

«Московский государственный технический университет имени Н.Э. Баумана»

(национальный исследовательский университет)

ФАКУЛЬТЕТ КАФЕДРА ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

Дисциплина:		
Электроника		
Название работы:		
Мультивибратор на о RC-цепью	снове операционного у	силителя с интегрирующей
Студент группы ИУ6-42	подпись, дата	Р.Д. Векшин
Преподаватель	подпись, дата	Н.В. Аксёнов

Задача:

- 1. Исследовать влияние постоянной времени на период генерируемых колебаний, сопоставить между собой полученные экспериментально и рассчитанные длительности периодов генерируемых импульсов.
- 2. Исследовать влияние коэффициента передачи beta цепи положительной обратной связи на период генерируемых колебаний. Построить зависимость T = f(beta). Сравнить экспериментальные и теоретические значения периодов колебаний для четырех значений beta.
- 3. Исследовать влияние емкости нагрузочного конденсатора на длительность фронта и среза выходных импульсов генератора. Определить постоянную времени с которой перезаряжается нагрузочный конденсатор

ОСНОВНАЯ ЧАСТЬ

Drawing 1 - Исходная схема

1. Исследование влияния параметров цепи на период генерируемых импульсов

$$T = 2C_1R_3\ln(1+2\frac{R_1}{R_5}) = 0.0020c$$
 $\tau = C_1R_3 = 0.0015c$

$$T = 2C_2R_3\ln(1+2\frac{R_1}{R_5}) = 0.0041c$$
 $\tau = C_1R_3 = 0.0030c$

Drawing 2 - Напряжения в точках входа и выхода операционного усилителя при C_1

Из графика период равен 2.3068 mS.

2. Исследование влияния коэффициента передачи на период генерируемых импульсов

$$\beta_1 = \frac{R_1}{R_1 + R_5} = 0.33$$
 $\beta_2 = \frac{R_2}{R_2 + R_5} = 0.5$

$$R_6 = 20 \text{ kOm}$$
 $\beta_3 = \frac{R_1}{R_1 + R_6} = 0.6$ $\beta_4 = \frac{R_2}{R_2 + R_6} = 0.75$

R1/R2	R5/R6	beta	T
R1	R5	0.33	2.3067m
R2	R5	0.5	3.4823m
R1	R6	0.6	4.3404m
R2	R6	0.75	6.0051m

Прослеживается прямая зависимость между периодом колебаний и коэффициентом передачи.

3. Исследование зависимости параметров цепи от емкостной составляющей нагрузки

$C_{\scriptscriptstyle H}$, мк Φ	Tau_c, c	Tau_ф, с	Tau_cp, c
0.05	0.000005	42.0831u	42.0832u
0.15	0.0000015	115.8959u	115.8634u
0.25	0.0000025	193.0705u	193.0684u
0.50	0.0000050	386.1610u	386.1538u

Прослеживается прямая зависимость между периодом временными параметрами и емкостью нагрузочного конденсатора.

ЗАКЛЮЧЕНИЕ

- 1. Исследовано влияние постоянной времени на период генерируемых колебаний.
- 2. Исследовано влияние коэффициента передачи beta цепи положительной обратной связи на период генерируемых колебаний.
- 3. Исследовано влияние емкости нагрузочного конденсатора на длительность фронта и среза выходных импульсов генератора.