Math 300 Lesson 39 Notes

Case Study

YOUR NAME HERE

July, 2022

Contents

library(tidyverse)
library(broom)
library(infer)
library(moderndive)
library(skimr)

Objectives
Reading
Lesson
Case Study
LC 11.1 (Objective 1)
Documenting software
Objectives
1. Using all the tools and ideas from the course, complete a study that uses the complete data analysis cycle.
Reading
Chapter 11 - 11.2
Lesson
Complete learning check 11.1.
• By completing the entire data analysis cycle, we will review many of the ideas from the course. This will help prepare us for the final.
Libraries

Case Study

First let's work through the case study in the reading.

The house_prices dataset consists of 21,613 houses and 21 variables describing the sale prices of homes sold between May 2014 and May 2015 in King County, Washington, US (for a full list and description of these variables, see the help file by running ?house_prices in the console). In this case study, we'll create a multiple regression model where:

The outcome variable y is the sale price of houses. Two explanatory variables: - A numerical explanatory variable x_1 : house size $sqft_living$ as measured in square feet of living space. Note that 1 square foot is about 0.09 square meters. - A categorical explanatory variable x_2 : house condition, a categorical variable with five levels where 1 indicates "poor" and 5 indicates "excellent."

Exploratory

Let's get the data and explore them.

Recall the three common steps in an exploratory data analysis we introduced in Subsection 5.1.1:

- Looking at the raw data values.
- Computing summary statistics.
- Creating data visualizations.

glimpse(house prices)

```
## Rows: 21,613
## Columns: 21
## $ id
                 <chr> "7129300520", "6414100192", "5631500400", "2487200875", ~
## $ date
                 <date> 2014-10-13, 2014-12-09, 2015-02-25, 2014-12-09, 2015-02~
                 <dbl> 221900, 538000, 180000, 604000, 510000, 1225000, 257500,~
## $ price
                 <int> 3, 3, 2, 4, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 5, 4, 3, 4, 2,~
## $ bedrooms
## $ bathrooms
                 <dbl> 1.00, 2.25, 1.00, 3.00, 2.00, 4.50, 2.25, 1.50, 1.00, 2.~
## $ sqft_living
                 <int> 1180, 2570, 770, 1960, 1680, 5420, 1715, 1060, 1780, 189~
## $ sqft_lot
                 <int> 5650, 7242, 10000, 5000, 8080, 101930, 6819, 9711, 7470,~
                 <dbl> 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 2.0, 1.0, 1~
## $ floors
## $ waterfront
                 <lg1> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
## $ view
                 ## $ condition
                 <fct> 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, ~
                 <fct> 7, 7, 6, 7, 8, 11, 7, 7, 7, 7, 8, 7, 7, 7, 7, 9, 7, 7~
## $ grade
## $ sqft_above
                 <int> 1180, 2170, 770, 1050, 1680, 3890, 1715, 1060, 1050, 189~
## $ sqft_basement <int> 0, 400, 0, 910, 0, 1530, 0, 0, 730, 0, 1700, 300, 0, 0, ~
                 <int> 1955, 1951, 1933, 1965, 1987, 2001, 1995, 1963, 1960, 20~
## $ yr_built
## $ yr_renovated
                 ## $ zipcode
                 <fct> 98178, 98125, 98028, 98136, 98074, 98053, 98003, 98198, ~
## $ lat
                 <dbl> 47.5112, 47.7210, 47.7379, 47.5208, 47.6168, 47.6561, 47~
                 <dbl> -122.257, -122.319, -122.233, -122.393, -122.045, -122.0~
## $ long
## $ sqft_living15 <int> 1340, 1690, 2720, 1360, 1800, 4760, 2238, 1650, 1780, 23~
                 <int> 5650, 7639, 8062, 5000, 7503, 101930, 6819, 9711, 8113, ~
## $ sqft_lot15
```

Now summary statistics.

```
# This is to help with the skim() function
my_skim<-skim_with(numeric = sfl(hist = NULL))</pre>
house prices %>%
 select(price, sqft_living, condition) %>%
 my_skim() %>%
 print()
## -- Data Summary -----
##
                      Values
## Name
                      Piped data
## Number of rows
                      21613
## Number of columns
## Column type frequency:
## factor
##
  numeric
                      None
## Group variables
##
## skim_variable n_missing complete_rate ordered n_unique
             0 1 FALSE 5
## 1 condition
## top_counts
## 1 3: 14031, 4: 5679, 5: 1701, 2: 172
## -- Variable type: numeric -------
  skim_variable n_missing complete_rate mean sd p0 p25 p50
            0 1 540088. 367127. 75000 321950 450000
0 1 2080. 918. 290 1427 1910
## 1 price
## 2 sqft_living
    p75 p100
## 1 645000 7700000
## 2 2550 13540
## $factor
skim_variable n_missing complete_rate ordered n_unique top_counts
                    0 1 FALSE
                                      5 3: 14031, 4: 5679, 5: ~
## 1 condition
##
## $numeric
## -- Variable type: numeric -------
## skim_variable n_missing complete_rate mean sd p0 p25 p50 p75
                  0 1 5.40e5 3.67e5 75000 321950 450000 645000
0 1 2.08e3 9.18e2 290 1427 1910 2550
## 1 price
```

Let's now perform the last of the three common steps in an exploratory data analysis: creating data visualizations.

