### ALGORITMOS GENÉTICOS

- 1) O que são os Algoritmos Genéticos (GA)?
- 2) Qual a relação do GA com a genética?
- 3) Como opera um GA em termos computacionais?
- 4) Quais as aplicações dos GA?

Def.: John Holland (1970's)

Algoritmos Genéticos são modelos computacionais que imitam os mecanismos da "evolução natural" para resolver problemas de otimização.

### **GENÉTICA**

- Estuda as leis básicas da hereditariedade
- Informações biológicas escritas no DNA: sequências variadas de *adenina, guanina, citosina e timina*.
- Cromossomos: strings codificadas no alfabeto base\_4
- Gene: unidade hereditária caracterizada por uma sequência de bases
- A *Evolução* atua sobre os *Cromossomos*

## PROCESSO DE EVOLUÇÃO NATURAL (C. Darwin - 1859)

# **CONDIÇÕES:**

- Indivíduos com habilidade de reprodução
- Existe uma população desses indivíduos
- Existe alguma variedade de indivíduos
- Há diferenças na capacidade de sobrevivência dos indivíduos em seu ambiente



### COMPONENTES DE UM ALGORITMO GENÉTICO

- Um *PROBLEMA* para ser resolvido pelo algoritmo.
- Um método para codificar soluções do problema através de *CROMOSSOMOS*.
- Uma *FUNÇÃO DE AVALIAÇÃO* que mede quão bem, cada solução é capaz de resolver o problema.
- Um método para criar a *POPULAÇÃO INICIAL* de cromossomos.
- Um conjunto de *PARÂMETROS* para o algoritmo genético.
- Um conjunto de *OPERADORES* que atuam no processo de reprodução



#### **CROMOSSOMOS**

A representação das soluções é orientada na estrutura do problema e deve descrever o espaço de busca em termos de suas características.

# TIPOS DE REPRESENTAÇÃO

- Binário
- Binário codificando Real
- Inteiro
- Real
- Vetores, Listas e Matrizes (inteiros, caracteres, etc)

### BINÁRIO CODIFICANDO REAL

### **Aspectos importantes:**

¬variáveis do problema (x1, x2, ..., xt)

¬domínio de valores: xi Î (mín i , máx i ) em R

 $\neg$ **precisã**o: p casas decimais



### Representação:

$$k_1$$
 bits  $k_2$  bits ...  $k_t$  bits  $x_1$   $x_2$   $x_t$ 

onde,

$$2^{k_i} \ge (m\acute{a}x_i - m\acute{i}n_i)x10^p$$
 Precisão =  $(m\acute{a}x_i - m\acute{i}n_i)$ 

### Decodificação para Real:

$$x_{i real} = x_{i bin} \cdot \frac{(máx_i - mín_i)}{2^{k_i} - 1} + mín_i$$

se 
$$x_{ibin}$$
=(0 0 ... 0)  $x_{i real}$  =  $min_i$   
se  $x_{ibin}$ =(1 1 ... 1)  $x_{i real}$  =  $max_i$ 

Construir a solução para o problema a partir de um cromossoma:

Cromossomas "representam" soluções.

| <u>Cromossoma</u> | <u>Transformação</u>                        | <u>Solução</u>                    |
|-------------------|---------------------------------------------|-----------------------------------|
| 0011011           | bin ➡ inteiro                               | x=27                              |
| 0011011           | x=27 x 10/2 <sup>7</sup> -1                 | x=2,1 x∈ [0,10]<br>1 casa decimal |
| ADBCE             | C cidades  C cidades  ZKm A ZKm E ZKm E 3Km | x=Σdistâncias=18                  |

A representação BINÁRIA (bit string) é a mais comum.

Bit strings são:

- Simples de criar e manipular
- Produzem bons resultados nas aplicações
- Facilitam a aplicação de operadores
- Aplicáveis a funções (binário representa inteiros)

Representação por sequência de bits (gene)



# FUNÇÃO DE AVALIAÇÃO

É o elo de ligação entre o GA e o problema.

$$f_A(CROMOSSOMA) = APTIDÃO$$

## **OPERADORES GENÉTICOS**

Atuam no processo de reprodução:

- 1. Crossover
- 2. Mutação
- 3. Inversão

### 1) CROSSOVER

Executa a troca de partes correspondentes dos cromossomos "pais" para produzir o cromossomo "filho".



