Statistical Inference Course Project - Part 1

Author	Date	GitHub
Oszkar Jozsa	February, 2015	[link]

Overview

Description

Illustrate via simulation and associated explanatory text the properties of the distribution of the mean of 40 exponentials. You should

- Show the sample mean and compare it to the theoretical mean of the distribution.
- Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.
- Show that the distribution is approximately normal.

Solution

I will save a simple data set of 1000 simulations into a matrix and compare it to a theoretical normal distribution using some plots (base and ggplot) and simple calculations.

Solution

Simulations

First, we set up the parameters number, lambda and n. Then we'll set the seed for reproducibility. (also, ggplot is loaded here as we'll need it later)

```
library(ggplot2)

number <- 1000
lambda <- 0.2
n <- 40

set.seed(543)</pre>
```

Next, the simulation is done with the parameters above and saved into simulation (1000-by-40 matrix). We also calculate the rowmeans here.

```
simulation <- matrix(rexp(number * n, rate=lambda), number, n)
means <- rowMeans(simulation)</pre>
```

We create a simple histogram to visualize the result of the simulation. Also, a red line is added for displaying the mean of the simulation.

```
hist(means, xlab = "Rowmeans of simulated matrix")
abline(v = mean(means), col = "red", lwd = 2)
legend(x = "topright", legend = c("Mean of simulation"), col = c("red"), bty = "n", lwd = 2)
```

Histogram of means

Sample Mean versus Theoretical Mean

```
mean <- mean(means)
theoretical_mean <- 1 / lambda
mean</pre>
```

[1] 4.979703

theoretical_mean

[1] 5

Simulated (measured) mean is very close to the theoretical mean. We could get even closer by increasing number (more simulation).

Sample Variance versus Theoretical Variance

```
variance <- var(means)
theoretical_variance <- (1 / lambda) ^ 2 / n
variance</pre>
```

[1] 0.5574497

theoretical_variance

[1] 0.625

Variance differs a bit more than the mean did, but still close to the theoretical one.

Distribution

The histogram below shows how close the distribution is to normal. Blue line is a density estimation of our measured data. Red line is a true normal distribution.

```
ggplot(data.frame(means), aes(x = means)) +
    geom_histogram(aes(y=..density..)) + geom_density(colour = "blue", size = 1) +
    stat_function(fun = dnorm, args = list(mean = theoretical_mean, sd = theoretical_variance), color = "red"
    labs(y = "Frequency") + labs(title = "Distribution: simulated vs. normal")
```


Lastly, a QQ plot to compare measured and theoretical distribution (see this article). Lines are almost exacly lined up which shows us that the measured is very close to the theoretical one. A 45 degree abline represents the theoretical QQ line.

```
qqnorm(scale(means)); qqline(scale(means), col = "blue"); abline(0, 1, col = "red")
legend(x = "topleft", legend = c("Simulation", "Theoretical"), col = c("blue", "red"), bty = "n", lwd = 2)
```


