PCT/US2003/038829 WO 2004/052290

1

SEQUENCE LISTING

<110> diaDexus, Inc. Macina, Roberto Turner, Leah Sun, Yongming

<120> Compositions, Splice Variants and Methods Relating to Breast Specific Genes and Proteins

<130> DEX-0453

<150> US 60/431,145

<151> 2002-12-05

<160> 253

<170> PatentIn version 3.1

<210> 1

<211> 5459 <212> DNA <213> Homo sapien

<400> 1

60 cgcagacagg ttgagcgagc gggagaggcc cggggcacgt gcagaaagga gccccgcgag tggcgcgccg gggatgtgag tgccccttgc cctctactga atccagcccc ctccccgccc 120 accgectecg cetttgeata gatacagtea tetggecage eccegecet ceteceggeg 180 240 teagecegee agaggeegeg eggggeeegg getteggeeg ateageeegg gaggeeeege 300 coggaggage cgtcgcgcgc ccgcttcctg ttcggctggt tcctgccagc tcgaggacaa 360 aacacgcgtg cgcgcggcgg gcgagcgcgc tcgccgcctc agtcgccagc gccgggcgca 420 gtccgccttt ttccggagca gactggccgc ggtgctagtc ggtagcagcg gccgccgcag 480 cggctccgca ctggcgaacc gagggcagaa aaaggcgggg ttgacggctt tttggtagga gtgggctgga ccggacgcca gagacaaagg ctcccaaggc aagagggact gtggccctgc 600 gteggetetg eteggaactg etgaceecag gaatttaege ceettegttt tretettetg 660 attettetet teteccaage eegegteece teaegegtegg ceteteteet tgeegggagg 720 geogegatgg aggtecegee caggetttee catgtgeege egecattgtt ecceteeget 780 cocgetactt tagceteceg cagectetee cattggegge egeggeegee geggeageta 840 geologica teletteget egeteleage telegelegge agggggegeg eegggeleag 900 cgccacgtca ccgcccagca gccctcccga ttggcgggcg gggcggctat aaagggaggg 960 cgcaggcggc gcccggatct cttccgccgc cattttaaat ccagctccat acaacgctcc 1020 gccgccgctg ctgccgcgac ccggactgcg cgccagcacc cccctgccga cagctccgtc 1080

actatggagg atatgaacga gtacagcaat atagaggaat tcgcagaggg atccaagatc 1140 aacgcgagca agaatcagca ggatgacggt aaaatgttta ttggaggctt gagctgggat 1200 1260 acaagcaaaa aagatctgac agagtacttg tctcgatttg gggaagttgt agactgcaca 1320 attaaaacag atccagtcac tgggagatca agaggatttg gatttgtgct tttcaaagat 1380 gctgctagtg ttgataaggt tttggaactg aaagaacaca aactggatgg caaattgata 1440 gatcccaaaa gggccaaagc tttaaaaggg aaagaacctc ccaaaaaggt ttttgtgggt 1500 ggattgagcc cggatacttc tgaagaacaa attaaagaat attttggagc ctttggagag 1560 attgaaaata ttgaacttcc catggataca aaaacaaatg aaagaagagg attttgtttt atcacatata ctgatgaaga gccagtaaaa aaattgttag aaagcagata ccatcaaatt 1620 ggttctggga agtgtgaaat caaagttgca caacccaaag aggtatatag gcagcaacag 1680 1740 caacaacaaa aaggtggaag aggtgctgca gctggtggac gaggtggtac gaggggtcgt 1800 ggccgaggtc agggccaaaa ctggaaccaa ggatttaata actattatga tcaaggatat 1860 ggaaattaca atagtgccta tggtggtgat caaaactata gtggctatgg cggatatgat tatactgggt ataactatgg gaactatgga tatggacagg gatatgcaga ctacagtggc 1920 1980 caacagagca cttatggcaa ggcatctcga gggggtggca atcaccaaaa caattaccag 2040 ccatactaaa ggagaacatt ggagaaaaca ggtgtgtata agagtacagg aaaacagtag aaatqtctaa tttaatttaa agatcaatag acaaatgaaa cgtaaaaaca aaatactatg 2100 2160 tagcctgttt ttactaaatt gttgattttt taattgcttt atgagcctgt tttgcctaaa 2220 gtgtctatag atctttaact ttaaagtctt atctcacttt ctttagtatt gcagaaaaac 2280 ttaagagttt ttctgtttgc ttttgtgtac caggtggtct agaggaataa ttaaacattt tagaactatt aacaggtaaa gtactgaaat gggtacaact taaggaaaac aagaatgttg 2340 2400 tettetaact etgaeattat acettgtttg taccegecag egggaactte attgeaggee gtgtgtcacc ctgaccacgt ctatctctgg gggtcgcacg ttgcgggcag agcgcaaggc 2460 atacaccaga aaacgctgtc ctgtggtatg gtctcttcca acttcatgta ccagcgtaaa 2520 2580 gattaaagtg gaaaacttca gactttggct tcatttttaa tctttttgga gattaagtgt ctaaacttaa cttaaatggt tttttacagg agttaaagta cataaatgcc tttttacagc 2640 ttaatcattt tggtcttctg tttagtgttg tatttcaatt gtggagcctc attttaagtg 2700 2760 ttcattcttt taagatttaa tgcttgcttt ttctttttat agctaatagt gaaatctaca aaccaaaaca agaactttta aatctgggat ataaattaaa gatcatatgc acagatcaat 2820 2880 ttatgttctt gtaataaact tattagaaat tggtgtttgt gatagcattt tacttgggtt 2940 actagagatg cttctagtag accttaatct agcatagttg aacctctgaa tatgggaagg

PCT/US2003/038829

3000 ttqtattccc agattctttc ctgaatagat ttgaatttaa tgtcatttgg gaactccagg gtgagtttat tgactaccca aactgtattt taccaataaa tatgcatatg atctttaatt 3060 attgaagaaa ataaagtgag gacttaaaac aattcatgaa agtggacctt taaaagcttg 3120 3180 tcaqaqttqc acaaatctaa ctggtatttt gtttttgttt ttaggaggag atgttaaagt aacccatctt gcaggacgac attgaagatt ggtcttctgt tgatctaaga tgattatttt 3240 gtaaaagact ttctagtgta caagacacca ttgtgtccaa ctgtatatag ctgccaatta 3300 gttttctttg tttttacttt gtcctttgct atctgtgtta tgactcaatg tggatttgtt 3360 tatacacatt ttatttgtat catttcatgt taaacctcaa ataaatgctt ccttatgtga 3420 ttgcttttct gcgtcaggta ctacatagct ctgtaaaaaa tgtaatttaa aataagcaat 3480 aattaaggca cagttgattt tgtagagtat tggtccatac agagaaactg tggtccttta 3540 taaatagcca gccagcgtca ccctcttctc caatttgtag gtgtatttta tgctcttaag 3600 getteatett etecetgtaa etgagattte taccacacet ttgaacaatg ttettteeet 3660 tctggttatc tgaagactgt cctgaaagga agacataagt gttgtgatta gtagaagctt 3720 3780 tctagtagac catatttctt ctggattgta ataaaattgt tagtagctcc ttttactttg ttcctgtctc tggaaagcca tttttgaatt gctgattact ttggctttaa tcagtggtca 3840 3900 cctagaaaaa gctttgtaat cataacacaa tgagtaattc ttgataaaag ttcagataca 3960 aaaggagcac tgtaaaactg gtaggagcta tggtttaaga gcattggaag tagttacaac tcaaggattt tggtagaaag gtatgagttt ggtcgaaaaa ttaaaaatagt ggcaaaataa 4020 gatttagttg tgttttctca gagccgccac aagattgaac aaaatgtttt ctgtttgggc 4080 4140 atcctgagga agttgtatta gctgttaatg ctctgtgagt ttagaaaaag tcttgatagt aaatctagtt tttgacacag tgcatgaact aagtagttaa atatttacat attcagaaag 4200 gaatagtgga aaaggtatct tggttatgac aaagtcatta caaatgtgac taagtcatta 4260 caaatgtgac tgagtcatta cagtggaccc tctgggtgca ttgaaaagaa tccgttttat 4320 atccaggttt cagaggacct ggaataataa aaagctttgg attttgcatt cagtgtagtt 4380 4440 ggattttggg accttggcct cagtgttatt tactgggatt ggcatacgtg ttcacaggca gagtagttga tctcacacaa cgggtgatct cacaaaactg gtaagtttct tatgctcatg 4500 4560 agccctccct ttttttttt aatttggtgc ctgcaacttt cttaacaatg attctacttc ctgggctatc acattataat gctcttggcc tcttttttgc tgctgttttg ctattcttaa 4620 acttaggcca agtaccaatg ttggctgtta gaagggattc tgttcattca acatgcaact 4680 ttagggaatg gaagtaagtt catttttaag ttgtgttgtc agtaggtgcg gtgtctaggg 4740

4

tagtgaatcc tgtaagttca aatttatgat taggtgacga gttgacattg agattgtcct 4800 tttccctgat caaaaaatga ataaagcctt tttaaacaaa atccaaactt ttaatcaagt 4860 cttgatatgt atgactgaga aaaaatacac tacatctaga gatgattgag atgttttgca 4920 aagaattgaa gggggagtga gaattggttt ttcttgcagg ggctttgaac tctagattta 4980 attcagattt cagggtctat cagttcacca actgatgcaa atttgaacag atactctaag 5040 gctaagtgtc ctaggttgga tgaactgaag ctactatcaa gatctcgttc ccaaggatta 5100 atttagaaca aagtaattgg acaagtttat tggggagggg atagaaatga attctaaagt 5160 5220 acctataaca aatactctgt gtatgttttt tacatcgtat ttgcctttta cattgtttag accaaattct gtgtgatgtt atcctcggga agaggataga aattaattct aaagtaccta 5280 taacaaatgc tcggtttgta tatgttttta tacatcgtat ttgccttttg cattgttcag 5340 accaaattct gtgtgatgtt atcctaacaa aacaccttag taatttcttt ggttaacatg 5400 ttaatctgta atctcacttt tataagatga ggactattaa aatgagatgt ctgttggga 5459

<210> 2 <211> 4469 <212> DNA

<213> Homo sapien

<400> 2

cgcagacagg ttgagcgagc gggagaggcc cggggcacgt gcagaaagga gccccgcgag 60 tggegegeg gggatgtgag tgccccttgc cctctactga atccagccc ctcccegccc 120 accgcctccg cctttgcata gatacagtca tctggccagc ccccgcccct cctcccggcg 180 teageeegee agaggeegeg eggggeeegg getteggeeg ateageeegg gaggeeeege 240 300 egegeeeeet tggeeegeg geeegtggte acagtggaag aggegeeege getgegetge ceggaggage egtegegege cegetteetg tteggetggt teetgeeage tegaggaeaa 360 aacacgcgtg cgcgcggcgg gcgagcgcgc tcgccgcctc agtcgccagc gccgggcgca 420 gtccgccttt ttccggagca gactggccgc ggtgctagtc ggtagcagcg gccgccgcag 480 cggctccgca ctggcgaacc gagggcagaa aaaggcgggg ttgacggctt tttggtagga 540 gtgggetgga ccggacgcca gagacaaagg ctcccaaggc aagagggact gtggccctgc 600 gteggetetg eteggaactg etgaceceag gaatttaege ecettegttt ttetettetg 660 attettetet teteccaage cegegteece teaegegtgg ceteteteet tgeegggagg 720 geogegatgg aggtecegec caggetttee catgtgeege egecattgtt ceceteeget 780 ecegetaett tageeteeeg eageetetee cattggegge egeggeegee geggeageta 840 gccccgctcc tcccttcgct cgctcccagc tccgcccggc agggggcgcg ccgggcccag 900

5

cgccacgtca ccgcccagca gccctcccga ttggcgggcg gggcggctat aaagggaggg 960 cgcaggcggc gcccggatct cttccgccgc cattttaaat ccagctccat acaacgctcc 1020 geogeogety etgeogogae eeggactgeg egecageace eecetgeega eageteegte 1080 actatggagg atatgaacga gtacagcaat atagaggaat tcgcagaggg atccaagatc 1140 1200 aacgcgagca agaatcagca ggatgacggt aaaatgttta ttggaggctt gagctgggat acaagcaaaa aagatctgac agagtacttg tctcgatttg gggaagttgt agactgcaca 1260 attaaaacag atccagtcac tgggagatca agaggatttg gatttgtgct tttcaaagat 1320 gctgctagtg ttgataaggt tttggaactg aaagaacaca aactggatgg caaattgata 1380 gatcccaaaa gggccaaagc tttaaaaggg aaagaacctc ccaaaaaggt ttttgtgggt 1440 ggattgagcc cggatacttc tgaagaacaa attaaagaat attttggagc ctttggagag 1500 attgaaaata ttgaacttcc catggataca aaaacaaatg aaagaagagg attttgtttt 1560 atcacatata ctgatgaaga gccagtaaaa aaattgttag aaagcagata ccatcaaatt 1620 ggttctggga agtgtgaaat caaagttgca caacccaaag aggtatatag gcagcaacag 1680 caacaacaaa aaggtggaag aggtgctgca gctggtggac gaggtggtac gaggggtcgt 1740 ggccgaggtc agggccaaaa ctggaaccaa ggatttaata actattatga tcaaggatat 1800 ggaaattaca atagtgccta tggtggtgat caaaactata gtggctatgg cggatatgat 1860 tatactgggt ataactatgg gaactatgga tatggacagg gatatgcaga ctacagtggc 1920 caacagagca cttatggcaa ggcatctcga gggggtggca atcaccaaaa caattaccag 1980 ccatactaaa ggagaacatt ggagaaaaca gegggaactt cattgcaggc egtgtgtcac 2040 cctgaccacg tctatctctg ggggtcgcac gttgcgggca gagcgcaagg catacaccag 2100 aaaacgctgt cctgtggtat ggtctcttcc aacttcatgt accagcgtaa agattaaagt 2160 ggaaaacttc agactttggc ttcattttta atctttttgg agattaagtg tctaaactta 2220 acttaaatgg ttttttacag gagttaaagt acataaatgc ctttttacag cttaatcatt 2280 ttggtcttct gtttagtgtt gtatttcaat tgtggagcct cattttaagt gttcattctt 2340 ttaagattta atgettgett tttettttta tagetaatag tgaaatetae aaaccaaaac 2400 aagaactttt aaatctggga tataaattaa agatcatatg cacagatcaa tttatgttct 2460 tgtaataaac ttattagaaa ttggtgtttg tgatagcatt ttacttgggt tactagagat 2520 gcttctagta gaccttaatc tagcatagtt gaacctctga atatgggaag gttgtattcc 2580 cagattettt cetgaataga titgaattta atgicatitg ggaactecag ggtgagttta 2640 ttgactaccc aaactgtatt ttaccaataa atatgcatat gatctttaat tattgaagaa 2700 aataaagtga ggacttaaaa caattcatga aagtggacct ttaaaagctt gtcagagttg 2760

cacaaatcta	actggtattt	tgtttttgtt	tttaggagga	gatgttaaag	taacccatct	2820
tgcaggacga	cattgaagat	tggtcttctg	ttgatctaag	atgattattt	tgtaaaagac	2880
tttctagtgt	acaagacacc	attgtgtcca	actgtatata	gctgccaatt	agttttcttt	2940
gtttttactt	tgtcctttgc	tatctgtgtt	atgactcaat	gtggatttgt	ttatacacat	3000
tttatttgta	tcatttcatg	ttaaacctca	aataaatgct	tccttatgtg	attgcttttc	3060
tgcgtcaggt	actacatage	tctgtaaaaa	atgtaattta	aaataagcaa	taattaaggc	3120
acagttgatt	ttgtagagtá	ttggtccata	cagagaaact	gtggtccttt	ataaatagcc	3180
agccagcgtc	accetettet	ccaatttgta	ggtgtatttt	atgctcttaa	ggcttcatct	3240
tctccctgta	actgagattt	ctaccacacc	tttgaacaat	gttctttccc	ttctggttat	3300
ctgaagactg	tcctgaaagg	aagacataag	tgttgtgatt	agtagaagct	ttctagtaga	3360
ccatatttct	tctggattgt	aataaaattg	ttagtagctc	cttttacttt	gttcctgtct	3420
ctggaaagcc	atttttgaat	tgctgattac	tttggcttta	atcagtggtc	acctagaaaa	3480
agctttgtaa	tcataacaca	atgagtaatt	cttgataaaa	gttcagatac	aaaaggagca	3540
ctgtaaaact	ggtaggaget	atggtttaag	agcattggaa	gtagttacaa	ctcaaggatt	3600
ttggtagaaa	ggtatgagtt	tggtcgaaaa	attaaaatag	tggcaaaata	agatttagtt	3660
gtgttttctc	agageegeea	caagattgaa	caaaatgttt	tctgtttggg	catcctgagg	3720
aagttgtatt	agctgttaat	gctctgtgag	tttagaaaaa	gtcttgatag	taaatctagt	3780
ttttgacaca	gtgcatgaac	taagtagtta	aatatttaca	tattcagaaa	ggaatagtgg	3840
aaaaggtatc	ttggttatga	caaagtcatt	acaaatgtga	ctaagtcatt	acaaatgtga	3900
ctgagtcatt	acagtggacc	ctctgggtgc	attgaaaaga	atccgtttta	tatccaggtt	3960
tcagaggacc	tggaataata	aaaagctttg	gattttgcat	tcagtgtagt	tggattttgg	4020
gaccttggcc	tcagtgttat	ttactgggat	tggcatacgt	gttcacaggc	agagtagttg	4080
atctcacaca	acgggtgatc	tcacaaaact	ggtaagtttc	ttatgctcat	gagccctccc	4140
tttttttt	taatttggtg	cctgcaactt	tcttaacaat	gattctactt	cctgggctat	4200
cacattataa	tgctcttggc	ctctttttg	ctgctgtttt	gctattctta	aacttaggcc	4260
aagtaccaat	gttggctgtt	agaagggatt	ctgttcattc	aacatgcaac	tttagggaat	4320
ggaagtaagt	tcatttttaa	gttgtgttgt	cagtaggtgc	ggtgtctagg	gtagtgaatc	4380
ctgtaagttc	aaatttatga	ttaggtgacg	agttgacatt	gagattgtcc	ttttccctga	4440
tcaaaaaatg	aataaagcct	ttttaaaca				4469

PCT/US2003/038829 WO 2004/052290

7

<211> 3706 <212> DNA <213> Homo sapien

<400> 3

cgcagacagg ttgagcgagc gggagaggcc cggggcacgt gcagaaagga gccccgcgag 60 120 tggcgcgccg gggatgtgag tgccccttgc cctctactga atccagcccc ctccccgccc 180 accgcctccg cetttgcata gatacagtca tetggccage eccegeceet ecteceggeg 240 tcagcccgcc agaggccgcg cggggcccgg gcttcggccg atcagcccgg gaggccccgc 300 egegeeeet tggeeegege geeegtggte acagtggaag aggegeeege getgegetge 360 ccggaggagc cgtcgcgcc ccgcttcctg ttcggctggt tcctgccagc tcgaggacaa 420 aacacgcgtg cgcgcggcgg gcgagcgcgc tcgccgcctc agtcgccagc gccgggcgca 480 gtccgccttt ttccggagca gactggccgc ggtgctagtc ggtagcagcg gccgccgcag cggctccgca ctggcgaacc gagggcagaa aaaggcgggg ttgacggctt tttggtagga 540 gtgggctgga ccggacgcca gagacaaagg ctcccaaggc aagagggact gtggccctgc 600 660 gteggetetg eteggaactg etgaececag gaatttaege eeettegttt ttetettetg 720 attettetet teteceaage eegegteeee teaegegtgg eeteteteet tgeegggagg geogegatgg aggtecegee caggetttee catgtgeege egecattgtt eeceteeget 780 840 cccgctactt tagcctcccg cagcctctcc cattggcggc cgcggccgcc gcggcagcta 900 gccccgctcc tcccttcgct cgctcccagc tccgcccggc agggggcgcg ccgggcccag cgccacgtca ccgcccagca gccctcccga ttggcgggcg gggcggctat aaagggaggg 960 1020 cgcaggegge geceggatet etteegeege cattttaaat ceageteeat acaaegetee gccgccgctg ctgccgcgac ccggactgcg cgccagcacc cccctgccga cagctccgtc 1080 actatggagg atatgaacga gtacagcaat atagaggaat tcgcagaggg atccaagatc 1140 aacgcgagca agaatcagca ggatgacggt aaaatgttta ttggaggctt gagctgggat 1200 1260 acaagcaaaa aagatctgac agagtacttg tctcgatttg gggaagttgt agactgcaca attaaaacag atccagtcac tgggagatca agaggatttg gatttgtgct tttcaaagat 1320 gctgctagtg ttgataaggt tttggaactg aaagaacaca aactggatgg caaattgata 1380 gatcccaaaa gggccaaagc tttaaaaggg aaagaacctc ccaaaaaggt ttttgtgggt 1440 ggattgagcc cggatacttc tgaagaacaa attaaagaat attttggagc ctttggagag 1500 1560 attgaaaata ttgaacttcc catggataca aaaacaaatg aaagaagagg attttgtttt atcacatata ctgatgaaga gccagtaaaa aaattgttag aaagcagata ccatcaaatt 1620 ggttctggga agtgtgaaat caaagttgca caacccaaag aggtatatag gcagcaacag 1680

caacaacaaa aaggtggaag aggtgctgca gctggtggac gaggtggtac gaggggtcgt 1740 ggccgaggtc agggccaaaa ctggaaccaa ggatttaata actattatga tcaaggatat 1800 ggaaattaca atagtgccta tggtggtgat caaaactata gtggctatgg cggatatgat 1860 tatactgggt ataactatgg gaactatgga tatggacagg gatatgcaga ctacagtggc 1920 1980 caacagagca cttatggcaa ggcatctcga gggggtggca atcaccaaaa caattaccag ccatactaaa ggagaacatt ggagaaaaca ggtgtgtata agagtacagg aaaacagtag 2040 aaatgtctaa tttaatttaa agatcaatag acaaatgaaa cgtaaaaaca aaatactatg 2100 2160 tagcctqttt ttactaaatt gttgattttt taattgcttt atgagcctgt tttgcctaaa 2220 gtgtctatag atctttaact ttaaagtctt atctcacttt ctttagtatt gcagaaaaac ttaagagttt ttctgtttgc ttttgtgtac caggtggtct agaggaataa ttaaacattt 2280 2340 tagaactatt aacaggtaaa gtactgaaat gggtacaact taaggaaaac aagaatgttg tottotaact otgacattat accttgtttg taccogocag ogggaactto attgcaggoo 2400 2460 gtgtgtcacc ctgaccacgt ctatctctgg gggtcgcacg ttgcgggcag agcgcaaggc atacaccaga aaacgctgtc ctgtggtatg gtctcttcca acttcatgta ccagcgtaaa 2520 gattaaagtg gaaaacttca gactttggct tcatttttaa tctttttgga gattaagtgt 2580 ctaaacttaa cttaaatggt tttttacagg agttaaagta cataaatgcc tttttacagc 2640 ttaatcattt tggtcttctg tttagtgttg tatttcaatt gtggagcctc attttaagtg 2700 ttcattcttt taagatttaa tgcttgcttt ttctttttat agctaatagt gaaatctaca 2760 aaccaaaaca agaactttta aatctgggat ataaattaaa gatcatatgc acagatcaat 2820 2880 ttatgttctt gtaataaact tattagaaat tggtgtttgt gatagcattt tacttgggtt 2940 actagagatg cttctagtag accttaatct agcatagttg aacctctgaa tatgggaagg ttgtattccc agattctttc ctgaatagat ttgaatttaa tgtcatttgg gaactccagg 3000 gtgagtttat tgactaccca aactgtattt taccaataaa tatgcatatg atctttaatt 3060 attgaagaaa ataaagtgag gacttaaaac aattcatgaa agtggacctt taaaagcttg 3120 tcaqaqttgc acaaatctaa ctggtatttt gtttttgttt ttaggaggag atgttaaagt 3180 3240 aacccatctt gcaggacgac attgaagatt ggtcttctgt tgatctaaga tgattatttt gtaaaagact ttctagtgta caagacacca ttgtgtccaa ctgtatatag ctgccaatta 3300 3360 qttttctttg tttttacttt gtcctttgct atctgtgtta tgactcaatg tggatttgtt 3420 tatacacatt ttatttgtat catttcatgt taaacctcaa ataaatgctt ccttataaaa aaaaaaaaa aaaaaaaaa aacattgtgg gggcgccgga cccgaaaaag ttcttaaacc 3480 3540 atcgtgttgg ggcgggccca gaggaagtga acatggccaa cgcgtccaag gaaacctggc

9

3600 aaagcagggc tgggtttcac caaaaaaacc gcgggggccg gggctgacac ccaggggtct 3660 acacagaaag agggacacac aacaaaacaa caacacaagg aaaatg 3706 <210> 4 <211> 3287 <212> DNA <213> Homo sapien <400> 4 60 cgcagacagg ttgagcgagc gggagaggcc cggggcacgt gcagaaagga gccccgcgag tggcgcgcg gggatgtgag tgccccttgc cctctactga atccagcccc ctccccgccc 120 accgcctccg cctttgcata gatacagtca tctggccagc ccccgcccct cctcccggcg 180 240 tcagcccgcc agaggccgcg cggggcccgg gcttcggccg atcagcccgg gaggccccgc 300 egegeeecet tggeeegege geeegtggte acagtggaag aggegeege getgegetge 360 ccggaggagc cgtcgcgcc ccgcttcctg ttcggctggt tcctgccagc tcgaggacaa aacacgcgtg cgcgcggcgg gcgagcgcgc tcgccgcctc agtcgccagc gccgggcgca 420 480 gteegeettt tteeggagea gaetggeege ggtgetagte ggtageageg geegeegeag 540 cggctccgca ctggcgaacc gagggcagaa aaaggcgggg ttgacggctt tttggtagga gtgggctgga ccggacgcca gagacaaagg ctcccaaggc aagagggact gtggccctgc 600 660 gteggetetg eteggaactg etgaceceag gaatttaege ecettegttt ttetettetg attettetet teteccaage cegegteece teaegegtgg ceteteteet tgeegggagg 720 geogegatgg aggtecegee caggetttee catgtgeege egecattgtt ceceteeget 780 cccgctactt tagcctcccg cagcctctcc cattggcggc cgcggccgcc gcggcagcta 840 900 geocegetee teeetteget egeteecage teegeeegge agggggegeg eegggeecag cgccacgtca ccgcccagca gccctcccga ttggcgggcg gggcggctat aaagggaggg 960 cgcaggcggc gcccggatct cttccgccgc cattttaaat ccagctccat acaacgctcc 1020 1080 geogeogetg etgeogegae coggaetgog egecageace cocctgooga cagetcogte actatggagg atatgaacga gtacagcaat atagaggaat tcgcagaggg atccaagatc 1140 aacgcgagca agaatcagca ggatgacggt aaaatgttta ttggaggctt gagctgggat 1200 1260 acaagcaaaa aagatctgac agagtacttg tctcgatttg gggaagttgt agactgcaca attaaaacag atccagtcac tgggagatca agaggatttg gatttgtgct tttcaaagat 1320 gctgctagtg ttgataaggt tttggaactg aaagaacaca aactggatgg caaattgata 1380 gatcccaaaa gggccaaagc tttaaaaggg aaagaacctc ccaaaaaggt ttttgtgggt 1440

10

1500 ggattgagcc cggatacttc tgaagaacaa attaaagaat attttggagc ctttggagag attgaaaata ttgaacttcc catggataca aaaacaaatg aaagaagagg attttgtttt 1560 atcacatata ctgatgaaga gccagtaaaa aaattgttag aaagcagata ccatcaaatt 1620 ggttctggga agtgtgaaat caaagttgca caacccaaag aggtatatag gcagcaacag 1680 caacaacaaa aaggtggaag aggtgctgca gctggtggac gaggtggtac gaggggtcgt 1740 1800 ggccgaggtc agggccaaaa ctggaaccaa ggatttaata actattatga tcaaggatat ggaaattaca atagtgccta tggtggtgat caaaactata gtggctatgg cggatatgat 1860 1920 tatactgggt ataactatgg gaactatgga tatggacagg gatatgcaga ctacagtggc 1980 caacagagca cttatggcaa ggcatctcga gggggtggca atcaccaaaa caattaccag 2040 ccatactaaa ggagaacatt ggagaaaaca ggtgtgtata agagtacagg aaaacagtag aaatgtotaa tttaatttaa agatoaatag acaaatgaaa ogtaaaaaca aaatactatg 2100 tagectgttt ttactaaatt gttgattttt taattgettt atgageetgt tttgeetaaa 2160 2220 gtgtctatag atctttaact ttaaagtctt atctcacttt ctttagtatt gcagaaaaac 2280 ttaagagttt ttctgtttgc ttttgtgtac caggtggtct agaggaataa ttaaacattt tagaactatt aacaggtaaa gtactgaaat gggtacaact taaggaaaac aagaatgttg 2340 tottotaact otgacattat accttgtttg taccogocag ogggaacttc attgcaggoc 2400 gtgtgtcacc ctgaccacgt ctatctctgg gggtcgcacg ttgcgggcag agcgcaaggc 2460 atacaccaga aaacgctgtc ctgtggtatg gtctcttcca acttcatgta ccagcgtaaa 2520 2580 gattaaagtg gaaaacttca gactttggct tcatttttaa tctttttgga gattaagtgt ctaaacttaa cttaaatggt tttttacagg agttaaagta cataaatgcc tttttacagc 2640 ttaatcattt tggtcttctg tttagtgttg tatttcaatt gtggagcctc attttaagtg 2700 2760 ttcattcttt taagatttaa tgcttgcttt ttctttttat agctaatagt gaaatctaca aaccaaaaca agaactttta aatctgggat ataaattaaa gatcatatgc acagatcaat 2820 ttatgttctt gtaataaact tattagaaat tggtgtttgt gatagcattt tacttgggtt 2880 actagagatg cttctagtag accttaatct agcatagttg aacctctgaa tatgggaagg 2940 ttgtattccc agattctttc ctgaatagat ttgaatttaa tgtcatttgg gaactccagg 3000 gtgagtttat tgactaccca aactgtattt taccaataaa tatgcatatg atctttaatt 3060 attgaagaaa ataaagtgag gacttaaaac aattcatgaa agtggacctt taaaagcttg 3120 tcagagttgc acaaatctaa ctggtatttt gtttttgttt ttaggaggag atgttaaagt 3180 aacccatctt gcaggacgac attgaagatt ggtcttctgt tgatctaaga tgattatttt 3240

gtaaaagact	ttctagtgta	cctcggcgcg	accacgctaa	gggcgaa		3287
<210> 5 <211> 3542 <212> DNA <213> Homo	sapien					
<400> 5 tcgaggtgtt	ctagaggatc	ctcacgccca	tgtcacaagc	tgcagcaaca	gcaacaacaa	60
aaaggtggaa	gaggtgctgc	agctggtgga	cgaggtggta	cgaggggtcg	tggccgaggt	120
cagggccaaa	actggaacca	aggatttaat	aactattatg	atcaaggata	tggaaattac	180
aatagtgcct	atggtggtga	tcaaaactat	agtggctatg	gcggatatga	ttatactggg	240
tataactatg	ggaactatgg	atatggacag	ggatatgcag	actacagtgg	taagaatatt	300
taacttaatt	ttataaagca	gtggtattaa	aattcattgt	taacatacaa	tcctgttctg	360
aaattgtgtg	tatgggcttt	ccattaaagt	gttcggagtt	aagtgtttga	ggcatgttac	420
aatcatagga	tgattatact	aacatagact	ggtggttata	aatgaactag	gatgtatgat	480
ttatgagtag	catctaatgg	gtgctaaaat	atcttaatac	tttttattta	gcatgcaaag	540
atttgtagat	ttaatagttt	gtgtttgtaa	agaaagtttt	gtagaaaact	atcttaatga	600
gaattctgtg	ttttcaaaat	aggccaacag	agcacttatg	gcaaggcatc	tcgagggggt	660
ggcaatcacc	aaaacaatta	ccagccatac	taaaggagaa	cattggagaa	aacaggtgtg	720
tataagagta	caggaaaaca	gtagaaatgt	ctaatttaat	ttaaagatca	atagacaaat	780
gaaacgtaaa	aacaaaatac	tatgtagcct	gtttttacta	aattgttgat	tttttaattg	840
ctttatgagc	ctgttttgcc	taaagtgtct	atagatettt	aactttaaag	tcttatctca	900
ctttctttag	tattgcagaa	aaacttaaga	gtttttctgt	ttgcttttgt	gtaccaggtg	960
gtctagagga	ataattaaac	attttagaac	tattaacagg	taaagtactg	aaatgggtac	1020
aacttaagga	aaacaagaat	gttgtcttct	aactctgaca	ttataccttg	tttgtacccg	1080
ccagcgggaa	cttcattgca	ggccgtgtgt	caccctgacc	acgtctatct	ctgggggtcg	1140
				tgtcctgtgg		1200
				ttcagacttt		1260
				tggttttta		1320
				tctgtttagt		1380
				ttaatgcttg		1440
				tttaaatctg		1500
				aacttattag		1560

ttgtgatagc attttacttg ggttactaga gatgcttcta gtagacctta atctagcata 1620 gttgaacctc tgaatatggg aaggttgtat tcccagattc tttcctgaat agatttgaat 1680 ttaatgtcat ttgggaactc cagggtgagt ttattgacta cccaaactgt attttaccaa 1740 taaatatgca tatgatcttt aattattgaa gaaaataaag tgaggactta aaacaattca 1800 tgaaagtgga cctttaaaag cttgtcagag ttgcacaaat ctaactggta ttttqtttt 1860 gtttttagga ggagatgtta aagtaaccca tcttgcagga cgacattgaa gattggtctt 1920 ctgttgatct aagatgatta ttttgtaaaa gactttctag tgtacaagac accattgtgt 1980 ccaactgtat atagetgcca attagttttc tttgttttta ctttgtcctt tgctatctgt 2040 gttatgactc aatgtggatt tgtttataca cattttattt gtatcatttc atgttaaacc 2100 tcaaataaat gcttccttat gtgattgctt ttctgcgtca ggtactacat agctctgtaa 2160 aaaatgtaat ttaaaataag caataattaa ggcacagttg attttgtaga gtattggtcc 2220 atacagagaa actgtggtcc tttataaata gccagccagc gtcaccctct tctccaattt 2280 gtaggtgtat tttatgctct taaggcttca tcttctccct gtaactgaga tttctaccac 2340 acetttgaac aatgttettt eeettetggt tatetgaaga etgteetgaa aggaagacat 2400 aagtgttgtg attagtagaa gctttctagt agaccatatt tcttctggat tgtaataaaa 2460 ttgttagtag ctccttttac tttgttcctg tctctggaaa gccatttttg aattgctgat 2520 tactttggct ttaatcagtg gtcacctaga aaaagctttg taatcataac acaatgagta 2580 attettgata aaagtteaga tacaaaagga geaetgtaaa aetggtagga getatggttt 2640 aagagcattg gaagtagtta caactcaagg attttggtag aaaggtatga gtttggtcga 2700 aaaattaaaa tagtggcaaa ataagattta gttgtgtttt ctcagagccg ccacaagatt 2760 gaacaaaatg ttttctgttt gggcatcctg aggaagttgt attagctgtt aatgctctgt 2820 gagtttagaa aaagtcttga tagtaaatct agtttttgac acagtgcatg aactaagtag 2880 ttaaatattt acatattcag aaaggaatag tggaaaaggt atcttggtta tgacaaagtc 2940 attacaaatg tgactaagtc attacaaatg tgactgagtc attacagtgg accetetggg 3000 tgcattgaaa agaatccgtt ttatatccag gtttcagagg acctggaata ataaaaagct 3060 ttggattttg cattcagtgt agttggattt tgggaccttg gcctcagtgt tatttactgg 3120 gattggcata cgtgttcaca ggcagagtag ttgatctcac acaacgggtg atctcacaaa 3180 actggtaagt ttcttatgct catgagccct ccctttttt ttttaatttg gtgcctgcaa 3240 ctttcttaac aatgattcta cttcctgggc tatcacatta taatgctctt ggcctctttt 3300 ttgctgctgt tttgctattc ttaaacttag gccaagtacc aatgttggct gttagaaggg 3360 attctgttca ttcaacatgc aactttaggg aatggaagta agttcatttt taagttgtgt 3420

tgtcagtagg	tgcggtgtct	agggtagtga	atcctgtaag	ttcaaattta	tgattaggtg	3480
acgagttgac	attgagattg	tccttttccc	tgatcaaaaa	atgaataaag	cctttttaaa	3540
ca						3542
<210> 6 <211> 162 <212> DNA <213> Homo	o sapien					
<400> 6 geggeegeet	actactacta	ctgctcgaat	tcaagcttct	aacgatgtac	gggctcatgc	60
ctgggaagtg	ttgtggtggg	ggctcccagg	aggactggcc	cagagagccc	tgagatagcg	120
gggatcctga	actggactga	ataaaacgtg	gtctcccact	gc		162
<210> 7 <211> 470 <212> DNA <213> Home	o sapien					
<400> 7 gaactgggtt	ctaatgctgc	tcgagcggcg	ccagtgtgat	ggatgcgtgg	tegeggeega	60
ggtacgtcca	aatgacgaag	tcactgcagt	gcttgcagtt	caaacagaat	tgaaagaatg	120
catggtggtt	aaaacttacc	tcattagcag	catccctcta	caaggtgcat	ttaactataa	180
gtatactgcc	tgcctatgtg	acgacaatcc	aaaaaccttc	tactgggact	tttacaccaa	240
cagaactgtg	caaattgcag	ccgtcgttga	tgttattcgg	gaattaggca	tctgccctga	300
tgatgctgct	gtaatcccca	tcaaaaacaa	ccggttttat	actattgaaa	tcctaaaggt	360
agaataatgg	aagccctgtc	tgtttgccac	acccaggtga	tttcctctaa	agaaacttgg	420
ctggaatttc	tgctgtggtc	tataaaataa	acttcttaac	atgcttctcc		470
<210> 8 <211> 401 <212> DNA <213> Home	o sapien					
<400> 8 gtgatggatg	ageggeegee	gggcaggtgt	tcaaacagaa	ttgaaagaat	gcatggtggt	60
taaaacttac	ctcattagca	gcatccctct	acaaggtgca	tttaactata	agtatactgc	120
ctgcctatgt	gacgacaatc	caaaaacctt	ctactgggac	ttttacacca	acagaactgt	180
gcaaattgca	gccgtcgttg	atgttattcg	ggaattaggc	atctgccctg	atgatgctgc	240
tgtaatcccc	atcaaaaaca	accggtttta	tactattgaa	atcctaaagg	tagaataatg	300
gaagccctgt	ctgtttgcca	cacccaggtg	atttcctcta	aagaaacttg	gctggaattt	360

ctgctgtggt ctataaaata a	aacttcttaa	catgcttctc	C		401
<210> 9 <211> 904 <212> DNA <213> Homo sapien					
<400> 9 tgcatgccga gcggcgcagt 9	atastaasta	aaaaaaaaat	acotocaaat	gacgaagt ca	60
ctgcagtgct tgcagttcaa a					120
ttagcagcat ccctctacaa	ggtgcattta	actataagta	tactgcctgc	ctatgtgacg	180
acaatccaaa aaccttctac	tgggactttt	acaccaacag	aactgtgcaa	attgcagccg	240
tcgttgatgt tattcgggaa	ttaggcatct	gccctgatga	tgctgctgta	atccccatca	300
aaaacaaccg gttttatact	attgaaatcc	taaaggtaga	ataatggaag	ccctgtctgt	360
ttgccacacc caggtgattt	cctctaaaga	aacttggctg	gaatttctgc	tgtggtctat	420
aaaataaact tcttaacatg	cttctcccta	acaaaaaaa	acacaacaca	acaaaacaa	480
aaaacaacaa accgcctggg	ggcaaccccg	ggccacacac	gcgcggaccc	cgcgggtgga	540
gaaacgtggg cctcccggcc	caccaaaccc	ccacacaaca	attcgcgggc	aaacccccc	600
cccccccgc acacccaccc	cccccggcca	aaagaaccca	caagcggcgg	agaccgcgag	660
ggacgcgaga cacccgacgc	gaggcagagc	caacgggccc	aaggaggag	caagacaccg	720
ageggeggaa aegggaeaga	ggctgccggc	atgccagcag	cacggcgcag	aggccagggg	780
cggggcaccc ggaggccggg	acggagcagc	agccgcagga	cgcagcggac	ccccgggagc	840
gaggegeega eegeaaceaa	acgaggggac	ccgccacacg	cggggcggcc	aagacaagcg	900
gcaa					904
<210> 10 <211> 521 <212> DNA <213> Homo sapien					
<400> 10 gaactgggtt ctaatgctgc	tcgagcggcg	ccagtgtgat	ggatgcgtgg	tcgcggccga	60
gcgacaatcc aaaaaccttc	tactgggact	tttacaccaa	cagaactgtg	caaattgcag	120
ccgtcgttga tgttattcgg	gaattaggca	tetgeeetga	tgatgctgct	gtaatcccca	180
tcaaaaacaa ccggttttat	actattgaaa	tcctaaaggt	agaataatgg	aagccctgtc	240
tgtttgccac acccaggtga	tttcctctaa	agaaacttgg	ctggaatttc	tgctgtggtc	300
tataaaataa acttcttaac	atgettetee	aaaaaaaac	aaaaaaacaa	aaaaaaaaq	360

agtctggggg	tgtacatcca	tgggccataa (ggtgtggtgt	cccctggtgt	gtggaatttg	420
gtteteeegg	cccacaattt	cccaacaaca	acttcacgga	acaagggcaa	cgcaaaacga	480
ccagcaccaa	aaaacccaac	ccaacccaca	aagaaaccag	a		521
<210> 11 <211> 2475 <212> DNA <213> Homo	s sapien					
<400> 11 agacttcttc	aggtgctgct	gcgttgacgg	ggttatatgc	cagtttggcc	tttggattgg	60
ttggggcggg	tggcgggggc	taaggtcctt	tgggccattc	atttcattca	ggctggcctg	120
ctgtctgcct	tgggctccct	gatattgatg	atttggctga	tggcaacacc	tcatagccat	180
gaaactgaac	agaaaagact	gggacttctt	gctggatttg	cattccttac	aggagttggc	240
ctgggccctg	ccctggagtt	ttgtattgct	gtcaacccca	gcatccttcc	cactgctttc	300
atgggcacgg	caatgatctt	tacctgcttc	accctcagtg	cactctatgc	caggcgccgt	360
agctacctct	ttctgggagg	tatcttgatg	tcagccctga	gcttgttgct	tttgtcttcc	420
ctggggaatg	ttttctttgg	atccatttgg	cttttccagg	caaacctgta	tgtgggactg	480
gtggtcatgt	gtggettegt	cctttttgat	actcaactca	ttattgaaaa	ggccgaacat	540
ggagatcaag	attatatctg	gcactgcatt	gatctcttct	tagatttcat	tactgtcttc	600
agaaaactca	tgatgatcct	ggccatgaat	gaaaaggata	agaagaaaga	gaagaaatga	660
agtgaccatc	cagcetttee	caattagact	tcctctcctt	ccacccctca	tttccttttt	720
gcacacatta	caggtggtgt	gttctgtgat	aatgaaaago	atcagaaaag	cttttgtact	780
ttgtggtttc	ctctattttg	aattttttga	tcaaaaaact	gattagcaga	atatagtttg	840
gagtttggct	tcatcttcct	ggggttcccc	tcactccctt	ttttgtcaac	cccatctgta	900
gcctcttcct	ctactcaggc	agtcgacccg	ccacgatgag	aagtgggacc	agccagaggg	960
cgccaactto	aggagtccgc	tttcccacca	ggcttcattc	: acccagtgga	cctgaactgt	1020
ttggtagago	: cacceggece	ttccttcctc	attgttgttt	ggtatgcgca	cagttcctgt	1080
gggactgggc	: cgtgagtttt	ccattggaaa	gaagttcagt	ggtcccattg	ttaactcagc	1140
					gtggatgctt	1200
					: tgccttcaca	1260
					cctgcttcca	1320
					g catttttgaa	1380
					: tgccctgttt	1440

WO 2004/052290

16

PCT/US2003/038829

ttgtttttt	agtttgttat	ccccttactg	agcggcctct	actaggtggc	tgtgattaaa	1500
tgtcccaagc	aaggataggg	aaggggaatg	gttgagcctc	tggagatcat	tgtaaccaat	1560
cctgccagac	ctgtttgggg	cagtggggag	caaacctaga	taaggacctg	tttggggcag	1620
cagggagcaa	aatctccttt	aacaaccaag	cagttcctca	ttcacatcaa	cagagcgagg	1680
ctgtgataac	ttaggaggca	gcaatcctaa	tagtccttca	gtgcatttta	gtctgtctcc	1740
aactggacac	cagtaggtag	tgtcaagcca	gagattcggg	gcagtagata	aatgttcatt	1800
ttactgatgc	actttagttt	ttggtctgtt	acctgttttc	cagaaatttg	tggcctttta	1860
ggcgggagtt	aggcgaccaa	accagtgaga	gccccaatcc	ctgcagtttt	gtggcttcaa	1920
gtgtgggtgg	acagtcctaa	tggggatete	cagctccttc	ctgtgggctg	ccacagacag	1980
ctacccccag	aagggtcaat	gttgggagtg	gttgtggctc	tgagctgctc	tacagagett	2040
cagtgtgaga	ggatcgagcc	attgaaagct	cattaccagt	aggacataat	ttttggctct	2100
ccctattcac	aaccagtgca	cagtttgaca	cagtggcctc	aggttcacag	tgcaccatgt	2160
cactgtgcta	tcctacgaaa	tcatttgttt	ctaagttgtg	tttattcctg	gagtgacatg	2220
ccaccccgaa	tggctcactt	tcactgagga	tgctgtcctc	tgatttagct	gctgcctcca	2280
gcctctggct	tgagaactta	ctaaaggcac	ttccttcctg	ttaaacccct	gttaactctc	2340
cataaatttg	gtgattctct	gctaggccta	agattttgag	ttaacatctc	ttgaagccaa	2400
actccacctt	ctgtgctttt	tgcttgggat	aatggagttt	ttctttagaa	acagtgccaa	2460
gaatgacaag	atatt					2475
<210> 12 <211> 514 <212> DNA <213> Homo	o sapien					
<400> 12 ctgcgtgacg	gcagtagcaa	caacaaccac	gtaccgagca	tgcatgcgta	ctcttataca	60
				agaatttgaa		120
				gtaccagagt		180
				tcctccctct		240
				agtgtagatg		300
				aattctgtgg		360
				cttgaatatg		420
				ttgtaagtgg		480
	aaactattta					514

<210>	13						
<211>	935						
<212> <213>	DNA Homo	sapien					
	-	<u>-</u>					
<400> ctctaat	13 :gca	tgctcgagcg	gcgccagttg	tgatggatgc	ggccgcccgg	gcaggtacgc	60
tgttcgt	acc	tatggacgtg	agatccaagt	gacagagett	ctcgacaagt	tagactttta	120
tgtccts	geet	gtgctcaata	ttgatggcta	catctacacc	tggaccaaga	gccgattttg	180
gagaaag	gact	cgctccaccc	atactggatc	tagctgcatt	ggcacagacc	ccaacagaaa	240
				ctctcgaaac			300
				caaggccctg			360
				ccactcgtac			420
				caatgctgag			480
				caccaagtac			540
				cgactgggct			600
				cagatatggc			660
				ggcaatcaag			720
				ggccttgttt			780
				tgcctggatg			840
ctttta	agct	tctgggtcta	ttaaactagg	tagatctttt	cgtattgatc	ataataaaag	900
tgaatc	atta	ctattggaaa	acttgaaaaa	aggtc			935
<210><211><212><212><213>	14 844 DNA Hom	o sapien					
<400> catgct	14 cgag	cggcgcagtg	tgatggatgc	gtggtcgcgg	cctggtactg	tggcgctccg	60
tgaaat	taga	cgttatcaga	agtccactga	acttctgatt	cgcaaacttc	ccttccagcg	120
tctggt	gcga	gaaattgctc	aggactttaa	aacagatctg	cgcttccaga	gcgcagctat	180
cggtgc	tttg	caggaggcaa	gtgaggccta	tetggttgge	ctttttgaag	acaccaacct	240
gtgtgc	tatc	catgccaaac	gtgtaacaat	tatgccaaaa	gacatccagc	tagcacgccg	300
catacg	jtgga	gaacgtgctt	aagaatccac	: tatgatggga	aacatttcat	tctcaaaaaa	360
aaaaaa	aaaa	tttetettet	tcctgttatt	ggtagttctg	aacgttagat	atttttttc	420
catggg	gtca	aaaggtacct	aagtatatga	ttgcgagtgg	aaaaataggg	gacagaaatc	480

aggtattggc	agtttttcca	ttttcatttg	tgtgtgaatt	tttaatataa	atgcggagac	540
gtaaagcatt	aatgcaagtt	aaaatgtttc	agtgaacaag	tttcagcggt	tcaactttat	600
aataattata	aataaacctg	ttaaattttt	ctggacaatg	ccagcatttg	gattttttta	660
aaacaagtaa	atttcttatt	gatggcaact	aaatggtgtt	tgtagcattt	ttatcataca	720
gtagattcca	tccattcact	atacttttct	aactgagttg	tcctacatgc	aagtacatgt	780
ttttaatgtt	gtctgtcttc	tgtgctgttc	ctgtaagttt	gctattaaaa	tacattaaac	840
tata						844
	7 o sapien					
<400> 15 gagtgaaatg	ataaatttaa	gggagaatat	ttccctaagt	attcatcaca	gggcgaagta	60
taaagcgttg	agctcaacgc	tttatacttc	atctcatcaa	aaacagatca	gtagtttgag	120
agatgaagta	gaagcaaaag	caaaacttat	tactgatctt	caagaccaaa	accagaaaat	180
gatgttagag	caggaacgtc	taagagtaga	acatgagaag	ttgaaagcca	cagatcagga	240
aaagagcaga	aaactacatg	aacttacggt	tatgcaagat	agacgagaac	aagcaagaca	300
agacttgaag	ggtttggaag	agacagtgag	tgctgagatt	gattctgatg	acaccggagg	360
cagcgctgct	cagaagcaaa	aaatctcctt	tcttgaaaat	aatcttgaac	agctcactaa	420
agtgcacaaa	cagttggtac	gtgataatgc	agateteege	tgtgaacttc	ctaagttgga	480
aaagcgactt	cgagctacag	ctgagagagt	gaaagctttg	gaatcagcac	tgaaagaagc	540
taaagaaaat	gcatctcgtg	atcgcaaacg	ctatcagcaa	gaagtagatc	gcataaagga	600
agcagtcagg	tcaaagaata	tggccagaag	agggcattct	gcacagattg	ctaaacctat	660
tegteeeggg	caacatccag	cagcttctcc	aactcaccca	agtgcaattc	gtggaggagg	720
tgcatttgtt	cagaacagcc	agccagtggc	agtgcgaggt	ggaggaggca	aacaagtgta	780
atcgtttata	catacccaca	ggtgttaaaa	agtaatcgaa	gtacgaagag	gacatggtat	840
caagcagtca	ttcaatgact	ataacctcta	ctcccttggg	attgtagaat	tataactttt	900
aaaaaaaatg	, tataaattat	acctggcctg	tacagctgtt	tectacetac	tcttcttgta	960
aactctgctg	g cttcccaaca	caactagagt	gcaattttgg	catcttagga	gggaaaaagg	1020
acagtttaca	actgtggccc	tatttattac	acagtttgtc	: tatcgtgtct	taaatttagt	1080
ctttactgtg	g ccaagctaac	tgtaccttat	aggactgtac	: tttttgtatt	ttttgtgtat	1140
gtttatttt	: taatctcagt	ttaaattacc	tagctgctac	tgcttcttgt	ttttctttc	1200

19

ctattaaaac gtcttccttt ttttttctta agagaaaatg gaacatttag gttaaatgtc 1260 1320 tttaaatttt accacttaac aacactacat gcccataaaa tatatccagt cagtactgta ttttaaaatc ccttgaaatg atgatatcag ggttaaaatt acttgtattg tttctgaagt 1380 ttgctcctga aaactactgt ttgagcactg aaacgttaca aatgcctaat aggcatttga 1440 1500 gactgagcaa ggctacttgt tatctcatga aatgcctgtt gccgagttat tttgaataga .1560 aatattttaa agtatcaaaa gcagatctta gtttaaggga gtttggaaaa ggaattatat ttctcttttt cctgattctg tactcaacaa gtcttgatgg aattaaaata ctctgcttta 1620 ttctggtgag cctgctagct aatataagta ttggacaggt aataatttgt catctttaat 1680 attagtaaaa tgaattaaga tattatagga ttaaacataa ttttatacgg ttagtacttt 1740 attggccgac ctaaatttat agcgtgtgga aattgagaaa aatgaagaaa caggacagat 1800 1860 atatgatgaa ttaaaaatat atataggtca attttggtct gaaatccctg aggtgttttt aacctgctac actaatttgt acactaattt attictttag tctagaaata gtaaattgtt 1920 tgcaagtcac taataatcat tagataaatt attttcttgg ccatagccga taattttgta 1980 2040 atcaqtacta aqtgtatacg tatttttgcc actttttcct cagatgatta aagtaagtca 2100 acaqcttatt ttaggaaact gtaaaagtaa tagggaaaga gatttcacta tttgcttcat 2160 cagtggtagg ggggcggtga ctgcaactgt gttagcagaa attcacagag aatggggatt taaggttagc agagaaactt ggaaagttct gtgttaggat cttgctggca gaattaactt 2220 2280 tttgcaaaag ttttatacac agatatttgt attaaatttg gagccatagt cagaagactc agatcataat tggcttattt ttctatttcc gtaactattg taatttccac ttttgtaata 2340 attttgattt aaaatataaa tttatttatt tatttttta atagtcaaaa atctttgctg 2400 2460 ttgtagtctg caacctctaa aatgattgtg ttgcttttag gattgatcag aagaaacact ccaaaaattg agatgaaatg ttggtgcagc cagttataag taatatagtt aacaagcaaa 2520 2580 aaaagtgctg ccacctttta tgatgatttt ctaaatggag aaacatttgg ctgcatccac atagaccttt atgttttgtt ttcagttgaa aacttgcctc ctttggcaac attcgtaaat 2640 gaagcagaat ttttttttct cttttttcca aatatgttag ttttgttctt gtaagatgta 2700 tcatgggtat tggtgctgtg taatgaacaa cgaattttaa ttagcatgtg gttcagaata 2760 2820 tacaatgtta ggtttttaaa aagtatcttg atggttcttt tctatttata atttcagact ttcataaagt gtaccaagaa tttcataaat ttgttttcag tgaactgctt tttgctatgg 2880 taggtcatta aacacagcac ttactcttaa aaatgaaaat ttctgatcat ctaggatatt 2940 gacacatttc aatttgcagt gtctttttga ctggatatat taacgttcct ctgaatggca 3000

			20			
ttgatagatg	gttcagaaga	gaaactcaat	gaaataaaga	gaatatttat	tcatggcgat	3060
taattaaatt	atttgcctaa	cttaagaaaa	ctactgtgcg	taactctcag	tttgtgctta	3120
actccatttg	acatgaggtg	acagaagaga	gtctgagtct	acctgtggaa	tatgttggtt	3180
tattttcagt	gcttgaagat	acattcacaa	atacttggtt	tgggaagaca	ccgtttaatt	3240
ttaagttaac	ttgcatgttg	taaatgcgtt	ttatgtttaa	ataaagagga	aaatttttg	3300
aaatgta						3307
	o o sapien					
<400> 16 tcacgcttta	tacttccaag	caagagactg	aagggktgga	agagacaggg	caaaagaact	60
tcagacttta	cacaacctgc	gcaaactctt	tgttcaggac	ctggctacaa	gagttaaaaa	120
gagtgctgag	attgattctg	atgacaccgg	aggcagcgct	gctcagaagc	aaaaaatctc	180
ctttcttgaa	aataatcttg	aacagctcac	taaagtgcac	aaacagttgg	tacgtgataa	240
tgcagatctc	cgctgtgaac	ttcctaagtt	ggaaaagcga	cttcgagcta	cagctgagag	300
agtgaaagct	ttggaatcag	cactgaaaga	agctaaagaa	aatgcatctc	gtgatcgcaa	360
acgctatcag	caagaagtag	atcgcataaa	ggaagcagtc	aggtcaaaga	atatggccag	420
aagagggcat	tctgcacaga	ttgctaaacc	tattcgtccc	gggcaacatc	cagcagcttc	480
tccaactcac	ccaagtgcaa	ttcgtggagg	aggtgcattt	gttcagaaca	gccagccagt	540
ggcagtgcga	ggtggaggag	gcaaacaagt	gtaatcgttt	atacataccc	acaggtgtta	600
aaaagtaatc	gaagtacgaa	gaggacatgg	tatcaagcag	tcattcaatg	actataacct	660
ctactccctt	gggattgtag	aattataact	tttaaaaaaa	atgtataaat	tatacctggc	720
ctgtacagct	gtttcctacc	tactcttctt	gtaaactctg	ctgcttccca	acacaactag	780
agtgcaattt	tggcatctta	ggagggaaaa	aggacagttt	acaactgtgg	ccctatttat	840
tacacagttt	gtctatcgtg	tcttaaattt	agtctttact	gtgccaagct	aactgtacct	900
tataggactg	tactttttgt	attttttgtg	tatgtttatt	ttttaatctc	agtttaaatt	960
acctagetge	: tactgcttct	tgtttttctt	ttcctattaa	aacgtettee	tttttttc	1020
ttaagagaaa	atggaacatt	: taggttaaat	gtctttaaat	tttaccactt	aacaacacta	1080
catgcccata	aaatatatco	agtcagtact	gtattttaaa	a atcccttgaa	atgatgatat	1140
cagggttaaa	attacttgta	ttgtttctga	agtttgctco	tgaaaactac	: tgtttgagca	1200

ctgaaacgtt acaaatgcct aataggcatt tgagactgag caaggctact tgttatctca 1260

WO 2004/052290

21

PCT/US2003/038829

tgaaatgcct gttgccgagt tattttgaat agaaatattt taaagtatca aaagcagatc 1320 1380 ttaqtttaaq qgagtttgga aaaggaatta tatttctctt tttcctgatt ctgtactcaa caagtettga tggaattaaa atactetget ttattetggt gageetgeta getaatataa 1440 gtattggaca ggtaataatt tgtcatcttt aatattagta aaatgaatta agatattata 1500 1560 ggattaaaca taattttata cggttagtac tttattggcc gacctaaatt tatagcgtgt 1620 ggaaattgag aaaaatgaag aaacaggaca gatatatgat gaattaaaaa tatatatagg tcaattttgg tctgaaatcc ctgaggtgtt tttaacctgc tacactaatt tgtacactaa 1680 1740 tttatttctt tagtctagaa atagtaaatt gtttgcaagt cactaataat cattagataa 1800 attattttct tggccatagc cgataatttt gtaatcagta ctaagtgtat acgtattttt 1860 gccacttttt cctcagatga ttaaagtaag tcaacagctt attttaggaa actgtaaaag taatagggaa agagatttca ctatttgctt catcagtggt aggggggggg tgactgcaac 1920 tgtgttagca gaaattcaca gagaatgggg atttaaggtt agcagagaaa cttggaaagt 1980 tctgtgttag gatcttgctg gcagaattaa ctttttgcaa aagttttata cacagatatt 2040 2100 tgtattaaat ttggagccat agtcagaaga ctcagatcat aattggctta tttttctatt 2160 atttatttt ttaatagtca aaaatctttg ctgttgtagt ctgcaacctc taaaatgatt 2220 2280 gtgttgcttt taggattgat cagaagaaac actccaaaaa ttgagatgaa atgttggtgc agccagttat aagtaatata gttaacaagc aaaaaaagtg ctgccacctt ttatgatgat 2340 2400 tttctaaatg gagaaacatt tggctgcatc cacatagacc tttatgtttt gttttcagtt 2460 gaaaacttgc ctcctttggc aacattcgta aatgaagcag aattttttt tctcttttt ccaaatatgt tagttttgtt cttgtaagat gtatcatggg tattggtgct gtgtaatgaa 2520 2580 caacgaattt taattagcat gtggttcaga atatacaatg ttaggttttt aaaaagtatc 2640 ttgatggttc ttttctattt ataatttcag actttcataa agtgtaccaa gaatttcata 2700 aatttgtttt cagtgaactg ctttttgcta tggtaggtca ttaaacacag cacttactct 2760 taaaaatgaa aatttctgat catctaggat attgacacat ttcaatttgc agtgtctttt 2820 tgactggata tattaacgtt cctctgaatg gcattgatag atggttcaga agagaaactc aatgaaataa agagaatatt tattcatggc gattaattaa attatttgcc taacttaaga 2880 2940 aaactactgt gcgtaactct cagtttgtgc ttaactccat ttgacatgag gtgacagaag 3000 agagtetgag tetacetgtg gaatatgttg gtttatttte agtgettgaa gatacattea caaatacttg gtttgggaag acaccgttta attttaagtt aacttgcatg ttgtaaatgc 3060 3100 gttttatgtt taaataaaga ggaaaatttt ttgaaatgta

<210> 17 <211> 1411 <212> DNA 22

<213> Homo sapien <400> 17 attgatcaga attcaggett tattattgag caatgaaaac agctaaaact taattccaag 60 catgtgtagt taaagtttgc aaagtgggat attgttcaca aaacacattc aatgtttaaa 120 cactatttat ttgaagaaca aaatatattt aaaattgttt gcttctaaaa agcccatttc 180 cctccaagtc taaactttgt aatttgatat taagcaatga agttattttg tacctgtcga 240 tgageteggt caagtaggaa gttttetttg cattgegtag tataaacttg tgetteaata 300 actccttagc agtgggtcta aagctcggct ccttattcaa acaggcctcc acaaactcct 360 tgaggggttt actgtagttt ccttccaacg tcggtgggtt gttctttgga atgaggaata 420 aaactttcat ggggtgcagc tcggaatgag gtggttcccc tcttgcaagt tcaatagctg 480 ttatgcccag ggaccagatg tctgccttcg agtcataggc cgactgtttg atgacctcgg 540 gtgccatcca gaatggggtg cccacgaagg tgttcctttt gatctgggtg tctgtcagct 600 ggccagccac gccaaagtcc gccagcttca cctcgccatg ctcagacagc aggacgttgg 660 ccgctttaat gtctctgtgg attttcttct ccgaatggag ataatcgagt cctttcagta 720 tttctcttaa tatagtagcg atctgggttt catctaatgg gccaggttct aatagatcta 780 gtgcggagcc tccaccaaga tattccatta ttatccataa ttttgtatcc ttcagatagg 840 900 atccataata titggitaca tatggactgt cacactgact cagcactgtg atticttgtt gaatgtcctc tatctcatct tcagcttctt ccagatcaat gatctttatg gcaaccactt 960 totgagtocg attgtcaatg cotttgaaca cotctccaaa ggagccottc ccaattttct 1020 ctagttttgt aaaaagctct tctgggtctg cctttaggtt ctgcatgccg ggcaggcccg 1080 actgcaccgg ggagtgagcc atggcgctca ggacggccac ttcctgggac gggacggccg 1140 1200 ggccgcgacg atccgcgcgg ggcggcgagg cccgcgggcc gcgcgcagcc ctcgggcggc 1260 ggggccggcc ggagcccgag gccaccccag cctggcgggt cccggccggg cggcggggc tcageggegg gtggegggec gegtetecat geaeggegee agggaggage tgetggggge 1320 1380 gcagggcete gegegeactg eegeegeege egetgetgee getaetgetg ggetggagee gggcggcctg ggcccgcgcg cgctggccgc t 1411

<210> 18

<211> 880

<212> DNA

<213> Homo sapien

<400> 18	
gegtgegagg egattggttt ggggeeagag tgggee	gagge geggaggtet ggeetataaa 60
gtagtcgcgg agacggggtg ctggtttgcg tcgtag	state atgasgate tggggtttce 120
gttgcagtcc tcggaaccag gacctcggcg tggcct	tagcg agttatggcg acgaaggccg 180
tgtgcgtgct gaagggcgac ggcccagtgc agggca	atcat caatttcgag cagaaggctg 240
taccagtgca ggtcctcact ttaatcctct atccag	gaaaa cacggtgggc caaaggatga 300
agagaggcat gttggagact tgggcaatgt gactgo	etgac aaagatggtg tggccgatgt 360
gtctattgaa gattctgtga tctcactctc aggaga	accat tgcatcattg gccgcacact 420
ggtggtccat gaaaaagcag atgacttggg caaagg	gtgga aatgaagaaa gtacaaagac 480
aggaaacgct ggaagtcgtt tggcttgtgg tgtaat	tggg atcgcccaat aaacattccc 540
ttggatgtag tctgaggccc cttaactcat ctgtta	atcct gctagctgta gaaatgtatc 600
ctgataaaca ttaaacactg taatcttaaa agtgta	aattg tgtgactttt tcagagttgc 660
tttaaagtac ctgtagtgag aaactgattt atgatc	cactt ggaagatttg tatagtttta 720
taaaactcag ttaaaatgtc tgtttcaatg acctgt	attt tgccagactt aaatcacaga 780
tgggtattaa acttgtcaga atttctttgt cattca	agcc tgtgaataaa aaccctgtat 840
ggcacttatt atgaggctat taaaagaatc caaatt	ccaaa 880
<210> 19 <211> 2020 <212> DNA <213> Homo sapien	
<pre><400> 19 gactcatgca teccegatee caccettett ettecc</pre>	etttt ttccctttgt tgcatcgatt 60
tcattttttc tttttttcca catagagttc agcttt	gttt gcttcgtgac gttggggggc 120
acatttctgc tttgaaggaa aacgaaagct accaag	gtttt gggagatggg agatggtgct 180
atacggtctt tagggttacg tgaagtcaag taaaat	cgca cactgggaag agatggatca 240
agatggtgaa atagaagact ccaccaatca tcccct	tcac acgaacacca atttaacaac 300
tatctacatg cacacaca aaagcttcat caattt	aaca actatctaca tgcacacaca 360
caaaaccttt gtaagaactc aaaatcagat taagaa	agaaa caacaagatg tgcttggttt 420
cctagaagcc aacaaaatag gatttgaaga aaaaga	atatt gcagccaatg aagagaatcg 480
gaagtggatg agagaaaatg tacctgaaaa tagtcg	gacca gccacaggtt accccctgcc 540
acctcagatt ttcaatgaaa gccagtatcg cgggga	actat gatgccttct ttgaagccag 600
agaaaataat gcagtgtatg ccttcttagg cttgac	cagec ceacetggtt caaaggaage 660

PCT/US2003/038829 WQ 2004/052290

24

			24			
agaagtgcaa	gcaaagcagc	aagcatgaac	cttaagcact	gtgctttaag	catcctgaaa	720
aatgagtctc	cattgctttt	ataaaatagc	agaattagct	ttgcttcaaa	agaaataggc	780
ttaatgttga	aataatagat	tagttgggtt	ttcacatgca	aacattcaaa	atgaatacaa	840
aattaaaatt	tgaacattat	ggtgattatg	gtgaggagaa	tgggatatta	acataaaatt	900
atattaataa	gtagatatcg	tagaaatagt	gttgttacct	gccaagccat	cctgtataca	960
ccaatgattt	tacaaagaaa	acacccttcc	ctccttctgc	cattactatg	gcaacttaag	1020
tgtatctgca	gctctacatt	aaaaaggaga	aagagaaata	acctgtctct	cattcctaag	1080
ttgcctcatt	aattttcatg	aacaagaata	tgtacctttt	tgatgctata	ttactgcgat	1140
taaaaagttc	ttgcaggtaa	tgtttatgat	atgttaaacg	ttgtaatttc	ttatcgtaat	1200
tataacattc	ccattcttt	gtagatgaaa	cttctacata	ttgaaccaca	gattttctga	1260
gcttctaaat	gtagcctttc	attgcacatt	tcagtgatca	gaatagatat	ccttttacac	1320
gcacaaaagc	aatagattca	ttcagtggac	aagttccttg	tttaactaca	cagctatgat	1380
ggaatgatat	atccaagttc	cttgcctcag	tgaaatatgc	atatgtatat	catgaaagtg	1440
ggatgccaag	taagcttaaa	atggcattct	ctagcaaaga	gattagactt	ttaaataact	1500
cttataaaac	aggttggcga	tcatttccca	agattggttt	cccttgagtt	tttgctaaaa	1560
caaatcttag	tagttttgcc	cgtttaaaac	aactcacaat	cgtaaatgct	actattccta	1620
agatatctta	cctttttatt	tcagtttagc	catgtattgt	atgagtgtat	tagtctaagc	1680
agtgagaatc	ttttctatgc	ctctattcca	gcaaaaagta	gaagtatcaa	ataaaaaggg	1740
caacttttaa	aatattaagc	ctgaagactt	ctaaaaagac	aagaaacatg	gcctaaataa	1800
ccaacataga	tttacatagt	aagtttcaca	ctaccttatt	accaaaagca	aacacctctt	1860
actttaaact	acattatcat	gtatatctat	tgtatgctgg	tctttacttt	ttgccaaaat	1920
caacatataa	tgaagagatg	cctttgtttc	atgagattca	aacttgatgc	tatgctttaa	1980
aataaactca	gtacttttag	aaacataaaa	aaaaaaattc			2020
<210> 20	_					

<211> 1895

<400> 20

cttgaaacca tggaaattag atagattcca gtgaaggcta tggtagtgag agaaaagtca 60 agtaatgtta ttgaattaaa ttcttacttg gatttcctag ggaagagatg gatcaagatg 120 gtgaaataga agactccacc aatcatcccc ttcacacgaa caccaattta acaactatct 180 acatgcacac acacaaaagc ttcatcaatt taacaactat ctacatgcac acacacaaaa 240

<212> DNA <213> Homo sapien

			23			
cctttgtaag	aactcaaaat	cagattaaga	agaaacaaca	agatgtgctt	ggtttcctag	300
aagccaacaa	aataggattt	gaagaaaaag	atattgcagc	caatgaagag	aatcggaagt	360
ggatgagaga	aaatgtacct	gaaaatagtc	gaccagccac	aggttacccc	ctgccacctc	420
agattttcaa	tgaaagccag	tatcgcgggg	actatgatgc	cttctttgaa	gccagagaaa	480
ataatgcagt	gtatgccttc	ttaggcttga	cagccccacc	tggttcaaag	gaagcagaag	540
tgcaagcaaa	gcagcaagca	tgaaccttaa	gcactgtgct	ttaagcatcc	tgaaaaatga	600
gtctccattg	cttttataaa	atagcagaat	tagctttgct	tcaaaagaaa	taggcttaat	660
gttgaaataa	tagattagtt	gggttttcac	atgcaaacat	tcaaaatgaa	tacaaaatta	720
aaatttgaac	attatggtga	ttatggtgag	gagaatggga	tattaacata	aaattatatt	780
aataagtaga	tatcgtagaa	atagtgttgt	tacctgccaa	gccatcctgt	atacaccaat	840
gattttacaa	agaaaacacc	cttccctcct	tctgccatta	ctatggcaac	ttaagtgtat	900
ctgcagctct	acattaaaaa	ggagaaagag	aaataacctg	tctctcattc	ctaagttgcc	960
tcattaattt	tcatgaacaa	gaatatgtac	ctttttgatg	ctatattact	gcgattaaaa	1020
agttcttgca	ggtaatgttt	atgatatgtt	aaacgttgta	atttcttatc	gtaattataa	1080
cattcccatt	cttttgtaga	tgaaacttct	acatattgaa	ccacagattt	tctgagcttc	1140
taaatgtagc	ctttcattgc	acatttcagt	gatcagaata	gatatccttt	tacacgcaca	1200
aaagcaatag	attcattcag	tggacaagtt	ccttgtttaa	ctacacagct	atgatggaat	1260
gatatatcca	agttccttgc	ctcagtgaaa	tatgcatatg	tatatcatga	aagtgggatg	1320
ccaagtaagc	ttaaaatggc	attctctagc	aaagagatta	gacttttaaa	taactcttat	1380
aaaacaggtt	ggcgatcatt	tcccaagatt	ggtttccctt	gagtttttgc	taaaacaaat	1440
cttagtagtt	ttgcccgttt	aaaacaactc	acaatcgtaa	atgctactat	tcctaagata	1500
tcttaccttt	ttatttcagt	ttagccatgt	attgtatgag	tgtattagtc	taagcagtga	1560
gaatcttttc	tatgcctcta	ttccagcaaa	aagtagaagt	atcaaataaa	aagggcaact	1620
tttaaaatat	taagcctgaa	gacttctaaa	aagacaagaa	acatggccta	aataaccaac	1680
atagatttac	atagtaagtt	tcacactacc	ttattaccaa	aagcaaacac	ctcttacttt	1740
aaactacatt	atcatgtata	tctattgtat	gctggtcttt	actttttgcc	aaaatcaaca	1800
tataatgaag	agatgccttt	gtttcatgag	attcaaactt	gatgctatgc	tttaaaataa	1860
actcagtact	tttagaaaca	taaaaaaaa	aattc			1895

