일반물리학실험 보고서

축전기의 충전과 방전

학과 : 전기컴퓨터공학부

학번 : 201924451

이름 : 김태훈

공동실험자 :

담당교수 : 정광식

담당조교 :

실험날짜 : 2019년 9월 23일

제출날짜 : 2019년 9월 30일

1. 실험 목적

축전기의 충전과 방전 과정을 관찰하여 축전기의 기능을 알아본다.

2. 실험 원리

(1)축전기의 충전 과정

<그림1 : 축전기의 충전>

그림1과 같은 축전기, 저항, 기전력 장치로 구성된 직렬 회로에서, 축전기가 초기에 충전되지 않았고 스위치가 열려있으면 전류가 흐르지 않는다. 시간 t=0일 때 스위치를 닫으면 전류가 회로에 흐르기 시작하여 축전기에 충전된다. 여기서 시간 t와 축전기에 충전된 전하 q와 전류 I는 다음과 같은 수식이 성립한다.

$$I = \frac{dq}{dt}$$

축전기의 전하는 축전기에 $extstyle extstyle V = rac{q}{C}$ 의 전위차를 만든다. 여기서

 $C = \epsilon \frac{S}{d}$ (단위: F,ϵ :유전율)으로서 평행판의 크기에 비례하고 평행판 사이의 거리에 반비례한다. 축전기에 전하가 충전되어 $\Delta V = V_0$ 가 되면 회로에는 전류가 흐르지 않게 되며, 이때 충전된 전하량 $Q = C\Delta V = V_0 C$ 이다.

시간에 따라 축전기에 충전된 전하량, 전위차, 회로에 흐르는 전류를 알아보기 위해 주어진 회로에 Kirchhoff 제 2법칙을 적용하면 다음과 같이 된다.

$$\frac{q}{C} + IR = V_0$$

여기에 $I=rac{dq}{dt}$ 을 대입하면 다음과 같다.

$$\frac{dq}{q - V_0 C} = -\frac{1}{RC}dt$$

이 미분방정식의 일반해를 구하는 과정은 다음과 같다.

$$\int\!\frac{1}{q-V_0C}dq = -\int\!\frac{1}{RC}dt, \ \ln{(q-V_0C)} = -\frac{1}{RC}t + C_{ic}^*$$

따라서 일반해는 다음과 같다.

$$q = V_0 C + C_{ic} e^{-\frac{1}{RC}t},$$

$$\Delta V = V_0 + \frac{C_{ic}e^{-\frac{1}{RC}t}}{C},$$

$$I = \frac{dq}{dt} = -\frac{C_{ic}}{RC}e^{-\frac{1}{RC}t}$$

그리고 t=0일 때 축전기의 전하량이 q=0이라는 것을 적용하면 특수해 $(C_{ic}=-V_0C)$ 는 다음과 같다.

$$q = V_0 C (1 - e^{-t/RC})$$

$$\Delta V = V_0 (1 - e^{-t/RC})$$

$$I = \frac{dq}{dt} = \frac{V_0}{R} e^{-t/RC}$$

$$\therefore \frac{d}{dt} \ln \left(\varDelta \, V - \, V_0 \right) = - \, \frac{1}{RC}, \ \frac{d}{dt} \ln I = - \, \frac{1}{RC}$$

이때 최대 전하량의 63.2%까지 충전되는 데 걸리는 시간과 초기 전류값에 대해 36.8% 감소하는데 걸리는 시간 t=RC를 시정수(time constant)라고 부른다.

st참고 : 위 식에서 t=0을 대입하여 적분상수 C_{ic} 를 구하면 다음과 같다.

$$C_{ic} = q_0 - V_0 C$$

$$C_{ic} = C(\Delta V_0 - V_0)$$

$$C_{ic} = -I_0 RC$$

(2) 축전기의 방전 과정

<그림2 : 축전기의 방전>

그림2와 같이 회로의 스위치를 열고 기전력 장치를 분리한 다음 스위치를 닫으면 충전된 축전기의 전위차에 의해 회로에 전류가 흐른다. 시간에 따라 충전된 전하량의 변화와 전류를 계산하기 위하여 주어진 회로의 Kirchhoff 제2법칙을 적용하면 다음과 같이 된다.

$$\frac{q}{C} + IR = 0$$

여기에 $I=\frac{dq}{dt}$ 임을 적용하면

$$\frac{dq}{q} = -\frac{1}{RC}dt$$

위 미분방정식의 해를 구하는 과정은 다음과 같다.

$$\int \frac{1}{q} dq = -\int \frac{1}{RC} dt$$
, $\ln q = -\frac{1}{RC} t + C_{ic}^*$

따라서 일반해는 다음과 같다.

$$q = C_{ic}e^{-\frac{1}{RC}t}$$

$$\Delta V = \frac{C_{ic}e^{-\frac{1}{RC}t}}{C}$$

$$I = \frac{dq}{dt} = -\frac{C_{ic}}{RC}e^{-\frac{1}{RC}t}$$

그리고 t=0일대 축전기의 전하량이 $q=V_0C$ 이라는 것을 적용하면 특수해($C_{ic}=V_0C$)는 다음과 같다.

