El grupoide de Weyl

Leandro Vendramin

RESUMEN. Estas notas corresponden a un minicurso dictado en el XXIV Encuentro Rioplatense de Álgebra y Geometría — 60 años de Claude Cibils, Montevideo, Uruguay, en diciembre de 2015. Compilado el 9 de diciembre de 2015 a las 15:50.

Introducción

El grupoide de Weyl fue descubierto por István Heckenberger [5]. Si bien este grupoide fue introducido para estudiar álgebras de Nichols, recientemente quedó en evidencia que este nuevo objeto es inmensamente rico y posee muchas conexiones que merecen ser estudiadas en profundidad. Algunas de estas conexiones son: álgebras de Nichols y grupos cuánticos [6], superálgebras de Lie y combinatoria de sistemas de raíces [7], cluster algebras [4], arreglos de hiperplanos [1], etc.

En estas notas introduciremos las definiciones básicas, mostraremos algunos ejemplos y discutiremos la estructura de los grupoides de Weyl de rango dos. Nos basaremos en gran parte en los trabajos de Cuntz y Heckenberger [2, 3].

1. Definiciones básicas

- 1.1. Una matriz $A = (a_{ij}) \in \mathbb{Z}^{n \times n}$ se dice una matriz de Cartan generalizada si $a_{ii}=2$ para todo i, $a_{ij}\leqslant o$ para todo $i\neq j$ y para cada $i\neq j$ con $a_{ij} = 0$ se tiene $a_{ii} = 0$.
- 1.2. Sean I un conjunto finito, X un conjunto no vacío, $(r_i)_{i \in I}$ una colección de funciones $r_i: \mathcal{X} \to \mathcal{X}$, y $(A^X)_{X \in \mathcal{X}}$ una colección de matrices de Cartan generalizadas. Un semigrafo de Cartan es una upla

$$\mathfrak{C}=\mathfrak{C}(I,\mathfrak{X},(r_i)_{i\in I},(A^X)_{X\in\mathfrak{X}})$$

que cumple las siguientes propiedades:

- 1) $r_i^2 = id_{\mathfrak{X}}$ para todo $i \in I$. 2) $a_{ij}^X = a_{ij}^{r_i(X)}$ para todo $i, j \in I$, $X \in \mathfrak{X}$.

El **rango** de \mathcal{C} se define como el cardinal de I. Los elementos de \mathcal{X} son los **puntos** de C y los elementos de I son las **etiquetas** de C.

- 1.3. Sean $\mathfrak{C}=\mathfrak{C}(I,\mathfrak{X},(r_i)_{i\in I},(A^X)_{X\in\mathfrak{X}})$ y $\mathfrak{D}=(J,\mathfrak{Y},(s_j)_{j\in J},(B^Y)_{Y\in\mathfrak{Y}})$ dos semigrafos de Cartan. Un **morfismo** entre \mathfrak{C} y \mathfrak{D} es un par (π,α) , donde $\pi\colon I\to J$ y $\alpha\colon\mathfrak{X}\to\mathfrak{Y}$ son funciones tales que
- (1.3.1) $a_{ij}^X = b_{\pi(i),\pi(j)}^{\alpha(X)}$ para todo $i, j \in I, X \in \mathfrak{X}$,
- $(\textbf{1.3.2}) \hspace{1cm} \alpha(r_{\mathfrak{i}}(X)) = s_{\pi(\mathfrak{i})}(\alpha(X)) \hspace{1cm} \text{para todo } \mathfrak{i} \in I \text{, } X \in \mathfrak{X}.$
- 1.4. Un semigrafo de Cartan $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ se dice **conexo** si el grupo generado por $\{r_i : i \in I\}$ actúa transitivamente en \mathcal{X} .
- 1.5. Sea $\mathcal{C}=\mathcal{C}(I,\mathcal{X},(r_i)_{i\in I},(A^X)_{X\in\mathcal{X}})$ un semigrafo de Cartan. Se define el **grafo de intercambio** de \mathcal{C} como el grafo etiquetado cuyos vértices son los puntos de \mathcal{C} y dados $X,Y\in\mathcal{X}$ los vértices X e Y están conectados con la arista i si $X\neq Y$ y $r_i(X)=Y$ para $i\in I$.
- 1.6. Notación. Denotaremos por $\{\alpha_1, \dots, \alpha_n\}$ a la base estándar de \mathbb{Z}^I . Por ejemplo: si I tiene dos elementos, $Z^I = \{(1,0), (0,1)\}$.
- 1.7. Sea $\mathfrak{C}=\mathfrak{C}(I,\mathfrak{X},(r_i)_{i\in I},(A^X)_{X\in \mathfrak{X}})$ un semigrafo de Cartan y sea $\mathfrak{D}(\mathfrak{X},I)$ la categoría cuyos objetos son los elementos de \mathfrak{X} y los morfismos entre $X,Y\in \mathfrak{X}$ están definidos como

$$hom(X,Y) = \{(Y,f,X) : f \in End(\mathbb{Z}^{I})\}$$

con la composición

$$(Z, g, Y) \circ (Y, f, X) = (Z, gf, X), \qquad X, Y, Z \in \mathcal{X}, f, g \in \text{End}(\mathbb{Z}^{I}).$$

