NASA TECHNICAL MEMORANDUM

NASA TM X-3447

PERFORMANCE OF LOW-PRESSURE-RATIO FAN STAGE AT TWO OFF-DESIGN BLADE SETTING ANGLES

George Kovich, Edward R. Tysl, and Royce D. Moore Lewis Research Center Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MARCH 1977

1. Report No. NASA TMX-3447	2. Government Access	ion No.	3. Recipient's Catalog No.			
4. Title and Subtitle PERFORMANCE OF LOW-PR	ESSURE-RATIO 1	FAN STAGE	5. Report Date March 1977			
AT TWO OFF-DESIGN BLADE	SETTING ANGL	ES	6. Performing Organiz	ration Code		
7. Author(s)			8. Performing Organization Report No.			
George Kovich, Edward R. Ty	⊢	E-8578 10. Work Unit No.				
9. Performing Organization Name and Address Lewis Research Center			505-04			
National Aeronautics and Space	e Administration		11. Contract or Grant	No.		
Cleveland, Ohio 44135			13. Type of Report ar			
12. Sponsoring Agency Name and Address National Aeronautics and Space	e Administration	<u> </u>	Technical M			
Washington, D.C. 20546			14. Sponsoring Agency	Code		
15. Supplementary Notes						
16. Abstract						
The overall and blade-element	_	_		_		
design speed is presented for speed is 243.8 m/sec and weight	•	-	•	-		
flow and pressure ratio are 29			. 0 115/ 500. 205	Ten working		
<u>-</u>	<u> </u>	, -				
17. Key Words (Suggested by Author(s))		18. Distribution Statement				
Fan stage Tu	ırbomachinery	Unclassified - 1	ınlimited			
Short-haul Co	ompressor	STAR Category	02			
19. Security Classif, (of this report)	20. Security Classif. (c	f this page)	21. No. of Pages	22. Price*		
Unclassified	Line	lassified	89	A05		

PERFORMANCE OF LOW-PRESSURE-RATIO FAN STAGE AT TWO OFF-DESIGN BLADE SETTING ANGLES

by George Kovich, Edward R. Tysl, and Royce D. Moore
Lewis Research Center

SUMMARY

The overall and blade-element performance are presented for a low pressure ratio fan stage at two off-design rotor blade setting angles. The rotor design tip speed is 243.8 meters per second and the weight flow per unit annulus area is 175.8 kilograms per second. Design value of weight flow and pressure ratio are 29.9 kilograms per second and 1.51, respectively. Rotor experimental peak efficiency of 0.918 occurred at a weight flow of 32.41 kilograms per second.

At design speed for a $+3^{\circ}$ (closed) rotor blade setting angle, rotor peak efficiency was 0.943 at a weight flow of 30.25 kilograms per second; for a -3° (opened) rotor blade setting angle, rotor peak efficiency was 0.907 at a weight flow of 34.01 kilograms per second.

At the peak efficiency weight flows, radial distributions of rotor suction surface incidence angles for the two off-design settings agreed within about 1^{0} of the design reference values. Radial distributions of rotor deviation angles also agreed within $\pm 1^{0}$.

Rotor and stator losses were relatively low and did not vary significantly over the range of incidence angles when the rotor blade setting angle was changed.

INTRODUCTION

NASA is currently engaged in investigating short-haul-type aircraft for commercial application. These aircraft must be dependable, economical, and have an efficient and reliable propulsion system which satisfies the low noise requirement for urban communities. The aircraft engines must be capable of a variety of operating conditions including takeoff, cruise, and approach, as well as possible thrust reversal on landing.

In support of this program, the Lewis Research Center is investigating a variety of fan stages for short-haul engines. Fans under investigation may have adjustable rotor blades to provide for varied flight demands with optimum fan performance. A reduced number of rotor blades and low solidity permit using devices for changing the rotor blade setting angle during engine operation. In addition, reverse pitch may be used for reverse thrust braking after landing thereby eliminating the weight penalty of conventional aircraft thrust reversers.

A 51-centimeter-diameter experimental fan stage incorporating provisions for manually adjusting the rotor blade setting angle has been designed, fabricated, and tested. The performance with the rotor blades at design setting angle is reported in reference 1.

This report presents the performance of the fan stage of reference 1 (designated stage 51BA-51) when the rotor blades were set at two off-design angle settings. In the first configuration (designated stage 51BC-51), the rotor blade setting angle, measured from the axial direction, was increased 3° (closed) from design. In the second configuration (designated stage 51BB-51) the rotor blade setting angle was decreased 3° (opened) from design.

Overall performance for both rotor and stage along with blade-element performance for both rotor and stator are presented for both configurations tested. The data are presented over the stable operating flow range at design speed.

AERODYNAMIC DESIGN

The design of the fan stage 51BA-51 used in this investigation is discussed in detail in reference 1. The stage was designed for an overall pressure ratio of 1.151 at a weight flow of 29.9 kilograms per second (175.8 kg/sec/m² of annulus area). The design rotor tip speed is 243.8 meters per second. The flow path of the stage is shown in figure 1. The convention designating rotor blade setting angles is also illustrated in figure 1. There are 12 rotor blades having a solidity of 0.65 at the tip, increasing to a value of 0.98 at the hub. Having a solidity of less than unity allows the blades to pass through ''flat pitch'' for reverse thrust applications. The aspect ratio of the rotor blade based on chord at the hub is 2.9. There are 32 stator blades with a hub solidity of 2.48. The stator blade aspect ratio is 3.1.

All significant design parameters for fan stage 51BA-51 are listed in tables I to V. The symbols are defined in appendix A. The equations used for calculating the overall and blade-element performance parameters are presented in appendix B. All abbreviations along with units presented in the tables are listed in appendix C.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor stage was tested in the Lewis single-stage compressor facility, which is described in detail in reference 2. A schematic diagram of the facility is shown in figure 2. Atmospheric air enters the test facility at an inlet located on the roof of the building and flows through the flow-measuring orifice and into the plenum chamber upstream of the test stage. The air then passes through the experimental compressor stage into the collector and is exhausted to the atmosphere.

Test Stage

The rotor 51B and stator 51 are shown in figures 3 and 4, respectively. The rotor blades are mounted in a split rotor disk with the blades prevented from turning by friction pins in each half of the disk. The compression of the friction pins against the blade bases is adjustable from the front side of the rotor disk allowing the blade angle to be reset without disassembling the rotor. The ambient nonrotating radial tip clearance of the rotor was a nominal 0.05 centimeter at the stacking line. However, the radial tip clearances at the leading and trailing edges of the blades were approximately three times greater due to the convex contour of the blade tip. The stator blade leading edge was located two rotor hub chord lengths behind the rotor blade trailing edge.

Instrumentation

The fan stage weight flow was determined from measurements on a calibrated thinplate orifice. The temperature at the orifice was measured with two chromel-constantan thermocouples. Pressures at the orifice were measured by calibrated transducers.

Radial surveys of the flow were made upstream of the rotor, between the rotor and the stator, and downstream of the stator (fig. 1). The survey probes are shown in figure 5. Total pressure, total temperature, and flow angle were measured with the combination probe (fig. 5(a)), and static pressure was measured with an 8°C-shaped wedge probe (fig. 5(b)). Each probe was positioned with a null-balancing, stream-directional sensitive control system that automatically alined the probe to the direction of the flow. The probes were angularly pre-alined in an air tunnel. Two combination probes and two wedge probes were used at each measuring station. The probe thermocouple material was chromel-constantan. The temperatures downstream of the rotor and stator were

measured as differences above temperatures upstream of the rotor.

Inner and outer wall static pressure taps were located at the same axial stations as the survey probes. The circumferential locations of both types of survey probes, along with inner and outer wall static pressure taps, are shown in figure 6. The combination probes downstream of the stator (station 3) were circumferentially traversed one stator blade passage (11.2°) counterclockwise from the nominal values shown. All pressures were obtained with calibrated strain-gage transducers.

An electronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed (rpm).

The estimated errors of the data based on inherent accuracies of the instrumentation and recording system are as follows:

Weight flow, kg/sec
Rotative speed, rpm ±30
Flow angle, deg
Temperature, K
Rotor-inlet total pressure, N/cm ² ±0.01
Rotor-outlet total pressure, N/cm ²
Stator-outlet total pressure, N/cm ²
Rotor-inlet static pressure, N/cm ²
Rotor-outlet static pressure, N/cm ² ±0.07
Stator-outlet static pressure, N/cm ² ±0.07

An indication of the consistency of the data can be observed by comparing the integrated weight flow at each measuring station to the orifice weight flow.

Test Procedure

The stage survey data were taken over a range of weight flows from maximum flow to the near-stall conditions at design speed. Data were recorded at nine radial positions for each weight flow.

At each radial position the two combination probes behind the stator were circumferentially traversed to nine different locations across the stator gap. The two wedge probes were set at midgap because previous studies showed that the static pressure across the stator gap was constant. Values of pressure, temperature, and flow angle were recorded at each circumferential position. At the last circumferential position, values of pressure, temperature, and flow angle were also recorded at stations 1 and 2. All probes were then traversed to the next radial position and the circumferential traverse procedure repeated.

For each configuration the backpressure on the stage was increased by closing the sleeve valve in the collector until a drop in total pressure at the blade tip was detected. This was accomplished by comparing the radial distribution of discharge total pressures between succeeding on-line computer printouts obtained as the valve was closed. This point was arbitrarily taken as the limit of stable operation at the low end of the weight flow range and usually occurred before any definite indications of stall were observed such as change in noise level or increase in blade stresses.

Calculation Procedure

Measured total temperatures and total pressures were corrected for Mach number and streamline slope. These corrections were based on instrument probe calibrations given in reference 3. The stream static pressure was corrected for Mach number and streamline slope based on an average calibration for the type of probe used.

Because of the physical construction of the C-shaped static pressure wedges, it was not possible to obtain static pressure measurements at 5, 10, and 95 percent of span. The static pressure at 95 percent of span was obtained by assuming a linear variation in static pressure between the values at the inner wall and the probe measurement at 90 percent of span. A linear variation was also assumed between the static pressure measurements at the outer wall and the 15-percent span to obtain the static pressure at 5 and 10 percent of span.

At each radial position, averaged values of the nine circumferential measurements of pressure, temperature, and flow angle downstream of the stator (station 3) were obtained. The nine values of total temperature were mass-averaged to obtain the stator-outlet total temperature presented. The nine values of total pressure were energy averaged. The measured values of pressure, temperature, and flow angle were used to calculate axial and tangential velocities at each circumferential position. The flow angles presented for each radial position were calculated based on these mass-averaged axial and tangential velocities. To obtain the overall performance, the radial values of total temperature were mass-averaged and the values of total pressure were energy averaged. At each measuring station, the integrated weight flow was computed based on the radial survey data.

The data, measured at the three measuring stations, have been translated to the blade leading and trailing edges by the method presented in reference 2.

Orifice weight flows, total pressures, static pressures, and temperatures were all corrected to standard-day conditions based on the rotor-inlet conditions.

RESULTS AND DISCUSSION

The results of this investigation are presented in three main sections. The overall performance at design speed for both rotor and stage are compared at the two off-design rotor blade settings with the overall performance at the design setting angle. Radial distributions of several performance parameters for both rotor and stator of each configuration are then compared. Finally comparisons of blade-element data for rotor and stator of each configuration are made. The data presented are computer plotted, and occasionally a data point is omitted when it falls outside the range of parameters shown in the figures.

All of the plotted data together with some additional parameters are presented in tabular form for each off-design stage configuration. The overall performance data are presented in table VI. The blade-element data are presented first for the rotor in tables VII to IX and then for the stator in tables X to XII. The definitions and units used for the tabular data are presented in appendix C.

Overall Performance

The overall performance for the rotor at the two off-design blade settings are shown in figure 7 and for the stage in figure 8. The overall performance at design rotor blade setting (ref. 1) is also shown for comparison. Data are presented for several weight flows at design speed.

The step which occurs in both rotor and stage performance curves has been discussed in reference 1; a rapid forward movement of the flow separation point on the suction surface of the rotor blade may be occurring over a small portion of the suction surface incidence range.

As was expected weight flow increased with the opened rotor blade setting angle and decreased with the closed blade setting angle. Maximum flow increased 1.5 kilograms per second with the -3° (opened) rotor blade setting angle and decreased 1.5 kilograms per second with the $+3^{\circ}$ (closed) blade setting angle. Rotor peak efficiency at design setting angle was 0.918 (ref. 1). Rotor peak efficiency increased 2.5 points for the closed rotor blade setting angle and decreased 1.1 points for the open setting angle. For the $+3^{\circ}$ (closed) rotor blade setting angle, rotor peak efficiency pressure ratio was 1.134 at a weight flow of 30.25 kilograms per second and for the -3° (opened) setting angle, 1.148 at a weight flow of 34.01 kilograms per second.

The trends in stage performance were similar to those for the rotor for corresponding changes in rotor blade setting angles.

Radial Distributions

The radial distributions of selected flow and performance parameters at design speed for both rotor and stator are shown in figures 9 and 10. The results are presented for the two off-design configurations at the peak efficiency flow rates. Radial distributions of flow and performance for the design configuration are included for reference.

Rotor. - In general, the changes in radial distribution of the flow and performance parameters occurred evenly over the entire blade span. Some small differences were noted in the extreme hub and tip regions. For example, the decrease in rotor efficiency in the hub region as the rotor is reset is the greatest as the angle is changed from $+3^{\circ}$ to design angle. At peak efficiencies the suction surface incidence angles agreed within about 1° with the reference values over the entire blade span. The diffusion factor radial distribution did not change over the range of blade setting angles although the total loss parameters showed small increases with the increases in weight flow over the range of blade setting angles tested. Deviation angles for each configuration agreed with the reference values within about 1° .

Stator. - Radial distribution of suction surface incidence angles were unchanged from design for each configuration. No significant changes from design in radial distribution of the stator performance parameters occurred with the change of rotor blade setting angles. For all three rotor setting angles, the losses seemed to rise rapidly in the hub region from 85 to 95 percent span. Losses in the tip region were also high.

Variations with Incidence Angle

The variations of selected blade-element performance parameters are presented in figure 11 for the rotor and in figure 12 for the stator. The data are presented for the two off-design configurations for 100 percent design speed at the 5, 10, 30, 50, 70, 90, and 95 percent of blade span (measured from the tip). Data for the design stage configuration is included for comparison.

Measured suction-surface incidence angles corresponding to minimum losses were not conclusively defined for either the rotor or stator. The blade elements for rotor 51B seem to be mismatched. At 90 and 95 percent spans, peak efficiency occurs near minimum flow whereas at 30, 50, and 70 percent span, it occurs near maximum flow. At 5 and 10 percent span locations, peak efficiency occurred at about midflow. This mismatch was observed with all three rotor setting angles. For each element peak efficiency was highest for the design +3° angle. This may be due to lower inlet relative Mach numbers and lower choke margins as the blades were closed down. The change

in slope of the pressure ratio curve observed in the overall rotor performance plot is also observed in the blade-element curves. The greatest changes were noted in the midspan of the blade and less pronounced in the end regions.

SUMMARY OF RESULTS

The overall and blade-element performance are presented for a low pressure ratio fan stage at two off-design rotor blade setting angles. The first fan stage rotor blade setting angle measured from the axial direction was closed 3° from design and the second was opened 3° from design. Design values of weight flow, pressure ratio, and temperature ratio are 29.9 kilograms per second, 1.151, and 1.047, respectively. The rotor design tip speed is 243.8 meters per second, and the weight flow per unit annulus area is 175.8 kilograms per second. Rotor peak efficiency for the design configuration was 0.918 at a weight flow of 32.41 kilograms per second. The following principal results were obtained:

- 1. At design speed, the rotor peak efficiency for the off-design fan stage with rotor blades 3° closed was 0.943 at a weight flow of 30.25 kilograms per second. The rotor peak efficiency for the off-design fan stage with rotor blades 3° opened was 0.905 at a weight flow of 34.01 kilograms per second.
- 2. The radial distributions of rotor suction surface incidence angles at the peak efficiency weight flows were within about 1^{O} of the reference design values. The radial distributions of rotor deviation angles were essentially unchanged with reset (within about 1^{O}). Stator suction surface incidence angles were unchanged with rotor blade reset.
 - 3. Stator losses were relatively constant for each configuration.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, November 5, 1976, 505-04.

