System-Level I/O

CS 475

1

Unix I/O Overview

- A Linux *file* is a sequence of *m* bytes:
 - \blacksquare $B_0, B_1, \dots, B_k, \dots, B_{m-1}$
- Cool fact: All I/O devices are represented as files:
 - /dev/sda2 (/usr disk partition)
 - /dev/tty2 (terminal)
- Even the kernel is represented as a file:
 - boot/vmlinuz-3.13.0-55-generic (kernelimage)
 - /proc (kernel data structures)

,

Unix I/O Overview

- Elegant mapping of files to devices allows kernel to export simple interface called *Unix I/O*:
 - Opening and closing files
 - open() and close()
 - Reading and writing a file
 - read() and write()
 - Changing the current file position (seek)
 - indicates next offset into file to read or write
 - lseek()

3

File Types

- Each file has a type indicating its role in the system
 - Regular file: Contains arbitrary data
 - *Directory:* Index for a related group of files
 - Socket: For communicating with a process on another machine
- Other file types beyond our scope
 - Named pipes (FIFOs)
 - Symbolic links
 - Character and block devices

Regular Files

- A regular file contains arbitrary data
- Applications often distinguish between text files and binary files
 - Text files are regular files with only ASCII or Unicode characters
 - Binary files are everything else
 - e.g., object files, JPEG images
 - Kernel doesn't know the difference!
- Text file is sequence of *text lines*
 - Text line is sequence of chars terminated by newline char ('\n')
 - Newline is 0xa, same as ASCII line feed character (LF)
- End of line (EOL) indicators in other systems
 - Linux and Mac OS: '\n' (0xa)
 - line feed (LF)
 - Windows and Internet protocols: '\r\n' (0xd 0xa)
 - Carriage return (CR) followed by line feed (LF)

- 5

Directories

- Directory consists of an array of links
 - Each link maps a *filename* to a file
- Each directory contains at least two entries
 - . (dot) is a link to itself
 - . . (dot dot) is a link to the parent directory in the directory hierarchy (next slide)
- Commands for manipulating directories
 - mkdir: create empty directory
 - 1s: view directory contents
 - rmdir: delete empty directory

Directory Hierarchy

All files are organized as a hierarchy anchored by root directory named / (slash)

- Kernel maintains current working directory (cwd) for each process
 - Modified using the cd command

7

Pathnames

- Locations of files in the hierarchy denoted by pathnames
 - Absolute pathname starts with '/' and denotes path from root
 - home/droh/hello.c
 - Relative pathname denotes path from current working directory
 - ../home/droh/hello.c

Opening Files

 Opening a file informs the kernel that you are getting ready to access that file

```
int fd;  /* file descriptor */
if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
    perror("open");
    exit(1);
}</pre>
```

- Returns a small identifying integer *file descriptor*
 - fd == -1 indicates that an error occurred
- Each process created by a Linux shell begins life with three open files associated with a terminal:
 - 0: standard input (stdin)
 - 1: standard output (stdout)
 - 2: standard error (stderr)

9

Closing Files

 Closing a file informs the kernel that you are finished accessing that file

```
int fd;   /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
   perror("close");
   exit(1);
}</pre>
```

- Closing an already closed file is a recipe for disaster in threaded programs (more on this later)
- Moral: Always check return codes, even for seemingly benign functions such as close ()

Reading Files

 Reading a file copies bytes from the current file position to memory, and then updates file position

```
char buf[512];
int fd;     /* file descriptor */
int nbytes;     /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
    perror("read");
    exit(1);
}</pre>
```

- Returns number of bytes read from file fd into buf
 - Return type **ssize t** is signed integer
 - nbytes < 0 indicates that an error occurred
 - Short counts (nbytes < sizeof(buf)) are possible and are not errors!</p>

11

Writing Files

 Writing a file copies bytes from memory to the current file position, and then updates current file position

```
char buf[512];
int fd;     /* file descriptor */
int nbytes;     /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
    perror("write");
    exit(1);
}</pre>
```

- Returns number of bytes written from buf to file fd
 - nbytes < 0 indicates that an error occurred
 - As with reads, short counts are possible and are not errors!