Para cada $X \in X$ y cada $i \in I$ se define

$$s_{\mathfrak{i}}^X \in \text{Aut}(\mathbb{Z}^I), \quad s_{\mathfrak{i}}^X \alpha_{\mathfrak{j}} = \alpha_{\mathfrak{j}} - \alpha_{\mathfrak{i}\mathfrak{j}}^X \alpha_{\mathfrak{i}}, \quad \mathfrak{j} \in I.$$

Se define el **grupoide de Weyl** de \mathcal{C} como la menor subcategoría $\mathcal{W}(\mathcal{C})$ de $\mathcal{D}(\mathcal{X}, I)$ que contiene a los morfismos $(r_i(X), s_i^X, X)$, donde $i \in I$ y $X \in \mathcal{X}$.

1.8. Notación. Los morfismos del grupode de Weyl $\mathcal{W}(\mathfrak{C})$ de un semigrafo de Cartan \mathfrak{C} que terminan en $X\in\mathcal{X}$ son ternas de la forma

$$w = (X, s_{i_1}^{r_{i_1}(X)} s_{i_2}^{r_{i_2}r_{i_1}(X)} \cdots s_{i_k}^{r_{i_k} \cdots r_{i_1}(X)}, r_{i_k} \cdots r_{i_1}(X)),$$

donde $k\geqslant o$. Cuando no haya peligro de confusión, simplemente escribiremos $w=id_X\,s_{i_1}\cdots s_{i_k}.$

- 1.9. Ejercicio. Sea $\mathcal{C}=\mathcal{C}(I,\mathcal{X},(r_i)_{i\in I},(A^X)_{X\in\mathcal{X}})$ un semigrafo de Cartan. Demuestre que $s_i^X=s_i^{r_i(X)}$ para todo $i\in I$ y $X\in\mathcal{X}$. Concluya que todo morfismo de $\mathcal{W}(\mathcal{C})$ es inversible.
- 1.10. Ejemplo. Sea $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ un semigrafo de Cartan de rango dos. Supongamos que $I = \{1, 2\}$. Si $X \in \mathcal{X}$ entonces las matrices de s_1^X y s_2^X con respecto a la base estándar de \mathbb{Z}^I es

$$s_1^X = \begin{pmatrix} -1 & -a_{12}^X \\ 0 & 1 \end{pmatrix}, \quad s_2^X = \begin{pmatrix} 1 & 0 \\ -a_{21}^X & -1 \end{pmatrix},$$

respectivamente.

- 1.11. Un semigrafo de Cartan $\mathfrak{C}=\mathfrak{C}(I,\mathfrak{X},(r_i)_{i\in I},(A^X)_{X\in \mathfrak{X}})$ es **simplemente conexo** si para cada $X,Y\in \mathfrak{X}$, $hom_{\mathcal{W}(\mathfrak{C})}(X,Y)$ tiene al menos un elemento.
 - 1.12. Si $\mathfrak D$ es una categoría y $X \in \mathfrak D$, notaremos

$$hom(\mathcal{D}, X) = \bigcup_{Y \in \mathcal{D}} hom(Y, X).$$

Sea $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ un semigrafo de Cartan. Para cada $X \in \mathcal{X}$ se define el conjunto de **raíces reales** de \mathcal{C} en X como

$$\Delta^{\mathsf{Xre}} = \{ w\alpha_{\mathfrak{i}} \in \mathbb{Z}^{\mathrm{I}} : w \in \mathsf{hom}(\mathcal{W}(\mathfrak{C}),\mathsf{X}), \ \mathfrak{i} \in \mathrm{I} \}.$$

Los α_i , $i \in I$, se denominan **raíces simples**. Las **raíces positivas** (resp. **negativas**) son los elementos del conjunto

$$\Delta^{\mathsf{Xre}}_+ = \Delta^{\mathsf{Xre}} \cap \mathbb{N}^{\mathsf{I}}_{\mathsf{o}} \quad (\text{resp. } \Delta^{\mathsf{Xre}}_- = \Delta^{\mathsf{Xre}} \cap - \mathbb{N}^{\mathsf{I}}_{\mathsf{o}}).$$

