Esame di Elettronica per Ingegneria informatica Roma 11 gennaio 2006 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Calcolare l'amplificazione di tensione v_{out}/v_i per il seguente circuito:

2) Schema e funzionamento del trigger di Schmitt.

2) Disegnare il circuito di una porta NAND a due ingressi in tecnologia CMOS e commentarne la relativa occupazione d'area.

Esame di Elettronica I per Ingegneria informatica 24 marzo 2006 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Calcolare e graficare l'andamento nel tempo della tensione d'uscita V_{out} in presenza dei due segnali impulsivi V_1 e V_2 .

2) Cosa si intende per "condizione di piccolo segnale" in un amplificatore a MOS?

 \mathbf{R}_2

3) Dissipazione di potenza complessiva in un inverter CMOS.

Esame di Elettronica I per Ingegneria informatica 21aprile 2006 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Calcolare il valore massimo della resistenza di Drain R_{D} che mantiene il transistore in saturazione:

2) Disegnare come si muove il punto di lavoro di un inverter CMOS durante le due commutazioni.

3) Disegnare lo schema a blocchi un FF JK Master Slave sincrono e spiegare il ruolo del Master Slave.

Corso di ELETTRONICA I modulo Ingegneria dell'Informazione Prof Giampiero de Cesare 5 luglio 2006

Matricola	Cognome	Nome:	

1) Dato il circuito di figura con segnale d'ingresso V_{in} , determinare l'evoluzione temporale della tensione di uscita V_{out} .

$$V_{DD}$$
=10V, V_{T} =1V, K=0.5mA/V², R_{D} = 4 k Ω , R_{S} = 2 k Ω R_{L} = 16 k Ω , C=1 μ F.

- 2) Circuito e funzionamento dell'integratore invertente con amplificatore operazionale.
- 3) Circuito equivalente per piccoli segnali del BJT e limiti di validità.

Corso di ELETTRONICA I modulo Ingegneria Informatica Prof Giampiero de Cesare 5 luglio 2006

Matricola	Cognome	Nome:	

1) Dato il circuito di figura con segnale d'ingresso V_{in} , determinare l'evoluzione temporale della tensione di uscita V_{out} .

$$V_{DD}$$
=10V, V_{T} =1V, K=0.5mA/V², R_{D} = 4 k Ω , R_{S} = 2 k Ω R_{L} = 16 k Ω , C=1 μ F.

- 3) Circuito e funzionamento dell'integratore invertente con amplificatore operazionale.
- 3) Dissipazione di potenza in un inverter CMOS

ELETTRONICA I

Ingegneria Informatica (Gruppo M-Z) Prova scritta del 18/7/2006

Matricola	Cognome	Nome:	
	0 0 5 11 0 11 1 0		

1) Calcolare il guadagno di tensione v_{out}/v_{in} dell'amplificatore seguente,

$$\begin{array}{lll} \textbf{Q_{1}:} & V_{T}\!\!=\!1V; & K_{1}\!\!=\!1 \text{ mA/V}^{2}; & C_{gs}\!\!=\!\!C_{gd}\!=\!\text{trascurabili;} & \lambda\!\!=\!\!0, \quad \chi\!\!=\!\!0 \\ \textbf{Q_{2}:} & V_{T}\!\!=\!-\!1V; & K_{2}\!\!=\!\!0,\!\!25 \text{ mA/V}^{2}; & C_{gs}\!\!=\!\!C_{gd}\!=\!\text{trascurabili;} & \lambda\!\!=\!\!0, \quad \chi\!\!=\!\!0 \\ V_{DD}\!\!=\!10V & R_{1}\!\!=\!1 G\Omega & R_{2}\!\!=\!10 K\Omega \\ C_{1}\!\!=\!\infty & C_{2}\!\!=\!\infty \end{array}$$

- 2) Margini di rumore alto e basso di un inverter logico, definizione e schema di calcolo per la determinazione delle tensioni caratteristiche..
- 3) Schema circuitale e transcaratteristica (Vout vs Vin) di un inverter logico in tecnologia CMOS.

Esame di Elettronica I per Ingegneria dell'Informazione (sede di Latina) 20 /7/ 2006

_			_	_	_					
L)r	\sim	f`	G	. d	Δ	C	Δ¢	ar	Δ
		.,	Ι.	\ 1	. ч		•	-	aı	u

Studente :		
Cognome	Nome	N. Mat

1) Dato il circuito in figura, dove V_{DD} =10V R_A =6MOhm R_B =4MOhm V_T =1V $K=2mA/V^2$, determinare quanto deve valere R_S per avere $I_D=2mA$. Trovare il massimo valore di R_D perchè il transistor risulti in saturazione.

Determinare il guadagno v_{out}/v_s con Rg=50Ohm R_D=2kOhm R_L=5kOhm

2) Spiegare perché si definisce: "corto circuito virtuale" l'ingresso di un amplificatore operazionale.

