CENTRAL ELEMENTS, CELL DECOMPOSITIONS, AND PARTIAL SPRINGER RESOLUTIONS

MINH-TÂM QUANG TRINH AND NATHAN WILLIAMS

ABSTRACT. For any finite Weyl group W and parabolic subgroup W_J , arising from a finite reductive group G and parabolic subgroup P_J , we prove identities relating the partial Springer resolutions of type J to central elements in the Hecke algebra, given by sums of terms $q^{-\ell(v)}T_{v-1}T_v$ as v runs over minimal- or maximal-length representatives of the right cosets of W_J in W. We thereby obtain formulas for Hecke traces arising from these central elements, generalizing work of Lascoux and Wan–Wang beyond type A, and cell decompositions of new braid varieties involving J, generalizing work of Shende–Treumann–Zaslow. From the latter, we construct noncrossing sets that interpolate between Catalan and parking objects, generalizing our work with Galashin–Lam, and new formulas for arbitrary a-degrees of the HOMFLYPT polynomials of positive braid closures.

1. Introduction

1.1. Fix a finite Coxeter system (W, S) and a subset $J \subseteq S$ generating a subgroup $W_J \subseteq W$. Let H_W and H_{W_J} be the Hecke algebras over $\mathbf{Z}[q^{\pm 1}]$ corresponding to W and W_J . We take the convention where the Hecke operators $T_s \in H_W$, for $s \in S$, obey the relations $T_s^2 = (q-1)T_s + q$. We identify H_{W_J} with the subalgebra of H_W generated by the elements T_s with $s \in J$.

Under this embedding, the center $Z(H_{W_J})$ need not embed into the center $Z(H_W)$. Nonetheless, Hoefsmit–Scott constructed an injective, linear relative norm map

$$N_J^S: Z(H_{W_J}) \to Z(H_W),$$

that they, and L. K. Jones, used to study induction from H_{W_J} to H_W [Jon90]. To define N_J^S , recall that each right coset of W_J in W contains a unique representative of minimal Bruhat length. Let W^J be the set of such representatives. Then

$$N_J^S(\alpha) = \sum_{v \in W^J} q^{-\ell(v)} T_{v^{-1}} \alpha T_v \quad \text{for all } \alpha \in Z(H_{W_J}),$$

where T_v and $\ell(v)$ denote the Hecke operator for and Bruhat length of v.

When W is crystallographic, we can interpret it as the Weyl group of a split finite reductive group G. We can then interpret the above algebras geometrically, as convolution algebras of functions on the flag variety of G or its square. The main observation of this paper is that in the geometric framework, the relative norm N_J^S is related to the two partial Springer resolutions for J, defined in (1.1).

From this relationship, we obtain applications to traces on H_W , generalizing work of Lascoux [Las06] and Wan–Wang [WW15]; cell decompositions of partial

braid Steinberg varieties, generalizing work of Shende-Treumann-Zaslow [STZ17]; and the rational parking combinatorics of (W, S), generalizing our prior work with Galashin-Lam [GLTW24].

1.2. Let **F** be a finite field of order q. Let **G** be a connected reductive algebraic group over $\bar{\mathbf{F}}$, with an **F**-form given by a Frobenius map $F: \mathbf{G} \to \mathbf{G}$. We assume that the characteristic of **F** is a good prime for **G** [Car93, 28].

Fix an F-stable maximal torus in an F-stable Borel: $\mathbf{T} \subseteq \mathbf{B} \subseteq \mathbf{G}$. Let $\mathbf{W} = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$. We now take W to be the finite Coxeter group \mathbf{W}^F . Similarly, we write G, B, etc. for the groups formed by the F-fixed points of $\mathbf{G}, \mathbf{B}, etc.$

The G-invariant, $\mathbf{Z}[q^{\pm 1}]$ -valued functions on $(G/B)^2$ form a convolution algebra H_B^G . If G is split, meaning $W = \mathbf{W}$, then H_B^G is the specialization at $\mathbf{q} \to \mathbf{q}$ of the algebra H_W presented earlier. Explicitly, T_w specializes to the indicator function on the set of pairs (hB, gB) such that $Bh^{-1}gB = BwB$. In Section 2, we review the presentation of H_B^G for general G. In the rest of this introduction, we assume that G is split, for simplicity.

We take S to be the system of simple reflections arising from \mathbf{B} . Let $\mathbf{P}_J = \mathbf{B}W_J\mathbf{B}$, a parabolic subgroup of \mathbf{G} . Let \mathbf{U}_J be its unipotent radical and \mathbf{V}_J the variety of all unipotent elements in \mathbf{P}_J . If $J = \emptyset$, then $\mathbf{P}_J = \mathbf{B}$ and $\mathbf{U}_J = \mathbf{V}_J$; otherwise, \mathbf{V}_J is larger than \mathbf{U}_J . At the level of points, the two partial Springer resolutions of type J are defined by

(1.1)
$$\mathbf{Spr}_{J}^{+} = \{(u, y\mathbf{P}_{J}) \in \mathbf{G} \times \mathbf{G}/\mathbf{P}_{J} \mid u \in y\mathbf{V}_{J}y^{-1}\}, \\ \mathbf{Spr}_{J}^{-} = \{(u, y\mathbf{P}_{J}) \in \mathbf{G} \times \mathbf{G}/\mathbf{P}_{J} \mid u \in y\mathbf{U}_{J}y^{-1}\}.$$

The + case is a partial resolution of singularities of the unipotent variety $\mathbf{V} \subseteq \mathbf{G}$, while the - case is a resolution of the closure of the Richardson orbit for J.

It will be convenient to set $\mathbf{E}_J^{\pm} := \mathbf{G}/\mathbf{B} \times \mathbf{Spr}_J^{\pm}$ and $E_J^{\pm} = (\mathbf{E}_J^{\pm})^F$. There is a natural left G-action on E_J^{\pm} , under which the map $f: E_J^{\pm} \to (G/B)^2$ defined by

$$f(hB, u, yP_I) = (hB, uhB)$$

is equivariant. For any set E equipped with a G-action and an equivariant map $f: E \to (G/B)^2$, we write $f_! \delta_E \in H_B^G$ to denote the function whose value at a point in $(G/B)^2$ is the size of its preimage in E.

Let w_{\circ} and $w_{J\circ}$ respectively denote the longest elements of W and W_{J} . For convenience, we set $\ell_{S} = \ell(w_{\circ})$ and $\ell_{J} = \ell(w_{J\circ})$. Recall that $w_{\circ}, w_{J\circ}$ are involutions, and that $T_{w_{J\circ}}^{2}$ is central in $H_{W_{J}}$ [BMR98]. We can now state the split case of our main result, proven for general G in Section 3.

Theorem 1.1. For any $J \subseteq S$, we have

$$\begin{split} &f_!\delta_{E_J^-}=q^{\ell_S-\ell_J}N_J^S(1)|_{\boldsymbol{q}\to\boldsymbol{q}},\\ &f_!\delta_{E_J^+}=q^{\ell_S-\ell_J}N_J^S(T_{w_{J^\circ}}^2)|_{\boldsymbol{q}\to\boldsymbol{q}}. \end{split}$$

Let $W^{J,-} = W^J$, and by analogy, let $W^{J,+}$ of maximal-length representatives for the right cosets of W_J in W, so that multiplication by $w_{J\circ}$ interchanges $W^{J,-}$ with $W^{J,+}$. Then the identities above can be rewritten as:

$$\begin{split} f_! \delta_{E_J^-} &= q^{\ell_S - \ell_J} \sum_{w \in W^{J,-}} q^{-\ell(v)} T_{v^{-1}} T_v, \\ f_! \delta_{E_J^+} &= q^{\ell_S} \sum_{w \in W^{J,+}} q^{-\ell(v)} T_{v^{-1}} T_v. \end{split}$$

We emphasize that the + case is deeper than the - case. The - case only uses standard results about Bruhat decomposition. Under the assumption that G is split, we can refine it to an algebro-geometric statement: essentially, that \mathbf{E}_J^- can be partitioned into fiber bundles over appropriate varieties. See Proposition 3.3 for details. By contrast, the + case relies on a difficult theorem of Kawanaka [Kaw75]. We expect that it can only be refined to a statement at the level of cohomology. This issue seems related to the sheafification of Kawanaka's work discussed in [Tri22].

1.3. Recall that a *trace* on an algebra is a linear map that vanishes on commutators. We write $R(H_W)$ to denote the vector space of $\mathbf{Q}(q)$ -valued traces on H_W . Our first application of Theorem 1.1 is to identify certain elements of $R(H_W)$ arising from $N_J^S(1)$ and $N_J^S(T_{w_{J_0}}^2)$.

Let $e \in W$ be the identity. Let $\tau : H_W \to \mathbf{Z}[q^{\pm 1}]$ be the trace given by $\tau(T_e) = 1$ and $\tau(T_w) = 0$ for all $w \neq e$. Then any central element $\zeta \in Z(H_W)$ gives rise to a trace $\tau[\zeta] : H_W \to \mathbf{Z}[q^{\pm 1}] \subseteq \mathbf{Q}(q)$: namely,

$$\tau[\zeta](\beta) = \tau(\beta\zeta).$$

These traces are best understood when W is a symmetric group.

