단답형 문제 정답

1	2	3	4	5
$rac{\sqrt{3}}{4\piarepsilon_0} igg(rac{q^2}{d^2}igg)$	4	$rac{\sigma}{2arepsilon_0}$	10	16R
6	7	8	9	10
$rac{\sigma V}{nqL}$	11Ω	$\frac{1}{4}$, 4, 1, 4	$\frac{mg}{vB}$, +	-2
$\frac{\mu_0 Q \omega}{4\pi R}$	4	※ 1번은 모두 써야함.7번 - 단위포함.8번 - 순서가 맞으면 정답, 순서 틀리면 오답.		

※ 채점노트

없음

주관식 1.

(가) 도체구 중심에서 r만큼 떨어진 곳에서 가우스법칙을 적용하면 (1점)

$$E \cdot 4\pi r^2 = q/\epsilon_0$$
. (3점)

따라서 두 도체구 사이의 공간에서의 전기장은 $E=\frac{1}{4\pi\epsilon_0}\frac{q}{r^2}$ 이다. (1점)

(나) 두 도체구 사이의 전위차는 $V_{ab} = \int_a^b E dr$ (1점)

$$\begin{split} V_{ab} &= \int_a^b E dr = \frac{q}{4\pi\epsilon_0} \int_a^b \frac{1}{r^2} dr \quad \text{(3점)} \\ &= \frac{q}{4\pi\epsilon_0} (\frac{1}{a} - \frac{1}{b}) \quad \text{(1점)} \quad (\text{부호 틀려도 상관없음)} \end{split}$$

(나)
$$C = \frac{q}{V}$$
이므로, (1점)

$$V_{ab} = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b}\right)$$
를 대입하여 정리하면 (3점)

전기용량은 $C=4\pi\epsilon_0\frac{ab}{b-a}$ 이다. (1점) (부호 틀리면 -1)

주관식 2.

- (가) 병렬연결된 3.0Ω 과 6.0Ω 의 합성저항은 2.0Ω 이므로 전체 합성 저항은 8.0Ω . (1점) 저항의 직렬연결에서 전압은 저항에 비례하므로, a점의 전위는 $12V\times(8-6)/8=3V$ (2점) 축전기의 직렬연결에서 전압은 축전기의 전기용량에 반비례하므로 b 점의 전위는 $12V\times4/6=8V$ (2점)
- (나) 스위치 S가 닫히면 b점의 전위는 a점의 전위와 같아지므로 3V가된다. (1점) (같아진다는 말만 있으면 됨)

 $4.0 \mu F$ 축전기에서 전하량의 변화량: $4.0 \mu F \times 9 V = 36 \mu C$ (2점)

 $2.0\mu F$ 축전기에서 전하량의 변화량: $2.0\mu F \times 3V = 6\mu C$ (2점)

(다) 스위치가 열려 있을 때 전체 축전기에 저장된 에너지:

$$U_1 = \frac{1}{2} C_1 V_1^2 + \frac{1}{2} C_2 V_2^2 \quad (1 \begin{tabular}{c} 1 \begin{tabular}{c} 2 \begin{tabular}{c} 2$$

$$\frac{1}{2} \times 4.0 \,\mu F \times (4 \, V)^2 + \frac{1}{2} \times 2.0 \mu F \times (8 \, V)^2 = 96 \mu J \qquad (2점) \ (답틀리면 1점 감점)$$

스위치가 닫혔을때 축전기에 저장된 에너지:

$$U_2 = \frac{1}{2} C_1 V_1^2 + \frac{1}{2} C_2 V_2^2$$
 (위와 중복되는 식이므로 안써도 됨)

$$\frac{1}{2} \times 4.0 \,\mu F \times (9 \, V)^2 + \frac{1}{2} \times 2.0 \mu F \times (3 \, V)^2 = 171 \mu J \qquad (2점) \ (답틀리면 1점 감점)$$

주관식 3.

- (가) 자기모멘트는 $\mu = iA$ (도선의 면적과 전류의 곱) 이므로 (1점)
- $\pi \times (0.20)^2 \times 2.0 \text{ Am}^2 = 0.25 \text{ Am}^2 \text{ (또는 } 0.08\pi Am^2 \text{)}$ (2점)

방향은 전류의 방향을 오른손의 네 손가락의 방향으로 놓을 때 엄지손가락이 가리키는 방향이므로 z 방향 $(2\frac{\pi}{2})$

- (나) 자기 위치에너지 $U=-\stackrel{
 ightarrow}{\mu} \stackrel{
 ightarrow}{B}$ 이므로 (1점)
- $-0.25\,\mathrm{Am}^2 imes 0.10\,\mathrm{T} = -0.025\,\mathrm{J}$ (또는 $0.008\pi\,J$) (2점)

돌림힘 $\overset{\rightarrow}{\tau} = \overset{\rightarrow}{\mu} \times \vec{B}$ 이므로 0 (2점)

※ 채점노트

최종 답에 단위 안쓰면 1점 감점