Algebra Commutativa

Alessio Borzì

Indice

1	Anelli e Ideali	5
	1.1 Introduzione	5
2	Moduli	15
	2.1 Lemma di Nakayama	18
	2.2 Successioni esatte	20
	2.3 A-algebre	22
	2.4 Anelli e moduli di frazioni	22
	2.5 Proprietà locali	27
3	Decomposizione primaria	29
4	Anelli e moduli Noetheriani e Artiniani	35
	4.1 Lunghezza di un modulo	39
	4.2 Decomposizione primaria negli anelli noetheriani	41
	4.3 Anelli Artiniani	42
5	Dipendenza integrale	47
	5.1 Estensioni di anelli	47
	5.2 Estensioni integrali	47
	5.3 Going up e going down	50
6	Varietà algebriche affini	53
	6.1 Topologia di Zariski	55
	6.2 Spettro di un anello	57
	6.3 Teorema degli zeri di Hilbert	58
7	Normalizzazione di Noether	63
8	Teorema dell'ideale principale	65
9	Teorema di Cayley-Hamilton*	69

Capitolo 1

Anelli e Ideali

1.1 Introduzione

Gli anelli che verranno trattati nel seguito sono anelli commutativi unitari. Assumeremo sempre che per ogni omomorfismo di anelli $f: A \to B$ valga $f(1_A) = 1_B$. La scrittura $I \subseteq A$ vuol dire che I è un ideale di A.

Dati due ideali I, J di A abbiamo che la loro intersezione $I \cap J$, la loro somma

$$I + J = \{i + j : i \in I, j \in J\}$$

e il loro prodotto

$$IJ = \left\{ \sum_{k=1}^{n} i_k j_k : i_k \in I, j_k \in J, n \ge 1 \right\}$$

sono ancora ideali di A. Inoltre si verifica facilmente che $IJ \subseteq I \cap J$.

Dato un ideale I di A possiamo considerare l'ideale quoziente A/I è formato dalle classi laterali di I. Per ogni ideale I di A esiste una corrispondenza biunivoca tra gli ideali di A contenenti I e gli ideali di A/I tramite $J \to \pi(J)$, dove $\pi: A \to A/I$ è la proiezione canonica.

Definizione 1.1.1. Un elemento $a \in A$ si dice **nilpotente** se esiste un intero $n \ge 1$ tale che $a^n = 0$.

Ovviamente ogni elemento nilpotente è anche un divisore dello zero, non vale invece il viceversa. Ad esempio in k[x,y]/(xy), con k campo, l'elemento x è un divisore dello zero ma non è un elemento nilpotente.

Definizione 1.1.2. Un anello A si dice **ridotto** se è privo di elementi nilpotenti non nulli.

Definizione 1.1.3. Un elemento $a \in A$ è invertibile se esiste $b \in A$ tale che ab = 1.

Dall'ultima definizione segue che A è un campo se ogni elemento di $A \setminus \{0\}$ è invertibile.

Proposizione 1.1.4. Per un anello A sono equivalenti

1. A è un campo.

- 2. Gli unici ideali di A sono (0) e (1) = A.
- 3. Ogni omomorfismo non nullo $f: A \to B$ è iniettivo.

Dimostrazione.

- $(1) \Rightarrow (2)$ Sia I un ideale di A. Se I contiene un elemento non nullo $i \in I$ allora, dato che i è invertibile, abbiamo che esiste $x \in A$ tale che $ix = 1 \in I$, da cui dalla legge di assorbimento I = A. Altrimenti I = (0).
- $(2) \Rightarrow (3)$ ker f è un ideale di A non nullo, petanto ker f = (0), cioè f è iniettivo.
- $(3) \Rightarrow (1)$ Sia $x \in A$ un elemento non invertibile, consideriamo $\pi : A \to A/(x)$. π è un omomorfismo non nullo quindi è iniettivo, pertanto ker $\pi = (x) = (0)$, cioè x = 0.

Definizione 1.1.5. Un ideale M di A è **massimale** se è massimale nell'insieme parzialmente ordinato degli ideali propri di A rispetto all'inclusione. Un ideale P di A è **primo** se da $ab \in P$ seque $a \in P$ o $b \in P$.

Proposizione 1.1.6.

 $M \ \dot{e} \ massimale \Leftrightarrow A/M \ \dot{e} \ un \ campo.$ $P \ \dot{e} \ primo \Leftrightarrow A/P \ \dot{e} \ un \ dominio.$

Dalla precedente dimostrazione segue che ogni ideale massimale è anche primo, ma non vale il viceversa, infatti basta considerare l'ideale nullo in \mathbb{Z} , esso è primo in quanto \mathbb{Z} è un dominio ma non è massimale.

Lemma 1.1.7. Dato un ideale P di A, sono equivalenti

- P è primo
- $IJ \subseteq P \Rightarrow I \subseteq P$ oppure $J \subseteq P$ per ogni $I, J \triangleleft A$

Dimostrazione.

 \Rightarrow Se $I \nsubseteq P$ sia $i \in I \setminus P$, per ogni $j \in J$ si ha $ij \in P$, $i \notin P \Rightarrow j \in P$, da cui $J \subseteq P$.

 \Leftarrow Se $ij \in P$ allora $(i)(j) \subseteq P$ da cui $i \in (i) \subseteq P$ oppure $j \in (j) \subseteq P$.

Dato $f:A\to B$ un omomorfismo di anelli non è detto che l'immagine tramite f di un ideale di A sia un ideale di B, in generale esso sarà un ideale di f(A).

Proposizione 1.1.8. Dato $f: A \to B$ un omomorfismo di anelli se J è un ideale di B allora $f^{-1}(J)$ è un ideale di A. Inoltre se J è primo lo è anche $f^{-1}(J)$.

Dimostrazione. Siano $x, y \in f^{-1}(J)$, allora $f(x - y) = f(x) - f(y) \in J$, da cui $x - y \in f^{-1}(J)$. Sia $a \in A$ allora $f(ax) = f(a)f(x) \in J$, da cui $ax \in f^{-1}(J)$. Se J è primo supponiamo che $xy \in f^{-1}(J)$, allora $f(xy) = f(x)f(y) \in J$ da cui segue $f(x) \in J$ oppure $f(y) \in J$ cioè $x \in f^{-1}(J)$ opoure $y \in f^{-1}(J)$.

Osserviamo che la contro immagine di un ideale massimale non è in generale un ideale massimale. Ad esempio consideriamo l'immersione $\phi: \mathbb{Z} \to \mathbb{Q}$. L'ideale (0) è un ideale massimale di \mathbb{Q} ma $\phi^{-1}((0)) = (0)$ non è massimale in \mathbb{Z} .

Lemma 1.1.9 (Lemma di Zorn). Sia (Σ, \leq) un inseme p.o. con $\Sigma \neq \emptyset$. Se ogni catena ammette un maggiorante allora Σ ha elementi massimali.

Definizione 1.1.10. Sia A un anello. Un sottoinsieme $S \subseteq A$ si dice parte moltiplicativa se

- $a, b \in S \Rightarrow ab \in S$.
- $1 \in S$.

Lemma 1.1.11 (Krull). Siano S una parte moltiplicativa di A, J un ideale di A tale che $J \cap S = \emptyset \ e \ sia$

$$\Sigma = \{ I \le A : J \subseteq I, I \cap S = \emptyset \}.$$

Allora esiste un ideale primo P massiamle in Σ rispetto all'inclusione.

Dimostrazione. Osserviamo che $J \in \Sigma \neq \emptyset$. Sia $\{I_{\lambda}\}_{{\lambda} \in \Lambda}$ una catena in (Σ, \subseteq) . Proviamo che $I = \bigcup_{\lambda \in \Lambda} I_{\lambda}$ è un elemento di Σ . Siano $x, y \in I$, allora esistono $\alpha, \beta \in \Lambda$ tali che $x \in I_{\alpha}, y \in I_{\beta}$. Dato che $(I_{\lambda})_{{\lambda} \in \Lambda}$ è un catena possiamo suppore $I_{\alpha} \subseteq I_{\beta}$, quindi $x, y \in I_{\beta}$ da cui $x - y \in I_{\beta} \subseteq I$. Sia adesso $a \in A$, allora $ax \in I_{\alpha} \subseteq I$. Ciò prova che I è un ideale di A. Inoltre $J\subseteq I_\lambda$ per ogni $\lambda\in\Lambda,$ quindi $J\subseteq\bigcup_{\lambda\in\Lambda}I_\lambda=I;$ per assurdo sia $s \in I \cap S = \bigcup_{\lambda \in \Lambda} I_{\lambda} \cap S$, quindi esiste $\alpha \in \Lambda$ tale che $s \in I_{\alpha} \cap S = \emptyset$, assurdo. Pertanto $I \cap S = \emptyset$. Ne segue che $I \in \Sigma$ ed è un maggiorante per la catena $(I_{\lambda})_{{\lambda} \in \Lambda}$, da cui applicando il Lemma di Zorn sappiamo che Σ ha elementi massimali.

Sia P massimale in Σ e siano $a, b \notin P$, allora dalla massimalità di P si ha

$$J \subseteq P \subsetneq P + (a) \Rightarrow \exists s \in (P + (a)) \cap S$$
$$J \subseteq P \subsetneq P + (b) \Rightarrow \exists t \in (P + (b)) \cap S$$
$$\Rightarrow st \in (P + (ab)) \cap S,$$

da cui $ab \notin P$, altrimenti si avrebbe $st \in P \cap S = \emptyset$. Ciò prova che P è primo.

Teorema 1.1.12 (Krull). Se A è un anello commutativo unitario allora

- 1. A possiede ideali massimali.
- 2. Ogni ideale I di A è contenuto in un ideale massimale.
- 3. Oqni elemento non invertibile $x \in A$ è contenuto in un ideale massimale.

Dimostrazione.

- 1. Basta applicare il lemma precedente con $S = \{1\}$ e J = (0).
- 2. Basta applicare il lemma precedente con $S = \{1\}$ e J = I.
- 3. Basta applicare il punto precedente con I = (x).

Definizione 1.1.13. Un anello A è detto **locale** se ha un solo ideale massimale. É detto **semilocale** se ha un numero finito di ideali massimali.

Proposizione 1.1.14. Sia M un ideale proprio di A.

- 1. A è locale con ideale massimale $M \Leftrightarrow A \setminus M = U(A) = \{a \in A : a \text{ invertibile}\}.$
- 2. Se M è massimale con $1 + M \subseteq U(A)$ allora A è locale con ideale massimale M.

Dimostrazione.

- 1. \Rightarrow Sia $x \in A \setminus M$, se x fosse non invertibile allora (x) sarebbe un ideale proprio di A, quindi avremmo $(x) \subseteq M$ da cui $x \in M$, assurdo.
 - \Leftarrow Sia I un ideale proprio di A e $x \in I$. Dato che I è un ideale proprio x è non invertibile, quindi $x \in A \setminus U(A) = M$, da cui $I \subseteq M$.
- 2. Sia $x \in A \setminus M$. L'ideale (x) + M contiene propriamente M quindi deve coincidere con A. Allora $1 \in A = (x) + M$ da cui $1 = \lambda x + m$ per qualche $m \in M$ e $\lambda \in A$. Ne segue che $\lambda x = 1 m \in 1 + M \subseteq U(A)$, pertanto x è invertibile. Ciò prova che $A \setminus M \subseteq U(A)$, dato che l'altra inclusione è ovvia segue che $A \setminus M = U(A)$. Adesso basta applicare il punto 1.

Definizione 1.1.15. Sia I un ideale di A. Il radicale di I è l'insieme

$$r(I) = \sqrt{I} = \{a \in A : a^n \in I, n \ge 1\}.$$

Il **nilradicale** di A è il radicale dell'ideale nullo $N_A = \sqrt{(0)}$, cioè l'insieme formato da tutti gli elementi nilpotenti.

Proposizione 1.1.16. Il radicale di un ideale I è anch'esso un ideale.

Dimostrazione. Siano $x, y \in \sqrt{I}$. Per ipotesi esistono $n, m \ge 1$ tali che $x^n, y^m \in I$. Si ha

$$(x-y)^{n+m-1} = \sum_{i=0}^{n+m-1} {n+m-1 \choose i} x^i y^{n+m-1-i},$$

dato che non può verificarsi contemporaneamente $i < n, n+m-1-i < m \Leftrightarrow i > n-1$ allora ogni termine della precedente somma sta in I, da cui $x-y \in \sqrt{I}$. Infine per ogni $a \in A$ si ha $(ax)^n = a^n x^n \in I$ da cui $ax \in \sqrt{I}$.

Teorema 1.1.17. Il nilradicale di A coincide con l'intersezione di tutti gli ideali primi di A

$$N_A = \bigcap_{P \ primo} P$$

Dimostrazione.

- \subseteq Siano $x \in N_A$ e P un ideale primo di A. Per ipotesi esiste un $n \ge 1$ tale che $x^n = 0 \in P$ da cui segue facilmente $x \in P$.
- ⊇ Sia $x \in A \setminus N_A$, proviamo che esiste un ideale primo P tale che $x \notin P$. Sia $S = \{x^n : n \in \mathbb{N}\} = \{1, x, x^2, \ldots\}$, S è una parte moltiplicativa di A, inoltre dato che $x \notin N_A$ allora $(0) \cap S = \emptyset$. Allora applicando il Lemma 1.1.11 con J = (0) abbiamo che esiste un ideale primo P tale che $P \cap S = \emptyset$, in particolare $x \notin P$.

Corollario 1.1.18. Il radicale di un ideale I coincide con l'intersezione di tutti gli ideali primi contenenti I

$$\sqrt{I} = \bigcap_{\substack{P \ primo \\ P \supseteq I}} P.$$

Dimostrazione. Sia $\pi: A \to A/I$. Proviamo che $\sqrt{I} = \pi^{-1}(N_{A/I})$. Sia $x \in \sqrt{I}$, allora esiste $n \geq 1$ tale che $x^n \in I$, da cui $\pi(x)^n = \pi(x^n) = x^n + I = I = 0_{A/I}$, quindi $\pi(x) \in N_{A/I} \Rightarrow x \in \pi^{-1}(N_{A/I})$. Viceversa sia $x \in \pi^{-1}(N_{A/I})$, quindi $\pi(x) = x + I \in N_{A/I}$, allora esiste $n \geq 1$ tale che $(x + I)^n = 0_{A/I}$, cioè $x^n \in I$, da cui $x \in \sqrt{I}$. In base a quanto appena dimostrato si ha

$$\sqrt{I} = \pi^{-1}(N_{A/I}) = \pi^{-1}\left(\bigcap_{P \subseteq A/I \text{ primo}} P\right) = \bigcap_{P \subseteq A/I \text{ primo}} \pi^{-1}(P) = \bigcap_{\substack{P \subseteq A \text{ primo} \\ P \supseteq I}} P,$$

l'ultima uguaglianza segue dal fatto che la contro
immagine tramite π di un ideale primo di A/I è un ideale primo di A contenente I.

Definizione 1.1.19. Si dice radicale di Jacobson di A l'ideale

$$\mathcal{J}(A) = \bigcap_{M \text{ massimale}} M.$$

Proposizione 1.1.20. $x \in \mathcal{J} \Leftrightarrow 1 - xy \ \hat{e} \ invertibile \ in \ A \ per \ ogni \ y \in A.$

Dimostrazione.

 \Rightarrow Sia $x \in \mathcal{J}$, supponiamo per assurdo che $\exists y \in A$ tale che 1 - xy non è invertibile. Allora 1 - xy è contenuto in qualche ideale massimale M,inoltre $x \in \mathcal{J} \subseteq M$, da cui

$$1 = (1 - xy) + xy \in M$$

che è assurdo.

 \Leftarrow Per assurdo supponiamo che esista un ideale massimale M tale che $x \notin M$. Allora dalla massimalità di M abbiamo (x) + M = A, da cui $1 \in A = (x) + M$, quindi esistono $m \in M$ e $y \in A$ tali che

$$1 = m + xy \Rightarrow m = 1 - xy \in M$$

che è una contraddizione in quanto M non può avere elementi invertibili.

Proposizione 1.1.21. Se I, J, L sono ideali di A allora

- 1. I(J + L) = IJ + IL.
- 2. $(I \cap J) + (I \cap L) \subseteq I \cap (J + L)$.
- 3. $IJ \subseteq I \cap J$.
- 4. $(I+J)(I\cap J)\subseteq IJ$.
- 5. $IJ = I \cap J$ se I + J = A (cioè se I e J sono **coprimi**).

Dimostrazione.

1. Sia $x \in I(J+L)$, allora esistono $i_k \in I, j_k \in J, l_k \in L$ tali che

$$x = \sum_{k=1}^{n} i_k (j_k + l_k) = \sum_{k=1}^{n} i_k j_k + \sum_{k=1}^{n} i_k l_k \in IJ + IL.$$

Viceversa osserviamo che

$$IJ + IL \subseteq I(J+L) + I(J+L) \subseteq I(J+L).$$

2. Basta osservare che

$$(I \cap J) + (I \cap L) \subseteq J + L$$
$$(I \cap J) + (I \cap L) \subseteq I.$$

Osserviamo che non vale il viversa, infatti siano A = k[x, y], I = (x + y), J = (x), L = (y). Allora $x + y \in I \cap (J + L) \setminus ((I \cap J) + (I \cap L)).$

- 3. Segue facilmente dalla proprietà di assorbimento degli ideali.
- 4. $(I+J)(I\cap J)\subseteq I(I\cap J)+J(I\cap J)\subseteq IJ+JI\subseteq IJ$.
- 5. Segue da 3 e 4.

Se A_1, A_2, \ldots, A_n sono anelli, possiamo dotare il loro prodotto cartesiano

$$A = \prod_{i=1}^{n} A_i$$

di struttura di anello effettuando la somma e il prodotto componente per componente. Sia A un anello e I_1, I_2, \ldots, I_n ideali di A. Consideriamo l'applicazione

$$\varphi: A \to \prod_{i=1}^n A/I_i$$

con $\varphi(x) = (x + I_1, x + I_2, \dots, x + I_n)$, allora si ha il seguente

Teorema 1.1.22 (Teorema cinese del resto).

- 1. Se I_i , I_j sono coprimi per ogni $i \neq j$ allora $\prod_{i=1}^n I_i = \bigcap_{i=1}^n I_i$.
- 2. φ è suriettiva $\Leftrightarrow I_i, I_j$ sono coprimi per ogni $i \neq j$.
- 3. $\ker \varphi = \bigcap_{i=1}^n I_i$.
- 4. φ è iniettiva $\Leftrightarrow \bigcap_{i=1}^n I_i = (0)$.

Dimostrazione.

1. Procediamo per induzione su n. Il caso n=2 segue dalla proposizione precedente. Supponiamo che il teorema si vero per n-1 e dimostriamolo per n. Dall'ipotesi induttiva abbiamo

$$J = \prod_{i=1}^{n-1} I_i = \bigcap_{i=1}^{n-1} I_i.$$

Dal momento che $I_i+I_n=A$ abbiamo n equazioni del tipo $x_i+y_i=1$ con $x_i\in I_i$ e $y_i\in I_n$, allora

$$\prod_{i=1}^{n} x_i = \prod_{i=1}^{n} (1 - y_i) \equiv 1 \pmod{I_n}.$$

Pertanto $J + I_n = A$ e quindi

$$\prod_{i=1}^{n} I_i = JI_n = J \cap I_n = \bigcap_{i=1}^{n} I_i.$$

- 2. \Rightarrow Senza perdita di generalità proviamo l'asserto per I_1 e I_2 . Sia $(1,0,\ldots,0) \in \prod_{i=1}^n A/I_i$, dalla suriettività di φ abbiamo che esiste $x \in A$ tale che $x \in 1+I_1$ e $x \in I_2$, quindi esiste $i_1 \in I_1$ tale che $x = 1+i_1$ da cui $1 = -i_1+x \in I_1+I_2 = (1)$.
 - \Leftarrow Dato che $(a_1, a_2, \ldots, a_n) = \sum_{i=1}^n a_i \underline{e}_i$ e φ è un omomorfismo, basta provare che per ogni $i \in \{1, \ldots, n\}$ esiste un elemento $x \in A$ tale che $\varphi(x) = \underline{e}_i$. Infatti, fissato $i \in \{1, \ldots, n\}$, per ogni $j \neq i$ abbiamo $1 \in A = I_j + I_i$ quindi esistono $x_j \in I_j$ e $y_j \in I_i$ tali che $x_j + y_j = 1$, da cui

$$x = \prod_{k \neq i} x_k = \prod_{k \neq i} (1 - y_k) \equiv 1 \pmod{I_i}$$

con $x \in \prod_{k \neq i} I_k = \bigcap_{k \neq i} I_k$. Pertanto $\varphi(x) = \underline{e}_i$.

- 3. $x \in \ker \varphi \Leftrightarrow \varphi(x) = \underline{0} \Leftrightarrow x \in I_i \quad \forall i \in \{1, \dots, n\} \Leftrightarrow x \in \bigcap_{i=1}^n I_i$.
- 4. Segue dal punto precedente.

Proposizione 1.1.23 (Prime avoidance lemma).

- 1. Siano $I_1, I_2, ..., I_n$ ideali di A, e sia P un ideale primo. Se $P \supseteq \bigcap_{i=1}^n I_i$ allora esiste $i \in \{1, ..., n\}$ tale che $P \supseteq I_i$. Se $P = \bigcap_{i=1}^n I_i$ allora esiste $i \in \{1, ..., n\}$ tale che $P = I_i$.
- 2. Siano P_1, P_2, \ldots, P_n ideali primi di A e I un ideale quasiasi. Se $I \subseteq \bigcup_{i=1}^n P_i$ allora esiste $i \in \{1, \ldots, n\}$ tale che $I \subseteq P_i$.

Dimostrazione.

1. Nel primo caso, per assurdo $P \not\supseteq I_i$ per ogni $i \in \{1, \dots, n\}$ allora esistono $x_i \in I_i \backslash P$. Si ha

$$\prod_{i=1}^{n} x_i \in \prod_{i=1}^{n} I_i \subseteq \bigcap_{i=1}^{n} I_i \subseteq P,$$

ma P è primo, quindi esiste $i \in \{1, ..., n\}$ tale che $x_i \in P$, assurdo. Nel caso in cui si ha anche l'uguaglianza basta osservare che

$$I_i \subseteq P = \bigcap_{i=1}^n I_i \subseteq I_i.$$

2. Procediamo per induzione su n. Per n=1 non c'è nulla da dimostrare. Supponiamo la tesi vera per n-1. Per assurdo $I \nsubseteq P_i$ per ogni $i \in \{1, \ldots, n\}$. Allora dall'ipotesi induttiva segue che

$$I \nsubseteq \bigcup_{j \neq i} P_j \quad \forall i \in \{1, \dots, n\}.$$

Pertanto esistono $y_i \in I \setminus \bigcup_{j \neq i} P_j$. Se per qualche i abbiamo $y_i \notin P_i$ allora $I \nsubseteq \bigcup_{i=1}^n P_i$, contro l'ipotesi. Dunque $y_i \in P_i$ per ogni $i \in \{1, \dots n\}$. Adesso osserviamo che $\prod_{j \neq i} y_j \notin P_i$, altrimenti esisterebbe $j \neq i$ tale che $y_j \in P_i$, dato che P_i è primo. Inoltre ovviamente $\prod_{j \neq i} y_j \in P_k$ per ogn $k \neq i$. Consideriamo quindi

$$z = \sum_{i=1}^{n} \prod_{j \neq i} y_j \notin P_i \quad \forall i \in \{1, \dots, n\}$$

quindi $z \in I \setminus \bigcup_{i=1}^n P_i$, assurdo.

