קווים כלליים לפתרון תרגיל בית 4

22: 00 תאריך הגשה: יום רביעי, 27/11/2013, עד שעה

<u>שאלה 1:</u>

 $a_{n+1}=rac{1}{2}\Big(eta a_n^2+rac{1}{eta}\Big)$, $a_1=1$ יהי $\{a_n\}$ הסדרה המוגדרת עיייי (הסיר המוגדרת עיייי), ותהי

הוכיחו כי הסדרה מתכנסת (לגבול סופי או במובן הרחב) ומצאו את גבולה.

 $, \frac{\beta^2+1}{2\beta} \geq 1 :$ נראה מונוטוניות עולה באינדוקציה $\beta>0$. $\beta^2+1 \geq 2\beta \leftarrow \beta^2-2\beta+1 \geq 0 \leftarrow (\beta-1)^2 \geq 0$. לכן $\beta>0$. לכן $\beta>0$. לכן מוטה מראה כי זה אומר $\alpha_1\geq \alpha_2\geq \alpha_1$. ל- $\alpha_2\geq \alpha_1$ כללי, נניח

גם כי , $a_{n+1}=rac{1}{2}\Big(eta a_n^2+rac{1}{eta}\Big)\geq rac{1}{2}\Big(eta a_{n-1}^2+rac{1}{eta}\Big)=a_n$ נקבל כי $a_{n+1}\to L\Leftarrow a_n\to L$ נקבל כי ,ו סדרה מתכנסת, ונסמן את הגבול ב- a_n . מיחידות הגבול והעובדה כי

 $L=rac{1}{eta}$ מקיים: $L=rac{1}{eta}\left(eta L^2+rac{1}{eta}
ight)$: פתרון המשוואה הזו נותן

: 2 שאלה

יהי $a_{n+1}=a_n+rac{1}{2a_n}$, $a_1=\beta$ הסדרה המוגדרת ע"ייי (הסדרה המוגדרת את המוגדרת מתכנסת (לגבול סופי או במובן הרחב) ומצאו את גבולה.

ראשית נשים לב כי מכיוון ש- $a_n>0$, מתקיים כי $a_n>0$ לכל $a_n>0$, מתקיים לב כי מכיוון ש- $\beta>0$, מתקיים כי $a_n+1>0$, מתקיים כי מתכנסת נשים לגבול מתכנסת במובן הרחב. נניח כי מתכנסת לגבול סופי a_n , אז מיחידות הגבול נקבל כי הוא מקיים . $L\geq a_1=\beta>0$ בהכרח מקיים $L \cdot \frac{1}{2L}=0$ כלומר $L = L + \frac{1}{2L}$

<u>: 3 שאלה</u>

, $a_1=lpha$: יהי מצאו את כל הגבולות החלקיים של הסדרה (a_n) המוגדרת עייי. מצאו את כל הגבולות יהי

$$a_{2n} = \frac{a_{2n-1}}{2}$$
, $a_{2n+1} = \frac{1}{2} + a_{2n}$

ניתן להוכיח באינדוקציה פשוטה כי הסדרה מקיימת למעשה: $a_{2n+1}=\frac{\alpha+2^{n-1}}{2^n}$, $a_{2n+1}=\frac{\alpha+2^{n-1}}{2^n}$ (אחרי שמציבים את $a_{2n+1}\to 1$, $a_{2n}\to \frac{1}{2}$ כי הראשונים בסדרה ומעלים את ההשערה הזו), ולכן מאריתמטיקה של גבולות נקבל כי $a_{2n+1}\to 1$, אלו שני הגבולות החלקיים היחידים של הסדרה.

:4 שאלה

.
$$\frac{\left(n^3+n^{\sin(n)}+1\right)\left(1+(-3)^{-n}\right)^{3^n}\cdot\sin\left(\frac{\pi n}{3}\right)}{4n^3+3n\cos(n)}$$
 מצאו את כל הגבולות החלקיים של הסדרה

נסמן (מסמן $a_n=\frac{n^3+n^{\sin(n)}+1}{4n^3+3n\cos(n)}$, $b_n=(1+(-3)^{-n})^{3^n}$, $c_n=\sin\left(\frac{\pi n}{3}\right)$ נסמן (מסמן $a_n=\frac{n^3+n^{\sin(n)}+1}{4n^3+3n\cos(n)}$, $b_n=(1+(-3)^{-n})^{3^n}$, $c_n=\sin\left(\frac{\pi n}{3}\right)$ נשים לב כי $a_n\to\frac14$, $a_n\to\frac14$ מחזור באורך 2 עם גבולות חלקיים $a_n=a_n$ ולכן לסדרות המייצרות ג"ח אלו ממצות את כל איברי $a_n=a_n$ ולכן אלו הג"ח היחידים.

