COMP 2402 Abstract Data Types & Algorithms

Readings

Today's class

- Graphs
 - Chapter 12

A directed graph G is a pair of sets

$$G = (V, E)$$

V is a non-empty set of vertices (or nodes)

E is a set edges which are pairs of vertices.

The edge (i, j) is directed from vertex i to vertex j.

i is the **source** of the edge

j is the **target** of the edge

Adjacent vertices are connected by an edge.

The edge (i, j) is directed from vertex i to vertex j.

Adjacent vertices are connected by an edge.

We say that

i is adjacent **to** j and j is adjacent **from** i

A path in G is a sequence of vertices $v_0, v_1, \dots v_k$ such that for every $i \in \{1, \dots k\}$ the edge (v_{i-1}, v_i) is in E

The path length is the number of edges in the parth. A path is a cycle if the edge (v_k, v_0) is also in E

A path (or cycle) is **simple** if all of its vertices are unique.

If there is a path from v_i to v_j then we say that v_j is reachable from v_i

The degree of a vertex v is the number of edges that v as one of its endpoints.

We can divide the degree into two components: **outDegree** (the number of edges leaving v) **inDegree** (the number of edges coming in to v).

A **Graph** is also an ADT/interface.

- addEdge(i,j)-adds the edge (i,j) to E
- removeEdge(i,j)-removes the edge (i,j) from E
- hasEdge(i,j)-returns true if (i,j) is in E, false otherwise
- outEdges(i)-returns a list of all vertices j where (i,j) is in E
- inEdges(i)-returns a list of all vertices j where (j,i) is in E

How do we implement the **Graph** interface?

 Consider the special case of undirected graphs in which there exists a unique path between every pair of vertices and there are no cycles

This is a **tree**. We have already seen how to implement a special case of trees (binary trees).

How do we implement the **Graph** interface?

We'll consider two data structures, to store a directed graph, that are built on the notion of adjacency.

1. Adjacency Matrix

2. Adjacency Lists

Consider a graph G with |V| = n nodes and |E| = m edges.

$$M[i][j] = \begin{cases} true & (i,j) \in E \\ false & (i,j) \notin E \end{cases}$$

$$M[i][j] = \begin{cases} true/1 & (i,j) \in E \\ false/0 & (i,j) \notin E \end{cases}$$

0	1	0	0	0	0	0
0	0	0	0	0	0	1
1	1	0	0	0	0	0
0	0	0	0	0	1	0
1	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	0	0	0	0	1

$$M[i][j] = \begin{cases} true/1 & (i,j) \in E \\ false/0 & (i,j) \notin E \end{cases}$$

	A	R	C	Ø	Ε	F	G	
A	0	1	0	0	0	0	0	A
B	0	0	0	0	0	0	1	
C	1	1	0	0	0	0	0	E
٥	0	0	0	0	0	1	0	
E	1	0	0	0	0	0	0	
4	0	0	0	1	0	0	1	D
G	0	0	0	0	0	0	1	

$$M[i][j] = \begin{cases} true/1 & (i,j) \in E \\ false/0 & (i,j) \notin E \end{cases}$$

	A	R	C	Ø	E	F	G
A	0	1	0	0	0	0	0
B	0	0	0	0	0	0	1
C	1	1	0	0	0	0	0
٥	0	0	0	0	0	1	0
E	1	0	0	0	0	0	0
F	0	0	0	1	0	0	1
G	0	0	0	0	0	0	1

$$M[i][j] = \begin{cases} true/1 & (i,j) \in E \\ false/0 & (i,j) \notin E \end{cases}$$

In an undirected graph, the matrix is symmetric.

A	В	C	0	E	7	G
0	1	1	0	1	0	0
1	0	1	0	0	0	1
1	1	0	0	0	0	0
0	0	0	0	0	1	0
1	0	0	0	0	0	0
0	0	0	1	0	0	1
0	1	0	0	0	1	1
	1 0 1 0	0 1 1 0 1 1 0 0 1 0 0 0	0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0	0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1	0 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0	0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0

In an undirected graph, the matrix is symmetric.

