Chapter 4 Trigonometry

Angles: α, β

Real numbers (coordinates of a point): x, y

Whole number: k

4.1 Radian and Degree Measures of Angles

362. 1 rad =
$$\frac{180^{\circ}}{\pi} \approx 57^{\circ}17'45''$$

363.
$$1^{\circ} = \frac{\pi}{180} \text{ rad} \approx 0.017453 \text{ rad}$$

364.
$$1' = \frac{\pi}{180 \cdot 60}$$
 rad ≈ 0.000291 rad

365.
$$1" = \frac{\pi}{180 \cdot 3600}$$
 rad ≈ 0.000005 rad

366. Angle (degrees) 0 30 45 60 90 180 270 360 Angle (radians) 0
$$\frac{\pi}{6}$$
 $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 2π

4.2 Definitions and Graphs of Trigonometric Functions

Figure 58.

$$367. \quad \sin \alpha = \frac{y}{r}$$

$$368. \quad \cos\alpha = \frac{x}{r}$$

$$369. \quad \tan \alpha = \frac{y}{x}$$

$$370. \quad \cot \alpha = \frac{x}{y}$$

371.
$$\sec \alpha = \frac{r}{x}$$

372.
$$\csc \alpha = \frac{r}{y}$$

373. Sine Function $y = \sin x$, $-1 \le \sin x \le 1$.

Figure 59.

374. Cosine Function
$$y = \cos x$$
, $-1 \le \cos x \le 1$.

Figure 60.

375. Tangent Function

$$y = tan x$$
, $x \neq (2k+1)\frac{\pi}{2}$, $-\infty \leq tan x \leq \infty$.

Figure 61.

376. Cotangent Function $y = \cot x, x \neq k\pi, -\infty \leq \cot x \leq \infty$.

Figure 62.

377. Secant Function

$$y = \sec x$$
, $x \neq (2k+1)\frac{\pi}{2}$.

Figure 63.

378. Cosecant Function $y = \csc x$, $x \neq k\pi$.

Figure 64.

4.3. Signs of Trigonometric Functions

379.

Quadrant	Sin α	Cos α	Tan α	Cot α	Sec a	Cosec
I	+	+	+	+	+	+
II	+					+
III			+	+		
IV		+			+	

380.

Figure 65.

4.4 Trigonometric Functions of Common Angles

381.

α°	α rad	sin α	cosα	tan α	cot a	sec α	cosec a
0	0	0	1	0	00	1	00
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60	$\frac{\pi}{3}$	$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$
90	$\frac{\pi}{2}$	1	0	œ	0	œ	1
120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{\sqrt{3}}$	- 2	$\frac{2}{\sqrt{3}}$
180	π	0	-1	0	00	-1	∞
270	$\frac{3\pi}{2}$	-1	0	× ×	0	oc .	-1
360	2π	0	1	0	00	1	œ

382.

002.				P	
α°	α rad	sin α	cosα	tan α	cot a
15	$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
18	$\frac{\pi}{10}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\sqrt{\frac{5-2\sqrt{5}}{5}}$	$\sqrt{5+2\sqrt{5}}$
36	$\frac{\pi}{5}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$	$\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}$
54	$\frac{3\pi}{10}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$
72	$\frac{2\pi}{5}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	$\sqrt{\frac{5-2\sqrt{5}}{5}}$
75	$\frac{5\pi}{12}$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$

4.5 Most Important Formulas

383.
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

384.
$$\sec^2 \alpha - \tan^2 \alpha = 1$$

385.
$$\csc^2 \alpha - \cot^2 \alpha = 1$$

$$386. \quad \tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$387. \quad \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

388.
$$\tan \alpha \cdot \cot \alpha = 1$$

$$389. \quad \sec \alpha = \frac{1}{\cos \alpha}$$

$$390. \quad \csc \alpha = \frac{1}{\sin \alpha}$$

4.6 Reduction Formulas

391.

β	sin β	cosβ	tan ß	cot β
-α	- sin α	+ cos α	– tan α	-cot α
90°-α	+ cos a	+ sin α	+ cot α	+ tan α
90°+α	+ cos a	- sin α	– cot α	– tan α
180°-α	+ sin α	-cosα	-tan α	− cot α
180°+α	-sin α	-cos α	+ tan α	+ cot a
270°-α	-cos α	- sin α	+ cot α	+ tan α
270°+α	-cos α	+ sin α	-cot α	– tan α
360°-α	- sin α	+ cos α	-tan α	−cot α
360°+α	+sin α	+ cos α	+tan α	+ cot a

4.7 Periodicity of Trigonometric Functions

- 392. $\sin(\alpha \pm 2\pi n) = \sin \alpha$, period 2π or 360° .
- 393. $\cos(\alpha \pm 2\pi n) = \cos \alpha$, period 2π or 360° .
- 394. $\tan(\alpha \pm \pi n) = \tan \alpha$, period π or 180°.
- 395. $\cot(\alpha \pm \pi n) = \cot \alpha$, period π or 180°.

