

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-40911

(43)公開日 平成9年(1997)2月10日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ		技術表示箇所
C 0 9 D 183/08	PMV		C 0 9 D 183/08	PMV	
5/00	PSD		5/00	PSD	

審査請求 未請求 請求項の数3 FD (全 8 頁)

		E	
(21)出願番号	特願平7 -213055	(71) 出願人	000001409
			関西ペイント株式会社
(22)出顧日	平成7年(1995)7月31日		兵庫県尼崎市神崎町33番1号
		(71) 出願人	000002060
			信越化学工業株式会社
		A	東京都千代田区大手町二丁目6番1号
		(72)発明者	柳亭平
			神奈川県平塚市東八幡 4丁目17番1号 関
		ο. Α	西ペイント株式会社内
		(72)発明者	古瀬 晴雄
			神奈川県平塚市東八幡 4丁目17番1号 関
-			西ペイント株式会社内
		(74)代理人	弁理士 片桐 光治
			最終頁に続く

(54) 【発明の名称】 強料組成物

(57)【要約】

【課題】 耐汚れ性、耐水性、耐アルカリ性、耐酸性に 優れた塗膜を形成しうる塗料組成物の提供。

【解決手段】 有機溶剤系塗料組成物に、(1)メルカプト官能基を含有するアルコキシシラン化合物100重量部、及び(2)テトラアルコキシシラン化合物20~2000重量部のシラン混合物の部分共加水分解縮合物であるシリコーン化合物を配合してなることを特徴とする塗料組成物。

(2)

【請求項1】 有機溶剤系塗料組成物に、(1)メルカプト官能基を含有するアルコキシシラン化合物 100 重量部、及び(2)テトラアルコキシシラン化合物

20~2000重量部のシラン混合物の部分 共加水分解縮合物であるシリコーン化合物を配合してな ることを特徴とする塗料組成物。

【請求項2】 シリコーン化合物が平均重合度3~100であることを特徴とする請求項1記載の塗料組成物。

【請求項3】 シリコーン化合物が、塗料組成物の樹脂 固形成分100重量部に対して0.1~50重量部であ ることを特徴とする請求項1記載の塗料組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、屋外の建造物或いは構造物に装飾または保護を目的に適用される耐クラック性、可撓性、耐汚れ性、耐水性、耐アルカリ性、耐酸性等に優れた塗膜を形成する塗料組成物に関するものである。

[0002]

【従来の技術および発明が解決しようとする課題】従来、屋外の構造物等に塗装される塗料として、耐候性に優れた屋外用塗料が開発されている。特にアクリルシリコーン樹脂塗料、及びフッ素樹脂塗料等は太陽光線、及び雨等による塗膜劣化が少ないため、屋外用塗料として適していると考えられてきた。しかしながら、これ等の塗料は暴露中に大気中の埃、砂塵、鉄粉及び近年問題になってきている酸性雨等の影響で塗膜表面に汚染物質が付着し、塗膜外観が悪くなるという欠点があった。

【0003】また大気中の埃の付着を防止する技術とし 30 い流される。 て、塗膜の表面固有抵抗値を下げ、埃等の静電気的付着 を防止する各種の帯電防止剤、例えば、エレクトロスト りっパー TS-2B(花王株式会社製、商品名、界面 活性剤系)、コルコートR(コルコート株式会社製、商品名、アルキルシリケート系)を塗料に添加、またはそ のものを塗膜面に塗布して処理する方法が知られてい ものを塗膜面に塗布して処理する方法が知られてい 性能も同時にる。しかしながら、これらの方法では、本質的に添加す 【0009】 アルコキシジが難しく、屋外用途に適していなかった。 物を部分共力

【0004】また、耐酸性雨に優れた有機塗料組成物として塗料に、アルキルシリケートオリゴマーとシランカップリング剤(エポキシ官能性シランの事前加水分解物)との縮合反応物を添加したものが提案されている

(特開平6-306328)。この方法で調製した縮合 反応物は、アルキルシリケートオリゴマー、シランカップリング剤オリゴマー、及び両者のブロック縮合物との 混合物になり、縮合反応物中にエポキシ基が均一に導入 されないため、存在するアルキルシリケートオリゴマー が水により溶出し、その結果として塗膜の耐水性、特に 耐アルカリ性が低下してしまうという欠点がある。また 該塗膜は、塗膜形成時にクラックが生じ易く、更に可撓 性も十分でないといった欠点もある。

