# Decompositions of Graphs

Hengfeng Wei

hfwei@nju.edu.cn

June 12, 2018





John Hopcroft



Robert Tarjan



John Hopcroft



Robert Tarjan

"For fundamental achievements in the design and analysis of algorithms and data structures."

— Turing Award, 1986

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

#### DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS\*

#### ROBERT TARJAN†

**Abstract.** The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by  $k_1V + k_2E + k_3$  for some constants  $k_1, k_2$ , and  $k_3$ , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"Depth-First Search And Linear Graph Algorithms" by Robert Tarjan.

3 / 37

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

#### DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS\*

#### ROBERT TARJAN†

**Abstract.** The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by  $k_1V + k_2E + k_3$  for some constants  $k_1, k_2$ , and  $k_3$ , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"DFS is a powerful technique with many applications."

"Depth-First Search And Linear Graph Algorithms" by Robert Tarjan.

#### Power of DFS:

Graph Traversal ⇒ Graph Decomposition

4 / 37

#### Power of DFS:

#### Graph Traversal ⇒ Graph Decomposition

#### Structure! Structure! Structure!



# Graph *structure* induced by DFS:

states of v

types of u v

5 / 37

### Graph structure induced by DFS:

states of v

types of  $\underbrace{u}$   $\underbrace{v}$ 

life time of v:

 $v:\mathsf{d}[v],\mathsf{f}[v]$ 

f[v]: DAG, SCC

 $\mathsf{d}[v]$ : biconnectivity

#### Definition (Classifying edges)

Given a DFS traversal  $\implies$  DFS tree:

Tree edge:  $\rightarrow$  child

Back edge:  $\rightarrow$  ancestor

Forward edge: → *nonchild* descendant

Cross edge:  $\rightarrow$  ( $\neg$ ancestor)  $\land$  ( $\neg$ descendant)



#### Definition (Classifying edges)

Given a DFS traversal  $\implies$  DFS tree:

Tree edge:  $\rightarrow$  child

Back edge:  $\rightarrow$  ancestor

Forward edge: → *nonchild* descendant

Cross edge:  $\rightarrow$  ( $\neg$ ancestor)  $\land$  ( $\neg$ descendant)



- also applicable to BFS
- w.r.t. DFS/BFS trees



DFS on directed graph



DFS on directed graph



DFS on undirected graph



BFS on directed graph



BFS on directed graph



BFS on undirected graph

Undirected connected graph  $G = (V, E), v \in V$ 

DFS tree T from  $v \equiv BFS$  tree T' from v

Undirected connected graph  $G = (V, E), v \in V$ 

DFS tree T from  $v \equiv$  BFS tree T' from v

$$G\equiv T$$

Undirected connected graph  $G=(V,E),v\in V$ 

DFS tree T from  $v \equiv BFS$  tree T' from v

$$G \equiv T$$

Proof.

$$G_{\mathsf{DFS}}$$
: tree + back vs.  $G_{\mathsf{BFS}}$ : tree + cross



Undirected connected graph  $G = (V, E), v \in V$ 

DFS tree T from  $v \equiv BFS$  tree T' from v

$$G \equiv T$$

Proof.

$$G_{\mathsf{DFS}}$$
: tree + back vs.  $G_{\mathsf{BFS}}$ : tree + cross

Q: What if G is a digraph?

#### Lift time of vertices in DFS



## Theorem (Disjoint or Contained (Problem 4.2: (1) & (2)))

$$\forall u,v: [_u\ ]_u\cap [_v\ ]_v=\emptyset\bigvee\left([_u\ ]_u\subsetneqq [_v\ ]_v\vee [_v\ ]_v\subsetneqq [_u\ ]_u\right)$$

## Theorem (Disjoint or Contained (Problem 4.2: (1) & (2)))

$$\forall u,v: [_u\ ]_u\cap [_v\ ]_v=\emptyset\bigvee \Big([_u\ ]_u\subsetneqq [_v\ ]_v\vee [_v\ ]_v\subsetneqq [_u\ ]_u\Big)$$

Proof.



