Problem 1. A one-year discount bond is promising to pay 1,357 dollars next year. Wolfgang requires an 18% rate of return from this bond. In other words, Wolfgang is willing to pay not a penny more than ______ dollars for this bond.

Answer 1. In other words, if he pays x dollars today for a bond that has an interest rate of 18%, then he will receive 1357 dollars one years from now. In the maths,

$$P \times 1.18 = 1357$$

$$\implies P = 1150.$$

If he pays less than 1150 today and receives 1357 dollars one years from now, then his interest rate will be greater than 18%.

Problem 2. True or False. Asset A is riskier than asset B. Therefore, investors will require a higher rate of return from Asset A than Asset B. As a result, the price of Asset A will be higher than the price of Asset B.

Answer 2. False. A riskier asset, all else equal, will require a higher rate of return (otherwise no one would buy it). Therefore we need A to have a higher return. A higher rate of return comes when the price of the asset is cheaper, so the price of A should be cheaper than the price of B.

That last point is kinda counter-intuitive on the face of it. But the return on the bond is

Return = Future Payout - Asset Price.

So a lower price means you're subtracting less and thus getting a higher return.

Problem 3. Asset A is expected to pay out 1,500 dollars next year and is selling for 1,250 dollars today. This asset is quite risky and carries a risk premium of 15% over a one-year Treasury discount bond that has a face value of 2,520 dollars. What is the price of this Treasury discount bond today?

Answer 3. We first want to find the interest rate on Asset A. It involves the equation

$$1250 \times (1+i) = 1500 \implies i = 20\%.$$

We are told that this asset has a risk premium of 15% over the bond, so the bond has an interest rate of 20 - 15 = 5%. Let P be the price of the bond today. Therefore

$$P \times 1.05 = 2520 \implies P = 2400.$$

Problem 4. Bond A and Bond B are exactly identical in terms of risk, liquidity, and any other attribute. For example, they are two one-year bonds issued by the same corporation. Bond A is expected to pay \$1,403 next year and Bond B is expected to pay \$168,360 next year. Which of the following pairs of prices are consistent with the attributes of these two bonds?

- (a) Price of Asset A = \$1,155 & Price of Asset B = \$138,500
- **(b)** Price of Asset A = \$1,150 & Price of Asset <math>B = \$138,000
- (c) Price of Asset A = \$1,170 & Price of Asset B = \$134,000
- (d) Price of Asset A = \$1,160 & Price of Asset B = \$140,000

Answer 4: (b). For Bond A, we have

$$1150 \times (1+i) = 1403 \implies i = 22\%.$$

With this interest rate, Bond B says

$$138000 \times 1.22 \approx 168360$$
.

So the two are consistent.

Problem 5. A corporation's discount bond promises to pay \$1,150 next year and is selling for \$1,000 in the bond market today. The same corporation wants to issue another identical discount bond that promises to pay \$2,300 next year. This second bond's price in the market will equal ______ dollars.

Answer 5. The first bond satisfies the equation

$$1000 \times (1+i) = 1150 \implies i = 15\%.$$

Therefore the second bond must satisfy

$$P \times (1.15) = 2300 \implies P = 2000.$$

Problem 6. A U.S. Treasury discount bond has a face value of \$1,050 and is selling for \$1,000 in the bond market today. A corporation issues an identical discount bond with the same face value. The risk premium on the corporation bond is 20 percent. The market value of the corporation bond is ______ dollars.

Answer 6. The Treasury bond satisfies the equation

$$1000 \times (1+i) = 1050 \implies i = 5\%.$$

Since the risk premium is 20%, that means the corporation must offer 5 + 20 = 25% interest on their bonds. Which means for a face value bond of 1050, the corporation must satisfy

$$P \times (1.25) = 1050 \implies P = 840.$$

Problem 7. Asset A is more liquid than Asset B. Then, all else the same, the expected rate of return on Asset A will be higher than that on Asset B.

Answer 7. False. Liquidity is a positive attribute, and in general, any asset with a more positive attribute will have lower return. A is more liquid, so the return on A should be less than that of the relatively illiquid B.

Problem 8. A corporation's stock promises to pay a dividend of \$5 next year and investors expect the price of this stock next year to be \$31. Because of the risk associated with this stock, investors require a rate of return of 20 percent from it. The price of this stock in the stock market is ______ dollars.

Answer 8. The expected payout from this corporation's stock is

dividend + future stock price \implies 5 + 31 = 36.

We are told that the return must be 20%, therefore

Return = Future Payout - Asset Price

$$\implies 0.20P = 36 - P$$

$$\implies P = 30.$$

Problem 9. There are two assets in the market. They both promise to pay \$1,120 next year. Asset A is less risky and carries a rate of return of 12 percent. The risk premium on Asset B is 16 percent. Find

- (a) Price of Asset $A = \underline{\hspace{1cm}}$ dollars
- (b) Price of Asset $B = \underline{\hspace{1cm}}$ dollars.

Answer 9. The two equations we want are

$$P_A \times 1.12 = 1120 \implies P_A = 1000,$$

$$P_B \times 1.28 = 1120 \implies P_B = 875.$$

Problem 10. There are three bonds, all promising to pay \$1,386 next year. The following are the interest rates on these bonds:

- Bond A: 5 percent
- Bond B: 10 percent
- Bond C: 20 percent

The following are the prices of these three bonds:

- Price of Bond A: _____ dollars
- Price of Bond B: _____ dollars
- Price of Bond C: _____ dollars

Answer 10. The three equations we want are

$$P_A \times 1.05 = 1120 \implies P_A = 1320,$$

$$P_B \times 1.10 = 1120 \implies P_B = 1260.$$

$$P_C \times 1.20 = 1120 \implies P_B = 1155.$$