

Historical Aerospace Software Errors Categorized to Influence Fault Tolerance

Spacecraft Anomalies and Failures Workshop
March 2024

Lorraine Prokop, Ph.D.

Technical Fellow for Software NASA Engineering and Safety Center

<u>lorraine.e.prokop@nasa.gov</u>

Flight Software Error Visualization

Flight Computer *without* Software Errors (Credit NASA)

and the second of the second

Flight Computer *with* Software Errors (Credit NASA)

Introduction

Motivation

- Very little literature exists characterizing software errors in real-time avionic systems
 - How, where, and why is software most likely to fail?

Purpose

- Raise awareness of how software fails through historical study
- Recommend improvements to software fault tolerant design based on historical study

Outline

- Discuss Software Failures Common Cause, Failure Classes, Mitigation strategies
- Review NASA Human Rating Requirements regarding software/automation

and the second second

- Review Historical Software Failures
- Analyze failures and provide statistics
 - Erroneous vs. fail-Silent
 - Reboot recoverability likelihood
- Code location
- Missing code?

- Unknown unknowns
- Computer science related?

Software Common-Cause Failure

- What is Software "Common Cause" or "Common Mode" Failure?
 - In many avionic architectures, hardware replication into multiple "strings" is done for hardware fault tolerance
 - However, the *same software load* often runs on these multiple processors
 - In this case, a *single* software failure normally would affect all strings in the same way at the same time

at the result of the

• If only one processor is used, then *any* software failure could be considered "common mode" or "common cause"

Sample Avionic Architecture

Flight Computer

Primary Flight Software

Flight Computer

Primary Flight Software

Flight Computer

Primary Flight Software

NASA Requirements for Software Fault Tolerance

- NPR 8705.2C: HUMAN-RATING REQUIREMENTS FOR SPACE SYSTEMS
 - 3.2.7 The space system shall provide the capability to mitigate the hazardous behavior of critical software where the hazardous behavior would result in a catastrophic event. The software system will be designed, developed, and tested to:
- Pre-flight≺
- 1) Prevent hazardous software behavior.
- 2) Reduce the likelihood of hazardous software behavior.
- In-flight
 3) Mitigate the negative effects of hazardous software behavior. However, for complex software systems, it is very difficult to definitively prove the absence of hazardous behavior. Therefore, the crewed system has the capability to mitigate this hazardous behavior if it occurs. The mitigation strategy will depend on the phase of flight and the time to effect of the potential hazard. Hazardous behavior includes erroneous software outputs or performance.
 - 3.2.3 The space system shall provide at least single failure tolerance to catastrophic events, with specific levels of failure tolerance and implementation (similar or dissimilar redundancy) derived via an integration of the design and safety analysis.
 - 3.2.4 The space system shall provide the failure tolerance capability in 3.2.3 without the use of emergency equipment and systems.
 - 3.3.2 The crewed space system shall provide the capability for the crew to manually override higher level software control and automation (such as automated abort initiation, configuration change, and mode change) when the transition to manual control of the system will not cause a catastrophic event.
 - NPR 7150.2D: NASA SOFTWARE ENGINEERING REQUIREMENTS
 - 3.7.3 If a project has safety-critical software or mission-critical software, the project manager shall implement the following items in the software: [SWE-134] ...
 - No single software event or action is allowed to initiate an identified hazard.

and the second second

- Software Assurance Standards to Assure these Requirements are Met:
 - NPR 8739.8A: SOFTWARE ASSURANCE AND SOFTWARE SAFETY STANDARD
 - NASA-STD-8719.13B: SOFTWARE SAFETY STANDARD

Software Failure Classes & Categories

- Consider Two classes of software common cause:
 - Fail Silent Computers stop outputting, Ex: simultaneous "crash"
 - Erroneous output Software behaves unexpectedly / does the wrong thing Broader class
 - Both should be considered when designing for fault-tolerance
- Why distinguish?
 - Detection and response is different -- Easier to know if software "crashed" watchdog timer
 - How to determine if automation/software is doing something wrong? ex. Independent monitoring
 - Space systems approach these manifestations in different ways mainly human-in-the-loop
- Fail-Silent Cause Examples (loss of output)
 - Operating System Halt, memory access violation, infinite loop / process Starvation
- Erroneous Output Causes Examples (wrong output)
 - Coding/Logic Error Missing/Wrong Requirements, Insufficient modeling of real-world, unanticipated situations
 - Data Parameter Misconfigured Wrong data input, database, Units, precision, sign
 - Unanticipated / Erroneous Sensor Input
 - Erroneous Command Input Operator / Procedural Error

