Regression Tasks - Generalized Linear Models

Astrini Sie

asie@seattleu.edu

Week 4b

ECEGR4750 - Introduction to Machine Learning Seattle University

October 12, 2023

Recap and Updates

- Lab Take Home Assignment due this Thursday at 11.59pm
- Office Hours
 - T, Th 12-1p at Bannan 224
 - W 7-9p via Zoom
 - F 9-9.45a via Zoom
- Zoom Link: https://seattleu.zoom.us/j/7519782079?pwd= cnhCM2tPcHJKVWwxZVArS2VHSUNJZz09
 - Meeting ID: 751 978 2079
 - Passcode: 22498122
- Linear Regression (Regression):
 - Closed form solution: OLS
 - Numerical solution: LMS (GD, BGD, SGD)
 - Effect of noise on regression
- Logistic Regression (Binary Classification):
 - Numerical solution: MLE
 - Another numerical solution: Newton's Method

Overview

- Supervised Learning
 - Linear Regression Recap
 - Logistic Regression Recap
- Question of the contract of
 - Introduction
- 3 Exponential Family
 - Gaussian Distribution
 - Bernoulli Distribution
 - Multinomial Distribution
- 4 General Recipes for Constructing GLMs

We have seen two regression examples that are distinguished by their types of output distribution:

- Linear Regression: $y \in \mathbb{R}$
- Logistic Regression / Binary Classification: $y \in 0, 1$

We have seen two regression examples that are distinguished by their types of output distribution:

- Linear Regression: $y \in \mathbb{R}$
- Logistic Regression / Binary Classification: $y \in 0, 1$

Which also means:

- Linear Regression: y is a Gaussian distribution: $y|x; \theta \sim \mathcal{N}(\mu, \sigma^2)$
- Logistic Regression / Binary Classification: y is a Bernoulli distribution: $y|x;\theta \sim Bernoulli(\phi)$

where μ and ϕ are functions of x and θ

We can generalize this approach for broader family of models based on their output distribution, called **Generalized Linear Models (GLMs)**

We can generalize this approach for broader family of models based on their output distribution, called **Generalized Linear Models (GLMs)**

For example:

- Gaussian (y = real numbers)
- Bernoulli (y = binary)
- Multinomial (y = multi-class)
- Poisson (y = counts)
- Beta & Dirichlet (y = probabilities)

We can generalize this approach for broader family of models based on their output distribution, called **Generalized Linear Models (GLMs)**

For example:

- Gaussian (y = real numbers)
- Bernoulli (y = binary)
- Multinomial (y = multi-class)
- Poisson (y = counts)
- Beta & Dirichlet (y = probabilities)

We use the exponential family to unify inference and learning for many important models

Exponential Family

"If P has a special form, then inference and learning come for free"

Exponential Family of Generalized Linear Models

$$P(y;\eta) = b(y) \exp\left\{\eta^T T(y) - a(\eta)\right\} \tag{1}$$

where y, $a(\eta)$, and b(y) are scalars, and T(y) have the same dimension as η .

- η is the **natural parameter** or **canonical parameter** of the distribution.
- T(y) is the **sufficient statistic**, where often T(y) = y.
- b(y) is the base measure.
- $a(\eta)$ is the **log partition function**. $e^{-a(\eta)}$ plays the role of a normalization constant to ensure the distribution $p(y;\eta)$ sums or integrates over y to 1.

Exponential Family

"If P has a special form, then inference and learning come for free"

Exponential Family of Generalized Linear Models

$$P(y; \eta) = b(y) \exp \left\{ \eta^T T(y) - a(\eta) \right\}$$

where y, $a(\eta)$, and b(y) are scalars, and T(y) have the same dimension as η .

A fixed choice of T, a, and b defines a family of distributions that is parameterized by η . As we vary η , we get different distributions within this family.

Let's look at a couple examples...

(Linear Regression)

Gaussian distribution with a mean of μ and variance of σ^2 , over $y \in \mathbb{R}$ is written as $\mathcal{N}(\mu, \sigma^2)$.

