Θεωρία Ομάδων 2

Λύσεις ασκήσεων από τα φυλλάδια 2 και 3

Ονομ/νο: Νούλας Δημήτριος AM: 1112201800377 (προπτυχιακό) email: dimitriosnoulas@gmail.com

1) Έστω X ένας δ-υπερβολικός χώρος (με την έννοια του Rips), $x,y,x_0\in X$ και $\gamma=[x,y]$ γεωδαισιακή από το x στο y. Τότε $(x,y)_{x_0}\leq d(x_0,\gamma)\leq (x,y)_{x_0}+2\delta$.

 $A\pi\delta\delta\epsilon i\xi \eta$.

Όπως έχει γίνει στην τάξη, έστω $w \in [x,y]: d(x_0,w) = d(x_0,[x,y])$. Μπορούμε να επιλέξουμε τέτοιο w αφού το σύνολο [x,y] είναι συμπαγές. Έχουμε από τριγωνική ανισότητα:

$$d(x, x_0) \le d(x, w) + d(x_0, w)$$

$$d(y, x_0) \le d(y, w) + d(x_0, w)$$

Και αφού X γεωδαισιακός παίρνουμε ότι d(x,y) = d(x,w) + d(w,y). Άρα:

$$d(x,x_0) + d(y,x_0) \le d(x,w) + d(y,w) + 2d(w,x_0)$$
$$= d(x,y)$$
$$(x,y)_{x_0} \le d(w,x_0) = d(x_0,[x,y])$$

Για την άλλη ανισότητα, θέτουμε

$$A = \{ z \in \gamma : (x, x_0)_z \le \delta \}$$

και

$$B = \{ z \in \gamma : (y, x_0)_z < \delta \}$$

Ισχυριζόμαστε ότι $A \cup B = \gamma = [x, y]$. Η σχέση \subseteq είναι προφανής από τον ορισμό των A, B.

Έστω $z\in \gamma$ με $(x,x_0)_z>\delta$. Θα δείξουμε ότι $(y,x_0)_z\leq \delta$. Από την δ-υπερβολικότητα, θα υπάρχει $w\in [x,x_0]\cup [y,x_0]$ με $d(z,w)\leq \delta$. Αν $w\in [x,x_0]$ και εφαρμόσουμε δύο φορές τριγωνική ανισότητα, τότε:

$$d(z, w) \ge d(z, x_0) - d(w, x_0)$$

 $d(z, w) \ge d(z, x) - d(w, x)$

και προσθέτοντας:

$$2d(z,w) \ge d(z,x_0) + d(z,x) - (d(w,x_0) + d(w,x)) = d(z,x_0) + d(z,x) - d(x,x_0)$$

αφού ο χώρος είναι γεωδαισιαχός. Άρα $d(z,w)>\delta$ το οποίο είναι άτοπο. Συνεπώς $w\in [y,x_0]$. Ωστόσο, τώρα που ισχύει το $w\in [y,x_0]$ η σχέση $(y,x_0)_z>\delta$ θα μας έδινε άτοπο με το ίδιο επιχείρημα όπως παραπάνω. Άρα $(y,x_0)_z\leq\delta$.

Δείξαμε ότι $A \cup B = \gamma$ το οποίο είναι συνεκτικό και τα A, B μη κενά και κλειστά. Άρα αναγκαστικά τα A, B τέμνονται, δηλαδή υπάρχει $z \in \gamma$ με

$$(x, x_0)_z \leq \delta$$

$$(y, x_0)_z \leq \delta$$

Επιπλέον, αν κάνουμε τις απλοποιήσεις έχουμε την σχέση

$$d(x_0, z) = (x, y)_{x_0} + (x, x_0)_z + (y, x_0)_z$$

Άρα

$$d(x_0, \gamma) \le d(x_0, z) = (x, y)_{x_0} + (x, x_0)_z + (y, x_0)_z \le (x, y)_{x_0} + 2\delta$$