Let S_n , the symmetric group on n letters, and let Λ_n be the vector space of symmetric functions over $\mathbf{Q}(q)$ of degree n in variables $X=(X_1,X_2,\ldots,X_n)$. Then $R(H_{S_n})$ is isomorphic to Λ_n , as both of these vector spaces have bases indexed by the integer partitions of n. Let $ch_q: R(H_{S_n}) \xrightarrow{\sim} \Lambda_n$ be the q-deformed Frobenius characteristic isomorphism that sends the irreducible character χ_q^{λ} to the Schur function $s_{\lambda}(X)$.

For $W = S_n$, we can take $S = \{s_1, \ldots, s_{n-1}\}$, where s_i transposes i and i+1. With this choice, there is a bijective correspondence between subsets $J \subseteq S$ and integer partitions $\lambda \vdash n$. Let $e_{\lambda}(X)$ and $h_{\lambda}(X)$ respectively denote the elementary and complete homogeneous symmetric functions indexed by λ in Λ_n . Wan–Wang [WW15], recasting work of Lascoux [Las06], show that

$$ch_{\mathbf{q}}(\tau[N_J^S(1)]) = (\mathbf{q} - 1)^n e_{\lambda} \left(\frac{X}{\mathbf{q} - 1}\right),$$

$$ch_{\mathbf{q}}(\tau[N_J^S(T_{w_{J\circ}}^2)]) = \mathbf{q}^{\ell_J}(\mathbf{q} - 1)^n h_{\lambda} \left(\frac{X}{\mathbf{q} - 1}\right).$$

Using these formulas, they show that the maps N_J^S give rise to a ring structure on the direct sum of the centers $Z(\mathbf{Q}(q) \otimes H_{S_n})$, isomorphic to the ring of symmetric functions over $\mathbf{Q}(q)$. We will generalize the formulas to any crystallographic W.

Recall that Springer constructed a W-action on the étale cohomologies of the fibers of his resolution of the unipotent variety, now called $Springer\ fibers$. In [Tri21], the first author used this action to construct a trace on H_W valued in $\mathbf{Q}(q)$ -linear traces on W, or equivalently, a bitrace

$$\tau_G: \mathbf{Q}W \otimes H_W \to \mathbf{Q}(\mathbf{q}),$$

which refines the Markov traces on H_W studied by Gomi [Gom06] and Webster-Williamson [WW11]. These, in turn, were motivated by the traces used by Ocneanu to construct the HOMFLYPT link polynomial [Jon87].

In this paper, we use a normalization for τ_G characterized by the formula

$$\tau_G(z \otimes T_w)|_{q \to q} = \frac{1}{|G|} \sum_{\substack{u \in G \\ \text{unipotent}}} |O(w)_u| \chi_u(z) \text{ for all } z, w \in W,$$

where χ_u is the total Springer character for u, reviewed in §4.2, and $O(w)_u$ is the set of pairs (hB, gB) such that $h^{-1}gB = BwB$ and gB = uhB. Let $e_{J,-}$, resp. $e_{J,+}$, denote the antisymmetrizer, resp. symmetrizer, in $\mathbf{Q}W_J$, reviewed in §4.3. By combining Theorem 1.1 with work of Borho–MacPherson [BM83], we show:

Theorem 1.2. For any $J \subseteq S$, we have

$$\begin{split} \tau[N_J^S(1)] &= (\mathbf{q} - 1)^{\text{rk}(G)} \, \tau_G(e_{J,-} \otimes -), \\ \tau[N_J^S(T_{w_{J\circ}}^2)] &= \mathbf{q}^{\ell_J} (\mathbf{q} - 1)^{\text{rk}(G)} \, \tau_G(e_{J,+} \otimes -) \end{split}$$

as traces on H_W .

For $G = GL_n(\mathbf{F})$, we will show that Theorem 1.2 recovers (1.2), by explaining why ch_q sends $\tau_G(e_{J,-} \otimes -)$ to $e_{\lambda}(\frac{X}{q-1})$ and $\tau_G(e_{J,+} \otimes -)$ to $h_{\lambda}(\frac{X}{q-1})$.

1.4. Our second application of Theorem 1.1 is to provide point-counting formulas for new kinds of braid varieties, by means of Deodhar-type decompositions. In what follows, we write $h\mathbf{B} \xrightarrow{w} g\mathbf{B}$ to mean $\mathbf{B}h^{-1}g\mathbf{B} = \mathbf{B}w\mathbf{B}$.

Let $\vec{s} = (s^{(1)}, s^{(2)}, \dots, s^{(\ell)})$ be a word in S. Recall that in [Deo85], Deodhar showed how to partition a certain *Richardson variety* for \vec{s} into strata of the form $\mathbf{A^d} \times \mathbf{G_m^e}$, now called *Deodhar cells*. As in [GLTW24], we will work with a variant definition depending on an element $v \in W$:

$$\mathbf{R}^{(v)}(\vec{s}) = \{ \vec{q}\mathbf{B} = (q_i\mathbf{B})_i \in (\mathbf{G}/\mathbf{B})^{\ell} \mid vw_{\circ}\mathbf{B} \xrightarrow{s^{(1)}} q_1\mathbf{B} \xrightarrow{s^{(2)}} \cdots \xrightarrow{s^{(\ell)}} q_{\ell}\mathbf{B} \xleftarrow{vw_{\circ}} \mathbf{B} \}.$$

The geometry of Theorem 1.1 shows how to relate the disjoint union of the varieties $\mathbf{R}^{(v)}(\vec{s})$ for $v \in W^{J,\pm}$ to the variety

$$\mathbf{Z}_{J}^{\mp}(\vec{s}) = \{ (\vec{g}\mathbf{B}, u, y\mathbf{P}_{J}) \in (\mathbf{G}/\mathbf{B})^{\ell} \times \mathbf{Spr}_{J}^{\pm} \mid u^{-1}g_{\ell}\mathbf{B} \xrightarrow{s^{(1)}} g_{1}\mathbf{B} \xrightarrow{s^{(2)}} \cdots \xrightarrow{s^{(\ell)}} g_{\ell}\mathbf{B} \}.$$

Note the sign flip above in the preceding statement. It arises because the element w_{\circ} in the formula for $\mathbf{R}^{(v)}(\vec{s})$ interchanges $W^{J,-}$ with $W^{J,+}$.

Note that $\mathbf{Z}_{\emptyset}^{+}(\vec{s})$ and $\mathbf{Z}_{\emptyset}^{-}(\vec{s})$ coincide, and match the *braid Steinberg variety* of \vec{s} introduced in [Tri21]. At the other extreme, $\mathbf{Z}_{S}^{+}(\vec{s})$ and $\mathbf{Z}_{S}^{-}(\vec{s})$ are the varieties respectively denoted $\mathcal{U}(\vec{s})$ and $\mathcal{X}(\vec{s})$ in *ibid*. The latter was studied even earlier by Shende–Treumann–Zaslow [STZ17], who described a partition of it into subvarieties resembling Deodhar's cell decompositions.

To sketch Deodhar's results, recall that a *subword* of \vec{s} is a sequence $\vec{\omega}$ of the same length with $\omega^{(i)} \in \{e, s^{(i)}\}$ for all i. We set $\omega_{(i)} := \omega^{(1)} \cdots \omega^{(i)}$. For any $v \in \mathbf{W}$, a v-distinguished subword of \vec{s} is a subword $\vec{\omega}$ such that

$$v\omega_{(i)} \le v\omega_{(i-1)}s^{(i)}$$
 for all i .

Let $\mathcal{D}^{(v)}(\vec{s})$ be the set of v-distinguished subwords $\vec{\omega}$ of \vec{s} for which $\omega_{(\ell)} = e$. Then the Deodhar cells of $\mathbf{R}^{(v)}(\vec{s})$ are indexed by $\mathcal{D}^{(v)}(\vec{s})$. The Deodhar cell for a given element $\vec{\omega}$ is isomorphic to $\mathbf{A}^{\mathsf{d}_{\vec{\omega}}} \times \mathbf{G}_m^{\mathsf{e}_{\vec{\omega}}}$ for certain disjoint subsets $\mathsf{d}_{\vec{\omega}}, \mathsf{e}_{\vec{\omega}} \subseteq \{1, 2, \dots, \ell\}$, reviewed in Section 5. In this way, we can count $R^{(v)}(\vec{s}) := \mathbf{R}^{(v)}(\vec{s})^F$:

$$|R^{(v)}(\vec{s})| = \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathsf{d}_{\vec{\omega}}|} (q-1)^{|\mathsf{e}_{\vec{\omega}}|}.$$

At the same time, a formula from [GLTW24] expresses $|R^{(v)}(\vec{s})|$ in terms of τ , while our work in Section 4 expresses the size of $Z_J^{\pm}(\vec{s}) := \mathbf{Z}_J^{\pm}(\vec{s})^F$ in terms of τ_G . By combining Theorem 1.2 with these formulas, we deduce:

Corollary 1.3. For any word \vec{s} , we have

$$\begin{split} \frac{1}{q^{\ell_J}(q-1)^{\mathrm{rk}(G)}} \sum_{v \in W^{J,-}} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathsf{d}_{\vec{\omega}}|} (q-1)^{|\mathsf{e}_{\vec{\omega}}|} &= \frac{|Z_J^+(\vec{s})|}{|G|}, \\ \frac{1}{(q-1)^{\mathrm{rk}(G)}} \sum_{v \in W^{J,+}} \sum_{\vec{\omega} \in \mathcal{D}^{(v)}(\vec{s})} q^{|\mathsf{d}_{\vec{\omega}}|} (q-1)^{|\mathsf{e}_{\vec{\omega}}|} &= \frac{|Z_J^-(\vec{s})|}{|G|}. \end{split}$$

(Note the sign flip between the left and right sides of each identity.)

