HOMEWORK 2 MATH 270B, WINTER 2020, PROF. ROMAN VERSHYNIN

Problem 1 (Scheffé's Theorem)

- (a) (For continuous distributions) Prove that if probability density functions of X_n converge to probability density function of X pointwise, then X_n converges to X weakly.
- (b) (For discrete distributions) Prove that if probability mass functions of X_n converge to probability mass function of X pointwise, then X_n converges to X weakly.
- (c) (No converse) In general, weak convergence does not imply pointwise convergence of probability density functions. Show this by example. sol:
- (a). Let f_n be the density function of X_n and f be the density function of X. We recall the generalized dominated convergence theorem: Let $\{h_n\}$ and $\{g_n\}$ be sequences of measurable functions, g_n non-negative and integrable. If $(1)|h_n| \leq g_n$ on \mathbb{R} , (2) $f_n(x) \to f$ and $g_n \to g$ pointwisely, and (3) $\lim_{n\to\infty} \int g_n = \int g < \infty$. Then, $\lim_{n\to\infty} \int h_n = \int h < \infty$

Now $\forall x$, let $E = (-\infty, x]$, let $h_n = (f - f_n) \cdot \mathbf{1}_E$ and $g_n = f_n + f$. We see that $|h_n| \leq g_n$ on \mathbb{R} , and $h_n \to 0 = h$, $g_n \to 2f = g$ pointwisely. Also, $\forall n$, $\int_{\mathbb{R}} g_n = \int_{\mathbb{R}} f_n + \int_{\mathbb{R}} f_n = \int_{\mathbb{R}} 2f = 2$. Now, we apply the generalized dominated convergence theorem, we have that $\lim_{n \to \infty} \int_{\mathbb{R}} h_n \to 0$, then we have $\lim_{n \to \infty} \int_E f_n \to \int_E f$. Hence, $\mathbb{P} \{X_n \leq x\} \to \mathbb{P} \{X \leq x\}, \forall x$.

(b). Let the collection of ranges (which is countable) of X_n and X be $\{a_k\}_{k=1}^{\infty} \subset \mathbb{R}$. $\forall x \in \mathbb{R}$, let N(x) (if exists) be the largest integer s.t. $a_{N(x)} \leq x$. Then $\forall \epsilon$, based on pointwise convergence of pmf, we have:

$$\forall k, 1 \le k \le N(x), \quad \exists M_k \quad s.t. \quad |\mathbb{P}\{X_n = a_k\} - \mathbb{P}\{X = a_k\}| < \frac{\epsilon}{N(x)}$$

. Take $M = \max_{1 \le k \le N(x)} M_k$. Then we have

$$|\mathbb{P}\left\{X_n \leq x\right\} - \mathbb{P}\left\{X \leq x\right\}| \leq \sum_{k=1}^{N(x)} |\mathbb{P}\left\{X_n = a_k\right\} - \mathbb{P}\left\{X = a_k\right\}| < \epsilon \quad \forall n > M$$

If no such N(x) exsits, then either $(x > a_k, \forall k) \mathbb{P} \{X_n \leq x\} = \mathbb{P} \{X \leq x\} = 1, \forall n$, or $(x < a_k, \forall k) \mathbb{P} \{X_n \leq x\} = \mathbb{P} \{X \leq x\} = 0, \forall n$. Hence, $\forall x, \mathbb{P} \{X_n \leq x\} \to \mathbb{P} \{X \leq x\}$, so $X_n \xrightarrow{w} X$.

(c). I recycle the example from the previous homework: $f_n(x) = \begin{cases} 2 & x \in \left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right) \\ 0 & else \end{cases}$

for
$$k = 0, 1, \dots, 2^{n-1} - 1$$
. Then, $X_n \xrightarrow{D} \text{Uniform}([0,1])$, but $f_n(x) \not\to 1$ anywhere.

