# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САУ

#### ОТЧЕТ

#### по лабораторной работе №3

по дисциплине «Силовая электроника»

Тема: Исследование однофазного мостового управляемого выпрямителя при работе на активно-индуктивную нагрузку с противо-ЭДС Вариант 10

| Студенты гр. 6492 |        |              | Огурецкий Д.В. |
|-------------------|--------|--------------|----------------|
| Преподаватель     | -<br>- |              | Кузнецов М.А.  |
|                   | Сан    | кт-Петербург |                |

2019

#### Лабораторная работа № 3

## Исследование однофазного мостового управляемого выпрямителя при работе на активно-индуктивную нагрузку с противо-ЭДС Цель работы

Исследование однофазного мостового управляемого выпрямителя при работе на активно-индуктивную нагрузку с противо-ЭДС с нулевым диодом.

#### Общие сведения

Предлагаемая лабораторная работа позволяет исследовать работу однофазного мостового управляемого выпрямителя при различных углах управления. Принципиальная схема исследуемой схемы представлена на рисунке 3.1.



Рис. 3.1 Однофазный мостовой выпрямитель с противо-ЭДС

При  $E_0 = 0$  и  $x_H \to \infty$  ( $x_H = 7 - 10R_H$ ) ток в цепи нагрузки идеально сглажен. Токи вентилей имеют прямоугольную форму, при этом прямоугольники токов сдвинуты относительно выпрямленного напряжения на угол  $\alpha$ . Сдвиг тока относительно напряжения на угол  $\alpha$  приводит к появлению в выпрямленном напряжении  $U_d$  отрицательных участков, что вызывает снижение его среднего значения  $E_d$ . Длительность протекания тока через каждый вентиль остается равной половине периода напряжения

питающей сети. При  $E_0 \neq 0$  и конечном значении  $(^{X_H} \neq ^{\infty})$  моменты включения вентилей зависят от величины противо-ЭДС  $E_0$ . Если  $E_0 \geq \sqrt{2}E_2$ , вентили не включаются, ток  $i_d = 0$ , а интервал проводимости тока через вентиль  $\lambda = 0$ . С уменьшением  $E_0$  тока интервал проводимости возрастает, и в пределе, при  $E_0 = 0$  он составляет 180°. Кривые токов и напряжений для двух случаев величины  $E_0$  приведены на рис.3.2.

В режиме I угол  $0 < \lambda < 180^\circ$  и выпрямленный ток имеет прерывистый характер. В промежутке (0-01) включены вентили 1 и 3, а в промежутке (02-03) — вентили 2 и 4. За начало координатной системы принимаем момент открывания тиристоров 1 и 3. В момент включения тиристоров 1 и 3 напряжение вторичной обмотки трансформатора равно величине противо-ЭДС  $E_0$ :

$$\sqrt{2}U_{2\phi}\sin\varphi = E_0, \quad \sin\varphi = \frac{E_0}{\sqrt{2}U_{2\phi}}.$$

В момент выключения вентилей 1 и 3 угол  $\omega t = \lambda$  и мгновенный ток  $i_d = 0$  :

$$\cos\varphi - \cos(\lambda + \varphi) = \frac{E_0 \lambda}{x_a (1+q)} \ _{\text{ИЛИ}} \ \varphi = arctg \, \frac{1-\cos\lambda}{\lambda - \sin\,\lambda} \; .$$



Рис.3.2. Кривые токов и напряжений однофазного мостового управляемого выпрямителя

#### Схема установки:



Рис.3.3 Модель однофазного управляемого выпрямителя



Рис.3.4 Функциональная схема одного канала синхронной системы управления тиристорным преобразователем

#### Результаты экспериментов

Проведем исследование регулировочной характеристики управляемого однофазного выпрямителя при нулевом значении противо-ЭДС и различных нагрузках и занесем результаты эксперимента в табл.1. Трансформатор настроен  $U_{1max}$ =310,  $U_{2max}$ =560.

