Department of Mathematics & Statistics

Calculus of Several Variables and Differential Geometry

Mid-Semester Examination

Marks: 35 Time: 120 minutes

1. True or False

(a) Let $n \geq 2$ and U be an open subset of \mathbb{R}^n . Let $f: U \to \mathbb{R}$ be a differentiable function. Then, for every point x in U, there exists a non-zero vector $v \in \mathbb{R}^n$ such that $df_x(v) = 0$.

Answer: TRUE

Reason: We know that, for every $x \in U$, the derivative $df_x : \mathbb{R}^n \to \mathbb{R}$ is a linear map. Hence by rank-nullity theorem, there exists a non-vector $v \in \mathbb{R}^n$ such that $df_x(v) = 0$.

(b) Let $g: \mathbb{R} \to \mathbb{R}$ be a differentiable function and $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $f(x,y) := \int_x^{x+y} g(t)dt$. Then the gradient of the function f at any point (x,y) is $\nabla f(x,y) = (g(x) - g(x+y), g(x+y))$. [2 marks]

Answer: FALSE

Reason: At any point $(x,y) \in \mathbb{R}^2$, the gradient $\nabla f(x,y) = (g(x+y) - g(x), g(x+y))$.

2. Fill in the blanks

(a) Let $n, m \geq 2$, and A, B be two matrices of order $n \times m$. Let $f : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^n$ be the function defined by $f(x,y) := \langle Ax, By \rangle$. Then, for $(h,k) \in \mathbb{R}^m \times \mathbb{R}^m$, $df_{(x,y)}(h,k) := \dots$ [3 marks]

Answer: For every point $(x,y) \in \mathbb{R}^m \times \mathbb{R}^m$, the derivative $df_{(x,y)}(h,k) = \langle Ah, By \rangle + \langle Ax, Bk \rangle$.

Reason: $f(x+h,y+k) = \langle A(x+h), B(y+k) \rangle = \langle Ax, By \rangle + \langle Ah, By \rangle + \langle Ax, Bk \rangle + \langle Ah, Bk \rangle$. Further $\langle Ah, By \rangle + \langle Ax, Bk \rangle$ is linear in (h,k) and $\langle Ah, Bk \rangle \leq ||A|| ||B|| ||h|| ||k|| \leq ||A|| ||B|| ||(h,k)||^2$.

(b) Let $f(u, v) := (u^2 + v^2, u^2 - v^2, 2uv)$ for (u, v) in \mathbb{R}^2 and $g(x, y, z) := x^2 + y^2 - z^2$ for (x, y, z) in \mathbb{R}^3 . If $h : \mathbb{R}^2 \to \mathbb{R}$ is the function defined by h(u, v) := g(f(u, v)), then $\nabla h(u, v) = \dots$ [3 marks]

Answer: $\nabla h(u, v) = 8(u^2 - v^2)(u, -v).$

Reason: For (u, v) in \mathbb{R}^2 , we have $h(u, v) = (u^2 + v^2)^2 + (u^2 - v^2)^2 - 4u^2v^2$. Therefore $\nabla h(u, v) = \left(\frac{\partial h}{\partial u}, \frac{\partial h}{\partial v}\right) = \left(8u(u^2 - v^2), 8v(v^2 - u^2)\right)$

(c) Let B be a $k \times n$ matrix and C a $k \times k$ matrix with real entries. Let A = [B, C] be a $k \times (n+k)$ matrix. Assume that C is invertible. Given $z \in \mathbb{R}^k$, let $\binom{x}{y} \in \mathbb{R}^n \times \mathbb{R}^k$

be a column vector such that $A \begin{pmatrix} x \\ y \end{pmatrix} = z$. Then $y = \dots$ [3 marks]

Answer: $y = C^{-1} (z - Bx)$

Reason: Let $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^n \times \mathbb{R}^k$ be a vector in $\mathbb{R}^n \times \mathbb{R}^k$. Then we can write $A \begin{pmatrix} x \\ y \end{pmatrix} = z$ as Bx + Cy = z. This means that Cy = z - Bx. Since C is

$$A \begin{pmatrix} x \\ y \end{pmatrix} = z$$
 as $Bx + Cy = z$. This means that $Cy = z - Bx$. Since C is invertible, it follows that $y = C^{-1}(z - Bx)$.

