ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Лекция 6

Лекция 6

- Введение поправок
- Суммирование систематических погрешностей
 - Суммирование в предположении равномерного распределения слагаемых
 - Метод перебора вариантов
- Суммирование систематической и случайной погрешности

$$U_V = U$$

$$U_{V} = \frac{R_{V}}{R + R_{V}} U$$

методическая погрешность

Относительная погрешность

$$\delta_V = \frac{U_V - U}{U} = -\frac{R}{R + R_V}$$
Поправка $\Delta U_V = -\delta_V = \frac{R}{R + R_V}$

$$U_V = 12,35 \text{ B}$$

$$R_V = 5 кОм$$

$$R = 60 \, \text{Om}$$

$$U_V = 12,35 \text{ B}$$

$$R_V = 5$$
 кОм

$$R = 60 \, \text{Om}$$

$$\Delta U_V = -\delta_V = \frac{R}{R + R_V} = \frac{60}{5060} = 0.012 = 1.2\%$$

$$U_V = 12,35 \text{ B}$$

$$R_V = 5$$
 кОм

$$R = 60 \, \text{Om}$$

$$\Delta U_V = -\delta_V = \frac{R}{R + R_V} = \frac{60}{5060} = 0.012 = 1.2\%$$

$$U = U_V + \Delta U_V = 12,35 \cdot (1 + 0,012) = 12,50 \text{ B}$$

Погрешность прибора

Погрешность прибора

Методическая погрешность

Погрешность определения поправки

Элементарные систематические погрешности

Погрешность прибора

Методическая погрешность

Погрешность определения поправки

Погрешность ...

Элементарные систематические погрешности

Погрешность прибора, **1%**

Методическая погрешность, **1%**

Погрешность **1%** определения поправки

Погрешность ..., 1%

Элементарные систематические погрешности

Погрешность прибора, **1%**

Методическая погрешность, **1%**

Погрешность **1%** определения поправки

Погрешность ..., 1%

Систематическая погрешность, **4% ???**

Элементарные систематические погрешности

$$|\theta_j, |\theta_j| \le \theta_j, j = 1 \dots m$$

Элементарные систематические погрешности

$$|\theta_j, |\theta_j| \le \theta_j, j = 1 \dots m$$

Суммарная погрешность

$$\vartheta = \sum_{j=1}^{m} \vartheta_j$$

Задача: найти границы суммарной погрешности

Элементарные систематические погрешности

$$|\theta_j, |\theta_j| \le \theta_j, j = 1 \dots m$$

Суммарная погрешность

$$\vartheta = \sum_{j=1}^{m} \vartheta_j$$

Задача: найти границы суммарной погрешности

$$\theta = \sum_{j=1}^{m} \theta_j$$
 — завышенная оценка

Пусть

$$\theta_j = \frac{1}{2}$$
, $j = 1 \dots m$

Плотность вероятности

$$f_n(\theta) = \frac{1}{(n-1)!} \left[\frac{\left(\theta + \frac{n}{2}\right)^{n-1} - C_n^{-1} \left(\theta + \frac{n}{2} - 1\right)^{n-1}}{+C_n^{-2} \left(\theta + \frac{n}{2} - 2\right)^{n-1} - \dots} \right]$$

Пусть

$$\theta_j = \frac{1}{2}, j = 1 \dots m$$

Плотность вероятности

$$f_n(\theta) = \frac{1}{(n-1)!} \begin{bmatrix} \left(\theta + \frac{n}{2}\right)^{n-1} - C_n^{-1} \left(\theta + \frac{n}{2} - 1\right)^{n-1} \\ + C_n^{-1} \left(\theta + \frac{n}{2} - 2\right)^{n-1} - \cdots \end{bmatrix}$$

$$f_n(\vartheta) = \frac{1}{(n-1)!} \begin{bmatrix} \left(\vartheta + \frac{n}{2}\right)^{n-1} - C_n^{-1} \left(\vartheta + \frac{n}{2} - 1\right)^{n-1} \\ + C_n^{-2} \left(\vartheta + \frac{n}{2} - 2\right)^{n-1} - \cdots \end{bmatrix}$$