: 5 שאלה

: הוכיחו / הפריכו

- . lim sup $a_nb_n=\limsup a_n\cdot \limsup b_n$ א. אם $\{a_n\},\{b_n\}$ שתי סדרות חסומות, אז : $a_n=1+(-1)^n,b_n=1+(-1)^{n+1}$ לא נכון. דיינ
 - $\{a_n\}$ אי-שלילית ומתכנסת, אז $\{b_n\}$ חסומה ו-

. $\limsup a_n b_n = \limsup a_n \cdot \limsup b_n$

נכון: ראשית נעיר כי b_n ב lim b_n = lim b_n ונסמן גבול זה ב- b_n ונזכור כי מכיוון ש- a_nb_n מתכנסת אז היא חסומה, a_nb_n ולכן גם a_nb_n חסומה. כמו כן $b_n \geq 0$ ולכן $b_n \geq 0$ נסמן a_nb_n ווm sup a_nb_n ווm sup a_nb_n ווm sup a_nb_n פולכן גווו a_nb_n ווm sup a_nb_n ווm sup a_nb_n באמר לגבול a_nb_n ווm sup a_nb_n בעמח שלה מתכנסת לאותו הגבול, לכן a_nb_n ולכן a_nb_n מהגדרת a_nb_n מתקיים a_nb_n ובתוספת לכך ש- a_nb_n נקבל a_nb_n מכיוון ש- a_nb_n בעצמה היתה סדרה מתכנסת ל- a_nb_n (וm sup a_nb_n בעצמה היתה a_nb_n בור אי השוויון ההפוך, תהי a_nb_n תייס של a_nb_n בעצמו הוא גייח של a_nb_n ולכן מקיים a_nb_n שלי-השווינים ההפוכים נקבל את הדרוש.

: 6 שאלה

החל $a_n < b_n$ אז מתקיים ,lim sup $a_n <$ lim inf b_n -סדרות כך סדרות (a_n), $\{b_n\}$ החל ממקום מסוים.

: מקיימים b_n איברי מסוים, מחל ממקום .
 $\varepsilon = \frac{\lim\inf b_n - \lim\sup a_n}{2} > 0$ על על נסתכל על

: מקיימים מחוים, כל איברי .
 $b_n > \lim\inf b_n - \varepsilon = \frac{\lim\inf b_n + \lim\sup a_n}{2}$

 $.a_n < b_n$ מתקיים מסוים, לכן, החל ממקום .
 $a_n < a_n + \varepsilon = \frac{\lim \inf b_n + \lim \sup a_n}{2}$

:7 שאלה

אנו אחד מאיברי הסדרה, אז הוא גבול sup a_n סדרה מלעיל. הראו כי אם אינו אחד אינו אחד מאיברי הסדרה, אז הוא גבול חלקי שלה.

נסמן n_1 ונבנה תת-סדרה המתכנסת ל- M. נבנה את הסדרה באינדוקציה: עבור n_1 (נבת תת-סדרה המתכנסת ל- M. נבנה את הסדרה באינדוקציה: עבור n_1 (נבת תת-סדרת סופרמום. כעת, נסמן $M=\sup_i a_i$ (מסמן $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_1} \right\}$ מכיוון ש- $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_1} \right\}$ מכיוון ש- $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_2} \right\}$ ולכן קיים $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ באופן דומה, לאחר שבחרנו את האינדקסים $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ נובחר $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ נובחר $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ כך שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ בהכרח $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ בק שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ בהכרח $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ בק שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ בהכרח $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ בהכרח $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ בהכרח $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ בהכרח $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-a_{n_i} \right\}$ ברן שלכל $m_i=min \left\{ \frac{1}{2}, M-a_1, M-a_2, \dots, M-$