Homework for Lecture 2

1. In a set of coasting tests, there is no wind but the road has constant slope. In each test, the vehicle starts from 20m/s and coasts down into stop in neutral gear. In total, the vehicle runs back and forth for four times. See the data in "data_A2B.mat" (containing the data when coasting from A to B) and "data_B2A.mat" (containing the data when coasting from B to A). Each file has four groups of data, and each group of data has three columns: time (s), vehicle velocity (m/s), and longitudinal acceleration (m/s²). Note that the measured data is biased and noisy because of imperfect sensors. The known parameters are:

Mass	m	1240 [kg]
Frontal area	A	1.87 [m ²]
Air density	ρ	1.2 [kg/m ³]
Wheel radius	r	0.3 [m]
Four wheels' moment of inertia	$\sum I_w$	4.73 [kg·m ²]
Constant of gravity	g	9.8 [m/s ²]

Please calculate the rolling resistance coefficient f, aerodynamic drag coefficient C_D , and road slope gradient i.

Figure 1. Sketch of vehicle coasting tests.

- 2. The parameters of a 2-DOF vehicle model under ISO Vehicle Coordinate System are listed as follows: mass (m): 1818 kg, moment of inertia around Z axle (I_{zz}) : 3885 kg· m^2 ; distance from front axle to gravity center (a): 1.463 m; distance from rear axle to gravity center (b): 1.585 m; front wheel cornering stiffness in total (k_1) : -62618 N/rad; rear wheel cornering stiffness in total (k_2) : -110185 N/rad.
- (1) Please draw the step response of lateral speed and yaw rate at the vehicle speed of 20 km/h and 50 km/h with the model input being the frontal wheel angle (steering angle) δ .
- (b) Please analyze the changes of the natural frequency and damping rate with respect to increasing vehicle speed, moment of inertia and front wheel cornering stiffness.
- 3. The sketch of a 1/4-car model is shown in the following figure. The known parameters are: sprung mass $M_s = 1250$ kg, $K_s = 44000$ N/m, $C_s = 4000$ kg/s, unsprung mass $M_u = 200$ kg, $K_u = 400000$ N/m, $C_u = 50$ kg/s. Please derive the transfer function from the acceleration of road excitation \ddot{x}_r to the acceleration of car body \ddot{x}_s based on the quarter-car model, and then demonstrates the changes of its bode graph with $\pm 10\%$ parametric variation (including M_s , K_s and C_s).

Figure 2. Sketch of a 1/4-car model.