SỞ GIÁO DỤC ĐÀO TẠO GIA LAI TRƯỜNG THPT CHỦ VĂN AN

ĐỀ THI CHỌN HỌC SINH GIỚI VÒNG TRƯỜNG MÔN: TOÁN

Thời gian: 180 phút

Câu 1(4 điểm). Cho hàm số $y = x^3 - 3x^2 - mx + 2$ (m là tham số) có đồ thị là (C_m). Xác định m để (C_m) có các điểm cực đại và cực tiểu cách đều đường thẳng y = x - 1. **Câu 2(4 điểm).**

1) Giải phương trình
$$\cos x + \cos 3x = 1 + \sqrt{2} \sin \left(2x + \frac{\pi}{4}\right)$$

2) Giải phương trình $x + \sqrt{4 - x^2} = 2 + x\sqrt{4 - x^2}$ **Câu 3(4 điểm).**

1) Giải hệ phương trình
$$\begin{cases} 3y = \frac{y^2 + 2}{x^2} \\ 3x = \frac{x^2 + 2}{y^2} \end{cases}$$

2) Cho dãy số (u_n) xác định như sau $\begin{cases} u_1 = 1 \\ u_n = \frac{-1}{3 + u_{n-1}}, \forall n \ge 2 \end{cases}$ (1). Chứng minh dãy số (u_n) có

giới hạn hữu hạn khi $n \to +\infty$

Câu 4(2 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1;4) và các điểm B, C thuộc đường thẳng $\Delta: x-y-4=0$. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18.

Câu 5(3 điểm).

- 1) Chứng minh rằng $3C_{2014}^0 + 5C_{2014}^2 + 7C_{2014}^4 + ... + 2017C_{2014}^{2014} = 1010.2^{2013}$.
- 2) Cho tập A {1;2;3;4;5;6;7;8;9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6.

Câu 6(3 điểm).

Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK.

b/ Gọi M, N lần lượt là trung điểm của đoạn thắng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau

.....Hết.....

(Giám thị coi thi không giải thích gì thêm. Học sinh không được sử dụng tài liệu)

