

Cálculo 1 - HONORS - CM311

Limites Infinitos e Regra de L'Hopital

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

• Definimos $\lim_{x \to +\infty} f(x) = L$ quando

$$\forall \varepsilon > 0, \exists N > 0$$
, tal que se $x > N$ então $|f(x) - L| < \varepsilon$.

ullet Todas as propriedades de $\lim_{x o a}$, também valem para $\lim_{x o \pm \infty}$.

Proposição 1.1.

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L$$

Exemplo 1.2

Calcule

a)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$$

b)
$$\lim_{x \to +\infty} 2x - \sqrt{x^2 + 3}$$

• Definimos $\lim_{x \to +\infty} f(x) = L$ quando

$$\forall \varepsilon > 0, \exists N > 0$$
, tal que se $x > N$ então $|f(x) - L| < \varepsilon$.

 \bullet Todas as propriedades de $\lim_{x\to a}$, também valem para $\lim_{x\to\pm\infty}$.

Proposição 1.1.

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L$$

Exemplo 1.2

Calcule

a)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$$

b)
$$\lim_{x \to +\infty} 2x - \sqrt{x^2 + 3}$$

• Definimos $\lim_{x \to +\infty} f(x) = L$ quando

$$\forall \varepsilon > 0, \exists N > 0$$
, tal que se $x > N$ então $|f(x) - L| < \varepsilon$.

• Todas as propriedades de $\lim_{x\to a}$, também valem para $\lim_{x\to\pm\infty}$.

Proposição 1.1.

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L.$$

Exemplo 1.2

Calcule

a)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$$

b)
$$\lim_{x \to +\infty} 2x - \sqrt{x^2 + 3}$$

• Definimos $\lim_{x \to +\infty} f(x) = L$ quando

$$\forall \varepsilon > 0, \exists N > 0$$
, tal que se $x > N$ então $|f(x) - L| < \varepsilon$.

 \bullet Todas as propriedades de $\lim_{x\to a}$, também valem para $\lim_{x\to\pm\infty}$.

Proposição 1.1.

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L.$$

Exemplo 1.2.

Calcule

a)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$$
.

b)
$$\lim_{x \to +\infty} 2x - \sqrt{x^2 + 3}$$
.

• Definimos $\lim_{x \to +\infty} f(x) = L$ quando

$$\forall \varepsilon > 0, \exists N > 0$$
, tal que se $x > N$ então $|f(x) - L| < \varepsilon$.

 \bullet Todas as propriedades de $\lim_{x\to a}$, também valem para $\lim_{x\to \pm \infty}$.

Proposição 1.1.

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L.$$

Exemplo 1.2.

Calcule

a)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$$
.

b)
$$\lim_{x \to +\infty} 2x - \sqrt{x^2 + 3}$$
.

- Definimos $\lim_{x \to +\infty} f(x) = +\infty$ quando $\forall M > 0, \exists N > 0$, tal que se x > N então f(x) > M.
- Analogamente podemos definir $\lim_{x \to \pm \infty} f(x) = \pm \infty$.

Proposição 2.1.

Vale
$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = +\infty.$$

• As manipulações anteriores com $\pm \infty$ valem também nestes casos.

Exemplo 2.2

Mostre que
$$\lim_{x \to +\infty} x = +\infty$$

- Definimos $\lim_{x\to +\infty} f(x) = +\infty$ quando $\forall M>0, \exists N>0, \text{ tal que se } x>N \text{ então } f(x)>M.$
- Analogamente podemos definir $\lim_{x \to \pm \infty} f(x) = \pm \infty$.

Proposição 2.1.

Vale
$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = +\infty.$$

• As manipulações anteriores com $\pm \infty$ valem também nestes casos.

Exemplo 2.2

Mostre que
$$\lim_{x \to +\infty} x = +\infty$$
.

- Definimos $\lim_{x\to +\infty} f(x) = +\infty$ quando $\forall M>0, \exists N>0, \text{ tal que se } x>N \text{ então } f(x)>M.$
- Analogamente podemos definir $\lim_{x \to \pm \infty} f(x) = \pm \infty$.

Proposição 2.1.

