# Lineare Algebra II (Vogel)

# Robin Heinemann

# 16. Juni 2017

# Inhaltsverzeichnis

| 18 | Eigenwerte                    | 1  |
|----|-------------------------------|----|
| 19 | Dualraum                      | 16 |
| 20 | Bilinearformen                | 21 |
| 21 | Quadratische Räume            | 25 |
| 22 | Euklidische Räume             | 32 |
| 23 | Die orthogonale Gruppe        | 39 |
| 24 | Der Spektralsatz              | 45 |
| 25 | Unitäre Räume                 | 52 |
| 26 | Ringe, Ideale und Teilbarkeit | 58 |

# 18 Eigenwerte

In diesem Abschnitt sei  $n\in\mathbb{N}$ , Vein K-VR und  $\varphi\in\operatorname{End}_K(V).$ 

Frage: V endlichdim. Existiert eine Basis  $\mathcal{B}=(v_1,\ldots,v_n)$  von V, sodass  $M_{\mathcal{B}}(\varphi)$  eine Diagonalmatrix ist, das heißt

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

 $\min \lambda_1, \dots, \lambda_n \in K?$ 

Für  $i=1,\ldots,n$  wäre dann  $arphi(v_i)=\lambda_i v_i$ 

**Definition 18.1**  $\lambda \in K, v \in V$ 

- $\lambda$  heißt Eigenwert von  $\varphi \overset{\mathrm{Def}}{\Longrightarrow} \exists v \in V, v \neq 0 : \varphi(v) = \lambda v$
- v heißt Eigenvektor zum Eigenwert  $\lambda \stackrel{\mathrm{Def}}{\Longleftrightarrow} v \neq 0 \land \varphi(v) = \lambda v$
- $\varphi$  heißt diagonalisierbar  $\stackrel{\mathrm{Def}}{\Longleftrightarrow} V$  besitzt eine Basis aus EV von  $\varphi$

(Falls V endlichdimensional, ist die äquivalent zu: Es gibt eine Basis  $\mathcal B$  von V und  $\lambda_1,\dots,\lambda_n\in K$  mit

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

Eigenwerte, Eigenvektoren, Diagonalisierbarkeit einer Matrix  $A \in M(n \times n, K)$  sind über den Endomorphismus  $\tilde{A}: K^n \to K^n$  definiert.

**Bemerkung 18.2**  $A \in M(n \times n, K)$ . Dann sind äquivalent:

- 1. A ist diagonalisierbar.
- 2. Es gibt eine Basis von  $K^n$  aus Eigenvektoren von A

3. Es gibt ein 
$$S \in GL(n, K), \lambda_1, \dots, \lambda_n \in K$$
 mit  $SAS^{-1} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$ 

4. A ist ähnlich zu einer Diagonalmatrix

In diesem Fall steht in den Spalten von  $S^{-1}$  eine Basis des  $K^n$  aus EU von A, und für jede Matrix  $A \in M(n \times n, K)$  mit der Eigenschaft, dass die Spalten von  $S^{-1}$  eine Basis des  $K^n$  aus EV von A bilden, dann ist  $SAS^{-1}$  eine Diagonalmatrix (mit den EW auf der Diagonalen.)

Beweis Äquivalenz:

1.  $\iff$  2. Definition, 2.  $\iff$  3. aus Basiswechselsatz (16.6), 3.  $\iff$  4. aus Definition Ähnlichkeit (16.12)

$$\text{Zusatz: Sei } S \in \operatorname{GL}(n,K) \text{ mit } SAS^{-1} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix} \implies A \begin{pmatrix} S^{-1}e_j \end{pmatrix} = S^{-1} \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix} e_j.$$

Wegen  $S^{-1}\in \mathrm{GL}(n,K)$  ist  $S^{-1}e_j\neq 0$ , das heißt  $S^{-1}$  ist EV von A zum EW  $\lambda_j$  Wegen  $S^{-1}\in \mathrm{GL}(n,K)$  ist  $\left(S^{-1}e_1,\ldots,S^{-1}e_n\right)$  eine Basis des  $K^n$  aus EV von A.

Sei  $S \in GL(n, K)$ , das heißt die Spalten von  $S^{-1}$  eine Basis des  $K^n$  aus EV von A bilden, das heißt für alle  $j \in \{1, ..., n\}$  ist  $AS^{-1}e_j = \lambda_j S^{-1}e_j$  für ein  $\lambda_j \in K$ .

$$\implies AS^{-1}e_j = S^{-1}\lambda_j e_j = S^{-1} \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} e_j \implies SAS^{-1}e_j = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} e_j, j = 1, \dots, n$$

$$\implies SAS^{-1} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

#### Beispiel 18.3

$$K = \mathbb{R}, V = \mathbb{R}^2$$

1. 
$$\varphi:\mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 Es ist  $\varphi\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ , das heißt  $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$  ist EV von  $\varphi$  zum EW 1. 
$$\varphi\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right) = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = (-1) \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{, also ist } \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 EV von  $\varphi$  zum EW  $-1$ . Somit: 
$$\begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ ist eine Basis des } \mathbb{R}^2 \text{ aus EV von } \varphi \text{, das heißt } \varphi \text{ ist diagonalisierbar.}$$
 In Termen von Matrizen:  $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in M(2 \times 2, \mathbb{R})$  ist diagonalisierbar, und mit  $S = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$  ist dann ist  $SAS^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$  Achtung: Das  $\varphi$  diagonalisierbar ist, heißt nicht, dass jeder Vektor aus  $V = \mathbb{R}^2$  ein EV von  $\varphi$  ist, zum Beispiel ist  $\varphi\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right) = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ \forall \lambda \in \mathbb{R}.$ 

2. 
$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$$
 (= Drehung um  $\frac{\pi}{2}$ ). hat keinen EW. Beweis dafür: später.

Ziel: Suche Kriterien für Diagonalisierbarkeit.

**Bemerkung 18.4**  $v_1, \ldots, v_m$  EV von  $\varphi$  zu paarweise verschiedenen EW  $\lambda_1, \ldots, \lambda_m \in K$ . Dann ist  $(v_1, \ldots, v_m)$  linear unabhängig, insbesondere ist  $m \leq \dim V$ . Insbesondere gilt: ist V endlichdimensional, dann hat  $\varphi$  höchstens  $\dim(v)$  Eigenwerte.

# **Beweis** per Induktion nach m:

IA:  $m = 1 : v_1 \neq 0$ , da  $v_1$  EV  $\implies (v_1)$  linear unabhängig.

IS: sei  $m \ge 2$ , und die Aussage für m-1 bewiesen.

Seien  $\alpha_1, \ldots, \alpha_m \in K$  mit  $\alpha_1 \lambda_1 v_1 + \cdots + \alpha_m \lambda_m v_m = 0$ . Außerdem:  $\alpha_1 \lambda_1 v_1 + \cdots + \alpha_m \lambda_1 v_m = 0$ 

$$\implies \alpha_2(\lambda_2-\lambda_1)v_2+\cdots+\alpha_m(\lambda_m-\lambda_1)v_m=0$$
 
$$\alpha_2\lambda_2-\lambda_1=\cdots=\alpha_m(\lambda_m-\lambda_1)=0$$
 
$$\implies \alpha_2=\cdots=\alpha_m=0$$
 
$$\implies \alpha_1v_1=0 \implies \alpha_1=0 \implies (v_1,\ldots,v_w) \text{ linear unabhängig}$$
  $\square$ 

**Folgerung 18.5** V endlichdimensional,  $\varphi$  habe n paarweise verschiedene EW, wobei  $n=\dim V$  Dann ist  $\varphi$  diagonalisierbar.

**Beweis** Für  $i=1,\ldots,n$  sei  $v_i$  ein EV von  $\varphi$  zum EW  $\lambda_i \implies (v_1,\ldots,v_n)$  linear unabhängig, wegen  $n=\dim V$  ist  $(v_1,\ldots,v_n)$  eine Basis von V aus EV von  $\varphi$ 

## **Definition 18.6** $\lambda \in K$

 $\operatorname{Eig}(\varphi,\lambda) := \{v \in V \mid \varphi(v) = \lambda v\}$  heißt der Eigenraum von  $\varphi$  bezüglich  $\lambda$ .  $\mu_{geo}(\varphi,\lambda) := \dim \operatorname{Eig}(\varphi,\lambda)$  heißt die geometrische Vielfachheit von  $\lambda$ .

Für 
$$A \in M(n \times n, K)$$
 setzen wir  $\operatorname{Eig}(A, \lambda) := \operatorname{Eig}(\tilde{A}, \lambda), \mu_{geo}(A, \lambda) := \mu_{geo}(\tilde{A}, \lambda).$ 

#### **Bemerkung 18.**7 $\lambda \in K$ . Dann gilt:

- 1.  $\operatorname{Eig}(\varphi, \lambda)$  ist ein UVR von V.
- 2.  $\lambda$  ist EW von  $\varphi \iff \text{Eig}(\varphi, \lambda) \neq \{0\}$ .
- 3.  $\operatorname{Eig}(\varphi, \lambda) \setminus \{0\}$  ist die Menge der zu  $\lambda$  gehörenden EV von  $\varphi$ .
- 4.  $\operatorname{Eig}(\varphi, \lambda) = \ker(\lambda \operatorname{id}_V \varphi)$ , insbesondere ist  $\operatorname{Eig}(A, \lambda) = \ker(\lambda E_m \varphi) = \operatorname{L\"{o}s}(\lambda E_n A, 0)$  für  $A \in M(n \times n, K)$
- 5. Sind  $\lambda_1, \lambda_2 \in Kmit \lambda_1 \neq \lambda_2$ , dann  $\operatorname{Eig}(\varphi, \lambda_1) \cap \operatorname{Eig}(\varphi, \lambda_2) = \{0\}$

**Beweis** 4. Es ist 
$$v \in \text{Eig}(\varphi, \lambda) \iff \varphi(v) = \lambda v \iff \lambda v - \varphi(v) = 0 \iff (\lambda \operatorname{id}_V - \varphi)(v) = 0 \iff v \in \ker(\lambda \operatorname{id}_V - \varphi) \text{ Es ist } \operatorname{Eig}(A, \lambda) = \ker(\lambda \operatorname{id}_{K^n} - \tilde{A}) = \ker(\lambda E_n - A) = \operatorname{L\"{o}s}(\lambda E_n - A, 0)$$

- 1. aus 4.
- 2.  $\lambda \text{ EW von } \varphi \iff \exists v \in V, v \neq 0 \text{ mit } \varphi(v) = \lambda v \iff \text{Eig}(\varphi, \lambda) \neq \{0\}.$
- 3. klar.

5. Sei 
$$\lambda_1 \neq \lambda_2, v \in \text{Eig}(\varphi, \lambda_1) \cap \text{Eig}(\varphi, \lambda_2) \implies \lambda_1 v = \varphi(v) = \lambda_2 v \implies \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} v = 0$$

**Bemerkung 18.8** V endlichdimensional,  $\lambda \in K$ . Dann sind äquivalent:

- 1.  $\lambda$  ist EW von  $\varphi$
- 2.  $\det(\lambda \operatorname{id}_V \varphi) = 0$

**Beweis** 1. 
$$\iff \operatorname{Eig}(\varphi, \lambda) \neq \{0\} \implies \ker(\lambda \operatorname{id}_V - \varphi) \neq \{0\} \implies \lambda \operatorname{id}_V - \varphi \text{ nicht injektiv } \implies \lambda \operatorname{id}_V - \varphi \text{ kein Isomorphismus } \implies \det(\lambda \operatorname{id}_V - \varphi) = 0.$$

**Definition 18.9** K Körper,  $A = (a_{ij}) \in M(n \times n, K)$ 

$$\chi_A^{char} := \det(tE_n - A) = \det\begin{pmatrix} t - a_{11} & -a_{12} & -a_{1n} \\ -a_{21} & t - a_{22} & \\ & & \ddots & \\ -a_{n1} & \dots & t - a_{nn} \end{pmatrix} \in K[t]$$

heißt das **charakteristische Polynom** von A.

**Anmerkung** Hierfür nötig: Determinanten von Matrizen mit Einträgen in einem kommutativen Ring.

In manchen Büchern  $\chi_A^{char} = \det(A - tE_n)$  (schlecht)

#### Beispiel 18.10

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in M(2 \times 2, \mathbb{R})$$

$$\implies A\chi_a^{char} = \det \begin{pmatrix} t-1 & -1 \\ -3 & t-4 \end{pmatrix} = (t-1)(t-4) - 6 = t^2 - 5t - 2$$

Bemerkung 18.11  $A,B\in M(n\times n,K),A\approx B.$  Dann ist  $\chi_A^{char}=\chi_B^{char}.$ 

Beweis  $A \approx B \implies \exists S \in \mathrm{GL}(n,K) : B = SAS^{-1}$ 

$$\implies tE_n - B = tE_n - SAS^{-1} = SS^{-1}tE_n - SAS^{-1} = StE_nS_{-1} - SAS^{-1} = S(tE_n - A)S^{-1}$$

$$\implies \chi_B^{char} = \det(tE_n - B) = \det(S(tE_n - A)S^{-1}) = \det(S)\det(tE_n - A)\det(S^{-1}) = \det(S)\det(S)^{-1}\det(tE_n - A) = \chi_A^{char}$$

**Definition 18.12** V endlichdim,  $n = \dim V$ ,  $\mathcal{B}$  Basis von  $V, \varphi \in \operatorname{End}(V)$ ,  $A = M_{\mathcal{B}}(\varphi)$ 

$$\chi_{\varphi}^{char} := \chi_A^{char} = \det(tE_n - A) \in K[t]$$

heißt das **charakteristische Polynom** von  $\varphi$ .

**Anmerkung**  $\chi_{\varphi}^{char}$  ist wohldefiniert, dann: Ist  $\mathcal{B}'$  eine weitere Basis von  $V,A'=M_{\mathcal{B}'}\varphi$ , dann ist  $A\approx A'$  und deshalb nach 18.11:  $\chi_{A}^{char}=\chi_{A'}^{char}$ .

**Satz 18.13** V endlichdimensional,  $n = \dim V$ . Dann gilt:

1.  $\chi_{\varphi}^{char}$  ist ein normiertes Polynom von Grad n:

$$\chi_{\omega}^{char} = t^n + c_{n-1}t^{n-1} + \dots + c_0$$

mit 
$$c_0 = (-1)^n \det \varphi, c_{n-1} = -^{(\varphi)}$$
 (vgl. Übung zur Spur)

2. Die Nullstellen von  $\chi_{\varphi}^{char}$  sind genau die EW von  $\varphi$ :

$$\lambda \in K \text{ ist EW von } \varphi \iff \chi_{\varphi}^{char} \lambda = 0$$

**Beweis** Sei  $\mathcal{B}$  eine Basis von  $V, A := M_{\mathcal{B}}(\varphi) \in M(n \times n, K)$ 

1.

$$\chi_{\varphi}^{char} = \chi_{A}^{char} = \det \underbrace{(tE_{n} - A)}_{=:B = (B_{ij})} = \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) B_{1,\sigma(1)} \cdot \dots \cdot B_{n,\sigma(n)}$$
$$= (t - a_{11} \cdot \dots \cdot (t - a_{nn})) + \sum_{\sigma \in S_{n} \setminus \{id\}} \operatorname{sgn}(\sigma) B_{1,\sigma(1)} \cdot \dots \cdot B_{n,\sigma(n)}$$
$$:= a$$

Für  $\sigma \in S_n \setminus \{\text{id}\}$  treten in  $B_{1,\sigma(1)}, \ldots, B_{n,\sigma(n)}$  höchstens n-2 Diagonalelemente auf, also  $\deg(g) \leq n-2$ .

$$\implies \chi_{\varphi}^{char} = t^n - (a_{11} + \dots + a_{nn})t^{n-1} + \text{ Terme kleineren Grades}$$

insbesondere:

$$c_{n-1} = -(a_{11} + \dots + a_{nn}) = -^A = -^{\varphi}$$

Es ist

$$c_0 = \chi_{\varphi}^{char}(0) = (\det(tE_n - A))(0) = \det(0E_n - A) = \det(-A) = (-1)^n \det A$$

2. Aus  $A = M_{\mathcal{B}}(\varphi)$  folgt  $\lambda E_n - A = M_{\mathcal{B}}(\lambda \operatorname{id}_V - \varphi)$ . Also:

$$\chi_{\varphi}^{char}(\lambda) = 0 \iff (\det(tE_n - A))(\lambda) = 0 \implies \det(\lambda E_n - A) = 0 \iff \det(M_{\mathcal{B}}(\lambda \operatorname{id}_V - \varphi)) = 0$$
$$\implies \det(\lambda \operatorname{id}_V - \varphi) = 0 \iff \lambda \operatorname{ist} \operatorname{EW} \operatorname{von} \varphi \qquad \Box$$

**Definition 18.14**  $\lambda \in K$ 

$$\mu_{alg}(\varphi,\lambda) := \mu\Big(\chi_{\varphi}^{char},\lambda\Big)$$

heißt die algebraische Vielfachheit

Is piet 18.15
$$1. \ \varphi: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{=:A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \text{ Es ist } \chi_{\varphi}^{char} = \chi_{\varphi}^{char} = \det \begin{pmatrix} t & -1 \\ -1 & t \end{pmatrix} = t^2 - 1 = (t-1)(t+1) \in \mathbb{R}[t] \Longrightarrow \text{ EW von } \varphi: 1, -1.$$

$$\text{Es ist } \mu_{alg}(\varphi, 1) = 1, \mu_{alg}(\varphi, -1) = 1$$

$$\mathrm{Eig}(\varphi,1)=\mathrm{Eig}(A,1)=\mathrm{L\ddot{o}s}(E_2-A,0)=\mathrm{L\ddot{o}s}\left(\begin{pmatrix}1&-1\\-1&1\end{pmatrix},0\right)=\mathrm{Lin}\left(\begin{pmatrix}1\\1\end{pmatrix}\right)$$

also  $\mu_{aeo}(\varphi, 1) = \dim \operatorname{Eig}(\varphi, 1) = 1$ 

$$\operatorname{Eig}(\varphi, -1) = \operatorname{Eig}(A, -1) = \operatorname{Lös}((-1) \cdot E_2 - A, 0) = \operatorname{Lös}\left(\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}, 0\right) = \operatorname{Lin}\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$$

also  $\mu_{qeo}(\varphi, -1) = 1$ .

2. 
$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{-:A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
. Es ist  $\chi_{\varphi}^{char} = \chi_A^{char} = \det \begin{pmatrix} t & 1 \\ -1 & t \end{pmatrix} = \det \begin{pmatrix} t & 1 \\ -1 & t \end{pmatrix}$ 

 $t^2+1,\chi^{char}_{\omega}$  hat keine NS in  $\mathbb{R} \implies \varphi$  hat keine EW.

3. 
$$\varphi: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
. Es ist  $\chi_{\varphi}^{char} = \chi_A^{char} = \det \begin{pmatrix} t-1 & -1 \\ 0 & t-1 \end{pmatrix} = \frac{1}{2} \int_{\mathbb{R}^2}^{\mathbb{R}^2} \left( \frac{x_1}{x_2} \right) dx$ 

 $(t-1)^2 \implies 1$  ist einziger EW von arphi, es ist  $\mu_{alg}(arphi,1)=2$ 

$$\operatorname{Eig}(\varphi,1) = \operatorname{Eig}(A,1) = \operatorname{L\"os}(1E_2 - A,0)\operatorname{L\"os}\left(\begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}, 0\right) = \operatorname{Lin}\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right)$$

 $\implies \mu_{geo}(\varphi, 1) = 1. \implies \varphi$  ist nicht diagonalisierbar.

**Satz 18.16** V endlichdimensional,  $n = \dim V$ 

- 1. Ist  $\varphi$  diagonalisierbar, dann ist  $\chi_{\varphi}^{char}=(t-\lambda_1)\cdot\ldots\cdot(t-\lambda_n)$  mit  $\lambda_1,\ldots,\lambda_n\in K$ , nicht notwendig verschieden, das heißt  $\chi_{\varphi}^{char}$  zerfällt in Linearfaktoren.
- 2. Ist  $\chi_{\varphi}^{char} = (t \lambda_1) \cdot \ldots \cdot (t \lambda_n)$  mit paarweise verschiedene  $\lambda_1, \ldots, \lambda_n \in K$ , dann ist  $\varphi$  diagonalisierbar.

**Beweis** 1. Sei  $\varphi$  diagonalisierbar  $\to V$  besitzt Basis  $\mathcal{B} = (v_1, \dots, v_n)$  aus EV zu EW  $\lambda_i \in K$ .

$$\implies M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix} \implies \chi_{\varphi}^{char} = \det \begin{pmatrix} t - \lambda_1 & 0 \\ & \ddots & \\ 0 & t - \lambda_n \end{pmatrix} = (t - \lambda_1) \cdot \dots \cdot (t - \lambda_n)$$

2. Aus  $\chi_{\varphi}^{char}=(t-\lambda_1)\cdot\ldots\cdot(t-\lambda_n)$  mit  $\lambda_1,\ldots,\lambda_n$  paarweise verschieden  $\implies \lambda_1,\ldots,\lambda_n$  sind paarweise verschiedene EW von  $\varphi\implies \varphi$  diagonalisierbar.

**Bemerkung 18.17** V endlichdimensional,  $n = \dim V$ ,  $\lambda$  EW von  $\varphi$ . Dann gilt:

$$1 \le \mu_{geo}(\varphi, \lambda) \le \mu_{alg}(\varphi, \lambda)$$

**Beweis** Sei  $(v_1,\ldots,v_s)$  eine Basis von  $\mathrm{Eig}(\varphi,\lambda) \implies s = \mu_{geo}(\varphi,\lambda) \geq 1$ , da  $\lambda$  EW von  $\varphi$ . Nach Basiserweiterungssatz  $\exists v_{s+1},\ldots,v_n \in V$ , sodass  $\mathcal{B}:=(v_1,\ldots,v_s,v_{s+1},\ldots,v_n)$  eine Basis von V ist.

$$\Rightarrow A := A_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda & 0 \\ & \ddots & * \\ \frac{0}{0} & \lambda & A' \end{pmatrix}, A' \in M((n-s) \times (n-s), K)$$

$$\Rightarrow \chi_{\varphi}^{char} = \chi_{A}^{char} = \det \begin{pmatrix} t - \lambda & 0 \\ & \ddots & * \\ \frac{0}{0} & t - \lambda & 0 \\ & \ddots & * \\ \frac{1}{0} & t - \lambda & t \\ & 0 & t - \lambda & t \end{pmatrix} = (t - \lambda)^{s} \det(tE_{n-s} - A') = (t - \lambda)^{s} \chi_{A'}^{char}$$

$$\Rightarrow \mu_{geo}(\varphi, \lambda) = s \leq \mu \left(\chi_{\varphi}^{char}, \lambda\right) = \mu_{alg}(\varphi, \lambda)$$

**Bemerkung 18.18**  $\lambda_1, \ldots, \lambda_r$  paarweise verschiedene EW von  $\varphi$ . Dann gilt:

$$\operatorname{Eig}(\varphi, \lambda_i) \cap \sum_{\substack{j=1\\j\neq i}}^r \operatorname{Eig}(\varphi, \lambda_j) = \{0\} \forall i \in \{1, \dots, r\}$$

**Beweis** Sei  $i \in \{1, \dots, r\}$ . Annahme:  $\exists v_i \in \text{Eig}(\varphi, \lambda_i) \cap \sum_{\substack{j=1 \ i \neq i}}^r \text{Eig}(\varphi, \lambda_j) : v_i \neq 0$ .

$$\implies \exists v_i \in \text{Eig}(\varphi, \lambda_i), j = 1, \dots, r, j \neq i : v_i = v_1 + \dots + v_{i-1} + v_{i+1} + \dots + v_r$$

Setze 
$$J := \{j \in \{1, \dots, r\}, j \neq i \mid v_i \neq 0\} = \{j_1, \dots, j_s\}$$

$$\implies v_i = v_{j_1} + \dots + v_{j_s} \implies v_{j_1} + \dots + v_{j_s} + (-1)v_i = 0 \implies (v_{j_1}, \dots, v_{j_s}, v_i) \text{ linear abhängig } \zeta$$

**Satz 18.19** *V* endlichdimensional. Dann sind äquivalent:

- 1.  $\varphi$  diagonalisierbar
- 2.  $\chi_{\varphi}^{char}$  zerfällt in Linearfaktoren und  $\mu_{alg}(\varphi,\lambda)=\mu_{geo}(\varphi,\lambda) \forall$  EW von  $\varphi$ .
- 3. Sind  $\lambda_1, \ldots, \lambda_k$  die paarweise verschiedenen EW von  $\varphi$ , dann ist

$$V = \operatorname{Eig}(\varphi, \lambda_1) \oplus \cdots \oplus \operatorname{Eig}(\varphi, \lambda_k)$$

In diesem Fall erhält man eine Basis von V aus EV von  $\varphi$ , indem man Basen von  $\text{Eig}(\varphi, \lambda_i), i = 1, \ldots, k$  zusammenfügt.

**Beweis** 1.  $\Longrightarrow$  2. Sei  $\varphi$  diagonalisierbar.  $\Longrightarrow$   $\exists$  Basis  $\mathcal B$  von V aus  $\mathsf EV$  von  $\varphi$ . Wir ordnen die  $\mathsf EV$  in  $\mathcal B$  den verschiedenen  $\mathsf EW$  von  $\varphi$  zu und gelangen so zu Familien  $\mathcal B_i := \left(v_1^{(i)}, \dots, v_{s_i}^{(i)}\right)$  von linear unabhängigen im  $\mathsf {Eig}(\varphi,\lambda), i=1,\dots,k$ 

a) Behauptung:  $\mathcal{B}_i$  ist eine Basis von  $\mathrm{Eig}(\varphi,\lambda_i)$ , denn gezeigt:  $\mathcal{B}_i$  ist ein ES von  $\mathrm{Eig}(\varphi,\lambda_i)$ . Sei  $v\in\mathrm{Eig}(\varphi,\lambda_i)\leq V$ 

$$\Rightarrow \exists \lambda^{(j)} \in K : v = \sum_{j=1}^{k} \left( \lambda_1^{(j)} v_1^{(j)} + \dots + \lambda_{s_j}^{(j)} v_{s_j}^{(j)} \right)$$

$$\Rightarrow \underbrace{v - \left( \lambda_1^{(i)} v_1^{(i)} + \dots + \lambda_{s_i}^{(i)} v_{s_i}^{(i)} \right)}_{\in \text{Eig}(\varphi, \lambda_i)} = \sum_{j=1}^{k} \left( \lambda_1^{(j)} v_1^{(j)} + \dots + \lambda_{s_j}^{(j)} v_{s_j}^{(j)} \right) \in \sum_{j=1}^{k} \text{Eig}(\varphi, \lambda_j)$$

$$\Rightarrow v = \lambda_1^{(i)} v_1^{(i)} + \dots + \lambda_{s_i}^{(i)} v_{s_i}^{(i)}$$

a) Nach 1. ist

$$\mu_{geo}(\varphi, \lambda_1) + \dots + \mu_{geo}(\varphi, \lambda_k) = s_1 + \dots + s_k = \dim V$$

 $\chi_{\varphi}^{char}$ zerfällt nach 18.16 in Linearfaktoren, somit

$$\mu_{alg}(\varphi, \lambda_1) + \dots + \mu_{alg}(\varphi, \lambda_k) = \deg(\chi_{\varphi}^{char}) = \dim V$$

Wegen  $\mu_{geo}(\varphi, \lambda_i) \leq \mu_{alg}(\varphi, \lambda_i)$  für  $i = 1, \ldots, k$  folgt:  $\mu_{geo}(\varphi, \lambda_i) = \mu_{alg}(\varphi, \lambda_i)$  für  $i = 1, \ldots, k$ .

2.  $\Longrightarrow$  3. Es gelte 2. Es seien  $\lambda_1, \ldots, \lambda_k$  die verschiedenen EW von  $\varphi$ . Wir setzen  $W := \text{Eig}(\varphi, \lambda_1) + \cdots + \text{Eig}(\varphi, \lambda_k)$ . Wegen 18.18 ist

$$W = \operatorname{Eig}(\varphi, \lambda_1) \oplus \cdots \oplus \operatorname{Eig}(\varphi, \lambda_k)$$

$$\implies \dim W = \dim \operatorname{Eig}(\chi, \lambda_1) + \dots + \dim \operatorname{Eig}(\varphi, \lambda_k)$$

$$= \mu_{geo}(\chi, \lambda_1) + \dots + \mu_{geo}(\varphi, \lambda_k)$$

$$= \mu_{alg}(\chi, \lambda_1) + \dots + \mu_{alg}(\varphi, \lambda_k) = \operatorname{deg}\left(\chi_{\varphi}^{char}\right)$$

$$= \dim V$$

$$\implies W = V$$

3.  $\Longrightarrow$  1. Es gelte 3. Sei  $\mathcal{B}=\left(v_1^{(i)},\ldots,v_{s_i}^{(i)}\right)$  eine Basis von  $\mathrm{Eig}\,\varphi,\lambda_i\Longrightarrow\mathcal{B}:=\left(v_1^{(1)},\ldots,v_{s_1}^{(1)},\ldots,v_1^{(k)},v_{s_r}^{(k)}\right)$  ist eine Basis von V aus  $\mathrm{EV}$  von  $\varphi\Longrightarrow\varphi$  diagonalisierbar.

