Nama	
NPM	
Kelas	

 ${
m CSCM603154-Jaringan~Komputer} $2018/2019~{
m Term}~1$$Kuis # 4$$12 Desember 2018$$Waktu Kuis: 50 Menit$

Beri tanda silang pada kolom B untuk pernyataan benar, atau pada kolom S untuk pernyataan salah dari pernyataan-pernyataan berikut! Total nilai: 20

В	S	Pernyataan						
X		1. Jaringan wireless pada mode ad-hoc dapat menggunakan sebuah controller untuk						
		melakukan routing packet antar node. Jaringan wireless ad-hoc network seperti Bluetooth						
		memiliki arsitektur master-slaves, di mana master mengatur kapan slaves dapat mengirin						
		data.						
	X	2. Sebuah wireless terminal hanya menggunakan 1 teknik modulasi. Jika pada suatu saat						
		SNR berkurang, maka BER juga semakin kecil. Jika menggunakan modulasi yang sama,						
		saat SNR berkurang maka BER akan semakin besar.						
X		3. Sebelum WiFi terminal mengirim frame, maka terminal tersebut akan melakukan sens-						
		ing medium dahulu, dan frame tersebut akan dikirim jika medium dalam keadaan idle.						
		$Cukup\ jelas ightarrow\ CSMA$ -CA						
	X	4. Pada jaringan LTE, traffic voice dipisahkan dengan traffic data. Sebelum LTE (2G						
		dan 3G), traffic voice (conventional telephony) dipisah dengan data (IP based), tapi pada						
		LTE hanya ada satu jenis traffic (IP based traffic).						
	X	5. Pada proses indirect routing di jaringan GSM, awalnya panggilan diarahkan ke Home						
		Mobile Switching Center (MSC) yang kemudian berkonsultasi dengan Home Agent (HA).						
		Indirect routing pada GSM, awalnya akan panggilan akan diarahkan ke home MSC, dimana						
		home MSC ini akan berkonsultasi dengan Home Location Register (HLR), lalu setelah						
		itu panggilan akan diroute ke visiting MSC tempat mobile terminal yang dituju sekarang						
		berada.						
	X	6. Algoritma DES memiliki kunci publik dan kunci privat, sedangkan algoritma RSA						
		digunakan hanya untuk enkripsi. DES adalah algoritma kunci simetris, sedangkan RSA						
	7.	adalah algoritma kunci publik/asimetris yang memiliki kunci privat dan publik.						
	X	7. Fungsi <i>hash</i> mengkonversi pesan dengan panjang tetap menjadi suatu nilai dengan						
		panjang yang bervariasi. Fungsi hash mengkonversi pesan yang panjangnya bervariasi						
	77	menjadi suatu nilai dengan panjang yang fix.						
	X	8. Kantor pusat dan kantor cabang yang terhubung dengan IPSec akan memiliki 1 Security						
		Association (SA). Kantor pusat dan kantor cabang yang terhubung dengan IPSec akan						
		memiliki 2 Security Association (SA), masing-masing untuk kantor pusat ke cabang dan						
		sebaliknya.						

Hal: 1 dari 5

\mathbf{B}	\mathbf{S}	Pernyataan				
X		9. 802.11i menggunakan Authentication Server (AS) yang terpisah dari access point untuk				
		memperkuat security. Cukup jelas				
X		10. Stateful packet filtering firewall dapat melakukan tracking terhadap semua koneksi				
		TCP. Cukup jelas				

Jawablah pertanyaan dari setiap soal berikut!

Gunakan gambar berikut untuk mengerjakan soal 1 dan 2!

1. (12 points) [MAC dan IP Address] Sebuah Correspondent (C) yang berada pada Correspondent Network mengirim paket kepada Mobile Agent (MA) yang berada pada Home Network. Tentukan Source serta Destination MAC Address dan IP Address dari paket yang dikirimkan dengan melengkapi tabel di bawah, dengan format sebagai berikut: MAC-Perangkat dan IP-Perangkat, atau MAC-Perangkat-NoInterface dan IP-Perangkat-NoInterface. Contoh penulisan: MAC-C, IP-MA, MAC-R_C-1, IP-HA-2. Catatan: Router R_C dan HA memiliki nomor interface 1 dan 2 seperti tertera pada gambar, dan TIDAK ada NAT.

