Modelleerrapport

dinsdag 24 juni 2025 1

Gegeven de Use cases komen we tot een model dat bestaat uit:

- 1. Observaties
- 2. Aansturingen
- 3. <u>Domeinobjecten</u> zoals Toestellen en Aansluitingen

Waarover dit:

- EnergieManagement komt grofweg neer op het Aansturen van Toestellen op Aansluitingen op basis van Observaties
- Bvb Het starten of stilleggen (Aansturing) van een productielijn (Toestel) op een bepaald adres (Aansluiting) op basis van de elektriciteitsprijs (Observatie).
- Zie <u>Datavoorbeelden</u> voor datavoorbeelden op basis van concrete use cases.
- Het model is zo veel mogelijk gericht op hergebruik van bestaande datamodellen, nl van:
 - o OMS
 - o SSN/SOSA
 - o SAREF
 - o IMKL
- For convenience werden nog klassen als KwantitatieveWaarde (bvb voor het resultaat van Observaties vh type Meting) en MLDCAT:MachineLearningModel (als mogelijk type Sensor, zie ook <u>Datavoorbeeld Al-voorspelling voor pre-heating op basis van temperatuur & bezettingshistoriek</u>) toegevoegd.

Aansturingen

dinsdag 24 juni 2025

Is als volgt gemodelleerd:

Hierover dit:

- We gebruikten de meest recente versie van SSN/SOSA nl SSN/SOSA-2025.
- Concreet is een Aansturing een activiteit die een bepaald aanstuurbaarKenmerk van een Object aanstuurt met als resultaat een nieuwe waarde voor dat kenmerk.
- De procedure die werd gebruikt bij het aansturen wordt beschreven door de Aansturingsprocedure, het toestel dat daarbij wordt gebruikt wordt door de klasse Aansturingssysteem vertegenwoordigd.
- Aansturingssysteemheeft zelf enkel het attribuut locatie, andere kenmerken worden door de klasse Systeem aangeleverd (bvb het type Aansturingssysteem, het Platform waarop het werd gedeployed).
- Aansturingssysteem heeft weinig attributen, deze van superklasse <u>Systeem</u> zijn van toepassing.
- Via Aansturingsprocedure.input kan evt verwezen worden naar Observaties of andere Input (bvb Regels en bijhorende drempelwaarden) waarop de aansturing is gebaseerd.
- Zie bvb <u>Datavoorbeeld Optimalisatie van energieverbruik op basis van marktprijzen</u>, een productielijn wordt daar stilgelegd (Aansturing) als de day-ahead elektriciteitsprijs (Observatie) een bepaalde waarde overschrijdt.
- Het modelleren van Regels is buiten scope, we verwijzen daarvoor naar bestaande modellen zoals RIF, N3, RuleML, IDP edm. Zie Regel stillegging productielijn voor een vb ve Regel in RIF.

Observaties

dinsdag 24 juni 2025 12:19

Is als volgt gemodelleerd:

Hierover dit:

- We gebruikten de meest recente versie van SSN/SOSA nl SSN/SOSA-2025, ttz de versie die op ISO OMS heeft afgestemd (vroeger ISO OM). Zie ISO OMS & SSN/SOSA voor meer info.
- Concreet is een Observatie een activiteit die een bepaald ObserveerbaarKenmerk van een Object observeert met als resultaat een waarde voor dat kenmerk.
- Voor wat de geobserveerdeObjecten betreft beperken we ons hier tot Domeinobjecten, geen samples dus van Domeinobjecten.
- De procedure die werd gebruikt bij het observeren wordt beschreven door de Observatieprocedure, het toestel of ruimer de observator die daarbij wordt gebruikt wordt door de klasse Sensor vertegenwoordigd.
- Sensor heeft zelf enkel het attribuut locatie, andere kenmerken worden door de klasse Systeem aangeleverd (bvb het type Sensor, het Platform waarop het werd gedeployed).
- Verder is er de klasse Observatieverzameling, die toelaat om meerdere Observaties te bundelen.
- Dat kan op basis van gemeenschappelijke kenmerken, bvb het geobserveerdObject of het tijdstip waarop het geobserveerd fenomeen zich voordoet (bvb alle Observaties op een bepaald Object op dezelfde dag).
- Zie ook <u>Observatieverzameling</u> voor meer info (weliswaar met Verkeerstellingen als voorbeeld) en <u>Datavoorbeeld Advies aan de stad over isolatie-investeringen in overheidsgebouwen</u> voor een vb van een verzameling adviezen.
- OPMERKING: Voor Observaties met specifieke resultaattypes kunnen evt de subklassen uit
 <u>OSLO Observaties & Metingen</u> worden gebruikt. Bvb voor de subklasse Meting wordt het
 resultaattype van Any geherdefineerd naar KwantitatieveWaarde, voor Classificatie naar
 skos:Concept etc. Zie <u>ISO OMS & SSN/SOSA</u> voor meer info. Zie <u>Datavoorbeeld Advies aan de
 stad over isolatie-investeringen in overheidsgebouwen</u> voor een vb met een Classificatie.
- Sensor heeft weinig attributen, deze van superklasse <u>Systeem</u> zijn van toepassing.

Domeinobjecten

dinsdag 24 juni 2025 12:20

Hierover dit:

- Er zijn twee mogelijkheden:
 - Een link naar een bestaand extern domeinobject.
 - o Een van de opgegeven subklassen.
- Wat de link naar bestaande domeinobjecten betreft: Object mag daarbij gesubstitueerd worden door een instantie vd betrokken klasse. Dit patroon wordt uitvoerig uitgelegd in § 8.2 Domain types and FeatureOfInterest in de specificatie van <u>SSN/SOSA-2025</u>.
- Wat de subklassen betreft voorzien we:
 - Saref:Toestel
 - o Saref:Meter (subklasse van Saref:Toestel)
 - IMKL-LD:Aansluiting
- Redenering achter deze selectie is dat op basis van Observaties bvb van de elektriciteitsprijs die men kan krijgen voor zijn Aansluiting op een Nutsvoorzieningnetwerk een Toestel gaat Aansturen. Er wordt daarbij ook gekeken naar het elektriviteitsverbruik, een Observatie (evt ve Meter) op een Aansluiting.
- In <u>OSLO Sensoren en Bemonstering</u> hebben we Saref:Toestel neergezet als Systeem en Platform tegelijk, we doen dat dus ook hier. Dat laat bvb toe om aan te geven dat het Aansturingssysteem waarmee men een bepaald Toestel aanstuurt gemonteerd is op datzelfde Toestel.
- Aansluiting is afkomstig uit IMKL (later ICEG <u>Kabels en Leidingen</u> waarvan we de uri's overnamen) waar het een specialisatie is van Toebehoren, op zijn beurt een specialisatie van Nustvoorzieningknoop. IMKL baseert zich op INPIRE:Netwerk voor nutsvoorzieningnetwerken en oa aansluitingen zijn daarin de knopen.
- Om de use-case van sub-aansluitingen op te lossen kan Nutsvoorzieningknoop.beginlink en .eindlink worden gebruik:

ISO OMS & SSN/SOSA

dinsdag 24 juni 2025 16:2

Hierover dit:

- Ipv ons nog te baseren op <u>OSLO Observaties en metingen</u> en <u>OSLO Sensoren en Bemonstering</u> (resp gebaseerd op <u>ISO Observations & Measurements</u> en op <u>SSN/SOSA-2017</u>), gebruiken we hier <u>ISO Observations, Measurements & Samples</u> en de laatste versie van SSN/SOSA, nl <u>SSN/SOSA-2025</u>.
- Gecombineerd vormen de OSLO standaarden een goede benadering van ISO OMS en SSN/SOSA-2025, alleen maken we beter gebruik van de meest recente en onderhouden uri's, aangevuld met nieuwe uri's voor de elementen die in OMS of OSLO voorkomen maar niet in SSN/SOSA-2025.
- Echter: SSN/SOSA-2025 is nog niet finaal, en een opvolger voor OSLO Observaties en Metingen en OSLO Sensoren en Bemonstering is er nu nog niet (zie <u>OMS</u> voor meer info). We namen wel al de uri's over van SSN/SOSA-2025 en voor de elementen die daarin ontbreken zochten we alvast een oplossing voor de uit OMS afkomstige attributen:

element	uri	Olduri		
d=OMS::BenoemdeWaarde	https://schema.org/StructuredValue	http://def.isotc211.org/iso19156/2011/Observation#NamedValue		
d=OMS::BenoemdeWaarde a=naam	http://www.w3.org/ns/adms#identifier	http://def.isotc211.org/iso19156/2011/Observation#NamedValue.name		
d=OMS::BenoemdeWaarde a=waarde	https://schema.org/value	http://def.isotc211.org/iso19156/2011/Observation#NamedValue.value		
k=SSN/SOSA::Observatie a=parameter	https://dbpedia.org/ontology/influencedBy	http://def.isotc211.org/iso19156/2011/Observation#OM Observation.parameter		

