Comparison of Catalogs

Table of contents

The data	2
How are we going to compare the data?	2
Scatter plots and R^2 calculation	2
Comparable data	2
Coordinates	2
Right Ascnsion	3
Declination	4
Distance	4
Velocities	5
Heliocentric radial Velocity	5
Scatter Grid	6
Heatmap	7
Morphology and Geometry	7
Galaxy Types	8
Inclanation	9
Major Axis	9
Luminosities	10
Magnitudes	10
B mag	11
K mag	11
Absorbsion	12
SFR	12
Heatmap	14
Scatter Grid	15
Masses	15
Heatmap	16
Plot Grid	17

The data

In this script we will compare out 2 catalogs Kovlakas et al. (2021) and Karachentsev and Kaisina (2013)

- The data have been joined based on their position in the sky (Ra, Dec, Distance).
- We use TOPCAT to create two joins, an inner and an outer join
- We will use the inner join for 1-1 comparisons
- If we see that the data are similar we can use the outer join

The dataset we are going to use consists of 296 galaxies and 168 columns.

How are we going to compare the data?

Scatter plots and \mathbb{R}^2 calculation

- 1. R^2 : Measures the proportion of variance explained by the linear model.
- 2. Slope of the Fitted Line: Should be close to 1 for a 1-1 correlation.¹
- 3. Pearson Correlation ρ : Measures the strength and direction of the linear relationship between two variables, ranging from -1 to 1. ²
- 4. <u>Scatter plots</u>: Scatter plots are essential for visually assessing the relationship between two datasets, identifying correlations, trends, and outliers, and evaluating the fit of linear models.

Some data seem to have a very good linear correlation but they have many outliers. This is why we will clip the outliers whith sigma > 3

- Histograms
- Deviation

Comparable data

Coordinates

¹Fitting can be done using the uncertainties as weights. To get the standard weighting of 1/unc², assuming Gaussian errors, the weights to pass to the fitting are 1/unc.

²In simple linear regression, R^2 is the square of the Pearson correlation coefficient ρ .

LCV	HECATE	Description	Pearson Correlation [-1,1]
Ra_1	RA_2	Right Ascension	0.972
Dec_1	DEC_2	Declination	1.0
Dis	D	Distance	1.0

Right Ascnsion

Declination

Distance

Velocities

LCV	HECATE	Description	Linear Correlation
RVel (km/s)	V (km/s)	Heliocentric radial velocity	0.952
$\begin{array}{c} \rm VLG~(km/s) \\ \rm cz~(km/s) \end{array}$	$V_{ m VIR}~({ m km/s})$	Radial velocity Heliocentric velocity Virgo-infall corrected radial velocity	

Heliocentric radial Velocity

Scatter Grid

Heatmap

Morphology and Geometry

LCV	НЕСАТЕ	Description	Pearson Correlation [-1,1]
TType	T (with errors)	Numerical Hubble type following the de	0.6685
inc	INCL	Vaucouleurs system Inclination (deg)	0.663

LCV	HECATE	Description	Pearson Correlation [-1,1]
a26_1 (Major)	R1 (Semi-major axis)	angular diameter (arcmin)	0.992

Galaxy Types

As we can see we don't have any significant correlation between the Types of galaxies and thus the correlation of the inclanations are 0

Inclanation

Major Axis

Luminosities

LCV	HECATE	Description	Pearson Correlation [-1,1]
logKLum	$logL_K$		0.379

Magnitudes

			Pearson Correlation
LCV	HECATE	Description	[-1,1]
mag_B (with errors)	BT (with errors)		0.992
Kmag	K	2MASS band	0.348
		magnitude (both)	

B mag

K mag

Absorbsion

LCV	HECATE	Description	Pearson Correlation [-1,1]
AB	$\overline{\mathrm{AG}}$	$\begin{array}{c} {\rm Galactic} \\ {\rm extinction/absorption} \\ {\rm in~B~band} \end{array}$	0.914
$\mathrm{AB_int}$	AI	Internal/Intrisic B band extinction/absorption	0

SFR

LCV	HECATE	Description	Count
	logSFR_TIR	Decimal logarithm of	35
		the total-infrared SFR	
		estimate [Msol/yr]	
	$\log SFR_FIR$	Decimal logarithm of	38
		the far-infrared SFR	
		estimate $[Msol/yr]$	

LCV	HECATE	Description	Count
	logSFR_60u	Decimal logarithm of the 60um SFR estimate [Msol/yr]	64
	$ m logSFR_12u$	Decimal logarithm of the 12um SFR estimate [Msol/yr]	23
	$ m logSFR_22u$	Decimal logarithm of the 22um SFR estimate [Msol/yr]	14
	$\log SFR_HEC$	Decimal logarithm of the homogenised SFR estimate [Msol/yr]	81
	$\log {\rm SFR_GSW}$	Decimal logarithm of the SFR in GSWLC-2 [Msol/yr]	0
SFRFUV		FUV derived integral star formation rate	257
SFRHa		H{alpha} derived integral star formation rate	249

Heatmap

Scatter Grid

It is possible we dont see a good correlation because we dont have a big enough common sample

Masses

LCV	HECATE	Description	Count
\log M26		Log mass within	263
		Holmberg radius	
\log MHI		Log mass within	269
		Holmberg radius	
	$\log M_HEC$	Decimal logarithm of	87
		the stellar mass	
		[Msol]	
	$\log M_GSW$	Decimal logarithm of	0
		the stellar mass in	
		GSWLC-2 [Msol]	
logStellarMass		Stellar Mass from	296
		$M_*/L=0.6$	

Heatmap

Plot Grid

Karachentsev, Igor D., and Elena I. Kaisina. 2013. "STAR FORMATION PROPERTIES IN THE LOCAL VOLUME GALAXIES VIA H AND FAR-ULTRAVIOLET FLUXES." AJ 146 (3): 46. https://doi.org/10.1088/0004-6256/146/3/46.

Karachentsev, Igor D., Dmitry I. Makarov, and Elena I. Kaisina. 2013. "UPDATED NEARBY GALAXY CATALOG." AJ 145 (4): 101. https://doi.org/10.1088/0004-6256/145/4/101. Kovlakas, K., A. Zezas, J. J. Andrews, A. Basu-Zych, T. Fragos, A. Hornschemeier, K. Kouroumpatzakis, B. Lehmer, and A. Ptak. 2021. "The Heraklion Extragalactic Cat-

alogue (HECATE): A Value-Added Galaxy Catalogue for Multimessenger Astrophysics." Monthly Notices of the Royal Astronomical Society 506 (September): 1896-1915. https://doi.org/10.1093/mnras/stab1799.