Задачник по эконометрике-1

(с шахматами и поэтэссами)

Дмитрий Борзых, Борис Демешев

5 октября 2012 г.

- 1. Регрессионная модель задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = (\beta_1, \beta_2, \beta_3)'$. Известно, что $\mathbb{E}(\varepsilon) = 0$ и $\mathrm{Var}(\varepsilon) = \sigma^2 \cdot I$. Известно также, что y = X =. Для удобства расчетов ниже приведены матрицы $X'X = \mathrm{U}(X'X)^{-1} = 0$.
 - (а) Укажите число наблюдений.
 - (b) Укажите число регрессоров с учетом свободного члена.
 - (c) Рассчитайте $TSS = \sum (y_i \bar{y})^2$, $RSS = \sum (y_i \hat{y}_i)^2$ и $ESS = \sum (\hat{y}_i \bar{y})^2$.
 - (d) Рассчитайте при помощи метода наименьших квадратов $\hat{\beta}$, оценку для вектора неизвестных коэффициентов.
 - (e) Чему равен $\hat{\varepsilon}_5$, МНК-остаток регрессии, соответствующий 5-ому наблюдению?
 - (f) Чему равен R^2 в модели? Прокомментируйте полученное значение с точки зрения качества оцененного уравнения регрессии.
 - (g) Используя приведенные выше данные, рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
 - (h) Рассчитайте $\widehat{\mathrm{Cov}}(\hat{\beta})$, оценку для ковариационной матрицы вектора МНК-коэффициентов $\hat{\beta}$.
 - (i) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_1$.
 - (j) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_2)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_2$.
 - (k) Найдите $\widehat{\mathrm{Cov}}(\hat{\beta}_1,\hat{\beta}_2)$, несмещенную оценку ковариации МНК-коэффициентов $\hat{\beta}_1$ и $\hat{\beta}_2$.
 - (l) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1-\hat{\beta}_2)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2+\hat{\beta}_3)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2-2\hat{\beta}_3)$
 - (m) Найдите $\mathrm{Corr}(\hat{\beta}_1,\hat{\beta}_2)$, оценку коэффициента корреляции МНК-коэффициентов $\hat{\beta}_1$ и $\hat{\beta}_2$.
 - (n) Найдите $s_{\hat{\beta}_1}$, стандартную ошибку МНК-коэффициента $\hat{\beta}_1$.
- 2. Априори известно, что парная регрессия должна проходить через точку (x_0, y_0) .
 - (а) Выведите формулы МНК оценок;
 - (b) В предположениях теоремы Гаусса-Маркова найдите дисперсии и средние оценок

Вроде бы равносильно переносу начала координат и применению результата для регрессии без свободного члена. Должна остаться несмещенности

- 3. Слитки-вариант. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Предположим, что ошибки взвешивания независимые одинаково распределенные случайные величины с нулевым средним.
 - (а) Найдите несмещеную оценку веса первого шара, обладающую наименьшей дисперсией.

(b) Как можно проинтерпретировать нулевое математическое ожидание ошибки взвешивания?

Как отсутствие систематической ошибки.

4. Вася считает, что $\mathrm{sCov}(y,\hat{y}) = \frac{\sum (y_i - \bar{y})(\hat{y}_i - \bar{y})}{\sqrt{\sum (y_i - \bar{y})^2 \sum (\hat{y}_i - \bar{y})^2}}$ это неплохая оценка для $\mathrm{Cov}(y_i,\hat{y}_i)$. Прав ЛИ ОН? Не прав. Ковариация $\mathrm{Cov}(y_i,\hat{y}_i)$ зависит от i, это не одно неизвестное число, для которого можно предложить одну оценку.

1 МНК без матриц и вероятностей

- 1. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta} x_i$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \sum x_i y_i / \sum x_i^2$
- 2. Даны n чисел: y_1, \ldots, y_n . Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta}$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \bar{y}$
- 3. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$. Найдите $\hat{\beta}_1$ и $\hat{\beta}_2$ методом наименьших квадратов. $\hat{\beta}_2 = \sum (x_i \bar{x})(y_i \bar{y})/\sum (x_i \bar{x})^2, \hat{\beta}_1 = \bar{y} \hat{\beta}_2 \bar{x}$
- 4. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = 1 + \hat{\beta}x_i$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \sum x_i (y_i 1) / \sum x_i^2$
- 5. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Оцените вес каждого слитка методом наименьших квадратов. $(300 \hat{\beta}_1)^2 + (200 \hat{\beta}_2)^2 + (400 \hat{\beta}_1 \hat{\beta}_2)^2 \rightarrow \min$
- 6. Аня и Настя утверждают, что лектор опоздал на 10 минут. Таня считает, что лектор опоздал на 3 минуты. С помощью мнк оцените на сколько опоздал лектор. $2 \cdot (10 \hat{\beta})^2 + (3 \hat{\beta})^2 \rightarrow \min$
- 7. Регрессия на дамми-переменную...
- 8. Функция f(x) дифференциируема на отрезке [0;1]. Найдите аналог МНК-оценок для регрессии без свободного члена в непрерывном случае. Более подробно: найдите минимум по $\hat{\beta}$ для функции

$$Q(\hat{\beta}) = \int_0^1 (f(x) - \hat{\beta}x)^2 dx$$
 (1)

2 Проекция, Картинка

- 1. Найдите на Картинке четыре прямоугольных треугольника. Сформулируйте четыре теоремы Пифагора. $\sum y_i^2 = \sum \hat{y}_i^2 + \sum \hat{\varepsilon}_i^2$, TSS = ESS + RSS,
- 2. Покажите на Картинке TSS, ESS, RSS, R^2 , sCov (\hat{y}, y)
- 3. Предложите аналог R^2 для случая, когда константа среди регрессоров отсутствует. Аналог должен быть всегда в диапазоне [0;1], совпадать с обычным R^2 , когда среди регрессоров есть константа, равняться единице в случае нулевого $\hat{\varepsilon}$. Спроецируем единичный столбец на «плоскость», обозначим его 1'. Делаем проекцию y на «плоскость» и на 1'. Далее аналогично.
- 4. Вася оценил регрессию y на константу, x и z. А затем, делать ему нечего, регрессию y на константу и полученный \hat{y} . Какие оценки коэффициентов у него получатся? Чему будет равна оценка дисперсии коэффицента при \hat{y} ? Почему оценка коэффициента неслучайна, а оценка её дисперсии положительна? проекция y на \hat{y} это \hat{y} , поэтому оценки коэффициентов будут 0 и 1. Оценка дисперсии $\frac{RSS}{(n-2)ESS}$. Нарушены предпосылки теоремы Гаусса-Маркова, например, ошибки новой модели в сумме дают 0, значит коррелированы.

3 Голая линейная алгебра

Здесь будет собран минимум задач по линейной алгебре.

1. Приведите пример таких A и B, что $\det(AB) \neq \det(BA)$. Например, A = (1,2,3), B = (1,0,1)'