

氧化还原反应(二)

日期:	时间:	姓名:
Date:	_ Time:	Name:

初露锋芒

	1. 掌握氧化还原反应配平的基本方法
学习目标	2. 掌握氧化还原的计算方法
&	1. 氧化还原反应的配平
重难点	2. 氧化还原反应的计算

根深蒂固

一、氧化还原反应的配平

- 1. **配平原则**:还原剂失电子总数=氧化剂得电子总数,即还原剂(元素)化合价升高的总价数=氧化剂(元素)化合价降低的总价数。
- 2. 氧化还原反应方程式配平的一般方法与步骤
- (1) 配平方法: 化合价升降法
- (2) 步骤: 标变价、列升降、求总数、配系数

$$C + HNO_3 \xrightarrow{\Delta} CO_2 + NO_2 + H_2O$$

①标变价

$$\stackrel{0}{\text{C}}$$
 + H $\stackrel{+5}{\text{N}}$ O₃ $\stackrel{\Delta}{\longrightarrow}$ $\stackrel{+4}{\text{C}}$ O₂ + $\stackrel{+4}{\text{N}}$ O₂ + H₂O

②列升降

$$\begin{array}{cccc}
C & 0 \to +4 & \uparrow 4 \\
N & +5 \to +4 & \downarrow 1
\end{array}$$

③求总数 (最小公倍数)

C
$$0 \rightarrow +4$$
 $\uparrow 4 \times 1$
N $+5 \rightarrow +4$ $\downarrow 1 \times 4$

④配系数

$$1C + 4HNO_3 \xrightarrow{\Delta} 1CO_2 + 4NO_2 + 2H_2O$$

先配氧化还原体系(氧化剂、还原剂、氧化产物、还原产物)的系数,再根据元素守恒(离子方程式还需要考虑电荷守恒)配平其他物质

- (4) 氧化还原反应方程式的配平依据:
 - (1)电子守恒(化合价升降总数守恒)即在反应中还原剂失去电子的总数与氧化剂得到的电子总数相等;
 - ②质量守恒,反应前后各元素的原子个数相等;
 - ③电荷守恒,在有离子参与的氧化反应中,反应前后离子所带的正负电荷总数相等。
- 3. 一些特殊的氧化还原反应方程式配平技巧
 - (1) 逆向配平法(适用于:部分氧化还原反应、歧化反应)
 - ①部分氧化还原反应:氧化剂或还原剂只有一部分发生化合价变化

例:
$$_MnO_2 + _HCl \xrightarrow{\Delta} _MnCl_2 + _Cl_2 \uparrow + _H_2O$$

$$MnO_2 + 4HCl \xrightarrow{\Delta} MnCl_2 + Cl_2 \uparrow + 2H_2O$$

$$_Cu + _HNO_3 \xrightarrow{\Delta} _Cu(NO_3)_2 + _NO \uparrow + _H_2O$$

$$3Cu + 8HNO_3 \xrightarrow{\Delta} 3Cu(NO_3)_2 + 2NO \uparrow + 4H_2O$$

②歧化反应:氧化剂和还原为同一个物质,相同元素的化合价升降变化

例:
$$_{Cl_{2}} + _{NaOH} \xrightarrow{\Delta} _{NaCl} + _{NaClO_{3}} + _{H_{2}O}$$

$$3Cl_{2} + 6NaOH \xrightarrow{\Delta} 5NaCl + NaClO_{3} + 3H_{2}O$$

(2) 整体标价法

例:
$$\Box Cu_2S + \Box HNO_3 \rightarrow \Box H_2SO_4 + \Box NO \uparrow + \Box Cu(NO_3)_2 + \Box H_2O$$

①整体标价法

$$\begin{array}{cccc}
& \stackrel{+1}{\overset{-2}{\text{Cu}_2}} \stackrel{+5}{\text{S}} & \stackrel{+5}{\overset{+5}{\text{M}}} & \stackrel{+6}{\text{S}} & \stackrel{+2}{\overset{+2}{\text{N}}} & O \uparrow + \stackrel{+2}{\overset{+2}{\text{Cu}}} & (NO_3)_2 + \stackrel{+}{\overset{+}{\text{H}}}_2 & O \\
& & \stackrel{\text{Cu}}{\text{Cu}} & +1 \rightarrow +2 & \uparrow 1 \times 2 \\
& & S & -2 \rightarrow +6 & \uparrow 8 \times 1
\end{array} \right\} 10 \times 3$$

