Visualizing a co-occurence network in Cytoscape

Julia Gustavsen

Contents

1	Des	cription of vignette	2									
	1.1	Tara Oceans	2									
	1.2	How to examine organisms that occur together: co-occurence networks	2									
	1.3	What can we find out by creating co-occurence networks?	2									
	1.4	What kind of data are used in this vignette?	2									
2	Set	up Cytoscape and R connection	3									
	2.1	Requirements	3									
3	Rea	d in data	3									
4	Read in taxonomic classification											
5	Add	Add the taxonomic classifications to the network and then send network to Cytoscape										
6	Sen	d network to Cytoscape using RCy3	5									
7	Cole	our network by prokaryotic phylum	7									
	7.1	Set node shape to reflect virus or prokaryote	9									
8	Cole	our edges of phage nodes	11									
9	Do	layout to minimize overlap of nodes.	13									
10	10 Look at network properties											
11	Size	by degree	16									
12	Sele	ect an interesting node and make a subnetwork from it	18									
	12.1	Conclusion	20									
R	efere	nces	20									

1 Description of vignette

1.1 Tara Oceans

Many projects have collected samples from different regions and from different depths of the ocean. Some, such as the pioneering study by Craig Venter (Venter et al. 2004) have pioneered metagenomic sequencing and others, such as Tara Oceans Expedition have collected large amounts of data with global ecological questions in mind. On the Tara Oceans (8th and 9th expedition for this vessel researchers used a small sailboat outfitted with a lab and filtration supplies to collect samples from many different size fractions of microorganisms in the oceans over three years. They collected these samples to look at the different kinds of microorganisms present in different parts of the oceans to look at their composition and to observe their spatial patterns and distribution.

The scientists collected the samples and then used either targeted sequencing (amplicon approach using primers for specific targets such as the ribosomal genes and then amplifying these targets using PCR) or using metagenomic sequencing (where all the genetic material in a sample is sequenced) of each of the size fractions.

After the sequencing and quality checking of the samples was done, the sequences were taxonomically classified (different approaches for the different targets, see here for the details in Brum et al. (2015) and Sunagawa et al. (2015)). After that the data could be made into a species occurrence table where the rows are different sites and the columns are the observations of the different organisms at each site (Lima-Mendez et al. 2015).

1.2 How to examine organisms that occur together: co-occurence networks

Many of these microbial species in these types of studies have not yet been characterized in the lab. Thus, to know more about the organisms and their interactions, we can observe which ones occur at the same sites or under the same kinds of environmental conditions. One way to do that is by using co-occurrence networks where you examine which organisms occur together at which sites. The more frequently that organisms co-occur at the same site, the stronger the interaction predicted among these organisms. For a review of some of the different kinds of techniques and software for creating interaction networks see: Weiss et al. (2016).

1.3 What can we find out by creating co-occurrence networks?

These kinds of analyses can be useful for studies where the organisms have not yet been characterized in the lab because these analyses can provide insights about the communities and how the organisms within them are interacting. These analyses can be exploratory, so that we can see which organisms warrant further insights and perhaps experimental work. We can also learn about how the overall community is organized (community structure) by looking at some of the network properties (that is the overall way that the organisms are co-occurring and the properties of the network seen this way).

1.4 What kind of data are used in this vignette?

In this analysis we are using a Tara Ocean data and we have data from the bacterial dataset (Sunagawa et al. 2015) and also from the viral dataset (Brum et al. 2015). They have been examined in Lima-Mendez et al. (2015) and we have used the original relative abundances to visualize the data. Data were retrieved from: http://www.raeslab.org/companion/ocean-interactome.html

2 Set up Cytoscape and R connection

We will run this example using RCy3 (P. T. Shannon et al. 2013) to drive the visualization of these networks in Cytoscape (P. Shannon et al. 2003) using CyREST (Ono et al. 2015).

2.1 Requirements

```
library(RCy3)
library(igraph)
library(RJSONIO)
library(RColorBrewer)
library(httr)
```

To run this example **Cytoscape software must be running**. In Cytoscape we will also need Allegro-plugin for this example.

