ECEL 304 LECTURE 1

This course offers laboratory experience, using both modeling software and digital and analog hardware relevant to both electrical and computer engineers.

PERSONNEL

Taif Choudhury

Bossone 216 215-895-6857 tai@coe.drexel.edu

Office Hours: Tues., 5 PM – 6 PM

Jesse Hill

Bossone 414 jrh62@drexel.edu

Office Hours:
BY APPOINTMENT
ONLY

Bossone 515 zw78@drexel.edu

Office Hours: BY APPOINTMENT ONLY

Dominic Imbrenda

Bossone 324 di22@drexel.edu

Office Hours: BY APPOINTMENT ONLY

COURSE DESCRIPTION

- Build an audio recorder
 - 10 week design project (entire term)
 - Record from mic, playback through speaker
 - ADC, DAC and RAM
 - Counters, Timers, Gates, Flip-flops, etc.
- Practical experience with circuit building and design
 - Design aspect will be stressed
- Circuit simulations done in Multisim
 - Very Similar to OrCAD Cadence

COURSE OPERATION

- 1 Hour Lecture in Nesbitt 111
 - Lecture will be recorded and posted within a day
 - No electronic devices (phones, laptops, etc.)
- 2 Hour Lab in Bossone 205
 - No open toed-shoes
 - Come to lab prepared
- Primarily rely on BBLearn
 - Currently in progress of getting it up...
 - All communication/announcements
 - Lab report submissions
 - Grade distribution
 - Lecture videos
 - Make sure you enable email notifications

EXPECTATIONS

- Attendance is <u>mandatory!</u>
 - Work in groups of 2 (same group entire term)
 - Equal work between all group members
- At LEAST 4-6 Hours of work outside of lab
- Assignments turned in on time
 - Late policy explained later
- Academic honesty
 - See Drexel's policy on this:
 - http://www.drexel.edu/provost/policies/acade
 mic_dishonesty.asp
 - WILL FOLLOW VERY STRICTLY

GRADING

Attendance	5 %
Quizzes	20%
Worksheets	20%
Reports	20%
Initial Project Checkoff	15%
Final Project Checkoff	20%
Extra Credit #1	5%
Extra Credit #2	5%

ATTENDANCE

- Attendance is <u>MANDATORY</u>
 - For both Lecture AND Lab
- Lecture Attendance (5%)
 - Use Dragoncard to sign-in
 - Your responsibility to make sure you sign in
- Lab Attendance
 - Determined by worksheet checkoff
 - Report will NOT be accepted if absent

QUIZZES (20%)

- Each quiz is 10 Points and 10 Minutes Long
- Will be given at the very beginning of lab
- NO make-up quizzes will be given
 - Unless you have a doctor's note, funeral, etc.
 - Do NOT miss a lab
 - Do NOT show up late to lab
- Will cover material from previous weeks
 - Pay attention during lecture AND lab
- Format will vary
 - Multiple Choice, Short Answer, True/False, etc.
- Announced ahead of time
 - During lecture and/or through BBLearn

Worksheet (20%)

- Each worth 10 Points
- Group assignment (1 worksheet/group)
 - Cannot work outside of your group
 - Same grade for all individuals in the group
- To be checked off by the end of lab
 - Will NOT be accepted after lab is over
 - Will be at the complete discretion of your TA
 - Your responsibility to get it checked off
- Keep worksheet after it is checked off
 - Use as reference to write your lab report
 - Do NOT just copy & paste from your worksheet
 - Do NOT submit your worksheet with your report

PROJ. CHECKOFF (35%)

- Initial Project Checkoff (15%)
 - Ensure you are on track and nearly complete
 - Successfully recording from Function Generator
 - Successfully playing back on Oscilloscope
- Final Project Checkoff (20%)
 - Fully completed AND functional audio recorder
 - Successfully recording from microphone
 - Successfully playing back on speaker
- Rubric used for each project checkoff
 - Will be based on your projects design, quality and performance

EXTRA CREDIT (10%)

- Extra Credit #1 (5%)
 - Implement additional functionality to recording/playback that wasn't covered
 - Including but not limited to: advanced filtering, bass boost, automatic gain control, etc.
- Extra Credit #2 (5%)
 - Use microcontroller to replace external circuitry
 - Control logic, amplifier, maybe even RAM?
- Partial credit given
 - Depends on complexity and completeness
- May do either one, both or neither
- More details to follow...