**Anmerkung** In der Praxis ist es in der Regel schwierig festzustellen, ob  $\chi_{\varphi}^{char}$  in Linearfaktoren zerfällt oder die NS von  $\chi_{\varphi}^{char}$  zu bestimmen. Für Polynome von Grad  $\geq 5$  existiert keine Lösungsformel zur Bestimmung der NS. (Algebra 1 Vorlesung), die NS müssen numerisch bestimmt werden.

Beispiel 18.20

1. In 18.15.3 ist 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in M(2 \times 2, \mathbb{R})$$
 ist  $\chi_A^{char} = (t-1)^2, \mu_{geo}(A, 1) = 1 < \mu_{alg}(A, 1) = 2 \implies A$  nicht diagonalisierbar.

2. 
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -6 & 1 & 2 \\ 3 & -1 & -2 \end{pmatrix} \in M(3 \times 3, \mathbb{R})$$

$$\chi_A^{char} = \det \begin{pmatrix} t - 2 & 1 & 1 \\ 6 & t - 1 & -1 \\ -3 & 1 & t + 2 \end{pmatrix} = t^3 - t^2 - 5t - 3 = (t+1)^2(t-3)$$

EW von 
$$A:-1,3, \mu_{alg}=(A,-1)=2, \mu_{a}lg(A,3)=1$$

$$\operatorname{Eig}(A,-1) = \operatorname{L\"{o}s}(-E_n - A,0) = \operatorname{L\"{o}s}\left(\begin{pmatrix} -3 & 1 & 1 \\ 6 & -1 & -2 \\ -3 & 1 & 1 \end{pmatrix},0\right) = \operatorname{Lin}\left(\begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}\right)$$

$$\mu_{geo}(A, -1) = 2 = \mu_{alg}(A, -1).$$

$$\operatorname{Eig}(A,3) = \operatorname{L\"{o}s}(3E_n - A,0) = \operatorname{L\"{o}s}\left(\begin{pmatrix} 1 & 1 & 1 \\ 6 & 2 & -2 \\ -3 & 1 & 5 \end{pmatrix}, 0\right) = \operatorname{Lin}\left(\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}\right)$$

$$\mu_{geo}(A,3) = 1 = \mu_{alg}(A,3)$$
. Also ist  $A$  diagonalisierbar,  $\mathcal{B} := \left( \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right)$ 

ist eine Basis des  $\mathbb{R}^3$  aus EV von A,

$$M_{\mathcal{B}}\left(\tilde{A}\right) = \begin{pmatrix} 1 & & 0 \\ & -1 & \\ 0 & & 3 \end{pmatrix}$$

Mit

$$S := \begin{pmatrix} -1 & 0 & 1 \\ 3 & -1 & -1 \\ 0 & 3 & 1 \end{pmatrix}^{-1}, SAS^{-1} = \begin{pmatrix} -1 & 0 \\ & -1 \\ 0 & 3 \end{pmatrix}$$

**Anmerkung** Ist  $f = a_m t^m + \cdots + a_1 t + a_0 \in K[t]$ , dann können wir in f:

• Endomorphismen  $\varphi \in \operatorname{End}_K(V)$  einsetzen durch die Regel

$$f(\varphi) := a_m \varphi^m + \dots + a_1 \varphi + a_0 \operatorname{id}_V \in \operatorname{End}_K(V)$$

wobei 
$$arphi^k := \underbrace{arphi \circ \cdots \circ arphi}_{ ext{k-mal}}$$

• Matrizen  $A \in M(n \times n, K)$  einsetzen durch die Regel

$$f(A) := a_m A^m + \dots + a_1 A + a_0 E_n \in M(n \times n, K)$$

Für  $f,g\in K[t],\varphi\in \operatorname{End}_K(V)$  ist  $f(\varphi)\circ g(\varphi)=(fg)(\varphi)=(gf)(\varphi)=g(\varphi)\circ f(\varphi)$ , analog für Matrizen.

Satz 18.21 (Satz von Cayley-Hamilton) V endlichdimensional. Dann gilt:  $\chi_{\varphi}^{char}(\varphi)=0$ . Insbesondere gilt für alle  $A\in M(n\times n,K): \chi_A^{char}(A)=0$ .

**Beweis** 1. Es genügt zu zeigen, dass  $\chi_A^{char}=0$  für alle  $A\in M(n\times n,K)$ , denn: Ist  $\varphi\in \operatorname{End}_K(V)$ ,  $\mathcal B$  Basis von  $V,A=A_{\mathcal B}, \chi_{\varphi}^{char}=t^n+a_{n-1}t^{n-1}+\cdots+a_0=\chi_A^{char}\in K[t]$ 

$$\implies 0 = \chi_A^{char}(A) = A^n + a_{n-1}A^{n-1} + \dots + a_0E_n = M_{\mathcal{B}}(\varphi^n + a_{n-1}\varphi^{n-1} + \dots + a_0 \operatorname{id}_V)$$
$$= M_{\mathcal{B}}(\chi_{\varphi}^{char}(\varphi))$$

$$\implies \chi_{\varphi}^{char}(\varphi) = 0$$

2. Sei  $A \in M(n \times n, K)$ . Wir setzen  $D := (tE_n - A)^\# \in M(n \times n, K[t])$ 

$$\implies D(tE_n - A) = \det(tE_n - A)E_n = \chi_A^{char} E_n$$

Sei  $D=\sum_{i=0}^{n-1}D_it^i$  mit  $D_i\in M(n\times n,K), \chi_A^{char}=\sum_{i=0}^na_it^i$  mit  $a_i\in K$ 

$$\implies \sum_{i=0}^{n} a_{i} E_{n} t^{i} = \left(\sum_{i=0}^{n} a_{i} t^{i}\right) E_{n} = \chi_{A}^{char} E_{n} = D(t E_{n} = A)$$

$$= \left(\sum_{i=0}^{n-1} D_{i} t^{i}\right) (t E_{n} - A) = \sum_{i=0}^{n-1} D_{i} t^{i+1} - \sum_{i=0}^{n-1} D_{i} A t^{i}$$

$$= \sum_{i=0}^{n} (D_{i-1} - D_{i} A) t^{i} \qquad (\text{mit } D_{-1} := 0, D_{n} := 0)$$

Koeffizientenvergleich liefert:  $a_i A_n = D_{i-1} - D_i A$  für  $i = 0, \dots, n$ 

$$\chi_A^{char} = \sum_{i=0}^n a_i A_i = \sum_{i=0}^n (a_i E_n) A^i = \sum_{i=0}^n (D_{i-1} - D_i A) A^i$$

$$= (D_{-1} - D_0 A) + (D_0 - D_1 A) A + \dots + (D_{n-1} - D_n A) A^n$$

$$= D_{-1} - D_n A^{n+1} = 0$$

**Anmerkung** Der "Beweis"

$$\chi_A(A) = (\det(tE_n - A))(A) = \det(AE_n - A) = \det(A - A) = \det(0) = 0$$

funktioniert nicht, denn:

$$\underbrace{(\det(tE_n - A))}_{\in K[t]}(A) \quad \det(AE_n - A) \\ \underbrace{(AE_n - A)}_{\in M(n \times n, K)}$$

**Satz+Definition 18.22** V endlichdimensional,  $I := \{ f \in K[t] \mid f(\varphi) = 0 \}$ . Dann gilt:

1. Es gibt ein eindeutig bestimmtes, normiertes Polynom  $\chi_{\wp}^{min} \in K[t]$ , sodass

$$I=\chi_{\varphi}^{min}K[t]:=\{\chi_{\varphi}^{min}q\mid q\in K[t]\}$$

 $\chi_{\varphi}^{min}$  heißt das **Minimalpolynom** von  $\varphi$ .  $\chi_{\varphi}^{min}$  ist das eindeutig bestimmte normierte Polynom kleinsten Grades mit  $f(\varphi) = 0$ .

2.  $\chi_{\varphi}^{mit}\mid\chi_{\varphi}^{char}$ , das heißt  $\exists q\in K[t]:\chi_{\varphi}^{char}=q\cdot\chi_{\varphi}^{min}$ 

Analog konstruiert man für  $A\in M(n imes n,K)$ , das Minimalpolynom  $\chi_A^{min}$ . Es ist  $\chi_A^{min}=\chi_{\tilde{A}}^{min}$ 

1. Existenz: Wegen Satz von Cayley-Hamilton ist  $\chi_{\varphi}^{char}(\varphi)=0$ . Somit ist  $\chi_{\varphi}^{char}\in I$ , **Beweis** insbesondere  $I \neq \emptyset$ .

 $\deg(f) \mid f \in I, f \neq 0$  ist eine nichtleere Teilmenge von  $\mathbb{N}_0$ , hat somit ein minimales Element.  $\implies \exists g \in I, g \neq 0 : \deg(g) \text{ minimal in } I \setminus \{0\} \text{ ist. Wir setzen}$ 

$$\chi_{\varphi}^{min} := \frac{1}{l(g)}g \implies \chi_{\varphi}^{min}$$
normiert

und es ist

$$\chi_{\varphi}^{min}(\varphi) = \frac{1}{l(g)} gg(\varphi) = 0$$

das heißt  $\chi_{\varphi}^{min} \in I$ .

das heißt 
$$\chi_{\varphi}^{min} \in I$$
.

**Behauptung**:  $I = \chi_{\varphi}^{min} K[t]$ , denn:

" $\supseteq$ " Für  $q \in K[t]$  ist  $\left(\chi_{\varphi}^{min} q\right)(\varphi) = \underbrace{\chi_{\varphi}^{min}(\varphi)}_{=0} \cdot g(\varphi) = 0$ , das heißt  $\chi_{\varphi}^{min} q \in I$ .

$$\text{``Gei } f \in I \implies \exists q,r \in K[t]: f = q\chi_{\varphi}^{min} + r, \deg(r) < \deg\left(\chi_{\varphi}^{min}\right)$$

$$\implies 0 = f(\varphi) = \left(q\chi_{\varphi}^{\min}\varphi + r\right)(\varphi) = q(\varphi) \cdot \chi_{\varphi}^{\min}(\varphi) + r(\varphi) = r(\varphi) \implies r \in I$$

Wegen  $\deg(r) < \deg(\chi_{\varphi}^{min})$  und der Minimalität des Grades von  $\chi_{\varphi}^{min}$  in  $I\setminus\{0\}$  folgt  $r = 0 \implies f = q\chi_{\varphi}^{min}$ 

Eindeutigkeit: Sei  $\chi \in K[t]$  ein weiteres Polynom mit  $I = \chi K[t] = \chi_{\varphi}^{min} K[t]$ 

$$\implies \chi = \chi \cdot 1 \in I = \chi_{\varphi}^{min} K[t] \implies \exists q \in K[t] : \chi = \chi_{\varphi}^{min} q$$

Analog  $\exists p \in K[t] : \chi_{\varphi}^{min} = \chi p$ 

$$\implies \chi_{\varphi}^{min} = \chi p = \chi_{\varphi}^{min} qp \implies pq = 1 \implies p, q \in K^*$$

Wegen  $\chi,\chi_{\varphi}^{min}$  normiert folgt p=q=1, also  $\chi=\chi_{\varphi}^{min}$ 

2. Wegen  $\chi_{\varphi}^{char}(\varphi)=0$  nach Satz von Cayley-Hamilton folgt  $\chi_{\varphi}^{char}\in I.$ 

$$\implies \exists q \in K[t] : \chi_{\varphi}^{char} = q\chi_{\varphi}^{min}$$

das heißt 
$$\chi_{arphi}^{min} \mid \chi_{arphi}^{char}$$

**Bemerkung 18.23** *V* endlichdimensional,  $\lambda \in K$ . Dann gilt:

$$\chi_{\varphi}^{char}(\lambda) = 0 \iff \chi_{\varphi}^{min}(\lambda) = 0$$

Insbesondere haben  $\chi_{\varphi}^{char}$  und  $\chi_{\varphi}^{min}$  dieselben NS.

$$\implies \chi_{\varphi}^{char}(\lambda) = q(\lambda) \underbrace{\chi_{\varphi}^{min}(\lambda)} = 0$$

"  $\Longrightarrow$  " Sei  $\chi_{\varphi}^{char}(\lambda)=0$   $\Longrightarrow$   $\lambda$  ist EW von  $\varphi$ , sei  $v\in V$  EV zum EW  $\lambda$ . Sei  $\chi_{\varphi}^{min}=t^r+a_{r-1}t^{r-1}+\cdots+a_1t+a_0$ 

$$\implies 0 = (\chi_{\varphi}^{min}(\varphi))(v) = (\varphi^{r} + a_{r-1}\varphi^{r-1} + \dots + a_{1}\varphi + a_{0} \operatorname{id}_{V})(v)$$

$$= \lambda^{r}v + a_{r-1}\lambda^{r-1}v + \dots + a_{1}\lambda v + a_{0}v$$

$$= \underbrace{(\lambda^{r} + a_{r-1}\lambda^{r-1} + \dots + a_{1}\lambda + a_{0})}_{=\chi_{\varphi}^{min}(\lambda)}v$$

$$\implies \chi_{\varphi}^{min}(\lambda) = 0.$$

**Beispiel 18.24**1.  $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in M(2 \times 2, \mathbb{Q}), \chi_A^{char} = (t-1)^2$  Wegen 18.22, 18.23 gilt:  $\chi_A^{min}$  normiert,  $\chi_A^{min} \mid \chi_A^{char}, \chi_A^{char}(1) = 0 \implies \chi_A^{min} \in \{t-1, (t-1)^2\}$  Wegen  $A - E_2 = 0$  ist  $\chi_A^{min} = t-1$ 

2. 
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in M(2 \times 2, \mathbb{Q}) \implies \chi_A^{char} = (t-1)(t+1) \implies \chi_A^{min} = (t-1)(t+1)$$

3. 
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -8 & 1 & 4 \\ 2 & -1 & -1 \end{pmatrix} \in M(3 \times 3, \mathbb{R})$$

$$\implies \chi_A^{char} = (t+1)^2(t-3) \implies \chi_A^{min} = \{(t+1)(t-3), (t+1)^2(t-3)\}$$

Es ist 
$$(A+E_n)(A-3E_n)\neq 0$$
, also ist  $\chi_A^{min}=(t+1)^2(t-3)$ 

4. 
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -6 & 1 & 2 \\ 3 & -1 & -2 \end{pmatrix} \in M(3 \times 3, \mathbb{R}) \implies \chi_A^{char} = (t+1)^2 (t-3)$$

$$\chi_A^{min} \in \{(t+1)(t-3), (t+1)^2 (t-3)\}$$

Es ist 
$$(A+E_n)(A-3E_n)=0 \implies \chi_A^{min}=(t+1)(t-3)$$

#### **Satz 18.25** V endlichdimensional. Dann sind äquivalent:

- 1.  $\varphi$  diagonalisierbar
- 2. Das Minimalpolynom  $\chi_{\varphi}^{min}$  zerfällt in Linearfaktoren und besitzt nur einfache NS, das heißt  $\chi_{\varphi}^{min}=(t-\lambda_1)\cdot\ldots\cdot(t-\lambda_r)$  mit paarweise verschiedenen  $\lambda_1,\ldots,\lambda_r\in K$

**Beweis** 1.  $\Longrightarrow$  2. Sei  $\varphi$  diagonalisierbar, seinen  $\lambda_1,\ldots,\lambda_r$  die verschiedenen EW von  $\varphi$ . Sei  $v\in V$ . Da  $\varphi$  diagonalisierbar, ist  $V=\oplus_{i=1}^r\operatorname{Eig}(\varphi,\lambda_i)$  nach 18.19, das heißt es existieren  $v_i\in\operatorname{Eig}(\varphi,\lambda_i), i=1,\ldots,r$  mit  $v=v_1+\cdots+v_r$ 

$$\implies (\varphi - \lambda_r \operatorname{id}_V)(V) = \varphi(v_1) + \dots + \varphi(v_r) - \lambda_r v_1 - \dots - \lambda_r v_r$$

$$= \lambda_1 v_1 + \dots + \lambda_r v_r - \lambda_r v_1 - \dots - \lambda_r v_r$$

$$= (\lambda_1 - \lambda_r) v_1 + \dots + (\lambda_{r-1} - \lambda_r) v_{r-1}$$

$$\in \operatorname{Eig}(\varphi, \lambda_1) \oplus \dots \oplus \operatorname{Eig}(\varphi, \lambda_{r-1})$$

analog:

$$(\varphi - \lambda_{r-1} \operatorname{id}_V) \circ (\varphi - \lambda_r \operatorname{id}_V)(v) \in \operatorname{Eig}(\varphi, \lambda_1) \oplus \cdots \oplus \operatorname{Eig}(\varphi, \lambda_{r-2})$$

Induktiv erhalten wir:

$$0 = (\varphi - \lambda_1 \operatorname{id}_V) \circ (\varphi - \lambda_2 \operatorname{id}_V) \circ \cdots \circ (\varphi - \lambda_r \operatorname{id}_V)(V)$$

$$\implies 0 = (\varphi - \lambda_1 \operatorname{id}_V) \circ \cdots \circ (\varphi - \lambda_r \operatorname{id}_V)$$

$$\implies 0 = ((t - \lambda_1) \cdot \ldots \cdot (t - \lambda_r))(\varphi)$$

 $\Longrightarrow$  Es existiert  $g\in K[t]$  mit  $(t-\lambda_1)\cdot\ldots\cdot(t-\lambda_r)=g\chi_{\varphi}^{min}$ . Wegen  $\chi_{\varphi}^{min}(\lambda_1)=\cdots=\chi_{\varphi}^{min}(\lambda_r)=0$  nach 18.23 existiert  $h\in K[t]$  mit

$$\chi_{\varphi}^{min} = (t - \lambda_1) \cdot \ldots \cdot (t - \lambda_r) h = g \chi_{\varphi}^{min} h = g h \chi_{\varphi}^{min} \implies g h = 1$$

$$\implies g, h \in K^*, \chi_{\varphi}^{min} \text{ normiert } \implies g = h = 1 \implies \chi_{\varphi}^{min} = (t - \lambda_1) \cdot \ldots \cdot (t - \lambda_r)$$

2.  $\Longrightarrow$  1. Sei  $\chi_{\varphi}^{min}=(t-\lambda_1)\cdot\ldots\cdot(t-\lambda_1)$ , wobei  $\lambda_1,\ldots,\lambda_r\in K$  paarweise verschieden. Nach 18.23 sind  $\lambda_1,\ldots,\lambda_r$  die EW von  $\varphi$ . Beweis der Behauptung per Induktion nach  $n:=\dim V$ 

IA: n = 1 klar

IS: Sei n > 1, die Behauptung sei für  $1, \ldots, n-1$  gezeigt.

a) Behauptung:  $V = \ker(\varphi - \lambda_1 \operatorname{id}_V) \oplus \operatorname{im}(\varphi - \lambda_1 \operatorname{id}_V)$ , denn: Nach 7.6  $\exists v, s \in K[t]$  mit

$$(t - \lambda_2) \cdot \ldots \cdot (t - \lambda_r) = q(t - \lambda_1) + s, \deg(s) < \deg(t - \lambda_1) = 1$$

das heißt s ist konstantes Polynom. Wegen

$$s(\lambda_1) = (\lambda_1 - \lambda_2) \cdot \dots \cdot (\lambda_1 - \lambda_r) - q(\lambda_1) \underbrace{(\lambda_1 - \lambda_1)}_{=0} \neq 0$$

das heißt  $s \in K^*$ . Einsetzen von  $\varphi$  liefert:

$$(\varphi - \lambda_2 \operatorname{id}_V) \circ \cdots \circ (\varphi - \lambda_r \operatorname{id}_V) = q(\varphi) \circ (\varphi - \lambda_1 \operatorname{id}_V) + s \operatorname{id}_V$$

 $\implies \forall v \in V \text{ ist}$ 

$$sv = (\varphi - \lambda_2 \operatorname{id}_V) \circ \cdots \circ (\varphi - \lambda_r \operatorname{id}_V)(v) - q(\varphi) \circ (\varphi - \lambda_1 \operatorname{id}_V)(v)$$

$$\Longrightarrow v = \frac{1}{s} \underbrace{(\varphi - \lambda_2 \operatorname{id}_V) \circ \cdots \circ (\varphi - \lambda_r \operatorname{id}_V)(v)}_{=:u} - \underbrace{q(\varphi) \circ (\varphi - \lambda_1 \operatorname{id}_V)(v)}_{=:w}$$

$$(\varphi - \lambda_1 \operatorname{id}_V)(u) = \frac{1}{s} (\varphi - \lambda_1 \operatorname{id}_V) \circ \cdots \circ (\varphi - \lambda_r \operatorname{id}_V)(v) = \frac{1}{s} \underbrace{\chi_{\varphi}^{min}(\varphi)(v)}_{=0}(v) = 0$$

$$\Longrightarrow n \in \ker(\varphi - \lambda_1 \operatorname{id}_V)$$

$$w = \frac{1}{s} q(\varphi) \circ (\varphi - \lambda_1 \operatorname{id}_V)(v) = \frac{1}{s} ((\varphi - \lambda_1 \operatorname{id}_V) \circ q(\varphi))(v) \in \operatorname{im}(\varphi - \lambda_1 \operatorname{id}_V)$$

$$\Longrightarrow V = \ker(\varphi - \lambda_1 \operatorname{id}_V) + \operatorname{im}(\varphi - \lambda_1 \operatorname{id}_V)$$

Nach der Dimensionsformel für lineare Abbildungen ist

$$\dim \ker(\varphi - \lambda_1 \operatorname{id}_V) + \dim \operatorname{im}(\varphi - \lambda_1 \operatorname{id}_V) = \dim V$$

- $\implies$  Summe ist direkt  $\implies$  Behauptung.
- b) Wir setzen  $W:=\operatorname{im}(\varphi-\lambda_1\operatorname{id}_V)$ , dann ist

$$V = \ker(\varphi - \lambda_1 \operatorname{id}_V) \oplus W = \underbrace{\operatorname{Eig}(\varphi, \lambda_1)}_{\neq 0} \oplus W$$

 $\implies \dim W < \dim V$ . Es gilt:

$$\varphi \circ (\varphi - \lambda_1 \operatorname{id}_V) = \varphi \circ \varphi - \lambda_1 \varphi = (\varphi - \lambda_1 \operatorname{id}_V) \circ \varphi$$

$$\Longrightarrow \varphi(W) = \varphi((\varphi - \lambda_1 \operatorname{id}_V)(V)) = (\varphi - \lambda_1 \operatorname{id}_V)(\varphi(V)) \le (\varphi - \lambda_1 \operatorname{id}_V)(V) = W$$

Wir betrachten die Abbildung  $\psi:=arphiig|_W^W:W o W.$  Sei  $\chi_{arphi}^{min}=t^n+a_{n-1}t^{n-1}+a_{n-1}t^{n-1}$ 

$$\cdots + a_0. \implies \forall w \in W \text{ ist}$$

$$\chi_{\varphi}^{min}(\psi)(w) = (\psi_n + a_{n-1}\psi_{n-1} + \dots + a_0 \operatorname{id}_V)(w)$$

$$= \psi^n(w) + a_{n-1}\psi^{n-1}(w) + \dots + a_0 w$$

$$= \varphi_n(w) + a_{n-1}\varphi^{n-1}(w) + \dots + a_0 w$$

$$= (\varphi^n + a_{n-1}\varphi^{n-1} + \dots + a_0 \operatorname{id}_V)(w)$$

$$= \underbrace{(\chi_{\varphi}^{min}(\varphi))}_{0}(w) = 0$$

$$\implies \chi_{\varphi}^{min} \psi = 0 \implies \chi_{\psi}^{min} \mid \chi_{\varphi}^{min} = (t - \lambda_1) \cdot \dots \cdot (t - \lambda_r)$$

 $\Longrightarrow \chi_{\psi}^{min}$  zerfällt in Linearfaktoren und besitzt nur einfache Nullstellen.  $\Longrightarrow \psi$  diagonalisierbar, das heißt es existiert eine Basis von W aus EV zu  $\psi = \varphi\big|_W^W$ . Wegen  $V = \mathrm{Eig}(\varphi, \lambda_1) \oplus W$  existiert nach 11.8 eine Basis von V aus EV zu  $\varphi$ , das heißt  $\varphi$  ist diagonalisierbar.

Beispiel 18.76 
$$1$$
  $-1$   $0$   $1$   $A = \begin{pmatrix} -8 & 1 & 4 \\ 2 & -1 & -1 \end{pmatrix} \in M(3 \times 3, \mathbb{R})$ . Es ist  $\chi_A^{min} = (t+1)^2(t-3) \implies A$  ist nicht diagonalisierbar.

2. 
$$A=\begin{pmatrix}2&-1&-1\\-6&1&2\\3&-1&-2\end{pmatrix}\in M(3\times3,\mathbb{R}).$$
 Es ist  $\chi_A^{min}=(t+1)(t-3)\Longrightarrow A$  ist diagonalisierbar.

#### 19 Dualraum

In diesem Abschnitt sei V ein K Vektorraum.

#### **Definition 19.1 (Dualraum)**

$$V^* := \operatorname{Hom}_K(V, K) = \{ \varphi : V \to K \mid \varphi \text{ linear} \}$$

heißt der **Dualraum** von V, die Elemente aus  $V^*$  heißen **Linearformen** auf V.

Beispiel 19.2
1. 
$$K=\mathbb{R}, V=\mathbb{R}^n, \varphi:\mathbb{R}^n \to \mathbb{R}, \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \mapsto x_1 \text{ ist eine Linearform auf } \mathbb{R}^n.$$

2. 
$$K = \mathbb{R}, V = \mathcal{C}[0,1] = \{f: [0,1] \rightarrow \mathbb{R} \mid f \text{ stetig}\}$$

$$\varphi: \mathcal{C}[0,1] \to \mathbb{R}, f \mapsto \int_0^1 f(t) dt$$

ist eine Linearform auf C[0, 1]

**Bemerkung+Definition 19.3** V endlichdimensional  $\mathcal{B}=(v_1,\ldots,v_n)$  Basis von V. Wir definieren für  $i=1,\ldots,n$  die linear Abbildung

$$v_i^*: V \to V, v_j \mapsto \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & 1 \neq j \end{cases}$$

Dann ist  $\mathcal{B}^* := (v_1^*, \dots, v_n^*)$  ist eine Basis von  $V^*$ , die **duale Basis** zu  $\mathcal{B}$ .

**Beweis** 1.  $\mathcal{B}^*$  ist linear unabhängig: Seien  $\lambda_1, \ldots, \lambda_n \in K, \lambda_1 v_1^* + \cdots + \lambda_n v_n^* = 0. \implies \forall i \in \{1, \ldots, n\}$  ist

$$0 = \underbrace{\lambda_1 v_1^*(v_i)}_{=0} + \dots + \underbrace{\lambda_{i-1} v_{i-1}^*(v_i)}_{=0} + \underbrace{\lambda_i v_i^*(v_i)}_{=1} + \underbrace{\lambda_{i+1} v_{i+1}^*(v_i)}_{=0} + \dots + \underbrace{\lambda_n v_n^*}_{=0} = \lambda_i$$

2.  $\mathcal{B}^*$  ist ES von  $V^*$ : Sei  $\varphi \in V^*$ . Setze  $\lambda_i := \varphi(v_i)$  für  $i = 1, \ldots, n$ 

$$\implies (\lambda_1 v_1^* + \dots + \lambda_n v_n^*)(v_i) = \lambda_i = \varphi(v_i), i = 1, \dots, n$$

$$\implies \varphi = \lambda_1 v_1^* + \dots + \lambda_n v_n^*$$

**Anmerkung** Ist V unendlichdimensional mit Basis  $(v_i)_{i \in I}$ , dann ist  $(v_i^*)_{i \in I}$  (analog definiert) linear unabhängig, aber kein ES von V.