To begin we create a connection in R that we can use to manipulate the networks and then we will delete any windows that were already in Cytoscape so that we don't use up all of our memory.

```
cy <- CytoscapeConnection()
deleteAllWindows(cy)</pre>
```

3 Read in data

We will read in a species co-occurrence matrix that was calculated using Spearman Rank coefficient. (If interested in seeing how this was done please see scripts and the raw data in inst/data-raw)

```
## scripts for processing located in "inst/data-raw/"
prok_vir_cor <- read.delim("./data/virus_prok_cor_abundant.tsv")</pre>
```

There are many different ways to work with graphs in R. We will use both the igraph (Csardi and Nepusz 2006) and the graph (Gentleman et al. 2016) package to work with our network with Cytoscape.

The igraph package is used to convert the co-occurrence dataframe into a network that we can send to Cytoscape. In this case our graph is undirected (so "directed = FALSE") since we do not have any information about the direction of the interactions.

4 Read in taxonomic classification

Since these are data from small, microscopic organisms that were sequenced using shotgun sequencing, we rely on the classification of the sequences to know what kind of organisms are in the samples. In this case the bacterial viruses (bacteriophage), were classified by Basic Local Alignment Search Tool (BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi) by searching for their closest sequence in the RefSeq database (see methods in Brum et al. (2015)). The prokaryotic taxonomic classifications were determined using the SILVA database.

```
phage_id_affiliation <- read.delim("./data/phage_ids_with_affiliation.tsv")
bac_id_affi <- read.delim("./data/prok_tax_from_silva.tsv")</pre>
```

5 Add the taxonomic classifications to the network and then send network to Cytoscape

In preparation for sending the networks to Cytoscape we will add in the taxonomic data. Some of the organisms do not have taxonomic classifications associated with them so we have described them as "not_class" for not classified. We do that because we have had problems sending "NA"s to Cytoscape from RCy3.

```
genenet.nodes <- as.data.frame(vertex.attributes(graph_vir_prok))</pre>
## not all have classification, so create empty columns
genenet.nodes$phage_aff <- rep("not_class", nrow(genenet.nodes))</pre>
genenet.nodes$Tax_order <- rep("not_class", nrow(genenet.nodes))</pre>
genenet.nodes$Tax_subfamily <- rep("not_class", nrow(genenet.nodes))</pre>
for (row in seq_along(1:nrow(genenet.nodes))){
  if (genenet.nodes$name[row] %in% phage id affiliation$first sheet.Phage id network){
    id_name <- as.character(genenet.nodes$name[row])</pre>
    aff_to_add <- unique(subset(phage_id_affiliation,</pre>
                                  first_sheet.Phage_id_network == id_name,
                                  select = c(phage affiliation,
                                              Tax order,
                                              Tax subfamily)))
    genenet.nodes$phage_aff[row] <- as.character(aff_to_add$phage_affiliation)</pre>
    genenet.nodes$Tax_order[row] <- as.character(aff_to_add$Tax_order)</pre>
    genenet.nodes$Tax_subfamily[row] <- as.character(aff_to_add$Tax_subfamily)</pre>
  }
}
```

```
## do the same for proks
genenet.nodes$prok_king <- rep("not_class", nrow(genenet.nodes))</pre>
genenet.nodes$prok_tax_phylum <- rep("not_class", nrow(genenet.nodes))</pre>
genenet.nodes$prok_tax_class <- rep("not_class", nrow(genenet.nodes))</pre>
for (row in seq_along(1:nrow(genenet.nodes))){
  if (genenet.nodes$name[row] %in% bac_id_affi$Accession_ID){
    aff_to_add <- unique(subset(bac_id_affi,</pre>
                                  Accession_ID == as.character(genenet.nodes$name[row]),
                                  select = c(Kingdom,
                                              Phylum,
                                              Class)))
    genenet.nodes$prok_king[row] <- as.character(aff_to_add$Kingdom)</pre>
    genenet.nodes$prok_tax_phylum[row] <- as.character(aff_to_add$Phylum)</pre>
    genenet.nodes$prok_tax_class[row] <- as.character(aff_to_add$Class)</pre>
  }
}
```

Add to the network the data related to the connections between the organisms, the edge data, and then prepare to send the nodes and edges to Cytoscape using the function cyPlot().