ĐAP ÁN ĐỀ THI CHỌN HỌC SINH GIỎI VÒNG TRƯỜNG 2017 MÔN: TOÁN

Thời gian: 180 phút

Câ	Nội dung	Điể
u		m
1.	<i>Ta có</i> : $y' = 3x^2 - 6x - m$.	
	Hàm số có CĐ, CT $\Leftrightarrow y' = 3x^2 - 6x - m = 0$ có 2 nghiệm phân biệt $x_1; x_2$	
	$\Leftrightarrow \Delta' = 9 + 3m > 0 \Leftrightarrow m > -3 $ (*)	1,0
	Gọi hai điểm cực trị là $Aig(x_1;y_1ig); Big(x_2;y_2ig)$,-
	Thực hiện phép chia y cho y' ta được: $y = \left(\frac{1}{3}x - \frac{1}{3}\right)y' - \left(\frac{2m}{3} + 2\right)x + \left(2 - \frac{m}{3}\right)$	
	$\Rightarrow y_1 = y(x_1) = -\left(\frac{2m}{3} + 2\right)x_1 + \left(2 - \frac{m}{3}\right); y_2 = y(x_2) = -\left(\frac{2m}{3} + 2\right)x_2 + \left(2 - \frac{m}{3}\right)$	
	\Rightarrow Phương trình đường thẳng đi qua 2 điểm cực trị là Δ : $y = -\left(\frac{2m}{3} + 2\right)x + \left(2 - \frac{m}{3}\right)$	1,0
	$(3^{12})^{3}(2^{3})$	
	Các điểm cực trị cách đều đường thẳng $y = x - 1 \Leftrightarrow x \text{ åy ra } 1 \text{ trong } 2 \text{ trường hợp:}$	
	TH1: Đường thẳng đi qua 2 điểm cực trị song song hoặc trùng với đường thẳng $y = x - 1$	
	$\Leftrightarrow -\left(\frac{2m}{3}+2\right)=1 \Leftrightarrow m=-\frac{3}{2} \ (thỏa \ mãn)$	1,0
	TH2: Trung điểm I của AB nằm trên đường thẳng $y = x - 1$	
	$\Leftrightarrow y_1 = x_1 - 1 \Leftrightarrow \frac{y_1 + y_2}{2} = \frac{x_1 + x_2}{2} - 1 \Leftrightarrow -\left(\frac{2m}{3} + 2\right)(x_1 + x_2) + 2\left(2 - \frac{m}{3}\right) = (x_1 + x_2) - 2$	
	$\Leftrightarrow \left(\frac{2m}{3} + 3\right) \cdot 2 = 6 - \frac{2m}{3} \Leftrightarrow m = 0$	
	Vậy các giá trị cần tìm của m là: $m = \left\{0; -\frac{3}{2}\right\}$	1,0
2.	1) $\operatorname{PT} \Leftrightarrow 2\cos 2x \cos x = 1 + \sin 2x + \cos 2x$ $\Leftrightarrow \cos 2x(2\cos x - 1) = 1 + 2\sin x \cos x$	
	$\Leftrightarrow (\cos^2 x - \sin^2 x)(2\cos x - 1) = (\cos x + \sin x)^2$	0,5
	$\Leftrightarrow \begin{vmatrix} \cos x + \sin x = 0 & (1) \\ (\cos x - \sin x)(2\cos x - 1) = \cos x + \sin x & (2) \end{vmatrix}$	
	$(1) \Leftrightarrow \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = 0 \Leftrightarrow x + \frac{\pi}{4} = k\pi \Leftrightarrow x = -\frac{\pi}{4} + k\pi$	0,5
	$(2) \Leftrightarrow 2\cos x(\cos x - \sin x - 1) = 0 \Leftrightarrow \begin{bmatrix} \cos x = 0 \\ \sqrt{2}\cos\left(x + \frac{\pi}{4}\right) = 1 \end{cases} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ x + \frac{\pi}{4} = \pm \frac{\pi}{4} + k2\pi \end{bmatrix} (k \in \mathbb{Z})$	
