Álgebra lineal II, Grado en Matemáticas

Junio 2018, 2^a. Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para las cuatro definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Autovalor y autovector.
- (b) Signatura.
- (c) Matriz de un producto escalar.
- (d) Subespacio máximo asociado a un autovalor.

Ejercicio 1: (2 puntos)

Sea f un endomorfismo de un espacio vectorial euclídeo (V, <, >). Demuestre que si f transforma una base ortonormal $\{v_1, \ldots, v_n\}$ de V en otra base ortonormal $\{f(v_1), \ldots, f(v_n)\}$ de V, entonces f es una isometría.

Ejercicio 2: (2 puntos)

Sean V un espacio vectorial real, $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ una base de V y f un endomorfismo de V que cumple las siguientes condiciones:

- (a) Tiene dos autovalores distintos λ_1 y λ_2 con multiplicidades algebraicas $a_1 + a_2 = 4$.
- (b) El núcleo de f es $Ker(f) \equiv \{x_1 x_2 = 0, x_4 = 0\}$
- (c) $f(v_4) = 3v_4$ y $v_1 v_2$ es un autovector.

Determine si f es diagonalizable.

Ejercicio 3: (2 puntos)

Determine las ecuaciones de los planos invariantes irreducibles del endomorfismo f cuya matriz respecto de una base $\mathcal{B} = \{v_1, v_2, v_3\}$ es

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Ejercicio 4: (2 puntos)

Sean $P_1 \equiv \{x + 2y - z = 0\}$ y $P_2 \equiv \{x + 2y + z = 0\}$ dos planos del espacio vectorial euclídeo \mathbb{R}^3 . Considerando el producto escalar estándar, halle una base ortonormal $\{u_1, u_2, u_3\}$ tal que el subespacio generado por los vectores u_1 y u_2 esté contenido en el plano P_1 y el subespacio generado por los vectores u_1 y u_3 no esté contenido en el plano P_2 .