6 Send network to Cytoscape using RCy3

Now we will send the network from R to Cytoscape.

```
displayGraph(cw)
layoutNetwork(cw)
fitContent(cw)
```


7 Colour network by prokaryotic phylum

We would like to get an overview of the different phylum of bacteria that are in the network. One way is to colour the different nodes based on their phylum classification. The package Rcolorbrewer will be used to generate a set of good colours for the nodes.

Use the colours from Rcolorbrewer to colour the nodes in Cytoscape.

Successfully set rule.

```
displayGraph(cw)
layoutNetwork(cw)
fitContent(cw)
```

ph 11569	ph 2966	ph 1968	- ph 2560	. ph 164	ph 2916	ph 915	ph 2226	ph 5109	ph 6257	ph 995	ph 589 .	ph 2363	ph 1600	ph 1970	ph 15207	ph 765	ph 53	EU686618	eh 155	- ph_4208 -	ph 5361	- ph 1077 -	- ph 6632	ph 5256	ph 6284	ph 627	ph 2950	ph 1973
		` - '	, ,	ph_7153			134	~ ~					£	ph_531					7	1 1	- :	ph_2393			- 1	/ ¬	- 1 -	
ph_4386	ph_4714	ph_4072	ph_9105	ph_654	ph_253	ph_4946		ph_10747			ph_3557			EU802434		ph_2036	ph_2434		EF573115	ph_3662	ph_1186	ph_2064	ph_9457 A	ACY0204876	ph_4448	ph_21 056	CY0205640	ph_8990
ph_4314			ph_5249	EU802893	EU805091	ph_2117	ph_7906		ph_1374		ph_3684	ph_3059	ph_864	ph_209	ph_1954	ph_3042	ph_121	ph_2467	ph_239	ph_2008						ph_674	ph_13136	ph_1385
ph_4452		ph_1471	ph_3621	ph_3028	ph_2624	ph_6841	ph_1924	ph_72	EF571973	ph_22428	ph_3164	ph_3493	ph_2405	ph_1808	ph_459	ph_2333	ph_4100	ph_553	ph_5286	ph_1388		ph_5029		ph_3866		ph_15150	ph_13413	
ph_3301	ph_64	ph_8002	ph_1128	ph_28685	ph_8419	ph_276	AY664189	ph_2305	ph_741	ph_1683	ph_5302	EF574119	ph_646	ph_2031	ph_3204	ph_7902	ph_7399	ph_3175	ph_4165	ph_2211	ph_6185	ph_5924	ph_2172	ph_2846			ph_2297	
ph_2452	ph_661	EF573463	ph_1258		ph_4091	ph_17340	ph_3947	ph_4447	ph_392	ph_1033	ph_318	ph_1687	ph_8315	ph_647	ph_2465	ph_7518	EU802971	ph_319	ph_3979	ph_4713	ph_675	ph_5360	ph_27069	ph_21720	ph_3369		ph_3280	
ph_236	ph_13890	ph_3067		ph_2682	ph_4558	ph_4801	ph_2468	ph_2243	ph_1728	ph_3150	ph_449	EF571982	AY664012	ph_1188	ph_21 43	ph_22514	ph_6280	JN166197	ph_3746	ph_1277	ph_4381	ph_19894	ph_21152	ph_9464				