En deze die door OSLO ooit zijn toegevoegd:

element	uri	olduri
k=OSLO- SSN:Observatie a=uitgevoerdDoor	http://purl.org/dc/terms/contributor	https://data.vlaanderen.be/ns/observaties-en- metingen#Observatie.uitgevoerdDoor
k=SSN/SOSA::Observatieprocedure a=s pecificatie	http://purl.org/dc/terms/references	https://data.vlaanderen.be/ns/sensoren-en- bemonstering#Observatieprocedure.specificatie
k=SSN/SOSA::Observatiesprocedure a=parameter	https://dbpedia.org/ontology/influencedBy	https://data.vlaanderen.be/ns/sensoren-en- bemonstering#Observatieprocedure.parameter

 Bij de overgang van SSN/SOSA-2017 naar SSN/SOSA-2025 zijn een aantal bestaande SSN/SOSA-2017 uri's ook aangepast nl:

element	uri	olduri
k=OSLO-OMS::Observatieprocedure	http://www.w3.org/ns/sosa/oms/ObservingProcedure	http://www.w3.org/ns/sosa/om#ObservationProcedure
k=OSLO- OMS::Observatieprocedure a=^input	http://www.w3.org/ns/sosa/hasInput	http://www.w3.org/ns/ssn/hasInput
k=OSLO- OMS::Observatieprocedure a=^output	http://www.w3.org/ns/sosa/hasOutput	http://www.w3.org/ns/ssn/hasOutput
k=OSLO- OMS::Observatieprocedure r=geïmplem enteerdMet k=OSLO-OMS::Sensor	http://www.w3.org/ns/sosa/implementedBy	http://www.w3.org/ns/ssn/implementedBy
k=OSLO- OMS::Sensor r=implementeert k=OSLO- OMS::Observatieprocedure	http://www.w3.org/ns/sosa/implements	http://www.w3.org/ns/ssn/implements

 En verder zijn Aansturing en afhangende objecten enkel te vinden bij SSN/SOSA en ook daar ontbreken enkele attributen die OMS of OSLO toevoegde aan Observatie nl:

element	uri	olduri
k=OSLO-SSN::Aansturing a=type	http://purl.org/dc/terms/type	NVT
k=OSLO-SSN::Aansturing a=parameter	https://dbpedia.org/ontology/influencedBy	NVT
k=OSLO- SSN::Aansturing a=uitgevoerdDoor	http://purl.org/dc/terms/contributor	NVT
k=OSLO- SSN::Aansturingsprocedure a=type	http://purl.org/dc/terms/type	NVT
k=SSN/SOSA::Aansturingsprocedure a =specificatie	http://purl.org/dc/terms/references	NVT
k=SSN/SOSA::Aansturingsprocedure a =parameter	https://dbpedia.org/ontology/influencedBy	NVT

• Bij de overgang van ISO OM naar ISO OMS is de indeling van Observaties volgens resultaattype ook niet langer gerealiseerd dmv subklassen maar dmv een codelijst + constraints. De indeling in subklassen zag er zo uit:

• Bvb de subklasse Meting die het resultaat vd Observatie herdefinieert als KwantitatieveWaarde ipv Any, of skos:Concept voor Classificatie. In OMS staat het de gebruiker vrij om zelf Any te vervangen door KwantiatieveWaarde of enig ander toepasselijk datatype. Het type Observatie moet dan gegeven worden via Observatie.type:

Met als nadeel dat de met elk type overeenkomende resultaattypes niet meer afgedwongen worden door het model. $\,$

Observatieverzameling

dinsdag 24 juni 2025 20:50

In de laatste versie van SSN/SOSA <u>SSN/SOSA-2025</u> kan Observatieverzameling gebruikt worden om Observaties te bundelen, bvb hier om 3 verkeerstellingen uitgevoerd op verschillende dagen op een Wegsegment te bundelen:

```
"@context": [
   "sosa": "http://www.w3.org/ns/sosa/",
   "weg": "https://data.vlaanderen.be/ns/weg",
   "cl kt": "https://example/id/concept/kenmerktype/",
   "time": "http://www.w3.org/2006/time"
 }
"@graph": [
   "@id": " :COL001",
   "@type": "sosa:ObservationCollection",
    "sosa:hasMember": [
     "_:OBS001",
"_:OBS002",
     "_:0BS003"
 },
   "@id": "_:OBS001",
   "@type": "sosa:Observation",
   "sosa:observedProperty": "cl kt:aantalAutosPerUur",
   "sosa:hasFeatureOfInterest": "_:WGS001",
   "sosa:phenomenonTime": "2025-06-25",
    "sosa:hasSimpleResult": 123
 },
    "@id": " :OBS002",
   "@type": "sosa:Observation",
   "sosa:observedProperty": "cl_kt:aantalAutosPerUur",
   "sosa:hasFeatureOfInterest": "_:WGS001",
   "sosa:phenomenonTime": "2025-06-26",
   "sosa:hasSimpleResult": 456
 },
    "@id": "_:OBS003",
   "@type": "sosa:Observation",
   "sosa:observedProperty": "cl_kt:aantalAutosPerUur",
   "sosa:hasFeatureOfInterest": "_:WGS001",
   "sosa:phenomenonTime": "2025-06-027",
    "sosa:hasSimpleResult": 789
 },
    "@id": "_:WGS001",
    "@type": "weg:Wegsegment"
```

Als de Observaties gemeenschappelijke kenmerken hebben kunnen deze kenmerken doorgeschoven worden naar de Observatieverzameling om herhaling te voorkomen, bvb hier met het

```
geobserveerdKenmerk en het geobserveerdObject die voor alle Observaties dezelfde zijn:
  "@context": [
    {
      "sosa": "http://www.w3.org/ns/sosa/",
      "weg": "https://data.vlaanderen.be/ns/weg",
      "cl kt": "https://example/id/concept/kenmerktype/",
      "time": "http://www.w3.org/2006/time"
    }
  "@graph": [
    {
      "@id": "_:COL001",
      "@type": "sosa:ObservationCollection",
      "sosa:observedProperty": "cl_kt:aantalAutosPerUur",
      "sosa:hasFeatureOfInterest": "_:WGS001",
      "sosa:hasMember": [
        "_:OBS001",
"_:OBS002",
        ":0BS003"
    },
      "@id": " :OBS001",
      "@type": "sosa:Observation",
      "sosa:phenomenonTime": "2025-06-25",
      "sosa:hasSimpleResult": 123
    },
      "@id": "_:OBS002",
      "@type": "sosa:Observation",
      "sosa:phenomenonTime": "2025-06-26",
      "sosa:hasSimpleResult": 456
    },
      "@id": "_:OBS003",
      "@type": "sosa:Observation",
      "sosa:phenomenonTime": "2025-06-27",
      "sosa:hasSimpleResult": 789
    },
      "@id": " :WGS001",
      "@type": "weg:Wegsegment"
    }
  ]
}
```

De resulterende data is daardoor stukken compacter.

Merk ook op dat:

- In de eerste versie is de Observatieverzameling een speciaal geval van een Dataset.
- De tweede versie kan beschouwd worden als een meetreeks (vh type tijdreeks) OF als een dimensie (vh type tijdsdimensie) uit een DWH (zoals bvb ook beschreven door de <u>Cube</u> <u>ontolgy</u>).

woensdag 25 juni 2025

17:47

Is als volgt gemodelleerd:

Waarover dit:

- Zoals gezegd zijn volgende klassen subklasse van Systeem:
 - Sensor
 - Aansturingssysteem
 - o Toestel
- Waardoor deze attributen zoals type of links naar Deployment of Platform overerven.
- Voor meer detail zie bvb <u>Sensoren en Bemonstering (Applicatieprofiel)</u> of <u>SSN/SOSA-2017</u> waarop dat AP gebaseerd is:

• Waarbij de mogelijkheid wordt geboden om dingen zoals resolutie van bvb een camera (vb van een Systeemvermogen) of vereiste netspanning (vb van een Werkingsbereik) etc te gaan beschrijven.

