NSR Search Results Page 1 of 8

Visit the **Isotope Explorer** home page!

55 reference(s) found :

Keynumber: 1999CV01

Reference: Nucl.Phys. A645, 262 (1999) **Authors:** F.Cvelbar, A.Likar, T.Vidmar

Title: Angular Distribution Effect on the Integrated Cross Section for Radiative Capture of 14 MeV

Neutrons

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ²⁸Si, ⁸⁹Y, ²⁰⁸Pb(n,γ),E=14 MeV; calculated Iγ

 (θ) , Legendre coefficient a_2 . Consistent direct-semidirect model. Comparisons with data.

T7 1 1000

Keynumber: 1998LI21

Reference: Nucl. Phys. A635, 43 (1998)

Authors: A.Likar, T.Vidmar

Title: Integrated Cross Sections in Fast Neutron Capture in Light Nuclei

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ³²S, ⁴⁰Ca(n, γ),E=fast; calculated σ , σ (θ). Direct-

semidirect capture model. Comparison with data.

Keynumber: 1997RO26

Reference: IEEE Trans.Instrum.Meas. 46, 560 (1997)

Authors: S.Rottger, A.Paul, U.Keyser

Title: Prompt (n, γ) -Spectrometry for the Isotopic Analysis of Silicon Crystals for the Avogadro Project

Keyword abstract: NUCLEAR REACTIONS ¹H, ¹⁴N, ²⁸, ²⁹Si, ⁵⁶Fe, ²⁷Al, ⁶³Cu(n,γ),E=thermal;

measured Eγ,Iγ.

Keyword abstract: ATOMIC MASSES ¹, ²H, ¹⁴, ¹⁵N, ²⁸, ²⁹, ³⁰, ³¹, ³²Si, ⁵⁶, ⁵⁷Fe; measured neutron-

induced \gamma spectra; deduced mass differences.

Keynumber: 1997KAZZ

Reference: Proc.9th Intern.Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996, G.L.Molnar, T.Belgya, Zs.Revay, Eds., Vol.1, p.440 (1997)

Authors: T.Kahn, F.J.Hartmann, J.Ott, T.von Egidy, M.Jentschel

Title: Gamma-Ray Induced Doppler Shift After (n, γ) Reactions in Si and Ti

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ⁴⁸Ti(n,γ),E=thermal; measured E γ ,I γ , γ -induced

Doppler shift. 49 Ti level deduced $T_{1/2}$.

Keynumber: 1997KA71

Reference: Nucl.Instrum.Methods Phys.Res. A385, 100 (1997) **Authors:** T.Kahn, T.von Egidy, F.J.Hartmann, J.Ott, M.Jentschel

Title: Gamma-Ray Induced Doppler Shift Attenuation after (n,γ) Reactions in Si and Ti **Keyword abstract:** NUCLEAR REACTIONS ²⁸Si, ⁴⁸Ti (n,γ) ,E=reactor; measured E γ ,I γ , $\gamma\gamma$ -coin,Doppler-shifted spectra. ²⁹Si, ⁴⁹Ti deduced levels T_{1/2}. Gamma-ray induced Doppler shift

attenuation method.

Keynumber: <u>1992RA19</u>

Reference: Phys.Rev. C46, 972 (1992)

Authors: S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn **Title:** Thermal-Neutron Capture by Silicon Isotopes

NSR Search Results Page 2 of 8

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n,γ),E=thermal; measured Eγ,Iγ following capture; deduced σ . 29 , 30 , 31 Si deduced neutron separation energies,transition γ-multipolarity. Direct capture interpretation.

Keynumber: 1991CA18

Reference: Z.Phys. A339, 261 (1991)

Authors: B.Castel, E.R.Siciliano, Y.Okuhara **Title:** Radiative M1 Capture in Light Nuclei

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n, γ), E not given; analyzed B(M1) data; deduced

reaction mechanism. Shell model.

Keynumber: <u>1990IS02</u>

Reference: Phys.Rev. C41, 1272 (1990)

Authors: M.A.Islam, T.J.Kennett, W.V.Prestwich

Title: Thermal Neutron Capture in Silcon

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n, γ),E=thermal; measured E γ ,I γ , σ . 29 , 30 ,

³¹Si deduced levels,neutron separation energy. Pair spectrometer,hyperpure Ge detector.