The value of the variance σ^2 has no effect on the final choice of θ and $h_{\theta}(x)$. Thus, to simplify derivation, let's set $\sigma^2 = 1$

$$p(y; \mu) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(y - \mu)^2\right\}$$
 (2)

Let's derive Equation 1 from Equation 2. First, multiply out the square and group terms:

Let's derive Equation 1 from Equation 2. First, multiply out the square and group terms:

$$p(y; \mu) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(y - \mu)^2\right\}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(y^2 - \mu y - \mu^2)\right\}$$

$$= \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right)\right) \exp\left\{\mu y - \frac{1}{2}\mu^2\right\}$$

This equation is the same as Equation 1:

$$P(y; \eta) = b(y) \exp \left\{ \eta^T T(y) - a(\eta) \right\}$$

Generalized Linear Model for Gaussian Distribution

$$p(y;\mu) = \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right)\right) \exp\left\{\mu y - \frac{1}{2}\mu^2\right\}$$

where:

$$b(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right)$$
$$a(\eta) = \frac{1}{2}\mu^2 = \frac{1}{2}\eta^2$$
$$T(y) = y$$
$$\eta = \mu$$

(Binary Classification or Logistic Regression)

Bernoulli distribution with a mean of ϕ , over $y \in 0,1$ is written as $Bernoulli(\phi)$.

$$p(y = 1; \phi) = \phi$$
$$p(y = 0; \phi) = 1 - \phi$$

Which can be written as (see previous lecture):

$$p(y;\phi) = \phi^{y} (1 - \phi)^{1 - y}$$
(3)

Let's derive Equation 1 from Equation 3. First, take the log of $p(y; \phi)$ and exp of the log $(p(y; \phi) = \exp(\log(p(y; \phi)))$:

Let's derive Equation 1 from Equation 3. First, take the log of $p(y; \phi)$ and exp of the log $(p(y; \phi) = \exp(\log(p(y; \phi)))$:

$$p(y; \phi) = \exp(\log(p(y; \phi)))$$

$$= \exp(\log(\phi^{y}(1 - \phi)^{1 - y}))$$

$$= \exp(y \log \phi + (1 - y) \log(1 - \phi))$$

$$= \exp(y \log \phi - y \log(1 - \phi) + \log(1 - \phi))$$

$$= \exp\left(y \log\left(\frac{\phi}{1 - \phi}\right) + \log(1 - \phi)\right)$$

Generalized Linear Model for Bernoulli Distribution

$$p(y;\phi) = \exp\left(y\log\left(\frac{\phi}{1-\phi}\right) + \log(1-\phi)\right)$$
 (4)

This Equation 4 is in the same form as Equation 1:

$$P(y; \eta) = b(y) \exp \left\{ \eta^T T(y) - a(\eta) \right\}$$

where:

$$b(y) = 1$$
 $a(\eta) = -\log(1 - \phi)$
 $T(y) = y$
 $\eta = \log \frac{\phi}{1 - \phi}$

Let's express $a(\eta)$ in terms of η and verify that it is a function of η .

Let's express $a(\eta)$ in terms of η and verify that it is a function of η .

$$\eta = \log \frac{\phi}{1 - \phi}$$

$$e^{\eta} = \frac{\phi}{1 - \phi}$$

$$e^{\eta} (1 - \phi) = \phi$$

$$e^{\eta} = (e^{\eta} + 1)\phi$$

$$\phi = \frac{1}{1 + e^{-\eta}}$$

Plug ϕ back into $a(\eta)$:

Let's express $a(\eta)$ in terms of η and verify that it is a function of η .

$$\eta = \log \frac{\phi}{1 - \phi}$$
 $e^{\eta} = \frac{\phi}{1 - \phi}$
 $e^{\eta}(1 - \phi) = \phi$
 $e^{\eta} = (e^{\eta} + 1)\phi$
 $\phi = \frac{1}{1 + e^{-\eta}}$

Plug ϕ back into $a(\eta)$:

$$a(\eta)=-\log\left(1-rac{1}{1+e^{-\eta}}
ight)=\lograc{e^{-\eta}}{1+e^{-\eta}}=-\log(1+e^{\eta})$$