# 2) MUTAÇÃO

Introduz aleatoriamente modificações na informação genética.



# 3) INVERSÃO

Inverte a ordem (posição) de dois elementos escolhidos aleatoriamente em um cromossomo.



Embora inspirado no processo biológico, é raramente empregado.



### **EXEMPLO TESTE:**

Otimizar a função (encontrar o máximo valor da função).

$$f(x,y) = 0.5 - \frac{\left(\sin\sqrt{x^2 + y^2}\right)^2 - 0.5}{\left(1 + 0.001\left(x^2 + y^2\right)\right)^2}$$



# MÉTODO DA ROLETA

# Objetivo:

Selecionar indivíduos aleatoriamente, proporcionando maiores chances de reprodução aos indivíduos mais aptos da população.

#### Método:

- 1. Some a aptidão de todos os membros da população ( $A_T$ ).
- 2. Gere um número aleatório  $n: 0 < n \le A_T$ .
- 3. Pegue o primeiro membro da população cuja aptidão, somada à aptidão dos membros precedentes é maior ou igual a *n*.

$$\sum A_i \ge n$$

Após várias gerações, membros menos aptos tendem a ser excluídos e os mais aptos terão reproduzido mais.

# EXEMPLO

| CROMOSSOMO | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|------------|---|----|----|----|----|----|----|----|----|----|
| APTIDÃO    | 8 | 2  | 17 | 7  | 2  | 12 | 11 | 7  | 3  | 7  |
| $\sum A_i$ | 8 | 10 | 27 | 34 | 36 | 48 | 59 | 66 | 69 | 76 |

# RODANDO A ROLETA:

| NÚMERO ALEATÓRIO       | 23 | 49 | 76 | 13 | 1 | 27 | 57 |
|------------------------|----|----|----|----|---|----|----|
| CROMOSSOMA SELECIONADO | 3  | 7  | 10 | 3  | 1 | 3  | 7  |



# MÓDULO DE REPRODUÇÃO

Mutação e Crossover

# MUTAÇÃO:

Substitui cada bit de um cromossomo se o bit de probabilidade for verdadeiro.

Taxa = 0.008 (8 bits em 1000)

| CROMOSSOMA |   |   | SOMA | NÚN   | MERO A |       |       |   |   |   | NOVO<br>DMOSSOMA |   |  |
|------------|---|---|------|-------|--------|-------|-------|---|---|---|------------------|---|--|
| 1          | 0 | 1 | 0    | 0.801 | 0.102  | 0.266 | 0.373 |   | 1 | 0 | 1                | 0 |  |
| 1          | 1 | 0 | 0    | 0.120 | 0.096  | 0.005 | 0.840 | 0 | 1 | 1 | 0                | 0 |  |
| 0          | 0 | 1 | 0    | 0.760 | 0.473  | 0.894 | 0.001 | 1 | 0 | 0 | 1                | 1 |  |

Mutação é um operador "exploratório" que dispersa a população através do espaço de busca.

#### CROSSOVER DE UM PONTO

Parte de dois cromossomos genitores são trocados a partir de uma posição escolhida aleatoriamente. É considerado a característica fundamental dos algoritmos genéticos.

Taxa de Crossover = 0.65

Se "VERDADE" → Gera Filhos Diferentes

Se "FALSA" → Cópia dos Pais

# **SOLUÇÃO**

Cromossoma:
 00001010000110000000011000101010001110111011

 Dividido em x e y: 0000101000011000000001 1000101010001110111011

 Convertidos para base 10: 165377 e 2270139

Multiplicados por: 200/2<sup>22</sup>-1
 7,885791751335085 e 108,24868875710696

Subtraídos de mín:
 x=-92,11420824866492 e y=8,248688757106959

 Aplicados a F6(x,y): F6(x,y)=0,5050708

- Técnica Inicialização da População: Aleatória
  - → Geração aleatória de palavras de 44 bits
- Técnica Eliminação da População: Elimina todos
  - → Elimina pop\_size indivíduos da população anterior
- Técnica de Reprodução: Troca da geração
  - → Reproduz pop\_size indivíduos para a nova população
- Técnica de Aptidão: Aptidão é a avaliação
  - → Aptidão é numericamente igual à avaliação
- Técnica de Seleção de Genitores: Roleta

