Lincoln Laboratory ASAP-2001 Workshop

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Shawn Kraut and Jeffrey Krolik

Duke University
Department of Electrical and Computer Engineering
Durham, NC 27708

Support by the 6.1 Program of the Office of Naval Research Code 321US

maintaining the data needed, and of including suggestions for reducing	Ilection of information is estimated completing and reviewing the collect g this burden, to Washington Headquuld be aware that notwithstanding a OMB control number.	tion of information. Send comment uarters Services, Directorate for Inf	s regarding this burden estimat formation Operations and Repo	e or any other aspect of rts, 1215 Jefferson Dav	this collection of information, is Highway, Suite 1204, Arlington
1. REPORT DATE 2. REPORT TYPE				3. DATES COVERED	
14 MAR 2001		N/A		-	
4. TITLE AND SUBTITLE Passive Differential Matched-field Depth Estimation of Moving Acoustic				5a. CONTRACT NUMBER F19628-00-C-0002	
Sources				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Shawn Kraut; Jeffrey Krolik				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Duke University Department of Electrical and Computer Engineering Durham, NC 27708				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAI Approved for publ	LABILITY STATEMENT lic release, distribut	ion unlimited			
13. SUPPLEMENTARY NO See ADM001263 fo color images.		Sensor Array Proces	ssing Workshop.,	The original	l document contains
14. ABSTRACT See briefing charts	s .				
15. SUBJECT TERMS					_
16. SECURITY CLASSIFICATION OF: 17. LIMI OF ABS				18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	17	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Passive Moving Target Depth Estimation (MTDE)

OBJECTIVE: To discriminate submerged versus surface targets by exploiting changes in the spatial wavefront at the array due to multipath propagation from a moving source.

BACKGROUND:

- Conventional matched-field processors use a computational model to predict the relative phase and amplitude between multipath arrivals from a distant stationary source and thus are very sensitive to horizontal wavenumber differences multiplied by range.
- Target motion in classical MFP techniques is problematic since it tends to decorrelate multipath components over the observation times used with stationary source models.
- Previous work using moving sources has attempted to mitigate source motion effects by pre-processing so as to effectively remove target dynamics.
- Proposed work aims to exploit target dynamics to estimate source depth and range-rate without requiring the accurate environmental models required for range estimation.
- Joint depth-range-rate estimation should achieve robustness to environmental mismatch since it depends only on horizontal wavenumber differences multiplied by the *change* in target range.

Conventional MFP with a Vertical or Horizontal Array

A snapshot of tilted vertical linear array (TVLA) data can be modeled as:

$$x_n = s_n U(\boldsymbol{q}_s) a + \boldsymbol{h}_n$$

where $[U(\boldsymbol{q}_S)]_{ml} = \boldsymbol{f}_l(z_m)e^{-jk_lmd\sin\boldsymbol{g}\sin\boldsymbol{q}_S}, [a(r_S,z_S)]_l = \boldsymbol{f}_l(z_S)e^{-jk_lr_S},$

 q_S, r_S, z_S are source bearing, range, depth, and g is array tilt.

• Full 3-D range-depth-bearing adaptive MFP requires accurate prediction of $(k_l - k_j)r_s$ which is difficult for large range, sufficient observation time over which the source can be considered stationary, and a search over 3 variables.

Some Previous Depth Estimation Approaches

- Averaging a 3-D MV surface over range may be computationally intensive. Further, matrix inversion prior to averaging can be statistically unstable.
- Matching the normal mode power distribution versus hypothesized target depth requires near orthogonality between modes at the array.
- The MV adaptive beamformer with extended range constraints (MV-ERC) consists of widening the range mainlobe so that bearing-depth estimation can be performed in coarse range bands.
- Desensitizing the adaptive beamformer to target range variation permits the use of longer observation times for more stable CSDM estimation.
- The ambiguity surface for the MV-ERC beamformer is given by:

$$Z_{ERC}(r,z) = \mathbf{e}_1^+ (\mathbf{H}(r,z)^+ \mathbf{R}_{\chi} \mathbf{H}(r,z))^{-1} \mathbf{e}_1$$

where $\mathbf{e}_1 = [1,0,...,0]^+$, where $\mathbf{H}(r,z)$ are the dominant eigenvectors of

$$\frac{1}{N} \sum_{k=1}^{N} \mathbf{d}(r + \Delta_k, z) \mathbf{d}(r + \Delta_k, z)^{+} \text{ and } \Delta_k, k = 1, ..., N \text{ defines a coarse range band around } r.$$

MV-ERC Matched-field Beamforming Results

• Typical *simulated* ambiguity surface for 8-tonal SWELLEX-96 TVLA scenario with SR=5800 m, SD=49 m. and SB = asin(0.34).

