Основы глубинного обучения

Лекция 3

Свёрточные сети

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2022

Поле восприятия (receptive field)

Свёртка инвариантна к сдвигам

Свёртки в компьютерном зрении

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

- Пиксель в результирующем изображении зависит только от небольшого участка исходного изображения (local connectivity)
- Веса одни и те же для всех пикселей результирующего изображения (shared weights)

- Обычно исходное изображение цветное!
- Это означает, что в нём несколько каналов (R, G, B)
- Учтём в формуле:

$$\operatorname{Im}^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} (K(i,j,c) \operatorname{Im}^{in}(x+i,y+j,c) + b)$$

- Одна свёртка выделяет конкретный паттерн на изображении
- Нам интересно искать много паттернов
- Сделаем результат трёхмерным:

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_t(i, j, c) \operatorname{Im}^{in}(x + i, y + j, c) + b_t \right)$$

Число параметров

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_{t}(i, j, c) \operatorname{Im}^{in}(x + i, y + j, c) + b_{t} \right)$$

- Обучается только фильтр
- $((2d+1)^2 * C + 1) * T$ параметров
- Как из этого сделать модель обсудим позже