MF - Devoir 1 (propositions, expressions booléennes, système LP et résolution) :

	/20							
Ex	Exercice 1)							
Q	1:							
P :	P = "Les poules ont des dents."							
О	O = "La mer est orange."							
P	$\Rightarrow O$							
Q2	2:							
M	M = "Il faut avoir 18 ans."							
C	C = "Il faut avoir le code."							
D	D = "passer la conduite du permis de conduire."							
D	$\Rightarrow (M \land C)$							
Q.	3:							
A	A = "J'ai 18 ans ou plus."							
M	M = "Je suis majeur."							
(A	$(A \wedge M) \vee (\neg A \wedge \neg M)$, soit $A \Leftrightarrow M$							

Exercice 2)

Q1:

A	В	$A \lor B$	$\neg (A \lor B)$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Puisqu'on a defini que $A \parallel B$, équivaut à $\neg (A \lor B)$, donc :

A	В	$A \parallel B$
0	0	1
0	1	0
1	0	0
1	1	0

Q2:

$$F = \neg(\neg \neg B \lor A)$$

$$expr_bool(F) = \overline{\overline{\overline{B}} + A}$$

Lois de Morgan $(\overline{A} + \overline{B} = \overline{A}.\overline{B})$:

$$\overline{\overline{\overline{B}}} + A = \overline{\overline{\overline{B}}}.\overline{A}$$

Involution $(\overline{\overline{A}} = A)$:

$$\overline{\overline{\overline{B}}}.\overline{A} = \overline{B}.\overline{A}$$

Commutativité (A.B = B.A):

$$\overline{B}.\overline{A} = \overline{A}.\overline{B}$$

Lois de Morgan $(\overline{A}.\overline{B} = \overline{A+B})$:

$$\overline{A}.\overline{B} = \overline{A+B}$$

Il suffit ensuite de transformer l'expression booléenne précédente en une formule propositionnelle, donc :

$$\overline{A+B} = \neg(A \lor B)$$

Puisque nous l'avons défini précédement :

$$\neg (A \lor B) = A \parallel B$$

NOLLE Damien

 $Donc: \neg(\neg\neg B \lor A) = A \parallel B$

Exercice 3)

Q1:

p	r	$\neg p$	$p \lor r$	$r \lor (\neg p)$	$(p \lor r) \Rightarrow (r \lor (\neg p))$
0	0	1	0	1	1
0	1	1	1	1	1
1	0	0	1	0	0
1	1	0	1	1	1

Q2:

p	q	r	$\neg q$	$p \Rightarrow (\neg q)$	$q \Rightarrow r$	$(p \Rightarrow (\neg q)) \lor (q \Rightarrow r)$
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	0	1	0	1
0	1	1	0	1	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	1	0	0	1	1

Exercice 4)

Démonstration sous les hypothèses {A}

1	Hypothèse	A
2	Axiome 1 $(A/P, \neg A/Q)$	$A \Rightarrow (\neg A \Rightarrow A)$
3	m.p. sur 1 et 2	$\neg A \Rightarrow A$
4	Axiome 10 $(\neg A/P, A/Q)$	$(\neg A \Rightarrow A) \Rightarrow ((\neg A \Rightarrow \neg A) \Rightarrow \neg \neg A)$
5	m.p. sur 3, 4	$(\neg A \Rightarrow \neg A) \Rightarrow \neg \neg A$
6	Théorème de la réflexivité de l'implication $(\neg A/P)$	$\neg A \Rightarrow \neg A$
7	m.p. sur 6, 5	$\neg \neg A$

 $\underline{\text{Conclusion}:} \{A\} \vdash \neg \neg A$

Exercice 5)

Q1:

B = "Je bois."

D = "Je dors."

C = "Je suis content."

NOLLE Damien L3 - Informatique

M = "Je mange."

N = "Il neige."

