전국 지역단위 소상공인(SOHO) 폐업예측

금융 데이터를 공간 단위로 재가공된 지역별 SOHO 생존율을 예측하는 모델

발표자 : 이 한

PROJECT 배경 및 목적

- 신용평가 기관이 제공한 전국 지역별 SOHO현황을 지역별 금융데이터로 분석하여 지역별 12월 신규 창업 대비 폐업률을 예측하는 모델 제작
- 이해관계자들의 의사결정에 도움
- 신용평가 및 리스크 관리에 활용
- 결과물은 결정계수(Coefficient of Determination, R2)로 평가

PROJECT

TIMETABLE

전국 소상공인(SOHO) 창업대비 폐업비율 예측

2021년 1월부터 11월까지의 전국 시도단위 SOHO 데이터를 바탕으로 2022년 지속 영업 가능성 예측 모델

TIME LINE

데이터셋 가공 예금여력 자산평가 대출정보 전국 SOHO 현황 연체정보 소비정보

전국 SOHO 데이터

- - 집계 기간: 2021.01 ~ 2021.11
- - 집계 차원: 전국, 시도, 업종(대분류) (※ 10차 한국표준산업분류 기준)
- 1. 사업체 수(현재, 폐업, 창업)
- 2. 업력(기준: 6개월, 3년, 5년)
- * 현재 업체수(개)
- * 폐업 사업체수(개)
- * 창업 사업체수(개)
- * 창업 사업체 대비 폐업 비율
- * 6개월 이하 업력 사업체수(개)
- * 6개월 초과 3년 이하 업력 사업체수(개)
- * 3년 초과 5년 이하 업력 사업체수(개)
- * 5년 초과 업력 사업체수(개)

예금여력

- 1. 월평균 예금여력 금액(소비가능금액): 해당지역 전체 고객군의 월평균 예금여력금액 (= 소비가능금액)
- 2. 연평균 소득 금액: 해당지역 전체 고객군의 평균 KCB 결정 연소득 금액
- 3. 월평균 카드소비 금액: 해당지역 전체 고객군의 월평균 카드소비 금액 (*신용, 체크 등 모든 카드이용금액)
- 4. 월평균 채무상환 금액: 해당지역 전체 고객군의 월평균 채무상환 금액

자산평가

- 1. 월평균 총자산 평가금액: 해당지역 고객들이 보유한 주택의 총자산 평균평가금액
- 2. 월평균 순자산 평가금액: 해당지역 고객들이 보유한 주택의 총자산 평균평가금액
- 3. 자가거주비율: 해당지역 고객군의 자가주택 거주 비율
- 4. 다주택자수 비율 : 해당지역 고객군의 다주택자수(보유주택 2채 이상) 비율
- 5. 아파트 거주 비율: 해당지역 고객군의 아파트 거주 비율

소비정보

- 1. 카드보유자수(명)
- 2. 평균카드개수(개)
- 3. 평균카드한도금액(원)
- 4. 카드이용금액(원)
- 5. 신용판매이용금액(원)
- 6. 일시불이용금액(원)
- 7. 할부이용금액(원)
- 8. 현금서비스이용금액(원)
- 9. 해외소비금액(원)

연체정보

- 1. 전체연체보유자수(명)
- 2. 평균연체건수(건)
- 3. 평균연체일수(일)
- 4. 평균연체금액(천원)
- 5. 중위연체금액(천원)

대출정보

- 1. 대출보유자수(명)
- 2. 평균대출건수(건)
- 3. 전체대출잔액(천원)
- 4. 평균대출잔액(천원)

데이터 개요

DATASET: 소득정보

소비정보 대출정보 연체정보 예금여력 자산평가 soho정보

총 42개 특성 187행 (187, 42)

