

How We Learned A Language Before Duolingo

Hyoyeon Lee¹, supervised by Dr Seth Bullock¹ and Dr Conor Houghton²

- 1 School of Computer Science, University of Bristol
- 2 School of Engineering Mathematics and Technology, University of Bristol

Introduction & Objectives

- Linguistics is the scientific study of language, focusing on structure, grammar, meaning, and evolution.
- ► Computational modelling help explore key questions:
 - 1. What properties make human languages learnable and interpretable for communication?
 - 2. How do languages obtain these properties?
- ▶ I built an ILM using a Variational Autoencoder and explore whether image-based meaning space exhibits similar properties.

SSILM Training Process (Replication)^[1]

- Supervised: child-directed language learning
- ► Unsupervised: child hearing utterances related to some situations they are engaged in

Replicated SSILM Evaluation (Metrics)

1.0 -0.8 -0.6 -0.4 -0.2 -

Generations

- Stability
- Expressivity
- Compositionality

Image-based SSILM with VAE

- Limitations of SSILM:
 - ► n-bit binary vectors are too simplistic to capture the richness of human language
 - ► Enforce a 1-to-1 mapping between meaning-signals
- ► Implementation of SSILM with VAE:
 - Samples a probabilistic distribution and a latent representation via reparameterisation trick
 - ► Enables larger meaning space with visual meanings
 - ► Better reflects human uncertainty and variability by matching a distribution with single meaning

Results

- ► Current Process & Goals:
 - Analyse if the new model follows the same trends in stability, expressivity, and compositionality as prior models.
 - ▶ Develop a new calculation method for compositionality.

Reference