<210> 21 <211> 2426 <212> DNA <213> Homo sapien

<400> 21						
	gggggcgtgg	cctgcccccg	gcccagccgg	ctcttctttg	cctctgctgg	6
agtccgggga	gtggcgttgg	ctgctagagc	gatgccgggc	cggagttgcg	tcgccttagt	120
cctcctggct	gccgccgtca	gctgtgccgt	cgcgcacacg	cgccgccggt	gagtgagctt	180
gagccgaggc	gcagagaggg	gcgtgcaggt	gcgggcgcgg	atggaggcgc	agtggacaga	24
ggactgcaga	aaatcaacct	atcctccttc	aggaccaacg	tacagaggtg	cagttccatg	306
gtacaccata	aatcttgact	taccacccta	caaaagatgg	catgaattga	tgcttgacaa	36
ggcaccagtg	ctaaaggtta	tagtgaattc	tctgaagaat	atgataaata	cattcgtgcc	420
aagtggaaaa	gttatgcagg	tggtggatga	aaaattgcct	ggcctacttg	gcaactttcc	486
tggccctttt	gaagaggaaa	tgaagggtat	tgccgctgtt	actgatatac	ctttaggaga	540
gattatttca	ttcaatattt	tttatgaatt	atttaccatt	tgtacttcaa	tagtagcaga	600
agacaaaaaa	ggtcatctaa	tacatgggag	aaacatggat	tttggagtat	ttcttgggtg	660
gaacataaat	aatgatacct	gggtcataac	tgagcaacta	aaacctttaa	cagtgaattt	720
ggatttccaa	agaaacaaca	aaactgtctt	caaggettea	agctttgctg	gctatgtggg	780
catgttaaca	ggattcaaac	caggactgtt	cagtcttaca	ctgaatgaac	gtttcagtat	840
aaatggtggt	tatctgggta	ttctagaatg	gattctggga	aagaaagatg	ccatgtggat	900
agggttcctc	actagaacag	ttctggaaaa	tagcacaagt	tatgaagaag	ccaagaattt	960
attgaccaag	accaagatat	tggccccagc	ctactttatc	ctgggaggca	accagtctgg	1020
ggaaggttgt	gtgattacac	gagacagaaa	ggaatcattg	gatgtatatg	aactcgatgc	1080
taagcagggt	agatggtatg	tggtacaaac	aaattatgac	cgttggaaac	atcccttctt	1140
ccttgatgat	cgcagaacgc	ctgcaaagat	gtgtctgaac	cgcaccagcc	aagagaatat	1200
ctcatttgaa	accatgtatg	atgtcctgtc	aacaaaacct	gtcctcaaca	agctgaccgt	1260
atacacaacc	ttgatagatg	ttaccaaagg	tcaattcgaa	acttacctgc	gggactgccc	1320
tgacccttgt	ataggttggt	gagcacacgt	ctggcctaca	gaatgcggcc	tctgagacat	1380
gaagacacca	tctccatgtg	accgaacact	gcagctgtct	gaccttccaa	agactaagac	1440
tcgcggcagg	ttctctttga	gtcaatagct	tgtcttcgtc	catctgttga	caaatgacag	1500
atctttttt	tttcccccta	tcagttgatt	tttcttattt	acagataact	tctttagggg	1560
aagtaaaaca	gtcatctaga	attcactgag	ttttgtttca	ctttgacatt	tggggatctg	1620
gtgggcagtc	gaaccatggt	gaactccacc	tccgtggaat	aaatggagat	tcagcgtggg	1680
gttgaatcc	agcacgtctg	tgtgagtaac	gggacagtaa	acactccaca	ttcttcagtt	1740
ttcacttct	acctacatat	ttgtatgttt	ttctgtataa	cagcetttte	cttctggttc	1800

WO 2004/052290

27

PCT/US2003/038829

720

780

840

900

960

taactgctgt taaaattaat atatcattat ctttgctgtt attgacagcg atataatttt 1860 attacatatg attagaggga tgagacagac attcacctgt atatttcttt taatgggcac 1920 aaaatgggcc cttgcctcta aatagcactt tttggggttc aagaagtaat cagtatgcaa 1980 agcaatcttt tatacaataa ttgaagtgtt ccctttttca taattactct acttcccagt 2040 aaccctaagg aagttgctaa cttaaaaaac tgcatcccac gttctgttaa tttagtaaat 2100 aaacaagtca aagacttgtg gaaaatagga agtgaaccca tattttaaat tctcataagt 2160 agcattcatg taataaacag gtttttagtt tgttcttcag attgataggg agttttaaag 2220 aaattttagt agttactaaa attatgttac tgtatttttc agaaatccaa ctgcttatga 2280 2340 aaagtactaa tagaacttgt taacctttct aaccttcacg attaactgtg aaatgtacgt catttgtgca agaccgtttg tccacttcat tttgtataat cacagttgtg ttcctgacac 2400 2426 tcaataaaca gtcattggaa agagtg 22 <210> 2627 <211> <212> DNA <213> Homo sapien <400> 22 60 ataccttatg gattaagaag aataacatga tgtataagtg gtgtaaattt atataattat tataaattat tataaatgta taataaaata actagaattt caccaaatta gaaatttaat 120 ggaaataaaa tacacattgg atttgggtga aaaaaacatg ttgagcttaa catgttaatg 180 ttaaatggga cagaaataca atgtgctgcc tacttttgaa ttaaatgcta aatagcagta 240 ttatacattt tgggaaaata ttcaaaaaat aaaataccct agaatggagt ttcttggcag 300 ctctgtacta attttaatag ttcttgaatc tcctttttca ccttagaaat tttagtcaca 360 ctttaaaaat ctgggcaaaa tatatgtcca gcaaacagcc aagagccaga tgtattaaat 420 gatcatattt acgctcccaa aagaaaattc aaaatgaagc atgttgataa acattttgga 480 540 tgtgatgttg gagaacaatt gcaacctgcc cagatgttca gctcgcccga aggctgcctc cttggtgact tgtttcatct tgagtctaga gagtccaggc tggggaagaa aaccacctcc 600 ageeggeegt tecageacag ecceaetgge caaageacae acteacacaa tgaaaacaet 660

gaaacttttt cttaaaacaa atttttctcc cattgtcatg gttctgtata ttaacacaaa attttctttt ctcataggag agattatttc attcaatatt ttttatgaat tatttaccat

ttgtacttca atagtagcag aagacaaaaa aggtcatcta atacatggga gaaacatgga

ttttggagta tttcttgggt ggaacataaa taatgatacc tgggtcataa ctgagcaact

aaaaccttta acagtgaatt tggatttcca aagaaacaac aaaactgtct tcaaggcttc

PCT/US2003/038829

aagctttgct	ggctatgtgg	gcatgttaac	aggattcaaa	ccaggactgt	tcagtcttac	1020
actgaatgaa	cgtttcagta	taaatggtgg	ttatctgggt	attctagaat	ggattctggg	1080
aaagaaagat	gccatgtgga	tagggttcct	cactagaaca	gttctggaaa	atagcacaag	1140
ttatgaagaa	gccaagaatt	tattgaccaa	gaccaagata	ttggccccag	cctactttat	1200
cctgggaggc	aaccagtctg	gggaaggttg	tgtgattaca	cgagacagaa	aggaatcatt	1260
ggatgtatat	gaactcgatg	ctaagcaggg	tagatggtat	gtggtacaaa	caaattatga	1320
ccgttggaaa	catcccttct	tccttgatga	tcgcagaacg	cctgcaaaga	tgtgtctgaa	1380
ccgcaccagc	caagagaata	tctcatttga	aaccatgtat	gatgtcctgt	caacaaaacc	1440
tgtcctcaac	aagctgaccg	tatacacaac	cttgatagat	gttaccaaag	gtcaattcga	1500
aacttacctg	cgggactgcc	ctgacccttg	tataggttgg	tgagcacacg	tctggcctac	1560
agaatgcggc	ctctgagaca	tgaagacacc	atctccatgt	gaccgaacac	tgcagctgtc	1620
tgaccttcca	aagactaaga	ctcgcggcag	gttctctttg	agtcaatagc	ttgtcttcgt	1680
ccatctgttg	acaaatgaca	gatcttttt	ttttccccct	atcagttgat	tttcttatt	1740
tacagataac	ttctttaggg	gaagtaaaac	agtcatctag	aattcactga	gttttgtttc	1800
actttgacat	ttggggatct	ggtgggcagt	cgaaccatgg	tgaactccac	ctccgtggaa	1860
taaatggaga	ttcagcgtgg	gtgttgaatc	cagcacgtct	gtgtgagtaa	cgggacagta	1920
aacactccac	attcttcagt	ttttcacttc	tacctacata	tttgtatgtt	tttctgtata	1980
acagcctttt	ccttctggtt	ctaactgctg	ttaaaattaa	tatatcatta	tetttgetgt	2040
tattgacagc	gatataattt	tattacatat	gattagaggg	atgagacaga	cattcacctg	2100
tatatttctt	ttaatgggca	caaaatgggc	ccttgcctct	aaatagcact	ttttggggtt	2160
caagaagtaa	tcagtatgca	aagcaatctt	ttatacaata	attgaagtgt	tecetttte	2220
ataattacto	tacttcccag	taaccctaag	gaagttgcta	acttaaaaaa	ctgcatccca	2280
cgttctgtta	atttagtaaa	taaacaagto	aaagacttgt	ggaaaatagg	aagtgaaccc	2340
atattttaaa	ttctcataag	tagcattcat	gtaataaaca	ggtttttagt	ttgttcttca	2400
gattgatagg	gagttttaaa	gaaattttag	tagttactaa	aattatgtta	ctgtatttt	2460
cagaaatcca	actgcttatg	aaaagtacta	atagaacttg	ttaacctttc	taaccttcac	2520
gattaactgt	gaaatgtacg	tcatttgtgc	aagaccgttt	gtccacttca	ttttgtataa	2580
tcacagttgt	gttcctgaca	. ctcaataaac	: agtcattgga	aagagtg	•	2627

<210> 23 <211> 2200 <212> DNA

<213> Homo sapien

<400> 23 60 ccaaaatgtg atcataagtg aagataaatg gattgcttga gtgctgagac aagagggaca 120 tgctcttcta ttttatgtgt ccatcttgac ctttctgaaa aaataagaat attgtaatta 180 gcattctatg tttgaatctg aggctcacta tttataagct gtgtgatatt gagagagtta 240 cctgacttct ctgaacctca attttatcat ttggaaaaca gaataaatat accatattgt 300 aaaggtettg ttaggattga tegtggtgae teggtaaata aageteetag tgtaatgeet 360 ggccctcatc atcatgttga tcattactat cactgtgttt ctgaaatgtc actgaaacat 420 gtcttttata ggtggaacat aaataatgat acctgggtca taactgagca actaaaacct 480 ttaacagtga atttggattt ccaaagaaac aacaaaactg tcttcaaggc ttcaagcttt 540 gctggctatg tgggcatgtt aacaggattc aaaccaggac tgttcagtct tacactgaat 600 gaacgtttca gtataaatgg tggttatctg ggtattctag aatggattct gggaaagaaa 660 gatgccatgt ggatagggtt cctcactaga acagttctgg aaaatagcac aagttatgaa 720 gaagccaaga atttattgac caagaccaag atattggccc cagcctactt tatcctggga 780 ggcaaccagt ctggggaagg ttgtgtgatt acacgagaca gaaaggaatc attggatgta 840 900 tatgaactcg atgctaagca gggtagatgg tatgtggtac aaacaaatta tgaccgttgg aaacatccct tcttccttga tgatcgcaga acgcctgcaa agatgtgtct gaaccgcacc 960 agccaagaga atatctcatt tgaaaccatg tatgatgtcc tgtcaacaaa acctgtcctc 1020 aacaagctga ccgtatacac aaccttgata gatgttacca aaggtcaatt cgaaacttac 1080 ctgcgggact gccctgaccc ttgtataggt tggtgagcac acgtctggcc tacagaatgc 1140 ggcctctgag acatgaagac accatctcca tgtgaccgaa cactgcagct gtctgacctt 1200 ccaaagacta agactcgcgg caggttctct ttgagtcaat agcttqtctt cgtccatctq 1260 ttgacaaatg acagatettt tttttttece cetateagtt gatttttett atttacagat 1320 aacttettta ggggaagtaa aacagteate tagaatteae tgagttttgt tteaetttga 1380 catttgggga tctggtgggc agtcgaacca tggtgaactc cacctccgtg gaataaatgg 1440 agattcagcg tgggtgttga atccagcacg tctgtgtgag taacgggaca gtaaacactc 1500 cacattette agtitticae tictacetae atattigtat gtitticigt ataacageet 1560 tttccttctg gttctaactg ctgttaaaat taatatatca ttatctttgc tgttattgac 1620 agcgatataa ttttattaca tatgattaga gggatgagac agacattcac ctgtatattt 1680 cttttaatgg gcacaaaatg ggcccttgcc tctaaatagc actttttggg gttcaagaag 1740

			30			
taatcagtat	gcaaagcaat	cttttataca	ataattgaag	tgttcccttt	ttcataatta	1800
ctctacttcc	cagtaaccct	aaggaagttg	ctaacttaaa	aaactgcatc	ccacgttctg	1860
ttaatttagt	aaataaacaa	gtcaaagact	tgtggaaaat	aggaagtgaa	cccatatttt	1920
aaattctcat	aagtagcatt	catgtaataa	acaggttttt	agtttgttct	tcagattgat	1980
agggagtttt	aaagaaattt	tagtagttac	taaaattatg	ttactgtatt	tttcagaaat	2040
ccaactgctt	atgaaaagta	ctaatagaac	ttgttaacct	ttctaacctt	cacgattaac	2100
tgtgaaatgt	acgtcatttg	tgcaagaccg	tttgtccact	tcattttgta	taatcacagt	2160
tgtgttcctg	acactcaata	aacagtcatt	ggaaagagtg			2200
<210> 24 <211> 855 <212> DNA <213> Homo	o sapien					
	gggggcgtgg	cctgcccccg	gcccagccgg	ctcttctttg	cctctgctgg	60
agtccgggga	gtggcgttgg	ctgctagagc	gatgccgggc	cggagttgcg	tcgccttagt	120
cctcctggct	gccgccgtca	gctgtgccgt	cgcgcacacg	cgccgccgtg	gacagaggac	180
tgcagaaaat	caacctatcc	tccttcagga	ccaacgtaca	gaggtgcagt	tccatggtac	240
accataaatc	ttgacttacc	accctacaaa	agatggcatg	aattgatgct	tgacaaggca	300
ccagtgctaa	aggttatagt	gaattctctg	aagaatatga	taaatacatt	cgtgccaagt	360
ggaaaagtta	tgcaggtggt	ggatgaaaaa	ttgcctggcc	tacttggcaa	ctttcctggc	420
ccttttgaag	aggaaatgaa	gggtattgcc	gctgttactg	atataccttt	aggagagatt	480
atttcattca	atattttta	tgaattattt	accatttgta	cttcaatagt	agcagaagac	540
aaaaaaggtc	atctaataca	tgggagaaac	atggattttg	gagtatttct	tgggtggaac	600
ataaataatg	atacctgggt	cataactgag	caactaaaac	ctttaacagt	gaatttggat	660
ttccaaagaa	acaacaaac	tgtcttcaag	gcttcaagct	ttgctggcta	tgtgggcatg	720
ttaacaggat	tcaaaccagg	actgttcagt	cttacactga	atgaacgttt	cagtataaat	780
ggtggttatc	tggaaatact	ccaaaatcca	tgtttctccc	atgtattaga	tgtccttttt	840
tgtcttctgc	tacta					855
<210> 25 <211> 1156 <212> DNA <213> Homo	s sapien					
acgcggcgga	gggggcgtgg	cctgcccccg	gcccagccgg	ctcttctttg	cctctgctgg	60

WO 2004/052290

31

PCT/US2003/038829

	•					
agtccgggga	gtggcgttgg	ctgctagagc	gatgccgggc	cggagttgcg	tcgccttagt	120
cctcctggct	geegeegtea	gctgtgccgt	cgcgcacacg	cgccgccgtg	gacagaggac	180
tgcagaaaat	caacctatcc	tccttcagga	ccaacgtaca	gaggtgcagt	tccatggtac	240
accataaatc	ttgacttacc	accctacaaa	agatggcatg	aattgatgct	tgacaaggca	300
ccagtgctaa	aggttatagt	gaattctctg	aagaatatga	taaatacatt	cgtgccaagt	360
ggaaaagtta	tgcaggtggt	ggatgaaaaa	ttgcctggcc	tacttggcaa	ctttcctggc	420
ccttttgaag	aggaaatgaa	gggtattgcc	gctgttactg	atataccttt	aggagagatt	480
atttcattca	atattttta	tgaattattt	accatttgta	cttcaatagt	agcagaagac	540
aaaaaaggtc	atctaataca	tgggagaaac	atggattttg	gagtatttct	tgggtggaac	600
ataaataatg	atacctgggt	cataactgag	caactaaaac	ctttaacagt	gaatttggat	660
ttccaaagaa	acaacaaaac	tggactgttc	agtettacae	tgaatgaacg	tttcagtata	720
aatggtggtt	atctgggtat	tctagaatgg	attctgggaa	agaaagaagg	caggggcttg	780
gctggagagc	atgggcctca	cgtcataaat	ccccagtgc	gaacttaaga	caaacgagag	840
agaagtcacc	ttcctcttag	gaccctccct	gggttagcta	ggaaaggaaa	gaacccagaa	900
gtcttcagta	gcacagtatg	ccttctggta	tctccctaag	ccaggtgagg	gaccccctag	960
gcattctccc	tagcccagca	ccgattctct	cttcacacct	ggctattgtc	ctggccaccg	1020
ttatgcacga	gttgggcagc	agaaatagct	gtgaactgaa	atctcccact	gctcggacta	1080
ctttctgccc	: taatggccat	tactatccag	tetgtattge	tacaagggac	ccactgttac	1140
cccttttaga	ttctat					1156

<210> 26 <211> 933 <212> DNA <213> Homo sapien

<400> 26 acgcggcgga gggggcgtgg cctgcccccg gcccagccgg ctcttctttg cctctgctgg 60 agtccgggga gtggcgttgg ctgctagagc gatgccgggc cggagttgcg tcgccttagt 120 cctcctggct gccgccgtca gctgtgccgt cgcgcacacg cgccgccgtg gacagaggac 180 tgcagaaaat caacctatcc tccttcagga ccaacgtaca gaggtgcagt tccatggtac 240 accataaatc ttgacttacc accctacaaa agatggcatg aattgatgct tgacaaggca 300 ccagtgctaa aggttatagt gaattctctg aagaatatga taaatacatt cgtgccaagt 360 ggaaaagtta tgcaggtggt ggatgaaaaa ttgcctggcc tacttggcaa ctttcctggc 420 ccttttgaag aggaaatgaa gggtattgcc gctgttactg atataccttt aggtaaagtt 480

32

cacttagaag	ctttaaaaaa	aaaagtaatt	aaattctttt	acaagtttcc	attgaggtgt	540
	cagcaaaggt					600
	gctcagtgaa					660
	aagagcccag					720
	agtaaacact					780
	atagaactga					840
	gctattgtat					900
	attataaata					933
	o sapien					
<400> 27 aagggccttt	ggaaatcact	gggtccaaga	cttgccacag	aaaatcatat	acctgaagag	60
gactccctca	atgtggctga	cttgacttcc	ctccgggccc	cactggacat	ccccatccca	120
gaccctccac	ccaaggatga	tgagatggaa	acagataagc	aggagaagaa	agaagtccct	180
aagtgtggat	ttctccctgg	gaatgagaaa	gtcctgtccc	tgcttgccct	ggttaagcca	240
gaagtctgga	ctctcaaaga	gaaatgcatt	ctggtgatta	catggatcca	acacctgatc	300
cccaagattg	aagatggaaa	tgattttggg	gtagcaatcc	aggagaaggt	gctggagagg	360
gtgaatgccg	tcaagaccaa	agtggaagct	ttccagacaa	ccatttccaa	gtacttctca	420
gaacgtgggg	atgctgtggc	caaggcctcc	aaggagactc	atgtaatgga	ttaccgggcc	480
ttggtgcatg	agcgagatga	ggcagcctat	ggggagctca	gggccatggt	gctggacctg	540
agggccttct	atgctgagct	ttatcatatc	atcagcagca	acctggagaa	aattgtcaac	600
ccaaagggtg	aagaaaagcc	atctatgtac	tgaacccggg	actagaagga	aaataaatga	660
tctatatgtt	gtgtgga					677
<210> 28 <211> 203 <212> DNA <213> Home						
<400> 28 ccctcagtca	agcgctcttc	cccgccttcc	cccaatctgg	ttccacccct	tccggatagc	60
cgcaggcgcg	gggttatcct	attcagctca	aaacctttct	ttttctagct	ggaccagtcc	120

ggtacgctcc gggcctcacc gaggaagtcc caccctgcag gggaaccgac tctggccggc 180

			22			
cctaacccct (tcgagcgag (tecegececa	teteeggtet	gtcctgaagg	cagagggaag	240
accctcaccc a	acccctgcc (cgatatatta	taagagctgc	tagtccttct	ccaccccagg	300
egeteeetet g	getgeeet	cccactcgct	ctgatctctc	teegteeget	acttgcggtc	360
gagccttctt q	ggggagccc	cgccactgaa	tacccccttt	gccatactcc	cacctctctt	420
accccaaccc	tggacttcca	gttggcccta	gctataagcc	ccgcccctct	ccgagggaca	480
geeceegete	cagtctccgc	ggtcccactt	accctagccc	ctccctcggg	cageceetgg	540
actgtgaccc	agccagcacc	gcctctccta	gtggcaactg	gctgggaatg	gctgaggggc	600
tacctactgc	ttgcggcctg	ccagcgggag	gaggggggcg	gaaagaagaa	agggggcggg	660
gttgaggggg	gegggeetgg	acctggggag	tgaaagcgaa	agcccgggcg	actagccggg	720
agaccagaga	tctagcgact	gaagcagcat	ggccaagccg	tgtggggtgc	gcctgagcgg	780
ggaagcccgc	aaacaggtgg	aggtcttcag	acagaatctt	ttccaggagg	taagtctctg	840
gatttgagcg	atttgaccca	gaatcttgga	ccaatacttg	aggataacag	cctctcagaa	900
tgacccccc	aagtcaccct	agacttaacc	ctacttccct	taccaagcct	tcacccaaag	960
taaccccgga	attattgata	gctaccttta	atctgacctt	tcttatgact	ctcccgactt	1020
ctggcacttc	tcccgtcttt	tgatgtggag	gaaaaaaacc	atggcttcca	aagcaggaat	1080
atcacagtcc	taaccttcgt	tctgccattt	accagcttgg	gcaagtcctt	tcattttcag	1140
gtcttcagtt	tcctcatttg	caagtcttgg	acccagtgat	ttccaaaggc	ccttccagtt	1200
ccatttgtca	gacatctcat	tgagcatatt	ctgtgattcc	cctcccttgc	aatgtaaccc	1260
acagetgagg	aattcctcta	cagattcttg	ccacagaaaa	tcatatacct	gaatcagctc	1320
ttgcaagagg	actccctcaa	tgtggctgac	ttgacttccc	teegggeeee	actggacatc	1380
cccatcccag	accetecace	caaggatgat	gagatggaaa	cagataagca	ggagaagaaa	1440
gaaggtaaga	gagataagag	gtgactaggg	aaggggtgat	ggcacactga	ctactggatg	1500
agaaagggcc	tgaatcccct	ctttctcaca	gtccctaagt	gtggatttct	ccctgggaat	1560
gagaaagtcc	tgtccctgct	tgccctggtt	aagccagaag	g tetggaetet	caaagagaaa	1620
tgcattctgg	tgattacatg	gatecaacae	: ctgatcccc	agattgaaga	tggaaatgat	1680
tttggggtag	caatccagga	gaaggtgctg	gagagggtga	a atgccgtcaa	gaccaaagtg	1740
gaagctttcc	agacaaccat	ttccaagtac	ttctcagaad	gtggggatgo	tgtggccaag	1800
gcctccaagg	agactcatgt	aatggattad	cgggccttgg	g tgcatgagcg	g agatgaggca	1860
gcctatgggg	agctcagggo	catggtgctg	g gacctgagg	g ccttctatgo	tgagetttat	1920
catatcatca	gcagcaacct	: ggagaaaatt	gtcaaccca	a agggtgaaga	a aaagccatct	1980
atgtactgaa	cccgggacta	a gaaggaaaat	aaatgatct	a tatgttgtgl	gga :	2033

<210> 29 <211> 933 <212> DNA <213> Homo sapien <400> 29 ggctactata aagttctggg aaagggaaag ctcccaaagc agcctgtcat cgtgaagggc 60 caattettea ageegaaaaa ageetgagga gaagattaag agtgttgggg tgegeetgag 120 cggggaagcc cgcaaacagg tggaggtctt caggcagaat cttttccagg gctgaggaat 180 tcctctacag attcttgcca cagaaaatca tatacctgaa tcagctcttg caagaggact 240 300 ccctcaatgt ggctgacttg acttccctcc gggccccact ggacatcccc atcccagacc 360 ctccacccaa ggatgatgag atggaaacag ataagcagga gaagaaagaa gtccctaagt gtggatttct ccctgggaat gagaaagtcc tgtccctgct tgccctggtt aagccagaag 420 tctggactct caaagagaaa tgcattctgg tgattacatg gatccaacac ctgatcccca 480 agattgaaga tggaaatgat tttggggtag caatccagga gaaggtgctg gagagggtga 540 600 atgccgtcaa gaccaaagtg gaagctttcc agacaaccat ttccaagtac ttctcagaac gtggggatgc tgtggccaag gcctccaagg agactcatgt aatggattac cgggccttgg 660 tgcatgagcg agatgaggca gcctatgggg agctcagggc catggtgctg gacctgaggg 720 ccttctatgc tgagctttat catatcatca gcagcaacct ggagaaaatt gtcaacccaa 780 agggtgaaga aaagccatct atgtactgaa cccgggacta gaaggaaaat aaatgatcta 840 tatgttgtgt ggacacaacc agaacacaaa aacggggggg cggcaaaaat acccgaaggg 900 933 gccgttacgc gccccttctt ggacagggcc tag <210> 30 <211> 1100 <212> DNA <213> Homo sapien <400> 30 ggctactata aagttctggg aaagggaaag ctcccaaagc agcctgtcat cgtgaagggc 60 caattettea ageegaaaaa ageetgagga gaagattaag agtgttgggg tgegeetgag 120 cggggaagcc cgcaaacagg tggaggtctt caggcagaat cttttccagg gctgaggaat 180 tcctctacag attcttgcca cagaaaatca tatacctgaa tcagctcttg caagaggact 240 ccctcaatgt ggctgacttg acttccctcc gggccccact ggacatcccc atcccagacc 300 ctccacccaa ggatgatgag atggaaacag ataagcagga gaagaaagaa gtccctaagt 360 gtggatttet ccetgggaat gagaaagtee tgteeetget tgeeetggtt aageeagaag 420

			35			
tctggactct	caaagagaaa	tgcattctgg	tgattacatg	gatccaacac	ctgatcccca	480
agattgaaga	tggaaatgat	tttggggtag	caatccagga	gaaggtgctg	gagagggtga	540
atgccgtcaa	gaccaaagtg	gaagctttcc	agacaaccat	ttccaagtac	ttctcagaac	600
gtggggatgc	tgtggccaag	gcctccaagg	agactcatgt	aatggattac	cgggccttgg	660
tgcatgagcg	agatgaggca	gcctatgggg	agctcagggc	catggtgctg	gacctgaggg	720
ccttctatca	acctggagaa	aattgtcaac	ccaaagggtg	aagaaaagcc	atctatgtac	780
tgaacccggg	actagaagga	aaataaatga	tctatatgtt	gtgtggaatt	cccttctggc	840
gtgtgtcatt	cattcaaaaa	gcatttattg	agtggcacct	atgtccagcc	tgaagatgaa	900
tgtggtggga	aggggtgggt	gtcacaaaga	caaagatgac	ttagatgccc	actgtaatct	960
tgactgtgag	aaagagggga	ttcaggccct	ttctcatcca	gtagtcaatg	tgccatctcc	1020
ccttccctag	tcacctctta	tctcacttac	cttctttctt	ctcctgctta	tctgtttcca	1080
tctaaggcaa	aaagggggga					1100
<220> <221> mis <222> (47 <223> n=s <220> <221> mis <220> <221> mis <222> (15 <223> n=s						
<400> 31 atcccatgco	c caaaacgttg	taaccaaatt	ttgccccaaa	aagattntco	caggettage	60
caccgccata	a cgccggagaa	ccgtgcttaa	gaggcccact	atggggggaa	a accatttcat	120
tctcaaaaa	a aattttttt	teetettetr	cctgtttato	: agtagttctg	g aatgttagat	180
atttttcc	a tggggtcaaa	ggtacctaag	tatatgattg	g cgagtggaaa	a cataggggac	240
agaatcagg	t attggcgttt	ctccacgttc	atttgtgtgt	gaatttta	a tataaatgca	300
agatggaaa	g cattaatgca	agcaaaatgt	: ttcagtgaac	c acatttcaa	e agttcaactt	360
tataacaat	t ataaataaac	ctgttaaaat	: tttctggaca	a atgccagca	t ttggattttt	420
ttaaaataa	g taaatttctt	attgacggca	a actaaatggt	gtttgtage	a tttttatcac	480
acagtagat	t ccatccattc	: actatactt	tctaactgag	g ttgtcctac	a tacaagtaca	540

tgtttttaat	gttgtcagtc	ttctgtgctg	ttcctgtaag	tttgctatta	aaatacatta	600
aactataaaa	aaa					613
<210> 32 <211> 129 <212> DNA <213> Home	1 o sapien					
<400> 32	cgtgtgatcg	accasaacta	tantanatta	tananaana	attaataaat	60
	cctcgccatg					120
	gggcggcggc					180
gcattcacgg	ggtgctccgg	ctggccgcgg	cggtatcccg	tgtcctccgg	cccgctttgt	240
gtcctcgtcc	tcctcggggg	ggctacggcg	gggcgggcta	cggctggcgt	cctgacctgc	300
gtccgacggg	ctgctggcgg	gcaacgagaa	gctaaccatg	cagaacctca	acgaccgcct	360
ggcctcctac	ctggacaagg	tgcgcgccct	ggaggcggcc	aacggcgagc	tagaggtgaa	420
gatccgcgac	tggtaccaga	aagcaggggg	cctgggccct	cccgcgacta	cagccactac	480
tacacgacca	tccaggacct	gcgggacaag	attcttggtg	ccaccattga	gaactccagg	540
attgtcctgc	agatcgacaa	cgcccgtctg	gctgcagatg	acttccgaac	caagtttgag	600
acggaacagg	ctctgcgcat	gagcgtggag	gccgacatca	acggcctgcg	cagggtgctg	660
gatgagctga	ccctggccag	gaccgacctg	gagatgcaga	tcgaaggcct	gaaggaagag	720
ctggcctacc	tgaagaagaa	ccatgaggag	gaaatcagta	cgctgagggg	ccaagtggga	780
ggccaggtca	gtgtggaggt	ggattccgct	ccgggcaccg	atctcgccaa	gatctgagtg	840
acatgcgaag	caatatgagg	tcatggccga	gcagaaccag	gaaggatgct	gaagcctggt	900
tcamcagccg	gactgaagaa	ttgaaccggg	aggtcgctgg	cacacggagc	agctccagat	960
gagactaggt	cctgaggttt	acgtgatgca	tgcgagtgca	ccctttcagg	gatctctgag	1020
gattgatgct	gcaggtcaca	gactagagcg	atgaacagct	gtccttggac	agacagcact	1080
gtggcagaaa	tcggagagcg	cgcttaggag	cccagctggc	tgcatatcca	ggcgctgatc	1140
agcggtgatt	gaagacccag	actgggcaga	tgtgcgagct	gatagtgagc	ggcagaatca	1200
ggagtaccag	aggttcatgg	acatcacgtc	gcggctggaa	gcaggagatt	tgccgaccta	1260
ctcgtagctg	gtcgagggac	gggaagatca	c			1291

<210> 33 <211> 937 <212> DNA <213> Homo sapien

37

<400> 33						
agcggggwgg	gggsgtggcc	tgeceeegge	ccagccggct	cttctttgcc	tctgctggag	60
tccggggagt	ggcgttggct	gctagagcga	tgccgggccg	gagttgcgtc	gccttagtcc	120
tcctggctgc	cgccgtcagc	tgtgccgtcg	cgcagcacgc	gccgccgtgg	acagaggact	180
gcagaaaatc	aacctatcct	ccttcaggac	caacgtacag	aggtgcagtt	ccatggtaca	240
ccataaatct	tgacttacca	ccctacaaaa	gatggcatga	attgatgctt	gacaaggcac	300
cagtgctaaa	ggttatagtg	aattctctga	agaatatgat	aaatacattc	gtgccaagtg	360
gaaaaattat	gcaggtggtg	gatgaaaaat	tgcctggcct	acttggcaac	tttcctggcc	420
cttttgaaga	ggaaatgaag	ggtattgccg	ctgttactga	tataccttta	ggtaaagttc	480
acttagaagc	tttaaaaaaa	aaagtaatta	aattctttta	caagtttcca	ttgaggtgtg	540
atatacatac	agcacaggtg	ctgtatgtct	tagatataca	gcacaggtgc	acaggtctta	600
gatatacagc	tcagtgaagc	ttcagaaatg	catgcatgca	tgtagccatg	actcagatca	660
agatacggaa	gagcccagca	ctccacgatg	ctccatcatg	cccctttgca	gaaaatactg	720
cctcctccag	taaacactat	tctgatgtca	ctatagatta	gttttgcctc	ttcgtgaact	780
ttgtataaat	agaactgaac	aatatgaact	gtcctgtgtg	atttcttgta	tttcattatg	840
ggtggtgtgc	tattgtatca	acagggtatt	tgggtggttt	tcagatttgt	gatattaaca	900
ataaaggaat	tataaatatt	gtagtacaaa	aaaaaaa			937
	o sapien					
<400> 34 agcggggwgg	gggsgtggcc	tgcccccggc	ccagccggct	cttctttgcc	tctgctggag	60
tccggggagt	ggcgttggct	gctagagcga	tgccgggccg	gagttgcgtc	gccttagtcc	120
tcctggctgc	cgccgtcagc	tgtgccgtcg	cgcagcacgc	gccgccgtgg	acagaggact	180
gcagaaaatc	aacctatcct	ccttcaggac	caacgtacag	aggtgcagtt	ccatggtaca	240
ccataaatct	tgacttacca	ccctacaaaa	gatggcatga	attgatgctt	gacaaggcac	300
cagtgctaaa	ggttatagtg	aattctctga	agaatatgat	aaatacattc	gtgccaagtg	360
gaaaaattat	gcaggtggtg	gatgaaaaat	tgcctggcct	acttggcaac	tttcctggcc	420
cttttgaaga	ggaaatgaag	ggtattgccg	ctgttactga	tataccttta	ggtaaagttc	480
acttagaagc	tttaaaaaaa	aaagtaatta	aattctttta	caagtttcca	ttgaggtgtg	540
atatacgtgc	acaggtctta	gatatacagc	tcagtgaagc	ttcagaaatg	catgcatgca	600

tgtagccatg actcagatca agatacggaa gagcccagca ctccacgatg ctccatcatg 660

```
cccctttgca gaaaatactg cctcctccag taaacactat tctgatgtca ctatagatta
                                                                                720
gttttgcctc ttcgtgaact ttgtataaat agaactgaac aatatgaact gtcctgtgtg
                                                                                780
atttcttgta tttcattatg ggtggtgtgc tattgtatca acagggtatt tgggtggttt
                                                                                840
                                                                               897
tcagatttgt gatattaaca ataaaggaat tataaatatt gtagtacaaa aaaaaaa
<210> 35
<211> 919
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (4)..(4)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (72)..(72)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (85)..(85)
<223> n=a, c, g or t
<220>
<221> misc_feature <222> (117)..(117)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (119)..(119)
<223> n=a, c, g or t
 <220>
 <221> misc_feature
 <222> (127)..(127)
<223> n=a, c, g or t
 <220>
 <221> misc_feature
 <222> (129)..(129)
 <223> n=a, c, g or t
 <220>
 <221> misc_feature
<222> (132)..(132)
<223> n=a, c, g or t
```

```
<220>
<221> misc_feature
<222> (139)..(140)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (159)..(160)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (169)..(169)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (176)..(177)
<223> n=a, c, g or t
 <220>
<221> misc_feature
<222> (186)..(186)
<223> n=a, c, g or t
 <220>
 <221> misc_feature
 <222> (188)..(188)
 <223> n=a, c, g or t
 <220>
 <221> misc_feature
<222> (205)..(205)
<223> n=a, c, g or t
  <220>
 <221> misc_feature
<222> (227)..(227)
<223> n=a, c, g or t
  <220>
  <221> misc_feature
  <222> (230)..(230)
  <223> n=a, c, g or t
  <220>
  <221> misc_feature
<222> (241)..(241)
<223> n=a, c, g or t
```

PCT/US2003/038829 WO 2004/052290

```
<220>
<221> misc_feature
<222> (286)..(286)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (326)..(326)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (328)..(330)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (333)..(334)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (345)..(345)
<223> n=a, c, g or t
<220>
<221> misc feature
<222> (348)..(348)
<223> n=a, c, g or t
<400> 35
atantgctgc aattaaaccc aggcactcct ctttatgctg ctcactttcg tccaggacag
                                                                       60
tatgtggatg tnacagccaa aactnttggt aaaggttttc aaggtgtcat gaaaagntnt
                                                                      120
ggatttntnt tncttcccnn tacgcatggt caaacgaann cccacaggng acctgnngct
                                                                      180
gttgcnantg gtgatattgg cagantctgg cctggaacta aaatgcntgn aaaaatggga
                                                                      240
nacatataca ggacagaata tggactgaaa gtgtggagaa taaacncaaa gcacaacata
                                                                      300
atctatgtaa atggetttgt teetgnannn ttnnattget tagtntanat caaagattet
                                                                      360
aaactgcctg catataagga teteggtaaa aatetaceat teeetacata tttteetgat
                                                                      420
ggagatgaag agggaactgc cagaagattt gtatgatgaa aacgtgtgtc agcccggtgc
                                                                      480
gccttctatt acatttggcc taacatcttt ggacgtggca gaaccttaca tattctgtga
                                                                      540
gcttcgatga gccagagtga tatcataacc accagaaatc atactctcct ttcttagtca
                                                                      600
caacaaaatc acacatgtca tetttgtcaa gggcataaat atatcattca tacccccatt
                                                                      660
aaattttgtt agaaaaatta ccacattaaa tatatgagtt aagtagattg gatttgctga
                                                                      720
```

aattggtgtt gggcatatta gcaaaatatt cttaatttgt ggactcgatt cttttttaac	780
tacatatttc ccaagttatc ttaagatgtc tgtaaattta acttttatta aagtattgtc	840
aatctttgtg aaatagtggm ttgtggaaca gtagaaaacc actatgggga gctatagtgc	900
aacgctattt gggtaaaga	919
<210> 36 <211> 1203 <212> DNA <213> Homo sapien	
<400> 36 gggtgcgcgc aggccgtgag tgtgcgcttt gagagtcgcg gggaaggagc ccggcgcgcc	60
cgccgggcat gagctacgac cgcgccatca ccgtcttctc gcccgacggc cacctcttcc	120
aagtggagta cgcgcaggag gccgtcaaga agggctcgac cgcggttggt gttcgaggaa	180
gagacattgt tgttcttggt gtggagaaga agtcagtggc caaactgcag gatgaaagaa	240
cagtgeggaa gatetgtget ttgkgatgae aaegtetgea tggeetttge aggeeteace	300
gccgatgcaa ggatagtcat caacagggcc cgggtggagt gccagagcca ccggctgact	360
tgtggaggac ccggtcactg tggagtacat caaccctgct acatcgccag tctgaagcag	420
cgttatacgc agagcaatgg gcgcaggccg tttggcatct ctgccctcat cgtgggtttc	480
gactttgatg gcactcctag gctctatcag actgacccct cgggcacata ccatgcctgg	540
aaggccaatg ccataggccg gggtgccaag tcagtgcgtg agttcctgga gaagaactat	600
actgacgaag ccattgaaac agatgatctg accattaagc tggtgatcaa ggcactcctg	660
gaagtggttc agtcaggtgg caaaaacatt gaacttgctg tcatgaggcg agatcaatcc	720
ctcaagattt taaatcctga agaaattgag aagtatgttg ctgaaattga caccgagaac	780
aagyaagrat mactgaaaag aagsaayaca akaagaaagc atcatgsatg aataaaatgt	840
ctttgctttg taayytcwtt aaattcatat tcaactcatg gatgagtctc gatgtgtagg	900
cctttccatt ccatttattc acactgagtg tcctacaata aacttccgta tttttagact	960
gcttcagega cccagtttcc cctggggggc gggaggccca aggaaccccc caggggggcc	1020
ataccttgcg ggctgcccgg gtttgcgttt accgaggcgg gccccctatg ggagtgcgca	1080
tottatacog catgggtatg gogacogogo ttttacoagg tooggtgaog gtgtaacoto	1140
cctggcccgg gacctgtgtg aggggccgct tatccgtgcc tgcacttgtt ggcacatgcc	1200
ttg	1203

<210> 37 <211> 850

```
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (841)..(842)
<223> n=a, c, g or t
<400> 37
ggtaccgacg ttggatatca tgcagattat gtatggaata tccagttcat gtatactctt
                                                                      60
atacatcgac gcacagggac accagaggct ctacaattgt acgctagcaa ctaacttaca
                                                                      120
gtgcttatat agagtcagtg gtaaaatatc tggccggtcg tcggaagata cacgcgctat
                                                                      180
                                                                      240
gaagagttcc agcagcttag cgcaggcatc gcgggaggat cactgtgagc ctcatgaggt
gccagaccaa gcactaggca atgtagtgac acctcatttc tatttatttt aaaaaaaaga
                                                                      300
gagagtaact acagaagaac tttaaaaata aaaataagct taccttggat tcttggctta
                                                                      360
gagtagaggt ttttttaag ttatggagga aacatttttg taaaagttta atgacccact
                                                                      420
ttagatgete caagaacaag catecettee atgtatgtet tgagaaagaa atcacagaag
                                                                      480
cattleteae caatactett tggettaaaa tgtteageag aattgggeag tgggggtgae
                                                                      540
ttttcttata ttaataatat ttacatccaa tacactgaat cttcctttar aggwaagact
                                                                      600
ttaatatcta tactgtaaat atttggttya ttkggcacya cygtaaggtt ggtyttcmca
                                                                      660
aagetettat tatgaageaa aataaaaatt etagttteet ggatgaattt ttggaeteat
                                                                      720
tcaatcctgg taagccgccc aaaaataaaa gggccaaatt ggatattttt aaaaaccaat
                                                                      780
ttaaaataaa aatttgaagg ttttccggtc tccaaaaaac cccatccttt tagggttatt
                                                                      840
nnatccgcca
                                                                      850
<210> 38
<211> 555
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (28)..(28)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (70)..(70)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (88)..(88)
```

```
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (100)..(100)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (118)..(120)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (127)..(127)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (143)..(143)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (149)..(149)
<223> n=a, c, g or t
<220>
<221> misc feature
 <222> (193)..(193)
 <223> n=a, c, g or t
 <220>
 <221> misc_feature
<222> (268)..(268)
<223> n=a, c, g or t
 <220>
 <221> misc_feature
 <222> (332)..(332)
<223> n=a, c, g or t
 <220>
 <221> misc_feature
<222> (340)..(340)
 <223> n=a, c, g or t
 <220>
 <221> misc_feature
<222> (352)..(352)
<223> n=a, c, g or t
```

<400> 38 cgacccgccc gcggggggag tgcgtgangc tttcggacga ggcggactgg aacgtttctc 60 tcaagcgagn cgcatcgaca ggcgtggnct tgaacgggcn ccgcgagtcg tctttccnnn 120 agcctgnaac aagtaagggc gtngctccng agggctgcca cggtcggcgg ggcggcgggg 180 cctaaactcg gcntcaccag cccagcgtca gccaggtctc ggtgctcagc ggcggcaagc 240 gccaagggct cgcagttctg caccactngc catggatggc ggcatgagtt tctcgggatg 300 tcgaagggct tggagtcagc cttgaaggac cncaagatcn aatgacctgt gnggaatttg 360 ttgccttcat cctggctgct ggggaagcgg ggagagggt cagggaggst aatggttgct 420 ttgctgaatg tttctggggt accaatamgm gttcccatag gggcttctyc ctcaaaaagg 480 gagggtacag atggggagct tttcttacct attcaaggaa tacgtgcctt tttcttgaat 540 gctttcattt attga 555 <210> 39 <211> 635 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (33)..(33) <223> n=a, c, g or t <220> <221> misc_feature <222> (64)..(64) <223> n=a, c, g or t <220> <221> misc_feature <222> (107)..(107) <223> n=a, c, g or t <220> <221> misc_feature <222> (306)..(306) <223> n=a, c, g or t <400> 39 cctggtgtgg ccttgtgggg aagacgtttg agntgtggcc gcgctgggga cctccacccg 60 ccanttgcgg gagcaccaga agggccggcc caccagcacc aaccccnccg cccagcayaw 120 wgcagracac tggctggagc accgggggaa gctggwggga ccaaccmcmw cggttwgccc 180 awgcsggaga aggtggcgkg gagacggtgg agagtggagc catgaccaag gacctggcgg 240

gcygcaktca	cggcctcagc	aatgtgaagc	tgaacgagca	cttcctgaac	accacggact	300
teccenacae	catcaagrgc	aacctggaca	gagccctggg	caggcagtag	ggggaggcgc	360
cacccatgg	: tgcagtggag	gggccagggc	tgagccggcg	ggtcctcctg	agcgcggcag	420
agggtgagc	tcacagcccc	tttctggagg	cctttctagg	ggatgttttt	ttataagcca	480
gatgttttt	aaagcatatg	tgtgtttccc	ctcatggtga	cgtgaggcag	gagcagtgcg	540
ttttccctca	gccagtcagt	atgttttgca	wactgtaatt	tatattgccc	ttggaacaca	600
tggggccata	tttagctatt	aaaaagtttt	tccca			635
<400> 40 gacatgcgaa	a gccaatatta	ggtcatggcc	gagcagaacc	ggaaggatgc	ttaagcctgg	60
ttccccagc	ggacttaaaa	atttaaccgg	gaggtcgctg	gcccccgga	gcagctccaa	120
attagcagg	ccgaggtttt	ttaccttcgg	cgcacccttc	agggttttta	gatttagctg	180
cagtcccta	aacaatttgt	ttgcctccaa	ggtcctttta	ggcagcaggc	tttggggctt	240
ttgctgtcc	ttggagggtg	ttttttgggt	aaagggatgg	gaaggaaggg	accettacce	300
ccggctttt	tcctgacctg	ccaataaaaa	tttatggtcc	caagggg		347
<210> 41 <211> 76 <212> DN <213> Hor	_					
<400> 41 acttcagga	c atatttgtta	cttcgtgagt	aagttgggag	ggctcggagc	cccctgcctg	60
tgttcacat	g gtgacaccct	tgtttgtgtc	tggctgctgg	gaagttctat	gatagggact	120
gcggatgag	a ctgtgtaaag	tctctgctgg	aggtcttggg	ccggctcccc	ccggacatca	180
agagtctac	t gtggccacga	gtacaccatc	tacaacctca	agtttgcacg	ccactgtgga	240
gcccggcaa	t gctcgccatc	ctgggagaag	ctggcctggg	ccaaggagaa	gtacagctat	300
tggggagcc	c acagtgccat	ccaccttggc	agaggagttt	acctacaacc	ccttcatgag	360
agtgagtgg	c cctggctcct	ccggtgggcg	tggctcggca	ctagcctgct	agcccggtgt	420
ctggcctca	c gtcagggaga	agacggtgca	gcagcacgca	ggtgagacgg	acccggtgac	480
caccatgcg	g gccgtgcgca	gggagaagga	ccagttcaag	atgccccggg	aytgaggccg	540
ccctacacc	t tcagcggatt	taggaattag	getetttag	gtaactggct	tteetaetaa	600

tccgtgcggg aa	attcagtc (tgatttaac	cttaatttta	cagcccttgg	cttgtgttat	660
cggacattct as						720
gtcgcgggat co						761
gregegggac ec	egactgac .	cggacaccaa	acgeagoeou			
<210> 42 <211> 1130 <212> DNA <213> Homo s	sapien					
<400> 42 agcgggggga gg	gcggggcgg	aggcgccgcg	gcgggtgtta	ttgttcggct	gggctcggtc	60
gggcgctgtc to	ccctcggct	ctgcgggtgt	cagttcgtcc	ggcttcctca	cagcccctca	120
ctcccgcgtg c	rtgkctgac	agcagcaygc	wggctggcyg	gctgtgtgct	gtgcgcctgg	180
mcgtttcgag g	ctgagcggc	accggggttg	tgggcgcgga	ggaggagcag	cagcggggag	240
gaggagcctg t	gtgccctgt	gcacttgagc	ggaccgcggc	catggcgtac	gcctatctct	300
tcaagtacat c	ataatcggc	gacacaggtg	ttggtaaatc	atgcttattg	ctacagttta	360
cagacaagag g	tttcagcca	gtgcatgacc	ttactattgg	tgtagagttc	ggtgctcgaa	420
tgataactat t	gatgggaaa	cagataaaac	ttcagatatg	ggatacggca	gggcaagaat	480
cctttcgttc c	atcacaagg	tcgtattaca	gaggtgcagc	aggagcttta	ctagtttacg	540
atattacacg g	agagataca	ttcaaccact	tgacaacctg	gttagaagat	gcccgccagc	600
attccaattc c	aacatggtc	attatgctta	ttggcaaata	aaagtgattt	agaatctaga	660
agagaacgta c	aaaaagaag	aaggtgacag	cttttgcacg	agaacatgga	ctcatcttca	720
tggaaacgtc a	tgtaagact	gcttcaatgt	agaagaggct	tatatcatac	atgaaaaaga	780
agtatatgaa g	gaactacaag	aaggagctat	gacattatag	tgggcagttg	gttaaattgt	840
cataagattg g	tgtacgaat	gacgattgca	gcataaggaa	gcaagatgag	aagggggtga	900
gaaggcttgg a	tatggttat	gatgacaggt	ggcataacaa	tattttgaga	ccatgttgtg	960
aagagtagac g	gtaacaatag	aatgttgata	gaacgatata	caggaatgta	taactaaggt	1020
gtgagcttaa a	agaaactgaa	ttgtgggaaa	aaaaggtcgt	gaacgtaagg	gtatcataaa	1080
attgagatca g	gagagcgaag	atgageteed	tcctcacgtc	aatagagcat	•	1130
<210> 43 <211> 402 <212> DNA <213> Homo	sapien					
<400> 43 gtctctattt	tcctgtctcg	atcacattat	atcgactcca	gtgtaatgc	tctactgcga	60
					a tgtttatgtc	120

agatttatca	acaaggggtg	ttgtctgggc	ctctccaatt	attaagttca	ggccaggatc	180
tgtggtggta	caattgactc	tggctttccg	agaaggtacc	atcaatgtcc	acgacgtgga	240
gacacagttc	aatcagtata	aaacggatgc	agcctctcga	tataacctga	cgatctcaga	300
cgtcagcgtg	agtgatgtgc	catttccttt	ctctgcccag	tctggggctg	gtgtgccagg	360
ctggggcatc	gggctgttgt	cgctggtcat	agctggtgct	aa		402
<210> 44 <211> 666 <212> DNA <213> Homo	o sapien					
<222> (64)	c_feature 0)(640) , c, g or t					
<400> 44 geggegeegg	gcaggtcagg	ggctcagtgg	cgggtccctg	agctccctag	agtcggccac	60
				ggacctcgtt		120
agcagattgy	ayggttccaa	agacactttg	akgacgattc	ttaacaataa	cgatacaaat	180
ttggccttaa	gaactgtgtc	tggcgytctc	aagaatctag	aagatgtgta	aacaggtatt	240
tttttaaakc	aaggaaaggc	tcatttaaaa	caggcaaagt	tttacagaga	ggatacattt	300
aataaaactg	cgaggacatc	aaagtgggta	aatayctggd	gaaatacctt	attdctcaca	360
aaaagggcaa	atatgragag	ttgtttatca	acttcgctag	aaaaaaaacg	aacacsttgg	420
catacaaaat	atttaagtga	aggagaagtc	taacgctgaa	ctgacaatga	agggaaattg	480
tttatgtgtt	atgaacatcc	aagtctttct	tctttttaa	gttgtcaaag	aagcttccac	540
aaaattagaa	aggacaacag	ttctgagctg	taatttcgcc	ttaaactttg	ggacactcaa	600
tagtaggcat	ttttaacttg	aatataaata	ttcagccagn	cacatatctg	cccagcccca	660
ttttct						666
<210> 45 <211> 166 <212> DNA <213> Hom						
<400> 45 cctaagtgga	actgctcgga	taagcaggto	: cgaggttact	gacetgegge	gcaccettca	60
					aagacacact	120
	gaggegeget					166

PCT/US2003/038829

<210> 46 <211> 880 <212> DNA <213> Homo sapien <220> <221> misc feature <222> (159)..(159) <223> n=a, c, g or t <220> <221> misc_feature <222> (201)..(201) <223> n=a, c, g or t <400> 46 gtggcggctg cgggcgagga cgcgcgccc tccgctcgcc ctccagcgcg ggcgggcagg 60 acgagcgccg gggagcggcg gttacgcggg gccccggatc gcttgtgggc accaatcaac 120 180 ggttgccata gcagcgtttg acgtcatcgt gcgtgtggnt gcccctgact gccggggcgt ggtgattcgg caggaaaccc nctgtgtctg caggacgcgg cttgtagccc tgtttgagca 240 gegaagatee atgggacagg agteteatge etegegeget getwgeeges tgeegeeges 300 cyagagactg ctgagcccgt ccgtccggcg ccaccaccca ctccgggaca cagaacatcc 360 agtcatggat aaaaatgagc tggttcagaa ggccaaactg gccgagcagc tgagcgatat 420 480 gatgacatgg cagcctgcat gaagtctgta actgagcaag gagctgaatt atccaatgag 540 gagaggaatc ttctctcagt tgcttataaa aatgttgtag gagcccgtag gtcatcttgg agggtcgtct caagtattga acaaaagacg gaaggtgctg agaaaaaaca gcagatggct 600 cgagaatacm gagagaaaat tgagacggag ctaagagata tctgcaatga tgtactgtct 660 cttttggaaa agttcttgat ccccaatgct tcacaagcag agagcaaagt cttctatttg 720 saamatgaaa aggagattac taccgttact tggctgaggt tgccgctggt atgacaagaa 780 aggsatktcg atcagtacaa saagcatacc aagaagcttt tgacatcagc accacggaaa 840 tgccaccaac acatcctatc agactgggtc tggccttaac 880 <210> 47 <211> 885 <212> DNA <213> Homo sapien <400> 47 tgttgggact gctgatagga agatgtcttc ggaaatgcta caatggggca ccctgccccc 60 acttcaaagc cagagctgtt atgccagatg gtcagtttag agatatcagc ctgtctgact 120 180 acaaggagaa tatgttgtgt gcttctttac cctcttgact tcagcgtttg atgtgcccca

49

cggaagtatc	atcgctttca	gttgataggg	cagaagaatt	taagaaactc	aagctgccag	240
gtgatgggtg	ctctctgtgg	asttctcact	tctgtcatct	atcatgggtc	aatacacctr	300
aygasacakg	gaggactggg	acccatgaac	atcctttggt	atcagatccg	aagcgcacca	360
ttgctcagga	ttatggggtc	ttaaaggctg	atgaaggcat	ctcgttcagg	ggccttttt	420
atcattgatg	ataaagggta	ttcttcgaca	gataactgta	aatgacctcc	cgttggccgc	480
tctgtggatg	agactttgag	actagttcag	gccttccagt	tcactgacaa	acatggggaa	540
gtgtgcccag	ctggctggaa	acctggcagt	gataccatca	agcctgatgt	caataagagc	600
aaagagtatt	tctctaagca	gaagtgagca	ctggaccatt	tttctgccag	gcagcattga	660
gcagccagaa	gaaactcttg	tactctactc	gtgcttaaac	acatgatgtg	gtgtgattcc	720
agataagcct	ttcctacagg	gctggggatg	gatagccttt	cttccactat	tggtaatggt	780
ctgagctgtg	ttttgggcag	accaatcttc	tatcagtcac	agaaaacaac	ctgttaattc	840
ttttttcttc	tttttttaag	tatctattaa	acgtgaattc	tgaaa		885
	o sapien					
<400> 48 tgttgggact	gctgatagga	agatgtcttc	ggaaatgcta	caatggggca	ccctgcccc	60
acttcaaagc	cagagctgtt	atgccagatg	gtcagtttag	agatatcagc	ctgtctgact	120
acaaggagaa	tatgttgtgt	gcttctttac	cctcttgact	tcagcgtttg	atgtgcccca	180
cggaagtatc	atcgctttca	gttgataggg	cagaagaatt	taagaaactc	aagctgccag	240
gtgatgggtg	ctctctgtgg	asttctcact	tctgtcatct	atcatgggtc	aatacacctr	300
aygasacakg	gaggactggg	acccatgaac	atcctttggt	atcagatccg	aagcgcacca	360
ttgctcagga	ttatggggtc	ttaaaggctg	atgaaggcat	ctcgttcagg	ggccttttt	420
atcattgatg	ataaagggta	ttcttcgaca	gataactgta	aatgacctcc	cgttggccgc	480
tctgtggatg	agactttgag	actagttcag	gccttccagt	tcactgacaa	acatggggaa	540
gtgtgcccag	ctggctggaa	acctggcagt	gataccatca	agcctgatgt	ccacaagagc	600
aaagaatatt	tctccaagca	gaagtgagcg	catgggcktg	ttttagtgcc	aggctgcggt	660
ggacagccat	tagaacaaaa	cctcctctgt	attttttctt	tccgttagtt	tttcccaata	720
cttcagattc	agccgaagtg	tggtgtctta	caaggcaggc	ctttcctaca	gggggtggag	780
aaccagcct	ttcttccgtt	ggtaagaatg	gcctcagtga	gcgatgtggt	caggccattg	840

gtatgtagca tgtatgaata aagcaaccca ttaaacgtgt gtaggtagta ataaacta 898

WO 2004/052290

<221> misc_feature

50

PCT/US2003/038829

<210> 49 <211> 910 <212> DNA <213> Homo sapien <400> 49 cgcaggccgc ctatcccacc ttcaggcagc ctatggacgc agggccccat ctgtccctc 60 ggtcgccgtg tggccagagt gggtcccgtc gtccccaaca ctcgtgctcg ctcagacact 120 ctggcaggat gtctggggcc tcaccagcag gagcgcgtgc aagccgggca ggcggtccac 180 240 ctagacccac ascccctcgg gagcacccca cccttgtgtt ygacgtagct ytctctccct cascctgcaa ggktccgwty tgccatcgaa aaagacmacy ycyacytytt yctttystmt 300 tttgwyaawc mcygaagcyg gagctgytaa atttatcttg gggaaacctc agaactggtc 360 tatttggtgt cgtggaacct cttmactgct ttcaccatac acgkatmagt aatcaactgt 420 tttgtatact tgttttcagt tttcatttcg acaaacaagc actgtaatta tagctattag 480 540 600 gccaagggga ctttagactg gggcaggcta aggcaggggg ccgaaattgg ggctaactgg 660 gccaattggc ccaaaggggg gcggaataac aatcaacggg ccggggttta aaaacgtcgg 720 gacgggaaaa acccgggggt acccaaacta aatggcctgg aagaaaatcc ccttttggca 780 agtgggggaa aaagcaaaag ggcccgaacg gatggccttt ccaaaaagtg gcgcacccgg 840 aagggcaaag ggaaatggaa ggcgtaaaaa ttgggtaaaa atccgggtaa aattttggta 900 aaacaagcca 910 <210> 50 <211> 129 <212> DNA <213> Homo sapien <400> 50 cgagcggcgc cagtgtgatg gatcgcccgg gcaggtacta ttcggccagc aacggggagc 60 ctgatgagga cgcttatgat atgaggaaag cactttccag gatactgaga agaaatccat 120 cataccatt 129 <210> 51 <211> 1073 <212> DNA <213> Homo sapien <220>

51

<222> (7)..(7) <223> n=a, c, g or t <220> <221> misc feature <222> (160)..(161) <223> n=a, c, g or t <400> 51 gcctatntgg ttgccttttt gaaacccaac ctgtgtccaa tccaatccca accgtgtacc 60 aattatccca aaaacatcca gctagcacgc cgcatacgtg gagaacgtgc ttaagaatcc 120 actatgatgg gaaacatttc attctcaaaa aaaaaaaaan naatttctct tcttcctgtt 180 attggtagtt ctgaacgtta gatatttttt ttccatgggg tcaaaaggta cctaagtata 240 tgattgcgag tggaaaaata ggggacagaa atcaggtatt ggcagttttt ccattttcat 300 ttgtgtgtga atttttaata taaatgcgga ggcgtaaatc tttagatgag tattcagtgt 360 tcaacttgcg tatttaacga atcattagga ttttctcata aatamrcctg ttaaaktttt 420 ctggacaatg ccagcatttg gawtttttta aarsaagtaa tttcttattg atggcaacta 480 aakggtgttt gtagcatttt tatcatacag tagattccak ccattcacta tacttttcta 540 actgagttgt cctacatgca agtacatgtt tttaatgttg tctgtcttct gtgctgttcc 600 660 attttggggg ggctgggcca cttggaaaag gtttcaaaac caattcgtgt tttggggcgc 720 caggggccca aggtaaggtg gtatcggcca cacttgggca ataaggctgg tcccaaagag 780 gaacccgggg cactatagca taggggggtg gggattctca cacccaatat aaaaaaacgc 840 gccgggggga gaacagcacg gggttcgtgg aacaaaaatc ccaagaagcg gagcgtccag 900 agggacaaat agcgaggaca ttataaaaaa gaggggtttc aaggaacgag ccgtagatat 960 aaaaatactc gccccccgcc gtggtggaat gaaaacgcga caagcggacg gcgctagtat 1020 aacgagacag gacacaagaa caagaagaca acagcgagga gcaagcgtga gag 1073 <210> 52 <211> 399 <212> DNA <213> Homo sapien <400> 52 gtgatggate ggccgcccgt ggcaggtggc tggcctcagc agcgcgaggt gctgcggcgc 60 tgcgtagaag tatcaatcag ccggttgctt ttgtgagaag aattccttgg actgcggcgt 120 cgagtcaget gaaagaacac tttgcacagt tcggccatgt caqaaggtgc attttacctt 180

ttgacaagga gactggcttt cacagaggtt tggggtgggt tcagtwtttc ttcagaagaa

52

```
ggacttcggg aatgcactac aacaggaaaa atcatattat agatggagta aaggtccagg
                                                                             300
ttcacactag aaggccaaaa ctttccgcaa acactctgat gatgaaaaaa gaaaaggatt
                                                                             360
ttttgaggac tgccagccta tttaataaag gttaaccaa
                                                                             399
<210> 53
<211> 1029
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature <222> (13)..(13)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (307)..(307)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (557)..(557)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (559)..(560)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (566)..(566)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (573)..(573)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (584)..(584)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (587)..(587)
```

<223> n=a, c, g or t

```
<220>
<221> misc_feature
<222> (653)..(653)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (661)..(664)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (666)..(667)
<223> n=a, c, g or t
<220>
<221> misc_feature
<222> (670)..(670)
<223> n=a, c, g or t
<220>
 <221> misc_feature
 <222> (673)..(673)
 <223> n=a, c, g or t
 <220>
 <221> misc_feature
<222> (676)..(676)
<223> n=a, c, g or t
 <220>
 <221> misc_feature
 <222> (688)..(688)
<223> n=a, c, g or t
 <220>
 <221> misc_feature
 <222> (703)..(703)
 <223> n=a, c, g or t
 <220>
 <221> misc_feature
<222> (976)..(976)
<223> n=a, c, g or t
  <220>
  <221> misc_feature
  <222> (991)..(991)
  <223> n=a, c, g or t
```

<400> 53

ccgcgattcc tgnccacgtt ttctcgcctc catagggctc cacgtgtccc cacgttttgt	60
ggcgtacgag ctcacggtgc tggtgttcct caccttgtca gtgggtggtg atgaagtttc	120
tectggegge getggteetg teteteatte tgeegaggag cagecagtae atcaagtgga	180
tegtetetge ggggettgee caggteageg agtttteett tgteetgggg ageegggege	240
gaagagcggg cgtcatctct cgggaggtgt acctecttat actgagtgtg accacgctca	300
gcctctngct cgccccggtg ctgtggagag ctgcaatcac gaggtgtgtg cccagaccgg	360
agagacggtc cagcctctga tggctcggag atgatggacc gtggaaggga agcgtctgtg	420
gggagtgagc gcttagatgg ccagcagctg ctccttctgg gaagctcgca ccttggcaac	480
agaacagccc tctagcagag cgtcagtgca gtcgtgttat cccggctttg ccagaatatt	540
cttgccctat tttagantnn cccggngtgg ttnattggcc gtcngtngat tatgtgcagt	600
agacccggga cactgcgttt tcccgatcac ctggaatggg gcccccggcg gcnccggggg	660
nnnngnnccn tgnaantatt attaattntc tattgtgagg tcntcagttc atagtttttt	720
tataaagarg caaaatkaaa aggctkttaa aaatgtacaa cttcagaatt ataatctgtt	780
agtcaaatat ttgttattaa acatttctgt aatatgaagt tgtaatcctg gccgtgagct	840
tggaagctta cttttgattc ttaaagccta tgttttctaa aatgagacaa atacggatgt	900
ctatttgcct tttattgtaa cttttaaatg aaataatttc atgtcaattt ctattagata	960
tatcacttaa aatatntggt tttaaatcac nagaatatgt attctttaat aaagataatt	1020
tatgatcat	1029
<210> 54 <211> 315 <212> DNA <213> Homo sapien	
ageggagagg egecatettg tgggageaaa accaaegeet ggeteggage ageageetet	60
gaggtgtccc tggccagtgt ccttccacct gtccacaagc atggggaaca tcttcgccaa	120

cctcttcaag ggcctttttg gcaaaaaaga aatgcgcatc ctcatggtgg gcctggatgc

caccataggc ttcaacgtgg aaaccgtgga gtacctcggc cgcgaccacg ctatccatca

tgcagggaag accacgatcc tctacaagct taagctgggt gagatcgtga ccaccattcc 240

180

300

315

cactggcgcc gctcg

<210> 55

<211> 685 <212> DNA <213> Homo sapien

55

<220> <221> misc_feature <222> (3)..(3) <223> n=a, c, g or t <400> 55 ganggggacc acwgkcacag aacawccacm agawaccagc kaggkcaggg skggggawaa 60 120 sacakacwrw aaggcaagcc catgtcaggg cgatcctggt gtcaaatgtg ccatgtcccg ggttgatgct ggccacactt tgtagagagt ttagcaacac agbtgtgvct tagtcagcgt 180 aggaatcctc actaaakgca ggagaagttc cattcaaagt gccaatggat agagtcaaca 240 300 ggaaggttaa tgttggaaac acaatcaggt gtggattggk gctactttga acaaaaggtc cccctgtggt cttttgttca acattgtaca atgtagaact ctgtccaaca ctaatttatt 360 420 ttgtcttgag ttttactaac aagatgagac tatggatccc gcatgcctga attcactaaa gccaagggtc tgtaagccac gctgctcttc tgagacttcc attcctttct gattggcaca 480 cgtgcagctc atgacaatct gtaggataac aatcagtgtg gatttccact cttttcagtc 540 600 cttcatgtta aagatttaga caccacatac aactggtaaa ggacgttttc ttgagagttt taactatatg taaacattgt ataatgatat ggaataaaat gcacattgta ggacwtttty 660 685 twaaawaaaa tattagattg agggg <210> 56 <211> 507 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (2)..(2) <223> n=a, c, g or t <220> <221> misc_feature <222> (39)..(39) <223> n=a, c, g or t <400> 56 tntgctttca atcgtgtggc ctttgggaac cccgcgtanc actgccgcct ccttctgtcc 60 togocatgtt cotcactogg toogagtacg acrggggogt gaatactttt totcocgaag 120 180 gaagattatt tcaagtggaa tatgccattg aggctatcaa gcttggttct acagccattg catccagacc tcagagggtg tatgtctagc tgtggagaag agaattacct ccccactaat 240 ggagcctagc agcattgaga agattgtaga gatcgatgct catataggtt gtgccatgag 300 360 tgggctaatt gctgatgcta aaactttaat tgataaagcc agagtggaga cacagaacca

ctggttcacc tataatgaga caatgacagt tgagagtgtg acccaggctg tgtccaatct	420
ggctctgcag tttggagaag aagatgcaga tccaggtgct atgtctcgtc cctttggagt	480
agcattgttg tttggaggag ttgatga	507
<210> 57 <211> 1284 <212> DNA <213> Homo sapien	
<400> 57 catgswtsas cccttggatw gacgccatcg tatcggycag cgckccwttg cgyygatacy	60
ccgkaattcg sccattatgg ccggggggc attccttkgc tgacagcatt cgggccgaga	120
tgtctcgctc cgtggcctta gctgtgctcg cgctactctc tctttctggc ctggaggcta	180
tccagcgtac tccaaagatt caggtttact cacgtcatcc agcagagaat ggaaagtcaa	240
atttcctgaa ttgctatgtg tctgggtttc atccatccga cattgaagtt gacttactga	300
agaatggaga gagaattgaa aaagtggagc attcagactt gtctttcagc aaggactggt	360
ctttctatct cttgtactac actgaattca ccccactga agttaagtgg gatcgagaca	420
tgtaagcagc atcatggagg tttgaagatg ccgcatttgg attggatgaa ttccaaattc	480
tgcttgcttg ctttttaata ttgatatgct tatacactta cactttatgc acaaaatgta	540
gggttataat aatgttaaca tggacatgat cttctttata attctacttt gagtgctgtc	600
tccatgtttg atgtatctga gcaggttgct ccacaggtag ctctaggagg gctggcaact	660
tagaggtggg gagcagagaa ttctcttatc caacatcaac atcttggtca gatttgaact	720
cttcaatctc ttgcactcaa agcttgttaa gatagttaag cgtgcataag ttaacttcca	780
atttacatac tctgcttaga atttggggga aaatttagaa atataattga caggattatt	840
ggaaatttgt tataatgaat gaaacatttt gtcatataag attcatattt acttcttata	900
catttgataa agtaaggcat ggttgtggtt aatctggttt atttttgttc cacaagttaa	960
ataaatcata aagcagccgg tgtmaatgtt gagmctttkt ggcakgkrtt gttygmaaak	1020
gscctggmca acrtmaacat tgggagcctc atckgmaatg taggggccgg tggaccgcta	1080
carcagetgg tsetgmamca geaggwkgte etgeeceswm maetgetget geteeagetg	1140
aggagaagaa agtggaagca aagwaagaag aatccgagga gtctgatgat gacatgggct	1200
ttggtctttt tgactaracc tcttttataa catgttcaat aaaaagctga actttaaaaa	1260
aaaaagcacc accatgaatc cggg	1284

