Random numerical semigroups and sums of subsets of cyclic groups

by Santiago Morales Duarte

Thesis submitted in fulfilment of the requirements for the degree of $Bachelor\ of\ Science$ under the supervision of Tristram Bogart

Department of Mathematics Faculty of Science Universidad de los Andes May 7, 2024

Contents

1	Expected value proof												2	,				
	1.1	Upper	bound														2)
		1.1.1	Proof of the	upper bound									•				4	Ŀ
\mathbf{A}	Use	ful Boı	ınds														10)

Chapter 1

Expected value proof

1.1 Upper bound

Before proving part (b) of the main theorem, we will prove a lemma that shows that a cyclic group of prime order is covered by the sums of a random subset of logarithmic size almost always.

Lemma 1.1.1. Let q be a prime number and \mathcal{A} be a random subset of \mathbb{Z}_q of size $4\lfloor 3\log_2 q \rfloor$. As q tends to infinity, $2\lfloor 3\log_2 q \rfloor \mathcal{A}$ covers \mathbb{Z}_q almost always.

Proof. Let $s \in \mathbb{N}$ such that $s \leq q$. Let \mathcal{A} be a uniformly random subset of \mathbb{Z}_q of size s, that is,

$$\Pr(\mathcal{A}) = \frac{1}{\binom{q}{s}}.$$

For a given $z \in \mathbb{Z}_q$ and $k \in \mathbb{N}$ for which $k \leq s/2$, let

$$N_z^k := \left\{ K \subseteq \mathbb{Z}_q : |K| = k, \sum_{t \in K} t = z \right\}.$$

Note that $|N_z^k| = \frac{1}{q} \binom{q}{k}$, since $K \in N_0^k$ if and only if $K + k^{-1}z \in N_z^k$ for every $z \in \mathbb{Z}_q$.

For $K \in \mathbb{N}_z^k$, let E_K be the event that $K \subset \mathcal{A}$. Let X_K be the indicator variable of E_K . We define the random variable

$$X_z = \sum_{K \in N_z^k} X_K.$$

Note that X_z counts the number of sets of size k which add up to z. We now find $E[X_z]$. Since the sum of every subset $K \subset S$ is in \mathbb{Z}_q ,

$$\sum_{z \in Z_a} X_z = \binom{s}{k},$$

and so

$$\binom{s}{k} = E\left[\sum_{z \in Z_q} X_z\right] = \sum_{z \in Z_q} E[X_z].$$

As in the argument for finding $|N_z^k|$, for every $z \in \mathbb{Z}_q$,

$$E[X_0] = \sum_{K \in N_0^k} E[X_K] = \sum_{K \in N_0^k} E[X_{K+k^{-1}z}] = \sum_{K \in N_z^k} E[X_K] = E[X_z].$$

Therefore, we have that

$$E[X_z] = \frac{1}{q} \binom{s}{k}. \tag{1.1}$$

Now, for $K, L \in \mathbb{N}_z^k$, let $j \in \mathbb{N}$ such that $j \leq k$ and define

$$\Delta_j := \sum_{|K \cap L| = j} \Pr[E_K \wedge E_L].$$

If $|K \cap L| = j$,

$$\Pr[E_K \wedge E_L] = \frac{\binom{q-2k+j}{s-2k+j}}{\binom{q}{s}}.$$

We can bound the number of events for which $|K \cap L| = j$. First we choose K as any set in N_z^k and then we choose the remaining k - j elements as any subset of $\mathbb{Z}_q \setminus K$ with size k - j. Thus,

$$\Delta_j \le \frac{1}{q} \binom{q}{k} \binom{q-k}{k-j} \frac{\binom{q-2k+j}{s-2k+j}}{\binom{q}{s}}.$$

This implies that, using 1.1,

$$\begin{split} \frac{\Delta_j}{\mathrm{E}[X_z]^2} &\leq \frac{\binom{q}{k}\binom{q-k}{k-j}\binom{q-2k+j}{s-2k+j}}{\frac{1}{q}\binom{s}{k}\frac{1}{q}\binom{s}{k}q\binom{q}{s}} \\ &= \frac{\frac{q!}{(q-k)!k!}\frac{(p-k)!}{(k-j)!(q-2k+k)!}\frac{(q-2k+j)!}{(s-2k+j)!(q-s)!}}{\frac{1}{q}\binom{s}{k}\frac{s!}{(s-k)!k!}\frac{q!}{(q-s)!s!}} \\ &= \frac{q\binom{s-k}{k-j}}{\binom{s}{k}}. \end{split}$$

