

Software Specification

SL3 File Format Specification

Rev 01

Project Code	Project Name	Author	Doc. Status
1988	NOS	Steve Parker	DRAFT

Table of Contents

1.	Doc	cumer	ent History	3
2.	Intr	oduct	ction	4
	2.1.	Purp	rpose	4
	2.2.	Scop	ope	4
	2.3.	Abbi	breviations and Acronyms	4
	2.4.	Refe	ferences	4
3.	SI3 I	File Fo	Format Structure	5
	3.1.	File	e naming conventions	5
	3.2.	Тор	p Level File Structure	5
	3.3.	SL3E	3DataPacket Structure	5
	3.3.	1.	SI3PacketHeader	6
	3.	.3.1.1	.1. Timestamp Management	8
	3.4.	Char	annelData Structure	9
	3.4.	1.	SonarChannelData Structure	9
	3.4.	2.	NoiseWindowChannelData Structure	10
	3.4.	.3.	SideScanChannelData	10
	3.4.	4.	ForwardScanChannelData Structure	10
	3.4	5	SS3DChannelData Structure	12

1. DOCUMENT HISTORY

Date	Rev	Author	Reason
22 nd Aug 2018	01	S Parker	Initial revision

2. Introduction

The Sonar Log File (SLG) file format was created 10 years ago, had a limited amount of data for debugging, and was restricted to a single channel of data. The data records needed to be fixed length, which enabled random access as required by the tools.

A new format was needed to support multiple channels of data (for sidescan information) which had different data rates and packet sizes. The second version of the Sonar Log File Format (SL2) file was created to fill this need. This format needed to be able to be record sequentially and allow the recording to be interrupted at anytime without corrupting the file. The SL2 file format also added features that enabled random access to the data packets whilst maintaining the variable packet size.

The SL2 format achieved random access support by aligning all packets to a 4 byte boundary and including a header for which a program scans. In addition, each packet contains a sequence number for the data in that channel so that a reader can essentially binary search a file for a desired record.

The third version of the Sonar Log File (SL3) was created to support the Structure Scan 3D, and Forward scan channels.

2.1. Purpose

The purpose of this document is to describe the SL3 file format structure in a programming language independent manner.

2.2. Scope

This document describes the SL3 file format structure including the minor revisions 3.0, 3.1 and 3.2.

2.3. Abbreviations and Acronyms

SLG	Sonar LoG; sonar log file format versions 1.xx
SL2	Sonar Log v2; sonar log file format versions 2.xx
SL3	Sonar Log v3; sonar log file format versions 3.xx
SS3D	Structure Scan 3D

2.4. References

[1] A.Coleman, Design Report: SL2 file format, Rev 01, Navico, 2 Nov 2009

[2] A.Coleman, Design Report: SLG File Format, Rev 01, Navico, 25 Jan 2010

3. SL3 FILE FORMAT STRUCTURE

3.1. File naming conventions

The Sonar Log Files use the filename extension to identify the file major version. The file extension convention used is given in Table 1. The filename extension should NOT be relied upon for decoding the file contents, as the full version number (MAJOR.MINOR) is available the file header.

Table 1 - Sonar Log Filename Extension Convention

Major Version	File Extension
1	.slg or .SLG
2	.sl2 or .SL2
3	.sl3 or .SL3

3.2. Top Level File Structure

The SL3 file consists of a **SLGFileHeader** structure followed by a sequence of SL3**DataPacket** structures as show below in Table 2.

Table 2 - Top Level SL3 File Structure

Field Name	Field Type	Description
FileHeader	SLGFileHeader	Top level file header
DataPacket #1	SI3DataPacket	Data packet for a single column of a single channel
DataPacket #2	SL3DataPacket	Data packet for a single column of a single channel
	•••	
DataPacket #N	SL3DataPacket	Data packet for a single column of a single channel

The **SLGFileHeader** identifies the file as a Sonar Log and contains the version information as show below in Table 3.

