ASSIGNMENT 7: FIRST NEURAL NETWORKS AND A GLIMPSE AT PYTORCH

Institute for Machine Learning

Copyright statement:

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Perceptrons

- Introduced by Frank Rosenblatt in 1958
- A perceptron is a simple linear threshold unit:

$$g(\mathbf{x}_i; \mathbf{w}, \theta) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x}_i > \theta \\ 0 & \text{otherwise} \end{cases}$$

- In analogy to the biological model:
 - $\ \square$ inputs $\mathbf{x}_i \Rightarrow$ charges received from connected cells
 - $\hfill \square$ weights $\mathbf{w} \Rightarrow$ properties of the synaptic interface
 - \square ouput \Rightarrow impulse that is sent through the axon as soon as the charge exceeds the threshold θ
- Though it seems to be a (simplistic) model of a neuron, a perceptron is nothing else but a simple linear classifier.

*

Multi-layer perceptrons

Learning non-linear functions

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

This classification problem:

- ... can't be solved by one-layer network (single-layer perceptron, logistic regression)
- ... is trivial to solve using an MLP.

*

How powerful are neural networks?

- Useful measure of a machine learning algorithm: what are the most complicated functions it can learn?
- Measured by the VC dimension¹
- NNs can learn (much) more complex decision functions.
- Neural Networks are "Universal Function Approximators".

¹Vapnik-Chervonenkis dimension – to learn more, see "Statistical Learning Theory" (Vladimir N. Vapnik)

NNs: Basic definitions and notation: Part 1

- \blacksquare a_i : activity of the *i*-th unit $(a_0 = 1)$
- lacksquare w_{ij} : weight from unit j to unit i ($w_{i0} = b_i$ called bias weight)
- W: number of weights
- Q: number of units
- D: number of input units $(1 \le i \le D)$ located in the first layer called input layer.
- K: number of output units $(Q K + 1 \le i \le Q)$ located in the last layer called output layer.
- H: number of hidden units $(D < i \le Q K)$ located in the hidden layers.
- L: number of layers, where L_{ν} is the index set of the ν -th layer; $L_1 = \{1, \dots, D\}$ and $L_L = \{Q K + 1, \dots, Q\}$.
- $lacksquare s_i$: network input or pre-activation of the i-th unit (i>D): $s_i = \sum_{j=0}^Q w_{ij} a_j$

*

NNs: Basic definitions and notation: Part 2

- **1** f: activation function with $a_i = f(s_i)$ It is possible to define different activation functions f_i for different units.
- Architecture of a NN is given through:
 - number of layers
 - number of units in the layers
 - connections between units
 - also the activation function may be accounted to architecture
- A feed-forward NN has only connections from units in lower layers to units in higher layers:

$$j \in L_{\nu}$$
 and $i \in L_{\nu'}$ and $\nu' \leq \nu \Rightarrow w_{ij} = 0$.

- For conventional NN: only connections or weights between consecutive layers. Other weights are fixed to zero.
- Connections between units in layers which are not adjacent are called shortcut connections.

NNs: Forward pass

- 1. Provide input x
- 2. Input layer $\nu=1$: for i=1 to D: $a_i=x_i$
- 3. Further layers: for $\nu=2$ to L
 - \square For i in L_{ν} :
 - $s_i = \sum_{j=0}^{Q} w_{ij} a_j$
 - $a_i = f(s_i)$
- **4**. Output layer: for all $Q K + 1 \le i \le Q$:
 - \square provide output $\hat{y}_i = g(\boldsymbol{x}_i; \boldsymbol{w}) = a_i$

NNs: Visualization

Back-propagation

Calculating gradients: Back-propagation Part 1

- Similar as in Unit 4 and Unit 5 (logistic regression and gradient boosting): Expected Risk Minimization (ERM) by gradient descent (GD).
- Gradient of NN can be computed efficiently by back-propagation. Popular since mid 80ies.
- Empirical risk:

$$R_{\text{emp}}(\boldsymbol{w}, \boldsymbol{X}, \boldsymbol{Y}) = \frac{1}{N} \sum_{n=1}^{N} L(\boldsymbol{y}^{n}, \boldsymbol{g}(\boldsymbol{x}^{n}; \boldsymbol{w})).$$

 \boldsymbol{w} now contains all adjustable weights of NN (i.e. all w_{ij} and b_i . Generalizes to multiple outputs \boldsymbol{y} . Superscript n labels entries from the data set of size N.