PROBLEM 2 (WEAK LIMIT OF NORMAL RANDOM VARIABLES)

Consider normal random variables $X_n \sim N(\mu_n, \sigma_n^2)$. Assume X_n converge weakly to some random variable X. Prove that $X \sim N(\mu, \sigma^2)$ where $\mu = \lim \mu_n$ and $\sigma^2 = \lim s_n^2$ (and both limits exist).

sol: Since $X_n \xrightarrow{D} X$, by continuity theorem, we know that the sequence of probability measures $\{P_n\}$ is tight. Then, $\forall \epsilon > 0 \ \exists M > 0$, s.t. $\mathbb{P}_n(\{|x| > M\}) = \mathbb{P}\{|X_n| > M\} < \epsilon, \forall n$. Now, suppose $\sup_n |\mu_n| = \infty$, then we have $|\mu_N| > M$ for some N, so $\mathbb{P}\{|X_N| > M\} \ge \frac{1}{2}$. This is a contradiction. Hence, $\sup_n \mu_n < \infty$.

Meanwhile, we note that $\mathbb{P}\left\{|X_n|>M\right\}=1-\int_{-M}^M\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu_n)^2}{2\sigma^2}}dx\geq 1-\int_{-M}^M\frac{1}{\sigma\sqrt{2\pi}}dx=1-\frac{2M}{\sigma_n\sqrt{2\pi}}.$ Then, if $\sup_n\sigma_n=\infty$ we have that $\forall M,\forall \epsilon>0,\,\mathbb{P}\left\{|X_m|>M\right\}>\epsilon$ for some m. This contradicts to tightness.

Hence, both μ_n and σ_n are bounded. Then, we first find a convergence subsequence n_k s.t μ_k converges. Then, we find a convergence subsequence of σ_{n_k} . We call this further subsequence $\{n_l\}$. Now, we have that both $\{\mu_{n_l}\}$ and $\{\sigma_{n_l}\}$ converge. Denote the limits μ and σ .

By Continuity theorem, we have $\psi_X(t) = \lim_{n \to \infty} \psi_{X_n}(t), \forall t$. But

$$\lim_{l \to \infty} \psi_{X_{n_l}}(t) = \lim_{l \to \infty} e^{i\mu_{n_l} - \sigma_{n_l}^2 t^2/2} = e^{\lim_{l \to \infty} (i\mu_{n_l}) - \sigma_{n_l}^2 t/2} = e^{i\mu - \sigma^2 t/2}$$

Therefore, we have that $\psi_X(t) = e^{i\mu - \sigma^2 t/2}$, which means X has distribution $N(\mu, \sigma^2)$. Also, by $\psi_{X_n}(t) \to \psi_X(t)$, we see that $\mu = \lim_{n \to \infty} \mu_n$ and $\sigma = \lim_{n \to \infty} \sigma_n$

PROBLEM 3 (NO CONVERGENCE IN PROBABILITY IN CLT)

Let X_1, X_2, \ldots be independent Rademacher random variables¹ Let $S_n = X_1 + \cdots + X_n$.

- (a) Prove that the sequence (S_n/\sqrt{n}) is unbounded almost surely.
- (b) Prove that (S_n/\sqrt{n}) does not converge in probability.

sol: Let $\mathcal{F}_k = \sigma(X_k, X_{k+1}, \cdots)$. Denote the tail algebra $\tau = \bigcap_{k=1}^{\infty} \mathcal{F}_k$. For any fixed $N \in \mathbb{N}$, let event $A = \{\limsup_n \frac{S_n}{\sqrt{n}} \text{ is unbounded}\}$ and $A_m = \{\limsup_n \frac{S_n}{\sqrt{n} > m}\}$. We see that $\forall m, A_m \in \tau$, as the $\limsup_n \frac{S_n}{\sqrt{n}}$ does not depend on finitely many X_k (If given the result, change finitely many of X_k will not change the result). Then, by Kolmogorove 0-1 law. We have that $\mathbb{P}\{A_m\} = 1$ or 0. We have that

$$\mathbb{P}\left\{A_{m}\right\} = \lim_{n \to \infty} \mathbb{P}\left\{\bigcup_{N \ge n} \frac{S_{N}}{\sqrt{N}} > m\right\} \ge \lim_{n \to \infty} \mathbb{P}\left\{\frac{S_{n}}{\sqrt{n}} > m\right\} \to \mathbb{P}\left\{N(0, 1) > m\right\} > 0$$

. Hence, $\mathbb{P}\left\{A_m\right\}=1, \forall m$. Then $\mathbb{P}\left\{A\right\}=\mathbb{P}\left\{\cap_{m=1}^{\infty}A_m\right\}=1$

(b). Now, suppose that $\frac{S_n}{\sqrt{n}} \to Z \sim N(0,1)$ in probability. We also have that $\frac{S_{2n}}{\sqrt{2n}} \xrightarrow{P} Z$.