Таблица 1. Регулировочная характеристика при нулевом противо-ЭДС

| Har             | рузка 10                       | Нагрузка 90 |                                |  |
|-----------------|--------------------------------|-------------|--------------------------------|--|
| $\alpha$ , град | $U_{\scriptscriptstyle H}$ , B | lpha , град | $U_{\scriptscriptstyle H}$ , B |  |
| 0               | 171,2                          | 0           | 313,2                          |  |
| 30              | 152,3                          | 30          | 234,7                          |  |
| 60              | 56,32                          | 60          | 89,84                          |  |
| 90              | 0,7648                         | 90          | 1,216                          |  |
| 120             | 0                              | 120         | 0                              |  |
| 150             | 0                              | 150         | 0                              |  |
| 180             | 0                              | 180         | 0                              |  |

Затем исследуем регулировочную характеристику управляемого однофазного выпрямителя при ненулевом значении противо-ЭДС и различных нагрузках, результаты занесем в табл.2.

Таблица 2. Регулировочная характеристика при противо-ЭДС: E=75~B

| Har             | грузка 10                      | Нагрузка 90 |           |  |
|-----------------|--------------------------------|-------------|-----------|--|
| $\alpha$ , град | $U_{\scriptscriptstyle H}$ , B | lpha , град | $U_H$ , B |  |
| 0               | 206,8                          | 0           | 321,1     |  |
| 30              | 179,6                          | 30          | 239,4     |  |
| 60              | 89,74                          | 60          | 94,81     |  |
| 90              | 75                             | 90          | 75        |  |
| 120             | 75                             | 120         | 75        |  |
| 150             | 75                             | 150         | 75        |  |
| 180             | 75                             | 180         | 75        |  |

Проведем исследование внешних характеристик однофазного управляемого выпрямителя при работе на активно-индуктивную нагрузку ( $R_H$ =10 Ом,  $L_H$ =0,159 Гн) с противо-ЭДС и обратным диодом, а также различными нагрузками с помощью изменениея величины противо-ЭДС. Результаты исследования занесем в таблицу 3 и таблицу 5. Результаты исследований спектрального состава тока занесем в таблицу 4 и таблицу 6 .

