LOGIC-BASED EXPLAINABLE ARTIFICIAL INTELLIGENCE

Joao Marques-Silva

ICREA & Univ. Lleida, Catalunya, Spain

ESSLLI, Bochum, Germany, July 2025

Lecture 02

 \cdot ML models: classification & regression

• ML models: classification & regression

• Glimpse of heuristic XAI

• ML models: classification & regression

· Glimpse of heuristic XAI

• Answers to Why? questions as logic rules

- ML models: classification & regression
- Glimpse of heuristic XAI
- Answers to Why? questions as logic rules
- · Logic-based reasoning of ML models

- ML models: classification & regression
- · Glimpse of heuristic XAI
- · Answers to Why? questions as logic rules
- Logic-based reasoning of ML models
- Apparent difficulties with explaining interpretable models

© J. Marques-Silva

Plan for this course

- Lecture 01 unit(s):
 - #01: Foundations
- Lecture 02 unit(s):
 - #02: Principles of symbolic XAI feature selection
 - #03: Tractability in symbolic XAI (& myth of interpretability)
- · Lecture 03 unit(s):
 - #04: Intractability in symbolic XAI (& myth of model-agnostic XAI)
 - #05: Explainability queries
- Lecture 04 unit(s):
 - #06: Recent, emerging & advanced topics
- Lecture 05 unit(s):
 - #07: Principles of symbolic XAI feature attribution (& myth of Shapley values in XAI)
 - #08: Corrected feature attribution nuSHAP
 - #09: Conclusions & research directions

Unit #02

Principles of Symbolic XAI – Feature Selection

· Notation:

Original DT [PM17]

· What is an explanation?

Mapping

 $egin{aligned} & x_1=1 & ext{iff Length} = ext{Long} \ & x_2=1 & ext{iff Thread} = ext{New} \ & x_3=1 & ext{iff Author} = ext{Known} \ & \kappa(\cdot)=1 & ext{iff } \kappa'(\cdot\cdot\cdot) = ext{Reads} \ & \kappa(\cdot)=0 & ext{iff } \kappa'(\cdot\cdot\cdot) = ext{Skips} \end{aligned}$

· Notation:

Original DT [PM17]

Mapping

 $egin{aligned} & \mathbf{x}_1 = 1 & \text{iff Length} = \mathsf{Long} \\ & \mathbf{x}_2 = 1 & \text{iff Thread} = \mathsf{New} \\ & \mathbf{x}_3 = 1 & \text{iff Author} = \mathsf{Known} \\ & \kappa(\cdot) = 1 & \text{iff } \kappa'(\cdot \cdot \cdot) = \mathsf{Reads} \\ & \kappa(\cdot) = 0 & \text{iff } \kappa'(\cdot \cdot \cdot) = \mathsf{Skips} \end{aligned}$

- · What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule:

IF <COND> THEN $\kappa(\mathbf{x}) = c$

· Notation:

Rewritten DT

Mapping

```
x_1 = 1 iff Length = Long
x_2 = 1 iff Thread = New
x_3 = 1 iff Author = Known
\kappa(\cdot) = 1 iff \kappa'(\cdots) = \text{Reads}
\kappa(\cdot) = 0 iff \kappa'(\cdot \cdot \cdot) = \text{Skips}
```

- · What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF < COND> THEN $\kappa(x) = c$

Explanation: set of literals (or just features) in **<COND>**; irreducibility matters!

· Notation:

Rewritten DT

Mapping

 $x_1 = 1$ iff Length = Long $x_2 = 1$ iff Thread = New $x_3 = 1$ iff Author = Known $\kappa(\cdot) = 1$ iff $\kappa'(\cdot \cdot \cdot) = \text{Reads}$ $\kappa(\cdot) = 0$ iff $\kappa'(\cdot \cdot \cdot) = \text{Skips}$

- · What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF < COND> THEN $\kappa(x) = c$

- Explanation: set of literals (or just features) in <COND>; irreducibility matters!
- E.g.: explanation for $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$?

· Notation:

Rewritten DT

Mapping

```
x_1 = 1 iff Length = Long
x_2 = 1 iff Thread = New
x_3 = 1 iff Author = Known
\kappa(\cdot) = 1 iff \kappa'(\cdot \cdot \cdot) = \text{Reads}
\kappa(\cdot) = 0 iff \kappa'(\cdot \cdot \cdot) = \text{Skips}
```

- What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF < COND> THEN $\kappa(x) = c$

- Explanation: set of literals (or just features) in <COND>; irreducibility matters!
- E.g.: explanation for $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$?
 - It is the case that, IF $\neg x_1 \land \neg x_2 \land x_3$ THEN $\kappa(\mathbf{x}) = 1$

Notation:

Rewritten DT

Mapping

```
x_1 = 1 iff Length = Long
x_2 = 1 iff Thread = New
x_3 = 1 iff Author = Known
\kappa(\cdot) = 1 iff \kappa'(\cdot \cdot \cdot) = \text{Reads}
\kappa(\cdot) = 0 iff \kappa'(\cdot \cdot \cdot) = \text{Skips}
```

- What is an explanation?
 - Answer to question "Why (the prediction)?" is a rule: IF < COND> THEN $\kappa(x) = c$

- Explanation: set of literals (or just features) in <COND>; irreducibility matters!
- E.g.: explanation for $\mathbf{v} = (\neg x_1, \neg x_2, x_3)$?
 - It is the case that, IF $\neg x_1 \land \neg x_2 \land x_3$ THEN $\kappa(\mathbf{x}) = 1$
 - One possible explanation is $\{\neg x_1, \neg x_2, x_3\}$ or simply $\{1, 2, 3\}$

© J. Margues-Silva

The similarity predicate

[Mar24]

- Recall ML models for classification & regression:
 - Classification: $\mathcal{M}_{\mathcal{C}} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
 - Regression: $\mathcal{M}_R = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
 - General: $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$

The similarity predicate

[Mar24

- Recall ML models for classification & regression:
 - Classification: $\mathcal{M}_{\mathcal{C}} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
 - Regression: $\mathcal{M}_R = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
 - General: $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$
- Similarity predicate: $\sigma : \mathbb{F} \to \{\top, \bot\}$
 - · Classification: $\sigma(\mathbf{x}) \coloneqq [\kappa(\mathbf{x}) = \kappa(\mathbf{v})]$
 - Obs: For boolean classifiers, no need for σ
 - Regression: $\sigma(\mathbf{x}) \coloneqq [|\rho(\mathbf{x}) \rho(\mathbf{v})| \le \delta]$, where δ is user-specified

[Mar24

- Recall ML models for classification & regression:
 - · Classification: $\mathcal{M}_{\mathcal{C}} = (\mathcal{F}, \mathbb{F}, \mathcal{K}, \kappa)$
 - Regression: $\mathcal{M}_R = (\mathcal{F}, \mathbb{F}, \mathbb{V}, \rho)$
 - General: $\mathcal{M} = (\mathcal{F}, \mathbb{F}, \mathbb{T}, \tau)$
- Similarity predicate: $\sigma : \mathbb{F} \to \{\top, \bot\}$
 - · Classification: $\sigma(\mathbf{x}) \coloneqq [\kappa(\mathbf{x}) = \kappa(\mathbf{v})]$
 - Obs: For boolean classifiers, no need for σ
 - Regression: $\sigma(\mathbf{x}) \coloneqq [|\rho(\mathbf{x}) \rho(\mathbf{v})| \leqslant \delta]$, where δ is user-specified
- Bottom line:
 Reason about symbolic explainability by abstracting away type of ML model

• Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$

- Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

· Subset-minimal set of features $\mathcal{X} \subseteq \mathcal{F}$ sufficient for ensuring prediction

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$$

- Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

- Subset-minimal set of features $\mathcal{X}\subseteq\mathcal{F}$ sufficient for ensuring prediction

$$WAXp(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$$

· Defining AXp (from weak AXps, WAXps):

$$\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$$

- Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

• Subset-minimal set of features $\mathcal{X} \subseteq \mathcal{F}$ sufficient for ensuring prediction

$$WAXp(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$$

· Defining AXp (from weak AXps, WAXps):

$$\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \wedge \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$$

· But, WAXp is monotone; hence,

$$\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (t \in \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X} \setminus \{t\})$$

- Instance (\mathbf{v}, q) , i.e. $c = \tau(\mathbf{v})$
- Abductive explanation (AXp, PI-explanation):

[SCD18, INM19a]

• Subset-minimal set of features $\mathcal{X} \subseteq \mathcal{F}$ sufficient for ensuring prediction

$$WAXp(\mathcal{X}) := \forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$$

Defining AXp (from weak AXps, WAXps):

$$\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (\mathcal{X}' \subsetneq \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X}')$$

But, WAXp is monotone; hence,

$$\mathsf{AXp}(\mathcal{X}) \coloneqq \mathsf{WAXp}(\mathcal{X}) \land \forall (t \in \mathcal{X}). \neg \mathsf{WAXp}(\mathcal{X} \backslash \{t\})$$

• Finding one AXp (example algorithm; many more exist):

[MM20]

- Let $\mathcal{X} = \mathcal{F}$, i.e. fix all features
- Invariant: WAXp(X) must hold. Why?
- · Analyze features in any order, one feature *i* at a time
 - If WAXp($\mathcal{X}\setminus\{i\}$) holds, then remove *i* from \mathcal{X} , i.e. *i* becomes free

· Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

• Point $\mathbf{v} = (0,0,0,1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \to \kappa(x_1, x_2, x_3, x_4)$?

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$?

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \wedge x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \wedge x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0, 1\}^4). X_4 \to \kappa(X_1, X_2, X_3, X_4)$?

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \wedge x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4).x_4 \rightarrow \kappa(x_1,x_2,x_3,x_4)$? Yes

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \wedge x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4).x_4 \rightarrow \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$?