ph_4205	ph_1060	ph_337	ph_1762	ph_3242	EF572471	ph_10798	ph_2193	EU799440	ph_900	ph_1715	ph_4150	ph_3246	ph_1909	ph_394	ph_3293	ph_8345	ph_4841	ph_9113	ph_8971	ph_22430	ph_4450	ph_7893			ph_1377		ph_4647	
ph_4745	ph_6424	- ph_1767	ph_11583	ph_4869.A	ACY0205498	ph_374	ph_1855	EU802437	ph_161	ph_3534	ph_15651	ph_6665	ph_3983	ph_182	AY664083	ph_2032	ph_6655	ph_3578	ph_8064	ph_3817	ph_8407	ph_1359	EU802833	00119298	ph_6235	ph_742	ph_734	ph_1487
ph_4929	bp_3e3			ph_8068		ph_1376	ph_5609	EF574440	ph_1695	ph_2142	ph_13481	ph_2524	ph_3768	ph_1313	ph_25338	ph_5516	ph_1 095	ph_89	GQ 346891	ph_4430	CY0202883	0 ph_2108			ph_222		ph_2807	ph_3219
ph_5321	ph_614	ph_362	ph_5952	ph_3660	ph_7000	ph_33749	ph_1485	ph_8161	ph_3477	ph_1402	ph_1522	ph_10996	AY534099	ph_5730A	CY0203984	ph_16274	ph_4206	ph_7792	ph_2775	EF574264	ph_3999	ph_3098	JQ347414	ph_2626	ph_4207	ph_7980		ph_4999
ph_636		ph_2279		ph_4434	ph_20662	ph_3538	ph_15039	ph_1880 A	A CY0202554	ph_2730	ph_17518	ph_22728	ph_3267	EU 803067	ph_10467	ph_3929	GU061415	ph_2291	ph_5723	ph_655	ph_3542	ph_687	HQ672889	EF574494	ph_968		ph_1422	ph_7520
ph_3766	ph_16481	ph_8066	ph_2435	D Q009161	ph_7816	ph_1849	ph_3677	ph_2087	ph_7350	ph_15726	ph_1469	ph_1346	ph_14679	ph_3233	ph_4813	ph_1837	ph_8243	ph_3919	ph_9110	ph_2122	ph_484	ph_3531	EU802700	ph_6892	ph_1205		ph_7878	ph_14587
ph_2469	ph_2123	ph_2666	ph_2877	ph_3769	ph_21378	EU 686616	ph_1452	ph_2105	ph_1 4213	ph_2517	DQ156479	ph_74	ph_1874	ph_7661	AY664000	ph_189	ph_5573	ph_5893	ph_1472	ph_8165	ph_1779	ph_13974	ph_2534	ph_5921	ph_947	ph_1431	ph_6178	ph_20
ph_11396	ph_2466	ph_1998	ph_11038	ph_3984	ph_1534	ph_5262	ph_8727	ph_1312	ph_2424	ph_11135	ph_3183	ph_1120	ph_5625	ph_2051	EU237468	ph_1347	ph_15759	ph_8318	ph_15681	ph_335	U40238	ph_3569	ph_3857	ph_3568	AY726967	ph_2956	ph_3256	ph_3066
HQ671905	ph_9245	ph_3504	ph_4655	ph_1146	ph_2878	ph_5639	ph_3217	ph_11146	ph_4160	ph_1438	ph_2017	ph_5983	ph_331	ph_2222	ph_3840	ph_2159	ph_2165	ph_21467	ph_7789	ph_1142	ph_7842	X 521 69	ph_913	ph_339	ph_2323	ph_9237	ph_2180	ph_6112