TARGET: 창업 사업체 대비 폐업 비율

```
# Data columns (total 42 columns):
                          Non-Null Count
                                          Dtype
       STD YM
                          187 non-null
                                           int64
                          187 non-null
       BLCK SP CD
                                           int64
       CTPV CD
                          187 non-null
                                           int64
                          187 non-null
       CTPV NM
                                           object
                          187 non-null
       AVG_ICYR_AMT
                          187 non-null
       MED ICYR AMT
                                           int64
       POP CT
                          187 non-null
                                           int64
       CARD HLDR CT
                          187 non-null
                                           int64
       AVG CARD CNT
                          187 non-null
                                           int64
       AVG CARD LMT AMT
                          187 non-null
                                           int64
                          187 non-null
      CARD USE AMT
                                           int64
   11
       CRD SLE USE AMT
                          187 non-null
                                           int64
   12
                          187 non-null
       LSP USE AMT
                                           int64
       INSTL USE AMT
                          187 non-null
                                           int64
   14
       CASH SVC SUE AMT
                          187 non-null
                                           int64
       OVSEA CSMP AMT
                          187 non-null
       LN HLDR CT
                          187 non-null
                                           int64
   17
       AVG LN CONT
                          187 non-null
                          187 non-null
       ALL LN BLC
                                           int64
       AVG LN BLC
                          187 non-null
       ALL ARR HLDR CT
                          187 non-null
                                           int64
       AVG ARR CONT
                          187 non-null
       AVG ARR DACT
                          187 non-null
       AVG ARR AMT
                          187 non-null
      MED ARR AMT
                          187 non-null
                                           int64
      DEPOSIT AMT
                          187 non-null
                                           int64
       AVG ICYR ICM
                          187 non-null
                          187 non-null
       CARD USE AMT.1
                                           int64
      RE DEBT AMT
                          187 non-null
   29
                          187 non-null
       TOT ASST AMT
                                           int64
      NET ASST AMT
                          187 non-null
                          187 non-null
                                           float64
       ONW HOUS RATIO
                          187 non-null
                                           float64
       APT RES RATIO
                          187 non-null
                                           float64
      OPN CNT
                          187 non-null
      CLSD CNT
                          187 non-null
                                           int64
      CLSD RATIO
                                           float64
                          187 non-null
                          187 non-null
                                           int64
      MANAGE01 CNT
                          187 non-null
                                           int64
      MANAGE02 CNT
                          187 non-null
                                           int64
   40
      MANAGEØ3 CNT
                          187 non-null
                                           int64
      MANAGEØ4 CNT
                          187 non-null
                                           int64
# dtypes: float64(4), int64(37), object(1)
```

데이터 개요

7				Unit Trees		- F	25=25 PF-									00000	10 Com CO
	olumn 8	column 9	column 10		column 12	2	column 13	3 column 1	14	column	15	colun	nn 16	colum	nn 17 colu	ımn 18	colum
1	RD_HLDR_CT	AVG_CARD_C	I AVG_CARD_L	_MT_/ CARD_USE_A			SP_USE_AN		_AMT	CASH_SVC			CSMP_AMT	LN_HLD		_LN_CON	ALL_LN_
2	1584	4	11914	12483074618			660057219			834312148		1732649		308733			2800240
3	6481	4	11097	3756682618	3451578664		738934254			305103954		2712472		100615			8244479
4	7871	4	10600	2699121077	2514701176		032202314			184419901		1830631		729004			578937
5	3481	4	10532	3202585467	2948791409		367523639			253794058		2693770		980611			777264
6	6403	4	10717	1750410616	1639884305		340030945			110526311		8790534		459717			330703
7	1859	4	10698	1796183865	1680965322	1	390893603	3 290071719)	115218543		1197709	95	470004	2	DV.	326636
8 9	571 739	5		column 32	column 33	colum	nn 34	column 35	col	umn 36	columr	37	column :	38	column 39	col	umn 40
10	74316	4	1 0	NW HOUS RATIO	PLU_HOUS_RATIO	APT RES	S RATIO	OPN_CNT	CLSD	CNT	CLSD_RA	TIO	NEW_CNT		MANAGE01_CN	T MAN	AGE02_C
11	3026	3		.15	0.04	0.46	* -	1061747	5797		0.5460		8358		56625	2740 ⁻	12
12	1410	3	3 0.	.18	0.05	0.58		323508	1743		0.5388		2660		16697	8263	5
13	0710	3		21	0.05	0.58		245658	1239		0.5044		2035		12649	65335	
14	9746	4		.19	0.04	0.56		254347	1593		0.6263		2444		16007	77454	
15	8739	3															
16	8071	3	E	.22	0.05	0.65		135402	812		0.5997		1315		8166	4023	
17	0539	4	7 🗑 0.		0.05	0.57		134922	746		0.5529		1178		7531	37314	
18	199	4	8 0.	.23	0.05	0.57		92788	648		0.6984		923		5578	25797	/
19	1839 6745	4	9 0.	.15	0.06	0.72		25585	139		0.5433		306		2041	9439	
20 21	8709	4	10 0.	.18	0.04	0.57		1213299	7007		0.5775		12621		77672	36550	00
22	4304	4	11 0.	.2	0.05	0.44		152424	808		0.5301		1200		7968	41387	7
23	7356	4	12 0.	21	0.05	0.48		146757	780		0.5315		1312		8408	40918	3
24	2364	4	13 0.	.19	0.05	0.46		196833	1072		0.5446		1725		11485	55856	5
25	842	4	14 0.	.21	0.04	0.49		166647	959		0.5755		1433		9165	45912	2
			15 0.		0.04	0.39		164084	830		0.5058		1509		9355	4564	
			16 0.		0.05	0.43		247513	1221		0.4933		2024		12956	66589	
				.22	0.05	0.5		304357	1648		0.5415		2728		16824	81818	
			17 0.		0.05	0.5		301331	1010		0.5 115		LILU		10021	01010	