Let $s=4\lfloor 3\log_2 q\rfloor$ and $k=2\lfloor 3\log_2 q\rfloor$. Using that $\binom{s-k}{k-j}$ is maximized at $k-j=\lfloor (s-k)/2\rfloor$,

$$\frac{\Delta_j}{\mathrm{E}[X_z]^2} \le \frac{q^{\binom{2\lfloor 3\log_2 q\rfloor}{\lfloor 3\log_2 q\rfloor}}}{\binom{4\lfloor 3\log_2 q\rfloor}{2\lfloor 3\log_2 q\rfloor}} \le \frac{q}{\binom{2\lfloor 3\log_2 q\rfloor}{\lfloor 3\log_2 q\rfloor}} \le \frac{q}{2^{\lfloor 3\log_2 q\rfloor}} \sim \frac{1}{q^2},$$

since $\binom{2\lfloor \log_2 q \rfloor}{\lfloor 3\log_2 q \rfloor}^2 \le \binom{4\lfloor 3\log_2 q \rfloor}{2\lfloor 3\log_2 q \rfloor}$ (Proposition A.0.4).

Hence, by (??) and Theorem ??,

$$\Pr[X_z = 0] \le \frac{E[X_z] + \Delta}{E[X_z]^2} = \frac{1}{E[X_z]} + \sum_{j=0}^k \frac{\Delta_j}{E[X_z]^2}$$

$$\leq \frac{1}{E[X_z]} + \frac{(k+1)}{q^2} = \frac{1}{E[X_z]} + \frac{2\lfloor 3\log_2 q \rfloor + 1}{q^2}.$$

Therefore, by the union bound and since $q \to \infty$ as $p \to 0$,

$$\Pr\left[\bigvee_{z\in\mathbb{Z}_q} X_z = 0\right] \le \frac{q}{E[X_z]} + \frac{2\lfloor 3\log_2 q\rfloor + 1}{q^2} = o(1).$$

We conclude that $X_z > 0$ for every $z \in \mathbb{Z}_q$ almost always. Thus, for every $z \in \mathbb{Z}_q$, there exists $K \in N_z^k$ such that $K \subset \mathcal{A}$ almost always. This means that $2\lfloor 3\log_2 q\rfloor \mathcal{A}$ covers \mathbb{Z}_q almost always.

1.1.1 Proof of the upper bound

Lemma 1.1.2. Let $\psi(x)$ be a function for which $x(\log x)^2 \in o(\psi(x))$. Then

$$\lim_{p \to 0} \Pr \left[F(\mathcal{S}) \le \psi \left(\frac{1}{p} \right) \right] = 1.$$

The proof of this theorem consists of several parts. The strategy is to prove that the Ápery set of a subsemigroup of S is completed before step $\psi\left(\frac{1}{p}\right)$ with high probability, since F(S) is less than the maximum element of this Ápery set. The proof has the following structure:

- 1. First, we will find a step for which a prime q is chosen with high probability (E_1) .
- 2. Then, in the spirit of Lemma 1.1.1 we will find a step such that a set \mathcal{A} of s elements which are different modulo q are chosen with high probability (E_2) .
- 3. Finally, we will apply Lemma 1.1.1 to $Ap(\langle A \cup \{q\} \rangle, q)$.

Proof.

Part 1

Let h(x) be a function such that $h(x) \in o(x(\log x)^2)$ and $x \log x \in o(h(x))$. Let $t(x) = 20x \log x$. Consider the event E_1 that there exists a prime $q \in \mathcal{S}$, such that

$$t\left(\frac{1}{p}\right) \le q \le h\left(\frac{1}{p}\right).$$

Let q_n be the *n*-th prime number. By the prime number theorem [1, Theorem 8],

$$q_n \sim n \log n. \tag{1.2}$$

Let k(x) be the number of primes between t(x) and h(x). Now, for sufficiently large n, $t(n) \leq q_{20n}$. Also, for every $c \in \mathbb{R}^+$, $q_{cn} \in o(h(n))$ since $cn \log cn \in o(h(n))$. Thus, for sufficiently large x and every $c \in \mathbb{R}^+$, k(x) > cx and we get that

$$\lim_{p \to 0} \Pr[\neg E_1] \le \lim_{p \to 0} (1 - p)^{k(1/p)} \le \lim_{p \to 0} (1 - p)^{\frac{c}{p}} = e^{-c}.$$

