CS2105 Introduction to Computer Network

Lecture 8 Network Security

15 October 2018

Application Transport Network Link Physical

Security perspective

Lecture 8: Network Security

After this class, you are expected to understand:

- how symmetric key cryptography and public key cryptography can be used to ensure message confidentiality.
- how message authentication code and digital signature ensure message integrity and authenticity.

Lecture 8: Roadmap

- 8.1 What is Network Security?
- **8.2** Principles of Cryptography
- 8.3 Message Integrity and Digital Signatures
- **8.6** Securing TCP Connections: SSL
- 8.7 Network Layer Security: IPsec

Nonexaminable

Kurose Textbook, Chapter 8 (Some slides are taken from the book)

Friends and Enemies: Alice, Bob, Trudy

- Alice and Bob (lovers!) want to communicate "secretly".
- Trudy (intruder) wants to interfere.

What Can Bad Guy Trudy Do?

Trudy may:

- intercept messages of Alice and Bob (eavesdrop).
 - Need to ensure message confidentiality.
- modify messages between Alice and Bob or forge messages and insert into communication
 - Need to ensure message integrity and message authenticity.
- attack the communication channel between Alice and Bob (e.g. denial-of-service attack).
 - · Need to ensure service availability (not covered).

Network Security: Algorithms

We will not discuss any security algorithms in great details.

- Interested students may read chapter 8 of the textbook or take security courses offered by SoC, e.g.
 - CS2107 Introduction to Information Security
 - CS3235 Computer Security
 - CS4236 Cryptography Theory and Practice
 - CS5321 Network Security

Lecture 8: Roadmap

- **8.1** What is Network Security?
- 8.2 Principles of Cryptography
 - 8.2.1 Symmetric Key Cryptography
 - 8.2.2 Public Key Encryption
- 8.3 Message Integrity and Digital Signatures
- **8.6** Securing TCP Connections: SSL
- 8.7 Network Layer Security: IPsec

Nonexaminable

The Language of Cryptography

- * m plaintext message
- * $K_A(m)$ ciphertext, encrypted with key K_A
- $\star K_{B}(K_{A}(m)) = m$

The Language of Cryptography

- * Given ciphertext $K_A(m)$, it should be computationally hard to find plaintext m without knowing decryption key K_B .
- * We will skip the mathematical details on how to derive K_A and K_B .

Types of Cryptography

The purpose of cryptography is to make it difficult for an unauthorized third party to understand private communication between two parties.

- Cryptography often uses keys:
 - Algorithms are known to everyone
 - Only "keys" are secret
- Symmetric key cryptography
 - Involves the use of one key
- Public key cryptography
 - Involves the use of a pair of keys

Source: IEEE Spectrum

Symmetric Key Cryptography

- * Symmetric key crypto: Bob and Alice share and use the same (symmetric) key: K_{A-B}
 - Popular algorithms: DES (Data Encryption Standard),
 AES (Advanced Encryption Standard)

Example Encryption Scheme

Mono-alphabetic cipher: substituting one letter for another.

plaintext	a	b	С	d	е	f	g	h	i	j	k		m	n	0	р	q	r	S	t	u	٧	w	X	У	Z
ciphertext	m	n	b	V	С	X	Z	а	S	d	f	g	h	j	k	1	р	0	i	u	У	t	r	е	w	q

Plaintext: bob, i love you. alice

ciphertext: nkn, s gktc wky. mgsbc

Bob

Public Key Cryptography

- Symmetric key crypto issues:
 - Require sender and receiver to share a secret key.
 - Use the same secret key to encrypt and decrypt data.
 - Question: how to agree on a key in the first place?

- Public key crypto:
 - Sender and receiver do not share secret key.
 - Use a pair of keys. One for encryption and the other for decryption.
 - Public encryption key: known to the world.
 - Private decryption key: known only to receiver.

Public Key Cryptography

Public Key Encryption Algorithms

- Key points of public key encryption:
 - Need to find a pair of public/private keys such that

$$K_B^-(K_B^+(m)) = m$$

- Given public key K_B^+ , it should be very difficult to find private key K_B^- .
- Most popular algorithm: RSA (Rivest, Shamir, Adelson algorithm)

Public Key: RSA Algorithm

- In RSA
 - The public key is the product of two very large primes.
 - The private key is derived from these two large primes.
- The security of RSA relies on the difficulty of factoring a large composite number.
 - It would be too slow to "guess" the two large primes, given the current state of the art of number theory.
- We will skip the mathematical details.

An Important Property of RSA

The following property of RSA will be very useful for our discussion later:

$$K_B^-(K_B^+(m)) = m = K_B^+(K_B^-(m))$$
use public key first, use private key followed by private key public key

Result is the same!

RSA in Practice: Session Key

- RSA (public key encryption) is computationally intensive (but doesn't require key sharing).
- DES (symmetric key encryption) is at least 100 times faster than RSA.
- Question: how to take advantage of both?
 - use public key crypto to establish secure connection, then second key – symmetric key – for encrypting data.

Session key K_S :

- \bullet Bob and Alice use RSA to exchange a symmetric key K_S .
- Once both have K_S , they use symmetric key cryptography.
- \bullet No need to remember K_S , it's valid for one session only.