Definizione 1.1.24. Siano I, J ideali di A. Si definisce

$$(I:J) = \{x \in A : xJ \subseteq I\}.$$

Se I è l'ideale nullo allora poniamo

$$Ann(J) = (0:J).$$

Con queste definizioni abbiamo

$$Z(A) = \{ \text{divisori dello zero di } A \} = \bigcup_{x \in A} \mathrm{Ann}(x).$$

Definizione 1.1.25. Se $f: A \to B$ è un omomorfismo di anelli e I è un ideale di A si definisce **estensione** dell'ideale I il più piccolo ideale di B contenente f(I), cioè l'intersezione di tutti gli ideali di B che contengono f(I), esplicitamente

$$I^e = f(I)B = \left\{ \sum_{k=1}^n f(i_k)b_k : i_k \in I, b_k \in B \right\}.$$

Se invece J è un ideale di B di definisce contrazione di J l'ideale $J^c=f^{-1}(J)$.

Proposizione 1.1.26. Per ogni ideale I di A e J di B abbiamo

- 1. $I \subseteq I^{ec}$
- 2. $J \supseteq J^{ce}$
- 3. $I^e = I^{ece}$
- $J^c = J^{cec}$

Dimostrazione.

- 1. $f(I) \subseteq I^e \Rightarrow I \subseteq f^{-1}(f(I)) \subseteq f^{-1}(I^e) = I^{ec}$.
- 2. $f(f^{-1}(J)) \subseteq J \Rightarrow J^{ce} = (f^{-1}(J))^e \subseteq J$.
- 3. Dal punto 1 si ha $I \subseteq I^{ec} \Rightarrow I^e \subseteq I^{ece}$. Dal punto 2 si ha $(I^e) \supseteq (I^e)^{ce}$.
- 4. Dal punto 1 si ha $J^c \subseteq (J^c)^{ec}$. Dal punto 2 si ha $J \supseteq J^{ce} \Rightarrow J^c \supseteq J^{cec}$.

Capitolo 2

Moduli

Definizione 2.0.1. Sia A un anello. Un insieme M è un A-modulo se (M,+) è un gruppo abeliano e esiste un'operazione $\cdot : A \times M \to M$ tale che $\forall a,b \in A, \forall m,n \in M$ si ha

1.
$$a \cdot (m+n) = a \cdot m + a \cdot n$$

2.
$$(a+b) \cdot m = a \cdot m + b \cdot m$$

3.
$$a \cdot (b \cdot m) = (ab) \cdot m$$

4.
$$1 \cdot m = m$$

O in modo equivalente se esiste un omomorfismo di anelli $\varphi: A \to E(M)$ (dove $(E(M), +, \circ)$ è l'anello degli omomorfismi da M in M come gruppo abeliano). In questo caso l'opreazione è definita come $a \cdot m = (\varphi(a))(m)$.

Osserviamo che gli ideali di un anello, con l'operazione di moltiplicazione usuale, sono A-moduli.

Osserviamo che se k è un campo le due nozioni di k-spazio vettoriale e k-modulo coincidono.

Ogni gruppo abeliano (G, +) con la seguente operazione

$$n \cdot g = \underbrace{g + g + \ldots + g}_{n \text{ volte}} \quad n \in \mathbb{Z}$$

è uno \mathbb{Z} -modulo.

Se $f:A\to B$ è un omomorfismo di anelli allora B è un A-modulo con l'operazione $a\cdot b=f(a)b.$

Definizione 2.0.2. Sia M un A-modulo. Un sottoinsieme $N \subseteq M$ è un **sotto-**A-**modulo** se è un A-modulo con le stesse operazioni di M.

Definizione 2.0.3. Siano M e N due A-moduli, una funzione $f: M \to N$ è un omomorfismo di A-moduli se per ogni $x, y \in M$ e $a \in A$

1.
$$f(x+y) = f(x) + f(y)$$

2.
$$f(ax) = af(x)$$

Il **nucleo** di f è

$$\ker f = \{ x \in M : f(x) = 0_N \}.$$

Il nucleo di f è sempre un sottomodulo di M. Osserviamo inoltre che l'immagine f(M) è un sottomodulo di N.

Dato che gli A-moduli sono gruppi abeliano, dati due A-moduli M e N possiamo sempre considerare il loro quoziente (come gruppi abeliani) M/N. Il quoziente è ancora un A-modulo con l'operazione a(m+N)=am+N. Pertanto anche per gli A-mouduli valgono i seguenti teoremi.

Teorema 2.0.4 (Teorema dell'omomorfismo). Siano M e N due A-moduli e $f: M \to N$ un omomorfismo di A-moduli, allora $M/\ker f \simeq f(M)$.

Teorema 2.0.5 (Teorema dell'isomorfismo). Siano M, N, L tre A-moduli

1. Se $L \subseteq N \subseteq M$ allora N/L è un sottomodulo di M/L, inoltre

$$\frac{(M/L)}{(N/L)} \simeq M/N.$$

2. $N, L \subseteq M$, allora

$$\frac{N+L}{N} \simeq \frac{L}{N \cap L}.$$

Dimostrazione.

- 1. Consideriamo $\varphi: M/L \to M/N$ con $\varphi(m+L) = m+N$. φ è un omomorfismo suriettivo inoltre $\ker \varphi = N/L$, quindi dal teorema dell'isomorfismo segue la tesi.
- 2. Consideriamo l'immersione canonica $i:L\to N+L$ e $\pi:N+L\to (N+L)/N$ la proiezione naturale e consideriamo la loro composizione $\varphi=\pi\circ i:L\to (N+L)/N$. Sotto queste ipotesi φ è un omomorfismo suriettivo, infatti per ogni $n+l+N\in (N+L)/N$ basta considerare $\varphi(l)=l+N=n+l+N$. Inoltre $\ker\varphi=L\cap N$, quindi dal teorema dell'isomorfismo segue la tesi.

Definizione 2.0.6. Sia L un A-modulo e M, N due sottomoduli di L. Definiamo

$$(M:N) = \{a \in A : aN \subseteq M\} \subseteq A$$

(osserviamo che (M:N) è un ideale di A). Definiamo l'annullatore di M come

$$Ann(M) = (0:M).$$

Se Ann(M) = (0) allora M si dice fedele su A.

Osservazione 2.0.7. Se M è un A-modulo e $I \subseteq Ann(M)$ è un ideale di A allora M eredita in modo naturale la struttura di A/I-modulo nel seguente modo: (a + I)m = am. Proviamo che l'operazione appena introdotta è ben definita, infatti

$$a+I=b+I\Rightarrow a-b\in I\subseteq \mathrm{Ann}(M)\Rightarrow (a-b)m=0\Rightarrow am=bm.$$

Inoltre è facile verificare che sono verificate tutte le proprietà degli A-moduli.

Definizione 2.0.8. Se M è un A-modulo e $x \in M$ possiamo considerare il seguente sottomodulo

$$Ax = \{ax \in M : a \in A\} \subseteq M.$$

M si dice finitamente generato (o tipo finito o finito) se $\exists x_1, x_2, \dots, x_n \in M$ tali che

$$M = Ax_1 + Ax_2 + \ldots + Ax_n.$$

Un ideale I di A è detto **finitamente generato** se lo è come A-modulo. In questo caso introduciamo la sequente notazione

$$I = Ax_1 + Ax_2 + \ldots + Ax_n = (x_1, x_2, \ldots, x_n).$$

Definizione 2.0.9. Siano $M_i \subseteq M$ con $i \in \Omega$ sotto-A-moduli di M, definiamo somma diretta come

$$\bigoplus_{i\in\Omega} M_i = \{(m_i)_{i\in\Omega} : m_i \in M_i, m_i = 0 \text{ tranne un numero finito}\}.$$

Mentre il **prodotto diretto** sarà

$$\prod_{i \in \Omega} M_i = \{(m_i)_{i \in \Omega} : m_i \in M_i\}.$$

Somma e prodotto diretto sono ancora A-moduli definendo l'opreazione di somma e prodotto componente per componente

- $(m_i) + (m'_i) = (m_i + m'_i)$
- $a(m_i) = (am_i)$

Osserviamo che nel caso in cui Ω sia un insieme finito somma e prodotto diretto coincidono.

Definizione 2.0.10. Un A-modulo M è **libero** se è somma diretta di copie di A

$$M = \bigoplus_{i \in \Omega} A.$$

Proposizione 2.0.11. Ogni A-modulo M di tipo finito è isomorfo a un quoziente di un modulo libero di tipo finito.

Dimostrazione. Se $M = Ax_1 + Ax_2 + ... + Ax_n$ allora possiamo considerare l'omomorfismo

$$\varphi: \bigoplus_{i=1}^n A \to M \quad \varphi(a_1, a_2, \dots, a_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n.$$

 φ è suriettivo quindi dal teorema dell'omomorfismo abbiamo che $M \simeq \bigoplus_{i=1}^n A/\ker \varphi. \quad \Box$

In generale $\ker \varphi \neq \{0\}$, cioè esistono moduli finitamente generati che non sono liberi. Ad esempio se consideriamo $M = \mathbb{Z}/n\mathbb{Z}$ come \mathbb{Z} -modulo, esso è finitamente generato da $1 + n\mathbb{Z}$, ma non è un modulo libero, infatti in questo caso $\ker \varphi = n\mathbb{Z}$.

E per questo motivo che non esiste una nozione analoga a quella di base per gli spazi vettoriali negli A-moduli.

2.1 Lemma di Nakayama

Lemma 2.1.1 (Lemma di Nakayama). Sia M un A-modulo di finitamente generato, $I \subseteq \mathcal{J}(A)$ un ideale di A e supponiamo che IM = M, allora $M = \{0\}$.

Dimostrazione. Per ipotesi $M = Ax_1 + \ldots + Ax_n$. Allora si ha anche

$$IM = Ix_1 + Ix_2 + \ldots + Ix_n.$$

Dato che $x_i \in M = IM$ per ogni $i \in \{1, ..., n\}$ allora abbiamo n equazioni del tipo

$$\begin{cases} x_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ x_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

dove $a_{ij} \in I$. Ponendo $A = (a_{ij}), \underline{x} = (x_1, \dots, x_n), I_n = (\delta_{ij})$ abbiamo

$$\underline{x} = A\underline{x}$$
$$(I_n - A)\underline{x} = \underline{0}$$

da cui ponendo $B = I_n - A$ moltiplicando ambo i membri dell'ultima uguagliaza per la trasposta dell'aggiunta di B otteniamo

$$\det(B)\underline{x} = \underline{0}$$

cioè $\det(B)x_i = 0$ per ogni $i \in \{1, ..., n\}$. Adesso $\det(B)$ è della forma 1 + i con $i \in I \subseteq \mathcal{J}(A)$, per cui 1 + i è un elemento invertibile di A, pertanto $x_i = 0$ per ogni $i \in \{1, ..., n\}$, cioè $M = \{0\}$.

Corollario 2.1.2. Siano M un A-modulo fintamente generato, $N \subseteq M$ un suo sottmodulo e $I \subseteq \mathcal{J}(A)$ un ideale di A. Se M = N + IM allora M = N.

Dimostrazione. Osserviamo che

$$I(M/N) = \frac{IM + N}{N} = M/N$$

infatti per ogni $m \in M$, $n \in N$ e $i \in I$ si ha

$$i(m+N) = im + N = (im+n) + N.$$

Pertanto applicando il lemma di Nakayama a M/N abbiamo M/N=0, cioè M=N. \square

Osserviamo che se (A, \underline{m}) è un anello locale e M è un A-modulo allora

$$m(M/mM) = \{0\}$$

quindi $M/\underline{m}M$ è un A/\underline{m} -modulo, cioè un $k=A/\underline{m}$ -spazio vettoriale. Inoltre, se M è finitamente generato e $\{x_1,\ldots,x_n\}$ è un sistema di generatori minimale di M allora,

avendo posto $\overline{x_i} = x_i + \underline{m}M$, $B = \{\overline{x_1}, \dots, \overline{x_n}\}$ è una base di $M/\underline{m}M$. Infatti è facile verificare che B è un insieme di generatori di $M/\underline{m}M$. Supponiamo che

$$\overline{a_1} \, \overline{x_1} + \ldots + \overline{a_n} \, \overline{x_n} = \overline{0}$$

$$\Rightarrow a_1 x_1 + \ldots + a_n x_n = m_1 x_1 + \ldots + m_n x_n \in \underline{m} M,$$

dove $m_i \in \underline{m}$. Adesso se fosse $\overline{a_i} \neq \overline{0}$, cioè se $a_i \notin \underline{m}$, per qualche $i \in \{1, \dots, n\}$ allora a_i sarebbe invertibile, quindi lo sarebbe anche $a_i - m_i$, da cui si avrebbe

$$x_i = (a_i - m_i)^{-1} \Big((m_1 - a_1)x_1 + \ldots + (m_i - a_i)\hat{x}_i + \ldots + (m_n - a_n)x_n \Big)$$

contro la minimalità di $\{x_1, \ldots, x_n\}$. Dunque B è una base di $M/\underline{m}M$. Il lemma di Nakayama ci assicura che vale anche il viceversa.

Corollario 2.1.3. Sia (A, \underline{m}) un anello locale e M un A-modulo finitamente generato. Se $\{\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}\}$ è una base di $M/\underline{m}M$ e $N = Ax_1 + Ax_2 + \dots + Ax_n$ allora M = N.

Dimostrazione. Consideriamo l'immersione canonica $i:N\to M$ e la proiezione naturale $\pi:M\to M/\underline{m}M$. La composizione

$$\varphi = \pi \circ i : N \to M/\underline{m}M$$

è suriettiva, infatti $\varphi(x_i) = \overline{x_i}$ per ogni $i \in \{1, \dots, n\}$ e $\{\overline{x_1}, \dots, \overline{x_n}\}$ è una base di $M/\underline{m}M$. Dunque $N + \underline{m}M = M$, quindi applicando il corollario precedente abbiamo M = N. \square

Corollario 2.1.4. Se A è un anello locale, gli insiemi di generatori minimali di un A-modulo finitamente generato hanno la stessa cardinalità.

Definizione 2.1.5. Se M e N sono due A-moduli allora

$$\operatorname{Hom}_A(M, N) = \{ f : M \to N : f \ omomorfismo \}$$

è un A-modulo con le operazioni definite nel modo seguente: per ogni $f,g \in \text{Hom}_A(M,N)$, $m \in M$ e $a \in A$

- (f+q)(m) = f(m) + q(m)
- \bullet (af)(m) = af(m)

Osservazione 2.1.6. Osserviamo che $\operatorname{Hom}(A, M) \simeq M$ tramite $\varphi : \operatorname{Hom}(A, M) \to M$ con $\varphi(f) = f(1)$. Verifichiamo che φ è un isomorfismo.

• φ è un omomorfismo, infatti

$$\varphi(f+g) = (f+g)(1) = f(1) + g(1) = \varphi(f) + \varphi(g)$$
$$\varphi(af) = (af)(1) = af(1) = a\varphi(f)$$

φ è iniettiva, infatti

$$\varphi(f) = \varphi(g) \Rightarrow f(1) = g(1) \Rightarrow af(1) = ag(1) \Rightarrow f(a) = g(a) \Rightarrow f = g.$$

• φ è suriettiva, infatti per ogni $m \in M$ consideriamo $f_m : A \to M$ tale che $f_m(a) = am$. Risulta $f_m \in \text{Hom}(A, M)$ e $\varphi(f_m) = m$.

Definizione 2.1.7. Supponiamo di avere tre A-moduli M, N e L. Dato un omomorfismo $f: M \to N$ esso induce due omomorfismi: il primo $f^*: \operatorname{Hom}(N, L) \to \operatorname{Hom}(M, L)$ definito nel sequente modo

$$f^*(g) = g \circ f;$$

il secondo $f_*: \operatorname{Hom}(L, M) \to \operatorname{Hom}(L, N)$ definito nel seguente modo

$$f_*(q) = f \circ q.$$

2.2 Successioni esatte

Definizione 2.2.1. Una successione di A-moduli e omomorfismi di moduli del tipo

$$\ldots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \ldots$$

è detto complesso se

$$\operatorname{Im} f_i \subseteq \ker f_{i+1}$$
,

mentre è detta **esatta** se

$$\operatorname{Im} f_i = \ker f_{i+1}.$$

Definizione 2.2.2. Una successione esatta del tipo

$$0 \to M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0 \tag{2.1}$$

si dice successione esatta corta.

Osserviamo che in queste ipotesi, l'immagine del primo omomorfismo è nulla e coincide con il nucleo di u, da cui u è iniettiva. Allo stesso modo, il nucleo dell'ultimo omomorfismo dev'essere tutto M" e deve coincidere con l'immagine di v, pertanto v è suriettiva. Riassumendo si ha

- 1. u è iniettiva.
- 2. v è suriettiva.
- 3. Im $u = \ker v$.

Data una successione esatta

$$\ldots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \ldots$$

tenendo conto che Im $f_i = \ker f_{i+1}$, essa si può decomporre in successioni esatte corte nel seguente modo

$$0 \to \operatorname{Im} f_i = \ker f_{i+1} \to M_i \xrightarrow{f_{i+1}} \operatorname{Im} f_{i+1} \to 0.$$

Definizione 2.2.3. Sia C una famiglia di A-moduli. Un'applicazione $\lambda : C \to \mathbb{Z}$ tale che per ogni successione esatta corta del tipo 2.1 (con $M, M', M'' \in C$) risulti

$$\lambda(M) = \lambda(M') + \lambda(M'')$$

si dice additiva.

Proposizione 2.2.4.

1. Sia

$$M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$$

una successione di A-moduli e omomorfismi. La precedente è esatta se e solo se per ogni A-modulo N la successione

$$0 \to \operatorname{Hom}(M', N) \xrightarrow{u^*} \operatorname{Hom}(M, N) \xrightarrow{v^*} \operatorname{Hom}(M'', N)$$

è esatta.

2. Sia

$$0 \to M' \xrightarrow{u} M \xrightarrow{v} M''$$

una successione di A-moduli e omomorfismi. La precedente è esatta se e solo se per ogni A-modulo N la successione

$$0 \to \operatorname{Hom}(N, M') \xrightarrow{u_*} \operatorname{Hom}(N, M) \xrightarrow{v_*} \operatorname{Hom}(N, M'')$$

è esatta.

Dimostrazione.

1.

2. \Rightarrow Dobbiamo provare che u_* è iniettiva e che Im $u_* = \ker v_*$.

Sia $f \in \text{Hom}(N, M')$ tale che $u_*(f) = \underline{0}$. Allora per ogni $n \in N$ si ha $u_*(f)(n) = (u \circ f)(n) = u(f(n)) = 0$, dall'iniettività di u abbiamo f(n) = 0, cioè $f = \underline{0}$. Ciò prova che u_* è iniettiva.

Sia $g \in \text{Im } u_*$, allora esiste $f \in \text{Hom}(N, M')$ tale che $g = u_*(f) = u \circ f$. Adesso $v_*(g) = v \circ g = v \circ (u \circ f) = (v \circ u) \circ f = \underline{0}$, quindi $g \in \text{ker } v_*$.

Viceversa sia $g \in \ker v_*$, allora $v_*(g) = \underline{0}$, cioè per ogni $n \in N$ si ha $v_*(g)(n) = (v \circ g)(n) = v(g(n)) = 0$, cioè $g(n) \in \ker v = \operatorname{Im} u$ per ogni $n \in N$. Quindi esiste un unico $m_n \in M$ tale che $u(m_n) = g(n)$ (l'unicità segue dall'iniettività di u). Pertanto possiamo definire $f: N \to M$ tale che $f(n) = m_n$. Si verifica facilmente che $f \in \operatorname{Hom}(N, M)$. Così per ogni $n \in N$ risulta $u_*(f)(n) = (u \circ f)(n) = u(f(n)) = u(m_n) = g(n)$ da cui $g = u_*(f) \in \operatorname{Im} u_*$.

 \Leftarrow Dobbiamo dimostrare che u è iniettiva e che Im $u = \ker v$. Sia $x \in M'$ tale che u(x) = 0. Poniamo $N = Ax \subseteq M'$ e consideriamo l'inclusione canonica $i: N \to M' \in \operatorname{Hom}(N, M')$, per ogni $ax \in N$ risulta $u_*(i)(ax) = (u \circ i)(ax) = u(i(ax)) = u(ax) = au(x) = 0$, cioè $u_*(i) = 0$, pertanto dall'iniettività di u_* segue che i = 0 ovvero Ax = 0, da cui deve aversi x = 0. Ciò prova l'iniettività di u.

Sia $x \in \text{Im } u$, allora esiste $y \in M'$ tale che x = u(y). Poniamo $N = Ay \subseteq M'$ e consideriamo l'inclusione canonica $i : N \to M' \in \text{Hom}(N, M')$, per ipotesi $v_* \circ u_*$ è nulla, quindi $(v_* \circ u_*)(i) = v_*(u_*(i)) = v_*(u \circ i) = v \circ (u \circ i) = (v \circ u) \circ i = 0$, da cui dato che $y \in N$ si ha $((v \circ u) \circ i)(y) = (v \circ u)(y) = v(u(y)) = 0$ in altri termini v(x) = 0, ovvero $x \in \ker v$.

Viceversa sia $x \in \ker v \subseteq M$, poniamo N = Ax e consideriamo l'immersione canonica $i: N \to M$, allora per ogni $ax \in N$ si ha $v_*(i)(ax) = (v \circ i)(ax) = v(ax) = av(x) = 0$. Pertanto $v_*(i) = 0$, da cui $i \in \ker v_* = \operatorname{Im} u_*$ quindi deve esistere $f \in \operatorname{Hom}(N, M')$ tale che $i = u_*(f) = u \circ f$, da cui otteniamo $x = i(x) = u(f(x)) \in \operatorname{Im} u$.

2.3 A-algebre

Definizione 2.3.1. Sia $f: A \to B$ un omomorfismo di anelli . In questo modo B è un A-modulo con $a \cdot b = f(a)b$. B viene detta A-algebra.

Nel caso in cui A = k sia un campo se f è non nullo allora è iniettivo (è un'immersione di k in B), quindi B contiene una copia isomorfa a k. Pertanto quando parleremo di k-algebre possiamo sempre intendere un anello che contiene k.

