

Statistik

CH.2 - Begriff der Häufigkeit

SS 2021 | | Prof. Dr. Buchwitz

Wirgeben Impulse

Absolute und relative Häufigkeiten

Definition: Absolute Häufigkeit

Beobachtet man an n statistischen Einheiten ein Merkmal X mit k Merkmalsausprägungen so gilt für die **absolute Häufigkeit** H_j der j-ten Merkmalsausprägung.

$$H_j$$
 = "Anzahl der Beobachtungswerte, die in der j -ten Ausprägung auftreten" für j = 1, . . . , k

Definition: Relative Häufigkeit

Die **relative Häufigkeit** h_j gibt den prozentualen Anteil der statistischen Einheiten, die die j-te Merkmalsausprägung tragen an.

$$h_j = \frac{1}{n} \cdot H_j$$
 für $j = 1, \dots, k$

2

Beispiel: Absolute und relative Häufigkeit

```
# Daten: Alter befragter Personen
age <- c(19, 21, 20, 21, 19, 23, 22, 19, 20, 19)
```

```
# Absolute Häufigkeit
table(age)

## age
## 19 20 21 22 23
## 4 2 2 1 1

# Relative Häufigkeit
```

```
## age
## 19 20 21 22 23
## 0.4 0.2 0.2 0.1 0.1
```

proportions(table(age))

Beispiel: Graphische Darstellungsmöglichkeiten von Häufigkeiten

Histogramm

- Ein Histogramm ist eine Möglichkeit, die Häufigkeitsverteilung klassierter Daten graphisch darzustellen.
- Die Häufigkeiten werden als aneinander stoßende Rechtecke dargestellt, deren Flächen proportional zur Häufigkeit der Beobachtungswerte der Klassen sind.
- Nicht die Höhe des Rechteckes über eine Klasse ist proportional zur Klassenhäufigkeit, sondern die Fläche selbst.
- Erstellt werden können Histogramme mit dem R-Befehl hist().

Beispiel: Histogramm

In einer Befragung wurden n = 80 Personen nach der Anzahl der verbrachten Urlaubstage pro Jahr befragt. Die Daten wurden in Klassen unterschiedlicher Breiten erfasst und die jeweiligen Häufigkeiten ausgezählt bzw. berechnet.

j	Klasse K _j	Hj	hj	Klassenbreite	norm. H _j	norm. h _j
1	[0;8)	6	0.075	8	0.7500	0.0094
2	[8;18)	16	0.200	10	1.6000	0.0200
3	[18;25)	20	0.250	7	2.8571	0.0357
4	[25;30)	14	0.175	5	2.8000	0.0350
5	[30;35)	12	0.150	5	2.4000	0.0300
6	[35;43)	12	0.150	8	1.5000	0.0187

Die normierten absoluten und relativen Klassenhäufigkeiten setzten die Klassenhäufigkeiten in Relation zur Klassenbreite, sodass diese Werte einen Vergleich erlauben. Es gilt norm. $H_i = H_i/K$ lassenbreite (norm. h_i analog).

Beispiel: Histogramm

Die Fläche der zu den Klassen 5 und 6 gehörenden Rechtecke ist identisch, da gilt $H_5 = H_6$ (bzw. $h_5 = h_6$).

Empirische Verteilungsfunktion

Definition: Empirische Verteilungsfunktion

Die empirische Verteilungsfunktion S eines an n Untersuchungseinheiten beobachteten Merkmals X, das k Merkmalsausprägungen a_1, \ldots, a_k besitzt wird durch die Folge der relativen Summenhäufigkeiten bestimmt.

$$S_j = \frac{1}{n} \sum_{j=1}^{j} H_j = \sum_{j=1}^{j} h_j$$
 für $j = 1, ..., k$

Beispiel: Empirische Verteilungsfunktion

 Fortsetzung auf Basis der Befragung zum Urlaubsverhaltens von n = 80 Personen.

j	Klasse K _j	Hj	hj	emp. Verteilungsfkt.
1	[0;8)	6	0.075	0.075
2	[8;18)	16	0.200	0.275
3	[18;25)	20	0.250	0.525
4	[25;30)	14	0.175	0.700
5	[30;35)	12	0.150	0.850
6	[35;43)	12	0.150	1.000

Beispiel: Empirische Verteilungsfunktion

Verständnisfragen

- Wodurch unterscheiden sich absolute von relativen Häufigkeiten?
- Was ist der Unterschied zwischen einem Stabdiagramm und einem Histogramm?
- Was zeigt die empirische Verteilungsfunktion?

Verständnisfragen (Antworten)

- Wodurch unterscheiden sich absolute von relativen Häufigkeiten?
 - Die absolute Häufigkeit gibt die Anzahl der Beobachtungen wieder, die relative Häufigkeit gibt den Anteil der Beobachtung an der Gesamtanzahl wieder.
- Was ist der Unterschied zwischen einem Stabdiagramm und einem Histogramm?
 - In einem Stabdiagramm gibt die Höhe des Stabs die Häufigkeit wieder, in einem Histogramm ist es die Fläche der Balken, die die Häufigkeit wiedergibt.
- Was ist eine empirische Verteilungsfunktion?
 - Anhand der empirischen Verteilungsfunktion kann man die relative Häufigkeit ablesen mit der ein Wert höchstens eine bestimmte Größe hat. Die empirische Verteilungsfunktion gibt so die kumulierten relativen Häufigkeiten bis zu einem bestimmten Wert an.