# The 77GHz/60GHz CMOS mmWave Radar Sensing for Automotive and Industrial

2019/06/03

**TI Jesse Wang** 



### **Agenda**

- mmWave Radar Sensor Technology Overview
- mmWave Radar Sensor Main Applications
  - Automotive
  - Industrial

- mmWave Radar Sensor Technology

### **Basics of FMCW** (Frequency Modulation Continue Wave)





- 1. A synthesizer (synth) generates a "chirp"
- 2. The chirp is transmitted by the TX antenna
- 3. The chirp is reflected off an object and the reflected chirp is received at the RX antenna.
- 4. The RX signal and TX signal are 'mixed' and the resulting signal is called

Tx = 
$$\sin[w_1 t + \phi_1]$$
 IF =  $\sin[(w_1 - w_2)t + (\phi_1 - \phi_2)]$   
Rx =  $\sin[w_2 t + \phi_2]$ 

### **Basics of FMCW** (Range Measurement)



### **Basics of FMCW** (Velocity and Angle Measurement)



Velocity and Angle of object reflects in phase difference of IF signal.

### mmWave Sensors – Technology Overview

## What is mmWave sensing

- mmWave is the band of spectrum between 30GHz and 300GHz
- Electromagnetic waves used for sensing, imaging and communications
- mmWave sensors measure with high accuracy range, velocity and angle of remote objects

## When to use mmWave sensing?

- High precision range measurement tank level probing, displacement sensing, and vibration monitoring
- Smarter infrastructure occupancy sensing, traffic monitoring, lighting control, gesture recognition
- Advanced navigation for drones and robotics sense and avoid, landing assistance, collision avoidance, ground speed sensing
- Automotive Adaptive cruise control, automatic emergency brake, lane change assist, and more



#### Why Now?

- mmWave technology is robust against environmental influences such as bad light and weather conditions and extreme temperatures
- RFCMOS technology enables analog/digital integration in a small single chip, low-power solution
- Highly linear signal generation, ultrawide resolution, robust calibration/monitoring, and more for unprecedented accuracy in RF sensing

7

### Bandwidth of 4GHz vs 0.25GHz - Sensor View





۶

### Single Chip Integration Enabled by CMOS



#### <u>Discrete Multi-Chip mmWave Sensor</u>

- Discrete solution expensive
- Complex and critical signal routes
- Unconventional packaging
- Prone to noise
- Lack of system level observability
- Crude implementation of RF and Baseband safety

#### TI Single-Chip mmWave Sensor

- Smaller in size
- Simpler design
- Built in monitoring and calibration (ASIL)
- High Resolution, less false positives
- Programmable core
- Lower Power



### mmWave Single Chip Block Diagram – AWR1843



### mmWave Sensors - Presence on ti.com



Training material, <a href="https://training.ti.com/mmwave-training-series">https://training.ti.com/mmwave-training-series</a> Sensor E2E forum, <a href="https://e2e.ti.com/support/sensors/f/1023">https://e2e.ti.com/support/sensors/f/1023</a> TI Resource Explorer, <a href="http://dev.ti.com/tirex/#/">http://dev.ti.com/tirex/#/</a>

# - mmWave Radar Sensor Applications Automotive

### mmWave sensing applications

Automotive







**Automatic Emergency Brake** 



Lane Change Assist



**Blind Spot Detection** 

**Beyond Automotive** 



**Level Probing** 

**Precision Measurement** 

Vibration Monitoring



**Building Automation** 

**Occupancy Sensing** 

**Gesture Recognition** 



Traffic Monitoring

Perimeter Surveillance

**Vital Sign Monitoring** 



**Factory Automation** 

**Drones** 

**Industrial Transport & Robots** 

TEXAS INSTRUMENTS

### **ADAS to Autonomous**



#### ADAS - Driver Assist to Limited Driver Substitution

- Discrete signal processing with 1-4 sensors per SoC and limited fusion on big ARM SoCs
- Traditional Detection and Classification moving to Deep Learning
- Isolated compute provides security



