

INFORMATION DISCLOSURE STATEMENT

Applicants : Kim, *et al.*
App. No. : Unknown
Filed : Herewith
For : **ORGANIC ELECTROLUMINESCENT
DEVICES USING DOUBLE-SPIRO
ORGANIC COMPOUNDS**
Examiner : Unknown
Group Art Unit : Unknown

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

Enclosed is form PTO-1449 listing 36 references that are of record in U.S. patent application No. 10/099,781, filed March 14, 2002, which is the parent of this Divisional application, and is relied upon for an earlier filing date under 35 U.S.C. § 120. Copies of the references are not submitted pursuant to 37 C.F.R. § 1.98(d).

This Information Disclosure Statement is being filed within three months of the filing date of this application and no fee is required in accordance with 37 C.F.R. § 1.97(b)(1), (b)(2), or (b)(4).

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

Dated: 11/19/03
By:
Mincheol Kim
Registration No. 51,306
Agent of Record
Customer No. 20,995
(619) 235-8550

FORM PTO-1449	U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	ATTY. DOCKET NO. MUTU12.001DV1	APPLICATION NO. Unknown
INFORMATION DISCLOSURE STATEMENT BY APPLICANT		APPLICANT Kim, et al.	
(USE SEVERAL SHEETS IF NECESSARY)		FILING DATE Herewith	GROUP Unknown

U.S. PATENT DOCUMENTS							
EXAMINER INITIAL		DOCUMENT NUMBER	DATE	NAME	CLASS	SUBCLASS	FILING DATE (IF APPROPRIATE)
1		5,840,217	Nov. 24, 98	Lupo et al.			
2		5,026,894	Jan. 25, 91	Tour et al.			

EXAMINER INITIAL	OTHER DOCUMENTS (INCLUDING AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.)
3	Smet, et al., A GENERAL SYNTHESIS OF DISUBSTITUTED RUBICENES, 1998, J. Org. Chem., 2769-2773
4	Smet, et al. A NOVEL ACID-CATALYZED REARRANGEMENT OF 9,10-DIARYL-9,10-DIHYDROANTHRACENE-9,10-DIOLS AFFORDING 10,10'-DIARYL-9-ANTHRONES., 1999, Elsevier Science Ltd., Tetrahedron 55 7859-7874.
5	Hamada et al., Organic light-emitting diodes using a gallium complex., April 20, 1998, American Institute of Physics, Volume 72, No. 16.
6	Murata et al., Organic light-emitting devices with saturated red emission using 6, 13-diphenylpentacene., April 16, 2001, American Institute of Physics, Volume 78, No. 16.
7	Shi et al., Doped organic electroluminescent devices with improved stability., March 31, 1997, American Institute of Physics, Volume 70, No. 13.
8	Adachi et al., High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials., August 7, 2000, American Institute of Physics, Volume 77, No. 6.
9	Adachi et al., High-efficiency red electrophosphorescence devices.. Marhc 12, 2001, American Institute of Physics, Volume 78, No. 11.
10	Burrows et al., Operating lifetime of phosphorescent organic light emitting devices., May 1, 2000, American Institute of Physics., Volume 76, No. 18.
11	Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence., July 5, 1999, American Institute of Physics., Volume 75, No. 1.
12	Baldo et al., Improved energy transfer in electrophosphorescent devices., January 18, 1999, American Institute of Physics., Volume 74, No. 3.
13	Hamada et al., Organic light-emitting diodes using 3- or 5-hydroxyflavone-metal compexes., December 8, 1997, American Institute of Physics., Volume 71, No. 23.
14	Baldo et al., Improved energy transfer in electrophosphorescent devices., January 18, 1999, American Institute of Physics., Volume 74, No. 3.
15	Gigli et al., High-efficiency oligothiopene-based light-emitting diodes., July 26, 1999, American Institute of Physics., Volume 75, No. 4.
16	Kido et al., Fabrication of highly efficient organic electroluminescent devices., November 9, 1998, American Institute of Physics., Volume 73, No. 19.
17	Yang et al., Photoluminescence and electroluminescence properties of dye-doped polymer system.. 1997, Elsevier Science S.A., Sythetic Metals., 335-336.
18	Watanabe et al. Optimization of emitting efficiency in organic LED cells using Ir complex., 2001, Elsevier Science S.A., Sythetic Metals., 203-207.
19	Liedenbaum., Low voltage operation of large area polymer LEDs., 1997, Elsevier Science S.A., Sythetic Metals., 109-111.

