Projeto de Data Science: Melhoria do Atendimento na HealthCare Solutions

Autor: Luis Gustavo dos Santos Talgatti

Instituição: UniFECAF

1. Introdução

Este notebook documenta o projeto da disciplina de Data Science, focado no desafio proposto pela rede de hospitais **HealthCare Solutions**. A empresa possui um grande volume de dados dispersos de múltiplas fontes e busca implementar uma transformação digital para melhorar a qualidade do atendimento ao paciente.

1.1. O Desafio

O objetivo central é coletar, tratar e analisar os dados de pacientes para identificar padrões que possam melhorar o atendimento e a eficiência operacional.

Para este projeto, focaremos em um indicador de performance chave (KPI) na área da saúde: a **previsão de readmissão hospitalar em 30 dias**. Identificar pacientes com alto risco de retorno ao hospital permite que a equipe de saúde tome ações preventivas, melhorando o desfecho clínico do paciente e reduzindo custos operacionais.

1.2. Fontes de Dados

Utilizamos quatro conjuntos de dados simulados (Mock Data) que representam as fontes descritas no desafio:

- 1. Registros Eletrônicos de Saúde (EHR): ehr_records.csv
- 2. **Dispositivos de Monitoramento:** device monitoring.csv
- 3. Pesquisas de Satisfação: patient_satisfaction.csv
- 4. **Dados Administrativos:** administrative_data.csv

1.3. Metodologia

Seguiremos as etapas completas de um projeto de Data Science, conforme solicitado no edital:

- 1. Coleta e Carregamento: Leitura dos arquivos CSV.
- 2. **Limpeza e Pré-processamento:** Tratamento de duplicatas, nulos e conversão de tipos.
- 3. **Análise Exploratória (EDA):** Geração de gráficos e estatísticas para encontrar padrões.
- 4. Engenharia de Atributos (Feature Engineering): Agregação e junção dos dados.

- 5. **Modelagem Preditiva:** Treinamento de modelos de Machine Learning (Regressão Logística e Random Forest) para prever a readmissão.
- 6. Conclusão: Interpretação dos resultados.

```
In [31]: # Importar bibliotecas
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import os
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler, OneHotEncoder
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import accuracy_score, classification_report, confusion_mat
         from sklearn.impute import SimpleImputer
         from sklearn.compose import ColumnTransformer
         from sklearn.pipeline import Pipeline
         # Definir estilo padrão para os gráficos
         sns.set_style('whitegrid')
         plt.rcParams['figure.figsize'] = (10, 6)
         plt.rcParams['figure.dpi'] = 100
         # Criar diretórios para salvar os artefatos
         os.makedirs('graficos', exist_ok=True)
```

1.4. Aspectos Éticos e LGPD

Este projeto utiliza dados simulados e anonimizados, onde identificadores como patient_id não têm ligação com pessoas reais.

Em um cenário de produção real, o tratamento de Registros Eletrônicos de Saúde (EHRs) é considerado um **dado sensível** sob a Lei Geral de Proteção de Dados (LGPD). Portanto, todo o acesso, armazenamento e processamento seriam feitos em conformidade com a lei, garantindo a anonimização e o uso de dados estritamente para a finalidade de melhorar o atendimento ao paciente, sem criar modelos que discriminem ou violem a privacidade.

