אלגוריתמי ניווט ושערוך מיקום - סמסמטר א תשפא

מסנן קלמן לינארי בכמה מימדים

ד"ר רועי יוזביץ

- 1. יש צורך לתכנן מסנן קלמן עבור מערכת בעלת שני משתנים מיקום ומהירות. המיקום והמהירות הם רק בציר X. מודל המערכת הינו מהירות קבועה. חוסר הדיוק הראשוני במיקום הינו 2 מטרים וחוסר הדיוק הראשוני במהירות הינו 1.2 מטר לשניה. ישנו חיישן המודד את המיקום בציר X בלבד (ללא המהירות). החיישן מודד את המיקום ברגל (רגל אחת שווה 0.3048 מטר). דיוק החיישן הינו גאוסי עם סטיית תקן של 0.5 רגל. הניחוש הראשוני של מצב המערכת הינו 8 מטרים למיקום והמהירות הראשונית הינה 5 מטרים לשנייה.
 - א. רשום את מטריצת H ,P ,F מהו הגבר קלמן?
 - ב. בהנחה שהחיישן דיווח שהמערכת נמצאת במיקום של 43 רגל, חשב את וקטור המצב (P I X) ואת הגבר קלמן החדש לאחר שלב ה-**UPDATE**
- 2. נניח שהחיישן מדווח גם על מיקום (ברגל-FEET) וגם על מהירות (ביחידות של מטר לשנייה). סטיית **הת**קן של המיקום היא 0.5 רגל **וסטיית התקן** של המהירות הינה 4 מטר∖לשניה (שימו לב ששיערוך המהירות הינו גרוע ביותר).
 - א. חזרו על שאלה 1 סעיף א עם הנתונים החדשים. מה יהיו היחידות של קבוע קלמן K?
 - **ב.** בהנחה שהחיישן דיווח שהמערכת נמצאת במיקום של 43 רגל, והמהירות הינה 4 מטר לשנייה, חשב את וקטור המצב (P ו X) ואת הגבר קלמן החדש לאחר שלב ה-PDATE
 - 3. כתבו תוכנית בפייתון שמקבלת את הפרמטרים הבאים:

המטריצות\וקטורים: H ,F ,P

X : ניחוש ראשוני

Z מדידה

ומחשבת ומחזירה את וקטור המצב החדש (X) ואת חוסר הוודאות החדש (P).

השתמשו בקוד הפייתון שכתבתם ושנו אותו כך שיתאים לבעייה הבאה:

ו שרומשו בקוד הפייונון שכתבונם ושנו אותו כן שיונאים לבעייה הבאה.
$$\binom{Px}{Py}$$
 מסנן קלמן המודד מיקום ומהירות בשני צירים $\binom{Px}{Vx}$. יש חיישן המודד את רק את המיקום מסנן קלמן המודד מיקום ומהירות בשני צירים $\binom{Px}{Vy}$

סטיית התקן של שגיאת החיישן הינה 6 מטר לכל ציר. בנוסף לוקטור המצב, למערכת יש תאוצה במיקום במיקום חוסר הוודאות אשוני במיקום . $ay=15rac{m}{s^2}\,ax=5rac{m}{s^2}$ - Y קבועה בציר הינו 7 מטרים לציר X ו-7 מטרים לציר Y. חוסר הוודאות הראשוני במהירות הינו 100 מטרים לשנייה. ניתן להניח ניחוש ראשוני של מהירות כאפס. הניחוש הראשוני של המערכת הינו .y = 150

החיישן מקבל את המדידות הבאות (זמן הדגימה של המערכת הינו שנייה אחת)

X [m]	Y [m]	t
240	204	1
284	267	2
334	344	3
390	437	4
450	544	5
516	667	56

מהו וקטור המצב לאחר כל המדידות האלו:

מצב חומרי עזר:

איך לעבוד עם מטריצות בשפת פייתון מאמר הסבר לגבי דרך העבודה של מסנן קלמן סדרת סרטוני יוטיוב מצוינת לגבי מסנן קלמן Kalman Filter for Dummies

Time Update ("Predict")

(1) Project the state ahead

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$

(2) Project the error covariance ahead

$$P_k^- = AP_{k-1}A^T + Q$$

(1) Compute the Kalman gain

$$K_k = P_k^{\scriptscriptstyle -} H^T (H P_k^{\scriptscriptstyle -} H^T + R)^{-1}$$

(2) Update estimate with measurement z_k

$$\hat{x}_k = \hat{x}_k + K_k(z_k - H\hat{x}_k)$$

(3) Update the error covariance

$$P_k = (I - K_k H) \bar{P_k}$$

