Repaso - diseños muestrales

Muestreo II

Licenciatura en Estadística

2023

muestreo simple

- ▶ probabilidad de selección $\pi_i = n/N \ \forall i \in U$
- ▶ ponderador original $w_i = \pi_i^{-1} = N/n \ \forall i \in s$
- lacktriangledown estimador del total de la variable y, $Y = \sum_{i \in U} y_i$

$$\hat{Y} = \sum_{i \in s} w_i \times y_i = N \times \bar{y}$$

donde
$$\bar{y} = n^{-1} \times \sum_{i \in s} y_i$$

 estiman sin error el total de la población (i.e. los ponderadores se encuentran calibrados al tamaño de la población)

$$\hat{N} = \sum_{i \in s} w_i = N$$

estimación del SE

Un estimador insesgado viene dado como:

$$\widehat{\mathsf{SE}}^2(\hat{Y}) = \widehat{\mathsf{var}}(\hat{Y}) = N^2 \times \mathsf{fpc} \times \mathsf{var}_s[y]/n$$

donde

- fpc = (1 n/N) = es el factor de corrección por población finita
- $ightharpoonup ext{var}_s[y] = \sum_{i \in s} (y_i \bar{y})^2/(n-1) = ext{varianza de la variable } y ext{ en la muestra}$

sistemático

- ▶ útil para seleccionar muestras en campo
- si la variable presenta un orden que explica las características de los individuos es más eficiente
- los individuos pueden ser seleccionado con igual probabilidad de selección (EPSEM)

muestreo estratificado

La población es agrupada/separada en estratos (H = 6).

Dentro de cada estrato se selecciona una muestra independiente s_h de tamaño n_h bajo un diseño muestral cualquiera.

estratificación

variables de estratificación en encuestas a hogares y personas:

- regionales (departamentos, ciudades etc.)
- variables demográficas (sexo, tramo de edad)
- socio-económicas (tramo de ingreso, etc.)

estratificación

variables de estratificación en encuestas a empresas:

- tamaño de la empresa (cantidad de empleados, monto de ventas, etc)
- ► actividad económica de la empresa (industria, comercio, etc)

Importante: las variables \mathbf{x} deben estar contenidas en el marco muestral (F)

por qué estratificar?

- protegernos de la posibilidad de tener una muestra realmente mala
- definir precisiones específicas para distintas subpoblaciones (dominios)
- obtener estimaciones más precisas para el total de la población
- definir ponderadores distintos (tasas de muestreo por estrato)

muestreo estratificado simple

Dentro de cada estrato seleccionamos una muestra aleatoria bajo un diseño simple

- $ightharpoonup N_h = tamaño del estrato h$
- $ightharpoonup n_h = tamaño de muestra en el estrato <math>h$
- $\pi_{ih} = n_h/N_h = \text{probabilidad de selección del individuo } i \text{ en el estrato } h$
- $w_{ih} = N_h/n_h =$ ponderador original del del individuo i perteneciente al estrato h

$$\hat{Y} = \sum_{i \in s} w_i \times y_i = \sum_{h=1}^H \hat{Y}_h = \sum_{h=1}^H N_h \times \bar{y}_h$$

ejemplo

h	sector	N_h	n_h	W_{hi}
1	Industria	600	50	12
2	Comercio al por menor	1200	50	24
3	Comercio al por mayor	400	50	8
4	Servicios	2300	50	46
5	Salud	500	50	10
Total		5000	250	

estimación del SE

$$\widehat{\mathsf{SE}}^2(\hat{Y}) = \widehat{\mathsf{var}}(\hat{Y}) = \sum_{h=1}^H N_h^2 \times \mathsf{fpc}_h \times \mathsf{var}_{s_h}[y]/n_h$$

donde

- ▶ $fpc_h = (1 n_h/N_h) = es$ el factor de corrección por población finita en el estrato h
- ▶ $\operatorname{var}_{s_h}[y] = \sum_{i \in s_h} (y_i \bar{y}_h)^2 / (n_h 1) = \text{varianza de la variable}$ y en la muestra del estrato h

Asignación de muestra por estrato

proporcional: réplica en miniatura de la población y autoponderada (EPSEM)

$$n_h = n \times \mathsf{peso}_h = n \times \frac{N_h}{N}$$

óptima: minimiza el error estándar de la estimación de un total.

$$n_h = n \times \frac{N_h \times \mathrm{sd}_h[x]}{\sum\limits_{h=1}^{H} N_h \times \mathrm{sd}_h[x]}$$

precisiones aprox constantes

$$n_h = n \times \frac{\sqrt{N_h}}{\sum\limits_{h=1}^{H} \sqrt{N_h}}$$