55 Significant Historical Software Incidents (1962 – 2023)

1962	1965	1965	1968	1969
Mariner 1 – Atlas-	Gemini 3	Gemini 5	Apollo 8	Apollo 10
Agena				
1981	1982	1985-87	1988	1988
STS-1	Viking-1	Therac-25	Phobos-1	Soyuz TM-5
1991	1991	1992	1994	1994
Aries - Red	Patriot Missile	F-22 Raptor	Clementine Lunar	Pegasus XL STEP-1
Tigress I			Mission	
1994	1995	1996	1997	1998
Pegasus HAPS	SOHO	Ariane 5	Pathfinder	Delta III
1999	1999	1999	2000	2001
Mars Polar	Mars Climate	Titan IV B Centaur	Zenit 3SL	Pegasus
Lander	Orbiter			XL/HyperX / X-
				43A
2001	2003	2003	2003	2004
STS-108 through	Multidata	Soyuz - TMA-1	North American	Spirit Mars
110	Systems Radiation		Power Grid	Exploration Rover
	Machine			
2005	2005	2006	2007	2008
CryoSat-1	DART	Mars Global	F22 First	STS-124
		Surveyor	Deployment	
2008	2008	2012	2015	2015
Quantas Flight	B-2 Spirit -Guam	Red Wings Flight	Airbus A400M	SpaceX CRS-7
72, Airbus A330-	crash	9268 TU-204 crash	test flight	
303				
2016	2017	2018, 2019	2019	2019
Hitomi X-ray	SpaceX CRS-10	Boeing 737 MAX	Boeing Orbital	Beresheet
space telescope			Flight Test (OFT)	
2019	2020	2020	2021	2021
•	Amazon Web	BD Alaris™	Global Facebook	ISS Attitude Spin
Vicram Lunar	Service (AWS)	Infusion Pump	Outage	
Lander	Kinesis			
2022	2023	2023	2023	2023
CAPSTONE	NOTAM – Notice	ispace Hakuto-R	Launcher Orbiter	Voyager-2
	To Air Mission		SN3 space tug	

Significant Software Failure -

- Software/automation did not behave as expected causing loss of life, injury, loss/end of mission, or significant close-call
- NOTE: The root cause of these failures may not all be software (why it was programmed like that), but how the incident initially behaved during operations is characterized

- Categorization:
 - Fail silent or erroneous?
 - Correctable by reboot?
 - · Absence of Code?
 - Unknown/unknown?
 - Error Location?
 - Computer Science Discipline?
 - Unknown-unknown?

Historical Software Incidents (1962-1981)

	Flight or System		•	Erroneous or Silent?		Missing Code?		Unknown- unknown
	Mission – Atlas-Agena	Programmer error in ground guidance veered launch vehicle off course	Loss of vehicle	Erroneous Output	No	No	Code/Logic	No
1965		short landing	Landed 84 km short, crew manually compensated, decreasing short landing error	Erroneous Output	No	Yes	Code/Logic	Yes
1965		Data error of earth rotation lands Gemini 5 short	Landed 130 km short	Erroneous Output	No	No	Data	No
1968		Memory Inadvertently Erased	Close Call fixed manually	Erroneous Output	No	No	Command Input	No
1969		bad input data to	Vehicle tumbled, close call, recovered manually	Erroneous Output	No	No	Data	No
1981	STS-1	' '	Launch Scrub of First Shuttle flight	Fail Silent	Yes	Yes	Code/Logic	No

(Photo Credits: NASA)
okop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (1982-1994)

