

Breast Ultrasound Lesion Classification (BUSI Dataset)

Student: José Tuozzo

Course: ITAI 1378 — Computer

Vision & AI

Tier: 2 — Applied Medical CV Project

The Problem

- Breast cancer is one of the leading causes of death in women
- Early detection greatly improves treatment outcomes
- Ultrasound is common but interpretation varies across clinicians
- Small tumors can be easy to miss in manual review
- Need: A simple tool to support early triage using ultrasound images

Technical Approach

- Method: Transfer learning + fine-tuning
 Models: Framework: PyTorch + Torchvision
 Training:
- Train/Validation/Test split: 70% / 15% / 15%
- Early stopping + data augmentation
- Class weighting for imbalance
- →□ Focus on interpretability + lightweight training

Dataset Plan

- Dataset: BUSI Breast Ultrasound Images (Kaggle)
- ~780 images
- Classes: Normal / Benign / Malignant
- For simplicity: Use Benign vs Malignant only
- Preprocessing:
- Resize to 224×224
- Normalize
- Augment (flip, rotate, brightness)
- ▲□ No patient data stored in repo

System Diagram

Success Metrics

Metric Goal

Accuracy ≥ 80%

F1-Score ≥ 0.82

Recall

(Malignant)

≥ 0.85 *(priority)*

Explainability

Grad-CAM maps

for predictions

Timeline

Week Task

Week 10 Data setup + repo structure

Week 11 Train baseline model

Week 12 Improve model + Grad-CAM

Week 13 Evaluation + confusion matrix

Week 14 Documentation + demo recording

Week 15 Final presentation

Risks & Mitigation

Risk	Solution
Small dataset	Augmentation + transfer learning
Class imbalance	Weighted loss / oversampling
Overfitting	Early stopping + dropout
Limited compute	EfficientNet-B0 on Colab GPU

Resources

- Tools:
- Google Colab
- PyTorch / Torchvision
- Matplotlib / OpenCV
- Grad-CAM package
- Cost: \$0
- Dataset: BUSI (Kaggle)
- Note: Educational prototype NOT for clinical diagnosis

References

American Cancer Society (2024) - background info