	Vậy pt có nghiệm là $x=-\frac{\pi}{4}+k\pi$, $x=\frac{\pi}{2}+k\pi, x=k2\pi\left(k\in\mathbb{Z}\right)$.	0,5

	2) Điều kiện $-2 \le x \le 2$	1,0
	$PT \Leftrightarrow (x-2) = (x-1)\sqrt{4 - x^2} \Rightarrow (x-2)^2 = (x-1)^2(4 - x^2)$	1,0
	$\Leftrightarrow x(\mathbf{x}-2)(\mathbf{x}^2-2) = 0 \Leftrightarrow x = 0, x = 2, x = \pm\sqrt{2}$	0.5
3	Thử lại điều kiện thỏa mãn 1) ĐK: $xy \neq 0$	0,5
	Hệ \Leftrightarrow $\begin{cases} 3x^2y = y^2 + 2 \\ 3y^2x = x^2 + 2 \end{cases}$ (1) Trừ vế hai phương trình ta được	
	$3x^{2}y - 3xy^{2} = y^{2} - x^{2} \Leftrightarrow 3xy(x - y) + (x - y)(x + y) = 0 \Leftrightarrow \begin{bmatrix} x - y = 0 \\ 3xy + x + y = 0 \end{bmatrix}$	1,0
	3xy - 3xy = y - x - 3xy(x - y) + (x - y)(x + y) = 0 - 2xy + x + y = 0	
	TH 1. $x - y = 0 \Leftrightarrow y = x$ thế vào (1) ta được $3x^3 - x^2 - 2 = 0 \Leftrightarrow x = 1$	
	TH 2. $3xy + x + y = 0$. Từ $3y = \frac{y^2 + 2}{x^2} \Rightarrow y > 0$, $3x = \frac{x^2 + 2}{y^2} \Rightarrow x > 0$	
	$\Rightarrow 3xy + x + y > 0$. Do đó TH 2 không xảy ra.	
	Vậy hệ phương trình có nghiệm duy nhất (1; 1)	1,0
	2) Chứng minh bằng phương pháp qui nạp được $u_n > \frac{-3 + \sqrt{5}}{2}$ với mọi n = 1,2,	
	Chứng minh được dãy (u,) giảm	
	_	0,5
	Do đó (u_n) tồn tại giới hạn. Giả sử $\lim_{n\to +\infty} u_n = a$ thì $a > \frac{-3+\sqrt{5}}{2}$	
	Chuyển qua giới hạn hệ thức (1) ta được $a = -\frac{1}{3+a} \Leftrightarrow a^2 + 3a + 1 = 0 \Leftrightarrow a = \frac{-3+\sqrt{5}}{2}$	0,5
	$V\hat{a}y \lim_{n} u_{n} = \frac{-3 + \sqrt{5}}{2}$	1,0
4.	Gọi H là hình chiếu của A trên Δ, suy ra H là trung điểm BC.	
	Khi đó: $AH = d(A, BC) = \frac{9}{\sqrt{2}}$	
	V Z	
	$S_{\triangle ABC} = \frac{1}{2}BC.AH \Leftrightarrow BC = 4\sqrt{2}$	
	$AB = AC = \sqrt{AH^2 + \frac{BC^2}{4}} = \sqrt{\frac{97}{2}}$	
	Suy ra B và C thuộc đường tròn tâm A và bán kính $R = \sqrt{\frac{97}{2}}$	1,5
	Do đó B và C là giao điểm của Δ và đường tròn nên tọa độ điểm B và C là	
	.=	
	nghiệm của hệ: $\begin{cases} (x+1)^2 + (y-4)^2 = \frac{97}{2} \\ x - y - 4 = 0 \end{cases}$	
	Giải được: $B = (\frac{11}{2}; \frac{3}{2}), C = (\frac{3}{2}; -\frac{5}{2})$ hoặc $B = (\frac{3}{2}; -\frac{5}{2}), C = (\frac{11}{2}; \frac{3}{2})$	1,5
5.	$A = 3C_{2014}^0 + 5C_{2014}^2 + 7C_{2014}^4 + \dots + 2017C_{2014}^{2014}$	
		0,5
	Tính được $C_{2014}^0 + C_{2014}^2 + C_{2014}^4 + \dots + C_{2014}^{2014} = 2^{2013}$	","
	Chứng minh $kC_{2014}^k = 2014C_{2013}^{k-1}, \forall k, n \in \mathbb{N}, 0 \le k \le n.$	

