

In the Claims:

Please amend claims 1, 19-22 and add new claims 23-26 as follows:

Sub c. 1. 1. Fastening device comprising a male part (1, 5, 7, 9) and a female part (2, 6, 8) adapted to be selectively inserted into bores (30, 40) passing through a stack of at least two panels (3, 4), wherein the female part (2, 6, 8) is an elastic clip comprising a cap (20, 60, 80) from which extends a hollow foot (21, 61, 81) having different minimum (Dmin) and maximum (Dmax) internal transverse dimensions, wherein the male part (1, 5, 7, 9) comprises a head (11, 51, 71, 91) extended by a barrel (10, 50, 70, 90) having at least a first given intermediate transverse dimension (Dl), between the minimum (Dmin) and maximum (Dmax) internal transverse dimensions, the barrel being sized to be inserted into the hollow foot (21, 61, 81) through an opening (24, 64, 84) in the cap, with the hollow foot (21, 61, 81) and the barrel having an unlocked configuration with respect to each other as a function of at least one relative axial position of the barrel (10, 50, 70, 90) and the hollow foot (21, 61, 81), and for at least a first relative rotational position of the barrel and the foot, with the foot (21, 61, 81) having a reduced transverse dimension in the unlocked configuration, and the hollow foot and barrel having a locked configuration with respect to each other in which the foot (21, 61, 81) is subjected by the barrel (10, 50, 70, 90) to a radial elastic expansion, the fastening device being characterized in that the cap (20, 60, 80) is formed by a spring blade bent back on itself and comprising at least one inner branch (201, 601, 801) joined to the hollow foot (21, 61, 81) and one outer branch (202, 602, 802) into which the opening (24, 64, 84) of the cap is pierced, and in that the inner and outer branches (201, 202; 601, 602; 801, 802) are apart from one another at least for the unlocked configuration of the hollow foot (21, 61, 81) and are shaped so as to allow an elastic

B1
deformation of at least part of the outer branch (202, 602, 802) when the foot (21, 61, 81) moves from its unlocked configuration to its locked configuration.

Su > 19. Assembly constituted by a fastening device according to claim 1 and by a stack of panels (3, 4) in which bores (30, 40) are provided, and including a bottom panel (4), in which assembly the thickness of the stack is between 0.5 and 3mm, while the bore in the bottom panel has a larger transverse dimension of 7.7 mm.

B2
20. Assembly constituted by a fastening device according to claim 1 and by a stack of panels (3, 4) in which bores (30, 40) are provided, and including a bottom panel (4), in which assembly the thickness of the stack is between 3 and 4.5 mm, while the bore in the bottom panel (4) has a larger transverse dimension of 8.2 mm.

21. Assembly constituted by a fastening device according to claim 1 and by a stack of panels (3, 4) in which bores (30, 40) are provided and including a bottom panel (4), in which assembly the thickness of the stack is between 4.5 and 6 mm, while the bore in the bottom panel (4) has a larger transverse dimension of 8.7 mm.

22. Assembly constituted by a fastening device according to claim 1 and by a stack of panels (3, 4) in which bores (30, 40) are provided and including a bottom panel (4), in which assembly the thickness of the stack is between 6 and 7 mm, while the bore in the bottom panel (4) has a larger transverse dimension of 9.2 mm.

Sub c> 23. (New) Fastening device comprising a male part (1, 5, 7, 9) and a female part

(2, 6, 8) adapted to be inserted into bores (30, 40) passing through a stack of at least two panels (3, 4), wherein the female part (2, 6, 8) is an elastic clip comprising a cap (20, 60, 80) from which extends a hollow foot (21, 61, 81) having different minimum (Dmin) and maximum (Dmax) internal transverse dimensions, wherein the male part (1, 5, 7, 9) comprises a head (11, 51, 71, 91) extended by a barrel (10, 50, 70, 90) having at least a first given intermediate transverse dimension (Dl), between the minimum (Dmin) and maximum (Dmax) internal transverse dimensions, the barrel being sized to be inserted into the hollow foot (21, 61, 81) through an opening (24, 64, 84) in the cap, with the hollow foot (21, 81) and the barrel having an unlocked configuration with respect to each other as a function of at least one relative axial positioning of the barrel (10, 50, 70) and the hollow foot (21, 71, 81), and for at least a first relative rotational position of the barrel and the foot, with the foot (21, 61, 81) having a reduced transverse dimension in the unlocked configuration, and the hollow foot and barrel having a locked configuration with respect to each other in which the foot (21, 61, 81) is subjected by the barrel (10, 50, 70, 90) to a radial elastic expansion,

characterized in that the cap (20, 60, 80) is formed by a spring blade bent back on itself and comprising at least one inner branch (201, 601, 810) joined to the hollow foot (21, 61, 81) and one outer branch (202, 602, 802) into which the opening (24, 64, 84) of the cap is pierced, and in that the inner and outer branches (201, 202; 601, 602; 810, 802) are apart from one another at least for the unlocked configuration of the hollow foot (21, 61, 81) and are shaped so as to allow an elastic deformation of at least part of the outer branch (202, 602, 802) when the foot (21, 61, 81) moves from its unlocked configuration to its locked configuration;

wherein the male (1, 5, 7, 9) and female (2, 6, 8) parts comprise at least first (100;

