

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

ÁLGEBRA LINEAL (R211 - CE9)

2024

2.4 - Coordenadas y Cambio de base

En un ev V finito dimensional, digamos dimV = n, si tenemos una base $B = \{v_1, \ldots, v_n\}$ bastarán n escalares para determinar cualquier vector: si $v \in V$ existen $\alpha_1, \ldots, \alpha_n \in F$ tq $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$. Si consideramos la base con un orden entre sus n vectores, cada vector de V queda unívocamente determinado por una n-upla, esto es, un elemento de F^n .

Definición 1 V F-ev finito dimensional con dimV=n. Una **base ordenada** es un subconjunto B de n vectores de V que es base y en el cual hemos fijado un orden sucesivo entre sus elementos. Si $B = \{v_1, \ldots, v_n\}$ y $v \in V$ se escribe como $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$, el vector $(\alpha_1, \ldots, \alpha_n) \in F^n$ se llama vector de coordenadas de v v lo denotamos $[v]_B$.

ATENCIÓN: ESTAREMOS DENOTANDO VECTORES FILA, Y EN LOS CASOS QUE PRECISEMOS EXPLÍCITAMENTE CONSIDERAR VECTORES COLUMNA PONDREMOS EL SUPRAÍNDICE t .

Ejemplos 1 1. $V = \mathbb{R}_4[x]$, sea $B = \{1, x, x^2, x^3\}$ la base canónica. Si $p(x) = x^3 + 3x^2 - 1$, ents $[p(x)]_B = (-1, 0, 3, 1)$. Si $B_1 = \{x^3, x^2, x, 1\}$ base (cuál es la diferencia con la base canónica??), ents $[p(x)]_{B_1} = (1, 3, 0, -1)$. Observemos que es importante el orden que definamos en nuestra base.

2. $V = R^3$, B base canónica. $Si\ v = (1, 2, 3)$ ents $[v]_B = (1, 2, 3)$. $Si\ B' = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ (verificar que B' es base), à cómo hallamos $[v]_{B'}$?

Vamos a definir ahora un concepto fundamental: los ev isomorfos, que desde el punto de vista de la estructura algebraica, serán indistinguibles. Para nosotrxs será una noción de *igualdad*, y nos permitirá trabajar de igual manera con distintos ev's, aunque la naturaleza de sus elementos sea diferente.

Definición 2 V, W F-ev se dicen **isomorfos** si existe $T: V \to W$ isomorfismo. Se anota $V \stackrel{T}{\simeq} W$.

Ejercicio 1 Probar la siquiente proposición:

Proposición 1 En la clase de los F-ev, el isomorfismo es una relación de equivalencia.

El siguiente teorema es fundamental, nos dice lo que venimos anunciando: jijtodo es $\mathbb{R}^{n}!!!$

Very Important Theorem 1 V F-ev finito dimensional con dimV = n. Ents. $V \simeq F^n$.

Demostración:

Fijamos $B = \{v_1, \dots, v_n\}$ base de V. Definimos $T : V \to F^n$ como la función que a $v \in V$ le asigna su vector de coordenadas: $T(v) = [v]_B$. T es un isomorfimo. EJERCICIO!

Dadas dos bases en un F-ev V, cada vector $v \in V$ tiene asociado dos vectores de coordenadas. Veamos que ambos vectores se relacionan a través de una matriz.

Ejemplo 1 $V = \mathbb{R}^3$, $B_1 = \{e_1, e_2, e_3\}$ base canónica, $B_2 = \{w_1 = (1, 1, 1), w_2 = (1, 1, 0), w_3 = (1, 0, 0)\}$. Sea $v = (3, 4, 5) = 3e_1 + 4e_2 + 5e_3$. Observemos que $e_1 = w_3$, $e_2 = w_2 - w_3$, $e_3 = w_1 - w_2$, o lo que es lo mismo, $[e_1]_{B_2} = (0, 0, 1)$, $[e_2]_{B_2} = (0, 1, -1)$ y $[e_3]_{B_2} = (1, -1, 0)$. Luego, $v = 3w_3 + 4(w_2 - w_3) + 5(w_1 - w_2) = 5w_1 - w_2 - w_3$. Así, $[v]_{B_1} = (3, 4, 5)$ y $[v]_{B_2} = (5, -1, 1)$. En general, si v = (x, y, z), $[v]_{B_1} = (x, y, z)$ y $[v]_{B_2} = zw_1 + (y - z)w_2 + (x - y)w_3$.

Pero veamos esto de otra forma: consideremos la matriz C cuyas columnas son los vectores de coordenadas de los vectores de la base B_1 expresasdos en la base B_2 :

$$C = ([e_1]_{B_2}^t, [e_2]_{B_2}^t, [e_3]_{B_2}^t) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix}.$$

Asi, si v = (x, y, z),

$$C[v]_{B}^{t} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ y - z \\ x - y \end{pmatrix} = [v]_{B_{1}}^{t}.$$

El ejemplo anterior es bien general: es una definición y un teorema.