Таблица 3. Внешние характеристики c обратными диодом  $R_{\rm H} = 10$ 

| Дан  | ные |         | Измерения при нагрузке 10 |                |             |                     |                        |                |                  | I          | Вычислен   | RN        |
|------|-----|---------|---------------------------|----------------|-------------|---------------------|------------------------|----------------|------------------|------------|------------|-----------|
| α    | E   | $I_{H}$ | $U_{H}$                   | $I_{1(1)\max}$ | $\varphi_1$ | $I_{VS\mathrm{cp}}$ | $I_{VS_{\mathcal{A}}}$ | $U_{ m VSmax}$ | $I_{VS{ m max}}$ | $S_{1(1)}$ | $P_{1(1)}$ | $P_{H}$   |
| град | В   | A       | В                         | A              | град        | A                   | Iza                    | $U_{RMAX}$     | A                | BA         | Вт         | Вт        |
|      | 100 | 12,36   | 219,7                     | 29,76          | -46,01      | 5,546               | 8,287                  | 460,8          | 14,67            | 4612,8     | 3203,740   | 2715,492  |
|      | 80  | 13,38   | 209,9                     | 31,93          | -47,18      | 5,96                | 8,896                  | 456,6          | 15,68            | 4949,15    | 3363,923   | 2808,462  |
| 0    | 60  | 14,42   | 200,2                     | 34,09          | -48,39      | 6,365               | 9,499                  | 452,3          | 16,7             | 5283,95    | 3508,842   | 2886,884  |
|      | 40  | 15,46   | 190,6                     | 36,24          | -49,57      | 6,768               | 10,1                   | 447,6          | 17,73            | 5617,2     | 3642,858   | 2946,676  |
|      | 20  | 16,52   | 181,2                     | 38,39          | -50,74      | 7,166               | 10,7                   | 443            | 18,77            | 5950,45    | 3765,685   | 2993,424  |
|      | 0   | 17,59   | 171,8                     | 40,52          | -51,89      | 7,565               | 11,29                  | 439            | 19,8             | 6280,6     | 3876,217   | 3021,962  |
|      | 100 | 9,385   | 189,5                     | 22,28          | -53,16      | 3,824               | 6,126                  | 462,8          | 11,82            | 3453,4     | 2070,597   | 1778,4575 |
|      | 80  | 10,64   | 182                       | 24,9           | -53,68      | 4,305               | 6,857                  | 458,5          | 13,03            | 3859,5     | 2285,960   | 1936,48   |
| 20   | 60  | 11,9    | 174,6                     | 27,53          | -54,23      | 4,791               | 7,591                  | 454,2          | 14,23            | 4267,15    | 2494,289   | 2077,74   |
| 30   | 40  | 13,16   | 167,3                     | 30,15          | -54,88      | 5,273               | 8,319                  | 449,6          | 15,44            | 4673,25    | 2688,477   | 2201,668  |
|      | 20  | 14,43   | 160                       | 32,76          | -55,47      | 5,757               | 9,051                  | 445            | 16,65            | 5077,8     | 2878,287   | 2308,8    |
|      | 0   | 15,71   | 152,8                     | 35,36          | -56,17      | 6,238               | 9,775                  | 440,4          | 17,87            | 5480,8     | 3051,328   | 2400,488  |
|      | 100 | 1,199   | 111                       | 3,44           | -70,43      | 0,455               | 1,035                  | 424,7          | 3,217            | 533,2      | 178,5996   | 133,089   |
|      | 80  | 1,477   | 93,95                     | 3,743          | -71,4       | 0,500               | 1,132                  | 420,7          | 3,482            | 580,165    | 185,0489   | 138,76415 |
| 60   | 60  | 1,993   | 79,66                     | 4,26           | -72,03      | 0,578               | 1,292                  | 403            | 4,146            | 660,3      | 203,7149   | 158,76238 |
|      | 40  | 3,328   | 69,29                     | 6,196          | -71,97      | 0,874               | 1,862                  | 398,4          | 5,23             | 960,38     | 297,2518   | 230,59712 |
|      | 20  | 4,673   | 62,76                     | 8,125          | -72,8       | 1,169               | 2,439                  | 379,9          | 6,316            | 1259,375   | 372,4071   | 293,27748 |
|      | 0   | 6,03    | 56,53                     | 10,06          | -73,78      | 1,465               | 3,017                  | 375,3          | 7,488            | 1559,3     | 435,5532   | 340,8759  |

Таблица 4. Спектральный состав тока  $R_{H}=10$ 

| Измере | Измерения нагрузка 10 (E=60) |                          |                | Вычисления     |                |                       |  |
|--------|------------------------------|--------------------------|----------------|----------------|----------------|-----------------------|--|
| α      | $y_1$ $y_9$                  | $I_1(1)_{\text{max}}(A)$ | $I_1(3)_{max}$ | $I_1(5)_{max}$ | $I_1(7)_{max}$ | $I_1(9)_{\text{max}}$ |  |
|        | 14.23                        |                          |                |                |                |                       |  |
|        | 0.028                        |                          |                |                |                |                       |  |
| 30     | 0.005                        | 27.53                    | 0,1625         | 0,0484         | 0,0542         | 0,0052                |  |
|        | 0.004                        |                          |                |                |                |                       |  |
|        | 0.0003                       |                          |                |                |                |                       |  |

