

Propriedades da Matéria, Substâncias e Misturas

01. A tabela abaixo apresenta os valores de algumas propriedades físicas de 3 substâncias:

Substância	Temperatura de Fusão ºC	Temperatura de Ebulição ºC	Densidade g/cm³
Álcool	- 114,5	78,4	0,789
Acetona	- 94,8	56,2	0,791
Naftalina	80,2	218,5	1,145

Analisando-se os dados contidos na tabela, é **correto** afirmar-se que

- a) a acetona evapora mais dificilmente que o álcool.
- b) as 3 substâncias encontram-se no estado líquido a 60 °C.
- c) a pressão normal 1kg de água entraria em ebulição com maior dificuldade que 1kg de álcool.
- d) a densidade é a propriedade mais adequada, para distinguir o álcool da acetona.
- e) a naftalina, a temperatura ambiente, ficaria boiando na superfície da água.
- 02. Muitas substâncias moleculares são líquidas à pressão atmosférica e à temperatura ambiente. Uma propriedade dos líquidos é não possuírem forma definida, adaptando-se à forma dos recipientes que os contêm. Essa propriedade dos líquidos é devida:
- a) ao fato de as moléculas dos líquidos não terem forma definida.
- b) à facilidade de rompimento das ligações covalentes entre os átomos das moléculas.
- c) à grande compressibilidade dos líquidos.
- d) às fortes interações entre moléculas do líquido e do recipiente.
- e) às fracas interações intermoleculares existentes nos líquidos.

O3. Para a Ciência, matéria é tudo aquilo que tem massa e ocupa lugar no espaço. A matéria é possuidora de uma série de propriedades, que, em conjunto, servem para identificá-la. Analise o seguinte experimento: determinação do ponto de fusão de uma substância X; observação de um valor abaixo do tabelado para essa substância. Isso pode significar que

- a) a porção de substância utilizada na determinação foi menor que o necessário.
- b) a porção de substância utilizada na determinação foi maior que o necessário.
- c) uma fração da substância não pode ser fundida.
- d) a substância é possuidora de impurezas.
- e) a substância possui um grau 100% puro.

04.Na Química, para se caracterizar um determinado material são utilizadas, dentre outras, quatro constantes físicas: ponto de fusão, ponto de ebulição, densidade e solubilidade que constituem um "quarteto fantástico". Em um laboratório, foram obtidos os dados da tabela abaixo, relativos a propriedades específicas de amostras de alguns materiais.

	Materiais	Massa (g) a 20°C	Volume (cm ³)	Temperatura de Fusão (°C)	Temperatura de Ebulição (°C)
_	Α	115	100	80	218
4	В	174	100	650	1120
	С	74	100	- 40	115
	D	100	100	0	100

Considerando os dados da tabela, analise as afirmações seguintes.

- I. À temperatura de 25 °C, os materiais C e D estão no estado líquido.
- II. Massa e volume são propriedades específicas de cada material.
- III. Se o material B for insolúvel em D, quando for adicionado a um recipiente que contenha o material D ele deverá afundar.
- IV. Se o material A for insolúvel em D, quando for adicionado a um recipiente que contenha o material D ele deverá flutuar.
- V. À temperatura de 20 °C, a densidade do material C é igual a 0.74 g/mL.

Das afirmações acima, são corretas, apenas:

a) I, III e V.

b) II, III e IV. c) III, IV e V.

d) I e V. e) I, III e IV.

05.A dureza de um mineral reflete a resistência deste ao risco. Uma das escalas utilizadas para verificar a dureza de um mineral é a escala de Mohs.

ESCALA DE MOHS (minerais em ordem crescente de dureza)

1 - talco	6 - ortoclásio
2 - gesso	7 - quartzo
3 - calcita	8 - topázio
4 - fluorita	9 - coríndon
5 - apatita	10 - diamante

De acordo com essa escala, é INCORRETO afirmar que:

- a) o diamante é o mineral mais duro.
- b) apenas o coríndon risca o diamante.
- c) a apatita é riscada pelo quartzo.
- d) o topázio e a fluorita riscam a calcita.
- e) o mineral menos duro é o talco.

06. Dois copos, A e B, contendo respectivamente 100 mL e 200 mL de água destilada, são aquecidos uniformemente com a mesma fonte de calor.