4.8 Relations between Trigonometric Functions

396.
$$\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \sqrt{\frac{1}{2} (1 - \cos 2\alpha)} = 2\cos^2 \left(\frac{\alpha}{2} - \frac{\pi}{4}\right) - 1$$

$$= \frac{2\tan\frac{\alpha}{2}}{1 + \tan^2\frac{\alpha}{2}}$$

397.
$$\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \sqrt{\frac{1}{2} (1 + \cos 2\alpha)} = 2\cos^2 \frac{\alpha}{2} - 1$$

$$= \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

398.
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \pm \sqrt{\sec^2 \alpha - 1} = \frac{\sin 2\alpha}{1 + \cos 2\alpha} = \frac{1 - \cos 2\alpha}{\sin 2\alpha}$$

$$=\pm\sqrt{\frac{1-\cos 2\alpha}{1+\cos 2\alpha}}=\frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}$$

399.
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \pm \sqrt{\csc^2 \alpha - 1} = \frac{1 + \cos 2\alpha}{\sin 2\alpha} = \frac{\sin 2\alpha}{1 - \cos 2\alpha}$$
$$= \pm \sqrt{\frac{1 + \cos 2\alpha}{1 - \cos 2\alpha}} = \frac{1 - \tan^2 \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}$$

400.
$$\sec \alpha = \frac{1}{\cos \alpha} = \pm \sqrt{1 + \tan^2 \alpha} = \frac{1 + \tan^2 \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}$$

401.
$$\csc \alpha = \frac{1}{\sin \alpha} = \pm \sqrt{1 + \cot^2 \alpha} = \frac{1 + \tan^2 \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}$$

4.9 Addition and Subtraction Formulas

402.
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

403.
$$\sin(\alpha - y) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$$

404.
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

405.
$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

406.
$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

407.
$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

408.
$$\cot(\alpha+\beta) = \frac{1-\tan\alpha\tan\beta}{\tan\alpha+\tan\beta}$$

409.
$$\cot(\alpha-\beta) = \frac{1+\tan\alpha\tan\beta}{\tan\alpha-\tan\beta}$$

4.10 Double Angle Formulas

410.
$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

411.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

412.
$$\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha} = \frac{2}{\cot \alpha - \tan \alpha}$$

413.
$$\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2 \cot \alpha} = \frac{\cot \alpha - \tan \alpha}{2}$$

4.11 Multiple Angle Formulas

414.
$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha = 3\cos^2 \alpha \cdot \sin \alpha - \sin^3 \alpha$$

415.
$$\sin 4\alpha = 4 \sin \alpha \cdot \cos \alpha - 8 \sin^3 \alpha \cdot \cos \alpha$$

416.
$$\sin 5\alpha = 5\sin \alpha - 20\sin^3 \alpha + 16\sin^5 \alpha$$

417.
$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha = \cos^3 \alpha - 3\cos \alpha \cdot \sin^2 \alpha$$

418.
$$\cos 4\alpha = 8\cos^4 \alpha - 8\cos^2 \alpha + 1$$

419.
$$\cos 5\alpha = 16\cos^5 \alpha - 20\cos^3 \alpha + 5\cos \alpha$$

420.
$$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}$$

421.
$$\tan 4\alpha = \frac{4 \tan \alpha - 4 \tan^3 \alpha}{1 - 6 \tan^2 \alpha + \tan^4 \alpha}$$

422.
$$\tan 5\alpha = \frac{\tan^5 \alpha - 10\tan^3 \alpha + 5\tan \alpha}{1 - 10\tan^2 \alpha + 5\tan^4 \alpha}$$

423.
$$\cot 3\alpha = \frac{\cot^3 \alpha - 3\cot \alpha}{3\cot^2 \alpha - 1}$$

424.
$$\cot 4\alpha = \frac{1 - 6\tan^2 \alpha + \tan^4 \alpha}{4\tan \alpha - 4\tan^3 \alpha}$$

425.
$$\cot 5\alpha = \frac{1 - 10\tan^2 \alpha + 5\tan^4 \alpha}{\tan^5 \alpha - 10\tan^3 \alpha + 5\tan \alpha}$$

4.12 Half Angle Formulas

$$426. \quad \sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$427. \quad \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

428.
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha} = \csc\alpha - \cot\alpha$$

429.
$$\cot \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha} = \csc \alpha + \cot \alpha$$