We will explain in Section 5 that when J = S, the – case of Corollary 1.3 recovers [STZ17, Prop. 6.31].

1.5. Our third application of Theorem 1.1, by way of Theorem 1.2, is to construct noncrossing sets of interest in the Catalan combinatorics of (W, S). In the rest of this introduction, we assume that W is irreducible, with Coxeter number h.

Let $d_1, \ldots, d_{|S|}$ be the fundamental degrees of the action of W on its (irreducible) reflection representation. For each i, let $e_i = d_i - 1$. For any positive integer p coprime to h, the rational Catalan number of (W, p) is

$$Cat_{W,p} := \prod_{i} \frac{p + e_i}{d_i},$$

while the rational parking number of (W,p) is $p^{|S|}$. These numbers enumerate disparate families of combinatorial objects. Most are constructed from root-theoretic data generalizing nonnesting partitions and parking functions, respectively. The collective study of these families and the bijections between them is the "nonnesting" side of rational Catalan/parking combinatorics. In [GLTW24], we instead sought, and constructed, "noncrossing" families: those depending on a chosen ordering of S, or Coxeter word.

For any word \vec{s} in S, let $\mathcal{M}^{(v)}(\vec{s}) \subseteq \mathcal{D}^{(v)}(\vec{s})$ be the subset of elements $\vec{\omega}$ such that $|\mathbf{e}_{\vec{\omega}}|$ attains its minimum value |S|. Let \vec{c} be a Coxeter word for (W, S). The main results of [GLTW24] are the identities

$$|\mathcal{M}^{(e)}(\vec{c}^p)| = \operatorname{Cat}_{W,p} \quad \text{and} \quad \sum_{v \in W} |\mathcal{M}^{(v)}(\vec{c}^p)| = p^{|S|},$$

proved by way of **q**-deformed identities involving $\mathcal{D}^{(v)}(\vec{c}^p)$ and taking $\mathbf{q} \to 1$.

In Section 6, we prove an identity that interpolates between the two above. Let $d_1^J, \ldots, d_{|J|}^J$ be the fundamental degrees of W_J . Let $e_1^J, \ldots, e_{|J|}^J$ be the exponents of the W_J -action on the reflection representation of W. We define the rational parabolic parking numbers of (W, p, J) to be

$$\operatorname{Park}_{W,p}^{J,\pm} = \prod_{i} \frac{p \pm e_i^J}{d_i^J}.$$

Then $\operatorname{Park}_{W,p}^{S,+} = \operatorname{Cat}_{W,p}$ and $\operatorname{Park}_{W,p}^{\emptyset,+} = \operatorname{Park}_{W,p}^{\emptyset,-} = p^{|S|}$. We relate these numbers to τ_G via a result from [Tri21], which describes $\tau_G(-\otimes T_{\overline{c}^p})$ as the graded character of a rational parking space for (W,p), in the sense of [ARR15] and [ALW16]. By combining Corollary 1.3 with this description, we will show:

Corollary 1.4. For any Coxeter word \vec{c} and integer p > 0 coprime to h, we have

$$\sum_{v \in W^{J,\pm}} |\mathcal{M}^{(v)}(\vec{c}^p)| = \operatorname{Park}_{W,p}^{J,\mp}.$$

(Note the sign flip.) That is, $\coprod_{v \in W^{J,\pm}} \mathcal{M}^{(v)}(\vec{c}^p)$ is a \vec{c} -noncrossing set enumerated by the \mp -rational parabolic parking number of (W, p, J).

1.6. In Section 7, we explain how Theorem 1.2 and Corollary 1.4 resemble results about Markov traces and rational Kirkman numbers that follow from work of Bezrukavnikov–Tolmachov [BT22].

First, we observe that $W^{J,-}$, resp. $W^{J,+}$, consists of those $w \in W$ whose (left) ascent set $\mathsf{Asc}(w) \subseteq S$, resp. descent set $\mathsf{Des}(w) \subseteq S$, contains J. Hence, $N_J^S(1)$ and $q^{-\ell_J}N_J^S(T_{w_{J^\circ}}^2)$ respectively decompose as sums, over supersets $I \supseteq J$, of elements

$$\zeta_I^+ := \sum_{\mathsf{Asc}(v) = I} q^{-\ell(v)} T_{v^{-1}} T_v \quad \text{and} \quad \zeta_I^- := \sum_{\mathsf{Des}(v) = I} q^{-\ell(v)} T_{v^{-1}} T_v.$$

Note that $\zeta_S^+ = \zeta_\emptyset^- = 1$ and $\zeta_\emptyset^+ = \zeta_S^- = \Pi_S$. By an inclusion-exclusion argument, the elements ζ_I^\pm are again central in H_W .

Question 1.5. For general W and I, is there a more familiar description of the traces on H_W of the form $\tau[\zeta_I^{\pm}]$?

We now take $W = S_n$ and $S = \{s_1, \ldots, s_{n-1}\}$. The HOMFLYPT Markov trace on H_{S_n} can be written as a $\mathbf{Q}(q)[a^{\pm 1}]$ -valued trace. For $0 \leq k \leq n-1$, let $\mu^{(k)}: H_W \to \mathbf{Q}(q)$ be the coefficient of the kth highest power of a. Then [BT22, Cor. 6.1.2] can be recast as the identity

(1.3)
$$\tau[\zeta_{I_k}^-] = (\mathbf{q} - 1)^{n-1} \mu^{(k)}, \text{ where } I_k = \{s_1, s_2, \dots, s_{n-1-k}\}.$$

Let $e_{\Lambda^k} \in \mathbf{Q}W$ be the Young symmetrizer of the hook partition $(n-k,1,\ldots,1) \vdash n$, which indexes the kth exterior power of the reflection representation of S_n . By combining (1.3) with the result in [Tri21] relating the Markov trace to τ_G , we get the following analogue of Theorem 1.2:

Theorem 1.6. For G split semisimple of type A_{n-1} , and any integer k, we have

$$\tau[\zeta_{I_k}^-] = (\boldsymbol{q} - 1)^{n-1} \tau_G(e_{\Lambda^k} \otimes -)$$

as traces on H_{S_n} .

For general W and $0 \le k \le |S| - 1$, we can use the rational parking space for (W, p) mentioned earlier to define rational generalizations $\operatorname{Kirk}_{W,p}^{(k)}$ of the Kirkman numbers studied in [ARR15]. For $W = S_n$, the preceding corollary implies the following analogue of Corollary 1.4:

Corollary 1.7. Take $W = S_n$ and $S = \{s_1, \ldots, s_{n-1}\}$. Then for any Coxeter word \vec{c} , any integer p > 0 coprime to n, and any k, we have

$$\sum_{\mathsf{Des}(v)=I_k} |\mathcal{M}^{(v)}(\bar{c}^p)| = \mathsf{Kirk}_{W,p}^{(k)}.$$

That is, $\coprod_{\mathsf{Des}(v)=I_k} \mathcal{M}^{(v)}(\vec{c}^p)$ is a \vec{c} -noncrossing set enumerated by the kth rational Kirkman number of (W,p).

1.7. **Acknowledgments.** We thank our prior collaborators, Pavel Galashin and Thomas Lam, for helpful discussions. MT also thanks Quoc Hô for the same. During the preparation of this work, MT was supported by an NSF Mathematical Sciences Research Fellowship, Award DMS-2002238, and NW was supported by an NSF standard grant, Award DMS-2246877(?).

2. Geometry of the Hecke Algebra

2.1. In this section, we review the general definition of the convolution algebra H_B^G without assuming G to be split, following [Car95, §3.3]. At the end, we explain how to adapt N_J^S to this generality. Along the way, we review Bruhat decomposition and related facts about Borel subgroups. Our geometric setup is essentially Kawanaka's in [Kaw75]. See also [Car93, Car95].

We keep \mathbf{F} , q, \mathbf{G} , \mathbf{B} , \mathbf{T} , \mathbf{W} as in §1.2. Let $S_{\mathbf{B}}$ be the system of simple reflections of \mathbf{W} arising from \mathbf{B} , and let $\ell_{\mathbf{B}}$ be the Bruhat length function on \mathbf{W} defined by $S_{\mathbf{B}}$.

2.2. Bruhat Decomposition. Note that $w\mathbf{B}$ and $\mathbf{B}w$ are well-defined for any $w \in \mathbf{W}$. Bruhat decomposition says that as we run over all w, the double cosets $\mathbf{B}w\mathbf{B}$ are pairwise disjoint and partition \mathbf{G} .