Definizione 2.3.2. Una A-algebra B è **finitamente generata** se esistono $b_1, b_2, \ldots, b_n \in B$ tali che

$$B = f(A)[b_1, b_2, \dots, b_n].$$

Definizione 2.3.3. Una A-algebra B è detta **finita** se B è finito come A-modulo, cioè se esistono $b_1, b_2, \ldots, b_n \in B$ tali che

$$B = Ab_1 + Ab_2 + \ldots + Ab_n.$$

2.4 Anelli e moduli di frazioni

Sia A un anello e $S\subseteq A$ una parte moltiplicativa. Su $A\times S$ definiamo la seguente relazione

$$(a,s) \sim (b,t) \Leftrightarrow \exists u \in S : (at - bs)u = 0.$$

Verifichiamo che \sim è una relazione di equivalenza. La proprietà riflessiva e simmetrica seguono banalmente. Verifichiamo la poprietà transitiva. Supponiamo che

$$(a, s) \sim (b, t), (b, t) \sim (c, r)$$

allora esistono $u, v \in S$ tali che

$$u(at - bs) = uat - ubs = 0$$
$$v(br - ct) = vbr - vct = 0,$$

da cui moltiplicando ambo i membri della prima per vr e la seconda per us si ha

$$vruat - vrubs = 0$$
$$usvbr - usvct = 0.$$

infine sommando membro a membro otteniamo

$$vruat - usvct = uvt(ar - cs) = 0$$

e dato che $uvt \in S$ allora risulta $(a, s) \sim (c, r)$.

Definizione 2.4.1. Sia A un anello e $S \subseteq A$ una parte moltiplicativa. Definiamo

$$S^{-1}A = A \times S/\sim$$

e indichiamo $[(a,s)] = \frac{a}{s}$. $S^{-1}A$ con le operazioni

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$
$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}.$$

è un anello commutativa unitario.

Osserviamo che abbiamo l'omomorfismo canonico

$$\varphi: A \to S^{-1}A \quad \text{con } \varphi(a) = \frac{a}{1}$$

e risulta

$$\ker \varphi = \left\{ a \in A : \frac{a}{1} = \frac{0}{1} \right\} = \{ a \in A : \exists u \in S : au = 0 \}.$$

Pertanto se ad esempio S non ha divisori dello zero allora φ è un'immersione.

Proposizione 2.4.2. Sia $f: A \to B$ un omomorfismo di anelli e S una parte moltiplicativa di A. Supponiamo che f(s) sia invertibile in B per ogni $s \in S$, allora esiste un unico omomorfismo $g: S^{-1}A \to B$ tale che $g(\frac{a}{1}) = f(a)$ (in altri termini $f = g \circ \varphi$).

Dimostrazione. Dimostriamo prima l'unicità. Supponiamo che esista un tale g. Per ipotesi $g(\frac{a}{1}) = f(a)$ e per ogni $s \in S$ abbiamo che f(s) è invertibile, quindi

$$(f(s))^{-1} = \left(g\left(\frac{s}{1}\right)\right)^{-1} = g\left(\left(\frac{s}{1}\right)^{-1}\right) = g\left(\frac{1}{s}\right)$$

pertanto

$$g\left(\frac{a}{s}\right) = g\left(\frac{a}{1}\right)g\left(\frac{1}{s}\right) = f(a)f(s)^{-1}.$$

Dunque se un siffatto g esiste dev'essere tale che $g\left(\frac{a}{s}\right) = f(a)f(s)^{-1}$. Questo prova l'unicità. Per provare l'esistenza ci basta verificare che tale g è ben definito ed è un omomorfismo. Siano $\frac{a}{s} = \frac{b}{t}$, allora esiste $u \in S$ tale che u(at - bs) = 0 da cui

$$f(u(at - bs)) = 0 \Rightarrow f(u)(f(a)f(t) - f(b)f(s)) = 0$$

dato che f(u) è invertibile per ipotesi, si ha che

$$f(a)f(t) - f(b)f(s) = 0 \Rightarrow f(a)f(s)^{-1} = f(b)f(t)^{-1} \Rightarrow g\left(\frac{a}{s}\right) = g\left(\frac{b}{t}\right).$$

Si verifica facilmente che g è un omomorfismo.

Siano M un A-modulo e $S \subseteq A$ una parte moltiplicativa. In modo anologo a quanto fatto prima, su $M \times S$ definiamo la seguente relazione (di equivalenza)

$$(m,s) \sim (n,t) \Leftrightarrow \exists u \in S : u(mt-ns) = 0.$$

Definizione 2.4.3. Siano M un A-modulo e $S \subseteq A$ una parte motliplicativa. Definiamo

$$S^{-1}M = M \times S / \sim.$$

Indichiamo con $[(m,s)] = \frac{m}{s}$. $S^{-1}M$ con le operazioni

$$\frac{m}{s} + \frac{n}{t} = \frac{mt + ns}{st}$$
$$\frac{a}{s} \cdot \frac{m}{t} = \frac{am}{st}$$

 \grave{e} un $S^{-1}A$ -modulo.

Se $f:M\to N$ è un omomorfismo di A-moduli e $S\subseteq A$ è una parte moltiplicativa, allora definiamo $S^{-1}f:S^{-1}M\to S^{-1}N$ con $S^{-1}f\left(\frac{m}{s}\right)=\frac{f(m)}{s}$. $S^{-1}f$ è un omomorfismo di $S^{-1}A$ -moduli.

Proposizione 2.4.4. Se $S \subseteq A$ è una parte moltiplicativa e

$$\ldots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \ldots$$

è una successione esatta allora la successione

$$\dots \to S^{-1}M_{i-1} \xrightarrow{S^{-1}f_i} S^{-1}M_i \xrightarrow{S^{-1}f_{i+1}} S^{-1}M_{i+1} \to \dots$$

è esatta.

Dimostrazione. Dobbiamo dimostrare che Im $S^{-1}f_i = \ker S^{-1}f_{i+1}$. Sia $\frac{m}{s} \in S^{-1}M_{i-1}$ allora, poiché Im $f_i = \ker f_{i+1}$ si ha

$$(S^{-1}f_{i+1} \circ S^{-1}f_i)\left(\frac{m}{s}\right) = S^{-1}f_{i+1}\left(\frac{f_i(m)}{s}\right) = \frac{(f_{i+1} \circ f_i)(m)}{s} = \frac{0}{s} = \frac{0}{1}$$

ciò prova che Im $S^{-1}f_i \subseteq \ker S^{-1}f_{i+1}$. Viceversa sia $\frac{m}{s} \in \ker S^{-1}f_{i+1}$ allora

$$S^{-1}f_{i+1}\left(\frac{m}{s}\right) = \frac{f_{i+1}(m)}{s} = \frac{0}{s}$$

pertanto esiste $u \in S$ tale che $uf_{i+1}(m) = f_{i+1}(um) = 0$, da cui $um \in \ker f_{i+1} = \operatorname{Im} f_i$ quindi esiste $n \in M_{i-1}$ tale che $f_i(n) = um$ da cui $\frac{m}{s} = \frac{f_i(n)}{us} = S^{-1}f_i\left(\frac{n}{us}\right) \in \operatorname{Im} S^{-1}f_i$. \square

Osservazione 2.4.5. Sia S una parte moltiplicativa di A e $\varphi : A \to S^{-1}A$ l'omomorfismo canonico $\varphi(a) = \frac{a}{1}$. Se I è un ideale di A allora

$$I^e = \left\{ \sum_{finita} \frac{a}{s} \frac{i}{t} : i \in I, a \in A, s, t \in S \right\} = \left\{ \frac{i}{s} : i \in I, s \in S \right\} = S^{-1}I$$

Lemma 2.4.6. Sia S una parte moltiplicativa di A e I un ideale di A, allora

$$\frac{a}{s} \in S^{-1}I \Longleftrightarrow \exists u \in S : ua \in I.$$

In particolare $S^{-1}I=S^{-1}A$ se e solo se $I\cap S\neq\emptyset$.

Dimostrazione. Proviamo la prima affermazione.

$$\Rightarrow$$
 Esistono $i \in I$ e $t \in S$ tali che $\frac{a}{s} = \frac{i}{t}$ pertanto $\exists u \in S : (ut)a = (us)i \in I$.

$$\Leftarrow \frac{a}{s} = \frac{ua}{us} \in S^{-1}I.$$

Adesso se $S^{-1}I=S^{-1}A$ allora $\frac{1}{1}\in S^{-1}I$ quindi $\exists u\in S:u1=u\in I,$ cioè $u\in I\cap S.$ Viceversa se $u\in I\cap S$ allora $\frac{1}{1}=\frac{u}{u}\in S^{-1}I.$

Proposizione 2.4.7. Siano M, N due sotto-A-moduli di L, e S una parte moltiplicativa di A Allora

1.
$$S^{-1}(M+N) = S^{-1}M + S^{-1}N$$

2.
$$S^{-1}(M \cap N) = S^{-1}M \cap S^{-1}N$$

3.
$$S^{-1}(M/N) \simeq S^{-1}M/S^{-1}N$$
 (se $N \subseteq M$)

Se I e J sono ideali di A allora

4.
$$S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$$

5.
$$S^{-1}\sqrt{I} = \sqrt{S^{-1}I}$$

Dimostrazione.

- 1. Basta osservare che $\frac{m}{s} + \frac{n}{t} = \frac{tm + sn}{st}$.
- 2. $S^{-1}(M\cap N)$ è contenuto in $S^{-1}M$ e $S^{-1}N$, quindi $S^{-1}(M\cap N)\subseteq S^{-1}M\cap S^{-1}N$. Viceversa se $\frac{x}{s}\in S^{-1}M\cap S^{-1}N$ allora esistono $u,t\in S$ tali che $ux\in M$ e $tx\in N$, da cui $\frac{x}{s}=\frac{utx}{uts}\in S^{-1}(M\cap N)$.
- 3. Basta considerare

$$0 \to N \to M \to M/N \to 0$$
$$0 \to S^{-1}N \to S^{-1}M \to S^{-1}(M/N) \to 0,$$

la prima è una successione esatta corta, quindi per la 2.4.4 lo è anche la seconda.

- 4. $S^{-1}(IJ)=(IJ)^e\subseteq I^eJ^e=(S^{-1}I)(S^{-1}J)$ vale sempre. Viceversa se $\frac{i}{s}\in S^{-1}I$ e $\frac{j}{t}\in S^{-1}J$ allora $\frac{ij}{st}\in S^{-1}(IJ)$.
- 5. Sia $\frac{i}{s} \in S^{-1}\sqrt{I}$, allora esiste $u \in S$ tale che $(ui)^n \in I$, quindi $\left(\frac{i}{s}\right)^n = \frac{(ui)^n}{(us)^n} \in S^{-1}I$, cioè $\frac{i}{s} \in \sqrt{S^{-1}I}$.

Viceversa se $\frac{i}{s} \in \sqrt{S^{-1}I}$ allora $\frac{i^n}{s^n} \in S^{-1}I$, pertanto esiste $u \in S$ tale che $ui^n \in I \Rightarrow (ui)^n \in I$, cioè $ui \in \sqrt{I}$, quindi $\frac{i}{s} \in S^{-1}\sqrt{I}$.

Corollario 2.4.8. Se S è una parte moltiplicativa di A allora

$$N_{S^{-1}A} = S^{-1}N_A$$

Osservazione 2.4.9. Sia A un anello, I un suo ideale, $S \subseteq A$ una parte moltiplicativa, l'insieme $\overline{S} = \{s + I : s \in S\} \subseteq A/I$, \overline{S} è una parte moltiplicativa di A/I. Osserviamo che l'anello $\overline{S}^{-1}(A/I)$ è isomorfo a $S^{-1}A/S^{-1}I$ tramite l'isomorfismo

$$\varphi: S^{-1}A/S^{-1}I \to \overline{S}^{-1}(A/I) \quad \varphi\left(\frac{a}{s} + S^{-1}I\right) = \frac{a+I}{s+I}.$$

Proposizione 2.4.10. Sia $S \subseteq A$ una parte moltiplicativa, consideriamo $\varphi : A \to S^{-1}A$ l'omomorfismo canonico $\varphi(a) = \frac{a}{1}$. Sia I un ideale di A e J un ideale di $S^{-1}A$. Risulta

- 1. $J^{ce} = J$ (in particolare ogni ideale di $S^{-1}A$ è un ideale esteso).
- $2. I^{ec} = \bigcup_{s \in S} (I:s)$
- 3. Gli ideali primi P di A tali che $P \cap S = \emptyset$ sono in corrispondenza biunivoca con gli ideali primi di $S^{-1}A$ tramite $P \to S^{-1}P$.

Dimostrazione.

1. $J^{ce} \subseteq J$ vale sempre. Viceversa

$$\frac{j}{s} \in J \Rightarrow \frac{j}{1} = \varphi(j) \in J \Rightarrow j \in \varphi^{-1}(J) = J^c \Rightarrow \varphi(j) = \frac{j}{1} \in J^{ce} \Rightarrow \frac{j}{s} \in J^{ce}.$$

2. Da 2.4.6 abbiamo

$$x \in I^{ec} = \varphi^{-1}(S^{-1}I) \Leftrightarrow \frac{x}{1} \in S^{-1}I \Leftrightarrow \exists s \in S : sx \in I \Leftrightarrow x \in \bigcup_{s \in S} (I:s). \qquad \Box$$

3. Sia P un ideale primo di A tale che $P \cap A = \emptyset$, quindi $S \subseteq A \setminus P$. Proviamo che $S^{-1}P$ è primo. Supponiamo $\frac{x}{s}\frac{y}{t} \in S^{-1}P$, quindi esiste $u \in S \subseteq A \setminus P$ tale che $uxy \in P$, ma $u \notin P$, quindi $xy \in P$, da cui $x \in P$ oppure $y \in P$, cioè $\frac{x}{s} \in S^{-1}P$ oppure $\frac{y}{t} \in S^{-1}P$.

Osserviamo adesso che per ogni $s \in S$ si ha (P:s) = P. Infatti $P \subseteq (P:s)$, viceversa se $x \in (P:s)$ allora $xs \in P$, ma $s \notin P$, quindi $x \in P$. Dunque dal punto 2 sappiamo che $P^{ec} = P$. Mentre se Q è un ideale primo di $S^{-1}A$, dal punto 1 sappiamo che $Q^{ce} = Q$. Pertanto le applicazioni $P \to P^e$ e $Q \to Q^c$ sono una l'inversa dell'altra.

Corollario 2.4.11. Se P è un ideale primo di A allora gli ideali primi di A_P sono in corrispondenza biunivoca con gli ideali primi di A contenuti in P.

In particolare, ovviamente P è il più grande ideale contenuto in P, pertanto PA_P è l'unico ideale massimale di A_P , quindi A_P è locale.

2.5 Proprietà locali

Sia P un ideale primo di A. Osserviamo che $A \setminus P$ è una parte moltiplicativa di A, infatti

- $a, b \notin P \Rightarrow ab \notin P$
- 1 ∉ P

Definizione 2.5.1. Dato un ideale primo P di A si definisce **localizzazione** su P l'anello $A_P = (A \setminus P)^{-1}A$. A_p è un anello locale con ideale massimale $(A \setminus P)^{-1}P$.

Definizione 2.5.2. Sia A un anello. Una proprietà \mathcal{P} viene detta **locale** se equivalentemente

- 1. Vale per A.
- 2. Vale per A_P per ogni ideali P primo di A.
- 3. Vale per A_m per ogni ideale \underline{m} massimale.

Un primo esempio di proprietà locale è dato dalla seguente

Proposizione 2.5.3. Per un qualsiasi A-modulo M le seguenti condizioni sono equivalenti

- 1. M = 0.
- 2. $M_P = 0$ per ogni ideali P primo di A.
- 3. $M_m = 0$ per ogni ideale \underline{m} massimale di A.

Dimostrazione. Banalmente $(1) \Rightarrow (2) \Rightarrow (3)$.

 $(3)\Rightarrow (1)$ Per assurdo supponiamo che $M\neq 0$, allora esiste $x\in M$ con $x\neq 0$, quindi $1\notin \mathrm{Ann}(x)\subsetneq A$, pertanto esiste un ideale massimale \underline{m} di A contenente $\mathrm{Ann}(x)$. Per ipotesi $M_{\underline{m}}=0$ quindi $\frac{x}{1}=\frac{0}{1}$, cioè esiste $u\in A\setminus \underline{m}$ tale che ux=0 pertanto $u\in Ann(x)\subseteq \underline{m}$, assurdo.

Se $\varphi: M \to N$ è un omomorfismo di A-moduli e P è un ideale primo di A, indichiamo con $\varphi_P = (A \setminus P)^{-1} \varphi$.

Proposizione 2.5.4. Siano M,N due A-moduli $e \varphi: M \to N$ un omomorfismo di A-moduli, sono equivalenti

- 1. $\varphi: M \to N$ è iniettiva [suriettiva]
- 2. $\varphi_P: M_P \to N_P$ è iniettiva [suriettiva]

3. $\varphi_{\underline{m}}:M_{\underline{m}}\to N_{\underline{m}}$ è iniettiva [suriettiva]

Dimostrazione.

 $(1)\Rightarrow (2)$ Dire che $\varphi:M\to N$ è iniettiva equivale a dire che

$$0 \to M \to N$$

è esatta, quindi anche

$$0 \to M_P \to N_P$$

è esatta, da cui $\varphi_P:M_P\to N_P$ è iniettiva.

- $(2) \Rightarrow (3)$ Ovvia.
- $(3) \Rightarrow (1)$ La successione

$$0 \to \ker \varphi \to M \to N$$

è esatta, pertanto anche

$$0 \to \ker \varphi_m \to M_m \to N_m$$

è esatta. Mostriamo adesso che ker $\varphi_{\underline{m}} = (\ker \varphi)_{\underline{m}}$, infatti siano $x \in M$ e $y \in A \setminus \underline{m}$, abbiamo questa serie di equivalenze

$$\frac{x}{y} \in \ker \varphi_{\underline{m}} \Leftrightarrow \varphi_{\underline{m}} \left(\frac{x}{y} \right) = \frac{\varphi(x)}{y} = \frac{0}{1} \Leftrightarrow \Leftrightarrow \exists u \in A \setminus \underline{m} : u\varphi(x) = \varphi(ux) = 0 \Leftrightarrow ux \in \ker \varphi \Leftrightarrow \frac{x}{y} = \frac{ux}{uy} \in (\ker \varphi)_{\underline{m}}$$

da cui

$$0 = \ker \varphi_{\underline{m}} = (\ker \varphi)_{\underline{m}}$$

dalla proposizione precedente e dall'arbitrarietà di \underline{m} segue ker $\varphi = 0$.

Capitolo 3

Decomposizione primaria

Definizione 3.0.1. Un ideale I di A si dice primario se

 $xy \in I \Rightarrow x \in I \text{ oppure } y^n \in I \text{ per qualche } n \in \mathbb{N}.$

Equivalente mente

- $xy \in I, x \notin I \Rightarrow y \in \sqrt{I}$.
- $xy \in I, y \notin \sqrt{I} \Rightarrow x \in I.$

Dalla definizione segue subito che ogni ideale primo è primario.

Definizione 3.0.2. Se un ideale I di A si scrive come intersezione di ideali primari

$$I = Q_1 \cap \ldots \cap Q_n$$

allora la precedente scrittura sarà detta una **decomposizione primaria** per I. In questo caso I si dice **decomponibile**.

In generale non è detto che ogni ideale I di un anello A abbia una decomposizione primaria.

Proposizione 3.0.3. Se $f: A \to B$ è un omomorfismo di anelli e J è un ideale primario di B, allora $f^{-1}(J)$ è un ideale primario di A.

Dimostrazione. Supponiamo che $xy \in f^{-1}(J)$ e $x \notin f^{-1}(J)$, ciò vuol dire che $f(xy) = f(x)f(y) \in J$ e $f(x) \notin J$ quindi esiste $n \in \mathbb{N}$ tale che $f(y)^n = f(y^n) \in J$, cioè $y^n \in f^{-1}(J)$.

Proposizione 3.0.4. I è primario se e solo se in A/I ogni divisore dello zero è nilpotente.

Dimostrazione.

 \Rightarrow Sia $\overline{x} = x + I \in A/I$ un divisore dello zero, quindi esiste $\overline{y} = y + I \in A/I$ non nullo $(y \notin I)$ tale che $\overline{x} \overline{y} = \overline{0} \Leftrightarrow xy \in I$, per ipotesi I è primario quindi esiste $n \in \mathbb{N}$ tale che $x^n \in I$, ovvero $\overline{x}^n = \overline{0}$.

 \Leftarrow Supponiamo che $xy \in I$ e $y \notin I$, ciò equivale a dire che (x+I)(y+I) = I in A/I, quindi x+I è un divisore dello zero di A/I (dato che $y+I \neq I$), pertanto è nilpotente, cioè $x^n+I=I \Leftrightarrow x^n \in I$.

Proposizione 3.0.5. Se I è un ideale primario allora \sqrt{I} è primo.

Dimostrazione. Supponiamo che $xy \in \sqrt{I}$ e $x \notin \sqrt{I}$ allora esiste $n \in \mathbb{N}$ tale che $(xy)^n = x^ny^n \in I$ con $x^n \notin I$, quindi dato che I è primario deve aversi $y^n \in \sqrt{I}$ cioè esiste $m \in \mathbb{N}$ tale che $(y^n)^m = y^{nm} \in I$ cioè $y \in \sqrt{I}$.

D'ora in poi parleremo di ideale P-primario, nel senso che I è P-primario se è primario con $\sqrt{I} = P$.

Esempio 3.0.6. Sia $I = (x, y^2) \subseteq k[x, y]$. Abbiamo che

$$A/I = \frac{k[x,y]}{(x,y^2)} \simeq \frac{k[t]}{(t^2)}$$

quindi in A/I ogni divisore dello zero è nilpotente $\Leftrightarrow I$ è primario. D'altra parte si ha

$$(x,y)^2 = (x^2, xy, y^2) \subseteq (x, y^2) \subseteq (x, y)$$
$$(x,y) = \sqrt{(x,y)^2} \subseteq \sqrt{(x,y^2)} \subseteq \sqrt{(x,y)} = (x,y) \Rightarrow \sqrt{(x,y^2)} = (x,y).$$

Dunque (x, y^2) è (x, y)-primario ma non è una potenza di un primo.

Esempio 3.0.7. Non è detto che se \sqrt{I} è primo allora I è primario. Infatti consideriamo in $k[x, y, z]/(xy-z^2)$. Nel quoziente, indicando con $\overline{x} = x+(xy-z^2)$,

 $\overline{y} = y + (xy - z^2)$, $\overline{z} = z + (xy - z^2)$ sia $P = (\overline{x}, \overline{z})$. P è primo poiché l'ideale (x, z) di k[x, y, z] è primo e contiene $(xy - z^2)$. Adesso abbiamo

$$\overline{x}\,\overline{y} = \overline{z}^2 \in P^2, \ \overline{x} \notin P^2, \ \overline{y} \notin P = \sqrt{P^2}$$

 $fatti\ da\ cui\ segue\ che\ P^2\ non\ \grave{e}\ primario.$

Questo esempio mostra anche che non tutte le potenze di un ideale primo sono ideali primari.

