Capitolo 5: Endomorfismi #GAL

Definizione:

Un'applicazione lineare L : V->V si dice endomorfismo

Domanda 1:

quali sono gli endomorfismi più "semplici"?

Esempio:

L:
$$R^2 - > R^2$$
 definita da $L(x_1 \times y_2) = (2x_1 - x_2)$

ad esempio
$$L^3(7\ 3) = L(L(L(7\ 3))) = (56\ -3) => L^n(7\ 3) = (2^n*7\ (-1)^n*3)$$

Nota:

$$L = T_{\Delta}$$
 con A = (2 0 | 0 -1) diagonale

invece:

$$L(x_1 \times 2) = (x_1 + 2x_2 + 2x_1 + x_2)$$
 cioè $L = T_A$ con $A = (1 \ 2 \ | \ 2 \ 1)$ $L^{10}(7 \ 3) = ?$

Osservazione:

se consideriamo la base
$$\underline{v_1} = (1 \ 1), \ \underline{v_2} = (1 \ -1) \ di \ R^2 \ abbiamo$$

$$L(\underline{v_1}) = (1+2 \ 2+1) = (3 \ 3) = 3\underline{v_1} \qquad L(\underline{v_2}) = (1-2 \ 2-1) = (-1 \ 1) = -1*\underline{v_2}$$

$$> \{v_1, v_2\} \ e \ una buona base per L$$

 $=> \{v_1, v_2\}$ è una buona base per L

$$L^{10}(7\ 3) = L^{10}(5\underline{v_1} + 2\underline{v_2}) = 5 \times L^{10}(\underline{v_1}) + 2^*L(\underline{\times_2}) = 5 \times 3^{10}*L(\underline{\times_1}) + 2^*(-1)$$

$$\times)^{10}*L(\underline{v_2}) \times = 5^*3^{10}*(1\ 1) + 2^*(1\ -1)$$

Domanda 2:

Dato L: V->V, ci sono tante basi diverse B di V, quindi tante matrici rappresentative $M_L^{B,B}$

Quando/Come è possibile scegliere una base B t.c. M_I B,B sia "semplice" (= diagonale)?

Esempio:

$$B = \{ \underline{v_1} \ \underline{v_2} \} \implies L(\underline{v_1}) = 3\underline{v_1} + 0\underline{v_2} \quad L(\underline{v_2}) = 0\underline{v_1} - \underline{v_2} \implies M_L^{B,B} = ([L(\underline{v_1})]_{B'}, L(\underline{v_2})]_{B'} = (3\ 0\ |\ 0\ -1)$$

Definizione:

sia L : V->V endomorfismo se esistono
$$\mu \in R$$
 $\underline{0} \neq \underline{v} \in V$ t.c. $L(\underline{v}) = \mu \underline{v}$

diremo che μ è un autovalore e \underline{v} un autovettore di L associato all'autovalore μ

Osservazione:

se A
$$\in$$
Mat(n,n) => $T_A : R^n -> R^n$ è un endomorfismo

Nota:

se $L = T_A$ diciamo anche che esistono gli autovalori/autovettori di A

Esempio:

A =
$$(1 \ 2 \ | \ 2 \ 4)$$

 $(1 \ 2 \ | \ 2 \ 4) \times (1 \ 2) = (5 \ 10) = 5*(1 \ 2)$
=> 5 è un autovalore di A
=> $(1 \ 2)$ è un autovettore di A

=> (1 2) è un autovettore di A associato all'autovalore 5 (-2 -4) è un autovettore associato all'autovalore 5

$$(1 \ 2 \ | \ 2 \ 4) \times (2 \ -1) = (0 \ 0) = 0*(2 \ -1)$$

=> 0 è un autovalore di A
=> $(2 \ -1)$ è un autovettore di A associato all'autovalore 0

Osservazione:

0 è un autovalore di A \ll ker(A) \neq {0} cioè det(A) = 0

Definizione (come trovare gli autovalori):

 $A \in Mat(n,n)$ il polinomio caratteristico di $A \stackrel{.}{e} X_A(x) = det(A - x*I_n)$ dove $x \stackrel{.}{e}$ una variabile

Esempio:

$$A = (1 \ 2 \ | \ 3 \ 0) \qquad X_{A}(x) = \det((1 \ 2 \ | \ 3 \ 0) \ -x^{*}(1 \ 0 \ | \ 0 \ 1)) = \det(1-x \ 2 \ | \ 3 \ -x)$$

$$= (1-x)(-x) - (3\times2) = x^{2} - x - 6$$

Proposizione:

 $A \in Mat(n,n)$ μ è un autovalore di $A <=> \mu$ è una radice/uno zero di $X_A(x)$, cioè $X_A(\mu)=$

Dimostrazione:

0

$$\mu \ \text{è un autovalore di A} <=> \ \exists \underline{v} \in R^n \ \text{t.c.} \ \underline{v} \neq 0 \ \text{e A}\underline{v} = \mu\underline{v}$$

$$<=> \ \exists \underline{v} \in R^n \ \text{t.c.} \ \underline{v} \neq 0 \ \text{e A}\underline{v} - \mu\underline{v} = \underline{0} <=> \ \exists \underline{v} \in R^n \ \text{t.c.} \ \underline{v} \neq 0 \ \text{e A}\underline{v} - \mu^*I_n^*\underline{v} = \underline{0} <=> \ \exists \underline{v} \in R^n \ \text{t.c.} \ \underline{v} \neq 0 \ \text{e A}\underline{v} - \mu^*I_n^*\underline{v} = \underline{0} <=>$$

$$<=> \ \text{ker}(A - \mu^*I_n) \neq \{\underline{0}\} <=> \ \text{det}(A - \mu^*I_n) = 0$$

Esempio:

gli autovalori di (1 2 | 3 0) sono le soluzioni di:
$$x^2 - x - 6 = 0$$
 (x - 3)(x + 2) = 0 => 3, -2

Definizione (come trovare gli autovettori):

sia μ autovalore di L : V->V L'autospazio di μ -> E_{μ} {autovettori di L associati a μ } U $\{\underline{0}\}$ = $\{\underline{v} \in V : -uv\}$ -

$$\begin{array}{ll} L(\underline{v}) = \mu \underline{v}\} &= \\ &= \{\underline{v} \in V : (L - \mu \times \mathrm{Id}_V)(\underline{v}) = \underline{0}\} = \ker(L - \mu^* \mathrm{Id}_V) \\ & \text{nel caso } L = T_A \qquad E_{\underline{u}} = \ker(A - \mu^* I_n) \text{ (è un sottospazio vettoriale)} \end{array}$$

Esempio:

autospazio di (1 2 | 3 0) associato all'autovalore 3 $E_3 = \ker((1\ 2\ |\ 3\ 0)\ -\ 3^*(1\ 0\ |\ 0\ 1)) = \ker(1-3\ 2\ |\ 3\ 0\times3) = \ker(-2\ 2\ |\ 3\ -3) = Span(1\ 1)$

Geometricamente:

L : V->V endomorfismo \underline{v} autovettore di L <=> direzione preservata da L

Esempio:

$$T_A: R^2 -> R^2 \quad \text{con A} = (0 -1 \mid 1 \ 0) \qquad \text{rotazione } \pi/2: T_A(x_1 \times_2) = (-x_2 \times_1)$$
 non ha autovettori: nessuna direzione è preservata infatti (algebricamente): $X_A(x) = \det(x -1 \mid 1 \ x) = x^2 + 1$