Homework 2

Deadline: 30th October, 2022

Saturday 15th October, 2022

1. (Name and Shame Mechanism). Consider the following mechanism A, for a given input dataset $D = \{x_1, \dots, x_n\}$, it generates

$$Y_i = \begin{cases} (i, x_i) \text{ w.p. } \delta \\ \text{nothing w.p. } 1 - \delta \end{cases}$$
 (1)

and outputs $Y = (Y_1, \dots, Y_n)$. Show that A is $(0, \delta)$ -DP.

- 2. (Noisy-max with Laplace Noise). In the class (Lecture 5), we have showed that adding the exponential noise $\exp(\frac{2\Delta}{\epsilon})$ in the Noisy-Max mechanism could preserve ϵ -DP. Now, instead of using the exponential distribution, we use $\operatorname{Lap}(\frac{\Delta}{\epsilon})$ in the Noisy-Max mechanism. Try to show this is also ϵ -DP.
- 3. (Adding Uniform Noise) Suppose we add uniform noise to a count query $f:\{0,1\}^n \to \mathbb{R}$ with $f(D) = \sum_{i=1}^n x_i$, that is, we release A(D) = f(D) + Z where $Z \sim U_{[-\lambda,\lambda]}$, $U_{[-\lambda,\lambda]}$ is the uniform distribution on the interval $[-\lambda,\lambda]$. How large must λ be to satisfy (ϵ,δ) -DP? Do both ϵ and δ matter in setting? When $\delta < \frac{1}{n}$, will this mechanism produce useful information?
- 4. (Implementation of Noisy-max Mechanism and Exponential Mechanism) You can find a selection problem (you have to say the output space, the score function and its sensitivity) and try to implement the noisy-max mechanism and the exponential mechanism. Write a report on your findings.
- 5. Differentially Private Top k Selection: Suppose we have d candidates items and a score function $q:[d]\times\mathcal{X}\mapsto\mathbb{R}$. In the selection in Lecture 5 we aimed to find a single high-score item. Suppose we now want to find $k<\frac{d}{2}$ items. Given an algorithm that outputs a set of k items S=A(D), we measure the error as follows: let $q_{(k)}(D)$ be the score function of the k-th best item, The error of the algorithm is

$$q_{(k)}(D) - \min_{j \in S} q(j; D).$$
 (2)

What expected error guarantee can you prove for the algorithm that proceeds by repeating the exponential mechanism k times without replacement. Try to consider both of using the basic composition property of ϵ -DP and the advanced composition property of (ϵ, δ) -DP cases.

6. (Comparison with Gaussian and Laplace Mechanism) Generate a dataset $D = \{x_1, \dots, x_n\}$ where each $x_i \in \{0, 1\}^d$. Consider answering the average query $f(D) = \frac{1}{n} \sum_{i=1}^n x_i$ via Laplace and Gaussian mechanism. Implement these two mechanisms with variate n, d, ϵ (You cases must at least include d = 1 and $d \gg 1$). Write a report on your findings.