<210> 58 <211> 1043

57

<212> DNA <213> Homo sapien				
<400> 58 gagggtggag gcccctgcgt cc	gagggeee tggegatete	tgcctgctag	tggtcttgct	60
gtgctcggcg ggctacctct gg	getetgage eteccegtet	ctgggtccta	cggtctctgc	120
cgtttcctct caggcgcgcc ct	gagtgggg gacccgcagg	gctggaagga	acgcggggct	180
ggggccgcgc cccccagcgc ta	agtggaaa cagacgcgga	aaccgacgcc	eggggegega	240
tecegggege eegeeteeet ge	ceeegegee egegegeeee	gaggggaggg	aggaagtggg	300
aagtcacccc tgtccccgcc ga	agaaggget gtegeagget	ccacccttgc	caccgcagag	360
gcccggggct gaaagcaggc ag	gccaggccc aggccctgct	gacctaagcc	gcgacccctg	420
acceteggee tegeceteta ge	ccccaccca gccttcagga	gcaagattcc	cggccgcacc	480
cgaaagtgcc ccggggacca gc	cgaccccgc gctttgttta	gttgtattgg	ctctggggat	540
tggagatgtt cccctcatgg ag	gggtgctga gaccttaggg	tgggctgcca	ggctgggcgg	600
atgegggeta agtgcacagg ge	ccttgggca gagctggctg	caagaggcgg	gtacgccagt	660
ggtgggtagg cgccgcgtcc tg	gcagcgtct caccggggcc	tgtctgtgcc	tctgcagccg	720
agagggtgac ctctctgggc as	aggactggc atcggccctg	cctgaagtgc	gagaaatgtg	780
ggaagacgct gacctctggg gg	gccacgctg agcacgaagg	caaaccctac	tgcaaccacc	840
cctgctacgc agccatgttt gg	ggectaaag getttgggeg	gggcggagcc	gagagccaca	900
ctttcaagta aaccaggtgg to	ggagacccc atccttggct	gcttgcaggg	ccactgtcca	960
ggcaaatgcc aggccttgtc co	ccagatgcc cagggctccc	ttgttgcccc	taatgctctc	1020
agtaaacctg aacacttgga aa	aa			1043
<210> 59 <211> 1113 <212> DNA <213> Homo sapien				
<400> 59 gagggtggag gcccctgcgt co	cgagggccc tggcgatctc	tgcctgctag	tggtcttgct	60
gtgctcggcg ggctacctct g	gctctgagc ctccccgtct	ctgggtccta	cggtctctgc	120
cgtttcctct caggcgcgcc c	tgagtgggg gacccgcagg	gctggaagga	acgcggggct	180
ggggcegege ecceeagege to	aagtggaaa cagacgcgga	aaccgacgcc	cggggcgcga	240
tecegggege eegeeteeet g	recededec edededece	gaggggaggg	aggaagtggg	300
aagtcacccc tgtccccqcc q	aqaaggget gtegeagget	ccacccttgc	caccgcagag	360

gcccggggct gaaagcaggc agccaggccc aggccctgct gacctaagcc gcgacccctg 420

acceteggee tegeceteta	gccccaccca	gccttcagga	gcaagattcc	cggccgcacc	480
cgaaagtgcc ccggggacca	gcgaccccgc	gctttgttta	gttgtattgg	ctctggggat	540
tggagatgtt cccctcatgg	agggtgctga	gaccttaggg	tgggctgcca	ggctgggcgg	600
atgcgggcta agtgcacagg	gccttgggca	gagetggetg	caagaggcgg	gtacgccagt	660
ggtgggtagg cgccgcgtcc	tgcagcgtct	caccggggcc	tgtctgtgcc	tctgcagccg	720
agagggtgac ctctctgggc	aaggactggc	atcggccctg	cctgaagtgc	gagaaatgtg	780
ggaagacgct gacctctggg	ggccacgctg	aggtaggtgg	gacccaccct	ggtggcaggg	840
gccaggggtg atggcacccc	ctcacggccc	ttctctttgc	agcacgaagg	caaaccctac	900
tgcaaccacc cctgctacgc	agccatgttt	gggcctaaag	gctttgggcg	gggcggagcc	960
gagagccaca ctttcaagta	aaccaggtgg	tggagacccc	atccttggct	gcttgcaggg	1020
ccactgtcca ggcaaatgcc	aggccttgtc	cccagatgcc	cagggctccc	ttgttgcccc	1080
taatgctctc agtaaacctg	aacacttgga	aaa			1113
<210> 60 <211> 716 <212> DNA <213> Homo sapien					
<211> 716 <212> DNA	ggacccggga	gacatcacag	cgctgggcta	ggggcgcggc	60
<211> 716 <212> DNA <213> Homo sapien <400> 60		•			60 120
<211> 716 <212> DNA <213> Homo sapien <400> 60 gagccttttg cctcggaact	gcgcccttca	gtaagtcccc	atggtcccct	gcccccgcg	
<211> 716 <212> DNA <213> Homo sapien <400> 60 gagcettttg ceteggaact ttgaactege ctaaagaget	gegeeettea gggteetgee	gtaagtcccc tgaaggcggg	atggtcccct ggtggaccag	gcccccgcg	120
<211> 716 <212> DNA <213> Homo sapien <400> 60 gagcettttg ceteggaact ttgaactege ctaaagaget cteegteete agteaggeee	gegecettea gggteetgee egaggteece	gtaagtcccc tgaaggcggg agggtccaag	atggtcccct ggtggaccag tcctgggttc	gccccccgcg atgatctttc agagggcggg	120 180
<211> 716 <212> DNA <213> Homo sapien <400> 60 gagcettttg ceteggaact ttgaactege ctaaagaget cteegteete agteaggeee ttgggeeetg ggeetagatt	gegecettea gggteetgee egaggteece aaggggeggg	gtaagtcccc tgaaggcggg agggtccaag gtcccggggt	atggtcccct ggtggaccag tcctgggttc ccctgaaagg	gcccccgcg atgatctttc agagggcggg cgcggaccag	120 180 240
<pre><211> 716 <212> DNA <213> Homo sapien <400> 60 gagccttttg cctcggaact ttgaactcgc ctaaagagct ctccgtcctc agtcaggccc ttgggccctg ggcctagatt gcgcgagggg cggtgtctcc</pre>	gegecettea gggteetgee egaggteece aaggggeggg egeetgeage	gtaagtcccc tgaaggcggg agggtccaag gtcccggggt ccgtgccgcc	atggtcccct ggtggaccag tcctgggttc ccctgaaagg ccagccgctg	gcccccgcg atgatctttc agagggcggg cgcggaccag ccgcctgcac	120 180 240 300
<pre><211> 716 <212> DNA <213> Homo sapien <400> 60 gagccttttg cctcggaact ttgaactcgc ctaaagagct ctccgtcctc agtcaggccc ttgggcctg ggcctagatt gcgcgagggg cggtgtctcc gccggatca cccagtctcg</pre>	gegecettea gggteetgee egaggteece aaggggeggg egeetgeage ecaagtgtee	gtaagtcccc tgaaggcggg agggtccaag gtcccggggt ccgtgccgcc caagtgcaac	atggtcccct ggtggaccag tcctgggttc ccctgaaagg ccagccgctg aaggaggtgt	gcccccgcg atgatctttc agagggcggg cgcggaccag ccgcctgcac acttcggact	120 180 240 300 360
<pre><211> 716 <212> DNA <213> Homo sapien <400> 60 gagccttttg cctcggaact ttgaactcgc ctaaagagct ctccgtcctc agtcaggccc ttgggcctg ggcctagatt gcgcgagggg cggtgtctcc gccggatcca cccagtctcg cggacccgga gccgccatgc</pre>	gegecettea gggteetgee egaggteece aaggggeggg egeetgeage ecaagtgtee tgegagaaat	gtaagtcccc tgaaggcggg agggtccaag gtcccggggt ccgtgccgcc caagtgcaac gtgggaagac	atggtcccct ggtggaccag tcctgggttc ccctgaaagg ccagccgctg aaggaggtgt gctgacctct	gcccccgcg atgatctttc agagggcggg cgcggaccag ccgcctgcac acttcggact gggggccacg	120 180 240 300 360 420

cccatccttg gctgcttgca gggccactgt ccaggcaaat gccaggcctt gtccccagat 660

716

gcccagggct cccttgttgc ccctaatgct ctcagtaaac ctgaacactt ggaaaa

<210> 61 <211> 648 <212> DNA <213> Homo sapien

<400> 61 gagccttttg	cctcggaact	ggacccggga	gacatcacag	cgctgggcta	ggggcgcggc	60
ttgaactcgc	ctaaagagct	gcgcccttca	gtaagtcccc	atggtcccct	geeceeegeg	120
ctccgtcctc	agtcaggccc	gggtcctgcc	tgaaggcggg	ggtggaccag	atgatctttc	180
ttgggccctg	ggcctagatt	cgaggtcccc	agggtccaag	teetgggtte	agagggcggg	240
gcgcgagggg	cggtgtctcc	aaggggcggg	gtcccggggt	ccctgaaagg	cgcggaccag	300
gccggatcca	cccagtctcg	cgcctgcagc	ccgtgccgcc	ccagccgctg	ccgcctgcac	360
cggacccgga	gccgccatgc	ccaagtgtcc	caagtgcaac	aaggaggtgt	acttcagcac	420
gaaggcaaac	cctactgcaa	ccacccctgc	tacgcagcca	tgtttgggcc	taaaggcttt	480
gggcggggcg	gagccgagag	ccacactttc	aagtaaacca	ggtggtggag	accccatcct	540
tggctgcttg	cagggccact	gtccaggcaa	atgccaggcc	ttgtccccag	atgcccaggg	600
ctcccttgtt	gcccctaatg	ctctcagtaa	acctgaacac	ttggaaaa		648
	=					
<400> 62 agaggaagaa	gagtaataca	caatggcccc	tgggtactta	tcatctcagc	gcgccaggtt	60
atgatcgagc	gegeeeggge	aggtgccagc	gcaggggctt	ctgctgaggg	ggcaggcgga	120
gcttgaggaa	accgcagata	agttttttc	tctttgaaag	atagagatta	atacaactac	180
ttaaaaaata	tagtcaatag	gttactaaga	tattgcttag	cgttaagttt	ttaacgtaat	240
tttaatagct	taagatttta	aggagaaaat	atgaagactt	agaagagtag	catgaggaag	300
ggaaacagat	. aaaaaggttt	ctaaaaccat	gacggaggtt	gagatgaagc	ttcttcatgg	360
agtaaaaact	gtrtttaaaa	gaacatggag	agaaaggact	acagagcccc	gaattaatac	420
caatagaagg	gcaatgcttt	tagattaaaa	tgaaggtgac	ttaaacagct	taaagtttag	480
tttaaaagtt	gtaggtgatt	aaaataattt	gaaggcgatc	tttaaaaag	agattaaacc	540
gaaggtgatt	: aaaagacctt	gaaatccatg	g acgcagggag	aattgcgtca	tttaaagcct	600
agttaacgca	tttactaaac	gcagacgaaa	atggaaagat	taacttggga	cgtggtacgg	660
actgaaacca	a actttggacg	aacgactac	g acacgtttga	cacgtggaac	acacctggac	720
acgaccagaa	a crgtaccggg	accggcgaca	a gaaaacgaac	: tacgacgama	gatacgggac	780
acattacgaa	a cgactaaaaa	ccatacytt	mtacgmaacg	g acacaaaacg	g actaacattt	840
aaacctgaaa	a agtaggaago	agaagaaaa	a agacaagcta	ı ggaaacaaaa	agctaagggc	900
aaaatgtac	a aacttagaag	g aaaattggaa	a gatagaaaca	agatagaaa	tgaaaatatt	960

gtcaagagtt tcagatagaa aatgaaaaac aagctaagac aagtattgga gaagtataga 10	20
agatagaaaa atataaagcc aaaaattgga taaaatagca ctgaaaaaat gaggaaaatt 10	80
attggtaacc aatttatttt aaaagcccat caatttaatt tctggtggtg cagaagttag 11	40
aaggtaaagc ttgagaagat gagggtgttt acgtagacca gaaccaattt agaagaatac 12	00
ttgaagctag aaggggaagt tggttaaaaa tcacatcaaa aagctactaa aaggactggt 12	60
gtaatttaaa aaaaactaag gcagaaggct tttggaagag ttagaagaat ttggaaggcc 13	20
ttaaatatag tagcttagtt tgaaaaatgt gaaggacttt cgtaacggaa gtaattcaag 13	80
atcaagagta attaccaact taatgttttt gcattggact ttgagttaag attatttttt 14	40
aaatcctgag gactagcatt aattgacagc tgacccaggt gctacacaga agtggattca 15	00
gtgaatctag gaagccgcag aacaggatgt tgaaaagaaa aaataaagcc ctcctgggga 15	60
cttggaatca gtcggcagtc atgctgggtc tccacgtggt gtgtttcgtg ggaacaactg 16	20
ggcctgggat ggggcttcac tgctgtgact tcctcctgcc aggggatttg gggctttctt 16	80
gaaagacagt ccaagccctg gataatgctt tactttctgt gttgaagcac tgttggttgt 1	740
ttggttagtg actgatgtaa aacggttttc ttgtggggag gttacagagg ctgacttcag 1	300
agtggacttg tgttttttct ttttaaagag gcaaggttgg gctggtgctc acagctgtaa 1	360
teccageact ttgaggttgg etgggagtte aagaceagee tggeeaacat gteagaacta 1	920
ctaaaaataa agaaatcagc catg	944
<210> 63 <211> 4023	
<212> DNA <213> Homo sapien	
<400> 63	
ctctaaggag atgaarctgc actcaaccag gatgagaggc tgcccggcca atgcagctgc	60
cgccccgtct gctgcggagg ctttgctttt tgactccctg gcgacagtaa agttgaagag	120
cttccggccg gaggccaata gatgggaccc ccggaaggcg gaagttctag ggcggaagtg	180
gccgagagga gaggagaatg gcggcggaag gctggatttg gcgttggggc tggggccggc	240
ggtgcctggg aaggcctggg cttctcggcc ccggccctgg ccccactaca cctctctttc	300
ttcttttgtt gttggggtct gtgactgcgg atataactga cggcaacagt gaacatctca	360
agegggagea ttegeteatt aagecetaee aaggggtegg ttecagetet atgeceetet	420
agogggagoa coogeocate aagocootace aaggggoogg coocageoca asgassa	
gggacttcca gggcagcact atgctcacga gccagtacgt acgtctgacc cctgacgagc	480

acgtccactt caaagtccac ggcacaggga agaagaacct ccatggagac ggcatcgcct 600

660 tgtggtacac ccgggaccgc ctcgtgccag ggcctgtgtt tggaagcaaa gataacttcc acggettage catetteetg gacacetace ceaatgatga gaccaetgag egegtgttee 720 cgtacatete ggtgatggtg aacaatgget ecetgteeta egaceaeage aaggatggge 780 840 gctggaccga gctggcgggc tgcacggctg acttccgcaa ccgcgatcac gacaccttcc 900 tggctgtgcg ctactcccgg ggccgtctga cggtgatgac cgacctggag gacaagaacg 960 agtggaagaa ctgcattgac atcacgggag tgcgcctgcc caccggctac tacttcgggg 1020 cctccgccgg caccggcgac ctgtctgaca atcatgacat catctccatg aagctgttcc 1080 agctgatggt ggagcacacg cccgacgagg agagcatcga ctggaccaag atcgagccca 1140 gcgtcaactt cctcaagtcg cccaaagktg cgtgtgcaca gccccgccct gcctgggcct 1200 gggcggcctg acccagaatg gggtgaagcc agcctggcgg gtcttgtggt ccagtcgtgg ttgtggtggt tgtggtctgg gctcttggat cagyccggtc ctggcaagcg gcactggctg 1260 gccctgtccg agctcctaga gtattgggct tggatcgtgt cagctctggc aagtttttga 1320 gtaaatgaat gaggeggaag agaagtetge agagagteag teeetgagga cateetagte 1380 1440 acgtgagtgc tgtggcagca agcagtggct gatcaacaaa cgtgtgagtg gtgggccagc atcctccctc actaggtgct ggggcagtgg ccagcagagc cagggggctg ggtatgttgg 1500 1560 cccacctgtc ccttctgtga gccacctgga agaagtcgtg ctgctggtca agggggtgga 1620 ttccttagct agaaggagag agagagcaag attggaaatt gggtttctac aaaacccgaa gcctgggttc ttcccatggc actaattagc tacccctttc ctcacagagt gaacgttgtg 1680 gttggaggaa tgaggcatct gtgtgtggag aagtccaccc taagagccac agatgtgtgc 1740 ctgggggtcc agccagtgac agaagtgcac ggcgcgggct ctgtcgtagc ccagccctgg 1800 gtccccatgc cgtgtgggcc agtttggccg cgtgtttctg cttttcagga gaagccaaga 1860 tccagtgttt tatgtgacag ttcacttttt aaagattcag attatttkga aatgttytgg 1920 ggmccacaca aacctygctg caacctttgg tcagaaggct gcagctgctg ggtgtttgca 1980 2040 gaggtggcac ctgccttgcc cacccagcat cccgtgcagc tggcaaggca ggatgaactc gtttttagat tcaatccatt tgttccttca gatgtgacca aagctgccct ctgtgcctag 2100 ccatgggctg ggtgctggag acacgagatc aggcaggccc tgcccctggg gctcattcta 2160 ggggctgcgg cagacaggga gacagaggga gctgtgagag ccctgaggct gagtggcttt 2220 ctggggaagc accatcccta gggacctccg cgttcggtca gtgccgctgc tgtcggtgtg 2280 2340 cagagcagag gctgggcga gagtggtcag caggcctgct ggtggcagct tgtgcaggaa gggaggatgg aggttggctt gtggctggca agagggtggc atgcacgtcg ctgaaaggca 2400

gggcctgggc	ccgaggcctg	ggtgtgggga	cgcctgagga	gactgtacag	tgtggagtcg	2460
ggggggccgc	agtcagggag	ggaggcagag	tggcagaaac	agggcccagc	cagaccccag	2520
ctcctccacc	cacagcctgg	agagcttggg	aaagtcagtg	tettetetee	gcctgtacaa	2580
gggagcgtac	cagtgggccc	catcccagga	tgggcaggac	ctgtgggaac	cttgtgtgga	2640
ggagagaggc	tgtgggctgg	ggtggagtgt	gggactcagg	tcctgggaga	ccctcctggg	2700
gggctgccga	gagcatccag	ctgtgggctg	ggagagcctg	tgaccagggc	egegetgete	2760
cagaaagggc	cctcagacca	cagcgtgggg	gtggggcttg	gatatgtaga	ctcctgggcc	2820
tccccttatc	cagagttgga	ctcagaggag	cccaggagtc	tggttttaac	tggcttcctg	2880
cagcagaagg	cagcccaggc	ttgtcgctgg	ggtcccgggt	ccctgtgggc	ttggtcctct	2940
ctctgcccca	ccctgccctg	gggactgcag	agctggctgg	gatgggcttc	acctgacctc	3000
tgcccctccc	cggtgagggg	ggtgagtacg	accggcctgc	ccaccgtggc	eggetgteet	3060
gttccatccc	cactgccctc	ctgcagcccc	ctgatccccg	gcccgtgctg	ccgtttcagc	3120
teccccgttt	cttctcccc	agacaacgtg	gacgacccca	cggggaactt	ccgcagcggg	3180
cccctgacgg	ggtggcgggt	gttcctgctg	ctgctgtgcg	ctctcctggg	catcgttgtc	3240
tgcgccgtgg	tgggggccgt	ggtgttccag	aagcggcagg	agcggaacaa	gcgcttctac	3300
tgagtggcgc	ctccggcggg	gcctgtccct	gggcccagga	gccaatgtga	acttttttt	3360
ttaccgggat	tataaaagaa	caacaagatg	accttatttc	ttaactgttt	caaataaatg	3420
attaaagtat	tttcatacat	tttgcttctt	gcccagcagg	gacaggtggc	agagccgagg	3480
cttagggtct	ggcaccccc	acagctggag	acggaggctc	tectgggget	ggtgtctcag	3540
gagcaggggt	ctgtgtctac	agatgggctg	tggcccctgc	aggcagctgt	tgaacactgg	3600
agggtcccc	ggaccacact	ggggtgggct	cctgaggacg	tggggaagtg	attttgtttt	3660
gtggtgtgtg	gcacgtgtgg	cgacggataa	ggcctgaact	gggaaaccca	ggccttcctg	3720
ttcaccctga	gctgcttcct	gagacagatg	ctcaagtgag	gctgcaggcg	cggtgtggtg	3780
gggccgagtg	tgaccgtttg	ctaaataaag	tgaaataccc	aacctcaaaa	aaaaaaaaa	3840
aaaaaaaaa	. сасасааааа	aaaaagaaaa	aaaataaaag	aagaacacag	agcaaaattc	3900
aaaaaaacaa	gagaaacaga	gagaggatat	atattattcg	gacggggaca	caacaggatg	3960
attaaattag	gatgcatatt	gacacatagt	: tgctatgcac	acacagette	tttataaatg	4020
gca						4023

<210> 64 <211> 1929 <212> DNA <213> Homo sapien

<400> 64 ctctaaggag atgaarctgc actcaaccag gatgagaggc tgcccggcca atgcagctgc 60 cgccccgtct gctgcggagg ctttgctttt tgactccctg gcgacagtaa agttgaagag 120 etteeggeeg gaggeeaata gatgggaeee eeggaaggeg gaagttetag ggeggaagtg 180 gccgagagga gaggagaatg gcggcggaag gctggatttg gccccactac acctctcttt 240 300 cttcttttgt tgttggggtc tgtgactgcg gatataactg acggcaacag tgaacatctc 360 aagegggage attegeteat taageeetae caaggggteg gtteeagete tatgeeeete tgggacttcc agggcagcac tatgctcacg agccagtacg tacgtctgac ccctgacgag 420 cgcagcaaag agggctctat ctggaaccac cagccgtgct tcctcaaaga ctgggaaatg 480 cacgtccact tcaaagtcca cggcacaggg aagaagaacc tccatggaga cggcatcgcc 540 600 ttgtggtaca cccgggaccg cctcgtgcca gggcctgtgt ttggaagcaa agataacttc cacggettag ccatettect ggacacetae eccaatgatg agaceaetga gegegtgtte 660 720 ccgtacatct cggtgatggt gaacaatggc tccctgtcct acgaccacag caaggatggg cgctggaccg agctggcggg ctgcacggct gacttccgca accgcgatca cgacaccttc 780 ctggctgtgc gctactcccg gggccgtctg acggtgatga ccgacctgga ggacaagaac 840 900 gagtggaaga actgcattga catcacggga gtgcgcctgc ccaccggcta ctacttcggg gcctccgccg gcaccggcga cctgtctgac aatcatgaca tcatctccat gaagctgttc 960 cagctgatgg tggagcacac gcccgacgag gagagcatcg actggaccaa gatcgagccc 1020 agegteaact teeteaagte geecaaagae aaegtggaeg acceeaeggg gaaetteege 1080 agegggeece tgaegggtg gegggtqtte etgetqetqe tqtqcqetet eetgggeate 1140 gttgtctgcg ccgtggtggg ggccgtggtg ttccagaagc ggcaggagcg gaacaagcgc 1200 ttctactgag tggcgcctcc ggcggggcct gtccctgggc ccaggagcca atgtgaactt 1260 ttttttttac cgggattata aaagaacaac aagatgacct tatttcttaa ctgtttcaaa 1320 1380 taaatgatta aagtattttc atacattttg cttcttgccc agcagggaca ggtggcagag ccgaggetta gggtetggca cccccacag etggagaegg aggeteteet ggggetggtg 1440 tctcaggagc aggggtctgt gtctacagat gggctgtggc ccctgcaggc agctgttgaa 1500 cactggaggg tcccccggac cacactgggg tgggctcctg aggacgtggg gaagtgattt 1560 tgttttgtgg tgtgtggcac gtgtggcgac ggataaggcc tgaactggga aacccaggcc 1620 ttcctgttca ccctgagctg cttcctgaga cagatgctca agtgaggctg caggcgggt 1680 gtggtggggc cgagtgtgac cgtttgctaa ataaagtgaa atacccaacc tcaaaaaaaa 1740 1800

WO 2004/052290 PCT/US2003/038829

aaattcaaaa aaacaagaga	aacagagaga	ggatatatat	tattcggacg	gggacacaac	1860
	_				
aggatgatta aattaggat	, catatigaca	catagitget	atgcacacac	agettgetta	1920
taaatggca					1929
<210> 65 <211> 927 <212> DNA <213> Homo sapien					
<400> 65		~~~~			60
ccgagcgtgc gggggcgga					60
tgcagtaggt cccggcaac					120
gtcgtaatgg aggcgggcg	g ctttctggac	tcgctcattt	acggagcatg	cgtggtcttc	180
accaacctgg gctggctgag	f ttatggggct	ttgaagggag	acgggatcct	categtegte	240
aacacagtgg gtgctgcgc	tcagaccctg	tatatcttgg	catatctgca	ttactgccct	300
cggaagcgtg ttgtgctcc	: acagactgca	accctgctag	gggtccttct	cctgggttat	360
ggctactttt ggctcctgg	acccaaccct	gaggcccggc	ttcagcagtt	gggcctcttc	420
tgcagtgtct tcaccatcag	catgtacctc	tcaccactgg	ctgacttggc	taaggtgatt	480
caaactaaat caacccaat	tctctcctac	ccactcacca	ttgctaccct	teteacetet	540
gcctcctggt gcctctatgg	gtttcgactc	agagatccct	atatcatggt	gtccaacttt	600
ccaggaatcg tcaccagct	: tatccgcttc	tggettttet	ggaagtaccc	ccaggagcaa	660
gacaggaact actggctcct	gcaaacctga	ggctgctcat	ctgaccactg	ggcaccttag	720
tgcaactgaa caagagacto	tgttaagggg	ctgkgycagt	ccaggtgsmk	ggtkgggacm	780
cmgyggctgg ggwaaggcma	gacagttctt	atgwtggggc	aggagacktt	ataaagttaa	840
aactgggggg ggacaaaag	aagaggggc	cactcaccag	agagggctgg	agacacagag	900
cccaaaacgg ggcacagcag	g acagata				927
<210> 66 <211> 257 <212> DNA <213> Homo sapien					
<400> 66 atcggttcga gcggcgcccg	ggcaggtacc	tetcaceact	ggctgacttg	gctaaggtga	60
ttcaaactaa atcaacccaa	tgtctctcct	acccactcac	cattgctacc	cttctcacct	120
ctgcctcctg gtgcctctat	gggtttcgac	tcagagatcc	ctatatcatg	gtgtccaact	180
ttccaggaat cgtcaccago	tttatccgct	tetggetttt	ctggaagtac	ctcggccgcg	240

accacgctaa	gccgatt					257
<210> 67 <211> 972 <212> DNA <213> Homo	o sapien					
<400> 67 gcgatatgaa	aggtgaggtc	tatccatttg	gcatcgttgg	gatggccaac	aaaggggatt	60
gcctgcaaat	cgaccggtgg	taaagcaccc	aggaagcaac	tggctacaaa	agccgctcgc	120
aagagtgcgc	cctctactgg	aggggtgaag	aaacctcatc	gttacaggcc	tggtactgtg	180
gcgctccgtg	aaattagacg	ttatcagaag	tccactgaac	ttctgattcg	caaacttccc	240
ttccagcgtc	tggtgcgaga	aattgctcag	gactttaaaa	cagatctgcg	cttccagagc	300
gcagctatcg	gtgctttgca	ggaggcaagt	gaggcctatc	tggttggcct	ttttgaagac	360
accaacctgt	gtgctatcca	tgccaaacgt	gtaacaatta	tgccaaaaga	catccagcta	420
gcacgccgca	tacgtggaga	acgtgcttaa	gaatccacta	tgatgggaaa	catttcattc	480
tcaaaaaaaa	aaaaaaaatt	tetettette	ctgttattgg	tagttctgaa	cgttagatat	540
ttttttcca	tggggtcaaa	aggtacctaa	gtatatgatt	gcgagtggaa	aaatagggga	600
cagaaatcag	gtattggcag	tttttccatt	ttcatttgtg	tgtgaatttt	taatataaat	660
gcggagacgt	aaagcattaa	tgcaagttaa	aatgtttcag	tgaacaagtt	tcagcggttc	720
aactttataa	taattataaa	taaacctgtt	aaattttct	ggacaatgcc	agcatttgga	780
ttttttaaa	acaagtaaat	ttcttattga	tggcaactaa	atggtgtttg	tagcattttt	840
atcatacagt	agattccatc	cmttcactat	acttttctaa	ctgagttgtc	ctacatgcca	900
gtacatgttt	ttaatgttgt	ctgtcttctg	tgctgttcct	gtaagtttgc	tattaaaata	960
cccttaacta	ta					972
<210> 68 <211> 824 <212> DNA <213> Homo	o sapien					
<400> 68 tgctgtcgag	cggcgcagtg	tgatggatgc	ggcgccgggc	aggtattaga	cgttatcaga	60
agtccactga	acttctgatt	cgcaaacttc	ccttccagcg	tctggtgcga	gaaattgctc	120
aggactttaa	aacagatctg	cgcttccaga	gcgcagctat	cggtgctttg	caggaggcaa	180
gtgaggccta	tetggttgge	ctttttgaag	acaccaacct	gtgtgctatc	catgccaaac	240
gtgtaacaat	tatgccaaaa	gacatccagc	tagcacgccg	catacgtgga	gaacgtgctt	300
aagaatccac	tatgatggga	aacatttcat	tctcaaaaaa	aaaaaaaaa	tttctcttct	360

WO 2004/052290 PCT/US2003/038829

tcctgttatt	ggtagttctg	aacgttagat	atttttttc	catggggtca	aaaggtacct	420
aagtatatga	ttgcgagtgg	aaaaataggg	gacagaaatc	aggtattggc	agtttttcca	480
ttttcatttg	tgtgtgaatt	tttaatataa	atgcggagac	gtaaagcatt	aatgcaagtt	540
aaaatgtttc	agtgaacaag	tttcagcggt	tcaactttat	aataattata	aataaacctg	600
ttaaattttt	ctggacaatg	ccagcatttg	gattttttta	aaacaagtaa	atttcttatt	660
gatggcaact	aaatggtgtt	tgtagcattt	ttatcataca	gtagattcca	tccmttcact	720
atacttttct	aactgagttg	tcctacatgc	cagtacatgt	ttttaatgtt	gtctgtcttc	780
tgtgctgttc	ctgtaagttt	gctattaaaa	tacccttaac	tata		824
	sapien					
<400> 69 gatgccatgc	tcgagcggcg	cagtgtgatg	gatccgcccg	ggcaggtagt	acgtccaaat	60
gacgaagtca	ctgcagtgct	tgcagttcaa	acagaattga	aagaatgcat	ggtggttaaa	120
acttacctca	ttagcagcat	ccctctacaa	ggtgcattta	actataagta	tactgcctgc	180
ctatgtgacg	acaatccaaa	aaccttctac	tgggactttt	acaccaacag	aactgtgcaa	240
attgcagccg	tcgttgatgt	tattcgggaa	ttaggcatct	gccctgatga	tgctgctgta	300
atccccatca	aaaacaaccg	gttttatact	attgaaatcc	taaaggtaga	ataatggaag	360
ccctgtctgt	ttgccacacc	caggtgattt	cctctaaaga	aacttggctg	gaatttctgc	420
tgtggtctat	aaaataaact	tcttaacatg	caaaaaagaa			460
<210> 70 <211> 944 <212> DNA <213> Homo	sapien					
<400> 70 gatgccatgc	tcgagcggcg	cagtgtgatg	gateegeeeg	ggcaggtatt	gccttctgtt	60
ttctccagca	tgegettget	ccagctcctg	ttcagggcca	gccctgccac	cctgctcctg	120
gttctctgcc	tgcagttggg	ggccaacaaa	gctcaggaca	acactcggta	agatcataat	180
aaagaatttt	gacattccca	agtcagtacg	tccaaatgac	gaagtcactg	cagtgcttgc	240
agttcaaaca	gaattgaaag	aatgcatggt	ggttaaaact	tacctcatta	gcagcatccc	300
tctacaaggt	gcatttaact	ataagtatac	tgcctgccta	tgtgacgaca	atccaaaaac	360
cttctactgg	gacttttaca	ccaacagaac	tgtgcaaatt	gcagccgtcg	ttgatgttat	420

		0,			
tcgggaatta ggcatctgcc	ctgatgatgc	tgctgtaatc	cccatcaaaa	acaaccggtt	480
ttatactatt gaaatcctaa	aggtagaata	atggaagccc	tgtctgtttg	ccacacccag	540
gtgatttcct ctaaagaaac	ttggctggaa	tttctgctgt	ggtctataaa	ataaacttct	600
taacatgcaa aaaagaakrm	aagaraacaa	atagaaatca	actcacaacg	ggtgggggac	660
gaactgggag gctcaaaaac	agggggetee	cgtgggtgag	gatgggtctg	caggtcagca	720
aattcacggg ccagactatc	gctgcgcgca	cagcaaggtg	caaaagtgcg	gcatactgag	780
aaataagggc caagagacct	caaggaaccc	gggcacgtca	cacctgggga	agacgggcaa	840
taagggaagg gagccaccag	ggagaaatag	gaaacacaga	caataaggaa	acgaagtgcc	900
cggctgccaa aaaatgaacg	gagaacccag	aacaaaaaca	ccac		944
<210> 71 <211> 856 <212> DNA <213> Homo sapien					
gggaggagag gtgagcccc	gcccgggcca	ggccctctgg	ccgcgccgtc	cgcccctcta	60
gtcgtgtccc ctcgtgggcc	gaacggacgc	ggcggtgccc	cgcgcccgac	cagacgtccc	120
gtgggctagg gcctgggcct	cgggccgcgt	cggcgccggt	cgagcctctc	cgggtgtcgg	180
ggttcggggc gggcgcgcgt	gggcgtggct	cctctgtcca	cgcctgttcc	cttcgtcgcc	240
gcggctctcg tccgggacac	ggctttccgg	agtagagccc	ttggaggtgt	taagtgtgat	300
gcttccataa tacatttgga	tgctgtcagc	taagttcact	tctgaactaa	ggggttcctc	360
caaatgttgg ctgaaattca	tcccaaggct	ggtctgcaaa	gtctgcaatt	cataatggag	420
ctactgtact ggctattgga	aggaggagat	tctgaagata	aggaggtaaa	acctgtttag	480
aaattaaaaa tgagttacga	tttaaagaaa	attcagatga	ctcattgtga	gtgctagttc	540
tcttgtagga tgccactgga	aatgttgaaa	tgaaaaatat	tcagccgttg	gtctttgaaa	600
tttcctgtga tgtgtttcaa	tctagatgca	aagaacatgg	aaaaatcaaa	gtgctcgagt	660
ggtttaaata tgttttgggt	attcctgttt	atagactata	atacttttcc	aattaaaatc	720
ctcagttgtc acgcagaaga	aggttaagct	gtatttgatt	gccagtttta	ctgaaaatgc	780
ttagtatttt acagtatcac	caaatatatt	ttgtttagcc	aaggtatagg	aaaaataaaa	840
taaattgtat aggttg					856

<210> 72 <211> 6547 <212> DNA <213> Homo sapien

68

<220>
<221> misc_feature
<222> (738)..(738)
<223> n=a, c, g or t

<400> 72 aatgtagttg agttaagcct tattagtaag gatgcactta acattgttca ggagaagaga 60 atataatttt ctcctgcagt gtcatttacg taatccattt ttctagtctt ttctcaggct 120 180 aatgatatto catacotgat acagotttta ttgtttattt gocataatat ggagtgatac cttcgagaaa attagatatt gaatctaata tcccaaaagt attacttagt tttctgtgtt 240 300 tccttaaaca gaatcatttc cattttcggt gcaggtgtta agtgtgatgc ttccataata catttggatg ctgtcagcta agttcacttc tgaactaagg ggttcctcca aatgttggct 360 gaaattcatc ccaaggctgg tctgcaagtg agtgtctgca cacagttgct tgtatgtgga 420 480 gtcgatccaa aatagcatca atgttggttt taccaaagta tttattattg ataatagagg 540 ctaagtacaa aatgtagaga atgtcagcta cttgaggcct ttgattatta aaaattttat taatgcatta aacaagagta cagtaaatag ataaatttta ggttcatgaa ataaactgaa 600 660 taatttattt ttacttacta tttatcatgg aattacttga ataatttaty tttaatggta taattggacm gtaaaattat aaactcagtg cttttcataa aaatcaaagt gaagtttgta 720 atattttata caaatagnat tattatttaa gagaaataac ctgtttatgc ctaattacag 780 tttttaatca tttcagttac ctatttcttt taagaataaa tttagtggga atatcagttc 840 cagtcatggg taccaaactt ttttagtgac agagtacaca caggtatgta aaacttgtca 900 tttctcatca aatagaggct gctgaatata ggcaggtaag aaaagctatg agaaagaatt 960 gttttgcaga atatttgtct agttgtcaga gcaaggaact gaatttattg acacagaaca 1020 ttttattaag taaaaaaat ggttcttata acaaaaaaa aagctaattt tacagaaggc 1080 agtagttaat atagccgcca ataaaataaa tgtttctctg aatactttcc gaggcattac 1140 agtgattttt aactaatatg aagtgatata taataatttt aaagtaacat ccttgagttt 1200 tcctattatt aattgcttat ggaaattggg tttcacgtat gactgagagc taaagcatta 1260 cagtgagtta gaaaacacaa cacaaatgta aagaaaatgt taggtggtga rtaatckgat 1320 ycctttttgt tkgcctttaa gcttagtttt ttgttttgtt ttactttgtt ttaaaccatg 1380 tataaaattg ttgaatttaa aagataagag gattaagtaa tttctttttt cctcctaagg 1440 ataaatgtag gaaaaatcta aacacatagg cagattggtt gagttttata tctgttatcg 1500 gccacattta ttaagattca tatttcatgt atattagagg tattcacatg tattaaaatt 1560 cttatattcc ttctatataa aatagatgta gggggttccc actcttgaaa atatgaagaa 1620

1680 aagatgtcct ttcagcaata atgggttatg gttgattaac tgagaaggtt gtattaaacg ttctctagta gaaatggcta aagagcatgc tttttgagaa gtgtatcatc taggaagaaa 1740 atcaaatgga gtattggtaa ttaaattgta attccatgaa ggaaggaagt ggtgcaaaag 1800 1860 atgaagctaa ctattcctgt ttttcttttt aagagtctgc aattcataat ggagctactg tactggctat tggaaggagg agattctgaa gataaggagg taatattatc tcttttaaaa 1920 gaatactttc ctctgtaatc ctgaatcttt attacatgta agaactttgt gcagtagaca 1980 gcaatttctt tgaatttggt atatggaaac aattttattt teetetgeta agtttttgag 2040 2100 cctgcctctt ctagtgccat ggactgcatt ggtagagctg agaaatatca tttagccata 2160 ctcagcaccc ttaaaatagc ttctttctga gaattagatc tgtgaaggtg tcctgcacag 2220 ttcttgtaga tgtcatttta gttgtggttg acgtgcatgc atttagcatg ttgcttaacc 2280 gtcctcattc gcctcccagt tctttgttgc cttcatttgg ggggatgtgt tttctgctgg atgatttact gctagacatg accaaactct gagtataaga ctkggtgttg gcagctggtt 2340 ccagtgctct gctgagaagt agttgggccc agcctggggc attgtagtgt cctggaggcc 2400 2460 gggagctcct gcacaggggt tcttttcctg gttcagagcc ttaggtgcct ttccactttt cacgtaatct tttcctaggt tggcttgctg cttactttgc agctgttgca gggattcaca 2520 tggaatggag ggctcccttt tattgtggat tatttctttg ataatttacc catgtgcttt 2580 2640 ttcattgttc aaaaacccag tggtgtttaa gaatgaaaga ttcttgaaga acaaaaattg ggttaaattt gtatctatca gaaaagattc tatcctctga tgctatgtag gcacattgaa 2700 tatgcaggct aaattaaaaa cagagtaaaa cctttttata atatgccaat tactatatct 2760 aagaatgttt atacaggctg aaatttgtaa tggtatttat atctgttttc ctttttaagg 2820 aaaataatat acttttctag gcatcaaaaa tatctgcccc tttcactaat gctgatgtac 2880 cacttccccc aaccccaagc taaatttgac tggttaaaaa catctgcccc ctgaactata 2940 tctggggagg aatattaata aaacaatgaa ggacttcatg gtgtctagtt atataattag 3000 gaaattggtt agaaacgtgg ctaaaaccag tttctttcat taaaagaact agtgtacatt 3060 taaaaacaaa aacttcagga aaaagactct ttgatcttta agtcaaatag tatttttggt 3120 taacacagca ggaaggggaa atataccaat ttcagattct tttatttatg cctaagtaga 3180 ggttgtaagc agctaaggaa gtgattaaaa tgtagtctag taaaaaatgg tgctgattac 3240 ttggaaagca gtttacattt gcaaaaaaat tcagtattat gaccttcacc aacttttaca 3300 catcatatac ttgggttatt acttatggta tagcttgtgt atggaatgca agggtatttt 3360 caaattgact aggtcttgct ggtcatctta aaatatgtta caatattaca aaattgaaat 3420 3480 gtaatatttt ttaatagaag gaaaatataa atttaatatc tgggcaattg agacctttaa

3540 acttacttta aaagtatgat cttgatgtat atgatactgt tttgtctttg ctatattaac agaattagag gggtgttctg caattcaaat accttatata ttccaaattt tattctctat 3600 aatggacttt taaaataaaa ggtatatgtg cttcaagagg gcmaaatttg aatcatgagc 3660 taatttgcta agcatcagat tatagaaaag catccttgat taatttggaa ctgtgaaagg 3720 gggcgggtaa aacygttttc tgcagaaatt tactagtgca gcaaccattt aaattaaatg 3780 tttgttaaca taatagtgat ggcattttct cctcccctc cttgtggttt gtccaactag 3840 3900 atgttacagt ggcagttgca ctgactgtta agtgtytaaa tgatgacacc attatgtgaa 3960 gtgatyttga aatgagagat tccagccaag aattacatct gctcccatct ccttcaaatc atactctctg gcagtacaga ttatgattga tttgtttgtg acagattgca ggaaacagtc 4020 4080 attgattttt caatatttta ccttaaaatt atttacagtt gtaaccatgg ggaggtattt tcatgggctg tcagccctg aaagactagg ataatattcc ctgctctctg acaagacaaa 4140 ttacctgtaa tgagtgcagt agctgaaggg tatactttta ttttaaaata tgtcaataac 4200 4260 cccaqtqact aaacqaatat tgatttagca taatgaagcc tgagtaacgt gaaaatgagc tttttcaagg ggcatggtaa agtctttctt tttagctggt tgtaagaagc ttttgattct 4320 tttcagccag ctggtaggaa tatagaattt tataagcaaa ccatcaggaa tgatagtgtt 4380 gtttctgata agcaacatcc aaatattttg accctgcttt tagtggtttt tttcaaatct 4440 4500 tattttgagt cttactttta gtcatagaat agctactgat ttgatgcggt ctttaactga cttaatattt ttacaatttc aatatatttt gcattggaat ctccagtaat gaatattaaa 4560 atatatgtac aatcatttgt agatgatatc aattatatta agacatttca gatgggctat 4620 tgtagtattt aatgtgccgt attttatggt agaataattc tcagtctctg gacatcaaga 4680 ttgctttcag tgggaatgaa gattaattta cttcagtcct gattttttag gcatcaatgc 4740 atgttttcat ttttgtcaga cttttaccct cttttaatgt aattctcaac ttcttatgga 4800 4860 tttacttccc aatacataaa atccttcaaa acaagaatga taataatttt tatacttttt 4920 ataaaaataa atttattttt agtccatcaa ggtgtctgaa gattttatgc ctaggtatct ccatatctaa cttgataagg aaaataggat aaacaatgct ggtaatagca ggaaagtaag 4980 tatttgaata agatgtcaaa ctgatatttc atgtgaacct aactcatttt atggtaacta 5040 ataattatct tatttaaatc aataggtaaa acctgtttag aaattaaaaa tgagttacga 5100 tttaaagaaa attcagatga ctcattgtga gtgctagttc tcttgtagga tgccactgga 5160 aatgttgaaa tgaaaaatgt aagtatatct tttggtggaa aaaaggatag tctctaggac 5220 5280 acaaaattac tgttttattt ttttctcagg agtttgccta agggtgtgac agatgatctc

		, _			
tgtcacttgt cttagttg	gtg tcctgcaata	aactggatgc	tttataaaat	actagacctg	5340
tgatttcgta tgctgtaa	ata tttcatttct	ccatcacccc	tccaaattat	ttcttagttt	5400
ggagtaaaat aataaat	gta ttatagtcaa	catctcttga	cccctcttta	gtttcagcta	5460
aactaagcat gtgtgttt	gt gtgttcattt	tatagttcat	gtgtagaact	atgtgaatta	5520
aatttaagaa acatgtaa	ag tagaggaaat	agttttctgg	agaaattttt	cctttttgga	5580
tattatgccc ttttccat	tg cttttctctg	cttgaaagca	aaaaaaagta	ccctacccct	5640
gttctccttt agggaaaa	ac tattcctata	aagtatttt	aaatcgtgca	agtcattgcc	5700
tagggttagc taaaacat	tt ctttttaaaa	aggagaaaat	gccctggctt	taacattttc	5760
ttgtatttgt atctatta	ag ataaacagtt	tactttgata	cagtacatac	caatctactt	5820
aattttttt ccaggatt	cc ttttactatg	tttggtctga	ccttttatga	taacttaata	5880
tgggaacaaa ttagcata	ita attotattt	ccatgtgacc	tcaaccagtt	gcagaattgt	5940
accactactt tagggggg	gc aatttgacag	tttatgtaga	ctatagcatt	aattgttccc	6000
aaatgttcag tgcatcct	gg ctaatgtgtt	attgaaggtg	ttttcacgta	agcagttaga	6060
ggaagcactt caccccta	itt actaagttat	taaaatgcct	cctaaaggta	gcattttaaa	6120
ttagtataca taattgat	ta gtaatttgtc	ttctcccaag	cataaaacag	catagcagag	6180
ttaagtgtga ccagtgaa	gt ataagatatt	agggattgat	ggtgacaatg	atcatagcaa	6240
ctaaatggat ttttttt	tc ttttagattc	agccgttggt	ctttgaaatt	tcctgtgatg	6300
tgtttcaatc tagatgca	aa gaacatggaa	aaatcaaagt	gctcgagtgg	tttaaatatg	6360
ttttgggtat tcctgttt	at agactataat	acttttccaa	ttaaaatcct	cagttgtcac	6420
gcagaagaag gttaagct	gt atttgattgc	cagttttact	gaaaatgctt	agtattttac	6480
agtatcacca aatatatt	tt gtttagccaa	ggtataggaa	aaataaaata	aaacgagatg	6540
ccggccg					6547
<210> 73 <211> 6551 <212> DNA <213> Homo sapien <220> <221> misc_feature					
<222> (738)(738)					

<400> 73
aatgtagttg agttaagcct tattagtaag gatgcactta acattgttca ggagaagaga 60
atataatttt ctcctgcagt gtcatttacg taatccattt ttctagtctt ttctcaggct 120

<223> n=a, c, g or t

72

aatgatattc catacctgat acagctttta ttgtttattt gccataatat ggagtgatac 180 cttcgagaaa attagatatt gaatctaata tcccaaaagt attacttagt tttctgtgtt 240 tccttaaaca gaatcatttc cattttcggt gcaggtgtta agtgtgatgc ttccataata 300 360 catttggatg ctgtcagcta agttcacttc tgaactaagg ggttcctcca aatgttggct gaaattcatc ccaaggctgg tctgcaagtg agtgtctgca cacagttgct tgtatgtgga 420 gtcgatccaa aatagcatca atgttggttt taccaaagta tttattattg ataatagagg 480 ctaagtacaa aatgtagaga atgtcagcta cttgaggcct ttgattatta aaaattttat 540 taatgcatta aacaagagta cagtaaatag ataaatttta ggttcatgaa ataaactgaa 600 660 taatttattt ttacttacta tttatcatgg aattacttga ataatttaty tttaatggta taattggacm gtaaaattat aaactcagtg cttttcataa aaatcaaagt gaagtttgta 720 780 atattttata caaatagnat tattatttaa gagaaataac ctgtttatgc ctaattacag tttttaatca tttcagttac ctatttcttt taagaataaa tttagtggga atatcagttc 840 cagtcatggg taccaaactt ttttagtgac agagtacaca caggtatgta aaacttgtca 900 960 tttctcatca aatagaggct gctgaatata ggcaggtaag aaaagctatg agaaagaatt 1020 gttttgcaga atatttgtct agttgtcaga gcaaggaact gaatttattg acacagaaca 1080 ttttattaag taaaaaaaat ggttcttata acaaaaaaa aagctaattt tacagaaggc 1140 agtagttaat atagccgcca ataaaataaa tgtttctctg aatactttcc gaggcattac 1200 agtgattttt aactaatatg aagtgatata taataatttt aaagtaacat ccttgagttt tcctattatt aattgcttat ggaaattggg tttcacgtat gactgagagc taaagcatta 1260 1320 cagtgagtta gaaaacacaa cacaaatgta aagaaaatgt taggtggtga rtaatckgat ycctttttgt tkgcctttaa gcttagtttt ttgttttgtt ttactttgtt ttaaaccatg 1380 tataaaattg ttgaatttaa aagataagag gattaagtaa tttcttttt cctcctaagg 1440 ataaatgtag gaaaaatcta aacacatagg cagattggtt gagttttata tctgttatcg 1500 gccacattta ttaagattca tatttcatgt atattagagg tattcacatg tattaaaatt 1560 1620 cttatattcc ttctatataa aatagatgta gggggttccc actcttgaaa atatgaagaa aagatgteet tteageaata atgggttatg gttgattaae tgagaaggtt gtattaaaeg 1680 ttctctagta gaaatggcta aagagcatgc tttttgagaa gtgtatcatc taggaagaaa 1740 atcaaatgga gtattggtaa ttaaattgta attccatgaa ggaaggaagt ggtgcaaaag 1800 atgaagetaa etatteetgt ttttettttt aagagtetge aatteataat ggagetaetg 1860 tactggctat tggaaggagg agattctgaa gataaggagg taatattatc tcttttaaaa 1920 gaatactttc ctctgtaatc ctgaatcttt attacatgta agaactttgt gcagtagaca 1980 gcaatttctt tgaatttggt atatggaaac aattttattt tcctctgcta agtttttgag 2040 cctgcctctt ctagtgccat ggactgcatt ggtagagctg agaaatatca tttagccata 2100 2160 ctcagcaccc ttaaaatagc ttctttctga gaattagatc tgtgaaggtg tcctgcacag 2220 ttcttgtaga tgtcatttta gttgtggttg acgtgcatgc atttagcatg ttgcttaacc 2280 gtecteatte geeteecagt tetttgttge etteatttgg ggggatgtgt tttetgetgg atgatttact gctagacatg accaaactct gagtataaga ctkggtgttg gcagctggtt 2340 ccagtgctct gctgagaagt agttgggccc agcctggggc attgtagtgt cctggaggcc 2400 gggagctcct gcacaggggt tetttteetg gttcagagee ttaggtgeet ttecaetttt 2460 cacgtaatct tttcctaggt tggcttgctg cttactttgc agctgttgca gggattcaca 2520 tggaatggag ggctcccttt tattgtggat tatttctttg ataatttacc catgtgcttt 2580 2640 ttcattgttc aaaaacccag tggtgtttaa gaatgaaaga ttcttgaaga acaaaaattg 2700 ggttaaattt gtatctatca gaaaagattc tatcctctga tgctatgtag gcacattgaa tatgcaggct aaattaaaaa cagagtaaaa cctttttata atatgccaat tactatatct 2760 2820 aagaatgttt atacaggctg aaatttgtaa tggtatttat atctgttttc ctttttaagg 2880 aaaataatat acttttctag gcatcaaaaa tatctgcccc tttcactaat gctgatgtac 2940 cacttccccc aaccccaagc taaatttgac tggttaaaaa catctgcccc ctgaactata 3000 tctggggagg aatattaata aaacaatgaa ggacttcatg gtgtctagtt atataattag gaaattggtt agaaacgtgg ctaaaaccag tttctttcat taaaagaact agtgtacatt 3060 3120 taaaaacaaa aacttcagga aaaagactct ttgatcttta agtcaaatag tatttttggt taacacagca ggaaggggaa atataccaat ttcagattct tttatttatg cctaagtaga 3180 ggttgtaagc agctaaggaa gtgattaaaa tgtagtctag taaaaaatgg tgctgattac 3240 3300 ttggaaagca gtttacattt gcaaaaaaat tcagtattat gaccttcacc aacttttaca catcatatac ttgggttatt acttatggta tagcttgtgt atggaatgca agggtatttt 3360 caaattgact aggtcttgct ggtcatctta aaatatgtta caatattaca aaattgaaat 3420 gtaatatttt ttaatagaag gaaaatataa atttaatatc tgggcaattg agacctttaa 3480 acttacttta aaagtatgat cttgatgtat atgatactgt tttgtctttg ctatattaac 3540 agaattagag gggtgttctg caattcaaat accttatata ttccaaattt tattctctat 3600 aatggacttt taaaataaaa ggtatatgtg cttcaagagg gcmaaatttg aatcatgagc 3660 taatttgcta agcatcagat tatagaaaag catccttgat taatttggaa ctgtgaaagg 3720 gggcgggtaa aacygttttc tgcagaaatt tactagtgca gcaaccattt aaattaaatg 3780

74

tttgttaaca taatagtgat ggcattttct cctcccctc cttgtggttt gtccaactag 3840 atgttacagt ggcagttgca ctgactgtta agtgtytaaa tgatgacacc attatgtgaa 3900 gtgatyttga aatgagagat tccagccaag aattacatct gctcccatct ccttcaaatc 3960 atactctctg gcagtacaga ttatgattga tttgtttgtg acagattgca ggaaacagtc 4020 attgattttt caatatttta ccttaaaatt atttacagtt gtaaccatgg ggaggtattt 4080 tcatgggctg tcagcccctg aaagactagg ataatattcc ctgctctctg acaagacaaa 4140 ttacctgtaa tgagtgcagt agctgaaggg tatactttta ttttaaaata tgtcaataac 4200 cccagtgact aaacgaatat tgatttagca taatgaagcc tgagtaacgt gaaaatgagc 4260 tttttcaagg ggcatggtaa agtctttctt tttagctggt tgtaagaagc ttttgattct 4320 tttcagccag ctggtaggaa tatagaattt tataagcaaa ccatcaggaa tgatagtgtt 4380 gtttctgata agcaacatcc aaatattttg accctgcttt tagtggtttt tttcaaatct 4440 tattttgagt cttactttta gtcatagaat agctactgat ttgatgcggt ctttaactga 4500 cttaatattt ttacaatttc aatatatttt gcattggaat ctccagtaat gaatattaaa 4560 4620 atatatgtac aatcatttgt agatgatatc aattatatta agacatttca gatgggctat tgtagtattt aatgtgccgt attttatggt agaataattc tcagtctctg gacatcaaga 4680 ttgctttcag tgggaatgaa gattaattta cttcagtcct gattttttag gcatcaatgc 4740 4800 atgttttcat ttttgtcaga cttttaccct cttttaatgt aattctcaac ttcttatgga tttacttccc aatacataaa atccttcaaa acaagaatga taataatttt tatacttttt 4860 ataaaaataa atttatttt agtccatcaa ggtgtctgaa gattttatgc ctaggtatct 4920 ccatatctaa cttgataagg aaaataggat aaacaatgct ggtaatagca ggaaagtaag 4980 tatttgaata agatgtcaaa ctgatatttc atgtgaacct aactcatttt atggtaacta 5040 5100 ataattatct tatttaaatc aataggtaaa acctgtttag aaattaaaaa tgagttacga tttaaagaaa attcagatga ctcattgtga gtgctagttc tcttgtagga tgccactgga 5160 aatgttgaaa tgaaaaatgt aagtatatct tttggtggaa aaaaggatag tctctaggac 5220 acaaaattac tgttttattt ttttctcagg agtttgccta agggtgtgac agatgatctc 5280 tgtcacttgt cttagttgtg tcctgcaata aactggatgc tttataaaat actagacctg 5340 tgatttcgta tgctgtaata tttcatttct ccatcacccc tccaaattat ttcttagttt 5400 ggagtaaaat aataaatgta ttatagtcaa catctcttga cccctcttta gtttcagcta 5460 aactaagcat gtgtgtttgt gtgttcattt tatagttcat gtgtagaact atgtgaatta 5520 aatttaagaa acatgtaaag tagaggaaat agttttctgg agaaattttt cctttttgga 5580 5640 tattatgccc ttttccattg cttttctctg cttgaaagca aaaaaaagta ccctacccct

75

gttctccttt agggaaaaac tattcctata aagtatttt aaatcgtgca agtcattgcc	5700
tagggttagc taaaacattt ctttttaaaa aggagaaaat gccctggctt taacattttc	5760
ttgtatttgt atctattaag ataaacagtt tactttgata cagtacatac caatctactt	5820
aattttttt ccaggattcc ttttactatg tttggtctga ccttttatga taacttaata	5880
tgggaacaaa ttagcatata attctatttt ccatgtgacc tcaaccagtt gcagaattgt	5940
accactactt tagggggggc aatttgacag tttatgtaga ctatagcatt aattgttccc	6000
aaatgttcag tgcatcctgg ctaatgtgtt attgaaggtg ttttcacgta agcagttaga	6060
ggaagcactt cacccctatt actaagttat taaaatgcct cctaaaggta gcattttaaa	6120
ttagtataca taattgatta gtaatttgtc ttctcccaag cataaaacag catagcagag	6180
ttaagtgtga ccagtgaagt attcagccgt tggtctttga aatttcctgt gatgtgtttc	6240
aatctagatg caaagaacat ggaaaaatca aagtgctcga gtggtttaaa tatgttttgg	6300
gtattcctgt ttatagacta taatactttt ccaattaaaa tcctcagttg tcacgcagaa	6360
gaaggttaag ctgtatttga ttgccagttt tactgaaaat gcttagtatt ttacagtatc	6420
accaaatata ttttgtttag ccaaggtata ggaaaaataa aataaattgt ataggttgac	6480
ttttttctaa aatgtcttta ttggattgaa tgaatgttta tacctgaaaa aaaaaggttc	6540
aaaaaaaaa a	6551
<210> 74 <211> 570 <212> DNA <213> Homo sapien	
<pre><400> 74 ggcccgcgcg cgccgcccgc cgggggctcg cgccagccac gagggagcgt ccgcggcccg</pre>	60
cgcgcccgcg cggcggagga gaggtgttaa gtgtgatgct tccataatac atttggatgc	120
tgtcagctaa gttcacttct gaactaaggg gttcctccaa atgttggctg aaattcatcc	180
caaggetggt etgeaaagte tgeaatteat aatggageta etgtactgge tattggaagg	240
aggagattct gaagataagg aggatgccac tggaaatgtt gaaatgaaaa atattcagcc	300
gttggtcttt gaaatttcct gtgatgtgtt tcaatctaga tgcaaagaac atggaaaaat	360
caaagtgctc gagtggttta aatatgtttt gggtattcct gtttatagac tataatactt	420
ttccaattaa aatcctcagt tgtcacgcag aagaaggtta agctgtattt gattgccagt	480
tttactgaaa atgcttagta ttttacagta tcaccaaata tattttgttt agccaaggta	540

570

taggaaaaat aaaataaatt gtataggttg

WO 2004/052290

<210><211><212><212><213>	75 166 DNA Homo	sapien					
		-					
<400> cgagcgg	75 gcgc	cagtgtgatg	gatggtcgcg	gcgaggtggg	gggaggatag	caccttaggg	60
aggaaaa	aaat	cccaaaactt	ggtgtccttt	ttaaccctgc	ggccaactca	tggggacttc	120
cagcccl	ttct	ctgtgtcccc	agaatcctgc	ccccattaga	agct gg		166
<210> <211> <212> <213>	76 1229 DNA Homo	o sapien					
<400> tataat	76 gctg	ctcgagcggc	gcagtgtgat	ggatcggccg	cccgggcagg	taccagctgt	60
		gtccaaggac					120
gcccgg	agaa	gctgtctgag	aagttccagc	gcttcacacc	tttcaccctg	ggcaaggagt	180
tcaaag	aagg	acacagctac	tactacatct	ccaaacccat	ccaccagcat	gaagaccgct	240
gcttga	ggtt	gaaggtgact	gtcagtggca	aaatcatcac	agtcctcagg	cccatgtcaa	300
tccaca	ıggag	aagagacttg	cagcagatga	cccagaggtg	cgggttctac	atagcatcgg	360
tcacag	tgct	gccccacgcc	tcttcccact	tgcctggact	gtgctgctcc	ttccacttct	420
gctgct	:gcaa	accccgtgaa	ggtgtgtgcc	acacctggcc	ttaaagaggg	acaggctgaa	480
gagagg	gaca	ggcactccaa	acctgtcttg	gggccacttt	cagageeece	agccctggga	540
accact	ccca	ccacaggcat	aagctatcac	ctagcagcct	caaaacgggt	caatattaag	600
gttttc	caacc	ggaaggaggc	caaccagccc	gacagtgcca	tccccacctt	cacctcggag	660
ggatgg	gagaa	agaagtggag	acagtccttt	cccaccattc	ctgcctttaa	gccaaagaaa	720
caagct	gtgc	aggcatggtc	ccttaaggca	cagtgggagc	tgagctggaa	ggggccacgt	780
		agcttgtcaa					840
						ggagaggcag	900
						gccacagaga	960
						agagctgtgc	1020
						tgcccatgtg	1080
						tctgtatata	1140
agttg	ctgtg	tgtctgtcct	gatttctaca	actggagttt	tttatacaa	tgttctttgt	1200
ctcaa	aataa	agcaatgtgt	: tttttcgga				1229

