

Tree Normal Approximators

1 Why

TODO change name? should be something about approximating a normal.

What is the best tree density approximant to a normal density? What is the

2 Result

Proposition 1. Let g be a normal density with mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma \in \mathbb{S}_{++}^d$. Let T be a Chow-Liu tree of g. Let f be a gaussian density with mean μ and precision matrix P where

•
$$P_{11} = \Sigma_{11}^{-1} + \sum_{pa_j=1} \Sigma_{j1}^2 \Sigma_{11}^{-2} \Sigma_{j|1}^{-1}$$

• for
$$i = 2, ..., d$$
, $P_{ii} = \sum_{i|pa_i}^{-1} + \sum_{pa_i=i}^{-1} \sum_{j=1}^{2} \sum_{i=1}^{-2} \sum_{j=1}^{-1} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^$

•
$$i, j = 1, \dots d$$
 and $i = pa_j, P_{ij} = P_{ji} = -\sum_{ji} \sum_{j=1}^{-1} \sum_{j=1}^{-$

Then f is Chow-Liu density of g.

Proof.