

Courbes Paramétriques

Ce cours est une compilation:

- Cours Loic Barthe (IRIT-UPS Toulouse; Equipe Vortex)
 - Cours de Christian Jacquemin (LIMSI- Paris 11)
 - Cours de Marc Daniel (LSIS- Marseille)
- Cours G. Gesquière Master Imagina, DUT Informatique- Arles

Notion de courbe paramétrique

- Une courbe est engendrée par le déplacement d'un point P dans l'espace
- Pour faciliter l'interprétation, on peut prendre le temps **t** comme paramètre; mais n'importe quel scalaire **u** permet de décrire une courbe dans l'espace.

• A noter : Le point P(x,y,z) a les mêmes coordonnées que le vecteur \overrightarrow{OP}

Définition

• Un courbe paramétrique dans l'espace R³ est définie par une fonction

$$f: \mathbb{R} \to \mathbb{R}^3$$

$$u \to P(u) = \begin{cases} x(u) = f_x(u) \\ y(u) = f_y(u) \\ z(u) = f_z(u) \end{cases}$$

- Ainsi, pour chaque valeur du paramètre u, on calcule indépendamment les trois coordonnées x, y et z du point P(u)
- Une même courbe peut avoir plusieurs représentations paramétriques différentes

Exemple

• Equations paramétriques du cercle de rayon r, centré à l'origine (dans R²):

$$-P(u):\begin{cases} x(u)=r\cos u \\ y(u)=r\sin u \end{cases} u \in [0,2\pi[$$

$$P(\pi/2)$$

$$P(\pi/2)$$

$$P(0)$$

$$P(3\pi/2)$$

$$P(u):\begin{cases} x(u)=r\frac{1-u^2}{1+u^2} \\ y(u)=r\frac{2u}{1+u^2} \end{cases} \quad u\in]-\infty, +\infty[$$

$$P(+\infty)$$

$$P(-\infty)$$

P(0)

Représentation d'une droite

• Représentation paramétrique d'une droite de R³ passant par deux points P₁ et P₂ :

$$P(u) = (1-u)P_1 + uP_2 \qquad \equiv \qquad P(u) \begin{cases} x(u) = (1-u)x_1 + ux_2 \\ y(u) = (1-u)y_1 + uy_2 \\ z(u) = (1-u)z_1 + uz_2 \end{cases} \qquad u \in R$$

• Cette représentation conduit à la notion d'interpolation linéaire, en effet, quand u varie entre 0 et 1, le point P parcours linéairement le segment de P₁ jusqu'à P₂

Représentation d'une droite

• Une droite peut aussi être représentée à partir d'un point P₁et d'un vecteur v:

u

Représentation d'une courbe

$$P(u) = \begin{pmatrix} x(u) \\ y(u) \\ z(u) \end{pmatrix}$$

• En modélisation géométrique, on utilise essentiellement un paramètre borné et le plus souvent normalisé:

$$u \in [0, 1]$$

• Ceci est intéressant pour les applications où l'on traite des morceaux de courbes

Introduction: géométrie différentielle

- Paramètre sur une courbe : $u \in [0,1]$ ou abscisse curviligne : $s \in [0,t]$.
 - s est la longueur parcourue le long de la courbe depuis son origine.

Courbes paramétriques : Cubiques

• Ce sont les courbes polynomiales paramétriques de degrés 3. Leur représentation algébrique est la suivante:

$$p(u)=a u^3+b u^2+c u+d$$
 , $u \in [0,1]$

qui doit être comprise de la façon suivante:

$$p(u):\begin{cases} x(u) = a_x u^3 + b_x u^2 + c_x u + d_x \\ y(u) = a_y u^3 + b_y u^2 + c_y u + d_y \\ z(u) = a_z u^3 + b_z u^2 + c_z u + d_z \end{cases}$$

- Comment un utilisateur peut-il tracer la courbe qu'il imagine ????
 - C'est quasi impossible si la cubique est manipulée sous cette forme
 - Il est nécessaire d'introduire des paramètres de contrôle qui sont intuitifs et facile à manipuler

Cubique d'Hermite

- L'équation de la cubique est reformulée en fonction de paramètres géométriques qui sont : son point de départ P_0 (u=0), son point d'arrivée P_1 (u=1) et leurs tangentes respectives V_0 (= $\dot{p}(0)$) et V_1 (= $\dot{p}(1)$).
 - Coefficients géométriques:

$$\begin{cases} P_0 = p(0) = d \\ P_1 = p(1) = a + b + c + d \\ V_0 = \dot{p}(0) = c \\ V_1 = \dot{p}(1) = 3a + 2b + c \end{cases}$$
 d'où

$$\begin{vmatrix} d = P_0 \\ c = V_0 \\ b = -3P_0 + 3P_1 - 2V_0 - V_1 \\ a = 2P_0 - 2P_1 + V_0 + V_1 \end{vmatrix}$$