$$N & +5 \rightarrow +2 & \downarrow 3 \times 10$$

$$3Cu_2S + 22HNO_3 \rightarrow 3H_2SO_4 + 10NO \uparrow +6Cu(NO_3)_2 + 8H_2O$$

②整体标零法

$$\begin{array}{ccc}
\overset{\circ}{\text{LC}} \overset{\circ}{\text{U}_2} \overset{\circ}{\text{S}} + \overset{\circ}{\text{LH}} \overset{\circ}{\text{N}} \overset{\circ}{\text{O}_3} \xrightarrow{\text{H}_2} \overset{\circ}{\text{S}} \overset{\circ}{\text{O}_4} + \overset{\circ}{\text{LN}} \overset{\circ}{\text{O}} \uparrow + \overset{\circ}{\text{LC}} \overset{\circ}{\text{U}} (\text{NO}_3)_2 + \overset{\circ}{\text{LH}_2} \text{O} \\
\overset{\circ}{\text{Cu}} & 0 \xrightarrow{} + 2 & \uparrow 2 \times 2 \\
\overset{\circ}{\text{S}} & 0 \xrightarrow{} + 6 & \uparrow 6 \times 1 \\
\overset{\circ}{\text{N}} & + 5 \xrightarrow{} + 2 & \downarrow 3 \times 10
\end{array}$$

$$3Cu_{2}S + 22HNO_{3} \rightarrow 3H_{2}SO_{4} + 10NO \uparrow +6Cu(NO_{3})_{2} + 8H_{2}O$$

(3) 减少变价法

$$3Cu_2S + 22HNO_3 \rightarrow 3H_2SO_4 + 10NO \uparrow +6Cu(NO_3)_2 + 8H_2O$$

二、氧化还原反应的计算

- 1. 常见题型:
- (1) 求氧化剂与还原剂或氧化产物与还原产物的物质的量之比或质量比;
- (2) 计算参加反应的氧化剂或还原剂的量;
- (3) 确定反应前后某一元素价态的变化;
- (4) 电子转移数目的计算
- 2. 解题方法
- (1) 找出氧化剂和还原剂以及各自的还原产物和氧化产物;
- (2) 找准一个原子或离子得失电子数 (注意: 化学式中粒子的个数);
- (3) 根据得失电子守恒列等式:

 $n(氧化剂) \times 变价原子个数 \times 化合价变化值 = n(还原剂) \times 变价原子个数 \times 化合价变化值。$

枝繁叶茂

题型 1: 氧化还原反应的配平

例 1: 下列化学方程式配平正确的是 ()

- A. $2KMnO_4+11H_2S+5H_2SO_4\rightarrow K_2SO_4+2MnSO_4+13S\downarrow +16H_2O$
- B. $2KMnO_4 + 8H_2S + 4H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 9S \downarrow + 12H_2O$
- C. $2KMnO_4 + 5H_2S + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + S \downarrow + 4H_2O$
- D. $2KMnO_4 + 5H_2S + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5S \downarrow + 8H_2O$

【难度】★

【答案】D

例 2: 配平下列氧化还原方程式

- (1) $\bot Cu + \bot HNO_3 \rightarrow \bot Cu(NO_3)_2 + \bot NO + \bot H_2O$
- (2) $\Box AsH_3 + \Box HNO_3 \rightarrow \Box H_3 AsO_4 + \Box NO_7 + \Box H_7 O$
- (3) $\bot KMnO_4 + \bot H_2O_2 + \bot H_2SO_4 \rightarrow \bot K_2SO_4 + \bot MnSO_4 + \bot O_2 \uparrow + \bot H_2O_3 \downarrow + \bot O_4 \uparrow + \bot H_2O_4 \downarrow + \bot O_4 \uparrow O_4 \uparrow + \bot O_4 \uparrow O_4 \uparrow + \bot O_4 \uparrow O_5 \uparrow O_4 \uparrow O_5 \uparrow O_4 \uparrow O_5 \uparrow O_5 \downarrow O_5 \uparrow O_5 \uparrow O_5 \uparrow O_5 \uparrow O_5 \uparrow$
- $(4) \quad \bot K_2Cr_2O_7 + \bot C + \bot H_2SO_4 \rightarrow \bot K_2SO_4 + \bot Cr_2(SO_4)_3 + \bot CO_7 \uparrow + \bot H_2O_7 \downarrow C$
- (5) \bot KMnO₄ + \bot HCl \rightarrow \bot MnCl, + \bot Cl, \uparrow + \bot KCl + \bot H₂O
- $(6) \quad \bot KMnO_4 + \bot KNO_2 + \bot \\ \longrightarrow \bot MnSO_4 + \bot K_2SO_4 \uparrow + \bot KNO_3 + \bot H_2O$
- (7) $\bot Fe_3C + \bot HNO_3 \rightarrow \bot CO_2 + \bot NO \uparrow + \bot Fe(NO_3)_3 + \bot H_2O$
- (8) $\bot FeS_2 + \bot O_2 \rightarrow \bot Fe_2O_3 + \bot SO_2$