APPENDIX A

SYMBOLS

Aan	annulus area at rotor leading edge, m ²
${f A_f}$	frontal area at rotor leading edge, m ²
Cp	specific heat at constant pressure, 1004 J/kg/K
c	aerodynamic chord, cm
D	diffusion factor
ⁱ mc	mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
ⁱ ss	suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
N	rotative speed, rpm
P	total pressure, N/cm ²
p	static pressure, N/cm ²
r	radius, cm
Т	total temperature, K
U	wheel speed, m/sec
V	air velocity, m/sec
W	weight flow, kg/sec
${f Z}$	axial distance referenced from rotor-blade-hub leading edge, cm
$^{lpha}{ m c}$	cone angle, deg
$lpha_{ extsf{s}}$	slope of streamline, deg
β	air angle, angle between air velocity and axial direction, deg
$eta_{f c}'$	relative meridional air angle based on cone angle, $\arctan(\tan\beta_{\rm m}'\cos\alpha_{\rm c}/\cos\alpha_{\rm s})$, deg
γ	ratio of specific heats
$\gamma_{\mathbf{b}}$	blade setting angle

```
\delta ratio of rotor-inlet total pressure to standard pressure of 10.13 N/cm<sup>2</sup>
```

 $\delta^{\rm O}$ deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg

 η efficiency

θ ratio of rotor-inlet total temperature to standard temperature of 288.2 K

 κ_{mc} angle between blade mean camber line and meridional plane, deg

 $\kappa_{\rm ss}$ angle between blade suction-surface camber line at leading edge and meridional plane, deg

σ solidity, ratio of chord to spacing

 $\overline{\omega}$ total loss coefficient

 $\overline{\omega}_{n}$ profile loss coefficient

 $\overline{\omega}_{s}$ shock loss coefficient

Subscripts:

ad adiabatic (temperature rise)

id ideal

LE blade leading edge

m meridional direction

mom momentum-rise

p polytropic

r radial direction

TE blade trailing edge

tip tip

z axial direction

 θ tangential direction

1 instrumentation plane upstream of rotor

2 instrumentation plane between rotor and stator

3 instrumentation plane downstream of stator

Superscript:

relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle:

$$i_{SS} = (\beta_C^{\dagger})_{LE} - \kappa_{SS}$$
 (B1)

Mean incidence angle:

$$i_{mc} = (\beta_c^i)_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle:

$$\delta_{\mathbf{TE}}^{\mathbf{O}} = \left(\beta_{\mathbf{C}}^{\dagger}\right)_{\mathbf{TE}} - \left(\kappa_{\mathbf{mc}}\right)_{\mathbf{TE}}$$
 (B3)

Diffusion factor:

$$D = 1 - \frac{V_{TE}^{i}}{V_{LE}^{i}} + \left| \frac{(rV_{\theta})_{TE} - (rV_{\theta})_{LE}}{(r_{TE} + r_{LE})\sigma(V_{LE}^{i})} \right|$$
(B4)

Total loss coefficient:

$$\overline{\omega} = \frac{\left(P_{id}^{\dagger}\right)_{TE} - P_{TE}^{\dagger}}{P_{LE}^{\dagger} - p_{LE}}$$
(B5)

Profile loss coefficient:

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{s}$$
 (B6)

Total loss parameter:

$$\frac{\overline{\omega}\cos\left(\beta_{\mathbf{m}}^{\dagger}\right)_{\mathbf{TE}}}{2\sigma}\tag{B7}$$

Profile loss parameter:

$$\frac{\overline{\omega}_{\mathbf{p}} \cos \left(\beta_{\mathbf{m}}^{i}\right)_{\mathbf{TE}}}{2\sigma} \tag{B8}$$

Adiabatic (temperature-rise) efficiency:

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1}$$
(B9)

Momentum-rise efficiency:

$$\eta_{\text{mom}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{\left(UV_{\theta}\right)_{\text{TE}} - \left(UV_{\theta}\right)_{\text{LE}}}{T_{\text{LE}}C_{\text{p}}}}$$
(B10)

Equivalent weight flow:

$$\frac{W\sqrt{\theta}}{\delta}$$
 (B11)

Equivalent rotative speed:

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area:

$$\frac{\underline{W}\sqrt{\theta}}{\delta}$$

$$A_{3n}$$
(B13)

Weight flow per unit frontal area:

$$\frac{\frac{W\sqrt{\theta}}{\delta}}{A_{f}} \tag{B14}$$

Head-rise coefficient:

$$\frac{C_{p}T_{LE}}{U_{tip}^{2}}\left[\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}-1\right]$$
(B15)

Flow coefficient:

$$\left(\frac{V_{z}}{U_{tip}}\right)_{LE} \tag{B16}$$

Polytropic efficiency:

$$\eta_{p} = \frac{\ln \left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}}{\ln \frac{T_{TE}}{T_{LE}}}$$
(B17)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual minimum flow area to critical area (where local Mach

number is 1)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing blade

element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean defined

by eq. (B2)), deg

KIC angle between blade mean camber line at leading edge and meridional

plane, deg

KOC angle between blade mean camber line at trailing edge and meridional

plane, deg

KTC angle between blade mean camber line at transition point and merid-

ional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines,

deg

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock loca-

tion of multiple-circular-arc blade section to that of double-

circular-arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

ZOC axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

REFERENCES

- 1. Kovich, George; and Steinke, Ronald J.: Performance of Low-Pressure-Ratio Low-Tip-Speed Fan Stage with Blade Tip Solidity of 0.65. NASA TM X-3341, 1976.
- Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet Per Second. NASA TM X-2484, 1972.
- 3. Glawe, George E.; Krause, Lloyd N.; and Dudzinski, Thomas J.: A Small Combination Sensing Probe for Measurement of Temperature, Pressure, and Flow Direction. NASA TN D-4816, 1968.

TABLE I. - DESIGN OVERALL PARAMETERS

FOR FAN STAGE 51B-51

ROTOR TOTAL PRESSURE RATIO	1.159
STAGE TOTAL PRESSURE RATIO	1.151
ROTOR TOTAL TEMPERATURE RATIO	1.047
STAGE TOTAL TEMPERATURE RATIO	1.047
ROTOR ADIABATIC EFFICIENCY	0.911
STAGE ADIABATIC EFFICIENCY	0.865
ROTOR POLYTROPIC EFFICIENCY	0.913
STAGE POLYTROPIC EFFICIENCY	0.868
ROTOR HEAD RISE COEFFICIENT	0.210
STAGE HEAD RISE COEFFICIENT	0.199
FLOW COEFFICIENT	0.681
HT FLOW PER UNIT FRONTAL AREA	147.704
HT FLOW PER UNIT ANNULUS AREA	175.838
MT FLOW	29.937
RPM9	167.300
	243.839

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 51A

RP TIP 1 2 3 4 5 6 7 8 9	RADI IN 25.400 2 24.647 2 23.868 2 23.085 2 20.732 2 17.607 1 14.533 1 12.294 1 11.565 1 10.844 1	OUT 5.400 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684 0.922	ABS IN 0. -0. 0. 0. 0. 0.	BETAM OUT 24.4 24.5 24.6 24.8 25.6 27.1 28.9 30.0 30.2 30.3	REL. IN 55.3 54.5 53.6 52.7 49.8 45.5 40.6 36.2 34.7 33.0	BETAM OUT 48.9 47.5 46.0 44.5 39.5 31.6 22.2 14.2 11.6 9.0 6.3	IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	TEMP RATIO 1.058 1.057 1.056 1.055 1.051 1.046 1.040 1.034 1.032 1.030	TOTAL IN 10.14 10.14 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.184 1.183 1.182 1.175 1.159 1.134 1.111 1.102 1.092 1.083
RP TIP 1 2 3 4 5 6 7 8 9 HUB	169.0 168.9 168.8 168.0 165.9 163.0 161.0 160.5	0UT 167.5 168.2 168.8 169.3 170.1 169.9 168.3		VEL 0UT 231.8 226.3 220.8 215.3 198.8 177.6 159.1 148.2 145.4 142.9 140.7	IN 169.0 169.0 168.9 168.8 168.0 165.9 163.0 161.0 160.5	YEL 0UT 152.5 153.0 153.4 153.7 153.4 151.2 147.3 143.7 142.4 141.1 139.9	IN 0. 0. 0. 0.	VEL OUT 69.2 69.8 70.4 71.1 73.5 77.5 81.4 83.0 82.9 82.5 82.0	NHEEL IN 245.8 236.6 229.1 221.6 199.0 169.0 139.5 118.0 111.0 104.1 97.5	SPEED OUT 243.8 236.5 229.2 221.9 199.9 170.7 141.4 119.5 112.2 104.9 97.5
RP TIP 1 2 3 4 5 6 7 8 9 HUB	0.509 0.509 0.509 0.506 0.499 0.490 0.484	OUT 0.490 0.492 0.494 0.496 0.500 0.500 0.497 0.491 0.488 0.484	1N 0.894 0.876 0.858 0.840 0.785 0.713 0.645 0.600 0.587 0.574	0.678 0.662 0.647 0.631 0.584 0.523 0.470 0.438 0.430 0.423 0.417	IN 0.509 0.509 0.509 0.506 0.499 0.490 0.484 0.483	OUT 0.446 0.448 0.449 0.451 0.451 0.435 0.425 0.422 0.418	STREAML [8 IN -0.22 -0.07 0.09 0.27 0.83 1.46 1.67 1.31 1.04 0.70 0.37	OUT -0.28 -0.13 0.03 0.21 0.78 1.46 1.76 1.48 1.20 0.84	VEL R 0.903 0.906 0.908 0.910 0.913 0.912 0.904 0.892 0.881	MACH NO 1.233 1.199 1.166 1.136 1.015 0.764 0.645
RP TIP 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INC II MEAN -1.0 -1.0 -0.8 -0.7 -0.1 1.0 2.2 3.1 3.5 3.8 4.1	DENCE SS -5.6 -5.7 -5.9 -7.2 -9.3 -11.2 -11.8 -11.7	DEV 5.5 5.3 5.2 5.5 7.2 10.4 14.0 13.8 12.6 10.9	D-FACT 0.398 0.405 0.411 0.417 0.439 0.470 0.494 0.494 0.489 0.481 0.471	0.846 0.865 0.882 0.896 0.929 0.941 0.922 0.887 0.872 0.854 0.832	LOSS COTOT 0.072 0.064 0.057 0.050 0.036 0.031 0.067 0.067 0.074 0.081	DEFF PROF 0.072 0.064 0.057 0.050 0.036 0.031 0.043 0.067 0.067 0.074	LOSS F TOT 0.037 0.033 0.030 0.027 0.020 0.018 0.024 0.033 0.036 0.039	PARAM PROF 0.036 0.033 0.030 0.027 0.020 0.018 0.024 0.033 0.036 0.039 0.041

TABLE III. - DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR 51

RP TIP 1 2 3 4 5 6 7 8 9 HVB	RAD1 IN 25.400 2 24.595 2 23.861 2 23.128 2 20.917 2 17.955 1 14.946 1 12.647 1 11.870 1 11.087 1	OUT 25.400 24.608 23.887 23.166 20.995 18.080 15.110 12.787 11.967	ABS IN 23.4 23.5 23.6 23.8 24.7 26.6 29.0 30.7 31.1 31.3 31.6	BETAM OUT -0. 0. -0. -0. -0. -0. -0. -0.	REL IN 23.4 23.5 23.6 23.8 24.7 26.6 29.0 30.7 31.1 31.3	BETAM OUT -0. 0. -0. -0. -0. -0. -0.	IN 305.0 304.6 304.2 303.9 302.8 301.3 299.6 298.1 297.4	TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 12.00 11.99 11.98 11.91 11.74 11.50 11.26 11.17 11.07	PRESS RATIO 0.993 0.994 0.994 0.994 0.993 0.992 0.990 0.989 0.987
RP T(P 1 2 3 4 5 6 7 8 9	175.6 175.7 175.1 171.6 165.6 160.0 158.2	VEL 0UT 161.8 161.7 161.4 161.0 158.4 151.7 140.7 122.2 115.5 107.8	175.2 175.6 175.7 175.1 171.6 165.6 160.0	0UT 161.8 161.7 161.4 161.0 158.4 151.7 140.7 128.1 122.2	1N 160.2 160.6 160.8 160.8 159.0 153.5 144.9 137.6 135.5	VEL OUT 161.8 161.7 161.4 161.0 158.4 151.7 140.7 128.1 122.2 115.5 107.8	TANG IN 69.4 69.9 70.4 71.0 73.1 76.7 80.2 81.7 81.6 81.3 80.8	VEL. OUT -0. -0. -0. -0. -0. -0. -0.	WHEEL. IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP	IN 0.512 0.514	OUT 0.472 0.472	REL M IN 0.512 0.514 0.515	ACH NO OUT 0.472 0.472 0.472	IN 0.469 0.471 0.472	OUT	STREAML II IN -0.07 0.10 0.24	NE SLOPE OUT -0.04 0.13 0.27		PEAK SS MACH NO 0.512 0.514 0.515
2 3 6 7 8 9 HUB	0.515 0.516 0.515 0.506 0.489 0.473 0.467 0.462 0.456	0.472 0.471 0.464 0.444 0.412 0.375 0.358 0.338	0.516 0.515 0.506 0.489 0.473 0.467 0.462	0.471 0.464 0.444 0.412 0.375 0.358 0.338 0.315	0.472 0.468 0.452 0.427 0.406 0.400 0.395 0.388	0.471 0.464 0.444 0.412 0.375 0.358 0.338	0.44	0.41 0.81 1.30 1.61 1.31 0.91	1.001 0.996 0.988 0.971 0.931 0.902 0.865 0.821	0.516 0.515 0.506 0.489 0.473 0.467

TABLE IV. - BLADE GEOMETRY FOR ROTOR 51B A

RP TIP 1 2 3 4 5 6 7 .8 9 HUB	5. 10. 15. 30. 70. 85. 90.	RI	R0 25.400 24.638 23.876 23.114 20.828 17.780 14.732 12.446 11.684 10.922	KIC 56.30 55.42 54.45 53.40 49.93 44.49 38.37 33.12 31.20 29.21	NE ANGLE KTC 49.79 48.81 47.61 46.18 41.12 32.84 23.30 16.79 15.12 13.68 12.33	XOC 43.33 42.20 40.77 38.96 32.31 21.19 8.20 0.44 -0.99 -1.88 -2.70	DELTA INC 4.58 4.66 4.88 5.25 7.07 10.36 13.41 14.90 15.19 15.39 15.56	CONE ANGLE 0.057 -0.093 0.082 0.290 0.959 1.698 1.993 1.590 1.273 0.853 0.057
	BLADE	THICKN	ESSES	Å	KIAL DIN	MENS I ON	S	
RP	TI	TM	TO	ZI	ZMC	ZTC	ZO	
TIP	0.086	0.429	0.086	-0.155	2.460	2.460	5.445	
1 2	0.083 0.086	0.430 0.441	0.083	-0.157 -0.165	2.461	2.461	5.443 5.450	
3	0.098	0.464	0.098	-0.181	2.460	2.460	5.467	
4	0.121 0.159	0.584 0.779	0.121	-0.232 -0.271	2.455 2.455	2.455 2.455	5.521 5.556	
5 6	0.189	0.923	0.137	-0.241	2.466	2.466	5.490	
7	0.186	0.944	0.187	-0.148	2.479	2.479	5.339	
8 9	0.184 0.182	0.933	0.186 0.183		2.483 2.486	2.483 2.486	5.271 5.194	
HUB	0.179		0.179	0.	2.490	2.490	5.116	
	AERO	SETTING	TOTAL		X		AREA	
RP	CHORD	ANGLE	CAMBER	SOLIDITY	FACTOR		RATIO	
TIP	8,629		12.97	0.649	:.000	13.99	0.	
1 2	8,460 8,287	48.81 47.61	13.22	0.656 0.663	1.000	13.71 13.56	-0.015 0.028	
3	8.115	46.18	14.44	0.671	1.000	13.58	0.138	
4	7.599	41.13	17.62 23.30	0.698	1.000	13.18	0.154	
5 6	6.910 6.229	32.85 23.26	30.16	0.746 0.813	1.000	10.14	0.175	
7	5.726	16.82	32.67	0.884	1.000	-1.52	0.206	
8 9	5.561 5.393	15.14 13.69	32.19 31.08	0.914 0.946	1.000 1.000	-3.60 -5.76	0.203	
HUB	5.232	12.33	30.00		1.000	-7.81	0.196 0.190	

TABLE V. - BLADE GEOMETRY FOR STATOR 51

RP TIP 1 2 3 4 5	5. 10. 15.	RI 25.400 24.595 23.861 23.128 20.917 17.955	R0 25.400 24.608 23.887 23.166	KIC 14.20 14.30 14.44 14.63 15.51	ADE ANG KTC 5.04 5.12 5.20 5.31 5.75 6.64 7.81	KOC -4.13 -4.07 -4.03 -4.01 -4.00	DELTA INC 9.22 9.21 9.21 9.21 9.17 9.17	CONE ANGLE 0.057 0.144 0.306 0.448 0.915 1.461 1.913
7 .8 9 HUB	85. 90. 95.	12.647 11.870 11.087 10.160	12.787 11.967 11.125	21.60 21.95 22.20	8.70 8.92 9.10	-4.20 -4.11	9.11 9.11 9.12	1.642 1.140 0.439 0.057
RP TIP 1 2 3 4 5 6 7 8 9 HUB	BLADE T! 0.099 0.099 0.099 0.099 0.099 0.099 0.099	TM 0.495	TO 0.099 0.099 0.099 0.099 0.099 0.099	Z1 25.452 25.455 25.456 25.458 25.467 25.479 25.488 25.491 25.494	ZMC 27.898 27.900 27.900 27.899 27.897 27.896 27.894 27.891 27.891 27.892	27.900 27.899 27.897 27.896 27.894 27.891 27.891	Z0 30.379 30.381 30.381 30.380 30.378 30.378 30.379 30.377 30.377	
RP TIP 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 4.945 4.945 4.945 4.945 4.946 4.946 4.946 4.946	SETTING ANGLE 5.04 5.12 5.20 5.31 5.76 6.65 7.83 8.72 8.94 9.11 9.32		1.088 1.202 1.398 1.677 1.981 2.114	X FACTOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	-2.24 -2.36 -2.43 -2.48 -2.50 -2.26	0.273 0.266 0.261 0.257 0.252 0.259 0.281 0.305	

TABLE VI. - OVERALL PERFORMANCE AT 100 PERCENT DESIGN SPEED

(a) Stage 51B A

Parameter	Reading number						
	1766	1767	1768	1769	1771		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HT FLOW PER UNIT FRONTAL AREA HT FLOW PER UNIT ANNULUS AREA HT FLOW AT ROTOR INLET HT FLOW AT ROTOR OUTLET HT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.127 1.117 1.039 1.035 0.898 0.903 0.880 0.170 0.156 0.799 164.92 196.54 33.45 33.45 33.58 33.22 9152.1	1.145 1.134 1.043 1.039 0.918 0.927 0.917 0.192 0.178 0.762 159.91 190.37 32.41 32.45 32.35 9161.2 99.9	1.137 1.126 1.042 1.039 0.902 0.894 0.897 0.182 0.168 0.695 149.87 178.42 30.38 30.39 30.54 30.06 9163.0	1.152 1.139 1.046 1.044 0.889 0.860 0.885 0.202 0.185 0.618 136.51 162.52 27.67 27.76 28.01 27.51 9158.4 99.9	1.155 1.141 1.048 1.046 0.881 0.836 0.872 0.206 0.188 0.592 131.78 156.88 26.71 26.76 27.03 26.56 9141.9 99.7		

(b) Stage 51B B

Parameter	Reading number							
	1796	1797	1798	1800	1801	1807		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT HT FLOW PER UNIT FRONTAL AREA HT FLOW PER UNIT ANNULUS AREA HT FLOW AT ORIFICE HT FLOW AT ROTOR INLET HT FLOW AT STATOR OUTLET HT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.115 1.100 1.037 1.034 0.845 0.824 0.817 0.154 0.135 0.852 172.25 205.06 34.91 34.88 35.37 34.68 9179.1	1.148 1.136 1.044 1.041 0.907 0.909 0.885 0.196 0.180 0.819 167.82 199.79 34.01 34.04 34.34 35.96 9175.3	1.145 1.132 1.044 1.041 0.900 0.889 0.879 0.191 0.175 0.755 159.30 189.65 32.29 32.29 32.47 31.96 9186.1 100.2	1.158 1.142 1.047 1.045 0.901 0.871 0.888 0.207 0.188 0.700 150.58 179.26 30.52 30.58 30.94 30.26 9181.5 100.2	1.161 1.146 1.049 1.047 0.886 0.852 0.871 0.212 0.193 0.669 145.55 173.28 29.50 29.57 29.87 29.87 29.28 9184.9 100.2	1.164 1.148 1.051 1.048 0.875 0.838 0.216 0.196 0.655 143.03 170.28 28.99 29.43 28.81 9177.3 100.1		

TABLE VI. - Concluded.