Se dice que un semigrafo de Cartan \mathcal{C} es **finito** si Δ^{Xre} es un conjunto finito para todo $X \in \mathcal{X}$. Para cada $X \in \mathcal{X}$, $i, j \in I$ se define

$$m_{ij}^X = |\Delta^{Xre} \cap (\mathbb{N}_o \alpha_i + \mathbb{N}_o \alpha_j)|.$$

Se dice que C es un **grafo de Cartan** si valen las siguientes propiedades:

- 1) Para cada $X \in \mathcal{X}$ el conjunto Δ^{Xre} está formado por raíces positivas y negativas.
- 2) Si $X \in \mathfrak{X}$, $i, j \in I$ y $\mathfrak{m}_{ij}^X < \infty$ entonces $(r_i r_j)^{\mathfrak{m}_{ij}^X}(X) = X$.

1.13. Notación. Para abreviar, escribiremos 1 a 2 b para denotar al elemento $a\alpha_1 + b\alpha_2 \in \mathbb{Z}^2$.

1.14. Ejercicio. Consideremos la upla $\mathfrak{C}=\mathfrak{C}(I,\mathfrak{X},(r_i)_{i\in I},(A^X)_{X\in\mathfrak{X}}),$ donde $I=\{1,2\}$ y $\mathfrak{X}=\{X_1,X_2,X_3\},$ $r_1=(X_1X_2),$ $r_2=(X_2X_3),$

$$A^{X_1}=\begin{pmatrix}2&-1\\-3&2\end{pmatrix},\qquad A^{X_2}=\begin{pmatrix}2&-1\\-4&2\end{pmatrix},\qquad A^{X_3}=\begin{pmatrix}2&-1\\-4&2\end{pmatrix}.$$

Demuestre que

$$\begin{split} \Delta^{X_1 \text{re}} &= \{\pm 1, \pm 2, \pm 12, \pm 12^2, \pm 12^3, \pm 1^2 2^3, \\ &\pm 1^3 2^4, \pm 1^3 2^5, \pm 1^4 2^5, \pm 1^4 2^7, \pm 1^5 2^7, \pm 1^5 2^8\}, \\ \Delta^{X_2 \text{re}} &= \{\pm 12^{-1}, \pm 1, \pm 2, \pm 12, \pm 12^2, \pm 12^3, \\ &\pm 12^4, \pm 1^2 2, \pm 1^2 2^3, \pm 1^2 2^5, \pm 1^3 2^4, \pm 1^3 2^5\}, \\ \Delta^{X_3 \text{re}} &= \{\pm 1, \pm 2, \pm 12, \pm 12^2, \pm 12^3, \pm 12^4, \\ &\pm 12^5, \pm 1^2 2^3, \pm 1^2 2^5, \pm 1^2 2^7, \pm 1^3 2^7, \pm 1^3 2^8\}. \end{split}$$

En particular, \mathcal{C} no es un grafo de Cartan pues $\alpha_1 - \alpha_2 \not\in \Delta^{X_2 re}$.

1.15. EJERCICIO. Sean $I = \{1, 2\}, \mathcal{X} = \{X_1, X_2\}, r_1 = (X_1 X_2), r_2 = id$

$$A^{X_1} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}, \qquad \qquad A^{X_2} = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}.$$

Entonces $\mathcal{C}=\mathcal{C}(I,\mathcal{X},(r_i)_{i\in I},(A^X)_{X\in\mathcal{X}})$ es un semigrafo de Cartan de rango dos. Demuestre que

$$\begin{split} & \Delta^{X_1 \text{re}} = \{\pm 1, \pm 2, \pm 12, \pm 12^2, \pm 12^3, \pm 1^2 2^3, \pm 1^3 2^4, \pm 1^3 2^5\}, \\ & \Delta^{X_2 \text{re}} = \{\pm 1, \pm 2, \pm 12, \pm 12^2, \pm 12^3, \pm 12^4, \pm 1^2 2^3, \pm 1^2 2^5\}. \end{split}$$

1.16. EJERCICIO. Sean $I = \{1, 2, 3\}, \mathcal{X} = \{X, Y\}, r_1 = (XY), r_2 = r_3 = id_{\mathcal{X}},$

$$A^{X} = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \quad A^{Y} = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}.$$

Entonces $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ es un grafo de Cartan finito.

1.17. Ejercicio. Sean I = {1, 2, 3}, \mathfrak{X} = {X, Y}, r_{1} = (XY), r_{2} = r_{3} = $id_{\mathfrak{X}}$,

$$A^{X} = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \quad A^{Y} = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}.$$

Entonces $\mathfrak{C} = \mathfrak{C}(I, \mathfrak{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathfrak{X}})$ es un grafo de Cartan finito.

