Programación de la EDU-CIAA en lenguaje C (sin RTOS)

Bioing. Juan Manuel Reta Mgt Eduardo Filomena

Presentación Objetivos

ntroducción

Sistemas Embebido Software Embebido

Objetivos del Curso

- Analizar las principales características de la arquitectura de los microcontroladores ARM Cortex M4 en general y del LPC4337 en particular.
- Estudiar el hardware de la EDU-CIAA-NXP y de la CIAA-NXP.
- Presentar herramientas de gestión de repositorio.
- Comprender los pasos de instalación del IDE de la CIAA.
- Analizar en forma general el estándar POSIX y sus ventajas.
- Presentar el concepto de capa de abstracción de hardware (HAL) y ejercitar con la biblioteca LPCOpen.

Presentación Objetivos

Introducción

Software Embebido

Hardware

Sistemas Embebidos

Presentación

Objetive

Introducción

Sistemas Embebidos Software Embebido

Objetivos

Sistemas Embel

Hardware Abstraction Laye

Definición

Un sistema embebido es un sistema electrónico contenido -embebido- dentro de un equipo completo que incluye otras partes (mecánicas, electromecánicas, etc.)

JM. Cruz

Sistemas Embebidos

En buena parte de las aplicaciones reales como cerebro de un sistema embebido se recurre a un microcontrolador.

Requisitos de Diseño:

- Tamaño reducido, bajo consumo.
- Costo competitivo.
- ▶ Eficiencia, confiabilidad y *re-usabilidad*.
- Determinismo y tiempo de respuesta óptimo para la aplicación.
- Funcionalidades escalables.

Presentación Objetivos

Introducción

Sistemas Embebidos Software Embebido

Sistemas Embebidos

Históricamente sea cual fuese la función específica del sistema embebido se ha requerido contar con:

- Las conectividades en uso corriente (USB, Ethernet, Wifi, Bluetooth, Zigbee, etc.)
- ► Las interfaces de usuario en uso corriente (display LED, touch screen, multimedia, etc.)

Éstos requerimientos (en permanente evolución) obligan a contar con plataformas de rendimiento y recursos en crecimiento que permitan atender el incremento del procesamiento necesario para soportar nuevos periféricos con capacidad de atender las nuevas conectividades e interfaces de usuario requeridas por el mercado (usuarios)

Presentación Objetivos Introducción Sistemas Embebido Software Embebido

El Paradigma

 Prácticas de Ingeniería de Software que sirvan para organizar el ciclo de vida de un proyecto/producto y mejorar la eficiencia del trabajo en equipo

 Técnicas de modelado en el desarrollo de sistemas embebidos.(Diagramas de Estado, de Actividad, UML) 4 D > 4 P > 4 B > 4 B > B Presentación

Introducción Sistemas Embebidos

Hardware

- ► Funcionalidad ¡Qué funcione bien!
- Confiable Que funcione bien siempre
- ► **Testeable** Que resulte sencillo vericicar si funciona bien.
- ▶ **Portable** que pueda compilarse y correr en diferentes plataformas.
- ► **Reusabilidad** Que pueda se reutilizado para diferentes aplicaciones.
- **Simple** Sencillo de interpretar y mantener.

Presentación Obietivos

Introducción Sistemas Embebido: Software Embebido

Objetivos

troducción

Sistemas Embebido: Software Embebido

Objetivos

troducción

Sistemas Embebido: Software Embebido

Datasheets

Presentación

Introducció

Sistemas Embebido: Software Embebido

Hardware Abastraction Layer

Es la parte de software que se relaciona directamente con el hardware. Su función es proveer una interfaz entre los recursos del hardware y la aplicación o el sistema operativo.

Fig: Ing. Juan Manuel Cruz

Presentación

Introducción

Sistemas Embebio

Fig: Ing. Juan Manuel Cruz

Objetivo:

Introducción

Sistemas Embebido Software Embebido