Therefore,

$$\lim_{n \to 0} \Pr[E_1] = 1. \tag{1.3}$$

Part 2

Now, assume E_1 . Then S contains a prime number q for which

$$t\left(\frac{1}{p}\right) \le q \le h\left(\frac{1}{p}\right).$$

Let q be such a prime. Let $s = 4\lfloor 3\log_2 q\rfloor$, as in Lemma 1.1.1. Let $T = \{1, \ldots, q\}$. Consider the event E_2 that at least s generators are selected in T. Let X_1 be the number of generators selected in T, then $X_1 \sim \text{Bin}(q, p)$. We first show that for sufficiently small p, qp > s in order to use a bound of the left tail of the binomial distribution (Proposition A.0.6).

Since

$$q \ge t\left(\frac{1}{p}\right) = \frac{20}{p}\log\frac{1}{p},$$

then

$$qp \ge 20 \log \frac{1}{p}$$
.

Also, since

$$q \le h\left(\frac{1}{p}\right) \le \frac{1}{p} \left(\log \frac{1}{p}\right)^2$$
,

then

$$s = 4\lfloor 3\log_2 q \rfloor \leq 4 \left | 3\log_2 \frac{1}{p} \left(\log \frac{1}{p}\right)^2 \right | = 4 \left \lfloor 3\log_2 \frac{1}{p} + 6\log_2 \log \frac{1}{p} \right \rfloor.$$

Thus, for sufficiently small p, qp > s and we can use Proposition A.0.6 with r = s to show that

$$\Pr[\overline{E_2}|E_1] = \Pr[X_1 < s] \le \frac{(q-s)p}{(qp-s)^2}.$$

Thus, bounding by the worst case asymptotically,

$$\lim_{p \to 0} P[\overline{E_2}|E_1] \le \lim_{p \to 0} \frac{\left(h\left(\frac{1}{p}\right) - 4\left\lfloor 3\log_2 t\left(\frac{1}{p}\right)\right\rfloor\right) p}{\left(t\left(\frac{1}{p}\right)p - 4\left\lfloor 3\log_2 h\left(\frac{1}{p}\right)\right\rfloor\right)^2}$$

$$\le \lim_{p \to 0} \frac{\left(h\left(\frac{1}{p}\right) - 4\left\lfloor 3\log_2 \frac{20}{p}\log\frac{1}{p}\right\rfloor\right) p}{\left(20\log\frac{1}{p} - 4\left\lfloor 3\log_2 \frac{1}{p}\left(\log\frac{1}{p}\right)^2\right\rfloor\right)^2}$$

$$= \lim_{p \to 0} \frac{o\left(\frac{1}{p}\left(\log\frac{1}{p}\right)^2\right) p}{\left(20\log\frac{1}{p} - 4\left\lfloor 3\log_2 \frac{1}{p}\left(\log\frac{1}{p}\right)^2\right\rfloor\right)^2}$$

$$= \lim_{p \to 0} \frac{o\left(\left(\log \frac{1}{p}\right)^2\right)}{\left(20\log \frac{1}{p} - 4\left[3\log_2 \frac{1}{p}\left(\log \frac{1}{p}\right)^2\right]\right)^2} = 0.$$

We conclude that

$$\lim_{n\to 0} \Pr[E_2|E_1] = 1,$$

and so, using (1.3),

$$\lim_{p \to 0} \Pr[E_1 \land E_2] = \lim_{p \to 0} \Pr[E_2 | E_1] \Pr[E_1] = 1.$$

Part 3

Finally, assume E_1 and E_2 . Let $\mathcal{A} = \{Y_1, \dots, Y_s\}$ be a randomly selected subset of size s of the generators selected in T. Since the generators are chosen randomly and |T| = q, we can apply Lemma 1.1.1 to $\mathbb{Z}_q \cong \operatorname{Ap}(\langle \mathcal{A} \cup \{q\} \rangle, q)$ to get that it will be completed before step

$$qs \le h\left(\frac{1}{p}\right) 2\left\lfloor 3\log_2 h\left(\frac{1}{p}\right) \right\rfloor \in O\left(h\left(\frac{1}{p}\right)\log\frac{1}{p}\right),$$

almost always as $p \to 0$.

