Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

" НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет программной инженерии и компьютерной техники (ПИКТ)

Направление подготовки (специальность) – 09.03.04 (Нейротехнологии и программная инженерия)

Основы профессиональной деятельности

Лабораторная работа № 2 Вариант: 652

> Выполнил студент Немыкин Ярослав Алексеевич Группа № Р3122

Преподаватель: Абузов Ярослав Александрович

г. Санкт-Петербург 2024 г.

Оглавление

D	3
Выполнение работы:	3
Исходные данные	
Описание программы	
Трассировка программы	
Вариант программы с меньшим числом команд	
Вывол:	

Задание:

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

205: 0200 E205 206: 207: + A210 208: 6206 209: E205 20A: 0200 20B: 320F 20C: 2205 20D: E211 20E: 0100 20F: E205 210: 0100 211: 0100

Рис 1. Исходные данные

Выполнение работы:

Исходные данные

Адрес	Код команды / данные	Мнемоника	Комментарии
0000_0010_0000_0101	0000_0010_0000_0000	-	DATA
0000_0010_0000_0110	1110_0010_0000_0101	-	DATA
0000_0010_0000_0111	1010_0010_0001_0000	LD M	210 -> AC
0000_0010_0000_1000	0110_0010_0000_0110	SUB M	AC - 206 -> AC
0000_0010_0000_1001	1110_0010_0000_0101	ST M	AC -> 205
0000_0010_0000_1010	0000_0010_0000_0000	CLA	0 -> AC
0000_0010_0000_1011	0011_0010_0000_1111	OR M	20F AC -> AC
0000_0010_0000_1100	0010_0010_0000_0101	AND M	205 & AC -> AC
0000_0010_0000_1101	1110_0010_0001_0001	ST M	AC- > 211
0000_0010_0000_1110	0000_0001_0000_0000	HLT	ОСТАНОВКА
0000_0010_0000_1111	1110_0010_0000_0101	-	DATA
0000_0010_0001_0000	0000_0001_0000_0000	-	DATA
0000_0010_0001_0001	0000_0001_0000_0000	-	DATA

Рис 2. Исходные данные в табличном формате

Описание программы

Формула из программы Область представления данных

Область допустимых

значений

Расположение в памяти исходных данных и результатов

Адреса первой и последней выполняемой команды

X = C&(A-B) X , A , B , C – 16-ти разрядные числа (15 бит под число, 1 бит под знак)

-2¹⁵ <= X <= 2¹⁵-1, 0 <= C <= 2^16-1, -2^14 <= A, B <= 2^14-1 -32768 <= X <= 32767, 0 <= C <= 65536, -16384 <= A, B <= 16383 205, 206, 210 – исходные данные

207-20F - команды

205 – промежуточный результат, 211 -

результат

207— первая 20F— последняя

Трассировка программы

Выполняем	ая команда		Содержимое регистров процессора после выполнения команды				Ячейка, содержимое которой изменилось после выполнения команды			
Адрес	Код команды	IP	CR	AR	DR	BR	AC	NZVC	Адрес	Новый код
0000_0010_0000_0111	1010_0010_0001_0000	010_0000_1000	1010_0010_0001_0000	010_0001_0000	0000_0001_0000_0000	0000_0010_0000_0111	0000_0001_0000_0000		-	-
0000_0010_0000_1000	0110_0010_0000_0110	010_0000_1001	0110_0010_0000_0110	010_0000_0110	1110_0010_0000_0101	0000_0010_0000_1000	0001_1110_1111_1011		=	-
0000_0010_0000_1001	1110_0010_0000_0101	010_0000_1010	1110_0010_0000_0101	010_0000_0101	0001_1110_1111_1011	0000_0010_0000_1001	0001_1110_1111_1011		0000_0010_0000_0101	0001_1110_1111_1011
0000_0010_0000_1010	0000_0010_0000_0000	010_0000_1011	0000_0010_0000_0000	010_0000_1010	0000_0010_0000_0000	0000_0010_0000_1010	0000_0000_0000_0000	-Z	-	-
0000_0010_0000_1011	0011_0010_0000_1111	010_0000_1100	0011_0010_0000_1111	010_0000_1111	1110_0010_0000_0101	0001_1101_1111_1010	1110_0010_0000_0101	N	-	-
0000_0010_0000_1100	0010_0010_0000_0101	010_0000_1101	0010_0010_0000_0101	010_0000_0101	0001_1110_1111_1011	0000_0010_0000_1100	0000_0010_0000_0001		=	-
0000_0010_0000_1101	1110_0010_0001_0001	010_0000_1110	1110_0010_0001_0001	010_0001_0001	0000_0010_0000_0001	0000_0010_0000_1101	0000_0010_0000_0001		0000_0010_0001_0001	0000_0010_0000_0001
0000_0010_0000_1110	0000_0001_0000_0000	010_0000_1111	0000_0001_0000_0000	010_0000_1110	0000_0001_0000_0000	0000_0010_0000_1110	0000_0010_0000_0001		-	-

Рис 3. Трассировка программы

Вариант программы с меньшим числом команд

Адрес	Код команды / данные	Мнемоника	Комментарии
0000_0010_0000_0111	1010_0010_0001_0000	LD M	210 -> AC
0000_0010_0000_1000	0110_0010_0000_0110	SUB M	AC - 206 -> AC
0000_0010_0000_1001	1110_0010_0000_0101	ST M	AC -> 205
0000_0010_0000_1010	1010_0010_0000_1111	LD M	20F -> AC
0000_0010_0000_1011	0010_0010_0000_0101	AND M	205 & AC -> AC
0000_0010_0000_1100	1110_0010_0001_0001	ST M	AC- > 211
0000_0010_0000_1101	0000_0001_0000_0000	HLT	OCTAHOBKA

Рис 4. Вариант программы с меньшим числом команд

Вывод:

Во время выполнения лабораторной работы я изучил приемы работы на базовой ЭВМ и исследовал порядок выполнения арифметических команд и команд пересылки.