Keynumber: 1989KO53

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 53, 2125 (1989); Bull.Acad.Sci.USSR, Phys.Ser. 53, No.11,

63 (1989)

Authors: Yu.E.Koshutsky, V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova **Title:** Lifetimes of Highly Excited States of the Nuclei in (nγ) Reactions with Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ³²S(n,γ),E=thermal; measured γγ-coin. ²⁹Si, ³³S

levels deduced $T_{1/2}$.

Kevnumber: 1989ISZX

Reference: Phys.Can. 45, No.3, 47, FC4 (1989) **Authors:** M.A.Islam, T.J.Kennett, W.V.Prestwich

Title: A Study of Gamma Rays from Thermal Neutron Capture in Silicon Isotopes

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n, γ),E=thermal; measured γ -spectra

following capture. ²⁹, ³⁰, ³¹Si deduced transitions, neutron separation energies.

Kevnumber: 1989HO09

Reference: Phys.Rev. C39, 1691 (1989) **Authors:** Y.-K.Ho, Z.-S.Yuan, Y.Mi

Title: Strong Nonstatistical Effects in Neutron Capture at the 2p Size Resonance Region

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁸Si(n, γ),E=thermal-2 MeV; calculated σ (E);

deduced nonstatistical fractions, reaction mechanisms.

Kevnumber: 1988KI02

Reference: J.Phys.(London) G14, Supplement S215 (1988)

Authors: H.Kitazawa, M.Igashira

Title: Mechanism of s-Wave and p-Wave Neutron Resonance Capture in Light and Medium-Weight

Nuclei

Keyword abstract: NUCLEAR REACTIONS ¹⁶O, ²⁸Si, ³²S(n, γ),E ≈ resonance; measured E γ ,I γ . ¹⁷O,

²⁹Si, ³³S deduced resonance Γγ. Valence capture model.

NSR Search Results Page 3 of 8

Keynumber: 1987WE07

Reference: Phys.Rev. C36, 585 (1987)

Authors: H. Weigmann, P.W. Martin, R. Kohler, I. van Parijs, F. Poortmans, J.A. Wartena **Title:** Structure of Unbound States in ²⁹Si from Neutron Resonance Spectroscopy of ²⁸Si + n

Keyword abstract: NUCLEAR REACTIONS 28 Si(n,n), (n, γ),E=30-4640 keV; measured total,capture $\sigma(E). \ ^{29}Si \ deduced \ resonances, J, \pi, \ (g\Gamma n), \ (g\Gamma n\Gamma \gamma /\Gamma), level \ density, neutron \ strength \ functions, B(\lambda).$

Natural target. R-matrix analyses.

Kevnumber: 1987KI08

Reference: Nucl. Phys. A464, 61 (1987)

Authors: H.Kitazawa, M.Ohgo, T.Uchiyama, M.Igashira

Title: Particle-Vibrator Coupling Model Calculation of Partial Radiative Widths for p_{3/2} Wave Neutron

Resonance on ²⁸Si

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ),E=565 keV; calculated Γ n, $\Gamma\gamma$. Particle-vibrator

coupling model.

Keynumber: 1986SH11

Reference: Nucl. Phys. A452, 205 (1986)

Authors: M.Shimizu, M.Igashira, K.Terazu, H.Kitazawa

Title: γ-Ray Transitions following p-Wave Neutron Resonance Capture and Off-Resonance Capture by

 28 Si

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ),E=485,565,802,806 keV; measured σ (E,E γ) at

90⁰ and 125⁰. ²⁹Si deduced resonances. J. Γγ. Natural target.

Keynumber: 1984LI10

Reference: Z.Phys. A317, 149 (1984)

Authors: A.Lindholm, L.Nilsson, I.Bergqvist, R.Zorro, N.Olsson, B.Castel, A.Likar

Title: Fast Neutron Radiative Capture in Silicon

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n, γ),E=3-14 MeV; measured $\sigma(\theta=90^0)$ vs E; deduced reaction mechanism. ²⁹Si deduced GDR,GQR interference channel dependence. Compound nucleus, direct-semidirect, continuum shell model analyses.

