7. Foliensatz Betriebssysteme und Rechnernetze

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences (1971-2014: Fachhochschule Frankfurt am Main) Fachbereich Informatik und Ingenieurwissenschaften christianbaun@fb2.fra-uas.de

Lernziele dieses Foliensatzes

- Grundlagen der Computervernetzung
 - Parallele/serielle Datenübertragung
 - Richtungsabhängigkeit der Datenübertragung
 - Bitrate, Baudrate
 - Bandbreite, Latenz
- Protokolle
 - TCP/IP-Referenzmodell
 - Hybrides Referenzmodell
 - OSI-Referenzmodell

Einordnung der Computernetze in die Informatik

Nebenfach E-Technik BWL/VWL Medizin

Computernetze gehören zur praktischen Informatik und technischen Informatik

Zwingend nötige Elemente für Computernetzwerke

- Für den Aufbau und Betrieb eines Computernetzwerks sind nötig:
 - **1** ≥ 2 Endgeräte mit Netzwerkdiensten
 - Die Rechner in einem Computernetz sollen miteinander kommunizieren oder gemeinsam Ressourcen nutzen
 - Ein Netzwerkdienst stellt einen Dienst (Service) zur Kommunikation oder gemeinsamen Ressourcennutzung bereit
 - ② Übertragungsmedium zum Datenaustausch (siehe Foliensatz 8)
 - Gängige Übertragungsmedien für leitungsgebundene Netze sind elektrische Leiter (Twisted-Pair-Kabel oder Koaxialkabel) und Lichtwellenleiter
 - Auch nicht-leitungsgebundene (drahtlose) Übertragung ist möglich
 - Netzwerkprotokolle (siehe Folie 12)
 - Regeln, die festlegen, wie Rechner miteinander kommunizieren können

Regeln (Netzwerkprotokolle) sind zwingend nötig. Ansonsten können sich die Kommunikationspartner *nicht verstehen*. Man stelle sich einen Telefonanruf ins Ausland vor. Die Verbindung kommt zustande, aber kein Teilnehmer versteht die Sprache des anderen. Nur wenn beide Kommunikationspartner die gleiche Sprache sprechen, ist Kommunikation möglich

Parallele Datenübertragung

- Kommunikation zwischen Rechnern ist mit paralleler und serieller Datenübertragung möglich
- Bei paralleler Datenübertragung gibt es neben den Steuerleitungen mehrere Datenleitungen
- Beispiel: Parallele Schnittstelle zum klassischen Anschluss von Druckern
 - Darüber kann pro Zeiteinheit ein komplettes Byte an Daten übertragen werden
- Vorteil: Hohe Geschwindigkeit
- Nachteil: Es sind viele Leitungen nötig
 - Das ist bei großen Distanzen kostenintensiv und aufwändig
- Anwendung: Lokale Bus-Systeme

Das Bild zeigt die parallele Schnittstelle (DB-25 = 25-polig)

(z.B. ATA, SCSI, ISA, PCI, Front Side Bus, IEEE-1284 "Drucker-Port")

Serielle Datenübertragung

- Bei serieller Datenübertragung werden die Bits auf einer Datenleitung nacheinander übertragen
 - Ein Byte übertragen dauert 8x so lange wie bei paralleler Datenübertragung (mit 8 Datenleitungen)
- Vorteil: Auch für große Distanzen geeignet, da nur wenige Leitungen nötig
- Nachteil: Geringerer Datendurchsatz
- Anwendung: Lokale Bus-Systeme und Verbindungen in Computernetzen

Das Bild zeigt die serielle Schnittstelle RS-232 (DB-25 = 25-polig)

Einige Vernetzungstechnologien, die seriell arbeiten

Ethernet, USB, CAN, FireWire, Fibre Channel (für SAN), InfiniBand

Richtungsabhängigkeit der Datenübertragung

Simplex

- Der Informationstransfer funktioniert nur in einer Richtung
- Nach dem Ende der Übertragung kann der Kommunikationskanal von einem anderen Sender verwendet werden
- Beispiele: Radio, Fernsehen und Funkmeldeempfänger (Pager)

Duplex (Vollduplex)

- Der Informationstransfer funktioniert in beide Richtungen gleichzeitig
- Beispiele: Telefon, Netzwerke mit Twisted-Pair-Kabeln, denn diese bieten separate Leitungen zum Senden und Empfangen

Wechselbetrieb (Halbduplex)

