Проект InMotion

Результат разработки алгоритма триангуляции TDoA на языке Python

Выполнил: Чашков М. С.

Оглавление

3
4
4
8
9
11
12
12
13
14
15
16
19
20

Общее описание алгоритма TDoA

Данный документ описываем используемое решение алгоритма Time Difference of Arrival TDoA. Работа выполнена с использованием [4], [5], [6], [7], [1], [2], [3].

TdoA один из наиболее популярных методов позиционирования. В отличие от метода Time of Arrival (ToA), этот метот не требует измерения времени отправки сообщения от «метки» до «анкера». Метод использует только время приема сигнала от метки каждым анкером и скорость света.

Зная время прием сигнала двумя разными точками, можно определить разницу расстояний от соответствующих анкеров до метки

$$\Delta d = c \cdot \Delta t \tag{1}$$

где с — скорость света

Δt – измеренная разность времени приема сигнала двумя анкерами

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная

В качестве двух заданных точек выступают анкеры.

Графический пример определения положения тела методом TDoA взят из [4] приведен на рисунке ниже

Рисунок 1 — Пример графического решения алгоритма TdoA

Для решения задачи необходимо составить алгоритм аналитического определения точки пересечения произвольного числа гипербол 3 и более анкеров.

Математическое описание алгоритма

Уравнения гипербол

Гипербола является, в общем случае кривой второго порядка. Общее уравнение которой может быть записано следующим образом:

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0 (2)$$

С другой стороны гиперболу можно задать каноническим уравнением

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \tag{3}$$

Для отдельной гиперболы введем в рассмотрение две системы:

- 1. Система координат поля (0ХҮ)
- 2. система координат с началом координат в центре гиперболы (точка О) и осью ОХ сонаправленной с линией соединяющей фокусы (линия F_1F_2), как показано на рисунке 2

Рисунок 2 Гипербола в системе координат поля

Исходными данными для построения уравнения гиперболы являются:

- 1. измеренная разность расстояний от метки до каждого анкера ла
- 2. координаты анкеров F₁ и F₂

В системе координат гипербол удобно использовать каноническое уравнение. При этом параметры легко определяются

$$|\Delta d| = 2 a$$

$$c^{2} = (F_{2x} - F_{1x})^{2} + (F_{2y} - F_{1y})^{2}$$

$$b^{2} = c^{2} - a^{2}$$
(4)

Откуда легко вычисляются параметры общего уравнения кривой (2)

$$A_{g}=b^{2}$$

$$B_{g}=0$$

$$C_{g}=-a^{2}$$

$$D_{g}=0$$

$$E_{g}=0$$

$$F_{g}=-a^{2} \cdot b^{2}$$
(5)

Для того, чтобы записать уравнение гиперболы в системе координат поля необходимо выполнить две операции:

- 1. Поворот на угол F_1 (угол от оси F_1F_2 к оси OX)
- 2. Параллельный перенос (смещение) на вектор [offset_x, offset_y] как показано на рисунке 3

Рисунок 3 Параметры пересчета системы координат гиперболы

Для выполнения поворота используется матрица

$$M(\Theta) = \frac{\cos(\Theta) - \sin(\Theta)}{\sin(\Theta) \cos(\Theta)}$$
(6)

В результате в системе координат поля параметры уравнения (2) можно определить следующим образом

$$A = b^{2} \cos^{2}(\Theta) - a^{2} \sin^{2}(\Theta)$$

$$B = -2 \cdot \sin(\Theta) \cos(\Theta) (a^{2} + b^{2})$$

$$C = b^{2} \sin^{2}(\Theta) - a^{2} \cos^{2}(\Theta)$$

$$D = -2 A \cdot offsetX - B \cdot offsetY$$

$$E = -B \cdot offsetX - 2C \cdot offsetY$$

$$F = A \cdot offsetX^{2} + Bcdot \cdot offsetX \cdot offsetY + C \cdot offsetY^{2} - a^{2} \cdot b^{2}$$

$$(7)$$

В общем случае на вход алгоритма подаются разницы измеренных разностей, в виде матрицы (в примере ниже для 4 анкеров)

$$\Delta = \begin{bmatrix}
0 & \Delta_{1-2} & \Delta_{1-3} & \Delta_{1-4} \\
\Delta_{2-1} & 0 & \Delta_{2-3} & \Delta_{2-4} \\
\Delta_{3-1} & \Delta_{3-2} & 0 & \Delta_{3-4} \\
\Delta_{4-1} & \Delta_{4-2} & \Delta_{4-3} & 0
\end{bmatrix}$$
(8)