【难度】★★

【答案】

(1) 3, 8, 3, 2, 4

- (2) 1, 8, 1, 8, 4
- (3) 2, 5, 3, 1, 2, 5, 8
- (4) 2, 3, 8, 2, 2, 3, 8
- (5) 2, 16, 2, 5, 2, 8
- (6) 2, 5, $3H_2SO_4$, 2, 1, 5, 3
- (7) 3, 40, 3, 13, 9, 20
- (8) 4, 11, 2, 8

题型 2: 氧化还原反应的计算

例 3: 在 $5KI + KIO_3 + 3H_2SO_4 \rightarrow 3K_2SO_4 + 3I_2 + 3H_2O$ 的反应中,氧化剂与还原剂物质的量之比为(

- A. 1:3
- B. 1:4
- C. 1:5
- D. 5:1

【难度】★

【答案】C

变式 1: 氨气与一氧化氮花	在一定条件下的化学方积	涅式: 4NH ₃ +6NO →5	$N_2 + 6H_2O$ 。反应中,被氧化与被还原
的氮原子数之比为 (A. 5:4 【难度】★ 【答案】C) B. 4:5	C. 2:3	D. 3:2
例 4: 3mol SO ₃ ²⁻ 恰好将 2r	mol XO ₄ 还原, SO ₃ ²⁻ 被	氧化为 SO ²⁻ ,则 X 元素	素在还原产物中的化合价是()
A. +1 【难度】★★ 【答案】D	B. +2	C. +3	D. +4
变式 1: 现有 24mL 浓度	为 0.05mol·L ⁻¹ 的 Na ₂ SO	3溶液恰好与 20mL 浓度	度为 0.02mol·L ⁻¹ 的 K ₂ Cr ₂ O ₇ 溶液完全反
应。已知 Na ₂ SO ₃ 可被 K ₂ O	Cr ₂ O ₇ 氧化为Na ₂ SO ₄ ,	则元素 Cr 在还原产物中	中的化合价为 ()
A. +2 【难度】★★ 【答案】B	B. +3	C. +4	D. +5
例 5: 己知 H ₂ S 能被下列	物质氧化,各物质发生	生下列变化: Fe³+ → Fe	e^{2+} ; $Cr_2O_7^{2-} \to 2Cr^{3+}$; $Br_2 \to 2Br^-$;
HNO ₃ → NO 。如果氧化 ()	等物质的量的 H ₂ S 气	体得到 S 单质,需要上	上述离子或物质的物质的量最小的是
A. Fe ³⁺	B. Cr ₂ O ₇ ²⁻	C. Br ₂	D. HNO ₃
【难度】★★ 【答案】B 变式 1: Na ₂ S _x 在碱性溶液 的物质的量之比为 1: 16, A. 2 【难度】★★★ 【答案】D 题型 3: 氧化还原反应	则 <i>x</i> 的值为 (B. 3)	E原为 NaCl,若反应中 Na ₂ S _x 与 NaClO D.5
例 6: 2KMnO ₄ +16HCl —	$\Rightarrow 2KCl + 2MnCl_2 + 5Cl_2$	↑+8H ₂ O	
(1)标出电子转移的方向 (2)反应中元素 (3)参加反应的盐酸中, (4)若有 158gKMnO ₄ 参 (5)若标准状况下生成 C 【难度】★★★ 【答案】	表被还原,还原剂是 被氧化的 HCl 和未被拿加反应,则被氧化的 H Cl ₂ 22.4L,则参加反应的	氰化(显酸性)的 HCl f Cl 有g。 n HCl 为mol,转	专移的电子为mol。
$(1) \stackrel{-1}{\text{Cl}} \xrightarrow{10e} \stackrel{+7}{\text{Mn}}$	(2) Mn HCl	(3) 5:3 (4) 18	82.5 (5) 3.2 2

