Tutorial 2:

Station orientation on the seafloor

OBS training workshop, VUW, April 14-16, 2025

https://github.com/nfsi-canada

Software for calculating station orientation from earthquake data:

- 1. Polarization of (regional/teleseismic) P-waves
- 2. Polarization of Rayleigh waves

Seismic-wave polarizations

Polarization convention

Seismic waves follow a great-circle path along the surface – or, rather, they propagate in a **ray plane** that passes through the source, the receiver, and the Earth's centre.

Polarization convention

Seismic waves follow a great-circle path along the surface – or, rather, they propagate in a **ray plane** that passes through the source, the receiver, and

the Earth's centre.

Polarization convention

Radial: horizontal, in ray

plane

Transverse: horizontal, perpendicular to ray plane

Vertical: in ray plane

Seismic-wave polarizations

Teleseismic ray paths (shallow source)

3-component seismograms

Pedernales earthquake (Ecuador, 16 April 2016, magnitude 7.8) observed in France at the SSB station from the Geoscope network

Seismic wave visualizations

Broadband stations

2021/02/10 13:20:00 M7.7 Z=10.0km Lat=-23.2507 Lon=171.4851 SOUTHEAST OF LOYALTY ISLANDS

February 10, 2021, Southeast Of Loyalty Islands, M 7.7 Origin Time (OT) = 13:20:00 UTC

Seismic wave visualizations

SAGE IRIS

P-wave particle motion

Direct P wave is polarized in longitudinal direction:

- Z R seismograms are correlated
- Z R particle motion is linear
- T seismogram has negligible motion
- N E particle motion points to back-azimuth

P-wave polarization

Algorithm:

- Extract P-wave arrival time window from velocity model
- Rotate component 1 until you find max correlation with Z (or minimum energy on T): obsBAZ
- Take difference between BAZ and obsBAZ as component 1 orientation

OrientPy implementation

- Based on Braunmiller, Nabelek and Ghods (2020)
- Flexibility to use regional or teleseismic P-waves (also PP)
- Downloads all data and calculates quality control criteria between rotated components with default thresholds
 Station YH.LOBS3

Quality control criteria:

- CC: Cross-correlation between Z and R (0.5)
- SNR: Signal-to-noise ratio measured on Z component (5 dB)
- 1-R/Z: proportion of signal isolated on R vs Z (-1)
- 1-T/R: proportion of signal isolated on T vs R (0.5)

OrientPy implementation

- Average orientation for QC values that pass threshold values
- Calculate uncertainty

Rayleigh-wave particle motion

Rayleigh waves produce elliptical, retrograde motion in Z – R plane:

- R component is rotated 90 degrees from Z
- Z & rotated R seismograms are strongly correlated
- T seismogram has negligible motion
- This holds at multiple periods due to dispersion

Shearer (2009), Stein & Wysession (2003)

OrientPy implementation (DLOPy)

- For *R* in *R1* (minor arc) and *R2* (major arc):
 - For each period P in default range:
 - For each angle $\alpha = \theta + \delta$ increment :
 - Rotate component 1
 - Calculate Hilbert transform of rotated 1
 - Correlate with Z
 - Determine α from maximum cross-correlation

Doran and Laske (2017)

OrientPy implementation (DLOPy)

- Only 1 quality control criterion: crosscorrelation value
- Average all orientations for CC > 0.8
- Calculate uncertainty

References

- Jochen Braunmiller, John Nabelek, Abdolreza Ghods; Sensor Orientation of Iranian Broadband Seismic Stations from P-Wave Particle Motion. Seismological Research Letters 2020;; 91 (3): 1660–1671. doi: https://doi.org/10.1785/0220200019
- Adrian K. Doran, Gabi Laske; Ocean-Bottom Seismometer Instrument Orientations via Automated Rayleigh-Wave Arrival-Angle Measurements. Bulletin of the Seismological Society of America 2017;; 107 (2): 691–708. doi: https://doi.org/10.1785/0120160165
- Shearer, P. M. (2019). Introduction to Seismology (3rd ed.). Cambridge: Cambridge University Press.
- Stein, S. and M. Wysession, "An Introduction to Seismology, Earthquakes and Earth Structure," Blackwell Publishing Ltd., Hoboken, 2003.
- Vallée, M. Determining the Main Characteristics of Earthquakes from Seismological Data. 1-37. https://doi.org/10.1002/9781394173709.ch1