1.18. EJERCICIO. Veremos ahora un ejemplo de semigrafo de Cartan que no es grafo de Cartan. Sean $I=\{1,2,3\},~\chi=\{X_1,\ldots,X_4\},~r_1=id_\chi,~r_2=(X_2X_3),~r_3=(X_1X_2)(X_3x_4).$ Sean

$$A^{X_{1}} = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \qquad A^{X_{2}} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix},$$

$$A^{X_{3}} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, \qquad A^{X_{4}} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Demuestre que $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ no es un grafo de Cartan.

2. Grupoides de Weyl de rango dos

- 2.1. Sea \mathcal{A}^+ el menor subconjunto de $\bigcup_{n\geqslant 2}\mathbb{N}^n_o$ que cumple las siguientes dos propiedades:
 - 1) $(0,0) \in A^+$.
 - 2) Si $(c_1, ..., c_n) \in A^+$ entonces, para cada $i \in \{2, ..., n\}$,

$$V_i(c_1,...,c_n) = (c_1,...,c_{i-2},c_{i-1}+1,1,c_i+1,c_{i+1},...,c_n) \in A^+.$$

- 2.2. Ejercicio. Sea $n\geqslant 2$. Demuestre que si $(c_1,\ldots,c_n)\in \mathcal{A}^+$ entonces $\sum_{i=1}^n c_i=3n-6$.
- 2.3. Notación. Para cada $n \ge 2$ denotaremos por $\mathcal{A}^+(n)$ al conjunto de sucesiones (c_1, \ldots, c_n) que pertenecen a \mathcal{A}^+ .
 - 2.4. Ејемрьоs. Un cálculo directo muestra que

$$A^+(2) = \{(0,0)\},\$$

$$A^+(3) = \{(1,1,1)\},\$$

$$A^+(4) = \{(1,2,1,2), (2,1,2,1)\},\$$

$$\mathcal{A}^+(5) = \{(1,2,2,1,3), (1,3,1,2,2), (2,2,1,3,1), (3,1,2,2,1), (2,1,3,1,2)\}.$$

2.5. EJERCICIO. Demuestre que el cardinal de $\mathcal{A}^+(n+2)$ es

$$C_n = \frac{1}{n+1} \binom{2n}{n},$$

el n-ésimo número de Catalan.

2.6. Sea $n \geqslant 3$ y sea P_n un n-ágono convexo cuyos vértices están enumerados con elementos de $\{1,\ldots,n\}$ de forma tal que dos vértices adyacentes tienen números consecutivos. Sea $T_n(P_n)$ el conjunto de triangulaciones de P_n . Para cada $T \in T_n(P_n)$ definimos

$$c(\mathsf{T}) = (c_1(\mathsf{T}), \dots, c_n(\mathsf{T})),$$

donde $c_i(T)$ es la cantidad de triángulos que tiene el i-ésimo vértice.

- 2.7. Ejemplos.
- 1) Hay una única triangulación posible T del triángulo P_3 . Luego c(T) = (1, 1, 1).
- 2) Hay dos triangulaciones posibles para el cuadrado P_4 . Si T es una triangulación de P_4 entonces $c(T) \in \{(1,2,1,2),(2,1,2,1)\}$.
- 2.8. Ejercicio. Sea $n \ge 2$ y sea P_n un n-ágono convexo cuyos vértices están enumerados con elementos de $\{1,\ldots,n\}$ de forma tal que dos vértices adyacentes tienen números consecutivos. Sea $T_n(P_n)$ el conjunto de triangulaciones de P_n . Demuestre que la función

$$T_n(P_n) \to \mathcal{A}^+(n), T \mapsto c(T),$$

es biyectiva.

2.9. Ejercicio. Sea $n \ge 2$. Demuestre que el grupo diedral

$$\mathbb{D}_n = \langle r, s : r^n = s^2 = 1, srs = r^{-1} \rangle$$

de 2n elementos actúa en $A^+(n)$ via

$$s \cdot (c_1, ..., c_n) = (c_n, c_{n-1}, ..., c_1),$$

 $r \cdot (c_1, ..., c_n) = (c_2, ..., c_n, c_1).$

2.10. Ejercicio. Sea $n\geqslant 3$ y sea $(c_1,\ldots,c_n)\in\mathcal{A}^+(n)$. Demuestre que si $\mathfrak{i}\in\{2,\ldots,n-1\}$ y $c_\mathfrak{i}=1$ entonces

$$(c_1,\ldots,c_{i-2},c_{i-1}-1,c_{i+1}-1,c_{i+2},\ldots,c_n)\in \mathcal{A}^+(n-1).$$

2.11. Sea

$$\eta\colon \mathbb{Z}\to \textbf{SL}(2,\mathbb{Z}),\quad \alpha\mapsto \begin{pmatrix}\alpha & -1\\ 1 & 0\end{pmatrix}.$$

2.12. EJERCICIO. Demuestre que

$$\eta(a)\eta(b) = \eta(a+1)\eta(1)\eta(b+1)$$

para todo $a, b \in \mathbb{Z}$.

