Improving Performance Lab

With Vivado

1st May 2023

Juwon Seo

This LAB...

- HLS(High-level synthesis)를 활용해 design 성능 향상을 위한 flow
- Design: RGB 이미지 변환 및 필터 적용
- 학습 목표:
 - Add directives in your design
 - Understand the effect of INLINE directive
 - Improve performance using PIPELINE directive
 - Distinguish between DATAFLOW directive and Configuration Command functionality

- HLS Prompt 생성
- Start All Programs Xilinx Design Tools Vivado 2017.4 Vivado HLS Vivado HLS 2017.4 Command Prompt

- Cd 소스파일 위치
- Ex) cd C:₩Users₩Judong₩Downloads₩labsource₩labs₩lab2

- Zybo 보드를 기반으로 한 hls 프로젝트 생성
- vivado_hls -f zybo_yuv_filter.tcl 입력

```
Vivado HLS 2018.2 Command Prompt
cc -lm yuv_filter.o yuv_filter_test.o image_aux.o -o yuv_filter
rocess_begin: CreateProcess(NULL, gcc -lm yuv_filter.o yuv_filter_test.o image_aux.o -o yuv_filter, ...) failed.
ake (e=2): 지정된 파일을 찾을 수 없습니다
nake: *** [yuv_filter] 오류 2
:WUsersWJudongWDownloadsWlabsourceWlabsWlab2>vivado_hls -f zybo_yuv_filter.tcl
***** Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC v2018.2 (64-bit)
 **** SW Build 2258646 on Thu Jun 14 20:03:12 MDT 2018
 **** IP Build 2256618 on Thu Jun 14 22:10:49 MDT 2018
  ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
ource C:/Xilinx/Vivado/2018.2/scripts/vivado_hls/hls.tcl -notrace
NFO: [HLS 200-10] Running 'C:/Xilinx/Vivado/2018.2/bin/unwrapped/win64.o/vivado_hls.exe'
NFO: [HLS 200-10] For user 'Judong' on host 'desktop-g5m57lb' (Windows NT_amd64 version 6.2) on Tue Apr 25 16:12:37 +09
      HLS 200-10] In directory 'C:/Users/Judong/Downloads/labsource/labs/lab2'
[HLS 200-10] Creating and opening project 'C:/Users/Judong/Downloads/labsource/labs/lab2/yuv_filter.prj'.
[HLS 200-10] Adding design file 'yuv_filter.c' to the project
[HLS 200-10] Adding test bench file 'image_aux.c' to the project
       HLS 200-10] Adding test bench file 'yuv_filter_test.c' to the project
        HLS 200-10] Adding test bench file 'test_data' to the project
        HLS 200-10] Creating and opening solution 'C:/Users/Judong/Downloads/labsource/labs/lab2/yuv_filter.prj/solution
      [HLS 200-10] Cleaning up the solution database.
[HLS 200-10] Setting target device to 'xc7z010clg400-1'
[SYN 201-201] Setting up clock 'default' with a period of 8ns.
[HLS 200-10] Analyzing design file 'yuv_filter.c' ...
       HLS 200-111] Finished Linking Time (s): cpu = 00:00:01 ; elapsed = 00:00:17 . Memory (MB): peak = 101.465 ; gain
      [HLS 200-111] Finished Checking Pragmas Time (s): cpu = 00:00:01; elapsed = 00:00:18. Memory (MB): peak = 101.46
      [HLS 200-10] Starting code transformations ...
[HLS 200-111] Finished Standard Transforms Time (s): cpu = 00:00:01; elapsed = 00:00:18. Memory (MB): peak = 103
        HLS 200-10] Checking synthesizability ...
        HLS 200-111] Finished Checking Synthesizability Time (s): cpu = 00:00:01; elapsed = 00:00:18. Memory (MB): peak
                203-602] Inlining function 'yuv_scale' into 'yuv_filter' (yuv_filter.c:24) automatically.
                           Performing if-conversion on hyperblock from (yuv_filter.c:88:33) to (yuv_filter.c:88:27) in funct
```

- Log파일 확인 → 코드 생성 과정 확인
- <현재 위치>₩vivado_hls.log 더블 클릭

```
🧐 vivado hls - Windows 메모장
파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)
***** Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC v2018.2 (64-bit)
 **** SW Build 2258646 on Thu Jun 14 20:03:12 MDT 2018
 **** IP Build 2256618 on Thu Jun 14 22:10:49 MDT 2018
   ** Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
source C:/Xilinx/Vivado/2018.2/scripts/vivado_hls/hls.tcl -notrace
INFO: [HLS 200-10] Running 'C:/Xilinx/Vivado/2018.2/bin/unwrapped/win64.o/vivado hls.exe'
INFO: [HLS 200-10] For user 'Judong' on host 'desktop-g5m57lb' (Windows NT_amd64 version 6.2) on Tue Apr 25 1
INFO: [HLS 200-10] In directory 'C:/Users/Judong/Downloads/labsource/labs/lab2'
INFO: [HLS 200-10] Creating and opening project 'C:/Users/Judong/Downloads/labsource/labs/lab2/yuv_filter.prj'.
INFO: [HLS 200-10] Adding design file 'yuv filter.c' to the project
INFO: [HLS 200-10] Adding test bench file 'image_aux.c' to the project
INFO: [HLS 200-10] Adding test bench file 'yuv filter test.c' to the project
INFO: [HLS 200-10] Adding test bench file 'test_data' to the project
```