REPORTS (20%)

- 100 Points
- Individually written reports
 - See "Academic Honesty Policy" in syllabus
- Due Friday by 11:59 PM (BEFORE MIDNIGHT)
 - Friday of the next calendar week the lab was performed
 - Submit via BBLearn (Do NOT email it)
 - 3% penalty per day late
 - Not accepted after 4 weeks

- Cover Page (5%)
 - Use the one provided on BBLearn!
- Objective (10%)
 - State what you're trying to accomplish/purpose
 - Very concise summary of what you did
 - DO NOT paraphrase the lab procedure
 - Some background info (provide reference if required, cite properly)
 - 1 2 paragraphs long

- Results (35%)
 - Tables
 - Manual voltage sweep, resistor tolerances, etc.
 - Graphs (Any and all collected)
 - Multisim output, oscilloscope screen capture, etc.
 - Equations
 - Correctly labeled
 - Elaborate where appropriate

- Explanation (50%)
 - -1-2 pages long
 - Discusses and explains your results (reference your graphs, tables and equations)
 - Compare theoretical, simulated and experimental
 - Answer any/all questions in lab procedure
 - Discussion of errors AND sources of error
 - Example:
 - "We calculated the theoretical voltage to be 3.53 V
 (Equation 2) but the experimental design yielded 3.49 V
 (Table 6), an error of 1.13% (Table 7). This is attributable
 to the tolerance of the resistor (Table 5) being..."
 - Make a conclusion, did you achieve your objective?

References

- Optional, but you <u>MUST</u> provide this if you used an outside source
- MUST use IEEE format

Appendix

- Also optional
- Include only if you have data that isn't required but feel should be included
- Calculations, figures, tables, etc...

REPORT STRUCTURE

- FOLLOW GIVEN FORMAT!!!
- General guidelines apply
 - Page numbering, labeling equations, figures and tables appropriately (IEEE formatting)
 - Points WILL be taken off for incorrect spelling/grammar/formatting
- Use worksheet as a guide to help you
 - Do NOT copy and paste from worksheet
- See "Lab Report Structure Guide"

REPORT RECAP

- Cover Page (5%)
- Objective (10%)
- Results (35%)
- Explanation (50%)
- References (Optional)
- Appendix (Optional)

Worth 20% of your final grade

QUESTIONS?

PROJECT OVERVIEW

Eventually try to achieve this:

- ANALOG INPUT goes into ADC, converts to DIGITAL
- DIGITAL goes into DAC converts back to ANALOG
- DIGITAL goes/comes out of the RAM

DATA/BUS CONTENTION

- Two simultaneous outputs
 - Outputs "fight" to assert value on line
 - Leads to ambiguous or unknown data
 - Could damage hardware
 - AVOID AT ALL COSTS!!!

DATA/BUS CONTENTION

- Problem arises because of the RAM
- Most RAMS use the same lines for INPUTS AND OUTPUTS
 - MUST switch between READ or WRITE
 - Can either READ or WRITE to RAM at a time
 - CANNOT do BOTH simultaneously

CONTENTION SOLUTION

- Add Control Circuitry to the system
- ADC MUST have control pins

RECORDING PHASE

PLAYBACK PHASE

NOTE: ADC is put into HIGH Z state, ADC output is disabled

LAB OVERVIEW

For this week, we'll do the following:

ADC REINTRODUCED

- ADC (Analog to Digital Converter)
 - Should be familiar from ECEL 303
 - Converts a given voltage input into digital bits
 - Number of digital bits or outputs vary depending on the ADC
- Will be using the ADC 0804
 - 8 bit output
 - Capable of self-clocking
 - Can disable output (Put in High Impedance)
- Will test on ECEL 304 Board this week

SUC. APPROX. ADC

- Successive Approximation ADC
 - This design requires only a single comparator and will be only as good as the DAC used in the circuit.
 - The analog output of a high-speed DAC is compared against the analog input signal.
 - The digital result of the comparison is used to control the contents of a digital buffer that both drives the DAC and provides the digital output word.

SUC. APPROX. ADC

INSIDE THE ADC 0804

ADC 0804 SCHEMATIC

ADC OPERATION

Timing Components

Figure 17/18, ADC0804 data sheet

SELF CLOCKED MODE

- All synchronous digital IC requires a clock signal
 - Allows control over different components used in circuit
 - Keeps components running at same speed or synchronized
 - Components normally operate on either rising or falling edge of clock signal
- ADC 0804 has an internal clock generator
 - Does not need external clock
 - Set by a single timing resistor and capacitor

CLOCK MODES

EXTERNAL CLOCKING

 An external clock is applied to the clock input of the convertor, pin 4

INTERNAL OR SELF CLOCKING COMPARATOR WITH HYSTERESIS

- Pin 19 is connected to pin 4, the input clock signal
- Clock frequency can be controlled by R and C