变式 1:	在 $K_2Cr_2O_7$ +	$14HC1 \rightarrow 2KC1 +$	-2 CrCl ₃ + 3Cl ₂ \uparrow +	-7H ₂ O的反应中		
(1)_		化剂,	是还原剂,	被还原,		江 反应,
(3) 若(4) 若	示出电子转移方 持有 219g 氯化结 持有 219g 氯化结 】★★★	氢被氧化,则生原	成氯气g 生成氯气			
(1) K	$X_2Cr_2O_7$ HO	$\frac{+6}{\text{Cr}}$ $\frac{-1}{\text{Cl}}$	Cl_2 (2) Cl_2	$\xrightarrow{6e} \overset{+6}{\text{Cr}} $ (3) 213 (4) 91.3	3
例 7: 7	E KClO ₃ + 6HO	$Cl \rightarrow KCl + 3Cl_2$ 1	`+3H ₂ O 的反应中			
(2) 反 (3) 参 (4) 若 子为 【难度 【答案	。加反应的盐酸 一种准状况下生 mol。 】★★★ 】	_元素被还原,还 è中,被氧化的 B ±成 Cl ₂ 16.8L,则	参加反应的 HCl	显酸性)的 HCl 为mol,初	的比值是。 b氧化的 HCl 为。	
					1.23 , 1.23 1,正确的是 ()
B. C. D. 【难度 【答案	该反应转移的 氧化剂和还原 】★★★ 】B	相对分子质量为 的电子数为 6e 原剂的物质的量之	公 比为 1:6	的易爆物二氧化氯	氰。其变化可表述为 :	
		□KClO ₃ +	□HCl(浓) →□KCl	$+\Box ClO_2 \uparrow +\Box Cl_2 \uparrow$	+0	
(2) 浓 a (3) 产 (4) C 的 【难度 【答案	 战盐酸再反应中 . 只有还原性 生 0.1molCl₂, lO₂具有很强的 倍。 】★★★ 】 	·显示出来的性质 b.还原性 则转移的电子的 J氧化性。因此,	是 ()(和酸性 c. 的物质的量为 常被用作消毒剂。	只有氧化性 mol。	d. 氧化性和酸性 以单位质量得到的电	ŀ子数表示)是 Cl₂
(1) 2	1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 Z112O	(2) 0 (3	/ U.Z (4) Z	.03	

变式 1: 某强酸性反应体系中,反应物和生成物共六种物质: O_2 、 MnO_4^- 、 H_2O 、 Mn^{2+} 、 H_2O_2 、 H^+ ,已知该反应中, H_2O_2 只发生了如下过程: $H_2O_2 \to O_2$

(1)	该反应中发生还原反应的过程是:	 	_ °		
(2)	写出该反应配平的离子方程式:_				

(3) 如果上述反应中有 6.72L (标况下) 气体生成,转移的电子数为 mol。

【难度】★★

【答案】

(1) $MnO_4^ Mn^{2+}$ (2) $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 \uparrow +8H_2O$ (3) 0.6

一、氧化还原反应的配平

- 1. 配平原则
- 2. 氧化还原反应方程式配平的一般方法与步骤
- (1) 配平方法: 化合价升降法
- (2) 步骤: 标变价、列升降、求总数、配系数
- (4)氧化还原反应方程式的配平依据: ①电子守恒;②质量守恒;③电荷守恒。
- 3. 一些特殊的氧化还原反应方程式配平技巧
- (1) 逆向配平法(适用于:部分氧化还原反应、歧化反应)
- (2) 整体标价法
- (3) 减少变价法

二、氧化还原反应的计算

- 1. 常见题型:
- (1) 求氧化剂与还原剂或氧化产物还原产物的物质的量之比或质量比;
- (2) 计算参加反应的氧化剂或还原剂的量;
- (3) 确定反应前后某一元素价态的变化;
- (4) 电子转移数目的计算

2. 解题方法

- (1) 找出氧化剂和还原剂以及各自的还原产物和氧化产物;
- (2) 找准一个原子或离子得失电子数 (注意: 化学式中粒子的个数);
- (3) 根据得失电子守恒列等式:

 $n(氧化剂) \times 变价原子个数 \times 化合价变化值=n(还原剂) \times 变价原子个数 \times 化合价变化值。$

瓜熟蒂落

1. 在反应 8NH ₃ + 3Cl ₂ → 6	6NH ₄ Cl+N ₂ 中,被氧化	化的氨和未被氧化的氨的	的质量比是 ()
A. 3:1 【难度】★ 【答案】B	B. 1:3	C. 1:1	D. 3:8
2. 在反应 3Cl ₂ + 6KOH(浓	$(1) \rightarrow 5KCl + KClO_3 + 3H_2$	O,氧化剂与还原剂的	物质的量之比为()
A. 5:1 【难度】★ 【答案】A	B. 4:1	C. 1:5	D. 1:4
3. 将 9.60×10-4mol XO ₄ 在	溶液中还原到较低价态	,需用 24mL0.100mol •	L^{-1} 的 H_2O_2 溶液,则 X 元素的化合价
变为 () A. +1 【难度】★ 【答案】B	B. +2	C. +3	D. +4
4. 实验室将 NaClO ₃ 和 Na	₂ SO ₃ 按物质的量比 2:1	倒入烧瓶中,用水浴加	热,同时滴入H ₂ SO ₄ 溶液,产生棕黄
色的气体 X, 反应后测得 I	NaClO ₃ 和 Na ₂ SO ₃ 恰好5	完全反应,则 X 为 ()
A. Cl ₂ 【难度】★ 【答案】C	B、Cl ₂ O	C、ClO ₂	D、Cl ₂ O ₃
5. 实验室常用浓盐酸与二	氧化锰反应: MnO ₂ + 4	HCl(\dot{x}) $\xrightarrow{\Delta}$ MnCl ₂ + 0	Cl ₂ ↑+2H ₂ O制取氯气,该反应中还原
剂与氧化剂的质量比是A. 146:87【难度】★【答案】B	() B. 73:87	C. 87:146	D. 87:73
6. 在 4Zn +10HNO ₃ → 4Z	$(NO_3)_2 + NH_4NO_3 + 3I_4$	H_2 O 反应中,被还原的	硝酸和未被还原的硝酸的物质的量之
比是 () A. 4:1 【难度】★ 【答案】D 7. 某氮的氧化物和一氧化 质的量之比为 1:2,则该		C. 9:1 分反应,生成氮气和二)	D. 1:9 至氧化碳。若测得氮气和二氧化碳的物
A. N ₂ O 【难度】★ 【答案】B	B. NO	C. NO ₂	D. N_2O_5

8. 硫代硫酸钠	可作为脱硫剂,	已知 25.0mL0.100	Omol/L Na ₂ S ₂ O ₃ 溶	液恰好把 224mL(标准状况	.)Cl ₂ 完全转化
为Cl¯离子,则	S ₂ O ₃ ²⁻ 将转化为	()			
A. S ²⁻	В.	S	C. SO ₃ ²⁻	D, SO ₄ ² -	
【难度】★★ 【答案】D					
9. 在某温度下氯	氯气和氢氧化钠	溶液反应, 在其产	物中 NaClO 、Na	ClO ₃ 、NaCl、H ₂ O经过分标	r, ClO , ClO ₃
A. 1:1 【难度】★★ 【答案】C	В.		C. 1:4		方程式如下:
$K^{35}ClO_3 + 6H^{37}$	$Cl \rightarrow KCl + 3Cl$	₂ ↑+3H ₂ O,则下3	列说法正确的是(
B. 生成的 C. 氯化钾 D. 每生成 【难度】★★★ 【答案】AC	氯气其相对分于 既不是氧化产物 标准状况下的靠	按氧化的 H ³⁷ C1 的特 产质量为 72 物,也不是还原产特 氧气 11.2L,转移电 可以产生氯气,反	勿 A子数为 6.02×10 ²³	5	
	2	2KMnO ₄ +16HCl –	→ 2KCl + 2MnCl ₂ +	5Cl ₂ ↑+8H ₂ O	
	,锰元素的化 [。] 且子转移的方向 [。]		为价,若参加	1反应的 HCl 是 146g,那么待	玻氧化的 HCl 是
【答案】(1)+7	7 +2	91.25 CI	$\xrightarrow{10e} \stackrel{+7}{Mn}$		
12. (1) 2KMn		2KCl + 2MnCl ₂ + 50	Cl ₂ ↑+8H ₂ O,反应	立中氧化剂和还原剂的物质的	
(2) 3Cu+	$8HNO_3 \rightarrow 3Cu($	$NO_3)_2 + 2NO \uparrow +4$	H ₂ O,反应中生成	:11.2L(标况下)NO 时,消	肖耗还原剂的质
量为	_g,电子转移	mol,反应F	户被还原的HNO3-	与未被还原的 HNO ₃ 的质量之	之比为
【难度】★★ 【答案】(1) 1:	5 (2) 48	8 1.5	1:3		
13. Cl₂在70℃	的 NaOH 溶液。	中,能同时发生两	个自身氧化还原反	应,反应的化学方程式为:	
(1)产物中	中有 NaClO:_			;	

