第四章 最优性理论

修贤超

https://xianchaoxiu.github.io

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

最优化问题解的存在性

■ 考虑优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $x \in \mathcal{X}$

- 首先分析最优解的存在性, 然后考虑如何求出其最优解
- 回顾 Weierstrass 定理, 即定义在紧集上的连续函数一定存在最大 (最小) 值点
- 而在许多实际问题中, 定义域可能不是紧的, 目标函数也不一定连续

推广的 Weierstrass 定理

- 若函数 $f: \mathcal{X} \to (-\infty, +\infty]$ 适当且闭, 且以下条件中任意一个成立
 - \bigcirc dom $f = \{x \in \mathcal{X} : f(x) < +\infty\}$ 是有界的
 - \Box 存在一个常数 $\bar{\gamma}$ 使得下水平集

$$C_{\bar{\gamma}} = \{ x \in \mathcal{X} \mid f(x) \leq \bar{\gamma} \}$$

是非空且有界的

 $func{a} f$ 是强制的, 即对于任一满足 $||x^k|| \to +\infty$ 的点列 $\{x^k\} \subset \mathcal{X}$, 都有

$$\lim_{k \to \infty} f(x^k) = +\infty,$$

则函数 f 的最小值点集 $\{x \in \mathcal{X} \mid f(x) \leq f(y), \forall y \in \mathcal{X}\}$ 非空且紧

注记

- \blacksquare 三个条件在本质上都是保证 f(x) 的最小值不能在无穷远处取到
- 定理仅要求 f(x) 为适当且闭的函数, 并不需要 f(x) 的连续性
- 例子 当定义域不是有界闭集时,对于强制函数 $f(x)=x^2, x\in\mathcal{X}=\mathbb{R}$,其全局最优解一定存在
- 例子 对于适当且闭的函数 $f(x) = e^{-x}, x \in \mathcal{X} = \mathbb{R}$, 不满足三个条件中任意一个, 因此不能断言其全局极小值点存在

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

无约束可微问题的最优性理论

■ 无约束可微优化问题通常表示为

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

- 验证一个点是否为极小值点, 称其为最优性条件
 - □ 一阶最优性条件
 - □ 二阶最优性条件

下降方向

■ 对于可微函数 f 和点 $x \in \mathbb{R}^n$, 如果存在向量 d 满足

$$\nabla f(x)^{\top} d < 0$$

那么称 d 为 f 在点 x 处的一个下降方向

- 一阶最优性条件是利用梯度 (一阶) 信息来判断给定点的最优性
- 如果 f 在点 x 处存在一个下降方向 d, 那么对于任意的 T > 0, 存在 $t \in (0,T]$, 使得

$$f(x + td) < f(x)$$

因此, 在局部最优点处不能有下降方向

一阶必要条件

■ 假设 f 在全空间 \mathbb{R}^n 可微. 如果 x^* 是一个局部极小点, 那么

$$\nabla f(x^*) = 0$$

证明 任取 $v \in \mathbb{R}^n$, 考虑 f 在点 $x = x^*$ 处的泰勒展开

$$f(x^* + tv) = f(x^*) + tv^{\top} \nabla f(x^*) + o(t)$$

整理得

$$\frac{f(x^* + tv) - f(x^*)}{t} = v^{\top} \nabla f(x^*) + o(1)$$

根据 x^* 的最优性, 在上式中分别对 t 取点 0 处的左、右极限可知

$$\lim_{t \to 0^{+}} \frac{f(x^* + tv) - f(x^*)}{t} = v^{\top} \nabla f(x^*) \ge 0$$
$$\lim_{t \to 0^{-}} \frac{f(x^* + tv) - f(x^*)}{t} = v^{\top} \nabla f(x^*) \le 0$$