2) Αποδείξτε ότι η $H_1(\delta)$ -υπερβολικότητα ενός χώρου X είναι ισοδύναμη με την ακόλουθη συνθήκη των 4-σημείων: $d(x,y)+d(z,x_0) \leq \max\{d(x,z)+d(y,x_0),d(x,x_0)+d(y,z)\}+2\delta$ για κάθε $x,y,z,x_0 \in X$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Έστω ότι $(y,z)_x \ge \min\{(x_0,y)_x,(z,x_0)_x\} - \delta$. Υποθέτουμε ότι το ελάχιστο των δύο το συναντάμε στο $(x_0,y)_x$ και ισοδύναμα έχουμε υποθέσει:

$$d(y,x) + d(z,x_0) \le d(z,x) + d(x_0,y)$$

Ανοίγουμε την πρώτη σχέση με τα γινόμενα του Gromov και με βάση την υπόθεσή μας έχουμε ότι:

$$d(y,x) + d(z,x) - d(y,z) + 2\delta \ge d(y,x) + d(x_0,x) - d(x_0,y)$$

$$\iff d(z,x) + d(x_0,y) + 2\delta \ge d(x_0,x) + d(y,z)$$

και το πρώτο μέλος ισούται με το $\max +2\delta$, δηλαδή:

$$\max\{d(z,x) + d(x_0,y), d(y,x) + d(z,x_0)\} + 2\delta \ge d(x_0,x) + d(y,z)$$

Αντίστροφα, δίχως βλάβη γενικότητας υποθέτουμε ότι $d(x,z)+d(y,x_0)\leq d(x,x_0)+d(y,z)$ (το οποίο είναι ισοδύναμο με $(y,x_0)_x\geq (y,z)_x$). Άρα από συνθήχη 4-σημείων έχουμε ότι:

$$d(x, x_0) + d(y, z) + 2\delta \ge d(x, y) + d(z, x_0)$$

και αλλάζουμε μέλος αυτά που περιέχουν το z καθώς και προσθέτουμε το d(x,z) στα 2 μέλη. Έτσι:

$$d(x, x_0) + d(x, z) - d(z, x_0) + 2\delta \ge d(x, y) + d(x, z) - d(y, z)$$

$$\iff (x_0, z)_x + \delta \ge (y, z)_x = \min\{(y, z)_x, (y, x_0)x\}$$

3) Έστω X ενας δ-υπερβολικός χώρος (με την έννοια του Rips). Αποδείξτε (χρησιμοποιώντας ένα επειχείρημα συνεκτικότητας) ότι για κάθε γεωδαισιακό τρίγωνο T με πλευρές $\gamma_1,\gamma_2,\gamma_3$ υπάρχει $x\in X$ έτσι ώστε $d(x,\gamma_i)\leq \delta$ για κάθε i.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Θέτουμε

$$A = \{ w \in \gamma_1 : d(w, \gamma_2) \le \delta \}$$

$$B = \{ w \in \gamma_1 : d(w, \gamma_3) \le \delta \}$$

Από την δ-υπερβολικότητα έχουμε ότι $A \cup B = \gamma_1$, τα οποία A, B είναι κλειστά (αφού έχουμε \leq και η συνάρτηση απόστασης είναι συνεχής). Το γ_1 είναι συνεκτικό και γράφεται ως ένωση δύο κλειστών, συνεπώς αυτά τα δύο κλειστά τέμνονται, δηλαδή υπάρχει $w \in A \cap B \subseteq \gamma_1$ με:

$$d(w, \gamma_1) = 0 \le \delta$$
$$d(w, \gamma_2) \le \delta$$
$$d(w, \gamma_3) \le \delta$$

