Metody obliczeniowe w nauce i technice

Rozwiązywanie równań i układów równań nieliniowych

Aga Patro pt_15:00

1. Specyfikacja sprzętu i narzędzia wykorzystane w realizacji	2
2. Temat ćwiczenia	2
3. Dane	2
4. Wstęp teoretyczny	
4.1. Znajdowanie miejsc zerowych funkcji nieliniowych metodą Newtona	
4.2. Znajdowanie miejsc zerowych funkcji nieliniowych metodą siecznych	
5. Realizacja ćwiczenia	4
6. Wyniki ćwiczenia	
6.1. Metoda Newtona	
6.1.1 =10-5	5
6.1.2 =10-10	6
6.2. Metoda siecznych	
6.2.1 =10-5	
6.2.2 =10-10	8
7. Wnioski	
8. Bibliografia	
9. Wprowadzone poprawki	g

1. Specyfikacja sprzętu i narzędzia wykorzystane w realizacji

System: Debian Linux Parrot OS x64

Procesor: AMD Ryzen 5 4500U, 6 rdzeni, 6 wątków, 4.00GHz

Pamięć RAM: 16 GB

Środowisko: Jupyter Notebook

Język: Python 3

2. Temat ćwiczenia

Celem ćwiczenia było, by dla zadanej funkcji $x^2-10sin^{15}(x)$ na przedziale od -1.8 do 0.2 metodą Newtona i metodą siecznych wyznaczyć miejsca zerowe. Dla metody Newtona należało wybrać punkty startowe rozpoczynając od wartości końców przedziału, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowić powinna wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału [-1.8, 0.2].

Porównać liczbę iteracji dla obu tych metod (dla różnych dokładności), stosując jako kryterium stopu:

$$1. |x^{(i+1)} - x^i| < \varepsilon$$

$$2. |f(x^i)| < \varepsilon$$

3. Dane

Mamy zadaną funkcję $x^2 - 10sin^{15}(x)$ na przedziale od -1.8 do 0.2. Na danym przedziale funkcja ma miejsce zerowe w punkcie x=0.

Wykres 3.1. Wykres funkcji x^2 - 10(sin(x))^15

4. Wstęp teoretyczny

4.1. Znajdowanie miejsc zerowych funkcji nieliniowych metodą Newtona

Metoda Newtona polega na kolejnych przybliżeniach pierwiastka funkcji przez wyznaczanie przecięć stycznej do wykresu funkcji z osią OX.

Mamy daną funkcję f(x), jeden punkty startowy x_0 i przedział [a,b] poszukiwań pierwiastka, do którego należy punkt x_0 . W przedziale poszukiwań pierwiastka funkcja musi spełniać następujące warunki:

- 1. Funkcja f(x) jest określona dla każdej wartości argumentu x z przedziału [a, b] potrafimy obliczyć wartość funkcji..
- 2. Funkcja f(x) jest ciągła.
- 3. Funkcja f(x) na krańcach przedziału [a,b] przyjmuje różne znaki.
- 4. W przedziale [a, b] pierwsza pochodna f'(x) jest różna od zera. Nie istnieje zatem minimum lub maksimum lokalne.

Gdy funkcja f(x) spełnia podane warunki, to w przedziale [a, b] istnieje pierwiastek i możemy go wyszukać metodą Newtona za pomocą poniższego wzoru.

Niech:

$$f(x) = 0 \tag{4.1.1}$$

$$\alpha = x_{i-1} + h \tag{4.1.2}$$

gdzie α to prosty pierwiastek, a x_{i-1} to przybliżenie α

Z założeń (4.1.1) oraz (4.1.2):

$$f(\alpha) = 0 = f(x_{i-1} + h) = f(x_{i-1}) + h \cdot f'(x_{i-1}) + \dots$$
 (4.1.3)

$$h = -\frac{f(x_{i-1})}{f'(x_{i-1})} \tag{4.1.4}$$

$$x_{i} = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$
 (4.1.5)

4.2. Znajdowanie miejsc zerowych funkcji nieliniowych metodą siecznych

Mamy daną funkcję f(x), dwa punkty startowe x_1 oraz x_2 i przedział [a, b] poszukiwań pierwiastka, do którego należą punkty x_1 , x_2 . W przedziale poszukiwań pierwiastka funkcja musi spełniać następujące warunki:

- 1. Funkcja f(x) jest określona dla każdej wartości argumentu x z przedziału [a, b] potrafimy obliczyć wartość funkcji.
- 2. Funkcja f(x) jest ciągła.
- 3. Funkcja f(x) na krańcach przedziału [a, b] przyjmuje różne znaki (nie obowiązuje to punktów x_1 i x_2).
- 4. Dodatkowo w przedziale [a,b] pierwsza pochodna f'(x) jest różna od zera. Nie istnieje zatem minimum lub maksimum lokalne.

