ВИДАЛЕННЯ НЕВИДИМИХ ПОВЕРХОНЬ

Слайди до лекцій з дисципліни «Математичні та алгоритмічні основи комп'ютерної графіки» Лектор: к.т.н., доцент Сулема Є.С.

Каф. ПЗКС, ФПМ, КПІ ім. Ігоря Сікорського 2019/2020 навч. рік

В чому полягає проблема?

Класифікація методів видалення невидимих частин об'єктів

- 1. За вибором частин, що видаляються:
- Видалення невидимих лінії, ребер, поверхонь, об'ємів;
- 2. За порядком обробки елементів сцени:
- Видалення у довільному порядку,
- Видалення у порядку, що визначається процесом візуалізації;
- 3. За системою координат:
- Алгоритми, які працюють у просторі зображення алгоритм «плаваючого горизонту», алгоритм z-буфера;
- Алгоритми, які працюють у просторі об'єктів **алгоритм Робертса**.

Алгоритм «плаваючого горизонту»

- Алгоритм плаваючого горизонту частіше за все використовується для видалення невидимих ліній тримірного представлення функцій, які описують поверхню у вигляді *F*(*x*,*y*,*z*)=0.
- <u>Основна ідея</u> полягає в зведенні тримірної задачі до двомірної шляхом перетину вихідної поверхні послідовністю паралельних січних площин, які мають сталі значення координат x, y та z.

• Наприклад, в випадку застосування січних площин із сталою координатою z функція F(x,y,z)=0 зводиться до послідовності кривих, що лежать в кожній з цих паралельних площин, виду y=f(x,z), де значення координаті z постійне на кожній з цих площин:

• Отже, поверхня тепер складається з послідовності кривих, що лежать в кожній з цих площин:

• Спроеціюємо отримані криві на площину *z*=0:

• Для кожного значення координати х кожної кривої визначимо відповідне значення y=f(x). Тоді критерій видимості ліній, що спроецьовані на певну площину, полягає в наступному: якщо на заданій площині при певному значенні х відповідне значення у на кривій, видимість якої аналізується, більше максимуму (виявлення "гір") або менше мінімуму (виявлення "ям") по у для всіх попередніх кривих для цього х, то поточна крива є видимою.

• Для того, що візуалізувати отриманий "горизонт" необхідно визначити точки перетину відрізків, які інтерполюють поточну та попередні криві:

$$\begin{cases} x_{i} = \frac{\Delta x_{2}(y_{n1} \cdot \Delta x_{1} + x_{n1} \cdot \Delta y_{1}) - \Delta x_{1}(y_{n2} \cdot \Delta x_{2} + x_{n2} \cdot \Delta y_{2})}{\Delta y_{1} \Delta x_{2} - \Delta y_{2} \Delta x_{1}} \\ y_{i} = y_{n1} + \frac{\Delta y_{1}(x_{i} - x_{n1})}{\Delta x_{1}} \end{cases}$$

- $\Delta e \Delta x_i = x_{(n+1)} x_{n}$
- Δy_i=y_{(n+1) j} y_{n j}
- j=1,2 (j=1 поточна лінія, j=2 попередня лінія),
- х_i, у_i координати точки перетину (точка Р),
- x_{nj} , y_{nj} координати початкової точки відрізку j-ї лінії (точки A, C),
- х_{(n+1) j}, у_{(n+1) j} координати кінцевої точки відрізку j-ї лінії (точки В, D).

Основні етапи алгоритму

- 1. Якщо на поточній площині при певному заданому значенні х відповідне значення у на кривій, видимість якої аналізується, більше максимуму або менше мінімуму по у для всіх попередніх кривих для цього х, то поточна крива візуалізується.
- 2. Якщо на проміжку від попереднього (x_n) до поточного (x_{n+k}) значення х видимість кривої змінюється, то обчислюється точка перетину x_i .
- 3. Якщо на проміжку від x_n до x_{n+k} сегмент привої повністю видимий, то він візуалізується цілком; якщо він став невидимим, то візуалізується фрагмент від x_n до x_i ; якщо ж він став видимим, то візуалізується фрагмент від x_i до x_{n+k} .

