习题 10.3

- 1. 利用第二类曲线积分, 计算下列曲线所围成的图形的面积:
 - (1) 星形线 $x = a\cos^3 t$, $y = a\sin^3 t$; .
 - (2) 曲线 $x = \cos^3 t$, $y = \sin t$;
 - (3) 摆线 $\begin{cases} x = a(t \sin t) \\ y = a(1 \cos t) \end{cases}$ 的第一拱 $(0 \le t \le 2\pi)$ 与x轴.
- 2. 利用 Green 公式, 计算下列第二类曲线积分:
 - (1) $\oint_C (2x\sin y 4y) dx + (x^2 \cos y + x) dy$, 其中 C 为圆周 $x^2 + y^2 = 3$, 并取逆时针 方向:
 - (2) $\oint_C (x+y) dx (x-y) dy$, 其中C为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 并取顺时针方向;
 - (3) $\oint_C (x^2y-2y)dx + \left(\frac{x^3}{3}-x\right)dy$,其中 C 是直线 x=1, y=x, y=2x 所围三角形区域的正向边界.
 - (4) $\int_C (e^x \sin y my) dx + (e^x \cos y m) dy$, 其中 C 为由点 A(a,0) 到点 O(0,0) 的上 半圆周 $x^2 + y^2 = ax$;
 - (5) $\int_C \sqrt{x^2 + y^2} dx + y \left[xy + \ln(x + \sqrt{x^2 + y^2}) \right] dy$, 其中 C 是由点 $(\pi + 1, 0$ 沿曲线 $y = \sin(x 1)$ 到点 (1, 0) 的一段弧;
 - (6) $\oint_C \frac{1}{x} \arctan \frac{y}{x} dx + \frac{2}{y} \arctan \frac{x}{y} dy$,其中C为圆周 $x^2 + y^2 = 1$, $x^2 + y^2 = 4$ 与直线 y = x, $y = \sqrt{3}x$ 在第一象限所围区域的正向边界;
 - (7) $\int_C \frac{y dx x dy}{x^2 + y^2}$, 其中 C 为星形线 $x = \cos^3 t$, $y = \sin^3 t \left(t : 0 \to \frac{\pi}{2} \right)$ 的一段;
 - (8) $\oint_C \frac{x dy y dx}{4x^2 + y^2}$, 其中 C 是以点 (1,0) 为圆心 R(R > 1) 为半径的圆周, 并取逆时针方向;
- 3. 验证下列曲线积分在整个 xOy 平面上与路径无关, 并计算积分值:
 - (1) $\int_{(1,0)}^{(2,2)} (x+y) dx + (x-y) dy$;
 - (2) $\int_{(0,0)}^{(\pi,2)} (x^2 y + 3xe^x) dx + \left(\frac{1}{3}x^3 y\sin y\right) dy;$
 - (3) $\int_{(0,0)}^{\left(1,\frac{\pi}{2}\right)} \left(y + e^{-x} \sin y\right) dx + \left(x + e^{-x} \cos y\right) dy;$
 - (4) $\int_{(0,0)}^{(1,1)} \frac{y dx + x dy}{1 + (xy)^2}.$
- **4.** 验证下列 P(x,y)dx+Q(x,y)dy在右半平面内存在原函数 u(x,y), 并求其中之一:
 - $(1) yx^{y-1}dx + x^y \ln xdy;$

(2)
$$\left(1 - \frac{y^2}{x^2} \cos \frac{y}{x}\right) dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}\right) dy$$
;

$$(3) \ \frac{x\mathrm{d}x + y\mathrm{d}y}{\sqrt{x^2 + y^2}};$$

(4)
$$\frac{(x-y)dx + (x+y)dy}{x^2 + y^2}.$$

- 5. 设函数 f(x) 具有连续导数, 试根据下列条件分别确定 f(x):
 - (1) f(0) = 0, 且曲线积分 $\int_C xy^2 dx + yf(x) dy$ 与路径无关;
 - (2) f(1) = 1, 且曲线积分 $\int_C f(x)(ydx xdy)$ 与路径无关;
 - (3) $f(1) = \frac{1}{2}$, 且 $\oint_C \left[ye^x f(x) \frac{y}{x} \right] dx \ln f(x) dy = 0$, 其中C 为平面区域x > 1内的任一封闭曲线.
- **6.** 设函数 Q(x,y) 在 xOy 平面上具有一阶连续偏导数,曲线积分 $\int_C 2xy dx + Q(x,y) dy$ 与路径无关,并且对任意 $t \in \mathbb{R}$ 恒有

$$\int_{(0,0)}^{(t,1)} 2xy dx + Q(x,y) dy = \int_{(0,0)}^{(1,t)} 2xy dx + Q(x,y) dy,$$

求Q(x,y).

7. 确定常数 p, 使得在任何不含 y = 0 的点的区域上, 曲线积分

$$\int_C \frac{x}{y^2} (x^2 + y^2)^p \left(y dx - x dy \right)$$

与路径无关,并求当C从点(1,1)到点(0,2)时的积分值.

- 8. 求下列微分方程的通解:
 - (1) $[y+\ln(1+x)]dx+(x+1-e^y)dy=0$;
 - (2) $(1 + y \cos xy) dx + x \cos xy dy = 0$;
 - (3) $y(2xy + e^x)dx e^x dy = 0$;
 - (4) $(y+2xy^2)dx + (x-2x^2y)dy = 0$.
- 9. 设函数 u(x,y) 与 v(x,y) 在闭区域 D 上具有一阶连续偏导数. 试证:

$$\iint_{D} v \frac{\partial u}{\partial x} dxdy = \oint_{\partial D^{+}} uvdy - \iint_{D} u \frac{\partial v}{\partial x} dxdy.$$

10. 设 f(t) 为 \mathbb{R} 上的正值连续函数, C 是逆时针方向的圆周 $(x-a)^2 + (y-a)^2 = 1$. 试证:

$$\oint_C x f(y) dy - \frac{y}{f(x)} dx \ge 2\pi.$$