PCT/US2003/038829

PCT/US2003/038829

77

<210> 77 <211> 1210 <212> DNA <213> Homo sapien <400> 77 60 ctagatgatg ctcgagcggc gcccgggcag gtaccagctg tgccagcccc agtccaagga ccaagtccgc tggcagtgca accggcccag tgccaagcat ggcccggaga agctgtctga 120 180 gaagttccag cgcttcacac ctttcaccct gggcaaggag ttcaaagaag gacacagcta ctactacatc tccaaaccca tccaccagca tgaagaccgc tgcttgaggt tgaaggtgac 240 300 tgtcagtggc aaaatcatca cagtcctcag gcccatgtca atccacagga gaagagactt gcagcagatg acccagaggt gcgggttcta catagcatcg gtcacagtgc tgccccacgc 360 ctcttcccac ttgcctggac tgtgctgctc cttccacttc tgctgctgca aaccccgtga 420 aggtgtgtgc cacacctggc cttaaagagg gacaggctga agagagggac aggcactcca 480 540 aacctgtctt ggggccactt tcagagcccc cagccctggg aaccactccc accacaggca taagctatca cctagcagcc tcaaaacggg tcaatattaa ggttttcaac cggaaggagg 600 ccaaccagcc cgacagtgcc atccccacct tcacctcgga gggatggaga aagaagtgga 660 gacagteett teccaecatt cetgeettta agecaaagaa acaagetgtg caggeatggt 720 cccttaaggc acagtgggag ctgagctgga aggggccacg tggatgggca aagcttgtca 780 840 aagatgcccc ctccaggaga gagccaggat gcccagatga actgactgaa ggaaaagcaa 900 gaaacagttt cttgcttgga agccaggtac aggagaggca gcatgcttgg gctgacccag catctcccag caagacctca tctgtggagc tgccacagag aagtttgtag ccaggtactg 960 cattctctcc catcctgggg cagcactccc cagagctgtg ccagcagggg ggctgtgcca 1020 acctgttctt agagtgtagc tgtaagggca gtgcccatgt gtacattctg cctagagtgt 1080 agcctaaagg gcagggccca cgtgtatagt atctgtatat aagttgctgt gtgtctgtcc 1140 tgatttctac aactggagtt tttttataca atgttctttg tctcaaaata aagcaatgtg 1200 1210 tttttcgga <210> 78 <211> 1016 <212> DNA <213> Homo sapien <400> 78 ctagatgatg ctcgagcggc gcccgggcag gtacctgatc tactaccact cttgtctttc 60 ageteaeagt ceteaggeee atgacaatee acaggagaag agaettgeag cagatgaeee 120 agaggtgcgg gttctacata gcatcggtca cagtgctgcc ccacgcctct tcccacttgc 180

ctggactgtg c	tgctccttc	cacttctgct	gctgcaaacc	ccgtgaaggt	gtgtgccaca	240
cctggcctta a	agagggaca	ggctgaagag	agggacaggc	actccaaacc	tgtcttgggg	300
ccactttcag a	gccccagc	cctgggaacc	actcccacca	caggcataag	ctatcaccta	360
gcagcctcaa a	acgggtcaa	tattaaggtt	ttcaaccgga	aggaggccaa	ccagcccgac	420
agtgccatcc c	caccttcac	ctcggaggga	tggagaaaga	agtggagaca	gtcctttccc	480
accattcctg c	ctttaagcc	aaagaaacaa	gctgtgcagg	catggtccct	taaggcacag	540
tgggagctga g	ıctggaaggg	gccacgtgga	tgggcaaagc	ttgtcaaaga	tgccccctcc	600
aggagagagc c	aggatgeee	agatgaactg	actgaaggaa	aagcaagaaa	cagtttcttg	660
cttggaagcc a	ıggtacagga	gaggcagcat	gcttgggctg	acccagcatc	tcccagcaag	720
acctcatctg t	ggagctgcc	acagagaagt	ttgtagccag	gtactgcatt	ctctcccatc	780
ctggggcagc a	ctccccaga	gctgtgccag	caggggggct	gtgccaacct	gttcttagag	840
tgtagctgta a	ıgggcagtgc	ccatgtgtac	attctgccta	gagtgtagcc	taaagggcag	900
ggcccacgtg t	atagtatct	gtatataagt	tgctgtgtgt	ctgtcctgat	ttctacaact	960
ggagttttt t	atacaatgt	tctttgtctc	aaaataaagc	aatgtgtttt	ttcgga	1016
	sapien					
<211> 6164 <212> DNA		gaaaatgtac	atcaagacaa	gctgcaaaaa	tctaaagcac	60
<211> 6164 <212> DNA <213> Homo <400> 79	ggtgaagtaa					60 120
<211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g	ggtgaagtaa :gagggcact	tgcatctcag	tttaccctcc	gcttgaatag	atacggggaa	
<pre><211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g agaacacaag t</pre>	ggtgaagtaa gagggcact acgagggtga	tgcatctcag	tttaccctcc	gcttgaatag	atacggggaa aggaggcctt	120
<pre><211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g agaacacaag t taaactaaac a</pre>	ggtgaagtaa gagggcact acgagggtga	tgcatctcag cacaccttct ttatctccrg	tttaccctcc cccaccttgt catctccaag	gcttgaatag cagctgaagc gccacagctt	atacggggaa aggaggcctt tttttctttt	120 180
<211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g agaacacaag t taaactaaac a ccctgcccac c	ggtgaagtaa gagggcact acgagggtga cccatggtca aagagctgg	tgcatctcag cacaccttct ttatctccrg gaaacgtggc	tttaccctcc cccaccttgt catctccaag tttggccagc	gcttgaatag cagctgaagc gccacagctt aagggagaag	atacggggaa aggaggcctt tttttctttt gggccattat	120 180 240
<pre><211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g agaacacaag t taaactaaac a ccctgcccac c tcctagtgga a</pre>	ggtgaagtaa gagggcact acgagggtga cccatggtca aaagagctgg	tgcatctcag cacaccttct ttatctccrg gaaacgtggc ttgttactga	tttaccctcc cccaccttgt catctccaag tttggccagc aaccaaactg	gcttgaatag cagctgaagc gccacagctt aagggagaag ggctgctttt	atacggggaa aggaggcctt tttttctttt gggccattat ctcaattatc	120 180 240 300
<pre><211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g agaacacaag t taaactaaac a ccctgcccac c tcctagtgga a gtgtaccagc a</pre>	ggtgaagtaa ggagggcact acgagggtga cccatggtca aaagagctgg aaagacccga	tgcatctcag cacaccttct ttatctccrg gaaacgtggc ttgttactga cacttttcag	tttaccctcc cccaccttgt catctccaag tttggccagc aaccaaactg atgccaagtt	gcttgaatag cagctgaagc gccacagctt aagggagaag ggctgctttt ttaacccaga	atacggggaa aggaggcctt tttttctttt gggccattat ctcaattatc acaaaagctg	120 180 240 300 360
<pre><211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g agaacacaag t taaactaaac a ccctgcccac c tcctagtgga a gtgtaccagc a tccaccactt t</pre>	ggtgaagtaa ggagggcact acgagggtga cccatggtca aaagagctgg aaagacccga ctctggtctc	tgcatctcag cacaccttct ttatctccrg gaaacgtggc ttgttactga cacttttcag ccagatctgc	tttaccctcc cccaccttgt catctccaag tttggccagc aaccaaactg atgccaagtt tgacgcagcc	gcttgaatag cagctgaagc gccacagctt aagggagaag ggctgctttt ttaacccaga tgaagtgttc	atacggggaa aggaggcett tttttctttt gggccattat ctcaattatc acaaaagctg ctcccctcca	120 180 240 300 360 420
<pre><211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g agaacacaag t taaactaaac a ccctgcccac c tcctagtgga a gtgtaccagc a tccaccactt t ctgtcggact g</pre>	ggtgaagtaa ggagggcact acgagggtga cccatggtca aaagagctgg aaagacccga ctctggtctc gatttataat	tgcatctcag cacaccttct ttatctccrg gaaacgtggc ttgttactga cacttttcag ccagatctgc gttacctcca	tttaccctcc cccaccttgt catctccaag tttggccagc aaccaaactg atgccaagtt tgacgcagcc aacctcagga	gcttgaatag cagctgaagc gccacagctt aagggagaag ggctgctttt ttaacccaga tgaagtgttc cgtcaagccc	atacggggaa aggaggcett tttttctttt gggccattat ctcaattatc acaaaagctg ctcccctcca cttcacctct	120 180 240 300 360 420
<pre><211> 6164 <212> DNA <213> Homo <400> 79 tggtcataag g agaacacaag t taaactaaac a ccctgcccac c tcctagtgga a gtgtaccagc a tccaccactt t ctgtcggact g ggactgcacc c</pre>	ggtgaagtaa ggtgaagtaa ggagggcact acgagggtga cccatggtca aaagagctgg aaagacccga ctctggtctc gatttataat ctggcttaaa	tgcatctcag cacaccttct ttatctccrg gaaacgtggc ttgttactga cacttttcag ccagatctgc gttacctcca aggtagcatc	tttaccctcc cccaccttgt catctccaag tttggccagc aaccaaactg atgccaagtt tgacgcagcc aacctcagga tgtctccagg	gcttgaatag cagctgaagc gccacagctt aagggagaag ggctgctttt ttaacccaga tgaagtgttc cgtcaagccc tgccgtggg	atacggggaa aggaggcctt tttttctttt gggccattat ctcaattatc acaaaagctg ctcccctcca cttcacctct	120 180 240 300 360 420 480 540

ggtggttctg aaggtggcgg tggttctgca gcgtggctcc ccacagcccc tttcatctga

acagtagggc tcatgccact tgttaatcag ccttccagtg gcacgaggag tcattttctg 840 gggataggcg ctttgcccaa agcgtgagaa gcaggagcag gccctttctg ttgattgaag 900 ggtcttcctg gctggtgaag ccctttccag acttgagggc agggaccagt ggtcctcggg 960 gcctagaaag aggcagaatt gggggccaaa cggcagaccc ctctggtccg ccccaaaaga 1020 egecteggtt ecceeagegt gecteecetg gatactegee tegacgtgge tegecegegg 1080 tegtteetge aactgeaegg tegggagtee eteteeceag eccageeege eeggagtett 1140 cgggggacac ttcagaaaga tcgggacagc tggcctgaag ctcagagccg gggcgtgcgc 1200 catggcccca cactgggctg tetggctgct ggcagcaagg ctgtggggcc tgggcattgg 1260 ggctgaggtg tggtggaacc ttgtgccgcg taagacagtg tcttctgggg gtgagtgcct 1320 ggaggggtga ggaggaagtc aggcacaggc tgctgaggag ttgcccccat agtgtgctgg 1380 ctttattctc acgtgtgtgg cacagctttc taagaaactc gagttggaag aacgggcagt 1440 gtgggttggg acctgggatt agectectet gggggagete tgtecaacte cecaceccag 1500 actgcctgcc cagtgtggga gggggagagc cttctgcctc gccctctcca cgcctcgctt 1560 cttgaattgt cactggcgct gggagcctaa agagaaactg gaaccgggat aaatataaac 1620 tggaggetet eteceetgge teeceaggee eecetaagae etectaetge eetgtacaca 1680 teatacacte tggtggceet ggaagtgtgt gtgtatgtge acatgetege atggttgeeg 1740 gggcacagcg gggacccagc agtgctccct gtgcacacac ccgtgtgaaa ggtgatgtca 1800 ggtgtttgta tcagccgtgc gctctgggga cctgggatga gctcacctcc cacaggctcc 1860 actegggtge cagtgaagee etgecatgee ggtetgtgte tggatecatt gttgeetgea 1920 aagactaagg ctggtttggg gggaccctga ggacaggtcg gcagccatat ttggcagctg 1980 atgtaggaat cacgtgactg tataaatgtc gtagtgccct gcatgccggg tggcagcaag 2040 actteceagg ceceageece atetecgete tetgageete tggtttetee ggaceteeet 2100 ggcctggctc acagcccagc tcccctcctg ccatccccac ctgtcctagt ggcctgctgt 2160 gctcgcatct ctggcagcct ggattggggt cctgctggag tgaagggttt cctgaggcag 2220 ggagtactca tagecgtetg tgeeteetge tetgetggae tetgatagag geagtgggea 2280 gcagggcaaa gaaggaagca gcgccgagga agcgaaggtg gggtgggggt gcccagccct 2340 geggeggagg tgecattgae cetgagagea agagecatea gtetgatgge tteetetgge 2400 cggaagctgt ggctgagata tccttccttc ctcccagcag cctggatttg cctcctccca 2460 ggctgggaaa ggctagggag gcccaggtgg ggctgtcagg gccaaaggct gtttcaaaag 2520 tgtcctttat tgccaatcag ggggtttggc tggcatctgc ttgtggcatg gggtgctggc 2580

t	ctcgtggag	caagactgag	ggctgtcgag	ccccaggggt	cctgcccatc	agcagccatg	2640
c	ttacccctg	cagagetgge	cacggtagta	cggcggttct	cccagaccgg	catccaggac	2700
t	tectgacac	tgacgctgac	ggagcccact	gggcttctgt	acgtgggcgc	ccgagaggcc	2760
c	tgtttgcct	tcagcatgga	ggccctggag	ctgcaaggag	cgatctcctg	ggaggccccc	2820
9	gtggagaaga	agactgagtg	tatccagaaa	gggaagaaca	accagaccga	gtgcttcaac	2880
t	tcatccgct	tcctgcagcc	ctacaatgcc	tcccacctgt	acgtctgtgg	cacctacgcc	2940
t	tecageeca	agtgcaccta	cgtcaacatg	ctcaccttca	ctttggagca	tggagagttt	3000
9	gaagatggga	agggcaagtg	tccctatgac	ccagctaagg	gccatgctgg	ccttcttgtg	3060
9	gatggtgagc	tgtactcggc	cacactcaac	aacttcctgg	gcacggaacc	cattatcctg	3120
c	gtaacatgg	ggccccacca	ctccatgaag	acagagtacc	tggccttttg	gctcaacgaa	3180
c	ctcactttg	taggctctgc	ctatgtacct	gagagtgtgg	gcagcttcac	gggggacgac	3240
9	gacaaggtct	acttcttctt	cagggagcgg	gcagtggagt	ccgactgcta	tgccgagcag	3300
ç	gtggtggctc	gtgtggcccg	tgtctgcaag	ggcgatatgg	ggggcgcacg	gaccctgcag	3360
a	aggaagtgga	ccacgttcct	gaaggcgcgg	ctggcatgct	ctgccccgaa	ctggcagctc	3420
t	acttcaacc	agctgcaggc	gatgcacacc	ctgcaggaca	cctcctggca	caacaccacc	3480
t	tctttgggg	tttttcaagc	acagtggggt	gacatgtacc	tgtcggccat	ctgtgagtac	3540
c	cagttggaag	agatccagcg	ggtgtttgag	ggcccctata	aggagtacca	tgaggaagcc	3600
c	cagaagtggg	accgctacac	tgaccctgta	cccagecete	ggcetggete	gtgcattaac	3660
ā	actggcatc	ggcgccacgg	ctacaccagc	tccctggagc	tacccgacaa	catcctcaac	3720
t	tcgtcaaga	agcacccgct	gatggaggag	caggtggggc	ctcggtggag	ccgccccctg	3780
c	ctcgtgaaga	agggcaccaa	cttcacccac	ctggtggccg	accgggttac	aggacttgat	3840
9	ggagccacct	atacagtgct	gttcattggc	acaggagacg	gctggctgct	caaggctgtg	3900
ε	agcctggggc	cctgggttca	cctgattgag	gagctgcagc	tgtttgacca	ggagcccatg	3960
ā	agaagcctgg	tgctatctca	gagcaagaag	ctgctctttg	ccggctcccg	ctctcagctg	4020
٥	gtgcagctgc	ccgtggccga	ctgcatgaag	tatcgctcct	gtgcagactg	tgtcctcgcc	4080
c	egggacccct	attgcgcctg	gagcgtcaac	accagccgct	gtgtggccgt	gggtggccac	4140
t	ctgggtgag	ttgggctcta	cataggccag	gacctccagg	actcaggstg	sttggagcca	4200
2	gctgctgatg	taccctacat	cccctaccag	atctctactg	atccagcatg	tgatgacctc	4260
ç	ggacacttca	ggcatctgca	acctccgtgg	cagtaagaaa	ggtgagcttt	ttcattcccg	4320
t	cgcatcggg	ctgagccctg	gaccagagct	ggagtttctg	ttctcctctt	ccccagccct	4380
9	gatttaatga	actaacatgc	actctgtttt	ctctgccact	acagtcaggc	ccactcccaa	4440

aaacatcacg	gtggtggcgg	gcacagacct	ggtgctgccc	tgccacctct	cctccaactt	4500
ggcccatgcc	cgctggacct	ttgggggccg	ggacctgcct	gcggaacagc	ccgggtcctt	4560
cctctacgat	gcccggctcc	aggccctggt	tgtgatggct	gcccagcccc	gccatgccgg	4620
ggcctaccac	tgcttttcag	aggagcaggg	ggcgcggctg	gctgctgaag	gctaccttgt	4680
ggctgtcgtg	gcaggcccgt	cggtgacctt	ggaggcccgg	gcccccctgg	aaaacctggg	4740
gctggtgtgg	ctggcggtgg	tggccctggg	ggctgtgtgc	ctggtgctgc	tgctgctggt	4800
gctgtcattg	cgccggcggc	tgcgggaaga	gctggagaaa	ggggccaagg	ctactgagag	4860
gaccttggtg	taccccctgg	agctgcccaa	ggagcccacc	agtcccccct	teeggeeetg	4920
tcctgaacca	gatgagaaac	tttgggatcc	tgtcggttac	tactattcag	atggctccct	4980
taagatagta	cctgggcatg	cccggtgcca	gcccggtggg	gggccccctt	cgccacctcc	5040
aggcatccca	ggccagcctc	tgeettetee	aactcggctt	cacctggggg	gtgggcggaa	5100
ctcaaatgcc	aatggttacg	tgcgcttaca	actaggaggg	gaggaccggg	gagggctcgg	5160
gcaccccctg	cctgagctcg	cggatgaact	gagacgcaaa	ctgcagcaac	gccagccact	5220
gcccgactcc	aaccccgagg	agtcatcagt	atgaggggaa	ccccaccgc	gtcggcggga	5280
agcgtgggag	gtgtagctcc	tacttttgca	caggcaccag	ctacctcagg	gacatggcac	5340
gggcacctgc	tctgtctggg	acagatactg	cccagcaccc	acccggccat	gaggacctgc	5400
tctgctcagc	acgggcactg	ccacttggtg	tggctcacca	gggcaccagc	ctcgcagaag	5460
gcatcttcct	cctctctgtg	aatcacagac	acgcgggacc	ccagccgcca	aaacttttca	5520
aggcagaagt	ttcaagatgt	gtgtttgtct	gtatttgcac	atgtgtttgt	gtgtgtgtgt	5580
atgtgtgtgt	gcacgcgcgt	gcgcgcttgt	ggcatagcct	tcctgtttct	gtcaagtctt	5640
cccttggcct	gggtcctcct	ggtgagtcat	tggagctatg	aaggggaagg	ggtcgtatca	5700
ctttgtctct	cctaccccca	ctgccccgag	tgtcgggcag	cgatgtacat	atggaggtgg	5760
ggtggacagg	gtgctgtgcc	ccttcagagg	gagtgcaggg	cttggggtgg	gcctagtcct	5820
gctcctaggg	ctgtgaatgt	tttcagggtg	gggggaggga	gatggagcct	cctgtgtgtt	5880
tggggggaag	ggtgggtggg	gcctcccact	tggccccggg	gttcagtggt	attttatact	5940
tgccttcttc	ctgtacaggg	ctgggaaagg	ctgtgtgagg	ggagagaagg	gagagggtgg	6000
gcctgctgtg	gacaatggca	tactctcttc	cagccctagg	aggagggctc	ctaacagtgt	6060
aacttattgt	gtccccgcgt	atttatttgt	tgtaaatatt	tgagtatttt	tatattgaca	6120
aataaaatgg	agaaaatgaa	acgattrmtc	tgatggggct	aaga		6164

WO 2004/052290

<211> 1212 <212> DNA <213> Homo sapien <400> 80 gctcggtgac agatttctat ccaagcagat cagcaggtyg tagtggttga gggcctctgt 60 cctggatggg gagatgccct caaccaccac aacctgctgg tctgctcggt gacagatttc 120 180 tatccaqqcc agatcaaagt ccggtggttt cggaatgatc aggaggagac agccggcgtt gtgtccaccc cccttattag gaacggtgac tggaccttcc agatcctggt gatgctggaa 240 atgactecce agegtggaga tgtetacace tgccaegtgg ageaceceag cetecagage 300 360 cccatcaccg tggagtggcg ggctcagtct gaatctgccc agagcaagat gctgagtggc gttggaggct tcgtgctggg gctgatcttc cttgggctgg gccttatcat ccgtcaaagg 420 agtcagaaag ggcttctgca ctgactcctg agactatttt aactaggatt ggttatcact 480 540 cttctgtgat gcctgcttgt gcctgcccag aattcccagc tgcctgtgtc agcttgtccc cctgagatca aagtectaca gtggctgtca cgcagecacc aggtcatcte ctttcatcce 600 caccccaagg cgctggctgt gactctgctt cctgcactga cccagagcct ctgcctgtgc 660 atggccaget gegtetacte aggteceaag gggtttetgt ttetattett teeteagaet 720 gctcaagaga agcacatgaa aaacattacc tgacttcaga gcttttttac ataattaaac 780 840 atgateetga gttatetgta ttetgaactt tettaattga gaagaggeaa gaaateactg cagaatgaag gaacatccct tgaggtgacc cagccaacct gtggccagaa ggagggttgt 900 960 accttgaaaa gacactgaaa gcattttggt gtgtgaagta agggtgggca gaggaggtag 1020 aaaatcaatt caattgtcgc atcattcatg gttctttaat attgatgctc agtgcattgg ccttagaata tcccagcctc tcttctggtt tgctgagtgc tgtgtaagta agcatggtgg 1080 1140 aattgtttgg ggacatatat agtgatcctt ggtcactggt gtttcaaaca ttctggaaag 1200 tcacatcgat caagaatatt ttttattttt aagaaagcat aaccagcaat aaaaatacta 1212 tttttgagtc ta <210> 81 <211> 237 <212> DNA <213> Homo sapien <400> 81 geggeegeet actactacta ctactgeteg aatteaaget tetaaegatg taeggggaea 60 tgtggggaga ggaccagctg ggtgcttggg cattgacaga atgatggttg ttttgtatca 120 tttgattaat aaaaaaaat gaaaaaagwg aaaaaaagtt ggggtatacc agggacatag 180

gtttccctgg ttggacattt gttttcggcc acattcccat cccgacaaaa aaaaggg

82

PCT/US2003/038829

237

<210> 82 <211> 581 <212> DNA <213> Homo sapien <400> 82 60 qctaaatqtt gtctcgagcs rgmkaggttc tgaagcttct gagttctgca gcctcacctc tgagaaaacc tctttgccac caataccatg aagctctgcg tgactgtcct gtctctcctc 120 gtgctagtag ctgccttctg ctctctagca ctctcagcac caaattccaa accaaaagag 180 gcaagcaagt ctgcgctgac cccagtgagt cctgggtcca ggagtacgtg tatgacctgg 240 300 aactgaactg agctgctcag agacaggaag tcttcaggga aggtcacctg agcctggatg 360 cttctccatg ageogratet cctccatact caggactect ctccgcagtt cctgtctctt ctcttaatgt aatctctttt atgtgctgta ttattgtatt aggtgttatt tccattattt 420 atattagttt agccaaagga taagtgtccc ctatggggat ggtccactct cactctttct 480 ctgctgttgc aaatacatgg ataacaccgt taattccatg tgttttcata ataaaacttt 540 581 aaaataaaat gcaaaaaaaa gaacaaaaat aaacaaaaat a <210> 83 <211> 1889 <212> DNA <213> Homo sapien <400> 83 cgttcctggg cctggagggc tgctttgggg caggaaactt tggccaccag gcctctgacc 60 120 tgcaccagga gacactggga ggtttagtcc ccaaacccgc acagagcagg actgcagcct 180 240 ggattgtcct ggcgcctgga gtgygsrggc ctggcaggrg ccctgaacsg ggacagtgag 300 gtcctgyasy tgctggcctg gggtggacag aacccaagcc tgggtaaaat ccccagggcc 360 ccctaaaccc aacacttagg aagtcactag tcctgacttg agtttctgat gaggaagcct ctctccttag ccttcagcct ttcctcccac cctgccataa agtaatttga tcctcaagaa 420 480 gttaaaccac acctcattgg tccctggcta attcaccaat ttacaaacag caggaaatag 540 aaacttaaga gaaatacaca cttctgagaa actgaaacga caggggaaag gaggtctcac 600 tgagcaccgt cccagcatcc ggacaccaca gcggcccttc gctccacgca gaaaaccaca 660 cttctcaaac cttcactcaa cacttccttc cccaaagcca gaagatgcac aaggaggaac atgaggtggc tgtgctgggg gcacccccca gcaccatcct tccaaggtcc accgtgatca 720 acatecacag egagacetee gtgeeegace atgtegtetg gteeetgtte aacaceetet 780

84

		84			
tettgaactg gtgetgtetg	ggcttcatag	cattcgccta	ctccgtgaag	tctagggaca	840
ggaagatggt tggcgacgtg	accggggccc	aggcctatgc	ctccaccgcc	aagtgcctga	900
acatctgggc cctgattctg	ggcatcetca	tgaccattct	gctcatcgtc	atcccagtgc	960
tgatcttcca ggcctatgga	tagatcagga	ggcatcactg	aggccaggag	ctctgcccat	1020
gacctgtatc ccacgtactc	caacttccat	tcctcgccct	gcccccggag	ccgagtcctg	1080
tatcagccct ttatcctcac	acgcttttct	acaatggcat	tcaataaagt	gcacgtgttt	1140
ctggtaaaag tgctgaaaaa	aaaaaaaaa	aaaacaaaac	aaaaaaattt	tttgggcggc	1200
tcgggccctc aagaaaagtt	tttaaacccc	atttttgttg	aaaaaacaaa	gccccaagaa	1260
atagtaaggt aaaccattgg	gcacaaaggg	ggtggcccaa	agagagagca	accgggtggc	1320
cagcagatag gggtgcgggt	tgtctcaccc	cgaataaaaa	aagggccggc	gggagacacc	1380
gcgacgtgtt ttctggaacc	accaaccccg	agagggagcg	tctcggagga	caaaaagggc	1440
ttccacacca ggggggtatc	cccaggcgac	agtccccgaa	tacataatat	agagccgcgc	1500
tggtggaaaa agacaagaca	gacgacctag	aacacagaca	aggcagacgc	aagcacatca	1560
cacacagaag accaagacac	accatgcaga	gcacaaccac	agcagaaata	aaaaggaaga	1620
ggaaggggag aaaacgagca	gagaaatatc	aacgacagca	aacaaagacg	cggggcagaa	1680
gcggaacaca ggagaacaga	cagagaaaaa	agaacgagga	ggtaggagag	aggacaagga	1740
gaggagacaa aaagaagaaa	cagaggacca	ggaggagaac	gagcaagacg	taccgaagaa	1800
aacagggaaa acacgaagaa	aagaagacaa	gaagaagaga	agagagagat	aagtggaggg	1860
caggcgcacg gagcagcgaa	gggaagaca				1889
<210> 84 <211> 1408 <212> DNA <213> Homo sapien <400> 84					
cgttcctggg cctggagggc	tgctttgggg	caggaaactt	tggccaccag	gcctctgacc	60

cgttcctggg	cctggagggc	tgctttgggg	caggaaactt	tggccaccag	gcctctgacc	60
tgcaccagga	gacactggga	ggtttagtcc	ccaaacccgc	acagagcagg	actgcagcct	120
gaggaaagag	caaggatttc	aggagagagg	cctgcgacaa	gtgaggtgag	ggcttttggg	180
ggattgtcct	ggcgcctgga	gtgygsrggc	ctggcaggrg	ccctgaacsg	ggacagtgag	240
gtcctgyasy	tgctggcctg	gggtggacag	aacccaagcc	tgggtaaaat	ccccagggcc	300
ccctaaaccc	aacacttagg	aagtcactag	tcctgacttg	agtttctgat	gaggaagcct	360
ctctccttag	ccttcagcct	ttcctcccac	cctgccataa	agtaatttga	tcctcaagaa	420
gttaaaccac	acctcattgg	tecetggeta	attcaccaat	ttacaaacag	caggaaatag	480

PCT/US2003/038829 WO 2004/052290

			85			
aaacttaaga	gaaatacaca	cttctgagaa	actgaaacga	caggggaaag	gaggtctcac	540
tgagcaccgt	cccagcatcc	ggacaccaca	geggeeette	gctccacgca	gaaaaccaca	600
cttctcaaac	cttcactcaa	cacttccttc	cccaaagcca	gaagatgcac	aaggaggaac	660
atgaggtggc	tgtgctgggg	gcaccccca	gcaccatcct	tccaaggtcc	accgtgatca	720
acatccacag	cgagacctcc	gtgcccgacc	atgtcgtctg	gtccctgttc	aacaccctct	780
tcttgaactg	gtgctgtctg	ggcttcatag	cattcgccta	ctccgtgarg	actggcaccc	840
atgctctccc	agaaagtgag	aagggractc	acaggtgact	tcaccccatg	gtsggtkaka	900
acagcctgtg	ctggggcaga	aggaggatgw	gccccgaggc	tcctggagag	tctgagccyg	960
ggtgatgaag	gggaggaggt	ggtccctgat	ctcaggmgcg	gggagagcca	atgaggakgh	1020
cbgtatgcca	tagcacgcgg	ctctcatgct	gggggatcct	ggtcccctcy	accatctcct	1080
ctccccagt	ctagggacag	gaagatggtt	ggcgacgtga	ccggggccca	ggcctatgcc	1140
tccaccgcca	agtgcctgaa	catctgggcc	ctgattctgg	gcatcctcat	gaccattctg	1200
ctcatcgtca	tcccagtgct	gatcttccag	gcctatggat	agatcaggag	gcatcactga	1260
ggccaggagc	tctgcccatg	acctgtatcc	cacgtactcc	aacttccatt	cctcgccctg	1320
ccccggagc	cgagtcctgt	atcagecett	tatcctcaca	cgcttttcta	caatggcatt	1380
caataaagtg	cacgtgtttc	tggtaaaa				1408
<210> 85						
<211> 107	6					
<212> DNA					•	

<213> Homo sapien

<400> 85 cgttcctggg cctggagggc tgctttgggg caggaaactt tggccaccag gcctctgacc 60 tgcaccagga gacactggga ggtttagtcc ccaaacccgc acagagcagg actgcagcct 120 180 ggattgtcct ggcgcctgga gtgygsrggc ctggcaggrg ccctgaacsg ggacagtgag 240 300 gtcctgyasy tgctggcctg gggtggacag aacccaagcc tgggtaaaat ccccagggcc ccctaaaccc aacacttagg aagtcactag tcctgacttg agtttctgat gaggaagcct 360 ctctccttag ccttcagcct ttcctcccac cctgccataa agtaatttga tcctcaagaa 420 gttaaaccac acctcattgg tccctggcta attcaccaat ttacaaacag caggaaatag 480 aaacttaaga gaaatacaca cttctgagaa actgaaacga caggggaaag gaggtctcac 540 tgagcaccgt cccagcatcc ggacaccaca gcggcccttc gctccacgca gaaaaccaca 600 cttctcaaac cttcactcaa cacttccttc cccaaagcca gaagatgcac aaggaggaac 660

86	
atgaggtggc tgtgctgggg gcaccccca gcaccatcct tccaaggtcc accgtgatca	720
acatecacag egagacetee gtgeeegace atgtegtetg gteeetgtte aacaceetet	780
tettgaactg gtgetgtetg ggetteatag cattegeeta eteegtgaag gtgegtatgg	840
coctggcgga aatccagggg gtgccggtga gcctggggct ccacctgccc acatgctgcc	900
tggggtgggg acttgtgtgt coctgtgact gtgagtttgt gtgcacctct gccccgtgtg	960
tgctcacgtc agtagctttg tctgtgtgat ctgtgtgtgt gtgtggcttt ggggaatctg	1020
cccagtgcag gtctaggagg aggctccagg aggctggctg gctggctcag agtctg	1076
<210> 86 <211> 923 <212> DNA <213> Homo sapien	
<400> 86 cgttcctggg cctggagggc tgctttgggg caggaaactt tggccaccag gcctctgacc	60
tgcaccagga gacactggga ggtttagtcc ccaaacccgc acagagcagg actgcagcct	120
gaggaaagag caaggattte aggagagagg cetgegacaa gtgaggtgag ggettttggg	180
ggattgtcct ggcgcctgga gtgygsrggc ctggcaggrg ccctgaacsg ggacagtgag	240
gtcctgyasy tgctggcctg gggtggacag aacccaagcc tgggtaaaat ccccagggcc	300
ccctaaaccc aacacttagg aagtcactag tcctgacttg agtttctgat gaggaagcct	360
ctctccttag ccttcagcct ttcctcccac cctgccataa agtaatttga tcctcaagaa	420
gttaaaccac acctcattgg tccctggcta attcaccaat ttacaaacag caggaaatag	480
aaacttaaga gaaatacaca cttctgagaa actgaaacga caggggaaag gaggtctcac	540
tgagcaccgt cccagcatcc ggacaccaca gcggcccttc gctccacgca gaaaaccaca	600
cttctcaaac cttcactcaa cacttccttc cccaaagcca gaagatgcac aaggaggaac	660
atgaggtggc tgtgctgggg gcacccccca gcaccatcct tccaaggtcc accgtgatca	720
acatecacag egagacetee gtgeeegace atgtegtetg gteeetgtte aacaceetet	780
tettgaactg gtgetgtetg ggetteatag eattegeeta eteegtgagt tagggeagga	840
gatggtgsga gtgacggsca gctatgctca cgcagtgctg acattggcta ttgsatctag	900
acttgatatc gtatgatggt tgt	923
<210> 87 <211> 1502 <212> DNA <213> Homo sapien <400> 87	
cagataaatc cagcctccac cctttattca gaccatcttt catacttctg tttcattggt	60

PCT/US2003/038829 WO 2004/052290

ccttttattg	tcctggcact	atttcatgga	aagtttatcg	atactggttt	ctctttaccc	120
ttctaccagc	ctatcttaag	taaaaaactt	actattaagg	atttggaatc	tattgatact	180
gaatgttatt	actcccctat	ctggataaga	gataaccacm	ytgaagaatg	tggcttagaa	240
awgtactttt	ctgttgacmt	ggagattttg	ggaaaagtta	cttcacatga	cctgaagttg	300
ggaggttccm	atattctggt	gactgaggag	aacmaagatg	aatatattgg	tttaatgaca	360
gaatggcgtt	tttctcgagg	agtacaagaa	cagaccaaag	ctttccttga	tggttttaat	420
gaagttgttc	ctcttcagtg	gctacagtac	ttcgatgaaa	aagaattaga	ggttatgttg	480
tgtggcatgc	aggaggttga	cttggcagat	tggcagagaa	atactgttta	tcgacattat	540
acaagaaaca	gcaagcaaat	catttggttt	tggcagtttg	tgaaagagac	agacaatgaa	600
gtaagaatgc	gactattgca	gttcgtcact	ggaacctgcc	gtttacctct	aggaggattt	660
gctgagctca	tgggtaaatg	taatttcact	gtaatttctc	tgtacgtaat	tttgtgataa	720
taatggcctt	tggacataca	atagacttga	ttgaacctaa	agattactct	tctgtgctgt	780
aggtagggct	tcatttagaa	gaaagaaaaa	tgagtggcta	atatcaaagc	acttgtaaga	840
caaaaatgaa	tgtgtcctca	tatagctgag	gtggccattg	ctttgctccc	tatggtgact	900
gtgaagggag	cgacattctg	tagagagagt	tttcttccca	atgatctaat	tcttattgct	960
ggatctctgc	aacaattttc	ttcttcaggc	agaagcagct	tacattgtga	atttctttat	1020
tttgtatcat	tcatatgact	gtgcaacatg	ttctattatt	taagcagttg	tcagaagaaa	1080
aaagtttaaa	ggaccagata	aactttgtct	tattttcttg	gtgtaggaag	taatgggcct	1140
caaaagtttt	gcattgaaaa	agttggcaaa	gacacttggt	taccaagaag	ccatacatgg	1200
taagttcagg	aatcctaaat	acgaaggtga	aagccacaga	gaatcttttg	ttttgtttt	1260
ttaaaaatat	gtaagatcca	gtataactgc	ttattcatta	aagtagtcag	aatttcaatt	1320
ttgagaacag	attaatacag	cattctataa	ctgaacactt	tagcatgttc	tcattaatag	1380
aaatatttga	gaaatgcatc	cagtgattca	acaagtatta	gtgtacccac	taggtataaa	1440
gtaagatgta	agtattccct	gttttttatg	aagtttgtgm	cccatggtgg	ggcacaaatg	1500
ac						1502

<210> 88 <211> 5265 <212> DNA <213> Homo sapien

<400> 88

tggaaaccta aggaaaaacg tctgacctgc ggaggtagtt tgggtggcta cttggtgttg 60 gacttggcta aataaatacc agaggcagat aaaacaagcg aggggcctag gtcaagagtt 120

PCT/US2003/038829

ccaagtttgt	tcctcgataa	aaaacgacaa	acgcggtcgg	gggcggtgat	gcccgcctgc	180
agtcccaaca	ctttaggaag	ctgaggcggg	gggatcgcag	gagttcgaga	ccagtctggg	240
caacataatg	agaccatccc	caccacctcc	cgtccttaat	ttttttaat	aaaaaaaatc	300
tttaagtgag	aaatgcatct	gtaatgtcct	tattaaccaa	aaacgcctaa	gggataaaga	360
agcacacgct	ccctagccaa	cgctagagga	acacaccccg	agagctggtg	ctgtaggacc	420
cagttttccc	gcgaaaacgc	tgccgcgcag	ggggtcagac	catctggacc	aaggggggcc	480
gagcgaggcc	tacttctggt	ttacgcacgg	gcgctgaaag	aagcggcact	gtcccccct	540
gccgatgcgc	agtggcgcct	cccggaggcg	gagccacgta	cgagcgccgc	tgtgattggt	600
gaggccccgc	caggggcgga	gacgaccttg	ccgccggcgg	gaactctggg	tctcgcggtt	660
tgggagcgct	actcgccagg	tggactcgga	gtccgcgagc	gtcgtcggca	agcggccgcc	720
tttccacggt	actccgagca	ctatgtcgtc	cccggcgtcg	accccgagcc	gccgcggcag	780
ccggcgtgga	agggccaccc	ccgcccagac	gcctcggagt	gaggatgcca	ggtcatctcc	840
ctctcagaga	cgtagaggcg	aggattccac	ctccacgggg	gagttgcagc	cgatgccaac	900
ctcgcctgga	gtggacctgc	agagccctgc	tgcgcaggac	gtgctgtttt	ccagccctcc	960
ccaaatgcat	tcttcagcta	tccctcttga	ctttgatgtt	agttcaccac	tgacatacgg	1020
cactcccagc	tctcgggtag	agggaacccc	aagaagtggt	.gttaggggca	cacctgtgag	1080
acagaggcct	gacctgggct	ctgcacagaa	gggcctgcaa	gtggatctgc	agtctgacgg	1140
ggcagcagca	gaagatatag	tggcaagtga	gcagtctcta	ggccaaaaac	ttgtgatctg	1200
gggaacagat	gtaaatgtgg	cagcatgcaa	agaaaacttt	cagagatttc	ttcagcgttt	1260
tattgaccct	ctggctaaag	aagaagaaaa	tgttggcata	gatattactg	aacctctata	1320
catgcaacga	cttggggaga	ttaatgttat	tggtgagcca	tttttaaatg	tgaactgtga	1380
acacatcaaa	tcatttgaca	aaaatttgta	cagacaactc	atctcttacc	cacaggaagt	1440
tattccaact	tttgacatgg	ctgtcaatga	aatcttcttt	gaccgttacc	ctgactcaat	1500
cttagaacat	cagattcaag	taagaccatt	caacgcattg	aagactaaga	atatgagaaa	1560
cctgaatcca	gaagacattg	accagctcat	caccatcagc	ggcatggtga	tcaggacatc	1620
ccagctgatt	cccgagatgc	aggaggcctt	cttccagtgc	caagtgtgtg	cccacacgac	1680
ccgggtggag	atggaccgcg	gecgeattge	agagcccagt	gtgtgcgggc	gctgccacac	1740
cacccacage	atggcactca	tccacaaccg	ctccctcttc	tctgacaagc	agatgatcaa	1800
gcttcaggag	tctccggaag	acatgcctgc	agggcagaca	ccacacacag	ttatcctgtt	1860
tgctcacaat	gatctcgttg	acaaggtcca	gcctggggac	agagtgaatg	ttacaggcat	1920

ctatcgagct gtgcctattc gagtcaatcc aagagtgagt aatgtgaagt ctgtctacaa 1980 aacccacatt gatgtcattc attatcggaa aacggatgca aaacgtctgc atggccttga 2040 tgaagaagca gaacagaaac ttttttcaga gaaacgtgtg gaattgctta aggaactttc 2100 caggaaacca gacatttatg agaggcttgc ttcagccttg gctccaagca tttatgaaca 2160 tgaagatata aagaagggaa ttttgcttca gctctttggc gggacaagga aggattttag 2220 tcacactgga aggggcaaat ttcgggctga gatcaacatc ttgctgtgtg gcgaccctgg 2280 taccagcaag tcccagctgc tgcagtacgt gtacaacctc gtccccaggg gccagtacac 2340 gtctgggaag ggctccagtg cagttggcct cactgcgtac gtaatgaaag accctgagac 2400 aaggcagctg gtcctgcaga caggtgctct tgtcctgagt gacaacggca tctgctgtat 2460 cgatgagttc gacaagatga atgaaagtac aagatcggta ttgcatgaag tcatggaaca 2520 gcagactotg tocattgcaa agggtgagto gcottotoca cogtgaacat ggacgtgttt 2580 aaaatatgtg gacccttgaa agacagggtc tgtggaactg tgctgtgcta ccttggttct 2640 aacttgggga gattgataag tgctttccac atcatatttc agctaaatct caacatgtct 2700 tetacagggt gteacgtttt gtetttattg etgtactage ettgaatttg teetaaaget 2760 cttgcaaggt gcctgcttcc tgagaaagat gtggttatag cacacattca tctaaactca 2820 gtccttggca tgaatctgag gacagggctt atccaggctg ggatcatctg tcagctcaat 2880 gcgcgcacct ctgtcctggc agcagcaaat cccattgagt ctcagtggaa tcctaaaaaa 2940 acaaccattg aaaacatcca gctgcctcat actttattat caaggtttga tttgatcttc 3000 ctcatgctgg accetcagga cgaagcetat gacaggcgtc tggctcacca cctggtcgca 3060 ctgtactacc agagcgagga gcaggcagag gaggagctcc tggacatggc ggtgctaaag 3120 gactacattg cctacgcgca cagcaccatc atgccgcggc taagtgagga agccagccag 3180 gctctcatcg aggcttatgt agacatgagg aagattggca gtagccgggg aatggtttct 3240 gcataccete gacagetaga gteattaate egettageag aageeeatge taaagtaaga 3300 ttgtctaaca aagttgaagc cattgatgtg gaagaggcca aacgcctcca tcgggaagct 3360 ctgaagcagt ctgcaactga tccccggact ggcatcgtgg acatatctat tcttactacg 3420 gggatgagtg ccacctctcg taaacggaaa gaagaattag ctgaagcatt gaaaaagctt 3480 attttatcta agggcaaaac accagctcta aaataccagc aactttttga agatattcgg 3540 ggacaatctg acatagcaat tactaaagat atgtttgaag aagcactgcg tgccctggca 3600 gatgatgatt teetgacagt gactgggaag accgtgeget tgetetgaag cettgtgage 3660 aaggaaggct ccctgcatgt cctgcttgct gcacgccaca tgggtgtggt ctgcatctca 3720 gttggccgcc atcagtgtaa atagagctta aagtcatggt ttggctgcat aaaaattttc 3780

PCT/US2003/038829 WO 2004/052290

taacttgggt	tcaatatttg	tagtgaagta	tctgttttca	ttttttcac	gttataaata	3840
aaaatactat	gctggccggg	cgcggtggct	cacacctgta	atcccagcac	tttgggaggc	3900
caatgtgggt	ggatcatgag	gtcaggagtt	caagaccagc	ctagccaaga	tggtgaaacc	3960
ccgtctctag	taaagataac	aaaaaattag	ctgggcttga	tggcatgcgc	ctgtaatccc	4020
agctactcgg	gaggttgagg	caggagaatc	gcttaaaccc	aggcggcaga	ggttgcagtg	4080
agccaagatc	gcgccactgc	actccagcct	cagcaataga	gtgagactgt	ctcaaaaaaa	4140
aaaaaaaaa	aaacctgcca	attttcaaac	ataccgtaga	gattattttc	aggtgccatt	4200
ttatagtata	gcagcagggc	ttttactctg	tgtatgcaca	gatgcagtct	ggggcatggt	4260
ttgtgtgctg	gactttctca	tggccatcat	cagtatgctt	atggatttga	tgacaggcat	4320
agcctgggca	tatcacctca	ttggtaaagg	gctagagcct	ttctttttta	tggcacttct	4380
ttttttgaga	tagggtctta	ctctgtcacc	ctggctagag	tacactggta	caatcacggc	4440
tcaatgtagg	cttaacctcc	tgggctcagg	tgtatgtcac	tatgcccggc	tactttttgt	4500
attttttggt	agagacggct	tcgccacgtt	gcccaggctg	caagcgatat	gcctaggctc	4560
aagcgatctg	cccacctcaa	cttccggaag	tgctgagatt	acaggtgtga	gccactgcac	4620
ccagcctttg	ttttatttt	tattttttga	gaggtatgat	tctttctaga	gattttttct	4680
catggctact	attagatcag	gaatgggtga	ttggagatta	ttagattcta	ggttaacttc	4740
taccacttta	ccctaataca	taaaactttt	tcctaaataa	atgatggaag	gaataatact	4800
tggttacctg	gcattatttt	tcagtaagaa	aaagctttac	taaccactac	atttatggaa	4860
atttgtaggg	gtaagtattt	tataggtcat	aaaaaacacc	ataatataac	gaatctcatt	4920
ttctttaaat	gtgaattaaa	tcctaacagt	catctttata	aaatgaccat	aggctaaaat	4980
cttacgtgta	agtactacta	caataaataa	tttctgaaac	ctttaaatca	tatgagttgg	5040
gccttttta	taacttggaa	tcaacatttt	ttaataaagt	atccatagaa	aatgatagat	5100
ctggccgggc	gcggtggctc	acacctgtaa	teccageact	ttgggaggcc	gagatggctg	5160
gatcatgagg	caggagaatg	acatgaacct	aggaggcgga	gcttgcagtg	agccgagatc	5220
atgccactgc	actccaggct	gggcaacaga	gtgagactcc	atctc		5265

<210> 89 <211> 5466 <212> DNA <213> Homo sapien

<400> 89

ccaaggttaa atgggcgcgt gaggacagtt ttctccggtc ctggcgggtt tgcccacctg 60 ccggccagcg ttctgcggga gtcaagcctg gaaagcgtgt gtgcggcgca caggcgtcag 120

91

acaactggaa cgcattcgaa tggtgctatt ctttgcccac atagcgagca ctttataagg 180 240 tcacttatcg tcccgaatga atggttaaat cgtggaagcc gcaaagaaag ccacgcagct ttgactcaat acctagecca gtactcagga acceetetea ggggtgegeg ageggggeeg 300 gaatcaagaa gcctcttttg gggtgggcgg ggaccgatct agagctccca ctgcggggca 360 420 ccgcctcttt tcctcgccgg ccgcccgcta ggaggcgctg gggagcttgc agcccacctg 480 cgaggcggtc ccgctctccc caccctcag cccgcgcccg gcggagagac tacaactccc 540 ggagtgctct gggaacggag ccacgggagc tacaggcgga gggacccgag ggcgggcttt 600 ccgggtgtgt gtttccggcg tcggcggccg cggccgggga cggtgtgaga gcggtaagat ggcggcggcg gcggtggtgg agttccagag agcccagtct ctactcagca ccgaccggga 660 ggcctccatc gacatcctcc actccatcgt gaagcgtgac attcaggaaa acgatgaaga 720 ggcagtgcaa gtcaaagagc agagcatcct ggaactggga tctctcctgg caaagactgg 780 840 acaagetgea gagettggag gacteetgaa gtatgtaega eeettettga atteeateag 900 caaggetaaa geagetegee tggteegate tettettgat etgtttettg atatggaage 960 agctacaggg caggaggtcg agctgtgttt agagtgcatc gaatgggcca agtcagagaa aagaactttc ttacgccaag ctttggaggc aagactggtg tctttgtact ttgataccaa 1020 1080 gaggtaccag gaagcattgc atttgggttc tcagctgctg cgggagttga aaaagatgga 1140 cgacaaagct cttttggtgg aagtacagct tttagaaagc aaaacatacc atgccctgag caacctgccg aaagcccgag ctgccttaac ttctgctcga accacagcaa atgccatcta 1200 ctgccccct aaattgcagg ccaccttgga catgcagtcg ggtattatcc atgcagcaga 1260 1320 agagaaggac tggaaaactg cgtactcata cttctatgag gcatttgagg gttatgactc categacage eccaaggeca teacatetet gaagtacatg ttgetgtgca aaateatget 1380 1440 caacacccca gaagatgtcc aggctttggt gagcgggaag cttgcacttc ggtatgcagg gaggcagaca gaagcattaa aatgcgtggc tcaggctagc aagaacagat cactggcaga 1500 1560 ttttgaaaag gctctgacag attaccgggc agagctccgg gatgacccaa tcatcagcac acacttggcc aagttgtatg ataacttact agaacagaat ctgatccgag tcattgagcc 1620 tttttccaga gtacaggtga gaaccetctg gggactecat ttctggccag gcattctcac 1680 tgtagecace tecetteeae acetgteeag aatgggaact caettetagg ggtgtgeetg 1740 1800 gtgggcaaga ggccaccaag agcttgggcc tctgttgata aaatgaacaa aaatcgagga 1860 gagagatgct gtgggtagag gcatgtgggt tgcccctgca tgtgttctga gcagtttcct 1920 cctcgctttt agtcactgca tgtgttgtac ctgttttctg tattgggtgt gtgggataag

92

agtctgttta ttgtgtgtag cagtgaaggg caggcagatg ggcagagaac aagagactta 1980 agcacggcca aggagggtct tacattagaa ttttgagaaa tacagcagtt ctccccctgt 2040 tccctccctt ctcttattgg aggcaaaagt aaaactttca gtgttggtgt ctctctgcct 2100 ttccttttag attgaacaca tatctagtct catcaaactc tccaaggtaa ggagtcttaa 2160 ggccatctgc agggaggaat gggacggggt ggcgaggagg ggtggcacat gcacctgatt 2220 2280 ggcctcattg gaaagctccc cagcttctca gtggggaatg ggcagtgtgg actagagtag 2340 gagttgcatt gttgctattt tgttttcagt ccatttggcc taagacccct ccaacaaagc tactgtgtca gggtgatctc tgactagtgg atactggtcc ctttaatcat gtgctttgat 2400 2460 tttaggccga cgtggaaagg aaattatcac agatgattct tgacaagaaa tttcatggta 2520 agtaacagtc acacaggcaa gggggctggt ggtggtgatg agatggttga agaagtttat tttcaaagaa gatgttctat ttgtttcccc cgatggttca ccctggggtc ctggcccctc 2580 ttccctgtga tgagaatgtg taataagcat gtgtacatgg aatagggaga tgaattctat 2640 ttcccttctt ttctggacac agtgagtcaa ctagggagtg ggctgcttca caaacacttt 2700 tgtgtctaac ctcatctttt acctgggttg cccttgtgtt tcttgcaggg attttggacc 2760 2820 agggggaggg tgtcctgatt attttcgatg aacccccagt agataaaact tacgaagctg ctctggaaac aattcagaac atgagcaaag tagtggattc cctctacaac aaagccaaga 2880 2940 aactgacata gagttggatc tgtagcggtc ctttggagag tgtgtgtggc gggagagtga aaccttgggg gaaaatgcta ggagattctt ttttcttttt gttctacttt tcgctcggaa 3000 agtttttaaa tootoatttg gtgcatotgt attocagoca ataggtgtgo cagttttcat 3060 3120 qtaatcttta ctggcccaac ttgggagtgg ggaaattgct taaaaaaaaa gaaaaagaaa aaaaaaaaga ttattotaaa taaaaaggaaa aaggottaca otacotaaag otgtgototo 3180 3240 tgcctcctgg gagagggccg caaagccagg caccccgcca accactgggg gtcctaatcc 3300 acctgctggg catcacctct cctcctcctc agaattgggt gtttgctgac catcaaaagc 3360 aatgactttt tattctgttt gtactgaacc aaaacaaaca actgtgtata gactgctgtt 3420 ttctttttta tttgaaatga ggcattttgg tgttctttcc cctaccatac ggcctgtctg cccttccctc cccacattgg ctccagcaga gtagccgaag gtcctgccgc cgccgccacc 3480 accaccacca ctgcagcaac aacagcagca gcagcagcag cgcctgcata gctccactct 3540 gacctgtgaa ggaatgggga tgaggccagg agctagtgtc taccacggcc acacagggag 3600 cagtgtgggc cettagecec caaggggeet getatgeatg tggetttttt ttttttta 3660 3720 aaacacagta aactagatta gtcgtcagtg ttttaattgc ccctcttctc ctctcctgca ttoctotoct ctottottto otototgtoo ottotottto ocototoaac caggagacca 3780

tcatgtctct	ctgccttcct	cctctcccct	ccaggggagt	caggctgtct	gtgaaagcca	3840
tgagcttctc	tecetatece	actcctcctc	tcctactttc	agatggattt	attccttttt	3900
taaacaatga	acatcggaaa	tgagactgtg	gggtgtggtt	tatatatata	tttttttt	3960
aattttcttt	gttgggtttt	tgagcaacct	catgtcccct	tcccagggag	ctttttaatt	4020
tacctcttag	aactcaagtg	gatgggaagt	agagcactat	gtgtcagtat	gctttgtttt	4080
ctgacacgat	tacacagcga	ggctttaatg	ccatttgggt	aggtgagctt	ctgcacttct	4140
gttgtgctga	actgtatttt	cttctctcat	ctcctctttg	tctttttctc	ttttcctctc	4200
cttcctgcct	tettetgetg	gcctcctttt	ctctttcttt	accttccttg	gattatcctt	4260
ccaggttttc	ataataaatt	tatattttgt	aaaaggattt	tgttgtacca	ggttttgcat	4320
cctcactgaa	tctgactggc	ttttattttc	ctctccaaaa	tcaggttttt	gttctcaaca	4380
tctttcccca	tcatgtctag	tcactgtttt	ggttttggca	ccatcagtat	caaatgtaca	4440
aacggttctt	gctaaccaac	accaggtata	tctgatgttc	agatgagttc	caataaaaat	4500
aattttttt	tttttttt	caaaaggtgt	ctttttcttg	agtgctggag	ggcttccaag	4560
caagtccaga	cagctctgtg	tggccccaca	ctagtctagc	tctcatctgg	ccaaagctgt	4620
tatctcattt	gtgtaatggg	agtccttaag	gtaaatttgg	ggtccaaact	tggagggctt	4680
tgggggcaag	aaagttggtg	tgtgagttct	gaggttggaa	atgagttcag	gtgtcttctt	4740
ccagggcagc	atggtccagt	gagcacatgt	aagtttgggc	agtagatcct	ctgagcctac	4800
tttctcttct	actcagtgag	gatgctgctt	ccttggcagg	tgattgtgat	gtgaagctta	4860
gtaagtcata	gacgtgcagg	tgtctggaga	gtcctgacat	gcagttgtgg	tttcgtttcc	4920
ttttggaatc	ttcaaaggca	gcgattttca	tattgcctca	caccctggcg	aaaacaaaaa	4980
gctctgggac	cactggggga	cctgctaaat	cctcttcagt	ctgagcagtt	cagccattgt	5040
cagttttagt	attgtgtctc	tgtatttcac	ttgcagaaag	agctttgctt	ctataaagga	5100
ctttaaaaag	tactccaaag	agatctagtt	ttggagtaga	ggggagatgt	tttctcaaac	5160
ttagggcagt	cctgagatgc	tcaggcagta	gcccttttct	cagttccctt	tgcgggtctt	5220
ggtcagatga	tgccctctag	acccgtgctg	tccaatatgt	agccgctago	catgtgcagc	5280
tgtcaggccc	ttgcaacgtg	gctggttcga	gctgtgatac	actgcaagtg	taaacacaaa	5340
ccagacttcg	aaggcttagt	atgataacaa	aagaaaagga	gtgtaaaata	tgtcaataac	5400
tttttatat	atgtgttgaa	atattttggg	tattgggtta	aataaaatat	attattaaaa	5460
ttcaaa						5466

<211> 5175

WO 2004/052290

<212> DNA <213> Homo sapien

<400> 90 60 ccaaggttaa atgggcgcgt gaggacagtt ttctccggtc ctggcgggtt tgcccacctg ccggccagcg ttctgcggga gtcaagcctg gaaagcgtgt gtgcggcgca caggcgtcag 120 acaactggaa cgcattcgaa tggtgctatt ctttgcccac atagcgagca ctttataagg 180 240 tcacttatcg tcccgaatga atggttaaat cgtggaagcc gcaaagaaag ccacgcagct ttgactcaat acctagecea gtactcagga acceetetea ggggtgegeg ageggggeeg 300 gaatcaagaa gcctcttttg gggtgggcgg ggaccgatct agagctccca ctgcggggca 360 cegectettt teetegeegg eegecegeta ggaggegetg gggagettge ageceaeetg 420 cgaggcggtc ccgctctccc caccctcag cccgcgcccg gcggagagac tacaactccc 480 540 ggagtgctct gggaacggag ccacgggagc tacaggcgga gggacccgag ggcgggcttt ccgggtgtgt gtttccggcg tcggcggccg cggccgggga cggtgtgaga gcggtaagat 600 ggeggeggeg geggtggtgg agttecagag ageceagtet etaeteagea eegaeeggga 660 720 ggcctccatc gacatcctcc actccatcgt gaagcgtgac attcaggaaa acgatgaaga ggcagtgcaa gtcaaagagc agagcatcct ggaactggga teteteetgg caaagactgg 780 840 acaagetgea gagettggag gaeteetgaa gtatgtaega eeettettga atteeateag caaggetaaa geagetegee tggteegate tettettgat etgtttettg atatggaage 900 960 agctacaggg caggaggtcg agctgtgttt agagtgcatc gaatgggcca agtcagagaa aagaactttc ttacgccaag ctttggaggc aagactggtg tctttgtact ttgataccaa 1020 gaggtaccag gaagcattgc atttgggttc tcagctgctg cgggagttga aaaagatgga 1080 cgacaaagct cttttggtgg aagtacagct tttagaaagc aaaacatacc atgccctgag 1140 caacctgccg aaagcccgag ctgccttaac ttctgctcga accacagcaa atgccatcta 1200 ctgccccct aaattgcagg ccaccttgga catgcagtcg ggtattatcc atgcagcaga 1260 agagaaggac tggaaaactg cgtactcata cttctatgag gcatttgagg gttatgactc 1320 catcgacage eccaaggeea teacatetet gaagtacatg ttgetgtgea aaateatget 1380 1440 caacaccca gaagatgtcc aggctttggt gagcgggaag cttgcacttc ggtatgcagg gaggcagaca gaagcattaa aatgcgtggc tcaggctagc aagaacagat cactggcaga 1500 ttttgaaaag gctctgacag attaccgggc agagctccgg gatgacccaa tcatcagcac 1560 acacttggcc aagttgtatg ataacttact agaacagaat ctgatccgag tcattgagcc 1620 tttttccaga gtacaggtga gaaccctctg gggactccat ttctggccag gcattctcac 1680

PCT/US2003/038829

tgtagccacc tecettecac acetgtecag aatgggaact caettetagg ggtgtgeetg 1740 gtgggcaaga ggccaccaag agcttgggcc tctgttgata aaatgaacaa aaatcgagga 1800 gagagatget gtgggtagag geatgtgggt tgeecetgea tgtgttetga geagttteet 1860 cctcgctttt agtcactgca tgtgttgtac ctgttttctg tattgggtgt gtgggataag 1920 agtetgttta ttgtgtgtag cagtgaaggg caggcagatg ggcagagaac aagagaetta 1980 agcacggcca aggagggtct tacattagaa ttttgagaaa tacagcagtt ctccccctgt 2040 teecteectt etettattgg aggeaaaagt aaaaetttea gtgttggtgt etetetgeet 2100 ttccttttag attgaacaca tatctagtct catcaaactc tccaaggtaa ggagtcttaa 2160 ggccatctgc agggaggaat gggacggggt ggcgaggagg ggtggcacat gcacctgatt 2220 ggcctcattg gaaagctccc cagcttctca gtggggaatg ggcagtgtgg actagagtag 2280 2340 gagttgcatt gttgctattt tgttttcagt ccatttggcc taagacccct ccaacaaagc tactgtgtca gggtgatctc tgactagtgg atactggtcc ctttaatcat gtgctttgat 2400 tttaggccga cgtggaaagg aaattatcac agatgattct tgacaagaaa tttcatggga 2460 ttttggacca gggggagggt gtcctgatta ttttcgatga acccccagta gataaaactt 2520 acgaagctgc tctggaaaca attcagaaca tgagcaaagt agtggattcc ctctacaaca 2580 2640 aagccaagaa actgacatag agttggatct gtagcggtcc tttggagagt gtgtgtggcg 2700 ggagagtgaa accttggggg aaaatgctag gagattcttt tttctttttg ttctactttt cgctcggaaa gtttttaaat cctcatttgg tgcatctgta ttccagccaa taggtgtgcc 2760 2820 agttttcatg taatctttac tggcccaact tgggagtggg gaaattgctt aaaaaaaaag 2880 aaaaagaaaa aaaaaaagat tattctaaat aaaaggaaaa aggcttacac tacctaaagc tgtgctctct gcctcctggg agagggccgc aaagccaggc accccgccaa ccactggggg 2940 3000 toctaatoca cotgotgggo atcacototo otoctoctoa gaattgggtg tttgctgaco 3060 atcaaaagca atgacttttt attctgtttg tactgaacca aaacaaacaa ctgtgtatag actgctgttt tcttttttat ttgaaatgag gcattttggt gttctttccc ctaccatacg 3120 gcctgtctgc ccttccctcc ccacattggc tccagcagag tagccgaagg tcctgccgcc 3180 geegecacca ecaccaccae tgeageaaca acageageag cageageage geetgeatag 3240 ctccactctg acctgtgaag gaatggggat gaggccagga gctagtgtct accacggcca 3300 cacagggagc agtgtgggcc cttagccccc aaggggcctg ctatgcatgt ggctttttt 3360 ttttttttaa aacacagtaa actagattag tcgtcagtgt tttaattgcc cctcttctcc 3420 tetectgeat tectetecte tettetttee tetetgteee ttetetttee eeteteaace 3480 aggagaccat catgtetete tgeetteete eteteceete caggggagte aggetgtetg 3540

tgaaagccat gagcttctct ccctctccca ctcctcctct cctactttca gatggattta	3600
ttcctttttt aaacaatgaa catcggaaat gagactgtgg ggtgtggttt ctctctctct	3660
tttttttta attttctttg ttgggttttt gagcaacctc atgtcccctt cccagggagc	3720
tttttaattt acctcttaga actcaagtgg atgggaagta gagcactatg tgtcagtatg	3780
ctttgttttc tgacacgatt acacagcgag gctttaatgc catttgggta ggtgagcttc	3840
tgcacttctg ttgtgctgaa ctgtattttc ttctctcatc tcctctttgt cttttctct	3900
tttectetec ttectgeett ettetgetgg ceteetttte tetttettta eetteettgg	3960
attatccttc caggttttca taataaattt atattttgta aaaggatttt gttgtaccag	4020
gttttgcatc ctcactgaat ctgactggct tttattttcc tctccaaaat caggtttttg	4080
ttctcaacat ctttccccat catgtctagt cactgttttg gttttggcac catcagtatc	4140
aaatgtacaa acggttettg etaaccaaca ecaggtatat etgatgttea gatgagttee	4200
aataaaaata atttttttt tttttttttc aaaaggtgtc tttttcttga gtgctggagg	4260
gettecaage aagtecagae agetetgtgt ggeeceacae tagtetaget eteatetgge	4320
caaagctgtt atctcatttg tgtaatggga gtccttaagg taaatttggg gtccaaactt	4380
ggagggcttt gggggcaaga aagttggtgt gtgagttctg aggttggaaa tgagttcagg	4440
tgtcttcttc cagggcagca tggtccagtg agcacatgta agtttgggca gtagatcctc	4500
tgagcctact ttctcttcta ctcagtgagg atgctgcttc cttggcaggt gattgtgatg	4560
tgaagettag taagteatag aegtgeaggt gtetggagag teetgaeatg eagttgtggt	4620
ttcgtttcct tttggaatct tcaaaggcag cgattttcat attgcctcac accctggcgg	4680
gggcgggggg ctctgggacc actgggggac ctgctaaatc ctcttcagtc tgagcagttc	4740
agecattgte agttttagta ttgtgtetet gtattteaet tgeagaaaga getttgette	4800
tataaaggac tttaaaaagt actccaaaga gatctagttt tggagtagag gggagatgtt	4860
ttetcaaaet tagggeagte etgagatget eaggeagtag eeettttete agtteeettt	4920
gegggtettg gteagatgat geeetetaga eeegtgetgt eeaatatgta geegetagee	4980
atgtgcaget gtcaggccct tgcaacgtgg ctggttcgag ctgtgataca ctgcaagtgt	5040
aaacacaaac cagacttcga aggcttagta tgataacaaa agaaaaggag tgtaaaatat	5100
gtcaataact tttttatata tgtgttgaaa tattttgggt attgggttaa ataaaatata	5160
ttattaaaat tcaaa	5175

<210> 91 <211> 4436 <212> DNA

<213> Homo sapien

<400> 91 ccaaggttaa	atgggcgcgt	gaggacagtt	ttctccggtc	ctggcgggtt	tgcccacctg	60
ccggccagcg	ttctgcggga	gtcaagcctg	gaaagcgtgt	gtgcggcgca	caggcgtcag	120
acaactggaa	cgcattcgaa	tggtgctatt	ctttgcccac	atagcgagca	ctttataagg	180
tcacttatcg	tcccgaatga	atggttaaat	cgtggaagcc	gcaaagaaag	ccacgcagct	240
ttgactcaat	acctagccca	gtactcagga	acccctctca	ggggtgcgcg	agcggggccg	300
gaatcaagaa	gcctcttttg	gggtgggcgg	ggaccgatct	agagctccca	ctgcggggca	360
ccgcctcttt	teetegeegg	ccgcccgcta	ggaggcgctg	gggagcttgc	agcccacctg	420
cgaggcggtc	ccgctctccc	cacccctcag	cccgcgcccg	gcggagagac	tacaactccc	480
ggagtgctct	gggaacggag	ccacgggagc	tacaggcgga	gggacccgag	ggcgggcttt	540
ccgggtgtgt	gtttccggcg	teggeggeeg	cggccgggga	cggtgtgaga	gcggtaagat	600
ggcggcggcg	gcggtggtgg	agttccagag	agcccagtct	ctactcagca	ccgaccggga	660
ggcctccatc	gacatcctcc	actccatcgt	gaagcgtgac	attcaggaaa	acgatgaaga	720
ggcagtgcaa	gtcaaagagc	agagcatcct	ggaactggga	tctctcctgg	caaagactgg	780
acaagctgca	gagettggag	gactcctgaa	gtatgtacga	cccttcttga	attccatcag	840
caaggctaaa	gcagetegee	tggtccgatc	tcttcttgat	ctgtttcttg	atatggaagc	900
agctacaggg	caggaggtcg	agctgtgttt	agagtgcatc	gaatgggcca	agtcagagaa	960
aagaactttc	ttacgccaag	ctttggaggc	aagactggtg	tctttgtact	ttgataccaa	1020
gaggtaccag	gaagcattgc	atttgggttc	tcagctgctg	cgggagttga	aaaagatgga	1080
cgacaaagct	cttttggtgg	aagtacagct	tttagaaagc	aaaacatacc	atgccctgag	1140
caacctgccg	aaagcccgag	ctgccttaac	ttctgctcga	accacagcaa	atgccatcta	1200
ctgcccccct	aaattgcagg	ccaccttgga	catgcagtcg	ggtattatcc	atgcagcaga	1260
agagaaggac	tggaaaactg	cgtactcata	cttctatgag	gcatttgagg	gttatgactc	1320
catcgacagc	cccaaggcca	tcacatctct	gaagtacatg	ttgctgtgca	aaatcatgct	1380
caacacccca	gaagatgtcc	aggcttggtg	agcgggaact	tgccttcsgt	tgcsggaggr	1440
gacagaagca	ttaaaatgcg	tggctcaggc	tagcaagaac	agatcactgg	cagattttga	1500
aaaggctctg	acagattacc	gggcagagct	ccgggatgac	ccaatcatca	gcacacactt	1560
ggccaagttg	tatgataact	tactagaaca	gaatctgatc	cgagtcattg	agcctttttc	1620
cagagtacag	attgaacaca	tatctagtct	catcaaactc	tccaaggccg	acgtggaaag	1680
gaaattatca	cagatgattc	ttgacaagaa	atttcatggg	attttggacc	agggggaggg	1740

1800 tgtcctgatt attttcgatg aacccccagt agataaaact tacgaagctg ctctggaaac aattcagaac atgagcaaag tagtggattc cctctacaac aaagccaaga aactgacata 1860 gagttggatc tgtagcggtc ctttggagag tgtgtgtggc gggagagtga aaccttgggg 1920 gaaaatgcta ggagattctt ttttcttttt gttctacttt tcgctcggaa agtttttaaa 1980 2040 tecteatttg gtgeatetgt attecageea ataggtgtge cagtttteat gtaatettta ctggcccaac ttgggagtgg ggaaattgct taaaaaaaaa gaaaaagaaa aaaaaaaaga 2100 ttattctaaa taaaaggaaa aaggettaca etacetaaag etgtgetete tgeeteetgg 2160 2220 gagagggccg caaagccagg cacccegcca accactgggg gtcctaatcc acctgctggg catcacctct cctcctcctc agaattgggt gtttgctgac catcaaaagc aatgactttt 2280 tattctgttt gtactgaacc aaaacaaaca actgtgtata gactgctgtt ttcttttta 2340 2400 tttgaaatga ggcattttgg tgttctttcc cctaccatac ggcctgtctg cccttccctc cccacattgg ctccagcaga gtagccgaag gtcctgccgc cgccgccacc accaccacca 2460 2520 ctgcagcaac aacagcagca gcagcagcag cgcctgcata gctccactct gacctgtgaa 2580 ggaatgggga tgaggccagg agctagtgtc taccacggcc acacagggag cagtgtgggc ccttagcccc caaggggcct gctatgcatg tggctttttt tttttttta aaacacagta 2640 2700 aactagatta gtegteagtg ttttaattge ceetettete eteteetgea tteeteteet 2760 ctcttctttc ctctctgtcc cttctctttc ccctctcaac caggagacca tcatgtctct etgeetteet eeteteeet eeagggaagt eaggetgtet gtgaaageea tgagettete 2820 2880 tecetetece acteetecte tectaettte agatggattt atteetttt taaacaatga acatcggaaa tgagactgtg gggtgtggtt tctctctct tttttttt aattttcttt 2940 gttgggtttt tgagcaacct catgtcccct tcccagggag ctttttaatt tacctcttag 3000 3060 aactcaagtg gatgggaagt agagcactat gtgtcagtat gctttgtttt ctgacacgat 3120 tacacagcga ggctttaatg ccatttgggt aggtgagctt ctgcacttct gttgtgctga actgtatttt cttctctcat ctcctctttg tctttttctc ttttcctctc cttcctgcct 3180 tettetgetg geeteetttt etetttettt acetteettg gattateett eeaggtttte 3240 ataataaatt tatattttgt aaaaggattt tgttgtacca ggttttgcat cctcactgaa 3300 tctgactggc ttttattttc ctctccaaaa tcaggttttt gttctcaaca tctttcccca 3360 3420 tcatgtctag tcactgtttt ggttttggca ccatcagtat caaatgtaca aacggttctt gctaaccaac accaggtata totgatgttc agatgagttc caataaaaat aattttttt 3480 tttttttttt caaaaggtgt ctttttcttg agtgctggag ggcttccaag caagtccaga 3540 3600 cagetetgtg tggccccaca etagtetage teteatetgg ccaaagetgt tateteattt

gtgtaatggg	agtccttaag	gtaaatttgg	ggtccaaact	tggagggctt	tgggggcaag	3660
aaagttggtg	tgtgagttct	gaggttggaa	atgagttcag	gtgtcttctt	ccagggcagc	3720
atggtccagt	gagcacatgt	aagtttgggc	agtagatcct	ctgagcctac	tttctcttct	3780
actcagtgag	gatgctgctt	ccttggcagg	tgattgtgat	gtgaagctta	gtaagtcata	3840
gacgtgcagg	tgtctggaga	gtcctgacat	gcagttgtgg	tttcgtttcc	ttttggaatc	3900
ttcaaaggca	gcgattttca	tattgcctca	caccctggcg	ggggcggggg	gctctgggac	3960
cactggggga	cctgctaaat	cctcttcagt	ctgagcagtt	cagccattgt	cagttttagt	4020
attgtgtctc	tgtatttcac	ttgcagaaag	agctttgctt	ctataaagga	ctttaaaaag	4080
tactccaaag	agatctagtt	ttggagtaga	ggggagatgt	tttctcaaac	ttagggcagt	4140
cctgagatgc	tcaggcagta	gcccttttct	cagttccctt	tgcgggtctt	ggtcagatga	4200
tgccctctag	acccgtgctg	tccaatatgt	agccgctagc	catgtgcagc	tgtcaggccc	4260
ttgcaacgtg	gctggttcga	gctgtgatac	actgcaagtg	taaacacaaa	ccagacttcg	4320
aaggcttagt	atgataacaa	aagaaaagga	gtgtaaaata	tgtcaataac	tttttatat	4380
atgtgttgaa	atattttggg	tattgggtta	aataaaatat	attattaaaa	ttcaaa	4436

<210> 92 <211> 5296 <212> DNA <213> Homo sapien

<400> 92 ccaaggttaa	atgggcgcgt	gaggacagtt	ttctccggtc	ctggcgggtt	tgcccacctg	60
ccggccagcg	ttctgcggga	gtcaagcctg	gaaagcgtgt	gtgcggcgca	caggcgtcag	120
acaactggaa	cgcattcgaa	tggtgctatt	ctttgcccac	atagcgagca	ctttataagg	180
tcacttatcg	tcccgaatga	atggttaaat	cgtggaagcc	gcaaagaaag	ccacgcagct	240
ttgactcaat	acctagccca	gtactcagga	acccctctca	ggggtgcgcg	agcggggccg	300
gaatcaagaa	gcctctttg	gggtgggcgg	ggaccgatct	agagetecca	ctgcggggca	360
ccgcctcttt	tectegeegg	ccgcccgcta	ggaggcgctg	gggagcttgc	agcccacctg	420
cgaggcggt	: ccgctctccc	cacccctcag	cccgcgcccg	gcggagagac	tacaactccc	480
ggagtgctct	gggaacggag	ccacgggagc	tacaggcgga	gggacccgag	ggcgggcttt	540
ccgggtgtgt	gtttccggcg	tcggcggccg	cggccgggga	cggtgtgaga	gcggtaagat	600
ggcggcggcg	geggtggtgg	agttccagag	agcccagtct	ctactcagca	ccgaccggga	660
ggcctccato	gacatcctcc	actccatcgt	gaagcgtgac	attcaggaaa	acgatgaaga	720
ggcagtgcaa	gtcaaagagc	agagcatcct	ggaactggga	tctctcctgg	caaagactgg	780

acaagctgca	gagcttggag	gactcctgaa	gtatgtacga	cccttcttga	attccatcag	840
caaggctaaa	gcagctcgcc	tggtccgatc	tcttcttgat	ctgtttcttg	atatggaagc	900
agctacaggg	caggaggtcg	agctgtgttt	agagtgcatc	gaatgggcca	agtcagagaa	960
aagaactttc	ttacgccaag	ctttggaggc	aagactggtg	tctttgtact	ttgataccaa	1020
gaggtaccag	gaagcattgc	atttgggttc	tcagctgctg	cgggagttga	aaaagatgga	1080
cgacaaagct	cttttggtgg	aagtacagct	tttagaaagc	aaaacatacc	atgccctgag	1140
caacctgccg	aaagcccgag	ctgccttaac	ttctgctcga	accacagcaa	atgccatcta	1200
ctgccccct	aaattgcagg	ccaccttgga	catgcagtcg	ggtattatcc	atgcagcaga	1260
agagaaggac	tggaaaactg	cgtactcata	cttctatgag	gcatttgagg	gttatgactc	1320
catcgacagc	cccaaggcca	tcacatctct	gaagtacatg	ttgctgtgca	aaatcatgct	1380
caacacccca	gaagatgtcc	aggetttggt	gagcgggaag	cttgcacttc	ggtatgcagg	1440
gaggcagaca	gaagcattaa	aatgcgtggc	tcaggctagc	aagaacagat	cactggcaga	1500
ttttgaaaag	gctctgacag	attaccgggc	agagctccgg	gatgacccaa	tcatcagcac	1560
acacttggcc	aagttgtatg	ataacttact	agaacagaat	ctgatccgag	tcattgagcc	1620
tttttccaga	gtacaggtga	gaaccctctg	gggactccat	ttctggccag	gcattctcac	1680
tgtagccacc	tcccttccac	acctgtccag	aatgggaact	cacttctagg	ggtgtgcctg	1740
gtgggcaaga	ggccaccaag	agcttgggcc	tctgttgata	aaatgaacaa	aaatcgagga	1800
gagagatgct	gtgggtagag	gcatgtgggt	tgcccctgca	tgtgttctga	gcagtttcct	1860
cctcgctttt	agtcactgca	tgtgttgtac	ctgttttctg	tattgggtgt	gtgggataag	1920
agtctgttta	ttgtgtgtag	cagtgaaggg	caggcagatg	ggcagagaac	aagagactta	1980
agcacggcca	aggagggtct	tacattagaa	ttttgagaaa	tacagcagtt	ctccccctgt	2040
tecetecett	ctcttattgg	aggcaaaagt	aaaactttca	gtgttggtgt	ctctctgcct	2100
ttccttttag	attgaacaca	tatctagtct	catcaaactc	tccaaggtaa	ggagtcttaa	2160
ggccatctgc	agggaggaat	gggacggggt	ggcgaggagg	ggtggcacat	gcacctgatt	2220
ggcctcattg	gaaagctccc	cagcttctca	gtggggaatg	ggcagtgtgg	actagagtag	2280
gagttgcatt	gttgctattt	tgttttcagt	ccatttggcc	taagacccct	ccaacaaagc	2340
tactgtgtca	gggtgatctc	tgactagtgg	atactggtcc	ctttaatcat	gtgctttgat	2400
tttaggccga	cgtggaaagg	aaattatcac	agatgattct	tgacaagaaa	tttcatggga	2460
ttttggacca	gggggagggt	gtcctgatta	ttttcgatga	acccccagta	gataaaactt	2520
acgaagctgc	tctggaaaca	attcagaaca	tgagcaaagt	agtggattcc	ctctacaaca	2580

aagccaagaa	actgacatag	gtgagtgctg	gcttcaggac	cccagggctg	ggcagctctg	2640
tcttctgcgt	gtcgagactg	aaaacctcct	cctggtgtcc	tcatggcttc	ctgattgaca	2700
ctgctctgtc	ttctcttgca	gagttggatc	tgtagcggtc	ctttggagag	tgtgtgtggc	2760
gggagagtga	aaccttgggg	gaaaatgcta	ggagattctt	tttctttt	gttctacttt	2820
tcgctcggaa	agtttttaaa	tcctcatttg	gtgcatctgt	attccagcca	ataggtgtgc	2880
cagttttcat	gtaatcttta	ctggcccaac	ttgggagtgg	ggaaattgct	taaaaaaaaa	2940
gaaaaagaaa	aaaaaaaga	ttattctaaa	taaaaggaaa	aaggcttaca	ctacctaaag	3000
ctgtgctctc	tgcctcctgg	gagagggccg	caaagccagg	caccccgcca	accactgggg	3060
gtcctaatcc	acctgctggg	catcacctct	cctcctcc	agaattgggt	gtttgctgac	3120
catcaaaagc	aatgactttt	tattctgttt	gtactgaacc	aaaacaaaca	actgtgtata	3180
gactgctgtt	ttctttttta	tttgaaatga	ggcattttgg	tgttctttcc	cctaccatac	3240
ggcctgtctg	cccttccctc	cccacattgg	ctccagcaga	gtagccgaag	gtcctgccgc	3300
cgccgccacc	accaccacca	ctgcagcaac	aacagcagca	gcagcagcag	cgcctgcata	3360
gctccactct	gacctgtgaa	ggaatgggga	tgaggccagg	agctagtgtc	taccacggcc	3420
acacagggag	cagtgtgggc	ccttagcccc	caaggggcct	gctatgcatg	tggctttttt	3480
ttttttta	aaacacagta	aactagatta	gtcgtcagtg	ttttaattgc	ccctcttctc	3540
ctctcctgca	ttcctctcct	ctcttcttc	ctctctgtcc	cttctctttc	ccctctcaac	3600
caggagacca	tcatgtctct	ctgccttcct	cctctcccct	ccaggggagt	caggctgtct	3660
gtgaaagcca	tgagcttctc	tecetetece	actcctcctc	tcctactttc	agatggattt	3720
attccttttt	taaacaatga	acatcggaaa	tgagactgtg	gggtgtggtt	tetetetete	3780
ttttttt	aattttcttt	gttgggtttt	tgagcaacct	catgtcccct	tcccagggag	3840
ctttttaatt	tacctcttag	aactcaagtg	gatgggaagt	agagcactat	gtgtcagtat	3900
gctttgtttt	ctgacacgat	tacacagcga	ggctttaatg	ccatttgggt	aggtgagctt	3960
ctgcacttct	gttgtgctga	actgtatttt	cttctctcat	ctcctctttg	tetttttete	4020
ttttcctctc	cttcctgcct	tettetgetg	gcctcctttt	ctctttcttt	accttccttg	4080
gattatcctt	ccaggttttc	ataataaatt	tatattttgt	aaaaggattt	tgttgtacca	4140
ggttttgcat	cctcactgaa	tctgactggc	ttttattttc	ctctccaaaa	tcaggttttt	4200
gttctcaaca	tctttcccca	tcatgtctag	tcactgtttt	ggttttggca	ccatcagtat	4260
caaatgtaca	aacggttctt	gctaaccaac	accaggtata	tctgatgttc	agatgagttc	4320
caataaaaat	aattttttt	tttttttt	caaaaggtgt	ctttttcttg	agtgctggag	4380
ggcttccaaq	caagtccaga	cagetetata	tggccccaca	ctaqtctaqc	teteatetgg	4440

