ตรวจไวรัส

แย่แล้ว มีไวรัสชนิดใหม่ชื่อ DIVOC กำลังระบาดอยู่ เราต้องการตรวจว่าคนไข้มีเชื้อนี้อยู่หรือเปล่า เรา ทำได้โดยการตรวจสอบสายรหัสพันธุกรรมของไวรัสนี้ <mark>ข้อมูลรหัสพันธุกรรมเป็นอาเรย์ความยาว 2^k ประกอบด้วยตัวเลข 0 หรือ 1 เท่านั้น โดยเรารู้มาว่าไวรัส DIVOC จะมีรหัสพันธุกรรมที่สร้างขึ้นมาตาม หลักการดังนี้</mark>

ไวรัสมีหลายขนาด ขึ้นอยู่กับค่า k โดยที่เมื่อ <mark>k เป็น 1 ไวรัสจะมีรหัสพันธุกรรมอยู่แบบเดียว คือ</mark> อาเรย์ [0, 1]

ไวรัสขนาด 2^k จะเกิดจากไวรัสขนาด 2^{k-1} สองตัวมาต่อกัน เช่น ให้ a และ b เป็นรหัสพันธุกรรมของ ไวรัสขนาด 2^{k-1} อาเรย์ที่เกิดจาก a ต่อด้วย b จะเป็นไวรัสขนาด 2^k อย่างไรก็ตาม <mark>ก่อนการต่อกัน "อาจจะ" เกิดการกลายพันธุ์ในเฉพาะส่วนรหัสพันธุกรรมของ a ก็เป็นได้</mark> โดยการกลายพันธ์จะทำให้รหัสของ a พลิก กลับ (reverse) จากหน้าเป็นหลัง (ทำให้ อาเรย์ $[a_1, a_2, a_3, ..., a_n]$ กลายเป็น $[a_n, a_{n-1}, a_{n-2}, ..., a_1]$) จากกฎดังกล่าว เราสามารถ "แจกแจง" ไวรัสขนาด $2^1, 2^2$ และ 2^3 ได้ตามตารางนี้

ขนาด	รหัสพันธุกรรมที่เป็นไปได้ทั้งหมดสำหรับขนาดดังกล่าว	
2 ¹	0 1	
2 ²	0 1 0 1 // 01 ต่อกับ 01 แล้วไม่กลายพันธุ์	
	1 0 0 1 // 01 ต่อกับ 01 แล้ว กลายพันธุ์ (ทำให้ 01 แรกกลายเป็น 10)	
2 ³	0 1 0 1 0 1 0 1	
	0 1 0 1 1 0 0 1	
	1 0 0 1 0 1 0 1	
	10011001	
	1 0 1 0 0 1 0 1	
	10101001 // เกิดจาก 0101 ต่อกับ 1001 โดยที่กลายพันธ์	
	ทำให้ 0 1 0 1 กลายเป็น 1 0 1 0	

เราต้องการตรวจสอบรหัสพันธุกรรมหลาย ๆ รหัส ที่ได้รับมาว่า ตรงกับไวรัส DOVIC หรือไม่ ข้อมูลนำเข้า

- บรรทัดแรกประกอบด้วยจำนวนเต็ม 2 ตัวคือ n และ k โดยที่ n ระบุจำนวนรหัสพันธุกรรมที่ต้อง
 ตรวจ และ k บอกขนาดของรหัสพันธุกรรม โดยที่ 1 <= n <= 10 และ 1 <= k <= 8
- หลังจากนั้นอีก n บรรทัดจะเป็นรหัสพันธุกรรม บรรทัดละ 1 รหัส
 - O แต่ละบรรทัดจะประกอบด้วยจำนวนเต็ม 2^k ตัว แต่ละตัวเป็นเลข 0 หรือ 1 เท่านั้น

ข้อมูลส่งออก

มีหนึ่ง n บรรทัด เพื่อระบุว่ารหัสพันธุกรรมแต่ละรหัสเป็นไวรัส DOVIC หรือเปล่า ให้พิมพ์คำว่า "yes" ถ้าเป็น และ "no" ถ้าไม่เป็น (ตัวพิมพ์เล็ก)

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 1	yes
0 1	no
1 0	no
0 0	no
1 1	
4 2	no
1 1 0 0	yes
1 0 0 1	no
0 0 0 0	
5 3	yes
1 0 0 1 0 1 0 1	yes
1 0 1 0 1 0 0 1	no
1 0 1 1 1 0 0 0	
5 4	yes
0 1 0 1 0 1 0 1 0 1 0 1 0 1	yes
0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1	yes
0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1	yes
0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1	yes
0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1	

ข้อมูลทดสอบ

- 10% ของชุดข้อมูลทดสอบ จะมีค่า k = 1
- 10% ของชุดข้อมูลทดสอบ จะมีค่า k = 2
- 10% ของชุดข้อมูลทดสอบ จะมีค่า k = 3
- 70% ของชุดข้อมูลทดสอบ ไม่มีข้อกำหนดอื่นใด