피처 상관관계

소비데이터 자산데이터

Correlation between Features

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

-0.4

- -0.6

피처 중요도

기. 평균카드한도금액 2. 6개월 이하업장

3. 3년 초과업장

x = dataset.drop(['STD_YM','CTPV_NM','BLCK_SP_CD','CTPV_CD','ONW_HOUS_RATIO','PLU_HOUS_RATIO','APT_RES_RATIO','MED_ARR_AMT','CLSD_CNT','CLSD_RATIO'],axis=1)
y = dataset['CLSD_RATIO']

데이터 전처리

- 1. 데이터 표준화
- 2. 결측치 제거
- 3. 중복값 제거
- 4. 정규분포(로그변환)

```
#1-1 데이터표준화
mean = np.mean(x train, axis=0)
std = np.std(x train, axis=0)
x train = (x train - mean) / std
x test = (x test - mean) / std
#1-2 결측치확인
def check missing col(dataframe):
    counted missing col = 0
    for i, col in enumerate(dataframe.columns):
       missing values = sum(dataframe[col].isna())
       is missing = True if missing values >= 1 else False
       if is missing:
           counted missing col += 1
           print(f'결측치가 있는 컬럼은: {col}입니다')
           print(f'총 {missing_values}개의 결측치가 존재합니다.')
       if i == len(dataframe.columns) - 1 and counted_missing_col == 0:
           print('결촉치가 존재하지 않습니다')
check missing col(dataset)
#결측치가 존재하지 않습니다
#1-3 중복값 제거
print(dataset.duplicated())
dataset.drop duplicates(inplace=True)
#1-4 로그변환
x = np.log1p(x)
```

모델 #1. Simple RNN

```
x train, x val, y train, y val = train test split(x train,
                    y train, test size=0.3, random state=42)
scaler = StandardScaler()
scaler.fit(x train)
x train = scaler.transform(x train)
x_test = scaler.transform(x_test)
model = Sequential()
model.add(Dense(200, input dim=34))
model.add(Dense(130, activation='relu'))
model.add(Dense(130, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(80, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(20, activation='relu'))
model.add(Dense(1))
model.summary()
model.compile(loss='mae', optimizer = 'adam') #, metrics=['accuracy'])
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
es = EarlyStopping(monitor='val loss', patience=50,
                   mode='auto', verbose=1, restore best weights=True)
mcp = ModelCheckpoint (monitor = 'val_loss', mode = 'min', verbose = 1,
                       save best only=True,
                       filepath = './ ModelCheckPoint/keras27 1 MCP.hdf5')
model.fit(x_train, y_train, epochs=500,
          batch size=32, validation split=0.3, callbacks=[es, mcp])
```

심플RNN						
LOSS	0.003939					
예측값	0.685633					
R2스코어	0.998					
훈련시간	116.696 초					

```
···
loss: 0.0039396812207996845
예측값 : [0.6856333]
r2 스코어 : 0.998
걸린시간: 116.696 초
···
```

모델 #2. LSTM

```
#2. 모델구성
model = Sequential()
model.add(LSTM(200, activation='relu', input shape=(32,1)))
model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(180, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(160, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(140, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(120, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(80, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(50, activation='relu'))
model.add(Dense(30, activation='relu'))
model.add(Dense(20, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(5, activation='relu'))
model.add(Dense(1))
```