$$n = 2, \qquad \vartheta \subset (-1,1):$$

$$f_n(\theta) = \frac{1}{(n-1)!} \left[\frac{\left(\theta + \frac{n}{2}\right)^{n-1} - C_n^{-1} \left(\theta + \frac{n}{2} - 1\right)^{n-1}}{+C_n^{-2} \left(\theta + \frac{n}{2} - 2\right)^{n-1} - \dots} \right]$$

$$n=2$$
, $\vartheta \subset (-1,1)$:

$$f_2(\vartheta) = [(\vartheta + 1) - 2]$$
$$= [\vartheta - 1], \vartheta > 0$$

$$f_2(\vartheta) = [\vartheta + 1], \vartheta < 0$$

$$f_n(\theta) = \frac{1}{(n-1)!} \left[\frac{\left(\theta + \frac{n}{2}\right)^{n-1} - C_n^{-1} \left(\theta + \frac{n}{2} - 1\right)^{n-1}}{+C_n^{-2} \left(\theta + \frac{n}{2} - 2\right)^{n-1} - \dots} \right]$$

$$F_n(\vartheta) = \frac{1}{n!} \left[\frac{\left(\vartheta + \frac{n}{2}\right)^n - C_n^1 \left(\vartheta + \frac{n}{2} - 1\right)^n}{+C_n^2 \left(\vartheta + \frac{n}{2} - 2\right)^n - \cdots} \right]$$

$$F_n(\vartheta) = \frac{1}{n!} \left[\left(\vartheta + \frac{n}{2} \right)^n - C_n^{1} \left(\vartheta + \frac{n}{2} - 1 \right)^n + C_n^{2} \left(\vartheta + \frac{n}{2} - 2 \right)^n - \right]$$

Очень сложно!

Ищем границы θ : $P(|\theta| \le \theta) = \alpha$

Из симметрии распределения:

$$P\left[\vartheta\in\left(-\vartheta_{\frac{1+\alpha}{2}},\vartheta_{\frac{1+\alpha}{2}}\right)\right]=\alpha$$

$$\vartheta_{\frac{1+\alpha}{2}} = \theta$$

$$F_n(\vartheta) = \frac{1}{n!} \left[\left(\vartheta + \frac{n}{2} \right)^n - C_n^{-1} \left(\vartheta + \frac{n}{2} - 1 \right)^n + C_n^{-2} \left(\vartheta + \frac{n}{2} - 2 \right)^n - \right]$$

Рассмотрим интервал $\left(-\frac{n}{2}, -\frac{n}{2}+1\right)$:

$$F_n(\vartheta) = \frac{1}{n!} \left(\vartheta + \frac{n}{2}\right)^n$$

$$F_n(-\theta) = \frac{1}{n!} \left(-\theta + \frac{n}{2} \right)^n = 1 - \frac{\alpha}{2} \qquad \theta(\alpha, n)$$

$$F_n(-\theta) = \frac{1}{n!} \left(-\theta + \frac{n}{2} \right)^n = 1 - \frac{\alpha}{2} \qquad \theta(\alpha, n)$$

Хочется представить в виде

$$\theta = k \sum_{i=1}^{n} (\theta_i)^2$$

$$F_n(-\theta) = \frac{1}{n!} \left(-\theta + \frac{n}{2} \right)^n = 1 - \frac{\alpha}{2} \qquad \theta(\alpha, n)$$

Хочется представить в виде

$$\theta = k \sum_{i=1}^{n} (\theta_i)^2$$

Для
$$\theta_i = \frac{1}{2}$$

$$\theta = \frac{k\sqrt{n}}{2} \Rightarrow k = \frac{2\theta}{\sqrt{n}}$$

$$\theta = k \sum_{i=1}^{n} (\theta_i)^2$$

Значения коэффициента k в зависимости от числа слагаемых и доверительной вероятности