2.13. Lema. Sean $n \in \mathbb{N}$ y $c_1, \ldots, c_n \in \mathbb{Z}$ y

$$\beta_0 = -\alpha_2$$
,

$$\beta_k = \eta(c_{\scriptscriptstyle 1}) \cdots \eta(c_{k-1})(\alpha_{\scriptscriptstyle 1}), \quad k \in \{{\scriptscriptstyle 1}, \ldots, n+{\scriptscriptstyle 1}\}.$$

Valen las siguientes afirmaciones:

- 1) $\beta_{k+1} = c_k \beta_k \beta_{k-1}$ para todo $k \in \{1, \dots, n-1\}$.
- 2) Si $n \geqslant 3$ y $c_k = o$ para algún $k \in \{1, ..., n-1\}$ entonces $\beta_1 \not\in \mathbb{N}_0^2$ para algún $l \in \{1, ..., n\}$.
- 3) Si para $k \in \{{\tt 1}, \dots, {\tt n-1}\}$ vale que $c_k \geqslant {\tt 2} \ y \ \beta_k = a_k \alpha_{\tt 1} + b_k \alpha_{\tt 2}$ entonces

$$\begin{array}{c} a_k > b_k \geqslant o, \quad b_k > b_{k-1}, \\ a_k > a_{k-1}, \quad a_k - b_k - a_{k-1} + b_{k-1} \geqslant o, \\ \\ \textit{para todo } k \in \{1, \dots, n-1\}. \end{array}$$

Demostración. Para demostrar la primera afirmación procederemos por inducción en k. El caso k=1 es fácil pues

$$\beta_2 = \eta(c_1)(\alpha_1) = c_1\alpha_1 + \alpha_2.$$

Supongamos entonces que el resultado es válido para $k \geqslant 2$. Como $\eta(c_k)(\alpha_1) = c_k \alpha_1 + \alpha_2 \ y \ \eta(c_{k-1})(\alpha_2)$, al usar la hipótesis inductiva,

$$\begin{split} \beta_{k+1} &= \eta(c_1) \cdots \eta(c_k)(\alpha_1) \\ &= \eta(c_1) \cdots \eta(c_{k-1})(c_k \alpha_1 + \alpha_2) \\ &= c_k \beta_k + \eta(c_1) \cdots \eta(c_{k-2})(-\alpha_1) = c_k \beta_k - \beta_{k-1}, \end{split}$$

tal como se quería demostrar.

Para demostrar la segunda afirmación observemos que si $c_1 = 0$ entonces $\beta_3 = c_2\alpha_2 - \alpha_1 \notin \mathbb{N}_0^2$. En cambio, si $c_k = 0$ para $k \in \{2, \ldots, n-1\}$, entonces, por el ítem anterior, $\beta_{k+1} = -\beta_{k-1}$. Luego $\beta_{k+1} \notin \mathbb{N}_0^2$ o bien $\beta_{k-1} \notin \mathbb{N}_0^2$.

Por inducción en k demostraremos ahora que vale (2.13.1). El caso k=1 es evidente pues $a_1=1$ y $b_1=0$. Supongamos entonces que (2.13.1) vale para algún $k\in\{1,\ldots,n-1\}$. Por hipótesis inductiva,

$$\begin{split} a_{k+1} - b_{k+1} &= (c_k - 1)(a_k - b_k) + (a_k - b_k - a_{k-1} + b_{k-1}) > o, \\ a_{k+1} - a_k &= (c_k - 2)a_k + (a_k - a_{k-1}) > o, \\ b_{k+1} - b_k &= (c_k - 2)b_k + (b_k - b_{k-1}) > o, \\ a_{k+1} - b_{k+1} - a_k + b_k &= (c_k - 2)(a_k - b_k) + (a_k - b_k - a_{k-1} + b_{k-1}) \geqslant o, \end{split}$$

tal como se quería demostrar.