#### **Notation:**

Elemente des  $K^n$  schreiben wir im Folgenden als Spaltenvektoren. Ist  $\varphi \in (K^n)^* = \operatorname{Hom}_K(K^n, K)$ , dann existiert nach LA1 ein eindeutig bestimmtes  $A = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \in M(1 \times n, K)$  mit

$$\varphi = \tilde{A} : K^n \to K, x = \begin{pmatrix} x_1 \\ \vdots \\ v_n \end{pmatrix} \mapsto \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Es ist  $A=M_{(e_1)}^{(e_1,\dots,e_n)}(\varphi)$ . Dementsprechende schreiben wir Elemente von  $(K^n)^*$  als Zeilenvektoren.

# Beispiel 19.4

1. 
$$V=K^n, \mathcal{B}=(e_1,\dots,e_n)\implies \mathcal{B}^*=(e_1^*,\dots,e_n^*)$$
 duale Basis zu  $\mathcal{B}$  mit 
$$e_i^*=(0,\dots,0,1,0,\dots,0)$$

Für die Abbildung aus 19.2.1 gilt  $\varphi = e_1^* = (1, \dots, 0)$ .

2. 
$$K = \mathbb{R}, V = \mathbb{R}^2, \mathcal{B} = (v_1, v_2), v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
. Es ist  $e_1 = v_1, e_2 = v_2 - v_1$ 

$$\implies v_1^*(e_1) = v_1^*(v_1) = 1, v_1^*(e_2) = v_1^*(v_2 - v_1) = \underbrace{v_1^*(v_2)}_{=0} - \underbrace{v_1^*(v_1)}_{=1} = -1$$

$$\implies v_1^* = (1, -1)$$

$$\implies v_2^*(e_1) = v_2^*(v_1) = 0, v_2^*(e_2) = v_2^*(v_2 - v_1) = \underbrace{v_2^*(v_2)}_{=1} - \underbrace{v_2^*(v_1)}_{=0} = 1$$

$$\implies v_2^* = (0, 1)$$

**Folgerung 19.5** V endlichdimensional,  $v \in V, v \neq 0$ . Dann existiert  $\varphi \in V^*$  mit  $\varphi(v) \neq 0$ 

**Beweis** Ergänze die linear unbhängige Familie (v) zu einer Basis  $(v, v_2, \ldots, v_n)$  von V. Dann ist  $(v^*, v_2^*, \ldots, v_n^*)$  eine Basis von  $V^*$ , und es ist  $v^*v = 1 \neq 0$ .

**Anmerkung** Die Aussage gilt auch ohne die Vorraussetzung "V endlichdimensional."

**Folgerung 19.6** V endlichdimensional,  $\mathcal{B} = (v_1, \dots, v_n)$  Basis von  $V, \mathcal{B}^* = (v_1^*, \dots, v_n^*)$  duale Basis zu  $\mathcal{B}$ . DAnn gibt es einen Isomorpismus

$$\psi_{\mathcal{B}}: V \to V^*, v_i \mapsto, v_i \mapsto v_i^* \quad (i = 1, \dots, n)$$

Insbesondere ist  $\dim V = \dim V^*$ 

Beweis folgt direkt aus 19.3

**Bemerkung+Definition 19.7**  $U \subseteq V$  UVR

$$U^0 := \{ \varphi \in V^* \mid \varphi(u) = 0 \forall u \in U \} \subset V^*$$

heißt der Annulator von U.  $U^0$  ist ein UVR von  $V^*$ .

Beweis leicht nachzurechnen.

**Satz 19.8** V endlichdimensional,  $U \subseteq V$  UVR,  $(u_1, \ldots, u_k)$  von U,  $\mathcal{B} = (u_1, \ldots, u_k, v_1, \ldots, v_r)$  Basis von V. Dann ist die Teilfamilie  $(v_1^*, \ldots, v_r^*)$  von  $\mathcal{B}^*$  eine Basis von  $U^0$ . Insbesondere ist dim  $U^0 = \dim V - \dim U$ .

**Beweis** 1.  $(v_1^*, \dots, v_r^*)$  linear unhabhängig, da Teilfamilie der Basis  $\mathcal{B}^*$  von  $V^*$ 

2.  $\operatorname{Lin}((v_1^*,\dots,v_r^*))=U^0$   $\label{eq:constraints} \begin{subarray}{l} \begin{s$ 

**Bemerkung+Definition 19.9** V,W K-Vr,  $f:V\to W$  lineare Abbildung. Wir definieren  $f^*:W^*\to V^*, \psi\mapsto f^*(\psi):=\psi\circ f$  heißt die zu f duale **Abbildung**. Es gilt:  $f^*$  ist linear.

**Beweis** •  $f^*$  ist wohldefiniert, da  $f^*(\psi) = \psi \circ f \in V^* \forall \psi \in W^*$ .

•  $f^*$  ist linear, denn: Seien  $\varphi, \psi \in W^*, \lambda \in K$ 

$$\implies f^*(\varphi + \psi) = (\varphi + \psi) \circ f = \varphi \circ f + \psi \circ f = f^*(\varphi) + f^*(\psi)$$
 
$$f^*(\lambda \varphi) = \lambda f^*(\varphi) \text{ analog.}$$

**Bemerkung 19.10** V, W endlichdimensionaler K-VR. Dann ist die Abbildung

\*: 
$$\operatorname{Hom}_K(V, W) \to \operatorname{Hom}_K(W^*, V^*), f \mapsto f^*$$

ist ein Isomorphismus von K-VR.

**Beweis** 1. \* ist linear: Seien  $f, g \in \operatorname{Hom}_K(V, W), \psi \in W^*$ 

$$\implies (f+g)^*(\psi) = \psi \circ (f+g) = \psi \circ f + \psi \circ g = f^*(\psi) + g^*(\psi) \implies (f+g)^* = f^* + g^*$$

Rest analog.

- 2. \* ist injektiv: Sei  $f \in \operatorname{Hom}_K(V,W)$  wit  $f^* = 0 \implies \psi \circ f = 0 \forall \psi \in W^*$ . Annahme:  $f \neq 0 \implies \exists v \in V : f(v) \neq 0 \implies \exists \varphi \in W^* : \varphi(f(v)) = 0 \implies \circ \varphi \circ f \neq 0$
- 3. \* ist surjektiv: Es ist  $\dim \operatorname{Hom}_K(V,W) = \dim(V)\dim(W) = \dim(V^*)\dim(W^*) = \dim \operatorname{Hom}_K(W^*,V^*) \Longrightarrow * \operatorname{surjektiv}.$

**Satz 19.11 (19.11)** V,W endlichdimesionale K-VR,  $\mathcal{A},\mathcal{B}$  Basen von V beziehungsweise  $W,f:V\to W$  lineare Abbildung. Dann gilt:

$$M_{\mathcal{A}^*}^{\mathcal{B}^*}(f^*) = \left(M_{\mathcal{B}}^{\mathcal{A}}(f)\right)^T$$

**Beweis** Sei  $\mathcal{A} = (v_1, \dots, v_n), \mathcal{B} = (w_1, \dots, w_m), M_{\mathcal{B}}^{\mathcal{A}}(f) = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$  insbesondere

$$f(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$

$$\implies a_{ij} = w_i^*(f(v_i)) = (w_i^* \circ f)(v_i) = f^*(w_i^*)(v_i)$$

Sei  $M_{\mathcal{A}^*}^{\mathcal{B}^*}(f^*)=(b_{ij})_{\substack{1\leq j\leq n\\1\leq i\leq m}}$ , dann ist

$$f^*(w_i^*) = \sum_{j=1}^n b_{ji} v_j^*$$

$$\implies b_{ji} = (f^*(w_i^*))(v_j) = a_{ij}$$

**Satz 19.12** V, W endlichdimesionale K-VR,  $f: V \to W$  lineare Abbildung. Dann gilt:

- 1.  $im(f^*) = ker(f)^0$
- 2.  $\ker(f^*) = \operatorname{im}(f)^0$

$$\psi(w_i) = \begin{cases} \varphi(u_i) & 1 = 1, \dots, r \\ 0 & i = r + 1, \dots, m \end{cases}$$

Für i = 1, ..., r ist  $\varphi(u_i) = \psi(w_i) = \psi(f(u_i)) = (\psi \circ f)(u_i)$ , und für i = 1, ..., k ist  $\varphi(v_i) = 0 = \psi(f(v_i))$  Also:  $\varphi = \psi \circ f = f^*(\psi)$ , das heißt  $\varphi \in \text{im } f^*$ 

2. 
$$\varphi \in \ker(f^*) \iff f^*(\varphi) = 0 \iff \varphi \circ f = 0 \iff \varphi(f(v)) = 0 \forall v \in V \iff \varphi \Big|_{imf} = 0 \iff \varphi \in (\operatorname{im} f)^0$$

**Folgerung 19.13** V, W endlichdimensionale K-VR,  $f: V \to W$  lineare Abbildung. Dann gilt:

$$Rang(f^*) = Rang(f)$$

**Beweis** Rang  $f^* = \dim \operatorname{im} f^* = \dim (\ker f)^0 = \dim V - \dim \ker f = \dim \operatorname{im} f = \operatorname{Rang}(f) \square$ **Folgerung 19.14**  $A \in M(m \times n, K)$ . Dann gilt:

$$Zeilenrang(A) = Spaltenrang(A)$$

**Beweis** Es ist 
$$A = M_{(e_1, \dots, e_m)}^{e_1, \dots, e_m} (\tilde{A}), A^T = M_{e_1^*, \dots, e_m^*}^{e_1^*, \dots, e_m^*}$$

$$\operatorname{Spaltenrang}(A) = \dim\operatorname{im} \tilde{A} = \operatorname{Rang} \tilde{A} = \operatorname{Rang} \left(\tilde{A}^*\right) = \operatorname{Spaltenrang} \left(A^t\right) = \operatorname{Zeilenrang}(A)$$

**Definition 19.15**  $V^{**} := (V^*)^* = \operatorname{Hom}_K(V^*, K)$  heißt der Bidualraum von V.

 ${f Satz}$  19.16 V endlichdimensional. Dann gibt es einen kanonischen (das heißt basisunabhängigen) Isomorphismus

$$i: V \to V^{**}, v \mapsto i_v, i_v: V^* \to K, \varphi \mapsto \varphi(v)$$

**Beweis** 1. *i* wohldefinier und linear: leicht nachzurechnen.

- 2. i injektiv: Sei  $v\in\ker i\implies i_v=0\implies \forall \varphi\in V^*=\operatorname{Hom}_K(V,K): \varphi(v)=0\implies v=0$
- 3.  $\dim V^{**} = \dim V^* = \dim V$ . Somit nach 12.15: *i* Isomorphismus
- **Anmerkung** Im Gegensatz zu  $\psi_{\mathcal{B}}:V\to V^*$  ist der Isomorphismus  $i:V\to V^{**}$  unabhängig von der Wahl einer Basis, das heißt V und  $V^*$  sind unkanonisch isomorph, V nud  $V^{**}$  sind kanonisch isomorph (für V endlichdimensional).
  - Ist V unendlichdimesionsal, dann liefert i zumindest nach eine kanonische Inklusion von V nach  $V^{**}$ . Diese ist jedoch die surjektiv.

# 20 Bilinearformen

In diesem Abschnitt sei V stets ein K-VR.

**Definition 20.1**  $\gamma: V \times V \to K$  heißt eine Bilinearform auf V, genau dann wenn die folgenden Bedingungen erfüllt sind:

• (B1) 
$$\gamma(v_1 + v_2, w) = \gamma(v_1, w) + \gamma(v_2, w), \gamma(\lambda v, w) = \lambda \gamma(v, w)$$

• (B2) 
$$\gamma(v, w_1 + w_2) = \gamma(v, w_1) + \gamma(v, w_2), \gamma(v, \lambda w) = \lambda \gamma(v, w)$$

 $\forall v, w, v_1, v_2, w_1, w_2 \in V, \lambda \in K.$ 

$$\begin{array}{l} \textbf{Beispiel 20.2} \\ \textbf{1.} \ \ K = \mathbb{R}, V = \mathbb{R}^n, \gamma : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \gamma \left( \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} \right) = x_1 y_1 + \dots + x_n y_2 \text{ ist eine Bilinearform auf } \mathbb{R}^n. \end{array}$$

2.  $K = \mathbb{R}, V = l[0,1], \gamma: l[0,1] \times l[0,1] \mapsto \mathbb{R}, \gamma(f,g) := \int_0^1 f(t)g(t)dt$  ist eine Bilinearform

3. 
$$K=\mathbb{R}, V=\mathbb{R}^2, \gamma:\mathbb{R}^2\times R^2\to\mathbb{R}, \gamma\left(\begin{pmatrix}x_1\\x_2\end{pmatrix}, \begin{pmatrix}y_1\\y_2\end{pmatrix}\right)=x_1y_1+2x_1y_2-x_2y_2$$
 ist eine Bilinearform auf  $\mathbb{R}^2$ .

**Definition 20.3** V endlichdimensional,  $\mathcal{B} = (v_1, \dots, v_n)$  Basis von  $V, \gamma$  Bilinearform auf V

$$M_{\mathcal{B}}(\gamma) = (\gamma(v_i, v_j))_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in M(n \times n, K)$$

heihßb die **Darstellungsmatrix** (Fundamentalmatrix) von  $\gamma$  bezüglich  $\mathcal{B}$ .

#### Beispiel 20.4

1. In 20.2a ist für 
$$\mathcal{B}=(e_1,\ldots,e_n):M_{\mathcal{B}}(\gamma)=E_n$$

2. In 20.2p ist für 
$$\mathcal{B}=(e_1,e_2):M_{\mathcal{B}}(\gamma)=egin{pmatrix} 1&2\\0&-1 \end{pmatrix}$$

**Bemerkung 20.5** V endlichdimensional,  $\mathcal{B}=(v_1,\ldots,v_n)$  Basis von  $V,\gamma$  Bilinearform auf V,A=

$$M_{\mathcal{B}}(\gamma), \Phi_{\mathcal{B}}: K^n \to V$$
 Koordinatensystem zu  $\mathcal{B}, v, w \in V, x = \begin{pmatrix} x_1 \\ \vdots \\ v_n \end{pmatrix} = \Phi_{\mathcal{B}}^{-1}(v)$ , das heißt  $v = x_1v_1 + \cdots + x_nv_n$ ,

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \Phi_{\mathcal{B}}^{-1}(w)$$

das heißt  $w = q_1v_1 + \cdots + y_nv_n$ . Dann gilt:

$$\gamma(v, w) = \Phi_{\mathcal{B}^{-1}}^T A \Phi_{\mathcal{B}}^{-1}(w) = x^t A y = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Beweis Es ist

$$y(v, w) = \gamma(x_1v_1 + \dots + x_nv_n, y_1v_1 + \dots + y_nv_n) = \sum_{i=1}^n \sum_{j=1}^n x_iy_j\gamma(v_i, v_j)$$
$$= \sum_{i=1}^n x_i \sum_{j=1}^n \gamma(v_i, y_j)y_j = x^T Ay$$

**Bemerkung 20.6** V endlichdimensional,  $\mathcal{B}=(v_1,\ldots,v_n)$  Basis von  $V,A\in M(n\times n,K)$ . Dann gilt: Durch

$$\Delta_A^{\mathcal{B}}: V \times V \to K, (v, w) \mapsto \Phi_{\mathcal{B}}^{-1}(v)^T A \Phi_{\mathcal{B}}^{-1}(w)$$

ist eine Bilinearform auf V gegeben.

Beweis Nachrechnen.

#### Beispiel 20.7 (wichtiger Spezialfall von 20.6)

$$V = K^n, \mathcal{B} = (e_1, \dots, e_n), A \in M(n \times n, K) \implies \Phi_{\mathcal{B}} = \mathrm{id}_{K^n}.$$
 Durch

$$\Delta_A^{(e_1,\dots,e_n)}:K^n\times K^n\to K, (v,w)\mapsto v^tAw$$

ist eine Bilinearform auf  $K^n$  gegeben. Wir setzen kurz  $\Delta(A):=\Delta_A:=\Delta_A^{(e_1,\dots,e_n)}$ 

**Bemerkung+Definition 20.8**  $\mathrm{Bil}(V):=\{\gamma:V\times V\to K\mid \gamma \text{ ist Bilinearform }\}$  ist ein K-VR, ist ein UVR vom K-VR  $\mathrm{Abb}(V\times V,K)$ 

**Bemerkung 20.9** V endlichdimensional,  $\mathcal{B} = (v_1, \dots, v_n)$  Basis von V. Dann gilt: Die Abbildung

$$M_{\mathcal{B}}: \mathrm{Bil}(V) \to M(n \times n, K)$$

ist ein Isomorphismus von K-VR mit Umkehrabbildung

$$\Delta^{\mathcal{B}}: M(n \times n, K) \to \text{Bil}(V), A \mapsto \Delta^{\mathcal{B}}_{A}$$

**Beweis** 1.  $M_{\mathcal{B}}$  linear: nachrechnen.

2. 
$$\Delta^{\mathcal{B}} \circ M_{\mathcal{B}} = \mathrm{id}_{\mathrm{Bil}(V)}$$
, denn: Sei  $\gamma \in \mathrm{Bil}(V)$ 

$$\implies (\Delta^{\mathcal{B}} \circ M_{\mathcal{B}})(\gamma)(v_i, v_j) = \Delta^{\mathcal{B}}_{M_{\mathcal{B}}(\gamma)}(v_i, v_j) = \Phi_{\mathcal{B}}^{-v}(v_1)^t M_{\mathcal{B}}(\gamma) \Phi_{\mathcal{B}}^{-1}(v_j)$$
$$= e_i^T M_{\mathcal{B}}(\gamma) e_j = \gamma(v_i, v_j)$$

3. 
$$M_{\mathcal{B}} \circ \Delta^{\mathcal{B}} = \mathrm{id}_{M(n \times n, K)}$$
, denn: Sei  $A = (a_{ij}) \in M(n \times n, K)$ ,  $B = (b_{ij}) = (M_{\mathcal{B}} \circ \Delta^{\mathcal{B}})(A) = M_{\mathcal{B}} \circ \Delta^{\mathcal{B}}_{A}$ 
$$b_{ij} = \Delta^{\mathcal{B}}_{A}(v_{i}, v_{j}) = \Phi_{\mathcal{B}}^{-1}(v_{i})^{T} A \Phi_{\mathcal{B}}(v_{j}) = e_{i}^{T} A e_{j} = a_{ij}$$

$$\implies B = A$$

**Satz 20.10** *V* endlichdimensional,  $\mathcal{A}, \mathcal{B}$  Basen von  $V, \gamma$  Bilinearform auf V. Dann gilt:

$$M_{\mathcal{B}}(\gamma) = \left(T_{\mathcal{A}}^{\mathcal{B}}\right)^{T} M_{\mathcal{A}}(\gamma) T_{\mathcal{A}}^{\mathcal{B}}$$

**Beweis** Für  $v, w \in V$  ist

$$\Phi_{\mathcal{B}}^{-1}(v)^T M_{\mathcal{B}}(w) = \gamma(v, w) = \Phi_{\mathcal{A}}^{-1}(v)^T M_{\mathcal{A}}(\gamma) \Phi_{\mathcal{A}}^{-1}(w)$$

16.2.2:  $\tilde{T}^{\mathcal{B}}_{A} = \Phi^{-1}_{A} \circ \Phi_{\mathcal{B}}$ 

$$= (T_{\mathcal{A}}^{\mathcal{B}} \Phi_{\mathcal{B}}^{-1}(v))^{T} M_{\mathcal{A}}(\gamma) T_{\mathcal{A}}^{\mathcal{B}} \Phi_{\mathcal{B}}^{-1}(w)$$

$$= (\Phi_{\mathcal{B}}^{-1})^{T} (T_{\mathcal{A}}^{\mathcal{B}})^{T} M_{\mathcal{A}}(\gamma) T_{\mathcal{A}}^{\mathcal{B}} \Phi_{\mathcal{B}}^{-1}(w)$$

$$\Longrightarrow \Delta^{\mathcal{B}}(M_{\mathcal{B}}(\gamma))(v, w) = \Delta^{\mathcal{B}} \Big( (T_{\mathcal{A}}^{\mathcal{B}})^{T} M_{\mathcal{A}}(\gamma) T_{\mathcal{A}}^{\mathcal{B}} \Big)(v, w)$$

$$\Longrightarrow \Delta^{\mathcal{B}}(M_{\mathcal{B}}(\gamma)) = \Delta^{\mathcal{B}} \Big( (T_{\mathcal{A}}^{\mathcal{B}})^{T} M_{\mathcal{A}}(\gamma) T_{\mathcal{A}}^{\mathcal{B}} \Big)$$

 $\Delta^{\mathcal{B}}$  Isomorphismus

$$\implies M_{\mathcal{B}}(\gamma) = \left(T_{\mathcal{A}}^{\mathcal{B}}\right)^{T} M_{\mathcal{A}}(\gamma) T_{\mathcal{A}}^{\mathcal{B}} \qquad \Box$$

**Definition 20.11** V endlichdimensional,  $\gamma$  Bilinearform auf V. Wir setzen  $\operatorname{Rang}(\gamma) := \operatorname{Rang} M_{\mathcal{B}}(\gamma)$ , wobei  $\mathcal{B}$  eine Basis von V ist.

**Anmerkung** Dies ist wohldefiniert. (folgt aus 20.10, da die Matrizen  $T_{\mathcal{A}}^{\mathcal{B}}$  invertierbar sind)

#### Bemerkung+Definition 20.12 Es gilt:

1. Ist  $\gamma: V \times V \to K$  eine Bilinearform, dann induziert  $\gamma$  die linearen Abbildungen

$$\Gamma_l: V \to V^*, w \mapsto \gamma(\cdot, w)$$
  $\gamma(\cdot, w): V \to K, v \mapsto \gamma(v, w)$   
 $\Gamma_r: V \to V^*, v \mapsto \gamma(v, \cdot)$   $\gamma(v, \cdot): V \to K, v \mapsto \gamma(v, w)$ 

2. Jede lineare Abbildung  $\Gamma:V\to V^*$  induziert Bilinearformen

$$\gamma_l: V \times V \to K, \gamma_l(v, w) := \Gamma(w)(v)$$
  
 $\gamma_r: V \times V \to K, \gamma_r(v, w) := \Gamma(v)(w)$ 

Die Zuordnungen aus 1., 2. induzieren den Isomorphismus  $\mathrm{Bil}(V)\cong\mathrm{Hom}_K(V,V^*)$ 

Beweis Nachrechnen.

**Definition 20.13**  $\gamma$  Bilinearform auf V.  $\gamma$  heißt **nicht-ausgeartet**  $\iff$   $\Gamma_l$  und  $\Gamma_r$  sind injektiv.

$$\iff \gamma(v, w) = 0 \forall v \in V \implies w = 0$$

(Injektivität von  $\Gamma_l$ ), und

$$\iff \gamma(v, w) = 0 \forall w \in V \implies v = 0$$

(Injektivität von  $\Gamma_r$ ).

 $\gamma$  heißt **perfekt**  $\iff$   $\Gamma_l$  und  $\Gamma_r$  sind Isomorphismen.

**Bemerkung 20.14** V endlichdimensional,  $\gamma$  Bilinearform auf  $V, \mathcal{B} = (v_1, \dots, v_n)$  Basis von  $V, \mathcal{B}^*$  duale Basis zu  $\mathcal{B}$ . Dann gilt:

$$M_{\mathcal{B}^*}^{\mathcal{B}}(\Gamma_l) = M_{\mathcal{B}}(\gamma) = \left(M_{\mathcal{B}^*}^{\mathcal{B}}(\Gamma_r)\right)^T$$

**Beweis** Behauptung: Es ist  $\Gamma_l(v_i) = \gamma(v_1, v_i)v_1^* + \cdots + \gamma(v_n, v_i)v_n^*$ , denn  $\Gamma_l(v_i)(v_j) = \gamma(v_j, v_i)$  nach Definition

$$(\gamma(v_1, v_i)v_1^* + \dots + \gamma(v_n, v_i)v_n^*)(v_i) = \gamma(v_i = v_i)$$

Somit:  $M_{\mathcal{B}^*}^{\mathcal{B}}(\Gamma_l) = M_{\mathcal{B}}(\gamma)$ .

Analog: 
$$\Gamma_r(v_i) = \gamma(v_i, v_1)v_1^* + \dots + \gamma(v_i, v_n)v_n^* \implies M_{\mathcal{B}^*}^{\mathcal{B}}(\Gamma_r) = (M_{\mathcal{B}}(\gamma))^T$$

**Folgerung 20.15** V endlichdimensional,  $\gamma$  Bilinearform auf V,  $\mathcal{B}$  Basis von V. Dann sind äquivalent:

- 1.  $\gamma$  ist nich-ausgeartet
- 2.  $\gamma$  ist perfekt
- 3.  $M_{\mathcal{B}}(\gamma)$  invertierbar
- 4.  $\Gamma_l$  injektiv
- 5.  $\Gamma_r$  injektiv

**Beweis** 1.  $\iff$  2. wegen dim  $V = \dim V^*$  und 12.12

$$\gamma$$
 perfekt  $\iff \Gamma_l, \Gamma_r$  Isomorphismen  $\iff M_{\mathcal{B}^*}^{\mathcal{B}}(\Gamma_l), M_{\mathcal{B}^*}^{\mathcal{B}}(\Gamma_r)$  invertierbar  $\iff M_{\mathcal{B}}(\gamma)$  invertierbar.  $M_{\mathcal{B}^*}^{\mathcal{B}}(\Gamma_l), M_{\mathcal{B}^*}^{\mathcal{B}}(\Gamma_r) \iff \Gamma_l$  Isomorphismus  $\iff M_{\mathcal{B}^*}^{\mathcal{B}}$  invertierbar.  $\square$ 

**Definition 20.16**  $\gamma$  Bilinearform auf V.

- $\gamma$  heißt symmetrisch  $\iff \gamma(v,w) = \gamma(w,v) \forall v,w \in V$
- $\gamma$  heißt antisymmetrisch  $\iff \gamma(v,w) = -\gamma(w,v) \forall v,w \in V$
- $\gamma$  heißt alterniernd  $\iff \gamma(v,v) = 0 \forall v \in V$ .

**Anmerkung** •  $\gamma$  symmetrisch  $\Longrightarrow \Gamma_l = \Gamma_r$ 

• Für  $\operatorname{char}(K) \neq 2$  gilt:  $\gamma$  alternierned  $\iff \gamma$  antisymmetrisch

• Für  $\operatorname{char}(K)=2$  gilt immer noch  $\gamma$  alternierend  $\Longrightarrow \gamma$  (anti)symmetrisch Die Umkehrung ist falsch:  $\gamma:\mathbb{F}_2^3\times\mathbb{F}_2^3\to\mathbb{F}, \gamma(x,y)=x_1y_1+x_2y_2+x_3y_3$  ist (anti)symmetrisch, aber nicht alternierend:

$$\gamma\left(\begin{pmatrix} \bar{1}\\ \bar{0}\\ \bar{0}\end{pmatrix}, \begin{pmatrix} \bar{1}\\ \bar{0}\\ \bar{0}\end{pmatrix}\right) = \bar{1} \neq \bar{0}$$

**Bemerkung 20.17** V endlichdimensional,  $\mathcal{B}$  Basis von  $V, \gamma$  Bilinearform auf V. Dann gilt:

- 1.  $\gamma$  symmetrisch  $\iff M_{\mathcal{B}}(\gamma)$  ist symmetrisch, das heißt  $M_{\mathcal{B}}(\gamma)^T = M_{\mathcal{B}}(\gamma)$
- 2.  $\gamma$  antisymmetrisch  $\iff M_{\mathcal{B}}(\gamma)$  ist antisymmetrisch, das heißt  $M_{\mathcal{B}}(\gamma)^T = -M_{\mathcal{B}}(\gamma)$

Beweis 1. " 
$$\Longrightarrow$$
 "klar "Sei  $M_{\mathcal{B}}(\gamma) = M_{\mathcal{B}}(\gamma)^T \Longrightarrow$  Für  $v, w$  ist 
$$\gamma(v, w) = \Phi_{\mathcal{B}}^{-1}(v)^T M_{\mathcal{B}}(\gamma) \Phi_{\mathcal{B}}^{-1}(w) = \Phi_{\mathcal{B}}^{-1}(v)^T M_{\mathcal{B}}(\gamma)^T \Phi_{\mathcal{B}}^{-1}(w)^T = \underbrace{\left(\Phi_{\mathcal{B}}^{-1}(w)^T M_{\mathcal{B}}(\gamma)\Phi_{\mathcal{B}}^{-1}\right)^T}_{\in K} = \Phi_{\mathcal{B}}^{-1}(w)^T M_{\mathcal{B}}(\gamma)\Phi_{\mathcal{B}}^{-1}(v) = \gamma(w, v).$$

2. analog.  $\Box$ 

# 21 Quadratische Räume

**Definition 21.1 (Quadratische Form)** V K-VR. Eine Abbildung  $q:V\to K$  heißt eine **quadratische Form** auf V, genau dann wenn folgende Bedingungen erfüllt sind:

- (Q1)  $q(\lambda v) = \lambda^2 q(v) \forall \lambda \in K, v \in V$
- (Q2) Die Abbildung  $\varepsilon_q: V \times V \to K, (v,w) \mapsto q(v+w)-q(v)-q(w)$  ist eine (automatisch symmetrische) Bilinearform

Beispiel 21.2  $K=\mathbb{R}, V=\mathbb{R}^2, q\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right)=x_1^2+x_1x_2+x_2^2$  ist eine quatratische Form auf  $\mathbb{R}^2$  (Q1) ist erfüllt, (Q2) ist ebenfalls erfüllt, denn

$$\varepsilon_{q}\left(\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}, \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix}\right) = q\left(\begin{pmatrix} x_{1} + y_{1} \\ x_{2} + y_{2} \end{pmatrix}\right) - q\left(\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}\right) - q\left(\begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix}\right) \\
= (x_{1} + y_{1})^{2} + (x_{1} + y_{1})(x_{2} + y_{2}) + (x_{2} + y_{2})^{2} - x_{1}^{2} - x_{1}x_{2} - x_{2}^{2} - x_{2}^{2} - y_{1}^{2} - y_{1}y_{2} - y_{2}^{2} \\
= 2x_{1}y_{1} + x_{1}y_{2} + x_{2}y_{1} + 2x_{2}y_{2}$$

das heißt  $\varepsilon_q$  ist symmetrische Bilinearform.

