

강필성 고려대학교 산업경영공학부 pilsung_kang@korea.ac.kr

AGENDA

- 01 Multiple Linear Regression
- **O2** Evaluating Regression Models
- 03 R Exercise

• Example: predict a yield based on process sensors

How accurate is this model?

- Performance measure I: Average Error
 - ✓ Compare the average difference between the actual and predicted y
 - ✓ Mislead to an inappropriate conclusion based on the sign effect

Average Error =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')$$

Υ	Y'	Y-Y'
95	90	5
90	93	-3
92	95	-3
88	85	3
75	80	-5
97	94	3
91	88	3
84	87	-3
83	86	-3
79	75	4
Average Error		0.1

- Performance measure 2: Mean Absolute Error (MAE)
 - ✓ Compute the average of absolute value of differences between the predicted and actual y

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - y'_i|$$

Y	Y'	Y-Y'
95	90	5
90	93	3
92	95	3
88	85	3
75	80	5
97	94	3
91	88	3
84	87	3
83	86	3
79	75	4
MAE		3.5

- Performance measure 3: Mean Absolute Percentage Error (MAPE)
 - ✓ MAE can only provide the degree of absolute difference between the predicted and actual y but cannot provide the relative difference between them
 - \checkmark Ex) The MAEs of the two models below are the same (MAE = 1)

Υ	Y'	Y-Y'
I	0	1
l	2	1
I	0	1
I	2	1
I	0	1
I	2	1
I	0	1
l	2	1
I	0	1
I	2	1
MAE		I

Y	Y'	Y-Y'
100	99	1
100	101	1
100	99	1
100	101	1
100	99	1
100	101	1
100	99	1
100	101	1
100	99	1
100	101	1
MAE		Ī

- Performance measure 3: Mean Absolute Percentage Error (MAPE)
 - ✓ Provide the relative absolute difference in terms of %
 - ✓ Commonly adopted by domains in which relative differences are more important than the absolute difference (ex: quality control in manufacturing process)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - y_i'}{y_i} \right|$$

Y	Y'	Y-Y'	Y-Y' / Y
95	90	5	5.26%
90	93	3	3.33%
92	95	3	3.26%
88	85	3	3.41%
75	80	5	6.67%
97	94	3	3.09%
91	88	3	3.30%
84	87	3	3.57%
83	86	3	3.61%
79	75	4	5.06%
M	AE	3.5	4.06%

- Performance measure 4 & 5: (Root) Mean Squared Error ((R)MSE)
 - ✓ Use the square instead of absolute value to resolve the effect of sign.

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')^2$$
, RMSE = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')^2}$

Y	Y'	(Y-Y') ²
95	90	25
90	93	9
92	95	9
88	85	9
75	80	25
97	94	9
91	88	9
84	87	9
83	86	9
79	75	16
MSE		12.9

$$RMSE = \sqrt{12.9} = 3.59$$

