```
工科数分第三部分
  期中试题
            1.
            2.
            练习:
            3.
            4.
            5.
            练习:
            1.
            练习
            练习(有极坐标使用特征):
            练习:
            5.吃透
            练习:
            6.直接格林公式
            8.9.
         Ξ
           1
课本:
    多元函数积分学
       直角坐标系下二重积分的计算
       极坐标下
       三重积分
    第一性曲线积分
    第一性曲面积分
    第二性曲线积分
```

工科数分第三部分

期中试题

解答*只看蓝字即可*

1.

 4π

多核形分顺序 [ody [yz fkyk] =

3. 根据二重积分的几何意义可知, $\iint_{x^2+y^2 \le 1} \sqrt{1-x^2-y^2} \, dx \, dy = \underbrace{-1}_{y^2+y^2 \ge 1} \sqrt{1-x^2-y^2} \, dx \, dy = \underbrace{-1}_{y^2+y^2 \ge 1} \sqrt{1-x^2-y^2} \, dx \, dy = \underbrace{-1}_{y^2+y^2 \ge 1} \sqrt{1-x^2-y^2} \, dx \, dy = \underbrace{-1}_{y^2+y^2 \ge 1} \sqrt{1-x^2-y^2} \, dx \, dy = \underbrace{-1$

答案: 5. 设 Σ 为球面 $x^2 + y^2 + z^2 = 4$,则 $\iint (x^2 + y^2 + z^2) dS = __$

二、计算题 (每小题 8 分,共 72 分) $2 + \frac{1}{2} + \frac{1}{2$

3.

化为
$$z=\sqrt{1-x^2-y^2}$$
整个是 $rac{4\pi}{3}$,答案是 $rac{2\pi}{3}$

4.

2

利用公式 $4\pi r^2$

练习:

练习 g_ xxxx) ds, 其中上为国国X=acxt, y=asint (ostson)

注意多重积分所求不一定完全在边界, 也有在内部

$$x = acost, y = asint$$

$$x^2 + y^2 = a^2$$

$$= \oint_{\mathcal{L}} \alpha^{2n} ds = \alpha^{2n} \oint_{\mathcal{L}} 1 ds$$

$$= \alpha^{2n} \cdot 2\pi a$$

$$= 2\pi \alpha^{2n+1}$$

1.

5. 设Σ为球面 x² + y² + z² = 4, 则∬(x² + y² + z²) dS = ______
 二、计算题 (每小题 8 分, 共 72 分)

1. 计算二重积分 $\iint_D xyd\sigma$, 其中 D 是由直线 v=1 x=2 及 v=x 所围成闭区域.

重积分
$$\iint_{D}$$
 (本来) $d\sigma$ (本来)

答案: ²⁰

2.

练习(有极坐标使用特征):

纸质过程@SLH

答案: $\pi * (e^4 - 1)$:

4.

3. 计算三重积分 $\iiint xdxdydz$, 其中 Ω 是三个坐标面及半面 x+2y+z=1 所围成的

闭区域.

が

$$(x^2 + y^2) dx dy dz$$
, 其中 Ω 是由曲面 $z = \frac{1}{2}(x^2 + y^2)$ 及平

4. 计算三重积分 $\iint (x^2 + y^2) dx dy dz$, 其中 Ω 是由曲面 $z = \frac{1}{2}(x^2 + y^2)$ 及平面

z=2 所围成的闭区域.

投影区域正好是一个O。

答案:

练习:

SSEdv. JZ由由西芒 12-2-12 及正义州·国发的闭时

答案:

5.吃透

Solve: 换元

 $\int_{L}ydx+xdy=\int_{0}^{rac{\pi}{2}}[sint(-sint)+cost(cost)]dt$,

Solv2:路径无关

$$\int_L y dx + x dy = \int_{AO} y dx + x dy + \int_{OB} y dx + x dy$$
,

练习:

6.直接格林公式

woc O! 直接格林公式

8.9.

第二性曲面积分(有向问题:一换二带三定号

8.