#### Autonomous driving through connected/collaborative technology

- Shift towards centralized signal processing
- Multi-Modal Sensor Fusion provides Robustness and Redundancy
- · Heavy use of Deep Learning
- Connected compute needs active security

**ADAS** 

#### **Autonomous Driving**



### **Parking Sensor today**







- ☐ 12 Ultrasonic sensors
- □ No 360 deg coverage
- ☐ Doesn't work when covered with mud, snow
- ☐ Limited range (15 cm to 5 m)
- ☐ Holes in bumper
- ☐ Color needs to match

### **Why Radar Sensors**

**Reduced number of sensors** 

Extended range ~ 40m

Wide field of view

**Must for Automated Parking** 



16

### **Automotive mmWave Sensors**

TI's AWR portfolio of 76-81 GHz mmWave sensors scales from high performance front-end to single chip solutions that integrate a DSP and MCU

#### Mid and long range radar

Adaptive cruise control, emergency braking, highly automated highway driving

#### Ultra short and short range radar

Blind spot, rear collision avoidance / warning, lane change assist, pedestrian/bicyclist detection, collision avoidance, cross traffic alert, 360 degree view, park assist

#### ■ Proximity sensing

Occupant detection, body sensor, in cabin gesture recognition, driver monitoring

#### **AWR mmWave Sensors**

TI's mmWave technology enables highly precise sensing applications across ADAS, body and chassis and infotainment systems by analyzing and reacting to dynamic operating conditions

### **Automotive Radar Sensing Applications**







**Automatic Emergency Brake** 



**Lane Change Assist** 



**Blind Spot Detection** 



**Imaging Radar** 



**Automatic Parking** 





In-Cabin Sensing, Near-Field Sensing



18

Sensor configuration with TI mmWave solutions



### **Enabling Innovation in ADAS – AWR1642**

### Ultra short / Short range (USRR/SRR)

### Imaging / cascading radar





- Small, low power single chip solution AWR1642
- Cost optimized BOM cheaper PCB, better yield
- Single chip radar, monolithic processing through RF/analog samples to object detection
- Power consumption as low as 2W leads to lighter housing
- Blind spot detection, pedestrian/bicyclist detection, park assist, lane change assist, forward/rear collision avoidance



| Parameter           | Far Range                     | Near Range                            |  |  |
|---------------------|-------------------------------|---------------------------------------|--|--|
| Max Range           | 100 m                         | 10 m                                  |  |  |
| Range Resolution    | 40 cm                         | 4 cm                                  |  |  |
| Max Velocity        | 90 kmph*                      | 30 kmph                               |  |  |
| Velocity Resolution | 1 kmph                        | 1 kmph                                |  |  |
| RCS                 | 1 Sq m<br>( Pedestrian, pole) | 0.1 Sq m<br>(Traffic cone, wire mesh) |  |  |
| Horizontal FOV      | 120 deg                       | 160 deg                               |  |  |
| Vertical FOV        | 10 deg                        | 30 deg                                |  |  |



### **Enabling Innovation in ADAS – AWR1243**

### Ultra short / Short range (USRR/SRR)

### Imaging / cascading radar

- High performance, low power radar front end AWR1243
- 15 MHz IF bandwidth for 200+m range and 300km/hr unambiguous max velocity
- Built-in circuitry for seamless cascading of multiple AWR1243
- Angular resolution as low as 0.6° in the azimuth and vertical direction
- Urban driving, automated highway driving, full-range radar (FRR)

| Parameter           | Long Range             | Mid Range                 |
|---------------------|------------------------|---------------------------|
| Max Range           | 250 m                  | 170 m                     |
| Range Resolution    | 2m                     | 40 cm                     |
| Max Velocity        | 300 kmph               | 300 kmph                  |
| Velocity Resolution | 1 kmph                 | 1 kmph                    |
| RCS                 | 10-50 Sqm (Car, truck) | 5-10 Sqm (Motorbike, car) |
| Horizontal FOV      | 30°                    | 90°                       |
| Vertical FOV        | 10°                    | 30°                       |







