НОВЫЕ ДЕМОНСТРАЦИОННЫЕ ЭКСПЕРИМЕНТЫ ПО ИЗУЧЕНИЮ ПОЛЯРИЗАЦИИ СВЕТА, В СРЕДНИХ ШКОЛАХ

Ш. Якубова

кандидат педагогических наук, доцент

Ферганский государственный университет

Аннотация: В данной статье была рассмотрена методика изучения темы «Поляризация света» в школьном курсе физики; является одним из тем раздела «Электромагнитные волны и волновая оптика», изучаемой в XI классе, она в основном посвящена изучению свойств света, свет - это электромагнитная волна, которая является поперечной. В этой статье рассматривается поперечность световых волн, явление поляризация света.

Ключевые слова: демонстрационный эксперимент, волновая оптика, поляризация света, световые волны.

O'RTA MAKTABLARDA YORUG'LIKNING QUTBLANISHINI O'RGANISHDA NAMOYISH TAJRIBALARNI QO'LLASH

Annotatsiya: Ushbu maqolada maktab fizikasi kursida "Yorug'likning qutblanishi" mavzusini o'rganish metodikasi ko'rib chiqildi; XI sinfda o'rganiladigan "Elektromagnit to'lqinlar va to'lqin optikasi" bo'limining mavzularidan biri bo'lib, u asosan yorug'lik xossalarini o'rganishga bag'ishlangan, yorug'lik ko'ndalang bo'lgan elektromagnit to'lqindir. Ushbu maqolada yorug'lik to'lqinlarining ko'ndalangligi, yorug'likning qutblanish hodisasi muhokama qilinadi.

Kalit so'zlar: namoiysh tajribalar, elektromagnit to'lqinlar, to'lqin optikasi, yorug'likning qutblanishi.

DEMONSTRATION EXPERIMENTS ON THE STUDY OF LIGHT POLARIZATION IN SECONDARY SCHOOLS

Abstract: In this article, the methodology for studying the topic "Polarization of light" in the school physics course was considered; is one of the topics of the section "Electromagnetic waves and wave optics", studied in class XI, it is mainly devoted to the study of the properties of light, light is an electromagnetic wave, which is transverse. This article discusses the transverse of light waves, the phenomenon of polarization of light.

Key words: demonstration experiment, wave optics, light polarization, light waves.

Демонстрационные опыты составляют большую и очень важную часть школьного физического эксперимента. Они имеют специфические дидактические задачи и методику проведения, поэтому являются предметом специального рассмотрения в методике обучения физике. Демонстрационные опыты способствуют созданию физических представлений и формированию физических понятий; они конкретизируют, делают более понятными и убедительными рассуждения учителя при изложении нового материала, возбуждают и поддерживают у школьников интерес к предмету.

Новым и весьма важным в школьной программе по физике является понятие о поляризации света (XI кл.). Явление поляризации – это не частность, а фундаментальное физическое понятие, относящееся не только к оптике, но и к учению о колебаниях.

Явления интерференции и дифракции света доказали, что свет имеет волновую природу. В продольных волнах направление колебания частицы среды совпадает с направлением распространения волны, а в поперечных волнах направления перпендикулярны. В1690 году голландский физик Христиан Гюйгенс разработал продольную теорию световых волн и обосновал сходства акустических и оптических явлений и объяснил волновую теорию света по его отражению и преломлению на границе двух сред.

В течение долгого времени основатели волновой оптики Юнг и Френель считали, что световые волны являются продольными волнами. Так как продольные механические волны могут распространяться в твердых, жидких и газообразных средах.

Механические волны бывают разных видов. Если смещение частиц среды происходит в направлении распространения волны, то волна называется *продольной* (рис 1).

Рис. 1. Волны в которых колебания частиц происходит вдоль направления распространения волны.

Волны в упругом стержне или звуковые волны в газе являются примерами таких волн. Переноса вещества в направлении распространения волны не происходит. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой. А поперечные механические волны могут распространяться только в твердых телах.

Поперечная волна, волна, распространяющаяся в направлении, перпендикулярном к плоскости, в которой происходят колебания частиц среды или в которой лежат векторы электрического и магнитного поля. Поперечные упругие волны называются <u>S-волнами</u> (рис.2).

Рис.2. Поперечные волны, бегущие по натянутому резиновому жгуту или по струне.

Рассмотрим один из таких экспериментов. Пусть из кристалла турмалина, расположенного параллельно одной из осей кристаллической решетки плоскости, вырезана пластина. Эту пластину расположим перпендикулярно лучу света (рис. 3).

Рис. 3. Пластина расположена перпендикулярно лучу света.

Медленно вращаем пластину вокруг оси проходящего луча света. Видим, что не происходит никакого изменения в интенсивности света, прошедшего через турмалин. Эксперимент повторим: расположим после пластины T_1 еще одну такую же пластину T_2 . В этот раз, оставляя в покое пластину T_1 медленно вращаем пластину T_2 вокруг оси. При этом наблюдаем изменение интенсивности света, проходящего через пластины. Интенсивность света уменьшается от максимального значения до нуля в зависимости от вращения пластины T_2 относительно T_1 (рис. 3). Исследования показали, что если оси пластин будут параллельными, интенсивность проходящих лучей будет высокой, если перпендикулярны, то равна нулю. В результате эксперимента доказали, что интенсивность проходящего света зависит от $\cos^2\alpha$.

