Tutorial: Bayesian pruning

Wu Hyun Shin, Ha Yeon Lee MLAI, KAIST 7. 24. 2019.

튜토리얼 개요

1. Sparse Variational Dropout. – 1.5 hr (신우현)

2. Beta-bernoulli Dropout – 1.5 hr (이하연)

Part I:

Sparse Variational Dropout

진행방식

- 실제 Variational Dropout을 위한 코드 구현은 간단
 - 다른 수업에서 했던 모델링 + Dropout layer
 - BNN 학습을 위한 전체적 코드 구조는 두번째 시간과 유사
- 왜 이렇게 하고, 어떻게 해야하는지 원리를 이해하는 것이 더 중요
 - 수학적 이해 및 공식 유도가 다소 요구됨
 - 실제 주요 공식은 코드 한 줄로 구현
- 수업목표
 - 수학적 디테일을 모두 이해하지 못하더라도, 논리적 흐름을 파악하는 것이 목표
 - 이론 수업에서 보다는 더 자세한 이해
 - 코드를 보고 실제 어떻게 구현되는지 이해

읽어야 할 논문?

Binary Dropout (BD)

- Improving neural networks by preventing co-adaptation of feature detectors. Hinton et al. arXiv:1207.0508. 2012. 4002
- Dropout: a simple way to prevent neural networks from overfitting. Srivastava et al. JMLR 2014. 13126

Gaussian Dropout (GD)

Fast dropout training. Wang et al. ICML 2013. 249

Variational Dropout (VD)

Variational Dropout and the Local Reparameterization Trick. Kingma et al. NIPS 2015. 326

Sparse Variational Dropout (Sparse VD) ← Final goal!

- Variational Dropout Sparsifies Deep Neural Networks. Molchanov et al. ICML 2017. 148
- → 해당 논문들의 내용에서 차례차례 building block을 확보
- → 그 building block들을 조립하여 최종 논문 이해

Big Picture

Big Picture

(a) Standard Neural Net

(b) After applying dropout.

- Binary Dropout?
 - 우리가 잘 알고 있는 그 dropout
 - p의 확률로 retain
 - 1-p의 확률로 drop
 - 반대로 표기하기도 함
 - Multiplicative Bernoulli Noise

•
$$h_i^{new} = h_i^{old} * r_b$$

•
$$p(\boldsymbol{r_b}) = \begin{cases} p & \text{if } k = 1, \\ q = 1 - p & \text{if } k = 0. \end{cases}$$

$$f(k;p) = \left\{ egin{aligned} p & ext{if } rac{k=1/p}{p}, \ q=1-p & ext{if } k=0. \end{aligned}
ight.$$

- 학습과 테스트 시의 차이
 - 두 가지 상황, 같은 효과
 - PyTorch에서는 두번째 케이스로 구현되어 있음.
 - Test time에 특별한 조치가 없다는 점에서 더 편리
 - 앞으로 두번째 케이스를 전제!

- 두번째 케이스를 살펴보자.
- Bernoulli random variable r_b
 - 평균? $\sum xp(x)$

•
$$E[r_b] = \frac{1}{p} \cdot \Pr\left(r_b = \frac{1}{p}\right) + 0 \cdot \Pr(r_b = 0) = \frac{1}{p} \cdot p + 0 \cdot (1 - p) = \mathbf{1}$$

• 분산? $E[r_b^2] - E[r_b]^2$

•
$$E[r_b^2] = \left(\frac{1}{p}\right)^2 \cdot p + 0^2 \cdot (1-p) = \frac{1}{p}$$

•
$$Var[r_b] = E[r_b^2] - E[r_b]^2 = \frac{1}{p} - 1^2 = \frac{1-p}{p}$$

• 같은 평균과 분산을 같는 Gaussian random variable r_g 은?

•
$$\mu = 1$$
, $\sigma = \sqrt{\frac{1-p}{p}}$

•
$$r_g \sim N(\mu, \sigma^2) = N\left(\mathbf{1}, \frac{1-p}{p}\right)$$

- 새로운 파라미터 $\alpha = \frac{1-p}{p}$ 를 도입
 - N(1,α) ← 앞으로 계속 보게 될 형태!

