CÁTEDRA: Elementos de Algebra **GUIA DE TRABAJO PRÁCTICO NRO. 4** Combinatoria

1) Sabiendo que
$$P(n) = n!$$
; $V_{(n,k)} = \frac{n!}{(n-k)!}$; $C_{(n,k)} = \frac{n!}{(n-k)! \, k!}$

Hallar, si existe, x que verifique las siguientes expresiones:

a)
$$xV_{(4,2)} = P_{(4)}C_{(6,2)}$$

b)
$$V_{(x,3)} = 20V_{(x,2)}$$

c)
$$7V_{(x,3)} = 6V_{(x+1,3)}$$

d)
$$C_{(x,3)} = C_{(x,4)}$$

a)
$$x V_{(4,2)} = P_{(4)} C_{(6,2)}$$

 $x \frac{4!}{(4-2)!} = 4! \frac{6!}{(6-2)!}$ Se aplicó definiciones de: Permutación, Variación y Combinación

x
$$\frac{4 \cdot 3 \cdot 2!}{2!}$$
 = 4! $\frac{6 \cdot 5 \cdot 4!}{4!/2!}$ Se aplicó definición de factorial desarrollando hasta donde convenga, para luego aplicar propiedad cancelativa.

x . 12 = 4 . 3 . 2!
$$\left/ \frac{30}{2!} \right/$$
 Se aplicó definición de factorial, se resolvió operaciones y canceló

$$x = \frac{360}{12} \Rightarrow x = 30$$
 Se resolvió, aplicando operaciones en ambos miembros según corresponda a fin de despeiar x

Se explica este ejercicio a modo de ejemplo, para entender cómo es el proceso de resolución de los demás.

b)
$$V_{(x,3)} = 20 V_{(x,2)}$$

$$\frac{x!}{(x-3)!} = 20 \frac{x!}{(x-2)!}$$

$$\frac{x \cdot (x-1)(x-2)(x-3)!}{-(x-3)!} = 20 \frac{x \cdot (x-1)(x-2)!}{(x-2)!}$$

$$\frac{x \cdot (x-1)(x-2)}{-x \cdot (x-1)} = 20$$

$$x-2 = 20 \Rightarrow x = 22$$

c) 7
$$V_{(x,3)} = 6 V_{(x+1,3)}$$

$$7 \frac{x!}{(x-3)!} = 6 \frac{(x+1)!}{(x+1-3)!}$$

$$7 \frac{x \cdot (x-1)(x-2)(x-3)!}{(x-3)!} = 6 \frac{(x+1) \cdot x \cdot (x-1)(x-2)!}{(x-2)!}$$

$$7 \frac{x(x-1)(x-2)}{x(x-1)} = 6 (x+1)$$

7x - 14 = 6x + 6Se aplicó propiedad distributiva en ambos miembros

$$7 \times -6 \times = 6 + 14 \Rightarrow x = 20$$

d)
$$C_{(x,3)} = C_{(x,4)} \implies \frac{x!}{(x-3)! \ 3!} = \frac{x!}{(x-4)! \ 4!} \implies$$

$$\frac{x (x-1)(x-2)(x-3)!}{(x-3)!} = \frac{x (x-1)(x-2)(x-3)(x-4)!}{(x-4)!} \Rightarrow \frac{x (x-1)(x-2)}{x (x-1)(x-2)} = \frac{3!}{4!}$$

$$\Rightarrow \frac{1}{x-3} = \frac{3!}{4 \cdot 3!} \Rightarrow \frac{1}{x-3} = \frac{1}{4} \Rightarrow 4 = x-3 \Rightarrow \boxed{x=7}$$

2) ¿De cuantas maneras diferentes se pueden colocar 10 libros en un estante?

$$P(10) = 10!$$

3) ¿Cuántas palabras con y sin sentido pueden formarse con las letras de la palabra "camino"?

$$P(6) = 6! = 654321 = 720$$

4) Debe elegirse una delegación de 5 estudiantes. ¿De cuantas maneras puede formarse la delegación, si hay 12 candidatos?

