MATH-F-307: Syllabus (étudiant) d'exercices

André Madeira Cortes Nikita Marchant

Table des matières

1	Séance 1	3
2	Séance 2	5
3	Séance 3	6
4	Séance 4	8
5	Séance 5	ç

Exercice 1. Construisez un graphe simple et connexe sur 8 sommets tel que chaque sommet est contenu dans exactement trois arêtes. Pouvez-vous faire la même chose avec 9 sommets?

Exercice 2. Dans un groupe de personnes, il y a toujours deux individus qui connaissent exactement le même nombre de membres du groupe.

- 1. Formalisez cette propriété dans le vocabulaire des graphes.
- 2. Démontrez cette propriété (par l'absurde).

Exercice 3. Soit $n \ge 2$ et soit G un graphe simple avec 2n sommets et $n^2 + 1$ arêtes. Montrez que G contient un triangle.

Exercice 4. Soit G un graphe simple avec 2p sommets. On suppose que le degré de chaque sommet est au moins égal à p. Démontrez que ce graphe est connexe.

Exercice 5. Soit G un graphe simple.

- 1. On suppose que G est connexe et que x est un sommet de G de degré 1. Prouvez que $G \setminus \{x\}$ est connexe.
- 2. Déduisez-en que, si G est connexe et $|V(G)|=n\geq 2$, alors G contient au moins n-1 arêtes

Exercice 6. Donnez un graphe simple et connexe sur au moins 5 sommets qui est :

- hamiltonien et eulérien;
- hamiltonien et non eulérien;
- non hamiltonien et eulérien;
- non hamiltonien et non eulérien.

Exercice 7. Le graphe 1 est-il isomorphe à un (ou à plusieurs) des graphes ci-dessous?

$$\circ \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} \hspace{-0.1cm} \hspace{-0.1cm} \circ \hspace{-0.1cm} \hspace{-0.1cm$$

FIGURE 1

Figure 2

Exercice 8. Les graphes suivants sont-ils isomorphes ? (Ne vous contentez pas d'une justification approximative : essayez de démontrer rigoureusement vos affirmations.)

Figure 3

Figure 4

Figure 5

Exercice 9. Considérez la grille $n \times n$, le graphe obtenu selon la Figure 6, avec n un naturel ≥ 3 . Démontrez que n est pair si et seulement si le graphe est hamiltonien.

Figure 6 – Grille 5×5 .

Exercice 10. Prouvez que pour tout $n \geq 3$, le graphe complet K_n possède exactement $\frac{1}{2}(n-1)!$ cycles hamiltoniens.

Exercice 11. Combien d'arbres couvrants possèdent les deux graphes de la Figure 7?

FIGURE 7

Exercice 12. Montrez que tous les alcools $C_nH_{2n+1}OH$ sont des molécules dont le graphe est un arbre, en sachant que les valences de C, O et de H sont respectivement 4, 2, 1.

Exercice 13. Démontrez que si un graphe hamiltonien G = (V, E) est biparti selon la bipartition $V = A \cup B$, alors |A| = |B|. En déduire que $K_{n,m}$, le graphe biparti complet, est hamiltonien si et seulement si $m = n \ge 2$.

Exercice 14. Pour chaque graphe de la Figure 8, déterminez si

- 1. le graphe est hamiltonien,
- 2. le graphe est eulérien,
- 3. le graphe est biparti.

FIGURE 8

Exercice 15. Construisez un code de Gray d'ordre 5 sur base du code de Gray d'ordre 4 cidessous.

0000, 0100, 1100, 1000, 1010, 1110, 0110, 0010, 0011, 0111, 1111, 1011, 1001, 1101, 0101, 0001

Exercice 16. Dans le graphe ci-dessous, on donne un couplage de cardinal maximal. En utilisant la preuve du théorème de König vue au cours, trouvez un transversal de cardinal minimal.

Figure 9

Exercice 17. Sur \mathbb{R}^2 , on définit les relations suivantes :

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow x \leq x' \text{ et } y \leq y',$$

$$(x,y)\mathcal{S}(x',y') \Leftrightarrow (x < x') \text{ ou } (x = x' \text{ et } y \le y').$$

Est-ce que les relations \mathcal{R} et \mathcal{S} sont des ordres?

