ATTACHMENT

** MPE Calculations **

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 9.2dBm + 4.966dBi	P = Power input to the antenna (dBm)
EIRP = 14.86 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2 \pi)$	Where,
D - 1 0/(TIC /C)	S = Maximum power density (mW/cm2)
$S = (8.32 * 3.14) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0052 \text{mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(8.32 * 3.14/4 \pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 1.44Cm	(20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

 $G = Log^{-1}$ (dB antenna gain / 10)

 $G = Log^{\text{-}1} \ (4.966 \ / \ 10)$

G = 3.14