4) Έστω F(S) η ελεύθερη ομάδα με βάση το S και $\Gamma = \Gamma(F(S),S)$ το αντίστοιχο γράφημα Cayley. Αποδείξτε ότι για κάθε $1 \neq g \in F(S)$ υπάρχει γεωδαισιακή γραμμή $\gamma: (-\infty,\infty) \to \Gamma$ (ονομάζεται άξονας του g και συμβολίζεται με A_g) επί της οποίας το g δρα με μεταφορές μήκους $\tau_g > 0$, δηλαδή για κάθε $t \in \mathbb{R}$ ισχύει ότι $g \cdot \gamma(t) = \gamma(t + \tau_g)$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Έστω $g \in F(S)$ με $1 \neq g$. Τότε το g θα έχει χάποιο μήχος $||g||_S = ||s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n}||_S = n$ αν δούμε την παράσταση αυτή του g σαν ανηγμένη λέξη στους γεννήτορες. Θεωρούμε τις γεωδαισιαχές $\gamma_k : [0,n] \to \Gamma$ που συνδέουν τα g^k χαι g^{k+1} μέσω της διαδρομής $w = s^{\varepsilon_1} \cdots s_n^{\varepsilon_n}$, για χάθε $k \in \mathbb{Z}$.

Ορίζουμε μια γεωδαισιαχή που ενώνει όλες τις δυνάμεις g^k διασχίζοντας κάθε φορά την ετικέτα w ως εξής:

$$\gamma: (-\infty, \infty) \longrightarrow \Gamma$$
$$[kn, (k+1)n] \ni \quad t \longmapsto \gamma_k(t-kn)$$

είναι πράγματι γεωδαισιαχή, εφόσον οι αποστάσεις μεταξύ τυχαίων δυνάμεων g^k, g^ℓ είναι ελάχιστες, αφού η ετικέτα w είναι η συντομότερη διαδρομή για να πολλαπλασιάσουμε με g. Αν τώρα θεωρήσουμε τυχαία $\gamma(t_1), \gamma(t_2)$ και υποθέσουμε ότι έχουν ελάχιστη απόσταση με ετικέτα v έξω από την γ , δηλαδή $d(\gamma(t_1), \gamma(t_2))$ να είναι μικρότερο του μήκους $[\gamma(t_1), \gamma(t_2)]$ πάνω στην γ , τότε για $t \leq t_1$ θα συναντήσουμε μια κορυφή g^{k_1} και για $t \geq t_2$ θα συναντήσουμε μια κορυφή g^{k_2} . Έτσι θα έχουμε (σε μήκη):

$$[g^{k_1}, \gamma(t_1)] \cdot v \cdot [\gamma(t_2), g^{k_2}] < [g^{k_1}, \gamma(t_1)] \cdot [\gamma(t_1), \gamma(t_2)] \cdot [\gamma(t_2), g^{k_2}] = [g^{k_1}, g^{k_2}] \subseteq \gamma$$

δηλαδή πετύχαμε μικρότερη απόσταση των g^{k_1}, g^{k_2} έξω από την γεωδαισιακή τους, το οποίο είναι άτοπο.

Άρα θα έχουμε για κάθε $t\in (-\infty,\infty)\implies t\in [kn,(k+1)]$ για κάποιο $k\in\mathbb{Z}$ (δεν έχουμε πρόβλημα στα άκρα) και άρα:

$$g \cdot \gamma(t) = g \cdot \gamma_k(t - kn) = \gamma_{k+1}(t - (k+1)n) = \gamma(t+n)$$

5) Έστω X ένας δ-υπερβολικός χώρος (με την έννοια του Rips), $x \in X$ και $\gamma: (-\infty, \infty) \to X$ μια γεωδαισιακή γραμμή. Αν y και y' είναι σημεία της γεωδαισιακής γ τα οποία επιτυγχάνουν την ελάχιστη απόσταση του x από την γ (γιατί υπάρχουν τέτοια σημεία;), δηλαδή $d(x,y)=d(x,y')=d(x,\gamma)$, τότε $d(y,y')\leq 4\delta$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Τέτοια σημεία y,y' υπάρχουν γιατί το $Im\gamma$ είναι κλειστό αφού η γ είναι ισομετρία ως γεωδαισιακή. Αν το y=y' δεν έχουμε κάτι να δείξουμε. Αν $y\neq y'$ και $d(y,y')>4\delta$ τότε μπορούμε να υποθέσουμε ότι υπάρχει σημείο $w\in [y,y']\subseteq Im\gamma$ με $d(w,y),d(w,y')>2\delta$.

