Graphs

Chapter 14

Examples

Communication Networks

Examples

Transportation Routes

Fundamentals

- A graph G = (V,E) is a set of vertices V and a collection of edges E.
- In an <u>undirected</u> graph, an edge E = (x,y) is said to connect vertex x to vertex y (and vice-versa). Thus, the edges (x,y) and (y,x) are the same edge.
- In a <u>directed</u> graph, an edge E = (x,y) is said to connect vertex x to vertex y (but <u>not</u> vice-versa).
 Thus, (x,y) and (y,x) are not the same edges.
- A <u>simple</u> graph has no multiple edges between vertices or loops from a vertex to itself.

More Fundamentals

- Node v_b is <u>adjacent</u> to node v_a in a graph if there is an edge from v_a to v_b.
- A <u>path</u> in a graph is a sequence of vertices p_0 , ..., p_n such that each adjacent pair of vertices p_k and p_{k+1} are connected by an edge from p_k to p_{k+1} .
- A <u>cycle</u> is a path that starts and ends at the same vertex (i.e. $p_0 = p_n$).
- The <u>degree</u> of a vertex in an undirected graph is the number of edges that connect to the vertex.

Graph Terminology

Graph Terminology

paths from v_0 to v_2 :

$$v_0, v_2$$

 v_0, v_1, v_2
 v_0, v_4, v_2
 v_0, v_1, v_3, v_2
 v_0, v_1, v_3, v_3, v_2 , etc.

cycles at v_4 :

$$v_4, v_2, v_0, v_4$$

 $v_4, v_2, v_1, v_0, v_4, etc.$

Storing a graph

Use an Adjacency Matrix

An adjacency matrix G for an n-node graph is an n x n array of boolean values such that G_{ik} = true if vertex k is adjacent to vertex i; otherwise G_{ik} = false.

In other words, G_{ik} = true if there is an edge from vertex i to vertex k; otherwise it is false.

Is
$$G_{ik} = G_{ki}$$
?

Example (no multiple edges)

target

	0	1	2	3	4
0	F	T	T	F	T
1	T	F	T	T	F
2	T	Т	F	Т	F
3	F	Т	T	Т	F
4	T	F	Т	F	F

Storing a graph: Another way

Use an array of edge lists

An edge list for vertex k is a linked list that stores all nodes that are adjacent to vertex k.

There is a linked list for every vertex of the graph.

Example Again (no multiple edges)

Weighted Graphs

- Some graphs have an associated "weight" assigned to each edge.
- Weights: cost, distance, capacity, etc.
- Cost are typical non-negative integer values.
- Possible problems to solve using weighted graphs: shortest path between nodes, minimal spanning tree, etc.

Example (no multiple edges)

target

	0	1	2	3	4
0	-1	1	7	-1	2
1	1	-1	4	3	-1
2	7	4	-1	5	-1
3	-1	3	5	2	-1
4	2	-1	6	-1	-1

Example (no multiple edges)

Which storage method is better?

- Adjacency Matrix
 - Easier to implement
 - Faster to add or remove an edge
 - Faster to check for an edge
- Edge Lists
 - Faster to perform an operation on all nodes adjacent to a node.
 - Uses less memory if graph is sparse.

The Graph ADT (parameters in red)

- constructor: Initializes an empty graph that can store a maximum of n vertices
- size: Returns the maximum number of nodes that the graph can hold.
- addEdge: Adds an edge from vertex source to vertex target.
- isEdge: Returns true if there is an edge from vertex source to vertex target.
- removeEdge: Removes the edge from vertex source to vertex target.
- getLabel: Gets the label for the given vertex.
- setLabel: Sets the label for the given vertex.
- neighbors: Returns an <u>array</u> of the adjacent vertices to the given <u>vertex</u>.

Traversing Graphs: Depth-First Traversal

- Pick a starting node.
- Process this node and mark it as visited.
- For each of the neighbors of this node,
 - if the neighbor is unmarked, traverse the graph starting at the neighbor recursively

Nodes are marked as they are processed to avoid reprocessing these nodes along another path (due to a cycle).

Depth-First Traversal

Traversing Graphs: Depth-First Traversal

Depth-First Traversal

ABFEGHCD

Depth-First Traversal

ABFEGHCD

Depth-First Traversal ABFEGHCD ACDFGHEB ACDBFEGH ACEBFGHD

Depth-First Traversal


```
public static void DFT (Graph q,
 int v, boolean[] marked) {
 int[] connections = g.neighbors(v);
 int i;
 int nextNeighbor;
 marked[v] = true;
 System.out.println(g.getLabel(v));
 for (i=0; i<connections.length; i++) {</pre>
    nextNeighbor = connections[i];
    if (!marked[nextNeighbor])
         DFT(q, nextNeighbor, marked);
    Is DFT tail recursive?
```

```
public static void DFTStart(Graph g,
         int startVertex) {
 int i;
 boolean[] marked
    = new boolean[q.size()];
 for (i=0; i<q.size(); i++) {
    marked[i] = false;
 DFT(g, startVertex, marked);
```

We can also use a stack in this implementation to avoid using recursion.

Traversing Graphs: Breadth-First Traversal

- Pick a starting node. Mark it as visited and put it in a queue.
- While the queue is not empty:
 - dequeue a node.
 - process that node.
 - for each neighbor that is not marked:
 - -mark that neighbor and enqueue it

Breadth-First Traversal

Breadth-First Traversal

ABCFDEGH

Breadth-First Traversal


```
public static void BFT(Graph g, int v) {
 boolean[] marked
        = new boolean[q.size()];
 int[] connections;
 int i;
 int vertex, nextNeighbor;
 IntQueue q = new IntQueue();
 marked[v] = true;
 q.enqueue(v);
 while (!q.isEmpty()) {
    vertex = q.dequeue();
    System.out.println
         (g.getLabel(vertex));
```

```
connections = g.neighbors(vertex);
  for (i=0; i<connections.length; i++)</pre>
       nextNeighbor = connections[i];
       if (!marked[nextNeighbor]) {
           marked[nextNeighbor]=true;
           q.enqueue(nextNeighbor);
} // end while loop
```

Dijkstra's Shortest Path Algorithm (optional)

- This algorithm finds the minimum total weight from a source node to every other node of a graph assuming all edges have non-negative.
- Shortest Path means "least total weight of all the edges on that path"
- weight(u,v) = weight on edge (u,v) or infinity if there is no edge from u to v

Dijkstra's Shortest Path Algorithm

```
for each vertex v in V do distance[v] = infinity
distance[source] = 0
S = \{ \}
for i = 1 to (number of vertices -1)
  next = index of min distance of all vertices in V - S
  S = S \cup next
  for each vertex v in V – S that is neighbor of next
     if (distance[next] + weight(next,v) < distance[v])
        distance[v] = distance[next] + weight(next,v)
```


distance
$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & \infty & \infty & \infty & \infty \end{bmatrix}$$

$$S = \{\}$$

V - S = {0,1,2,3,4}

$$S = \{0\}$$

V - S = \{1,2,3,4\}
next = 0

distance[0] + weight(0,1) = 10 distance[1] =
$$\infty$$
 distance[0] + weight(0,3) = 5 distance[3] = ∞

$$S = \{0,3\}$$

V - S = \{1,2,4\}
next = 3

distance[1] = 10
distance[2] =
$$\infty$$

distance[4] = ∞

distance[4] + weight(4,2) = 13 distance[2] = 14

$$distance[1] + weight(1,2) = 9$$
 $distance[2] = 13$

$$S = \{0,1,3,4\}$$

V - S = \{2\}