# Preprocessing for ancestor/descendant relation (Problem 5.23)



Q: Is u an ancestor of v? O(1)

### Preprocessing for ancestor/descendant relation (Problem 5.23)



Q: Is u an ancestor of v? O(1)

 $v : \mathsf{d}[v], \mathsf{f}[v]$ 

#### Preprocessing for ancestor/descendant relation (Problem 5.23)



Q: Is u an ancestor of v? O(1)

 $v : \mathsf{d}[v], \mathsf{f}[v]$ 

Q: # of descendants of any v?

$$\forall u \rightarrow v$$
:

- ▶ tree/forward edge:  $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge:  $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge:  $\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u$

$$\forall u \to v$$
:

- ▶ tree/forward edge:  $\begin{bmatrix} u & v \end{bmatrix}_{v}$
- ▶ back edge:  $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge:  $[v]_v [u]_u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \qquad \mathsf{edge}$$

$$\forall u \to v$$
:

- ▶ tree/forward edge:  $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge:  $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge:  $[v]_v [u]_u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$\forall u \rightarrow v$$
:

- ▶ tree/forward edge:  $[u \ [v \ ]v \ ]u$
- ▶ back edge:  $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge:  $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$f[u] < f[v] \iff$$

$$\forall u \to v$$
:

- ► tree/forward edge:  $\begin{bmatrix} u & v \end{bmatrix}_v$
- ▶ back edge:  $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge:  $\begin{bmatrix} v \end{bmatrix} v \begin{bmatrix} u \end{bmatrix} u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross}\;\mathsf{edge}$$

$$f[u] < f[v] \iff \mathsf{back} \; \mathsf{edge}$$

$$\forall u \to v$$
:

- ▶ tree/forward edge:  $[u \ [v \ ]v \ ]u$
- ▶ back edge:  $\begin{bmatrix} v & u \end{bmatrix} u \end{bmatrix} v$
- ightharpoonup cross edge:  $[v]_v [u]_u$

$$\mathsf{f}[v] < \mathsf{d}[u] \iff \mathsf{cross} \; \mathsf{edge}$$

$$f[u] < f[v] \iff \mathsf{back} \; \mathsf{edge}$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

- $\blacktriangleright \ \ \text{height} \ H(T) \ \text{in} \ O(n)$
- ▶ diameter D(T) in O(n)

$$\begin{cases} H(T) = \max \left(H(L_T), H(R_T)\right) + 1, \end{cases}$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

$$\left\{ \begin{array}{ll} D(T)=0, & T \text{ is a leave} \\ D(T)=\max\Big(D(L_T),D(R_T), & \Big), & \text{o.w.} \end{array} \right.$$

- ▶ height H(T) in O(n)
- ▶ diameter D(T) in O(n)

$$\left\{ \begin{array}{ll} H(T)=0, & T \text{ is a leave} \\ H(T)=\max\left(H(L_T),H(R_T)\right)+1, & \text{o.w.} \end{array} \right.$$

$$\left\{ \begin{array}{ll} D(T)=0, & T \text{ is a leave} \\ D(T)=\max\left(D(L_T),D(R_T),\underbrace{H(L_T)+H(R_T)+2}_{\text{through the root}}\right), & \text{o.w.} \end{array} \right.$$

Binary tree T=(V,E) with  $\lvert V \rvert = n$  and the root r

Binary tree T = (V, E) with |V| = n and the root r

Q: Diameter of a  $\it tree \ without$  a designated root

Binary tree T = (V, E) with |V| = n and the root r

Q: Diameter of a *tree without* a designated root



Q: Diameter of a  $\it tree \ without$  a designated root

Q: Diameter of a  $\it tree \ without$  a designated root

Q: Diameter of a  $tree\ without$  a designated root

Your Job: Prove it!

Counting shortest paths (Problem 5.26)

Counting # of shortest paths in (un)directed graphs using BFS.

Counting shortest paths (Problem 5.26)

Counting # of shortest paths in (un)directed graphs using BFS.