$$q = V_0 C e^{-t/RC}$$
, $\Delta V = V_0 e^{-t/RC}$, $I = \frac{dq}{dt} = -\frac{V_0}{R} e^{-t/RC}$

$$\therefore \frac{d}{dt} \ln \Delta V = -\frac{1}{RC}, \ \frac{d}{dt} \ln I = -\frac{1}{RC}$$

전하량과 전류는 시간에 대해 지수적으로 감소하며 t=RC일 때 초기값에 대해 63.2% 감소하게 된다. 전류의 (-)부호는 충전되는 경우와 반대로 전류가 흐르는 것을 나타낸다.

*참고로, 위 식에서 t=0을 대입하여 적분상수 C_{ic} 를 구하면 다음과 같다.

$$C_{ic} = q_0$$

$$C_{ic} = C \Delta V_0$$

$$C_{ic} = -I_0 RC$$

3. 실험 기구 및 재료

축전기(capacitor), 저항, 직류 전원 공급기, 멀티미터, 초시계(또는 카메라)

4. 실험 방법

(실험1) 충전 과정

- ② 표시된 축전기의 용량과 저항의 저항값을 기록하고, 축전기 키트에 축전기, 저항, 직류 전원 공급기, 멀티미터를 연결한다.

(실험2) 방전 과정

- ⓒ방전 과정이 일어나도록 스위치를 전환한다.
- 예일정한 시간 간격으로 축전기 양단의 전압과 회로에 흐르는 전류를 측정하여 기록한다.
- ●축전기를 바꾸고 ③~⑥의 과정을 반복한다.
- ①저항을 바꾸고 @~@의 과정을 반복한다.
- (8)시간(t) 대 전압(V_C), 시간(t)대 전류(I)의 그래프를 그린다
- b시간(t)대 로그전압($\ln V_{\mathcal{C}}$), 시간(t)대 로그전류($\ln I$)의 그래프를 그리고 기울기로부터 시정수를 구한다.(충전 전압의 경우 V_0 로부터 측정값을 뺀 후 로그를 취한다. 전압이나 전류가 음수일 경우, 절댓값을 취하고 로그를 취한다).

5. 측정값

*참고 : $\ln I$ 에서 I 는 단위를 A로 바꾸어 계산함.

(1) $C = 100 \mu F$, $R = 100 k\Omega$, $V_0 = 5 V$

-충전 과정

t(s)	$I(\mu A)$	$V_C(V)$	$\ln I$	$\ln\left(V_0 - V_C\right)$
0	46.1	0.41	-9.985	1.52
2	35.1	1.52	-10.257	1.25
4	25.2	2.52	-10.589	0.91

19.4	3.09	-10.850	0.65	
14.1	3.62	-11.169	0.32	
10.3	3.99	-11.483	0.01	
7.6	4.26	-11.787	-0.30	
5.7	4.45	-12.075	-0.60	
4.3	4.59	-12.357	-0.89	
3.3	4.67	-12.622	-1.11	
2.7	4.75	-12.822	-1.39	
2.2	4.8	-13.027	-1.61	
1.7	4.84	-13.285	-1.83	
1.5	4.86	-13.410	-1.97	
1.3	4.89	-13.553	-2.21	
1.1	4.91	-13.720	-2.41	
1	4.92	-13.816	-2.53	
0.9	4.93	-13.921	-2.66	
0.8	4.93	-14.039	-2.66	
0.8	4.94	-14.039	-2.81	
0.8	4.94	-14.039	-2.81	
0.7	4.95	-14.172	-3.00	
	14.1 10.3 7.6 5.7 4.3 3.3 2.7 2.2 1.7 1.5 1.3 1.1 1 0.9 0.8 0.8	14.1 3.62 10.3 3.99 7.6 4.26 5.7 4.45 4.3 4.59 3.3 4.67 2.7 4.75 2.2 4.8 1.7 4.84 1.5 4.86 1.3 4.89 1.1 4.91 1 4.92 0.9 4.93 0.8 4.94 0.8 4.94 0.8 4.94	14.1 3.62 -11.169 10.3 3.99 -11.483 7.6 4.26 -11.787 5.7 4.45 -12.075 4.3 4.59 -12.357 3.3 4.67 -12.622 2.7 4.75 -12.822 2.2 4.8 -13.027 1.7 4.84 -13.285 1.5 4.86 -13.410 1.3 4.89 -13.553 1.1 4.91 -13.720 1 4.92 -13.816 0.9 4.93 -13.921 0.8 4.93 -14.039 0.8 4.94 -14.039 0.8 4.94 -14.039	