 $^{^{1}}$ A Rademacher random variable takes values -1, 1 with probability 1/2 each.

Then, we have that $\frac{S_n}{\sqrt{n}} - \frac{S_{2n}}{\sqrt{2n}} \to 0$ in probability. However, we have that $\sqrt{2} \frac{S_{2n}}{\sqrt{2n}} - \frac{S_n}{\sqrt{n}} = \frac{S_{2n} - S_n}{\sqrt{n}} \to N(0, 1)$, and it is independent to $\frac{S_n}{\sqrt{n}}$. Therefore, we have that

$$\mathbb{P}\left\{-1 \le \frac{S_n}{\sqrt{n}} \le 0, 2 \le \frac{S_{2n} - S_n}{\sqrt{n}} \le 4\right\} = \mathbb{P}\left\{-1 \le \frac{S_n}{\sqrt{n}} \le 0\right\} \mathbb{P}\left\{2 \le \frac{S_{2n} - S_n}{\sqrt{n}} \le 4\right\}$$

$$\to \mathbb{P}\left\{-1 < Z < 0\right\} \mathbb{P}\left\{2 < Z < 4\right\} > 0$$

However, this means that $\mathbb{P}\left\{-1 \leq \frac{S_n}{\sqrt{n}} \leq 0, \frac{1}{\sqrt{2}} \leq \frac{S_{2n}}{\sqrt{2n}} \leq \frac{4}{\sqrt{2}}\right\} \to \mathbb{P}\left\{-1 \leq Z \leq 0\right\} \mathbb{P}\left\{2 \leq Z \leq 4\right\} > 0$, which contridicts to $\frac{S_n}{\sqrt{n}} - \frac{S_{2n}}{\sqrt{2n}} \to 0$ in probability.

Problem 4 (Non-summable variances yield CLT)

Let X_1, X_2, \ldots be independent random variables such that there exists M > 0 so that $|X_i| \leq M$ almost surely for all i. Show that if $\sum_i \operatorname{Var}(X_i) = \infty$ then the sum $S_n = X_1 + \cdots + X_n$ satisfies

$$\frac{S_n - \mathbb{E} S_n}{\sqrt{\operatorname{Var}(S_n)}} \to N(0, 1) \quad \text{weakly.}$$

It suffices to show that a.s. uniformly bounded of X_i s implies the Lindbery-Feller condition:

$$\forall \epsilon > 0, \lim_{n \to \infty} \frac{1}{s_n^2} \sum_{i=1}^n \mathbb{E}[(X_i - \mu_i)^2 \cdot \mathbf{1}_{\{|X_i - \mu_i| > \epsilon s_n\}}] = 0, \text{ where } s_n^2 = \sum_{i=1}^n \text{Var } X_i$$

As we have that $\mu_i = \mathbb{E}[X_i] \leq M, \forall i$, we have that $(X_i - \mu_i)^2 \leq 4M^2$ a.s. Then, by Chebyshev's inequality (the version of $\mathbb{P}\{|X_i - \mu_i| \geq k\} \leq \frac{\operatorname{Var} X_i}{k^2}$), we have $\forall \epsilon > 0$

$$\frac{1}{s_n^2} \sum_{i=1}^n \mathbb{E}[(X_i - \mu_i)^2 \cdot \mathbf{1}_{\{|X_i - \mu_i| > \epsilon s_n\}}] \le \frac{1}{s_n^2} \sum_{i=1}^n 4M^2 \cdot \mathbb{P}\{|X_i - \mu_i| \ge \epsilon s_n\} = \frac{1}{s_n^2} \frac{\sum_{i=1}^n 4M^2 \operatorname{Var} X_i}{\epsilon^2 s_n^2} = \frac{4M^2}{s_n^2} \to 0$$

Therefore, by Lindberg-Feller CLT, $\frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var} S_n}} \xrightarrow{D} N(0, 1)$

PROBLEM 5 (LYAPUNOV'S CLT)