Από την υπερβολικότητα του χώρου, στο γεωδαισιακό τρίγωνο που ορίζουν οι x,y,y' υπάρχει σημείο $z\in [x,y]\cup [x,y']$ με $d(z,w)\leq \delta$. Υποθέτουμε ότι βρίσκεται πάνω στην [x,y].

Από την τριγωνική $d(w,y) \le d(w,z) + d(y,z)$ έχουμε

$$d(y,z) \ge d(w,y) - d(w,z) \ge d(w,y) - \delta > 2\delta - \delta = \delta$$

δηλαδή

$$\delta < d(y, z)$$

Έχουμε ότι

$$d(x, w) \le d(z, x) + d(z, w) \le d(z, x) + \delta < d(z, x) + d(y, z) = d(x, y)$$

Αφού το z ανήκει στην γεωδαισιακή [x,y]. Άρα το w που είναι πάνω στην γεωδαισιακή γ πετυχαίνει απόσταση μικρότερη από την ελάχιστη, το οποίο είναι άτοπο.

6) Έστω X ένας δ-υπερβολικός χώρος και g μια ισομετρία του X. Αν $\gamma_1, \gamma_2: \mathbb{R} \to X$ είναι γεωδαισιακές γραμμές οι οποίες διατηρούνται από την δράση της g και επιπλέον η g δρα σε κάθε μια από αυτές ως μεταφορά θετικού μήκους τ_1 και τ_2 αντίστοιχα, τότε υπάρχει $\varepsilon=\varepsilon(\delta)>0$ έτσι ώστε $\gamma_1\subseteq N_\varepsilon(\gamma_2)$ και $\gamma_2\subseteq N_\varepsilon(\gamma_1)$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Αν θεωρήσουμε δύο κορυφές πάνω σε κάθε γεωδαισιακή και πάρουμε το γεωδαισιακό τετράπλευρο που ορίζουν, τότε από την δ-υπερβολικότητα του χώρου θα υπάρχουν σημεία πάνω στις πλευρές των γεωδαισιακών γ_1,γ_2 που έχουν απόσταση μικρότερη ίση του 2δ . Άρα με κατάλληλη μεταφορά των γ_1,γ_2 μπορούμε να υποθέσουμε ότι $\gamma_1(0),\gamma_2(0)\in G$ και

$$k := d(\gamma_1(0), \gamma_2(0)) \le 2\delta$$

 Γ ια κάθε $m\in\mathbb{Z}$ τώρα έχουμε ότι:

$$d(\gamma_1(m\tau_1), \gamma_2(m\tau_2)) = k$$

Εφόσον:

$$k = d(g^m \gamma_1(0), g^m \gamma_2(0)) = d(\gamma_1(m\tau_1), \gamma_2(m\tau_2))$$

Έστω ένα $t \in \mathbb{R}$. Το t θα βρίσκεται σε μοναδικό διάστημα της μορφής $[(m-1)\tau_1, m\tau_1]$ για κάποιο $m \in \mathbb{Z}$.

Άρα για το τυχόν σημείο $\gamma_1(t)$ έχουμε $d(\gamma_1(t),\gamma(m\tau_1)) \leq \tau_1$. Συνεπώς:

$$d(\gamma_1(t), Im\gamma_2) \le d(\gamma_1(t), \gamma_2(m\tau_2)) \le$$

$$\le d(\gamma_1(t), \gamma_1(m\tau_1)) + d(\gamma_1(m\tau_1), \gamma_2(m\tau_2)) \le \tau_1 + k \le \tau_1 + 2\delta$$

Όμοια δείχνουμε ότι ένα τυχαίο $\gamma_2(t)$ ανήκει στην $2\delta+\tau_2$ περιοχή της γ_1 . Άρα η μία γεωδαισιακή περιέχεται στην $\max\{\tau_1,\tau_2\}+2\delta$ περιοχή της άλλης.

