TASK1

Double layer window with air, no coating, gap thickness = 13 mm $U = 2.8 \text{ W/m}^2\text{K}$

(changing the gas, adding an extra pane, using a low emissivity coating)

Double layer window with argon, no coating, gap thickness = 13 mm U = $2.65~\text{W/m}^2\text{K}$ Decreased by 5.36%

Double layer window with krypton, no coating, gap thickness = 13 mm U = $2.6~\text{W/m}^2\text{K}$ Decreased by 7.14%

Double layer window with air, coating, gap thickness = 13 mm U = 1.8 $\,\mathrm{W/m^2K}$ Decreased by 35.71%

Triple layer window with air, no coating, gap thickness = 13 mm

U = 1.85 W/m²K Decreased by 33.93%

Best solution: triple layer window with krypton, coating, gap thickness = 13 U = 0.7 W/m 2 K Decreased by 75%

 Selected fenestration heating U factor (W/m²K) and fenestration rated or estimated solar heat gain coefficient SHGC for fixed and operable window frame both made of wood and aluminium.

Frame												100				
		IDb	Property ^{c,d}	Center of Glazing			Operable	e		Fixed						
Glazing Type	Glazing Layers				Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl		
Clear	1	1a	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35		
			SHGC	0.86	0.75	0.75	0.64	0.64	0.64	0.78	0.78	0.75	0.75	0.75		
	2	5a	U	2.73	4.62	3.42	3.00	2.87	5.83	3.61	3.22	2.86	2.84	2.72		
			SHGC	0.76	0.67	0.67	0.57	0.57	0.57	0.69	0.69	0.67	0.67	0.67		
	3	29a	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93		
			SHGC	0.68	0.60	0.60	0.51	0.51	0.51	0.62	0.62	0.60	0.60	0.60		
Low-e, low-solar	2	25a	U	1.70	3.83	2.68	2.33	2.21	1.89	2.75	2.36	2.03	2.01	1.90		
			SHGC	0.41	0.37	0.37	0.31	0.31	0.31	0.38	0.38	0.36	0.36	0.36		
	3	40c	U	1.02	3.22	2.07	1.76	1.71	1.45	2.13	1.76	1.44	1.40	1.33		
			SHGC	0.27	0.25	0.25	0.21	0.21	0.21	0.25	0.25	0.24	0.24	0.24		
Low-e, high-solar	2	17c	U	1.99	4.05	2.89	2.52	2.39	2.07	2.99	2.60	2.26	2.24	2.13		
			SHGC	0.70	0.62	0.62	0.52	0.52	0.52	0.64	0.64	0.61	0.61	0.61		
	3	32c	U	1.42	3.54	2.36	2.02	1.97	1.70	2.47	2.10	1.77	1.73	1.66		
			SHGC	0.62	0.55	0.55	0.46	0.46	0.46	0.56	0.56	0.54	0.54	0.54		
Heat-absorbing	1	1c	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35		
			SHGC	0.73	0.64	0.64	0.54	0.54	0.54	0.66	0.66	0.64	0.64	0.64		
	(2)	5c	\underline{U}	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72		
			SHGC	0.62	0.55	0.55	0.46	0.46	0.46	0.56	0.56	0.54	0.54	0.54		
	3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93		
			SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30		
Reflective	1	11	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35		
			SHGC	0.31	0.28	0.28	0.24	0.24	0.24	0.29	0.29	0.27	0.27	0.27		
	2	5p	U	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72		
			SHGC	0.29	0.27	0.27	0.22	0.22	0.22	0.27	0.27	0.26	0.26	0.26		
	3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93		
			SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30		

2. Selected **peak exterior irradiance PXI (W/m²)** for south and west exposure for a single family detached house

$$PXI = E_D + E_d$$

Table 10 Peak Irradiance, W/m²

		Latitude											
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°			
North	E_D	125	106	92	84	81	85	96	112	136			
	E_d	128	115	103	93	84	76	69	62	55			
	E_t	253	221	195	177	166	162	164	174	191			
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361			
	E_d	177	169	162	156	151	147	143	140	137			
	E_t	637	618	599	581	563	546	529	513	498			
East/West	E_D	530	543	552	558	560	559	555	547	537			
	E_d	200	196	193	190	189	188	187	187	187			
	E_t	730	739	745	748	749	747	742	734	724			
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517			
	E_d	204	203	203	204	205	207	210	212	215			
	E_t	485	531	572	609	641	670	695	715	732			
South	E_D	0	60	139	214	283	348	408	464	515			
	E_d	166	193	196	200	204	209	214	219	225			
	E_t	166	253	335	414	487	557	622	683	740			
Horizontal	E_D	845	840	827	806	776	738	691	637	574			
	E_d	170	170	170	170	170	170	170	170	170			
	E_{t}	1015	1010	997	976	946	908	861	807	744			