- Der Informationstransfer funktioniert in beide Richtungen, aber nicht gleichzeitig
- Beispiele:
 - Netzwerke auf Basis von Glasfaser- oder Koaxialkabeln, denn hier gibt es nur eine Leitung für Senden und Empfangen
 - Funknetze mit nur einem Kanal

Bitrate und Baudrate

- Bitrate: Anzahl der übertragenen Bits pro Sekunde (Bit/s)
- Baudrate: Anzahl der übertragenen Symbole pro Sekunde
 - ullet 1 Baud = Geschwindigkeit, wenn 1 Symbol pro Sekunde übertragen wird
 - Ursprünglich gab die Baudrate die Signalisierungsgeschwindigkeit beim Telegrafen an, also die Anzahl der Morsezeichen pro Sekunde
- Das Verhältnis zwischen Bitrate und Baudrate hängt vom verwendeten Leitungscode ab
 - Zwei Beispiele...

- Oer Leitungscode legt in Computernetzen fest, wie Signale auf dem verwendeten Übertragungsmedium übertragen werden
- Den Leitungscode einer Netzwerktechnologie legt das verwendete Protkoll der Bitübertragungsschicht fest
- Aus Zeitgründen können wir das Thema Leitungscodes in BSRN nicht behandeln

Bandbreite und Latenz (1/2)

- Entscheidend für die Leistungsfähigkeit eines Computernetzes:
 - Bandbreite (Durchsatz)
 - Latenz (Verzögerung)
- Die Bandbreite gibt an, wie viele Bits innerhalb eines Zeitraums über das Netzwerk übertragen werden können
 - Bei einem Netzwerk mit einer Bandbreite bzw. Durchsatzrate von 1 Mbit/s können eine Millionen Bits pro Sekunde übertragen werden
 - ullet Ein Bit ist somit eine millionstel Sekunde, also $1\,\mu\mathrm{s}$ breit
 - Verdoppelt sich die Bandbreite, verdoppelt sich die Bits, die pro Sekunde übertragen werden können

Bandbreite und Latenz (2/2)

 Die Latenz eines Netzwerks ist die Zeit, die nötig ist, bis eine Nachricht von einem Ende des Netzwerks zum anderen Ende gelangt ist

 ${\sf Latenz} = {\sf Ausbreitungsverz\"{o}gerung} + {\sf \ddot{U}bertragungsverz\"{o}gerung} + {\sf Wartezeit}$

$$\mbox{Ausbreitungsverz\"{o}gerung} = \frac{\mbox{Entfernung}}{\mbox{Lichtgeschwindigkeit}*\mbox{Ausbreitungsfaktor}}$$

- Entfernung: Länge der Netzwerkverbindung
- Lichtgeschwindigkeit: 299.792.458 m/s
- Ausbreitungsfaktor (Verkürzungsfaktor): Vakuum = 1, TP-Kabel = 0,6, Glasfaser = 0,67, Koaxialkabel = 0,77

$$\ddot{\textbf{U}} \textbf{bertragungsverz\"{o}gerung} = \frac{\textbf{Nachrichtengr\"{o}Be}}{\textbf{Bandbreite}}$$

 $\ddot{\textbf{U}} \textbf{bertragungsverz\"{o}gerung} = \textbf{0}, \ \textbf{wenn die Nachricht nur aus} \\ \textbf{einem einzigen Bit besteht}$

- Wartezeiten gegeben sich durch Netzwerkgeräte (z.B. Switche)
 - Diese müssen empfangene Daten vor dem Weiterleiten zwischenspeichern

Wartezeit = 0, wenn es sich bei der Netzwerkverbindung zwischen Sender und Empfänger um eine Direktverbindung handelt

Quelle: Larry L. Peterson, Bruce S. Davie. Computernetzwerke. dpunkt (2008)

Bandbreite-Verzögerung-Produkt

- Berechnet das Volumen einer Netzwerkverbindung
 - Signale bewegen sich auf Übertragungsmedien nicht unendlich schnell
 - Die Ausbreitungsgeschwindigkeit wird in jedem Fall von der Lichtgeschwindigkeit begrenzt und hängt vom Ausbreitungsfaktor (Verkürzungsfaktor) des Übertragungsmediums ab
 - Das Produkt aus Bandbreite und Verzögerung (Latenz) entspricht der maximalen Anzahl Bits, die sich zwischen Sender und Empfänger in der Leitung befinden können
- Beispiel: Ein Netzwerk mit 100 Mbit/s Bandbreite und 10 ms Latenz

$$100.000.000 \, \text{Bits/s} \times 0,01 \, \text{s} = 1.000.000 \, \text{Bits}$$

