Linear Algebra Notes

Nong Minh Hieu¹

 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

Contents

1	Vector Spaces			
	1.1	Definition of Vector Space	2	
	1.2	Linear Independence	3	
	1.3	Basis and Dimension	3	
A	List	t of Definitions	4	
В	3 Important Theorems			
C	Important Corollaries			
D	Imp	portant Propositions	4	
E	Refe	erences	5	

1 Vector Spaces

1.1 Definition of Vector Space

Definition 1.1 (Vector Space).

A vector space (over a field \mathbb{F}) consists of a set V with two operations "+" and "·" subject to the conditions that for all $\vec{v}, \vec{w}, \vec{u} \in V$ and scalars $r, s \in \mathbb{F}$:

1. Closure under:

- Vector addition: $\vec{v} + \vec{w} \in V$.
- Scalar multiplication: $r \cdot \vec{v} \in V$.

2. Properties of vector addition:

- Commutativity: $\vec{v} + \vec{w} = \vec{w} + \vec{v}$.
- Associativity: $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$.

3. Properties of scalar multiplication:

- Distributivity over scalar addition: $(r+s) \cdot \vec{v} = r \cdot \vec{v} + s \cdot \vec{v}$.
- Distributivity over vector addition: $r \cdot (\vec{v} + \vec{w}) = r \cdot \vec{v} + r \cdot \vec{w}$.

4. Inverse elements:

• Additive inverse: $\forall \vec{v} \in V, \exists -\vec{v} \in V : \vec{v} + (-\vec{v}) = \vec{0}$.

5. Identity elements:

- Additive identity: $\exists \vec{0} \in V : \vec{0} + \vec{v} = \vec{v}, \forall \vec{v} \in V.$
- Multiplicative identity: $\exists 1 \in \mathbb{F} : 1 \cdot \vec{v} = \vec{v}, \quad \forall \vec{v} \in V.$

For brevity, we will denote vectors as bold face letters instead of overhead arrows after this definition. For example, \mathbf{u}, \mathbf{v} and \mathbf{w} .

Remark 1.1 ("Over a field"). When we use the phrase "a vector space over a field \mathbb{F} ", this means that the scalars that we use will be taken from the field \mathbb{F} . It does not mean that our vector space consists of \mathbb{F} -valued vectors. For example, the following vector space:

$$\mathcal{L} = \left\{ (x, \alpha x) : x \in \mathbb{C}, \alpha \in \mathbb{R} \right\}$$

is a vector space over \mathbb{R} (scalar multiplications are done with real-valued scalars) even though the vectors are complex-valued.

Remark 1.2 (Trivial Space). A vector space with one element is called a trivial space.

Example 1.1 (A simple example). The following is a vector space over \mathbb{R} :

$$L = \left\{ \begin{pmatrix} x & y \end{pmatrix}^{\top} : y = 3x \right\}.$$

This is easy to verify. Let us go through each condition one by one. Let the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in L$ defined as follows:

$$\mathbf{u}_1 = \begin{pmatrix} x_1 \\ 3x_1 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} x_2 \\ 3x_2 \end{pmatrix}, \quad \mathbf{u}_3 = \begin{pmatrix} x_3 \\ 3x_3 \end{pmatrix}..$$

All the axioms of a vector space are satisfied. Let $\alpha, \beta \in \mathbb{R}$, we have:

- 1. Closure under vector addition: $\mathbf{u}_1 + \mathbf{u}_2 = \begin{pmatrix} x_1 \\ 3x_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ 3x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ 3(x_1 + x_2) \end{pmatrix} \in \mathbf{L}$.
- 2. Closure under scalar multiplication: $\alpha \mathbf{u}_1 = \alpha \begin{pmatrix} x_1 \\ 3x_1 \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ 3\alpha x_1 \end{pmatrix} \in \mathcal{L}$.
- 3. Additive commutativity: $\mathbf{u}_1 + \mathbf{u}_2 = \begin{pmatrix} x_1 + x_2 \\ 3x_1 + 3x_2 \end{pmatrix} = \begin{pmatrix} x_2 + x_1 \\ 3x_2 + 3x_1 \end{pmatrix} = \mathbf{u}_2 + \mathbf{u}_1$.
- 4. Additive associativity: $(\mathbf{u}_1 + \mathbf{u}_2) + \mathbf{u}_3 = \begin{pmatrix} (x_1 + x_2) + x_3 \\ 3(x_1 + x_2) + 3x_3 \end{pmatrix} = \begin{pmatrix} x_1 + (x_2 + x_3) \\ 3x_1 + 3(x_2 + x_3) \end{pmatrix} = \mathbf{u}_1 + (\mathbf{u}_2 + \mathbf{u}_3).$
- 5. ... (We can easily verify other axioms as well).

Example 1.2 (Polynomials of degree 3). Consider the following set of real-coefficients polynomials with degree of at most 3:

$$\mathcal{P}_3 = \left\{ a_0 + a_1 x + a_2 x^2 + a_3 x^3 \middle| a_0, a_1, a_2, a_3 \in \mathbb{R} \right\}.$$

Then, \mathcal{P}_3 is a vector space over \mathbb{R} under the following operations:

$$(a_0 + a_1x + a_2x^2 + a_3x^3) + (b_0 + b_1x + b_2x^2 + b_3x^3)$$

$$= (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + (a_3 + b_3)x^3$$

$$\alpha \cdot (a_0 + a_1x + a_2x^2 + a_3x^3) = (\alpha a_0) + (\alpha a_1)x + (\alpha a_2)x^2 + (\alpha a_3)x^3.$$

We can think of \mathcal{P}_3 as being "the same" as the vector space \mathbb{R}^4 . For every set of real coefficients a_0, \ldots, a_3 , we have the following correspondence:

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
 corresponds to $\begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$

- 1.2 Linear Independence
- 1.3 Basis and Dimension

\mathbf{A}	List of Definitions	
1	1.1 Definition (Vector Space)	2
В	Important Theorems	
\mathbf{C}	Important Corollaries	
D	Important Propositions	

E References

References

- [1] Rick Durrett. *Probability: Theory and Examples.* 4th. USA: Cambridge University Press, 2010. ISBN: 0521765390.
- [2] Erhan undefinedinlar. *Probability and Stochastics*. Springer New York, 2011. ISBN: 9780387878591. DOI: 10.1007/978-0-387-87859-1. URL: http://dx.doi.org/10.1007/978-0-387-87859-1.
- [3] Wikipedia. Vitali set Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Vitali%20set&oldid=1187241923. [Online; accessed 24-December-2023]. 2023.