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $X = \{1, 2, 3, 4\} = F$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \wedge x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4).x_4 \rightarrow \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$? No

Recap weak AXp: $\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{i \in \mathcal{X}} (x_i = v_i) \rightarrow (\sigma(\mathbf{x}))$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $X = \{1, 2, 3, 4\} = F$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \wedge x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4).x_4 \rightarrow \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$? **No**
- AXp $\mathcal{X} = \{4\}$

Recap weak AXp: $\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{i \in \mathcal{X}} (x_i = v_i) \rightarrow (\sigma(\mathbf{x}))$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $\mathcal{X} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \wedge x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4).x_4 \rightarrow \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$? No
- AXp $\mathcal{X} = \{4\}$
- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners

Recap weak AXp: $\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (\mathsf{X}_j = \mathsf{V}_j) \to (\sigma(\mathbf{x}))$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$. AXp?
- Define $X = \{1, 2, 3, 4\} = F$
- Can feature 1 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_2 \land \neg x_3 \land x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \neg x_3 \wedge x_4 \rightarrow \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 3 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4).x_4 \rightarrow \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\forall (\mathbf{x} \in \{0,1\}^4). \top \rightarrow \kappa(x_1, x_2, x_3, x_4)$? No
- AXp $\mathcal{X} = \{4\}$
- In general, validity/consistency checked with SAT/SMT/MILP/CP reasoners
 - · Obs: for some classes of classifiers, poly-time algorithms exist

Recap weak AXp: $\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \rightarrow (\sigma(\mathbf{x}))$

• Notation $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$:

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Notation $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$:

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (X_i = V_i)$$

• Definition of $\Upsilon(\mathcal{S})$:

$$\Upsilon(S) := \{ \mathbf{x} \in \mathbb{F} \mid \mathbf{x}_{S} = \mathbf{v}_{S} \}$$

• Notation $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$:

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (x_i = v_i)$$

• Definition of $\Upsilon(S)$:

$$\Upsilon(\mathcal{S}) \quad \coloneqq \quad \{x \in \mathbb{F} \,|\, x_{\mathcal{S}} = v_{\mathcal{S}}\}$$

· Expected value, non-real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad {}^{1}/\!|\Upsilon(\mathcal{S}; \mathbf{v})| \sum\nolimits_{\mathbf{x} \in \Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x})$$

• Notation $\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}$:

$$[\mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \equiv \bigwedge_{i \in \mathcal{S}} (x_i = v_i)$$

• Definition of $\Upsilon(S)$:

$$\Upsilon(\mathcal{S}) \quad \coloneqq \quad \{x \in \mathbb{F} \,|\, x_{\mathcal{S}} = v_{\mathcal{S}}\}$$

• Expected value, non-real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad {}^{1}/\!|\Upsilon(\mathcal{S}; \mathbf{v})| \sum\nolimits_{\mathbf{x} \in \Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x})$$

· Expected value, real-valued features:

$$\mathbf{E}[\tau(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] \quad \coloneqq \quad \frac{1}{|\Upsilon(\mathcal{S}; \mathbf{v})|} \int_{\Upsilon(\mathcal{S}; \mathbf{v})} \tau(\mathbf{x}) d\mathbf{x}$$

Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features:

$$\mathsf{WAXp}(\mathcal{S}) \quad := \quad \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$$

Other definitions of WAXps/AXps

• Using probabilities, non-real-valued features:

Using expected values:

$$\mathsf{WAXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \, | \, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] = 1$$

 $\mathsf{WAXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$

Other definitions of WAXps/AXps

· Using probabilities, non-real-valued features:

· Using expected values:

$$\mathsf{WAXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] = 1$$

 $\mathsf{WAXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) = 1$

- · Definition of AXp remains unchanged
 - · This is true when comparing against 1

• Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$

- Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

 \cdot Subset-minimal set of features $\mathcal{Y}\subseteq\mathcal{F}$ sufficient for changing prediction

$$\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (X_j = V_j) \wedge (\neg \sigma(\mathbf{x}))$$

- Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features $\mathcal{Y} \subseteq \mathcal{F}$ sufficient for changing prediction

$$\mathsf{WCXp}(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

• Defining CXp:

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \wedge \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$$

- Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features $\mathcal{Y} \subseteq \mathcal{F}$ sufficient for changing prediction

$$WCXp(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

· Defining CXp:

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$$

• But, WCXp is also monotone; hence,

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (t \in \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y} \backslash \{t\})$$

- Instance (\mathbf{v}, c) , i.e. $c = \kappa(\mathbf{v})$
- Contrastive explanation (CXp):

[Mil19, INAM20]

- Subset-minimal set of features $\mathcal{Y} \subseteq \mathcal{F}$ sufficient for changing prediction

$$WCXp(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$$

Defining CXp:

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \wedge \forall (\mathcal{Y}' \subsetneq \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y}')$$

But, WCXp is also monotone; hence,

$$\mathsf{CXp}(\mathcal{Y}) \coloneqq \mathsf{WCXp}(\mathcal{Y}) \land \forall (t \in \mathcal{Y}). \neg \mathsf{WCXp}(\mathcal{Y} \setminus \{t\})$$

Finding one CXp:

[MM20]

- Let $\mathcal{Y} = \mathcal{F}$, i.e. free all features
- Invariant: $WCXp(\mathcal{Y})$ must hold. Why?
- · Analyze features in any order, one feature *i* at a time
 - If $WCXp(\mathcal{Y}\setminus\{i\})$ holds, then remove *i* from \mathcal{Y} , i.e. *i* is becomes fixed

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)?$

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$

· Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg \kappa(x_1,x_2,x_3,x_4)$?

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{i \notin \mathcal{V}} (\mathsf{x}_i = \mathsf{v}_i) \land (\neg \sigma(\mathbf{x}))$

· Classifier:

$$\kappa(x_1, x_2, x_3, x_4) = \bigvee_{i=1}^4 x_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{i \notin \mathcal{V}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg x_3 \land \neg \kappa(x_1,x_2,x_3,x_4)?$

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{i \notin \mathcal{V}} (\mathsf{x}_i = \mathsf{v}_i) \land (\neg \sigma(\mathbf{x}))$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1, x_2, x_3, x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg \kappa(x_1,x_2,x_3,x_4)$? Yes

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{i \notin \mathcal{V}} (x_i = v_i) \land (\neg \sigma(\mathbf{x}))$

12 / 47

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 \land \neg \kappa(x_1,x_2,x_3,x_4)?$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge x_4 \wedge \neg \kappa(x_1,x_2,x_3,x_4)$? No

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{V}} (x_j = v_j) \land (\neg \sigma(\mathbf{x}))$

· Classifier:

$$\kappa(X_1, X_2, X_3, X_4) = \bigvee_{i=1}^4 X_i$$

- Point $\mathbf{v} = (0, 0, 0, 1)$ with prediction $\kappa(\mathbf{v}) = 1$
- Define $\mathcal{Y} = \{1, 2, 3, 4\} = \mathcal{F}$
- Can feature 1 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 2 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \land \neg x_2 \land \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 3 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg \kappa(x_1,x_2,x_3,x_4)$? Yes
- Can feature 4 be removed, i.e. $\exists (\mathbf{x} \in \{0,1\}^4). \neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge x_4 \wedge \neg \kappa(x_1,x_2,x_3,x_4)$? **No**
- $\mathsf{CXp}\ \mathcal{Y} = \{4\}$
- Obs: AXp is MHS of CXp and vice-versa...

Recap weak CXp: $\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{i \notin \mathcal{V}} (x_i = v_i) \land (\neg \sigma(\mathbf{x}))$

Other definitions of WCXps/CXps

• Using probabilities, non-real-valued features:

$$\mathsf{WCXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$$

Other definitions of WCXps/CXps

· Using probabilities, non-real-valued features:

$$\mathsf{WCXp}(\mathcal{S}) := \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$$

Using expected values:

$$\mathsf{WCXp}(\mathcal{S}) \quad := \quad \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] < 1$$

Other definitions of WCXps/CXps

· Using probabilities, non-real-valued features:

$$\mathsf{WCXp}(\mathcal{S}) \quad := \quad \mathsf{Pr}(\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}) < 1$$

Using expected values:

$$\mathsf{WCXp}(\mathcal{S}) := \mathbf{E}[\sigma(\mathbf{x}) \,|\, \mathbf{x}_{\mathcal{S}} = \mathbf{v}_{\mathcal{S}}] < 1$$

Definition of CXp remains unchanged

Detour: global explanations

[INM19b]

- \cdot AXps and CXps are defined locally (because of \mathbf{v}) but hold globally
 - Localized explanations
 - · Can be viewed as attempt at formalizing local explanations

[RSG16, LL17, RSG18]

- · One can define explanations without picking a given point in feature space
 - Let $q \in \mathbb{T}$, and refefine the similarity predicate:
 - · Classification: $\sigma(\mathbf{x}) = [\kappa(\mathbf{x}) = q]$
 - Regression: $\sigma(\mathbf{x}) = [|\kappa(\mathbf{x}) q| \le \delta]$, δ is user-specified
 - Let $\mathbb{L} = \{(x_i = v_i) \mid i \in \mathcal{F} \land v_i \in \mathbb{V}\}$
 - · Let $S \subsetneq \mathbb{L}$ be a subset of literals that does not repeat features, i.e. S is not inconsistent
 - \cdot Then, $\mathcal S$ is a global AXp if,

$$\forall (\mathbf{x} \in \mathbb{F}). \bigwedge_{(x_i = v_i) \in \mathcal{S}} (x_i = v_i) \rightarrow (\sigma(\mathbf{x}))$$

· Counterexamples are minimal hitting sets of global AXps and vice-versa

[INM19b]

Outline - Unit #02

Definitions of Explanations

Duality Properties

Computational Problems

[INAM20, Mar22]

[INAM20, Mar22]

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

[INAM20, Mar22]

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

- · Claim:
 - $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps
- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

• An example, $(\mathbf{v}, \mathbf{c}) = ((0, 0, 1, 0, 1), 1)$:

· AXps:

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

• An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:

• AXps: $\{\{3,5\}\}$

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: $\{\{3,5\}\}$
 - · CXps:

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: $\{\{3,5\}\}$
 - · CXps: {{3}, {5}}

Duality in explainability – basic results

[INAM20, Mar22]

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: $\{\{3,5\}\}$
 - CXps: $\{\{3\}, \{5\}\}$
 - Each AXp is an MHS of the set of CXps
 - Each CXp is an MHS of the set of AXps

Duality in explainability – basic results

[INAM20, Mar22]

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: $\{\{3,5\}\}$
 - CXps: $\{\{3\}, \{5\}\}$
 - Each AXp is an MHS of the set of CXps
 - Each CXp is an MHS of the set of AXps
 - · BTW,
 - $\{2,5\}$ is not a CXp
 - $\{1, 2, 3, 4, 5\}, \{1, 2, 3, 5\}$ and $\{1, 3, 5\}$ are not AXps

Duality in explainability – basic results

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is an AXp iff it is a minimal hitting set (MHS) of the set of CXps

· Claim:

 $\mathcal{S}\subseteq\mathcal{F}$ is a CXp iff it is a minimal hitting set (MHS) of the set of AXps

- An example, $(\mathbf{v}, c) = ((0, 0, 1, 0, 1), 1)$:
 - AXps: $\{\{3,5\}\}$
 - CXps: $\{\{3\}, \{5\}\}$
 - Each AXp is an MHS of the set of CXps
 - Each CXp is an MHS of the set of AXps
 - · BTW,
 - $\{2,5\}$ is not a CXp
 - $\{1, 2, 3, 4, 5\}, \{1, 2, 3, 5\}$ and $\{1, 3, 5\}$ are **not** AXps
 - · Why?