<표1 ; $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 축전기 충전 과정>

-방전 과정

t(s)	$I(\mu A)$	$V_C(V)$	ln <i>I</i>	$\ln V_C$	
0	-46.8	4.8	-9.970	1.57	
2	-35.5	3.61	-10.246	1.28	
4	-25.2	2.57	-10.589	0.94	
6	-19.2	1.96	-10.861	0.67	
8	-12	1.23	-11.331	0.21	
10	-9.9	1.01	-11.523	0.01	
12	-6.7	0.68	-11.913	-0.39	
14	-5.1	0.5	-12.186	-0.69	
16	-3.7	0.38	-12.507	-0.97	
18	-2.7	0.28	-12.822	-1.27	
20	-2.1	0.22	-13.074	-1.51	
22	-1.5	0.15	-13.410	-1.90	
24	-1.1	0.11	-13.720	-2.21	
26	-0.8	0.08	-14.039	-2.53	
28	-0.6	0.07	-14.326	-2.66	
30	-0.5	0.05	-14.509	-3.00	
32	-0.3	0.04	-15.019	-3.22	

34	-0.3	0.03	-15.019	-3.51
36	-0.2	0.03	-15.425	-3.51
38	-0.1	0.02	-16.118	-3.91
40	-0.1	0.02	-16.118	-3.91
42	-0.1	0.01	-16.118	-4.61

<표2 : $C = 100 \mu F$, $R = 100 k \Omega$, $V_0 = 5 \, V$ 일 때 축전기 방전 과정>

(2) $C = 100 \mu F$, $R = 50 k \Omega$, $V_0 = 5 V$

-충전 과정

t(s)	I(mA)	$V_C(V)$	ln I	$\ln\left(V_0 - V_C\right)$
0	0.09	0.56	-9.316	1.49
1	0.062	2.06	-9.688	1.08
2	0.047	2.75	-9.965	0.81
3	0.036	3.27	-10.232	0.55
4	0.025	3.82	-10.597	0.17
5	0.019	4.09	-10.871	-0.09
6	0.013	4.37	-11.251	-0.46
7	0.01	4.5	-11.513	-0.69
8	0.008	4.61	-11.736	-0.94
9	0.006	4.72	-12.024	-1.27
10	0.004	4.78	-12.429	-1.51
11	0.004	4.82	-12.429	-1.71
12	0.003	4.87	-12.717	-2.04
13	0.002	4.9	-13.122	-2.30
14	0.002	4.92	-13.122	-2.53
15	0.002	4.93	-13.122	-2.66
16	0.001	4.94	-13.816	-2.81
17	0.001	4.95	-13.816	-3.00
18	0.001	4.96	-13.816	-3.22
19	0.001	4.96	-13.816	-3.22
20	0.001	4.97	-13.816	-3.51
21	0.001	4.97	-13.816	-3.51

<표3 : $C=100\mu F$, $R=50k\Omega$, $V_0=5\,V$ 일 때 축전기 충전 과정>

-방전 과정

t(s)	I(mA)	$V_C(V)$	ln I	$\ln V_C$
0	0	4.98		1.61
1	-0.089	4.4	-9.327	1.48
2	-0.059	3.33	-9.738	1.20

3	-0.039	1.94	-10.152	0.66	
4	-0.026	1.31	-10.557	0.27	
5	-0.02	1.01	-10.820	0.01	
6	-0.015	0.78	-11.107	-0.25	
7	-0.011	0.53	-11.418	-0.63	
8	-0.007	0.42	-11.870	-0.87	
9	-0.006	0.29	-12.024	-1.24	
10	-0.005	0.23	-12.206	-1.47	
11	-0.003	0.16	-12.717	-1.83	
12	-0.003	0.13	-12.717	-2.04	
13	-0.002	0.1	-13.122	-2.30	
14	-0.001	0.07	-13.816	-2.66	
15	-0.001	0.06	-13.816	-2.81	
16	-0.001	0.04	-13.816	-3.22	
17	-0.001	0.03	-13.816	-3.51	
18	-0.001	0.02	-13.816	-3.91	

<표4 : $C = 100 \mu F$, $R = 50 k \Omega$, $V_0 = 5 \, V$ 일 때 축전기 방전 과정>

(3) $C = 330 \mu F$, $R = 50 k \Omega$, $V_0 = 5 V$

-충전 과정

t(s)	I(mA)	$V_C(V)$	$\ln I$	$\ln\left(V_0 - V_C\right)$	
0	0.095	0.12	-9.262	1.59	
3	0.073	1.28	-9.525	1.31	
6	0.054	2.25	-9.827	1.01	
9	0.042	2.87	-10.078	0.76	
12	0.032	3.41	-10.350	0.46	
15	0.025	3.76	-10.597	0.22	
18	0.02	4.03	-10.820	-0.03	
21	0.015	4.24	-11.107	-0.27	
24	0.012	4.42	-11.331	-0.54	
27	0.009	4.52	-11.618	-0.73	
30	0.008	4.62	-11.736	-0.97	
33	0.006	4.7	-12.024	-1.20	
36	0.005	4.76	-12.206	-1.43	
39	0.004	4.81	-12.429	-1.66	
42	0.003	4.84	-12.717	-1.83	
45	0.003	4.87	-12.717	-2.04	
48	0.002	4.89	-13.122	-2.21	
51	0.002	4.91	-13.122	-2.41	
54	0.002	4.92	-13.122	-2.53	

