1. Метрические пространства. Примеры.

Опр

$$X$$
 - мн-во $(X \neq \varnothing)$
 $\rho: X \times X \to \mathbb{R}$ (метрика)
Пара (X, ρ) назыв. метр. пр-вом, если:

1.
$$\rho(x,y) \ge 0$$
 u $\rho(x,y) = 0 \Leftrightarrow x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$hep$$
-so \triangle
 $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$

Примеры

$$\overline{1.} \mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$$
 со станд. ρ

2. На
$$\mathbb{R}^2$$

$$\rho_1((x_1,y_1),(x_2,y_2)) = |x_1-x_2|+|y_1-y_2|$$

$$\rho_\infty = \max\{|x_1-x_2|,|y_1-y_2|\}$$

$$\rho_p = (|x_1-x_2|^p+|y_1-y_2|^p)^{\frac{1}{p}} \ \rho_2 \ \text{- Евклидова метрика}$$

$$ho(a,b) = egin{cases} 0, & a=b \ 1, & a
eq b \end{pmatrix} - Дискретная метрика$$

2. Открытые и замкнутые множества. Свойства

Опр

 $B(x_0, \epsilon) = \{ x \in X \mid \rho(x, x_0) < \mathcal{E} \}$ Открытый шар с центром в x_0 и радиусом \mathcal{E} \mathcal{E} - omkp. $extit{x_0}$

Опр

 $U \subset X$ $U-om\kappa p$, если $\forall x \in U \quad \exists \mathcal{E} : B(x, \mathcal{E}) \subset U$

 $\dfrac{\mathbf{Onp}}{Z \subset X}$ Z- замкн., если $X \setminus Z$ - откр. мн-во

Теор (св-ва откр. мн-в)

1. $\{U_{\alpha}\}_{{\alpha}\in A}$ - семейство откр. мн-в

$$\Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - om\kappa p.$$

2. $U_1...U_n$ - откр. (конеч. число)

$$\Rightarrow \bigcap_{i=1}^{n} U_i - om\kappa p.$$

3. \varnothing , $X - om\kappa p$.

<u>Док-во</u>

$$\forall x \in \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \exists \alpha_0 : x \in U_{\alpha_0}$$

$$U_{\alpha_0} - om\kappa p. \Rightarrow \exists \mathcal{E} : B(x, \mathcal{E}) \subset U_{\alpha_0}$$

$$B(x,\mathcal{E}) \subset \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - om\kappa p.$$

2.

$$\forall x \in \bigcap_{i=1}^{n} U_i \Rightarrow \forall i \ x \in U_i$$

$$\exists \mathcal{E}_i : B(x, \mathcal{E}_i) \subset U_i$$

$$\mathcal{E} = \min_{i=1,\dots,n} \{\mathcal{E}_i\} \quad B(x,\mathcal{E}) \subset B(x,\mathcal{E}_i) \subset U_i$$
$$B(x,\mathcal{E}) \subset \bigcap_{i=1}^n U_i \Rightarrow \bigcap_{i=1}^n U_i - om\kappa p$$

Лемма

$$B(x_0, r) - om\kappa p.$$

 $\forall memp. np-aa \ X \quad \forall x_0 \ \forall r > 0$

Док-во

$$x \in B(x_0, r)$$

 $\rho(x_0, x) = d < r$
 $\mathcal{E} = \frac{r-d}{2}$
 $B(x, \mathcal{E}) \subset B(x_0, r)$?
 $\exists x_1 \in B(x, \mathcal{E}) \setminus B(x_0, r)$
 $\rho(x_1, x) < \mathcal{E} = r - d$
 $\rho(x_0, x) = d$
 $\rho(x_1, x_0) \ge r$
 $\rho(x_1, x_0) \ge r$

Теор (св-ва замк. мн-в)

1.
$$\{F_i\}_{i \in A}$$
— замкн.

$$\Rightarrow \bigcap_{i \in A} F_i - \beta a M \kappa.$$

2.
$$F_1, ..., F_n$$
— замк.

$$\Rightarrow \bigcup_{i=1}^n F_i -$$
замк.