- 3. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a function such that $||f(x) f(y)|| \le ||x y||^2$. Which of the following statement(s) is(are) **TRUE**?
 - (a) f is differentiable only at 0 and $df_0 \equiv 0$.
 - (b) f is differentiable at all points in \mathbb{R}^n and $df_x = 0$.
 - (c) f is not differentiable at 0.
 - (d) f is differentiable at all points in \mathbb{R}^n and df_x need not be zero.

Answer: Only (b) is TRUE

Reason: Observe that for $x \neq y$ in \mathbb{R}^n , we have $\frac{\|f(x)-f(y)\|}{\|x-y\|} \leq \|x-y\|$. Therefore if we take $df_x \equiv 0$, then $\frac{\|f(x+h)-f(x)-df_x(h)\|}{\|h\|} \leq \|h\|$ and it goes to zero as $||h|| \to 0$.

- 4. For the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) := \begin{cases} \frac{x^3 y^3}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$, which of the following statement(s) is(are) **TRUE**?
 - (a) f is continuous at (0,0).
 - (b) f is not continuous at (0,0) but the partial derivatives exist at (0,0).
 - (c) f is continuous at (0,0), the directional derivative exist along all (u,v) in \mathbb{R}^2 and the directional derivative at (u, v) is 0.
 - (d) f is continuous at (0,0), the directional derivative exist along all (u,v) in \mathbb{R}^2 and the directional derivative at (u, v) is $\frac{u^3 - v^3}{u^2 + v^2}$.

Answer: (a) and (d) are TRUE.

Reason: For $(0,0) \neq (x,y) \in \mathbb{R}^2$, we have $|x^3 - y^3| = |x - y||x^2 + xy + y^2| \leq |x - y|(|x^2 + y^2| + |xy|) \leq |x - y|(|x^2 + y^2| + |x^2 + y^2|)$. Therefore for $(0,0) \neq (x,y) \in \mathbb{R}^2$, $|f(x,y) - f(0,0)| = |\frac{x^3 - y^3}{x^2 + y^2}| \leq 2|x - y|$. This proves that f is continuous at (0,0).

Let $(0,0) \neq (u,v) \in \mathbb{R}^2$. Then the directional derivative of f at (0,0) along (u,v), if it exists is equal to $\lim_{t\to 0} \frac{f(tu,tv)}{t} = \frac{t^3(u^3-v^3)}{t^3(u^2+v^2)} = \frac{u^3-v^3}{u^2+v^2}$. In fact one could have directly proved that the function is continuous by the arguments we have used here.

5. If we let $S:=\{(x,y)\in\mathbb{R}^2:(x,y)\text{ is local minima or maxima}\}$ for the function $f(x,y)=(x^2-y^2)e^{-(\frac{x^2+y^2}{2})}$, then $S=\ldots$ [5 marks]

Answer: $S = \{(\pm\sqrt{2}, 0), (0, \pm\sqrt{2})\}.$

Reason: For the function f, the partial derivatives $\frac{\partial f}{\partial x} = x \left[2 - (x^2 - y^2) \right] e^{-\frac{x^2 + y^2}{2}}$ and $\frac{\partial f}{\partial y} = -y \left[2 + (x^2 - y^2) \right] e^{-\frac{x^2 + y^2}{2}}$. Therefore the critical points satisfy the equations

$$x = 0 \text{ or } 2 - (x^2 - y^2) = 0$$
 and $y = 0 \text{ or } 2 + (x^2 - y^2) = 0.$ [1 mark]

Observe that f is non-negative along x-axis and non-positive along y axis. Hence (0,0) is neither a maximum nor a minimum. [1 mark]

The other possibilities are $(\pm\sqrt{2},0)$ and $(0,\pm\sqrt{2})$. To check the behavior of f around these points, we compute the second derivatives of f.

