Tutorial 2

Chapter 1: Introduction to Instrumentation System

Chapter 2: Signal Measurements

- 1. Explain the conditions for dc bridge balance with necessary diagram.
- 2. Derive an expression for the measurement of unknown capacitance using Schering Bridge.
- 3. How can we measure the self-inductance by comparing it with a standard variable capacitance? Derive the relationship.
- 4. Discuss about various performance parameters of instrumentation system in detail.
- 5. Explain the static characteristic of measurement system.
- 6. Explain Kelvin's bridge with its necessary diagram.
- 7. What are the applications of Wein bridge? Derive the necessary expression under balance Condition?
- 8. Define Maxwell's bridge with limitation and also derive the necessary expressions.
- 9. Define signals. Explain the different types of signals used in instrumentation system.
- 10. Explain the measurement of unknown capacitance by using standard bridge circuit.
- 11. Show that a spring control permanent magnet moving coil instrument have a uniform scale.
- 12. Explain the following terms with reference to measuring instrument:
 - i. Accuracy and precision
 - ii. Sensitivity and resolution
 - iii. Linearity and hysteresis

Numerical

- 1. A fence is measured as 12.5m long, accurate to 0.1 of a meter. Calculate absolute error, relative error and Percentage error.
- 2. The thermometer measures to the nearest 2° C. The temperature was measured as 38°C. Calculate absolute error, relative error and Percentage error.
- 3. If a metric ruler is used to measure a length of 3.535m with precision of 0.5cm. Calculate Tolerance Interval (TI), Absolute error, Relative error, and Percentage error.
- 4. If a metric ruler is used to measure a length of 3.535m with precision of 0.5cm. Calculate Tolerance Interval (TI), Absolute error, Relative error, and Percentage error if the actual length of the ruler is 4m.
- 5. Nabin weighs 36.5 pounds, when weighted in deflected scale he weights 38 pounds.
 - i. What is %error in measurement of deflected scale

- ii. If Rabi weighs 14 pounds on same deflected scale, what is Rabi's actual weight.
- 6. Ten measurements of resistance of resistors are 101.2Ω , 101.7Ω , 101.8Ω , 101.0Ω , 101.5Ω , 101.3Ω , 101.2Ω , 101.4Ω , 101.3Ω and 101.2Ω . Assuming that only random errors are present calculate:
 - i. Arithmetic mean
 - ii. Standard deviation
 - iii. Probable error
- 7. Temperature was measured in eight locations in a room, and the values Obtained were 28.2, 16.5, 32.1, 29.7, 27.1, 19.0, 22.0 and 10.0 °C. Assuming that the random errors are present. Calculate (i) Arithmetic mean (ii) Standard Deviation (iii) Probable error of readings?
- 8. The resistance of an unknown resistor is determined by the Wheatstone bridge method. The solution for the unknown resistance is stated as $R_X = (R_2 R_3) / R_1$, where;

R1 = 120
$$\Omega \pm 0.1$$
 %
R2 = 2700 $\Omega \pm 0.5$ %
R3 = 470 $\Omega \pm 0.5$ %

Calculate:

- (i) The nominal value of the unknown resistor
- (ii) The limiting error in ohms of the unknown resistor
- (iii) The limiting error in percent of the unknown resistor
- 9. The four arms of a Hay's alternating current bridge are arranged as follows: arm AB is a coil of unknown impedance, arm BC is a non-reactive resistor of 1000Ω , arm CD is a non-reactive resistor of 833Ω in series with a standard capacitor of $0.38\mu F$, arm DA is non-reactive resistor of 16800Ω . If the supply frequency is 50 Hz determine the inductance and resistance at the balanced condition. Also draw the phasor diagram under balanced condition.
- 10. A 1000 Hz bridge has following constants:

Arm AB: $R=1200\Omega$ in parallel with $C=0.5~\mu F$. Arm BC: $R=1000\Omega$ in series with $C=0.5\mu F$. Arm CD: L=30mH in series with $R=200\Omega$. Find the constants of arm DA to balance the bridge.