Outline - Unit #02

Definitions of Explanations

Duality Properties

Computational Problems

· Compute one abductive/contrastive explanation

Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

Compute one abductive/contrastive explanation

• Enumerate all abductive/contrastive explanations

• Decide whether feature included in all abductive/contrastive explanations

Compute one abductive/contrastive explanation

Enumerate all abductive/contrastive explanations

· Decide whether feature included in all abductive/contrastive explanations

• Decide whether feature included in some abductive/contrastive explanation

 \cdot Encode classifier into suitable logic representation ${\mathcal T}$ & pick suitable reasoner

- \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

- \cdot Encode classifier into suitable logic representation ${\mathcal T}$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds

• For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds

- \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
- Monotone predicates for WAXp & WCXp:

$$\mathbb{P}_{\mathsf{axp}}(\mathcal{S}) \triangleq \neg \, \mathsf{CO} \left(\left[\left(\bigwedge_{i \in \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\left[\left[\left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right)$$

- · Encode classifier into suitable logic representation \mathcal{T} & pick suitable reasoner
- For AXp: start from $S = \mathcal{F}$ and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from $S = \mathcal{F}$ and drop (i.e. fix) features from S while WCXp condition holds
- Monotone predicates for WAXp & WCXp:

```
Input: Predicate \mathbb{P}, parameterized by \mathcal{T}, \mathcal{M}
   Output: One XP {\mathcal S}
1: procedure oneXP(P)
```

- $S \leftarrow F$
- for $i \in \mathcal{F}$ do 3.
- if $\mathbb{P}(S \setminus \{i\})$ then 4.
- 5:
 - $S \leftarrow S \setminus \{i\}$
- return S6.

ightharpoonup Initialization: $\mathbb{P}(\mathcal{S})$ holds

 \triangleright Loop invariant: $\mathbb{P}(\mathcal{S})$ holds

 \triangleright Update S only if $\mathbb{P}(S\setminus\{i\})$ holds

ightharpoonup Returned set S: $\mathbb{P}(S)$ holds

© J. Margues-Silva 17 / 47

- \cdot Encode classifier into suitable logic representation $\mathcal T$ & pick suitable reasoner
- For AXp: start from S = F and drop (i.e. free) features from S while WAXp condition holds
- For CXp: start from S = F and drop (i.e. fix) features from S while WCXp condition holds
- Monotone predicates for WAXp & WCXp:

$$\mathbb{P}_{\mathsf{axp}}(\mathcal{S}) \triangleq \neg \, \mathsf{CO} \left(\llbracket \left(\bigwedge_{i \in \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \rrbracket \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\llbracket \left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \rrbracket \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\mathbb{P} \left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right] \right) \\ \mathbb{P}_{\mathsf{cxp}}(\mathcal{S}) \triangleq \mathsf{CO} \left(\mathbb{P} \left(\bigwedge_{i \in \mathcal{F} \setminus \mathcal{S}} (\mathsf{X}_i = \mathsf{V}_i) \right) \wedge \left(\neg \sigma(\mathbf{x}) \right) \right]$$

Input: Predicate \mathbb{P} , parameterized by \mathcal{T} , \mathcal{M} Output: One XP \mathcal{S}

- 1: procedure oneXP(P)
- $S \leftarrow \mathcal{F}$
- 3: for $i \in \mathcal{F}$ do
- 4: if $\mathbb{P}(S \setminus \{i\})$ then
- 5: $S \leftarrow S \setminus \{i\}$
- 6: return S

Exploiting MSMP, i.e. basic algorithm used for different problems.

ightharpoonup Loop invariant: $\mathbb{P}(\mathcal{S})$ holds

ightharpoonup Initialization: $\mathbb{P}(\mathcal{S})$ holds

ightharpoonup Update S only if $\mathbb{P}(S\setminus\{i\})$ holds ightharpoonup Returned set S: $\mathbb{P}(S)$ holds

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a **prime implicant** of some function φ if,

- 1. $\pi \models \varphi$
- 2. For any $\pi' \subsetneq \pi$, $\pi' \not\models \varphi$

Prime implicants & implicates

- A conjunction of literals π (which will be viewed as a set of literals where convenient) is a **prime implicant** of some function φ if,
 - 1. $\pi \models \varphi$
 - 2. For any $\pi' \subsetneq \pi$, $\pi' \not\models \varphi$
 - Example:
 - $\mathbb{F} = \{0, 1\}^3$
 - $\varphi(x_1, x_2, x_3) = x_1 \wedge x_2 \vee x_1 \wedge x_3$
 - Clearly, $x_1 \wedge x_2 \models \varphi$
 - Also, $x_1 \not\models \varphi$ and $x_2 \not\models \varphi$

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a **prime implicant** of some function φ if,

```
1. \pi \models \varphi
```

2. For any
$$\pi' \subsetneq \pi$$
, $\pi' \not\models \varphi$

• Example:

•
$$\mathbb{F} = \{0, 1\}^3$$

•
$$\varphi(x_1, x_2, x_3) = x_1 \wedge x_2 \vee x_1 \wedge x_3$$

• Clearly,
$$x_1 \wedge x_2 \models \varphi$$

• Also,
$$x_1 \not\models \varphi$$
 and $x_2 \not\models \varphi$

• A disjunction of literals η (also viewed as a set of literals where convenient) is a prime implicate of some function φ if

1.
$$\varphi \models \eta$$

2. For any $\eta' \subsetneq \eta$, $\varphi \not\models \eta'$

- Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - \cdot \mathcal{B} : background knowledge (base), i.e. hard constraints
 - \cdot \mathcal{S} : additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \models \bot$
 - E.g. $\mathcal{B} = \{(x_1 \vee x_2), (x_1 \vee \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$

- Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - \mathcal{B} : background knowledge (base), i.e. hard constraints
 - \cdot \mathcal{S} : additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \models \bot$
 - E.g. $\mathcal{B} = \{(x_1 \vee x_2), (x_1 \vee \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- Minimal unsatisfiable subset (MUS):
 - Subset-minimal set $\mathcal{U} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup \mathcal{U} \models \bot$
 - E.g. $U = \{ (\neg x_1), (\neg x_2) \}$

- Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - \mathcal{B} : background knowledge (base), i.e. hard constraints
 - \cdot \mathcal{S} : additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \models \bot$
 - E.g. $\mathcal{B} = \{(x_1 \vee x_2), (x_1 \vee \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- · Minimal unsatisfiable subset (MUS):
 - Subset-minimal set $\mathcal{U} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup \mathcal{U} \models \bot$
 - E.g. $U = \{ (\neg x_1), (\neg x_2) \}$
- Minimal correction subset (MCS):
 - Subset-minimal set $C \subseteq S$, s.t. $\mathcal{B} \cup (S \setminus C) \not\models \bot$
 - E.g. $C = \{(\neg x_1)\}$

- Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - \cdot \mathcal{B} : background knowledge (base), i.e. hard constraints
 - \cdot \mathcal{S} : additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \models \bot$
 - E.g. $\mathcal{B} = \{(x_1 \vee x_2), (x_1 \vee \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- · Minimal unsatisfiable subset (MUS):
 - Subset-minimal set $\mathcal{U} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup \mathcal{U} \models \bot$
 - E.g. $\mathcal{U} = \{ (\neg x_1), (\neg x_2) \}$
- Minimal correction subset (MCS):
 - Subset-minimal set $C \subseteq S$, s.t. $B \cup (S \setminus C) \not\models \bot$
 - E.g. $C = \{ (\neg x_1) \}$
- Duality:
 - · MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa

[Rei87]

- Formula $\mathcal{T} = \mathcal{B} \cup \mathcal{S}$, with
 - \cdot \mathcal{B} : background knowledge (base), i.e. hard constraints
 - S: additional (inconsistent) knowledge, i.e. soft constraints
 - · And, $\mathcal{T} \models \bot$
 - E.g. $\mathcal{B} = \{(x_1 \lor x_2), (x_1 \lor \neg x_3)\}, \mathcal{S} = \{(\neg x_1), (\neg x_2), (x_3)\}$
- · Minimal unsatisfiable subset (MUS):
 - Subset-minimal set $\mathcal{U} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup \mathcal{U} \models \bot$
 - E.g. $U = \{ (\neg x_1), (\neg x_2) \}$
- · Minimal correction subset (MCS):
 - · Subset-minimal set $\mathcal{C} \subseteq \mathcal{S}$, s.t. $\mathcal{B} \cup (\mathcal{S} \setminus \mathcal{C}) \not\models \bot$
 - E.g. $C = \{ (\neg x_1) \}$
- Duality:
 - · MUSes are minimal-hitting sets (MHSes) of the MCSes, and vice-versa

[Rei87]

- Variants:
 - · Smallest(-cost) MCS, i.e. complement of maximum(-cost) satisfiability (MaxSAT)
 - Smallest(-cost) MUS

· Recap:

$$\begin{split} \mathsf{WAXp}(\mathcal{X}) &:= &\forall (\mathbf{x} \in \mathbb{F}). \bigwedge\nolimits_{j \in \mathcal{X}} (\mathsf{X}_j = \mathsf{V}_j) \mathop{\rightarrow} (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) &:= &\exists (\mathbf{x} \in \mathbb{F}). \bigwedge\nolimits_{j \notin \mathcal{Y}} (\mathsf{X}_j = \mathsf{V}_j) \land (\neg \sigma(\mathbf{x})) \end{split}$$

· Recap:

$$WAXp(\mathcal{X}) := \neg \left[\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \wedge (\neg \sigma(\mathbf{x})) \right]$$

$$WCXp(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \wedge (\neg \sigma(\mathbf{x}))$$

Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \neg \left[\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (\mathsf{X}_j = \mathsf{V}_j) \land (\neg \sigma(\mathbf{x})) \right] \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (\mathsf{X}_j = \mathsf{V}_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

- · Let,
 - · Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} (S_i {\,\rightarrow\,} (X_i = V_i)) \wedge \mathsf{Encode}_{\mathcal{T}} (\neg \sigma(\mathbf{x}))$$

Recap:

$$WAXp(\mathcal{X}) := \neg \left[\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \wedge (\neg \sigma(\mathbf{x})) \right]$$

$$WCXp(\mathcal{Y}) := \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \wedge (\neg \sigma(\mathbf{x}))$$

- · Let,
 - Hard constraints, \mathcal{B} :

$$\mathcal{B} \coloneqq \wedge_{i \in \mathcal{F}} \left(S_i \mathop{\rightarrow} (X_i = V_i) \right) \wedge \mathsf{Encode}_{\mathcal{T}} (\neg \sigma(\mathbf{x}))$$

• Soft constraints: $S = \{s_i | i \in F\}$

Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \neg \left[\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \right] \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (x_j = v_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

- · Let,
 - · Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} \left(\mathsf{S}_i \rightarrow \! \left(\mathsf{X}_i = \mathsf{V}_i \right) \right) \wedge \mathsf{Encode}_{\mathcal{T}} (\neg \sigma(\mathbf{x}))$$

- Soft constraints: $S = \{s_i | i \in F\}$
- Claim: Each MUS of $(\mathcal{B}, \mathcal{S})$ is an AXp & each MCS of $(\mathcal{B}, \mathcal{S})$ is a CXp

Recap:

$$\begin{aligned} \mathsf{WAXp}(\mathcal{X}) &:= & \neg \left[\exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \in \mathcal{X}} (\mathsf{X}_j = \mathsf{V}_j) \land (\neg \sigma(\mathbf{x})) \right] \\ \mathsf{WCXp}(\mathcal{Y}) &:= & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge_{j \notin \mathcal{Y}} (\mathsf{X}_j = \mathsf{V}_j) \land (\neg \sigma(\mathbf{x})) \end{aligned}$$

