Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

Lecture 3

The Heat Equation - Part 2

Fully-discrete approximation of the heat equation

- Time discretization
- Stability

Repetition Stability Heat equation: time discretization

Time discretization

Space discretization of heat equation leads to

linear system of ordinary differential equations for $Q_i(t)$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{Q}(t) = \mathbf{A}(t)\mathbf{Q}(t) + \mathbf{S}(t) =: \mathbf{F}(t,\mathbf{Q}(t))$$

Can be solved with standard ODE methods.

For instance: θ -schemes (family of simple methods) with $\underline{o} \leq \theta \leq \underline{\iota}$.

With step size $\triangle t > 0$ the approximations are given by:

$$\mathbf{Q}(t^{n+1}) \approx \mathbf{Q}^{n+1} = \mathbf{Q}^n + \Delta t \left(\theta \ \mathbf{F}(t^{n+1}, \mathbf{Q}^{n+1}) + (\mathbf{1} - \theta) \ \mathbf{F}(t^n, \mathbf{Q}^n) \right)$$

 θ yields convex combination of $\mathbf{F}(t^n, \mathbf{Q}^n)$ and $\mathbf{F}(t^{n+1}, \mathbf{Q}^{n+1})$.

- \bullet $\theta = o$ fully explicit method
- \bullet $\theta = 1$ fully implicit method

Time discretization

For $0 < \theta < 1$ and step size $\triangle t > 0$:

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n + \Delta t \left(\theta \, \mathbf{F}(t^{n+1}, \mathbf{Q}^{n+1}) + (1 - \theta) \, \mathbf{F}(t^n, \mathbf{Q}^n) \right)$$

- \bullet $\theta = o$: Explicit Euler Method
 - also called Forward Euler Method
 - $\mathbf{Q}^{n+1} = \mathbf{Q}^n + \triangle t \mathbf{F}(t^n, \mathbf{Q}^n).$
 - derived with forward difference quotient

$$\partial_t \mathbf{Q}(t^n) pprox rac{\mathbf{Q}(t^{n+1}) - \mathbf{Q}(t^n)}{\triangle t} = \mathbf{F}(t^n, \mathbf{Q}^n).$$

• order of accuracy is 1, i.e. $\mathcal{O}(\triangle t)$.

Repetition Stability Heat equation: time discretization

Time discretization

For $o \le \theta \le 1$ and step size $\triangle t > o$:

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n + \Delta t \left(\theta \, \mathbf{F}(t^{n+1}, \mathbf{Q}^{n+1}) + (1 - \theta) \, \mathbf{F}(t^n, \mathbf{Q}^n) \right)$$

- ightharpoonup heta = 1: Implicit Euler Method
 - also called Backward Euler Method
 - $\mathbf{Q}^{n+1} = \mathbf{Q}^n + \triangle t \, \mathbf{F}(t^{n+1}, \mathbf{Q}^{n+1}).$
 - derived with backward difference quotient

$$\partial_t \mathbf{Q}(t^{n+1}) pprox rac{\mathbf{Q}(t^{n+1}) - \mathbf{Q}(t^n)}{\triangle t} = \mathbf{F}(t^{n+1}, \mathbf{Q}^{n+1}).$$

- order of accuracy is 1, i.e. $\mathcal{O}(\triangle t)$.
- unconditionally stable.

Time discretization

For $0 < \theta < 1$ and step size $\triangle t > 0$:

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n + \Delta t \left(\theta \, \mathbf{F}(t^{n+1}, \mathbf{Q}^{n+1}) + (1 - \theta) \, \mathbf{F}(t^n, \mathbf{Q}^n) \right)$$

- \bullet $\theta = \frac{1}{2}$: Crank-Nicolson

 - derived with central difference quotient

$$\partial_t \mathbf{Q}(t^{n+\frac{1}{2}}) pprox rac{\mathbf{Q}(t^{n+1}) - \mathbf{Q}(t^n)}{\triangle t} = rac{\mathbf{F}(t^{n+1}, \mathbf{Q}^{n+1}) + \mathbf{F}(t^n, \mathbf{Q}^n)}{2}.$$

- order of accuracy is 2, i.e. $\mathcal{O}(\triangle t^2)$.
- unconditionally stable.

Repetition Stability
Heat equation: time discretization
Conservation properties

Time discretization - Stability

Let us assume that

$$\blacktriangleright$$
 $k(x,t)=k \Rightarrow \mathbf{A}(t)=\mathbf{A}.$

Space-discrete heat equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{Q}(t) = \mathbf{A}(t)\mathbf{Q}(t) + \mathbf{S}(t)$$

Space-time-discrete heat equation:

$$\mathbf{Q}^{n+1} = \mathbf{Q}^{n} + \Delta t \mathbf{A} \left(\theta \ \mathbf{Q}^{n+1} + (1-\theta) \ \mathbf{Q}^{n} \right) + \Delta t \left(\theta \ \mathbf{S}(t^{n+1}) \right) + (1-\theta) \ \mathbf{S}(t^{n}) \right)$$

Stability:

- ▶ In many cases restriction on $\triangle t$ for the method to be stable;
- Recall: To verify stability we need to investigate the eigenvalues of A;
- For stability we must have

$$\triangle t \lambda_k \in D$$
 for all eigenvalues λ_k of **A**.

Here *D* is the stability region of the ODE solver.

Examples of stability regions:

For stability we require $\triangle t \lambda_k \in D$ for all eigenvalues of **A**.

- ▶ Explicit Euler: if λ_k is real $\Rightarrow -2 < \triangle t \lambda_k < 0 \Rightarrow -\triangle t \lambda_k \leq 2$.
- ▶ Implicit Euler: if λ_k is real $\Rightarrow \triangle t \lambda_k < o \Rightarrow$ easily fulfilled.