Table 3 - SLGFileHeader structure

Field Name	Field Type	Description
Major	INT16	Version major number.
		Set to 3 for SL3 files
Minor	INT16	Version minor number.
		0, 1, or 2
BytesPerSounding	INT16	Maximum number of range cells per packet.
		Typ value 3200
Flags	UINT16	Bit 0: Debug Enabled. DIGITAL_DEPTH and
		NOISE_WINDOW channels are enabled.

3.3. SL3DataPacket Structure

The **SL3DataPacket** contains a single column of range cell data for a single sonar channel. This corresponds to a single ping of data.

The **SL3DataPacket** consists of a **SL3PacketHeader**, optional **LastChannelAddress** data followed by the **ChannelData** structure as show in Table 4.

Table 4 - SL3DataPacket Structure

Field Name	Field Type	Description
PacketHeader	SL3PacketHeader	Description of the contents of this packet
LastChannelAddress	Array of UINT32	Array length determined by <i>NumChannels</i> field in the <i>PacketHeader</i> . ¹ Offset in bytes from the start of the file of the last packet for each channel. Used for backwards scanning through the file.
Data	ChannelData	Sonar data.
Padding	N x UINT8	Padding to align the next SL3DataPacket to the next 4 byte boundary.

3.3.1. Sl3PacketHeader

The **SL3PacketHeader** contains the fields given in Table 5. The content of each of the fields is described in the subsequent Tables.

Table 5 - SL3PacketHeader Structure

Field Name	Field Type	Description
PacketSubHeader	SL3PacketSubHeader	See Table 6
SoundingSetup	SL3SoundingSetup	See Table 8
ColumnInformation	SL3ColumnInformation	See Table 9
FishID	SL3FishID	See Table 10
DigitalInformation	SL3DigitalInformation	See Table 11
SounderSetup	SL3SounderSetup	See Table 12

Table 6 - SL3PacketSubHeader Structure

Field Name	Field Type	Description
ThisFileAddress	UINT32	Offset in bytes from the start of the file of
		this data packet
NumChannels	UNIT32	Number of supported channels, and the
		length of the LastChannelAddress array.
		9 for V3.0
		10 for V3.1, and V3.2
PacketSize	UINT16	Size of this packet in bytes
PreviousPacketSize	UINT16	Size of the previous packet in bytes
Channel	UINT16	Channel type. See Table 7 for a list of the
		available channel types
SequenceNumber	UINT32	
Padding	2 x UINT8	Padding to align the next field to the next 4
		byte boundary

-

 $^{^1}$ LastChannelAdrress field not present if channel is of type <code>DIGITAL_DEPTH</code> or <code>NOISE_WINDOW</code>

Table 7 – Channel Types

Channel Type Name	Value	Description
PRIMARY_SONAR	0	Primary sonar
SECONDARY_SONAR	1	Secondary sonar
DOWNSCAN	2	Downscan
LEFT_SIDESCAN	3	Left sidescan
RIGHT_SIDESCAN	4	Right sidescan
SIDESCAN	5	Combined Left + Right sidescan
FORWARD_SCAN	6	Forward scan
DIGITAL_DEPTH	7	Digital Depth ping
NOISE_WINDOW	8	Noise Window data
STRUCTURE_SCAN_3D	9	Structure Scan 3D

 $Table\ 8-SL3 Sounding Setup\ Structure$

Field Name	Field Type	Description
UpperLimit	FLOAT32	Chart lower limit in feet
LowerLimit	FLOAT32	Chart upper limit in feet
BurstLength	UINT16	Ping burst length in usec
Integration	UINT8	Processing integration in cycles
Gain	UINT8	Receiver gain in dB
VideoIntegration	UINT8	Legacy value – not used
Frequency	UINT8	Nominal ping frequency in kHz
PingPeriod	UINT16	Ping period in ms
Correlation	UINT8	Legacy value – not used
Discrimination	UINT8	Noise rejection (or Sonar ASP) setting:
		0 – Off
		1 – Low
		2 – Medium
		3 – High
Flags	UINT16	Bit 0: Gain boost enabled.
RunningTime	UINT32	Running time in ms from the start of
		recording. See section 0

