## EO0128X8KB180BC01A

## TSMC 0.18um Pure 5V BCD Process

128 x 8 bits One Time Programmable Device

Document Code : EO0128X8KB180BC01A

Issue Date : Jan 18, 2018

Version : 1.0 Total Pages : 13





TSMC 0.18um Pure 5V BCD Process 128x 8-bits One Time Programmable Device

|      | Document Update History |                  |           |  |  |  |  |  |
|------|-------------------------|------------------|-----------|--|--|--|--|--|
| Ver. | Effective               | Revised Content  | Applicant |  |  |  |  |  |
| 1.0  |                         | Original version | Justin    |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      |                         |                  |           |  |  |  |  |  |
|      | 004/04/01               |                  |           |  |  |  |  |  |

[QM-201(01A)]



TSMC 0.18um Pure 5V BCD Process 128x 8-bits One Time Programmable Device

## **INDEX**

| 128 x 8-bits One Time Programmable Fuse    | 1  |
|--------------------------------------------|----|
| Features                                   |    |
| General Description                        |    |
| Pin Assignments                            |    |
| Power Connection Requirement               |    |
| Symbol                                     |    |
| Pin Description                            |    |
| Data Pin Connection Requirement            |    |
| Truth Table                                |    |
| Operating Mode Truth Table                 |    |
| Write/Read Truth Table                     |    |
| DC Specifications                          |    |
| DC Operating Conditions                    |    |
| DC Electrical Characteristics              |    |
| Timing                                     | 6  |
| Timing Parameters (C <sub>LOAD</sub> =1pf) |    |
| Input Capacitance                          |    |
| Timing Waveforms                           |    |
| Timing Definition                          |    |
| Timing Definition                          |    |
| User Mode                                  | 9  |
| Read Cycle                                 | 9  |
| Program Cycle                              |    |
| Testing Mode                               |    |
| Margin Read Cycle                          |    |
| Off Margin Read Cycle                      |    |
| IPP Mode                                   | 12 |



TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## 128 x 8-bits One Time Programmable Fuse

eMemory's OTP HR (Neobit<sup>®</sup>) is adopted in TSMC 0.18µm Pure 5V design in 1.8V/5V/60V BCD Process. Programming is by hot electrons injection generated by avalanche impact ionization in eMemory's Neobit® bit cell. OTP HR required programming voltage 7.5V which is supplied from IP external through VPP pin. Cells are initialized by ultraviolet light through internal photoemission from the floating gate.

#### **Features**

- ◆ TSMC 0.18um Pure 5V BCD Process
  - ➤ 1P3M IP design, Capable of using on ◆ 1P4M/1P5M/1P6M.
  - Metal-3 follows 40KA ultra-thick metal rule. Dummy Metal-4 ~ Metal-6 follow ultra-thick metal rule.
- VDD and VPP Power Supply
  - 2.0V~5.5V VDD for Read
  - > 7.25V~7.75V VPP, 2.0V~5.5V VDD for ◆ Program
- ♦ Memory Organization 128 x 8 bits
- Byte Program Operation
- ◆ Junction Temperature T<sub>J</sub>: -40°C ~ 150°C
- Data Retention: >10 Years @ 125°C
- Power Switch embedded

- ◆ OTP Cell: 5V device
- ◆ IP Size: 0.086 mm² (369um x 233um)
- ◆ Access Time : 200ns (max)
- **♦** Byte Program Time :
  - > 100us (typ.)
- ♦ Operating Current : (max)

  - ► I<sub>VPP R</sub>: 1uA
- Standby Current : (max)
  - I<sub>VDD SB</sub>: 3uA
  - ► I<sub>VPP SB</sub>: 1uA



TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## **General Description**

EO0128X8KB180BC01A is a CMOS 128 x 8-bits One Time Programmable device. The main memory block is organized as a 128 by 8 bits output in read mode, and 256 by 8 bits input in program mode. The OTP cell design will provide a low cost logic process OTP approach compared with alternative approaches. The EO0128X8KB180BC01 programs with 5V power supply and 7.5V external VPP supply.

**PGM** is the abbreviation for program and  $T_J$  stands for junction temperature.

## Pin Assignments



## Power Connection Requirement

- > Power/Ground bouncing beyond DC specifications is not allowed.
- > PDIN/PDOB/PTM pins are randomly located at IP down side, please check phantom GDS for details.

