楽しい自作電子回路雑誌

2. 原点 創作への第一歩(2)

2. 糸でんわ(8) 記録への挑戦

7. 電波天文(4) 自分で作る電波望遠鏡

11. 流星の音(2) 電力線による妨害を和らげる ハイパスフィルタをつくる

12. 「LもCも 104」のAM用 LPフィルタ

14. FCZ コイルの等価回路を求める。

17. 読者通信 18. 雑記帖

009

MAY 2005

やさしい通信技術入門講座(8)

記録への挑戦

実験 26 粉雪の中の 200m

「ビューー もしもし・・・ビューー」

2005年3月18日17時、粉雪が強い風にあおられて 舞い、ほつほつ薄暗くなり始めた長野県下高郡山の内 町奥志賀高原の一角のことです。

糸でんわのカップの中から「ひゅうーー ビューー」という風の音が間断なく聞こえています。 実験相手は 200m 先にいる JA 1IVO 藤田さんですが、雪が舞い上がると時々藤田さんの姿が見えなくなります。

耳をすますと風の音の合間に、微かに、「もしもし、

聞こえますか?・・・」という声がきこえました。 「聞こえますよ、こちらの声はきこえますか?」「聞こえます。完全に聞こえます。メリット3ぐらい」「糸でんわの記録が200mにのびたのですね」「風がなければバッチリですね」「おめでとうございます。」

そのときの実験メンバーであるJA1IVQとJA1XPO 金城さんと私JH1FCZ大久保の3人は、もう完全に暗 くなってしまった雪の中で寒さも忘れて糸でんわの DX記録の達成を喜びあいました。

糸でんわの先にいる相手は遠くて写真に写らない

創作への第一歩 (2)

キットを作るということは「ものまね」です。 この「ものまね」という言葉にはどこかに卑下し

た響きが感じられます。 しかし 考えてみて下さい。 この世の中 に存在する人間が作り出したもの のほとんどが物まねではないで しょうか。

例えば、自分では新しい回路を 創作したと考えます。 しかし、そこで使った真空 管なり、トランジスタ、FETはすべて過去の人が作 り、基本的な使い方もすでに確立されていました。 抵抗やコンデンサについても同じ事が言えます。 それを組立てたプリント基板だって誰かが考えた ものですし、結線に使ったハンダだって、工具類も 誰かが考えて作られたものです。それらの使い方 すらすでに誰かが発表していた事でしょう。 こうして考えて行くと「100% オリジナル」な どという代物はこの世の中には存在しないことに なりますし、ここまでブレークダウンして考えれ

> ば、いろいろな回路や使い方を ジグソーパズルを組み合わせる 感覚で組み合わせる事によって 新しい回路(回路だけでなくアン テナでも工具でも良い)を作る事 は立派な創作だといえます。

問題はあなた自身がジグソーパズルのチップを 何枚持っているかという事です。 そしてその チップをどう組み合わせるかという事が次の課題 です。

ジグソーパズルを組んで行って、どうしても 持っていないチップがあった場合、それを自分で 作るということが「創作」だと考えれば多分気が 楽になるでしょう。

糸の中間点からの相手、、雪が舞うと見えなくなる

もちろんその夜のビールの味が最高だったのはいう までもありません。

そのときの装備

この実験で使った伝送糸は200mの水糸です。 軽い水糸ですが、さすがに200mともなると中央部にたるみが出来て雪面に触ってしまうので、糸の中央部を6mのカーボンファイバー製の釣り竿で釣り上げました。 釣り竿の先端は細くしなやかなので糸の振動を止めてしまう事はないと考えたからの対策でした。

TR カップは初め、ブリキ製の小型バケツを使用しました。 バケツの寸法は、口径 130mm、底経 100mm、 長さ 100mm です。

このバケツで記録が出来たわけですが、何となく音がこもりがちなので、後に紙コップに交代してみました。

信が加わります。 そんな具合ですから相手の信号を聞き直す事もたびたびありました。

実験 27 欲が出る
あっさり予定した記録が出てしまうと「もう少しは伸びそうだな」という話になりました。 しかし持ち合わせの水糸はあと10m程度しかありません。 しか

その結果は、信号レベルは少し下がりましたが音質はスッキリしました。 RSリポートでいうと24が33 になった感じでしょうか。 それに風による QRM(混

次の19日再度記録に挑戦する事にしました。 この日、JA1IVQは家に帰る事になり、代わりに JR3DKA大原さんがメンバーに加わりました。

し、「10mでも記録は伸ばすべきだ」という事になり

伝送糸は前の日より10m伸びて約210m。 風も納まって絶好の糸でんわ日和です。 前日経験していますから準備は順調に進みました。 そして記録は前日 邪魔をしていた風によるQRMも無くなって43ぐらいに上がりました。 使用したカップは紙コップです。これで記録は更に伸びました。

実験28 伝送速度は空気より早い

糸でんわには電気的な増幅器がついていませんから どうしても大きな声でしゃべるようになります。 昨 日と違って風がなくなったので、相手の声がとても小 さいのですが時々、直接聞こえて来ました。

それが何となく糸でんわを通じて聞こえる声と二重

雪のなかでの実験

バケツ、紙コップ、水糸、カーボンファイバ釣竿

CirQ 009-3

になって聞こえるような気がしました。

そこで先方に大きな声で「アー」といってもらい、終わりを「パッ」と切ってもらうようにたのみました。

結果は、糸でんわで「アーッ」が切れると、その後で空気を伝わって来た音(つまり普通の声)が「アーッ」と聞こえました。 完全に糸でんわの方が伝送速度が早いという事がわかりました。 糸でんわの糸の中を信号が超音速で走っていることになります。

記録を 188m に訂正

記録を更新した場合、正式な交信距離を計り直す必要が有ります。

200mを越す糸の長さを正確に計るということはすごく難しいことです。 幸い私は電線の長さを計る、ローラー回転式のコードスケーラーを持っていました。 これを使って計れるのではないかと考えたのですが、10mの水糸を実際に計って見ると計る度に誤差が出てしまい、正確な数字を出すことが出来ませんでした。

