

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CIÊNCIA DA COMPUTAÇÃO

DANIELE KAROLINE CARVALHO ROSA

Trabalho Final Tópicos Especiais Em Computação XX: PoweBI

Dashboard com dados sobre Incêndios Florestais no Brasil em 2024

CHAPECÓ

2024

DANIELE KAROLINE CARVALHO ROSA

Dashboard com dados sobre Incêndios Florestais no Brasil em 2024

Projeto de trabalho final para a matéria de Tópicos Especiais em Computação XX: PoweBI.

1. Introdução

O fogo na Mata Atlântica é uma ferramenta antiga, utilizada pelos caçadores-coletores a mais de 10 mil anos, para eliminar a vegetação lenhosa na limpeza de terrenos, para auxiliar na caça e na preparação de alimentos. Seu uso agressivo e contínuo nos séculos XVIII e XIX, para abrir espaços na floresta para criação de gado e para o plantio de café, foi muito danoso pela elevada frequência e pelas grandes extensões. Assim, o fogo progressivamente vem modelando a paisagem. Tanto as queimadas controladas quanto os incêndios florestais são uma das maiores ameaças à preservação da biodiversidade do planeta. Além dos seus impactos diretos sobre a fauna e a flora, contribuem, indiretamente, com a degradação ambiental, deixando o solo mais susceptível a processos erosivos e liberando na atmosfera grande quantidade de gases responsáveis pelo efeito estufa. ² A rapidez e a eficiência na detecção e monitoramento dos incêndios florestais é fundamental para a viabilização do controle do fogo, redução dos custos nas operações de combate e atenuação dos danos. Além disso, um conhecimento inadequado da localização do incêndio e extensão da área queimada prejudica a estimativa do impacto do fogo sobre o ambiente . Portanto, os métodos de detecção e monitoramento de incêndios florestais são fundamentais para o planejamento do controle, bem como para o dimensionamento dos efeitos produzidos pelo fogo sobre o ambiente. ³

A escolha do tema incêndios florestais no Brasil em 2024 foi motivada pela sua relevância ambiental, social e econômica. O Brasil, com a Amazônia e sua vasta biodiversidade, tem um papel crucial no equilíbrio ecológico global. O aumento dos incêndios traz graves consequências, como a destruição de fauna, flora e comunidades locais, além de contribuir para as mudanças climáticas. Analisar os incêndios ao longo do tempo permite identificar padrões preocupantes, como a sazonalidade e os estados mais afetados, e oferece dados importantes para a conscientização e tomada de decisões para a preservação ambiental.

2. Fonte de Dados

O dataset "FireWatch 2024: Wildfires and Drought in Brazil", disponível no Kaggle, é uma fonte rica de informações sobre os incêndios florestais ocorridos no Brasil ao longo de 2024. Com um foco em dados coletados em 2024, esse conjunto é fundamental para compreender a dinâmica dos recentes incêndios no país.

O conjunto de dados estruturados contém informações abrangentes sobre incêndios florestais no Brasil, abrangendo um período de 01/01/2024 até meados de Setembro. Ele inclui variáveis como:

- Data
- Município
- Estado
- Bioma
- Média do número de dias sem chuva
- Média de precipitação
- Média de risco de fogo
- Média de FRP

Acesso em: https://www.kaggle.com/datasets/mayaravalliero/fire-watch-brazil-2024

3. Estrutura dos Arquivos

Caso haja problema na visualização, verifique o caminho dos arquivos de dados em Página Inicial > Transformar Dados > Configurações da Fonte de Dados > Altere o caminho original para o caminho onde se encontra o trabalho.

Bioma:

ID Bioma	Bioma		
1	Amazônia		
2	Caatinga		
3	Cerrado		
4	Mata Atlântica		
5	Pampa		
6	Pantanal		

Município:

codigo_ibge,nome,latitude,longitude,capital,codigo_uf,siafi_id,ddd,fuso_horario 5200050,Abadia de Goiás,-16.7573,-49.4412,0,52,1050,62,America/Sao_Paulo 3100104,Abadia dos Dourados,-18.4831,-47.3916,0,31,4001,34,America/Sao_Paulo 5200100,Abadiânia,-16.197,-48.7057,0,52,9201,62,America/Sao_Paulo 3100203, Abaeté, -19.1551, -45.4444, 0, 31, 4003, 37, America/Sao_Paulo 1500107,Abaetetuba,-1.72183,-48.8788,0,15,0401,91,America/Sao_Paulo 2300101,Abaiara,-7.34588,-39.0416,0,23,1301,88,America/Sao_Paulo 2900108,Abaíra,-13.2488,-41.6619,0,29,3301,77,America/Sao_Paulo 2900207,Abaré,-8.72073,-39.1162,0,29,3303,75,America/Sao_Paulo 4100103,Abatiá,-23.3049,-50.3133,0,41,7401,43,America/Sao_Paulo 4200051,Abdon Batista,-27.6126,-51.0233,0,42,9939,49,America/Sao_Paulo 1500131,Abel Figueiredo,-4.95333,-48.3933,0,15,0375,94,America/Sao_Paulo 4200101,Abelardo Luz,-26.5716,-52.3229,0,42,8001,49,America/Sao_Paulo 3100302,Abre Campo,-20.2996,-42.4743,0,31,4005,31,America/Sao_Paulo 2600054,Abreu e Lima,-7.90072,-34.8984,0,26,2631,81,America/Sao_Paulo 1700251,Abreulândia,-9.62101,-49.1518,0,17,0337,63,America/Sao_Paulo 3100401,Acaiaca,-20.359,-43.1439,0,31,4007,31,America/Sao_Paulo 2100055,Açailândia,-4.94714,-47.5004,0,21,0961,99,America/Sao_Paulo 2900306,Acajutiba,-11.6575,-38.0197,0,29,3305,75,America/Sao_Paulo 1500206,Acará,-1.95383,-48.1985,0,15,0403,91,America/Sao_Paulo 2300150,Acarape,-4.22083,-38.7055,0,23,1231,85,America/Sao_Paulo 2300200,Acaraú,-2.88769,-40.1183,0,23,1303,88,America/Sao_Paulo 2400109.Acari.-6.4282.-36.6347.0.24.1601.84.America/Sao Paulo 2200053,Acauã,-8.21954,-41.0831,0,22,0266,89,America/Sao_Paulo 4300034,Aceguá,-31.8665,-54.1615,0,43,1118,53,America/Sao_Paulo

Estado:

codigo_uf uf,nome,latitude,longitu	ıde,regiao
11,RO,Rondônia,-10.83,-63.34,Nor	te
12,AC,Acre,-8.77,-70.55,Norte	
13,AM,Amazonas,-3.47,-65.1,Norte	e
14,RR,Roraima,1.99,-61.33,Norte	
15,PA,Pará,-3.79,-52.48,Norte	
16,AP,Amapá,1.41,-51.77,Norte	
17,TO,Tocantins,-9.46,-48.26,Norte	
21,MA,Maranhão,-5.42,-45.44,Nor	deste
22, PI, Piauí, -6.6, -42.28, Nordeste	
23,CE,Ceará,-5.2,-39.53,Nordeste	
24,RN,Rio Grande do Norte,-5.81,-	36.59, Nordeste
25, PB, Paraíba, -7.28, -36.72, Nordest	e
26,PE,Pernambuco,-8.38,-37.86,No	rdeste
27,AL,Alagoas,-9.62,-36.82,Nordes	te
28,SE,Sergipe,-10.57,-37.45,Nordes	te
29,BA,Bahia,-13.29,-41.71,Nordest	e
31,MG,Minas Gerais,-18.1,-44.38,S	udeste
32,ES,Espírito Santo,-19.19,-40.34,5	Sudeste
33,RJ,Rio de Janeiro,-22.25,-42.66,5	Sudeste
35,SP,São Paulo,-22.19,-48.79,Sude	este
41,PR,Paraná,-24.89,-51.55,Sul	
42,SC,Santa Catarina,-27.45,-50.95,	Sul
43,RS,Rio Grande do Sul,-30.17,-53	.5,Sul
50,MS,Mato Grosso do Sul,-20.51,-	54.54,Centro-Oeste

Dataset Fire Watch:

data	municipio	estado	bioma	avg_nume	avg_precip	avg_risco_	avg_frp
01.01.2024	VALE DO A	RONDÔNI	Amazônia	0.0	1698.0	0.0	13.0
01.01.2024	SÃO GABR	AMAZONA	Amazônia	0.2	206.8	0.0	81.4
01.01.2024	MANAQU	IAMAZONA	Amazônia	0.0	60.0	0.0	27.0
01.01.2024	JUTAÍ	AMAZONA	Amazônia	2.0	776.0	0.0	211.0
01.01.2024	AUTAZES	AMAZONA	Amazônia	0.0	2.22	0.0	97.67
01.01.2024	IRANDUBA	AMAZONA	Amazônia	0.0	0.0	0.0	55.5
01.01.2024	CAREIRO I	AMAZONA	Amazônia	0.0	68.0	0.0	25.0
01.01.2024	SÃO LUIZ	RORAIMA	Amazônia	0.0	0.0	18.0	1311.8
01.01.2024	BOA VISTA	RORAIMA	Amazônia	7.84	0.0	100.0	79.67
01.01.2024	NORMANI	RORAIMA	Amazônia	5.44	0.0	100.0	100.78
01.01.2024	BONFIM	RORAIMA	Amazônia	6.0	0.0	96.81	318.0
01.01.2024	CANTÁ	RORAIMA	Amazônia	5.5	0.0	54.75	309.75
01.01.2024	UIRAMUT	RORAIMA	Amazônia	6.0	0.0	100.0	52.0
01.01.2024	PACARAIN	RORAIMA	Amazônia	5.64	0.0	98.26	328.89
01.01.2024	CARACAR	RORAIMA	Amazônia	2.13	0.0	61.8	54.4
01.01.2024	RORAINÓ	RORAIMA	Amazônia	1.92	0.0	20.54	785.42
01.01.2024	CAROEBE	RORAIMA	Amazônia	0.0	0.0	10.14	454.84
01.01.2024	SÃO JOÃO	RORAIMA	Amazônia	2.0	0.0	10.0	183.0
01.01.2024	IRACEMA	RORAIMA	Amazônia	3.6	0.0	50.4	333.2
01.01.2024	AMAJARI	RORAIMA	Amazônia	4.65	32.23	92.78	628.15
01.01.2024	ALTO ALEC	RORAIMA	Amazônia	6.0	0.0	100.0	14.0
01.01.2024	MUCAJAÍ	RORAIMA	Amazônia	6.0	0.0	72.0	11.0
01.01.2024	ORIXIMIN	PARÁ	Amazônia	6.0	0.0	100.0	593.0
01.01.2024	BRASIL NO	PARÁ	Amazônia	0.0	0.0	0.0	44.2
01.01.2024	ULIANÓPO	PARÁ	Amazônia	1.0	805.0	0.0	21.5
01.01.2024	MONTE AI	PARÁ	Amazônia	0.0	14.38	13.75	182.19
01.01.2024	NOVO REP	PARÁ	Amazônia	0.0	123.2	6.3	63.4
01.01.2024	URUARÁ	PARÁ	Amazônia	0.02	247.18	4.39	145.35
01.01.2024	FLORESTA	PARÁ	Amazônia	0.0	200.0	0.0	53.0
01.01.2024	AVEIRO	PARÁ	Amazônia	0.0	1257.0	0.0	52.4