Thus, if

$$\psi(x) = h(x) \, 2 \, \lfloor 3 \log_2 x \rfloor,$$

we have that $x(\log x)^2 \in o(\psi(x))$ and

$$\lim_{p \to 0} \Pr \left[F(\langle \mathcal{A} \cup \{q\} \rangle) \le \psi \left(\frac{1}{p} \right) \right] = 1.$$

Since $F(S) \leq F(\langle A \cup \{q\} \rangle)$, we conclude that

$$\lim_{p \to 0} \Pr \left[F(\mathcal{S}) \le \psi \left(\frac{1}{p} \right) \right] = 1.$$

Since the constraints on h(x) are independent of multiplication by constants, the result is true for any function ψ such that $x(\log x)^2 \in \psi(g(x))$.

The bound on the Frobenius number also implies bounds on the genus and the embedding dimension.

Corollary 1.1.1. Let $\psi(x)$ be a function for which $x(\log x)^2 \in o(\psi(x))$. Then

$$\lim_{p\to 0} \Pr\left[g(\mathcal{S}) \le \psi\left(\frac{1}{p}\right)\right] = 1.$$

Proof. Use Proposition ??.

Corollary 1.1.2. Let $\varphi(x)$ be a function for which $(\log x)^2 \in o(\varphi(x))$. Then

$$\lim_{p \to 0} \Pr\left[e(\mathcal{S}) \le \varphi\left(\frac{1}{p}\right)\right] = 1.$$

Proof. Since

$$\lim_{p\to 0} \Pr\left[F(\mathcal{S}) \leq \psi\left(\frac{1}{p}\right)\right] = 1,$$

and the maximal element of the minimal generating set is at most $2F(\mathcal{S})$, the elements of the minimal generating set are chosen before step $2\psi\left(\frac{1}{p}\right)$ with high probability. Since

$$\left| \mathcal{A} \cap \left\{ 1, \dots, \left| 2\psi\left(\frac{1}{p}\right) \right| \right\} \right| \sim \operatorname{Bin}\left(\left| 2\psi\left(\frac{1}{p}\right) \right|, p \right),$$

by the bound on the right tail of the binomial distribution (Proposition A.0.5), we have that

$$\lim_{p \to 0} \Pr \left[e(\mathcal{S}) \le (3p)\psi \left(\frac{1}{p}\right) \right] = 1.$$

Thus, if $\varphi(x) = \frac{3}{x}\psi(x)$, then $(\log x)^2 \in \varphi(x)$ and

$$\lim_{p \to 0} \Pr \left[e(\mathcal{S}) \le \varphi \left(\frac{1}{p} \right) \right] = 1. \quad \Box$$

Bibliography

- [1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. Oxford university press, 1979.
- [2] W. Feller, An introduction to probability theory and its applications. John Wiley & Sons, 1971, vol. 1.
- [3] N. Alon and J. H. Spencer, *The Probabilistic Method*. John Wiley & Sons, 2016
- [4] J. Park and H. Pham, "A proof of the Kahn–Kalai conjecture," *Journal of the American Mathematical Society*, 2023.
- [5] J. De Loera, C. O'Neill, and D. Wilburne, "Random numerical semigroups and a simplicial complex of irreducible semigroups," *The Electronic Journal of Combinatorics*, P4–37, 2018.
- [6] J. C. Rosales, P. A. García-Sánchez, et al., Numerical semigroups. Springer, 2009.
- [7] M. Delgado, "Conjecture of Wilf: A survey," Numerical Semigroups: IMNS 2018, pp. 39–62, 2020.
- [8] I. Aliev, M. Henk, and A. Hinrichs, "Expected Frobenius numbers," *Journal of Combinatorial Theory, Series A*, vol. 118, no. 2, pp. 525–531, 2011.
- [9] J. Grime. "How to order 43 mcnuggets numberphile," Youtube. (2012), [Online]. Available: https://www.youtube.com/watch?v=vNTSugyS038&ab_channel=Numberphile.
- [10] A. Assi, M. D'Anna, and P. A. García-Sánchez, Numerical semigroups and applications. Springer Nature, 2020, vol. 3.
- [11] R. Apéry, "Sur les branches superlinéaires des courbes algébriques," *CR Acad. Sci. Paris*, vol. 222, no. 1198, p. 2000, 1946.
- [12] E. S. Selmer, "On the linear Diophantine problem of Frobenius," 1977.
- [13] H. S. Wilf, "A circle-of-lights algorithm for the "money-changing problem"," The American Mathematical Monthly, vol. 85, no. 7, pp. 562–565, 1978.
- [14] J. L. Ramírez-Alfonsín, "Complexity of the Frobenius problem," *Combinatorica*, vol. 16, pp. 143–147, 1996.
- [15] V. I. Arnold, "Weak asymptotics for the numbers of solutions of Diophantine problems," Functional Analysis and Its Applications, vol. 33, no. 4, pp. 292–293, 1999.
- [16] P. Erdös and R. Graham, "On a linear Diophantine problem of Frobenius," *Acta Arithmetica*, vol. 1, no. 21, pp. 399–408, 1972.
- [17] I. M. Aliev and P. M. Gruber, "An optimal lower bound for the Frobenius problem," *Journal of Number Theory*, vol. 123, no. 1, pp. 71–79, 2007.
- [18] V. I. Arnold, Arnold's problems. Springer, 2004.

