

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formuła 2015

MATEMATYKA

Poziom rozszerzony

Symbol arkusza

EMAP-R0-**100**-2405

DATA: **15 maja 2024 r.**

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania zasad oceniania

nieprzenoszenia odpowiedzi na kartę.

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 29 stron (zadania 1–16). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–16) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 10. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Odległość punktu A=(6,2) od prostej o równaniu 5x-12y+1=0 jest równa

A. $\frac{7}{13}$

B. $\frac{7}{12}$ **C.** $\frac{5}{12}$ **D.** $\frac{12}{13}$

Zadanie 2. (0-1)

Równanie |2x - 4| = 3x + 1 w zbiorze liczb rzeczywistych

A. nie ma rozwiązań.

B. ma dokładnie jedno rozwiązanie.

C. ma dokładnie dwa rozwiązania.

D. ma dokładnie cztery rozwiązania.

Zadanie 3. (0-1)

Funkcja f jest określona wzorem $f(x) = |-(x+2)^3 + 5|$ dla każdej liczby rzeczywistej x. Zbiorem wartości funkcji f jest przedział

A. $\langle -2, +\infty \rangle$ **B.** $\langle 0, +\infty \rangle$ **C.** $\langle 3, +\infty \rangle$

D. $(5, +\infty)$

Zadanie 4. (0-1)

Granica $\lim_{x \to +\infty} \frac{1+3a+2ax+ax^3}{3+4x+5x^2+5x^3}$ jest równa 3. Wtedy

A. a = 3

B. a = 9

C. a = 15

D. a = 21

BRUDNOPIS (nie podlega ocenie)

Zadanie 5. (0-2)

Wielomian $W(x) = 8x^3 + 14x^2 + 5x + 3$ jest iloczynem wielomianów P(x) = 2x + 3 oraz $Q(x) = ax^2 + bx + c$.

W poniższe kratki wpisz kolejno – od lewej do prawej – wartości współczynników: a, b oraz c.

BRUDNOPIS (nie podlega ocenie)

Zadanie 6. (0-3)

Wykaż, że jeżeli $\log_5 4 = a$ oraz $\log_4 3 = b$, to $\log_{12} 80 = \frac{2a+1}{a\cdot (1+b)}$.

Wypełnia egzaminator	Nr zadania	5.	6.
	Maks. liczba pkt	2	3
	Uzyskana liczba pkt		

Zadanie 7. (0-3)

Dany jest czworokąt wypukły ABCD. Przekątne AC oraz BD tego czworokąta przecinają się w punkcie S.

Wykaż, że jeżeli $\frac{|AS|}{|DS|}=\frac{|BS|}{|CS|}$, to na czworokącie ABCD można opisać okrąg.

	Nr zadania	7.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

Zadanie 8. (0-3)

Rozważamy wszystkie liczby naturalne, w których zapisie dziesiętnym nie powtarza się jakakolwiek cyfra oraz dokładnie trzy cyfry są nieparzyste i dokładnie dwie cyfry są parzyste. Oblicz, ile jest wszystkich takich liczb.

Zadanie 9. (0-3)

Funkcja f jest określona wzorem

$$f(x) = \frac{x^3 - 3x + 2}{x}$$

dla każdej liczby rzeczywistej x różnej od zera. Punkt P, o pierwszej współrzędnej równej 2, należy do wykresu funkcji f. Prosta o równaniu y=ax+b jest styczna do wykresu funkcji f w punkcie P.

Oblicz współczynniki a oraz b w równaniu tej stycznej.

Wypełnia egzaminator	Nr zadania	8.	9.
	Maks. liczba pkt	3	3
	Uzyskana liczba pkt		

Zadanie 10. (0-3)

Spośród wszystkich liczb naturalnych sześciocyfrowych, których wszystkie cyfry należą do zbioru {1, 2, 3, 4, 5, 6, 7, 8}, losujemy jedną. Wylosowanie każdej z tych liczb jest jednakowo prawdopodobne.

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy liczbę, która ma następującą własność: kolejne cyfry tej liczby (licząc od lewej strony) tworzą – w podanej kolejności – sześciowyrazowy ciąg malejący.

	Nr zadania	10.
Wypełnia egzaminator	Maks. liczba pkt	3
	Uzyskana liczba pkt	

Zadanie 11. (0-4)

Trzywyrazowy ciąg (x,y,z) jest geometryczny i rosnący. Suma wyrazów tego ciągu jest równa 105. Liczby x,y oraz z są – odpowiednio – pierwszym, drugim oraz szóstym wyrazem ciągu arytmetycznego (a_n) , określonego dla każdej liczby naturalnej $n \geq 1$. Oblicz x,y oraz z.

	Nr zadania	11.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 12. (0-4)

Rozwiąż równanie

$$\sin(2x) + \cos(2x) = 1 + \sin x - \cos x$$

w zbiorze $\langle 0, 2\pi \rangle$.

Wypełnia egzaminator	Nr zadania	12.
	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 13. (0-4)

Promień okręgu opisanego na trójkącie ABC jest równy 17. Najdłuższym bokiem tego trójkąta jest bok AC, a długości dwóch pozostałych boków są równe $|AB|=30\,$ oraz |BC|=17. Oblicz miarę kąta $BAC\,$ oraz długość boku $AC\,$ tego trójkąta.

	Nr zadania	13.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 14. (0-5)

Środek S okręgu o promieniu $\sqrt{5}$ leży na prostej o równaniu y=x+1. Przez punkt A=(1,2), którego odległość od punktu S jest większa od $\sqrt{5}$, poprowadzono dwie proste styczne do tego okręgu w punktach – odpowiednio – B i C. Pole czworokąta ABSC jest równe 15.

Oblicz współrzędne punktu S. Rozważ wszystkie przypadki.

	Nr zadania	14.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 15. (0-6)

Wyznacz wszystkie wartości parametru $\ m$, dla których równanie

$$x^2 - (3m + 1) \cdot x + 2m^2 + m + 1 = 0$$

ma dwa różne rozwiązania rzeczywiste $\,x_1^{}$, $\,x_2^{}$ spełniające warunek

$$x_1^3 + x_2^3 + 3 \cdot x_1 \cdot x_2 \cdot (x_1 + x_2 - 3) \le 3m - 7$$

	Nr zadania	15.
Wypełnia egzaminator	Maks. liczba pkt	6
	Uzyskana liczba pkt	

Zadanie 16. (0-6)

Rozważamy wszystkie graniastosłupy prawidłowe trójkątne o objętości 3456, których krawędź podstawy ma długość nie większą niż $8\sqrt{3}$.

a) Wykaż, że pole P powierzchni całkowitej graniastosłupa w zależności od długości a krawędzi podstawy graniastosłupa jest określone wzorem

$$P(a) = \frac{a^2 \cdot \sqrt{3}}{2} + \frac{13824\sqrt{3}}{a}$$

b) Pole P powierzchni całkowitej graniastosłupa w zależności od długości a krawędzi podstawy graniastosłupa jest określone wzorem

$$P(a) = \frac{a^2 \cdot \sqrt{3}}{2} + \frac{13824\sqrt{3}}{a}$$

dla $a \in (0, 8\sqrt{3})$.

Wyznacz długość krawędzi podstawy tego z rozważanych graniastosłupów, którego pole powierzchni całkowitej jest najmniejsze. Oblicz to najmniejsze pole.

	Nr zadania	16.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)

MATEMATYKA Poziom rozszerzony

Formula 2015

MATEMATYKA Poziom rozszerzony

Formula 2015

MATEMATYKA Poziom rozszerzony

Formula 2015