- · Let.
 - · Hard constraints, B:

$$\mathcal{B} := \wedge_{i \in \mathcal{F}} \left(\mathsf{S}_i \rightarrow \! \left(\mathsf{X}_i = \mathsf{V}_i \right) \right) \wedge \mathsf{Encode}_{\mathcal{T}} (\neg \sigma(\mathbf{x}))$$

- Soft constraints: $S = \{s_i | i \in F\}$
- Claim: Each MUS of $(\mathcal{B}, \mathcal{S})$ is an AXp & each MCS of $(\mathcal{B}, \mathcal{S})$ is a CXp
 - Can use MUS/MCS algorithms for finding AXps/CXps

Tractability in Symbolic XAI

Unit #03

Outline - Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Set

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review example

DT explanations

[IIM20]

[IIM20]

- Run PI-explanation algorithm based on NP-oracles
 - Worst-case exponential time

- Run PI-explanation algorithm based on NP-oracles
 - Worst-case exponential time
- For prediction 1, it suffices to ensure all paths with prediction 0 remain inconsistent

- Run PI-explanation algorithm based on NP-oracles
 - Worst-case exponential time
- For prediction 1, it suffices to ensure all paths with prediction 0 remain inconsistent
 - I.e. find a subset-minimal hitting set of all 0 paths; these are the features to keep
 - $\boldsymbol{\cdot}\;$ E.g. BR and TR suffice for prediction
 - Well-known to be solvable in polynomial time

EG95]

Outline - Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review example

• Finding one AXp in polynomial-time – covered

• Finding one AXp in polynomial-time – covered

 \cdot Finding one CXp in polynomial-time

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

• Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

© J. Marques-Silva

• Finding one AXp in polynomial-time – covered

• Finding one CXp in polynomial-time

· Finding all CXps in polynomial-time; hence, finding one CXp also in polynomial-time

Practically efficient enumeration of AXps – later

© J. Marques-Silva

· Basic algorithm:

·
$$\mathcal{L} = \emptyset$$

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting q:

- · Basic algorithm:
 - · $\mathcal{L} = \emptyset$
 - For each leaf node not predicting *q*:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting *q*:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - Add ${\mathcal I}$ to ${\mathcal L}$

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting q:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - Add ${\mathcal I}$ to ${\mathcal L}$
 - \cdot Remove from $\mathcal L$ non-minimal sets

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting *q*:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - Add \mathcal{I} to \mathcal{L}
 - Remove from \mathcal{L} non-minimal sets
 - + ${\cal L}$ contains all the CXps of the DT

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting *q*:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - Add \mathcal{I} to \mathcal{L}
 - Remove from $\mathcal L$ non-minimal sets
 - \cdot $\mathcal L$ contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting q:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - · Add $\mathcal I$ to $\mathcal L$
 - Remove from $\mathcal L$ non-minimal sets
 - \cdot $\,$ $\mathcal L$ contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
 - Add $\{1,2\}$ to ${\mathcal L}$

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting *q*:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - Add \mathcal{I} to \mathcal{L}
 - · Remove from $\mathcal L$ non-minimal sets
 - \cdot $\,$ $\mathcal L$ contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
 - Add $\{1,2\}$ to \mathcal{L}
 - Add $\{1,3\}$ to ${\mathcal L}$

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting q:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - · Add \mathcal{I} to \mathcal{L}
 - · Remove from $\mathcal L$ non-minimal sets
 - \cdot \mathcal{L} contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
 - Add $\{1,2\}$ to \mathcal{L}
 - Add $\{1,3\}$ to \mathcal{L}
 - Add $\{1,4\}$ to \mathcal{L}

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting q:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - Add \mathcal{I} to \mathcal{L}
 - · Remove from $\mathcal L$ non-minimal sets
 - \cdot $\mathcal L$ contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
 - Add $\{1,2\}$ to \mathcal{L}
 - Add $\{1,3\}$ to \mathcal{L}
 - Add $\{1,4\}$ to $\mathcal L$
 - Add $\{3\}$ to \mathcal{L}

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting q:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - Add \mathcal{I} to \mathcal{L}
 - · Remove from $\mathcal L$ non-minimal sets
 - \cdot $\mathcal L$ contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
 - Add $\{1,2\}$ to \mathcal{L}
 - Add $\{1,3\}$ to \mathcal{L}
 - Add $\{1,4\}$ to \mathcal{L}
 - Add $\{3\}$ to $\mathcal L$
 - Add $\{4\}$ to $\mathcal L$

- · Basic algorithm:
 - $\cdot \mathcal{L} = \emptyset$
 - For each leaf node not predicting q:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - · Add \mathcal{I} to \mathcal{L}
 - · Remove from $\mathcal L$ non-minimal sets
 - \cdot $\mathcal L$ contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
 - Add $\{1,2\}$ to \mathcal{L}
 - Add $\{1,3\}$ to \mathcal{L}
 - Add $\{1,4\}$ to $\mathcal L$
 - Add $\{3\}$ to $\mathcal L$
 - Add $\{4\}$ to $\mathcal L$
 - Remove from \mathcal{L} : $\{1,3\}$ and $\{1,4\}$

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting q:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - · Add \mathcal{I} to \mathcal{L}
 - · Remove from $\mathcal L$ non-minimal sets
 - \cdot $\mathcal L$ contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
 - Add $\{1,2\}$ to \mathcal{L}
 - Add $\{1,3\}$ to \mathcal{L}
 - Add $\{1,4\}$ to \mathcal{L}
 - Add $\{3\}$ to $\mathcal L$
 - Add $\{4\}$ to $\mathcal L$
 - Remove from \mathcal{L} : $\{1,3\}$ and $\{1,4\}$
 - CXps: $\{\{1,2\},\{3\},\{4\}\}$

- · Basic algorithm:
 - \cdot $\mathcal{L} = \emptyset$
 - For each leaf node not predicting q:
 - \cdot \mathcal{I} : features with literals inconsistent with \mathbf{v}
 - · Add $\mathcal I$ to $\mathcal L$
 - · Remove from ${\cal L}$ non-minimal sets
 - \cdot $\,$ $\,$ $\,$ $\,$ $\,$ contains all the CXps of the DT
- Example: instance is ((1,1,1,1),1)
 - Add $\{1,2\}$ to \mathcal{L}
 - Add $\{1,3\}$ to \mathcal{L}
 - Add $\{1,4\}$ to $\mathcal L$
 - Add $\{3\}$ to $\mathcal L$
 - Add $\{4\}$ to $\mathcal L$
 - Remove from \mathcal{L} : $\{1,3\}$ and $\{1,4\}$
 - CXps: $\{\{1,2\},\{3\},\{4\}\}$
 - AXps: $\{\{1, 3, 4\}, \{2, 3, 4\}\}\$, by computing all MHSes

Outline - Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Set

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review example:

Are interpretable models really interpretable? – DTs

- Case of optimal decision tree (DT)
- Explanation for (0,0,1,0,1), with prediction 1?

Are interpretable models really interpretable? – DTs

Case of optimal decision tree (DT)

- [HRS19]
- Explanation for (0,0,1,0,1), with prediction 1?
 - · Clearly, IF $\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4 \wedge x_5$ THEN $\kappa(\mathbf{x}) = 1$

Are interpretable models really interpretable? - DTs

· Case of **optimal** decision tree (DT)

-
- Explanation for (0,0,1,0,1), with prediction 1?
 - · Clearly, IF $\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4 \wedge x_5$ THEN $\kappa(\mathbf{x})=1$
 - But, x_1 , x_2 , x_4 are irrelevant for the prediction:

Х3	χ_5	x_1	χ_2	χ_4	$\kappa(\mathbf{x})$
1	1	0	0	0	1
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

Are interpretable models really interpretable? – DTs

Case of optimal decision tree (DT)

- [HRS19]
- \cdot Explanation for (0,0,1,0,1), with prediction 1?
 - Clearly, IF $\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4 \wedge x_5$ THEN $\kappa(\mathbf{x})=1$
 - But, x_1 , x_2 , x_4 are irrelevant for the prediction:

Х	3	X_5	x_1	χ_2	χ_4	$\kappa(\mathbf{x})$
-	1	1	0	0	0	1
	1	1	0	0	1	1
	1	1	0	1	0	1
	1	1	0	1	1	1
	1	1	1	0	0	1
	1	1	1	0	1	1
	1	1	1	1	0	1
	1	1	1	1	1	1

... one AXp is $\{3, 5\}$ Compare with $\{1, 2, 3, 4, 5\}$...

Are interpretable models really interpretable? – large DTs

GZM20]

Are interpretable models really interpretable? – large DTs

[GZM20]

Are interpretable models really interpretable? - large DTs

© J. Margues-Silva 26 / 47

Are interpretable models really interpretable? – large DTs

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(\mathsf{x}_1,\mathsf{x}_2,\ldots,\mathsf{x}_{m-1},\mathsf{x}_m) = \bigvee\nolimits_{i=1}^m \mathsf{x}_i$$

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(\mathsf{X}_1,\mathsf{X}_2,\ldots,\mathsf{X}_{m-1},\mathsf{X}_m) = \bigvee\nolimits_{i=1}^m \mathsf{X}_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(\mathsf{X}_1,\mathsf{X}_2,\ldots,\mathsf{X}_{m-1},\mathsf{X}_m) = \bigvee\nolimits_{i=1}^m \mathsf{X}_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

• Point: $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$, and prediction 1

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(\mathsf{X}_1,\mathsf{X}_2,\ldots,\mathsf{X}_{m-1},\mathsf{X}_m) = \bigvee\nolimits_{i=1}^m \mathsf{X}_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

- Point: $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$, and prediction 1
- Explanation using path in DT: $\{i_1, i_2, \dots, i_m\}$, i.e.

$$(X_{i_1} = 0) \land (X_{i_2} = 0) \land \dots \land (X_{i_{m-1}} = 0) \land (X_{i_m} = 1) \rightarrow \kappa(X_1, \dots, X_m)$$

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(x_1, x_2, \dots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

- Point: $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$, and prediction 1
- Explanation using path in DT: $\{i_1, i_2, \dots, i_m\}$, i.e.

$$(X_{i_1} = 0) \land (X_{i_2} = 0) \land \ldots \land (X_{i_{m-1}} = 0) \land (X_{i_m} = 1) \rightarrow \kappa(X_1, \ldots, X_m)$$

• But $\{i_m\}$ suffices for prediction, i.e. $\forall (\mathbf{x} \in \{0,1\}^m).(x_{i_m}) \rightarrow \kappa(\mathbf{x})$

• Classifier, with $x_1, \ldots, x_m \in \{0, 1\}$:

$$\kappa(x_1, x_2, \dots, x_{m-1}, x_m) = \bigvee_{i=1}^m x_i$$

• Build DT, by picking variables in order $\langle i_1, i_2, \dots, i_m \rangle$, permutation of $\langle 1, 2, \dots, m \rangle$:

- Point: $(x_{i_1}, x_{i_2}, \dots, x_{i_{m-1}}, x_{i_m}) = (0, 0, \dots, 0, 1)$, and prediction 1
- Explanation using path in DT: $\{i_1, i_2, \dots, i_m\}$, i.e.

$$(X_{i_1} = 0) \land (X_{i_2} = 0) \land \ldots \land (X_{i_{m-1}} = 0) \land (X_{i_m} = 1) \rightarrow \kappa(X_1, \ldots, X_m)$$

- But $\{i_m\}$ suffices for prediction, i.e. $\forall (\mathbf{x} \in \{0,1\}^m).(x_{i_m}) \to \kappa(\mathbf{x})$
- AXp's can be arbitrarily smaller than paths in (optimal) DTs!