Vale
$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = +\infty.$$

• As manipulações anteriores com $\pm\infty$ valem também nestes casos.

Exemplo 2.2

Mostre que
$$\lim_{x \to +\infty} x = +\infty$$
.

- Definimos $\lim_{x\to +\infty} f(x) = +\infty$ quando $\forall M>0, \exists N>0, \text{ tal que se } x>N \text{ então } f(x)>M.$
- Analogamente podemos definir $\lim_{x \to \pm \infty} f(x) = \pm \infty$.

Proposição 2.1.

Vale
$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = +\infty.$$

ullet As manipulações anteriores com $\pm\infty$ valem também nestes casos.

Exemplo 2.2.

Mostre que
$$\lim_{x \to +\infty} x = +\infty$$
.

Exemplo 2.3.

Calcule

a)
$$\lim_{x \to +\infty} x^2 + x + 1.$$

b)
$$\lim_{x \to +\infty} x - \sqrt{3x^3 + 2}.$$

Proposição 2.4.

Sendo a $\in \mathbb{R}$ defina α como $\alpha = a, a^+, a^-, +\infty$ ou $-\infty$. Vale

a) Se
$$\lim_{x \to \alpha} f(x) = \pm \infty$$
, então $\lim_{x \to \alpha} \frac{1}{f(x)} = 0$

b) Se
$$f(x) > 0$$
 perto de α , e $\lim_{x \to \alpha} f(x) = 0$, então $\lim_{x \to \alpha} \frac{1}{f(x)} = +\infty$.

Exemplo 2.3.

Calcule

a)
$$\lim_{x \to +\infty} x^2 + x + 1.$$

b)
$$\lim_{x \to +\infty} x - \sqrt{3x^3 + 2}$$
.

Proposição 2.4.

Sendo $a \in \mathbb{R}$ defina α como $\alpha = a, a^+, a^-, +\infty$ ou $-\infty$. Vale

a) Se
$$\lim_{x \to \alpha} f(x) = \pm \infty$$
, então $\lim_{x \to \alpha} \frac{1}{f(x)} = 0$.

b) Se
$$f(x) > 0$$
 perto de α , e $\lim_{x \to \alpha} f(x) = 0$, então $\lim_{x \to \alpha} \frac{1}{f(x)} = +\infty$.

Teorema 3.1 (TVMC).

Sejam f,g contínuas em [a,b] e deriváveis em (a,b). Existe $c\in (a,b)$, tal que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c),$$

ou

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}, \ \text{se } g(b)\neq g(a) \ \text{e } g'(c)\neq 0.$$

• O TVM é um caso particular deste com g(x) = x.

Prova: Exercício

- Interpretação geométrica?
- Curvas paramétricas no plano!

Teorema 3.1 (TVMC).

Sejam f,g contínuas em [a,b] e deriváveis em (a,b). Existe $c\in (a,b)$, tal que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c),$$

ou

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}, \text{ se } g(b) \neq g(a) \text{ e } g'(c) \neq 0.$$

• O TVM é um caso particular deste com g(x) = x.

Prova: Exercício

Defina a função
$$h(x) = (f(b) - f(a)).g(x) - (g(b) - g(a)).f(x)$$
 e use o Teorema de Rolle em $h...$

- Interpretação geométrica?
- Curvas paramétricas no plano!

Teorema 3.1 (TVMC).

Sejam f,g contínuas em [a,b] e deriváveis em (a,b). Existe $c\in (a,b)$, tal que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c),$$

ou

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}, \text{ se } g(b) \neq g(a) \text{ e } g'(c) \neq 0.$$

• O TVM é um caso particular deste com g(x) = x.

Prova: Exercício.

- Interpretação geométrica?
- Curvas paramétricas no plano!

Teorema 3.1 (TVMC).

Sejam f,g contínuas em [a,b] e deriváveis em (a,b). Existe $c \in (a,b)$, tal que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c),$$

ou

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$
, se $g(b) \neq g(a)$ e $g'(c) \neq 0$.

• O TVM é um caso particular deste com g(x) = x.

Prova: Exercício.

- Interpretação geométrica?
- Curvas paramétricas no plano!

