ADL Final Domain Adaptive QA

R11944074 汪宣甫 R12922104 蔡昀燁 R12922051 陳韋傑 R12922062 鄭雅勻 R12944062 李泓賢

Abstract

This work focuses on exploring domain adaptation in Question Answering (QA):

- We use two different backbone models (Vanilla & Context Network) and two types of embedding paired with Context Network (BERT-base & SimCSE)
- We experiment three different training strategies: In-domain, Out-domain and Two-stage finetuning (Pre-training on out-of-domain knowledge and fine-tuning on in-domain datasets)
- We conclude that pretraining on out-domain datasets and finetuning on in-domain dataset can enhance performance hugely

Introduction

While Language models excel in performance during finetuning and testing within a specific dataset, their generality diminishes when applied to other similar datasets. [1]

Q: Can we find a strategy that solves the task for domain adaptive QA well?

			Evaluated or	n		
		SQuAD	TriviaQA	NQ	QuAC	NewsQA
Fine-tuned on	SQuAD	75.6	46.7	48.7	20.2	41.1
	TriviaQA	49.8	58.7	42.1	20.4	10.5
	NQ	53.5	46.3	73.5	21.6	24.7
	QuAC	39.4	33.1	33.8	33.3	13.8
	NewsQA	52.1	38.4	41.7	20.4	60.1

Method - Training Strategy

IN: Dt OUT: D1, D2, D3...

Method - Model

We have three different model settings: origin, cls and sim.

model type	Backbone-Model Type	Embedding Type	
origin	Vanilla	BERT-based	
cls Context Network		BERT-based	
sim	Context Network	SimCSE	

Method - Context Network

By incorporating context, the network can improve its robustness and generalization capabilities of the overall model. [3]

Method - SimCSE

SimCSE [2] directly targets sentence-level representations using the technique of contrastive learning.

It is an approach specifically designed for learning fixed-size embedding for the entire sentence.

(b) Supervised SimCSE

Dataset

- We use 10 question answering datasets.
- Note that some questions do not have answers.

	train_num	eval_num
comqa	7416	1069
duorc_p	69524	15591
duorc_s	60721	12961
hotpotqa	90447	7405
newsqa	92549	5166
nq	110865	3369
quac	83568	7354
squad	130319	11873
triviaqa	110647	14229
wikihop	43748	5128

Experiment settings

- data_num and domain types decides training samples number of each corpus. If dataset size < training samples number, then we take whole dataset for training.
- Three different domain types (in-domain, out-domain, ODID).
- What is in-domain? out-domain? ODID?

Explain of data_num

How different model perform **ODID** like?

How about in-domain and out-domain?

• Result 1:

(in-domain > out-domain)

How about in-domain and out-domain?

Result 2:

(out-domain > in-domain)

Experiments - duorc_s

Experiments - hotpotqa

Experiments - newsqa

Experiments - nq

Experiments - quac

Experiments - squad

Experiments - triviaqa

Experiments - wikihop

Discussion

- Why there are 2 results?
 - In-domain > Out-domain? Reasonable!
 - Out-domain > In-domain? Why?
- We find that out_domain experiment tends to predict "no answer" in the few-shot setting.

Discussion

- Out-domain useless?
- A preliminary step for ODID.

Conclusion

- Pretraining on out-domain datasets and finetuning on in-domain dataset can enhance performance hugely.
 - That is what our ODID do!
- Training on out of domain with few shots of data will make model output nothing.
- If we have enough out-domain data, it is useful when our in-domain is insufficient.

References

- [1] Priyanka Sen, Amir Saffari. What do Models Learn from Question Answering Datasets? In EMNLP 2020.
- [2] Tianyu Gao, Xingcheng Yao, Danqi Chen. SimCSE: Simple Contrastive Learning of Sentence Embeddings. In EMNLP 2021.
- [3] Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, Chelsea Finn. Adaptive Risk Minimization: Learning to Adapt to Domain Shift. In NeurIPS 2021.

Thanks for Listening!