78. Si
$$\lim_{x \to \infty} \left(\frac{x-1}{x+a} \right) = e^{-2}$$
 alors la valeur de a vaut :

178. Si
$$\lim_{x \to \infty} \left(\frac{x-1}{x+a} \right)^{x+2} = e^{-2}$$
 alors la valeur de a vaut :

179. On donne la fonction f définie par : $f(t) = \begin{cases} x(t) = 2(t - \sin t) \\ y(t) = 2(1 - \cos t) \end{cases}$ et (C) sa courbe représentative.

Le coefficient angulaire de la tangente à (C) au point $t_0 = -\frac{\pi}{2}$ est égal à :

1. 1 2. -1 3. -1 -
$$\sqrt{2}$$
 4. 1 - $\sqrt{2}$ 5. 1 + $\sqrt{2}$ (B- 2007)

180. La solution de l'équation tangente hyperbolique th $x = \frac{1}{2}$ est :

1.
$$\ln \sqrt{2}$$
 2. $\ln \sqrt{3}$ 3. $\ln 2$ 4. $\ln 3$ 5. $\ln 4$ (M-2007)

181. Soit (C) la courbe dont une représentation paramétrique dans un repère ortho normal $\left(0, i, j\right)$ est: $\begin{cases} x(t) = a(t - \sin t), \\ y(t) = a(1 - \cos t) \end{cases}$ $t \in \mathbf{R}$

La dérivée
$$y = \frac{dy}{dx}$$
 pour $t = \frac{\pi}{2}$ est égal à :
1. $1 + \sqrt{2}$ 2. 0 3. 1 4. $+\infty$ 5. $-\infty$ (M-2007)

182. L'ensemble des solutions de l'inéquation
$$e^{2x} - 2e^x - 3 < 0$$
 est :

1.] 0, 3 [
3.] 1, ln 3 [
5.] ln 3, $+\infty$ [
2.] $-\infty$, ln 3 [
4.] $-\infty$, 3 [
(M-2007).

2.]
$$-\infty$$
, ln 3 [4.] $-\infty$, 3 [

183. On considère l'expression $\frac{e^{2x}}{e^x}$. Les réels a et b assurant, pour tout x

www.ecoles-rdc.net

l'égalité
$$\frac{e^{2x}}{e^{x} + 1} = ae^{x} + \frac{b}{1 + e^{-x}}$$
, sont :
1. $a = 1$ et $b = 1$ 3. $a = 1$ et $b = -1$ 5. $a = 1$ et $b = 2$
2. $a = -1$ et $b = -1$ 4. $a = -1$ et $b = 1$ (M-2007)