query_from_alice():

void bob_init(int n);

- 對於每一筆測試資料,正式評分程式會呼叫你實作的 bob_init() 函式恰好 1 次。
- n 代表 Alice 心中想著的排列的長度

int query_from_alice(int a);

- $a \land 1 \ni n$ 之間的整數
- 對於每一筆測試資料,正式評分程式會呼叫你實作的 query_from_alice() 函式恰好 k 次。
- 保證在呼叫完 bob_init() 後才會呼叫此函式。
- query_from_alice() 需要回傳一個整數 x,代表 p_a 的實際數值。

此外,在實作 bob_init 時可以呼叫 compare_numbers() 這個函式。

int compare numbers(int 1, int r);

- l, r 是於 $1 \sim n$ 的整數
- l < r</p>
- 此函式會回傳有多少數對 (i,j) 滿足 $l \leq i < j \leq r$,且 $p_i > p_j$
- 範例評分程式內的 compare_numbers() 實作與實際評分程式內的實作完全相同

- 範例程式碼 -

以下是一個可以編譯但保證不會獲得任何分數的範例程式碼:

```
#include<vector>
using namespace std;
int compare_numbers(int l, int r);
int v[1010];
void bob_init(int n){
    v[1] = compare_numbers(1, n);
    v[2] = compare_numbers(2, n);
}
int query_from_alice(int a){
    return v[a];
}
```

- 互動範例 -

若 Alice 所想的序列為 $\{2,\,3,\,1\}$,一個可能被評為 Accepted 的互動例子顯示如下:

———————————— 評分程式端	參賽者端
呼叫 bob_init(3)	
	呼叫 compare_numbers(1, 3)
回傳 2	IVIII compare numbers(2-3)
回傳 1	呼叫 compare_numbers(2, 3)
	回傳 void()
呼叫 query_from_alice(1)	·
7. Tall (0)	回傳 2
呼叫 query_from_alice(2)	回傳 3
	口le O

- 測資限制 -

- $\quad \bullet \ 3 \leq n \leq 1000$
- $1 \le k \le 1000$
- $1 \le p_i \le n$
- p_i 兩兩相異

- 評分說明 -

對於每一筆測試資料,若你的程式在函式 bob_init() 中呼叫 compare_numbers 的次數為x,則定義 Q 為:

$$Q = \lfloor \frac{x}{n} \rfloor$$

若你正確回答了所有 Alice 的詢問,根據 Q ,你將得到分數比重 W :

$$W = \begin{cases} 1 & \text{if } Q = 0\\ 1 - \frac{\sqrt{Q}}{50} & \text{if } 0 \le Q \le 500\\ 0 & \text{if } Q > 500 \end{cases}$$

本題共有兩組子任務,條件限制如下所示。每一組可有一或多筆測試資料,你在該子任務的得分為所有測試資料中分數比重 W 的最小值,乘以該子任務的總分。

編號	分數	額外限制
1	0	範例互動
2	10	n = 3
3	90	無額外限制

- 範例評分程式 -

範例評分程式採用以下格式輸入:

n k

 $p_1 p_2 \ldots p_n$

 $a_1 \ a_2 \ \dots \ a_k$

請注意,正式的評分程式一定不會採用以上格式輸入。請不要自行處理輸入輸出。

範例評分程式首先呼叫 bob_init(n),接著範例評分程式會呼叫 k 次 query_from_alice (a_i) 。接著,若範例評分程式偵測到從 bob_init 對 compare_numbers 的呼叫有任何不合法、或在 query_from_alice 的期間有對 compare_numbers 的呼叫,此程式將輸出

Wrong Answer: msg

後並終止程式執行,其中 msg 為下列其中之一錯誤訊息:

- Invalid position: I r: 你的程式傳入 compare_numbers 的集合中有不介在 $1\sim n$ 之間的數字,或是你傳入的 l>r。
- Invalid call: 你的程式嘗試在 query_from_alice 的期間呼叫 compare_numbers。

否則,範例評分程式將會以下列格式印在標準輸出中:

 $b_1 b_2 \ldots b_k$

 ${\sf Accepted} \colon \mathit{Q}$

其中,

- b_i 為第 i 次呼叫 query_from_alice() 時你的回傳值。
- lacksquare Q 為根據你的程式呼叫 compare_numbers 的次數得來的數值,詳細定義請見評分說明 欄位。
- 請注意,範例評分程式並不會幫助你檢查你回傳的數值是否正確。

下方程式碼可在 pA 下方壓縮檔 permutation2.zip 裡的 grader.cpp 中獲得請注意,上傳程式碼時請勿直接上傳此範例評分程式,上傳格式請參考上述範例程式碼。

```
#include <cstdlib>
#include <iostream>
using namespace std;
// Functions to be implemented in the solution.
void bob init(int n);
int query from alice(int a);
// Functions to be implemented in the solution.
namespace{
    int N, K, Query_count = 0, P[1005], Ans[1005], Inv[1005][1005];
    bool EndInit = false;
    void WA(const string msg) {
        cout << "Wrong Answer: " << msg << endl;</pre>
        exit(0):
} int compare numbers(int 1, int r){
    if(EndInit) WA("Invalid call");
    if(1 \le 0 \mid | 1 > N \mid | r \le 0 \mid | r > N \mid | 1 > r)
        WA("Invalid position: " + to string(l) + " " + to string(r));
    Query count++;
    return Inv[1][r];
} int main() {
    cin >> N >> K;
    for(int i = 1; i <= N; ++i) cin >> P[i];
    for(int i = 1; i \le N; ++i) for(int j = i + 1; j \le N; ++j)
        if(P[i] > P[j]) Inv[i][j]++;
    for(int i = 1; i \le N; ++i) for(int j = 1; j \le N; ++j)
        Inv[i][j] += Inv[i][j - 1];
    for(int j = 1; j \le N; ++j) for(int i = j - 1; i > 0; --i)
        Inv[i][j] += Inv[i + 1][j];
    bob init(N);
    EndInit = true;
    for(int i = 1, x; i \le K; ++i)
        cin >> x, Ans[i] = query from alice(x);
    for(int i = 1; i <= K; ++i) cout << Ans[i] << " n"[i == K];
    cout << Query count / N << "\n";</pre>
}
```

E. 賭博

Problem ID: gambit Time Limit: 1.0s Memory Limit: 512MiB

- 題目描述 -

漢鎮,位於遙遠北方中的一個小鎮,最近流行起了賭博,那裏的人們認為賭博必須揪左鄰右舍一起下注全部資產才會刺激。然而,賭博畢竟是犯法的行為,身為警察的你必須遏止這種歪風。

在漢鎮,有 N 戶人家,由左到右編號為 1 到 N,第 i 戶人家一開始有資產 C_i 元。

具體來說,這陣子會發生 Q 個事件,而一共有以下四種事件類型

- $1\ l\ r$: 第 l 戶人家到第 r 戶人家一起去賭博,並且中了頭獎,l 到 r 中每一戶人家 i 的 資產從 C_i 變為 $C_i \times C_i$
- $2\ u\ v$: 第 u 戶人家到第 v 戶人家一起去賭博,並且中了大獎,u 到 v 中每一戶人家 i 的資產從 C_i 變為 C_i+C_i
- 3~a~b : 第 a~ 戶人家到第 b~ 戶人家一起去賭博,並且輸光了,a~ 到 b~ 中每一戶人家 i~ 的資產從 $C_i~$ 變為 0~
- 4 x k: 身為警察的你登門拜訪第 x 戶人家,並要求第 x 戶人家繳 k 元罰款,如果第 x 戶人家的資產 C_x 大於等於 k,輸出 "Yes",否則輸出 "No",並將第 x 戶人家的資產 從 C_x 變為 $\max(0, C_x k)$