#### AT 100 BEST 5 CHROMOSOMES ARE:

| 1000000010100011011100111001101011011111      | .99026249 |
|-----------------------------------------------|-----------|
| 01110011000010100001101000001011001000110110  | .98930211 |
| 100110000111110110100110011111001101010001110 | .90970485 |
| 100111110000101101000101011110001011110000    | .86966422 |
| 1011011011000101111100001110111110111010      | .82411554 |

### AT 200 BEST 5 CHROMOSOMES ARE:

| 10000111111000001111000011101111110111010      | .99229899 |
|------------------------------------------------|-----------|
| 0111000011010111110011111000010001001011011010 | .98491267 |
| 01110011000010100001101000111100110111011010   | .97578980 |
| 0110100000100011011000011111000100011010       | .96230820 |
| 01101000001000100101011001000110101110111000   | .94706181 |

#### AT 400 BEST 5 CHROMOSOMES ARE:

| 1000011111000011100110100011110011011101101  | .98227694 |
|----------------------------------------------|-----------|
| 10000111110010100001101000111100110111011010 | .98225310 |
| 1000011111100000100010110010001101011111     | .97738784 |
| 01110011000010100001101000111100110111011010 | .97578980 |
| 011100110000101000011010001111001110110      | .97576120 |

#### AT 3000 BEST 5 CHROMOSOMES ARE:

| 011101111001000011010110001111111001110000 | .98052087 |
|--------------------------------------------|-----------|
| 01110011111110001010111110001111100101111  | .97721386 |
| 01110011111110000010101110001111100101111  | .97720801 |
| 011100111111100101101001000111101001110000 | .97699464 |
| 011100111111100000101011000111101001110000 | .97698057 |

### AT 4000 BEST 5 CHROMOSOMES ARE:

| 01111001011000101101011000100001100100010011 | .99304112 |
|----------------------------------------------|-----------|
| 011110111111000101101111100010100011011      | .99261288 |
| 011110111100001001010111000101000110110      | .99254826 |
| 01111011110000000101011000101000110110010001 | .99254438 |
| 011110111111000101101011000101001110110      | .99229856 |

# SELEÇÃO DE GENITORES - APTIDÃO RELATIVA

O que ocorre com o desempenho do algoritmo GA1-1 se alterarmos a função?

$$f_1(x,y) = 999.5 - \frac{\left(\sin\sqrt{x^2 + y^2}\right)^2 - 0.5}{\left(1 + 0.001\left(x^2 + y^2\right)\right)^2}$$

O resultado do GA1-1 para esta função é uma curva de desempenho plana. Por quê?

Seleção Proporcional

Seja:

 $A_i$ : aptidão do indivíduo i

 $AR_i$ : aptidão relativa do indivíduo i

 $A_{AV}$ : aptidão média

 $A_T$ : aptidão total

*M*: tamanho da população

Então:

$$A_{AV} = \frac{A_T}{M}$$

$$A_{AV} = \frac{A_T}{M}$$

$$AR_i = \frac{A_i}{A_{AV}}$$

 $AR_i$  indica o número médio de descendentes do indivíduo i na próxima geração.

O que ocorre na população inicial de f(x,y) e  $f_1(x,y)$  ?

# Para f(x,y):

| CROMOSSOMO | AVALIAÇÃO |   |                       |
|------------|-----------|---|-----------------------|
| Melhor     | 0.979     |   | $AR_{Melhor} = 1.905$ |
| Pior       | 0.066     |   | $AR_{Pior} = 0.128$   |
| MÉDIA      | 0.514     | - |                       |

Forte pressão reprodutiva em favor do melhor.