4.13 Half Angle Tangent Identities

430.
$$\sin \alpha = \frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}$$

431.
$$\cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

432.
$$\tan \alpha = \frac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{\alpha}{2}}$$

433.
$$\cot \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}$$

4.14 Transforming of Trigonometric Expressions to Product

434.
$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

435.
$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

436.
$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

437.
$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

438.
$$\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}$$

439.
$$\tan \alpha - \tan \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cdot \cos \beta}$$

440.
$$\cot \alpha + \cot \beta = \frac{\sin(\beta + \alpha)}{\sin \alpha \cdot \sin \beta}$$

441.
$$\cot \alpha - \cot \beta = \frac{\sin(\beta - \alpha)}{\sin \alpha \cdot \sin \beta}$$

442.
$$\cos \alpha + \sin \alpha = \sqrt{2} \cos \left(\frac{\pi}{4} - \alpha\right) = \sqrt{2} \sin \left(\frac{\pi}{4} + \alpha\right)$$

443.
$$\cos \alpha - \sin \alpha = \sqrt{2} \sin \left(\frac{\pi}{4} - \alpha \right) = \sqrt{2} \cos \left(\frac{\pi}{4} + \alpha \right)$$

444.
$$\tan \alpha + \cot \beta = \frac{\cos(\alpha - \beta)}{\cos \alpha \cdot \sin \beta}$$

445.
$$\tan \alpha - \cot \beta = -\frac{\cos(\alpha + \beta)}{\cos \alpha \cdot \sin \beta}$$

446.
$$1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}$$

447.
$$1-\cos\alpha = 2\sin^2\frac{\alpha}{2}$$

448.
$$1+\sin\alpha=2\cos^2\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$$

449.
$$1-\sin\alpha=2\sin^2\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$$

4.15 Transforming of Trigonometric Expressions to Sum

450.
$$\sin \alpha \cdot \sin \beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$$

451.
$$\cos \alpha \cdot \cos \beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2}$$

452.
$$\sin \alpha \cdot \cos \beta = \frac{\sin(\alpha - \beta) + \sin(\alpha + \beta)}{2}$$

453.
$$\tan \alpha \cdot \tan \beta = \frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta}$$

454.
$$\cot \alpha \cdot \cot \beta = \frac{\cot \alpha + \cot \beta}{\tan \alpha + \tan \beta}$$

455.
$$\tan \alpha \cdot \cot \beta = \frac{\tan \alpha + \cot \beta}{\cot \alpha + \tan \beta}$$

4.16 Powers of Trigonometric Functions

$$456. \quad \sin^2\alpha = \frac{1-\cos 2\alpha}{2}$$

$$457. \quad \sin^3 \alpha = \frac{3\sin \alpha - \sin 3\alpha}{4}$$

458.
$$\sin^4 \alpha = \frac{\cos 4\alpha - 4\cos 2\alpha + 3}{8}$$

459.
$$\sin^5 \alpha = \frac{10\sin \alpha - 5\sin 3\alpha + \sin 5\alpha}{16}$$

460.
$$\sin^6 \alpha = \frac{10 - 15\cos 2\alpha + 6\cos 4\alpha - \cos 6\alpha}{32}$$

461.
$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

$$462. \quad \cos^3\alpha = \frac{3\cos\alpha + \cos3\alpha}{4}$$

463.
$$\cos^4 \alpha = \frac{\cos 4\alpha + 4\cos 2\alpha + 3}{8}$$

464.
$$\cos^5 \alpha = \frac{10\cos \alpha + 5\sin 3\alpha + \cos 5\alpha}{16}$$

465.
$$\cos^6 \alpha = \frac{10 + 15\cos 2\alpha + 6\cos 4\alpha + \cos 6\alpha}{32}$$

4.17 Graphs of Inverse Trigonometric Functions

466. Inverse Sine Function

$$y = \arcsin x$$
, $-1 \le x \le 1$, $-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}$.

Figure 66.

467. Inverse Cosine Function
$$y = \arccos x$$
, $-1 \le x \le 1$, $0 \le \arccos x \le \pi$.

Figure 67.

468. Inverse Tangent Function

$$y = \arctan x$$
, $-\infty \le x \le \infty$, $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$.

Figure 68.

469. Inverse Cotangent Function $y = \operatorname{arccot} x, -\infty \le x \le \infty, 0 < \operatorname{arccot} x < \pi$.

Figure 69.

470. Inverse Secant Function

$$y = \operatorname{arcsec} x, \ x \in (-\infty, -1] \cup [1, \infty), \ \operatorname{arcsec} x \in \left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right].$$

Figure 70.