$$C_{(12,5)} = \frac{12!}{(12-5)!.5!} = \frac{12.11.10.9.8.7!}{7!.5!} = \frac{12.11.10.9.8}{5.4.3.2.1} = 11.9.8 = 792$$

5) En un concurso literario se .presentaron 10 escritores con sus novelas. El cuadro de honor es: el ganador, el 2° finalista y el 3° finalista. ¿Cuántos cuadros de honor se pueden formar?

$$V_{(10,3)} = \frac{10!}{(10-3)!} = \frac{10.9.8.7!}{7!} = 10.9.8=720$$

6) Un chef dispone de 8 ingredientes para armar ensaladas, ¿Cuántas ensaladas distintas de 4 ingredientes (sin que se repitan los mismos), podrá preparar?

$$C_{(8,4)} = \frac{8!}{(8-4)!.4!} = \frac{8.7.6.5.4!}{4!.4!} = \frac{8.7.6.5}{4.3.2.1} = 7.3.5 = 105$$

7) Diez corredores participan en una competencia de atletismo. Si se dan premios para los tres primeros puestos, ¿de cuantas maneras distintas puede ocuparse el podio?

8) Con los dígitos 1, 4, 6 y 8 se ha creado una clave de seguridad de 4 cifras. ¿Cuántas claves de números distintos pueden formarse?

$$n=4$$
 $P(4) = 4! = 4.3.2.1 = 24$

9) Cuantas palabras con o sin sentido terminadas **MAN** se pueden formar con las letras de la palabra **SUBMARINO**?

La palabra SUBMARINO tiene **9 letras**, de las cuales 3 (M, A, N) tiene que ir al final. Por lo tanto, nos quedan **6 letras para intercambiar** y poder formar las distintas palabras. Es decir:

<u>6 5 4 3 2 1 M A N</u>

posibilidades

Tenemos 2 opciones para resolver este problema:

1. Utilizando la Regla del Producto, donde:

<u>Proceso</u>: formar palabras con la palabra SUBMARINO (con o sin sentido), que terminen en MAN.

En etapa 1: tenemos 6 letras para elegir.

En etapa 2: tenemos 5 letras para elegir.

En etapa 3: tenemos 4 letras para elegir.

En etapa 4: tenemos 3 letras para elegir.

En etapa 5: tenemos 2 letras para elegir.

En etapa 6: nos queda 1 letra.

 N° de palabras = 6 . 5 . 4 . 3 . 2 . 1 = **720**

2. **OTRA FORMA** Luego de analizar, vemos que **importa el orden** de los elementos que tenemos para intercambiar, es decir las 6 letras, entonces podemos concluir que se trata de un problema de **Permutación**. Luego, aplicamos la fórmula:

$$P_{(6)} = 6! = 6.5.4.3.2.1 = 720$$

10) a) ¿Cuántos números de tres cifras distintas tienen sus cifras impares?b)¿Cuántos números de tres cifras distintas y todas pares, es posible formar? (excluyendo al 0)

Como tenemos que formar números de **3 cifras distintas e impares**, tenemos para elegir entre **n = 5** dígitos: 1, 3, 5, 7 y 9

Tenemos 2 opciones para resolver este problema:

1. Utilizando la Regla del Producto, donde:

Proceso: formar números de tres cifras distintas e impares

En etapa 1: tenemos 5 dígitos para elegir.

En etapa 2: tenemos 4 dígitos para elegir

En etapa 3: tenemos 3 dígitos para elegir

posibilidades

Cantidad de números de 3 cifras distintas e impares = 5 . 4 . 3 = 60

2. Luego de analizar el problema, vemos que **importa el orden** de los elementos que elijamos porque cuando cambiamos el orden, cambia el número; además, disponemos de **5 dígitos** para formar un número de **3 cifras**. Por lo tanto, podemos concluir que se trata de un problema de **Variación**. Luego, aplicamos la fórmula:

$$V_{(5,3)} = \frac{5!}{(5-3)!} = \frac{5 \cdot 4 \cdot 3 \cdot \cancel{2}!}{\cancel{2}!} = 60$$

b) ¿Cuántos números de tres cifras distintas y todas pares, es posible formar? (excluyendo al 0)

En este caso, tenemos que formar números de **3 cifras distintas y pares**, tenemos para elegir entre $\mathbf{n} = \mathbf{4}$ dígitos: 2, 4, 6 y 8 (se excluye al 0, porque si ocupa la 1° cifra, el número deja de ser de 3 cifras).