Gdy funkcja f(x) spełnia podane warunki, to w przedziale [a, b] istnieje pierwiastek i możemy go wyszukać metodą siecznych za pomocą wzoru:

$$x_{i+2} = x_{i+1} - \frac{x_{i+1} - x_i}{f_{i+1} - f_i} \cdot f_{i+1}$$
 (4.2.1)

5. Realizacja ćwiczenia

Funkcja $x^2 - 10sin^{15}(x)$ na przedziale od -1.8 do 0.2, posiada miejsce zerowe w punkcie x=0.

W celu realizacji ćwiczenia została napisana funkcja *newtons_method* która realizuje rozwiązanie metodą Newtona, oraz funkcja *secant*, która realizuje metodę siecznych.

Eksperymenty przeprowadzono dla każdej z metod stosując dwa warunki przerwania algorytmu:

1.
$$|x^{(i+1)} - x^i| < \varepsilon$$
 (5.1)

$$2. |f(x^i)| < \varepsilon \tag{5.2}$$

oraz różne wartości epsilonu tj. 10^{-5} oraz 10^{-10} .

6. Wyniki ćwiczenia

6.1. Metoda Newtona

6.1.1
$$\epsilon = 10^{-5}$$

waru	ınek 2	waru	nek 1	
wynik	liczba iteracji	wynik	liczba iteracji	punkt zerowy
-0.001841	10	-0.000014	17	-1.8
-0.0022405	13	-0.000018	20	-1.7
0.0023394	13	0.000018	20	-1.6
-0.002425	9	-0.000019	16	-1.5
-0.001963	11	-0.000015	18	-1.4
-0.002296	11	-0.000018	18	-1.3
-0.002015	11	-0.000016	18	-1.2
-0.003036	10	-0.000012	18	-1.1
-0.002143	10	-0.000017	17	-1.0
-0.002915	9	-0.000011	17	-0.9
-0.002074	9	-0.000016	16	-0.8
-0.003075	8	-0.000012	16	-0.7
-0.002410	8	-0.000019	15	-0.6
-0.001961	8	-0.000015	15	-0.5
-0.003126	7	-0.000012	15	-0.4
-0.002344	7	-0.000018	14	-0.3
-0.003125	6	-0.000012	14	-0.2
-0.003125	5	-0.000012	13	-0.1
0.000000	0	0.000000	0	0.0
0.003125	5	0.000012	13	0.1
0.003125	6	0.000012	14	0.2

Tabela 6.1.1.1 Wyniki dla metody Newtona, epsilonu = 10^(-5) oraz obu stopów

$$6.1.2~\epsilon = ~10^{-10}$$

waru	nek 2	warunek 1		
wynik	liczba iteracji	wynik	liczba iteracji	punkt zerowy
-0.000007	18	0.000000	34	-1.8
-0.000009	21	0.000000	37	-1.7
0.000009	21	0.000000	37	-1.6
-0.000009	17	0.000000	33	-1.5
-0.000008	19	0.000000	35	-1.4
-0.000009	19	0.000000	35	-1.3
-0.000008	19	0.000000	35	-1.2
-0.000006	19	0.000000	34	-1.1
-0.000008	18	0.000000	34	-1.0
-0.000006	18	0.000000	33	-0.9
-0.000008	17	0.000000	33	-0.8
-0.000006	17	0.000000	32	-0.7
-0.000009	16	0.000000	32	-0.6
-0.000008	16	0.000000	32	-0.5
-0.000006	16	0.000000	31	-0.4
-0.000009	15	0.000000	31	-0.3
-0.000006	15	0.000000	30	-0.2
-0.000006	14	0.000000	29	-0.1
0.000000	0	0.000000	0	0.0
0.000006	14	0.000000	29	0.1
0.000006	15	0.000000	30	0.2

Tabela 6.1.2.1 Wyniki dla metody Newtona, epsilonu = 10^(-10) oraz obu stopów

Analizując powyższe tabele można zauważyć, że dla $\epsilon=10^{-10}$ wynik jest bardziej zbliżony do oczekiwanego, zarówno dla warunku pierwszego jak i drugiego. Można zauważyć również, że dla obu wartości epsilonów, warunek 1 daje dokładniejszy wynik lecz przy większej liczbie iteracji.

