Cammini continui

Def. Un cammino continuo in uno spazio topologico X è un'applicazione continua $\alpha:I\to X$. $\alpha(0)=x_0$ e $\alpha(1)=x_1$ sono gli estremi di α , x_0 punto iniziale, x_1 punto terminale, α cammino tra x_0 e x_1 .

Un cammino $\alpha: I \to X$ è detto cappio se $\alpha(0) = \alpha(1) = x_0$ (punto base).

I cammini saranno sempre considerati continui.

Cappio costante. $x_0 \in X \rightsquigarrow \gamma_{x_0} : I \to X$, $\gamma_{x_0}(t) = x_0$, $\forall t \in I$.

Concatenazione di cammini. $\alpha, \beta: I \to X$ cammini t.c.

$$\alpha(0) = x_0, \ \alpha(1) = \beta(0) = x_1, \ \beta(1) = x_2 \iff$$

$$\alpha * \beta : I \to X$$

$$(\alpha * \beta)(t) \stackrel{\text{def}}{=} \begin{cases} \alpha(2t), & 0 \leqslant t \leqslant \frac{1}{2} \\ \beta(2t-1), & \frac{1}{2} \leqslant t \leqslant 1. \end{cases} x_0$$

Oss. $\alpha \cdot \beta$ continua in $t = \frac{1}{2}$ perché $\alpha(1) = \beta(0)$.

Def. $\alpha * \beta$ si chiama concatenazione di α e β .

Oss. $\alpha \in \beta$ cappi $\Rightarrow \alpha \cdot \beta$ cappio.

Cammino inverso. $\alpha: I \to X$ cammino t.c. $\alpha(0) = x_0, \alpha(1) = x_1 \rightsquigarrow$

$$ar{lpha}:I o X \ ar{lpha}(t)\stackrel{ ext{def}}{=}lpha(1-t)$$

Si ha $\bar{\alpha}(0) = x_1 \in \bar{\alpha}(1) = x_0$.

Def. $\bar{\alpha}$ è detto *cammino inverso* di α .

Oss. α cappio $\Rightarrow \bar{\alpha}$ cappio.

Spazi connessi per archi

Def. Uno spazio topologico X è *connesso per archi (cpa)* se $\forall x_0, x_1 \in X$ $\exists \alpha : I \to X$ cammino continuo t.c. $\alpha(0) = x_0$ e $\alpha(1) = x_1$.

Teor. X connesso per archi \Rightarrow X connesso.

Dim. Per assurdo X sconnesso $\longrightarrow X = U \cup V$ aperti non vuoti disgiunti. Scegliamo $x_0 \in U$, $x_1 \in V \longrightarrow \alpha$: $I \to X$ cammino t.c. $\alpha(0) = x_0$ e $\alpha(1) = x_1 \Rightarrow 0 \in \tilde{U} := \alpha^{-1}(U)$, $1 \in \tilde{V} := \alpha^{-1}(V) \subset I$ aperti non vuoti disgiunti e $I = \tilde{U} \cup \tilde{V} \Rightarrow I$ sconnesso, contraddizione.

Teor. $f: X \to Y$ continua suriettiva e X cpa $\Rightarrow Y$ cpa.

Dim.
$$\forall y_0, y_1 \in Y \rightsquigarrow x_0 \in f^{-1}(y_0), x_1 \in f^{-1}(y_1) \rightsquigarrow \alpha : I \to X \text{ t.c.}$$
 $\alpha(0) = x_0, \alpha(1) = x_1 \rightsquigarrow \beta = f \circ \alpha : I \to Y \text{ t.c. } \beta(0) = y_0, \beta(1) = y_1.$

Cor. $f: X \to Y$ continua e X cpa $\Rightarrow f(X) \subset Y$ cpa.

Oss. Immagine continua di un connesso per archi è connessa per archi.

Def. $U \subset \mathbb{R}^n$ è *convesso* se $\forall x_0, x_1 \in U \Rightarrow$ il segmento $[x_0, x_1] \subset U$.

Oss. $U \subset \mathbb{R}^n$ convesso $\Rightarrow U$ cpa. Infatti $\forall x_0, x_1 \in U \rightsquigarrow$

$$\alpha: I \to U$$

$$lpha(t)=(1-t)x_0+tx_1$$
 (combinazione convessa di x_0 e x_1)

parametrizza il segmento $[x_0, x_1]$ quindi è un cammino in U tra x_0 e x_1 .

Esempi.

- 1) Ogni intervallo $J \subset \mathbb{R}$ è convesso quindi cpa.
- 2) $\mathbb{R}^n \{0\}$ cpa $\forall n \geq 2$. $\forall x_0, x_1 \in \mathbb{R}^n \{0\}$ se $[x_0, x_1]$ non passa per 0 determina un cammino. Se $[x_0, x_1]$ passa per 0 \rightsquigarrow $[x_0, x_2] \cup [x_2, x_1]$.
- 3) S^n cpa $\forall\, n\geqslant 1$. $f:\mathbb{R}^{n+1}-\{0\}\to S^n$, $f(x)=\frac{x}{\|x\|}$ continua e suriettiva.
- 4) $\mathbb{R}\mathsf{P}^n$ e $\mathbb{C}\mathsf{P}^n$ cpa $\forall\, n\geqslant 0.$ $\pi:\mathbb{K}^{n+1}-\{0\}\to\mathbb{K}\mathsf{P}^n$ continua e suriettiva.

