Conditional Probability and Independence

B39AX — Fall 2023

Heriot-Watt University

Intuition

Let A and B be two events.

If we know B happened, what does this tell us about A?

Example 1:

A = "I am left-handed"

B = "One of my parents is left-handed"

Example 2:

A = ``Today it rains''

B = "Today 270 babies were born"

Intuition

Let $\mathbb{P}(A \mid B)$ be the probability that A occurs **given that B occurred.**

In the frequentist interpretation, repeat an experiment T times:

$$\mathbb{P}(A \,|\, B) \simeq \frac{\# \text{ times } A \text{ and } B \text{ occurred}}{\# \text{ times } B \text{ occurred}} = \frac{T \cdot f_T(A \cap B)}{T \cdot f_T(B)} \simeq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

If B does not inform about A, then $\mathbb{P}(A \mid B) = \mathbb{P}(A)$, or

$$\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B)$$

In this case, we say that A and B are **independent**.

Definitions

Conditional probability:

Let A and B be events such that $\mathbb{P}(B) > 0$.

The conditional probability of A given B is

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Independence:

The events A and B are independent if $\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B)$

Exercise

Roll a fair die.

- A = "Get number 3" B = "Get an odd number"
 - Compute $\mathbb{P}(A\,|\,B)$ and $\mathbb{P}(B\,|\,A).$
- ullet A= "Get an even number"

 $B = \mathrm{``Get\ number\ 3''}$

Are A and B independent?

Exercise

A family has two children. What is the probability that both are boys given that at least one is a boy?

Answer: 1/3

Properties of independence

- A and B independent implies
 - ${\cal A}\ \ {\rm and}\ {\cal B}^c\ {\rm independent}$
 - A^c and B independent
 - A^c and B^c independent
- If $\mathbb{P}(B)>0$ and A and B are independent, then $\mathbb{P}(A\,|\,B)=\mathbb{P}(A)$
- Let $\mathbb{P}(B)>0$. Then, $\mathbb{Q}(\cdot):=\mathbb{P}(\cdot\,|\,B)$ is a probability measure (satisfies the axioms)

Partition

 $\{E_i\}_{i=1}^n$ is a **partition** of Ω if

•
$$E_i \neq \emptyset$$
 for all i

•
$$E_i \cap E_j = \emptyset$$
 for all $i \neq j$

$$\bullet \bigcup_{i=1}^{n} E_i = \Omega$$

Example: A and A^c are a partition of Ω .

Three Important Theorems

Multiplication Rule

Motivation

Suppose we have a random password generator that creates passwords using only lowercase characters $\{a,b,c,\ldots,z\}$ and never repeats two characters in the same password.

If we ask it to generate a 3-length password, what is the probability that it is "abc"?

Multiplication Rule

Theorem (Multiplication Rule)

Let
$$A_1, A_2, \ldots, A_n$$
 be events and $\mathbb{P}(A_1 \cap \cdots \cap A_{n-1}) > 0$. Then,
$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 \mid A_1) \cdots \mathbb{P}(A_n \mid A_1 \cap \cdots \cap A_{n-1})$$

Ans (prev prob.):
$$\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{24}$$

Total Probability Theorem

Motivation

Suppose I have two coins:

ullet Coin 1 is fair: H and T have the same probability

ullet Coin 2 is biased: H is twice as likely as T

I select one of the coins with equal probability and flip it.

What is the probability of obtaining H?

Total Probability Theorem

Theorem (Total Probability Theorem)

Let $\{E_i\}_{i=1}^n$ be a partition of Ω . For any event A,

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \mid E_i) \cdot \mathbb{P}(E_i)$$

Ans (prev prob.): $\frac{7}{12}$

Bayes Rule

Motivation

Suppose I have two coins:

 \bullet Coin 1 is fair: H and T have the same probability

ullet Coin 2 is biased: H is twice as likely as T

I select one of the coins with equal probability and flip it.

If I obtained H, what is the probability that I chose coin 2?

Bayes Rule

Theorem (Bayes Rule)

Let $\{E_i\}_{i=1}^n$ be a partition of Ω . If $\mathbb{P}(A) > 0$, then

$$\mathbb{P}(E_i \mid A) = \frac{\mathbb{P}(A \mid E_i) \cdot \mathbb{P}(E_i)}{\sum_{j=1}^n \mathbb{P}(A \mid E_j) \cdot \mathbb{P}(E_j)}$$

 E_1 E_3 E_4

for any $i = 1, \ldots, n$.

