Spectral Analysis: Subspace Properties (cont'd)

Consider the eigendecomposition of $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$. Let $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H = \mathbf{V}\Lambda\mathbf{V}^H$ and assume $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$ are the eigenvalues of $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$

Since $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$ is PSD, we have $\lambda_i > 0$ for i = 1, ..., k and $\lambda_i = 0$ for i = k + 1, ..., d

$$\mathbf{A}\mathbf{\Phi}\mathbf{A}^{H} = \begin{bmatrix} \mathbf{V}_{1} & \mathbf{V}_{2} \end{bmatrix} \begin{bmatrix} \Lambda_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1}^{H} \\ \mathbf{V}_{2}^{H} \end{bmatrix} = \mathbf{V}_{1}\Lambda_{1}\mathbf{V}_{1}^{H}$$

where
$$\mathbf{V}_1 = [\mathbf{v}_1, \dots, \mathbf{v}_k] \in \mathbb{C}^{d \times k}$$
, $\mathbf{V}_2 = [\mathbf{v}_{k+1}, \dots, \mathbf{v}_d] \in \mathbb{C}^{d \times (d-k)}$, $\Lambda_1 = \operatorname{Diag}(\lambda_1, \dots, \lambda_k)$

Consequence:
$$\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = \mathcal{R}(\mathbf{V}_1), \ \mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H)^{\perp} = \mathcal{R}(\mathbf{V}_2)$$

Spectral Analysis: Subspace Properties (cont'd)

Now consider the eigendecomposition of \mathbf{R}_{ν}

$$\mathbf{R}_{y} = \begin{bmatrix} \mathbf{V}_{1} & \mathbf{V}_{2} \end{bmatrix} \begin{bmatrix} \Lambda_{1} + \sigma^{2} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \sigma^{2} \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1}^{H} \\ \mathbf{V}_{2}^{H} \end{bmatrix}$$
where \mathbf{V}_{1} is the first probability of the probability of

Consequences:

- $\mathbf{V}(\Lambda + \sigma^2 \mathbf{I})\mathbf{V}^H$ is the eigendecomposition of \mathbf{R}_y
- V_1 can be obtained from R_y by finding the eigenvectors associated with the first k largest eigenvalues of R_y

Spectral Analysis: Subspace Properties (cont'd)

• Compute the eigenvector matrix $\mathbf{V} \in \mathbb{C}^{d \times d}$ of \mathbf{R}_y . Partition $\mathbf{V} = [\ \mathbf{V}_1, \mathbf{V}_2\]$ where $\mathbf{V}_1 \in \mathbb{C}^{n \times k}$ corresponds the first k largest eigenvalues. Then,

$$\mathcal{R}(\mathbf{V}_1) = \mathcal{R}(\mathbf{A}), \qquad \mathcal{R}(\mathbf{V}_2) = \mathcal{R}(\mathbf{A})^{\perp}$$

• Idea of subspace methods: Let

$$\mathbf{a}(z) = \begin{bmatrix} 1 \\ z \\ \vdots \\ z^{d-1} \end{bmatrix}.$$

Find any $f \in [-\frac{1}{2}, \frac{1}{2})$ that satisfies $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$

Spectral Analysis via Subspace: Subspace Properties

Question: it is true that $f \in \{f_1, \dots f_k\}$ implies $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$. But is it also true that $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$ implies $f \in \{f_1, \dots f_k\}$?

Answer: Yes if d > k

Theorem

Let $\mathbf{A} \in \mathbb{C}^{d \times k}$ any Vandemonde matrix with distinct roots z_1, \dots, z_k and with $d \geq k + 1$. Then,

$$z \in \{z_1, \ldots, z_k\} \iff \mathbf{a}(z) \in \mathcal{R}(\mathbf{A}).$$

Spectral Analysis: Algorithm

There are many subspace methods, and Multiple Signal Classification (MUSIC) is most well-known $2 \left(\sqrt{2} \right)^{\frac{1}{2}}$

MUSIC uses the fact that $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A}) \iff \mathbf{V}_2^H \mathbf{a}(e^{\mathbf{j}2\pi f}) = \mathbf{0}$