ph_5724	ph_2125	ph_9998	ph_3241	GU940897	ph_13708	ph_2253	ph_1943	ph_2757	ph_1 2363	ph_1601	ph_5577	ph_2844	ph_5617	ph_199	ph_2470	DQ299286	ph_588	ph_1 908	ph_5861	ph_3711	ph_32390	ph_1392	ph_7371	ph_5635	ph_3762	ph_1619	ph_3892	ph_11145
ph_2533	ph_24577	_ ph_299	ph_197	ph_2498	ph_4927	ph_8462	and the same of	ph_1631	ph_78	HQ671891	ph_946	ph_3573	ph_2286	ph_2840	ph_4867	ph_3406	ph_1 505	ph_6555	ph_2433	ph_18855	ph_872	ph_5727	ph_6113	ph_7504	yx CO1 00 738	ph_1800	ph_8962	ph_16688
ph_3240	ph_5636	ph_193	ph_4368	ph_573	00377772	ph_1291	ph_883	ph_1703	ph_8869	ph_11844	ph_1113	ph_4442	ph_14801	ph_4252	ph_12213	ph_2278	ph_2391	ph_1 795	ph_2118	ph_4276	ph_4712	ph_51	ph_12212	ph_4784	ph_5010	ph_3368	ph_943	ph_3405
1	,	promeny	2-	pormecus)	-	EF 572587	tory con		ph_6025	-	ph_11096	ph_2918	ph_1903	ph_5643	breamer 4	GU145420	~	-		ph_13591	-	COMME	LOW NO	brommond	Survey 1	h = /	ph_1274	
١.	1	1 1000 1000	and the same	ph_5631	merra	-	EU802707		MATTER AND THE		EF574411	ph_407	ph_1427	ph_1925		ph_1727		PERSONAL PROPERTY.	gamena.rd	ph_2071	A CONTRACTOR OF THE PERSONS	THE REAL PROPERTY.	AARDET TON	Anne Too	Becom.	181	- '	,
-		fore a over	pu var sor.	ph_4379	-	-	ph_4530	Description of the			ph_11846	-	5	GU941055		-	_	ph_3157	-	ph_5725	Commence of	ph_4358	ph_533	proces 1		F100 T-		
	1.12.8/	J-erzament	2001 200	ph_896			DE LOOP		A CY0205557	-		-	7	ph_7503		ph_176	-	ph_6494	-	-	-	ph_3537		-	Jane	Luman		
١.	HQ672720	germoned	p.c.		- /smm	-	ACY0202072	/	-	ph_1531		ph_13207	-	-	_			1111		ph_3099	-	-	per i mane	LINA	ph_1723	-	-	
	1. 1. Let 80779	facilities and	_	ph_11724	_	-	ph_25845	-	-	1	ph_8888		ph_2292							ph_8537		ph_115	-	27-12	ph_811	NR.11		
-	ph_10931		00940773			ph_8067	-			ph_7172			ph_7506	5 / 4				-	-	ph_4449		:		1470	b //			
ph_430 ph_3373		ph_7043	-	ph_2677 ph_2955		- /	ph_2459 ph_4393						_	ph_3447	_				- 17	ph_3541 ph_11048		ma.	_	—	` '	\ -	_	
				pn_2555	pn_1367	ph_945	pn_4353	ph_58	pn_5544	pn_2140	pn_3360	pn_2658	pn_3111	pn_5185	bu_10e1	pn_387	pn_17327	pn_6115	pn_4251	pn_11048 -	pn_4240	pn_2337	pn_3873	- pn_5346	pn_1257	pn_4443	pn_5484	- pn_s024
ph_357	ph_4936	ph_11730	ph_18998																									

