prioritizr

Systematic conservation planning in

Session 1

Jeffrey Hanson

Protected areas

Reserve selection

Planning units

- Discrete places for conservation management
- Each planning unit is managed separately
- Commonly include land parcels, islands, spatial grid cells

Reserve selection

Features

- Stuff that we care about
- Each feature is relatively independent
- Commonly include species, ecosystem types, ecosystem services (e.g., water provisioning, carbon sequestration)

Reserve selection

Which planning units should we manage for conservation?

- Comprehensive
- Adequate
- Representative
- Efficient

- Comprehensive
- Adequate
- Representative
- Efficient

- Comprehensive
- Adequate
- Representative
- Efficient

- Comprehensive
- Adequate
- Representative
- Efficient

- Comprehensive
- Adequate

versus

Connectivity

"improve population resilience to disturbance, increase metapopulation viability, promote genetic diversity and maintain energetic pathways among ecosystems"

Within-reserve connectivity

Daigle et al. (2020) Methods Ecol Evol, DOI:10.1111/2041-210X.13349

Connectivity

"improve population resilience to disturbance, increase metapopulation viability, promote genetic diversity and maintain energetic pathways among ecosystems"

Between-reserve connectivity

Highway Daigle et al. (2020) Met

Daigle et al. (2020) Methods Ecol Evol, DOI:10.1111/2041-210X.13349

Principle complementarity

Protected areas should "complement" each other to maximize the performance of the overall protected area network (including, existing protected areas)

Reserve selection as optimization

- Objective: what do we want to maximize or minimize?
- <u>Constraints</u>: what does the prioritization have to do?
- <u>Decisions</u>: what will we do to each planning unit?

Minimum set formulation

- Objective: min. # of islands
- Constraints: ensure adequate coverage of each and every species
- <u>Decisions</u>: create a reserve on an island or not?

1 2 3 4 5 6 7 8 9

Upper 1 <th></th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th>		1	2	3	4	5	6	7	8	9
орре:	V. type	В	В	В	В	В	В	В	В	В
Upper 1 1 1 1 1 1 1 1 1 1	Lower	0	0	0	0	0	0	0	0	0
	Upper	1	1	1	1	1	1	1	1	1

Min \$: +1 +1 +1 +1 +1 +1 +1 +1

Upper	1	1	1	1	1	1	1	1	1	
Lower	0	0	0	0	0	0	0	0	0	
V. type	В	В	В	В	В	В	В	В	В	

Min \$:	+1	+1	+1	+1	+1	+1	+1	+1	+1	
			+1							≥ 1
							+1	+1		≥ 1
			+1	+1						≥ 1
H.	+1									≥ 1
	+1	+1		+1	+1	+1			+1	≥ 1
Upper	1	1	1	1	1	1	1	1	1	
Lower	0	0	0	0	0	0	0	0	0	
V. type	В	В	В	В	В	В	В	В	В	
	1	2	3	4	5	6	7	8	9	

But reality is more complex...

Accounting for existing conservation areas

0

В

0

В

Upper

Lower

V. type

В

В

+1		≥ 1
	+1 +1	 ≥1

0

0

В

В

0

0

В

9

Accounting for existing conservation areas

Protected areas + Indigenous Lands

No-take marine reserves

Areas with existing habitat + pastures where grazing rights have already been bought

Accounting for efficiency Min \$: +9 +2 +5 +1 +5 +8 +3 +6

+1 +1

0

В

В

1

0

B

≥ 1

≥ 1

0

B

9

0

B

	-	-1				
(A.D.)				. 1	. 1	

1

В

0

B

3

Upper

Lower

V. type

0

В

$$\frac{2}{3}$$

0

В

4

Accounting for efficiency

Land value assessments

Rodewald et al. (2019) DOI:10.1038/s41598-019-52241-2

Human pressure

Schuster et al. (2019) DOI:10.1038/s41467-019-09723-8

Opportunity cost to commercial fisheries

Brito-Morales et al. (2022) DOI:10.1038/s41558-022-01323-7

Min \$: +9 +2 +5 +1 +5 +8 +3 +6

Accounting for adequacy, comprehensiveness, and representativeness

0

В

0

В

В

0

B

0

В

9

	1 10		
		+2 +5	≥ 7
\sim			

0

В

0

В

Upper

Lower

V. type

В

В

Accounting for adequacy – get good data!