3.
$$\varnothing$$
 u X замк.
$$F_i = X \setminus U_i, \quad U_i \text{ - } om \kappa p.$$
 $\bigcap F_i = \bigcap (X \setminus U_i) = X \setminus \bigcup U_i$

3. Внутренность и вшеность множества.

Опр

X - м. пространство $A \subset X$ $x_0 \in X$ x_0 - назыв. внутр. относительно A (в X), если $\exists \ \mathcal{E} > 0$: $B(x_0, \ \mathcal{E}) \subset A$

Опр

 x_0 - назыв. внешней, если x_0 - внутр. для $\overline{A}=X\setminus A$ $\exists \ \mathcal{E}>0: B(x_0,\mathcal{E}) \ \cap \ A=\varnothing$

Опр

Остальные точки - граничные x_0 - гранич., если $\forall \mathcal{E} > 0$ $B(x_0, \mathcal{E}) \cap A \neq \emptyset$ и $B(x_0, \mathcal{E}) \not\subset A$ Int A - внутренность A - мн-во внутр. m. $Ex\ A$ - внешность A - мн-во внешних m. $\partial A = FrA$ - граница A - мн-во гр.m.

Teop

След. описания Іпт эквив.

- 1. Int A мн-во внутр. т.
- 2. Наибольшее (по включению) откр. мн-во, содерж. в А
- 3. тах (по включению) откр. мн-во, содерж. в А
- 4. Int $A = \bigcup U_i$, $U_i om\kappa p$. $U_i \subset A$
- 5. Int $A = (X \setminus ExA) \setminus \partial A$

Док-во

 $\overline{(2)} \Leftrightarrow (4) \Leftrightarrow (3) \ m.\kappa \ obsed. \ om\kappa p. - om\kappa p.$

 $(1) \Leftrightarrow (4)$:

 \Rightarrow

 $x_0 \in \mathcal{M}$ н-во внутр. $m. \subset \bigcup U_i, \quad U_i$ - откр. $U_i \subset A$

 $\exists \mathcal{E} > 0 : B(x_0, \mathcal{E})$ - откр. $\subset A$ (по определению Int A)

 \Leftarrow

 $\exists i: x_0 \in U_i \subset A \quad x_0 \in \bigcup U_i$

 $\exists \ \mathcal{E} : B(x_0, \mathcal{E}) \subset U_i \subset A \Rightarrow x_0$ - внутр. т. A

Теор (равносильные определения внешности)

1. Ex A - мн-во внеш. т.

2.
$$Ex\ A = Int\ (X \setminus A)$$

3. $Ex\ A$ - max (по вкл.) откр. мн-во, не пересек. $c\ A$

4. Ex
$$A = \bigcup U_i$$
, $U_i - om\kappa p$. $U_i \cap A = \emptyset$

Относительно внутр.

$$A\subset X\Rightarrow (A,
ho)$$
 — метр. пр-во $B\subset A$ $Int_AB
eq Int_XB$

Пример

$$X=\mathbb{R}, \quad
ho-cmand.$$
 $A=[0,1] \quad B=[0,rac{1}{2})$ $Int_XB=(0,rac{1}{2}) \quad Int_AB=[0,rac{1}{2})$

4. Замыкание множества.

Опр

Замыкание A $ClA = \{x \in X \mid \forall \mathcal{E} > 0 \mid B(x, \mathcal{E}) \cap A \neq \emptyset\}$

Teop

- 1. $ClA = \{x \in X \mid \forall \mathcal{E} > 0 \mid B(x, \mathcal{E}) \cap A \neq \emptyset\}$
- 2. $ClA = IntA \cup \partial A$
- 3. $ClA = \cap F_i$, $F_i \beta a M \kappa$ $F_i \supset A$
- 4. $ClA = min(no \ вкл.)$ замк. $\supset A$