Maybe in the next class...

|     | Digraph | Undirected graph |
|-----|---------|------------------|
| DFS |         |                  |
| BFS |         |                  |

|     | Digraph                | Undirected graph |
|-----|------------------------|------------------|
| DFS | back edge $\iff$ cycle |                  |
| BFS |                        |                  |

|     | Digraph                | Undirected graph       |
|-----|------------------------|------------------------|
| DFS | back edge $\iff$ cycle | back edge $\iff$ cycle |
| BFS |                        |                        |

|     | Digraph                | Undirected graph       |
|-----|------------------------|------------------------|
| DFS | back edge $\iff$ cycle | back edge $\iff$ cycle |
| BFS |                        | cross edge ←⇒ cycle    |

|     | Digraph                                               | Undirected graph                       |
|-----|-------------------------------------------------------|----------------------------------------|
| DFS | back edge ←⇒ cycle                                    | back edge $\iff$ cycle                 |
| BFS | back edge $\implies$ cycle cycle $\implies$ back edge | cross edge $\iff$ cycle                |
|     | cycle <del>→</del> back edge                          | cross edge $\longleftrightarrow$ cycle |

|     | Digraph                                               | Undirected graph                       |
|-----|-------------------------------------------------------|----------------------------------------|
| DFS | back edge $\iff$ cycle                                | back edge $\iff$ cycle                 |
| BFS | back edge $\implies$ cycle cycle $\implies$ back edge | cross edge $\iff$ cycle                |
|     | cycle <del>→</del> back edge                          | cross edge $\longleftrightarrow$ cycle |



$$\mathsf{Evasiveness} \ \triangleq \ \mathsf{check} \ \binom{n}{2} \ \mathsf{edges} \ (\mathsf{adjacency} \ \mathsf{matrix})$$

Evasiveness 
$$\triangleq$$
 check  $\binom{n}{2}$  edges (adjacency matrix)

Q: Is acyclicity evasive?

Evasiveness 
$$\triangleq$$
 check  $\binom{n}{2}$  edges (adjacency matrix)

Q: Is acyclicity evasive?

By Adversary Argument.



Evasiveness 
$$\triangleq$$
 check  $\binom{n}{2}$  edges (adjacency matrix)

Q: Is acyclicity evasive?

# By Adversary Argument.

#### Adversary A:







### Algorithm $\mathbb{A}$ :

CHECKEDGE(u, v)

Evasiveness 
$$\triangleq$$
 check  $\binom{n}{2}$  edges (adjacency matrix)

Q: Is acyclicity evasive?

# By Adversary Argument.

#### Adversary A:







Algorithm A:

CHECKEDGE(u, v)

Hint: Kruskal







 $Q: \mathsf{Why} \ \mathsf{adjacency} \ \mathsf{matrix}?$ 



After-class Exercise: Evasiveness of connectivity of undirected graphs

Evasiveness 
$$\triangleq$$
 check  $\binom{n}{2}$  edges (adjacency matrix)

Q: Is connectivity evasive?

After-class Exercise: Evasiveness of connectivity of undirected graphs

Evasiveness 
$$\triangleq$$
 check  $\binom{n}{2}$  edges (adjacency matrix)

Q: Is connectivity evasive?



Hint: Anti-Kruskal

- ightharpoonup undirected (connected) graph G
- ▶ edges oriented *s.t.*

$$\forall v, \mathsf{in}[v] \geq 1$$

- ▶ undirected (connected) graph G
- ▶ edges oriented *s.t.*

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation  $\iff \exists$  cycle C

- ightharpoonup undirected (connected) graph G
- ▶ edges oriented *s.t.*

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation 
$$\iff \exists$$
 cycle  $C$ 

DFS from 
$$v \in C$$

- ▶ undirected (connected) graph G
- ▶ edges oriented s.t.

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation  $\iff \exists$  cycle C

DFS from  $v \in C$ 



Shortest cycle of undirected graph (Problem 4.12)

A WRONG DFS-based algorithm:

 $\forall v : \mathsf{level}[v]$ 

Back edge  $u \to v$ : level[u] - level[v] + 1

# Shortest cycle of undirected graph (Problem 4.12)

### A WRONG DFS-based algorithm:

 $\forall v : \mathsf{level}[v]$ 

Back edge  $u \to v$ : level[u] - level[v] + 1



Shortest cycle of digraph (Problem 4.12)

A DFS-based algorithm:

$$\forall v : \mathsf{level}[v]$$

$$\mathsf{Back}\ \mathsf{edge}\ u \to v : \mathsf{level}[u] - \mathsf{level}[v] + 1$$

#### Shortest cycle of digraph (Problem 4.12)

# A WRONG DFS-based algorithm:

 $\forall v : \mathsf{level}[v]$ 

Back edge  $u \to v$ : level[u] - level[v] + 1



 $\frac{1}{2} \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$ 

$$\frac{1}{2} \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$$

TOPOSORT by Tarjan (probably), 1976

$$\sharp \text{ cycle } \Longrightarrow \boxed{u \to v \iff \mathsf{f}[v] < \mathsf{f}[u]}$$

$$\frac{1}{2} \text{ back edge} \iff \text{DAG} \iff \exists \text{ topo. ordering}$$

TOPOSORT by Tarjan (probably), 1976

Sort vertices in *decreasing* order of their *finish* times.