LSTM						
LOSS	0.04169					
예측값	0.72781					
R2스코어	0.879					
훈련시간	422.75 초					

··· loss: 0.04169400781393051 예측값 : [0.72781277] r2 스코어 : 0.879 걸린시간: 422.75 초

모델 #3. 머신러닝

```
#2.모델
model1 = RandomForestRegressor(n estimators = 100,
                              max_depth=10, min_samples_split=30,
                              min samples leaf =40)
model2 = GradientBoostingRegressor(n estimators = 1000,
                                  learning rate = 0.3, max depth=100,
                                   min samples split=40,
                                  min samples leaf =30)
model3 = ExtraTreesRegressor(n estimators=1000,
                             max depth=16, random state=7)
model4 = AdaBoostRegressor(n estimators=1000, random state=7)
model5 = XGBRegressor(n estimators = 1000,
                      learning rate = 0.3, max depth=100, min samples split=40,
                      min samples leaf =30)
model6 = LGBMRegressor(n estimators = 100,
                      learning rate = 0.1, max depth=10, min samples split=40,
                      min samples leaf =30)
model7 = CatBoostRegressor(n estimators=1000, max depth=16, random state=7)
from sklearn.ensemble import VotingClassifier
voting model = VotingClassifier(estimators=[('RandomForestRegressor', model1),
                                            ('GradientBoostingRegressor', model2),
                                            ('ExtraTreesRegressor', model3),
                                            ('AdaBoostRegressor', model4),
                                            ('XGBRegressor', model5),
                                            ('LGBMRegressor', model6),
                                            ('CatBoostRegressor', model7)])
classifiers = [model1,model2,model3,model4,model5,model6,model7]
from sklearn.metrics import r2 score, mean squared error
```

```
========RandomForestRegressor ===========
modle socore: 0.04976779230494499
r2 스코어: 0.05
      : 0.8570676629063514
loss=mse : 0.014576354266724335
=======GradientBoostingRegressor =========
modle socore: 0.6068622574732012
r2 스코어: 0.607
예측값 : 0.7926910076088625
loss=mse : 0.006030646997949253
=======ExtraTreesRegressor ========
modle socore: 0.9999083819271255
r2 스코어: 1.0
예측값 : 0.6863492000000057
loss=mse : 1.4054012026092653e-06
=======AdaBoostRegressor ========
modle socore: 0.9879261636250195
r2 스코어: 0.988
예측값 : 0.6807406250000001
loss=mse : 0.0001852100096534052
========XGBRegressor =========
modle socore: 0.9988428001784639
r2 스코어: 0.999
예측값 : 0.6835744
loss=mse : 1.7751192202814536e-05
modle socore: -1.0656474168353456
r2 스코어: -1.066
예측값 : 0.9815852242167775
loss=mse : 0.03168657965295852
Learning rate set to 0.029661
      learn: 1.0071496
                          total: 171ms
                                       remaining: 2m 50s
      learn: 0.9995311
                          total: 191ms
                                       remaining: 1m 35s
modle socore: 0.7908870138667055
r2 스코어: 0.791
예측값 : 0.6548057439273343
loss=mse : 0.0032077474778982673
걸린시간: 115.305 초
```

검증모델 #.K-FOLD

```
x_train, x_test, y_train, y_test = train_test_split(x,y,
        train size =0.7, shuffle=True, random state = 42)
kfold = KFold(n splits=2, shuffle=True)
for train, test in kfold.split(x, y):
   model = Sequential()
   model.add(LSTM(200, activation='relu', input shape=(32,1)))
   model.add(Flatten())
   model.add(Dropout(0.2))
   model.add(Dense(180, activation='relu'))
   model.add(Dropout(0.2))
   model.add(Dense(160, activation='relu'))
   model.add(Dropout(0.2))
   model.add(Dense(140, activation='relu'))
   model.add(Dropout(0.2))
   model.add(Dense(120, activation='relu'))
   model.add(Dropout(0.2))
   model.add(Dense(80, activation='relu'))
   model.add(Dropout(0.2))
   model.add(Dense(50, activation='relu'))
   model.add(Dense(30, activation='relu'))
   model.add(Dense(20, activation='relu'))
   model.add(Dense(15, activation='relu'))
   model.add(Dense(5, activation='relu'))
   model.add(Dense(1))
```

LSTM K-FOLD 검증						
LOSS	0.0252248					
예측값	0.7060925					
R2스코어	0.936					
훈련시간	63.444 초					

예측값: [0.7060925]

cvs: 0.025224849581718445

r2 스코어 : 0.936 걸린시간: 63.444 초

신규 창업 대비 폐업 비율

1 <= 예측값 폐업보다 창업이 더 많다

모델별 결과 비교

모델명	예측값	LOSS	R2 스코어	시간	비고
심플RNN	0.6856	0.00393	0.998	116.69 초	
LSTM	0.7278	0.04169	0.879	422.75 초	
RandomForest	0.8570	0.01457	0.05		
GradientBoosting	0.7926	0.00603	0.607		
ExtraTrees	0.6863	0.000001	1.0		
AdaBoost	0.6807	0.00018	0.988	115.30 초	
XGB	0.6835	0.0000017	0.999		
LGBM	0.9815	-1.0656	-1.066		
CatBoost	0.6548	0.00320	0.791		
LSTM K-FOLD	0.7060	0.02522	0.936	63.44 초	

결론

Q&A 질문과 답변