2. Etapa 1: Coleta e Carregamento dos Dados

Nesta primeira etapa, carregamos os quatro conjuntos de dados (CSVs) em DataFrames do Pandas. Realizamos uma inspeção inicial usando .info() e .head() para entender a estrutura, os tipos de dados e a presença de valores nulos.

```
In [32]: folder_path = 'dados/'

try:
    df_admin = pd.read_csv(folder_path + 'administrative_data.csv')
    df_ehr = pd.read_csv(folder_path + 'ehr_records.csv')
    df_device = pd.read_csv(folder_path + 'device_monitoring.csv')
    df_satisfaction = pd.read_csv(folder_path + 'patient_satisfaction.csv')
```

```
print("Arquivos CSV carregados com sucesso.")
except FileNotFoundError as e:
   print(f"Erro ao carregar o arquivo: {e}")
   print("Verifique se a pasta 'dados/' está no mesmo diretório do notebook.")
# Inspecionar cada DataFrame
print("\n--- 1. administrative_data.csv (Dados Administrativos) ---")
df_admin.info()
print(df_admin.head())
print("\n--- 2. ehr_records.csv (Registros Eletrônicos de Saúde) ---")
df_ehr.info()
print(df_ehr.head())
print("\n--- 3. device_monitoring.csv (Dados de Monitoramento) ---")
df_device.info()
print(df_device.head())
print("\n--- 4. patient_satisfaction.csv (Pesquisas de Satisfação) ---")
df_satisfaction.info()
print(df_satisfaction.head())
```

```
--- 1. administrative_data.csv (Dados Administrativos) ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 5 columns):
    Column
#
                       Non-Null Count Dtype
---
    ----
                       -----
   hospital_id
                       3 non-null
0
                                       object
1
    hospital_name
                       3 non-null
                                       object
2
   hospital_region
                      3 non-null
                                       object
                                      int64
3
    total beds
                       3 non-null
    avg_staffing_ratio 3 non-null
                                       float64
4
dtypes: float64(1), int64(1), object(3)
memory usage: 252.0+ bytes
 hospital_id
                   hospital_name hospital_region total_beds
0
      HOSP-A
                 General Hospital
                                          North
                                                        210
      HOSP-B City Medical Center
                                          South
                                                        350
1
2
      HOSP-C Suburban Community
                                          East
                                                        180
  avg_staffing_ratio
0
                 4.8
1
                 5.1
2
                 4.5
--- 2. ehr_records.csv (Registros Eletrônicos de Saúde) ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5050 entries, 0 to 5049
Data columns (total 12 columns):
#
    Column
                       Non-Null Count Dtype
___
                        -----
0
    patient id
                        5050 non-null
                                       object
1
    admission_id
                        5050 non-null
                                        object
2
    hospital_id
                        5050 non-null
                                       object
                        5050 non-null
                                        int64
3
    patient age
                       5050 non-null
4
    patient_gender
                                        object
 5
    admission date
                       5050 non-null
                                        object
                        5050 non-null
6
    discharge_date
                                       object
7
    primary diagnosis
                        5050 non-null
                                        object
8
    comorbidities
                        3742 non-null
                                        object
9
                        4518 non-null
                                        object
    procedure code
10 length_of_stay_days 5050 non-null
                                        int64
                        5050 non-null
                                        bool
11 readmitted_30_days
dtypes: bool(1), int64(2), object(9)
memory usage: 439.0+ KB
 patient_id admission_id hospital_id patient_age patient_gender \
0 PID-14711 ADM-54711
                             HOSP-A
                                             58
                                                          Male
1 PID-10692
                                             88
              ADM-50692
                             HOSP-A
                                                          Male
2 PID-10066
                             HOSP-B
                                             55
                                                        Female
              ADM-50066
3 PID-13427
              ADM-53427
                             HOSP-B
                                             68
                                                          Male
                             HOSP-B
                                             45
4 PID-14821
              ADM-54821
                                                        Female
 admission date discharge date
                                 primary diagnosis \
0
     2024-02-17
                                     Hip Fracture
                   2024-03-06
1
     2024-03-30
                   2024-04-26
                                        Pneumonia
2
                                    Heart Failure
     2024-04-15
                   2024-04-28
3
     2024-05-13
                   2024-05-25 Diabetes Management
     2024-05-19
                   2024-06-14
                                     Hip Fracture
```

```
0
                       Diabetes
                                          NaN
                                                               18
1
                       Diabetes
                                     PROC-789
                                                               27
2 Hypertension, Diabetes, Asthma
                                     PROC-456
                                                               13
3
                         Asthma
                                      PROC-456
                                                               12
4
                       Diabetes
                                     PROC-456
                                                               26
  readmitted_30_days
0
                True
1
               False
2
               False
3
               False
               False
--- 3. device_monitoring.csv (Dados de Monitoramento) ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 75255 entries, 0 to 75254
Data columns (total 7 columns):
   Column
                             Non-Null Count Dtype
--- -----
                             -----
0
   record_id
                             75255 non-null object
1
    admission id
                             75255 non-null object
2
   timestamp
                            75255 non-null object
3 heart_rate_bpm
                            75255 non-null int64
    blood_pressure_systolic 75255 non-null int64
4
5
    blood_pressure_diastolic 75255 non-null int64
                            73098 non-null float64
    oxygen_saturation_spo2
dtypes: float64(1), int64(3), object(3)
memory usage: 4.0+ MB
   record_id admission_id
                                          timestamp heart_rate_bpm \
0 REC-057261 ADM-53818 2024-06-07 20:50:45.776037
1 REC-067482 ADM-54497 2024-08-06 01:52:47.502805
                                                                53
2 REC-046469 ADM-53096 2024-08-13 22:19:05.983859
                                                                114
3 REC-011048 ADM-50735 2024-11-12 10:05:16.916516
                                                                95
4 REC-018108 ADM-51206 2024-07-01 15:36:26.246981
                                                               110
  blood_pressure_systolic blood_pressure_diastolic oxygen_saturation_spo2
0
                      93
                                              108
1
                                               90
                                                                    97.8
                      111
2
                      100
                                               70
                                                                    94.2
3
                     174
                                              107
                                                                    90.3
4
                                                                    94.7
                     161
                                               91
--- 4. patient satisfaction.csv (Pesquisas de Satisfação) ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4520 entries, 0 to 4519
Data columns (total 8 columns):
#
   Column
                                Non-Null Count Dtype
--- -----
                                -----
    survey_id
0
                                4520 non-null object
1
    admission id
                                4520 non-null
                                               object
                                4520 non-null object
2
    survey_date
 3 overall satisfaction
                              4520 non-null int64
    communication_doctors_score 4520 non-null int64
4
5
    communication_nurses_score 4520 non-null
                                               int64
    cleanliness score
                               4520 non-null int64
7
    wait_time_satisfaction
                               4520 non-null int64
dtypes: int64(5), object(3)
memory usage: 282.6+ KB
   survey_id admission_id survey_date overall_satisfaction \
0 SRV-02880
            ADM-53542 2024-12-02
```

```
1 SRV-00801 ADM-52830 2024-03-30
2 SRV-03363 ADM-54573 2024-05-08
                                                       1
3 SRV-02343 ADM-51071 2024-05-21
                                                       5
4 SRV-04278 ADM-51762 2024-06-14
                                                       3
   communication doctors score communication nurses score cleanliness score \
0
1
                                                                        3
2
                                                      1
                           1
                                                                        1
3
                           4
                                                      5
                                                                        3
                                                      3
4
  wait_time_satisfaction
0
1
2
                      2
                      5
3
                      2
```