7.1 Set node shape to reflect virus or prokaryote

Next we would like to change the shape of the node to reflect whether the nodes are viral or prokaryotic in origin. In this dataset all of the viral node names start with "ph_", thus we can set the viral nodes to be diamond-shaped by looking for all the nodes that start with "ph" in the network.

Successfully set rule.

```
displayGraph(cw)
fitContent(cw)
```


8 Colour edges of phage nodes

The classification of the viral data was done in a very conservative manner so not many of the viral nodes were identified. However, if we do want to add some of this information to our visualization we can colour the edges of the viral nodes by family. The main families that were identified in this dataset are the *Podoviridae*, the *Siphoviridae* and the *Myoviridae* (for more info see NCBI Podoviridae, NCBI Myoviridae, and NCBI Siphoviridae)

Successfully set rule.

```
displayGraph(cw)
fitContent(cw)
```


9 Do layout to minimize overlap of nodes.

After doing all of this colouring to the network we would like to layout the network in a way that allows us to more easily see which nodes are connected without overlap. To do the layout we will use the Cytoscape plugin Allegro.

When using RCy3 to drive Cytoscape, if we are not sure what the current values are for a layout or we are not sure what kinds of values are accepted for the different parameters of our layout, we can investigate using the RCy3 functions getLayoutPropertyNames() and then getLayoutPropertyValue().

```
getLayoutNames(cw)
   [1] "attribute-circle"
   [2] "allegro-weak-clustering"
##
   [3] "allegro-edge-repulsive-fruchterman-reingold"
##
   [4] "stacked-node-layout"
##
   [5] "allegro-edge-repulsive-strong-clustering"
   [6] "allegro-strong-clustering"
##
##
   [7] "degree-circle"
   [8] "allegro-fruchterman-reingold"
##
   [9] "allegro-edge-repulsive-spring-electric"
## [10] "circular"
## [11] "attributes-layout"
## [12] "kamada-kawai"
## [13] "force-directed"
## [14] "allegro-edge-repulsive-weak-clustering"
## [15] "grid"
## [16] "hierarchical"
## [17] "allegro-spring-electric"
## [18] "fruchterman-rheingold"
## [19] "isom"
getLayoutPropertyNames(cw, layout.name = "allegro-spring-electric")
## [1] "randomize"
                                       "maxIterations"
## [3] "noOverlapIterations"
                                       "deviceSelection"
## [5] "componentProcessingSelection" "componentSorting"
## [7] "scale"
                                       "gravityTypeSelection"
## [9] "gravity"
getLayoutPropertyValue(cw, "allegro-spring-electric", "gravity")
## [[1]]
## [1] 100
getLayoutPropertyValue(cw, "allegro-spring-electric", "maxIterations")
## [[1]]
## [1] 2000
```

layout.name = "allegro-spring-electric")

fitContent(cw)

10 Look at network properties

One thing that might be interesting to visualize is nodes that are connected to many different nodes and nodes that are connected to few other nodes. The number of other nodes to which one node is connected is called degree. We can use a gradient of size to quickly visualize nodes that have high degree.

11 Size by degree

layoutNetwork(cw2)

```
degree_control_points <- c(min(degree(graph_vir_prok)),</pre>
                            mean(degree(graph vir prok)),
                            max(degree(graph_vir_prok)))
node_sizes <- c(20,</pre>
                20,
                80.
                100.
                110) # number of control points in interpolation mode,
                      # the first and the last are for sizes "below" and "above" the attribute seen.
setNodeSizeRule(cw2,
                "degree",
                degree_control_points,
                node_sizes,
                mode = "interpolate")
## Locked node dimensions successfully even if the check box is not ticked.
## Locked node dimensions successfully even if the check box is not ticked.
## Successfully set rule.
layoutNetwork(cw2,
              "force-directed")
```


12 Select an interesting node and make a subnetwork from it

The visualization displays several different areas where there are highly connected nodes that are in the same bacterial phylum. We will select one of these nodes, all of the nodes connected to this node, its first neighbours, and then the nodes connected to the first neighbours. One node that is in a group of highly connected nodes is the cyanobacterial node "GQ377772". We will select it and its first and second neighbours and then make a new network from these nodes and their connections.

```
selectNodes(cw2,
            "GQ377772") # selects specific nodes
getSelectedNodes(cw2)
## [1] "GQ377772"
selectFirstNeighborsOfSelectedNodes(cw2)
getSelectedNodes(cw2)
    [1] "ph_3164"
                    "ph_1392"
                               "ph_1808"
                                           "ph_3901"
                                                       "ph_407"
                                                                  "ph_4377"
    [7] "ph_553"
                    "ph_765"
                               "ph_7661"
                                           "GQ377772"
```