	Flight or System	Title	Result / Outcome	Erroneous or Silent?	Reboot Recoverable	Missing Code?	Error Location	Unknown- unknown?
1982	Viking-1	Erroneous Commandcaused loss of comm	End of mission	Erroneous Output	No	No	Command Input	No
1985-87	Therac-25	Radiation Therapy machine output lethal doses, user input speed	Four deaths, two chronic injured	Erroneous Output	No	No	Code/Logic	No
1988	Phobos-1	Erroneous unchecked uplinked command lost vehicle	Loss of vehicle/Mission	Erroneous Output	No	No	Command Input	No
1988	Soyuz TM-5	Wrong code executed to perform de-orbit burn	Extra day in orbit, New code uplinked	Erroneous Output	No	No	Code/Logic	No
	Aries - Red Tigress I	Bad command causes guidance error	Loss of Vehicle	Erroneous Output	No	No	Sensor Input	No
1991		Patriot failed target intercept due to 24-bit rounding error growth in time over time	Failed to intercept scud missile, resulting in American barracks being struck, 28 soldiers killed, 100 injured	Erroneous Output	Yes	No	Code/Logic	No
1992	F-22 Raptor	Software failed to compensate for pilot-induced oscillation in presence of lag	Loss of test vehicle	Erroneous Output	No	Yes	Sensor Input	Yes
	Clementine Lunar Mission	Erroneous thruster firing exhausted propellant, cancelling asteroid flyby	Failed mission objective	Erroneous Output	No	No	Code/Logic	No

Photo Credits: The National Archives, NAID: 6361754 (top), NAID: 6424495 (bottom)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (1994-1999)

	Flight or System		Outcome		Reboot Fix?	b 6	Error Location	Unknown - unknown
1994	-0			Erroneous Output	No	Yes	Code/Logic	Yes
1994	Pegasus HAPS		,	Erroneous Output	No	Yes	Code/Logic	No
1995	Observatory		Loss of mission during extended use	Erroneous Output	No	Yes	Code/Logic	No
1996	Ariane 5 Maiden Flight	Unprotected overflow in floating-point to integer conversion disrupted inertial navigation system		Erroneous Output	No	No	Code/Logic	No
1997				Erroneous Output	No	No	Code/Logic	No
1998	Delta III	Unanticipated 4Hz Oscillation in control system led to vehicle loss		Erroneous Output	No	Yes	Code/Logic	Yes
1999	Mars Polar Lander	Premature shut down of landing engine due to misinterpretation of landing signature		Erroneous Output	No	Yes	Sensor Input	No
1999	Mars Climate Orbiter	Metric vs. imperial units error		Erroneous Output	No	No	Data	No

Mars Polar Lander (Credit: NASA)

Historical Software Incidents (1999-2003)

	o ,		Result / Outcome	Erroneou s or Silent?		Code?	Location	Unknown- unknown
1999		Programming error omitting decimal in data file caused loss of control	Unintended orbit, Milstar Satellite lost 10 days after launch	Erroneous Output	No	No	Data	No
2000		Ground software error failed to close valve.	Loss of Vehicle	Erroneous Output	No	No	Code/Logic	No
	, ,,	Airframe failure due to inaccurate analytical models	Loss of vehicle/mission	Erroneous Output	No	Yes	Code/Logic	Yes
2001		controller mix-ratio software coefficient sign-flip error	Significant close call, SME underperformance, though not extreme enough to not reach orbit.	Erroneous Output	No	No	Data	No
	Radiation Machine	Radiation Therapy machine output lethal doses, counterclockwise user input	Many injured, 15 people dead.	Erroneous Output	No	No	Code/Logic	No
2003	_	Undefined yaw value triggered Ballistic reentry	landed 400 km short	Erroneous Output	No	No	Code/Logic	No
	Electric Power Grid	contribute to Widespread	Widespread Loss of Power Service (2 hr - 4 days)	Fail Silent	No	No	Code/Logic	No

STS-108 Crew (Credit: NASA)

Photo Attribution: Lokal_Profil, under

Generic license

Historical Software Incidents (2005-2008)

Year	Flight or	Title	Result /	Erroneous	Reboot	Missing	Error	Unknown-
	System		Outcome	or Silent?	Fix?	Code?	Location	unknown
2005	CryoSat-1	Missing command causes loss of vehicle	Loss of Vehicle	Erroneous Output	No	Yes	Code/Logic	No
	DART (Demonstration of Autonomous Rendezvous Technology)	Navigation software errors fail mission objectives.	Loss of mission objectives	Erroneous Output	No	No	Code/Logic	No
	•	Erroneous command led to pointing error and power/vehicle loss	Premature Loss of vehicle	Erroneous Output	No	No	Code/Logic	No
2007	F22 First Deployment	International Date Line crossing crashed computer systems	Loss of navigation & communication	Fail Silent	No	Yes	Code/Logic	No
2008		All 4 shuttle computers fail / disagree during fueling	Fueling stopped	Erroneous Output	No	Yes	Sensor Input	No
	Airbus A330-303	Sensor Input spikes caused autopilot to pitch-down, resulting in crew and passenger injuries	One crew member and 11 passengers suffered serious injuries	•	No	Yes	Sensor Input	Yes