Keynumber: 1984CA25

Reference: Z.Phys. A318, 31 (1984)

Authors: B.Castel, C.Mahaux

Title: On the Difference between the Effective Charges Used for Bound States of ²⁹Si and for Low-

Energy Neutron Radiative Capture by ²⁸Si

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n,γ),E=560 keV; calculated p-wave radial function;

deduced external capture dominance, neutron E1 effective charge dependence of capture process.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ),

NSR Search Results Page 4 of 8

(n,p), (n,α) , (p,γ) , (p,n), (p,α) , (α,γ) , (α,n) , (α,p) , $^{70}Zn(p,\gamma)$, (p,n), (p,α) , (α,γ) , (α,n) , (α,p) , E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983KE11

Reference: Nucl.Instrum.Methods 215, 159 (1983)

Authors: T.J.Kennett, W.V.Prestwich, R.J.Tervo, J.S.Tsai

Title: Evaluation of a Method for the Determination of Accurate Transition Energies in the (n, γ)

Reaction

Keyword abstract: NUCLEAR REACTIONS 9 Be, 14 N, 28 , 29 Si(n, γ),E=0.5-11 MeV; measured E γ ,I γ . 10 Be, 29 , 30 Si, 15 N deduced neutron separation energy,level energies. High fidelity pulse height to energy transformation.

Keynumber: 1983BEZS

Reference: Tandem Accelerator Lab, Uppsala, 1982 Biennial, p.45 (1983)

Authors: I.Bergqvist, R.Zorro, N.Olsson, A.Lindholm, L.Nilsson, A.Hakansson, A.Likar, B.Castel

Title: Neutron Capture in Spherical Nuclei

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ),E=2.5-14 MeV; measured capture σ (E), γ (θ);

deduced capture mechanism.

Keynumber: 1982BA02

Reference: J.Phys.(London) G8, 275 (1982)

Authors: B.Basarragtscha, D.Hermsdorf, E.Paffrath

Title: An Approach for a Consistent Description of Gamma-Ray Spectra from $(n,x\gamma)$ Reactions Induced

by Fast Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ⁵⁶Fe(n, γ), (n,X),E=14 MeV; calculated σ (E γ).

Statistical model, equilibrium, preequilibrium superposition.

Keynumber: 1981BEZU

Reference: Tandem Accelerator Lab, Uppsala, Ann.Rept., p.36 (1981)

Authors: I.Bergqvist, N.Olsson, R.Zorro, A.Lindholm, L.Nilsson, M.Saleem

Title: Neutron Capture in Spherical Nuclei

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ³²S(n, γ),E=3-14 MeV; measured σ (E).

Kevnumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture

resonance integrals.

Keynumber: 1980JO02

Reference: Nucl. Phys. A334, 269 (1980)

Authors: S.Joly, G.Grenier, J.Voignier, J.W.Boldeman **Title:** Resonance Neutron Capture Spectroscopy in ²⁸Si

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ),E=565,813 keV; measured σ (E,E γ). 29 Si

resonances deduced $\Gamma \gamma$. Natural target. Valence, shell models.

NSR Search Results Page 5 of 8

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron

binding energy.

Keynumber: 1980HEZD

Coden: CONF Gaussig, P147, Hermsdorf, ZFK-410

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ), (n,n), (n,n'), (n,p), (n, α), (n,X),E <20 MeV;

analyzed $\sigma(E)$. Compilation.

Keynumber: 1980AL19

Reference: J.Phys.(London) G6, 1173 (1980) **Authors:** B.J.Allen, D.D.Cohen, F.Z.Company

Title: Radiative Widths of Neutron Scattering Resonances

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²⁴Mg, ²⁷Al, ²⁸Si, ⁵⁶Fe, ²⁰⁷Pb(n,γ),E=20-80 keV; measured $\sigma(E\gamma,E)$. ²⁰F, ²⁵Mg, ²⁸Al, ²⁹Si, ⁵⁷Fe, ²⁰⁸Pb deduced resonances,Γn,L,J, π ,Γγ. Moxon-Rae

detectors, Monte-Carlo analysis.

Keynumber: 1979LI02

Reference: Z.Phys. A289, 229 (1979)

Authors: A.Lindholm, L.Nilsson, I.Bergqvist, N.Olsson

Title: Evidence for Neutron Capture Through Doorway States in ²⁹Si

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ),E=2.7-6.2 MeV; measured σ (E); deduced

possible evidence for doorway. Comparison with theory.

