

Gaming in 2020: Comparing RL Algorithms PPO vs Truly PPO

[Kelvin Foster s174210 & Nicolai Weisbjerg s174466]
Technical University of Denmark

Why RL for games?

- Decision making in uncertain, complex environments
- Well-defined rewards

Procgen

- OpenAl RL benchmark framework
 - How quickly can a RL agent learn generalizable skills?
- Playing Starpilot and Chaser

Goal of Study

- Investigate and compare theoretically and empirically:
 - Gold standard: PPO
 - New alternative: Truly PPO
- The explore/exploit trade-off

Setup

- On-line policy learning approach
- Policy gradient framework with Nature CNN
- Overall objective function:

$$J(\boldsymbol{\theta}) = \mathbb{E}_t \left[L_{\pi}(\boldsymbol{\theta}) - c_L L^{VF}(\boldsymbol{\theta}) + c_H H[\pi_{\boldsymbol{\theta}}](\mathbf{s}_t) \right]$$

PPO: Proximal Policy Optimization

- Seeks to directly determine a policy for the agent
 - Estimating the gradients
- Clipping based on likelihood ratio
- Tries to constrain optimizations of policy on each iteration in order to lower risk of overfitting
- L^{CLIP} is the same as L_{π}^{PPO} in the figure below

Truly PPO

- Truly: Trust region and rollback (TR-PPO-RB)
- Trust region: Based directly on KL divergence
- Roll back: Force negative incentives outsides trust region
- More strictly constrained updates of policy than PPO
- Increase in performance stability and sample efficiency

Training Results

- Training score: PPO higher than Truly PPO
- KL divergence: Truly PPO ensures constraint (much) better than PPO
- Entropy: Truly PPO ensures higher entropy than PPO
- Graphs based on moving average and mean of 2 seeds for each run
- Score: Mean non-discounted return based on normalized rewards

Test Results (Score)

- *Disclaimer*: currently non-normalized rewards and based on longer roll-outs.
- Starpilot: Despite higher training score for PPO, the test score is much closer: generalizability is hard
- Chaser: Truly PPO generalizes better than PPO

	Starpilot	Chaser
PPO	31.93	42.81
$\epsilon = 0.1$	31.33	42.01
PPO	31.67	42.04
$\epsilon = 0.2$	31.07	42.04
Truly PPO		
$\delta = 0.1$	28.56	51.36
$\alpha = 4$		
Truly PPO		
$\delta = 0.5$	30.15	46.45
$\alpha = 4$		
Truly PPO		
$\delta = 0.5$	29.69	48.82
$\alpha = 1$		

Explore/Exploit Trade-off

- Qualitative comparison of algorithms
- Indicates the explore/exploit trade-off

Many Avenues for Future Work!

- Look into generalization as a function of time
- Normalize test results for direct comparison with training
- Compare PPO and Truly PPO in Actor-Critic framework
- Base graphs on more seeds