[0005]

【課題を解決するための手段】本発明者等は、上記した問題点を解決するために鋭意研究を重ねた結果、塗膜表面の水接触角と屋外暴露における汚染物質の塗膜表面への付着とは水接触角が小さい程汚染物質の付着が少ないといった密接な関係があり、その水接触角を小さくする物質としてメルカプト官能基を含有するアルコキシシランとテトラアルコキシシランとの混合物を部分共加水分解縮合することにより得られる、一分子中にメルカプト官能基とアルコキシ基とを均一に含有する特定のシリコーン化合物を配合させてなる塗料組成物が、耐汚れ性、耐水性、耐アルカリ性、耐酸性等に優れた塗膜を提供出来ることを見い出し、本発明を完成させるに至った。

【0006】本発明は、有機溶剤系塗料組成物に、

(1)メルカプト官能基を含有するアルコキシシラン化合物100重量部と、(2)テトラアルコキシシラン化合物20~2000重量部とのシラン混合物を部分共加水分解縮合させることにより得られるシリコーン化合物を配合してなる塗料組成物を提供するものである。

[0007]

【0008】親水性を有する塗膜表面を形成する方法は、例えば、塗料組成物に、親水性物質(帯電防止剤、アルキルシリケートオリゴマーとシランカップリング剤の加水分解化合物との縮合反応物)を添加することにより可能となるが、塗膜の耐水性及び、耐アルカリ性等の性能も同時に低下するため屋外用途には適していない。

【0009】本発明によれば、メルカプト基を含有する アルコキシシラン化合物とテトラアルコキシシラン化合 物を部分共加水分解縮合させることからこれらの成分が 均一にシリコーン化合物中に導入されるので耐水性、耐 アルカリ性等の性能が低下しない塗膜が形成できる。

【0010】本発明で使用する有機溶剤系塗料組成物は、従来から屋外用として使用されている公知の未架橋型及び架橋型の塗料組成物が使用出来る。未架橋型及び架橋型塗料組成物は、有機溶剤中に未架橋型または架橋型の有機樹脂を溶解もしくは分散させてなる樹脂溶液で構成されるものであり、常温または加熱により未架橋または架橋塗膜が形成されるものである。

【 0 0 1 1 】未架橋型塗料組成物としては、例えば、硝 ・ 化綿ラッカー、アクリルラッカー塗料、ビニル樹脂塗

. . . · -

料、フッ素樹脂塗料等が挙げられる。

【0012】架橋型塗料組成物としては、常温または加熱によって架橋出来るものが好適に使用出来る。具体的には、例えば、不飽和脂肪酸変性アルキッド樹脂塗料等の酸化架橋型塗料;ポリエステルメラミン樹脂塗料、アクリルメラミン樹脂塗料、フッ素メラミン樹脂塗料等のメラミン架橋型塗料;(ブロック)ポリイソシアネートアクリル樹脂塗料、(ブロック)ポリイソシアネートポリエステル樹脂塗料、(ブロック)ポリイソシアネートフッ素樹脂塗料等のイソシアネート架橋型樹脂塗料;アルコキシシラン基含有アクリル樹脂塗料等の湿気架橋型樹脂塗料;エポキシ基含有アクリル樹脂塗料等のエポキシ架橋型樹脂塗料等が挙げられる。

【0013】有機溶剤としては、樹脂を溶解または分散し、シリコーン化合物の官能基、加水分解性基と実質的に反応しないものであれば特に制限無しに使用することが出来る。具体的には、例えば、酢酸エステル類(酢酸エチル、酢酸プロピル等)、ケトン類(メチルイソブチルケトン等)、芳香族炭化水素類(キシレン、トルエン等)、脂肪族炭化水素類(ヘプタン等)、アルコール類(プロピルアルコール等)及びエーテル類(エチルセロソルブ、ブチルセロソルブ等)等が挙げられる。これらの有機溶剤は1種もしくは2種以上組み合わせて使用することが出来る。

【0014】本発明で使用する有機溶剤系塗料組成物には、必要に応じて、例えば、着色剤、充填剤、硬化触媒、垂れ止め剤、ハジキ防止剤、紫外線吸収剤、紫外線安定剤等を使用することが出来る。

