ppt复习基础篇

2019年6月21日 11:37

基础篇

可数集*

证明可数集:

例子1. 证明:可数集A的有限子集全体可数.

证明: <u>无妨设A是无限集</u>, 写 $A = \{a_1, a_2, \cdots\}$.

对A的仟一有限子集B.

B可写成 $B = \{a_{k_1}, a_{k_2}, \cdots, a_{k_m}\}$,

 $idN = \max\{k_j : 1 \le j \le m\}.$ 那么 $B \in P_N$.

由此可见A的有限子集全体为 $\cup_{n\geq 1}P_n$,所以是可数集.

• 知道可数集的具体例子:

有理数集,代数数集*

• 知道外测度

mA=inf{mG:G是开集且G⊃A}

- 知道Lebesgue测度的构造,有个直观的印象,集合B满足Caratheodory条件p69
- 可测函数的定义*理解函数可测的几种等价表达

(X, A, µ)是给定的完备测度空间

- (i) 定义设f是X上的实函数.若 $\forall a \in R$,集X(f>a) 恒可测,则称f为X上的可测函数.
- (ii) ∀a∈R: 集X (f≤a) 可测;
- (iii) ∀a∈R: 集X (f<a) 可测;
- (iv) ∀a∈R: 集X (f≥a) 可测;
- (v) ∀a,β∈R: 集X (a<f<β) 与X (f=∞) 可测;
- (vi) 任给开集G⊂R: 集 f^{-1} (G) 与X (f=∞) 可测;
- (vii) 任给闭集F⊂R: 集f⁻¹ (F) 与X (f=∞) 可测.
- Lebesgue可测集的几种等价描述

命题 2.1.5 (i) 若 $A \in \mathcal{S}$,则

 $mA = \inf \{ mG : G$ 是开集且 $G \supset A \}$ = $\sup \{ mF : F$ 是闭集且 $F \subset A \}$ = $\sup \{ mC : C$ 是紧集且 $C \subset A \}$. (1)

(ii) $A \in \mathcal{S}$ ⇔存在 F_{σ} 型集 $F \subset A$ 使 $m(A \setminus F) = 0$ ⇔存在 G_{δ} 型集 $G \supset A$ 使 $m(G \setminus A) = 0$ ⇔存在 F_{σ} 型集 $F \ni G_{\delta}$ 型集 G, 使 $F \subset A \subset G$ 且 $m(G \setminus F) = 0$.

• Lebesgue可测函数的定义

定义设f是X上的实函数.若 $\forall a \in R$,集X(f>a)恒可测,则称f为X上的可测函数. 若 $X \subset R^n$ 则称X上的可测函数为Lebesgue可测函数

• 实直线上Lebesgue可测集的等价定义*

性质*: 对于任意 $\varepsilon>0$,存在开集O包含E,且 $mO<\varepsilon$, 那么我们(临时)称E具有性质*

R上Lebesgue可测集的等价描述: E为Lebesgue可测集当且仅当下列条件之一成 Z:

- • $E = A N_1$,其中A为 G_δ 型集, N_1 具有性质*
- • $E = A N_1$,其中A为Borel集/Baire集, N_1 具有性质*.

- $E = B \cup N_2$,其中B为 F_{σ} 型集, N_2 具有性质*.
- •对于任意 $\varepsilon > 0$,存在闭集F和开集G使得 $F \subseteq E \subseteq G$, $m(G F) < \varepsilon$. (注意G F是开集,所以这里m(G F)就是开集的长度)

注解:

*: Lebesgue零测集

Go集:可数价开集之交 Fo 集:可数价集之并

- o-代数*p48
- $(\mathbf{P}_1) \varnothing \in \mathscr{A}_i$
- (\mathbf{P}_2) 若 $A_n \in \mathscr{A}(n = 1, 2, \cdots)$,则 $\bigcup A_n \in \mathscr{A}$;
- (\mathbf{P}_3) 若 $A \in \mathcal{A}$,则 $A' \in \mathcal{A}$,
- 什么是 (一般) 测度*p48

- $(\mathbf{Q}_1) \ \mu \varnothing = 0;$
- (\mathbf{Q}_2) σ -可加性: 若 $A_n \in \mathscr{A}(n=1,2,\cdots)$ 互不相交,则

$$\mu(\bigcup_n A_n) = \sum_n \mu A_n.$$

則称 μ 为 X 或 (X, \mathcal{A}) 上的一个测度, 称 (X, \mathcal{A}, μ) 或 X 为测度空间. 若进而假定 μ 满足条件

 (\mathbf{Q}_3) 若 $B \subset A \in \mathscr{A}, \mu A = 0, 则 B \in \mathscr{A},$

则称 μ 为完备测度.