Table 9-SL3ColumnInformation Structure

Field Name	Field Type	Description
NumRangeCells	UINT32	Number of range cells (or bytes) in the
		corresponding ChannelData
Depth	FLOAT32	Depth below transducer in feet
KeelOffset	FLOAT32	Keel offset in feet
AutoSenseRangeCell	UINT8	Amplitude of the autosense value in range
_		cell units
DigitalRangeCell	UINT8	Amplitude of the bottom echo in range cell
		units
NoiseCount	UINT8	Legacy value – not used
NoisePeak	UINT8	Legacy value – not used
NoiseAverage	UINT8	Legacy value – not used
RVGMaxAttenuation	UINT8	Legacy value – not used
RVGDepth	UINT16	Legacy value – not used

Table 10 – SL3FishID Structure

Field Name	Field Type	Description
FishDepths	FLOAT32 x 4	Array of fish depths in feet
FishSizes	UINT8 x 4	Array of fish size in the range 0 – 6,,with 6
		being the largest

Table 11 - SL3DigitalInformation Structure

Field Name	Field Type	Description
GroundSpeed	FLOAT32	Speed over ground in knots
WaterTemperature	FLOAT32	Water temperature in °C
X Position	INT32	X value of the Cartesian position in metres using Mercator projection
Y Position	INT32	Y value of the Cartesian position in metres using Mercator projection
WaterSpeed	FLOAT32	Legacy value – not used
Track	FLOAT32	Course in radians
Altitude	FLOAT32	Altitude in feet
Heading	FLOAT32	Heading in radians
ValidFlags	UINT32	Bit field to indicate the validity of each of the above fields: Bit 1: GroundSpeed valid Bit 2: WaterTemperature valid Bit 4: X/Y Position valid Bit 6: WaterSpeed valid Bit 7: Track valid Bit 8: Heading valid Bit 9: Altitude valid

Table 12 – SL3SounderSetup Structure

Field Name	Field Type	Description
Flags	UINT8	Bit field:
		Bit 0: SounderSetup data is valid
		Bit 1: Manual range mode enabled
FishingMode	UINT8	Fishing mode index
PingSpeed	INT8	Ping speed index for Panel #1
NoiseRejection	UINT8	Noise Rejection setting
MillisecondOffset	UINT32	Timestamp offset from the first timestamp
		in ms

3.3.1.1. Timestamp Management

The timestamp for a data packet is constructed from a *FirstTimeStamp* value in seconds and a high precision offset value in milliseconds, as follows:

TimeStamp (sec) = FirstTimeStamp (sec) + MillisecondOffset (ms) / 1000

The method of obtaining the FirstTimeStamp value differs between the different minor revisions of the SL3 file format. In all versions the *MilllisecondOffset* value is obtained from the corresponding **SL3SounderSetup** data.

In V3.0 and V3.1 of the SL3 file format the FirstTimeStamp value is obtained from the *RunningTime* field very first **SL3DataPacket**. The timestamping in these versions is only approximate (error of ~ +/-500 ms) and is done at the time of recording each data packet.

In V3.2 of the SL3 file format the channels are permitted to have different time bases to allow for high precision timestamping of locally recorded channels, and approximate timestamping of networked channels. In this case, the *FirstTimeStamp* value is obtained from the first **SL3DataPacket** for each channel. For locally recorded channels, the timestamping is done at the point of data acquisition and has a much-reduced error of ~+/- 20 ms.

3.4. ChannelData Structure

The **ChannelData** structure contains the sonar information for one ping. The format varies according to the channel type as given in Table 13. Each of these data structures are described in the subsequent sections. All of these channel data structures obtain their size information from the *NumRangeCells* field in the corresponding **SL3ColumnInformation** data.