Док-во

- $(3) \Leftrightarrow (4)$ пересеч. замк. замк.
- $(1) \Leftrightarrow (2)$ oues.
- $(1) \Rightarrow (3)$:

$$\forall \mathcal{E} > 0 \quad x : B(x, \mathcal{E}) \cap A \neq \varnothing$$

 $\exists x \notin F$ - замк. $F \supset A$ $x \in X \setminus F$ - откр.

$$\exists \mathcal{E} > 0 : B(x, \mathcal{E}) \subset X \setminus F \subset X \setminus A$$

 $\Rightarrow x$ - внеш. противореч.

$$(3) \Leftarrow (1)$$
:

$$x \in \cap F_i$$

$$\exists \mathcal{E} > 0 : B(x, \mathcal{E}) \cap A = \emptyset$$

$$B(x,\mathcal{E})$$
 - откр. (по л.) замк - $F = X \setminus B(x,\mathcal{E})$ $F \supset A$

 $x \notin F$ - противореч.

<u>Замеч</u>

- 1. $A om\kappa p. \Leftrightarrow A = IntA$
- 2. A замк. $\Leftrightarrow A = ClA$
- 3. $IntA \subset A \subset ClA$ $\partial A = ClA \setminus IntA$

Пример

$$X = \mathbb{R}; \quad A = \emptyset$$

$$IntA = \varnothing \quad ExA = \varnothing \quad \partial A = \mathbb{R}$$

Пример

Кантор. мн-во - замк.

5. Топологические пространства. Примеры.

Опр

X - мн-во $\Omega \subset 2^X = \{A \subset X\}$ - мн-во подмн. X (X,Ω) - назыв. тополог. пр-вом, если

1.

$$\forall \{U_i\}_{i\in I} \in \Omega \Rightarrow \bigcup_{i\in I} U_i \in \Omega$$

- 2. $U_1, U_2, ..., U_n \Rightarrow U_1 \cap U_2 \cap ... \cap U_n \in \Omega$
- $\beta. \varnothing; X \in \Omega$

 Ω - тополог. на X $U \in \Omega$ - назыв. открытым мн-вом

Опр

 (X,Ω) - топ. пр-во; $F\subset X$ F - назыв. замк., если $X\setminus F\in\Omega$

Teop

1.

$$\bigcap_{i \in I} F_i$$
- замк, если F_i – замк

- 2. $F_1 \cup F_2$ замк $(F_1, F_2 замк.)$
- $3. \varnothing, X$ замк.

Примеры

- 1. (X, ρ) mon. np-80
- 2. $\partial uc\kappa p$. np-so: $\Omega = 2^X$
- 3. антидискр. пр-во: $\Omega = \{\varnothing, X\}$

Опр

 (X,Ω) - метризуемо, если \exists метрика $\rho: X \times X \to \mathbb{R}_X$ $\Omega =$ мн-во откр. подмн. в ρ Антидискр. - не метризуемо, если |X| > 1

4. Стрелка

$$X = \mathbb{R} \quad u \land u \quad \mathbb{R}_+ = \{x \ge 0\}$$

$$\Omega = \{(a, +\infty)\} \cup \{\varnothing\} \cup \{X\}$$

5. Связное двоеточие

$$\begin{split} X &= \{a,b\} \\ \Omega &= \{\varnothing, X, \{a\}\} \end{split}$$

6. Топология конечных дополнений (Зариского)

$$3$$
амкнутые конечные мн-ва $u X$

$$Ω = \{A \mid X \setminus A \text{ конечно}\}$$

6. База топологии. Критерий базы.

Опр

X - mon. np-во; $A \subset X$ $IntA = \cup U$, $U \in \Omega$ $U \subset A$ $ClA = \cap F$, F - замк. $F \supset A$ $\partial A = ClA \setminus IntA$

Опр

 $x_0 \in X$ окр. x_0 назыв. $\forall U \in \Omega : x_0 \in U$

Опр

 x_0 назыв. внутр. т. A, если $\exists U_{x_0} \subset A$ x_0 назыв. внеш. т. A, если $\exists U_{x_0} \cap A = \emptyset$ x_0 назыв. граничной, если $\forall U_{x_0} \quad (U_{x_0} \not\subset A) \ u \ (U_{x_0} \cap A \neq \emptyset)$

