2740. Доказать, что если $p R \partial = \prod_{n=1}^{\infty} \frac{a_n}{n^x}$ схо-

дится при $x=x_0$, то этот ряд сходится также при $x>x_0$. 2741. Доказать, что для равномерной сходимости на множестве X последовательности f_n (x) $(n=1,2,\ldots)$ к предельной функции f(x) необходимо и достаточно, чтобы

$$\lim_{n\to x}\left\{\sup_{x\in X}r_n\left(x\right)\right\}=0,$$

где $r_n(x) = |f(x) - f_n(x)|$.

2742. Что значит, что последовательность $f_n(x)$ (n = 1, 2, ...): а) сходится на интервале $(x_0, +\infty)$; б) сходится равномерно на каждом конечном интервале $(a, b) \subset (x_0, +\infty)$; в) сходится равномерно на интервале $(x_0, +\infty)$?

2743. Для последовательности

$$f_n(x) = x^n \quad (n = 1, 2, ...) \quad (0 < x < 1)$$

определить наименьший номер члена N=N (ϵ , x), начиная с которого отклонение членов последовательности в данной точке x от предельной функции не превышает 0,001, если $x=\frac{1}{10}$, $\frac{1}{\sqrt{10}}$, ..., $\frac{1}{\sqrt[m]{10}}$, ...

Сходится ли эта последовательность равномерно на интервале (0, 1)?

2744. Сколько членов ряда
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n(n+1)}$$
 следует взять,

чтобы частная сумма S_n (x) отличалась при — $\infty < x < + \infty$ от суммы ряда меньше чем на ϵ ? Произвести численный расчет при: a) $\epsilon = 0,1$; б) $\epsilon = 0,01$; в) $\epsilon = 0,001$.

2745. При каких *п* будет обеспечено выполнение **нер**авенства

$$\left| e^{x} - \sum_{i=0}^{n} \frac{x^{i}}{i!} \right| < 0.001 \quad (0 \le x \le 10)?$$

Исследовать последовательности на равномерную схо-