Historical Software Incidents (2008-2017)

	Flight or System		Result / Outcome	Erroneous or Silent?		Missing Code?	Error Location	Unknown- unknown
	Guam crash	computers with missing	Crew members successfully ejected.	Erroneous Output	No	Yes	Sensor Input	Yes
	9268 TU- 204 crash		5 of 8 crewmembers killed	Erroneous Output	No	Yes	Code/Logic	Yes
	test flight	Missing software parameters during installation cause crash	Four fatalities	Erroneous Output	No	No	Data	No
2015		command invalidated	Possibly could have saved Dragon capsule from crash landing.	Erroneous Output	No	Yes	Code/Logic	No
	space	Error in computing spacecraft orientation led to spacecraft loss	Lost of vehicle	Erroneous Output	No	No	Code/Logic	No
2017			ISS rendezvous delay	Erroneous Output	No	No	Data	No
2018, 2019		· ·	346 people died on two flights	Erroneou s Output	No	Yes	Sensor Input	Yes

and the second second

CRS-7 Mishap (Credit: credit: Nathan Koga for NSF/L2)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (2018-2021)

The second of the second

	Flight or System			Erroneous or Silent?		Missing Code?		Unknown- unknown
2019	Boeing Orbital Flight Test (OFT)	no ISS rendezvous and		Erroneous Output	No	No	Code/Logic	No
2019	Beresheet	Reboots cause engine shutdown on lunar descent	Loss of vehicle	Fail Silent	No	No	Code/Logic	No
2019	Chandrayaan-2 Vicram Lunar Lander	Unexpected velocity behavior during descent caused crash landing		Erroneous Output	No	Yes	Code/Logic	No
	Amazon Web Service (AWS) Kinesis	Maximum threads reached caused cascading server outage	Loss of service, revenues.	Fail Silent	No	Yes	Code/Logic	No
2020	BD Alaris™ Infusion Pump	Infusion delivery system software causes injury/death	, ,	Erroneous Output	No	No	Code/Logic	No
2021	Global Facebook Outage	global Facebook and	Disrupted communication, loss of revenues	Fail Silent	No	No	Command Input	No
2021	ISS	Uncontrolled ISS attitude spin from erroneous thruster firing software	Close Call	Erroneous Output	No	No	Code/Logic	No

Boeing OFT Landing (Photo Credit: NASA)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Historical Software Incidents (2022-present)

	8 -	Title		Erroneous		_	Error	Unknow
	System		Outcome	or Silent?	Fix?	Code?	Location	n-
								unknown
2022		causes Temporary	Delayed Trajectory Course Maneuver Objective, Close Call for LOM	Erroneous Output	No	No	Command Input	No
		Corrupted database file causes flight cancellations	Loss of Service	Fail Silent	No	Yes	Data	No
2023		Invalidated Altitude data during Lunar descent loses Lander	Loss of Mission	Erroneous Output	No	Yes	Sensor Input	No
	SN3 space tug	Uncontrolled attitude spin lost power and spacecraft	Loss of Mission	Erroneous Output	No	Yes	Code/Logic	No
2023	- 7 - 6 -	Bad command causes 2 [°] antenna shift	Temporary Loss of Communications (Close Call)	Erroneous Output	No	No	Command Input	No

Hakuto-R (Photo Credit: ispace)

Erroneous vs. Fail Silent

The second of the second

Takeaway:

- Historically, erroneous output situations were much more prevalent than fail-silent cases
- 85-15%, over 5 times as likely

Fault-tolerant Design Tip:

- Design should consider relative likelihoods of these manifestations
- Systems should consider the question, "What if the software does something wrong?" at critical moments

Reboot Recoverability Likelihood Erroneous vs. Fail Silent

Erroneous Recoverable with Reboot?

Fail Silent Recoverable with Reboot?