[IIM20, IIM22]

DT Ref	D	#N	#P	%R	%C	%m	%M	% a
[Alp14, Ch. 09, Fig. 9.1]	2	5	3	33	25	50	50	50
[Alp16, Ch. 03, Fig. 3.2]	2	5	3	33	25	50	50	50
[Bra20, Ch. 01, Fig. 1.3]	4	9	5	60	25	25	50	36
[BA97, Figure 1]	3	12	7	14	8	33	33	33
[BBHK10, Ch. 08, Fig. 8.2]	3	7	4	25	12	50	50	50
[BFOS84, Ch. 01, Fig. 1.1]	3	7	4	50	25	33	33	33
[DL01, Ch. 01, Fig. 1.2a]	2	5	3	33	25	33	33	33
[DL01, Ch. 01, Fig. 1.2b]	2	5	3	33	25	33	33	33
[KMND20, Ch. 04, Fig. 4.14]	3	7	4	25	12	50	50	50
[KMND20, Sec. 4.7, Ex. 4]	2	5	3	33	25	50	50	50
[Qui93, Ch. 01, Fig. 1.3]	3	12	7	28	17	33	50	41
[RM08, Ch. 01, Fig. 1.5]	3	9	5	20	12	33	33	33
[RM08, Ch. 01, Fig. 1.4]	3	7	4	50	25	33	33	33
[WFHP17, Ch. 01, Fig. 1.2]	3	7	4	25	12	50	50	50
[VLE ⁺ 16, Figure 4]	6	39	20	65	63	20	40	33
[Fla12, Ch. 02, Fig. 2.1(right)]	2	5	3	33	25	50	50	50
[Kot13, Figure 1]	3	10	6	33	11	33	33	33
[Mor82, Figure 1]	3	9	5	80	75	33	50	41
[PM17, Ch. 07, Fig. 7.4]	3	7	4	50	25	33	33	33
[RN10, Ch. 18, Fig. 18.6]	4	12	8	25	6	25	33	29
[SB14, Ch. 18, Page 212]	2	5	3	33	25	50	50	50
[Zho12, Ch. 01, Fig. 1.3]		5	3	33	25	33	33	33
[BHO09, Figure 1b]	4	13	7	71	50	33	50	36
[Zho21, Ch. 04, Fig. 4.3]	4	14	9	11	2	25	25	25

© J. Marques-Silva

Many DTs have paths that are not minimal XPs – Russell&Norvig's book

[RN10]

• Explanation for (P, H, T, W) = (Full, Yes, Thai, No)?

Many DTs have paths that are not minimal XPs – Zhou's book

[Zho12]

• Explanation for (x, y) = (1.25, -1.13)?

Obs: True explanations can be computed for categorical, integer or real-valued features!

Many DTs have paths that are not minimal XPs – Alpaydin's book

[Alp14]

• Explanation for $(x_1, x_2) = (\alpha, \beta)$, with $\alpha > w_{10}$ and $\beta \leq w_{20}$?

Obs: True explanations can be computed for categorical, integer or real-valued features!

Many DTs have paths that are not minimal XPs - S.-S.&B.-D.'s book

[SB14]

• Explanation for (color, softness) = (Pale Grade, Other)?

Many DTs have paths that are not minimal XPs – Poole&Mackworth's book

[PM17]

- Explanation for (L, T, A) = (Short, Follow-Up, Unknown)?
- Explanation for (L, T, A) = (Short, Follow-Up, Known)?

Explanation redundancy in DTs is ubiquitous – DTs from datasets

Dataset	(#F	#S)	IAI							ITI										
			D	#N	%A	#P	%R	%С	%m	%M	%avg	D	#N	%A	#P	%R	%С	%m	%M	%av
adult	(12	6061)	6	83	78	42	33	25	20	40	25	17	509	73	255	75	91	10	66	22
anneal	(38	886)	6	29	99	15	26	16	16	33	21	9	31	100	16	25	4	12	20	16
backache	(32	180)	4	17	72	9	33	39	25	33	30	3	9	91	5	80	87	50	66	54
bank	(19	36293)	6	113	88	57	5	12	16	20	18	19	1467	86	734	69	64	7	63	27
biodegradation	(41	1052)	5	19	65	10	30	1	25	50	33	8	71	76	36	50	8	14	40	21
cancer	(9	449)	6	37	87	19	36	9	20	25	21	5	21	84	11	54	10	25	50	37
car	(6	1728)	6	43	96	22	86	89	20	80	45	11	57	98	29	65	41	16	50	30
colic	(22	357)	6	55	81	28	46	6	16	33	20	4	17	80	9	33	27	25	25	25
compas	(11	1155)	6	77	34	39	17	8	16	20	17	15	183	37	92	66	43	12	60	27
contraceptive	(9	1425)	6	99	49	50	8	2	20	60	37	17	385	48	193	27	32	12	66	21
dermatology	(34	366)	6	33	90	17	23	3	16	33	21	7	17	95	9	22	0	14	20	17
divorce	(54	150)	5	15	90	8	50	19	20	33	24	2	5	96	3	33	16	50	50	50
german	(21	1000)	6	25	61	13	38	10	20	40	29	10	99	72	50	46	13	12	40	22
heart-c	(13	302)	6	43	65	22	36	18	20	33	22	4	15	75	8	87	81	25	50	34
heart-h	(13	293)	6	37	59	19	31	4	20	40	24	8	25	77	13	61	60	20	50	32
kr-vs-kp	(36	3196)	6	49	96	25	80	75	16	60	33	13	67	99	34	79	43	7	70	35
lending	(9	5082)	6	45	73	23	73	80	16	50	25	14	507	65	254	69	80	12	75	25
letter	(16	18668)	6	127	58	64	1	0	20	20	20	46	4857	68	2429	6	7	6	25	9
lymphography	(18	148)	6	61	76	31	35	25	16	33	21	6	21	86	11	9	0	16	16	16
mortality	(118	13442)	6	111	74	56	8	14	16	20	17	26	865	76	433	61	61	7	54	19
mushroom	(22	8124)	6	39	100	20	80	44	16	33	24	5	23	100	12	50	31	20	40	25
pendigits	(16	10992)	6	121	88	61	0	0	_	_	_	38	937	85	469	25	86	6	25	11
promoters	(58	106)	1	3	90	2	0	0	_	_	_	3	9	81	5	20	14	33	33	33
recidivism	(15	3998)	6	105	61	53	28	22	16	33	18	15	611	51	306	53	38	9	44	16
seismic_bumps	(18	2578)	6	37	89	19	42	19	20	33	24	8	39	93	20	60	79	20	60	42
shuttle	(9	58000)	6	63	99	32	28	7	20	33	23	23	159	99	80	33	9	14	50	30
soybean	(35	623)	6	63	88	32	9	5	25	25	25	16	71	89	36	22	1	9	12	10
spambase	(57	4210)	6	63	75	32	37	12	16	33	19	15	143	91	72	76	98	7	58	25
spect	(22	228)	6	45	82	23	60	51	20	50	35	6	15	86	8	87	98	50	83	65
splice	(2	3178)	3	7	50	4	0	0	_	_	_	88	177	55	89	0	0		_	

```
R_1:
          IF (x_1 \wedge x_3) THEN \kappa(\mathbf{x}) = 1
R_2:
                ELSE IF (x_2 \wedge x_4 \wedge x_6) THEN
                                                         \kappa(\mathbf{x}) = 0
R_3:
                ELSE IF (\neg x_1 \land x_3) THEN \kappa(\mathbf{x}) = 1
R_4:
                ELSE IF (x_4 \wedge x_6) THEN \kappa(\mathbf{x}) = 0
                ELSE IF (\neg x_1 \land \neg x_3) THEN \kappa(\mathbf{x}) = 1
R<sub>5</sub>:
R_6:
                ELSE IF
                           (x_6) THEN \kappa(\mathbf{x}) = 0
R<sub>DFF</sub>:
                ELSE
                                                           \kappa(\mathbf{x}) = 1
```

• Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R_2 fires

```
R_1:
             IF (x_1 \wedge x_3) THEN \kappa(\mathbf{x}) = 1
R_2:
                 ELSE IF (x_2 \wedge x_4 \wedge x_6) THEN
                                                               \kappa(\mathbf{x}) = 0
R_3:
                 ELSE IF (\neg x_1 \land x_3) THEN \kappa(\mathbf{x}) = 1
R_4:
                 ELSE IF (x_4 \wedge x_6) THEN \kappa(\mathbf{x}) = 0
                 ELSE IF (\neg x_1 \land \neg x_3) THEN \kappa(\mathbf{x}) = 1
R<sub>5</sub>:
                 ELSE IF
                                     (x_6) THEN \kappa(\mathbf{x}) = 0
R<sub>6</sub>:
                  ELSE
                                                                \kappa(\mathbf{x}) = 1
R<sub>DFF</sub>:
```

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R_2 fires
- What is the abductive explanation?

```
R_1:
             IF (x_1 \wedge x_3) THEN \kappa(\mathbf{x}) = 1
R_2:
                 ELSE IF (x_2 \wedge x_4 \wedge x_6)
                                                     THEN
                                                               \kappa(\mathbf{x}) = 0
R_3:
                 ELSE IF (\neg x_1 \land x_3) THEN \kappa(\mathbf{x}) = 1
R_4:
                 ELSE IF (x_4 \wedge x_6) THEN \kappa(\mathbf{x}) = 0
R<sub>5</sub>:
                 ELSE IF (\neg x_1 \land \neg x_3) THEN \kappa(\mathbf{x}) = 1
                  ELSE IF
R<sub>6</sub>:
                                     (x_6)
                                                   THEN
                                                               \kappa(\mathbf{x}) = 0
                  ELSE
                                                                \kappa(\mathbf{x}) = 1
R<sub>DFF</sub>:
```

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R_2 fires
- What is the abductive explanation?
- Recall: one AXp is $\{3,4,6\}$

```
\kappa(\mathbf{x}) = 1
R_1:
                  IF
                                  (x_1 \wedge x_3) THEN
R_2:
                  ELSE IF
                                (x_2 \wedge x_4 \wedge x_6)
                                                       THEN
                                                                  \kappa(\mathbf{x}) = 0
R_3:
                  ELSE IF (\neg x_1 \land x_3) THEN
                                                                 \kappa(\mathbf{x}) = 1
R_4:
                  ELSE IF
                             (x_4 \wedge x_6) THEN \kappa(\mathbf{x}) = 0
R<sub>5</sub>:
                  ELSE IF
                                (\neg x_1 \land \neg x_3)
                                                       THEN \kappa(\mathbf{x}) = 1
R6:
                  FLSF IF
                                       (x_6)
                                                       THEN
                                                                  \kappa(\mathbf{x}) = 0
                  ELSE
                                                                   \kappa(\mathbf{x}) = 1
R<sub>DFF</sub>:
```

