# 1. Приведите и раскройте основные понятия, характеризующие строение системы.

**Система** - единое целое. Любая система не может быть изолирована, она всегда является составной частью другой более крупной системы.

Понятия, характеризующие строение системы — это элемент, подсистема, компонент, связь, структура.

Элемент - простейшая, неделимая часть системы, предел членения системы с точки зрения аспекта рассмотрения, решения конкретной задачи, поставленной цели

**Подсистема** - независимая часть системы, обладающая свойствам системы, и в частности, имеющая подцель, а также свои специфические свойства.

Компонент - совокупность однородных элементов.

**Связь** - входит в любое определение системы и обеспечивает возникновение и сохранение её целостных свойств.

**Структура** - отражает расположение составных частей систем, ее устройство, строение.

# 2. Приведите и раскройте основные понятия, характеризующие функционирование системы.

Понятия, характеризующие функционирование системы: состояние, равновесие, поведение, устойчивость, развитие.

**Состояние** - сиюминутное видение системы, «здесь и сейчас», рассматривают через входные воздействия и выходные сигналы.

**Равновесие** – способность системы сохранять свое состояние сколь угодно долго в отсутствии внешних возмущающих действий.

**Устойчивость** - способность системы возвращаться в состояние равновесия.

Поведение – переход системы из одного состояния в другое.

**Развитие** — совокупное изменение во взаимосвязи количественных, качественных и структурных категорий в системе.

## 3. Приведите определение и основные принципы системного анализа.

Системный анализ - совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам.

#### Основные принципы:

- перед началом СА необходимо четко определить конечные цели;
- необходимо рассматривать всю проблему как целое, как единую систему и выявлять все последствия и взаимосвязи каждого частного решения;
- необходимы выявление и анализ возможных альтернативных путей достижения цели;
- при детализации программы ее составные части, их цели и методы, не должны вступать в конфликт со всей программой.

## 4. Раскройте понятия «модель» и «моделирование».

**Модель** - некоторое представление о системе (объекте), отражающее наиболее существенные закономерности ее структуры и процесса функционирования и зафиксированное на некотором языке или в другой форме

**Моделирование** - процесс построение модели системы. При СА это связано с логическим или информационным моделированием систем. (Черный ящик)

# 5. Приведите назначение, основные функциональные блоки и примеры ERP-систем.

Системы планирования ресурсов предприятий ERP (Enterprise Resource Planning) — это системы планирования ресурсов предприятия, которые позволяют осуществлять прогнозирование, управление проектами и программами, ведение информации о продукции и технологии, управление затратами, финансами, кадрами и т.д.

**Основные блоки**: блок финансового учета и планирования, блок поддержки всех видов производств, блок управления персоналом, блок управления закупками и блок управления логистикой, а также блоки управления продажами и бизнес-аналитики.

## Пример – 1С: Предприятие

#### 6. Опишите системы класса MRP.

**MRP** (Material Requirements Planning) – система, позволяющая оптимально регулировать поставки комплектующих в производственный процесс, контролируя запасы на складе и саму технологию производства.

Цели использования стандарта MPR: поставки всех комплектующих по стандарту регламентированному MRP, чтобы исключить простои производства и минимизировать запасы на складе; — уменьшение запасов материалов-комплектующих, кроме очевидной разгрузки складов; уменьшение затрат на хранение, минимизация замороженных средств, вложенных в закупку материалов.

Результатами работы MRP-модуля являются: – план Заказов (Planned Order Schedule) – какое количество каждого материала должно быть заказано в каждый рассматриваемый период времени в течение срока планирования;

#### 7. Опишите системы PLM.

Системы PLM (Product Lifecycle Management) – это системы управления жизненным циклом продуктов, которые позволяют осуществлять:

- стратегический подход к бизнесу, который поддерживает единый режим создания, управления, распределения и использования интеллектуальных активов предприятия;
- поддержка "расширенного представления о предприятии", в том числе поддержка процессов проектирования, пользователей и партнеров;
- действие во времени от момента рождения концепции изделия до снятия его с производства и окончания сервисного периода;
  - интеграция людей, процессов, систем и информации

Три основные концепции PLM:

возможность универсального, безопасного и управляемого способа доступа и использования информации, определяющей изделия; – поддержание целостности информации, определяющей изделие, на протяжении всего его жизненного цикла; – управление и поддержка бизнес-процессов, используемых при создании, распределении и использовании подобной информации.

8. Приведите и опишите методы моделирования систем, направленные на активацию интуиции и опыта специалистов.

**Методы организации сложных экспертиз** - обращаются к квалифицированному специалисту в исследуемой области - эксперту. Выделяются группы критериев оценки и весовые коэффициенты критериев.

