Similitude Groups

Nick Pilotti

February 4, 2025

1 Basic Definitions

Let F be a field. Let W be a 2n-dimensional nondegenerate symplectic space over F with symplectic form $b(\cdot,\cdot)$. We definite the **symplectic similitude group** of the vector space W to be the set of $g \in GL(W)$ such that there exists $\lambda \in F^{\times}$ with $b(gx, gy) = \lambda b(x, y)$ for all $x, y \in W$. The factor λ is uniquely determined by g and is called the **factor of similitude** for g. The symplectic similitude group of W is denoted by GSp(W). Let $s: GSp(W) \to F^{\times}$ be the map which takes a linear transformation to its factor of similitude. GSp(W) is a subgroup of GL(W) and s is a homomorphism. Sp(W) is a normal subgroup of GSp(W), being the kernel of s.

There exists a basis for W relative to which \hat{b} , the matrix representation for b, takes the form

$$\hat{b} = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$$

where I_n is the $n \times n$ identity matrix. For $g \in GL(W)$, let \hat{g} denote the matrix representation of g relative to the chosen basis for W. $g \in GSp(W)$ if and only if

$$g^t b g = \lambda b.$$

for some $\lambda \in F^{\times}$. Writing $\hat{g} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ where A, B, C, D are $n \times n$ matrices with entries in F, the above is equivalent to the relations

$$A^t B = B^t A, C^t D = D^t C, A^t D - B^t C = \lambda I_n.$$

Henceforth, we identify $\operatorname{GSp}(W)$ with its realization as a matrix group. For $\lambda \in F^{\times}$, the matrix

$$S_{\lambda} := \begin{pmatrix} \lambda I_n & 0 \\ 0 & I_n \end{pmatrix}$$

is an element of $\mathrm{GSp}\,(W)$ with factor of similitude λ . Hence, the map s is surjective and we have a short exact sequence

$$1 \longrightarrow \operatorname{Sp}(W) \longrightarrow \operatorname{GSp}(W) \stackrel{s}{\longrightarrow} F^{\times} \longrightarrow 1.$$

Let Z denote the group of scalar matrices. Z is a subgroup of $\mathrm{GSp}\,(W)$ and is isomorphic to F^{\times} . Suppose that $g \in \mathrm{GSp}\,(W)$ with $s\,(g) = \lambda$ and $\mu \in F^{\times}$. Observe that $s\,(\mu g) = \mu^2 s\,(g)$. Now consider reduction of s modulo $F^{\times,2}$. Call the kernel of this map $\mathrm{GSp}^2\,(W)$. It is the subgroup of $\mathrm{GSp}\,(W)$ which consists of elements with a factor of similitude that is square in F^{\times} . We have another short exact sequence

$$1 \longrightarrow \operatorname{GSp}^{2}(W) \longrightarrow \operatorname{GSp}(W) \xrightarrow{s} F^{\times}/F^{\times,2} \longrightarrow 1.$$

We have $\operatorname{GSp}^2(W) = Z \cdot \operatorname{Sp}(W)$. However, if F has characteristic over than 2 the product is not quite direct. If $g = \mu g'$ for some $\mu \in F^{\times}$, then $g = (-\mu)(-g')$ and $-\mu \in F^{\times}$, $-g' \in \operatorname{Sp}(W)$. In order to make a direct product when the characteristic is other than 2, for each pair $\{\mu, -\mu\}_{\mu \in F^{\times}}$, we arbitrarily select of the elements to be "positive" and call the other element "negative." Denote the set of positive elements Z^+ . For instance, if F is an ordered field, we can let Z^+ be the set of $\mu > 0$. Let $\{\lambda_i\}$ be a set of representatives for $F^{\times}/F^{\times,2}$. Each $g \in \operatorname{GSp}(W)$ can be represented in the form