Таблица 5. Спектральный состав тока  $R_{\rm H} = 90$ 

| Измере | ния нагрузка 9  | 0 (E=60)                 | Вычисления     |                |                |                       |
|--------|-----------------|--------------------------|----------------|----------------|----------------|-----------------------|
| α      | $y_1$ $y_{\nu}$ | $I_1(1)_{\text{max}}(A)$ | $I_1(3)_{max}$ | $I_1(5)_{max}$ | $I_1(7)_{max}$ | $I_1(9)_{\text{max}}$ |
|        | 0.410           |                          |                |                |                |                       |
|        | 0.00057         |                          |                |                |                |                       |
| 30     | 0.00013         | 4,815                    | 0,0200         | 0,00763        | 0,0254         | 0,0061                |
|        | 0.00031         |                          |                |                |                |                       |
|        | 0.000058        |                          |                |                |                |                       |

Таблица 6. Внешние характеристики c обратными диодом  $R_{\rm H} = 90$ 

| Дан  | ные |                            |                            | Изме                    | рения пр    | ои нагруз           |                             |                      |                  | Вь         | <u> </u>   | я       |
|------|-----|----------------------------|----------------------------|-------------------------|-------------|---------------------|-----------------------------|----------------------|------------------|------------|------------|---------|
| α    | E   | $I_{\scriptscriptstyle H}$ | $U_{\scriptscriptstyle H}$ | $I_{1(1)\mathrm{max})}$ | $\varphi_1$ | $I_{VS\mathrm{cp}}$ | $I_{_{V\!S_{\mathcal{A}}}}$ | $U_{ m {\it VS}max}$ | $I_{VS{ m max}}$ | $S_{1(1)}$ | $P_{1(1)}$ | $P_{H}$ |
| град | В   | A                          | В                          | A                       | град        | A                   | A                           | В                    | Α                | BA         | Вт         | Вт      |
|      | 100 | 2,518                      | 324,9                      | 6,229                   | -24,48      | 1,192               | 1,725                       | 544,4                | 2,791            | 965,495    | 878,70     | 818,09  |
|      | 80  | 2,717                      | 322,8                      | 6,684                   | -24,81      | 1,284               | 1,857                       | 543,8                | 2,991            | 1036,02    | 940,39     | 877,04  |
| 0    | 60  | 2,916                      | 320,7                      | 7,138                   | -25,06      | 1,375               | 1,990                       | 543,1                | 3,191            | 1106,39    | 1002,2     | 935,16  |
|      | 40  | 3,115                      | 318,4                      | 7,590                   | -25,43      | 1,463               | 2,120                       | 542,5                | 3,391            | 1176,45    | 1062,4     | 991,81  |
|      | 20  | 3,314                      | 316,4                      | 8,043                   | -25,81      | 1,551               | 2,250                       | 542,1                | 3,591            | 1246,665   | 1122,3     | 1048,5  |
|      | 0   | 3,513                      | 314,4                      | 8,496                   | -26,14      | 1,642               | 2,381                       | 541,5                | 3,791            | 1316,88    | 1182,1     | 1104,4  |
|      | 100 | 1,629                      | 246,6                      | 3,940                   | -43,23      | 0,605               | 1,016                       | 545,3                | 1,937            | 610,7      | 444,96     | 401,71  |
|      | 80  | 1,835                      | 240,6                      | 4,386                   | -42,65      | 0,686               | 1,146                       | 544,7                | 2,143            | 679,83     | 500,01     | 441,50  |
| 20   | 60  | 2,043                      | 239,3                      | 4,815                   | -42,73      | 0,760               | 1,266                       | 544,1                | 2,350            | 746,325    | 548,22     | 488,88  |
| 30   | 40  | 2,250                      | 238                        | 5,245                   | -42,81      | 0,835               | 1,387                       | 543,5                | 2,557            | 812,975    | 596,40     | 535,5   |
|      | 20  | 2,458                      | 236,8                      | 5,678                   | -42,6       | 0,910               | 1,508                       | 542,9                | 2,765            | 880,09     | 647,83     | 582,05  |
|      | 0   | 2,665                      | 235,5                      | 6,111                   | -43,09      | 0,986               | 1,630                       | 542,3                | 2,972            | 947,205    | 691,72     | 627,60  |
|      | 100 | 0,175                      | 114,7                      | 0,723                   | -58,05      | 0,054               | 0,133                       | 44,2                 | 0,438            | 112,0805   | 59,310     | 20,015  |
|      | 80  | 0,217                      | 98,73                      | 0,755                   | -58,81      | 0,059               | 0,144                       | 491,5                | 0,480            | 117,0095   | 60,596     | 21,434  |
| 60   | 60  | 0,376                      | 93,42                      | 0,952                   | -60,2       | 0,088               | 0,206                       | 477,8                | 0,643            | 147,498    | 73,302     | 35,079  |
|      | 40  | 0,585                      | 92,33                      | 1,230                   | -61,26      | 0,130               | 0,296                       | 477,2                | 0,818            | 190,65     | 91,671     | 53,976  |
|      | 20  | 0,794                      | 91,25                      | 1,519                   | -62,22      | 0,173               | 0,388                       | 476,5                | 1,014            | 235,445    | 109,73     | 72,434  |
|      | 0   | 1,003                      | 90,17                      | 1,808                   | -62,91      | 0,215               | 0,481                       | 475,9                | 1,210            | 280,24     | 127,61     | 90,440  |