Sendo t_A e t_B os **tempos** gastos para se iniciar a ebulição nos copos A e B; TEA e TEB as temperaturas de ebulição nos copos A e B, podemos afirmar:

- $\begin{array}{ll} \text{a)} \; t_A = t_B; \; \text{TE}_A = \text{TE}_B & \quad \text{d)} \; t_A > t_B; \; \text{TE}_A = \text{TE}_B \\ \text{b)} \; t_A < t_B; \; \text{TE}_A < \text{TE}_B & \quad \text{e)} \; t_A < t_B; \; \text{TE}_A = \text{TE}_B \end{array}$

- c) $t_A > t_B$; $TE_A > TE_B$

07. (ENEM) Quando definem moléculas, os livros geralmente apresentam conceitos como: "a menor parte da substância capaz de guardar suas propriedades". A partir de definições desse tipo, a idéia transmitida ao estudante é a de que o constituinte isolado (moléculas) contém os atributos do todo.

É como dizer que uma molécula de água possui densidade, pressão de vapor, tensão superficial, ponto de fusão, ponto de ebulição, etc. Tais propriedades pertencem ao conjunto, isto é, manifestam-se nas relações que as moléculas mantêm entre si.

(Adaptado de OLIVEIRA, R.J. O Mito da Substância. Química Nova na Escola, nº 1, 1995.)

O texto evidencia a chamada visão substancialista qu e ainda se encontra presente no ensino da Química. Abaixo, estão relacionadas algumas afirmativas pertinentes ao

- I. O ouro é dourado, pois seus átomos são dourados.
- II. Uma substância "macia" não pode ser feita de moléculas "rígidas".
- III. Uma substância pura possui pontos de ebulição e fusão constantes, em virtude das interações entre suas moléculas.
- IV. A expansão dos objetos com a temperatura ocorre porque os átomos se expandem.

Dessas afirmativas, estão apoiadas na visão substancialista criticada pelo autor apenas:

- a) l e ll
- b) III e IV
- c) I, II e III

- d) I, II e IV
- e) II, III e IV

08. (U.E. Londrina-PR)Um termo químico, principalmente na linguagem cotidiana, podeter significados diversos, dependendo do contexto em que se encontra. Considere asseguintes frases:

- I. A água é composta de hidrogênio e oxigênio;
- II. O hidrogênio é um gás inflamável;
- III. O ozônio é uma das formas alotrópicas do oxigênio;

IV. O gás hidrogênio reage com o gás oxigênio para formar

V. A água é constituída por dois hidrogênios e um oxigênio;

Com relação ao significado dos termos sublinhados, é incorreto afirmar:

- a) Água significa substância química em I e molécula de água em V;
- b) Hidrogênio em II significa substância química;
- c) Hidrogênio em IV significa substância química, e em V, átomos de hidrogênio;
- d) O significado de oxigênio em III e IV é o mesmo;
- e) Oxigênio em V significa átomo de oxigênio;

09. (ENEM) Quando definem moléculas, os livros geralmente apresentam conceitos como: "a menor parte da substância capaz de guardar suas propriedades". A partir de definições desse tipo, a idéia transmitida ao estudante é a de que o constituinte isolado (moléculas) contém os atributos do todo.

É como dizer que uma molécula de água possui densidade, pressão de vapor, tensão superficial, ponto de fusão, ponto de ebulição, etc. Tais propriedades pertencem ao conjunto, isto é, manifestam-se nas relações que as moléculas mantêm entre si.

(Adaptado de OLIVEIRA, R.J. O Mito da Substância. Química Nova na Escola, nº 1, 1995.)

- O texto evidencia a chamada visão substancialista qu e ainda se encontra presente no ensino da Química. Abaixo, estão relacionadas algumas afirmativas pertinentes ao assunto.
- I. O ouro é dourado, pois seus átomos são dourados.
- II. Uma substância "macia" não pode ser feita de moléculas
- III. Uma substância pura possui pontos de ebulição e fusão constantes, em virtude das interações entre suas moléculas.
- IV. A expansão dos objetos com a temperatura ocorre porque os átomos se expandem.

