SCIENTIFIC COMPUTING REPORT

THE MODELS YOU TRIED

Set-Model + Pitch-Model

- 因為我們認為 onset、offset的預測和 pitch差很多,因此我們一開始先試著使用兩個 model,一個預測 onset和 offset,另一個預測 pitch。
- 在 training data上取得了不錯的效果,但 testing data上可能因為資料分布差異較大,反而效果變差許多。
- 。 後來發現直接用官方提供的 vocal.jason裡頭的 pitch反而比自己預測得好,因此 我們轉而修正我們的預測音符起始結束值的 LSTM_set,拿掉了 LSTM_pitch的 model,並取 vocal.json中 onset、offset範圍內的 pitch中位數,做為 note的 pitch。

Onset-Model + Offset-Model

- 。 因為不確定 onset和 offset預測的性質有多相近,故我們也嘗試過用兩個 model去分開預測 onset和 offset,期望提升準確率。
- 結果顯示,準確率並沒有顯著提升,同時還會使訓練時間增加,因此我們最後仍只用一個model共同預測音符起始結束值。

Set-Model

- 。 我們最後採用的版本只有使用單一一個 model,同時訓練 onset和 offset的預測。
- 最終版本的 model架構如下:
 - linear layer: 將資料維度提高到128維。
 - bidirectional encoder: 疊三個 layer,對前面 linear layer的輸出做雙向 encode。
 - fully connected layer: 將前面的 bidirectional encode結果作為輸入,輸出最終對 onset和 offset的機率預測。

DATASET PARTITIONING & CORRESPONDING PERFORMANCE EVALUATION

Dataset Partitioning

- O Training Data: 400
- O Validation Data: 100
- O Test Data: 1500

Performance Evaluation

· F_measure: 加權 COn(20%)、COnP(60%)、COnPOff(20%)的 F_measure。

FEATURE NORMALIZATION, SELECTION, AND EXTRACTION

- 增加 Feature 加上特定 feature的二次項,作為新的 feature (ex. zero crossing rate, vocal_pitch...)。
- Normalization 用 standard scaler 去 fit training data的 feature,並將其套用在 test data的 feature上。

IMPROVEMENT OVER THE BASELINE METHOD

Preprocess

- 修正Preprocess 我們發現如果依照 sample_code的作法產生 new label,會遇到前一個 note的 offset和現在的 note的 onset之間的時間差過短,導致前一個 frame被標為前一個 note的 offset後,現在的 frame和現在的 note的 onset之間的時間差已經大於0.17,導致 onset被漏標的情形。因此我們新增了一個機制:如果發現現在 frame的時間已經大於現在的note的onset,就直接將現在的 frame標為新的 onset。
- 去除前奏和尾奏 由於每首歌的 vocal.json中都有頗長但沒什麼用的前奏和尾奏,故我們在 preprocessing時,大幅去除 pitch為零的前奏和尾奏,只在前後各保留五個 pitch為零的 frame,這麼做使 training time顯著降低。

Post-process

- Onset & Offset 的挑選 train好的 model會輸出各個 frame作為 onset (或offset) 的機率。在進行 post-processing的過程中,只要 frame作為 onset (或offset) 的機率超過我們所設的 threshold,就將其設為 onset的候選人,如果它後面的 frame是 onset的機率低於現在這個 frame,則正式將該 frame的時間標為現在的 note的onset。反之,若後面的 frame機率更高,則捨棄現在的 frame,讓下一個 frame成為 onset的候選。
- 結合 PV2Note 在過程中,我們發現我們所預測出的 answer.json,其中的資料筆數比 ground truth的資料筆數少很多。故我們參考了 PV2Note中的概念,在對 label結果做 post_processing時,如果現在 frame的 pitch和目前onset的pitch,兩者間差值超過某個 threshold,就將現在的 frame分到新的 note(也就是說,前一個 frame會成為前一個 note的 offset,現在的 frame則是新的 note的 onset)。

INSIGHT AND CONCLUSIONS

一開始覺得大概一定要用 Machine Learning才會有好結果,但後來詢問沒使用 Machine Learning的組別後,發現兩者結果不相上下,因此決定加上一點 Domain Knowledge。沒想到這麼做後, performance的提升還蠻顯著的。 由此可見,在做預測的時候, Machine Learning技術和 Domain Knowledge相輔相承,或許能發揮一加一大於二的效果。

DIVISION OF LABOR

- B05902010 資工四 張頌平: ML method and Rule-base method(40%)
- B06902047 資工三 陳彦: Rule-base method and Report(30%)
- B06902135 資工三 蔡宜倫: Rule-base method and Report(30%)