#### Обработка результатов эксперимента.

#### 1. Рассчитаем основные характеристики по формулам:

$$S_{1(1)} = \frac{U_{1MAX}I_{1(1)MAX}}{2} = \frac{310*6,229}{2} = 965,495 \text{ (BA)}$$

$$P_{1(1)} = S_{1(1)} \cos \varphi_1 = 965,495 * \cos(-24,48^0) = 878,7027 \text{ (Bt)}$$

$$P_H = U_H I_H = 324,9*2.518 = 818,0982 \text{ (BT)}$$

$$P_{VS} = U_{VS}I_{VScp} + I_{VS\partial}R_{VS} = 1*1.192 + 1.725*1 = 2.917 \text{ (Bt)}$$

Запишем полученные результаты в табл. 3,5.

Для R=10 Ом: 
$$I_1(5)_{max} = \frac{\vartheta y_5}{y_1} I_1(1)_{max} = \frac{5*0.005}{14,23} * 27,53 = 0.0533$$
 (A)

Для R=90 Ом: 
$$I_1(5)_{max} = \frac{\vartheta y_5}{y_1} I_1(1)_{max} = \frac{5*0.00013}{0.41} * 4,815 = 0.00763$$
 (A)

Запишем полученные результаты в табл. 4,6.

## 2. Построим внешние характеристики управляемого выпрямителя $U_{\scriptscriptstyle H} = f(I_{\scriptscriptstyle H})$ при различных углах управления:

#### При нагрузке R=10 Ом:



Рис.1. Внешняя характеристика выпрямителя при разных углах управления

#### При нагрузке R=90 Ом:



Рис.2. Внешняя характеристика выпрямителя при разных углах управления

## 3. Построим энергетические характеристики $S_{\rm l(l)}, P_{\rm l(l)}, P_{\rm VS} = f(P_H)$ ; $I_{\rm l(l)max}, I_{\rm VS\,cp}, I_{\rm VS\,\chi} = f(I_H)$

#### При нагрузке R=10 Ом:



Рис.3. Энергетические характеристики S1(1), P1(1)



Рис.4. Энергетические характеристики  $Pvs = f(P_H)$ 



$$\alpha=30^{\circ}$$



Рис.6 Энергетические характеристики S1(1), P1(1)



Рис.7. Энергетические характеристики  $Pvs = f(P_H)$ 



Рис.8. Энергетические характеристики I1 max, Ivs ср, Ivs  $g = f(I_H)$ .