57	0.001	4.93	-13.816	-2.66
60	0.001	4.94	-13.816	-2.81

<표5 : $C = 330 \mu F$, $R = 50 k \Omega$, $V_0 = 5 \, V$ 일 때 축전기 충전 과정>

-방전 과정

t(s)	I(mA)	$V_C(V)$	$\ln I$	$\ln V_C$
0	0	4.97		1.60
4	-0.071	3.55	-9.553	1.27
8	-0.047	2.44	-9.965	0.89
12	-0.034	1.69	-10.289	0.52
16	-0.023	1.17	-10.680	0.16
20	-0.017	0.85	-10.982	-0.16
24	-0.012	0.59	-11.331	-0.53
28	-0.008	0.43	-11.736	-0.84
32	-0.006	0.31	-12.024	-1.17
36	-0.004	0.22	-12.429	-1.51
40	-0.003	0.17	-12.717	-1.77
44	-0.002	0.12	-13.122	-2.12
48	-0.001	0.09	-13.816	-2.41
52	-0.001	0.06	-13.816	-2.81
56	-0.001	0.05	-13.816	-3.00
60	-0.001	0.04	-13.816	-3.22
64	-0.001	0.03	-13.816	-3.51
68	-0.001	0.02	-13.816	-3.91
72	0	0.02		-3.91

<표6 : $C = 330 \mu F$, $R = 50 k \Omega$, $V_0 = 5 \, V$ 일 때 축전기 방전 과정>

6. 결과

(1)
$$C = 100 \mu F$$
, $R = 100 k \Omega$, $V_0 = 5 V$

충전과정에서 t=0일 때 $I_0=46.1\mu A$, $extstyle V_0=0.41 \, V$ 이므로,

$$C_{ic} = C(\varDelta\,V_0 - \,V_0)$$
에서 $C_{ic} = C(0.41 - 5)$

따라서 특수해는
$$\Delta V = 5 - 4.59e^{-\frac{1}{10}t}$$
, $I = \frac{4.59}{100000}e^{-\frac{1}{10}t}$

방전 과정에서 t=0일 때 $I_0= 46.8 \mu A,~V_0=4.8~V$ 이므로, $C_{ic}=-I_0RC$

$$C_{ic} = 46.8 \times 10^{-6} \times 100 \times 10^{3} \times 100 \times 10^{-6} = 46.8 \times 10^{-5}$$

따라서 특수해는
$$\Delta V \! = \! 4.68e^{-\frac{1}{10}t}$$
, $I \! = \! -46.8*10^{-6}e^{-\frac{1}{10}t}$

t(s)	$I(\mu A)$	$V_C(V)$	I 이론 (μA)	V_{C 이론 (V)	$I_$ 이론대비 차이	V_{C 이론대비 차이
0	46.1	0.41	45.9	0.41	-0.436%	0.000%
2	35.1	1.52	37.579742	1.242026	6.599%	-22.381%
4	25.2	2.52	30.76769	1.923231	18.096%	-31.030%
6	19.4	3.09	25.190454	2.480955	22.987%	-24.549%
8	14.1	3.62	20.624199	2.93758	31.634%	-23.231%
10	10.3	3.99	16.885666	3.311433	39.002%	-20.492%
12	7.6	4.26	13.824814	3.617519	45.026%	-17.760%
14	5.7	4.45	11.318801	3.86812	49.641%	-15.043%
16	4.3	4.59	9.2670502	4.073295	53.599%	-12.685%
18	3.3	4.67	7.587219	4.241278	56.506%	-10.108%
20	2.7	4.75	6.2118895	4.378811	56.535%	-8.477%
22	2.2	4.8	5.085865	4.491414	56.743%	-6.871%
24	1.7	4.84	4.1639541	4.583605	59.173%	-5.594%
26	1.5	4.86	3.4091572	4.659084	56.001%	-4.312%
28	1.3	4.89	2.7911819	4.720882	53.425%	-3.582%
30	1.1	4.91	2.2852264	4.771477	51.865%	-2.903%
32	1	4.92	1.8709852	4.812901	46.552%	-2.225%
34	0.9	4.93	1.5318331	4.846817	41.247%	-1.716%
36	0.8	4.93	1.2541589	4.874584	36.212%	-1.137%
38	0.8	4.94	1.0268184	4.897318	22.089%	-0.872%
40	0.8	4.94	0.8406878	4.915931	4.840%	-0.490%
42	0.7	4.95	0.688297	4.93117	-1.700%	-0.382%