即对任意的 v 有 $v^{\top}\nabla f(x^*)=0$, 由 v 的任意性知 $\nabla f(x^*)=0$

二阶最优性条件

- 称满足 $\nabla f(x) = 0$ 的点 x 为 f 的稳定点 (或驻点、临界点)
- 对于 $f(x) = x^3$, 满足 f'(x) = 0 的点为 $x^* = 0$, 但其不是局部最优解, 因此仅仅是必要条件, 还需要加一些额外的限制条件, 才能保证最优解的充分性
- 假设 f 在点 x 的一个开邻域内是二阶连续可微的, 考虑

$$f(x+d) = f(x) + \nabla f(x)^{\top} d + \frac{1}{2} d^{\top} \nabla^2 f(x) d + o(\|d\|^2)$$

■ 当一阶必要条件满足时, 简化为

$$f(x+d) = f(x) + \frac{1}{2}d^{\top}\nabla^{2}f(x)d + o(\|d\|^{2})$$

二阶最优性条件

- 假设 f 在点 x 的一个开邻域内是二阶连续可微的,则以下最优性条件成立
 - \Box 二阶必要条件 若 x^* 是 f 的一个局部极小点, 则

$$\nabla f(x^*) = 0, \nabla^2 f(x^*) \succeq 0$$

□ 二阶充分条件 若满足

$$\nabla f(x^*) = 0, \nabla^2 f(x^*) \succ 0$$

则 x^* 是 f 的一个局部极小点

■ 对于给定点的全局最优性判断还需要借助实际问题的性质

二阶最优性条件

■ 必要性 若 $\nabla^2 f(x^*)$ 有负的特征值 $\lambda_- < 0$, 设 $\nabla^2 f(x^*)d = \lambda_- d$, 则

$$\frac{f(x^* + d) - f(x^*)}{\|d\|^2} = \frac{1}{2} \frac{d^\top}{\|d\|} \nabla^2 f(x^*) \frac{d}{\|d\|} + o(1) = \frac{1}{2} \lambda_- + o(1)$$

当 ||d|| 充分小时, $f(x^* + d) < f(x^*)$, 这和点 x^* 的最优性矛盾

■ 充分性 由 $\nabla f(x^*) = 0$ 时的二阶展开,

$$\frac{f(x^*+d) - f(x^*)}{\|d\|^2} = \frac{d^\top \nabla^2 f(x^*) d + o(\|d\|^2)}{\|d\|^2} \ge \frac{1}{2} \lambda_{\min} + o(1).$$

当 ||d|| 充分小时有 $f(x^* + d) \ge f(x^*)$, 即二阶充分条件成立

实例: 实数情形的相位恢复

■考虑

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \sum_{i=1}^m r_i^2(x)$$

其中
$$r_i(x) = (a_i^{\top} x)^2 - b_i^2, i = 1, 2, \dots, m$$

■ 计算梯度和的海瑟矩阵

$$\nabla f(x) = 2\sum_{i=1}^{m} r_i(x) \nabla r_i(x) = 4\sum_{i=1}^{m} ((a_i^{\top} x)^2 - b_i^2) (a_i^{\top} x) a_i$$
$$\nabla^2 f(x) = \sum_{i=1}^{m} (12(a_i^{\top} x)^2 - 4b_i^2) a_i a_i^{\top}$$

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

无约束不可微问题的最优性理论

■ 仍考虑问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

- = f(x) 是不可微函数,例如 $||x||_1$
- 目标函数可能不存在梯度和海瑟矩阵

凸优化问题一阶充要条件

- 假设 f 是适当且凸的函数, 则 x^* 为全局极小点当且仅当 $0 \in \partial f(x^*)$
 - □ 必要性 因为 x* 为全局极小点, 所以

$$f(y) \ge f(x^*) = f(x^*) + 0^{\top} (y - x^*), \quad \forall y \in \mathbb{R}^n$$

因此 $0 \in \partial f(x^*)$

$$f(y) \ge f(x^*) + 0^{\top} (y - x^*) = f(x^*), \quad \forall y \in \mathbb{R}^n$$

因而 x^* 为一个全局极小点

复合优化问题的一阶必要条件

■ 考虑一般复合优化问题

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + h(x)$$

其中 f 为光滑函数 (可能非凸), h 为凸函数 (可能非光滑)