Kahn's TOPOSORT algorithm (1962; Problem 4.16)

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: DEQUEUE $(u \in Q)$ , delete u and  $u \to v$  from Q, output u, ENQUEUE(v) if  $\ln[v] = 0$

Kahn's TOPOSORT algorithm (1962; Problem 4.16)

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: DEQUEUE $(u \in Q)$ , delete u and  $u \to v$  from Q, output u, ENQUEUE(v) if  $\operatorname{in}[v] = 0$

Lemma (Correctness of Kahn's TOPOSORT)

Every DAG has at least one source (and at least one sink vertex).

Kahn's TOPOSORT algorithm (1962; Problem 4.16)

- ▶ Queue Q for source vertices (in[v] = 0)
- ▶ Repeat: DEQUEUE $(u \in Q)$ , delete u and  $u \to v$  from Q, output u, ENQUEUE(v) if  $\ln[v] = 0$

Lemma (Correctness of Kahn's TOPOSORT)

Every DAG has at least one source (and at least one sink vertex).

Q: What if G is not a DAG?

Taking courses in few semesters (Problem 5.14)

- ightharpoonup n courses
- ▶ m of  $c_1 \rightarrow c_2$ : prerequisite
- ► Goal: taking courses in few semesters

Taking courses in few semesters (Problem 5.14)

- ightharpoonup n courses
- ▶ m of  $c_1 \rightarrow c_2$ : prerequisite
- ► Goal: taking courses in few semesters

Critical path *OR* Longest path using DFS in O(n+m)

Taking courses in few semesters (Problem 5.14)

- ightharpoonup n courses
- ▶ m of  $c_1 \rightarrow c_2$ : prerequisite
- ► Goal: taking courses in few semesters

Critical path *OR* Longest path using DFS in O(n+m)

For general digraph, LONGEST-PATH is NP-hard.

## Line up (Problem 4.22)

- 1. i hates j:  $i \succ j$
- 2. i hates j: #i < #j

Toposort

Critical path

HP: path visiting each vertex once

 $Q: \exists \ \mathsf{HP} \ \mathsf{in} \ \mathsf{a} \ \mathsf{DAG} \ \mathsf{in} \ O(n+m)$ 

HP: path visiting each vertex once

 $Q: \exists \ \mathsf{HP} \ \mathsf{in} \ \mathsf{a} \ \mathsf{DAG} \ \mathsf{in} \ O(n+m)$ 

For general (di)graph, HP is NP-hard.

HP: path visiting each vertex once

 $Q: \exists \mathsf{HP} \mathsf{ in a DAG in } O(n+m)$ 

For general (di)graph, HP is NP-hard.



HP: path visiting each vertex once

 $Q: \exists \mathsf{HP} \mathsf{ in a DAG in } O(n+m)$ 

For general (di)graph, HP is NP-hard.



DAG:  $\exists$  HP  $\iff$   $\exists$ ! topo. ordering

Tarjan's TOPOSORT + Check edges  $(v_i, v_{i+1})$ 

Tarjan's TOPOSORT + Check edges  $(v_i, v_{i+1})$ 



Tarjan's TOPOSORT + Check edges  $(v_i, v_{i+1})$ 



Kahn's TOPOSORT (Problem 4.16)

Tarjan's TOPOSORT + Check edges  $(v_i, v_{i+1})$ 



Kahn's TOPOSORT (Problem 4.16)

$$|Q| \leq 1$$

Theorem (Digraph as DAG (Problem 4.6))

Every digraph is a dag of its SCCs.

# Theorem (Digraph as DAG (Problem 4.6))

Every digraph is a dag of its SCCs.

