Vehicle Interaction Learning

Xiaosong Jia

08/12/2019

Additional Prior Information

- Start < End
- Let the scores affect each other until the final output

- Similar Results for validation
- Improvements for transferring:

N->H: IoU6:72.0% Traj_cls: 89.7%

H->N: IoU6:72.3% Traj_cls: 87.1%

USA_Roundabout_FT

- Stop sign: <1s -> No interaction, >3s -> Exist interaction Passing car's trajectory distance from stopping car less than 50 meters until 0
- TTC: <3s -> Exist interaction, >8s No interaction Both cars' trajectory distance less than 50 meters from collision point until one of the cars pass that point
- No TTC: No interaction
- Remove samples with interaction time >20s Positive Sample: 5180 Negative Sample: 5238

	Positive	Negative
Stop Sign	3185	377
TTC	1669	515
Total	4954	892

USA_Roundabout_FT

• Downsample: fps=5

• Clip: max_length = 20s

	Sample_len_avg	Label_len_avg
HighD	57.0 frames	14.5 frames
NGSIM	80.2 frames	14.8 frames
FT	58.2 frames	35.6 frames

	IoU0.6 Acc	IoU0.9 Acc	Traj Cls Acc
HighD	97.0%	34.7%	99.4%
NGSIM	85.4%	26.0%	90.1%
FT	94.3%	71.4%	91.3%

Relative Motion Features [Tianmin et.al. TOPICS 2018]

- At each time step, calculate the relative motion given a reference agent.
- Features: $[\tilde{\mathbf{x}}^{t\top}, \tilde{\mathbf{v}}^{t\top}, \mathbf{v}_1^{t\top}, \tilde{\mathbf{x}}^{t^{\top}} \tilde{\mathbf{v}}^t, \|\tilde{\mathbf{x}}^t\|, \|\tilde{\mathbf{v}}^t\|, \|\mathbf{v}_1^t\|]$
- Rotation Invariance + Eliminate Absolute Coordinate
- Augmentations: both vehicles should be reference agent

	Absolute Features			Relative Features		
	loU0.6	loU0.9	Traj Cls	IoU0.6	IoU0.9	Traj Cls
HighD	97.0%	34.7%	99.4%	91.9%	30.3%	97.7%
NGSIM	85.4%	26.0%	90.1%	79.1%	18.7%	88.1%
FT	94.3%	71.4%	91.3%	91.4%	61.3%	88.0%

Semi-supervised Learning

 Use only 250 positive samples + 125 negative samples + 125 random negative samples

	All data			250+125+125			Fine Tune 250+125+125		
	loU0.6	loU0.9	Traj Cls	loU0.6	loU0.9	Traj Cls	IoU0.6	loU0.9	Traj Cls
HighD (10011)	97.0%	34.7%	99.4%	76.9%	16.3%	92.4%	86.8%	23.6%	93.7%
NGSIM (5319)	85.4%	26.0%	90.1%	52.5%	7.4%	84.0%	76.4%	16.3%	89.1%

Semi-supervised learning

UDA (2019-07 Google, CMU)

$$\min_{\theta} \mathcal{J} = \mathbb{E}_{x,y^* \in L} \left[p_{\theta}(y^* \mid x) \right] + \lambda \mathcal{J}_{\text{UDA}}(\theta)$$

$$\min_{\theta} \ \mathcal{J}_{\text{UDA}}(\theta) = \underset{x \in U}{\mathbb{E}} \underset{\hat{x} \sim q(\hat{x}|x)}{\mathbb{E}} \left[\mathcal{D}_{\text{KL}} \left(p_{\tilde{\theta}}(y \mid x) \mid \mid p_{\theta}(y \mid \hat{x})) \right) \right]$$

Traj cls confidence > threshold -> force the start/end regression similar

Semi-supervised learning

Training Signal Annealing (labeled):
 For trai_cls √

For reg

 Confidence-based masking (unlabelea): mask out examples that the current model is not confident about

For traj_cls √ For reg

Semi-supervised learning

• Entropy Minimalization (unlabeled): regularizes the predicted distribution on augmented examples $v_{\theta}(y|x')$ to have a low entropy.

 Softmax temperature controlling (unlabeled): A lower temperature corresponds to a sharper distribution.

For traj_cls
$$\sqrt{\frac{\mathrm{Softmax}(l(x)/ au)}{\mathrm{For reg}}}$$

Failed Trying

- Regression loss -> Classification Loss (Softmax over all the frames)
- Sparse Positive Signal -> assign higher weights to positive samples
- Values heavily depends on length -> temperature
 Temperature not low enough -> large weights, overfitting
 Temperature too low -> extreme gradients
- Results: hard to tune; slow to converge; worse results

Future work

- Single source domain + target domain unlabeled data
- Single source domain + small number of target domain labeled data
- Multiple source domains
- Multiple source domains + target domain unlabeled data
- Multiple source domains + small number of target domain labeled data