Proposizione 3.0.8. Se Q è un ideale tale che $\sqrt{Q}=M$ è massimale, allora Q è M-primario.

Dimostrazione. Sia P un ideale primo contenente Q. Risulta

$$P\supseteq Q\Rightarrow P=\sqrt{P}\supseteq\sqrt{Q}=M\Rightarrow P=M.$$

Pertanto M è l'unico ideale primo che contiene Q. Dunque il quoziente A/Q ha un solo ideale primo, quindi in A/Q ogni elemento è invertibile oppure nilpotente, in particolare ogni divisore dello zero è nilpotente.

Sia I un ideale decomponibile

$$I = Q_1 \cap \ldots \cap Q_n$$

con Q_i ideali primari. Sfrondiamo la precedente decomposizione nel seguente modo. Se $\sqrt{Q_i} = \sqrt{Q_j}$, sostiutuiamo a Q_i e Q_j l'ideale $Q_i \cap Q_j$. Esso è primario, infatti se $xy \in Q_i \cap Q_j$ con $x \notin Q_i \cap Q_j$ allora $x \notin Q_i$ oppure $x \notin Q_j$. Supponiamo che $x \notin Q_i$, dato che $xy \in Q_i \cap Q_j \subseteq Q_i$ si ha $y \in \sqrt{Q_i} = \sqrt{Q_j} = \sqrt{Q_i} \cap \sqrt{Q_j} = \sqrt{Q_i \cap Q_j}$. Inoltre possiamo assumere che

$$Q_i \not\supseteq \bigcap_{j \neq i} Q_j$$
.

Una decomposizione così ottenuta si dice minimale.

I primi $P_i = \sqrt{Q_i}$ si dicono **primi associati** a I. I primi dell'insieme $\{P_1, \ldots, P_n\}$ minimali rispetto all'inclusione si dicono **primi minimali associati** ad I. I restanti sono detti **primi immersi**.

Se P è un ideale primo che contiene I allora

$$P \supset I = Q_1 \cap \ldots \cap Q_n \Rightarrow P = \sqrt{P} \supset P_1 \cap \ldots \cap P_n$$

da cui $P \supseteq P_i$ per qualche $i \in \{1, ..., n\}$ (1.1.23). Da ciò segue che i primi minimali associati ad I sono i primi minimali nella famiglia degli ideali primi contenenti I.

Lemma 3.0.9. Sia Q un ideale P-primario di A. Per ogni $x \in A$ abbiamo

- 1. $x \in Q \Rightarrow (Q : x) = A$
- 2. $x \notin Q \Rightarrow (Q:x) \ e \ P$ -primario.
- 3. $x \notin P \Rightarrow (Q : x) = Q$.

In particolare se $x \notin Q$ allora $\sqrt{(Q:x)} = P$.

Dimostrazione.

- 1. Ovvio.
- 2. Sia $y \in (Q:x)$ allora $xy \in Q$ e $x \notin Q$ quindi $y \in P$. Otteniamo così

$$Q\subseteq (Q:x)\subseteq P\Rightarrow P=\sqrt{Q}\subseteq \sqrt{(Q:x)}\subseteq \sqrt{P}=P.$$

Supponiamo adesso che $yz \in (Q:x)$ e $y \notin P$, allora $xyz \in Q$, dal fatto che Q è P-primario segue $xz \in Q$, cioè $z \in (Q:x)$.

3. Ovviamente $Q \subseteq (Q:x)$. Viceversa se $y \in (Q:x)$ allora $xy \in Q$, ma $x \notin P$, quindi $y \in Q$. Ciò prova $(Q:x) \subseteq Q$.

Teorema 3.0.10 (Primo teorema di unicità). Sia I un ideale decomponibile e sia

$$I = Q_1 \cap \ldots \cap Q_n$$

una decomposizione primaria minimale. Allora i primi $P_i = \sqrt{Q_i}$ associati ad I sono tutti e soli i primi della forma $\sqrt{(I:x)}$ al variare di $x \in A$. In particolare non dipendono dalla decomposizione scelta.

Dimostrazione. Per ogni $x \in A$ tale che $\sqrt{(I:x)}$ è primo si ha

$$(I:x) = (Q_1 \cap \ldots \cap Q_n:x) = (Q_1:x) \cap \ldots \cap (Q_n:x),$$

ponendo $\underline{n} = \{1, \ldots, n\}, \mathcal{I} = \{i \in \underline{n} : x \notin Q_i\}$ dal lemma precedente segue che

$$\sqrt{(I:x)} = \sqrt{(Q_1:x) \cap \ldots \cap (Q_n:x)} = \bigcap_{i=1}^n \sqrt{(Q_i:x)} =$$

$$= \bigcap_{i \in \mathcal{I}} \sqrt{(Q_i:x)} \cap \bigcap_{i \in \underline{n} \setminus \mathcal{I}} \sqrt{(Q_i:x)} = \bigcap_{i \in \mathcal{I}} P_i \cap \bigcap_{i \in \underline{n} \setminus \mathcal{I}} A = \bigcap_{i \in \mathcal{I}} P_i.$$

Essendo $\sqrt{(I:x)}$ primo esiste $i \in \underline{n}$ tale che $\sqrt{(I:x)} = P_i$ (1.1.23). Viceversa, dato che la decomposizione considerata è minimale, per ogni $i \in \underline{n}$ esiste $x_i \in (\bigcap_{j \neq i} Q_j) \setminus Q_i$, pertanto si ha $\mathcal{I} = \{i\}$, quindi $\sqrt{(I:x_i)} = P_i$.

Proposizione 3.0.11. Se I è un ideale decomponibile in A e $I = Q_1 \cap Q_2 \cap ... \cap Q_n$ è una sua decomposizione primaria minimale, con $P_i = \sqrt{Q_i}$, allora

$$\bigcup_{i=1}^{n} P_i = \{ x \in A : (I : x) \neq I \}.$$

Dimostrazione.

- \subseteq Se $x \in \bigcup_{i=1}^n P_i$ allora esiste $i \in \{1, \dots, n\}$ tale che $x \in P_i$. Inoltre esiste $y \in A \setminus I$ tale che $P_i = \sqrt{(I:y)}$, quindi $x^m \in (I:y)$ per qualche $m \ge 1$, cioè $x^m y \in I$. Sia m il minimo naturale tale che $x^m y \in I$. Risulta $x^{m-1} y \in (I:x) \setminus I$, quindi $(I:x) \ne I$.
- $\supseteq \text{ Se } (I:x) \neq I \text{ allora esiste } y \in A \setminus I \text{ tale che } xy \in I, \text{ allora } x \in (I:y) \subseteq \sqrt{(I:y)} = \bigcap_{y \notin P_j} P_j \subseteq P_j \text{ per qualche } j, \text{ da cui } x \in \bigcup_{j=1}^n P_j.$

Corollario 3.0.12. Se A è un anello tale che l'ideale nullo (0) sia decomponibile, allora

$$\bigcup_{i=1}^{n} P_i = \{x \in A : (0:x) \neq (0)\} = D \quad (divisori\ dello\ zero).$$

Proposizione 3.0.13. Sia S una parte moltiplicativa di A, Q un ideale P-primario

1.
$$S \cap P \neq \emptyset \Rightarrow S^{-1}Q = S^{-1}A$$

2. $S \cap P = \emptyset \Rightarrow S^{-1}Q \ e \ S^{-1}P$ -primario $e \ Q^{ec} = (S^{-1}Q)^c = Q$.

Dimostrazione.

1.
$$s \in S \cap P \Rightarrow s^n \in S \cap Q \neq \emptyset \Rightarrow S^{-1}Q = S^{-1}A$$
.

2. Se $\frac{a}{s} \in S^{-1}Q$, allora esistono $b \in Q, t \in S$ tali che

$$\frac{a}{s} = \frac{b}{t} \Rightarrow \exists u \in S : u(at - bs) = 0 \Rightarrow (ut)a = sb \in Q.$$

Adesso $ut \in S \subseteq A \setminus P$, cioè $ut \notin \sqrt{Q}$, quindi $a \in Q$, cioè $Q^{ec} \subseteq Q$, l'inclusione inversa è sempre vera.

Sia adesso $\frac{a}{s}\frac{b}{t} \in S^{-1}Q$, $\frac{a}{s} \notin S^{-1}Q$, quindi $ab \in Q$ e $a \notin Q$, pertanto $b \in P$, cioè $\frac{b}{t} \in S^{-1}P$. Ciò prova che $S^{-1}Q$ è $S^{-1}P$ -primario $(\sqrt{S^{-1}Q} = S^{-1}\sqrt{Q} = S^{-1}P)$.

Corollario 3.0.14. Sia I un ideale di A, $I = Q_1 \cap ... \cap Q_n$ una sua decomposizione primaria minimale e sia S una parte moltiplicativa di A. Allora

$$S^{-1}I = \bigcap_{P_i \cap S = \emptyset} S^{-1}Q_i, \quad (S^{-1}I)^c = \bigcap_{P_i \cap S = \emptyset} Q_i.$$

Teorema 3.0.15 (Secondo teorema di unicità). Gli ideali Q_i che sono P_i -primari, con P_i primi minimali associati ad I sono indipendenti dalla decomposizione.

Dimostrazione. Se P_i è un primo minimale associato ad I sia $S = A \setminus P_i$, quindi $S \cap P_j \neq \emptyset$ per ogni $j \neq i$ quindi dal corollario precedente abbiamo che

$$S^{-1}I = S^{-1}Q_i \Rightarrow (S^{-1}I)^c = Q_i.$$

Cioè Q_i è indipendente dalla decomposizione.

Capitolo 4

Anelli e moduli Noetheriani e Artiniani

Proposizione 4.0.1. Sia (Σ, \leq) un insieme parzialmente ordinato. Le seguenti condizioni sono equivalenti

1. (Ascending Chain Condition, A.C.C.) Ogni catena ascendente di Σ

$$x_0 \le x_1 \le x_2 \le \dots$$

è stazionaria, cio*è* esiste $n \in \mathbb{N}$ tale che $x_n = x_{n+1} = x_{n+2} = \dots$

2. (Maximal condition) Ogni sottoinsieme non vuoto di Σ possiede elementi massimali.

Dimostrazione.

 $(1) \Rightarrow (2)$ Sia $\emptyset \neq A \subseteq \Sigma$, supponiamo per assurdo che A non abbiamo elementi massimali. Sia $x_0 \in A$, dato che x_0 non è massimale esiste $x_1 \in A$ tale che $x_0 < x_1$. Allo stesso modo, x_1 non è massimale quindi esiste $x_2 \in A$ tale che $x_1 < x_2$. Procedendo induttivamente in questo modo riusciamo a costruire una catena acendente $x_0 < x_1 < x_2 < \ldots$ non stazionaria, assurdo.

 $(2) \Rightarrow (1)$ Basta considerare $C = \{x_i : i \in \mathbb{N}\} \subseteq \Sigma$, C ha almeno un elemento massimale x_n , pertanto $x_n = x_i$ per ogni $i \geq n$.

Diciamo che (Σ, \leq) soddisfa la **Descending Chain Condition** (D.C.C.) se (Σ, \geq) soddisfa la A.C.C.

Definizione 4.0.2. Un A-modulo M è detto **noetheriano** se, detto Σ l'insieme dei suoi sottomoduli, (Σ, \subseteq) soddisfa la A.C.C. (o equivalentemente la maximal condition). M è detto **artiniano** se (Σ, \subseteq) soddisfa la D.C.C.

Definizione 4.0.3. Un anello A è **noetheriano** [artiniano] se lo è come A-modulo (cioè se vale la A.C.C [D.C.C] sugli ideali)

Proposizione 4.0.4. Per ogni A-modulo M si ha

 $M \ \hat{e} \ noetheriano \Leftrightarrow ogni sottomodulo di M \ \hat{e} \ di tipo finito.$

Dimostrazione.

- \Rightarrow Sia N un sottomodulo di M. Supponiamo per assurdo che N non sia di tipo finito. Siano quindi $x_0 \in N$, $x_1 \in N \setminus (Ax_0)$, $x_2 \in N \setminus (Ax_0 + Ax_1)$ e così via. In questo modo riusciamo a costruire una catena ascendente di sottomoduli di M che non è stazionaria, assurdo.
- \Leftarrow Sia $N_0 \subseteq N_1 \subseteq N_2 \subseteq \ldots$ una catena ascendente di sottomoduli di M. Consideriamo $N = \bigcup_{i \in \mathbb{N}} N_i$, N è un sottomodulo di M, quindi è di tipo finito, cioè esistono $x_1, x_2, \ldots, x_n \in N$ tali che $N = Ax_1 + \ldots + Ax_n$. Ne segue che essendo $x_i \in N = \bigcup_{k \in \mathbb{N}} N_k$ esiste $h \in \mathbb{N}$ tale che $x_1, x_2, \ldots, x_n \in N_h$, pertanto $N = Ax_1 + \ldots Ax_n \subseteq N_h \subseteq N$ da cui per ogni $i \geq h$ abbiamo

$$N_h \subseteq N_i \subseteq \bigcup_{k \in \mathbb{N}} N_k = N = N_h \Rightarrow N_i = N_h.$$

Esempio 4.0.5. \mathbb{Z} è un anello noetheriano (è un PID), ma non è artiniano, infatti la seguente

$$(1) \supseteq (2) \supseteq (4) \supseteq \ldots \supseteq (2^n) \supseteq \ldots$$

è una catena discendente infinita.

 $k[x_i:i\in\mathbb{N}]$, con k campo, non è noetheriano, infatti la seguente

$$(x_1) \subseteq (x_1x_2) \subseteq (x_1x_2x_3) \subseteq (x_1x_2x_3x_4) \subseteq \dots$$

è una catena ascendente infinita. Non è neanche artiniano, infatti la seguente

$$(x_1) \supseteq (x_1^2) \supseteq (x_1^3) \supseteq \dots$$

è una catena discendente infinita.

Osserviamo che se A è un anello noetheriano, non è detto che ogni suo sottoanello $B \subseteq A$ sia anch'esso noetheriano. Basta considerare dall'esempio precedente

$$B = k[x_i : i \in \mathbb{N}] \subset k(x_i : i \in \mathbb{N}) = A,$$

infatti A è noetheriano poiché è un campo, mentre B non lo è.

Proposizione 4.0.6. Sia

$$0 \to M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$$

una successione esatta di A-moduli. Allora

 $M \ \hat{e} \ noetheriano \ [artiniano] \Leftrightarrow M' \ e \ M'' \ sono \ noetheriani \ [artiniani].$

Dimostrazione. Proviamo il caso noetheriano, il caso artiniano è analogo.

 \Rightarrow Se $N_0 \subseteq N_1 \subseteq ...$ è una catena ascendente di sottomoduli di M' allora $u(N_0) \subseteq u(N_1) \subseteq ...$ è una catena ascendente di sottomoduli di M, quindi è stazionaria, cioè esiste $n \in \mathbb{N}$ tale che $u(N_n) = u(N_i)$ per ogni $i \geq n$. Dato che u è iniettiva, abbiamo che $u^{-1}(u(N_i)) = N_i$, da cui segue che anche la catena in M' è stazionaria. Si procede in modo analogo per le catene ascendenti di M'', infatti v è suriettiva quindi abbiamo $v(v^{-1}(N_i)) = N_i$.

 \Leftarrow Sia $N_0 \subseteq N_1 \subseteq N_2 \subseteq \ldots$ una catena ascendente di sottomoduli di M. Consideriamo le due catene ascendenti $u^{-1}(N_0) \subseteq u^{-1}(N_1) \subseteq u^{-1}(N_2) \subseteq \ldots$, $v(N_0) \subseteq v(N_1) \subseteq v(N_2) \subseteq \ldots$ di sottomoduli rispettivamente di M' e M''. Esse sono entrambe stazionarie, pertanto esiste $h \in \mathbb{N}$ tale che $u^{-1}(N_i) = u^{-1}(N_h)$, $v(N_i) = v(N_h)$ per ogni $i \geq h$. Supponiamo per assurdo che $N_h \subseteq N_{h+1}$, sia $x \in N_{h+1} \setminus N_h$. Se esiste $y \in M'$ tale che x = u(y) allora $y \in u^{-1}(N_{h+1}) = u^{-1}(N_h)$, da cui $x = u(y) \in N_h$, assurdo. Pertanto $x \notin \operatorname{Im} u = \ker v$, quindi $v(x) \neq 0$, $v(x) \in v(N_{h+1}) = v(N_h)$, pertanto esiste $x' \in N_h$ tale che $v(x') = v(x) \Leftrightarrow v(x-x') = 0$ da cui $x-x' \in \ker v = \operatorname{Im} u$, quindi esiste $z \in M'$ tale che $u(z) = x - x' \in N_{h+1}$, ma $x \notin N_h$ pertanto $x - x' \notin N_h$, dunque $z \in u^{-1}(N_{h+1}) \setminus u^{-1}(N_h)$, assurdo.

Corollario 4.0.7. Se M è un A-modulo e $N \subseteq M$ è un suo sottomodulo, allora M è noetheriano [artiniano] se e solo se N e M/N sono noetheriani [artiniani]. In particolare se M è noetheriano [artiniano] il quoziente M/N è noetheriano [artiniano].

Dimostrazione. In base alla proposizione precedente, basta considerare la seguente successione esatta

$$0 \to N \xrightarrow{i} M \xrightarrow{\pi} M/N \to 0$$

Osserviamo che se I è un ideale di A, se A è noetheriano allora A/I è noetheriano (come A-modulo). (DA FARE) è un anello noetheriano

Corollario 4.0.8. Siano M_1, M_2 due A-moduli, allora

 M_1, M_2 sono noetheriani [artiniani] $\Leftrightarrow M_1 \oplus M_2$ è noetheriano [artiniano]

Dimostrazione. Basta considerare la successione esatta

$$0 \to M_1 \xrightarrow{i} M_1 \oplus M_2 \xrightarrow{p_2} M_2 \to 0$$

dove
$$p_2(x,y) = y$$
.

Analogo discorso vale nel caso generale $M_1 \oplus M_2 \oplus \ldots \oplus M_n$, basta applicare induttivamente il precedente corollario.

Corollario 4.0.9. Se A è un anello noetheriano [artiniano] e M è un A-modulo di tipo finito allora M è noetheriano [artiniano].

Dimostrazione. Per ipotesi esistono $x_1, x_2, \ldots, x_n \in M$ tali che $M = Ax_1 + Ax_2 + \ldots + Ax_n$. Consideriamo l'omomrfismo suriettivo

$$\varphi: \bigoplus_{i=1}^n A \to M$$
 tale che $\varphi(\underline{e_i}) = x_i$

allora abbiamo

A noetheriano
$$\Rightarrow \bigoplus_{i=1}^n A$$
 noetheriano $\Rightarrow M \simeq \bigoplus_{i=1}^n A/\ker \varphi$ noetheriano.

37

Corollario 4.0.10. Sia S una parte moltiplicativa di A. Se A è noetheriano [artiniano] allora anche $S^{-1}A$ è noetheriano [artiniano].

Dimostrazione. Infatti se $S^{-1}I_0 \subseteq S^{-1}I_1 \subseteq S^{-1}I_2 \subseteq ...$ è una catena ascendente di ideali di $S^{-1}A$ allora la catena $I_0 \subseteq I_1 \subseteq I_2 \subseteq ...$ è una catena ascendente di ideali di A. Per ipotesi essa è stazionaria, da cui segue che anche la catena in $S^{-1}A$ è stazionaria.

Teorema 4.0.11 (Teorema della base di Hilbert). Se A è noetheriano allora A[x] è noetheriano.

Dimostrazione. Sia I un ideale di A[x]. Supponiamo per assurdo che I non sia finitamente generato. Sia f_1 un polinomio di grado minimo su I e sia $d_1 = \deg(f_1)$. Per ipotesi $I \setminus (f_1) \neq \emptyset$, quindi sia f_2 un polinomio di grado minimo su $I \setminus (f_1)$ e sia $d_2 = \deg(f_2)$. Procedendo induttivamente costuriamo una successione $f_1, f_2, \ldots, f_n, \ldots$ di polinomi di grado rispettivamente $d_1, d_2, \ldots, d_n, \ldots$ e indichiamo con $a_i x^{d_i}$ il termine di grado massimo di f_i . Consideriamo la seguente catena ascendente di ideali in A

$$(a_1) \subseteq (a_1, a_2) \subseteq (a_1, a_2, a_3) \subseteq \dots$$

essa è stazionaria per ipotesi, pertanto esiste $h \in \mathbb{N}$ tale che $(a_1, \ldots, a_h) = (a_1, \ldots, a_i)$ per ogni $i \geq h$, pertanto $a_{h+1} \in (a_1, a_2, \ldots, a_h)$, dunque esistono $b_1, b_2, \ldots, b_n \in A$ tali che

$$a_{h+1} = b_1 a_1 + b_2 a_2 + \ldots + b_h a_h.$$

Adesso il polinomio

$$f_{h+1} - \sum_{i=1}^{h} b_i f_i x^{d_{h+1} - d_i}$$

ha grado minore di d_{h+1} e appartiene a $I \setminus (f_1, \ldots, f_h)$, assurdo.

(A[x] è noetheriano come anello, cioè come A[x]-modulo, non come A-modulo).

Corollario 4.0.12. Se A è noetheriano allora $A[x_1, x_2, ..., x_n]$ è noetheriano.

Dimostrazione. Basta applicare il teorema precedente per induzione su n.

In particolare se k è un campo allora $k[x_1, \ldots, x_n]$ è noetheriano.

Corollario 4.0.13. Se A è un anello noetheriano e B è una A-algebra finitamente generata allora B è noetheriano.

Dimostrazione. Infatti se A è noetheriano allora lo è anche $f(A)[x_1, x_2, ..., x_n]$ pertanto, dato che B è una A-algebra finitamente generata esistono $b_1, b_2, ..., b_n \in B$ tali che

$$B = f(A)[b_1, b_2, \dots, b_n] \simeq \frac{f(A)[x_1, x_2, \dots, x_n]}{(x_1 - b_1, x_2 - b_2, \dots, x_n - b_n)},$$

ne segue che anche B è noetheriano.

Proposizione 4.0.14. Se A è un anello noetheriano e I è un ideale allora esiste $n \in \mathbb{N}$ tale che

$$\left(\sqrt{I}\right)^n \subseteq I.$$

Dimostrazione. Infatti $\sqrt{I} = (a_1, \dots, a_t)$, per ogni a_i esiste n_i tale che $a_i^{n_i} \in I$, quindi basta prendere $n = \sum_{i=1}^t n_i$ per cui si abbia $\left(\sqrt{I}\right)^n \subseteq I$.

Corollario 4.0.15. Se A è noetheriano allora $N_A = \sqrt{(0)}$ è nilpotente (cioè esiste $n \in \mathbb{N}$ tale che $N_A^n = (0)$).

