Clase 1

Santiago Cifuentes

Marzo 2025

Definiciones por límite: dadas dos funciones crecientes $f,g:\mathbb{N}\to\mathbb{N}$, supongamos que existe $L=\lim_{n\to\infty}\frac{f(n)}{g(n)}$. Luego:

- Si L = 0, f(n) = o(g(n)).
- Si $L = c \in \mathbb{R}$, $f(n) = \Theta(g(n))$.
- Si $L = \infty$, $f(n) = \omega(g(n))$.

En particular, f(n) = O(g(n)) si $L < \infty$, y $f(n) = \Omega(g(n))$ si $L \neq 0$.

- 1. Probar que $\log n^k = o(n^{\varepsilon})$ para todo $k \in \mathbb{N}$ y $\varepsilon > 0$.
- 2. Dar una cota fina a la función T(n) definida como

$$T(n) = \begin{cases} 0 & n = 0\\ 2n - 1 + T(n) & \text{caso contrario} \end{cases}$$

3. Hacer lo mismo para la recusión dada por

$$T(n) = \begin{cases} 1 & n \in \{0, 1\} \\ 3T(n/2) + 4\log n & \text{caso contrario} \end{cases}$$

- 4. Argumentar que una máquina de Turing con k cintas de trabajo que corre en T(n) pasos puede simularse con una sola cinta de trabajo en $O(kT(n)^2)$.
- 5. Argumentar que una máquina de Turing con acceso RAM puede simularse eficientemente con una máquina de Turing.
- 6. Probar que los siguientes problemas están en P:
 - $\bullet\,$ Dado un grafo G, decidir si dos nodos v,w están conectados.
 - Dadas dos cadensa t y p, decidir si p es una subcadena de t.
 - Dado n, calcular \sqrt{n} .
- 7. Explicar por qué el algoritmo de "trial division" para decidir si un número es primo no es polinomial.

- 8. Probar que la clase P está cerrada por complemento, unión e intersección.
- 9. Dada una función $f: \Sigma^* \to \Sigma^*$ y un problema Π , definimos $f(\Pi) = \{f(x) : x \in \Pi\}$. Encontrar funciones que corran en tiempo polinomial para las cuales P esté cerrada (i.e. $\Pi \in P \implies f(\Pi) \in P$) ¿Existe alguna función para la cual P no esté cerrada?

Ayuda: el único problema que saben que no está en P es HALT. Considerar como función la proyección π , que dado un par $\langle x,y\rangle$ se comporta como $\pi(\langle x,y\rangle)=x$.