3. Etapa 2: Limpeza e Pré-processamento

A limpeza de dados é fundamental para garantir a qualidade da análise. Os dados simulados continham duplicatas, valores ausentes e tipos de dados incorretos.

Ações Realizadas:

- 1. **Remoção de Duplicatas:** Removemos 270 linhas duplicadas.
- 2. **Conversão de Tipos:** Colunas de data foram convertidas para datetime.
- 3. **Verificação de Consistência:** Garantimos que a data de alta é posterior à de admissão.
- 4. Recálculo de Variável: Recalculamos length_of_stay_days .

```
In [33]: # Tratamento de Dados Duplicados
    df_ehr = df_ehr.drop_duplicates(subset=['admission_id'], keep='first')
    df_device = df_device.drop_duplicates(keep='first')
    df_satisfaction = df_satisfaction.drop_duplicates(subset=['admission_id'], keep=
    df_admin = df_admin.drop_duplicates(subset=['hospital_id'], keep='first')

# Conversão de Tipos de Dados (Datas)
    df_ehr['admission_date'] = pd.to_datetime(df_ehr['admission_date'])
    df_ehr['discharge_date'] = pd.to_datetime(df_ehr['discharge_date'])
    df_device['timestamp'] = pd.to_datetime(df_device['timestamp'])
    df_satisfaction['survey_date'] = pd.to_datetime(df_satisfaction['survey_date'])

# Verificação de Consistência e Recálculo
    df_ehr = df_ehr[df_ehr['discharge_date'] >= df_ehr['admission_date']]
    df_ehr['length_of_stay_days'] = (df_ehr['discharge_date'] - df_ehr['admission_da
    print(f"Total de admissões únicas após limpeza: {df_ehr.shape[0]}")
```

Total de admissões únicas após limpeza: 5000

3.1 Tratamento de Valores Ausentes (Missing Values)

Substituímos os valores nulos (NaN) da coluna comorbidities pela string 'None' (Nenhuma), pois a ausência de comorbidade é uma informação clínica relevante.

Outros valores ausentes (satisfação, SpO2) serão tratados nas etapas de agregação e modelagem.

```
In [34]: #
# Tratamento de 'comorbidities'
nulos_antes = df_ehr['comorbidities'].isnull().sum()
df_ehr['comorbidities'] = df_ehr['comorbidities'].fillna('None')
nulos_depois = df_ehr['comorbidities'].isnull().sum()
print(f"Valores ausentes em 'comorbidities' tratados: {nulos_antes} -> {nulos_de
```

Valores ausentes em 'comorbidities' tratados: 1294 -> 0

4. Etapa 3: Análise Exploratória de Dados (EDA)

Nesta etapa, visualizamos os dados para identificar padrões, tendências e anomalias.

