Graph partitioning for gerrymandering

Irene Simó Muñoz

Algorithms for VLSI Prof. Jordi Cortadella Fortuny

January, 2024

The problem

Goal

Find a graph partition \mathcal{P} s.t.

of CCs with blue node majority ># of CCs with red node majority

Basics

Two algorithms designed and tested:

- Greedy
- "Smart"

Both based in the addition and removal of bridge edges

Main idea of the algorithms

```
Initialize k:=0

Start with a random partition \mathcal{P}^k

Compute winner w^k \in \{A, B, \emptyset\}

while criteria<sup>k</sup> and w^k \neq A do

Compute and perform best migration

Update \mathcal{P}^{k+1}, w^{k+1} and criteria<sup>k+1</sup>

k:=k+1

end while

Return: \mathcal{P}^* = \mathcal{P}^k
```

criteria: Found local minima, assessment of potential improvements

Key points

Will stop as soon as $w^k = A$

Greedy algorithm

At each iteration:

- Compute edges not in the graph that would be bridges added to the graph
- 2 Select u.a.r. one of them that would improve (w from opponent to tie or w from tie to winner) or keep the overall status
- O Do again until local minima reached

Example 1: Greedy algortihm

Small grid: 4x4, 4 districts

"Smart" algorithm

Scoring and potential and Choosing how to redraw borders

• Score of CC. For each connected component $c \in CC$:

$$B_c = \#$$
 Blue nodes $\in c$ $R = \#$ Red nodes $\in c$

$$s_c = B_c - R_c$$

We need to check if we can "traspass" enough blue nodes from winning to loosing districts s.t. we only increase the number of winning districts.

Example of iteration

Iteration: 0

- 5x5 grid with 2 districts
- Configuration: Tie
- $s_0 = -1$, $s_1 = 8$. Needed: 2, available: 7

Example of iteration

Iteration: 1

- 5x5 grid with 2 districts
- Configuration: Blue wins
- $s_0 = 1$, $s_1 = 6$.

Example 2

Greater grid: 10×10, 4 districts

Thank you!