DHANAMANJURI UNIVERSITY

Examination- 2025 (June)

Four-year course B.A/B.Sc. 2nd Semester

Name of Programme : B.A. /B. SC. Mathematics

Paper Type : Core-VI (Theory)

Paper Code : CMA-106

Paper Title : Vector Analysis & Solid Geometry

Full Marks : 80

Pass Marks: 32 Duration: 3 Hours

The figures in the margin indicate full marks for the questions Answers the following questions:

1. Choose and rewrite the correct answer: $1 \times 3 = 3$

- a) If S is any closed surface enclosing a volume V and $\vec{F} = ax\hat{i} + by\hat{j} + cz\hat{k}$, then the value of $\iint_S \vec{F} \cdot \hat{n} dS$ is (Use Gauss Divergence theorem)
 - i) abcV
- \star ii) (a+b+c)V
- iii) (ab + bc + ca)V
- iv) $\pi abcV$.
- b) The semi-vertical angle of a right circular cone admitting sets of three mutually perpendicular generators is
 - i) $\tan^{-1}\sqrt{2}$

ii)
$$-\tan^{-1}\sqrt{2}$$

iii)
$$-\tan^{-1}\sqrt{\frac{1}{2}}$$

• iv)
$$\tan^{-1} \sqrt{\frac{1}{2}}$$
.

c) Section of the conicoid $ax^2 + by^2 + cz^2 = 1$ on the plane lx + my + nz = p will be hyperbola if

i)
$$bcl^2 + cam^2 + abn^2 = 1$$

ii)
$$bcl^2 + cam^2 + abn^2 \neq 1$$
,

iii)
$$bcl^2 + cam^2 + abn^2 > 1$$

• iv)
$$bcl^2 + cam^2 + abn^2 < 1$$

- 2. Write very short answers for each of the following: $1 \times 6 = 6$
 - a) Define a vector valued function.
 - b) If the vectors \vec{a} and \vec{b} are irrotational, then show that $\vec{a} \times \vec{b}$ is a solenoidal vector.
 - c) Write the equation of the cone with vertex at the origin and which pass through the curves $ax^2 + by^2 = 2z$, lx + my + nz = p.
 - d) What surface is represented by the equation $2x^2 6y^2 3z^2 = 12$
 - e) Define Principal planes of a central conicoid.
 - f) How many normal can be drawn through any given point to a central conicoid? thru
- Write short answers (any two) of the following: $3 \times 5 = 15$
 - a) State and prove the necessary and sufficient condition that a vector \vec{a} have a constant direction.
 - b) Find the equation of the sphere through the origin and making intercepts a, b, c on the co-ordinate axes.
 - c) Find the equation of the right circular cone with its vertex at the origin, axis along Z -axis and semi-vertical angle.
 - d) Find the equation to the tangent planes to the conicoid $2x^2 - 6y^2 + 3z^2 = 5 \text{ which pass}$ through line x + 9y - 3z = 0 = 3x - 3y + 6z - 5.
 - e) Show that the plane 2x 4y z + 3 = 0 touches paraboloid $x^2 - 2y^2 = 3z$. Also find the co-ordinate of the point of contact.
- 4. Answer any two of the following:

- $4 \times 5 = 20$
- a) If \vec{a}' , \vec{b}' , \vec{c}' are the reciprocal systems of vectors \vec{a} , \vec{b} , \vec{c} respectively, prove that $[\vec{a}\vec{b}\vec{c}][\vec{a}'\vec{b}'\vec{c}'] = 1$.
- b) Suppose $\nabla \times \vec{A} = 0$. Evaluate $\nabla \cdot (\vec{A} \times \vec{r})$.
- c) Prove that $2x^2 + 2y^2 + 7z^2 10yz 10zx + 2x + 2y + 26z 17 = 0$ represents a cone with vertex at(2,2,1).

Page 2 of 4

d) A tangent plane to the conicoid $ax^2 + by^2 + cz^2 = 1$, meets the co-ordinate axes in P, Q and R. Find the locus of the centroid of the triangle PQR.

e) Prove that the enveloping cylinders of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, whose generators are parallel to the

lines
$$x = 0, \pm \frac{y}{\sqrt{a^2 + x^2}} = \frac{z}{c}$$
 meet the plane $z = 0$ in

circles.

5. Answer any two of the following:

$$6 \times 2 = 12$$

a) Verify Stokes' theorem for the vector function

$$\vec{A} = 3y\hat{i} - xz\hat{j} + yz^2\hat{k}$$
 and the surface S of the paraboloid $x^2 + y^2 = 2z$ bounded by $z = 2$.

b) Verify Green's theorem in plane for

the region bounded by $y = x^2$ and y = x.

c) Suppose that the surface S has projection on the xy-plane.

Show that
$$\iint_{S} \vec{A} \cdot \hat{n} dS = \iint_{R} \vec{A} \cdot \hat{n} \frac{dxdy}{|\hat{n} \cdot \hat{k}|}$$
.

6. Answer any two of the following:

$$6 \times 2 = 12$$

a) Find the centre and the radius of the circle

$$x + 2y + 2z = 15, x^{2} + y^{2} + z^{2} - 2y - 4z = 11.$$

b) Find the equation of the cone whose vertex is the point (α, β, γ) and whose generators intersect the conic

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0, z = 0.$$

c) Find the equation of the right circular cone whose vertex is

(3, 2, 1), axis is the line
$$\frac{x-3}{4} = \frac{y-2}{1} = \frac{z-1}{3}$$
 and semi-

vertical angle 30°.

7. Answer any two of the following:

$$6 \times 2 = 12$$

- a) Find the equation of the tangent plane at the point (α, β, γ) of the central conicoid $ax^2 + by^2 + cz^2 = 1$.
- b) Find the locus of the point of intersection of three mutually perpendicular tangent planes to the central conicoid

$$ax^2 + by^2 + cz^2 = 1.$$

c) Find the equation of the tangent plane to the paraboloid $\frac{x^2}{5} - \frac{y^2}{3} = 2z$ parallel to the plane 2x - 3y + z = 0.