• Typical *real* ambiguity surface for 8-tonal SWELLEX-96 TVLA event S5 5/10/96 2332 Z. Obs. Time = 54 s, SR=6100 m, SD=56 m, and SB=asin(0.33).

Fundamental Depth Estimation Considerations

- Robust bearing-depth discrimination without range could in principle be obtained by treating modal phase terms as nuisance parameters, i.e. $[a(r_s, z_s)]_l = \mathbf{f}_l(z_s)e^{-j\mathbf{J}_l}$
- Cramer-Rao Lower Bound (CRLB) on source depth (left) for the known ("exact") versus unknown ("modified") modal phase suggests depth estimation without range possible.
- Sampled modal eigenfunctions (right) sampled at two depths illustrate ambiguity in estimating modal phases jointly with source depth without target motion.

A Dynamical Model for Passive Depth Estimation

- Idea is to exploit modal phase trajectory under a constant range-rate hypothesis in order to jointly estimate target range-rate and depth.
- Letting the complex range-dependent modal amplitudes of a source for snapshot k be denoted x_k , the relative changes in modal phase from snapshot-to-snapshot impose a Markov state update:

$$x_k = A_k(\dot{r})x_{k-1} + v_k$$

where $A_k(\dot{r}) \cong diag(e^{jk_l(r_k-r_{k-1})}) = diag(e^{jk_l\dot{r}(t_k-t_{k-1})})$ and the additive process noise approximately accounts for horizontal wavenumber uncertainties.

• The spatial wavefront at the array, y_k , at narrowband snapshot k, is then obtained by taking the sum of the normal modes multiplied by an i.i.d. zero-mean Gaussian random scalar, s_k :

$$y_k = s_k U(\boldsymbol{q}_s) \Phi(z_s) x_k + \boldsymbol{h}_k$$

where $\Phi(z_s) = diag(\mathbf{f}_l(z_s))$ and \mathbf{h}_k represents additive noise.

A Recursive Resampled Bayesian Estimate for Depth

- The non-linear depth-range-rate estimation problem can be solved by representing the posterior density function of the state by a *set of random samples*, rather than a continuous function over some high dimensional state space.
- For example, suppose at step k, random samples, $x_{k-1}(i)$, i=1,...,N, are available from $p(x_{k-1}|y_1,...,y_{k-1})$. Then samples, $x_k^*(i)$ from $p(x_k|y_1,...,y_{k-1})$ can be obtained using these samples as input to the state equation together with samples, \boldsymbol{e}_{g_k} , drawn from its known distribution.
- The updated posterior density can then be approximated at each sample, $x_k^*(i)$, by forming:

$$q_{i} = \frac{p(y_{k}|x_{k}^{*}(i))}{\sum_{j=1}^{N} p(y_{k}|x_{k}^{*}(i))}$$

- Samples, $x_k(i)$, i = 1,...,N, can now be obtained by bootstrap resampling N times from the discrete distribution defined such that for any j, $\Pr\{x_k(j) = x_k^*(i)\} = q_i$. The conditional mean of the depth parameter, z_k , can then be estimated by averaging these bootstrap samples.
- These steps are repeated for each range step to obtain a recursive estimate.
- For passive sonar, $p(y_k|x_k, z_s)$ is zero-mean Gaussian with covariance $R_k = \mathbf{s}_s^2 U \Phi(z_s) x_k x_k^{\dagger} \Phi(z_s)^{\dagger} U^{\dagger} + \mathbf{s}^2 I$ as in conventional models.

Sequential Importance Sampling Illustration

• Illustration clockwise from upper left of random samples from prior, weighting by likelihood function, Monte Carlo re-sampling from updated posterior, prediction using random samples of state noise.