Но на опыте по прохождению света через турмалиновую пластину видим, что если пластину T_1 вращать вокруг своей оси, через нее проходит свет. Когда вращаем пластину T_2 уменьшается интенсивность света, падает до нуля. Значит, когда свет проходит через T_1 меняются его свойства.

Излучаемые волны беспорядочно распространяются в разные стороны из-за неупорядоченного расположения атомов в источнике света и неодновременного испускания луча. Поэтому направления векторов напряженности электрического и магнитного полей будут беспорядочными. Когда они попадают на пластину T_1 , через кристаллическую решетку лучи проходят в одном определенном направлении (рис. 4).

Рис. 4.

Значит, направления векторов напряженности электрического и магнитного полей световой волны, прошедший через T_1 будут упорядоченными. Этот свет называется поляризованным светом. Явление, которое мы наблюдали, называется *поляризацией света*. Как было сказано

выше, на пластину T_2 падает поляризованный свет. Интенсивность света, прошедшего через нее, определяется по закону Малиуса:

$I=I_0\cos^2\alpha$.

Как было сказано выше, свет состоит из электромагнитной волны, образующейся в результате совместного распространения двух взаимно перпендикулярных колебаний (рис. 5).

Рис. 5. Распространения двух взаимно перпендикулярных колебаний.

Исторически сложилось, что плоскость, на которой лежат колебания вектора напряженности электрического поля E, называется плоскостью колебания. Плоскость, на которой лежат колебания вектора напряженности магнитного поля H, называется плоскостью поляризации.

Если направления колебания векторов электромагнитной волны E и H каким-то образом упорядочены, то этот свет называется **поляризованным светом.** Если колебания вектора E происходят только в одной плоскости, такой свет называют плоско поляризованным светом.

Прибор, с помощью которого можно поляризовать естественный свет, называется поляризатором. Его изготавливают из турмалина, исландского шпата и других прозрачных кристаллов. Для определения степени поляризации света и положения поляризационной плоскости также используют поляризаторы. В последнем случае их называют анализаторами. На рисунке 3 пластина T_1 выполняет функцию поляроида, пластина T_2 - функцию анализатора.

Стало известно, что поляризация света происходит не только в турмалиновом кристалле, но и в других кристаллах. Например, исландский шпат. Его толщина может быть 0,1 мм и меньше. Приклеивая такую пленку к целлулоиду, получают поляризатор - это пластина площадью несколько квадратных дециметров. Поляризованный свет широко используют в технике.

Например, для получения качественного фото, определения концентрации органических кислот, белка и сахара в растворах.

ЛИТЕРАТУРА

- 1. Yakubova, SH. (2023). Изучение видимое суточное вращение небесной сферы на различных географических широтах в школах. *Физико- технологического образование*, (2).
- 2. Якубова, Ш. К., Хошимов, Х. А. У., & Мирзаева, Г. К. (2022). Изучение формирования первоначальных знаний о массе в средних общеобразовательных школах. *Scientific progress*, *3*(2), 73-77.
- 3. Onarqulov, K., & Qochqorov, A. (2022). Arduino platformasi yordamida mantiq algebrasi funksiyalarini o 'rganish. *Science and innovation*, *I*(A4), 128-133.
- 4. O'ktamovich, S. R. (2023). Influence of mechanical deformation on photosensitivity properties of thin semiconductor films. *American Journal of Pedagogical and Educational Research*, 12, 242-244.
- 5. Алимов, Н. Э., Абдурасулова, С. О., Имомова, С. М., Отажонов, С. М., & Якубова, Ш. К. Фотоприёмник в широком диапазоне длин волн света на основе cdte-sio 2-si-al с глубокими примесными уровнями.
- 6. Якубова, Ш., Носиров, Н., & Туланов, О. Основное уравнение молекулярно-кинетической теории газов газларнинг молекуляр-кинетик назариясининг асосий тенгламаси the basic equation of the molecular-kinetic theory of gases.
- 7. Якубова, Ш. К., & Хошимов, Х. А. У. (2022). Внутренняя энергия идеального газа. *Ta'lim fidoyilari*, *5*(9), 538-544.
- 8. Якубова, Ш. Қ., & Юлдашева, Ш. А. (2020). Studies of methods for registering radiation and particles in a physics course in secondary schools. *Scientific and Technical Journal of Namangan Institute of Engineering and Technology*, 2(3), 33-37.\
- 9. Якубова, Ш., & Мирзаева, Г. (2019). Электрический ток в электролитах и газах. *материаллари туплами*, 335.
- 10.К.Э.Онаркулов, Ш.Якубова, О.Дехконова. Ўрта умумтаълим мактабларида физикадан намойиш тажрибалари. Ўзбекистон Республикаси Олий ва ўрта махсус таълим вазирлиги Олий ўкув юртларининг 100000-Гумманитар 110000 Редагогика 5110200 Физика ва астрономия ўкитиш методикаси йўналиши талабалари учун ўкув кўлланма сифатида тавсия этилган Фарғона 2020.