**Методы экспертных оценок -** различные формы экспертного опроса с последующим оцениванием и выбором наиболее предпочтительного варианта. Предполагается, что обобщенное коллективное мнение является достоверным.

**Морфологические методы** - систематически находить все возможные варианты решения проблемы путем комбинирования выделенных элементов или их признаков.

**Методы структуризации -** позволяет расчленять сложную, трудноразрешимую задачу на совокупность относительно простых, для решения которых существуют проверенные приемы и методы.

**Методы типа** «Дельфи» - обратная связь, ознакомление экспертов с результатами предшествующего тура и учет этих результатов при оценке значимости экспертов.

**Методы типа** «сценариев» предполагает подготовку группой специалистов специального текста, содержащего логическую последовательность событий и/или возможные варианты решения проблемы.

Методы типа «мозгового штурма» и выработки коллективных решений преследуют основную цель - поиск новых идей, их широкое обсуждение и конструктивную критику. Основная гипотеза заключается в предположении, что среди большого числа идей имеются, но меньшей мере, несколько хороших.

#### Методы диалектической логики

Ориентиры разумного мышления, обеспечивающие развитие познания, его движение к истине, дает диалектическая логика. Она формулирует свои результаты в виде принципов развития мышления и познания.

### 9. Приведите и опишите методы формализованного представления систем.

**Графические метод** не имеет в анализе самостоятельного значения, а используется для иллюстрации измерений. Графики представляют собой масштабное изображение показателей, чисел с помощью геометрических знаков.

**Семиотические методы.** структурно-семиотический анализ целесообразен прежде всего как инструмент изучения механизмов функционирования определенных систем .

**Лингвистические методы** можно разделить на когнитивные и семантикостилистические подгруппы. В первом случае предметом внимания становится использование единиц, относящихся к тому или иному языковому уровню.

Во втором случае предметом исследования становятся текстовые единицы: при таком подходе специалисты изучают жанровые особенности

В третьем случае единицами исследования становятся коммуникативные стратегии, тактики и роли.

**Логические методы** исследования базируются на применении в процессе исследований формальной логики: анализ, синтез, индукция, дедукция, обобщение, абстрагирование, конкретизация, аналогия.

**Теоретико-множественные представления** - систему можно отобразить в виде совокупности разнородных множеств и отношении между ними и названием характеристического свойства - например, множество А.

#### Статистические методы

Это методы, в основе которых лежат отображения явлений и процессов с помощью случайных событии и их поведении, которые описываются соответствующими вероятностными характеристиками и статистическими закономерностями.

**Аналитические методы оптимизации** отображают реальные объекты и процессы в виде точек, совершающих какие-либо перемещения в пространстве или взаимодействующих между собой.

### 10. Приведите основные этапы когнитивного анализа.

- 1)Вход
- 2)Формулировка задачи и цели исследования
- 3)Изучение процесса с позиции поставленной цели
- 4)Сбор, систематизация, анализ существующей статистической и качественно информации о проблеме
- 5) Выделение основных характеристических признаков изучаемого процесса. Выявление основных объективных законов, тенденций в процессе
- 6)Определение присущих исследуемой ситуации требования. Условия и ограничения.
- 7)Выделение основных субъектов, связанных с ситуацией. Определение интересов в развитии данной ситуации
  - 8) Определение путей, механизмов действия и реализации целей.
  - 9)Выход

### 11. Приведите перечень процедур системного анализа.

- 1)Определить границы исследуемом системы. Выделить, исследуемую систему из окружающей среды. (объект, цель, субъект, входные/выходные данные).
- 2)Определить все надсистемы, в которые входит исследуемая система.
- 3) Определить основные черты и направления развития всех надсистем, которым принадлежит данная система, а в частности, сформулировать их цели и противоречия между ними.
- 4)Определить роль исследуемой системы в каждой надсистеме, рассматривая эту роль как средство достижения целей надсистемы.
- 5)Выявить состав системы, изобразить схематично.
- 6) Определить Структуру системы, представляющую собой совокупность связей между ее компонентами.
- 7) Определить функции активных элементов системы, их «вклад» в реализацию роли системы.
- 8) Выявить причины, объединяющие отдельные части в систему, в целостность.

- 9)Определить все возможные связи, коммуникации системы с внешней средой. Необходимо познать такие системы во внешней среде, которым принадлежат компоненты исследуемой системы.
- 10) Рассмотреть исследуемую систему в динамике, в развитии.

# 12. Приведите и опишите основные подходы к моделированию бизнеспроцессов

В рамках функционального подхода организация моделирования бизнеспроцессов подразумевает построение схемы технологического процесса в виде последовательности операций. На входе и выходе каждой отображаются объекты разного происхождения: материального и информационного типа, а также применяемые ресурсы, организационные единицы. В рамках методологии функционального моделирования отображается последовательность функций, в которых выбор конкретных альтернатив процессов является достаточно сложным, а схем взаимодействия объектов нет. Функциональное моделирование бизнес-процессов имеет весомое достоинство — наглядность и понятность отображения на разных уровнях абстракции.