Опр

 (X,Ω) - топ. пр-во $\mathcal{B}\subset\Omega$ \mathcal{B} назыв. базой топологии, если

$$\forall U \in \Omega \quad \exists \{V_i\} \in \mathcal{B}: \quad U = \bigcup_{i \in I} V_i$$

Пример

 $X = \mathbb{R}^n$ или другое метр. пр-во $\mathcal{B} = \{B(x_0, \mathcal{E}) \mid x_0 \in X, \mathcal{E} > 0\}$ - база топологии $\forall U$ - откр. $\forall x_0 \in U \ \exists \mathcal{E} : B(x_0, \mathcal{E}) \subset U$

$$\bigcup_{x_0 \in U} B(x_0, \mathcal{E}) = U$$

Теор (Критерий базы)

X - мн-во $\mathcal B$ - нек. совокупность подмн-в X $\mathcal B$ - база $\Omega \Leftrightarrow$

1.

$$\bigcup_{U_i \in \mathcal{B}} U_i = X$$

2. $\forall U, V \in \mathcal{B} \quad \forall x \in U \cap V \quad \exists W \in \mathcal{B} : x \in W; W \subset U \cap V$

Док-во

 $\Rightarrow ouee$

$$\Leftarrow \Omega = \{ \bigcup_{i \in I} U_i | U_i \in \mathcal{B} \}$$

1.

$$\bigcup_{j\in J}(\bigcup_{i\in I_j})=\bigcup_{i,j}U_i$$

2.

$$(\bigcup_{j} U_{j}) \cap (\bigcup_{i} U_{i}) = \bigcup_{i,j} (U_{i} \cap U_{j}) = \bigcup_{i,j} (\bigcup_{x \in U_{i} \cap U_{j}} W_{x})$$

$$x \in W_x \subset U_i \cap U_j$$

$$\bigcup_{x \in U_i \cap U_j} W_x = U_i \cap U_j \quad W_x \in \mathcal{B}$$

3.

$$\varnothing = \bigcup_{i \in \varnothing} U_i \quad X = \bigcup_{U_i \in \mathcal{B}} U_i$$

Теор (База окр. точки)

X - мн-во $\forall x \in X \quad \exists \mathcal{B}_x \subset 2^x$

1.
$$x \in U \quad \forall U \in \mathcal{B}_x$$

2.
$$U, V \in \mathcal{B}_x \Rightarrow \exists W \in \mathcal{B}_x : W \subset U \cap V$$

3.
$$y \in U \quad (U \in \mathcal{B}_x) \Rightarrow \exists V \in \mathcal{B}_y : \quad V \subset U$$

0.

$$\mathcal{B}_x
eq \varnothing \Rightarrow \bigcup_{x \in X} \mathcal{B}_x$$
 — база нек. топологии

7. Топология произведения пространств.

Пример (- конструкция)

$$\overline{X,Y}$$
 - mon. np-ва $(X,\Omega_X); \quad (Y,\Omega_Y)$ Введем базу топ. на $X\times Y$ $\mathcal{B}=\{U\times V|\quad U\in\Omega_X;\quad V\in\Omega_Y\}$
$$\Omega_{X\times Y}=\{\bigcup_{i\in I}U_i\times V_i|\quad U_i\in\Omega_X;\quad V_i\in\Omega_Y\}$$
 $(\bigcup_{i\in I}U_i\times V_i)\cap(\bigcup_{j\in J}S_j\times T_j)=\bigcup_{i\in I}j\in J}((U_i\cap S_j)\times (V_i\cap T_j)$ $(U_i\cap S_j)\in\Omega_X\quad (V_i\cap T_j)\in\Omega_Y$

8. Равносильные определения непрерывности.