Solv1:

Solv2:

补面高斯:

6. 计算曲线积分
$$\oint_L (2x-y+4)dx + (5y+3x-6)dy$$
, 其中 L 是三顶点分别为 $(0,0)$, $(3,0)$ 多 $(0,0)$ 0, $(3,0)$ 0 为 $(0,0)$ 0, $(3,0)$ 0 为 $(0,0)$ 0, $(0,0)$

9显然高斯

但是不能将x+y+z=1直接带入 $\iint_{\Omega}(2x+2y+2z)$,

Ξ

1

课本:

多元函数积分学

线性性 区域可加性 保序性 取1的时候表示面积

直角坐标系下二重积分的计算

极坐标下

可能用于被积函数 X^2*Y^2 和 X^2+Y^2 .且定义域合适

三重积分

柱坐标:

投影部分为圆域或其一部分

投影法:

截面法:

/////

第一性曲线积分

第一型曲或形分
$$\int_{\mathcal{L}} f M y ds$$
 $\int_{\mathcal{L}} f M y ds$ $\int_{\mathcal{L}} f M y$

也可以选y[0,1],

第一性曲面积分

第二性曲线积分

$$\int_L P(x,y) dx + Q(x,y) dy = \int_L P(x,y) dx + \int_L Q(x,y) dy$$

Solv1:

第二理 曲溪和的
$$\left\{ 2 \text{ pixyldx} + 10 \text{ ixyldy} \right\} = \int_{2}^{2} \text{ pixyldx} + \int_{2}^{2} \text{ Qixyldy}$$
 $\left\{ \frac{1}{1} \text{ pixyldx} \right\} = \int_{2}^{2} \text{ pixyldx} + \int_{2}^{2} \text{ Qixyldy}$ $\left\{ \frac{1}{1} \text{ pixyldx} \right\} = \int_{2}^{2} \text{ pixyldx} + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ pixyldx} + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldy} = \int_{2}^{2} \text{ Qixyldy} + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldy} + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldy} + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldy} + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldy} + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldy} + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldx} + \left[\frac{1}{1} \text{ Qixyldy} \right] + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldx} + \left[\frac{1}{1} \text{ Qixyldy} \right] + \left[\frac{1}{1} \text{ Qixyldy} \right] + \left[\frac{1}{1} \text{ Qixyldy} \right] = \int_{2}^{2} \text{ Qixyldy} + \left[\frac{1}{1} \text{ Qixyldy} \right] + \left[\frac{1}{1} \text{$

Solv2:

Solv3:

(1) 极限
$$\lim_{(x,y)\to(0,2)} \frac{1+xy}{x^2+y^2} = \underline{\hspace{1cm}}$$

- (2) 设二元函数 $z = x \arctan y$,则 dz =__

- (1) 设 $z = x^2 e^{xy} \ln(x^2 + y^2)$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$,

收敛域,,

(3) 判定级数
$$\sum_{n=1}^{\infty} n \sin \frac{1}{n^2}$$
 的收敛性.

(4) 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n \cdot n} x^n$ 的收敛域.

(5) 求幂级数 $\sum_{n=1}^{\infty} nx^{n-1}$ 在区间 $(-1,1)$ 内的和函数.

(6) 将函数 $f(x) = \frac{1}{x}$ 展开成 $x-2$ 的幂级数,并指出其收敛区间.

四、计算下列积分(每小题 10 分,共 30 分)

(1) $\iiint_{\Omega} (x+y) dx dy dz$,其中 Ω 为平面 $x=0$, $y=0$, $z=0$, $x+y+2z=1$ 所围成的四面体.

(2) $\int_{L} (xy^3-y^2\cos x) dx + (1-2y\sin x + 3x^2y^2) dy$,其中 L 为在抛物线 $2x=\pi y^2$ 上由点 $(0,0)$ 到 $3\pi x^2$ 一段 $3\pi x^2$

和函数:

(3) 判定级数
$$\sum_{n=1}^{\infty} n \sin \frac{1}{n^2}$$
 的收敛性.

(4) 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n \cdot n} x^n$ 的收敛域.

(5) 求幂级数 $\sum_{n=1}^{\infty} n x^{n-1}$ 在区间 (-1,1) 内的和函数.

(6) 将函数 $f(x) = \frac{1}{1}$ 展开成 $x = 2$ 的幂级数. 并指出其收敛区间.

展成幂级数

收敛域取交集