Base de datos

Se define una base de datos como una serie de datos organizados y relacionados entre sí, los cuales son recolectados y explotados por los sistemas de información de una empresa o negocio en particular.

Aunque las bases de datos pueden contener muchos tipos de datos, algunos de ellos se encuentran protegidos por las leyes de varios países. Por ejemplo, en España los datos personales se encuentran protegidos por la <u>Ley Orgánica de Protección de Datos de Carácter Personal</u> (LOPD).

1. Características

Entre las principales características de los sistemas de base de datos podemos mencionar:

- Independencia lógica y física de los datos.
- Redundancia mínima.
- Acceso concurrente por parte de múltiples usuarios.
- Integridad de los datos.
- Consultas complejas optimizadas.
- Seguridad de acceso y auditoría.
- Respaldo y recuperación.
- Acceso a través de <u>lenguajes de programación</u> estándar.

2. Ventajas de las bases de datos

Control de la redundancia de datos:

Los sistemas de ficheros almacenan varias copias de los mismos datos en ficheros distintos. Esto hace que se desperdicie espacio de almacenamiento, además de provocar la falta de consistencia de datos.

En los sistemas de bases de datos todos estos ficheros están integrados, por lo que no se almacenan varias copias de los mismos datos. Aun con todo, en una base de datos no se puede eliminar la redundancia completamente, en ocasiones es necesaria para modelar las relaciones entre los datos.

Consistencia de datos:

Eliminando o controlando las redundancias de datos se reduce en gran medida el riesgo de que haya inconsistencias. Si un dato está almacenado una sola vez, cualquier actualización se debe realizar sólo una vez, y está disponible para todos los usuarios inmediatamente. Si un dato está duplicado y el sistema conoce esta redundancia, el propio sistema puede encargarse de garantizar que todas las copias se mantienen consistentes.

Compartición de datos:

En los sistemas de ficheros, los ficheros pertenecen a las personas o a los departamentos que los utilizan. Pero en los sistemas de bases de datos, la base de datos pertenece a la empresa y puede ser compartida por todos los usuarios que estén autorizados.

Mantenimiento de estándares:

Gracias a la integración es más fácil respetar los estándares necesarios, tanto los establecidos a nivel de la empresa como los nacionales e internacionales. Estos estándares pueden establecerse sobre el formato de los datos para facilitar su intercambio, pueden ser estándares de documentación, procedimientos de actualización y también reglas de acceso.

Mejora en la integridad de datos:

La integridad de la base de datos se refiere a la validez y la consistencia de los datos almacenados. Normalmente, la integridad se expresa mediante restricciones o reglas que no se pueden violar. Estas restricciones se pueden aplicar tanto a los datos, como a sus relaciones, y es el SGBD quien se debe encargar de mantenerlas.

Mejora en la seguridad:

La seguridad de la base de datos es la protección de la base de datos frente a usuarios no autorizados. Sin unas buenas medidas de seguridad, la integración de datos en los sistemas de bases de datos hace que éstos sean más vulnerables que en los sistemas de ficheros.

Mejora en la accesibilidad a los datos:

Muchos SGBD proporcionan lenguajes de consultas o generadores de informes que permiten al usuario hacer cualquier tipo de consulta sobre los datos, sin que sea necesario que un programador escriba una aplicación que realice tal tarea.

Mejora en la productividad:

El SGBD proporciona muchas de las funciones estándar que el programador necesita escribir en un sistema de ficheros. A nivel básico, el SGBD proporciona todas las rutinas de manejo de ficheros típicas de los programas de aplicación.

El hecho de disponer de estas funciones permite al programador centrarse mejor en la función específica requerida por los usuarios, sin tener que preocuparse de los detalles de implementación de bajo nivel.

Facilitan el mantenimiento:

En los sistemas de ficheros, las descripciones de los datos se encuentran inmersas en los programas de aplicación que los manejan.

Esto hace que los programas sean dependientes de los datos, de modo que un cambio en su estructura, o un cambio en el modo en que se almacena en disco, requiere cambios importantes en los programas cuyos datos se ven afectados.

Sin embargo, los SGBD separan las descripciones de los datos de las aplicaciones. Esto es lo que se conoce como independencia de datos, gracias a la cual se simplifica el mantenimiento de las aplicaciones que acceden a la base de datos.

