Classificazione di testo con Perceptron

Carlo Baronti

Università degli Studi di Firenze Email: carlo.baronti@stud.unifi.it

Sommario—Il lavoro consiste nell'implementazione e analisi delle performance del classificatore di testo tramite l'algoritmo Perceptron. Come dataset di riferimento è stato usato il ModAdpte split di Reuters-21578 di cui sono state scelte 6 categorie.

1. Introduzione

Inizialmente sono stati divisi i documenti di training e i documenti di test, dopo di che è stato estrapolato un insieme di parole detto *vocabolario*, da cui sono state eliminate le stopwords, per fare ciò ci si è avvalsi dello stemmer di Porter. Tali funzioni preliminari vengono eseguite in circa un minuto su Google Colab che continueremo ad utilizzare come rifermento per i tempi di esecuzione.

I risultati presentati in questo lavoro si riferiscono solo alla categoria earn, mentre i risultati relativi alle altre categorie sono accessibili presso [4]

2. ModApte split Reuters-21578 dataset

Delle 90 categorie presenti nel dataset Reuters-21578 ne sono state selezionate 6. Si riportano il numero di documenti di training e test per ognuna delle categorie selezionate:

acq: train 1650, test 719
earn: train 2877, test 1087
money-fx: train 538, test 179

grain: train 433, test 149crude: train 389, test 189trade: train 368, test 117

3. Definizioni

Nel testo si farà uso delle seguenti definizioni:

• d: documento

• |D|: numero di documenti

• C: categoria

V: vocabolario

• V_c : vocabolario della categoria

w: parola

• N_{cw} : numero di documenti nella categoria c che contengono la parola w

• N_c : numero documenti nella categoria c

4. Perceptron

Perceptron rappresenta una prima rappresentazione del concetto di neurone. Fa uso del concetto di regressione lineare. Occorre prima però dare un'adeguata rappresentazione ai documenti.

4.1. Rappresentazione documenti

Dopo aver proceduto all'estrazione del vocabolario, alla suddivisione dei documenti di training e test, e all'ulteriore suddivisioni di tali documenti per categorie, per ogni documento viene estratta una sua rappresentazione TF-IDF (*Term Frequency-Inverse Document Frequency*). Tale rappresentazione consiste nel pesare la rilevanza di un dato documento nei confronti di una certa parola prendendo in considerazione due fattori:

- 1) la frequenza di una parola nel documento (TF)
- l'importanza generale di una parola nell'insieme dei documenti considerati (IDF)

Moltiplicando la IDF relativa a una parola w con la corrispondente TF nel documento d, si ottiene un vettore di lunghezza pari al numero di parole presenti nel vocabolario, in cui ogni elemento del vettore è il prodotto tf[w]*idf[w].

4.1.1. Frequency. Nello specifico la frequenza della *i-esima* parola nel *j-esimo* documento *j* risulta

$$tf_{i,j} = \frac{n_{i,j}}{|d_i|} \tag{1}$$

dove $n_{i,j}$ rappresenta il numero di occorrenze della parola i-esima nel j-esimo documento.

4.1.2. Document Frequency. La IDF, come detto, misura l'importanza di una parola nell'insieme dei documenti considerati:

$$idf_i = \log \frac{|D|}{|\{d : w_i \in d\}|}$$
 (2)

dove |D| rappresenta il numero di documenti di training e il denominatore rappresenta il numero di documenti che contengono la *i-esima* parola w_i del vocabolario V.

4.1.3. TF-IDF. Di conseguenza la rappresentazione TF-IDF per la parola *i-esima* w_i e il documento *j-esimo* risulta

$$tfidf_{i,j} = tf_{i,j} \cdot idf_i \tag{3}$$

4.2. Algoritmo

L'algoritmo suddivide lo spazio dei documenti in due parti, positiva e negativa, tramite un iperpiano. Tale iperpiano è formato dai vettori dei pesi (*weights*) e dei *bias*. L'aggiornamento viene effettuato in base al risultato di

$$y_i(w \odot x) \tag{4}$$

dove

- 1) y_i ha valore in $\{-1,1\}$ a seconda che il documento i-esimo appartenga o meno alla categoria esaminata
- 2) w è il vettore dei pesi corrente
- x è la rappresentazione TF-IDF del documento considerato

Pesi e bias vengono quindi aggiornati se la classificazione commette un errore, cioè quando l'equazione (4) ha valore minore di zero. Per i dettagli delle regole di aggiornamento si fa riferimento a [1].

4.3. Precision and Recall

Precision e Recall sono valori che riguardano l'accuratezza dell'algotimo e sono così definite:

Precision	$\frac{TP}{TP+FP}$
Recall	$\frac{TP}{TP+FN}$

- TP = Veri Positivi
- FP = Falsi Positivi
- FN = Falsi Negativi

Figura 1. Perceptron precision-recall curve categoria earn

Il grafico (Fig 1) rappresenta la precision in funzione della recall. Notiamo che tra [0.0 e o.45] la curva si mantiene praticamente costante ed uguale a 1, cioè il testing ha predetto i documenti in maniera corretta. Da 0.45 in poi abbiamo un peggioramento delle prestazioni con un andamento inizialmente brusco per poi migliorare leggermente.

4.4. Risultati e tempi di esecuzione

Nell'osservare i tempi di esecuzione del Perceptron c'è da tenere conto che

$$t_{perceptron} = t_{init} + t_{tfidf} + t_{train}$$
 (5)

dove

• t_{init} : tempo di inizializzazione

• t_{tfidf} : tempo per il calcolo della TF-IDF

• t_{train} : tempo per training

• t_{test} : tempo per il test

Il training richiede un tempo variabile a seconda del numero massimo di iterazioni impostogli, tuttavia effettuando 10000 iterazioni, $t_{init} \approx 2 \, \mathrm{min}, \ t_{tf} \approx 30 \, \mathrm{sec}, \ t_{idf} \approx 3 \, \mathrm{min}, \ t_{tfIdf} \approx 3 \, \mathrm{min}, \ t_{train} \approx 13 \, \mathrm{min}$ per una sola categoria, in totale 13*6=1:30h il tempo complessivo risulta

$$t_{perceptron} \approx 1:30 \ h$$

5. Conclusioni

La (Fig. 1) è stata eseguita con 10000 iterazini. Abbiamo notato che le curve precsion-recall sono migliori in caso di categorie con un numero di documenti di test maggiore di 1000 e con la metà di documenti di test.

Riferimenti bibliografici

- N.Cristianini and J.Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2002
- [2] https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-textclassification-1.html
- [3] https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
- [4] https://github.com/Carlone92/Text-Classification-Reuters21578