Homework 6 for MATH 104

Brief solutions to selected exercises

Problem 1

Define the function $g: \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} 1 & \text{if } x = 0, \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ with } p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\} \text{ relatively prime,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Show that g is continuous at all irrational points, and discontinuous at all rational points.

Solution. First let x = p/q be rational. For every real number there exists a sequence () of irrationals converging to it, e.g. take $x_n = x + \sqrt{n}/n$. Then by definition $g(x_n) = 0$ for all n, but $g(x) = 1/q \neq 0$, so g is discontinuous at x.

Now consider an irrational x. Suppose $x_n \to x$. If all but finitely many x_n are irrational, obviously $g(x_n) = 0$ for all but finitely many n, and thus $g(x_n) \to 0 = g(x)$. Therefore, by passing to a subsequence, we may assume that all the x_n are rational, i.e. $x_n = p_n/q_n$ with q_n a positive integer. We have to show that $q_n \to \infty$. Assume for a contradiction this is not the case. Then there exists a subsequence q_{n_k} that is bounded. Using Bolzano-Weierstrass, we can pick a convergent subsequence $q_{n_{k_1}}$. Since $q_{n_{k_1}}$ consists only of positive integers, we must have $q_{n_{k_1}} = q$ for all but finitely many m and some positive integer q. Since $x_n \to x$, it must hold that $p_{n_{k_1}}/q \to x$, too. It is easy to see that the set $\{p_{n_{k_1}}/q\}$ is closed in \mathbb{R} , and $p_{n_{k_1}}/q \neq x$ for all l. Therefore, there exists an l such that $|p_{n_{k_1}}/q - x|$ is minimal. If we choose ε less than this minimum, the ε -neiborhood of x contains no points from $\{p_{n_{k_1}}/q\}$, contradicting $x_n \to x$.

Problem 2

Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous. Let the *zero set* of f be defined as

$$Z(f) = \{x \in \mathbb{R} : f(x) = 0\}.$$

Show that Z(f) is a closed subset of \mathbb{R} .

Solution. We show that Z(f) contains all its limit points. Let x_n be a sequence in Z(f) and assume that $x_n \to x \in \mathbb{R}$. Then by continuity of f, $f(x_n) \to f(x)$. But $f(x_n)$ is 0 for all n, so it must hold that f(x) = 0, and hence $x \in Z(f)$.

Problem 3

Call a mapping $f: \mathbb{R} \to \mathbb{R}$ open if for every open set $U \subseteq \mathbb{R}$, the image

$$f(U) = \{f(x) : x \in U\}$$

is open. Show that a continuous open mapping $f: \mathbb{R} \to \mathbb{R}$ is monotonic.

Solution. Assume for a a contradiction that f is not monotonic. Then w.l.o.g. there exist $x < y < z \in \mathbb{R}$ such that f(x) < f(y) and f(y) > f(z). Since the interval [x,z] is compact, the function f attains a maximum on [x,z] say at $t \in [x,z]$. Since f(y) > f(x) and f(y) > f(z), $t \neq x,z$. Therefore, f attains a maximum on the open interval (x,z). But f(x,z) cannot be open, since any neighborhood of f(t) contains points not in f(x,z). Contradiction.

Problem 4

(a) Let f, g be continuous mappings from \mathbb{R} into \mathbb{R} . Further, let D be a dense subset of \mathbb{R} . Show that f(D) is dense in $f(\mathbb{R})$. Furthermore, show that if f(x) = g(x) for all $x \in D$, then f(z) = g(z) for all $z \in \mathbb{R}$ (This shows that a continuous function $f: \mathbb{R} \to \mathbb{R}$ is uniquely determined by its values on D.)

Solution. Assume that $y_0 \in f(\mathbb{R})$. Then there exists $x_0 \in \mathbb{R}$ with $f(x_0) = y_0$. By denseness of D in \mathbb{R} , there exists a sequence x_n in D such that $x_n \to x_0$. Then $f(x_n)$ is a sequence in f(D), and by continuity of f, $f(x_n) \to f(x_0) = y_0$. Hence f(D) is dense in $f(\mathbb{R})$.

Assume now $z \in \mathbb{R}$. Since D is dense in \mathbb{R} , there exists a sequence x_n in D such that $x_n \to z$. By continuity of f and g, we have $f(x_n) \to f(z)$ and $g(x_n) \to g(z)$. By the assumption on f and g we have $f(x_n) = g(x_n)$ for all n. Since the limit of a sequence is unique, it must hold that f(z) = g(z).

(b) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Show that f is of the form $f(x) = c \cdot x$ for some $c \in \mathbb{R}$.

Solution. We first observe that f(0) = 0, since f(1) = f(1+0) = f(1) + f(0).

Next, it follows by induction that for each $n \in \mathbb{N}$, $f(n) = f(n-1) + f(1) = \cdots = nf(1)$. Using 0 = f(0) = f(1 + (-1)) = f(1) + f(-1) and hence f(-1) = -f(1), we can derive the identity f(z) = zf(1) for all $z \in \mathbb{Z}$.

Furthermore, $f(1)=nf(\frac{1}{n})$ and thus $f(\frac{1}{n})=\frac{1}{n}f(1)$. We use this to prove that the identity f(q)=qf(1) extends to all $q\in\mathbb{Q}$.

Now observe that each function f such that f(x+y)=f(x)+f(y) must be continuous. For assume that $x_n\to x$. Then $|f(x_n)-f(x)|=|f(x_n-x)|\to f(0)=0$. We have seen that for each $c\in\mathbb{R}$, f(x)=cx is continuous, and obviously f(x)=cx satisfies f(x+y)=f(x)+f(y). We have shown that f(q)=qf(1) for all $q\in\mathbb{Q}$, and f(x)=xf(1) is a continuous extension of f(q)=qf(1) to \mathbb{R} , which by part (a) is unique. Therefore, f(x)=xf(1) for all $x\in\mathbb{R}$.