この原因は水糸が性質上滑りやすく、ローラーの上でスリップすることによって起ることがわかってきました。そこで2つのローラーの間を単に通すのではなく、測定用のローラーに水糸を一回捲きつけて見ました。その結果、何回も10mの水糸を9.86mと表示させることに成功しました。

いよいよ水糸の長さの測定です。 それにしても実験に使った水糸は長かったです。

測定が終わりました。 コードスケーラーの表示は

コードスケーラーと電線リールを改造した糸巻きー

何と「186.06m」です。 これに 10/9.86 の係数をかけても、188.7mにしかなりません。 これはショックでした。

しかし、落ち着いて考えてみればあたりまえの話でした。 と、いうのは、もともと水糸は200mしか買っていなかったのです。 初めに買った100mの一部をいろいろな用途に使っていたのですが、そのことが頭の中から完全に蒸発してしまっていたのです。

すごく残念でしたが、仕方がありません。 交信記録を 188m に訂正いたします。

マッ/\2.11 ?

実験のまとめをする際に伝送糸である水糸の中を走 る音の速度を計算してみました。

まず必要なのは実験をしたときの気温を-3℃として、このときの音の伝わる速度です。 空気中を伝わる音の速度は、

 $V = 331.5 + 0.6 \times t = 329.7$

V= 音の伝わる早さ m/sec. t= 温度 $^{\circ}$ で表わされますから、-3 $^{\circ}$ のときの音の速度は 329.7m/sec. ということになります。

したがって188mの距離を音が伝わってくるのに要する時間は、

 $188 \div 329.7 = 0.570$

の計算から 0.570 秒かかることになります。

糸でんわと空気中を伝わる音の時間差は感じとして 大体 0.3 秒位でした。 この値はあくまで「感じ」と いう領域を出ていませんから正確な数値を算出する事 は出来ませんが、概念を得るために計算することにし ました。

空気中を伝わるのに必要だった時間は 0.637 秒で、 糸でんわを伝わるのに必要だった時間はそれより 0.3 秒短い事になりますから、その差、つまり糸でんわを 伝わるのに必要だった時間は

0.570 - 0.3 = 0.270(10)

ということになります。

そのときの速度は、0.270 秒かかって 188m 伝わったのですから

188 ÷ 0.270 = 696.29(m/sec.) ということになります。

この速度を-3℃のときの音速でわると、

 $623.14 \div 329.7 = 2.11$

となりますから、超音速の単位であるマッハで示すと 実にマッハ2.11 だったということになります。

糸でんわの糸の中をあなたの声が超音速で走っているという事をあなた自身信じる事ができますか? これは大発見でした。

実験 29 MD による録音

今回の実験を記録するためにMDによる録音を試みました。

受信用のカップの中にマイクを突っ込んで録音するという至って原始的な方法で録音したのですが、人間の耳で判読出来ない弱い信号であっても録音機のアンプによって了解度が抜群に良くなる事が分かったのです。

もちろんそれで記録を伸ばすのはメカニカルな糸でんわとしてモラル上許されませんが、それが聞こえるという事は信号はたとえ弱くてもS/Nは思いのほか良かったという事です(マイクの方が人間の耳より感度が高い)。

受信した信号をメカニカルな方法で大きくする方法 も次の課題となる事でしょう。

また、伝送速度の測定実験の結果も録音したのですが、今の所測定値としてはうまく処理出来ていません。 したがってさきに表現したマッ/\2.11という数字は

残念ながら確定するには至りませんでしたが、糸でんわの伝送速度が超音速であることだけは間違いまちがいない事実として判明しました。

今回の実験考察

実験場所

糸電話の実験をやるのにはまっすぐの土地が必要です。しかも人や車の出入りのあるところでは糸が引っ掛かったりしたら困ります。 都会地では数 100mのまっ直ぐな土地で、騒音もなく、人の出入りのないと

ころなんてまずありません。 また、都会地では騒音 もなく静かだと思われる土地でも糸でんわにとっては 致命的なレベルの騒音が存在するものです。

都会では難しいという事になると「山の中」になるのですが、昨年の経験で夏の山の中は蝉の声に邪魔されてとても糸でんわどころの騒ぎではありませんでした。 野や山は静かだと考え易いのですが、鳥の声、昆虫の声、川の音、木の葉のさざめきの音等いろいるな雑音がある事も分かって来ました。

以上の事情を考慮して糸でんわの実験に適している 条件としては……、

- (1) 山の中
- (2) 近くに人家のない事
- (3) 近くに川が流れていない事、海の波の音も邪魔になる。
 - (4) 人や車の往来のないところ
 - (5) 道、または空間が数百メートルの直線で糸が張れる所
 - (6) 季節は冬、(木々に葉がない時、鳥や昆虫がいない)
 - (7) 雪が積もっている事(雪は吸音材として優れている)
 - (8) 風の静かな所

と、いった条件が考えられます。

今回実験したところは、あらかじめこれらの条件を ほぼ満足しているだろうと考えて実験場所として決定 しました。

ただ、「風の吹かない静かな所」はなかなか難しく、初日には風の影響をかなり大きく受けましたが、次の日は風も止んでほぼ理想的な条件出実験する事が出来ました。 特に夜、風が凪になる頃が最適でした。(寒さは厳しかったですが)

この場所は、幸いなことに工夫すればまだあと 200m <らいの場所は確保出来ますから、まだまだ記 録更新の可能性は十分あると期待しています。

また、谷越えの良い場所も見つけましたから、間に 釣り竿を立てなくてもかなり長い距離の通信が可能に なると思います。

ただ、実験場所が遠いので1年に数回しか実験出来ないのが玉にきずですが……。

谷越えの良い場所

糸電話のDX記録はTRカップの改良がない限りあと100m <らいが限界のような感じがしました。それには地声のQROも必要でしょうが……。

それ以上記録を伸ばそうと考えると、「糸電報」つまりCW(モールス符号による通信)が有効ではないかとこの時のメンバーの意見が一致しました。

なぜかといいますと、糸の長さが長くなるとどうしても信号の減衰が大きくなります。 この事を克服するには送信側から発する振動を大きくする事が第一だと考えるのです。 しかし、人間の声にはおのずから限度がありますから、直接送信用の振動板を振動させるCW信号が作れれば人間の声による振動よりかなり大きなものになり得ると考えたのです。

