Quine-McCluskey algorithm

The function that is minimized can be entered via a truth table that represents the function $y = f(x_n,...,x_1,x_0)$. You can manually edit this function by clicking on the gray elements in the y column. Alternatively, you can generate a random function by pressing the "Random example" button.

Random example

Number of input variables: 4 V Allow Don't-Care: no V

Truth table:

Implicants (Order 0):

	x_3	x_2	x_1	x_0	y
0:	0	0	0	0	0
1:	0	0	0	1	1
2:	0	0	1	0	0
3:	0	0	1	1	1
4:	0	1	0	0	0
5:	0	1	0	1	1
6:	0	1	1	0	0
7:	0	1	1	1	0
8:	1	0	0	0	1
9:	1	0	0	1	0
10:	1	0	1	0	1
11:	1	0	1	1	1
12:	1	1	0	0	0
13:	1	1	0	1	1
14:	1	1	1	0	0
15:	1	1	1	1	0

					_
	x_3	x_2	x_1	x_0	
1:	0	0	0	1	\rightarrow
3:	0	0	1	1	\rightarrow
5:	0	1	0	1	\rightarrow
8:	1	0	0	0	\rightarrow
10:	1	0	1	0	\rightarrow
11:	1	0	1	1	\rightarrow
13:	1	1	0	1	\rightarrow

Implicants (Order 1):

•	x_3	x_2	x_1	x_0	
1, 3:	0	0	-	1	
1, 5:	0	-	0	1	
3, 11:	ı	0	1	1	
5, 13:	I	1	0	1	
8, 10:	1	0	ı	0	
10, 11:	1	0	1	-	

Prime implicant chart:

	x_3	x_2	x_1	x_0	1	3	5	8	10	11	13	
1, 3:	0	0	-	1	0	0						$(\bar{x}_3\bar{x}_2x_0)$
1, 5:	0	_	0	1	0		0					$(\bar{x}_3\bar{x}_1x_0)$
3, 11:	-	0	1	1		0				0		$(\bar{x}_2 x_1 x_0)$
5, 13:	-	1	0	1			0				•	$(x_2\bar{x}_1x_0)$
8, 10:	1	0	-	0				•	0			$(x_3\bar{x}_2\bar{x}_0)$
10, 11:	1	0	1	_					0	0		$(x_3\bar{x}_2x_1)$

Extracted essential prime implicants: $(x_3\bar{x}_2\bar{x}_0)$, $(x_2\bar{x}_1x_0)$

Reduced prime implicant chart (Iteration 0):

	x_3	x_2	x_1	x_0	1	3	11	
1, 3:	0	0	ı	1	•	0		$(\bar{x}_3\bar{x}_2x_0)$
3, 11:	ı	0	1	1		0	•	$(\bar{x}_2 x_1 x_0)$

Extracted essential prime implicants: $(\bar{x}_3\bar{x}_2x_0)$, $(\bar{x}_2x_1x_0)$

Minimal boolean expression:

$$y = (x_3 \bar{x}_2 \bar{x}_0) \vee (x_2 \bar{x}_1 x_0) \vee (\bar{x}_3 \bar{x}_2 x_0) \vee (\bar{x}_2 x_1 x_0)$$

Legend:

Don't-care: ×

Implicant (non prime): \rightarrow

Prime implicant: ✓

Essential prime implicant: •

Prime implicant but covers only don't-care: (×)

The JavaScript source code can be found here: gmc.js.

This website is part of the lecture <u>Technical Computer Science</u>.

Keywords: interactive Quine–McCluskey algorithm, method of prime implicants, Quine–McCluskey method, Petrick's method for cyclic covering problems, prime implicant chart, html5, javascript