One Different Inequality

Input file: standard input
Output file: standard output

Time limit: 3 seconds

Memory limit: 1024 megabytes

You are given an integer N and a string S of length N-1 consisting of the characters < and >.

Let $P = (P_1, P_2, \dots, P_N)$ be a permutation of $(1, 2, \dots, N)$.

A permutation P is called a **Good Permutation** if it satisfies the following condition.

• For every i $(1 \le i \le N-1)$, if i-th character of S is <, then $P_i < P_{i+1}$; if it is >, then $P_i > P_{i+1}$.

A permutation P is called a Wonderful Permutation if it satisfies the following condition.

- P is a Good Permutation.
- The number of indices i $(1 \le i \le N-1)$ such that $|P_i P_{i+1}| = 1$ is maximum among all Good Permutations.

Your task is to count the number of Wonderful Permutations modulo 998244353.

Input

The input is given in the following format:

 $\left| egin{array}{c} N \ S \end{array}
ight|$

- \bullet N is an integer.
- $2 \le N \le 2 \times 10^5$
- S is a string of length N-1 consisting of < or >.

Output

Output answer on single line.

Examples

standard input	standard output
5	2
<<>>	
40	535474657
<<>><>><>><>><	

Note

In the first test case, (1, 2, 5, 4, 3) and (2, 3, 5, 4, 1) are Good Permutations. The number of i which satisfies $|P_i - P_{i+1}| = 1$ is 3, 2.

We can prove that the maximum number of i which satisfies $|P_i - P_{i+1}| = 1$ among Good Permutations is 3, and Wonderful Permutations are (1, 2, 5, 4, 3) and (3, 4, 5, 2, 1).