- [19] R. P. Stanley, Combinatorics and commutative algebra. Springer Science & Business Media, 2007, vol. 41.
- [20] M. Delgado, "Intpic," a GAP package for drawing integers, Available via http://www. fc. up. pt/cmup/mdelgado/software, 2013.
- [21] M. Delgado, P. Garcia-Sánchez, and J. Morais, "Numericalsgps," A GAP package for numerical semigroups. Available via http://www.gap-system.org, 2015.
- [22] C. O'Neill, *Numsgps-sage*, https://github.com/coneill-math/numsgps-sage, 2013.
- [23] S. Morales, *Randnumsgps*, https://github.com/smoralesduarte/randnumsgps, 2023.

Appendix A

Useful Bounds

We include some bounds that are useful in the proofs of the main results. By Stirling's Formula, we have that

$$k! \sim \sqrt{2\pi k} \left(\frac{k}{e}\right)^k$$
 (A.1)

Proposition A.0.1. $\binom{n}{k} \le \left(\frac{en}{k}\right)^k$ for $1 \le k \le n$.

Proof. Using (A.1), we have that, for $k \ge 1$,

$$k! \ge \left(\frac{k}{e}\right)^k.$$

Then

$$\binom{n}{k} \le \frac{n^k}{\left(\frac{k}{e}\right)^k} = \left(\frac{en}{k}\right)^k. \quad \Box$$

Proposition A.0.2. $\left(\frac{n}{k}\right)^k \geq \binom{n}{k}$ for $1 \leq k \leq n$.

Proof.

$$\binom{n}{k} = \prod_{i=0}^{k-1} \frac{n-i}{k-i} \ge \left(\frac{n}{k}\right)^k. \quad \Box$$

Proposition A.0.3. $(1 - p) \le e^{-p} \text{ for } 0 \le p \le 1.$

Proof. The Taylor series of e^{-p} is alternating with a decreasing sequence, so

$$e^{-p} = 1 - p + \frac{p^2}{2!} - \frac{p^3}{3!} + \dots \ge 1 - p.$$

We also give a combinatorial proof of the following result.

Proposition A.0.4. $\binom{2n}{k}^2 \leq \binom{4n}{2k}$ for $n \geq 1$.

Proof. The number of subsets of size 2k of a set of size 4n is $\binom{4n}{2k}$. This is greater than the number of subsets that can be expressed as the product of two subsets of size k of a set of size 2n, which is $\binom{2n}{k}^2$.

The proof of the following bound can be found in [2, Section 6.3].

Proposition A.0.5. Let $X \sim \text{Bin}(n, p)$. If r > np,

$$\Pr[X \ge r] \le \frac{r(1-p)}{(r-np)^2}.$$

Since the binomial distribution is symmetric, we also have the following.

Proposition A.0.6. Let $X \sim \text{Bin}(n, p)$. If r < np,

$$\Pr[X \le r] \le \frac{(n-r)p}{(np-r)^2}.$$