Para  $f_1(x,y)$ :

| CROMOSSOMA | AVALIAÇÃO | _ |               |          |
|------------|-----------|---|---------------|----------|
| Melhor     | 999.979   |   | $AR_{Melhor}$ | = 1.0005 |
| Pior       | 999.066   |   | $AR_{Pior}$   | = 0.9996 |
| MÉDIA      | 999.514   | - |               |          |

O melhor e o pior cromossomo vão gerar praticamente o mesmo número de filhos. O efeito da seleção é quase nulo.

### TÉCNICAS DE APTIDÃO

Tem como objetivo converter Avaliação em Aptidão.

- 1. FITNESS IS EVALUATION ("Avaliação")
- 2. WINDOWING ("Aptidão Relativa")
- 3. LINEAR NORMALIZATION ("Normalização Linear")

#### FITNESS IS EVALUATION

$$A_i = f_A(i)$$

#### **WINDOWING**

- 1. Obtenha a avaliação mínima na população.
- 2. Atribua a cada cromossomo i uma aptidão igual a:  $Ai A_{Min}$ .
- 3. Opcionalmente, utilize uma aptidão mínima maior que o valor mínimo encontrado, como garantia que os cromossomos menos aptos terão chance de reprodução.

### LINEAR NORMALIZATION

- 1. Coloque os cromossomos em ordem decrescente de avaliação.
- 2. Crie aptidões partindo de um valor constante e decrescendo linearmente.
- 3. O valor constante e a taxa de decremento são parâmetros da técnica.

$$A_{i} = A_{Min} + \frac{A_{M\acute{a}x} - A_{Min}}{M - 1} (RANK(i) - 1)$$

| CROMOSSOMA RANK                         | 6   | 5  | 4  | 3  | 2  | 1  |  |
|-----------------------------------------|-----|----|----|----|----|----|--|
| ORIGINAL EVALUATION                     | 200 | 9  | 8  | 8  | 4  | 1  |  |
| FITNESS IS EVAULUATION                  | 200 | 9  | 8  | 8  | 4  | 1  |  |
| $\overline{\text{WINDOWING - Min} = 0}$ | 199 | 8  | 7  | 7  | 3  | 0  |  |
| WINDOWING - Min = 10                    | 190 | 10 | 10 | 10 | 10 | 10 |  |
| LINEAR NORM RATE = 1                    | 100 | 99 | 98 | 97 | 96 | 95 |  |
| LINEAR NORM RATE = 20                   | 100 | 80 | 60 | 40 | 20 | 1  |  |

EXEMPLO COMPARATIVO

| OBSERVAÇÕES           |                                                          |
|-----------------------|----------------------------------------------------------|
| 1. SUPER INDIVÍDUO    | Elimina competidores em 1 ou 2 gerações.                 |
|                       | Rápida convergência.                                     |
| 2. COMPETIÇÃO PRÓXIMA | É preciso aumentar a pressão seletiva sobre os melhores. |

# **OUTROS MECÂNISMOS DE REPRODUÇÃO**

- 1. ELITISMO
- 2. STEADY STATE
- 3. STEADY STATE SEM DUPLICATAS
- 4. CROSSOVER DE DOIS PONTOS
- 5. CROSSOVER UNIFORME
- 6. VARIAÇÃO DE PARÂMETROS

#### **ELITISMO:**

Força a cópia do melhor cromossomo de cada geração na geração seguinte. Reduz o efeito aleatório do processo seletivo, garantindo a presença do melhor membro de uma população na próxima geração.

### STEADY-STATE:

Substituição parcial de indivíduos a cada nova geração.

- 1. Gere *N* filhos através da reprodução.
- 2. Delete os *N* piores membros da população.
- 3. Introduza os N filhos gerados na população.

### **CROSSOVER DE DOIS PONTOS:**

A troca de gene se dá em dois pontos.



#### **CROSSOVER UNIFORME:**

A contribuição de cada genitor para a geração de dois filhos é decidida através de um "template".



### Curva de Desempenho



Figure 2.1: Performance Graphs for GA 1-1, GA 2-1, GA 2-2, GA 2-3, GA 2-4, and GA 2-5