■ 定理 4.5 令 x* 为复合优化问题的一个局部极小点, 那么

$$-\nabla f(x^*) \in \partial h(x^*)$$

其中 $\partial h(x^*)$ 为凸函数 h 在点 x^* 处的次梯度集合

■ 由于目标函数可能是整体非凸的,因此一般没有一阶充分条件

实例: ℓ_1 范数优化问题

■考虑

$$\min_{x \in \mathbb{R}^n} \quad \psi(x) = f(x) + \mu ||x||_1$$

■ ||x||1 不是可微的, 但可以计算其次微分

$$\partial_i \|x\|_1 = \begin{cases} \{1\}, & x_i > 0 \\ [-1, 1], & x_i = 0 \\ \{-1\}, & x_i < 0 \end{cases}$$

■ 若 x^* 是局部最优解, 则 $-\nabla f(x^*) \in \mu \partial \|x^*\|_1$, 即

$$\nabla_i f(x^*) = \begin{cases} -\mu, & x_i^* > 0 \\ a \in [-\mu, \mu], & x_i^* = 0 \\ \mu, & x_i^* < 0 \end{cases}$$

目录

- 4.1 最优化问题解的存在性
- 4.2 无约束可微问题的最优性理论
- 4.3 无约束不可微问题的最优性理论
- 4.4 对偶理论
- 4.5 一般约束优化问题的最优性理论
- 4.6 带约束凸优化问题的最优性理论
- 4.7 约束优化最优性理论应用实例

对偶理论

■ 一般的约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $c_i(x) \le 0, \ i \in \mathcal{I}$

$$c_i(x) = 0, \ i \in \mathcal{E}$$

■ 可行域定义为

$$\mathcal{X} = \{x \in \mathbb{R}^n \mid c_i(x) \leq 0, i \in \mathcal{I} \perp c_i(x) = 0, i \in \mathcal{E}\}$$

■ 通过将 X 的示性函数加到目标函数中可以得到无约束优化问题, 但是转化后问题的目标函数是不连续的、不可微的以及不是有限的

拉格朗日函数

■ 拉格朗日函数 $L: \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) = f(x) + \sum_{i \in \mathcal{I}} \lambda_i c_i(x) + \sum_{i \in \mathcal{E}} \nu_i c_i(x)$$

- 拉格朗日对偶函数 $g: \mathbb{R}^m_+ \times \mathbb{R}^p \to [-\infty, +\infty)$

$$g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} L(x, \lambda, \nu)$$

= $\inf_{x \in \mathbb{R}^n} (f(x) + \sum_{i \in \mathcal{I}} \lambda_i c_i(x) + \sum_{i \in \mathcal{E}} \nu_i c_i(x))$

拉格朗日对偶函数

■ 引理 4.1 若 $\lambda \geq 0$, 则 $g(\lambda, \nu) \leq p^*$

证明 若 $\tilde{x} \in \mathcal{X}$. 则

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) \le L(\tilde{x}, \lambda, \nu) \le f(\tilde{x})$$

对 \tilde{x} 取下界得

$$g(\lambda, \nu) \le \inf_{\tilde{x} \in \mathcal{X}} f(\tilde{x}) = p^*$$

拉格朗日对偶问题

■ 拉格朗日对偶问题

$$\max_{\lambda \ge 0, \nu} g(\lambda, \nu) = \max_{\lambda \ge 0, \nu} \inf_{x \in \mathbb{R}^n} L(x, \lambda, \nu)$$

- $f \alpha$ 称 λ 和 ν 为对偶变量, 设最优值为 q^*
- □ 拉格朗日对偶问题是一个凸优化问题
- \square $g = \{(\lambda, \nu) \mid \lambda \geq 0, g(\lambda, \nu) > -\infty\},$ 称其元素为对偶可行解

例子 标准形式线性规划及其对偶

$$\begin{aligned} & \min & c^\top x & \max & -b^\top \nu \\ & \text{s.t.} & Ax = b & \text{s.t.} & A^\top \nu + c \geq 0 \\ & & x \geq 0 \end{aligned}$$