糸によるCWが良いとしても電気を使ってCWを作るのでは糸通信としては邪道だと思いますし、また面白くもありません。

どうやら電気を使わないでCW(A2)信号を作る事というのが次の宿題になりそうです。

また、CWを採用するにしてもCWの信号だけを周囲の騒音から浮き上がらせる細工(フィルター等)を考える事も重要な要素になりそうです。 もちろんその装置にも電気を使わない事はいうまでもありません。

こぼれ話

雪の中で糸でんわの実験をして始めてわかったので すが、雪が風に舞う音が糸に伝わって聞こえてくると いうことは、記録更新というドラマの進行を邪魔して

SS高速線

しまうのですが、一方では効果音としてムードを最高 に盛り上げるものでもあったと思います。

実験をやった場所は、積雪が2mもあるというところでした。 したがって電線がとても低いところに張ってあるように見えるのです。

高圧線、電灯線、電話線の並んだその下に「SS高速線」というマークのついた線が張ってあったのです。

世の中は変わったものです。 いつもはほとんど人 の住んでいないこの地にもコンピュータ用の信号線が 通っているのですね。

しかし、もっと面白かったのは、そのすぐ下に私たちの糸でんわの黄色い線が張ってあった事です。 この線だって空気を媒体としている音の速度より速い超音速の記録を作ったのですから高速線だったのです。

今回の実験に関する写真の撮影と MDによる録音は JA1XPO 金城さんが担当してくださいました。

あわびと訂正 本誌 006 号の8ページ、実験20の一番初めに、「JA φ CQO 小林さんから……」という記事がありましたが、これは「JA 1IVQ 藤田さん」の誤りで、「大連で幼稚園の保母をやっている娘に話したら『私たちの幼稚園でもやったことがあるよ……』といっていました」の間違いでした。

私の勘違いからお二人の方に大変ご迷惑をおかけしました。 お詫びすると共に訂正させていただきます。

CirQ 009-6

実践編のスタート

前号までの電波天文の歴史はいかがでしたでしょうか。 今回からはCirQ誌らしく、電子工作により組み立てる、簡単な電波望遠鏡について紹介いたします。本来はまず天体電波放射のメカニズムを説明すべきかもしれませんが、ジャンスキーやリーバーに習って実践してみましょう。 仕組みを理解して電波を受けてみると、電波望遠鏡がシンプルな原理の観測装置であることがお分かりいただけると思います。 高感度な受信機が容易に手に入る時代です。 たまには宇宙からの電波に耳をすましてみませんか。

誰でも出来る宇宙電波観測

読者全員ができる宇宙電波観測です。

FMラジオかアナログテレビの前に行って電源をONにしてください。次に放送が無い 周波数、または放送の無いチャンネルに合わせます。 FMラジオの"

図1:誰でもすぐに始められる宇宙電波観測

ザー"という雑音は、宇宙電波の雑音と受信機の雑音 が足し合わされたものです(図1)。

アナログテレビに映る"砂の嵐"も宇宙電波の雑音とテレビの内部雑音の足しあわせです。

F M放送の80MHz、アナログT V放送の200MHzあたりでは電離層はたいていスカスカで、宇宙からの電波は受信機に入ってきます。 VHFで強い天体電波は太陽、星が密集する天の川の銀河電波、銀河中心巨大ブラックホールのいて座Aなどです。 但しFMラジオの雑音や、画面を見ているだけでは宇宙電波を識別することはできません。 なぜなら放送を受信するときはS(信号)とN(受信機雑音)で、SとNの比較です。 しかし天体電波の雑音N★と受信機雑音Nは性質が同じ雑音です。 聴覚ではなく受信機に現れる雑音の総和を測定して天体電波を判別したほうが良いでしょう。

受信機とバックエンド

次にすこしだけ本格的な電波望遠鏡の構成です。 普通のラジオや通信型受信機はアンテナからの電波を

短波受信機
Sメータ AGC AM FM AF

図 2 :短波受信機と電波望遠鏡受信機、バックエンド装置の位置づけ

増幅・検波する機能は一つの箱に入っており、一体で "受信機"と呼ばれています(図2上)。 電波望遠鏡 で "受信機"と呼ぶのはアンテナに接続される最初の RF低雑音アンプとその周辺です。 リーバーの失敗原 因のところで述べましたが、最初のアンプが悪ければ どんなに大きなパラボラで電波を集めても、アンプの 雑音で宇宙からの雑音のほうが埋もれてしまいます。 受信機の出力を料理するのがバックエンドです(図2 下)。 短波受信機ではAM,SSBなどの受信モードがあるように、電波天文観測では全電力検波(トータルパワー観測)、周波数分析(スペクトル分光観測)、電波干渉(コリレータ)などの観測方法があります。 受信機とバックエンドを組み合わせながら目的に応じた観測を電波望遠鏡は行います。

短波受信機などを使った電波望遠鏡

(1) Sメータ観測法(梅コース)

それではいちばん簡単な電波望遠鏡を手近な機器で

図3:Sメータ観測法とスピーカ雑音観測法、2つの簡単な観測方法。 後者では観測中に音量ツマミに触れてはいけない。また、最初からSメータが振るほどノイズが多い場合は使えない。

図4:短波受信機 FRG-7700からSメータの 電圧を取り出して測っている様子

作ってみましょう。

用意するのはワイヤーアンテナ、アナログSメータの付いたゼネカバ受信機、連載の一回目で作った時定数回路とテスタを用意してください。(図3、4)に示

すようにSメータの後ろに時定数回路を経由してDVMテスタを接続し、受信機は人工電波の無い周波数にあわせます。ゼネカバ受信機のSメータは強度の違う通信を均一な音量で聞くためにAGC(オートゲインコントロール)という回路が入っています。 AGC回路が高周波増幅部で検波を行いSメータに表示している信号強度をトータルパワー観測用に拝借して使う方法です。 Sメータ観測法の欠点は、AGCがある程度以上の信号強度にならないと働かないように設定されているため、強力なバースト電波でないと検出できないことです。 つまり、太陽のバースト電波、雷などバリバリというような雑音電波は受信可能ですが、Sメータが振らないような微弱なレベルの雑音信号増加はこの方法では捉えることが難しくなります。