### Near range 3D obstacle detection (Body & Chassis)









#### Why 77GHz radar

- Sense obstacle in the vicinity of car door to avoid collision and damage
- Single chip and small form factor that can go even "inside" a door-handle OR side-mirror OR door-cladding – Scalable to multiple locations
- Works under bright sunlight, pitch darkness, snow, fog
- Detection in elevation and azimuth directions with sub mm range accuracy
- Offers more range than any comparable sensing technology
- Easy algorithm implementation on single chip

### Occupant detection (Body & Chassis)











#### Why radar

- Detection of life forms and Child left behind in a car
- Pick up micro doppler signatures from sub mm movements
- Single chip solution with a small form factor, cost optimized BOM
- Ability to place the sensor at any place in the car
- Measurement with high accuracy
- Flexibility to implement several high level algorithms
- Works under bright light or no light conditions
- Ultra low power consumption

TI Confidential – NDA Restrictions

# - mmWave Radar Sensor Applications Industry

### **Object Range Detection**

| Object           | EVM measured range (m) |    |    |    |    |    |    |     |     |
|------------------|------------------------|----|----|----|----|----|----|-----|-----|
|                  | 1                      | 10 | 20 | 30 | 40 | 60 | 80 | 120 | 160 |
| Truck            | 0                      | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   |
| Car              | 0                      | 0  | 0  | 0  | 0  | 0  | 0  | 9   |     |
| Motor bike       | 0                      | 0  | 0  | 0  | 0  | 0  | 0  |     |     |
| Human            | 0                      | 0  | 0  | 0  | 0  |    |    |     |     |
| Metal chair      | 0                      | 0  | 0  | 0  |    |    |    |     |     |
| Large dog        | 0                      | 0  |    |    |    |    |    |     |     |
| Coins (quarters) | 0                      |    |    |    |    |    |    |     |     |

### **IWR mmWave Sensors**

TI's single chip mmWave sensors integrate a DSP, MCU and RF front-end to detect range, velocity and angle

#### **Level Sensing**

Measure tank
fluid level with
unprecedented
accuracy for accurate
inventory control and
early leak detection

#### **Forklifts**

Detect objects in obstructed views for intelligent safety

#### Robotics

Unprecedented accuracy at the micrometer level

### 000

#### Drones

Enable autonomous flight for building, land surveying and delivering packages

#### People counting

Detect people in a zone of interest and trigger actions

#### Perimeter security

Enabling security systems with motion sensitive detection and tracking

#### Intelligent street lighting

Sensing performance that improves pedestrian safety and provides power/cost savings through intelligent triggering of lighting

#### Traffice monitoring -

Detect traffic location and volume more accurately

### Leverage 77GHz investment on 60GHz platform



### Field Transmitters with TI mmWave Sensors

Adding highly-accurate, fully-integrated displacement sensing for precision range measurement in Tank Level Probing and other precision measurement markets

- Flexible, single-chip sensors enable low-power design for Fluid and Solid level sensing
- Highly-linear chirp generation for improved measurement accuracy

| Ty | pical Tank Sizes |                            |                                    |  |  |
|----|------------------|----------------------------|------------------------------------|--|--|
|    |                  | Typical Device Performance |                                    |  |  |
|    | 80m+             | Output                     | Raw ADC, Range,<br>Velocity, Angle |  |  |
|    |                  | Tuning Range               | 76-81 GHz                          |  |  |
|    | 10m – 80m        | Chirp BW                   | 4GHz                               |  |  |
| `  |                  | Power Output               | 12dBm                              |  |  |
|    | 3cm –<br>10m     | Power<br>Consumption       | 30mW – 2.7W *                      |  |  |

- Ultra Accurate sub 100um accuracy with +/-15um precision
- Long Range sense far away displacement at 100+ meters
- Robust insensitive to environmental conditions such as dust and humidity, and can be easily packaged for hazardous environments