Let $X_1, X_2, ...$ be independent random variables with zero means and unit variances. (Do not assume that X_i have the same distribution though.) Assume that

$$\sup_{i} \mathbb{E} |X_i|^{2+\delta} < \infty$$

for some $\delta > 0$. Prove that

$$\frac{X_1 + \dots + X_n}{\sqrt{n}} \to N(0, 1)$$
 weakly.

sol: $s_n = \sqrt{\sum_{i=1}^n \operatorname{Var}(X_i)} = \sqrt{n}$. Let $M = \sup_i \mathbb{E}|X_i|^{2+\delta}$, then $\forall \epsilon > 0$, when $|X_i| > \epsilon s_n$, we have $(\frac{|X_i|}{\epsilon \sqrt{n}})^{\delta} > 1$. Hence,

$$\frac{1}{n} \sum_{i=0}^{n} \mathbb{E}[|X_{i}|^{2} \cdot \mathbf{1}_{\{|X_{i}| > \epsilon \sqrt{n}\}}] < \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[(\frac{|X_{i}|}{\epsilon \sqrt{n}})^{\delta} |X_{i}|^{2} \cdot \mathbf{1}_{\{|X_{i}| > \epsilon \sqrt{n}\}}]$$

$$= \frac{1}{\epsilon^{\delta} n^{1+\delta/2}} \sum_{i=1}^{n} \mathbb{E}[|X_{i}|^{2+\delta/2} \cdot \mathbf{1}_{\{|X_{i}| > \epsilon \sqrt{n}\}}] \le \frac{nM}{\epsilon^{\delta} n^{1+\delta/2}} \to 0, \text{ as } \delta > 0$$

Therefore, we obtain the condition for Lindbery-Feller CLT, so by the theorem, $\frac{S_n}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0,1)$

PROBLEM 6 (BAYES FORMULA)

Let (Ω, Σ, P) be a probability space and $\mathcal{F} \subset \Sigma$ be a sub- σ -algebra. Consider two events $E \in \Sigma$ and $F \in \mathcal{F}$.

(a) Check that

$$P(F|E) = \frac{\mathbb{E}\left[P(E|\mathcal{F})\mathbf{1}_F\right]}{\mathbb{E}P(E|\mathcal{F})}.$$

(b) Specialize this equation to the case where \mathcal{F} is generated by a partition $\Omega = F_1 \sqcup \cdots \sqcup F_n$, i.e. $\mathcal{F} = \sigma(F_1, \ldots, F_n)$. Deduce Bayes formula in its familiar form:

$$P(F_i|E) = \frac{P(E|F_i) P(F_i)}{\sum_i P(E|F_i) P(F_i)}.$$

sol: (a).
$$\frac{\mathbb{E}[P(E|\mathcal{F}) \cdot \mathbf{1}_F)]}{\mathbb{E}[P(E|\mathcal{F})]} = \frac{\mathbb{E}[\mathbb{E}[\mathbf{1}_E|\mathcal{F}] \cdot \mathbf{1}_F]}{\mathbb{E}[\mathbb{E}[\mathbf{1}_E|\mathcal{F}])]} = \frac{\mathbb{E}[\mathbb{E}[\mathbf{1}_E\mathbf{1}_F|\mathcal{F}]]}{P(E)} = \frac{\mathbb{E}[\mathbb{E}[\mathbf{1}_{E\cap F}|\mathcal{F}]]}{\mathbb{P}\{E\}} = \frac{\mathbb{P}\{E \cap F\}}{\mathbb{P}\{E\}} = P(F|E)$$

(b). Similar to (a), we can also get that $\mathbb{P}\left\{E|F_i\right\} = \frac{\mathbb{P}\left\{E\cap F_i\right\}}{\mathbb{P}\left\{F_i\right\}}$. Then, $\mathbb{P}\left\{F_i|E\right\} = \frac{\mathbb{E}\left[\mathbb{P}\left\{E|\mathcal{F}\right\}\cdot\mathbf{1}_{F_i}\right]}{\mathbb{E}P(E|\mathcal{F})}$

$$=\frac{\mathbb{P}\left\{E\cap F_{i}\right\}}{\mathbb{E}\left[\sum_{i}\mathbf{1}_{E_{i}}\cdot\mathbb{E}\left[\mathbf{1}_{E}|\mathcal{F}\right]\right]}=\frac{\mathbb{P}\left\{E|F_{i}\right\}\mathbb{P}\left\{F_{i}\right\}}{\sum_{i}\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{E_{i}}\mathbf{1}_{E}|\mathcal{F}\right]\right]}=\frac{\mathbb{P}\left\{E|F_{i}\right\}\mathbb{P}\left\{F_{i}\right\}}{\sum_{i}\mathbb{P}\left\{E\cap F_{i}\right\}}=\frac{\mathbb{P}\left\{E|F_{i}\right\}\mathbb{P}\left\{F_{i}\right\}}{\sum_{i}\mathbb{P}\left\{E|F_{i}\right\}\mathbb{P}\left\{F_{i}\right\}}$$