4.1 Lunghezza di un modulo

Definizione 4.1.1. Sia M un A-modulo. Se N_0, N_1, \ldots, N_h sono sottomoduli di M tali che

$$N_0 \subseteq N_1 \subseteq \ldots \subseteq N_h$$

allora diremo che la precedente catena ha **lunghezza** h. Se $N_0 = (0)$ e $N_h = M$ la catena

$$(0) \subsetneq N_1 \subsetneq \ldots \subsetneq N_{h-1} \subsetneq M$$

è detta serie di composizione se non è raffinabile (cioè se N_{i+1}/N_i è un modulo semplice, ossia privo di sottomoduli non banali).

Definizione 4.1.2. Siano M un A-modulo e \mathcal{L} l'insieme di tutte le serie di composizione di M. Si definisce **lunghezza** di M come

$$\lambda(M) = \begin{cases} \min\{h : lunghezza \ di \ L \in \mathcal{L}\} & \mathcal{L} \neq \emptyset \\ +\infty & \mathcal{L} = \emptyset \end{cases}$$

Teorema 4.1.3. Sia M un A-modulo e supponiamo che esso abbia una serie di composizione.

- 1. $N \subseteq M \Rightarrow \lambda(N) \leq \lambda(M)$, inoltre $N = M \Leftrightarrow \lambda(N) = \lambda(M)$.
- 2. Ogni catena di sottomoduli di M ha lunghezza minore o uguale a $\lambda(M)$.
- 3. Ogni serie di composizione di M ha lunghezza $\lambda(M)$.
- 4. Ogni catena di sottomoduli di M si raffina con una serie di composizione.
- 5. Una catena di sottomoduli è una serie di composizione se e solo se ha lunghezza $\lambda(M)$.

Dimostrazione.

1. Sia

$$(0) \subsetneq M_1 \subsetneq \dots \subsetneq M_{h-1} \subsetneq M \tag{4.1}$$

una serie di composizione di M, allora intersecando con N otteniamo

$$(0) \subseteq N \cap M_1 \subseteq \ldots \subseteq N \cap M_{h-1} \subseteq N.$$

Dato che M_{i+1}/M_i è semplice considerando l'omomorfismo $\varphi: M_{i+1}\cap N \to M_{i+1}/M_i$ composizione dell'immersione $M_{i+1}\cap N \hookrightarrow M_{i+1}$ e della proiezione $M_{i+1} \twoheadrightarrow M_{i+1}/M_i$ allora

$$\ker \varphi = \{x \in M_{i+1} \cap N : x \in M_i\} = M_i \cap N$$

quindi $\frac{M_{i+1}\cap N}{M_i\cap N}$ è isomorfo a un sottomodulo di M_{i+1}/M_i che è semplice, pertanto $\frac{M_{i+1}\cap N}{M_i\cap N}$ è semplice da cui $\lambda(N)\leq \lambda(M)$. Inoltre ovviamente se N=M allora $\lambda(N)=\lambda(M)$. Viceversa se $\lambda(N)=\lambda(M)$ allora si ha $N\cap M_i\subsetneq N\cap M_{i+1}$ per ogni $i\in\{0,1,\ldots,h-1\}$ (altrimenti $\lambda(N)<\lambda(M)$). Adesso consideriamo

$$(0) \subsetneq N \cap M_1 \subseteq M_1$$

allora deve aversi $N \cap M_1 = M_1 \Rightarrow M_1 \subseteq N$, altrimenti la catena 4.1 sarebbe raffinabile. Pertanto

$$\frac{N\cap M_2}{N\cap M_1} = \frac{N\cap M_2}{M_1} \subseteq M_2/M_1 \text{ che è semplice}$$

quindi, dato che $N \cap M_1 \subsetneq N \cap M_2$, deve aversi $\frac{N \cap M_2}{M_1} = M_2/M_1$, cioè $N \cap M_2 = M_2 \Rightarrow M_2 \subseteq N$. Iterando il procedimento dopo un numero finito di passi otteniamo $M \subseteq N$, quindi N = M.

2. Sia

$$(0) \subsetneq M_1 \subsetneq M_2 \subsetneq \ldots \subsetneq M_{h-1} \subsetneq M$$

una catena qualsiasi di sottomoduli di M di lunghezza h. Dal punto precedente abbiamo che

$$0 < \lambda(M_1) < \lambda(M_2) < \ldots < \lambda(M_{h-1}) < \lambda(M) \Rightarrow h \leq \lambda(M).$$

- 3. Dal punto precedente ogni serie di composizione ha lunghezza minore o uguale a $\lambda(M)$. Ma $\lambda(M)$ è il minimo delle lunghezze di tutte le serie di composizione, da cui abbiamo la tesi.
- 4. Data una catena

$$(0) \subseteq M_1 \subseteq M_2 \subseteq \ldots \subseteq M_{h-1} \subseteq M$$

se essa non è una serie di composizione allora esiste $i \in \{0, 1, ..., h_1\}$ tale che M_{i+1}/M_i non è semplice, quindi esiste un sottmodulo N tale che $M_i \subsetneq N \subsetneq M_{i+1}$. A questo punto raffiniamo la catena con N e ripetiamo il procedimento, dopo un numero finito di passi passi otteniamo una serie di composizione.

- 5. \Rightarrow Segue dal punto 3.
 - \Leftarrow Se la catena non fosse una serie di composizione potrei raffinarla (in base al punto 4) ottenendo una serie di composizione di lunghezza maggiore di $\lambda(M)$, contro il punto 3.

Proposizione 4.1.4. Un A-modulo M ha una serie di composizione se e solo se M è noetheriano e artiniano.

Dimostrazione.

- ⇒ Ovvio
- \Leftarrow Se $M \neq (0)$ sia M_1 un sottomodulo massimale tra tutti i sottomoduli propri di M (l'esistenza di M_1 ci è garantita dalla noetherianità di M). Così abbiamo che M/M_1 è semplice. Se $M_1 \neq (0)$ sia M_2 un sottomodulo massimale tra tutti i sottomoduli di M contenuti propriamente in M_1 . Come prima M_1/M_2 è semplice. Se $M_2 \neq (0)$ reiteriamo il procedimento su M_2 . In questo modo otteniamo una catena discendente di sottmoduli di M

$$M \supseteq M_1 \supseteq M_2 \supseteq \dots$$

Dato che M è artiniano deve esistere un $n \in \mathbb{N}$ tale che $M_n = (0)$ (altrimenti avremmo costruito una catena discendente infinita), ottenendo così una serie di composizione.

4.2 Decomposizione primaria negli anelli noetheriani

Definizione 4.2.1. Un ideale I di A è detto irriducibile se

da
$$I = J \cap H$$
 segue che $I = J$ oppure $I = H$.

Dalla Proposizione 1.1.23 segue subito che ogni ideale primo è irriducibile.

Proposizione 4.2.2. In un anello noetheriano ogni ideale è intersezione finita di ideali irriducibili.

Dimostrazione. Supponiamo per assurdo che l'insieme

$$\Sigma = \{I \text{ ideale di } A : I \text{ non è intersezione finita di ideali irriducibili}\}$$

sia non vuoto. Sia M un elemento massimale di Σ , allora M non è irriducibile quindi esistono J,H tali che $M=J\cap H,\ M\subsetneq J,H$, quindi $J,H\notin\Sigma$, pertanto essi sono intersezione finita di ideali irriducibili

$$J = \bigcap_{i=1}^{j} J_i, \quad H = \bigcap_{i=1}^{h} H_i \Rightarrow M = J \cap H = \left(\bigcap_{i=1}^{j} J_i\right) \cap \left(\bigcap_{i=1}^{h} H_i\right),$$

contro $M \in \Sigma$.

Proposizione 4.2.3. Se A è un anello noetheriano e I è un ideale irriducibile allora I è primario.

Dimostrazione. Passando al quoziente basta dimostrare che se (0) è un ideale irriducibile allora è primario. Supponiamo che xy = 0 e $x \neq 0$ e consideriamo la catena ascendente

$$\operatorname{Ann}(y) \subseteq \operatorname{Ann}(y^2) \subseteq \operatorname{Ann}(y^3) \subseteq \dots$$

Per ipotesi esiste $h \in \mathbb{N}$ tale che Ann (y^h) = Ann (y^{h+1}) . Adesso sia $z \in (y^h) \cap (x)$, allora esistono $\alpha, \beta \in A$ tali che $z = \alpha x = \beta y^h$, allora

$$zy = \alpha xy = 0 = \beta y^{h+1} \Rightarrow \beta \in \text{Ann}(y^{h+1}) = \text{Ann}(y^h)$$

da cui $z = \beta y^h = 0$, cioè $(x) \cap (y^h) = (0)$. Per ipotesi (0) è irriducibile, da cui dato che $x \neq 0$ deve aversi $(y^h) = (0) \Rightarrow y^h = 0$, cioè $y \in \sqrt{(0)}$. Ciò prova che (0) è primario. \square

Corollario 4.2.4. Se A è noetheriano allora ogni ideale I di A ha una decomposizione primaria

Corollario 4.2.5. Se A è noetheriano allora il nilradicale N_A è intersezione finita di primi.

Dimostrazione. Infatti basta considerare una decomposizione primaria di (0)

$$(0) = Q_1 \cap \ldots \cap Q_n$$

da cui passando ai radicali, indicando con $P_i = \sqrt{Q_i}$ risulta

$$N_A = \sqrt{(0)} = \sqrt{Q_1 \cap \ldots \cap Q_n} = P_1 \cap \ldots \cap P_n.$$

Proposizione 4.2.6. Se A è un anello noetheriano, i primi associati a un ideale I di A sono tutti e soli i primi della forma (I:x), per qualche $x \in A$.

Dimostrazione. Sia $I=Q_1\cap Q_2\cap\ldots\cap Q_n$ una decomposizione primaria minimale di I. Avendo posto $J=\bigcap_{j\neq i}Q_j$, dal primo teorema di unicità si ha che per ogni $x\in J\setminus Q_i$ risulta $P_i=\sqrt{(I:x)}$, quindi $(I:x)\subseteq P_i$. Dato che A è noetheriano dalla Proposizione 4.0.14 esiste $m\in\mathbb{N}$ tale che $P_i^m\subseteq Q_i$, quindi $P_i^mJ\subseteq Q_iJ\subseteq Q_i\cap J=I$. Supponiamo che m sia il più piccolo naturale tale che $P_i^mJ\subseteq I$. Se adesso scegliamo $x\in P_i^{m-1}J\setminus I$ allora $xP_i\subseteq I$ quindi $P_i\subseteq (I:x)$. D'altra parte $x\in P_i^{m-1}J\setminus I\subseteq J\setminus Q_i$, quindi $(I:x)\subseteq P_i$. Viceversa se $x\in A$ è tale che (I:x)=P è primo allora $P=\sqrt{(I:x)}$ quindi P è un primo associato ad I.

4.3 Anelli Artiniani

Proposizione 4.3.1. Se D è un dominio artiniano allora D è un campo.

Dimostrazione. Sia $x \in D \setminus \{0\}$, consideriamo la catena discendente

$$(x) \supseteq (x^2) \supseteq (x^3) \supseteq \dots$$

essendo D artiniano la precedente catena è stazionaria, quindi esiste $n \in \mathbb{N}$ tale che $(x^n) = (x^{n+1})$, pertanto esiste $d \in D$ tale che $x^n = dx^{n+1}$. Poiché D è un dominio vale la proprietà di cancellazione, quindi otteniamo dx = 1, cioè x è invertibile.

Proposizione 4.3.2. Se A è un anello artiniano allora

- 1. Ogni ideale primo è massimale.
- 2. $N_A = \mathcal{J}(A)$.
- 3. Il numero degli ideali primi è finito.

Dimostrazione.

- 1. Sia P un ideale primo di A. Il quoziente A/P è un dominio artiniano, quindi per la proposizione precedente esso è un campo, il che equivale a dire che P è massimale.
- 2. Segue dal punto precedente.
- 3. Sia \mathcal{M} l'insieme degli ideali primi (o massimali) di A e sia

$$\Sigma = \{ I \text{ ideale di } A : I = P_1 \cap \ldots \cap P_t \text{ con } P_i \in \mathcal{M} \}.$$

 $\mathcal{M} \subseteq \Sigma \neq \emptyset$, pertanto, dato che A è artiniano, sia $I = P_1 \cap P_2 \cap \ldots \cap P_t \ (P_i \in \mathcal{M})$ un elemento minimale di Σ . Sia adesso $P \in \mathcal{M}$, allora

$$I \cap P = P_1 \cap P_2 \cap \ldots \cap P_t \cap P \in \Sigma, \quad I \cap P \subseteq I.$$

Dalla minimalità di I abbiamo che $I \cap P = I$, cioè $I = P_1 \cap \ldots \cap P_t \subseteq P$. Dalla Proposizione 1.1.23 abbiamo che esiste $i \in \{1, \ldots, t\}$ tale che $P_i \subseteq P$, dalla massiamlità di P_i otteniamo $P = P_i$. Pertanto $\mathcal{M} = \{P_1, \ldots, P_t\}$, cioè A ha un numero finito di ideali primi (o massimali).

Osservazione 4.3.3. Se A è un anello artiniano e P_1, \ldots, P_t sono i suoi ideali primi (o massimali) allora possiamo considerare l'omomorfismo

$$\varphi: A \to \prod_{i=1}^t A/P_i, \quad \varphi(a) = (a+P_1, \dots, a+P_t).$$

Dato che $P_i + P_j = A$ ($i \neq j$) in quanto P_i e P_j sono massimali, in base al teorema cinese del resto φ è suriettiva. Inoltre $\ker \varphi = P_1 \cap \ldots \cap P_t$, pertanto se A è anche ridotto (cioè se $N_A = P_1 \cap \ldots \cap P_t = (0)$) allora A è somma diretta di campi

$$A \simeq \prod_{i=1}^{t} A/P_i$$

quindi A è anche noetheriano.

Vediamo un esempio di modulo artiniano che non è noetheriano.

Esempio 4.3.4. Sia $G(p^n) \subseteq \mathbb{C}$ l'insieme delle radici p^n -esime dell'unità, dove $p \in \mathbb{N}$ è primo. $G(p^n)$ è un gruppo abeliano (rispetto alla moltiplicazione), quindi è anche uno \mathbb{Z} -modulo. Adesso sia

$$G(p^{\infty}) = \bigcup_{n \in \mathbb{N}} G(p^n),$$

 $G(p^{\infty})$ è un gruppo abeliano, quindi è uno \mathbb{Z} -modulo. Gli unici suoi sottomoduli sono del tipo $G(p^n)$, pertanto considerando la catena ascendente

$$\langle 1 \rangle \subsetneq G(p) \subsetneq G(p^2) \subsetneq \dots$$

vediamo subito che $G(p^{\infty})$ non è noetheriano ma è artiniano.

Proposizione 4.3.5. Per un k-spazio vettoriale V sono equivalenti

- 1. V ha dimensione finita.
- 2. V ha lunghezza finita.
- 3. V è noetheriano.
- 4. V è artiniano.

Dimostrazione.

- $(1) \Rightarrow (2)$ Sia $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_h$ una catena di sottomoduli (e quindi sottospazi vettoriali) di V. Dato che V ha dimensione finita allora deve aversi $h \leq \dim(V)$, quindi V ha lunghezza finita.
- $(2) \Rightarrow (3)$, $(2) \Rightarrow (4)$ seguono dalla Proposizione 4.1.4.
- $(3) \Rightarrow (1)$ Per ipotesi V è finitamente generato (come k-modulo), in altri termini esso ha un insieme di generatori finito (come k-spazio vettoriale) da cui possiamo estrarre una base finita, pertanto V ha dimensione finita.
- $(4) \Rightarrow (1)$ Per assurdo supponiamo che V abbia dimensione infinita e sia $X = \{x_i : i \in \mathbb{N}\} \subseteq V$ un insieme linearmente indipendente numerabile. Per ogni $i \in \mathbb{N}$ poniamo $V_i = \mathcal{L}(x_i, x_{i+1}, x_{i+2}, \ldots)$, abbiamo così ottenuto una catena discendente

$$V_0 \supseteq V_1 \supseteq V_2 \supseteq \dots$$

non stazionaria, contro l'artinianità di V.

Corollario 4.3.6. Se A è un anello tale che $(0) = M_1 M_2 \cdots M_n$, dove gli M_i sono ideali massimali (non necessariamente distinti), allora

 $A \stackrel{.}{e} noetheriano \Leftrightarrow A \stackrel{.}{e} artiniano.$

Dimostrazione. Osserviamo che per ogni $i \in \{1, ..., n\}$ A/M_i è un campo, inoltre il quoziente $M_1M_2...M_i/M_1M_2...M_{i+1}$ è annullato da M_{i+1} quindi è un A/M_{i+1} -spazio vettoriale, analogamente anche il prodotto $M_1M_2...M_{n-1}$ è un A/M_n -spazio vettoriale, pertanto per questi la A.C.C. è equivalente alla D.C.C. in base alla proposizione precedente. Dunque consideriamo le catene esatte corte

$$0 \to M_1 \dots M_{n-1} \to M_1 \dots M_{n-2} \to \frac{M_1 \dots M_{n-2}}{M_1 \dots M_{n-1}} \to 0$$

$$0 \to M_1 \dots M_{n-2} \to M_1 \dots M_{n-3} \to \frac{M_1 \dots M_{n-3}}{M_1 \dots M_{n-2}} \to 0$$

$$\vdots$$

$$0 \to M_1 M_2 \to M_1 \to \frac{M_1}{M_1 M_2} \to 0$$

$$0 \to M_1 \to A \to A/M_1 \to 0.$$

Applicando ripetutamente la Proposizione 4.0.6 otteniamo che se vale la A.C.C. [D.C.C.] per A allora vale anche per M_1 e A/M_1 , quindi vale anche per M_1M_2 e M_1/M_1M_2 e così via risalendo fino a $M_1 cdots M_{n-1}$ e $M_1 cdots M_{n-2}/M_1 cdots M_{n-1}$. Per questi ultimi la A.C.C. e la D.C.C. sono condizioni equivalenti, pertanto, sempre per la Proposizione 4.0.6, anche per $M_1 cdots M_{n-2}$ vale la D.C.C. [A.C.C.], quindi vale anche per $M_1 cdots M_{n-3}$ (ricordando che per ogni quoziente $M_1 cdots M_{i+1}/M_1 cdots M_i$ la A.C.C. è equivalente alla D.C.C) e così via risalendo fino ad A.

Proposizione 4.3.7. Se A è aritiniano N_A è nilpotente.

Dimostrazione. Per ipotesi la catena discendente

$$N_A \supseteq N_A^2 \supseteq N_A^3 \supseteq \dots$$

è stazionaria, pertanto esiste $n \in \mathbb{N}$ tale che $N_A^n = N_A^{n+1}$. Per assurdo supponiamo che $I = N_A^n \neq (0)$. Sia $\Sigma = \{J \text{ ideale di } A : JI \neq (0)\}$, abbiamo che $N_A I = N_A^{n+1} = N_A^n = I \neq (0)$, pertanto $N_A \in \Sigma \neq \emptyset$. Sia allora H un elemento minimale di Σ . Per definizione abbiamo che $H \neq (0)$ quindi esiste $h \in H$ tale che $hI \neq (0)$, pertanto $hI \in \Sigma$. Dalla minimalità di H segue che hI = hI. D'altra parte si ha

$$(hI)I = hI^2 = hN_A^{2n} = hN_A^n = hI \neq (0) \quad hI \subseteq (h) = H$$

quindi hI=(h), ne segue che esiste $i\in I$ tale che h=hi da cui per induzione segue facilmente che

$$h = hi^n \quad \forall n \in \mathbb{N}.$$

Ma $i \in I = N_A^n \subseteq N_A$, quindi esiste $m \in \mathbb{N}$ tale che $i^m = 0$, pertanto $h = hi^m = 0 \Rightarrow H = (0)$, assurdo.

Teorema 4.3.8. Sia A un anello.

 $A \ \dot{e} \ artiniano \Leftrightarrow A \ \dot{e} \ noetheriano \ e \ ogni \ ideale \ primo \ \dot{e} \ massimale.$

Dimostrazione.

 \Rightarrow Dalla Proposizione 4.3.2 abbiamo che ogni ideale primo è massimale e che A ha un numero finito di ideali primi, quindi $N_A = \bigcap_{i=1}^n P_i$. Inoltre, dalla proposizione precedente N_A è nilpotente quindi esiste $m \in \mathbb{N}$ tale che $N_A^m = (0)$. In aggiunta abbiamo che $P_i + P_j = A$ per $i \neq j$ (essendo ideali massimali) pertanto risulta

$$(0) = N_A^m = \bigcap_{i=1}^n P_i^m = \prod_{i=1}^n P_i^m.$$

Dal Corollario 4.3.6 abbiamo che A è noetheriano.

 \Leftarrow Da 4.2.5 sappiamo che N_A è intersezione finita di ideali primi, inoltre da 4.0.15 sappiamo che il nilradicale è nilpotente, cioè $\left(\bigcap_{i=1}^n P_i\right)^k = N_A^k = (0)$, dato che ogni primo è massimale abbiamo che $P_i + P_j = A$ da cui

$$(0) = N_A^k = \left(\bigcap_{i=1}^n P_i\right)^k = \left(\prod_{i=1}^n P_i\right)^k = \prod_{i=1}^n P_i^k,$$

pertanto dal Corollario 4.3.6 A è artiniano.

Osservazione 4.3.9. Sia (A, M) un anello locale noetheriano. Consideriamo la catena discendente

$$M \supset M^2 \supset M^3 \supset \dots$$

dato che M^i è finitamente generato per ogni $i \in \mathbb{N}$ e $\mathcal{J}(A) = M$, dal lemma di Nakayama segue che se $M^{i+1} = MM^i = M^i$ allora $M^i = (0)$. Dunque ci sono due possibilità: o $M^i \supseteq M^{i+1}$ per ogni $i \in \mathbb{N}$, oppure esiste $i \in \mathbb{N}$ tale che $M^i = (0)$. Nel primo caso otteniamo una catena discendente non stazionaria, quindi A non è artiniano. Nel secondo caso per ogni ideale primo P si ha

$$M^i = (0) \subseteq P \Rightarrow M = \sqrt{M^i} \subseteq \sqrt{P} = P \Rightarrow M = P.$$

In altri termini ogni ideale primo è massimale (cioè ogni ideale primo è uguale all'unico ideale massimale di A). Pertanto dalla proposizione precedente avremmo che A è artiniano.

Capitolo 5

Dipendenza integrale

5.1 Estensioni di anelli

Definizione 5.1.1. Se $A \stackrel{.}{e}$ un sottoanello di B l'inclusione $A \subseteq B$ si chiama **estensione** di anelli.

L'estensione di anelli $A \subseteq B$ è **finita** se B è un A-modulo di tipo finito. Si parla di estensione **finitamente generata** se B è una A-algebra finitamente generata.

Proposizione 5.1.2. Un'estensione di anelli $A \subseteq B$ finita è finitamente generata.