(c) Stage 51B C

Parameter	Reading number							
	1830	1829	1828	1827	1824	1841		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT WIT FLOW PER UNIT FRONTAL AREA WIT FLOW PER UNIT ANNULUS AREA WIT FLOW AT ORIFICE WIT FLOW AT ROTOR INLET WIT FLOW AT STATOR OUTLET WIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.112 1.103 1.034 1.031 0.912 0.915 0.894 0.150 0.138 0.756 158.33 188.50 32.09 32.24 32.23 31.83 9153.2	1.134 1.124 1.039 1.036 0.943 0.935 0.936 0.177 0.166 0.695 149.24 177.67 30.25 30.39 30.46 30.05 9167.4	1.131 1.123 1.039 1.037 0.924 0.906 0.915 0.175 0.165 0.642 140.26 166.98 28.43 28.58 28.59 28.26 9148.3	1.140 1.129 1.042 1.041 0.902 0.869 0.915 0.185 0.171 0.600 132.92 158.25 26.94 27.11 27.27 26.73 9171.4	1.148 1.136 1.046 1.044 0.881 0.843 0.888 0.196 0.180 0.552 124.75 148.52 25.29 25.30 25.53 25.16 9169.7	1.153 1.139 1.047 1.046 0.877 0.828 0.876 0.202 0.184 0.528 119.41 142.16 24.20 24.39 24.63 24.22 9169.1 100.0		

TABLE VII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR 51B A

AT 100 PERCENT DESIGN SPEED

(a) Reading number 1766

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1 10.843 1	0UT 24.638 23.876 23.114 20.828 17.780 14.732 12.446	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 18.0 15.7 16.2 18.2 21.3 23.8 24.2 24.1 25.5	IN 50.7 49.6 48.7 45.2 40.7 35.7 31.6 30.1	BETAM 0UT 47.1 44.8 43.1 37.7 28.9 18.7 12.8 11.4 8.9	IN 289.1 288.9 288.6 287.9 287.9 287.8 287.7	TEMP RATIO 1.044 1.041 1.042 1.039 1.037 1.030 1.027	TOTAL IN 10.08 10.13 10.14 10.14 10.14 10.14	PRESS RATIO 1.122 1.140 1.139 1.137 1.134 1.127 1.096 1.080 1.069
RP 1 2 3 4 5 6 7 8 9	197.0 196.1 193.6 191.7 191.2	VEL 0UT 176.9 186.8 187.9 190.7 193.9 198.2 193.4 188.7 183.4	258.6 238.5	0UT 247.3 253.2 247.4 228.9 206.4 191.4 180.9	IN 193.0 194.6 194.3 197.0 196.1 193.6 191.7	VEL 0UT 168.3 179.8 180.5 181.1 180.6 181.3 176.4 172.3	TANG IN 0.1 0.1 0.1 0.1 0.1 0.1 0.1	VEL 0UT 54.6 50.6 52.3 59.7 70.5 80.0 79.3 77.0 78.9	WHEEL IN 235.9 228.7 221.2 198.8 168.8 139.4 117.8 110.8	
RP 1 2 3 4 5 6 7 8 9	ABS M/ IN 0.585 0.591 0.590 0.600 0.597 0.589 0.583 0.575	OUT 0.522 0.553 0.558 0.567 0.578 0.592 0.579 0.565 0.548	REL M IN 0.924 0.911 0.894 0.852 0.787 0.725 0.684 0.671 0.656	OUT 0.729 0.750 0.734 0.680 0.615 0.572 0.542 0.526 0.501	MERID M IN 0.585 0.591 0.590 0.600 0.597 0.589 0.583 0.581	ACH NO OUT 0.496 0.533 0.535 0.538 0.538 0.542 0.528 0.516 0.495				PEAK SS MACH NO 1.138 1.104 1.075 0.941 0.787 0.725 0.684 0.671 0.656
RP 1 2 3 4 5 6 7 8	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN -4.7 -4.9 -4.7 -4.7 -3.8 -2.7 -1.6 -1.1	DENCE SS -9.4 -9.7 -10.0 -11.8 -14.2 -16.1 -16.5 -16.3 -15.9	DEV 4.9 4.0 4.2 5.4 7.8 10.5 12.3 12.4 10.8	D-FACT 0.324 0.283 0.292 0.335 0.385 0.405 0.396 0.418	0.766 0.921 0.924 0.902 0.929 0.942 0.882 0.824 0.716	LOSS CO TOT 0.080 0.026 0.026 0.036 0.028 0.025 0.044 0.062 0.103	PROF 0.080 0.026 0.026 0.036 0.028 0.025 0.044 0.062 0.103	LOSS F TOT 0.041 0.014 0.020 0.017 0.014 0.025 0.033	PROF 0.041

(b) Reading number 1767

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1	OUT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 20.6 18.4 18.6 20.9 23.8 25.8 25.9 25.5 28.1	IN 51.8 50.8 49.9 46.4 42.1 37.1 32.9 31.4	BETAM OUT 47.5 44.8 43.2 37.4 29.0 19.2 14.0 12.3 8.5	IN 289.1 288.9 288.6 288.0 287.8 287.8 287.7 287.8	TEMP RATIO 1.051 1.048 1.047 1.046 1.043 1.038 1.038 1.031 1.028	IN 10.09 10.13 10.14 10.14 10.14	PRESS RATIO 1.148 1.167 1.166 1.161 1.149 1.132 1.095 1.086 1.076
RP 1 2 3 4 5 6 7 8 9	186.7 186.5 188.5 186.9 184.3 181.9	VEL 0UT 172.0 182.0 183.4 186.3 187.5 188.6 180.6 178.6 174.2	251.9	OUT 238.3 243.4 238.4 219.0 196.1 179.8 167.4	186.9 184.3	OUT 161.0 172.7 173.8 174.0 171.6 169.7 162.4	TANC IN 0.1 0.1 0.1 0.1 0.1 0.1 0.1	VEL OUT 60.6 57.5 58.6 66.5 75.7 82.1 78.9 77.0 81.9	IN 236.4 229.0 221.5 198.4 169.0 139.5 118.0	SPEED OUT 236.3 229.0 221.7 199.4 170.6 141.4 119.4 112.1 104.9
RP 1 2 3 4 5 6 7 8 9	ABS M/ IN 0.562 0.565 0.565 0.572 0.567 0.559 0.551 0.543	OUT 0.505 0.537 0.551 0.556 0.561 0.538 0.538	REL M IN 0.909 0.894 0.877 0.830 0.764 0.700 0.657 0.644 0.628	ACH NO OUT 0.699 0.718 0.704 0.648 0.582 0.535 0.499 0.492 0.463	MERID M IN 0.562 0.565 0.565 0.572 0.567 0.559 0.551 0.543	OUT 0.472 0.509 0.513 0.515 0.509 0.505 0.484			VEL R 0.866	0.700 0.657 0.644
RP 1 2 3 4 5 6 7 8	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN -3.6 -3.7 -3.5 -3.5 -2.4 -1.3 -0.2 0.2	DENCE SS -8.5 -8.5 -8.8 -10.6 -12.8 -14.7 -15.1 -15.0	DEV 5.3 4.0 4.2 5.1 7.8 11.0 13.6 13.3	D-FACT 0.361 0.322 0.327 0.374 0.423 0.442 0.434 0.423	0.785	LOSS C TOT 0.087 0.023 0.021 0.022 0.023 0.029 0.059 0.061 0.113	PROF	LOSS F TOT 0.045 0.012 0.011 0.013 0.017 0.033 0.033 0.059	PROF 0.045 0.012 0.011 0.013 0.013 0.017 0.033

(c) Reading number 1768

2 3 4 5 6 7 8	RAD I IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1 10.843 1	OUT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 21.6 19.7 19.7 21.5 24.5 26.8 28.1 28.4 30.9	REL IN 54.4 53.3 52.4 49.1 44.8 39.8 35.5 34.0 32.5	BETAM 0UT 48.2 46.1 44.8 40.3 33.5 23.3 14.3 11.3 7.6	289.1 288.8 288.4 288.0 287.9 287.8 287.8 287.8	TEMP RATIO 1.050 1.048 1.047 1.039 1.036 1.032 1.031	TOTAL IN 10.10 10.13 10.13 10.14 10.14 10.15 10.15 10.15 10.15 10.15 10.15	PRESS RATIO 1.158 1.167 1.163 1.147 1.127 1.116 1.107 1.103 1.091
RP 1 2 3 4 5 6 7 8 9	ABS IN 169.5 171.1 170.7 172.2 170.2 167.3 165.4 164.9 163.4	VEL 0UT 168.1 174.5 174.2 172.6 168.1 169.0 171.7 172.3 167.1	REL IN 290.9 286.1 279.5 262.8 239.9 217.6 203.2 198.8 193.7	VEL 0UT 234.3 236.8 231.3 210.6 183.5 164.4 156.3 154.5	MERII IN 169.5 171.1 170.7 172.2 170.2 167.3 165.4 164.9 163.4	VEL 0UT 156.3 164.3 164.0 160.6 153.0 150.9 151.5 143.3	TANG [N 0.1 0.1 0.1 0.1 0.1 0.1 0.1	VEL OUT 62.0 58.8 58.6 63.3 69.6 76.2 80.9 82.0 85.8	WHEEL IN 236.6 229.4 221.5 198.6 169.2 139.4 118.2 111.2 104.1	SPEED OUT 236.5 229.5 221.7 199.5 170.9 141.3 119.6 112.3 104.9
RP	ABS M/	ACH NO OUT	REL M	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS MACH NO
1	0.510	0.493	0.876	0.687	0.510	0.458			0.922	1.196
2	0.516	0.513	0.862	0.697	0.516	0.483			0.960	1.161
3 4	0.515 0.520	0.513 0.509	0.843 0.793	0.681 0.621	0.515 0.520	0.483 0.474			0.961 0.933	1.130
5	0.520	0.309	0.793	0.542	0.514	0.452			0.899	1.003 0.736
5 6	0.504	0.500	0.656	0.487	0.504	0.447			0.902	0.656
7	0.498	0.510	0.612	0.464	0.498	0.450			0.916	0.612
8	0.497	0.512	0.599	0.459	0.497	0.450			0.919	0.599
9	0.492	0.496	0.583	0.429	0.492	0.425			0.877	0.583
	PERCENT		DENCE	DEV	D-FACT	EFF	LOSS CO		LOSS F	
RP	SPAN	MEAN	SS	C A	A 757	0.047	TOT	PROF	TOT	PROF
1 2	5.00 10.00	-1.0 -1.2	-5.7 -6.1	6.0 5.3	0.357 0.327	0.847 0.931	0.065 0.029	0.065 0.029	0.033	0.033 0.015
3	15.00	-1.0	-6.3	5.9	0.328	0.939	0.026	0.025	0.014	0.014
4										
5	30.00	-0.9	-7.9	8.0	0.371	0.910	0.039	0.039	0.021	0.021
C	30.00 50.00	-0.9 0.3	-10.0	12.3	0.430	0.899	0.045	0.045	0.025	0.025
Ö	30.00 50.00 70.00	-0.9 0.3 1.4	-10.0 -12.0	12.3 15.1	0.430 0.461	0.899 0.881	0.045 0.058	0.045 0.058	0.025 0.033	0.025 0.033
2 3 4 5 6 7 8	30.00 50.00	-0.9 0.3	-10.0	12.3	0.430	0.899	0.045	0.045	0.025	0.025 0.033

(d) Reading number 1769

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1 10.843 1	OUT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 26.9 24.4 25.0 26.7 29.2 30.9 31.9 32.6 35.5	IN 57.2 56.3 55.5 52.4 48.1 43.2 38.9 37.4	BETAM OUT 49.4 47.1 45.7 41.5 35.0 24.4 15.3 11.6 7.6	IN 288.8 288.7 288.4 288.0 287.9 287.9	TEMP RAT10 1.059 1.056 1.054 1.049 1.042 1.038 1.034 1.033	TOTAL IN 10.10 10.13 10.14 10.14 10.14 10.14 10.13	PRESS RATIO 1.180 1.188 1.183 1.164 1.137 1.127 1.114 1.110
RP 1 2 3 4 5 6 7 8	152.6 152.5 153.4 151.2 148.3 145.8 144.8	VEL 0UT 158.2 164.3 164.1 161.4 155.0 156.5 157.0 157.5 152.0	226.4 203.4 187.4	VEL 0UT 217.0 219.7 213.1 192.4 165.3 147.5 138.2 135.5 124.8	IN 152.3 152.6 152.5 153.4 151.2 148.3 145.8	VEL 0UT 141.2 149.6 148.8 144.1 135.4 134.3 133.3 132.7		VEL 0UT 71.5 67.8 69.3 72.6 75.5 80.4 83.0 84.8 88.3	IN 236.3 228.6 221.6 199.0	SPEED OUT 236.2 228.7 221.9 199.9 170.3 141.3 119.4 112.0 104.9
RP 1 2 3 4 5 6 7 8 9	ABS M/IN 0.456 0.457 0.460 0.453 0.445 0.437 0.434 0.429	OLAGI 0.461 0.480 0.480 0.473 0.456 0.461 0.464 0.465 0.449	REL M IN 0.842 0.824 0.806 0.754 0.610 0.561 0.546 0.530	ACH NO OUT 0.632 0.642 0.624 0.564 0.486 0.435 0.408 0.400	MERID M IN 0.456 0.457 0.457 0.460 0.453 0.445 0.437 0.434	OUT 0.411 0.437 0.435 0.423 0.398 0.396 0.394				0.561 0.546
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCL MEAN 1.8 1.8 2.1 2.4 3.6 4.8 5.8 6.2 6.8	DENCE SS -2.9 -3.1 -3.2 -4.6 -6.7 -8.6 -9.1 -9.0 -8.6	7.2 6.3 6.8 9.2 13.8 16.2 14.8 12.6 9.5	D-FACT 0.422 0.386 0.399 0.441 0.519 0.514 0.512 0.559	0.817 0.903 0.909 0.897 0.880 0.910 0.928 0.931 0.845	LOSS C TOT 0.095 0.050 0.047 0.054 0.052 0.043 0.041 0.096	OEFF PROF 0.095 0.050 0.047 0.054 0.054 0.052 0.043 0.041 0.096	LOSS 1 TOT 0.047 0.024 0.029 0.035 0.029 0.023	PROF 0.047 0.026 0.024 0.029 0.035 0.029 0.023

TABLE VII. - Concluded.