【0015】本発明で使用するシリコーン化合物は、メルカプト官能基を含有するアルコキシシラン化合物及び 30 テトラアルコキシシラン化合物の混合物を、部分共加水分解縮合させることにより得られる。

【0016】出発原料となるメルカプト官能基を含有するアルコキシシラン化合物としては、メルカプト官能基が直接ケイ素原子に結合していても、また、炭素1~10の2価の炭化水素基を介してケイ素原子に結合していてもかまわない、該化合物としては、従来から公知のものを使用することができ、具体的には以下のものを例示することが出来る。

[0017]

γーメルカプトプロピルトリメトキシシラン
γーメルカプトプロピルトリブトキシシラン
γーメルカプトプロピルメチルジメトキシシラン
γーメルカプトプロピルメチルジェトキシシラン
βーメルカプトメチルフェニルエチルトリメトキシシラン

メルカプトメチルトリメトキシシラン 6ーメルカプトヘキシルトリメトキシシラン 10ーメルカプトデシルトリメトキシシラン 【0018】これらのメルカプト官能基を含有するアルコキシシラン化合物は、単独で使用しても良く、また複数種を混合して使用しても良い。これらの化合物の中でも、耐汚れ性、耐久性などの塗膜性能が得られることから、特にγーメルカプトプロピルトリメトキシシラン、γーメルカプトプロピルトリエトキシシラン、γーメルカプトプロピルメチルジメトキシシランを使用するのが好ましい。

【0019】このメルカプト基は、塗料の有機樹脂との間に化学反応により化学結合を形成する、極性構造により水素結合を形成する或いは親和性に基づく相互作用などにより、本シリコーン化合物の塗膜からの脱離を防止するように機能するものである。

【0020】もう一方の出発原料であるテトラアルコキシシラン化合物としては、以下のものを具体例として挙 げることが出来る。

テトラメトキシシラン

テトラエトキシシラン

テトライソプロポキシシラン

テトラプトキシシラン

これらの化合物は、1種もしくは2種以上組合わせて使用することができる。これらの中でもアルコキシシラン基が容易に加水分解してシラノール基を生成し、耐汚れ性に優れた塗膜を形成することから、テトラメトキシシラン及びテトラエトキシシランを使用することが、特に好ましい。

【0021】上記メルカプト官能基を含有するシリコーン化合物及びテトラアルコキシシラン化合物の配合割合は、メルカプト官能基を含有するアルコキシシラン100重量部に対して、テトラアルコキシシランは20~200重量部の範囲を満たす比率で使用するのが好ましい。20重量部未満では、この共加水分解縮合物の親水性が低下する結果、目的の耐汚れ性、耐酸性等が劣り好ましくない。また、2000重量部を超えると、有機樹脂との親和性、反応性が乏しくなり、塗膜中に本シリコーン化合物を固定する能力が不足し、加水分解後塗膜から脱落しやすくなるため好ましくない。更に、50~1000重量部の範囲を満たすのが、特に好ましい。

【0022】本発明で使用するシリコーン化合物は平均 重合度3~100の範囲であることが好ましい。重合度 が3未満では、揮発したり、塗膜表面に十分な親水性を 付与できなかったり、或いは塗膜中から溶出し易くなる ので好ましくない。一方、重合度が100を超えると、 本シリコーン化合物は塗膜中で分散が悪く、均一な塗膜 の形成が難しくなるため好ましくない。更に、重合度は 5~80の範囲内にあることが好ましい。

【0023】シリコーン化合物の製造方法は、従来から 公知の方法に基づき、例えば、加水分解触媒存在下、上 記メルカプト官能基を含有するアルコキシシラン化合物 50 及びテトラアルコキシシラン化合物の混合物中に、水を

加え部分共加水分解縮合反応をおこなうことにより得る ことが出来る。部分共加水分解縮合において、部分共加 水分解の程度は例えば、全く加水分解されない場合は平 均重合度が0であり、100%加水分解された場合には 重合度が上がりすぎてゲル化するようにその重合度と密 接な関係があり、本発明で使用するシリコーン化合物に おいては平均重合度3~100に調整される。