Опр

```
(X, \rho); (Y, d) - метр. пр-ва f: X \to Y f - назыв. непр. в т. x_0, если \forall \mathcal{E} > 0 \quad \exists \ \delta > 0: Eсли \rho(x, x_0) < \delta \Rightarrow d(f(x), f(x_0)) < \mathcal{E} f - непр, если она непр. в каждой точке
```

Teop

$$f$$
 - непр в $x_0 \Leftrightarrow \forall U - om\kappa p. \subset Y : U \ni f(x_0)$
 $\exists V - om\kappa p. \subset X \quad x_0 \in V \ u \ f(V) \subset U$

Док-во

f- Henp.
$$e \ x_0 \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists \delta > 0$$

 $f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E})$
 $\Rightarrow \forall U - om\kappa p. \subset Y: \quad f(x_0) \in U \Rightarrow \exists \mathcal{E} > 0:$
 $f(x_0) \in B(f(x_0), \mathcal{E}) \subset U \Rightarrow \exists \delta > 0$
 $f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E}) \subset U \quad B(x_0, \delta) = V$
 $\Leftarrow \forall obpusaemcs$

9. Прообраз топологии. Индуцированная топология.

Опр

 $f:X\Rightarrow Y$ - отобр. мн-в (Y, Ω_Y) - mon. np-80 Ω_X - самая слабая топ. f - непр. $\forall U \in \Omega_Y \quad f^{-1}(U)$ должен быть открытым в X

 ${
m {Teop} \over \{f^{-1}(U)\}}$ - топология на X и она назыв. прообразом Ω_Y

<u>Док-во</u>

$$f^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} f^{-1}(U_i) \quad (*)$$

2.
$$f^{-1}(U_1 \cap U_2) = f^{-1}(U_1) \cap f^{-1}(U_2)$$

3.
$$f^{-1}(\varnothing) = \varnothing$$
 $f^{-1}(Y) = X$

$$(*): \quad f^{-1}(\bigcup_{i \in I} U_i) = \{x | f(x) \in \bigcup_{i \in I} U_i\} = \{x | \exists i \in I : f(x) \in U_i\}$$

Опр

$$(X,\Omega_X)$$
 - топ. пр-во $A\subset X$ $\Omega_A=\{U\cap A|\ U\in\Omega_X\}$ - индуцированная топология на A

10. Инициальная топология. Топология произведения как инициальная.

Опр

$$\forall i \in I \quad f_i: X \to Y_i$$
 (Y_i, Ω_i) - mon. np -во $\{f_{i1}^{-1}(U_1) \cap f_{i2}^{-1}(U_2) \cap ... \cap f_{ik}^{-1}(U_k) \mid U_j \in \Omega_{ij}; \quad j=1,...,k; \quad k \in \mathbb{N}\}$ - база нек. топологии Ω_X - coome. топология (инициальная топология)

Опр

$$\{f_i^{-1}(U)\}$$
 - предбаза топологии

Teop

. Топология произведения совпадает с инициальной

Опр

$$\prod_{i \in I} x_i = \{ f : I \to \bigcup_{i \in I} x_i \mid f(i) \in X_i \}$$

$$p_k: \prod_{i\in I} x_i \to X_k \quad k\in I$$

$$p_k(f) = f(k) \Rightarrow ecnu \ x_i$$
- mon. $\Rightarrow \prod_{i \in I} x_i - mon$.

11. Финальная топология. Фактортопология. Приклеивание.

Опр

$$\forall i \in I \quad f_i: \ X_i \to Y \text{ - отобр.}$$
 (X_i, Ω_i)
 Хотим завести на Y топологию: $\forall f_i \text{ - непр. } Ton \text{ на } Y \text{ самая сильная } U \subset Y \quad \forall i \in I \quad f_i^{-1}(U) \in \Omega_i$ $\Omega_Y = \{U \mid \forall i \ f_i^{-1}(U) \in \Omega_i\}$ $\varnothing, Y \in \Omega_Y$ $f_i^{-1}(U_1 \cap U_2) = f_i^{-1}(U_1) \cap f_i^{-1}(U_2)$
$$f_i^{-1}(\bigcup_{k \in K} U_k) = \bigcup_{k \in K} f_i^{-1}(U_k)$$

Пример

Приклеивание

X, Y - np-ва

 $A \subset X$ $f: A \to Y$ - отобр.