<표7 : 충전 과정에서 이론값과 측정값의 차이>

t(s)	$I(\mu A)$	$V_C(V)$	$I_{ m olg}(\mu A)$	V_{C 이론 (V)	$I_$ 이론대비 차이	V_{C 이론대비 차이
0	-46.8	4.8	-46.8	4.68	0.000%	-2.564%
2	-35.5	3.61	-38.3166	3.83166	7.351%	5.785%
4	-25.2	2.57	-31.371	3.137098	19.671%	18.077%
6	-19.2	1.96	-25.6844	2.568438	25.246%	23.689%
8	-12	1.23	-21.0286	2.10286	42.935%	41.508%
10	-9.9	1.01	-17.2168	1.721676	42.498%	41.336%
12	-6.7	0.68	-14.0959	1.409589	52.468%	51.759%
14	-5.1	0.5	-11.5407	1.154074	55.809%	56.675%
16	-3.7	0.38	-9.44876	0.944876	60.841%	59.783%
18	-2.7	0.28	-7.73599	0.773599	65.098%	63.806%
20	-2.1	0.22	-6.33369	0.633369	66.844%	65.265%
22	-1.5	0.15	-5.18559	0.518559	71.074%	71.074%
24	-1.1	0.11	-4.2456	0.42456	74.091%	74.091%
26	-0.8	0.08	-3.476	0.3476	76.985%	76.985%

28	-0.6	0.07	-2.84591	0.284591	78.917%	75.403%
30	-0.5	0.05	-2.33003	0.233003	78.541%	78.541%
32	-0.3	0.04	-1.90767	0.190767	84.274%	79.032%
34	-0.3	0.03	-1.56187	0.156187	80.792%	80.792%
36	-0.2	0.03	-1.27875	0.127875	84.360%	76.540%
38	-0.1	0.02	-1.04695	0.104695	90.448%	80.897%
40	-0.1	0.02	-0.85717	0.085717	88.334%	76.667%
42	-0.1	0.01	-0.70179	0.070179	85.751%	85.751%

<표8 : 방전 과정에서 측정값과 이론값의 차이>

다만, 10과 10.1은 5% 차이이지만, e^{10} 대비 $e^{10.1}$ 은 10.5% 차이나므로, 자연로그를 취하여 다시 계산하면 다음과 같다.

t(s)	$\ln I$	$\left \ln \left(V_0 - V_C \right) \right $	$\ln I_$ 이론	$\ln\left(\frac{V_0-V_C}{\text{이론}}\right)$	전류 이론값 대비	전압 이론값 대비
0	-9.985	1.52	-9.989	1.52	-0.044%	0.000%
2	-10.257	1.25	-10.189	1.32	0.670%	-5.805%
4	-10.589	0.91	-10.389	1.12	1.921%	-19.185%
6	-10.850	0.65	-10.589	0.92	2.467%	-29.958%
8	-11.169	0.32	-10.789	0.72	3.525%	-55.506%
10	-11.483	0.01	-10.989	0.52	4.498%	-98.101%
12	-11.787	-0.30	-11.189	0.32	5.347%	-192.968%
14	-12.075	-0.60	-11.389	0.12	6.023%	-582.594%
16	-12.357	-0.89	-11.589	-0.08	6.626%	1071.306%
18	-12.622	-1.11	-11.789	-0.28	7.062%	301.515%
20	-12.822	-1.39	-11.989	-0.48	6.950%	191.165%
22	-13.027	-1.61	-12.189	-0.68	6.875%	138.040%
24	-13.285	-1.83	-12.389	-0.88	7.231%	109.170%
26	-13.410	-1.97	-12.589	-1.08	6.522%	82.704%
28	-13.553	-2.21	-12.789	-1.28	5.975%	72.968%
30	-13.720	-2.41	-12.989	-1.48	5.629%	63.127%
32	-13.816	-2.53	-13.189	-1.68	4.750%	50.689%
34	-13.921	-2.66	-13.389	-1.88	3.972%	41.743%
36	-14.039	-2.66	-13.589	-2.08	3.309%	28.088%
38	-14.039	-2.81	-13.789	-2.28	1.810%	23.606%
40	-14.039	-2.81	-13.989	-2.48	0.355%	13.622%
42	-14.172	-3.00	-14.189	-2.68	-0.119%	11.943%