【0024】使用される加水分解縮合触媒としては、従 来から公知の種々のものを使用することができる。具体 例としては、例えば、酢酸、酪酸、マレイン酸、クエン 酸などの有機酸類、塩酸、硝酸、リン酸、硫酸などの無 機酸類、トリエチルアミンなどの塩基性化合物類、テト ラブチルチタネート、ジブチル錫ジラウレートなどの有 機金属塩類、KF、NH4 Fなどの含F化合物類などを 挙げることが出来る。上記触媒は単独で使用しても良 く、或いは複数種を併用しても良い。触媒の使用量は、 0.0001~1モル%の範囲が好ましい。これらの触 媒の中でも、含F化合物は、反応活性に富むシラノール 基の縮合を促進する機能に優れているため、シラノール 基を少量しか含有しない物を合成するのに適しており、 これにより塗料貯蔵安定性が良好となることから特にこ のものを使用することが好ましい。

【0025】この部分共加水分解縮合反応を実施するに 際して、必要に応じて有機溶剤を使用しても良い。使用 可能な有機溶剤としては、例えば、メタノール、エタノ ール、イソプロパノール、t-ブタノールなどのアルコ ール類;アセトン、メチルイソプチルケトンなどのケト ン類;ジブチルエーテルなどのエーテル類;酢酸エチル などのエステル類;トルエンなどの芳香族類などを例示 することが出来る。特にメタノール、エタノール、アセ 30 トンなどの有機溶剤が好ましい。

【0026】本部分共加水分解縮合反応に使用する水量 は、希望する重合度により決定する。過剰に添加する と、アルコキシ基が破壊され、最終的にゲル化に至るた め厳密に決定する必要がある。特に、触媒に含F化合物 を使用する場合、含F化合物が完全に加水分解縮合を進 行させる能力が有るため、添加する水量により重合度が 決定出来、任意の分子量の設定が可能となるので好まし い。即ち、平均重合度Mの目的物を調製するためには、 Mモルのアルコキシシラン化合物に対して(M-1)モ 40 ルの水を使用すれば良い。その他の触媒の場合、これよ り若干増量する必要がある。

【0027】部分共加水分解/縮合反応は、室温或いは 150℃以下の温度範囲で行なうことができる。室温未 満では反応の進行が遅くなり実用的でなく、また150 ℃を越えるとメルカプト基などの有機置換基の熱分解が 起こるため好ましくない。

【0028】上記シリコーン化合物の配合割合は、有機 溶剤系塗料組成物の有機樹脂固形分100重量部当たり ○. 1~50重量部、好ましくは1.0~20重量部の 50 シリコーン化合物Aの調製例

範囲が望ましい。配合割合が0.1重量部未満である と、童膜の耐汚れ性が十分得られず、一方、50重量部 を越えると鍂膜の耐水性、耐酸性、耐アルカリ性等が悪 くなるので好ましくない。

【0029】本発明の塗料組成物によって形成される塗 膜は、屋外に暴露した場合、雨等の作用により水接触角 は徐々に低下するが、暴露前の塗膜の表面を酸性処理

(2.5重量%硫酸水に20℃で24時間浸漬し、次い で付着した硫酸水を水洗し乾燥を行った)後の水接触角 を測定することにより、暴露塗膜の最終到達水接触角を 予測することが出来る。

【0030】本発明の塗料組成物は、形成させた塗膜の 表面を酸処理(2.5重量%硫酸水に20℃で24時間 浸漬し、次いで付着した硫酸水を水洗し、乾燥を行っ た)し、その塗膜表面が水に対する接触角で70度以 下、好ましくは10~60の範囲に入ることが好まし い。接触角が70度を上回ると耐汚れ性が低下するので 好ましくなく、接触角が10度を下回ると塗膜の耐水 性、耐酸性、耐アルカリ性等が低下するので好ましくな 20 V

【0031】本発明の塗料組成物は、上記した塗料組成 物を基材に塗装し、室温もしくは加熱により乾燥して塗 膜を形成することが出来る。基材としては、例えば、ス レート、コンクリート等の無機質基材;鉄鋼、アルミニ ューム、亜鉛、ステンレス及びこれらのものをクロム 酸、リン酸亜鉛等で表面処理したもの等の金属質基材; ポリ塩化ビニル、ポリエチレンテレフタレート、ポリエ チレン等のプラスチック基材等が挙げられる。また、こ れらの基材に必要に応じて公知のプライマー、中塗り塗 料、上塗り塗料等を塗装した基材も使用することが出来 る。

【0032】塗装方法は、例えば、刷毛塗装、吹き付け **塗装、ローラー塗装、浸漬塗装等の手段で行うことが出** 来る。塗布量は、一般的には1~100μm、好ましく は $10\sim60\mu$ mの範囲が望ましい。