- HLS gui 생성하기
- vivado_hls -p yuv_filter.prj 입력

Analyze the Created Project and Results

- Source file 확인
- 함수: rgb2yuv, yuv_scale, yuv2rgb

```
RGB2YUV_LOOP_X:
  for (x=0; x<width; x++) {
  #pragma HLS loop tripcount min=200 max=1920
RGB2YUV LOOP Y:
     for (y=0; y<height; y++) {</pre>
  #pragma HLS loop_tripcount min=200 max=1280
         R = in->channels.ch1[x][y];
         G = in->channels.ch2[x][y];
         B = in->channels.ch3[x][y];
        Y = ((Wrgb[0][0] * R + Wrgb[0][1] * G + Wrgb[0][2] * B + 128) >> 8) + 16;
         U = ((Wrgb[1][0] * R + Wrgb[1][1] * G + Wrgb[1][2] * B + 128) >> 8) + 128;
         V = ((Wrgb[2][0] * R + Wrgb[2][1] * G + Wrgb[2][2] * B + 128) >> 8) + 128;
         out->channels.ch1[x][y] = Y;
         out->channels.ch2[x][y] = U;
         out->channels.ch3[x][y] = V;
```

Analyze the Created Project and Results

- syn report yuv_filter_csynh.rpt 더블 클릭
- 합성된 결과 확인 가능

- TRIPCOUNT: 직접 변수가 반복되는 횟수를 지정
- 50, 53, 90, 93, 130, 133번째 라인 #pragma 코드를 주석처리
- File Save

```
48 RGB2YUV LOOP X:
      for (x=0; x<width; x++) {</pre>
   // #pragma HLS loop_tripcount min=200 max=1920
   RGB2YUV LOOP Y:
51
         for (y=0; y<height; y++) {</pre>
52
   // #pragma HLS loop_tripcount min=200 max=1280
53
            R = in->channels.ch1[x][y];
54
            G = in->channels.ch2[x][y];
55
            B = in->channels.ch3[x][y];
56
            Y = ((Wrgb[0][0] * R + Wrgb[0][1] * G + Wrgb[0][2] * B + 128) >> 8) + 16;
57
            U = ((Wrgb[1][0] * R + Wrgb[1][1] * G + Wrgb[1][2] * B + 128) >> 8) + 128;
58
            V = ((Wrgb[2][0] * R + Wrgb[2][1] * G + Wrgb[2][2] * B + 128) >> 8) + 128;
59
            out->channels.ch1[x][y] = Y;
60
```

- Solution Run C Synthesis Active Solution
- 재합성 및 결과 확인

- Explorer view Syn Report → 각 모듈 report 확인
- Console yuv_scale 함수가 yuv_filter에 포함되어 합성됨을 확인

```
📃 Console 💢 💜 Errors 🙆 Warnings 🖆 DRCs 🖳 Debugger Console
Vivado HLS Console
INFO: [HLS 200-111] Finished Linking Time (s): cpu = 00:00:01; elapsed = 00:00:18. Memory (MB): peak = 105.020; gain = 48.734
INFO: [HLS 200-111] Finished Checking Pragmas Time (s): cpu = 00:00:01; elapsed = 00:00:18. Memory (MB): peak = 105.020; gain = 48.734
INFO: [HLS 200-10] Starting code transformations ...
INFO: [HLS 200-111] Finished Standard Transforms Time (s): cpu = 00:00:01; elapsed = 00:00:18. Memory (MB): peak = 105.020; gain = 48.734
INFO: [HLS 200-10] Checking synthesizability ...
INFO: [HLS 200-111] Finished Checking Synthesizability Time (s): cpu = 00:00:01; elapsed = 00:00:18. Memory (MB): peak = 105.020; gain = 48.734
INFO: [XFORM 203-602] Inlining function 'vuv scale' into 'vuv filter' (vuv filter.c:24) automatically.
INFO: [XFORM 203-401] Performing if-conversion on hyperblock from (yuv filter.c:88:33) to (yuv filter.c:88:27) in function 'yuv2rgb'... converting 7 bas
INFO: [XFORM 203-11] Balancing expressions in function 'rgb2yuv' (yuv filter.c:30)...11 expression(s) balanced.
INFO: [HLS 200-111] Finished Pre-synthesis Time (s): cpu = 00:00:01 : elapsed = 00:00:18 . Memory (MB): peak = 126.195 : gain = 69.910
INFO: [HLS 200-111] Finished Architecture Synthesis Time (s): cpu = 00:00:01; elapsed = 00:00:19. Memory (MB): peak = 136.879; gain = 80.594
INFO: [HLS 200-10] Starting hardware synthesis ...
INFO: [HLS 200-10] Synthesizing 'yuv filter' ...
INFO: [HLS 200-10] ------
INFO: [HLS 200-42] -- Implementing module 'rgb2yuv'
INFO: [HLS 200-10] ------
INFO: [SCHED 204-11] Starting scheduling ...
INFO: [SCHED 204-11] Finished scheduling
```

- Explorer view Syn Report Yuv_filter_csynth.rpt Latency Detail Loop
- → 하위 레벨 모듈 loop latency 확인
- YUV_SCALE_LOOP_Y loop latency Trip Count 간 의미?