<표9 : 충전 과정에서 측정값과 이론값의 자연로그를 취하여 계산한 오차>

t(s)	ln I	$\ln{(V_C)}$	$\ln I_{ m olg}$	ln (V_C) 이론	전류 이론값 대비	전압 이론값 대비
0	-9.970	1.57	-9.970	1.54	0.000%	1.641%
2	-10.246	1.28	-10.170	1.34	0.751%	-4.436%
4	-10.589	0.94	-10.370	1.14	2.112%	-17.440%
6	-10.861	0.67	-10.570	0.94	2.753%	-28.660%
8	-11.331	0.21	-10.770	0.74	5.209%	-72.149%
10	-11.523	0.01	-10.970	0.54	5.044%	-98.169%
12	-11.913	-0.39	-11.170	0.34	6.659%	-212.340%
14	-12.186	-0.69	-11.370	0.14	7.183%	-583.710%
16	-12.507	-0.97	-11.570	-0.06	8.104%	1606.441%
18	-12.822	-1.27	-11.770	-0.26	8.944%	395.893%
20	-13.074	-1.51	-11.970	-0.46	9.223%	231.535%
22	-13.410	-1.90	-12.170	-0.66	10.193%	188.886%
24	-13.720	-2.21	-12.370	-0.86	10.918%	157.648%
26	-14.039	-2.53	-12.570	-1.06	11.687%	139.020%
28	-14.326	-2.66	-12.770	-1.26	12.191%	111.606%
30	-14.509	-3.00	-12.970	-1.46	11.866%	105.652%
32	-15.019	-3.22	-13.170	-1.66	14.046%	94.294%
34	-15.019	-3.51	-13.370	-1.86	12.340%	88.859%
36	-15.425	-3.51	-13.570	-2.06	13.673%	70.494%
38	-16.118	-3.91	-13.770	-2.26	17.055%	73.351%
40	-16.118	-3.91	-13.970	-2.46	15.380%	59.239%
42	-16.118	-4.61	-14.170	-2.66	13.751%	73.342%

<== Text (*** - *

이제 그래프를 보자.

-충전 과정

<그림3 : $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 시간에 따른 전류(충전 과정)> 그림3은 $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 충전 과정에서 시간에 따른 전류를 나타낸 것이다.(단위 uA는 μA 를 의미)

<그림4 : $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 시간에 따른 전압(충전 과정)> <그림4는 $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 충전 과정에서 시간에 따른 전압을 나타낸

것이다.

<그림5 : $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 시간에 따른 $\ln I$ (충전 과정)> 그림5는 $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 충전 과정에서 시간에 따른 $\ln I$ 를 나타낸 것으로 최소제곱법을 이용해 계산한 추세선은 y=-0.1025x-10.44이다.

<그림6 : $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 시간에 따른 $\ln{(\,V_0-V_C)}$) 그림6은 $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 충전 과정에서 시간에 따른 $\ln{(\,V_0-V_C)}$ 를 나타낸 것으로 최소제곱법을 이용해 계산한 추세선은 y=-0.11x-1.1225이다.

<그림7 : $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 시간에 따른 전류(μA)(방전 과정)> 그림7은 $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 방전 과정에서 시간에 따른 전류를 나타낸 것이다.(단위 uA는 μA 를 의미)

<그림8 : $C = 100 \mu F$, $R = 100 k \Omega$, $V_0 = 5 \ V$ 일 때 시간에 따른 전압(V)(방전 과정)>

그림8은 $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 방전 과정에서 시간에 따른 전압을 나타낸 것이다.

<그림9 : $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 시간에 따른 $\ln I$ (방전 과정)> 그림5는 $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 방전 과정에서 시간에 따른 $\ln I$ 를 나타낸 것으로 최소제곱법을 이용해 계산한 추세선은 y=-0.1521x-10.027이다.

<그림10 : $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 시간에 따른 $\ln V_C$ (방전 과정)>

그림10은 $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 충전 과정에서 시간에 따른 $\ln V_C$ 를 나타낸 것으로 최소제곱법을 이용해 계산한 추세선은 y=-0.1428x-1.4027이다.

(2) $C = 100 \mu F$, $R = 50 k \Omega$, $V_0 = 5 V$

-충전 과정

<그림11 : $C=100\mu F$, $R=50k\Omega$, $V_0=5\,V$ 일 때 시간에 따른 전류(mA)(충전 과정)>

<그림12 : $C = 100 \mu F$, $R = 50 k \Omega$, $V_0 = 5 \, V$ 일 때 시간에 따른 전압(V)(충전 과정)>

<그림13 : $C=100\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 $\ln F$

<그림14 : $C=100\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 $\ln{(\,V_0-\,V_C)}$ >

-방전 과정

<그림15 : $C = 100 \mu F$, $R = 50 k \Omega$, $V_0 = 5 \, V$ 에서 시간에 따른 전류(mA)(방전 과정)>

<그림16 : $C=100 \mu F$, $R=50 k \Omega$, $V_0=5 \, V$ 에서 시간에 따른 전압(V)(방전 과정)>

<그림17 : $C=100\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 $\ln I$ (방전 과정)>

<그림18 : $C=100\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 $\ln\,V_C$ (방전 과정)>

(3) $C=330\mu F\,,~R=50k\Omega,~V_0=5\,V$ -충전 과정

<그림19 : $C=330\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 전류(mA)(충전 과정)>

<그림20 : $C=330 \mu F$, $R=50 k \Omega$, $V_0=5 \, V$ 에서 시간에 따른 전압(V)(충전 과정)>

<그림21 : $C=330\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 $\ln I$ (충전 과정)>

<그림22 : $C=330\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 $\ln\left(\,V_0-\,V_C
ight)$ (충전 과정)>

-방전 과정

<그림23 : $C=330\mu F\,,\;R=50k\Omega,\;\;V_0=5\,V$ 에서 시간에 따른 전류(mA)(방전 과정)>

<그림24 : $C=330\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 전압(V)(방전 과정)>