Dessas afirmativas, estão apoiadas na visão substancialista criticada pelo autor apenas:

- a) I e II
- b) III e IV
- c) I, II e III

- d) I, II e IV
- e) II, III e IV
- 10. Cada item a seguir está relacionado com as diferentes mudanças de estado físico e algumas de suas características. Julgue cada um dos itens a seguir.
- O O Evaporação, calefação e ebulição são exemplos de passagem do estado líquido para o de vapor
- 1 1 A liquefação do Ar atmosférico é um exemplo de transformação exotérmica onde os componentes do Ar passam do estado gasoso para o estado líquido.
- 2 2 Em condições idênticas de ambiente, percebemos que a acetona evapora mais facilmente que a água devido ao fato das interações entre as moléculas da acetona serem

mais fracas do que as interações entre as moléculas da água.

- 3 3 Um líquido quando entra em ebulição tem suas interações intermoleculares rompidas.
- 4 4 Fusão, condensação e evaporação são exemplos de transformações endotérmicas.
- 11. (COVEST/10.2) Um técnico recebeu duas substâncias sólidas desconhecidas para serem analisadas. O gráfico a seguir representa as curvas de aquecimento das amostras dessas substâncias.

Analisando o gráfico, é correto afirmar que:

- a) X e Y são substâncias puras.
- b) o ponto de fusão da substância X é maior que 115 °C.
- c) nas temperaturas de fusão de X ou de Y, têm-se misturas de sólido e de líquido.
- d) o ponto de ebulição das amostras X e Y é o mesmo.
- e) sob pressão de 1 atm, a amostra X poderia serágua pura.
- 12. (ENEM/01) Pelas normas vigentes, o litro do álcool hidratado que abastece os veículos deve ser constituído de 96% de álcool puro e 4% de água (em volume). As densidades desses componentes são dadas na tabela.

Substância	Densidade (g/l)	
Água	1000	
Álcool	800	

Um técnico de um órgão de defesa do consumidor inspecionou cinco postos suspeitos de venderem álcool hidratado fora das normas. Colheu uma amostra do produto em cada posto, mediu a densidade de cada uma, obtendo:

Posto	Densidade do combustível (g/l)
I	822
II	820
III	815
IV	808
V	805

A partir desses dados, o técnico pôde concluir que estavam com o combustível adequado somente os postos:

- a) l e ll.
- b) I e III. c) II e IV.
- d) III e V.
- e) IV e V.

13. (ENEM/ 09.A) O controle de qualidade é uma exigência da sociedade moderna na qual os bens deconsumo são produzidos em escala industrial. Nesse controle de qualidade são determinadosparâmetros que permitem checar a qualidade de cada produto. O álcool combustível é um produto deamplo consumo muito adulterado, pois recebe a adição de outros materiais para aumentar a margemde lucro de quem comercializa. De acordo com Agência Nacional de Petróleo (ANP), o álcoolcombustível deve ter densidade entre 0,805 g/cm³ e 0,811 g/cm³. Em algumas bombas decombustíveis a densidade do álcool pode ser verificada por meio de um densímetro similar aodesenhado abaixo, que consiste em duas bolas com valores de densidade diferentes e verifica quandoo álcool está fora da faixa permitida. Na imagem, são apresentadas distintas para trêsamostras de combustível. A respeito das amostras ou densímetro, podese afirmar que:

- a) A densidade da bola escura deve ser igual a 0,811 g/cm 3 .
- b) A amostra 1 possui densidade menor do que a permitida.
- c) A bola clara tem densidade igual à densidade da bola escura.
- d) A amostra que está dentro do padrão estabelecido é a de número 2.
- e) O sistema poderia ser feito com uma única bola de densidade entre 0,805 g/cm3 e 0,811 g/cm³.
- 14. Uma liga metálica de massa 120,0 g e densidade 6,0 g/mL é constituída pelos metais A e B de densidades, respectivamente, iguais a 10,0 g/mL e 5,0 g/mL. O percentual do metal B na liga é, aproximadamente:
- a) 50%
- b) 33%
- c) 67%
- d) 80%

- e) 40%
- 15. (EsPECx)Considerando três recipientes distintos que possuem, no seu interior, exclusivamente, água mineral, etanol e soro fisiológico, é correto afirmar que os conteúdos são, respectivamente:
- a) mistura heterogênea, substância composta e substância simples.
- b) mistura homogênea, mistura homogênea e mistura homogênea.
- c) substância composta, substância composta e mistura heterogênea.
- d) mistura homogênea, substância composta e mistura homogênea.

