```
title: "Partiel Thomas SERVANT"
author: "Thomas SERVANT"
output:
 pdf document: default
 html document: default
```{r setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE)
R Markdown

 Dans le cadre de notre partiel, nous devons réaliser un total de 12
travaux retracant notre parcours et notre travail durant les 30 heures de
cours.
 Le travail à faire est le suivant :

des auteurs.
 - Une synthese de ce travail
 - Un extrait commenté avec des parties de codes clé avec explication
et commentaire.

 - Une évalutation du travail avec nos 5 criteres.
 - Une conclusion du travail
<hr>
Definition des 5 critères de notations :

 1) Présentation et lisibilité du RMD.

 2) Knit opérationnel.

 3) Contenue facilement compréhensible.

 4) Facilité de réutilisation du code.

 5) Explication des outils utilisés.
Travail n°1 : "La Cross Validation"
Travail réalisé par "Marko ARSIC / Rindra LUTZ" le 15/11/2020.
https://github.com/ARSICMrk/ARSIC PSBx/blob/main/R Travail Sup/
Cross%20Validation.Rmd
Synthese :

 Les travaux effectué par ces deux etudiants se basent sur la cross-
validation, étant une regression linéaire ils se sont concentré sur les
méthodes prédictives.

 La regression logistique permet de construire un modele permettant de
prédire et expliquer les valeurs prises par une variable cible qualitative.

 La cross-validation permet aussi de determiner les paramètres d'un
modèle. On met en compétitiion K qui est un "sous-modèle" pour en mesurer la
performance et determiner le paramètre testé.
Extrait commenté du code :
Dans leur introduction , les auteurs ont utilisé le code ci-dessous pour
illustrer leur exemple :
```{r}
library(tidyverse)
```

```
library(caret)
# Téléchargement des données
data("swiss")
# Inspecter les données
sample n(swiss, 3)
# Définition de l'échantillon d'entraînement
set.seed(123)
train.control <- trainControl(method = "cv", number = 10)</pre>
# Entraîner le modèle
model <- train(Fertility ~., data = swiss, method = "lm",</pre>
               trControl = train.control)
# Résultats résumés
print(model)
# Définiiton de l'échantillon d'entraînement
set.seed(123)
train.control <- trainControl(method = "repeatedcv",</pre>
                               number = 10, repeats = 3)
# Entraîner le modèle
model <- train(Fertility ~., data = swiss, method = "lm",</pre>
               trControl = train.control)
# Résultats résumés
print(model)
```

Evaluation du travail :

Ce tutoriel nous a permis d'apprendre comment mettre en place un code qui allait nous permettre d'effectuer une cross-validation sur une base de donnée et d'ainsi, mettre en place des modèles prédictifs.

-
 1) Présentation et lisibilité du RMD : RMD structuré et facile a lire.
-
 2) Knit opérationnel : RMD facile a kniter.
-
 3) Contenue facilement compréhensible : Bonnes explication avec un bon détail de chaque étape.
-
 4) Facilité de réutilisation du code : Le code est trop centré sur un exemple en particulier, il est donc difficile a réutiliser sur d'autre projet en l'état.
-
 5) Explication des outils utilisés : Les différents chunk de code sont bien détaillé, cela aide a la compréhension d'utilisation de tel fonction ou packages.

Conclusion :

On peux donc en conclure que c'est un bon RMD, facile a lire et a comprendre grâce a leurs nombreuses explications. Cependant, le faite que leur travail soit autant tournés vers un seul exemple rend le code difficilement réutilisable.