Алгоритм z-буфера

- Працює у просторі зображення.
- <u>Основна ідея</u> полягає у розгляді глибини як функції z(x,y) та пошук їх максимального значення для кожного пікселя екранної площини.
- Алгоритм використовує 2 буфери:
 - буфер кадра це буфер, що використовується для зберігання значення інтенсивності значення кольору в кожній позиції;
 - буфер глибини (z-буфер) це буфер, що використовується для збереження координати z кожного видимого пікселя у просторі зображення.

• Координати z звично нормалізуються до діапазону [0, 1]. Значення 0 для z-координати вказує на задню площину відсікання, а значення 1 вказує передню площину відсікання.

Кроки алгоритму

- 1. Встановити початкові значення для кожної пари х,у:
 - буфер глибини = <мінімальне значення z> (звичайно 0),
 - буфер кадра = <код кольору тла>;
- 2. Обрати перший полігон;
- 3. Обробити полігон:
 - для кожної пари х,у обчислити z(x,y);
 - якщо обчислене z більше за значення z у буфері глибини для поточної пари x,y, то для цього пікселя:
 - визначити колір поверхні,
 - встановити буфер глибини = <обчислене z>,
 - встановити буфер кадра = <код кольору поверхні>;
- 4. Обрати наступний полігон та перейти на п. 3;
- 5. Вийти з алгоритму, коли буде оброблено всі полігони.

Обчислення глибини

$$ax + by + cz + d = 0$$

$$z = -\frac{ax + by + d}{c}$$

$$y = const$$

$$x_{i+1} = x_i + 1$$

$$z_{i+1} - z_i = -\frac{a(x+1) + by + d}{c} + \frac{ax + by + d}{c} = -\frac{a}{c}$$

$$z_{i+1} = z_i - \frac{a}{c}$$

Задача

- Задано чотирикутник $P_1(10,5,10)$, $P_2(10,25,10)$, $P_3(25,25,10)$, $P_4(25,5,10)$ та трикутник $T_1(15,15,15)$, $T_2(25,25,5)$, $T_3(30,10,5)$.
- Підготувати дані для виведення зображення на екран розміром 32х32, використовуючи буфер кадра з такими значеннями:
 - TAO = 0,
 - чотирикутник = 1,
 - трикутник = 2.

- Значення z-буфера знаходяться у діапазоні [0,15].
- Точка спостереження знаходиться ну нескінченості на додатній пів осі.

• Буфер кадра після растризації чотирикутника:

• Z-буфер після растризації чотирикутника:

• Визначення рівняння площини, якій належить полігон, методом Н'юела:

$$ax + by + cz + d = 0$$

$$\frac{a}{d}x + \frac{b}{d}y + \frac{c}{d}z = -1$$

Для трикутника:
$$\begin{cases} a_n x_1 + b_n y_1 + c_n z_1 = -1 \\ a_n x_2 + b_n y_2 + c_n z_2 = -1 \\ a_n x_3 + b_n y_3 + c_n z_3 = -1 \end{cases}$$

або у матричному вигляді:

$$(a_n, b_n, c_n) \cdot \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} = (-1, -1, -1),$$

$$\Delta e \ a_n = \frac{a}{d}, \ b_n = \frac{b}{d}, \ c_n = \frac{c}{d}.$$

Для нашої задачі:

$$\begin{cases} 15a_n + 15b_n + 15c_n = -1\\ 25a_n + 25b_n + 5c_n = -1\\ 30a_n + 10b_n + 5c_n = -1 \end{cases}$$

