Make a Cheap Scaling: A Self-Cascade Diffusion Model for Higher-Resolution Adaptation

Lanqing Guo^{1,2†} Yingqing He^{2,3†} Haoxin Chen² Menghan Xia² Xiaodong Cun² Yufei Wang¹ Siyu Huang⁴ Yong Zhang^{2*} Xintao Wang² Qifeng Chen³ Ying Shan² Bihan Wen^{1*}

¹Nanyang Technological University ²Tencent AI Lab

³The Hong Kong University of Science and Technology ⁴Clemson University

Motivation

For Stable Diffusion:

- 目前大部分Diffusion-based Model都是用单尺度(Single-Scale)的数据进行训练, 生成比训练时分辨率大的图片时面临着挑战;
- A instance: 使用在512×512的分辨率下Trained SD 2.1来生成1024×1024的图像会导致目标重复和构图能力下降的问题。 ______

For Tuning for Stable Diffusion:

- 为了提高分辨率来Fine-tune Pretrained SD需要大量的计算资源
- A instance: SD 2.1在256×256分辨率下要训练550k steps, 而
 在512×512分辨率下Fine-tune要 > 1000k steps。
- 如果Insufficient Tuning, 还会导致去饱和和目标不合理的问题

Motivation

For Tuning-Free Methods:

- 需要对超参进行精确地调整;
- A instance: ScaleCrafter: 使用Dilated Conv扩大感受野来适应新的分辨率图像生成

For Additional Parameters for Fine-tuning:

• 无法自适应于Scale的变化,且仍需大量的Fine-tuning steps (LORA)

For Cascaded Diffusion Model / Latent Diffusion Model:

- 级联的新的模型跟之前的模型参数并不共享,训练参数成倍增加
- 限制更高分辨率的尺度扩展能力

Goal: 尺度自适应; Tuning-Free/Tuning-Efficient; 不存在目标重复/构图差等问题

Preliminary

Stable Diffusion (SD): 在一个低维隐空间下进行扩散/去噪过程

包含有AutoEncoder、Decoder、Diffusion Model和Text-Conditional UNet Denoiser

AutoEncoder: $x_0 \in \mathbb{R}^{3 \times H \times W} \to z_0 \in \mathbb{R}^{4 \times H' \times W'}$: $z_0 = E(x_0)$

Decoder: reconstruct x_0 from z_0 : $\hat{x}_0 = D(z_0) \approx x_0$

Diffusion Model: Fixed Diffusion Forward Process (Add noise):

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

Denoiser: Predict Noise with Text Condition:

$$p_{\theta}(z_{0:T}|c) = \prod_{t=1}^{T} p_{\theta}(z_{t-1}|z_t, c)$$

Optimization: $\mathcal{L} = \mathbb{E}_{z_t,c,\epsilon,t}(\|\epsilon - \epsilon_{\theta}(z_t,t,c)\|^2)$ $z_t = \sqrt{\bar{\alpha}_t}z_0 + \sqrt{1-\bar{\alpha}_t}\epsilon, \epsilon \in \mathcal{N}(0,\mathbf{I})$

Goal: 给定一个预训练的合成低分辨率图像的Stable Diffusion Model, 目标是用一个自适应模型, 在时间/资源/参数三者高效的方式生成更高分辨率的图像

Scale Decomposition

将目标的Scale d_R 分解为多个逐步递增的Scale:

$$d = d_0 < d_1 \dots < d_R \quad R = \lceil \log_4 d_R / d \rceil$$

每阶段Scale的生成结果会作用于下一阶段的Scale下的生成:

$$p_{\theta}(z_{0:T}^{r}|c, z^{r-1}) = p(z_{T}^{r}) \prod_{t=1}^{T} p_{\theta}(z_{t-1}^{r}|z_{t}^{r}, c, z^{r-1})$$

如:在Scale r下的去噪过程不仅跟condition c和timestep t有关,还跟Scale r-1下的Clean Result z^{r-1} 有关

Pivot-Guided Noise Re-schedule (Tuning-Free)

建立于一个观察/假设:

 z^r 和 z^{r-1} 在扩散过程的中间步中信息容量差距不显著,故假设 $p(z_K^r|z_0^{r-1})$ 为 $p(z_K^r|z_0^r)$ 的Proxy

具体地,假设 ϕ_r 代表一个确定的resize插值函数,upsample $d_{r-1} \to d_r$;

然后把 z_0^{r-1} upsample为 $\phi_r(z_0^{r-1})$,然后Diffuse生成 z_K^{r-1} 来代替 z_K^r :

$$z_K^r \sim \mathcal{N}(\sqrt{\bar{\alpha}_K}\phi_r(z_0^{r-1}), \sqrt{1-\bar{\alpha}_K}\mathbf{I})$$

最后denoising $K \to 0$, 把结果应用于下一个Scale:

$$z_{T}^{0} \rightarrow \cdots \rightarrow z_{K}^{0} \rightleftharpoons \cdots \rightleftharpoons z_{1}^{0} \rightleftharpoons z_{0}^{0}$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Time-Aware Feature Upsampler (Tuning)

上述Tuning-Free的Limitation: 因为Unseen higher-resolution GT, 无法生成Detailed low-level structures

Tuning Self-Cascade Diffusion Model \to Lightweight Time-Aware Feature Upsampler 使用一系列的Time-Aware的Feature Upsamplers $\Phi = \{\phi_1, \phi_2, \dots, \phi_N\}$ 《 N = 4,0.002M Parameters 把pivot guidance z_0^{r-1} 经过pre-trained UNet得到中间Skip Features嵌入到 z_t^r 下的UNet的Skip Features

- 选择Skip Features的原因:对生成的图像的质量影响忽略不计,仍可提供语义信息;
- Time-Aware的原因:随着噪声的消除,图像信噪比增加,去噪的焦点从高级语义结构转移到低级详细结构,Upsamplers需要适应不同的Timesteps

$$\hat{h}_{n,t}^r = h_{n,t}^r + \phi_n(h_{n,0}^{r-1}, t), \quad n \in \{1, \dots, N\}$$

Time-Aware Feature Upsampler (Tuning)

Algorithm 1 Time-aware feature upsampler tuning.

```
1: while not converged do
2: (z_0^r, z_0^{r-1}, c) \sim p(z^r, z^{r-1}, c)
3: t \sim \text{Uniform}\{1, \dots, K\}
4: \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
5: z_t^r = \sqrt{\bar{\alpha}_t} z_0^r + \sqrt{1 - \bar{\alpha}_t} \epsilon
6: \theta_{\Phi} \leftarrow \theta_{\Phi} - \eta \nabla_{\theta_{\Phi}} \|\tilde{\epsilon}_{\theta + \theta_{\Phi}}(z_t^r, t, c, z_0^{r-1}) - \epsilon\|^2
7: end while
8: return \theta_{\Phi}
```

Algorithm 2 Pivot-guided inference for $\mathbb{R}^{d_{r-1}} \to \mathbb{R}^{d_r}$.

```
Input: text embedding c

1: if r = 1 then

2: z_T^r \sim \mathcal{N}(0, \mathbf{I})

3: for t = T, \dots, 1 do

4: z_{t-1}^r \sim p_{\theta}(z_{t-1}^r|z_t^r, c)

5: end for

6: else

7: z_K^r \sim q(z_K^r|z_0^{r-1})

8: for t = K, \dots, 1 do

9: z_{t-1}^r \sim p_{\theta}(z_{t-1}^r|z_t^r, c, z_0^{r-1})

10: end for

11: end if

12: return z_0^r
```

Implement Details:

- Train on two A100 GPUs
- Diffusion Steps: 1000; DDIM Inference Steps: 50
- N = 4, K = 700

Evaluation Experiments:

1. T2I Models: <u>SD 2.1</u> and SD XL 1.0 (Adapt to unseen higher-resolution domains)

Trained with 512×512, Inference Resolutions are 1024×1024 and 2048×2048

2. T2V Models: LVDM (Trained with 16×256×256, Inference Resolutions are 16×512×512)

Image Generation

Methods	# Trainable Param	Training Step	Infer Time	$FID_r \downarrow$	$KID_r \downarrow$	$FID_b \downarrow$	$KID_b \downarrow$
Original	0	-	1×	29.89	0.010	24.21	0.007
Attn-SF [16]	0	-	$1\times$	29.95	0.010	22.75	0.007
ScaleCrafter [10]	0	-	$1\times$	20.88	0.008	16.67	0.005
Ours-TF (Tuning-Free)	0	-	$1.04 \times$	12.25	0.004	6.09	0.001
Full Fine-tuning (18k)	860M	18k	1×	21.88	0.007	17.14	0.005
LORA-R32	15M	18k	$1.22 \times$	17.02	0.005	11.33	0.003
LORA-R4	1.9M	18k	$1.20 \times$	14.74	0.005	9.47	0.002
SD+SR	184M	1.25M	$5\times$	12.59	0.005	-	-
Ours-T (Tuning)	0.002M	4k	$1.06 \times$	12.40	0.004	3.15	0.0005

Table 1. Quantitative results of different methods on the dataset of *Laion-5B* with $4 \times$ adaptation on 1024^2 resolution. The best results are highlighted in **bold**. Note that Ours-TF and Ours-T denote the training-free version and the upsampler tuning version, respectively. # Param denotes the number of trainable parameters and Infer Time denotes the inference time of different methods *v.s.* original baseline. We put '_' since FID_b/KID_b are unavailable for $SD+SR^1$.

Methods	$ \operatorname{FID}_r\downarrow$	$\text{KID}_r \downarrow$	$FID_b \downarrow$	$\text{KID}_b \downarrow$
Original	104.70	0.043	104.10	0.040
Attn-SF [16]	104.34	0.043	103.61	0.041
ScaleCrafter [10]	59.40	0.021	57.26	0.018
Ours-TF	38.99	0.015	34.73	0.013

Table 2. Quantitative results of different methods on the dataset of Laion-5B with $16 \times$ image scale adaptation on 2048^2 resolution.

Video Generation

Methods	$FVD_r \downarrow$	$\mathrm{KVD}_r{\downarrow}$	
Original	688.07	67.17	
ScaleCrafter [10]	562.00	44.52	
Ours-TF	553.85	33.83	
Full Fine-tuning (10k)	721.32	94.57	
Full Fine-tuning $(50k)$	531.57	33.61	
LORA-R4 (10 k)	1221.46	263.62	
LORA-R32 (10k)	959.68	113.07	
LORA-R4 (50k)	623.72	74.13	
LORA-R32 (50k)	615.75	76.99	
Ours-T $(10k)$	494.19	31.55	

Table 3. Quantitative results of different methods on the dataset of Webvid-10M with $4\times$ video scale adaptation on 16×512^2 resolution (16 frames). 10k and 50k denote the training steps of each method.

Figure 5. Average FID and FVD scores of three methods every 5k iterations on image (Laion-5B) and video (Webvid-10M) datasets. Our observations indicate that our method can rapidly adapt to the higher-resolution domain while maintaining a robust performance among both image and video generation.

Figure 6. Visual quality comparisons between the training-free methods and ours on higher-resolution adaptation with 1024^2 resolutions. Please zoom in for more details.

Repetition