7) Έστω X ένας δ -υπερβολικός χώρος και $\gamma_1,\gamma_2:[0,+\infty)\to X$ δύο γεωδαισιακές ακτίνες με κοινή αρχή x_0 . Αν $\lim_{n\to\infty}(\gamma_1(n),\gamma_2(n))_{x_0}=+\infty$, τότε υπάρχει $M=M(\delta)$ έτσι ώστε $d(\gamma_1(t),\gamma_2(t))\leq M$, για κάθε $t\in[0,\infty)$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Έστω $t\in [0,\infty)$. Εφόσον το γινόμενο Gromov απειρίζεται υπάρχει $n\in\mathbb{N}$ τέτοιο ώστε

$$t \le (\gamma_1(n), \gamma_2(n))_{x_0}$$

Θεωρούμε το γεωδαισιακό τρίγωνο που ορίζουν τα σημεία $x_0, \gamma_1(n), \gamma_2(n)$. Αν το απεικονίσουμε μέσω της ϕ σε τρίποδο θα έχουμε

$$\phi(\gamma_1(t)) = \phi(\gamma_2(t)) = t$$

αφού $d(x_0,\gamma_1(t))=d(x_0,\gamma_2(t))=t$ και τα $\gamma_1(t),\gamma_2(t)$ απεικονίζονται στο ίδιο σημείο στο τρίποδο αφού $t\leq (\gamma_1(n),\gamma_2(n))_{x_0},$ καθώς και το γινόμενο Gromov είναι το μήκος στο οποίο γίνεται η διακλάδωση στο τρίποδο. Συνεπώς από τον δεύτερο ορισμό υπερβολικότητας έχουμε

$$d(\gamma_1(t), \gamma_2(t)) \le \delta$$

Ουσιαστικά εδώ το γινόμενο Gromov μας λέει για πόσο χρόνο μένουν κοντά οι γεωδαισιακές (με κοινή αρχή).

1) Έστω $\phi:\mathbb{N}\to\mathbb{N}$ μια απεικόνιση με την ιδιότητα $\phi(m+n)\leq \phi(m)+\phi(n)$ για κάθε ζεύγος $m,n\in\mathbb{N}.$ Να δειχθεί ότι υπάρχει στο \mathbb{R} το όριο $\lim_{n\to\infty}\frac{\phi(n)}{n}.$

 $A\pi\delta\delta\epsilon i\xi\eta$.

Θέτουμε $A=\liminf_n \frac{\phi(n)}{n}$. Έστω $\varepsilon>0$. Τότε υπάρχει $d\in\mathbb{N}$ με

$$\frac{\phi(d)}{d} < A + \varepsilon$$

Για κάθε $n \in \mathbb{N}$ θεωρούμε Ευκλείδεια διαίρεση $n = q_n d + r_n, 0 \le r_n < d.$ Τότε:

$$\frac{\phi(n)}{n} \le \frac{\phi(q_n d)}{n} + \frac{\phi(r)}{n}$$

και γράφοντας το $q_n d = d + d + \ldots + d$ έχουμε:

$$\frac{\phi(n)}{n} \le q_n \cdot \frac{\phi(d)}{n} + \frac{\phi(r)}{n} = \frac{q_n d}{n} \cdot \frac{\phi(d)}{d} + \frac{\phi(r)}{n}$$

Άρα

$$\limsup_{n} \frac{\phi(n)}{n} \le 1 \cdot \frac{\phi(d)}{d} + 0 < A + \varepsilon$$