(e) Reading number 1771

RP 1 2 3 4 5 6 7 8 9	RAD I IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1	OUT 24.638 23.876 23.114 20.828 7.780 4.732 2.446 1.684	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 29.6 26.0 28.7 31.4 32.8 33.1 33.8 36.7	REL. IN 58.4 57.3 56.5 53.5 49.5 44.6 40.1 38.4 36.8	BETAM OUT 50.3 47.5 46.1 41.9 35.2 24.4 15.6 11.8 7.4	288.8 288.6 288.3 288.0 287.9 287.9 287.9 287.8	TEMP RATIO 1.062 1.058 1.056 1.051 1.044 1.039 1.034 1.033	TOTAL IN 10.11 10.14 10.13 10.13 10.13 10.13 10.13	PRESS RAT10 1.182 1.192 1.186 1.165 1.142 1.131 1.116 1.110
RP 1 2 3 4 5 6 7 8 9	ABS IN 145.4 147.1 145.8 146.3 146.3 143.6 141.3 140.0 139.7 138.2	VEL 0UT 153.4 161.5 160.8 156.8 151.5 153.1 152.8 153.3 148.8	REL IN 277.5 272.1 264.3 246.1 221.3 198.3 182.9 178.3 172.7	VEL 0UT 208.7 214.9 208.4 184.8 158.4 141.2 132.9 130.2 120.2	MERII IN 145.4 147.1 145.8 146.3 143.6 141.3 140.0 139.7 138.2	D VEL 0UT 133.4 145.2 144.5 137.5 129.4 128.7 128.0 127.5 119.2	TANG IN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	VEL 0UT 75.9 70.7 70.6 75.4 78.9 82.9 83.5 85.2 89.0	WHEEL IN 236.5 229.1 220.5 198.0 168.5 139.2 117.8 110.8 103.6	SPEED OUT 236.4 229.1 220.8 198.9 170.1 141.1 119.3 111.9 104.4
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.435 0.440 0.436 0.438 0.430 0.423 0.419 0.418 0.413	OUT 0.446 0.471 0.470 0.459 0.445 0.451 0.453 0.439	REL M IN 0.830 0.814 0.791 0.737 0.663 0.593 0.547 0.533 0.516	ACH NO OUT 0.606 0.627 0.609 0.541 0.465 0.416 0.392 0.385 0.355	MERID M IN 0.435 0.440 0.436 0.438 0.430 0.423 0.419 0.418	IACH NO OUT 0.387 0.424 0.422 0.402 0.380 0.379 0.378 0.376 0.352			VEL R 0.917 0.987 0.991 0.939 0.901	PEAK SS MACH NO 1.249 1.211 1.174 1.050 0.828 0.593 0.547 0.533 0.516
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 3.0 2.8 3.1 3.6 5.0 6.2 6.9 7.2 7.6	DENCE SS -1.7 -2.0 -2.1 -3.5 -5.3 -7.2 -8.0 -8.0 -7.8	8.1 6.7 7.1 9.6 14.0 16.2 15.2 12.8 9.3	D-FACT 0.456 0.406 0.410 0.469 0.524 0.546 0.533 0.532 0.577	0.789 0.883 0.886 0.882 0.888 0.927 0.937 0.931 0.860	LOSS CO TOT 0.116 0.063 0.063 0.066 0.064 0.045 0.039 0.043 0.091	DEFF PROF 0.116 0.063 0.063 0.066 0.064 0.045 0.039 0.043 0.091	LOSS F TOT 0.057 0.032 0.032 0.035 0.035 0.025 0.021 0.023	PROF 0.057 0.032 0.032 0.035 0.035 0.025 0.021

TABLE VIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51B B AT 100 PERCENT DESIGN SPEED

(a) Reading number 1796

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.648 2 23.868 2 23.086 2 20.731 1 17.607 1 14.531 1 12.294 1 11.565 1 10.843	0UT 24.638 23.876 23.114 20.828 17.780 14.732 12.446 11.684	IN -0.0 -0.0 -0.0 -0.0 -0.0	BETAM 0UT 15.0 13.6 14.3 16.2 19.3 22.4 23.1 22.8 24.7	REL. IN 48.9 47.8 46.9 43.4 39.0 34.0 30.0 28.5 27.2	BETAM OUT 44.6 42.4 40.9 35.7 28.3 17.1 10.5 9.3 6.3	TOTAL IN 288.8 288.7 288.5 288.0 287.9 287.8 287.8 287.8	TEMP RATIO 1.043 1.043 1.041 1.039 1.036 1.036 1.032 1.029	IN 10.07 10.13 10.14 10.14 10.14 10.14	1.122 1.108 1.119
RP 1 2 3 4 5 6 7 8 9	ABS IN 206.6 208.4 208.0 211.0 209.4 206.9 204.8 204.2 202.6	VEL 0UT 195.2 204.5 204.9 206.4 203.8 212.6 212.8 208.2 202.0	IN 314.1 310.3 304.6 290.2 269.3 249.6 236.5	VEL 0UT 264.8 269.2 262.8 244.2 218.6 205.6 199.1 194.4 184.7	IN 206.6 208.4 208.0 211.0 209.4 206.9 204.8	VEL 0UT 188.5 198.8 198.5 198.2 192.4 196.5 195.7 191.9 183.6	TANC IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	VEL OUT 50.5 48.3 50.6 57.6 67.2 81.2 83.6 80.8	WHEEL IN 236.5 229.8 222.5 199.3 169.3 139.6 118.4 110.9	141.5 119.8
RP 1 2 3 4 5 6 7 8 9	ABS M IN 0.630 0.635 0.645 0.640 0.632 0.625 0.623	ACH NO OUT 0.579 0.610 0.612 0.617 0.610 0.639 0.641 0.627 0.607	REL M IN 0.958 0.947 0.930 0.888 0.824 0.763 0.722 0.710 0.695	ACH NO OUT 0.786 0.802 0.784 0.731 0.655 0.618 0.599 0.585 0.555	MERID M IN 0.630 0.635 0.645 0.645 0.640 0.632 0.625 0.623	ACH NO OUT 0.560 0.592 0.593 0.593 0.576 0.591 0.589 0.578 0.552				PEAK SS MACH NO 1.221 1.191 1.164 1.028 0.824 0.763 0.722 0.710 0.695
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN -3.6 -3.7 -3.5 -3.6 -2.5 -1.4 -0.1 0.3 1.0	DENCE SS -8.2 -8.5 -8.7 -10.6 -12.9 -14.8 -15.0 -14.9	DEV 5.4 4.6 5.0 6.4 10.1 11.9 13.1 13.2	D-FACT 0.279 0.250 0.261 0.301 0.357 0.378 0.360 0.355	EFF 0.732 0.852 0.874 0.864 0.831 0.913 0.858 0.797 0.670	LOSS C TOT 0.086 0.048 0.040 0.044 0.056 0.033 0.052 0.070	OEFF PROF 0.084 0.047 0.040 0.044 0.056 0.033 0.052 0.070	LOSS F TOT 0.047 0.027 0.022 0.026 0.033 0.019 0.029 0.038 0.058	PROF 0.046 0.026 0.022 0.026 0.033 0.019 0.029 0.038 0.058

(b) Reading number 1797

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1 10.843 1	0UT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM OUT 20.3 18.1 18.4 20.6 23.5 25.3 25.7 25.6 27.4	IN 50.1 48.8 47.9 44.5 40.0 35.1 31.1 29.7	BETAM OUT 44.8 42.4 40.5 35.0 26.4 16.9 11.3 9.4 5.8	TOTAL TEMP IN RATIO 288.9 1.054 288.7 1.051 288.6 1.050 288.0 1.047 287.9 1.044 287.9 1.039 287.8 1.031 287.8 1.029	IN RATIO 10.07 1.157 10.13 1.172 10.14 1.171 10.14 1.164 10.14 1.151 10.14 1.134 10.14 1.098 10.14 1.090
RP 1 2 3 4 5 6 7 8 9	200.2 200.4 203.2 201.6 198.6 195.9 195.3	OUT 185.3 194.6 196.8 198.7 199.8 201.7	298.8 284.7 263.2 242.9 228.7 224.9	OUT 244.7 250.3 245.8 227.1 204.5 190.6 178.9	IN 197.9 200.2 200.4 203.2 201.6 198.6 195.9 195.3	VEL 0UT 173.7 185.0 186.8 185.9 183.1 182.3 175.4 174.6 168.8	TANG VEL IN OUT -0.0 64.4 -0.0 62.1 -0.0 69.9 -0.1 79.7 -0.0 86.2 -0.0 84.5 -0.0 83.7 -0.0 87.6	236.8 236.7 229.0 229.0 221.6 221.9 199.4 200.3 169.2 170.8 139.8 141.7 118.0 119.5 111.3 112.5
RP 1 2 3 4 5 6 7 8 9		OUT 0.545 0.575 0.583 0.590 0.595 0.603 0.583 0.580 0.569	IN 0.938 0.926 0.909 0.868 0.802	ACH NO OUT 0.720 0.740 0.728 0.675 0.609 0.569 0.535 0.530 0.507	0.620 0.615	ACH NO OUT 0.511 0.547 0.553 0.552 0.545 0.545 0.525 0.525		MERID PEAK SS VEL R MACH NO 0.878 1.239 0.924 1.200 0.932 1.170 0.915 1.045 0.909 0.802 0.918 0.740 0.896 0.696 0.894 0.684 0.872 0.668
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN -2.3 -2.6 -2.5 -1.5 -0.2 0.9 1.5 2.1	DENCE SS -7.0 -7.5 -7.8 -9.5 -11.8 -13.6 -14.0 -13.7 -13.3	DEV 5.6 4.6 4.6 5.7 8.3 11.7 13.8 13.4 10.7	D-FACT 0.366 0.327 0.332 0.379 0.427 0.435 0.428 0.418	0.788	LOSS COEFF TOT PROF 0.087 0.085 0.039 0.036 0.031 0.03 0.027 0.02 0.029 0.029 0.023 0.02 0.050 0.05 0.053 0.05	TOT PROF 0.047 0.046 0.022 0.021 0.018 0.018 7 0.016 0.016 9 0.017 0.017 5 0.014 0.014 0 0.028 0.028 5 0.029 0.029

(c) Reading number 1798

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1 10.843 1	OUT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM OUT 21.5 20.2 19.6 21.4 24.1 26.4 27.8 28.3 30.8	REL IN 52.0 50.9 50.1 46.7 42.4 37.5 33.3 31.9 30.5	BETAM 0UT 45.8 43.4 42.2 37.2 30.2 20.4 11.2 8.1 4.4		TEMP RATIO 1.054 1.051 1.050 1.046 1.041 1.038 1.034 1.033	TOTAL IN 10.09 10.13 10.14 10.14 10.13 10.14 10.13	PRESS RATIO 1.163 1.177 1.172 1.157 1.134 1.121 1.115 1.115 1.113
RP 1 2 3 4 5 6 7 8 9	186.8 186.1	VEL 0UT 178.9 186.8 187.3 186.5 181.8 182.4 186.8 188.3 181.7	REL. IN 300.2 296.3 289.9 273.5 250.9 229.5 215.2 211.1 205.6	VEL 0UT 238.6 241.0 238.1 218.0 191.9 174.3 168.5 167.4 156.5	MERII IN 184.9 186.8 186.1 187.6 185.3 182.0 179.7 179.2 177.2	VEL 0UT 166.5 175.2 176.5 173.6 165.9 163.4 165.3 165.7	TANC IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	VEL 0UT 65.5 64.6 62.7 68.1 74.3 81.1 87.1 89.3 93.1	WHEEL IN 236.5 230.1 222.3 199.0 169.2 139.8 118.3 111.6 104.3	SPEED OUT 236.4 230.1 222.6 199.9 170.8 141.7 119.7 112.8 105.1
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.559 0.566 0.564 0.562 0.551 0.544 0.536	OUT 0.525 0.551 0.553 0.552 0.539 0.542 0.557 0.562 0.541	REL M IN 0.908 0.897 0.878 0.830 0.761 0.695 0.651 0.639 0.622	ACH NO OUT 0.701 0.701 0.703 0.645 0.569 0.518 0.502 0.466	MERID M IN 0.559 0.566 0.564 0.569 0.551 0.544 0.542 0.536	ACH NO OUT 0.489 0.517 0.521 0.514 0.492 0.485 0.493 0.494 0.465				PEAK SS MACH NO 1.260 1.230 1.199 1.069 0.808 0.695 0.651 0.639 0.622
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN -0.4 -0.5 -0.3 -0.2 0.9 2.2 3.2 3.7 4.3	DENCE SS -5.1 -5.4 -5.6 -7.3 -9.5 -11.3 -11.7 -11.5 -11.1	DEV 6.6 5.6 6.2 7.9 12.0 15.2 13.7 12.0 9.3	D-FACT 0.371 0.351 0.340 0.382 0.435 0.445 0.447 0.440	0.810 0.927 0.921 0.927 0.902 0.882 0.925 0.935 0.825	LOSS C TOT 0.082 0.031 0.033 0.031 0.042 0.054 0.035 0.030 0.083	OEFF PROF 0.080 0.030 0.033 0.031 0.042 0.054 0.035 0.035 0.030	LOSS F TOT 0.044 0.017 0.018 0.018 0.024 0.031 0.019 0.017	PARAM PROF 0.043 0.016 0.018 0.018 0.024 0.031 0.019 0.017

(d) Reading number 1800

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.648 2: 23.868 2: 23.086 2: 20.731 2: 17.607 1: 14.531 1: 12.294 1: 11.565 1: 10.843 1:	OUT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM 0UT 25.2 22.5 22.2 24.5 27.1 29.0 30.6 30.5 33.3	IN 54.1 52.9 52.0 48.9 44.7 39.8 35.6 34.0	BETAM OUT 46.5 43.8 42.4 38.0 31.0 20.8 11.3 8.3 4.4	IN 288.9 288.7 288.4 288.0 287.9 287.9 287.9 287.9	TEMP RATIO 1.060 1.057 1.056 1.050 1.044 1.039 1.035 1.034	TOTAL IN 10.10 10.14 10.13 10.14 10.13 10.13 10.13	PRESS RATIO 1.179 1.194 1.193 1.170 1.144 1.132 1.119 1.117
RP 1 2 3 4 5 6 7 8 9	173.3 173.7 174.4 171.4 167.8 165.1 164.8	VEL 0UT 171.2 180.5 181.8 178.2 172.9 173.5 175.7 177.2 170.7	218.5	0UT 225.1 231.1 228.0 205.7 179.6 162.3 154.2 154.2	IN 170.9 173.3 173.7 174.4 171.4 167.8 165.1	VEL 0UT 154.9 166.7 168.3 162.1 153.9 151.8 151.2 152.6 142.6	TANG IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	VEL OUT 72.9 69.2 68.8 74.0 78.8 84.2 89.4 90.0 93.8	IN 236.4 229.1 222.4 199.6 169.6 139.9 118.2	SPEED OUT 236.3 229.2 222.6 200.6 171.3 141.8 119.7 112.3 104.8
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.515 0.522 0.524 0.527 0.517 0.506 0.497 0.497 0.491	OUT 0.500 0.530 0.534 0.525 0.510 0.514 0.521 0.526 0.506	REL M IN 0.879 0.866 0.851 0.728 0.659 0.612 0.599 0.582	ACH NO OUT 0.658 0.678 0.670 0.606 0.530 0.480 0.458 0.458	MERID M IN 0.515 0.522 0.524 0.527 0.517 0.506 0.497 0.491	OUT 0.453 0.489 0.495 0.478 0.454 0.449				0.612 0.599
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 1.7 1.5 1.6 1.9 3.2 4.4 5.5 5.8 6.3	DENCE SS -2.9 -3.4 -3.6 -5.1 -7.2 -9.0 -9.4 -9.0	7.3 6.1 6.5 8.7 12.8 15.6 13.9 12.3 9.3	D-FACT 0.419 0.377 0.374 0.425 0.476 0.496 0.491 0.473 0.518	0.809 0.910 0.927 0.914 0.898 0.918 0.933 0.939 0.833	LOSS C TOT 0.094 0.043 0.036 0.041 0.050 0.043 0.036 0.033	PROF 0.092	LOSS 1 TOT 0.049 0.024 0.020 0.023 0.029 0.025 0.020 0.018	PROF 0.048 0.023 0.020 0.023 0.029 0.025 0.020 0.018

(e) Reading number 1801

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.648 24 23.868 25 23.086 25 20.731 26 17.607 15 14.531 14 12.294 15 11.565 15 10.843 16	OUT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM OUT 27.9 23.9 24.6 26.6 28.6 30.7 31.7 32.1 34.8	IN 55.3 54.1 53.2 50.1 45.9 41.1 36.8 35.3	BETAM 0UT 47.0 44.3 42.9 38.2 31.4 21.2 11.7 8.5 4.4	TOTAL TEMP IN RATIO 288.8 1.064 288.7 1.060 288.4 1.058 288.1 1.052 287.9 1.045 287.9 1.040 287.9 1.036 287.8 1.034 288.0 1.034	TOTAL PRESS IN RATIO 10.10 1.187 10.14 1.204 10.14 1.193 10.14 1.174 10.13 1.146 10.13 1.135 10.13 1.123 10.13 1.117 10.11 1.103
RP 1 2 3 4 5 6 7 8 9	166.5 165.9 166.8 163.7 160.0 158.3 157.3	VEL 0UT 167.4 177.6 175.8 173.8 168.0 167.9 171.0 170.9	235.2 212.5 197.8	VEL 0UT 217.2 226.7 218.3 197.8 172.9 154.8 148.6 146.3 136.2	MERII IN 164.2 166.5 165.9 166.8 163.7 160.0 158.3 157.3	VEL 0UT 148.0 162.3 159.9 155.4 147.6 144.4 145.5 144.7 135.8	TANG VEL IN OUT -0.0 78.3 -0.0 72.0 -0.0 73.1 -0.0 77.8 -0.0 80.3 -0.0 85.8 -0.0 89.9 -0.0 94.6	WHEEL SPEED IN OUT 237.4 237.3 230.2 230.2 221.4 221.6 199.3 200.2 168.8 170.5 139.8 141.7 118.6 120.0 111.4 112.5 104.2 105.0
RP 1 2 3 4 5 6 7 8 9	0.501 0.499 0.502 0.493 0.481 0.476	OUT 0.488 0.520 0.515 0.511 0.495 0.496 0.507 0.507	IN 0.868 0.855 0.833 0.783 0.708 0.639	ACH NO OUT 0.633 0.664 0.640 0.581 0.509 0.457 0.440 0.434	MERID M IN 0.494 0.501 0.499 0.502 0.493 0.481 0.476 0.473	0.475 0.475 0.469 0.457 0.435 0.426 0.431 0.429		MERID PEAK SS VEL R MACH NO 0.901 1.303 0.975 1.266 0.964 1.226 0.932 1.103 0.901 0.867 0.902 0.639 0.919 0.595 0.920 0.579 0.875 0.561
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	MEAN 2.9	DENCE SS -1.7 -2.2 -2.5 -3.9 -6.0 -7.6 -8.2 -8.1 -7.7	7.8 6.5 6.9 8.9 13.2 16.0 14.3 12.5 9.3	0.454		LOSS COEFF TOT PROF 0.110 0.109 0.049 0.048 0.054 0.054 0.054 0.054 0.059 0.059 0.051 0.051 0.031 0.031 0.039 0.039 0.093 0.093	LOSS PARAM TOT PROF 0.057 0.056 0.026 0.026 0.029 0.029 0.030 0.030 0.034 0.034 0.029 0.029 0.017 0.017 0.021 0.021 0.049 0.049

TABLE VIII. - Concluded.

