Machine Learning in Robotics Lecture 2: Regression

Prof. Dongheui Lee

Institute of Automatic Control Engineering Technische Universität München

dhlee@tum.de

Regression problems

- The goal is to make quantitative (real valued) predictions on the basis of a vector of features or attributes
- Examples: house prices, stock values, survival time, fuel efficiency of cars, etc.
- Questions: What can we assume about the problem? How do we formalize the regression problem? How do we evaluate predictions?

Linear Regression

• Linear regression assumes that expected value of the output given an input is linear.

$$y^{(i)} = wx^{(i)} + \epsilon \tag{1}$$

input x	output y	
1	1	
2	2	
3	2.2	
4	3.1	
1.5	1.9	

 $x^{(i)}$: i-th input $y^{(i)}$: i-th output

Linear Least Squares Regression : Single Parameter

- Which value of w makes the output values most likely?
- One that minimizes sum of squares of residuals.

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - wx^{(i)})^{2}$$

$$w =$$

We can use it for prediction.

Linear Least Squares Regression : Single Parameter

- Which value of w makes the output values most likely?
- One that minimizes sum of squares of residuals.

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - wx^{(i)})^{2}$$

$$w = \frac{\sum_{i=1}^{n} x^{(i)}y^{(i)}}{\sum_{i=1}^{n} x^{(i)}^{2}}$$

We can use it for prediction.

Linear Least Squares Regression

We need to define a class of functions (types of predictions we will try to make) such as linear predictions:

$$f(x) = w_0 + w_1 x \tag{2}$$

where w_0 and w_1 are the parameters we need to set.

We need an estimation criterion so as to be able to select appropriate values for our parameters (w_0 and w_1) based on the training set $\{(x^{(i)}, y^{(i)}), \dots, (x^{(n)}, y^{(n)})\}$

For example, we can use the empirical loss:

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))^2$$
 (3)

Estimating the parameters

· We minimize the empirical squared loss

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - w_{0} - w_{1}x^{(i)})^{2}$$
(4)

 By setting the derivatives with respect to w₀ and w₁ to zero we get necessary conditions for the optimal parameter values

$$\frac{\partial}{\partial w_0} E = 0$$

$$\frac{\partial}{\partial w_1} E = 0$$
(5)

Estimating the parameters

• By setting the derivatives with respect to w_0 and w_1 to zero

$$\frac{\partial}{\partial w_0} E = 0$$

$$\frac{\partial}{\partial w_1} E = 0$$
(6)

we get necessary conditions for the optimal parameter values

$$w_{0} = \frac{\sum y^{(i)} \sum x^{(i)^{2}} - \sum x^{(i)} \sum x^{(i)} y^{(i)}}{n \sum x^{(i)^{2}} - (\sum x^{(i)})^{2}}$$

$$w_{1} = \frac{n \sum x^{(i)} y^{(i)} - \sum x^{(i)} \sum y^{(i)}}{n \sum x^{(i)^{2}} - (\sum x^{(i)})^{2}}$$
(7)

Linear regression problem with multiple variables

We can express the solution a bit more generally by resorting to a matrix notation

so that f(x) = Xw.

The result becomes

$$\mathbf{w}^{\star} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Solving Linear regression in matrix notation

Our empirical loss becomes $E = \frac{1}{n} ||y - Xw||^2$.

By setting the derivatives of E with respect to w to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$\frac{\partial}{\partial \mathbf{w}} E = \frac{1}{n} \frac{\partial}{\partial \mathbf{w}} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$

$$= \frac{1}{n} \frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{y}^T \mathbf{y})$$

$$= \frac{1}{n} (\frac{\partial \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}}{\partial \mathbf{w}} - 2 \mathbf{y}^T \mathbf{X})$$

$$= \frac{1}{n} (2 \mathbf{w}^T \mathbf{X}^T \mathbf{X} - 2 \mathbf{y}^T \mathbf{X}) = 0$$

which yields

$$\mathbf{w}^{\star} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Gradient Descent

- Another way to minimize E(w)
- Start with an initial value of w, keep changing w to reduce E(w)

$$w_j := w_j - \alpha \frac{\partial}{\partial w_j} E(\mathbf{w})$$

$$w_j := w_j - 2\alpha (f(\mathbf{x}) - y) x_j$$

- Batch Gradient Descent
 - All training data is taken into account

$$w_j := w_j - \frac{\alpha}{n} \sum_{i=1}^n (f(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$

