COMANDI STATISTICA

Statistica descrittiva

NOME	COMANDO	
Cancella tutto	rm(list=ls())	
Vettore	vettore<-c()	
Lunghezza	str() → num [1:10]	
	length() → 10	
Dati in ordine crescente	sort()	
Frequenza assoluta (moda)	table(a)	
Frequenza relativa	prop.table(b)	
Frequenza percentuale	prop.table(b)*100	
Media, xbar	mean()	
Mediana	median()	
Media ponderata, wa	sum(a*freq a)/tot a)	
noura ponaorada, wa	con tot_a = sum(freq_a)	
Deviazione standard, s	sd o sqrt(var)	
Varianza, s^2	var()	
Coefficiente di variazione, cv	sd()/mean()	
	con mean in valore assoluto	
Boxplot	<pre>boxplot(a,horizontal=TRUE,col="yellow")</pre>	
	boxplot(a,b,horizontal=TRUE,	
	main="titolo",	
	names=c("a","b"),	
	col=c("orange","lightblue"))	
Scatterplot $ ightarrow$ length uguale	plot(a,b,col="red")	
Confronto tra percentili 🗲 length non	qqplot(a,b,col="red")	
uguale		
Istogramma	hist()	
	breaks=numero, è il n°di classi	
Diagramma a torta	pie(tabella frequenze)	
Diagramma a barre	barplot(tabella frequenze)	
Min, 1st qu., Mediam, Mean, 3rd qu., Max	summary()	
Percentile	quantile(vettore, k%)	
Covarianza	cov(x,y)	
Coefficiente di corr di Pearson, r	<pre>cor(x,y) devo avere sd() e cov()</pre>	
Retta di regressione	lm(y~x)	
Netta di legiessione	con y=output e x=input	
	y<-function(x) (m*x+q)	
Sovrapporre	abline()	
Valori attesi	attesi<-round(predict(reg), digits=0)	
	setNames(attesi, vettore richiesto)	
Per agire con un comando sulla singola	comando(dataframe \$ singola variabile)	
variabile del dataframe		
Estremi del range	range(dataframe \$ singola variabile)	
Più piccolo e più grande valore di tutta la	range(dataframe)	
tabella		
Ampiezza del range	range(dataframe \$ singola variabile)[2]-	
	range(dataframe \$ singola variabile)[1]	
Intervallo interquartile	IQR(dataframe \$ singola variabile)	
(distanza tra q_3-q_1)		
Parametri di centralità per tutte le coppie	summary(dataframe)	
di variabili		
Parametri di dispersione per tutte le	cov(dataframe)	
coppie di variabili		
(covarianza e coeff. Di Pearson)	cor(dataframe)	
	·	

Probabilità

P(A)	k/n
Unione	$A \cup B = \{x \in \Omega; x \in A \circ x \in B\}$
Intersezione	$A \cap B = \{x \in \Omega; x \in A \in x \in B\}$
Complementare	$A^c = \{x \in \Omega; x \notin A\}$
	$(A \cup A^{\circ} C) = \Omega$
	$(A \cap A \cap C) = 0$
Assiomi di Kolmogorov	• 0≤ P(A)≤1
Spazio di probabilità (Ω,a,P)	$\bullet P(\Omega) = 1$
	· ,
1 Deck of the test	$\bullet A \cap B = 0 \rightarrow P(A \cup B) = P(A) + P(B)$
1. Probabilità del complementare	$P(A^c) = 1-P(A)$
2. Probabilità dell'evento impossibile	P(0) = 0
3. Probabilità dell'evento certo	$P(B) = P(B \cap A) + P(B \cap A^{C})$
4. Probabilità di ordinamento	$A \subset B \rightarrow P(A) \leq P(B)$
5. Probabilità dell'unione di eventi non	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
disgiunti	
5bis. Estensione punto 5	$P(A \cup B \cup C) = P(A) + P(B) + P(C)$
	$-P(A \cap B) - P(A \cap C) - (B \cap C) + P(A \cap B \cap C)$
Eventi indipendenti	$P(A \cap B) = P(A) * P(B)$
	solo se A e B sono indipendenti
Spazio di probabilità uniforme	$P(A) = P(A) *p = A / \Omega $
	$P(A \cap B) \le P(A) \le P(A \cup B)$
Valore atteso=media, mu, E[x]	sum(x*x)
	n*p
Varianza, sigma2	sum(x-mu) ² x
	n*p(1-p)
Deviazione standard, sigma	sqrt(sigma2)
n!	factorial(n)
(n k)	choose(n,k)