Datavoorbeelden

dinsdag 18 maart 2025

L7:55

Concrete use cases

woensdag 9 april 2025

Optimalisatie van energieverbruik op basis van marktprijzen

woensdag 9 april 2025 10:49

Bedrijfsprofiel:

Naam: Houtbedrijf XYZLocatie: Kortrijk, België

• Activiteiten: Productie van gezaagd hout, constructiehout en houtpellets

• Energieverbruik: Jaarlijks 10 GWh voor de productielijn

Use Case Beschrijving: Houtbedrijf XYZ wil zijn productielijn tijdelijk stilleggen wanneer de elektriciteitsprijs boven €100/MWh stijgt. Dit beleid is bedoeld om kosten te besparen tijdens piekuren en de productie te verschuiven naar momenten met lagere tarieven.

Hypothetische Data:

1. Elektriciteitsprijsgegevens:

- 1. Gemiddelde elektriciteitsprijs in België over de afgelopen maanden:
 - 1. Januari 2025: €101,10/MWh
 - 2. Februari 2025: €124,37/MWh
 - 3. Maart 2025: €47,07/MWh
 - 4. April 2025 (tot nu toe): €90,00/MWh

2. Productiegegevens:

- 1. Normaal energieverbruik: 10 GWh/jaar
- 2. Gemiddeld dagelijks verbruik: ≈27,4 MWh
- 3. Productie-uren: 24 uur per dag, 5 dagen per week

3. Stilleggingsparameters:

- 1. Drempelprijs voor stillegging: €100/MWh
- 2. Minimale stillegduur: 4 uur
- 3. Maximale stillegduur: 8 uur

Scenario: Op een werkdag in februari 2025, wanneer de gemiddelde elektriciteitsprijs €124,37/MWh bedraagt, stijgt de prijs om 14:00 uur tot €105/MWh en blijft boven de drempel tot 20:00 uur. Het energiemanagementsysteem detecteert deze stijging en besluit de productielijn stil te leggen van 14:00 tot 18:00 uur, een periode van 4 uur.

Impactanalyse:

- **Energiebesparing:** Tijdens de stillegging wordt 4 uur x (27,4 MWh / 24 uur) \approx 4,56 MWh niet verbruikt.
- **Kostenbesparing:** Bij een prijs van €105/MWh resulteert dit in een besparing van 4,56 MWh x €105/MWh ≈ €478,80.
- **Productieverlies:** Een tijdelijke stillegging kan leiden tot een productieverlies, maar dit kan worden gecompenseerd door overuren of productie tijdens daluren.

Datavoorbeelden

Observatieverzameling

- o Waargenomen via: SSN/SOSA-Sensor
- o Sensor: Prijsobservatie vanuit externe bron (bijv. day-ahead markt)
- o Tijdstip: 14 februari 2025, 14:00 20:00
- o Energieprijs: €105/MWh
- o Externe factor: Energiepriis

ObservatieBeschrijvingDocument

- Beschrijving: "Waarneming van day-ahead elektriciteitsprijs t.b.v. productieplanning."
- Procedure: Externe prijsscraping en parsing (bijv. ENTSO-E API)

• SSN/SOSA-ObservatieElement

o Attribuut: Prijs

Waarde: 105 Eenheid: €/MWh

Aansturingsklassen

- SSN/SOSA-AansturingsElement
 - o Attribuut: Aansturing productielijn
 - o Waarde: Uitschakelen
 - o Tijdstip: 14 februari 2025, 14:00
- SSN/SOSA-AansturingsRegelDocument
 - o Procedure: Beslissingslogica op basis van drempelwaarde energieprijs
 - Invoer: ObservatieElement (energieprijs > 100 €/MWh)
 - o Uitvoer: Stillegging productielijn

Energieobject & Domeinobject

- OMSDomeinObject (koppeling tussen observatie en actie)
 - o Type: Productielijn houtbewerking
- DomeinObject → Energieaansluiting → Energievraagaansluiting
 - o Energieverbruik: gemiddeld 27,4 MWh/dag
 - o Stillegging: 4 uur → 4,56 MWh niet gebruikt

Energiecontext

- Energieprijscontext
 - o Bron: Day-ahead markt
 - o Gemiddelde uurprijs: 105 €/MWh
 - o Vergelijking met drempel: >100 €/MWh
- Energiegebruikscontext
 - Verbruiksprofiel: Constante last over werkdagen
 - o Impact bij stillegging: Verminderd verbruik & lagere energiekost

Al-voorspelling voor pre-heating op basis van temperatuur & bezettingshistoriek

woensdag 23 april 2025 16:28

Situatie

Een groot overheidsgebouw wil de verwarming slim **voorverwarmen (pre-heating)** vóór de start van de werkdag. Een **machine learning model** (zoals een regressiemodel of een decision tree) voorspelt wanneer het verwarmingssysteem moet starten op basis van:

- Verwachte buitentemperatuur
- Bezettingsverwachting
- Historische opwarmtijden
- Interne temperatuur van het gebouw

Het EMS gebruikt deze voorspelling om de **aansturing van de verwarmingsinstallatie** automatisch te plannen.

Observatieverzameling

Attribuut	Waarde	Tijdstip	Sensorbron
Buiten temperatuur	1°C	06:00	KMI API
Gebouwtemperatuur	17°C	06:00	Interne HVAC-meting
Historisch opwarmtraject	90 min	-	EMS-logica
Verwachte bezetting	80%	08:00	Voorspeld op basis van badge-logs

Toevoeging van nieuwe conceptuele klassen (optioneel)

(Deze kunnen vervangen of instantiaties zijn van "Software")

ML-Model

- Type: Random Forest regressiemodel (of neural net)
- Doel: Voorspelling "verwarmingsstarttijd" op basis van observaties
- o Getraind op: 6 maanden historische data

ML-Modelinput

- Structuur gebaseerd op één of meerdere ObservatieVerzamelingen
- Bevat getransformeerde attributen zoals:
 - 07:00 uur: voorspelde bezetting = 80%
 - 06:00 uur: buitentemperatuur = 1°C
 - Historisch opwarmtraject = 1,5 uur voor 20°C

ML-Modeloutput

Voorspelde actie: "Start verwarming om 05:30"

ObservatieRegelDocument

- Beschrijving: "Verzameling van externe en interne parameters als input voor Almodel voor verwarmingsoptimalisatie"
- Herkomst: automatische logging, gekoppeld aan ObservatieVerzameling
- Gelinkt aan: ML-Modelinput

AansturingsDocument (op basis van voorspelling)

• Actie: Start HVAC-verwarming om 05:30

Oorsprong: Voorspelling van Al

• Tijdstip beslissing: 04:00

• Uitvoer: EMS verstuurt commando naar verwarmingsobject

Concrete voorspelling

Datum: 21 maart 2025

Bezetting voorspeld om 08:00: 80%

Buiten voorspelde temperatuur om 06:00: 1°C

Voorspelling model: Verwarming starten om 05:30

Verwarming target: 20°C om 08:00

Object: Verwarmingsinstallatie Gebouw X

• **Type:** Verwarmingssysteem (HVAC – verwarming)

• Locatie: Gebouw X (administratief overheidsgebouw)

• Functie: Verwarming van het volledige gebouw via warmwatercircuits

• Aangestuurd via: Centrale regelunit met Modbus/IP-interface

• Energiebron: Gas of warmtepomp-elektriciteit (afhankelijk van setup)

• Gekoppeld aan: Subaansluiting of hoofd-EAN afhankelijk van structuur

• Meetpunten:

- Inlaattemperatuur
- Kamertemperatuur
- Flowrate
- Aan/uit-status

Resultaat

- Verhoogd comfort: gebouw op juiste temperatuur vóór werkdag
- · Minder energieverspilling: verwarming wordt pas gestart wanneer nodig
- Al verhoogt efficiëntie in plaats van statische regels

Slim aansturen van een koelinstallatie op subaansluiting

donderdag 24 april 2025 10:15

Elk EAN-nummer is gekoppeld aan een fysieke aansluiting op het energienet, niet aan een persoon of organisatie. EAN-nummers worden beheerd door Fluvius of een andere distributienetbeheerder.

Situatie:

Een overheidsarchief heeft:

- 1 hoofdaansluiting met EAN-nr (officieel geregistreerd)
- 2 subgebouwen (gebouw A en B) met interne meters
- In gebouw A staat een koelinstallatie om archiefmateriaal op lage temperatuur te houden

Doel:

Het energiemanagementsysteem wil de koelinstallatie enkel inschakelen als:

- Er voldoende beschikbare capaciteit is op de hoofdaansluiting (om pieken te vermijden)
- De **interne bezettingsgraad** van gebouw A ≥ 50% is (archieven worden dan effectief gebruikt)
- De **elektriciteitsprijs laag** is (dynamische tarieven)

Structuur

Aansluiting	EAN-nummer	Meetniveau	Toepassing
Hoofdaansluiting	54123456789012345 6	EAN Fluvius	Verzamelt alle afname/injectie
Subaansluiting	Intern ID: SUBA001	Submeter	Gebouw A (incl.