Algorithm: MUSIC

input: the correlation matrix $\mathbf{R}_y \in \mathbb{C}^{d \times d}$ and the model order k < d Perform eigendecomposition $\mathbf{R}_y = \mathbf{V} \Lambda \mathbf{V}^H$ with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$. Let $\mathbf{V}_2 = [\mathbf{v}_{k+1}, \ldots, \mathbf{v}_d]$, and compute

$$S(f) = \frac{1}{\|\mathbf{V}_2^H \mathbf{a}(e^{\mathbf{j}2\pi f})\|_2^2}$$

for $f \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ (done by discretization). **output:** S(f)

Spectral Analysis: Algorithm (cont'd)

An illustration of the MUSIC spectrum. T = 64, k = 5, $\{f_1, \ldots, f_k\} = \{-0.213, -0.1, -0.05, 0.3, 0.315\}$

Application: Euclidean Distance Matrices

- Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ be a collection of points, and let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$
- Let $d_{ij} = \|\mathbf{x}_i \mathbf{x}_i\|_2$ be the Euclidean distance between points i and j
- **Problem**: Given d_{ij} for all $i, j \in \{1, ..., n\}$, recover **X**
 - This is called the Euclidean distance matrix (EDM) problem
- Applications: sensor network localization (SNL), molecule conformation, etc.

Applications of EDM

(a) Sensor network localization (SNL) (b) Molecular transformation²

²P. Stoica and R. L. Moses, *Introduction to Spectral Analysis*, Prentice Hall; 1997.

EDM: Formulation

- Let $\mathbf{R} \in \mathbb{R}^{n \times n}$ be s.t. $r_{ij} = d_{ij}^2$ for all $i, j = 1, \ldots, n$
- $r_{ij} = d_{ij}^2 = \mathbf{x}_i^T \mathbf{x}_i 2\mathbf{x}_i^T \mathbf{x}_j + \mathbf{x}_i^T \mathbf{x}_j$ Note from

that **R** can be written as

$$\mathbf{R} = \mathbf{1}(\operatorname{diag}(\mathbf{X}^{T}\mathbf{X}))^{T} - 2\mathbf{X}^{T}\mathbf{X} + (\operatorname{diag}(\mathbf{X}^{T}\mathbf{X}))\mathbf{1}^{T} \tag{*}$$

where $\operatorname{diag}(\mathbf{Y}) := [y_{11}, \dots, y_{nn}]^T$ for any square matrix \mathbf{Y}

- ambiguity in X • Observation: (*) Also holds if we replace X by
 - $\tilde{\mathbf{X}} = [\mathbf{x}_1 + \mathbf{b}, \dots, \mathbf{x}_n + \mathbf{b}]$ for any $\mathbf{b} \in \mathbb{R}^d$ $(d_{ij} = ||\tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_j||_2)$ $\tilde{\mathbf{X}} = \mathbf{Q}\mathbf{X}$ for any orthogonal \mathbf{Q} $(\tilde{\mathbf{X}}^T\tilde{\mathbf{X}} = \mathbf{X}^T\mathbf{X})$
- Implication: recovery of X from R is subjected to translations and >rotations/reflections
 - In SNL we can use anchors to fix this issue

$$R = \frac{1}{\text{diag}}(x^{T}x))^{T} - 2x^{T}x + \frac{1}{\text{diag}}(x^{T}x) \frac{1}{1}$$

$$EDM: Formulation (cont'd)$$

$$Verification of (x)$$

$$Y = \frac{1}{1} = x^{T}x_{1} - 2x^{T}x_{1} + x^{T}x_{1} + x^{T}x$$

EDM: Formulation (cont'd)

• WLOG, assume $x_1 = 0$

$$\mathbf{r}_1 = \begin{bmatrix} \|\mathbf{x}_1 - \mathbf{x}_1\|_2^2 \\ \|\mathbf{x}_2 - \mathbf{x}_1\|_2^2 \\ \vdots \\ \|\mathbf{x}_n - \mathbf{x}_1\|_2^2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \|\mathbf{x}_2\|_2^2 \\ \vdots \\ \|\mathbf{x}_n\|_2^2 \end{bmatrix}, \qquad \operatorname{diag}(\mathbf{X}^T\mathbf{X}) = \begin{bmatrix} \|\mathbf{x}_1\|_2^2 \\ \|\mathbf{x}_2\|_2^2 \\ \vdots \\ \|\mathbf{x}_n\|_2^2 \end{bmatrix} = \mathbf{r}_1$$