Lecture 8: Roadmap

- **8.1** What is Network Security?
- **8.2** Principles of Cryptography
- 8.3 Message Integrity and Digital Signatures
 - 8.3.1 Cryptographic Hash Functions
 - 8.3.2 Message Authentication Code
 - 8.3.3 Digital Signatures
- **8.6** Securing TCP Connections: SSL
- 8.7 Network Layer Security: IPsec

Nonexaminable

Message Integrity and Authentication

• We have seen how encryption can be used to provide confidentiality to two communicating entities.

- On the other hand, we often need to
 - ensure message has not been modified during transmission.
 - verify the creator of a message.

Message Integrity and Authentication

- We are going to study the following two topics:
 - 1) message authentication code (MAC)
 - (2) digital signature
- The basics of both is cryptographic hash function.

Cryptographic Hash Functions

❖ A hash function takes an input, m, and generates a fixed size string H(m) known as message digest (hash or finger print).

- Popular algorithms: MD5 (Message Digest) and SHA-1 (Secure Hash Algorithm)
 - Example usage: both have been widely used to ensure a file downloaded from server has arrived intact.

Cryptographic Hash Functions

- Cryptographic hash functions are one-way functions:
 - It is computationally infeasible to find two different messages m and m' such that H(m) = H(m').
 - Therefore impossible for Trudy to forge another message m' with the same message digest as m.
- When using cryptographic hash functions,
 - A small change in the message (say, by eavesdropper)
 will create a significant change in the message digest.

Example Usage (1/3)

For Alice:

- 1. Alice creates message m and calculates the hash H(m).
- 2. Alice then appends H(m) to the message m, creating an extended message (m, H(m)), and sends the extended message to Bob.

Example Usage (2/3)

For Bob:

- 1. Bob receives an extended message (m', h').
- 2. Bob calculates H(m'). If H(m') = h', Bob concludes that everything is fine.

Recap: Lecture 5

TCP/UDP Checksum

Example Usage (3/3)

- Q: Can Bob be sure the source of message is Alice?
 - No. Because Trudy can create a bogus message m' in which she says she is Alice, calculates H(m'), and sends Bob (m', H(m')).

Message Authentication Code

- If a key is used as part of the message digest generation, such an algorithm is said to generate a message authentication code (MAC).
 - Can detect accidental and intentional changes to a message.
 - Can affirm to the receiver, the message's origin.
- Java supports the following standard MAC algorithms:
 - HmacMD5, HmacSHA1, HmacSHA256

Message Authentication Code

MAC proves to Bob that the creator of the message is Alice and the message is not corrupted.

Digital Signature

Sender (Alice) signs a document digitally (analogous to hand-written signatures).

- verifiable: recipient (Bob) can verify that Alice, and no one else, has signed this document.
- non-repudiation: If Bob shows this document and digital signature to a third party (e.g. court), the third party is confident that this document is indeed signed by Alice (but no one else including Bob).

Digital Signature vs. MAC

- Message authentication code (MAC) uses an authentication key shared between sender (Alice) and receiver (Bob).
 - Either Alice or Bob can produce the same MAC on a document, using the shared key.
 - Cannot prove to a third party MAC is produced by Alice or Bob.
- When Alice signs document digitally, she must put something on the doc that is unique to her.
 - her private key

Digital Signature Example (1/2)

- * Alice signs m by encrypting it with her private key K_A^- , creating a "signed" message, $K_A^-(m)$.
 - Send both m and $K_A^-(m)$ to Bob.

Digital Signature Example (2/2)

- Just one minor point:
 - Public key encryption is very slow.
 - Efficiency is a concern if m is long.

Digital Signature = Signed Message Digest

Digital Certificate

- Bob may wonder if the public key he uses is indeed Alice's.
- Certificate authority (CA) is an entity that issues digital certificates.
 - A digital certificate certifies the ownership of a public key by the named subject of the certificate.

Lecture 8: Roadmap

- **8.1** What is Network Security?
- **8.2** Principles of Cryptography
- 8.3 Message Integrity and Digital Signatures
- **8.6** Securing TCP Connections: SSL
- 8.7 Network Layer Security: IPsec

Nonexaminable

SSL: Secure Sockets Layer

SSL is a widely deployed security protocol.

- Applicable to TCP applications
- A variation is TLS (Transport Layer Security) defined in RFC 2246.
- Supported by almost all modern browsers and web servers.
- For example, https = http + SSL/TLS
 - adding security capabilities of SSL/TLS to standard HTTP communications.

Common SSL symmetric ciphers

- DES Data Encryption Standard: block
- 3DES Triple strength: block
- RC2 Rivest Cipher 2: block
- RC4 Rivest Cipher 4: stream

SSL public key encryption

RSA

SSL: Secure Sockets Layer

Normal Application

Application with SSL

- SSL provides application programming interface (API) to applications.
 - Java SSL libraries/classes readily available.

Internet Protocol Security (IPsec)

IPsec is a suite of protocols that secure communications by authenticating and encrypting each IP packet of a communication session.

Packet structure w/ IPsec

- Both SSL and IPsec can be used to build VPN.
 - SoC and NUS WebVPN run over SSL.

Lecture 8: Summary

basic techniques

- data confidentiality (symmetric and public keys)
- message digest
- message authentication code
- digital signature

.... used in many different security scenarios

- https
- secure transport (SSL)
- IPsec
- 802.11 WEP