για το τυχόν $\varepsilon>0$. Άρα το ανώτερο όριο στέχεται κάτω από το κατώτερο όριο και άρα ταυτίζονται. Επιπλέον η ακολουθία $\frac{\phi(n)}{n}$ είναι φραγμένη αφού:

$$\frac{\phi(n)}{n} = \frac{\phi(1+1+\ldots+1)}{n} \le \frac{n\phi(1)}{n} = \phi(1) \in \mathbb{N}$$

- 2) Έστω G πεπερασμένα παραγόμενη ομάδα και S πεπερασμένο σύνολο γεννητόρων της G. Για κάθε $g\in G$, ορίζουμε $||g||=||g||_S=d_S(1,g)$ να είναι η απόσταση του στοιχείου g από το 1 στο γράφημα Cayley $\Gamma(G,S)$ της G ως προς το S. Τότε $||gh||\leq ||g||+||h||$ για κάθε $g,h\in G$.
 - (1) Να δειχθεί ότι υπάρχει το όριο $\lim_{n\to\infty}\frac{||g^n||}{n}$, το οποίο συμβολίζεται με $\tau_{G,S}(g)=\tau(g)$ και ονομάζεται μήχος μετατόπισης του g.
 - (2) Αν g πεπερασμένης τάξης, τότε $\tau(g) = 0$.
 - (3) $\tau(g) = \tau(xgx^{-1})$, για κάθε $g, x \in G$ και $\tau(g^m) = |m|\tau(g)$.
 - (4) $\tau(g) \leq \inf\{d_S(gv,v)| v$ κορυφή του $\Gamma(G,S)\}.$
 - (5) Αν G = F ελεύθερη και S βάση της F, να υπολογιστεί το $\tau(g)$.
 - (6) Ομοίως, αν $G=\mathbb{Z}^k=\mathbb{Z}\times\cdots\times\mathbb{Z}$ και $S=\{s_1,\ldots,s_k\}$, όπου s_i γεννήτορας του i παράγοντα.

Aπόδειξη. (1) Ορίζουμε $φ_g: \mathbb{N} \to \mathbb{N}$ για κάθε $g \in G$ με $φ_g(n) = ||g^n||$. Τότε

$$\phi_q(n+m) = ||g^{n+m}|| \le ||g^n|| + ||g^m|| = \phi_q(n) + \phi_q(m)$$

Άρα το $\tau(g)$ υπάρχει εφόσον η ϕ_g ικανοποιεί την προηγούμενη άσκηση.

(2) Αν $o(g)=m<\infty$ τότε θέτουμε $M=\max\{||g||,||g^2||,\dots,||g^{m-1}||\}$. Τότε για κάθε $n\in\mathbb{N}$ θα έχουμε

$$||g^n|| \leq M$$

και άρα

$$\tau(g) = \lim_{n \to \infty} \frac{||g^n||}{n} \le \lim_{n \to \infty} \frac{M}{n} = 0$$

(3) Έχουμε:

$$\frac{||(xgx^{-1})^n||}{n} = \frac{||xg^nx^{-1}||}{n} \leq \frac{||x|| + ||x^{-1}||}{n} + \frac{||g^n||}{n} \to \tau(g)$$

Άρα $\tau(xgx^{-1}) \leq \tau(g)$. Παίρνουμε το αντίστροφο με τον ίδιο τρόπο στα στοιχεία $h, x^{-1}hx$ όπου $h=xgx^{-1}$.

Με μια αλλαγή μεταβλητής έχουμε ότι:

$$\frac{||g^{nm}||}{n|m|} \longrightarrow \tau(g)$$

Επιπλέον

$$\frac{||g^{nm}||}{n|m|} = \frac{1}{|m|} \cdot \frac{||\left(g^m\right)^n||}{n} \longrightarrow \frac{1}{|m|} \cdot \tau(g^m)$$

Άρα από μοναδικότητα ορίου

$$\frac{1}{|m|} \cdot \tau(g^m) = \tau(g)$$

(αν m = 0 σαφώς ισχύει το ζητούμενο.)