- 16. (Unifor-CE)Uma amostra de material apresenta as seguintes características:
- temperatura de ebulição constante à pressão atmosférica;
- composição química constante;
- é formada por moléculas idênticas entre si;
- é formada por dois elementos químicos diferentes.

Logo, tal material pode ser classificado como:

- a) mistura homogênea, monofásica;
- b) substância pura, simples;
- c) mistura heterogênea, bifásica;
- d) substância pura, composta;
- e) mistura heterogênea, trifásica.
- 17. (PUC-RS)Responder a questão 2 numerando corretamente a coluna da direita, que contém exemplos de sistemas, de acordo com a da esquerda, que apresenta a classificação dos mesmos.
- 1. elemento químico
- () fluoreto de sódio
- 2. substância simples
- () gás oxigênio
- 3. substância composta
- () água do mar filtrada
- 4. mistura homogênea
- () limonada com gelo
- 5. mistura heterogênea
- A alternativa que contém a seqüência correta dos números da coluna da direita, de cima para baixo, é:
- a) 3 2 4 5
- d) 2 3 5 4
- b) 3 2 5 4
- e) 1 2 3 4
- c) 2 1 4 5
- 18. (UPE/SSA) A curva mostrada no gráfico a seguir representa um processo de aquecimento constante, submetido a uma amostra de um determinado líquido. Ele é um dos principais produtos do beneficiamento de uma cultura agrícola, cultivada há séculos, no Litoral e na Zona da Mata de Pernambuco.

Em relação a esse produto, são feitas as considerações a seguir:

- I. Trata-se de uma mistura azeotrópica.
- II. Constitui-se em uma substância pura, polar e oxigenada. III. É obtido por um procedimento que envolve uma coluna de destilação.

Dentre essas características disponibilizadas para o produto em questão, apenas está CORRETO o quese afirma em

a) I. b) II. c) III. d) I e III. e) II e III.

19. Considere um lago numa região onde a temperatura do ar no inverno atinge valores abaixo de 0ºC. Poder-se-ia pensar que, nessa temperatura, toda a água se transforma em gelo, o que acarretaria a morte dos peixes e demais organismos vivos nele existentes. Isso não ocorre, porque o gelo é menos denso do que a água líquida e por isso flutua, constituindo uma camada que funciona como um isolante térmico, o que impede a solidificação da água abaixo dessa camada. Graças a isso, os peixes e demais organismos vivos conseguem sobreviver.

A água é uma substância muito peculiar, ou seja, difere da maioria das substâncias em várias propriedades, tais como as seguintes:

- I. Na grande maioria das substâncias, a solidificação é acompanhada de contração de volume. A água, ao contrário, sofre uma expensão de volume, quando se transforma em gelo (solidificação).
- II. A densidade das substâncias diminui com a elevação da temperatura. A densidade da água, ao contrário, pelo menos no intervalo de 0ºC a 4ºC, aumenta com a elevação da temperatura.
- III. A água é o único hidreto de ametal de fórmula H_2E que não é gasoso nas condições ambientes.
- Qual(is) dessas propriedades explica(m) o fato de não ocorrer a solidificação de toda a água do lago, mesmo quando a temperatura do ar atinge -50ºC?
- a) I, II e III
- b) II e III, somente
- c) I, somente
- d) II, somente.
- e) III, somente.
- 20. (UPE/10/Q1) As normas da ANP (Agência Nacional do Petróleo) definem o teor em volume do álcoolna gasolina, no intervalo entre 18% a 24% como sendo aceitável. Uma análise realizada por umestudante de química revelou que, ao se adicionarem 20,0 mL de água destilada a uma proveta de100,0 mL, com rolha, contendo 30,0 mL de gasolina, após intensa agitação, o volume da mistura"água + álcool" tornou-se igual a 27,80 mL. Após a análise dessa experiência, o estudante concluiucomo VERDADEIRO que Dados: dálcool = 0,80g/mL e dgasolina = 0,72g/mL
- a) o álcool é insolúvel na água, em qualquer proporção, razão pela qual o volume de água aumentou.
- b) a densidade da gasolina pura é bem maior que a da água destilada, por ser uma mistura dehidrocarbonetos.
- c) a gasolina analisada atende as normas da ANP, podendo ser comercializada sem nenhumarestrição.
- d) a quantidade de álcool encontrada na gasolina analisada é maior que a permitida pelas normas da ANP.
- e) quanto maior o teor de álcool na gasolina, mais próxima de 0,62g/mL será a densidade da mistura.
- 21. (E.M. Santa Casa/Vitória-ES)Excluindo-se o recipiente e a atmosfera, quantas fasesdeve apresentar um sistema constituído por: óleo + gelo + água + sal de cozinha emquantidade superior ao ponto de saturação na água + granito (mica, feldspato, quartzo)?