471. Inverse Cosecant Function

$$y = \operatorname{arccsc} x, \ x \in (-\infty, -1] \cup [1, \infty), \ \operatorname{arccsc} x \in \left[-\frac{\pi}{2}, 0 \right] \cup \left(0, \frac{\pi}{2} \right].$$

Figure 71.

4.18 Principal Values of Inverse Trigonometric Functions

472.

x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
arcsin x	0°	30°	45°	60°	90°
arccos x	90°	60°	45°	30°	0°
x	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	
arcsin x	-30°	-45°	-60°	-90°	
arccos x	120°	135°	150°	180°	

473.

x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$
arctan x	0°	30°	45°	60°	-30°	-45°	-60°
arc cot x	90°	60°	45°	30°	120°	135°	150°

4.19 Relations between Inverse Trigonometric Functions

474.
$$\arcsin(-x) = -\arcsin x$$

475.
$$\arcsin x = \frac{\pi}{2} - \arccos x$$

476.
$$\arcsin x = \arccos \sqrt{1-x^2}$$
, $0 \le x \le 1$.

477.
$$\arcsin x = -\arccos \sqrt{1-x^2}, -1 \le x \le 0.$$

478.
$$\arcsin x = \arctan \frac{x}{\sqrt{1-x^2}}, x^2 < 1.$$

479.
$$\arcsin x = \operatorname{arccot} \frac{\sqrt{1-x^2}}{x}, \ 0 < x \le 1.$$

480.
$$\arcsin x = \arctan \cot \frac{\sqrt{1-x^2}}{x} - \pi, -1 \le x < 0.$$

481.
$$arccos(-x) = \pi - arccos x$$

482.
$$\arccos x = \frac{\pi}{2} - \arcsin x$$

483.
$$\arccos x = \arcsin \sqrt{1-x^2}$$
, $0 \le x \le 1$.

484.
$$\arccos x = \pi - \arcsin \sqrt{1 - x^2}, -1 \le x \le 0.$$

485.
$$\arccos x = \arctan \frac{\sqrt{1-x^2}}{x}$$
, $0 < x \le 1$.

486.
$$\arccos x = \pi + \arctan \frac{\sqrt{1-x^2}}{x}, -1 \le x < 0.$$

487.
$$\operatorname{arccos} x = \operatorname{arccot} \frac{x}{\sqrt{1-x^2}}, -1 \le x \le 1$$
.

488.
$$\arctan(-x) = -\arctan x$$

489.
$$\arctan x = \frac{\pi}{2} - \operatorname{arc} \cot x$$

490.
$$\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}}$$

491.
$$\arctan x = \arccos \frac{1}{\sqrt{1+x^2}}, x \ge 0.$$

492.
$$\arctan x = -\arccos \frac{1}{\sqrt{1+x^2}}, x \le 0.$$

493.
$$\arctan x = \frac{\pi}{2} - \arctan \frac{1}{x}, x > 0.$$

494.
$$\arctan x = -\frac{\pi}{2} - \arctan \frac{1}{x}, x < 0.$$

495.
$$\arctan x = \operatorname{arc} \cot \frac{1}{x}, x > 0.$$

496.
$$\arctan x = \operatorname{arc} \cot \frac{1}{x} - \pi$$
, $x < 0$.

497.
$$\operatorname{arccot}(-x) = \pi - \operatorname{arccot} x$$

498.
$$\operatorname{arccot} x = \frac{\pi}{2} - \arctan x$$

499.
$$\operatorname{arccot} x = \arcsin \frac{1}{\sqrt{1+x^2}}, x > 0.$$

500.
$$\operatorname{arccot} x = \pi - \arcsin \frac{1}{\sqrt{1+x^2}}, x < 0.$$

501.
$$\operatorname{arccot} x = \operatorname{arccos} \frac{x}{\sqrt{1+x^2}}$$

502.
$$\operatorname{arccot} x = \arctan \frac{1}{x}, x > 0.$$

503.
$$\operatorname{arc} \cot x = \pi + \arctan \frac{1}{x}, \ x < 0.$$

4.20 Trigonometric Equations

Whole number: n

504.
$$\sin x = a$$
, $x = (-1)^n \arcsin a + \pi n$

505.
$$\cos x = a$$
, $x = \pm \arccos a + 2\pi n$

506.
$$\tan x = a$$
, $x = \arctan a + \pi n$

507.
$$\cot x = a$$
, $x = \operatorname{arc} \cot a + \pi n$

4.21 Relations to Hyperbolic Functions

Imaginary unit: i

508.
$$\sin(ix) = i \sinh x$$

509.
$$tan(ix) = i tanh x$$

510.
$$\cot(ix) = -i \coth x$$

511.
$$sec(ix) = sech x$$

512.
$$\csc(ix) = -i \operatorname{csch} x$$