FRG7700受信機で一晩観測してみましたが、何も受かりませんでした。

(2) スピーカ雑音検波法(竹コース)

次に挑戦するのはスピーカからの低周波信号の雑音を検波する方法です(図3)。 高感度とするために受信機の中にあるRF高周波信号(またはF中間周波数)を検波したいのですが、回路がわからないままいじると壊してしまう危険があります。 これに比べスピーカ端子なら簡単です。 AMモードで検波されたあとの低周波雑音をもう一度検波して直流電圧にします。

(1)のSメータ法に比べるとメータが振れないレベルの信号に対して有効ですが、検波できる帯域が可聴周波数の範囲(1KHz程度)で狭くなります。 また音量ボリュームを変えてしまうとレベルが変わってしまいます。 そして強い信号が入ってSメータが振れてしまえば音量は AGC で調整されてしまう欠点があります。

(図5)はスピーカ雑音検波法で3日間500KHzを観測した結果です。 太陽が昇る時間帯に毎日雑音電波が強くなっています。 これは太陽放射によって上昇する電離層からの雑音で、天体電波そのものではありません。 また、人工雑音らしい雑音も入っています。 残念なが53日間の間に太陽電波バーストや雷はありませんでしたが、日々装置を仕掛けて出勤、帰宅して観測結果をチェックするのは楽しいものです。

図5:スピーカ雑音観測による3日間の500KHz観測データ。 毎朝7時頃に雑音が最大になっている。

図 6: 同調形アクティブアンプの一例、MFJ-1020C

(3) 専用低雑音プリアンプを使った雑音検波法(松コース) スピーカ雑音検波法がなんとなく子供だましに思える方は、選択度の高いプリアンプを用いると各種の周波数で高感度観測が行うことも可能です。(図6)はアメリカの無線機器会社MFJから発売されている同調形アクティブアンプ1020C(\$80)です。 FCZ寺子屋キットのプリンプ(21MHz)を2段にしても良いでしょう。 このような回路を、(2)で用いた検波器の前に置けば、ダイオードの感度は数100MHzまで伸び

ていますので、立派な全電力測定の電波望遠鏡です。 静穏な場所でアンテナに八木を用いれば充分に銀河電 波が狙えます。但し、プリアンプ方式では選択度が悪 いと混信を受けやすく、周波数の選定が難しくなりま す。 また都市部では周辺の雑音レベルが高く受信困 難なケースもあります。プリアンプ雑音検波法は機会 を見て実験してみる予定です。

DVMテスタとパソコンを用いたバックエンド

最初はリーバーも買えなかったペンレコーダは今でも高価な記録装置です。 また用紙、ペンも消耗品で、メカはメンテナンスも必要です。 しかしリーバーのように不眠不休で電圧計を読み続けるのも辛いところです。 リモート読み出しの可能なDVMテスタ(三和電気PC-20、9980円)にUSB接続ケーブル(KB-USB、5800円)をPC-Link ソフトウェア(4000円)があれば、PCはペンレコーダ相当として使えます(図7)。時定数回路や検波回路を組みあわせれば、簡単なバックエンド装置です。 検波回路のあとは時定数約10

図7:PCに接続するだけでペンレコーダ相当になる、三和電気PC-20とUSBインターフェース、PC-Linkソフト

秒で平均化されていますから、サンプリングを 1 0 秒 に一回にして観測を行います。しばらく観察しなが 5、グラフの上限と下限を見やすいように調整してく ださい。10秒に一度のデータ取得で一日のデータ量が 約 200KB になりました。また取得したデータは CSV 形式という数列になりますので、エクセルなどの表計 算ソフトに取り込み、表計算でさらに平滑処理をなど データ処理を行い、グラフ加工することができます。

PCでデータを取り込む電波望遠鏡バックエンドの注意点は、PC自体が強力な雑音源であることです。調整のとき受信機の近くにPCを置き、アンテナ線がPCに近い位置にあると、PCからの雑音が影響します。ADSLも強力な雑音源ですので悪影響を感じたらモデムの電源を切りましょう。電波天文台ではPCをシールドケースに入れて使っている例もあります。また、雑音は電源経由で受信機に回り込むこともありますからコンセントはずして利用します。 PC-20テスタは内部電池で150時間連続測定が出来ます。(図5)の観測を行うとき雑音を最小にする試行錯誤を行い部屋の中で(図8)のように受信機、テスタ、PCを離して設置しています。

今後の予定など

今回使った時定数回路の部品が手元に無い方には、 部品一式を実費50円(ゲルマダイオード 1N60、抵抗 $1\ M\Omega$ 、電解コンデンサ $47\ \mu$ F、切手代用可、返信 用封筒) で頒布します。希望するメールを、 <mx6s@ybb.co.jp>へ送ってください。

テスター式は東洋計測器 (www.keisokuki-land.co.jp) などから通信販売で購入することが出来ます。

実践編ではパラボラを用いマイクロ波での太陽電波 受信を行います。 最後に電波天体についての解説を 行う予定です。

(参考文献、参考資料、画像の引用元)

Amateur Radio Astronomy, Robert. M. Sickels

MFJ ,www.mfjenterprises.com

三和電気 www.sanwa-meter.co.jp/japan/product/dmm/pc20.htm

図8:PCからの雑音を最小にするため受信機、 テスタ、PCを離して設置、測定している室内の様子

訂正 前号の文を下記の通り訂正します。

(原文)"主役は荒れた太陽からの高エネルギー粒子による電離層に影響が及びます。"