Dimostrazione. Basta osservare che se $B = Ax_1 + \ldots + Ax_n$ allora $B = A[x_1, \ldots, x_n]$. \square

5.2 Estensioni integrali

Definizione 5.2.1. Sia $A \subseteq B$ un'estensione di anelli. Diremo che $b \in B$ è **intero** su A se esiste un polinomio monico $f \in A[x]$ tale che f(b) = 0.

Nel caso in cui A sia un campo $x \in B$ è intero se e solo se è algebrico su A. Ovviamente ogni $a \in A$ è intero su A essendo radice del polinomio x - a.

Definizione 5.2.2. Un'estensione di anelli $A \subseteq B$ è intera (o integrale) se ogni elemento $x \in B$ è intero su A. In questo caso si dice che l'anello B è intero su A

Proposizione 5.2.3. Sia $A \subseteq B$ un'estensione di anelli. Le seguenti condizioni sono equivalenti

- 1. $x \in B$ è intero su A.
- 2. A[x] è un A-modulo di tipo finito.
- 3. $A[x] \subseteq C \subseteq B$ dove l'anello C è un A-modulo di tipo finito.
- 4. Esiste un A[x]-modulo M fedele che è un A-modulo di tipo finito.

Dimostrazione.

 $(1) \Rightarrow (2)$ Se $x \in B$ è intero su A allora

$$x^{n} + a_{n-1}x^{n-1} + \ldots + a_{1}x + a_{0} = 0$$
 $a_{i} \in A$

da cui si ha

$$x^{n} = -(a_{n-1}x^{n-1} + \ldots + a_{1}x + a_{0}),$$

quindi si dimostra facilmente per induzione che $x^m \in A + Ax + \ldots + Ax^{n-1}$ per ogni $m \ge n$. Da cui $A[x] = A + Ax + \ldots + Ax^{n-1}$, cioè A[x] è un A-modulo di tipo finito.

- $(2) \Rightarrow (3) C = A[x].$
- $(3) \Rightarrow (4)$ M = C, C è fedele poiché $Ann(C) \subseteq Ann(1) = (0)$.
- $(4) \Rightarrow (1)$ Per ipotesi $M = Ax_1 + \ldots + Ax_n$, quindi si ha

$$xx_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

$$xx_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$

$$\vdots$$

$$xx_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n$$

da cui per ogni $i \in \{1, \ldots, n\}$

$$\sum_{j=1}^{n} (\delta_{ij}x - a_{ij})x_j = 0.$$

Dunque moltiplicando per la matrice $A^{\#}$ trasposta della matrice aggiunta di $A = (\delta_{ij}x - a_{ij})$ si ha che $\det(A^{\#})x_i = 0$ per ogni $i \in \{1, ..., n\}$. Dato che M è fedele deve aversi $\det(A^{\#}) = f(x) = 0$, dove f è un polinomio monico a coefficienti in A.

Corollario 5.2.4. Sia $A \subseteq B$ un'estensione di anelli. Se $x_1, \ldots, x_n \in B$ sono interi su A allora l'estensione $A \subseteq A[x_1, \ldots, x_n]$ è finita.

Dimostrazione. Procediamo per induzione su n. Per n=1 la tesi segue dalla proposizione precedente. Supponiamo il teorema vero per n-1 e dimostriamolo per n. Dall'ipotesi induttiva abbiamo che entrambe le estensioni $A \subseteq A[x_1, \ldots, x_{n-1}]$ e $A[x_1, \ldots, x_{n-1}]$ sono finite, ne segue la tesi.

Corollario 5.2.5. Un'estensione di anelli $A \subseteq B$ è finita se e solo se è intera e finitamente generata.

Dimostrazione.

 \Rightarrow Abbiamo già visto che ogni estensione finita è finitamente generata. Per ogni $x \in B$ abbiamo che $A[x] \subseteq B$ e B è un A-modulo di tipo finito pertanto dalla proposizione precedente segue che x è intero su A.

 \Leftarrow Per ipotesi $B = A[x_1, \dots, x_n]$, inoltre B è intero su A quindi $x_1, \dots, x_n \in B$ sono interi su A. La tesi segue dal corollario precedente.

Proposizione-Definizione 5.2.6. Data un'estensione di anelli $A \subseteq B$ l'insieme

$$\overline{A^B} = \{ x \in B : x \text{ è intero su } B \}$$

è un anello detto chiusura integrale di A in B.

Se $\overline{A^B} = A$ allora $A \in detto$ integralmente chiuso in B.

 $Se \overline{A^B} = B \ allora \ B \ e \ intero \ su \ A.$

Se A è un dominio diremo che A è **integralmente chiuso**, senza specificare rispetto a quale anello, quando A è integralmente chiuso nel suo campo dei quozienti Q(A).

Dimostrazione. Siano $x, y \in \overline{A^B}$. Da un precedente corollario abbiamo che l'estensione $A \subseteq A[x,y]$ è finita, quindi è anche intera, pertanto $x \pm y, xy \in A[x,y]$ sono interi su A.

Proposizione 5.2.7 (Transitività delle estensioni integrali). Se $A \subseteq B \subseteq C$ sono estensioni di anelli allora

$$A \subseteq C$$
 è intera \iff $A \subseteq B$, $B \subseteq C$ sono intere.

Dimostrazione.

- \Rightarrow Se $c \in C$ è intero su A allora è intero anche su B (basta osservare che $A[x] \subseteq B[x]$). Inoltre ogni $b \in B \subseteq C$ è intero su A.
- \Leftarrow Sia $c \in C$, per ipotesi c è intero su B quindi esiste $f \in B[x]$ monico tale che

$$f(c) = c^n + b_{n-1}c^{n-1} + \ldots + b_1c + b_0 = 0, \quad b_i \in B.$$

Adesso $b_0, \ldots, b_{n-1} \in B$ sono interi su $A \in c$ è intero su $A[b_0, \ldots, b_{n-1}]$, pertanto le estensioni

$$A \subseteq A[b_0, \dots, b_{n-1}] \subseteq A[b_0, \dots, b_{n-1}, c]$$

sono finite, ne segue che $A \subseteq A[b_0, \ldots, b_{n-1}, c]$ è finita, quindi c è intero su A.

Proposizione 5.2.8. Ogni UFD è integralmente chiuso.

Dimostrazione. Sia $\frac{r}{s} \in Q(A)$ intero su A, con $r, s \in A$ primi tra di loro. Allora abbiamo una relazione del tipo

$$r^{n} + a_{1}r^{n-1}s + \ldots + a_{n-1}rs^{n-1} + a_{n}s^{n} = 0$$

da cui s divide r^n , cioè r, quindi s è invertibile e $\frac{r}{s} \in A$.

Proposizione 5.2.9. Sia $A \subseteq B$ un'estensione integrale.

1. Se $J \leq B$ e $I = J^c = J \cap A$, allora $A/I \subseteq B/J$ è un'estensione integrale.

2. Se S è un parte moltiplicativa di A (quindi anche di B) allora $S^{-1}A \subseteq S^{-1}B$ è un'estensione integrale.

Dimostrazione.

- 1. Considerando la composizione $A \hookrightarrow B \twoheadrightarrow B/J$ il nucleo è $J \cap A = I$, quindi $A/I \subseteq B/J$. Adesso dato $b+J \in B/J$, sappiamo che $b \in B$ è intero su A, quindi esiste un polinomio $f \in A[x]$ monico tale che f(b) = 0. Passando alle classi di resto modulo J si ha che $\overline{f} \in A/I[x]$ con $\overline{f}(b+J) = \overline{0}$ quindi b+J è intero su A/I.
- 2. Consideriamo $\phi: S^{-1}A \to S^{-1}B$ con $\phi\left(\frac{a}{s}\right) = \frac{a}{s}$. Adesso

$$\phi\left(\frac{a}{s}\right) = \frac{a}{s} = \frac{0}{1} = 0_{S^{-1}B} \Leftrightarrow \exists u \in S : ua = 0 \Leftrightarrow \frac{a}{s} = \frac{0}{1} = 0_{S^{-1}A},$$

pertanto ϕ è un omomorfismo iniettivo.

Adesso sia $\frac{b}{s} \in S^{-1}B$, $b \in B$ è intero su A, quindi

$$b^{n} + a_{n-1}b^{n-1} + \ldots + a_{1}b + a_{0} = 0$$

dividendo ambo i membri per s^n otteniamo

$$\left(\frac{b}{s}\right)^n + \frac{a_{n-1}}{s} \left(\frac{b}{s}\right)^{n-1} + \ldots + \frac{a_1}{s^{n-1}} \frac{b}{s} + \frac{a_0}{s^n} = 0,$$

pertanto $\frac{b}{s}$ è intero su $S^{-1}A$.

5.3 Going up e going down

Proposizione 5.3.1. Sia $A \subseteq B$ un'estensione integrale di domini. Sotto queste ipotesi A è un campo se e solo se B è un campo.

Dimostrazione.

 \Rightarrow Sia $b \in B \setminus 0$, b è intero su A quindi per ipotesi b soddisfa una relazione del tipo

$$b^{n} + a_{n-1}b^{n-1} + \ldots + a_{i}b + a_{0} = 0,$$

con $a_i \in A$. Inoltre possiamo supporre che essa sia di grado minimo, quindi, dato che b non è uno zerodivisore risulta $a_0 \neq 0$, da cui otteniamo

$$b(b^{n-1} + a_{n-1}b^{n-2} + \dots + a_1)(-a_0)^{-1} = 1,$$

pertanto b è invertibile.

 \Leftarrow Sia $a \in A \setminus \{0\}, a^{-1} \in B$ è intero su A, pertanto $(a_i \in A)$

$$a^{-n} + a_{n-1}a^{-(n-1)} + \dots + a_1a^{-1} + a_0 = 0$$

$$a^{-1} = -(a_{n-1} + \dots + a_1a^{n-2} + a_0a^{n-1}) \in A.$$

Corollario 5.3.2. Sia $A \subseteq B$ un'estensione integrale, se Q è un ideale primo di B allora posto $P = Q \cap A$ si ha che Q è massimale se e solo se P è massimale.

Dimostrazione. Dalla 5.2.9 sappiamo che l'estensione di domini $A/P \subseteq B/Q$ è integrale. La tesi segue adesso dalla proposizione precedente.

Proposizione 5.3.3 (Incomparability). Sia $A \subseteq B$ un'estensione integrale. Se $P \in un$ ideale primo di $A \in Q \subseteq Q'$ sono due ideali primi di B tali che $P = Q \cap A = Q' \cap A$ allora Q = Q'.

Dimostrazione. Sia $S=A\backslash P$. Per 5.2.9 sappiamo che l'estensione $S^{-1}A\subseteq S^{-1}B$ è intera. In $S^{-1}A$ l'ideale $S^{-1}P$ è l'unico ideale massiamle. Dato che $S\cap Q=S\cap Q'=S\cap P=\emptyset$ gli ideali $S^{-1}Q$ ed $S^{-1}Q'$ sono primi. Inoltre

$$S^{-1}Q \cap S^{-1}A = S^{-1}(Q \cap A) = S^{-1}P$$

analogamente $S^{-1}Q'\cap S^{-1}A=S^{-1}P$. Dal corollario precedente segue che $S^{-1}Q$ ed $S^{-1}Q'$ sono massimali, da cui poiché $S^{-1}Q\subseteq S^{-1}Q'$ si ha $S^{-1}Q=S^{-1}Q'$ da cui Q=Q'. \square

Teorema 5.3.4 (Lying over). Sia $A \subseteq B$ un'estensione integrale. Se P è un ideale primo di A allora esiste un ideale primo Q di B tale che $Q \cap A = P$.

Dimostrazione. Sia $S = A \setminus P$. Consideriamo il seguente diagramma commutativo

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & S^{-1}A \\
\downarrow & & \downarrow \\
B & \xrightarrow{\beta} & S^{-1}B
\end{array}$$

Di nuovo $S^{-1}P$ è l'unico ideale massimale di $S^{-1}A$. Sia N un ideale massimale di $S^{-1}B$, allora $N\cap S^{-1}A$ è massimale (corollario precedente), pertanto $N\cap S^{-1}A=S^{-1}P$, quindi $\alpha^{-1}(N\cap S^{-1}A)=P$ (ricordiamo che gli ideali primi di $S^{-1}A$ sono in corrispondenza biunivoca con gli ideali primi di A contenuti in P). Ma dato che il precedente diagramma è commutativo si ha $P=\alpha^{-1}(N\cap S^{-1}A)=\beta^{-1}(N)\cap A$, inoltre $Q=\beta^{-1}(N)$ è un ideale primo di B.

Teorema 5.3.5 (Going up). Sia $A \subseteq B$ un'estensione integrale. Se $P_0 \subset P_1 \subset \ldots \subset P_n$ è una catena di ideali primi di A e $Q_0 \subset Q_1 \subset \ldots \subset Q_i$ è una catena di primi di B tali che $Q_j \cap A = P_j$ per ogni $j \leq i$, allora esistono $Q_{i+1} \subset Q_{i+2} \subset \ldots \subset Q_n$ ideali primi di B tali che $Q_j \cap A = P_j$ per ogni $j \geq i+1$ e $Q_i \subset Q_{i+1}$.

Dimostrazione. Ci possiamo ridurre al caso $n=1,\ i=0$. Consideriamo l'estensione integrale $A/P_0 \subseteq B/Q_0$, dato che $\overline{P_1} = P_1/P_0$ è primo, per il teorema del lying over esiste un ideale primo $\overline{Q_1} = Q_1/Q_0$ di B/Q_0 tale che $\overline{Q_1} \cap A/P_0 = \overline{P_1}$.

Corollario 5.3.6. Se $A \subseteq B$ è un'estensione integrale allora dim $A = \dim B$ (dimensione di Krull definita dopo).

Dimostrazione. Infatti ogni catena di primi in B $Q_0 \subset Q_1 \subset \ldots \subset Q_n$ produce una catena in A facendo le intersezioni $P_i = Q_i \cap A$. Il viceversa segue dai teoremi del lying over e del going up.

Teorema 5.3.7 (Going down). Sia $A \subseteq B$ un'estensione integrale di domini e A integralmente chiuso. Data una catena di ideali primi $P_0 \subset P_1 \subset \ldots \subset P_n$ in A e una catena $Q_i \subset Q_{i+1} \subset \ldots \subset Q_n$ tale che $Q_j \cap A = P_j$ per ogni $j \geq i$ allora esistono ideali primi $Q_0 \subset Q_1 \subset Q_{i-1}$ di B tali che $Q_j \cap A = P_j$ per ogni $j \leq i-1$ e $Q_{i-1} \subset Q_i$.

Se il teorema del going down è verificato allora anche l'altezza degli ideali si mantiene.

Proposizione 5.3.8. Sia $A \subseteq B$ un'estensione integrale e P un ideale primo di A. Se Q è un ideale primo di B che si contrae in P allora Q è un primo minimale su P^e .

Dimostrazione. Sia Q' un ideale primo di B tale che $P^e \subseteq Q' \subseteq Q$, risulta

$$P \subseteq P^{ec} = P^e \cap A \subseteq Q' \cap A \subseteq Q \cap A = P,$$

quindi $Q' \cap A = P$, dall'incomparability segue Q' = Q.

Corollario 5.3.9. Sia $A \subseteq B$ un'estensione integrale e supponiamo che B sia noetheriano. Se P è un ideale primo di A allora il numero di ideali primi di B che si contraggono in P è finito.

Dimostrazione. Poiché B è noetheriano, P^e ha una decomposizione primaria, quindi ha un numero finito di primi minimali. La tesi segue dalla proposizione precedente.

Capitolo 6

Varietà algebriche affini

Sia k un campo. Indichiamo con $\mathbb{A}^n(k)$ lo spazio affine n-dimensionale su k.

Definizione 6.0.1. Dato $F \subseteq k[x_1, \ldots, x_n]$ poniamo

$$V(F) = \{ P \in \mathbb{A}^n(k) : f(P) = 0 \quad \forall f \in F \} \subseteq \mathbb{A}^n(k).$$

L'insieme V(F) è detto varietà algebrica affine.

Osserviamo che tutti i polinomi appartenenti all'ideale generato da F si annullano in tutti i punti di V(F). In altri termini se $I = \langle F \rangle = \{\sum_{i=1}^n a_i f_i : a_i \in k[x_1, \dots, x_n], f_i \in F\}$ è l'ideale generato da F allora

$$V(F) = V(I).$$

Dato che $k[x_1, ..., x_n]$ è noetheriano allora ogni suo ideale è finitamente generato. Pertanto ogni varietà algebrica affine è l'insieme dei punti di $\mathbb{A}^n(k)$ che soddisfano un numero finito di equazioni polinomiali

$$f_i(x_1,\ldots,x_n) = 0 \quad (i = 1,\ldots,m).$$

Definizione 6.0.2. Dato $X \subseteq \mathbb{A}^n(k)$ definiamo l'insieme

$$\mathscr{I}(X) = \{ f \in k[x_1, \dots, x_n] : f(P) = 0 \quad \forall P \in X \} \subseteq k[x_1, \dots, x_n].$$

È facile verificare che per ogni $X \subseteq \mathbb{A}^n(k)$ l'insieme $\mathscr{I}(X)$ è un ideale di $k[x_1, \dots, x_n]$.

Abbiamo così definito due applicazioni

$$V: \{I \leq k[x_1, \dots, x_n]\} \rightarrow \mathcal{P}(\mathbb{A}^n(k))$$
 $I \mapsto V(I)$

$$\mathscr{I}: \qquad \mathscr{P}(\mathbb{A}^n(k)) \qquad \rightarrow \{I \leq k[x_1, \dots, x_n]\} \qquad X \mapsto \mathscr{I}(X).$$

Proposizione 6.0.3.

1.
$$I \subseteq \mathscr{I}(V(I))$$

1.
$$X \subseteq V(\mathscr{I}(X))$$

2.
$$I \subseteq J \Rightarrow V(I) \supseteq V(J)$$

2.
$$X \subseteq Y \Rightarrow \mathscr{I}(X) \supseteq \mathscr{I}(Y)$$

3.
$$V(\mathscr{I}(V(I))) = V(I)$$

3.
$$\mathscr{I}(V(\mathscr{I}(X))) = \mathscr{I}(X)$$

4.
$$V(1) = \emptyset$$
, $V(0) = \mathbb{A}^n(k)$.

4.
$$\mathscr{I}(\mathbb{A}^n(k)) = (0), \mathscr{I}(\emptyset) = k[\underline{x}]$$

5.
$$V\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} V(I_{\lambda})$$

5.
$$\mathscr{I}(\bigcup_{\lambda \in \Lambda} X_{\lambda}) = \bigcap_{\lambda \in \Lambda} \mathscr{I}(X_{\lambda})$$

6.
$$V(IJ) = V(I \cap J) = V(I) \cup V(J)$$
 6. $\mathscr{I}(X \cap Y) \supset \mathscr{I}(X) + \mathscr{I}(Y)$

6.
$$\mathscr{I}(X \cap Y) \supset \mathscr{I}(X) + \mathscr{I}(Y)$$

Dimostrazione.

- 1. Se $f \in I$ allora f(P) = 0 per ogni $P \in V(I)$, cioè $f \in \mathcal{I}(V(I))$.
- 2. Se $P \in V(J)$ allora f(P) = 0 per ogni $f \in I \subset J$ quindi $P \in V(I)$.
- 3. $V(I) \subset V(\mathscr{I}(V(I)))$ (punto 1), $I \subset \mathscr{I}(V(I)) \Rightarrow V(I) \supset V(\mathscr{I}(V(I)))$ (punto 2).
- 4. $1(P) = 1 \neq 0$ per ogni $P \in \mathbb{A}^n(k)$, mentre 0(P) = 0 per ogni $P \in \mathbb{A}^n(k)$.
- \subseteq Se $P \in V\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right)$ allora $f_{\lambda}(P) = 0$ per ogni $f_{\lambda} \in I_{\lambda}, \lambda \in \Lambda$, quindi $P \in$ $V(I_{\lambda})$ per ogni $\lambda \in \Lambda$, cioè $P \in \bigcap_{\lambda \in \Lambda} V(I_{\lambda})$.
 - $\supseteq \text{ Se } P \in \bigcap_{\lambda \in \Lambda} V(I_{\lambda}) \text{ allora per ogni } \sum_{i=1}^{n} f_{\lambda_{i}} \in \sum_{\lambda \in \Lambda} I_{\lambda} \text{ con } f_{\lambda_{i}} \in I_{\lambda_{i}} \text{ si ha } (\sum_{i=1}^{n} f_{\lambda_{i}}) (P) = \sum_{i=1}^{n} f_{\lambda_{i}}(P) = 0, \text{ da cui } P \in V \left(\sum_{\lambda \in \Lambda} I_{\lambda}\right).$
- 6. Sia $P \in V(IJ)$. Se per ogni $f \in I$ si ha f(P) = 0 allora $P \in V(I)$, altrimenti esiste $f \in I$ tale che $f(P) \neq 0$, quindi per ogni $g \in J$ si ha $fg \in IJ$ quindi 0 = (fg)(P) = f(P)g(P) da cui g(P) = 0, pertanto $P \in V(J)$. In ogni caso $P \in V(I) \cup V(J)$. Pertanto $V(IJ) \subseteq V(I) \cup V(J)$.

Adesso abbiamo $I \cap J \subseteq I \Rightarrow V(I \cap J) \supseteq V(I)$, analogamente $V(I \cap J) \supseteq V(J)$ da cui $V(I \cap J) \supset V(I) \cup V(J)$. Inoltre $IJ \subseteq I \cap J$ da cui $V(IJ) \supset V(I \cap J)$, ottenendo infine

$$V(IJ) \supseteq V(I \cap J) \supseteq V(I) \cup V(J) \supseteq V(IJ).$$

(nel punto 4, $\mathscr{I}(\mathbb{A}^n(k)) = (0)$ vale solo nel caso k infinito).

Proposizione 6.0.4. Per ogni $X \subseteq \mathbb{A}^n(k)$ e per ogni ideale $I \subseteq k[x_1, \dots, x_n]$ si ha

1.
$$\mathscr{I}(X) = \sqrt{\mathscr{I}(X)}$$

2.
$$V(I) = V(\sqrt{I})$$

Dimostrazione.

1. Sia $f \in \sqrt{\mathscr{I}(X)}$ allora $f^n \in \mathscr{I}(X)$, cioè $f^n(P) = 0 \Rightarrow f(P) = 0$ per ogni $P \in X$, quindi $f \in \mathcal{I}(X)$. L'inclusione inversa vale sempre.

2. $I \subseteq \sqrt{I} \Rightarrow V(I) \supseteq V(\sqrt{I})$. Viceversa sia $P \in V(I)$, allora per ogni $f \in \sqrt{I}$ abbiamo $f^n \in I$ per qualche $n \in \mathbb{N}$, da cui $f^n(P) = 0 \Rightarrow f(P) = 0$, cioè $P \in V(\sqrt{I})$.