【0033】塗膜の乾燥は、塗料の種類によって条件を 選択すれば良いが、一般的には、室温乾燥では1時間~ 1 週間程度、加熱乾燥では60~300℃で30秒~1 時間で十分と考える。

[0034]

【実施例】以下、フッ素樹脂塗料(実施例1~6および 比較例1~5)、ポリイソシアネートウレタン樹脂塗料 (実施例7~12および比較例6~10)、不飽和脂肪 酸変性アルキッド樹脂塗料(実施例13~18および比 較例11~15)を用いた実施例および比較例により本 発明を詳細に説明する。実施例中の「部」及び「%」は 重量基準である。

【0035】メルカプト官能基及びアルコキシ基含有シ リコーン化合物の調製

- 3 -

温度計、窒素導入管、滴下ロートを備えた1000ml の反応容器に、ソーメルカプトプロピルトリメトキシシ ラン196g(1.00mol)、テトラメトキシシラ ン152g (1.00mol)、メタノール320g (10mol) & KFO. 06g (0. 001mol) を仕込み撹拌下室温で水28.8g(1.60mol) をゆっくり滴下した。滴下終了後室温で3時間撹拌した 後、メタノール還溜下2時間加熱撹拌した。この後、低 沸分を減圧留去、濾過することにより無色透明液体を2 31g得た。このようにして得た物質をGPC測定した 10 結果、平均重合度は5.4(設定重合度=5.0)であ り、ほぼ設定通りであった。アルコキシ基量をアルカリ クラッキング法で定量したところ、42.0重量%(設 定値42.9重量%)であり、アルコキシ基は設定通り に残存していることが確認された。また、メチルグリニ ャール試薬による活性水素を定量したところ、3.51 ×10⁻³mol/g(メルカプト基由来の活性水素量 (設定値) = 3. 6.4×10^{-3} mol/g) であり、メ ルカプト基もほぼ設定通り導入されていると確認され た。また、 ${}^{1}H-NMR$ の測定結果(メルカプト基とメ トキシ基との積分比)から、得られた物質の構造は、設 定通り以下の構造であった。

平均組成式: 【0036】

【化1】

(HS-C₃ H₆ -) $_{0.50}$ Si (OCH₃) $_{1.90}$ O_{0.80} 【0037】このようにして得たシリコーン化合物を化合物Aとする。

【0038】化合物B~Dおよび比較例用化合物E、F の調製例

以下同様にして、使用するメルカプト官能性アルコキシシラン、テトラアルコキシシラン及び触媒の種類及び設定量を変化させて、表1に示すような設定構造の化合物B~Dを調製した。表1中、A~Dの配合量は重量部で表わす。

【0039】また、本発明における部分共加水分解縮合法(以下製造方法I)の代わりに、実施例1と同一組成で、製造方法のみ以下のように変化させて比較例用化合物E、Fを調製した。表1中、EおよびFの配合量は重量部で表わす。

【0040】比較調製例1 (製造方法II)

テトラアルコキシシランオリゴマーとの反応:テトラメトキシシランの代わりに同シランの平均4量体を1.00mol使用し、加水分解用水を(1.60-0.75=0.85mol)使用し、また触媒としてHClを併用し、実施例1と同様に反応を行うことにより、無色透明液体である化合物Eを228g得た。活性水素量を測定したところ、4.66×10⁻³mol/gであり、メルカプト基は完全には導入されてはいなかった。また、GPC測定の結果、主として2ピークから成る分子量分

布が観測され、本反応物は均一性に欠けるものと解った。

【0041】比較調製例2(製造方法III)

テトラアルコキシシランオリゴマーとシランカップリング剤オリゴマーとの反応による調製:テトラメトキシシランの代わりに同シランの平均4量体を1.00mol 使用し、またャーメルカプトプロピルトリメトキシシランの代わりに、同シランを事前に3.00molの水で加水分解したものを使用し、また触媒としてHClを使用し、実施例1と同様に反応を行うことにより、無色透明液体である化合物Fを242g得た。活性水素量を測定したところ、3.68×10⁻³mol/gであり、メルカプト基はほぼ完全に導入されていた。しかしながら、GPC測定の結果、平均重合度は49とかなり高かった。

