Math 23a Practice Multiple Choice Questions

- 1. Which of these functions is **not** uniformly continuous on (0,1)?
 - (a) x^2
 - (b) $1/x^2$
 - (c) f(x) = 1 for $x \in (0, 1), f(0) = f(1) = 0$
 - (d) $\sin(x)$
 - (e) $\frac{\sin(x)}{x}$
- 2. Let s_n be a sequence of real numbers on a bounded set S, where $\liminf s_n \neq \limsup s_n$. Which of the following is not necessarily true?
 - (a) $\lim s_n$ does not exist.
 - (b) s_n is not Cauchy.
 - (c) $\liminf s_n < \limsup s_n$
 - (d) There exists a convergent subsequence.
 - (e) s_n has an infinite number of dominant terms.
- 3. Which of the following is not true about $s_n = \frac{1}{n}$?
 - (a) The sequence converges to 0.
 - (b) $\lim_{n\to\infty} \sum_{i=1}^n s_i = L$, for some finite L.
 - (c) $\limsup s_n = 0$.
 - (d) The series $\sum (-1)^n s_n$ converges.
 - (e) The series $\sum s_n^2$ converges.
- 4. Let $\sum a_n$ be a conditionally convergent series. Which of the following is not necessarily true?
 - (a) The series converges to some finite L.
 - (b) The series sum is independent of order of terms.
 - (c) $\sum |a_n|$ diverges.
 - (d) $\lim_{n \to \infty} (-1)^n a_n = 0$.
 - (e) None of the above. They're all necessarily true.

- 5. Which of the following series converges? THERE ARE TWO ANSWERS
 - (a) $\sum \frac{x^n}{n!}$, $\forall x$
 - (b) $\sum \frac{1}{n+\sin(n)}$
 - (c) $\sum (-1)^n n$
 - (d) $\sum \sin(n)$
 - (e) $\sum \frac{2^n}{\sqrt{n!}}$
- 6. Which of the following must be true of a continuous function on (a, b)?
 - (a) The function achieves its maximum on (a, b).
 - (b) The function is bounded.
 - (c) For all Cauchy Sequences s_n on the set (a, b), $f(s_n)$ is also Cauchy.
 - (d) If f(a) = 2, and f(b) = 5, then f(c) = 3, for some $c \in (a, b)$.
 - (e) None of the above.
- 7. Which of the following is not necessarily true about a uniformly continuous function, f, on [a, b]? **THERE ARE TWO ANSWERS**
 - (a) The function is bounded.
 - (b) The function achieves its maximum on the set (a, b).
 - (c) If f(a) = 4 and f(b) = 6, then f'(c) = 2 for some $c \in (a, b)$.
 - (d) The derivative f' is bounded.
 - (e) If f'(a) = 3, and f'(b) = 4, then f'(c) = 3.5 for some $c \in (a, b)$.
- 8. Find $\lim_{x\to b} \frac{\sqrt{x}-\sqrt{b}}{x-b}$ for b>0.
 - (a) ∞
 - (b) $\frac{1}{2\sqrt{b}}$
 - (c) 0
 - (d) $2\sqrt{b}$
 - (e) b
- 9. Let f be a differentiable function, where all derivatives exist, such that f(0) = 0, f'(0) = 0, and $|f''(x)| \le M, \forall x$. Which of the following is not necessarily true?
 - (a) $f(1) \le \frac{M}{2}$
 - (b) 0 is neither a maximum nor a minimum.
 - (c) $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. if } x \in (-\delta, \delta), |f(x)| < \epsilon$
 - (d) If $\lim s_n = 0$, then $\lim f(s_n) = 0$.
 - (e) None of the above.