## Symbol





TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## Pin Description

| Pin Name   | Direction | Description                               |  |  |  |
|------------|-----------|-------------------------------------------|--|--|--|
| PA [6:0]   | I         | Address input                             |  |  |  |
| PDIN [7:0] | I         | Data input                                |  |  |  |
| PDOB [7:0] | 0         | Data output reversed                      |  |  |  |
| PTM [2:0]  | I         | Test mode enabling                        |  |  |  |
| PWE        | I         | Define program cycle                      |  |  |  |
| PPROG      | I         | Program mode enabling                     |  |  |  |
| PRD        | I         | Define read cycle                         |  |  |  |
| VDD        | I         | Power supply                              |  |  |  |
| VSS        | I         | Ground                                    |  |  |  |
| VPP        | I         | High voltage power supply for programming |  |  |  |

[8,940]

© eMemory EO0128X8KB180BC01A

#### **Notes**

1. No glitch immunity on these signals. Users should provide the non-glitch signals to all pins.

## Data Pin Connection Requirement

PDOB to connect drain/source of NMOS/PMOS as Fig.(b) is not allowed. Gate electrode connection as Fig.(a) is strongly recommended.





Fig.(a) Recommended PDOB Connection

Fig.(b) Not allowed PDOB Connection



TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

#### Truth Table

## Operating Mode Truth Table

| User Mode      | PTM[2:0] | PPROG | PWE | PRD |
|----------------|----------|-------|-----|-----|
| Stand-by       | LLL      | L     | L   | L   |
| Read Access    | LLL      | L     | L   | Н   |
| Program Entry  | LLL      | Н     | L   | L   |
| Program Access | LLL      | Н     | Н   | L   |

| Testing Mode               | PTM[2:0] | PPROG | PWE | PRD |
|----------------------------|----------|-------|-----|-----|
| Margin-1 Read Mode         | HHL      | L     | L   | Н   |
| Margin-2 Read Mode         | ннн      | L     | L   | Н   |
| Off State Margin Read Mode | HLH      | L     | L   | Н   |
| IPP Mode                   | LLL      | Н     | Н   | L   |

[8,940]

© eMemory EO0128X8KB180BC01A

#### **Notes**

- 1. H stands for logic High level. L stands for logic Low level.
- 2. PTM[2] = L, PTM[1] = L, PTM[0] = L is for User mode.
- 3. PTM[2] = H, PTM[1] = H and PTM[0] = L is for Margin-1 Read Mode. Margin Read Mode provides a critical read condition to filter out "weak programmed" bits during CP sort in the testing flow and only can be used at 25°C ~85°C. To cover all worse corners, customer should implement Margin-1 Read Mode during testing.
- 4. PTM[2] = H, PTM[1] = H and PTM[0] = H is for Margin-2 Read Mode. Margin-2 Read Mode setup another critical read condition to filter out "weak retention" bits during CP2 sort in the testing flow and only can be used at 25°C ~85°C.
- 5. PTM[2] = H, PTM[1] = L and PTM[0] = H is for Off state Margin read mode. Off State Margin read provides a stern read criterion to filter out high off state bits during CP sort in the testing flow and only can be used at 25°C ~85°C.
- 6. PTM[2] = L, PTM[1] = L and PTM[0] = L is for IPP Mode. IPP Mode is implemented for bit cell current measurement. Customer should design in IPP mode, which allow to measure OTP cell current. It's for debug purpose in case of malfunction happen in merged product.

#### Write/Read Truth Table

| Cell State             | PDIN Write | PDOB Read |  |
|------------------------|------------|-----------|--|
| Programmed             | L          | Н         |  |
| Un-programmed(Initial) | Н          | L         |  |

[8,940]

© eMemory EO0128X8KB180BC01A

#### **Notes**

1. For "Initial" (un-programmed) state or "Erased" state (UV erase), the read out data is "L".

#### Page 4



TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## DC Specifications

## DC Operating Conditions

| Operating Mode | Power Pin       | Min           | Тур              | Max  | Unit |  |  |
|----------------|-----------------|---------------|------------------|------|------|--|--|
|                | V <sub>DD</sub> | 2.0           | V                |      |      |  |  |
| Read Mode      | VPP             | V             | VDD/VSS/Floating |      |      |  |  |
|                | Vss             | Vss 0         |                  |      |      |  |  |
|                | V <sub>DD</sub> | 2.0           | 5                | 5.5  | V    |  |  |
| PGM Mode       | VPP             | 7.25 7.5 7.75 |                  | 7.75 | V    |  |  |
|                | Vss             |               | 0                |      | V    |  |  |

[8,940]

© eMemory EO0128X8KB180BC01A

#### **Notes**

- 1. Power/Ground supply voltage beyond DC operating range is not guaranteed.
- 2. Power/Ground bouncing beyond DC operating range might cause invalid data output and will not guaranteed by eMemory. Customers must take care of power stability on their own.
- 3. Normally, junction temperature is from -40°C to 150°C for normal operation, but from -20°C to 125°C for programming operation.