- Es befinden sich maximal 1.000.000 Bits auf der Netzwerkverbindung
 - Das entspricht 125.000 Bytes (ca. 123 kB)

Protokolle

- Ein Protokoll ist die Menge aller vorab getroffenen Vereinbarungen zwischen Kommunikationspartnern
 - Zu den Vereinbarungen gehören:
 - Regeln zum Aufbau und Abbau von Verbindungen
 - Art und Weise der Synchronisation von Sender und Empfänger
 - Maßnahmen zur Erkennung und Behandlung von Übertragungsfehlern
 - Definition gültiger Nachrichten (Vokabular)
 - Format und Kodierung von Nachrichten
- Protokolle definieren...
 - die **Syntax** (= Format gültiger Nachrichten)
 - die Semantik (= Vokabular und Bedeutung g
 ültiger Nachrichten)

Schichtenmodelle

- Kommunikation in Computernetzen ist in Schichtenmodelle unterteilt
- Jede Schicht (Layer) behandelt einen bestimmten Aspekt der Kommunikation und bietet Schnittstellen zur darüberliegenden und darunterliegenden Schicht
- Jede Schnittstelle besteht aus einer Menge von Operationen, die zusammen einen Dienst definieren
- ullet In den Schichten werden die Daten gekapselt (\Longrightarrow **Datenkapselung**)
- Weil jede Schicht in sich abgeschlossen ist, k\u00f6nnen einzelne Protokolle ver\u00e4ndert oder ersetzt werden, ohne alle Aspekte der Kommunikation zu beeinflussen
- Die bekanntesten Schichtenmodelle sind...
 - das TCP/IP-Referenzmodell,
 - das OSI-Referenzmodell
 - und das hybride Referenzmodell

TCP/IP-Referenzmodell bzw. DoD-Schichtenmodell

- Wurde ab 1970 vom Department of Defense (DoD) im Rahmen des Arpanet entwickelt
- Die Aufgaben der Kommunikation wurden in 4 aufeinander aufbauende Schichten unterteilt
- Für jede Schicht ist festgelegt, was sie zu leisten hat
- Diese Anforderungen müssen Kommunikationsprotokolle realisieren
 - Konkrete Umsetzung wird nicht vorgegeben und kann unterschiedlich sein
 - Daher existieren für jede der 4 Schichten zahlreiche Protokolle

Nummer	Schicht	Protokolle (Beispiele)
4	Anwendungsschicht	HTTP, FTP, SMTP, POP3, DNS, SSH, Telnet
3	Transportschicht	TCP, UDP
2	Internetschicht	IP (IPv4, IPv6), ICMP, IPsec, IPX
1	Netzzugangsschicht	Ethernet, WLAN, ATM, FDDI, PPP, Token Ring

TCP/IP-Referenzmodell – Nachrichtenaufbau

- Jede Schicht fügt einer Nachricht zusätzliche Informationen als Header hinzu
 - Einige Protokolle (z.B. Ethernet) fügen in der Netzzugangsschicht nicht nur einen Header, sondern auch einen **Trailer** am Ende der Nachricht an
 - Header (und Trailer) wertet der Empfänger auf gleicher Schicht aus

Hybrides Referenzmodell

TCP/IP-Referenzmodell

- Das TCP/IP-Referenzmodell wird in der Literatur häufig (u.a. bei Andrew S. Tanenbaum) als fünfschichtiges Modell dargestellt
 - Grund: Es ist sinnvoll, die Netzzugangsschicht in 2 Schichten aufzuteilen, weil diese völlig unterschiedliche Aufgabenbereiche haben

Hybrides Referenzmodell

Bitübertragungsschicht

 Dieses Modell ist eine Erweiterung des TCP/IP-Modells und heißt hybrides Referenzmodell

Anwendungsschicht Transportschicht Internetschicht Netzzugangsschicht Anwendungsschicht Transportschicht Vermittlungsschicht Sicherungsschicht

Die Aufgaben der einzelnen Schichten werden anhand des hybriden Referenzmodells diskutiert

Bitübertragungsschicht – Physical Layer

(siehe Foliensatz 8)

- Überträgt die Einsen und Nullen
 - Physischer Anschluss an das Netz
 - Umsetzung (Kodierung) der Daten in Signale
- Protokoll und Übertragungsmedium bestimmen u.a.:
 - Wie viele Bits können pro Sekunde gesendet werden?
 - Kann die Übertragung in beide Richtungen gleichzeitig stattfinden?
- Geräte: Repeater, Medienkonverter, Hub (Multiport Repeater)