Q2:

$$- (\neg B \land D) \Rightarrow \neg C$$

$$-B \Rightarrow (\neg C \land D)$$

$$\neg M \Rightarrow (\neg C \lor D)$$

$$-M \Rightarrow (C \vee B)$$

$$- (\neg N \land C) \Rightarrow \neg M$$

Q3:

Dans un premier temps, il faut mettre les énoncés précédents en CNF:

$$((\neg B \land D) \Rightarrow \neg C) \land (B \Rightarrow (\neg C \land D)) \land (\neg M \Rightarrow (\neg C \lor D)) \land (M \Rightarrow (C \lor B)) \land ((\neg N \land C) \Rightarrow \neg M)$$

Utililisation de la règle : $F \Rightarrow G \rightarrow (\neg F) \lor G$

$$(\neg(\neg B \land D) \lor \neg C) \land (\neg B \lor (\neg C \land D)) \land (\neg \neg M \lor (\neg C \lor D)) \land (\neg M \lor (C \lor B)) \land (\neg (\neg N \land C) \lor \neg M)$$

Utililisation de la règle : $\neg(F \land G) \rightarrow (\neg F) \lor (\neg G)$

$$(\neg \neg B \lor \neg D \lor \neg C) \land (\neg B \lor (\neg C \land D)) \land (\neg \neg M \lor (\neg C \lor D)) \land (\neg M \lor (C \lor B)) \land (\neg \neg N \lor \neg C \lor \neg M)$$

Utililisation de la règle : $\neg \neg F \rightarrow F$

$$(B \lor \neg D \lor \neg C) \land (\neg B \lor (\neg C \land D)) \land (M \lor (\neg C \lor D)) \land (\neg M \lor (C \lor B)) \land (N \lor \neg C \lor \neg M)$$

Utililisation de la règle : $F \lor (G \land H) \rightarrow (F \lor G) \land (D \lor H)$

$$(B \vee \neg D \vee \neg C) \wedge (\neg B \vee \neg C) \wedge (\neg B \vee D) \wedge (M \vee \neg C \vee D) \wedge (\neg M \vee C \vee B) \wedge (N \vee \neg C \vee \neg M)$$

On sait que "en ce moment, je suis content", donc on admet une nouvelle clause : C.

On obtient donc :
$$\{B \lor \neg D \lor \neg C, \neg B \lor \neg C, \neg B \lor D, M \lor \neg C \lor D, \neg M \lor C \lor B, N \lor \neg C \lor \neg M, C\}$$

Avec le théorème de la résolution propositionnelle : $\frac{\neg P \lor C, P \lor D}{C \lor D}$, on obtient donc :

$$C8 = res(C2, C7) = \frac{\neg C \lor \neg B, C}{\neg B}$$
 (Théorème de la résolution) = $\neg B$

NOLLE Damien L3 - Informatique

$$C9 = res(C8,C1) = \frac{\neg B,B \lor \neg D \lor \neg C}{\neg D \lor \neg C} \text{ (Th\'eor\`eme de la r\'esolution)} = \neg D \lor \neg C$$

$$C10 = res(C9,C7) = \frac{\neg C \lor \neg D,C}{\neg D} \text{ (Th\'eor\`eme de la r\'esolution)} = \neg D$$

$$C11 = res(C10,C4) = \frac{\neg D,D \lor \neg C \lor M}{\neg C \lor M} \text{ (Th\'eor\`eme de la r\'esolution)} = \neg C \lor M$$

$$C12 = res(C11,C7) = \frac{\neg C \lor M,C}{M} \text{ (Th\'eor\`eme de la r\'esolution)} = M$$

$$C13 = res(C6,C12) = \frac{\neg M \lor \neg C \lor N,M}{\neg C \lor N} \text{ (Th\'eor\`eme de la r\'esolution)} = \neg C \lor N$$

$$C14 = res(C13,C7) = \frac{\neg C \lor N,C}{N} \text{ (Th\'eor\`eme de la r\'esolution)} = N$$

Nous constatons qu'en ce moment, il neige.