Lokasi	IP Source	IP Destination	MAC Source	MAC Destination
$C \to RC$	IP_C	IP_MA	MAC_C	MAC_R_C-1
$\mathrm{HA} \to \mathrm{AP}_{-}\mathrm{H}$	IP_C	IP_MA	MAC_HA-1	MAC_MA

Lokasi	Address 1	Address 2	Address 3	Address 4
	(Receiver)	(Sender)	(Router)	(Utk ad-hoc)
$AP_H \rightarrow MA$	MAC_MA	MAC_AP_H	MAC_HA-1	

- [Mobile IP] Anggap IP address C: 123.1.2.3, IP address MA (Permanent Address): 70.70.70.70,
 IP address HA: 70.70.70.1, Care of Address (CoA) FN: 200.1.1.1, dan CoA FN2: 180.1.1.1.
 - (a) (8 points) Saat ini **C** dan **MA** sedang melakukan sesi *video streaming*, di mana saat ini **MA** sedang berada di **Foreign Network** (**FN**). Lengkapi tabel di bawah untuk menggambarkan proses *indirect routing* antara **C** dan **MA! Note**: Kolom payload/isi hanya untuk paket yang memiliki kandungan payload/isi yang relevan saja.

12 Desember 2018 Hal: 2 dari 5

Pengirim	Penerima	Dest. IP Address	Payload/isi
С	HA	70.70.70.70	
НА	FA	200.1.1.1	paket no 1 (pada proses yang sebelumnya)
FA	MA	70.70.70.70	
MA	\mathbf{C}	123.1.2.3	

(b) (10 points) Saat sesi tengah berlangsung, **MA** berpindah ke **Foreign Network 2 (FN2)** sambil tetap menjaga konektifitas dengan **C** dengan protokol *Mobile IP* menggunakan metode *Indirect Routing*. Tuliskan proses *discovery* dan registrasi saat **MA** pindah ke **Foreign Network 2** dengan melengkapi tabel di bawah ini!

Pengirim	Penerima	Dest. IP Address	Jenis message
FA2	MA	70.70.70.70	ICMP agent advertise-
			ment
MA	FA2	180.1.1.1	registration request
FA2	HA	70.70.70.1	registration request
HA	FA2	180.1.1.1	registration reply
FA2	MA	70.70.70.70	registration reply

(c) (8 points) Tuliskan proses proses indirect routing antara C dan MA setelah MA pindah ke Foreign Network 2 dengan melengkapi tabel di bawah ini! Note: Kolom payload/isi hanya untuk paket yang memiliki kandungan payload/isi yang relevan saja.

Pengirim	Penerima	Dest. IP Address	Payload/isi
С	HA	70.70.70.70	
HA	FA2	180.1.1.1	paket no 1 (pada
			proses yang se-
			belumnya)
FA2	MA	70.70.70.70	
MA	\mathbf{C}	123.1.2.3	

- 3. Alice (\mathbf{A}) ingin mengirim pesan \mathbf{m} ke Bob (\mathbf{B}) .
 - (a) (2 points) Jika pesan \mathbf{m} yang dikirim dienkripsi menggunakan symmetric key cryptography untuk menjamin kerahasiaannya, dimana K_S = symmetric key, K(m) = enkripsi pesan \mathbf{m} dengan kunci \mathbf{K} , dan K'(K(m)) = dekripsi cipher-text dengan kunci \mathbf{K} ' untuk mendapatkan kembali \mathbf{m} . Tuliskan proses enkripsi yang dilakukan \mathbf{A} dan dekripsi yang dilakukan \mathbf{B} menggunakan notasi tersebut!

Solution: Enkripsi oleh A: $ciphertext(c) = K_S(m)$ Dekripsi oleh B: $m = K_S(K_S(m))$

(b) (4 points) Jika pesan \mathbf{m} yang dikirim dienkripsi menggunakan public key cryptography untuk menjamin kerahasiaannya, di mana K_A^+ = public key \mathbf{A} , K_A^- = private key \mathbf{A} , K_B^+ = public key \mathbf{B} , K_B^- = private key \mathbf{B} , K(m) = enkripsi pesan \mathbf{m} dengan kunci \mathbf{K} , dan K'(K(m)) = dekripsi cipher-text dengan kunci \mathbf{K} ' untuk mendapatkan kembali \mathbf{m} . Tuliskan proses enkripsi yang dilakukan \mathbf{A} dan dekripsi yang dilakukan \mathbf{B} menggunakan notasi tersebut!

