# **Trees**

# **Example Tree**



- ✓ root starting point (top) of the tree
- ✓ parent (ancestor) the vertex "above" this vertex
- ✓ child (descendent) the vertices "below" this vertex

- > any two vertices must have one and only one path between them else its not a tree
- ➤a tree with N nodes has N-1 edges

- ✓ leaves (terminal nodes) have no children
- ✓ level the number of edges between this node and the root
- ✓ordered tree where children's order is significant

- ✓ Depth of a node the length of the path from the root to that node
  - root: depth 0
- ✓ Height of a node the length of the longest path from that node to a leaf
  - any leaf: height 0
- ✓ Height of a tree: The length of the longest path from the root to a leaf

## **Balanced Trees**

➤ the difference between the height of the left sub-tree and the height of the right sub-tree is not more than 1.

# Trees - Example

#### Level



Depth of T: 2

Height of T: 1

## **Binary Trees**

A special class of trees: max degree for each node is 2

• Recursive definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called *the left subtree* and *the right subtree*.

# Example



## **Height of a Complete Binary Tree**



At each level the number of the nodes is doubled. total number of nodes:  $1 + 2 + 2^2 + 2^3 = 2^4 - 1 = 15$ 

## Binary Tree Representations

- If a complete binary tree with n nodes is represented sequentially, then for any node with index i, 1 <= i <= n, we have:
  - parent(i) is at i/2 if i!=1. If i=1, i is at the root and has no parent.
  - leftChild(i) is at 2i if 2i <= n. If 2i > n, then i has no left child.
  - rightChild(i) is at 2i+1 if 2i+1 <= n. If 2i+1 > n, then i has no right child.

## Sequential / Implicit Array Representation



| ittort                                                 | $\lfloor 1 \rfloor$ | A        |
|--------------------------------------------------------|---------------------|----------|
|                                                        | [2]                 | В        |
| (A)                                                    | [3]                 | <u> </u> |
|                                                        | [4]                 | D        |
|                                                        |                     | E        |
| $\left( \mathbf{B}\right) $ $\left( \mathbf{C}\right)$ | [5]<br>[6]<br>[7]   | F        |
|                                                        | [-7]                | G        |
|                                                        | [/]<br>[Q]          | H        |
| (D) $(E)$ $(F)$ $(G)$                                  | [8]<br>[9]          | Ī        |
|                                                        | [9]                 | 1        |
|                                                        |                     |          |
| Ţ                                                      |                     |          |
| \ 1 /                                                  |                     |          |

[.]

(2) insertion/deletion

# Dynamic/Linked Representation

```
typedef struct node
{
Int data;
Struct node *left;
Struct node *right;
} bin;
```





## **Binary Tree Operation**

- Creation of binary tree
- Insertion of a node in the tree
- Searching
- Deleting a node

## Binary Tree Operations (create)

• The basis of our binary tree node is the following struct declaration:

```
struct TreeNode
{
    int value;
    TreeNode *left;
    TreeNode *right;
};
```

## Binary Tree Operations (Insert)

- Proceed down the tree as you would with a find
- If X is found, do nothing (or update something)
- Otherwise, insert X at the last spot on the path traversed



## Binary Search Tree (BST)

- A binary tree is useful data structure when two way decisions must be made at each point in a process.
- Suppose, we want to find duplicates in a list of numbers.
  - One way is to go on comparing each number with all those that precede it. Number of comparisons increases.
- Comparison can be reduced by using BST.

# Binary Tree Operations (Delete a node)

- When we delete a node, we need to consider how we take care of the children of the deleted node.
- This has to be done such that the property of the binary search tree is maintained.
- Three cases:
  - (1) the node is a leaf
    - » Delete it immediately

#### (2) the node has one child

Adjust a pointer from the parent to bypass that node



#### (3) the node has 2 children

- replace the key of that node with the minimum element at the right subtree
- delete the minimum element

 Has either no child or only right child because if it has a left child, that left child would be smaller and would have been chosen. So invoke case 1 or 2.



## Binary Search Trees





A binary search tree

Not a binary search tree

## Binary Tree Traversals

- Let L, V, and R stand for moving left, visiting the node, and moving right.
- There are six possible combinations of traversal
   IVr, lrV, Vlr, Vrl, rVl, rlV
- Adopt convention that we traverse left before right, only 3 traversals remain

  - inorder, postorder, preorder

## Binary Tree - Traversal

There are six possible orderings of traversal.

By convention, we always traverse the left subtree before the right one.

