实验二:有源电路的等效

一、实验目的

- 1.掌握电路伏安特性的测量方法;;
- 3.熟悉Multisim电路仿真分析方法;
- 4.验证戴维南定理和最大功率传输定理。

二、实验内容

- 1. 理想电源伏安特性测量
- 2. 实际电源伏安特性测量
- 3. 有源二端网络等效参数测量
- 4.验证戴维南定理和最大功率传输定理。
- 5.所有电路在进行实际电路测试前先用Multisim电路进行仿真

三、实验设备

1. 直流稳压电源; 2. 数字万用表; 3. 元器件板;

四、实验原理

1. 理想电压源的伏安特性

$$u = u_{s} - iR_{s}$$

2. 实际电压源的伏安特性

$$u = u_{s} - iR_{s}$$

3. 戴维南定理

对任一线性有源二端网络如图一,根据戴维南定理,可以用如图二所示的电路来替代。其等效参数(断开负载): U_{0c}是有源二端网络a、b两端的开路电压; R₀是把有源二端网络化成无源二端网络后a、b两端的等效电阻。

4、最大功率传输定理

当R_L = R₀时,负载获得最大功率, 称为功率匹配。

5、有源二端网络等效参数的测量方法等效电压:有源二端网络两端的开路电压。

等效电阻: 1).直接测量法.

把有源二端网络化成无源网络,端口的等效电阻。

2). 开路电压、短路电流测量法.

在含源二端网络输出端开路时,用电压表直接测其输出端的开路电压 U_{0c} ,然后再将其输出端短路,测其短路电流 I_{sc} ,则等效电阻为: $R_0=U_{0c}$ / I_{sc}

3). 半电压测量法.

如图所示,调节负载电阻 R_L 的大小,当负载电压等于被测含源二端网络开路电压的一半时,负载电阻的值即为被测含源二端网络的等效电阻值,即 R_0 = R_L 。

五、实验内容

1、测量理想电压源的伏安特性

图1中的电源 $U_{\rm S}$ 用直流稳压电源输出端,并将输出电压调到 +12V, $R_{\rm 1}$ 取 100Ω 的固定电阻, $R_{\rm 2}$ 取 $1k\Omega$ 的电位器。调节电位器 $R_{\rm 2}$,令其阻值由大至小变化,将电流表、电压表的读数记入表1中。

表1 理想电压源伏安特性测试数据

I (mA)	12	18	22	25	30	40	50
U(V)							

2、测量实际电压源的伏安特性

如图2所示,图中内阻RS取51Ω的固定电阻,调节电位器R2,令其阻值由大至小变化,将电流表、电压表的读数记入表2中。

表2 实际电压源伏安特性测试数据

I (mA)	12	18	22	25	30	40	50
U(V)							

3、测量有源二端网络的伏安特性

按下图所示连接电路,测试不同负载下的 I_2 、 U_2 值,并将结果填入表中,P为计算值。

有源二端网络伏安特性数据表 (等效前)

$R_W(K\Omega)$	0.1	1.3	1.5	1.7	?	?	?	?	?	10.0
U ₂ (V)										
I ₂ (mA)										
P(mW)										

注:测十组数据,其余五组自选

数值统一取小数点后两位!

2、测量有源二端网络的等效参数

1). 开路电压、短路电流测量法:

先断开负载电阻 R_w ,测量a、b两端的开路电压 U_{oc} ;再短接a、b两端,测量短路电流 I_{sc} ,则二端网络的等效电阻 R_0 = U_{oc}/I_{sc} 。将测量数据 U_{oc} 、 I_{sc} 记入表中,并计算 R_0 。

U _{oc} (V)	I_{sc}	$R_0(K\Omega)$

2). 直接测量法测定等效内阻:

先断开负载电阻 R_w ,将被测二端网络中的电源去掉(关掉电源,cb两点短路),测a、b两点间的电阻,即 R_0 。将数据记入表中。

3). 半电压测量法测定等效内阻:

调节负载电阻 R_w 的阻值,同时用电压表监视负载电压,当电压表的读数等于开路电压 U_{oc} 的一半时,关闭电源,将 R_w 从电路中断开,用万用表欧姆档测量 R_w 的阻值,即 R_0 。将数据记入表中。

	直接测量法	半电压法
$R_0(K\Omega)$		

3、利用已测得的U_{0c}和R₀组成戴维南等效电源对R_w供电,重测伏安特性曲线,对戴维南定理进行验证。

有源二端网络伏安特性数据表(等效后)

R _W (KΩ)	0.1	1.3	1.5	1.7	?	?	?	?	?	10.0
U ₂ (V)										
I ₂ (mA)										
P (mW)										

注: 测十组数据, 其余五组与前面取值相同

最大功率传输原理:通过以上实验结果和理论分析,说明负载获得最大功率条件及其应用。

Multisim2001/7/9/10基本界面

六、实验报告要求

- 1. 复习相关电路原理,测试前对实验电路进行理论计算,然后用Multisim电路进行仿真分析;
- 2. 在同一直角坐标系内描绘各次测试的伏安特性曲线;
- 3. 在直角坐标纸上画出功率P随负载Rw变化曲线图;
 - 4. 分析验证戴维南定理和最大功率传输原理。