<그림25 : $C=330\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 $\ln I$ (방전 과정)>

<그림26 : $C=330\mu F$, $R=50k\Omega$, $V_0=5\,V$ 에서 시간에 따른 $\ln\,V_C$ (방전 과정)>

7. 결과에 대한 논의

앞서 실험 원리에서 다음의 식을 구하였다.

$$\therefore \frac{d}{dt} \ln \left(\varDelta V - V_0 \right) = -\frac{1}{RC}, \ \frac{d}{dt} \ln I = -\frac{1}{RC} : 충전 과정$$

$$\therefore \frac{d}{dt} \ln \Delta V = -\frac{1}{RC}, \ \frac{d}{dt} \ln I = -\frac{1}{RC}$$
 : 방전 과정

따라서 그림5, 그림6, 그림9, 그림10, 그림13, 그림14, 그림17, 그림18, 그림21, 그림22, 그림25,

그림26에서 구한 추세선의 기울기를 A라 할 때 $-\frac{1}{A}$ 이 시정수(time constant)이다.

(1)
$$C = 100 \mu F$$
, $R = 100 k \Omega$, $V_0 = 5 V$

충전/방전	그래프 분류	추세선 식	기울기	- 1 기울기	RC	RC대비
충전	ln <i>I</i>	-0.1025x-10.44	-0.1025	9.7561	10	-2.439%
충전	$\ln(V_0 - V_C)$	-0.11x+1.1225	-0.11	9.0909	10	-9.091%
방전	ln <i>I</i>	-0.1521x-10.027	-0.1521	6.5746	10	-34.254%
방전	$\ln V_C$	-0.1428x+1.4027	-0.1428	7.0028	10	-29.972%

<표11 : $C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$ 일 때 그래프로 얻은 추세선 기울기와 RC(시정수)의 비교>

(2)
$$C = 100 \mu F$$
, $R = 50 k \Omega$, $V_0 = 5 V$

충전/방전	전류/전압	추세선 식	기울기	_ <u>1</u> 기울기	RC	RC대비
충전	ln <i>I</i>	-0.2278x - 9.7445	-0.2278	4.3898	5	-12.204%
충전	$\ln(V_0 - V_C)$	-0.2428x+1.1226	-0.2428	4.1186	5	-17.628%
방전	ln <i>I</i>	-0.2779x-9.3883	-0.2779	3.5984	5	-28.032%
방전	$\ln V_C$	-0.3046x+1.6095	-0.3046	3.2830	5	-34.340%

<표12 : $C=100\mu F$, $R=50k\Omega$, $V_0=5\,V$ 일 때 그래프로 얻은 추세선 기울기와 RC(시정수)의 비교>

(3)
$$C = 330 \mu F$$
, $R = 50 k \Omega$, $V_0 = 5 V$

충전/방전	전류/전압	추세선 식	기울기	_ <u>1</u> 기울기	RC	RC대비
충전	ln <i>I</i>	-0.0748x - 9.439	-0.0748	13.3690	16.5	-18.976%
충전	$\ln(V_0 - V_C)$	-0.0741x+1.3656	-0.0741	13.4953	16.5	-18.210%
방전	ln <i>I</i>	-0.0736x-9.5687	-0.0736	13.5870	16.5	-17.655%
방전	$\ln V_C$	-0.0787x+1.4427	-0.0787	12.7065	16.5	-22.991%

<표13 : $C=330\mu F$, $R=50k\Omega$, $V_0=5\,V$ 일 때 그래프로 얻은 추세선 기울기와 RC(시정수)의 비교>

(4)결과에 대한 논의

표9와 표10에서 알 수 있듯, 이론값과 측정값의 오차가 전류는 10%정도이지만, 전압에서 1000% 넘게 차이나는 등 오차가 매우 큰 것을 알 수 있다. 전류의 오차는 저항의 오차($\pm 5\%$)나 축전기 오차($\pm 10\%$)로 설명 가능하나, 전압 오차는 그렇지 않아 측정에서 문제가 있었던 것으로 보인다.

첫 번째 실험($C=100\mu F$, $R=100k\Omega$, $V_0=5\,V$)중 충전 과정에서 시간에 따른 $\ln I$ 그래프의 추세선 식은 $-0.1025\mathrm{x}-10.44$, $\ln(V_0-V_C)$ 그래프의 추세선 식은 $-0.11\mathrm{x}+1.1225$, 방전 과정에서 시간에 따른 $\ln I$ 그래프는 $-0.1521\mathrm{x}-10.027$, $\ln V_C$ 그래프는 $-0.1428\mathrm{x}+1.4027$ 가 나왔다.

두 번째 실험($C=100\mu F$, $R=50k\Omega$, $V_0=5\,V$)중 충전 과정에서 시간에 따른 $\ln I$ 그래프의 추세선 식은 -0.2278x-9.7445, $\ln(V_0-V_C)$ 그래프의 추세선 식은-0.2428x+1.122, 방전 과정에서 시간에 따른 $\ln I$ 그래프는 -0.2779x-9.3883, $\ln V_C$ 그래프는 -0.3046x+1.6095가 나왔다.

