- Comparable elements: Let (A, \leq) is a poset. Two elements $a, b \in A$ are said to be comparable if either $a \leq b$ or $b \leq a$.
- Chain: Let (A, \leq) is a poset. A subset of A is called a chain if every two elements in the subset are comparable. The number of elements in a chain is known as the length of the chain.
- Antihain: Let (A, \leq) is a poset. A subset of A is called an antichain if no two distinct elements in the subset are comparable.
- Totally ordered set: A poset (A, ≤) is called a totally ordered set if
 A is a chain. In this case, the binary relation ≤ is called a total
 ordering relation.
- Cover of an element: Let (A, \leq) be a poset. An element $b \in A$ is said to cover an element $a \in A$ if $a \leq b$ and there is no element $c \in A$ such that a < c < b.

Hasse diagram

A poset (A, \leq) is graphically represented by Hasse diagram. The following steps are to be followed to draw Hasse diagram corresonding to a given poset (A, \leq) .

- Each element of A is represented by a small circle or a dot.
- The circle for $x \in A$ is drawn below the circle for $y \in A$ if $x \le y$. A line is drawn if y covers x.
- If x ≤ y but y doesn't cover x, then x and y are not connected directly by a single line.

Example 0.1.

Here \mid is the relation "divides " and \leq is the relation "less than or equal to " .

We note the following terminologies for a given poset (A, \leq) .

- Maximal element: An element $a \in A$ is said to be a maximal element of A if there is no $b \in A$ such that $a \neq b$ and $a \leq b$. We note that 6,30 and 4 are the maximal elements of (A, |), (D, |) and (C, \leq) respectively.
- **Minimal element:** An element $a \in A$ is said to be a minimal element of A if there is no $b \in A$ such that $a \neq b$ and $b \leq a.1$ is the minimal element of (A, |), (D, |) and (C, \leq) .

Theorem 0.2.

Let (P, \leq) be a partially ordered set. Suppose the length of the longest chains in P is n. Then the elements in P can be partitioned into n disjoint antichains.

Proof.

We shall prove the theorem by induction on n. For n = 1, no two elements in P are related. Clearly, they constitue an antichain.

We assume that the theorem holds when the length of the longest chains in partially ordered set is n-1. Let P be a partially ordered set with the length of its longest chains being n. Let M denote the set of maximal elements in P. Clearly, M is a nonempty antichain. Consider now the partially ordered set $(P - M, \leq)$. Since there is no chain of length n in P-M, the length of the longest chains is at most n-1. on the other hand, if the length of the longest chains in P-M is less than n-1, Mmust contain two or more elements that are members of the same chain. which is certainly an impossibility. Consequently, we conclude that the length of the longest chain in P-M is n-1. According to the induction hypothesis, P-M can be partitioned into n-1 disjoint antichains. Thus P can be partitioned into n disjoint antichains.

- **Upper bound:** Let $a, b \in A$. An element $c \in A$ is said to be an upper bound of a and b if $a \le c$ and $b \le c$.
- **Lower bound:** An element $c \in A$ is said to be a lower bound of a and b if c < a and c < b.
- Least upper bound (lub): An element c∈ A is said to be a least upper bound of a and b if c is an upper bound for a and b, and there is no upper bound d of a and b such that d ≤ c.
 In (D, |) of example 1.1, the element 30 is an upper bound of 2 and 3, but it is not the least upper bound. The lub for 2 and 3 is 6.
- Greatest lower bound (glb): An element $c \in A$ is said to be an greatest lower bound of a and b if c is a lower bound for a and b, and there is no lower bound d of a and b such that $c \le d$.