Takeaways:

- Rebooting is predominantly ineffective to clear/recover from erroneous output situations
- Rebooting is a partial solution to clear fail-silent errors

Fault-tolerant Design Tip:

Do not rely on reboot to clear all software faults

Error Location

Takeaway(s):

- Coding/logic errors account for most software incidents, but very few are "mistakes"
 - This category includes missing requirements, unknowns, unanticipated situations, misunderstanding or incomplete modeling of realworld
- Input Errors Command or Sensor Input Accounted for 26% of errors
 - Sensor Input are mainly unexpected code/logic errors as well

Fault-tolerant Code Tips:

- Project should test according to likelihoods
- Code/Logic off-nominal testing, peer review, unit testing, increased simulation/modeling
- Data Misconfiguration data validation prior to use, system expert review
- Input Errors Off-nominal or random input test generation
 - Sensor input –hardware-in-the-loop testing
 - Command input validation, processes/procedures

Absence of Code?

Takeaways:

- Many of the studied incidents (40%) could have been averted with the addition of code (in hindsight)
 - Missing Code arises from missing requirements, unanticipated situations, insufficient understanding or modeling of real-world
- Even fully tested code does not uncover errors that arise from missing code/unanticipated situations
 - Hard to test code that is not there off nominal testing may hep to uncover

Fault-tolerant Design Tip:

 Projects should reserve test time to create off-nominal or unexpected conditions to expose absent code

"Unknown Unknowns"

Takeaways:

- Categorizing "unknown-unknowns" is highly subjective
- Included here:
 - unknown aero/handling, physics
 - Insufficient modeling
 - highly unusual input
 - unexpected behavior in the presence of faults or multiple failures

Fault-tolerant Design Tip:

 Backup strategies should be considered to protect for "unknown- unknowns" and other software error causes

The second of the second

 Projects should actively work to balance risk between "knowing everything" and project constraints (budget/schedule)

Computer Science Discipline?

Computer Science in Nature

Takeaways:

- Most software failures are not a result of something normally considered "computer science" or "software" discipline in nature
- No incidents studied resulted from operating system, programming language, tool chain, or development environment failure

Fault-tolerant Design Tip:

• Projects should consider requiring software "ownership" across multiple disciplines

A THE PARTY OF THE STREET

Software Errors - Preflight Prevention and In-Flight Mitigation

Captured in a NASA Engineering and Safety Center (NESC) Technical Bulletin "Considerations for Software Fault Prevention and Tolerance"

The second second

Pre-flight Software Error Prevention Strategies

- Utilize a disciplined software engineering approach
- Perform **off-nominal** scenario, fault, and sensor input testing to expose missing code
- Validate mission data prior to each use
- "Test like you Fly" with hardware-in-the-loop over expected mission durations
- Employ two-stage commanding with operator implication acknowledgement for critical commands

In-Flight Software Error Detection and Mitigation Strategies

- Provide crew/ground insight, control, and override
- Employ **independent monitoring** of critical vehicle automation
 - · Manual or automated detection, followed by response
- Employ **software backups** (targeted to full) which are:
 - Simple (compared to primary flight software)
 - Dissimilar (especially in requirements and test)
- Enter **safe mode** (reduced capability primary software subset)
 - Examples: restore power/communication, conserve fuel
- Uplink new software and/or data (time permitting)
- Design system to reduce/eliminate dependency on software
- Reboot (limited effectiveness)

Mitigation strategies should be evaluated considering criticality, phase dynamics, and time-to-effect.

Previously unquantified in this immere, this data characterizes a set of 55 high-inpost fathors executes columns that the flat shakes is much more likely to fail by moduling emission upon the term fathing letter, and the fattoring list flexible received to the certain color than the mission plant, and the flattoring list flexible received these enterous situations. Forly percent (47%) of software entrous weet these enterous situations, forly percent (47%) of software entrous weet the software discipling the software discipling requirements or capabilities, and inability to hereful unanticipated situations. Only 18% of these indicates that with the software discipline for extra extra previous for each entry in the first that the software discipline for software disciplined to deviate only in the software disciplined in the software disciplined in different normalization or prevention in each catalogue. This has date flowers in manifestation or an extra catalogue disciplined in different normalization of continuous control of the software behavior indicated in different normalization and catalogue. This manifestation is the software behavior indicated in different normalization and catalogue in the software disciplined manifestation of the software disciplined manifestation of the software disciplined manifestation of the software disciplined manifestation and catalogue in the software disciplined mand catalogue in the software disciplined manifestation and catalo