Proposizione 6.0.5. Se $V_1, V_2 \subseteq \mathbb{A}^n(k)$ sono due varietà algebriche allora

$$V_1 \subsetneq V_2 \Longleftrightarrow \mathscr{I}(V_1) \supsetneq \mathscr{I}(V_2).$$

Dimostrazione. Basta osservare che essendo V_1 e V_2 due varietà algebriche esistono due ideale I, J di $k[x_1, \ldots, x_n]$ tali che $V_1 = V(I)$, $V_2 = V(J)$, pertanto

$$V(\mathscr{I}(V_1)) = V(\mathscr{I}(V(I))) = V(I) = V_1$$

$$V(\mathscr{I}(V_2)) = V(\mathscr{I}(V(J))) = V(J) = V_2.$$

Adesso basta applicare le proprietà della Proposizione 6.0.3.

Corollario 6.0.6. Ogni catena discendente di varietà algebriche

$$V_1 \supset V_2 \supset V_3 \supset \dots$$

è stazionaria.

Dimostrazione. Dalla proposizione precedente abbiamo che a ogni catena discendente di varietà algebriche

$$V_1 \supset V_2 \supset V_3 \supset \dots$$

corrisponde una catena ascendente di ideali di $k[x_1, \ldots, x_n]$

$$\mathscr{I}(V_1) \subset \mathscr{I}(V_2) \subset \mathscr{I}(V_3) \subset \dots$$

che deve essere stazionaria poiché $k[x_1,\ldots,x_n]$ è noetheriano. Pertanto, riapplicando l'operatore V otteniamo che anche la catena discendente di varietà algebriche deve essere stazionaria.

Definizione 6.0.7. Sia $V \subseteq \mathbb{A}^n(k)$ una varietà algebrica non vuota. Si definisce la dimensione di V come la massima lunghezza di catene di sottovarietà irriducibili

$$\{P\} \subset \ldots \subset V_{d-1} \subset V_d = \mathcal{V}.$$

L'insieme vuoto ha dimensione -1.

6.1 Topologia di Zariski

In base alle proprietà della Proposizione 6.0.3 abbiamo che le varietà algebriche affini godono delle stesse proprietà della famiglia di insiemi chiusi di una topologia.

Definizione 6.1.1. La topologia su $\mathbb{A}^n(k)$ in cui i chiusi sono le varietà algebriche affini si chiama **topologia di Zariski**.

Definizione 6.1.2. Uno spazio topologico X è **irriducibile** se dati due chiusi F, G tali che $X = F \cup G$ si ha X = F oppure X = G.

Un sottoinsieme $Y \subseteq X$ è **irriducibile** se lo è rispetto alla topologia indotta.

Proposizione 6.1.3. Per uno spazio topologico le seguenti proprietà sono equivalenti

- 1. X è irriducibile.
- 2. Se U, V sono due aperti non vuoti di X allora $U \cap V \neq \emptyset$.
- 3. Ogni aperto di X è denso.

Dimostrazione. (1) \Leftrightarrow (2) segue dalla definizione prendendo i complementari. (2) \Leftrightarrow (3) segue dal fatto che un insieme è denso se e solo se interseca ogni aperto non vuoto.

Proposizione 6.1.4. Una varietà algebrica $\mathcal{V} \subseteq \mathbb{A}^n(k)$ è irriducibile (rispetto alla topologia di Zariski) se e solo se $\mathscr{I}(\mathcal{V})$ è un ideale primo.

Dimostrazione.

 \Rightarrow Se $fg \in \mathscr{I}(\mathcal{V})$ allora $(f)(g) \subseteq \mathscr{I}(\mathcal{V})$ da cui

$$V(f) \cup V(g) = V((f)(g)) \supseteq V(\mathscr{I}(\mathcal{V})) = \mathcal{V}.$$

Poiché \mathcal{V} è irriducibile abbiamo che $\mathcal{V} \subseteq V(f)$ oppure $\mathcal{V} \subseteq V(g)$, cioè $(f) \subseteq \mathcal{I}(V(f)) \subseteq \mathcal{I}(\mathcal{V})$ oppure $(g) \subseteq \mathcal{I}(V(g)) \subseteq \mathcal{I}(\mathcal{V})$, in altri termini $f \in \mathcal{I}(\mathcal{V})$ oppure $g \in \mathcal{I}(\mathcal{V})$.

 \Leftarrow Se $\mathcal{V} = V_1 \cup V_2$, con V_1, V_2 due varietà algebriche, allora $\mathscr{I}(\mathcal{V}) = \mathscr{I}(V_1) \cap \mathscr{I}(V_2)$ da cui per la Proposizione 1.1.23 deve verficarsi uno dei due casi

$$\mathscr{I}(\mathcal{V}) = \mathscr{I}(V_1) \Rightarrow V(\mathscr{I}(\mathcal{V})) = V(\mathscr{I}(V_1)) \Rightarrow \mathcal{V} = V_1$$
$$\mathscr{I}(\mathcal{V}) = \mathscr{I}(V_2) \Rightarrow V(\mathscr{I}(\mathcal{V})) = V(\mathscr{I}(V_2)) \Rightarrow \mathcal{V} = V_2.$$

Definizione 6.1.5. Si definisce dimesione di Krull $\dim X$ di uno spazio topologico X non vuoto l'estremo superiore delle lunghezze n di tutte le catene

$$X_0 \subset X_1 \subset \ldots \subset X_n$$

di sottoinsiemi X_i di X chiusi irriducibili e non vuoti. Lo spazio topologico vuoto ha dimensione pari a-1.

La dimensione di una varietà algebrica $\mathcal V$ corrisponde alla dimensione di Krull di $\mathcal V$ rispetto alla topologia indotta dalla topologia di Zariski.

6.2 Spettro di un anello

Sia A un anello e sia

$$\operatorname{Spec}(A) = \{ P \leq A : P \text{ è primo} \}.$$

Per ogni $E \subseteq A$ poniamo

$$V(E) = \{ P \in \operatorname{Spec}(A) : E \subseteq P \}.$$

Proposizione 6.2.1.

- 1. $E \subseteq F \Rightarrow V(E) \supseteq V(F)$ per ogni $E, F \subseteq A$.
- 2. $V(E) = V(I) = V(\sqrt{I})$ dove I è l'ideale genearato da $E \subseteq A$.
- 3. $V(0) = \text{Spec}(A), V(1) = \emptyset.$
- 4. $V\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} V(E_{\lambda})$ per ogni famiglia $\{E_{\lambda}\}_{\lambda \in \Lambda} \subseteq \mathcal{P}(A)$.
- 5. $V(IJ) = V(I \cap J) = V(I) \cup V(J)$ per ogni I, J ideali di A.

Dimostrazione.

- 1. Se $P \in V(F)$ allora $P \supseteq F \supseteq E$ da cui $P \in V(E)$.
- 2. Se $P \in V(E)$ allora $I \subseteq P$ in quanto I è il più piccolo ideale che contiene l'insieme E. Pertanto V(E) = V(I). Dal Corollario 1.1.18 abbiamo che per ogni $Q \in V(I)$

$$Q \supseteq \bigcap_{P \in V(I)} P = \sqrt{I}$$

da cui $V(I) = V(\sqrt{I})$.

- 3. Banale
- 4. $P \in V\left(\bigcup_{\lambda \in \Lambda} E_{\lambda}\right) \Leftrightarrow P \supseteq \bigcup_{\lambda \in \Lambda} E_{\lambda} \Leftrightarrow P \supseteq E_{\lambda} \text{ per ogni } \lambda \in \Lambda \Leftrightarrow P \in \bigcap_{\lambda \in \Lambda} V(E_{\lambda}).$
- 5. $IJ \subseteq I \cap J \Rightarrow V(IJ) \supseteq V(I \cap J)$. Adesso se $P \in V(IJ)$ allora $IJ \subseteq P$, dal Lemma 1.1.7 abbiamo che $I \subseteq P$ oppure $J \subseteq P$, quindi $P \in V(I) \cup V(J)$. Se $P \in V(I) \cup V(J)$ allora $I \subseteq P$ oppure $J \subseteq P$, in ogni caso $I \cap J \subseteq P$, pertanto $P \in V(I \cap J)$. Abbiamo provato che

$$V(I\cap J)\subseteq V(IJ)\subseteq V(I)\cup V(J)\subseteq V(I\cap J).$$

La proposizione precedente mostra che gli insiemi del tipo V(E) godono delle stesse proprietà della famiglia di insiemi chiusi di una topologia.

Definizione 6.2.2. La topologia su $\operatorname{Spec}(A)$ dove i chiusi sono gli insiemi del tipo V(E) con $E \subseteq A$ si chiama **Topologia di Zariski** di A.

Definizione 6.2.3 (Dimensione di Krull). Si definisce dimensione di Krull dim A di un anello A l'estremo superiore delle lunghezze di catene di ideali primi

$$P_0 \subset P_1 \subset \ldots \subset P_n$$
.

Essa coincide con la dimensione di Krull di Spec(A) rispetto alla topologia di Zariski. L'altezza di un ideale primo $P \in \operatorname{Spec}(A)$ è l'estremo superiore delle lunghezze di catene del tipo precedente dove $P_n = P$, o equivalentemente la dimensione di A_P . Per un ideale I qualsiasi l'altezza $\operatorname{ht}(I)$ di I è l'estremo inferiore delle altezze degli ideali primi che lo contengono. Inoltre poniamo dim $I = \dim(R/I)$ detta la dimensione (o coaltezza) dell'ideale I.

Così dalla Proposizione 6.0.5 e dalla Proposizione 6.1.4 segue che per una varietà algebrica $\mathcal{V} \subseteq \mathbb{A}^n(k)$, ponendo

$$k[\mathcal{V}] = \frac{k[x_1, \dots, x_n]}{\mathscr{I}(\mathcal{V})}$$

si ha che la dimensione della varietà algebrica \mathcal{V} coincide con dim $k[\mathcal{V}]$.

Un'altra definizione di dimensione di una varietà algebrica \mathcal{V} può essere data attraverso il grado di trascendenza dell'estensione $k \subseteq k[\mathcal{V}]$.

6.3 Teorema degli zeri di Hilbert

Proposizione 6.3.1 (Artin-Tate). Siano $A \subseteq B \subseteq C$ tre anelli. Supponiamo che A sia noetheriano, C sia una A-algebra finitamente generata e anche un B-modulo di tipo finito. Allora B è una A-algebra finitamente generata (quindi B è anche noetheriano).

Dimostrazione. Siano $x_1, \ldots, x_m, y_1, \ldots, y_n \in C$ tali che

$$C = A[x_1, \dots, x_m]$$

$$C = By_1 + \dots + By_n.$$

Risulta

$$x_i = \sum_{i=1}^{n} b_{ij} y_i, \quad y_i y_j = \sum_{k=1}^{n} b_{ijk} y_k,$$

per certi $b_{ij}, b_{ijk} \in B$. Sia

$$B_0 = A \left[b_{ij}, b_{jkt} : \begin{array}{c} i \in \{1, \dots, m\} \\ j, k, t \in \{1, \dots, n\} \end{array} \right].$$

 B_0 è una A-algebra finitamente generata, quindi è anche noetheriano. Inoltre utilizzando le relazioni scritte sopra abbiamo che C è un B_0 -modulo di tipo finito pertanto è un B_0 -modulo noetheriano, quindi B è un B_0 -modulo di tipo finito (in quanto sotto- B_0 -modulo di C). Dunque, poiché B_0 è una A-algebra finitamente generata allora anche B è un A-algebra finitamente generata.

Definizione 6.3.2. Sia $\mathbb{F} \subseteq \mathbb{K}$ una estensione di campi. Gli elementi $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ si dicono **algebricamente indipendenti** su \mathbb{F} se per ogni polinomio $f \in \mathbb{F}[x_1, \ldots, x_n]$ non nullo si ha $f(\alpha_1, \ldots, \alpha_n) \neq 0$.

L'indipendenza algebrica è una generalizzazione della trascendenza, infatti dire che $x \in \mathbb{K}$ è algebricamente indipendente su \mathbb{F} equivale a dire che x è trascendente su \mathbb{F} .

Teorema 6.3.3. Sia $k \subseteq E$ un'estensione di campi. Se E è un k-algebra finitamente generata allora l'estensione $k \subseteq E$ è finita.

Prima dimostrazione. Poniamo $E = k[x_1, \ldots, x_n]$. Se per assurdo E non è algebrico su k allora supponiamo che x_1, \ldots, x_r siano algebricamente indipendenti su k e che x_{r+1}, \ldots, x_n siano algebrici su $F = k(x_1, \ldots, x_r)$ (osserviamo che F è isomorfo al campo dei quozienti dell'anello dei polinomi in r variabili a coefficienti in k, dal momento che x_1, \ldots, x_r sono algebricamente indipendenti su k). Quindi $F \subseteq E$ è un'estensione finita, in altri termini E è un F-modulo di tipo finito. Applichiamo adesso la proposizione precedente su $k \subseteq F \subseteq E$, così F risulta una k-algebra finitamente generata, cioè $F = k[y_1, \ldots, y_m]$ con $y_i = f_i/g_i$, dove $f_i, g_i \in k[x_1, \ldots, x_r]$. Sia adesso $h = g_1g_2 \ldots g_m + 1 \in k[x_1, \ldots, x_r]$, h non ha nessun divisore in comune con ognuno degli g_i , risulta

$$\frac{1}{h} = \frac{p(x_1, \dots, x_r)}{g_1^{t_1} g_2^{t_2} \dots g_m^{t_m}} \Rightarrow p(x_1, \dots, x_n) = \frac{g_1^{t_1} g_2^{t_2} \dots g_m^{t_m}}{h} \in k[x_1, \dots, x_r],$$

contro il fatto che h non ha nessun divisore in comune con gli g_i , assurdo.

Corollario 6.3.4. Sia k un campo e A una k-algebra finitamente generata. Sia \underline{m} un ideale massiamle di A, allora A/\underline{m} è un'estensione finita di k. Inoltre se k è algebricamente chiuso allora $A/\underline{m} \simeq k$.

Dimostrazione. A/\underline{m} è una k-algebra finitamente generata, e ha come generatori le classi di resto dei generatori di A come k-algebra. Adesso basta applicare il teorema precedente con $E = A/\underline{m}$. Se k è algebricamente chiuso, l'estensione $k \subseteq E$ è finita quindi è anche algebrica da cui k = E.

Corollario 6.3.5 (Nullstellensatz debole). Sia k un campo algebricamente chiuso. Un ideale I di $k[x_1, \ldots, x_n]$ è proprio se e solo se

$$V(I) = \{ P \in \mathbb{A}^n(k) : f(P) = 0 \quad \forall f \in I \} \neq \emptyset.$$

Dimostrazione.

 \Rightarrow I è contenuto in un ideale massimale M di $A=k[x_1,\ldots,x_n]$. Dal corollario precedente sappiamo che $k[\overline{x_1},\ldots,\overline{x_n}]=A/M\simeq k$ quindi esiste un isomorfismo di campi $\phi:k[\overline{x_1},\ldots,\overline{x_n}]\to k$ tale che $\phi(\overline{x_i})=\alpha_i\in k$. Adesso ad ogni $f\in M$ corrisponde in A/M la classe nulla

$$f(x_1,\ldots,x_n)+M=f(\overline{x_1},\ldots,\overline{x_n})=\overline{0},$$

quindi si ha anche

$$f(\alpha_1,\ldots,\alpha_n)=f(\phi(\overline{x_1}),\ldots,\phi(\overline{x_n}))=\phi(f(\overline{x_1},\ldots,\overline{x_n}))=\phi(\overline{0})=0.$$

Dunque dall'arbitrarietà di $f \in M$ abbiamo $P = (\alpha_1, \dots, \alpha_n) \in V(M) \subseteq V(I) \neq \emptyset$.

 \Leftarrow Basta osservare che $V(k[x_1,\ldots,x_n])=\emptyset$, infatti $\forall P\in\mathbb{A}^n(k)$ si ha $1(P)=1\neq 0$.

Osserviamo che il Nullstellensatz debole è equivalente al teorema precedente, infatti se $k \subseteq k[\alpha_1, \ldots, \alpha_n] = E$ è un'estensione di campi allora consideriamo l'omomorfismo $\phi: k[x_1, \ldots, x_n] \to E$ con $\phi(x_i) = \alpha_i$. L'ideale $\ker \phi = M$ è massimale poiché E è un campo, per ipotesi esiste $P = (\beta_1, \ldots, \beta_n) \in \mathbb{A}^n(\overline{k})$ tale che f(P) = 0 per ogni $f \in M$. Pertanto sia $\varphi: k[x_1, \ldots, x_n] \to k[\beta_1, \ldots, \beta_n]$ con $\varphi(x_i) = \beta_i$, si ha $M \subseteq \ker \varphi$, dalla massimalità di M abbiamo $\ker \varphi = M$, quindi

$$E \simeq \frac{k[x_1, \dots, x_n]}{M} \simeq k[\beta_1, \dots, \beta_n].$$

Dunque dato che $\beta_i \in \overline{k}$ allora E è algebrico su k, cioè $k \subseteq E$ è finita.

L'ipotesi che k sia algebricamente chiuso è necessaria, infatti se $k = \mathbb{R}$ abbiamo che

$$V(x^2 + 1) = \emptyset.$$

Corollario 6.3.6. Se k è un campo algebricamente chiuso allora ogni ideale massimale di $k[x_1, \ldots, x_n]$ è della forma $(x_1 - \alpha_1, \ldots, x_n - \alpha_n)$ con $\alpha_1, \ldots, \alpha_n \in k$.

Dimostrazione. Sia M massimale in $k[x_1, \ldots, x_n]$. Sappiamo che esiste $P = (\alpha_1, \ldots, \alpha_n) \in V(M)$. Adesso se f(P) = 0 allora $f \in M$, altrimenti $(f) + M = k[x_1, \ldots, x_n]$, quindi $1 = \lambda f + m \Rightarrow 1(P) = \lambda(P)f(P) + m(P) = 0$, assurdo. Pertanto $f \in M$. Dunque $x_i - \alpha_i \in M$, cioè l'ideale massimale $(x_1 - \alpha_1, \ldots, x_n - \alpha_n)$ è contenuto in M, da cui abbiamo l'uguaglianza.

Teorema 6.3.7 (Nullstellensatz). Sia k un campo algebricamente chiuso e sia I un ideale di $k[x_1, \ldots, x_n]$. Allora

$$\mathscr{I}(V(I)) = \sqrt{I}.$$

Dimostrazione.

 \subseteq Osserviamo prima di tutto che $k[x_1, \ldots, x_n]$ è noetheriano, quindi l'ideale I è finitamente generato $I = (f_1, \ldots, f_n)$.

Sia $f \in \mathscr{I}(V(I))$ e sia $J = I + (fT - 1) \leq k[x_1, \dots, x_n, T]$. Per assurdo sia $\overline{P} = (a_1, \dots, a_n, b) \in V(J) \subseteq \mathbb{A}^{n+1}(k)$ abbiamo che $P = (a_1, \dots, a_n) \in V(I)$ infatti per ogni $g \in I$ si ha $g + 0 \in I + (fT - 1) = J$, quindi $g(\overline{P}) = g(P) = 0$. D'altra parte abbiamo

$$(fT-1)(\overline{P}) = f(P)b - 1 = -1 \neq 0,$$

assurdo, quindi $V(J) = \emptyset \Rightarrow J = k[x_1, \dots, x_n, T]$. Pertanto $1 \in J = I + (fT - 1)$, da cui si ha

$$1 = \sum_{i=1}^{n} \lambda_i f_i + \lambda (fT - 1)$$

dove gli f_i sono i generatori di I e $\lambda, \lambda_i \in k[x_1, \ldots, x_n, T]$. Consideriamo adesso l'omomorfismo $\phi: k[x_1, \ldots, x_n, T] \to k(x_1, \ldots, x_n)$ con $\phi(x_i) = x_i$, $\phi(T) = 1/f$. Risulta

$$1 = \phi(1) = \phi\left(\sum_{i=1}^{n} \lambda_{i} f_{i} + \lambda(fT - 1)\right) = \sum_{i=1}^{n} \phi(\lambda_{i}) f_{i} = \sum_{i=1}^{n} \frac{\tilde{\lambda}_{i}}{f_{m_{i}}} f_{i}.$$

Ponendo $m = \max\{m_i : i = 1, ..., n\}$ si ha

$$f^{m} = \sum_{i=1}^{n} f^{m-m_{i}} \tilde{\lambda}_{i} f_{i} \in I \Rightarrow f \in \sqrt{I}.$$

 $\supseteq \text{ Se } f \in \sqrt{I} \text{ allora } f^n \in I \text{ quindi per ogni } P \in V(I) \text{ si ha } f^n(P) = 0 \Leftrightarrow f(P) = 0, \\ \text{cioè } f \in \mathscr{I}(V(I)) \text{ (oppure } \sqrt{I} \subseteq \mathscr{I}(V(\sqrt{I})) = \mathscr{I}(V(I))).$

Abbiamo dimostrato il Nullstellensatz (forte) a partire dal Nullstellensatz debole, vediamo che le due forme sono in realtà equivalenti:

 $Nullstellensatz \implies Nullstellensatz debole.$

Infatti se I è un ideale di $k[x_1, \ldots, x_n]$ con $V(I) = \emptyset$, risulta

$$\sqrt{I} = \mathscr{I}(V(I)) = \mathscr{I}(\emptyset) = k[x_1, \dots, x_n] \Rightarrow I = k[x_1, \dots, x_n].$$

Proposizione 6.3.8. Ogni varietà algebrica può essere scritta come unione di varietà algebriche irriducibili.

Dimostrazione. Sia V(I) una varietà algebrica. Essendo $k[x_1, \ldots, x_n]$ noetheriano, dal Corollario 4.2.4 abbiamo che I ha una decomposizione primaria

$$I = Q_1 \cap \ldots \cap Q_n$$

da cui

$$V(I) = V(\sqrt{I}) = V(\sqrt{Q_1 \cap \ldots \cap Q_n}) =$$

$$= V(\sqrt{Q_1} \cap \cdots \cap \sqrt{Q_n}) = V(\sqrt{Q_1}) \cup \ldots \cup V(\sqrt{Q_n}),$$

dove le varietà $V(\sqrt{Q_i})$ sono irriducibili dal momento che $\mathscr{I}(V(\sqrt{Q_i})) = \sqrt{\sqrt{Q_i}} = \sqrt{Q_i}$ è un ideale primo.

Capitolo 7

Normalizzazione di Noether

Teorema 7.0.1 (Principio di identità dei polinomi). Sia k un campo infinito. Se $f \in k[x_1, \ldots, x_n]$ è tale che f(P) = 0 per ogni $P \in k^n$ allora f è il polinomio nullo.

Dimostrazione. Procediamo per induzione su n. Se n=1 dal teorema di Ruffini segue che f può avere al più un numero di radici pari al suo grado, ma dato che k è infinito f deve essere necessariamente il polinomio nullo.