A koelinstallatie)
Subaansluiting Intern ID: SUBB001 Submeter Gebouw B

EMS Logica

- 1. Het EMS monitort de actuele afname op het hoofd-EAN-nr.
- 2. Vergelijkt deze met een ingestelde piekgrens (bijv. 60 kW).
- 3. Haalt van de submeter in gebouw A de huidige belasting en kijkt naar de bezettingsdata.
- 4. Combineert dit met een externe prijsfeed voor stroom (bijv. dynamisch tarief €95/MWh).
- 5. Als alle voorwaarden voldaan zijn → koelinstallatie A wordt ingeschakeld.
- 6. Bij overschrijding van drempel of lage bezetting → koeling pauzeert tijdelijk.

Energieaansluiting

- Hoofdaansluiting (EAN-nr): 541234567890123456
 - Type: Elektriciteit
 - o Functie: Officiële netaansluiting geregistreerd bij Fluvius
 - o Gekoppeld aan: Energieverbruikaansluiting + Energieinjectieaansluiting
 - o Aansluitingstype: Hoofd
- Subaansluiting (intern ID): SUBA001
 - Type: Elektriciteit (interne submetering)
 - o Functie: Meet verbruik van gebouw A incl. koelinstallatie
 - o Aansluitingstype: Sub
 - o Niet gekend bij Fluvius, wel gebruikt in het EMS
 - Gekoppeld aan: Koelinstallatie als OMS-object

Observatieverzameling

· Verzameld via:

Sensor: SSN/SOSA-Sensor

Systeem: Slimme submeters & externe API (prijsfeed)

Observatietijdstip: 18 maart 2025, 14:00

Waargenomen attributen (ObserveerbaarKenmerk):

Attribuut	Waarde	Eenheid	Sensorlocatie
Verbruik hoofd-EAN	55	kW	Fluvius hoofd-EAN
Verbruik sub A	12	kW	Subaansluiting A
Bezetting gebouw A	68	%	Intern aanwezigheidslog
Stroomprijs	93	€/MWh	Externe feed (ENTSO-E)

ObservatieProcedure

- "Reële verbruiksmeting hoofd- en subniveaus met bezettings- en prijsinfo"
- Methode:
 - Verbruik: via slimme meterregistratie (15-min interval)
 - o Bezetting: afgeleid uit badgegegevens en planning
 - o Prijs: live day-ahead market prijs via API (ENTSO-E, Fluvius of derde

partii)

Procedure: SSN/SOSA-Observatieprocedure gekoppeld aan type sensor

AansturingsDocument

Beslissingsregel (simplified pseudocode):

if hoofdverbruik < 60 kW and bezetting > 50% and stroomprijs < 100 €/MWh:

activeer koeling()

else:

pauzeer_koeling()

- Procedure: Regelgebaseerde sturing binnen EMS-platform (bv. Node-RED, Domatica, custom script, RIF)
- Input: Verbruiksdata hoofd + sub, bezetting, stroomprijs
- Output: Commando aan koelinstallatie via PLC of smart relay

Energie Object: Koelinstallatie Gebouw A

- Omschrijving: Professionele HVAC-installatie met elektrische compressor
- Gekoppeld aan: Subaansluiting A (SUBA001)
- Klasse: Energieverbruiker (OMS-object)
- Domeinobject: HVAC (onderdeel van Gebouw A)
- Controleerbaar via: EMS-aansturing (bijv. Modbus/IP, API)

Externe factor observaties (Energieprijs)

Klasse: Energieprijs

Waarde: 93 €/MWh

o Tijdstip: 14:00, 18 maart 2025

Bron: Day-ahead markt (ENTSO-E)

Sensor: API/virtuele sensor

Toegevoegd via: Observatieverzameling

Automatiseringsgedrag binnen het EMS

Tijd	Verbruik hoofd (kW)	Bezetting (%)	Stroomprijs (€/MWh)	Actie EMS
14u	55	68	93	Koeling aan
16u	59	70	102	Koeling uit
18u	48	45	89	Koeling uit

Van

Advies aan de stad over isolatie-investeringen in overheidsgebouwen

donderdag 24 april 2025 13:50

Doel

De stad wil bepalen welke gebouwen prioriteit krijgen voor isolatie-upgrades, op basis van het gemeten warmteverlies tijdens de nacht. Het EMS genereert automatisch een adviesrapport, gebaseerd op een reeks observaties over meerdere dagen en gebouwen.

Invulling in het model

- Metingen: Temperatuurmetingen per kwartier in kamers per gebouw
- Observatie: Warmteverlies per kamer per nacht (vb. °C per uur)
- Observatieverzameling: Warmteverlies per gebouw over meerdere nachten
- Observatieverzameling (stad-niveau): Alle gebouwen samen (benchmarking)
- 'Advies': Genereerd object op basis van Observatieverzameling

Concrete data

Metingen – Temperatuur (kamer per nacht)

Tijd	Temp (°C)
22:00	20.0
22:15	19.8
22:30	19.5
06:00	16.5

→ Nachtelijk warmteverlies: 3,5°C over 8 uur → 0,44°C/u

Observatie: Warmteverlies per kamer

• Locatie: Stadskantoor, 2e verdieping, ruimte 2.15

Daling/uur: 0.44°C/u
Verwarming uit: Ja
Energiebron: Gas

• **Drempel voor actie:** > 0.4°C/u = onvoldoende isolatie

Observatieverzameling per gebouw

• Gebouw: Stadskantoor

• Tijdsspanne: 7 nachten (15 t/m 21 maart 2025)

• Aantal observaties: 14 (2 kamers)

• Gem. warmteverlies per nacht:

Kamer 2.15: 0.44°C/uKamer 3.01: 0.39°C/u

→ Gemiddeld gebouw: 0.415°C/u

• Classificatie: Matige isolatie

Observatieverzameling op stadsniveau

Gebouw	Gem. verlies (°C/u)	Classificatie
Stadskantoor	0.415	Matig
Bibliotheek	0.29	Goed
Sporthal	0.68	Slecht
Stadsarchief	0.52	Matig tot slecht

EMS Advies

Topprioriteiten voor isolatie-investering:

- **1. Sporthal** -0.68°C/u verlies \rightarrow >60% boven streefwaarde
- 2. Stadsarchief historisch gebouw met 0.52°C/u verlies
- **3. Stadskantoor** matige score, maar veel bezettingen → energetisch optimaliseren aanbevolen

Niet prioritair:

• Bibliotheek – voldoende geïsoleerd

Brondata:

- 56 observaties over 4 gebouwen
- Meetperiode: 15–21 maart 2025
- Inactieve verwarmingsuren 22:00-06:00
- Gevalideerde temperatuursensoren (LoRaWAN, gekalibreerd)

Methodologie:

- Observaties per kamer → verzameld per gebouw → benchmark op stadsniveau
- Waarde-afgeleiden: ΔTemp / tiid
- Besluitregels: drempelwaarde 0.4°C/u

'Advies' in het model

Advies kan een attribuut zijn van Observatie. Dit maakt het eenvoudig om adviezen te genereren, maar maakt het concept advies abstract. Advies kan ook een attribuut zijn van de toe te voegen klasse 'Resultaat' uit SSN/SOSA. Dit sluit aan bij het gebruik van ML, waar meerdere observaties samen leiden tot een geaggregeerd besluit.