Используя уравнения (7) составим матрицы для каждого из параметров

$$A = \begin{bmatrix} 0 & A_{1-2} & A_{1-3} & A_{1-4} \\ A_{2-1} & 0 & A_{2-3} & A_{2-4} \\ A_{3-1} & A_{3-2} & 0 & A_{3-4} \\ A_{4-1} & A_{4-2} & A_{4-3} & 0 \end{bmatrix}$$
(9)

$$B = \begin{bmatrix} 0 & B_{1-2} & B_{1-3} & B_{1-4} \\ B_{2-1} & 0 & B_{2-3} & B_{2-4} \\ B_{3-1} & B_{3-2} & 0 & B_{3-4} \\ B_{4-1} & B_{4-2} & B_{4-3} & 0 \end{bmatrix}$$
(10)

$$C = \begin{bmatrix} 0 & C_{1-2} & C_{1-3} & C_{1-4} \\ C_{2-1} & 0 & C_{2-3} & C_{2-4} \\ C_{3-1} & C_{3-2} & 0 & C_{3-4} \\ C_{4-1} & C_{4-2} & C_{4-3} & 0 \end{bmatrix}$$

$$(11)$$

$$D = \begin{bmatrix} 0 & D_{1-2} & D_{1-3} & D_{1-4} \\ D_{2-1} & 0 & D_{2-3} & D_{2-4} \\ D_{3-1} & D_{3-2} & 0 & D_{3-4} \\ D_{4-1} & D_{4-2} & D_{4-3} & 0 \end{bmatrix}$$
(12)

$$E = \begin{bmatrix} 0 & E_{1-2} & E_{1-3} & E_{1-4} \\ E_{2-1} & 0 & E_{2-3} & E_{2-4} \\ E_{3-1} & E_{3-2} & 0 & E_{3-4} \\ E_{4-1} & E_{4-2} & E_{4-3} & 0 \end{bmatrix}$$
(13)

$$F = \begin{bmatrix} 0 & F_{1-2} & F_{1-3} & F_{1-4} \\ F_{2-1} & 0 & F_{2-3} & F_{2-4} \\ F_{3-1} & F_{3-2} & 0 & F_{3-4} \\ F_{4-1} & F_{4-2} & F_{4-3} & 0 \end{bmatrix}$$
(14)

В общем случае для N анкеров размерность этих матриц будет NxN Примечание 1: Размерность определяется не общим количеством анкеров, а количеством анкеров принявших сигнал от метки.

Вполне реальная ситуация, при общем числе анкеров например 4 иметь размерность матриц 3х3.

Примечание 2: Минимальная размерность 3х3. Иначе невозможно определить координаты точки.

Проверка правильности расчетов проводилась для анкеров с координатами [0, 0] [0, 10] [15, 10]

Рисунок 4 результат проверки

Алгоритм определения точки пересечения гипербол

Основная идея алгоритма заключается в том, что в точке пересечения разность уравненьй гипербол обращается в 0

Исходя из этого для трех анкеров имеем 3 гиперболы, для четырех анкеров уже 6 а в случае N анкеров число гипербол K определяется числом сочетаний из N по 2

$$K = C_N^2 \tag{15}$$

Дальше составляем систему уравнений для определения точки пересечения. Для трех анкеров и трех гипербол система будет выглядеть следующим образом

$$f_{1-2}(x,y) - f_{2-3}(x,y) = 0 = G_1(x,y)$$

$$f_{1-2}(x,y) - f_{1-3}(x,y) = 0 = G_2(x,y)$$

$$f_{2-3}(x,y) - f_{1-3}(x,y) = 0 = G_3(x,y)$$
(16)

В общем случае L - число уравнений системы определяется числом сочетаний:

$$L = C_K^2 \tag{17}$$

Данная система уравнений нелинейная. Для ее решения применил алгоритм Ньютона

Алгоритм Ньютона

Система уравнений для гипер Формула для нахождения решения определяется так

$$x^{(k+1)} = x^{(k)} - W^{-1}(x^{(k)}) \cdot G(x^{(k)})$$
(18)

