Herbst 16 Themennummer 3 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei

$$S := \{ z \in \mathbb{C} : 0 < \text{Im } z < 6\pi \}$$

sowie

$$T:=\{z=re^{i\varphi}\in\mathbb{C}\backslash\{0\}\ :\ r>0, -\frac{\pi}{4}<\varphi<\frac{\pi}{4}\}.$$

Geben Sie eine biholomorphe Abbildung $\varphi: S \to T$ an mit

$$\lim_{\mathrm{Re}\ z\to\infty}\varphi(z)=\infty.$$

Lösungsvorschlag:

Wir behaupten, dass $\varphi(z) = \exp(\frac{1}{12}(z-3\pi i))$ die gewünschten Eigenschaften hat. Zunächst ist φ eine ganze Funktion und damit holomorph auf S, weiter sind S, T offene Teilmengen von \mathbb{C} . Wir zeigen, dass φ injektiv auf S ist, $\varphi(S) = T$ gilt und dass $\lim_{\text{Re } z \to \infty} \varphi(z) = \infty$ ist.

Seien $v,w\in S$ mit $\varphi(v)=\varphi(w),$ dann ist mit der Polardarstellung

$$re^{i\phi} = \exp(\frac{1}{12}(v - w)) = 1,$$

also r=1 und $\phi \in \pi \mathbb{Z}$. Wegen

$$1 = r = |\exp(\frac{1}{12}(v - w))| = \exp(\frac{1}{12}\operatorname{Re}(v - w)),$$

folgt Re (v - w) = 0 und v, w haben den gleichen Realteil.

Insbesondere folgt daraus $\frac{1}{12}(v-w) \in i\mathbb{R}$ und, da der Imaginärteil dieser Zahl betragsmäßig durch $\frac{\pi}{2}$ beschränkt ist, er aber ein ganzzahliges Vielfaches von π sein muss, ist der Imaginärteil 0. Damit ist $\frac{1}{12}(v-w)=0$ und ergo v=w. D. h. φ ist injektiv auf S.

Wir identifizieren jetzt \mathbb{C} mit \mathbb{R}^2 mittels $\mathbb{C} \ni z = x + iy = (x, y) \in \mathbb{R}^2$. Für $z \in \mathbb{C}$ sind äquivalent $z \in S$, $z - 3\pi i \in \mathbb{R} \times (-3\pi, 3\pi)$ und $\frac{1}{12}(z - 3\pi i) \in \mathbb{R} \times (-\frac{\pi}{4}, \frac{\pi}{4})$. Für $z \in S$ ist also $\frac{1}{12}(z - 3\pi i) = x + iy$ mit $x \in \mathbb{R}$ und $|y| < \frac{\pi}{4}$, we shalb $\varphi(z) = e^x e^{iy} \in T$ ist. Ist umgekehrt $re^{i\varphi} \in T$, so wählen wir $x + iy = \ln(r) + i\varphi$ und erhalten für $z = 12x + (12y + 3\pi)i \in S$ auch $\varphi(z) = re^{i\varphi}$. Daher ist $\varphi(S) = T$.

Es gilt $|\varphi(z)| = e^{\text{Re} \frac{z}{12}}$, was für Re $z \to \infty$ ebenfalls gegen ∞ divergiert. Dies ist äquivalent zu $\varphi(z) \to \infty$, womit auch die letzte Eigenschaft erfüllt und nachgewiesen ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$