- 11. The Schering Bridge has the following constants, R_1 =1.5K Ω , C_1 =0.4 μ F, R_2 =3K Ω and C_3 =0.4 μ F at frequency 1kHz. Determine the unknown resistance and capacitance of the bridge and dissipation
- 12. A bridge is balanced at 1000 H_2 and how the following constants: AB, $0.2\mu F$ pure capacitances BC, 500Ω pure resistance: CD unknown: DA, R=300 Ω in parallel with c=0.1 μF . Find R and C or L constants of arm CD, considered as a series circuit.

- 13. A 1000 Hz bridge has the following constants: arm AB, $R = 1000 \Omega$ in parallel with $C = 0.5 \mu F$; BC, $R = 1000 \Omega$ in series with $C = 0.5 \mu F$; CD, L = 30 mH in series with $R = 200 \Omega$. Find the constants of arm DA to balance the bridge. Express the result as a Pure R in series with pure C or L and also as a pure R in parallel with a pure C or L?
- 14. The four arms of an ac bridge at balance are: arm ab-an unknown inductance L_1 having an inherent resistance R_1 ; arm bc-a non-inductive resistance of 1000Ω ; arm cd-a capacitor of 0.5 μF in parallel with a resistance of $1500~\Omega$; arm da-a resistance of 200Ω . Find the value of unknowns.
- 15. In a balanced network, AB is a resistance of 500Ω in series with an inductor of 0.18H, BC and DA is non-inductive resistances of 1000Ω each and CD consists of a resistance R in series with a capacitor C. A potential difference of 5V at a frequency $5000/2\pi$ is applied between points A and C. Determine the values of R and C.
- 16. The arms of Maxwell's ABCD bridge are as follows: AB is a non-inductive resistance 1000Ω in parallel with a capacitance of $0.5\mu F$. BC is a non-inductive resistance of 600Ω , CD is an inductive impedance of unknown value and DA is non-inductive resistance of 400Ω . If the balance is obtained under these conditions, find the values of unknown of arm CD.
- 17. An AC bridge has the following constant arms AB, $R=1000\Omega$ in parallel with $C=0.159\mu F$; BC, $R=1000\Omega$; CD, $R=500\Omega$; DA, $C=0.636\mu F$ in series with an unknown resistance. Find the frequency for which this bridge is in balance and determine the value of resistance in arm DA to produce this balance.
- 18. The four arms of the bridge are as follows;

Arm ab: An imperfect capacitor C₁ with an equivalent resistance r₁

Arm bc: A non-inductive resistance R₃

Arm cd: A non-inductive resistance R₄

Arm da: An imperfect capacitor C_2 with an equivalent resistance r_2 in series with resistance R_2 . A supply at 450 Hz is connected between terminals a and c and the detector is connected between b and d. At the balance condition: $R_2 = 4.8 \ \Omega$, $R_3 = 200 \ \Omega$, $R_4 = 2850 \ \Omega$, $r_2 = 0.4 \ \Omega$, $C_2 = 0.5 \mu F$. Calculate values of C_1 and r_1 and also the dissipating factor for the capacitor.

19. The impedance of the basic ac bridge given below are as $Z_1 = 100 \, \Omega < 80^{\,0}$, $Z_2 = 250 \, \Omega$, $Z_3 = 400 \, \Omega < 30^{\,0}$. Find the value of Z_4 , name the unknown component and its value.