P(x=k)	$p(k) = P(x=k) = (n \ k) p^{k} (1-p)^{n-k}$
	dbinom(k,size=n,prop=p)
$P(a \le x \le b)$	<pre>sum(dbinom(a:b, size=n, prop=p))</pre>
$P(a \le x < b)$	<pre>sum(dbinom(a:b-1, size=n, prop=p))</pre>
P(a < x ≤ b)	<pre>sum(dbinom(a+1:b), size=n, prob=p))</pre>
$P(x \ge a) \circ 1-P(x=0)$	<pre>sum(dbinom(a:n,size=n,prop=p))</pre>
P(x > a)	<pre>sum(dbinom(a+1:n,size=n,prop=p))</pre>

$P(z > a) \circ 1-P(z \le a)$	1-pnorm(a, mean=mu, sd=sigma)
	<pre>pnorm(a, mean=mu, sd=sigma, lower.tail=FALSE)</pre>
P(a < Z < b)	pnorm(b,mean=mu,sd=sigma)-
	<pre>pnorm(a, mean=mu, sd=sigma)</pre>
P(x < a)	pnorm(a,mean=mu,sd=sigma)

DISTRIB.	DENSITA' pdf	RIPARTIZIONE cdf	QUANTILI ORDINE $lpha$
x~unif[a,b] uniforme	<pre>dunif(x,min=a,max=b)</pre>	<pre>punif(x,min=a,max=b)</pre>	qunif(α , min=a, max=b)
$\begin{array}{c} x \sim N \; (\mu , \delta^2) \\ \text{normale} \\ \text{standard} \end{array}$	$dnorm(x,mean=\mu,sd=\delta)$	pnorm(x,mean= μ ,sd= δ)	qnorm(α , mean= μ , sd= δ)
x=B(n,p) quantili	<pre>dbinom(x,size=n,prob=p)</pre>	<pre>pbinom(x,size=n,prob=p)</pre>	qbinom(α , size=n, prob=p)

Statistica inferenziale

Media μ e deviazione standard σ NOTE

Valore atteso	E[x]= μ
Varianza	$Var(x) = \sigma^2/n$
Teorema del limite centrale	$x \sim N(\mu, \sigma^2/n)$
	con n ≥ 30 quindi non necessaria normalità del campione
Errore statistico (E>0)	$E = Z \star \sigma / \sqrt{n}$
	con $Z^* = Z_{1-\frac{\alpha}{2}}$ qnorm(1-(alpha/2), mean=0, sd=1)
Livello di fiducia	1-α=% → α=1-cl
Intervallo di confidenza, cl	<pre>μ = xbar ± E IC=(xbar-E,xbar+E) IC<-xbar+c(-E,E)</pre>

Media μ e varianza $\pmb{\sigma}^2$ $\underline{\text{NON}}$ NOTE, distr norm

Valore atteso	E[x] = 0
Varianza	Var(x) = n/n-2
t di student	t_{n-1}
Errore statistico	$E = t^* s/\sqrt{n}$
	con $t^* = t_{1-\frac{\alpha}{2},n-1}$ qt(1-alpha/2, df=n-1)
	se n>30 $t_{1-rac{lpha}{2},n-1}$ sostituito con $Z_{1-rac{lpha}{2}}$
Livello di fiducia	$1-\alpha/2$
	con n-1 gradi di libertà
Intervallo di confidenza, cl	μ = xbar \pm E
	<pre>IC=(xbar-E,xbar+E)</pre>
	IC<-xbar+c(-E,E)

Proporzione p di una popolazione bernoulliana

Proporzione campionaria, phat	phat=n°successi nel campione / n
Ipotesi di lavoro	$n*phat \ge 5 e n*(1-phat) \ge 5$
Errore statistico	$E = Z_{1-\frac{\alpha}{2}} * \sqrt{\frac{phat*(1-phat)}{n}}$ $qnorm(1-(alpha/2), mean=0, sd=1) $
Livello di fiducia	1-α=% → α=1-c1
Intervallo di confidenza, cl	<pre>μ = phat ± E IC=(phat-E,phat+E) IC<-phat+c(-E,E)</pre>

Stima della varianza, distr norm e varianza nota

Distribuzione chi-quadro con n gradi di libertà	dchisq(x,df=n)
Quantili	$1*=X^2 \alpha/2$, n qchisq(alpha/2,df=n)
	$r*=X^2$ 1- $\alpha/2$, n qchisq(1-alpha/2,df=n)