Primeiro, definimos uma paleta de cores padrão para a nossa variável alvo (readmitted_30_days):

- Não Readmitido (False): Azul
- Readmitido (True): ■ Vermelho

```
In [35]: # Definindo paleta de cores padrão para Readmissão
         # Mapeamos chaves booleanas, inteiras e strings para robustez com o seaborn
         palette_colors = {
            False: '#4682B4',
             True: '#FF6347',
             0: '#4682B4',
             1: '#FF6347',
             'False': '#4682B4',
             'True': '#FF6347',
             '0': '#4682B4',
             '1': '#FF6347'
         }
         # Mostrar as duas cores únicas na paleta
         colors to show = [palette colors.get(False), palette colors.get(True)]
         sns.palplot(colors_to_show)
         plt.title("Paleta de Cores (Não Readmitido / Readmitido)");
```

Paleta de Cores (Não Readmitido / Readmitido)

4.1 Análise Univariada (Variáveis Individuais)

Analisamos a distribuição de variáveis-chave individualmente.

```
In [36]: # Gráfico 1: Distribuição da Variável Alvo (Readmissão)
plt.figure(figsize=(7, 5))
```

```
sns.countplot(
   data=df_ehr,
   x='readmitted_30_days',
   hue='readmitted_30_days',
    palette=palette_colors,
    legend=False
plt.title('Distribuição da Readmissão em 30 Dias', fontsize=14, weight='bold')
plt.xlabel('Readmitido em 30 Dias')
plt.ylabel('Contagem de Pacientes')
plt.xticks(ticks=[0, 1], labels=['Não Readmitido (False)', 'Readmitido (True)'])
plt.savefig('graficos/plot_1_target_distribution.png', bbox_inches='tight')
plt.show()
# Gráfico 2: Distribuição da Idade dos Pacientes
plt.figure()
sns.histplot(df_ehr['patient_age'], bins=30, kde=True, color=palette_colors[Fals
plt.title('Distribuição da Idade dos Pacientes', fontsize=14, weight='bold')
plt.xlabel('Idade')
plt.ylabel('Contagem de Pacientes')
plt.savefig('graficos/plot_2_age_distribution.png', bbox_inches='tight')
plt.show()
# Gráfico 3: Diagnósticos Primários Mais Comuns
plt.figure(figsize=(12, 7))
sns.countplot(data=df_ehr, y='primary_diagnosis', order=df_ehr['primary_diagnosi
plt.title('Contagem de Diagnósticos Primários', fontsize=14, weight='bold')
plt.xlabel('Contagem')
plt.ylabel('Diagnóstico')
plt.tight_layout()
plt.savefig('graficos/plot_3_diagnosis_distribution.png', bbox_inches='tight')
plt.show()
# Gráfico 4: Distribuição da Satisfação Geral
plt.figure(figsize=(8, 5))
sns.countplot(data=df_satisfaction, x='overall_satisfaction', color=palette_colo
plt.title('Distribuição da Satisfação Geral do Paciente (1-5)', fontsize=14, wei
plt.xlabel('Nota de Satisfação (1=Ruim, 5=Ótimo)')
plt.ylabel('Contagem de Respostas')
plt.savefig('graficos/plot_4_satisfaction_distribution.png', bbox_inches='tight'
plt.show()
# Gráfico 5: Distribuição do Sp02
plt.figure()
sns.histplot(df_device['oxygen_saturation_spo2'].dropna(), bins=30, kde=True, co
plt.title('Distribuição da Saturação de Oxigênio (SpO2)', fontsize=14, weight='b
plt.xlabel('Sp02 (%)')
plt.ylabel('Contagem de Leituras')
plt.savefig('graficos/plot_5_spo2_distribution.png', bbox_inches='tight')
plt.show()
```

Distribuição da Readmissão em 30 Dias

Readmitido em 30 Dias

4.2 Análise Bivariada (Relação com a Readmissão)

Cruzamos as variáveis com nosso alvo (readmitted_30_days) para identificar fatores que influenciam a readmissão.

```
# Gráfico 6: Idade vs. Readmissão
In [37]:
         plt.figure()
         sns.boxplot(
             data=df_ehr,
             x='readmitted_30_days',
             y='patient_age',
             hue='readmitted 30 days',
             palette=palette_colors,
             legend=False
         plt.title('Idade do Paciente vs. Readmissão', fontsize=14, weight='bold')
         plt.xlabel('Readmitido em 30 Dias')
         plt.ylabel('Idade')
         plt.xticks(ticks=[0, 1], labels=['Não Readmitido (False)', 'Readmitido (True)'])
         plt.savefig('graficos/plot_6_age_vs_readmission.png', bbox_inches='tight')
         plt.show()
         # Gráfico 7: Tempo de Internação vs. Readmissão
         plt.figure()
         sns.boxplot(
             data=df_ehr,
             x='readmitted_30_days',
             y='length_of_stay_days',
             hue='readmitted_30_days',
             palette=palette_colors,
             legend=False
         plt.title('Tempo de Internação vs. Readmissão', fontsize=14, weight='bold')
         plt.xlabel('Readmitido em 30 Dias')
         plt.ylabel('Tempo de Internação (Dias)')
```

```
plt.xticks(ticks=[0, 1], labels=['Não Readmitido (False)', 'Readmitido (True)'])
plt.ylim(0, 40)
plt.savefig('graficos/plot_7_los_vs_readmission.png', bbox_inches='tight')
plt.show()
# Gráfico 8: Diagnóstico vs. Readmissão
plt.figure(figsize=(12, 8))
# Calcular a taxa de readmissão por diagnóstico para ordenar
diagnosis_readmission_rate = df_ehr.groupby('primary_diagnosis')['readmitted_30_
sns.countplot(
   data=df_ehr,
   y='primary_diagnosis',
   hue='readmitted_30_days',
   order=diagnosis_readmission_rate.index,
   palette=palette_colors
plt.title('Contagem de Readmissão por Diagnóstico Primário', fontsize=14, weight
plt.xlabel('Contagem de Pacientes')
plt.ylabel('Diagnóstico Primário')
plt.legend(title='Readmitido', labels=['Não Readmitido (False)', 'Readmitido (Tr
plt.tight_layout()
plt.savefig('graficos/plot_8_diagnosis_png', bbox_inches='tight')
plt.show()
```