(f) Reading number 1807

RP 1 2 3 4 5 6 7 8	RADI IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1 10.843 1	0UT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM 0UT 28.5 24.7 25.0 27.4 30.1 31.7 32.3 32.8 35.5	IN 56.0 54.7 53.7 50.6 46.6 41.8 37.4 35.8	BETAM OUT 47.0 44.3 43.1 38.5 31.2 21.2 11.9 8.6 4.4	IN 288.9 288.8 288.4	1.034	IN 10.10 10.14 10.14 10.13 10.14 10.13	PRESS RATIO 1.194 1.206 1.198 1.176 1.150 1.134 1.121 1.115 1.103
RP 1 2 3 4 5 6 7 8 9	162.4 163.4 163.7 160.2 156.5 154.3 153.9	VEL 0UT 167.2 175.9 174.9 172.0 166.9 165.4 167.4 167.6 162.9	REL IN 286.2 281.1 275.9 258.0 233.3 209.8 194.1 189.8 184.4	VEL 0UT 215.2 223.2 217.3 195.0 168.9 150.9 144.7 142.6 133.0	IN 159.8 162.4 163.4 163.7 160.2 156.5 154.3 153.9	158.6	TAN(IN -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	79.9 73.5 73.9 79.0 83.7 87.0 89.4 90.7 94.6	IN 237.3 229.3 222.2 199.4	229.4 222.5 200.3 171.2 141.7 119.1 112.1
RP 1 2 3 4 5 6 7 8 9		0.486 0.514 0.512 0.505 0.491 0.488 0.495 0.496 0.482	REL M IN 0.859 0.845 0.830 0.777 0.702 0.631 0.583 0.570 0.553	ACH NO OUT 0.626 0.653 0.636 0.572 0.497 0.445 0.428 0.422	MERID M IN 0.480 0.488 0.491 0.493 0.482 0.470 0.463 0.463	ACH NO OUT 0.427 0.467 0.464 0.448 0.425 0.415 0.419 0.417 0.392			VEL R	1.236 1.109 0.880 0.631 0.583
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN- 3.6 3.3 3.7 5.1 6.4 7.2 7.6 8.2	DENCE SS -1.0 -1.6 -2.0 -3.4 -5.2 -7.0 -7.7 -7.6 -7.2	7.8 6.5 7.2 9.1 13.0 16.0 14.4 12.6 9.3	D-FACT 0.461 0.403 0.412 0.464 0.518 0.538 0.517 0.512	0.781 0.893 0.904 0.884 0.865 0.902 0.926 0.917 0.839	LOSS C TOT 0.123 0.058 0.051 0.062 0.076 0.057 0.043 0.049 0.098	OEFF PROF 0.121 0.057 0.051 0.062 0.076 0.057 0.043 0.049 0.098	LOSS F TOT 0.064 0.031 0.028 0.035 0.044 0.033 0.024 0.026	PROF

TABLE IX. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 51B C

AT 100 PERCENT DESIGN SPEED

(a) Reading number 1830

RP 1 2 5 4 5 6 7 8 9	RADII 1N (24.648 24. 23.868 23. 23.086 23. 20.731 20. 17.607 17. 14.531 14. 12.294 12. 11.565 11. 10.843 10.	.876 .114 .828 .780 .732 .446	IN 0.0 0.0 0.0 0.0 0.0	BETAM OUT 16.1 14.3 14.4 16.5 20.1 22.3 22.9 22.4 23.7		0UT 50.0 47.8 46.2 40.5 31.9 22.1 15.9 14.9	IN 288.8 288.8 288.7	1.035 1.035 1.033 1.027 1.023	TOTAL IN 10.09 10.13 10.13 10.14 10.14 10.14 10.14 10.14	1.118 1.118 1.121 1.121 1.113 1.088 1.074
RP 1 2 3 4 5 6 7 8	182.5 16 183.6 17 184.2 17 186.2 16 185.3 16 183.7 16 181.8 16	0UT 66.6 74.4 76.0 80.6 83.5 87.1	293.8 288.0 272.2 250.6	OUT 249.1 251.6 246.5 227.8 203.2 186.9 175.0 170.6		0UT 160.1 169.0 170.5 173.2 172.4 173.1 168.4 164.9	TANC IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	VEL 0UT 46.2 43.0 43.7 51.4 63:0 70.9 71.2 67.9 69.0	WHEEL IN 237.2 229.4 221.4 198.5 168.8 139.4 117.6 110.5 103.8	229.4 221.7 199.4 170.5 141.3 119.0 111.6
RP 1 2 3 4 5 6 7 8 9	0.552 0 0.555 0 0.557 0 0.565 0 0.562 0 0.556 0 0.551 0	H NO OUT .491 .516 .522 .537 .546 .558 .546 .533 .511	N1 0.905	ACH NO OUT 0.735 0.745 0.745 0.677 0.604 0.557 0.523 0.510 0.480	MERID M IN 0.552 0.555 0.557 0.565 0.562 0.556 0.551 0.549	OUT 0.472 0.500 0.505 0.515 0.513 0.516 0.503				1.029 0.994 0.828 0.760 0.699 0.656
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	MEAN -6.0	DENCE SS -10.7 -11.0 -11.4 -13.2 -15.5 -17.6 -18.1 -18.1 -17.5	DEV 4.8 4.0 4.3 5.2 7.7 10.6 12.4 12.9		0.753	LOSS C TOT 0.077 0.033 0.024 0.020 0.018 0.022 0.029 0.033 0.100	PROF	LOSS F TOT 0.038 0.017 0.012 0.011 0.010 0.012 0.016 0.018	PROF

(b) Reading number 1829

RP 1 2 3 4 5 6 7 8 9	RADII IN OU 24.648 24.6 23.868 23.8 23.086 23.1 20.731 20.6 17.607 17.7 14.531 14.7 12.294 12.4 11.565 11.6 10.843 10.9	OT IN 538 0.0 876 0.0 814 0.0 828 0.0 780 0.0 732 0.0 846 0.0 884 0.0	BETAM OUT 19.9 18.1 18.0 20.5 23.7 25.9 26.3 26.0 28.4	39.7 35.4 33.8	BETAM OUT 50.7 48.2 46.9 41.3 32.9 23.3 17.0 15.2 11.5	IN 288.7 288.7 288.5 288.1 288.0 287.9 287.8 287.9	TEMP RATIO 1.046 1.043 1.042 1.042 1.038 1.035 1.029 1.026	IN 10.10 10.13 10.14 10.14 10.14	PRESS RATIO 1.141 1.151 1.150 1.147 1.136 1.121 1.095 1.086 1.077
RP 1 23 4 5 6 7 8 9	170.2 166 170.6 167 171.8 170 170.6 171 167.9 171	JT IN 3.9 290.2 5.8 285.2 7.8 279.9 0.6 263.0 1.3 240.0 1.8 218.3 5.6 203.8 4.7 199.9		IN 168.0 170.2 170.6 171.8 170.6		TANO IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	VEL OUT 54.0 51.8 51.9 59.9 68.9 75.1 73.7 72.2 76.2	1N 236.6 228.9 221.9 199.1 168.8 139.6 118.0	119.5 112.3
RP 1 2 3 4 5 6 7 8 9	0.506 0.4 0.513 0.4 0.514 0.5 0.518 0.5 0.515 0.5 0.506 0.5 0.501 0.6	UT IN 466 0.874 491 0.859 495 0.844 504 0.794	0.700 0.688 0.627 0.553 0.498 0.464 0.455	MERID M IN 0.506 0.513 0.514 0.518 0.515 0.506 0.501 0.500	OUT 0.438 0.466 0.470 0.471 0.464 0.458			VEL R	1.039 0.913 0.724 0.658 0.614
RP 1 2 3 4 5 6 7 8 9	5.00 10.00 15.00 30.00 50.00 70.00 85.00	INCIDENCE MEAN SS -3.8 -8.5 -4.1 -9.0 -4.0 -9.2 -3.7 -10.8 -2.8 -13.2 -1.6 -15.1 -0.8 -15.7 -0.4 -15.6 0.2 -15.2	4.4 4.9 6.0 8.7 11.7 13.6 13.2	D-FACT 0.329 0.304 0.304 0.355 0.414 0.443 0.439 0.432 0.469	0.842 0.946 0.963 0.962 0.969 0.957 0.914 0.909 0.820	LOSS C TOT 0.061 0.020 0.014 0.016 0.014 0.020 0.037 0.038 0.077	OEFF PROF 0.061 0.020 0.014 0.016 0.014 0.020 0.037 0.038 0.077	LOSS 1 TOT 0.030 0.010 0.007 0.008 0.008 0.011 0.020 0.020 0.020	PROF

(c) Reading number 1828

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.648 2: 23.868 2: 23.086 2: 20.731 2: 17.607 1: 14.531 1: 12.294 1: 11.565 1: 10.843 1:	OUT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	ABS IN 0.0 0.0 0.0 0.0 -0.0 0.0 0.0	BETAM OUT 21.2 19.7 19.7 22.2 25.1 27.3 28.3 28.7 31.5	REL IN 56.5 55.4 54.5 51.3 47.1 42.0 37.5 36.0 34.7	BETAM OUT 51.1 49.1 47.8 43.3 36.2 26.0 18.0 15.0	289.0 288.9 288.2 288.0 287.9 287.8	TEMP RATIO 1.048 1.046 1.044 1.040 1.036 1.034 1.029 1.027	TOTAL IN 10.10 10.13 10.14 10.14 10.13 10.13 10.13	PRESS RATIO 1.152 1.157 1.153 1.139 1.124 1.115 1.097 1.094
RP 1 2 3 4 5 6 7 8 9	157.9 158.0	VEL 0UT 155.7 160.8 160.9 159.1 156.4 156.4 156.4 151.8	REL IN 283.5 278.4 272.0 253.6 230.1 208.2 193.0 188.3 182.8	VEL 0UT 231.3 231.5 225.7 202.5 175.6 156.5 144.8 142.1 131.9	MERID IN 156.3 157.9 158.0 158.5 156.7 154.7 153.2 152.3 150.3	VEL 0UT 145.2 151.4 151.4 147.3 141.6 140.7 137.7 137.2 129.5	TANG IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	VEL 0UT 56.3 54.3 54.3 60.0 66.3 72.7 74.2 75.1 79.3	WHEEL IN 236.5 229.3 221.4 198.0 168.4 139.3 117.5 110.7 104.0	SPEED OUT 236.4 229.3 221.6 198.9 170.1 141.3 119.0 111.9 104.8
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.469 0.474 0.475 0.476 0.464 0.460 0.457 0.451	OUT 0.456 0.472 0.473 0.468 0.461 0.468 0.463 0.463 0.449	REL M IN 0.850 0.835 0.817 0.762 0.691 0.625 0.580 0.565	ACH NO OUT 0.677 0.663 0.596 0.518 0.463 0.429 0.421 0.390	MERID M. IN 0.469 0.474 0.475 0.476 0.471 0.464 0.460 0.457	ACH NO OUT 0.425 0.444 0.445 0.434 0.418 0.416 0.408 0.407				PEAK SS MACH NO 1.135 1.101 1.069 0.943 0.691 0.625 0.580 0.565 0.548
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN -1.9 -2.0 -1.9 -1.6 -0.4 0.6 1.4 1.8 2.5	DENCE SS -6.5 -6.9 -7.2 -8.7 -10.8 -12.8 -13.5 -13.4 -12.9	DEV 5.9 5.4 5.9 8.0 12.0 14.5 14.6 13.0	D-FACT 0.335 0.315 0.319 0.371 0.431 0.464 0.469 0.465	0.862 0.927 0.936 0.938 0.931 0.933 0.944 0.946	LOSS C TOT 0.058 0.030 0.027 0.026 0.031 0.033 0.027 0.026 0.093	OEFF PROF 0.058 0.030 0.027 0.026 0.031 0.033 0.027 0.026 0.093	LOSS 1 TOT 0.028 0.015 0.013 0.014 0.017 0.018 0.014	PROF 0.028 0.015 0.013 0.014 0.017 0.018 0.014

(d) Reading number 1827

RP 1 2 3 4 5 6 7 8 9	RAD I IN 24.648 2 23.868 2 23.086 2 20.731 2 17.607 1 14.531 1 12.294 1 11.565 1 10.843 1	OUT 4.638 3.876 3.114 0.828 7.780 4.732 2.446 1.684	IN 0.0 0.0 0.0 0.0 0.0	BETAM OUT 24.2 21.8 22.1 24.7 27.4 30.0 30.7 31.3 34.0	IN 58.4 57.2 56.3 53.2 49.1 44.1 39.6 38.0		288.9 288.7 288.5 288.1 287.9 287.7 287.9 287.8	TEMP RATIO 1.053 1.050 1.048 1.045 1.039 1.035 1.031 1.029	10.10 10.13 10.14 10.13 10.14 10.14 10.14	RATIO 1.164 1.168 1.165 1.153 1.126 1.118 1.106
RP 1 23 4 5 6 7 8 9	148.1 149.2 146.8 143.8 142.2	OUT 150.8 155.7 156.1 155.4 147.8 149.6 150.5 150.3	266.9 249.1 224.1 200.3	0UT 222.6 224.4 218.3 195.6 166.8 145.7 136.3 133.0	[N 146.0 147.9 148.1 149.2 146.8 143.8 142.2 142.0	VEL 0UT 137.5 144.6 141.1 131.2 129.6 129.5 128.5 119.6	IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	VEL OUT 61.9 57.9 58.9 65.0 74.8 76.8 78.0 80.7	139.6 117.8 111.0 103.7	SPEED OUT 237.0 229.5 222.4 200.4 171.0 141.5 119.3 112.1 104.5
RP 1 2 3 4 5 6 7 8 9	IN 0.437 0.443 0.444 0.447 0.440 0.431 0.426	0.455 0.457 0.456 0.434	IN 0.832 0.817 0.799 0.747 0.671 0.600	0.490 0.429 0.402	0.443 0.444 0.447 0.440 0.431	OLT 0.401 0.401 0.423 0.423 0.414 0.386 0.382 0.382 0.382 0.380 0.353			MERID VEL R 0.942 0.978 0.976 0.946 0.894 0.901 0.910 0.905	PEAK SS MACH NO 1,166 1,128 1,098 0,976 0,739 0,600 0,553 0,540 0,522
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	MEAN -0.0		DEV 6.7 6.1 6.5 8.5 13.9 15.7 14.7 12.9	D-FACT 0.370 0.338 0.347 0.402 0.460 0.504 0.499 0.500 0.547	0.836	LOSS C TOT 0.078 0.038 0.035 0.043 0.054 0.047 0.036 0.033 0.093	PR0F 0.078	LOSS F TOT 0.037 0.018 0.017 0.022 0.028 0.026 0.019 0.018 0.048	PROF 0.037

(e) Reading number 1824

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 24.648 24.638 23.868 23.876 23.086 23.114 20.731 20.828 17.607 17.780 14.531 14.732 12.294 12.446 11.565 11.684 10.843 10.922	-0.0 -0.0 -0.0 -0.0 -0.0 -0.0	TAM OUT 28.8 25.3 25.6 28.3 31.3 33.4 34.0 34.8 38.0	REL IN 60.2 59.1 58.3 55.4 51.5 46.7 42.3 40.6 39.1	BETAM OUT 52.7 50.2 48.8 44.8 39.1 28.1 18.6 14.9 10.6	288.7 288.5 288.3 288.0 288.0 287.9	RATIO 1.060 1.055 1.054 1.048 1.041 1.037 1.032	IN 10.11 10.13 10.14 10.14 10.13 10.13	PRESS RATIO 1.176 1.180 1.179 1.158 1.134 1.124 1.111 1.105 1.095
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 135.8 145.2 137.1 151.4 137.2 152.4 137.4 148.4 134.1 140.5 131.6 142.0 129.9 142.4 129.6 142.2 128.2 137.4	273.3 2 266.8 2 261.4 2 241.9 1 215.6 1! 191.8 1 175.5 1	OUT 10.0 13.7 08.5 84.0 54.6 34.3 24.5 20.9	137.1 137.2	OUT 127.2 136.8 137.4 130.6 120.0 118.5 118.0 116.8	TANG IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	VEL OUT 70.0 64.8 65.9 70.5 73.1 78.2 79.7 81.1 84.6	IN 237.2 228.9 222.4 199.1 168.8 139.5 118.0	SPEED OUT 237.1 229.0 222.7 200.0 170.5 141.4 119.5 112.1 104.8
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.405 0.421 0.409 0.441 0.445 0.411 0.434 0.400 0.412 0.393 0.417 0.388 0.419 0.387 0.404	IN 0.815 0 0.797 0 0.781 0 0.723 0 0.644 0 0.573 0 0.524 0	0UT .609 .623 .608	IERID MA IN 0.405 0.409 0.410 0.411 0.400 0.393 0.388 0.387 0.383	0UT 0.369 0.399			VEL R 0.937 0.998	1.127 1.002 0.780 0.573 0.524 0.509
RP 1 2 3 4 5 6 7 8 9	PERCENT IN SPAN MEA 5.00 1.10.00 1.15.00 1.30.00 2.50.00 4.70.00 5.85.00 6.95.00 6.95.00 6.	8 -2.9 6 -3.2 9 -3.3 5 -4.6 1 -6.3 3 -8.1 1 -8.8 4 -8.8	7.5 6.4 6.8 9.5 14.9 16.5 15.2	D-FACT 0.427 0.382 0.390 0.449 0.511 0.552 0.549 0.553 0.605	0.789	LOSS CO TOT 0.116 0.062 0.058 0.062 0.060 0.054 0.040 0.054 0.105	PROF 0.116		PARAM PROF 0.054 0.030 0.028 0.032 0.031 0.030 0.021 0.028 0.054

TABLE IX. - Concluded.

