ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 02

WANG YUNLEI

Corollary 1. Every affine algebraic set $X \subset \mathbb{A}^n$ is the zero set of finite algebraic polynomials.

Proof. Every affine algebraic set is the zero set of some polynomial set S, i.e. Z(S). Since $Z(S) = Z(\langle S \rangle)$, it is a zero set of an ideal, we choose the generators of the ideal, name T, then Z(S) = Z(T).

Definition 1. A topological space X is reducible if $X = X_1 \cup X_2$, where X_1, X_2 are closed subsets and $X_1 \subsetneq X, X_2 \subsetneq X$. X is called irreducible if it is not reducible,i.e., if $X = X_1 \cup X_2, X_i \subset$ is closed for i = 1, 2, then we have $X = X_1$ or $X = X_2$.

Remark. When we talk about whether a set is irreducible, it refers to its induced topology from the space where the set is on.

- (1) Let X be irreducible, $\emptyset \neq U \subset X$, U is an open subset of X. Then U is dense in X. Because if it is not dense, we can write $X = (X \setminus U) \cup \overline{U}$, so X is not irreducible.
- (2) U itself is also irreducible.

Definition 2. A topological space is called noetherian if every descending chain: $X \supset X_1 \supset X_2 \supset \ldots$ of closed subsets becomes stationary(i.e., $X_N = X_{N+1} = \ldots$ for some $N \in \mathbb{N}^+$).

Proposition 1. Any subspace Y of noetherian topological space X is noetherian.

Proof. Assume $Y\supset Y_1\supset Y_2\supset \ldots$ a chain of closed subsets. Then $\forall i,Y_i=Y\cap X_i,X_i\subset X$ is closed. Let $X_i'=\cap_{1\leq j\leq i}X_j,\,X_i'\cap Y=Y_i$. Then $X\supset X_1'\supset X_2'\supset \ldots$ is a descending chain. Since X is noetherian, $\exists N$ s.t. $X_N'=X_{N+1}'=\ldots$. It follows $Y_N=Y_{N+1}=\ldots$ Thus $Y\supset Y_1\supset Y_2\supset \ldots$ is stationary.

Proposition 2. \mathbb{A}^n is noetherian topological space.

Proof. Let $\mathbb{A}^n = X \supset X_1 \supset X_2 \supset \dots$ be a chain of closed subsets. Then we have $I(X_1) \subset I(X_2) \subset \dots$ Since $k[x_1, x_2, \dots, x_n]$ is noetherian, $\exists N, I(X_N) = I(X_{N+1}) = \dots$ Note that $X_i = Z(I(X_i))$, we get $X_N = X_{N+1} = \dots$ It shows that \mathbb{A}^n is a noetherian topological space.

Theorem 1. Let X be a noetherian topological space.

- (1) X is a union of finitely many irreducible closed subsets: $X = X_1 \cup \cdots \cup X_r$;
- (2) If we require $X_i \not\subset X_j$ for $i \neq j$, then this decomposition is unique.

Date: June 19, 2017.

Proof. (1) Assume X does not have a decomposition with finitely many closed subsets. In particular, X is reducible: $X = X_1 \cup Y_1, X_1, Y_1$ are closed subsets. so one of the two sets does not have decomposition, say X_1 . Repeat the argument we ge a descending chain

$$X \supseteq X_1 \supseteq X_2 \supseteq \dots$$

which is not stationary, it contradicts our existing condition.

(2) Let $X = X_1 \cup \cdots \cup X_t = Y_1 \cup \cdots \cup Y_s$. Then we have $X_i = \bigcup_{j=1}^s (X_i \cap Y_j)$. Since X_i is irreducible, $\exists j, X_i = X_i \cap Y_j$, thus $X_i \subset Y_j$. Similarly, we can get $Y_j \subset X_k$ for some k. Then we have $X_i \subset X_k$, it implies i = k and thus $X_i = Y_j$. So we get the conclusion: each X_i is equal to some Y_j and each Y_j is equal to some X_i . So r=sand the Y_i 's are permutations of X_i 's.

Definition 3. An affine variety is an irreducible affine algebraic set.

Proposition 3. $X \subset \mathbb{A}^n$ is an affine algebraic set. Then we have the following equivalent relations:

- (1) X is irreducible;
- (2) I(X) is a prime ideal.

Proof. (1) \Rightarrow (2): let X be irreducible, f, g some polynomials s.t. $fg \in I(X)$. Then we have $X \subset Z(fg) = Z(f) \cup Z(g)$, hence $X = (X \cap Z(f)) \cup (X \cap Z(g))$. Since X is irreducible, we get $X = X \cap Z(f)$ or $X = X \cap Z(g)$, so $X \subset Z(f)$ or $X \subset Z(g)$, i.e. $f \in I(X)$ or $g \in I(X)$.

(2) \Leftarrow (1): Assume X is reducible, then we have $X = X_1 \cup X_2$ and $X_i \subsetneq X$ are closed subsets. Since $Z(I(X_i)) = X_i \subsetneq X = Z(I(X))$, we get $I(X_i) \supseteq I(X)$. Let $f \in I(X_1) \setminus I(X), g \in I(X_2) \setminus I(X_2), fg$ vanishes on $X_1 \cup X_2 = X$, then $fg \in I(X)$, i.e., I(X) is not prime.

Example 1. \mathbb{A}^n is irreducible because $I(\mathbb{A}^n) = \{0\}$ is a prime ideal.

Definition 4. Let $X \neq \emptyset$ be an irreducible topological space. The dimension of X is the largest $n \in \mathbb{Z}$ s.t. there is an ascending chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_n = X$$

of irreducible closed subsets. If X is a noetherian topological space then

 $\dim X = \max \text{ maximum of dimension of irreducible components of } X.$

(1) The point $p \in \mathbb{A}^n$ has dimension 0; Remark.

- (2) \mathbb{A}^1 has dimension 1:
- (3) In the moment, we still cannot prove but true is $\dim \mathbb{A}^n = n$ It is easy to verify $\dim \mathbb{A}^n \geq n$ because we have a chain:

$$\{(0,0,\ldots,0)\} \subsetneq Z(x_2,x_3,\ldots,x_n) \subsetneq Z(x_3,\ldots,x_n) \subsetneq \cdots \subsetneq Z(x_n) \subsetneq \mathbb{A}^n.$$

Theorem 2 (The Weak Form Hilbert's Nullstellensatz). Let $\mathfrak{a} \subsetneq k[x_1,\ldots,x_n]$ be a proper ideal, then $Z(\mathfrak{a}) \neq \emptyset$

Remark. We usually use the following form:

$$\mathfrak{a} \subset k[x_1,\ldots,x_n] \text{ and } Z(\mathfrak{a}) = \emptyset \Rightarrow 1 \in I.$$

It is true when k is algebraically closed, otherwise the theorem 2 is wrong:

$$\mathfrak{a} = \langle x^2 + 1 \rangle \in \mathbb{R}[x], Z(\mathfrak{a}) = \emptyset.$$

Email address: wcghdpwyl@126.com