- a) 3 b) 4 c) 6 d) 7 e) 9
- 22. . (U. Alfenas-MG) Se em um copo contendo água for colocado uma bolinha de naftalina(naftaleno), observa-se que a mesma afunda. Acrescentando-se a esse sistema sal defrutas, a naftalina passa a boiar. Esse fenômeno se deve ao fato de que:
- a) a naftalina torna-se menos densa, pois começa a se dissolver na água;
- b) há formação de gás carbônico, o qual interage com a naftalina, deixando-a menosdensa;
- c) com a adição do sal de frutas, gera-se uma solução mais densa que a naftalina, fazendocom que esta bóie;
- d) a naftalina tem uma grande facilidade para sofrer o processo de sublimação.
- e) forma-se uma mistura heterogênea instável que tende a se tornar homogênea com aexpulsão da naftalina do meio, facilitando sua sublimação.
- 23. (FUVEST-SP)Propriedades de algumas substâncias:

Substância	Ponto de fusão (°C)	Solubilidade (g/100 cm³) a 25 °C		Densidade (g/cm³) a 25 °C
	(0)	em água	em CCl ₄	(g/cm²) a 25°C
CCl ₄ *	-23,0	= 0	-	1,59
iodo	113,5	0,03	2,90	4,93
água	0,0	-	≅ 0	1,00

- * CCl, = tetracloreto de carbono
- A 25 °C, 3,00 g de iodo, 70 cm³ de água e 50 cm³ de CCℓ₄ são colocados em um funil de separação. Após agitação e repouso, qual dos esquemas abaixo deve representar a situação final?

- 24. (UPE) Em relação às substâncias puras e misturas, é correto afirmar:
- a) as substâncias puras apresentam composição química constante, apenas quando submetidas ás CNTP.
- b) as misturas azeotrópicas comportam-se como substâncias puras em relação á fusão.

- c) quando uma substância pura muda de estado físico, a temperaturapermanece constante apenas no início do processo.
- d) os constituintes de uma mistura homogênea podem ser separados apenas por decantação, seguida por uma centrifugação.
- e) as substâncias puras são homogêneas, apresentam composição química constante e propriedades físicas peculiares.

25.(ITA/12)A figura representa a curva de aquecimento de uma amostra, em que S, L e G significam, respectivamente, sólido, líquido e gasoso. Com base nas informações da figura é CORRETO afirmar que a amostra consiste em uma

- a) substância pura.
- b) mistura coloidal.
- c) mistura heterogênea.
- d) mistura homogênea azeotrópica.
- e) mistura homogênea eutética.
- 26. (Unesp 2012) Na indústria farmacêutica, substâncias específicas são utilizadas para revestir pílulas e comprimidos. Em um experimento, uma das substâncias sólidas foi retirada de uma formulação e purificada. Para verificar a eficiência da purificação, um termômetro foi colocado em um tubo de ensaio contendo uma amostra da substância derretida, a 1 atm. Durante o resfriamento e até que a amostra tenha se solidificado completamente, foram lidas as temperaturas em intervalos regulares. Com esses dados, foi traçada a curva de resfriamento, um gráfico que mostra a variação de temperatura em função do tempo, a 1 atm.

