Task 2

Group 11: Michael Hüppe, Leon Korkmaz

 G_1 intersects with S_1 and S_4 :

$$\operatorname{Area}(S_1)=3$$
, $\operatorname{Area}(S_4)=5$

$$\operatorname{Area}(G_1)=4$$

$$ext{UE}(G_1) = rac{[ext{Area}(S_1) + ext{Area}(S_4))] - ext{Area}(G_1)}{ ext{Area}(G_1)} = rac{(3+5)-4}{4} = rac{4}{4} = 1$$

 G_2 matches S_3 perfectly:

$$\mathrm{Area}(S_3)=2$$

$$\mathrm{Area}(G_2)=2$$

$$ext{UE}(G_2) = rac{[ext{Area}(S_3)] - ext{Area}(G_2)}{ ext{Area}(G_2)} = rac{(2)-2}{2} = rac{0}{2} = 0$$