WO 2004/052290

102

PCT/US2003/038829

720

ccaaagctgt tatctcattt gtgtaatggg agtccttaag gtaaatttgg ggtccaaact	4500
tggagggctt tgggggcaag aaagttggtg tgtgagttct gaggttggaa atgagttcag	4560
gtgtcttctt ccagggcagc atggtccagt gagcacatgt aagtttgggc agtagatcct	4620
ctgagcctac tttctcttct actcagtgag gatgctgctt ccttggcagg tgattgtgat	4680
gtgaagctta gtaagtcata gacgtgcagg tgtctggaga gtcctgacat gcagttgtgg	4740
tttcgtttcc ttttggaatc ttcaaaggca gcgattttca tattgcctca caccctggcg	4800
ggggcggggg gctctgggac cactggggga cctgctaaat cctcttcagt ctgagcagtt	4860
cagccattgt cagttttagt attgtgtctc tgtatttcac ttgcagaaag agctttgctt	4920
ctataaagga ctttaaaaag tactccaaag agatctagtt ttggagtaga ggggagatgt	4980
tttctcaaac ttagggcagt cctgagatgc tcaggcagta gcccttttct cagttccctt	5040
tgcgggtctt ggtcagatga tgccctctag acccgtgctg tccaatatgt agccgctagc	5100
catgtgcage tgtcaggcce ttgcaacgtg gctggttcga gctgtgatac actgcaagtg	5160
taaacacaaa ccagacttcg aaggcttagt atgataacaa aagaaaagga gtgtaaaata	5220
tgtcaataac ttttttatat atgtgttgaa atattttggg tattgggtta aataaaatat	5280
attattaaaa ttcaaa	5296
<210> 93 <211> 4552 <212> DNA <213> Homo sapien	
<400> 93 ccaaggttaa atgggcgcgt gaggacagtt ttctccggtc ctggcgggtt tgcccacctg	60
ccggccagcg ttctgcggga gtcaagcctg gaaagcgtgt gtgcggcgca caggcgtcag	120
acaactggaa cgcattcgaa tggtgctatt ctttgcccac atagcgagca ctttataagg	180
tcacttatcg tcccgaatga atggttaaat cgtggaagcc gcaaagaaag ccacgcagc	240
ttgactcaat acctagecca gtactcagga acceetetea ggggtgegeg ageggggee	g 300
gaatcaagaa geetettttg gggtgggegg ggaeegatet agageteeca etgegggge	a 360
ccgcctcttt tcctcgccgg ccgcccgcta ggaggcgctg gggagcttgc agcccacct	g 420
cgaggcggtc ccgctctccc cacccctcag cccgcgcccg gcggagagac tacaactcc	c 480
ggagtgetet gggaacggag ceacgggage tacaggegga gggaeeegag ggegggett	t 540
ccgggtgtgt gtttccggcg tcggcggccg cggccgggga cggtgtgaga gcggtaaga	t 600
ggcggcggcg gcggtggtgg agttccagag agcccagtct ctactcagca ccgaccggg	a 660

ggcctccatc gacatcctcc actccatcgt gaagegtgac attcaggaaa acgatgaaga

103

ggcagtgcaa	gtcaaagagc	agagcatcct	ggaactggga	tctctcctgg	caaagactgg	780
acaagctgca	gagcttggag	gactcctgaa	gtatgtacga	cccttcttga	attccatcag	840
caaggctaaa	gcagctcgcc	tggtccgatc	tcttcttgat	ctgtttcttg	atatggaagc	900
agctacaggg	caggagggca	tttgatactt	tgggtctgtt	ccatgctttg	ctttgtaagt	960
ggagattgtc	agtggtccct	ggaatcctca	ttacatcagg	gtcacaaact	gattcttgtc	1020
tttgaggtcg	agctgtgttt	agagtgcatc	gaatgggcca	agtcagagaa	aagaactttc	1080
ttacgccaag	ctttggaggc	aagactggtg	tctttgtact	ttgataccaa	gaggtaccag	1140
gaagcattgc	atttgggttc	tcagctgctg	cgggagttga	aaaagatgga	cgacaaagct	1200
cttttggtgg	aagtacagct	tttagaaagc	aaaacatacc	atgccctgag	caacctgccg	1260
aaagcccgag	ctgccttaac	ttctgctcga	accacagcaa	atgccatcta	ctgccccct	1320
aaattgcagg	ccaccttgga	catgcagtcg	ggtattatcc	atgcagcaga	agagaaggac	1380
tggaaaactg	cgtactcata	cttctatgag	gcatttgagg	gttatgactc	catcgacagc	1440
cccaaggcca	tcacatctct	gaagtacatg	ttgctgtgca	aaatcatgct	caacacccca	1500
gaagatgtcc	aggctttggt	gagcgggaag	cttgcacttc	ggtatgcagg	gaggcagaca	1560
gaagcattaa	aatgcgtggc	tcaggctagc	aagaacagat	cactggcaga	ttttgaaaag	1620
gctctgacag	attaccgggc	agagctccgg	gatgacccaa	tcatcagcac	acacttggcc	1680
aagttgtatg	ataacttact	agaacagaat	ctgatccgag	tcattgagcc	tttttccaga	1740
gtacagattg	aacacatatc	tagtctcatc	aaactctcca	aggccgacgt	ggaaaggaaa	1800
ttatcacaga	tgattcttga	caagaaattt	catgggattt	tggaccaggg	ggagggtgtc	1860
ctgattattt	tcgatgaacc	cccagtagat	aaaacttacg	aagctgctct	ggaaacaatt	1920
cagaacatga	gcaaagtagt	ggattccctc	tacaacaaag	ccaagaaact	gacatagagt	1980
tggatctgta	gcggtccttt	ggagagtgtg	tgtggcggga	gagtgaaacc	ttgggggaaa	2040
atgctaggag	attcttttt	ctttttgttc	tacttttcgc	tcggaaagtt	tttaaatcct	2100
catttggtgc	atctgtattc	cagccaatag	gtgtgccagt	tttcatgtaa	tctttactgg	2160
cccaacttgg	gagtggggaa	attgcttaaa	aaaaaagaaa	aagaaaaaa	aaaagattat	2220
tctaaataaa	aggaaaaagg	cttacactac	ctaaagctgt	gctctctgcc	tcctgggaga	2280
gggccgcaaa	gccaggcacc	ccgccaacca	ctgggggtcc	taatccacct	gctgggcatc	2340
acctctcctc	ctcctcagaa	ttgggtgttt	gctgaccatc	aaaagcaatg	actttttatt	2400
ctgtttgtac	tgaaccaaaa	caaacaactg	tgtatagact	gctgttttct	tttttatttg	2460
aaatqaggca	ttttggtgtt	ctttccccta	ccatacggcc	tatctaccet	tccctcccca	2520

cattggctcc	agcagagtag	ccgaaggtcc	tgccgccgcc	gccaccacca	ccaccactgc	2580
agcaacaaca	gcagcagcag	cagcagcgcc	tgcatagctc	cactctgacc	tgtgaaggaa	2640
tggggatgag	gccaggagct	agtgtctacc	acggccacac	agggagcagt	gtgggccctt	2700
agcccccaag	gggcctgcta	tgcatgtggc	ttttttt	ttttaaaac	acagtaaact	2760
agattagtcg	tcagtgtttt	aattgcccct	cttctcctct	cctgcattcc	teteetetet	2820
tctttcctct	ctgtcccttc	tettteeet	ctcaaccagg	agaccatcat	gtctctctgc	2880
cttcctcctc	tcccctccag	gggagtcagg	ctgtctgtga	aagccatgag	cttctctccc	2940
tctcccactc	ctcctctcct	actttcagat	ggatttattc	cttttttaaa	caatgaacat	3000
cggaaatgag	actgtggggt	gtggtttctc	tctctcttt	ttttttaatt	ttatttgttg	3060
ggtttttgag	caacctcatg	teceettece	agggagcttt	ttaatttacc	tcttagaact	3120
caagtggatg	ggaagtagag	cactatgtgt	cagtatgctt	tgttttctga	cacgattaca	3180
cagcgaggct	ttaatgccat	ttgggtaggt	gagcttctgc	acttctgttg	tgctgaactg	3240
tattttcttc	tctcatctcc	tetttgtett	tttctcttt	cctctccttc	ctgccttctt	3300
ctgctggcct	ccttttctct	ttctttacct	tccttggatt	atccttccag	gttttcataa	3360
taaatttata	ttttgtaaaa	ggattttgtt	gtaccaggtt	ttgcatcctc	actgaatctg	3420
actggctttt	attttcctct	ccaaaatcag	gtttttgttc	tcaacatctt	tccccatcat	3480
gtctagtcac	tgttttggtt	ttggcaccat	cagtatcaaa	tgtacaaacg	gttcttgcta	3540
accaacacca	ggtatatctg	atgttcagat	gagttccaat	aaaaataatt	tttttttt	3600
ttttttcaaa	aggtgtcttt	ttcttgagtg	ctggagggct	tccaagcaag	tccagacagc	3660
tctgtgtggc	cccacactag	tctagctctc	atctggccaa	agctgttatc	tcatttgtgt	3720
aatgggagtc	cttaaggtaa	atttggggtc	caaacttgga	gggctttggg	ggcaagaaag	3780
ttggtgtgtg	agttctgagg	ttggaaatga	gttcaggtgt	cttcttccag	ggcagcatgg	3840
tccagtgagc	acatgtaagt	ttgggcagta	gatcctctga	gcctactttc	tcttctactc	3900
agtgaggatg	ctgcttcctt	ggcaggtgat	tgtgatgtga	agcttagtaa	gtcatagacg	3960
tgcaggtgtc	tggagagtcc	tgacatgcag	ttgtggtttc	gtttcctttt	ggaatcttca	4020
aaggcagcga	ttttcatatt	gcctcacacc	ctggcggggg	cggggggctc	tgggaccact	4080
gggggacctg	ctaaatcctc	ttcagtctga	gcagttcagc	cattgtcagt	tttagtattg	4140
tgtctctgta	tttcacttgc	agaaagagct	ttgcttctat	aaaggacttt	aaaaagtact	4200
ccaaagagat	ctagttttgg	agtagagggg	agatgttttc	tcaaacttag	ggcagtcctg	4260
agatgctcag	gcagtagccc	ttttctcagt	tccctttgcg	ggtcttggtc	agatgatgcc	4320
ctctagaccc	gtgctgtcca	atatgtagcc	gctagccatg	tgcagctgtc	aggcccttgc	4380

aacgtggctg gttcgagctg tgatacactg caagtgtaaa cacaaaccag acttcgaagg 4440 cttagtatga taacaaaaga aaaggagtgt aaaatatgtc aataactttt ttatatatgt 4500 4552 gttgaaatat tttgggtatt gggttaaata aaatatatta ttaaaattca aa <210> 94 <211> 3877 <212> DNA <213> Homo sapien <400> 94 60 aactctagaa tttgtctttt ggtaaatatg tttgagtttg taatggatct tatgagggtg 120 aaatttccct cagtcttcat tttttggtca gaattttaag agggtttgca ttttcctctc 180 atcctggaac tgggatctct cctggcaaag actggacaag ctgcagagct tggaggactc 240 ctgaagtatg tacgaccett cttgaattec atcagcaagg ctaaagcage tegectggte 300 cgatctcttc ttgatctgtt tcttgatatg gaagcagcta cagggcagga ggtcgagctg 360 tgtttagagt gcatcgaatg ggccaagtca gagaaaagaa ctttcttacg ccaagctttg 420 gaggcaagac tggtgtcttt gtactttgat accaagaggt accaggaagc attgcatttg 480 540 ggttctcagc tgctgcggga gttgaaaaag atggacgaca aagctctttt ggtggaagta cagettttaq aaagcaaaac ataccatqcc ctgagcaacc tgccgaaagc ccgagctgcc 600 660 ttaacttctg ctcgaaccac agcaaatgcc atctactgcc cccctaaatt gcaggccacc ttggacatgc agtcgggtat tatccatgca gcagaagaga aggactggaa aactgcgtac 720 780 tcatacttct atgaggcatt tgagggttat gactccatcg acagccccaa ggccatcaca 840 tctctgaagt acatgttgct gtgcaaaatc atgctcaaca ccccagaaga tgtccaggct ttggtgagcg ggaagcttgc acttcggtat gcagggaggc agacagaagc attaaaatgc 900 960 gtggctcagg ctagcaagaa cagatcactg gcagattttg aaaaggctct gacagattac 1020 cgggcagagc tccgggatga cccaatcatc agcacacact tggccaagtt gtatgataac ttactagaac agaatctgat ccgagtcatt gagccttttt ccagagtaca gattgaacac 1080 atatctagtc tcatcaaact ctccaaggcc gacgtggaaa ggaaattatc acagatgatt 1140 cttgacaaga aatttcatgg gattttggac cagggggagg gtgtcctgat tattttcgat 1200 gaacccccag tagataaaac ttacgaagct gctctggaaa caattcagaa catgagcaaa 1260 gtagtggatt ccctctacaa caaagccaag aaactgacat agagttggat ctgtagcggt 1320 cetttggaga gtgtgtgtgg egggagagtg aaacettggg ggaaaatget aggagattet 1380 tttttettt tgttetaett ttegetegga aagtttttaa ateeteattt ggtgeatetg 1440

tattccagcc	aataggtgtg	ccagttttca	tgtaatcttt	actggcccaa	cttgggagtg	1500
gggaaattgc	ttaaaaaaaa	agaaaaagaa	aaaaaaaag	attattctaa	ataaaaggaa	1560
aaaggcttac	actacctaaa	gctgtgctct	ctgcctcctg	ggagagggcc	gcaaagccag	1620
gcaccccgcc	aaccactggg	ggtcctaatc	cacctgctgg	gcatcacctc	tcctcctcct	1680
cagaattggg	tgtttgctga	ccatcaaaag	caatgacttt	ttattctgtt	tgtactgaac	1740
caaaacaaac	aactgtgtat	agactgctgt	tttcttttt	atttgaaatg	aggcattttg	1800
gtgttctttc	ccctaccata	cggcctgtct	gcccttccct	ccccacattg	gctccagcag	1860
agtagccgaa	ggtcctgccg	ccgccgccac	caccaccacc	actgcagcaa	caacagcagc	1920
agcagcagca	gcgcctgcat	agctccactc	tgacctgtga	aggaatgggg	atgaggccag	1980
gagctagtgt	ctaccacggc	cacacaggga	gcagtgtggg	cccttagccc	ccaaggggcc	2040
tgctatgcat	gtggcttttt	tttttttt	aaaacacagt	aaactagatt	agtcgtcagt	2100
gttttaattg	cccctcttct	cctctcctgc	attcctctcc	tetettettt	cctctctgtc	2160
ccttctcttt	cccctctcaa	ccaggagacc	atcatgtctc	tctgccttcc	tcctctcccc	2220
tccaggggag	tcaggctgtc	tgtgaaagcc	atgagcttct	ctccctctcc	cactcctcct	2280
ctcctacttt	cagatggatt	tattcctttt	ttaaacaatg	aacatcggaa	atgagactgt	2340
ggggtgtggt	ttctctctct	cttttttt	taattttctt	tgttgggttt	ttgagcaacc	2400
tcatgtcccc	ttcccaggga	gctttttaat	ttacctctta	gaactcaagt	ggatgggaag	2460
tagagcacta	tgtgtcagta	tgctttgttt	tctgacacga	ttacacagcg	aggctttaat	2520
gccatttggg	taggtgagct	tctgcacttc	tgttgtgctg	aactgtattt	tcttctctca	2580
tctcctctt	gtctttttct	cttttcctct	ccttcctgcc	ttettetget	ggcctccttt	2640
tctctttctt	taccttcctt	ggattatcct	tccaggtttt	cataataaat	ttatattttg	2700
taaaaggatt	ttgttgtacc	aggttttgca	tcctcactga	atctgactgg	cttttatttt	2760
cctctccaaa	atcaggtttt	tgttctcaac	atctttcccc	atcatgtcta	gtcactgttt	2820
tggttttggc	accatcagta	tcaaatgtac	aaacggttct	tgctaaccaa	caccaggtat	2880
atctgatgtt	cagatgagtt	ccaataaaaa	taatttttt	tttttttt	tcaaaaggtg	2940
tettttett	gagtgctgga	gggcttccaa	gcaagtccag	acagetetgt	gtggccccac	3000
actagtctag	ctctcatctg	gccaaagctg	ttatctcatt	tgtgtaatgg	gagtccttaa	3060
ggtaaatttg	gggtccaaac	ttggagggct	ttgggggcaa	gaaagttggt	gtgtgagttc	3120
tgaggttgga	aatgagttca	ggtgtcttct	tccagggcag	catggtccag	tgagcacatg	3180
taagtttggg	cagtagatcc	tctgagccta	ctttctcttc	tactcagtga	ggatgctgct	3240

		107			
tccttggcag gtgattgtga	tgtgaagctt	agtaagtcat	agacgtgcag	gtgtctggag	3300
agtcctgaca tgcagttgtg	gtttcgtttc	cttttggaat	cttcaaaggc	agcgattttc	3360
atattgcctc acaccctggc	aaaaacaaaa	ggctctggga	ccactggggg	acctgctaaa	3420
tectetteag tetgageagt	tcagccattg	tcagttttag	tattgtgtct	ctgtatttca	3480
cttgcagaaa gagctttgct	tctataaagg	actttaaaaa	gtactccaaa	gagatctagt	3540
tttggagtag aggggagatg	ttttctcaaa	cttagggcag	tcctgagatg	ctcaggcagt	3600
agcccttttc tcagttccct	ttgcgggtct	tggtcagatg	atgccctcta	gacccgtgct	3660
gtccaatatg tagccgctag	ccatgtgcag	ctgtcaggcc	cttgcaacgt	ggctggttcg	3720
agctgtgata cactgcaagt	gtaaacacaa	accagacttc	gaaggcttag	tatgataaca	3780
aaagaaaagg agtgtaaaat	atgtcaataa	cttttttata	tatgtgttga	aatattttgg	3840
gtattgggtt aaataaaata	tattattaaa	attcaaa			3877
<210> 95 <211> 4077					
<212> DNA <213> Homo sapien					
<212> DNA	ccctatgacc	tgatcatatt	tattggttgt	gaggaagtaa	60
<212> DNA <213> Homo sapien <400> 95					60 120
<212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac	cacagcatat	ttcatgttct	agaaaactgg	tttttgagat	
<212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac ttttgtgaag gtggcaggga	cacagcatat	ttcatgttct	agaaaactgg atgaagcaga	tttttgagat gacatgagct	120
<212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac ttttgtgaag gtggcaggga tatgaatact ttgctgttta	cacagcatat tctttcatta atccagtggc	ttcatgttct agatggataa tgagtaggga	agaaaactgg atgaagcaga acagaatgca	tttttgagat gacatgagct aatttggtat	120 180
<212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac ttttgtgaag gtggcaggga tatgaatact ttgctgttta tttcctgcaa cttcatagta	cacagcatat tctttcatta atccagtggc ctattctgct	ttcatgttct agatggataa tgagtaggga atttgctagg	agaaaactgg atgaagcaga acagaatgca aatgctttaa	tttttgagat gacatgagct aatttggtat actcctagta	120 180 240
<pre><212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac ttttgtgaag gtggcaggga tatgaatact ttgctgttta tttcctgcaa cttcatagta atgatgttaa cttattttg</pre>	cacagcatat tettteatta atecagtgge ctattetget cagtgatgta	ttcatgttct agatggataa tgagtaggga atttgctagg agtaccgatt	agaaaactgg atgaagcaga acagaatgca aatgctttaa tttatgacgt	tttttgagat gacatgagct aatttggtat actcctagta tgggtcagtt	120 180 240 300
<pre><212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac ttttgtgaag gtggcaggga tatgaatact ttgctgttta tttcctgcaa cttcatagta atgatgttaa cttattttg agtttcactt agactgattc</pre>	cacagcatat tctttcatta atccagtggc ctattctgct cagtgatgta tcaaatgttg	ttcatgttct agatggataa tgagtaggga atttgctagg agtaccgatt atgtttactc	agaaaactgg atgaagcaga acagaatgca aatgctttaa tttatgacgt ctcttttga	tttttgagat gacatgagct aatttggtat actcctagta tgggtcagtt attgccttc	120 180 240 300 360
<pre><212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac ttttgtgaag gtggcaggga tatgaatact ttgctgttta tttcctgcaa cttcatagta atgatgttaa cttattttg agtttcactt agactgattc tcttaagtgg gtattttgtc</pre>	cacagcatat tctttcatta atccagtggc ctattctgct cagtgatgta tcaaatgttg ctgaagtatg	ttcatgttct agatggataa tgagtaggga atttgctagg agtaccgatt atgtttactc tacgaccctt	agaaaactgg atgaagcaga acagaatgca aatgctttaa tttatgacgt ctctttttga cttgaattcc	tttttgagat gacatgagct aatttggtat actcctagta tgggtcagtt attgcctttc atcagcaagg	120 180 240 300 360 420
<pre><212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac ttttgtgaag gtggcaggga tatgaatact ttgctgttta tttcctgcaa cttcatagta atgatgttaa cttattttg agtttcactt agactgattc tcttaagtgg gtatttgtc ctacagagct tggaggactc</pre>	cacagcatat tettecatta atecagtgge ctattetget cagtgatgta teaaatgttg ctgaagtatg cgatetette	ttcatgttct agatggataa tgagtaggga atttgctagg agtaccgatt atgtttactc tacgaccctt ttgatctgtt	agaaaactgg atgaagcaga acagaatgca aatgctttaa tttatgacgt ctctttttga cttgaattcc tcttgatatg	tttttgagat gacatgagct aatttggtat actcctagta tgggtcagtt attgcctttc atcagcaagg gaagcagcta	120 180 240 300 360 420 480
<pre><212> DNA <213> Homo sapien <400> 95 ggaagttaga aaaaaattac ttttgtgaag gtggcaggga tatgaatact ttgctgttta tttcctgcaa cttcatagta atgatgttaa cttattttg agtttcactt agactgattc tcttaagtgg gtattttgtc ctacagagct tggaggactc ctaaagcagc tcgcctggtc</pre>	cacagcatat tettteatta atecagtgge ctattetget cagtgatgta teaaatgttg ctgaagtatg cgatetette tgtttagagt	ttcatgttct agatggataa tgagtaggga atttgctagg agtaccgatt atgtttactc tacgaccctt ttgatctgtt gcatcgaatg	agaaaactgg atgaagcaga acagaatgca aatgctttaa tttatgacgt ctctttttga cttgaattcc tcttgatatg ggccaagtca	tttttgagat gacatgagct aatttggtat actcctagta tgggtcagtt attgcctttc atcagcaagg gaagcagcta gagaaaagaa	120 180 240 300 360 420 480 540

aagctctttt ggtggaagta cagcttttag aaagcaaaac ataccatgcc ctgagcaacc

tgccgaaagc ccgagctgcc ttaacttctg ctcgaaccac agcaaatgcc atctactgcc

cccctaaatt gcaggccacc ttggacatgc agtcgggtat tatccatgca gcagaagaga

aggactggaa aactgcgtac tcatacttct atgaggcatt tgagggttat gactccatcg

780

840

900

960

acagccccaa	ggccatcaca	tctctgaagt	acatgttgct	gtgcaaaatc	atgctcaaca	1020
ccccagaaga	tgtccaggct	ttggtgagcg	ggaagcttgc	acttcggtat	gcagggaggc	1080
agacagaagc	attaaaatgc	gtggctcagg	ctagcaagaa	cagatcactg	gcagattttg.	1140
aaaaggctct	gacagattac	cgggcagagc	tccgggatga	cccaatcatc	agcacacact	1200
tggccaagtt	gtatgataac	ttactagaac	agaatctgat	ccgagtcatt	gagccttttt	1260
ccagagtaca	gattgaacac	atatctagtc	tcatcaaact	ctccaaggcc	gacgtggaaa	1320
ggaaattatc	acagatgatt	cttgacaaga	aatttcatgg	gattttggac	cagggggagg	1380
gtgtcctgat	tattttcgat	gaacccccag	tagataaaac	ttacgaagct	gctctggaaa	1440
caattcagaa	catgagcaaa	gtagtggatt	ccctctacaa	caaagccaag	aaactgacat	1500
agagttggat	ctgtagcggt	cctttggaga	gtgtgtgtgg	cgggagagtg	aaaccttggg	1560
ggaaaatgct	aggagattct	tttttcttt	tgttctactt	ttcgctcgga	aagtttttaa	1620
atcctcattt	ggtgcatctg	tattccagcc	aataggtgtg	ccagttttca	tgtaatcttt	1680
actggcccaa	cttgggagtg	gggaaattgc	ttaaaaaaaa	agaaaaagaa	aaaaaaaag	1740
attattctaa	ataaaaggaa	aaaggcttac	actacctaaa	gctgtgctct	ctgcctcctg	1800
ggagagggcc	gcaaagccag	gcaccccgcc	aaccactggg	ggtcctaatc	cacctgctgg	1860
gcatcacctc	tcctcct	cagaattggg	tgtttgctga	ccatcaaaag	caatgacttt	1920
ttattctgtt	tgtactgaac	caaaacaaac	aactgtgtat	agactgctgt	tttcttttt	1980
atttgaaatg	aggcattttg	gtgttctttc	ccctaccata	cggcctgtct	gcccttccct	2040
ccccacattg	gctccagcag	agtagccgaa	ggtcctgccg	ccgccgccac	caccaccacc	2100
actgcagcaa	caacagcagc	agcagcagca	gcgcctgcat	agetecaete	tgacctgtga	2160
aggaatgggg	atgaggccag	gagctagtgt	ctaccacggc	cacacaggga	gcagtgtggg	2220
cccttagccc	ccaaggggcc	tgctatgcat	gtggcttttt	tttttttt	aaaacacagt	2280
aaactagatt	agtcgtcagt	gttttaattg	cccctcttct	catatactga	attcctctcc	2340
tctcttcttt	cctctctgtc	ccttctcttt	cccctctcaa	ccaggagacc	atcatgtctc	2400
tctgccttcc	tcctctcccc	tccaggggag	tcaggctgtc	tgtgaaagcc	atgagettet	2460
ctccctctcc	cactcctcct	ctcctacttt	cagatggatt	tattcctttt	ttaaacaatg	2520
aacatcggaa	atgagactgt	ggggtgtggt	ttatatatat	cttttttt	taattttctt	2580
tgttgggttt	ttgagcaacc	tcatgtcccc	ttcccaggga	gctttttaat	ttacctctta	2640
gaactcaagt	ggatgggaag	tagagcacta	tgtgtcagta	tgctttgttt	tctgacacga	2700
ttacacagcg	aggctttaat	gccatttggg	taggtgagct	tctgcacttc	tgttgtgctg	2760
aactgtattt	tcttctcta	tctcctctt	gtcttttct	cttttcctct	ccttcctgcc	2820

WO 2004/052290 PCT/US2003/038829

109

	h-h-k-k-h-h			.	
ttettetget ggeeteettt					2880
cataataaat ttatattttg	taaaaggatt	ttgttgtacc	aggttttgca	tcctcactga	2940
atctgactgg cttttatttt	cctctccaaa	atcaggtttt	tgttctcaac	atctttcccc	3000
atcatgtcta gtcactgttt	tggttttggc	accatcagta	tcaaatgtac	aaacggttct	3060
tgctaaccaa caccaggtat	atctgatgtt	cagatgagtt	ccaataaaaa	taatttttt	3120
ttttttttt tcaaaaggtg	tcttttctt	gagtgctgga	gggcttccaa	gcaagtccag	3180
acagetetgt gtggeeceae	actagtctag	ctctcatctg	gccaaagctg	ttatctcatt	3240
tgtgtaatgg gagtccttaa	ggtaaatttg	gggtccaaac	ttggagggct	ttgggggcaa	3300
gaaagttggt gtgtgagttc	tgaggttgga	aatgagttca	ggtgtcttct	tccagggcag	3360
catggtccag tgagcacatg	taagtttggg	cagtagatcc	tctgagccta	ctttctcttc	3420
tactcagtga ggatgctgct	tccttggcag	gtgattgtga	tgtgaagctt	agtaagtcat	3480
agacgtgcag gtgtctggag	agtcctgaca	tgcagttgtg	gtttcgtttc	cttttggaat	3540
cttcaaaggc agcgattttc	atattgcctc	acaccctggc	99999c9999	ggctctggga	3600
ccactggggg acctgctaaa	tcctcttcag	tctgagcagt	tcagccattg	tcagttttag	3660
tattgtgtct ctgtatttca	cttgcagaaa	gagctttgct	tctataaagg	actttaaaaa	3720
gtactccaaa gagatctagt	tttggagtag	aggggagatg	ttttctcaaa	cttagggcag	3780
tcctgagatg ctcaggcagt	agcccttttc	tcagttccct	ttgcgggtct	tggtcagatg	3840
atgeceteta gaccegtget	gtccaatatg	tagccgctag	ccatgtgcag	ctgtcaggcc	3900
cttgcaacgt ggctggttcg	agctgtgata	cactgcaagt	gtaaacacaa	accagacttc	3960
gaaggettag tatgataaca	aaagaaaagg	agtgtaaaat	atgtcaataa	cttttttata	4020
tatgtgttga aatattttgg	gtattgggtt	aaataaaata	tattattaaa	attcaaa	4077
<210> 96 <211> 3589 <212> DNA <213> Homo sapien					
<400> 96 ctccgaggat ccgttcggca	gtattaggtc	tgtttcttgt	attggaagcg	ctctgggcag	60
gaggtcgagc tgtgtttaga	gtgcatcgaa	tgggccaagt	cagagaaaag	aactttctta	120
cgccaagctt tggaggcaag	actggtgtct	ttgtactttg	ataccaagag	gtaccaggaa	180
gcattgcatt tgggttctca	gctgctgcgg	gagttgaaaa	agatggacga	caaagctctt	240
ttggtggaag tacagctttt	agaaagcaaa	acataccatg	ccctgagcaa	cctgccgaaa	300
gcccgagctg ccttaacttc	tgctcgaacc	acagcaaatg	ccatctactg	ccccctaaa	360

ttgcaggcca ccttggacat gcagtcgggt attatccatg cagcagaaga gaaggactgg 420 aaaactgcgt actcatactt ctatgaggca tttgagggtt atgactccat cgacagcccc 480 aaggccatca catctctgaa gtacatgttg ctgtgcaaaa tcatgctcaa caccccagaa 540 gatgtccagg ctttggtgag cgggaagctt gcacttcggt atgcagggag gcagacagaa 600 gcattaaaat gcgtggctca ggctagcaag aacagatcac tggcagattt tgaaaaggct 660 ctgacagatt accgggcaga gctccgggat gacccaatca tcagcacaca cttggccaag 720 ttgtatgata acttactaga acagaatctg atccgagtca ttgagccttt ttccagagta 780 840 cagattgaac acatatctag tctcatcaaa ctctccaagg ccgacgtgga aaggaaatta 900 tcacagatga ttcttgacaa gaaatttcat gggattttgg accaggggga gggtgtcctg 960 attattttcg atgaaccccc agtagataaa acttacgaag ctgctctgga aacaattcag 1020 aacatgagca aagtagtgga ttccctctac aacaaagcca agaaactgac atagagttgg atctgtagcg gtcctttgga gagtgtgtgt ggcgggagag tgaaaccttg ggggaaaatg 1080 1140 ctaggagatt ctttttctt tttgttctac ttttcgctcg gaaagttttt aaatcctcat 1200 ttggtgcatc tgtattccag ccaataggtg tgccagtttt catgtaatct ttactggccc aacttgggag tggggaaatt gcttaaaaaa aaagaaaaag aaaaaaaaa agattattct 1260 aaataaaagg aaaaaggctt acactaccta aagctgtgct ctctgcctcc tgggagaggg 1320 1380 ccgcaaagcc aggcacccg ccaaccactg ggggtcctaa tccacctgct gggcatcacc tetectecte etcagaattg ggtgtttget gaccateaaa ageaatgaet ttttattetg 1440 1500 tttgtactga accaaaacaa acaactgtgt atagactgct gttttctttt ttatttgaaa 1560 tgaggcattt tggtgttctt teceetacea taeggeetgt etgeeettee eteeceaeat tggctccagc agagtagccg aaggtcctgc cgccgccgcc accaccacca ccactgcagc 1620 aacaacagca gcagcagcag cagcgcctgc atagctccac tctgacctgt gaaggaatgg 1680 1740 ggatgaggcc aggagctagt gtctaccacg gccacacagg gagcagtgtg ggcccttagc 1800 ccccaagggg cctgctatgc atgtggcttt ttttttttt ttaaaacaca gtaaactaga 1860 ttcctctctg tcccttctct ttcccctctc aaccaggaga ccatcatgtc tctctgcctt 1920 cctcctctcc cctccagggg agtcaggctg tctgtgaaag ccatgagctt ctctccctct 1980 cccactcctc ctctcctact ttcagatgga tttattcctt ttttaaacaa tgaacatcgg 2040 aaatgagact gtggggtgtg gtttctctct ctcttttttt tttaattttc tttgttgggt 2100 ttttgagcaa cctcatgtcc ccttcccagg gagcttttta atttacctct tagaactcaa 2160

			T T T			
gtggatggga	agtagagcac	tatgtgtcag	tatgctttgt	tttctgacac	gattacacag	2220
cgaggcttta	atgccatttg	ggtaggtgag	cttctgcact	tctgttgtgc	tgaactgtat	2280
tttcttctct	catctcctct	ttgtcttttt	ctcttttcct	ctccttcctg	ccttcttctg	2340
ctggcctcct	tttctctttc	tttaccttcc	ttggattatc	cttccaggtt	ttcataataa	2400
atttatattt	tgtaaaagga	ttttgttgta	ccaggttttg	catcctcact	gaatctgact	2460
ggcttttatt	ttcctctcca	aaatcaggtt	tttgttctca	acatctttcc	ccatcatgtc	2520
tagtcactgt	tttggttttg	gcaccatcag	tatcaaatgt	acaaacggtt	cttgctaacc	2580
aacaccaggt	atatctgatg	ttcagatgag	ttccaataaa	aataatttt	tttttttt	2640
tttcaaaagg	tgtcttttc	ttgagtgctg	gagggcttcc	aagcaagtcc	agacagctct	2700
gtgtggcccc	acactagtct	agctctcatc	tggccaaagc	tgttatctca	tttgtgtaat	2760
gggagtcctt	aaggtaaatt	tggggtccaa	acttggaggg	ctttgggggc	aagaaagttg	2820
gtgtgtgagt	tctgaggttg	gaaatgagtt	caggtgtctt	cttccagggc	agcatggtcc	2880
agtgagcaca	tgtaagtttg	ggcagtagat	cctctgagcc	tactttctct	tctactcagt	2940
gaggatgctg	cttccttggc	aggtgattgt	gatgtgaagc	ttagtaagtc	atagacgtgc	3000
aggtgtctgg	agagtcctga	catgcagttg	tggtttcgtt	tccttttgga	atcttcaaag	3060
gcagcgattt	tcatattgcc	tcacaccctg	gcgggggcgg	ggggctctgg	gaccactggg	3120
ggacctgcta	aatcctcttc	agtctgagca	gttcagccat	tgtcagtttt	agtattgtgt	3180
ctctgtattt	cacttgcaga	aagagctttg	cttctataaa	ggactttaaa	aagtactcca	3240
aagagatcta	gttttggagt	agagggaga	tgttttctca	aacttagggc	agtcctgaga	3300
tgctcaggca	gtagcccttt	tctcagttcc	ctttgcgggt	cttggtcaga	tgatgccctc	3360
tagacccgtg	ctgtccaata	tgtagccgct	agccatgtgc	agctgtcagg	cccttgcaac	3420
gtggctggtt	cgagctgtga	tacactgcaa	gtgtaaacac	aaaccagact	tcgaaggctt	3480
agtatgataa	caaaagaaaa	ggagtgtaaa	atatgtcaat	aacttttta	tatatgtgtt	3540
gaaatatttt	gggtattggg	ttaaataaaa	tatattatta	aaattcaaa		3589
<210> 97 <211> 3238 <212> DNA <213> Homo	3 o sapien					
cccaaggggc	ctgctatgca	tgtggacatg	cagtcgggta	ttatccatgc	agcagaagag	60

aaggactgga aaactgcgta ctcatacttc tatgaggcat ttgagggtta tgactccatc 120

gacagececa aggecateae atetetgaag tacatgttge tgtgcaaaat catgetcaac 180

accccagaag	atgtccaggc	tttggtgagc	gggaagcttg	cacttcggta	tgcagggagg	240
cagacagaag	cattaaaatg	cgtggctcag	gctagcaaga	acagatcact	ggcagatttt	300
gaaaaggctc	tgacagatta	ccgggcagag	ctccgggatg	acccaatcat	cagcacacac	360
ttggccaagt	tgtatgataa	cttactagaa	cagaatctga	tccgagtcat	tgagcctttt	420
tccagagtac	agattgaaca	catatctagt	ctcatcaaac	tctccaaggc	cgacgtggaa	480
aggaaattat	cacagatgat	tcttgacaag	aaatttcatg	ggattttgga	ccagggggag	540
ggtgtcctga	ttattttcga	tgaaccccca	gtagataaaa	cttacgaagc	tgctctggaa	600
acaattcaga	acatgagcaa	agtagtggat	tccctctaca	acaaagccaa	gaaactgaca	660
tagagttgga	tctgtagcgg	tcctttggag	agtgtgtgtg	gcgggagagt	gaaaccttgg	720
gggaaaatgc	taggagattc	tttttttt	ttgttctact	tttcgctcgg	aaagttttta	780
aatcctcatt	tggtgcatct	gtattccagc	caataggtgt	gccagttttc	atgtaatctt	840
tactggccca	acttgggagt	ggggaaattg	cttaaaaaaa	aagaaaaaga	aaaaaaaaa	900
gattattcta	aataaaagga	aaaaggctta	cactacctaa	agctgtgctc	tetgeeteet	960
gggagagggc	cgcaaagcca	ggcaccccgc	caaccactgg	gggtcctaat	ccacctgctg	1020
ggcatcacct	ctcctcctcc	tcagaattgg	gtgtttgctg	accatcaaaa	gcaatgactt	1080
tttattctgt	ttgtactgaa	ccaaaacaaa	caactgtgta	tagactgctg	ttttctttt	1140
tatttgaaat	gaggcatttt	ggtgttcttt	cccctaccat	acggcctgtc	tgcccttccc	1200
tccccacatt	ggctccagca	gagtagccga	aggtcctgcc	gccgccgcca	ccaccaccac	1260
cactgcagca	acaacagcag	cagcagcagc	agcgcctgca	tagctccact	ctgacctgtg	1320
aaggaatggg	gatgaggcca	ggagctagtg	tctaccacgg	ccacacaggg	agcagtgtgg	1380
gcccttagcc	cccaaggggc	ctgctatgca	tgtggctttt	tttttttt	taaaacacag	1440
taaactagat	tagtcgtcag	tgttttaatt	gccctcttc	tecteteetg	cattcctctc	1500
ctctcttctt	tectetetgt	cccttctctt	tcccctctca	accaggagac	catcatgtct	1560
ctctgccttc	ctcctctccc	ctccagggga	gtcaggctgt	ctgtgaaagc	catgagette	1620
teteeetete	ccactcctcc	tctcctactt	tcagatggat	ttattccttt	tttaaacaat	1680
gaacatcgga	aatgagactg	tggggtgtgg	tttctctctc	tcttttttt	ttaattttct	1740
ttgttgggtt	tttgagcaac	ctcatgtccc	cttcccaggg	agctttttaa	tttacctctt	1800
agaactcaag	tggatgggaa	gtagagcact	atgtgtcagt	atgctttgtt	ttctgacacg	1860
attacacagc	gaggctttaa	tgccatttgg	gtaggtgagc	ttctgcactt	ctgttgtgct	1920
gaactgtatt	ttcttctctc	atctcctctt	tgtcttttc	tetttteete	tccttcctgc	1980
cttcttctqc	taacctcctt	ttctctttct	ttaccttcct	tggattatcc	ttccaggttt	2040

tcataataaa tttatatttt	gtaaaaggat	tttgttgtac	caggttttgc	atcctcactg	2100
aatctgactg gcttttattt	tectetecaa	aatcaggttt	ttgttctcaa	catctttccc	2160
catcatgtct agtcactgtt	ttggttttgg	caccatcagt	atcaaatgta	caaacggttc	2220
ttgctaacca acaccaggta	tatctgatgt	tcagatgagt	tccaataaaa	ataattttt	2280
ttttttttt ttcaaaaggt	gtcttttct	tgagtgctgg	agggcttcca	agcaagtcca	2340
gacagetetg tgtggeecea	cactagtcta	gctctcatct	ggccaaagct	gttatctcat	2400
ttgtgtaatg ggagtcctta	aggtaaattt	ggggtccaaa	cttggagggc	tttgggggca	2460
agaaagttgg tgtgtgagtt	ctgaggttgg	aaatgagttc	aggtgtcttc	ttccagggca	2520
gcatggtcca gtgagcacat	gtaagtttgg	gcagtagatc	ctctgagcct	actttctctt	2580
ctactcagtg aggatgctgc	ttccttggca	ggtgattgtg	atgtgaagct	tagtaagtca	2640
tagacgtgca ggtgtctgga	gagtcctgac	atgcagttgt	ggtttcgttt	ccttttggaa	2700
tcttcaaagg cagcgatttt	catattgcct	cacaccctgg	cgggggcggg	gggctctggg	2760
accactgggg gacctgctaa	atcctcttca	gtctgagcag	ttcagccatt	gtcagtttta	2820
gtattgtgtc tctgtatttc	acttgcagaa	agagctttgc	ttctataaag	gactttaaaa	2880
agtactccaa agagatctag	ttttggagta	gaggggagat	gttttctcaa	acttagggca	2940
gtcctgagat gctcaggcag	tagccctttt	ctcagttccc	tttgcgggtc	ttggtcagat	3000
gatgccctct agacccgtgc	tgtccaatat	gtagccgcta	gccatgtgca	gctgtcaggc	3060
ccttgcaacg tggctggttc	gagctgtgat	acactgcaag	tgtaaacaca	aaccagactt	3120
cgaaggctta gtatgataac	aaaagaaaag	gagtgtaaaa	tatgtcaata	acttttttat	3180
atatgtgttg aaatattttg	ggtattgggt	taaataaaat	atattattaa	aattcaaa	3238
<210> 98 <211> 3089 <212> DNA <213> Homo sapien					
<400> 98 tgaggtcatc tagaggatcc	cattggagat	gtgcccagaa	gatgtccagg	ctttggtgag	60
cgggaagett gcaetteggt	atgcagggag	gcagacagaa	gcattaaaat	gcgtggctca	120
ggctagcaag aacagatcac	tggcagattt	tgaaaaggct	ctgacagatt	accgggcaga	180
gctccgggat gacccaatca	tcagcacaca	cttggccaag	ttgtatgata	acttactaga	240

acagaatctg atccgagtca ttgagccttt ttccagagta cagattgaac acatatctag

tctcatcaaa ctctccaagg ccgacgtgga aaggaaatta tcacagatga ttcttgacaa

gaaatttcat gggattttgg accaggggga gggtgtcctg attattttcg atgaacccc

300

360

420

WO 2004/052290 PCT/US2003/038829

114

agtagataaa	acttacgaag	ctgctctgga	aacaattcag	aacatgagca	aagtagtgga	480
ttccctctac	aacaaagcca	agaaactgac	atagagttgg	atctgtagcg	gtcctttgga	540
gagtgtgtgt	ggcgggagag	tgaaaccttg	ggggaaaatg	ctaggagatt	ctttttctt	600
tttgttctac	ttttcgctcg	gaaagttttt	aaatcctcat	ttggtgcatc	tgtattccag	660
ccaataggtg	tgccagtttt	catgtaatct	ttactggccc	aacttgggag	tggggaaatt	720
gcttaaaaaa	aaagaaaaag	aaaaaaaaa	agattattct	aaataaaagg	aaaaaggctt	780
acactaccta	aagctgtgct	ctctgcctcc	tgggagaggg	ccgcaaagcc	aggcaccccg	840
ccaaccactg	ggggtcctaa	tccacctgct	gggcatcacc	tctcctcctc	ctcagaattg	900
ggtgtttgct	gaccatcaaa	agcaatgact	ttttattctg	tttgtactga	accaaaacaa	960
acaactgtgt	atagactgct	gttttctttt	ttatttgaaa	tgaggcattt	tggtgttctt	1020
tcccctacca	tacggcctgt	ctgcccttcc	ctccccacat	tggctccagc	agagtagccg	1080
aaggtcctgc	cgccgccgcc	accaccacca	ccactgcagc	aacaacagca	gcagcagcag	1140
cagcgcctgc	atagctccac	tctgacctgt	gaaggaatgg	ggatgaggcc	aggagctagt	1200
gtctaccacg	gccacacagg	gagcagtgtg	ggcccttagc	ccccaagggg	cctgctatgc	1260
atgtggcttt	tttttttt	ttaaaacaca	gtaaactaga	ttagtcgtca	gtgttttaat	1320
tgcccctctt	ctcctcct	gcattcctct	cctctcttct	ttcctctctg	teeettetet	1380
ttcccctctc	aaccaggaga	ccatcatgtc	tctctgcctt	cctcctctcc	cctccagggg	1440
agtcaggctg	tctgtgaaag	ccatgagctt	ctctccctct	cccactcctc	ctctcctact	1500
ttcagatgga	tttattcctt	ttttaaacaa	tgaacatcgg	aaatgagact	gtggggtgtg	1560
gtttctctct	ctctttttt	tttaattttc	tttgttgggt	ttttgagcaa	cctcatgtcc	1620
ccttcccagg	gagcttttta	atttacctct	tagaactcaa	gtggatggga	agtagagcac	1680
tatgtgtcag	tatgctttgt	tttctgacac	gattacacag	cgaggcttta	atgccatttg	1740
ggtaggtgag	cttctgcact	tctgttgtgc	tgaactgtat	tttcttctct	catctcctct	1800
ttgtcttttt	ctcttttcct	ctccttcctg	ccttcttctg	ctggcctcct	tttctctttc	1860
tttaccttcc	ttggattatc	cttccaggtt	ttcataataa	atttatattt	tgtaaaagga	1920
ttttgttgta	ccaggttttg	catcctcact	gaatctgact	ggcttttatt	ttcctctcca	1980
aaatcaggtt	tttgttctca	acatetttee	ccatcatgtc	tagtcactgt	tttggttttg	2040
gcaccatcag	tatcaaatgt	acaaacggtt	cttgctaacc	aacaccaggt	atatctgatg	2100
ttcagatgag	ttccaataaa	aataattttt	tttttttt	tttcaaaagg	tgtcttttc	2160
ttgagtgctg	gagggettee	aagcaagtcc	agacagetet	atataacccc	acactagtet	2220

115

agctctcatc tggccaaag	c tgttatctca	tttgtgtaat	gggagtcctt	aaggtaaatt	2280
tggggtccaa acttggagg	g ctttgggggc	aagaaagttg	gtgtgtgagt	tctgaggttg	2340
gaaatgagtt caggtgtct	t cttccagggc	agcatggtcc	agtgagcaca	tgtaagtttg	2400
ggcagtagat cctctgagc	c tactttctct	tctactcagt	gaggatgctg	cttccttggc	2460
aggtgattgt gatgtgaag	c ttagtaagtc	atagacgtgc	aggtgtctgg	agagtcctga	2520
catgcagttg tggtttcgt	t tccttttgga	atcttcaaag	gcagcgattt	tcatattgcc	2580
tcacaccctg gcgggggcg	g ggggctctgg	gaccactggg	ggacctgcta	aatcctcttc	2640
agtctgagca gttcagcca	t tgtcagtttt	agtattgtgt	ctctgtattt	cacttgcaga	2700
aagagctttg cttctataa	a ggactttaaa	aagtactcca	aagagatcta	gttttggagt	2760
agaggggaga tgttttctc	a aacttagggc	agtcctgaga	tgctcaggca	gtagcccttt	2820
tctcagttcc ctttgcggg	t cttggtcaga	tgatgccctc	tagacccgtg	ctgtccaata	2880
tgtagccgct agccatgtg	c agctgtcagg	cccttgcaac	gtggctggtt	cgagctgtga	2940
tacactgcaa gtgtaaaca	c aaaccagact	tcgaaggctt	agtatgataa	caaaagaaaa	3000
ggagtgtaaa atatgtcaa	t aacttttta	tatatgtgtt	gaaatatttt	gggtattggg	3060
ttaaataaaa tatattatt	a aaattcaaa				3089

<210> 99 <211> 3496 <212> DNA <213> Homo sapien

<400> 99

t	tgatgcctc	agtgttaatg	aggtagacct	tgttcagtgc	cttgttccaa	acctagcaga	60
ā	atgaatcttg	ataaagcaca	gatataatag	ggtctaaggg	caagaaggag	tttgggtgga	120
t	gtggcgata	acaagccttg	gaggaaggga	gaagaaatca	cagttctctt	gtcattttc	180
(ettttagett	gtcatctcta	gagaatgcta	tattagggtc	ggtctgtttg	gaaaatttct	240
ç	gtttcctagt	attattaagt	catttcaggt	ttcaaaggga	aacaggttgg	catatagtgg	300
t	attcagtac	ttgcggctct	tetteeeggg	cgtctgaaga	agaacgatgg	tggggcgggt	360
t	cttcctttt	ggcagaagtt	gtgtggacac	agcatactgc	ttatgagact	tgggtaaatg	420
t	tagtgtgca	gaatcatgct	caacacccca	gaagatgtcc	aggcttggtg	agcgggaact	480
t	gccttcsgt	tgcsggaggr	gacagaagca	ttaaaatgcg	tggctcaggc	tagcaagaac	540
ā	agatcactgg	cagattttga	aaaggctctg	acagattacc	gggcagagct	ccgggatgac	600
(ccaatcatca	gcacacactt	ggccaagttg	tatgataact	tactagaaca	gaatctgatc	660
c	gagtcattg	agcctttttc	cagagtacag	attgaacaca	tatctagtct	catcaaactc	720

tccaaggccg acgtggaa	ag gaaattatca	cagatgattc	ttgacaagaa	atttcatggg	780
attttggacc agggggag	ggg tgtcctgatt	attttcgatg	aacccccagt	agataaaact	840
tacgaagctg ctctggaa	ac aattcagaac	atgagcaaag	tagtggattc	cctctacaac	900
aaagccaaga aactgaca	ata gagttggatc	tgtagcggtc	ctttggagag	tgtgtgtggc	960
gggagagtga aaccttg	ggg gaaaatgcta	ggagattctt	ttttctttt	gttctacttt	1020
tcgctcggaa agttttta	aa tcctcatttg	gtgcatctgt	attccagcca	ataggtgtgc	1080
cagttttcat gtaatctt	ta ctggcccaac	ttgggagtgg	ggaaattgct	taaaaaaaaa	1140
gaaaaagaaa aaaaaaa	aga ttattctaaa	taaaaggaaa	aaggcttaca	ctacctaaag	1200
ctgtgctctc tgcctcct	gg gagagggccg	caaagccagg	caccccgcca	accactgggg	1260
gtcctaatcc acctgcts	ggg catcacctct	cctcctcctc	agaattgggt	gtttgctgac	1320
catcaaaagc aatgactt	tt tattctgttt	gtactgaacc	aaaacaaaca	actgtgtata	1380
gactgctgtt ttctttt	ta tttgaaatga	ggcattttgg	tgttctttcc	cctaccatac	1440
ggcctgtctg cccttccc	ctc cccacattgg	ctccagcaga	gtagccgaag	gtcctgccgc	1500
cgccgccacc accaccac	cca ctgcagcaac	aacagcagca	gcagcagcag	cgcctgcata	1560
getecactet gacetgte	gaa ggaatgggga	tgaggccagg	agctagtgtc	taccacggcc	1620
acacagggag cagtgtgg	ggc ccttagccc	caaggggcct	gctatgcatg	tggctttttt	1680
tttttttta aaacacag	gta aactagatta	gtcgtcagtg	ttttaattgc	ccctcttctc	1740
ctctcctgca ttcctctc	ect ctcttcttc	ctctctgtcc	cttctctttc	ccctctcaac	1800
caggagacca tcatgtct	et etgeetteet	cctctcccct	ccaggggagt	caggctgtct	1860
gtgaaagcca tgagctto	etc tecetetece	actcctcctc	tcctactttc	agatggattt	1920
attccttttt taaacaat	ga acatoggaaa	tgagactgtg	gggtgtggtt	tctctctct	1980
ttttttttt aatttc	tt gttgggtttt	tgagcaacct	catgtcccct	tcccagggag	2040
ctttttaatt tacctctt	ag aactcaagtg	gatgggaagt	agagcactat	gtgtcagtat	2100
gctttgtttt ctgacac	gat tacacagega	ggctttaatg	ccatttgggt	aggtgagctt	2160
ctgcacttct gttgtgc	ga actgtattt	cttctctcat	ctcctctttg	tctttttctc	2220
ttttcctctc cttcctg	ect tettetgetg	geeteetttt	ctctttcttt	accttccttg	2280
gattatcctt ccaggtt	tc ataataaatt	tatattttgt	aaaaggattt	tgttgtacca	2340
ggttttgcat cctcact	gaa tetgaetgge	ttttatttc	ctctccaaaa	tcaggttttt	2400
gttctcaaca tctttccc	cca tcatgtctag	tcactgtttt	ggttttggca	ccatcagtat	2460
caaatgtaca aacggtto	ett getaaccaac	accaggtata	tctgatgttc	agatgagttc	2520
caataaaaat aattttt	tt tttttttt	caaaaggtgt	ctttttcttg	agtgctggag	2580

117

ggcttccaag	caagtccaga	cagctctgtg	tggccccaca	ctagtctagc	tctcatctgg	2640
ccaaagctgt	tatctcattt	gtgtaatggg	agtccttaag	gtaaatttgg	ggtccaaact	2700
tggagggctt	tgggggcaag	aaagttggtg	tgtgagttct	gaggttggaa	atgagttcag	2760
gtgtcttctt	ccagggcagc	atggtccagt	gagcacatgt	aagtttgggc	agtagatcct	2820
ctgagcctac	tttctcttct	actcagtgag	gatgctgctt	ccttggcagg	tgattgtgat	2880
gtgaagctta	gtaagtcata	gacgtgcagg	tgtctggaga	gtcctgacat	gcagttgtgg	2940
			gcgattttca			3000
			cctgctaaat			3060
			tgtatttcac			3120
			agatctagtt			3180
					cagttccctt	3240
					agccgctagc	3300
					actgcaagtg	3360
					gtgtaaaata	3420
					aataaaatat	3480
attattaaaa						3496

<210> 100

<211> 420 <212> PRT <213> Homo sapien

<400> 100

Met Glu Val Pro Pro Arg Leu Ser His Val Pro Pro Pro Leu Phe Pro

Ser Ala Pro Ala Thr Leu Ala Ser Arg Ser Leu Ser His Trp Arg Pro 25

Arg Pro Pro Arg Gln Leu Ala Pro Leu Leu Pro Ser Leu Ala Pro Ser

Ser Ala Arg Gln Gly Ala Arg Arg Ala Gln Arg His Val Thr Ala Gln 55 (60

Gln Pro Ser Arg Leu Ala Gly Gly Ala Ala Ile Lys Gly Gly Arg Arg 70

WO 2004/052290 PCT/US2003/038829

118

Arg Arg Pro Asp Leu Phe Arg Arg His Phe Lys Ser Ser Ser Ile Gln 85 90 95

Arg Ser Ala Ala Ala Ala Ala Thr Arg Thr Ala Arg Gln His Pro
100 105 110

Pro Ala Asp Ser Ser Val Thr Met Glu Asp Met Asn Glu Tyr Ser Asn 115 120 125

Ile Glu Glu Phe Ala Glu Gly Ser Lys Ile Asn Ala Ser Lys Asn Gln 130 135 140

Gln Asp Asp Gly Lys Met Phe Ile Gly Gly Leu Ser Trp Asp Thr Ser 145 150 155 160

Lys Lys Asp Leu Thr Glu Tyr Leu Ser Arg Phe Gly Glu Val Val Asp 165 170 175

Cys Thr Ile Lys Thr Asp Pro Val Thr Gly Arg Ser Arg Gly Phe Gly 180 185 190

Phe Val Leu Phe Lys Asp Ala Ala Ser Val Asp Lys Val Leu Glu Leu 195 200 205

Lys Glu His Lys Leu Asp Gly Lys Leu Ile Asp Pro Lys Arg Ala Lys 210 215 220

Ala Leu Lys Gly Lys Glu Pro Pro Lys Lys Val Phe Val Gly Gly Leu 225 230 235 240

Ser Pro Asp Thr Ser Glu Glu Gln Ile Lys Glu Tyr Phe Gly Ala Phe 245 250 255

Gly Glu Ile Glu Asn Ile Glu Leu Pro Met Asp Thr Lys Thr Asn Glu 260 265 270

Arg Arg Gly Phe Cys Phe Ile Thr Tyr Thr Asp Glu Glu Pro Val Lys 275 280 285

Lys Leu Leu Glu Ser Arg Tyr His Gln Ile Gly Ser Gly Lys Cys Glu 290 295 300

Ile Lys Val Ala Gln Pro Lys Glu Val Tyr Arg Gln Gln Gln Gln 305 310 315 320

Gln Lys Gly Gly Arg Gly Ala Ala Gly Gly Arg Gly Gly Thr Arg

335 330 325

Gly Arg Gly Arg Gly Gln Gly Gln Asn Trp Asn Gln Gly Phe Asn Asn 345

Tyr Tyr Asp Gln Gly Tyr Gly Asn Tyr Asn Ser Ala Tyr Gly Gly Asp

Gln Asn Tyr Ser Gly Tyr Gly Gly Tyr Asp Tyr Thr Gly Tyr Asn Tyr 375 380

Gly Asn Tyr Gly Tyr Gly Gln Gly Tyr Ala Asp Tyr Ser Gly Gln Gln 390

Ser Thr Tyr Gly Lys Ala Ser Arg Gly Gly Asn His Gln Asn Asn 410 405

Tyr Gln Pro Tyr 420

<210> 101 <211> 100

<212> PRT

<213> Homo sapien

<400> 101

Arg Gly Val Leu Glu Asp Pro Ser Arg Pro Cys His Lys Leu Gln Gln 10 5

Gln Gln Gln Lys Gly Gly Arg Gly Ala Ala Ala Gly Gly Arg Gly 25 20

Gly Thr Arg Gly Arg Gly Arg Gly Gln Gly Gln Asn Trp Asn Gln Gly 35 ·

Phe Asn Asn Tyr Tyr Asp Gln Gly Tyr Gly Asn Tyr Asn Ser Ala Tyr 50

Gly Gly Asp Gln Asn Tyr Ser Gly Tyr Gly Gly Tyr Asp Tyr Thr Gly

Tyr Asn Tyr Gly Asn Tyr Gly Tyr Gly Gln Gly Tyr Ala Asp Tyr Ser 90 85

Gly Lys Asn Ile 100

<210> 102 <211> 104 <212> PRT <213> Homo sapien

<400> 102

Arg Gly Val Leu Glu Asp Pro His Ala His Val Thr Ser Cys Ser Asn

Ser Asn Asn Lys Lys Val Glu Val Leu Gln Leu Val Asp Glu Val

Val Arg Gly Val Val Ala Glu Val Arg Ala Lys Thr Gly Thr Lys Asp

Leu Ile Thr Ile Met Ile Lys Asp Met Glu Ile Thr Ile Val Pro Met

Val Val Ile Lys Thr Ile Val Ala Met Ala Asp Met Ile Ile Leu Gly 70

Ile Thr Met Gly Thr Met Asp Met Asp Arg Asp Met Gln Thr Thr Val

Val Arg Ile Phe Asn Leu Ile Leu

<210> 103

<211> 36 <212> PRT

<213> Homo sapien

<400> 103

Gly Arg Leu Leu Leu Leu Leu Glu Phe Lys Leu Leu Thr Met Tyr

Gly Leu Met Pro Gly Lys Cys Cys Gly Gly Gly Ser Gln Glu Asp Trp

Pro Arg Glu Pro 35

<210> 104

<211> 38

<212> PRT

<213> Homo sapien

<400> 104

121

Arg Pro Pro Thr Thr Thr Ala Arg Ile Gln Ala Ser Asn Asp Val

Arg Ala His Ala Trp Glu Val Leu Trp Trp Gly Leu Pro Gly Gly Leu 25

Ala Gln Arg Ala Leu Arg 35

<210> 105

<211> 77 <212> PRT <213> Homo sapien

<400> 105

Met Asp Ala Trp Ser Arg Pro Arg Tyr Val Gln Met Thr Lys Ser Leu

Gln Cys Leu Gln Val Gln Thr Glu Leu Lys Glu Cys Met Val Val Lys 25

Thr Tyr Leu Ile Ser Ser Ile Pro Leu Gln Gly Ala Phe Asn Tyr Lys

Tyr Thr Ala Cys Leu Cys Asp Asp Asn Pro Lys Thr Phe Tyr Val Gly 60 55

Leu Leu His Gln Gln Asn Cys Ala Asn Cys Ser Arg Arg 70

<210> 106

<211> 121

<212> PRT

<213> Homo sapien

.

