Séries d'exercices 4ème inf GEOMETRIE DANS LE ESPACE

MATUS AU LYCEE *** ALI ANIR Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

Soit un repère (O, i, j, k) de l'espace et les droites D_1 et D_2 définies par :

$$D_1: \begin{cases} x=-1+3a \\ y=1-a \quad \text{où } a \in R \text{ et } D_2: \\ z=2+a \end{cases} \begin{cases} x=1-2b \\ y=2-b \quad \text{où } b \in R. \end{cases}$$

- $1^{\circ}/Montrer$ que D_1 et D_2 sont sécantes et calculer les cordonnées de leurs point d'intersection I . $2^{\circ}/Soit$ le point A(0,1,2).
- a) Ecrire une équation cartésienne du plan P_1 contenant la droite D_1 et passant par A.
- b) Ecrire une équation cartésienne du plan P2 contenant la droite D2 et passant par A.
- c) Quelle est l'intersection des plans P_1 et P_2 ? Donner une représentation paramétrique de cette intersection.

EXERCICE N°2

L'espace est rapporté à un repère cartésien $(O, \vec{i}, \vec{j}, \vec{k})$. Soient les droites :

$$D : \begin{cases} x = -1 - k \\ y = 1 + 2k & \text{où } k \in R \text{ et } D' \\ z = 3 + k \end{cases} : \begin{cases} x = 2 - 3k' \\ y = 1 + k' & \text{où } k' \in R \\ z = -2k' \end{cases}$$

- 1°/ Montrer que D et D' ne sont pas coplanaires .
- 2°/Soit un réel m et les points M et M'appartenant respectivement à D et D'et obtenus en prenant k=k'=m Montrer que la droite (MM') reste parallèle à un plan fixe lorsque m varie.

EXERCICE N°3

L'espace est rapporté à un repère cartésien $(O, \vec{i}, \vec{j}, \vec{k})$. A tout réel m, on associe le plan P_m dont une équation cartésienne est : 2mx + (m+1)y - 3(m-1)z + 2m + 4 = 0.

- 1°/Pour quelle valeur de m, le plan P_m passe-t-il par le point A(1,1,2)?
- $2^{\circ}/Peut$ -on trouver m pour que le plan P_m passe par le point B(3,-3,-1)?
- 3° / Pour quelle valeur de m, le vecteur AB est-il directeur de P_m ?.

EXERCICE N°4

L'espace est rapporté à un repère cartésien $(O, \overrightarrow{i}(j,k))$. On considère les plans P_m d'équations :

- (2m+1)x-2y+(m+1)z-3m+4=0. $(m \in R)$
- 1°/Montrer que tous les plans P_m contiennent une droite Δ dont-on donnera une représentation paramétrique. 2°/On considère les droites Δ 1 et Δ 2 définies par :

$$\Delta_1: \begin{cases} x = 1 - 2a \\ y = 3 + a \quad \text{où } a \in R \text{ et } \Delta_2 \\ z = 1 + 4a \end{cases} \Rightarrow 2y + 3 = 0$$

- 1°/Montrer que Δ_1 et Δ_2 sont sécantes en un point I de P_0 .
- b) Ecrire une équation cortesienne du plan Q contenant Δ_1 et Δ_2 .
- c) Soit O'= $S_I(O)$, écrire une équation cartésienne du plan P' passant par O' et parallèle à P_0 .
- d)On pose $D=P'\cap Q$. donner une représentation paramétrique de D.
- $3^{\circ}/a$)Existe-t-il in plan P_m passant par le point $A(\frac{1}{2},0,2)$?
- b)On désigne par E l'ensemble des plans P_m et par F l'ensemble des plans contenant Δ . E est-il égal à F? EXERCICE N°5

Soit (0, i, j, k) un repère cartésien de l'espace.

A tout couple de réels (a , m) on associe la droite Δ_a et le plan P_m définies par :

$$\Delta_a: \begin{cases} x+1=0 \\ y-z-a=0 \end{cases}$$
 et $P_m: (m+1)x-(m-1)y+(2m+3)z+2=0.$

- $1^{\circ}/Donner un repère (A, u) de \Delta_a$.
- $2^{\circ}/Etudier$, suivant les valeurs de a et m, la position relative de Δ_a et P_m .

 $3^{\circ}/D$ émontrer que tous les plans P_m contiennent une droite fixe D dont-on donnera un repère $(B\ ,\ v\).$

 $4^{\circ}/D$ éterminer a pour que D et Δ_a soient coplanaires.

Pour la valeur de a trouvée , écrire une équation cartésienne du plan Q contenant D et Δ_a .

EXERCICE N°6

L'espace est rapporté à un repère cartésien $(O, \vec{i}, \vec{j}, \vec{k})$.on donne le point $A_m(m-1, m, m+1)$ où m est un paramètre

réel et la droite D définie par :
$$\begin{cases} x = 2 - k \\ y = 1 + k & (k \in R). \\ z = 3 \end{cases}$$

- 1°/Quel est l'ensemble Δ des points A_m lorsque m décrit R?.
- $2^{\circ}/Pour$ quelle valeur de m, a-t-o $n: A_m \in D$?
- 3°/On suppose que $(m \neq 2)$. Ecrire une équation cartésienne du plan P_m passant par A_m et contenant Que remarque-t-on ?
- 4°/Soit un réel a et la droite D_a définie par : $\begin{cases} x = -1 + ab \\ y = 1 + (a 1)b & (b \in R). \end{cases}$ z = 1 + ab
- a)Les droites D et D_a peuvent-elles être parallèles.
- b) Ecrire une équation cartésienne du plan Q_a contenant D_a et parallèle à D.
- c)Montrer que tous les plans Q_a contiennent une droite fixe D' parallèle à D.

EXERCICE N°7

L'espace ξ est rapporté à un repère cartésien $R = (O, \vec{i}, \vec{j}, \vec{k})$. A tout réel m on associe le plan Pm dont une équation cartésienne est : $mx + 2y - m^2z + 3 = 0$.

- 1°)Déterminer les plans Pm passant par le point A(2,0,1).
- 2°) Déterminer l'intersection des plans P_{-1} et P_1 .
- 3°)Montrer que tous les plan Pm passent par un point fixe B dont on précisera les coordonnées.
- 4°)Déduire, suivant les valeurs de m, la position relative de (AB) et Pm.
- 5°)Soit D la droite passant par B et de vecteur directeur : $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$.
- 6°)Montrer que les droites (OA) et D ne sont pas coplanaires .
- 7°)Soit Q le plan contenant la droite (QA) et parallèle à D.

Déterminer une équation cartésienne du plan Q.

8°)Déterminer m pour que les plans Q et Pm soient parallèles.

EXERCICE N°8

L'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

Soit A(1,0,1); B(1,1,-1) et C(2,1,2).

- 1°)Soit M un point de l'espace et \vec{u} le vecteur défini par $\vec{u}=2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}$
 - a- Montrer que $\overrightarrow{u} = \overrightarrow{BA} + \overrightarrow{CA}$ et déterminer ses cordonnées.
- b- Déterminer un système d'équations cartésiennes de la droite D passant par A et de vecteur directeur u .
 2°) a-Vérifier que A, B et C ne sont pas alignés.
 - b Déterminer une équation cartésienne du plan (ABC)

3)Soit D' la droite dont un système d'équations cartésiennes est : $\begin{cases} x-z=0\\ 3x-2y-z-2=0 \end{cases}$

Définir D' par un point et un vecteur directeur.

4°)Etudier la position relative de les droites D et D'