6.2. Metoda siecznych

$$6.2.1~\epsilon=~10^{-5}$$

warunek 2		warunek 1		
wynik	I. iteracji	wynik	I. iteracji	przedział
NaN	NaN	NaN	NaN	[-1.8, -1.8]
-0.000011	30	-0.000011	30	[-1.7, -1.8]
-0.000014	35	-0.000014	35	[-1.6, -1.8]
-0.000012	29	-0.000012	29	[-1.5, -1.8]
-0.000015	28	-0.000017	28	[-1.4, -1.8]
-0.000014	20	-0.000014	20	[-1.3, -1.8]
-0.000012	23	-0.000012	23	[-1.2, -1.8]
-0.000011	24	-0.000011	24	[-1.1, -1.8]
-0.000011	24	-0.000013	24	[-1.0, -1.8]
-0.000011	23	-0.000011	23	[-0.9, -1.8]
-0.000016	23	-0.000016	23	[-0.8, -1.8]
-0.000011	22	-0.000011	22	[-0.7, -1.8]
-0.000011	22	-0.000011	22	[-0.6, -1.8]
-0.000011	22	-0.000017	22	[-0.5, -1.8]
-0.000017	21	-0.000017	21	[-0.4, -1.8]
-0.000018	21	-0.000018	21	[-0.3, -1.8]
-0.000011	20	-0.000011	20	[-0.2, -1.8]
-0.000012	18	-0.000011	18	[-0.1, -1.8]
-0.000011	0	-0.000011	0	[0.0, -1.8]
-0.000017	18	-0.000017	18	[0.1, -1.8]
-0.000011	20	-0.000011	20	[0.2, -1.8]

warunek 2 warunek 1			nok 1	
wynik	I. iteracji	warunek i wynik I. iteracji		przedział
-0.000011	20	-0.000011	20	[-1.8, 0.2]
	20		20	
-0.000019		-0.000019		[-1.7, 0.2]
-0.000012	20	-0.000012	20	[-1.6, 0.2]
-0.000015	20	-0.000015	20	[-1.5, 0.2]
-0.000011	20	-0.000011	20	[-1.4, 0.2]
-0.000012	20	-0.000012	20	[-1.3, 0.2]
-0.000011	20	-0.000011	20	[-1.2, 0.2]
-0.000011	20	-0.000019	20	[-1.1, 0.2]
-0.000014	20	-0.000014	20	[-1.0, 0.2]
-0.000016	20	-0.000016	20	[-0.9, 0.2]
-0.000017	20	-0.000017	20	[-0.8, 0.2]
-0.000011	20	-0.000013	20	[-0.7, 0.2]
-0.000011	20	-0.000011	20	[-0.6, 0.2]
-0.000017	20	-0.000017	20	[-0.5, 0.2]
-0.000018	21	-0.000018	21	[-0.4, 0.2]
-0.000011	21	-0.000011	21	[-0.3, 0.2]
0.200000	2	0.200000	2	[-0.2, 0.2]
-0.200000	3	-0.200000	3	[-0.1, 0.2]
-0.000010	1	-0.000000	1	[0.0, 0.2]
-0.000013	18	-0.000013	18	[0.1, 0.2]
-0.000011	19	-0.000011	19	[0.2, 0.2]

Tabela 6.2.1.1 Wyniki dla metody siecznych, epsilonu = 10^(-5) oraz obu stopów, w zależności od sprawdzanego przedziału