Значения коэффициента k при						
доверительной вероятности α						
0,90	0,95	0,99	0,9973			
0,97	1,10	1,27	1,34			
0,96	1,12	1,37	1,50			
*	1,12	1,41	1,58			
*	*	1,42	1,61			
*	*	*	1,64			
0,95	1,13	1,49	1,73			
	дове 0,90 0,97 0,96 * *	доверительной 0,90 0,95 0,97 1,10 0,96 1,12 * 1,12 * * * *	доверительной вероятнос 0,90 0,95 0,99 0,97 1,10 1,27 0,96 1,12 1,37 * 1,12 1,41 * * 1,42 * * * * * * * * * * * * * * * * * * *			

Примечание. Для граф таблицы, отмеченных звездочкой, коэффициент k не вычисляется, так как θ при данном n выходит за пределы крайнего интервала.

$$\theta = k \sum_{i=1}^{n} (\theta_i)^2$$

Значения коэффициента k в зависимости от числа слагаемых и доверительной вероятности

Число	Значения коэффициента k при					
слагаемых	доверительной вероятности $lpha$					
n	0,90	0,95	0,99	0,9973		
2	0,97	1,10	1,27	1,34		
3	0,96	1,12	1,37	1,50		
4	*	1,12	1,41	1,58		
5	*	*	1,42	1,61		
6	*	*	*	1,64		
∞	0,95	1,13	1,49	1,73		

 α ... 0,90 0,95 0,98 0,99 k ... 0,95 1,1 1,3 1,4

Закон распределения элементарных систематических погрешностей не всегда известен

Задача: построить функцию распределения для величины z=x+y, F(z)

Перейдем к серединам интервалов x_{mi} и вероятности попадания в каждый интервал p_{xi}

Переберем все возможные суммы

$$z_k = x_{mi} + y_{mj}$$
, $i = 1 \dots I$, $j = 1 \dots J$, $k = 1 \dots I + J$

и найдем вероятности их реализации

$$p_{zk} = p_{xi} \cdot p_{yj}$$

Упорядочим z_k : $z_{k-1} \le z_k \le z_{k+1}$ (при этом запомнив соответствующие вероятности)

Строим функцию распределения

$$F(z_1) = p_{z1}$$

Строим функцию распределения

$$F(z_1) = p_{z1}$$

$$F(z_2) = p_{z1} + p_{z2} = F(z_1) + p_{z2}$$

Строим функцию распределения

$$F(z_1) = p_{z_1}$$

$$F(z_2) = p_{z_1} + p_{z_2} = F(z_1) + p_{z_2}$$

$$F(z_k) = F(z_{k-1}) + p_{z_k}$$

$$F(1) = 0.8$$

F(1.15) = 0.9

F(1.28) = 0.95

Суммирование систематической и случайной погрешностей

Систематическая погрешность θ

Случайная погрешность $t_q S_{\bar{x}}$

$$\Delta = \theta + t_q S_{\bar{x}}$$

Суммирование систематической и случайной погрешностей

Систематическая погрешность θ

Случайная погрешность $t_q S_{\bar{x}}$

$$\Delta = \theta + t_q S_{\bar{x}}$$

завышенная оценка!!!

Суммирование систематической и случайной погрешностей

Систематическая погрешность θ , состоит из m элементарных погрешостей

$$S_{\theta} = \sqrt{\frac{1}{3} \sum_{i=1}^{m} (\theta_i)^2}$$

$$t_{\theta} = \frac{\theta}{S_{\theta}}$$

Случайная погрешность $t_a S_{\bar{x}}$

СКО общей погрешности $S_{\Sigma} = \sqrt{(S_{\theta})^2 + (S_{\bar{x}})^2}$

$$S_{\Sigma} = \sqrt{(S_{\theta})^2 + (S_{\bar{\chi}})^2}$$

$$t_{\Sigma} = t_q \frac{S_{\bar{x}}}{S_{\bar{x}} + S_{\theta}} + t_{\theta} \frac{S_{\theta}}{S_{\bar{x}} + S_{\theta}} = \frac{t_q S_{\bar{x}} + \theta}{S_{\bar{x}} + S_{\theta}} \qquad \Delta = t_{\Sigma} S_{\Sigma}$$