**Bemerkung 21.3** char  $K \neq 2$ , V K-VR,  $\operatorname{SymBil}(V) := \{ \gamma : V \times V \to K \mid \gamma \text{ ist symmetrische Bilinearform} \}$ ,  $\operatorname{Quad}(\{q: V \to K \mid q \text{ ist eine quadratische Form} \}$ . Dann sind die Abbildungen

$$\begin{split} \Phi: \mathrm{SymBil}(V) &\to \mathrm{Quad}(V), \gamma \mapsto q_{\gamma} \quad q_{\gamma}: V \to K, v \mapsto \gamma(v, v) \\ \Psi: \mathrm{Quad}(V) &\to \mathrm{SymBil}(V), q \mapsto \gamma_{q} \frac{1}{2} \varepsilon_{q} \end{split}$$

zueinander inverse Bijektionen.

**Beweis** 1.  $\Phi$  ist wohldefiniert, das heißt  $q_{\gamma} \in \operatorname{Quad}(V) \forall \gamma \in \operatorname{SymBil}(V)$ . Q1: Sei  $\lambda \in K, v \in V \implies q_{\gamma}(\lambda v) = \gamma(\lambda v, \lambda v) = \lambda^2 \gamma(v, v) = \lambda^2 q_{\gamma}(v)$ Q2:

$$\varepsilon_{q_{\gamma}} = q_{\gamma}(v+w) - q_{\gamma}(v) - q_{\gamma}(w) = \gamma(v+w,v+w) - \gamma(v,v) - \gamma(w,w)$$
$$= \gamma(v,w) + \gamma(w,v) = 2\gamma(v,w)$$

 $\implies \varepsilon_{q_{\gamma}}$  symmetrische Bilinearform.

- 2.  $\Psi$  ist wohldefiniert, denn für jedes  $q\in \mathrm{Quad}(V)$  ist  $\gamma_q=(1/2)\varepsilon_q\in\mathrm{SymBil}(V)$ , da  $\varepsilon_q\in\mathrm{SymBil}(V)$
- 3.  $\Phi \circ \Psi = \mathrm{id}_{\mathrm{Quad}(V)}$ : Für  $q \in \mathrm{Quad}(V), v \in V$  ist

$$(\Phi \circ \Psi)(q)(v) = \Phi(\gamma_q)(v) = \gamma_q(v, v) = \frac{1}{2}(q(v+v) - q(v) - q(v)) = q(v)$$

4.  $\Psi \circ \Phi = \mathrm{id}_{\mathrm{SymBil}(v)}$ : Für  $\gamma \in \mathrm{SymBil}(v), v, w \in V$  ist

$$(\Psi \circ \Phi)(\gamma)(v, w) = \Psi(q_{\gamma})(v, w) = \frac{1}{2}\varepsilon_{q_{\gamma}}(v, w) = \gamma(v, w)$$

Anmerkung Philosophie dahinter: symmetrische Bilinearformen, quadratische Formen auf K sind für char  $K \neq 2$  fast dasselbe. Für char k = 2 kann man die Abblidung  $\Phi$  immer noch definieren,  $\Phi$  ist im allgemeinen aber weder injektiv, noch surjektiv. Exemplarisch: Für  $K = \mathbb{F}_2, V = \mathbb{F}_2^2$  liegt die quadratische Form  $q: \mathbb{F}_2^2 \to \mathbb{F}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto x_1^2 + x_1x_2 + x_2^2$  liegt nicht im Bild vom  $\Phi$ .

Für den Rest dieses Abschnittes sei K stets ein Körper mit  $\operatorname{char} K \neq 2$ 

**Definition 21.4 (Quadratischer Raum)** Ein **quadratischer Raum** ist ein Paar  $(V, \gamma)$ , bestehend aus endlichdimensionalem K-VR V und einer symmetrischen Bilinearform  $\gamma$  auf V.  $v, w \in V$  heißen **orthogonal** bezüglich  $\gamma \iff \gamma(v, w) = 0$ .  $(v_i)_{i \in I}$  Familie von Vektoren aus V heißt orthogonal bezüglich  $\gamma \iff \gamma(v_i, v_j) = 0 \ \forall i, j \in I, i \neq j$ . Eine Familie  $(v_1, \ldots, v_n)$  von Vektoren aus V heißt eine **Orthogonalbasis** (OB) von  $(V, \gamma) \iff (v_1, \ldots, v_n)$  ist eine Basis von V und ist orthogonal bezüglich  $\gamma$ .

**Anmerkung** • Ist  $\gamma$  aus dem Kontext klar, wird es auch häufig weggelassen.

• Ist  $\mathcal B$  eine Basis von V, dann gilt  $\mathcal B$  OB von  $(V,\gamma)\iff M_{\mathcal B}(\gamma)$  ist eine Diagonalmatrix.

**Definition 21.5**  $(V, \gamma_v), (W, \gamma_w)$  quadratische Räume,  $f: V \to W$  lineare Abbildung. f heißt **Homomophismus quadratischer Räume**  $\iff$ 

$$\gamma_w(f(v_1), f(v_2)) = \gamma_v(v_1, v_2) \forall v_1, v_2 \in V$$

f heißt **Isomorphismus quadratischer Räume**  $\iff$  f ist ein Isomorphismus von K-VR und ein Homomophismus quadratischer Räume. Notation: Wir schreiben häufig  $f:(V,\gamma_v)\to(W,\gamma_w)$  für Abbildungen / Homomorphismen quadratischer Räume.

**Anmerkung** Ist  $f:(V,\gamma_v)\to (W,\gamma_w)$  ein Isomorphismus quadratischer Räume, dann ist  $f^{-1}:(W,\gamma_w)\to (V,\gamma_v)$  ebenfalls ein Isomorphismus quadratischer Räume, und es ist  $\mathrm{Rang}(\gamma_v)=\mathrm{Rang}(\gamma_w)$  (nachrechnen...)

**Ziel**: Klassifiziere quadratische Räume bis auf Isomorphie quadratischer Räume.

**Satz 21.6**  $(V, \gamma)$  quadratischer Raum. Dann besitzt  $(V, \gamma)$  eine OB.

**Beweis** per Induktion nach  $n = \dim V$ .

IA: n = 0: leere Familie ist OB.

IS: Sei  $n \geq 1$ 

1. Fall:  $\gamma(v, v) = 0 \forall v \in V$ 

$$\implies \forall v, w \in V : 0 = \gamma(v+w, v+w) = \gamma(v, v) + \gamma(w, w) + 2\gamma(v, w) = 2\gamma(v, w)$$

$$\implies \gamma(v,w) = 0 \forall v,w \in V \implies \text{Jede Basis von } V \text{ ist OB von } (V,\gamma)$$

2.  $\exists v_1 \in V : \gamma(v_1, v_1) \neq 0$ . Sei  $\Gamma : V \to V^*, v \mapsto \gamma(v, \cdot)$  die zu  $\gamma$  gemäß 20.10 gehörige lineare Abbildung. Setze  $H = \ker(\Gamma(v_1)) = \{w \in W \mid \gamma(v_1, w) = 0\}$ 

$$\implies \dim H = \dim V - \underline{\dim \operatorname{im}(\Gamma(v_1))} \in \{n, n-1\}$$

$$\leq K \text{ beachte: } \Gamma(v_1) \in V^*$$

Es ist  $v_1 \not\in H$  wegen  $\gamma(v_1, v_1) \neq 0 \implies \dim H = n-1 \implies V = \operatorname{Lin}((v_1)) \oplus H$ .  $(H, \gamma \mid_{H \times H})$  ist ein quadratischer Raum der Dimension n-1. Wegen IV existiert eine OB  $(v_2, \ldots, v_n)$  von  $(H, \gamma \mid_{H \times H}) \implies (v_1, v_2, \ldots, v_n)$  ist OB von  $(V, \gamma)$ 

**Folgerung 21.7**  $A \in M(n \times n, K)$  symmetrisch. Dann existiert  $T \in GL(n, K)$ , sodass  $T^TAT$  eine Diagonalmatrix.

**Beweis** A definiert eine symmetrische Bilinearform  $\Delta(A) = \Delta_A^{(e_1,\dots,e_n)}$  auf  $K^n$  (vergleiche 20.7,  $\Delta(A)(v,w) = v^T Aw$ ). Nach 21.6 existiert eine OB  $\mathcal B$  von  $(K^n,\Delta(A)) \implies M_{\mathcal B}(\Delta(A))$  ist Diagonalmatrix, und es ist

$$M_{\mathcal{B}}(\Delta(A)) = \underbrace{\left(T^{\mathcal{B}}_{(e_1,\dots,e_n)}\right)^T}_{=T^T} \underbrace{M_{(e_1,\dots,e_n)}(\Delta(A))}_{A} \underbrace{T^{\mathcal{B}}_{(e_1,\dots,e_n)}}_{=:T} \qquad \Box$$

**Folgerung 21.8**  $(V, \gamma)$  quadratischer Raum,  $n = \dim V, r = \operatorname{Rang}(\gamma)$ . Dann existieren  $\lambda_1, \ldots, \lambda_r \in K \setminus \{0\}$  und ein Isomorphismus von quadratischen Räumen

$$\Phi: \left(K^n, \Delta\left(\begin{pmatrix}\lambda_1 & & & 0 & \\ & \ddots & & & \\ & & \lambda_r & & \\ & & & 0 & \\ & & & & \ddots & \\ & 0 & & & & 0\end{pmatrix}\right)\right) \to (V, \gamma)$$

**Beweis** Wegen 21.6 existiert eine OB  $\mathcal{B}=(v_1,\ldots,v_n)$  von  $(V,\gamma)$ . Nach Umordnung von  $v_1,\ldots,v_n$  sei  $\gamma(v_i,v_i)\neq 0$  für  $i=1,\ldots,s$  und  $\gamma(v_i,v_i)=0$  für  $i=s+1,\ldots,n$ 

$$\implies M_{\mathcal{B}}(\gamma) = \begin{pmatrix} \lambda_1 & & & & 0 \\ & \ddots & & & \\ & & \lambda_s & & \\ & & & 0 & \\ & & & \ddots & \\ 0 & & & 0 \end{pmatrix} \quad \lambda_1, \dots, \lambda_s \in K \setminus \{0\}, r = \operatorname{Rang}(\gamma) = \operatorname{Rang} M_{\mathcal{B}}(\gamma) = s$$

Setze  $\Phi:=\Phi_{\mathcal{B}}:K^n o V,e_i\mapsto v_i$  (Koordinatensystem zu  $\mathcal{B}$ , vegleiche 15.2).  $\Phi$  ist Isomorphismus

$$\gamma(\Phi_{\mathcal{B}}(v), \Phi_{\mathcal{B}}(w)) = \Phi_{\mathcal{B}}^{-1}(\Phi_{\mathcal{B}}(v))^{T} M_{\mathcal{B}}(\gamma) \Phi_{\mathcal{B}}^{-1}(\Phi_{\mathcal{B}}(w)) = v_{t} M_{\mathcal{B}}(\gamma) w$$

$$= v^{T} \begin{pmatrix} \lambda_{1} & & & & \\ & \ddots & & & \\ & & \lambda_{r} & & \\ & & & \ddots & \\ 0 & & & \ddots & \\ 0 & & & & \lambda_{r} \end{pmatrix} w = \Delta \begin{pmatrix} \begin{pmatrix} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & & \lambda_{r} \end{pmatrix} \end{pmatrix} (v, w) \quad \Box$$

**Anmerkung**  $\lambda_1, \ldots, \lambda_r$  sind im allgemeinen nicht eindeutig bestimmt.

**Frage:** Kann man über speziellen Körpern mehr sagen? Wir werden  $K=\mathbb{C},\mathbb{R}$  untersuchen.

**Satz 21.9**  $(V, \gamma)$  quadratischer Raum über  $\mathbb{C}, n = \dim V, r = \operatorname{Rang} \gamma$ . Dass existiert eine Orthogonalbasis  $\mathcal{B}$  von  $(V, \gamma)$  mit

$$M_{\mathcal{B}}(\gamma) = \begin{pmatrix} E_r & 0\\ 0 & 0 \end{pmatrix}$$

 $\text{Insbesondere existiert ein Isomorphismus quadratischer R\"{a}ume} \ \Phi\bigg(\mathbb{C}^n,\Delta\bigg(\begin{pmatrix}E_r&0\\0&0\end{pmatrix}\bigg)\bigg) \to (V,\gamma)$ 

**Beweis** Sei  $(\tilde{v}_1, \dots, \tilde{v}_n)$  eine Orthogonalbasis von  $(V, \gamma)$ . Setze

$$v_i := \begin{cases} \tilde{v}_i & \gamma(\tilde{v}_i, \tilde{v}_i) = 0\\ \frac{1}{\sqrt{\tilde{v}_i, \tilde{v}_i}} \tilde{v}_i & \gamma(\tilde{v}_i, \tilde{v}_i) \neq 0 \end{cases}$$

Hierber ist  $\sqrt{\gamma(\tilde{v}_i,\tilde{v}_i)}$  eine komplexe Zahl  $\alpha$  mit  $\alpha^2=\gamma(\tilde{v}_i,\tilde{v}_i)$ . Falls  $\gamma(\tilde{v}_i,\tilde{v}_i)\neq 0$ , dass ist

$$\gamma(v_i, v_i) = \gamma\left(\frac{1}{\sqrt{\gamma(\tilde{v}_i, \tilde{v}_i)}}, \frac{1}{\sqrt{\gamma(\tilde{v}_i, \tilde{v}_i)}}\right) = \frac{1}{\gamma(\tilde{v}_i, \tilde{v}_i)}\gamma(\tilde{v}_i, \tilde{v}_i) = 1$$

Außerdem:  $\gamma(v_i,v_j)=0 \forall i\neq j$ , da  $\gamma(\tilde{v}_i,\tilde{v}_j)=0 \forall i\neq 0$ . Setze  $\mathcal{B}:=(v_1,\ldots,v_n)$ . Nach eventueller Umnummerierung von  $v_1,\ldots,v_n$  ist

$$M_{\mathcal{B}}(\gamma) = \begin{pmatrix} E_r & 0\\ 0 & 0 \end{pmatrix}$$

wobei  $r = \operatorname{Rang} M_{\mathcal{B}}(\gamma) = \operatorname{Rang} \gamma$ .

**Folgerung 21.10**  $A \in M(n \times n, \mathbb{C})$  symmetrisch, r = Rang A. Dass existiert ein  $T \in \text{GL}(n, \mathbb{C})$ , sodass

$$T^T A T = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$$

**Folgerung 21.11 (21.11)**  $(V, \gamma_V), (W, \gamma_W)$  quadratische Räume über  $\mathbb{C}$ . Dann sind äquivalent:

- 1. Es gibt einen Isomorphismus quadratischer Räume  $(V, \gamma_V) \to (W, \gamma_W)$
- 2.  $\dim V = \dim W$  und  $\operatorname{Rang} \gamma_V = \operatorname{Rang} \gamma_W$

**Beweis** 1. ⇒ 2. vergleiche Anmerkung nach 21.5

2.  $\implies$  1. Sei  $n=\dim V=\dim W, r=\operatorname{Rang}\gamma_V=\operatorname{Rang}\gamma_W. \implies (V,\gamma_V), (W,\gamma_W)$  sind als quadratische Räume isomorph zu  $\left(\mathbb{C}^n,\Delta\left(\begin{pmatrix}E_r\end{pmatrix}\right)\right)$ , also auch  $(V,\gamma_V)\cong(W,\gamma_W)$ 

**Definition 21.12**  $(V, \gamma)$  quadratischer Raum,  $U_1, \dots, U_m \subseteq V$  UVR mit  $V = U_1 \oplus \dots \oplus U_n$ . Die direkte Summe heißt **orthogonale direkte Summe** 

$$(V = U_1 \hat{o}plus \dots \hat{\oplus} U_m) \stackrel{\text{Def}}{\Longleftrightarrow} \gamma(u_i, u_j) = 0 \forall u_i \in U_i, u_j \in U_j, i \neq j$$

alternativ (1)

**Satz 21.13**  $(V, \gamma)$  quadratischer Raum über  $\mathbb{R}, n = \dim V$ . Dann existiert eine Orthogonalbasis  $\mathcal{B}$  von  $(V, \gamma)$ , sowie  $r_+, r_- \in \{0, \dots, \dim V\}$  mit

$$M_{\mathcal{B}}(\gamma) = \begin{pmatrix} E_{r_+} & 0\\ -E_{r_-} & 0\\ 0 & 0 \end{pmatrix}$$

Insbesondere existiert ein Isomorphismus quadratischer Räume

$$\left(\mathbb{R}^n, \Delta\left(\begin{pmatrix} E_{r_+} & 0\\ 0 & -E_{r_-} & 0\\ 0 & 0 \end{pmatrix}\right)\right) \to (V, \gamma)$$

Die Zahlen  $r_+, r_-$  sind unabhängig von der Wahl einer solchen Basis. Wir nennen Signatur $(\gamma) := (r_+, r_-)$  heißt die **Signatur** von  $\gamma$ .

**Beweis** 1. Sei  $(\tilde{v}_1, \dots, \tilde{v}_n)$  eine Orthogonalbasis von  $(V, \gamma)$ . Wir setzen

$$v_i := \begin{cases} \tilde{v}_i & \gamma(\tilde{v}_i, \tilde{v}_i) = 0\\ \frac{1}{\sqrt{|\gamma(\tilde{v}_i, \tilde{v}_i)|}} & \gamma(\tilde{v}_i, \tilde{v}_i) \neq 0 \end{cases}$$

Falls  $\gamma(\tilde{v}_i, \tilde{v}_i) \neq 0$ , dass ist

$$\gamma(v_i, v_i) = \gamma \left( \frac{1}{\sqrt{|\gamma(\tilde{v}_i, \tilde{v}_i)|}} \tilde{v}_i, \frac{1}{\sqrt{|\gamma(\tilde{v}_i, \tilde{v}_i)|}} \tilde{v}_i \right)$$
$$= \frac{1}{|\gamma(\tilde{v}_i, \tilde{v}_i)|} \gamma(\tilde{v}_i, \tilde{v}_i) \in \{\pm 1\}$$

 $\gamma(v_i, v_j) = 0$  für  $i \neq j$ . Setze  $\mathcal{B} := (v_1, \dots, v_n)$ . Nach eventueller Umnummerierung von  $v_1, \dots, v_n$  ist

mit geeigneten  $r_+, r_- \in \{0, \dots, n\}$ 

2.  $r_+, r_-$  sind basisunabhängig: Es ist  $r_+ + r_- = \operatorname{Rang} \gamma$ , dies ist basisunabhängig. Es gilt zu zeigen:  $r_+$  ist basisunabhängig. Setze  $V_+ := \text{Lin}((v_1, \dots, v_{r_+})), V_- = \text{Lin}((v_{r_++1}, \dots, v_{r_++r_-})), V_0 :=$  $\operatorname{Lin}((v_{r++r_-+1},\ldots,v_n)) \implies V = V_+ \hat{\oplus} V_- \hat{\oplus} V_0$ . Setze

$$s := \max \{ \dim W \mid W \subseteq V \text{ UVR mit } \gamma(w, w) > 0 \forall w \in W, w \neq 0 \}$$

dies ist wohldefiniert.  $V_+$  ist ein UVR von V mit  $\gamma(w,w)>0 \forall w\in V_+, w\neq 0$ , denn für  $w = \lambda_1 v_1 + \dots + \lambda_{r_+} v_{r_+}$  ist

$$\gamma(w,w) = \lambda_1^2 \underbrace{\gamma(v_1,v_1)}_{=1} + \dots + \lambda_{r_+}^2 \underbrace{v_{r_+},v_{r_+}}_{=1} = \lambda_1^2 + \dots + \lambda_{r_+}^2 > 0 \text{ falls } w \neq 0$$

 $\implies s \ge \dim V_+ = r_+$  Annahme: Es existiert ein UVR  $W \subseteq V$  mit  $\gamma(w,w) > 0 \forall w \in V$  $W, w \neq 0 \text{ und } \dim W > r_+$ 

$$\implies \underbrace{\dim W}_{>r_+} + \underbrace{\dim V_-}_{=r_-} + \underbrace{\dim V_0}_{n-(r_++r_-)} > n$$

$$\implies \dim(W \cap (V_{-} \hat{\oplus} V_{0})) = \dim W + \dim(V_{-} \hat{\oplus} V_{0}) - \dim(W + (W_{-} \hat{\oplus} V_{0}))$$

$$= \underbrace{\dim W + \dim V_{-} + \dim V_{0}}_{>n} - \underbrace{\dim(W + (V_{-} \hat{\oplus} V_{0}))}_{\leq n, \operatorname{da} W + (V_{-} \hat{\oplus} W_{0}) \operatorname{UVR von} V}$$

$$=> 0$$

 $\implies$  Es existiert  $w \in W, w \neq 0$  mit  $w \in W_{-} \oplus V_{0}$ .

 $\implies$  Es existiert  $w_- \in V_-, w_0 \in V_0$  mit  $w = w_- + w_0$ 

$$\implies \gamma(w,w) = \gamma(w_- + w_0, w_- + w_0) = \underbrace{\gamma(w_-, w_-)}_{<0} + \underbrace{\gamma(w_0, w_0)}_{=0} < 0 \text{ Andererseits:}$$
 
$$\gamma(w,w) > 0 \text{ wegen } w \in W, w \neq 0 \text{`. Somit: } r_+ = s \text{, insbesondere unabhängig von}$$

Basiswahl.

Folgerung+Definition 21.14 (Sylvesterscher Trägheitssatz)  $A \in M(n \times n, \mathbb{R})$  symmetrisch. Dann existieren  $T \in GL(n, \mathbb{R}), r_+, r_- \in \{0, \dots, n\}$  mit

$$T^T A T = \begin{pmatrix} E_{r_+} & 0 \\ -E_{r_-} & 0 \\ 0 & 0 \end{pmatrix}$$

Die Zahlen  $r_+, r_-$  sind unabhängig von der Wahl eines solchen T. Signatur $(A) := (r_+, r_-)$  heißt **Signatur** von A.

Beweis folgt aus 21.13 (analog zum Beweis von 21.7). 

**Anmerkung** Ist  $S \in \mathrm{GL}(n,\mathbb{R})$ , dann haben die Matrixen A und  $S^TAS$  diesselbe Signatur, denn: Ist  $\tilde{T} \in \mathrm{GL}(n,\mathbb{R})$  mit

$$\tilde{T}^T (S^T A S) T = \begin{pmatrix} E_{r_+} & 0 \\ -E_{r_-} & 0 \\ 0 & 0 \end{pmatrix}$$

, dann ist

$$\left(S\tilde{T}\right)^{T} A\left(S\tilde{T}\right) = \begin{pmatrix} E_{r_{+}} & 0\\ -E_{r_{-}} & 0\\ 0 & 0 \end{pmatrix}$$

**Folgerung 21.15**  $(V, \gamma_V), (W, \gamma_W)$  quadratische Räume über  $\mathbb{R}$ . Dann sind äquivalent:

- 1. Es gibt einen Isomorphismus quadratischer Räume  $(V, \gamma_V) \to (W, \gamma_W)$
- 2.  $\dim V = \dim W$  und  $\operatorname{Signatur}(\gamma_V) = \operatorname{Signatur}(\gamma_W)$

**Beweis** 1.  $\Longrightarrow$  2. Für Signatur $(\gamma_V)$  = Signatur $(\gamma_W)$  verwende Charakterisierung von  $r_+$  aus dem Beweis von 21.3.

2.  $\implies$  1. aus 21.13, analog zum Beweis von 21.11

**Anmerkung** Man kann Folgerung 21.11/21.15 verwenden, um quadratische Formen über  $\mathbb{C}$  beziehungsweise  $\mathbb{R}$  bis auf Äquivalenz zu klassifizieren (vergleiche Übungen)

## 22 Euklidische Räume

**Definition 22.1**  $V\mathbb{R}$  -VR,  $\gamma:V\times V\to\mathbb{R}$  symmetrische Bilinearform.  $\gamma$  heißt

- positiv definit  $\stackrel{\mathrm{Def}}{\Longleftrightarrow} \gamma(v,v) > 0 \forall v \in V \setminus \{0\}$
- positiv semidefinit  $\stackrel{\mathrm{Def}}{\Longleftrightarrow} \gamma(v,v) \geq 0 \forall v \in V \setminus \{0\}$
- negativ definit  $\stackrel{\mathrm{Def}}{\Longleftrightarrow} \gamma(v,v) < 0 \forall v \in V \setminus \{0\}$
- negativ semidefinit  $\stackrel{\mathrm{Def}}{\Longleftrightarrow} \gamma(v,v) \leq 0 \forall v \in V \setminus \{0\}$
- indefinit  $\stackrel{\mathrm{Def}}{\Longleftrightarrow} \gamma$  ist weder positiv noch negativ semidefinit.

Eine positiv definite symmetrische Bilinearform nennt man auch ein **Skalarprodukt**.

Beispiel 22.2

1. 
$$V = \mathbb{R}^n, <\cdot, \cdot>: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, <\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}>:= x_1y_1 + \cdots + x_ny_n \text{ ist ein }$$
Skalarprodukt auf dem  $\mathbb{R}^n$ . Positiv Definitheit:

 $<\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}> = x_1^2 + \dots + x_n^2 > 0, \text{ falls } \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \neq 0$ 

 $<\cdot,\cdot>$  heißt das **Standardskalarprodukt** auf dem  $\mathbb{R}^n$ .

2. V = C[0, 1]

$$\gamma: \mathcal{C}[0,1] \times \mathcal{C}[0,1] \to \mathbb{R}, (f,g) \mapsto \int_0^1 f(t)g(t)dt$$

ist ein Skalarprodukt.

**Anmerkung** Um die Definitheit einer symmetrischen Bilinearform nachzuweisen, genügt es nicht, das Verhalten auf den Basisvektoren zu untersuchen: Sei  $\gamma: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$  gegeben durch

$$\gamma = \Delta \left( \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix} \right)$$

das heißt

$$M_{(e_1,e_2)}(\gamma) = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

Dann ist  $\gamma(e_1, e_1) = 1, \gamma(e_2, e_2) = 1$  aber

$$\gamma\left(\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right)=\begin{pmatrix}1&1\end{pmatrix}\begin{pmatrix}1&-2\\-2&1\end{pmatrix}\begin{pmatrix}1\\1\end{pmatrix}=-2<0$$

das heißt  $\gamma$  ist indefinit.

**Definition 22.3** Ein **Euklidischer Raum** ist ein Paar  $(V, \gamma)$ , bestehend aus einem endlichdimensionalen  $\mathbb R$  -VR V und einem Skalarprodukt  $\gamma$  auf V. Für den Rest dieses Abschsittes sei  $(V, \gamma)$  ein Euklidischer Raum.

**Definition 22.4**  $v \in V$ 

$$\|v\| := \sqrt{\gamma(v,v)}$$

heißt die **Norm** auf V.

 $(v_i)_{i\in I}$  Familie von Vektoren aus V heißt **orthonormal**  $\stackrel{\mathrm{Def}}{\Longleftrightarrow} (v_i)_{i\in I}$  ist orthogonal und  $||v_i|| = 1 \forall i \in I$ .