Channel Type Name	ChannelData Type	Typical Size
PRIMARY_SONAR	SonarChannelData, see section 3.4.1	3072 range cells
SECONDARY_SONAR	SonarChannelData, see section 3.4.1	3072 range cells
DOWNSCAN	SonarChannelData, see section 3.4.1	1400 range cells
LEFT_SIDESCAN	SonarChannelData, see section 3.4.1	1400 range cells
RIGHT_SIDESCAN	SonarChannelData, see section 3.4.1	1400 range cells
SIDESCAN	SideScanChannelData, see section 3.4.3	2800 range cells
FORWARD_SCAN	ForwardScanChannelData, see section 3.4.4	Variable up to a max
		of 3000 raw point
		samples, 384 line
		data points, and 256
		noise window
		samples
DIGITAL_DEPTH	SonarChannelData, see section 3.4.1	2000 range cells
NOISE_WINDOW	NoiseWindowChannelData, see section 3.4.2	256 ADC samples
STRUCTURE_SCAN_3D	SS3DChannelData, see section 3.4.5	Variable up to a max
		of 3000 raw point
		samples, 384 line
		data points, 256
		noise window
		samples per side.

Table 13 – ChannelData Type for each ChannelType

3.4.1. SonarChannelData Structure

The **SonarChannelData** structure is the simplest of all the ChannelData structures as it contains only an array of range cells as show in Table 14. The number of range cells is given by the corresponding *NumRangeCells* field in the **SL3ColumnInformation** data.

Table 14 - SonarChannelData Structure

Field Name	Field Type	Description
RangeCell #1	UINT8	Range cell amplitude in ~ dB * 255 / 140
RangeCell #2	UINT8	Range cell amplitude in ~ dB * 255 / 140
RangeCell #N	UINT8	Range cell amplitude in ~ dB * 255 / 140

3.4.2. NoiseWindowChannelData Structure

The **NoiseWindowChannelData** structure contains a small set of raw ADC data samples just prior to the transmission of the ping. This is used to analyse the background noise and optimise the ping characteristics for best performance. The number of bytes is given by the corresponding *NumRangeCells* field in the **SL3ColumnInformation** data. The number of samples is half the number of bytes.

Table 15 – NoiseWindowChannelData Structure

Field Name	Field Type	Description
Sample #1	UINT16	Raw 12 bit ADC sample
Sample #2	UINT16	Raw 12 bit ADC sample
Sample #N	UINT16	Raw 12 bit ADC sample

3.4.3. SideScanChannelData

The **SideScanWindowChannelData** structure contains the range cell data from both the Left and Right side scan channels as shown in Table 16. The total number of range cells is given by the corresponding *NumRangeCells* field in the **SL3ColumnInformation** data.

Table 16 – SideScanWindowChannelData Structure

Field Name	Field Type	Description
LeftRangeCell #1	UINT8	Range cell amplitude in ~ dB * 255 / 140
LeftRangeCell #2	UINT8	Range cell amplitude in ~ dB * 255 / 140
	•••	
LeftRangeCell #N	UINT8	Range cell amplitude in ~ dB * 255 / 140
RightRangeCell #1	UINT8	Range cell amplitude in ~ dB * 255 / 140
RightRangeCell #1	UINT8	Range cell amplitude in ~ dB * 255 / 140
	•••	
RightRangeCell #1	UINT8	Range cell amplitude in ~ dB * 255 / 140

3.4.4. ForwardScanChannelData Structure

The **ForwardScanChannelData** contains both the raw point data generated by the Forward Scan sensor and the processed Forward Scan data in the form of line data (in Cartesian coordinates) representing the calculated depth values. The content of the **ForwardScanChannelData** is given in Table 18. The number of values in the *LineData* fields is given by *NumRangeCells* / 8 in the corresponding **SL3ColumnInformation** data.