Van

Datavoorbeeld Optimalisatie van energieverbruik op basis van marktprijzen

woensdag 9 april 2025 10:4

Zie use-case <u>Optimalisatie van energieverbruik op basis van marktprijzen</u>. Waarbii een productielijn een besparing realiseert/simuleert door een productielijn gedurende een bepaalde duur stil te leggen als de elektriciteitsprijs een bepaalde drempelwaarde overschrijdt. Valt uiteen in:

- Datavoorbeeld stillegging productielijn
- Datavoorbeeld besparing door stillegging productielijn

Gerealiseerd met oa volgende objecten:

Datavoorbeeld stillegging productielijn

woensdag 9 april 2025 10:46

Waarover dit:

- Omvat een Aansturing AS001 van een Toestel TS001.
- Het Toestel is getypeerd als "productiellijn_houtbewerking".
- Het kenmerk dat wordt aangestuurd is de "toestelstatus" met als resultaat de status "uit".
- Dit gebeurt voor een periode van 4uur.
- De procedure die gevolgd wordt is vh type "statusaanpassing volgens elektriciteitsprijs".
- Input vd procedure zijn 3 Inputs en een Observatie OB001.
- De Inputs IP001-003 zijn de drempelwaarde van de elektriciteitsprijs en de minimum- en maximumduur dat de productielijn kan worden stilgelegd.
- De Observatie is de zgn "day_ahead_elektriciteitsprijs", di de prijs die voor een bepaald tijdsvenster geldt en vorige dag is vastgelegd.
- We typeren de Observatie dmv een Observatie.type "Meting" met een Kwantitatievewaarde voor de elektriciteitsprijs.
- De prijs wordt opgevraagd via een Observatieprocedure vh type "online_opvraging" met een Sensor vh type "rest_api".
- De Observatie geldt voor de Aansluiting AS001 op het net, het adres waar de productielijn is opgesteld.
- OPMERKING: Momenteel niet weergegeven in het datavoorbeeld is hoe deze Inputs en Observatie verwerkt worden. Zie <u>Regel stillegging productielijn</u> voor meer info.
- OPMERKING: Kan evt ook een simulatie zijn, aan te geven dmv Aansturing.type een waarde "simulatie" te geven.

```
Het datavoorbeeld in JSON-LD:
    "@context": [
        "https://data.vlaanderen.be/doc/applicatieprofiel/energiemanagemen
tsysteem/ontwerpstandaard/2025-05-14/context/energiemanagementsysteem.json
1d"
    "@graph": [
            "@id": "_:AS001",
            "@type": "Aansturing",
            "Aansturing.aangestuurdKenmerk":
"https://example.com/concept/aanstuurbaar_kenmerk/toestelstatus",
            "Aansturing.aangestuurdObject": ":TS001",
            "Aansturing.resultaat":
"https://example.com/concept/toestelstatus/uit",
            "Aansturing.resultaattijd": {
                "@type": "Periode",
                "Periode.van": {
                    "@type": "Moment",
                    "Moment.inXSDDateTime": "20250214T14:00:00.000"
                "Periode.tot": {
                    "@type": "Moment",
                    "Moment.inXSDDateTime": "20250214T18:00:00.000"
                }
            "Aansturing.gebruikteProcedure": {
                "@type": "Aansturingsprocedure",
                "Aansturingsprocedure.type":
"https://example.com/concept/aansturingsproceduretype/statusaanpassing_vol
gens elektriciteitsprijs",
                "Aansturingsprocedure.input": [
```

```
"_:IP001",
                    "_:IP002",
"_:IP003",
                         "@type": "Input",
                         "Input.type":
"https://example.com/concept/inputtype/observatie",
                         "Input.referentie": ":0B001"
                    }
                ]
            },
            "Aansturing.uitgevoerdMetAansturingssysteem": {
                "@type": "Aansturingssysteem",
                "Systeem.type":
"https://example.com/concept/aansturingssysteemtype/controller"
        },
            "@id": "_:TS001",
            "@type": "Toestel",
            "Toestel.type":
"https://example.com/concept/domeinobjecttype/productielijn houtbewerking"
        },
        {
            "@id": " :IP001",
            "@type": "Input",
            "Input.type":
"https://example.com/concept/inputtype/elektriciteitsprijs drempelwaarde",
            "Input.referentie": {
                "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 100,
                "KwantitatieveWaarde.eenheid": {
                     "@id": "http://qudt.org/vocab/unit/EUR-PER-MegaW-HR",
                     "@type": "Eenheid"
                }
            }
        },
            "@id": "_:IP002",
            "@type": "Input",
            "Input.type":
"https://example.com/concept/inputtype/minimale duur stillegging",
            "Input.referentie": {
                "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 4,
                "KwantitatieveWaarde.eenheid": {
                     "@id": "http://qudt.org/vocab/unit/HR",
                     "@type": "Eenheid"
                }
            }
        },
            "@id": "_:IP003",
            "@type": "Input",
            "Input.type":
"https://example.com/concept/inputtype/maximale duur stillegging",
            "Input.referentie": {
                "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 8,
```

```
"KwantitatieveWaarde.eenheid": {
                     "@id": "http://qudt.org/vocab/unit/HR",
                     "@type": "Eenheid"
                }
            }
        },
            "@id": " :OB001",
            "@type": "Observatie",
            "Observatie.type":
"https://example.com/concept/observatietype/meting",
            "Observatie.geobserveerdKenmerk":
"https://example.com/concept/observeerbaar kenmerk/day ahead elektriciteit
sprijs",
            "Observatie.geobserveerdObject": ":AS001",
            "Observatie.resultaat": {
                 "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 105,
                 "KwantitatieveWaarde.eenheid": {
                     "@id": "http://qudt.org/vocab/unit/EUR-PER-MegaW-HR",
                     "@type": "Eenheid"
                }
            },
"Observatie.fenomeentijd": {
    "" "Poriode",
                 "Periode.van": {
                     "@type": "Moment",
                     "Moment.inXSDDateTime": "20250214T14:00:00.000"
                "Periode.tot": {
                     "@type": "Moment",
                     "Moment.inXSDDateTime": "20250214T20:00:00.000"
                }
            "Observatie.gebruikteProcedure": {
                "@type": "Observatieprocedure",
                "Observatieprocedure.type":
"https://example.com/concept/observatieproceduretype/online opvraging"
            "Observatie.uitgevoerdMet": {
                "@type": "Sensor",
                "Sensor.type":
"https://example.com/concept/sensortype/rest api"
        },
            "@id": "_:AS001",
            "@type": "Aansluiting",
            "Aansluiting.adres": {
                 "@type": "Adresvoorstelling",
                 "Adresvoorstelling.volledigAdres": {
                     "@value": "Voorbeeldstraat 123, 8500 Kortrijk",
                     "@language": "nl"
                }
            }
        }
    ]
}
```

Datavoorbeeld besparing door stillegging productielijn

woensdag 9 april 2025 11:46

Waarover dit:

- Omvat een Observatie OB002 op Toestel TS001 uit <u>Datavoorbeeld stillegging productielijn</u>.
- De Observatie houdt in dat de besparing vh elektriciteitsverbruik die het stilleggen vd productielijn had of zou hebben wordt bepaald.
- We typeren de Observatie dmv een Observatie.type "Meting" met als resultaat is een KwantitatieveWaarde die de besparing uitdrukt in Euro.
- Inputs voor de Observatie zijn Aansturing AS001 (waarbij de productielijn een bepaalde periode werd stilgelegd) en Observatie OB001 (vd day-ahead elektriciteitsprijs) uit <u>Datavoorbeeld stillegging productielijn</u> en verder een aanvullende Observatie OB003 vh gemiddeld dagelijks verbruik vd productielijn.
- De verwerking van al deze Inputs gebeurt door een Energiemanagementsysteem.
- Een parameter wordt ook gegeven die toelaat om de besparing in context te plaatsen: de besparing is reëel want het productieverlies door het stil leggen vd productielijn werd elders in de fabriek gecompenseerd.
- Observatie OB003 betreft een berekening door het energiemanagementsysteem vh gemiddeld verbruik vd productielijn over een periode ve jaar.
- We typeren de Observatie dmv een Observatie.type "Meting" met als resultaat is een KwantitatieveWaarde die het verbruik uitdrukt in MegaW-HR.

```
Het datavoorbeeld in JSON-LD:
{
    "@context": [
        "https://data.vlaanderen.be/doc/applicatieprofiel/energiemanagemen
tsysteem/ontwerpstandaard/2025-05-14/context/energiemanagementsysteem.json
1d"
    "@graph": [
            "@id": "_:OB002",
            "@type": "Observatie",
            "Observatie.type":
"https://example.com/concept/observatietype/meting",
            "Observatie.geobserveerdKenmerk":
"https://example.com/concept/observeerbaar kenmerk/besparing op electricit
eitsve<u>rbruik</u>",
            "Observatie.geobserveerdObject": "_:TS001",
            "Observatie.resultaat": {
                "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 478.80,
                 "KwantitatieveWaarde.eenheid": {
                     "@id": "http://qudt.org/vocab/unit/EUR",
                     "@type": "Eenheid"
            "Observatie.fenomeentijd": {
                 "@type": "Periode",
                 "Periode.van": {
                     "@type": "Moment",
                     "Moment.inXSDDateTime": "20250214T00:00:00.000"
                 "Periode.tot": {
                     "@type": "Moment",
                     "Moment.inXSDDateTime": "20250214T23:59:59.000"
            },
```

```
"Observatie.gebruikteProcedure": {
                 "@type": "Observatieprocedure",
                "Observatie.type":
"https://example.com/concept/observatieproceduretype/berekening",
                "Observatieprocedure.input": [
                    "_:AS001",
"_:OB001",
                         "@type": "Input",
                         "Input.type":
"https://example.com/concept/inputtype/observatie",
                         "Input.referentie": ": OB003"
                    }
                1
            "Observatie.uitgevoerdMet": {
                "@type": "Sensor",
                "Aansturingssysteem.type":
"https://example.com/concept/sensortype/energiemanagementsysteem"
            "Observatie.parameter": {
                "@type": "BenoemdeWaarde",
                "BenoemdeWaarde.naam": {
                     "@value":
"https://example.com/concept/parametertype/productieverlies",
                    "@type": "Concept"
                },
                "BenoemdeWaarde.waarde":
"https://example.com/concept/productieimpacttype/productieverlies/gecompen
seerd"
            }
        },
            "@id": "_:OB003",
            "@type": "Observatie",
            "Observatie.type":
"https://example.com/concept/observatietype/meting",
            "Observatie.geobserveerdKenmerk":
"https://example.com/concept/observeerbaar kenmerk/gemiddeld dagelijks ver
bruik",
            "Observatie.geobserveerdObject": "_:TS001",
            "Observatie.resultaat": {
                "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 27.4,
                "KwantitatieveWaarde.eenheid": {
                     "@id": "http://qudt.org/vocab/unit/MegaW-HR",
                     "@type": "Eenheid"
                }
            },
            "Observatie.fenomeentijd": {
                "@type": "Periode",
                "Periode.van": {
                     "@type": "Moment",
                     "Moment.inXSDDateTime": "20240101T00:00:00.000"
                "Periode.tot": {
                     "@type": "Moment",
                     "Moment.inXSDDateTime": "20241231T23:59:59.000"
                }
```