где

$$W(x) = \begin{bmatrix} \frac{\partial g_1(x)}{\partial x_1} & \dots & \frac{\partial g_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n(x)}{\partial x_n} & \dots & \frac{\partial g_n(x)}{\partial x_n} \end{bmatrix}$$
(19)

Введем обозначения

$$\Delta x^{(k)} = -W^{-1}(x^{(k)}) \cdot G(x^{(k)}) \tag{20}$$

Алгоритм Ньютона описывается так

- 1. Задать начальное приближение и малое число е точность. Положить k=0
- 2. Решить систему линейных алгебраических уравнений относительно поправки $\Delta x^{(k)}$
- 3. Вычислить следующее приближение по формуле (18)
- 4. Если $\Delta^{(k+1)} = \max_i |x_i^{(k+1)} x_i^{(k)}| \le \epsilon$ процесс закончить иначе увеличить k и перейти к п. 2

Классический алгоритм следует доработать, а именно,

- 1. якобиан преобразуется к виду W(x,y)
- 2. Якобиан легко определить из системы уравнений (16) и уравнением гиперболы (2)

$$W(x,y) = \begin{bmatrix} \frac{\partial f_{12}(x,y)}{\partial x} - \frac{\partial f_{23}(x,y)}{\partial x} & \frac{\partial f_{12}(x,y)}{\partial y} - \frac{\partial f_{23}(x,y)}{\partial y} \\ \frac{\partial f_{12}(x,y)}{\partial x} - \frac{\partial f_{13}(x,y)}{\partial x} & \frac{\partial f_{12}(x,y)}{\partial y} - \frac{\partial f_{13}(x,y)}{\partial y} \\ \frac{\partial f_{23}(x,y)}{\partial x} - \frac{\partial f_{13}(x,y)}{\partial x} & \frac{\partial f_{23}(x,y)}{\partial y} - \frac{\partial f_{13}(x,y)}{\partial y} \end{bmatrix}$$
(21)

3. Для удобства расчетов необходимо сформировать матрицы производных по каждой координате

$$dif_{x}(x,y) = \frac{\partial f_{1-2}}{\partial x} = 2 A \cdot x + B \cdot y + D =$$
(22)

$$=\begin{bmatrix} 0 & 2A_{1-2}x + B_{1-2}y + D_{1-2} & \cdots & 2A_{1-4}x + B_{1-4}y + D_{1-4} \\ 2A_{2-1}x + B_{2-1}y + D_{2-1} & 0 & \cdots & 2A_{2-4}x + B_{2-4}y + D_{2-4} \\ 2A_{3-1}x + B_{3-1}y + D_{3-1} & 2A_{3-2}x + B_{3-2}y + D_{3-2} & \cdots & 2A_{3-4}x + B_{3-4}y + D_{3-4} \\ 2A_{4-1}x + B_{4-1}y + D_{4-1} & 2A_{4-2}x + B_{4-2}y + D_{4-2} & \cdots & 0 \end{bmatrix}$$
(23)

$$dif_{y}(x,y) = \frac{\partial f_{1-2}}{\partial y} = 2C \cdot y + B \cdot x + E =$$
(24)

$$=\begin{bmatrix} 0 & 2C_{1-2}y + B_{1-2}x + E_{1-2} & \cdots & 2C_{1-4}y + B_{1-4}x + E_{1-4} \\ 2C_{2-1}y + B_{2-1}X + E_{2-1} & 0 & \cdots & 2C_{2-4}y + B_{2-4}x + E_{2-4} \\ 2C_{3-1}y + B_{3-1}X + E_{3-1} & 2C_{3-2}y + B_{3-2}x + E_{3-2} & \cdots & 2C_{3-4}y + B_{3-4}x + E_{3-4} \\ 2C_{4-1}y + B_{4-1}x + E_{4-1} & 2C_{4-2}y + B_{4-2}x + E_{4-2} & \cdots & 0 \end{bmatrix}$$
(25)

4. Якобиан не является квадратным, а имеет размерность Lx2. Поэтому в формуле (20) необходимо использовать псевдоинверсную матрицу, которая легко определяется библиотекой python numpy.

Определение начальной точки алгоритма Ньютона

При работе алгоритма существенное влияние оказывает выбор начальной точки приближения методом Ньютона. Гиперболы имеют две ветки и парные ветки так же дают пересечение.

