НИУ Высшая школа экономики Факультет социальных наук (департамент политической науки)

Теория игр

2019/2020 учебный год (Л. Н. Сысоева, Н.А. Василенок, Н.Е. Сахарова, Д. А. Дагаев, К. И. Сонин, И. А. Хованская)

Семинарский листик 11

(13 декабря 2019 года)

Задание 1. Мориарти заманил Ватсона в ловушку и теперь угрожает его жизни, пытаясь заставить Шерлока совершить самоубийство. Матрица игры выглядит следующим образом:

	убить Ватсона	держать Ватсона в заложниках	отпустить Ватсона
совершить самоубийство	-10;-5	-8;5	-5;5
имитировать самоубийство	-8;-2	5;5	8;5
уехать за границу -15;5		-5;0	10;-10
проигнорировать угрозу	-10;0	-5;-2	15;-15

Найдите все равновесия Нэша в смешанных стратегиях в этой игре.

Задание 2. Напротив квартиры Холмса и Ватсона на Бейкер-стрит 221Б происходит взрыв. Вскоре неизвестный террорист начинает с Шерлоком Холмсом страшную игру. Преступник завонит Шерлоку и загадывает ему загадки про преступления: Шерлок должен расследовать их за короткое время, иначе взрывы продолжатся. Шерлок точно знает, что за взрывами стоит один из двух людей: Мориарти или его сестра Эвр. Он оценивает вероятность причастности к взрывам Мориарти в 40%, а Эвр — в 60%.

После звонка преступник решает, оставаться в Лондоне и приводить угрозу в исполнение или скрыться. Когда Шерлоку сообщают очередную загадку, он может выбрать: разгадывать ее или взять Лейстреда и поехать арестовать Мориарти или Эвр. Если Холмс арестовывает преступника, то взрыва не происходит. Если происходит очередной взрыв, то детектив получает платеж (-15) вне зависимости от всего остального. Если Шерлок угадывает, кого нужно арестовать, то он получает удовлетворение в размере +5, если им еще удается застать преступника в Лондоне, то платеж увеличивается еще на +5. Если Шерлок не угадывает, то он получает неудовольствие в размере (-2). Если детектив разгадывает очередную загадку вместо того, чтобы ловить преступника, то его платеж равен 0. Если преступника арестовывают, то он получает платеж (-10). Если преступнику приходится уехать, то он получает неудовольствие от прерванной игры в размере (-5). Если же игра идет по плану, то есть преступник остается в Лондоне, а Шерлок разгадывает загадку или пытается арестовать не того, то преступник получает удовлетворение в размере +10.

Формализуйте эту игру в виде Байесовой игры и найдите все равновесия Байеса-Нэша. **Задание 3**. Шерлок Холмс и Мориарти три раза подряд играют в игру G с матрицей

	t_1	t_2	t_3	t_4
s_1	10;1	0;0	-1;-1	3;2
s_2	7;7	-1;2	1;10	2;2
s_3	0;2	1;2	3;-1	3;0
s_4	3;3	0;1	0;0	5;5

Мориарти может выбрать стратегию и сообщить ее Холмсу. После чего Холмс может выбрать фактор дисконтирования δ в промежутке $0 \le \delta \le 1$.

Мориарти выбрал следующую стратегию: играть t_3 в первом периоде, играть стратегию t_3 во втором периоде, если Холмс в первом периоде играл s_2 , играть t_4 в третьем периоде, если в первом и втором периоде Холмс играл s_2 , если в каком-то периоде Холмс играет не s_2 , то во всех последующих периодах Мориарти играет t_2 .

- а) Предположим, фактор дисконтирования $\delta=1$ найдите оптимальный ответ Холмса на указанную стратегию Мориарти.
- б) Предположим, фактор дисконтирования $\delta = \frac{1}{10}$ найдите оптимальный ответ Холмса на указанную стратегию Мориарти.
- в) Какой фактор дисконтирования $0 \le \delta \le 1$ выгоднее всего выбрать Холмсу и какую стратегию он будет играть при этом δ ? Мы считаем, что Холмс максимизирует свой платеж.

Напоминаем, что ответ на каждый пункт должен быть обоснован!

Задание 4. Для каждого из следующих утверждений приведите пример игры с требуемыми свойствами и проверьте, что указанные свойства выполняются, или докажите, что такой игры не существует.

- а) Существует такая игра G, что в игре G_{∞} (повторяющейся бесконечное число раз игре G) не существует ни одного равновесия Нэша в чистых стратегиях.
- б) Существует такая игра G, что в игре G_4 (повторяющейся 4 раза игре G) не существует ни одного равновесия Нэша, совершенного на подыграх.
- в) Существует такая игра, в которой бесконечное число равновесий Нэша в смешанных стратегиях.