세 번째 실험($C=330\mu F$, $R=50k\Omega$, $V_0=5\,V$)중 충전 과정에서 시간에 따른 $\ln I$ 그래프의 추세선 식은 -0.0748x-9.439, $\ln (V_0-V_C)$ 그래프의 추세선 식은-0.0741x+1.3656, 방전 과정에서 시간에 따른 $\ln I$ 그래프는 0.0736x-9.5687, $\ln V_C$ 그래프는 -0.0787x+1.4427가 나왔다.

표11, 표12, 표13에서, 추세선 기울기로 시정수를 구한 것과 (저항*전기용량)의 차이가 $-2.439\%\sim-34.340\%$ 까지 다양하게 나타나는데, 일부는 저항의 오차($\pm 5\%$)나 축전기 오차($\pm 10\%$)로 설명할 수 있겠지만, 30%가 넘는 오차는 측정에서 문제가 있었던 것으로 보인다.

측정에서 문제가 발생한 원인은, 멀티미터가 측정하는 시간 간격과 동영상을 끊는 간격이 일치하지 않아서 발생하는 문제인 것으로 보인다.

오차를 감안하면 실험원리에서 구한 축전기의 충전 일반해와

$$\Delta V = \frac{C_{ic}e^{-\frac{1}{RC}t}}{C} \quad I = \frac{dq}{dt} = -\frac{C_{ic}}{RC}e^{-\frac{1}{RC}t}$$
와

방전 일반해를

$$\Delta V = \frac{C_{ic}e^{-\frac{1}{RC}t}}{C} I = \frac{dq}{dt} = -\frac{C_{ic}}{RC}e^{-\frac{1}{RC}t}$$

확인할 수 있었으며 이 식에서 파생되어 나온 식

$$\therefore \frac{d}{dt} \ln \left(\varDelta \, V - \, V_0 \right) = - \, \frac{1}{RC}, \; \frac{d}{dt} \ln I = - \, \frac{1}{RC} \; :$$
 충전 과정

$$\therefore \frac{d}{dt} \ln \Delta V = -\frac{1}{RC}, \ \frac{d}{dt} \ln I = -\frac{1}{RC}$$
 : 방전 과정

도 확인할 수 있었다.

8.결론

축전기 키트에 축전기, 저항, 직류 전원 공급기, 멀티미터를 연결하고, 충전 과정이 일어나도록 스위치를 전환한 다음 일정한 시간 간격으로 축전기 양단의 전압 V_C 와 회로에 흐르는 전류 I를 측정하여 기록하였다. 그리고 방전 과정이 일어나도록 스위치를 전환한 뒤 일정한 시간 간격으로 축전기 양단의 전압과 회로에 흐르는 전류를 측정하여 기록하였다.

그 다음 시간(t) 대 전압(V_C), 시간(t)대 전류(I)의 그래프를 그리고 시간(t)대 로그전압($\ln V_C$),

시간(t)대 로그전류($\ln I$)의 그래프를 그리고 기울기로부터 시정수를 구하였다.

측정 결과와 충전, 방전 과정 미분방정식의 일반해가 7%~1600%정도 차이가 남을 알 수 있었으며 이는 멀티미터가 측정하는 시간 간격과 동영상을 끊는 간격이 일치하지 않아서 발생하는 문제인 것으로 보인다.

그리고 충전 과정에서 시간에 따른 $\ln I$, $\ln (V_0 - V_C)$, 방전 과정에서 시간에 따른 $\ln I$, $\ln V_C$ 그래프의 기울기를 구하였는데, 오차를 고려하면 여기서 미분방정식의 일반해에서 파생되어 나온

식 $\therefore \frac{d}{dt} \ln(\varDelta V - V_0) = -\frac{1}{RC}, \ \frac{d}{dt} \ln I = -\frac{1}{RC}, \ \therefore \frac{d}{dt} \ln \varDelta V = -\frac{1}{RC}, \ \frac{d}{dt} \ln I = -\frac{1}{RC}$ 을 확인할 수 있었으며 오차의 일부 원인은 저항의 오차($\pm 5\%$)나 축전기 오차($\pm 10\%$)로 보인다.

9.참고 문헌

- (1)일반물리학실험, 5판, 부산대학교 물리학교재편찬위원회, 청문각,2019
- (2)Fundamentals of Electric Circuits, Sixth Edition, Christopher K. Alexander/Matthew N.O. Sadiku, McGraw-Hill Education, 2016
- (3)완자 고등 물리 2, 비상교육 편집부, 비상교육, 2013
- (4)부산대학교 일반물리학실험실, https://gplab.pusan.ac.kr/gplab/index..do
- (5)연세대학교 일반물리학실험실, http://phylab.yonsei.ac.kr/
- (6)xl380l manual,

https://usefulldata.com/manual-guide-multimeter-xl830l-with-pdf-instructions/