This equation is the same form as Equation 1

Generalized Linear Model for Bernoulli Distribution

$$p(y; \phi) = \exp\left(y \log\left(\frac{\phi}{1-\phi}\right) + \log(1-\phi)\right)$$

where:

$$b(y) = 1$$
 $a(\eta) = -\log(1 + e^{\eta})$ $T(y) = y$ $\eta = \log \frac{\phi}{1 - \phi}$

(Multi-Class Classification)

Multi-class Classification: y can take on any of k values

Given a training set
$$\{(x^{(i)}, y^{(i)} \text{ for } i = 1, \dots, n\}, \text{ let } y^{(i)} \in 1, 2, \dots, k.$$

For example, we want to choose whether the Iris in the picture belongs to one of the 3 classes: 'Setosa', 'Virginica', 'Versicolor'. In this case, k = 3.

We can perform a **one-hot encoding**, in which $y \in \{0,1\}^k$, and $\sum_{j=1}^k y_j = 1$.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 'Setosa' 'Virginica' 'Versicolor'

Prediction Function

Find the prediction, which is the distribution over the k classes.

Define the Softmax function as our hypothesis. $Softmax : \mathbb{R}^k \to \mathbb{R}^k$ turns $(t_1, \ldots, t_k) = (\theta_1^T x, \ldots, \theta_k^T x)$ into a probability vector with non-negative entries that sum up to 1:

$$\begin{bmatrix} P(y=1|x;\theta) \\ \vdots \\ P(y=k|x;\theta) \end{bmatrix} = softmax(t_1,\ldots,t_k) = \begin{bmatrix} \frac{\exp(\theta_1^Tx)}{\sum_{j=1}^k \exp(\theta_j^Tx)} \\ \vdots \\ \frac{\exp(\theta_k^Tx)}{\sum_{j=1}^k \exp(\theta_j^Tx)} \end{bmatrix}$$

where $x, \theta_j \in \mathbb{R}^{d+1}$ for $j = 1, \dots, k$

Loss Function

We can shorten $\phi_i = \frac{\exp(\theta_i^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)}$, hence:

$$P(y = i | x; \theta) = \phi_i = \frac{\exp(\theta_i^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)}$$

How do we train for θ ?

Let's define cross-entropy loss ℓ_{ce} : \mathbb{R}^k :

Cross-Entropy Loss

$$\ell_{ce} = -\sum_{j=1}^{k} t_j \log(\phi_j)$$

where t_j is the truth label for class j and ϕ_j is the softmax probability.

Loss Function

The gradient of the loss function is:

$$\frac{\partial \ell_{ce}(\theta)}{\partial \theta_j} = \sum_{j=1}^k \left(\phi_j^{(i)} - 1\{y^{(i)} = j\} \right) \dot{x}^{(i)}$$

where $\phi_j = \frac{\exp(\theta_i^T \mathbf{x})}{\sum_{j=1}^k \exp(\theta_j^T \mathbf{x})}$ is the probability that the model predicts class j for sample $\mathbf{x}^{(i)}$.

We can iterate θ using gradient descent methods to minimize the loss function $\ell(\theta)$.

Predicting the Output

After obtaining the final values of θ , calculate ϕ_j for each class j. The class with the greatest value of ϕ will be returned as the predicted class.

There are many types of distributions (Exponential Families):

- Gaussian (y = real numbers)
- Bernoulli (y = binary)
- Multinomial (y = multi-class)
- Poisson (y = counts)
- Beta & Dirichlet (y = probabilities)

We can create a general rule to construct a GLM.

Given inputs $x \in \mathbb{R}^{d+1}$ (where d is the number of features) and a target y, create a model $h_{\theta}(x)$

Given inputs $x \in \mathbb{R}^{d+1}$ (where d is the number of features) and a target y, create a model $h_{\theta}(x)$

• $y|x, \theta \sim ExponentialFamily(\eta)$ Given feature x and weight θ , the distribution of target y follows some exponential family distribution with a parameter of η .