Suy ra, $2C_{2014}^2 + 4C_{2014}^4 + + 2014C_{2014}^{2014} = 2014(C_{2013}^1 + C_{2013}^3 + + C_{2013}^{2013}) = 2014.2^{2012}$	0,5
Vậy $A = 2014.2^{2012} + 3.2^{2013} = 1010.2^{2013}$.	$0,5 \\ 0,5$
2) - Số chia hết cho 6 là số chia hết cho 3 và số đó là số chẵn.	
- Số chia hết cho 3 là số $a_1a_2a_3$ có tổng ba chữ số $(a_1+a_2+a_3)$ chia hết cho 3.	
- Số chẵn là số chó chữ số tận cùng chia hết cho 2.	
Để lập được số có 3 chữ số khác nhau từ tập A sao cho số đó chia hết cho 6 ta chia lài hai giai đoạn.	
 1/ chọn bộ ba chữ số khác nhau từ tạp A sao cho tổng 3 chữ số cộng lại chia hết cho 3 v trong ba chữ số đó có ít nhất 1 chữ số chẵn. 2/ Xếp mỗi bộ chọn được thành số có 3 chữ số sao cho số tận cùng phảit là số chẵn. 	ڈ
Để chọn và xếp khoa học ta nên chia ra ba trường hợp nhỏ như sau:	
TH1: trong 3 chữ số chỉ có một chữ số chẵn, gồm có các bộ số sau: {1;2;3}, {1;2;9}, {1;3;8}, {1;4;7}, {1;5;6},	
$\{2;3;7\}, \{2;7;9\}, \{3;4;5\}, \{3;6;9\}, \{3;7;8\}, \{4;5;9\}, \{5;6;7\}, \{7;8;9\}.$	
Với trường hợp này: số cách chọn và xếp là: $N_{TH1} = C_{13}^1 * 1 * 2 * 1 = 26$	
TH2: trong 3 chữ số chỉ có hai chữ số chẵn, gồm có các bộ số sau: {1;2;6}, {1;6;8}, {2;3;4}, {2;4;9}, {2;5;8}, {2;6;7},	
{3;4;8}, {4;5;6}, {4;8;9} {6;7;8}	
Với trường hợp này số coán chọn và xếp là: $N_{TH2} = C_{10}^1 * 2 * 2 * 1 = 40$	
TH3: trong 3 chữ số chọn được đề là chữ số chẵn, gồm có các bộ số sau: {2;4;6}, {4;6;8}	0,5
Với trường hợp này số c cáh chọn và xếp là: $N_{TH3} = C_2^1 * 3! = 12$	
Số cách chọn số có 3 chữ số khác nhau sao cho số đó chia hết cho 6 l $N_{\it TH1}+N_{\it TH2}+N_{\it TH3}=78$	à:
Dhán thứn lân cổ cá 2 chữ cổ libác nhay từ $\Lambda \rightarrow n(\Omega)$ $\Lambda^3 = 504$	0,5
Phép thử: lập số có 3 chữ số khác nhau từ $A \Rightarrow n(\Omega) = A_9^3 = 504$	
A: là biến cố lập được số có ba chữ số khác nhau sao cho số đó chia hết cho 6. $N(A) = N_{TH1} + N_{TH2} + N_{TH3}$	
Xác suất của biến cố A: $P(A) = \frac{N(A)}{N(\Omega)} = \frac{78}{504} \approx 0.155$	
	0,5
S	
D K	
A B	

```
a) + Theo giả thiết ta được: SO \perp (ABCD) \Rightarrow (SAC) \perp (ABCD).
    Mà BK \subset (SAC) và BBK \perp AC \Rightarrow BK \perp SA.
+ Gọi H là hình chiếu của K xuống SA
                 \Rightarrow HK \perp SA \text{ và } HK \perp BK \text{ (vì } HK \subset (SAC))
                 \Rightarrow HK là đoạn vuông góc chung của SA và BK.
    Suy ra được: BH \perp SA và \Delta HBK vuông tại K.
                                                                                                                                                                                                          1,0
+ Do \triangle ABC vuông đỉnh A nên: \frac{1}{BK^2} = \frac{1}{AB^2} + \frac{1}{BC^2} \Rightarrow BK^2 = \frac{a^2b^2}{a^2 + b^2}.
+ \Delta SAB cân đỉnh S, BH là đường cao nên HB = \frac{SI.AB}{SA} = \frac{\sqrt{c^2 - \frac{a^2}{4}.a}}{2}
                + Do \triangle HBK vuông tại K nên:
                                 HK^2 = HB^2 - BK^2 = \frac{(4c^2 - a^2)a^2}{4c^2} - \frac{a^2b^2}{a^2 + b^2}
                                 HK^{2} = \frac{(4c^{2} - a^{2} - b^{2})a^{4}}{4c^{2}(a^{2} + b^{2})} \Rightarrow HK = \frac{a^{2}}{2c} \sqrt{\frac{(4c^{2} - a^{2} - b^{2})}{(a^{2} + b^{2})}}
b) + 2\overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{BK} (vì M là trung điểm của AK)
                                                                                                                                                                                                          1,0
+ \ \overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{KB}) + \overrightarrow{BC} + \frac{1}{2} \overrightarrow{BA}
+ \overrightarrow{MN} = \frac{1}{2}\overrightarrow{KB} + \overrightarrow{BC}.
+ Do đó:
 4\overrightarrow{BM}.\overrightarrow{MN} = (\overrightarrow{BA} + \overrightarrow{BK}).(\overrightarrow{KB} + 2\overrightarrow{BC})
                    = \overrightarrow{BA}.\overrightarrow{KB} + 2\overrightarrow{BA}.\overrightarrow{BC} + \overrightarrow{BK}.\overrightarrow{KB} + 2\overrightarrow{BK}.\overrightarrow{BC}
                    = \overrightarrow{BA}.\overrightarrow{KB} + \overrightarrow{BK}.\overrightarrow{KB} + 2\overrightarrow{BK}.\overrightarrow{BC}
                    = \overrightarrow{KB}.(\overrightarrow{BA} + \overrightarrow{BK} - 2.\overrightarrow{BC})
                    = \overrightarrow{KB}.(\overrightarrow{BA} - \overrightarrow{BC} + \overrightarrow{BK} - \overrightarrow{BC})
                    = \overrightarrow{KB}.(\overrightarrow{CA} + \overrightarrow{CK}) = \overrightarrow{KB}.\overrightarrow{CA} + \overrightarrow{KB}.\overrightarrow{CK} = 0
Vậy: BK \perp MN.
```

1,0