(f) Reading number 1841

RADII IN OUT 24.648 24.638 23.868 23.876 23.086 23.114 20.731 20.828 17.607 17.780 14.531 14.732 12.294 12.446 11.565 11.684 10.843 10.922	ABS BETAM IN OUT 0.0 32.5 0.0 28.3 0.0 28.0 0.0 30.4 0.0 33.1 0.0 34.7 0.0 35.5 0.0 36.6 0.0 40.1	60.3 51.0 59.3 49.2 56.6 45.1 52.7 39.2 47.9 28.2 43.3 19.3	IN RATIO 288.5 1.063 288.4 1.058 288.3 1.056 288.1 1.051 288.0 1.043	IN RATIO 10.12 1.178 10.13 1.184 10.14 1.181 10.13 1.165 10.13 1.141 10.13 1.131 10.13 1.112
128.8 140.8 130.5 147.0 131.4 148.6 131.4 145.8 128.8 138.8 126.4 140.4 124.8 137.6	REL VEL IN OUT 269.5 200.1 263.8 205.6 257.5 200.8 238.5 178.1 212.6 150.1 188.4 131.0 171.6 118.7 166.8 114.2 161.0 103.8	MERID VEL IN OUT 128.8 118.8 130.5 129.5 131.4 131.2 131.4 125.7 128.8 116.3 126.4 115.5 124.8 112.0 124.5 110.1 122.8 102.1	TANG VEL IN OUT 0.0 75.7 0.0 69.6 0.0 69.8 0.0 73.8 0.0 75.9 0.0 79.9 0.0 80.0 0.0 81.6 0.0 86.0	WHEEL SPEED IN OUT 236.8 236.7 229.2 229.3 221.5 221.8 199.0 199.9 169.2 170.9 139.8 141.7 117.8 119.2 111.0 112.2 104.1 104.9
0.384 0.406 0.377 0.412 0.372 0.405	REL MACH NO IN OUT 0.803 0.579 0.786 0.598 0.768 0.585 0.712 0.520 0.634 0.439 0.562 0.384 0.511 0.349 0.497 0.336 0.480 0.305	MERID MACH NO IN OUT 0.384 0.344 0.389 0.376 0.392 0.382 0.392 0.367 0.384 0.340 0.377 0.339 0.372 0.329 0.371 0.324 0.366 0.300		MERID PEAK SS VEL R MACH NO 0.922 1.210 0.992 1.171 0.999 1.136 0.956 1.015 0.903 0.797 0.914 0.562 0.897 0.511 0.884 0.497 0.831 0.480
PERCENT INC SPAN MEAN 5.00 3.0 10.00 2.9 15.00 2.9 30.00 3.6 50.00 5.2 70.00 6.5 85.00 7.2 90.00 7.5 95.00 8.1	SS -1.6 8.4	0.472 0.759	TOT PROF 0.142 0.142	TOT PROF 0.064 0.064

TABLE X. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51 WITH STAGE 51B A-51 AT 100 PERCENT DESIGN SPEED

(a) Reading number 1766

RP 1 23 4 5 6 7 8 9	RADI IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	OUT 24.608 23.806 23.167 20.996 8.080 5.110 2.786	ABS IN 17.1 14.9 15.4 17.5 20.8 23.9 24.9 24.9 26.5	BETAM OUT 1.3 1.1 0.7 0.2 0.8 1.7 2.5 3.1 4.2	REL IN 17.1 14.9 15.4 17.5 20.8 23.9 24.9 24.9 26.5	BETAM OUT 1.3 1.1 0.7 0.2 0.8 1.7 2.5 3.1 4.2	IN 301.7 300.9 300.4 299.8 299.2 298.5 296.4	TEMP RATIO 0.997 0.998 0.997 0.995 0.996 0.997 0.999 1.001	TOTAL IN 11.31 11.55 11.55 11.53 11.50 11.43 11.11 10.95 10.80	PRESS RATIO 0.979 0.978 0.903 0.995 0.996 0.997 0.996 0.989 0.974
RP 1 2 3 4 5 6 7 8 9	196.5 194.6 185.2 179.8	OUT 165.9 174.1 176.8 180.0 181.8 182.0 170.7	197.8 196.5 194.6 185.2 179.8	YEL 0UT 165.9 174.1 176.8 180.0 181.8 182.0 170.7 161.0 145.7	IN 177.2 189.6 189.9 188.6 183.7 177.9 168.0 163.0	VEL 0UT 165.8 174.0 176.8 180.0 181.8 181.9 170.5 160.8 145.3	IN 54.7 50.6 52.3 59.4 69.8	VEL OUT 3.6 3.4 2.1 0.7 2.7 5.6 7.4 8.6 10.8	NHEEL IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	IN 0.548 0.583	ACH NO QUT 0.488 0.514 0.523 0.534 0.541 0.542 0.507 0.430	IN 0.548 0.563 0.586 0.589 0.586 0.591	ACH NO OUT 0.488 0.514 0.523 0.534 0.541 0.542 0.507 0.478 0.430	0.565 0.562 0.548 0.531 0.502	.0UT 0.488 0.514 0.523 0.534 0.541				0.531 0.553 0.556
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 2.8 0.5 0.8 2.0 3.4 4.1 3.3 3.0 4.3	DENCE SS -6.4 -8.7 -8.4 -7.2 -5.8 -5.1 -5.8 -6.1	DEV 5.3 5.1 4.7 4.2 5.0 6.7 7.2	D-FACT 0.240 0.227 0.220 0.213 0.197 0.174 0.193 0.248		LOSS C TOT 0.112 0.105 0.060 0.034 0.021 0.016 0.021 0.061 0.155	OEFF PROF 0.112 0.105 0.060 0.034 0.021 0.016 0.021 0.061 0.155	LOSS 1 TOT 0.055 0.050 0.028 0.014 0.005 0.005 0.014	.PROF 0.055 0.050 0.028 0.014 0.008 0.005 0.005

(b) Reading number 1767

RP 1 2 3 4 5 6 7 8 9	RADII IN OU 24.595 24.6 23.861 23.8 23.127 23.1 20.917 20.9 17.955 18.0 14.945 15.1 12.647 12.7 11.869 11.9	T IN 19.08 19.08 17.0 67 17.096 20.080 23.010 25.086 26.066 26.0	7 1.6 6 1.5 8 1.1 0.8 2 1.1 9 1.9 6 2.2	IN 19.7 17.6 17.8 20.1 23.2 25.9 26.6 26.4		IN 303.9 302.8 302.2 301.2 300.1 298.9 296.5 295.9	TEMP RATIO 0.995 0.997 0.997 0.996 0.996 0.997 1.000	TOTAL IN 11.58 11.82 11.82 11.65 11.65 11.10 11.01 10.88	PRESS RATIO 0.982 0.977 0.986 0.991 0.998 0.998 0.999
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN 00 179.8 161 190.6 166 191.7 171 192.7 171 189.8 171 185.3 160 173.4 151 170.6 144 166.0 13	JT IN 1.7 179. 3.4 190. 1.2 191. 5.8 192. 5.2 189. 9.2 185. 5.3 175. 5.8 170.	8 161.7 6 168.4 7 171.2 7 173.8 8 173.2	IN 169.2 181.7 182.5 181.0 174.4 166.7 155.1	171.2 173.8 173.2 169.1	IN 60.7 57.5 58.5 66.2 74.9 81.0 77.6	3.2 2.3 3.4 5.7 6.0 7.7	IN 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	0.529 0. 0.563 0. 0.538 0. 0.572 0. 0.564 0. 0.551 0. 0.516 0.	UT IN 474 0.52 495 0.53 504 0.53 514 0.57 513 0.53 501 0.55 459 0.51	8 0.504 2 0.514 4 0.513 6 0.501 6 0.459 7 0.430	IN 0.498 0.537 0.540 0.537 0.518 0.495 0.461	OUT 0.474 0.495 0.504 0.514 0.513 0.501 0.459			VEL R 0.935 0.927 0.938 0.980 0.993 1.015	0.533 0.572 0.554 0.551 0.516 0.507
RP 1 2 3 4 5 6 7 8 9		INCIDENCE MEAN SS 5.4 -3. 3.1 -6. 3.2 -6. 4.6 -4. 5.8 -3. 6.1 -3. 5.0 -4 4.4 -4 6.9 -2	5 5.7 1 5.5 1 5.1 6 4.8 3 5.2 1 6.2 1 6.4	0.253 0.248 0.239 0.235 0.222 0.207 0.208	0. 0. 0. 0. 0. 0.	TOT 0.106	0.106 0.117 0.072 0.043 0.020 0.010 0.003 0.067	TOT 0.052	PROF 0.052 0.055 0.033 0.018 0.007 0.003 0.001

(c) Reading number 1768

RP 1 23 4 5 6 7 8 9	24.595 24.60 23.861 23.88 23.127 23.16 20.917 20.99 17.955 18.08 14.945 15.11 12.647 12.78	86 18.8 57 18.8 96 20.7 80 23.9 10 26.8 86 28.8 66 29.3	OUT 2.0 2.1 1.6 0.6 0.9 1.6 2.3 3.7	IN 20.7 18.8 18.8 20.7 23.9 26.8 28.8 29.3	0UT 2.0 2.1 1.6 0.6 0.9 1.6 2.3	IN 303.6 302.8 301.9 300.7 299.0 298.2 297.1 296.7	TEMP RATIO 0.997 0.998 0.998 0.998 0.998 0.998 0.999	IN 11.69 11.83 11.78 11.63 11.42 11.31 11.22	0.979 0.936 0.993 0.999 1.002 0.992 0.978
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 175.5 153 159.3 159 154 166.3 151 165.0 133 159.7 121	IN 175.5 .7 182.3 .6 181.6 .0 178.2 .6 169.9 .9 166.3 .3 165.3	159.7 160.6 159.0 154.6 151.9 143.3 133.6	1N 164.1 172.5 171.9 166.7 155.3 148.4 144.9	159.6 160.5 159.0 154.5 151.9 143.1 133.3 120.7	IN 62.1 58.9 58.6 63.0 68.9 75.1 79.6 80.7 84.5	2.6 4.4 5.8 8.7 11.2	1N 0. 0. 0. 0. 0.	0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH IN OU 0.516 0.4 0.538 0.4 0.536 0.4 0.527 0.4 0.502 0.4 0.492 0.4 0.490 0.4 0.489 0.3 0.473 0.3	T IN 49 0.516 68 0.539 72 0.536 68 0.527 56 0.502 48 0.492 22 0.490 93 0.489	0.449 0.468 0.472 0.468 0.456 0.448 0.422	1N 0.482 0.509 0.508 0.493 0.459 0.439 0.429	ACH NO OUT 0.449 0.468 0.471 0.468 0.455 0.448 0.422 0.392 0.354			MERID VEL R 0.936 0.934 0.954 0.995 1.023 0.988 0.926 0.890	PEAK SS MACH NO 10.516 0.503 0.503 0.502 0.502 0.402 0.490 0.469 0.473
RP 1 2 3 4 5 6 7 8 9	SPAN M 5.00 10.00 15.00 30.00	INCIDENCE EAN SS 6.4 -2.8 4.4 -4.8 4.2 -5.0 5.2 -4.0 6.5 -2.7 7.0 -2.2 7.2 -1.9 7.3 -1.8 9.7 0.6	6.1 5.6 4.6 5.1 5.9	0.282		TOT 0.137 0.116 0.077 0.039 0.003	0.137 0.116 0.077 0.039 0.003 -0.012 0.055	TOT 0.057 0.055 0.035 0.016 0.001	PROF 0.057 0.055 0.055 0.016 0.001 -0.004 0.014

(d) Reading number 1769

3 5 6 7 8	RADI IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	23.167 20.996 8.080 5.110 2.786 1.966	IN 25.8 23.4 24.0 25.8 28.6 30.9 32.6 33.4	OUT 3.5 3.4 2.7 1.4 1.4 2.0 3.2 4.6	IN 25.8 23.4 24.0 25.8 28.6 30.9 32.6 33.4	OUT 3.5 3.4 2.7 1.4 1.4 2.0 3.2 4.6	IN 305.9 304.8 304.0 302.3 300.2 298.9 297.6 297.2	0.998	IN 11.92 12.04 11.99 11.80 11.52 11.43 11.29	RATIO 0.975 0.975 0.982 0.994 1.000 0.995 0.987
RP 1 2 3 4 5 6 7 8 9	164.3 170.8 170.3 165.8 156.4 154.1 151.6 151.4 146.1	0UT 142.3 146.6 147.4 145.9 137.9 131.4 119.2 107.9 97.3	164.3 170.8 170.3 165.8 156.4 154.1 151.6 151.4 146.1	0UT 142.3 146.6 147.4 145.9 137.9 131.4 119.2 107.9 97.3	IN 147.9 156.7 155.5 149.3 137.3 132.2 127.8 126.4 117.3	146.4 147.3 145.9 137.9 131.3 119.0 107.5 96.8	IN 71.6 67.8 69.3 72.3 74.8 79.2 81.6 83.4 87.0	7.0 3.5 3.3 4.6 6.7 8.7 9.8	IN 0. 0. 0. 0. 0.	0.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.479 0.500 0.499 0.487 0.454 0.447 0.430	OUT 0.413 0.427 0.430 0.427 0.404 0.385 0.349 0.316 0.284	REL M IN 0.479 0.500 0.499 0.487 0.460 0.454 0.447 0.447	ACH NO OUT 0.413 0.427 0.430 0.427 0.404 0.385 0.349 0.316 0.284	MERID M IN 0.451 0.459 0.456 0.438 0.404 0.389 0.377 0.373 0.346	ACH NO OUT 0.412 0.426 0.429 0.427 0.404 0.385 0.349 0.314 0.282			MERID VEL R 0.950 0.954 0.947 0.977 1.004 0.993 0.931 0.851	PEAK SS MACH NO 0.479 0.500 0.499 0.407 0.454 0.447 0.447
RP 1 2 3 4 5 6 7 8 9		INCI MEAN 11.5 9.0 9.4 10.3 11.2 11.1 11.0 11.5	SS 2.3	7.6	D-FACT 0.321 0.305 0.302 0.292 0.281 0.291 0.338 0.404 0.450	0.	TOT 0.174 0.161 0.112 0.040	0.161 0.112 0.040 -0.003 0.035 0.102 0.184	TOT 0.095 0.076 0.051 0.017	PROF 0.085 0.076 0.051 0.017 -0.001 0.010 0.025 0.043

TABLE X. - Concluded.

(e) Reading number 1771

RP 1 2 3 4 5 6 7 8 9	IN OUT 24.595 24.608 23.861 23.866 23.127 23.167 20.917 20.996 17.955 18.080 14.945 15.110 12.647 12.786 11.869 11.966	IN QUT 28.6 4.5 25.0 4.0 25.1 3.1 27.8 1.6 30.8 1.5 32.8 2.3 33.8 3.5	IN OUT 28.6 4.5 25.0 4.0 25.1 3.1 27.8 1.6 30.8 1.5 32.8 2.3 33.8 3.5 34.6 4.7	306.7 1.000 305.4 1.001 304.6 0.999 302.6 0.997 300.5 0.998 299.1 0.998 297.7 0.998 297.2 0.999	TOTAL PRESS IN RATIO 11.94 0.976 12.08 0.973 12.03 0.979 11.81 0.995 11.58 0.998 11.47 0.993 11.31 0.985 11.25 0.977 11.11 0.977
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 158.9 139.5 167.6 142.2 166.6 142.7 160.8 141.4 152.7 132.5 150.7 124.3 147.8 110.8 147.6 101.9 143.1 92.3	167.6 142.2 166.6 142.7 160.8 141.4 152.7 132.5 150.7 124.3 147.8 110.8	MERID VEL IN OUT 139.5 138.1 152.0 141.9 151.0 142.4 142.2 141.4 131.2 132.4 126.7 124.2 122.8 110.6 121.5 101.5 113.1 91.8	70.7 10.0 70.6 7.7 75.1 3.9 78.1 3.6 81.7 4.9 82.2 6.7 83.9 8.4	0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.462 0.401 0.490 0.413 0.488 0.415 0.471 0.413 0.448 0.387 0.443 0.364 0.435 0.324 0.435 0.298 0.421 0.269	REL MACH NO IN OUT 0.462 0.401 0.490 0.413 0.488 0.415 0.471 0.413 0.448 0.387 0.443 0.364 0.435 0.324 0.435 0.298 0.421 0.269	MERID MACH NO IN OUT 0.406 0.400 0.444 0.412 0.442 0.414 0.417 0.413 0.385 0.387 0.372 0.363 0.362 0.323 0.358 0.297 0.333 0.268		MERID PEAK SS VEL R MACH NO 0.939 0.538 0.934 0.490 0.944 0.428 0.994 0.499 1.009 0.506 0.980 0.493 0.901 0.459 0.836 0.475 0.812 0.508
RP 1 2 3 4 5 6 7 8 9	SPAN MEAN 5.00 14.3	5.1 8.5 1.3 8.1 1.2 7.1 3.1 5.6 4.2 5.7 3.8 6.5 3.1 7.7 3.6 8.8	0.329 0.	LOSS COEFF TOT PROF 0.173 0.173 0.179 0.179 0.137 0.137 0.034 0.034 0.017 0.017 0.059 0.059 0.121 0.121 0.186 0.186 0.196 0.196	TOT PROF 0.084 0.084