	Erroneous	Fall-Silent
Error Manifestations	85%	15%
Raboot Effectiveness	2%	30%
Error Origin, % of Total		
Code / Logic		58%
Configurable Data		16%
Unexpected Sensor Input		15%
Command/Operator Input		11%
Other Categories, Individually 9	of Total	
Absence of Code		40%
Unknown-unknowns		16%
Consentes Rolence Dischalles		-

Implications and Considerations

These findings indicate that for othere that itsiemen, primary consistent should be given to othere behaving enconsularly when the going sillers, specially at critical imments, and ther feedor recoverability on be unveilable. Special care should be listen to validate configurable date and commands part on each use. "Bendilleryouth", including consort heathers exhibition, combined and mobile of femiliar leading soon behaviors when the configurable value of the control of the control

Software Error	Prevention Strategies
 Utilize a disciplin applicable stand 	ed software engineering and assurance approach with arch ^u
	inal scenario, fault, and input testing to expose missing I by requirements stone, with multidisciplinary involvement
	handling off-nominal sensor and data input, handling performing check-point restart
 Validate mission 	data prior to each use
	with hardware-in-the-loop, especially sensors, over a durations if possible
Employ two-stag	e commanding with operator implication acknowledgemen

Although best efforts can be made prior to flight, software behalves force a most of relevanted secrets that cannot be fally present or per-discus, and readitional system design usually employs only one primary effects of these local prices of the second systems to protect for readition and mustles strops. Like designing automs systems to protect for readition and mustless strops. Like designing automs systems to protect for readition in an extreme strong southern to ligituative behalff, designed from the designed for significant call for in-fight militation to interesting some extreme solutions behalff, and an extreme solution and extreme solutions are consistent to share freath an extreme solution and extreme solutions. Each project discipline must exclusion these equipments append safety leasants and time-beffer of the finite experience solution for leasant services. Common of them invoice appropriate automation in finite sizes.

	In-Flight Software Error Detection and Mitigation Strategies
	Provide crewiground insight, control, and override
	Employ independent monitoring of critical vehicle automation Manual or automated detection, followed by response
	Employ software backups (targeted to full) which are: Simple (compared to primary flight software) Dissimiter (expectally in requirements and test)
	Enter safe mode (reduced capability primary software subset) Examples: restore power/communication, conserve fuel
	 Uplink new software and/or data (time permitting)
ì	Design system to reducatelininate dependency on software
	Reboot (often ineffective for lookstate errors)

Summary

Significant software failures have occurred steadily since first use in spoce. New data has observationed the behavior friber failures to better undestand manifestation patients and only. The strategies outlined here should be considered during vehicle design, and throughout the software development and operations lifecycle to minimize the occurerance and import of resent software behavior.

Terminology

"Software Failure - Software behaving in an unexpected manner causing loss of life, injury, losslend of mission, or significant close-call "Byzantine - Active, but possibly corrupted unbusted communication

References

 Historical Aerospace Software Errors Categorized to Influence Fault Tolerance, Releasing March 2024, https://htts.nesa.gov/ oits/ione/20230012909

- Software Error Incident Categorizations in Aerospace, Aug 2023, NASA/TP-20230012154, https://lntra.ness.gov/citefons/2023001215-3. NPR 8705.2C, Human-Rating Requirements for Space Systems.
- NASA Software Engineering Requirements, NPR 7150.2D, Mar 2022, rodis3 gric nees gov?

Ine Prokop, iorraine e prokop@nasa.gov.

bulletin

tech

Software Common Cause Failure Summary

- Software "common cause" or "common mode" errors occur when a single software error results in unexpected behavior, even if running on multiple strings
- Software in NASA Space Systems should be architected for redundancy based on criticality and time-to-effect, with requirements driven primarily by NPR 8705.2C and NPR 7150.2D
- Software Errors manifest in two ways: Silent or Erroneous
- Study of historical software incidents indicates the following
 - Erroneous output is much more prevalent 85% of the incidents
 - Rebooting is largely ineffective to recover from erroneous situations, and not reliable for silent software
 - Software logic errors are the most common form, then data config, and 26% of errors arise from input
 - Missing Code accounted for 36% (including requirements, unknowns) of historic software errors
 - "Unknown-unknowns" account for over 15% of software error incidents, subjectively
- Fault-tolerant systems should be designed with these statistics in mind overall recommendations
 - Consider the Erroneous Case more than failing silent
 - Don't always rely on reboot
 - Employ hardware-in-the-loop, test-like-you-fly, and off-nominal testing
 - Validate configuration and command data prior to use
 - Consider use of backup strategies for critical events