Tenemos 2 opciones para resolver este problema:

1. Utilizando la Regla del Producto, donde:

Proceso: formar números de tres cifras distintas y pares

En etapa 1: tenemos 4 dígitos para elegir.

En etapa 2: tenemos 3 dígitos para elegir

En etapa 3: tenemos 2 dígitos para elegir

<u>4</u> <u>3</u> <u>2</u>

posibilidades

Cantidad de números de 3 cifras distintas y pares = 4.3.2 = 24

2. Luego de analizar el problema, vemos que importa el orden de los elementos que elijamos porque cuando cambiamos el orden, cambia el número; además, disponemos de 4 dígitos para formar un número de 3 cifras. Por lo tanto, podemos concluir que se trata de un problema de Variación. Luego, aplicamos la fórmula:

$$V_{(4,3)} = \frac{4!}{(4-3)!} = \frac{4 \cdot 3 \cdot 2 \cdot 1!}{1!} = 24$$

11) Determinar los conjuntos de verdad de las siguientes expresiones

a)
$$\binom{7}{m^2 - m} = \binom{7}{2m + 1}$$
 b) $\binom{20}{m^2 - 10m} = \binom{20}{2m + 1}$ c) $\binom{m + 2}{4} + \binom{m + 2}{5} = \binom{m + 3}{5}$ d) $\binom{12}{x + 2} + \binom{12}{x + 1} = \binom{13}{x + 2}$

e)
$$m \binom{6}{5} + m \binom{6}{4} = 280 - m \binom{7}{6}$$

1) Determinar los conjuntos de verdad de las siguientes expresiones

a)
$$\binom{7}{m^2 - m} = \binom{7}{2m + 1} \Leftrightarrow m^2 - m + 2m + 1 = 7 \Rightarrow m^2 + m - 6 = 0 \Rightarrow a = 1; b = 1 c = -6$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

$$\Rightarrow m_{1,2} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} \Rightarrow m_{1,2} = \frac{-1 \pm \sqrt{1 + 24}}{2} \Rightarrow m_{1,2} = \frac{-1 \pm 5}{2} \Rightarrow$$

$$\Rightarrow m_1 = {}_{-3} \notin \mathbb{N} \ \land \ m_2 = 2 \in \mathbb{N} \qquad \therefore m = 2$$

O bien cuando los números combinatorios son iguales $m^2-m=2m+1$ resolvemos $m^2-3m-1=0$ a = 1 b = -3 c = -1

$$\Rightarrow m_{1,2} = \frac{+3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \Rightarrow m_{1,2} = \frac{3 \pm \sqrt{9 + 4}}{2} \Rightarrow \notin \mathbb{N}$$

b)
$$\binom{20}{m^2 - 10m} = \binom{20}{2m + 1}$$
 \Leftrightarrow por complementarios $m^2 - 10m + 2m + 1 = 20 \Rightarrow m^2 - 8m - 19 = 0$
 \Rightarrow a = 1 b = -8 c= -19

$$\Rightarrow m_{1,2} = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 1 \cdot (-19)}}{2.1} \Rightarrow m_{1,2} = \frac{8 \pm \sqrt{140}}{2} \Rightarrow \notin \mathbb{N}$$