Incremental (Stochastic) Gradient Descent

$$w_j :=$$

Introduction

Gradient Descent

- Another way to minimize E(w)
- Start with an initial value of w, keep changing w to reduce E(w)

$$w_j := w_j - \alpha \frac{\partial}{\partial w_j} E(\mathbf{w})$$

$$w_j := w_j - 2\alpha (f(\mathbf{x}) - y) x_j$$

Batch Gradient Descent

Introduction

All training data is taken into account

$$w_j := w_j - \frac{\alpha}{n} \sum_{i=1}^n (f(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$

· Incremental (Stochastic) Gradient Descent

$$w_j := w_j - \alpha(f(\mathbf{x}^{(i)}) - y^{(i)})x_j^{(i)}, \text{ for } i = 1 \text{ to } n$$

Probabilistic approach

Assume

$$\begin{split} y^{(i)} &= \pmb{x}^{(i)} \pmb{w} + \epsilon^{(i)} \\ \epsilon^{(i)} &\sim \mathcal{N}(0, \sigma^2) \\ p(y^{(i)} | \pmb{x}^{(i)}; \pmb{w}) &= \frac{1}{\sqrt{2\pi}\sigma} \exp{(-\frac{(y^{(i)} - \pmb{x}^{(i)} \pmb{w})^2}{2\sigma^2})} \end{split}$$

Likelihood

$$L(\mathbf{w}) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}; \mathbf{w})$$
$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \mathbf{x}^{(i)}\mathbf{w})^{2}}{2\sigma^{2}}\right)$$

 Choose parameters to maximize the likelihood = same as minimizing LMS

Beyond linear regression

The linear regression functions

$$f(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_m x_m$$

are convenient because they are linear in the parameters, not necessarily in the input x

 We can easily generalize these classes of functions to be non-linear functions of the inputs x but still linear in the parameters w. For example: mth order polynomial prediction

$$f(\mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_m x^m$$

Application

Quadratic Regression

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_1 x_2 + w_5 x_2^2$$

Polynomial Curve Fitting

$$f(\mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_m x^m$$

Minimize the empirical error

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))^{n}$$

Polynomial Curve Fitting with different orders

Polynomial Curve Fitting

Root-mean-square error & Polynomial coefficients

	m=0	m = 1	m = 3	m = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w ₉ *				125201.43

Polynomial Curve Fitting

9th order polynomials by increasing the training data, n = 15and n = 100

Introduction

Application

Regularization

Penalize large coefficient values

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (f(x^{(i)}, \mathbf{w}) - y^{(i)})^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Introduction

Application

Regularization

Root-mean-square error & Polynomial coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Phenological Application: Temperature-phenology relationship

Can we detect a response to temperature in phenology?

Jochner. 2008, Ellwood et al. 2013.

Robotics Applications: Odometry calibration

Estimate the pose (x, y, θ) of a mobile robot given the angular velocity of each wheel (ω_L, ω_R)

Odometry calibration consists in estimating W

Robotics Applications: Odometry calibration

$$\begin{aligned}
x_{t+1} &= x_t + v cos(\theta) \Delta T \\
y_{t+1} &= y_t + v sin(\theta) \Delta T \\
\theta_{t+1} &= \theta_t + \omega \Delta T
\end{aligned}
\Longrightarrow
\begin{vmatrix}
x_N - x_0 \\
y_N - y_0
\end{vmatrix} = \mathbf{X}(\omega_R, \omega_L) \begin{bmatrix} w_{11} \\ w_{12} \end{bmatrix} \\
\theta_N - \theta_0 &= \mathbf{Z}(\omega_R, \omega_L) \begin{bmatrix} w_{21} \\ w_{22} \end{bmatrix}$$

Executing M trajectories the parameters $(w_{11}, w_{12}, w_{21}, w_{22})$ can be identified using Linear Regression

Antonelli G., Chiaverini S., and Fusco G. *A Calibration Method for Odometry of Mobile Robots Based on the Least-Squares Technique: Theory and Experimental Validation.* Transactions on Robotics. 2005.

Robotics Applications: Obstacle avoidance

Assign an attractive potential (u_{att}) to the goal position and repulsive potentials (u_{rep}) to the obstacles

$$u = u_{att} + u_{rep} \rightarrow f_j = \frac{\partial}{\partial p_j} u_{att} + \frac{\partial}{\partial p_j} u_{rep}$$

Robotics Applications: Obstacle avoidance

A collision-free trajectory is generated using Gradient Descent

$$\boldsymbol{p}^{(i+1)} = \boldsymbol{p}^{(i)} - \alpha \frac{\boldsymbol{f}^{(i)}}{\|\boldsymbol{f}\|}$$

Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 1986.

Reference

- Bishop, Pattern Recognition and Machine Learning Chap. 1.1, 3, 6.4.1, 6.4.2
- Mitchell, Machine Learning Chap. 4.4.3, 8.3

