

Exercice 1 - Mouvement RT - RSG **

B2-14

C1-05

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \ell_2 \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G₁ désigne le centre d'inertie de 1 tel que AG₁ = -l i₁, on note m₁ la masse de 1;
 G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un ressort exerce une action mécanique entre les points A et B.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport $\hat{a}\,\mathcal{R}_0$.

1

Question 3 Déterminer les lois de mouvement.

Corrigé voir 1.

Exercice 2 - Mouvement RT - RSG **

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = L \overrightarrow{i_2}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G₁ désigne le centre d'inertie de 1 tel que AG₁ = -l i₁, on note m₁ la masse de 1;
 G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un moteur exerce un couple entre les pièces 1 et 2.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport $\hat{a}\,\mathcal{R}_0$.

Question 3 Déterminer les lois de mouvement.

Corrigé voir 2.

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 - Méthodologie: détermination des équations de mouvement

Sciences
Industrielles de
l'Ingénieur

Colle

Chaîne ouverte – Banc d'essai vibrant**

Pôle Chateaubriand - Joliot Curie

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

Les vibrations se retrouvent dans tous les systèmes et nuisent à leur durée de vie. On s'intéresse à un banc d'essai permettant d'étudier les conséquences de ces vibrations sur l'usure et la fatigue des pièces mécaniques. La figure ci-après représente un modèle cinématique du dispositif étudié. Une modélisation plane a été retenue. Le bâti vibrant est modélisé par un solide S_1 , de masse m_1 en liaison glissière parfaite avec un support S_0 , fixe par rapport à un repère \mathcal{R}_0 supposé galiléen.

Le solide S_1 est rappelé par un ressort de longueur libre l_0 et de raideur k. Une masse ponctuelle m_2 excentrée, placée en P, tourne sur un rayon r et est entraînée à vitesse constante Ω . Elle modélise le balourd du rotor d'un moteur S_2 .

Un pendule simple de longueur L, porte à son extrémité D une masse concentrée m_3 , l'ensemble constitue le solide S_3 , en liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$ avec S_1 . Les masses autres que m_1 , m_2 et m_3 sont négligées.

Objectif Déterminer les conditions géométriques permettant de supprimer les vibrations.

Question 1 Réaliser le graphe d'analyse du système.

Question 2 Préciser les théorèmes à utiliser permettant de déterminer deux équations différentielles liant x, θ et leurs dérivées et les paramètres cinétiques et cinématiques utiles.

Question 3 *Déterminer ces deux équations.*

On souhaite supprimer les vibrations du bâti vibrant. On recherche alors une solution du système d'équations différentielles déterminé précédemment autour de la position d'équilibre $(x_0,\theta_0)=(0,0)$ en supposant que x, θ , \dot{x} , $\dot{\theta}$ sont des petites variations de position ou de vitesse autour de cette position d'équilibre.

Question 4 Proposer une linéarisation, à l'ordre 1, des deux équations différentielles précédentes.

On s'intéresse uniquement au régime d'oscillations forcées. On cherche donc des solutions de la forme $x(t) = A\cos(\Omega t)$ et $\theta(t) = B\cos(\Omega t)$.

Question 5 *Déterminer le système d'équations permettant de calculer A et B*.

Question 6 Indiquer la condition que doit vérifier la longueur L afin d'assurer x(t) = 0 en régime forcé.

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 – Méthodologie: détermination des équations de mouvement

l'Ingénieur

Chargement et déchargement des cargos porteconteneurs **

Centrale Supelec PSI 2013

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement

Modélisation dynamique du comportement de la charge

Objectif Déterminer les équations du mouvement du conteneur de façon à en obtenir un modèle simple pour la synthèse de la commande.