Let **U** be the unipotent radical of **B**, so that $\mathbf{B} = \mathbf{T} \ltimes \mathbf{U}$. Note that $w\mathbf{U}w^{-1}$ is well-defined for all $w \in \mathbf{W}$. Let

$$\mathbf{U}_w = \mathbf{U} \cap w \mathbf{U} w^{-1},$$

$$\mathbf{U}_w^- = \mathbf{U} \cap (w w_\circ) \mathbf{U} (w w_\circ)^{-1}.$$

Note that $\mathbf{U}_w, \mathbf{U}_w^-$ are stable under the conjugation action of \mathbf{T} on \mathbf{U} . The following results are proved in [Car93, §2.5]:

Lemma 2.1. For all $w \in \mathbf{W}$:

- (1) If $\ell_{\mathbf{B}}(wv) = \ell_{\mathbf{B}}(w) + \ell_{\mathbf{B}}(v)$, then $\mathbf{U}_{wv}^- = \mathbf{U}_{w}^- \mathbf{U}_{v}^-$, and $\mathbf{U}_{w}^- \cap \mathbf{U}_{v}^- = \{1\}$.
- (2) $\mathbf{U} = \mathbf{U}_w \mathbf{U}_w^- = \mathbf{U}_w^- \mathbf{U}_w$, and $\mathbf{U}_w \cap \mathbf{U}_w^- = \{1\}$.
- (3) $\mathbf{B}w\mathbf{B} = \mathbf{U}_w^- w\mathbf{B}$, and the map $\mathbf{U}_w^- \to \mathbf{U}_w^- w\mathbf{B}/\mathbf{B}$ is an isomorphism.
- (4) As an algebraic variety (but not group), \mathbf{U}_{w}^{-} is the product of the root subgroups inverted by w, hence an affine space of dimension $\ell_{\mathbf{B}}(w)$.
- 2.3. Bott-Samelson Varieties. The double cosets of **B** in **G** are in bijection with the set of diagonal **G**-orbits on $(\mathbf{G}/\mathbf{B})^2$. As in the introduction, we write $h\mathbf{B} \xrightarrow{w} g\mathbf{B}$ to mean $\mathbf{B}h^{-1}g\mathbf{B} = \mathbf{B}w\mathbf{B}$. Such pairs $(h\mathbf{B}, g\mathbf{B})$ form the points of the **G**-orbit of $(\mathbf{G}/\mathbf{B})^2$ corresponding to w, which we will denote by $\mathbf{O}(w)$.

More generally, for any sequence of elements $\vec{w} = (w^{(1)}, w^{(2)}, \dots, w^{(k)})$ in **W**, let $\mathbf{O}(\vec{w})$ be the subvariety of $(\mathbf{G}/\mathbf{B})^{1+k}$ defined on points by

$$\mathbf{O}(\vec{w}) = \{ \vec{g}\mathbf{B} = (g_0\mathbf{B}, g_1\mathbf{B}, \dots, g_k\mathbf{B}) \mid g_0\mathbf{B} \xrightarrow{w^{(1)}} g_1\mathbf{B} \xrightarrow{w^{(2)}} \dots \xrightarrow{w^{(k)}} g_m\mathbf{B} \}.$$

The Zariski closure of $\mathbf{O}(\vec{w})$ is sometimes called the *Bott-Samelson variety* of \vec{w} . For this reason, $\mathbf{O}(\vec{w})$ is sometimes called the *open Bott-Samelson variety*.

For any subset $I \subseteq \{1, ..., k\}$, we write $pr_I : \mathbf{O}(\vec{w}) \to (\mathbf{G}/\mathbf{B})^I$ to denote the map that sends $pr_I(\vec{g}\mathbf{B}) = (g_i\mathbf{B})_{i\in I}$. When writing out \vec{w} , resp. I, explicitly, we will omit the parentheses, resp. brackets, where convenient.

Lemma 2.1(1) implies that if $\ell_{\mathbf{B}}(wv) = \ell_{\mathbf{B}}(w) + \ell_{\mathbf{B}}(v)$, then $pr_{0,2}$ induces an explicit isomorphism $\mathbf{O}(w,v) \xrightarrow{\sim} \mathbf{O}(wv)$. By induction, any variety of the form $\mathbf{O}(\vec{w})$ is explicitly isomorphic to one of the form $\mathbf{O}(\vec{s})$, where \vec{s} is a word in $S_{\mathbf{B}}$.

2.4. **Frobenius Maps.** For algebraic varieties over $\bar{\mathbf{F}}$ equipped with Frobenius maps, we use italics to denote the corresponding sets of Frobenius-fixed points.

As in §1.2, we fix a Frobenius map $F : \mathbf{G} \to \mathbf{G}$ arising from an **F**-form, such that **B** and **T** are F-stable. Then **W** and $S_{\mathbf{B}}$ are also F-stable. The group $W := \mathbf{W}^F$ is again a Coxeter group, which can be identified with $N_G(T)/T$.

Remark 2.2. When **G** is almost-simple, the options for G and W are listed in [Car95, §1.5–1.6]. Notably, W is crystallographic except when it has factors of type ${}^{2}F_{4}$.

There is a system of simple reflections for W, which we will denote S, indexed by the F-orbits on $S_{\mathbf{B}}$: Each element $s \in S$ is the product of all the elements in the given F-orbit, which pairwise commute and form a reduced word in $S_{\mathbf{B}}$ in any order. Let ℓ be the Bruhat length function on W defined by S.

By Lang's theorem, $g\mathbf{B}$ is F-stable if and only if $g \in G$, and in this case, $gB = (x\mathbf{B})^F$. Similarly, $\mathbf{B}w\mathbf{B}$ is F-stable if and only if $w \in W$, and in this case, $BwB = (\mathbf{B}w\mathbf{B})^F$. Thus, the double cosets BwB for $w \in W$ partition G, while the G-orbits on $(G/B)^2$ are the sets O(w) for $w \in W$. As explained in [Car93], parts (1)–(3) of Lemma 2.1 have exact analogues with \mathbf{W} replaced by W. See also [Kaw75, §1].

Lemma 2.3. For all $w \in W$:

- $(1) \ \textit{If} \ \ell(wv) = \ell(w) + \ell(v), \ \textit{then} \ U_{wv}^- = U_w^- U_v^-, \ \textit{and} \ U_w^- \cap U_v^- = \{1\}.$
- (2) $U = U_w U_w^- = U_w^- U_w$, and $U_w \cap U_w^- = \{1\}$.
- (3) $BwB = U_w^- wB$, and the map $U_w^- \to U_w^- wB/B$ is a bijection.

The one point where caution is needed concerns the sizes of U_w and U_w^- , as they use $\ell_{\mathbf{B}}(w)$, not $\ell(w)$, in general [Car93, 74].

Lemma 2.4. For all
$$w \in W$$
, we have $|U_w^-| = q^{\dim(\mathbf{U}_w^-)} = q^{\ell_{\mathbf{B}}(w)}$.

2.5. Operations on Functions. For any finite set X equipped with the action of a finite group G, we write $\mathcal{C}_G(X)$ to denote the free module of **Z**-valued, G-invariant functions on X. For any G-stable subset $Y \subseteq X$, we write $\delta_Y \in \mathcal{C}_G(X)$ to denote the indicator function on Y.

For a G-equivariant map $f: Y \to X$, the *pullback* of functions along f is the linear map $f^*: \mathcal{C}_G(X) \to \mathcal{C}_G(Y)$ given by $f^*(\varphi)(y) = \varphi(f(y))$. The *pushforward*, or *integral*, of functions along f is the linear map $f_!: \mathcal{C}_G(Y) \to \mathcal{C}_G(X)$ given by

$$f_!(\psi)(x) = \sum_{y \in f^{-1}(x)} \psi(y).$$

When f can be understood from context, we omit $f_!$ from our notation.

Let * denote the convolution product on $C(X \times X)$ defined in terms of the three projection maps $pr_{i,j}: X^3 \to X^2$ by

$$\varphi_1 * \varphi_2 = pr_{1,3,1}(pr_{1,2}^*(\varphi_1) \cdot pr_{2,3}^*(\varphi_2)),$$

where \cdot denotes pointwise multiplication. Explicitly,

$$(\varphi_1 * \varphi_2)(y, x) = \sum_{z \in X} \varphi_1(y, z) \varphi_2(z, x).$$

The indicator function of the diagonal $X \subseteq X^2$ is the identity element for this operation. If X is equipped with a G-action, and G acts on X^2 diagonally, then * restricts to an operation on $\mathcal{C}_G(X \times X)$ with the same identity element.

