3GPP specifications

- 3GPP (3rd Generation Partnership Project) specifications
 - Release 8+9: LTE
 - Release 10+11: LTE Advanced, HSPA+ (for UMTS)
 - Release 12+13: Some more LTE extensions, including NB-IoT and LTE-M for IoT and wireless sensor devices
 - Release 14: Faster LTE-M (~2.5MBit/s) and NB-IoT (~140kbit/s), lower power consumption for NB-IoT
 - Release 15 (2018/2019): 5G
 - Release 16 (2020/2021): Better support in 5G for satellite communication, vehicle to everything (V2X) and IoT,...

Release 15

- 2018: "Non Standalone Access" (NSA)
 - Specification of a new radio access technology (5G NR)
 - Relies on the 4G Evolved Packet Core: Allows cellular providers to introduce 5G services in their 4G networks
 - UE with "dual connectivity" can connect to LTE base stations (eNB; evolved NodeB) and 5G-NR base stations (gNB; next generation NB)
 - 1. UE first connects to eNB and starts reporting measurements of 5G measurements
 - 2. eNB communicates with gNB to assign resources for 5G bearer
 - 3. Resource assignment is sent to UE (on LTE)
 - 4. UE connects to 4G and 5G networks

Release 15

- 2019: "Standalone Access"
 - Specification of a next-generation core network
- Relies on a "Service-Based Architecture"
 - Instead of traditional network components (gateways, MMEs,...), the core network contains "Network Functions"
 - Access and Mobility management Function
 - Session Management Function
 - User Plane Function
 - Network Repository Function
 - ...
 - NFs can be deployed in a fully distributed, redundant and scalable way on servers in a cloud, near the users (edge Computing),...

Network Virtualization

Source: Network Functions Virtualization – Introductory White Paper ETSI NFV ISG

Mobile Edge Computing

Goal: Bring computation closer to the user

Source: Raj Jain

5G New Radio (1)

- Two frequency ranges
 - FR1: 450 MHz 6000 MHz. Covers many frequency bands used previously by other services, for example GSM and LTE
 - mostly operated in FDD and TDD mode
 - Dynamic Spectrum Sharing: software update for 4G networks with a scheduler able to assign dynamically frequency bands to 4G or 5G connections
 - FR2: 24.25 GHz 52.6 GHz (mm wave bands)
 - operated in TDD mode
- Remember:
 - TDD = Time Division Duplexing = Different timeslots for downlink and uplink
 - FDD = Frequency Division Duplexing = Different frequencies for downlink and uplink

5G New Radio (2)

- Similar to LTE
 - Physical/Transport/Logical channels
 - OFDM
 - Different subcarrier sizes supported: 15/30/60 kHz for FR1 and 60/120/240 kHz for FR2
 - Timeslot duration 1ms for 15kHz (like LTE) to 0.0625ms for 240 kHz subcarriers
- Massive MIMO 64x4
 - Allows 3D beamforming
 - Multi-user MIMO: serve multiple users simultaneously by different beams
 - Is easier to implement with TDD than FDD. Also implemented for TDD LTE

Beam forming

Source: metaswitch.com

Beam management

Source: Manoharan Ramalingam, Mavenir

Use cases

- Three use cases defined:
- eMBB (enhanced Mobile Broadband):
 - Like 4G, but faster
 - Peak data rate: Downlink: 20 Gb/s, Uplink: 10 Gb/s
 - Normal user: Downlink: 100 Mb/s, Uplink: 50 Mb/s
 - Latency 4ms for data, 20ms for control plane
- uRLLC (ultra Reliable and Low Latency Communication):
 - Latency 1ms and very low error rate
 - For critical applications, like autonomous driving
- mMTC (massive Machine Type Communication)
 - Up to 1 million devices per km²
 - RTT <10s for 20 bytes payload
 - Slow, possible collisions due to random access
 - For IoT

Network slicing

- The different 5G use cases run on the same infrastructure
- Network slicing is used to split the available resources such that bandwidth/latency/reliability guarantees can be given

From 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. Popovski et al., 2018

Network slicing (2)

- However, slicing is not only for the radio!
- To provide guarantees, all parts of the infrastructure, including the core network, the connection to the Internet, etc. have to be managed accordingly

https://www.exfo.com/en/resources/blog/w hat-is-5g-network-slicing/

5G Roadmap

Source: Qualcomm