Parseo y Generación de Código – 2^{do} semestre 2022 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Primer parcial

NOTA: este parcial es a libro abierto. Se permite tener cualquier material manuscrito o impreso, pero no se permite el uso de dispositivos electrónicos. El parcial se califica con una nota numérica de 1 a 10. Se requiere ≥ 4 en ambos parciales para aprobar la materia. Para promocionar se requiere nota ≥ 6 en ambos parciales y promedio ≥ 7 .

Ejercicio 1. Considerar el alfabeto $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, x\}$. La siguiente gramática $G = (\{N, N_{\text{dec}}, N_{\text{hex}}, D_{\text{dec}}, D_{\text{hex}}\}, \Sigma, \mathcal{P}, N)$ describe la sintaxis de los números enteros en un lenguaje de programación. El conjunto de producciones \mathcal{P} está dado por:

N	\rightarrow	$N_{ extsf{dec}} \mid 0 \mathbf{\ x} \ N_{ extsf{hex}}$	números enteros
$N_{\mathtt{dec}}$	\rightarrow	$D_{\mathtt{dec}} \mid N_{\mathtt{dec}} D_{\mathtt{dec}}$	números enteros en base decimal
$N_{\mathtt{hex}}$	\rightarrow	$D_{ exttt{hex}} \mid N_{ exttt{hex}} D_{ exttt{hex}}$	números enteros en base hexadecimal
$D_{\mathtt{dec}}$	\rightarrow	$0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$	dígitos decimales
$D_{\mathtt{hex}}$	\rightarrow	$D_{\mathtt{dec}} \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \mathbf{d} \mid \mathbf{e} \mid \mathbf{f}$	dígitos hexadecimales

- a. Proponer una gramática G' que sea LL(1) y genere el mismo lenguaje que G.
- b. Construir la tabla LL(1) y mostrar que no hay conflictos.

Ejercicio 2. Considerar la gramática independiente del contexto $G = (\{P, D, E, A\}, \{\mathbf{var}, =, (,)\}, \mathcal{P}, P)$, donde \mathcal{P} es el conjunto de producciones siguiente:

I	Producción	Descripción	Ejemplo
$P \rightarrow \epsilon$	$\epsilon \mid PD$	programa	map f Nil = Nil
			map f (Cons x xs) = Cons (f x) (map f xs)
$D \rightarrow I$	E = E	declaración	map f (Cons x xs) = Cons (f x) (map f xs)
$E \rightarrow L$	$A \mid E A$	expresión	Cons (f x) (map f xs)
$A \rightarrow \mathbf{v}$	$\operatorname{var} \mid (E)$	átomo	(map f xs)

Demostrar que G es ambigua.

Ejercicio 3. Dar ejemplos de las siguientes:

- a. Una gramática G que tenga un solo símbolo no terminal (el símbolo inicial S) y que sea SLR pero no LL(1).
- b. Una gramática G que tenga un solo símbolo no terminal (el símbolo inicial S) y que sea SLR pero no LR(0).

Ejercicio 4. Sobre el alfabeto $\Sigma = \{a, b\}$, sean $L_1 = \mathcal{L}((a(a|b)^*a) | (b(a|b)^*b))$ y $L_2 = \mathcal{L}((a|b)^*(aa|bb)(a|b)^*)$. Dar una expresión regular que denote el lenguaje $L_1 \setminus L_2$, es decir, el lenguaje $L_1 \cap L_2^c$.

Justificar todas las respuestas.