Teorema 3.1 (TVMC).

Sejam f, g contínuas em [a,b] e deriváveis em (a,b). Existe $c \in (a,b)$, tal que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c),$$

ou

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}, \text{ se } g(b) \neq g(a) \text{ e } g'(c) \neq 0.$$

• O TVM é um caso particular deste com g(x) = x.

Prova: Exercício.

- Interpretação geométrica?
- Curvas paramétricas no plano!

Curvas Paramétricas no Plano

Definição 3.2.

Uma curva paramétrica no plano é uma função $\vec{r}:I\subset\mathbb{R}\to\mathbb{R}^2$. Podemos representar \vec{r} como

$$\overrightarrow{r}(t) = (g(t), f(t)),$$

onde f, g são funções reais definidas em I.

Exemplo 3.3.

Vamos descrever a curva paramétrica $\vec{r}(t) = (t, t^2)$

Exemplo 3.4

Vamos descrever a curva paramétrica $\vec{r}(t) = (\cos t, \sin t)$.

Curvas Paramétricas no Plano

Definição 3.2.

Uma curva paramétrica no plano é uma função $\vec{r}:I\subset\mathbb{R}\to\mathbb{R}^2$. Podemos representar \vec{r} como

$$\overrightarrow{r}(t) = (g(t), f(t)),$$

onde f, g são funções reais definidas em I.

Exemplo 3.3.

Vamos descrever a curva paramétrica $\vec{r}(t) = (t, t^2)$.

Exemplo 3.4

Vamos descrever a curva paramétrica $\vec{r}(t) = (\cos t, \sin t)$.

Curvas Paramétricas no Plano

Definição 3.2.

Uma curva paramétrica no plano é uma função $\vec{r}:I\subset\mathbb{R}\to\mathbb{R}^2$. Podemos representar \vec{r} como

$$\overrightarrow{r}(t) = (g(t), f(t)),$$

onde f,g são funções reais definidas em I.

Exemplo 3.3.

Vamos descrever a curva paramétrica $\vec{r}(t) = (t, t^2)$.

Exemplo 3.4.

Vamos descrever a curva paramétrica $\vec{r}(t) = (\cos t, \sin t)$.

- Sendo $\vec{r}(t) = (g(t), f(t))$ uma curva paramétrica com f, g deriváveis, a inclinação da reta tangente à $\vec{r}(t_0)$ é dada por $\frac{f'(t_0)}{g'(t_0)}$.
- Outra maneira: vetor velocidade $\vec{r}'(t_0) = (g'(t_0), f'(t_0))$.

- Sendo $\vec{r}(t) = (g(t), f(t))$ uma curva paramétrica com f, g deriváveis, a inclinação da reta tangente à $\vec{r}(t_0)$ é dada por $\frac{f'(t_0)}{g'(t_0)}$.
- Outra maneira: vetor velocidade $\overrightarrow{r}'(t_0) = (g'(t_0), f'(t_0))$.

- Sendo $\vec{r}(t) = (g(t), f(t))$ uma curva paramétrica com f, g deriváveis, a inclinação da reta tangente à $\vec{r}(t_0)$ é dada por $\frac{f'(t_0)}{g'(t_0)}$.
- Outra maneira: vetor velocidade $\vec{r}'(t_0) = (g'(t_0), f'(t_0))$.

- Sendo $\vec{r}(t) = (g(t), f(t))$ uma curva paramétrica com f, g deriváveis, a inclinação da reta tangente à $\vec{r}(t_0)$ é dada por $\frac{f'(t_0)}{g'(t_0)}$.
- Outra maneira: vetor velocidade $\vec{r}'(t_0) = (g'(t_0), f'(t_0))$.

- Sendo $\vec{r}(t) = (g(t), f(t))$ uma curva paramétrica com f, g deriváveis, a inclinação da reta tangente à $\vec{r}(t_0)$ é dada por $\frac{f'(t_0)}{g'(t_0)}$.
- Outra maneira: vetor velocidade $\overrightarrow{r}'(t_0) = (g'(t_0), f'(t_0))$.