References & Follow-on Work

- NESC Technical Bulletin 23-06: <u>Considerations for Software Fault Prevention and Tolerance</u>, September 2023.
- Prokop, Lorraine, E., "Software Error Incident Categorizations in Aerospace", NASA Technical Publication, NASA/TP-20230012154. August 2023.
- "Historical Aerospace Software Errors Categorized to Influence Fault Tolerance", March 2024, AIAA Aerospace Conference 2024, https://ntrs.nasa.gov/citations/20230012909
- Prokop, Lorraine, E., "Software Error Incident Categorizations in Aerospace", [Manuscript in publication], Journal of Aerospace Information Systems.
- The dataset used for this study, with more description and references, is available upon request

and the second of the

- Follow-on work:
 - This dataset can be used for further study, for example, to answer the following
 - What was the root cause of this error? (Why was the software programmed the way it was?)
 - Would a backup system have helped?
 - What kind of a backup system could have helped?"
 - Would a human-in-the-loop, a dissimilar backup, a monitor system, or no backup at all be best?
 - Was this a multi-string common-cause failure?
 - Was a manual or automated backup system used?
 - What phase of the project could/should this incident been averted?
 - How much and what type of testing may have uncovered these errors?

Backup

Dataset Industry & Impact Breakdown

at the second of the second

Industries in Data Set

Impact/Result of Failures in Dataset

Historical Analysis

- Historic Failure Incidents Involving Software
 - We studied software significant failure incidents primarily within NASA and aerospace – when automation did not behave as expected
 - Software Failure Software/automation did not behave as expected causing loss of life, injury, loss/end of mission, or significant close-call
 - 55 incidents were characterized since beginning of computers
 - Aerospace (49) loss of life, mission, close-call
 - Non-Aerospace (6) 3 Medical (loss of life), 3 Commercial (3) (loss of service)
 - We categorized software errors to determine:
 - Which is more prevalent fail silent or erroneous?
 - Could the failure have been corrected by reboot?
 - Was this an unanticipated situation missing code, wrong code, or unknown unknown?
 - Where in the code was the failure introduced?
 - NOTE: The root cause of these failures may not all be attributable to software (why it was
 programmed like that), but how the incident initially manifested during operations (how it behaved) is
 characterized

Dataset Sample: Historical Software Incidents (1982-1994)

	Flight or System	Title	Result / Outcome	Erroneous or Silent?	Reboot Recoverable	Missing Code?	Error Location	Unknown- unknown?
1982	Viking-1	Erroneous Command caused loss of comm		Erroneous Output	No	No	Command Input	No
1985-87	Therac-25	Radiation Therapy machine output lethal doses, user input speed	Four deaths, two chronic injured	Erroneous Output	No	No	Code/Logic	No
1988	Phobos-1	Erroneous unchecked uplinked command lost vehicle	Loss of vehicle/Mission	Erroneous Output	No	No	Command Input	No
1988	Soyuz TM-5	Wrong code executedto perform de-orbit burn	, ,	Erroneous Output	No	No	Code/Logic	No
	Aries - Red Tigress I	Bad command causes guidance error	Loss of Vehicle	Erroneous Output	No	No	Sensor Input	No
1991	Patriot Missile	Patriot failed target intercept due to 24-bit rounding error growthin time over time	· •	Erroneous Output	Yes	No	Code/Logic	No
1992	F-22 Raptor	Software failed to compensate for pilot-induced oscillation in presence of lag	Loss of test vehicle	Erroneous Output	No	Yes	Sensor Input	Yes
	Clementine Lunar Mission	Erroneous thruster firing exhausted propellant, cancelling asteroid flyby	Failed mission objective	Erroneous Output	No	No	Code/Logic	No

Photo Credits: The National Archives, NAID: 6361754 (top), NAID: 6424495 (bottom)