EXAMINER	DATE CONSIDERED
*EXAMINER: INITIAL IF CITATION CONSIDERED, WHETHER OR NOT CITATION IS IN CONFORMANCE WITH MPEP 609; DRAW LINE THROUGH CITATION IF NOT IN CONFORMANCE AND NOT CONSIDERED, INCLUDE COPY OF THIS FORM WITH NEXT COMMUNICATION TO APPLICANT.	

FORM PTO-1449	U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	ATTY. DOCKET NO. MUTU12.001DV1	APPLICATION NO. Unknown
INFORMATION DISCLOSURE STATEMENT BY APPLICANT		APPLICANT Kim, et al.	
(USE SEVERAL SHEETS IF NECESSARY)		FILING DATE Herewith	GROUP Unknown

EXAMINER INITIAL	OTHER DOCUMENTS (INCLUDING AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.)
20	Hide et al., Conjugated polymers as solid-state laser materials., 1997, Elsevier Science S.A., Synthetic Metals., 35-40.
21	Muckl et al., Transient electroluminescence measurements on organic heterolayer light emitting diodes., 2000, Elsevier Science S.A., Synthetic Metals., 91-94.
22	Shoustikov et al., Orange and red organic light-emitting devices using aluminum tris(5-hydroxyquinoxaline), 1997, Elsevier Science S.A., Synthetic Metals., 217-221.
23	Tokito et al., strongly modified emissio from organic elecltroluminescent device with a microcavity., 1997. Elsevier Science S.A., Synthetic Metals., 49-52.
24	Wakimoto et al., Stability characteristics of quinacridone and coumarin molecules as guest dopants in the organic LEDs., 1997, Elsevier Science S.A., Synthetic Metals., 15-19.
25	Ma et al., Bright blue electroluminescent devices utiliaing poly (N – vinylcarbazole) doped with fluorescent dye., 1997, Elsevier Science S.A., Synthetic Metals., 331-332.
26	Sano et al., Organic eletroluminescent devices doped condensed polycyclic aromatic compounds., 1997, Elsevier Science S.A., Synthetic Metals., 27-30.
27	Mitschke et al., The electroluminescence of organic materials., 2000, The Royal Society of Chemistry, 1471-1507.
28	Barbarella et al., Modified Oligothiophenes with High Photo and Electroluminescence Efficiencies., 1999, Advanced Materials, 11, No. 16.
29	Schmitz et al., Polymeric Light-Emitting Diodes Based on Poly(p-phenylene ethynylene), Poly(triphenyldiamine), and Spiroquinoxaline., 2001, Advanced Functional Materials, 11, No. 1
30	Lamansky et al., Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes., 2001, Dept. of Chemistry, University of Southern California, 1704-1711.
31	Lamansky et al., Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes., 2001, American Chemical Society, 123, 4304-4312.
32	Tsutsui et al., High Quantum Efficiency in Organic Light-Emitting Devices with Iridium-Complex as a Triplet Emissive Center., 1999, Japanese Journal fo Applied Physics., Volume 38, L1502-L1504.
33	Naito et al., Molecular Design for Nonpolymeric Organic Dye Glasses with Thermal Stability: Relations between Thermodynamic Parameters and Amorphous Properties., 1993, The Journal of Physical Chemistry, Volume 97, No. 23, 6240-6248.
34	Bath et al., Electron mobility in tris(8-hydroxy-quinoline)aluminum thin filims determined via transient eletroluminescence from single- and multilayer organic light-emitting diodes., April 1, 2001, Journal of Applied Physics, Volume 89, No. 7, 3711-3719.
35	Adachi et al., Organic electroluminescence of silole-incorporated polysilane., 2000, Journal of Luminescence, Volume 87 89, 1174-1176.
36	Clarkson et al., Sprans with four aromatic radicals on the spiro carbon atom., 1930, The Chemistry Laboratory of the Unoversey of Michigan, Volume 52, 2881-2891.

S:\DOCS\MCK\MCK-8199.DOC
111803

EXAMINER	DATE CONSIDERED
*EXAMINER: INITIAL IF CITATION CONSIDERED, WHETHER OR NOT CITATION IS IN CONFORMANCE WITH MPEP 609; DRAW LINE THROUGH CITATION IF NOT IN CONFORMANCE AND NOT CONSIDERED, INCLUDE COPY OF THIS FORM WITH NEXT COMMUNICATION TO APPLICANT.	