 $\mathcal{B} = (v_1, \dots, v_n)$  heißt \*Orthonormalbasis von  $V((V, \gamma))$  (ONB)  $\iff \mathcal{B}$  ist Basis von V und  $\mathcal{B}$  ist orthonormal.

**Bemerkung 22.5**  $(v_1, \ldots, v_n)$  orthogonale Familie von Vektoren aus  $V \setminus \{0\}$ . Dann gilt:

- 1.  $\left(\frac{v_1}{\|v_1\|},\ldots,\frac{v_n}{\|v_n\|}\right)$  ist eine orthonormale Familie
- 2.  $(v_1, \ldots, v_n)$  ist linear unabhängig.

**Beweis** 1.  $||v_i||^2 = \gamma(v_i, v_i) \neq 0$ , da  $\gamma$  positiv definit und  $v_i \neq 0$ .

$$\gamma\left(\frac{v_i}{\|v_i\|}, \frac{v_j}{\|v_j\|}\right) = \frac{1}{\|v_i\| \|v_j\|} \gamma(v_i, v_j) = \begin{cases} 0 & i \neq j \\ \frac{\gamma(v_i, v_i)}{\|v_i\|^2} = 1 & i = j \end{cases}$$

2. Sei  $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ 

$$\implies \lambda_1 \gamma(v_1, v_i) + \dots + \lambda_n \gamma(v_n, v_i) = 0$$

$$\implies \lambda_i = 0$$

#### Bemerkung 22.6 Es gilt:

- 1.  $(V, \gamma)$  besitzt eine Orthonormalbasis
- 2.  $\gamma$  ist nicht-ausgeartet
- 3. Es gibt eine Basis  $\mathcal{B}$  von V mit  $M_{\mathcal{B}}(\gamma) = E_n$ , wobei  $n = \dim V$

**Beweis** Der quadratische Raum  $(V, \gamma)$  hat eine Orthogonalbasas  $(v_1, \ldots, v_n)$ 

$$\implies \mathcal{B} := \left(\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\right)$$

ist eine Orthonormalbasis von  $(V, \gamma)$ . Es ist  $M_{\mathcal{B}}(\gamma) = E_n$  (  $\Longrightarrow$  3.), insbesodere ist  $M_{\mathcal{B}}(\gamma)$  invertierbar  $\Longrightarrow \gamma$  nich ausgeartet  $\Longrightarrow$  2.

**Bemerkung 22.7**  $\mathcal{B} = (v_1, \dots, v_n)$  Orthonormalbasis von  $(V, \gamma), v \in V$ . Dann gilt: Ist  $v = \lambda_1 v_1 + \dots + \lambda_n v_n$ , dann ist  $\lambda_i = \gamma(v, v_i) \forall i = 1, \dots, n$ 

Beweis 
$$\gamma(v, v_i) = \lambda_1 \gamma(v_1, v_i) + \dots + \lambda_n \gamma(v_n, v_i) = \lambda_i \underbrace{\gamma(v_i, v_i)}_{-1} = \lambda_i$$

**Bemerkung+Definition 22.8**  $U \subseteq V$  Untervektorraum.

$$U^{\perp} := \{ v \in V \mid \gamma(v, u) = 0 \forall u \in U \}$$

heißt das **orthogonale Komplement** zu  $U.U^{\perp}$  ist ein Untervektorraum von V.

Beweis leicht nachzurechnen

**Satz+Definition 22.9**  $U \subseteq V$  Untervektorraum. Dann gilt:

- 1.  $V = U \oplus U^{\perp}$
- 2.  $\dim U^{\perp} = \dim V \dim U$
- 3.  $(U^{\perp})^{\perp} = U$
- 4. Ist  $(u_1,\ldots,u_m)$  eine Orthogonalbasis von  $(U,\gamma\mid_{U\times U})$ , und ist  $v\in V$  mit  $v=u+v',u\in U,v'\in U^\perp$ , dass ist

$$u = \sum_{j=1}^{m} \gamma(v, u_j) u_j$$

Die lineare Abbildung

$$\pi_u: V \to U, v \mapsto \sum_{j=1}^m \gamma(v, u_j) u_j$$

hießt die **Orthogonalprojektion** von V auf U.

**Beweis** 1.  $U + U^{\perp} = V$ , denn:

Sei  $(u_1, \ldots, u_m)$  eine Orthogonalbasis von  $(U, \gamma \mid_{n \times n}), v \in V$ . Setze

$$v' := V - \sum_{j=1}^{m} \gamma(v, u_j) u_j$$

$$\Rightarrow \gamma(v', u_i) = \gamma(v, u_i) - \sum_{j=1}^{m} \gamma(v, u_j) \gamma(u_j, u_i) = \gamma(v, u_i) - \gamma(v, u_i) = 0 \forall i = 1, \dots, m$$

$$\Rightarrow v' \in U^{\perp}$$

$$\Rightarrow v = \sum_{j=1}^{m} \gamma(v, u_j) u_j + \underbrace{v'}_{\in U^{\perp}}$$

$$\Rightarrow V = U + U^{\perp}$$

 $U\cap U^{\perp}=\{0\}$ , denn:  $u\in U\cap U^{\perp}\implies \gamma(u,u)=0\implies u=0$  (da  $\gamma$  Skalar<br/>produkt)

- 2. aus 1., 2.
- 3. Sei  $u \in U \implies \gamma(u,w) = 0 \forall w = U^{\perp} \implies u \in (U^{\perp})^{\perp}$ , das heißt  $U \subseteq U^{\perp \perp}$ . Wegen  $\dim(U^{\perp})^{\perp} = \dim V \dim U^{\perp} = \dim V (\dim V \dim U) = \dim U$  foglt  $U = U^{\perp \perp}$ .

**Anmerkung** Insbesondere gilt für alle  $v \in V : v - \pi_U(v) \in U^{\perp}$ 

Beispiel 22.10  $(V,\gamma) = (\mathbb{R}^2, <\cdot, \cdot>), U = \operatorname{Lin}\left(\begin{pmatrix}1\\1\end{pmatrix}\right) \implies U^{\perp} = \operatorname{Lin}\left(\begin{pmatrix}-1\\1\end{pmatrix}\right), \operatorname{denn}\begin{pmatrix}-1\\1\end{pmatrix} \in U^{\perp}$ 

wegen  $<\binom{-1}{1},\binom{1}{1}>=0$ , und es ist  $\dim U^\perp=2-\dim U=2-1=1$ . Jedes Element aus V lässt sich eindeutig schreiben als

$$v = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

das heißt

$$\pi_u: v = \underbrace{\lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{\in U} + \mu \underbrace{\begin{pmatrix} -1 \\ 1 \end{pmatrix}}_{\in U^{\perp}} \mapsto \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \gamma \left( v, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) 1; 1$$

Frage: Wie bestimmt man explizit eine Orthogonalbasis eines Euklidischen Raumes?

Algorithmus 22.11 (Gram-Schmidt-Verfahren) Eingabe:  $(v_1,\ldots,v_n)$  Basis von V. Ausgabe: Orthonormalbasis  $(w_1,\ldots,w_n)$  von  $(V,\gamma)$  Durchführung:

1. Setze

$$w_1 := \frac{v_1}{\|v_1\|}$$

2. Setze für  $k = 2, \ldots, n$ 

$$\tilde{w}_k := v_k - \sum_{i=1}^{k-1} \gamma(v_k, w_i) w_i, \quad w_k := \frac{\tilde{w}_k}{\|\tilde{w}_k\|}$$

3.  $(w_1, \ldots, w_n)$  ist eine Orthonormalbasis von  $(V, \gamma)$ 

**Beweis** Sei  $U_k := \operatorname{Lin}((v_1, \dots, v_k))$  für  $k = 1, \dots, n$ . Wir zeigen per Induktion nach k, dass  $(w_1, \dots, w_k)$  eine Orthogonalbasis von  $(U_k, \gamma \mid_{U_k \times U_k})$  ist (Behauptung folgt dann aus k = n). Induktionsanfang: k = 1 klar

Induktionsschritt: Sei  $\pi_{k-1} := \pi_{U_{k-1}} : V \to V_{k-1}$  die orthogonale Projektion.

$$\implies \tilde{w}_k = v_k - \pi_{k-1}(v_k)$$

da  $(w_1, \ldots, w_{k-1})$  Orthogonalbasis von  $U_{k-1}$  nach Induktionsvorraussetzung.  $\implies \tilde{w}_k \in U_{k-1}^{\perp}$ . Außerdem  $\tilde{w}_k \neq 0$ , da sonst  $v_k = \pi_{k-1}(v_k) \in U_{k-1}$  zu  $(v_1, \ldots, v_k)$  Basis von U\_k

$$\implies w_k = \frac{\tilde{w}_k}{\|\tilde{w}_k\|} \in U_{k-1}^{\perp}$$

und es ist

$$\gamma(w_k, w_i) = \begin{cases} 0 & i = 1, \dots, k - 1 \\ 1 & i = k \end{cases}$$

 $\implies (w_1, \dots, w_k)$  Orthogonalbasis von  $U_k$ 

**Beispiel 22.12** Wir betrachten  $(\mathbb{R}^3, \langle \cdot, \cdot \rangle), U = \operatorname{Lin}((v_1, v_2))$  mit  $v_1 := \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, v_2 := \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ . Gesucht ist

eine Orthogonalbasis von U bezüglich <  $\cdot, \cdot >$ . Setze

$$w := \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix}$$

$$\tilde{w}_2 = v_2 - \langle v_2, w_1 \rangle w_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix} - \langle \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix} \rangle \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix} > \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix}$$

$$= \begin{pmatrix} -1\\1\\0 \end{pmatrix} - \frac{1}{5} \langle \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix} \rangle \begin{pmatrix} 2\\0\\1 \end{pmatrix} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} + \frac{2}{5} \begin{pmatrix} 2\\0\\1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{5}\\1\\\frac{2}{5} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1\\5\\2 \end{pmatrix}$$

$$w_2 = \frac{\tilde{w}_2}{\|\tilde{w}_2\|} = \frac{1}{\sqrt{30}} \begin{pmatrix} -1\\5\\2 \end{pmatrix}$$

22 Euklidische Räume 37

$$\implies \left(\frac{1}{\sqrt{5}}\begin{pmatrix}2\\0\\1\end{pmatrix},\frac{1}{\sqrt{30}}\begin{pmatrix}-1\\5\\2\end{pmatrix}\right) \text{ ist eine Orthogonal basis von } U.$$

**Definition 22.13**  $A \in M(n \times n, \mathbb{R})$  symmetrisch. A heißt **positiv definit** (Notation: A > 0)  $\stackrel{\text{Def}}{\Longleftrightarrow}$  Die symmetrische Bilinearform

$$\Delta(A): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x, y) \mapsto x^T A y$$

ist positiv definit.

**Bemerkung 22.14**  $A \in M(n \times n, \mathbb{R})$  symmetrisch. Dass sind äquivalent:

- 1. A > 0
- 2.  $\exists T \in GL(n, \mathbb{R}) : A = T^T T$

**Beweis** 1.  $\Longrightarrow$  2. Sei A>0  $\Longrightarrow$   $(\mathbb{R}^n,\Delta(A))$  Euklidischer Raum. Sei  $\mathcal B$  Orthogonalbasis von  $(\mathbb{R}^n,\Delta(A))$   $T:=T^{(e_1,\dots,e_n)}_{\mathcal B}$ 

$$\Longrightarrow E_n = M_{\mathcal{B}}(\Delta(A)) = \underbrace{\left(T^{\mathcal{B}}_{(e_1,\dots,e_n)}\right)^T}_{=(T^{-1})^T} \underbrace{M_{(e_1,\dots,e_n)}(\Delta(A))}_{=A} \underbrace{T^{\mathcal{B}}_{(e_1,\dots,e_n)}}_{=T^{-1}}$$

$$\implies A = T^T T$$

2. Sei  $A=T^TT$  für ein  $T\in \mathrm{GL}(n,\mathbb{R})$ . Für  $x\in\mathbb{R}^n, x\neq 0$  ist

$$\Delta(A)(x,x) = x^t A w = x^t T^t T x = (Tx)^T T x = \langle Tx, Tx \rangle > 0 \qquad \Box$$

Anmerkung 1., 2. sind äquivatent zu

3. Es existiert eine obere Dreiecksmatrix P mit Diagonaleinträgen, sodass  $A=P^TP$  (siehe Übungen). Obiges P ist sogar eindeutig bestimmt, eine solche Zerlegung heißt Cholesky-Zerlegung.

Satz 22.15 (Cauchy-Schwarz-Ungleichung)  $v, w \in V$ . Dann gil:

$$|\gamma(v,w)| \leq ||v|| ||w||$$

Gleichheit gilt hierbar genau dann, wenn (v, w) linear abhängig.

**Beweis** 1. Beweis der Ungleichung: Falls w=0, dass fertig. Im Folgenden sei  $w\neq 0$ . Für  $\lambda,\mu\in\mathbb{R}$  ist

$$0 \leq \gamma(\lambda v + \mu w, \lambda v + \mu w) = \lambda^2 \gamma(v, v) + \mu^2 \gamma(w, w) + 2\lambda \mu \gamma(v, w)$$

22 Euklidische Räume 38

Setze 
$$\lambda := \gamma(w, w) > 0$$
, dividiere durch  $\lambda$ 

$$0 \le \gamma(v, v)\gamma(w, w) + \mu^2 + 2\mu\gamma(v, w)$$

Setze 
$$\mu := -\gamma(v, w)$$

$$0 \le \gamma(v, v)\gamma(w, w) + \gamma(v, w)^2 - 2\gamma(v, w)^2$$
$$\gamma(v, w)^2 \le \gamma(v, v)\gamma(w, w)$$
$$|\gamma(v, w)| \le ||v|| ||w||$$

2. Gleichheitsaussage: Für w=0: (v,w) linear abhängig und "=" gilt. Ab jetzt also  $w\neq 0$ .

"  $\Longleftarrow$  " Sei (v, w) linear abhängig  $\implies \exists \lambda \in K : v = \kappa w$ 

$$\implies |\gamma(v, w)|^2 = |\gamma(\lambda w, w)|^2 = |\lambda^2||\gamma(w, w)|^2 = |\gamma(w, w)||\gamma(\lambda w, \lambda w)| = ||w||^2 ||\lambda w||^2$$

$$\implies |\gamma(v, w)| = ||w|| ||\lambda w|| = ||w|| ||v||.$$

"  $\Longrightarrow$  " Es gelte, sei also  $|\gamma(v,w)|=\|v\|\|w\|$ . Führe die Rechnung wie in 1. rückwärts durch: Mit  $\lambda:=\gamma(w,w), \mu=-\gamma(v,w)$  folgt dass

$$\gamma(\lambda v + \mu w, \lambda v + \mu w) = 0 \implies \lambda v + \mu w = 0 \implies (v, w) \text{ linear abhängig} \qquad \square$$

# Bemerkung 22.16 (Eigenschaften der Norm) $v, w \in V, \lambda \in \mathbb{R}$ . Dann gilt:

1. 
$$||v|| = 0 \iff v = 0$$

$$2. \|\lambda v\| = |\lambda| \|v\|$$

3. 
$$||v + w|| \le ||v|| + ||w||$$

**Beweis** 1. klar, da  $\gamma$  positiv definit

2. 
$$\|\lambda v\|^2 = \gamma(\lambda v, \lambda v) = \lambda^2 \gamma(v, v) = \lambda^2 \|v\| \implies \|\lambda v\| = |\lambda| \|v\|$$

3.

$$||v + w||^{2} = \gamma(v + w, v + w) = ||v||^{2} + ||w||^{2} + 2\gamma(v, w) \le ||v||^{2} + ||w||^{2} + 2|\gamma(v, w)|$$

$$\le ||v||^{2} + ||w||^{2} + 2||v|| ||w|| = (||v|| + ||w||)^{2}$$

$$\implies ||v + w|| \le ||v|| + ||w||$$

## **Bemerkung 22.17** $v, w \in V$ . Dann gilt:

1. 
$$||v + w||^2 = ||v||^2 + ||w||^2 \iff \gamma(v, w) = 0$$

Satz des Pythagoras

2. 
$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$$

Parallelogrammgleichung

**Beweis** 1. 
$$||v+w||^2 = \gamma(v+w,v+w) = ||v||^2 + ||w||^2 + 2\gamma(v,w) \implies$$
 Behauptung 2.  $||v+w||^2 + ||v-w||^2 = \gamma(v+w,v+w) + \gamma(v-w,v-w) = 2||v||^2 + 2||w||^2$ 

**Anmerkung**  $V\mathbb{R}$  Vektorraum. Eine Abbildung  $\|\cdot\|:V\to\mathbb{R}_{\geq 0}$  mit den Eigenschaften 1. bis 3. aus 22.16 heißt eine Norm auf V,  $(V,\|\cdot\|)$  ein normierter Vektorraum. Man kann zeigen: Ist  $(V,\|\cdot\|)$  ein normierter Vektorraum, in dem die Parallelogrammgleichung gilt, dann ist durch

$$\gamma(v, w) := \frac{1}{2} \Big( \|v + w\|^2 - \|v\|^2 - \|w\|^2 \Big)$$

ein Skalarprodukt auf V mit  $||v|| = \sqrt{\gamma(v,v)}$ , das heißt in diesen Fällen ist  $(V,\gamma)$  ein euklidischer Vektorraum, dessen Norm mit die gegebenen übereinstimmt.

# 23 Die orthogonale Gruppe

**Definition 23.1**  $(V, \gamma_V), (W, \gamma_W)$  Euklidische Räume,  $\varphi: V \to W$  lineare Abbildung.  $\varphi$  heißt **orthogonal**  $\stackrel{\mathrm{Def}}{\Longrightarrow} \varphi$  ist ein Homomorphismus quadratischer Räume, das heißt

$$\gamma_W(\varphi(v_1), \varphi(v_2)) = \gamma_V(v_1, v_2) \forall v_1, v_2 \in V$$

**Bemerkung 23.2**  $(V, \gamma_V), (W, \gamma_W)$  Euklidische Räume,  $\varphi: V \to W$  orthogonale Abbildung. Dann gilt:

- 1.  $\|\varphi(v)\|_W = \|v\|_V \forall v \in V$
- 2.  $v_1 \perp v_2 \iff \varphi(v_1) \perp \varphi(v_2) \forall v_1, v_2 \in V$
- 3.  $\varphi$  ist injektiv

**Beweis** 1.  $\|\varphi(v)\|_W^2 = \gamma_W(\varphi(v), \varphi(v)) = \gamma_V(v, v) = \|v\|_V^2$ 

2. 
$$v_1 \perp v_2 \iff \gamma_V(v_1, v_2) = 0 \iff \gamma_W(\varphi(v_1), \varphi(v_2)) = 0 \iff \varphi(v_1) \perp \varphi(v_2)$$

3. Sei 
$$v \in V$$
 mit  $\varphi(v) = 0 \implies \|\varphi(v)\|_W = 0 \implies \|v\|_V = 0 \implies v = 0$ 

**Bemerkung 23.3**  $(V, \gamma)$  Euklidischer Raum,  $n = \dim V$ ,  $\mathcal{B}$  Orthogonalbasis von  $(V, \gamma)$ . Dann ist das Koordinatensystem  $\Phi_{\mathcal{B}} : (\mathbb{R}^n, <\cdot, \cdot>) \to (V, \gamma)$  ein orthogonaler Isomorphismus.

**Beweis**  $\Phi_{\mathcal{B}}$  Isomorphismus: klar.  $\Phi_{\mathcal{B}}$  orthogonal, denn: Sei  $\mathcal{B} = (v_1, \dots, v_n)$  dann ist

$$\gamma(\Phi_{\mathcal{B}}(e_i), \Phi_{\mathcal{B}}(e_j)) = \gamma(v_1, v_j) = \delta_{ij} = \langle e_i, e_j \rangle$$

**Bemerkung 23.4**  $(V, \gamma)$  Euklidischer Raum,  $\varphi \in \text{End}(V)$  orthogonal. Dann gilt:

1.  $\varphi$  ist Isomorphismus

- 2.  $\varphi^{-1}$  ist orthogonal
- 3.  $\lambda \in \mathbb{R}$  Eigenwert von  $\gamma \implies |\lambda| = 1$ , das heißt  $\lambda \in \{\pm 1\}$

**Beweis** 1. aus 23.2.3 folgt:  $\varphi$  injektiv  $\implies \varphi$  Isomorphismus

2. 
$$v_1, v_2 \in V \implies \gamma(\varphi^{-1}(v_1), \varphi^{-1}(v_2)) = \gamma(\varphi(\varphi^{-1}(v_1)), \varphi(\varphi^{-1}(v_2))) = \gamma(v_1, v_2) \implies \varphi^{-1} \text{ orthogonal}$$

3. Sei 
$$v \in V$$
 Eigenvektor zum Eigenwert  $\lambda \implies \|v\| = \|\varphi(v)\| = \|\lambda v\| = |\lambda| \|v\| \implies |\lambda| = 1$ 

**Bemerkung 23.5**  $(V, \gamma)$  Euklidischer Raum,  $n = \dim V$ ,  $\mathcal{B}$  Orthogonalbasis von  $V, \varphi \in \operatorname{End}(V)$ ,  $A = M_{\mathcal{B}}(\varphi)$ . Dann sind äquivalent:

- 1.  $\varphi$  ist orthogonal
- $2. A^T A = E_n$

Beweis Wir erhalten kommutierendes Diagramm

$$(V,\gamma) \longleftarrow \Phi_{\mathcal{B}} \qquad (V,\gamma)$$

$$\varphi \downarrow \qquad \qquad \varphi \downarrow$$

$$(\mathbb{R}^{n}, \langle \cdot, \cdot \rangle) \longleftarrow \Phi_{\mathcal{B}} \qquad (\mathbb{R}^{n}, \langle \cdot, \cdot \rangle)$$

Da  $\Phi_{\mathcal{B}}$  orthogonaler Isomorphismus nach 23.3 folgt:

$$arphi$$
 orthogonal  $\iff \tilde{A} = \Phi_{\mathcal{B}}^{-1} = \varphi \circ \Phi_{\mathcal{B}}$  orthogonal  $\iff \forall x, y \in \mathbb{R}^n : (Ax, Ay) = \langle x, y \rangle$   $\iff \forall x, y \in \mathbb{R}^n : (Ax)^T Ay = x^T y$   $\iff \forall x, y \in \mathbb{R}^n : \langle Ax, Ay \rangle = x^T A^T Ay = x^T y$   $\iff \Delta(A^T A) = \Delta(E_n)$   $\iff A^T A = E_n$ 

**Bemerkung+Definition 23.6** A heißt **orthogonal**  $\stackrel{\text{Def}}{\Longleftrightarrow} A^T A = E_n$ 

$$O(n) := \{ A \in M(n \times n, \mathbb{R}) \mid A \text{ ist orthogonal } \}$$

O(n) ist bezüglich die Matrixmultiplikation eine Gruppe, die **orthogonale Gruppe** vom Rang n

**Beweis** Wohldefiniertheit von "·" (das heißt Abgeschlossenheit bezüglich "·"):  $A, B \in O(n) \implies (AB)^T AB = B^T A^T AB = B^T B = E_n \implies AB \in O(n)$ .

Existenz des neutralen Elements:  $E_n \in O(n)$ 

Assoziativität: klar

Existenz von Inversen: Sei 
$$A \in A(n) \implies A^T A = E_n \implies A^{-1} = A^t \implies \left(A^{-1}\right)^T A^{-1} = \left(A^T\right)^T A^T = AA^T = AA^{-1} = E_n$$

Anmerkung  $A \in O(n) \Longrightarrow \det(A) \in \{\pm 1\}$ , denn  $1 = \det(E_n) = \det(A^T A) = \det(A^T A) \det(A) = \det(A)^2$ 

**Bemerkung 23.7**  $A \in M(n \times n, \mathbb{R})$ . Dann sind äquivalent:

- 1.  $A \in O(n)$
- 2.  $AA^T = E_n$
- 3.  $A^T A = E_n$
- 4. Die Transponierten der Zeilen von A bilden eine Orthogonalbasis von  $(\mathbb{R}^n,<\cdot,\cdot>)$
- 5. Die Spalten von A bilden eine Orthogonalbasis von  $(\mathbb{R}^n, <\cdot, \cdot>)$
- 6. Die Abbildung  $\tilde{A}: (\mathbb{R}^n, \langle \cdot, \cdot \rangle) \to (\mathbb{R}^n, \langle \cdot, \cdot \rangle)$  ist orthogonal

**Beweis** 1.  $\iff$  2.  $\iff$  3.  $\iff$  klar

- $2. \iff 4., 3. \iff 5.$
- 1.  $\iff$  6. aus 23.5 (setze  $V = (\mathbb{R}^n, \langle \cdot, \cdot \rangle), \mathcal{B} = (e_1, \dots, e_n)$

**Satz 23.8**  $\varphi: \mathbb{R}^n \to \mathbb{R}^n$  (nicht notwendig linear) abstandstreu, das heißt

$$\|\varphi(x) - \varphi(y)\| = \|x - y\| \forall x, y \in \mathbb{R}^n$$

wobie  $\|\cdot\|$  die Norm auf  $(\mathbb{R}^n, <\cdot, \cdot>)$  bezeichne. Dann existieren eindeutig bestimmte  $A\in O(n), b\in\mathbb{R}^n$ , sodass

$$\varphi(x) = Ax + b$$

für alle  $x \in \mathbb{R}^n$ 

**Bemerkung+Definition 23.9**  $SO(n) := \{A \in O(n) \mid \det A = 1\}$  ist eine Untergruppe von O(n) (das heißt  $SO(n) \subseteq O(n)$  und ist eine Gruppe bezüglich der eingeschränkten Verknüpfung), die **spezielle orthogonale Gruppe** vom Rang n.

**Beweis** Wohldefiniertheit von "·" (= Abgeschlossenheit bezüglich "·")

$$A, B \in SO(n) \implies AB \in O(n) \land \det(AB) = \det(A) \det(B) = 1 \cdot 1 = 1$$

neutrales Element:  $E_n \in SO(n)$ 

Assoziativität: klar

Existenz von Inversem: 
$$A \in SO(n) \implies A^{-1} \in O(n), \det(A^{-1}) = \det(A)^{-1} = 1 \implies A^{-1} \in SO(n)$$

## Beispiel 23.10

$$n = 1 : O(1) = \{\pm 1\}, SO(1) = \{0\}$$

**Bemerkung 23.11**  $A \in O(2)$ . Dann gilt:

1.  $A \in SO(2) \iff \exists! \alpha \in [0, 2\pi] \text{ mit}$ 

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

In diesem Fall beschreibt A eine Drehung mit Zentrum 0 um den Winkel  $\alpha$ . Außer im Fall  $\alpha \in \{0, \pi\}$  besitzt A keine Eigenwerte. Falls  $\alpha = 0$ :

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

einziger Eigenwert: 1. Falls  $\alpha=\pi$ :

$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

einziger Eigenwert: -1.