• Combining the above with (*) gives

$$\mathbf{X}^T\mathbf{X} = -\frac{1}{2}(\mathbf{R} - \mathbf{1}\mathbf{r}_1^T - \mathbf{r}_1\mathbf{1}^T)$$

• Idea: do a symmetric factorization $G = X^T X$ for

$$\boldsymbol{G} = -\frac{1}{2}(\boldsymbol{R} - \boldsymbol{1}\boldsymbol{r}_1^{\mathcal{T}} - \boldsymbol{r}_1\boldsymbol{1}^{\mathcal{T}}) \qquad \text{conv}$$

to recover X

EDM: Method

- Assumption: X has full row rank
- It can be shown that **G** is PSD, $rank(\mathbf{G}) = d$, and **G** has d nonzero eigenvalues
- Let $\mathbf{G} = \mathbf{V} \Lambda \mathbf{V}^T$ be the eigendecomposition of \mathbf{G} with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$ $\mathbf{G} = \begin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix} \begin{bmatrix} \Lambda_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = (\Lambda^{1/2} \mathbf{V}_1^T)^T (\Lambda^{1/2} \mathbf{V}_1^T)$

where $\mathbf{V}_1 \in \mathbb{R}^{d \times d}$, $\Lambda_1 = \mathrm{Diag}(\lambda_1, \dots, \lambda_d)$

- **EDM solution**: Take $\hat{\mathbf{X}} = \Lambda^{1/2} \mathbf{V}_1^T$ as an estimate of \mathbf{X}
- Recovery guarantee: From the last property of Section 5.1, $\hat{\mathbf{X}} = \mathbf{Q}\mathbf{X}$ for some orthogonal \mathbf{Q}

EDM: Further Discussion

- In applications such as SNL, not all pairwise distances d_{ij} 's are available, so that there are missing entries in $\mathbf R$
- Possible solution: Apply low-rank matrix completion (cf. Section 3.4) to recover the full R
- To use low-rank matrix completion, we need a bound on rank(R)
- Using $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$, we have

$$\begin{aligned} \operatorname{rank}(\mathsf{R}) \leq & \operatorname{rank}(\mathbf{1}(\operatorname{diag}(\mathsf{X}^{T}\mathsf{X}))^{T}) + \operatorname{rank}(-2\mathsf{X}^{T}\mathsf{X}) \\ & + \operatorname{rank}((\operatorname{diag}(\mathsf{X}^{T}\mathsf{X}))\mathbf{1}^{T}) \\ \leq & 1 + d + 1 = d + 2 \end{aligned}$$

 Other issues:³ Noisy distance measurements, resolving the orthogonal rotation problem with X

³I. Dokmanić, R. Parhizkar, J. Ranieri, and Vetterli, "Euclidean distance matrices," IEEE Signal Processing

Magazine, vol. 32, no. 6, pp. 12–30, Nov. 2015.

Matrix Computations Chapter 5: Positive Semidefinite Matrices Section 5.3 Matrix Inequalities and Schur Complement

Jie Lu ShanghaiTech University

PSD Matrix Inequalities

- Inequalities for matrices are defined based on the notion of PSD matrices
- PSD matrix inequalities are frequently used in topics like semidefinite programming
- Definitions:

•
$$A \succeq B$$
 means that $A - B$ is PSD $A - B \succeq O$

- $A \succ B$ means that A B is PD
- $\mathbf{A} \not\succeq \mathbf{B}$ means that $\mathbf{A} \mathbf{B}$ is indefinite
- Consequences immediately from the definitions: For any $A, B, C \in \mathbb{S}^n$, $SCP \mid P^r$
 - $\mathbf{A} \succeq \mathbf{0}, \alpha \succeq 0 \text{ (resp. } \mathbf{A} \succ \mathbf{0}, \alpha > 0) \Longrightarrow \alpha \mathbf{A} \succeq \mathbf{0} \text{ (resp. } \alpha \mathbf{A} \succ \mathbf{0})$
 - $A, B \succeq 0$ (resp. $A \succ 0, B \succ 0$) $\Longrightarrow A + B \succeq 0$ (resp.
- $A \not\succeq B$ does not imply $B \succeq A$ $X \subseteq \mathbb{R}^{n}$, $A \succeq B \Longrightarrow D \subseteq X^{T} CA B$ $X \subseteq \mathbb{R}^{n}$, $A \succeq B \Longrightarrow D \subseteq X^{T} CA B$ $X \subseteq \mathbb{R}^{n}$ $X \subseteq \mathbb{R}^{n}$