Multiplicative Gaussian Noise

•
$$h_i^{new} = h_i^{old} * r_g$$

•
$$r_g \sim N(1, \alpha) \ (\alpha = \frac{1-p}{p})$$

Big Picture

Recap: Bayesian Neural Networks

- BNN이란?
 - Weight의 **분포**를 학습하는 네트워크
- 어떻게?
 - Bayes' theorem을 이용

•
$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$$
, $Posterior = \frac{Likelihood *Prior}{Evidence}$

- 그런데 문제가 있다.
 - 분모를 계산할 수 없음. $P(\mathcal{D}) = \int_{\theta} P(X|\theta)p(\theta)d\theta$
- 해결방법?
 - 직접 구할 수 없다면 **근사**하자.
 - 우리가 쓸 방법: Variational Inference

- Variational Inference란?
 - 우리의 posterior $p(\theta|D)$ 를 근사하는 기법
- 어떻게?
 - 우리가 쉽게 알 수 있는 분포를 설정하고: $q_{\phi}^{\prime}(\theta)$
 - 이 분포를 $p(\theta|D)$ 와 가깝게 만들자!
- 가까움의 기준?
 - KL Divergence $D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)} \right)$
- 우리가 풀어야할 문제?
 - 두 분포의 거리를 줄이는 문제
 - $q_{\phi}(\theta) = \underset{\phi}{\operatorname{argmin}} KL[q_{\phi}(\theta)||p(\theta|D)]$
 - Inference → optimization problem

- 유도를 해보면?
- 구도를 해보면?
 $KL[q_{\phi}(\theta)||p(\theta|D)]$ + L(?) = $\log p(D)$ 상수
- 이제 L(?)를 maximize하면 되는 문제로 치환!
- *L*(?)의 실체?
 - $L(?) = \int q_{\phi}(\theta) \log p(D|\theta) d\theta KL[q_{\phi}(\theta)||p(\theta)]$
 - 직관적 해석: Expected Log-likelihood + KL regularization
 - ELBO(Evidence lower bound)라고 불림.
 - \mathfrak{A} ? $\log p(D) \geq L(?)$
- 결론: ELBO를 maximize하자!

- 그래서 **어떻게 구현**?
- 상황을 **가정**해보자.
 - 일반적인 classification 태스크 / FC네트워크 & single 레이어
 - Weight가 Gaussian N(0,I)를 따를 것이 라는 사전(prior) 믿음
 - 자연스럽게 weight의 사후 확률도 Gaussian으로 모델링
 - 데이터에 대한 척절한 사후(posterior) 확률을 학습
 - Weight 학습의 기대효과?
 - 우리의 사전 믿음을 기반으로 하되, (min KL term)
 - 데이터를 잘 표현하는 적절한 사후 확률분포를 학습 (min NLL term)

• 그래서 **어떻게 구현**?

- 우리가 원하는 posterior $q_{oldsymbol{\phi}}(oldsymbol{ heta})$:
- θ 가 Gaussian에서 샘플링: $\theta \sim N(\mu, \sigma^2)$ 미부 가능 (back-propagation 위해)
 - 미분 가능 (back-propagation 위해)

• 그래서 **어떻게 구현**?

Reparametrization Trick(RT)

•
$$\theta \sim q_{\phi}(\theta) = N(\mu, \sigma^2)$$

$$\rightarrow \theta = f(\phi, \epsilon), \ \epsilon \sim p(\epsilon)$$

$$\Rightarrow \theta = \mu + \sigma \odot \epsilon, \ \epsilon \sim (0, I)$$

• 그래서 **어떻게 구현**?

- 이렇게 모델링한 뒤,
- ELBO에 대하여 기존에 하던 것과 동일하게 minibatch-based training하면 끝!
 - $\phi = \{\mu, \sigma\}$ 일 때,

 - $\underset{\phi}{\operatorname{argmax}} \int q_{\phi}(\theta) \log p(D|\theta) d\theta KL[q_{\phi}(\theta)||p(\theta)]$ $\approx \underset{\phi}{\operatorname{argmax}} \underbrace{\frac{N}{M} \sum_{i=1}^{M} \log p(y^{i}|x^{i}, f(\phi, \epsilon^{i}))}_{\text{Minibatch-based}} \underbrace{KL[q_{\phi}(\theta)||p(\theta)]}_{\text{E§ Analytic하게 계산}}$ MC approximation
- 지금까지 한 것:
 - 미분가능한 파이프라인을 만듦(RT)으로써 minibatch 기반 학습을 가능케 함.
 - 이러한 방법을 Stochastic Gradient Variational Bayes(SGVB)라고 함.