Area of habitat data

Hanson et al. (2022) DOI:10.1038/s41586-020-2138-7

Species distribution models González-Fernández (2022) DOI:10.1016/j.jnc.2022.126235

Habitat classification
Jung et al. (2020) DOI: 10.1038/s41597-020-00599-8

Modelled abundance Fink (2020) DOI:10.1002/eap.2056

Accounting for adequacy – set good targets!

Minimum coverage of features by the prioritization

 Policy "As a habitat-specific target, we used 17% of the total number of PUs where the respective habitat occurs, adopting Aichi target 11"

Representation targets

Minimum coverage of features by the prioritization

- Policy "As a habitat-specific target, we used 17% of the total number of PUs where the respective habitat occurs, adopting Aichi target 11"
- Statistical models "We modelled [...] scenarios based on [...] the [population viability analysis] by Todd *et al.* (2016). The reserve scenarios were based on the protected area required to achieve a less than 5% chance of the Leadbeater's Possum population falling to (or below) 500 or fewer adult females in 40 generations"

Representation targets

Minimum coverage of features by the prioritization

- Policy "As a habitat-specific target, we used 17% of the total number of PUs where the respective habitat occurs, adopting Aichi target 11"
- Statistical models "We modelled [...] scenarios based on [...] the [population viability analysis] by Todd *et al.* (2016). The reserve scenarios were based on the protected area required to achieve a less than 5% chance of the Leadbeater's Possum population falling to (or below) 500 or fewer adult females in 40 generations"
- Export thresholds "We set species targets to conserving the minimum amount of species' habitat necessary to qualify it for the conservation status 'Least Concern' following IUCN Red List criteria"

Accounting for comprehensiveness

Amphibians, mammals, birds, reptiles, plants, water provisioning, carbon sequestration

Accounting for representativeness

Ecosystems

Flower et al. (2010) DOI: 10.1111/csp2.158

Species

Domisch et al. (2019) DOI: 10.1111/ddi.12891

Genes

Hanson et al. (2022) DOI: 10.1111/1365-2664.13718

Accounting for connectivity

0

В

В

0

B

+2 +5

≥ 10

≥ 3

≥ 1

+3

0

В

9

0

B

8

Min \$: +9 +2 +5 +1 +5 +8 +3 +6

+10

0

В

4

0

B

3

В

(J.)

Upper

Lower

V. type

0

В

What if connectivity = 1/distance?

Min \$: +9 +2 -3*1/5
-1 +1 |
$$\leq 0$$

+1 -1 | ≤ 0
-1 -1 +1 | ≥ -1
Upper 1 1 1
Lower 0 1 0
V. type B B B B
1 2 182

Let's just consider islands 1 and 2

Scaling factor: 3 connectivity units = 1 cost unit

Beyer et al. (2016) DOI:10.1016/j.ecolmodel.2016.02.005

What if connectivity = 1/distance?

Min \$: +9 +2 -3*1/5

(1) -1 +1
$$\leq 0$$

(2) +1 -1 ≤ 0

-1 -1 +1 ≥ -1

Upper 1 1 1

Lower 0 1 0

V. type B B B B
1 2 1&2

So, +1 variable and +2 constraints per pair of planning units.. increases problem size a lot!

Let's just consider islands 1 and 2

E.g., 1k planning = ~500k extra constraints

Accounting for connectivity

Carroll (2021)
DOI:10.1016/j.xpro.2021.100882

Hanson et al. (2022) DOI:10.1111/1365-2664.14251

Other stuff too!

Spatially contiguity

Wang and Önal (2013) DOI: 10.1016/j.chnaes.2013.07.004

Multiple management zones

Boussarie et al. (2023) DOI: 10.1016/j.jenvman.2023.117857

Solution portfolios

Brunel et al. (2022) DOI: 10.1007/s10666-022-09862-1

What you will do today

- Workshop manual sections 1—4.
 - Learn how to work with spatial data in R
 - Perform a gap analysis
 - Answer questions in the manual

https://prioritizr.github.io/workshop

Getting help

- prioritizr website
 - https://prioritizr.net
- RDocumentation
 - https://www.rdocumentation.org
- Geocompr
 - https://geocompr.robinlovelace.net/