Supponiamo il teorema vero per n-1, dimostriamolo per n. Fissiamo $\alpha_1, \ldots, \alpha_{n-1} \in k$, per ipotesi il polinomio $f(\alpha_1, \ldots, \alpha_{n-1}, x_n) \in k[x_n]$ ha infinite radici, quindi per l'ipotesi induttiva esso è il polinomio nullo, cioè i suoi coefficienti devono essere tutti nulli. Ma i coefficienti di $f(\alpha_1, \ldots, \alpha_{n-1}, x_n)$ sono polinomi calcolati in $\alpha_1, \ldots, \alpha_{n-1}$, dall'arbitrarietà di questi ultimi e dall'ipotesi induttiva segue che essi sono polinomi nulli, pertanto abbiamo che f è il polinomio nullo.

Teorema 7.0.2 (Normalizzazione di Noether). Sia k un campo e $A = k[x_1, \ldots, x_n]$ una k-algebra finitamente generata.

- 1. Esistono $r \leq n$ e $y_1, \ldots, y_r \in A$ algebricamente indipendenti su k tali che l'estensione $k[y_1, \ldots, y_r] \subseteq A$ è intera.
- 2. Se $I
 i un ideale proprio di A allora <math>I \cap k[y_1, \ldots, y_r] = (y_\delta, y_{\delta+1}, \ldots, y_r)$, per qualche $\delta \leq r$.

Proviamo solamente il primo punto nel caso k infinito.

Dimostrazione. Procediamo per induzione su n. Se n=1 allora A=k[x]. Se x è algebrico su k allora è anche intero su k, quindi r=0 e $k\subseteq A$ è intera. Se x è trascendente su k allora r=1 e k[x]=A è banalmente intera. Supponiamo il teorema vero per n-1 e dimostriamolo per n. Se x_1, \ldots, x_n sono algebricamente indipendenti su k allora r=n e $k[x_1, \ldots, x_n] = A$ è banalmente intera. Altrimenti supponiamo esista $f \in k[X_1, \ldots, X_n]$ tale che $f(x_1, \ldots, x_n) = 0$. Scriviamo f come somma di polinomi omogenei f_i di grado $i=0,1,\ldots,d$

$$f = f_0 + f_1 + \ldots + f_d$$

con $f_d \neq \underline{0}$. Dunque per il principio di identità dei polinomi esistono $b_1, b_2, \ldots, b_{n-1}, b_n \in k$ non tutti nulli (a meno di riordinamento degli indici possiamo supporre $b_n \neq 0$) tali che $f_d(b_1, b_2, \ldots, b_{n-1}, b_n) \neq 0$, allora ponendo $c_i = b_i/b_n$ per $i \leq n-1$, abbiamo

$$f_d(b_1, b_2, \dots, b_{n-1}, b_n) = b_n^d f_d(c_1, \dots, c_{n-1}, 1) \neq 0 \Rightarrow f_d(c_1, \dots, c_{n-1}, 1) \neq 0.$$

Poniamo $y_i = x_i - c_i x_n$ per ogni $i \le n - 1$. Risulta

$$0 = f(x_1, \dots, x_n) = f(y_1 + c_1 x_n, \dots, y_{n-1} + c_{n-1} x_n, x_n) = g_0 + g_1 x_n + \dots + g_d x_n^d$$
 (7.1)

e dev'essere

$$g_d(y_1,\ldots,y_{n-1})x_n^d = f_d(c_1x_n,\ldots,c_{n-1}x_n,x_n) = x_n^d f_d(c_1,\ldots,c_{n-1},1)$$

da cui moltiplicando la 7.1 per $f_d(c_1,\ldots,c_{n-1},1)^{-1}$ otteniamo una relazione di dipendenza integrale di x_n su $k[y_1,\ldots,y_{n-1}]$. Dall'ipotesi induttiva, esistono $r \leq n-1$ e $t_1,\ldots,t_r \in k[y_1,\ldots,y_{n-1}]$ algebricamente indipendenti su k, tali che $k[t_1,\ldots,t_r] \subseteq k[y_1,\ldots,y_{n-1}]$ sia intera. Da cui l'estensione $k[t_1,\ldots,t_r] \subseteq A$ è intera.

Corollario 7.0.3. L'anello dei polinomi $k[x_1, ..., x_n]$ ha dimensione n.

Dimostrazione. Procediamo per induzione su n. Per n=0 sappiamo che dim k=0. Supponiamo il teorema vero fino a n-1 e proviamolo per n. Osserviamo che la catena $(0) \subset (x_1) \subset (x_1, x_2) \subset \ldots \subset (x_1, \ldots, x_n)$ ci permette di dire che dim $k[x_1, \ldots, x_n] \geq n$. Sia adesso

$$(0) \subset P_1 \subset P_2 \subset \ldots \subset P_m$$

una qualunque catena di primie proviamo che $m \leq n$. Per il lemma di normalizzaizone di Noether abbiamo che esistono y_1, \ldots, y_n algebricamente indipendenti su k tali che $k[y_1, \ldots, y_n] \subseteq k[x_1, \ldots, x_n]$ è intera e inoltre $P_1 \cap k[y_1, \ldots, y_n] = (y_\delta, y_{\delta+1}, \ldots, y_n)$ per qualche $\delta \leq n$, da cui anche l'estensione

$$k[y_1, \dots, y_{\delta-1}] = \frac{k[y_1, \dots, y_n]}{(y_{\delta}, y_{\delta+1}, \dots, y_n)} \subseteq \frac{k[x_1, \dots, x_n]}{P_1}$$

è intera. Dall'ipotesi induttiva dim $k[y_1,\ldots,y_{\delta-1}]=\dim k[x_1,\ldots,x_n]/P_1=\delta-1$, quindi la catena di primi

$$(\overline{0}) \subset P_2/P_1 \subset P_3/P_1 \subset \ldots \subset P_m/P_1$$

in $k[x_1,\ldots,x_n]/P_1$ può avere lunghezza al più $\delta-1$, cioè $m\leq\delta\leq n$.

Corollario 7.0.4. Se $A = k[x_1, ..., x_n]$ è un dominio allora dim $A = \operatorname{tr} \operatorname{deg}_k(Q(A))$.

Dimostrazione. Infatti per il lemma di normalizzazione di Noether esistono $y_1, \ldots, y_d \in A$ algebricamente indipendenti su k tali che $k[y_1, \ldots, y_n] \subseteq A$ è intera. Da cui passando al campo dei quozienti abbiamo

$$k \subseteq k(y_1, \dots, y_d) \subseteq Q(A)$$

dove la prima estensione è puramente trascendente di grado d e la seconda è un'estensione algebrica.

Capitolo 8

Teorema dell'ideale principale

Lemma 8.0.1. Sia A un dominio e $y, u \in A \setminus \{0\}$, allora abbiamo il seguente isomorfismo di A-moduli

$$\frac{(u,y)}{(u)} \simeq \frac{(u^2,uy)}{(u^2)}.$$

Inoltre se $(y:u^2) = (y:u)$ allora si ha anche

$$\frac{(u)}{(u^2)} \simeq \frac{(u^2, y)}{(u^2, uy)}.$$

Dimostrazione. Sia $\varphi:(u,y)\to (u^2,uy)/(u^2)$ con $\varphi(x)=ux+(u^2)$. φ è un omomorfismo suriettivo, inoltre $\ker\varphi=(u)$.

Per la seconda realazione, osserviamo che $A/(u) \simeq (u)/(u^2)$ tramite l'isomorfismo che manda x+(u) in $ux+(u^2)$. Adesso sia $\varphi:A\to (u^2,y)/(u^2,uy)$ con $\varphi(x)=yx+(u^2,uy)$. φ è un omomorfismo suriettivo. Inoltre $\varphi(u)=uy+(u^2,uy)=\overline{0}$, pertanto $(u)\subseteq\ker\varphi$. Viceversa sia $x\in\ker\varphi$, allora

$$yx = \alpha u^{2} + \beta uy \in (u^{2}, uy)$$

$$\alpha u^{2} = y(x - \beta u) \Rightarrow \alpha \in (y : u^{2}) = (y : u)$$

$$\Rightarrow \alpha u = \gamma y \Rightarrow \alpha u^{2} = \gamma uy$$

$$yx = y(\gamma + \beta)u \Rightarrow x = (\gamma + \beta)u \in (u).$$

Dunque $\ker \varphi = (u)$, quindi $(u)/(u^2) \simeq A/(u) \simeq (u^2, y)/(u^2, uy)$.

Corollario 8.0.2. Sotto le stesse ipotesi del lemma precedente, se $A/(u^2)$ è artiniano allora $(u, y) = (u^2, y)$.

Dimostrazione. Infatti se $A/(u^2)$ è artiniano è anche noetheriano, pertanto ogni suo sottomodulo ha lunghezza finita. Ne segue che

$$\lambda \left(\frac{(u,y)}{(u^2)} \right) = \lambda \left(\frac{(u,y)}{(u)} \right) + \lambda \left(\frac{(u)}{(u^2)} \right) =$$

$$= \lambda \left(\frac{(u^2,uy)}{(u^2)} \right) + \lambda \left(\frac{(u^2,y)}{(u^2,uy)} \right) = \lambda \left(\frac{(u^2,y)}{(u^2)} \right),$$

da cui $(u, y)/(u^2) = (u^2, y)/(u^2)$, cioè $(u, y) = (u^2, y)$.

Teorema 8.0.3 (Teorema dell'ideale principale di Krull).

Sia A un anello noetheriano, $x \in A$ non invertibile e P un ideale primo minimale di (x), allora $\operatorname{ht}(P) \leq 1$.

Dimostrazione. Supponiamo per assurdo che esistano due primi P_1, P_2 tali che $P_2 \subset P_1 \subset P$. Per ipotesi $x \notin P_1$, altrimenti P non sarebbe un primo minimale di (x). Quozientiamo con P_2 e localizziamo in P/P_2 . Con abuso di notazione continuiamo a indicare con P l'ideale $S^{-1}(P/P_2)$, con x l'elemento (x + P)/1, con P_1 l'ideale $S^{-1}(P_1/P)$ e così via (dove $S = (A/P_2) \setminus (P/P_2)$). In questo modo l'anello che otteniamo è locale con ideale massimale P e si ha $(x) \subset P$, $(0) \subset P_1 \subset P$ (ricordiamo che gli ideali primi di $S^{-1}(A/P_2)$ sono in corrispondenza biunivoca con gli ideali primi Q di A tali che $P_2 \subseteq Q \subseteq P$). Sia $y \in P_1 \setminus \{0\}$, abbiamo la seguente catena di moduli

$$(y:x) \subseteq (y:x^2) \subseteq (y:x^3) \subseteq \dots$$

dato che A è noetheriano esiste $n \in \mathbb{N}$ tale che $(y:x^n)=(y:x^{n+1})$. Poniamo $u=x^n$, allora $(y:u)=(y:u^2)$. Inoltre P è l'unico ideale primo che contiene x, quindi l'unico che contiene u^2 , pertanto $A/(u^2)$ ha un solo ideale primo, dunque è artiniano. Dal lemma precedente segue che $(u,y)=(u^2,y)$. In particolare

$$u = \alpha u^{2} + \beta y$$
$$u(1 - \alpha u) = \beta y$$
$$u = (1 - \alpha u)^{-1} \beta y \in (y) \subseteq P_{1}$$

(infatti $u \in P$ quindi $1 - \alpha u$ è invertibile), ne segue $x \in P_1$, assurdo.

Teorema 8.0.4 (Teorema dell'ideale principale generalizzato).

Sia A un anello noetheriano. Se I è un ideale di A con n generatori $I = (a_1, a_2, ..., a_n)$, allora per ogni ideale primo P minimale di I si ha $ht(P) \leq n$.

Dimostrazione. Procediamo per induzione su n. Per n=1 il teorema segue dal teorema dell'ideale principale. Supponiamo il teorema vero fino a n-1 e dimostriamolo per n. Per assurdo supponiamo che esista un ideale primo $P_1 \subset P$ tale che $\operatorname{ht}(P_1) \geq n$. Supponiamo inoltre che non esistano ideali primi compresi tra P_1 e P. Localizziamo in P. Per ipotesi risulta $P_1 \subsetneq I$, quindi, a meno di riordinamento degli indici, supponiamo che $a_1 \notin P_1$ e consideriamo l'ideale $(P_1, a_1) \subseteq P$. P è l'unico ideale primo che contiene (P_1, a_1) , per qualche $P = \sqrt{(P_1, a_1)}$. Dato che P = P0 è l'unico ideale primo che contiene P = P1, P = P2, con P = P3 in P = P4. Sia P = P5 induttiva abbiamo che P = P6 in P = P7 in P = P8 in P = P9 i

Dato che in un anello noetheriano ogni ideale ha un numero finito di generatori segue

Corollario 8.0.5. In un anello noetheriano A ogni ideale ha altezza finita. Se A è semilocale allora dim A è finita. Se (A, \underline{m}) è locale e dim A = d allora \underline{m} ha almeno d generatori.

Corollario 8.0.6. Se A è un anello noetheriano e $I = (a_1, ..., a_n)$ è un suo ideale tale che ht(I) = n allora ogni suo primo minimale ha altezza n.

Dimostrazione. Dal teorema precedente ogni primo P minimale di I ha altezza al più n, da cui $n = \operatorname{ht}(I) \leq \operatorname{ht}(P) \leq n$.

Lemma 8.0.7. Sia A un anello noetheriano. Se P_1, \ldots, P_n sono i primi minimali di A $e \ x \in A \setminus (P_1 \cup \ldots \cup P_n)$ allora $\operatorname{ht}(x) = 1$.

Dimostrazione. Dal teorema dell'ideale principale abbiamo $\operatorname{ht}(x) \leq 1$. Inoltre se P è un primo che contiene (x) allora $P_i \subset P$ per qualche $i \leq n$, da cui $\operatorname{ht}(x) \geq 1$.

Osserviamo che se P è un ideale primo contenente un ideale I, P è un primo minimale di I se e solo se $\operatorname{ht}_{A/I}(P/I) = 0$.

Proposizione 8.0.8. Sia A un anello noetheriano e $I = (a_1, ..., a_n)$ un suo ideale. Se P è un dieale primo contente I tale che $\operatorname{ht}_{A/I}(P/I) \leq k$ allora $\operatorname{ht}_A(P) \leq n + k$.

Dimostrazione. Procediamo per induzione su k. Per k=0 la tesi segue dal teorema dell'ideale principale generalizzato. Supponiamo il teorema vero fino a k-1, dimostriamolo per k>0. P non è un primo minimale di I, quindi detti P_1,\ldots,P_t i primi minimali di I abbiamo $P \nsubseteq P_i$, da 1.1.23 segue che $P \nsubseteq P_1 \cup \ldots \cup P_t$. Sia $y \in P \setminus (P_1 \cup \ldots \cup P_t)$ e J=(I,y), per la scelta di y applicando il lemma precedente all'ideale $J/I=(\overline{y})$ di A/I abbiamo che $ht_{A/I}(J/I)=1$. Osservando infine che gli idaeli primi di A/J sono in corrispondenza biunivoca con gli ideali primi di A/I che contengono J ne segue che

$$\operatorname{ht}_{A/J}(P/J) = \operatorname{ht}_{A/I}(P/I) - \operatorname{ht}_{A/I}(J/I) = \operatorname{ht}_{A/I}(P/I) - 1 \le k - 1.$$

Dato che J ha n+1 generatori, dall'ipotesi induttiva $\operatorname{ht}_A(P) \leq k-1+(n+1) = n+k$. \square

Corollario 8.0.9. Sia A un anello noetheriano. Se P è un ideale primo di A tale che ht(P) = l e $x \in P$ allora

- 1. $ht(P/(x)) \in \{l, l-1\}.$
- 2. Se $x \notin Q$, per ogni Q primo minimale di A, allora ht(P/(x)) = l 1.

Dimostrazione.

- 1. Dalla proposizione precedente abbiamo che $l=\operatorname{ht}_A(P)\leq\operatorname{ht}_{A/(x)}(P)+1$, cioè risulta $\operatorname{ht}_{A/(x)}(P/(x))\geq l-1$. Inoltre $\operatorname{ht}_{A/(x)}(P/(x))\leq l$ poiché i primi di A/(x) corrispondono ai primi di A contenenti (x).
- 2. Se $x \in P$ non appartiene a nessun ideale primo minimale di A allora $\operatorname{ht}_A(x) = 1$ (Lemma 8.0.7), da cui $\operatorname{ht}_{A/(x)}(P/(x)) = \operatorname{ht}_A(P) \operatorname{ht}_A(x) = l 1$.

Teorema 8.0.10. Sia A un anello noetheriano.

1. Se I è un ideale di A tale che $ht(I) = n \ge 1$ allora esistono $a_1, \ldots, a_n \in I$ tali che $ht(a_1, \ldots, a_i) = i$ per ogni $i \le n$.

2. Se I è primo posso scegliere a_1, \ldots, a_n in modo che I sia minimale su (a_1, \ldots, a_n) . Dimostrazione.

- 1. Siano P_1, \ldots, P_t gli ideali primi minimali di A. Per ipotesi e da 1.1.23 abbiamo che $I \nsubseteq (P_1 \cup \ldots \cup P_t)$. Sia $a_1 \in I \setminus (P_1 \cup \ldots \cup P_t)$, risulta $\operatorname{ht}(a_1) = 1$. Adesso procedendo induttivamente supponiamo di aver già scelto gli elementi $a_1, \ldots, a_i \in I$ tali che $\operatorname{ht}(a_1, \ldots, a_j) = j$ per ogni $j \leq i$. Siano Q_1, \ldots, Q_l i primi minimali di (a_1, \ldots, a_i) , per il teorema dell'ideale principale generalizzato abbiamo che $\operatorname{ht}(Q_h) \leq i < n$, quindi $I \nsubseteq Q_h$ per ogni $h \leq l$, da cui $I \nsubseteq (Q_1 \cup \ldots \cup Q_l)$. Sia $a_{i+1} \in I \setminus (Q_1 \cup \ldots \cup Q_l)$. Adesso se P è un primo minimale di (a_1, \ldots, a_{i+1}) allora $Q_h \subset P$ per qualche $h \leq l$, da cui $\operatorname{ht}(P) \geq i + 1$, d'altra parte dal teorema dell'ideale principale generalizzato abbiamo $\operatorname{ht}(P) \leq i + 1$, da cui $\operatorname{ht}(P) = i + 1$. Dunque $\operatorname{ht}(a_1, \ldots, a_{i+1}) = i + 1$.
- 2. Se I è primo, dato che esso ha la stessa altezza di (a_1, \ldots, a_n) allora non può esistere un primo P tale che $(a_1, \ldots, a_n) \subset P \subset I$, il che equivale a dire che I è un primo minimale di (a_1, \ldots, a_n) .

Corollario 8.0.11. Sia (A, \underline{m}) un anello noetheriano locale tale che dim $A = ht(\underline{m}) = d$. Esistono $a_1, \ldots, a_d \in \underline{m}$ tali che $ht(a_1, \ldots, a_d) = d$.

Quindi (a_1, \ldots, a_d) è \underline{m} -primario (il quoziente ha un solo ideale primo, quindi ogni divisore dello zero è nilpotente). Inoltre dal teorema dell'ideal principale generalizzato si ha che ogni ideale \underline{m} -primario non può avere meno di d generatori.

Definizione 8.0.12. Sia (A, \underline{m}) un anello noetheriano tale che dim A = d. L'insieme $\{a_1, \ldots, a_n\}$ è un sistema di parametri se (a_1, \ldots, a_n) è \underline{m} -primario.

Definizione 8.0.13. Sia (A, \underline{m}) un anello noetheriano, si chiama dimensione d'immersione di A il numero

$$\nu = \dim_{A/\underline{m}}(\underline{m}/\underline{m}^2).$$

Dal Corollario 2.1.4 abbiamo che la dimensione d'immersione è la cardinalità di un qualsiasi insieme minimale di generatori di \underline{m} . Dunque in generale $\nu \geq \operatorname{ht}(\underline{m}) = \dim A$.

Definizione 8.0.14. Se (A, \underline{m}) è un anello noetheriano locale tale che $\nu = \dim A$ allora A è detto **locale regolare**.

Capitolo 9

Teorema di Cayley-Hamilton*

Sia V un k-spazio vettoriale di dimensione finita $\dim(V) = n$, indichiamo con

$$\operatorname{End}(V) = \operatorname{Hom}_k(V, V).$$

 $(\operatorname{End}(V), +, \circ)$ è un anello. Osserviamo che ogni elemento di k può essere visto come elemento di $\operatorname{End}(V)$, cioè

$$\varphi: k \to \operatorname{End}(V) \quad (\varphi(a))(v) = av \quad \forall v \in V$$

è un omomorfismo iniettivo di anelli.

Inoltre, fissata una base $\mathcal{A} = \{x_1, x_2, \dots, x_n\}$ di V e $f \in \text{End}(V)$ si ha

$$\begin{cases} f(x_1) = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ f(x_2) = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ f(x_n) = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

in questo modo l'applicazione $\psi : \operatorname{End}(V) \to k^{n,n}$ che manda $f \in \operatorname{End}(V)$ in $A = (a_{ij}) \in k^{n,n}$ è un isomorfismo di anelli.

Per ogni $f \in \text{End}(V)$ posto $A = \psi(f)$ si definisce **polinomio caratteristico** di f (o di A) il polinomio dato da

$$p(x) = \det(A - xI) \in k[x] \subseteq \operatorname{End}(V)[x].$$

Inoltre data una matrice $F = (f_{ij}) \in \text{End}(V)^{n,n}$ e un vettore $\underline{x} \in V^n$ possiamo considerare il prodotto

$$*: \operatorname{End}(V) \times V^n \to V^n \quad F * \underline{x} = \left(\sum_{j=1}^n f_{ij}(x_j)\right).$$

* è un'azione del gruppo moltiplicativo $(\operatorname{End}(V)^{n,n}, \cdot)$ su V^n . Ponendo $\underline{x} = (x_1, x_2, \dots, x_n) \in V^n$, possiamo vedere ogni endomorfismo $f \in \operatorname{End}(V)$ come matrice di $\operatorname{End}(V)^{n,n}$, precisamente associando a f la matrice fI, quindi

$$fI * \underline{x} = (f(x_i) : i = 1, ..., n).$$

Teorema 9.0.1 (Cayley-Hamilton). Ogni endomorfismo di V si annulla nel suo polinomio caratteristico.

Dimostrazione. Sia $f \in \text{End}(V)$, poniamo $\psi(f) = A = (a_{ij}) \in k^{n,n} \subseteq \text{End}(V)^{n,n}$. Adesso abbiamo

$$fI * \underline{x} = A * \underline{x} \Rightarrow (fI - A) * \underline{x} = \underline{0}$$

moltiplicando per la matrice aggiunta $A^{\#}$ di (fI-A)=B (cioè la trasposta della matrice dei cofattori) ad ambo i membri otteniamo

$$A^{\#}(B * \underline{x}) = (A^{\#}B) * \underline{x} = (\det B)I * \underline{x} = \underline{0}$$

quindi
$$\det(If - A)(x_i) = 0 \quad \forall i = 1, \dots, n, \text{ cioè } p(f) = \det(fI - A) = 0_{\text{End}(V)}.$$