## Two tiered structure of digraphs:

 $digraph \equiv a dag of SCCs$ 

SCC: equivalence class over reachability

 $digraph \equiv a dag of SCCs$ 

Kosaraju SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

## $digraph \equiv a dag of SCCs$

Kosaraju SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

- (I) DFS on G; DFS/BFS on  $G^T$
- (II) DFS on  $G^T$ ; DFS/BFS on G

Kosaraju SCC algorithm, 1978 (Problem 4.7)

1st DFS  $\stackrel{?}{\Longrightarrow}$  BFS

 $2\mathsf{nd}\ \mathsf{DFS} \overset{?}{\Longrightarrow} \mathsf{BFS}$ 

Kosaraju SCC algorithm, 1978 (Problem 4.7)

1st DFS  $\stackrel{?}{\Longrightarrow}$  BFS

 $2 \text{nd DFS} \stackrel{?}{\Longrightarrow} BFS$ 

1st DFS: toposort between SCCs

2nd DFS: reachability within an SCC

Kosaraju SCC algorithm, 1978 (Problem 4.7)

1st DFS 
$$\stackrel{?}{\Longrightarrow}$$
 BFS

2nd DFS  $\stackrel{?}{\Longrightarrow}$  BFS

1st DFS: toposort between SCCs

2nd DFS: reachability within an SCC

 $\mathsf{digraph} \equiv \mathsf{a} \; \mathsf{dag} \; \mathsf{of} \; \mathsf{SCCs}$ 

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

## SCC

 $\exists !$  source vertex  $v \iff v \leadsto \forall u$ 

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

### SCC

$$\exists !$$
 source vertex  $v \iff v \leadsto \forall u$ 

$$\iff$$
 :  $\exists$ ! source

$$v:v \leadsto^? \forall u$$

$$\exists ? \ v : v \leadsto \forall u$$

#### SCC

 $\exists ! \text{ source vertex } v \iff v \leadsto \forall u$ 

 $\iff$  :  $\exists$ ! source

 $\Longrightarrow$ : By contradiction.

 $\exists u : v \not\rightsquigarrow u \land \mathsf{in}[u] > 0 \implies \exists \mathsf{cycle}$ 

$$\mathsf{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- $\operatorname{arg\,min}_v\operatorname{impact}(v)$
- $arg max_v impact(v)$

$$\mathsf{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- $\operatorname{arg\,min}_v\operatorname{impact}(v)$
- $ightharpoonup \arg\max_{v}\operatorname{impact}(v)$

 $\mathop{\arg\min}_{v} \mathop{\mathrm{impact}}(v) \in \mathop{\mathrm{sink}}\nolimits \; \mathrm{SCC} \; \text{of smallest cardinality}$ 

$$\mathsf{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- $ightharpoonup arg min_v impact(v)$
- $ightharpoonup \arg\max_v \operatorname{impact}(v)$

 $\mathop{\arg\min}_{v} \mathop{\mathsf{impact}}(v) \in \mathop{\mathsf{sink}} \mathsf{SCC} \mathsf{\ of\ smallest\ cardinality}$ 

$$\operatorname*{arg\,min}_{v}\operatorname{impact}(v)\in\operatorname{source}\,\operatorname{SCC}$$

$$\mathsf{impact}(v) = |\{w \neq v : v \leadsto w\}|$$

- $ightharpoonup arg min_v impact(v)$
- ightharpoonup  $\operatorname{arg\,max}_v \operatorname{impact}(v)$

 $\mathop{\arg\min}_{v} \mathop{\mathsf{impact}}(v) \in \mathop{\mathsf{sink}} \mathsf{SCC} \mathsf{\ of\ smallest\ cardinality}$ 

 $\underset{v}{\operatorname{arg\,min\,impact}}(v) \in \mathsf{source}\;\mathsf{SCC}$ 

 $Q: \forall v: \mathsf{computing} \ \mathsf{impact}(v)$ 

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph  $G_I$ .

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph  $G_I$ .

## Theorem (2SAT)

 $\exists \ \mathit{SCC} \ \exists x : v_x \in \mathit{SCC} \land v_{\overline{x}} \in \mathit{SCC} \iff I \ \textit{is not satisfiable}.$ 

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph  $G_I$ .

## Theorem (2SAT)

 $\exists$   $SCC \exists x : v_x \in SCC \land v_{\overline{x}} \in SCC \iff I$  is not satisfiable.

#### Reference:

► "A Linear-time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas" by Bengt Aspvall, Michael Plass, and Robert Tarjan, 1979.