- Ce qui nous donne la représentation géométrique en remplaçant a, b, c et d par leur correspondance en fonction de P0, P1, V0 et V1

$$p(u)=F_1(u)P_0+F_2(u)P_1+F_3(u)V_0+F_4(u)V_1$$

$$\begin{cases} F_1(u) = 2u^3 - 3u^2 + 1 \\ F_2(u) = -2u^3 + 3u^2 \\ F_3(u) = u^3 - 2u^2 + u \\ F_4(u) = u^3 - u^2 \end{cases}$$

$$p(u)=a u^3+b u^2+c u+d$$
 , $u \in [0,1]$

Cubique d'Hermite: forme matricielle

• Ceci nous amène à une forme matricielle d'une cubique :

$$p(u) = UMB = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ V_0 \\ V_1 \end{bmatrix}$$

Cette représentation est souvent appelée « cubique d'Hermite »

Cubique d'Hermite: dérivées

• La dérivée (vitesse) de la cubique est une fonction ayant la forme matricielle suivante :

$$\dot{p}(u) = U \dot{M} B = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 6 & -6 & 3 & 3 \\ -6 & 6 & -4 & -2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ V_0 \\ V_1 \end{bmatrix}$$

• La dérivée seconde (accélération) de la cubique est une fonction linéaire ayant la forme matricielle suivante :

$$\ddot{p}(u) = U \ddot{M} B = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 12 & -12 & 6 & 6 \\ -6 & 6 & -4 & -2 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ V_0 \\ V_1 \end{bmatrix}$$

Exercice III- Interpolation

Exercice III- Interpolation- Solution

Reconstruisez une courbe de continuité C⁰ à partir des positions obtenues à différents temps t :

Reconstruisez une courbe de continuité C¹ à partir de des mêmes positions :

• 1-

P(1/2)x =	1
P(1/2)y=	0,25

P0x	0
P0v	0

P1x	2
P1y	0

V0x	1
V0y	1

1/4	
V1X	1
V1y	-1

• $2: P_0(0,0), P_1(2,0), V_0(4,4), V_1(4,-4)$

P(1/2)x =	1
P(1/2)y=	1

P0x	0
P0y	0

P1x	2
P1y	0

V0x	4
V0y	4

V1x	4
V1y	-4

• $3: P_0(0,0), P_1(2,0), V_0(8,8), V_1(8,-8)$

P(1/2)x =	1
P(1/2)y=	2

P0x	0
P0y	0

P1x	2
P1y	0

V0x	8
V0y	8

V1x	8
V1y	-8

• $4: P_0(0,0), P_1(2,0), V_0(-4,0), V_1(4,0)$

P(1/2)x =	0
P(1/2)y=	0

P0x	0
P0y	0

P1x	2
P1y	0

V0x	-4
V0y	0

V1x	4
V1y	0

• Autre exemple

P(1/2)x =	1
P(1/2)y=	0

P0x	0
P0y	0

P1x	2
P1y	0

V0x	-1
V0y	-1

V1x	-1
V1y	-1

Courbes de Bézier

Un modèle de courbes paramétriques

$$p(u) = \sum_{i=0}^{n} N_i^d(u) P_i \qquad u \in [a, b]$$
avec

$$\sum_{i=0}^{n} N_{i}^{d}(u) = 1 \qquad \forall u \in [a, b]$$

un point de la courbe est une combinaison affine des points de contrôle P_i

Ainsi la position des points de la courbe relativement aux points de contrôle reste invariante par transformation affine.

C'est à dire que pour toute transformation affine Φ , la courbe image $\Phi(p(u))$ a pour points de contrôle les points $\Phi(P_i)$.

Polynôme de Bernstein

L'idée est de partir du développement binomial :

$$1 = (u + (1 - u))^{n} = \sum_{i=0}^{n} {n \choose i} u^{i} (1 - u)^{n-i}$$

Ainsi, on obtient une somme de n+1 polynômes appelés : polynômes de Bernstein de degrén :

$$B_i^n(u) = {n \choose i} u^i (1-u)^{n-i} , \qquad i = 0, \dots, n$$

οù

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

Graphe des Polynômes de Bernstein

Quelques exemples

$$B_{0,2}(t) = t^2 - 2t + 1$$

$$B_{1,2}(t) = -2t^2 + 2t$$

$$B_{2,2}(t) = t^2$$

$$B_{0,3}(t) = -t^3 + 3t^2 - 3t + 1
B_{1,3}(t) = 3t^3 - 6t^2 + 3t
B_{2,3}(t) = -3t^3 + 3t^2
B_{3,3}(t) = t^3$$

Graphe des polynômes de Bernstein

Quelques propriétés

Propriétés :