Regel stillegging productielijn

woensdag 23 april 2025 11:07

Er zijn twee regels van toepassing:

- Verander de toestelstatus vh Toestel naar "uit" als het resultaat van de Observatie > Input IP001.
- Doe dit voor een tijdsduur = Input002 als de fenomeentijd vd Observatie < Input003 en anders voor een tijdsduur = Input003.

De eerste regel zou er in RIF als volgt kunnen uitzien:

TODO: uitwerken zoals hieronder maar met het juiste VOC.

TODO: invoegen in datavoorbeeld.

Resultaat vd Copilot prompt: Als de elektriciteitsprijs groter is dan 100 MegaW/hr gedurende de komende 6 uur, leg dan de productielijn 4 uur stil:

```
@prefix rif: <http://www.w3.org/2007/rif#> .
@prefix ex: <http://example.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
# Definieer de regel in RIF
ex:ProductionLineRule a rif:Rule ;
    rif:if [
        a rif:And;
        rif:formula (
            [
                a rif:Atom ;
                rif:predicate ex:hasElectricityPrice ;
                rif:args ( ex:price ?electricityPrice )
            1
            Γ
                a rif:External ;
                rif:content [
                    a rif:Apply;
                    rif:op <http://www.w3.org/2007/rif-builtin-</pre>
predicate#numeric-greater-than> ;
                    rif:args ( ?electricityPrice
"100"^^xsd:decimal )
            1
            [
                a rif:Atom ;
                rif:predicate ex:duration ;
                rif:args ( ex:timePeriod "6"^^xsd:integer )
        )
    1 ;
    rif:then [
        a rif:Atom ;
        rif:predicate ex:shutDownProductionLine ;
        rif:args ( ex:productionLine "4"^^xsd:integer )
    ] .
# Definieer de elektriciteitsprijs en tijdsperiode
ex:price a ex:ElectricityPrice ;
    ex:hasElectricityPrice "120"^^xsd:decimal .
ex:timePeriod a ex:TimePeriod;
    ex:duration "6"^^xsd:integer .
# Definieer de productielijn
ex:productionLine a ex:ProductionLine ;
```

 $\verb"ex:shutDownProductionLine" 4"^^xsd:integer".$

Datavoorbeeld Al-voorspelling voor pre-heating op basis van temperatuur & bezettingshistoriek

woensdag 23 april 2025 16:28

 $\hbox{\bf Zie use-case} \ \underline{\hbox{\bf Al-voorspelling voor pre-heating op basis van temperatuur} \ \& \ bezettingshistoriek}.$

Waarbij een gebouw voorverwarmd wordt en het tijdstip waarop dat start wordt bepaald adhv Al met als input observaties zoals de verwachte buitentemperatuur, opwarmtijd in het verleden etc. Gerealiseerd met oa volgende objecten:

Observatie Buitentemperatuur Observatie Binnentemperatuur Observatie Historisch Observatie Aansturing opwarmtraject Tijdstip Starten Observatie **HVAC** start Bezettingsgraad Input Doeltemperatuur Input

Waarover dit:

- Omvat een Aansturing AS001 van een Toestel TS001.
- Het Toestel is getypeerd als "HVAC_verwarming" en "warmtepomp-elektriciteit".
- Het kenmerk dat wordt aangestuurd is de "toestelstatus" met als resultaat de status "aan".
- Het moment waarop de Aansturing gebeurt is 5u30.
- De procedure die gevolgd wordt is vh type "statusaanpassing_op_basis_van_waarnemingen".
- Input vd procedure is een Observatie OB001 getypeerd dmv een Observatie.type als "TemporeleObservatie" met als resultaat het starttijdstip van de HVAC, zijnde 5u30.
- Het resultaat werd bekomen om 4u.
- Het is gebaseerd op 6 inputs:

Doeltijdstip

- o OB002: verwachte buitentemperatuur om 6u.
- o OB003: verwachte binnentemperatuur om 6u (niet in het JSON-LD datavoorbeeld).
- o OB004: benodigde opwarmtijd in het verleden (niet in het JSON-LD datavoorbeeld).
- o OB005: verwachte bezettingsgraad om 8u.
- o IP001: de doeltemperatuur (20°)
- o IP002: het tijdstip waartegen de temperatuur bereikt moet zijn (8u)
- Op basis waarvan een MachineLearningModel het starttijdstip voorspelt.
- OPMERKING: We typeren de Sensor waarmee de Observatie wordt uitgevoerd bijkomend als

MLDCAT-AP: Machine Learning Model, zie link.

