

Aritmética: Números primos

Problema de motivación

¿Cómo determinamos si un número es primo?

Definición

Un número primo es un natural que tiene exactamente **dos divisores distintos**: 1 y el mismo.

La propiedad de ser primo se denomina **primalidad**

Test de primalidad

```
4 int test_primalidad_1(int n){
5
6    if(n==1) return 0;
7
8    for(int i=2; i<n; i++){
9        if( n%i==0 ) return 0;
10    }
11
12    return 1;
13 }
14</pre>
```

Complejidad: O(n)

Test de primalidad

```
3
4 int test_primalidad_2(int n){
5
6    if(n==1) return 0;
7
8    limite = sqrt(n)|
9    for(int i=2; i<=limite; i++){
10        if( n%i==0 ) return 0;
11    }
12
13    return 1;
14 }
15</pre>
```

Problema de motivación

¿Y si ahora nos consultan por todos los números de 2 a n?

Empezamos con todos los números a partir de 2 marcados como primos

-	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Si el número analizado sigue marcado como primo significa que es primo finalmente

	-2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Y además marcamos todos sus múltiplos como no primos

	2	3	4	5	6	7	*	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Seguimos con 3 de igual manera

	2	3	4	5	6	7		9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Cuando llegamos a 4 ya no es primo, así que finalmente no es primo

Seguimos con 5

	2	3	4	5	6	7	:	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Así sucesivament, hasta finalizar

	2	3	4	5	6	7		9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Visualización completa

```
18 int es primo[n]
19
20 int limite=sqrt(n): // Solo debemos iterar hasta la raiz
21
22 for(int i=2;i<n;i++) es primo[i]=1; // Inicializamos todos como primos
23
24 es primo[0]=es primo[1]=0 // Solo para recordar que 0 y 1 no son primos
25
26 for(int i=2;i<=limite;i++){
27
28
      if (es primo[i]){
29
          // Recorremos los múltiplos de i desde i^2
30
          for(int j=i*i; j<n; j+=i ){</pre>
31
              es primo[j]=0;
32
33
34 }
35
36 // Al finalizar el arreglo es primo tendra los resultados
37
```

Complejidad: O(n log log n)

Pregunta

¿Qué podemos hacer queremos saber la primalidad de varios números?

Pero estos son > 10^8

¿Podemos optimizar en algo los primeros test de primalidad que vimos?

Teorema fundamental de la aritmética

Todo número natural se puede representar de forma única mediante sus factores primos, salvo el orden

$$6936 = 2^3 \cdot 3 \cdot 17^2$$

$$1200 = 2^4 \cdot 3 \cdot 5^2$$

Forma general

$$n=\prod_{i=1}^r p_i^{a_i}$$

Fórmulas generales

$$n=\prod_{i=1}^r p_i^{a_i}$$

Cantidad de divisores de n

$$= \prod_{i=1}^r (a_i+1).$$

Ejemplo para $60 = 2^2 \times 3 \times 5$

Cantidad de divisores = (2+1)(1+1)(1+1) = 12

Suma de divisores de n

Ejemplo para
$$60 = 2^2 \times 3 \times 5$$

Suma de divisores =
$$(1+2+4)(1+3)(1+5) = 168$$

$$=\prod_{i=1}^r (1+p_i^x+p_i^{2x}+\cdots+p_i^{a_ix}).$$

Criba de Eratóstenes modificada

Nos sirve para guardar el primo divisor del número para agilizar cálculos de divisores

```
10
    int criba primos[n];
11
    int limite = sqrt(n); //Solo iteramos hasta la raiz
12
13
    for(int i=2;i<n; i++) criba_primos[i]=1; //inicializamos la criba</pre>
14
15
    criba primos[0]=criba primos[1]=0; // 0 y 1 casos especiales
16
17
18 -
    for(int i=2; i<=limite; i++){</pre>
19
        if (criba primos[i]==1){ //Siginifica que es primo
20 -
21 -
             for(int j=i*i; j<n; j+=i){
                 criba primos[j]=i; //Guardamos ese factor primo en la criba
22
23
24
                                                                                    Complejidad: O( n log log n )
25
26
    // Al finalizar los números con criba primos[i] igual a 1 son primos
                                                                                    n \le 10^7
    // Los compuestos tendrán alguno de sus factores primos en la criba
28
29
```

Problemas

<u>10001 prime</u>

Largest prime factor

Smith numbers

<u>Twins</u> <u>Solución</u>

<u>highly divisible triangular number</u>
<u>Solución</u>

Gracias!