- Detail
 - **H** Instance
 - □ Loop

Latency			Initiation I	nterval			
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
YUV_SCALE_LOOP_X	280400	17207040	1402 ~ 8962	-	-	200 ~ 1920	no
+ YUV_SCALE_LOOP_Y	1400	8960	7	-	-	200 ~ 1280	no

- analysis perspective view 클릭 🍑 Analysis
- Module Hierarchy Yuv_filter 오른쪽 버튼 클릭 Performance view 열기
- YUV_SCALE_LOOP_X, YUV_SCALE_LOOP_Y 확장

Project - New Solution

Project name: solution2

Clock period: 8

 Copy directives and constraints from solution: solution1

- Explorer source yuv_filter.c 열기
- Directive 클릭
- Yuv_scale 함수가 Directive 창에 있음을 확인

Yuv_scale 함수 오른쪽 클릭 – insert directive

Directive: INLINE

Destination: Directive File

• Options – off 체크

• YUV_SCALE_LOOP_Y 함수 오른쪽 클릭 - insert directive

Directive: PIPELINE

Destination: Directive File

• II:1

• YUV2RGB_LOOP_Y, RGB2YUV_LOOP_Y 동일하게 PIPELINE 설정

• PIPELINE 설정한 함수에 다음과 같은 표시 생성

HLS PIPELINE II = 1

- Synthesis 클릭
- Project Compare Reports
- Solution1, solution2 선택
- Add>> 클릭

Performance Estimates - Latency

• Solution1 (max): 61451525

• Solution2 (max): 7372835

Utilization Estimates

Solution1

• DSP: 6, FF: 785, LUT: 1443

Solution2

• DSP: 9, FF: 1512, LUT: 1996

Performance Estimates

☐ Timing (ns)

Clock		solution2	solution
ap_clk	Target	8.00	8.00
	Estimated	9.634	8.587

□ Latency (clock cycles)

		solution2	solution1
Latency	min	120035	1001205
	max	7372835	61451525
Interval	min	120035	1001205
	max	7372835	61451525

Utilization Estimates

	solution2	solution1
BRAM_18K	12288	12288
DSP48E	9	6
FF	1512	785
LUT	1996	1443

- Project New Solution
- Project name: solution3
- Clock period: 8
- Copy directives and constraints from solution:

- Project Close Inactive Solution Tabs
- Solution1, solution2 window 닫힘

• Yuv_filter.c 코드 open

• Yuv_filter 오른쪽 클릭 – insert directive

Directive: DATAFLOW

Destination: Directive File

• OK 클릭

Synthesis 클릭

Performance Estimates – Latency

Type: dataflow

Performance Estimates ☐ Timing (ns) **☐** Summary Clock Target Estimated Uncertainty ap_clk 8.00 9.634 1.00 □ Latency (clock cycles) **■** Summary Latency Interval min min Type max 120031 7372831 40011 2457611 dataflow

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	50
FIFO	0	-	35	172
Instance	0	11	1345	1725
Memory	12288	-	96	0
Multiplexer	-	-	-	90
Register	-	-	10	-
Total	12288	11	1486	2037
Available	120	80	35200	17600
Utilization (%)	10240	13	4	11

Apply Dataflow configuration command, generate the solution, and observe the improved resources utilization

- Solution Solution Settings
- General Add
- Command: Config_dataflow
- Default_channel: fifo
- Fifo_depth: 2
- OK 클릭
- Synthesis 클릭

Apply Dataflow configuration command, generate the solution, and observe the improved resources utilization

- Resource estimates: BRAM, FF, LUT
- Design이 사용안하는 resource 제외

Summary						
Name	BRAM_18K	DSP48E	FF	LUT		
DSP	-	-	-	-		
Expression	-	-	0	50		
FIFO	0	-	35	172		
Instance	0	11	1345	1725		
Memory	12288	-	96	0		
Multiplexer	-	-	-	90		
Register	-	-	10	-		
Total	12288	11	1486	2037		
Available	120	80	35200	17600		
Utilization (%)	10240	13	4	11		

∃ Summary				
Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	2
FIFO	0	-	65	292
Instance	0	11	1062	1667
Memory	-	-	-	-
Multiplexer	-	-	-	-
Register	-	-	-	-
Total	0	11	1127	1961
Available	120	80	35200	17600
Utilization (%)	0	13	3	11

감사합니다!

• Q&A