O bien cuando los números combinatorios son iguales $m^2 - 10m = 2m + 1$ resolvemos $m^2 - 12m - 1 = 0$ a = 1 b = -12 c = -1

$$\Rightarrow m_{1,2} = \frac{+12 \pm \sqrt{(-12)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \Rightarrow m_{1,2} = \frac{3 \pm \sqrt{144 + 4}}{2} \Rightarrow \notin \mathbb{N} \text{ no tiene solución}$$

c)
$$\binom{m+2}{4} + \binom{m+2}{5} = \binom{m+3}{5}$$

Como $m, k \in \mathbb{N}_0$ y $k \le m$

 $m+2 \ge 4$ \land $m+2 \ge 5$ \land $m+3 \ge 5$ despejando m, se obtiene:

$$m \ge 2$$
 \land $m \ge 3$ \land $m \ge 2$ realizando la intersección, resulta

 $m \ge 3$ es decir

El conjunto de verdad puede expresarse como: $\{m \in \mathbb{N}_0 / m \ge 3\}$

$$d) \begin{pmatrix} 12 \\ x+2 \end{pmatrix} + \begin{pmatrix} 12 \\ x+1 \end{pmatrix} = \begin{pmatrix} 13 \\ x+2 \end{pmatrix}$$

Como $m, k \in \mathbb{N}_0$ y $k \le m$

Entonces:

$$x+2 \ge 0$$
 \wedge $x+2 \le 12$

$$x + 2 \ge 0 \Rightarrow x \ge -2$$
 \land $x + 2 \le 12 \Rightarrow x \le 10$

$$x \ge -2$$
 \land $x \le 10$

$$x+1 \ge 0$$
 \wedge $x+1 \le 12$

$$x+1 \ge 0 \Rightarrow x \ge -1$$
 \land $x+1 \le 12 \Rightarrow x \le 11$

$$x \ge -1$$
 \land $x \le 11$

: El conjunto de verdad puede expresarse como:

$$\{x \in \mathbb{N}_0 / -1 \le x \le 11\} \cap \{x \in \mathbb{N}_0 / -2 \le x \le 10\} = \{x \in \mathbb{N}_0 / -1 \le x \le 10\}$$

e)
$$m \binom{6}{5} + m \binom{6}{4} = 280 - m \binom{7}{6}$$

$$6m + 15m = 280 - 7m$$

$$21m = 280 - 7m$$

$$21m + 7m = 280$$

$$28 m = 280$$

$$m = \frac{280}{28}$$

$$m = 10$$

$$\binom{6}{5} = \frac{6!}{(6-5)! \, 5!} = \frac{6 \cdot 5!}{1! \, 5!} = 6$$

(también por propiedad se puede resolver directamente)

$$\binom{6}{4} = \frac{6!}{(6-4)! \ 4!} = \frac{6 \cdot 5 \cdot 4!}{2! \ 4!} = 15$$

$$\binom{7}{6} = \frac{7!}{(7-6)! \ 6!} = \frac{7 \cdot 6!}{1! \ 6!} = 7$$

(también por propiedad se puede resolver directamente)

12) Desarrollar las potencias de los siguientes binomios

a)
$$(a^2x - 3b)^5$$

b)
$$\left(-2x + \frac{1}{2}x^2\right)^4$$
 c) $(2z + t^2)^6$

c)
$$(2z + t^2)^6$$

Desarrollar las siguientes potencias.

a.-
$$(a^2x - 3b)^5 = \sum_{i=0}^{i=5} {5 \choose i} (a^2x)^{5-i} (-3b)^i = {5 \choose 0} (a^2x)^5 + {5 \choose 1} (a^2x)^4 \cdot (-3b)^1 + {5 \choose 2} (a^2x)^3 \cdot (-3b)^2 + {5 \choose 3} (a^2x)^2 \cdot (-3b)^2 + {5 \choose 4} (a^2x)^4 \cdot (-3b)^4 + {5 \choose 5} \cdot (-3b)^5 = 1 (a^2x)^5 + 5 (a^2x)^4 (-3b)^1 + 10 (a^2x)^3 (-3b)^2 + 10 (a^2x)^2 (-3b)^3 + 5 (a^2x)^4 (-3b)^4 + 1 (-3b)^5 = a^{10}x^5 - 5 a^8x^4 \cdot 3b + 10 a^6x^3 \cdot 3^2b^2 - 10 a^4x^2 \cdot 3^3b^3 + 5 a^2x^4 \cdot 3^4b^4 - 1 \cdot 3^5b^5 = a^{10}x^5 - 15 a^8x^4 \cdot b + 90 a^6x^3 \cdot b^2 - 270 a^4x^2 \cdot b^3 + 405 a^2x^4 \cdot b^4 - 243 b^5$$