- 3. Assuming that there is no internal shading: **interior shading attenuation coefficient IAC = 1**
- 4. Selected **fenestration solar load factor FF**_S for south and west exposure for a single family detached house

Exposure	Single Family Detached	Multifamily
North	0.44	0.27
Northeast	0.21	0.43
East	0.31	0.56
Southeast	0.37	0.54
South	0.47	0.53
Southwest	0.58	0.61
West	0.56	0.65
Northwest	0.46	0.57
Horizontal	0.58	0.73

Lat:	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999	
Annual He	Annual Heating and Humidification Design Conditions															J
Coldest	Heatin	ng DB		Humidification DP/MCDB and HR					Coldest month WS/MCDB					/PCWD		
	i icaui	ig DD	99.6%				99%		0.4%			1%		to 99.6% DB		
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
(a)	(b)	(0)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	(-4.8)	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(1)
Annual Co	ooling, Dehu	ımidificatio	on, and Enth	alpy Desigr	Condition	S										J
Hottest	Hottest			Cooling [DB/MCWB				Evaporation WB/MCDB				MCWS		PCWD	
Month	Month	0	.4%	1	%	29	%	0.	4%	1	%	2	2%	to 0.49	% DB	
WOTH	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
(a)	(4)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
8	(11.9)	33.1	22.7	(31.9)	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90	(2)

Δ T_{COOLING} = 31.9 -24 (T_{INSIDEDURINGSUMMER}) = 7.9 °C

Δ T_{HEATING} = 20 (T_{INSIDEDURINGWINTER}) - (-4.8) = 24.8 °C

DR = 11.9 °C

HEATING:

 $Q_{HEATING}$ (fenestration heating load) = HF x A

HF (surface heating factor) = $U \times \Delta T_{HE\Delta TING}$

COOLING:

 $Q_{COOLING}$ (fenestration cooling load) = CF x A

CF (surface cooling factor) = CF_{HEATTRANSFERPART} + CF_{IRRADIATIONPART}

 $CF_{HEATTRANSFERPART} = U x (\Delta T_{COOLING} - 0.46 DR)$

CFIRRADIATIONPART = PXI x SHGC x IAC x FFs

 $PXI = E_D + E_d$

1.

WEST - FIXED - WOOD FRAME (A = 14.4 m²)

HF = $2.84 \times 24.8 \, ^{\circ}\text{C} = 70.43 \, \text{W/m}^2$

 $Q_{HEATING} = 70.43 \text{ W/m}^2 \text{ x } 14.4 \text{ m}^2 = 1014.22 \text{ W}$

 $CF_{HEATTRANSFERPART} = 2.84 \text{ x } (7.9 \text{ °C} - 0.46 \text{ x } 11.9 \text{ °C}) = 6.89 \text{ W/m}^2$

 $PXI = 559 + 188 = 747 \text{ W/m}^2$

 $CF_{IRRADIATIONPART} = 747 \text{ W/m}^2 \times 0.54 \times 1 \times 0.56 = 255.89 \text{ W/m}^2$

 $CF = 6.89 + 255.89 = 232.78 \text{ W/m}^2$

 $Q_{COOLING} = 232.78 \text{ W/m}^2 \text{ x } 14.4 \text{ m}^2 = 3352.07 \text{ W}$

WEST - FIXED - ALLUMINIUM FRAME (A = 14.4 m²)

HF = $3.61 \times 24.8 \, ^{\circ}\text{C} = 89.53 \, \text{W/m}^2$

Q_{HEATING} = 89.53 W/m² x 14.4 m² = 1289.2 W (Q_{HEATINGalluminium} > Q_{HEATINGwood})

 $CF_{HEATTRANSFERPART} = 3.61 \text{ x } (7.9 \text{ °C} - 0.46 \text{ x } 11.9 \text{ °C}) = 8.76 \text{ W/m}^2$

 $PXI = 559 + 188 = 747 \text{ W/m}^2$

 $CF_{IRRADIATIONPART} = 747 \text{ W/m}^2 \text{ x } 0.56 \text{ x } 1 \text{ x } 0.56 = 234.26 \text{ W/m}^2$

 $CF = 8.76 + 234.26 = 243.02 \text{ W/m}^2$

 $Q_{COOLING} = 243.02 \text{ W/m}^2 \text{ x } 14.4 \text{ m}^2 = 3499.46 \text{ W}$ (QCOOLINGalluminium > QCOOLINGwood)

2.