Simple Unix I/O example

■ Copying stdin to stdout, one byte at a time

```
#include "csapp.h"
int main(void)
{
    char c;

    while(Read(STDIN_FILENO, &c, 1) != 0)
        Write(STDOUT_FILENO, &c, 1);
    exit(0);
}
```

13

On Short Counts

- Short counts can occur in these situations:
 - Encountering (end-of-file) EOF on reads
 - Reading text lines from a terminal
 - Reading and writing network sockets
- Short counts never occur in these situations:
 - Reading from disk files (except for EOF)
 - Writing to disk files
- Best practice is to always allow for short counts.

The RIO Package

- RIO is a set of wrappers that provide efficient and robust I/O in apps, such as network programs that are subject to short counts
- RIO provides two different kinds of functions
 - Unbuffered input and output of binary data
 - rio readn and rio writen
 - Buffered input of text lines and binary data
 - rio readlineb and rio readnb
 - Buffered RIO routines are thread-safe and can be interleaved arbitrarily on the same descriptor
- Download from http://csapp.cs.cmu.edu/3e/code.html
 - → src/csapp.c and include/csapp.h

15

Unbuffered RIO Input and Output

- Same interface as Unix read and write
- Especially useful for transferring data on network sockets

```
#include "csapp.h"
ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);
Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error
```

- rio_readn returns short count only if it encounters EOF
 - Only use it when you know how many bytes to read
- rio writen never returns a short count
- Calls to rio_readn and rio_writen can be interleaved arbitrarily on the same descriptor

Implementation of rio readn

```
* rio_readn - Robustly read n bytes (unbuffered)
ssize t rio readn(int fd, void *usrbuf, size t n)
    size_t nleft = n;
    ssize t nread;
    char *bufp = usrbuf;
    while (nleft > 0) {
        if ((nread = read(fd, bufp, nleft)) < 0) {</pre>
            if (errno == EINTR) /* Interrupted by sig handler return */
    nread = 0; /* and call read() again */
            else
                return -1;
                                  /* errno set by read() */
        else if (nread == 0)
                                   /* EOF */
        nleft -= nread;
        bufp += nread;
    return (n - nleft);
                                   /* Return >= 0 */
                                                                     csapp.c
```

Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially cached in an internal memory buffer

```
#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error
```

- rio_readlineb reads a text line of up to maxlen bytes from file fd and stores the line in usrbuf
 - Especially useful for reading text lines from network sockets
- Stopping conditions
 - maxlen bytes read
 - EOF encountered
 - Newline ('\n') encountered

Buffered RIO Input Functions (cont)

```
#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error
```

- rio readnb reads up to n bytes from file fd
- Stopping conditions
 - maxlen bytes read
 - EOF encountered
- Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily on the same descriptor
 - Warning: Don't interleave with calls to rio readn

19

Buffered I/O: Implementation

- For reading from file
- File has associated buffer to hold bytes that have been read from file but not yet read by user code

Layered on Unix file:

Buffered I/O: Declaration

■ All information contained in struct

21

RIO Example

 Copying the lines of a text file from standard input to standard output

```
#include "csapp.h"
int main(int argc, char **argv)
{
   int n;
   rio_t rio;
   char buf[MAXLINE];

   Rio_readinitb(&rio, STDIN_FILENO);
   while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)
        Rio_writen(STDOUT_FILENO, buf, n);
   exit(0);
}
```

Buffered I/O: Motivation

- Applications often read/write one character at a time
 - getc, putc, ungetc
 - gets, fgets
 - Read line of text one character at a time, stopping at newline
- Implementing as Unix I/O calls expensive
 - read and write require Unix kernel calls
 - > 10,000 clock cycles
- Solution: Buffered read
 - Use Unix read to grab block of bytes
 - User input functions take one byte at a time from buffer
 - Refill buffer when empty

Buffer already read unread

2

Buffering in Standard I/O

Standard I/O functions use buffered I/O

Buffer flushed to output fd on "\n", call to fflush or exit, or return from main.

Standard I/O Buffering in Action

■ You can see this buffering in action for yourself, using the always fascinating Linux strace program:

```
#include <stdio.h>
int main()
{
    printf("h");
    printf("e");
    printf("l");
    printf("l");
    printf("o");
    printf("\n");
    fflush(stdout);
    exit(0);
}
```

```
linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6) = 6
...
exit_group(0) = ?
```

25

Unix I/O vs. Standard I/O vs. RIO

Standard I/O and RIO are implemented using low-level Unix I/O

Which ones should you use in your programs?