

Mathématiques

Classe: Bac Maths - Excellent

Série: N 08 - Isométries

Nom du Prof: Abbes Amor

Lycée Pilote Monastir

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 01: Le plan complexe est rapporté à un repère orthonormé direct $(O, \overrightarrow{OI}, \overrightarrow{OJ})$. Soit f l'application du plan dans lui-même qui à tout point M d'affixe z associe le point M' d'affixe z' = i z + 1.

- 1) a) Déterminer les images par f des points O, I et J. b) Montrer que f est une isométrie.
 - c) Montrer que f ne fixe aucun point puis déduire sa nature.
- **2)** Soit t la translation de vecteur \vec{u} d'affixe $-\frac{1}{2} \frac{1}{2}i$.
 - a) Montrer que l'expression complexe de fot est z' = $i \ \overline{z} + \frac{1-i}{2}$.
 - b) Déterminer l'ensemble des points invariants par fot. Déduire la nature de fot.
 - c) Déterminer alors la forme réduite de f.

Exercice 02: Le plan est orienté dans le sens direct. On considère un carré direct ABCD de centre O. Soit Δ la médiatrice de [AB].

1) Caractériser les isométries suivantes : a) $f_1 = R_{\left(C, -\frac{\pi}{2}\right)} \circ S_{(AC)}$. b) $f_2 = R_{\left(B, \frac{\pi}{2}\right)} \circ S_C$.

$$\textbf{c)} \ \ f_3 = \ R_{\left(A, -\frac{\pi}{2}\right)} \ \ o \ R_{\left(C, \frac{\pi}{2}\right)}. \ \ \textbf{d)} \ \ f_4 = \ t_{\overline{CD}} \ \ o \ R_{\left(C, \frac{\pi}{2}\right)}. \ \ \textbf{e)} \ \ f_5 = \ R_{\left(A, \frac{\pi}{2}\right)} \ \ o \ \ t_{\overline{CB}} \ . \ \ \textbf{f)} \ \ f_6 = \ R_{\left(O, -\frac{\pi}{2}\right)} \ \ o \ R_{\left(C, \frac{\pi}{2}\right)}.$$

g)
$$f_7 = S_{(DA)} \circ t_{\overline{BD}}$$
. h) $f_8 = S_{(BC)} \circ S_{(OC)}$. i) $f_9 = S_{(BC)} \circ S_{(AC)} \circ t_{\overline{BD}}$.

- 2) On construit extérieurement au carré ABCD les deux triangles équilatéraux ADF et ABE.
 - a) Montrer qu'il existe une seule rotation r tel que r(A) = D et r(E) = C
 - b) Déterminer le centre de r. En déduire que FEC est un triangle équilatéral direct.
- **3)** Soit l'application $\varphi = S_{(BD)}$ o $S_{(DA)}$ o $S_{(AB)}$. Caractériser φ .

Exercice 03: On considère dans le plan orienté un losange ABCD de centre O tel que

 $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{3} [2\pi]$. Soient I, J, K et F les milieux respectives des segments [DC], [CB], [AD] et [AB].

 Δ la médiatrice de [FB] coupe [KF] en Ω .

- 1) Soit f une isométrie qui laisse globalement invariant le losange ABCD.
 - a) Montrer que f([AC]) = [AC] et en déduire que f(O) = O.
 - b) Déterminer alors les quatre isométries qui laissent globalement invariant le losange ABCD
- 2) a) Donner la nature et les éléments caractéristiques des isométries suivantes :

$$f_1 = S_{(AC)} \circ S_{(AB)} \quad \text{et} \quad f_2 = S_{(CD)} \circ S_{(CA)} \cdot \textbf{b)} \text{ Caractériser alors l'isométrie } g = r_{(C, -\frac{\pi}{3})} \circ r_{(A, \frac{\pi}{3})}$$

- 3) On note E, F' et G les symétriques respectives des points A, D et C par rapport au point B Soit h l'isométrie telle que h(A) = E, h(B) = F' et h(D) = B. a) Montrer que h n'admet aucun point fixe
 - **b)** En déduire h est une symétrie glissante. **c)** Montrer que $S_{(BD)} \circ h = t_{\overline{DB}}$
 - d) Donner alors l'axe et le vecteur de h.