That reduces the choices to three:

- Preorder Visit the root node first
- **Inorder** Visit the left subtree, then the root
- Postorder Visit the root node last

### **Preorder Traversal**

Visit the root of the tree first,
 then visit the nodes in the left subtree,
 then visit the nodes in the right subtree

```
Preorder(tree)
If tree is not NULL
Visit Info(tree)
Preorder(Left(tree))
Preorder(Right(tree))
```

(<u>Warning</u>: "visit" means that the algorithm does something with the values in the node, e.g., print the value)

#### **Preorder Traversal:**



Visit left subtree second

Visit right subtree last



**Result: A** 



**Result: AB** 



**Result: ABD** 



**Result: ABDE** 



**Result: ABDEH** 



**Result: ABDEHC** 



**Result: ABDEHCF** 



**Result: ABDEHCFG** 



**Result: ABDEHCFGI** 

# Preorder Example (Visit = print)



abc

#### Preorder Example (Visit = print)



abdgheicfj

#### Preorder Traversal

```
Void preOrder (BinaryTreeNode
  t)
     if (t != null)
        visit(t);
        preOrder(t.leftChild);
 preOrder(t.rightChild);
```

#### **Inorder Traversal**

Visit the nodes in the left subtree,
 then visit the root of the tree,
 then visit the nodes in the right subtree

```
Inorder(tree)

If tree is not NULL

Inorder(Left(tree))

Visit Info(tree)

Inorder(Right(tree))
```

(Warning: "visit" means that the algorithm does something with the values in the node, e.g., print the value)









**Result: D** 



**Result: DB** 



**Result: DB** 



**Result: DBH** 



**Result: DBHE** 

#### Inorder Example (Visit = print)



bac

#### Inorder Example (Visit = print)



gdhbei af j c

#### **Inorder Traversal**

```
Void inOrder(BinaryTreeNode t)
{
    if (t != null)
    {
        inOrder(t.leftChild);
        visit(t);
        inOrder(t.rightChild);
    }
}
```

#### Tree Traversals Example



Inorder: B F G H P R S T W Y Z Preorder: P F B H G S R Y T W Z Postorder: B G H F R W T Z Y S P

# Construct Tree from given Inorder and Postorder traversals

Inorder is: 2 3 5 7 9 10 11 12

Postorder is: 2 5 3 9 11 12 10 7

Search for 7 in Inorder sequence. Once we In a Postorder sequence, rightmost know position of 7 (or index of 7) in Inorder element is the root of the tree. So sequence, we also know that all elements on left side of 7 are in left subtree and elements on right are in right subtree.



## Construct Tree from given Preorder and Postorder traversals

preorder = {1, 2, 4, 8, 9, 5, 3, 6, 7} postorder = {8, 9, 4, 5, 2, 6, 7, 3, 1}; Showreste kthewleftingsotteleterentis (2002). Af All hodes before 2 in 30st finist be in left tree.} Sanc anthettree biree, land therexiencents subtree thore, thank in high tasubtnext to 1 in pre[], must be left child of root.





#### **Expression tree**

- An expression tree for an arithmetic, relational, or logical expression is a binary tree in which:
  - The parentheses in the expression do not appear.
  - The leaves are the variables or constants in the expression.
  - The non-leaf nodes are the operators in the expression:
    - A node for a binary operator has two non-empty subtrees.
    - A node for a unary operator has one non-empty subtree.
- The operators, constants, and variables are arranged in such a way that an inorder traversal of the tree produces the original expression without parentheses.

#### Example: An Expression Tree



#### **Expression Tree Examples**

| Expression    | Expression Tree                         | Inorder Traversal Result |
|---------------|-----------------------------------------|--------------------------|
| (a+3)         | a 3                                     | a + 3                    |
| 3+(4*5-(9+6)) | 3 · · · · · · · · · · · · · · · · · · · | 3+4*5-9+6                |
| log(x)        | log                                     | log x                    |
| n!            | !<br>n                                  | n !                      |

#### Why Expression trees?

- Expression trees are used to remove ambiguity in expressions.
- Consider the algebraic expression 2 3 \* 4 + 5.
- Without the use of precedence rules or parentheses, different orders of evaluation are possible:

$$((2-3)*(4+5)) = -9$$
  
 $((2-(3*4))+5) = -5$   
 $(2-((3*4)+5)) = -15$   
 $(((2-3)*4)+5) = 1$   
 $(2-(3*(4+5))) = -25$ 

 The expression is ambiguous because it uses infix notation: each operator is placed between its operands.

#### Expression trees can be very useful for:

- Evaluation of the expression.
- Generating correct compiler code to actually compute the expression's value at execution time.
- Performing symbolic mathematical operations (such as differentiation) on the expression.

| Expression        | Expression Tree | Infix form    |
|-------------------|-----------------|---------------|
| 2 - 3 * 4 + 5     | 2 * 5           | 2 - 3 * 4 + 5 |
| (2 - 3) * (4 + 5) | 2 3 4 5         | 2 - 3 * 4 + 5 |
| 2 - (3 * 4 + 5)   | 2 + 5           | 2 - 3 * 4 + 5 |

# Constructing Expression Tree Using Postfix Expression



$$a b + c d - * e f + /$$