

FORECASTING SERIES DE TIEMPO

Applied Mathematics and Actuary Training

FORECASTING

Lección 2 - Nociones Básicas Series de Tiempo

ESTACIONARIEDAD

Serie de tiempo **ESTACIONARIA**

Propiedades estadísticas:

NO dependen del tiempo (t)

Media	Varianza	Correlación
Estacionaria en Primer Orden Si su función de media es constante (μ) .	La varianza de una serie de tiempo estacionaria en primer orden es: $\sigma^2(t) = E[(x_t - \mu)^2]$	Las variables de una serie $(x_t \ y \ x_{t-k})$ pueden tener correlación.
Estimamos la media poblacional μ por medio de la media muestral \overline{x} $\bar{x} = \sum_{t=1}^{n} \frac{x_t}{n}$	Se asume un modelo estacionario en la varianza (σ^2 constante) y puede ser estimada con : $Var(x) = \frac{\sum (x_t - \bar{x})^2}{n-1}$	Estacionaria en Segundo Orden si la correlación entre estas depende únicamente del retraso k (lag)
Modelo Ergódico: $n \to \infty \implies \overline{x} \to \mu$	Homocedasticidad: Varianza Constante	x_t : Valor observado en la serie a tiempo t $n: N$ úmero total de observaciones $\mu: M$ edia constante $E: V$ alor esperado (esperanza) x_{t-k} : Valor observado k pasos antes de t

CORRELACIÓN

Variables de modelos de series de tiempo pueden estar correlacionadas (Estacionario en segundo orden si esa correlación solo depende de los pasos que las separan)

AUTOCOVARIANZA (ACVF)

$$\gamma_k = E[(x_t - \mu)(x_{t-k} - \mu)]$$

- Covarianza de una variable consigo misma, en diferentes tiempos.
- IMPORTANTE: La función no depende de t

AUTOCORRELACIÓN (ACF)
$$\rho_k = \frac{\gamma_k}{\sigma^2}$$

$$\rho_0 = \frac{\gamma_0}{\sigma^2} = 1$$
• Correlación de una variable consigo misma, en diferentes tientes está presente - Los valores pasados influyen en el actual.
• Contenida entre -1 (negativa perfecta) y +1 (positiva perfecta)

• Correlación de una variable consigo misma, en diferentes tiempos

- Contenida entre -1 (negativa perfecta) y +1 (positiva perfecta).

AUTOCORRELACIÓN PARCIAL (PACF)

$$\phi_k = \rho(x_t, x_{t-k} | x_{t-1}, x_{t-2}, \dots, x_{t-(k-1)})$$

- Autocorrelación después de eliminar el efecto de lags más cortos
- Mide la relación DIRECTA entre x_t y x_{t-k} .
 - Excluye la influencia de valores intermedios entre estas dos

MODELO BÁSICO RUIDO BLANCO

Una serie de tiempo $\{w_t\}$ se denomina **ruido blanco discreto** si:

- > Sus elementos son independientes e idénticamente distribuidos.
- \triangleright Su media es $\mu = 0$
- \triangleright Su varianza σ^2 es constante
- \triangleright No presenta autocorrelación $\rho_k(w_t) = 0 = Corr(w_t, w_{t-k})$

IMPORTANTE: Una serie de Ruido Blanco es estacionaria por definición.

MODELO BÁSICO CAMINATA ALEATORIA

Una serie de tiempo $\{x_t\}$ se denomina caminata aleatoria si:

Cada elemento x_t es una combinación entre:

- \triangleright El valor observado en el tiempo inmediato anterior x_{t-1} .
- \triangleright Un componente de ruido blanco w_t .
- > Puede contener un componente de desvío (drift).

Es decir:
$$x_t = x_{t-1} + w_t + \delta t$$
 (drift)

NOTA: Sustituyendo términos tenemos Por ejemplo $x_{t-1} = x_{t-2} + w_{t-1}$ \Rightarrow $x_t = [x_{t-2} + w_{t-1}] + w_t$

Y continuando con esta misma sustitución hacia atrás tenemos

$$x_t = w_1 + w_2 + \dots + w_{t-1} + w_t$$

NO es estacionaria:

$$E(X_t) = 0$$

$$Var(X_t) = t\sigma^2$$

$$Cov(X_t, X_{t+k}) = t\sigma^2$$

FORECASTING SERIES DE TIEMPO

Nociones Básicas Series de Tiempo | Lección 2