TABLE XI. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51

WITH STAGE 51B B-51 AT 100 PERCENT DESIGN SPEED

(a) Reading number 1796

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.595 23.861 23.127 20.917 17.955 14.945 12.647 11.869 11.087	OUT 24.608 23.886 23.167 20.996 18.080 15.110 12.786	ABS IN 14.2 12.9 13.5 15.5 18.8 22.6 23.9 23.8 25.8	BETAM OUT 1.0 0.8 0.5 0.2 0.6 1.3 2.3 3.4 5.3	IN 14.2 12.9 13.5 15.5 18.8 22.6 23.9 23.8	BETAM OUT 1.0 0.8 0.5 0.2 0.6 1.3 2.3 3.4 5.3	IN 301.3 301.0 300.2 299.2 298.2 298.1 297.0 296.1	L TEMP RATIO 0.995 0.996 0.997 0.995 0.998 0.997 0.997 0.999	IN 11.23 11.47 11.45 11.38 11.23 11.35 11.15	0.987 1.002 0.990
RP 1 2 3 4 5 6 7 8 9	IN 206.0 216.3 216.1 215.1 206.9 208.5 202.9	179.2 189.3 191.4 192.4 194.2 195.7 191.5	216.1 215.1 206.9 208.5 202.9 197.4	0UT 179.2 189.3 191.4 192.4 194.2 195.7 191.5	IN 199.7 210.9 210.1 207.3 195.9 192.5 185.5	192.4 194.2 195.6 191.4	IN 50.5 48.3 50.5 57.4 66.6 80.0	G VEL OUT 3.0 2.7 1.6 0.5 2.0 4.3 7.6 10.9 15.3	IN 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8	IN 0.614 0.648 0.648 0.646 0.620 0.625 0.609	ACH NO OUT 0.530 0.562 0.570 0.574 0.580 0.585 0.573 0.494	IN 0.614 0.648	0.580 0.585	MERID M IN 0.595 0.631 0.630 0.622 0.587 0.578 0.557	OUT 0.530 0.562 0.570 0.574 0.580 0.585 0.573				0.648 0.648 0.646 0.620 0.625 0.609 0.592
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00	MEAN -0.1	SS -9.3	DEV 5.0 4.8 4.5 4.2 4.7 5.5 6.5 7.5		0.	TOT 0.145 0.110	0.145 0.110 0.068 0.052 -0.010 0.042 0.045	TOT 0.071 0.052 0.031 0.022	PROF 0.071 0.052 0.031 0.022 -0.003 0.013 0.011

(b) Reading number 1797

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	OUT 24.608 33.886 33.167 20.996 8.080 5.110 2.786 1,966	ABS IN 19.4 17.2 17.5 19.8 23.0 25.4 26.5 26.5 28.5	BETAM OUT 1.6 1.5 1.1 0.8 1.2 1.9 2.2 3.0 4.1	REL IN 19.4 17.2 17.5 19.8 23.0 25.4 26.5 26.5 28.5	BETAM OUT 1.6 1.5 1.1 0.8 1.2 1.9 2.2 3.0 4.1	TOTAL IN 304.5 303.5 303.0 301.7 300.5 299.0 296.7 296.1 296.3	TEMP RATIO 0.995 0.995 0.996 0.996 0.996 0.998 1.001 1.000	TOTAL IN 11.66 11.88 11.87 11.80 11.67 11.50 11.13 11.05	PRESS RATIO 0.972 0.973 0.984 0.990 0.997 1.000 1.001 0.986 0.968
RP 1 2 3 4 5 6 7 8 9	206.4 206.0 202.3 198.0 186.6	VEL 0UT 169.6 177.8 181.7 184.3 184.7 182.0 169.1 158.8 143.8	IN 194.2 204.4 206.4 206.0 202.3 198.0	VEL 0UT 169.6 177.8 181.7 184.3 184.7 182.0 169.1 158.8 143.8	IN 183.2 195.3 196.8 193.9 186.3 178.9 167.1	D VEL 0UT 169.5 177.8 181.7 184.3 184.7 181.9 169.0 158.6 143.4	TAN IN 64.5 60.4 62.1 69.6 79.0 85.0 83.2 82.4 86.3	VEL 0UT 4.6 4.7 3.6 2.5 3.8 6.2 6.4 8.2	WHEEL IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.573 0.607 0.613 0.603 0.557 0.551 0.539	OUT 0.498 0.524 0.537 0.546 0.548 0.541 0.502 0.470	REL M IN 0.573 0.607 0.613 0.613 0.603 0.591 0.557 0.551	ACH NO OUT 0.498 0.524 0.537 0.546 0.548 0.541 0.502 0.470 0.424	0.534 0.499	0UT 0.498 0.524 0.537 0.546 0.548				0.557 0.551
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 5.1 2.7 2.9 4.2 5.6 5.6 4.9 4.6 6.3	DENCE SS -4.1 -6.5 -6.3 -4.9 -3.6 -4.3 -4.5 -2.8	DEV 5.6 5.5 5.1 4.8 5.3 6.2 6.4 7.1 8.0	D-FACT 0.277 0.259 0.250 0.241 0.219 0.197 0.234 0.297	0: 0: 0: 0: 0: 0: 0: 0: 0:	LOSS C TOT 0.143 0.121 0.072 0.044 0.013 -0.001 -0.005 0.073 0.177	PROF 0.143 0.121 0.072 0.044 0.013 -0.001		PROF 0.070 0.057 0.033 0.018 0.004 -0.000 -0.001 0.017

(c) Reading number 1798

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	OUT 4.608 3.886 3.167 20.996 8.080 5.110 2.786 1.966	ABS 1N 20.5 19.3 18.7 20.6 23.6 26.5 28.5 29.2 31.9	BETAM OUT 1.9 2.0 1.5 0.6 0.8 1.4 2.0 3.4	REL IN 20.5 19.3 18.7 20.6 23.6 26.5 28.5 29.2 31.9	BETAM OUT 1.9 2.0 1.5 0.6 0.8 1.4 2.0 3.4 4.8	TOTAL IN 304.6 303.6 303.0 301.2 299.6 298.7 297.7 297.4 297.1	TEMP RATIO 0.996 0.998 0.997 0.996 0.997 0.998 0.998 0.998	IN 11.74 11.92 11.88 11.73	PRESS RATIO 0.975 0.977 0.985 0.991 0.999 1.002 0.990 0.974
RP 1 2 3 4 5 6 7 8 9	195.8 192.9 184.0 179.3 179.5	VEL 0UT 163.3 170.6 171.9 170.6 166.7 164.0 156.5 146.7 134.0	184.0 179.3 179.5 179.9	VEL 0UT 163.3 170.6 171.9 170.6 166.7 164.0 156.5 146.7 134.0	184.5 185.5 180.5 168.6 160.5 157.7 157.0	VEL 0UT 163.2 170.5 171.9 170.6 166.6 164.0 156.4 146.4	TAN IN 65.6 64.7 62.7 67.8 73.6 79.9 85.7 87.9 91.7	G VEL OUT 5.5 5.9 4.5 1.9 2.4 4.0 5.5 8.8	жнеец in 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M/IN 0.551 0.578 0.580 0.572 0.534 0.535 0.515	OUT 0.478 0.501 0.506 0.504 0.492 0.485 0.462 0.433 0.394	REL M IN 0.551 0.578 0.580 0.572 0.546 0.532 0.534 0.535 0.515	ACH NO OUT 0.478 0.501 0.506 0.504 0.492 0.485 0.462 0.433 0.394	MERID M IN 0.516 0.546 0.536 0.536 0.500 0.476 0.469 0.467 0.437	OUT 0.478 0.501 0.506 0.504 0.492 0.485 0.462				0.578 0.580 0.572 0.546 0.532 0.534 0.535
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 6.2 4.9 4.0 5.1 6.2 6.6 6.9 7.3 9.7	DENCE SS -3.0 -4.3 -5.2 -4.1 -3.0 -2.5 -2.2 -1.8 0.6	DEV 6.0 6.0 5.5 4.6 4.9 5.6 6.2 7.5 8.8	D-FACT 0.284 0.270 0.258 0.257 0.232 0.211 0.240 0.288 0.329	0. 0. 0. 0. 0. 0.	LOSS (TOT 0.135 0.116 0.075 0.047 0.008 -0.014 0.056 0.149	PROF 0.135 0.116 0.075 0.047 0.008 -0.014 0.056 0.149	LOSS 1 TOT 0.066 0.055 0.035 0.019 0.003 -0.004 0.014	PROF 0.066 0.055 0.035 0.019 0.003 -0.004 0.014

(d) Reading number 1800

RP 1 2 3 4 5 6 7 8 9	RADII IN 24.595 24 23.861 23 23.127 23 20.917 20 17.955 18 14.945 15 12.647 12 11.869 11	OUT .608 .886 .167 .996 .080 .110	IN 24.2 21.6 21.3 23.7 26.5 29.1 31.3 31.4	BETAM OUT 2.3 2.6 2.1 1.0 1.1 1.7 2.5 3.9 5.2	IN 24.2 21.6 21.3 23.7 26.5 29.1 31.3 31.4	BETAM OUT 2.3 2.6 2.1 1.0 1.1 1.7 2.5 3.9 5.2	IN 306.1 305.2 304.5 302.4 300.5 299.1 298.0	TEMP RATIO 0.998 0.998 0.997 0.996 0.997 0.998 0.998 0.998	TOTAL IN 11.91 12.10 12.09 11.86 15.59 11.47 11.35 11.32	PRESS RATIO 0.976 0.973 0.979 0.992 0.997 0.994 0.989 0.974
RP 1 2 3 4 5 6 7 8 9	178.3 1 188.4 1 189.4 1 183.7 1 174.7 1 170.7 1 169.3 1 169.9 1	OUT 55.1 61.2 63.0 61.0 53.5 48.1 40.4	188.4	OUT 155.1 161.2 163.0 161.0 153.5 148.1 140.4 129.7	IN 162.6 175.2 176.5 168.3 156.3 149.2 144.6	129.4	IN 73.1 69.2 68.8 73.7 78.0 83.0 87.9	VEL 0UT 6.2 7.4 5.9 2.8 2.9 4.4 6.1 8.8 10.7	IN 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	0.554 (0.558 (0.542 (0.516 (0.505 (0.501 (0.503 (OUT).452).471).477).473).451).436).436	IN 0.522 0.554	0.477 0.473 0.451 0.436 0.413	IN	OUT 0.451 0.471 0.477 0.473 0.451 0.436 0.412			VEL R 0.953 0.919 0.923 0.957 0.982 0.992 0.970	0.516 0.505 0.501 0.503
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI. MEAN 9.9 7.1 6.7 8.1 9.1 9.2 9.7 9.5 12.2	SS 0.7	DEV 6.4 6.7 6.1 5.0 5.2 5.9 6.7 8.0 9.2		0.	TOT 0.141	0.141 0.142 0.110 0.043 0.020	TOT 0.069	PROF 0.069 0.067 0.050 0.018 0.007 0.010 0.018 0.039

(e) Reading number 1801

RP 1 2 3 4 5 6 7 8 9	RAD I IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	OUT 24.608 33.886 33.167 80.996 8.080 5.110 2.786 1.966	ABS IN 26.8 22.9 23.6 25.7 28.0 30.8 32.4 33.0 35.9	BETAM OUT 3.1 3.3 2.8 1.3 1.2 1.8 2.7 4.1 5.5	REL IN 26.8 22.9 23.6 25.7 28.0 30.8 32.4 33.0 35.9	BETAM OUT 3.1 3.3 2.8 1.3 1.2 1.8 2.7 4.1 5.5	IN 307.1 306.1 305.0 303.1 300.8 299.4 298.2 297.7	TEMP RATIO 0.998 0.999 0.999 0.998 0.998 0.998 0.998	TOTAL IN 12.00 12.21 12.09 11.61 11.48 11.38 11.31 11.15	PRESS RATIO 0.975 0.969 0.982 0.992 0.998 0.995 0.985 0.976 0.973
RP 1 2 3 4 5 6 7 8 9	185.0 182.7 178.8 169.6 165.3 165.0	OUT 151.7 157.0 157.6 155.8 147.4 140.6 130.3	185.0 182.7 178.8 169.6 165.3	0UT 151.7 157.0 157.6 155.8 147.4 140.6 130.3 120.2	170.4 167.4 161.1 149.8	OUT 151.5 156.7 157.5 155.7 147.4 140.5 130.1	TAN IN 78.4 72.1 73.0 77.5 79.6 84.5 88.5 89.5 93.2	G VEL OUT 8.2 9.1 7.6 3.4 3.0 4.3 6.1 8.5	WHEEL IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M. IN 0.508 0.543 0.537 0.526 0.500 0.488 0.488 0.486 0.469	OUT 0.440 0.457 0.460 0.456 0.432 0.413 0.382 0.352 0.315	REL M IN 0.508 0.543 0.537 0.526 0.500 0.488 0.488 0.469	ACH NO OUT 0.440 0.457 0.460 0.456 0.432 0.413 0.382 0.352 0.315	MERID M. IN 0.453 0.500 0.492 0.474 0.441 0.419 0.412 0.407 0.380	OUT 0.440 0.456 0.459 0.456 0.432 0.412 0.382				0.543 0.537 0.526 0.500 0.488 0.488
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 70.00 85.00 90.00	MEAN	DENCE SS 3.3 -0.7 -0.3 1.0 1.4 1.8 1.7 2.0	7.2 7.4 6.8 5.3 5.0 6.9 8.2 9.5	D-FACT 0.325 0.313 0.301 0.301 0.291 0.293 0.336 0.384 0.435	EFF 0. 0. 0. 0. 0. 0.	LOSS (TOT 0.152 0.169 0.099 0.047 0.015 0.033 0.102 0.163 0.194		LOSS 1 TOT 0.074 0.080 0.046 0.019 0.005 0.010 0.026 0.039	PRCF 0.074 0.080 0.046 0.019 0.005 0.010 0.026

TABLE XI. - Concluded.

(f) Reading number 1807

RP 1 2 3 4 5 6 7 8 9	14.945 15.110 12.647 12.786 11.869 11.966	IN 27.5 23.7 24.0 26.4 29.5 31.8 33.0	BETAM OUT 3.6 3.8 3.0 1.4 1.4 1.9 2.8 4.3 5.7	IN 27.5 23.7 24.0 26.4 29.5 31.8 33.0 33.7	BETAM OUT 3.6 3.8 3.0 1.4 1.4 1.9 2.8 4.3 5.7	TOTAL TEMP IN RATIO 308.2 0.999 306.6 1.000 305.3 1.000 303.5 0.996 301.5 0.996 299.5 0.998 298.2 0.998 297.8 0.999 297.6 1.000	TOTAL PRESS IN RATIO 12.06 0.974 12.23 0.969 12.15 0.979 11.92 0.992 11.66 0.996 11.36 0.985 11.29 0.977 11.14 0.975
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 173.5 150.1 183.1 154.4 181.7 155.2 176.8 153.3 168.3 144.6 162.8 137.3 161.6 125.4 161.1 116.1 156.3 104.3	183.1 181.7 176.8 168.3 162.8 161.6 161.1	VEL 0UT 150.1 154.4 155.2 153.3 144.6 137.3 125.4 116.1 104.3	IN 154.0 167.7 166.0 158.3 146.5 138.4 135.6	D VEL 0UT 149.9 154.1 155.0 153.3 144.6 137.2 125.3 115.8 103.8	TANG VEL IN OUT 80.0 9.4 73.6 10.1 73.9 8.1 78.7 3.7 82.8 3.5 85.8 4.5 87.9 6.1 89.3 8.7 93.2 10.3	IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.506 0.435 0.537 0.449 0.533 0.452 0.520 0.449 0.495 0.424 0.480 0.402 0.477 0.368 0.476 0.340 0.462 0.304	IN 0.506 0.537 0.533 0.520 0.495 0.480 0.477	0.452 0.449 0.424 0.402 0.368 0.340	0.491 0.487 0.465 0.431 0.408 0.401	OUT 0.434 0.448 0.452 0.448 0.424 0.402 0.367 0.339 0.303		MERID PEAK SS VEL R MACH NO 0.973 0.563 0.919 0.537 0.934 0.533 0.968 0.520 0.987 0.526 0.991 0.513 0.924 0.484 0.864 0.489 0.827 0.534
RP 1 2 3 4 5 6 7 8	SPAN MEAN 5.00 13.2	DENCE SS 4.0 0.0 0.1 1.7 2.9 2.8 2.3 2.6 5.3	7.7 7.8 7.0 5.4 5.5 6.1 7.0 8.4 9.7		0.	LOSS COEFF TOT PROF 0.163 0.163 0.172 0.172 0.122 0.122 0.047 0.047 0.024 0.024 0.028 0.028 0.101 0.101 0.160 0.160 0.185 0.185	

