A Tutorial on Google AlphaGo

Bo An

Slides based on:

- ☐ Silver, David, et al. "Mastering the game of Go with deep neutral networks and tree search." Nature 529.7587 (2016): 484-489.
- Shane Moon's presentation

Games in Al

- > Ideal test bed for AI research
 - Clear results
 - Clear motivation
 - Good challenge
- > Success in search-based approach
 - **→** *chess* (1997, *Deep Blue*)
 - and others
- ➤ Not successful in the game of Go
 - Go is to Chess as Poetry is to Double-entry accounting
 - ▶ It goes to the core of artificial intelligence, which involves the study of learning and decision-making, strategic thinking, knowledge representation, pattern recognition and, perhaps most intriguingly, intuition

The game of Go

- A 4,000 years old board game from China
- > Standard size 19 × 19
- Two players, Black and White, place the stones in turns
- Stones can not be moved, but can be captured and taken off
- > Larger territory wins

AlphaGo vs European Champion (Fan Hui 2-Dan*)rank

October 5–9, 2015

- Time limit: 1 hour
- AlphaGo Wins (5:0)

AlphaGo vs World Champions

March 9 – 15, 2016 (Lee Sedol)

□ Time limit: 2 hours

Venue: Seoul, Four Seasons Hotel

AlphaGo Wins (4:1)

May 23 – 27, 2017 (Ke Jie)

Computer Go AI - Definition

Given s, pick the best a

Computer Go Al – An Implementation Idea?

AlphaGo: Key Ideas

- ➤ Objective: Reduce search space without sacrificing quality
- > Key Idea 1: Take advantage of human top players' data
 - Deep learning
- ➤ Key Idea 2: Self-play
 - → Reinforcement learning
- > Key Idea 3: Looking ahead
 - Monte Carlo tree search
 - We learned Minimax search with evaluation functions

Reducing Searching Space

2. Restricing valuation artificial to f'i (Ber (Det) tRechticion)

Learning: P (next action | current state)

$$= P(a | s)$$

(1)Imitating expert moves (supervised learning)

Data: Online Go Experts (5 ~ 9 dan) 160K games, 30M board positions

(1)Imitating expert moves (supervised learning)

Current Board

Prediction Model

Next Bourth

S

 $f: s \longrightarrow a$ There are $19 \times 19 = 361$ possible actions (with different possibilities)

(1)Imitating expert moves (supervised learning)

Convolutional Neural Network (CNN)

Go: abstraction is the key to win

CNN: abstraction is its *forte*

(1)Imitating expert moves (supervised learning)

Current Board

Expert Moves Imitator Model (w/CNN)

Next Action

Training:
$$\Delta \sigma \propto \frac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}$$

(2)Improving through self-plays (reinforcement learning)

improving by playing against itself

Expert Moves
Imitator Model
(w/CNN)

VS

Expert Moves
Imitator Model
(w/CNN)

(2)Improving through self-plays (reinforcement learning)

Board position

Expert Moves Imitator Model (w/CNN)

win/loss

Wiss z = +11

Training:
$$\Delta \rho \propto \frac{\partial \log p_{\rho}(a_t|s_t)}{\partial \rho} z_t$$
.

(2)Improving through self-plays (reinforcement learning)

older models vs. newer models

Expert Moves Imitator Model

VS

Updated Model ver 1,000,000

It uses the same topology as the expert moves imitator model, and just uses the updated parameters

Rhetinabourdepositis 80% with the stime when playing against the first model

2. Board Evaluation

Adds a regression layer to the model Predicts values between 0~1 Close to 1: a good board position Close to 0: a bad board position

Win / Lose

Board position

Updated Model ver 1,000,000

Value
Prediction
Model
(Regression)

Win (0 / 1)

Training:
$$\Delta \theta \propto \frac{\partial v_{\theta}(s)}{\partial \theta}(z - v_{\theta}(s))$$

Reducing Search Space

Reducing "action candidates"
 (Breadth Reduction)

Policy Network

2. Board Evaluation (Depth Reduction)

Value Network

Looking Ahead (Monte Carlo Search Tree)

Looking Ahead (Monte Carlo Search Tree)

Results

AlphaGo

Lee Sedol 9-dan vs AlphaGo Energy Consumption

Lee Sedol	AlphaGo
 Recommended calories for a man per day : ~2,500 kCal Assumption: Lee consumes the entire amount of per-day calories in this one game 2,500 kCal * 4,184 J/kCal ~= 10M [J] 	- Assumption: CPU: ~100 W, GPU: ~300 W - 1,202 CPUs, 176 GPUs 170,000 J/sec * 5 hr * 3,600 sec/hr ~= 3,000M [J]

A very, very tough calculation;)

AlphaGo

Taking CPU / GPU resources to virtually infinity

Libratus vs World Champions

The first AI to defeat top human poker players

January 11 to 31, 2017

Venue: Pittsburgh

120,000 hands

Architecture of Libratus