(a)
$$\frac{\partial^2 f}{\partial x^2} = \left[2 - (x^2 - y^2) - 2x^2 - x^2(2 - (x^2 - y^2))\right] e^{-\frac{x^2 + y^2}{2}}$$
.

(b)
$$\frac{\partial^2 f}{\partial y^2} = \left[-2 - (x^2 - y^2) + 2y^2 + y^2(2 + (x^2 - y^2)) \right] e^{-\frac{x^2 + y^2}{2}}.$$

(c)
$$\frac{\partial^2 f}{\partial x \partial y} = \left[2xy - xy(2 - (x^2 - y^2)) \right] e^{-\frac{x^2 + y^2}{2}}$$
 [1 mark]

and

(a)
$$\frac{\partial^2 f}{\partial x^2} = \left[2 - (x^2 - y^2) - 2x^2 - x^2(2 - (x^2 - y^2))\right] e^{-\frac{x^2 + y^2}{2}} = -4 \text{ at } (\pm \sqrt{2}, 0),$$

(b)
$$\frac{\partial^2 f}{\partial y^2} = \left[-2 - (x^2 - y^2) + 2y^2 + y^2(2 + (x^2 - y^2)) \right] e^{-\frac{x^2 + y^2}{2}} = 4 \text{ at } (\pm \sqrt{2}, 0)$$
 and

(c)
$$\frac{\partial^2 f}{\partial x \partial y} = \left[2xy - xy(2 - (x^2 - y^2))\right] e^{-\frac{x^2 + y^2}{2}} = 0$$
 at $(\pm \sqrt{2}, 0)$.

Therefore $(\pm\sqrt{2},0)$ are points of maximum for the function f. [1 mark] Similarly

(a)
$$\frac{\partial^2 f}{\partial x^2} = \left[2 - (x^2 - y^2) - 2x^2 - x^2(2 - (x^2 - y^2))\right]e^{-\frac{x^2 + y^2}{2}} = 4 \text{ at } (0, \pm \sqrt{2}),$$

(b)
$$\frac{\partial^2 f}{\partial y^2} = \left[-2 - (x^2 - y^2) + 2y^2 + y^2(2 + (x^2 - y^2)) \right] e^{-\frac{x^2 + y^2}{2}} = 4 \text{ at } (0, \pm \sqrt{2})$$
 and

(c)
$$\frac{\partial^2 f}{\partial x \partial y} = \left[2xy - xy(2 - (x^2 - y^2)) \right] e^{-\frac{x^2 + y^2}{2}} = 0$$
 at $(0, \pm \sqrt{2})$.

This shows that $(0, \pm \sqrt{2})$ are points of minimum for the function f. [1 mark] Hence $S = \{(\pm \sqrt{2}, 0), (0, \pm \sqrt{2})\}.$

6. Let Let $n \geq 1$ and $f: \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable map. Show that the function $F: \mathbb{R}^n \to \mathbb{R}$ defined by $F(x) := \langle f(x), x \rangle$ is differentiable using $\varepsilon - \delta$ method. Further find its gradient $\nabla F(x)$ at any point $x \in \mathbb{R}^n$. [5 marks]

Let $a \in \mathbb{R}^n$ and $h \in \mathbb{R}^n$. Then

$$F(a+h) - F(a) = \langle f(a+h), a+h \rangle - \langle f(a), a \rangle$$

$$= \langle f(a+h) - f(a) - df_a(h), a \rangle + \langle f(a+h) - f(a), h \rangle$$

$$+ \langle df_a(h), a \rangle + \langle f(a), h \rangle$$
[1 mark]

Let $\varepsilon > 0$ be given.