【0042】実施例1~6および比較例1~5 表2記載の配合(単位:重量部)で、実施例1~6、比 較例1~5の塗料を作成した。

フッカロン白エナメル:商標名、関西ペイント(株) 製、非架橋型フッ素樹脂系上塗り塗料、樹脂固形分=3 5%

リン酸亜鉛処理した亜鉛鋼板(亜鉛目付け:片面130 g/m^2 、1.2mm厚さ)にフッカロンFRプライマー(商標名、関西ペイント(株)製、非架橋型フッ素樹脂系下塗り塗料)を乾燥膜厚が約 10μ mになるようにエアースプレー塗装を行った。20で10分間放置後、実施例 $1\sim6$ 、比較例 $1\sim5$ の塗料を乾燥膜厚が約 25μ mになるようにエアースプレー塗装を行った後、235で15分間乾燥を行って試験板を作成した。塗膜性能試験結果を表2に示した。

【0043】実施例7~12および比較例6~10 表3記載の配合(単位:重量部)で、実施例7~12、 比較例6~10の塗料を作成した。

レタンPAQ白エナメル: 商標名、関西ペイント(株) 製、ポリイソシアネートアクリル樹脂系上塗り塗料、樹脂固形分=36%

リン酸亜鉛処理した亜鉛鋼板(亜鉛目付け:片面130 g/m^2 、1.2mm厚さ)にレタンCWプライマー(商標名、関西ペイント(株)製、エポキシ樹脂系下塗り塗料)を乾燥膜厚が約30 μ mになるようにエアースプレー塗装を行い、80℃で30分間乾燥を行って基材を作成した。次いで、得られた基材に、実施例 $7\sim1$ 2、比較例 $6\sim10$ の塗料を乾燥膜厚が約 30μ mになるようにエアースプレー塗装を行った後、80℃で30分間乾燥を行って試験板を作成した。塗膜性能試験結果を表3に示した。

【0044】実施例13~18および比較例11~15 表4記載の配合(単位:重量部)で、実施例13~1 8、比較例11~15の塗料を作成した。

50 ネオフタリット白エナメル:商標名、関西ペイント

(6)

1.0

(株) 製、不飽和脂肪酸変性アルキッド樹脂系上塗り塗 料、樹脂固形分=32%

#320サンドペーパー処理した磨き軟鋼板(SPC C、O. 8mm) にラスタイトNC(商標名、関西ペイ ント(株)製、不飽和脂肪酸変性アルキッド樹脂系下塗 り塗料)を乾燥膜厚が約30μmになるようにエアース プレー塗装を行った。20℃で10分間放置後、実施例 13~18及び比較例11~15の塗料を乾燥膜厚が約 30μmになるようにエアースプレー塗装を行った後、 20℃で7日間乾燥を行って試験板を作成した。 途膜性 10 能試験結果を表4に示した。

【0045】表2、表3、表4中の*1~*8は下の意味を 示す。

- *1: 商標名、コルコート(株)製、テトラメチルシリケ ートの低縮合物
- *2;商標名、信越化学工業(株)製、γーメルカプトプ ロピルトリメトキシシラン
- *3;水接触角:試験板を2.5重量%硫酸水に20℃で 24時間浸漬し、次いで付着した硫酸水を水洗し、乾燥 を行った後、協和化学(株)製コンタクタングルメータ 20 ること無しに、*4と同様な方法で測定した。 ーDCAA型を用い、塗膜表面に脱イオン水0.03cc の水滴を滴下し、20℃で3分後に測定した数値。
- *4:耐水性 :試験板を40℃温水に24時間浸漬した 後の塗膜外観を目視で評価した。
- ◎=試験前の塗板に対して、外観変化のないもの。
- ○=試験前の塗板に対して、極わずかに外観変化が認め られるもの。
- =試験前の塗板に対して、若干外観変化が認められ るもの。

△=試験前の塗板に対して、外観変化が認められるも の。

×=試験前の童板に対して、著しく外観変化が認められ るもの。

外観変化とは、釜面の汚れ、色変化、膨れ、割れ、艶ぼ け、剥がれ、軟化等を言う。

- *5;耐アルカリ性A:試験板を1重量%の苛性ソーダ水 に20℃で3日間浸漬した後の塗膜外観を目視で観察し た。評価は*4と同様の方法で行った。
- *6;耐アルカリ性B:試験板を3重量%の炭酸ソーダ水 に20℃で3日間浸漬した後の塗膜外観を目視で観察し た。評価は*4と同様の方法で行った。