Idade do Paciente vs. Readmissão


```
In [38]: # Gráfico 8: Diagnóstico vs. Readmissão
    plt.figure(figsize=(12, 8))
    # Calcular a taxa de readmissão por diagnóstico para ordenar
    diagnosis_readmission_rate = df_ehr.groupby('primary_diagnosis')['readmitted_30_
    sns.countplot(data=df_ehr, y='primary_diagnosis', hue='readmitted_30_days', orde
    plt.title('Contagem de Readmissão por Diagnóstico Primário', fontsize=14, weight
    plt.xlabel('Contagem de Pacientes')
    plt.ylabel('Diagnóstico Primário')
    plt.legend(title='Readmitido', labels=['Não Readmitido (False)', 'Readmitido (Tr
    plt.tight_layout()
    plt.savefig('graficos/plot_8_diagnosis_vs_readmission.png', bbox_inches='tight')
    plt.show()
```

print("Insight: 'Heart Failure' (Insuficiência Cardíaca) não é apenas o mais com

Insight: 'Heart Failure' (Insuficiência Cardíaca) não é apenas o mais comum, mas também parece ter a maior taxa de readmissão.

11111

5. Etapa 4: Engenharia de Atributos e Junção de Dados

Para criar um modelo de Machine Learning, consolidamos todas as informações em uma única tabela ("tabela-mestra"), onde cada linha representa uma única admissão (admission id).

Ações Realizadas:

- 1. **Agregação:** Agregamos os dados de device_monitoring por admission_id, calculando estatísticas (média, mediana, min, max, std) para cada sinal vital.
- 2. Junção (Merge): Unimos as 4 tabelas (ehr_records, administrative_data, device_monitoring_agg, patient_satisfaction) em um único DataFrame df_model."""

```
In [39]: # Agregar dados de 'device_monitoring'
  vital_cols = ['heart_rate_bpm', 'blood_pressure_systolic', 'blood_pressure_diast
  aggregations = {
        'heart_rate_bpm': ['mean', 'median', 'min', 'max', 'std'],
        'blood_pressure_systolic': ['mean', 'median', 'std'],
        'blood_pressure_diastolic': ['mean', 'median', 'std'],
        'oxygen_saturation_spo2': ['mean', 'median', 'min', 'std']
}

df_device_agg = df_device.groupby('admission_id')[vital_cols].agg(aggregations)
```

```
df_device_agg.columns = ['_'.join(col).strip() for col in df_device_agg.columns.
df_device_agg = df_device_agg.reset_index()
# Juntar (Merge) todas as tabelas
df_model = df_ehr.copy()
df_model = pd.merge(df_model, df_admin, on='hospital_id', how='left')
df_model = pd.merge(df_model, df_device_agg, on='admission_id', how='left')
df_model = pd.merge(
   df_model,
   df_satisfaction.drop(columns=['survey_id', 'survey_date']),
   on='admission_id',
   how='left'
print(f"Merge concluído. Shape final da tabela de modelagem: {df_model.shape}")
# Inspecionar o DataFrame final de modelagem
print("\n--- Informações do DataFrame de Modelagem (df_model) ---")
# Isso mostrará os NAs das colunas de satisfação
df_model.info()
# Salvar o dataframe mesclado
df_model.to_csv('merged_healthcare_data.csv', index=False)
```

```
Merge concluído. Shape final da tabela de modelagem: (5000, 36)
--- Informações do DataFrame de Modelagem (df_model) ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 36 columns):
 # Column
                                       Non-Null Count Dtype
--- -----
                                       -----
                                       5000 non-null object
 0 patient_id
 1
    admission id
                                      5000 non-null object
 2 hospital_id
                                      5000 non-null object
                                      5000 non-null int64
 3 patient age
 4 patient_gender
                                     5000 non-null object
                                     5000 non-null datetime64[ns]
 5 admission_date
 6 discharge_date
                                     5000 non-null datetime64[ns]
                                     5000 non-null object
 7 primary_diagnosis
                                     5000 non-null object
   comorbidities
                            5000 non-null object
5000 non-null int64
                                     4479 non-null object
 9
     procedure code
 10 length of stay days
 11 readmitted_30_days
                                     5000 non-null object
 12 hospital_name
 13 hospital_region
                                     5000 non-null object
                                     5000 non-null int64
 14 total_beds
                                     5000 non-null float64
 15 avg_staffing_ratio
                                     5000 non-null float64
 16 heart_rate_bpm_mean
                                   5000 non-null float64
 17 heart_rate_bpm_median
                                     5000 non-null int64
 18 heart_rate_bpm_min
                                     5000 non-null int64
 19 heart_rate_bpm_max
20 heart_rate_bpm_std 5000 non-null float64
21 blood_pressure_systolic_mean 5000 non-null float64
 22 blood_pressure_systolic_median 5000 non-null float64
                                     5000 non-null float64
 23 blood_pressure_systolic_std
 24 blood_pressure_diastolic_mean 5000 non-null float64
 25 blood_pressure_diastolic_median 5000 non-null float64
 26 blood_pressure_diastolic_std 5000 non-null float64
27 oxygen saturation spo2 mean 5000 non-null float64
 28 oxygen saturation spo2 median 5000 non-null float64
 29 oxygen_saturation_spo2_min 5000 non-null float64
30 oxygen_saturation_spo2_std 5000 non-null float64
31 overall_satisfaction 4500 non-null float64
32 communication_doctors_score 4500 non-null float64
33 communication_nurses_score 4500 non-null float64
34 cleanliness_score 4500 non-null float64
 34 cleanliness_score 4500 non-null 35 wait_time_satisfaction 4500 non-null
                                                        float64
dtypes: bool(1), datetime64[ns](2), float64(19), int64(5), object(9)
memory usage: 1.3+ MB
```