• 知道测度的一些具体例子*

* 关于四度的具体的月:

- X= 51,23,4,5,6}

d= { p, 51,2,33, 54,5,63, 51,2,3,4,5,63}

XL的拿图做从定的彩中球的做

其中可测集为Ø, {1, 2, 3}, {4, 5, 6}, {1, 2, 3, 4, 5, 6}

但是这个 μ 不是可测函数,可测函数可以取f=0的常值函数,则对于任意 $\alpha>0$

α≥0时 X(f>α)=∅∈ℳ

α<0时 X(f>α)={1, 2, 3, 4, 5, 6}∈✓

- 理解开集的结构1.5.1p24.
- **1.5.1 定理 R** 中任一非空开集 *G* 是可数个互不相交的开区间之并^①。
- 积分三大定理*: p.87 Levi引理 (即书上的Levi定理*、Fatou定理*、控制收敛定理*)

$$\int_X f = \lim_n \int_X f_n, \tag{1}$$

- 3.3.1 Levi 定理 若 $0 \le f_n \nmid f$,即 $0 \le f_1(x) \le f_2(x) \le \cdots$ $\le f_n(x) \to f(x)(x \in X, n \to \infty)$,则式(1)成立.
 - 3. 3. 3 Fatou 定理 若 $f_n \in M^+(X)$ $(n=1,2,\dots)$,则

$$\int_{X} \underline{\lim}_{n} f_{n} \leqslant \underline{\lim}_{n} \int_{X} f_{n}. \tag{4}$$

3.3.4 控制收敛定理 设 $f_n \to f$, a. e. 或 $f_n \stackrel{r}{\to} f(n \to \infty)$. 若存在 $g \in L^1$ 使 $|f_n| \leq g(n=1,2,\cdots)$, 则 $f \in L^1$,

$$\lim_{n} \int_{X} |f_n - f| = 0, \tag{5}$$

且式(1)成立,

- 几种收敛性的定义2.4.1, p/52几乎一致收敛, 依测度收敛
- 2.4.1 定义 (i) 若 $\forall \epsilon > 0$.∃ $N \geqslant 1$. $\forall n \geqslant N$. $\forall x \in X$,有 $|f_n(x) f(x)| < \epsilon$,则说 $\{f_n\}$ 在 X 上一致收敛于 f.记作 $f_n \Rightarrow f$.
- (ii) 若 $\forall \delta > 0$, $\exists X_{\delta} \subset X$,使得 $\mu X_{\delta} < \delta$,在 X_{δ} 上 $f_{\delta} \Rightarrow f$,则说 $\{f_{\delta}\}$ 在X上几乎一致收敛 $\oplus \exists f$,记作 $f_{\delta} \rightarrow f$,a. u. .
- (iii) 若 $\forall \sigma > 0$, 有 $\mu X(|f_n f| \ge \sigma) \rightarrow 0$ ($n \rightarrow \infty$), 则说 $\{f_n\}$ 在 X 上依测度 μ 收敛(或就说测度收敛)于 f,记作 $f_n \stackrel{\Delta}{\rightarrow} f$.
- Egorov定理*、Riesz定理*, Luzin定理2.4.4的压缩版本应用。
- Egorov Riesz

• 有界变差函数定义*

设 $f:[a,b]\to\mathbb{R}$, 如果存在常数M>0,对于任意划分:

$$a = x_0 < x_1 < \cdots x_n = b,$$

 $\sum_{i} |f(x_i) - f(x_{i-1})| \le M < \infty$, 那么称f为[a, b]上的有界变差函数.

• M不依赖于划分P

• 绝对连续函数定义*

AL 的元子: (Abdoutely continous)

f: [a,b]→R,若∀2>0,∃S,当(ak,bk)为[a,b]帕限个配相色的证词且Z(bk-ak)<S,恒每至|f(bk)-f(ak)|<€

则fa [a,b] L绝对连续

• 会证明一个函数是绝对连续函数.*

$$f(x) = f(t) - \int_{x}^{t} d^{t} dt + Ac$$

= $f(t) - \int_{0}^{t} f^{*} dt + \int_{0}^{x} f^{*} dt$

• 会证明一个函数不是有界变差函数.*

计算知
$$F'(t) = \frac{\cos\frac{1}{t}}{t^2}, t \in (0, 1].$$

 $\int_0^1 |F'(t)| dt = \int_0^1 \frac{|\cos\frac{t}{t}|}{t^2} dt = \int_1^\infty |\cos t| dt = \infty. \text{ 所 }$ 以 F'在[0,1]上不可积,所以F不是有界变差函数.

以
$$F'$$
在 $[0,1]$ 上不可积,所以 F 不是有界变差函数只写 $\int_0^1 |F'(t)| dt = \infty$ 不写计算过程是要扣分的(考试中).