METOE				
NEIGE	A R DUAL SPEED HUB DS108	100M	10M	100
		. 7	7.17	ES .
	1 10 20 +40	100		
			100	11111
Pwr Col	Utilization %			_

Hybrides Referenzmodell

Anwendungsschicht

Transportschicht

Vermittlungsschicht

Sicherungsschicht

Bitübertragungsschicht

Sicherungsschicht – Data Link Layer

(siehe Foliensatz 9)

- Ermöglicht fehlerfreien Austausch von Rahmen zwischen Netzwerkgeräten in physischen Netzen
 - Erkennt Übertragungsfehler mit Prüfsummen
 - Regelt den Zugriff auf das Übertragungsmedium (z.B. via CSMA/CD oder CSMA/CA)
- Definiert physische Adressen (MAC-Adressen)

Hybrides Referenzmodell

Anwendungsschicht
Transportschicht
Vermittlungsschicht
Sicherungsschicht

Bitübertragungsschicht

- Beim Sender: Verpackt die Pakete der Vermittlungsschicht in Rahmen (Frames) und überträgt sie mit der gewünschten Zuverlässigkeit innerhalb eines physischen Netzes von einem Gerät zum anderen
- Beim Empfänger: Erkennt die Rahmen im Bitstrom der Bitübertragungsschicht
- Geräte: Bridges, Layer-2-Switches
 (Multiport-Bridges) und Modems verbinden
 physische Netze

Vermittlungsschicht – Network Layer

(siehe Foliensatz 10)

- Vermittelt (routet) Pakete zwischen logischen Netzen (über physische Netze)
 - Für dieses Internetworking definiert die Vermittlungsschicht logische Adressen (IPs)
 - Jedes Paket wird unabhängig ans Ziel vermittelt (geroutet) und der Pfad nicht aufgezeichnet
- Beim Sender: Verpackt die Segmente der Transportschicht in Pakete
- Beim Empfänger: Entpackt die Pakete aus den Rahmen der Sicherungsschicht
- Router und Layer-3-Switches verbinden logische Netze
- Meist wird das verbindungslose Internet Protocol (IP) verwendet
 - Andere Protokolle (z.B. IPX) wurden von IP verdrängt

Hybrides Referenzmodell

Anwendungsschicht

Transportschicht

Vermittlungsschicht
Sicherungsschicht

Bitübertragungsschicht

Transportschicht – Transport Layer

(siehe Foliensatz 11)

- Transportiert Segmente zwischen Prozessen auf unterschiedlichen Geräten über sog.
 Ende-zu-Ende-Protokolle
- Beim Sender: Verpackt die Daten der Anwendungsschicht in Segmente
- Beim Empfänger: Entpackt die Segmente in den Paketen der Vermittlungsschicht

Hybrides Referenzmodell

Anwendungsschicht
Transportschicht
Vermittlungsschicht
Sicherungsschicht
Bitübertragungsschicht

- Adressiert Prozesse mit Portnummern
 - Sicherungsschicht und Vermittlungsschicht adressieren Netzwerkgeräte physisch und logisch
- Verschiedene Protokolle bieten verschiedene Kommunikationsformen
 - UDP (User Datagram Protocol): Verbindungslose Kommunikation
 - TCP (Transport Control Protocol): Verbindungsorientierte Komm.
 - Kombination TCP/IP = de-facto Standard für Computernetze

Unterschiedliche Kommunikationsformen

Verbindungslose Kommunikation

- Funktioniert analog zum Briefkasten
- Sender verschickt Nachrichten, ohne zuvor eine Verbindung aufzubauen
- Nachteil: Keine Kontrolle, das ein Segment ankommt
 - Ist Kontrolle gewünscht, muss sie in der Anwendungsschicht erfolgen
- Vorteil: Höherer Datendurchsatz, da weniger Overhead anfällt

Verbindungsorientierte Kommunikation

- Funktioniert analog zum Telefon
- Vor dem Datenaustausch wird zwischen Sender und Empfänger eine Verbindung aufgebaut
 - Sie bleibt auch bestehen, wenn keine Daten übertragen werden
- Sobald alle Daten ausgetauscht wurden, wird einer der Kommunikationspartner die Verbindung abbauen
- Ermöglicht Datenflusskontrolle und Überlastkontrolle
 - Sichert die verlustfreie Lieferung der Segmente in korrekter Reihenfolge
 ⇒ Es gibt somit eine Zustellungsgarantie

