Deckblatt für die Abgabe der Übungsaufgaben IngMathC2

Name, Vorname:	Do, Van Anh
StudOn-Kennung:	hi97zaba
Blatt-Nummer:	3
Übungsgruppen-Nr:	7
Die folgenden Aufgaben gebe ich zur Korrektur frei:	
7 , 8 ,9	

9/10*30 = 27

Mathe C2 Übung 3 SS2020

Aufgable 7:
a) I)
$$a_n = \frac{5+(-1)^n + \frac{1}{n} \sin n}{n^2}$$

 $\frac{5-1}{n^2} = \frac{1}{n^2} = \frac{5+1+\frac{1}{n}}{n^2}$
 $\frac{4-\frac{1}{n}}{n^2} = 0$ $\lim_{n \to \infty} \frac{6+\frac{1}{n}}{n^2} = 0$

I)
$$b_n = \frac{n}{n^2 + n} \cdot \frac{5\sin(2n) - 2\sin(3n)}{6 + \cos(4n) - \cos(5n)}$$

$$\frac{-5-2}{6-1-1} \cdot \frac{n}{n^2+1} \le b_n \le \frac{5+2}{6-1-1} \cdot \frac{n}{n^2+1}$$

$$-\frac{7}{4} \cdot \frac{n}{n^2+1} \le b_n \le \frac{7}{4} \cdot \frac{n}{n^2+1}$$

(Einschub:
$$\lim_{n\to\infty} \frac{n}{n^2+1} = \lim_{n\to\infty} \frac{1}{n+\frac{1}{n}} = \lim_{n\to\infty} \frac{1}{n} = 0$$
)

$$\lim_{n \to \infty} \frac{1}{4} \frac{n}{n^{2+1}} = -\frac{1}{4} \cdot 0 = 0 \quad \lim_{n \to \infty} \frac{1}{4} \cdot \frac{n}{n^{2+1}} = 0$$

b) I)
$$a_n = ((-1)^n + 1)n$$

 $M = \{0, +\infty\}$ lim, inf $a_n = 0$ lim, sup $a_n = +\infty$

$$\prod a_n = \sin\left(\frac{\ln n}{2}\right) + \cos\left(\frac{\ln n}{2}\right)$$

$$\prod_{\alpha_n} \begin{cases} -n, & \text{falls } n \leq 17 \\ n, & \text{falls } n \geq 17 \end{cases}$$

$$\overline{IV}$$
) $a_n = q^n$

Aufgabe & a) $\frac{k}{k=0}$ $\frac{k}{2+k}$ $\frac{k}{k\to\infty}$ $\frac{k}{2+k}$ $\frac{1}{k\to\infty}$ $\frac{1}{1+\frac{k}{k}}$ $\frac{1}{k}$ ax Keine Nulfolge => Reine divergent b) $\sum_{k=2}^{\infty} \left(\frac{k-1}{3k^2+2k}\right)^{\frac{k}{2}}$ hier genauer aufschreiben (z.b. mit sqrt(k/2k) absch Wurzellurit.: $\left(\frac{k + 1}{3k^2 + 2k}\right)^{\frac{1}{2}} = \sqrt{\frac{k - 1}{3k^2 + 2k}} = \frac{1}{4} (k - 2) \le 1$ => Peine Konvergent V C) & Sink hurzelkriterium: $\frac{|\sin k|}{|k|} = \frac{|k|\sqrt{|\sin k|}}{|k|} \leq \frac{1}{|k|} \leq 1$ bei k=0 ist k=1, da => Rehe Konuez ent herleitung mind. 1 schritt $0 = \frac{\sqrt{k+2} - \sqrt{k-1}}{2^k} = \sum_{k=1}^{\infty} \frac{3}{2^k (\sqrt{k+2} + \sqrt{k-1})}$ Quotientential: $\frac{2^{k}(\sqrt{k+2} + \sqrt{k-1})}{2^{k+1}(-k+3} + \sqrt{k})$ $= \frac{1}{2} \cdot \frac{\sqrt{k+2} + \sqrt{k-1}}{\sqrt{k+2} + \sqrt{k-1}} = \frac{1}{2} \cdot \frac{\sqrt{k+2} + \sqrt{1-\frac{1}{k}}}{\sqrt{k}(1+\sqrt{1+\frac{3}{k}})}$ Quotienentit: $k \rightarrow \infty$, $\frac{1}{2} \cdot \Lambda = \frac{1}{2} \cdot 2\Lambda$ => Reine konvergent

Aufgabe 9

a)
$$\underset{\kappa=2}{\overset{\infty}{=}} \frac{4k+3}{3k^2-4}$$

$$\mathbb{I} \left(\begin{array}{c} \infty & 1 \\ \geq & \frac{1}{\sqrt{k'}} \end{array} \right) \stackrel{1}{\approx} \frac{1}{k}$$

b) Jede beschränkte Folge hat mindestens einen HN
$$a_n = \sin(n)$$
1) $\sin(n) \in (-1, 1) \forall n \in \mathbb{N} = 0$ beschränkt = 0 hat HP

3)
$$\lim_{n\to\infty} (c_n) \in \frac{\sin(n)}{n} = 0$$
 = $\int c_n hat even HP$