TABLE XII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 51

WITH STAGE 51B C-51 AT 100 PERCENT DESIGN SPEED

(a) Reading number 1830

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	OUT 24.608 23.886 23.167 20.996 18.080 15.110 12.786	ABS IN 15.4 13.6 13.7 15.9 19.6 22.3 23.6 23.1 24.7	BETAM OUT 1.0 0.9 0.3 0.1 0.5 1.4 2.0 2.5 3.8	REL. IN 15.4 13.6 13.7 15.9 19.6 22.3 23.6 23.1 24.7	BETAM OUT 1.0 0.9 0.3 0.1 0.5 1.4 2.0 2.5 3.8	TOTAL IN 300.0 299.3 298.8 298.0 297.9 297.3 295.5 294.5	TEMP RATIO 0.995 0.997 0.999 0.997 0.996 0.998 0.999 1.001	TOTAL IN 11.15 11.32 11.33 11.36 11.36 11.28 11.03 10.89 10.71	PRESS RATIO 0.979 0.983 0.990 0.993 0.994 0.999 0.995 0.991
RP 1 2 3 4 5 6 7 8 9	ABS IN 174.5 182.8 184.3 187.2 186.0 183.8 175.3 169.9 162.9	VEL 0UT 156.0 164.0 167.3 171.4 174.6 175.4 164.2 155.4 141.3	REL IN 174.5 182.8 184.3 187.2 186.0 183.8 175.3 169.9 162.9	VEL 0UT 156.0 164.0 167.3 171.4 174.6 175.4 164.2 155.4 141.3	MERII IN 168.3 177.7 179.0 180.1 175.3 170.0 160.7 156.2 148.0	0 YEL 0UT 155.9 164.0 167.3 171.4 174.6 175.4 164.1 155.3	TAN IN 46.3 43.0 43.7 51.1 62.4 69.9 70.1 66.8 67.9	G VEL OUT 2.7 2.7 1.0 0.4 1.5 4.3 5.7 6.8 9.4	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.516 0.542 0.5547 0.558 0.554 0.522 0.506 0.484	0.460 0.460 0.485 0.495 0.509 0.519 0.522 0.488 0.461	REL M IN 0.516 0.542 0.547 0.558 0.554 0.547 0.522 0.506 0.484	ACH NO OUT 0.460 0.485 0.495 0.509 0.519 0.522 0.488 0.461 0.418	MERID M IN 0.497 0.527 0.532 0.536 0.522 0.506 0.479 0.466 0.440	ACH NO OUT 0.460 0.485 0.495 0.509 0.519 0.522 0.488 0.461 0.417				PEAK SS MACH NO 0.516 0.542 0.547 0.558 0.554 0.547 0.522 0.506 0.484
RP 1 2 3 4 5 6 7 8	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 1.1 -0.8 -0.9 0.3 2.2 2.5 2.0 1.2 2.5	DENCE SS -8.1 -10.0 -10.1 -8.8 -7.0 -6.6 -7.1 -7.9 -6.7	DEV 5.0 5.0 4.3 4.1 4.6 5.6 6.2 6.6 7.8	D-FACT 0.228 0.207 0.198 0.197 0.178 0.151 0.156 0.169	EFF 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.125 0.096 0.052 0.035 0.030 0.005 0.030	OEFF PROF 0.125 0.096 0.052 0.035 0.030 0.005 0.030	LOSS F TOT 0.061 0.045 0.024 0.011 0.002 0.008 0.015 0.029	PROF 0.061 0.045 0.024 0.014 0.011 0.002 0.008 0.015

(b) Reading number 1829

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.595 2- 23.861 2- 23.127 2- 20.917 2- 17.955 1- 14.945 1- 12.647 1- 11.869 1- 11.087 1-	OUT 4.608 3.886 3.167 0.996 8.080 5,110 2.786 1.966	ABS IN 19.0 17.3 17.2 19.8 23.2 26.0 26.9 26.8 29.4	BETAM OUT 1.6 1.6 1.1 0.7 1.2 1.8 2.3 2.8 4.3	REL IN 19.0 17.3 17.2 19.8 23.2 26.0 26.9 26.8 29.4	BETAM OUT 1.6 1.6 1.1 0.7 1.2 1.8 2.3 2.8 4.3	IN 301.9 301.2 300.7 300.1 299.0 297.8 296.0	TEMP RATIO 0.997 0.998 0.998 0.997 0.998 0.999 1.000	TOTAL IN 11.53 11.66 11.63 11.51 11.36 11.10 11.01 10.89	PRESS RATIO 0.981 0.983 0.990 0.993 0.997 0.999 0.996 0.987 0.979
RP 1 2 3 4 5 6 7 8 9	174.2 175.0 176.1 173.3 169.0 160.3 157.6	OUT 148.6 155.8 158.0 159.7 158.3 154.8	175.0 176.1 173.3 169.0 160.3 157.6	0UT 148.6 155.8 158.0 159.7 158.3 154.8 140.7	167.2 165.7 159.3 151.9 143.0 140.7	OUT 148.5 155.7 158.0 159.7 158.2 154.7	IN 54.1 51.9 51.8 59.6 68.2 74.1 72.5	G VEL OUT 4.2 4.4 3.1 2.0 3.3 4.8 5.7 6.5 8.9	HHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9	0.514 0.517 0.521 0.513 0.501	OUT 0.435 0.458 0.465 0.471	IN 0.487 0.514 0.517 0.521 0.513 0.501	0.458 0.465 0.471 0.467 0.457	MERID M IN 0.461 0.490 0.494 0.490 0.472 0.450 0.424 0.417 0.394	OUT 0.435 0.457 0.465 0.471 0.467 0.457				0.514 0.517 0.521 0.513 0.501 0.475 0.467
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 4.7 2.9 2.6 4.3 5.8 6.1 5.3 4.9 7.2	DENCE SS -4.5 -6.3 -6.6 -4.9 -3.4 -3.0 -3.8 -4.2	DEY 5.7 5.6 5.1 4.7 5.3 6.0 6.5 8.3	D-FACT 0.251 0.235 0.225 0.229 0.220 0.205 0.227 0.259 0.314	0. 0. 0. 0. 0. 0.	LOSS (707 0.126 0.101 0.057 0.042 0.021 0.004 0.031 0.093 0.163	0.101 0.057 0.042 0.021 0.004 0.031 0.093	LOSS ! TOT 0.062 0.048 0.026 0.018 0.008 0.001 0.008 0.002	PROF 0.062 0.048 0.026 0.018 0.008 0.001 0.008

(c) Reading number 1828

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	OUT 4.608 3.886 3.167 0.996 8.080 5.110 2.786 1.966	ABS IN 20.3 18.9 18.9 21.4 24.6 27.4 29.0 29.5 32.5	BETAM OUT 2.0 2.2 1.6 0.6 0.8 1.7 2.2 3.5 5.3	REL IN 20.3 18.9 18.9 21.4 24.6 27.4 29.0 29.5 32.5	DETAM OUT 2.0 2.2 1.6 0.6 0.8 1.7 2.2 3.5 5.3	TOTAL IN 302.8 302.2 300.9 299.6 298.4 297.6 296.0 295.8 296.1	TEMP RATIO 0.998 0.999 0.999 0.999 0.999 1.000 1.000	TOTAL IN 11.63 11.72 11.69 11.54 11.39 11.30 11.12 11.08 10.96	PRESS RATIO 0.979 0.984 0.991 0.997 1.001 1.000 0.995 0.985
RP 1 2 3 4 5 6 7 8 9	163.9 158.0 155.9 150.8 150.1	OUT 142.9 148.8 150.0 148.7 144.6 140.5 129.9	163.9 158.0 155.9 150.8 150.1	OUT 142.9 148.8 150.0 148.7 144.6 140.5 129.9	152.6 143.7 138.5	OUT 142.8 148.7 150.0 148.7 144.6 140.4 129.8 120.3	TAN IN 56.4 54.3 54.3 59.7 65.7 71.6 73.1 73.9 78.1	G VEL OUT 4.9 5.8 4.1 1.7 2.1 4.1 5.0 7.3	WHEEL IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.476 0.493 0.493 0.483 0.466 0.460 0.444 0.429	OLATO 0.417 0.435 0.440 0.437 0.425 0.413 0.382 0.354 0.320	REL M IN 0.476 0.493 0.493 0.483 0.466 0.460 0.444 0.429	0.440 0.437 0.425	MERID M IN 0.446 0.466 0.450 0.424 0.409 0.390 0.386 0.362	OUT 0.417 0.435 0.440 0.437 0.425				0.493 0.493 0.483 0.466 0.460 0.446
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 6.0 4.5 4.3 5.9 7.2 7.5 7.4 7.5	DENCE SS -3.2 -4.8 -4.9 -3.3 -2.0 -1.6 -1.7 -1.6	DEV 6.0 6.2 5.6 4.6 5.9 6.4 7.6 9.3	D-FACT 0.275 0.249 0.242 0.240 0.228 0.227 0.252 0.301 0.350	0. 0. 0. 0. 0. 0.	TOT 0.146 0.104 0.062 0.023 -0.008	0.104 0.062 0.023 -0.008 -0.001 0.036 0.119	TOT 0.071 0.049 0.028 0.009	0.049 0.028 0.009 -0.003 -0.000 0.009

(d) Reading number 1824

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.595 2: 23.861 2: 23.127 2: 20.917 2: 17.955 1: 14.945 1: 12.647 1: 11.869 1: 11.087 1:	OUT 4.608 3.886 3.167 0.996 8.080 5.110 2.786 1.966	IN 27.8 24.4 24.7 27.5 30.7 33.4 34.7 35.6	BETAM OUT 4.4 3.9 3.1 1.5 1.5 2.2 3.7 5.0 5.8	IN 27.8 24.4 24.7 27.5 30.7 33.4 34.7 35.6	BETAM OUT 4.4 3.9 3.1 1.5 1.5 2.2 3.7 5.0 5.8	IN 306.0 304.3 303.9 302.0 299.8 298.5 297.3 297.0	TEMP RATIO 0.998 1.000 0.998 0.997 0.999 0.999 0.999	TOTAL IN 11.89 11.95 11.74 11.49 11.38 11.26 11.20	PRESS RATIO 0.977 0.979 0.982 0.993 1.000 0.995 0.984 0.978
RP 1 2 3 4 5 6 7 8 9	157.0 157.8 152.2 141.6 139.9	OUT 132.3 136.2 137.1 134.1 125.0 116.0 100.7 91.3	157.0 157.8 152.2 141.6 139.9	0UT 132.3 136.2 137.1 134.1 125.0 116.0 100.7 91.3	IN 133.0 143.0 143.4 135.0	100.5 91.0	[N 70.2 64.8 65.8 70.2 72.4 77.1 78.5 79.8 83.3	VEL 0UT 10.2 9.3 7.4 3.5 3.3 4.5 6.4 7.9 8.4	IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.437 0.458 0.461 0.445 0.415 0.411 0.405 0.403 0.389	OUT 0.383 0.396 0.399 0.391 0.365 0.339 0.294 0.266	REL M IN 0.437 0.458 0.461 0.445 0.415 0.411 0.405 0.403	0.396 0.399 0.391 0.365	MERID M IN 0.386 0.418 0.419 0.395 0.357 0.343 0.333 0.328	OUT 0.382 0.395 0.398 0.391 0.365 0.339			MER (D VEL R 0.992 0.950 0.955 0.993 1.027 0.993 0.887 0.816 0.798	PEAK SS MACH NO 0.494 0.458 0.461 0.460 0.468 0.473 0.455 0.459 0.488
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	MEAN 13.5		DEV 8.5 7.9 7.1 5.5 5.6 6.4 7.9 9.1 9.8	D-FACT 0.315 0.300 0.301 0.301 0.291 0.324 0.400 0.457 0.501	0.	TOT 0.187	0.187	LOSS TOT 0.091 0.076 0.060 0.021 0.000 0.014 0.037 0.048	PROF 0.091 0.076 0.060 0.021 0.000 0.014 0.037 0.048

(e) Reading number 1827

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	OUT 24.608 23.886 23.167 20.996 8.080 5.110 2.786 1.966	ABS IN 23.3 20.9 21.3 23.9 26.8 30.0 31.3 32.1 35.0	BETAM OUT 2.5 2.8 2.1 0.9 1.1 1.9 2.8 4.2 5.6	IN 23.3 20.9 21.3 23.9 26.8 30.0 31.3 32.1	BETAM OUT 2.5 2.8 2.1 0.9 1.1 1.9 2.8 4.2 5.6	IN 304.3 303.0 302.4 301.2 299.1 297.9 296.9 296.3	TEMP RATIO 0.998 1.000 0.999 0.997 0.999 0.999 0.999	IN 11.76 11.84 11.81 11.68 11.42 11.34 11.21	PRESS RATIO 0.978 0.982 0.986 0.991 1.001 0.997 0.990 0.981
RP 1 2 5 4 5 6 7 8 9	162.0 162.1 159.8 149.1 147.3 145.4 144.5	OUT 137.1 142.1 143.2 140.7 134.1 128.7 117.7	162.0 162.1 159.8 149.1 147.3 145.4 144.5	0UT 137.1 142.1 143.2 140.7 134.1 128.7 117.7	IN 144.0 151.3 151.1 146.1 133.1 127.5 124.2 122.5	VEL 0UT 136.9 142.0 143.1 140.7 134.1 128.6 117.5 107.6 97.0	TAN IN 62.0 57.9 58.8 64.8 67.3 75.6 76.8 79.5	G VEL OUT 6.1 6.8 5.3 2.3 2.7 4.3 5.8 7.9 9.5	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	IN 0.458	OUT 0.398 0.414 0.418 0.412 0.393 0.378 0.345 0.316 0.285	REL M IN 0.458 0.475 0.476 0.469 0.438 0.434 0.429 0.426 0.408	ACH NO OUT 0.398 0.414 0.418 0.412 0.393 0.378 0.345 0.316 0.285	MERID M IN 0.420 0.443 0.443 0.429 0.391 0.376 0.366 0.361	OUT 0.398 0.414 0.418 0.412 0.393 0.377 0.345				0.476 0.469 0.438 0.434 0.429
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	MEAN 9.0	DENCE SS -0.2 -2.7 -2.6 -0.8 0.3 1.1 0.6 1.0	DEV 6.6 6.8 6.1 4.9 5.2 6.1 7.0 8.3 9.6	D-FACT 0.300 0.272 0.269 0.282 0.255 0.266 0.311 0.366 0.407	0.	TOT 0.163 0.128 0.095 0.063	0.163 0.128 0.095 0.063 -0.010 0.026 0.084 0.162	TOT 0.079 0.060 0.043 0.026	PROF 0.079 0.060 0.043 0.026 -0.003 0.008 0.021 0.038

TABLE XII. - Concluded.

(f) Reading number 1841

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.595 2 23.861 2 23.127 2 20.917 2 17.955 1 14.945 1 12.647 1 11.869 1	OUT 24.608 23.886 23.167 20.996 8.080 5.110 2.786	IN 31.4 27.3 27.0 29.5 32.5 34.7 36.2 37.4	BETAM OUT 5.5 5.2 4.0 2.2 1.7 2.7 4.2 5.3 5.6	IN 31.4 27.3 27.0 29.5 32.5 34.7 36.2	BETAM OUT 5.5 5.2 4.0 2.2 1.7 2.7 4.2 5.3 5.6	IN 306.7 305.2 304.4 302.7 300.3 298.8 297.2	TEMP RATIO 1.000 1.002 1.000 0.996 0.998 0.998 0.999 1.000	TOTAL IN 11.91 12.00 11.98 11.80 11.56 11.46 11.27 11.21	PRESS RATIO 0.976 0.976 0.980 0.992 0.998 0.989 0.985 0.981
RP 1 2 3 4 5 6 7 8 9	153.6 149.3 139.8 138.3 133.3	0UT 126.7 130.5 131.3 130.0 121.2 109.4 94.3 84.6	153.6 149.3 139.8 138.3 133.3	VEL 0UT 126.7 130.5 131.3 130.0 121.2 109.4 94.3 84.6 76.0	IN 124.0 135.2 136.8 129.9 117.9 113.7	VEL OUT 126.1 130.0 131.0 129.9 121.2 109.3 94.0 84.2 75.6	TANO IN 75.8 69.7 69.8 73.5 75.1 78.7 78.8 80.3 84.7	VEL OUT 12.2 11.9 9.1 5.0 3.6 5.1 7.0 7.8	HHEEL IN 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M IN 0.421 0.443 0.448 0.436 0.409 0.406 0.392 0.389 0.378	OUT 0.366 0.378 0.381 0.379 0.354 0.319 0.275 0.246 0.221	IN 0.421 0.443 0.448 0.436 0.409	OUT 0.366 0.378 0.381 0.379 0.354 0.319 0.275		OUT 0.364 0.376 0.380 0.379 0.354 0.319			VEL R 1.016 0.961 0.957 1.000 1.028 0.961	0.483 0.476 0.500 0.493 0.489 0.466 0.472
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 17.1 12.8 12.4 14.0 15.1 14.8 14.6 15.4 18.9	DENCE SS 7.9 3.6 3.2 4.8 5.9 5.7 5.5 6.3 9.8	DEV 9.6 9.3 8.0 6.2 5.8 6.9 8.4 9.4	D-FACT 0.342 0.322 0.327 0.320 0.315 0.367 0.428 0.490 0.542	0.	TOT	OEFF PROF 0.209 0.191 0.156 0.066 0.018 0.098 0.150 0.197 0.198	LOSS 1 TOT 0.102 0.090 0.072 0.027 0.029 0.038 0.046 0.043	PROF 0.102 0.090 0.072 0.027 0.006 0.029 0.038 0.046

Figure 1. - Compressor flow path.

Figure 2. - Single-stage compressor facility.

Figure 3. - Rotor 51B A.

Figure 4. - Stator 51.

(a) Combination total pressure, total temperature, and flow angle probe.

(b) Static-pressure probe; 80 C-shaped wedge.

Figure 5. - Survey probes.

Figure 6. - Circumferential location of instrumentation.

FIGURE 7. - OVERALL PERFORMANCE FOR ROTOR 51B FOR THREE ROTOR BLADE SETTING ANGLES AT 100 PERCENT DESIGN SPEED.

FIGURE 8. - OVERALL PERFORMANCE FOR STAGE 51B-51 FOR THREE ROTOR FLADE SETTING ANGLES AT 100 PER-CENT DESIGN SPEED.

FIGURE 9. - RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 51B AT PEAK EFFICIENCY FOR THREE ROTOR BLADE SETTING ANGLES AT 100 PERCENT FESIGN SPEED.

with the state of the state of

FIGURE 11, - ELADE-ELEMENT PERFORMANCE FOR ROTOR 51P FOR THREE ROTOR PLADE SETTING ANGLES AT 100 PERCENT DESIGN SPEED,

(B) 10,0 PERCENT SPAN, FIGURE 11, - CONTINUED,

FIGURE 11. - CONTINUED.

FIGURE 12, - BLADE-ELEMENT PERFORMANCE FOR STATOR 51 FOR THREE ROTOR BLADE SETTING ANGLES AT 100 PERCENT DESIGN

FIGURE 12, - CONTINUED.

FIGURE 12, - COMTINUED,

FIGURE 12, - CONTINUED,

FIGURE 12. - CONTINUED.

FIGURE 12, - CONTINUED,

87

FIGURE 12, - CONCLUDED.

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AFRONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546