Recursive Bayesian Passive MTDE Summary

- State vector includes unit-magnitude modal coefficients and range-rate with uniform prior.
- State transition density assumes multiplicative modal phase noise.
- Conditional density of data snapshot given state vector is zero-mean complex Gaussian.
- Estimates of depth-range-rate likelihood achieved using sequential importance sampling.

Mismatched Range-Independent Simulation

- To illustrate passive moving target depth estimation, a simple simulation was performed using a normal mode model of a 15-mode Pekeris waveguide with a 100 m. waveguide.
- Simulation of 0 dB SNR targets, at 2 m. and 20 m. depths with 2 m/s range-rate, received at a water-column spanning 23 sensor vertical array using ~50 narrowband snapshots was considered.
- Large environmental uncertainty was simulated by adding independent uniform random variables to the Pekeris vertical wavenumbers, $k_z = k_z^0 + \Delta k_z$, where $\Delta k_z = U(-0.45 \mathbf{p}/h, 0.45 \mathbf{p}/h)$ used to compute both horizontal wavenumbers and modal depth eigenfunctions.

Mismatched Conventional MFP for a Submerged Source

- Example conventional (aka "Bartlett") ambiguity surface (left) for moving source at 20 m. depth illustrates extreme ambiguity problem.
- Log-histogram (right) of MFP estimates using 100 Monte Carlo trials illustrates poor range estimation and mediocre depth estimation performance over $\Delta k_z = U(-0.45 \mathbf{p}/h, 0.45 \mathbf{p}/h)$

Mismatched Passive MTDE for a Submerged Source

- Example depth-range-rate log-likelihood surface (left) for moving source at 20 m. depth illustrates depth ambiguity with excellent range-rate estimation.
- Log-histogram of MTDE (right) over 100 Monte Carlo trials illustrating joint depthrange-rate estimation performance over $\Delta k_z = U(-0.45 \mathbf{p}/h, 0.45 \mathbf{p}/h)$

Mismatched Conventional MFP for Near-Surface Source

- Example conventional (aka "Bartlett") ambiguity surface (left) for moving source at 2 m. depth and 2 m/s range-rate illustrates extreme range ambiguity problem.
- Log-histogram (right) of MFP estimates using 100 Monte Carlo trials illustrates poor range estimation but good depth estimation performance over $\Delta k_z = U(-0.45 \mathbf{p}/h, 0.45 \mathbf{p}/h)$
- In practice, *detection* of a moving source from uncorrelated surface-based noise seriously limits the use of conventional MFP for depth classification.

Mismatched Passive MTDE for a Near-Surface Source

- Example depth-range-rate log-likelihood surface (left) for moving source at 2 m. depth illustrates depth estimation comparable to MFP with excellent range-rate estimation.
- Log-histogram of MTDE (right) over 100 Monte Carlo trials illustrates good range-rate estimation and depth estimation performance over $\Delta k_z = U(0,0.9\mathbf{p}/h)$
- Ability of passive MTDE to discriminate constant range-rate sources may facilitate detection of targets at depth from surface shipping with different range-rates.

Comparison of Depth Estimation Performance

- Histograms of MTDE (upper left) vs. conventional (lower left) for submerged source with $\Delta k_z = U(-0.45 \mathbf{p}/h, 0.45 \mathbf{p}/h)$ mismatch indicates moderately improved performance.
- Probability of correct depth localization (notwithstanding range, range-rate, or predicted depth ambiguity) compares performance for surface versus submerged source.
- Joint PCL for MFP range-depth estimate versus MTDE range-rate-depth estimate expected to show significant improvement for latter approach in mismatched channels.

Conclusions and Future Work

- Moving target depth estimation (MTDE) shows potential as a classification tool for passive discrimination of sources in the water column versus surface ships.
- By exploiting target motion, MTDE jointly estimates depth and range-rate avoiding severe range ambiguity problems of conventional MFP in mismatched conditions.
- Current sequential importance sampling approach for solving MTDE requires further development for operation at lower signal-to-noise ratios.
- MTDE framework may provide an alternative detection strategy by considering bearing-range-rate-depth likelihood surfaces.
- Current work includes evaluating MTDE with real SACLANT and SWELLEX data.
- Straightforward broadband passive implementation can be achieved by incoherently summing a posteriori probabilities across the frequency band.