12 Desember 2018 Hal: 3 dari 5

Solution: Enkripsi oleh **A**: $ciphertext(c) = K_B^+(m)$ Dekripsi oleh **B**: $m = K_B^-(K_B^+(m))$

(c) (10 points) Jika pesan **m** yang dikirim dienkripsi menggunakan kombinasi symmetric key dan public key cryptography untuk menjamin kerahasiaan pesan dan kunci simetrik, dengan notasi yang sama seperti pada poin (a) dan (b). Tuliskan semua proses yang dilakukan serta apa saja yang dikirim oleh **A**, dan proses yang dilakukan **B** setelah menerima apa saja yang dikirim **A**!

Solution: Pesan dienkripsi dengan symmetric key oleh \mathbf{A} : $K_S(m)$ Lalu symmetric key dienkripsi dengan public key \mathbf{B} : $K_B^+(K_S)$ Lalu \mathbf{A} mengirim $K_S(m)$ dan $K_B^+(K_S)$ ke \mathbf{B} \mathbf{B} mendapatkan K_S menggunakan K_B^- : $K_B^-(K_B^+(K_S))$ Lalu \mathbf{B} mendapatkan m menggunakan K_S yang didapatkan sebelumnya: $m = K_S(K_S(m))$

(d) (6 points) Jika pesan \mathbf{m} yang dikirim ditambahkan digital signature untuk menjamin integritasnya, dengan notasi yang sama seperti pada poin (b), dengan pengecualian: K(m) = pembuatan digital signature dari pesan \mathbf{m} dengan kunci \mathbf{K} , dan K'(K(m)) = validasi digital signature dari pesan \mathbf{m} dengan kunci \mathbf{K} '. Tuliskan semua proses yang dilakukan serta apa saja yang dikirim oleh \mathbf{A} , dan proses yang dilakukan \mathbf{B} setelah menerima apa saja yang dikirim \mathbf{A} !

Solution: Digital signature oleh \mathbf{A} : $d=K_A^-(m)$ Lalu \mathbf{A} mengirim $d=K_A^-(m)$ dan m ke \mathbf{B} \mathbf{B} memvalidasi d: $K_A^+(K_A^-(m))$ dengan m yang dikirim bersamaan

(e) (10 points) Jika pesan \mathbf{m} yang dikirim ditambahkan digital signature dengan fungsi hash untuk menjamin integritasnya dengan notasi yang sama seperti pada poin (d), ditambah H(m) = hasil hash dari pesan \mathbf{m} . Tuliskan semua proses yang dilakukan serta apa saja yang dikirim oleh \mathbf{A} , dan proses yang dilakukan \mathbf{B} setelah menerima apa saja yang dikirim \mathbf{A} !

Solution: Digital signature oleh A: $d=K_A^-(H(m))$ Lalu A mengirim $d=K_A^-(H(m))$ dan m ke B B menghitung hash dari $m\to H(m)$ Lalu B memvalidasi d: $K_A^+(K_A^-(H(m)))$ dengan H(m) yang sudah dihitung sebelumnya

4. (12 points) Tuliskan/jelaskan proses (real) handshake pada SSL!

Solution:

1. Client mengirimkan list algoritma yang disupport + nonce client (R_C) ke server

12 Desember 2018 Hal: 4 dari 5

- 2. Server memilih salah satu algoritma (choice) dari list yang diberikan client; lalu mengirimkan: choice + sertifikat server ($cert_{server}$) + nonce server (R_S)
- 3. Client memverifikasi $cert_{server}$ dan mengekstrak K_S^+ dari $cert_{server}$; mengenerate pre_master_secret lalu di-enkripsi dengan public key server $(K_S^+(pre_master_secret))$ dan dikirim ke server
- 4. Client dan server menghitung kunci enkripsi (K) dan kunci MAC (M) secara independen, dari pre_master_secret , R_C dan R_S
- 5. Client mengirim MAC dari semua pesan handshake yang dikirim nya
- 6. Server mengirim MAC dari semua pesan handshake yang dikirim nya

12 Desember 2018 Hal: 5 dari 5