Після розв'язання цієї системи лінійних алгебраїчних рівнянь (наприклад, методом Крамера) отримуємо:

$$a_n = -\frac{3}{120}$$
, $b_n = -\frac{1}{120}$, $c_n = -\frac{4}{120}$

Отже, рівняння площини, якій належить трикутник $T_1T_2T_3$:

$$3x + y + 4z - 120 = 0$$

Ітеративна формула для обчислення глибини: $z_{i+1}=z_i-rac{3}{4}$

• Буфер кадра після оброблення трикутника:

• Z-буфер після оброблення трикутника:

Алгоритм Робертса

• В алгоритмі Робертса вимагається, щоб всі об'єкти були опуклими. Опуклий багатогранний об'єкт з пласкими гранями має представлятися набором площин, що перетинаються. В алгоритмі передбачається, що об'єкти складаються з пласких полігональних граней, які в свою чергу складаються з ребер, а ребра – з окремих вершин. Всі вершини, ребра та грані зв'язані з конкретним об'єктом.

Етапи алгоритму

- Алгоритм складається з трьох етапів:
- 1. 3 кожного об'єкта вилучаються ті ребра або грані, які екрануються самим об'єктом;
- 2. Перевіряється, чи екрануються ребра та грані, що залишились, іншими об'єктами;
- 3. Обчислюються відрізки, які утворюють нові ребра, якщо об'єкти протикають один одного.

1й етап

- I. Видалення невидимих площин для кожного об'єкта в сцені:
- 1. Сформувати багатокутники, виходячи з списку вершин об'єкта.
- 2. Обчислити рівняння площини для кожної полігональної грані об'єкта.
- 3. Перевірити знак рівняння площини:
 - а) взяти будь-яку точку всередині об'єкта, наприклад шляхом усереднення координат його вершин.
 - б) обчислити скалярний добуток рівняння площини та точки всередині об'єкта.
 - в) якщо цей скалярний добуток < 0, то змінити знак рівняння цієї площини.
- 4. Сформувати матрицю об'єкта.

Розглянемо приклад формування матриці об'єкта.

Нехай даний одиничний куб з центром у початку координат. Це означає, що він утворюється такими площинами:

$$x_1=1/2$$
, $x_2=-1/2$, $y_3=1/2$, $y_4=-1/2$, $z_5=1/2$, $z_6=-1/2$.

УВАГА: на цьому на інших слайдах приклади та пояснення позначені синім кольором.

Рівняння правої площини має вигляд:

$$2x_1 - 1 = 0$$

Повна матриця об'єкта має вигляд:

$$V = \begin{pmatrix} 2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 2 \\ -1 & 1 & -1 & 1 & -1 & 1 \end{pmatrix}$$

Оскільки в алгоритмі Робертса передбачається, що всі точки, що лежать всередині об'єкта, дають позитивний скалярний добуток, то отриману матрицю необхідно перевірити за допомогою однієї з внутрішніх точок об'єкта. Мета перевірки — упевнитися, що знаки кожного рівняння площин вибрані вірно. Якщо знак скалярного добутку для якоїсь площини менше нуля, то відповідне рівняння слід помножити на -1.

Візьмемо точку всередині куба: $S\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ або в однорідних координатах:

$$\bar{S}$$
=(1/4 1/4 1/4 1) = (1 1 1 4)

Скалярний добуток цього вектору на матрицю об'єкта:

Оскільки результати для 1-го, 3-го та 5-го рівнянь від'ємні, то необхідно помножити відповідні стовпці матриці об'єкта на -1:

$$V_{corrected} = \begin{pmatrix} -2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- 5. Помножити її зліва на матрицю, яка є зворотною до матриці видового перетворення, що включає перспективу.
- 6. Обчислити та запам'ятати габарити прямокутної осяжної оболонки перетвореного об'єму x_{max} , x_{min} , y_{max} , y_{min} .
- 7. Визначити невидимі площини:
 - а) обчислити скалярний добуток пробної точки, що лежить у нескінчності, на перетворену матрицю об'єкта.
 - б) якщо цей скалярний добуток < 0, то площина є невидимою.
 - в) видалити весь багатокутник, що лежать в цій площині.

