MLSec Lab0

October 2, 2023

1 Linear Regression

1.1 Univariate linear regression

The code below generates a synthetic training dataset assuming that the response y is a linear function of an attribute x. This is referred to as a generative model.

Complete the code to determine the the optimal linear regression coefficients for the data that minimizes mean square error using (1) analytical expression we learned in class; and (2) using the "polyfit" and "polyval" functions from the numpy polynomial polynomial class.

1.1.1 Generate Data

```
[1]: import numpy as np
  import numpy.polynomial.polynomial as poly
  import matplotlib.pyplot as plt

nsamp = 100;
  wstd = 0.2;
  beta = np.array([2,3]);

# Training data points
  xd = np.random.uniform(-1,1,nsamp);
  y0 = poly.polyval(xd,beta);
  yd = y0 + np.random.normal(0,wstd,nsamp);

fig, ax = plt.subplots()
  ax.scatter(xd, yd)
```

[1]: <matplotlib.collections.PathCollection at 0x7f9c9bb64070>

1.1.2 Analytical Model

Q1: Complete the code below using closed form expressions for β_0, β_1 .

```
[2]: #Analytical model
x_mean = np.mean(xd)
y_mean = np.mean(yd)

beta1 = np.sum((xd - x_mean) * (yd - y_mean)) / np.sum((xd - x_mean)**2)
beta0 = y_mean - beta1 * x_mean
analyticalModel = np.array([beta0,beta1])
```

1.1.3 Evaluate Your Model

Q2: Obtain predictions from your analytical model for randomly generated inputs. Next use the in-built polyfit function to do the same.

Analytical Model Result

```
[3]: #evaluate your model

# Generating uniform points between -1 and 1 for evaluation
xplot = np.linspace(-1, 1, nsamp)
```

```
# Getting the prediction using the analytical model
ypredict = poly.polyval(xplot, analyticalModel)
```

Polyfit Model Prediction

```
[4]: # Using numpy's polyfit function to fit a first-degree polynomial
polyfitModel = np.polyfit(xd, yd, 1)

# Using polyval to evaluate the model at x = xplot
yfit = np.polyval(polyfitModel, xplot)
```

1.1.4 Plot Result

Q3: Plot results of polyfit model and analytical model. The plots should contain both the (x,y) training data points and the fitted lines.

1.2 Application of Linear Regression

In this part, you'll use Linear Regression on a real-world dataset. The dataset contains sales number of a product versus the advertising of the product on TV, radio and newspaper. The question we want to ask is how advertising on each of these channels impacts sales.

1.2.1 Read Data

Q4: Split data into train and test, by reserving 70 percent of the data for training and the rest for test.

```
[6]: import pandas as pd
from sklearn.model_selection import train_test_split

url = 'https://www.statlearning.com/s/Advertising.csv'
df = pd.read_csv(url, index_col=0)
df.head()

train, test = train_test_split(df, test_size=0.3, random_state=42)
```

1.2.2 Linear Regression Model

Q5: Use linear regression model to describe sales as a linear function of advertising on TV, newspaper, and radio. That is, you should independently regress sales against advertising on each of these media.

```
[7]: from sklearn.linear_model import LinearRegression

# Linear regression for TV vs Sales
reg_TV = LinearRegression().fit(train[['TV']], train['sales'])
sales_TV_beta = [reg_TV.intercept_, reg_TV.coef_[0]]

# Linear regression for Newspaper vs Sales
reg_newspaper = LinearRegression().fit(train[['newspaper']], train['sales'])
sales_newspaper_beta = [reg_newspaper.intercept_, reg_newspaper.coef_[0]]

# Linear regression for Radio vs Sales
reg_radio = LinearRegression().fit(train[['radio']], train['sales'])
sales_radio_beta = [reg_radio.intercept_, reg_radio.coef_[0]]
sales_TV_beta, sales_newspaper_beta, sales_radio_beta
```

```
[7]: ([7.239459830751138, 0.046407802128152764], [12.641828046262793, 0.06093416696535276], [9.338892006080656, 0.21926677369021058])
```

1.2.3 Plot Data

Q6: Use the models to do prediction and plot test data points and predictions of 3 models

```
[8]: # Placeholder for the plotting code (since I don't have the actual data)
     fig = plt.figure(figsize=(12,3))
     ## Sales to TV spend
     plt.subplot(1,3,1)
     plt.scatter(train['TV'], train['sales'], color='blue', alpha=0.5)
     plt.plot(train['TV'], reg_TV.intercept_ + reg_TV.coef_[0]*train['TV'],__

¬color='red')
     plt.title('TV Spend vs Sales')
     plt.xlabel('TV Spend')
     plt.ylabel('Sales')
     ## Sales to newspaper spend
     plt.subplot(1,3,2)
     plt.scatter(train['newspaper'], train['sales'], color='blue', alpha=0.5)
     plt.plot(train['newspaper'], reg_newspaper.intercept_ + reg_newspaper.

coef_[0]*train['newspaper'], color='red')
     plt.title('Newspaper Spend vs Sales')
```


1.3 Multivariate Linear Regression

Q7: Use all three features ('TV', 'Radio', newspaper') to predict sales using multivariate linear regression.

1.3.1 Evaluate Model

Q8: use your multivariate model to do predictions on test data

```
testX = X.transpose()

# Define testing Y matrix
testY = test['sales']

# Predcit result using your model multivariate_beta
pred = testX @ multivariate_beta
```

1.3.2 Plot Result

Q9: Plot your predictions against real labels.