*7:屋外暴露試験:関西ペイント(株)東京工場・南 面30度の角度に試験板を設置した。それぞれ、3ケ 月、6ケ月、12ケ月暴露された試験板を、水洗い等の 試料調整をすること無しに、塗膜特性を評価した。

: *4と同様な方法で、塗面の汚れ度合 外観(汚れ) いを評価した。

水接触角 :試料調整(硫酸浸漬、水洗い等)す

明度差 (Δ L*): 暴露前と暴露後の明度 (L値) の差 を Δ L* とした。 L 値の測定には、ミノルタ (株) 製の 色彩色差計CR-300を使用した。明度差△L*は、 数値が小さいほど汚れが少ないことを示す。

*8;商標名、関西ペイント(株)製、HMDI系ウレタ ン硬化剤

[0046]

【表1】

表 1

	. 4% 1						
化合物および比較用化合物	Α	В	С	D	E	F	
γ ーメルカプトプロピルトリメトキシシラン	(a)	1.00	_	_	1.00	1.00	_
β- (メルカプトメチルフェニル) エチルト	-	1.00	_	1	1	-	
γーメルカプトプロピルメチルジエトキシシ		<u>–</u> :	1.00	-	_		
(a) の事前加水分解物		_		-	-	-	1.00
テトラメトキシシラン	(Ъ)	1.00	4.00	10.00	1		_
テトラエトキシシラン			_	-	0.50	-	
(b) の4量体		_	-	1	ļ	1.00	1.00
KF		0.001	0.001	0.001	0. 01	-	1
HC1		-	0.005	-		0.005	0.005
H. O		1.60	4.75	10.82	1.35	1. 60	8.75
製造方法		t	1	I	I	II ·	Ш
メルカプト基合有率 (mol%)		50	20	9	67	50	50
Q単位含有率 (mol %)	 	50	80	91	33	50	,50
重合度		5	20	60	10	5	

比 較 例

8

286

286

2

286

【表 4】 **BEST AVAILABLE COPY**

化合物F メチルシリケート51*1

1

2

[0047]

286 286 286 フッカロン白エナメル 286 286 286 286 25 化合物A 0.5 化合物B 5 5 化合物C 化合物D 5 ' 5 化合物E 5 5 KBM-803** 35 77 22 31 25 41 **75** . 32 26 **59** 28 0 0 0 × × 0 0 × 0 0 0 0 0 0 0 × 0 × 0 0 0 X 0 0 0 X 0 0 0 × 0 外観 (汚れ) 0

* *【表2】

5

6

1

15.8

6

278

10

80

0

0

×

80

10.5

×

79

14.3

×

82

15.6

1.6

12

278

5 4

10

36

0

0

38

1.8

0

39

1.6

0

1.8

表 2

4

水接触角A** 耐水性*4 耐アルカリ性A** 78 36 74 55 60 33 24 52 屋 3ケ月 水接触角 61 32 23 14.3 1.1 外 ΔL* 1.1 7.9 3. 9 11.3 4.6 4.9 4.8 1.1 1.3 0 0 0 ×` 0 0 × 盎 0 0 0 外観 (汚れ) 77

43 30 36 24 75 31 6ケ月 水接触角 **59** 32 23 31 ΔL* E0 1.7 18.4 1.3 1.1 試 42 1.0 0.9 1.0 1.0

16.3 **(** 0 0 0 0 0 0 0 × 外観 (汚れ) 0 32 35 77 12ケ月 水接触角 **75** 26 **59** 29 23 33 25 41

1.0

10

31

0

0

0

32

1.3

0

31

1.2

0

1.3

1.0

5

10

24

Q

0

24

1.1

0

24

1.1

24

1.0

[0048]

ΔL.

化合物A

化合物B 化合物C

化合物D

化合物E 化合物F

メチルシリケート5 1**

レタンPAQ硬化剤**

3ヶ月 水接触角

6ケ月 水接触角

12ケ月 水接触角

ΔL.

ΔL*

Vr.

外観 (汚れ)

外観(汚れ)

外観 (汚れ)

KBM-803*2

耐アルカリ性A**

水接触角A**

耐水性**

[0049]

※ ※【表3】 · 表 3 実 施 例 8 9 10 11 レタンPAQ白エナメル 278 278 278 278 278

10

38

0

0

39

1.1

0

39

1.0

0.9

0.5

10

52

0

0

0

58

4.2

0

54

4.2

0

52

3.8

4.1

1.0

1.0

25

10

27

0

0

(

26

1.4

0

27

1.4

0

27

1.1

(7) 12 11

寒 施 例

. .