TZ 1 1070

Keynumber: 1978NIZX

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No57, Nilsson

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n, γ),E=2.7-6.2 MeV; measured σ. ²⁹Si level

deduced $\Gamma \gamma$, J, π . Evidence for p-wave doorway state.

Keynumber: 1978NIZR

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P704, Nilsson

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ),E=3-6 MeV; measured E γ ,I γ ; deduced σ .

Keynumber: 1978MIZS

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No52, Micklinghoff

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n, γ),E=1-15 MeV; calculated σ (E). K-matrix

formalism.

Keynumber: 1978MIZJ

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P690, Micklingoff

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n, γ),E=1-15 MeV; calculated σ; deduced doorway

structure. K-matrix approach, microscopic treatment of single particle resonances.

NSR Search Results Page 6 of 8

Keynumber: 1978MI14

Reference: Ann. Phys. (New York) 114, 452 (1978)

Authors: M.Micklinghoff, B.Castel

Title: Doorway Structures in the Radiative Capture of Neutrons by 28 Si and 32 S **Keyword abstract:** NUCLEAR REACTIONS 28 Si, 32 S(n, γ); calculated σ . K-matrix

formalism, microscopic treatment including single-particle resonances.

Keynumber: 1978JOZT

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No37, Joly

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n,γ),E=0.5-3.0 MeV; measured capture γ-

spectra, $\text{E}\gamma$, $\text{I}\gamma$. ²⁹Si deduced resonances, $\text{F}\gamma$. Comparison with valence, shell models.

Keynumber: 1978HA32

Reference: Phys.Rev. C18, 1542 (1978)

Authors: D.Halderson, B.Castel

Title: Neutron and Gamma Width Correlations in Neutron Capture Reactions: A Comparative Study

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ); calculated $\Gamma \gamma$.

Keynumber: 1978GRZP

Coden: PREPRINT G Grenier, 10/3/78

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ),E=565,813 keV; measured γ -spectra.

Keynumber: 1978GRZK

Coden: REPT CEA-N-2037,P63,Grenier

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n, γ),E=500 keV-1 MeV; measured Eγ,Iγ[relative].

²⁹Si resonances deduced $\Gamma \gamma$.

Kevnumber: 1978BEYD

Coden: REPT Uppsala, Tandem Accelerator Lab, 1978 Ann, p55,7-4-2, Bergqvist

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ³²S, ⁴⁰Ca, ⁸⁹Y, ¹⁴⁰Ce, ²⁰⁸Pb(n,γ),E=5-15 MeV;

measured σ . direct-semidirect, compound nuclear models.

Keynumber: 1976TH03

Reference: Can.J.Phys. 54, 383 (1976)

Authors: V.J.Thomson, W.V.Prestwich, T.J.Kennett

Title: Resonance Neutron Capture in Silicon

Keyword abstract: NUCLEAR REACTIONS 28 , 29 Si(n, γ),E >1 keV; measured σ (E γ). 29 , 30 Si

deduced resonances, J, π .

Keynumber: 1976KE04

Reference: Nucl.Phys. A270, 164 (1976)

Authors: M.J.Kenny, B.J.Allen, J.W.Boldeman, A.M.R.Joye

Title: Resonance Neutron Capture in Silicon

Keyword abstract: NUCLEAR REACTIONS 28 , 29 Si(n, γ),E=31.7,38.8,55.9,67.7 keV; measured σ

(E,Eγ). 29 , 30 Si deduced resonances, Γγ. Natural target.

Keynumber: 1975BO36

NSR Search Results Page 7 of 8

Reference: Nucl. Phys. A252, 62 (1975)

Authors: J.W.Boldeman, B.J.Allen, A.R.de L. Musgrove, R.L.Macklin

Title: The Neutron Capture Cross Section of Natural Silicon

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹, ³⁰Si(n, γ),E=3-1500 keV; measured σ(E,E γ). ²⁹, ³⁰, ³¹Si deduced resonances,J,L,n-width, γ -width,correlation coefficient,valence component. Li(n, α) reaction monitor.

Keynumber: 1975ALZW

Coden: JOUR BAPSA 20 150 EB16

Keyword abstract: NUCLEAR REACTIONS 27 Al, 28 Si, 40 Ca, 48 Ti, 52 Cr, 90 Zr, 138 Ba(n, γ),E >2.5

keV; measured $\sigma(E\gamma)$.

