

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

23 de Mayo de 2022

Para hallar un patrón en la expansión de $(a + b)^n$, observemos que

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$$

Los siguientes patrones sencillos emergen para la expresión de $(a+b)^n$

- Hay n+1 términos, siendo el primero a^n y el último b^n .
- 2 Los exponentes de *a* disminuyen en 1 de término en término, en tanto que los exponentes de *b* aumentan en 1.
- 3 La suma de los exponentes de a y b de cada término es n.

Por ejemplo, observe lo que ocurre con $(a + b)^5$. Los exponentes de a disminuye

$$(a+b)^5 = a^{3} + 5a^{4}b^{1} + 10a^{3}b^{2} + 10a^{2}b^{3} + 5a^{1}b^{4} + b^{5}$$

Los exponentes de *b* aumentan:

$$(a+b)^5 = a^5 + 5a^4b^{1} + 10a^3b^{2} + 10a^2b^{3} + 5a^1b^{4} + b^{5}$$

Usando los patrones podemos ver cual es la expansión de $(a+b)^8$ escribiendo un signo de interrogación para los coeficientes faltantes

$$(a+b)^8 = a^8 + ?a^7b + ?a^6b^2 + ?a^5b^3 + ?a^4b^4 + ?a^3b^5 + ?a^2b^6 + ?ab^7 + b^8$$

Para completar la expansión, necesitamos determinar estos coeficientes.

Triángulo de Pascal

Los coeficientes de la expansión forman un triángulo llamado triángulo de Pascal:

$$(a+b)^0$$
 1
 $(a+b)^1$ 1 1
 $(a+b)^2$ 1 2 1
 $(a+b)^3$ 1 3 3 1
 $(a+b)^4$ 1 4 6 4 1
 $(a+b)^5$ 1 5 10 10 5 1

Todo elemento (que no sea 1) es la suma de los dos elementos que están diagonalmente sobre él.

Triángulo de Pascal

Se puede probar que el triángulo de Pascal está formado por los coeficiente binomiales

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

 $\binom{1}{0}$ $\binom{1}{1}$

 $\binom{2}{0}$ $\binom{2}{1}$ $\binom{2}{2}$

 $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$

 $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$

 $\binom{5}{0}$ $\binom{5}{1}$ $\binom{5}{2}$ $\binom{5}{3}$ $\binom{5}{4}$ $\binom{5}{5}$

 $\begin{pmatrix} 6 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 5 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 6 \end{pmatrix}$

Definición. (Coeficientes binomiales)

Sean $n, k \in \mathbb{N} \cup \{0\}$ con $k \leq n$, se define el coeficiente binomial

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

EJEMPLO 1 Calcule
$$\binom{5}{2}$$
, $\binom{n}{n}$ y $\binom{n}{1}$.

$$\binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \cdot 4 \cdot 3!}{2 \cdot 3!} = \frac{5 \cdot 4}{2} = 10$$

$$\binom{n}{n} = \frac{n!}{n!(n-n)!} = \frac{n!}{n!0!} = 1$$

$$\binom{n}{1} = \frac{n!}{1!(n-1)!} = \frac{n(n-1)!}{1!(n-1)!} = n$$

Proposición.

Sean $n, k \in \mathbb{N} \cup \{0\}$ con $k \leqslant n$. Entonces,

Demostración

Tenemos que

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)![n-(k+1)]!}$$

$$= \frac{(k+1)n! + (n-k)n!}{(k+1)!(n-k)!}$$

$$= \frac{kn! + n! + nn! - kn!}{(k+1)!(n-k)!}$$

$$= \frac{n!(n+1)}{(k+1)!(n-k)!}$$

$$= \frac{(n+1)!}{(k+1)!(n-k)!} = \binom{n+1}{k+1}$$

Teorema. (Teorema del Binomio) [Newton]

Sean $a, b \in \mathbb{R}$ y $n \in \mathbb{N}$. Entonces,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Demostración Demostraremos el teorema usando inducción sobre *n*. La función proposicional es:

$$P(n) : (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

• PD: P(1) es verdadero. El lado izquierdo de P(1) es $(a+b)^1 = a+b$. El lado izquierdo de P(1) es

$$\sum_{k=0}^{1} {1 \choose k} a^{1-k} b^k = {1 \choose 0} a^1 b^0 + {1 \choose 1} a^0 b^1 = a + b$$

Luego, P(1) es verdadero.

 $P(n) \Longrightarrow P(n+1)$ Se tiene que

$$P(n+1): (a+b)^{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} a^{n+1-k} \cdot b^k.$$

Corolario.

