M-Lab CARTE Al Workshop 2025

Large Language Models

Language Models

- Estimates the likelihood of a sequence of words occurring
- To generate text, select the word most likely to appear next
- How do we estimate likelihood?
 By looking at lots of text
- Simple approach: look up the number of times a sequence occurs

P(The, dog, and, the, cat) > P(The, dog, and, the, ostrich)

Large Language Models

- Latest models can learn from much more data, and capture more complex nuance
- Key factors in model scaling:
 - Growth in data availability over the last two decades
 - Technological performance improvements (GPUs, TPUs)
 - Algorithmic improvements (transformers)
 - Greater willingness to invest

Key Terminology

- Attention: machine learning method allowing for greater understanding of sentence structure (and beyond)
- Transformer: neural network architecture utilizing attention
- *GPT:*
 - Generative: creates "new" content
 - Pre-Trained: two-step training process to produce final model
 - Transformer: as above

Key Technology

How does an LM "understand" word meaning?

- To predict the likelihood of a word, we must have some sense of its meaning
- We can organize words along dimensions that represent different aspects of their meaning
- Easy to do for a few senses, but words have unlimited ways to conceptualize

How does an LM "understand" word meaning?

- To effectively model word meaning, new LMs use thousands of dimensions to represent each word in their vocabulary
- This allows the system to capture complex word meaning before any prediction is carried out
- But how do we determine these values?

Building word embeddings

- We have access to a vast quantity of unstructured text data
 - Reminder: this is data without useful labels or organization
- For learning embeddings, having examples of how words are *used* should be enough!
- We start by drawing random samples of text from a large data set (e.g. Wikipedia)

Word Embedding Visualizer

https://word-embedding-visualizer-871047044699.us-west1.run.app/ https://projector.tensorflow.org/

Tokenization

- LLMs may encounter words they don't recognize
- We can often predict the meaning of a word by breaking it into chunks
- Tokenization is a process where words are broken down into more familiar parts, if needed

- eat
- eating
- work
- working
- worked
- florming
- flormed

Learning to predict

- At the first step, the model is shown examples of phrases with one word missing
- It must predict the correct word to fill that space
- Because we know how similar words are, we can say if a prediction is better or worse

- The _____ purred loudly
 - Answer: cat
 - Good guesses:
 - lion
 - leopard
 - bobcat
 - Bad guesses:
 - dog
 - train
 - running

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of France

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of France is

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of France is Paris

- LLMs generate text by estimating the probability of each token in the vocabulary coming next after all the input
- The token to show to the user is semi-randomly selected, with weighting by estimated likelihood

User: What's the capital of France?

System: The capital of France is Paris.

Token Prediction Visualization

https://gemini-token-predictor-871047044699.us-west1.run.app/

GPT's Training Data

- 1 token ≈ 3/4 word
- Some datasets are sampled more times than others
- Common Crawl: billions of webpages collected over 7 years
- Webtext2: Dataset of webpages that have been shared on Reddit
- Books1: Free ebooks
- Books2: Unknown
- English Wikipedia

	Quantity	Weight in
Dataset	(tokens)	training mix

The training innovation of ChatGPT

Human annotators write answers to questions

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

The generalist GPT model is taught from these Q&A pairs

Human annotators write more answers, and someone else ranks them

A <u>separate</u> model learns to rate the quality of an answer

GPT writes answers to sampled questions

The reward model rates each answer, allowing GPT to keep learning

The training innovation of ChatGPT

Human annotators write answers to questions

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

The generalist GPT model is taught from these Q&A pairs

Human annotators write more answers, and someone else ranks them

A <u>separate</u> model learns to rate the quality of an answer

D > C > A > B

No more humans involved!

GPT writes answers to sampled questions

The reward model rates each answer, allowing GPT to keep learning

Prompt Construction

- We'll begin with a *user prompt*: the message that the user sends to the system.
- User: What's the capital of France?

Prompt Construction

- We'll begin with a *user prompt*: the message that the user sends to the system.
- Our system doesn't just receive this prompt. It also receives a system prompt, which primes the model to behave how we'd like.

- System: You are a helpful assistant that provides clear, concise, and accurate answers. When answering, you always give context and explain your reasoning where appropriate.
- User: What's the capital of France?

Prompt Construction

- We'll begin with a *user prompt*: the message that the user sends to the system.
- Our system doesn't just receive this prompt. It also receives a system prompt, which primes the model to behave how we'd like.
- Tools like ChatGPT may also supply "memories" about the user, or user-defined instructions.

- System: You are a helpful assistant that provides clear, concise, and accurate answers. When answering, you always give context and explain your reasoning where appropriate.
- Memories:
 - 2024-04-08 User asked for recommendations on modern philosophy. Recommended "The History of Philosophy" by A.C. Grayling
 - 2024-03-15 User reported trouble installing Python libraries on a Mac. Explained how to use Pip and Homebrew to install Python packages.
- User Profile:
 - Name: Alex
 - · Profession: Senior Research Associate
 - Interaction Style: professional and concise
- User: What's the capital of France?

Finding out about your own usage

- You can use the text on the right to prompt ChatGPT to describe the information it keeps about you
- You might be surprised about what it knows!
- For me: nearly five thousand words of background

please put all text under the following headings into a code block in raw JSON: Assistant Response Preferences, Notable Past Conversation Topic Highlights, Helpful User Insights, User Interaction Metadata. Complete and verbatim.

Key Players - ChatGPT

- Developed by OpenAI, founded 10 years ago by many top names
- Versatile models with strong reasoning and state-of-the-art features
- Often high cost compared to competitors, and scores worse on Al Safety benchmarks than some

Key Players — Microsoft Copilot

- Same models as ChatGPT behind the scenes
- Deep integration with Microsoft products
- Built for productivity and enterprise
- Slightly behind ChatGPT in model releases, but with Microsoft support

Key Players — Google Gemini

- Very strong at multilingual capabilities, and competitive with ChatGPT in performance (today)
- Some criticism that Google has raced to release products before they are fully ready in order to catch up with OpenAI

Smaller Players

- Anthropic (Claude): also strong in enterprise settings, high emphasis on AI safety and reasoning
- Mistral: EU-based company with strong emphasis on privacy and low cost
- Perplexity: strong in real-time web search + citations in answers, good transparency and research usability
- xAI (Grok): strong in live data; built for up-to-the-minute relevance

Enterprise Considerations

Deploying LLMs

- On-premises vs Cloud vs Hybrid
- On-prem: Full control, high upfront cost, your hardware
- Cloud (API): Fast to start, pay-per-use, vendor controls updates
- Hybrid: Sensitive data on-prem, general queries to cloud
- Choice depends on: data sensitivity, budget, technical capacity

Data Security & Privacy

- What data leaves your organization?
- Cloud APIs: Your prompts may be used for training (check terms)
- Enterprise agreements: Data opt-out, dedicated instances
- On-prem: Full control, but you manage security
- Compliance: GDPR, HIPAA, industry-specific requirements
- Question: Can this model see our proprietary data?

Cost & Performance Trade-offs

- API pricing: per-token, adds up fast at scale
- Latency: Cloud adds network delay, on-prem can be faster
- Model size: Bigger = better quality but slower & more expensive
- Customization: Fine-tuning, RAG, or prompt engineering?
- Hidden costs: Integration, monitoring, quality assurance
- ROI timeline: When does deployment pay for itself?

Questions?