Given inputs $x \in \mathbb{R}^{d+1}$ (where d is the number of features) and a target y, create a model $h_{\theta}(x)$

- $y|x, \theta \sim ExponentialFamily(\eta)$ Given feature x and weight θ , the distribution of target y follows some exponential family distribution with a parameter of η .
- ② $\eta = \theta^T x$, in which $\theta, x \in \mathbb{R}^{d+1}$ Assume a linear model, in which the inputs x and the natural parameter η are linearly related.

Given inputs $x \in \mathbb{R}^{d+1}$ (where d is the number of features) and a target y, create a model $h_{\theta}(x)$

- $y|x, \theta \sim ExponentialFamily(\eta)$ Given feature x and weight θ , the distribution of target y follows some exponential family distribution with a parameter of η .
- ② $\eta = \theta^T x$, in which $\theta, x \in \mathbb{R}^{d+1}$ Assume a linear model, in which the inputs x and the natural parameter η are linearly related.
- **3** $h_{\theta}(x) = \mathsf{E}[y|x;\theta]$ Predict the expected value T(y) given x. In our examples, we assume T(y) = y. This means, prediction will satisfy $h_{\theta}(x) = \mathsf{E}[y|x;\theta]$. Note that, the expected value is equivalent to the arithmetic mean.

Terminologies

Model Parameter	Natural Parameter	Canonical Parameter
iviouci i diameter	<u>rvatarar r arameter</u>	
heta	η	$E[T(y);\eta]$
		ϕ : Bernoulli
		$\begin{pmatrix} \phi \colon Bernoulli \\ \mu \colon Gaussian \\ \lambda \colon Poisson \end{pmatrix}$
		λ : Poisson

- Linear Function: $\eta = \theta^T x$ relates the model parameters θ and the natural parameter η .
- Canonical Response Function: $g(\eta) = E[T(y); \eta]$ expresses the mean of the distribution $E[T(y); \eta]$ as a function of the natural parameter η . The canonical function g varies depending on the distribution $ExponentialFamily(\eta)$.
- Canonical Link Function: g^{-1}

Examples

- Bernoulli Distribution

Examples

- Bernoulli Distribution
 - $y|x, \theta \sim Bernoulli(\phi)$
 - **2** $g(\eta) = E[T(y); \eta]$ $1/(1 + e^{-\eta}) = \phi$

Examples |

- Bernoulli Distribution
 - $y|x, \theta \sim Bernoulli(\phi)$
 - **2** $g(\eta) = E[T(y); \eta]$ $1/(1 + e^{-\eta}) = \phi$
 - $\bullet h_{\theta}(x) = \mathsf{E}[y|x;\theta]$
 - $h_{\theta}(x) = \phi$ (mean of a Bernoulli distribution)
 - $h_{ heta}(x) = 1/(1+e^{-\eta})$ (substituting link function from 2)
 - $h_{ heta}(x) = 1/(1 + e^{- heta^T x})$ (substituting linear function $\eta = heta^T x$)

Examples

- Bernoulli Distribution
 - $y|x, \theta \sim Bernoulli(\phi)$
 - **2** $g(\eta) = E[T(y); \eta]$ $1/(1 + e^{-\eta}) = \phi$
 - $\bullet h_{\theta}(x) = \mathsf{E}[y|x;\theta]$
 - $h_{\theta}(x) = \phi$ (mean of a Bernoulli distribution)
 - $h_{\theta}(x) = 1/(1 + e^{-\eta})$ (substituting link function from 2)
 - $h_{\theta}(x) = 1/(1 + e^{-\theta^T x})$ (substituting linear function $\eta = \theta^T x$)
- @ Gaussian Distribution:
 - $y|x,\theta \sim \mathcal{N}(\mu,\sigma^2)$
 - $g(\eta) = E[T(y); \eta]$ $\eta = \phi$
 - $\bullet h_{\theta}(x) = \mathsf{E}[y|x;\theta]$
 - $h_{\theta}(x) = \mu$ (mean of a Gaussian distribution)
 - $h_{\theta}(x) = \eta$ (substituting link function from 2)
 - $h_{\theta}(x) = \theta^T x$ (substituting linear function $\eta = \theta^T x$)

References

Chris Re, Andrew Ng, and Tengyu Ma (2023) CSE229 Machine Learning Stanford University