Name: Janmejay Mohanty Course: CS 513 B Homework1: Probability

CWID: 20009315 **Course Name:** Knowledge Discovery and Data Mining **Date:** 10th October 2022

Solutions

Ans1:

Given:
$$P(J) = 20\% = 0.2$$

 $P(S) = 30\% = 0.3$
 $P(I \cap S) = 8\% = 0.08$

(a) Probability of Jerry in the bank when Susan is also present in the bank,

$$P(J|S) = \frac{P(J \cap S)}{P(S)} = \frac{0.08}{0.3} = 26.67\%$$

(b) Probability of Jerry in the bank when Susan is not present in the bank,

$$P(J|\bar{S}) = \frac{P(J \cap \bar{S})}{P(\bar{S})} = \frac{P(J) - P(J \cap S)}{P(\bar{S})} = \frac{0.2 - 0.08}{0.7} = \frac{0.12}{0.7} = 17.14\%$$

(c) Probability of Jerry or Susan either one of them are present in the bank,

$$P(J|S) = \frac{P(J \cap S)}{P(J \cup S)} = \frac{P(J \cap S)}{P(J) + P(S) - P(J \cap S)} = \frac{0.08}{0.2 + 0.3 - 0.08} = \frac{0.08}{0.42} = 19.05\%$$

Ans2:

Given:
$$P(H) = 80\% = 0.8$$

 $P(S) = 90\% = 0.9$
 $P(H \cup S) = 91\% = 0.91$
 $P(H \cap S) = P(H) + P(S) - P(H \cup S) = 0.8 + 0.9 - 0.91 = 0.79$

(a) Probability of only Harold gets a "B",

$$P(H \cap S) = P(H) + P(S) - P(H \cup S) = 0.8 + 0.9 - 0.91 = 0.79$$

 $P(H|\bar{S}) = P(H) - P(H \cap S) = 0.8 - 0.79 = 0.01 = 1\%$

(b) Probability of only Sharon gets a "B",

$$P(S|\overline{H}) = P(S) - P(H \cap S) = 0.9 - 0.79 = 0.11 = 11\%$$

(c) Probability of both Harold and Sharon not getting a "B",

$$1 - P(H \cup S) = 1 - 0.91 = 0.09 = 9\%$$

Ans3:

Given:
$$P(J) = 20\% = 0.2$$

 $P(S) = 60\% = 0.6$

If the events are independent, both of Jerry and Susan go to bank individually will be the same.

In that case:

$$P(J|S) = P(J) * P(S) = 0.2 * 0.3 = 0.6 = 60\%$$

Hence, the two events are not independent.

CWID: 20009315 **Course Name:** Knowledge Discovery and Data Mining

Ans4: Rolling 2 dices.

(a) If the events are independent,

 $Getting\ sum=6$

Cases: [(1,5), (2,4), (3,3), (4,2), (5,1)]

Total no of cases: 5

$$P(Getting \ sum = 6) = \frac{5}{6^2} = \frac{5}{36}$$

$$P(Second \ dice = 5) = \frac{6}{6} * \frac{1}{6} = \frac{1}{6}$$

$$P(Getting\ sum = 6 \cap Second\ dice = 5) = \frac{1}{36}$$

$$P(Getting \ sum = 6) * P(Second \ dice = 5) = \frac{5}{36} * \frac{1}{6} = \frac{5}{216}$$

Hence, both events are not independent.

(b) Getting sum = 7

Cases: [(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)]

Total no of cases: 6

$$P(First \ dice = 5) = \frac{1}{6}$$

$$P(Getting \ sum = 7) = \frac{6}{36} = \frac{1}{6}$$

$$P(Getting\ sum = 7 \cap First\ dice = 5) = \frac{1}{36}$$

$$P(Getting\ sum = 7) * P(First\ dice = 5) = \frac{1}{6} * \frac{1}{6} = \frac{1}{36}$$

Hence, both events are independent.

Ans5:

(a)
$$P(TX) = 60\% = 0.6$$

$$P(NJ) = 10\% = 0.1$$

$$P(AK) = 30\% = 0.3$$

$$P(Oil|TX) = 30\% = 0.3$$

$$P(Oil|NI) = 10\% = 0.1$$

$$P(Oil|AK) = 20\% = 0.2$$

$$P(Finding \ oil) = P(Oil|TX) * P(TX) + P(Oil|NJ) * P(NJ) + P(Oil|AK) * P(AK)$$

= 0.3 * 0.6 + 0.1 * 0.1 + 0.2 * 0.3

$$= 0.18 + 0.01 + 0.06$$

$$= 0.25$$

(b) Using Bayes Theorem,

$$P(TX|Oil) = \frac{P(Oil|TX)*P(TX)}{P(Oil)} = \frac{0.3*0.6}{0.25} = 0.72 = 72\%$$

Name: Janmejay Mohanty Course: CS 513 B Homework1: Probability

CWID: 20009315 Course Name: Knowledge Discovery and Data Mining Date: 10th October 2022

Ans6: As per instructions we had not include crew members as Passengers.

(a) Total people = 2201 - 885 = 1316, Not survived total people = 1490,

$$P(Not\ Survived) = \frac{1490 - 673}{2201 - 885} = \frac{817}{1316} = 0.6208 = 62.08\%$$

(b) Total people in 1^{st} Class = 319 + 6 = 325

$$P(Staying \ in \ 1st \ Class) = \frac{325}{1316} = 0.2469 = 24.69\%$$

- (c) $P(Staying \ in \ 1st \ Class | Survived) = \frac{P(Staying \ in \ 1st \ Class \cap Survived)}{P(Survived)} = \frac{203}{711-212} = \frac{203}{499} = 0.4068 = 40.68\%$
- (d) $P(Survived) = 1 P(Not\ Survived) = 1 0.6208 = 0.3792 = 37.92\%$ $P(Staying\ in\ 1st\ Class) = 0.2469 = 24.69\%$ $P(Survived) * P(Staying\ in\ 1st\ Class) = 0.3792 * 0.2469 = 0.0936 = 9.36\%$ $P(Staying\ in\ 1st\ Class\ \cap\ Survived) = \frac{203}{1316} = 0.1542 = 15.42\%$ Hence, they're not independent.
- (e) $P(Staying \ in \ 1st \ Class \cap Child | Survived) = \frac{P(Staying \ in \ 1st \ Class \cap Child \cap Survived)}{P(Survived)}$ = $\frac{6}{499} \approx 0.0120 = 1.2\%$
- (f) $P(Adult|Survived) = \frac{P(Adult \cap Survived)}{P(Survived)} = \frac{442}{499} = 0.8857 = 88.57\%$
- (g) $P(Age\ given\ passenger\ survived) = P(Adult|Survived) + P(Child|Survived)$ $= \frac{442}{499} + \frac{57}{499} = 1$ $P(Staying\ in\ 1st\ Class) = \frac{203}{499} = 0.4068 = 40.68\%$

 $P(Age \ and \ Staying \ in \ 1st \ Class) = P(Age \ given \ passenger \ survived) * P(Staying \ in \ 1st \ Class)$

$$= 1 * 40.68\% = 40.68\%$$

For age and staying in 1st Class to be independent, probability of age and first class must be equal to the product of their individual probabilities, clearly both are equal, and the events are conditional independent.