1. Closed form LSE method

goal: argmin $(\Sigma(y\lambda - f(x\lambda))^{T}) = argmin \|A\vec{x} - \vec{b}\|^{T}$ where $A \in \mathbb{R}^{m \times n}$ $\|A\vec{x} - \vec{b}\|^{T} = (A\vec{x} - \vec{b})^{T}(A\vec{x} - \vec{b})$ $\vec{x} \in \mathbb{R}^{n}$

 $= (\vec{x}^{T} A^{T} - \vec{b}^{T}) (A\vec{x} - \vec{b})$

 $= \vec{\alpha}^{T} \vec{A} \vec{A} \vec{\alpha} - \vec{\alpha}^{T} \vec{A} \vec{b} - \vec{b}^{T} \vec{A} \vec{x} + \vec{b}^{T} \vec{b}$

Since $\overrightarrow{x}^T \overrightarrow{A}^T \overrightarrow{b}$ and $\overrightarrow{b}^T \overrightarrow{A} \overrightarrow{x}$ is |x| (scalar) |x| + |x| +

= ズイタイタズー 25イタマナちち

Let $g = \overrightarrow{x} \cdot \overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} - 2 \overrightarrow{b} \cdot \overrightarrow{A} \cdot \overrightarrow{A} + \overrightarrow{b} \cdot \overrightarrow{b}$

 $\frac{\partial q}{\partial x} = 2 A^{T} A \overrightarrow{x} - 2 A^{T} \overrightarrow{b} \stackrel{\triangle}{=} 0$

 $\vec{x} = (A^T A)^{-1} A^T \vec{b}$

カロ 入 L2 norm

 $g:=\|A\vec{x}-b\|^2+\lambda\|\vec{x}\|^2=\vec{x}^TA\vec{A}\vec{x}-2\vec{b}A\vec{x}+\vec{b}^Tb+\|\vec{x}\|^2$

 $\frac{\partial g}{\partial x} = 2A^{T}A\overrightarrow{x} - 2A^{T}\overrightarrow{b} + 2\lambda \overrightarrow{x} \stackrel{\triangle}{=} 0$

x = (AA+AI) AT B

2. Steepest descent method
Let Initial point x.
learning rate d
x - x - x - x + y + (x,y)
$x_1 = x_0 - \alpha \cdot \frac{gf(x_0)}{\ gf(x_0)\ }$
: continue iterating until $\nabla f(x_0) \approx 0$
$x_n = x_{n-1} - \lambda \cdot \frac{\nabla f(x_{n-1})}{\ \nabla f(x_{n-1})\ }$
(Δ Τ (Δ Ν - /)
steep est "
$f: \mathbb{R}^n \to \mathbb{R}$, $x \in \mathbb{R}$ and $dir(\nabla f(x \circ)) = V$
$\frac{\partial f(x)}{\partial v} \bigg _{x \in X_0} := \left(\nabla f(x_0) \right)^{\frac{1}{2}} \frac{v}{\ v\ }$
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
By Cauchy - Schwarz inequality (x y = x y)
1101
$\int \int \nabla = \nabla f(x_0)$
(\rangle f(x_0))^T - \frac{\sqrt{\frac{1}{2}} \propto \frac{1}{2}}{\propto \frac{1}{2}} \rangle \left\ \rangle f(x_0) \propto \frac{1}{2}}
\(\frac{1}{2} \)
→ ¬ + (x ₀) →
$\Rightarrow \frac{\ \Delta + (x^{0}) \ _{2}}{\ \Delta + (x^{0}) \ } \leq \ \Delta + (x^{0}) \ $
when the equation holds, $V = \nabla f(x_0)$
So, $\nabla f(x_0)$ is the steepest.
In this homework,
f is LSE+ LI norm

$f(x) = \ Ax - b\ ^{2} + \lambda \ x\ $							
$= (Ax-b)^{T}(Ax-b) + \lambda x $							
			<u> </u>				
$=$ $\vec{\alpha}$	するずみが ー	26 A x +	Б°Б +	スルダル			: : :
	•						
vf =	2 ATA = -	2 AT 6 +	л·sgn	(x)			
					: :		
			-		: :		
				• •			
, , , ,						, , , , , , , , , , , , , , , , , , , ,	
					-, -, -,		. , ,
							. , , ,
	: :	: : :	: :	: :		: : :	: : :
			:				: :
•			: :		: :		: : :
•	: : :	: : : :	÷		: :		
					-		-
						, , , , , , , , , , , , , , , , , , , 	
							, , , , , , , , , , , , , , , , , , , ,

3.	Newton's	Method
	140 44 1011	ILELING

$$\chi_1 = \chi_0 - \frac{f'(\chi_0)}{f''(\chi_0)} = \chi_0 - Hf(\chi_0)^{-1} \nabla f(\chi_0)$$

where
$$H f(x) = \frac{\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial x \partial x_0}}{\frac{\partial^2 f}{\partial x \partial x_0}}$$

$$\chi_2 = \chi_1 - \frac{f'(\chi_1)}{f'(\chi_1)}$$

$$x_n : x_{n-1} - \frac{\int'(x_{n-1})}{\int''(x_{n-1})}$$

$$\nabla f(\vec{x}) = 2A^{T}A\vec{x} - 2A^{T}\vec{b}$$

$$Hf(\vec{x}) = 2A^TA$$

$$\vec{\chi}_{i} = \vec{\chi}_{0} - (2 \vec{A}^{T} \vec{A})^{-1} (2 \vec{A}^{T} \vec{A} \vec{\chi}_{0} - 2 \vec{A}^{T} \vec{b})$$

- }