3) Disegnare lo schema circuitale di un amplificatore BJT in configurazione a collettore comune e calcolare i parametri della rete 2 porte equivalente

Esame di Elettronica I per Ingegneria informatica (sede di Latina) $\frac{20\ / 7/\ 2006}{Prof.\ G.\ de\ Cesare}$

Studente:		
Cognome	Nome	N. Mat

2) Dato il circuito in figura, dove V_{DD} =10V R_A =6MOhm R_B =4MOhm V_T =1V K=2mA/ V^2 , determinare quanto deve valere R_S per avere I_D =2mA. Trovare il massimo valore di R_D perchè il transistor risulti in saturazione.

Determinare il guadagno v_{out}/v_s con Rg=50Ohm R_D=2kOhm R_L=5kOhm

2) Spiegare perché si definisce: "corto circuito virtuale" l'ingresso di un amplificatore operazionale.

3) Margini di rumore alto e basso di un inverter logico, definizione e schema di calcolo per la determinazione delle tensioni caratteristiche..

ELETTRONICA I

Ingegneria Informatica (Gruppo M-Z) Prova scritta del 19/9/2006

Matricola	Cognome	Nome:	
vianicoia	Cognome	1 voii c.	

1. Sia V_s un generatore di tensione sinusoidale a frequenza variabile. Graficare il diagramma di Bode di V_{out}/V_s specificandone i punti significativi.

2. Schema circuitale e funzionamento di un generatore di impulsi realizzato tramite un multivibratore monostabile.

3. Spiegare il funzionamento di un inverter logico in tecnologia NMOS con carico a svuotamento durante la commutazione L-H e H-L dell'ingresso.

Esame di Elettronica I Ingegneria dell'Informazione (sede di Latina) 20 /9/ 2006 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Dato il circuito di figura, supponendo V_S segnale sinusoidale a valor medio nullo, determinare le resistenze R_1 ed R_C in modo che $V_{CEQ}=1$ V e che il guadagno A_v sia pari a -20;

$$V_{CC}$$
= 10V; R_2 = 4,6 KΩ; R_E =1,6 KΩ, R_L = 500Ω; C_1 = C_2 = C_E = ∞ T { V_{BEatt} = 0.7V, V_{CEsat} =0.2V, β =100, V_T =25mV}

- 2) Definire le zone di funzionamento di un transistore NMOS ad arricchimento, esplicitandone le relazioni corrente-tensione.
 - 3) Schema e funzionamento di un circuito integratore con amplificatore operazionale.

Esame di Elettronica I per Ingegneria informatica (sede di Latina) $20 \ /9/\ 2006$ Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Dato il circuito di figura, supponendo V_S segnale sinusoidale a valor medio nullo, determinare le resistenze R_1 ed R_D in modo che il transistore lavori con g_m pari a 5 mA/V e che il guadagno di tensione $A_v = vo/vs$ sia pari a -10;

$$V_{DD}\text{= 10V; R}_2\text{= 3 K}\Omega\text{; R}_S\text{=1,2 K}\Omega\text{, R}_L\text{= 4 K}\Omega\text{; }C_1\text{=}C_2\text{=}C_S\text{=}\infty$$

$$Transistore~\{K\text{= 5mA/V}^2,\,V_T\text{=1V}~\}$$

2) Schema e funzionamento di un circuito integratore con amplificatore operazionale.

3) Schema di una porta logica NAND e NOR in tecnologia CMOS: confronto in termini di occupazione di area.

Esame di Elettronica I per Ingegneria dell'Informazione (sede di Latina) 18/12/2006 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

3) Dato il circuito in figura, dove V_{DD} =5V R_A =6M Ω R_B =4M Ω V_T =1V K=4mA/ V^2 , determinare quanto deve valere R_S per avere I_D =1mA. Trovare il massimo valore di R_D perchè il transistor risulti in saturazione.

Determinare il guadagno v_{out}/v_s con Rg=50 Ω R_D=2 K Ω R_L=2k Ω

2) Disegnare il circuito equivalente per piccoli segnali del Transistore Bipolare, e ricavare le espressioni dei singoli componenti dal modello per grandi segnali.

3) Disegnare lo schema di un circuito integratore ideale e reale realizzato con amplificatori operazionali, e descriverne il funzionamento.

.

Esame di Elettronica I per Ingegneria Informatica (sede di Latina) 18/12/2006 Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

4) Dato il circuito in figura, dove V_{DD} =5V R_A =6M Ω R_B =4M Ω V_T =1V K=4mA/ V^2 , determinare quanto deve valere R_S per avere I_D =1mA. Trovare il massimo valore di R_D perchè il transistor risulti in saturazione.

Determinare il guadagno v_{out}/v_s con Rg=50 Ω R_D=2 K Ω R_L=2k Ω

2) Disegnare lo schema di un circuito integratore ideale e reale realizzato con amplificatori operazionali, e descriverne il funzionamento.

3) Commentare il dimensionamento geometrico dei due transistori in un inverter CMOS.