Stima della varianza, distr norm e varianza NON nota

Livello di fiducia	1-α
Quantili	$1*=X^2$ $\alpha/2$, $n-1$ qchisq(alpha/2, df=n-1)
	$r*=X^2$ 1- α /2, n-1 qchisq(1-alpha/2, df=n-1) qchisq(alpha/2, df=n-1, lower.tail = FALSE)
Intervallo di confidenza	$ \frac{(n-1)s^2}{r*}; \frac{(n-1)s^2}{l*} $ IC<-(n-1)*s2*c(1/rstar, 1/lstar)

Livelli di confidenza minori forniscono stime intervallari più precise

TEST di ipotesi con popolazione bernoulliana $Z=rac{p-p0}{\sqrt{rac{p0(1-p0)}{n}}}$

Test a una cosa destra	H0:p=p0
<pre>prop.test(x,n,p=p0,alternative="greater")</pre>	HA:p>p0
con x=n° successi del campione, round(n*phat) n=ampiezza del campione	Pvalue=P(Z>z)
p0=parametro teorico di confronto	
Test a una coda sinistra	H0:p=p0
<pre>prop.test(x,n,p=p0,alternative="less")</pre>	HA:p <p0< td=""></p0<>
	Pvalue=P(Z <z)< td=""></z)<>
Test a 2 code	H0:p=p0
<pre>prop.test(x,n,p=p0,alternative="two.sided")</pre>	HA:p≠p0
	Pvalue=2P(Z> z)=2(1-P(Z< z))

TEST di ipotesi per media con varianza NOTA $Z=rac{xbar-\mu 0}{rac{oldsymbol{\sigma}}{\sqrt{n}}}$

<pre>Test a una cosa destra pvalue<-1-pnorm(z) pvalue<-1-pnorm(z,mean=0,sd=1,lower.tail=FALSE)</pre>	$H0: \mu = \mu 0$ $HA: \mu > \mu 0$ Pvalue = P(Z>z)
<pre>Test a una coda sinistra pvalue<-pnorm(z,mean=0,sd=1)</pre>	$H0: \mu = \mu 0$ $HA: \mu < \mu 0$ Pvalue = P(Z < z)
<pre>Test a 2 code > pvalue<-2*(1-pnorm(abs(z))) > pvalue<-2*pt(abs(z),lower.tail=FALSE)</pre>	H0: $\mu=\mu$ 0 HA: $\mu \neq \mu$ 0 Pvalue=2P(Z> z)=2(1-P(Z< z))

TEST di ipotesi per media con varianza NON NOTA $t=rac{xbar-\mu 0}{rac{S}{\sqrt{n}}}$

	V
Test a una cosa destra	H0: μ=μ0
<pre>t.test(x,mu=mu0,alternative="greater")</pre>	HA: μ>μ0
	Pvalue=P(T>t)
Test a una coda sinistra	H0:μ=μ0
<pre>t.test(x,mu=mu0,alternative="less")</pre>	HA: μ<μ0
<pre>pvalue<-pt(t,df=(n-1))</pre>	Pvalue=P(T <t)< td=""></t)<>
Test a 2 code	H0: μ=μ0
<pre>t.test(x,mu=mu0,alternative="two.sided")</pre>	HA: $\mu \neq \mu 0$
<pre>pvalue<-2*pt(abs(t),df=(n-1),lower.tail=FALSE)</pre>	Pvalue= $2P(T> t)=2(1-P(T< t))$
\rightarrow pvalue<-2*(1-pt(abs(t),df=(n-1)))	

TEST di ipotesi per la varianza $(chi2)x^2 = \frac{(n-1)s^2}{\sigma l^2}$

σ_0	
Test a una cosa destra	$H0:\sigma^2 = \sigma 0^2$
<pre>pvalue<-1-pchisq(chi2,df=n-1) pvalue<-pchisq(chi2,df=n-1, lower.tail=FALSE)</pre>	$HA:\sigma^2 > \sigma^0$
	Pvalue=P(X>x ²)
Test a una coda sinistra	$H0:\sigma^2 = \sigma^{02}$
pvalue<-pchisq(chi2,df=n-1)	HA:σ ² < σ0 ²
	Pvalue=P(X <x2)< td=""></x2)<>
<pre>Test a 2 code pvalue<-2*min(pchisq(chi,df=(n-1),lower.tail=TRUE),</pre>	$H0:\sigma^2 = \sigma 0^2$
	$HA: \sigma^2 \neq \sigma O^2$
	Pvalue=2min(P($X < x^2$);P($X > x^2$))

