	Price	Maintenance	Capacity	Airbag	Profitable
0	Low	Low	2	No	1
1	Low	Med	4	Yes	1
2	Low	Low	4	No	1
3	Low	Med	4	No	0
4	Low	High	4	No	0
5	Med	Med	4	No	0
6	Med	Med	4	Yes	1
7	Med	High	2	Yes	0
8	Med	High	5	No	1
9	High	Med	4	Yes	1
10	High	Med	2	Yes	1
11	High	High	2	Yes	0
12	High	High	5	Yes	1

```
# Create a decision tree classifier
clf = DecisionTreeClassifier(criterion='entropy')
# Train the classifier on the training data
clf.fit(X_train, y_train)
```

```
DecisionTreeClassifier

DecisionTreeClassifier(criterion='entropy')
```

```
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 0.666666666666666