- We geven aan met MLDCAT:MachineLearningModel.trainedon aan dat de Observatieverzameling OV001 de input vormde voor dit model.
- We volstaan met aan te geven dat OV001 trainingsdata omvat van de laatste 6 maanden.
- De Observaties hebben allen betrekking op Aansluiting AS001, het punt waarop het Belpairegebouw is aangesloten.
- We volstaan met de gebouwnaam en het adres dmv een Adresvoorstelling om het gebouw te beschrijven. Via Adresvoorstelling.verwijstNaar->Adres en Adres.isToegekendAan kan desgewenst expliciet naar het Gebouw worden verwezen (zie het <u>AP OSLO-Adresregister</u>).
- OPMERKING: de use-case geeft 20° op als doeltemperatuur tegen 8u, dit kan dmv een aparte Observatie worden gechecked.

```
Datavoorbeeld in JSON-LD:
{
    "@context": [
         "https://data.vlaanderen.be/doc/applicatieprofiel/energiemanagemen
tsysteem/ontwerpstandaard/2025-05-14/context/energiemanagementsysteem.json
<u>ld</u>",
         {
             "MachineLearningModel.getraindOp":
"http://data.europa.eu/it6/trainedOn",
              "MachineLearningModel.type":"http://purl.org/dc/terms/type"
         }
    ],
    "@graph": [
         {
             "@id": "_:AS001",
"@type": "Aansturing",
             "Aansturing.aangestuurdKenmerk":
"<a href="https://example.com/concept/observeerbaar kenmerk/toestelstatus"">https://example.com/concept/observeerbaar kenmerk/toestelstatus</a>",
             "Aansturing.aangestuurdObject": "_:TS001",
             "Aansturing.resultaat":
"https://example.com/concept/toestelstatus/aan",
              "Aansturing.resultaattijd": {
                  "@type": "Moment",
                  "Moment.inXSDDateTime": "20250401T05:30:00.000"
             "Aansturing.gebruikteProcedure": {
                  "@type": "Aansturingsprocedure",
                  "Aansturingsprocedure.type":
"https://example.com/concept/aansturingsproceduretype/aansturing op basis
van waarnemingen",

"Aansturingsprocedure.input": [
                           "@type": "Input",
                           "Input.type":
"https://example.co<u>m/concept/inputtype/observatie</u>",
                           "Input.referentie": " :OB001"
                  1
             "Aansturing.uitgevoerdMet": {
                  "@type": "Aansturingssysteem",
                  "Aansturingssysteem.type":
"https://example.com/concept/aansturingssysteemtype/centrale regelunit met
Modbus IP interface'
             "@id": "_:TS001"
             "@type": "Toestel"
             "Toestel.type": [
                  "https://example.com/concept/toesteltype/HVAC verwarming"
                  "https://example.com/concept/energiebrontype/warmtepomp el
ektriciteit"
             ]
             "@id": "_:OB001",
```

```
"@type": "Observatie",
            "Observatie.type":
"https://example.com/concept/observatietype/temporele_observatie",
            "Observatie.geobserveerdKenmerk":
"https://example.com/concept/observeerbaar kenmerk/tijdstip start HVAC",
            "Observatie.geobserveerdObject": ":AS001",
            "Observatie.resultaat": {
                "@type": "Moment",
                "Moment.inXSDDateTime": "20250401T05:30:00.000"
            "Observatie.resultaattijd": {
                "@type": "Moment",
                "Moment.inXSDDateTime": "20250401T04:00:00.000"
            "Observatie.gebruikteProcedure": {
                "@type": "Observatieprocedure",
                "Observatieprocedure.type":
"https://example.com/concept/observatieproceduretype/voorspelling op basis
"@type": "Input",
                        "Input.type":
"https://example.com/concept/inputtype/observatie",
                        "Input.referentie": "_:0B002"
                    },
                    {},
                    {},
                        "@type": "Input",
                        "Input.type":
"https://example.com/concept/inputtype/observatie",
                        "Input.referentie": " :0B005"
                   "_:IP001",
"_:IP002"
                1
            "Observatie.uitgevoerdMetSensor": {
                "@type": [
                    "Sensor".
                    "MachineLearningModel"
                "MachineLearningModel.type":
"https://example.com/concept/sensortype/random_forest_regressiemodel",
                "MachineLearningModel.getraindOp": {
                    "@type": "Input",
                    "Input.type":
"https://example.com/concept/inputtype/observatieverzameling",
                    "Input.referentie": "_:0V001"
                }
           }
       },
           "@id": "_:OB002",
            "@type": "Observatie",
           "Observatie.type":
"https://example.com/concept/observatietype/meting",
            "Observatie.geobserveerdKenmerk":
"https://example.com/concept/observeerbaar kenmerk/buitentemperatuur",
            "Observatie.geobserveerdObject": "_:ASOO1",
            "Observatie.resultaat": {
                "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 1,
                "KwantitatieveWaarde.eenheid": {
                    "@id": "http://qudt.org/vocab/unit/DEG C",
                    "@type": "Eenheid"
                }
```

```
'Observatie.fenomeentijd": {
                "@type": "Moment",
                "Moment.inXSDDateTime": "20250401T06:00:00.000"
            "Observatie.resultaattijd": {
                "@type": "Moment",
                "Moment.inXSDDateTime": "20250401T04:00:00.000"
            "Observatie.gebruikteProcedure": {
                "@type": "Observatieprocedure",
                "Observatieprocedure.type":
"https://example.com/concept/observatieproceduretype/online opvraging"
            "Observatie.uitgevoerdMet": {
                "@type": "Sensor",
                "Sensor.type":
"https://example.com/concept/sensortype/kmi api"
            }
        },
            "@id": "_:0B005",
"@type": "Observatie",
            "Observatie.type":
"https://example.com/concept/observatietype/meting",
            "Observatie.geobserveerdKenmerk":
"https://example.com/concept/observeerbaar_kenmerk/verwachte_betzetting",
            "Observatie.geobserveerdObject": "_:ASOO1",
            "Observatie.resultaat": {
                "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 80,
                "KwantitatieveWaarde.eenheid": {
                     "@id": "http://qudt.org/vocab/unit/PERCENT",
                     "@type": "Eenheid"
                }
             "Observatie.fenomeentijd": {
                "@type": "Moment",
                "Moment.inXSDDateTime": "20250401T08:00:00.000"
            },
"Observatie.resultaattijd": {
                "@type": "Moment",
                "Moment.inXSDDateTime": "20250401T04:00:00.000"
            "Observatie.gebruikteProcedure": {
                "@type": "Observatieprocedure",
                "Observatieprocedure.type":
"https://example.com/concept/observatieproceduretype/voorspelling volgens
badgelogs"
            "Observatie.uitgevoerdMet": {
                "@type": "Sensor",
                "Systeem.type":
"https://example.com/concept/sensortype/voorspeller volgens badgelogs"
        },
            "@id": "_:IP001",
            "@type": "Input",
            "Input.type":
"https://example.com/concept/inputtype/doeltemperatuur",
            "Input.referentie": {
                "@type": "KwantitatieveWaarde",
                "KwantitatieveWaarde.waarde": 20,
                "KwantitatieveWaarde.eenheid": {
                     "@id": "http://qudt.org/vocab/unit/DEG C",
                    "@type": "Eenheid"
                }
```

```
}
        },
            "@id": "_:IP002",
"@type": "Input",
            "Input.type":
"https://example.com/concept/inputtype/doeltijdstip",
            "Input.referentie": {
                 "@type": "Moment",
                 "Moment.inXSDDateTime": "20250401T08:00:00.000"
            }
        },
            "@id": "_:0V001",
"@type": "Observatieverzameling",
            "Observatieverzameling.fenomeentijd": {
                 "@type": "Periode",
                 "Periode.van": {
                     "@type": "Moment",
                     "Moment.inXSDDateTime": "20250101T00:00:00.000"
                 },
                 "Periode.tot": {
                     "@type": "Moment",
                     "Moment.inXSDDateTime": "20250331T00:00:00.000"
                }
            }
        },
            "@id": "_:AS001",
"@type": "Aansluiting",
            "Aansluiting.adres": {
    "@type": "Adresvoorstelling",
                 "Adresvoorstelling.locatienaam": {
                     "@value": "Vlaamse Overheid - Belpaire Gebouw",
                     "@language": "nl"
                }
            }
        }
    ]
```

}

Datavoorbeeld Slim aansturen van een koelinstallatie op subaansluiting

donderdag 24 april 2025 11:16

Zie use-case <u>Slim aansturen van een koelinstallatie op subaansluiting</u>. Waarbij een koelinstallatie op een subaansluiting wordt aangestuurd op basis van parameters zoals beschikbare capaciteit, bezettingsgraad vh gebouw en de elektriciteitsprijs.

Voor de overzichtelijkheid splitsen we het datavoorbeeld op in:

- Datavoorbeeld hoofdaansluiting & subaansluiting.
- Datavoorbeeld aansturing koelinstallatie

Het tweede deel werkten we niet uit, zie <u>Datavoorbeeld Optimalisatie van energieverbruik op basis van marktprijzen</u> voor een analoog voorbeeld.

Datavoorbeeld hoofdaansluiting & subaansluiting

donderdag 24 april 2025 11:1

We demonstreren in dit voorbeeld hoe subAansluitingen op een Aansluiting kunnen beschreven worden, zodat byb het observeren van verbruik of de aansturing van een toestel mogelijk is specifiek voor een subAansluiting.

Gerealiseerd met volgende objecten:

Waarover dit:

- Het betreft een Aansluiting die we dmv IMKL:Nutsvoorzieninglinks aansluiten op andere (sub) Aansluitingen.
- Dit gebeurt op de manier zoals uitgelegd in <u>Domeinobjecten</u>.
- Een Aansluiting AS001 in Nutsvoorzieningnetwerk NW001 van Fluvius (identificatie EAN541234567890126456) vormt het begin van 2 Nutvsoorzieninglinks
- Resp een link met als einde een Aansluiting AS002 (identificator SUBA001) en een Aansluiting AS003 (identificator SUBB001).
- Dit zijn Aansluitingen voorzien in een lokaal NutsvoorzieningNetwerk NW002 van het Rijksarchief te Brussel.
- Het is op 1 van deze subAansluitingen dat de koelsinstallatie is aangesloten.

```
"@id": " :AS001",
            "@type": "Aansluiting",
            "Aansluiting.identificator": {
                "@type": "Identificator",
                "Identificator.identificator": {
                    "@value": "541234567890123456".
                    "@type":
"https://example.com/concept/identificatortype/ean nummer"
            "Aansluiting.inNetwerk": "_:NW001",
            "Nutsvoorzieningknoop.beginlink": [
                {
                    "@type": "Nutsvoorzieninglink",
                    "Nutsvoorzieninglink.eindknoop": ": AS002"
                },
                {
                    "@type": "Nutsvoorzieninglink",
                    "Nutsvoorzieninglink.eindknoop": "_:AS003"
                }
            1
        },
            "@id": "_:AS002",
            "@type": "Aansluiting",
            "Aansluiting.identificator": {
                "@type": "Identificator",
                "Aansluiting.identificator": {
                    "@value": "SUBA001",
                    "@type":
"https://example.com/concept/identificatortype/intern_aansluitingsnummer"
            },
            "Aansluiting.inNetwerk": "_:NW002"
        },
            "@id": "_:AS003",
            "@type": "Aansluiting",
            "Aansluiting.identificator": {
                "@type": "Identificator",
                "Identificator.identificator": {
                    "@value": "SUBB001",
                    "@type":
"https://example.com/concept/identificatortype/intern aansluitingsnummer"
            "Aansluiting.inNetwerk": "_:NW002"
        },
            "@id": " :NW001",
            "@type": "Nutsvoorzieningnetwerk",
            "Nutsvoorzieningnetwerk.bevoegdePartij": "_:0G001",
            "Nutsvoorzieningnetwerk.nutsvoorzieningnetwerktype":
"https://example.com/concept/nutsvoorzieningnetwerktype/elektriciteit"
        },
        {
            "@id": "_:NW002",
            "@type": "Nutsvoorzieningnetwerk",
            "Nutsvoorzieningnetwerk.bevoegdePartij": "_:0G002",
```

```
"Nutsvoorzieningnetwerk.nutsvoorzieningnetwerktype":
"https://example.com/concept/nutsvoorzieningnetwerktype/elektriciteit"
        },
{
             "@id": "_:0G001",
             "@type": "Organisatie",
             "Organisatie.voorkeursnaam": {
                 "@value": "Fluvius",
                 "@language": "nl"
             }
        },
{
            "@id": "_:0G002",
"@type": "Organisatie",
             "Organisatie.voorkeursnaam": {
                 "@value": "Rijksarchief te Brussel",
                 "@language": "nl"
             }
        }
    ]
}
```

Datavoorbeeld Advies aan de stad over isolatieinvesteringen in overheidsgebouwen

donderdag 24 april 2025 14:17

Zie use case <u>Advies aan de stad over isolatie-investeringen in overheidsgebouwen</u>. Komt neer op het klasseren overheidsgebouwen volgens energieverlies, gebaseerd op kwantitatieve waarnemeningen van dit verlies.

Gerealiseerd met volgende objecten:

Waarover dit:

- Het advies neemt de vorm aan ve Observatieverzameling OV001 van Observaties OB001 etc waarin overheids gebouwen geklasseerd worden op warmteverlies.
- We beperken ons in dit vb over de classificatie van 1 Gebouw GB001, een verder niet nader bepaald stadskantoor.
- Observatie OB001 hebben we getypeerd als Observatie en bijkomend als Classificatie dmv Observatie.type.
- Het geobserveerdObject is Gebouw GB001 en resultaat is dat de warmteverliesklasse daarvan
 "matic" is
 "mat
- Input voor OB001 is een Observatie OB002 vh gemiddeld nachtelijk warmteverlies van Gebouw GB001 met als resultaat 0.415 graden Celcius per uur.
- Input voor OB002 zijn Observaties van temperatuurverlies in representatieve kamers in het Gebouw GB001.
- We beperken ons hier tot het beschrijven van 1 zulke Observatie OB003, nl het warmteverlies in kamer 2.15.
- Het gemiddeld nachtelijk warmteverlies in de betrokken kamer 2.15 blijkt 0.44 te zijn, hoger blijkbaar dan het gemiddelde van 0.415 dat gebaseerd is op de resultaten van meerdere kamers in het gebouw.
- De periode waarvoor het gemiddeld nachtelijk verlies van kamer 2.15 geldt is 15-21/3/2025, maw elke nacht in die periode is het warmteverlies gemeten en van die waarden is het gemiddelde berekend.
- Input voor OB003 is dus een tijdreeks, de variatie van het temperatuurverlies over 7 nachten.
- OPMERKING: We typeren dit object als Tijdreeks volgens ISO19156-2011, maar werkte ze niet in detail uit

```
in detail uit.
Datavoorbeeld in JSON-LD:
   "@context": Γ
      "https://data.vlaanderen.be/doc/applicatieprofiel/energiemanagementsys
teem/ontwerpstandaard/2025-05-14/context/energiemanagementsysteem.jsonld",
       "Classificatie":
 http://def.isotc211.org/iso19156/2011/CategoryObservation#OM CategoryObse
rvation",
    "Tijdreeksobservatie":
"http://def.isotc211.org/iso19156/2011/TimeSeriesObservation#OM_TimeSeries
Observation",
    "Gebouw": "https://data.vlaanderen.be/ns/gebouw#Gebouw",
        "Gebouw.gebouwnaam"
"https://data.vlaanderen.be/ns/gebouw#gebouwnaam"
   '@graph": [
       "@id": "_:0V001",
"@type":
"https://example.com/concept/observatieverzamelingtype/warmtevermlies_gebo
uwen"
        "Observatieverzameling.heeftlid": [
          "_:OB001",
       ]
       "@id": "_:OB001",
"@type": "Observatie",
        "Observatie.type":
"https://example.com/concept/observatietype/classificatie",
    "Observatie.geobserveerdKenmerk":
"https://example.com/concept/kenmerktype/warmteverliesklasse",
    "Observatie.geobserveerdObject": "_:GB001",
    "Observatie.resultaat":
"https://example.com/concept/warmteverliesklasse/matig",
"Observatie.gebruikteProcedure": {
           "Observatieprocedure.input": [
               _:OB002",
                "@type": "Input",
```

"Input.type":

```
"https://example.com/concept/inputtype/warmteverlies drempelwaarde",
                       "Input.referentie": {
    "@type": "KwantitatieveWaarde"
                          "KwantitatieveWaarde.waarde": 0.4,
"KwantitatieveWaarde.eenheid": {
                             "@id": "http://qudt.org/vocab/unit/DEG C-PER-HR",
"@type": "Eenheid"
            ] } }
           }
            "@id": "_:0B002",
"@type": "Observatie",
            "Observatie.type":
  "https://example.com/concept/observatietype/meting",
 "Observatie.geobserveerdKemmerk":
"https://example.com/concept/kenmerktype/gemiddeld nachtelijk warmteverlie
            "Observatie.geobserveerdObject": "_:GB001",
           "Observatie.geobserveerdObject": "_:GB001",
"Observatie.resultaat": {
   "@type": "KwantitatieveWaarde",
   "KwantitatieveWaarde.waarde": 0.415,
   "KwantitatieveWaarde.eenheid": {
    "@id": "http://qudt.org/vocab/unit/DEG C-PER-HR",
    "@type": "Eenheid"
           },
"Observatie.gebruikteProcedure": {
               "Observatieprocedure.input": [
"_:0B003",
""
               ]
           }
            "@id": "_:0B003",
"@type": "Observatie",
            "Observatie.type":
 "https://example.com/concept/kenmerktype/gemiddeld_nachtelijk_warmteverlie
            "Observatie.geobserveerdObject": {
   "@type": "Object",
 "object.type":
"https://example.com/concept/domeinobjecttype/kamer",
"Object.identificator": {
    "@type": "Identificator",
                   "Identificator.identificator": {
  "@value": "2.15",
  "@type":
  "https://example.com/concept/identificatortype/kamernummer"
               }
           },
"Observatie.fenomeentijd": {
    "@type": "Periode",
    "Periode.van": {
        "@type": "Moment",
        "Moment.inXSDDateTime": "20250315T00:00:00.000"
               },
"Periode.tot": {
    "@type": "Moment"
    "Mament.inXSDDate
                   "Moment.inXSDDateTime": "20250321T23:59:59.000"

}

"Observatie.resultaat": {
    "@type": "KwantitatieveWaarde",
    "KwantitatieveWaarde.waarde": 0.44,
    "KwantitatieveWaarde.eenheid": {
        "@id": "http://qudt.org/vocab/unit/DEG C-PER-HR",
        "@type": "Eenheid"
}

           },
"Observatie.gebruikteProcedure": {
               "Observatieprocedure.input": [
"_:0B004"
           }
           "@id": "_:OB004",
"@type": "Observatie",
"Observatie.type":
  "https://example.com/concept/observatietype/tijdreeksobservatie"
           "@id": "_:GB001",
"@type": "Gebouw",
"Gebouw.gebouwnaam": {
    "@value": "Stadskantoor",
    "@language": "nl"
},
{}
}
```

EMS Pagina 41