$$g = \mu s_{\lambda_i} g'$$

for some uniquely chosen $\mu \in Z^+$, λ_i , and $g' \in \operatorname{Sp}(W)$. In case Z^+ is a group, we have a direct product of groups $\operatorname{GSp}^2(W) = Z^+ \cdot \operatorname{Sp}(W)$. Note that $s(g) = \mu^2 \lambda_i$. The set $S := \{s_{\lambda_i}\}$ is an abelian group modulo Z and isomorphic to $F^{\times}/F^{\times,2}$. $\operatorname{GSp}(W)/Z$ is the semidirect product $S \cdot \operatorname{Sp}(W)$. The adjoint action of S on $\operatorname{Sp}(W)$ is

$$\begin{pmatrix} \lambda I_n & 0 \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \lambda^{-1} I_n & 0 \\ 0 & I_n \end{pmatrix} = \begin{pmatrix} A & \lambda B \\ \lambda^{-1} C & D \end{pmatrix}.$$

We can express the decomposition above by the formula

$$\operatorname{GSp}(W) = Z^{+} \cdot S \cdot \operatorname{Sp}(W) = S \cdot \operatorname{GSp}^{2}(W).$$

2 Examples

If dim W = 2, then Sp(W) = SL(2, F) and GSp(W) = GL(2, F).

If $F^{\times}/F^{\times,2} = 1$, then $\operatorname{GSp}(W) = \operatorname{GSp}^2(W) \cong F^{\times} \times \operatorname{Sp}(W)$. This case occurs if F is algebraically closed or of characteristic 2. For instance, if $F = \mathbb{C}$ or if F is the finite field of order 2^k .

If $|F^{\times}/F^{\times,2}| = 2$, then $\{\pm 1\}$ is a set of representative for $|F^{\times}/F^{\times,2}|$ and is also a group. In this case the decompositions $S \cdot \operatorname{Sp}(W)$ and $S \cdot \operatorname{Sp}^2(W)$ are semidirect products. The former consists of elements

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}, \begin{pmatrix} -A & -B \\ C & D \end{pmatrix}$$

with $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}(W)$. This case occurs if $F = \mathbb{R}$ or F is a finite field of characteristic not equal to 2. Observe that if $|F^{\times}/F^{\times,2}| > 2$, we can not choose $\{\lambda_i\}$ to form a group. $F^{\times}/F^{\times,2}$ is an elementary abelian 2-group. Therefore, if $\{\lambda_i\}$ was a group, then $\lambda_i^2 = 1$ for all λ_i , but the only square roots of 1 in a field are ± 1 .

If F is a finite field of order q and dim W = 2n, then

$$\left|\operatorname{GSp}(W)\right| = (q-1)\left|\operatorname{Sp}(W)\right|.$$

It is known that

$$|\mathrm{Sp}(W)| = q^{n^2} \prod_{i=1}^{n} (q^{2i} - 1).$$

3 The Heisenberg Group

Let F be a nonarchimedian local field of characteristic not equal to 2. Let H(W) be the Heisenberg group of W. GSp(W) acts as a group of automorphisms on H(W) by

$$g(w,t) = (gw, s(g)t)$$
.

This is clearly a left group action. We check it is an automorphism of H(W);

$$g[(w_1, t_1) (w_2, t_2)] = g\left(w_1 + w_2, t_1 + t_2 + \frac{1}{2}\langle w_1, w_2 \rangle\right)$$

$$= \left(gw_1 + gw_2, s(g) t_1 + s(g) t_2 + \frac{s(g)}{2}\langle w_1, w_2 \rangle\right)$$

$$= \left(gw_1 + gw_2, s(g) t_1 + s(g) t_2 + \frac{1}{2}\langle gw_1, gw_2 \rangle\right)$$

$$(gw_1, s(g) t_1) (gw_2, s(g) t_2)$$

$$[g(w_1,t_1)][g(w_2,t_2)].$$

Let ψ be a nontrivial character of F. Let $\psi_a(t) = \psi(at)$. Let ρ_{ψ} be the unique smooth irreducible representation of H(W) with central chracter ψ . Then $\rho_{\psi}^g(h) = \rho_{\psi}(g^{-1}h)$ is a smooth irreducible representation of H(W) with central chracter $\psi_{s(b)}$. Hence, $\rho_{\psi}^g \cong \rho_{\psi_{s(b)}}$.