Operations Research III: Theory Course Summary and Future Directions

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Summary and discussions.
- ▶ Preview for the future.

Linear programming duality

- ► Topics:
 - Primal-dual pairs.
 - Duality theorems.
 - Shadow prices.
- Linear programming duality provides us a set of optimality conditions for linear programming.
 - ▶ For example, a solution is primal feasible if and only if (1) it is primal feasible, (2) there is a solution that is dual feasible, and (3) complementary slackness holds.
- ▶ It also helps us do sensitivity analysis.
- ▶ It also demonstrates how beautiful the theory is!

Sensitivity analysis and dual simplex

- ► Topics:
 - Evaluating a new variable.
 - Evaluating a new constraint: dual simplex method.
- ▶ In some cases, the instance to be solved is very similar to an instance that has been solved.
- ► The **existing** optimal solution for the old instance should be utilized.
- ▶ **Duality** is shown to help us do sensitivity analysis and speed up the branch-and-bound algorithm.
 - ▶ Utilizing existing solutions. Do not do everything from scratch!

Network flow models

- ► Topics:
 - ▶ Minimum-cost network flow (MCNF) problems.
 - ▶ An LP formulation for MCNF.
 - Special network flow models.
- ► Once the coefficient matrix of an integer program is **totally unimodular**, its LP relaxation guarantees to give an integer solution.
 - ▶ Network flow models all fall into this category.
 - ▶ This helps us solve the bipartite matching problem in polynomial time.
- Network flow models connect continuous optimization and discrete/combinatorial optimization.
 - ▶ Efficient mathematical models exist.
 - ► Efficient exact algorithms exists.

Convex analysis

- ► Topics:
 - ► Single-variate convex analysis.
 - ► Solving single-variate nonlinear programs.
 - ► Multi-variate convex analysis.
- Convex sets and convex functions form the key of **convex programming**.
 - For minimization problem with a convex objective function and no constraint, the first-order necessary condition becomes sufficient.
 - ► The convexity of a multi-variate function relies on the positive semi-definiteness of its Hessian matrix.
- Now we know when and why gradient descent and Newton's method fail.

Lagrangian duality and the KKT condition

- ► Topics:
 - Lagrangian relaxation.
 - The KKT condition.
 - Lagrangian duality vs. LP duality.
- ► To deal with constraints, we "move" them to the objective function and reward feasibility.
- ► Lagrangian relaxation helps us understand the KKT condition.
 - ▶ The constrained version of the first-order necessary condition.
- ▶ LP duality is actually a special case of Lagrangian duality.
 - ► How beautiful the theory is!

Case studies

- ▶ Many statistics and machine learning models are nonlinear programs.
 - The optimization for the model parameters is done by solving the nonlinear program.
 - Example 1: linear regression.
 - Example 2: support vector machine.
- ▶ Optimization is very important for **data science**.

Road map

- ▶ Summary and discussions.
- ▶ Preview for the future.

Advanced studies

- ► We have learned a lot!
- ▶ Of course, there are always more things to study.
- ▶ Each of the following subjects may form a one-semester course:
 - Linear programming.
 - ► Integer programming (and combinatorial optimization).
 - Graphs and network flow.
 - Convex programming.
 - Nonlinear programming.
- Many subjects (mostly having uncertainty involved) in operations research are not covered:
 - Stochastic processes.
 - Stochastic programming.
 - ▶ Robust programming.
 - Dynamic programming.

Advanced studies

- ► There are many related fields:
 - ► Scheduling.
 - Algorithms.
 - ► Theory of computation.
 - ► Machine learning.
- By adding game theory as an analytical tool, one may further investigate:
 - ► Supply chain management.
 - Competition.
 - Pricing.
 - And many more.
- ► All of these are so fascinating!

Foundations for advanced studies

- ▶ Do not forget to equip yourselves before starting your journey:
 - ► Calculus.
 - ▶ Discrete mathematics.
 - Linear algebra.
 - Probability.

It is a belief

- Operations research is a belief:
 - ► All decision problems are **optimization** problems.
 - ► Many real-world optimization problems may be **modeled**.
 - Most of these problems (after some simplification) may be solved (optimally or near-optimally).
 - **Decision making** may be supported by models and their solutions.
- ▶ Operation research is not perfect.
 - ▶ "All models are wrong, but some are **useful**" (George Box).
 - ► And it is full of **beauty**.

That's all. See you in future!