<400> 106

Asn Trp Val Leu Met Leu Leu Glu Arg Arg Gln Cys Asp Gly Cys Val

Val Ala Ala Glu Val Arg Pro Asn Asp Glu Val Thr Ala Val Leu Ala 25

Val Gln Thr Glu Leu Lys Glu Cys Met Val Val Lys Thr Tyr Leu Ile 40 35

Ser Ser Ile Pro Leu Gln Gly Ala Phe Asn Tyr Lys Tyr Thr Ala Cys 55 50

122

Leu Cys Asp Asp Asn Pro Lys Thr Phe Tyr Trp Asp Phe Tyr Thr Asn

Arg Thr Val Gln Ile Ala Ala Val Val Asp Val Ile Arg Glu Leu Gly

Ile Cys Pro Asp Asp Ala Ala Val Ile Pro Ile Lys Asn Asn Arg Phe

Tyr Thr Ile Glu Ile Leu Lys Val Glu

<210> 107

<211> 66

<212> PRT

<213> Homo sapien

<400> 107

Met Asp Glu Arg Pro Pro Ala Gln Val Val Gln Thr Glu Leu Lys Glu 10

Cys Met Val Val Lys Thr Tyr Leu Ile Ser Ser Ile Pro Leu Gln Gly

Ala Phe Asn Tyr Lys Tyr Thr Ala Cys Leu Cys Asp Asp Asn Pro Lys

Thr Phe Tyr Val Gly Leu Leu His Gln Gln Asn Cys Ala Asn Cys Ser

Arg Arg 65

<210> 108 <211> 97

<212> PRT

<213> Homo sapien

<400> 108

Trp Met Ser Gly Arg Arg Ala Gly Val Gln Thr Glu Leu Lys Glu Cys

Met Val Val Lys Thr Tyr Leu Ile Ser Ser Ile Pro Leu Gln Gly Ala 20 25

Phe Asn Tyr Lys Tyr Thr Ala Cys Leu Cys Asp Asp Asn Pro Lys Thr

45 40 35

Phe Tyr Trp Asp Phe Tyr Thr Asn Arg Thr Val Gln Ile Ala Ala Val 55

Val Asp Val Ile Arg Glu Leu Gly Ile Cys Pro Asp Asp Ala Ala Val 70

Ile Pro Ile Lys Asn Asn Arg Phe Tyr Thr Ile Glu Ile Leu Lys Val 90

Glu

<210> 109

<211> 155

<212> PRT

<213> Homo sapien

<400> 109

Met Leu Leu Pro Asn Lys Lys Lys His Asn Thr Thr Lys Thr Lys Asn

Asn Lys Pro Pro Gly Gly Asn Pro Gly Pro His Thr Arg Gly Pro Arg 25

Gly Trp Arg Asn Val Gly Leu Pro Ala His Gln Thr Pro Thr Gln Gln 40 35

Phe Ala Gly Lys Pro Pro Pro Pro Pro Ala His Pro Pro Pro Pro Ala 50 55

Lys Arg Thr His Lys Arg Arg Pro Arg Gly Thr Arg Asp Thr Arg 70 65

Arg Glu Ala Glu Pro Thr Gly Pro Arg Arg Glu Gln Asp Thr Glu Arg

Arg Lys Arg Asp Arg Gly Cys Arg His Ala Ser Ser Thr Ala Gln Arg 105

Pro Gly Ala Gly His Pro Glu Ala Gly Thr Glu Gln Gln Pro Gln Asp 115

Ala Ala Asp Pro Arg Glu Arg Gly Ala Asp Arg Asn Gln Thr Arg Gly 135

Pro Ala Thr Arg Gly Ala Ala Lys Thr Ser Gly 145 150

<210> 110 <211> 172 <212> PRT <213> Homo sapien

<400> 110

Arg Asn Leu Ala Gly Ile Ser Ala Val Val Tyr Lys Ile Asn Phe Leu 10

Thr Cys Phe Ser Leu Thr Lys Lys Asn Thr Thr Gln Gln Lys Gln Lys

Thr Thr Asn Arg Leu Gly Ala Thr Pro Gly His Thr Arg Ala Asp Pro

Ala Gly Gly Glu Thr Trp Ala Ser Arg Pro Thr Lys Pro Pro His Asn 55

Asn Ser Arg Ala Asn Pro Pro Pro Pro Pro His Thr His Pro Pro Arg

Pro Lys Glu Pro Thr Ser Gly Gly Asp Arg Glu Gly Arg Glu Thr Pro 90

Asp Ala Arg Gln Ser Gln Arg Ala Gln Gly Gly Ser Lys Thr Pro Ser 100

Gly Gly Asn Gly Thr Glu Ala Ala Gly Met Pro Ala Ala Arg Arg Arg 115

Gly Gln Gly Arg Gly Thr Arg Arg Pro Gly Arg Ser Ser Arg Arg 135 130

Thr Gln Arg Thr Pro Gly Ser Glu Ala Pro Thr Ala Thr Lys Arg Gly 145

Asp Pro Pro His Ala Gly Arg Pro Arg Gln Ala Ala 170

<210> 111

<211> 44

<212> PRT

<213> Homo sapien

125

<400> 111

Met Leu Leu Glu Arg Arg Gln Cys Asp Gly Cys Val Val Ala Ala Glu

Arg Gln Ser Lys Asn Leu Leu Arg Gly Thr Phe Thr Pro Thr Glu Leu

Cys Lys Leu Gln Pro Ser Leu Met Leu Phe Gly Asn

<210> 112

<211> 72 <212> PRT <213> Homo sapien

<400> 112

Asn Lys Leu Leu Asn Met Leu Leu Gln Lys Lys Thr Lys Lys Gln Lys

Lys Lys Glu Ser Gly Gly Val His Pro Trp Ala Ile Arg Cys Gly Val

Pro Trp Cys Val Glu Phe Gly Ser Pro Gly Pro Gln Phe Pro Asn Asn

Asn Phe Thr Glu Gln Gly Gln Arg Lys Thr Thr Ser Thr Lys Lys Pro

Asn Pro Thr His Lys Glu Thr Arg

<210> 113

<211> 192

<212> PRT

<213> Homo sapien

<400> 113

Met Pro Val Trp Pro Leu Asp Trp Leu Gly Arg Val Ala Gly Ala Lys 5

Val Leu Trp Ala Ile His Phe Ile Gln Ala Gly Leu Leu Ser Ala Leu

Gly Ser Leu Ile Leu Met Ile Trp Leu Met Ala Thr Pro His Ser His 40 35

Glu Thr Glu Gln Lys Arg Leu Gly Leu Leu Ala Gly Phe Ala Phe Leu

126

60 55 50

Thr Gly Val Gly Leu Gly Pro Ala Leu Glu Phe Cys Ile Ala Val Asn

Pro Ser Ile Leu Pro Thr Ala Phe Met Gly Thr Ala Met Ile Phe Thr

Cys Phe Thr Leu Ser Ala Leu Tyr Ala Arg Arg Arg Ser Tyr Leu Phe 110 105

Leu Gly Gly Ile Leu Met Ser Ala Leu Ser Leu Leu Leu Ser Ser 115

Leu Gly Asn Val Phe Phe Gly Ser Ile Trp Leu Phe Gln Ala Asn Leu 135 130

Tyr Val Gly Leu Val Val Met Cys Gly Phe Val Leu Phe Asp Thr Gln 155 150 145

Leu Ile Ile Glu Lys Ala Glu His Gly Asp Gln Asp Tyr Ile Trp His 165

Cys Ile Asp Leu Phe Leu Asp Phe Ile Thr Gly Leu Gln Lys Asn Ser 185

<210> 114 <211> 210 <212> PRT

<213> Homo sapien

Arg Gly Tyr Met Pro Val Trp Pro Leu Asp Trp Leu Gly Arg Val Ala

Gly Ala Lys Val Leu Trp Ala Ile His Phe Ile Gln Ala Gly Leu Leu 20

Ser Ala Leu Gly Ser Leu Ile Leu Met Ile Trp Leu Met Ala Thr Pro 35

His Ser His Glu Thr Glu Gln Lys Arg Leu Gly Leu Leu Ala Gly Phe 50

Ala Phe Leu Thr Gly Val Gly Leu Gly Pro Ala Leu Glu Phe Cys Ile 65 70

127

Ala Val Asn Pro Ser Ile Leu Pro Thr Ala Phe Met Gly Thr Ala Met

Ile Phe Thr Cys Phe Thr Leu Ser Ala Leu Tyr Ala Arg Arg Arg Ser 105

Tyr Leu Phe Leu Gly Gly Ile Leu Met Ser Ala Leu Ser Leu Leu Leu

Leu Ser Ser Leu Gly Asn Val Phe Phe Gly Ser Ile Trp Leu Phe Gln

Ala Asn Leu Tyr Val Gly Leu Val Val Met Cys Gly Phe Val Leu Phe 155 150 145

Asp Thr Gln Leu Ile Ile Glu Lys Ala Glu His Gly Asp Gln Asp Tyr 165

Ile Trp His Cys Ile Asp Leu Phe Leu Asp Phe Ile Thr Val Phe Arg 185 180

Lys Leu Met Met Ile Leu Ala Met Asn Glu Lys Asp Lys Lys Glu 200

Lys Lys 210

<210> 115 <211> 90

<212> PRT

<213> Homo sapien

Met His Ala Tyr Ser Cys Ala Leu Leu Ser Gly Glu Leu Arg Ile Arg

Leu Leu Arg Arg Lys Asn Leu Asn Ile Asn Arg Lys Ser Trp Arg Lys 20

Phe Ala Thr Pro Ser Ser Pro Ser Cys Thr Arg Val Gln Glu Ala Cys 35

Gln Glu Glu Cys Leu Gly Asp Phe Leu Val Val Glu Leu Leu Pro Leu 55 50

Val Val Leu Pro Gln Gly Pro Pro Leu Lys Arg Leu Ile Lys Pro Thr

WO 2004/052290 PCT/US2003/038829

128

65 70 75 80 ·

Lys Cys Arg Cys Ser Ile Val Pro His Ile 85 90

<210> 116

<211> 244

<212> PRT

<213> Homo sapien

<400> 116

Ser Asn Ala Cys Ser Ser Gly Ala Ser Cys Asp Gly Cys Gly Arg Pro 1 5 10 15

Gly Arg Tyr Ala Val Arg Thr Tyr Gly Arg Glu Ile Gln Val Thr Glu 20 25 30

Leu Leu Asp Lys Leu Asp Phe Tyr Val Leu Pro Val Leu Asn Ile Asp 35 40 45

Gly Tyr Ile Tyr Thr Trp Thr Lys Ser Arg Phe Trp Arg Lys Thr Arg 50 55 60

Ser Thr His Thr Gly Ser Ser Cys Ile Gly Thr Asp Pro Asn Arg Asn 65 70 75 80

Phe Asp Ala Gly Trp Cys Glu Ile Gly Ala Ser Arg Asn Pro Cys Asp 85 90 95

Glu Thr Tyr Cys Gly Pro Ala Ala Glu Ser Glu Lys Glu Thr Lys Ala 100 105 110

Leu Ala Asp Phe Ile Arg Asn Lys Leu Ser Ser Ile Lys Ala Tyr Leu 115 120 125

Thr Ile His Ser Tyr Ser Gln Met Met Ile Tyr Pro Tyr Ser Tyr Ala 130 135 140

Tyr Lys Leu Gly Glu Asn Asn Ala Glu Leu Asn Ala Leu Ala Lys Ala 145 150 155 160

Thr Val Lys Glu Leu Ala Ser Leu His Gly Thr Lys Tyr Thr Tyr Gly
165 170 175

Pro Gly Ala Thr Thr Ile Tyr Pro Ala Ala Gly Gly Ser Asp Asp Trp
180 185 190

Ala Tyr Asp Gln Gly Ile Arg Tyr Ser Phe Thr Phe Glu Leu Arg Asp 200

Thr Gly Arg Tyr Gly Phe Leu Leu Pro Glu Ser Gln Ile Arg Ala Thr 215

Cys Glu Glu Thr Phe Leu Ala Ile Lys Tyr Val Ala Ser Tyr Val Leu 225 230

Glu His Leu Tyr

<210> 117 <211> 67 <212> PRT <213> Homo sapien

<400> 117

Met Leu Glu Arg Arg Ser Val Met Asp Ala Trp Ser Arg Pro Gly Thr

Val Ala Leu Arg Glu Ile Arg Arg Tyr Gln Lys Ser Thr Glu Leu Leu

Ile Arg Lys Leu Pro Phe Gln Arg Leu Val Arg Glu Ile Ala Gln Asp 35 40

Phe Lys Thr Asp Leu Arg Phe Gln Ser Ala Ala Ile Arg Cys Phe Ala 50 . 55

Gly Gly Lys

65

<210> 118

<211> 106 <212> PRT <213> Homo sapien

<400> 118

Met Leu Glu Arg Arg Ser Val Met Asp Ala Trp Ser Arg Pro Gly Thr 10

Val Ala Leu Arg Glu Ile Arg Arg Tyr Gln Lys Ser Thr Glu Leu Leu 20 25

Ile Arg Lys Leu Pro Phe Gln Arg Leu Val Arg Glu Ile Ala Gln Asp 35

Phe Lys Thr Asp Leu Arg Phe Gln Ser Ala Ala Ile Gly Ala Leu Gln 50

Glu Ala Ser Glu Ala Tyr Leu Val Gly Leu Phe Glu Asp Thr Asn Leu 70

Cys Ala Ile His Ala Lys Arg Val Thr Ile Met Pro Lys Asp Ile Gln

Leu Ala Arg Arg Ile Arg Gly Glu Arg Ala

<210> 119 <211> 257

<212> PRT

<213> Homo sapien

<400> 119

Met Ile Asn Leu Arg Glu Asn Ile Ser Leu Ser Ile His His Arg Ala

Lys Tyr Lys Ala Leu Ser Ser Thr Leu Tyr Thr Ser Ser His Gln Lys 20

Gln Ile Ser Ser Leu Arg Asp Glu Val Glu Ala Lys Ala Lys Leu Ile

Thr Asp Leu Gln Asp Gln Asn Gln Lys Met Met Leu Glu Gln Glu Arg

Leu Arg Val Glu His Glu Lys Leu Lys Ala Thr Asp Gln Glu Lys Ser

Arg Lys Leu His Glu Leu Thr Val Met Gln Asp Arg Arg Glu Gln Ala

Arg Gln Asp Leu Lys Gly Leu Glu Glu Thr Val Ser Ala Glu Ile Asp 105

Ser Asp Asp Thr Gly Gly Ser Ala Ala Gln Lys Gln Lys Ile Ser Phe

Leu Glu Asn Asn Leu Glu Gln Leu Thr Lys Val His Lys Gln Leu Val 130 135

WO 2004/052290 PCT/US2003/038829

131

Arg Asp Asn Ala Asp Leu Arg Cys Glu Leu Pro Lys Leu Glu Lys Arg 145 150 155 160

Leu Arg Ala Thr Ala Glu Arg Val Lys Ala Leu Glu Ser Ala Leu Lys
165 170 175

Glu Ala Lys Glu Asn Ala Ser Arg Asp Arg Lys Arg Tyr Gln Glu 180 185 190

Val Asp Arg Ile Lys Glu Ala Val Arg Ser Lys Asn Met Ala Arg Arg 195 200 205

Gly His Ser Ala Gln Ile Ala Lys Pro Ile Arg Pro Gly Gln His Pro 210 215 220

Ala Ala Ser Pro Thr His Pro Ser Ala Ile Arg Gly Gly Ala Phe 225 230 235 240

Val Gln Asn Ser Gln Pro Val Ala Val Arg Gly Gly Gly Gly Lys Gln 245 250 255

Val

<210> 120

<211> 190

<212> PRT

<213> Homo sapien

<400> 120

Thr Leu Tyr Thr Ser Lys Gln Glu Thr Glu Glu Gly Gly Arg Asp Arg

Ala Lys Glu Leu Gln Thr Leu His Asn Leu Arg Lys Leu Phe Val Gln 20 25 30

Asp Leu Ala Thr Arg Val Lys Lys Ser Ala Glu Ile Asp Ser Asp Asp 35 40 45

Thr Gly Gly Ser Ala Ala Gln Lys Gln Lys Ile Ser Phe Leu Glu Asn 50 55 60

Asn Leu Glu Gln Leu Thr Lys Val His Lys Gln Leu Val Arg Asp Asn 65 70 75 80

Ala Asp Leu Arg Cys Glu Leu Pro Lys Leu Glu Lys Arg Leu Arg Ala 85 90 95

Thr Ala Glu Arg Val Lys Ala Leu Glu Ser Ala Leu Lys Glu Ala Lys 105

Glu Asn Ala Ser Arg Asp Arg Lys Arg Tyr Gln Gln Glu Val Asp Arg 120

Ile Lys Glu Ala Val Arg Ser Lys Asn Met Ala Arg Arg Gly His Ser

Ala Gln Ile Ala Lys Pro Ile Arg Pro Gly Gln His Pro Ala Ala Ser 150 155

Pro Thr His Pro Ser Ala Ile Arg Gly Gly Ala Phe Val Gln Asn

Ser Gln Pro Val Ala Val Arg Gly Gly Gly Lys Gln Val

<210> 121

<211> 180

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (2)..(2) <223> X=any amino acid

<400> 121

Arg Xaa Gly Arg Asp Arg Ala Lys Glu Leu Gln Thr Leu His Asn Leu

Arg Lys Leu Phe Val Gln Asp Leu Ala Thr Arg Val Lys Lys Ser Ala

Glu Ile Asp Ser Asp Asp Thr Gly Gly Ser Ala Ala Gln Lys Gln Lys

Ile Ser Phe Leu Glu Asn Asn Leu Glu Gln Leu Thr Lys Val His Lys

Gln Leu Val Arg Asp Asn Ala Asp Leu Arg Cys Glu Leu Pro Lys Leu 70 75

Glu Lys Arg Leu Arg Ala Thr Ala Glu Arg Val Lys Ala Leu Glu Ser 85 90

133

Ala Leu Lys Glu Ala Lys Glu Asn Ala Ser Arg Asp Arg Lys Arg Tyr

Gln Gln Glu Val Asp Arg Ile Lys Glu Ala Val Arg Ser Lys Asn Met 115 120

Ala Arg Arg Gly His Ser Ala Gln Ile Ala Lys Pro Ile Arg Pro Gly

Gln His Pro Ala Ala Ser Pro Thr His Pro Ser Ala Ile Arg Gly Gly 150 155

Gly Ala Phe Val Gln Asn Ser Gln Pro Val Ala Val Arg Gly Gly

Gly Lys Gln Val

<210> 122 <211> 103

<212> PRT

<213> Homo sapien

<400> 122

Met Ala Leu Arg Thr Ala Thr Ser Trp Asp Gly Thr Ala Gly Pro Arg

Arg Ser Ala Arg Gly Glu Ala Arg Gly Pro Arg Ala Ala Leu Gly

Arg Arg Gly Arg Pro Glu Pro Glu Ala Thr Pro Ala Trp Arg Val Pro

Ala Gly Arg Arg Gly Leu Ser Gly Gly Trp Arg Ala Ala Ser Pro Cys

Thr Ala Pro Gly Arg Ser Cys Trp Gly Arg Arg Ala Ser Arg Ala Leu

Pro Pro Pro Pro Leu Leu Pro Leu Leu Gly Trp Ser Arg Ala Ala

Trp Ala Arg Ala Arg Trp Pro 100

<210> 123

<211> 126 <212> PRT <213> Homo sapien

<400> 123

Lys Ala Leu Leu Gly Leu Pro Leu Gly Ser Ala Cys Arg Ala Gly Pro

Thr Ala Pro Gly Ser Glu Pro Trp Arg Ser Gly Arg Pro Leu Pro Gly

Thr Gly Arg Pro Gly Arg Asp Asp Pro Arg Gly Ala Ala Arg Pro Ala 40

Gly Arg Ala Gln Pro Ser Gly Gly Ala Gly Arg Ser Pro Arg Pro 50

Pro Gln Pro Gly Gly Ser Arg Pro Gly Gly Gly Ser Ala Ala Gly

Gly Gly Pro Arg Leu His Ala Arg Arg Gln Gly Gly Ala Ala Gly Gly

Ala Gly Pro Arg Ala His Cys Arg Arg Arg Cys Cys Arg Tyr Cys

Trp Ala Gly Ala Gly Arg Pro Gly Pro Ala Arg Ala Gly Arg 120

<210> 124

<211> 55

<212> PRT

<213> Homo sapien

<400> 124

Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln

Gly Ile Ile Asn Phe Glu Gln Lys Ala Val Pro Val Gln Val Leu Thr

Leu Ile Leu Tyr Pro Glu Asn Thr Val Gly Gln Arg Met Lys Arg Gly 40

Met Leu Glu Thr Trp Ala Met 50

135

<210> 125 <211> 155 <212> PRT <213> Homo sapien

<400> 125

Ser Arg Arg Arg Gly Ala Gly Leu Arg Arg Ser Leu Leu Gln Arg Leu

Gly Phe Pro Leu Gln Ser Ser Glu Pro Gly Pro Arg Arg Gly Leu Ala

Ser Tyr Gly Asp Glu Gly Arg Val Arg Ala Glu Gly Arg Arg Pro Ser

Ala Gly His His Gln Phe Arg Ala Glu Gly Cys Thr Ser Ala Gly Pro

His Phe Asn Pro Leu Ser Arg Lys His Gly Gly Pro Lys Asp Glu Glu

Arg His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val 85

Ala Asp Val Ser Ile Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His

Cys Ile Ile Gly Arg Thr Leu Val Val His Glu Lys Ala Asp Asp Leu 115 120

Gly Lys Gly Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn Ala Gly Ser 130

Arg Leu Ala Cys Gly Val Ile Gly Ile Ala Gln 145 150

<210> 126

<211> 151

<212> PRT

<213> Homo sapien

Met Asp Gln Asp Gly Glu Ile Glu Asp Ser Thr Asn His Pro Leu His

Thr Asn Thr Asn Leu Thr Thr Ile Tyr Met His Thr His Lys Ser Phe 20 25

Ile Asn Leu Thr Thr Ile Tyr Met His Thr His Lys Thr Phe Val Arg

Thr Gln Asn Gln Ile Lys Lys Lys Gln Gln Asp Val Leu Gly Phe Leu

Glu Ala Asn Lys Ile Gly Phe Glu Glu Lys Asp Ile Ala Ala Asn Glu

Glu Asn Arg Lys Trp Met Arg Glu Asn Val Pro Glu Asn Ser Arg Pro

Ala Thr Gly Tyr Pro Leu Pro Pro Gln Ile Phe Asn Glu Ser Gln Tyr

Arg Gly Asp Tyr Asp Ala Phe Phe Glu Ala Arg Glu Asn Asn Ala Val

Tyr Ala Phe Leu Gly Leu Thr Ala Pro Pro Gly Ser Lys Glu Ala Glu 135

Val Gln Ala Lys Gln Gln Ala

<210> 127

<211> 416 <212> PRT <213> Homo sapien

<400> 127

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Leu Ala Ala Ala Val

Ser Cys Ala Val Ala Gln His Ala Pro Pro Val Ser Gly Leu Ser Arg

Gly Ala Glu Arg Gly Val Gln Val Arg Ala Arg Met Glu Ala Gln Trp

Thr Glu Asp Cys Arg Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr

Arg Gly Ala Val Pro Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr 70

Lys Arg Trp His Glu Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val 85 90 95

Ile Val Asn Ser Leu Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly
100 105 110

Lys Val Met Gln Val Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn 115 120 125

Phe Pro Gly Pro Phe Glu Glu Met Lys Gly Ile Ala Ala Val Thr 130 135 140

Asp Ile Pro Leu Gly Glu Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu 145 150 155 160

Phe Thr Ile Cys Thr Ser Ile Val Ala Glu Asp Lys Lys Gly His Leu 165 170 175

Ile His Gly Arg Asn Met Asp Phe Gly Val Phe Leu Gly Trp Asn Ile 180 185 190

Asn Asn Asp Thr Trp Val Ile Thr Glu Gln Leu Lys Pro Leu Thr Val

Asn Leu Asp Phe Gln Arg Asn Asn Lys Thr Val Phe Lys Ala Ser Ser 210 215 220

Phe Ala Gly Tyr Val Gly Met Leu Thr Gly Phe Lys Pro Gly Leu Phe 225 230 235 240

Ser Leu Thr Leu Asn Glu Arg Phe Ser Ile Asn Gly Gly Tyr Leu Gly 245 250 255

Ile Leu Glu Trp Ile Leu Gly Lys Lys Asp Ala Met Trp Ile Gly Phe 260 265 270

Leu Thr Arg Thr Val Leu Glu Asn Ser Thr Ser Tyr Glu Glu Ala Lys 275 280 285

Asn Leu Leu Thr Lys Thr Lys Ile Leu Ala Pro Ala Tyr Phe Ile Leu 290 295 300

Gly Gly Asn Gln Ser Gly Glu Gly Cys Val Ile Thr Arg Asp Arg Lys 305 310 315 320

Glu Ser Leu Asp Val Tyr Glu Leu Asp Ala Lys Gln Gly Arg Trp Tyr

138

330 · 335 325

Val Val Gln Thr Asn Tyr Asp Arg Trp Lys His Pro Phe Phe Leu Asp 345

Asp Arg Arg Thr Pro Ala Lys Met Cys Leu Asn Arg Thr Ser Gln Glu 360

Asn Ile Ser Phe Glu Thr Met Tyr Asp Val Leu Ser Thr Lys Pro Val

Leu Asn Lys Leu Thr Val Tyr Thr Thr Leu Ile Asp Val Thr Lys Gly 390 395

Gln Phe Glu Thr Tyr Leu Arg Asp Cys Pro Asp Pro Cys Ile Gly Trp 405 410

<210> 128

<211> 389 <212> PRT <213> Homo sapien

<400> 128

Val Ser Leu Ser Arg Gly Ala Glu Arg Gly Val Gln Val Arg Ala Arg

Met Glu Ala Gln Trp Thr Glu Asp Cys Arg Lys Ser Thr Tyr Pro Pro 25

Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro Trp Tyr Thr Ile Asn Leu 45 35 40

Asp Leu Pro Pro Tyr Lys Arg Trp His Glu Leu Met Leu Asp Lys Ala 50 55

Pro Val Leu Lys Val Ile Val Asn Ser Leu Lys Asn Met Ile Asn Thr 70

Phe Val Pro Ser Gly Lys Val Met Gln Val Val Asp Glu Lys Leu Pro

Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe Glu Glu Glu Met Lys Gly

Ile Ala Ala Val Thr Asp Ile Pro Leu Gly Glu Ile Ile Ser Phe Asn 120 125 115

Il€	Phe 130	Tyr	Glu	Leu	Phe	Thr 135	Ile	Сув	Thr	Ser	Ile 140	Val	Ala	Glu	Asp
Lys 145	Lys	Gly	His	Leu	Ile 150	His	Gly	Arg	Asn	Met 155	Asp	Phe	Gly	Val	Phe 160
Let	ı Gly	Trp	Asn	Ile 165	Asn	Asn	Asp	Thr	Trp 170	Val	Ile	Thr	Glu	Gln 175	Leu
Lyi	s Pro	Leu	Thr 180	Val	Asn	Leu	Asp	Phe 185	Gln	Arg	Asn	Asn	Lys 190	Thr	Val
Pho	e Lys	Ala 195	Ser	Ser	Phe	Ala	Gly 200	Tyr	Val	Gly	Met	Leu 205	Thr	Gly	Phe
Ly	s Pro 210	_	Leu	Phe	Ser	Leu 215	Thr	Leu	Asn	Glu	Arg 220	Phe	Ser	Ile	Asn
G1; 22	y Gly 5	Tyr	Leu	Gly	Ile 230	Leu	Glu	Trp	Ile	Leu 235	Gly	Lys	Lys	Asp	Ala 240
Ме	t Trp	Ile	Gly	Phe 245	Leu	Thr	Arg	Thr	Val 250	Leu	Glu	Asn	Ser	Thr 255	Ser
ту	r Glu	Glu	Ala 260		Asn	Leu	Leu	Thr 265	Lys	Thr	Lys	Ile	Leu 270	Ala	Pro
Al	a Tyr	Phe 275		Leu	Gly	Gly	Asn 280	Gln	Ser	Gly	Glu	Gly 285	Сув	Val	Ile
Th	r Arg 290		Arg	Lys	Glu	Ser 295		Asp	Val	Tyr	Glu 300	Leu	Asp	Ala	Lys
G1 30	n Gly 5	/ Arg	Trp	Tyr	Val 310		Gln	Thr	Asn	Tyr 315		Arg	Trp	Lys	His 320
Pr	o Phe	e Phe	e Leu	Asp 325		Arg	Arg	Thr	330		. Lys	Met	. Сув	1 Leu 335	Asn
Ar	g Thi	r Ser	Gln 340		. Asn	Ile	Ser	Phe		Thr	Met	Туг	Asp 350		Leu

Ser Thr Lys Pro Val Leu Asn Lys Leu Thr Val Tyr Thr Thr Leu Ile 355 360 365

WO 2004/052290 PCT/US2003/038829

140

Asp Val Thr Lys Gly Gln Phe Glu Thr Tyr Leu Arg Asp Cys Pro Asp 370 375 380

Pro Cys Ile Gly Trp 385

<210> 129

<211> 360

<212> PRT

<213> Homo sapien

<400> 129

Met Leu Ile Asn Ile Leu Asp Val Met Leu Glu Asn Asn Cys Asn Leu 1 5 10 15

Pro Arg Cys Ser Ala Arg Pro Lys Ala Ala Ser Leu Val Thr Cys Phe 20 25 30

Ile Leu Ser Leu Glu Ser Pro Gly Trp Gly Arg Lys Pro Pro Pro Ala 35 40 45

Gly Arg Ser Ser Thr Ala Pro Leu Ala Lys Ala His Thr His Thr Met 50 55 60

Lys Thr Leu Lys Leu Phe Leu Lys Thr Asn Phe Ser Pro Ile Val Met 65 70 75 80

Val Leu Tyr Ile Asn Thr Lys Phe Ser Phe Leu Ile Gly Glu Ile Ile 85 90 95

Ser Phe Asn Ile Phe Tyr Glu Leu Phe Thr Ile Cys Thr Ser Ile Val 100 105 110

Ala Glu Asp Lys Lys Gly His Leu Ile His Gly Arg Asn Met Asp Phe 115 120 125

Gly Val Phe Leu Gly Trp Asn Ile Asn Asn Asp Thr Trp Val Ile Thr 130 135 140

Glu Gln Leu Lys Pro Leu Thr Val Asn Leu Asp Phe Gln Arg Asn Asn 145 150 155 160

Lys Thr Val Phe Lys Ala Ser Ser Phe Ala Gly Tyr Val Gly Met Leu 165 170 175

Thr Gly Phe Lys Pro Gly Leu Phe Ser Leu Thr Leu Asn Glu Arg Phe 180 185 190

Ser Ile Asn Gly Gly Tyr Leu Gly Ile Leu Glu Trp Ile Leu Gly Lys 195 200 205

Lys Asp Ala Met Trp Ile Gly Phe Leu Thr Arg Thr Val Leu Glu Asn 210 215 220

Ser Thr Ser Tyr Glu Glu Ala Lys Asn Leu Leu Thr Lys Thr Lys Ile 225 230 235 240

Leu Ala Pro Ala Tyr Phe Ile Leu Gly Gly Asn Gln Ser Gly Glu Gly 245 250 255

Cys Val Ile Thr Arg Asp Arg Lys Glu Ser Leu Asp Val Tyr Glu Leu 260 265 270

Asp Ala Lys Gln Gly Arg Trp Tyr Val Val Gln Thr Asn Tyr Asp Arg 275 280 285

Trp Lys His Pro Phe Phe Leu Asp Asp Arg Arg Thr Pro Ala Lys Met 290 295 300

Cys Leu Asn Arg Thr Ser Gln Glu Asn Ile Ser Phe Glu Thr Met Tyr 305 310 315 320

Asp Val Leu Ser Thr Lys Pro Val Leu Asn Lys Leu Thr Val Tyr Thr 325 330 335

Thr Leu Ile Asp Val Thr Lys Gly Gln Phe Glu Thr Tyr Leu Arg Asp 340 345 350

Cys Pro Asp Pro Cys Ile Gly Trp 355 360

<210> 130

<211> 253

<212> PRT

<213> Homo sapien

<400> 130

Met Pro Gly Pro His His His Val Asp His Tyr Tyr His Cys Val Ser

1 10 15

Glu Met Ser Leu Lys His Val Phe Tyr Arg Trp Asn Ile Asn Asn Asp 20 25 30

142

Thr Trp Val Ile Thr Glu Gln Leu Lys Pro Leu Thr Val Asn Leu Asp

Phe Gln Arg Asn Asn Lys Thr Val Phe Lys Ala Ser Ser Phe Ala Gly

Tyr Val Gly Met Leu Thr Gly Phe Lys Pro Gly Leu Phe Ser Leu Thr

Leu Asn Glu Arg Phe Ser Ile Asn Gly Gly Tyr Leu Gly Ile Leu Glu

Trp Ile Leu Gly Lys Lys Asp Ala Met Trp Ile Gly Phe Leu Thr Arg 100 105

Thr Val Leu Glu Asn Ser Thr Ser Tyr Glu Glu Ala Lys Asn Leu Leu

Thr Lys Thr Lys Ile Leu Ala Pro Ala Tyr Phe Ile Leu Gly Gly Asn

Gln Ser Gly Glu Gly Cys Val Ile Thr Arg Asp Arg Lys Glu Ser Leu

Asp Val Tyr Glu Leu Asp Ala Lys Gln Gly Arg Trp Tyr Val Val Gln

Thr Asn Tyr Asp Arg Trp Lys His Pro Phe Phe Leu Asp Asp Arg Arg 180 185

Thr Pro Ala Lys Met Cys Leu Asn Arg Thr Ser Gln Glu Asn Ile Ser 195

Phe Glu Thr Met Tyr Asp Val Leu Ser Thr Lys Pro Val Leu Asn Lys 210 215

Leu Thr Val Tyr Thr Thr Leu Ile Asp Val Thr Lys Gly Gln Phe Glu 235 225 230

Thr Tyr Leu Arg Asp Cys Pro Asp Pro Cys Ile Gly Trp 245

<210> 131 <211> 255 <212> PRT

<213> Homo sapien

<400> 131

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Ala Ala Val 1 5 10 15

Ser Cys Ala Val Ala Gln His Ala Pro Pro Trp Thr Glu Asp Cys Arg 20 25 30

Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro 35 40 45

Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His Glu
50 55 60

Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val Ile Val Asn Ser Leu 65 70 75 80

Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln Val 85 90 95

Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe 100 105 110

Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu Gly
115 120 125

Glu Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu Phe Thr Ile Cys Thr 130 135 140

Ser Ile Val Ala Glu Asp Lys Gly His Leu Ile His Gly Arg Asn 145 150 155 160

Met Asp Phe Gly Val Phe Leu Gly Trp Asn Ile Asn Asn Asp Thr Trp 165 170 175

Val Ile Thr Glu Gln Leu Lys Pro Leu Thr Val Asn Leu Asp Phe Gln 180 185 190

Arg Asn Asn Lys Thr Val Phe Lys Ala Ser Ser Phe Ala Gly Tyr Val 195 200 205

Gly Met Leu Thr Gly Phe Lys Pro Gly Leu Phe Ser Leu Thr Leu Asn 210 215 220

Glu Arg Phe Ser Ile Asn Gly Gly Tyr Leu Glu Ile Leu Gln Asn Pro 225 230 235 240

Cys Phe Ser His Val Leu Asp Val Leu Phe Cys Leu Leu Leu

<210> 132

<211> 256

<212> PRT

<213> Homo sapien

<400> 132

Ser Asp Ala Gly Pro Glu Leu Arg Arg Leu Ser Pro Pro Gly Cys Arg

Arg Gln Leu Cys Arg Arg Ala His Ala Pro Pro Trp Thr Glu Asp Cys

Arg Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val

Pro Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His

Glu Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val Ile Val Asn Ser 70

Leu Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln 90

Val Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro 100 105

Phe Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu 115 120

Gly Glu Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu Phe Thr Ile Cys 130 135

Thr Ser Ile Val Ala Glu Asp Lys Lys Gly His Leu Ile His Gly Arg

Asn Met Asp Phe Gly Val Phe Leu Gly Trp Asn Ile Asn Asn Asp Thr 165 170

Trp Val Ile Thr Glu Gln Leu Lys Pro Leu Thr Val Asn Leu Asp Phe 185 180

Gln Arg Asn Asn Lys Thr Val Phe Lys Ala Ser Ser Phe Ala Gly Tyr

145

205 200 195

Val Gly Met Leu Thr Gly Phe Lys Pro Gly Leu Phe Ser Leu Thr Leu 215 220

Asn Glu Arg Phe Ser Ile Asn Gly Gly Tyr Leu Glu Ile Leu Gln Asn 230

Pro Cys Phe Ser His Val Leu Asp Val Leu Phe Cys Leu Leu Leu Leu

<210> 133

<211> 245 <212> PRT <213> Homo sapien

<400> 133

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Leu Ala Ala Val

Ser Cys Ala Val Ala Gln His Ala Pro Pro Trp Thr Glu Asp Cys Arg 25

Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro 40

Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His Glu 55 60

Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val Ile Val Asn Ser Leu 70

Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln Val 85

Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe 100 105

Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu Gly 115

Glu Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu Phe Thr Ile Cys Thr 140 130

Ser Ile Val Ala Glu Asp Lys Lys Gly His Leu Ile His Gly Arg Asn 150 155 145

Met Asp Phe Gly Val Phe Leu Gly Trp Asn Ile Asn Asn Asp Thr Trp

Val Ile Thr Glu Gln Leu Lys Pro Leu Thr Val Asn Leu Asp Phe Gln 185

Arg Asn Asn Lys Thr Gly Leu Phe Ser Leu Thr Leu Asn Glu Arg Phe

Ser Ile Asn Gly Gly Tyr Leu Gly Ile Leu Glu Trp Ile Leu Gly Lys

Lys Glu Gly Arg Gly Leu Ala Gly Glu His Gly Pro His Val Ile Asn 230 235 225

Pro Pro Val Arg Thr

<210> 134 <211> 246 <212> PRT <213> Homo sapien

<400> 134

Ser Asp Ala Gly Pro Glu Leu Arg Arg Leu Ser Pro Pro Gly Cys Arg

Arg Gln Leu Cys Arg Arg Ala His Ala Pro Pro Trp Thr Glu Asp Cys 20 25

Arg Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val

Pro Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His 50

Glu Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val Ile Val Asn Ser 70

Leu Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln

Val Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro 105 100 110

Phe Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu

147 115 120 125 Gly Glu Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu Phe Thr Ile Cys Thr Ser Ile Val Ala Glu Asp Lys Lys Gly His Leu Ile His Gly Arg 155 150 Asn Met Asp Phe Gly Val Phe Leu Gly Trp Asn Ile Asn Asn Asp Thr 170 Trp Val Ile Thr Glu Gln Leu Lys Pro Leu Thr Val Asn Leu Asp Phe 185 Gln Arg Asn Asn Lys Thr Gly Leu Phe Ser Leu Thr Leu Asn Glu Arg 195 200

Phe Ser Ile Asn Gly Gly Tyr Leu Gly Ile Leu Glu Trp Ile Leu Gly 210 215

Lys Lys Glu Gly Arg Gly Leu Ala Gly Glu His Gly Pro His Val Ile 225 230 235

Asn Pro Pro Val Arg Thr

<210> 135 <211> 170 <212> PRT <213> Homo sapien

<400> 135

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Leu Ala Ala Val 5

Ser Cys Ala Val Ala Gln His Ala Pro Pro Trp Thr Glu Asp Cys Arg

Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro

Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His Glu

Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val Ile Val Asn Ser Leu 75 65 70

Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln Val

Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe 105

Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu Gly 120

Lys Val His Leu Glu Ala Leu Lys Lys Lys Val Ile Lys Phe Phe Tyr

Lys Phe Pro Leu Arg Cys Asp Ile His Thr Ala Lys Val Leu Tyr Val 150 155 145

Leu Arg Tyr Thr Ala Gln Val His Arg Ser

<210> 136 <211> 171 <212> PRT <213> Homo sapien

<400> 136

Ser Asp Ala Gly Pro Glu Leu Arg Arg Leu Ser Pro Pro Gly Cys Arg

Arg Gln Leu Cys Arg Arg Ala His Ala Pro Pro Trp Thr Glu Asp Cys 20 25

Arg Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val

Pro Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His 50

Glu Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val Ile Val Asn Ser 70 65

Leu Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln 85

Val Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro 105 100 110

Phe Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu

149

125 115 120

Gly Lys Val His Leu Glu Ala Leu Lys Lys Lys Val Ile Lys Phe Phe

Tyr Lys Phe Pro Leu Arg Cys Asp Ile His Thr Ala Lys Val Leu Tyr 150 155

Val Leu Arg Tyr Thr Ala Gln Val His Arg Ser 165

<210> 137 <211> 162 <212> PRT <213> Homo sapien

<400> 137

Met Glu Thr Asp Lys Gln Glu Lys Lys Glu Val Pro Lys Cys Gly Phe

Leu Pro Gly Asn Glu Lys Val Leu Ser Leu Leu Ala Leu Val Lys Pro 25

Glu Val Trp Thr Leu Lys Glu Lys Cys Ile Leu Val Ile Thr Trp Ile

Gln His Leu Ile Pro Lys Ile Glu Asp Gly Asn Asp Phe Gly Val Ala 55

Ile Gln Glu Lys Val Leu Glu Arg Val Asn Ala Val Lys Thr Lys Val 70 65

Glu Ala Phe Gln Thr Thr Ile Ser Lys Tyr Phe Ser Glu Arg Gly Asp 90

Ala Val Ala Lys Ala Ser Lys Glu Thr His Val Met Asp Tyr Arg Ala 100 105 110

Leu Val His Glu Arg Asp Glu Ala Ala Tyr Gly Glu Leu Arg Ala Met 115

Val Leu Asp Leu Arg Ala Phe Tyr Ala Glu Leu Tyr His Ile Ile Ser 130

Ser Asn Leu Glu Lys Ile Val Asn Pro Lys Gly Glu Glu Lys Pro Ser 150 155 145

150

Met Tyr

<210> 138 <211> 163 <212> PRT

<213> Homo sapien

<400> 138

Met Arg Lys Gly Leu Asn Pro Leu Phe Leu Thr Val Pro Lys Cys Gly

Phe Leu Pro Gly Asn Glu Lys Val Leu Ser Leu Leu Ala Leu Val Lys 25 20

Pro Glu Val Trp Thr Leu Lys Glu Lys Cys Ile Leu Val Ile Thr Trp

Ile Gln His Leu Ile Pro Lys Ile Glu Asp Gly Asn Asp Phe Gly Val

Ala Ile Gln Glu Lys Val Leu Glu Arg Val Asn Ala Val Lys Thr Lys

Val Glu Ala Phe Gln Thr Thr Ile Ser Lys Tyr Phe Ser Glu Arg Gly 85 90 95

Asp Ala Val Ala Lys Ala Ser Lys Glu Thr His Val Met Asp Tyr Arg 100 105

Ala Leu Val His Glu Arg Asp Glu Ala Ala Tyr Gly Glu Leu Arg Ala 115

Met Val Leu Asp Leu Arg Ala Phe Tyr Ala Glu Leu Tyr His Ile Ile 130

Ser Ser Asn Leu Glu Lys Ile Val Asn Pro Lys Gly Glu Glu Lys Pro 150 155

Ser Met Tyr

<210> 139

<211> 269

<212> PRT

<213> Homo sapien

<400> 139

Gly Tyr Tyr Lys Val Leu Gly Lys Gly Lys Leu Pro Lys Gln Pro Val 1 5 10 15

Ile Val Lys Gly Gln Phe Phe Lys Pro Lys Lys Pro Glu Glu Lys Ile 20 25 30

Lys Ser Val Gly Val Arg Leu Ser Gly Glu Ala Arg Lys Gln Val Glu 35 40 45

Val Phe Arg Gln Asn Leu Phe Gln Gly Ala Glu Glu Phe Leu Tyr Arg 50 55 60

Phe Leu Pro Gln Lys Ile Ile Tyr Leu Asn Gln Leu Leu Gln Glu Asp 65 70 75 80

Ser Leu Asn Val Ala Asp Leu Thr Ser Leu Arg Ala Pro Leu Asp Ile 85 90 95

Pro Ile Pro Asp Pro Pro Pro Lys Asp Asp Glu Met Glu Thr Asp Lys

Gln Glu Lys Lys Glu Val Pro Lys Cys Gly Phe Leu Pro Gly Asn Glu 115 120 125

Lys Val Leu Ser Leu Leu Ala Leu Val Lys Pro Glu Val Trp Thr Leu 130 135 140

Lys Glu Lys Cys Ile Leu Val Ile Thr Trp Ile Gln His Leu Ile Pro 145 150 155 160

Lys Ile Glu Asp Gly Asn Asp Phe Gly Val Ala Ile Gln Glu Lys Val 165 170 175

Leu Glu Arg Val Asn Ala Val Lys Thr Lys Val Glu Ala Phe Gln Thr 180 185 190

Thr Ile Ser Lys Tyr Phe Ser Glu Arg Gly Asp Ala Val Ala Lys Ala 195 200 205

Ser Lys Glu Thr His Val Met Asp Tyr Arg Ala Leu Val His Glu Arg 210 215 220

Asp Glu Ala Ala Tyr Gly Glu Leu Arg Ala Met Val Leu Asp Leu Arg 225 230 235 240

Ala Phe Tyr Ala Glu Leu Tyr His Ile Ile Ser Ser Asn Leu Glu Lys 245 250 255

Ile Val Asn Pro Lys Gly Glu Glu Lys Pro Ser Met Tyr 260 265

<210> 140

<211> 229

<212> PRT

<213> Homo sapien

<400> 140

Ala Gly Lys Pro Ala Asn Arg Trp Arg Ser Ser Gly Arg Ile Phe Ser 1 5 10 15

Arg Ala Glu Glu Phe Leu Tyr Arg Phe Leu Pro Gln Lys Ile Ile Tyr 20 25 30

Leu Asn Gln Leu Leu Gln Glu Asp Ser Leu Asn Val Ala Asp Leu Thr 35 40 45

Ser Leu Arg Ala Pro Leu Asp Ile Pro Ile Pro Asp Pro Pro Pro Lys 50 55 60

Asp Asp Glu Met Glu Thr Asp Lys Gln Glu Lys Lys Glu Val Pro Lys 65 70 75 80

Cys Gly Phe Leu Pro Gly Asn Glu Lys Val Leu Ser Leu Leu Ala Leu 85 90 95

Val Lys Pro Glu Val Trp Thr Leu Lys Glu Lys Cys Ile Leu Val Ile 100 105 110

Thr Trp Ile Gln His Leu Ile Pro Lys Ile Glu Asp Gly Asn Asp Phe 115 120 125

Gly Val Ala Ile Gln Glu Lys Val Leu Glu Arg Val Asn Ala Val Lys 130 135 140

Thr Lys Val Glu Ala Phe Gln Thr Thr Ile Ser Lys Tyr Phe Ser Glu 145 150 155 160

Arg Gly Asp Ala Val Ala Lys Ala Ser Lys Glu Thr His Val Met Asp
165 170 175

Tyr Arg Ala Leu Val His Glu Arg Asp Glu Ala Ala Tyr Gly Glu Leu

190 185 180

Arg Ala Met Val Leu Asp Leu Arg Ala Phe Tyr Ala Glu Leu Tyr His 195 200

Ile Ile Ser Ser Asn Leu Glu Lys Ile Val Asn Pro Lys Gly Glu Glu

Lys Pro Ser Met Tyr 225

<210> 141

<211> 253 <212> PRT

<213> Homo sapien

<400> 141

Gly Tyr Tyr Lys Val Leu Gly Lys Gly Lys Leu Pro Lys Gln Pro Val

Ile Val Lys Gly Gln Phe Phe Lys Pro Lys Lys Pro Glu Glu Lys Ile

Lys Ser Val Gly Val Arg Leu Ser Gly Glu Ala Arg Lys Gln Val Glu

Val Phe Arg Gln Asn Leu Phe Gln Gly Ala Glu Glu Phe Leu Tyr Arg 50 55

Phe Leu Pro Gln Lys Ile Ile Tyr Leu Asn Gln Leu Leu Gln Glu Asp 70

Ser Leu Asn Val Ala Asp Leu Thr Ser Leu Arg Ala Pro Leu Asp Ile 85

Pro Ile Pro Asp Pro Pro Pro Lys Asp Asp Glu Met Glu Thr Asp Lys 100 105

Gln Glu Lys Lys Glu Val Pro Lys Cys Gly Phe Leu Pro Gly Asn Glu 115

Lys Val Leu Ser Leu Leu Ala Leu Val Lys Pro Glu Val Trp Thr Leu 140 130 135

Lys Glu Lys Cys Ile Leu Val Ile Thr Trp Ile Gln His Leu Ile Pro 150 155

Lys Ile Glu Asp Gly Asn Asp Phe Gly Val Ala Ile Gln Glu Lys Val

Leu Glu Arg Val Asn Ala Val Lys Thr Lys Val Glu Ala Phe Gln Thr 185

Thr Ile Ser Lys Tyr Phe Ser Glu Arg Gly Asp Ala Val Ala Lys Ala 200

Ser Lys Glu Thr His Val Met Asp Tyr Arg Ala Leu Val His Glu Arg

Asp Glu Ala Ala Tyr Gly Glu Leu Arg Ala Met Val Leu Asp Leu Arg 225 230

Ala Phe Tyr Gln Pro Gly Glu Asn Cys Gln Pro Lys Gly

<210> 142 <211> 213

<212> PRT

<213> Homo sapien

<400> 142

Ala Gly Lys Pro Ala Asn Arg Trp Arg Ser Ser Gly Arg Ile Phe Ser

Arg Ala Glu Glu Phe Leu Tyr Arg Phe Leu Pro Gln Lys Ile Ile Tyr 25 20

Leu Asn Gln Leu Leu Gln Glu Asp Ser Leu Asn Val Ala Asp Leu Thr 35 40

Ser Leu Arg Ala Pro Leu Asp Ile Pro Ile Pro Asp Pro Pro Pro Lys

Asp Asp Glu Met Glu Thr Asp Lys Gln Glu Lys Lys Glu Val Pro Lys

Cys Gly Phe Leu Pro Gly Asn Glu Lys Val Leu Ser Leu Leu Ala Leu

Val Lys Pro Glu Val Trp Thr Leu Lys Glu Lys Cys Ile Leu Val Ile 100 105

Thr Trp Ile Gln His Leu Ile Pro Lys Ile Glu Asp Gly Asn Asp Phe

120 125 115

Gly Val Ala Ile Gln Glu Lys Val Leu Glu Arg Val Asn Ala Val Lys 135

Thr Lys Val Glu Ala Phe Gln Thr Thr Ile Ser Lys Tyr Phe Ser Glu

Arg Gly Asp Ala Val Ala Lys Ala Ser Lys Glu Thr His Val Met Asp 165 170

Tyr Arg Ala Leu Val His Glu Arg Asp Glu Ala Ala Tyr Gly Glu Leu 185 180

Arg Ala Met Val Leu Asp Leu Arg Ala Phe Tyr Gln Pro Gly Glu Asn 200

Cys Gln Pro Lys Gly 210

<210> 143

<211> 60

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (17)..(17) <223> X=any amino acid

<400> 143

Met Gly Gly Asn His Phe Ile Leu Lys Lys Asn Phe Phe Leu Phe 5

Xaa Leu Phe Ile Ser Ser Ser Glu Cys Ser Asp Ile Phe Ser Met Gly 25

Ser Lys Val Pro Lys Tyr Met Ile Ala Ser Gly Asn Ile Gly Asp Arg

Ile Arg Tyr Trp Arg Phe Ser Thr Phe Ile Cys Val 50

<210> 144

<211> 58

<212> PRT

<213> Homo sapien

156

<220>

<221> MISC_FEATURE

<222> (16)..(16) <223> X=any amino acid

<220>

<221> MISC FEATURE

<222> (50)..(50)

<223> X=any amino acid

<400> 144

Ser His Ala Gln Asn Val Val Thr Lys Phe Cys Pro Lys Lys Ile Xaa

Pro Gly Leu Ala Thr Ala Ile Arg Arg Thr Val Leu Lys Arg Pro 25

Thr Met Gly Gly Asn His Phe Ile Leu Lys Lys Asn Phe Phe Phe Leu 40

Phe Xaa Leu Phe Ile Ser Ser Ser Glu Cys

<210> 145 <211> 429 <212> PRT <213> Homo sapien

<400> 145

Met Asn Ser Cys Asp Ser Ala Glu Ala Val Leu Ser Ser Glu Thr Arg

Val Ala Pro Ser Val Leu Arg Leu Ala Met Thr Ser Tyr Ser Tyr Arg

Gln Ser Ser Ala Thr Ser Ser Phe Gly Gly Leu Gly Gly Gly Ser Val 40

Arg Phe Gly Pro Gly Val Ala Phe Arg Ala Pro Ser Ile His Gly Val

Leu Arg Leu Ala Ala Ala Val Ser Arg Val Leu Arg Pro Ala Leu Cys 70 75

Pro Arg Pro Pro Arg Gly Gly Tyr Gly Gly Ala Gly Tyr Gly Trp Arg 85 90

WO 2004/052290 PCT/US2003/038829

157

Pro Asp Arg Val Arg Arg Ala Ala Gly Gly Gln Arg Glu Ala Asn His

Ala Glu Pro Gln Arg Pro Pro Gly Leu Leu Pro Gly Gln Gly Ala Arg 115 120 125

Pro Gly Gly Gln Arg Arg Ala Arg Gly Glu Asp Pro Arg Leu Val 130 135 140

Pro Glu Ser Arg Gly Pro Gly Pro Ser Arg Asp Tyr Ser His Tyr Tyr 145 150 155 160

Thr Thr Ile Gln Asp Leu Arg Asp Lys Ile Leu Gly Ala Thr Ile Glu 165 170 175

Asn Ser Arg Ile Val Leu Gln Ile Asp Asn Ala Arg Leu Ala Ala Asp 180 185 190

Asp Phe Arg Thr Lys Phe Glu Thr Glu Gln Ala Leu Arg Met Ser Val 195 200 205

Glu Ala Asp Ile Asn Gly Leu Arg Arg Val Leu Asp Glu Leu Thr Leu 210 220

Ala Arg Thr Asp Leu Glu Met Gln Ile Glu Gly Leu Lys Glu Glu Leu 225 230 235 240

Ala Tyr Leu Lys Lys Asn His Glu Glu Glu Ile Ser Thr Leu Arg Gly
245 250 255

Gln Val Gly Gly Gln Val Ser Val Glu Val Asp Ser Ala Pro Gly Thr 260 265 270

Asp Leu Ala Lys Ile Leu Ser Asp Met Arg Ser Asn Met Arg Ser Trp 275 280 285

Pro Ser Arg Thr Arg Lys Asp Ala Glu Ala Trp Phe Thr Ser Arg Thr 290 295 300

Glu Glu Leu Asn Arg Glu Ser Leu Ala His Gly Ala Ala Pro Asp Glu 305 310 315 320

Thr Gly Pro Glu Val Tyr Val Met His Ala Ser Ala Pro Phe Gln Gly 325 330 335

Ser Leu Arg Ile Asp Ala Ala Gly His Arg Gln Ser Asp Glu Gln Leu

350 345 340

Ser Leu Asp Arg Gln His Cys Gly Arg Asn Arg Arg Ala Arg Leu Gly 360 355

Ala Gln Leu Ala Ala Tyr Pro Gly Ala Asp Gln Leu Val Ile Glu Asp

Pro Asp Trp Ala Asp Val Arg Ala Asp Ser Glu Arg Gln Asn Gln Glu 395

Tyr Gln Arg Phe Met Asp Ile Thr Ser Arg Leu Glu Ala Gly Asp Leu 405 410

Pro Thr Tyr Ser Glu Leu Val Glu Gly Arg Glu Asp His 420

<210> 146 <211> 251 <212> PRT

<213> Homo sapien

<400> 146

Leu Pro Thr Ala Ile Ala Ser Arg Arg Pro Arg Pro Ser Glu Ala

Trp Ala Ala Ala Pro Cys Val Leu Gly Arg Gly Ser Leu Phe Ala Arg 25 20

Pro Ala Phe Thr Gly Cys Ser Gly Trp Pro Arg Arg Tyr Pro Val Ser 40 45

Ser Gly Pro Leu Cys Val Leu Val Leu Leu Gly Gly Ala Thr Ala Gly 50

Arg Ala Thr Ala Gly Val Leu Thr Cys Val Arg Arg Ala Ala Gly Gly 70

Gln Arg Glu Ala Asn His Ala Glu Pro Gln Arg Pro Pro Gly Leu Leu

Pro Gly Gln Gly Ala Arg Pro Gly Gly Gln Arg Arg Ala Arg Gly 100

Glu Asp Pro Arg Leu Val Pro Glu Ser Arg Gly Pro Gly Pro Ser Arg 125 120

Asp Tyr Ser His Tyr Tyr Thr Thr Ile Gln Asp Leu Arg Asp Lys Ile 135 130

Leu Gly Ala Thr Ile Glu Asn Ser Arg Ile Val Leu Gln Ile Asp Asn 155 150

Ala Arg Leu Ala Ala Asp Asp Phe Arg Thr Lys Phe Glu Thr Glu Gln 170

Ala Leu Arg Met Ser Val Glu Ala Asp Ile Asn Gly Leu Arg Arg Val 185 190

Leu Asp Glu Leu Thr Leu Ala Arg Thr Asp Leu Glu Met Gln Ile Glu 195 200

Gly Leu Lys Glu Glu Leu Ala Tyr Leu Lys Lys Asn His Glu Glu Glu 215 210

Ile Ser Thr Leu Arg Gly Gln Val Gly Gln Val Ser Val Glu Val 235 225 230

Asp Ser Ala Pro Gly Thr Asp Leu Ala Lys Ile

<210> 147

<211> 175 <212> PRT <213> Homo sapien

<400> 147

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Leu Ala Ala Ala Val 5

Ser Cys Ala Val Ala Gln His Ala Pro Pro Trp Thr Glu Asp Cys Arg 20

Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro 35

Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His Glu 50

Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val Ile Val Asn Ser Leu 70 75 65

Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Ile Met Gln Val

95 85 90

Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe 105 100

Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu Gly

Lys Val His Leu Glu Ala Leu Lys Lys Lys Val Ile Lys Phe Phe Tyr

Lys Phe Pro Leu Arg Cys Asp Ile His Thr Ala Gln Val Leu Tyr Val 145 150

Leu Asp Ile Gln His Arg Cys Thr Gly Leu Arg Tyr Thr Ala Gln 170

<210> 148 <211> 171 <212> PRT <213> Homo sapien

<400> 148

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Leu Ala Ala Val

Ser Cys Ala Val Ala Gln His Ala Pro Pro Trp Thr Glu Asp Cys Arg 20 25

Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro 40

Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His Glu 50

Leu Met Leu Asp Lys Ala Pro Val Leu Lys Val Ile Val Asn Ser Leu 70

Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Ile Met Gln Val

Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe 100 105

Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu Gly 120

161 Lys Val His Leu Glu Ala Leu Lys Lys Lys Val Ile Lys Phe Phe Tyr 130 135 Lys Phe Pro Leu Arg Cys Asp Ile Arg Ala Gln Val Leu Asp Ile Gln 155 Leu Ser Glu Ala Ser Glu Met His Ala Cys Met 165 <210> 149 <211> 115 <212> PRT <213> Homo sapien <220> <221> MISC FEATURE <222> (3)..(4) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (7)..(8) <223> X=any amino acid <220> <221> MISC_FEATURE
<222> (11)..(11)
<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (17)..(18)

<223> X=any amino acid

<220>

<221> MISC_FEATURE
<222> (21)..(21)
<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (23)..(23) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (27)..(27)

<223> X=any amino acid

<220>

WO 2004/052290 PCT/US2003/038829

162

```
<221> MISC_FEATURE
<222> (33)..(33)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (40)..(41)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (45)..(45)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (60)..(60)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (73)..(76)
<223> X=any amino acid
<220>
<221> MISC FEATURE
<222> (80)..(80)
<223> X=any amino acid
<400> 149
Met Lys Xaa Xaa Gly Phe Xaa Xaa Leu Pro Xaa Thr His Gly Gln Thr
Xaa Xaa His Arg Xaa Pro Xaa Ala Val Ala Xaa Gly Asp Ile Gly Arg
                    25
              20
Xaa Trp Pro Gly Thr Lys Met Xaa Xaa Lys Met Gly Xaa Ile Tyr Arg
Thr Glu Tyr Gly Leu Lys Val Trp Arg Ile Asn Xaa Lys His Asn Ile
Ile Tyr Val Asn Gly Phe Val Pro Xaa Xaa Xaa Cys Leu Val Xaa
                       70
                                   75
 Ile Lys Asp Ser Lys Leu Pro Ala Tyr Lys Asp Leu Gly Lys Asn Leu
                  85
                                       90
```

163

Pro Phe Pro Thr Tyr Phe Pro Asp Gly Asp Glu Glu Gly Thr Ala Arg

Arg Phe Val 115

<210> 150

<211> 392

<212> PRT <213> Homo sapien

<400> 150

Met Arg Val Ala Gly Lys Glu Pro Gly Arg Arg Pro Pro Gly Met Ser 10 5

Tyr Asp Arg Ala Ile Thr Val Phe Ser Pro Asp Gly His Leu Phe Gln 25

Val Glu Tyr Ala Gln Glu Ala Val Lys Lys Gly Ser Thr Ala Val Gly

Val Arg Gly Arg Asp Ile Val Val Leu Gly Val Glu Lys Lys Ser Val

Ala Lys Leu Gln Asp Glu Arg Thr Val Arg Lys Ile Cys Ala Leu Asp 70

Asp Asn Val Cys Met Ala Phe Ala Gly Leu Thr Ala Asp Ala Arg Ile 90 85

Val Ile Asn Arg Ala Arg Val Glu Cys Gln Ser His Arg Leu Thr Cys

Gly Gly Pro Gly His Cys Gly Val His Gln Pro Cys Tyr Ile Ala Ser

Leu Lys Gln Arg Tyr Thr Gln Ser Asn Gly Arg Arg Pro Phe Gly Ile 135

Ser Ala Leu Ile Val Gly Phe Asp Phe Asp Gly Thr Pro Arg Leu Tyr 150

Gln Thr Asp Pro Ser Gly Thr Tyr His Ala Trp Lys Ala Asn Ala Ile 165 170

Gly Arg Gly Ala Lys Ser Val Arg Glu Phe Leu Glu Lys Asn Tyr Thr 185 180

Asp Glu Ala Ile Glu Thr Asp Asp Leu Thr Ile Lys Leu Val Ile Lys 195 200 205

Ala Leu Leu Glu Val Val Gln Ser Gly Gly Lys Asn Ile Glu Leu Ala 210 215 220

Val Met Arg Arg Asp Gln Ser Leu Lys Ile Leu Asn Pro Glu Glu Ile 225 230 235 240

Glu Lys Tyr Val Ala Glu Ile Asp Thr Glu Asn Lys Lys Asp Thr Glu 245 250 255

Lys Lys Glu Tyr Lys Lys Ala Ser Trp Met Asn Lys Met Ser Leu 260 265 . 270

Leu Cys Asn Phe Ile His Asn Phe Ser Ile Gln Leu Met Asp Glu Ser 275 280 285

Arg Cys Val Gly Leu Ser Ile Pro Phe Ile His Thr Glu Cys Pro Thr 290 295 300

Ile Asn Phe Arg Ile Phe Arg Leu Leu Gln Arg Pro Ser Phe Pro Trp 305 310 315 320

Gly Ala Gly Gly Pro Arg Asn Pro Pro Gly Gly Pro Tyr Leu Ala Gly
325 330 335

Cys Pro Gly Leu Arg Leu Pro Arg Arg Ala Pro Tyr Gly Ser Ala His 340 345 350

Leu Ile Pro His Gly Tyr Gly Asp Arg Ala Phe Thr Arg Ser Gly Asp 355 360 365

Gly Val Thr Ser Leu Ala Arg Asp Leu Cys Glu Gly Pro Leu Ile Arg 370 375 380

Ala Cys Thr Cys Trp His Met Pro 385 390

<210> 151

<211> 252

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

165

<222> (64)..(64) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (238)..(240) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (244)..(244) <223> X=any amino acid <220> <221> MISC FEATURE <222> (247)..(247) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (252)..(252) <223> X=any amino acid <400> 151 Ala Thr Thr Ala Pro Ser Pro Ser Ser Arg Pro Thr Ala Thr Ser Ser 10 Lys Trp Ser Thr Arg Arg Pro Ser Arg Arg Ala Arg Pro Arg Leu 20 25 Val Phe Glu Glu Glu Thr Leu Leu Phe Leu Val Trp Arg Arg Ser Gln 35 45 Trp Pro Asn Cys Arg Met Lys Glu Gln Cys Gly Arg Ser Val Leu Xaa 55 Asp Asp Asn Val Cys Met Ala Phe Ala Gly Leu Thr Ala Asp Ala Arg 70 Ile Val Ile Asn Arg Ala Arg Val Glu Cys Gln Ser His Arg Leu Thr Cys Gly Gly Pro Gly His Cys Gly Val His Gln Pro Cys Tyr Ile Ala 100 Ser Leu Lys Gln Arg Tyr Thr Gln Ser Asn Gly Arg Arg Pro Phe Gly

120

115

166

Ile Ser Ala Leu Ile Val Gly Phe Asp Phe Asp Gly Thr Pro Arg Leu

Tyr Gln Thr Asp Pro Ser Gly Thr Tyr His Ala Trp Lys Ala Asn Ala

Ile Gly Arg Gly Ala Lys Ser Val Arg Glu Phe Leu Glu Lys Asn Tyr

Thr Asp Glu Ala Ile Glu Thr Asp Asp Leu Thr Ile Lys Leu Val Ile 180 185

Lys Ala Leu Leu Glu Val Val Gln Ser Gly Gly Lys Asn Ile Glu Leu

Ala Val Met Arg Arg Asp Gln Ser Leu Lys Ile Leu Asn Pro Glu Glu 210

Ile Glu Lys Tyr Val Ala Glu Ile Asp Thr Glu Asn Lys Xaa Xaa Xaa 235 230 225

Leu Lys Arg Xaa Asn Thr Xaa Arg Lys His His Xaa 245

<210> 152

<211> 69 <212> PRT <213> Homo sapien

<400> 152

Met Gln Ile Met Tyr Gly Ile Ser Ser Ser Cys Ile Leu Leu Tyr Ile

Asp Ala Gln Gly His Gln Arg Leu Tyr Asn Cys Thr Leu Ala Thr Asn 20

Leu Gln Cys Leu Tyr Arg Val Ser Gly Lys Ile Ser Gly Arg Ser Ser

Asp Arg Tyr Thr Arg Tyr Glu Glu Phe Gln Gln Leu Ser Ala Gly Ile 55 60

Ala Gly Gly Ser Leu

<210> 153

<222> (33)..(33) <223> X=any amino acid

<221> MISC_FEATURE

<220>

```
167
<211> 96
<212> PRT
<213> Homo sapien
<400> 153
Val Pro Thr Leu Asp Ile Met Gln Ile Met Tyr Gly Ile Ser Ser Ser
Cys Ile Leu Leu Tyr Ile Asp Ala Gln Gly His Gln Arg Leu Tyr Asn
Cys Thr Leu Ala Thr Asn Leu Gln Cys Leu Tyr Arg Val Ser Gly Lys
Ile Ser Gly Arg Ser Ser Glu Asp Thr Arg Ala Met Lys Ser Ser Ser
Ser Leu Ala Gln Ala Ser Arg Glu Asp His Cys Glu Pro His Glu Val
Pro Asp Gln Ala Leu Gly Asn Val Val Thr Pro His Phe Tyr Leu Phe
<210> 154
<211> 113
<212> PRT
<213> Homo sapien
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> X=any amino acid
<220>
<221> MISC_FEATURE <222> (23)..(23)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (29)..(29)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
```

WO 2004/052290 168 <222> (39)..(40) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (42)..(42) <223> X=any amino acid <220> <221> MISC_FEATURE
<222> (64)..(64)
<223> X=any amino acid <220> <221> MISC_FEATURE <222> (89)..(89) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (110)..(110) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (113)..(113) <223> X=any amino acid <400> 154 5

Thr Arg Pro Arg Gly Glu Cys Val Xaa Leu Ser Asp Glu Ala Asp Trp

Asn Val Ser Leu Lys Arg Xaa Ala Ser Thr Gly Val Xaa Leu Asn Gly 20

Xaa Arg Glu Ser Ser Phe Xaa Xaa Pro Xaa Thr Ser Lys Gly Val Ala 35 40

Pro Glu Gly Cys His Gly Gly Ala Ala Gly Pro Lys Leu Gly Xaa

Thr Ser Pro Ala Ser Ala Arg Ser Arg Cys Ser Ala Ala Ala Ser Ala 65 70

Lys Gly Ser Gln Phe Cys Thr Thr Xaa His Gly Trp Arg His Glu Phe

Leu Gly Met Ser Lys Gly Leu Glu Ser Ala Leu Lys Asp Xaa Lys Ile

169

110 100 105

Xaa

<210> 155

<211> 89 <212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE
<222> (18)..(18)
<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (22)..(22) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (41)..(41)

<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (54)..(55) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (61)..(61)

<223> X=any amino acid

<400> 155

Val Ser Arg Asp Val Glu Gly Leu Gly Val Ser Leu Glu Gly Pro Gln 10

Asp Xaa Met Thr Cys Xaa Glu Phe Val Ala Phe Ile Leu Ala Ala Gly

Glu Ala Gly Arg Gly Val Arg Glu Xaa Asn Gly Cys Phe Ala Glu Cys 35

Phe Trp Gly Thr Asn Xaa Xaa Ser His Arg Gly Phe Xaa Leu Lys Lys

Gly Gly Tyr Arg Trp Gly Ala Phe Leu Thr Tyr Ser Arg Asn Thr Cys

75 70 80 65

Leu Phe Leu Glu Cys Phe His Leu Leu 85

<210> 156

<211> 137 <212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE
<222> (11)..(11)
<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (21)..(21) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (36)..(36)

<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (108)..(108) <223> X=any amino acid

<400> 156

Trp Cys Gly Leu Val Gly Lys Thr Phe Glu Xaa Leu Ala Ala Leu Gly 5

Thr Ser Thr Arg Xaa Leu Arg Glu His Gln Lys Gly Arg Pro Thr Ser 20 25 30

Thr Asn Pro Xaa Ala Gln Gln Ser Gln Asp Thr Gly Leu Glu His

Arg Gly Lys Leu Asp Gly Asn Gln Asp Pro Asn Arg Phe Ala Gln Lys

Arg Glu Lys Gly Val Arg Gly Asp Val Cys Val Glu Trp Glu Pro Leu 65

Thr Lys Asp Leu Ala Gly Cys Ile His Gly Leu Ser Asn Val Lys Leu 90 85

Asn Glu His Phe Leu Asn Thr Thr Asp Phe Pro Xaa His Pro Leu Lys 100 105

Glu Gln Pro Trp Thr Glu Pro Trp Ala Gly Ser Arg Gly Arg Arg His 120

Pro Trp Leu Gln Trp Arg Gly Gln Gly

<210> 157

<211> 131 <212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE <222> (1)..(1) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (11)..(11)

<223> X=any amino acid

<220>

<221> MISC_FEATURE <222> (26)..(26) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (30)..(30) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (32)..(32)

<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (42)..(42) <223> X=any amino acid

<220>

<221> MISC FEATURE

<222> (46)..(47)

<223> X=any amino acid

<220>

ia j

```
<221> MISC_FEATURE
<222> (49)..(49)
<223> X=any amino acid
<220>
<221> MISC FEATURE
<222> (51)..(52)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (71)..(72)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (92)..(92)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (96)..(96)
<223> X=any amino acid
<400> 157
Xaa Val Ala Ala Leu Gly Thr Ser Thr Arg Xaa Leu Arg Glu His Gln
                                       10
Lys Gly Arg Pro Thr Ser Thr Asn Pro Xaa Ala Gln His Xaa Ala Xaa
His Trp Leu Glu His Arg Gly Lys Leu Xaa Gly Pro Thr Xaa Xaa Val
Xaa Pro Xaa Xaa Arg Arg Trp Arg Gly Asp Gly Glu Trp Ser His
Asp Gln Gly Pro Gly Gly Xaa Xaa Ser Arg Pro Gln Gln Cys Glu Ala
                      70
Glu Arg Ala Leu Pro Glu His His Gly Leu Pro Xaa His His Gln Xaa
                 85
                                       90
Gln Pro Gly Gln Ser Pro Gly Gln Ala Val Gly Gly Gly Ala Thr His
             100
Gly Cys Ser Gly Gly Ala Arg Ala Glu Pro Ala Gly Pro Pro Glu Arg
```

120

115

Gly Arg Gly 130

<210> 158

<211> 71

<212> PRT

<213> Homo sapien

<400> 158

Met Arg Ser Gln Tyr Glu Val Met Ala Glu Gln Asn Arg Lys Asp Ala 5

Lys Pro Gly Ser Pro Ala Gly Leu Lys Asn Leu Thr Gly Arg Ser Leu 25

Ala Pro Arg Ser Ser Ser Lys Leu Ala Gly Pro Arg Phe Phe Thr Phe

Gly Ala Pro Phe Arg Val Phe Arg Phe Ser Cys Ser Pro Tyr Asn Asn 50

Leu Phe Ala Ser Lys Val Leu

<210> 159

<211> 104 <212> PRT <213> Homo sapien

<400> 159

Thr Cys Glu Ala Asn Ile Arg Ser Trp Pro Ser Arg Thr Gly Arg Met

Leu Lys Pro Gly Ser Pro Ala Gly Leu Lys Asn Leu Thr Gly Arg Ser 20

Leu Ala Pro Arg Ser Ser Ser Lys Leu Ala Gly Pro Arg Phe Phe Thr

Phe Gly Ala Pro Phe Arg Val Phe Arg Phe Ser Cys Ser Pro Tyr Asn 55

Asn Leu Phe Ala Ser Lys Val Leu Leu Gly Ser Arg Leu Trp Gly Phe 65

Cys Cys Pro Leu Glu Gly Val Phe Trp Val Lys Gly Trp Glu Gly Arg

174

95 85 90

Asp Pro Tyr Pro Arg Leu Phe Ser 100

<210> 160

<211> 136

<212> PRT

<213> Homo sapien

<400> 160

Met Arg Leu Cys Lys Val Phe Ala Gly Gly Phe Gly Pro Ala Pro Pro

Gly His Gln Glu Ser Thr Val Ala Thr Ser Thr Pro Ser Thr Asn Leu 25

Lys Phe Ala Arg His Cys Gly Ala Arg Gln Cys Ser Pro Ser Trp Glu

Lys Leu Ala Trp Ala Lys Glu Lys Tyr Ser Tyr Trp Gly Ala His Ser

Ala Ile His Leu Gly Arg Gly Val Tyr Leu Gln Pro Leu His Glu Ser 70

Glu Trp Pro Trp Phe Leu Arg Trp Gly Trp Leu Gly Thr Ser Leu Leu 90 95 85

Ala Arg Cys Leu Ala Ser Arg Arg Glu Lys Thr Val Gln Gln His Ala 100 105

Gly Glu Thr Asp Pro Val Thr Thr Met Arg Ala Val Arg Arg Glu Lys 125 120

Asp Gln Phe Lys Met Pro Arg Asp 135 130

<210> 161

<211> 108

<212> PRT <213> Homo sapien

<400> 161

Ser Leu Cys Trp Arg Ser Trp Ala Gly Ser Pro Arg Thr Ser Arg Val 5 10

WO 2004/052290 PCT/US2003/038829

175

Tyr Cys Gly His Glu Tyr Thr Ile Tyr Asn Leu Lys Phe Ala Arg His 20 25 30

Cys Gly Ala Arg Gln Cys Ser Pro Ser Trp Glu Lys Leu Ala Trp Ala 35 40 45

Lys Glu Lys Tyr Ser Tyr Trp Gly Ala His Ser Ala Ile His Leu Gly 50 55 60

Arg Gly Val Tyr Leu Gln Pro Leu His Glu Ser Glu Trp Pro Trp Leu 65 70 75 80

Leu Arg Trp Ala Trp Leu Gly Thr Ser Leu Leu Ala Arg Cys Leu Ala 85 90 95

Ser Arg Gln Gly Glu Asp Gly Ala Ala Arg Arg 100 105

<210> 162

<211> 164

<212> PRT

<213> Homo sapien

<400> 162

Met Leu Ala Gly Arg Leu Cys Ala Val Arg Leu Ala Val Ser Arg Leu 1 5 10 15

Ser Gly Thr Gly Val Val Gly Ala Glu Glu Glu Gln Gln Arg Gly Gly
20 25 30

Gly Ala Cys Val Pro Cys Ala Leu Glu Arg Thr Ala Ala Met Ala Tyr 35 40 45

Ala Tyr Leu Phe Lys Tyr Ile Ile Gly Asp Thr Gly Val Gly Lys 50 55 60

Ser Cys Leu Leu Gln Phe Thr Asp Lys Arg Phe Gln Pro Val His 65 70 75 80

Asp Leu Thr Ile Gly Val Glu Phe Gly Ala Arg Met Ile Thr Ile Asp 85 90 95

Gly Lys Gln Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Ser

Phe Arg Ser Ile Thr Arg Ser Tyr Tyr Arg Gly Ala Ala Gly Ala Leu 115 120 125

176

Leu Val Tyr Asp Ile Thr Arg Arg Asp Thr Phe Asn His Leu Thr Thr 135 140 130

Trp Leu Glu Asp Ala Arg Gln His Ser Asn Ser Asn Met Val Ile Met 150 155

Leu Ile Gly Lys

<210> 163

<211> 212

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE <222> (44)..(45) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (49)..(50)

<223> X=any amino acid

<220>

<221> MISC_FEATURE
<222> (53)..(53)
<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (60)..(60) <223> X=any amino acid