1 2.08e3 9.18e2 290 1427 1910

2550

0

... with 1 more variable: p100 <dbl>

2 sqft_living

```
# Complete the code
# Histogram of house price:
\# ggplot(house\_prices, aes(x = \____)) +
# geom_histogram(color = "black", fill = "cyan") +
# labs(x = "price (USD)", title = "House price") +
# theme_classic()
# Complete the code
# Histogram of sqft_living:
\# ggplot(house\_prices, aes(x = \____)) +
# geom_histogram(color = "black", fill = "cyan") +
  labs(x = "living space (square feet)", title = "House size") +
# theme_classic()
# Complete the code
# Density plot of sqft_living:
\# ggplot(house\_prices, aes(x = \____)) +
# geom_density(color = "black", fill = "cyan") +
\# labs(x = "living space (square feet)", title = "House size") +
# theme_classic()
# Barplot of condition:
ggplot(house\_prices, aes(x = condition)) +
 geom_bar(color = "black", fill = "cyan") +
 labs(x = "condition", title = "House condition") +
 theme_classic()
```


The distribution of the variables are skewed, so let's transform the variables. Let's create new log10 transformed versions of the right-skewed variable price and sqft_living using the mutate() function from Section 3.5, but we'll give the latter the name log10_size, which is shorter and easier to understand than the name log10_sqft_living.

```
house_prices_reduced <- house_prices %>%
  mutate(
    log10_price = log10(price),
    log10_size = log10(sqft_living)) %>%
  select(log10_price, log10_size, condition)
```

Let's plot the new variables.

```
# Complete the code
# Density plot of log10 sqft_living:

# Complete the code
# Density plot of log10 price:
```

These variables seem to be more symmetrical.

We are going to revise our multiple regression model to use our new variables:

The outcome variable y is the sale log10_price of houses. Two explanatory variables:

- A numerical explanatory variable x_1 : house size $log10_size$ as measured in log base 10 square feet of living space.
- A categorical explanatory variable x_2 : house condition, a categorical variable with five levels where 1 indicates "poor" and 5 indicates "excellent."

Multivariate

Let's explore regression models using scatterplots.

```
# Complete the code

# Plot interaction model

# ggplot(house_prices_reduced,

# aes(x = _____, y = _____, col = _____)) +

# geom_point(alpha = 0.05) +

# geom_smooth(method = "lm", se = FALSE) +

# labs(y = "log10 price",

# x = "log10 size",

# title = "House prices in Seattle")
```

```
# Complete the code
# Plot parallel slopes model
# ggplot(house_prices_reduced,
# aes(x = _____, y = _____, col = _____)) +
# geom_point(alpha = 0.05) +
# geom_parallel_slopes(se = FALSE) +
# labs(y = "log10 price",
# x = "log10 size",
# title = "House prices in Seattle")
```

Let's create a faceted plot of the interaction model.

Regression model

Let's build the interaction model.

It is not clear that the interaction model is needed. At most, maybe for a house in condition 5. A machine learning class will help with making a better prediction model.

Predicting

Let's use the model to make predictions. Say you're a realtor and someone calls you asking you how much their home will sell for. They tell you that it's in condition = 5 and is sized 1900 square feet. Let's use the interaction model we fit to make predictions! We will use the augment() function.

```
# Complete the code
# price_interaction %>%
# augment(newdata=tibble(condition="_____",log10_size=log10(_____)))
```

So the predicted price is

```
10^5.724213
```

[1] 529923.3

LC 11.1 (Objective 1)

(LC11.1) Repeat the regression modeling in Subsection 11.2.3 and the prediction making you just did on the house of condition 5 and size 1900 square feet in Subsection 11.2.4, but using the parallel slopes model you visualized in Figure 11.6.

```
# Fit regression model:

# Get regression table:

# Predict the price
```

Using the rounded numbers from the table:

Documenting software

File creation date: 2022-07-05R version 4.1.3 (2022-03-10)

tidyverse package version: 1.3.1
moderndive package version: 0.5.4

skimr package version: 2.1.4broom package version: 0.8.0