6. Etapa 5: Modelagem Preditiva

O objetivo é prever a variável readmitted_30_days (1 para Sim, 0 para Não).

6.1 Preparação (Pipelines e Divisão dos Dados)

- 1. **Definição (X/y):** Separamos as *features* (X) do *alvo* (y).
- 2. Pipelines de Pré-processamento: Criamos pipelines do scikit-learn para:
 - **Numérico**: Preencher valores ausentes (de satisfaction) usando a mediana e padronizar (escala) os dados (StandardScaler).

- **Categórico:** Converter variáveis de texto em colunas numéricas (OneHotEncoder).
- 3. **Divisão Treino/Teste:** Dividimos os dados em 70% para treino e 30% para teste, usando stratify=y para manter a proporção de readmissões.

```
In [40]: # Definição das Features (X) e do Alvo (y)
         target = 'readmitted 30 days'
         y = df_model[target].astype(int)
         numeric_features = [
             'patient_age', 'length_of_stay_days', 'total_beds', 'avg_staffing_ratio',
             'heart_rate_bpm_mean', 'heart_rate_bpm_median', 'heart_rate_bpm_min', 'heart
             'blood_pressure_systolic_mean', 'blood_pressure_systolic_median', 'blood_pre
             'blood_pressure_diastolic_mean', 'blood_pressure_diastolic_median', 'blood_p
              'oxygen_saturation_spo2_mean', 'oxygen_saturation_spo2_median', 'oxygen_satu
             'overall_satisfaction', 'communication_doctors_score', 'communication_nurses
         categorical features = [
              'patient_gender', 'primary_diagnosis', 'comorbidities', 'procedure_code', 'h
         X = df_model[numeric_features + categorical_features]
         # Criação dos Pipelines de Pré-processamento
         numeric_transformer = Pipeline(steps=[
             ('imputer', SimpleImputer(strategy='median')),
             ('scaler', StandardScaler())
         ])
         categorical_transformer = Pipeline(steps=[
             ('imputer', SimpleImputer(strategy='most_frequent')),
             ('onehot', OneHotEncoder(handle_unknown='ignore'))
         1)
         preprocessor = ColumnTransformer(
             transformers=[
                 ('num', numeric_transformer, numeric_features),
                 ('cat', categorical_transformer, categorical_features)
             1)
         # Divisão dos Dados (Treino e Teste)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_
         print(f"Dados divididos: {X_train.shape[0]} para treino, {X_test.shape[0]} para
         print(f"Proporção de readmissão no teste: {y test.mean():.2%}")
```

Dados divididos: 3500 para treino, 1500 para teste. Proporção de readmissão no teste: 20.07%

6.1.1 Análise de Correlação (Heatmap)

Geramos o heatmap de correlação (conforme solicitado no edital) para entender como as features numéricas se relacionam entre si e com a nossa variável alvo.

```
In [41]: cols_para_heatmap = numeric_features + [target]
    df_heatmap = df_model[cols_para_heatmap].copy()

df_heatmap[target] = df_heatmap[target].astype(int)
    corr = df_heatmap.corr()
    mask = np.triu(np.ones_like(corr, dtype=bool))
```


6.2 Modelo 1: Regressão Logística (Tentativa 1)

Testamos o primeiro modelo solicitado: Regressão Logística.