4. Modelo Estrela

A Tabela Fato do Modelo Estrela é a fAnaliseQueimadas. Esta tabela possui métricas relacionadas às queimadas, como número de dias sem chuva, FRP, etc.

As Tabelas Dimensões são:

- dCalendario: Contém informações sobre datas.
- dEstados: Contém informações sobre os estados.
- dMunicipios: Contém informações sobre os municípios.
- dBiomas: Contém informações sobre os biomas.

A tabela AnaliseQueimadas atua como o fato central, armazenando as medidas quantitativas relacionadas às queimadas. As demais tabelas (dMunicipios, dEstados, dCalendario e dBiomas) são dimensões, fornecendo o contexto geográfico, temporal e de tipo de bioma para as medidas do fato central. Essa organização permite uma análise multidimensional dos dados, facilitando a visualização de, por exemplo, evolução temporal das queimadas em diferentes regiões e biomas, ou a identificação de padrões relacionados a fatores climáticos e geográficos.

Para criar este modelo, analisou-se os dados principais e essenciais para criar métricas coerentes: Bioma, Estados, Datas e Municípios.

A partir disso, foi feito o relacionamento entre tabelas:

5. Medidas

• Contagem de Dias Com Queimada

Esta medida faz a contagem de dias com queimada. A média de risco de fogo deve ser superior a 0, indicando que há indícios de fogo.

DISTINCTCOUNT faz a contagem de diferentes datas e as associa a AVG Risco de Fogo.

• Dias sem Chuva Médio por Estado e Bioma

```
Dias sem Chuva Médio por Estado e Bioma =

AVERAGEX(

SUMMARIZE(

fAnaliseQueimadas,
fAnaliseQueimadas[Estado],
fAnaliseQueimadas[Bioma],
"Dias Sem Chuva", AVERAGE(fAnaliseQueimadas[AVG Numeros de Dias Sem Chuva])
),
[Dias Sem Chuva]
```

Faz a média de dias sem chuva por Estado e Bioma. Combina os dados de Estado e Bioma na tabela criada pelo SUMMARIZE, a Dias Sem Chuva, onde é calculado a média sobre todas as linhas da tabela, por AVERAGEX.

• FRP por Bioma

Faz o cálculo de FRP por Bioma . Soma os valores de média, associando aos biomas.

• Percentual de Queimadas com Risco Alto

```
Percentual de Queimadas com Risco Alto =

DIVIDE(

CALCULATE(

COUNTROWS(fAnaliseQueimadas),

fAnaliseQueimadas[AVG Risco de Fogo] > 70

),

COUNTROWS(fAnaliseQueimadas)
) * 100
```

Faz o cálculo do percentual de queimadas com alto risco. Conta todas as linhas de fAnaliseQueimadas onde a média de Risco de Fogo é maior que 70.

• Risco de Fogo Acumulado

```
Risco de Fogo Acumulado =

CALCULATE(

SUM(fAnaliseQueimadas[AVG Risco de Fogo]),

DATESYTD(fAnaliseQueimadas[Data])
)
```

Faz a soma de risco de fogo sobre todas as datas.

Referências

- 1. AXIMOFF, Izar; RODRIGUES, Rodrigo de Carvalho. Histórico dos incêndios florestais no Parque Nacional do Itatiaia. **Ciência Florestal**, Santa Maria, v. 21, n. 1, p. 83-92, jan.-mar. 2011. ISSN 0103-9954.
- 2. WHITE, Benjamin Leonardo Alves; WHITE, Larissa Alves Secundo. Queimadas controladas e incêndios florestais no estado de Sergipe, Brasil, entre 1999 e 2015. **Ciência Florestal**
- 3. BATISTA, Antonio Cartos. Detecção de incêndios florestais por satélites.