Demostración

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{n-k} 1^{k} = \sum_{k=0}^{n} {n \choose k}$$

EJEMPLO 2 Escribir el desarrollo de $\left(y^2 + \frac{1}{y}\right)^6$.

Solución Usando el teorema del binomio

$$\left(y^2 + \frac{1}{y}\right)^6 = \sum_{k=0}^6 {6 \choose k} (y^2)^{6-k} \left(\frac{1}{y}\right)^k = \sum_{k=0}^6 {6 \choose k} y^{12-2k} \cdot \frac{1}{y^k}$$

$$= \sum_{k=0}^6 {6 \choose k} y^{12-3k}$$

$$= {6 \choose 0} y^{12} + {6 \choose 1} y^9 + {6 \choose 2} y^6 + {6 \choose 3} y^3$$

$$+ {6 \choose 4} y^0 + {6 \choose 5} y^{-3} + {1 \choose 1} y^{-6}$$

$$= y^{12} + 6y^9 + 15y^6 + 20y^3 + 15y^0 + 6y^{-3} + y^{-6}$$

EJEMPLO 3 Encontrar el coeficiente de x^n en $(1+x)^{2n}$.

Solución Usando el teorema del binomio

$$(1+x)^{2n} = \sum_{k=0}^{2n} {2n \choose k} 1^{2n-k} \cdot x^k = \sum_{k=0}^{2n} {2n \choose k} x^k$$

¿Para qué valor de k se cumple que $x^k = x^n$?. Respuesta: k = n. El coeficiente que acompaña a x^n es

$$\binom{2n}{n} = \frac{(2n)!}{n! \cdot n!}$$

EJEMPLO 4 Determine el coeficiente de $\frac{1}{x^{31}}$ en el desarrollo de

$$\left(x-1+\frac{1}{x^2}\right)^{20}.$$

Solución Notemos que

$$\left(x - 1 + \frac{1}{x^2}\right)^{20} = \left(\frac{x^3 - x^2 + 1}{x^2}\right)^{20} = \frac{1}{(x^2)^{20}} (x^3 - x^2 + 1)^{20}$$

$$= \frac{1}{x^{40}} (x^3 + (1 - x^2))^{20}$$

$$= \frac{1}{x^{40}} \sum_{k=0}^{20} {20 \choose k} (x^3)^{20-k} \cdot (1 - x^2)^k$$

$$= \frac{1}{x^{40}} \sum_{k=0}^{20} {20 \choose k} x^{60-3k} \cdot (1 - x^2)^k$$

Se sigue que

$$\left(x - 1 + \frac{1}{x^2}\right)^{20} = \sum_{k=0}^{20} {20 \choose k} x^{20-3k} \cdot (1 - x^2)^k$$

Vamos a aplicar el teorema del binomio a $(1-x^2)^k$ obteniendo

$$(1-x^2)^k = \sum_{\ell=0}^k \binom{k}{\ell} 1^{k-\ell} (-x^2)^\ell = \sum_{\ell=0}^k \binom{k}{\ell} (-1)^\ell x^{2\ell}$$

Entonces, obtenemos que

$$\left(x - 1 + \frac{1}{x^2}\right)^{20} = \sum_{k=0}^{20} {20 \choose k} x^{20-3k} \cdot (1 - x^2)^k$$
$$= \sum_{k=0}^{20} {20 \choose k} x^{20-3k} \sum_{\ell=0}^k {k \choose \ell} (-1)^{\ell} x^{2\ell}$$

Se sigue que

$$\left(x - 1 + \frac{1}{x^2}\right)^{20} = \sum_{k=0}^{20} \sum_{\ell=0}^{k} {20 \choose k} {k \choose \ell} (-1)^{\ell} x^{20-3k+2\ell}$$

donde $k \in \{0, 1, ..., 20\}$ y $0 \le \ell \le k \le 20$. Estamos buscando valores de k y ℓ tales que

$$x^{20-3k+2\ell} = \frac{1}{x^{31}} \implies 20 - 3k + 2\ell = -31$$

$$\iff -3k + 2\ell = -51$$

$$\iff \ell = \frac{-51 + 3k}{2} \geqslant 0$$

Realizando una tabla encontramos dos posibles valores $(k, \ell) = (17, 0)$ y $(k, \ell) = (19, 3)$ y el coeficiente que acompaña a $1/x^{31}$ es

$$C = \binom{20}{17} \binom{17}{0} (-1)^0 + \binom{20}{19} \binom{19}{3} (-1)^3 = \binom{20}{17} - 20 \binom{19}{3} \ .$$