弱对偶性与强对偶性

- 弱对偶性 $d^* \le p^*$
 - 。 对凸问题与非凸问题都成立
 - □ 可导出复杂问题的非平凡下界, 例如, SDP 问题

$$\max \quad -\mathbf{1}^{\top} \nu$$

s.t.
$$W + \operatorname{diag}(\nu) \succeq 0$$

给出了二路划分问题的一个下界

min
$$x^{\top}Wx$$
 s.t. $x_i^2 = 1, i = 1, \dots, n$

- 强对偶性 $d^* = p^*$
 - □ 对一般问题而言通常不成立
 - □ (通常) 对凸问题成立
 - □ 称保证凸问题强对偶性成立的条件为约束品性

适当锥与广义不等式

- 称满足如下条件的锥 K 为适当锥
 - □ K 是凸锥
 - □ K 是闭集
 - \square K 是实心的 (solid), 即 int $K \neq \emptyset$
 - \square K 是尖的 (pointed), 即对任意非零向量 x, 若 $x \in K$, 则 $-x \notin K$
- 适当锥 K 可以诱导出广义不等式, 它定义了全空间上的偏序关系

$$x \leq_K y \Leftrightarrow y - x \in K$$

- 当 $K = \mathbb{R}^n_+$ 时, $x \leq_K y$ 是我们之前经常使用的记号 $x \leq y$
- 当 $K = S_+^n$ 时, $X \preceq_K Y$ 表示 $Y X \succeq 0$, 即 Y X 是半正定矩阵

对偶锥与拉格朗日乘子

 \blacksquare \diamondsuit K 为全空间 Ω 的子集, 称集合

$$K^* = \{ y \in \Omega \mid \langle x, y \rangle \ge 0, \ \forall x \in K \}$$

为其对偶锥

注记

- 假设非负锥 $K=\mathbb{R}^n_+, \Omega=\mathbb{R}^n$, 定义 $\langle x,y\rangle=x^\top y$, 那么 $K^*=\mathbb{R}^n_+$
- 假设半正定锥 $K = \mathcal{S}_+^n$, $\Omega = \mathcal{S}^n$, 定义

$$\langle X, Y \rangle = \operatorname{Tr}(XY^{\top})$$

可以证明

$$\langle X, Y \rangle \ge 0, \ \forall X \in \mathcal{S}^n_+ \quad \Leftrightarrow \quad Y \in \mathcal{S}^n_+$$

即半正定锥的对偶锥仍为半正定锥

■ 称满足 $K = K^*$ 的锥 K 为<mark>自对偶锥</mark>

广义不等式约束优化问题拉格朗日函数的构造

■ 广义不等式约束优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t. $c_i(x) \leq_{K_i} 0, i \in \mathcal{I}$

$$c_i(x) = 0, i \in \mathcal{E}$$

■ 拉格朗日函数

$$L(x, \lambda, \nu) = f(x) + \sum_{i \in \mathcal{I}} c_i(x)\lambda_i + \sum_{i \in \mathcal{E}} \nu_i c_i(x), \quad \lambda_i \in K_i^*, \ \nu_i \in \mathbb{R}$$

- 容易验证 $L(x, \lambda, \nu) \leq f(x), \ \forall \ x \in \mathcal{X}, \ \lambda_i \in K_i^*, \ \nu_i \in \mathbb{R}$
- 对偶函数 $g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n} L(x, \lambda, \nu)$, 对偶问题为

$$\max_{\lambda_i \in K_i^*, \ \nu_i \in \mathbb{R}} \quad g(\lambda, \nu)$$

实例: 线性规划问题的对偶

■ 考虑线性规划问题

$$\begin{aligned} \min_{x} & c^{\top} x \\ \text{s.t.} & Ax = b \\ & x \geq 0 \end{aligned}$$

■拉格朗日函数

$$L(x, s, \nu) = c^{\top} x + \nu^{\top} (Ax - b) - s^{\top} x = -b^{\top} \nu + (A^{\top} \nu - s + c)^{\top} x$$

■ 对偶函数

$$g(s,\nu) = \inf_{x} L(x,s,\nu) = \begin{cases} -b^{\top}\nu, & A^{\top}\nu - s + c = 0 \\ -\infty, &$$
其他

