Programmering og Problemløsning Datalogisk Institut, Københavns Universitet Arbejdsseddel 6 - individuel opgave

Jon Sporring

7. oktober - 11. oktober. Afleveringsfrist: lørdag d. 12. oktober kl. 23:59.

Emnerne for denne arbejdsseddel er:

• rekursion.

Opgaverne er delt i øve- og afleveringsopgaver. I denne periode skal I arbejde individuelt med jeres afleveringsopgaver. Regler for gruppe- og individuelle afleveringsopgaver er beskrevet i "'Noter, links, software m.m."

"'Generel information om opgaver".

Øveopgaver

- 6ø0 Skriv en funktion, fac : n:int -> int, som udregner fakultetsfunktionen $n! = \prod_{i=1}^{n} i$ vha. rekursion.
- 6ø1 Skriv en funktion, sum : n:int -> int, som udregner summen $\sum_{i=1}^{n} i$ vha. rekursion. Lav en tabel som i Opgave 3i0 og sammenlign denne implementation af sum med while-implementation og simpleSum.
- 6ø2 Skriv en funktion, sum : int list -> int, som tager en liste af heltal og returnerer summen af alle tallene. Funktionen skal traversere listen vha. rekursion.
- 6ø3 Den største fællesnævner mellem 2 heltal, *t* og *n*, er det største heltal *c*, som går op i både *t* og *n* med 0 til rest. Euclids algoritme¹ finder den største fællesnævner vha. rekursion:

$$\gcd(t,0) = t,\tag{1}$$

$$\gcd(t,n) = \gcd(n,t \% n),\tag{2}$$

hvor % er rest operatoreren (som i F#).

(a) Implementer Euclids algoritm, som en rekursive funktion

https://en.wikipedia.org/wiki/Greatest_common_divisor

- (b) lav en white- og black-box test af den implementerede algoritme,
- (c) Lav en håndkøring af algoritmen, gerne på papir, for gcd 8 2 og gcd 2 8.
- 6ø4 Lav dine egne implementationer af List.fold og List.foldback ved brug af rekursion.
- 6ø5 Benyt List.fold og List.foldback og dine egne implementeringer fra Opgave 6ø4 til at udregne summen af listen [0 .. n], hvor n er et meget stort tal, og sammenlign tiden, som de fire programmer tager. Diskutér forskellene.

Afleveringsopgaver

I denne opgave skal I regne med kædebrøker (continued fractions)². Kædebrøker er lister af heltal, som repræsenterer reelle tal. Listen er endelig for rationelle tal og uendelig for irrationelle tal.

Kædebrøk til decimalbrøk En kædebrøk skrives som: $x = [q_0; q_1, q_2, ...]$, hvilket svarer til tallet,

$$x = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \dots}}. (3)$$

F.eks. svarer kædebrøken [3;4,12,4] til følgende decimaltal:

$$x = 3 + \frac{1}{4 + \frac{1}{12 + \frac{1}{4}}}\tag{4}$$

$$= 3 + \frac{1}{4 + \frac{1}{12.25}}$$

$$= 3 + \frac{1}{4.081632653}$$
(5)

$$=3+\frac{1}{4.081632653}\tag{6}$$

$$= 3.245.$$
 (7)

Altså er [3;4,12,4] = 3.245.

Decimaltal til kædebrøk For et givet tal x på decimalform kan dets kædebrøk $[q_0; q_1, q_2, ...]$ udregnes ved følgende algoritme: Lad $x_0 = x$ og $i \ge 0$, udregn

$$q_i = |x_i| \tag{8}$$

$$r_i = x_i - q_i \tag{9}$$

$$x_{i+1} = 1/r_i (10)$$

(11)

indtil $r_i = 0$. F.eks. for decimaltallet x = 3.245 beregnes:

²https://en.wikipedia.org/wiki/Continued_fraction

i	x_i	$q_i = \lfloor x_i \rfloor$	$r_i = x_i - q_i$	$x_{i+1} = 1/r_i$
0	3.245	3	0.245	4.081632653
1	4.081632653	4	0.081632653	12.25
2	12.25	12	0.25	4
3	4	4	0	-

Resultatet aflæses i anden søjle: 3.245 = [3; 4, 12, 4].

Heltalsbrøk til kædebrøk Kædebrøken for en heltals brøk t/n udregnes ved følgende algoritme: Lad $r_{-2} = t$ og $r_{-1} = n$ og $i \ge -2$, udregn

$$r_i = r_{i-2} \% r_{i-1}$$
 (rest ved heltals division), (12)

$$q_i = r_{i-2} \text{ div } r_{i-1} \quad \text{(heltals division)},$$
 (13)

indtil $r_{i-1} = 0$. Så vil $[q_0; q_1, \dots, q_j]$ vil være t/n som kædebrøk. F.eks. for brøken t/n = 649/200 beregnes:

i	r_{i-2}	r_{i-1}	$r_i = r_{i-2} \% r_{i-1}$	$q_i = r_{i-2} \text{ div } r_{i-1}$
0	649	200	49	3
1	200	49	4	4
2	49	4	1	12
3	4	1	0	4
4	1	0	-	-

Kædebrøken aflæses som højre søjle: 649/200 = [3; 4, 12, 4].

