

UNIVERSITY OF GHANA

(All rights reserved)

BSc. ENGINEERING/FIRST SEMESTER EXAMINATIONS: 2020/2021

DEPARTMENT OF COMPUTER ENGINEERING

CPEN 205: DISCRETE MATHEMATICAL STRUCTURES (2 CREDITS)

INSTRUCTIONS:

ANSWER ALL QUESTIONS

EACH QUESTION CARRIES 25 MARKS

TIME ALLOWED: <u>TWO</u> (2) HOURS

Q1.

a)

i. Define a recurrence relation.

[1 MARK]

ii. What is the solution of the linear homogeneous recurrence relation?

$$a_n = -2a_{n-1} + 15a_{n-2}$$

with $a_0 = 0$, and $a_1 = 1$

[3 MARKS]

iii. What is the solution of the linear homogeneous recurrence relation?

$$a_n = 4a_{n-1} - 4a_{n-2}$$

with $a_0 = 1$ and $a_1 = 2$

[3 MARKS]

iv. What is the solution of the same equation in (iii) with

$$a_0 = 1$$
 and $a_1 = 8$?

[2 MARKS]

b) The Fibonacci numbers satisfy the linear homogeneous recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$
 with initial conditions $f_0 = 0$ and $f_1 = 1$.

i. List the *first fifteen* Fibonacci numbers using the recurrence relation above.

[3 MARKS]

ii. Prove that the solution (explicit formula) to the Fibonacci recurrence is

Examiner: P. OKAE, PhD Page **1** of **5**

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

[5 MARKS]

- c) A model for the number of lobsters caught per year is based on the assumption that the number of lobsters caught in a year is the average of the number caught in the two previous years.
 - i. Find a recurrence relation for $\{Ln\}$, where Ln is the number of lobsters caught in year n, under the assumption for this model. [2 MARKS]
 - ii. Find *Ln* if 100,000 lobsters were caught in year 1 and 300,000 were caught in year 2. [5 MARKS]

O2.

- a) How many license plates can be made using either *two* or *three letters* followed by either *two* or *three digits* and contain no letter or digit twice? [4 MARKS]
- b) The *sixth* permutation of the lexicographic permutations of the 24 elements of the set {1, 2, 3, 4} is *1432*. Find the next **ten** permutations in *lexicographic order* after *1432*.

[5MARKS]

- c) Suppose that a department contains 10 men and 15 women. How many ways are there to select a committee with *six* members if it must have
 - i. At most three women? [3 MARKS]ii. At least 1 woman and at least 1 man? [4 MARKS]
- d) Prove that

$$\left(\frac{2n}{2}\right) - 2\left(\frac{n}{2}\right) = n^2$$
, where n is a positive integer. [4 MARKS]

e) Each user on a computer system has a password, which is *six to eight characters long*, where each character is an *uppercase letter* or *digit*. Each password must contain *at least one digit*. How many possible passwords are there? [5 MARKS]

Examiner: P. OKAE, PhD Page **2** of **5**

Q3.

a)	Show	by	means	of	truth	tables	that	each	of	these	conditional	statements	is	a
	tautol	ogy												

i.	$(p \land q) \rightarrow (p \rightarrow q)$	[4 MARKS]
ii.	$\neg (p \rightarrow q) \rightarrow p$	[4 MARKS]

b) Use De Morgan's laws to find the *negation* of each of the following statements.

i.	Jan is rich and happy.	[1 MARK]
ii.	Carlos will bicycle or run tomorrow.	[1 MARK]
iii.	Mei walks or takes the bus to class.	[1 MARK]
iv.	Ibrahim is smart and hard working.	[1 MARK]

c) Draw Venn diagrams to discover whether or not the following are true?

i.	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	[4 MARKS]
ii.	$(A \cap B)' = A' \cup B'$	[3 MARKS]

d) Let T(x, y) be the statement "x trusts y," where the domain consists of all people in the

world. Use quantifiers to express each of these statements.

i.	Everybody trusts Bob.	[1 MARK]
ii.	Bob trusts somebody.	[1 MARK]
iii.	Alice trusts herself.	[1 MARK]
iv.	Everyone trusts somebody.	[1 MARK]
V.	Someone trusts everybody.	[1 MARK]
vi.	Somebody is trusted by everybody.	[1 MARK]

Q4.

- a) A new car is worth only about 82 % of its value from the previous year during the first *three* years. Approximately how much will a \$20,000 car be worth in 3 years? [4 MARKS]
- b) Let *p* be "Bonsu is rich" and let *q* be "Bonsu is happy". Write each of the following in symbolic form using logical *operators* or *connectives*.

i.	Bonsu is poor but happy;	[1 MARK]
ii.	Bonsu is neither rich nor happy;	[1 MARK]
iii.	Bonsu is either rich or unhappy; and	[1 MARK]
iv.	Bonsu is poor or else he is both rich and unhappy.	[2 MARKS]

c) Let Q(x, y) be the statement "x has sent an e-mail message to y," where the domain for

both x and y consists of all students in your class. Express each of these quantifications

in English.

i.	$\exists x \exists y Q(x, y)$	[1 MARK]
ii.	$\exists x \forall y Q(x, y)$	[1 MARK]
iii.	$\forall x \exists y Q(x, y)$	[1 MARK]
iv.	$\exists y \forall x Q(x, y)$	[1 MARK]
V.	$\forall y \exists x Q(x, y)$	[1 MARK]
vi.	$\forall x \forall y Q(x, y)$	[1 MARK]

- d) Let the universe be the set of *all animals*, and define the following predicates:
 - $B(x) \equiv x \text{ is a bird}$
 - $D(x) \equiv x \text{ is a dove}$
 - $C(x) \equiv x \text{ is a chicken}$
 - $P(x) \equiv x \text{ is a pig}$
 - $F(x) \equiv x \ can \ fly$
 - $W(x) \equiv x \text{ has wings}$
 - $M(x, y) \equiv x$ has more feathers than y does

Based on the predicates above, translate the following sentences into logic.

i.	Chickens are birds	[1 MARK]
ii.	Some doves can fly	[1 MARK]
iii.	Pigs are not birds	[1 MARK]
iv.	Some birds can fly and some can't	[1 MARK]
v.	If a chicken can fly, then pigs have wings	[1 MARK]
vi.	Chickens have more feathers than pigs do.	[1 MARK]

e) Let A(x), C(x), S(x) and GP(x) be the statements "x is an animal," "x is a cat," "x is small," and "x is a good pet," respectively. Express each of these quantifications in English where the universe consists of all animals.

1.	$\forall x (C(x) \rightarrow A(x))$	[1 MARK]
ii.	$\neg \exists x (C(x) \land \neg S(x))$	[1 MARK]
iii.	$\forall x (C(x) \rightarrow S(x) \land A(x))$	[1 MARK]
iv.	$\forall x \ (S(x) \land A(x) \rightarrow GP(x))$	[1 MARK]

Examiner: P. OKAE, PhD Page **4** of **5**

Examiner: P. OKAE, PhD Page **5** of **5**