(2)产物中有 NaClO ₃ :
反应完全后测得溶液中 NaClO 和 NaClO ₃ 的数目之比为 4:1,则产物的溶液中 NaCl 和 NaClO 的物质的量之
比为
【难度】★★★
【答案】(1) $Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$
$(2) 3Cl2 + 6NaOH \rightarrow 5NaCl + NaClO3 + 3H2O $ 9:4
14. 氧化还原反应中实际上包含氧化和还原两个过程。下面是一个还原过程的反应式:
$NO_3^- + 4H^+ + 3e \rightarrow NO + 2H_2O$
$KMnO_4$ 、 Na_2CO_3 、 Cu_2O 、 $Fe_2(SO_4)_3$ 四种物质中的一种物质(甲)能使上述还原过程发生。
(1)写出并配平该氧化还原反应的化学方程式:。 (2)反应中硝酸体现了性质。 (3)反应中若产生 0.2mol 气体,则转移电子的物质的量是mol。 【难度】★★★
【答案】(1) $14HNO_3 + 3Cu_2O \rightarrow 6Cu(NO_3)_2 + 2NO + 7H_2O$ (2) 酸性、氧化性 (3) 0.6
15. 高铁酸钾(K₂FeO₄)是一种新型、高效、多功能水处理剂,无二次污染的绿色水处理剂。工业上是先制得高铁酸钠,然后在低温下,在高铁酸钠溶液中加入 KOH 至饱和就可析出高铁酸钾。制备方法有: ①湿法: 次氯酸盐氧化法 ②干法: 高温过氧化物法。 (1) 湿法制备的的主要反应方程为: Fe(OH)₃+NaClO+NaOH→Na₂FeO₄+NaCl+H₂O 在空格中填写适当物质,并配平反应化学方程式。 (2) 干法制备中牵涉到的物质有: FeSO₄、Na₂FeO₄、Na₂SO₄、Na₂O₂; 发生氧化反应的过程是:
【难度】★★★
【答案】(1) 2Fe(OH)₃+3NaClO+4NaOH → 2Na₂FeO₄+3NaCl+5H₂O
$(2) FeSO_4 \longrightarrow Na_2FeO_4 \qquad (3) < \qquad (4) 0.21$
16. 黄铜矿(主要成分 CuFeS ₂)是提取铜的主要原料: (1) 取 12.5g 黄铜矿样品,经测定含 3.60g 硫(杂质不含硫),矿样中 CuFeS ₂ 含量为; (2) 已知 2CuFeS ₂ + 4O ₂ —— **SOO ² → Cu ₂ S + 3SO ₂ + 2FeO(炉渣) 产物 Cu ₂ S 在 1200℃高温下继续反应: 2Cu ₂ S + 3O ₂ —— **2Cu ₂ O + 2SO ₂ ; 2Cu ₂ O + Cu ₂ S —— **6Cu + SO ₂ ;

假定各步反应都完全,完成下列计算:

- ①由 6molCuFeS₂ 生成 6molCu, 求消耗 O₂ 的物质的量______;
- ②6molCuFeS₂和 14.25molO₂反应, 理论上可得到 molCu;
- ③6molCuFeS₂和 15.75molO₂反应,理论上可得到 molCu。

【难度】★★★

【答案】(1) 82.8% (2) ①15mol; ②4.5; ③3mol

- 17. 二氧化硒 (SeO₂) 是一种氧化剂,其被还原后的单质硒可能成为环境污染物,通过与浓 HNO₃ 或浓 H₂SO₄ 反应生成 SeO₂ 以回收 Se。完成下列填空:
- (1) Se 和浓 HNO₃ 反应的还原产物为 NO 和 NO₂,且 NO 和 NO₂ 的物质的量之比为 1: 1, 写出 Se 和浓 HNO₃ 的反应方程式 _____;
- (2) 己知: Se+2H₂SO₄(浓)→2SO₂↑+SeO₂+2H₂O; 2SO₂+SeO₂+2H₂O→Se+2SO₄²+4H⁺则 SeO₂、H₂SO₄(浓)、 SO₂的氧化性由强到弱的顺序是____。

【难度】★★★

【答案】(1) Se+2HNO₃(浓)→H₂SeO₃+NO↑+NO₂↑;

(2) H2SO₄(浓) >SeO₂>SO₂