■ GD update: $\boldsymbol{w}^{\text{new}} = \boldsymbol{w}^{\text{old}} - \eta \nabla_{\boldsymbol{w}} R_{\text{emp}}(\boldsymbol{w}, \boldsymbol{X}, \boldsymbol{Y}).$

Calculating gradients: Back-propagation Part 2

- Select w_{ij} in arbitrary layer that connects from the unit j to unit i and calculate $\frac{\partial}{\partial w_{ij}} L(\boldsymbol{y}^n, \boldsymbol{g}(\boldsymbol{x}^n; \boldsymbol{w}))$ for all w_{ij} .
- Rewrite this as follows:

$$\frac{\partial}{\partial w_{ij}} L(\boldsymbol{y}^n, \boldsymbol{g}(\boldsymbol{x}^n; \boldsymbol{w})) = \frac{\partial}{\partial s_i} L(\boldsymbol{y}^n, \boldsymbol{g}(\boldsymbol{x}^n; \boldsymbol{w})) \frac{\partial s_i}{\partial w_{ij}}$$

$$= \frac{\partial}{\partial s_i} L(\boldsymbol{y}^n, \boldsymbol{g}(\boldsymbol{x}^n; \boldsymbol{w})) a_j.$$

- Define δ -error at unit i as $\delta_i := \frac{\partial}{\partial s_i} L(\boldsymbol{y}^n, \boldsymbol{g}(\boldsymbol{x}^n; \boldsymbol{w}))$.
- Yields: $\frac{\partial}{\partial w_{ij}}L(\boldsymbol{y}^n, \boldsymbol{g}(\boldsymbol{x}^n; \boldsymbol{w})) = \delta_i \, a_j$.

Calculating gradients: Back-propagation Part 3: Delta errors at the output layers.

- The δ -error at the output units, denoted as δ_k with preactivation s_k and activation $a_k = g(\boldsymbol{x}^n; \boldsymbol{w})$ for $Q K + 1 \le k \le Q$ is $\delta_k = \frac{\partial}{\partial a_k} L(\boldsymbol{y}^n, g(\boldsymbol{x}^n; \boldsymbol{w})) f'(s_k)$
- \blacksquare f': derivative of activation function f of output layer.
- \blacksquare f in output layer is usually different than in hidden layers.
- Expression typically results in a difference between network outputs, i.e. predicted labels, and true labels.

Loss function		output activation	delta-error
squared loss	$1/2(a-y)^2$	linear: $f(x) = x$	$\delta = a - y$
binary CE	$-y\log(a) - (1-y)\log(1-a)$	sigmoid: $f(x) = \frac{1}{1+e^{-x}}$	$\delta = a - y$
categorical CE	$-\sum_{k=1}^{K} y_k \log(a_k)$	softmax: $f(x) = \operatorname{softmax}(x)$	$\delta = a - y$

Calculating gradients: Back-propagation Part 4: Delta errors at hidden layers.

The δ -error at units not in the output layer, i.e. hidden layers, reads:

$$\delta_{j} = \frac{\partial}{\partial s_{j}} L(\boldsymbol{y}^{n}, \boldsymbol{g}(\boldsymbol{x}^{n}; \boldsymbol{w})) = \sum_{i} \frac{\partial}{\partial s_{i}} L(\boldsymbol{y}^{n}, \boldsymbol{g}(\boldsymbol{x}^{n}; \boldsymbol{w})) \frac{\partial s_{i}}{\partial s_{j}}$$
$$= f'(s_{j}) \sum_{i} \delta_{i} w_{ij},$$

- This is a recursive formula (lower layer unit error as function of above layer unit errors), allowing us to calculate all δ -errors of the network.
- lacksquare \sum_i goes over all i for which w_{ij} exists.
- Typically, *i* goes over all units in the layer *above* the layer where unit *j* is located.

Calculating gradients: Back-propagation Part 5: Recap of the algorithm.

- Select a sample x randomly from the training set and perform a forward-pass. Memorize activations and preactivations of all neurons.
- Calculate delta-errors at output units according to Part 3.
- Calculate delta-errors for hidden layers starting from the hidden layers closest to the output layer, thus backpropagating the error signal according to Part 4.
- Calculate gradients for weights as done in Part 2.
- Update the weights by performing a gradient descent step using the weight changes: $w_{ij}^{\mathrm{new}} = w_{ij}^{\mathrm{old}} \eta \, \delta_i \, a_j$. The learning rate η must be chosen appropriately for the algorithm to converge. (Typical learning rates are $\eta = 0.1$ or $\eta = 0.01$).

Calculating gradients: Back-propagation Part 6: Visualization of 4-layer NN.