	A	B	C	0	E	F	G
A	0	1	1	0	1	0	0
B	1	0	1	0	0	0	1
C	1	1	0	0	0	0	0
Ø	0	0	0	0	0	1	0
E	1	0	0	0	0	0	0
7	0	0	0	1	0	0	1
G	0	1	0	0	0	1	1

$$a[i][j] = \begin{cases} true & (i,j) \in E \\ false & (i,j) \notin E \end{cases}$$

```
void addEdge(int i, int j) { a[i][j] = true; }
void removeEdge(int i, int j) { a[i][j] = false; }
boolean hasEdge(int i, int j) { return a[i][j]; }
```

The Adjacency Matrix of G is the $n \times n$ boolean matrix

$$a[i][j] = \begin{cases} true & (i,j) \in E \\ false & (i,j) \notin E \end{cases}$$

```
void addEdge(int i, int j) { a[i][j] = true; }
void removeEdge(int i, int j) { a[i][j] = false; }
boolean hasEdge(int i, int j) { return a[i][j]; }
```

addEdge(i,j), removeEdge(i,j) and hasEdge(i,j) are all O(1) time operations

Notice that each row in the matrix corresponds to the outEdges of a node.

	A	R	C	Ø	E	7	G
A	0	1	0	0	0	0	0
B	0	0	0	0	0	0	1
C	1	1	0	0	0	0	0
٥	0	0	0	0	0	1	0
E	1	0	0	0	0	0	0
4	0	0	0	1	0	0	1
G	0	0	0	0	0	0	1

Notice that each column in the matrix corresponds to the inEdges of a node.

	A	R	C	Ø	E	7	G
A	0	1	0	0	0	0	0
B	0	0	0	0	0	0	1
C	1	1	0	0	0	0	0
٥	0	0	0	0	0	1	0
E	1	0	0	0	0	0	0
4	0	0	0	1	0	0	1
G	0	0	0	0	0	0	1

$$a[i][j] = \begin{cases} true & (i,j) \in E \\ false & (i,j) \notin E \end{cases}$$

```
List outEdges(int i) {
   List edges = new ArrayList();
   for (int j = 0; j < n; j++) {
      if (a[i][j]) {
        edges.add(j);
      }
   }
   return edges;
}</pre>
```

$$a[i][j] = \begin{cases} true & (i,j) \in E \\ false & (i,j) \notin E \end{cases}$$

```
List outEdges(int i) {
   List edges = new ArrayList();
   for (int j = 0; j < n; j++) {
      if (a[i][j]) {
        edges.add(j);
    }
    outEdges(i) and inEdges(i)
    are both O(n) operations
}</pre>
```

Consider a graph G with |V| = n nodes and |E| = m edges.


```
void addEdge(int i, int j) {
    adj[i].add(j);
}

List outEdges(int i) {
    return adj[i];
}
adj 0 1 2 3 4 5 6

1 6 0 5 0 6 6

5
    return adj[i];

1
```

```
void addEdge(int i, int j) {
    adj[i].add(j);
}

addEdge(i,j) and outEdges(i)
    are both O(1) operations

List outEdges(int i) {
    return adj[i];
}
```

The Adjacency List representation of G is a length n array, adj, of lists. The list at index j contains all vertices that are incident from vertex j.

What about

removeEdge(i,j)

hasEdge(i,j)

The Adjacency List representation of G is a length n array, adj, of lists. The list at index j contains all vertices that are incident from vertex j.

What about

removeEdge(i,j)

hasEdge(i,j)

removeEdge(i,j) and hasEdge(i,j) are both O(outDegree(i)) time operations

The Adjacency List representation of G is a length n array, adj, of lists. The list at index j contains all vertices that are incident from vertex j.