第一行有兩個整數 N, Q

第二行有 N 個以空白分開的正整數,第 i 個為 C_i \circ

接下來有 Q 行,每行代表一個事件,而每一個事件會以 "1 l r"、"2 u v"、"3 a b"、"4 x k" 之一呈現,代表意義如題目描述所述。

- 輸出 -

對於每一個 " $4 \times k$ " 的事件,輸出 "Yes" 或 "No"(皆不含雙引號)。

- 輸入限制 -

- $1 \le N, Q \le 10^5$
- $0 \le C_i \le 10^9$
- $1\ l\ r$ 類型的事件中 $1 \le l \le r \le N$
- $lacksymbol{\bullet}$ 2~u~v 類型的事件中 $1 \leq u \leq v \leq N$
- $3 \ a \ b$ 類型的事件中 $1 \le a \le b \le N$
- $4 \ x \ k$ 類型的事件中 $1 \le x \le N$ 且 $1 \le k \le 10^9$

編號	分數	額外限制
1	0	範例輸入輸出
2	5	$N, Q \le 5000$
3	45	類型為 $1\ l\ r$ 的事件中 $l=r$
4	13	類型為 $4 x k$ 事件中 $k=10^9$
5	37	無額外限制

5 5

1 2 3 4 5

1 1 5

4 5 24

2 3 5

3 5 5

4 5 10

- 範例輸出 1 -

Yes

No

- 範例輸入 2 -

5 5

1 2 3 4 5

1 1 5

1 1 5

1 1 5

2 1 5

4 5 781250

- 範例輸出 2 -

Yes

F. 部落衝突 2

Problem ID: tribe2 Time Limit: 1.0s Memory Limit: 512MiB

- 題目描述 -

超級細胞國內有 N 棟房子,第 i 棟房子隸屬於編號 C_i 的部落。經過你鋪設道路後,現在有 N-1 條道路,第 i 條道路連接房子 U_i 和房子 V_i ,並且任兩棟房子可以經過一或多條的道路 互相抵達。

野豬騎士身為超級細胞國的首領,他成功用橡皮筋狩獵到了大山豬了。為了慶祝這項喜事,野豬騎士打算呼叫超級細胞國內的所有居民到某一棟房子慶祝。然而,若慶祝地點選得不好會非常容易引發部落衝突,因此野豬騎士打算問你 Q 個問題。第 i 個問題會以「從 A_i 房子走到 B_i 房子這條路徑上,第一個遇到隸屬於 T_i 部落的房子是哪一棟?」這種形式出現,請對於每一次詢問,告訴野豬騎士正確的答案是多少。

我們說兩棟房子 a, b 能經過道路互相抵達,代表存在一系列相異的房子 $p_0,p_1,...,p_t$ 滿足 $p_0=a$, $p_t=b$,且所有 1 到 t 之間的整數 i,第 p_{i-1} 棟房子和第 p_i 棟房子之間皆有鋪設道路。而上述 $p_0,p_1,...,p_t$ 稱為 a 走到 b 的路徑,可以證明在本題限制下,任兩棟房子間只會有唯一一條路徑。

第一行有兩個整數 N, Q。 第二行有 N 個以空白分開的正整數,第 i 個為 C_i 。 接著有 N-1 行,第 i 行有兩個整數 U_i , V_i 接著有 Q 行,第 i 行有三個整數 A_i , B_i , T_i

- 輸出 -

輸出 Q 行,第 i 行代表第 i 次詢問的答案。如果這條路徑上沒有編號為 T_i 的部落,輸出 -1。

- 輸入限制 -

- $2 \le N \le 10^5$
- $1 \le Q \le 10^5$
- $1 \leq U_i, V_i \leq N$
- $1 \leq A_i, B_i, T_i \leq N$
- $1 \le C_i \le N$
- 任兩棟房子可以經過一或多條的道路互相抵達。

編號	分數	額外限制
1	0	
2	3	$1 \le N, Q, \le 2000$
3	23	$U_i = i, V_i = i + 1$
4	37	$C_i \in \{1, 2\}$
5	37	無額外限制

5 2 1

- 範例輸出 1 -

1 5

- 範例輸入 2 -

- 範例輸出 2 -

3 -1 4

114 學年度資訊學科能力競賽臺南一中校內複選 試題本

附錄

祝各位都能破台,GL & HF