

Reference No.: WTS19S12086451W006 V1 Page 80 of 116

13 Conducted Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General U-NII Test Procedures New Rules v02r01

Section E

Test Limit: U-NII-1 250mW(24dBm) U-NII-3 1W(30dBm)

Test Result: PASS

Conducted output power= measurement power+ $10\log(1/x)$

Remark: X is duty cycle=1, so $10\log(1/1)=0$

Conducted output power= measurement power

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Reference No.: WTS19S12086451W006 V1 Page 81 of 116

13.2 Test Result:

	Operation mode	Conducted Output Power (dBm)			
Band		Low	Middle	High	
	802.11a	11.89	11.01	13.39	
	802.11n(HT20)	10.59	10.68	10.70	
	802.11n(HT40)	10.98	1	11.12	
U-NII-1	802.11ac(HT20)	10.57	10.76	10.80	
	802.11ac(HT40)	10.77	1	10.99	
	802.11ac(HT80)	10.95	1	1	
U-NII-3	802.11a	13.33	13.32	13.64	
	802.11n(HT20)	13.07	12.99	13.52	
	802.11n(HT40)	12.64	1	12.81	
	802.11ac(HT20)	12.79	12.71	13.34	
	802.11ac(HT40)	12.53	1	12.74	
	802.11ac(HT80)	10.23		/	

^{*} All transmit signals are completely uncorrelated with each other, Directional gain = G_{ANT} which is less than 6dBi. So the limit does not be reduced.

Test result plots shown as follows:

802.11a U-NII-1 Low channel

802.11a U-NII-1 Middle channel

802.11a U-NII-3 Low channel

802.11a U-NII-3 Middle channel

802.11ac(HT20) U-NII-3 Middle channel

Reference No.: WTS19S12086451W006 V1 Page 96 of 116

14 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General U-NII Test Procedures New Rules v02r01,

Section F

Test Limit: ≤11.00dBm/MHz for Operation in the U-NII-1(5150MHz-5250MHz)of

mobile device

≤30.00dBm/500KHz for Operation in the U-NII-3(5725MHz-

5850MHz)of device

Test Result: PASS

14.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer:

U-NII-1

RBW = 1MHz, VBW ≥3* RBW Sweep = auto; Detector Function = Peak. Trace = Max hold.

U-NII-3

RBW = 510KHz, VBW ≥3* RBW Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Reference No.: WTS19S12086451W006 V1 Page 97 of 116

14.2 Test Result:

Dond	Operation mode	Power Spectral Density (dBm/MHz)			
Band		Low	Middle	High	
	802.11a	4.790	4.600	4.594	
	802.11n(HT20)	4.118	3.067	3.818	
	802.11n(HT40)	0.497	1	0.971	
U-NII-1	802.11ac(HT20)	3.071	3.890	3.432	
	802.11ac(HT40)	0.621	1	0.661	
	802.11ac(HT80)	-1.587	1	1	
	Limit	≤11.00dBm/MHz			

Band	Operation mode	Power Spectral Density (dBm/MHz)			
Бапи		Low	Middle	High	
	802.11a	3.903	3.542	4.307	
	802.11n(HT20)	3.228	2.744	3.308	
	802.11n(HT40)	-0.517	1	-0.270	
U-NII-3	802.11ac(HT20)	3.205	2.749	3.259	
	802.11ac(HT40)	0.358	1	0.488	
	802.11ac(HT80)	-2.723	1	/	
	Limit	≤30.00dBm/500kHz			

^{*} All transmit signals are completely uncorrelated with each other, Directional gain = G_{ANT} which is less than 6dBi. So the limit does not be reduced.

Test result plots shown as follows:

802.11a U-NII-1 Low channel

#VBW 3.0 MHz

802.11a U-NII-3 Middle channel

802.11n(HT20) U-NII-3 Low channel

Reference No.: WTS19S12086451W006 V1 Page 112 of 116

15 Frequency Stability

Test Requirement: FCC CFR47 Part 15 Section 15.407(g)

Test Method: ANSI C63.10:2013

Test Limit: Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the

band of operation under all conditions of normal operation as

specified in the users manual or 20ppm.

Test Result: PASS

15.1 Test Procedure:

1. The transmitter output (antenna port) was connected to the spectrum analyzer. EUT have transmitted absence of unmodulation signal and fixed channelise. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 ppm and the limit is less than ±20ppm The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

2. Extreme temperature rule is -15°C~ 45°C.

15.2 Test Result:

U-NII-1 Test Frequency:5180MHz					
Temperature (°C)	Power Supply (VAC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	
50		1	1	1	
45		1807	2.1598	20	
30		1800	2.1516	20	
20		1806	2.1588	20	
10	120	1800	2.1516	20	
0		1803	2.1556	20	
-10		1800	2.1516	20	
-15		1809	2.1628	20	
-30		1	1	1	
20	108	1810	2.1638	20	
20	132	1798	2.1490	20	

U-NII-3 Test Frequency:5785MHz				
Temperature (°C)	Power Supply (VAC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)
50		1	1	1
45		1919	2.2935	20
30		1911	2.2842	20
20		1915	2.2896	20
10	120	1923	2.2986	20
0		1907	2.2798	20
-10		1908	2.2807	20
-15		1914	2.2879	20
-30		1	1	1
20	108	1918	2.2926	20
20	132	1906	2.2784	20

16 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

This device uses of two antennas that uses a specified coupling to the intentional radiator. Antenna connectors complied with the requirement.

Reference No.: WTS19S12086451W006 V1 Page 115 of 116

17 RF Exposure

Remark: refer to SAR test report: WTS19S12086451W001.

Reference No.: WTS19S12086451W006 V1 Page 116 of 116

18 Photographs of test setup and EUT.

Note: Please refer to appendix: Appendix-CD8-Photos.

=====End of Report=====