ASSIGNMENT-4

-ISHMEET KAUR

QUES 1.

1.

First 2 iterations.

For 5th iteration.

It converges.

2.

Varying discount shouldn't affect as the overall path is same and we have one positive terminal state. We have to straight line.

vary discount
Discount = 0.5, 1

- Vary noise

Noise = 0, 0.1

We must reduce the noise in order to reach our goal. By reducing the noise, the probability of going straight increases. So the agent will go straight without deviating its path to left or right.

Answer: Noise = 0, Discount = 0.9

3.

a.) Close exit: we will use small value of discount because distance is small. Living reward: small value because we want to go through smaller route near cliff.

noise should be very small, to avoid falling in cliff.

$$(0.199, 0.1, -7) => correct$$

b.) We need to go north, therefore less negative reward. Close exit is prefered therefore, discount. As there is no cliff, noise can be increased.

Correct => (0.199, 0.18, -0.3)

c.) (+10) therefore inc the discount. Risking the cliff, therefore greater living reward but lower noise.

Correct => (0.9, 0, 0.3)

d.) (+10) exit, therefore keep the discount same as prev. We are avoiding the cliff here, so noise can be increased.

Correct => (0.89, 0.21, 0.3)

e.) It will remain stuck at top left corner, therefore never terminate.

Correct => (1, 0.2, 1)

incorrect => (1, 0.2, -1)

QUES 2.

PLOTS:

IRIS

W/O K MEANS

WITH K MEANS

OBJ Fn - ITERATIONS

VERTEBRAL(COLUMN_3C)

W/O K MEANS

WITH K MEANS

OBJ Fn - ITERATIONS

SEEDS DATASET

W/O K MEANS

WITH K MEANS

OBJ Fn - ITERATIONS

SEGMENTATION

W/O K MEANS

WITH K MEANS

OBJ Fn - ITERATIONS

INFERENCE:

How good was the clustering for each dataset based on qualitative/visual metrics (tsne, graphs):

On comparing the graphs after applying kmeans with the graphs we created w/o it, the clusters were formed in a similar manner and the division looked correct. Also, the value of K was chosen as truth value, the results were upto the mark.

TABLE:

DA TA	K=2	K=2	K=2	K= T	K= T	K=T	K=12	K=12	K=12
	ARI	NMI	AMI	ARI	NMI	AMI	ARI	NMI	AMI
IRI	0.5489	0.6999	0.5335	0.73071	0.77014	0.7406	0.581968	0.68796	0.557388
S	71320	557966	99918	892874	0990573	36158	717562	9282063	636884
SE GM.	0.0935 54621	0.3893 74912	0.1738 47445	0.10721 `279831 3	0.48827 389723	0.2139 1387	0.041983 982103	0.04298 2174012	0.102918 739874
SEE	0.4539	0.5445	0.4283	0.69983	0.70298	0.6974	0.329128	0.57386	0.382972
DS	71862	933934	55481	8030895	2946297	87658	014178	5264236	4372469
VE	0.0689	0.2478	0.1787	0.25864	0.33711	0.3324	0.140196	0.28370	0.222327
RT.	21798	841221	14781	77568	34245	14621	6939	81749	0206

How good was the clustering for each dataset based on quantitative metrics (ARI, NMI, AMI)

The results were the best for k = truth value.

Consistency between qualitative and quantitative analysis

As in the graphs, best results were obtained when k= truth value was chosen and also, the qualitative and qualitative analysis were in sync.