ADC 0804 SIGNALS

- Remember, signals with a bar on top are ACTIVE LOW
 - Normally High or 1
- Signals (BLUE OUTPUT, GREEN INPUT):
 - WR Rising edge of signal starts sampling
 - RD Enables/disables the output
 - INTR Pulses low when done sampling
 - CS Chip select, always goes to ground
 - GND Ground
 - VCC Power, usually +5 V

TIMING DIAGRAM

 T_c is 64 clock cycles, total ADC conversion time is about 73 clock cycles

CONT. FREE RUNNING

- ADC will be operated in <u>Continuous Free-</u> Running Mode
 - Continuous Immediately starts sampling again after last sample is determined
 - Free-Running No external circuitry required to make it operate
 - In other words, in this mode, the ADC continuously samples the input without any external trigger

FREE RUNNING MODE

FIGURE 18. BASIC TESTER FOR THE A/D

CALCULATING FREQ

FIGURE 5. f_{CLK} vs CLOCK CAPACITOR

$$f_{CLK} = \frac{1}{1.1RC}$$

$$f_S = \frac{f_{CLK}}{CCPS}$$

CCPS: Clock Cycles Per Sample

INTR IN CFR MODE

 T_c = clock cycle or period f_c = clock frequency

Sampling Frequency
$$f_S = \frac{1}{T_S}$$

$$\frac{f_c}{f_s} = \frac{T_s}{T_c} = \text{# of clock cycles required for one conversion}$$

BINARY TO DECIMAL

Use Base-2 Radix Formula:

$$N = 2^n B_n + 2^{n-1} B_{n-1} + \dots + 2^1 B_1 + 2^0 B_0$$

Example: Convert 1001 into decimal

$$N = 2^{3}(1) + 2^{2}(0) + 2^{1}(0) + 2^{0}(1) =$$

$$2^{3} + 2^{0} = 8 + 1 = 9$$

- BE CAREFUL WHEN CALCULATING FOR ADC!!!
 - LEDs are active LOW!!!
 - MUST invert (flip) bits first

VOLTAGE CALCULATION

- Your ADC will output 8 bits, which can be grouped as 4 high (MS – Most Significant) and 4 low (LS – Least Significant) bits
- The voltage represented by the digital output is given by:

$$V_{out} = \left(\frac{MS}{16} + \frac{LS}{256}\right) V_{ref}$$

LAB OVERVIEW

- Design and build ADC circuit
 - Pick timing resistor and capacitor
 - Some additional wiring
- Change DC input voltage and record output
 - Verify accuracy
 - Determine ADC voltage resolution
- Apply analog voltage
 - Measure output using logic analyzer
 - Using a ramp input, observe binary count
 - Observe operation of ADC internal clock
- Simulate the all hardware steps in Multisim

DESIGN CONSIDERATION

- What is the bandwidth of human speech?
 - Provide a reference in your report
- At what frequency should I sample?
 - Higher frequency
 - Higher quality
 - Short recording/playback time
 - Lower frequency
 - Lower quality
 - Longer recording/playback time
- Provide clear justification for your choice
- Performance limitations of this ADC chip?
 - READ THE DATASHEET!!!

DATA ACQ. BOARD

SOCKETS

HEADERS/TERMINALS

CONTROL SIGNALS

LAYOUT CONCERNS

- Place chips that interact with each other nearby
 - Less delay
- Wire Length makes a difference
 - Shorter Wires Less Resistance/Capacitance
 - Longer Wires More Resistance/Capacitance
- Keep Analog Circuitry away from Digital Circuitry
 - Potential problems with "crosstalk" wireless interference between close signals

LOGIC ANALYZER

Use Intuilink to capture data

Analog and digital displays

Digital Menu Access Button

Digital Menu Access Button

LOGIC ANALYZER

- There is an HP mixed-signal scope in each rack in Bossone 205
- The digital portion of the scope (logic analyzer) serves the same purpose as the LEDs, but it can do it at a higher speed
- To capture data, you need to capture screenshots from the Intuilink software on the lab computer
- Be sure to capture and save all data/screens

PREPARING FOR LAB

- Make sure to read over the instructions before the lab
 - Will make some changes to it (clear up some instructions)
- Familiarize yourself with Multisim
 - Watch videos posted on BBLearn
- Go over ADC 0804 Lab from ECEL 303
 - Also posted on BBLearn
- Watch video on using the Logic Analyzer
 - To be posted later today...

NEXT WEEK

- No in-class lecture next week
 - MLK day, University Holiday
- Lecture video will be posted on BBLearn
 - Expect it posted by Monday evening
 - Must watch before MIDNIGHT, Tuesday, Jan. 17
 - Will count towards lecture attendance
- Quiz next week during Lab
 - On the lecture/lab content from this week
 - Message will be sent out outlining content

QUESTIONS?