Table 17 – ForwardScanDataChannel Structure

Field Name	Field Type	Description	
LineData	LineDataArray	Calculated bottom values. See Table 18	
PointData	PointData	Raw point data from the sensor. See Table	
		19	

Table 18 – LineDataArray Structure

Field Name	Field Type	Description
XLineData #1	FLOAT32	Forward/Side range in feet of the calculated
		bottom
YLineData #1	FLOAT32	Depth in feet of the calculated bottom
XLinetData #2	FLOAT32	Forward/Side range in feet of the calculated
		bottom
YLineData #2	FLOAT32	Depth in feet of the calculated bottom
XLineData #N	FLOAT32	Forward/Side range in feet of the calculated
		bottom
YLineData #N	FLOAT32	Depth in feet of the calculated bottom

Table 19 - PointData structure

Field Name		Field Type	Description
CSMForwardHeader	SequenceNumber	UINT16	Sequence number
	NoiseWindow	UINT16 x 256	Array of raw 12 bit ADC
			samples
	NumSamples	UINT16	Number of samples in the
			Points array
	MessageMode	UINT8	Points data format.
	_		Currently set to 2
Points	Angle #1	INT16	Angle in degrees x 512
			from the horizontal sensor
			plane
	Range Index #1	UINT16	Range index from the
			sensor
	Amplitude #1	UINT8	Amplitude in a logarithmic
			scale
	Angle #2	INT16	Angle in degrees x 512
			from the horizontal sensor
			plane
	Range Index #2	UINT16	Range index from the
			sensor
	Amplitude #2	UINT8	Amplitude in a logarithmic
			scale
	Angle #N	INT16	Angle in degrees x 512
			from the horizontal sensor
			plane
	Range Index #N	UINT16	Range index from the
			sensor
	Amplitude #N	UINT8	Amplitude in a logarithmic
			scale

The RangeIndex values can be converted to a range value as follows:

Range (feet) = RangeIndex x C / (2 * Fs)

Where C = sound speed in feet/sec (4800 ft/s)

Fs = Sample rate of the sensor in Hz

(102860 Hz for FORWARD_SCAN, and 213333.3 Hz for STRUCTURE_SCAN_3D)

3.4.5. SS3DChannelData Structure

The **SS3DChannelData** contains both the raw point data generated by the SS3D sensor and the processed SS3D data in the form of line data (in Cartesian coordinates) representing the calculated bottom points. The content of the **SS3DChannelData** is given in Table 20.

Table 20 – ForwardScanDataChannel Structure

Field Name	Field Type	Description
Header	SL3SideScanHeader	SS3D data header. See Table 21
LeftLineData	LineDataArray	Calculated bottom from the LHS sensor. See
		Table 18
RightLineData	LineDataArray	Calculated bottom from the RHS sensor. See
		Table 18
LeftPointData	PointData	Raw point data from the LHS sensor. See
		Table 19
RightPointData	PointData	Raw point data from the RHS sensor. See
		Table 19

Table 21 – Sl3SideScanHeader Structure

Field Name	Field Type	Description
HeaderSize	UINT32	Size of this header in bytes
LeftLineSize	UINT32	Size of the LeftLineData in bytes
RightLineSize	UINT32	Size of the RightLineData in bytes
TotalPointDataSize	UINT32	Total number of bytes in the <i>Left3DData</i> and <i>Right3DData</i>
LeftPointDataSize	UINT32	Size of the LeftPointData in bytes
RightPointDataSize	UINT32	Size of the RightPointData in bytes
Spare1	UINT32 x 4	Spare values
AngleFromSurface	FLOAT32	Correction angle in degrees
LeftDepth	FLOAT32	Left side depth in feet
RightDepth	FLOAT32	Right side depth in feet
BottomDepth	FLOAT32	Composite depth from left/right in feet
DepthOffset	FLOAT32	Calibration offset in feet
Spare2	FLOAT32 x 4	Spare values