Идея алгоритма использовать вычисленную разность расстояний до анкеров не по модулю, а с учетом знака.

$$\Delta = \begin{bmatrix}
0 & \Delta_{1-2} & \Delta_{1-3} & \Delta_{1-4} \\
\Delta_{2-1} & 0 & \Delta_{2-3} & \Delta_{2-4} \\
\Delta_{3-1} & \Delta_{3-2} & 0 & \Delta_{3-4} \\
\Delta_{4-1} & \Delta_{4-2} & \Delta_{4-3} & 0
\end{bmatrix}$$
(26)

В формуле (26) , например, Δ_{1-2} может быть положительным, отрицательным или равным нулю. В первом случае в качестве начального приближения можно принять координаты анкера 2 во втором случае координаты анкера 1 а в третьем случае координаты середины отрезка соединяющего анкеры.

Зная общее число гипербол К из формулы (15) определяются К начальных приближений для каждой гиперболы, начальная точка определяется усреднением всех К приближений.

Структурные схемы алгоритма

Общая схема алгоритма

Определение начальной точки

Определение гипербол

Алгоритм Ньютона

Результаты работы алгоритма

Общие результаты

Алгоритм сходится за 5-6 итераций.

Время определения одной точки составляет 3-10 мс

Точность определения точки при точном определении расстояний составляет меньше 10⁻⁴ м

На графиках ниже заложена неточность измерения расстояния 0,2 м

рисунок Триангуляция при точно измеренных расстояниях

One random point SKO_X = 0.16471649582404854, SKO_Y = 0.14066752089945536

Есть особенность триангуляции за пределами поля, связанная с выбором начальной точки. При зашумленных данных возможно потеря триангуляции, в связи с невозможностью построения гиперболы через зашумленные данные. Результат может быть например таким

Тестирование работы алгоритма при неточных измерениях

Результаты тестирования на графиках ниже

X coord, m

X coord, m

3 Anker use 4 Anker use Noise standart deviation = 0.2m Noise standart deviation = 0.2m $SKO_X = 0.5285648080091239$, $SKO_X = 0.38141721469032197,$ $SKO_Y = 0.6398400053898781$ SKO Y = 0.4199347353817133anker anker 1 1 tdoa_noise tdoa_noise data data 0 0 Y coord, m Y coord, m $^{-1}$ $^{-1}$ -2 -2 -3 -3140 140 141 142 143 144 141 142 143 144 X coord, m X coord, m 3 Anker use 4 Anker use Noise standart deviation = 0.3m Noise standart deviation = 0.3m SKO X = 0.6506068311597145, SKO X = 0.9665452985976383, SKO Y = 0.9335738997157078SKO Y = 0.43365401037324236anker anker 12 12 tdoa_noise tdoa_noise data data 11 11 10 10 Y coord, m Y coord, m 9 9 8 8 7 7

150

152

X coord, m

153

154

150

151

152

X coord, m

153

154

3 Anker use Noise standart deviation = 0.4m SKO_X = 1.3811479537654106, SKO_Y = 1.328649390908918

4 Anker use Noise standart deviation = 0.4m SKO_X = 1.1765039484794284, SKO_Y = 1.2385054230840462

3 Anker use Noise standart deviation = 0.5m SKO_X = 1.3629959654034223, SKO_Y = 1.570466930970974

4 Anker use Noise standart deviation = 0.5m SKO_X = 0.8167192557039267, SKO_Y = 0.7821421593288761

3 Anker use 4 Anker use Noise standart deviation = 0.7m Noise standart deviation = 0.7m $SKO_X = 2.131547888242105$, $SKO_X = 2.120043130759592,$ $SKO_Y = 2.4437875020396738$ $SKO_Y = 2.383831279203404$ 2 0 0 -2 -2 Y coord, m Y coord, m -4 -4 -6 -6 -8 -8 anker anker tdoa noise tdoa_noise -10-10data data 140 140 142 144 146 148 150 152 142 144 146 148 150 152 X coord, m X coord, m 3 Anker use 4 Anker use Noise standart deviation = 0.8m Noise standart deviation = 0.8m SKO X = 1.1309911247980862, SKO X = 2.1880781977707815, SKO Y = 2.312493123793651SKO Y = 0.777309732200081anker anker tdoa noise tdoa noise 14 14 data data 12 12 10 10 Y coord, m Y coord, m 8 8 6 6