SOUTH - FIXED - WOOD FRAME (A = 3.6 m²)

HF = $2.84 \times 24.8 \, ^{\circ}\text{C} = 70.43 \, \text{W/m}^2$

 $Q_{HEATING} = 70.43 \text{ W/m}^2 \text{ x } 3.6 \text{ m}^2 = 253.55 \text{ W}$

```
CF_{HEATTRANSFERPART} = 2.84 \times (7.9 \, ^{\circ}C - 0.46 \times 11.9 \, ^{\circ}C) = 6.89 \, \text{W/m}^2
PXI = 348 + 209 = 557 \text{ W/m}^2
CF_{IRRADIATIONPART} = 557 \text{ W/m}^2 \times 0.54 \times 1 \times 0.47 = 141.37 \text{ W/m}^2
CF = 6.89 + 141.37 = 148.26 \text{ W/m}^2
Q_{COOLING} = 148.26 \text{ W/m}^2 \text{ x } 3.6 \text{ m}^2 = 533.74 \text{ W}
SOUTH - FIXED - ALLUMINIUM FRAME (A = 3.6 m<sup>2</sup>)
HF = 3.61 \times 24.8 \, ^{\circ}\text{C} = 89.53 \, \text{W/m}^2
Q_{HEATING} = 89.53 \text{ W/m}^2 \text{ x } 3.6 \text{ m}^2 = 322.31 \text{ W} (Q_{HEATINGalluminium} > Q_{HEATINGwood})
CF_{HEATTRANSFERPART} = 3.61 \text{ x } (7.9 \text{ }^{\circ}\text{C} - 0.46 \text{ x } 11.9 \text{ }^{\circ}\text{C}) = 8.76 \text{ W/m}^2
PXI = 348 + 209 = 557 \text{ W/m}^2
CF_{IRRADIATIONPART} = 557 \text{ W/m}^2 \times 0.56 \times 1 \times 0.47 = 146.6 \text{ W/m}^2
CF = 8.76 + 146.6 = 155.36 \text{ W/m}^2
Q<sub>COOLING</sub> = 155.36 W/m<sup>2</sup> x 3.6 m<sup>2</sup> = 559.3 W (Q<sub>COOLINGalluminium</sub> > Q<sub>COOLINGwood</sub>)
SOUTH - OPERABLE - WOOD FRAME (A = 3.6 m<sup>2</sup>)
HF = 2.87 \times 24.8 \, ^{\circ}\text{C} = 71.18 \, \text{W/m}^2
Q_{HEATING} = 71.18 \text{ W/m}^2 \text{ x } 3.6 \text{ m}^2 = 256.23 \text{ W}
CF_{HEATTRANSFERPART} = 2.87 \text{ x } (7.9 \text{ °C} - 0.46 \text{ x } 11.9 \text{ °C}) = 6.96 \text{ W/m}^2
PXI = 348 + 209 = 557 \text{ W/m}^2
CF_{IRRADIATIONPART} = 557 \text{ W/m}^2 \text{ x } 0.46 \text{ x } 1 \text{ x } 0.47 = 120.42 \text{ W/m}^2
CF = 6.96 + 120.42 = 127.38 \text{ W/m}^2
Q_{COOLING} = 127.38 \text{ W/m}^2 \text{ x } 3.6 \text{ m}^2 = 458.58 \text{ W}
SOUTH - OPERABLE - ALLUMINIUM FRAME (A = 3.6 m<sup>2</sup>)
HF = 4.62 \times 24.8 \, ^{\circ}\text{C} = 114.58 \, \text{W/m}^2
QHEATING = 114.58 W/m<sup>2</sup> x 3.6 m<sup>2</sup> = 412.47 W (QHEATINGalluminium > QHEATINGwood)
CF_{HEATTRANSFERPART} = 4.62 \text{ x } (7.9 \text{ °C} - 0.46 \text{ x } 11.9 \text{ °C}) = 11.21 \text{ W/m}^2
PXI = 348 + 209 = 557 \text{ W/m}^2
CF_{IRRADIATIONPART} = 557 \text{ W/m}^2 \times 0.55 \times 1 \times 0.47 = 143.98 \text{ W/m}^2
CF = 11.21 + 143.98 = 155.19 \text{ W/m}^2
Q_{COOLING} = 155.19 \text{ W/m}^2 \text{ x } 3.6 \text{ m}^2 = 558.7 \text{ W} (Q_{COOLINGalluminium} > Q_{COOLINGwood})
```