52, 53; 72, 73; 92, 93) and second (23a, 25a; 63a, 65a; (33a, 85a) respective surface features disposed facing one another for an extreme relative axial position of the male and female parts which is reached when the barrel (10, 50, 70, 90) is substantially completely inserted into the foot (21, 61, 81), the first and second surface features mutually cooperating to maintain the male (1, 5, 7, 9) and female (2, 6, 8) parts in the extreme relative axial position,

wherein the first surface feature is formed by a radial protuberance of the barrel,
and

wherein the first surface feature is a lug (72, 73; 92, 93) disposed facing a corresponding hole (612, 613; 812, 813) in the foot, and the lug passes through the hole when the foot (61, 81) is in both the unlocked configuration and the first rotational position relative to the barrel (70, 90).

24. (New) Fastening device comprising a male part (1, 5, 7, 9) and a female part (2, 6, 8) adapted to be inserted into bores (30, 40) passing through a stack of at least two panels (3, 4), wherein the female part (2, 6, 8) is an elastic clip comprising a cap (20, 60, 80) from which extends a hollow foot (21, 61, 81) having different minimum (Dmin) and maximum (Dmax) internal transverse dimensions, wherein the male part (1, 5, 7, 9) comprises a head (11, 51, 71, 91) extended by a barrel (10, 50, 70, 90) having at least a first given intermediate transverse dimension (D1), between the minimum (Dmin) and maximum (Dmax) internal transverse dimensions, the barrel being sized to be inserted into the hollow foot (21, 61, 81) through an opening (24, 64, 84) in the cap, with the hollow foot (21, 61, 81) and the barrel having an unlocked_configuration with respect to each other as a function of at least one relative axial position of the barrel (10, 50, 70, 90) and the hollow foot (21, 61, 81), and for at least a first

relative rotational position of the barrel and the foot, with the foot (21, 61, 81) having a reduced transverse dimension in the unlocked configuration, and the hollow foot and barrel having a locked configuration with respect to each other in which the foot (21, 61, 81) is subjected by the barrel (10, 50, 70, 90) to a radial elastic expansion,

wherein the cap (20, 60, 80) is formed by a spring blade bent back on itself and comprising at least one inner branch (201, 601, 801) joined to the hollow foot (21, 61, 81) and one outer branch (202, 602, 802) into which the opening (24, 64, 84) of the cap is pierced, [an in that] and wherein the inner and outer branches (201, 202; 601, 602; 801, 802) are apart from one another at least for the unlocked configuration of the hollow foot (21, 61, 81) and are shaped so as to allow an elastic deformation of at least part of the outer branch (202, 602, 802) when the foot (21, 61, 81) moves from its unlocked configuration to its locked configuration,

wherein the hollow foot (21, 61, 18) comprises a plurality of prongs (23, 25; 63, 65; 83, 85) having respective attached ends (63b, 65b; 83b, 85b) by which these prongs are joined to the cap (20, 60, 80), and respective radially converging free ends (63a, 65a; 83a, 85a), which between them define the minimum internal transverse dimension (Dmin) of the foot (21, 61, 81),

wherein the male (1, 5, 7, 9) and female (2, 6, 8) parts comprise at least first (100; 52, 53; 72, 73; 92, 93) and second (23a, 25a; 63a, 65a; 83a, 85a) respective surface features disposed facing one another for an extreme relative axial position of the male and female parts which is reached when the barrel (10, 50, 70, 90) is substantially completely inserted into the foot (21, 61, 81), the first and second features mutually cooperating to maintain the male (1, 5, 7, 9) and female (2, 6, 8) parts in the extreme relative axial position,

B3

wherein the first surface feature is formed by radial protuberances of the barrel in the form of lugs (72, 73; 92, 93), and

wherein each lug comprises a shoulder on which a blade is bearing when the male and female parts are in their locked configuration.

25. (New) Fastening device according to claim 4, characterized in that the radial protuberance of the barrel is a screw thread (100; 52, 53).

26. (New) Fastening device according to claim 4, characterized in that the radial protuberance of the barrel is a lug (72, 73; 92, 93).