O gráfico que corresponde à curva de resfriamento da substância pura está representado por

5

- 27. (UFG/12)O concreto armado é uma mistura de concreto com uma armadura de aço. Esses dois materiais podem ser utilizados juntos na construção civil porque
- a) apresentam a mesma densidade em água.
- b) apresentam a mesma condutividade elétrica.
- c) têm coeficientes de dilatação muito próximos.
- d) reagem quimicamente, formando um novo material.
- e) possuem a mesma capacidade calorífica.
- 28. (Col. Naval/11)Segundo estudos conduzidos por uma equipe multidisciplinar da UNICAMP (Universidade de Campinas), o excesso de fluoreto (F) contido nas pastas dentais comuns pode provocar em crianças, com idades inferiores a 7 anos de idade, a fluorose, doença caracterizada por manchas esbranquiçadas ou opacas nos dentes em formação, devido à reação com a hidroxiapatita [Ca10(PO4)6(OH)2] , um sólido presente nas camadas superficiais dos dentes, aumentando a porosidade nos dentes, facilitando a quebra e o fingimento dos dentes, este último pela absorção de corantes alimentícios.

De acordo com as informações fornecidas, qual propriedade da matéria é comprometida pelo uso continuado de pastas fluoretadas na faixa etária citada?

- a) Elasticidade.
- b) Inércia.
 - c) Tenacidade.

- d) Extensão.
- e) Massa.

29. (ENEM/11)Certas ligas estanho-chumbo composição específica formam um eutético simples, o que significa que uma liga com essas características se comporta como uma substância pura, com um ponto de fusão definido, no caso 183°C. Essa é uma temperatura inferior mesmo ao ponto de fusão dos metais que compõem esta liga (o estanho puro funde a 232°C e o chumbo puro a 320°C) o que justifica sua ampla utilização na soldagem de componentes eletrônicos, em que o excesso de aquecimento deve sempre ser evitado. De acordo com as normas internacionais, os valores mínimo e máximo das densidades para essas ligas são de 8,74 g/mL e 8,82 g/mL, respectivamente. As densidades do estanho e do chumbo são 7,3 g/mL e 11,3 g/mL, respectivamente. Um lote contendo 5 amostras de solda estanho-chumbo foi analisado por um técnico, por meio da determinação de sua composição percentual em massa, cujos resultados estão mostrados no quadro a seguir.

Amostra	Porcentagem de Sn (%)	Porcentagem de Pb (%)
1	60	40
II	62	38
III	65	35
IV	63	37
V	59	41

Com base no texto e na análise realizada pelo técnico, as amostras que atendem às normas internacionais são

- a) I e II.
- b) I e III.
- c) II e IV.

- d) III e V.
- e) IV e V.

30. (Mackenzie/10)Quando dois ou mais metais, no estado líquido, são miscíveis, dizemos que constituem uma liga metálica, podendo ter composição porcentual, em massa, variável. Como exemplo, tem-se o bronze, liga de cobre e estanho, usado na manufatura de um sino que contém 80 % de cobre e 20 % de estanho e de uma fechadura contendo 90 % de cobre e 10 % de estanho.

Com as informações acima, fazem-se as afirmações.

- I. O bronze, por não ter composição fixa, não é representado por fórmula química.
- II. Se o sino for de meia tonelada, a massa de cobre é de 400 kg.
- III. Se, na fechadura, houver 20 g de estanho, então a quantidade de bronze, nela, é de 200 g.
- IV. Na obtenção de ligas metálicas, deve haver a evaporação dos metais que a compõem.

Estão corretas as afirmações

- a) I e III, somente.
- b) I, II e III, somente.
- c) II e III, somente.
- d) I, II e IV, somente.
- e) I, II, III e IV.

- 31. A produção de suor, na espécie humana, é um mecanismo que impede a elevação da temperatura corpórea, mantendo o organismo a temperaturas de aproximadamente 37ºC. Ao ser vaporizado em nossa pele, o suor retira dela energia térmica, reduzindo-lhe assim a temperatura. Dentre as situações expostas a seguir, assinale aquela em que não se verifica o mecanismo físico descrito acima.
- a) A água armazenada numa moringa de barro e colocada à sombra, com o tempo, torna-se mais fresca.
- b) As roupas molhadas, penduradas no varal e expostas ao vento, ficam mais frias, como percebemos pelo tato.
- c) Quando uma garrafa de refrigerante gelado é deixada sobre a mesa, formam-se gotículas de água que, aderidas ao recipiente, propiciam uma redução ainda maior na temperatura do refrigerante.
- d) Quando passamos álcool em nossa pele e assopramos, temos a sensação de resfriamento do local.
- e) Mesmo em dias muito quentes, quando uma pessoa sair de uma piscina, pode sentir frio.
- 32. Analise o fluxograma a seguir que apresenta processos de transformação da matéria através das operações indicadas:

 Δ = aquecimento

i = eletrólise

hf = fóton

Após análise, verifica-se que a única afirmação incorreta é:

- a) O material III pode ser uma substância composta.
- b) Os materiais IV e V não são substâncias puras.
- c) Na obtenção dos materiais II e III a partir do material I, usam-se métodos físicos.
- d) Os materiais III e VI devem possuir as mesmas propriedades.
- e) As substâncias *B* e *E* devem ser formadas pelos mesmos elementos químicos.
- 33. Em relação à ocorrência e às propriedades da água, é CORRETO afirmar que:
- a) a água da chuva é água natural prontamente disponível, relativamente pura, não havendo nela substâncias gasosas dissolvidas.
- b) é um fato experimental que a densidade da água líquida torna-se igual à da água sólida em temperaturas próximas de 100°C.

- c) se admitindo que o gelo não flutuasse na água, isso acarretaria a morte dos peixes e da vida vegetal existentes em um lago que esteja por muito tempo congelado por um rigoroso inverno.
- d) o ponto de ebulição anormal da água, quando comparado com o da amônia e do metano que apresentam massas molares próximas ao do H_2O , é explicado pela linearidade da molécula.
- e) as ligações de hidrogênio intermoleculares que ocorrem na água são mais intensas que as ligações covalentes entre os átomos de hidrogênio e oxigênio na mesma substância.
- 34. A água é um recurso natural fundamental para a preservação da vida no planeta e indispensável para o desenvolvimento econômico da sociedade. As afirmações seguintes referem-se à água. Analise-as.
- I. A água existente em nosso planeta é totalmente utilizada para o consumo humano, entretanto sua distribuição é muito desigual, beneficiando, apenas, as regiões geograficamente mais planas.
- II. A escassez da água disponível para uso da população mundial está, de alguma forma relacionada, entre outros fatores, ao aumento populacional, ao aumento do parque industrial, bem como à irrigação de terras para fins de produção agrícola.
- III. As muitas propriedades da água, que são importantes para a vida no planeta, estão diretamente relacionadas com a geometria da molécula e com a diferença de eletronegatividade entre os átomos de oxigênio e hidrogênio.
- IV. A maior densidade da água no estado sólido em relação ao estado líquido está relacionada com a formação dos icebergs nos mares e com a preservação da vida aquática em lagos congelados.
- V. A alta capacidade calorífica da água é fundamental para a preservação da vida no planeta, pois evita variações muito bruscas de temperatura entre o dia e a noite.

São VERDADEIRAS apenas:

a) I, II e V

b) II, III e IV

c) II, III e V

d) I, II e IV

e) I, III e V

- 35. Julgue os itens a seguir.
- 0 0 A água própria para o consumo humano é chamada de água potável, que é insípida, incolor, isenta de quaisquer vestígios de gases atmosféricos ou sais minerais dissolvidos.
- 1 1 Em laboratório de química, quando um químico se refere a uma amostra de água, chamando-a de "dura", está se referindo ao gelo.
- 2 2 A adição, nos rios, de grandes quantidades de água quente, provenientes de indústrias, torna o ambiente impróprio para a vida de espécies aquáticas, pois haverá a diminuição da quantidade de oxigênio dissolvido nas águas dos rios.
- 3 3 As águas subterrâneas são totalmente puras, contendo exclusivamente moléculas de água, pois ainda não foram

expostas aos agentes contaminantes presentes no solo superficial e no ar atmosférico.

4 4 A "água pesada" apresenta as mesmas propriedades físicas da água comum, diferindo, apenas, na densidade, que é duas vezes maior que a da água comum.

GABARITO

- 01. C
- 02. E
- 03. D
- 04. A
- 05. B
- 05. L
- 06. E
- 07. D
- 08. D
- 09. D
- 10. V V V V F
- 11. C
- 12. E
- 13. D
- 14. C
- 15. D
- 16. D
- 17. A
- 18. A 19. C
- 20. D
- 21. D
- 22. C
- 23. B
- 24. E
- 25. E
- 26. C
- 27. C
- 28. C
- 29. C
- 30. B
- 31. C
- 32. B
- 33. C
- 34. C
- 35. F F V F F