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R_2 fires
- What is the abductive explanation?
- Recall: one AXp is $\{3,4,6\}$
 - · Why?
 - We need 3 (or 1) so that R₁ cannot fire
 - · With 3, we do not need 2, since with 4 and 6 fixed, then R₄ is guaranteed to fire
 - · Some questions:
 - · Would average human decision maker be able to understand the AXp?
 - Would he/she be able to compute one AXp, by manual inspection?

```
(x_1 \wedge x_3) THEN \kappa(\mathbf{x}) = 1
R_1:
                  IF
R_2:
                  ELSE IF
                                (x_2 \wedge x_4 \wedge x_6)
                                                       THEN
                                                                 \kappa(\mathbf{x}) = 0
R_3:
                  ELSE IF (\neg x_1 \land x_3) THEN
                                                                 \kappa(\mathbf{x}) = 1
R_4:
                  ELSE IF
                              (x_4 \wedge x_6) THEN \kappa(\mathbf{x}) = 0
R<sub>5</sub>:
                  ELSE IF
                                (\neg x_1 \land \neg x_3)
                                                       THEN \kappa(\mathbf{x}) = 1
R6:
                  FLSF IF
                                       (x_6)
                                                       THEN
                                                                  \kappa(\mathbf{x}) = 0
                  ELSE
                                                                   \kappa(\mathbf{x}) = 1
R<sub>DFF</sub>:
```

- Instance: ((0, 1, 0, 1, 0, 1), 0), i.e. rule R_2 fires
- What is the abductive explanation?
- Recall: one AXp is $\{3,4,6\}$
 - · Why?
 - We need 3 (or 1) so that R_1 cannot fire
 - · With 3, we do not need 2, since with 4 and 6 fixed, then R₄ is guaranteed to fire
 - Some questions:
 - · Would average human decision maker be able to understand the AXp?
 - Would he/she be able to compute one AXp, by manual inspection?
 (BTW, we have proved that computing one AXp for DLs is computationally hard...)

[IM21, MSI23]

Minimum Redundancy Average Redundancy Maximum Redundancy 80 Percentage of Redundant Literals (%) 50 100 150 200 250 300 350 0 Datasets

DTs learned with Interpretable AI, max depth 6

DLs learned with CN2

Outline - Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Sets

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review example:

[HM23]

- · Decision sets raise a number of issues:
 - · Overlap: Two rules with different predictions can fire on the same input
 - · Incomplete coverage: For some inputs, no rule may fire
 - · A default rule defeats the purpose of unordered rules

[HM23]

- · Decision sets raise a number of issues:
 - · Overlap: Two rules with different predictions can fire on the same input
 - · Incomplete coverage: For some inputs, no rule may fire
 - · A default rule defeats the purpose of unordered rules
 - · A DS without overlap and complete coverage computes a classification function

[HM23]

- · Decision sets raise a number of issues:
 - · Overlap: Two rules with different predictions can fire on the same input
 - Incomplete coverage: For some inputs, no rule may fire
 - · A default rule defeats the purpose of unordered rules
 - · A DS without overlap and complete coverage computes a classification function
- And explaining DSs is computationally hard...

[HM23]

- · Decision sets raise a number of issues:
 - · Overlap: Two rules with different predictions can fire on the same input
 - Incomplete coverage: For some inputs, no rule may fire
 - · A default rule defeats the purpose of unordered rules
 - · A DS without overlap and complete coverage computes a classification function
- And explaining DSs is computationally hard...

One can extract explained DSs from DTs

[HM23]

- Decision sets raise a number of issues:
 - · Overlap: Two rules with different predictions can fire on the same input
 - · Incomplete coverage: For some inputs, no rule may fire
 - · A default rule defeats the purpose of unordered rules
 - · A DS without overlap and complete coverage computes a classification function
- · And explaining DSs is computationally hard...

- One can extract explained DSs from DTs
 - Extract one AXp (viewed as a logic rule) from each path in DT
 - · Resulting rules are non-overlapping, and cover feature space

Example

© J. Marques-Silva 23 24 34 / 47

Example

 R_{01} : IF [P] THEN $\kappa(\cdot) = \mathbf{Y}$

 $\mathsf{R}_{02} \colon \mathsf{IF} \: [\overline{\mathsf{A}} \land \overline{\mathsf{P}}] \mathsf{THEN} \: \kappa(\cdot) = \mathbf{N}$

R₀₃: IF $[\overline{P} \wedge \overline{N} \wedge V \wedge Z = 1]$ THEN $\kappa(\cdot) = \mathbf{N}$

 $\mathsf{R}_{04} \colon \mathsf{IF} \; [\overline{P} \land \overline{N} \land \mathsf{V} \land \mathsf{Z} = 2 \land \mathsf{S} \land \overline{\mathsf{G}}] \; \mathsf{THEN} \; \kappa(\cdot) = \mathbf{N}$

R $_{05}$: IF [A \wedge Z = 2 \wedge S \wedge G] THEN $\kappa(\cdot)=\mathbf{Y}$

 $\mathsf{R}_{06} \colon \mathsf{IF} \; [\overline{P} \wedge \overline{N} \wedge \mathsf{V} \wedge \mathsf{Z} = 2 \wedge \overline{\mathsf{S}} \wedge \mathsf{H}] \; \mathsf{THEN} \; \kappa(\cdot) = \mathbf{N}$

 $\mathsf{R}_{07} \colon \mathsf{IF} \left[\mathsf{A} \wedge \mathsf{Z} = 2 \wedge \overline{\mathsf{S}} \wedge \overline{\mathsf{H}} \wedge \mathsf{C} \right] \mathsf{THEN} \ \kappa(\cdot) = \mathbf{Y}$

 $\mathsf{R}_{08} \colon \mathsf{IF} \left[\mathsf{A} \wedge \mathsf{Z} = 2 \wedge \overline{\mathsf{H}} \wedge \mathsf{G} \right] \mathsf{THEN} \ \kappa(\cdot) = \mathbf{Y}$

 $\mathsf{R}_{09} \colon \mathsf{IF} \left[\overline{P} \wedge \overline{N} \wedge \mathsf{V} \wedge \mathsf{Z} = 2 \wedge \overline{\mathsf{C}} \wedge \overline{\mathsf{G}} \right] \mathsf{THEN} \; \kappa(\cdot) = \mathbf{N}$

 R_{10} : IF $[A \wedge Z = 0]$ THEN $\kappa(\cdot) = \mathbf{Y}$

 $\mathsf{R}_{11} \colon \mathsf{IF} \left[\mathsf{A} \wedge \overline{\mathsf{V}} \right] \mathsf{THEN} \ \kappa(\cdot) = \mathbf{Y}$

 R_{12} : IF $[A \wedge N]$ THEN $\kappa(\cdot) = \mathbf{Y}$

© J. Marques-Silva 23 24 34 / 47

Outline - Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Set

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review example

Explanation graphs – overview of results

HIIM211

- · Concept of explanation graph (XpG)
- Explanations of decision trees reducible to XpG's
- Explanations of decision graphs reducible to XpG's
- Explanations of OBDDs reducible to XpG's
- Explanations of OMDDs reducible to XpG's
- Explanations (AXp's and CXp's) of XpG's computed in polynomial time

Example of XpG - DTs

• DT; point: (O, L, Y, P); prediction T:

· XpG:

Example of XpG – OMDDs

• OMBBD; point: (0,1,2); prediction R:

· XpG:

· Algorithm (with no inconsistent paths):

$$\mathcal{S} \leftarrow \mathcal{F}$$

For each feature i in \mathcal{F}

· XpG:

• Algorithm (with no inconsistent paths):

$$\mathcal{S} \leftarrow \mathcal{F}$$

For each feature i in \mathcal{F} Drop feature i from \mathcal{S} , i.e. i is free · XpG:

· Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$

For each feature i in \mathcal{F} Drop feature i from \mathcal{S} , i.e. i is free If path to some $\mathbf{0}$ not blocked by $\mathbf{0}$ -valued literals, then

Add feature i back to S

· XpG:

· Algorithm (with no inconsistent paths):

 $\mathcal{S} \leftarrow \mathcal{F}$

For each feature i in \mathcal{F}

Drop feature i from S, i.e. i is free If path to some ${\color{red}0}$ not blocked by 0-valued literals, then

Add feature i back to S

Return ${\cal S}$

· XpG:

• Algorithm (with no inconsistent paths):

$$\mathcal{S} \leftarrow \mathcal{F}$$

For each feature i in \mathcal{F}

Drop feature i from S, i.e. i is free If path to some $\mathbf{0}$ not blocked by 0-valued literals, then

Add feature i back to S

Return \mathcal{S}

• Example:

$$\cdot \ \mathcal{S} = \{1, 2, 3\}$$

· XpG:

• Algorithm (with no inconsistent paths):

$$\mathcal{S} \leftarrow \mathcal{F}$$

For each feature i in \mathcal{F}

Drop feature i from S, i.e. i is free If path to some $\mathbf{0}$ not blocked by 0-valued literals, then

Add feature i back to S

Return \mathcal{S}

- Example:
 - $\cdot \ \mathcal{S} = \{1, 2, 3\}$
 - Feature 1 cannot be dropped, e.g.

$$S_3 \rightarrow S_2 \rightarrow S_1 \rightarrow 0$$

XpG:

• Algorithm (with no inconsistent paths):

$$\mathcal{S} \leftarrow \mathcal{F}$$

For each feature i in \mathcal{F} Drop feature i from \mathcal{S} , i.e. i is free If path to some $\mathbf{0}$ not blocked by

Add feature i back to S

0-valued literals, then

Return $\mathcal S$

- Example:
 - $\cdot \mathcal{S} = \{1, 2, 3\}$
 - Feature 1 cannot be dropped, e.g.
 - $S_3 \rightarrow S_2 \rightarrow S_1 \rightarrow 0$
 - Both features 2 and 3 dropped from ${\cal S}$

· XpG:

• Algorithm (with no inconsistent paths):

$$\mathcal{S} \leftarrow \mathcal{F}$$

For each feature i in \mathcal{F} Drop feature i from \mathcal{S} , i.e. i is free If path to some $\mathbf{0}$ not blocked by

0-valued literals, then

Add feature i back to S

Return \mathcal{S}

- Example:
 - $\cdot \ \mathcal{S} = \{1, 2, 3\}$
 - Feature 1 cannot be dropped, e.g. $S_3 \rightarrow S_2 \rightarrow S_1 \rightarrow 0$
 - Both features 2 and 3 dropped from ${\cal S}$
 - Return $S = \{1\}$

· XpG:

Outline - Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Set

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review example:

Example monotonic classifier – $(\mathbf{v}, c) = ((10, 10, 5, 0), A)$

[MGC+21]