- Sendo $\vec{r}(t) = (g(t), f(t))$ uma curva paramétrica com f, g deriváveis, a inclinação da reta tangente à $\vec{r}(t_0)$ é dada por $\frac{f'(t_0)}{g'(t_0)}$.
- Outra maneira: vetor velocidade $\vec{r}'(t_0) = (g'(t_0), f'(t_0))$.

- Sendo f, g funções defina $\vec{r}(t) = (g(t), f(t))$.
- A existência de $c \in (a, b)$ para que seja satisfeita a equação abaixo, pode ser interpretada no traço da curva,

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$$

- Sendo f, g funções defina $\vec{r}(t) = (g(t), f(t))$.
- A existência de $c \in (a, b)$ para que seja satisfeita a equação abaixo, pode ser interpretada no traço da curva,

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

- Sendo f, g funções defina $\vec{r}(t) = (g(t), f(t))$.
- A existência de $c \in (a, b)$ para que seja satisfeita a equação abaixo, pode ser interpretada no traço da curva,

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

- Sendo f, g funções defina $\vec{r}(t) = (g(t), f(t))$.
- A existência de $c \in (a, b)$ para que seja satisfeita a equação abaixo, pode ser interpretada no traço da curva,

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

Regra de L'Hôpital

Teorema 4.1 (Regra de L'Hôpital).

Sejam
$$f, g$$
 funções tais que $\lim_{x \to a} f(x) = 0$ e $\lim_{x \to a} g(x) = 0$, e que $\lim_{x \to a} \frac{f'(x)}{g'(x)}$

exista. Então $\lim_{x \to a} \frac{f(x)}{g(x)}$ existe e

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Observação 4.2

- O fato de $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ existir significa que
 - As derivadas f'(x), g'(x) existem para x suficientemente perto de a, exceto possivelmente em x = a.
 - Temos que $g'(x) \neq 0$ para x suficientemente perto de a, exceto possivelmente em x = a.

Regra de L'Hôpital

Teorema 4.1 (Regra de L'Hôpital).

Sejam f, g funções tais que
$$\lim_{x\to a} f(x) = 0$$
 e $\lim_{x\to a} g(x) = 0$, e que $\lim_{x\to a} \frac{f'(x)}{g'(x)}$

exista. Então $\lim_{x\to a} \frac{f(x)}{g(x)}$ existe e

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Observação 4.2.

- O fato de $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ existir significa que
 - As derivadas f'(x), g'(x) existem para x suficientemente perto de a, exceto possivelmente em x = a.
 - Temos que $g'(x) \neq 0$ para x suficientemente perto de a, exceto possivelmente em x = a.

Observações

- A regra de L'Hôpital funciona nos casos que $x \to a^{\pm}$ e $x \to \pm \infty$.
- Vale também para indeterminações do tipo $\pm \frac{\infty}{\infty}$.

Exemplo 4.3.

Calcule os limites abaixo

a)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

b)
$$\lim_{x\to 0} \frac{x-\lg x}{x-\sec x}$$

c)
$$\lim_{x \to +\infty} \frac{e^x}{x^2}$$

d)
$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}}$$

Observações

- A regra de L'Hôpital funciona nos casos que $x \to a^{\pm}$ e $x \to \pm \infty$.
- Vale também para indeterminações do tipo $\pm \frac{\infty}{\infty}$.

Exemplo 4.3.

Calcule os limites abaixo

a)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

b)
$$\lim_{x\to 0} \frac{x-\operatorname{tg} x}{x-\operatorname{sen} x}$$

c)
$$\lim_{x \to +\infty} \frac{e^x}{x^2}$$

d)
$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}}$$

Observações

- A regra de L'Hôpital funciona nos casos que $x \to a^{\pm}$ e $x \to \pm \infty$.
- Vale também para indeterminações do tipo $\pm \frac{\infty}{\infty}$.

Exemplo 4.3.

Calcule os limites abaixo

a)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$
.

b)
$$\lim_{x\to 0} \frac{x-\operatorname{tg} x}{x-\operatorname{sen} x}$$
.

c)
$$\lim_{x \to +\infty} \frac{e^x}{x^2}$$
.

d)
$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}}$$
.