2.  $A \in O(2) \setminus SO(2) \iff \exists! \alpha \in [0, 2\pi] \text{ mit}$ 

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

In diesem Fall beschreibt A eine Spiegelung an der Geraden  $\operatorname{Lin}\left(\begin{pmatrix}\cos\frac{\alpha}{2}\\\sin\frac{\alpha}{2}\end{pmatrix}\right)$ . A besitzt die Eigenwerte  $\pm 1$ , und es existiert eine Orthogonalbasis  $\mathcal{B}$  von  $(\mathbb{R}^2,<\cdot,\cdot>)$  mit

$$M_{\mathcal{B}}\left(\tilde{A}\right) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

**Beweis** Sei  $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in O(2)$ 

$$\implies 1 = ||e_1||^2 = ||Ae_1||^2 = a^2 + b^2$$

$$\implies 1 = ||e_2||^2 = ||Ae_2||^2 = c^2 + d^2$$

Außerdem:  $e_1 \perp e_2 \implies Ae_1 \perp Ae_2$ 

$$\implies < \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} > = 0$$

$$\implies (a \ b) \begin{pmatrix} c \\ d \end{pmatrix} = 0 \implies \begin{pmatrix} c \\ d \end{pmatrix} \in \operatorname{Lin}\left(\left(\begin{pmatrix} -b \\ a \end{pmatrix}\right)\right)$$

das heißt es existiert  $\lambda \in \mathbb{R}$  mit

$$\begin{pmatrix} c \\ d \end{pmatrix} = \lambda \begin{pmatrix} -b \\ a \end{pmatrix}$$

$$\implies A = \begin{pmatrix} a & -\lambda b \\ b & \lambda a \end{pmatrix}, \det A = \lambda (a^2 + b^2) = \lambda \in \{\pm 1\}$$

1. Fall:  $\lambda=1\iff \det A=1\iff A\in SO(2)$  Wegen  $a^2+b^2=1$  ist  $\begin{pmatrix} a\\b \end{pmatrix}$  ein Punkt auf dem Einheitskreis.  $\implies \exists!\alpha\in[0,2\pi)$  mit  $a=\cos\alpha,b=\sin\alpha$ . Somit:

$$A \in SO(2) \iff A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

für eindeutig bestimmte  $\alpha \in [0,2\pi)$ . Sei  $\binom{x_1}{x_2} = \binom{\cos\beta}{\sin\beta}$  ein Punkt auf dem Einheitskreis

$$A\begin{pmatrix} \cos\beta \\ \sin\beta \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \cos\beta \\ \sin\beta \end{pmatrix} = \begin{pmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta \\ \sin\alpha\cos\beta + \cos\alpha\sin\beta \end{pmatrix} = \begin{pmatrix} \cos\alpha + \beta \\ \sin\alpha + \beta \end{pmatrix}$$

 $\implies$  A beschreibt eine Drehung mit Zentrum 0 um den Winkel  $\alpha$ . A hat nur Eigenwerte, wenn  $\alpha=0$  beziehungsweise  $\alpha=\pi$  (Eigenwert: 1 beziehungsweise -1):

$$\chi_A^{char} = t^2 - \operatorname{sp}(A)t + \det A = t^2 - 2\cos\alpha + 1$$

Eigenwerte:  $\lambda_{1,2} = \cos \alpha \pm \sqrt{\cos^2 \alpha - 1}$ , Eigenwert in  $\mathbb{R} \iff \cos^2 \alpha - 1 \ge 0 \iff \alpha = 1$  oder  $\alpha = \pi$ 

2.  $\lambda = -1 \iff A \in O(2) \setminus SO(2)$ :

$$\iff A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

Wegen  $a^2+b^2=1$  existiert genau ein  $\alpha\in[0,2\pi)$  mit  $a=\cos\alpha,b=\sin\alpha$ . Sei  $\binom{x_1}{x_2}=\binom{\cos\beta}{\sin\beta}$  ein Punkt auf dem Einheitskreis.

$$\implies A \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} = \begin{pmatrix} \cos \alpha \cos \beta + \sin \alpha \sin \beta \\ \sin \alpha \cos \beta - \cos \alpha \sin \beta \end{pmatrix} = (\cos(\alpha - b), \sin \alpha - B)$$

$$\implies A \begin{pmatrix} \cos(\frac{\alpha}{2} + \beta) \\ \sin(\frac{\alpha}{2} + \beta) \end{pmatrix} = \begin{pmatrix} \cos(\frac{\alpha}{2} - \beta) \\ \sin(\frac{\alpha}{2} - \beta) \end{pmatrix}$$

 $\implies A$  beschreibt Spiegelung an der Geraden  $\operatorname{Lin}\left(\begin{pmatrix} \cos \frac{\alpha}{2} \\ \sin \frac{\alpha}{2} \end{pmatrix}\right)$ 

$$\chi_A^{char} = t^2 - \operatorname{sp}(A)t + \det A = t^2 - 1 = (t+1)(t-1)$$

 $\implies$  A diagonalisierbar und hat Eigenwert  $\pm 1$ . Sei  $v_1$  Eigenvektor von A zum Eigenwert 1 mit  $||v_1||=1, v_2$  Eigenvektor von A zum Eigenwert -1 mit  $||v_2||=1$ 

$$\implies < v_1, v_2 > = < Av_1, Av_2 > = < v_1, -v_2 > = - < v_1, v_2 > \implies < v_1, v_2 > = 0 \iff v_1 \perp v_2$$

Bezüglich der Orthogonalbasis 
$$(v_1, v_2)$$
 des  $(\mathbb{R}^2, <\cdot, \cdot>)$  ist  $M_{\mathcal{B}}(\tilde{A}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 

**Folgerung 23.12**  $\varphi: (\mathbb{R}^2, <\cdot, \cdot>) \to (\mathbb{R}^2, <\cdot, \cdot>)$  orthogonale Abbildung. Dann existiert eine Orthogonalbasis  $\mathcal{B}$  von  $(\mathbb{R}^2, <\cdot, \cdot>)$ , sodass

$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \text{ oder } M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \alpha \in (0, \pi)$$

Die Anzahl der  $\pm 1$  sowie  $\alpha$  sind unabhängig von der Wahl einer solchen Orthogonalbasis  $\mathcal{B}$  (das heißt sind Invarianten von  $\varphi$ ).

**Beweis** Existenz von  $\mathcal{B}$ : Sei  $\mathcal{C} = (e_1, e_2), A := M_{\mathcal{C}}(\varphi)$ , insbesondere  $A \in O(2)$ .

1. Fall:  $A \in SO(2) \implies \exists \beta \in (0, 2\pi), \beta \neq \pi$  mit

$$A = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \text{ oder } A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ oder } A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Falls  $\beta \in (0, \pi)$ , setze  $\alpha := \beta, \mathcal{B} = \mathcal{C}$ .

Falls  $\beta \in (\pi, 2\pi)$ 

$$\implies M_{(e_2,e_1)}(\varphi) = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix}$$

Setze  $\alpha := 2\pi - B$ ,  $\mathcal{B} := (e_2, e_1) \implies \beta = 2\pi - \alpha \implies \cos \beta = \cos \alpha$ ,  $\sin \beta = -\sin \beta$ 

$$\implies M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

2. 
$$A \in O(2) \setminus SO(2) \implies \exists \text{ Orthogonal basis } \mathcal{B} \text{ von } \left(\mathbb{R}^2, <\cdot, \cdot>\right) \text{ mit } M_{\mathcal{B}}(\varphi) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

Eindeutigkeit: Falls  $M_{\mathcal{B}}(\varphi)=\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm -1 \end{pmatrix}$ , dann Anzahl der  $\pm 1=\mu_{alg}$  der Eigenwirte  $\pm 1$ .

Falls 
$$M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
, dann  $\chi_{\varphi}^{char} = t^2 - 2\cos \alpha t + 1 \implies \cos \alpha$  ist unabhängig von der Wahl der Basis  $\mathcal{B}$ . Wegen  $\alpha \in (0, \pi)$  ist  $\alpha$  unabhängig von  $\mathcal{B}$ .

**Anmerkung** Verallgemeinerung von 23.12 auf  $(\mathbb{R}^n, <\cdot, \cdot>)$  ist möglich.

# 24 Der Spektralsatz

In diesem Abschnitt sei  $(V, \gamma)$  stets ein Euklidischer Raum.

**Bemerkung 24.1** Die Abbildung  $\Gamma: V \to V^*, w \mapsto \gamma(\cdot, w)$  ist ein Isomorphismus.

**Beweis**  $\gamma$  nicht ausgeartet nach 22.6  $\implies \gamma$  perfekt, das heißt  $\Gamma$  Isomorphismus.

**Anmerkung** Insbesondere ist für einen Euklidischen Vektorraum  $(V, \gamma)$  die Vektorräume V und  $V^*$  kanonisch isomorph.

**Bemerkung 24.2**  $\mathcal{B}=(v_1,\ldots,v_n)$  Orthonormalbasis von  $(V,\gamma),\mathcal{B}^*=(v_1^*,\ldots,v_n^*)$  duale Basis zu  $\mathcal{B},U\subseteq V$  Untervektorraum,  $\Gamma:V\to V^*$  kanonische Abbildung aus 24.1. Dass gilt:

1. 
$$\Gamma(U^{\perp}) = U^0$$

2. 
$$\Gamma(v_i) = v_i^*, i = 1, \dots, n$$

Beweis 1.  $\Gamma(U^{\perp}) \subseteq U^0$ , denn: Für  $v \in U^{\perp}, u \in U$  ist  $(\Gamma(v))(w) = \gamma(u,v) = 0 \implies \Gamma(U^{\perp}) \subseteq U^0$ .

$$\dim \Gamma \Big( U^{\perp} \Big) = \dim U^{\perp} = \dim V - \dim U = \dim U^{0}$$

2. Es ist 
$$\Gamma(v_i)(v_j) = \gamma(v_j, v_i) = \delta_{ij} = v_i^*(v_j), j = 1, \dots, n$$
, das heißt  $\Gamma(v_i) = v_i^*$ 

**Bemerkung+Definition 24.3**  $(V,\gamma_V),(W,\gamma_W)$  Euklidische Räume,  $\varphi:V\to W.$  Dass existiert genau eine lineare Abbildung  $\varphi^{ad}:W\to V$  mit

$$\gamma_W(\varphi(v), w) = \gamma_V(v, \varphi^{ad}(w)) \forall v \in V, w \in W$$

 $\varphi^{ad}$  heißt die zu  $\varphi$  adjungierte Abbildung

Beweis Existenz: Wir betrachten das Diagramm

$$\begin{array}{ccc}
V & & \longrightarrow & W \\
& & & & & \downarrow \\
\varphi^{ad} & & & & & \downarrow \\
V^* & & & & & \downarrow \\
V^* & & & & & \downarrow \\
V^* & & & & & \downarrow \\
\end{array}$$

und setzen  $\varphi^{ad}:=\Gamma_V^{-1}\circ \varphi^*\circ \Gamma_W$ ,  $\varphi^{ad}$  ist linear nach Konstruktion. Es gilt für  $v\in V, w\in W$ :

$$\begin{split} \gamma_W(\varphi(v),w) &= \Gamma_W(w)(\varphi(v)) = (\Gamma_W(w)\circ\varphi)(v) = \varphi^*(\Gamma_W(w))(v) \\ &= ((\varphi^*\circ\Gamma_W)(w))(v) = \Big(\Big(\Gamma_V\circ\varphi^{ad}\Big)(w)\Big)(v) = \Gamma_V\Big(\varphi^{ad}(w)\Big)(v) \\ &= \gamma\Big(v,\varphi^{ad}(w)\Big) \end{split}$$

Eindeutigkeit: Damit obige Gleichung für alle  $v \in V, w \in W$  gilt, muss das Diagramm kommutieren, das heißt  $\Gamma_V \circ \varphi^{ad} = \varphi^* \circ \Gamma_W$ , also  $\varphi^{ad} = \Gamma_V^{-1} \circ \varphi^* \circ \Gamma_W$ .

**Anmerkung** Ist  $\varphi$  orthogonal, dann ist  $\varphi^{ad} = \varphi^{-1}$ , denn für  $v, w \in V$ 

$$\gamma(\varphi(v),w) = \gamma\big(\varphi(v),\varphi\big(\varphi^{-1}(w)\big)\big) = \gamma(v,\varphi(w))$$

**Bemerkung 24.4**  $(V, \gamma_V), (W, \gamma_W)$  euklidische Räume,  $\mathcal A$  Orthonormalbasis von  $(V, \gamma_V), \mathcal B$  Orthonormalbasis von  $(W, \gamma_W), \varphi: V \to W$  lineare Abbildung. Dass gilt

$$M_{\mathcal{A}}^{\mathcal{B}}(\varphi^{ad}) = (M_{\mathcal{B}}^{\mathcal{A}}(\varphi))^{T}$$

Insbesondere ist  $(\varphi^{ad})^{ad} = \varphi$ 

**Beweis** 

$$M_{\mathcal{A}}^{\mathcal{B}}(\varphi^{ad}) = M_{\mathcal{A}}^{\mathcal{B}}(\Gamma_{V}^{-1} \circ \varphi^{*} \circ \Gamma_{W}) = \underbrace{M_{\mathcal{A}}^{\mathcal{A}^{*}}(\Gamma_{V}^{-1})}_{E_{\dim V}} \underbrace{M_{\mathcal{A}^{*}}^{\mathcal{B}^{*}}}_{(M_{\mathcal{B}}^{\mathcal{A}}(\varphi))^{T}} \underbrace{M_{BB^{*}}^{\mathcal{B}^{*}}(\Gamma_{W})}_{=E_{\dim W}}$$
$$= (M_{\mathcal{B}}^{\mathcal{A}}(\varphi))^{T} \qquad \Box$$

**Satz 24.5**  $(V, \gamma_V), (W, \gamma_W)$  euklidische Räume,  $\varphi: V \to W$  lineare Abbildung. Dann gilt:

1. 
$$\ker(\varphi^{ad}) = (\operatorname{im} \varphi)^{\perp}$$

2. 
$$\operatorname{im}(\varphi^{ad}) = (\ker \varphi)^{\perp}$$

 $\begin{array}{ll} \textbf{Beweis} & 1. \ w \in (\operatorname{im} \varphi)^{\perp} \iff \gamma_{W}(\varphi(v), w) = 0 \forall v \in V \iff \gamma_{V}\big(v, \varphi^{ad}(w)\big) = 0 \forall v \in V, \gamma \text{ nicht ausgeartet} \implies \varphi^{ad}(w) = 0 \iff w \in \ker\big(\varphi^{ad}\big) \end{array}$ 

2. 
$$\left(\operatorname{im}(\varphi^{ad})\right)^{\perp} = \ker\left(\varphi^{ad}\right)^{ad} = \ker\varphi \iff \left(\ker\varphi\right)^{\perp} = \left(\operatorname{im}(\varphi^{ad})^{\perp}\right)^{\perp} = \operatorname{im}\varphi^{ad} \qquad \Box$$

**Folgerung 24.6**  $\varphi \in \text{End}(V)$ . Dann gilt:

$$V = \ker \varphi \hat{\oplus} \operatorname{im} \varphi^{ad}$$
 sowie  $V = \ker \varphi^{ad} \hat{\oplus} \operatorname{im} \varphi$ 

Beweis Es ist

$$V = (\ker \varphi) \hat{\oplus} (\ker \varphi)^{\perp} = \ker \varphi \hat{\oplus} \operatorname{im} \varphi^{ad}$$

andere Gleichung analog.

**Definition 24.7 (Selbstadjungiert)**  $\varphi \in \operatorname{End}(V)$  heißt selbstadjungiert  $\iff \varphi = \varphi^{ad}$ 

**Bemerkung 24.8**  $\mathcal{B}$  Orthonormalbasis von  $(V, \gamma)$ . Dann sind äquivalent:

- 1.  $\varphi$  selbstadjungiert
- 2.  $M_{\mathcal{B}}(\varphi)$  symmetrisch

In diesem Fall  $V = \ker \varphi \hat{\oplus} \operatorname{im} \varphi$ 

**Beweis**  $\varphi$  selbstadjungiert  $\iff \varphi = \varphi^{ad} \iff M_{\mathcal{B}}(\varphi) = M_{\mathcal{B}}\varphi^{ad} = (M_{\mathcal{B}}(\varphi))^T$ . Nach 24.6 ist dann  $V = \ker \varphi \hat{\oplus} \operatorname{im} \varphi^{ad} = \ker \varphi \hat{\oplus} \operatorname{im} \varphi$ 

### Satz 24.9 Es gilt:

- 1.  $\varphi \in \operatorname{End}(V)$  selbstadjungiert  $\implies \gamma': V \times V \to \mathbb{R}, \gamma'(x,y) = \gamma(\varphi(x),y)$  ist eine symmetrische Bilinearform
- 2. Ist  $\gamma': V \times V \to \mathbb{R}$  eine symmetrische Bilinearform, dann existiert genau ein selbstadjungierter Endormorphisums  $\varphi \in \operatorname{End}(V)$  mit  $\gamma'(x,y) = \gamma(\varphi(x),y) \forall x,y \in V$

In diesem Fällen gilt bezüglich jeder Orthonormalbasis  $\mathcal{B}$  von  $(V, \gamma)$ :

$$M_{\mathcal{B}}(\gamma') = M_{\mathcal{B}}(\varphi)$$

**Beweis** 1.  $\varphi$  selbstadjungiert  $\implies \gamma'(x,y) = \gamma(\varphi(x),y) = \gamma(x,\varphi(y)) = \gamma(\varphi(y),x) = \gamma'(y,x), \gamma'$  bilinear klar.

2. Sei  $\gamma': V \times V \to \mathbb{R}$  symmetrische Bilinearform,  $x \in V \Longrightarrow \rho_x := \gamma'(x,\cdot): V \to \mathbb{R}, \gamma \mapsto \gamma'(x,y)$  ist ein Element von  $V^*$ . Nach 24.1 ist  $\Gamma: V \to V^*, w \mapsto \gamma(\cdot,w)$  ein Isomorphismus  $\Longrightarrow$  Es existiert genau ein  $z \in V$  mit  $\Gamma(z) = \rho_x$ , das heißt mit

$$\gamma(y,z) = \Gamma(z)(y) = \rho_x(y) = \gamma'(x,y) \forall y \in V$$

Wir definieren  $\varphi:V\to V, x\mapsto k$  mit  $\Gamma(z)=\rho_x\Longrightarrow \text{ Für alle }x,y\in V \text{ ist }\gamma(\varphi(x),y)=\gamma(y,\varphi(x))=\gamma'(x,y).$ 

 $\varphi$  ist linear: Seien  $x_1, x_2, y \in V, \lambda, \mu \in \mathbb{R}$ 

$$\implies \Gamma(\varphi(\lambda x_1 + \mu x_2) - \lambda \varphi(x_1) - \mu \varphi(x_2))(y) = \gamma(y, \varphi(\lambda x_1 + \mu x_2) - \lambda \varphi(x_1) - \mu \varphi(x_2))$$

 $= \gamma(y, \varphi(vx_1 - y))$  $= \gamma'(\lambda x_1 + \mu x)$ 

 $\gamma'$  bilnear

= 0

Das gilt für alle  $y \in V$ 

$$\implies \Gamma(\varphi(\lambda x_1 + \mu x_2) - \lambda \varphi(x_1) - \mu \varphi(x_2)) = 0$$
$$\implies \varphi(\lambda x_1 + \mu x_2) = \lambda \varphi(x_1) + \mu \varphi(x_2)$$

 $\varphi$  selbstadjudgiert: Für  $x, y \in V$  ist

$$\gamma(\varphi(x), y) = \gamma'(x, y) = \gamma'(y, x) = \gamma(\varphi(y), x) = \gamma(x, \varphi(y)) \implies \varphi = \varphi^{ad}$$

 $\varphi$  ist eindeutig: Sei  $\tilde{\varphi}$  selbstadjudgiert mit  $\gamma'(x,y) = \gamma(\varphi(x),y) = \gamma(\tilde{\varphi}(x),y) \forall x,y \in V$ 

$$\implies \Gamma(\varphi(x))(y) = \Gamma(\tilde{\varphi}(x))(y) \forall x, y \in V$$
$$\implies \Gamma(\varphi(x)) = \Gamma(\tilde{\varphi}(x))$$

 $\Gamma$  Isomorphismus

$$\implies \varphi(x) = \tilde{\varphi}(x) \forall x \in V$$
$$\implies \varphi = \tilde{\varphi}$$

Darstellungsmatrizen: Sei  $\mathcal{B}=(v_1,\ldots,v_n)$  Orthogonalbasis von  $(V,\gamma)$ .  $A=M_{\mathcal{B}}(\varphi)=(a_{ij})$ 

$$\Rightarrow \gamma'(v_i, v_j) = \gamma(\varphi(v_i), v_j) = \gamma \left(\sum_{k=1}^n a_{ki} v_k, v_j\right) = a_{ji} \stackrel{\varphi \text{ selbstadjudgiert}}{=} a_{ij}$$

$$\Rightarrow M_{\mathcal{B}}(\gamma') = M_{\mathcal{B}}(\gamma)$$

**Anmerkung** Interpretation für  $(\mathbb{R}^n, <\cdot, \cdot>)$ : Ist  $A\in M(n\times n, \mathbb{R})$  symmetrisch, dann ist A

- Darstellungsmatrix bezüglich  $(e_1,\ldots,e_n)$  des selbstadjungierten Endomorphismus  $\tilde{A}$  von  $\mathbb{R}^n$
- Darstellungsmatrix bezügilch  $(e_1,\ldots,e_n)$  der symmetrischen Bilinearform  $\gamma'=\Delta(A):(x,y)\mapsto x^tAy$

Es ist  $\gamma'(x,y)=x^tAy=x^tA^ty=(Ax)^ty=< Ax, y>=< \tilde{A}(x), y> \forall x,y\in\mathbb{R}^n$ . Bezüglich jeder Orthogonalbasis von  $(\mathbb{R}^n,<\cdot,\cdot>)$  gilt  $M_{\mathcal{B}}\Big(\tilde{A}\Big)=M_{\mathcal{B}}(\gamma')$ 

**Bemerkung 24.10**  $\varphi\in \operatorname{End}(V)$  selbstadjungiert,  $U\subseteq V$  Untervektorraum mit  $\varphi(U)\subseteq U$ . Dann gilt  $\varphi(U^\perp)\subseteq U^\perp$ 

$$\textbf{Beweis} \ \ \text{Sei} \ v \in U^{\perp} \implies \forall u \in U : \gamma(u, \varphi(v)) = \gamma \left(\underbrace{\varphi(u)}_{\in U}, \underbrace{v}_{\in U^{\perp}}\right) = 0 \implies \varphi(v) \in U^{\perp} \quad \ \Box$$

Bemerkung 24.11  $\varphi\in \mathrm{End}(V)$  selbstadjungiert. Dann zerfällt  $\chi_{\varphi}^{char}$  über  $\mathbb R$  in Linearfaktoren.

**Beweis** Sei  $\mathcal B$  eine Orthonormalbasis von  $(V,\gamma), A=M_{\mathcal B}(\varphi) \implies \chi_{\varphi}^{char}=\chi_A^{char}, A=A^T$  wegen  $\varphi$  selbstadjungiert. Wir betrachet die  $\mathbb C$  -lineare Abbildung  $\tilde A_{\mathbb C}:\mathbb C^n\to\mathbb C^n, z\mapsto Az$ . Es ist

$$\chi_A^{char} = \chi_{\tilde{A}_c}^{char} = (t - \lambda_1) \cdot \dots \cdot (t - \lambda_n), \lambda_1, \dots, \lambda_n \in \mathbb{C}$$

Behauptung: 
$$\lambda_i \in \mathbb{R} \forall i=1,\ldots,n$$
, denn: Sei  $z=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$  ein Eigenvektor zum Eigenwert  $\lambda_i$ 

von 
$$ilde{A}_{\mathbb C}$$
. Wir setzen  $ar{z}:=egin{pmatrix} ar{z}_1 \ draingledown \ ar{z}_n \end{pmatrix}$  und erhalten

$$\lambda_i z^T \bar{z} = (\lambda_i z)^T \bar{z} = (Az)^T \bar{z} = z^T A^T \bar{z} = z^T A \bar{z} = z^T \overline{Az} = z^T \overline{\lambda_i z} = \bar{\lambda}_i z^T \bar{z}$$

Es ist 
$$z^T \bar{z} = (z_1, \dots, z_n) \begin{pmatrix} \bar{z}_1 \\ \vdots \\ \bar{z}_n \end{pmatrix} = z_1 \bar{z}_1 + \dots + z_n \bar{z}_n = |z_1|^2 + \dots + |z_n|^2 \neq 0 \implies \lambda_i = \bar{\lambda}_i \implies \lambda_i \in \mathbb{R}$$

Satz 24.12 (Spektralsatz für selbstadjungierte Endomorphismen)  $\varphi \in \operatorname{End}(V)$  selbstadjungierter Endomorphismus. Dann existiert eine Orthonormalbasis von  $(V, \gamma)$  aus Eigenvektoren von  $\varphi$ . Sind  $\lambda_1, \ldots, \lambda_r$  die verschiedenen Eigenwerte von  $\varphi$ , so ist

$$V = Eig(\varphi, \lambda_1) \hat{\oplus} \dots \hat{\oplus} \operatorname{Eig}(\varphi, \lambda_r)$$

**Beweis** per Induktion nach  $n = \dim V$ .

Induktionsanfang: n = 0: trivial

Induktionsschritt: Sei  $n \geq 1$ . Nach 24.11 existiert ein Eigenwert  $\lambda$  von  $\varphi$  und es sei  $w_1$  ein Eigenvektor von  $\varphi$  zum Eigenwert  $\lambda$ . Setze

$$v_i := \frac{w_1}{\|w_1\|}, U := \operatorname{Lin}((v_i)) \implies \varphi(U) \subseteq U \implies \varphi\left(U^{\perp} \subseteq U^{\perp}\right)$$

Wir setzen  $\psi:=arphiig|_{U^\perp}^{U^\perp}:U^\perp\to U^\perp$ .  $\psi$  ist selbstadjungiert, denn: Für alle  $x,y\in U^\perp$  ist

$$\gamma(\psi(x), y) = \gamma(\varphi(x), y) = \gamma(x, \varphi(y)) = \gamma(x, \psi(y))$$

Nach 22.9 ist  $V = U \oplus U^{\perp}$ ,  $\dim U^{\perp} = \dim V - \dim U = n-1$ . Nach Induktionsvorrausetzung existiert eine Orthonormalbasis von  $(v_2, \dots, v_n)$  von  $U^{\perp}$  aus Eigenvektoren von  $\varphi \implies (v_1, \dots, v_n)$  ist von Orthonormalbasis  $(V, \gamma)$  aus Eigenvektoren von  $\varphi \implies V = \text{Eig}(\varphi, \lambda_1) \oplus \dots \oplus \text{Eig}(\varphi, \lambda_r) \square$ 

**Folgerung 24.13**  $\gamma': V \times V: \mathbb{R}$  symmetrische Bilinearform,  $n = \dim V$ . Dann existiert eine Orthonormalbasis  $\mathcal{B}$  von  $(V, \gamma)$  bezüglich derer die Darstellungsmatrix von  $\gamma'$  Diagonalgestalt hat:

$$M_{\mathcal{B}}(\gamma') = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

Hierbei sind  $\lambda_i, \ldots, \lambda_n$  die Eigenvektoren (mit Vielfachen) des zu  $\gamma'$  gehörenden eindeutig bestimmten selbstadjungierten Endomorphismus  $\varphi \in \operatorname{End}(V)$  mit  $\gamma'(x,y) = \gamma(\varphi(x),y)$ 

**Beweis** Sei  $\varphi \in \operatorname{End}(V)$  der entsprechende Endomorphismus von V nach 24.9. Spektralsatz  $\Longrightarrow$  Es existiert eine Orthonormalbasis  $\mathcal{B}$  von  $(V, \gamma)$  aus Eigenvektoren von  $\varphi$  zu Eigenwerten  $\lambda_1, \ldots, \lambda_n$  (nicht notwendig verschieden)

$$\implies M_{\mathcal{B}}(\gamma') \stackrel{24.9}{=} M_{\mathcal{B}}(\varphi) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

**Folgerung 24.14**  $A \in M(n \times n, \mathbb{R})$  symmetrisch. Dann existiert ein  $T \in O(n)$ , sodass

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

Hierbei sind  $\lambda_i, \ldots, \lambda_n$  die Eigenwerte (mit Vielfachheit) von A. Die Spalten von T bilden eine Orthonormalbasas von  $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$  aus Eigenvektoren von A.

**Beweis**  $\tilde{A}: \mathbb{R}^n \to \mathbb{R}^n$  ist selbstadjungierter Endomorphismus von  $(\mathbb{R}^n, <\cdot, \cdot>)$ . Spektralsatz  $\Longrightarrow$  es existiert eine Orthonormalbasis  $\mathcal{B}$  aus Eigenvektoren von A des  $(\mathbb{R}^n, <\cdot, \cdot>)$  mit

$$M_{\mathcal{B}}\left(\tilde{A}\right) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

Es ist

$$M_{\mathcal{B}}\left(\tilde{A}\right) = \underbrace{\left(T_{(e_1,\dots,e_n)}^{\mathcal{B}}\right)^{-1}}_{T-1} \underbrace{M_{(e_1,\dots,e_n)}^{(e_1,\dots,e_n)}\left(\tilde{A}\right)}_{A} \underbrace{T_{(e_1,\dots,e_n)}^{\mathcal{B}}}_{=:T}$$

Es ist  $T \in O(n)$ , da  $\mathcal{B}$  Orthogonalbasis von  $(\mathbb{R}^n, <\cdot, \cdot>)$  (vergleiche 23.7)

**Anmerkung** Man kann sogar stets  $T \in SO(n)$  erreichen (indem man gegebenfalls eine Spalte  $v_i$  von T durch  $-v_i$  ersetzt.)