<sup>\*</sup> Depends on duty cycle and chirp design

### **Industrial Transport / Robotics – Obstacle Detection**

| Warehouse Use Case |           |  |  |  |
|--------------------|-----------|--|--|--|
| Typical Range      | ~ 5 m     |  |  |  |
| Typical Velocity   | < 5 m/sec |  |  |  |

| Typical Device Performance |                         |  |  |  |
|----------------------------|-------------------------|--|--|--|
| Range accuracy             | 2 cm                    |  |  |  |
| Range resolution           | 10 cm (@2 GHz chirp BW) |  |  |  |
| Velocity accuracy          | 1 cm/sec                |  |  |  |
| Velocity resolution        | 5 cm/sec                |  |  |  |
| Angle accuracy             | 1°                      |  |  |  |

#### **Interference Rejection : The 2025 Parking lot**

- FMCW inherently robust to interference
- Chirp based timing randomization
- · Binary phase modulation



### mmWave in Building Automation









**GOAL:** Robust, small form-factor detection and sensing of people near buildings, cameras, and doors

#### **Advantages**

- Robust to false detection/movements with integrated processing
- Radar information can give position and velocity easy background subtraction, movement classification
- Robust to environment lighting, temperature, moisture
- No camera or lens for privacy-conscience applications
- Sparse data set requires lower processing requirements

#### **Challenges**

- Angular resolution of radar is poor, complex scenes require algorithms to decipher
- Power consumption for wireless, battery-powered sensors
- Cost pressure versus incumbent technologies such as 24GHz, ultrasonic, and PIR

30

### Wall Mounted People Tracking and Counting Reference Design using mmWave Radar Sensor TIDEP-01000, Design Status: On ti.com



**Base configurations** of people counting TI Design support 6m and 14m operation.

**Tuning of parameters in TI Design** enables variety of applications and environments

|                       | Short Range<br>Configuration              |             | Medium Range<br>Configuration                          |                |  |
|-----------------------|-------------------------------------------|-------------|--------------------------------------------------------|----------------|--|
| HW / EVM              | IWR6483 ISK EVM                           |             |                                                        |                |  |
| Field of View         | 120                                       | ° Horizonta | al, 30° Vertic                                         | al             |  |
| Max Range             | 6m                                        |             | 14m                                                    |                |  |
| Example Area          | 6m x 6m                                   |             | 6m x 14m<br>14m x 14m                                  |                |  |
| Range Resolution      | 4.8cm                                     |             | 12cm                                                   |                |  |
| Max Velocity          | 5.17 m/s                                  |             | 5.25 m/s                                               |                |  |
| Velocity Resolution   | 0.082 m/s                                 |             | 0.082 m/s                                              |                |  |
| Algorithms Used       | Tracking, False Detection Tracking, False |             | ter Removal, Group<br>I, False Detection<br>Mitigation |                |  |
| System Power          |                                           | ~1.         | 5W                                                     |                |  |
| Location accuracy     | Pers                                      | on location | n within <160                                          | cm             |  |
| Counting density      | 3 persons per square meter                |             |                                                        | er             |  |
| Demonstrated accuracy | +/- 0 persons +/- 1 p                     |             | ersons                                                 | +/- 2 persons  |  |
| 3 people in scene     | >95% of frames 100% of                    |             | f frames                                               | 100% of frames |  |
| 5 people in scene     | >51% of frames >85% of                    |             | f frames                                               | 100% of frames |  |
| 7 people in scene     | >59% of frames                            | >85% c      | of frames                                              | >98% of frames |  |
| 9 people in scene     | >14% of frames >43% o                     |             | f frames                                               | >84% of frames |  |





Mounting assumes 1.5-2.5m elevation, with 10 degree downtilt



L: Conference Room with Static Clutter Removal for chairs and table
R: Hallway Scene person in GREEN tracked at 14m with Medium
Range Configuration and Group Tracking

- 1. Discover mmWave offering for people tracking and counting page here
  - 1. Watch Video: People Counting Applications & Benefits
  - 2. (Nov) Watch Video: Intelligence at the Edge
- 2. Evaluate the performance
  - 1. Order IWR6843 EVM here
  - 2. Download People Counting Lab
  - 3. Download Indoor False Detection Mitigation Lab
- 3. Design custom boards with IWR6843 silicon
  - 1. Reference IWR6843 datasheet, errata and TRM
  - 2. Review IWR6843 EVM schematics and layout



