Redarea suprafetelor 3D folosínd texturí-2

Prof. unív. dr. ing. Florica Moldoveanu

Curs Elemente de grafica pe calculator – UPB, Automatică şi Calculatoare 2020-2021

Filtrarea texturii(1)

//Fragment shader

uniform sampler2D texture_1; // imaginea textura
in vec2 texcoord; //coordonatele textura – intrare pentru Fragment shader

```
layout(location = 0) out vec4 out_color;
void main()
{ vec4 color = texture2D(texture_1, texcoord);
out_color = color;
}
```


Adresa in spatiul texturii corespunzatoare coordonatelor (uf,vf) sunt 2 numere reale:

$$jr = uf*(m-1)$$
 $ir = (1-vf)*(n-1)$

Fíltrarea texturií(2)

```
(ir, jr) – numere reale: i1 < ir < i2, j1 < jr < j2
[i1][j1], [i1][j2], [i2][j1], [i2][j2] sunt adrese in spatiul discret al texturii (adrese de texeli)
```

Accesarea imaginii textura – prin numere intregi

Obtinerea unei culori din imaginea textura: Filtrarea texturii

vec4 color = texture2D(texture_1, texcoord);

2 posibilitati (Cele 2 moduri de filtrare s-au discutat în cursul 12):

1) color = textura [i][j], unde [i][j] este adresa cea mai apropiata de (ir,jr) in spatiul discret al texturii; în OpenGL:

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER/GL_TEXTURE_MIN_FILTER, GL_NEAREST);
```

2) color = interpolare biliniara intre culorile texelilor de adrese [i1][j1], [i1][j2], [i2][j1], [i2][j2] In OpenGL:

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER/GL_TEXTURE_MIN_FILTER, GL_LINEAR);
```

Fíltrarea texturií(3)

- Dimensiunea in imagine a suprafetei care se aplica textura variaza in functie de distanta de la suprafata la observator.
 - > Numarul de texeli folositi la colorarea unui pixel variaza.
- Textura trebuie sa fie mărită sau micşorată în funcție de dimensiunea în spațiul ecran a suprafeței pe care se aplica.
- Mărire (magnification). Exemplu: textura 256x256 texeli trebuie aplicata pe o suprafata de 512x512 pixeli.
 - > un texel contribuie la culoarea mai multor pixeli adiacenți
- Micşorare (minification). Exemplu:
 - textura este de 256x256 texeli şi trebuie afişată pe o suprafață de 8x8 pixeli.
 - > mai mulți texeli ar trebui să fie comprimați pentru a se obține culoarea unui pixel, de exemplu, calculând media culorilor texelilor

Filtrarea texturii(4)

- OpenGL dă posibilitatea să se specifice modul de accesare a texturii în cele 2 cazuri:
- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER /GL_TEXTURE_MIN_FILTER, GL_NEAREST/GL_LINEAR);
- În cazul măririi, filtrarea NEAREST nu dă rezultate bune, dar filtrarea LINEAR dă rezultate satisfacatoare.

În cazul micşorării:

- Presupunând că textura este de 256x256 texeli şi trebuie afişată pe o suprafață de 8x8 pixeli, ar trebui ca 1024 texeli sa fie "comprimați" pentru a se obține culoarea unui pixel.
- Filtrarea NEAREST are ca efect colorarea a 2 pixeli adiacenți folosind culorile a 2 texeli (foarte) îndepărtați între ei în spațiul texturii eşantionare rară a texturii. Numai 64 de texeli din cei 256x256 sunt folositi la afișarea suprafeței.
- Filtrarea LINEAR nu are sens, deoarece conduce la interpolarea între culorile a 4 texeli îndepărtați între ei în spațiul texturii (eşantionare rară a texturii)

Metoda "míp-mapping" (1)

- Ambele moduri de filtrare produc imagini cu defecte, iar la schimbarea direcției observatorului apar pâlpâiri ale imaginii din cauza adresării aleatorii a texturii → Exemplu curs
- Totodată, accesarea aleatorie a texturii pentru pixeli adiacenți este ineficientă: creşte timpul necesar producerii imaginii.

Soluția: metoda mip-mapping, care foloseste pentru filtrarea texturii un set de texturi precomprimate.

- Ideea mip-mapping: utilizarea de imagini textura de rezolutii diferite în funcție de mărimea în imagine a suprafeței texturate.
- Pornind de la o imagine textură, se pot obtine texturi de rezolutie mai joasa prin medierea culorilor din textura initiala.
- "MIP": acronim al frazei din limba latina: multum in parvo, insemnand "mult in puţin"

Metoda "míp-mapping" (2) - Píramída míp-map -

La momentul rasterizarii unei primitive se alege imaginea textura de pe nivelul cu rezolutia cea mai apropiata de dimensiunea in imagine a primitivei.