**Algorithmus 24.15 (Hauptachsentransformation)** Eingabe:  $A \in M(n \times n, \mathbb{R})$  symmetrisch Ausgabe:  $T \in O(n)$ , sodass  $T^{-1}AT$  Diagonalmatrix Durchführung:

1. Bestimme  $\chi_A^{char} \in \mathbb{R}[t]$  sowie eine Zerlegung

$$\chi_A^{char} = (t - \lambda_1)^{T_1} \cdot \ldots \cdot (t - \lambda_k)^{T_A}$$

mit  $\lambda_1, \ldots, \lambda_k$  paarweise verschieden

2. Bestimme für i = 1, ..., k jeweils eine Basis von  $\text{Eig}(\varphi, \lambda_i)$ 

- 3. Bestimme mit dem Gram-Schmidt-Verfahren für  $i=1,\ldots,k$  eine Orthonormalbasis  $\mathcal{B}_i=(v_{i,1},\ldots,v_{i,r_i})$  von  $\mathrm{Eig}(\varphi,\lambda_i)$
- 4. Die Orthogonalbasis  $\mathcal{B}_i, i=1,\ldots,k$  bilden zusammen eine Orthonormalbasis

$$\mathcal{B} = (v_{1,1}, \dots, v_{1,r_1}, \dots, v_{k,1}, \dots, v_{k,r_k})$$

des  $(\mathbb{R}^n, <\cdot, \cdot>)$  aus Eigenvektoren von A

5. Schreibe die Basisvektoren aus  $\mathcal{B}$  in Spalten von T. Es ist dann

$$T^{-1}AT = (\lambda_1, \dots, \lambda_1, \dots, \lambda_k, \dots, \lambda_k)E_n$$

Anmerkung  $\operatorname{Um} T \in SO(n)$  zu erreichen ersetze man gegebenfalls  $v_{1,1}$  durch  $-v_{1,1}$ . Beispiel 24.16

$$A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix} \in M(3 \times 3, \mathbb{R})$$

Es ist 
$$\chi_A^{char} = t^3 - 3t^2 - 9t + 27 = (t-3)^2(t+3)$$
. Es ist  $\text{Eig}(A,3) = \dots = \text{Lin}\left(\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}\right)$ .

Nach Beispiel 22.12 ist  $\begin{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \frac{1}{\sqrt{30}} \begin{pmatrix} -1\\5\\2 \end{pmatrix} \end{pmatrix}$  eine Orthonormalbasis von  $\operatorname{Eig}(A,3)$ .

$$\operatorname{Eig}(A, -3) = \operatorname{Lin}\left(\begin{pmatrix} 1\\1\\-2 \end{pmatrix}\right) \implies \left(\frac{1}{\sqrt{6}}\begin{pmatrix} 1\\1\\-2 \end{pmatrix}\right) \text{ ist Orthonormal basis von } \operatorname{Eig}(A, -2).$$

$$\implies \left(\frac{1}{\sqrt{5}} \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \frac{1}{\sqrt{30}} \begin{pmatrix} -1\\5\\2 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\-2 \end{pmatrix} \right)$$

ist Orthonormalbasis von  $\left(\mathbb{R}^3,<\cdot,>\right)$ aus Eigenvektoren von A. Mit

$$T = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & -\frac{2}{\sqrt{6}} \end{pmatrix} \quad \text{ist} \quad T^{-1}AT = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Es ist det(T) = -1, also  $T \in O(3) \setminus (3)$ . Setzt man

$$T' := \begin{pmatrix} -\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & -\frac{2}{\sqrt{6}} \end{pmatrix} \quad \text{ist} \quad T^{-1}AT = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

und es ist  $T' \in SO(3)$ .

# 25 Unitäre Räume

**Definition 25.1 (Sesquilinearform)** V  $\mathbb{C}$  Vektorraum,  $h: V \times V \to \mathbb{C}$ ,  $(v, w) \mapsto h(v, w)$  heißt eine **Sesquilinearform** auf V genau dann wenn folgende Bedingungen erfüllt sind:

- (S1)  $h(v_1 + v_2, w) = h(v_1, w) + h(v_2, w), h(\lambda v, w) = \lambda(h(v, w))$
- (S2)  $h(v, w_1 + w_2) = h(v, w_1) + h(v, w_2), h(v, \lambda w) = \bar{\lambda}h(v, w)$

für alle  $v_1, v_2, w_1, w_2, v, w \in V, \lambda \in \mathbb{C}$ 

### Beispiel 25.2

 $h: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}, h(x,y) := x^t \bar{y}$  ist eine Sesquilinearform auf  $\mathbb{C}^n$  (beachte  $h(x,\lambda y) = x^t \overline{\lambda y} = \bar{\lambda} x^t y$ ), aber keine Bilinearform auf  $\mathbb{C} * n$ 

**Bemerkung 25.3** V  $\mathbb C$  Vektorraum,  $h:V\times V\to \mathbb C$  Sesquilinearform auf V. Dann induziert h eine "semilineare" Abbildung

$$\Gamma: V \to V^*, w \mapsto h(\cdot, w)$$

das heißt  $\Gamma(w_1+w_2)=\Gamma(w_1)+\Gamma(w_2), \Gamma(\lambda w)=\bar{\lambda}\Gamma(w) \forall w_1,w_2,w\in V,\lambda\in\mathbb{C}$ 

**Definition 25.4 (Darstellungsmatrix / Fundamentalmatrix)** V endlichdimensional,  $\mathbb{C}$  Vektorraum, h Sesquilinearform auf V,  $\mathcal{B} = (v_1, \dots, v_n)$  Basis von V

$$M_{\mathcal{B}}(h) = (h(v_i, v_j))_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$

heißt die **Darstellungsmatrix** (Fundamentalmatrix) von h bezüglich  $\mathcal{B}$ 

**Bemerkung 25.5** V endlichdimensionaler  $\mathbb{C}$  Vektorraum,  $\mathcal{B} = (v_1, \dots, v_n)$  Basis von V.

$$Sesq(V) := \{h : V \times V \to \mathbb{C} \mid h \text{ ist eine Sesquilinearform}\}$$

ist ein  $\mathbb C$  Vektorraum und Untervektorraum von  $\mathrm{Abb}(V\times V,\mathbb C)$ . Dann gilt: Die Abbildun  $M_{\mathcal B}\to M(n\times n,\mathbb C),h\mapsto M_{\mathcal B}(h)$  ist ein Isomorphismus von  $\mathbb C$  Vektorräumen mit Umkehrabbildung  $\Delta^{\mathcal B}:M(n\times n,\mathbb C)\to \mathrm{Sesq}(V)$  mit

$$\Delta^{\mathcal{B}}(A)(v,w) = \Phi_{\mathcal{B}}^{-1}(v)^{T} A \overline{\Phi_{\mathcal{B}}^{-1}(w)}$$

**Satz 25.6** V endlichdimensionaler  $\mathbb C$  Vektorraum,  $\mathcal A,\mathcal B$  Basin von V,h Sesquilinearform auf V. Dann gilt:

$$M_{\mathcal{B}}(h) = (T_{\mathcal{A}}^{\mathcal{B}})^{T} M_{\mathcal{A}}(h) \overline{T_{\mathcal{B}}^{\mathcal{A}}}$$

**Definition 25.7 (hermitesch)**  $V \mathbb{C}$  Vektorraum, h Sesquilinearform auf V. h heißt **hermitesch** genau dann wenn:

$$h(w,v) = \overline{h(v,w)} \forall v,w \in V$$

**Anmerkung** In diesem Fall ist  $h(v,v)=\overline{h(v,v)}$ , das heißt  $h(v,v)\in\mathbb{R} \forall v\in V$ 

**Bemerkung 25.8** V endlichdimensionaler  $\mathbb{C}$  Vektorraum, h Sesquilinearform auf  $V, \mathcal{B}$  Basis von  $V, A = M_{\mathcal{B}}(h)$ . Dann sind äquivalent:

1. h ist hermitesch

2. 
$$\bar{A}^t = A$$

**Anmerkung** Matrizen  $A \in M(n \times n, \mathbb{C})$  mit  $\bar{A}^T = A$  heißen hermitesche Matrizen.

**Definition 25.9**  $V \mathbb{C}$  Vektorraum, h hermitesche Form auf V. h heißt **positiv definit** genau dann wenn

$$h(v,v) > 0 \forall v \in V, v \neq 0$$

Eine positiv definite hermitesche Form nennt man auch ein Skalarprodukt.

#### Beispiel 25.10

 $V=\mathbb{C}^n,<\cdot,\cdot>:\mathbb{C}^n\times C^n\to\mathbb{C},< x,y>:=x^T\bar{y}$  ist ein Skalarprodukt auf  $\mathbb{C}^n$  (das Standardskalarprodukt auf  $\mathbb{C}^n$ ):

- $<\cdot,\cdot>$  ist sesquilinear (vergleiche 25.2)
- $\bullet <\cdot, \cdot> \text{ist hermitesch:} < y, x> = y^T \bar{x} = \left(y^T \bar{x}\right)^T = \bar{x}^T y = \overline{x^T \bar{y}} = \overline{< x, y>}$
- $<\cdot,\cdot>$  ist positiv definit:

$$\langle x, x \rangle = x^T \bar{x} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} \begin{pmatrix} \bar{x}_1 \\ \vdots \\ \bar{x}_n \end{pmatrix} = x_1 \bar{x}_1 + \dots + x_n \bar{x}_n$$
  
=  $|x_1|^2 + \dots + |x_n|^2 > 0$  für  $x \neq 0$ 

**Definition 25.11 (Unitärer Raum)** Ein **unitärer Raum** ist ein Paar (V, h), bestehend aus einem endlichdimensionalen  $\mathbb C$  Vektorraum V und einem Skalarprodukt h auf V.

Für den Rest des Abschnitts sei (V, h) stets ein unitärer Raum.

**Anmerkung** Analog zu Euklidischen Räumen definiert man die Begriffe: Norm, orthogonal, orthonormal, Orthogonalbasis, Orthonormalbasis, orthogonales Komplement. Es gilt dabei:

- Cauchy-Schwarz-Ungleichung:  $|h(v, w)| \leq ||v|| ||w|| \forall v, w \in V$
- Gram-Schmidt-Verfahren (mit h statt  $\gamma$ ) liefert Orthonormalbasis
- $V = U \hat{U}^{\perp}, U^{\perp \perp} = U$  für  $U \subseteq V$  Untervektorraum

**Definition 25.12**  $(V,h_V),(W,h_W)$  unitäre Räume,  $\varphi:V\to W$  lineare Abbildung.  $\varphi$  heißt unitär genau dann wenn:

$$h_W(\varphi(v_1), \varphi(v_2)) = h_V(v_1, v_2) \forall v_1, v_2 \in V$$

**Bemerkung 25.13**  $n = \dim V$ ,  $\mathcal{B}$  Orthonormalbasis von (V, h). Dann ist das Koordinatensystem  $\Phi_{\mathcal{B}} : (\mathbb{C}^n, \langle \cdot, \cdot \rangle) \to (V, h)$  ein unitärer Isomorphismus.

**Bemerkung 25.14**  $\mathcal{B}$  Orthonormalbasisv on  $(V, h), \varphi \in \text{End}(V), A = M_{\mathcal{B}}(\varphi)$ . Dann sind äquivalent:

- 1.  $\varphi$  ist unitär
- 2.  $\bar{A}^T A = E_n$

**Bemerkung+Definition 25.15**  $A \in M(n \times n, \mathbb{C})$ . A heißt **unitär** genau dann wenn:  $\bar{A}^T A = E_n$ .

$$U(n) := \{ A \in M(n \times n, \mathbb{C}) \mid A \text{ ist unitar} \}$$

U(n) ist eine Gruppe bezüglich "·", die **unitäre Gruppe** vom Rang n

$$SU(n) := \{ A \in U(n) \mid \det A = 1 \}$$

ist eine Untergruppe von U(n), die **spezielle unitäre Gruppe** von Rang n.

**Bemerkung 25.16**  $\mathcal{B}=(v_1,\ldots,v_n)$  Orthonormalbasis von  $(V,h),\mathcal{B}^*=(v_1^*,\ldots,v_n^*)$  duale Basis. Dann ist die Abbildung

$$\Gamma: V \to V^*, w \mapsto h(\cdot, w)$$

ein Semiisomorphismus mit  $\Gamma(v_i) = v_i^*$  für  $i = 1, \ldots, n$ .

**Satz+Definition 25.17**  $(V, h_V), (W, h_W)$  unitäre Räume,  $\varphi: V \to W$  lineare Abbildung,  $\mathcal{A}$  Orthonormalbasis von  $(V, h_V), \mathcal{B}$  Orthonormalbasis von  $(W, h_W)$ . Dann gilt:

- 1. Es gibt genau eine lineare Abbildung  $\varphi^{ad}:W\to V$  mit  $h_W(\varphi(v),w)=h_V(v,\varphi^{ad}(w))\forall v\in V,w\in W,\varphi^{ad}$  heißt die **zu**  $\varphi$  **adjungierte Abbildung**
- 2.  $M_{\mathcal{A}}^{\mathcal{B}}(\varphi^{ad}) = \overline{M_{\mathcal{B}}^{\mathcal{A}}(\varphi)}^{T}$

**Beweis** 1. Wie im reellen Fall betrachte man das Diagramm



und setzten  $\varphi^{ad}:=\Gamma_V^{-1}\circ\varphi^*\circ\Gamma_W$ .  $\varphi^{ad}$  ist linear, da sowohl  $\Gamma_V$  als auch  $\Gamma_W$  semilinear sind. Rest wie im reellen Fall

2. Sei 
$$\mathcal{A} = (v_1, \dots, v_n), \mathcal{B} = (w_1, \dots, w_n), M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = (a_{ij}), M_{\mathcal{A}}^{\mathcal{B}}(\varphi^{ad}) = (b_{ij})$$

$$\implies \varphi(v_j) = \sum_{k=1}^m a_{kj} w_k, \varphi^{ad} = \sum_{k=1}^n b_{ki} v_k$$

$$\implies a_{ij} = h_W \left( \sum_{k=1}^m a_{kj} w_k, w_i \right) = h_W (\varphi(w_j, w_i)) = h_V \left( v_j, \varphi^{ad}(w_i) \right)$$

$$= h_V \left( v_j, \sum_{k=1}^m b_{ki} v_k \right) = h_V (v_j, b_{ji} v_j) = \overline{b_{ji}} h(v_j, v_j) = \overline{b_{ji}}$$

**Bemerkung 25.18**  $\varphi \in \text{End}(V)$ . Dann gilt:

- 1.  $\ker \varphi^{ad} = (\operatorname{im} \varphi)^{\perp}$
- 2.  $\operatorname{im} \varphi^{ad} = (\ker \varphi)^{\perp}$

**Definition 25.19**  $\varphi \in \operatorname{End}(V)$ .  $\varphi$  heißt \*selbstadjungierte genau dann wenn:  $\varphi = \varphi^{ad}$ 

**Bemerkung 25.20**  $\varphi \in \text{End}(V)$ ,  $\mathcal{B}$  Orthonormalbasis von (V, h),  $A = M_{\mathcal{B}}(\varphi)$ . Dann sind äquivalent:

- 1.  $\varphi$  selbstadjungiert
- 2.  $\bar{A}^T = A$ , das heißt A ist hermitesch

**Bemerkung 25.21**  $\varphi \in \text{End}(V)$  selbstadjungiert. Dann sind alle Eigenwerte von  $\varphi$  reell.

**Beweis** Sei  $\lambda \in \mathbb{C}$  Eigenwert von  $\varphi, v$  Eigenvektor zum Eigenwert  $\lambda$ .

$$\implies \lambda h(v,v) = h(\lambda v,v) = h(\varphi(v),v) = h\Big(v,\varphi^{ad}(v)\Big) = h(v,\varphi(v)) = h(v,\lambda v) = \bar{\lambda}h(v,v)$$

$$\implies \lambda = \bar{\lambda} \implies \lambda \in \mathbb{R}$$

**Definition 25.22**  $\varphi \in \operatorname{End}(V)$ .  $\varphi$  heißt **normal** genau dann wenn:  $\varphi^{ad} \circ \varphi = \varphi \circ \varphi^{ad}$ .  $A \in M(n \times n, \mathbb{C})$  heißt **normal** genau dann wenn:  $\bar{A}^T A = A \bar{A}^T$ 

**Anmerkung** Ist  $\mathcal{B}$  eine Orthonormalbasis von (V, h), dann:  $\varphi$  normal  $\iff M_{\mathcal{B}}(\varphi)$  normal.

**Bemerkung 25.23**  $\varphi \in \text{End}(V)$ . Dann gilt:

- 1.  $\varphi$  unitär  $\Longrightarrow \varphi$  normal
- 2.  $\varphi$  selbstadjungiert  $\implies \varphi$  normal

Für  $A \in M(n \times n, \mathbb{C})$  gilt: A unitär  $\implies A$  normal, A hermitesch  $\implies A$  normal.

**Beweis** 1. Seien 
$$v, w \in V \implies h(v, \varphi^{-1}(w)) = h(\varphi(v), \varphi(\varphi^{-1}(w))) = h(\varphi(v), w)$$
  $\implies \varphi^{ad} = \varphi^{-1} \implies \varphi^{ad} \circ \varphi = \varphi^{-1} \circ \varphi = \mathrm{id}_V = \varphi \circ \varphi^{-1} = \varphi \circ \varphi^{ad}$ 

2. 
$$\varphi$$
 selbstadjungiert  $\implies \varphi = \varphi^{ad} \implies \varphi^{ad} \circ \varphi = \varphi \circ \varphi = \varphi \circ \varphi^{ad}$ 

**Satz 25.24**  $\varphi \in \text{End}(V)$  normal. Dann gilt:

1. 
$$\ker \varphi^{ad} = \ker \varphi$$

2. 
$$\operatorname{im} \varphi^{ad} = \operatorname{im} \varphi$$

Insbesondere ist  $V = \ker \varphi \hat{\oplus} \operatorname{im} \varphi$ 

**Beweis** 1. Es gilt:

$$v \in \ker \varphi \iff 0 = h(\varphi(v), \varphi(v)) = h\left(v, \varphi^{ad}(\varphi(v))\right) = h\left(v, \varphi\left(\varphi^{ad}(v)\right)\right)$$
$$= \overline{h(\varphi(\varphi^{ad}(v)), v)} = h\left(\varphi^{ad}(v), \varphi^{ad}(v)\right) \iff \varphi^{ad}(v) = 0$$
$$\iff v \in \ker \varphi^{ad}$$

2. Es ist im 
$$\varphi^{ad} = (\ker \varphi)^{\perp} = (\perp \varphi^{ad})^{\perp} = ((\operatorname{im} \varphi)^{\perp})^{\perp} = \operatorname{im} \varphi$$

$$\implies V = \ker \varphi \hat{\oplus} (\ker \varphi)^{\perp} = \ker \varphi \hat{\oplus} \operatorname{im} (\varphi^{ad}) = \ker \varphi \hat{\oplus} \operatorname{im} \varphi$$

**Bemerkung 25.25**  $\varphi \in \text{End}(V)$  normal,  $\lambda \in \mathbb{C}$ . Dann gilt:

1.  $\varphi - \lambda \operatorname{id}_V$  ist normal

2. 
$$\operatorname{Eig}(\varphi, \lambda) = \operatorname{Eig}(\varphi^{ad}, \bar{\lambda})$$

**Beweis** 1. Setze  $\psi := \varphi - \lambda \operatorname{id}_V$ . Für  $v, w \in V$  ist  $h(\lambda v, w) = h(v, \bar{\lambda}w)$ , das heißt  $(\lambda \operatorname{id}_V)^{ad} = \bar{\lambda} \operatorname{id}_V$ 

$$\Rightarrow \psi^{ad} = \varphi^{ad} - \bar{\lambda} \operatorname{id}_{V}$$

$$\Rightarrow \psi^{ad} = \varphi^{ad} - \bar{\lambda} \operatorname{id}_{V}$$

$$\Rightarrow \psi^{ad} \circ \psi = \left(\varphi^{ad} - \bar{\lambda} \operatorname{id}_{V}\right) \circ \left(\varphi - \lambda \operatorname{id}_{V}\right) = \underbrace{\varphi^{ad} \circ \varphi}_{=\varphi \circ \varphi^{ad}} - \bar{\lambda} \varphi - \lambda \varphi^{ad} + \lambda \bar{\lambda} \operatorname{id}_{V}$$

$$= \left(\varphi - \lambda \operatorname{id}_{V}\right) \circ \left(\varphi^{ad} - \bar{\lambda} \operatorname{id}_{V}\right) = \psi \circ \psi^{ad}$$

2. 
$$\operatorname{Eig}(\varphi, \lambda) = \ker \psi = \ker \psi^{ad} = \ker (\varphi^{ad} - \bar{\lambda} \operatorname{id}_V) = \operatorname{Eig}(\varphi^{ad}, \bar{\lambda})$$

Satz 25.26 (Spektralsatz für normale Endomorphismen)  $\varphi \in \text{End}(V)$ . Dann sind äquivalent:

1. Es gibt eine Orthonormalbasis von (V, h) aus Eigenvektoren von  $\varphi$ .

#### 2. $\varphi$ ist normal

**Beweis** 1.  $\Longrightarrow$  2. Sei  $\mathcal{B}=(v_1,\ldots,v_n)$  eine Orthonormalbasis von (V,h) aus Eigenvektoren von  $\varphi$  zu Eigenwerten  $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$ . Es ist  $\big(\varphi\circ\varphi^{ad}\big)(v_i)=\varphi\big(\varphi^{ad}(v_i)\big)=\varphi\big(\bar{\lambda}_i,v_i\big)=\bar{\lambda}_i\varphi(v_i)=\bar{\lambda}_i\lambda_iv_i=\big(\varphi^{ad}\circ\varphi\big)(v_i)\forall i=1,\ldots,n\implies\varphi\circ\varphi^{ad}=\varphi^{ad}\circ\varphi$ 

2.  $\implies$  1. per Induktion nach  $n = \dim V$ .

Induktions anfang: n=0: trivial

Induktionsschritt:  $n \geq 1$ : Sei  $\lambda_1 \in \mathbb{C}$  ein Eigenwert von  $\varphi$ . Sei  $U = \mathrm{Eig}(\varphi, \lambda_1) = \ker(\varphi - \lambda_1 \operatorname{id}_V)$ . Sei  $(v_1, \ldots, v_r)$  eine Orthonormalbasis von  $\left(U, h\Big|_{n \times n}\right)$ . Nach 25.25 ist  $\psi := \varphi - \lambda_1 \operatorname{id}_V$  normal

$$V = \ker \psi \hat{\oplus} \operatorname{im} \psi$$
$$= \operatorname{Eig}(\varphi, \lambda_1) \hat{\oplus} \underbrace{\operatorname{im}(\varphi - \lambda_1 \operatorname{id}_V)}_{=:W}$$

$$\operatorname{Es}\operatorname{ist}\varphi(W) = \varphi(\varphi - \lambda_1\operatorname{id}_V)(V) = ((\varphi - \lambda_1\operatorname{id}_V)\circ\varphi)(V) = (\varphi - \lambda_1\operatorname{id}_V)\underbrace{\left(\underbrace{\varphi(V)}_{\subseteq V}\right)} \subseteq \operatorname{im}(A_1 \otimes A_2) = \operatorname{id}_V = (A_1 \otimes A_2) = (A_1 \otimes$$

 $\operatorname{im}(arphi-\lambda_1\operatorname{id}_V)=W$ . Außerdem:

$$\varphi^{ad}(W) = \varphi^{ad}(\varphi - \lambda_1 \operatorname{id}_V)(V) = \left(\varphi^{ad} \circ \varphi - \lambda_1 \varphi^{ad}\right)(V)$$
$$= \left(\varphi \circ \varphi^{ad} - \lambda_1 \varphi^{ad}\right)(V) = \left((\varphi - \lambda_1 \operatorname{id}_V) \circ \varphi^{ad}\right)(V) \subseteq W$$

 $\varphi\Big|_{W}^{W} \text{ ist normal, denn: Nach Eindeutigkeit der adjungierten Abbildung ist} \left(\varphi\Big|_{W}^{W}\right)^{ad} = \left(\varphi^{ad}\right)\Big|_{W}^{W}$ 

$$\begin{split} (\varphi \Big|_{W}^{W})^{ad} \circ \varphi \Big|_{W}^{W} &= \left(\varphi^{ad}\right) \Big|_{W}^{W} \circ \varphi \Big|_{W}^{W} = \left(\varphi^{ad} \circ \varphi\right) \Big|_{W}^{W} = \left(\varphi \circ \varphi^{ad}\right) \Big|_{W}^{W} \\ &= \varphi \Big|_{W}^{W} \circ \left(\varphi^{ad}\right) \Big|_{W}^{W} = \varphi \Big|_{W}^{W} \circ \left(\varphi \Big|_{W}^{W}\right)^{ad} \end{split}$$

Nach Induktionsanfang existiert eine Orthonormalbasis  $(v_{r+1},\ldots,v_n)$  von  $\left(V,h\Big|_{W\times W}\right)$  aus Eigenvektoren von  $\varphi \implies (v_1,\ldots,v_n)$  ist Orthonormalbasis von (V,h) aus Eigenvektoren von  $\varphi$ .

# Anmerkung Insbesondere gilt:

- Für jedes selbstadjungierten / unitären Endomorphismus existiert eine Orthonormalbasis aus Eigenvektoren
- Jede reelle orthogonale Matrix ist **über**  $\mathbb C$  diagonalisierbar.

Achtung: Über  $\mathbb R$  reicht "normal" nich aus: Es gibt orthogonale Matrizen, die über  $\mathbb R$  nich diagonalisierbar sind (zum Beispiel  $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$  (Drehung um  $\pi/2$ ))

**Folgerung 25.27**  $A \in M(n \times n, \mathbb{C})$ . Dann sind äquivalens:

- 1. A ist normal
- 2. Es gibt eis  $T \in U(n)$ , sodass

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

 $\lambda_1, \ldots, \lambda_n$  Eigenwerte von A

**Beweis** Wende 25.26 auf  $(\mathbb{C}^n, <\cdot, \cdot>)$  und  $\varphi = \tilde{A}$  an.

# 26 Ringe, Ideale und Teilbarkeit

In diesem Abschnitt seien R, S stets kommutative Rnge (bei uns immer mit Eins)

**Definition 26.1 (Ringhomomorphismus)**  $\varphi: R \to S$  Abbildung.  $\varphi$  heißt **Ringhomomorphismus** genau dann wenn folgende Bedingungen erfüllt sind:

- (RH1)  $\varphi(a+b) = \varphi(a) + \varphi(b) \forall a,b \in R$
- (RH2)  $\varphi(ab) = \varphi(a)\varphi(b) \forall a, b \in R$
- (RH3)  $\varphi(1_R) = 1_S$

**Definition 26.2 (Ideal)**  $I \subseteq R$ . I heißt ein **Ideal** in R genau dann wenn die folgenden Bedingungen erfüllt sind:

- (I1)  $0 \in I$
- (I2)  $a, b \in I \implies a + b \in I$
- (I3)  $r \in R, a \in I \implies ra \in I$

#### Beispiel 26.3

- 1.  $\{0\}$ , R sind Ideale in R
- 2. FÜr  $n \in \mathbb{Z}$  ist  $n\mathbb{Z}\{na \mid a \in \mathbb{Z}\}$  ist ein Ideal

**Bemerkung+Definition 26.4**  $\varphi: R \to S$  Ringhomomorphismus. Dann gilt:

1. 
$$J \subseteq S$$
 Ideal  $\implies \varphi^{-1}(J) \subseteq R$  Ideal

- 2.  $\ker \varphi := \{a \in R \mid \varphi(a) = 0\} \subseteq R \text{ Ideal }$
- 3.  $\varphi$  injektiv  $\iff$  ker  $\varphi = \{0\}$
- 4.  $I \subseteq R$  Ideal und  $\varphi$  surjektiv  $\implies \varphi(I) \subseteq S$  Ideal
- 5. im  $\varphi := \varphi(R)$  ist ein Unterrung von S (das heißt ein Ring bezügilch der eingeschränkten Verknüpfungen.)

2. aus 1., wegen  $\ker \varphi = \varphi^{-1}(\{0\}), \{0\} \subseteq S$  Ideal

**Anmerkung** 4. wird falsch, wenn man die Vorraussetzung  $\varphi$  surjektiv weglässt: Die kanonische Inklusion  $i:\mathbb{Z}\to\mathbb{Q}, x\mapsto x$  ist ein Ringhomomorphismus,  $\mathbb{Z}$  ist ein Ideal in  $\mathbb{Z}$ , aber  $\mathbb{Z}=i(\mathbb{Z})$  ist kein Ideal in  $\mathbb{Q}$ , denn:

$$\underbrace{\frac{1}{3}}_{\in \mathbb{O}} \cdot \underbrace{2}_{\in \mathbb{Z}} = \frac{2}{3} \dot{\in} \mathbb{Z}$$

 $\mathbb{Z}$  ist zumindest ein Unterring von  $\mathbb{Q}$ .