Iwahori proved that the ring formed by $C_G(G/B \times G/B)$ under convolution is freely generated by the elements $\delta_w := \delta_{O(w)}$ for $w \in W$ modulo the following relations for

all $w \in W$ and $s \in S$:

$$\delta_s * \delta_w = \left\{ \begin{array}{ll} \delta_{sw} & \ell(sw) > \ell(w), \\ |U_s^-| \, \delta_{sw} + (|U_s^-| - 1) \, \delta_w & \ell(sw) < \ell(w) \end{array} \right.$$

See [Car95, §3.3] or [Kaw75, Thm. 2.6]. We define H_B^G to be the $\mathbf{Z}[\frac{1}{a}]$ -algebra

$$H_B^G = \mathcal{C}_G(G/B \times G/B)[\frac{1}{a}].$$

If G is *split*, meaning $W = \mathbf{W}$, then $\ell_{\mathbf{B}}(s) = \ell(s) = 1$ and $|U_s^-| = q$ for all $s \in S$. This is the case on which the introduction focused. Here, W is crystallographic, and H_B^G is a specialization of the $\mathbf{Z}[q^{\pm 1}]$ -algebra H_W freely generated by elements T_w for $w \in W$ modulo the following relations for all $w \in W$ and $s \in S$:

$$T_s T_w = \begin{cases} T_{sw} & \ell(sw) = \ell(w) + 1, \\ \mathbf{q} T_{sw} + (\mathbf{q} - 1) T_w & \ell(sw) = \ell(w) - 1 \end{cases}$$

2.6. **Parabolic Subgroups.** Fix an F-stable subset $J_{\mathbf{B}} \subseteq S_{\mathbf{B}}$, corresponding to a subset $J \subseteq S$. Let $\mathbf{W}_J \subseteq \mathbf{W}$, resp. $W_J \subseteq W$, be the subgroup generated by $J_{\mathbf{B}}$, resp. J. Then \mathbf{W}_J is F-stable and $W_J = \mathbf{W}_J^F$.

Let $\mathbf{P}_J = \mathbf{B}\mathbf{W}_J\mathbf{B} \subseteq \mathbf{G}$. We can write $\mathbf{P}_J = \mathbf{L}_J \ltimes \mathbf{U}_J$, where \mathbf{L}_J is reductive with Weyl group \mathbf{W}_J and \mathbf{U}_J the unipotent radical of \mathbf{P}_J . These subgroups are F-stable, and on F-fixed points, we have $P_J = L_J \ltimes U_J$.

By construction, $\mathbf{B}_J = \mathbf{L}_J \cap \mathbf{B}$ is a Borel subgroup of \mathbf{L}_J . The inclusion $L_J \subseteq P_J$ descends to an L_J -equivariant bijection $L_J/B_J \simeq P_J/B$, which in turn yields an isomorphism of algebras

$$C_{L_J}(L_J/B_J \times L_J/B_J) \simeq C_{L_J}(P_J/B \times P_J/B).$$

Once we adjoin $\frac{1}{q}$, the left-hand side becomes $H_{B_J}^{L_J}$, and the right-hand side becomes the subalgebra of H_B^G generated by the elements δ_w with $w \in W_J$. Henceforth, we identify these $\mathbf{Z}[\frac{1}{q}]$ -algebras with each other.

As in the introduction, let $W^{J,-} \subseteq W$ be the set of minimal-length right coset representatives for W_J . By Lemma 2.1, the split case of the following definition recovers the $q \to q$ specialization of the relative norm map in §1.1.

Definition 2.5. The *relative norm* map $N_J^S: H_{B_J}^{L_J} \to H_B^G$ is defined by

$$N_J^S(\alpha) = \sum_{v \in W^{J,-}} \frac{1}{|U_v^-|} \, \delta_{v^{-1}} * \alpha * \delta_v.$$

We have implicitly used Lemma 2.4 to ensure that $|U_v^-|$ is a power of q.

2.7. Let w_{\circ} and $w_{J\circ}$ respectively denote the longest elements of W and W_{J} with respect to S. Then $U = U_{w_{\circ}}$ and $U_{J} = U_{w_{J\circ}}$. The following fact will be useful:

Lemma 2.6. For any $J \subseteq S$ and $v \in W^{J,-}$, we have

$$U_J \cap U_v = U_{w_{J\circ}v}$$
 and $U_J \cap U_v^- = U_v^-$.

In particular, $U_J = U_{w_{J\circ}v}U_v^- = U_v^-U_{w_{J\circ}v}$ and $U_{w_{J\circ}v} \cap U_v^- = \{1\}$. In the split case, the analogous identities hold with \mathbf{U}_J , \mathbf{U}_v , etc. in place of U_J , U_v , etc..

Proof. To show $U_J \cap U_v = U_{w_{J} \circ v}$: In general, if $w, v \in W$ satisfy $\ell(wv) = \ell(w) + \ell(v)$, then $U_{wv}^- = U_w^- U_v^-$ and $U_w^- \cap U_v^- = \{1\}$ by Lemma 2.3(1), which implies that $U_{wv} = U_w \cap U_v$ by Lemma 2.3(2).

To show $U_J \cap U_v^- = U_v^-$, meaning $U_v^- \subseteq U_J$: In general, if $w \in W_J$ and $v \in W^{J,-}$, then the F-orbits of root subgroups of \mathbf{U}_J inverted by wv are precisely those inverted by w. Taking w = e gives the result.

In the split case, $\ell_{\mathbf{B}} = \ell$, and thus, v minimizes $\ell_{\mathbf{B}}$ in $\mathbf{W}_J v$. So we can repeat all the arguments above with the varieties in place of the sets.

3. Partial Springer Resolutions

3.1. Recall the partial Springer resolutions $\mathbf{Spr}_J^{\pm} \subseteq \mathbf{G} \times \mathbf{G}/\mathbf{P}_J$ and the varieties $\mathbf{E}_J^{\pm} = \mathbf{G}/\mathbf{B} \times \mathbf{Spr}_J^{\pm}$ from §1.2. The latter are stable under the left **G**-action on $\mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{P}_J$ defined by

(3.1)
$$g \cdot (h\mathbf{B}, u, y\mathbf{P}_J) = (gh\mathbf{B}, gug^{-1}, gy\mathbf{P}_J).$$

Let $f: \mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{P}_J \to (\mathbf{G}/\mathbf{B})^2$ be the **G**-equivariant map defined by

$$f(h\mathbf{B}, u, y\mathbf{P}_J) = (h\mathbf{B}, uh\mathbf{B}).$$

On F-fixed points, it restricts to G-equivariant maps $f: E_J^{\pm} \to (G/B)^2$. These recover the maps f in §1.2. The goal of this section is to prove the identities

(3.2)
$$f_! \delta_{E_J^-} = |U_J| N_J^S(1),$$
$$f_! \delta_{E_J^+} = |U_J| N_J^S(\delta_{w_{J\circ}}^2),$$

where N_J^S is now given by Definition 2.5. They recover Theorem 1.1 in the split case.

3.2. Reduction to Strata. Observe that \mathbf{E}_{J}^{\pm} is a union of **G**-stable strata $\mathbf{E}_{J,v}^{\pm}$ for $\mathbf{W}_{J}v \in \mathbf{W}_{J}\backslash \mathbf{W}$, where on points,

$$\mathbf{E}_{J,v}^{\pm} = \{(h\mathbf{B}, u, y\mathbf{P}_J) \in \mathbf{G}/\mathbf{B} \times \mathbf{Spr}_J^{\pm} \mid \mathbf{P}_J y^{-1} h \mathbf{B} = \mathbf{P}_J v \mathbf{B}\}.$$

From §2.4, we see that $\mathbf{P}_J v \mathbf{B}$ is F-stable if and only if $v \in W$, and in this case, $P_J v B = (\mathbf{P}_J v \mathbf{B})^F$. Therefore, E_J^{\pm} is the union of its G-stable subsets $E_{J,v}^{\pm}$ as v runs over a full set of right coset representatives for W_J : for instance, $W^{J,-}$. As Lemma 2.6 shows that $U_J \simeq U_{W_{J^{\circ}} v} \times U_v^-$, we reduce (3.2) to:

Theorem 3.1. If $v \in W^{J,-}$, then:

(1)
$$f_! \delta_{E_{Jv}^-} = |U_{w_{J\circ v}}| \delta_{v^{-1}} * \delta_v.$$

(2)
$$f_! \delta_{E_{J,v}^+}^{J,v} = |U_{w_{J} \circ v}| \, \delta_{v^{-1}} * \delta_{w_{J} \circ}^2 * \delta_{w_{J} \circ v}.$$

3.3. Reduction to Borel Cosets. Let $\check{\mathbf{E}}_{J,v}^{\pm} \subseteq \mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{B}$ be the subvariety defined on points by

$$\check{\mathbf{E}}_{J,v}^{\pm} = \{ (h\mathbf{B}, u, y\mathbf{B}) \mid (u, y\mathbf{B}) \in \mathbf{Spr}_{J}^{\pm} \text{ and } y\mathbf{B} \xrightarrow{v} h\mathbf{B} \}$$

The forgetful map $\mathbf{G}/\mathbf{B} \to \mathbf{G}/\mathbf{P}_J$ induces a map $\check{\mathbf{E}}_{J,v}^{\pm} \to \mathbf{E}_{J,v}^{\pm}$.

Lemma 3.2. If $v \in W^{J,-}$, then $\check{E}^{\pm}_{J,v} \to E^{\pm}_{J,v}$ is a bijection. In the split case, this bijection arises from an isomorphism $\check{\mathbf{E}}^{\pm}_{J,v} \to \mathbf{E}^{\pm}_{J,v}$.