5

288

×

17.7

10

278

5

10

82

(C)

82

12.4

80

15.5

X

78

17.0

1.1

278

10

31

×

0

33

1.1

31

1.3

31.

1.0

1.0

比 餃 例

278

10

30

X

×

0

48

3.6

(2)

32

1.2

0

32

1.1

1.3

7

278

5

10

33

×

×

0

36

1.6

0

1.1

0

32

1.0

表 4

(8)

						发 4	<u>.</u>	•					
			実 施 例					比較例					
			13	14 .	15	16	17	18	11	12	13	14	15
ネオフタリット白エナメル		312	312	312	312	312	312	312	312	312	312	312	
化合物A		0.5	5	25									
化名	物B					5							
化化	物C						5						
化台	物D							5 -					
化合物E					_				5				
化合物F										5			
メチルシリケート51*1											5		
KBM-803*2								•				5	
水接触角A**		50	25	20	23	21	32	71	31	28	24	74	
前	アルカリヤ	≛ B**	0	©	0	0	0	0	0	×	×	×	0
		外観(汚れ)	0	0	0	0	0	0	×	0	0	٥	×
屋	3ケ月	水接触角	55	27	21	23	22	38	78	52	48	25	76
外:		ΔL.	3.7	1. 1	1.3	0.8	1.2	1.9	10.8	3.6	3.3	1.1	10.8
暴		外観 (汚れ)	0	· ©	②	0	0	0	×	0	0	· ©	×
露	6 ケ月	水接触角	51	25	20	23	21	33	71	32	28	25	74
(株) (株)		Vr.	3.7	0.9	1.0	0. 9	1.2	1.4	14.5	1.3	1.1	1.1	13.0
		外観 (汚れ)	0	0	②	0	0	0	×	0	0	0	×
•7	12ケ月	水接触角	51	25	20	23	21	34	71	3 2	28	25	74
		ΔL.	8.6	0.9	1.0	0.8	1.0	1.4	17.0	1.2	1.0	1.0	13.8

[0050]

【発明の効果】本発明の塗料組成物から得られる硬化塗膜は、屋外に暴露されても汚れが着かず、耐水性、耐酸性、耐アルカリ性などが良好である。暴露後の塗膜の表面特性は、暴露前と比較して水接触角が著しく低下し親水性を示す。これは暴露環境における湿気、雨(特に酸性雨)等が、塗装中のシリコーン化合物に作用し、加水分解により生成するシラノール基の作用により塗膜表面の水接触角が低下し親水化される。親水化された塗膜は、大気中の汚れ成分の一つである油等の有機物質の付着力を弱め、一旦、塗面に付着しても雨により容易に洗い流され、また同時に親水性塗膜は、表面固有抵抗(親水化)を低下させるため、大気中の汚れ成分である砂塵、埃等の静電気付着を防止し、耐汚れ性に優れた塗膜が形成できる。本発明の塗料組成物によって形成される

塗膜は屋外暴露により早期に水接触角が低下し、3~6 ケ月後でほぼ平衡に達する。この平衡に達したときの水 接触角は、暴露前の塗膜を2.5重量%硫酸水に24時間浸漬した後の水接触角とほぼ等しくなる。即ち、暴露 前の塗膜を、2.5重量%硫酸水に24時間浸漬した時 の水接触角を測定することにより暴露後の汚れの状態を 推測することが出来る。また、シリコーン化合物に由来 するメルカプト官能基は、塗料中のポリマーと強く結び 付くように作用し、しかも本シリコーン化合物中には分 子中にメルカプト基を含有しない成分が極めて少量しか 存在しないために、水、酸性溶液、アルカリ性溶液等の 環境での溶出、加水分解が抑制され、塗膜に付与された 耐汚れ性と耐水性、耐酸性、耐アルカリ性等の性能を極 めて耐久性のあるものにすることが出来る。

フロントページの続き

(72) 発明者 大西 和彦

神奈川県平塚市東八幡4丁目17番1号 関西ペイント株式会社内

(72) 発明者 山谷 正明

群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料

技術研究所内

(72) 発明者 吉沢 正博

群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内