Хотим получить $X \cup_f Y$ - приклеивание

$$X \cup_f Y = X \cup Y / \sim \quad \forall a \ a \sim f(a)$$

$$X$$
 -Ton $\longrightarrow X \cup_f Y$

U - $om\kappa p$. $g \ X \cup_f Y$, $ecnu \ U \cap X$ - $om\kappa p$. $g \ X \ u$ $U \cap Y$ - $om\kappa p$. $g \ Y$ ($ecnu \ f$ - uhgen m.)

12. Гомеоморфизм.

Опр

f:X o Y - гомеоморфизм, если

- 1. f непр.
- 2. f биекция
- 3. f^{-1} nent = -1

Предп

 \simeq - отношение эквив.

Teop

Если
$$(X, \Omega_X) \simeq (Y, \Omega_Y)$$
, то $f_*: \Omega_X \to \Omega_Y$ - биекция $f_*(U) = f(U)$

13. Связность топологического пространства и множества.

14. Связность отрезка.

15. Связность замыкания. Связность объединения.

Teop

$$(X,\Omega)$$
 - топ. пр-во $A\subseteq X$ - связно $A\subseteq B\subseteq ClA$ $\Rightarrow B$ - связно

Teop

Teop

$$(X,\Omega)$$
 - топ. пр-во $A,B\subseteq X$ - связны $A\cap B\neq\varnothing$ $\Rightarrow A\cup B$ - связно

16. Связность и непрерывные отображения.

Teop

$$\stackrel{-}{(X,\Omega_X)}, (Y,\Omega_Y)$$
 - mon. пр-ва $f:X \to Y$ - непр. X - связно $\Rightarrow f(x)$ - связно

17. Связность произведения пространств

Teop

$$X, \ Y$$
 - mon. np -ва $X \times Y$ - c вязн. $\Leftrightarrow X, \ Y$ - c вязн.

Замеч

Любое конечное произведение связных топ. np-в связно

${\bf Teop}$

$$\prod_{i \in I} X_i$$
 - связно $\Leftrightarrow orall i \in I$ X_i - связно

18. Компоненты Связности.

Опр

X - mon. np-вo

Компонентой связности т. $x_0 \in X$ назыв. наиб. по включению связное множество, ее содерж.

$$K_{x_0} = \cup \{M \in 2^X \mid x_0 \in M \text{ - cess.}\}$$

Teop

- 1. $\forall x, y \in X \quad K_x = K_y \text{ unu } K_x \cap K_y = \emptyset$
- 2. компоненты связности замк.
- 3. Для любого связ. мн-ва \exists компонента связности, в которой оно целиком содержится

$$\forall M \subseteq X \ (M-cens. \Rightarrow \exists x \in X : M \subseteq K_x)$$

4.
$$\forall x, y, z \in X \ (x, y \in K_z \Leftrightarrow \exists M - cess.: x, y \in M \ u \ z \in M)$$

Опр

X - топ. пр-во назыв. вполне несвязным, если $\forall x \in X : K_x = \{x\}$

19. Линейная связность

Опр

Линейно связное np-во - mon. np-во, в котором любые две точки можно соединить неnp. κpu вой

$$(X,\Omega)$$
 - лин. св., если $\exists f: f: [0,1] \to X$ (путь в X) | $f(0) = x$ (нач. пути); $f(1) = y$ (кон. пути), $\forall x,y \in X$

Teop

$$X$$
 - $mon. np$ - so
 X - $nuh.ce. \Rightarrow X$ - $ce.$

Teop

$$A, B$$
 - лин. св. $A \cap B \neq \varnothing \Rightarrow A \cup B$ - лин.св.

Teop

$$X,\ Y$$
 - mon. np -во; $f:X\to Y$ - $nenp$. X - nun . $cs. \Rightarrow f(x)$ - nun . $cs.$

20. Компактность. Примеры.