Keynumber: 1974SPZQ **Coden:** REPT RCN-210

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹Si, ³⁷Cl(n, γ), E=thermal; measured Eγ, Iγ, γ(θ), CP

 (γ) , σ(E, E γ); deduced Q. ²⁹, ³⁰Si, ³⁸Cl deduced levels, γ -branching, J, π .

Keynumber: 1974LO14

Reference: Nuovo Cim. 20A, 373 (1974)

Authors: G.Longo, F.Saporetti, F.Rigaud, J.L.Irigaray, G.Y.Petit

Title: Different Coupling Interactions in Semi-Direct Capture of 14 MeV Neutrons by Si, Sr, Ce and

²⁰⁸Pb

Keyword abstract: NUCLEAR REACTIONS 28 Si, 88 Sr, 140 Ce, 208 Pb(n, γ),E=14 MeV; calculated σ

(Eγ).

Keynumber: 1973RIZK

Coden: CONF Asilomar(Photonuclear Reactions), Vol 2P953

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ⁸⁸Sr, ¹⁴⁰Ce, ²⁰⁸Pb(n, γ); measured σ (E γ). ²⁹Si,

⁸⁹Sr. ¹⁴¹Ce. ²⁰⁹Pb deduced levels.

Keynumber: 1973DIZW

Coden: JOUR BAPSA 18 648 GH3

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n, γ); ²⁹Si calculated doorway states.

Keynumber: 1973BHZU **Coden:** REPT BNL-50379

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n, γ), (n,n' γ), analyzed σ (E). 28 , 29 , 30 , 31 Si

compiled level, γ ray properties.

Keynumber: 1973BAUM

Coden: REPT INDC(SEC)-35/L P17

Keyword abstract: NUCLEAR REACTIONS 12 C, 28 Si(n, γ); calculated σ .

Keynumber: 1973ALYU

Coden: CONF Asilomar(Photonuclear Reactions), Vol 1 P291

Keyword abstract: NUCLEAR REACTIONS 28 Si(n, γ); measured σ (E γ). 29 Si deduced

resonances, level-width.

NSR Search Results Page 8 of 8

Keynumber: 1972POZJ

Coden: CONF Budapest, Contributions, P250, 10/13/72

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ⁴⁰Ca, ⁸⁸Sr, ¹³⁸Ba, ²⁰⁸Pb(n,γ),E=14 MeV;

calculated $\sigma(E\gamma)$.

Keynumber: 1972CVZZ

Coden: JOUR FZKAA 4 Suppl,53

Keyword abstract: NUCLEAR REACTIONS ²⁸Si(n, γ),E=14 MeV; measured σ (E γ).

Keynumber: 1970SP02

Reference: Nucl.Phys. A145, 449 (1970)

Authors: A.M.J.Spits, A.M.F. Op den Kamp, H.Gruppelaar

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ²⁸Si Enriched Silicon

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹, ³⁰Si, ⁶Li, ¹⁴N, ¹⁹F, ²⁷Al, ⁵⁴, ⁵⁶Fe, ²⁰⁷Pb(n,γ), E=thermal; ²⁸Si(n,n'γ), E=fast; measured Εγ, Ιγ; deduced Q. ²⁹, ³⁰, ³¹Si deduced levels, γ-branching.

Natural, ²⁸Si enriched targets, Ge(Li) detector.

Keynumber: 1970CV02

Reference: Nucl. Phys. A159, 555 (1970)

Authors: F.Cvelbar, A.Hudoklin

Title: Gamma-Ray Spectra from the Radiative Capture of 14 MeV Neutrons in ²⁸Si and ⁴⁰Ca

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ⁴⁰Ca(n, γ),E=14 MeV; calculated σ (E γ). Direct-

semidirect, statistical models.

Keynumber: 1970BE48

Reference: Nucl.Phys. A157, 520 (1970)

Authors: G.B.Beard, G.E.Thomas

Title: Gamma Rays from Thermal Neutron Capture in ²⁸Si, ²⁹Si, and ³⁰Si

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n, γ),En=thermal; measured E γ ,I γ ; deduced Q.

²⁹, ³⁰, ³¹Si deduced levels,γ-branching. Enriched targets, Ge(Li) detector.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal;

measured Eγ; deduced Q. Natural targets.