### Ceiling Mounted People Tracking and Counting Reference Design using mmWave Radar Sensor and POE TIDEP-01009, Design Status: Available 4Q18



**Base configurations** of <u>ceiling mounted</u> people counting TI Design support 8m radial operation.

Tuning of parameters in TI Design enables variety of applications and environments

|                        | Example Configuration                                  |  |
|------------------------|--------------------------------------------------------|--|
| HW / EVM               | IWR6843 ODS EVM<br>IWR6843 Power Over Ethernet Adaptor |  |
| Field of View          | 160° Horizontal, 160° Vertical                         |  |
| Max Range              | *8m – radial                                           |  |
| Example Area           | 12m x 12m                                              |  |
| Range Resolution       | 12cm                                                   |  |
| Max Velocity           | 5.25m/s                                                |  |
| Velocity Resolution    | 0.082m/s                                               |  |
| Algorithms Used        | Static Clutter Removal, Group Tracking                 |  |
| System Power           | *TBD                                                   |  |
| Performance<br>Metrics | *TBD – expected similar to wall people counting        |  |



Mounting and sensing distance assumes 3m elevation POE enables simplified integration with existing infrastructure





Ability to detect height of people and classify as standing/sitting/laying down (YELLOW – standing, BLUE – sitting)

- Discover mmWave offering for people tracking and counting page here
- 2. Evaluate the performance
  - 1. (4Q18) Order IWR6843 ODS EVM + MMWAVEICBOOST
  - 2. (4Q18) Order mmWave POE Board
  - 3. (4Q18) Download Overhead People Counting Lab
- 3. Design custom boards with IWR6843 silicon
  - 1. Reference IWR6843 datasheet, errata and TRM
  - 2. Review IWR6843 EVM schematics and layout

### TI mmWave in Traffic Monitoring TIDEP-0090

#### RFCMOS - Fully-Integrated design

 All mmWave sensing, radar processing and advanced algorithms can be performed on single chip

#### High Performance

- mmWave radar can precisely determine object location and speed
- Can minimize or eliminate need for expensive video analytics for object localization, speed estimation, and classification
- Detection/measurement of objects at 100m+, velocities <200km/hr, across multiple lanes

#### Insensitive to Environment

 Insensitivity to challenging environments such as fog, smoke, and changing lighting conditions.

#### Flexibility of Solution

 TI mmWave supports multiple data output types to allow for greater flexibility and optimization in your system design



### **Surveillance/Security – Application Usage**





- Only turn on camera if radar detects and verifies motion
- · Reduce false detection, less false alarms
- Result is system resource conservation:
  - Reduce Power Consumption
  - Reduce Network Bandwidth more cameras in system
  - Reduce Video Storage less server storage required





#### **Vision Fusion / PTZ Control**

- Use of both camera vision and radar combined to determine position and velocity of people
- Use radar to identify targets even in rain, fog, dust, and other extreme conditions
- Locate and track targets for PTZ and focus control

### Safety Guards – Technology Comparison





#### Pros:

- Simple, low cost
- · Low processing requirements

#### Cons:

- · Low sensitivity to motion
- · No or very low angular resolution
- · Sensitive to wind, movement or vibrations/
- · Limited range



#### Vision

Video image processor analyzes imagery to determine object detection

#### Pros:

- · Video for recording and monitoring
- Rich point cloud information
- High angular resolution

#### Cons:

- Privacy considerations
- High processing requirements
- Difficult to get position / range information
- Poor low-light performance, sensitive to environmental conditions



#### Active Infrared (3D ToF. LIDAR)

Measurement of infrared light time of flight

#### Pros:

- High angular resolution provides rich dataset similar to camera
- High distance accuracy

#### Cons:

- Limited range in presence of bright light (5-10m)
- Requires substantial processing to separate and classify relevant objects
- System complexity (optics, illumination, processing)
- · Historically expensive, mechanically complex