PROBLEM 7 (CONDITIONAL CAUCHY-SCHWARZ INEQUALITY)

Show that

$$(\mathbb{E}[XY|\mathcal{F}])^2 \le \mathbb{E}[X^2|\mathcal{F}] \cdot \mathbb{E}[Y^2|\mathcal{F}]$$

almost surely.

sol: For $\forall \theta$, we have $0 \leq \mathbb{E}[(X + \theta Y)^2 | \mathcal{F}] = \mathbb{E}[X^2 | \mathcal{F}] + 2\theta \mathbb{E}[XY | \mathcal{F}] + \theta^2 \mathbb{E}[Y^2 | \mathcal{F}]$. Which means this quadratic equation w.r.t. θ has at most on root. Hence, $\Delta = (2\mathbb{E}[XY | \mathcal{F}])^2 - 4(\mathbb{E}[X^2 | \mathcal{F}])(\mathbb{E}[Y^2 | \mathcal{F}]) \leq 0$. Therefore, we have that, $(\mathbb{E}[XY | \mathcal{F}])^2 \leq \mathbb{E}[X^2 | \mathcal{F}]\mathbb{E}[Y^2 | \mathcal{F}]$

PROBLEM 8 (LAW OF TOTAL VARIANCE)

Define conditional variance of X by

$$\operatorname{Var}(X|\mathcal{F}) := \mathbb{E}[X^2|\mathcal{F}] - (\mathbb{E}[X|\mathcal{F}])^2.$$

Show that

$$Var(X) = \mathbb{E}(Var(X|\mathcal{F})) + Var(\mathbb{E}[X|\mathcal{F}]).$$

sol: LHS=

$$\mathbb{E}\big[\mathbb{E}[X^2|\mathcal{F}] - (\mathbb{E}[X|\mathcal{F})^2]\big] + \mathbb{E}\big[(E[X|\mathcal{F}])^2\big] - (\mathbb{E}[\mathbb{E}[\mathbb{X}|\mathcal{F}]])^2$$

since $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]] = \mathbb{E}[X]$

$$= E[X^{2}] - E[(\mathbb{E}[X|\mathcal{F}])^{2}] + (E[(\mathbb{E}[X|\mathcal{F}])^{2}]) - (E[X])^{2}$$
$$= \mathbb{E}[X^{2}] - E[X^{2}] = \operatorname{Var} X$$

PROBLEM 9 (CONDITIONING ALWAYS REDUCES SECOND MOMENT)

Let
$$Y := \mathbb{E}[X|\mathcal{F}]$$
. Show that if $\mathbb{E}(Y^2) = \mathbb{E}(X^2)$ then $X = Y$ a.s.

sol: Consider that
$$(X - \mathbb{E}[X|\mathcal{F}]) = (X - Y)$$
. We have that $\text{Var}(X - Y)$

$$= \mathbb{E}\left[\mathbb{E}[(X - Y)^2 | \mathcal{F}] - (\mathbb{E}[X - Y | \mathcal{F}])^2\right] - \mathbb{E}((\mathbb{E}[X - Y | \mathcal{F}])^2)$$
$$= \mathbb{E}[X^2] + \mathbb{E}[Y^2] - \mathbb{E}[2Y\mathbb{E}[X | \mathcal{F}]]$$

since $Y = \mathbb{E}[X|\mathcal{F}]$ and $\mathbb{E}[X^2] = \mathbb{E}[Y^2]$, we arrive

$$Var(X - Y) = 2\mathbb{E}[Y^2] - 2\mathbb{E}[Y^2] = 0$$

. Then, we have that Y-X is a constant a.s. Since $\mathbb{E}[X-Y]=0$, we have X=Y a.s.