Розглянемо приклад.

Нехай точка спостереження E знаходиться на додатній пів осі z, наприклад, її однорідні координати (0 0 1 0), а погляд спостерігача спрямований на початок координат, тобто \bar{E} =(0 0 -1 0).

Тоді шуканий скалярний добуток дорівнює:

Це означає, що грань з номером 6 є невидимою для спостерігача. Нульові результати відповідають площинам, які є паралельними напряму погляду.

2й етап

- II. Видалення з кожного об'єкта тих ребер, що екрануються іншими об'єктами в сцені:
- 1. Якщо заданий лише один об'єкт, то алгоритм завершується.
- 2. Сформувати пріоритетний список цих об'єктів:
 - Виконати сортування по z. Сортування виконується за максимальним значенням координати z вершин перетворених об'єктів. Першим в упорядкованому списку та таким, що має найбільший пріоритет, буде той об'єкт, у якого значення z є мінімальним серед максимальних. В правій системі координат цей об'єкт буде найвіддаленішим від точки спостереження, що розташована у нескінченості на осі z.

- 3. Для кожного об'єкта з приоритетного списку:
 - Перевірити екранування всіх фронтальних ребер усіма іншими об'єктами сцени. Об'єкт, ребра якого перевіряються, називається пробним об'єктом, а об'єкт, відносно якого в даний момент виконується перевірка, називається екрануючим об'єктом. Необхідно перевіряти екранування пробного об'єкта лише теми екрануючими об'єктами, у яких пріоритети нижче.
- 4. Провести перевірку екранування для прямокутних осяжних оболонок пробного об'єкта та екрануючого об'єкта:
 - Якщо x_{min} (екрануючий об'єкт) > x_{max} (пробний об'єкт) або x_{max} (екрануючий об'єкт) < x_{min} (пробний об'єкт) або y_{min} (екрануючий об'єкт) > y_{max} (пробний об'єкт) або y_{max} (екрануючий об'єкт) < y_{min} (пробний об'єкт), то екрануючий об'єкт не може екранувати жодне з ребер пробного об'єкта.
 - Перейти до наступного екрануючого об'єкта.

3й етап

- III. Провести попередні перевірки протикання, щоб визначити, чи протикається екрануючий об'єкт пробним об'єктом та чи існує можливість часткового екранування першого останнім.
- 1. Порівняти максимальне значення z пробного об'єкта та мінімальне значення z екрануючого об'єкта.
 - Якщо z_{max} (пробний об'єкт) < z_{min} (екрануючий об'єкт), то протикання неможливе. Перейти до наступного екрануючого об'єкта.

- 2. Перевірити видиме протикання.
 - а) якщо z_{max} (пробний об'єкт) > z_{max} (екрануючий об'єкт), то пробний об'єкт може проткнути передню грань екрануючого об'єкта.
 - б) встановити ознаку видимого протикання для подальшого використання. Занести об'єкт, що є проткнутим, в список протикань.
 - в) якщо x_{max} (пробний об'єкт) > x_{min} (екрануючий об'єкт) або x_{min} (пробний об'єкт) < x_{max} (екрануючий об'єкт), то пробний об'єкт може проткнути бік екрануючого об'єкта.
 - г) встановити ознаку видимого протикання для подальшого використання. Занести об'єкт в список протикань.
 - д) якщо y_{max} (пробний об'єкт) > y_{min} (екрануючий об'єкт) або y_{min} (пробний об'єкт) < y_{max} (екрануючий об'єкт), то пробний об'єкт може проткнути верх або низ екрануючого об'єкта.
 - е) встановити ознаку видимого протикання для подальшого використання. Занести об'єкт, що є проткнутим, в список протикань.

Перед тим, як продовжувати розгляд алгоритму, розглянемо приклад. Нехай даний одиничний куб з центром у початку координат та відрізок, заданий точками P_1 (-2 0 -2 1) та P_2 (2 0 -2 1), який лежить за кубом та частково екранується ним.