Allows updating "beliefs" when A happens: $\mathbb{P}(E_i) o \mathbb{P}(E_i \,|\, A)$

Ans (prev prob.): $\frac{4}{7}$

Example

Consider a disease and a test for the disease.

- ullet The test has accuracy 95%
- ullet The test gives false positives with probability 5%
- The disease affects 0.1% of the population

I was randomly selected to take the test, which turned out positive.

What is the probability of having the disease? Should I worry?

80% of people in a survey answered 95% [The Economist, 20 Feb, 1999]

Ans: 1.87%

Proofs of the Theorems

Proof of Multiplication Rule

Apply conditional probability recursively: $\mathbb{P}\big(A\cap B\big)=\mathbb{P}\big(A\,|\,B\big)\cdot\mathbb{P}(B)$ (a formal proof can be done via induction)

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_1)$$

$$\mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}((A_1 \cap A_2) \cap A_3)$$

$$= \mathbb{P}(A_3 | A_1 \cap A_2) \cdot \mathbb{P}(A_1 \cap A_2)$$

$$= \mathbb{P}(A_3 | A_1 \cap A_2) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_1)$$

$$\vdots$$

$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_n \mid A_1 \cap \cdots \cap A_{n-1}) \cdots \mathbb{P}(A_2 \mid A_1) \cdot \mathbb{P}(A_1)$$

Proofs of the Theorems

Proof of Total Probability

 $\mathbb{P}(A) = \mathbb{P}(A \cap \Omega)$

For any event A, we have $A = A \cap \Omega$. And because the sets E_1 , E_2 , ..., E_n are a partition of Ω ,

$$= \mathbb{P}\Big(A \cap (E_1 \cup E_2 \cup \cdots \cup E_n)\Big)$$

$$= \mathbb{P}\Big((A \cap E_1) \cup (A \cap E_2) \cup \cdots \cup (A \cap E_n)\Big)$$

$$= \mathbb{P}(A \cap E_1) + \mathbb{P}(A \cap E_2) + \cdots + \mathbb{P}(A \cap E_n)$$

$$= \mathbb{P}(A \mid E_1) \cdot \mathbb{P}(E_1) + \mathbb{P}(A \mid E_2) \cdot \mathbb{P}(E_2) + \cdots + \mathbb{P}(A \mid E_n) \cdot \mathbb{P}(E_n).$$

The 4th equality is due to $E_i \cap E_j = \emptyset \implies (A \cap E_i) \cap (A \cap E_j) = \emptyset$.

Proofs of the Theorems

Proof of Bayes Rule

$$\mathbb{P}(E_i \mid A) = \frac{\mathbb{P}(A \cap E_i)}{\mathbb{P}(A)}$$

$$= \frac{\mathbb{P}(A \mid E_i) \cdot \mathbb{P}(E_i)}{\mathbb{P}(A)}$$

$$= \frac{\mathbb{P}(A \mid E_i) \cdot \mathbb{P}(E_i)}{\sum_{j=1}^n \mathbb{P}(A \mid E_j) \cdot \mathbb{P}(E_j)},$$

where the last step used the total probability theorem.

Exercise

Question 1: I select one of the urns uniformly at random, and draw a ball. What is the probability that it is blue? Ans: $\frac{7}{10}$

Question 2: From urn 3, I draw 3 balls consecutively *without* putting them back in.* What is the probability that all of them are blue? $\frac{5}{14}$

^{*}This is called *sampling without replacement*. If we put the balls back in, it is called *sampling with replacement*.

Counting

Computing probabilities often requires counting # of elements in sets

Uniform probabilities
$$\implies$$
 $\mathbb{P}(A) = \frac{\# \text{ of elements in } A}{\# \text{ of elements in } \Omega}$

Example: {Alistair, Beatrix, Colin, Donald, Eleanor} are waiting in line.

- How many different configurations can they form?
- ullet Only 3 can be served. How many configurations now? (order matters)
- \bullet How many ways of splitting them into 3 served, 2 not served?

Counting

Given a set with n elements,

Permutations:
$$n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$$

k-permutations:
$$A_k^n = \frac{n!}{(n-k)!} = n \cdot (n-1) \cdots (n-k+1)$$

$$k$$
-combinations: $\binom{n}{k} = \frac{A_k^n}{k!} = \frac{n!}{(n-k)!k!}$

Convention: 0! = 1