Graphe ch2 Introduction aux graphes

Pierre-Yves BISCHOFF

IUT Informatique Graphique

2021

Sommaire

- 1 Historique
- Exemples d'applications
- 3 Définition
- 4 Quelques types de graphe

Sommaire de Historique

https://www.youtube.com/watch?v=_dIhSQgq_vQ

Peut-on passer une fois et une seule par tous les ponts???

Simplification du problème :

Modélisation mathématique :

Nous avons 4 sommets : A, B, C, D Correspondant aux 4 quartiers de la ville 7 arêtes de 1 à 7 Correspondant aux 7 ponts

- Le problème devient :
- Peut-on dessiner le graphe sans lever le crayon?
- La réponse apporter par Euler est : NON
- chaque sommet devrait avoir un nombre pair d'arêtes
- > sauf au pire le sommet de départ et d'arrivée

Dessiner sans lever le crayon

ponts de Konigsberg:

L'enveloppe ouverte :

modification:

Modélisation de réseaux de transport Modélisation de réseaux informatiques Programme informatique Automate Modélisation de relations en sciences sociales Modélisation en chimic

Sommaire de Exemples d'applications

Exemples d'applications

Modélisation de réseaux de transport

Modélisation de réseaux informatiques Programme informatique Automate

Transport aérien

Modélisation de réseaux de transport Modélisation de réseaux informatiques Programme informatique Automate

Transport ferré

Réseaux informatiques

Modélisation en informatique

Modélisation de réseaux de transport Modélisation de réseaux informatiques Programme informatique Automate Modélisation de relations en sciences sociales

automate

Modélisation de réseaux de transport
Modélisation de réseaux informatiques
Programme informatique
Automate
Modélisation de relations en sciences sociales

Graphe social de facebook

Modélisation de réseaux de transport Modélisation de réseaux informatiques Programme informatique Automate Modélisation de relations en sciences sociales Modélisation en chimie

exemple de molécule

Sommaire de Définition

Définitions de base

Graphe

Un graphe est constitué d'un ensemble de nœuds et d'arêtes qui relient 2 nœuds.

- ightharpoonup On note G = (S, A)
- ▶ Où S est l'ensemble des sommets
- ightharpoonup ici S = A, B, C, D
- et A est l'ensemble des arêtes
- ightharpoonup ici A = (A, A), (A, B), (A, C)

département informatique graphique

Graphe orienté

Graphe orienté

Un graphe orienté est constitué d'un ensemble de nœuds et d'arcs qui relient 2 nœuds.

- et A est l'ensemble des arcs
- ightharpoonup arc a=(s,s') est un lien orienté
- entre le sommet s et le sommet s'

Graphe orienté

Prédécesseur

Pour l'arc (A, B) A est le **prédécesseur** de B

Successeur

Pour l'arc (A, B) B est le **successeur** de A

Graphe simple

Boucle

Arête ou Arc dont les extrémités sont le même sommet

Graphe simple

Un graphe qui ne possède pas de boucle

Degré d'un sommet d'un graphe non-orienté

Degré

- Dans un graphe non-orienté, le degré d'un sommet s est noté d(s)
- ightharpoonup d(s) est le nombre d'arêtes qui relient s
- pour une boucle l'arête est comptée 2 fois
- ici $d(A) = 4 \ d(B) = d(C) = 1 \ \text{et}$ d(D) = 0

Degré d'un sommet d'un graphe orienté

Degré

- ▶ Dans un graphe orienté, le degré entrant d'un sommet s est noté $d^-(s)$
- $ightharpoonup d^-(s)$ est le nombre d'arêtes dirigées vers s
- le degré sortant d'un sommet s est noté d+(s)
- $ightharpoonup d^+(s)$ est le nombre d'arêtes qui sortent de s
- le degré du sommet est la somme des degrés entrant et sortant
- $d(s) = d^+(s) + d^-(s)$

Degré d'un sommet d'un graphe orienté

Degré

- $d^{-}(A) = 3$ et $d^{-}(B) = 1$ et $d^{-}(C) = 0$ et $d^{-}(D) = 0$
- $d^+(A) = 2$ et $d^+(B) = 1$ et $d^+(C) = 1$ et $d^-(D) = 0$
- d(A) = 3 + 2 et d(B) = 1 + 1 et d(C) = 1 et d(D) = 0

Ordre et taille d'un graphe

Ordre d'un graphe

Ordre de G: c'est le nombre de sommets ici |S|=4

Taille d'un graphe

Taille de G: c'est le nombre d'arêtes ici |A| = 3

Chaîne et cycle

Chaîne

Une chaîne est une suite d'arêtes consécutives par exemple : (D, B, C)

Cycle

Un cycle est une chaîne dont les 2 extrémités sont le même sommet par exemple : (B, A, C)

Circuit dans un graphe orienté

Chaîne

Une chaîne est une suite d'arêtes consécutives orientées dans le même sens par exemple (A,B,C) n'est par une chaîne

Circuit

Un circuit est une chaîne dont les 2 extrémités sont le même sommet par exemple (B, D, B)

intormatique Brabnidae

graphe non orienté connexe

Graphe non orienté : connexité

G est connexe si tout sommet s peut être relié par une chaîne à n'importe quel autre sommet s'

graphe orienté connexe

Graphe orienté : connexité

G est connexe si tout sommet s peut être relié par une chaîne à n'importe quel autre sommet s' sans compter le sens des flèches

graphe orienté fortement connexe

Graphe orienté : fortement connexe

Si *G* est connexe en prenant compte du sens des flèches

Isomorphisme de graphe

Graphe G

Graphe H

G et H sont isomorphes

G et H sont identiques s'il existe une fonction bijective f entre les sommets de G et de H et qui garde les arêtes

Graphe pondéré

Poids d'une arête

Nombre réel positif affecté à une arête

Poids d'une chaîne

Somme des poids des arêtes constituant une chaîne

Liste d'adjacence

Liste d'adjacence

- G = (S, A) on numérote les sommets de 0 à n 1
- On crée un tableau de *n* listes chaînées
- ▶ la *i*^e liste contient tous les sommets qui sont reliés à *i*

Matrice d'adjacence

Liste d'adjacence

- G = (S, A) on numérote les sommets de 0 à n 1
- \triangleright On crée une matrice $n \times n$
- $ightharpoonup m_{ii} = \text{le nombre d'arc entre } i \text{ et } j$
- $ightharpoonup m_{ij} = 0$ sinon

Sommaire de Quelques types de graphe

4 Quelques types de graphe

Graphe isolé

- ▶ Un graphe a *n* sommets et sans aucune arête est un graphe isolé
- \triangleright On le note I_n comme les matrices identités

Graphe cyclique

- ► Un graphe a *n* sommets et *n* arêtes formant un cycle
- \triangleright On le note C_n

Graphe complet

- ▶ Un graphe dont les n sommets sont reliés les uns aux autres
- \triangleright On le note K_n

Graphe biparti

- ▶ Un graphe est biparti si on peut partitionner
- ▶ ses sommets en 2 ensembles X et Y tels que
- ▶ une arête de G relie un sommet de X avec un de Y