Heat equation: time discretization

Time discretization - Stability

It remains to check the eigenvalues of A in our case, i.e.

- ► Heat equation in 1d: $\partial_t \mathbf{u} = \partial_x (\alpha \partial_x \mathbf{u}) + S$
- \blacktriangleright $k(x,t) =: \alpha = \text{const.}$
- Neumann boundary condition $\partial_x \mathbf{u}(\mathbf{0},t) = \partial_x \mathbf{u}(\mathbf{1},t) = \mathbf{0}$.

Recall from last lecture (A is real, symmetric and invertible):

$$\mathbf{A} = \frac{\alpha}{h^2} \begin{pmatrix} -1 & 1 & 0 & \dots & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ & & & \ddots & & & 0 \\ & & & & 1 & -2 & 1 \\ 0 & \dots & \dots & & 0 & 1 & -1 \end{pmatrix}.$$

Hence, the eigenvalues $\lambda_1, \dots, \lambda_M$ are real and nonzero. Let \mathbf{v}^k denote corresponding eigenvectors with

$$\mathbf{Av}^k = \lambda_k \mathbf{v}^k$$
 with $1 \le k \le M$.

Repetition Stability
Heat equation: time discretization
Conservation properties

Time discretization - Stability

Recall from last lecture (A is real, symmetric and invertible):

$$\mathbf{A} = \frac{\alpha}{\mathbf{h}^2} \begin{pmatrix} -1 & 1 & 0 & \dots & \dots & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ & & & \ddots & & & 0 \\ & & & & 1 & -2 & 1 \\ 0 & \dots & \dots & \dots & 0 & 1 & -1 \end{pmatrix}.$$

Let \mathbf{v}^k denote eigenvectors with $\mathbf{A}\mathbf{v}^k = \lambda_k \mathbf{v}^k$ with $1 \le k \le M$.

The matrix encodes the relation

$$\frac{\alpha}{h^2} \left(\mathbf{v}_{j+1}^k - 2 \mathbf{v}_j^k + \mathbf{v}_{j-1}^k \right) = \lambda_k \mathbf{v}_j^k \qquad \text{for } 1 \leq j \leq N-2,$$

where (from the Neumann condition) $\mathbf{v}_0^k := \mathbf{v}_1^k$ and $\mathbf{v}_{N-1}^k := \mathbf{v}_{N-2}^k$.

Ansatz for eigenvectors inspired by Lecture 2 (solution admits cosine transform):

$$\mathbf{v}^k \in \mathbb{R}^N$$
 with $\mathbf{v}_i^k = \cos(k\pi x_i)$. (satisfies boundary condition!)

Next, we compute the eigenvectors to

$$\mathbf{v}^k \in \mathbb{R}^N$$
 with $\mathbf{v}_j^k = \cos(k\pi x_j)$,

where we use the relation

$$\frac{\alpha}{h^2} \left(\mathbf{v}_{j+1}^k - 2 \mathbf{v}_j^k + \mathbf{v}_{j-1}^k \right) = \lambda_k \mathbf{v}_j^k \qquad \text{for } 1 \le j \le N-2.$$

Repetition Stability
Heat equation: time discretization
Conservation properties

Time discretization - Stability

We obtain:

$$\frac{\alpha}{h^2} \left(\mathbf{v}_{j+1}^k - 2\mathbf{v}_j^k + \mathbf{v}_{j-1}^k \right) \\
= \frac{\alpha}{h^2} \left[\underbrace{\cos(k\pi(x_j + h)) + \cos(k\pi(x_j - h))}_{=2\cos(k\pi x_j)\cos(k\pi h)} - 2\cos(k\pi x_j) \right] \\
= \frac{2\alpha}{h^2} \left[\cos(k\pi x_j) \cos(k\pi h) - \cos(k\pi x_j) \right] \\
= \frac{2\alpha}{h^2} \cos(k\pi x_j) \left[\underbrace{\cos(k\pi h) - 1}_{-2\sin^2(\frac{k\pi h}{2})} \right] \\
= \underbrace{-\frac{4\alpha}{h^2}}_{p} \sin^2(\frac{k\pi h}{2}) \underbrace{\cos(k\pi x_j)}_{p}.$$

Hence, the eigenvalues of A are given by

$$\lambda_k = -\frac{4\alpha}{h^2} \sin^2(\frac{k\pi h}{2}).$$

Since $0 \le \sin^2(\frac{k\pi h}{2}) \le 1$ we have

$$\lambda_k \sim -\frac{4\alpha}{h^2}$$
 which depends on the discretization through h .

Stability for the heat equation.

Explicit Euler. Condition $-2 < \lambda_k \triangle t < 0$. Hence:

$$-2 \le -\frac{4\alpha}{h^2} \triangle t \qquad \Rightarrow \qquad 4\alpha \frac{\triangle t}{h^2} \le 2 \qquad \Rightarrow \qquad \alpha \frac{\triangle t}{h^2} \le \frac{1}{2}.$$

Bad condition! The finer the mesh, the smaller the time steps!

Generally for the θ -scheme for the heat equation & Finite Volume Method:

$$\alpha \frac{\triangle t}{h^2} \leq \begin{cases} \frac{1}{2(1-2\theta)} & \text{for } \theta < \frac{1}{2}, \\ \infty & \text{for } \frac{1}{2} \leq \theta \leq 1 \end{cases}$$
 Unconditionally stable.

Hence, for $\frac{1}{2} \le \theta \le 1$ we can pick $\triangle t$ as large as we want.

However, the accuracy of the approximations still depends on $\triangle t$.