

- Modulo Operation (no video)
- Euler's Theorem
- Extended Euclidean Algorithm
- RSA Algorithm
- Examples

· The RSA algorithm is based on modulo operations

$$a \mod n = r$$

· The RSA algorithm is based on modulo operations

modulus $a \mod n = r$

- Examples:
 - $10 \mod 3 = ?$
 - $15 \mod 5 = ?$

· The RSA algorithm is based on modulo operations

 $a \mod n = r$

- Examples:
 - $\cdot 10 \mod 3 = 1$
 - $\cdot 15 \mod 5 = 0$

· The RSA algorithm is based on modulo operations

modulus $a \mod n = r$ remainder/residue

- Examples:
 - $\cdot 10 \mod 3 = 1$
 - $\cdot 15 \mod 5 = 0$
- · Modulo operations are distributive:

$$(a+b) \bmod n = [(a \bmod n) + (b \bmod n)] \bmod n$$

$$a*b \bmod n = [(a \bmod n)*(b \bmod n)] \bmod n$$

$$a^x \bmod n = (a \bmod n)^x \bmod n$$

- Modulo Operation
- Euler's Theorem (no video)
- Extended Euclidean Algorithm
- RSA Algorithm
- Examples

- Euler's totient function $\phi(n)$ counts the positive integers up to a given integer n that are relatively prime to n
 - $\phi(n) = n 1$, if n is a prime number.
- Euler's totient function property:
 - if m and n are relatively prime, $\varphi(mn) = \varphi(m) * \varphi(n)$
- Euler's theorem states:
 - $a^{\Phi(n)} = 1 \pmod{n}$

• Example: Calculate $4^{100003} \mod 33$

• Example: Calculate
$$4^{100003} \mod 33$$
 use $a^{\phi(n)} = 1 \mod n$ to simplify $a = 4$ $n = 33$ $\phi(n) = \phi(33) = \cdots$

- Example: Calculate $4^{1000003}$ mod 33
 - $\phi(33) = \phi(3) * \phi(11) = (3-1) * (11-1) = 20$
 - \cdot 100003 = 5000 φ (33) + 3

- Example: Calculate 4100003 mod 33
 - $\phi(33) = \phi(3) * \phi(11) = (3-1) * (11-1) = 20$
 - \cdot 100003 = 5000 φ (33) + 3

$$4^{100003} \mod 33 = 4^{20\cdot 5000+3} \mod 33$$

= $(4^{20})^{5000} * 4^3 \mod 33$
= $[(4^{20})^{5000} \mod 33)] * 4^3 \mod 33$ (applying distributive rule)
= $[(4^{20} \mod 33)]^{5000} * 4^3 \mod 33$ (applying distributive rule)
= $1^{5000} * 64 \mod 33$ (applying Euler's theorem)
= 31

- Modulo Operation
- Euler's Theorem
- · Extended Euclidean Algorithm (no video)
- RSA Algorithm
- Examples

RSA and the Extended Euclidean Algorithm

- · Euclid's algorithm: an efficient method for computing GCD of two #'s
- Extended Euclidean algorithm:
 - computes GCD of integers a and b
 - finds integers x and y, such that: ax + by = g = gcd(a, b)

RSA and the Extended Euclidean Algorithm

- Euclid's algorithm: an efficient method for computing GCD of two #'s
- Extended Euclidean algorithm:
 - computes GCD of integers a and b
 - finds integers x and y, such that: ax + by = g = gcd(a, b)
- RSA uses Extended Euclidean algorithm:
 - e and n are components of public key
 - Find solution to equation:

```
e * x + \phi(n) * y = \gcd(e, \phi(n)) = 1
```

```
def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, x, y = egcd(b % a, a)
        return (g, y - (b // a) * x, x)
```


RSA and the Extended Euclidean Algorithm

- Euclid's algorithm: an efficient method for computing GCD of two #'s
- Extended Euclidean algorithm:
 - computes GCD of integers a and b
 - finds integers x and y, such that: ax + by = g = gcd(a, b)
- RSA uses Extended Euclidean algorithm:
 - e and n are components of public key
 - Find solution to equation:

$$e * x + \phi(n) * y = \gcd(e, \phi(n)) = 1$$

- x is private key (also referred as d)
- Equation results: $e * d \mod \phi(n) = 1$

```
def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, x, y = egcd(b % a, a)
        return (g, y - (b // a) * x, x)
```


