COMP 3711 – Spring 2019 Tutorial 7

1. Let G = (V, E) be an undirected graph where V is the set of vertices and E is the set of edges.

Assume that there are no self-loops or duplicated edges.

Answer all questions below as a function of |V|, the number of vertices.

- a) What is the maximum number of edges in G?
- b) What is the maximum number of edges in G if two vertices have degree 0.
- c) What is the maximum number of edges that an acyclic graph G can have?
- d) What is the minimum number of edges in G if G is a connected graph and contains at least one cycle?
- e) What is the minimum possible degree a vertex in a connected graph G can have?
- f) What is the maximum length of any simple path in G?
- 2. Let G = (V, E) be a connected undirected graph. Prove that

$$\log(E) = \Theta(\log V).$$

Note: we implictly use this fact in many of our analyses in class.

3. The adjacency list representation of a graph G, which has 7 vertices and 10 edges, is:

$$\begin{array}{ll} a:\rightarrow d,e,b,g & b:\rightarrow e,c,a \\ c:\rightarrow f,e,b,d & d:\rightarrow c,a,f \\ e:\rightarrow a,c,b & f:\rightarrow d,c \end{array}$$

- (a) Show the breadth-first search tree that is built by running BFS on graph G with the given adjacency list, using vertex a as the source.
- (b) Indicate the edges in G that are NOT in the BFS tree in part (a) by dashed lines.
- (c) Show the depth-first search tree that is built by running DFS on graph G with the given adjacency list, using vertex a as the source.
- (d) Indicate the edges in G which are NOT in the DFS (c) by dashed lines.

- 4. An (undirected) graph G = (V, E) is bipartite if there exists some $S \subset V$ such that, for every edge $\{u, v\} \in E$, either
 - (i) $u \in S$, $v \in V S$ or
 - (ii) $v \in S$, $u \in V S$.

Let G = (V, E) be a connected graph. Design an O(|V| + |E|) algorithm that checks whether G is bipartite. Hint: Run BFS.

5. In the Fan Graph F_n , node v is connected to all the nodes and the other connections are given by the adjacency lists below.

$$v: x_1, x_2, \dots, x_n,$$
 $x_1: v, x_2$ $x_n: v, x_{n-1}$ $\forall i \neq 1, n, \quad x_i: v, x_{i-1}, x_{i+1}$

- (a) : Describe the tree that is output when BFS is run on F_n starting from initial vertex v; (ii) initial vertex x_1 ;
 - (iii) x_n ; (iv) Other x_i .
- (b) : Describe the tree that is output when DFS is run on F_n starting from initial vertex v; (ii) initial vertex x_1 ;
 - (iii) x_n ; (iv) Other x_i .