Resultado (Falha): O modelo obteve 80% de acurácia, mas a Matriz de Confusão mostra que ele **previu "Não Readmitido" para 100% dos pacientes**. Ele ignorou a classe minoritária (readmitidos) devido ao desbalanceamento dos dados.

Acurácia: 0.7993

Relatório de Classificação (Regressão Logística): precision recall f1-score support Não Readmitido (0) 0.80 1.00 0.89 1199 0.00 Readmitido (1) 0.00 0.00 301 0.80 accuracy 1500 0.40 0.50 0.44 macro avg 1500 weighted avg 0.64 0.80 0.71 1500

Matriz de Confusão - Regressão Logística (Falha)

6.3 Modelo 1 (Corrigido): Regressão Logística com Balanceamento de Classe

Correção: Usamos o hiperparâmetro class_weight='balanced' para forçar o modelo a prestar atenção na classe minoritária (readmitidos).

Resultado (Melhor): A acurácia total cai para 51%, mas o modelo agora **consegue identificar 43% dos pacientes que de fato foram readmitidos** (Recall = 0.43). Isso é muito mais útil para o hospital do que o modelo anterior.

```
In [43]: log_reg_balanced_pipeline = Pipeline(steps=[
              ('preprocessor', preprocessor),
              ('classifier', LogisticRegression(random_state=42, max_iter=1000, class_weig
          ])
          log_reg_balanced_pipeline.fit(X_train, y_train)
          y_pred_balanced = log_reg_balanced_pipeline.predict(X_test)
          print(f"\nAcurácia (Balanceada): {accuracy_score(y_test, y_pred_balanced):.4f}")
          print("\nRelatório de Classificação (Balanceado):")
          print(classification_report(y_test, y_pred_balanced, target_names=['Não Readmiti
          cm_balanced = confusion_matrix(y_test, y_pred_balanced)
          plt.figure(figsize=(6,4))
          sns.heatmap(cm_balanced, annot=True, fmt='d', cmap='Blues',
                      xticklabels=['Prev. Não Readm.', 'Prev. Readm.'],
yticklabels=['Real Não Readm.', 'Real Readm.'])
          plt.title('Matriz de Confusão - Regressão Logística (Balanceada)', fontsize=14,
          plt.ylabel('Valor Real')
          plt.xlabel('Valor Previsto')
          plt.savefig('graficos/plot_10_confusion_matrix_balanced.png', bbox_inches='tight
          plt.show()
```

Acurácia (Balanceada): 0.5067

Relatório de Classificação (Balanceado):

			precision	recall	f1-score	support
Não Re	eadmitido	(0)	0.79	0.53	0.63	1199
Re	eadmitido	(1)	0.19	0.43	0.26	301
	accur	racv			0.51	1500
	macro	_	0.49	0.48	0.44	1500
	weighted	avg	0.67	0.51	0.56	1500

Matriz de Confusão - Regressão Logística (Balanceada)

Prev. Não Readm. Prev. Readm. Valor Previsto

6.3.1 Interpretação do Modelo (Importância das Features)

Analisamos os coeficientes do modelo de Regressão Logística para entender *quais* features ele considerou mais importantes para prever a readmissão.

```
In [ ]: # Obter pipelines e modelo
        preprocessor_pipeline = log_reg_balanced_pipeline.named_steps['preprocessor']
        ohe_pipeline = preprocessor_pipeline.named_transformers_['cat'].named_steps['one
        logistic_model = log_reg_balanced_pipeline.named_steps['classifier']
        # Obter nomes das features categóricas
            cat_feature_names = ohe_pipeline.get_feature_names_out(categorical_features)
        except Exception:
            cat_feature_names = ohe_pipeline.get_feature_names(categorical_features)
        all_feature_names = numeric_features + list(cat_feature_names)
        # Criar DataFrame de Coeficientes
        coefficients = pd.DataFrame(
            data=logistic_model.coef_[0],
            index=all_feature_names,
            columns=['Coeficiente']
        )
        coefficients['Coef_Absoluto'] = coefficients['Coeficiente'].abs()
        coefficients = coefficients.sort_values(by='Coef_Absoluto', ascending=False)
        # Plotar os 10 mais positivos e 10 mais negativos
        top_n = 10
        top_features = pd.concat([coefficients.head(top_n), coefficients.tail(top_n)]).s
        plt.figure(figsize=(10, 8))
        sns.barplot(x=top_features['Coeficiente'], y=top_features.index, hue=top_feature
        plt.title(f'Top {top_n*2} Features Mais Impactantes (Regressão Logística)', font
        plt.xlabel('Peso do Coeficiente (Impacto na Readmissão)')
        plt.ylabel('Feature')
        plt.savefig('graficos/plot_13_feature_importance_lr.png', bbox_inches='tight')
        plt.show()
```


