

PART (C): MATHEMATICS

SECTION – I : SINGLE CORRECT ANSWER TYPE (Maximum Marks : 30)

This section contains 10 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

Marking Scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.

- 41. The value of k for which the equation $x^2 + 2(k-1)x + k + 5 = 0$ possess at least one positive root is
 - $(A) [4, \infty)$
 - (B) $(-\infty, -1) \cup [4, \infty)$
 - (C) [-1, 4]
 - (D) $(-\infty, -1]$
- 42. The value of $\cos \frac{\pi}{19} + \cos \frac{3\pi}{19} + \cos \frac{5\pi}{19} + ... + \cos \frac{17\pi}{19}$ is equal to
 - (A) 1/2
 - (B) 0
 - (C) 1
 - (D) None of these
- 43. If $f(\theta) = \sin^4 \theta + \cos^2 \theta$, then range of $f(\theta)$ is
 - (A) $\left[\frac{1}{2},1\right]$
 - (B) $\left[\frac{1}{2}, \frac{3}{4}\right]$
 - (C) $\left[\frac{3}{4}, 1\right]$
 - (D) None of these
- 44. The number of positive integral solutions of $\frac{x^2(3x-4)^3(x-2)^4}{(x-5)^5(2x-7)^6} \le 0$ is
 - (A) four
 - (B) three
 - (C) two
 - (D) only one
- 45. If $a, b, c \in R$ and $x^2 + (a + b)x + c = 0$ has no real roots then
 - (A) c(a+b+c) > 0
 - (B) c + c(a + b + c) > 0
 - (C) c + c (a + b c) > 0
 - (D) c(a+b-c) > 0

- 46. If $0^{\circ} < x < 90^{\circ}$ and $\cos x = \frac{3}{\sqrt{10}}$, then the value of $\log_{10} \sin x + \log_{10} \cos x + \log_{10} \tan x$ is
 - (A) 0
 - (B) 1
 - (C) -1
 - (D) None of these
- 47. The value of $\tan \frac{\pi}{16} + 2 \tan \frac{\pi}{8} + 4$ is equal to
 - (A) $\cot \frac{\pi}{8}$
 - (B) $\cot \frac{\pi}{16}$
 - (C) $\cot \frac{\pi}{16} 4$
 - (D) None of these
- 48. If the roots of the equation $x^3 + Px^2 + Qx 19 = 0$ are each one more than the roots of the equation $x^3 Ax^2 + Bx C = 0$, where A, B, C, P & Q are constants, then the value of A + B + C is equal to
 - (A) 18
 - (B) 19
 - (C) 20
 - (D) None of these
- 49. The value of $\frac{2\cos 40^{\circ} \cos 20^{\circ}}{\sin 20^{\circ}}$ is
 - (A) $\sin 20^{\circ}$
 - (B) cos 20°
 - (C) 1
 - (D) $\sqrt{3}$
- 50. Let α, β, γ are roots of the equations $x^3 + qx + q = 0$, then find the value of $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1}$.
 - (A) 0
 - (B) -1
 - (C) 1
 - (D) None

SECTION – II : MULTIPLE CORRECT ANSWER TYPE (Maximum Marks : 20)

This section contains 5 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONE OR MORE than ONE option can be correct.

Marking Scheme: +4 for correct answer, +1 Partial Mark, 0 if not attempted and -1 in all other cases.

51. For which of the following graphs of the quadratic expression $y = ax^2 + bx + c$, then product *abc* is negative.

- 52. $\cos 4x \cos 8x \cos 5x \cos 9x = 0 \text{ if}$
 - (A) $\cos 12x = \cos 14x$
 - (B) $\sin 13x = 0$
 - (C) $\sin x = 0$
 - (D) $\cos x = 0$

- 53. The equation $4x^2 11x + 2k = 0$ and $x^2 3x k = 0$ have a common root α , then
 - (A) k = 0
 - (B) k = -17/36
 - (C) $\alpha = 0$
 - (D) $\alpha = 17/6$
- 54. The equation $|x^2 x 6| = x + 2$ has:
 - (A) two positive roots
 - (B) two real roots
 - (C) three real roots
 - (D) four real roots
- 55. The expression $\frac{1}{\sqrt{x+2\sqrt{x-1}}} + \frac{1}{\sqrt{x-2\sqrt{x-1}}}$ simplifies to :
 - (A) $\frac{2}{3-x}$ if 1 < x < 2
 - (B) $\frac{2}{2-x}$ if 1 < x < 2
 - (C) $\frac{2\sqrt{x-1}}{(x-2)}$ if x > 2
 - (D) $\frac{2\sqrt{x-1}}{x+2}$ if x > 2

SECTION - III : INTEGER ANSWER TYPE (Maximum Marks : 10)

This section contains 5 questions. The answer to each question is a **SINGLE DIGIT INTEGER ranging** from **0** to **9**, **BOTH INCLUSIVE**.

Marking scheme: +2 for correct answer, 0 if not attempted and 0 in all other cases.

- 56. Let $f_k(x) = \frac{1}{k} (\sin^k x + \cos^k x)$ for $k = 1, 2, 3, \dots$. Then for all $x \in R$, the value of $f_4(x) f_6(x)$ is equal to λ , then $24\lambda = ?$.
- 57. If $\sin^4 \alpha + 4\cos^4 \beta + 2 = 4\sqrt{2}\sin \alpha \cos \beta$; $\alpha, \beta \in [0, \pi]$, then $\cos(\alpha + \beta) \cos(\alpha \beta) = -\sqrt{K}$; K is?
- 58. The total number of solution of $\sin^4 x + \cos^4 x = \sin x \cdot \cos x$ is $[0, 2\pi]$ is equal to

- 59. If $f(n,\theta) = (\sec 2^{n-1}\theta)...(\sec 2\theta)(\sec \theta)\sec(\frac{\theta}{2})(1+\cos \theta)(1+\cos 2\theta)(1+\cos 2^2\theta)...(1+\cos 2^n\theta),$ $n \in \mathbb{N}$, then value of $f(3,\frac{2\pi}{17})$ is
- 60. The number of real solutions of the equation $-x^2 + x 1 = \sin^4 x$ is