Advanced Programming Methods Lecture 12 RECAP

Introduction in program analysis

Final Exam Organization

Introduction in program analysis

What is Program Analysis?

- Very broad topic, but generally speaking, automated analysis of program behavior
- Program analysis is about developing algorithms and tools that can analyze other programs

Applications of Program Analysis

- Bug finding. e.g., expose as many assertion failures as possible
- Security. e.g., does an app leak private user data?
- Verification. e.g., does the program always behave according to its specification?
- Compiler optimizations. e.g., which variables should be kept in registers for fastest memory access?
- Automatic parallelization. e.g., is it safe to execute different loop iterations on parallel?

Dynamic vs. Static Program Analysis

Two flavors of program analysis:

- Dynamic analysis: Analyzes program while it is running
- Static analysis: Analyzes source code of the program

Static

- + reasons about all executions
- less precise

Dynamic

- + more precise results limited to
- results limited to observed executions
 - observed execution

Testing /Formal Verification

A very crude dichotomy:

Testing	Formal Verification
Correct with respect to the set of test inputs, and reference system	Correct with respect to all inputs, with respect to a formal specification
Easy to perform	Decidability problems, Computational problems,
Dynamic	Static

Static Program Analysis

Typical static analysis question: "Given source code of program P and desired property Q, does P exhibit Q in all possible executions?"

But this question is undecidable! This means

static analyses are either:

Unsound: May say program is safe even though it is unsafe

Sound, but incomplete: May say program is unsafe even though it is safe

Non-terminating: Always gives correct answer when it terminates, but may run forever

Many static analysis techniques are sound but incomplete.

Key idea: Overapproximate (i.e., abstract) program behavior

Key idea: Overapproximate (i.e., abstract) program behavior

Bad states outside over-approximation⇒ Program safe

Key idea: Overapproximate (i.e., abstract) program behavior

- Bad states outside over-approximationProgram safe
- Bad states inside over-approximation, but outside *P*
 - ⇒ false alarm

Key idea: Overapproximate (i.e., abstract) program behavior

- Bad states outside over-approximationProgram safe
- Bad states inside over-approximation, but outside *P*
 - ⇒ false alarm
- Goal: Construct abstractions that are precise enough (i.e., few false alarms) and that scale to real programs

Examples of Abstractions

There is no "one size fits all" abstraction

 What information is useful depends on what you want to prove about the program!

Examples of Abstractions

There is no "one size fits all" abstraction

 What information is useful depends on what you want to prove about the program!

Application	Useful abstraction
No division-by-zero errors	zero vs. non-zero
Data structure verification	list, tree, graph,
No out-of-bounds array	ranges of integer
accesses	variables

How to create Sound Abstractions

- Useful theory for understanding how to design sound static analyses is abstract interpretation
 - Seminal '77 paper by Patrick & Radhia Cousot
- Not a specific analysis, but rather a framework for designing sound-by-construction static analyses
- Let's look at an example: A static analysis that tracks the sign of each integer variable (e.g., positive, non-negative, zero etc.)

First Step: Design An Abstract Domain

- An abstract domain is just a set of abstract values we want to track in our analysis
- For our example, let's fix the following abstract domain:

```
pos: \{x \mid x \in Z \land x > 0\}
zero: \{0\}
neg: \{x \mid x \in Z \land x < 0\}
non-neg: \{x \mid x \in Z \land x \geq 0\}
```

First Step: Design An Abstract Domain

- An abstract domain is just a set of abstract values we want to track in our analysis
- For our example, let's fix the following abstract domain:

```
pos: \{x \mid x \in Z \land x > 0\}

zero: \{0\}

neg: \{x \mid x \in Z \land x < 0\}

non-neg: \{x \mid x \in Z \land x \geq 0\}
```

In addition, every abstract domain contains:

⊤ (top): "Don't know", represents any value

⊥ (bottom): Represents empty-set

- Abstraction function (α) maps sets of concrete elements to the most precise value in the abstract domain

Second Step: Abstraction and Concretization Function

Abstraction function (α) maps sets of concrete elements to the most precise value in the abstract domain

$$\alpha(\{2, 10, 0\}) = \text{non-neg}$$
 $\alpha(\{3, 99\}) = \text{pos}$
 $\alpha(\{-3, 2\}) = \top$

Second Step: Abstraction and Concretization Function

Abstraction function (α) maps sets of concrete elements to the most precise value in the abstract domain

$$\alpha(\{2, 10, 0\}) = \text{non-neg}$$

$$\alpha(\{3, 99\}) = \text{pos}$$

$$\alpha(\{-3, 2\}) = \top$$

Concretization function (γ) maps each abstract value to sets of concrete elements

$$\gamma(pos) = \{ x \mid x \in Z \land x > 0 \}$$

Lattices and Abstract Domains

 Concretization function defines partial order on abstract values:

$$A_1 \le A_2 \text{ iff } \gamma(A_1) \subseteq \gamma(A_2)$$

Lattices and Abstract Domains

Concretization function defines partial order on abstract values:

$$A_1 \leq A_2 \text{ iff } \gamma(A_1) \subseteq \gamma(A_2)$$

Furthermore, in an abstract domain, every pair of elements has a lub and glb ⇒ mathematical lattice

 Least upper bound of two elements is called their join – useful for reasoning about control flow in programs