Lem. X spazio topologico e $x_0 \in X$. X cpa $\Leftrightarrow \forall x \in X$, $\exists \alpha : I \to X$ cammino t.c. $\alpha(0) = x_0$ e $\alpha(1) = x$.

Dim. ⇒ Per definizione.

$$\forall x, y \in X \rightsquigarrow \alpha, \beta \colon I \to X$$
 cammini t.c. $\alpha(0) = \beta(0) = x_0$, $\alpha(1) = x$, $\beta(1) = y \Rightarrow \gamma := \bar{\alpha} * \beta : I \to X$ t.c. $\gamma(0) = x$, $\gamma(1) = y$.

Teor.
$$X = \bigcup_{i \in I} X_i \text{ con } X_i \text{ cpa } \forall i \in I \text{ e } \bigcap_{i \in I} X_i \neq \emptyset \Rightarrow X \text{ cpa.}$$

$$Dim. \ x_0 \in \bigcap_{i \in I} X_i. \ \forall x \in X \leadsto x \in X_i \leadsto \text{cammino tra } x_0 \in x \text{ in } X_i \subset X.$$

Componenti connesse per archi.

Def. Dato uno spazio X, la componente connessa per archi di $x \in X$ è

$$\mathcal{P}_x(X) \stackrel{\text{def}}{=} \bigcup_{\substack{x \in P \subset X \\ P \text{ cpa}}} P$$

Teor. Valgono le seguenti proprietà:

- 1) $x \in \mathcal{P}_x(X) \neq \emptyset$, $\forall x \in X$;
- 2) $\mathcal{P}_x(X)$ è il più grande sottospazio cpa di X che contiene x;
- 3) $\forall x, y \in X$, $\mathcal{P}_x(X) \cap \mathcal{P}_y(X) \neq \emptyset \Leftrightarrow \mathcal{P}_x(X) = \mathcal{P}_y(X)$;
- 4) $\mathcal{P}_x(X) \subset \mathcal{C}_x(X)$, $\forall x \in X$.

Dim. Esercizio (simile al caso di $C_x(X)$).

N.B. Le componenti cpa non sono necessariamente chiuse né aperte.

Def. $\mathcal{P}(X) \stackrel{\text{def}}{=} \{\mathcal{P}_x(X) \mid x \in X\}$ insieme delle componenti connesse per archi di X.

Oss. $\mathcal{P}(X)$ è una partizione di X in sottospazi disgiunti.

Oss. X cpa $\Leftrightarrow X$ ha un'unica componente cpa.

Def. Uno spazio topologico X è *localmente connesso per archi* se $\forall x \in X$, $\exists \mathcal{J}_x$ base di intorni aperti connessi per archi di x in X.

Oss. Loc. cpa \Rightarrow loc. connesso.

Teor. X loc. cpa $\Rightarrow \mathcal{P}_x(X) = \mathcal{C}_x(X)$ aperto e chiuso in X, $\forall x \in X$.

Dim. $\forall y \in \mathcal{P}_x(X) \rightsquigarrow J \subset X$ intorno cpa di $y \Rightarrow J \subset \mathcal{P}_y(X) = \mathcal{P}_x(X)$ $\Rightarrow \mathcal{P}_x(X)$ aperto in $X, \forall x \in X$.

 $X - \mathcal{P}_x(X)$ aperto $\Rightarrow \mathcal{P}_x(X)$ aperto e chiuso non vuoto in X quindi in $\mathcal{C}_x(X)$ (connesso) $\Rightarrow \mathcal{P}_x(X) = \mathcal{C}_x(X)$.

Cor. X loc. cpa \Rightarrow X è unione topologica delle sue componenti cpa.

Spazio connesso ma non connesso per archi.

$$A=\{0\} \times [-1,1]$$
 cpa
$$B=\left\{\left(x,\sin\frac{1}{x}\right) \mid x>0\right\} \cong]0,+\infty[$$
 cpa

 $X \stackrel{\text{def}}{=} A \cup B = \operatorname{Cl}_{\mathbb{R}^2} B \subset \mathbb{R}^2 \Rightarrow X$ connesso.

X non cpa, infatti se per assurdo $\alpha: I \to X$ cammino t.c.

 $\alpha(0) = (0,0), \ \alpha(1) = (1,\sin 1) \Rightarrow \pi(\alpha(I)) = [0,a] \text{ con } a \geqslant 1 \Rightarrow \alpha \text{ percorre infiniti max loc.} \Rightarrow \nexists \lim_{t \to 0^+} \alpha(t) \Rightarrow \alpha \text{ non continua.}$

$$\mathcal{P}(X) = \{A, B\}, \ \mathcal{C}(X) = \{X\}.$$

Oss. X non è loc. connesso. I punti di A non hanno intorni connessi.

