**Theorem** Let X have the standard uniform distribution. Then  $Y = \frac{\ln[1 - (\ln X)(\ln \kappa)/\delta]}{\ln \kappa}$  has the Gompertz $(\kappa, \delta)$  distribution, where  $\kappa$  and  $\delta$  are positive parameters with  $\kappa > 1$ .

**Proof** Let the random variable X have the standard uniform distribution with probability density function

$$f_X(x) = 1$$
  $0 < x < 1$ .

The transformation  $Y = g(X) = \frac{\ln[1 - (\ln X)(\ln \kappa)/\delta]}{\ln \kappa}$  is a 1–1 transformation from  $\mathcal{X} = \{x \mid 0 < x < 1\}$  to  $\mathcal{Y} = \{y \mid y > 0\}$  with inverse  $X = g^{-1}(Y) = e^{\delta(1 - \kappa^Y)/\ln \kappa}$  and Jacobian

$$\frac{dX}{dY} = -\delta \kappa^Y e^{\delta(1-\kappa^Y)/\ln \kappa}.$$

Therefore, by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

$$= 1 \left| -\delta \kappa^y e^{\delta(1-\kappa^y)/\ln \kappa} \right|$$

$$= \delta \kappa^y e^{\delta(1-\kappa^y)/\ln \kappa}$$

$$= \delta \kappa^y e^{-\delta(\kappa^y-1)/\ln \kappa} \qquad y > 0,$$

which is the probability density function of the Gompertz( $\kappa, \delta$ ) distribution.

## **APPL verification:** The APPL statements

```
assume(delta > 0);
assume(kappa > 1);
X := StandardUniformRV();
g := [[x -> log(1 - ((log(x) * log(kappa)) / delta)) / log(kappa)], [0, 1]];
Y := Transform(X, g);
```

yield the probability density function of a Gompertz( $\kappa, \delta$ ) random variable

$$f_Y(y) = \delta \kappa^y e^{-\delta(\kappa^y - 1)/\ln \kappa}$$
  $y > 0.$