1. Udowodnić oszacowania

a)
$$\frac{1}{5} < \int_{1}^{2} \frac{1}{x^{2} + 1} dx < \frac{1}{2}, \qquad \qquad \int_{1}^{2} \frac{1}{x} dx < \frac{3}{4}.$$

b)
$$\int_0^{\pi/2} \frac{\sin x}{x} < \frac{\pi}{2}, \qquad e^{-1/e} \le \int_0^1 x^x \, dx \le 1.$$

c)
$$\int_0^{\pi/2} \frac{\sin x}{x} < \frac{\pi}{2}, \qquad \qquad \int_1^2 \frac{1}{x^3 + 1} \, dx \le \frac{1}{3}.$$

- **2.** Co jest większe $\int_0^{\pi} e^{\sin^2 x} dx$ czy $\frac{3\pi}{2}$?
- 3. Obliczyć całkę

$$\int_{-\pi/2}^{\pi/2} x \sin^2(x^3) \cos(x^3) \, dx.$$

4. Udowodnij, że dla $m \in \mathbb{Z} \setminus \{-1\}$ zachodzi¹

$$\lim_{n \to \infty} \frac{1^m + 2^m + \dots + n^m}{n^{m+1}} = \frac{1}{m+1}.$$

5. Uzasadnij, że podane granice są równe odpowiedniej całce Riemmana.²

$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} \right), \qquad \lim_{n \to \infty} n \left(\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right),$$

$$\dot{\mathbf{b}}) \qquad \qquad \dot{\mathbf{d}})$$

$$\lim_{n \to \infty} \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{(n-1)\pi}{n} \right), \quad \lim_{n \to \infty} \left(\frac{2^{1/n}}{n+1} + \frac{2^{2/n}}{n+(1/2)} + \dots + \frac{2^{n/n}}{n+(1/n)} \right).$$

6. Dowieść, że

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \log 2.$$

7. Obliczyć³

$$\lim_{n \to \infty} \sqrt[n]{\frac{(2n)!}{n!n^n}}.$$

 $^{^1}$ Możesz skorzystać z tego, że dla $n\neq -1$ mamy $\int_0^1 x^n\,dx=\frac{1}{n+1}.$ 2 Jeśli znasz już zasadnicze twierdzenie rachunku różniczkowego i całkowego, to policz te całki.

³ Wskazówka: Zlogarytmować wyrażenie pod granicą.

 $\dot{\mathbf{8}}$. Załóżmy, że f jest funkcją różniczkowalną. Udowodnić, że

$$\lim_{t \to 0} \frac{1}{t} \int_0^t f(y) \, dy = f(0).$$

Obliczyć

$$\lim_{t \to \infty} \frac{1}{\sqrt{t^2 + 1}} \int_0^t (\operatorname{arctg}(y))^2 \, dy.$$

10. Obliczyć pochodne następujących funkcji

$$f(x) = \int_0^{x^2} \sin(t) dt,$$

$$f(x) = \int_0^x [t] dt,$$

$$\dot{\mathbf{b}}$$

$$f(x) = \int_{-\sin(x)}^{\cos(x)} \arcsin(t) dt,$$

$$f(x) = \int_{-\sin(x)}^x 4\{t\} dt.$$

 $\ddot{1}$ 1. Niech f będzie funkcją różniczkowalną w sposób ciągły na [a,b] i

$$\Delta_n = \int_a^b f(x) dx - \frac{b-a}{n} \sum_{k=1}^n f\left(a + k \frac{b-a}{n}\right).$$

Oblicz granicę $\lim_{n\to\infty} n\Delta_n$.

12. Funkcja f jest całkowalna na $[0, 2\pi]$. Pokazać, że⁴

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) \sin nx \, dx = \lim_{n \to \infty} \int_0^{2\pi} f(x) \cos nx \, dx = 0$$
$$\lim_{n \to \infty} \int_0^{2\pi} f(x) |\sin nx| \, dx = \lim_{n \to \infty} \int_0^{2\pi} f(x) |\cos nx| \, dx = \frac{2}{\pi} \int_0^{2\pi} f(x) \, dx.$$

13. Dowieść, że jeśli f jest funkcją ciągłą nieujemną na [a, b], to

$$\lim_{p \to \infty} \left(\int_a^b f(x)^p \, dx \right)^{1/p} = \max_{[a,b]} f(x).$$

 $\ddot{\mathbf{14}}.$ Funkcja fjest całkowalna na [a,b]. Udowodnić, że dla dowolnych a < c < d < b mamy^5

$$\lim_{h \to 0} \int_{c}^{d} |f(x+h) - f(x)| \, dx = 0.$$

$$\int_{0}^{d} |f(x+h) - f(x)| \, dx \le U(P, f) - L(P, F)$$

dla podziału odcinka [c, c+nh] punktami $p = \{c, c+h, c+2h, \dots, c+nh\}.$

 $^{^4}Wskazówka:$ Rozbić przedział całkowania na 2nczęści.

 $^{^5}Wskazówka:$ Przy założeniu h>0i $d\leq c+nh\leq b$ zauważyć, że