Quantum Mechanics

Mark Benazet Castells

April 17, 2024

Week 7

Quantum Mechanics

Exercise Material

Webpage

Week 7

Review

Clicker-Questions

Midterm

Quantum Mechanics

Review of Last Week

- Any questions on last week's topics?
- Feedback on the previous session?

Quantum Mechanics

Review

Angular Momentum

Angular momentum in quantum mechanics is fundamental, revealing rotational symmetries of quantum systems.

$$ec{L} = ec{r} imes ec{p}$$

- The angular momentum \vec{L} is a three-dimensional vector represented by components \vec{L}_x , \vec{L}_y , and \vec{L}_z .
- ullet It satisfies the squared magnitude relation: $L^2=L_x^2+L_y^2+L_z^2$

Angular Momentum Operators

In quantum mechanics, the angular momentum operators are essential for describing rotational symmetries and are represented by $\hat{L}_x,\hat{L}_y,$ and \hat{L}_z , corresponding to the axes of a three-dimensional Cartesian coordinate system.

$$\begin{split} & [\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z, \\ & [\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x, \\ & [\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y. \end{split}$$

• Probabilistic measurements due to Uncertainty Principle.

Quantum Angular Momentum and Spherical

- ullet Total angular momentum \hat{L}^2 commutes with its components $\hat{L}_x,\hat{L}_y,\hat{L}_z.$
- Commutation ensures simultaneous knowledge of \hat{L}^2 and one component $[\hat{L}^2,\hat{L}_{x,y,z}]=0$ (typically \hat{L}_z)

$$\hat{L}^2 Y_{\ell}^{m_{\ell}} = \hbar^2 \ell(\ell+1) Y_{\ell}^{m_{\ell}} \to |\vec{L}| = \sqrt{\ell(\ell+1)} \hbar$$

$$\hat{L}_z Y_\ell^{m_\ell} = \hbar m_\ell Y_\ell^{m_\ell} \to L_z = m_\ell \hbar$$

Spherical harmonics $Y_\ell^{m_\ell}$ are orthogonal eigenfunctions of \hat{L}^2 and \hat{L}_z

Visualization of the Angular Momentum

- ullet Quantum angular momentum, denoted as $|ec{L}|$, is quantized.
- ullet Magnitude $|ec{L}|$ and L_z are precise; L_x and L_y are uncertain.
- ullet The figure illustrates the probabilistic nature of L_x and L_y orientations.
- ullet It depicts the cone of possible $ec{L}$ directions with a well-defined $L_z.$
- ullet L_z eigenvalue m_ℓ are the values between $-\ell,...,\ell$
- Since $\ell < \sqrt{\ell(\ell+1)} \to |L_z| < |L|$, therefore \vec{L} can never point along the z-axis.

Spin: An Intrinsic Quantum Property

- Intrinsic to particles like electrons, hadrons, and atomic nuclei.
- Not a result of spatial movement but a fundamental quantum property.
- Elementary particles are point-like, making classical rotation inapplicable.
- Spin follows the same rules as Angular Momentum

Spin Operators and Quantization

The operators for spin follow eigenvalue equations:

$$\hat{S}^2 f_s^{m_s} = \hbar^2 s(s+1) f_s^{m_s} \to |\vec{S}| = \sqrt{s(s+1)} \hbar$$

$$\hat{S}_z f_s^{m_s} = \hbar m_s f_s^{m_s} \to S_z = m_s \hbar$$

- S^2 : total spin angular momentum.
- S_z : z-component of spin.

Spin is described by quantum numbers s and $m_s=-s,...,s$. It is important to note that s can also be half-integers (Electron (Fermions) $s=\frac{1}{2}$, Photon (Bosons) s=1)

Visualization of the Spin $(s = \frac{1}{2})$

- ullet Quantum Spin, denoted as $|\vec{S}|$, is quantized.
- ullet Magnitude $|ec{L}|$ and S_z are precise; S_x and S_y are uncertain.
- The figure illustrates the probabilistic nature of S_x and S_y orientations.
- ullet It depicts the cone of possible $ec{S}$ directions with a well-defined $S_z.$
- S_z eigenvalue m_s are the values between -s,...,s
- Since $s < \sqrt{s(s+1)} \to |S_z| < |S|$, therefore \vec{S} can never point along the z-axis.

Spin

Spin Dirac Notation

- Eigenstates $f_s^{m_s}$ are not functions of r, θ, φ . There is no mathematical formulation for the eigenstates \to Better to use Dirac Notation.
- Like in Angular Momentum, for standards we base our calculations in the commutation between \hat{S}^2 and \hat{S}_z .

Spin

For $s=\frac{1}{2}$ (e.g., electrons), the spin states in two dimensions are in the format $|s,m_s\rangle$:

$$\text{Spin-up state in z-basis: } f_{1/2}^{1/2} \equiv \left|\frac{1}{2},\frac{1}{2}\right> \equiv \left|\uparrow\right> = \begin{pmatrix}1\\0\end{pmatrix},$$

Spin-down state in z-basis:
$$f_{1/2}^{-1/2}\equiv\left|\frac{1}{2},-\frac{1}{2}\right>\equiv\left|\downarrow\right>=\begin{pmatrix}0\\1\end{pmatrix}$$

A general spin state $|\chi\rangle$ of a spin- $\frac{1}{2}$ particle is in a superposition of both states:

$$|\chi\rangle = a |\uparrow\rangle + b |\downarrow\rangle,$$

Hermitian Operators for Spin $s = \frac{1}{2}$

Representation of 2x2 matrix operators in the basis $|\uparrow\rangle$ and $|\downarrow\rangle$ (z-Basis):

$$\hat{S}^2 \to \frac{3}{4}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \hat{S}_z \to \frac{1}{2}\hbar \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\hat{S}_x \to \frac{1}{2}\hbar \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \hat{S}_y \to \frac{1}{2}\hbar \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Note: $|\uparrow\rangle$ and $|\downarrow\rangle$ are not eigenfunctions of \hat{S}_x and \hat{S}_y as they do not commute.

Raising and Lowering Operators for Spin

Spin raising and lowering operations also defined in the z-basis:

$$\hat{S}_{+} |\downarrow\rangle = \hbar |\uparrow\rangle \quad \text{and} \quad \hat{S}_{-} |\uparrow\rangle = \hbar |\downarrow\rangle$$

$$\hat{S}_{+} \to \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \hat{S}_{-} \to \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Clickers

Clicker-Questions

Midterm

- Next week midterm
- Covers Lectures 1-6
- Is a 20% bonus only
- All information on Moodle
- Practice with old Midterms
- Write down anything you might know, maximize points.