Me	aning	Range					
Stude	nt grade	$\in \{A,B,C,D,E,F\}$					
Fina	l score	$\in \{0, \dots, 10\}$					
Feat. var.	Feat. name	Domain					
Q	Quiz	$\{0, \dots, 10\}$					
X	Exam	$\{0,\ldots,10\}$					
Н	Homework	$\{0,\ldots,10\}$					
R	Project	$\{0,\ldots,10\}$					
	Stude Fina Feat. var. Q X H	X Exam H Homework					

$$\begin{array}{ll} \textit{M} &=& \mathsf{ITE}(S \geqslant 9, \textit{A}, \mathsf{ITE}(S \geqslant 7, \textit{B}, \mathsf{ITE}(S \geqslant 5, \textit{C}, \mathsf{ITE}(S \geqslant 4, \textit{D}, \mathsf{ite}(S \geqslant 2, \textit{E}, \textit{F}))))) \\ \textit{S} &=& \max\left[0.3 \times \textit{Q} + 0.6 \times \textit{X} + 0.1 \times \textit{H}, \textit{R}\right] \\ \textit{Also,} \quad \textit{F} \leqslant \textit{E} \leqslant \textit{D} \leqslant \textit{C} \leqslant \textit{B} \leqslant \textit{A} \\ \textit{And,} \quad \kappa(\mathbf{x}_1) \leqslant \kappa(\mathbf{x}_2) \text{ if } \mathbf{x}_1 \leqslant \mathbf{x}_2 \end{array}$$

Explaining monotonic classifiers

- Instance (\mathbf{v}, c)
- Domain for $i \in \mathcal{F}$: $\lambda(i) \leqslant x_i \leqslant \mu(i)$
- · Idea: refine lower and upper bounds on the prediction
 - \mathbf{v}_L and \mathbf{v}_U
- · Utilities:
 - FixAttr(i):

$$\begin{aligned} \mathbf{v}_{L} &\leftarrow (\mathsf{V}_{L_1}, \dots, \mathsf{V}_i, \dots, \mathsf{V}_{L_N}) \\ \mathbf{v}_{U} &\leftarrow (\mathsf{V}_{U_1}, \dots, \mathsf{V}_i, \dots, \mathsf{V}_{U_N}) \\ (\mathcal{A}, \mathcal{B}) &\leftarrow (\mathcal{A} \backslash \{i\}, \mathcal{B} \cup \{i\}) \\ \text{return } (\mathbf{v}_{L}, \mathbf{v}_{U}, \mathcal{A}, \mathcal{B}) \end{aligned}$$

FreeAttr(i):

$$\begin{aligned} \mathbf{v}_{L} &\leftarrow (\mathsf{V}_{\mathsf{L}_{1}}, \dots, \lambda(i), \dots, \mathsf{V}_{\mathsf{L}_{N}}) \\ \mathbf{v}_{\mathsf{U}} &\leftarrow (\mathsf{V}_{\mathsf{U}_{1}}, \dots, \mu(i), \dots, \mathsf{V}_{\mathsf{U}_{N}}) \\ (\mathcal{A}, \mathcal{B}) &\leftarrow (\mathcal{A}\backslash \{i\}, \mathcal{B} \cup \{i\}) \\ \mathsf{return} \ (\mathbf{v}_{\mathsf{L}}, \mathbf{v}_{\mathsf{U}}, \mathcal{A}, \mathcal{B}) \end{aligned}$$

Computing one AXp

10: return \mathcal{P}

```
1: \mathbf{v}_{\mathsf{L}} \leftarrow (\mathsf{V}_1, \dots, \mathsf{V}_N)

2: \mathbf{v}_{\mathsf{U}} \leftarrow (\mathsf{V}_1, \dots, \mathsf{V}_N)

3: (\mathcal{C}, \mathcal{D}, \mathcal{P}) \leftarrow (\mathcal{F}, \varnothing, \varnothing)

4: for all i \in \mathcal{S} do

5: (\mathbf{v}_{\mathsf{L}}, \mathbf{v}_{\mathsf{U}}, \mathcal{C}, \mathcal{D}) \leftarrow \mathsf{FreeAttr}(i, \mathbf{v}, \mathbf{v}_{\mathsf{L}}, \mathbf{v}_{\mathsf{U}}, \mathcal{C}, \mathcal{D})

6: for all i \in \mathcal{F} \setminus \mathcal{S} do \rhd \mathsf{Loop} inv.: \kappa(\mathbf{v}_{\mathsf{L}}) = \kappa(\mathbf{v}_{\mathsf{U}}), given \mathcal{S}

7: (\mathbf{v}_{\mathsf{L}}, \mathbf{v}_{\mathsf{U}}, \mathcal{C}, \mathcal{D}) \leftarrow \mathsf{FreeAttr}(i, \mathbf{v}, \mathbf{v}_{\mathsf{L}}, \mathbf{v}_{\mathsf{U}}, \mathcal{C}, \mathcal{D})

8: if \kappa(\mathbf{v}_{\mathsf{L}}) \neq \kappa(\mathbf{v}_{\mathsf{U}}) then \rhd \mathsf{If} invariant broken, fix it

9: (\mathbf{v}_{\mathsf{L}}, \mathbf{v}_{\mathsf{U}}, \mathcal{D}, \mathcal{P}) \leftarrow \mathsf{FixAttr}(i, \mathbf{v}, \mathbf{v}_{\mathsf{L}}, \mathbf{v}_{\mathsf{U}}, \mathcal{D}, \mathcal{P})
```

- Obs: $\mathcal{S} = \varnothing$ for computing a single AXp/CXp

Computing one AXp - example

- $\lambda(i) = 0$ and $\mu(i) = 10$
- $\mathbf{v} = (10, 10, 5, 0)$, with $\kappa(\mathbf{v}) = A$
- Q: find one AXp (CXp is similar)

Feat.	Initial values		Changed values		Predictions		Dec.	Resulting values	
	\mathbf{v}_{L}	\mathbf{v}_{U}	\mathbf{v}_{L}	\mathbf{v}_{U}	$\kappa(\mathbf{v}_{L})$	$\kappa(\mathbf{v}_{U})$	Dec.	\mathbf{v}_{L}	\mathbf{v}_{U}
1	(10,10,5,0)	(10,10,5,0)	(0,10,5,0)	(10,10,5,0)	С	Α	✓	(10,10,5,0)	(10,10,5,0)
2	(10,10,5,0)	(10,10,5,0)	(10,0,5,0)	(10,10,5,0)	Е	Α	✓	(10,10,5,0)	(10,10,5,0)
3	(10,10,5,0)	(10,10,5,0)	(10,10,0,0)	(10,10,10,0)	Α	Α	X	(10,10,0,0)	(10,10,10,0)
4	(10,10,0,0)	(10,10,10,0)	(10,10,0,0)	(10,10,10,10)	Α	А	X	(10,10,0,0)	(10,10,10,10)

Outline - Unit #03

Explanations for Decision Trees

XAI Queries for DTs

Myth #01: Intrinsic Interpretability

Detour: From Decision Trees to Explained Decision Set

Explanations for Decision Graphs

Explanations for Monotonic Classifiers

Review examples

Recap computation of (W)AXps/(W)CXps

$$\begin{split} \mathsf{WAXp}(\mathcal{X}) & := & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge\nolimits_{j \in \mathcal{X}} (\mathsf{X}_j = \mathsf{V}_j) \mathop{\rightarrow} (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) & := & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge\nolimits_{j \notin \mathcal{Y}} (\mathsf{X}_j = \mathsf{V}_j) \land (\neg \sigma(\mathbf{x})) \end{split}$$

Recap computation of (W)AXps/(W)CXps

$$\begin{split} \mathsf{WAXp}(\mathcal{X}) & := & \forall (\mathbf{x} \in \mathbb{F}). \bigwedge\nolimits_{j \in \mathcal{X}} (\mathsf{X}_j = \mathsf{V}_j) \mathop{\rightarrow} (\sigma(\mathbf{x})) \\ \mathsf{WCXp}(\mathcal{Y}) & := & \exists (\mathbf{x} \in \mathbb{F}). \bigwedge\nolimits_{j \notin \mathcal{Y}} (\mathsf{X}_j = \mathsf{V}_j) \land (\neg \sigma(\mathbf{x})) \end{split}$$

```
Input: Predicate \mathbb{P}, parameterized by \mathcal{T}, \mathcal{M}
Output: One XP \mathcal{S}

1: procedure oneXP(\mathbb{P})

2: \mathcal{S} \leftarrow \mathcal{F} \rhd Initialization: \mathbb{P}(\mathcal{S}) holds

3: for i \in \mathcal{F} do \rhd Loop invariant: \mathbb{P}(\mathcal{S}) holds

4: if \mathbb{P}(\mathcal{S}\setminus\{i\}) then

5: \mathcal{S} \leftarrow \mathcal{S}\setminus\{i\} \rhd Update \mathcal{S} only if \mathbb{P}(\mathcal{S}\setminus\{i\}) holds

6: return \mathcal{S} \rhd Returned set \mathcal{S}: \mathbb{P}(\mathcal{S}) holds
```

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

Finding on AXp:

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

- Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

- · Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$
 - 2nd path inconsistent: $H_2 = \{2\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

- · Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$
 - 2nd path inconsistent: $H_2 = \{2\}$
 - 3rd path inconsistent: $H_3 = \{1\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

- · Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$
 - 2nd path inconsistent: $H_2 = \{2\}$
 - 3rd path inconsistent: $H_3 = \{1\}$
 - 4th path inconsistent: $H_4 = \{1\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

- · Finding on AXp:
 - 1st path inconsistent: $H_1 = \{3\}$
 - 2nd path inconsistent: $H_2 = \{2\}$
 - 3rd path inconsistent: $H_3 = \{1\}$
 - 4th path inconsistent: $H_4 = \{1\}$
- AXp is MHS of H_j sets: $\{1, 2, 3\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

Finding CXps:

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

- Finding CXps:
 - 1st path: $I_1 = \{3\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

• Finding CXps:

- 1st path: $I_1 = \{3\}$
- 2nd path: $I_2 = \{2\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

• Finding CXps:

- 1st path: $I_1 = \{3\}$
- 2nd path: $I_2 = \{2\}$
- 3rd path: $I_3 = \{1\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

• Finding CXps:

- 1st path: $I_1 = \{3\}$
- 2nd path: $I_2 = \{2\}$
- 3rd path: $I_3=\{1\}$
- 4th path: $I_4=\{1\}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

Finding CXps:

- 1st path: $I_1 = \{3\}$
- 2nd path: $I_2 = \{2\}$
- 3rd path: $I_3 = \{1\}$
- 4th path: $I_4=\{1\}$
- · $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

Finding CXps:

• 1st path: $I_1 = \{3\}$

• 2nd path: $I_2 = \{2\}$

• 3rd path: $I_3 = \{1\}$

• 4th path: $I_4 = \{1\}$

· $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$

• Finding AXps: (i.e. all MHSes of sets in ${\mathbb C}$

• Instance: $(\mathbf{v}, c) = ((1, 2, 1, 2), \mathbf{Y})$

- Finding CXps:
 - 1st path: $I_1 = \{3\}$
 - 2nd path: $I_2 = \{2\}$
 - 3rd path: $I_3 = \{1\}$
 - 4th path: $I_4 = \{1\}$
 - · $\mathcal{L} = \{\{1\}, \{2\}, \{3\}\} = \mathbb{C}$
- Finding AXps:
 (i.e. all MHSes of sets in C
 - · $A = \{\{1, 2, 3\}\}$

· DL:

· DL:

```
R_1:
                              (x_1 \wedge x_3) THEN \kappa(\mathbf{x}) = 0
R_2:
               ELSE IF (x_1 \wedge x_5) THEN \kappa(\mathbf{x}) = 0
               ELSE IF (x_2 \wedge x_4) THEN \kappa(\mathbf{x}) = 1
R_3:
R_4:
               ELSE IF (X_1 \wedge X_7) THEN \kappa(\mathbf{x}) = 0
R_5:
               ELSE IF (\neg x_4 \land x_6) THEN \kappa(\mathbf{x}) = 1
       ELSE IF (\neg x_4 \land \neg x_6) THEN \kappa(\mathbf{x}) = 1
R_6:
               ELSE IF (\neg x_2 \land x_6) THEN \kappa(\mathbf{x}) = 1
R_7:
                ELSE
                                                           \kappa(\mathbf{x}) = 0
R<sub>DEF</sub>:
```

- Instance: $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$
 - \cdot The prediction is 1, due to R_3

· DL:

```
(x_1 \wedge x_3) THEN \kappa(\mathbf{x}) = 0
R_1:
R_2:
               ELSE IF (x_1 \wedge x_5) THEN \kappa(\mathbf{x}) = 0
               ELSE IF (x_2 \wedge x_4) THEN \kappa(\mathbf{x}) = 1
R_3:
R_4:
                ELSE IF (x_1 \wedge x_7) THEN \kappa(\mathbf{x}) = 0
R_5:
                ELSE IF (\neg x_4 \land x_6) THEN \kappa(\mathbf{x}) = 1
        ELSE IF (\neg x_4 \land \neg x_6) THEN \kappa(\mathbf{x}) = 1
R_6:
               ELSE IF (\neg x_2 \land x_6) THEN \kappa(\mathbf{x}) = 1
R_7:
                ELSE
                                                           \kappa(\mathbf{x}) = 0
R<sub>DFF</sub>:
```

- Instance: $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$
 - $\boldsymbol{\cdot}$ The prediction is 1, due to R_3
- AXp:

· DL:

```
(x_1 \wedge x_3) THEN \kappa(\mathbf{x}) = 0
R_1:
R_2:
               ELSE IF (x_1 \wedge x_5) THEN \kappa(\mathbf{x}) = 0
               ELSE IF (x_2 \wedge x_4) THEN \kappa(\mathbf{x}) = 1
R_3:
R_4:
               ELSE IF (x_1 \wedge x_7) THEN \kappa(\mathbf{x}) = 0
R_5:
               ELSE IF (\neg x_4 \land x_6) THEN \kappa(\mathbf{x}) = 1
        ELSE IF (\neg x_4 \land \neg x_6) THEN \kappa(\mathbf{x}) = 1
R_6:
               ELSE IF (\neg x_2 \land x_6) THEN \kappa(\mathbf{x}) = 1
R_7:
                ELSE
                                                           \kappa(\mathbf{x}) = 0
R<sub>DFF</sub>:
```

- Instance: $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$
 - $\cdot\,$ The prediction is 1, due to R_3
- AXp: $\{1,2\}$

· DL:

```
R_1:
                               (x_1 \wedge x_3) THEN \kappa(\mathbf{x}) = 0
R_2:
               ELSE IF (x_1 \wedge x_5) THEN \kappa(\mathbf{x}) = 0
               ELSE IF (x_2 \wedge x_4) THEN \kappa(\mathbf{x}) = 1
R_3:
R_4:
               ELSE IF (X_1 \wedge X_7) THEN \kappa(\mathbf{x}) = 0
R_5:
               ELSE IF (\neg x_4 \land x_6) THEN \kappa(\mathbf{x}) = 1
        ELSE IF (\neg x_4 \land \neg x_6) THEN \kappa(\mathbf{x}) = 1
R_6:
               ELSE IF (\neg x_2 \land x_6) THEN \kappa(\mathbf{x}) = 1
R<sub>7</sub>:
                 ELSE
                                                             \kappa(\mathbf{x}) = 0
R<sub>DFF</sub>:
```

- Instance: $\mathbf{v} = (0, 1, 0, 1, 0, 1, 0)$
 - The prediction is 1, due to $\ensuremath{\mathsf{R}}_3$
- AXp: $\{1, 2\}$
- · Quiz: write down the constraints and confirm AXp with SAT solver

Questions?

References i

[ABOS22] Marcelo Arenas, Pablo Barceló, Miguel A. Romero Orth, and Bernardo Subercaseaux.

On computing probabilistic explanations for decision trees.

In NeurIPS, 2022.

[Alp14] Ethem Alpaydin.

Introduction to machine learning.

MIT press, 2014.

[Alp16] Ethem Alpaydin.

Machine Learning: The New AI.

MIT Press, 2016.

[BA97] Leonard A. Breslow and David W. Aha.

Simplifying decision trees: A survey.

Knowledge Eng. Review, 12(1):1-40, 1997.

[BBHK10] Michael R. Berthold, Christian Borgelt, Frank Höppner, and Frank Klawonn.

Guide to Intelligent Data Analysis - How to Intelligently Make Sense of Real Data, volume 42 of Texts in

Computer Science.

Springer, 2010.

References ii

[BFOS84] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984. [BHO09] Christian Bessiere, Emmanuel Hebrard, and Barry O'Sullivan. Minimising decision tree size as combinatorial optimisation. In CP. pages 173-187, 2009. [Bra20] Max Bramer. Principles of Data Mining, 4th Edition. Undergraduate Topics in Computer Science. Springer, 2020. [DL01] Sašo Džeroski and Nada Lavrač, editors. Relational data mining. Springer, 2001. [EG95] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput., 24(6):1278-1304, 1995.

[Fla12] Peter A. Flach.
Machine Learning - The Art and Science of Algorithms that Make Sense of Data.
Cambridge University Press, 2012.

References iii

[GZM20] Mohammad M. Ghiasi, Sohrab Zendehboudi, and Ali Asghar Mohsenipour.

Decision tree-based diagnosis of coronary artery disease: CART model.

Comput. Methods Programs Biomed., 192:105400, 2020.

[HIIM21] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.

On efficiently explaining graph-based classifiers.

In KR, November 2021.

Preprint available from https://arxiv.org/abs/2106.01350.

[HM23] Xuanxiang Huang and João Marques-Silva. From decision trees to explained decision sets.

In ECAI, pages 1100-1108, 2023.

[HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer.

Optimal sparse decision trees.

In NeurIPS, pages 7265-7273, 2019.

[IHI⁺22] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva.

On computing probabilistic abductive explanations.

CoRR, abs/2212.05990, 2022.

References iv

[IHI⁺23] Yacine Izza, Xuanxiang Huang, Alexey Ignatiev, Nina Narodytska, Martin C. Cooper, and João Marques-Silva. On computing probabilistic abductive explanations. Int. J. Approx. Reason., 159:108939, 2023. [IIM20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On explaining decision trees. CoRR, abs/2010.11034, 2020. [IIM22] Yacine Izza, Alexey Ignatiev, and João Marques-Silva. On tackling explanation redundancy in decision trees. J. Artif. Intell. Res., 75:261-321, 2022. [IM21] Alexey Ignatiev and Joao Marques-Silva. SAT-based rigorous explanations for decision lists. In SAT, pages 251-269, July 2021. [INAM20] Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and João Margues-Silva. From contrastive to abductive explanations and back again. In AlxIA, pages 335-355, 2020. [INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for machine learning models. In AAAI, pages 1511-1519, 2019.

References v

[INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.

On relating explanations and adversarial examples.

In NeurIPS, pages 15857-15867, 2019.

[KMND20] John D Kelleher, Brian Mac Namee, and Aoife D'arcy.

Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies.

MIT Press, 2020.

[Kot13] Sotiris B. Kotsiantis.

Decision trees: a recent overview.

Artif. Intell. Rev., 39(4):261-283, 2013.

[LL17] Scott M. Lundberg and Su-In Lee.

A unified approach to interpreting model predictions.

In NIPS, pages 4765-4774, 2017.

[Mar22] João Marques-Silva.

Logic-based explainability in machine learning.

In Reasoning Web, pages 24-104, 2022.

References vi

[Mar24] Joao Marques-Silva.

Logic-based explainability: Past, present & future.

CoRR, abs/2406.11873, 2024.

[MGC+21] Joao Marques-Silva, Thomas Gerspacher, Martinc C. Cooper, Alexey Ignatiev, and Nina Narodytska.

Explanations for monotonic classifiers.

In ICML, pages 7469-7479, July 2021.

[Mil56] George A Miller.

The magical number seven, plus or minus two: Some limits on our capacity for processing information.

Psychological review, 63(2):81–97, 1956.

[Mil19] Tim Miller.

Explanation in artificial intelligence: Insights from the social sciences.

Artif. Intell., 267:1-38, 2019.

[MM20] João Marques-Silva and Carlos Mencía.

Reasoning about inconsistent formulas.

In IJCAI, pages 4899-4906, 2020.

[Mor82] Bernard M. E. Moret.

Decision trees and diagrams.

ACM Comput. Surv., 14(4):593-623, 1982.

References vii

[MSI23] Joao Marques-Silva and Alexey Ignatiev. No silver bullet: interpretable ml models must be explained. Frontiers in Artificial Intelligence, 6, 2023. [PM17] David Poole and Alan K Mackworth Artificial Intelligence - Foundations of Computational Agents. CUP. 2017. [Oui93] I Ross Quinlan. C4.5: programs for machine learning. Morgan-Kaufmann, 1993. [Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57-95, 1987. [RM08] Lior Rokach and Oded Z Maimon. Data mining with decision trees: theory and applications. World scientific, 2008. [RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach. Pearson Education, 2010.

References viii

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
"why should I trust you?": Explaining the predictions of any classifier.
In KDD, pages 1135–1144, 2016.

[RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explanations. In AAAI, pages 1527–1535. AAAI Press, 2018.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press, 2014.

[SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche.
A symbolic approach to explaining bayesian network classifiers.
In IJCAI, pages 5103–5111, 2018.

[VLE+16] Gilmer Valdes, José Marcio Luna, Eric Eaton, Charles B Simone, Lyle H Ungar, and Timothy D Solberg. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine.

Scientific reports, 6(1):1–8, 2016.

References ix

[WFHP17] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal.

Data Mining.

Morgan Kaufmann, 2017.

[WMHK21] Stephan Wäldchen, Jan MacDonald, Sascha Hauch, and Gitta Kutyniok.

The computational complexity of understanding binary classifier decisions.

J. Artif. Intell. Res., 70:351–387, 2021.

[Zho12] Zhi-Hua Zhou.

Ensemble methods: foundations and algorithms.

CRC press, 2012.

[Zho21] Zhi-Hua Zhou.

Machine Learning.

Springer, 2021.