What about in Edges(i)?

adj	0	1	2	3	4	5	6
	\	\	\	\downarrow	\	\downarrow	\downarrow
	1	6	0	5	0	6	6
			5			3	
			1		·		•

The Adjacency List representation of G is a length n array, adj, of lists. The list at index j contains all vertices that are incident from vertex j.

What about in Edges(i)?

inEdges(i) is a O(n + m) time operation

	Adjacency Matrix	Adjacency List
addEdge	0(1)	0(1)
removeEdge	0(1)	$O(\deg(i))$
hasEdge	0(1)	$O(\deg(i))$
outEdges	O(n)	0(1)
inEdges	O(n)	O(n+m)
Space used	$O(n^2)$	O(n+m)

Graph Explorations

We have already seen breadth-first and depth-first search algorithms for binary trees.

We can use these (slightly modified) to explore graphs: starting with some vertex we find all vertices that are reachable from it.

Breadth-First Search

In a breadth-first search of a graph we start with a node i, and visit the neighbours of i, then visit all the neighbours of the neighbours of i, etc.

Use a Queue

Breadth-First Search

In a breadth-first search of a graph we start with a node i, and visit the neighbours of i, then visit all the neighbours of the neighbours of i, etc.

It's a bit more complicated with graphs.

We need to keep track of the nodes we have already discovered

In a breadth-first search of a graph we start with a node i, and visit the neighbours of i, then visit all the neighbours of the neighbours of i, etc.

The execution of the BFS constructs a BFS **search tree**.

You will be asked about this

```
bfs(G, root)
  seen = boolean array of size n
  q = empty queue
  q.add(root)
  seen[root] = true
  while q is not empty do
     i = q.remove()
     for each vertex j in outEdges(i) do
        if seen[j] is false
           q.add(j)
           seen[j] = true
```

```
bfs(G, root)
  seen = boolean array of size n
  q = empty queue
  q.add(root)
                                    Order these in
  seen[root] = true
                                    increasing order
  while q is not empty do
     i = q.remove()
     for each vertex j in outEdges(i) do
        if seen[j] is false
           q.add(j)
           seen[j] = true
```


What is the runtime of breadth-first search?

Adjacency Matrix

Adjacency Lists

```
bfs(G, root)
  seen = boolean array of size n
  q = empty queue
  q.add(root)
                                    Order these in
  seen[root] = true
                                    increasing order
  while q is not empty do
     i = q.remove()
     for each vertex j in outEdges(i) do
        if seen[j] is false
           q.add(j)
           seen[j] = true
```

What is the runtime of breadth-first search?

Adjacency Matrix

$$O(n^2)$$

Adjacency Lists

$$O(n+m)$$

In a **breadth-first search** of a graph starting with some vertex **u**, we find the **shortest path** from **u** to all other vertices reachable from **u**.

(More about this in COMP3804)

In a depth-first search we start with some node **r** and keep taking steps (following edges) while possible. Once we get stuck, we backtrack and try another path; repeating this until we have explored all the graph that is possible.

Like the BFS, we need to keep track of nodes: nodes we haven't seen, nodes we have seen but are not done with and nodes we are done with.

In a depth-first search we start with some node **r** and keep taking steps (following edges) while possible. Once we get stuck, we backtrack and try another path; repeating this until we have explored all the graph that is possible.

Like the BFS, the DFS algorithm constructs a DFS **search tree**. (When choosing which node to visit always choose the smallest first!)

Just like we did for binary trees, we can do a depth-first search using a Stack.

We'll push elements onto the stack in **DECREASING** order, so that when they get popped of, they are in **INCREASING** order.

What is the runtime of DFS?

Adjacency Matrix

Adjacency Lists

Depth-first search can be used to detect cycles in a graph.

(More about this in COMP3804)

Graph Exploration

What is the runtime of BFS and DFS?

Adjacency Matrix

$$O(n^2)$$

Adjacency Lists

$$O(n+m)$$