• 그래서 **어떻게 구현**?

- $\underset{\phi}{\operatorname{argmax}} \frac{N}{M} \sum_{i=1}^{M} \log p(y^{i} | x^{i}, f(\phi, \epsilon^{i})) KL[q_{\phi}(\theta) | | p(\theta)]$
- 해석해보면?
 - 첫번째 항: 기존 Non-Bayesian과 똑같은 분류 성능 최적화
 - 단, weight에 randomness가 추가된 상황
 - 두번째 항: prior N(0,I)와의 KL divergence.
 - 우리의 초기 믿음에서 너무 벗어나지 않도록 regularize.

- 마지막으로 생각해볼 것들
 - $\underset{\phi}{\operatorname{argmax}} \int q_{\phi}(\theta) \log p(D|\theta) d\theta KL[q_{\phi}(\theta)||p(\theta)]$
 - SGVB에서의 **Gradient variance**?
 - randomness가 개입되므로 gradient의 variance가 크다!
 - Source: **data** distribution p(D) / **noise** distribution $p(\epsilon)$
 - Variance를 줄이는 것은 학습 안정화에 매우 중요한 요소
 - 두번째 항(KL term)은 가능한 경우, closed-form으로 직접 계산.
 - 계산 가능한데 근사할 필요는 없음
 - 불필요한 gradient variance가 더 증가

Big Picture

VD: Variational Dropout

- 전체 개요
 - SGVB를 효율적으로 개선하려는 테크닉을 제안 ← Part 1
 - Local Reparametrization Trick(LRT)
 - Gradient variance를 낮추고 더 쉽고 빠르게 계산
 - Dropout과 variational method의 연결점을 탐색 ← Part 2
 - GD + Varaitional method + LRT = **Variational Dropout**
 - 이를 통해 얻을 수 있는 것?
 - *발전* : GD의 성능 향상 (with LRT)
 - *확장* : 학습 가능한 dropout rate.
 - 재해석 : GD를 Bayesian network로 보았을 때 prior는 무엇일까?

- Local Reparameterization Trick(LRT)에 대해 알아보자.
 - 목적? SGVB를 효율적으로 개선
 - SGVB의 gradient variance를 줄이자!
 - 먼저 해야할 일? Gradient variance의 요인을 분석
 - 수학적 decomposition을 통해 분석

- SGVB를 다시 살펴보자. $\int q_{\phi}(\theta) \mathrm{log} p(D|\theta) d\theta$
 - ELBO: $\sum_{(x,y\in D)} E_{q_{\phi(\theta)}}[\log p(y|x,\theta)] KL[q_{\phi}(\theta)||p(\theta)]$
 - 두번째 KL term은 closed-form으로 계산이 가능하다고 가정.
 - Minibatch approximation:
 - $\sum_{(x,y\in D)} E_{q_{\phi(\theta)}}[\log p(y|x,\theta)] \approx \frac{N}{M} \sum_{i=1}^{M} \log p(y^{i}|x^{i},f(\phi,\epsilon^{i}))$

M : Minibatch size

N: Data size

- 즉, SGVB는 $\frac{N}{M}\sum_{i=1}^{M} L_i$ 의 꼴로 나타낼 수 있음.
 - L_i 는 i 번째 데이터에 대한 likelihood를 나타냄을 기억하자.