Моделирование бизнес-процессов при объектно-ориентированном подходе строится по следующей схеме: сначала выделяют классы объектов, после чего определяют действия, в которых объекты должны принять участие. Объекты могут быть активными, то есть осуществляющими действия и пассивными, над которыми выполняют действия. Моделирование бизнеспроцессов объектно-ориентированным методом отражает объекты, функции и события, при которых из-за объектов выполняются определенные процессы. Объектно-ориентированный подход также обладает рядом преимуществ, главное из которых заключается в более точном определении операций над объектами, что приводит к обоснованному решению задачи о целесообразности их существования. Отметим и минус метода. Конкретные процессы для лиц, ответственных за принятие решений, становятся менее наглядными.

## 13. Опишите методологии моделирования и описания бизнеспроцессов IDEF0- IDEF4.

Модель **IDEF0** – методология функционального моделирования.

это серия диаграмм с сопроводительными документами. Диаграммы разбивают многоступенчатый объект на несколько блоков, что существенно упрощает процесс. Детали всех блоков показаны как блоки на других диаграммах. Все детальные диаграммы — это декомпозиции блока из предшествующего уровня. На каждом этапе декомпозиции диаграмму предшествующего уровня именуют родительской для более детализированной диаграммы.

#### **IDEF1** - методология моделирования информационных потоков

вырабатывался, чтобы стать инструментом для анализа и изучения связи между потоками информации в рамках финансовой деятельности предприятия. Моделирование бизнес-процессов по методике IDEF1 призвано показать, как должна выглядеть информационная структура компании. Основное понятие в IDEF1 — сущность, которую определяют как абстрактный или реальный объект, наделенный совокупностью известных отличительных свойств. У каждой сущности есть атрибуты и имя.

## **IDEF2** – методология динамического моделирования развития систем

Поскольку анализировать динамические системы достаточно сложно, в данный момент стандарт почти не используют, и он, едва появившись, перестал развиваться.

Основной элемент **IDEF3** – методология документирования процессов, происходящих в системе

диаграмма, как и в IDEF0. Не менее важный компонент – действие, которое также называют «единицей работы». Действия в рамках данной системы отражены в виде прямоугольника из диаграмм. При этом каждое обладает уникальным идентификационным номером, который не применяют повторно, даже если в ходе разработки модели действие удаляют. В диаграммах IDEF3 перед номером действия обычно ставят номер его родителя. Окончание одного

часто способствует началу другого действия или даже нескольких. Бывает и так, что одно действие может потребовать завершить другие до начала своей реализации.

**IDEF4** - методология построения объектно-ориентированных систем является методологией создания объектно-ориентированных систем. Благодаря IDEF4 можно наглядно отобразить структуру объектов и заложенные принципы, по которым они взаимодействуют. Это дает возможность проводить анализ и улучшение сложных объектно-ориентированных систем.

# 14. Опишите методологию моделирования и описания бизнеспроцессов IDEF5.

**IDEF5** — стандарт онтологического исследования сложных систем

попытка всеобъемлющей и подробной формализации некоторой области знаний с помощью концептуальной схемы. Обычно такая схема состоит из структуры данных, содержащей все релевантные классы объектов, их связи и правила (теоремы, ограничения), принятые в этой области. Онтологический анализ обычно выражается в определении всей группы терминов, используемых в системе или процессе, и группировке и выстраивании их по классам, в иерархии, с учётом их отношения друг к другу. Собственно, такая готовая структура и называется онтологией системы.

Процесс построения онтологии, согласно методологии IDEF5, состоит из пяти основных действий:

- изучения и систематизации начальных условий;
- сбора и накапливания данных;
- анализа этих данных;
- наброска онтологии и её последующего уточнения;
- утверждения онтологии.

#### Преимущества:

• На начальном этапе графический язык SL может быть очень полезен для формулировки начальных требований к онтологии и определения вектора

разработки более подробной онтологии на текстовом языке IDEF5 или в любом другом средстве.

- В рамках IDEF5 изучение онтологии достаточно просто и понятно. Недостатки:
- Онтология и анализ знаний о предметной области является довольно обширной и трудоемкой темой.
- Проблема графического языка в том, что с его помощью нельзя достаточно четко сформулировать некоторые отношения (аксиомы) онтологии, но для этого можно использовать текстовый язык IDEF5.