**Satz+Definition 26.5**  $I\subseteq R$  Ideal. Dann ist durch  $r_1\sim r_2 \stackrel{\mathrm{Def}}{\Longleftrightarrow} r_1-r_2\in I$  eine Äquivalenzrelation auf R gegeben, welche die zusätzliche Eigenschaft

$$r_1 \sim r_2, s_1 \sim s_2 \implies r_1 + s_1 \sim r_2 + s_2, r_1 s_1 \sim r_2 s_2$$

hat ("Kongruenszrelation"). Die Äquivalenzklasse von  $r \in R$  ist durch

$$\bar{r} := r + I := \{r + a \mid a \in I\}$$

gegeben und heßt die **Restklasse** von r modulo I. Die Menge die Restklassen bezeichnen wir mit  $R_{I}$ .

**Beweis** 1. "∼" ist Äquivalenzrelation: nachrechnen

2. Verträglichkeit mit +, : Sei  $r_1 \sim r_2, s_1 \sim s_2 \implies r_1 - r_2 \in I, s_1 - s_2 \in I$   $\implies (r_1 + s_1) - (r_2 - s_2) = \underbrace{(r_1 - r_2)}_{GI} + \underbrace{(s_1 - s_2)}_{GI} \in I \implies r_1 + s_1 \sim r_2 + s_2$ 

Außerdem:

$$r_1s_1 - r_2s_2 = \underbrace{r_1(s_1 - s_2)}_{\in I} + \underbrace{s_2(r_1 - r_2)}_{\in I} \in I \in r_1s_1 \sim r_2s_2$$

Satz+Definition 26.6  $I \subseteq R$  Ideal. Dann wird  $R_I$  mit der Addition

$$+: R/I \times R/I \rightarrow R/I, \bar{r} + \bar{s} := \overline{r+s}$$

und der Multiplikation

$$\cdot : R/I \times R/I \to R/I, \bar{r} \cdot \bar{s} := \overline{rs}$$

zu einem kommutativen Ring, dam **Faktorring** (**Restklassenring**)  $R_I$ . Die Abbildung  $\pi: R \to R_I$ ,  $r \mapsto \bar{r}$  ist ein surjektiver Ringhomomorphismus mit ker  $\pi = I$ .

**Beweis Wohldefiniertheit** von "+""·": Nach 26.5 ist für  $r_1, r_2, s_1, s_2 \in R$  mit  $r_1 \sim r_2, s_1 \sim s_2$  auch  $r_1 + s_1 \sim r_2 + s_2, r_1 s_1 \sim r_2 s_2$ .

**Ringeigenschaften**: vererben sich aufgrund der vertreterweisen Definiton von R.

 $\pi$  ist Ringhomomorphismus nach Konstruktion:  $\pi(a+b)=\overline{a+b}=\bar{a}+\bar{b}=\pi(a)+\pi(b)$ , analog für "·",  $\pi(1)=\bar{1}$ 

$$\ker \pi = \{ r \in R \mid \bar{r} = \bar{0} \} = \{ r \in R \mid r \sim 0 \} = \{ r \in R \mid r - 0 \in I \} = I$$

**Anmerkung** Insbesondere sind die Ideale in R genau die Kerne von Ringhomomorphismen, die von R ausgehen.

### Beispiel 26.7

Ist  $R = \mathbb{Z}$ ,  $I = n\mathbb{Z}$  mit  $n \in \mathbb{N}$ , dann erhält man die aus der LA1 bekannten Restklassenringe  $\mathbb{Z}/n\mathbb{Z}$  (vergleiche 6.4).

Satz 26.8 (26.8 (Homomorphiesatz für Ring))  $\varphi:R\to S$  Ringhomomorphismus. Dann gibt es einen Ringisomorphismus

$$\Phi: R_{\ker \varphi} \to \operatorname{im} \varphi, \bar{r} = r + \ker \varphi \mapsto \varphi(r)$$

Beweis Wohldefiniertheit von  $\Phi$ : Seien  $r_1, r_2 \in R$  mit  $\bar{r}_1 = \bar{r}_2$ 

$$\implies r_1 - r_2 \in \ker \varphi \mathbb{R} \varphi(r_1 - r_2) = 0 \implies \varphi(r_1) = \varphi(r_2)$$

\* $\Phi$  ist Ringhomomorphismus:

$$\Phi(\bar{r}_1 + \bar{r}_2) = \Phi(\overline{r_1 + r_2}) = \varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2) = \Phi(\bar{r}_1) + \Phi(\{barr_2\})$$

analog für "·",  $\Phi(\bar{1}) = \varphi(1) = 1$ 

 $\Phi$  ist injektiv: Sei  $r \in R$  mit  $\Phi(\bar{r}) = 0$ 

$$\implies \varphi(r) = 0 \implies r \in \ker \varphi \implies \bar{r} = r + \ker \varphi = \ker \varphi = \bar{0}$$

das heißt  $\ker \Phi = \{\bar{0}\}.$ 

 $\Phi$  **ist surjektiv**: nach Konstruktion.

### Beispiel 26.9

K Körper,  $R=K[t], \varphi:K[t]\to K, f\mapsto f(0)$ .  $\varphi$  ist Ringhomomorphismus (nachrechnen), im  $\varphi=K, \ker \varphi=\{f\in K[t]\mid \operatorname{im} f(0)=0\}=\{fg\mid g\in K[t]\}=tK[t]$ . Wir erhalten einen Ringisomorphismus

$$\Phi: K[t]/_{tK[t]} \to K, f + tK[t] \mapsto f(0)$$

**Definition 26.10 (26.10)**  $x \in R$  heißt **Nullteiler**  $\stackrel{\text{Def}}{\Longleftrightarrow}$  Es existiert  $y \in R, y \neq 0$  mit xy = 0.  $\setminus R$  heißt **Nullteiler (Integritätsbereich)**  $\stackrel{\text{Def}}{\Longrightarrow} R \neq 0$  und  $0 \in R$  der einzige Nullteiler in R.

**Anmerkung**  $R \neq 0 \implies 0$  ist ein Nullteiler in R (wegen  $0 \cdot 1 = 0, 0 \neq 1$ )

## Beispiel 26.11

- 1. ℤ ist nullteilerfrei
- 2.  $\bar{2} \in \mathbb{Z}/_{6\mathbb{Z}}$  ist Nullteiler wegen  $\bar{2} \cdot \bar{3} = \bar{0}$  ist  $\mathbb{Z}/_{6\mathbb{Z}}$
- 3. Analog zu K[t] kann man den Polynomring R[t] erklären. Es gilt dann: R nullteilerfrei  $\Longrightarrow$  R[t] nullteilerfrei. (Übungen)

**Bemerkung+Definition 26.12 (Einheit)**  $v \in R$  heißt **Einheit**  $\stackrel{\text{Def}}{\Longleftrightarrow}$  es existiert ein  $y \in R$  mit xy = 1.  $R^* := \{x \in R \mid x \text{ ist Einheit }\}$  bildet eine abelsche Gruppe bezüglich "·".

Beweis nachrechnen.

## Beispiel 26.13

- $1. \ \ \mathbb{Z}^* = \{1, -1\}, \text{dann: } 1 \cdot 1 = 1, (-1)(-1) = 1, ab = 1 \implies |a||b| = 1 \implies |a| = |b| = 1$
- 2. K Körper  $\Longrightarrow K^* = K \setminus \{0\}$
- 3.  $R[t]^* = R^*$  (Übungen)

**Definition 26.14**  $a_1, \ldots, a_n \in R, I \subseteq R$  Ideal.

$$(a_1, \dots, a_n) := \{ \sum_{i=1}^n a_i r_i \mid r_1, \dots, r_n \in R \}$$

heißt das **von**  $a_1, \ldots, a_n$  **erzeugte Ideal**. I heißt **Hauptideal**  $\stackrel{\text{Def}}{\Longleftrightarrow}$  es existiert ein  $a \in R$  mit  $I = (a) = \{ra \mid r \in R\} =: Ra$ .

R heißt **Hauptidealring** (HIR)  $\stackrel{\text{Def}}{\Longleftrightarrow} R$  ist nullteilerfrei und jedes Ideal in R ist ein Hauptideal.

**Anmerkung**  $(a_1, \ldots, a_n)$  ist ein Ideal in R (leicht nachzurechnen)

**Bemerkung 26.15** Z ist ein Hauptidealring. Ist  $I\subseteq\mathbb{Z}$  ein Ideal, dann existiert ein eindeutig bestimmtes  $n\in\mathbb{N}_0$  mit

$$I = (n) = n\mathbb{Z}$$

**Beweis** Z nullteilerfrei: klar.

**Existenz**: Sei  $I \subseteq \mathbb{Z}$  Ideal.

1. Fall:  $I = \{0\} = (0)$ , dann fertig

2. Fall:  $I \neq \{0\}$ . Mat  $a \in I$  ist auch  $-a = (-1)a \in I$  somit  $I \cap \mathbb{N} \neq \emptyset$ .  $I \cap \mathbb{N}$  besitzt ein kleinstes Element b. Behauptung: I = (b)  $_{,,,,}^{-}$  " $x \in (b) \implies$  es existiert ein  $r \in \mathbb{Z}$  mit  $x = rb \implies x \in I$   $_{,,,,}^{-}$  "Sei  $x \in I \implies$  es existieren  $q, r \in \mathbb{Z}$  mit  $x = qb + r, 0 \le r < b \implies r = x - qb \in I$ . Wegen Minimalität von b in  $I \cap N$  folgt  $r = 0 \implies x = qb \in (b)$ 

**Eindeutigkeit**: Seien  $m, n \in \mathbb{N}_0$  mit (m) = (n). Offenbar gilt:  $m = 0 \iff n = 0$ . Im Folgenden seien  $m, n \neq 0$ . Wegen (m) = (n) ist  $m \in (n), n \in (m) \implies$  es existieren  $r_1, r_2 \in \mathbb{Z}$  mit  $m = r_1 n$  und  $n = r_2 m$ 

$$\implies m = r_1 n = r_1 r_2 m \implies r_1 r_2 = 1 \implies r_1 = r_2 = 1 \lor r_1 = r_2 = -1 \xrightarrow{m,n \in \mathbb{N}_0} r_1 = r_2 = 1 \implies m = n$$

### Beispiel 26.16

 $\mathbb{Z}[t]$  ist kein Hauptidealring: Es gibt  $f \in \mathbb{Z}[t]$  mit (2,t) = (f), dann: Annahme: Es existiert  $f \in \mathbb{Z}[t]$  mit  $2 = hf \implies \deg h = \deg f = 0$ , das heißt f ist konstantes Polynom, etwa f = a für ein  $a \in \mathbb{Z}$ . Außerdem existiert  $\tilde{h} \in \mathbb{Z}[t]$  mit  $t = \tilde{h}f = ha \implies a = \pm 1 \implies f = \pm 1$ . Aber:  $\pm 1 \notin (2,t)$ , dann andernfalls existieren  $u,v \in \mathbb{Z}[t]$  mit  $\pm 1 = 2u + tv \stackrel{t=0}{\Longrightarrow} \pm 1 = 2u(0) + 0 \cdot v(0) = 2u(0)$ 

**Definition 26.17** R nullteilerfrei,  $a,b \in R$ . b heißt ein **Teiler** von a (Notation:  $b \mid a$ )  $\stackrel{\text{Def}}{\Longleftrightarrow}$  es existiert ein  $c \in R$  mit a = bc. a,b heißen assoziiert (Notation:  $a \stackrel{\triangle}{=} b$ )  $\stackrel{\text{Def}}{\Longleftrightarrow} a \mid b$  und  $b \mid a$ 

### Beispiel 26.18

$$R = \mathbb{Z}, a \in \mathbb{Z} \implies a \stackrel{\wedge}{=} -a$$

**Bemerkung 26.19** R nullteilerfrei,  $a, b \in R$ . Dann sind äquivalent:

- 1.  $a \stackrel{\wedge}{=} b$
- 2. Es existiert  $e \in \mathbb{R}^*$  mit a = be
- 3. (a) = (b)

**Beweis** 1.  $\Longrightarrow$  2. Sei  $a \stackrel{\wedge}{=} b \implies a \mid b$  und  $b \mid a \implies$  es existieren  $c,d \in R$  mit b = ac, a = bd

$$\implies b = ac = bdc \implies b(1 - dc) = 0$$

- a) Fall:  $b=0 \implies a=bd=0$ . Setze e:=, fertig:  $a=b\cdot 1$
- b) Fall:  $b \neq 0 \implies 1 dc = 0 \implies dc = 1 \implies c, d \in R^*$ . Setze e := d, dann a = bd = bc
- 2. Sei a=be mit  $e\in R^*$   $\implies$   $a\in (b)$   $\implies$   $(a)\subseteq (b)$ . Wegen  $e\in R^*$  ist  $b=e^{-1}a$   $\implies$   $(b)\subseteq (a)$
- 3. Sei  $(a)=(b) \implies a \in (b) \implies$  es existiert  $c \in R$  mit  $a=bc \implies b \mid a$ . Analog:  $a \mid b$  also  $a \stackrel{\wedge}{=} b$

**Definition 26.20** R nullteilerfrei,  $a_1, \ldots, a_n \in R$ .  $d \in R$  heißt \*größter gemeinsamer Teiler von  $a_1, \ldots, a_n \stackrel{\text{Def}}{\Longrightarrow}$  Die folgenden Bedingungen sind erfüllt:

- (GGT1)  $d \mid a_1, ..., d \mid a_n$
- (GGT2)  $c \mid a_1, \ldots, c \mid a_n \iff c \mid d$

**Beweis** Wir bezeichnent die Menge aller gröhten gemeinsamen Teiler von  $a_1, \ldots, a_n$  mit  $GGT(a_1, \ldots, a_n)$ .  $\square$ 

**Anmerkung** • Seien  $d_1, d_2 \in GGT(a_1, \ldots, a_n)$ , dann folgt  $d_1 \mid d_2$  und  $d_2 \mid d_1$ , also  $d_1 \stackrel{\wedge}{=} d_2$ .

- Ist  $d \in GGT(a_1, \ldots, a_n)$  und  $d' \stackrel{\wedge}{=} d$ , dann ist  $d' \in GGT(a_1, \ldots, a_n)$
- Ohne zusatzliche Vorraussetzungen an R kann man im allgemeinen nicht erwarten, dass  $GGT(a_1, \ldots, a_n) \neq \emptyset$ . Zum Beispiel ist  $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$  ist  $GGT(4, 2 \cdot (1 + \sqrt{-3})) = \emptyset$  (Übungen)

**Bemerkung 26.21** R Hauptidealring,  $a_1, \ldots, a_n \in R$ . Dann gilt:

- 1.  $GGT(a_1,\ldots,a_n)\neq\emptyset$
- 2.  $d \in GGT(a_1, \ldots, a_n) \iff (d) = (a_1, \ldots, a_n)$

**Beweis** 1. R Hauptidealring  $\implies$  es existiert  $\tilde{d} \in R$  mit  $(a_1, \ldots, a_n) = (\tilde{d})$ . Behauptung:  $\tilde{d} \in \mathrm{GGT}(a_1, \ldots, a_n)$ , denn:

(GGT1): 
$$a_1 \in (a_1, \dots, a_n) = (\tilde{d}) \implies \tilde{d} \mid a_i \forall i = 1, \dots n$$

(GGT2): Wegen  $\tilde{d} \in (a_1, \ldots, a_n)$  existieren  $r_1, \ldots, r_n \in R$  mit  $\tilde{d} = r_1 a_1 + \cdots + r_n a_n$ . Ist  $c \in R$  mit  $c \mid a_1, \ldots, c \mid a_n$ , dann folgt  $c \mid r_1 a_1 + \cdots + r_n a_n = \tilde{d}$ 

2. " = "  $d \in GGT(a_1, \ldots, a_n) \implies d \stackrel{\wedge}{=} \tilde{d} \implies (d) = (\tilde{d}) = (a_1, \ldots, a_n)$  " = " Sei  $(d) = (a_1, \ldots, a_n) \implies d \in GGT(a_1, \ldots, a_n)$  mit Argument aus dem Beweis von 1.  $\square$ 

**Anmerkung** • Im Fall  $R = \mathbb{Z}, a_1, \dots, a_n \in \mathbb{Z}$  ist  $\mathrm{GGT}(a_1, \dots, a_n) \cap \mathbb{N}_0 = \{d\}$  für ein  $d \in \mathbb{N}_0$  (beachte  $\mathbb{Z}^* = \{\pm 1\}$ ). Mann nennt dann d **den** größten gemeinsamen Teiler von  $a_1, \dots, a_n$ 

$$d =: ggT(a_1, \ldots, a_n)$$

• Im Fall R=K[T] (wobei K Körper, in 27, dies ein Hauptidealring),  $f_1,\ldots,f_n\in K[t]$ , nicht alle  $f_i=0$ , existiert ein eindeutig bestimmtes normiertes Polynom  $d\in K[t]$  mit  $d\in \mathrm{GGT}(f_1,\ldots,f_n)$  (bechte:  $K[t]^*=K^*$ ). Man nennt

$$d =: \operatorname{ggT}(f_1, \ldots, f_n)$$

 $\mathbf{den}$  größten gemeinsamen Teiler von  $f_1,\dots,f_n$  und setzt

$$ggT(0,...,0) := 0$$

**Folgerung 26.22** R Hauptidealring,  $a,b \in R, d \in \mathrm{GGT}(a,b)$ . Dann existieren  $u,v \in R$  mit d=ua+vb.

**Beweis** aus 26.21: (d) = (a, b)

**Definition 26.23** R nullteilerfrei,  $p \in R \setminus (R^* \cup \{0\})$ 

- p heißt **irreduzibel**  $\stackrel{\text{Def}}{\Longleftrightarrow}$  Aus p=ab mit  $a,b\in R$  folgt stets  $a\in R^*$  oder  $b\in R^*$
- p heißt **Primelement**  $\stackrel{\mathrm{Def}}{\Longleftrightarrow}$  Aus  $p \mid ab$  folgt stets  $p \mid a$  oder  $p \mid b$

**Anmerkung** p irreduzibel / Primelement,  $p' \stackrel{\wedge}{=} p \implies p'$  irreduzibel / Primelment

# Beispiel 26.24

irreduzible Elemente inn  $\mathbb{Z} = \text{Primzahlen } p$  aus N sowie deren Negative -p. Primelelemente in  $\mathbb{Z}$ ?

Frage: Zusammenhang zwischen irreduziblen Elementen und Primelementen?

**Bemerkung 26.25** R nullteilerfrei,  $p \in R \setminus (R^* \cup \{0\})$  Primelement. Dann ist p irreduzibel.

**Beweis** 1. Wir setzet  $S:=\frac{R}{(p)}$ . Behauptung S ist nullteilerfrei, denn: Wegen  $p \notin R^*$  ist  $(p) \neq R$ , das heißt  $S \neq 0$ . Sind  $\bar{x}, \bar{y} \in S$  mit  $\bar{x}\bar{y} = \bar{0}$  und  $\bar{y} \neq \bar{0}$ , das heißt  $xy \in (p)$  und  $y \notin (p) \implies p \mid xy$  und  $p \mid p \implies p \mid x \implies \bar{x} = \bar{0}$ 

2. Sei 
$$p=ab$$
 mit  $a,b\in R$ . In  $s=R/(p)$  ist  $\bar{0}=\bar{p}=\bar{a}\bar{b} \implies \bar{a}=\bar{0}\vee \bar{b}=\bar{0}$ . Ohne Einschränkung  $\bar{a}=\bar{0} \implies$  Es existierte  $d\in R$  mit  $a=pd \implies p=ab=pdb \implies p(1-db)=0 \implies 1-db=0 \implies db=1 \implies b\in R^*$ 

Anmerkung Es gibt Beispiele für irreduzible Elemente, die keine Primelemente sind (Übungen)

**Satz 26.26** R Hauptidealring,  $p \in R \setminus (R^* \cup \{0\})$ . Dann sind äquivalent:

- 1. *p* ist irreduzibel
- 2. p ist Primelement

**Beweis** 2.  $\implies$  1. aus 26.25

- 1.  $\iff$  2. Sei p irreduzibel.
  - a) Behauptung: Ist  $I \subseteq R$  mit  $(p) \subsetneq I$ , dann ist I = R, denn: Sei  $(p) \subsetneq I$ . Da R Hauptidealring existiert  $a \in R$  mit  $I = (a) \implies \exists c \in R : p = ac \implies a \in R^* \lor c \in \mathbb{R}^*$ . Falls  $c \in R^*$ , dann (p) = (a) = I Also  $a \in R^*$ , das heißt (a) = I = R.
  - b)  $R_{(p)}$  ist ein Körper, denn: Sei  $\bar{x} \in R_{(p)}$ ,  $\bar{x} \neq \bar{0} \implies x \not\in (p) \implies I := (x, p)$  ist ein Ideal in R mit  $(p) \subsetneq I \implies I = R \implies 1 \in I \implies \exists u, v \in R : 1 = ux + vp \implies \bar{1} = \bar{u}\bar{x} + \bar{v} \underbrace{\bar{p}}_{=0} = \bar{u}\bar{x}$

c) 
$$p$$
 ist Primelement, denn: Seien  $a,b\in R$  mit  $p\mid ab\implies$  in  $R/(p)$  ist  $\bar{0}=\bar{p}=\bar{a}\bar{b}$ . Nach 2. ist  $R/(p)$  ein Körper, also nullteilerfrei (6.11)  $\implies \bar{a}=\bar{0}\vee\bar{b}=\bar{0}\implies p\mid a\vee p\mid b$ 

**Anmerkung** • Beweis hat gezeigt: R Hauptidealring, p irreduziblet Element in R, dann ist R/(p) ein Körper.

• Primelement in  $\mathbb{Z} =$  irreduzibles Element in  $\mathbb{Z}$ 

Frage: Wann gilt in R ein Analogon des Satzes über die eindeutige Primfaktorzerlegung in  $\mathbb{Z}$ ?

**Definition 26.27** R nullteilerfrei. R heißt **faktoriell**  $\stackrel{\text{Def}}{\Longleftrightarrow}$  Jedes  $a \in R \setminus (R^* \cup \{0\})$  lässt sich eindeutig bis auf Reihenfolge und Assoziiertheit als Produzt irreduzibler Elemente aus R schreiben, das heißt es existieren irreduzible Elemente  $p_1, \ldots, p_r \in R$  mit  $a = p_1 \cdot \ldots \cdot p_r$  und sind  $q_1, \ldots, q_s \in R$  irreduzible Elemente mit  $a = q_1 \cdot \ldots \cdot q_s$ , so ist r = s und nach Umordnen ist  $p_i \stackrel{\triangle}{=} q_i$  für  $i = 1, \ldots, r$ 

Ziel: Hauptidealringe sind faktoriell.

**Definition 26.28** R heißt **noethersch**  $\stackrel{\text{Def}}{\Longleftrightarrow}$  Für jede aufsteigende Kette  $I_1 \subseteq I_2 \subseteq \ldots$  von Idealen in R existiert ein  $n \in \mathbb{N}$  mit  $I_k = I_n$  für alle  $k \geq n$ 

**Bemerkung 26.29** R Hauptidealring. Dann ist R noethersch.

**Beweis** Sei  $I_1 \subseteq I_2 \subseteq \dots$  eine aufsteigende Kette von Idealen aus R. Setze

$$I := \bigcup_{k > 1} I_k$$

- 1. I ist ein Ideal in R, dann:
  - $(I1) \ 0 \in I_k \forall k \in \mathbb{N} \implies 0 \in I$
  - (I2) Seien  $a,b\in I\implies \exists k,l\in\mathbb{N}:a\in I_k,b\in I_l.$  Mit  $m:=\max\{k,l\}$  ist  $a,b\in I_m\implies a+b\in I_m\subseteq I$
  - (I3)  $a \in I, r \in R \implies \exists k \in \mathbb{N} : a \in I_k \implies ra \in I_k \subseteq I$
- 2. Wegen 1. und R Hauptidealring existiert ein  $a \in R$  mit I = (a), insbesondere  $a \in I \implies \exists n \in \mathbb{N} : a \in I_n \implies (a) \subseteq I_n \subseteq I = (a) \implies I_n = I \implies I_k = I = I_n \forall k \geq n \quad \Box$

**Satz 26.30** R Hauptidealring. Dann ist R faktoriell.

**Beweis** 1. Existenz von Zerlegung in irreduzible Elemente. Setze

 $M := \{(a) \mid a \in R \setminus (R^* \cup \{0\}) \mid \text{ besitzt keine Faktorisierung in irreduziblen Elementen} \}$ 

M ist wohldefiniert, da Bedingung an a invariant unter Assoziativitätheit.

Annahme:  $M \neq \emptyset$ 

Wegen 26.29 existiert bezüglich "⊆" maximales Element  $I \in M$ , denn: Anderenfalls existiert zu jedem  $I \in M$  ein  $I' \in M$  mit  $I \subsetneq I'$ , das liefert eine unedliche strikt aufsteigende Kette von von Idealen in R ½zu R noethersch.

Es existiert  $a \in R$  mit I=(a). a ist nicht irreduzibel, denn für a irreduzibel wäre a selbst eine Faktorisierung in irreduzible Elemente  $\implies I=(a) \not\in M$   $\not\in M$   $\not\in R \setminus (R^* \cup \{0\})$  mit  $a=a_1a_2 \implies (a) \subseteq (a_1), (a) \subseteq (a_2)$ . Wäre  $(a)=(a_1)$ , dann existiert  $b \in R^*$  mit  $a=a_1b=a_1a_2 \implies a_2=b \in \mathbb{R}^*$   $\not\in Also$   $(a) \subseteq (a_1)$ , analog  $(a) \subseteq (a_2)$ 

 $\implies (a_1), (a_2) \notin M \implies a_1, a_2$  haben Faktorisierung in irreduzible Elemente also auch  $a = a_1 a_2 \not$ . Also  $M = \emptyset \implies$  Existenz

2. Eindeutigkeit von Zerlegung: Sei  $a=p_1\cdot\ldots\cdot p_r=q_1\cdot\ldots\cdot q_s$  mit  $p_1,\ldots,p_r,q_1,\ldots,q_s$  irreduzibel. Beweis per Induktion nach r:

Induktionsanfang:  $r=0 \implies a=1 \implies s=0$  (sonst  $q_1,\ldots,q_s\in R^*$ ) Induktionsschritt: Behauptung für  $0,\ldots,r-1$  bewiesen.

$$p_1 \mid p_1 \cdot \ldots \cdot p_r = q_1 \cdot \ldots \cdot q_s \implies \exists j \in \{1, \ldots, s\} : p_1 \mid q_j$$

Nach Umnummerierung sei j=1 also  $p_1\mid q_1$ , etwa  $q_1=cp_1$  mit  $c\in R$ . Da  $q_1$  irreduzibel folgt  $c\in R^*$ , also  $p_1\stackrel{\wedge}{=} q_1$ .

$$\implies p_1 \cdot \ldots \cdot p_r = cp_1q_2 \cdot \ldots \cdot q_s \implies p_1(p_2 \cdot \ldots \cdot p_r - cq_2 \cdot \ldots \cdot q_s) = 0$$

 $\implies p_2 \cdot \ldots \cdot p_r = (cq_2) \cdot \ldots \cdot q_s$ . Wegen  $c \in \mathbb{R}^*$  ist  $cq_2$  irreduzibel  $\implies r-1=s-1$  ( $\implies r=s$ ) und nach Umnummerierung

$$p_2 \stackrel{\wedge}{=} cq_2 = q_2, p_3 \stackrel{\wedge}{=} q_3, \dots, p_r \stackrel{\wedge}{=} q_r \qquad \Box$$

**Anmerkung** • Fasst man in einer Zerlegung eines Elementes zueinander assoziierter Faktoren zusammen und erlaubt einen Vorfaktor  $c \in R^*$ , so erhält man eine Darstellung für Elemente  $a \in R \setminus (R^* \cup \{0\})$  der FOrm

$$a = cp_1^{e_1} \cdot \ldots \cdot p_r^{e_r}$$

mit  $c.R^*, p_1, \ldots, p_r$  irreduzibel,  $p_1 \not\cong p_j$  für  $i \neq j, e_1, \ldots, e_r \in \mathbb{N}$ . Ist dann  $a = dq_1^{f_1} \cdot \ldots \cdot q_s^{f_s}$  mit  $d \in R^*, q_1, \ldots, q_s$  irreduzibel,  $q_i \not\cong q_j$  FÜr  $i \neq j, f_1, \ldots, f_s \in \mathbb{N}$ , dann ist r = s und nach Umnummerierung ist  $p_i \stackrel{\triangle}{=} q_i, e_i = f_i$  für  $i = 1, \ldots, r$ .