$$6.2.2\,\epsilon\,=\,10^{-10}$$

warunek 2		warunek 1		
wynik	I. iteracji	wynik	I. iteracji	przedział
0.000000	NaN	0.000000	NaN	[-1.8, -1.8]
-0.000000	54	-0.000000	54	[-1.7, -1.8]
0.000000	59	0.000000	59	[-1.6, -1.8]
0.000000	53	0.000000	53	[-1.5, -1.8]
0.000000	52	0.000000	52	[-1.4, -1.8]
-0.000000	44	-0.000000	44	[-1.3, -1.8]
0.000000	47	0.000000	47	[-1.2, -1.8]
-0.000000	48	-0.000000	48	[-1.1, -1.8]
0.000000	48	0.000000	48	[-1.0, -1.8]
0.000000	47	0.000000	47	[-0.9, -1.8]
-0.000000	47	-0.000000	47	[-0.8, -1.8]
0.000000	46	0.000000	46	[-0.7, -1.8]
0.000000	46	0.000000	46	[-0.6, -1.8]
-0.000000	45	-0.000000	45	[-0.5, -1.8]
0.000000	45	0.000000	45	[-0.4, -1.8]
0.000000	44	0.000000	44	[-0.3, -1.8]
0.000000	44	0.000000	44	[-0.2, -1.8]
-0.000000	42	-0.000000	42	[-0.1, -1.8]
-0.000000	0	-0.000000	0	[0.0, -1.8]
-0.000000	42	-0.000000	42	[0.1, -1.8]
-0.000000	44	-0.000000	44	[0.2, -1.8]

warunek 2		warunek 1		
wynik	I. iteracji	wynik	I. iteracji	przedział
0.000000	44	0.000000	44	[-1.8, 0.2]
-0.000000	44	-0.000000	44	[-1.7, 0.2]
0.000000	44	0.000000	44	[-1.6, 0.2]
-0.000000	44	0.000000	44	[-1.5, 0.2]
-0.000000	44	0.000000	44	[-1.4, 0.2]
0.000000	44	-0.000000	44	[-1.3, 0.2]
0.000000	44	0.000000	44	[-1.2, 0.2]
0.000000	44	-0.000000	44	[-1.1, 0.2]
0.000000	44	0.000000	44	[-1.0, 0.2]
0.000000	44	0.000000	44	[-0.9, 0.2]
0.000000	44	-0.000000	44	[-0.8, 0.2]
0.000000	44	0.000000	44	[-0.7, 0.2]
0.000000	44	0.000000	44	[-0.6, 0.2]
-0.000000	44	-0.000000	44	[-0.5, 0.2]
0.000000	44	0.000000	44	[-0.4, 0.2]
0.000000	45	0.000000	45	[-0.3, 0.2]
0.000000	46	0.000000	46	[-0.2, 0.2]
-0.000000	47	-0.000000	47	[-0.1, 0.2]
-0.000000	1	-0.000000	1	[0.0, 0.2]
-0.000000	42	-0.000000	42	[0.1, 0.2]
-0.000000	43	-0.000000	43	[0.2, 0.2]

Tabela 6.2.2.1 Wyniki dla metody siecznych, epsilonu = 10^(-10) oraz obu warunków, w zależności od sprawdzanego przedziału

Analizując powyższe tabele można zauważyć, że dla $\epsilon=10^{-10}$ wynik jest bardziej zbliżony do oczekiwanego, zarówno dla warunku pierwszego jak i drugiego, jednak przy większej liczbie iteracji. Porównując ze sobą oba warunki można zauważyć, że wyniki są takie same dla obu wartości ϵ , oraz liczba iteracji też jest taka sama. Ponadto najmniej trafny wynik otrzymujemy dla przedziałów [-0.2, 0.2] oraz [-0.1, 0.2] dla $\epsilon=10^{-5}$ dla obu warunków stopu oraz liczbie iteracji równej 2 i 3.

7. Wnioski

- Metoda Newtona jest mniej efektywna od metody siecznych.
- Metoda siecznych jest mniej złożona obliczeniowo nie wymaga obliczania pochodnej funkcji.
- Dokładniejszy wynik otrzymamy dla mniejszego epsilonu (Tabele 6.1.1.1 i 6.1.2.1)
- Dokładnejszy wynik otrzymamy dla warunku 1 (Tabele 6.1.1.1 i 6.1.2.1)
- Im więcej iteracji tym bardziej dokładny wynik.

8. Bibliografia

- [1] Wykłady dr Katarzyny Rycerz z przedmiotu "Metody Obliczeniowe w Nauce i Technice", Wydział Informatyki, Elektroniki i Telekomunikacji
- [2] mgr Wałaszek Jerzy, "Pierwiastki funkcji. Metoda Newtona." https://eduinf.waw.pl/inf/alg/008 nm/0011.php
- [3] mgr Wałaszek Jerzy, "Miejsca zerowe funkcji. Metoda Siecznych" https://eduinf.waw.pl/inf/alg/005_root/0012.php

9. Wprowadzone poprawki

Po konsultacjach w sprawozdaniu zmieniono:

• W tabelach 6.2.2.1 oraz 6.2.1.1 podano dokładny przedział obliczeń.