Ta kiểm tra hệ $\{e_i, f_i\}_{i\in I}$ là E^* – toàn vẹn. Thật vậy, giả sử với mỗi $x\in E$,

$$f_i(x) = 0 \ \forall i \in I.$$

Bởi vì
$$x = \sum_{i \in I} f_i(x)e_i$$
 nên $x = \sum_{i \in I} 0.e_i = 0.$

Theo Định nghĩa 2.1 (iii), hệ $\{e_i, f_i\}_{i \in I}$ là E^* – toàn ven.

Ta kiểm tra hệ $\{y_i, g_i\}_{i \in I}$ cũng là một E^* -toàn vẹn. Cố định $x \in E$ và giả sử rằng

$$g_i(x) = 0 \ \forall i \in I.$$

Điều này tương đương với

$$f_i\left((I_E-T)^{-1}(x)\right)=0 \ \forall i\in I.$$

Vì hệ $\{e_i,\,f_i\}_{i\in I}$ là E^* – toàn vẹn nên $\left(I_E-T\right)^{-1}(x)=0.$ Vì I_E-T là một đẳng cấu nên x=0. Vậy hệ $\{y_i,\,g_i\}_{i\in I}$ là E^* - toàn vẹn.

Bây giờ ta kiểm tra hệ $\left\{ \left. y_i, \, g_i \right\}_{i \in I} \right.$ song trực giao và E- đầy đủ.

Ta có $g_i(y_j)=f_i(e_j)=\delta_{ij}$ với mọi $i,j\in I \text{ nên hệ } \{y_i,\,g_i\}_{i\in I} \text{ là song trực giao.}$

Ta thấy rằng $\overline{span\{y_i: i \in I\}} = E.$

$$\overline{span\{y_i: i \in I\}} \subseteq E$$
.

Ta kiểm tra bao hàm thức ngược lại

$$\overline{span\{v_i: i \in I\}} \supset E$$
.

Với mọi $y\in E$, do I_E-T là một đẳng cấu nên tồn tại duy nhất $x\in E$ sao cho $y=\left(I_E-T\right)(x)$. Do $\overline{span\{e_i\colon i\in I\}}=E$, tồn tại dãy $x^{(v)}\subseteq span\{e_i\colon i\in I\}$ sao cho $\lim_{y\to t\in E}x^{(v)}=x$. Suy ra

$$\lim_{v \to +\infty} (I_E - T)(x^{(v)}) = (I_E - T)(x) = y.$$

Bời
$$(I_E-T)\big(x^{(\nu)}\big)\in span\{\big(I_E-T\big)\big(e_i\big)\colon \ i\in I\}$$
 với mọi $\nu\geq 1$, nên

$$y \in \overline{span\{(I_E - T)(\mathbf{e}_i): i \in I\}} = \overline{span\{y_i: i \in I\}}.$$

Vậy hệ $\{y_i, g_i\}_{i \in I}$ là đầy đủ trong E.

Lập luận tương tự như trên, với mỗi $y \in E$ tồn

tại
$$x = \sum_{i \in I} f_i(x)e_i$$
 sao cho

$$y = (I_E - T)(x) = (I_E - T) \left(\sum_{i \in I} f_i(x) e_i \right)$$

$$= \sum_{i \in I} f_i(x) (I_E - T)(e_i)$$

$$= \sum_{i \in I} f_i \left((I_E - T)^{-1}(y) \right) (I_E - T)(e_i)$$

$$= \sum_{i \in I} g_i(y) y_i.$$

Do đó, hệ $\{y_i, g_i\}_{i\in I}$ là M-cơ sở mạnh trong E và điều này kết thúc chứng minh.

3.4 Nhận xét

Nếu ta bỏ đi giả thiết (i) trong Định lí 3.3 thì kết quả thu được chỉ là tồn tại một họ $\left\{g_i\right\}_{i\in I} \subseteq E^*$ sao cho hệ $\left\{y_i,\,g_i\right\}_{i\in I}$ là một M - cơ sở mạnh trong không gian Banach phức E . Thực ra ánh xạ ngược $g_{i_0}^{-1}$ liên tục là một hệ quả từ ánh xạ ngược tương ứng $f_{i_0}^{-1}$ liên tục. Từ đây, một ví dụ để minh họa cho kết quả thu được sẽ được đề xuất.

3.5 Ví dụ

Xét không gian Hilbert

$$l_2(I) = \left\{ \mathbf{x} = \left\{ x_i \right\}_{i \in I} \in \mathbb{C} : \sum_{i \in I} |x_i|^2 < +\infty \right\}$$

với tích vô hướng <., .>, ở đây

$$< x, y > = \sum_{i \in I} x_i \overline{y_i}, \forall x = \{x_i\}_{i \in I}, y = \{y_i\}_{i \in I} \in l_2(I).$$