(4) $d_S(gv,v) = d_S(v,gv) = ||v^{-1}gv||$. Αρχεί να δείξουμε ότι το $\tau(g)$ στέχεται κάτω από κάθε $||v^{-1}gv||$. Δείξαμε στην άσχηση 1) ότι το όριο στέχεται κάτω από το $\phi(1)$, ||g|| στην άσχηση που βρισχόμαστε για το $\tau(g)$. Δηλαδή

$$\tau(g) \leq ||g||$$
 για κάθε $g \in G$

$$\iff \tau(v^{-1}gv) \leq ||v^{-1}gv||$$
 για κάθε $v, g \in G$

Ωστόσο, έχουμε δείξει ότι $\tau(g)=\tau(v^{-1}gv)$. Άρα το $\tau(g)$ στέκεται κάτω από το infimum του συνόλου.

- (5) Γράφουμε την g σαν ανηγμένη λέξη μήχος n στους γεννήτορες και αν στο γινόμενο g^2 γίνονται k διαγραφές σημαίνει ότι η g έχει μορφή $vg'v^{-1}$ με το μήχος του v να είναι k. Συνεπώς $\tau(g)=\tau(vg'v^{-1})=\tau(g'=n-2k.$
- (6) Θα χρησιμοποιήσουμε προσθετικό συμβολισμό, αν το g είναι $g=(m_1s_1,m_2s_2,\ldots,m_ks_k)$ τότε $||g||=m_1+m_2+\ldots+m_k$ και $||ng||=nm_1+nm_2+\ldots nm_k=n$ $(m_1+\ldots m_k)=n||g||$ και άρα $\tau(g)=||g||$.

3) Έστω X ένα \mathbb{R} -δέντρο, g μια ισομετρία του X και $\tau_g:=\inf\{d(gx,x)|x\in X\}$. Αποδείξτε ότι υπάρχει $x_0\in X$ έτσι ώστε $d(gx_0,x_0)=\tau_g$.

Aπόδειξη. Αν θεωρήσουμε ένα τρίποδο x, gx, g^2x τότε το μέσο x' της [x, gx] θα πρέπει να βρίσκεται πριν την διακλάδωση, δηλαδή να είναι μικρότερο του γινόμενου Gromov των gx, g^2 πάνω στο x. Διαφορετικά αν είναι μεγαλύτερο έχουμε το εξής άτοπο με βάση το σχήμα:

Όπου τα δύο γινόμενα Gromov είναι ίσα. (Το σχήμα δεν έχει πρόβλημα, αν ο κλάδος του g^-1x ήταν πολύ πιο δεξιά του κλάδου g^2x θα παίρναμε τα γινόμενα $(gx,g^{-1}x)_x,(x,g^2x)_{gx}$ και θα είχαμε ίδια περίπτωση.) Αυτό δεν μπορεί να συμβαίνει καθώς d(x,x')=d(gx,x').

Είμαστε λοιπόν σε μια περίπτωση όπου:

Αφού (x,x')=(x',gx) και (x,x')=(gx,gx'), το gx' δεν είναι ανάμεσα στα Λ,gx , και επιπλέον αφού η γεωδαισιακή [x,x'] είναι μέσα στην [x,gx] τότε η g[x,x'] θα είναι μέσα στην $[gx,g^2x]$, δηλαδή το gx' πηγαίνει στον πάνω κλάδο. Όμοια κάθε φορά που δράμε το g στο $g^k[x',gx']$ έχουμε ότι το πέρας πριν την δράση είναι η αρχή μετά την δράση. Συνεπώς αν τα κολλήσουμε με

$$A=\bigcup_n g^n[x',gx']$$

έχουμε μια γεωδαισιαχή που είναι g-αναλλοίωτη. Τελικά, για ένα τυχαίο $y \in X$ έχουμε ότι:

$$d(y, gy) = 2d(y, A) + d(x', gx')$$

Εφόσον υποθέσουμε ότι $d(y,A)=d(y,x_1)$ τότε $d(gy,A)=d(gy,gx_1)$ λόγω του g-αναλλοίωτου και η απόσταση του x_1 από το gx_1 είναι ακριβώς d(x',gx') αφού το x_1 είναι πάνω στην A. Άρα από την διαδρομή y,x_1,gx_1,gy στο \mathbb{R} -δέντρο έχουμε την παραπάνω ισότητα. Δηλαδή d(x',gx)< d(y,gy) για τυχαίο y και άρα πετυχαίνουμε το infimum.

Οι ιδέες σε αυτήν την άσκηση ήταν με συνομιλία με τον συνάδελφο Κωνσταντίνο Γκόλφη σχετικά με την (πιο ισχυρή) πρόταση 1.3 του παρακάτω paper:

Marc Culler and John W. Morgan. Group actions on \mathbb{R} -trees. Proc. London Math. Soc. (3) 55 (1987), no. 3, 571–604.

4) Υποθέτουμε ότι η G είναι μια ομάδα η οποία δρα με ισομετρίες επί ενός $\mathbb R$ -δέντρου X. Τότε για κάθε $y\in X$ υπάρχει το όριο $\lim_{n\to\infty}\frac{d(y,g^ny)}{n}$ και ισούται με τ_g , όπου $\tau_g=\inf\{d(gx,x)|x\in X\}.$

Aπόδειξη. Το ζητούμενο όριο υπάρχει λόγω της άσκησης 1) καθώς η $\phi_y(n)=d(y,g^n)$ ικανοποιεί την ανισότητα:

$$d(y,g^{n+m}y) \leq d(y,g^ny) + d(g^ny,g^{n+m}y) = d(y,g^ny) + d(y,g^my)$$

Επιπλέον, βασιζόμενοι στην γεωδαισιακή A που ορίσαμε σαν ένωση στην προηγούμενη άσκηση, αν $d(y,A)=d(y,x_1)$ τότε:

$$d(y,g^n) = d(y,x_1) + d(x_1,g^nx_1) + d(g^nx_1,g^ny) = 2d(y,A) + d(x_1,g^nx_1) =$$

$$= 2d(y,A) + n \cdot d(x',gx')$$

και άρα

$$\lim_{n\to\infty}\frac{d(y,g^ny)}{n}=d(x',gx')=\tau_g$$

Aπόδειξη. Αν έχουμε ορίσει τις μετρικές d_H, d_G με κάποια επιλογή μετρικής λέξεις πάνω σε κάποια σύνολα γεννητόρων, εφόσον η ένθεση είναι ισομετρική εμφύτευση υποθέτουμε ότι υπάρχουν λ, ε που εξαρτώνται από την επιλογή των μετρικών με:

$$\frac{1}{\lambda}d_H(h_1, h_2) - \varepsilon \le d_G(h_1, h_2) \le \lambda d_H(h_1, h_2) + \varepsilon$$

Βασιζόμαστε στην προηγούμενη άσχηση και σταθεροποιούμε $h\in H$. Εδώ που έχουμε ομάδες, οι έννοιες των μηκών μετατόπισης των προηγούμενων ασχήσεων ταυτίζονται. Συνεπώς αν το h έχει πεπερασμένη τάξη τότε $\tau_G(h)=\tau_H(h)=0$ δηλαδή το ζητούμενο ισχύει τετριμμένα. Υποθέτουμε ότι $o(h)=\infty$. Τότε για χάθε $x\in H$:

$$\tau_G(h) = \lim_{n \to \infty} \frac{d_G(x, h^n x)}{n}$$

$$\tau_H(h) = \lim_{n \to \infty} \frac{d_H(x, h^n x)}{n}$$

και άρα

$$\frac{1}{\lambda}\tau_H(h) \le \tau_G(h) \le \lambda \tau_H(h)$$