

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
КАФЕДРА	Прикладная математика

Лабораторная работа №1 по дисциплине "Разработка программных комплексов" на тему "Проекционные методы"

Студент	ФН2-71Б		Пиневич В.Г.
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Принял		<u></u> .	Азметов Х.Х.
•		(Подпись, дата)	(И.О. Фамилия)

Содержание

1.	Задача	3
2.	Метод коллокации в точке	4
3.	Метод коллокаций в подобластях	4
4.	Метод Бубнова-Галеркина	5
5.	Метод Галеркина	6
6.	Метод наименьших квадратов	6
7.	Метод Ритца	7
8	Выволы	8

1. Задача 3

1. Задача

Создать программу решения дифференциального уравнения проекционными методами. Задано урванение на области [0, 1]:

$$\frac{d^2u}{dx^2} + u + x = 0, \quad u(0) = u(1) = 0.$$

Необходимо реализовать методы решения:

- 1. Метод коллокаций в точках
- 2. Метод коллокаций в подобластях
- 3. Метод Бубнова-Галеркина
- 4. Метод Галеркина
- 5. Метод наименьших квадратов
- 6. Метод Ритца

Для каждого из методов нужно получить решение с порядком аппроксимации от 1 до 3.

2. Метод коллокации в точке

$N_{ar{f o}}$	Норма ошибки	Коэффициенты
1	0.12	$a_1 = 0.286$
2	0.0117	$a_1 = 0.195, a_2 = 0.17$
3	$8 \cdot 10^{-4}$	$a_1 = 0.19, a_2 = 0.196, a_3 = -0.02$
4	$5 \cdot 10^{-5}$	$a_1 = 0.1883, a_2 = 0.1887, a_3 = -0.105, a_4 = -0.008$
5	$3 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1883, a_3 = -0.0094, a_4 = -0.0102, a_5 = 0.0008$

Рис. 1. График полученных решений при различных N

3. Метод коллокаций в подобластях

$N_{ar{f o}}$	Норма ошибки	Коэффициенты
1	0.117	$a_1 = 0.27$
2	0.02	$a_1 = 0.1876, a_2 = 0.17$
3	$8 \cdot 10^{-4}$	$a_1 = 0.1882, a_2 = 0.193, a_3 = -0.023$
4	$4\cdot 10^{-5}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01, a_4 = -0.0086$
5	$1.5\cdot 10^{-6}$	$a_1 = 0.1883, a_2 = 0.1883, a_3 = -0.0094, a_4 = -0.0102, a_5 = 0.0008$

Рис. 2. График полученных решений при различных N

4. Метод Бубнова-Галеркина

$N_{ar{ ext{0}}}$	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.004	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1\cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

Рис. 3. График полученных решений при различных N

5. Метод Галеркина

$N_{ar{0}}$	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.0037	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1 \cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

Рис. 4. График полученных решений при различных N

6. Метод наименьших квадратов

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.117	$a_1 = 0.2723$
2	0.021	$a_1 = 0.1875, a_2 = 0.1695$
3	$13 \cdot 10^{-3}$	$a_1 = 0.1884, a_2 = 0.1928, a_3 = -0.02332$
4	$2\cdot 10^{-5}$	$a_1 = 0.1884, a_2 = 0.1885, a_3 = -0.01046, a_4 = -0.008571$
5	$1.23 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

Рис. 5. График полученных решений при различных N

7. Метод Ритца

$N_{ar{f o}}$	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.004	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1 \cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

Рис. 6. График полученных решений при различных N

8. Выводы 8

8. Выводы

Рассмотренные проекционные методы дают достаточно высокую точность. Наилучшую точность дает метод Бубнова-Галеркина. В среднем, для получения относительной ошибки $10^{-4}-10^{-3}$ требуется взять 3 слагаемых в разложении по базисным функциям.