

Софийски университет "Св. Климент Охридски" Факултет по математика и информатика

ТЕМА ЗА ПРОЕКТ

към курс "Функционално програмиране" за специалности Информатика, Компютърни науки (1 поток) и Софтуерно инженерство зимен семестър 2019/2020 г.

Извод на типове

Synopsis: Имплементирайте система за извеждане на типове в ламбда смятането.

Ламбда смятането (lambda calculus) е формална система в математическата логика, която описва изчисленията само на базата на абстракция (построяване) на функции и апликация (прилагане) на функции върху променливи и/или други функции чрез замяна на свързани променливи. Термовете (изразите) в ламбда смятането се построяват по следните правила:

- ако x е променлива, то x е терм. Приемаме, че разполагаме с изброимо безкраен списък с променливи.
- ако M и N са термове, то (MN) е терм, получен от прилагането на терма M над N. Прилагането е лявоасоциативна операция и когато пишем MNP, ще подразбираме ((MN)P).
- ако M е терм, а x е променлива, то λ x.M е терм, получен като построяване на функция с аргумент x и тяло M. За удобство вместо λ x. λ y... можем да пишем λ xy....

Примери за ламбда термове: $\lambda x.x$, $\lambda x.y$, $\lambda xy.x$, $\lambda fx.f(fx)$, $\lambda xyz.xz(yz)$

Едно от свойствата, които даден терм може да има, е тип. Типовете се построяват по следните правила:

- ако α е типова променлива, то α е тип
- а ко σ и т са типове, то σ→т е тип на функция, приемаща аргумент от тип σ и връщаща резултат от тип т. Операцията → е дясноасоциативна и когато пишем р→σ→т, ще подразбираме (р→(σ→т)).

Примери за типове: $\alpha \to \alpha$, $\alpha \to \beta$, $\alpha \to \beta \to \alpha$, $(\alpha \to \alpha) \to \alpha \to \alpha$

Важно свойство на типовете, които разглеждаме е, че те са *крайни*, правещи невъзможно съществуването на безкраен тип от рода на $\alpha \to \beta \to \gamma \to \cdots$. За целите на този проект можем да считаме, че няма и безкрайни ламбда термове.

Ще обозначаваме твърдението "термът М има тип τ " с М: τ . За да определим типа на даден терм, първо е необходимо да направим някакви допускания за типовете на променливите, които участват в него. При различни допускания за променливите е възможно да се получи различен тип на терма. Затова ще разглеждаме твърдения от вида "при допускания Γ термът М има тип τ ", където Γ е множество от допускания от вида М: τ . Така можем да определим типа на произволен термов чрез следните правила

- ако М: $\sigma \to \tau$ и N: σ при едни и същи допускания Γ , то (MN): τ при същите допускания Γ
- ако М: τ при допускания Γ , сред които присъства и x: σ , то $(\lambda x.M)$: $\sigma \rightarrow \tau$ при допускания Γ с премахнато вече използваното допускане x: σ .

Примери: ху:т при допускания х: $\sigma \to \tau$ и у: σ , λ х.ху: ($\sigma \to \tau$) $\to \tau$ при допускане у: σ , λ ух.ху: $\sigma \to (\sigma \to \tau) \to \tau$ без използването на допускания.

Целта на този проект е по даден ламбда терм, например λ xy.x(xy) или λ xyz.xz(yz), да се изведе неговия тип (ако има такъв) чрез типов извод. Извеждането на тип се получава по следната стратегия:

- за да намерим типа τ на терм от вида (MN), трябва първо да намерим такъв тип σ , такъв че М: $\sigma \to \tau$ и N: σ
- за да намерим типа на терм от вида (λ x.M), можем да допуснем, че х: σ за някой неизползван до момент тип σ и след това да потърсим типа на тялото M с добавеното ново допускане, че х: σ . Ако в процеса на търсене определим, че M: τ , то ще знаем, че (λ x.M): $\sigma \rightarrow \tau$.
- в дъното на рекурсивното търсене ще ни се наложи да потърсим типа на променлива x; този тип можем да определим като погледнем в натрупаните допускания за предположение от вида x: σ .

Пример: За да намерим типа на терма λ yx.xy:

- допускаме, че у: σ
- за да намерим типа на терма λ x.xy:
 - о допускаме, че х: ρ
 - о за да намерим типа на терма ху:
 - търсим типа на терма у
 - но по допускане имаме у: σ
 - търсим типа на терма х от вида $\sigma \to \tau$

```
• но по допускане имаме x: \rho
```

- полагаме ρ := $\sigma \rightarrow \tau$
- така получаваме х: σ → τ
- така получаваме ху: т
- \circ така получаваме $\lambda x.xy: \rho \rightarrow \tau$
- \circ HO $\rho = \sigma \rightarrow \tau$
- \circ затова получаваме λ x.xy:($\sigma \rightarrow \tau$) $\rightarrow \tau$
- така получаваме, че λ ух.ху: $\sigma \rightarrow (\sigma \rightarrow \tau) \rightarrow \tau$

Примерно описание на идеята за типов извод и основните дефиниции в ламбда смятане можете да намерите тук.