Almost Inverses

Important property of the abstraction and concretization function is that they are almost inverses:

$$\alpha(\gamma(A)) = A$$

Almost Inverses

Important property of the abstraction and concretization function is that they are almost inverses:

$$\alpha(\gamma(A)) = A$$

$$C \subseteq \gamma(\alpha(C))$$

$$C' \subset A$$

Almost Inverses

Important property of the abstraction and concretization function is that they are almost inverses:

$$\alpha(\gamma(A)) = A$$

$$C \subseteq \gamma(\alpha(C))$$

$$C' \subset A$$

This is called a Galois insertion and captures the soundness of the abstraction

Step 3: Abstract Semantics

- Given abstract domain, α, γ, need to define abstract transformers (i.e., semantics) for each statement
 - Describes how statements affect our abstraction

Step 3: Abstract Semantics

- Given abstract domain, α , γ , need to define abstract transformers (i.e., semantics) for each statement
 - Describes how statements affect our abstraction
 - Abstract counter-part of operational semantics rules

Operational Semantics

Step 3: Abstract Semantics

- Given abstract domain, α , γ , need to define abstract transformers (i.e., semantics) for each statement
 - Describes how statements affect our abstraction
 - Abstract counter-part of operational semantics rules

Back to Our Example

For our sign analysis, we can define abstract transformer for x = y + z as follows:

	pos	neg	zero	non-neg	Т	Τ.
pos	pos	Т	pos	pos	Т	\perp
neg	Т	neg	neg	Т	Т	\perp
zero	pos	neg	zero	non-neg	Т	\perp
non-neg	pos	Т	non-neg	non-neg	Т	\perp
Т	Т	Т	Т	Т	Т	T
Т	Т	Т	Т	Т	Τ	Т

To ensure soundness of static analysis, must prove that abstract semantics faithfully models concrete semantics

Putting It All Together

Fixed-point Computations

Fixed-point computation: Repeated symbolic execution of the program using abstract semantics until our approximation of the program reaches an equilibrium

Fixed-point Computations

- Fixed-point computation: Repeated symbolic execution of the program using abstract semantics until our approximation of the program reaches an equilibrium
- Least fixed-point: Start with underapproximation and grow the approximation until it stops growing

Fixed-point Computations

- Fixed-point computation: Repeated symbolic execution of the program using abstract semantics until our approximation of the program reaches an equilibrium
- Least fixed-point: Start with underapproximation and grow the approximation until it stops growing

Assuming correctness of your abstract semantics, the least fixed point is an overapproximation of the program!

Performing Least Fixed Point Computation

Represent program as a control-flow graph

Performing Least Fixed Point Computation

- Represent program as a control-flow graph
- Want to compute abstract values at every program point

Performing Least Fixed Point Computation

- Represent program as a control-flow graph
- Want to compute abstract values at every program point
- Initialize all abstract states to \perp

Performing Least Fixed Point Computation

- Represent program as a control-flow graph
- Want to compute abstract values at every program point
- Initialize all abstract states to $oldsymbol{\perp}$
- Repeat until no abstract state changes at any program point:

Performing Least Fixed Point Computation

- Represent program as a control-flow graph
- Want to compute abstract values at every program point
- Initialize all abstract states to \perp
- Repeat until no abstract state changes at any program point:
 - Compute abstract state on entry to a basic block B by taking the join of B's predecessors

Performing Least Fixed Point Computation

- Represent program as a control-flow graph
- Want to compute abstract values at every program point

Initialize all abstract states to \perp

- Repeat until no abstract state changes at any program point:
 - Compute abstract state on entry to a basic block B by taking the join of B's predecessors
 - Symbolically execute each basic block using abstract semantics

An Example

```
x = 0;
y = 0;
while(y <= n) {
if (z == 0)
{x = x+1;
}
else {
x = x + y;
}
y = y+1
}
```


An Example

In this example, we quickly reached least fixed point – but does this computation always terminate?

- In this example, we quickly reached least fixed point but does this computation always terminate?
 - Yes, assuming abstract domain forms complete lattice

- In this example, we quickly reached least fixed point but does this computation always terminate?
 - Yes, assuming abstract domain forms complete lattice
 - This means every subset of elements (including infinite subsets) have a LUB

- In this example, we quickly reached least fixed point but does this computation always terminate?
 - Yes, assuming abstract domain forms complete lattice
 - This means every subset of elements (including infinite subsets) have a LUB
- Unfortunately, many interesting domains do not have this property, so we need widening operators for convergence.

- Considered only one static analysis approach, but illustrates two key ideas underlying program analysis:
 - Abstraction: Only reason about certain properties of interest

- * Considered only one static analysis approach, but illustrates two key ideas underlying program analysis:
 - Abstraction: Only reason about certain properties of interest
 - Fixed-point computation: Allows us to obtain sound overapproximation of the program

- * Considered only one static analysis approach, but illustrates two key ideas underlying program analysis:
 - Abstraction: Only reason about certain properties of interest
 - Fixed-point computation: Allows us to obtain sound overapproximation of the program
- But many static analyses also differ in several ways:
 - Flow (in)sensitivity: Some analyses only compute facts for the whole program, not for every program point

- * Considered only one static analysis approach, but illustrates two key ideas underlying program analysis:
 - Abstraction: Only reason about certain properties of interest
 - Fixed-point computation: Allows us to obtain sound overapproximation of the program
- But many static analyses also differ in several ways:
 - Flow (in)sensitivity: Some analyses only compute facts for the whole program, not for every program point
 - Path sensitivity: More precise analyses compute different facts for different program paths

Challenges and Open Problems

Many open problems

- Precise and scalable heap reasoning
- Concurrency
- Dealing with open programs
- Modular program analysis