(修文)"主役は荒れた太陽からの高エネルギー粒子 によるもので電離層に影響が及びます。

流星の音電力線小路を取り除く を作る

電磁波は直接耳で聞く事が出来る

前号でJF2NXS 岡田 格さんが書かれました「対馬のオメガ局が聞こえていた頃」によれば、大型のコイル(アンテナ)の出力を AF アンプにつなぐことによって、数100Hz以上の電磁波を音として直接耳で聞く事が出来ることが判りました。

この場合、電力線の50Hzまたは60Hzの音が受信の 邪魔になる事は容易に想像されます。

そこで電力線による妨害を少しでも和らげるようなハイパスフィルタ(HPF.)を設計してみました。 入出カインピーダンスは1kΩです。 設計した回路を第1図に示します。

ここで問題になるのが、530mHと、260mHのコイルですが、商売柄このコイルは特別に巻いてもらいました。 フィルタに使うコイルは AF 周波数帯において Q の高い物が要求されますので御注意ください。

コンデンサはフィルムコンデンサを使い $474,473,223(0.47~\mu~F,0.047~\mu~F,0.022~\mu~F)$ の3本を並 列接続して、 $0.539~\mu~F$ としました。 この組み合わせは、474と683の組み合わせでも良いでしょう。

部品が揃ったのでバラックセットを組み上げてみま した。 将来、しっかり作り直す事を考えて部品の リード線は極力長いまま配線しました(写真 1)。

特性を測定する

HPF.として組み上がったので特性を見て見ることにしました。

信号源としてAF発振器、出力電圧の測定にAFミリ

バルを使いました。 測定周波数は広範囲に亘るため E6系(1,1.5,2.2,3.3,4.7,6.8,10)で33Hzから680kHzとしました。

測定結果を第2図に示します。

今回の実験は、コイルの完成が遅れたためここまでとしましたが、もしこれでも電力線からの妨害を受けるようだったら、別にノッチフィルタの製作もしてみたいと思います。

8月のペルセウス流星群までには是非システムとして 完成したいと考えています。

第1図 AC除去H.P.F.

写真 1 H.P.F.のバラックセット

第2図 実測した周波数特性

雑音がスパッと消える

Lt Ct 104 AM用 ローパス

仁木 弘 JA3PAV

ひな祭りの頃、ローカル局の家でキャリブレーションのJR3GOX児玉OMとアマチュア無線応援団サポーターズのOMさんとともにアイボールしていましたところ、104表示のコイルがあるのですが、使い道は発案できるでしょうか、ということになりました。

見ると、コイルは外側をコアが被っており 7mm径 12mm高の小型のFB なものでして 104表示ですから 100mH です。

サンプルをいただいて帰宅して早速、AM用フィルター設計法を検討して見ると極めて興味深い事柄が見えてきましたので試作しLPFとして設計・試作しました。その過程をご紹介します。

CWを聞くときに、よく使われるAFフィルターは、カットオフ周波数が、1kHz以下であり、製作には色々と工夫をすることになりますが、カットオフ周波数が、3kHzのAM用のAFフィルターは、汎用部品で構

成が可能であり、比較的容易に製作ができます。 それでは、苦手な、設計計算をはじめます。

1. ユニットフィルター

フィルターの代表的な特性には、バターワース特性 とチェビシェフ特性とがあります。

前者は、通過帯域が平坦ですがスカート特性がチェビシェフ特性に比べて少し甘いです。 後者は、通過帯域内で 0.5dB 程度の波をうっています。

今回は、一般に使用されているバターワース特性の AFフィルターを設計することにします。

計算には、苦手な複素数計算が必要ですが、ユニットフィルターの方法を利用しますと極めて簡単に設計 計算が可能です。

これは、カットオフ周波数 f を 1Hz, 特性インピーダンスRを 1Ω としたときの、LとCで回路が設計されています(図 1-1)。

これを見ると、π型フィルターの場合には、Lo=2H (ヘンリー), Co=1F(ファラッド)で構成されています。 スカート特性を重視するときには、このπ型の基本形を複数段重ねて接続すればよいのです(アマチュア無線 ハンドブックより)。

2. 周波数・特性インピーダンスの変換

一般に AF アンプに使用するには、カットオフ周波

数fは3kHz程度、特性インピーダンスRは1kΩです。前出のユニットフィルターからの変換法は至って簡単でして、

 $L = L_0 \times R / (2 \pi f)$

 $C = C_0 / (2 \pi f \times R)$

で計算することが出来ます。

それでは、計算してみましょう。 f=3kHz, $R=1k\Omega$, L0=2H, C0=1Fを代入して計算します。 結果は、L=106mH, C=0.05 μ F です。ここで、106mHは一般的でないので、104表示の100mHを使うことにします。 そして、C=0.05 μ F its、汎用でなじみの深い 104

図 1-1 3kHzのAM用のAFフィルターの特性

表示の $0.1 \, \mu$ Fを2個直列で使います。これでLもCも104で表示できるAM用AFフィルターが設計できました(201-2)。

3. 製作と特性

製作には、FCZのトランジスター基板に実装しました。 ソフトスペアナで特性を観察してみますと、一段では、スカート特性が不満でした。 一般に、同じフィルターをn段重ねるとスカート特性を改善できますので、今回は3段重ねることにしました(図 1-3A)。

このようにするとコンデンサがやたらと多く見づらいので、コンデンサを統合します。 すると図 1-3Bのとおり、すっきりとLもCも104でつくる AM用LPF の設計が出来ました。このことにより、-60dBで6.5kHzというすばらしい特性が得られました(図 2)。

図2 このフィルターの周波数特性

図2は20dBのアッテネータを入れて測定しています。 次に、実装図、部品表を図3に示します。 尚、このLは、特注品で小型化し必要な特性を得るために、外側全面コアの物を使用しています。(小型でないものは市販されていますが、特性が平坦にはなりませんでした)