Anwendungsschicht – Application Layer

- Enthält alle Protokolle, die mit Anwendungsprogrammen (z.B. Browser oder Email-Programm) zusammenarbeiten
- Hier befinden sich die eigentlichen Nachrichten (z.B. HTML-Seiten oder Emails), formatiert entsprechend dem jeweiligen Anwendungsprotokoll
- Beispiele für Anwendungsprotokolle: HTTP, FTP, SMTP, POP3, DNS, SSH, Telnet

(siehe Foliensatz 12)

Hybrides Referenzmodell

Anwendungsschicht
Transportschicht
Vermittlungsschicht
Sicherungsschicht
Bitübertragungsschicht

pixabay.com (CCO)

Ablauf der Kommunikation (1/2)

Vertikale Kommunikation

- Nachrichten werden von oben nach unten Schicht für Schicht verpackt und beim Empfänger in umgekehrter Schichtreihenfolge wieder entpackt
- Data Encapsulation (Datenkapselung) und De-encapsulation

Ablauf der Kommunikation (2/2)

Horizontale Kommunikation

 Auf den gleichen Schichten von Sender und Empfänger werden jeweils die gleichen Protokollfunktionen verwendet

OSI-Referenzmodell

- Einige Jahre nach dem TCP/IP-Referenzmodell (1970er Jahre) wurde das OSI-Referenzmodell ab 1979 entwickelt
 - 1983: Standardisiert von der Intern. Organisation f
 ür Normung (ISO)
 - OSI = Open Systems Interconnection
- Der Aufbau ist dem TCP/IP-Referenzmodell ähnlich
 - Das OSI-Modell verwendet aber 7 Schichten
- Im Gegensatz zum hybridem Referenzmodell sind die Aufgaben der Anwendungsschicht beim OSI-Referenzmodell auf 3 Schichten aufgeteilt

Sitzungsschicht – Session Layer

- Kontrolliert die Dialoge (Verbindungen) zwischen Prozessen
 - Legt fest, welcher Teilnehmer als nächstes senden darf
- Ermöglicht Kontrollpunkte, die in längeren Datenübertragungen zur Synchronisierung eingebaut werden können
 - Beim Verbindungsabbruch kann zum letzten Kontrollpunkt zurückgekehrt werden und die Übertragung muss nicht von vorne beginnen
- Beispiele für Protokolle mit den geforderten Fähigkeiten: Telnet zur Fernsteuerung von Rechnern und FTP zur Übertragung von Dateien
 - Diese können aber auch der Anwendungsschicht zugeordnet werden
 - Die Anwendungsschicht enthält die Protokolle, die die Anwendungsprogramme verwenden
 - FTP und Telnet werden direkt von den Anwendungsprogrammen verwendet und nicht von abstrakteren Protokollen in h\u00f6heren Ebenen
 - Darum ist es sinnvoller die Protokolle der Sitzungsschicht der Anwendungsschicht zuzuordnen

Die Sitzungsschicht wird in der Praxis kaum benutzt, da alle dieser Schicht zugedachten Aufgaben heute Anwendungsprotokolle erfüllen

Darstellungsschicht – Presentation Layer

- Enthält Regeln zur Formatierung (Präsentation) der Nachrichten
 - Der Sender kann den Empfänger informieren, dass eine Nachricht in einem bestimmten Format (z.B. ASCII) vorliegt, um die eventuell nötige Konvertierung beim Empfänger zu ermöglichen
 - Datensätze können hier mit Feldern (z.B. Name, Matrikelnummer...) definiert werden
 - Art und Länge der Datentypen können definiert werden
 - Auch Kompression und Verschlüsselung sind der Darstellungsschicht zugedachte Aufgabenbereiche

Die Darstellungsschicht wird in der Praxis kaum benutzt, da alle dieser Schicht zugedachten Aufgaben heute Anwendungsprotokolle erfüllen

Fazit zu den Referenzmodellen

- Fazit: Das hybride Referenzmodell bildet die Funktionsweise von Computernetzen realistisch ab
 - Es unterscheidet die Bitübertragungsschicht und Sicherungsschicht
 - Das ist sinnvoll, weil die Aufgabenbereiche so unterschiedlich sind
 - Es unterteilt die Anwendungsschicht nicht
 - Das wäre auch nicht sinnvoll, weil es in der Praxis nicht stattfindet
 - Funktionalitäten, die für Sitzungs- und Darstellungsschicht vorgesehen sind, erbringen heute die Protokolle und Dienste der Anwendungsschicht
 - Es kombiniert die Vorteile des TCP/IP-Referenzmodells und des OSI-Referenzmodells, ohne deren jeweilige Nachteile zu übernehmen