- 그렇다면 $\frac{N}{M}\sum_{i=1}^{M}L_{i}$ 의 variance는?
 - $Var\left[\frac{N}{M}\sum_{i=1}^{M}L_{i}\right] = \frac{N^{2}}{M^{2}}\left(\sum_{i=1}^{M}\operatorname{Var}\left[L_{i}\right] + 2\sum_{i=1}^{M}\sum_{j=i+1}^{M}\operatorname{Cov}\left[L_{i},L_{j}\right]\right)$ $= N^{2}\left(\frac{1}{M}\operatorname{Var}\left[L_{i}\right] + \frac{M-1}{M}\operatorname{Cov}\left[L_{i},L_{j}\right]\right), \quad \left[\operatorname{Var}\left(\sum_{i=1}^{N}X_{i}\right) = \sum_{i,j=1}^{N}\operatorname{Cov}(X_{i},X_{j}) = \sum_{i\neq j}^{N}\operatorname{Var}(X_{i}) + \sum_{i\neq j}\operatorname{Cov}(X_{i},X_{j})\right]$
- 알 수 있는 사실?
 - Variance의 영향은 minibatch size M을 키워서 줄일 수 있음.
 - 반면, Covariance의 경우는 불가능!
- 우리가 원하는 것?
 - $Cov[L_i, L_i] = 0$
 - In Korean: Minibatch 안의 데이터들의 log-likelihood를 종속성을 제거

• 데이터 포인트 사이의 종속성 제거

• 기존 상황:

- 배치 안의 모든 데이터 $x_i \in X$ 가 하나의 weight matrix θ 를 공유
- 당연히 θ 는 **하나의** $\epsilon \sim N(0,I)$ 에 dependent
- 모든 데이터가 같은 노이즈를 공유하므로 서 로 dependent한 상황
 - $Cov[L_i, L_j] \neq 0$

• 데이터 포인트 사이의 종속성 제거

• 해결 방법?

- 배치 안의 모든 데이터 $x_i \in X$ 가 각기 다른 weight matrix θ_i 를 공유
- θ_i 는 **각기 다른** $\epsilon_i \sim N(0,I)$ 에 dependent
- 데이터 사이의 dependency가 제거됨

•
$$Cov[L_i, L_i] = 0$$

문제점?

- 계산 비용 증가 (샘플링은 비싼 편)
- 병렬화가 불가능

• 데이터 포인트 사이의 종속성 제거

더 나은 방법?

$$egin{aligned} X &\sim N(\mu_X, \sigma_X^2) \ Y &\sim N(\mu_Y, \sigma_Y^2) \ Z &= X + Y, \ Z &\sim N(\mu_X + \mu_Y, \sigma_Y^2 + \sigma_Y^2) \end{aligned}$$

- $w_{i,j}$ 가 Gaussian이면, $b_{m,j}$ 도 Gaussian.
 - If X,Y independent and normally distributed, X+Y is also normally distributed.

• 데이터 포인트 사이의 종속성 제거

• 더 나은 방법?

$$egin{aligned} X &\sim N(\mu_X, \sigma_X^2) \ Y &\sim N(\mu_Y, \sigma_Y^2) \ Z &= X + Y, \ Z &\sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2) \end{aligned}$$

- $w_{i,j}$ 가 Gaussian이면, $b_{m,j}$ 도 Gaussian.
 - If X,Y independent and normally distributed, X+Y is also normally distributed.
- 그렇다면 B에서 바로 샘플링해보자. → LRT!

$$\begin{split} q_{\phi}(w_{i,j}) &= N(\mu_{i,j}, \sigma_{i,j}^2) \ \forall w_{i,j} \in \mathbf{W} \implies q_{\phi}(b_{m,j}|\mathbf{A}) = N(\gamma_{m,j}, \delta_{m,j}), \\ \gamma_{m,j} &= \sum_{i=1}^{1000} a_{m,i}\mu_{i,j}, \quad \text{and} \quad \delta_{m,j} = \sum_{i=1}^{1000} a_{m,i}^2 \sigma_{i,j}^2. \\ b_{m,j} &= \gamma_{m,j} + \sqrt{\delta_{m,j}} \zeta_{m,j}, \ \text{with} \ \zeta_{m,j} \sim N(0,1). \end{split}$$

- 글로벌 noise → 로컬 noise
- weight noise → activation noise

- *LRT*의 **장점**?
 - - 빠른 학습 (in terms of *optimization step*)
 - 더 작은 샘플링 횟수 & 병렬화 가능한 연산
 - 빠른 학습 (in terms of *wall-clock time*)