实例: 线性规划问题的对偶

■ 对偶问题

$$\max_{s,\nu} -b^{\top}\nu \qquad \max_{s,y} b^{\top}y$$
s.t. $A^{\top}\nu - s + c = 0$ $\stackrel{y = -\nu}{\Leftrightarrow}$ s.t. $A^{\top}y + s = c$

$$s \ge 0 \qquad \qquad s \ge 0$$

■ 若保留约束 $x \ge 0$, 则拉格朗日函数为

$$L(x,y) = c^{\mathsf{T}}x - y^{\mathsf{T}}(Ax - b) = b^{\mathsf{T}}y + (c - A^{\mathsf{T}}y)^{\mathsf{T}}x$$

■ 对偶问题需要将 $x \ge 0$ 添加到约束里

$$\max_{y} \left\{ \inf_{x} \ b^{\top} y + (c - A^{\top} y)^{\top} x \quad \text{s.t.} \quad x \ge 0 \right\} \quad \Rightarrow \quad \max_{y} \quad b^{\top} y$$

$$\text{s.t.} \quad A^{\top} y \le c$$

实例: 线性规划问题的对偶

■ 将 $\max b^{\top}y$ 改写为 $\min -b^{\top}y$, 对偶问题的拉格朗日函数为

$$L(y,x) = -b^{\mathsf{T}}y + x^{\mathsf{T}}(A^{\mathsf{T}}y - c) = -c^{\mathsf{T}}x + (Ax - b)^{\mathsf{T}}y$$

■ 得到对偶函数

$$g(x) = \inf_{y} L(y, x) = \begin{cases} -c^{\top} x, & Ax = b \\ -\infty, &$$
其他

■ 相应的对偶问题是

$$\max_{x} - c^{\top} x$$
s.t. $Ax = b$

$$x > 0$$

■该问题与原始问题完全等价,表明线性规划问题与其对偶问题互为对偶

实例: ℓ_1 正则化问题的对偶

■考虑

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} ||Ax - b||^2 + \mu ||x||_1$$

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} ||r||^2 + \mu ||x||_1$$

s.t.
$$r = Ax - b$$

■拉格朗日函数

$$L(x, r, \lambda) = \frac{1}{2} ||r||^2 + \mu ||x||_1 - \langle \lambda, Ax - b - r \rangle$$

= $\frac{1}{2} ||r||^2 + \lambda^\top r + \mu ||x||_1 - (A^\top \lambda)^\top x + b^\top \lambda$

实例: ℓ_1 正则化问题的对偶

■ 对偶函数

$$g(\lambda) = \inf_{x,r} \ L(x,r,\lambda) = \begin{cases} b^\top \lambda - \frac{1}{2} \|\lambda\|^2, & \|A^\top \lambda\|_\infty \le \mu \\ -\infty, &$$
其他

■ 对偶问题

$$\max_{\lambda} \quad b^{\top} \lambda - \frac{1}{2} \|\lambda\|^{2}$$

s.t.
$$\|A^{\top} \lambda\|_{\infty} \le \mu$$

实例: 半定规划问题的对偶问题

■考虑

$$\min_{X \in \mathcal{S}^n} \langle C, X \rangle
\text{s.t.} \quad \langle A_i, X \rangle = b_i, \ i = 1, 2, \dots, m
\quad X \succeq 0$$

■拉格朗日函数

$$L(X, y, S) = \langle C, X \rangle - \sum_{i=1}^{m} y_i (\langle A_i, X \rangle - b_i) - \langle S, X \rangle, \quad S \succeq 0$$

半定规划对偶问题的对偶问题

■ 对偶函数

$$g(y,S) = \inf_{X} L(X,y,S) = \begin{cases} b^{\top}y, & \sum_{i=1}^{m} y_{i}A_{i} - C + S = 0\\ -\infty, &$$
其他

■ 对偶问题

$$\min_{y \in \mathbb{R}^m} -b^{\top} y$$
s.t.
$$\sum_{i=1}^m y_i A_i - C + S = 0$$

$$S \succeq 0$$

Q&A

Thank you!

感谢您的聆听和反馈