

Ham Tim Le Master

You can find me at: @timle8n1 tim@thelemasters.net

WHAT IS MACHINE LEARNING?

A very brief history

"Field of study that gives computers the ability to learn without being explicitly programmed"

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

- Tom Mitchell

WHY MACHINE LEARNING?

Solving a new class of problems

A New Class of Problems Image Recognition

Who/What is in the photograph? Easy for a human but how would I write an algorithm for it?

Actor: Bruce Willis

Genre: Action

Year: 1988

A New Class of Problems Recommendation System

What movies/restaurants/etc might I like?

A New Class of Problems Anomaly Detection

Does this image show signs of cancer? How is my data center health?

- Normal Activity
- Abnormal Activity

Modified National Institute of Standards and Technology (MNIST)

Large set of handwritten digits

- 60,000 training images
- 10,000 testing images
- Written by
 - American Census Workers
 - High School Students

Remix of Original NIST dataset

- Original data all training data was Census Workers, all testing High School Students
- Black and White images
- Images were anti-aliased
- Normalized to fit 20x20
- Centered in 28x28 bounding box (784 pixels)

ARTIFICIAL NEURAL NEURAL NETWORK

Biologically inspired machine learning system

ARTIFICIAL NEURON

ACTIVATION FUNCTION

NEURAL NETWORK

NEURAL NETWORK

CONVOLUTIONAL NEURAL NETWORK

Specialized machine learning system

CONVOLUTION

35	40	21	46	15
6	11	43	25	27
31	42	7	5	17
26	37	44	39	23
4	9	24	38	49

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

35	40	21	46	15
6	11	43	25	27
31	42	28	5	17
26	37	44	39	23
4	9	24	38	49

 $(11+43+25+42+7+5+37+44+39) / 9 \sim 28$

RECEPTIVE FIELD

3 x 3 filter size

RECEPTIVE FIELD

3 x 3 filter size stride 1

RECEPTIVE FIELD

3 x 3 filter size stride 1

FEATURE MAP

Output of Convolution One Per Filter

The output of the convolution is know as the feature map. Its known as the feature map as it represents the features extracted by the filter. Alternatively its called an activation map as it represents the activation of the neurons in the network.

Each filter in our layer produces a feature map. That is we get a feature map for each filter in our layer. So a 32 filter layer will produce 32 feature maps.

Stacked to Create Output

The individual feature maps are stacked to form the output volume which becomes the input for the next layer in the network.

POOLING LAYER

1	4	12	6	3	13
7	10	20	2	17	33
9	10	19	1	13	31
8	15	12	26	27	15
4	11	12	20	24	20
3	9	10	15	20	19

10	20	33
15	26	31
11	20	24

CONVOLUTIONAL NEURAL NETWORK

INPUT → CONVOLUTION → POOLING → FULLY CONNECTED → OUTPUT LAYER LAYER LAYER LAYER

8 5x5 Filters

MNIST CONVOLUTIONAL NEURAL NETWORK

CONVOLUTION

32 filters6x6 receptive field

POOLING

Max pool 2x2 patches

CONVOLUTION

16 filters3x3 receptive field

POOLING

Max pool 2x2 patches

FULLY CONNECTED .

128 Neurons

OUTPUT

10 Output Neurons

KERAS

What

- High Level Neural Network API
- Written in Python
- Runs on top of TensorFlow, CNTK, Theano

Why

- Easy and Fast prototyping
- Supports CNN
- Runs on CPU and GPU
- CoreMLTools support

COREML

- iOS Machine Learning SDK
- Supports Neural Networks (including CNN)
- Optimized for on-device performance
 - Memory
 - Power
- No training

iPhone App Demo

Itself is what the end-user derives value from also can refer to the information

Any questions?

You can find me at: @timle8n1 tim@thelemasters.net

Slides/Code: https://github.com/timle8n1/codemash2018

REFERENCES

- https://en.wikipedia.org/wiki/Arthur_Samuel
- http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ibm700series/impacts/
- http://www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf
- https://en.wikipedia.org/wiki/Artificial_neural_network
- https://en.wikipedia.org/wiki/Backpropagation
- https://en.wikipedia.org/wiki/MNIST_database
- https://kuanhoong.wordpress.com/2016/02/01/r-and-deep-learning-cnn-for-handwritten-digits-recognition/
- https://keras.io
- https://developer.apple.com/documentation/coreml
- https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
- https://towardsdatascience.com/handwritten-digit-recognition-with-mnist-on-ios-with-kerase85e194f9fa5
- Presentation template designed by <u>Slidesmash</u>