VD-Part 2

- 지금까지..
 - SGVB에서 사용 가능한 효율적인 테크닉: LRT
- 이제부터..
 - Dropout을 variational method로 재해석!
 - Varational dropout (with LRT)

Dropout과 variational method의 관계

Gaussian dropout

- Multiplicative noise in units
- $B = (A \odot \xi)\theta, \ \xi \sim N(1, \alpha)$

• LRT:

- $b_{m,j} = \sum_i a_{m,i} \xi_{m,i} \theta_{i,j}$
- $E[b_{m,i}] = \sum_i a_{m,i} \theta_{i,j} E[\xi_{m,i}] = \sum_i a_{m,i} \theta_{i,j}$
- $Var[b_{m,j}] = \sum_{i} a_{m,i}^{2} \theta_{i,j}^{2} Var[\xi_{m,i}] = \alpha \sum_{i} a_{m,i}^{2} \theta_{i,j}^{2}$ If $Cov(X_{i}, X_{j}) = 0$, $\forall (i \neq j)$ then $Var(\sum_{i=1}^{N} X_{i}) = \sum_{i=1}^{N} Var(X_{i})$

Variational Bayesian Inference

- Noise in weights
- $B = AW, W \sim N(\theta, \alpha\theta^2)$ Multiplicative noise
- LRT:

 - $b_{m,j} = \sum_{i} a_{m,i} w_{i,j}$ $E[b_{m,i}] = \sum_{i} a_{m,i} E[w_{i,j}] = \sum_{i} a_{m,i} \theta_{i,j}$
 - $Var[b_{m,i}] = \sum_i a_{m,i}^2 Var[w_{i,i}] = \alpha \sum_i a_{m,i}^2 \theta_{i,i}^2$

*직접적 증명은 논문 appendix B 참조.

- Gaussian dropout과 Variational method의 유사성의 의미?
 - Variational Dropout을 제안! (드디어)
 - 이를 통해 얻을 수 있는 이점
 - LRT를 이용해 Gaussian drop보다 안정적 학습 가능.
 - 이제 α 를 variational parameter로 놓고 **학습**할 수 있음.
 - $\min_{\phi} KL[q_{\phi}(W)||p(W|D)]$ 에서 $\phi = \{\theta, \alpha\}$
 - 또다른 해석 가능: **Prior**는 뭘까? mean Multiplicative noise
 - Binary dropout ≈ Gaussian Dropout ≈ Variational Dropout
 - Binary dropout도 central limit theorem에 의해 근사 가능
 - 참조: Fast dropout training. Wang et al. ICML 2013.

- 그렇다면 prior는? $p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$
 - Gaussian dropout과의 consistency를 고려(꼭 필요한가?)
 - droprate α 는 상수 / weight θ 에 대해서만 학습 $\phi = \{\theta, \alpha\}$
 - ELBO에서 expected log-likelihood term에 대해서만 학습
 - $W \sim N(\theta, \alpha\theta^2)$
 - $\max_{\theta} \sum_{(x,y\in D)} E_{q_{(W|\theta,\alpha)}}[\log p(y|x,W)] \left[-KL[q(W|\theta,\alpha)||p(W)]\right]$
 - 이러한 조건을 만족하는 prior?
 - Log-uniform prior

$$p(\log |w_{ij}|) = \text{const}$$

Has to be Independent to θ (no effect), when α is fixed.

• Log-uniform distribution의 성질

$$p(\log |w_{ij}|) = \text{const} \Leftrightarrow p(|w_{ij}|) \propto \frac{1}{|w_{ij}|}$$

• Zero 근처에서 높은 density → weight에 적용할 경우 sparsity 유도

*MDL(Maximum Description Length) 관점으로 해석:
weight를 floating point format으로 변환 시 log-uniform distribution을 따를 경우,
중요한 digit의 숫자를 최적으로 하여 압축 가능. weight의 크기를 제한하는 효과. (논문참조)