Metoda "míp-mapping" (3) - Piramida míp-map -

EGC - Redarea supratelelor folosind texturi

Metoda "míp-mapping" (4)

- Factorul de compresie a texturii pentru fiecare primitiva grafica se calculeaza pe GPU dupa transformarea varfurilor in spatiul ecran, tinand cont de suprafata primitivei in spatiul ecran si zona u-v folosita la texturarea sa.
- ➤ Suprafata primitivei se aproximeaza printr-un patrat, la fel si zona u-v (→ aceeasi compresie pe axele u si v)

Exemplu: m=50, n= 100

se aprox printr-un patrat cu latura de 100

Zona u_v se aproximeaza prin patratul incadrator cu latura de 0.5

Factorul de compresie a texturii: f=0.5/100 = 1/200

Daca rezolutia texturii este de 512x512 texeli \rightarrow 512/200 = 2.56

 \rightarrow 2.56x2.56 = 6.55 texeli se comprima într-un pixel.

Metoda "mip-mapping" (5) - filtrarea texturii -

EGC - Redarea supratelelor folosínd texturí

Metoda "míp-mapping" (6) - filtrarea texturií -

Piramida mip-map este adresata prin 3 coordonate: (u, v, d):

- (u,v) prin care se selecteaza un texel/texelii de pe un nivel al piramidei, pe baza carora se calculeaza o culoare;
- d, care este o masura a compresiei texturii intr-un pixel ecran, se foloseste pentru a selecta nivelul piramidei din care se calculeaza culoarea sau nivelurile intre care se va interpola pentru calculul culorii; d poate fi considerata ca fiind coordonata verticala a piramidei.
- 1) Fie uf si vf coordonatele folosite pentru calculul culorii unui fragment
- 2) Fie df factorul de compresie al texturii pentru fragmentul curent

Daca nu s-a cerut interpolare intre nivelurile mip-map

glTexParameteri(....GL_NEAREST_MIPMAP_NEAREST sau GL_LINEAR_MIPMAP_NEAREST),

atunci se determina nivelul piramidei pentru care factorul de compresie este cel mai apropiat de df.

Se calculeaza o culoare din textura corespunzatoare nivelului folosind (uf,vf)

Metoda "mip-mapping" (7) - filtrarea texturii -

Daca s-a cerut prin OpenGL interpolare între nivelurile mip-map

glTexParameteri(....GL_NEAREST_MIPMAP_LINEAR sau GL_LINEAR_MIPMAP_LINEAR)

Fie: $d_k < df < d_{k+1}$

- 3) Folosind (uf, vf)
 - se determina o culoare textura de pe nivelul k, Ck
 - se determina o culoare textura de pe nivelul k+1, Ck+1
- 4) Se determina culoarea de afisare a fragmentului prin interpolare liniara intre C_k si C_{k+1} :

$$C = C_k + dInterp (C_{k+1} - C_k)$$

unde **dinterp** se determina din conditia: df = d_k + **dinterp** ($d_{k+1} - d_k$) = 2^{k-9} + dinterp ($2^{k-8} - 2^{k-9}$) Rezulta: **dinterp** = 2^{9-k} * df -1

Exemplu:

Factorul de compresie: $df=1/40 \rightarrow d3 (1/64) < df < d4 (1/32)$

Se va interpola intre culorile calculate pe nivelurile d3 si d4.

Metoda "míp-mapping" (8) - Aprecierí -

Tehnica mip-mapping:

- da rezultate bune, chiar daca se bazeaza pe o serie de aproximari
- este implementata de GPU: trebuie sa i se transmita imaginile textura ale piramidei, care poate fi obtinuta apeland functia OpenGL: glGenerateMipmap(GL TEXTURE 2D);
- Existenta piramidei de imagini simplifica filtrarea texturii in cazul micsorarii: pe masura ce suprafata se indeparteaza de observator, culoarea se calculeaza din nivelurile din ce in ce mai mari ale piramidei.

Avantajelei metodei:

- ➤ Elimina artefactele vizuale produse de accesarea aleatorie a texturii la micsorarea suprafetei texturate.
- > Creste performanta procesului de extragere a culorilor din textura, atunci cand un numar mare de texeli trebuie folositi pentru un pixel.
- > Consumul de memorie suplimentar pentru memorarea piramidei este de 33%.