Now select the second neighbours of node "GQ377772".

```
selectFirstNeighborsOfSelectedNodes(cw2)
getSelectedNodes(cw2)
```

```
[1] "ph_3164"
                         "ph_1392"
                                          "ph_1808"
                                                           "ph_3901"
    [5] "ph_407"
                         "ph_4377"
                                          "ph_553"
                                                           "ph_765"
   [9] "ph_7661"
                         "AACY020207233"
                                          "AY663941"
                                                           "AY663999"
## [13] "AY664000"
                         "AY664012"
                                          "EF574484"
                                                           "EU802893"
## [17] "GQ377772"
                         "GU061586"
                                          "GU119298"
                                                           "GU941055"
```

This has only selected the nodes, but not the edges in Cytoscape, so we will need to select all of the edges before we make the new subnetwork.

```
source("./functions_to_add_to_RCy3/subnetwork_stuff.R")
selectEdgesConnectedBySelectedNodes(cw2)
```

Now edges should appear selected in Cytoscape, in addition to the nodes.

```
newnet <- subnetwork_from_selected(cw2)</pre>
```

[1] "Cytoscape window Tara oceans with degree(1) successfully connected to R session and graph copie

```
layoutNetwork(newnet, "force-directed")
```


12.1 Conclusion

This has been a very basic introduction to exploring co-occurrence networks in Cytoscape using RCy3.

References

Brum, Jennifer R., J. Cesar Ignacio-Espinoza, Simon Roux, Guilhem Doulcier, Silvia G. Acinas, Adriana Alberti, Samuel Chaffron, et al. 2015. "Patterns and Ecological Drivers of Ocean Viral Communities." *Science* 348 (6237): 1261498. http://www.sciencemag.org/content/348/6237/1261498.short.

Csardi, Gabor, and Tamas Nepusz. 2006. "The Igraph Software Package for Complex Network Research." InterJournal Complex Systems: 1695. http://igraph.org.

Gentleman, R., Elizabeth Whalen, W. Huber, and S. Falcon. 2016. *Graph: Graph: A Package to Handle Graph Data Structures*.

Lima-Mendez, Gipsi, Karoline Faust, Nicolas Henry, Johan Decelle, Sébastien Colin, Fabrizio Carcillo, Samuel Chaffron, et al. 2015. "Determinants of Community Structure in the Global Plankton Interactome." *Science* 348 (6237). doi:10.1126/science.1262073.

Ono, K, T Muetze, G Kolishovski, P Shannon, and B Demchak. 2015. "CyREST: Turbocharging Cytoscape Access for External Tools via a RESTful API [Version 1; Referees: 2 Approved]." F1000Research 4 (478). doi:10.12688/f1000research.6767.1.

Shannon, Paul T., Mark Grimes, Burak Kutlu, Jan J. Bot, and David J. Galas. 2013. "RCytoscape: Tools for Exploratory Network Analysis." *BMC Bioinformatics* 14 (1): 1–9. doi:10.1186/1471-2105-14-217.

Shannon, Paul, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. 2003. "Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks." *Genome Research* 13 (11): 2498–2504. http://genome.cshlp.org/content/13/11/2498.short.

Sunagawa, Shinichi, Luis Pedro Coelho, Samuel Chaffron, Jens Roat Kultima, Karine Labadie, Guillem Salazar, Bardya Djahanschiri, et al. 2015. "Structure and Function of the Global Ocean Microbiome." *Science* 348 (6237): 1261359. http://www.sciencemag.org/content/348/6237/1261359.short.

Venter, J. Craig, Karin Remington, John F. Heidelberg, Aaron L. Halpern, Doug Rusch, Jonathan A. Eisen, Dongying Wu, et al. 2004. "Environmental Genome Shotgun Sequencing of the Sargasso Sea." *Science* 304 (5667): 66–74. doi:10.1126/science.1093857.

Weiss, Sophie, Will Van Treuren, Catherine Lozupone, Karoline Faust, Jonathan Friedman, Ye Deng, Li Charlie Xia, et al. 2016. "Correlation Detection Strategies in Microbial Data Sets Vary Widely in Sensitivity and Precision." ISME J 10 (7): 1669–81. http://dx.doi.org/10.1038/ismej.2015.235.