- pour un degré fixé, ils sont linéairement indépendants,
- ils sont symétriques : $B_i^n(u) = B_{n-i}^n(1-u)$
- ils forment une partition de l'unité : $\sum_{i=0}^{n} B_{i}^{n}(u) = 1 \qquad \forall u \in \mathbb{R}$
- ils sont positifs pour u dans [0,1]: $B_i^n(u) > 0$ $\forall u \in [0,1]$
- ils satisfont la formule récursive :

$$B_i^{n+1}(u) = u B_{i-1}^n(u) + (1-u) B_i^n(u)$$

Courbes de Bézier

Courbe de Bézier :

$$p(u) = \sum_{i=0}^{n} B_i^n(u) P_i$$
 , $u \in [0,1]$

- les points P_i (i=0..n) sont les n+1 points de contrôle de la courbe,
- la courbe est d'ordre n+l et son degré est n,
- les B_iⁿ sont les polynômes de Bernstein de degré n. Ils définissent les fonctions de base (ou fonction de mélange) de la courbe
- Le nombre de points de contrôle est directement lié au degré de la courbe : degré n ↔ n+1 points de contrôle.
- Exercice:
 - Soit la courbe de B ézier contrôlée par les quatre points P₀ (0,0), P₁(5,5), P₂(10,5), P₃(15,0).
 - Calculez p(0), p(1/4), p(1/2), p(3/4), p(1) en fonction des P, puis faites l'application numérique et tracez la courbe.

Exemples de courbes de Bézier

Portée des fonctions de base

Quelques propriétés

La symétrie du polynôme de Bernstein implique que :

$$p(u) = \sum_{i=0}^{n} B_{i}^{n}(u) P_{i} = \sum_{i=0}^{n} B_{i}^{n}(1-u) P_{n-i}$$

- ainsi, la courbe est la même qu'elle soit parcourue de 0 à 1 ou de 1 à 0.
- Soit $t \in [a,b]$, t = a(1-u) + b(u), $a \neq b$,

alors:

$$p(t(u)) = p(t) = \sum_{i=0}^{n} B_i^n(u) P_i$$

La courbe de Bézier interpole le premier et le dernier point de contrôle (u ∈ [0,1]) :

$$p(0) = P_0 \qquad p(1) = P_n$$

- Elle est tangente au premier et au dernier segment du polygone de contrôle.

Enveloppe convexe

 La courbe est inclue dans l'enveloppe convexe de son polygone de contrôle (car les polynômes de Bemstein sont positifs sur [0,1]).

Se rappeler du cas du barycentre d'un ensemble de points (qui sera compris entre ces points).

Boîte englobante

 En prenant individuellement le min et le max de chaque coordonnée des points de contrôle, on obtient une boîte englobante de la courbe qui est parallèle aux axes :

Algorithme de De Casteljau

Cet algorithme s'appuie sur la formule de récurrence suivante :

$$p(u) = \sum_{i=0}^{n} B_{i}^{n}(u) P_{i}^{0} = \sum_{i=0}^{n-1} B_{i}^{(n-1)}(u) P_{i}^{1} = \dots = \sum_{i=0}^{n} B_{i}^{0}(u) P_{i}^{n} = P_{0}^{n}$$

οù

$$P_i^{k+1} = (1-u) P_i^k + u P_{i+1}^k$$

Exemple avec n=3 et u=1/4:

P₀³ est le point p(1/4)

Algorithme de De Casteljau

Exercice :

Appliquez l'algorithme de De Casteljau pour tracer p(1/2) et p(3/4)

Algorithme de De Casteljau

Exercice :

Appliquez l'algorithme de De Casteljau pour tracer p(1/2) et p(3/4)

Algorithme de De Casteljau sur n points

Définition récursive de de Casteljau (suite et fin)

Treillis illustrant le calcul récursif des barycentres dans le cas d'une courbe à 5 points de contrôle.

Propriété de variation

 Une courbe de Bézier ne peut pas avoir plus d'intersections avec une droite que le maximum d'intersection possible entre son polygone de contrôle et une droite quelconque.

Raccordement des deux courbes

Elle est assurée en faisant coıncider les points extrêmes :

Raccordement des deux courbes

Continuité de classe G₁

La continuité de classe G₁ est vérifiée ssi les **points extrêmes sont** confondus et les segments extrêmes alignés :

Raccordement des deux courbes

Continuité de classe C₁

La continuité de classe C_1 est vérifiée ssi les **points extrêmes sont confondus** et **situés au milieu** du point qui les précède et de celui qui les suit :

Exercice IV- Raccordement C²

• Exercice:

- Donnez les conditions sur les paramètres de contrôle de deux cubiques d'Hermite pour qu'elles soient raccordées avec une continuité C².
- Si les courbes sont raccordées avec une continuité C², que peut on dire de la variation de la courbure le long des deux courbes ?

Recollement :

- On cherche à recoller 2 segments de courbes,
 - C1, paramétrée par M1(t), t appartient à [0,1]
 - C2, paramétrée par M2(t), t appartient à [0,1]
- Si M1(1)=M2(0) il y a continuité G⁰

Exercice IV- Solution - Raccordement C²

- Continuité C² si les vecteurs dérivées seconde sont égaux
- La courbure entre les deux morceaux sera constante.

Exemple de modélisation de courbe complexe