#### TI mmWave Radar

TI fully-integrated, single-chip mmWave sensor

#### Pros:

- Velocity tracking for smart incident management
- · Simple static and dynamic object separation
- Onboard DSP processing for single-chip tracking, classification of objects
- Extended range for person detection (50m+)
- Insensitive to weather, changing environments

#### Cons:

Lower angular resolution than camera or active infrared

3

### **Gesture** detection (Body & Chassis)













#### What can radar detect

- Touchless Interactions
- Virtual Tool gestures Button-Press, Slider, Dial

#### Why radar

- Single chip solution with a small form factor, cost optimized BOM
- Ability to place the sensor at any place/angle in the car
- Enables recognition of fine motions with high accuracy
- Not affected by Light conditions
- Flexibility to implement several high level algorithms
- Ultra low power consumption and easy installation

TI Confidential – NDA Restrictions

36

### **Driver vital sign detection**





#### Typical vital sign parameters

| Vital Signs             | Amplitude    | Frequency    |
|-------------------------|--------------|--------------|
| Breathing Rate (Adults) | 1- 12 mm     | 0.1 - 0.5 Hz |
| Heart Rate (Adults)     | 0.2 - 0.5 mm | 0.8 - 2 Hz   |





- Detection of driver heart rate and breathing rate with high accuracy
- Code available on ti.com for static use case
- Simple implementation on single chip sensor

TI Confidential – NDA Restrictions

### **Keysight's E8740A Automotive Radar Solution**

>5GHZ UP TO 110GHZ SIGNAL ANALYSIS AND FLEXIBLE SIGNAL GENERATION

#### **Radar Target Simulator**



#### F8708A - 79 GHz w/ 4GHz BW

Radar Target simulator for Automotive radar functional test

- 4 GHz Bandwidth
- Range from 5m to 450m, 1m step
- 4 static targets
- Options for OBW and
- Options for dual or single antenna

#### **OBW** and Power measurement



#### Signal Analysis Solution (Tx)



#### E8740A-010 Radar RF SA

Leading cost effective Auto Radar RF test tool

- 10 Hz to 26.5 GHz. 60 GHz to 90 GHz
- FMCW RF analysis



#### E8740A-020. 030

**Basic SA** 

Optimum choice for Auto radar signal quality test

60 GHz to 90 GHz

2.5 GHz BW. >5GHz BW FMCW Quality analysis



#### E8740A-040, 050 Advanced SA

Benchmark for demanding

applications 10 Hz to 26.5 GHz.

- 60 GHz to 90 GHz
- 2.5 GHz BW . >5GHz **BW FMCW Quality** analysis



#### E8740A-060 Performance SA

Wide-open performance

- 3 Hz to 110 GHz >5 GHz BW for FMCW
- Quality analysis
- DANL-171dBm/Hz@1GHz. -150dBm/Hz up to 110GHz
- S2.4:mm, Amminputests



#### E8740A-090 **Emissions test** solution

Conformance test

- 0 to 330 GHz
- Operating frequency range, peak power, unwanted emission, mean power, and more
- 2.4 mm, 1 mm input

Signal Generation

#### Signal Generation Solution (Rx)



#### E8740A-070 Performance SG

Wide-open performance

- 60 GHz to 90 GHz
- >5 GHz 3dB BW
- FM, PM, FMCW, pulse sequence, MFSK, custom OFDM

#### E8740A-080 Interference solution

Flexible wideband interference signal generation

- Full test set-up for ETSI interference test
- 60 GHz to 90 GHz
- >5 GHz 3dB BW
- CW, FMCW, pulse, MFSK, custom OFDM, 5G backhaul.....

#### SystemVue

W1908 Auto radar library measurements Signal Studio

N7608C Pulse/FCM/FMCW/MFSK signal creation

Integrated S/W platform for RX/interference test sequence

KS83RX0A Automation platform for automotive radar

#### 89600 VSA software

Comprehensive demodulation & vector signal analysi X-Series applications

Ready-to-use RF measurements

FMCW X-App for RF testing Pre-defined RF test setting for standard Integrated S/W platform for automotive radar testing





### **Thank You & Questions**