Рис.9. Энергетические характеристики S1(1), P1(1)



Рис.10. Энергетические характеристики Pvs =  $f(P_H)$ 



Рис.11. Энергетические характеристики I1max, Ivs cp, Ivs д =  $f(I_{\text{H}})$ 

#### При нагрузке R=90 Ом:



Рис.12. Энергетические характеристики S1(1), P1(1)



Рис.13. Энергетические характеристики  $Pvs = f(P_H)$ 



Рис.14. Энергетические характеристики I1max, Ivs ср, Ivs д.





Рис.16. Энергетические характеристики  $Pvs = f(P_H)$ 



Рис.17. Энергетические характеристики I1max, Ivs ср, Ivs д.

α=60°



2,000

Рис.19. Энергетические характеристики  $Pvs = f(P_H)$ 

Рн, Вт



## 4. Построим регулировочную характеристику $U_H = f(\alpha)$ При нагрузке R=10 Ом:



Рис.21. График регулировочной характеристики

#### При нагрузке R=90 Ом:



Рис.22. График регулировочной характеристики

### 5. Исследуем спектральный состав тока, потребляемого управляемым выпрямителем при значении угла управления $\alpha = 30^{\circ}$ .

Спектральный состав тока потребления (по таблице 4 и 5) Е=60.

Таблица 7. Спектральный состав тока

|             | Нагрузка 10 Ом | Нагрузка 90 Ом |
|-------------|----------------|----------------|
| I1(1)max, A | 27,53          | 4,815          |
| I1(3)max, A | 0,1625         | 0,0201         |
| I1(5)max, A | 0,0484         | 0,0076         |

|      | I1(7)max, A | 0,0542                | 0,0255 |   |
|------|-------------|-----------------------|--------|---|
|      | I1(9)max, A | 0,0052                | 0,0061 |   |
| 00   |             | FFT Spectrum Estimate |        |   |
| 20   | I           |                       |        |   |
| 18 — |             |                       |        | _ |
|      |             |                       |        |   |
| 16 - |             |                       |        | - |
|      |             |                       |        |   |
| 14 — |             |                       |        |   |
| 12 — |             |                       |        |   |
|      |             |                       |        |   |
| 10 - |             |                       |        | _ |
|      |             |                       |        |   |
| 8 –  |             |                       |        | _ |
| 6 –  |             |                       |        |   |
|      |             |                       |        |   |
| 4 -  |             |                       |        | - |
|      |             |                       |        |   |
| 2 -  |             |                       |        | - |

Рис.23. Спектральный состав тока для нагрузки 10 Ом.



Рис.24 Спектральный состав тока при нагрузке 90 Ом.

**Вывод:** в ходе лабораторной работы был исследован однофазный мостовой управляемый выпрямитель с противо-эдс при работе с активно-индуктивной нагрузкой:

- Вид графика регулировочной характеристики, полученного при исследовании схемы, совпадает с известным нам видом регулировочной характеристики ОМУВ при активно-индуктивной нагрузке. Характеристика имеет пологий характер при меньших значениях индуктивности и сопротивления нагрузки и, наоборот, более крутой при больших значениях этих параметров.
- Внешняя характеристика выпрямителя представляет собой семейство параллельных прямых для различных углов управления α. Положение характеристики относительно оси ординат зависит от угла управления: чем он больше, тем ниже расположена прямая. Положение относительно оси абсцисс зависит от параметров нагрузки: при уменьшении индуктивности и сопротивления нагрузки прямая двигается вправо вдоль оси х.

#### Временные диаграммы

R=10 E=0

#### а=0 внизу



#### а=30 внизу



#### а=60 внизу



а=90 внизу



R=90 E=0

#### а=0 внизу



#### а=30 внизу



а=60 внизу



#### а=90 внизу



R=10 E=75

#### а=0 внизу



а=30 внизу



а=60 внизу



а=90 внизу



R=90 E=75

а=0 внизу



#### а=30 внизу



#### а=60 внизу



а=90 внизу