Teorema 1 V F-ev finito dimensional con dimV=n. Sean $B_1=\{v_1,\ldots,v_n\}$ y $B_2=\{w_1,\ldots,w_n\}$ bases de V. Sea $C=(c_{ij})$ la matriz cuyas entradas c_{ij} están definidas por: para cada $j=1,\ldots,n$ sean $c_{1j},\ldots,c_{nj}\in F$ tales que $v_j=c_{1j}w_1+\cdots+c_{nj}w_n$. Es decir, $[v_j]_{B_2}=(c_{1j},\ldots,c_{nj})$ y

$$C = ([v_1]_{B_2}^t, \dots, [v_n]_{B_2}^t) = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix}.$$

Ents. $pc \ v \in V$,

$$C[v]_{B_1}^t = [v]_{B_2}^t. (1)$$

C se llama matriz de cambio de base de B_1 a B_2 .

Demostración: Sea $v \in V$ con $[v]_{B_1} = (\alpha_1, \dots, \alpha_n)$. Veamos que $\beta_i := (C \cdot [v]_{B_1}^t)_i$, $i = 1, \dots, n$ son los escalares tq $[v]_{B_2} = (\beta_1, \dots, \beta_n)$. En efecto, $\beta_i = (C \cdot [v]_{B_1}^t)_i = \sum_{k=1}^n c_{ik}\alpha_k = c_{i1}\alpha_1 + \dots + c_{in}\alpha_n$, luego

$$\beta_1 w_1 + \dots + \beta_n w_n = (c_{11}\alpha_1 + \dots + c_{1n}\alpha_n)w_1 + \dots + (c_{n1}\alpha_1 + \dots + c_{nn}\alpha_n)w_n$$

= $\alpha_1(c_{11}w_1 + \dots + c_{n1}w_n) + \dots + \alpha_n(c_{1n}w_1 + \dots + c_{nn}w_n)$
= $\alpha_1 v_1 + \dots + \alpha_n v_n = v$,

de donde por unicidad de escritura tenemos que $[v]_{B_2} = (\beta_1, \dots, \beta_n)$.

De la siguiente proposición un poco más general se deducirá la unicidad de la matriz de cambio de base:

Proposición 2 $A, A' \in F^{n \times n}$ $tq Ax = A'x pt x \in F^n$. Ents. A = A'.

Demostración: Sea $B = \{e_1, \ldots, e_n\}$ base canónica de F^n . Ents.

$$(Ae_j)_i = \sum_{k=1}^n A_{ik}(e_j)_k = \sum_{k=1}^n A_{ik}\delta_{kj} = A_{ij},$$

y análogamente $(A'e_j)_i = A'_{ij}$, luego $A_{ij} = A'_{ij}$ pt i pt j.

Corolario 1 La matriz de cambio de base es la única matriz que verifica (1).

Cuando sea necesario referenciar a las bases involucradas, anotaremos $C_{B_1B_2}$ o $C_{B_1\to B_2}$.

Corolario 2 V F-ev. B_1, B_2, B_3 bases de V. Ents:

- 1. $C_{B_1 \to B_3} = C_{B_2 \to B_3} C_{B_1 \to B_2}$.
- 2. $C_{B_2 \to B_1} = (C_{B_1 \to B_2})^{-1}$.

Demostración:

- 1. Desafío 1 Completar esta prueba. Ayuda: unicidad.
- 2. **Desafío 2** Completar esta prueba. Probar primero que $C_{B_1 \to B_2}$ es invertible y luego ver la igualdad. Ayuda: la matriz $C_{B_1 \to B_2}$ es invertible pues si no lo fuera el sistema $C_{B_1 \to B_2}X = 0$ tendría soluciones no triviales (concluír de aquí).

Veamos dos proposiciones más.

La primera nos dice que toda matriz invertible es un cambio de base.

Proposición 3 Si $A \in F^{n \times n}$ invertible existen bases B_1 y B_2 de F^n tq $A = C_{B_1B_2}$.

La segunda nos dice que si tenemos una base y una matriz invertible, existen sendas bases B_1 y B_2 de modo tal que A cambia B_1 a nuestra base B y que A cambia nuestra base B a B_2 , respectivamente.

Proposición 4 Si $A \in F^{n \times n}$ invertible y B base de F^n entonces:

- 1. $\exists B_1 \text{ base de } F^n \text{ tq } A = C_{B_1B}$.
- 2. $\exists B_2 \text{ base de } F^n \text{ tq } A = C_{BB_2}$.

Demostración:

- 1. **Desafío 4** Completar esta demostración. Ayuda: idem proposición anterior poniendo B en lugar de la base canónica.
- 2. **Desafío 5** Ayuda: del item anterior, usar proposición para A^{-1} y B, existe B_2 tq $A^{-1} = C_{B_2B_1}$ luego $A = (C_{B_2B})^{-1} = C_{BB_2}$.

Veremos mil ejemplos en el laboratorio y en el práctico!