Exercice 04: Dans le plan orienté, on considère un carré direct OABC de centre Ω .

On note I, J et K les milieux respectifs de [OA] , [OC] et [AB] . **1)** Soit f = $S_{(OB)} \circ S_{(\Omega I)}$. Caractériser f.

- 2) Soit g une isométrie sans points fixes qui transforme O en C et I en J. a) Déterminer g(A).
 - b) Montrer que g est une symétrie glissante. c) Soit D = g(K). Montrer que O est le milieu de [ID].
 - **d)** Vérifier que g = $t_{\overline{AO}} \circ S_{(AC)}$. En déduire les éléments caractéristiques de g.
- 3) Soit $\,\phi = g^{-1} \circ f\,$. a) Déterminer $\,\phi$ (O) et $\,\phi$ (I) puis caractériser $\,\phi$.
 - **b)** Trouver alors l'ensemble (Γ) des points M du plan tels que f(M) = g(M).

Exercice 05: Dans le plan orienté, on considère un rectangle ABCD tel que AB = 2AD et

 $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2} [2\pi]$. On note I et J les milieux respectifs des segments [AB] et [DC] et K le symétrique de I par rapport à (DC).

- 1) On pose f = $S_{(IC)} \circ t_{\overline{AB}} \circ S_{(IJ)}$. a) Caractériser l'application $S_{(BC)} \circ S_{(IJ)}$.
 - b) En déduire que f est une rotation dont on précisera l'angle et le centre.
- 2) Soit M un point de la demi droite [BA). La perpendiculaire à (CM) en C coupe (IJ) en N. Montrer que f(M) = N, en déduire la nature du triangle CMN.
- 3) On pose g = $t_{\overline{lK}} \circ S_{(IC)}$. a) Caractériser l'application $g \circ S_{(AI)}$.
 - b) En déduire que g est une symétrie glissante dont on précisera l'axe et le vecteur.
- 4) Soit φ une isométrie qui fixe un point de la droite (AB) et transforme (AB) en (IJ).
 - a) Montrer que φ fixe le point I. b) Déterminer alors toutes les isométries φ .

Exercice 06: Dans le plan orienté dans le sens direct , on considère un triangle équilatéral direct ABC inscrit dans un cercle $\mathscr C$ de centre O .On désigne par I le milieu du segment [BC], $D = S_O(A)$. Les droites (BD) et (AC) sont sécantes en un point A', Δ la médiatrice du segment [AD] et Δ' la médiatrice du segment [OB] sont sécantes en un point K.

- A/ 1) Montrer que OA = BD et que I est le milieu de [OD].
- **2)** Soit f une isométrie telle que f(A) = D et f(O) = B et $g = t_{RO}$ of .
 - a) Déterminer g(A) et g(O) en déduire que $\,g=S_{(BO)}$ ou $\,g=r_{\left(O,-\frac{2\pi}{3}\right)}.$
 - **b)** En déduire alors que $f=t_{\overline{OB}}oS_{(BO)}$ ou $f=R_{\left(K,-\frac{2\pi}{3}\right)}.$
- $\textbf{3)} \text{ On pose } f_1=t_{\overline{OB}}oS_{(BO)} \text{ et } f_2=R_{\left(K,-\frac{2\pi}{3}\right)}. \textbf{ a)} \text{ D\'eterminer } f_2^{-1}of_1(O) \text{ et } f_2^{-1}of_1(A) \,.$
 - **b)** En déduire l'ensemble des points M tels que $f_1(M) = f_2(M)$.
- **B/1)** Préciser la nature et les éléments caractéristiques des applications $S_{(BD)} \circ S_{(DC)}$ et $S_{(CA)} \circ S_{(AB)}$.
- **2)** Soit Δ_1 la parallèle à (DC) issue de A.
 - a) Montrer que $S_{(BD)}oS_{(DC)}=S_{(CD)}oS_{(DA)}$. b) Montrer que $S_{(CA)}oS_{(AB)}=S_{(DA)}oS_{\Delta_l}$.
- $\textbf{3) a) Caract\'eriser l'application } h = S_{(BD)} o S_{(DC)} o S_{(CA)} o S_{(AB)} \,. \, \textbf{b)} \text{ En d\'eduire que C est le milieu de } \left[AA'\right].$