Deep Learning Loss Functions

Edgar F. Roman-Rangel. edgar.roman@itam.mx

Digital Systems Department. Instituto Tecnológico Autónomo de México, ITAM.

February 12th, 2021.

Outline

Loss functions

Introduction

So far, we have used mean square error (mse) only.

There are different loss functions that better suit different tasks.

Deep Learning

Mean square error (mse)

$$l_{mse} = \frac{1}{M} \sum_{m=i}^{M} \left(y^{(i)} - \hat{y}^{(i)} \right)^{2},$$

where, M indicates the number of training samples in a batch.

- ▶ a.k.a., *L*2 loss.
- Good for regression tasks.
- ► Trivial derivative for gradient descent.

◆ロ → ◆ 個 → ◆ 重 → ◆ ま → り へ ○

Mean absolute error (mae)

$$l_{mae} = \frac{1}{M} \sum_{m=i}^{M} |y^{(i)} - \hat{y}^{(i)}|,$$

where, ${\cal M}$ indicates the number of training samples in a batch.

- ightharpoonup a.k.a., L1 loss.
- ▶ More robust to outliers than *mse*.
- Good for regression tasks.
- Discontinuity in its derivative.

◆□▶◆御▶◆□▶◆□▶ ■ めぬべ

Pseudo-Huber loss

$$l_{PH} = egin{cases} rac{1}{2} \left(y - \hat{y}
ight)^2, & \left|y - \hat{y}
ight| < \delta, \ \delta \left|y - \hat{y}
ight| - rac{1}{2} \delta^2, & ext{otherwise.} \end{cases}$$

for a single training sample.

- Quadratic for small errors, and linear for large errors.
- Less sensitive to outliers than mse.
- ► Good for **regression** tasks.

◆ロ → ◆ 個 → ◆ 重 → ◆ 重 ・ 夕 Q ○

Hinge loss

$$l_H^{(i)} = \max(0, 1 - y^{(i)} \cdot \hat{y}^{(i)}),$$

for a single training sample.

- Also used in SVM's.
- ▶ Consider y and \hat{y} to be probabilities.
- Penalizes errors, but also correct predictions of low confidence.
- Good for binary classification tasks.

(Information theory I, Information)

C. Shannon: 1948 "A Mathematical Theory of Communication".

For a random variable, taking N possible values with equal probability, we need $\log_2(N)$ bits to transmit its information.

For a random variable, taking N possible values with varying probabilities p_i , we obtain $-\sum_i p_i \log_2(p_i)$ bits of information, on average.

(Information theory II, Entropy)

"How uncertain events are".

$$H(p) = -\sum_{i} p_i \log_2(p_i).$$

- Average amount of information obtained from one sample drawn from a given probability distribution p.
- ▶ How unpredictable that probability distribution is.

The more variation, the higher the entropy.

(Information theory III, Cross entropy)

Cross entropy H(p,q) is a function of two probability distributions ${\bf p}$ and ${\bf q}$,

$$H(p,q) = -\sum_{i} p_i \log_2(q_i).$$

Provides the average message length when we encode p into q.

If prediction is correct, then H(p) = H(p,q).

Categorical cross entropy

$$l_{CCE} = -\sum_{i} y_i \log_2(\hat{y}_i).$$

- Notice subindices represent elements of a vector.
- Values between 0 and 1.
- Good for multi-class classification problems.
- Consider y to be a one-hot encoding vector, e.g., [0,0,0,1,0] represents a label for the 4-th class.
- Prediction \hat{y} might look like [0.01, 0.01, 0.03, 0.93, 0.02].

4 D > 4 D > 4 B > 4 B > B = 400

Binary cross entropy

Special case of cross entropy for only two classes.

$$l_{BCE} = -(y \log_2(\hat{y}) + (1 - y) \log_2(1 - \hat{y})).$$

- ▶ Values between 0 and 1.
- Good for binary classification problems.

Kullback-Leibler divergence (D_{KL})

$$l_{D_{KL}} = \sum_{i} y_i \log_2 \frac{y_i}{\hat{y}_i}.$$

- $D_{KL}(p||q) = H(p,q) H(p).$
- Equivalent to categorical cross entropy up to a scale factor.
- Gives a notion of "the difference between the expected and predicted length of a message".
- ► Good for classification problems.

Adaptive

Few attempts have been made on getting adaptive loss functions.

Barron, 2019. "A General and Adaptive Robust Loss Function".

Common practices

- ightharpoonup For regression problems, try mse and then mae.
- ► For binary classification, try binary cross entropy.
- For multi-class classification, try categorical cross entropy.

Q&A

Thank you!

edgar.roman@itam.mx