RL DC motor

Control laws design

Dynamics of DC motor

$$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -ax_2 - \mathbb{F} + bu(t) \end{split}$$

$$\begin{cases} x_d = \theta_{desired} \\ x_1 = \theta_{actual} \\ x_2 = \dot{\theta}_{actual} = w_{actual} \end{cases}$$

Define the tracking error dynamics function

$$\begin{split} c &= x_d - x_1 \\ \dot{c} &= \dot{x}_d - \dot{x}_1 = \dot{x}_d - x_2 \\ \ddot{c} &= \ddot{x}_d - \ddot{x}_1 = \ddot{x}_d - \dot{x}_2 \Rightarrow \ddot{c} = \ddot{x}_d - [-ax_2 - \mathbb{F} + bu] \end{split}$$

Since the bristle state in <u>LuGre</u> model is challenged to derive or estimate, the feedforward compensation terms approximate the friction model by using <u>Columb friction model</u>. To compensate disturbances in error function, the control input can be designed as follows:

$$\begin{split} u(t) &= v_{PID} + \alpha x_2 + \beta \ddot{\theta}_d(t) + \gamma_1 sign^+ \left(\dot{\theta}(t)\right) + \gamma_2 sign^- \left(\dot{\theta}(t)\right) \\ , where \quad v_{PID} &= \frac{1}{b} \Big[k_p c + k_d \dot{c} + k_i \int_0^t c(\tau) d\tau \Big], \alpha = \frac{a}{b}, \beta = \frac{1}{b}, \gamma_1 = \frac{f_c^+}{b}, \gamma_2 = \frac{f_c^-}{b} \end{split}$$

Observation space

Num	Observation	Min	Max	Starting value
0	Motor Angular Position $ heta$ (rad) $$ -Inf $$ Inf $$ 0		0	
1	Motor Angular Velocity ω (rad/s)	-Inf	Inf	0
2	Motor Angular Position Error e (rad)	-Inf	Inf	0
3	Error Backward Difference \dot{e} (rad)	-Inf	Inf	0
4	Error integration $\int c \ dt$ (rad)	-Inf	Inf	0
5	Desired Motor Angular Velocity $\dot{ heta}_d$ (rad)	-Inf	Inf	0
6	Desired Motor Angular Acceleration $\ddot{ heta}_d$ (rad/s)	-Inf	Inf	0

Action space

Num	Action	Min	Max
0	k_p	0	150
1	k_{i}	0	60
2	k_d	0	20
3	α	0	0.519
4	β	0	0.061
5	γ_1	0	1.698
6	γ_2	0	1.622

System ID. result

Para.	Value
a	8.4645
b	32.6486
f_c^+	27.7231
f_c^-	26.4779

$$\alpha = \frac{a}{b}, \beta = \frac{1}{b}$$

$$\gamma_1 = \frac{f_c^+}{b}, \gamma_2 = \frac{f_c^-}{b}$$