

Note

iMPS to quantum circuit

Yuqing Rong

HKUST(GZ)

2025-08-16

Yuqing Rong 2025-08-16 Note 1 / 1

Introduction

Algorithm Box

Results

Yuqing Rong 2025-08-16 Note 2 / 16

Introduction

Algorithm Box

Results

Yuqing Rong 2025-08-16 Note 3 / 16

Summary

We translate infinite, translationally invariant matrix product states (iMPS) into finite-depth quantum circuits.

The ground state of the transverse field Ising model is obtained through variational optimization of circuit parameters.

Yuqing Rong 2025-08-16 Note 4 / 16

iMPS

an infinite, translationally invariant quantum spin chain (1-site unit cell):

• left and right environment representation of overlap (in mixed canonical form):

• F_L and F_R satisfy fixed point equation:

Yuqing Rong 2025-08-16 Note 5 / 16

iMPS

• Power method: in each iteration, contract the environment and transfer matrix until they follow the fixed point equation.

Yuqing Rong 2025-08-16 Note 6 / 16

Quantum channel representation:

- Suppose:
 - d = D = 2
 - the iMPS are in right canonical form, $\Rightarrow \rho_R = \mathbb{I}$.
- Compile to circuit:

Yuqing Rong 2025-08-16 Note 7 / 16

or

- methods to get local expectation value:
 - contract directly (exact result of the ansatz):
 - ullet $\langle X_i
 angle$

ullet $\langle Z_i Z_{i+1} \rangle$

Yuqing Rong 2025-08-16 Note 8 / 16

- Measure:
 - \bullet $\langle X_i \rangle$

ullet $\langle Z_i Z_{i+1} \rangle$

Yuqing Rong 2025-08-16 Note 9 / 16

Yuqing Rong 2025-08-16 Note 10 / 10

Introduction

Algorithm Box

Results

Yuqing Rong 2025-08-16 Note 11 / 10

Algorithm 1: Variational iMPS Ground State Optimization

```
1: procedure Variational-iMPS(\theta_0, g, J, maxiter)
      ▶ Initialize parameters and convergence criteria
3:
      \theta \leftarrow \theta_0
4:
     iter \leftarrow 0
5:
6:
      while iter < maxiter && g_tol > 1e-10 do
         > Construct parameterized quantum circuit
7:
         U(\theta) \leftarrow \text{ConstructCircuit}(\theta)
8:
9:
10:
         ▷ Iterate quantum channel to fixed point
         \rho_L \leftarrow \text{IterateChannel}(U(\theta))
11:
12:
13:
         > Evaluate energy expectation
         \langle X \rangle \leftarrow \text{Expectation}(\rho_L, X)
14:
          \langle ZZ \rangle \leftarrow \text{Expectation}(\rho_L, Z \otimes Z)
15:
```

Yuqing Rong 2025-08-16 Note 12 / 16


```
16: E \leftarrow -g \cdot \langle X \rangle - J \cdot \langle ZZ \rangle
17:
18: \triangleright Update parameters
19: \theta \leftarrow \text{NelderMead}(\theta, E)
20: iter \leftarrow iter + 1
21: end
22: return \theta, E
```

Yuqing Rong 2025-08-16 Note 13 / 16

Introduction

Algorithm Box

Results

Yuqing Rong 2025-08-16 Note 14 / 1

Exact contraction

Fig. 1 Energy error v.s. transverse field strength for different circuit depths. iMPS: analytical results of d=2, D=2 infinite MPS from MPSKit.jl.

Yuqing Rong 2025-08-16 Note 15 / 16

Measurement

Fig. 2 Energy error v.s. transverse field strength for p=3 through measurement

Yuqing Rong 2025-08-16 Note 16 / 16