Kædebrøker af heltalsbrøker t/n er særligt effektive at udregne vha. Euclids algoritme for største fællesnævner. Algoritmen i Opgave 6ø3 regner rekursivt på relationen mellem heltalsdivision og rest: Hvis a = t div n er heltalsdivision mellem t og n, og b = t % n er resten efter heltalsdivision, så er t = an + b. For (12)–(13) skal der altså gælde, at $r_{i-2} = q_i r_{i-1} + r_i$. Algoritmen i Opgave 6ø3 regner udelukkende på r_i som transformationen $(r_{i-2}, r_{i-1}) \rightarrow (r_{i-1}, r_i) = (r_{i-1}, r_{i-2} \% r_{-1})$ indtil $(r_{i-2}, r_{i-1}) = (r_{i-2}, 0)$. Hvis man tilføjer beregning af q_i i rekursionen, har man samtidigt beregnet brøken som kædebrøk.

Kædebrøk til Heltalsbrøk(er) En kædebrøk kan approximeres som en heltalsbrøk $\frac{t_i}{n_i}$, $i \ge 0$ ved følgende algorime. Lad $t_{-2} = n_{-1} = 0$ og $t_{-1} = n_{-2} = 1$, udregn

$$t_i = q_i t_{i-1} + t_{i-2}, (14)$$

$$n_i = q_i n_{i-1} + n_{i-2}, (15)$$

indtil i er passende stor, eller der ikke er flere cifre q_i . F.eks. for kædebrøken [3;4,12,4] beregnes,

$$\frac{t_0}{n_0} = \frac{q_0 t_{-1} + t_{-2}}{q_0 n_{-1} + n_{-2}} = \frac{3 \cdot 1 + 0}{3 \cdot 0 + 1} = \frac{3}{1} = 3,\tag{16}$$

$$\frac{t_1}{n_1} = \frac{q_1 t_0 + t_{-1}}{q_1 n_0 + n_{-1}} = \frac{4 \cdot 3 + 1}{4 \cdot 1 + 0} = \frac{13}{4} = 3.25,$$

$$\frac{t_2}{n_2} = \frac{q_2 t_1 + t_0}{q_2 n_1 + n_0} = \frac{12 \cdot 13 + 3}{12 \cdot 4 + 1} = \frac{159}{49} = 3.244897959...,$$

$$\frac{t_3}{n_3} = \frac{q_3 t_2 + t_1}{q_3 n_2 + n_1} = \frac{4 \cdot 159 + 13}{4 \cdot 49 + 4} = \frac{649}{200} = 3.245.$$
(19)

$$\frac{t_2}{n_2} = \frac{q_2 t_1 + t_0}{q_2 n_1 + n_0} = \frac{12 \cdot 13 + 3}{12 \cdot 4 + 1} = \frac{159}{49} = 3.244897959...,$$
 (18)

$$\frac{t_3}{n_3} = \frac{q_3 t_2 + t_1}{q_3 n_2 + n_1} = \frac{4 \cdot 159 + 13}{4 \cdot 49 + 4} = \frac{649}{200} = 3.245. \tag{19}$$

Altså kan kædebrøkken [3;4,12,4] approximeres som heltalsbrøkkerne 3/1, 13/4, 159/49 og 649/200 med gradvist stigende nøjagtighed.

6i0 Skriv en rekursiv funktion

cfrac2float : lst:int list -> float

som tager en liste af heltal som kædebrøk og udregner det tilsvarende reelle tal.

6i1 Skriv en rekursiv funktion

float2cfrac : x:float -> int list

som tager et reelt tal og udregner dens repræsentation som kædebrøk.

6i2 Skriv en rekursiv funktion

frac2cfrac : t:int -> n:int -> int list

som tager tæller og nævner i brøken t/n og udregner dens repræsentation som kædebrøk udelukkende ved brug af heltalstyper.

6i3 Skriv en rekursiv funktion

cfrac2frac : lst:int list -> i:int -> int * int

som tager en kædebrøk og et index og returnerer t_i/n_i approximationen som tuplen (ti, ni).

6i4 Saml alle ovenstående funktioner i et bibliotek bestående af dets interface og implementationsfil (continuedFraction.fsi continuedFraction.fs), og lav en applikationsfil, der udfører en white- og black-box test af funktionerne.

Afleveringen skal bestå af

• en zip-fil, der hedder 6i_<navn>.zip (f.eks. 6i_jon.zip)

Zip-filen 6i_<navn>.zip skal indeholde en og kun en mappe 6i_<navn>. I den mappe skal der ligge en src mappe og filen README.txt. I src skal der ligge følgende og kun følgende filer: continuedFraction.fsi, continuedFraction.fs og 6i4.fsx svarende til de relevante delopgaver. De skal kunne oversættes med fsharpc, og de oversattte filer skal kunne køres med mono.

Funktioner skal dokumenteres ifølge dokumentationsstandarden som minimum ved brug af <summary>, <param> og <returns> XML-tagsne. Udover selve koden skal besvarelser indtastes som kommentarer i de fsx-filer, de hører til. Filen README.txt skal ganske kort beskrive, hvordan koden oversættes og køres.

God fornøjelse.