142

144

148

X coord, m

150

152

154

140

142

144

148

X coord, m

150

3 Anker use 4 Anker use Noise standart deviation = 0.9m Noise standart deviation = 0.9m $SKO_X = 2.986265281176649$, $SKO_X = 2.3920129429610926$ SKOY = 2.995627560727518 $SKO_Y = 2.010428669362048$ anker anker 10 10 tdoa_noise tdoa noise data data 5 5 Y coord, m Y coord, 0 0 -5 -5 -10-10160 145 145 150 155 150 155 160 X coord, m X coord, m 3 Anker use 4 Anker use Noise standart deviation = 1m Noise standart deviation = 1m SKO X = 1.0289062249266123, SKO X = 2.29285370776433, SKO Y = 0.9580825419740944SKO Y = 2.72252881888665614 14 anker anker tdoa noise tdoa noise data data 12 12 10 10 Y coord, m Y coord, m 8 8 6 6 4 2

138

140

X coord, m

142

146

136

138

142

X coord, m

144

3 Anker use 4 Anker use Noise standart deviation = 2m Noise standart deviation = 2m SKO X = 5.100471510871808, SKO X = 2.4184099417864866, SKO Y = 5.64345863513106SKO Y = 2.3458524284360607anker anker tdoa_noise tdoa_noise 15 15 data data 10 10 Y coord, m Y coord, m 5 0 -5 -5 130 135 145 150 155 130 135 140 145 150 155 140 X coord, m X coord, m 3 Anker use 4 Anker use Noise standart deviation = 5m Noise standart deviation = 5m SKO X = 19.173506919748593, SKO X = 8.74931566325237, SKO Y = 17.398694646176555 SKO Y = 8.686796952852607anker anker tdoa noise tdoa noise 60 data 60 data 40 40 Y coord, m coord, 20 20 0 0 -20 -20

100

X coord, m

125

150

175

25

50

75

100

X coord, m

125

150

3 Anker use 4 Anker use Noise standart deviation = 7m Noise standart deviation = 7m SKO X = 12.255144514826567, SKO X = 24.511515933616113, SKO Y = 26.536542066119043 SKO Y = 12.907167509859056anker 100 100 tdoa noise data 75 75 50 50 Y coord, m Y coord, m 25 25 0 0 -25-25 -50-50 tdoa_noise data -75 🛨 -75 100 50 150 175 200 150 175 200 X coord, m X coord, m 3 Anker use 4 Anker use Noise standart deviation = 10m Noise standart deviation = 10m SKO X = 42.24987491877377, SKO X = 16.449119764367413, SKO Y = 43.81390375763038SKO Y = 15.386401841572999 anker anker 200 200 tdoa noise tdoa noise data data 150 150 100 100 Y coord, m 50 50 0 0 -50-50 -100-100-150-150

50

150

X coord, m

200

250

100

150

X coord, m

200

250

Выводы

- 1. СКО погрешности триангулирования составляет примерно 3σ от погрешности измерения расстояний
- 2. Использования 4 анкеров для триангуляции в общем случае дает более точное позиционирование
- 3. При СКО шумов измерений равном 4 м и более возникают достаточно значительные отрывы триангулированных точек.

Библиография

- 1: Методы решения систем нелинейных уравнений, , https://docs.google.com/presentation/d/
- 12vkhVUSlikrB5D0oPjlqu06cfvEQEHANRZzHQ79ir6w/edit#slide=id.g858496cd6e_0_0
- 2: Maccивы NumPy , , https://pyprog.pro/introduction.html
- 3: Гипербола: определение, свойства, построение, , http://mathhelpplanet.com/static.php?p=giperbola
- 4: Brian O'Keefe, Finding Location with Time of Arrival and Time Difference of Arrival Techniques, 2017
- 5: Fatima S. Al Harbi, Hermann J. Helgert,, An Improved Chan-Ho Location Algorithm for TDOA Subscriber Position Estimation, 2010
- 6: Jianghuai Pan, A New Robust Multi-station TDOA Localization Algorithm, 2017
- 7: Wei WANG, Junjie HUANG, Shaobin CAI, Junjie YANG, Design and Implementation of Synchronization-freeTDOA Localization System Based on UWB, 2018

Приложение A Код алгоритма реализованный на языке Python

Код алгоритма доступен по ссылке: https://gitlab.fablite.tech/klimenko.as/inmotion_pyproj/-/commit/6b0f94ec22c3 27a9134f45fc3a437a2b3d1e6265