Properties of PSD Matrix Inequalities

Let $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$

•
$$A \succeq B \Longrightarrow \lambda_{k}(A) \ge \lambda_{k}(B)$$
 for all k ; the converse is not always true $A \succeq B \iff A-B \not\subset O \iff \lambda_{k}(A-B) \ge 0$ $\forall k$
 $\lambda_{k}(A) = \lambda_{k}(B+A-B) \ge \lambda_{k}(A) \ge 1$ for $A \succeq B$ $A \succeq B$

• If $A, B \succ 0$ then $A \succeq B \iff B^{-1} \succeq A^{-1}$

Properties of PSD Matrix Inequalities (cont'd)

• For $\mathbf{A} \succeq \mathbf{B} \succeq \mathbf{0}$, $\det(\mathbf{A}) \ge \det(\mathbf{B})$ determinant = Product of all eigenvalues

• For $\mathbf{A} \succeq \mathbf{B}$, $\operatorname{tr}(\mathbf{A}) \ge \operatorname{tr}(\mathbf{B})$ trace = Sum of all eigenvalues

• For $\mathbf{A} \succeq \mathbf{B} \succ \mathbf{0}$, $\operatorname{tr}(\mathbf{A}^{-1}) \le \operatorname{tr}(\mathbf{B}^{-1})$ $\mathbf{A}^{-1} \preceq \mathbf{B}^{-1}$

Schur Complement

Let $\mathbf{X} \in \mathbb{R}^{n \times n}$ be partitioned as

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where $\mathbf{A} \in \mathbb{R}^{m \times m}$ and $\mathbf{D} \in \mathbb{R}^{(n-m) \times (n-m)}$

$$\mathbf{x} = (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}(\mathbf{c} - \mathbf{B}\mathbf{D}^{-1}\mathbf{d})$$

$$\mathbf{y} = \mathbf{D}^{-1}(\mathbf{d} - \mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}(\mathbf{c} - \mathbf{B}\mathbf{D}^{-1}\mathbf{d}))$$

The matrix $\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}$ is called the Schur Complement of \mathbf{D} in \mathbf{X} Similarly, when **A** is nonsingular, the matrix $\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}$ is the Schur Complement of A in X

Schur Complement (cont'd)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} A & B \\ c & D \end{bmatrix}^{-1} \begin{bmatrix} c \\ d \end{bmatrix}$$

Suppose $\bf D$ and the Schur complement $\bf A-BD^{-1}C$ are nonsingular Rewrite the solution of the linear system as

$$\begin{split} & \textbf{x} = (\textbf{A} - \textbf{B}\textbf{D}^{-1}\textbf{C})^{-1}\textbf{c} - (\textbf{A} - \textbf{B}\textbf{D}^{-1}\textbf{C})^{-1}\textbf{B}\textbf{D}^{-1}\textbf{d} \\ & \textbf{y} = -\textbf{D}^{-1}\textbf{C}(\textbf{A} - \textbf{B}\textbf{D}^{-1}\textbf{C})^{-1}\textbf{c} + (\textbf{D}^{-1} + \textbf{D}^{-1}\textbf{C}(\textbf{A} - \textbf{B}\textbf{D}^{-1}\textbf{C})^{-1}\textbf{B}\textbf{D}^{-1})\textbf{d} \end{split}$$

Then, we derive the inverse of X as

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{bmatrix}$$

$$= \begin{bmatrix} (A - BD^{-1}C)^{-1} & 0 \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} \end{bmatrix} \begin{bmatrix} I & -BD^{-1} \\ 0 & I \end{bmatrix}$$

$$= \begin{bmatrix} I & 0 \\ -D^{-1}C & I \end{bmatrix} \begin{bmatrix} (A - BD^{-1}C)^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} I & -BD^{-1} \\ 0 & I \end{bmatrix}$$

It follows that

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}$$