CSCI547 Machine Learning Homework 2

Zachary Falkner
Department of Computer Science
University of Montana

April 6, 2018

1 Support Vector Machine

1A

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import svm
if __name__ == '__main__':
       DATAFILE = 'wine.data'
        df = pd.read_csv(DATAFILE, header=None)
        X = df.iloc[:, 1:]
        y = df.iloc[:, 0]
        X,X_test,y,y_test = train_test_split(X,y,test_size=0.33)
        clf = svm.LinearSVC()
        clf.fit(X, y)
        train_accuracy = clf.score(X, y)
        test_accuracy = clf.score(X_test, y_test)
        print("training accuracy: {}".format(train_accuracy))
        print("test accuracy: {}".format(test_accuracy))
```

training accuracy: 0.8571428571428571 test accuracy: 0.847457627118644

1B

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import svm
import matplotlib.pyplot as plt
if __name__ == '__main__':
       DATAFILE = 'wine.data'
        df = pd.read_csv(DATAFILE, header=None)
        X_df = df.iloc[:, 1:]
        y_df = df.iloc[:, 0]
        train_accuracies = []
        test_accuracies = []
        for i in range(100):
                X,X_test,y,y_test = train_test_split(X_df,y_df,test_size
                clf = svm.LinearSVC()
                clf.fit(X, y)
                train_accuracy = clf.score(X, y)
                test_accuracy = clf.score(X_test, y_test)
                train_accuracies.append(train_accuracy)
                test_accuracies.append(test_accuracy)
        plt.hist(test_accuracies)
        plt.xlabel('Test Acuracy')
        plt.ylabel('N')
        plt.title('Distribution of Test Accuracy over 100 train/test splits'
        plt.show()
```


1C

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import svm
{\color{red} \textbf{import}} \ \ \textbf{matplotlib.pyplot} \ \ \textbf{as} \ \ \textbf{plt}
if __name__ == '__main__':
         DATAFILE = 'wine.data'
         df = pd.read_csv(DATAFILE, header=None)
         X_df = df.iloc[:, 1:]
y_df = df.iloc[:, 0]
         poly_test_accuracies = []
         radial_test_accuracies = []
         for i in range(100):
                  X,X_test,y,y_test = train_test_split(X_df,y_df,test_size
                       =0.33)
                   clf_poly = svm.SVC(kernel='poly')
                  clf_radial = svm.SVC(kernel='rbf')
                  clf_poly.fit(X, y)
                  clf_radial.fit(X, y)
                  poly_test_accuracy = clf_poly.score(X_test, y_test)
```

```
radial_test_accuracy = clf_radial.score(X_test, y_test)

poly_test_accuracies.append(poly_test_accuracy)
    radial_test_accuracies.append(radial_test_accuracy)

plt.hist(poly_test_accuracies)
plt.xlabel('Test Acuracy')
plt.ylabel('N')
plt.title('Polynomial Test Accuracy over 100 train/test splits')
plt.show()

plt.hist(radial_test_accuracies)
plt.xlabel('Test Acuracy')
plt.ylabel('N')
plt.title('Radial Test Accuracy over 100 train/test splits')
plt.show()
```


The polynomial kernel seems to clearly be the most robust for this dataset.

1D

The normalization makes the performance of the radial basis go from poor to better than the polynomial or linear which had performed rather well without normalization.

2 Principal Component Analysis 1

2A

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
if __name__ == '__main__':
        DATAFILE1 = 'pca1.npy'
        DATAFILE2 = 'pca2.npy'
        data1 = np.load(DATAFILE1)
        data2 = np.load(DATAFILE2)
        fig = plt.figure()
        ax1 = fig.add_subplot(111, projection='3d')
        x,y,z = data1.T
        ax1.scatter(x,y,z)
        plt.show()
        fig = plt.figure()
ax2 = fig.add_subplot(111, projection='3d')
        x,y,z = \overline{data2.T}
        ax2.scatter(x,y,z)
        plt.show()
```


For the first dataset, it is pretty clear that all of the variance lies over a single axis. It is less clear with the second dataset but panning around, it appears that the variance can be explained with 2 of the 3 features.

2B

```
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
if __name__ == '__main__':
        DATAFILE1 = 'pca1.npy'
        DATAFILE2 = 'pca2.npy'
        data1 = np.load(DATAFILE1)
        data2 = np.load(DATAFILE2)
        pca1 = PCA()
        pca1.fit(data1)
        pca2 = PCA()
        pca2.fit(data2)
        print("for {}:".format(DATAFILE1))
        print (np.cumsum(pca1.explained_variance_ratio_))
        print("for {}:".format(DATAFILE2))
        print (np.cumsum(pca2.explained_variance_ratio_))
```

```
for pca1.npy:
[ 1. 1. 1.]
for pca2.npy:
[ 0.73936844 1. 1. ]
```

For the first dataset, all of the variance is explained by the first feature. For the second dataset, all of the variance is explained by the first 2 features.