Aumento de la concurrencia:

En algunos sistemas de ficheros, si hay varios usuarios que pueden acceder simultáneamente a un mismo fichero, es posible que el acceso interfiera entre ellos de modo que se pierda información o se pierda la integridad. La mayoría de los SGBD gestionan el acceso concurrente a la base de datos y garantizan que no ocurran problemas de este tipo.

Mejora en los servicios de copias de seguridad:

Muchos sistemas de ficheros dejan que sea el usuario quien proporcione las medidas necesarias para proteger los datos ante fallos en el sistema o en las aplicaciones. Los usuarios tienen que hacer copias de seguridad cada día, y si se produce algún fallo, utilizar estas copias para restaurarlos.

En este caso, todo el trabajo realizado sobre los datos desde que se hizo la última copia de seguridad se pierde y se tiene que volver a realizar. Sin embargo, los SGBD actuales funcionan de modo que se minimiza la cantidad de trabajo perdido cuando se produce un fallo.

3. Desventajas de las bases de datos

Complejidad:

El diseño de una base de datos no es un proceso sencillo. En el proceso de diseño hay que tener varios aspectos que determinarán la estructura de la base de datos obtenida como resultado De la misma forma los sistemas que gestionan dichas bases de datos SGBD pueden llegar a ser complejos con una gran funcionalidad. Es preciso comprender muy bien esta funcionalidad para poder realizar un buen uso de ellos.

Coste del equipamiento adicional:

Tanto el SGBD, como la propia base de datos, pueden hacer que sea necesario adquirir más espacio de almacenamiento. Además, para alcanzar las prestaciones deseadas, es posible que sea necesario adquirir una máquina más grande o una máquina que se dedique solamente al SGBD. Todo esto hará que la implantación de un sistema de bases de datos sea más cara.

Vulnerable a los fallos:

El hecho de que todo esté centralizado en el SGBD hace que el sistema sea más vulnerable ante los fallos que puedan producirse. Es por ello que deben tenerse copias de seguridad (Backup).

Tipos de Campos básicos

Cada Sistema de Base de Datos posee tipos de campos que pueden ser similares o diferentes. Entre los más comunes podemos nombrar:

- **Numérico:** entre los diferentes tipos de campos numéricos podemos encontrar enteros "sin decimales" y reales "decimales".
- Booleanos: poseen dos estados: Verdadero "Si" y Falso "No".
- **Memos:** son campos alfanuméricos de longitud ilimitada. Presentan el inconveniente de no poder ser indexados.
- **Fechas:** almacenan fechas facilitando posteriormente su explotación. Almacenar fechas de esta forma posibilita ordenar los registros por fechas o calcular los días entre una fecha y otra.
- **Alfanuméricos:** contienen cifras y letras. Presentan una longitud limitada (255 caracteres).
- Autoincrementables: son campos numéricos enteros que incrementan en una unidad su valor para cada registro incorporado. Su utilidad resulta: Servir de identificador ya que resultan exclusivos de un registro.

Bases de datos Relacionales (<u>https://www.youtube.com/watch?v=O9K4AZn9VN8</u>)

Contenido

- 1 Tipos de bases de datos
 - 1.1 Según la variabilidad de los datos almacenados
 - 1.1.1 Bases de datos estáticas
 - 1.1.2 Bases de datos dinámicas
 - 1.2 Según el contenido
 - 1.2.1 Bases de datos bibliográficas
 - 1.2.2 Bases de datos de texto completo
 - 1.2.3 Directorios
 - 1.2.4 Bases de datos o "bibliotecas" de información Biológica
- 2 Modelos de bases de datos
 - o 2.1 Bases de datos jerárquicas
 - o 2.2 Base de datos de red
 - o 2.3 Base de datos relacional
 - o 2.4 Bases de datos multidimensionales
 - o 2.5 Bases de datos orientadas a objetos
 - 2.6 Bases de datos documentales
 - o 2.7 Base de datos deductivas
 - o 2.8 Gestión de bases de datos distribuida
- 3 Véase también

1. 2 - Tipos de bases de datos

Las bases de datos pueden clasificarse de varias maneras, de acuerdo al criterio elegido para su clasificación:

6.2.1 - Según la variabilidad de los datos almacenados

Bases de datos estáticas

Éstas son bases de datos de sólo lectura, utilizadas primordialmente para almacenar datos históricos que posteriormente se pueden utilizar para estudiar el comportamiento de un conjunto de datos a través del tiempo, realizar proyecciones y tomar decisiones.