Опр

 (X, Ω) - mon. np-so

X - компакт, если из любого открытого покрытия X можно выбрать конечное подпокрытие

$$\forall \{U_i\}_{i\in I}, \quad U_i \in \Omega$$

$$(\bigcup_{i \in I} U_i = X \Rightarrow \exists n \in \mathbb{N} \quad \exists \{i_1, ..., i_n\}_{ij \in I} : \bigcup_{k=1}^n U_{ik} = X)$$

Опр

$$(X,\Omega)$$
 - mon. np - eo

 $A\subseteq X$ - комп., если оно комп. в индуц. топ.

Teop

- 1. конечное топ. пр-во всегда компактно
- 2. дискретное бесконечное множ. не комп.
- 3. антидискр. множ. комп.
- 4. [0,1] компакт.

Teop

$$X$$
 - комп. $A \subseteq X$ - замк. $\Rightarrow A$ - комп.

Teop

$$X$$
 - κ omn $f: X \to Y \Rightarrow f(x)$ - κ omn.

След

Комп. - топ. св-во

21. Простейшие свойства компактности.										

22. Компактность произведения пространств.

Teop

$$\overline{X}$$
, Y - $\kappa o \kappa n \Leftrightarrow X \times Y$ - $\kappa o \kappa n$.

Teop

$$\{X_i\}_{i\in I}$$
 - комп. $\Leftrightarrow \prod_{i\in I} X_i$ - комп.

23. Компактность и хаусдорфовость

Опр

X назыв хаусдорф., если $\forall x_1 \neq x_2 \in X \quad \exists U_{x_1}, U_{x_2}: \quad U_{x_1} \cap U_{x_2} = \varnothing$

Teop (1)

X - $xaycdop\phi$. A - $\kappa o \kappa n \in X \Rightarrow A$ - $\beta a \kappa \kappa$.

Teop

 $f: X \to Y$ непр., биекция X - комп. Y - хаусдорф. $\Rightarrow f$ - гомеоморф.

Док-во (1)

 $X \setminus A - om\kappa p?$ $x_0 \in X \setminus A$ $\forall x_1 \in A \Rightarrow \exists U_{x_0} \ni x_0; \ V_{x_1} \ni x_1$ $U_{x_0} \cap V_{x_1} = \varnothing$

$$\bigcup_{x_1 \in A} V_{x_1} \subset A \Rightarrow x_1, x_2, ..., x_k : \bigcup_{i=1}^k V_{x_i} \supset A$$

$$U_{x_0} = \bigcap_{i=1}^k U_{x_i}$$
 - искомая окр. $U_{x_0} \cap A = \varnothing$

(Иначе $U_{x_0} \cap V_{x_i} \neq \emptyset$, $U_{x_i} \cap V_{x_i} \neq \emptyset$)

24. Лемма Лебега. Компактность отрезка.

Теор (Лемма Лебега)

$$X = [0,1] \subset \bigcup_{i \in I} U_i \qquad \{U_i\}_{i \in I}$$
 - $om\kappa p.$ $no\kappa p.$ X

$$\Rightarrow \exists \mathcal{E} > 0 : \forall x_0 \ \exists i \in I : B(x_0, \mathcal{E}) \subseteq U_i$$

(\mathcal{E} зависит от покр. \mathcal{E} - число Лебега)

След

-Отрезок - комп. 25. Критерий компактности подмножеств евклидова пространства.

Teop

$$A \subset \mathbb{R}^n$$

 A - κ omn. $\Leftrightarrow A$ - β amk u orp.

Опр

$$A$$
 - огр., если $\exists N: A \subset B(0,N)$

Док-во

 $\longrightarrow A$ - замк. т.к. \mathbb{R}^n - хаусдорф.

A - orp. $\{B(0,n)\}_{n \in \mathbb{N}}$

 $\Leftarrow A \subset [-N,N] \times [-N,N] \times ... \times [-N,N] = K \text{ m.k. ozp.}$

K - комn.

A - замк. в $K \Rightarrow A$ - комп.

26. Теорема Вейерштрасса. Примеры.