Observe that by Cauchy-Schwarz inequality $|\langle f(a+h) - f(a) - df_a(h), a \rangle| \le ||f(a+h) - f(a) - df_a(h)|| ||a||.$

Similarly $|\langle f(a+h) - f(a), h \rangle| \le ||f(a+h) - f(a)|| ||h||.$

Since f is differentiable at a, there exists $\delta_1 > 0$ such that for $h \in B(0, \delta_1)$, we have $||f(a+h) - f(a) - df_a(h)|| < \frac{\varepsilon}{2(1+||a||)}||h||$. [1 mark]

Since f is differentiable it is also continuous. Hence there exists $\delta_2 > 0$ such that for $h \in B(0, \delta_2)$, $||f(a+h) - f(a)|| < \varepsilon/2$. [1 mark]

Let $\delta = \min\{\delta_1, \delta_2\}$. Then for $h \in B(0, \delta)$,

$$|F(a+h) - F(a) - \langle df_a(h), a \rangle - \langle f(a), h \rangle| \leq |\langle f(a+h) - f(a) - df_a(h), a \rangle| + |\langle f(a+h) - f(a), h \rangle|$$

$$\leq ||a|| ||f(a+h) - f(a) - df_a(h)|| + ||h|| ||f(a+h) - f(a)||$$

$$< ||a|| \frac{\varepsilon}{2(1+||a||)} ||h||$$

$$+ \frac{\varepsilon}{2} ||h||$$

$$< \varepsilon ||h||$$
 [1 mark]

This proves that the function F is differentiable and

$$dF_a(h) \langle df_a(h), a \rangle + \langle f(a), h \rangle$$

= $\langle f(a) + df_a^t(a), h \rangle$

If $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$ we can write $F(x) = \sum_{i=1}^n x_i f_i(x)$ for every point $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

If the gradient
$$\nabla F(x) = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \cdots, \frac{\partial F}{\partial x_n}\right)$$
, then $\frac{\partial F}{\partial x_j} = f_j(x) + \sum_{i=1}^n \frac{\partial f_i}{\partial x_j}(x)$ or $\nabla F(x) = f(x) + (df_x)^t(x)$. [1 mark]

7. Let $n \geq 2$ and W be a proper vector subspace of \mathbb{R}^n . Given a point $x \in \mathbb{R}^n \setminus W$, let z the unique point in W such that $||x - z|| = \inf\{||x - w|| : w \in W\}$. Using the method of Lagrange multiplier, show that the vector x - z is orthogonal to W. [5 marks]

Let W be a proper subspace of \mathbb{R}^n .

Let $W^{\perp} = \{y \in \mathbb{R}^n : \langle y, w \rangle = 0 \text{ for all } w \in W\}$ be the orthogonal complement of dimension k. Let a_1, a_2, \ldots, a_k be a basis of W^{\perp} and for $1 \leq i \leq k$, $a_i = (a_{i1}, a_{i2}, \ldots, a_{in})$ with respect to the standard basis of \mathbb{R}^n . [1 mark] Then for $1 \leq i \leq k$ and $x = (x_1, x_2, \ldots, x_n) \in W$, $\langle a_i, x \rangle = \sum_{j=1}^n a_{ij} x_j = 0$.

Let $g_i : \mathbb{R}^n \to \mathbb{R}$ be defined by $g_i(x) := \sum_{j=1}^n a_{ij} x_j$ for $1 \le i \le k$. Then $W = \{x \in \mathbb{R}^n : g_i(x) = 0 \text{ for } 1 \le i \le k\}$. [1 mark]

For the point $x \in \mathbb{R}^n \setminus W$ let $f: W \to \mathbb{R}$ be the function defined by $f(w) = \|x - w\|^2$. [1 mark]

Since $z \in W$ is such that $||x - z|| = \inf\{||x - w|| : w \in W\}$, by Lagrange multplier, there exist $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$ such that $\nabla f(z) = \lambda_1 g_1(z) + \lambda_2 g_2(z) + \cdots + \lambda_k g_k(z)$. [1 mark]

Since $\nabla g_i(z) = a_i$ is orthogonal to W for $1 \leq i \leq k$ and $\nabla f(z) = 2(x-z)$, it follows that $x-z = \frac{1}{2} (\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k)$. Hence the vector x-z is orthogonal to W.