- 20. Design on Ayrton shunt to provide an ammeter with current ranges of 1A, 5A and 10A. D' Arsonval movement with internal resistance $R_m = 50\Omega$ and full-scale deflection of 1mA current is used in the configuration.
- 21. Draw the schematic, including values, for an ayrton shunt for a meter movement having a full-scale deflection of 1 ma and an internal resistance of 500Ω to cover the current ranges 10, 50, and 100 mA.
- 22. A PMMC instrument has a coil of dimensions 10mm*8mm. The flux density in the air gap is 0.15 Wb/m². If the coil is wound for 100 turns, carrying a current of 5mA then calculate the deflection if the spring constant is 0.2 Nm/degree.
- 23. The resistance of moving coil voltmeter is $10\text{K}\Omega$. The moving coil has 100 turns with 8cm length and 5cm width. The flux density of air gap is $6*10^{-2}\text{T}$. Find the angular displacement produced by 300V if spring control provides a deflection of 1^0 for a torque of $75*10^{-7}\text{Nm}$.
 - 24. Using the concept of slightly unbalanced bridge. Calculate the current through galvanometer having internal resistance of 125Ω for the bridge shown below.

- 25. A highly sensitive galvanometer can detect a current as low as 0.1nA. This galvanometer is used in Wheatstone bridge as a detector. The resistance of galvanometer is negligible. Each arm of the bridge has a resistance of $1K\Omega$. The input voltage applied to the bridge is 20V. Calculate the smallest change in resistance, which can be detected.
- 26. The Four arms of Wheatstone have four resistance AB:1000 Ω , BC:1000 Ω , CD=120 Ω . The bridge is used for strain measurement and supplied from 5V ideal battery. The galvanometer(G) has a sensitivity of 1 mm/ μ A and internal resistance of 200 Ω . Determine the deflection of G if arm DA increases to 121 Ω and arm CD is 119 Ω .
- 27. The Wheatstone bridge is shown in the fig below. The Galvanometer has a current sensitivity of $12\text{mm/}\mu\text{A}$. The internal resistance of galvanometer(G) is 200Ω . Calculate the deflection of the G due to 5Ω unbalanced in the arm BD.

Tutorial 3

Chapter 3: Physical Variables and Transducers

Chapter 4: Signal Conditioning and Processing

- 1. Drive the relationship between the gauge factor, strain and the Poisson's ratio.
- 2. "Differential arrangement of parallel plate capacitor eliminates the nonlinearity between input and output". Prove this statement.
- 3. Explain how capacitive transducer measures linear as well as angular displacements.
- 4. Explain the principle of operation of RTD and Thermistor. Explain any one method to measure the temperature.
- 5. Draw the circuit diagram of Instrumentation Amplifier using 3-OP-Amps and explain the operation of various stages.
- 6. Define transducer. What are the desirable characteristics of a transducer?
- 7. Justify that the linear relationship between input and output in a potentiometer is disturbed due to loading of a linear potentiometer.
- 8. Explain an appropriate transducer for the measurement of weight.
- 9. Explain different types of error in instrumentation system.
- 10. Explain about the isolation amplifier.
- 11. What are thermistors? How are they constructed? Discuss their resistance temperature characteristics.
- 12. What characteristics do you consider while selecting a transducer? Explain them in brief.
- 13. Describe the block diagram of ac signal conditioning system with a suitable example
- 14. Explain the principle of operation on LVDT. Write its merit and demerits.
- 15. Describe the operation of analog to digital converter with an example.