VD-Part 2: Reinterpretation of GD as VD

- Negative KL term을 closed-form으로 구할 수 있을까?
 - $\max_{\phi} \sum_{(x,y\in D)} E_{q_{\phi(W)}}[\log p(y|x,W)] \left[-KL[q_{\phi}(W)||p(W)] \right]$
 - Appendix C를 믿는다면,

$$D_{KL}(q(W \mid \theta, \alpha) \parallel p(W)) = \sum_{ij} D_{KL}(q(w_{ij} \mid \theta_{ij}, \alpha_{ij}) \parallel p(w_{ij}))$$

$$-D_{KL}(q(w_{ij} \mid \theta_{ij}, \alpha_{ij}) \parallel p(w_{ij})) = \frac{1}{2} \log \alpha_{ij} - \underbrace{\mathbb{E}_{\epsilon \sim \mathcal{N}(1, \alpha_{ij})} \log |\epsilon|}_{\text{ell}} + C \leftarrow \theta \text{ of independent}$$

- 결과적으로 $\mathbb{E}_{\epsilon \sim \mathcal{N}(1,\alpha_{ij})} \log |\epsilon|$ 항 때문에 계산 불가! 그러나, 모든 α 에 대해 쉽게 샘플링 가능

VD-Part 2: Reinterpretation of GD as VD

- 계산할 수 없다면 많이 샘플링해서 근사하자!
 - (1) 3차 다항식으로 근사:

$$-D_{KL}(q(w_{ij} \mid \theta_{ij}, \alpha_{ij}) \parallel p(w_{ij})) = \frac{1}{2} \log \alpha_{ij} - \underbrace{\mathbb{E}_{\epsilon \sim \mathcal{N}(1, \alpha_{ij})} \log |\epsilon|}_{\text{Approximated}} + C_{\text{Approximated}}$$

$$\approx \text{constant} + 0.5 \log(\alpha) + \underbrace{(c_1 \alpha + c_2 \alpha^2 + c_3 \alpha^3)}_{\text{Approximated}}$$

$$c_1 = 1.16145124, \quad c_2 = -1.50204118, \quad c_3 = 0.58629921.$$

-1.5 -3 -2.5 -2 -1.5 -1 -0.5 log alpha

- (2) 더 간단한 lower bound:
 - $\mathbb{E}_{\epsilon \sim \mathcal{N}(1,\alpha_{ij})} \log |\epsilon| \geq 0 \ \mathsf{O}[\square \square, -D_{KL}[q_{\phi}(w_i)|p(w_i)] \geq \mathrm{constant} + 0.5 \log(\alpha)$
- 제한: $\alpha \le 1$, $p \le 0.5$ $\left(\alpha = \frac{1-p}{p}\right) \to$ 완전히 drop (p=1) 불가능!
 - 이유? α 가 클때, large gradient variance \rightarrow local minima

Big Picture

Sparse VD:

- VD에서 **무엇이 추가** 되었나?
 - 기본전제: α 에서 $\alpha_{i,i}$ 로 확장 (weight별 독립적인 droprate 학습)
 - Additive Noise Reparameterization (1)
 - Gradient variance를 줄이기 위한 새로운 테크닉
 - Approximation of the KL Divergence (2)
 - α 의 범위에 제한(e.g. $\alpha \leq 1$) 없이 학습
 - $\alpha \rightarrow \infty / p \rightarrow 1$: 항상 drop / 제거 가능
 - 기타 등등
- 결과적으로?
 - 매우 **sparse**한 network 학습
 - Bayesian pruning으로의 연결

Sparse VD: Additive Noise Reparametrization

- VD에서의 문제점: $q(w_{ij} | \theta_{ij}, \alpha) = \mathcal{N}(w_{ij} | \theta_{ij}, \alpha \theta_{ij}^2)$
 - Droprate α 가 큰 영역에서 θ 에 대한 gradient variance가 매우 큼

$$\left| rac{\partial \mathcal{L}^{ extit{SGVB}}}{\partial heta_{ij}}
ight| = rac{\partial \mathcal{L}^{ extit{SGVB}}}{\partial w_{ij}} \cdot rac{\partial w_{ij}}{\partial heta_{ij}}
ight|$$

$$\frac{\partial \mathcal{L}^{SGVB}}{\partial \theta_{ij}} = \frac{\partial \mathcal{L}^{SGVB}}{\partial w_{ij}} \cdot \frac{\partial w_{ij}}{\partial \theta_{ij}} \qquad \frac{\partial w_{ij}}{\partial \theta_{ij}} = 1 + \sqrt{\alpha_{ij}} \cdot \epsilon_{ij},$$

$$\epsilon_{ij} \sim \mathcal{N}(0, 1)$$

- 해결방법:

• 새로운 변수 도입
$$\theta_{ij} + \theta_{ij} \cdot \sqrt{\alpha_{ij}} \cdot \epsilon_{ij}$$

$$w_{ij} = \theta_{ij} (1 + \sqrt{\alpha_{ij}} \cdot \epsilon_{ij}) = \theta_{ij} + \frac{\sigma_{ij}}{\text{New variable}} \cdot \epsilon_{ij}$$
 New variable
$$\frac{\partial w_{ij}}{\partial \theta_{ij}} = 1, \quad \epsilon_{ij} \sim \mathcal{N}(0, 1) \quad \text{(Detached from the graph)}$$

- Mean의 θ 를 통해서만 backpropagation.
- Variance의 θ 는 수치적으로만 활용 / backpropagation 과정에는 상수 취급

Sparse VD: Approximation of the KL term

• KL term approximation: 모든 α 영역에서 더 정확한 근사

- 사실상 Heuristic한 방법을 사용
 - $-0.5 \log(1 + \alpha^{-1})$ 를 먼저 설정
 - 남은 차이가 sigmoid와 비슷하다는 점에 착안하여 근사 함수 디자인

Sparse VD: Sparsity

- $\alpha = \alpha$ droprate $\alpha = \alpha$ droprate $\alpha = \alpha$
 - $\alpha \rightarrow \infty : p \rightarrow 1$ 이므로 항상 drop / 제거 가능
- $\alpha = w_{ij}$ 에 더해지는 multiplicative noise관점에서 본다면?
 - $\alpha \to \infty$: 무한대의 noise / 완전한 random / 상쇄시켜야 함 $\theta_{ii} \to 0$

$$q(w_{ij} | \theta_{ij}, \alpha) = \mathcal{N}(w_{ij} | \theta_{ij}, \alpha \theta_{ij}^2)$$

Sparse VD: For convolution layers

Sparse VD for FC layers:

$$b_{mj} \sim \mathcal{N}(\gamma_{mj}, \delta_{mj})$$
 By additive reparam. trick
$$\gamma_{mj} = \sum_{i=1}^{I} a_{mi} \theta_{ij}, \quad \delta_{mj} = \alpha_{ij} \sum_{i=1}^{I} a_{mi}^2 \theta_{ij}^2 = \sum_{i=1}^{I} a_{mi}^2 \sigma_{ij}^2 \qquad \alpha_{ij} \theta_{ij}^2 = \sigma_{ij}^2$$

Sparse VD for Conv layers:

$$\operatorname{vec}(b_{mk}) \sim \mathcal{N}(\gamma_{mk}, \delta_{mk})$$
$$\gamma_{mk} = \operatorname{vec}(A_m * \theta_k), \quad \delta_{mk} = \operatorname{diag}(\operatorname{vec}(A_m^2 * \sigma_k^2))$$

Sparse VD: Empirical Observations

- Test time에는?
 - 실제 완전히 드랍되는 경우는 없으므로 lpha에 대한 thresholding이 필요
- Expected log likelihood term보다 KL term이 지배적인 경우가 더 일반적
 - 초반에 급격하게 높은 sparsity로 수렴하여 학습에 실패
 - 해결책? Pretraining or Scaling term 사용
- Prior 없이도 학습이 가능
 - 사전 지식없이 데이터만 보고 variance를 fitting시킬 수 있음

Big Picture

Implementation

논문저자 공개 (Theano, Lasagne)

• https://github.com/senya-ashukha/variational-dropout-sparsifies-dnn

다른 논문에서 활용 (TF / 저자 참여 / by Google Al research / 바로 사용하기 어려움)

• https://github.com/google-research/google-research/tree/master/state_of_sparsity

개인 repository (TF / 미검증)

- https://github.com/cjratcliff/variational-dropout (in progress)
- https://github.com/BayesWatch/tf-variational-dropout (incomplete)

Any questions?

Next lecture – Generative Adversarial Networks