263-2300-00: How To Write Fast Numerical Code

Assignment 2: 80 points

Submitted by Jinank Jain

Solution 1

Solution 2

Part b:

In this part I tried four different variations which are discussed as below:

- In the first approach I just unroll the inner loop and does not do any modifications with that unrolled loop. The function is called loop_unroll in C file.
- In the second approach, I did some optimization with unrolled loop that I did in the previous section, I replaced x[i] with some some scalar a which stores the value of x[i] in some register. Another optimization was to much multiple accumulator instead single sum. I used for different sum variable to store the intermediate result. The function is called scalar_replacement in C file.
- In the third approach I unrolled the first loop too. Since in the array y there are only 5 values and I want them to be stored in registers so I unrolled first loop in multiple of 5 and storing all the values in the register. And creating 20 different sum accumulator and summing up the final answer. The function is called super_scalar_replacement in C file.
- In the fourth approach I remove the assumption which I took in third approach that n was divisible by 5 so for that I need introduce some branching instructions. The function is called super_scalar_replacement_generalize in C file.

Part d:

Optimization Flags	slow performance1	loop_unroll	scalar _replacement	super _scalar _replacement	super_scalar _replacement _generalize
-O0	$0.164 \; \mathrm{FLOPs/c}$	$0.238 \; \mathrm{FLOPs/c}$	$0.233~\mathrm{FLOPs/c}$	$0.817~\mathrm{FLOPs/c}$	$0.738 \; \mathrm{FLOPs/c}$
-O3	$0.537~\mathrm{FLOPs/c}$	$0.549 \; \mathrm{FLOPs/c}$	$0.544~\mathrm{FLOPs/c}$	$4.881~\mathrm{FLOPs/c}$	$3.527 \; \mathrm{FLOPs/c}$

Table 1: Performance comparison between different optimization function

Solution 3

Table 2: My caption

Instruction	Reference Values		Regular Case		Special Case: Mul: 1		Special Cas Div: 2				
	Latency	TPS	Gap	Latency	TPS	Gap	Latency	TPS	Gap	Latency	TPS
MULSS	5	1	1	5.34	0.76	1.32					
MULSD	5	1	1	5.06	0.91	1.09					
DIVSS	11-14	0.16	6	13.07	0.13	7.49					
DIVSD	15-20	0.07	14	20.06	0.07	14.06					