Identification of critical connectors in the directed reaction-centric graphs of microbial metabolic networks

Individual Analysis Project Miguel Guardado 12/2/2020

Predicting Essential Reactions
Using Network Centrality
Metrics

Methods

Goal-Create and find a model based off network statistics to predict the essentiality of a node in a metabolic reactions-centric graph.

Data- 5 Network from the paper: Thanks Group 5 for Essential Reaction Data!

E. coli, B. subtilis, G. metallireducens, K. pneumoniae, and S. cerevisiae.

Aim1-Use Logistic Regression, SVM, and Random Forest to try and predict the essentiality of a node based on several centrality/graph metrics.

Aim2 - Perform PCA and determine if Dimension Reduction can give us a better idea into if essentiality can be predicted with our data.

Trying to Model Essential Reactions

8 x 1 sparse Matrix of class "dgCMatrix"

1
(Intercept) -1.4207506
k_total .
BetweennessCentrality 12.7724577
ClusteringCoeff .
Bridge .
BridgingCentrality .
CascadeNum 0.2390955
EigenCentrality .

Model Type	Accuracy
LogR: BC+CN	62%
LogR: BC*CN	62%
SVM: BC+CN	57%
RF: BC+CN	64%

```
Coefficients:
```

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.76598 0.05015 -35.214 < 2e-16 ***
BetweennessCentrality 28.85829 4.49544 6.419 1.37e-10 ***
CascadeNum 0.31835 0.02973 10.709 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Call:

randomForest(formula = EssentialReaction ~ BetweennessCentrality + CascadeNum, data = train)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 1

Mean of squared residuals: 0.1403682 % Var explained: 9.04

RMSE Rsquared MAE 0.4205174 0.04116118 0.2149807

PCA plots of Essential Reactions+ Reflection

*	BetweennessCentrality *	CascadeNum [‡]	Essential [‡]
229	2.451889e-04	U	Yes
230	2.328977e-03	0	Yes
231	2.451889e-04	0	Yes
232	4.958115e-03	0	No
233	5.366426e-03	0	Yes
234	3.945265e-03	0	Yes
235	8.849893e-04	1	Yes
236	5.680689e-03	0	Yes
237	4.709084e-03	0	Yes
238	3.239921e-03	0	Yes
239	8.785842e-04	1	Yes
240	0.000000e+00	0	No
241	5.097410e-05	0	Yes
242	1.494007e-03	0	No
243	4.116649e-03	0	Yes
244	1.683827e-03	0	Yes
245	1.367693e-02	0	No

Questions

Graph that ended up being FAKE!!!! And giving me false hope