6.4 Modelo 2: Random Forest (com Balanceamento)

Testamos um modelo mais complexo, o Random Forest, também com class_weight='balanced'.

Resultado (Similar à Falha): O Random Forest, mesmo balanceado, também não conseguiu encontrar um padrão preditivo claro e obteve 80% de acurácia prevendo "Não Readmitido" para quase todos os pacientes.

```
In [45]:
         rf balanced pipeline = Pipeline(steps=[
             ('preprocessor', preprocessor),
             ('classifier', RandomForestClassifier(random_state=42, n_estimators=100, cla
         ])
         rf_balanced_pipeline.fit(X_train, y_train)
         y_pred_rf_balanced = rf_balanced_pipeline.predict(X_test)
         accuracy_rf_balanced = accuracy_score(y_test, y_pred_rf_balanced)
         print(f"\nAcurácia (Random Forest Balanceado): {accuracy_rf_balanced:.4f}")
         print("\nRelatório de Classificação (Random Forest Balanceado):")
         print(classification_report(y_test, y_pred_rf_balanced, target_names=['Não Readm
         cm_rf_balanced = confusion_matrix(y_test, y_pred_rf_balanced)
         plt.figure(figsize=(6,4))
         sns.heatmap(cm_rf_balanced, annot=True, fmt='d', cmap='Blues',
                     xticklabels=['Prev. Não Readm.', 'Prev. Readm.'],
                     yticklabels=['Real Não Readm.', 'Real Readm.'])
         plt.title('Matriz de Confusão - Random Forest (Balanceado)', fontsize=14, weight
         plt.ylabel('Valor Real')
         plt.xlabel('Valor Previsto')
         plt.savefig('graficos/plot_11_confusion_matrix_rf_balanced.png', bbox_inches='ti
         plt.show()
```

Relatório de Classificação (Random Forest Balanceado):

		precision	recall	f1-score	support
Não	Readmitido (0) 0.80	1.00	0.89	1199
	Readmitido (•	0.00	0.00	301
	accura	CY		0.80	1500
	macro a	vg 0.40	0.50	0.44	1500
	weighted a	vg 0.64	0.80	0.71	1500

Matriz de Confusão - Random Forest (Balanceado)

7. Conclusão da Análise e Próximos Passos

7.1. O que os Dados Revelaram (Insights)

- EDA (Análise Exploratória): A análise foi bem-sucedida em gerar insights. Identificamos que pacientes mais velhos, com internações mais longas e diagnósticos de insuficiência cardíaca (Heart Failure) são os que mais aparecem nos dados de readmissão.
- Modelagem Preditiva: A modelagem revelou que, com os dados atuais, o sinal preditivo para readmissão é muito fraco. Os modelos (Regressão Logística e Random Forest) não conseguiram criar uma regra clara para separar pacientes de alto e baixo risco. A Regressão Logística balanceada foi o único modelo que tentou ativamente identificar a classe minoritária.

7.2. Próximos Passos

O fato de os modelos não terem tido um bom desempenho não é um fracasso, mas sim um *diagnóstico*: os dados que temos (diagnóstico primário, sinais vitais e satisfação) não

são suficientes para prever este desfecho complexo.

Para melhorar o atendimento ao paciente na HealthCare Solutions, recomendaríamos:

- 1. **Enriquecimento de Dados:** Coletar e incluir features mais robustas, como:
 - Histórico de internações (número de admissões nos últimos 6 meses).
 - Medicações prescritas na alta.
 - Resultados de exames laboratoriais (ex: nível de creatinina, sódio).
 - Informações sociais (ex: se o paciente mora sozinho).
- 2. **Engenharia de Atributos:** Criar features mais complexas, como a *volatilidade* dos sinais vitais (quantas vezes a SpO2 caiu abaixo de 90%), em vez de apenas a média.
- 3. **Foco na Satisfação:** Investigar o pico de notas "1" na pesquisa de satisfação. Embora não tenha previsto a *readmissão*, é um problema operacional claro que impacta a jornada do paciente.