指令说明

not 指令表示位取反。 not 指令分为 8 位 notb、16 位 notw、32 位 not1、64 位 notq。 not 指令可以操作寄存器、内存。

语法格式 not aa 表示 aa = $^{\sim}$ aa 。 对应的位执行位取反操作。如果位为 1,则结果为 0;如果位为 0,则结果为 1。

用汇编代码分析

```
编写代码: not_bit.s
. data
str64 :
   .string " int64 %#11X \n"
str32 :
   .string "int32 %#X \n"
.text
.global main
main:
   pushq %rbp
   movq %rsp, %rbp
   subq $64, %rsp
   #64位。操作寄存器
   movq $0x0F0F0F0F0F0F0F0F, %rax # 64位, 寄存器
                                 # 64位,位非
   notq %rax
   movq $str64, %rdi
   movq %rax, %rsi
```

```
callq printf
#32位。操作寄存器
mov1 $0xAAAA7777, %ecx # 32位, 寄存器
                     # 32 位, 位非
not1 %ecx
movq $str32, %rdi
mov1 %ecx, %esi
callq printf
#32位。操作栈内存
mov1 $0xAAAA7777, -8(%rbp) # 32位, 栈
                         # 32 位, 位非
not1 -8 (%rbp)
movq $str32, %rdi
mov1 - 8 (\%rbp) , \%esi
callq printf
# 16 位。操作寄存器
movl $0xAAAAAAAA, %ebx #32位,占位
movw $0xCCCC, %bx
                    # 16 位, 寄存器
notw %bx
                     # 16位,位非
movq $str32, %rdi
mov1 %ebx, %esi
callq printf
#8位。操作寄存器
mov1 $0xAAAAAAA, %ebx # 32位, 占位
movb $0xCC, %b1
                    #8位,寄存器
                     #8位,位非
notb %bl
movq $str32, %rdi
mov1 %ebx, %esi
callq printf
addq $64, %rsp
popq %rbp
retq
```

编译代码:

gcc not_bit.s -o not_bit

运行代码:

分析结果:

汇编代码 结果和分析

# 64 位。操作寄存器	int64 0XF0F0F0F0F0F0F0F0
movq \$0x0F0F0F0F0F0F0F0F0F, %rax # 64位,寄存器	
notq %rax # 64 位, 位非	操作 64 位寄存器 rax。
	\sim 0x0F0F0F0F0F0F0F0F = 0XF0F0F0F0F0F0F0
# 32 位。操作寄存器	int32 0X55558888
movl \$0xAAAA7777, %ecx # 32位,寄存器	
notl %ecx # 32位,位非	操作 32 位寄存器 ecx。
	~ 0 xAAAA7777 = 0X55558888
# 32 位。操作栈内存	int32 0X55558888
movl \$0xAAAA7777, -8(%rbp) # 32位,栈	
not1 -8(%rbp) # 32位,位非	操作栈内存。
	~ 0 xAAAA7777 = 0X55558888
# 16 位。操作寄存器	int32 OXAAAA3333
movl \$0xAAAAAAAA, %ebx # 32位,占位	
movw \$0xCCCC, %bx # 16位,寄存器	操作 16 位寄存器 bx。
notw %bx # 16 位, 位非	高 16 位,没有变化,都为 AAAA。
	低 16 位,发生变化,从 CCCC 变成 3333。
	~ CCCC = 3333
#8位。操作寄存器	int32 OXAAAAA33
mov1 \$0xAAAAAAAA, %ebx # 32位,占位	
movb \$0xCC, %b1 # 8位, 寄存器	操作 8 位寄存器 b1。
notb %bl # 8 位, 位非	高 24 位,没有变化,都为 AAAAAA。
	低 8 位,发生变化,从 CC 变成 33。
	~ CC = 33

- 十六进制 F 等于二进制 1111。
- 十六进制取反某数,等价于 F 减去该数。
- 十六进制取反 A, 等价于 F-A=5。
- 十六进制取反 7,等价于 F 7 = 8。
- 十六进制取反 0xAAAA7777, 等于 0X55558888。
- 十六进制取反 0x0F0F0F0F0F0F0F0F, 等于 0XF0F0F0F0F0F0F0F0.