2.14. Lema. Sean
$$n \ge 2$$
, $c'_1, \ldots, c'_n \in \mathbb{Z}$ $y \in \{2, \ldots, n\}$. Si
$$(c_1, \ldots, c_{n+1}) = V_i(c'_1, \ldots, c'_n)$$
$$= (c'_1, \ldots, c'_{i-2}, c'_{i-1} + 1, 1, c'_i + 1, c'_{i+1}, \ldots, c'_n).$$

y escribimos

$$\begin{split} \beta_k &= \eta(c_{\scriptscriptstyle 1}) \cdots \eta(c_{k-1})(\alpha_{\scriptscriptstyle 1}), & k \in \{{\scriptscriptstyle 1}, \ldots, n+1\}, \\ \beta_k' &= \eta(c_1') \cdots \eta(c_{k-1}')(\alpha_{\scriptscriptstyle 1}), & k \in \{{\scriptscriptstyle 1}, \ldots, n\}, \end{split}$$

demuestre que

$$\beta_k = \begin{cases} \beta_k' & \text{si } k \in \{1, \dots, i-1\}, \\ \beta_{k-1}' & \text{si } k \in \{i+1, \dots, n+1\}, \\ \beta_{i-1}' + \beta_i' = \beta_{i-1} + \beta_{i+1} & \text{si } k = i, \end{cases}$$

Demostración. Al usar el ejercicio 2.12 obtenemos inmediatamente que $\beta_k=\beta_k'$ para todo $k\in\{1,\ldots,i-1,i+2,\ldots,n+1\}$. Además

$$\begin{split} \beta_{i+1} &= \eta(c_1) \cdots \eta(c_i)(\alpha_1) \\ &= \eta(c_1') \cdots \eta(c_{i-2}') \eta(c_{i-1}' + 1)(\alpha_1 + \alpha_2) = \beta_i' \end{split}$$

pues $\beta(c+1)(\alpha_1+\alpha_2)=\eta(c)(\alpha_1)$ para todo $c\in\mathbb{Z}$. Similarmente,

$$\begin{split} \beta_i &= \eta(c_1) \cdots \eta(c_{i-1})(\alpha_1) \\ &= \eta(c_1') \cdots \eta(c_{i-2}') \eta(c_{i-1}' + \mathbf{1})(\alpha_1) \\ &= \eta(c_1') \cdots \eta(c_{i-2}') (\eta(c_{i-1}')(\alpha_1) + \alpha_2) \\ &= \beta_i' + \beta_{i-1'}' \end{split}$$

lo que demuestra el lema.

- **2.15.** Teorema. Sea $n \ge 2$ y sea $(c_1, \ldots, c_n) \in \mathbb{Z}^n$. Las siguientes afirmaciones son equivalentes:
 - 1) $(c_1, ..., c_n) \in A^+$.
 - 2) $\eta(c_1)\cdots\eta(c_n)=-I$ y $\beta_k=\eta(c_1)\cdots\eta(c_{k-1})(\alpha_1)\in\mathbb{N}_0^2$ para todo $k\in\{1,\ldots,n\}.$

- 2.16. EJERCICIO. Demuestre el teorema 2.15.
- 2.17. Sea $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ un semigrafo de Cartan de rango dos. Sean $X \in \mathcal{X}$, $i \in I$. Se define la **sucesión característica** de \mathcal{C} con respecto al par (X, i) como la sucesión $(c_k)_{k \geqslant 1} \subseteq \mathbb{N}_o$, donde

$$c_{2k+1} = -\alpha_{ij}^{(r_j r_i)^k(X)}, \quad c_{2k+2} = -\alpha_{ji}^{(r_j r_i)^{k+1}(X)}$$

para todo $k \ge 0$ y $j \ne i$.

- 2.18. EJERCICIO. Sea $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ un semigrafo de Cartan de rango dos y sea $(c_k)_{k \geqslant 1}$ la sucesión característica de \mathcal{C} con respecto a (X,i). Demuestre que la sucesión característica de \mathcal{C} con respecto a $(r_i(X),j)$ is $(c_{k+1})_{k \geqslant 2}$.
- 2.19. EJERCICIO. Sea $\mathcal{C}=\mathcal{C}(I,\mathcal{X},(r_i)_{i\in I},(A^X)_{X\in\mathcal{X}})$ un semigrafo de Cartan de rango dos. Supongamos que $I=\{i,j\}$. Sean $X\in\mathcal{X}$ y $n\in\mathbb{N}$ tal que $(r_jr_i)^n(X)=X$. Si $(c_k)_{k\geqslant 1}$ es la sucesión característica de \mathcal{C} con respecto a (X,i), demuestre que $c_{2n+k}=c_k$ para todo $k\in\mathbb{N}$.
- 2.20. Sea $\mathcal{C}=\mathcal{C}(I,\mathcal{X},(r_i)_{i\in I},(A^X)_{X\in\mathcal{X}})$ un semigrafo de Cartan de rango dos. Supongamos que $I=\{i,j\}$. Sea $(c_k)_{k\geqslant 1}$ es la sucesión característica de \mathcal{C} con respecto al par (X,i). Se define la **sucesión de raíces** de \mathcal{C} con respecto al par (X,i) como la sucesión $(\beta_k)_{k\geqslant 1}\subseteq \mathbb{Z}^2$, donde

$$\beta_k = \eta(c_{\scriptscriptstyle 1}) \cdots \eta(c_{k-{\scriptscriptstyle 1}})(\alpha_{\scriptscriptstyle 1})$$

para todo $k \ge 1$.

- 2.21. Notación. Sea $\tau: \mathbb{Z}^2 \to \mathbb{Z}^2$ definida por $(x,y) \mapsto (y,x)$.
- 2.22. Ejercicio. Demuestre que $s_1^Y=\eta(-\alpha_{12}^Y)\tau$ y $s_2^Y=\tau\eta(-\alpha_{21}^Y)$ para todo $Y\in\mathcal{X}.$

2.23. Ejercicio. Sea $\mathcal{C}=\mathcal{C}(I,\mathcal{X},(r_i)_{i\in I},(A^X)_{X\in\mathcal{X}})$ un semigrafo de Cartan de rango dos. Supongamos que $I=\{1,2\}$. Sean $(\beta_k)_{k\geqslant 1}$ (resp. $(\gamma_k)_{k\geqslant 1}$) la sucesión de raíces de \mathcal{C} con respecto al par (X,1) (resp. (X,2)). Demuestre que

para todo $k \ge 0$. Concluya que

$$\Delta^{\mathsf{Xre}} = \{ \pm \beta_k, \pm \tau \gamma_k : k \geqslant 1 \}.$$

2.24. TEOREMA. Sea $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ un semigrafo de Cartan conexo de rango dos tal que \mathcal{X} es finito. Supongamos que $I = \{i, j\}$. Sean $X \in \mathcal{X}$, $(c_k)_{k \geqslant 1}$ la sucesión característica de \mathcal{C} con respecto al par (X, i),

$$n = \min\{m \in \mathbb{N} : (r_j r_i)^m(X) = X\},\$$

 $y \kappa = 6n - \sum_{k=1}^{2n} c_k$. Son equivalentes:

- 1) C es un grafo de Cartan finito.
- 2) $\kappa > 0$, $\kappa \mid 12$, $(c_1, \dots, c_{12n/\kappa}) \in \mathcal{A}^+ \ y \ (c_k)_{k \geqslant 1} = (c_1, \dots, c_{12n/\kappa})^{\infty}$. En este caso, $12n/\kappa = |\Delta_+^{Xre}| = \mathfrak{m}_{ij}^X$.
 - 2.25. EJERCICIO. Demuestre el teorema 2.24.
- 2.26. EJEMPLO. Vamos a construir un semigrafo de Cartan $\mathbb C$ cuya sucesión característica sea $(1,1,1)^{\infty}$.

Sea
$$\mathfrak{X} = \{X_1, \dots, X_6\}$$
 y sean

$$r_1 = (X_1X_2)(X_3X_4)(X_5X_6), \quad r_2 = (X_2X_3)(X_4X_5)(X_6X_1).$$

Si $(1,1,1)^{\infty}$ es la sucesión característica del semigrafo de Cartan, entonces

$$\begin{split} c_1 &= -\alpha_{12}^{X_1} = -\alpha_{12}^{X_2}, \qquad c_2 = -\alpha_{21}^{X_3} = -\alpha_{21}^{X_2}, \qquad c_3 = -\alpha_{12}^{X_3} = -\alpha_{12}^{X_4}, \\ c_4 &= -\alpha_{21}^{X_5} = -\alpha_{21}^{X_4}, \qquad c_5 = -\alpha_{12}^{X_5} = -\alpha_{12}^{X_6}, \qquad c_6 = -\alpha_{21}^{X_1} = -\alpha_{21}^{X_6}. \end{split}$$

Un cálculo directo muestra entonces que

$$A^X = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

para todo $X \in \mathcal{X}$. Observemos que \mathcal{C} es conexo.

2.27. EJEMPLO. Vamos a construir un semigrafo de Cartan \mathcal{C} cuya sucesión característica sea $(1,2,1,2)^{\infty}$.

Sea
$$\mathfrak{X} = \{X_1, \dots, X_8\}$$
 y sean

$$r_1 = (X_1 X_2)(X_3 X_4)(X_5 X_6)(X_7 X_8), \quad r_2 = (X_2 X_3)(X_4 X_5)(X_6 X_7)(X_8 X_1).$$

Si $(1,2,1,1)^{\infty}$ es la sucesión característica, entonces

$$\begin{aligned} \mathbf{1} &= \mathbf{c}_1 = -\mathbf{a}_{12}^{X_1} = -\mathbf{a}_{12}^{X_2}, & \mathbf{2} &= \mathbf{c}_2 = -\mathbf{a}_{21}^{X_3} = -\mathbf{a}_{21}^{X_2}, \\ \mathbf{1} &= \mathbf{c}_3 = -\mathbf{a}_{12}^{X_3} = -\mathbf{a}_{12}^{X_4}, & \mathbf{2} &= \mathbf{c}_4 = -\mathbf{a}_{21}^{X_5} = -\mathbf{a}_{21}^{X_4}, \\ \mathbf{1} &= \mathbf{c}_5 = -\mathbf{a}_{12}^{X_5} = -\mathbf{a}_{12}^{X_6}, & \mathbf{2} &= \mathbf{c}_6 = -\mathbf{a}_{21}^{X_7} = -\mathbf{a}_{21}^{X_6}, \\ \mathbf{1} &= \mathbf{c}_7 = -\mathbf{a}_{12}^{X_7} = -\mathbf{a}_{12}^{X_8}, & \mathbf{2} &= \mathbf{c}_8 = -\mathbf{a}_{21}^{X_1} = -\mathbf{a}_{21}^{X_8}. \end{aligned}$$

Luego, si definimos $I = \{1, 2\}$ y

$$A^X = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$

para todo $X \in \mathcal{X}$, entonces $\mathcal{C} = \mathcal{C}(I, \mathcal{X}, (r_i)_{i \in I}, (A^X)_{X \in \mathcal{X}})$ es un semigrafo de Cartan conexo que tiene a $(1, 2, 1, 2)^{\infty}$ como sucesión característica respecto de $(X_1, 1)$.

2.28. EJERCICIO. Sean
$$n \ge 2$$
, $I = \{1, 2\}$ y $\mathfrak{X} = \{1, ..., 2n\}$. Se define $r_1 = (12)(34)\cdots(2n-12n)$, $r_2 = (23)(45)\cdots(2n1)$.

Sea $(c_1,\ldots,c_n)\in\mathcal{A}^+(n)$. Demuestre que existe un único grafo de Cartan \mathcal{C} conexo, simplemente conexo, finito, con $\mathfrak{m}_{12}^X=\mathfrak{n}$ para todo $X\in\mathcal{X}$, cuyos puntos son los elementos de \mathcal{X} y cuya sucesión característica con respecto al par (X,1) es $(c_1,\ldots,c_n)^\infty$.

- 2.29. Notación. El grafo de Cartan asociado a $(c_1, \ldots, c_n) \in \mathcal{A}^+$ será denotado por $\mathfrak{C}(c_1, \ldots, c_n)$.
- 2.30. Teorema. Todo grafo de Cartan de rango dos, conexo y simplemente conexo, es isomorfo a un grafo de Cartan de la forma $\mathfrak{C}(c_1,\ldots,c_n)$, donde $(c_1,\ldots,c_n)\in\mathcal{A}^+$.
- 2.31. Ejercicio. Sean $(c_1,\ldots,c_p)\in\mathcal{A}^+$ y $(d_1,\ldots,d_q)\in\mathcal{A}^+$. Demuestre que los semigrafos de Cartan $\mathcal{C}(c_1,\ldots,c_p)$ y $\mathcal{D}(d_1,\ldots,d_q)$ son isomorfos si y sólo si p=q y existe $\sigma\in\mathbb{D}_n$ tal que $\sigma\cdot(c_1,\ldots,c_p)=(d_1,\ldots,d_q)$.

Referencias

- [1] M. Cuntz. Crystallographic arrangements: Weyl groupoids and simplicial arrangements. *Bull. Lond. Math. Soc.*, 43(4):734–744, 2011.
- [2] M. Cuntz and I. Heckenberger. Weyl groupoids of rank two and continued fractions. *Algebra Number Theory*, 3(3):317–340, 2009.
- [3] M. Cuntz and I. Heckenberger. Weyl groupoids with at most three objects. *J. Pure Appl. Algebra*, 213(6):1112–1128, 2009.
- [4] M. Cuntz and I. Heckenberger. Reflection groupoids of rank two and cluster algebras of type A. *J. Combin. Theory Ser. A*, 118(4):1350–1363, 2011.
- [5] I. Heckenberger. The Weyl groupoid of a Nichols algebra of diagonal type. *Invent. Math.*, 164(1):175–188, 2006.
- [6] I. Heckenberger. Classification of arithmetic root systems. *Adv. Math.*, 220(1):59–124, 2009.
- [7] I. Heckenberger and H. Yamane. A generalization of Coxeter groups, root systems, and Matsumoto's theorem. *Math. Z.*, 259(2):255–276, 2008.