## 15. Опишите методологии моделирования и описания бизнеспроцессов IDEF6- IDEF8.

**IDEF6** – обоснование проектных действий. IDEF6 позволяет значительно упрощать процесс получения информации о моделировании, ее представление и применение при создании фирмами управленческих систем. Большая часть способов моделирования концентрируется на создаваемых моделях, не углубляясь в их разработку. Вариант IDEF6 нацелен именно на разработку.

**IDEF7** — аудит информационных систем. К сожалению, он так и не получил своего развития и описания. Сейчас с этой целью используются свободный подход моделирования этапов процесса или блоков системы, для которых требуется аудит, а также наполнение, последовательность и частота логирования изменений данных и отработки процессов системы для проведения необходимых аудитов.

**IDEF8** — User Interface Modeling. Метод создания пользовательских интерфейсов. В данный момент при разработке интерфейсов основное внимание уделяют их внешнему виду. IDFE8 сосредоточен на программировании оптимальной взаимной коммуникации пользователя и интерфейса на 3 уровнях: операции (какая она); вариантах взаимодействия, которые зависят от специфической роли пользователя (как именно тот или иной пользователь

должен выполнять ее); и на составляющих интерфейса (элементах управления, предлагаемых им для операции).

# 16. Опишите методологии моделирования и описания бизнеспроцессов IDEF9- IDEF14.

**IDEF9** — метод исследования бизнес-ограничений. Призван облегчить обнаружение и анализ ограничений в условиях работы компании. Как правило, при создании моделей не в полном объеме описывают ограничения, способные изменить ход процессов в организации. Информация об основных ограничениях, характере их влияния в лучшем варианте остается не до конца согласованной, нераспределенной рационально, однако нередко она в принципе отсутствует. Это не всегда означает нежизнеспособность построенных моделей. Просто их воплощение будет сопровождаться определенными сложностями, что приведет к нереализованному потенциалу. Вместе с тем, когда имеет место именно совершенствование структур или адаптация к вероятным изменениям, информация об ограничениях становится очень важной.

- **IDEF10** методология моделирования архитектуры выполнения (Implementation Architecture Modeling).
- **IDEF11** методология моделирования информационных артефактов (Information Artifact Modeling).
- **IDEF12** методология организационного моделирования (Organization Modeling).
- **IDEF13** методология трёхсхемного проектирования преобразования данных. Данные методологии так и не были полностью разработаны, несмотря на высокую востребованность стандартизации анализа в упомянутых сферах проектирования систем.
- **IDEF14** Network Design метод проектирования компьютерных сетей, основу которых составляют специфические сетевые компоненты, конфигурации сетей, анализ требований. Способ также поддерживает решение по разумному распределению финансовых средств, что позволяет существенно экономить.



# 17. Опишите методологию моделирования системы в виде диаграммы информационных потоков DFD.

Диаграммы информационных потоков DFD — это иерархия функциональных процессов, связывающих потоки информации. Целью представления является демонстрация преобразования каждым процессом входных данных в выходные, а также выявление отношений между процессами.

По этому методу модель системы определяют в виде иерархии диаграмм информационных потоков, описывающих асинхронный процесс преобразования данных от их ввода в систему до выдачи пользователю. Информационные источники (сущности извне) порождают потоки информации, переносящие данные к процессам или подсистемам. Те же преобразуют данные в новые потоки, которые передают сведения к другим подсистемам или процессам, накопителям информации или внешним сущностям – потребителям данных.

В диаграммах потоков информации есть ряд составляющих, ключевые из которых:

- внешние сущности;
- системы и подсистемы;
- процессы;
- накопители информации;
- информационные потоки.

**Внешнюю сущность** обозначают в виде квадрата, который находится над диаграммой и бросает на нее тень. Так удобнее выделять символ среди остальных

**Подсистему** идентифицируют по номеру – для этого он и предназначен. В поле имени вводят ее название в виде предложения, где есть подлежащее, соответствующие дополнения и определения.

**Процесс** является преобразованием по определенному алгоритму входных информационных потоков в выходные. Физически он реализуется рядом способов: созданием в компании отдела, осуществляющего обработку входной документации, отчетов; подготовкой программ; использованием логического устройства в виде аппарата и т.д.

**Накопитель** данных является абстрактным устройством, где хранят информацию. Эти данные в любой момент можно перенести в накопитель и, спустя определенное время, вычленить. При этом варианты размещения и вычленения могут быть разными. В качестве накопителя информации можно использовать ящик в картотеке, микрофишу, таблицу, файл и т.д.

**Поток данных** определяет сведения, которые передаются через некоторое соединение от источника к приемнику. Поток сведений на диаграмме отражают в виде линии, которая заканчивается на стрелку, показывающую, куда движется поток. У каждого потока данных есть имя, которое отражает содержащуюся в нем информацию.