- 16. What do you understand by the term interference? Briefly explain how externally coupled capacitive and inductive interference signals effect the measurement system.
- 17. What is piezo-resistive effect? Derive the relationship between the gauge factor and the poisson's ratio.
- 18. Explain about transducers and its classification.
- 19. Explain about the loading effect in instrumentation.
- 20. Illustrate the working of Hall Effects transducer with its necessary.
- 21. What do you mean by Piezoelectric effect? Describe how such effect can be used to measure displacements
- 22. What is Thermopile? Explain the principle of Thermistor to measure the temperature.
- 23. Why signal conversion is required? Differentiate between binary weighted type and R-2R ladder type D/A converter.
- 24. Discuss Seebeck effect for temperature measurement. Mention the laws governing in it. List out the sources of error occurred in it during temperature measurement.
- 25. What do you understand by signal conditioning? Explain at least three signal conditioning techniques used in instrumentation.
- 26. How do interference signals affect the performance of an instrumentation system?
- 27. You are supposed to take measurement of weight by using the piezoelectric crystal. Draw the block diagram of additional components and briefly explain about it.
- 28. Explain successive approximation type ADC used in instrumentation system with example.
- 29. What is an operational amplifier (OPAMP)? List any three applications of OPAMP in instrumentation with necessary diagram and expression?
- 30. Describe any three applications of operational amplifier with neat sketch.
- 31. Explain the working principle of instrumentation amplifier
- 32. Explain with the circuit diagram, how does an Op-Amp act as:
 - i. An inverter
 - ii. A summer
 - iii. A subtractor
 - iv. An integrator
- 33. Compare and contrast any two of the following
 - i. Flash ADC and successive approximation ADC.
 - ii. Active transducer and passive transducer.
 - iii. Op. Amp and Instrumentation amplifier

34. A potentiometer displacement transducer having total resistance $R_p \Omega$ and a dc excitation voltage V_{in} , is to be used with a measurement system having an input resistance $R_L \Omega$. Show that the measured output voltage V_{out} is related to the fractional displacement of the wiper as,

$$V_{out} = V_{in} \times \frac{\alpha K}{K(1-K)+\alpha}$$
 (where, $\alpha = \frac{R_L}{R_P}$).

Also, show that maximum relative error occurs at K = 0.5.

Numerical

- 1. The output of an LVDT is connected to a 5 V voltmeter though an amplifier with a gain of 250. The voltmeter scale ha 100 divisions and the scale can be read upto 1/5th of a division. An output of 2mV appears across 0. 5mm.Calculate and determine:
 - i. Sensitive of LVDT, and entire setup
 - ii. The resolution of the instrument
- 2. A piezo-electric crystal has the dimensions of 5 mm \times 5 mm \times 1.25 mm. The force acting on it is 6 N. The charge sensitivity of the crystal is 150 pC/N and its permittivity is 12.5 \times 10⁻⁹ F/m. If the modulus of elasticity is 12 \times 10⁶ N/m². Calculate the strain. Also calculate the charge and the capacitance
- 3. A strain gauge having resistance of 600 ohm and gauge factor 2.0 is connected in series with a blast resistance of 1000 ohm across 50 volts. Determine the change in output when a stress of 150 MN per square meter is applied. The modulus of elasticity is 250 GN per square meter.
- 4. A strain gauge with factor of 2 is fastened to a metallic member subjected to stress of 1,000kg/cm³. The modulus of elasticity of the metal is 2×10⁶ kg/cm². Calculate the percentage change in resistance of strain gauge. What is value of Poisson's ratio?
- 5. A compressive force is applied to a structural member. The strain is 5 micro-strains. Two separate strain gauges are attached to the structural member, one is a nickel wire strain gauge having a gauge factor of -12.1 and other is nichrome wire strain gauge having a gauge factor of 2. Calculate the value of resistance of the gauges after they are strained. The resistance of strain gauges before being strained is 120 ohms.
- 6. A resistance strain gauge with gauge factor of 2 is fastened to a steel member subjected to a stress of 1250 kg/cm^2 . The modulus of elasticity of steel is approximately $2.1 \times 10^6 \text{kg/cm}^2$, Calculate
 - i. Percentage change in resistance
 - ii. The Poison's ratio
 - iii. The strain values