#### DC Electrical Characteristics

| Parameter       | Power Pin          | Тур                 | Max                 | Unit | Test Condition                                                                                           |
|-----------------|--------------------|---------------------|---------------------|------|----------------------------------------------------------------------------------------------------------|
| Read Current    | IVDD_R             | 0.8<br>(for 8 bits) | 1.2<br>(for 8 bits) | mA   | PA[7:0]=0/V <sub>DD</sub> , PTM[2:0]=0,                                                                  |
| at Tprd=200ns   | IVPP_R             | 1<br>(for 8 bits)   | 1<br>(for 8 bits)   | μA   | V <sub>DD</sub> =V <sub>PP</sub> =V <sub>DDMAX</sub> , PDIN[7:0]=0,<br>PRD=V <sub>DD</sub> , PPROG=PWE=0 |
| Normal Program  | I <sub>VDD_P</sub> | 1                   | 1                   | μА   | VPP = VPPMAX, PTM[2:0]=0,                                                                                |
| Current         | IVPP_P             | 400<br>(for 1 bit)  | 800<br>(for 1 bit)  | μА   | V <sub>DD</sub> =V <sub>DDMAX</sub> , PRD=0<br>PPROG=PWE=V <sub>DD</sub>                                 |
|                 | IVDD_SB            | <1                  | 3                   | μA   | PA[7:0]=0/V <sub>DD</sub> , PTM[2:0]=0,                                                                  |
| Standby Current | IVPP_SB            | <1                  | 1                   | μА   | VDD=VPP=VDDMAX,<br>PRD=PPROG=PWE=0                                                                       |

[8,940]

© eMemory EO0128X8KB180BC01A

#### **Notes**

- 1. All electrical parameters listed above are based on SPICE (or equivalent) simulations and subject to changes after silicon verification.
- 2. Capacitive loading should be less than 1pf same as simulation conditions.
- 3. No active current at standby mode thus I<sub>SB</sub> is dependent on device leakage current.
- Normally, junction temperature is from -40°C to 150°C for normal operation, but from -20°C to 125°C for programming operation.

#### Page 5



TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## **Timing**

## Timing Parameters ( $C_{LOAD}$ =1pf)

| Parameter                   | Symbol            | Min | Max   | Unit |
|-----------------------------|-------------------|-----|-------|------|
| Rising Time                 | Tr                | -   | 1     | ns   |
| Falling Time                | Tf                | -   | 1     | ns   |
| Read Data Access Time       | Taa               | -   | 200   | ns   |
| Read Pulse Width Time       | T <sub>prd</sub>  | 200 | 50000 | ns   |
| Read Pulse Interval Time    | T <sub>prdi</sub> | 13  | -     | ns   |
| Output Data Hold Time       | Toh               | 0   | -     | ns   |
| Address Setup Time          | Tas               | 4   | -     | ns   |
| Address Hold Time           | Tah               | 9   | -     | ns   |
| Data Setup Time             | T <sub>ds</sub>   | 4   | -     | ns   |
| Data Hold Time              | T <sub>dh</sub>   | 9   | -     | ns   |
| Program Mode Setup Time     | T <sub>pps</sub>  | 10  | -     | ns   |
| Program Mode Recovery Time  | T <sub>ppr</sub>  | 10  | -     | ns   |
| External VPP Setup Time     | T <sub>vps</sub>  | 10  | -     | ns   |
| External VPP Hold Time      | T <sub>vph</sub>  | 10  | -     | ns   |
| Program Pulse Width Time    | T <sub>pw</sub>   | 90  | 110   | μs   |
| Program Pulse Interval Time | T <sub>pwi</sub>  | 2   | -     | μs   |
| Program Recovery Time       | T <sub>vr</sub>   | 10  | -     | μs   |
| Control Signal Enable Time  | T <sub>rst</sub>  | 20  | -     | ns   |
| PTM Mode Setup Time         | T <sub>ms</sub>   | 10  | -     | ns   |
| PTM Mode Hold Time          | T <sub>mh</sub>   | 10  | -     | ns   |

[8,940]

© eMemory EO0128X8KB180BC01A

#### Notes

- 1. All electrical and timing parameters listed above are based on SPICE (or equivalent) simulations and subject to changes after silicon verification.
- 2. Capacitive loading should be less than 1pf same as simulation conditions.
- 3.  $T_{DW}$  have maximum value limitation, which is reliability concern to avoid long HV stress time.
- 4. Normally, junction temperature is from -40°C to 150°C for normal operation, but from -20°C to 125°C for programming operation.



TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## Input Capacitance

| Parameter                    | Symbol | Min | Max | Unit | Test Condition   |
|------------------------------|--------|-----|-----|------|------------------|
| Control Input                | CCON   | -   | 0.1 | pF   | VIN=0 at f=1 MHz |
| Address Input                | CADD   | -   | 0.1 | pF   | VIN=0 at f=1 MHz |
| Data Input                   | CDIN   | -   | 0.1 | pF   | VIN=0 at f=1 MHz |
| VPP input(from memory block) | Срр    | -   | 100 | pF   | VPP=0 at f=1 MHz |

[8,940] © eMemory EO0128X8KB180BC01A



TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## **Timing Waveforms**

## **Timing Definition**

## Power Up/Down Sequence



## **Signal Pin Timing Definition**



- VDD/VPP/VSS level is specified in each timing waveform.
- Power up sequence timing is based on power measuring point while VDD/VPP is stable as waveform indicated.
- Signal to signal timing is measured from T<sub>i</sub> to T<sub>o</sub> of input/output signal at 50% VDD level based on VSS=0V.
- Signal rise time  $T_r$  (fall time  $T_f$ ) is defined from 10% => 90% (10% <= 90%) of VDD level based on VSS=0V.

#### Page 8



TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## **Timing Definition**

## **Control Pin Timing Definition**



- Control pins are included PRD, PPROG, and PWE.
- Control pins have to be executed Tms later after PTM change.

## User Mode

## Read Cycle



 $PPROG=PWE=0V, PDIN[7:0]=H/L, PA[1:0]=H/L, VDD=2.0V \sim 5.5V, VPP=VDD/VSS/Floating, VSS=0V, VPP=V$ 

#### Page 9

## EO0128X8KB180BC01A

TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## **Program Cycle**



PTM[2:0]=[0,0,0], VDD=2.0V~5.5V, VPP=7.25V~7.75V, VSS=0V

#### **Notes**

- It is suggested using Margin Read Mode to do data verification. The details of Margin Read Mode are shown in the following page.
- 2. The next operation has to be executed Tvr later after PPROG falls to low.

#### EO0128X8KB180BC01A

TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## Testing Mode

## Margin Read Cycle



PPROG=PWE=0V, PDIN[7:0]=H/L, VDD=5V, VPP=VDD/VSS/Floating, VSS=0V

PTM[2:0]=[1,1,0] for Margin-1 Read Mode; PTM[2:0]=[1,1,1] for Margin-2 Read Mode

#### **Notes**

- 1. VDD needs to use typical value 5V when doing Margin Read Mode.
- 2. Please relax the setting of Tprd to be 5 times of the typical one when doing Margin Read Mode, and Taa will be 5 times.
- 3. VDD needs to use typical value 5V when doing Margin Read Mode.

## Off Margin Read Cycle



 ${\tt PPROG=PWE=0V, PDIN[7:0]=H/L, VDD=5V, VPP=VDD/VSS/Floating, VSS=0V}$ 

PTM[2:0]=[1,0,1] for Off Margin Read Mode

#### **Notes**

- 1. VDD needs to use typical value 5V when doing Off Margin Read Mode.
- 2. Please relax the setting of Tprd to be 5 times of the typical one when doing Off Margin Read Mode, and Taa will be 5 times.

#### Page 11

## EO0128X8KB180BC01A

TSMC 0.18um Pure 5V BCD Process 128 x 8-bits One Time Programmable Device

## **IPP Mode**



PRD=0V, VDD=VPP=2.0V, VSS=0V

#### Note:

- 1. To measure one designate memory cell, PA is used to select byte and one PDIN[X] is forced as logic "L" with all other PDIN bus are logic "H".
- 2. Cell current is measured from VPP pin.
- When dedicated PA and PDIN is selected, customer can measure lpp during PWE high active period.
  PWE high active period depends on Parameter Measurement Unit of tester, and it's suggested to be over 30ms.