Для порівняння відрізка P_1P_2 з об'єктом зручно використовувати параметричне рівняння цього відрізка:

$$P(t) = P_1 + (P_2 - P_1) \cdot t$$

записане у вигляді:

$$\bar{v} = \bar{s} + \bar{d} \cdot t$$

 $\Delta e \ 0 \le t \le 1.$

Задача полягає в тому, щоб визначити, чи є відрізок P_1P_2 видимим.

Якщо P_1P_2 частково екранується об'єктом, то необхідно визначити значення параметра t, при яких він невидимий. Для цього сформуємо інший параметричний відрізок від точки P(t) до точки спостереження для напряму, які задаються вектором \bar{g} :

$$\bar{Q}(\alpha,t) = \bar{v} + \bar{g} \cdot \alpha = \bar{s} + \bar{d} \cdot t + \bar{g} \cdot \alpha,$$

де $0 \le t \le 1$, $\alpha \ge 0$ – параметри, причому t задає точку на відрізку P(t), а α задає точку на відрізку, який проведений з точки P(t) до точки спостереження. Фактично $\bar{Q}(\alpha,t)$ – це площина в тримірному просторі, а пара (α,t) визначає точку на цій площині. Значення α є додатнім, оскільки об'єкт, що екранує P(t), може знаходитися лише в тій частині цій площини, яка лежить між відрізком P(t) та точкою спостереження.

В прикладі, що розглядається:

$$\bar{v} = (-2 \quad 0 \quad -2 \quad 1) + (4 \quad 0 \quad 0 \quad 0) \cdot t$$

Вектор спостереження: $\bar{g} = (0 \ 0 \ 1 \ 0)$. Отже:

$$\bar{Q}(\alpha,t) = (-2 \quad 0 \quad -2 \quad 1) + (4 \quad 0 \quad 0 \quad 0) \cdot t + (0 \quad 0 \quad 1 \quad 0) \cdot \alpha$$

Нехай t = 0.5 та $\alpha = 3$. Тоді:

$$P(0.5) = (-2 \quad 0 \quad -2 \quad 1) + (4 \quad 0 \quad 0 \quad 0) \cdot 0.5 = (0 \quad 0 \quad -2 \quad 1)$$

Ця точка лежить на відрізку P_1P_2 та є точкою його перетину з віссю z при z=-2.

$$\overline{Q}(3,0.5) = (0 \quad 0 \quad -2 \quad 1) + (0 \quad 0 \quad 1 \quad 0) \cdot 3 = (0 \quad 0 \quad 1 \quad 1)$$

Це відповідає точці на осі z при z=1.

Інші результати наведені в таблиці:

t	α	<i>P</i> (<i>t</i>)	Q (α,t)
0	0		$(-2 \ 0 \ -2 \ 1)$
	0.5		$(-2 \ 0 \ -1.5 \ 1)$
	1	$(-2 \ 0 \ -2 \ 1)$	$(-2 \ 0 \ -1 \ 1)$
	2		$\begin{array}{cccc} (-2 & 0 & 0 & 1) \end{array}$
	3		$\begin{array}{ccccc} (-2 & 0 & 1 & 0) \end{array}$
0.5	0		$(-2 \ 0 \ -2 \ 1)$
	0.5		$(-2 \ 0 \ -1.5 \ 1)$
	1	$(0 \ 0 \ -2 \ 1)$	$(-2 \ 0 \ -1 \ 1)$
	2		$\begin{array}{cccc} (-2 & 0 & 0 & 1) \end{array}$
	3		$\begin{array}{ccccc} (-2 & 0 & 1 & 0) \end{array}$
1	0		$(-2 \ 0 \ -2 \ 1)$
	0.5		$(-2 \ 0 \ -1.5 \ 1)$
	1	$(2 \ 0 \ -2 \ 1)$	$(-2 \ 0 \ -1 \ 1)$
	2		(-2 0 0 1)
	3		$(-2 \ 0 \ 1 \ 0)$