Proof. The first claim is just the fact that if v minimizes ℓ in $W_J v$, then there are compatible bijections from U_v^- to the Schubert cells BvB/B and BvP_J/P_J .

For the second claim: As in the proof of Lemma 2.6, v minimizes $\ell_{\mathbf{B}}$ in $\mathbf{W}_{J}v$. So we can repeat the argument above, but with the varieties \mathbf{U}_{v}^{-} , \mathbf{B} , \mathbf{P}_{J} in place of the sets U_{v}^{-} , B, P_{J} , and isomorphisms in place of bijections.

The varieties $\check{\mathbf{E}}_J^{\pm}$ are stable under the **G**-action on $\mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{B}$ analogous to (3.1). Let $\check{f}: \mathbf{G}/\mathbf{B} \times \mathbf{G} \times \mathbf{G}/\mathbf{B} \to (\mathbf{G}/\mathbf{B})^3$ be the equivariant map defined by

$$\check{f}(h\mathbf{B}, u, y\mathbf{B}) = (h\mathbf{B}, y\mathbf{B}, uh\mathbf{B}).$$

The proofs of the two parts of Theorem 3.1 will use \check{f} in different ways.

3.4. **Proof of (1).** In the notation of Section 2,

$$pr_{0,2,!}\delta_{O(v^{-1},v)} = \delta_{v^{-1}} * \delta_v.$$

This suggests comparing $\mathbf{E}_{J,v}^-$ to a bundle over $\mathbf{O}(v^{-1},v)$. It turns out that $\check{\mathbf{E}}_{J,v}^-$ is the bundle we seek.

Observe that if $(h\mathbf{B}, u, y\mathbf{B})$ is a point of $\check{\mathbf{E}}_{J,v}^-$, then $\mathbf{B}y^{-1}uh\mathbf{B} = \mathbf{B}y^{-1}h\mathbf{B} = \mathbf{B}v\mathbf{B}$. Therefore, \check{f} restricts to a map from $\check{\mathbf{E}}_{J,v}^-$ into $\mathbf{O}(v^{-1}, v)$, giving an equivariant commutative diagram:

$$\begin{array}{ccc}
\check{\mathbf{E}}_{J,v}^{-} & \longrightarrow \mathbf{E}_{J,v}^{-} \\
\check{f} \downarrow & & \\
\mathbf{O}(v^{-1},v) & & \\
pr_{0,2} \downarrow & & \\
(\mathbf{G}/\mathbf{B})^{2} & & & \\
\end{array}$$

By Lemma 3.2 and this diagram, we reduce case (1) of Theorem 3.1 to:

Proposition 3.3. If $v \in W^{J,-}$, then

$$\check{f}_!\delta_{\check{E}_{J,v}^-}=\left|U_{w_{J\circ}v}\right|\delta_{O(v^{-1},v)}$$

in $C_G(O(v^{-1}, v))$. In the split case, this identity arises from $\check{\mathbf{E}}_{J,v}^- \xrightarrow{\check{f}} \mathbf{O}(v^{-1}, v)$ being a smooth fiber bundle with fiber $\mathbf{U}_{w_{J\circ}v}$ above $(\mathbf{B}, v\mathbf{B})$.

Proof. For the first claim: Recall that the G-action on pairs $(yB, hB) \in O(v)$ is transitive. So by equivariance of \check{f} and homogeneity, it suffices to compute \check{f} over any fixed choice of such yB and hB.

We take (yB, hB) = (B, vB). Over this pair, the fiber of \check{E}_J^- consists of (vB, u, B) with $u \in U_J$, the fiber of $O(v^{-1}, v)$ consists of (vB, B, gB) with $gB \in BvB/B$, and \check{f} is given by $u \mapsto uvB$. Therefore, under the bijections $U_J \simeq U_{w_{J} \circ v} \times U_v^-$ of Lemma 2.6 and $BvB/B \simeq U_v^-$ of Lemma 2.3(3), \check{f} corresponds to the projection $U_{w_{J} \circ v} \times U_v^- \to U_v^-$. This proves the claim.

For the second claim: As in the proof of Lemma 2.6, we observe that v minimizes $\ell_{\mathbf{B}}$ in $\mathbf{W}_J v$. So we can repeat the arguments above with the varieties \mathbf{G} , $\mathbf{O}(v)$, etc. in place of the sets G, O(v), etc., and Lemma 2.1 in place of Lemma 2.3.

3.5. **Proof of (2).** In the notation of Section 2,

$$pr_{0,4,!}\delta_{O(v^{-1},w_{J\circ},w_{J\circ},v)} = \delta_{v^{-1}} * \delta_{w_{J\circ}}^2 * \delta_v.$$

This suggests comparing $\mathbf{E}_{J,v}^+$ to a bundle over $\mathbf{O}(v^{-1}, w_{J\circ}, w_{J\circ}, v)$. But unlike the situation in case (1), there is no obvious map from $\check{\mathbf{E}}_{J,v}^+$ into the latter variety.

We do know that \check{f} restricts to a map from $\check{\mathbf{E}}_{J,v}^+$ into $\mathbf{O}(v^{-1}) \times \mathbf{G}/\mathbf{B}$, giving an equivariant commutative diagram:

$$\mathbf{\check{E}}_{J,v}^{+} \longrightarrow \mathbf{E}_{J,v}^{+}$$

$$\check{f} \downarrow \qquad \qquad /$$

$$\mathbf{O}(v^{-1}) \times \mathbf{G}/\mathbf{B}$$

$$pr_0 \times \mathrm{id} \downarrow \qquad \qquad f$$

$$(\mathbf{G}/\mathbf{B})^2$$

At the same time, we have a map

$$\mathbf{O}(v^{-1}, w_{J\circ}, w_{J\circ}, v) \xrightarrow{pr_{0,1,4}} \mathbf{O}(v^{-1}) \times \mathbf{G}/\mathbf{B}$$

So by Lemma 3.2 and the discussion above, we reduce case (2) of Theorem 3.1 to:

Proposition 3.4. If $v \in W^{J,-}$, then

$$\check{f}_! \delta_{E_{Lv}^+} = |U_{w_{J} \circ v}| \ pr_{0,1,4,!} \delta_{O(v^{-1}, w_{J} \circ, w_{J} \circ, v)}$$

in $C_G(O(v^{-1}) \times G/B)$.

Proof. For any $w \in W$, let

$$O(v^{-1}) \times_w G/B = \{(hB, yB, gB) \in O(v^{-1}) \times G/B \mid Bh^{-1}gB = BwB\},$$

the preimage of O(w) along $pr_0 \times id$. Recall that the G-action on O(w) is transitive. So by equivariance and homogeneity, the fibers of $\check{E}_{J,v}^+$ and $O(v^{-1}, w_{J\circ}, w_{J\circ}, v)$ have constant size over $O(v^{-1}) \times_w G/B$. So it suffices to compare them over any fixed choice of $(hB, gB) \in O(w)$, for each $w \in W$. Moreover, to do this, it suffices to fix hB and average over $gB \in hBwB/B$.

We take hB = B. Then we must compare the preimages of

$$\{(B, yB, gB) \in O(v^{-1}) \times_w G/B\}$$

in \check{E}_J^+ and $O(v^{-1}, w_{J\circ}, w_{J\circ}, v)$. Since $v \in W^{J,-}$, we can trade the latter set and the map $pr_{0,1,4}$ for the set $O(v^{-1}, w_{J\circ}, w_{J\circ}v)$ and the map $pr_{0,1,3}$.

The preimage of (3.3) in \check{E}_J^+ consists of (B, u, yB) such that $u \in yV_Jy^{-1}$ and $u \in BwB$. Hence it has size

$$(3.4) |yV_J y^{-1} \cap BwB|.$$

The preimage of (3.3) in $O(v^{-1}, w_{J\circ}, w_{J\circ}v)$ consists of (B, yB, zB, gB) such that

$$yB \stackrel{w_{J\circ}}{\longleftrightarrow} zB \xrightarrow{w_{J\circ}v} qB$$

and $gB \in BwB/B$. Observe that $yB \in Bv^{-1}B/B$, so homogeneity under left multiplication by B lets us count the preimage for a given yB by averaging over the preimages for all $yB \in Bv^{-1}B/B$. Since $v \in W^{J,-}$, Lemma 2.3(1) shows that the union of these preimages is parametrized by (zB, gB) such that

$$(3.5) B \stackrel{w_{J \circ} v}{\longleftarrow} zB \stackrel{w_{J \circ} v}{\longrightarrow} gB$$

and $gB \in BwB/B$. It also shows that there is a bijection from $U^-_{(w_{J\circ}v)^{-1}} \times U^-_{w_{J\circ}v}$ to the set of pairs (zB, gB) satisfying (3.5), given by

$$(u, u') \mapsto (u(w_{J \circ} v)^{-1} B, u(w_{J \circ} v)^{-1} u' w_{J \circ} v B).$$