<400> 163

Arg Gly Glu Ala Gly Arg Arg Arg Gly Gly Cys Tyr Cys Ser Ala

Gly Leu Gly Arg Ala Leu Ser Pro Ser Ala Leu Arg Val Ser Val Arg

Pro Ala Ser Ser Gln Pro Leu Thr Pro Ala Cys Xaa Xaa Asp Ser Ser 35 40 45

Xaa Xaa Ala Gly Xaa Leu Cys Ala Val Arg Leu Xaa Val Ser Arg Leu 50 55

177

Ser Gly Thr Gly Val Val Gly Ala Glu Glu Glu Gln Gln Arg Gly Gly

Gly Ala Cys Val Pro Cys Ala Leu Glu Arg Thr Ala Ala Met Ala Tyr

Ala Tyr Leu Phe Lys Tyr Ile Ile Ile Gly Asp Thr Gly Val Gly Lys

Ser Cys Leu Leu Gln Phe Thr Asp Lys Arg Phe Gln Pro Val His 120

Asp Leu Thr Ile Gly Val Glu Phe Gly Ala Arg Met Ile Thr Ile Asp

Gly Lys Gln Ile Lys Leu Gln Ile Trp Asp Thr Ala Gly Gln Glu Ser

Phe Arg Ser Ile Thr Arg Ser Tyr Tyr Arg Gly Ala Ala Gly Ala Leu 170 165

Leu Val Tyr Asp Ile Thr Arg Arg Asp Thr Phe Asn His Leu Thr Thr 185

Trp Leu Glu Asp Ala Arg Gln His Ser Asn Ser Asn Met Val Ile Met 195 200

Leu Ile Gly Lys 210

<210> 164

<211> 97 <212> PRT <213> Homo sapien

<400> 164

Met Phe Met Ser Asp Leu Ser Thr Arg Gly Val Val Trp Ala Ser Pro

Ile Ile Lys Phe Arg Pro Gly Ser Val Val Gln Leu Thr Leu Ala 25

Phe Arg Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn

Gln Tyr Lys Thr Asp Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp 50 55 60

178

Val Ser Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala 65

Gly Val Pro Gly Trp Gly Ile Gly Leu Leu Ser Leu Val Ile Ala Gly

Ala

<210> 165 <211> 54 <212> PRT <213> Homo sapien

<400> 165

Arg Arg Arg Ala Gly Gln Gly Leu Ser Gly Gly Ser Leu Ser Ser Leu

Glu Ser Ala Thr Thr Asp Ser Asp Leu Asp Tyr Asp Tyr Leu Gln Asn 25 20

Trp Gly Pro Arg Phe Lys Lys Leu Ala Asp Cys Met Ser Ser Lys Asp 40

Thr Cys Glu Asp Asp Ser

<210> 166

<211> 73 <212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE
<222> (6)..(6)
<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (35)..(35)

<223> X=any amino acid

<220>

<221> MISC_FEATURE <222> (37)..(37)

<223> X=any amino acid

<220>

<221> MISC_FEATURE <222> (41)..(41) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (49)..(49)

<223> X=any amino acid

<220>

<221> MISC_FEATURE
<222> (62)..(62)
<223> X=any amino acid

<400> 166

Thr Gly Ile Phe Leu Xaa Gln Gly Lys Ala His Leu Lys Gln Ala Lys

Phe Tyr Arg Glu Asp Thr Phe Asn Lys Thr Ala Arg Thr Ser Lys Trp 20

Val Asn Xaa Trp Xaa Asn Thr Leu Xaa Leu Thr Lys Arg Ala Asn Met 40

Xaa Ser Cys Leu Ser Thr Ser Leu Glu Lys Lys Arg Thr Xaa Trp His 55

Thr Lys Tyr Leu Ser Glu Gly Glu Val

<210> 167

<211> 55

<212> PRT <213> Homo sapien

<400> 167

Leu Ser Gly Thr Ala Arg Ile Ser Arg Ser Glu Val Thr Asp Leu Arg

Arg Thr Leu Gln Val Leu Glu Ile Glu Leu Gln Ser Gln Leu Ser Met

Lys Ala Ala Leu Glu Asp Thr Leu Ala Glu Thr Glu Ala Arg Phe Gly

Ala Gln Leu Ala His Ile Gln 50

WO 2004/052290 PCT/US2003/038829

180

<210> 168 <211> 211

<212> PRT

<213> Homo sapien

<400> 168

Met Gly Gln Glu Ser His Ala Ser Arg Ala Ala Ser Ser Pro Ala Ala 1 5 10 15

Arg Ala Pro Glu Thr Ala Glu Pro Val Arg Pro Ala Pro Pro Thr 20 25 30

Pro Asp Thr Glu His Pro Val Met Asp Lys Asn Glu Leu Val Gln Lys 35 40 45

Ala Lys Leu Ala Glu Gln Leu Ser Asp Met Met Thr Cys Ser Leu Leu 50 55 60

Lys Ser Val Thr Glu Gln Gly Ala Glu Leu Ser Asn Glu Glu Arg Asn 65 70 75 80

Leu Leu Ser Val Ala Tyr Lys Asn Val Val Gly Ala Arg Arg Ser Ser 85 90 95

Trp Arg Val Val Ser Ser Ile Glu Gln Lys Thr Glu Gly Ala Glu Lys
100 105 110

Lys Gln Gln Met Ala Arg Glu Tyr Arg Glu Lys Ile Glu Thr Glu Leu 115 120 125

Arg Asp Ile Cys Asn Asp Val Leu Ser Leu Leu Glu Lys Phe Leu Ile 130 135 140

Pro Asn Ala Ser Gln Ala Glu Ser Lys Val Phe Tyr Leu Glu Asn Glu 145 150 155 160

Lys Glu Ile Thr Thr Val Thr Trp Leu Arg Leu Pro Leu Val Met Thr 165 170 175

Lys Lys Gly Ile Ser Ile Ser His Lys Lys His Thr Lys Lys Leu Phe 180 185 190

Asp Ile Ser Thr Thr Glu Met Pro Pro Thr His Pro Ile Arg Leu Gly
195 200 205

Leu Ala Leu

181

210

<210> 169 <211> 146 <212> PRT <213> Homo sapien <220> <221> MISC_FEATURE <222> (53)..(53) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (67)..(67) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (95)..(95) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (97)..(97) <223> X=any amino acid <220> <221> MISC_FEATURE
<222> (100)..(101)
<223> X=any amino acid <400> 169 Trp Arg Leu Arg Ala Arg Thr Arg Ala Pro Pro Leu Ala Leu Gln Arg Gly Arg Ala Gly Arg Ala Pro Gly Ser Gly Gly Tyr Ala Gly Pro Arg 20 Ile Ala Cys Gly His Gln Ser Thr Val Ala Ile Ala Ala Phe Asp Val 40 Ile Val Arg Val Xaa Ala Pro Asp Cys Arg Gly Val Val Ile Arg Gln Glu Thr Xaa Cys Val Cys Arg Thr Arg Leu Val Ala Leu Phe Glu Gln

Arg Arg Ser Met Gly Gln Glu Ser His Ala Ser Arg Ala Ala Xaa Arg

182

95 90 85

Xaa Pro Pro Xaa Xaa Arg Leu Leu Ser Pro Ser Val Arg Arg His His 100 105

Pro Leu Arg Asp Thr Glu His Pro Val Met Asp Lys Asn Glu Leu Val

Gln Lys Ala Lys Leu Ala Glu Gln Leu Ser Asp Met Met Thr Trp Gln

Pro Ala 145

<210> 170

<211> 118 <212> PRT

<213> Homo sapien

<400> 170

Met Pro Asp Gly Gln Phe Arg Asp Ile Ser Leu Ser Asp Tyr Lys Glu

Asn Met Leu Cys Ala Ser Leu Pro Ser Gly Leu Gln Arg Leu Met Cys 20 25

Pro Thr Glu Val Ser Ser Leu Ser Val Asp Arg Ala Glu Glu Phe Lys 40 35

Lys Leu Lys Leu Pro Gly Asp Gly Cys Ser Leu Trp Tyr Phe Val Thr 50 55

Ser Val Tyr Leu Val Met Gly Gln Tyr Gln Pro Asp Glu Asp Asn Gly 65

Gly Leu Gly Pro Met Asn Ile Pro Leu Val Ser Asp Pro Lys Arg Thr 85

Ile Ala Gln Asp Tyr Gly Val Leu Lys Ala Asp Glu Gly Ile Ser Phe 105 100

Arg Gly Leu Phe Tyr His 115

<210> 171

<211> 89

<212> PRT

```
<213> Homo sapien
<220>
<221> MISC_FEATURE <222> (35)..(35)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (48)..(49)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (51)..(51)
<223> X=any amino acid
<400> 171
Leu Gln Arg Leu Met Cys Pro Thr Glu Val Ser Ser Leu Ser Val Asp
                                     10
Arg Ala Glu Glu Phe Lys Lys Leu Lys Leu Pro Gly Asp Gly Cys Ser
                       25
Leu Trp Xaa Ser His Phe Cys His Leu Ser Trp Val Asn Thr Pro Xaa
        35
Xaa Thr Xaa Arg Thr Gly Thr His Glu His Pro Leu Val Ser Asp Pro
    50
                          55
Lys Arg Thr Ile Ala Gln Asp Tyr Gly Val Leu Lys Ala Asp Glu Gly
                                          75
65
                     70
Ile Ser Phe Arg Gly Leu Phe Tyr His
                 85
<210> 172
<211> 89
<212> PRT
<213> Homo sapien
<220>
<221> MISC_FEATURE
<222> (35)..(35)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (48)..(49)
<223> X=any amino acid
```

184

<220>

<221> MISC_FEATURE <222> (51)..(51) <223> X=any amino acid

<400> 172

Leu Gln Arg Leu Met Cys Pro Thr Glu Val Ser Ser Leu Ser Val Asp

Arg Ala Glu Glu Phe Lys Lys Leu Lys Leu Pro Gly Asp Gly Cys Ser 25

Leu Trp Xaa Ser His Phe Cys His Leu Ser Trp Val Asn Thr Pro Xaa 40

Xaa Thr Xaa Arg Thr Gly Thr His Glu His Pro Leu Val Ser Asp Pro

Lys Arg Thr Ile Ala Gln Asp Tyr Gly Val Leu Lys Ala Asp Glu Gly

Ile Ser Phe Arg Gly Leu Phe Tyr His 85

<210> 173 <211> 144 <212> PRT

<213> Homo sapien

<400> 173

Ala Gly Arg Leu Ser His Leu Gln Ala Ala Tyr Gly Arg Arg Ala Pro

Ser Val Pro Ser Val Ala Val Trp Pro Glu Trp Val Pro Ser Ser Pro 25

Thr Leu Val Leu Ala Gln Thr Leu Trp Gln Asp Val Trp Gly Leu Thr 40

Gln Gln Glu Arg Val Gln Ala Gly Gln Ala Val His Leu Asp Pro Gln 50 55

Leu Pro Arg Glu His Pro Thr Leu Cys Gly Val Asp Cys Thr Leu Ser 70 75

185

Leu Thr Leu Thr Leu Gln Gly Phe Arg Phe Cys His Arg Lys Arg Pro

Pro Pro Pro Leu Pro Phe Leu Phe Cys Gln Thr Leu Lys Leu Glu Leu 105 100

Leu Asn Leu Ser Trp Gly Asn Leu Gln Asn Trp Gly Pro Lys Phe Gly 120

Val Ser Val Ala Glu Pro Ser Ser Leu Leu Ser Pro Tyr Thr Asp Lys

<210> 174 <211> 154 <212> PRT <213> Homo sapien

<220>

<221> MISC_FEATURE
<222> (64)..(64)
<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (77)..(77)

<223> X=any amino acid

<220>

<221> MISC_FEATURE <222> (81)..(81) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (84)..(84)

<223> X=any amino acid

<220>

<221> MISC_FEATURE <222> (86)..(86)

<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (92)..(97) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (99)..(99)

<223> X=any amino acid

<220> <221> MISC_FEATURE <222> (101)..(104) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (106)..(106) <223> X=any amino acid <220> <221> MISC_FEATURE
<222> (128)..(128)
<223> X=any amino acid <400> 174 Gln Ala Ala Tyr Pro Thr Phe Arg Gln Pro Met Asp Ala Gly Pro His Leu Ser Pro Arg Ser Pro Cys Gly Gln Ser Gly Ser Arg Arg Pro Gln His Ser Cys Ser Leu Arg His Ser Gly Arg Met Ser Gly Ala Ser Pro 35 40 Ala Gly Ala Arg Ala Ser Arg Ala Gly Gly Pro Pro Arg Pro Thr Xaa 50 55 Pro Arg Glu His Pro Thr Leu Val Phe Asp Val Ala Xaa Ser Pro Ser · 75 65 70 Xaa Cys Lys Xaa Pro Xaa Cys His Arg Lys Arg Xaa Xaa Xaa Xaa Xaa 90 Xaa Phe Xaa Phe Xaa Xaa Xaa Lys Xaa Glu Leu Leu Asn Leu Ser 100 105 Trp Gly Asn Leu Arg Thr Gly Leu Phe Gly Val Val Glu Pro Leu Xaa Cys Phe His His Thr Arg Ile Ser Asn Gln Leu Phe Cys Ile Leu Val 130 135 140 Phe Ser Phe His Phe Asp Lys Gln Ala Leu 150

```
<210> 175
<211> 37
<212> PRT
<213> Homo sapien
<400> 175
Met Asp Arg Pro Gly Arg Tyr Tyr Ser Ala Ser Asn Gly Glu Pro Asp
Glu Asp Ala Tyr Asp Met Arg Lys Ala Leu Ser Arg Asp Thr Glu Lys
Lys Ser Ile Ile Pro
         35
<210> 176
<211> 42
<212> PRT
<213> Homo sapien
<400> 176
Ser Gly Ala Ser Val Met Asp Arg Pro Gly Arg Tyr Tyr Ser Ala Ser
Asn Gly Glu Pro Asp Glu Asp Ala Tyr Asp Met Arg Lys Ala Leu Ser
Arg Ile Leu Arg Arg Asn Pro Ser Tyr His
<210> 177
<211> 60
<212> PRT
<213> Homo sapien
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> X=any amino acid
<220>
<221> MISC_FEATURE
<222> (52)..(52)
<223> X=any amino acid
<400> 177
Xaa Val Ala Phe Leu Lys Pro Asn Leu Cys Pro Ile Gln Ser Gln Pro
```

188

Cys Thr Asn Tyr Pro Lys Asn Ile Gln Leu Ala Arg Arg Ile Thr Trp

Arg Thr Cys Leu Arg Ile His Tyr Asp Gly Lys His Phe Ile Leu Lys 40

Lys Lys Lys Xaa Asn Phe Ser Ser Ser Cys Tyr Trp

<210> 178 <211> 80 <212> PRT <213> Homo sapien

<400> 178

Lys Asn Ala Pro Gly Gly Glu Gln His Gly Val Arg Gly Thr Lys Ile

Pro Arg Ser Gly Ala Ser Arg Gly Thr Asn Ser Glu Asp Ile Ile Lys 25

Lys Arg Gly Phe Lys Glu Arg Ala Val Asp Ile Lys Ile Leu Ala Pro

Arg Arg Gly Gly Met Lys Thr Arg Gln Ala Asp Gly Ala Ser Ile Thr

Arg Gln Asp Thr Arg Thr Arg Arg Gln Gln Arg Gly Ala Ser Val Arg 70 65

<210> 179

<211> 130 <212> PRT

<213> Homo sapien

<400> 179

Asp Gly Ser Ala Ala Arg Gly Arg Trp Leu Ala Ser Ala Ala Arg Gly

Ala Ala Ala Leu Arg Arg Ser Ile Asn Gln Pro Val Ala Phe Val Arg

Arg Ile Pro Trp Thr Ala Ala Ser Ser Gln Leu Lys Glu His Phe Ala 40 35

Gln Phe Gly His Val Arg Arg Cys Ile Leu Pro Phe Asp Lys Glu Thr 55

Gly Phe His Arg Gly Leu Gly Trp Val Gln Tyr Phe Phe Arg Arg Arg

Thr Ser Gly Met His Tyr Asn Arg Lys Asn His Ile Ile Asp Gly Val 90

Lys Val Gln Val His Thr Arg Arg Pro Lys Leu Ser Ala Asn Thr Leu

Met Met Lys Lys Glu Lys Asp Phe Leu Arg Thr Ala Ser Leu Phe Asn 120 125

Lys Gly 130

<210> 180 <211> 130 <212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (75)..(75)

<223> X=any amino acid

<400> 180

Asp Gly Ser Ala Ala Arg Gly Arg Trp Leu Ala Ser Ala Ala Arg Gly 10

Ala Ala Leu Arg Arg Ser Ile Asn Gln Pro Val Ala Phe Val Arg

Arg Ile Pro Trp Thr Ala Ala Ser Ser Gln Leu Lys Glu His Phe Ala

Gln Phe Gly His Val Arg Arg Cys Ile Leu Pro Phe Asp Lys Glu Thr

Gly Phe His Arg Gly Leu Gly Trp Val Gln Xaa Phe Phe Arg Arg Arg

Thr Ser Gly Met His Tyr Asn Arg Lys Asn His Ile Ile Asp Gly Val 95 85 90

Lys Val Gln Val His Thr Arg Arg Pro Lys Leu Ser Ala Asn Thr Leu 100 105

190

Met Met Lys Lys Glu Lys Asp Phe Leu Arg Thr Ala Ser Leu Phe Asn 120

Lys Gly 130

<210> 181 <211> 130 <212> PRT <213> Homo sapien

<220>

<221> MISC_FEATURE <222> (4)..(4)

<223> X=any amino acid

<400> 181

Arg Asp Ser Xaa Pro Arg Phe Leu Ala Ser Ile Gly Leu His Val Ser 10

Pro Arg Phe Val Ala Tyr Glu Leu Thr Val Leu Val Phe Leu Thr Leu

Ser Val Gly Gly Asp Glu Val Ser Pro Gly Gly Ala Gly Pro Val Ser

His Ser Ala Glu Glu Gln Pro Val His Gln Val Asp Arg Leu Cys Gly

Ala Cys Pro Gly Gln Arg Val Phe Leu Cys Pro Gly Glu Pro Gly Ala

Lys Ser Gly Arg His Leu Ser Gly Gly Val Pro Pro Tyr Thr Glu Cys

Asp His Ala Gln Pro Leu Ala Arg Pro Gly Ala Val Glu Ser Cys Asn

His Glu Val Cys Ala Gln Thr Gly Glu Thr Val Gln Pro Leu Met Ala

Arg Arg 130

<210> 182 <211> 71

191

<212> PRT <213> Homo sapien

<400> 182

Met Gly Asn Ile Phe Ala Asn Leu Phe Lys Gly Leu Phe Gly Lys Lys

Glu Met Arg Ile Leu Met Val Gly Leu Asp Ala Ala Gly Lys Thr Thr

Ile Leu Tyr Lys Leu Lys Leu Gly Glu Ile Val Thr Thr Ile Pro Thr 35 40

Ile Gly Phe Asn Val Glu Thr Val Glu Tyr Leu Gly Arg Asp His Ala 50

Ile His His Thr Gly Ala Ala

<210> 183

<211> 57

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (1)..(1) <223> X=any amino acid

<400> 183

Xaa Gly Thr Thr Val Thr Glu Gln Pro Pro Glu Thr Ser Glu Gly Arg 5

Gly Trp Gly Lys Asp Tyr Thr Glu Arg Gln Ala His Val Arg Ala Ile 20

Leu Val Ser Asn Val Pro Cys Pro Gly Leu Met Leu Ala Thr Leu Cys 40

Arg Glu Phe Ser Asn Thr Ala Val Ala 50

<210> 184

<211> 56

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

```
192
```

<222> (1)..(1) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (4)..(5) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (8)..(8) <223> X=any amino acid <220> <221> MISC_FEATURE
<222> (10)..(11)
<223> X=any amino acid <220> <221> MISC_FEATURE <222> (15)..(15) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (17)..(17) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (19)..(21) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (23)..(23) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (54)..(54) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (56)..(56) <223> X=any amino acid <400> 184

Xaa Gly Pro Xaa Xaa Gln Asn Xaa His Xaa Xaa Pro Ala Arg Xaa Gly

193

15 5 10

Xaa Gly Xaa Xaa Xaa Thr Xaa Arg Gln Ala His Val Arg Ala Ile Leu 25 20

Val Ser Asn Val Pro Cys Pro Gly Leu Met Leu Ala Thr Leu Cys Arg 40

Glu Phe Ser Asn Thr Xaa Val Xaa

<210> 185 <211> 147 <212> PRT

<213> Homo sapien

<400> 185

Met Phe Leu Thr Arg Ser Glu Tyr Asp Gly Gly Val Asn Thr Phe Ser

Pro Glu Gly Arg Leu Phe Gln Val Glu Tyr Ala Ile Glu Ala Ile Lys

Leu Gly Ser Thr Ala Ile Gly Ile Gln Thr Ser Glu Gly Val Cys Leu 40

Ala Val Glu Lys Arg Ile Thr Ser Pro Leu Met Glu Pro Ser Ser Ile 50 55

Glu Lys Ile Val Glu Ile Asp Ala His Ile Gly Cys Ala Met Ser Gly 75

Leu Ile Ala Asp Ala Lys Thr Leu Ile Asp Lys Ala Arg Val Glu Thr 85

Gln Asn His Trp Phe Thr Tyr Asn Glu Thr Met Thr Val Glu Ser Val 105 100

Thr Gln Ala Val Ser Asn Leu Ala Leu Gln Phe Gly Glu Glu Asp Ala 120

Asp Pro Gly Ala Met Ser Arg Pro Phe Gly Val Ala Leu Leu Phe Gly 135 140

Gly Val Asp

194

<210> 186 <211> 118 <212> PRT <213> Homo sapien

<400> 186

Gly Tyr Gln Ala Trp Phe Tyr Ser His Cys Ile Gln Thr Ser Glu Gly

Val Cys Leu Ala Val Glu Lys Arg Ile Thr Ser Pro Leu Met Glu Pro

Ser Ser Ile Glu Lys Ile Val Glu Ile Asp Ala His Ile Gly Cys Ala

Met Ser Gly Leu Ile Ala Asp Ala Lys Thr Leu Ile Asp Lys Ala Arg

Val Glu Thr Gln Asn His Trp Phe Thr Tyr Asn Glu Thr Met Thr Val 70 75

Glu Ser Val Thr Gln Ala Val Ser Asn Leu Ala Leu Gln Phe Gly Glu

Glu Asp Ala Asp Pro Gly Ala Met Ser Arg Pro Phe Gly Val Ala Leu

Leu Phe Gly Gly Val Asp 115

<210> 187

<211> 140 <212> PRT <213> Homo sapien

<400> 187

Met Thr Pro Ser Asp Arg Arg His Ser Tyr Arg Pro Ala Leu Leu Cys

Ala Asp Thr Pro Arg Ile Arg Pro Leu Trp Pro Gly Gly His Ser Phe

Ala Asp Ser Ile Arg Ala Glu Met Ser Arg Ser Val Ala Leu Ala Val 35

Leu Ala Leu Leu Ser Leu Ser Gly Leu Glu Ala Ile Gln Arg Thr Pro 50

195

Lys Ile Gln Val Tyr Ser Arg His Pro Ala Glu Asn Gly Lys Ser Asn 70 75 Phe Leu Asn Cys Tyr Val Ser Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu Arg Ile Glu Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu 120 Phe Thr Pro Thr Glu Val Lys Trp Asp Arg Asp Met 135 <210> 188 <211> 140 <212> PRT <213> Homo sapien <220> <221> MISC_FEATURE <222> (1)..(3) <223> X=any amino acid <220> <221> MISC_FEATURE
<222> (12)..(12)
<223> X=any amino acid <220> <221> MISC_FEATURE <222> (18)..(18) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (20)..(21) <223> X=any amino acid <220> <221> MISC_FEATURE
<222> (32)..(32)
<223> X=any amino acid <400> 188

Xaa Xaa Xaa Pro Trp Ile Asp Ala Ile Val Ser Xaa Ser Ala Pro Leu

Arg Xaa Tyr Xaa Xaa Ile Arg Pro Leu Trp Pro Gly Gly His Ser Xaa

Ala Asp Ser Ile Arg Ala Glu Met Ser Arg Ser Val Ala Leu Ala Val 40

Leu Ala Leu Leu Ser Leu Ser Gly Leu Glu Ala Ile Gln Arg Thr Pro

Lys Ile Gln Val Tyr Ser Arg His Pro Ala Glu Asn Gly Lys Ser Asn 70

Phe Leu Asn Cys Tyr Val Ser Gly Phe His Pro Ser Asp Ile Glu Val

Asp Leu Leu Lys Asn Gly Glu Arg Ile Glu Lys Val Glu His Ser Asp

Leu Ser Phe Ser Lys Asp Trp Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu 120

Phe Thr Pro Thr Glu Val Lys Trp Asp Arg Asp Met 135

<210> 189 <211> 84 <212> PRT <213> Homo sapien

<400> 189

Met Glu Gly Ala Glu Thr Leu Gly Trp Ala Ala Arg Leu Gly Gly Cys

Gly Leu Ser Ala Gln Gly Leu Gly Gln Ser Trp Leu Gln Glu Ala Gly

Thr Pro Val Val Gly Arg Arg Val Leu Gln Arg Leu Thr Gly Ala

Cys Leu Cys Leu Cys Ser Arg Glu Gly Asp Leu Ser Gly Gln Gly Leu 55

Ala Ser Ala Leu Pro Glu Val Arg Glu Met Trp Glu Asp Ala Asp Leu 65

Trp Gly Pro Arg

<210> 190 <211> 160 <212> PRT <213> Homo sapien

<400> 190

Met Val Pro Cys Pro Pro Arg Ser Val Leu Ser Gln Ala Arg Val Leu 5

Pro Glu Gly Gly Gly Pro Asp Asp Leu Ser Trp Ala Leu Gly Gln 20 25

Ile Arg Gly Pro Gln Gly Pro Ser Pro Gly Phe Arg Gly Arg Gly Ala

Arg Gly Gly Val Ser Lys Gly Arg Gly Pro Gly Val Pro Glu Arg Arg 50

Gly Pro Gly Arg Ile His Pro Val Ser Arg Leu Gln Pro Val Pro Pro 70 75

Gln Pro Leu Pro Pro Ala Pro Asp Pro Glu Pro Pro Cys Pro Ser Val 85

Pro Ser Ala Thr Arg Arg Cys Thr Ser Asp Trp His Arg Pro Cys Leu .100 105

Lys Cys Glu Lys Cys Gly Lys Thr Leu Thr Ser Gly Gly His Ala Glu

His Glu Gly Lys Pro Tyr Cys Asn His Pro Cys Tyr Ala Ala Met Phe

Gly Pro Lys Gly Phe Gly Arg Gly Gly Ala Glu Ser His Thr Phe Lys 155 150

<210> 191

<211> 138 <212> PRT <213> Homo sapien

<400> 191

Met Val Pro Cys Pro Pro Arg Ser Val Leu Ser Gln Ala Arg Val Leu

198

Pro Glu Gly Gly Gly Pro Asp Asp Leu Ser Trp Ala Leu Gly Leu

Asp Ser Glu Val Pro Arg Val Gln Val Leu Gly Ser Glu Gly Gly Ala 40

Arg Gly Ala Val Ser Pro Arg Gly Gly Val Pro Gly Ser Leu Lys Gly

Ala Asp Gln Ala Gly Ser Thr Gln Ser Arg Ala Cys Ser Pro Cys Arg

Pro Ser Arg Cys Arg Leu His Arg Thr Arg Ser Arg His Ala Gln Val 85

Ser Gln Val Gln Gln Gly Gly Val Leu Gln His Glu Gly Lys Pro Tyr

Cys Asn His Pro Cys Tyr Ala Ala Met Phe Gly Pro Lys Gly Phe Gly 115 120

Arg Gly Gly Ala Glu Ser His Thr Phe Lys

<210> 192

<211> 120 <212> PRT <213> Homo sapien

<400> 192

Lys Ala Arg Thr Arg Pro Asp Pro Pro Ser Leu Ala Pro Ala Ala Arg 5

Ala Ala Pro Ala Ala Ala Cys Thr Gly Pro Gly Ala Ala Met Pro 25

Lys Cys Pro Lys Cys Asn Lys Glu Val Tyr Phe Ser Thr Lys Ala Asn

Pro Thr Ala Thr Thr Pro Ala Thr Gln Pro Cys Leu Gly Leu Lys Ala

Leu Gly Gly Ala Glu Pro Arg Ala Thr Leu Ser Ser Lys Pro Gly Gly 75 70

Gly Asp Pro Ile Leu Gly Cys Leu Gln Gly His Cys Pro Gly Lys Cys

199

90 95 85

Gln Ala Leu Ser Pro Asp Ala Gln Gly Ser Leu Val Ala Pro Asn Ala 100 105

Leu Ser Lys Pro Glu His Leu Glu 115

<210> 193

<211> 34 <212> PRT <213> Homo sapien

<400> 193

Arg Lys Lys Ser Asn Thr Gln Trp Pro Leu Gly Thr Tyr His Leu Ser

Ala Pro Gly Tyr Asp Arg Ala Arg Pro Gly Arg Cys Gln Arg Arg Gly

Phe Cys

<210> 194

<211> 78 <212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (51)..(51) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (65)..(65) <223> X=any amino acid

<400> 194

Thr Gln Thr Lys Met Glu Arg Leu Thr Trp Asp Val Val Arg Thr Glu 10

Thr Asn Phe Gly Arg Thr Thr Thr Thr Arg Leu Thr Arg Gly Thr His 30 20 25

Leu Asp Thr Thr Arg Thr Val Pro Gly Pro Ala Thr Glu Asn Glu Leu 40

200

Arg Arg Xaa Ile Arg Asp Thr Leu Arg Thr Thr Lys Asn His Thr Phe 50 55 60

<210> 195

<211> 361

<212> PRT

<213> Homo sapien

<400> 195

Met Ala Ala Glu Gly Trp Ile Trp Arg Trp Gly Trp Gly Arg Arg Cys
1 5 10 15

Leu Gly Arg Pro Gly Leu Leu Gly Pro Gly Pro Gly Pro Thr Thr Pro
20 25 30

Leu Phe Leu Leu Leu Leu Leu Gly Ser Val Thr Ala Asp Ile Thr 35 40 45

Asp Gly Asn Ser Glu His Leu Lys Arg Glu His Ser Leu Ile Lys Pro 50 55 60

Tyr Gln Gly Val Gly Ser Ser Ser Met Pro Leu Trp Asp Phe Gln Gly 65 70 75 80

Ser Thr Met Leu Thr Ser Gln Tyr Val Arg Leu Thr Pro Asp Glu Arg 85 90 95

Ser Lys Glu Gly Ser Ile Trp Asn His Gln Pro Cys Phe Leu Lys Asp 100 105 110

Trp Glu Met His Val His Phe Lys Val His Gly Thr Gly Lys Lys Asn 115 120 125

Leu His Gly Asp Gly Ile Ala Leu Trp Tyr Thr Arg Asp Arg Leu Val 130 135 140

Pro Gly Pro Val Phe Gly Ser Lys Asp Asn Phe His Gly Leu Ala Ile 145 150 155 160

Phe Leu Asp Thr Tyr Pro Asn Asp Glu Thr Thr Glu Arg Val Phe Pro
165 170 175

Tyr Ile Ser Val Met Val Asn Asn Gly Ser Leu Ser Tyr Asp His Ser 180 185 190

Lys Asp Gly Arg Trp Thr Glu Leu Ala Gly Cys Thr Ala Asp Phe Arg 200

Asn Arg Asp His Asp Thr Phe Leu Ala Val Arg Tyr Ser Arg Gly Arg

Leu Thr Val Met Thr Asp Leu Glu Asp Lys Asn Glu Trp Lys Asn Cys 230

Ile Asp Ile Thr Gly Val Arg Leu Pro Thr Gly Tyr Tyr Phe Gly Ala 250 245

Ser Ala Gly Thr Gly Asp Leu Ser Asp Asn His Asp Ile Ile Ser Met 265

Lys Ala Val Pro Ala Asp Gly Gly Ala His Ala Arg Arg Gly Glu His

Arg Leu Asp Gln Asp Arg Ala Gln Arg Gln Leu Pro Gln Val Ala Gln

Arg Cys Val Cys Thr Ala Pro Pro Cys Leu Gly Leu Gly Leu Thr 310 315

Gln Asn Gly Val Lys Pro Ala Trp Arg Val Leu Trp Ser Ser Arg Gly 335 330 325

Cys Gly Gly Cys Gly Leu Gly Ser Trp Ile Ser Pro Val Leu Ala Ser 340 345

Gly Thr Gly Trp Pro Cys Pro Ser Ser

<210> 196

<211> 326

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (313)..(313) <223> X=any amino acid

<400> 196

Gly Gly Ser Gly Arg Glu Glu Arg Arg Met Ala Ala Glu Gly Trp Ile 5

225

- Trp Arg Trp Gly Trp Gly Arg Arg Cys Leu Gly Arg Pro Gly Leu Leu Gly Pro Gly Pro Gly Pro Thr Thr Pro Leu Phe Leu Leu Leu Leu Gly Ser Val Thr Ala Asp Ile Thr Asp Gly Asn Ser Glu His Leu Lys Arg Glu His Ser Leu Ile Lys Pro Tyr Gln Gly Val Gly Ser Ser Ser 70 Met Pro Leu Trp Asp Phe Gln Gly Ser Thr Met Leu Thr Ser Gln Tyr Val Arg Leu Thr Pro Asp Glu Arg Ser Lys Glu Gly Ser Ile Trp Asn His Gln Pro Cys Phe Leu Lys Asp Trp Glu Met His Val His Phe Lys 120 Val His Gly Thr Gly Lys Lys Asn Leu His Gly Asp Gly Ile Ala Leu 135 Trp Tyr Thr Arg Asp Arg Leu Val Pro Gly Pro Val Phe Gly Ser Lys 160 145 150 155 Asp Asn Phe His Gly Leu Ala Ile Phe Leu Asp Thr Tyr Pro Asn Asp 165 Glu Thr Thr Glu Arg Val Phe Pro Tyr Ile Ser Val Met Val Asn Asn 180 Gly Ser Leu Ser Tyr Asp His Ser Lys Asp Gly Arg Trp Thr Glu Leu 195 200 Ala Gly Cys Thr Ala Asp Phe Arg Asn Arg Asp His Asp Thr Phe Leu
- Asp Lys Asn Glu Trp Lys Asn Cys Ile Asp Ile Thr Gly Val Arg Leu 245 250 255

Ala Val Arg Tyr Ser Arg Gly Arg Leu Thr Val Met Thr Asp Leu Glu

230

Pro Thr Gly Tyr Tyr Phe Gly Ala Ser Ala Gly Thr Gly Asp Leu Ser 260

Asp Asn His Asp Ile Ile Ser Met Lys Leu Phe Gln Leu Met Val Glu

His Thr Pro Asp Glu Glu Ser Ile Asp Trp Thr Lys Ile Glu Pro Ser

Val Asn Phe Leu Lys Ser Pro Lys Xaa Ala Cys Ala Gln Pro Arg Pro 305 310 315

Ala Trp Ala Trp Ala Ala 325

<210> 197 <211> 372 <212> PRT <213> Homo sapien

<400> 197

Met Gly Pro Pro Glu Gly Gly Ser Ser Arg Ala Glu Val Ala Glu Arg 5 10

Arg Gly Glu Trp Arg Arg Lys Ala Gly Phe Gly Pro Thr Thr Pro Leu 20 25

Phe Leu Leu Leu Leu Leu Gly Ser Val Thr Ala Asp Ile Thr Asp

Gly Asn Ser Glu His Leu Lys Arg Glu His Ser Leu Ile Lys Pro Tyr

Gln Gly Val Gly Ser Ser Met Pro Leu Trp Asp Phe Gln Gly Ser 70

Thr Met Leu Thr Ser Gln Tyr Val Arg Leu Thr Pro Asp Glu Arg Ser 85

Lys Glu Gly Ser Ile Trp Asn His Gln Pro Cys Phe Leu Lys Asp Trp 1.00 105

Glu Met His Val His Phe Lys Val His Gly Thr Gly Lys Lys Asn Leu 115 120

His Gly Asp Gly Ile Ala Leu Trp Tyr Thr Arg Asp Arg Leu Val Pro

204

130 135 140

Gly Pro Val Phe Gly Ser Lys Asp Asn Phe His Gly Leu Ala Ile Phe 145 150 155 160

Leu Asp Thr Tyr Pro Asn Asp Glu Thr Thr Glu Arg Val Phe Pro Tyr 165 170 175

Ile Ser Val Met Val Asn Asn Gly Ser Leu Ser Tyr Asp His Ser Lys 180 185 190

Asp Gly Arg Trp Thr Glu Leu Ala Gly Cys Thr Ala Asp Phe Arg Asn 195 200 205

Arg Asp His Asp Thr Phe Leu Ala Val Arg Tyr Ser Arg Gly Arg Leu 210 225 220

Thr Val Met Thr Asp Leu Glu Asp Lys Asn Glu Trp Lys Asn Cys Ile 225 230 230 240

Asp Ile Thr Gly Val Arg Leu Pro Thr Gly Tyr Tyr Phe Gly Ala Ser 245 250 255

Ala Gly Thr Gly Asp Leu Ser Asp Asn His Asp Ile Ile Ser Met Lys 260 265 270

Ala Val Pro Ala Asp Gly Gly Ala His Ala Arg Arg Gly Glu His Arg 275 280 285

Leu Asp Gln Asp Arg Ala Gln Arg Gln Leu Pro Gln Val Ala Gln Arg 290 295 300

Gln Arg Gly Arg Pro His Gly Glu Leu Pro Gln Arg Ala Pro Asp Gly 305 310 315 320

Val Ala Gly Val Pro Ala Ala Ala Val Arg Ser Pro Gly His Arg Cys 325 330 335

Leu Arg Arg Gly Gly Gly Arg Gly Val Pro Glu Ala Ala Gly Ala Glu 340 345 350

Gln Ala Leu Leu Ser Gly Ala Ser Gly Gly Ala Cys Pro Trp Ala 355 360 365

Gln Glu Pro Met 370

<210 <211 <212 <213	L> 2>	198 355 PRT Homo	sapi	ien											
<400)>	198													
Met 1	Gly	Pro	Pro	Glu 5	Gly	Gly	Ser	Ser	Arg 10	Ala	Glu	Val	Ala	Glu 15	Arg
Arg	Gly	Glu	Trp 20	Arg	Arg	Lys	Ala	Gly 25	Phe	Gly	Pro	Thr	Thr 30	Pro	Leu
Phe	Leu	Leu 35	Leu	Leu	Leu	Gly	Ser 40	Val	Thr	Ala	Asp	Ile 45	Thr	Asp	Gly
Asn	Ser 50	Glu	His	Leu	Lys	Arg 55	Glu	His	Ser	Leu	Ile 60	Lys	Pro	Tyr	Gln
Gly 65	Val	Gly	Ser	Ser	Ser 70	Met	Pro	Leu	Trp	Asp 75	Phe	Gln	Gly	Ser	Thr 80
Met	Leu	Thr	Ser	Gln 85	Tyr	Val	Arg	Leu	Thr 90	Pro	Asp	Glu	Arg	Ser 95	Lys
Glu	Gly	Ser	Ile 100	Trp	Asn	His	Gln	Pro 105	Cys	Phe	Leu	Lys	Asp 110	Trp	Glu
Met	His	Val 115	His	Phe	Lys	Val	His 120	Gly	Thr	Gly	Lys	Lys 125	Asn	Leu	His
Gly	Asp 130	Gly	Ile	Ala	Leu	Trp 135	Tyr	Thr	Arg	Asp	Arg 140	Leu	Val	Pro	Gly
Pro 145	Val	Phe	Gly	Ser	Lys 150	Asp	Asn	Phe	His	Gly 155		Ala	Ile	Phe	Leu 160
Asp	Thr	Tyr	Pro	Asn 165	Asp	Glu	Thr	Thr	Glu 170	Arg	Val	Phe	Pro	Tyr 175	Ile
Ser	Val	Met	Val 180	Asn	Asn	Gly	Ser	Leu 185	Ser	Tyr	Asp	His	Ser 190	Lys	Asp
Gly	Arg	Trp 195	Thr	Glu	Leu	Ala	Gly 200	Cys	Thr	Ala	Asp	Phe 205	Arg	Asn	Arg

206

Asp His Asp Thr Phe Leu Ala Val Arg Tyr Ser Arg Gly Arg Leu Thr 215

Val Met Thr Asp Leu Glu Asp Lys Asn Glu Trp Lys Asn Cys Ile Asp 230 235

Ile Thr Gly Val Arg Leu Pro Thr Gly Tyr Tyr Phe Gly Ala Ser Ala

Gly Thr Gly Asp Leu Ser Asp Asn His Asp Ile Ile Ser Met Lys Leu

Phe Gln Leu Met Val Glu His Thr Pro Asp Glu Glu Ser Ile Asp Trp 280

Thr Lys Ile Glu Pro Ser Val Asn Phe Leu Lys Ser Pro Lys Asp Asn

Val Asp Asp Pro Thr Gly Asn Phe Arg Ser Gly Pro Leu Thr Gly Trp 315

Arg Val Phe Leu Leu Leu Cys Ala Leu Leu Gly Ile Val Val Cys

Ala Val Val Gly Ala Val Val Phe Gln Lys Arg Gln Glu Arg Asn Lys

Arg Phe Tyr 355

<210> 199

<211> 187 <212> PRT <213> Homo sapien

<400> 199

Met Glu Ala Gly Gly Phe Leu Asp Ser Leu Ile Tyr Gly Ala Cys Val

Val Phe Thr Asn Leu Gly Trp Leu Ser Tyr Gly Ala Leu Lys Gly Asp 25

Gly Ile Leu Ile Val Val Asn Thr Val Gly Ala Ala Leu Gln Thr Leu 35 40

Tyr Ile Leu Ala Tyr Leu His Tyr Cys Pro Arg Lys Arg Val Val Leu 55 50 60

Leu Gln Thr Ala Thr Leu Leu Gly Val Leu Leu Leu Gly Tyr Gly Tyr

Phe Trp Leu Leu Val Pro Asn Pro Glu Ala Arg Leu Gln Gln Leu Gly

Leu Phe Cys Ser Val Phe Thr Ile Ser Met Tyr Leu Ser Pro Leu Ala

Asp Leu Ala Lys Val Ile Gln Thr Lys Ser Thr Gln Cys Leu Ser Tyr 120

Pro Leu Thr Ile Ala Thr Leu Leu Thr Ser Ala Ser Trp Cys Leu Tyr 135

Gly Phe Arg Leu Arg Asp Pro Tyr Ile Met Val Ser Asn Phe Pro Gly 155

Ile Val Thr Ser Phe Ile Arg Phe Trp Leu Phe Trp Lys Tyr Pro Gln 165

Glu Gln Asp Arg Asn Tyr Trp Leu Leu Gln Thr 180

<210> 200 <211> 86 <212> PRT <213> Homo sapien

<400> 200

Ile Gly Phe Glu Arg Arg Pro Gly Arg Tyr Leu Ser Pro Leu Ala Asp

Leu Ala Lys Val Ile Gln Thr Lys Ser Thr Gln Cys Leu Ser Tyr Pro

Leu Thr Ile Ala Thr Leu Leu Thr Ser Ala Ser Trp Cys Leu Tyr Gly

Phe Arg Leu Arg Asp Pro Tyr Ile Met Val Ser Asn Phe Pro Gly Ile 55

Val Thr Ser Phe Ile Arg Phe Trp Leu Phe Trp Lys Tyr Leu Gly Arg 70 75

208

Asp His Ala Lys Pro Ile 85

<210> 201

<211> 85

<212> PRT

<213> Homo sapien

<400> 201

Arg Phe Glu Arg Arg Pro Gly Arg Tyr Leu Ser Pro Leu Ala Asp Leu 1 5 10 15

Ala Lys Val Ile Gln Thr Lys Ser Thr Gln Cys Leu Ser Tyr Pro Leu 20 25 30

Thr Ile Ala Thr Leu Leu Thr Ser Ala Ser Trp Cys Leu Tyr Gly Phe 35 40 45

Arg Leu Arg Asp Pro Tyr Ile Met Val Ser Asn Phe Pro Gly Ile Val 50 60

Thr Ser Phe Ile Arg Phe Trp Leu Phe Trp Lys Tyr Leu Gly Arg Asp 65 70 75 80

His Ala Lys Pro Ile 85

<210> 202

<211> 147

<212> PRT

<213> Homo sapien

<400> 202

Met Lys Gly Glu Val Tyr Pro Phe Gly Ile Val Gly Met Ala Asn Lys 1 5 10 15

Gly Asp Cys Cys Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys Gln Leu 20 25 30

Ala Thr Lys Ala Ala Arg Lys Ser Ala Pro Ser Thr Gly Gly Val Lys 35 40 45

Lys Pro His Arg Tyr Arg Pro Gly Thr Val Ala Leu Arg Glu Ile Arg 50 55 60

Arg Tyr Gln Lys Ser Thr Glu Leu Leu Ile Arg Lys Leu Pro Phe Gln 65 70 75 80

Arg Leu Val Arg Glu Ile Ala Gln Asp Phe Lys Thr Asp Leu Arg Phe

Gln Ser Ala Ala Ile Gly Ala Leu Gln Glu Ala Ser Glu Ala Tyr Leu 105

Val Gly Leu Phe Glu Asp Thr Asn Leu Cys Ala Ile His Ala Lys Arg

Val Thr Ile Met Pro Lys Asp Ile Gln Leu Ala Arg Arg Ile Arg Gly

Glu Arg Ala 145

<210> 203

<211> 146 <212> PRT <213> Homo sapien

<400> 203

Lys Val Arg Ser Ile His Leu Ala Ser Leu Gly Trp Pro Thr Lys Gly

Ile Ala Cys Lys Ser Thr Gly Gly Lys Ala Pro Arg Lys Gln Leu Ala 25

Thr Lys Ala Ala Arg Lys Ser Ala Pro Ser Thr Gly Gly Val Lys Lys 35 45

Pro His Arg Tyr Arg Pro Gly Thr Val Ala Leu Arg Glu Ile Arg Arg 50 55

Tyr Gln Lys Ser Thr Glu Leu Leu Ile Arg Lys Leu Pro Phe Gln Arg

Leu Val Arg Glu Ile Ala Gln Asp Phe Lys Thr Asp Leu Arg Phe Gln

Ser Ala Ala Ile Gly Ala Leu Gln Glu Ala Ser Glu Ala Tyr Leu Val

Gly Leu Phe Glu Asp Thr Asn Leu Cys Ala Ile His Ala Lys Arg Val 115 120 125

Thr Ile Met Pro Lys Asp Ile Gln Leu Ala Arg Arg Ile Arg Gly Glu

140 135 130

Arg Ala 145

<210> 204 <211> 91 <212> PRT

<213> Homo sapien

<400> 204

Met Arg Arg Arg Ala Gly Ile Arg Arg Tyr Gln Lys Ser Thr Glu Leu

Leu Ile Arg Lys Leu Pro Phe Gln Arg Leu Val Arg Glu Ile Ala Gln 20

Asp Phe Lys Thr Asp Leu Arg Phe Gln Ser Ala Ala Ile Gly Ala Leu

Gln Glu Ala Ser Glu Ala Tyr Leu Val Gly Leu Phe Glu Asp Thr Asn

Leu Cys Ala Ile His Ala Lys Arg Val Thr Ile Met Pro Lys Asp Ile

Gln Leu Ala Arg Arg Ile Arg Gly Glu Arg Ala 85

<210> 205 <211> 116 <212> PRT <213> Homo sapien

<400> 205

Met Leu Glu Arg Arg Ser Val Met Asp Arg Pro Pro Gly Gln Val Val 10

Arg Pro Asn Asp Glu Val Thr Ala Val Leu Ala Val Gln Thr Glu Leu

Lys Glu Cys Met Val Val Lys Thr Tyr Leu Ile Ser Ser Ile Pro Leu

Gln Gly Ala Phe Asn Tyr Lys Tyr Thr Ala Cys Leu Cys Asp Asp Asn 55 50

211

Pro Lys Thr Phe Tyr Trp Asp Phe Tyr Thr Asn Arg Thr Val Gln Ile 65 70 75 80

Ala Ala Val Val Asp Val Ile Arg Glu Leu Gly Ile Cys Pro Asp Asp 85 90 95

Ala Ala Val Ile Pro Ile Lys Asn Asn Arg Phe Tyr Thr Ile Glu Ile
100 105 110

Leu Lys Val Glu 115

<210> 206

<211> 117

<212> PRT

<213> Homo sapien

<400> 206

Asp Ala Met Leu Glu Arg Arg Ser Val Met Asp Pro Pro Gly Gln Val

1 10 15

Val Arg Pro Asn Asp Glu Val Thr Ala Val Leu Ala Val Gln Thr Glu 20 25 30

Leu Lys Glu Cys Met Val Val Lys Thr Tyr Leu Ile Ser Ser Ile Pro 35 40 45

Leu Gln Gly Ala Phe Asn Tyr Lys Tyr Thr Ala Cys Leu Cys Asp Asp 50 55 60

Asn Pro Lys Thr Phe Tyr Trp Asp Phe Tyr Thr Asn Arg Thr Val Gln 65 70 75 80

Ile Ala Ala Val Val Asp Val Ile Arg Glu Leu Gly Ile Cys Pro Asp 85 90 95

Asp Ala Ala Val Ile Pro Ile Lys Asn Asn Arg Phe Tyr Thr Ile Glu 100 105 110

Ile Leu Lys Val Glu 115

<210> 207

<211> 168

<212> PRT

<213> Homo sapien

<400> 207

Met Leu Glu Arg Arg Ser Val Met Asp Arg Pro Pro Gly Gln Val Leu
1 5 10 15

Pro Ser Val Phe Ser Ser Met Arg Leu Leu Gln Leu Leu Phe Arg Ala 20 25 30

Ser Pro Ala Thr Leu Leu Leu Val Leu Cys Leu Gln Leu Gly Ala Asn 35 40 45

Lys Ala Gln Asp Asn Thr Arg Lys Ile Ile Ile Lys Asn Phe Asp Ile 50 55 60

Pro Lys Ser Val Arg Pro Asn Asp Glu Val Thr Ala Val Leu Ala Val 65 70 75 80

Gln Thr Glu Leu Lys Glu Cys Met Val Val Lys Thr Tyr Leu Ile Ser 85 90 95

Ser Ile Pro Leu Gln Gly Ala Phe Asn Tyr Lys Tyr Thr Ala Cys Leu 100 105 110

Cys Asp Asp Asn Pro Lys Thr Phe Tyr Trp Asp Phe Tyr Thr Asn Arg 115 120 125

Thr Val Gln Ile Ala Ala Val Val Asp Val Ile Arg Glu Leu Gly Ile 130 135 140

Cys Pro Asp Asp Ala Ala Val Ile Pro Ile Lys Asn Asn Arg Phe Tyr 145 150 155 160

Thr Ile Glu Ile Leu Lys Val Glu 165

<210> 208

<211> 160

<212> PRT

<213> Homo sapien

<400> 208

Trp Ile Arg Pro Gly Arg Tyr Cys Leu Leu Phe Ser Pro Ala Cys Ala 1 5 10 15

Cys Ser Ser Ser Cys Ser Gly Pro Ala Leu Pro Pro Cys Ser Trp Phe 20 25 30

Ser Ala Cys Ser Trp Gly Pro Thr Lys Leu Arg Thr Thr Leu Gly Lys

45 35 40

Ile Ile Lys Asn Phe Asp Ile Pro Lys Ser Val Arg Pro Asn Asp

Glu Val Thr Ala Val Leu Ala Val Gln Thr Glu Leu Lys Glu Cys Met

Val Val Lys Thr Tyr Leu Ile Ser Ser Ile Pro Leu Gln Gly Ala Phe 85

Asn Tyr Lys Tyr Thr Ala Cys Leu Cys Asp Asp Asn Pro Lys Thr Phe 105 100

Tyr Trp Asp Phe Tyr Thr Asn Arg Thr Val Gln Ile Ala Ala Val Val 115 120

Asp Val Ile Arg Glu Leu Gly Ile Cys Pro Asp Asp Ala Ala Val Ile 130

Pro Ile Lys Asn Asn Arg Phe Tyr Thr Ile Glu Ile Leu Lys Val Glu 150 155

<210> 209

<211> 68

<212> PRT <213> Homo sapien

<400> 209

Met Gly Leu Gly Leu Gly Pro Arg Arg Arg Ser Ser Leu Ser Gly 5

Cys Arg Gly Ser Gly Arg Ala Arg Val Gly Val Ala Pro Leu Ser Thr 20

Pro Val Pro Phe Val Ala Ala Ala Leu Val Arg Asp Thr Ala Phe Arg 40 35

Ser Arg Ala Leu Gly Gly Val Lys Cys Asp Ala Ser Ile Ile His Leu

Asp Ala Val Ser 65

<210> 210

<211> 86

<212> PRT

214

<213> Homo sapien

<400> 210

Ala Pro Ala Arg Ala Arg Pro Ser Gly Arg Ala Val Arg Pro Ser Ser

Arg Val Pro Ser Trp Ala Glu Arg Thr Arg Arg Cys Pro Ala Pro Asp

Gln Thr Ser Arg Gly Leu Gly Pro Gly Pro Arg Ala Ala Ser Ala Pro

Val Glu Pro Leu Arg Val Ser Gly Phe Gly Ala Gly Ala Arg Gly Arg

Gly Ser Ser Val His Ala Cys Ser Leu Arg Arg Gly Ser Arg Pro

Gly His Gly Phe Pro Glu

<210> 211 <211> 727

<212> PRT

<213> Homo sapien

<400> 211

Met Leu Met Tyr His Phe Pro Gln Pro Gln Ala Lys Phe Asp Trp Leu

Lys Asn Ile Cys Pro Leu Asn Tyr Ile Trp Gly Gly Ile Tyr Asn Lys 20

Thr Met Lys Asp Phe Met Val Ser Ser Tyr Ile Ile Arg Lys Leu Val

Arg Asn Val Ala Glu Asn Gln Phe Leu Ser Leu Lys Glu Leu Val Tyr

Ile Tyr Lys Gln Lys Leu Gln Glu Lys Asp Ser Leu Ile Phe Lys Ser

Asn Ser Ile Phe Gly Tyr His Ser Arg Lys Gly Lys Tyr Thr Asn Phe 90

Arg Phe Phe Tyr Leu Cys Leu Ser Arg Gly Cys Lys Gln Leu Lys Glu 100 105

Val	Ile	Lys 115	Met	ГÀв	Ser	Ser	Lys 120	Lys	Trp	Leu	Leu	Ile 125	Thr	Trp	ГÀв
Ala	Val 130	Tyr	Ile	Сув	Lys	Lys 135	Ile	Gln	Tyr	Tyr	Asp 140	Leu	His	Gln	Leu
Leu 145	His	Ile	Ile	Tyr	Leu 150	Gly	туг	Tyr	Leu	Trp 155	Tyr	Ser	Leu	Cys	Met 160
Glu	Cys	Гув	Gly	Ile 165	Phe	Lys	Leu	Thr	Arg 170	Ser	Сув	Trp	Ser	Ser 175	Tyr
Asn	Met	Leu	Gln 180	Tyr	Tyr	Гуs	Ile	Glu 185	Met	Lys	Tyr	Phe	Leu 190	Ile	Glu
Gly	Lys	Tyr 195	Lys	Phe	Asn	Ile	Trp 200	Ala	Ile	Glu	Thr	Phe 205	Lys	Leu	Tyr
Phe	Lys 210	Ser	Met	Ile	Leu	Met 215	Tyr	Met	Ile	Leu	Phe 220	Сув	Leu	Сув	Tyr
Ile 225	Asn	Arg	Ile	Arg	Gly 230	Val	Phe	Сув	Asn	Ser 235	Asn	Thr	Leu	Tyr	Ile 240
Pro	Asn	Phe	Ile	Leu 245	Tyr	Glu	Trp	Thr	Phe 250	ГÀв	Ile	Lys	Gly	Ile 255	Сув
Ala	Ser	Arg	Gly 260	Pro	Asn	Leu	Asn	His 265	Glu	Leu	Ile	Сув	Gln 270	Ala	Ser
Авр	Tyr	Arg 275	Lys	Ala	Ser	Leu	Ile 280	Asn	Leu	Glu	Leu	Gly 285	ГÀв	Gly	Ala
Gly	Ъу в 290	Thr	Val	Phe	Сув	Arg 295	Asn	Leu	Leu	Val	Gln 300	Gln	Pro	Phe	ГÀЗ
Leu 305	Asn	Val	Сув	Glu	His 310	Asn	Ser	Asp	Gly	Ile 315	Phe	Ser	Ser	Pro	Ser 320
Leu	Trp	Phe	Val	Gln 325	Leu	Asp	Val	Thr	Val 330	Ala	Val	Ala	Leu	Thr 335	Val
Lys	Сув	Leu	Asn 340	Asp	Asp	Thr	Ile	Met 345	Trp	Ser	Asp	Phe	Glu 350	Met	Arg

Asp	Ser	Ser 355	Gln	Glu	Leu	Ser	Ser 360	Ala	Pro	Ile	Ser	Phe 365	Lys	Ser	Tyr
Ser	Leu 370	Ala	Val	Gln	Ile	Met 375	Ile	Asp	Leu	Phe	Val 380	Thr	Asp	Сув	Arg
Lys 385	Gln	Ser	Leu	Ile	Phe 390	Gln	Tyr	Phe	Thr	Leu 395	ГÀв	Leu	Phe	Thr	Val 400
Val	Thr	Met	Gly	Arg 405	Tyr	Phe	His	Gly	Leu 410	Ser	Ala	Pro	Glu	Arg 415	Leu
Gly	Glu	Tyr	Ser 420	Leu	Leu	Ser	Asp	Lys 425	Thr	Asn	Tyr	Leu	Tyr 430	Met	Ser
Ala	Val	Ala 435	Glu	Gly	Tyr	Thr	Phe 440	Ile	Leu	Lys	Tyr	Val 445	Asn	Asn	Pro
Ser	Asp 450	Tyr	Thr	Asn	Ile	Asp 455	Leu	Ala	Ile	Met	Lys 460	Pro	Glu	Tyr	Arg
Glu 465	Asn	Glu	Leu	Phe	Gln 470	Gly	Gly	Met	Val	Lys 475	Ser	Phe	Phe	Leu	Ala 480
Gly	Cys	Lys	Lys	Leu 485	Leu	Ile	Leu	Phe	Ser 490	Gln	Leu	Val	Gly	Ile 495	Tyr
Glu	Phe	Tyr	L ув 500	Gln	Thr	Ile	Arg	Asn 505	Asp	Ser	Val	Val	Ser 510	Asp	ГÀв
Gln	His	Pro 515	Asn	Ile	Leu	Thr	Leu 520	Leu	Leu	Val	Val	Phe 525	Phe	Lys	Ser
Tyr	Leu 530	Ser	Leu	Thr	Phe	Ser 535	His	Arg	Ile	Ala	Thr 540	Asp	Leu	Met	Arg
Ser 545	Leu	Thr	Asp	Leu	Ile 550	Phe	Leu	Gln	Phe	Gln 555	Tyr	Ile	Phe	Ala	Leu 560
Glu	Ser	Pro	Val	Met 565	Asn	Ile	ГÀЗ	Ile	Tyr 570	Val	Gln	Ser	Phe	Val 575	Asp
Asp	Ile	Asn	Tyr 580	Ile	Ьув	Thr	Phe	Gln 585	Met	Gly	Tyr	Сув.	Ser 590	Ile	Glu

217

Cys Ala Val Phe Tyr Gly Arg Ile Ile Leu Ser Leu Trp Thr Ser Arg

Leu Leu Ser Val Gly Met Lys Ile Asn Leu Leu Gln Ser Asp Phe Leu 615

Gly Ile Asn Ala Val Phe Ile Phe Val Arg Leu Leu Pro Ser Phe Asn 635

Val Ile Leu Asn Phe Leu Trp Ile Tyr Phe Pro Ile His Lys Ile Leu 650

Gln Asn Lys Asn Asp Asn Asn Phe Tyr Thr Phe Tyr Lys Asn Lys Phe

Ile Phe Ser Pro Ser Arg Cys Leu Lys Ile Leu Cys Leu Gly Ile Ser 680

Ile Ser Asn Leu Met Lys Glu Asn Arg Ile Asn Asn Ala Gly Asn Ser 695

Arg Lys Val Ser Ile Leu Ile Arg Cys Gln Thr Asp Ile Ser Cys Glu

Pro Asn Ser Phe Tyr Gly Asn 725

<210> 212

<211> 73 <212> PRT

<213> Homo sapien

<400> 212

Ala Ser Met His Val Phe Ile Phe Val Arg Leu Leu Pro Ser Phe Asn

Val Ile Leu Asn Phe Leu Trp Ile Tyr Phe Pro Ile His Lys Ile Leu

Gln Asn Lys Asn Asp Asn Asn Phe Tyr Thr Phe Tyr Lys Asn Lys Phe

Ile Phe Ser Pro Ser Arg Cys Leu Lys Ile Leu Cys Leu Gly Ile Ser 55

Ile Ser Asn Leu Ile Arg Lys Ile Gly 65

218

<210> 213

<211> 73 <212> PRT <213> Homo sapien

<400> 213

Ala Ser Met His Val Phe Ile Phe Val Arg Leu Pro Ser Phe Asn 10

Val Ile Leu Asn Phe Leu Trp Ile Tyr Phe Pro Ile His Lys Ile Leu 25 30

Gln Asn Lys Asn Asp Asn Asn Phe Tyr Thr Phe Tyr Lys Asn Lys Phe 35

Ile Phe Ser Pro Ser Arg Cys Leu Lys Ile Leu Cys Leu Gly Ile Ser 55 50

Ile Ser Asn Leu Ile Arg Lys Ile Gly 70

<210> 214

<211> 67

<212> PRT

<213> Homo sapien

<400> 214

Met Glu Leu Leu Tyr Trp Leu Leu Glu Gly Asp Ser Glu Asp Lys 5

Glu Asp Ala Thr Gly Asn Val Glu Met Lys Asn Ile Gln Pro Leu Val

Phe Glu Ile Ser Cys Asp Val Phe Gln Ser Arg Cys Lys Glu His Gly 35

Lys Ile Lys Val Leu Glu Trp Phe Lys Tyr Val Leu Gly Ile Pro Val

Tyr Arg Leu

<210> 215

<211> 90

<212> PRT

<213> Homo sapien

219

<400> 215

Thr Lys Gly Phe Leu Gln Met Leu Ala Glu Ile His Pro Lys Ala Gly
1 5 10 15

Leu Gln Ser Leu Gln Phe Ile Met Glu Leu Leu Tyr Trp Leu Leu Glu 20 25 30

Gly Gly Asp Ser Glu Asp Lys Glu Asp Ala Thr Gly Asn Val Glu Met 35 40 45

Lys Asn Ile Gln Pro Leu Val Phe Glu Ile Ser Cys Asp Val Phe Gln 50 60

Ser Arg Cys Lys Glu His Gly Lys Ile Lys Val Leu Glu Trp Phe Lys 65 70 75 80

Tyr Val Leu Gly Ile Pro Val Tyr Arg Leu 85 90

<210> 216

<211> 56

<212> PRT

<213> Homo sapien

<400> 216

Glu Arg Arg Gln Cys Asp Gly Trp Ser Arg Pro Arg Trp Gly Glu Asp 1 5 10 15

Ser Thr Leu Gly Arg Lys Lys Ser Gln Asn Leu Val Ser Phe Leu Thr 20 25 30

Leu Arg Ala Lys Leu Met Gly Thr Ser Ser Pro Ser Leu Cys Pro Gln 35 40 45

Asn Pro Ala Pro Ile Arg Ser Trp 50 55

<210> 217

<211> 46

<212> PRT

<213> Homo sapien

<400> 217

Trp Met Val Ala Ala Arg Trp Gly Glu Asp Ser Thr Leu Gly Arg Lys
1 10 15

Lys Ser Gln Asn Leu Val Ser Phe Leu Thr Leu Arg Pro Thr His Gly

20 25 30

Asp Phe Gln Pro Phe Ser Val Ser Pro Glu Ser Cys Pro His
35 40 45

<210> 218

<211> 154

<212> PRT

<213> Homo sapien

<400> 218

Tyr Asn Ala Ala Arg Ala Ala Gln Cys Glu Trp Ile Gly Arg Pro Gly
1 5 10 15

Arg Tyr Gln Leu Cys Gln Pro Gln Ser Lys Asp Gln Val Arg Trp Gln 20 25 30

Cys Asn Arg Pro Ser Ala Lys His Gly Pro Glu Lys Leu Ser Glu Lys 35 40 45

Phe Gln Arg Phe Thr Pro Phe Thr Leu Gly Lys Glu Phe Lys Glu Gly 50 60

His Ser Tyr Tyr Tyr Ile Ser Lys Pro Ile His Gln His Glu Asp Arg 65 70 75 80

Cys Leu Arg Leu Lys Val Thr Val Ser Gly Lys Ile Ile Thr Val Leu 85 90 95

Arg Pro Met Ser Ile His Arg Arg Asp Leu Gln Gln Met Thr Gln
100 105 110

Arg Cys Gly Phe Tyr Ile Ala Ser Val Thr Val Leu Pro His Ala Ser 115 120 125

Ser His Leu Pro Gly Leu Cys Cys Ser Phe His Phe Cys Cys Cys Lys 130 135 140

Pro Arg Glu Gly Val Cys His Thr Trp Pro

<210> 219

<211> 204

<212> PRT

<213> Homo sapien

<400> 219

His Arg Ser Gln Cys Cys Pro Thr Pro Leu Pro Thr Cys Leu Asp Cys

Ala Ala Pro Ser Thr Ser Ala Ala Ash Pro Val Lys Val Cys Ala 25

Thr Pro Gly Leu Lys Glu Gly Gln Ala Glu Glu Arg Asp Arg His Ser

Lys Pro Val Leu Gly Pro Leu Ser Glu Pro Pro Ala Leu Gly Thr Thr

Pro Thr Thr Gly Ile Ser Tyr His Leu Ala Ala Ser Lys Arg Val Asn

Ile Lys Val Phe Asn Arg Lys Glu Ala Asn Gln Pro Asp Ser Ala Ile

Pro Thr Phe Thr Ser Glu Gly Trp Arg Lys Trp Arg Gln Ser Phe 105

Pro Thr Ile Pro Ala Phe Lys Pro Lys Gln Ala Val Gln Ala Trp

Ser Leu Lys Ala Gln Trp Glu Leu Ser Trp Lys Gly Pro Arg Gly Trp 130 135 140

Ala Lys Leu Val Lys Asp Ala Pro Ser Arg Arg Glu Pro Gly Cys Pro 150 155

Asp Glu Leu Thr Glu Gly Lys Ala Arg Asn Ser Phe Leu Leu Gly Ser 165

Gln Val Gln Glu Arg Gln His Ala Trp Ala Asp Pro Ala Ser Pro Ser 180 185 190

Lys Thr Ser Ser Val Glu Leu Pro Gln Arg Ser Leu 200

<210> 220 <211> 147 <212> PRT

<213> Homo sapien

Met His Ala Arg Ala Ala Pro Gly Gln Glu Tyr Gln Leu Cys Gln Pro

Gln Ser Lys Asp Gln Val Arg Trp Gln Cys Asn Arg Pro Ser Ala Lys 25

His Gly Pro Glu Lys Leu Ser Glu Lys Phe Gln Arg Phe Thr Pro Phe 40

Thr Leu Gly Lys Glu Phe Lys Glu Gly His Ser Tyr Tyr Tyr Ile Ser

Lys Pro Ile His Gln His Glu Asp Arg Cys Leu Arg Leu Lys Val Thr

Val Ser Gly Lys Ile Ile Thr Val Leu Arg Pro Met Ser Ile His Arg

Arg Arg Asp Leu Gln Gln Met Thr Gln Arg Cys Gly Phe Tyr Ile Ala

Ser Val Thr Val Leu Pro His Ala Ser Ser His Leu Pro Gly Leu Cys 120

Cys Ser Phe His Phe Cys Cys Lys Pro Arg Glu Gly Val Cys His 130 . 135

Thr Trp Pro 145

<210> 221

<211> 204 <212> PRT

<213> Homo sapien

<400> 221

His Arg Ser Gln Cys Cys Pro Thr Pro Leu Pro Thr Cys Leu Asp Cys

Ala Ala Pro Ser Thr Ser Ala Ala Ala Asn Pro Val Lys Val Cys Ala

Thr Pro Gly Leu Lys Glu Gly Gln Ala Glu Glu Arg Asp Arg His Ser 35

Lys Pro Val Leu Gly Pro Leu Ser Glu Pro Pro Ala Leu Gly Thr Thr

223

Pro Thr Thr Gly Ile Ser Tyr His Leu Ala Ala Ser Lys Arg Val Asn 70

Ile Lys Val Phe Asn Arg Lys Glu Ala Asn Gln Pro Asp Ser Ala Ile

Pro Thr Phe Thr Ser Glu Gly Trp Arg Lys Lys Trp Arg Gln Ser Phe

Pro Thr Ile Pro Ala Phe Lys Pro Lys Lys Gln Ala Val Gln Ala Trp 120

Ser Leu Lys Ala Gln Trp Glu Leu Ser Trp Lys Gly Pro Arg Gly Trp

Ala Lys Leu Val Lys Asp Ala Pro Ser Arg Arg Glu Pro Gly Cys Pro

Asp Glu Leu Thr Glu Gly Lys Ala Arg Asn Ser Phe Leu Leu Gly Ser 165 170 175

Gln Val Gln Glu Arg Gln His Ala Trp Ala Asp Pro Ala Ser Pro Ser

Lys Thr Ser Ser Val Glu Leu Pro Gln Arg Ser Leu 195 200

<210> 222

<211> 74 <212> PRT

<213> Homo sapien

<400> 222

Met His Ala Arg Ala Ala Pro Gly Gln Ser Tyr Leu Ile Tyr Tyr His

Ser Cys Leu Ser Ala His Ser Pro Gln Ala His Asp Asn Pro Gln Glu

Lys Arg Leu Ala Ala Asp Asp Pro Glu Val Arg Val Leu His Ser Ile 35

Gly His Ser Ala Ala Pro Arg Leu Phe Pro Leu Ala Trp Thr Val Leu 50 55

Leu Leu Pro Leu Leu Leu Gln Thr Pro

WO 2004/052290

224

<210> 223 <211> 204 <212> PRT <213> Homo sapien

<400> 223

His Arg Ser Gln Cys Cys Pro Thr Pro Leu Pro Thr Cys Leu Asp Cys

Ala Ala Pro Ser Thr Ser Ala Ala Ala Asn Pro Val Lys Val Cys Ala 25

Thr Pro Gly Leu Lys Glu Gly Gln Ala Glu Glu Arg Asp Arg His Ser 35

Lys Pro Val Leu Gly Pro Leu Ser Glu Pro Pro Ala Leu Gly Thr Thr 50

Pro Thr Thr Gly Ile Ser Tyr His Leu Ala Ala Ser Lys Arg Val Asn 70

Ile Lys Val Phe Asn Arg Lys Glu Ala Asn Gln Pro Asp Ser Ala Ile

Pro Thr Phe Thr Ser Glu Gly Trp Arg Lys Lys Trp Arg Gln Ser Phe 105

Pro Thr Ile Pro Ala Phe Lys Pro Lys Lys Gln Ala Val Gln Ala Trp 115

Ser Leu Lys Ala Gln Trp Glu Leu Ser Trp Lys Gly Pro Arg Gly Trp

Ala Lys Leu Val Lys Asp Ala Pro Ser Arg Glu Pro Gly Cys Pro 150

Asp Glu Leu Thr Glu Gly Lys Ala Arg Asn Ser Phe Leu Leu Gly Ser 170

Gln Val Gln Glu Arg Gln His Ala Trp Ala Asp Pro Ala Ser Pro Ser 185

Lys Thr Ser Ser Val Glu Leu Pro Gln Arg Ser Leu 195

225

<210> 224

<211> 895 <212> PRT <213> Homo sapien

<400> 224

Met Gly Cys Trp Leu Ser Trp Ser Lys Thr Glu Gly Cys Arg Ala Pro 5

Gly Val Leu Pro Ile Ser Thr Met Leu Thr Pro Ala Glu Leu Ala Thr 25

Val Val Arg Arg Phe Ser Gln Thr Gly Ile Gln Asp Phe Leu Thr Leu 35 40

Thr Leu Thr Glu Pro Thr Gly Leu Leu Tyr Val Gly Ala Arg Glu Ala 55

Leu Phe Ala Phe Ser Met Glu Ala Leu Glu Leu Gln Gly Ala Ile Ser

Trp Glu Ala Pro Val Glu Lys Lys Thr Glu Cys Ile Gln Lys Gly Lys 85 90

Asn Asn Gln Thr Glu Cys Phe Asn Phe Ile Arg Phe Leu Gln Pro Tyr

Asn Ala Ser His Leu Tyr Val Cys Gly Thr Tyr Ala Phe Gln Pro Lys 120

Cys Thr Tyr Val Asn Met Leu Thr Phe Thr Leu Glu His Gly Glu Phe

Glu Asp Gly Lys Gly Lys Cys Pro Tyr Asp Pro Ala Lys Gly His Ala

Gly Leu Leu Val Asp Gly Glu Leu Tyr Ser Ala Thr Leu Asn Asn Phe 170

Leu Gly Thr Glu Pro Ile Ile Leu Arg Asn Met Gly Pro His His Ser 185

Met Lys Thr Glu Tyr Leu Ala Phe Trp Leu Asn Glu Pro His Phe Val 195 200

Gly Ser Ala Tyr Val Pro Glu Ser Val Gly Ser Phe Thr Gly Asp Asp 210

Asp 225	Lys	Val	Tyr	Phe	Phe 230	Phe	Arg	Glu	Arg	Ala 235	Val	Glu	Ser	Asp	Сув 240
Tyr	Ala	Glu	Gln	Val 245	Val	Ala	Arg	Va1	Ala 250	Arg	Val	Cys	ГÀЗ	Gly 255	Asp
Met	Gly	Gly	Ala 260	Arg	Thr	Leu	Gln	Arg 265	Гуз	Trp	Thr	Thr	Phe 270	Leu	ГÀв
Ala	Arg	Leu 275	Ala	Сув	Ser	Ala	Pro 280	Asn	Trp	Gln	Leu	Tyr 285	Phe	Asn	Gln
Leu	Gln 290		Met	His	Thr	Leu 295	Gln	Asp	Thr	Ser	Trp 300	His	Asn	Thr	Thr
Phe 305		Gly	Val	Phe	Gln 310	Ala	Gln	Trp	Gly	Asp 315	Met	Tyr	Leu	Ser	Ala 320
Ile	Сув	Glu	Туг	Gln 325		Glu	Glu	Ile	Gln 330	Arg	Val	Phe	Glu	Gly 335	Pro
Tyr	Lys	Glu	Туг 340		Glu	Glu	Ala	Gln 345		Trp	Asp	Arg	Tyr 350	Thr	Asp
Pro	Val	. Pro 355		Pro	Arg	Pro	Gly 360		Сув	: Ile	Asn	Asn 365	Trp	His	Arg
Arg	370		, Тух	Thr	Ser	Ser 375		Glu	. Lev	Pro	380	Asn	. Ile	. Leu	Asn
Phe 385		L Lys	s Lys	His	390		ı Met	Glu	ı Glu	1 Gln 395	ı Val	. Gly	Pro	Arg	Trp 400
Set	: Ar	g Pro) Let	ı Let 405		. Lys	в Був	: Gly	7 Th:	r Asr	n Phe	e Thr	Hi:	415	ı Val
Ala	a As	p Ar	g Val 420		c Gly	, Le	ı Asp	Gly 429		a Thi	с Туз	c Thi	c Val 430	L Lev	ı Phe
Il	e Gl	y Th:		y As	p Gly	y Tr	p Let 440		u Ly	s Ala	a Va	1 Se:	r Len	ı Gly	y Pro