$\star\star$

Nowadays used notation for NNs: Matrix-vector notation

- First introduce the following expressions:
 - \square x: input for layer 0; equivalent to $a^{[0]}$

 - $\ \square \ s^{[l]}$: pre-activations of layer l
 - \square $a^{[l]}$: activations of layer l
 - $\ \square$ f: activation function applied element-wise to vector.
- Given inputs $\boldsymbol{x}^{[l]}$ to a layer l, i.e. the activations $\boldsymbol{a}^{[l-1]}$ of the lower layer l-1, a NN computes activations of next layer as follows: $\boldsymbol{a}^{[l]} = f(\boldsymbol{s}^{[l]}) = f(\boldsymbol{W}^{[l]} \boldsymbol{a}^{[l-1]})$
- Function from the input layer x to output layer: $\hat{y} = g(x; \mathbf{W}^{[1]}, \dots, \mathbf{W}^{[L]}) = \sigma(\mathbf{W}^{[L]}(\dots f(\mathbf{W}^{[2]}f(\mathbf{W}^{[1]}x))\dots),$
- \hat{y} are activations of output layer and x is input of network. Outermost activation function σ typically different from activation function f in hidden layers.

Schematic view of a deep feed-forward neural network in matrix-vector notation

$\star\star$

Backpropagation in Matrix-vector notation

Now we can write:

$$\frac{\frac{\partial}{\partial w_{ij}^{[1]}} L(\boldsymbol{y}, g(\boldsymbol{x}; \boldsymbol{W}^{[1]}, \dots, \boldsymbol{W}^{[L]})) = \\ \frac{\partial L(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\partial \hat{\boldsymbol{y}}} \frac{\partial \hat{\boldsymbol{y}}}{\partial \boldsymbol{s}^{[L]}} \cdots \frac{\partial \boldsymbol{s}^{[l]}}{\partial \boldsymbol{s}^{[l-1]}} \cdots \frac{\partial \boldsymbol{s}^{[1]}}{\partial w_{ij}^{[1]}}.$$

- Introduce delta errors as follows: $m{\delta}^{[l]} = \left(rac{\partial L(m{y}, \hat{m{y}})}{\partial m{s}^{[l]}}
 ight)^T$.
- Note that we typically use these deltas $\delta^{[l]}$ as row vectors.
- Similar arguments as before lead to recursive formula for delta errors:

$$\boldsymbol{\delta}^{[l-1]^T} = \frac{\partial L(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\partial \boldsymbol{s}^{[l]}} \frac{\partial \boldsymbol{s}^{[l]}}{\partial \boldsymbol{s}^{[l-1]}} = \boldsymbol{\delta}^{[l]^T} \underbrace{\boldsymbol{W}^{[l]} \operatorname{diag} \left(f'(\boldsymbol{s}^{[l-1]}) \right)}_{\boldsymbol{J}^{[l]}}.$$

Vanishing and exploding gradients

- Important property that influences the ability of a NN to learn: size (norm) of the delta-errors that backpropagate through the network.
- Since for each layer delta errors are multiplied by Jacobian → exponential behavior (growth or shrinkage):
 - $\square \ \|\boldsymbol{\delta}^{[l-1]}\| < \|\boldsymbol{\delta}^{[l]}\| \text{: Vanishing gradients: Has been typical case since the derivatives of the sigmoid activation function is at most } |f'(x)| = 0.25 \to \|\mathrm{diag}\left(f'(\boldsymbol{s}^{[l-1]})\right)\| \leq 0.25 \to \text{norm of delta-errors becomes smaller through each layer (if not compensated by the norm of } \boldsymbol{W}^{[l]}).$

 - $||\delta^{[l-1]}|| > ||\delta^{[l]}||$: Exploding gradients: If norm of weight matrix is large \to norm of delta-errors grows through each layer \to unstable learning or even numeric overflows.

Vanishing Gradient: Visualization

*

Gradient signal gets lost in the noise:

Example: ReLUs and ELUs

- **Re**ctified linear **u**nit, by Nair and Hinton in 2010:
 - $\ \square$ Idea: N sigmoids with shared weights but different biases:

$$\sum_{i}^{N} \sigma(h - i + 0.5) \approx \log(1 + e^{h}) \approx \max(0, h)$$

where $h = \mathbf{w} \cdot x + b$

- ☐ Gradient is either 0 or 1 (helps against vanishing gradients!)
- □ ReLU nets learn a piecewise linear function
- □ Problem: Dying ReLUs
- Exponential linear unit, by Clevert, Unterthiner, Hochreiter in 2015:

