$$36 - 100$$

- 38 Lembre que o determinante da matriz identidade vale 1.
- 39 a) 18
- b) -21
- c) 55

25 e

26 b

27 b

28 b

- 40 a) 3
- b) 460
- c) 87
- 41 Demonstração.
- **42** $S = \{2, -6\}$
- **43** $S = \{2, -1\}$
- **44** a) $x (x y)^3$ b) D = $x^4 > 0$, $\forall x \in \mathbb{R}^*$

Testes de vestibulares

- 1 e 9 a
 - 17 a
 - 18 c

19 b

20 c

21 e

22 c

23 d

24 e

c) não

c) sim

- 2 c 3 d
 - 11 b

10 e

- 4 c 12 b
- **5** e 13 d
- 6 d 14 b
- 7 c

8 d

- 15 b

- 16 b

8 Sistemas lineares

Exercícios

- 1 sim
- 2 a) sim
- b) não b) sim
- 3 a) não
- 4 m = 7
- 5 m = 2
- 6 Resposta pessoal.

- 8 20, 19, 18, 17 ou 16
- 9 sim
- 10 sim
- 11 não
- **12** a) (2, 1), (5, 4), (1, 0). $(-5, -6), \left(\frac{3}{2}, \frac{1}{2}\right), \dots$
 - b) SPI: possui infinitas soluções.
- 13 SI: as duas últimas equações são incompatíveis.

14 a)
$$A = \begin{pmatrix} \sqrt{3} & 4 \\ -\frac{1}{3} & 1 \end{pmatrix} e B = \begin{pmatrix} \sqrt{3} & 4 & 2 \\ -\frac{1}{3} & 1 & 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 4 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} e$$

$$B = \begin{pmatrix} 4 & -1 & 1 & 0 \\ 1 & 2 & -1 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 3 & 2 \\ 1 & -1 \\ 4 & 1 \end{pmatrix}$$
 $e B = \begin{pmatrix} 3 & 2 & 5 \\ 1 & -1 & 1 \\ 4 & 1 & 6 \end{pmatrix}$

15 a)
$$A = \begin{bmatrix} -3 & 4 & -5 & 1 \end{bmatrix} e$$

 $B = \begin{bmatrix} -3 & 4 & -5 & 1 & 1 \end{bmatrix}$

b)
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -1 & -1 & 10 \end{bmatrix} e$$

$$B = \begin{bmatrix} 2 & -1 & 3 & 1 \\ -1 & -1 & 10 & 0 \end{bmatrix}$$

16 a)
$$\begin{cases} 2x - y = 0 \\ 3x + y = 3 \end{cases}$$

b)
$$\begin{cases} 4x + 2y + z = 8 \\ x - z = -3 \end{cases}$$

- 17 a) SPD b) SI
- 18 a) sim
- b) não
- c) sim

- 19 a, c
- **20** a) $S = \{(1, -3)\}$; SPD
 - b) $S = \{(0, -1, 1)\}; SPD$

c)
$$S = \left\{ \left(\frac{3}{2}, \alpha, \alpha \right), \alpha \in \mathbb{R} \right\}$$
; SPI

21 a)
$$S = \{(-8, 4, 1, 2)\}; SPD$$

b)
$$S = \left\{ \left(\frac{2+\alpha}{2}, \frac{1+\alpha}{2}, \alpha \right) \alpha \in \mathbb{R} \right\}$$
, SPI

22 a)
$$S = \{(\alpha - \beta, \beta, \alpha), \alpha, \beta \in \mathbb{R}\}\$$

b)
$$S = \left\{ \left(\frac{3 - \beta - 2\alpha}{2}, \beta, \alpha, \alpha \right), \alpha, \beta \in \mathbb{R} \right\}$$

23 S =
$$\left\{ \left(\frac{2+2\alpha}{3}, \frac{5\alpha-4}{3}, \alpha \right), \alpha \in \mathbb{R} \right\}$$

24 a)
$$S = \left\{ \left(\frac{4}{5}, \frac{-4}{5} \right) \right\}$$

b)
$$S = \{(1, 1)\}$$

25 a)
$$S = \emptyset$$

b) $S = \{(3 + \alpha, \alpha), \alpha \in \mathbb{R}\}$

- 26 34 motos e 45 carros
- 27 20
- 28 5
- 29 48 rapazes e 60 moças

30 a)
$$S = \{(1, -3, 2)\}$$

b)
$$S = \{(1, 0, 2)\}$$

c)
$$S = \emptyset$$

31 a)
$$S = \left\{ \left(\frac{-1 + \alpha}{2}, \frac{5 - 3\alpha}{2}, \alpha \right), \alpha \in \mathbb{R} \right\}$$

b)
$$S = \left\{ \left(\frac{19}{30}, \frac{1}{6}, \frac{7}{30} \right) \right\}$$

c)
$$S = \emptyset$$

32 carro: 4 reais, ônibus: 6 reais e caminhão:

33 a)
$$S = \left\{ \left(\frac{-7\alpha + 13}{11}, \frac{8 + 5\alpha}{11}, \alpha \right) \alpha \in \mathbb{R} \right\}$$

b) $S = \emptyset$
c) $S = \{(-1, 2, -4)\}$

- 34 R\$ 1900.00
- 35 A: R\$ 30,00; B: R\$ 40,00; C: R\$ 50,00
- **36** 8,9 F
- **37** 61
- **38** a) $S = \{(4, 1)\}$ b) $S = \emptyset$ c) $S = \{(4, 2)\}$

39 a)
$$S = \left\{ \left(\frac{4 - 2\alpha}{5}, \frac{3 + \alpha}{5}, \alpha \right), \alpha \in \mathbb{R} \right\}$$

b)
$$S = \left\{ \left(\frac{1 - 2\alpha}{3}, \frac{5 + 5\alpha}{3}, \alpha \right), \alpha \in \mathbb{R} \right\}$$

c) $S = \emptyset$

40 a) SPI;
$$S = \{(\alpha, \alpha), \alpha \in \mathbb{R}\}$$
 b) SPD; $S = \{(0, 0)\}$

41 a) SPD;
$$S = \{(0, 0, 0)\}$$

b) SPI;
$$S = \left\{ \left(\frac{1}{3}\alpha, -\alpha, \alpha\right), \alpha \in \mathbb{R} \right\}$$

42 a)
$$m = 2$$

b)
$$S = \left\{ \left(-\frac{11\alpha}{5}, \frac{9\alpha}{5}, \alpha \right), \alpha \in \mathbb{R} \right\}$$

43 a)
$$S = \left\{ \left(-\frac{7\alpha'}{2}, \frac{-5\alpha}{2}, \alpha \right), \alpha \in \mathbb{R} \right\}$$
; SPI b) $S = \{(0, 0)\}$; SPD

b)
$$S = \{(\alpha, \alpha, \alpha), \alpha \in \mathbb{R}\}\$$

45 m
$$\neq -1$$

46 a)
$$\begin{cases} x - 2y = 0 \\ (4 + m)y = 0 \end{cases}$$
 b) $m = -4$

b) Para o autovalor 1, temos que

$$X = \begin{bmatrix} x \\ -x \end{bmatrix}$$
, $\forall x$, e para o autovalor 3,

temos que
$$X = \begin{bmatrix} 0 \\ y \end{bmatrix}$$
, $\forall y$.

(48 a)
$$S = \{(4, 2)\}$$
 b) $S = \left\{ \left(\frac{5}{8}, \frac{7}{16} \right) \right\}$

49 a)
$$S = \{(1, 3, 2)\}$$

b) $S = \left\{ \left(\frac{1}{2}, \frac{3}{2}, 1\right) \right\}$

50 a)
$$S = \{(3, 1, 2)\}$$
 b) $S = \{(0, 0, 0)\}$

52
$$S = \{(-1, 2, 3, 1)\}$$

- 53 Churrasco: R\$ 1,50; quentão: R\$ 0,40 e pastel: R\$ 0,90.
- 54 Faca: R\$ 5,50; colher: R\$ 3,00 e garfo: R\$ 4,00.

55 S =
$$\left\{ \left(-3, \frac{-9}{14}, \frac{9}{17} \right) \right\}$$

56 S =
$$\left\{ \left(\frac{a - b}{a^2 + b^2}, \frac{b}{a^2 + b^2} \right) \right\}$$

57 a) D = 1,
$$\forall \theta$$

b) $\{(\cos(\theta - \beta), \sin(\theta - \beta))\}\$

58 16

59 S =
$$\left\{ \left(\frac{a^2 + ab + b^2}{a + b}, \frac{-ab}{a + b} \right) \right\}$$

60 20 g

61 a)
$$\begin{cases} x + y + z = 0, 5 \\ 5x + 20y + 16z = 5, 75 \\ y = \frac{1}{3} \cdot (x + z) \end{cases}$$

em que x, y e z são as quantidades, em kg, de amendoim, castanha de caju e castanha-do-pará.

b)
$$x = 250 \text{ g}$$
, $y = 125 \text{ g}$ e $z = 125 \text{ g}$

62
$$x = 1$$
, $y = 1$ e $z = -2$

63 a)
$$\begin{cases} m \neq 2 \rightarrow SPD \\ m = 2 \rightarrow SI \end{cases}$$

b)
$$\begin{cases} m \neq 12 \rightarrow SPE \\ m = 12 \rightarrow SPI \end{cases}$$

c)
$$\begin{cases} m \neq -2 \rightarrow SPD \\ m = -2 \rightarrow SPI \end{cases}$$

64 a)
$$\begin{cases} m \neq 3 \rightarrow SP \\ m = 3 \rightarrow SI \end{cases}$$

b)
$$\begin{cases} m \neq -4 \text{ e } m \neq 4 \rightarrow \text{SPD} \\ m = 4 \rightarrow \text{SPI} \\ m = -4 \rightarrow \text{SI} \end{cases}$$

$$\begin{cases} m \neq -2 \rightarrow SPD \\ m = -2 \rightarrow SPI \end{cases}$$

65 a)
$$\begin{cases} (m \neq -1 \text{ e } m \neq 1) \rightarrow \text{SPD} \\ m = 1 \rightarrow \text{SPI} \\ m = -1 \rightarrow \text{SI} \end{cases}$$

b)
$$\begin{cases} (m \neq -2 \text{ e } m \neq 2) \rightarrow \text{SPD} \\ m = -2 \rightarrow \text{SI} \\ m = 2 \rightarrow \text{SPI} \end{cases}$$

66 a)
$$\begin{cases} m \neq 3 \rightarrow SPD \\ m = 3 \rightarrow SI \end{cases}$$

b)
$$\begin{cases} m \neq -3 \rightarrow SPD \\ m = -3 \rightarrow SPI \end{cases}$$

67 a)
$$\begin{cases} m \neq 0 \text{ e } m \neq 1 \longrightarrow SPD \\ m = 0 \longrightarrow SPI \\ m = 1 \longrightarrow SI \end{cases}$$

b)
$$\begin{cases} m \neq -1 \text{ e } m \neq 2 \rightarrow \text{SPD} \\ m = -1 \text{ ou } m = 2 \rightarrow \text{SPI} \end{cases}$$

68 a)
$$A = \begin{pmatrix} 1 & 2 & c \\ 0 & 1 & 1 \\ 3 & 2 & 2 \end{pmatrix}$$
; det $A = 6 - 3c$
b) $c \neq 2$

71 m
$$\neq -\frac{5}{2}$$

73
$$p + q \neq 0$$

74 m =
$$\frac{1}{3}$$

75 m
$$\neq -\frac{1}{3}$$
 e m $\neq 1$

76 a)
$$S = \left\{ \left(\frac{13}{2}, \frac{1}{2}, \frac{1}{2} \right) \right\}$$

b) $m = -9$ e $n = \frac{1}{3}$

$$\begin{cases} a \neq -2 \rightarrow \text{SPD} \\ (a = -2 \text{ e b} = 6) \rightarrow \text{SPI} \\ (a = -2 \text{ e b} \neq 6) \rightarrow \text{SI} \end{cases}$$

78
$$\begin{cases} a \neq -2 \rightarrow SPD \\ (a = -2 e b = 2) \rightarrow SPI \\ (a = -2 e b \neq 2) \rightarrow SI \end{cases}$$

79
$$a = 2$$

80
$$\begin{cases} a \neq -4 \to SPD \\ (a = -4 \text{ e b} = -2) \to SPI \\ (a = -4 \text{ e b} \neq -2) \to SI \end{cases}$$

81 a) m
$$\neq$$
 -3
b) S = {(3 α , - α , α), $\alpha \in \mathbb{R}$ }

Testes de vestibulares

1 c	9 b	17 e	23 (
2 c	10 a	18 e	24 h
3 b	11 b	19 a) F	25 a
4 e	12 c	b) V c) F	26 a
5 e	13 e	d) F	27 c
6 d	14 e	20 a	28 c
7 a	15 e	21 d	29 b
8 c	16 c	22 a	30 b

Áreas de figuras planas

Exercícios

- 1 a) 48 cm²
- b) 40 cm²

22 a

30 b

- 2 17 cm²
- 3 1 728

- 5 88,40 m²
- **6** a) $A_0 = 576 \text{ m}^2$, $A_R = 432 \text{ m}^2$
- 7 a) $A_I = 400 \text{ m}^2$, $A_{II} = 2 250 \text{ m}^2$, $A_{III} = 2550 \text{ m}^2$ b) aproximadamente 51% c) R\$ 66 300,00
- 8 126 cm²
- 9 a) 2,05 m b) 2,04 m²
- 10 1 m
- 11 200 cm²
- 12 738
- 13 10
- 14 a) 15 m²
- f) $18\sqrt{3} \text{ m}^2$
- b) 60 m²
- g) $32\sqrt{3} \text{ m}^2$
- c) $16\sqrt{3} \text{ m}^2$ d) 48 m²
- h) 24 m² i) 40 m²
- e) $9\sqrt{5} \text{ m}^2$

15
$$\frac{25\sqrt{3}}{36}$$
 m²

16
$$(8 + 4\sqrt{2})$$
 cm

17
$$\frac{11\sqrt{3}}{4}$$
 cm

- 18 3,375 m²
- 19 $\frac{3\sqrt{2}}{5}$ m
- 20 a) 24 cm² d) 135 cm²
- b) 96 cm²
- e) 864 cm²
- c) $32\sqrt{3}$ cm²
- **21** $1350\sqrt{3}$ km²
- **22** $6\sqrt{2}$ cm
- 23 92 centavos
- 24 32 cm²
- 25 I) 80
- II) 25