Trp Val His Leu Ile Glu Glu Leu Gln Leu Phe Asp Gln Glu Pro Met

455

450

Arg 465	Ser	Leu	Val	Leu	Ser 470	Gln	Ser	Lys	ГÀв	Leu 475	Leu	Phe	Ala	Gly	Ser 480
Arg	Ser	Gln	Leu	Val 485	Gln	Leu	Pro	Val	Ala 490	Asp	Сув	Met	Lys	Tyr 495	Arg
Ser	Сув	Ala	Авр 500	Сув	Val	Leu	Ala	Arg 505	Asp	Pro	Tyr	Сув	Ala 510	Trp	Ser
Val	Asn	Thr 515	Ser	Arg	Сув	Val	Ala 520	Val	Gly	Gly	His	Ser 525	Gly	Leu	Ser
Trp	Ala 530	Leu	His	Arg	Pro	Gly 535	Pro	Pro	Gly	Leu	Arg 540	Leu	Val	Gly	Ala
Arg 545	Leu	Leu	Met	Tyr	Pro 550	Thr	Ser	Pro	Thr	Arg 555	Ser	Leu	Leu	Ile	Gln 560
His	Val	Met	Thr	Ser 565	Asp	Thr	Ser	Gly	Ile 570	Сув	Asn	Leu	Arg	Gly 575	Ser
ГÀЗ	ГÀв	Gly	Glu 580	Leu	Phe	His	Ser	Arg 585	Arg	Ile	Gly	Leu	Ser 590	Pro	Gly
Pro	Glu	Leu 595	Glu	Phe	Leu	Phe	Ser 600	Ser	Ser	Pro	Ala	Leu 605	Leu	Ser	Сув
Thr	Asn 610	Met	His	Ser	Val	Phe 615	Ser	Ala	Thr	Thr	Val 620	Arg	Pro	Thr	Pro
Lув 625	Asn	Ile	Thr	Val	Val 630	Ala	Gly	Thr	Asp	Leu 635	Val	Leu	Pro	Сув	His 640
Leu	Ser	Ser	Asn	Leu 645	Ala	His	Ala	Arg	Trp 650	Thr	Phe	Gly	Gly	Arg 655	Asp
Leu	Pro	Ala	Glu 660	Gln	Pro	Gly	Ser	Phe 665	Leu	Tyr	Asp	Ala	Arg 670	Leu	Gln
Ala	Leu	Val 675	Val	Met	Ala	Ala	Gln 680	Pro	Arg	His	Ala	Gly 685	Ala	Tyr	His
Сув	Phe 690	Ser	Glu	Glu	Gln	Gly 695	Ala	Arg	Leu	Ala	Ala 700	Glu	Gly	Tyr	Leu

228

Val Ala Val Val Ala Gly Pro Ser Val Thr Leu Glu Ala Arg Ala Pro 705 710 715 720

Leu Glu Asn Leu Gly Leu Val Trp Leu Ala Val Val Ala Leu Gly Ala 725 730 735

Val Cys Leu Val Leu Leu Leu Leu Val Leu Ser Leu Arg Arg Leu 740 745 750

Arg Glu Glu Leu Glu Lys Gly Ala Lys Ala Thr Glu Arg Thr Leu Val 755 760 765

Tyr Pro Leu Glu Leu Pro Lys Glu Pro Thr Ser Pro Pro Phe Arg Pro 770 775 780

Cys Pro Glu Pro Asp Glu Lys Leu Trp Asp Pro Val Gly Tyr Tyr 785 790 795 800

Ser Asp Gly Ser Leu Lys Ile Val Pro Gly His Ala Arg Cys Gln Pro 805 810 815

Gly Gly Pro Pro Ser Pro Pro Pro Gly Ile Pro Gly Gln Pro Leu 820 825 830

Pro Ser Pro Thr Arg Leu His Leu Gly Gly Gly Arg Asn Ser Asn Ala 835 840 845

Asn Gly Tyr Val Arg Leu Gln Leu Gly Gly Glu Asp Arg Gly Gly Leu 850 855 860

Gly His Pro Leu Pro Glu Leu Ala Asp Glu Leu Arg Arg Lys Leu Gln 865 870 875 880

Gln Arg Gln Pro Leu Pro Asp Ser Asn Pro Glu Glu Ser Ser Val 885 890 895

<210> 225

<211> 626

<212> PRT

<213> Homo sapien

<400> 225

Arg Gln Trp Ala Ala Gly Gln Arg Arg Lys Gln Arg Arg Gly Ser Glu
1 10 15

Gly Gly Val Gly Val Pro Ser Pro Ala Ala Glu Val Pro Leu Thr Leu 20 25 30

Arg Ala Arg Ala Ile Ser Leu Met Ala Ser Ser Gly Arg Lys Leu Trp Leu Arg Tyr Pro Ser Phe Leu Pro Ala Ala Trp Ile Cys Leu Leu Pro Gly Trp Glu Arg Leu Gly Arg Pro Arg Trp Gly Cys Gln Gly Gln Arg Leu Phe Gln Lys Cys Pro Leu Leu Pro Ile Arg Gly Phe Gly Trp His Leu Leu Val Ala Trp Gly Ala Gly Ser Arg Gly Ala Arg Leu Arg Ala Val Glu Pro Gln Gly Ser Cys Pro Ser Ala Ala Met Leu Thr Pro Ala Glu Leu Ala Thr Val Val Arg Arg Phe Ser Gln Thr Gly Ile Gln Asp Phe Leu Thr Leu Thr Glu Pro Thr Gly Leu Leu Tyr Val Gly Ala Arg Glu Ala Leu Phe Ala Phe Ser Met Glu Ala Leu Glu Leu Gln 170 165 Gly Ala Ile Ser Trp Glu Ala Pro Val Glu Lys Lys Thr Glu Cys Ile Gln Lys Gly Lys Asn Asn Gln Thr Glu Cys Phe Asn Phe Ile Arg Phe 195 Leu Gln Pro Tyr Asn Ala Ser His Leu Tyr Val Cys Gly Thr Tyr Ala 210 Phe Gln Pro Lys Cys Thr Tyr Val Asn Met Leu Thr Phe Thr Leu Glu 225 His Gly Glu Phe Glu Asp Gly Lys Gly Lys Cys Pro Tyr Asp Pro Ala 245 250 Lys Gly His Ala Gly Leu Leu Val Asp Gly Glu Leu Tyr Ser Ala Thr

265

- Leu Asn Asn Phe Leu Gly Thr Glu Pro Ile Ile Leu Arg Asn Met Gly 275 280 285
- Pro His His Ser Met Lys Thr Glu Tyr Leu Ala Phe Trp Leu Asn Glu 290 295 300
- Pro His Phe Val Gly Ser Ala Tyr Val Pro Glu Ser Val Gly Ser Phe 305 310 315 320
- Thr Gly Asp Asp Lys Val Tyr Phe Phe Phe Arg Glu Arg Ala Val 325 330 335
- Glu Ser Asp Cys Tyr Ala Glu Gln Val Val Ala Arg Val Ala Arg Val 340 345 350
- Cys Lys Gly Asp Met Gly Gly Ala Arg Thr Leu Gln Arg Lys Trp Thr 355 360 365
- Thr Phe Leu Lys Ala Arg Leu Ala Cys Ser Ala Pro Asn Trp Gln Leu 370 375 380
- Tyr Phe Asn Gln Leu Gln Ala Met His Thr Leu Gln Asp Thr Ser Trp 385 390 395 400
- His Asn Thr Thr Phe Phe Gly Val Phe Gln Ala Gln Trp Gly Asp Met 405 410 415
- Tyr Leu Ser Ala Ile Cys Glu Tyr Gln Leu Glu Glu Ile Gln Arg Val 420 425 430
- Phe Glu Gly Pro Tyr Lys Glu Tyr His Glu Glu Ala Gln Lys Trp Asp 435 440 445
- Arg Tyr Thr Asp Pro Val Pro Ser Pro Arg Pro Gly Ser Cys Ile Asn 450 455 460
- Asn Trp His Arg Arg His Gly Tyr Thr Ser Ser Leu Glu Leu Pro Asp 465 470 475 480
- Asn Ile Leu Asn Phe Val Lys Lys His Pro Leu Met Glu Glu Gln Val 485 490 495
- Gly Pro Arg Trp Ser Arg Pro Leu Leu Val Lys Lys Gly Thr Asn Phe 500 505 510

231

Thr His Leu Val Ala Asp Arg Val Thr Gly Leu Asp Gly Ala Thr Tyr 515

Thr Val Leu Phe Ile Gly Thr Gly Asp Gly Trp Leu Leu Lys Ala Val 535

Ser Leu Gly Pro Trp Val His Leu Ile Glu Glu Leu Gln Leu Phe Asp 550

Gln Glu Pro Met Arg Ser Leu Val Leu Ser Gln Ser Lys Lys Leu Leu 570

Phe Ala Gly Ser Arg Ser Gln Leu Val Gln Leu Pro Val Ala Asp Cys 580

Met Lys Tyr Arg Ser Cys Ala Asp Cys Val Leu Ala Arg Asp Pro Tyr

Cys Ala Trp Ser Val Asn Thr Ser Arg Cys Val Ala Val Gly Gly His 615

Ser Gly 625

<210> 226

<211> 146 <212> PRT <213> Homo sapien

<400> 226

Ser Val Thr Asp Phe Phe Gln Ala Asp Gln Gln Val Val Val Glu

Gly Leu Cys Pro Gly Trp Gly Asp Ala Leu Asn His His Asn Leu Leu 25

Val Cys Ser Val Thr Asp Phe Tyr Pro Gly Gln Ile Lys Val Arg Trp

Phe Arg Asn Asp Gln Glu Glu Thr Ala Gly Val Val Ser Thr Pro Leu

Ile Arg Asn Gly Asp Trp Thr Phe Gln Ile Leu Val Met Leu Glu Met 70 65

Thr Pro Gln Arg Gly Asp Val Tyr Thr Cys His Val Glu His Pro Ser 85 90

Leu Gln Ser Pro Ile Thr Val Glu Trp Arg Ala Gln Ser Glu Ser Ala 100 105

Gln Ser Lys Met Leu Ser Gly Val Gly Phe Val Leu Gly Leu Ile

Phe Leu Gly Leu Gly Leu Ile Ile Arg Gln Arg Ser Gln Lys Gly Leu

Leu His 145

<210> 227

<211> 144 <212> PRT <213> Homo sapien

<400> 227

Gln Ile Ser Ile Gln Ala Asp Gln Gln Val Val Val Glu Gly Leu

Cys Pro Gly Trp Gly Asp Ala Leu Asn His His Asn Leu Leu Val Cys

Ser Val Thr Asp Phe Tyr Pro Gly Gln Ile Lys Val Arg Trp Phe Arg 40

Asn Asp Gln Glu Glu Thr Ala Gly Val Val Ser Thr Pro Leu Ile Arg

Asn Gly Asp Trp Thr Phe Gln Ile Leu Val Met Leu Glu Met Thr Pro

Gln Arg Gly Asp Val Tyr Thr Cys His Val Glu His Pro Ser Leu Gln

Ser Pro Ile Thr Val Glu Trp Arg Ala Gln Ser Glu Ser Ala Gln Ser

Lys Met Leu Ser Gly Val Gly Gly Phe Val Leu Gly Leu Ile Phe Leu 115 120

Gly Leu Gly Leu Ile Ile Arg Gln Arg Ser Gln Lys Gly Leu Leu His 130 135

233

<210> 228

<211> 34 <212> PRT <213> Homo sapien

<400> 228

Ala Ala Ala Tyr Tyr Tyr Tyr Cys Ser Glu Phe Lys Leu Leu Thr

Met Tyr Gly Asp Met Trp Gly Glu Asp Gln Leu Gly Ala Trp Ala Leu 20 25

Thr Glu

<210> 229

<211> 46

<212> PRT

<213> Homo sapien

<400> 229

Arg Pro Pro Thr Thr Thr Thr Ala Arg Ile Gln Ala Ser Asn Asp 10

Val Arg Gly His Val Gly Arg Gly Pro Ala Gly Cys Leu Gly Ile Asp 25

Arg Met Met Val Val Leu Tyr His Leu Ile Asn Lys Lys 35

<210> 230

<211> 83

<212> PRT

<213> Homo sapien

<400> 230

Ala Lys Cys Cys Leu Glu Gln Gly Glu Val Leu Lys Leu Leu Ser Ser

Ala Ala Ser Pro Leu Arg Lys Pro Leu Cys His Gln Tyr His Glu Ala 25

Leu Arg Asp Cys Pro Val Ser Pro Arg Ala Ser Ser Cys Leu Leu Leu 45 40 35

Ser Ser Thr Leu Ser Thr Lys Phe Gln Thr Lys Arg Gly Lys Gln Val 50 55

234

Cys Ala Asp Pro Ser Glu Ser Trp Val Gln Glu Tyr Val Tyr Asp Leu 65 70 75 80

Glu Leu Asn

<210> 231

<211> 81

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (6)..(7)

<223> X=any amino acid

<400> 231

Met Leu Ser Arg Ala Xaa Xaa Val Leu Lys Leu Leu Ser Ser Ala Ala 1 5 10 15

Ser Pro Leu Arg Lys Pro Leu Cys His Gln Tyr His Glu Ala Leu Arg 20 25 30

Asp Cys Pro Val Ser Pro Arg Ala Ser Ser Cys Leu Leu Ser Ser 35 40 45

Thr Leu Ser Thr Lys Phe Gln Thr Lys Arg Gly Lys Gln Val Cys Ala 50 55 60

Asp Pro Ser Glu Ser Trp Val Gln Glu Tyr Val Tyr Asp Leu Glu Leu 65 70 75 80

Asn

<210> 232

<211> 305

<212> PRT

<213> Homo sapien

<400> 232

Met Asp Arg Ser Gly Gly Ile Thr Glu Ala Arg Ser Ser Ala His Asp 1 5 10 15

Leu Tyr Pro Thr Tyr Ser Asn Phe His Ser Ser Pro Cys Pro Arg Ser 20 25 30

Arg Val Leu Tyr Gln Pro Phe Ile Leu Thr Arg Phe Ser Thr Met Ala

40 45 35 Phe Asn Lys Val His Val Phe Leu Val Lys Ala Ala Glu Lys Lys Lys Lys Asn Lys Thr Lys Lys Phe Phe Gly Arg Leu Gly Pro Ser Arg 70 75 Lys Val Phe Lys Pro His Phe Cys Trp Gly Gly Ala Pro Arg Asn 85 90 Ser Lys Val Asn His Trp Ala Gln Arg Gly Trp Pro Lys Glu Arg Ala 105 100 Thr Gly Trp Pro Ala Asp Arg Gly Ala Gly Cys Leu Thr Pro Asn Lys 120 125 Lys Arg Ala Gly Gly Arg His Arg Asp Val Phe Ser Gly Thr Thr Asn Pro Glu Arg Glu Arg Leu Gly Gly Gln Lys Gly Leu Pro His Gln Gly Gly Ile Pro Arg Arg Gln Ser Pro Asn Thr Leu Tyr Arg Ala Ala Leu 165 170 Val Glu Lys Asp Lys Thr Asp Asp Leu Glu His Arg Gln Gly Arg Arg 185 Lys His Ile Thr His Arg Arg Pro Arg His Thr Met Gln Ser Thr Thr Thr Ala Glu Ile Lys Arg Lys Arg Lys Gly Arg Lys Arg Ala Glu Lys Tyr Gln Arg Gln Gln Thr Lys Thr Arg Gly Arg Ser Gly Thr Gln Glu Asn Arg Gln Arg Lys Lys Asn Glu Glu Val Gly Glu Arg Thr Arg Arg 250 255 245 Gly Asp Lys Lys Lys Gln Arg Thr Arg Arg Arg Thr Ser Lys Thr 265 260 Tyr Arg Arg Lys Gln Gly Lys His Glu Glu Lys Lys Thr Arg Arg Arg

280

285

Glu Glu Arg Asp Lys Trp Arg Ala Gly Ala Arg Ser Ser Glu Gly Lys 295

Thr 305

<210> 233

<211> 155

<212> PRT <213> Homo sapien

<400> 233

Asn Asp Arg Gly Lys Glu Val Ser Leu Ser Thr Val Pro Ala Ser Gly 5

His His Ser Gly Pro Ser Leu His Ala Glu Asn His Thr Ser Gln Thr 20

Phe Thr Gln His Phe Leu Pro Gln Ser Gln Lys Met His Lys Glu Glu 40

His Glu Val Ala Val Leu Gly Ala Pro Pro Ser Thr Ile Leu Pro Arg 55

Ser Thr Val Ile Asn Ile His Ser Glu Thr Ser Val Pro Asp His Val 75

Val Trp Ser Leu Phe Asn Thr Leu Phe Leu Asn Trp Cys Cys Leu Gly 85

Phe Ile Ala Phe Ala Tyr Ser Val Lys Ser Arg Asp Arg Lys Met Val

Gly Asp Val Thr Gly Ala Gln Ala Tyr Ala Ser Thr Ala Lys Cys Leu 120

Asn Ile Trp Ala Leu Ile Leu Gly Ile Leu Met Thr Ile Leu Leu Ile

Val Ile Pro Val Leu Ile Phe Gln Ala Tyr Gly 150

<210> 234

<211> 140

<212> PRT

<213> Homo sapien

<400> 234

Met Ala Leu Pro Glu Ser Glu Lys Gly Thr His Gln Val Ile Val Gln

Pro Gln Trp Trp Val Glu Asn Ser Leu Cys Trp Ala Lys Ala Glu Val

Met Asp Val Ala Pro Arg Leu Leu Glu Met Ser Asp Ala Trp Val Met

Lys Cys Gly Gly Trp Trp Ser Leu Ile Ser Gly Ala Gly Arg Ala Asn 50 55 60

Glu Glu Pro Val Cys His Ser Thr Arg Leu Ser Cys Trp Gly Ile Leu 70

Val Pro Ser Pro Ser Pro Leu Pro Gln Ser Arg Asp Arg Lys Met Val

Gly Asp Val Asn Arg Gly Pro Gln Ala Tyr Ala Ser Thr Ala Lys Cys 105

Leu Asn Ile Trp Ala Leu Ile Leu Gly Ile Leu Met Thr Ile Leu Leu

Ile Val Ile Pro Val Leu Ile Phe Gln Ala Tyr Gly 130 135

<210> 235

<211> 120

<212> PRT

<213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (105)..(105)

<223> X=any amino acid

<400> 235

Asn Asp Arg Gly Lys Glu Val Ser Leu Ser Thr Val Pro Ala Ser Gly

His His Ser Gly Pro Ser Leu His Ala Glu Asn His Thr Ser Gln Thr 20

Phe Thr Gln His Phe Leu Pro Gln Ser Gln Lys Met His Lys Glu Glu

45 40 35

His Glu Val Ala Val Leu Gly Ala Pro Pro Ser Thr Ile Leu Pro Arg 55

Ser Thr Val Ile Asn Ile His Ser Glu Thr Ser Val Pro Asp His Val

Val Trp Ser Leu Phe Asn Thr Leu Phe Leu Asn Trp Cys Cys Leu Gly 90 85

Phe Ile Ala Phe Ala Tyr Ser Val Xaa Thr Gly Thr His Ala Leu Pro 100

Glu Ser Glu Lys Gly Thr His Arg 115

<210> 236

<211> 157

<212> PRT

<213> Homo sapien

<400> 236

Asn Asp Arg Gly Lys Glu Val Ser Leu Ser Thr Val Pro Ala Ser Gly

His His Ser Gly Pro Ser Leu His Ala Glu Asn His Thr Ser Gln Thr 25 20

Phe Thr Gln His Phe Leu Pro Gln Ser Gln Lys Met His Lys Glu Glu 35

His Glu Val Ala Val Leu Gly Ala Pro Pro Ser Thr Ile Leu Pro Arg 55 50

Ser Thr Val Ile Asn Ile His Ser Glu Thr Ser Val Pro Asp His Val 70 65

Val Trp Ser Leu Phe Asn Thr Leu Phe Leu Asn Trp Cys Cys Leu Gly

Phe Ile Ala Phe Ala Tyr Ser Val Lys Val Arg Met Ala Leu Ala Glu 105

Ile Gln Gly Val Pro Val Ser Leu Gly Leu His Leu Pro Thr Cys Cys 120 115

Leu Gly Trp Gly Leu Val Cys Pro Cys Asp Cys Glu Phe Val Cys Thr 130 140

Ser Ala Pro Cys Val Leu Thr Ser Val Ala Leu Ser Val 145 150

<210> 237 <211> 66 <212> PRT <213> Homo sapien

<400> 237

Met His Lys Glu Glu His Glu Val Ala Val Leu Gly Ala Pro Pro Ser

Thr Ile Leu Pro Arg Ser Thr Val Ile Asn Ile His Ser Glu Thr Ser 25

Val Pro Asp His Val Val Trp Ser Leu Phe Asn Thr Leu Phe Met Asn 40

Pro Cys Cys Leu Asn Trp Cys Cys Leu Gly Phe Asn Ser Ile Arg Leu 55

Thr Pro 65

<210> 238 <211> 105 <212> PRT <213> Homo sapien

<400> 238

Asn Asp Arg Gly Lys Glu Val Ser Leu Ser Thr Val Pro Ala Ser Gly

His His Ser Gly Pro Ser Leu His Ala Glu Asn His Thr Ser Gln Thr 20

Phe Thr Gln His Phe Leu Pro Gln Ser Gln Lys Met His Lys Glu Glu 40 35

His Glu Val Ala Val Leu Gly Ala Pro Pro Ser Thr Ile Leu Pro Arg 55 60 50

Ser Thr Val Ile Asn Ile His Ser Glu Thr Ser Val Pro Asp His Val 75 70

240

Val Trp Ser Leu Phe Asn Thr Leu Phe Leu Asn Trp Cys Cys Leu Gly

Phe Ile Ala Phe Ala Tyr Ser Val Ser 100

<210> 239 <211> 238 <212> PRT <213> Homo sapien

<220>

<221> MISC_FEATURE

<222> (74)..(74)

<223> X=any amino acid

<220>

<221> MISC_FEATURE
<222> (81)..(81)
<223> X=any amino acid

<220>

<221> MISC_FEATURE <222> (87)..(87) <223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (104)..(104)

<223> X=any amino acid

<220>

<221> MISC_FEATURE

<222> (112)..(112) <223> X=any amino acid

<400> 239

Gln Ile Asn Pro Ala Ser Thr Leu Tyr Ser Asp His Leu Ser Tyr Phe 15

Cys Phe Ile Gly Pro Phe Ile Val Leu Ala Leu Phe His Gly Lys Phe 25 20

Ile Asp Thr Gly Phe Ser Leu Pro Phe Tyr Gln Pro Ile Leu Ser Lys 40 35

Lys Leu Thr Ile Lys Asp Leu Glu Ser Ile Asp Thr Glu Cys Tyr Tyr 50 55

Ser Pro Ile Trp Ile Arg Asp Asn His Xaa Glu Glu Cys Gly Leu Glu 70

Xaa Tyr Phe Ser Val Asp Xaa Glu Ile Leu Gly Lys Val Thr Ser His

Asp Leu Lys Leu Gly Gly Ser Xaa Ile Leu Val Thr Glu Glu Asn Xaa

Asp Glu Tyr Ile Gly Leu Met Thr Glu Trp Arg Phe Ser Arg Gly Val 120

Gln Glu Gln Thr Lys Ala Phe Leu Asp Gly Phe Asn Glu Val Val Pro 130

Leu Gln Trp Leu Gln Tyr Phe Asp Glu Lys Glu Leu Glu Val Met Leu 155

Cys Gly Met Gln Glu Val Asp Leu Ala Asp Trp Gln Arg Asn Thr Val

Tyr Arg His Tyr Thr Arg Asn Ser Lys Gln Ile Ile Trp Phe Trp Gln 185

Phe Val Lys Glu Thr Asp Asn Glu Val Arg Met Arg Leu Leu Gln Phe 200

Val Thr Gly Thr Cys Arg Leu Pro Leu Gly Gly Phe Ala Glu Leu Met 210

Gly Lys Cys Asn Phe Thr Val Ile Ser Leu Tyr Val Ile Leu 230 235 225

<210> 240 <211> 238

<212> PRT

<213> Homo sapien

<400> 240

Gln Ile Asn Pro Ala Ser Thr Leu Tyr Ser Asp His Leu Ser Tyr Phe 5

Cys Phe Ile Gly Pro Phe Ile Val Leu Ala Leu Phe His Gly Lys Phe 25 20

242

Ile Asp Thr Gly Phe Ser Leu Pro Phe Tyr Gln Pro Ile Leu Ser Lys 35

Lys Leu Thr Ile Lys Asp Leu Glu Ser Ile Asp Thr Glu Cys Tyr Tyr 55

Ser Pro Ile Trp Ile Arg Asp Asn His Pro Glu Glu Cys Gly Leu Glu

Lys Tyr Phe Ser Val Asp Leu Glu Ile Leu Gly Lys Val Thr Ser His

Asp Leu Lys Leu Gly Gly Ser Asn Ile Leu Val Thr Glu Glu Asn Gln 100

Asp Glu Tyr Ile Gly Leu Met Thr Glu Trp Arg Phe Ser Arg Gly Val

Gln Glu Gln Thr Lys Ala Phe Leu Asp Gly Phe Asn Glu Val Val Pro 135

Leu Gln Trp Leu Gln Tyr Phe Asp Glu Lys Glu Leu Glu Val Met Leu

Cys Gly Met Gln Glu Val Asp Leu Ala Asp Trp Gln Arg Asn Thr Val 170

Tyr Arg His Tyr Thr Arg Asn Ser Lys Gln Ile Ile Trp Phe Trp Gln 185 180

Phe Val Lys Glu Thr Asp Asn Glu Val Arg Met Arg Leu Leu Gln Phe 195

Val Thr Gly Thr Cys Arg Leu Pro Leu Gly Gly Phe Ala Glu Leu Met 215 210

Gly Lys Cys Asn Phe Thr Val Ile Ser Leu Tyr Val Ile Leu 235 230 225

<210> 241

<211> 656

<212> PRT <213> Homo sapien

<400> 241

Leu Val Arg Pro Arg Gln Gly Arg Arg Arg Pro Cys Arg Arg Arg Glu 5

Leu	Trp	Val	Ser 20	Arg	Phe	Gly	Ser	Ala 25	Thr	Arg	Gln	Val	Asp 30	Ser	Glı
Ser	Ala	Ser 35	Val	Val	Gly	Lys	Arg 40	Pro	Pro	Phe	His	Gly 45	Thr	Pro	Sei
Thr	Met 50	Ser	Ser	Pro	Ala	Ser 55	Thr	Pro	Ser	Arg	Arg 60	Gly	Ser	Arg	Arg
Gly 65	Arg	Ala	Thr	Pro	Ala 70	Gln	Thr	Pro	Arg	Ser 75	Glu	Asp	Ala	Arg	Sei 80
Ser	Pro	Ser	Gln	Arg 85	Arg	Arg	Gly	Glu	Asp 90	Ser	Thr	Ser	Thr	Gly 95	Glı
Leu	Gln	Pro	Met 100	Pro	Thr	Ser	Pro	Gly 105	Val	Asp	Leu	Gln	Ser 110	Pro	Ala
Ala	Gln	Asp 115	Val	Leu	Phe	Ser	Ser 120	Pro	Pro	Gln	Met	His 125	Ser	Ser	Ala
Ile	Pro 130	Leu	Asp	Phe	Asp	Val 135	Ser	Ser	Pro	Leu	Thr 140	Tyr	Gly	Thr	Pro
Ser 145	Ser	Arg	Val	Glu	Gly 150	Thr	Pro	Arg	Ser	Gly 155	Val	Arg	Gly	Thr	Pro 160
Val	Arg	Gln	Arg	Pro 165	Авр	Leu	Gly	Ser	Ala 170	Gln	Lys	Gly	Leu	Gln 175	Val
Asp	Leu	Gln	Ser 180	Asp	Gly	Ala	Ala	Ala 185	Glu	Asp	Ile	Val	Ala 190	Ser	Glu
Gln	Ser	Leu 195	Gly	Gln	Lys	Leu	Val 200	Ile	Trp	Gly	Thr	Asp 205	Val	Asn	Val
Ala	Ala 210	Сув	ГÀЗ	Glu	Asn	Phe 215	Gln	Arg	Phe	Leu	Gln 220	Arg	Phe	Ile	Asp
Pro 225	Leu	Ala	Lys	Glu	Glu 230	Glu	Asn	Val	Gly	Ile 235	Asp	Ile	Thr	Glu	Pro 240
Leu	Tyr	Met	Gln	Arg 245	Leu	Gly	Glu	Ile	Asn 250	Val	Ile	Gly	Glu	Pro 255	Phe

- Leu Asn Val Asn Cys Glu His Ile Lys Ser Phe Asp Lys Asn Leu Tyr 260 265 270
- Arg Gln Leu Ile Ser Tyr Pro Gln Glu Val Ile Pro Thr Phe Asp Met 275 280 285
- Ala Val Asn Glu Ile Phe Phe Asp Arg Tyr Pro Asp Ser Ile Leu Glu 290 295 300
- His Gln Ile Gln Val Arg Pro Phe Asn Ala Leu Lys Thr Lys Asn Met 305 310 315 320
- Arg Asn Leu Asn Pro Glu Asp Ile Asp Gln Leu Ile Thr Ile Ser Gly 325 330 335
- Met Val Ile Arg Thr Ser Gln Leu Ile Pro Glu Met Gln Glu Ala Phe 340 345 350
- Phe Gln Cys Gln Val Cys Ala His Thr Thr Arg Val Glu Met Asp Arg 355 360 365
- Gly Arg Ile Ala Glu Pro Ser Val Cys Gly Arg Cys His Thr Thr His 370 375 380
- Ser Met Ala Leu Ile His Asn Arg Ser Leu Phe Ser Asp Lys Gln Met 385 390 395 400
- Ile Lys Leu Gln Glu Ser Pro Glu Asp Met Pro Ala Gly Gln Thr Pro
 405 410 415
- His Thr Val Ile Leu Phe Ala His Asn Asp Leu Val Asp Lys Val Gln 420 425 430
- Pro Gly Asp Arg Val Asn Val Thr Gly Ile Tyr Arg Ala Val Pro Ile 435 440 445
- Arg Val Asn Pro Arg Val Ser Asn Val Lys Ser Val Tyr Lys Thr His 450 460
- Ile Asp Val Ile His Tyr Arg Lys Thr Asp Ala Lys Arg Leu His Gly
 465 470 475 480
- Leu Asp Glu Glu Ala Glu Gln Lys Leu Phe Ser Glu Lys Arg Val Glu 485 490 495

245

Leu Leu Lys Glu Leu Ser Arg Lys Pro Asp Ile Tyr Glu Arg Leu Ala
500 505 510

Ser Ala Leu Ala Pro Ser Ile Tyr Glu His Glu Asp Ile Lys Lys Gly 515 520 525

Ile Leu Leu Gln Leu Phe Gly Gly Thr Arg Lys Asp Phe Ser His Thr 530 535 540

Gly Arg Gly Lys Phe Arg Ala Glu Ile Asn Ile Leu Leu Cys Gly Asp 545 550 560

Pro Gly Thr Ser Lys Ser Gln Leu Leu Gln Tyr Val Tyr Asn Leu Val 565 570 575

Pro Arg Gly Gln Tyr Thr Ser Gly Lys Gly Ser Ser Ala Val Gly Leu 580 585 590

Thr Ala Tyr Val Met Lys Asp Pro Glu Thr Arg Gln Leu Val Leu Gln 595 600 605

Thr Gly Ala Leu Val Leu Ser Asp Asn Gly Ile Cys Cys Ile Asp Glu 610 615 620

Phe Asp Lys Met Asn Glu Ser Thr Arg Ser Val Leu His Glu Val Met 625 630 630 640

Glu Gln Gln Thr Leu Ser Ile Ala Lys Gly Glu Ser Pro Ser Pro Pro 645 650 655

<210> 242

<211> 918

<212> PRT

<213> Homo sapien

<400> 242

Met Pro Thr Ser Pro Gly Val Asp Leu Gln Ser Pro Ala Ala Gln Asp 1 5 10 15

Val Leu Phe Ser Ser Pro Pro Gln Met His Ser Ser Ala Ile Pro Leu 20 25 30

Asp Phe Asp Val Ser Ser Pro Leu Thr Tyr Gly Thr Pro Ser Ser Arg
35 40 45

Val Glu Gly Thr Pro Arg Ser Gly Val Arg Gly Thr Pro Val Arg Gln 50 55 60

Arg 65	Pro	Asp	Leu	Gly	Ser 70	Ala	Gln	Lys	Gly	Leu 75	Gln	Val	Asp	Leu	Gln 80
Ser	Asp	Gly	Ala	Ala 85	Ala	Glu	Asp	Ile	Val 90	Ala	Ser	Glu	Gln	Ser 95	Leu
Gly	Gln	Lys	Leu 100	Val	Ile	Trp	Gly	Thr 105	Asp	Val	Asn	Val	Ala 110	Ala	Сув
Lys	Glu	Asn 115	Phe	Gln	Arg	Phe	Leu 120	Gln	Arg	Phe	Ile	Asp 125	Pro	Leu	Ala
ГЛЗ	Glu 130	Glu	Glu	Asn	Val	Gly 135	Ile	qaA	Ile	Thr	Glu 140	Pro	Leu	Tyr	Met
Gln 145	Arg	Leu	Gly	Glu	Ile 150	Asn	Val	Ile	Gly	Glu 155	Pro	Phe	Leu	Asn	Val 160
Asn	Cys	Glu	His	Ile 165	ГЛE	Ser	Phe	Asp	Lys 170	Asn	Leu	Tyr	Arg	Gln 175	Leu
Ile	Ser	Tyr	Pro 180	Gln	Glu	Val	Ile	Pro 185	Thr	Phe	Asp	Met	Ala 190	Val	Asn
Glu	Ile	Phe 195		Asp	Arg	Tyr	Pro 200	Asp	Ser	Ile	Leu	Glu 205	His	Gln	Ile
Gln	Val 210		Pro	Phe	Asn	Ala 215	Leu	Lys	Thr	Lys	Asn 220	Met	Arg	Asn	Leu
Asn 225		Glu	Asp	Ile	Asp 230		Leu	Ile	Thr	Ile 235	Ser	Gly	Met	Val	Ile 240
Arg	Thr	Ser	Gln	Leu 245		Pro	Glu	Met	Gln 250		Ala	Phe	Phe	Gln 255	Сув
Gln	. V al	Сув	Ala 260		Thr	Thr	Arg	Val 265		. Met	Asp	Arg	Gly 270		Ile
Ala	Glu	275		· Val	. Сув	Gly	Arg 280		His	Thr	Thr	His 285	Ser	Met	Ala
Leu	11e		a Asr	Arg	ser	Leu 295		Ser	. Yeb	. Lys	Gln 300		Ile	Lys	Leu

Gln	Glu	Ser	Pro	Glu	Asp	Met	Pro	Ala	Gly	Gln	Thr	Pro	His	Thr	Val
305					310					315					320

- Ile Leu Phe Ala His Asn Asp Leu Val Asp Lys Val Gln Pro Gly Asp 325 330 335
- Arg Val Asn Val Thr Gly Ile Tyr Arg Ala Val Pro Ile Arg Val Asn 340 345 350
- Pro Arg Val Ser Asn Val Lys Ser Val Tyr Lys Thr His Ile Asp Val 355 360 365
- Ile His Tyr Arg Lys Thr Asp Ala Lys Arg Leu His Gly Leu Asp Glu 370 375 380
- Glu Ala Glu Gln Lys Leu Phe Ser Glu Lys Arg Val Glu Leu Leu Lys 385 390 395 400
- Glu Leu Ser Arg Lys Pro Asp Ile Tyr Glu Arg Leu Ala Ser Ala Leu 405 410 415
- Ala Pro Ser Ile Tyr Glu His Glu Asp Ile Lys Lys Gly Ile Leu Leu 420 425 430
- Gln Leu Phe Gly Gly Thr Arg Lys Asp Phe Ser His Thr Gly Arg Gly
 435 440 445
- Lys Phe Arg Ala Glu Ile Asn Ile Leu Leu Cys Gly Asp Pro Gly Thr 450 455 460
- Ser Lys Ser Gln Leu Leu Gln Tyr Val Tyr Asn Leu Val Pro Arg Gly
 465 470 475 480
- Gln Tyr Thr Ser Gly Lys Gly Ser Ser Ala Val Gly Leu Thr Ala Tyr 485 490 495
- Val Met Lys Asp Pro Glu Thr Arg Gln Leu Val Leu Gln Thr Gly Ala 500 505 510
- Leu Val Leu Ser Asp Asn Gly Ile Cys Cys Ile Asp Glu Phe Asp Lys 515 520 525
- Met Asn Glu Ser Thr Arg Ser Val Leu His Glu Val Met Glu Gln Gln 530 535 540

248

Thr Leu Ser Ile Ala Lys Gly Glu Ile Ala Phe Ser Thr Val Asn Met 545 550 555 560

Asp Val Phe Lys Ile Cys Gly Pro Leu Lys Asp Arg Val Cys Gly Thr 565 570 575

Val Leu Cys Tyr Leu Gly Ser Asn Phe Gly Glu Ile Asp Lys Cys Phe 580 585 590

Pro His His Ile Ser Ala Lys Ser Gln His Val Phe Tyr Arg Val Ser 595 600 605

Arg Phe Val Phe Ile Ala Val Leu Ala Leu Asn Cys Pro Lys Ala Leu 610 615 620

Ala Arg Cys Leu Leu Pro Glu Lys Asp Val Val Ile Ala His Ile His 625 630 635 640

Leu Asn Ser Val Leu Gly Met Asn Leu Arg Thr Gly Leu Ile Gln Ala 645 650 655

Gly Ile Ile Cys Gln Leu Asn Ala Arg Thr Ser Val Leu Ala Ala Ala 660 665 670

Asn Pro Ile Glu Ser Gln Trp Asn Pro Lys Lys Thr Thr Ile Glu Asn 675 680 685

Ile Gln Leu Pro His Thr Leu Leu Ser Arg Phe Asp Leu Ile Phe Leu 690 695 700

Met Leu Asp Pro Gln Asp Glu Ala Tyr Asp Arg Arg Leu Ala His His 705 710 715 720

Leu Val Ala Leu Tyr Tyr Gln Ser Glu Glu Gln Ala Glu Glu Glu Leu 725 730 735

Leu Asp Met Ala Val Leu Lys Asp Tyr Ile Ala Tyr Ala His Ser Thr 740 745 750

Ile Met Pro Arg Leu Ser Glu Glu Ala Ser Gln Ala Leu Ile Glu Ala 755 760 765

Tyr Val Asp Met Arg Lys Ile Gly Ser Ser Arg Gly Met Val Ser Ala 770 775 780

Tyr Pro Arg Gln Leu Glu Ser Leu Ile Arg Leu Ala Glu Ala His Ala

249

785 790 795 800

Lys Val Arg Leu Ser Asn Lys Val Glu Ala Ile Asp Val Glu Glu Ala 805 810 815

Lys Arg Leu His Arg Glu Ala Leu Lys Gln Ser Ala Thr Asp Pro Arg 820 825 830

Thr Gly Ile Val Asp Ile Ser Ile Leu Thr Thr Gly Met Ser Ala Thr 835 840 845

Ser Arg Lys Arg Lys Glu Glu Leu Ala Glu Ala Leu Lys Lys Leu Ile 850 855 860

Leu Ser Lys Gly Lys Thr Pro Ala Leu Lys Tyr Gln Gln Leu Phe Glu 865 870 875 880

Asp Ile Arg Gly Gln Ser Asp Ile Ala Ile Thr Lys Asp Met Phe Glu 885 890 895

Glu Ala Leu Arg Ala Leu Ala Asp Asp Asp Phe Leu Thr Val Thr Gly
900 905 910

Lys Thr Val Arg Leu Leu 915

<210> 243

<211> 376

<212> PRT

<213> Homo sapien

<400> 243

Met Ala Ala Ala Val Val Glu Phe Gln Arg Ala Gln Ser Leu Leu 1 5 10 15

Ser Thr Asp Arg Glu Ala Ser Ile Asp Ile Leu His Ser Ile Val Lys
20 25 30

Arg Asp Ile Glu Asn Asp Glu Glu Ala Val Gln Val Lys Glu Gln 35 40 45

Ser Ile Leu Glu Leu Gly Ser Leu Leu Ala Lys Thr Gly Gln Ala Ala 50 55 60

Glu Leu Gly Gly Leu Leu Lys Tyr Val Arg Pro Phe Leu Asn Ser Ile 65 70 75 80

s	er	ГÀв	Ala	Lys	Ala 85	Ala	Arg	Leu	Val	Arg 90	Ser	Leu	Leu	Asp	Leu 95	Phe
L	eu	Asp	Met	Glu 100	Ala	Ala	Thr	Gly	Gln 105	Glu	Val	Glu	Leu	Cys 110	Leu	Glu
C,	ys	Ile	Glu 115	Trp	Ala	ГХа	Ser	Glu 120	Lys	Arg	Thr	Phe	Leu 125	Arg	Gln	Ala
L	eu	Glu 130	Ala	Arg	Leu	Val	Ser 135	Leu	Tyr	Phe	Asp	Thr 140	Гув	Arg	Tyr	Glr
	lu 45	Ala	Leu	His	Leu	Gly 150	Ser	Gln	Leu	Leu	Arg 155	Glu	Leu	Lys	Lys	Met 160
A	вp	Asp	Гўз	Ala	Leu 165	Leu	Val	Glu	Val	Gln 170	Leu	Leu	Glu	Ser	Lys 175	Thr
T	yr	His	Ala	Leu 180	Ser	Asn	Leu	Pro	Lys 185	Ala	Arg	Ala	Ala	Leu 190	Thr	Ser
A.	la	Arg	Thr 195	Thr	Ala	Asn	Ala	Ile 200	тут	Сув	Pro	Pro	Lys 205	Leu	Gln	Ala
T		Leu 210	Asp	Met	Gln	Ser	Gly 215	Ile	Ile	His	Ala	Ala 220	Glu	Glu	ГЛЗ	Asp
	rp 25	Lys	Thr	Ala	Tyr	Ser 230	Tyr	Phe	Tyr	Glu	Ala 235	Phe	Glu	Gly	Tyr	Asp 240
S	er	Ile	Asp	Ser	Pro 245	Lys	Ala	Ile	Thr	Ser 250	Leu	Lys	Tyr	Met	Leu 255	Leu
C;	ĀВ	Lys	Ile	Met 260	Leu	Asn	Thr	Pro	Glu 265	Asp	Val	Gln	Ala	Leu 270	Val	Ser
G.	ly	Lys	Leu 275	Ala	Leu	Arg	Tyr	Ala 280	Gly	Arg	Gln	Thr	Glu 285	Ala	Leu	Lye
C	ys	Val 290	Ala	Gln	Ala	Ser	Lув 295	Asn	Arg	Ser	Leu	Ala 300	Asp	Phe	Glu	Ьys
	la 05	Leu	Thr	Asp	Tyr	Arg	Ala	Glu	Leu	Arg	Asp	Авр	Pro	Ile	Ile	Ser

251

Thr His Leu Ala Lys Leu Tyr Asp Asn Leu Leu Glu Gln Asn Leu Ile 325 $330 \hspace{1.5cm} 335$

Arg Val Ile Glu Pro Phe Ser Arg Val Gln Val Arg Thr Leu Trp Gly 340 345 350

Leu His Phe Trp Pro Gly Ile Leu Thr Val Ala Thr Ser Leu Pro His 355 360 365

Leu Ser Arg Met Gly Thr His Phe 370 375

<210> 244

<211> 339

<212> PRT

<213> Homo sapien

<400> 244

Glu Ala Leu Gly Ser Leu Gln Pro Thr Cys Glu Ala Val Pro Leu Ser 1 5 10 15

Pro Pro Leu Ser Pro Arg Pro Ala Glu Arg Leu Gln Leu Pro Glu Cys
20 25 30

Ser Gly Asn Gly Ala Thr Gly Ala Thr Gly Gly Gly Thr Arg Gly Arg 35 40 45

Ala Phe Arg Val Cys Val Ser Gly Val Gly Gly Arg Gly Arg Gly Arg 50 55 60

Cys Glu Ser Gly Lys Met Ala Ala Ala Ala Val Val Glu Phe Gln Arg 65 70 75 80

Ala Gln Ser Leu Leu Ser Thr Asp Arg Glu Ala Ser Ile Asp Ile Leu 85 90 95

His Ser Ile Val Lys Arg Asp Ile Gln Glu Asn Asp Glu Glu Ala Val

Gln Val Lys Glu Gln Ser Ile Leu Glu Leu Gly Ser Leu Leu Ala Lys 115 120 125

Thr Gly Gln Ala Ala Glu Leu Gly Gly Leu Leu Lys Tyr Val Arg Pro 130 135 140

Phe Leu Asn Ser Ile Ser Lys Ala Lys Ala Ala Arg Leu Val Arg Ser 145 150 155 160

Leu	Leu	Asp	Leu	Phe 165	Leu	Asp	Met	Glu	Ala 170	Ala	Thr	Gly	Gln	Glu 175	Val
Glu	Leu	Сув	Leu 180	Glu	Сув	Ile	Glu	Trp 185	Ala	Lys	Ser	Glu	Lys 190	Arg	Thr
Phe	Leu	Arg 195	Gln	Ala	Leu	Glu	Ala 200	Arg	Leu	Val	Ser	Leu 205	Tyr	Phe	Asp
Thr	L ув 210	Arg	Tyr	Gln	Glu	Ala 215	Leu	His	Leu	Gly	Ser 220	Gln	Leu	Leu	Arg
Glu 225	Leu	Lys	Lys	Met	Asp 230	Asp	Lys	Ala	Leu	Leu 235	Val	Glu	Val	Gln	Leu 240
Leu	Glu	Ser	Lys	Thr 245	Tyr	His	Ala	Leu	Ser 250	Asn	Leu	Pro	Lys	Ala 255	Arg
Ala	Ala	Leu	Thr 260	Ser	Ala	Arg	Thr	Thr 265	Ala	Asn	Ala	Ile	Tyr 270	Сув	Pro
Pro	Lys	Leu 275	Gln	Ala	Thr	Leu	Asp 280	Met	Gln	Ser	Gly	Ile 285	Ile	His	Ala
Ala	Glu 290	Glu	ГЛЗ	Asp	Trp	Lys 295	Thr	Ala	Tyr	Ser	Tyr 300	Phe	Tyr	Glu	Ala
Phe 305	Glu	Gly	Tyr	Asp	Ser 310	Ile	Asp	Ser	Pro	Lув 315	Ala	Ile	Thr	Ser	Leu 320
Lys	Tyr	Met	Leu	Leu 325	Сув	Lys	Ile	Met	Leu 330	Asn	Thr	Pro	Glu	Asp 335	Val
Gln	Ala	Trp													
<210	0> :	245													
<211 <212		421 PRT													
<213		Homo	sap:	ien											
<400)> :	245													
	Ala	Ala	Ala		Val	Val	Glu	Phe		Arg	Ala	Gln	Ser		Leu
1				5					10					15	

Ser Thr Asp Arg Glu Ala Ser Ile Asp Ile Leu His Ser Ile Val Lys 20 25 30

Arg Asp Ile Gln Glu Asn Asp Glu Glu Ala Val Gln Val Lys Glu Gln 35 40 45

Ser Ile Leu Glu Leu Gly Ser Leu Leu Ala Lys Thr Gly Gln Ala Ala 50 55 60

Glu Leu Gly Gly Leu Leu Lys Tyr Val Arg Pro Phe Leu Asn Ser Ile 65 70 75 80

Ser Lys Ala Lys Ala Ala Arg Leu Val Arg Ser Leu Leu Asp Leu Phe 85 90 95

Leu Asp Met Glu Ala Ala Thr Gly Gln Glu Val Glu Leu Cys Leu Glu
100 105 110

Cys Ile Glu Trp Ala Lys Ser Glu Lys Arg Thr Phe Leu Arg Gln Ala 115 120 125

Leu Glu Ala Arg Leu Val Ser Leu Tyr Phe Asp Thr Lys Arg Tyr Gln 130 135 140

Glu Ala Leu His Leu Gly Ser Gln Leu Leu Arg Glu Leu Lys Lys Met 145 150 155 160

Asp Asp Lys Ala Leu Leu Val Glu Val Gln Leu Leu Glu Ser Lys Thr 165 170 175

Tyr His Ala Leu Ser Asn Leu Pro Lys Ala Arg Ala Ala Leu Thr Ser 180 185 190

Ala Arg Thr Thr Ala Asn Ala Ile Tyr Cys Pro Pro Lys Leu Gln Ala 195 200 205

Thr Leu Asp Met Gln Ser Gly Ile Ile His Ala Ala Glu Glu Lys Asp 210 215 220

Trp Lys Thr Ala Tyr Ser Tyr Phe Tyr Glu Ala Phe Glu Gly Tyr Asp 225 230 235 240

Ser Ile Asp Ser Pro Lys Ala Ile Thr Ser Leu Lys Tyr Met Leu Leu 245 250 255

Cys Lys Ile Met Leu Asn Thr Pro Glu Asp Val Gln Ala Trp Gly Ala

PCT/US2003/038829 WO 2004/052290

254 270 265 260 Gly Ser Leu His Phe Arg Cys Arg Glu Glu Thr Glu Ala Leu Lys Cys 280 Val Ala Gln Ala Ser Lys Asn Arg Ser Leu Ala Asp Phe Glu Lys Ala Leu Thr Asp Tyr Arg Ala Glu Leu Arg Asp Asp Pro Ile Ile Ser Thr 315 His Leu Ala Lys Leu Tyr Asp Asn Leu Leu Glu Gln Asn Leu Ile Arg 325 Val Ile Glu Pro Phe Ser Arg Val Gln Ile Glu His Ile Ser Ser Leu 345 Ile Lys Leu Ser Lys Ala Asp Val Glu Arg Lys Leu Ser Gln Met Ile 355 360 365 Leu Asp Lys Lys Phe His Gly Ile Leu Asp Gln Gly Glu Gly Val Leu Ile Ile Phe Asp Glu Pro Pro Val Asp Lys Thr Tyr Glu Ala Ala Leu 390 Glu Thr Ile Gln Asn Met Ser Lys Val Val Asp Ser Leu Tyr Asn Lys 410 405 Ala Lys Lys Leu Thr 420

<210> 246 <211> 361 <212> PRT

<213> Homo sapien

<400> 246

Tyr Gly Ser Ser Tyr Arg Ala Gly Gly His Leu Ile Leu Trp Val Cys

Ser Met Leu Cys Phe Val Ser Gly Asp Cys Gln Trp Ser Leu Glu Ser 20

Ser Leu His Gln Gly His Lys Leu Ile Leu Val Phe Glu Val Glu Leu 40

Сув	Leu 50	Glu	Сув	Ile	Glu	Trp 55	Ala	Lys	Ser	Glu	Lys 60	Arg	Thr	Phe	Leu
Arg 65	Gln	Ala	Leu	Glu	Ala 70	Arg	Leu	Val	Ser	Leu 75	Tyr	Phe	Asp	Thr	Lys
Arg	Tyr	Gln	Glu	Ala 85	Leu	His	Leu	Gly	Ser 90	Gln	Leu	Leu	Arg	Glu 95	Leu
Lys	Lys	Met	Asp 100	Asp	Lys	Ala	Leu	Leu 105	Val	Glu	Val	Gln	Leu 110	Leu	Glu
Ser	Lys	Thr 115	Tyr	His	Ala	Leu	Ser 120	Asn	Leu	Pro	Lys	Ala 125	Arg	Ala	Ala
Leu	Thr 130	Ser	Ala	Arg	Thr	Thr 135	Ala	Asn	Ala	Ile	Tyr 140	Сув	Pro	Pro	Гув
Leu 145	Gln	Ala	Thr	Leu	Asp 150	Met	Gln	Ser	Gly	Ile 155	Ile	His	Ala	Ala	Glu 160
Glu	Lys	Asp	Trp	Lуs 165	Thr	Ala	Tyr	Ser	Tyr 170	Phe	Tyr	Glu	Ala	Phe 175	Glu
Gly	Tyr	Asp	Ser 180	Ile	Asp	Ser	Pro	Lys 185	Ala	Ile	Thr	Ser	Leu 190	ГÀв	Tyr
Met	Leu	Leu 195	Сув	Lys	Ile	Met	Leu 200	Asn	Thr	Pro	Glu	Asp 205	Val	Gln	Ala
Leu	Val 210	Ser	Gly	Lys	Leu	Ala 215	Leu	Arg	Tyr	Ala	Gly 220	Arg	Gln	Thr	Glu
		_	_					_	_	_	_	_	_		_

Ala Leu Lys Cys Val Ala Gln Ala Ser Lys Asn Arg Ser Leu Ala Asp 225 230

Phe Glu Lys Ala Leu Thr Asp Tyr Arg Ala Glu Leu Arg Asp Asp Pro 245 250

Ile Ile Ser Thr His Leu Ala Lys Leu Tyr Asp Asn Leu Leu Glu Gln 260 265 270

Asn Leu Ile Arg Val Ile Glu Pro Phe Ser Arg Val Gln Ile Glu His 280 285 275

WO 2004/052290 PCT/US2003/038829

256

Ile Ser Ser Leu Ile Lys Leu Ser Lys Ala Asp Val Glu Arg Lys Leu 290 295 300

Ser Gln Met Ile Leu Asp Lys Lys Phe His Gly Ile Leu Asp Gln Gly 305 310 315 320

Glu Gly Val Leu Ile Ile Phe Asp Glu Pro Pro Val Asp Lys Thr Tyr 325 330 335

Glu Ala Ala Leu Glu Thr Ile Gln Asn Met Ser Lys Val Val Asp Ser 340 345 350

Leu Tyr Asn Lys Ala Lys Lys Leu Thr 355 360

<210> 247

<211> 460

<212> PRT

<213> Homo sapien

<400> 247

Met Ala Ala Ala Val Val Glu Phe Gln Arg Ala Gln Ser Leu Leu 1 5 10 10

Ser Thr Asp Arg Glu Ala Ser Ile Asp Ile Leu His Ser Ile Val Lys
20 25 30

Arg Asp Ile Gln Glu Asn Asp Glu Glu Ala Val Gln Val Lys Glu Gln 35 40 45

Ser Ile Leu Glu Leu Gly Ser Leu Leu Ala Lys Thr Gly Gln Ala Ala 50 55 60

Glu Leu Gly Gly Leu Leu Lys Tyr Val Arg Pro Phe Leu Asn Ser Ile 70 75 80

Ser Lys Ala Lys Ala Ala Arg Leu Val Arg Ser Leu Leu Asp Leu Phe 85 90 95

Leu Asp Met Glu Ala Ala Thr Gly Gln Glu Tyr Arg His Leu Ile Leu 100 105 110

Trp Val Cys Ser Met Leu Cys Phe Val Ser Gly Asp Cys Gln Trp Ser 115 120 125

Leu Glu Ser Ser Leu His Gln Gly His Lys Leu Ile Leu Val Phe Glu 130 135 140

	/al L45	Glu	Leu	Cys	Leu	Glu 150	Сув	Ile	Glu	Trp	Ala 155	ГÀЗ	Ser	Glu	Lys	Arg 160
7	Thr	Phe	Leu	Arg	Gln 165	Ala	Leu	Glu	Ala	Arg 170	Leu	Val	Ser	Leu	Туг 175	Phe
2	Asp	Thr	Lys	Arg 180	Tyr	Gln	Glu	Ala	Leu 185	His	Leu	Gly	Ser	Gln 190	Leu	Leu
2	Arg	Glu	Leu 195	Lys	ГÀЗ	Met	Asp	Asp 200	Lys	Ala	Leu	Leu	Val 205	Glu	Val	Gln
3	Ŀеu	Leu 210	Glu	Ser	Lys	Thr	Tyr 215	His	Ala	Leu	Ser	Asn 220	Leu	Pro	ГÀв	Ala
	Arg 225	Ala	Ala	Leu	Thr	Ser 230	Ala	Arg	Thr	Thr	Ala 235	Asn	Ala	Ile	Tyr	Cys 240
					245					250					Ile 255	
2	Ala	Ala	Glu	Glu 260	Lys	Asp	Trp	ГÀЗ	Thr 265	Ala	Tyr	Ser	Tyr	Phe 270	Tyr	Glu
			275	_	_	_		280					285		Thr	
		290					295					300			Glu	
	305					310					315				Gly	320
					325					330					Arg 335	
				340					345					350		
	_	_	355					360					365		Asn	
	Leu	Glu 370	Gln	Asn	Leu	Ile	Arg 375	Val	Ile	Glu	Pro	Phe 380	Ser	Arg	Val	Gln

Ile Glu His Ile Ser Ser Leu Ile Lys Leu Ser Lys Ala Asp Val Glu 390 395

Arg Lys Leu Ser Gln Met Ile Leu Asp Lys Phe His Gly Ile Leu

Asp Gln Gly Glu Gly Val Leu Ile Ile Phe Asp Glu Pro Pro Val Asp

Lys Thr Tyr Glu Ala Ala Leu Glu Thr Ile Gln Asn Met Ser Lys Val 435 440

Val Asp Ser Leu Tyr Asn Lys Ala Lys Lys Leu Thr 450 455

<210> 248 <211> 324 <212> PRT <213> Homo sapien

<400> 248

Met Glu Ala Ala Thr Gly Gln Glu Val Glu Leu Cys Leu Glu Cys Ile

Glu Trp Ala Lys Ser Glu Lys Arg Thr Phe Leu Arg Gln Ala Leu Glu 20 25

Ala Arg Leu Val Ser Leu Tyr Phe Asp Thr Lys Arg Tyr Gln Glu Ala 35 45

Leu His Leu Gly Ser Gln Leu Leu Arg Glu Leu Lys Lys Met Asp Asp

Lys Ala Leu Leu Val Glu Val Gln Leu Leu Glu Ser Lys Thr Tyr His 65 . 70

Ala Leu Ser Asn Leu Pro Lys Ala Arg Ala Ala Leu Thr Ser Ala Arg

Thr Thr Ala Asn Ala Ile Tyr Cys Pro Pro Lys Leu Gln Ala Thr Leu 100 105

Asp Met Gln Ser Gly Ile Ile His Ala Ala Glu Glu Lys Asp Trp Lys 120

Thr Ala Tyr Ser Tyr Phe Tyr Glu Ala Phe Glu Gly Tyr Asp Ser Ile

PCT/US2003/038829 WO 2004/052290

259

140 135 130

Asp Ser Pro Lys Ala Ile Thr Ser Leu Lys Tyr Met Leu Leu Cys Lys 150

Ile Met Leu Asn Thr Pro Glu Asp Val Gln Ala Leu Val Ser Gly Lys

Leu Ala Leu Arg Tyr Ala Gly Arg Gln Thr Glu Ala Leu Lys Cys Val 190 185

Ala Gln Ala Ser Lys Asn Arg Ser Leu Ala Asp Phe Glu Lys Ala Leu 200 1.95

Thr Asp Tyr Arg Ala Glu Leu Arg Asp Asp Pro Ile Ile Ser Thr His 220 215 210

Leu Ala Lys Leu Tyr Asp Asn Leu Leu Glu Gln Asn Leu Ile Arg Val 235 230 225

Ile Glu Pro Phe Ser Arg Val Gln Ile Glu His Ile Ser Ser Leu Ile 250 245

Lys Leu Ser Lys Ala Asp Val Glu Arg Lys Leu Ser Gln Met Ile Leu 265

Asp Lys Lys Phe His Gly Ile Leu Asp Gln Gly Glu Gly Val Leu Ile 280 275

Ile Phe Asp Glu Pro Pro Val Asp Lys Thr Tyr Glu Ala Ala Leu Glu 295

Thr Ile Gln Asn Met Ser Lys Val Val Asp Ser Leu Tyr Asn Lys Ala 315 310

Lys Lys Leu Thr

<210> 249

<211> 263

<212> PRT <213> Homo sapien

<400> 249

Met Asp Asp Lys Ala Leu Leu Val Glu Val Gln Leu Leu Glu Ser Lys 5

Thr Tyr His Ala Leu Ser Asn Leu Pro Lys Ala Arg Ala Ala Leu Thr 20 25 30

Ser Ala Arg Thr Thr Ala Asn Ala Ile Tyr Cys Pro Pro Lys Leu Gln 35 40 45

Ala Thr Leu Asp Met Gln Ser Gly Ile Ile His Ala Ala Glu Glu Lys 50 55

Asp Trp Lys Thr Ala Tyr Ser Tyr Phe Tyr Glu Ala Phe Glu Gly Tyr 65 70 75 80

Asp Ser Ile Asp Ser Pro Lys Ala Ile Thr Ser Leu Lys Tyr Met Leu 85 90 95

Leu Cys Lys Ile Met Leu Asn Thr Pro Glu Asp Val Gln Ala Leu Val 100 105 110

Ser Gly Lys Leu Ala Leu Arg Tyr Ala Gly Arg Gln Thr Glu Ala Leu 115 120 125

Lys Cys Val Ala Gln Ala Ser Lys Asn Arg Ser Leu Ala Asp Phe Glu 130 135 140

Lys Ala Leu Thr Asp Tyr Arg Ala Glu Leu Arg Asp Asp Pro Ile Ile 145 150 155 160

Ser Thr His Leu Ala Lys Leu Tyr Asp Asn Leu Leu Glu Gln Asn Leu 165 170 175

Ile Arg Val Ile Glu Pro Phe Ser Arg Val Gln Ile Glu His Ile Ser 180 185 190

Ser Leu Ile Lys Leu Ser Lys Ala Asp Val Glu Arg Lys Leu Ser Gln 195 200 205

Met Ile Leu Asp Lys Lys Phe His Gly Ile Leu Asp Gln Gly Glu Gly 210 215 220

Val Leu Ile Ile Phe Asp Glu Pro Pro Val Asp Lys Thr Tyr Glu Ala 225 230 235 240

Ala Leu Glu Thr Ile Gln Asn Met Ser Lys Val Val Asp Ser Leu Tyr 245 250 255

PCT/US2003/038829 WO 2004/052290

261

Asn Lys Ala Lys Lys Leu Thr 260

<210> 250 <211> 215

<212> PRT

<213> Homo sapien

<400> 250

Met His Val Asp Met Gln Ser Gly Ile Ile His Ala Ala Glu Glu Lys

Asp Trp Lys Thr Ala Tyr Ser Tyr Phe Tyr Glu Ala Phe Glu Gly Tyr 20

Asp Ser Ile Asp Ser Pro Lys Ala Ile Thr Ser Leu Lys Tyr Met Leu

Leu Cys Lys Ile Met Leu Asn Thr Pro Glu Asp Val Gln Ala Leu Val

Ser Gly Lys Leu Ala Leu Arg Tyr Ala Gly Arg Gln Thr Glu Ala Leu

Lys Cys Val Ala Gln Ala Ser Lys Asn Arg Ser Leu Ala Asp Phe Glu 90

Lys Ala Leu Thr Asp Tyr Arg Ala Glu Leu Arg Asp Asp Pro Ile Ile 100

Ser Thr His Leu Ala Lys Leu Tyr Asp Asn Leu Leu Glu Gln Asn Leu

Ile Arg Val Ile Glu Pro Phe Ser Arg Val Gln Ile Glu His Ile Ser 135

Ser Leu Ile Lys Leu Ser Lys Ala Asp Val Glu Arg Lys Leu Ser Gln

Met Ile Leu Asp Lys Lys Phe His Gly Ile Leu Asp Gln Gly Glu Gly 170

Val Leu Ile Ile Phe Asp Glu Pro Pro Val Asp Lys Thr Tyr Glu Ala 180

Ala Leu Glu Thr Ile Gln Asn Met Ser Lys Val Val Asp Ser Leu Tyr 205 195

Asn Lys Ala Lys Lys Leu Thr 210

<210> 251

<211> 161

<212> PRT <213> Homo sapien

<400> 251

Met Cys Pro Glu Asp Val Gln Ala Leu Val Ser Gly Lys Leu Ala Leu 5

Arg Tyr Ala Gly Arg Gln Thr Glu Ala Leu Lys Cys Val Ala Gln Ala 20 25

Ser Lys Asn Arg Ser Leu Ala Asp Phe Glu Lys Ala Leu Thr Asp Tyr 35 40

Arg Ala Glu Leu Arg Asp Pro Ile Ile Ser Thr His Leu Ala Lys

Leu Tyr Asp Asn Leu Leu Glu Gln Asn Leu Ile Arg Val Ile Glu Pro

Phe Ser Arg Val Gln Ile Glu His Ile Ser Ser Leu Ile Lys Leu Ser 90

Lys Ala Asp Val Glu Arg Lys Leu Ser Gln Met Ile Leu Asp Lys

Phe His Gly Ile Leu Asp Gln Gly Glu Gly Val Leu Ile Ile Phe Asp

Glu Pro Pro Val Asp Lys Thr Tyr Glu Ala Ala Leu Glu Thr Ile Gln

Asn Met Ser Lys Val Val Asp Ser Leu Tyr Asn Lys Ala Lys Lys Leu

Thr

<210> 252 <211> 149 <212> PRT <213> Homo sapien

WO 2004/052290 PCT/US2003/038829

263

<220> <221> MISC_FEATURE <222> (6)..(6) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (8)..(8) <223> X=any amino acid <220> <221> MISC_FEATURE <222> (10)..(10) <223> X=any amino acid <400> 252 Ala Gly Thr Cys Leu Xaa Leu Xaa Glu Xaa Thr Glu Ala Leu Lys Cys Val Ala Gln Ala Ser Lys Asn Arg Ser Leu Ala Asp Phe Glu Lys Ala Leu Thr Asp Tyr Arg Ala Glu Leu Arg Asp Asp Pro Ile Ile Ser Thr His Leu Ala Lys Leu Tyr Asp Asn Leu Leu Glu Gln Asn Leu Ile Arg 55 Val Ile Glu Pro Phe Ser Arg Val Gln Ile Glu His Ile Ser Ser Leu Ile Lys Leu Ser Lys Ala Asp Val Glu Arg Lys Leu Ser Gln Met Ile Leu Asp Lys Lys Phe His Gly Ile Leu Asp Gln Gly Glu Gly Val Leu Ile Ile Phe Asp Glu Pro Pro Val Asp Lys Thr Tyr Glu Ala Ala Leu Glu Thr Ile Gln Asn Met Ser Lys Val Val Asp Ser Leu Tyr Asn Lys

135

Ala Lys Lys Leu Thr 145 WO 2004/052290 PCT/US2003/038829

264

<210>	253	
<211>	166	
<212>	PRT	
<213>	Homo	sapier

<400> 253

Met Leu Val Cys Arg Ile Ala Pro Arg Arg Cys Pro Gly Leu Val Ser 1 5 10 15

Gly Lys Leu Ala Leu Pro Tyr Ala Gly Arg Gln Thr Glu Ala Leu Lys 20 25 30

Cys Val Ala Gln Ala Ser Lys Asn Arg Ser Leu Ala Asp Phe Glu Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ala Leu Thr Asp Tyr Arg Ala Glu Leu Arg Asp Asp Pro Ile Ile Ser 50 55 60

Thr His Leu Ala Lys Leu Tyr Asp Asn Leu Leu Glu Gln Asn Leu Ile 65 70 75 80

Arg Val Ile Glu Pro Phe Ser Arg Val Gln Ile Glu His Ile Ser Ser 85 90 95

Leu Ile Lys Leu Ser Lys Ala Asp Val Glu Arg Lys Leu Ser Gln Met
100 105 110

Ile Leu Asp Lys Lys Phe His Gly Ile Leu Asp Gln Gly Glu Gly Val

Leu Ile Ile Phe Asp Glu Pro Pro Val Asp Lys Thr Tyr Glu Ala Ala 130 135 140

Leu Glu Thr Ile Gln Asn Met Ser Lys Val Val Asp Ser Leu Tyr Asn 145 150 155 160

Lys Ala Lys Lys Leu Thr 165