Expansão Teórica 18 — Estrutura Ressonante da Função de Onda: Aplicação da Teoria ERIЯЗ à Equação de Schrödinger

Resumo

1. A Equação de Schrödinger Padrão

A equação de Schrödinger descreve a evolução da função de onda $\psi(ec{r},t)\in\mathbb{C}$:

$$i\hbarrac{\partial\psi}{\partial t}=\left(-rac{\hbar^2}{2m}
abla^2+V
ight)\psi$$

Este modelo considera a função de onda como uma entidade complexa unidimensional, sem estrutura geométrica interna.

2. Reformulação ERIЯЗ

2.1 Função de Onda Ressonante

Substituímos ψ por uma função composta de três projeções ortogonais:

$$\Psi(ec{r},t)=\psi_i(ec{r},t)+\psi_j(ec{r},t)+\psi_k(ec{r},t)$$

Cada $\psi_{\mathbf{I}} \in \mathbb{C}$ representa a projeção da bolha vibracional da partícula nos planos i,j,k do espaço rotacional.

2.2 Equação de Schrödinger Ressonante

A equação torna-se:

$$i\hbarrac{\partial\Psi}{\partial t}=\left(-rac{\hbar^2}{2m}
abla_{\mathbb{E}}^2+V_{\mathbb{E}}
ight)\Psi$$

Com:

- $\nabla^2_{\mathbb{E}} = \nabla^2 \psi_i + \nabla^2 \psi_j + \nabla^2 \psi_k$
- $V_{\mathbb{E}} = V_i + V_j + V_k$

3. Caso-Teste: Poço de Potencial Unidimensional Infinito

3.1 Definição

Um poço de potencial com barreiras infinitas nas bordas x=0 e x=L, no qual a partícula está confinada.

3.2 Soluções Ressonantes

Para n=1, temos:

$$\psi_{\mathbf{I}}(x) = \sqrt{rac{2}{L}} \sin\left(rac{n\pi x}{L} + \phi_{\mathbf{I}}
ight), \quad \mathbf{I} \in \{i, j, k\}$$

Com defasagens de fase $\phi_{\mathbf{I}}$ entre as projeções. A função total é:

$$\Psi_{ ext{ERISH}}(x) = rac{1}{3} \left(\psi_i(x) + \psi_j(x) + \psi_k(x)
ight)$$

3.3 Energia Quantizada

A energia é preservada:

$$E_n=rac{n^2\pi^2\hbar^2}{2mL^2}$$

Para $L=1\,\mathrm{nm}$ e elétron em n=1, obtemos:

$$E_1 pprox 6.02 imes 10^{-20} \, \mathrm{J} pprox 0.376 \, \mathrm{eV}$$

4. Interpretação Física ERIЯЗ

Elemento	Interpretação ERIЯЗ
Função de onda	Superposição de projeções rotacionais coerentes
Nós da função	Alinhamento simultâneo das três projeções
Fase	Parâmetro de acoplamento entre planos
Estado quântico	Configuração de fase ressonante multidimensional

5. Conclusão

A aplicação da Teoria ERIAE à equação de Schrödinger revela que:

- A estrutura de quantização da energia é mantida;
- A função de onda ganha uma estrutura interna rotacional algébrica;
- A superposição quântica passa a ser interpretada como interferência de projeções rotacionais coerentes:
- A medição e o colapso podem ser entendidos como quebra da coerência entre projeções.

Essa estrutura fornece um novo paradigma para a mecânica quântica, no qual as funções de onda representam estados reais ressonantes e projetáveis no espaço, abrindo caminho para uma unificação com a gravidade e outras interações fundamentais.