- 7. The output of an LVDT is connected to a 5 V voltmeter through an amplifier whose amplification factor is 150. An output of 1 mV appears across the terminals of LVDT, when the core moves through a distance of 0.6 mm. Calculate the sensitivity of LVDT and that of the whole set up. The milli-voltmeter scale has 100 divisions. The scale can be read to 1/3 of a division. Calculate the resolution of the instrument in mm.
- 8. A quartz piezoelectric pickup has dimension of 5mm*5mm*1.5mm and a voltage sensitivity of 0.012Vm/N. The relative permittivity of the quartz is 1600 and modulus of elasticity of the quartz is 12MN/m². The force applied to the pick-up is 10N. Determine,
 - i. The output Voltage
 - ii. Charge sensitivity
 - iii. Strain
 - iv. Charge generated and the Capacitance of the pick-up
- 9. The resistance of thermistor at 27°C is 1050Ω with constant β =3140. Calculate the value of temperature when the thermistor resistance becomes 2330Ω in °C and Kelvin scale.
- 10. A thermistor has a resistance of 3980 Ω at the ice point (0 0 C) and 794 Ω at 50 0 C. The resistance-temperature relationship is given by $R_{T} = aR_{0}e^{\frac{b}{T}}$. Calculate:
 - i. The constant a and b.
 - ii. The range of resistance to be measured in case the temperature varies from 40° C to 100° C
- 11. Strain gauze having the resistance of 400Ω and gauze factor of 1.5 is connected in series with a ballast resistance of 500Ω . Determine the change in output when a stress of $200MN/m^2$ is applied and take the value of modulus of elasticity as $250GN/m^2$.
- 12. A strain gauge is bonded to a beam 0.15 m long and has a cross sectional area of 8 cm²(Young's modulus of elasticity for steel is 207 GN/m²). The strain gauge has an unstrained resistance of 400 ohm and a gauge factor of 2.2. When a load is applied, the resistance of the gauge changes by 0.013 ohm. Calculate the change in length of a steel beam and the amount of force applied to the beam.
- 13. Find the digital output of 8.217 volts input from a 4-bit Successive Approximation ADC with the reference voltage of 10 volts.
- 14. Find the digital output of 7.524-volt input from a 4-bit successive approximation ADC with reference voltage of 10 volt.
- 15. Find the digital output of 3.217-volt input from a 4-bit successive approximation ADC with reference voltage of 5 volt.
- 16. What will be the successive approximation digital output for an analog input of 3.12V from a 4-bit converter given that E_R = 8V. Also draw the circuit.

- 17. Find the digital output of 3.217 volts input from a 4-bits Successive Approximation ADC with the reference voltage of 5 volts.
- 18. Find the suitable value of R_G to provide the output of 3V, from the circuit shown in the figure below:

19. Sketch the circuit of Summing amplifier using Op-amp to get

$$V_{out} = 2V_1 - 3V_2 - 5V_3$$

20. Sketch the circuit of Summing amplifier using Op_amp to get.

$$V_{out} = -V_1 + 2V_2 - 3V_3$$

Tutorial 4

Chapter 5: Data Transmission

Chapter 6: Output Devices

Chapter 7: Data Acquisition Systems

1. Clarify the principle of operation of X-Y recorder with its area of application.

OR

Give the functional details of a type of recorder which can be employed for plotting the current versus voltage curve of any transistors and diodes.

- 2. What do you mean by Data Acquisition System? Explain in brief about modern trends used in Data Acquisition System.
- 3. What is telemetry and explain the types with block diagram
- 4. With the help of necessary diagram, explain the working principle of magnetic tape recorder, hence verify that it acts as a differentiator.
- 5. Briefly explain about the digital data acquisition system.
- 6. Discuss about various data transmission standards.

- 7. What do you mean by data transmission? Explain the various type of data transmission system.
- 8. What is output device? Explain in brief about magnetic tape recorder or X-Y recorder along with application.
- 9. How communication is important in instrumentation system for an industry? Explain RF telemetry.
- 10. Define data acquisition system. Differentiate between analog DAS and digital DAS.
- 11. What do you mean by the term telemetry? Explain the types of landline.
- 12. How data can be transmitted via optical fibre. List out advantages of optical fibre.
- 13. Briefly explain about the modern trends in data acquisition system.
- 14. Explain the components of the data acquisition system with necessary block diagram.