3 Principal Component Analysis 2

3A

3B

```
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn import datasets
import matplotlib.pyplot as plt
if __name__ == '__main__':
       lfw_people = datasets.fetch_lfw_people(min_faces_per_person=50,
            resize=0.5)
        X = lfw_people.data
        y = lfw_people.target
        pca = PCA(n_components=100,copy=True,whiten=False)
        pca.fit(X)
        X = pca.transform(X)
        print (np.cumsum(pca.explained_variance_ratio_))
        fig,axs = plt.subplots(nrows=2,ncols=5)
        counter = 0
        for r in axs:
                for ax in r:
                        ax.imshow(pca.components_[counter,:].reshape((62,47)
```

counter+=1
plt.show()

3C

```
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn import datasets
import matplotlib.pyplot as plt
if __name__ == '__main__':
        lfw_people = datasets.fetch_lfw_people(min_faces_per_person=50,
            resize=0.5)
        X = lfw_people.data
        y = lfw_people.target
        pca1 = PCA(n_components=1,copy=True,whiten=False)
        X1 = pca1.fit_transform(X)
        pca10 = PCA(n_components=10,copy=True,whiten=False)
        X10 = pca10.fit_transform(X)
        pca100 = PCA(n_components=100,copy=True,whiten=False)
        X100 = pca100.fit_transform(X)
        X1\_reconstructed = 0
        for c,l in zip(pca1.components_,X1[42]):
        X1_reconstructed += c*1
```

```
X1_reconstructed += pca1.mean_
X1_reconstructed = X1_reconstructed.reshape((62,47))
X10_reconstructed = 0
for c,l in zip(pca1.components_, X10[42]):
X10_reconstructed += c*1
X10_reconstructed += pca10.mean_
X10_reconstructed = X10_reconstructed.reshape((62,47))
X100\_reconstructed = 0
for c,l in zip(pca1.components_,X100[42]):
X100_reconstructed += c*l
X100_reconstructed += pca100.mean_
X100_reconstructed = X100_reconstructed.reshape((62,47))
fig,axs = plt.subplots(nrows=1,ncols=3)
axs[0].imshow(X1_reconstructed)
axs[1].imshow(X10_reconstructed)
axs[2].imshow(X100_reconstructed)
plt.show()
```


I feel like I should be seeing some convergence here but am not and am not sure why.

3D*

```
import numpy as np
import pandas as pd

from sklearn.decomposition import PCA
from sklearn import datasets
```

```
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import confusion_matrix
if __name__ == '__main__':
        lfw_people = datasets.fetch_lfw_people(min_faces_per_person=50,
             resize=0.5)
         X = lfw_people.data
         y = lfw_people.target
         pca = PCA(n_components=100,copy=True,whiten=True)
         X = pca.fit_transform(X)
         print (np.cumsum(pca.explained_variance_ratio_))
         X,X_test,y,y_test = train_test_split(X,y,test_size=0.33)
         clf = svm.LinearSVC()
         y_pred = clf.fit(X, y).predict(X_test)
         train_accuracy = clf.score(X, y)
test_accuracy = clf.score(X_test, y_test)
         print("training accuracy: {}".format(train_accuracy))
print("test accuracy: {}".format(test_accuracy))
         cnf_matrix = confusion_matrix(y_test, y_pred)
         print(cnf_matrix)
```

training accuracy: 0.9559808612440192 test accuracy: 0.7339805825242719

$\lceil 1 \rceil$	1 2	1	4	1	0	2	1	2	0	0	0]
1	59	0	3	1	2	1	1	2	0	0	0
2	2	23	7	4	0	0	0	2	0	1	0
4	5	5	146	4	2	1	0	2	0	3	4
0	3	1	2	22	1	0	1	2	0	0	1
0	1	0	1	2	18	0	0	0	1	2	1
1	1	0	3	2	0	2	0	0	0	1	1
0	0	2	1	0	0	1	9	0	0	0	0
1	0	0	2	2	0	0	1	12	1	0	4
0	1	0	0	0	0	0	0	0	22	0	0
1	2	0	0	0	0	1	0	0	1	11	0
	2	2	3	6	0	1	1	0	1	0	40

4 K-mean/Gaussian Mixture Models/Expectation Maximization

4A

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.cluster import KMeans
if __name__ == '__main__':
       IMAGEFILE = 'lenna.jpg'
       img=mpimg.imread(IMAGEFILE)
       lenna = np.array(img, dtype=np.float64) / 255
       w, h, d = original_shape = tuple(lenna.shape)
       assert d == 3
       image_array = np.reshape(lenna, (w * h, d))
        kmeans = KMeans(n_clusters=8).fit(image_array)
       labels = kmeans.predict(image_array)
       image = np.zeros((w, h, d))
       label_idx = 0
        for i in range(w):
       for j in range(h):
       image[i][j] = image_array[labels[label_idx]]
       label_idx += 1
       fig,axs = plt.subplots(nrows=1,ncols=2)
       axs[0].imshow(lenna)
        axs[1].imshow(image)
       plt.show()
```


4B*

. . .