Line H. Clemmensen Section of Statistics and Data Analysis DTU Compute

Line H. Clemmensen, Section of Statistics and Data Analysis, DTU Compute

Exercises 02582 Module 1 Spring 2019

February 6, 2019

Topics: OLS - Ridge - Bias - Variance

Exercises (programming hints at end of exercises):

- 1 Solve the Ordinary Least Squares (OLS) computationally (for the diabetes data set). Note, that data have been mean centered and normalized.
 - (a) What is the difference between inverting the matrix and calculating the OLS solution directly and a numerically 'smarter' implementation which solves a linear system of equations? Compute the ordinary least squares solution to the diabetes data set for both options and look at the relative difference.
 - (i) In Matlab: Use for example inv and Matlab's backslash operator (for info type help mldivide).
 - (ii) In R: Use for example inv to invert the matrix and solve to solve the linear system of equation.
 - (iii) In Python: Use for example np.linalg.inv to invert the matrix and lng.lstsq to solve the linear system of equation.
 - (b) How could you include an intercept term in Matlab/R/Python in the matrix/vector formulation? This should be equivalent to using the model $\mathbf{y} = \beta_0 + \mathbf{x}_1\beta_1 + \dots + \mathbf{x}_p\beta_p + \epsilon$ rather than $\mathbf{y} = \mathbf{x}_1\beta_1 + \dots + \mathbf{x}_p\beta_p + \epsilon$.
 - (c) Evaluate the mean squared error $MSE = 1/n \sum_{i=1}^{n} (y_i \mathbf{x}_i \boldsymbol{\beta})^2$.
 - (d) Evaluate the residual sum of squares $RSS = \|\mathbf{y} \mathbf{X}\boldsymbol{\beta}\|_2^2$ and the total sum of squares $TSS = \|\mathbf{y} \bar{y}\|_2^2$, where \bar{y} is the estimated mean of \mathbf{y} . Report on the R^2 measure, that is, the proportion of variance in the sample set explained by the model: $R^2 = 1 \frac{RSS}{TSS}$.

- 2 Examine Bias and Variance for the OLS:
 - (a) Investigate the unbiasedness of OLS using simulated data as follows.
 - (i) Create a random matrix **X** consisting of three random variables which are NID, with $X \sim N(\mathbf{0}, \mathbf{I})$ and sample 10 observations from each.
 - (ii) Create the true regression parameters $\beta_{true} = [1, 2, 3]^T$.
 - (iii) Create the response \mathbf{y} by the linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$. Make sure the errors $\boldsymbol{\epsilon}$ are homoscedastic and zero-mean $\boldsymbol{\epsilon} \sim N(0, \sigma^2)$, where σ^2 denotes the noise level in the simulated data (you can start by setting $\sigma^2 = 0.1$).
 - (iv) Estimate the regression coefficients $\boldsymbol{\beta}$ from this data
 - (v) Repeat steps (iii)-(iv) 100 times. Note, that we can resample data as we have simulated data, this is not always possible for real examples.
 - (vi) Use meaningful plots to investigate bias and variance for the model. What happens when you change the noise level σ^2 ?
- 3 Solve the Ridge regression problem and examine Bias and Variance for Ridge:
 - a) Derive (using pen and paper) the ridge regression solution by, as you would when minimizing any differentiable analytical function, differentiating $\|\mathbf{y} \mathbf{X}\boldsymbol{\beta}\| + \|\boldsymbol{\beta}\|_2$ with respect to $\boldsymbol{\beta}$, setting to zero and solving for $\boldsymbol{\beta}$. That is, solve $\frac{\partial}{\partial \beta} [\|\mathbf{y} \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2] = 0$ for $\boldsymbol{\beta}$.
 - b) Compute ridge-regression solutions for the diabetes data set for 100 values of the regularization parameter in the range 10^{-4} to 10^3 . Plot the solutions as a function of this parameter. In the next lecture you will learn how to choose a single parameter value which suits the problem at hand.
 - c) Change the experiment in exercise 2 to investigate bias and variance for ridge regression instead of OLS. Can you lower the variance without introducing too much bias?
- 4 Implement and solve KNN regression:
 - (a) Implement a KNN regression algorithm:
 - (i) Find the K nearest neighbours using a suitable distance metric (e.g. Euclidean).
 - (ii) Optional: Compute weights for the neighbours as the proportion of its distance to the total distance for the K nearest neighbours.
 - (iii) Compute the predicted response as the (weighted) mean of the K neighbours.
 - (b) Find a solution to the diabetes data using KNN regression. Try different options for K what happens?

Line H. Clemmensen Section of Statistics and Data Analysis DTU Compute

Line H. Clemmensen , Section of Statistics and Data Analysis , DTU Compute

Exercises 02582 Module 1 Spring 2019

February 6, 2019

Topics: OLS - Ridge - Bias - Variance

Resources for this exercise:

Listing 1: Resources in Matlab

readtable ('Diabetes Data Normalized .txt') % load data in the .txt file % (from Campus Net)

 $y = T\{:,11\}; \% response$

 $X = T\{:,1:10\}; \% matrix with variables$

whos % lists variables in memory - check what you have loaded (X and y)

 $\mathbf{rand} \, (\, n \, , \, \, p \,) \, ; \ \, \textit{\% simulate random uniform data} \,$

randn(n, 1); % simulate random gaussian data

 $\mathbf{logspace} \left(-4,\ 3,\ 100\right)\ \%\ 100\ values\ on\ the\ logarithmic\ scale$

% from 1e-4 to 1e3

knnsearch (X, X(i,:), 'K', K+1) % find the K nearest neighbours.

Listing 2: Resources in R

library('lars') # load lars library (includes diabetes data)
data(diabetes) # load data
str(diabetes\$x) # list structure of x
str(diabetes\$y) # list structure of y
runif(n*p, min = 0, max = 1) # simulate random uniform data
rnorm(n, mean=0, sd = 1) # simulate random normal data
library('pracma') # load pracma library for 'logspace'
logspace(-4, 3, 100) # 100 values on the logarithmic scale from 1e-4 to 1e
get.knnx(X, query, k=K+1, ...) # find the K nearest neighbors

Listing 3: Resources in Python

import numpy as np # numpy library
import scipy.linalg as lng # linear algebra from scipy library
import matplotlib.pyplot as plt # library for plots
from scipy.spatial import distance # load distance function
from sklearn import preprocessing as preproc # load preproc function

End of exercise