4. 利用に際して

(1) 一般に、CW用フィルターは、特性インピーダンスが低く、スピーカ直前に入れる方法を取りますが、このAM用フィルターは、特性インピーダンスが

図3 実装図、部品表

1kΩと高いので、インピーダンスマッチングの関係から AF アンプ直前(TX では MC の直後)に入れると大きい効果が期待できます。FCZの超再生受信機につないで受信して見ますと、シャリシャリノイズが極端に低減され極めて聞きやすく耳に優しくなると好評です。

(2) 利用例

受信用: PSN等DC受信機、超再生受信機、再生受信機、人ンスケルチFM受信機

送信用: DCトランシーバ等の送信機 (スプリアス電波法改正 10kHz以上で43dB+10logPあるいは50dBの小さい減衰量、をクリヤーしている)

(3) 拡張利用法

C=0.1 × 2(全部の C を 2 倍)にすると、カットオフ 周波数が、2kHz となります。

これですと、CW用には少し広いですがCW/AM両 用としても有効に利用が可能です。

5. 入手方法

このAM用LPFはアマチュア無線応援団キャリブ レーションより「No.506 AM用LPF」キットとして 販売をされることになりました。

キット含む入手情報、お問い合わせは下記へ。 アマチュア無線応援団キャリプレーション http://www.max.hi-ho.ne.jp/calibration/ TEL/FAX 06-6326-5564

FCZ コイルの

シミュレータのための

等価回路を求める

JA1XB 石井正紀

私はMC7という回路シミュレータを使って回路設計を行っていますが、重要な部品であるFCZコイルについての詳細なデータがないため、シミュレーション用のモデルを作りたいと常々考えていました。

この度、FCZ研究所のQメータ(デリカ651)を貸して頂けることになり、また、リタイアする前の会社(東光株式会社)から、YHP-4194Aというデジタルインピーダンスアナライザー、コイルの測定用のスタンダード機(メグロMQ-161)並びに、メグロMQ-171というVHF用Qメータを無理して使わして頂くことが出来たので、念願であったシミュレータに必要なデータの測定をしてみました。

Qを測ると言う事

Qの測定は、今日ではデジタル表示の測定機を使い使用周波数でインダクタンスとQを同時に表示出来ますが、以前からあるアナログタイプのQメータでは、可変バリコンに容量値と同時にインダクタンス値が表

示されていて、インダクタンス 値のメモリを有効にするには周 波数は特定の値にセットしなけ ればなりませんでした。

その値として、 1μ Hと 400pF で共振する周波数である、7.958MHzが選ばれたのです。そしてこの10倍のインダクタンス値を測るためには、7.958MHz を $\sqrt{10}$ で割った 2.516MHz という周波数になっていたのです。

このため、07S01の同調側の約30uHのインダクタンスを測るには2.516MHzという周波数が使われ、カタログに表示されていたQの値も1MHzでの値ではなく、この周波数での値であろうと思われます。

Qを実測する

早速、Qメータ(デリカ651)に付属していた治具を取り付けてそれぞれの周波数でQを測ってみました。

その結果は 1MHz から 3.5MHz まではそれらしい値 になりましたが、5MHz より高い周波数での Q は公称 値より高かったり低かったりで、07S25では公称値の 半分近くの計測結果でした。

Q の値が想定値をずれるという結果が出たため、 YHP-4194A というデジタルインピーダンスアナライザーを使い測定を進めることにしました。

この測定器でも 14MHz まではまずまずの値が得られましたが 21MHz、28MHz は公称値と随分離れたデータになってしまいました。

更に東光株式会社コイルの測定用のスタンダード機(メグロMQ-161)を無理して貸して頂き測定をすすめました。 しかし、測定器は信頼出来るはずすがコイルと接続する治具部分に不都合があったので、コイルがうまく挿入できてケースもきちんとグランドできる治具を作成して再度測定を試みました。

これで何とか30MHzまでの測定値が納得出来ました。 その後メグロMQ-171というVHF用Qメータも借りる ことが出来たので、これも浮遊容量の少ない治具を作成

第1表 各種測定器によるL1-3のQの値

洲名	測定周波数	同調容量	デリカ651	YHP-4194A	火JDMQ-1601	אָלי <u>ואס-171</u>	公称值
7801	1 MHz	820pF	94	97	95	-	100
7S1R9	1.9MHz	380pF	70	70.6	7,1	- ·	75
7S3R5	3.5MHz	180pF	71	72.6	67		75
7805	5MHz	150pF	90	100	98		70
7507	7MHz	100pF	64	100	81		80
7,509	9MHz	82pF	86	104	114		70
7S14	14MHz	68pF	55	60.3	70	.	65
7S25	21MHz	47pF	52	48.8	74	61	95
7\$25	28MHz	33pF	41	34.5	73	63	. 70
7,550	50MHz	15pF		-		57	45
7880	80MHz	7pF	-		- .	76	80
75144	144MHz	7pF		-		70	60

して 144MHzまでQの値を測定することが出来ました。 第 1表にFCZ07Sコイルを各種Qメータで計測した 結果を掲げます。 デリカの取説にありましたが、Q の値の計測は精度を得るのは難しいもののようです。

等価回路を求める

Qが納得出来る値で計測されたのでいよいよシミュ レータで必要となる等価回路を求めるための計測に進 みます。

第1図 求める等価回路

第1図に求める等価回路を示します。 本当はL1-3 には中点タップが有るのですがそれを考慮すると結合 係数を2個 Lを1個 rを1個追加し定義しなければ なりませんので今回は簡単のため1次と2次の巻き線の定義にとどめました。

L1-3 L4-6 はそれぞれ FCZ7S コイルの 1-3 ピン、 4-6 ピン間のインダクタンスです。 rL1-3 rL4-6 は それぞれの巻き線の等価直列抵抗 (いわゆる銅損に対 応するもの)、 RL1-3 RL4-6 は等価並列抵抗 (いわ ゆる鉄損に対応します)です。

これらの値を算出するためにはどういう計測をすれば良いのでしょうか。 答えはL1-3 L4-6のインダクタンスとQを単独に、および相手側を短絡したときの値が必要です。

L1-3 L4-6 のインダクタンスと Q は普通に Q メータの守備範囲ですから、定義周波数で同調するコンデンサの容量を測定してエクセルの表を用いて簡単にインダクタンスの値を知ることができます。