Exercice 18. Considérons le graphe biparti (bipartition donnée par une coloration des sommets) ci-dessous. Sur l'ensemble de ses sommets, on définit la relation $u \leq v$ pour u, v des sommets tels que u est un sommet rouge et $\{u, v\}$ est une arête. On pose aussi $u \leq u$ pour tout sommet u.

- (a) Vérifiez que \leq est un ordre partiel.
- (b) Construisez une partition des sommets par k chaînes et trouvez une antichaîne contenant k éléments.
- (c) Déduisez-en un couplage de cardinalité maximale et un transversal de cardinalité minimale.
- (d) (Bonus) Sur base de ce qui est fait ci-dessus, prouvez que le théorème de König implique le théorème de Dilworth.

Figure 10

Exercice 19. L'ensemble $\{2^m|m\in\mathbb{Z}\}$ forme-t-il un groupe lorsqu'il est muni de la multiplication usuelle?

Soit $X=2^m, m\in\mathbb{Z}$ et (X,.) le groupe à analyser.

 $\forall x,y \in \mathbb{Z}: 2^x*2^y = 2^{x+y} \in X \text{ car } (x+y) \in \mathbb{Z}.$ L'ensemble X forme donc bien un groupe lorsqu'il est muni de la multiplication.

Exercice 20. L'ensemble $(\mathbb{Z}/2\mathbb{Z})^n = \{(x_1, x_2, \dots, x_n) | x_1, x_2, \dots, x_n \in \mathbb{Z}/2\mathbb{Z}\}$ avec l'addition définie par

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

(où $x_i + y_i$ est le résultat d'une addition modulo 2) forme-t-il un groupe?

Il faut tester si les 3 propriétés d'un groupe sont respectées.

1. Associativité : Chaque composante est calculée avec la forme $x_i + y_i, \forall i \in \{1, 2, ..., n\}$. \mathbb{Z}_2 est associatif, l'adition est faite composante par composante, donc \mathbb{Z}_2^n est associatif. Il faut donc à présent montrer que $(x_i + y_i) + z_i = x_i + (y_i + z_i)$.

Exercice 21. En appliquant l'algorithme d'Euclide à a et b ci-dessous, calculer :

- le PGCD(a,b),
- x et y tels que ax + by = PGCD(a, b),

Les différentes valeurs de a et b sont :

- (i) a = 12, b = 34,
- (ii) a = 13, b = 34,
- (iii) a = 13, b = 31,

Exercice 22. (i) Trouver un entier x tel que le reste de la division de 50x par 71 donne 1.

- (ii) Trouver un entier x tel que le reste de la division de 50x par 71 donne 63.
- (iii) Trouver un entier x tel que le reste de la division de 43x par 64 donne 1.

Exercice 23. Dans le système RSA, prenons p = 11, q = 13 et e = 7. Que vaut alors s? Si 99 est le message à coder, quel est le message crypté? Vérifier en décriptant le message.

Exercice 24. Montrer le résultat suivant : si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a+c \equiv b+d \pmod n$$
 et $a.c \equiv b.d \pmod n$.

Exercice 25. Montrer que, si $a \equiv b \pmod{n}$, alors

$$a + c \equiv b + c \pmod{n} \ \forall c \in \mathbb{Z}$$

et

$$a.c \equiv b.c \pmod{n} \ \forall c \in \mathbb{Z}.$$

Exercice 26. Prouver que, si $a \equiv b \pmod{n}$, alors $a^k \equiv b^k \pmod{n}$ pour tout entier k > 0.

Exercice 27. Trouver toutes les solutions aux congruences suivantes :

- $2x \equiv 3 \pmod{4}$ avec $x \in \mathbb{Z}/4\mathbb{Z}$;
- $2x \equiv 2 \pmod{4}$ avec $x \in \mathbb{Z}/4\mathbb{Z}$;
- $2x \equiv 3 \pmod{5}$ avec $x \in \mathbb{Z}/5\mathbb{Z}$.

Que pouvez-vous en déduire?

Exercice 28. Soient a, b deux entiers. Montrer que

$$a\mathbb{Z} \cap b\mathbb{Z} = ppcm(a,b)\mathbb{Z}$$

et

$$a\mathbb{Z} + b\mathbb{Z} = pgcd(a, b)\mathbb{Z}.$$

Exercice 29. Montrer que

$$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \ncong \mathbb{Z}/9\mathbb{Z}$$

 $mais \ que$

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/6\mathbb{Z}.$$