En vue d'élaborer une commande automatisée du déchargement des conteneurs, une bonne compréhension de la dynamique du système est nécessaire. Cette partie vise à établir les équations du mouvement du conteneur. La charge peut alors balancer selon le modèle présenté ci-après. Dans cette étude, la vitesse de vent nulle. On fait l'hypothèse que le conteneur est suspendu à un seul câble indéformable, en liaison pivot à ses extrémités. Les liaisons entre les solides 0, 1, 2 et 3 sont supposées parfaites. Le portique support du chariot est noté 0, le chariot 1, le câble 2 et l'ensemble {spreader + conteneur} 3.

Paramétrage

- Le repère $\mathcal{R}_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est lié au portique fixe; il est supposé galiléen avec $\overrightarrow{z_0}$ l'axe vertical
- La position du chariot telle que $\overrightarrow{OE} = y_{ch}(t) \overrightarrow{y_0}$ est notée $y_{ch}(t)$; l'angle $(\overrightarrow{z_0}, \overrightarrow{z_2})$ d'inclinaison du câble $\theta(t)$ et l'angle $(\overrightarrow{z_2}, \overrightarrow{z_3})$ d'inclinaison du conteneur par rapport au câble $\beta(t)$.

Données

- $\mathcal{R}_1 = (E; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ repère lié au chariot de levage
- $\Re_2 = (E; \overrightarrow{x_0}, \overrightarrow{y_2}, \overrightarrow{z_2})$ repère lié au câble 2; $\ell_2 = 50$ m la longueur EF du câble; la masse est négligée.
- $\mathcal{R}_3 = (F; \overrightarrow{x_0}, \overrightarrow{y_3}, \overrightarrow{z_3})$ repère lié à l'ensemble {spreader + conteneur}; $m_3 = 50$ tonnes la masse du solide 3; G_3 le centre de gravité du solide 3, tel que $\overrightarrow{G_3F} = h_3 \overrightarrow{z_3}$ où $h_3 = 2.5 \,\mathrm{m}$; la matrice d'inertie du

solide 3 s'écrit
$$I_3(G_3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\left(\overrightarrow{F_1}, \overrightarrow{F_2}, \overrightarrow{F_3}, \overrightarrow{F_3}\right)}$$
 où

$$A_3 = 52 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2$$

 $B_3 = 600 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2$
 $C_3 = 600 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2$

• la motorisation M_D du mouvement de direction

- mécaniques sur (1) qui se réduisent à un glisseur de la forme $\overrightarrow{R(M_D \to 1)} = F \overrightarrow{y_0}$;
- l'action mécanique du câble sur le spreader est notée $R(2 \rightarrow 3) = F_{23} \overrightarrow{z_2}$.

Question 1 Après avoir réalisé le graphe de structure, déterminer le nombre de degrés de liberté et le nombre d'actionneurs du modèle proposé figure précédente. En déduire le nombre de degrés de liberté non motorisés. Expliquer pourquoi il est difficile de poser le conteneur sur un camion avec précision?

Question 2 Déterminer littéralement, au point G_3 , la vitesse $V(G_3, 3/0)$ puis le torseur dynamique $\{\mathcal{D}(3/0)\}$ de l'ensemble {conteneur + spreader} (3) dans son mouvement par rapport au repère galiléen \mathcal{R}_0 .

Question 3 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer l'équation différentielle de résultante reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$, sans inconnue de liaison et sans l'action du moteur.

Question 4 En précisant l'isolement et le bilan des exerce, par l'intermédiaire de câbles, des actions actions mécaniques extérieures, déterminer les équations

différentielles reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$ et sans inconnue de liaison. La méthode sera clairement séparée des calculs.

Question 5 En supposant que θ , β , $\dot{\theta}$ et $\dot{\beta}$ sont petits, linéariser les équations précédentes.

Les courbes temporelles ont été obtenues par simulation, à partir des équations précédentes, pour un échelon en $y_{ch}(t)$ de $10\,\mathrm{m}$.

Question 6 Proposer une simplification de la modélisation précédente.