Bases de datos dinámicas

Éstas son bases de datos donde la información almacenada se modifica con el tiempo, permitiendo operaciones como actualización y adición de datos, además de las operaciones fundamentales de consulta. Un ejemplo de esto puede ser la base de datos utilizada en un sistema de información de una tienda de abarrotes, una farmacia, un videoclub, etc.

6.2.2 - Según el contenido

Bases de datos bibliográficas

Solo contienen un surrogante (representante) de la fuente primaria, que permite localizarla. Un registro típico de una base de datos bibliográfica contiene información sobre el autor, fecha de publicación, editorial, título, edición, de una determinada publicación, etc. Puede contener un resúmen o extracto de la publicación original, pero nunca el texto completo, porque sino estaríamos en presencia de una base de datos a texto completo (o de fuentes primarias—ver más abajo). Como su nombre lo indica, el contenido son cifras o números. Por ejemplo, una colección de resultados de análisis de laboratorio, entre otras.

Bases de datos de texto completo

Almacenan las fuentes primarias, como por ejemplo, todo el contenido de todas las ediciones de una colección de revistas científicas.

Directorios

Un ejemplo son las guías telefónicas en formato electrónico.

Bases de datos o "bibliotecas" de información Biológica

Son bases de datos que almacenan diferentes tipos de información proveniente de las ciencias de la vida o médicas. Se pueden considerar en varios subtipos:

- Aquellas que almacenan secuencias de nucleótidos o proteínas.
- Las bases de datos de rutas metabólicas
- Bases de datos de estructura, comprende los registros de datos experimentales sobre estructuras 3D de biomoléculas
- Bases de datos clínicas
- Bases de datos bibliográficas (biológicas)

6.3 - Modelos de bases de datos

Además de la clasificación por la función de las bases de datos, éstas también se pueden clasificar de acuerdo a su modelo de administración de datos.

Un modelo de datos es básicamente una "descripción" de algo conocido como contenedor de datos (algo en donde se guarda la información), así como de los métodos para almacenar y recuperar información de esos contenedores. Los modelos de datos no son cosas físicas: son abstracciones que permiten la implementación de un sistema eficiente de base de datos; por lo general se refieren a algoritmos, y conceptos matemáticos.

Algunos modelos con frecuencia utilizados en las bases de datos:

ay Bases de datos relacionales (al final pto específico).

Éste es el modelo más utilizado en la actualidad para modelar problemas reales y administrar datos dinámicamente. Tras ser postulados sus fundamentos en 1970 por Edgar Frank Codd, de los laboratorios IBM en San José (California), no tardó en

consolidarse como un nuevo paradigma en los modelos de base de datos. Su idea fundamental es el uso de "relaciones". Estas relaciones podrían considerarse en forma lógica como conjuntos de datos llamados "tuplas". Pese a que ésta es la teoría de las bases de datos relacionales creadas por Edgar Frank Codd, la mayoría de las veces se conceptualiza de una manera más fácil de imaginar. Esto es pensando en cada relación como si fuese una tabla que está compuesta por *registros* (las filas de una tabla), que representarían las tuplas, y *campos* (las columnas de una tabla).

En este modelo, el lugar y la forma en que se almacenen los datos no tienen relevancia (a diferencia de otros modelos como el jerárquico y el de red). Esto tiene la considerable ventaja de que es más fácil de entender y de utilizar para un usuario esporádico de la base de datos. La información puede ser recuperada o almacenada mediante "consultas" que ofrecen una amplia flexibilidad y poder para administrar la información.

El lenguaje más habitual para construir las consultas a bases de datos relacionales es SQL, *Structured Query Language* o *Lenguaje Estructurado de Consultas*, un estándar implementado por los principales motores o sistemas de gestión de bases de datos relacionales.

Durante su diseño, una base de datos relacional pasa por un proceso al que se le conoce como normalización de una base de datos.

