

Aufgaben zur Algebra 1

Besprechungstermin: Do. 24. Oktober 2024

Aufgabe 1

Zeigen Sie, dass

$$(\mathbb{Z}/n\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/mn\mathbb{Z}$$

genau dann gilt, wenn m und n teilerfremd sind.

Aufgabe 2

Beweisen Sie den zweiten Isomorphiesatz.

Aufgabe 3

Sei G eine Gruppe. Mit $\operatorname{Aut}(G)$ bezeichnen wir die Menge aller bijektiven Gruppenhomomorphismen von G in sich selbst. Zeigen Sie, dass $\operatorname{Aut}(G)$ bezüglich Hintereinanderausführung eine Gruppe ist.

Aufgabe 4

Seien G, H Gruppen. Zeigen Sie:

(i) Sei $\theta \colon H \to \operatorname{Aut}(G)$ ein Gruppenhomomorphismus. Dann macht die folgende Verknüpfung die Menge $G \times H$ zu einer Gruppe:

$$(g,h)\cdot(g',h'):=(g\cdot\theta(h)(g'),h\cdot h').$$

Um Verwechslung mit der komponentenweise definierten Verknüpfung zu vermeiden, bezeichnet man diese Gruppe dann mit $G \rtimes_{\theta} H$.

(ii) Die Abbildung

$$\iota \colon G \to G \rtimes_{\theta} H$$

 $g \mapsto (g, e)$

ist ein injektiver Gruppenhomomorphismus und Bild (ι) ist eine normale Untergruppe in $G \rtimes_{\theta} H$.