しかし相手側を短絡した時のインダクタンスとQの 値の計測は1次2次の結合係数が高い(0.9以上)場合 特に大変です。 なぜかといいますと結合係数が高け れば高いほど相手を短絡したときのインダクタンスは 打ち消されて小さくなってQメータ内蔵のバリコンで はカバー出来なくなるからです。

今回は470PFから2200pFのディップドマイカコンデンサを各種用意し並列に追加して測定しました。それでも07S01は計測できずYHP-4194Aデジタル機器の助けを借りました。

もう一つはその時のQですが、結合係数が高くても 銅損分rL1-3、rL4-6が少なければ相手を短絡した時の Qは余り下がらないのですが、銅損分が多いとQが低くなって普通のQメータでは計れません。 今回は 07S01から 07S09までは相手を短絡したときのQが 10以下でやはり YHP-4194A の助けを借りました。

相手を短絡したときのL4-6インダクタンス値の計測はインダクタンスが小さい分、さらに困難でした。そこで直列並列の各抵抗に関連を持たせて相手短絡時のL4-6のインダクタンスQの値が無くとも等価回路が求められるように工夫しました。

すなわちrL1-3とrL4-6 は本当は線材の引き出し部があり、少し違うのですが巻き線に比例すると考えました。 RL1-3とRL4-6 はそれぞれのインダクタンスに比例させました。

この仮定で測定パラメータが1つ余りました。 L4-6のQが計測値と等価回路で求められた値が出てきます。 この2つが一致すれば良いのですが、さて等価の結果はどうだったでしょうか。 第2表に 等価の計算に用いた計測データを示し、第3表に 等価されたパラメータを示します。

等価はエクセルの表計算とMC7という回路シミュレータを用いました。

この辺は紙面では上手<説明することが難し<省略します。 読者からの要望があれば別途説明を試みたいと思います。

第3表の等価した結果をご覧頂くと、07S09以下の低い周波数のコイルは1次2次の結合係数が大きく、07S14以上の高い周波数のコイルは小さくなっていることが歴然とわかると思います。

コイル名 測定周波数		L1-3		L4-6		L1-3(L4-6ショート)	
		同調容量	Q	同調容量	Q	同調容量	Q
7S01	1 MHz	820pF	94	6560pF	50	25100pF	2.2
7S1R9	1.9MHz	380pF	73	2970pF	44	23500pF	5
7S3R5	3.5MHz	180pF	73	1800pF	44	15700pF	4
7805	5MHz	150pF	100	1080pF	80	8050pF	7.4
7807	7MHz	100pF	89	790pF	41	7140pF	5
7809	9MHz	82pF	109	541pF	47	6810pF	7
7\$14	14MHz	68pF	70	391pF	46	1160pF	32
7S25	21MHz	47pF	72	293pF	49	780pF	37
7S25	28MHz	33pF	71	176pF	50	500pF	41
7850	50MHz	15pF	79	117pF	50	259pF	38
7880	80MHz	7pF	80	51.4pF	52	133pF	61
7S144	144MHz	7pF	70	41.3pF	55	66pF	64

第2表 等価回路を求めるために計測したデータ

洲名	インダクタンス		結合係数 直列抵抗 立		並列抵抗 直列抵抗	並列抵抗	L4-6の Q		
	L1-3	L4-6	1次:2次	r L1-3	R L1-3	r L4-6	R L4-6	実測値	等価値_
7S01	30.1 μ H	3.86 µ H	0.983	1.03Ω	36.6kΩ	0.37Ω	4.69kΩ	50	50
7S1R9	11.0 μ Η	2.37 µ H	0.916	2.42Ω	162kΩ	0.78Ω	21 . 3kΩ	44	. 33
7S3R5	11.5 µ H	1.15 µ H	0.944	2.05Ω	85.2kΩ	0.63Ω	8.55kΩ	44	33
7S05	6.76 µ H	0.940 μ Η	0.906	1.78Ω	254kΩ	0.62Ω	31.0kΩ	80	44
7807	5.17 µ H	0.654 μ Η	0.927	2.00Ω	170kΩ	0.67Ω	21.5kΩ	41	39
7809	3.84 µ H	0.578 μΗ	0.938	1.23Ω	117kΩ	0.44Ω	17.7kΩ	47	59
7S14	1.90 µ H	0.331 µH	0.643	1.55Ω	47.0kΩ	0.52Ω	8.17kΩ	46	33
7S25	1.22 µ H	0.196 µ H	0.63	1.45Ω	46.1kΩ	0.44Ω	7.40kΩ	49	46
7S25	0.979 μ Η	0.184 µ H	0.583	1.29Ω	34.9kΩ	0.39Ω	6.55 k Ω	50	53
7S50	0.676 µ H	0.0869 µ H	0.649	1.41 Ω	50.3kΩ	0.47Ω	6.45kΩ	50	43
7880	0.396 µ H	0.0770 µ H	0.498	1.27Ω	40.6kΩ	0.43Ω	7.90kΩ	52	59
7S144	0.0244 μ H	0.0296 µ H	0.492	1.28Ω	32.4kΩ	0.32Ω	3.93kΩ	55	49

第3表 抽出されたコイルの各パラメータ

これは同じ07Sと名前が付いていても構造が全く違うためで、9MHz以下はドラムコアーに直接巻き線がしてありキャップコアーで囲われていますが、14MHz以上は溝付きボビンに巻き線がしてあり、中心にねじコアーがあるだけです。 等価パラメータを見ると色々ばらついていて精度には問題もありそうです。

第3表に示したL4-6のQの計測値と等価されたパラメータから求めた値も完全に一致とはいい難いと思

います。

今回は各周波数1個のコイルを測定したのですがば らつきを考えると、最低3個の計測が必要と思います。 また等価パラメータを見ると鉄損分より銅損分がQを 悪化しているようです。

もう少し太い線が巻ければもっとQの高いFTが得 られるのではないかと考えます。

データをどのように利用するか?