В алгоритмі Робертса скалярний добуток точки, що лежить в середині об'єкта, на матрицю об'єкта додатнім. Якщо точка лежить в середині об'єкта, то вона є невидимою. Отже, для визначення частини відрізка, що екранується об'єктом, достатньо знайти ті значення α та t, для яких скалярний добуток $\bar{Q}(\alpha,t)$ на матрицю об'єкта є додатнім:

$$h = \bar{Q}(\alpha, t) \cdot \mathbf{V} = \bar{s} \cdot \mathbf{V} + \bar{d} \cdot t \cdot \mathbf{V} + \bar{g} \cdot \alpha \cdot \mathbf{V} > \mathbf{0},$$

 $\Delta e \ 0 \le t \le 1, \ \alpha \ge 0.$

Якщо всі компоненти h є додатними для певних α та t, то відрізок екранується об'єктом.

Введемо такі позначення:

$$\bar{p} = \bar{s} \cdot V$$
 $\bar{q} = \bar{d} \cdot V$ $\bar{w} = \bar{g} \cdot V$

та запишемо умови у вигляді:

$$h_j = p_j + t \cdot q_j + \alpha \cdot w_j > 0,$$

де j – номер стовпця в матриці об'єкта.

Ці умови повинні виконуватися при всіх значеннях ј, тобто для всіх площин, які обмежують об'єкт. Суміжний випадок між видимістю та невидимістю виникає, коли $h_i = 0$. При $h_i = 0$ точка лежить на площині. Вважаючи $h_i = 0^{\circ}$ для усіх площин, отримуємо систему рівнянь відносно a та t, які мають задовольнятися одночасно. Результат можна отримати шляхом сумісного рішення усіляких пар рівнянь з цієї системи, при цьому будуть знайдені все значення a та t, при яких змінюється видимість відрізка. Число всіх рішень при ј рівняннях (площинах) дорівнює j:(j - 1)/2. Кожне рішення в діапазонах 0 ≤ $t \le 1$, $a \ge 0$, підставляється в усі інші рівняння для перевірки того, що умова $h_i \ge 0$ виконується. Пошук коректних рішень виконується для того, щоб знайти мінімальне серед максимальних значень параметра t (t_{minmax}) та максимальне серед мінімальних значень t (t_{maxmin}). Відрізок є невидимим при $t_{\text{maxmin}} < t < t_{\text{minmax}}$.

Знайдемо \bar{p} , \bar{q} та \bar{w} :

$$\bar{p} = (-2 \quad 0 \quad -2 \quad 1) \cdot \begin{pmatrix} -2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} = (5 \quad -3 \quad 1 \quad 1 \quad 5 \quad -3)$$

$$\overline{q} = (4 \quad 0 \quad 0 \quad 0) \cdot \begin{pmatrix} -2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} = (-8 \quad 8 \quad 0 \quad 0 \quad 0)$$

$$\overline{w} = (0 \quad 0 \quad 1 \quad 0) \cdot \begin{pmatrix} -2 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} = (0 \quad 0 \quad 0 \quad 0 \quad -2 \quad 2)$$

Тоді отримуємо 6 нерівностей, які відповідають умові

$$h_j = p_j + t \cdot q_j + \alpha \cdot w_j > 0,$$

де j – номер стовпця в матриці об'єкта. Отже:

$$\bar{p} = (5 -3 \ 1 \ 1 \ 5 \ -3)$$
 $\bar{q} = (-8 \ 8 \ 0 \ 0 \ 0 \ 0)$
 $\bar{w} = (0 \ 0 \ 0 \ 0 \ -2 \ 2)$

$$0 5 - 8t > 0$$

$$-3 + 8t > 0$$

$$5 - 2\alpha > 0$$

$$6 -3 + 2\alpha > 0$$

Третя та четверта з цих нерівностей просто показують, що відповідні умови завжди виконуються. Перетворення решти нерівностей на рівняння дозволяє знайти рішення для α та t: $t = 5/8, t = 3/8, \alpha = 5/2, \alpha = 3/2.$

Висновок: відрізок P_1P_2 є невидимим в діапазоні 3/8 < t < 5/8.