Test di ipotesi per la mediana, distrib NON nota = TEST DI WILCOXON

Test a una cosa destra	H0:mediana=m
<pre>wilcox.test(x, mu=m, alternative="greater")</pre>	HA:mediana>m
Test a una coda sinistra	H0:mediana=m
<pre>wilcox.test(x, mu=m, alternative="less")</pre>	HA:mediana <m< th=""></m<>
Test a 2 code	H0:mediana=m
<pre>wilcox.test(x, mu=m, alternative="two.sided")</pre>	HA:mediana≠m

❖ Test di confronto tra 2 proporzioni di 2 popolazioni bernoulliane

$$z = \frac{p1 - p2}{\sqrt{\frac{p(1-p)}{n1 + n2}}}$$

z test

❖ Test di confronto tra medie di 2 popolazioni

-varianza note

$$z = \frac{xbar - ybar}{\sqrt{\frac{\sigma x^2 + \sigma y^2}{nx + ny}}}$$

z test, con pvalue<-pnorm(z)</pre>

-varianze NON note, ma uguali

$$t = \frac{xbar - ybar}{sp\sqrt{\frac{1}{nx + ny}}} \quad sp = deviazione \ standard \ pooled$$

-varianze NON note, NON uguali

$$t = \frac{xbar - ybar}{\sqrt{\frac{sx^2 + sy^2}{nx + ny}}} f \text{ ha distribuzione di Fischer co } nA - 1 \text{ e } nB - 1 \text{ gradi di libert}$$

Test di confronto sulle varianze

$$f = \frac{s^2 A}{s^2 B}$$

Test di confronto tra mediane

TEST di indipendenza	H0:le variabili sono indipendenti
=	-
n=(n°righe-1)*(n°colonne-1)	HA:le variabili non sono indipendenti
	costruiamo la tabella di contingenza: x<-rbind(rigasopra, rigasotto)
	chisq.test(x)
TEST di Shapiro-Wilk	H0:X ha distribuzione normale
IESI di Shapilo Wilk	HA:X NON ha distribuzione normale
	shapiro.test(x)
TEST di adattamento	H0:X=X0 (modello compatibile con i dati)
	HA:X≠X0 (modello NON compatibile con i dati)
	chisq.test(z,p=pt)
	con z=frequenze,pt=elementi
TEST di Kolmogorov-Smirnov	H0:la distribuzione si adatta al modello
	HA:la distribuzione NON si adatta al modello
	ks.test(x,"nome cdf",distribuzione)
Confronto tra distribuzioni di 2	H0:X=Y (distrib. 2 popolaz. sono uguali)
popolazioni	HA:X≠Y (distrib. 2 popolaz. NON sono uguali)
	ks.test(x,y)
TEST ANOVA a una via	$H0: \mu = \mu 0 = \cdots = \mu k$
distrib. normale e stesse varianze (anche non note)	HA:almeno una delle μ diversa dalle altre
	costruiamo un dataframe:
	<pre>l<-list(maggio=may,settembre=sep,dicembre=dec)</pre>
	d<-stack(1)
	oneway.test(colonna1~colonna2,data=d,
	var.equal=TRUE)
	var.equal=FALSE) → se non è
TEST di Kruskall Wallis	ipotizzabile l'uguaglianza tra le varianze
TEST OF Kruskail Wallis	H0: $\mu = \mu 0 = \dots = \mu k$
	HA:almeno una delle μ diversa dalle altre
	costruiamo un dataframe:
	<pre>l<-list(maggio=may,settembre=sep,dicembre=dec) d<-stack(1)</pre>
	kruskal.test(colonnal~colonna2,data=d)
TEST di ipotesi per (rho)ρ=0	H0:p=0 (NON c'è correlazione lineare)
	,
Pvalue piccolo → t grande → r prossimo a 1 Pvalue grande → t piccolo → r prossimo a 0	HA:ρ≠0 (c'è correlazione lineare)
rvalue grande 7 [t]procoro 7 r prossimo a U	Cor(x, y)
	$\left(\begin{array}{c} n-2 \end{array} \right)$
	$t=r\left(\begin{array}{c} n & 2 \\ \hline 1 & 2 \end{array}\right)$ $n-2$ gradi di libertà
	$t=r\left(\sqrt{rac{n-2}{1-r^2}} ight) n-2\ gradi\ di\ libert$ à
	Pvalue= $2P(T> t) \rightarrow cor.test(x,y)$
TEST di pendenza e intercetta = 0	H0: beta0=0 intercetta (beta1=0 pendenza)
1201 al pendenza e intercetta — 0	HA: beta0=0 intercetta (beta1=0 pendenza)
	reg<- lm(y~x)
	_
	$summary(reg) \rightarrow summary(lm(y~x))$