次に算出されたパラメータを使ってシミュレーションしたごく簡単な例を説明します。

第 2 図に 50 Ω のインピーダンスを持つアンテナ (R1、R10) に 07S07 を使って 7MHz に同調を取る回路を作りました。out out 1がFETのゲート (高インピー

第2図 標準的な同調回路と最適化計算を行なった回路

ダンス) に接続されると考えて下さい。

第2図上段 out 側の回路は 07S07 接続するのに C1 というコンデンサが挿入されています。 下段のout1 側の回路は、コンデンサー無しで直接接続したあります。 この回路をシミュレータ MC7 の最適化機能を使って out out1 の電圧が最大になるようにしました。 実際には C1と2つの 07S07のコアーを回して合わせますが今回は等価パラメータを算出したのでC1、C2、

第3図 第2図のシミュレーションカーブ (先の尖っているのが最適化されたもの)

C3を可変させました。

第3図に結果を示します、鋭い同調が取れている方がout それより11dBも低くてだらっとしているのがout2です。 随分違うと思いませんか、これは07S07のアンテナ側 (L2) が大きすぎるためにインピーダンスマッチが取れずアンテナの50 Ω (R10) により Ω ダ

ンプされてしまったためです。 C1を入れるとマッチングが取れました。(厳密にはLマッチ回路の理論が適応されます、C1の後にR3と並列にLが入ります。そうするとC2とC3は同じ値になります。) out側の回路はC1が入った分C2が少ない方に変化して7MHzで上手い具合に同調しています。

このようにIFTのパラメータが判っていてシミュレーションを上手く使うと、あたかも特注のコイルを使ったような設計ができます。

コイルのパラメータまたシミュレーションについて質問がありましたらja1xb@jarlcomまでお願いします。

最後に各種FTを提供頂いたFCZ研究所と標準のQ メータをお貸し頂いた東光株式会社に感謝致します。

読者通信

JA1BVA 齊藤さん

CirQ 008号、ありがとうございます。 ボリウムタップリでこれから楽しみながら読 むことにします。

創作への第1歩(1)が私の経験とピッタ リです。 いまだに「キット」の文字をみる とフクワクします。

キットの改造・改変・改悪そして失敗(たまには成功)が自分なりのレベルアップにつながったと思っています。

就職して2回目の給料で買ったキットの5球 スーパーラジオが現役で頑張っています。」

憲法改定論

憲法を見直そうという論議が盛んになって来ています。 しかし、現在の憲法がそんなに不備なものなのでしょうか? 憲法改定論の柱は、その「前文」であり「第9条」だと思います。この条項についてもう一度読み直してみて下さい。〈http://www.fcz-lab.com/constitutioniapan.htm〉

改定論の主旨は「現状とこの文面がうまく合致しなくなったから変えなければいけない」というものです。

今の憲法が制定された時、この憲法は「世界の理想を結集したものだ」と賞賛されていました。 それが今、何故「現状とこの文面がうまく合致しなくなった」というのでしょうか。

一番の原因は、歴代内閣を形成する政治家が姑息な手段で解釈をねじ曲げて来たからです。 そして、そのねじれが誤魔化しきれなくなって来たからです。

憲法が発布された段階で私が学校で教えられた事 を、現在の内閣の人達に「試験」したなら、おそらく 全員落第点となり単位はとれないでしょう。

二番目の原因は、国民が政治家の行動を「憲法違反」 と捕らえなかった事にあります。むしろこの事の方が 大きな問題ともいえます。

私達は今、目をさまし、行動すべき時に来ています。

第1軍団指令部

アメリカの陸軍第1軍団指令部が私の住んでいる座間市にやってくるという情報があります。 これは陸軍だけでなく、海軍、空軍、海兵隊を統合する総指令部の性格を持ったもので、座間市民にとっては大変な出来事です。 現在、市長、市議団をはじめとして市民一丸となって反対運動を展開しております。(相模原

市においても同様の運動が展開されています)

楽しいはずの雑誌の一部にこんな話題を登場させる のは不本意ではありますが、これも日本の中の一風景 として御容赦下さるようお願いします。

カモシカ と つらら

糸でんわの実験場所を探して奥志賀高原の山の中を歩き回っていた時です。 谷の下の方にカモシカがいるのを見つけました。 カモシカはまだ私のいる事に気がつきません。 暫く観察していたのですが全然動かないので口笛を吹いてみました。 その音に気がついてカモシカがこちらを振り向きました。 そして今度は私をジーット見つめるばかりで動こうとしません。 しばらくして、私が目をそらせると一目散に反対側の斜面を登って行きました。

そのあと、雪の斜面に大きなつららを見つけました。 ウイスキーをこの氷でオンザロックにして飲んでその美味しさに感激しました。

スキーもいいけれど、こうして山の中を歩き回る方 が私は好きです。

MHN 植物園

植物園は花盛りです。 今年は牡丹が大盛況でした。 牡丹の花は太陽に弱いので寒冷紗で日よけを作りました。 にわかづくりでしたがこの効果は絶大で、いつもの年より 2 倍程長もちしました。

ひとつばたご(なんじゃもんじゃ)も白い花を一杯付けました。 おきな草は二つ花が咲き、ただいま穂綿に成長中。 延齢草は2本出ましたが、花は咲きませんでした。 二輪草はだんだん株を大きくしています。 芹がずんずん広がっています。時々おひたしにしています。

今日はこれからお茶摘みです。

表紙の言葉

牡丹の花 立てば芍薬、座れば牡丹、歩く 姿は百合の花と、昔から美しい花の代名詞になっています。

日本画の題材として良く描かれますが、スケッチをして見ると意外に描きにくい花です。 牡丹の花の下では、なるこゆりが次の出番をスタンバイしています。

 CirQ
 009号
 2005年5月1日発行
 定価
 100円
 (シェアウエア ただし 高校生以下無料)

 発行
 有限会社 FCZ 研究所
 編集責任者
 大久保
 忠
 JH1FCZ

228-0004 神奈川県座間市東原 4-23-15 TEL.046-255-4232 郵便振替 00270-9-9061