So the set of (zB, gB) satisfying (3.5) and $gB \in BwB/B$ is parametrized by

$$(U_{(w_{J\circ}v)^{-1}}^{-}(w_{J\circ}v)^{-1}U_{w_{J\circ}v}^{-}w_{J\circ}v)\cap BwB.$$

Since $U^-_{(w_{I_0}v)^{-1}} \subseteq B$, this last set can be identified with

$$U_{(w_{J_{\circ}}v)^{-1}}^{-} \times ((w_{J_{\circ}}v)^{-1}U_{w_{J_{\circ}}v}^{-}w_{J_{\circ}}v \cap BwB).$$

By Lemma 2.3(3), we have $|U_{v^{-1}}^-|$ many choices for $yB \in Bv^{-1}B/B$, and since $v \in W^{J,-}$, we also have $|U_{(w_{J\circ}v)^{-1}}^-| = |U_{w_{J\circ}}^-||U_{v^{-1}}^-|$. Altogether, we conclude that the size of the preimage of (3.3) in $O(v^{-1}, w_{J\circ}, w_{J\circ}v)$ is

$$(3.6) |U_{w_{J\circ}}^-||(w_{J\circ}v)^{-1}U_{w_{J\circ}v}^-w_{J\circ}v\cap BwB|.$$

Finally, we compare (3.4) and (3.6). Theorem 4.1 of [Kaw75] says

$$|yV_Jy^{-1} \cap BwB| = |U_{v^{-1}}||(w_{J\circ}v)^{-1}U_{w_{J\circ}v}^-w_{J\circ}v \cap BwB|.$$

Again using $|U_{(w_{J\circ}v)^{-1}}^-| = |U_{w_{J\circ}}^-||U_{v^{-1}}^-|$, we see that $|U_{v^{-1}}| = |U_{(w_{J\circ}v)^{-1}}||U_{w_{J\circ}}^-| = |U_{w_{J\circ}v}||U_{w_{J\circ}}^-|$, giving the desired identity.

Remark 3.5. The asymmetry of the variety $\mathbf{O}(v^{-1}) \times \mathbf{G}/\mathbf{B}$ may seem defective. To make the geometry more symmetrical, one might try to replace the diagram

$$\mathbf{E}_{J}^{+} \xrightarrow{\check{f}} \mathbf{O}(v^{-1}) \times \mathbf{G}/\mathbf{B} \xleftarrow{pr_{0,1,4}} \mathbf{O}(v^{-1}, w_{J\circ}, w_{J\circ}, v)$$

with the diagram

$$\mathbf{E}_{J}^{+} \xrightarrow{\check{f}'} \mathbf{O}(v^{-1}) \times \mathbf{O}(v) \xleftarrow{pr_{0,1,3,4}} \mathbf{O}(v^{-1}, w_{J\circ}, w_{J\circ}, v)$$

in which $\check{f}'(h\mathbf{B}, u, x\mathbf{B}) = (h\mathbf{B}, x\mathbf{B}, ux\mathbf{B}, uh\mathbf{B})$. Then one would hope that

$$\check{f}'_{1}\delta_{E_{J_{v}}^{+}} = |U_{J}| \, pr_{0,1,3,4,!}\delta_{O(v^{-1},w_{J\circ},w_{J\circ},v)}$$

in $C_G(O(v^{-1}) \times O(v))$. However, Kawanaka's work does not seem to establish this stronger identity.

4. Traces on the Hecke Algebra

4.1. The goal of this section is to prove a form of Theorem 1.2 for general G, and also, to prove that it recovers (1.2) when $G = GL_n$.

We keep the general setup of Section 2. In order to work with étale cohomology, we fix a prime ℓ invertible in \mathbf{F} . The notation $\mathrm{H}_c^*(-,\bar{\mathbf{Q}}_\ell)$ will always mean compactly-supported étale cohomology with coefficients in the constant $\bar{\mathbf{Q}}_\ell$ -sheaf.

4.2. **Springer Fibers.** A reference for this subsection is [Sho88]. Henceforth, let $\mathbf{V} = \mathbf{V}_{\emptyset}$ and

$$\mathbf{Spr} = \mathbf{Spr}^+_\emptyset = \mathbf{Spr}^-_\emptyset \subseteq \mathbf{V} \times \mathbf{G}/\mathbf{B}.$$

By the *Springer resolution*, we mean either **Spr** or the projection map from **Spr** onto **V**. For any $u \in \mathbf{V}$, the *Springer fiber* over u is the (reduced) fiber of this map over u, viewed as a subvariety \mathbf{Spr}_u of \mathbf{G}/\mathbf{B} . On points,

$$\mathbf{Spr}_u = \{y\mathbf{B} \in \mathbf{G}/\mathbf{B} \mid u \in y\mathbf{U}y^{-1}\}.$$

Springer showed that this is a projective variety with no odd cohomology. For $u \in V := \mathbf{V}^F$, he constructed an action of W on $\mathrm{H}^*_c(\mathbf{Spr}_u)$, essentially from twisting the Frobenius F by elements of W. Let $\chi_u : \mathbf{Q}W \to \bar{\mathbf{Q}}_\ell$ be the trace defined by

$$\chi_u(w) = \operatorname{tr}(Fw \mid \operatorname{H}_c^*(\mathbf{Spr}_u)).$$

Later, other authors found other constructions of this action, and generalizations beyond \mathbf{F} , that instead use perverse sheaves, Fourier transforms, or, in the complex case, purely topological arguments. The various constructions actually lead to two separate Springer actions, differing by a sign twist. We will use the one where the sign representation of W only occurs in the top cohomology of \mathbf{Spr}_1 .

As reviewed in [Sho88, §15], it is now known χ_u arises from the specialization at $\mathbf{q} \to q$ of a $\mathbf{Z}[\mathbf{q}]$ -valued trace on $\mathbf{Z}W$. In particular, $\chi_u(w) \in \mathbf{Z}$ for all $w \in W$.

4.3. Partial Springer Fibers. For all $J \subseteq S$, the symmetrizer and antisymmetrizer in $\mathbf{Q}W_J$ are respectively defined by

$$e_{J,+} = \frac{1}{|W_J|} \sum_{w \in W_J} w$$
 and $e_{J,-} = \frac{1}{|W_J|} \sum_{w \in W_J} (-1)^{\ell(w)} w$.

These are central elements of $\mathbf{Q}W_J$, such that $\mathbf{Q}W_Je_{J,+}$ and $\mathbf{Q}W_Je_{J,-}$ respectively afford the trivial and sign representations of W_J .

Borho-MacPherson related $e_{J,-}$ and $e_{J,+}$ to the partial Springer fibers

$$\mathbf{Spr}_{J,u}^{-} = \{ y\mathbf{P}_{J} \in \mathbf{G}/\mathbf{P}_{J} \mid u \in y\mathbf{U}_{J}y^{-1} \},$$

$$\mathbf{Spr}_{J,u}^{+} = \{ y\mathbf{P}_{J} \in \mathbf{G}/\mathbf{P}_{J} \mid u \in y\mathbf{V}_{J}y^{-1} \}.$$

By §2.4, the set of F-fixed points $Spr_{J,u}^-$, resp. $Spr_{J,u}^+$, is the set of $yP_J \in G/P_J$ such that $u \in yU_Jy^{-1}$, resp. $u \in yV_Jy^{-1}$. For our choice of Springer action, the main result of [BM83] implies that for all $J \subseteq S$ and $u \in V$, we have

(4.1)
$$\chi_{u}(e_{J,-}) = q^{\ell_{J}} |Spr_{J,u}^{-}|,$$

$$\chi_{u}(e_{J,+}) = |Spr_{J,u}^{+}|.$$

Two subtleties are worth noting. First, the Springer action used by Borho–MacPherson is the *sign twist* of ours. Second, the factor of q^{ℓ_J} in the – case arises from the grading shift in case (b) of [BM83, §3.4], via the fact that the sign twist introduces a Poincaré–Verdier dual, as explained in [AHJR14].

4.4. **The Bitrace.** As in §1.3, let $O(w)_u$ be the subset of O(w) of pairs taking the form (hB, uhB). Let $\tau_G : \mathbf{Q}W \otimes H_B^G \to \mathbf{Q}$ be defined by

$$\tau_G(z \otimes \delta_w) = \frac{1}{|G|} \sum_{u \in V} |O(w)_u| \chi_u(z).$$

The results of [Tri21] show that this is, indeed, a bitrace, meaning $\tau_G(z \otimes -)$ and $\tau_G(-\otimes \delta_w)$ are traces for all $z, w \in W$. In the split case, it recovers the $\mathbf{q} \to q$ specialization of the trace denoted τ_G in the introduction.

Lemma 4.1. For all $J \subseteq S$ and $w \in W$, we have

$$\tau_G(e_{J,\pm} \otimes \delta_w) = \frac{1}{|G|} \sum_{(hB,gB) \in O(w)} f_! \delta_{E_J^{\pm}}(hB,gB),$$

where E_J^{\pm} and f are defined as in Section 3.

