CS151 Intro to Data Structures

Interfaces

Algorithm Analysis

Announcements

- HW02 released today
 - Linked Lists
 - due Friday October 4th
- Lab3 and Lab4 due Friday October 4th

Outline

- Review class activity
- Interfaces
- Algorithm Analysis

CLASS ACTIVITY

- An interface is <u>a contract</u> A set of shared methods that users must implement
- create a program to calculate the area of different shapes, such as circles, rectangles, triangles etc.
- For each shape, you should be able to print the shape name and area
- Every time someone adds a new sha
- pe, they must include the methods for getName() and getArea()

 For any new shape that is created, we want to enforce that these methods are also implemented.

```
interface Shape {
    public double getArea();
    public String getName();
}
```

```
class Circle implements Shape {
```

A contract - A set of shared methods that users **must** implement

A collection of method signatures with no bodies

A class can implement more than one interface

An interface is not a class!

A class is what an object <u>is</u>

An interface is what an object <u>does</u>

can not be instantiated

no constructors

incomplete methods

No modifier - implicitly public

No instance variables except for constants (static final)

Object Comparison

Object Equality

A custom class must define (override) its own equals

Object Comparison

What if we wanted to compare two students by GPA?

int compareTo(T o)

Parameters:

o - the object to be compared.

Returns:

a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object.

compareTo

compareTo returns an int, not a Boolean

Why?

because it needs to convey three outcomes:

- -1 if smaller compared to the parameter
- 0 if equal
- 1 if larger compared to the parameter

Comparable interface

The Comparable interface is designed for objects that have an ordering

```
public interface Comparable<T> {
  int compareTo(T o);
}
```

Comparable interface

When would we want to use this? Let's see in code:)

Now, what if we wanted to sort from highest to lowest GPA

Custom Exceptions

Making Custom Exceptions

Often times we need to raise a custom exception

Extend Exception or RuntimeException

Custom Exceptions

What is the difference between extending from Exception rather than RuntimeException?

Subclass of Exception are checked exceptions — must be treated/caught

Subclass of RuntimeException are not checkable during compile time

Computational Complexity

Run Time Complexity

Understanding the resources required by an algorithm

Expressed with Big O Notation

- Focus on worst case as a function of the input size
 - input size in a data structure could be the number of elements (n)
 - Run time typically grows with the size of the input
 - Unless it's a constant time operation O(1)

Space (Memory) Complexity

How much memory a program needs

The space requirements time typically grows with input size. Expressed as a size of the input. (Big O notation)

We focus on worst case analysis

how much space will it take in the worst case?

Big O Notation and Theoretical Analysis

 Why do we express runtime notation with Big O notation? Why not just say the run time in number of seconds?

```
long startTime = System.currentTimeMillis();
/* (run the algorithm) */
long endTime = System.currentTimeMillis();
long elapsed = endTime - startTime;
// record the starting time
// record the ending time
// compute the elapsed time
```


 Answer: comparing two algorithms requires exact same hardware and software environments

Constant Time Operations

 Constant time operations require the same amount of time, regardless of the size of the input

• Examples:

- Basic computations: Assigning variables, adding, multiplying, boolean operators
- What were some constant time operations in ExapandableArray?
- LinkedList?

Linear Time Algorithms:O(n)

- The runtime grows linearly as the size of the input grows
- Processes the input in a single pass spending constant time on each item
- Examples:
 - A single loop over an array
 - ExpandableArray?
 - LinkedList?

Example: Find Max

Worst case: 4n +1 ==> O(n)

Best case: 3n + 2 ==> O(n)

Quadratic Time: $O(n^2)$

Nested loops...

Example:

worst case: $4 + 3n^2$

best case: 7

O(nlogn) time

Example: Binary Search!

How many elements did we touch?

$$3 = \log(8)$$

Where did the n come from?

09/25/24

O(nlogn) time

Example: Binary Search!

Best case?

Exponential Time: O(2ⁿ)

- Generate all possible subsets

```
{a, b, c} = ...

How many subsets are there?

{∅}, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}

8

2^3 = 8
```

 $n \log n \quad n \log n \quad n^2 \quad n^3 \quad 2^n$

n	$\log n$	n	$n \log n$	n^2	n^3	2^n
8	3	8	24	64	512	256

n	$\log n$	n	$n \log n$	n^2	n^3	2^n
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536

n	logn	n	$n \log n$	n^2	n^3	2^n
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4,294,967,296

n	$\log n$	n	$n \log n$	n^2	n^3	2^n
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4, 294, 967, 296
64	6	64	384	4,096	262, 144	1.84×10^{19}

n	$\log n$	n	$n \log n$	n^2	n^3	2^n
8	3	8	24	64	512	256
16	4	16	64	256	4,096	65,536
32	5	32	160	1,024	32,768	4,294,967,296
64	6	64	384	4,096	262, 144	1.84×10^{19}
128	7	128	896	16,384	2,097,152	3.40×10^{38}
256	8	256	2,048	65,536	16,777,216	1.15×10^{77}
512	9	512	4,608	262, 144	134, 217, 728	1.34×10^{154}

Asymptotic Notation

As the number of elements approaches infinity, only the dominant term matters

That is why we simplify O(n+1) to O(n) etc.

Big-O Analysis

- 1. Write a polynomial in terms of input size n
 - Only loops contribute
 - Each nested factor is multiplied
 - Each sequential factor is summed

- 2. Simplify the polynomial
 - Identify dominant term highest degree polynomial
 - Polynomials beat polylogs
 - Exponentials beat polynomials
 - Discard constants