- 3. Виконати перевірку екранування ребер:
 - а) обчислити \bar{s} та \bar{d} для ребра;
 - б) обчислити \bar{p} , \bar{q} , \bar{w} для кожної площини, що несе грань екрануючого об'єкта;
 - в) якщо ребро є повністю видимим, то перейти до наступного ребра;
 - г) сформувати рівняння $h_j=0$ та розв'язати їх, об'єднуючи попарно та включив в систему рівняння границь t=0 та t=1. Якщо встановлена ознака видимого протикання, то в систему необхідно включити й рівняння границі $\alpha=0$. Запам'ятати точки протикання. Інакше границю $\alpha=0$ не враховувати;
 - д) для кожної пари (t,α) , що є рішенням, перевірити виконання умов $0 \le t \le 1$, $\alpha \ge 0$ та $h_j > 0$ для всіх інших площин. Якщо ці умови виконуються, то знайти t_{maxmin} та t_{minmax} ;
 - е) обчислити видимі частини відрізків та зберегти їх для подальшої перевірки екранування об'єктами з більш низькими пріоритетами.

- 4. Визначити видимі відрізки, що зв'язують точки протикання:
 - а) якщо ознака видимого протикання не встановлена, то перейти до процедури візуалізації.
 - б) якщо точки протикання не знайдені, перейти до процедури візуалізації.
 - в) сформувати всі можливі ребра, що з'єднують точки протикання, для пар об'єктів, яків з'єднані відношенням протикання.
 - г) перевірити екранування всіх ребер, що поєднуються обома об'єктами, які зв'язані відношенням протикання.
 - д) перевірити екранування ребер, що залишились, усіма іншими об'єктами сцени. Запам'ятати видимі відрізки.
- 5. Візуалізувати відрізки ребер, що залишилися видимими.

Розглянемо приклад.

Нехай ε одиничний куб з центром у початку координат та відрізок P_1P_2 , заданий однорідними координатами кінців (-1 0 -2 1) та (1 0 2 1). Цей відрізок протикає тіло:

Тоді:

$$\bar{p} = (-1 \quad 3 \quad 1 \quad 1 \quad 3 \quad 5)$$
 $\bar{q} = (4 \quad -4 \quad 0 \quad 0 \quad 8 \quad -8)$
 $\bar{w} = (0 \quad 0 \quad 0 \quad 0 \quad -2 \quad 2)$

Умови $h_j > 0$ мають вигляд:

$$-1 + 4t > 0$$

$$(2)$$
 3 - 4*t* > 0

$$-3 + 8t - 2\alpha > 0$$

Для $h_j = 0$ отримуємо t = 3/4:

Заштрихованою є та сторона прямої, де можуть лежати рішення. Але рішення не утворюють обмежену область. Тому необхідно додати границі t=0 та t=1. Тоді отримуємо обмежену область між t=3/4 та t=1:

Але при t>3/4 не виконується умова $h_j>0$ для j=2. Тому необхідно додати границю $\alpha=0$, тоді отримуємо обмежену область з краями $t_{maxmin}=3/8$ та $t_{minmax}=3/4$. Отже, відрізок є видимим при $0\le t\le 3/8$ та $3/4\le t\le 1$.

Питання?

ВИДАЛЕННЯ НЕВИДИМИХ ПОВЕРХОНЬ

Слайди до лекцій з дисципліни «Математичні та алгоритмічні основи комп'ютерної графіки» Лектор: к.т.н., доцент Сулема Є.С.

Каф. ПЗКС, ФПМ, КПІ ім. Ігоря Сікорського 2018/2019 навч. рік