Теор (Вейерштрасса)

K - компакт. $f: K \to \mathbb{R}$ - непр. $\Rightarrow \exists x_0 \in K:$ $\forall x \in K$ $f(x) \leq f(x_0)$ $(x_0 - max)$

Док-во

$$f(K)$$
 - комп. $\subset \mathbb{R} \Rightarrow f(K)$ - замк. u ог $p \Rightarrow \sup f(K) \in f(K)$ (замк.) $\sup f(K) \neq \infty$ (ог p .) $\sup f(K) = f(x_0)$

27. Вторая аксиома счётности и сепарабельность.

Опр

X - обл. II A.C., если в $X \exists c$ четная база

Опр

$$X$$
 - назыв сепараб., если $\exists \ A \subset X$ $|A| \leq \aleph_0 \ u \ ClA = X$

Опр

A - всюду плотно, если $\mathit{Cl}A = X$

Teop

 $X - II A.C. \Rightarrow X - cenapa6.$

28. Теорема Линделёфа.

Teop

X - II $A.C. \Rightarrow us \; \forall \; omkp. \; nokp. \; X$ можно извлечь не более чем счетное nodnokpumue

29. Первая аксиома счётности.

Опр

База окр-тей точки $\forall x \quad \exists \{U_{x_i}\}_{i \in I_x}$

- 1. $U_{x_i} \in \Omega$; $x \in U_{x_i}$
- 2. $\forall U \in \Omega : x \in U \quad \exists U_{x_i} : x \in U_{x_i} \subset U$

Опр

Если 🛭 база окр-тей:

 $\forall x \ \{U_{x_i}\}_{i \in I_x}$ не более чем счетное $\Rightarrow X$ удовл. І А.С.

50. I	1з і	компа	актно	СТИ	след	ует	секв	зенц	иалі	ьная	KOM	пак	ГНОС′	ть (с	с пе	рвой	AC	;).

31.	Из се	еквенц	иально	й комі	іактно	СТИ	следу	ет ко	мпка	гності	s (co	втор	ой А	C).

32. Полнота и вполне ограниченность метрических пространств.

Опр

Фунд. послед. $\{X_n\}$ - фунд., если $\forall \mathcal{E}>0 \quad \exists N: \forall n,m>N: \rho(X_n,X_m)<\mathcal{E}$

Опр

X назыв. полным, если \forall фунд. послед. сходится

Опр

 $\{X_i\}_{i\in I}$ - \mathcal{E} -cemb, ecau $\forall x \quad \exists x_i: \rho(x,x_i) < \mathcal{E}$

Опр

X назыв. вполне огранич.. если $\forall \mathcal{E} > 0 \quad \exists$ конечная \mathcal{E} -сеть

33. Из полноты и вполне ограниченности следует компактность

Теор (равносильные)

- 1. Х компактно
- 2. X секцвенц. комп.
- $3. \, X$ полн. u вполне огр.

34. Аксиомы отделимости.

Теор (Колмогорова)

 $\forall x, y \in X : x \neq y \Rightarrow \exists U \in \Omega$

Теор (Тихонова)

 $\forall x, y \in X : x \neq y \Rightarrow \exists U \in \Omega$

Теор (Хаусдорфа)

 $\forall x, y \in X \quad \exists U_x, U_y : U_x \cap U_y = \varnothing$

Teop (3)

 $\forall x \in X \ u \ замкнуто \ F \subseteq X, \ x \not\in F$ $\exists U_x \ u \ U_F: \ U_x \cap U_F = \varnothing$

Teop (4)

 F_1, F_2 - замк. : $F_1 \cap F_2 = \varnothing$ $\exists U_{F_1} \ u \ U_{F_2} : \ U_{F_1} \cap U_{F_2} = \varnothing$ $T_2 \Rightarrow T_1 \Rightarrow T_0$

35. Нормальность матрического пространства.

Опр

$$(X,\Omega)$$
 - хаусдорф.
 X - нормально $\Leftrightarrow \forall F$ - замк., $\forall G \in \Omega$ $F \subseteq G \Rightarrow \exists G' \in \Omega$: $F \subseteq G' \subseteq ClG' \subseteq G$