- Modulo Operation
- Euler's Theorem
- Extended Euclidean Algorithm
- RSA Algorithm
- Examples

RSA: Key Generation

Key Generation → Encryption → Decryption

• Need to generate: modulus n, public key exponent e, private key exponent d

Approach:

- Choose $p, q \rightarrow$ large random prime numbers (secret!)
- $n=pq \rightarrow \text{should be LARGE}$; computationally hard to factor $n \rightarrow \text{Euler's Theorem}$
- Choose e, $1 < e < \varphi(n)$ and e is relatively prime to $\varphi(n)$
 - \rightarrow e is the "public-key exponent" (e.g., e = 65537)
- Find d, $ed \mod \varphi(n) = 1$
 - \rightarrow solve using the <u>Extended Euclidean Algorithm</u>; d is the "private-key exponent" (secret!) Can be solved in polynomial time if you know p, q, and e!

· Result:

- (e,n) is public key \rightarrow without knowledge of p or q, computationally hard to find d
- d is private key

RSA: Encryption & Decryption

Key Generation → **Encryption** → **Decryption**

Encryption

- Treat the plaintext as a number
- Assuming M < n
- $\cdot C = M^e \mod n$

Decryption

•
$$M = C^d \mod n$$

You can convince yourself (see below) that decryption does indeed yield back the message, M...

$$M^{ed} \mod n = M^{k\phi(n)+1} \mod n$$
 (note: $ed = k\phi(n) + 1$)
$$= M^{k\phi(n)} * M \mod n$$

$$= \left(M^{\phi(n)} \mod n\right)^k * M \mod n$$
 (applying distributive rule)
$$= 1^k * M \mod n$$
 (applying Euler's theorem)
$$= M$$

Hybrid Encryption

- Public-key encryption is computationally expensive (e.g., large-number multiplications)
- Use public key algorithms to exchange a secret session key
- The key (data-encryption key) used to encrypt data using a symmetric-key algorithm (e.g., AES-128-CBC)

- Modulo Operation
- Euler's Theorem
- Extended Euclidean Algorithm
- RSA Algorithm
- Examples (no video)

RSA: Exercise w/ Small Numbers

- Choose two prime numbers p = 13 and q = 17
- Find *e*:
 - n = pq = 221
 - $\varphi(n) = (p-1)(q-1) = 192$
 - choose $e = 7 \rightarrow 7$ is relatively prime to $\varphi(n)$
- Find $\varphi(n)$:
 - $ed = 1 \mod \varphi(n)$
- Solving the above equation is equivalent to: 7d + 192y = 1
- Using Extended Euclidean algorithm, we get d=55 and y=-2

RSA: Exercise w/ Small Numbers (cont.)

• Encrypt M = 36

$$M^e \mod n = 36^7 \mod 221$$

= $(36^2 \mod 221)^3 * 36 \mod 221$
= $191^3 * 36 \mod 221$
= $179 \mod 221$.

• Ciphertext C = 179

RSA: Exercise w/ Small Numbers (cont.)

$$C^{d} \bmod n = 179^{55} \bmod 221$$

$$= (179^{2} \bmod 221)^{27} * 179 \bmod 221$$

$$= 217^{27} * 179 \bmod 221$$

$$= (217^{2} \bmod 221)^{13} * 217 * 179 \bmod 221$$

$$= 16^{13} * 217 * 179 \bmod 221$$

$$= (16^{2} \bmod 221)^{6} * 16 * 217 * 179 \bmod 221$$

$$= 35^{6} * 16 * 217 * 179 \bmod 221$$

$$= (35^{2} \bmod 221)^{3} * 16 * 217 * 179 \bmod 221$$

$$= (210^{2} \bmod 221)^{3} * 16 * 217 * 179 \bmod 221$$

$$= (120^{2} \bmod 221)^{3} * 16 * 217 * 179 \bmod 221$$

$$= (120^{2} \bmod 221)^{2} * 120 * 16 * 217 * 179 \bmod 221$$

$$= 35 * 120 * 16 * 217 * 179 \bmod 221$$

$$= 36 \bmod 221$$

RSA: Exercise w/ Large Numbers

Example w/ larger numbers discussed in the text

rsa.c