Durante los años '80 (1980-1989) la aparición de dBASE produjo una revolución en los lenguajes de programación y sistemas de administración de datos. Aunque nunca debe olvidarse que dBase no utilizaba SQL como lenguaje base para su gestión.

b/ Bases de datos jerárquicas

Éstas son bases de datos que, como su nombre indica, almacenan su información en una estructura jerárquica. En este modelo los datos se organizan en una forma similar a un árbol (visto al revés), en donde un *nodo padre* de información puede tener varios *hijos*. El nodo que no tiene padres es llamado *raíz*, y a los nodos que no tienen hijos se los conoce como *hojas*.

Las bases de datos jerárquicas son especialmente útiles en el caso de aplicaciones que manejan un gran volumen de información y datos muy compartidos permitiendo crear estructuras estables y de gran rendimiento.

Una de las principales limitaciones de este modelo es su incapacidad de representar eficientemente la redundancia de datos.

Base de datos de red

Éste es un modelo ligeramente distinto del jerárquico; su diferencia fundamental es la modificación del concepto de *nodo*: se permite que un mismo nodo tenga varios padres (posibilidad no permitida en el modelo jerárquico).

Fue una gran mejora con respecto al modelo jerárquico, ya que ofrecía una solución eficiente al problema de redundancia de datos; pero, aun así, la dificultad que significa

administrar la información en una base de datos de red ha significado que sea un modelo utilizado en su mayoría por programadores más que por usuarios finales.

d | Bases de datos multidimensionales

Son bases de datos ideadas para desarrollar aplicaciones muy concretas, como creación de **Cubos OLAP**. Básicamente no se diferencian demasiado de las bases de datos relacionales (una tabla en una base de datos multidimensional podría serlo también en una base de datos multidimensional), la diferencia está más bien a nivel conceptual; en las bases de datos multidimensionales los campos o atributos de una tabla pueden ser de dos tipos, o bien representan dimensiones de la tabla, o bien representan métricas que se desean estudiar.

e) Bases de datos orientadas a objetos

Este modelo, bastante reciente, y propio de los modelos informáticos orientados a objetos, trata de almacenar en la base de datos los *objetos* completos (estado y comportamiento).

Una base de datos orientada a objetos es una base de datos que incorpora todos los conceptos importantes del paradigma de objetos:

- Encapsulación Propiedad que permite ocultar la información al resto de los objetos, impidiendo así accesos incorrectos o conflictos.
- Herencia Propiedad a través de la cual los objetos heredan comportamiento dentro de una jerarquía de clases.
- <u>Polimorfismo</u> Propiedad de una operación mediante la cual puede ser aplicada a distintos tipos de objetos.

En bases de datos orientadas a objetos, los usuarios pueden definir operaciones sobre los datos como parte de la definición de la base de datos. Una operación (llamada función) se especifica en dos partes. La interfaz (o signatura) de una operación incluye el nombre de la operación y los tipos de datos de sus argumentos (o parámetros). La implementación (o método) de la operación se especifica separadamente y puede modificarse sin afectar la interfaz. Los programas de aplicación de los usuarios pueden operar sobre los datos invocando a dichas operaciones a través de sus nombres y argumentos, sea cual sea la forma en la que se han implementado. Esto podría denominarse independencia entre programas y operaciones.

Se está trabajando en SQL3, que es el estándar de SQL92 ampliado, que soportará los nuevos conceptos orientados a objetos y mantendría compatibilidad con SQL92.

D Bases de datos documentales

Permiten la indexación a texto completo, y en líneas generales realizar búsquedas más potentes. Tesaurus es un sistema de índices optimizado para este tipo de bases de datos.

g) Base de datos deductivas (Boses dades losses)

Un sistema de **base de datos deductivas**, es un sistema de base de datos pero con la diferencia de que permite hacer deducciones a través de inferencias. Se basa principalmente en reglas y hechos que son almacenados en la base de datos. También las bases de datos deductivas son llamadas **base de datos lógica**, a raíz de que se basan en lógica matemática.

$\langle angle angle$ Bases de datos distribuidas

La base de datos está almacenada en varias computadoras conectadas en red. Surgen debido a la existencia física de organismos descentralizados. Esto les da la capacidad de unir las bases de datos de cada localidad y acceder así a distintas universidades, sucursales de tiendas, etcetera.