b.-
$$\left(-2x + \frac{1}{2}x^2\right)^4 = \sum_{i=0}^{i=4} {4 \choose i} \left(-2 \ x\right)^{4-i} \left(\frac{1}{2}x^2\right)^i = {4 \choose 0} \left(-2 \ x\right)^4 + {4 \choose 1} \left(-2 \ x\right)^3.$$

$$\left(\frac{1}{2}x^2\right)^1 + {4 \choose 2} \left(-2 \ x\right)^2... \left(\frac{1}{2}x^2\right)^2 + {4 \choose 3} \left(-2 \ x\right)^1... \left(\frac{1}{2}x^2\right)^3 + {4 \choose 4} \left(-2 \ x\right)^0... \left(\frac{1}{2}x^2\right)^4$$

$$= 1 \left(-2\right)^4.x^4 + 4 \left(-2\right)^3.x^3. \left(\frac{1}{2}\right)^1 \left(x^2\right)^1 + 6 \left(-2\right)^2.x^2. \left(\frac{1}{2}\right)^2 \left(x^2\right)^2 + 4 \left(-2\right)^1.x^1... \left(\frac{1}{2}\right)^3 \left(x^2\right)^3$$

$$+ 1 \left(-2\right)^0.x^0. \left(\frac{1}{2}\right)^4 \left(x^2\right)^4 = 1.16.x^4 - 4 8.x^3. \frac{1}{2}.x^2 + 6 4.x^2. \frac{1}{4}.x^4 - 4 2.x^1. \frac{1}{8}.x^6 + 1$$

$$1.1. \frac{1}{16}.x^8 = 16.x^4 - 16.x^5. + 6.x^6 - x^7. + \frac{1}{16}.x^8$$

$$\begin{array}{lll} \textbf{c.-} & (2z+t^2)^6 = \sum_{i=0}^{i=6} \binom{6}{i} & (2z)^{6-i}(t^2)^i = \binom{6}{0}(2z)^6 + \binom{6}{1}(2z)^5 \cdot (t^2)^1 + \binom{6}{2}(2z)^4 \cdot \\ & (t^2)^2 + \binom{6}{3}(2z)^3 \cdot (t^2)^3 + \binom{6}{4}(2z)^2 \cdot (t^2)^4 + \binom{6}{5}(2z)^1 \cdot (t^2)^5 + \binom{6}{6} \cdot (t^2)^6 = 1 \ 2^6 \cdot z^6 \\ & + 6 \ 2^5 \cdot z^5 \cdot (t^2)^1 + 15 \ 2^4 \cdot z^4 \cdot (t^2)^2 + 20 \ 2^3 \cdot z^3 \cdot (t^2)^3 + 15 \ 2^2 \cdot z^2 \cdot (t^2)^4 + 6 \ 2^1 \cdot z^1 \cdot (t^2)^5 + 1 \\ & (t^2)^6 = 1 \ 64 \cdot z^6 + 192 \cdot z^5 \cdot t^2 + 240 \cdot z^4 \cdot t^4 + 160 \cdot z^3 \cdot t^6 + 60 \cdot z^2 \cdot t^8 + 12 \cdot z^1 \cdot t^{10} + 1 \ t^{12} \end{aligned}$$

13) Determinar él o los términos de:

- a) Grado 14 en el desarrollo de $(2x^3y + 3xy)^6$
- b) Grado 29 en el desarrollo de $(x^4y^3 3xy^2)^7$

Grado 14 en el desarrollo de $(2x^3y + 3xy)^6$

Este ejercicio se puede resolver de dos formas:

1 . Desarrollando el binomio para obtener todos los términos y ver cuál es el de grado 14: $(2x^3y + 3xy)^6 = \sum_{k=0}^6 {6 \choose k} (2x^3y)^{6-k} \cdot (3xy)^k = {6 \choose 0} (2x^3y)^6 + {6 \choose 1} (2x^3y)^5 \cdot (3xy) +$

$$\binom{6}{2}(2x^3y)^4 \cdot (3xy)^2 + \binom{6}{3}(2x^3y)^3 \cdot (3xy)^3 + \binom{6}{4}(2x^3y)^2 \cdot (3xy)^4 + \binom{6}{5}(2x^3y) \cdot (3xy)^5 + \binom{6}{3}(2x^3y)^4 \cdot (3xy)^2 + \binom{6}{3}(2x^3y)^3 \cdot (3xy)^3 + \binom{6}{4}(2x^3y)^2 \cdot (3xy)^4 + \binom{6}{5}(2x^3y)^4 \cdot (3xy)^5 + \binom{6}{3}(2x^3y)^4 \cdot (3xy)^4 + \binom{6}{3}(2x^3y)^4 \cdot (3xy)^5 + \binom{6}{3}(2x^3y)^4 \cdot (3xy)^4 + \binom{6}{3}(2x^3y)^4 \cdot (3xy)^5 + \binom{6}{3}(2x^3y)^5 \cdot (3xy)^5 \cdot (3xy)^5 + \binom{6}{3}(2x^3y)^5 \cdot (3xy)^5 \cdot (3xy$$

$$\binom{6}{6}(3xy)^6 = 64x^{18}y^6 + 576x^{16}y^6 + 2160x^{14}y^6 + 4320x^{12}y^6 + 4860x^{10}y^6 +$$

$$2916x^8y^6 + 729x^6y^6$$

Término de grado 14

Otra forma de obtener el termino pedido sin tener que desarrollar todo el binomio:

$$(2x^3y + 3xy)^6 = \sum_{k=0}^6 {6 \choose k} (2x^3y)^{6-k} \cdot (3xy)^k$$

1°) Trabajamos con el argumento de la sumatoria de la definición del binomio, sin considerar el número combinatorio, y resolvemos:

$$(2x^3y)^{6-k}$$
. $(3xy)^k = 2^{6-k} x^{18-3k} y^{6-k} 3^k x^k y^k = 2^{6-k} x^{18-3k+k} y^{6-k+k} 3^k$

2°) Como el grado del término está dado por la suma de los exponentes de las variables, sumamos los exponentes de las variables e igualamos a 14. Luego, despejamos k:

$$18 - 3k + 6 - k \cancel{k} k \cancel{k} = 14 \implies 24 + 2k = 14 \implies k = \frac{14 - 24}{-2} \implies k = 5$$

Luego, el término de grado 14 es el término con k=5

3°) Para obtener el coeficiente, sólo debo desarrollar ese término y no todo el binomio:

$$\binom{6}{5}(2x^3y).(3xy)^5 = 6.2x^3y$$
 243 $x^5y^5 =$ **2916** x^8y^6

Término de grado 14

2020

b) Obtener el Grado 29 en el desarrollo de $(x^4y^3 - 3xy^2)^7$

$$(x^4y^3 - 3xy^2)^7 = \sum_{k=0}^{7} {7 \choose k} (x^4y^3)^{7-k} \cdot (-3xy^2)^k$$

Utilizaremos la forma directa para resolverlo

1°)
$$(x^4 y^3)^{7-k} \cdot (-3xy^2)^k = x^{28-4k}y^{21-3k} - 3^k x^k y^{2k} = x^{28-4k+k} y^{21-3k+2k} (-3)^k$$

2°)
$$28-4k+21-3k+k+2k=29 \Rightarrow 28k-4k+21-3k+3k=/29 \Rightarrow /49-4k=29 \Rightarrow /49-4k=20 \Rightarrow /40-4k=20 \Rightarrow /40-$$

$$k = \frac{29 - 49}{-4} \Rightarrow k = 5$$

Luego, el término de grado 29 es el término con k=5

3°)
$$\binom{7}{5}(x^4y^3)^{7-5}.(-3xy^2)^5 = \binom{7}{5}(x^4y^3)^2.(-3xy^2)^5 = 21 x^8y^6 (-243)x^5y^{10} = -5103 x^{13}y^{16}$$

Término de grado 29