Los árboles 2-3 son balanceados ... pero

Las operaciones en un árbol 2-3, particularmente al insertar una nueva clave, tienen mucho *overhead*

¿Será posible representar un árbol 2-3 como un ABB?

Nos interesa conservar toda la información del 2-3

Nodo 2

Nodo 2 como un nodo en un ABB

Nodo 3

Nodo 3 como dos nodos en un ABB

Árbol 2-3 ...

Árbol 2-3 ... como ABB

El árbol resultante se conoce como árbol rojo-negro

Un árbol rojo-negro es un ABB que cumple cuatro propiedades:

- 1) Cada nodo es ya sea rojo o negro
- 2) La raíz del árbol es negra
- 3) Si un nodo es rojo, sus hijos deben ser negros
- 4) La cantidad de nodos **negros** camino a cada hoja debe ser la misma

Las hojas nulas se consideran como nodos negros

Inserción en árbol rojo-negro

Una inserción puede violar las propiedades del árbol rojo-negro (así como ocurre en un árbol AVL)

Debemos restaurarlas, usando rotaciones (como en un AVL) y cambios de color (en lugar de ajustar el balance del nodo)

Es más fácil de ver si nos fijamos en el árbol 2-3 equivalente

Equivalencia de árboles rojo-negro con los árboles 2-3

Bueno ... no todos los árboles rojo-negro tienen un árbol 2-3

equivalente

... ¡pero sí tienen un **árbol 2-4** equivalente!

Equivalencia de los árboles rojo-negro con los **árboles 2-4**

Rojo Negro

(dos cosas:

1. Contesten la encuesta de medio semestre:

- es muy importante que la conteste un número grande de estudiantes ($n \ge 60$)
- sean constructiva/os, y séanlo con respecto a este semestre

2. Para estudiar para las pruebas, solo revisar las diapositivas usadas en clases está **muy lejos de ser suficiente**:

- estudiar los conceptos está bien
- · ... pero también hay que hacer muchos ejercicios

Ejemplo de inserción

(si insertamos la clave Z, ¿a dónde va a parar, inicialmente?)

Insertemos la Z en el árbol rojo-negro

El nodo se inserta rojo (para no quebrantar la propiedad 4)

... y en el árbol 2-4

El tío del nodo insertado es negro

La configuración del nodo 4 "S V Z" nos sugiere qué hacer en el árbol rojo-negro

1) Rotación en torno a S-V

La sola rotación no es suficiente

2) Cambio de color a S y V

... también hay que cambiar colores

¡Listo!

Veamos otra inserción en el árbol original (la *U*)

Insertemos la *U* en el rojo-negro

El nodo se inserta rojo

... y también en el 2-4

El tío del nodo insertado es negro

La configuración del nodo "S U V" nos sugiere qué hacer en el árbol rojo-negro

1) Rotación en torno a *U-V*

Una rotación no basta

2) Segunda rotación, en torno a S-U

... hacemos una segunda rotación

3) Cambio de color de S y U

... y también cambiamos colores

¡Listo!

Hagamos una tercera inserción en el árbol original (la K)

Insertemos la K en el árbol rojo-negro

El nodo se inserta rojo

... y también en el árbol 2-4

El tío del nodo insertado es rojo

¿Qué pasa en el árbol 2-4 y cómo se refleja en el árbol rojo-negro?

1) Cambio de color

"Subimos" el problema de un nodo rojo con un hijo rojo

En el árbol 2-4 creamos una nueva raíz "arriba" de la que había

2) (recursivamente) Cambio de color

En el árbol rojo-negro, si la raíz se vuelve roja, ...

3) La raíz es roja: se cambia a negro

... simplemente la pintamos de negro

¡Listo!

Inserción en árboles rojo-negros

Los nodos siempre se insertan rojos

Si su padre es rojo, hay dos casos según el color del tío:

- Si el tío es negro, tenemos el aumento de grado en el nodo del 2-4
 - Se soluciona con rotaciones y cambios de color. No genera más conflictos.
- Si el tío es rojo, tenemos el caso en que el nodo del 2-4 rebalsa
 - Se soluciona cambiando colores. Puede generar el mismo caso hacia arriba.

Ejercicio propuesto

Demuestra que la altura de un árbol rojo-negro con n nodos es $O(\log n)$