Proof. Applying (4.1) to the formula for τ_G . Then observe that

$$\coprod_{u \in V} O(w)_u \times Spr_{J,u}^{\pm} = \{ (hB, u, yP_J) \in E_J^{\pm} \mid (hB, uhB) \in O(w) \}
= \coprod_{(hB, gB) \in O(w)} f^{-1}(hB, gB).$$

4.5. Traces from Relative Norms. As in §1.3, let $\tau: H_B^G \to \mathbf{Z}[\frac{1}{q}]$ be the trace given by $\tau(\delta_e) = 1$ and $\tau(\delta_w) = 0$ for all $w \neq e$, and for any central element $\zeta \in Z(H_B^G)$, let $\tau[\zeta]: H_B^G \to \mathbf{Z}[\frac{1}{q}]$ be the trace given by $\tau[\zeta](\beta) = \tau(\beta * \zeta)$.

Lemma 4.2. For all $J \subseteq S$ and $w \in W$ and $\alpha \in Z(H_{B_J}^{L_J})$, we have

$$\tau[N_J^S(\alpha)](\delta_w) = \frac{|B|}{|G|} \sum_{(hB,gB)\in O(w)} N_J^S(\iota(\alpha))(hB,gB),$$

where ι is the additive anti-involution of $H_{B_J}^{L_J}$ given by $\iota(\delta_w) = \delta_{w^{-1}}$.

Proof. For any $\beta \in H_B^G$ and $xB \in G/B$, we have $\tau(\beta) = \beta(xB, xB)$. Moreover, |G/B| = |G|/|B|. So for any $\zeta \in Z(H_B^G)$, we have

$$\tau[\zeta](\beta) = \frac{|B|}{|G|} \sum_{xB \in G/B} (\beta * \zeta)(xB, xB).$$

Next, for any $w, v, z \in W$, observe that there is a bijection

$$\{(x_0B, x_1B, x_2B, x_3B, x_4B) \in O(w, v^{-1}, z, v) \mid x_0B = x_4B\}$$

$$\xrightarrow{\sim} \{(g_0B, g_1B, g_2B, g_3B) \in O(v^{-1}, z^{-1}, v) \mid g_0B \xrightarrow{w} g_3B\}$$

given by $(g_0B, g_1B, g_2B, g_3B) = (x_4B, x_3B, x_2B, x_1B)$. This shows the identity

$$\sum_{gB \in G/B} (\delta_w * \delta_{v^{-1}} * \delta_z * \delta_v)(gB, gB) = \sum_{(hB, gB) \in O(w)} (\delta_{v^{-1}} * \delta_{z^{-1}} * \delta_v)(hB, gB).$$

By expanding α in the basis $(\delta_z)_{z\in W_J}$ for $H_{B_J}^{L_J}$, and summing over all $v\in W^{J,-}$, we deduce that

$$\sum_{xB \in G/B} (\beta * N_J^S(\alpha))(xB, xB) = \sum_{(hB, gB) \in O(w)} N_J^S(\iota(\alpha))(hB, gB),$$

concluding the proof.

The split case of the following result recovers Theorem 1.2, as it works for infinitely many finite fields \mathbf{F} , allowing us to upgrade q to q.

Theorem 4.3. For any $J \subseteq S$, we have

$$\tau[N_J^S(1)] = |B_J| \, \tau_G(e_{J,-} \otimes -),$$

$$\tau[N_J^S(\delta_{w_{J,-}}^2)] = |B_J| \, \tau_G(e_{J,+} \otimes -),$$

as traces on H_W .

Proof. Combine (3.2) with Lemmas 4.1–4.2, noting that 1 and $\delta_{w_{J\circ}}^2$ are invariant under ι . Then observe that $B = B_J \ltimes U_J$, from which $|B|/|U_J| = |B_J|$.

4.6. Recovering Lascoux-Wan-Wang. In this subsection, we assume that $G = GL_n$ and F is the standard Frobenius that raises each matrix coordinate to its qth power. Then $G = GL_n(\mathbf{F})$ and $W = \mathbf{W} = S_n$.

As in §1.3, we take $S = \{s_1, \ldots, s_{n-1}\}$, where $s_i \in S_n$ is the transposition swapping i and i+1. Then the correspondence between partitions $\lambda \vdash n$ and subsets $J \subseteq S$ is given by sending λ to

$$J_{\lambda} = \{\}$$

Proposition 4.4. For all $J \subseteq S$, we have

$$ch_{\mathbf{q}}(\tau_{G}(e_{J,+}\otimes -)) = \mathbf{q}^{-\ell_{J}}e_{\lambda}(\frac{X}{\mathbf{q}-1}),$$

$$ch_{\mathbf{q}}(\tau_{G}(e_{J,+}\otimes -)) = h_{\lambda}(\frac{X}{\mathbf{q}-1}).$$

5. Braid Varieties and Cell Decompositions

5.1.

6. Parking Numbers

6.1.

7. Markov Traces and Kirkman Numbers

7.1.

References

- [AHJR14] Pramod N. Achar, Anthony Henderson, Daniel Juteau, and Simon Riche. Weyl group actions on the Springer sheaf. *Proc. Lond. Math. Soc.* (3), 108(6):1501–1528, 2014. doi:10.1112/plms/pdt055.
- [ALW16] Drew Armstrong, Nicholas A. Loehr, and Gregory S. Warrington. Rational parking functions and Catalan numbers. *Ann. Comb.*, 20(1):21–58, 2016. doi:10.1007/s00026-015-0293-6.
- [ARR15] Drew Armstrong, Victor Reiner, and Brendon Rhoades. Parking spaces. Adv. Math., 269:647–706, 2015. doi:10.1016/j.aim.2014.10.012.
- [BM83] Walter Borho and Robert MacPherson. Partial resolutions of nilpotent varieties. In Analysis and topology on singular spaces, II, III (Luminy, 1981), volume 101-102 of Astérisque, pages 23-74. Soc. Math. France, Paris, 1983.
- [BMR98] M. Broué, G. Malle, and R. Rouquier. Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math., 500:127–190, 1998.
- [BT22] Roman Bezrukavnikov and Kostiantyn Tolmachov. Monodromic model for Khovanov-Rozansky homology. J. Reine Angew. Math., 787:79–124, 2022. doi:10.1515/crelle-2022-0008.
- [Car93] Roger W. Carter. Finite groups of Lie type. Wiley Classics Library. John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience Publication.
- [Car95] R. W. Carter. On the representation theory of the finite groups of Lie type over an algebraically closed field of characteristic 0 [MR1170353 (93j:20034)]. In *Algebra*, *IX*,

- volume 77 of *Encyclopaedia Math. Sci.*, pages 1–120, 235–239. Springer, Berlin, 1995. doi:10.1007/978-3-662-03235-0_1.
- [Deo85] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. *Invent. Math.*, 79(3):499–511, 1985. doi:10.1007/BF01388520.
- [GLTW24] Pavel Galashin, Thomas Lam, Minh-Tâm Trinh, and Nathan Williams. Rational non-crossing Coxeter-Catalan combinatorics. *Proc. Lond. Math. Soc.* (3), 129(4):Paper No. e12643, 50, 2024. doi:10.1112/plms.12643.
- [Gom06] Yasushi Gomi. The Markov traces and the Fourier transforms. J. Algebra, 303(2):566–591, 2006. doi:10.1016/j.jalgebra.2005.09.034.
- [Jon87] V. F. R. Jones. Hecke algebra representations of braid groups and link polynomials. *Ann. of Math.* (2), 126(2):335–388, 1987. doi:10.2307/1971403.
- [Jon90] Lenny K. Jones. Centers of generic Hecke algebras. Trans. Amer. Math. Soc., 317(1):361–392, 1990. doi:10.2307/2001467.
- [Kaw75] Noriaki Kawanaka. Unipotent elements and characters of finite Chevalley groups. Osaka Math. J., 12(2):523-554, 1975. URL: http://projecteuclid.org/euclid.ojm/ 1200757873.
- [Las06] Alain Lascoux. The Hecke algebra and structure constants of the ring of symmetric polynomials, 2006. arXiv:0602379.
- [Sho88] Toshiaki Shoji. Geometry of orbits and Springer correspondence. Number 168, pages 9, 61–140. 1988. Orbites unipotentes et représentations, I.
- [STZ17] Vivek Shende, David Treumann, and Eric Zaslow. Legendrian knots and constructible sheaves. *Invent. Math.*, 207(3):1031–1133, 2017. doi:10.1007/s00222-016-0681-5.
- [Tri21] Minh-Tâm Quang Trinh. From the Hecke category to the unipotent locus, 2021. v2. arXiv:2106.07444.
- [Tri22] Minh-Tâm Quang Trinh. Unipotent elements and Kálmán-Serre duality, 2022. v2. arXiv:2210.09051.
- [WW11] Ben Webster and Geordie Williamson. The geometry of Markov traces. Duke Math. J., 160(2):401-419, 2011. doi:10.1215/00127094-1444268.
- [WW15] Jinkui Wan and Weiqiang Wang. Frobenius map for the centers of Hecke algebras. *Trans. Amer. Math. Soc.*, 367(8):5507–5520, 2015. doi:10.1090/S0002-9947-2014-06211-9.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, PO Box 208283, New Haven, CT 06520 *Email address*: minh-tam.trinh@yale.edu

University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080 $\it Email~address:$ nathan.f.williams@gmail.com