Estructura de Datos

Del 24 al 28 de Junio del 2024

UPN.EDU.PE

Semana 06

RECORRIDO DE ÁRBOLES

PRESENTACIÓN DE LA SESTÓN Logro de la Sesión y Temario

Al término de la sesión, el estudiante aprende algoritmos con arboles, arboles binarios y diversas aplicaciones, usándolos con coherencia.

- Árboles: Generalidades. Arboles binarios.
- Operaciones: Raíz, hoja, tallo, recorrido inorden, postorden, preorden.

Reflexiona

1

- ¿Quées árbol?
- ¿Qué es un árbol binario?

RECORRIDO EN INORDEN:

(izquierdo, raíz, derecho). Para recorrer un árbol binario no vacío en InOrden, hay que realizar las siguientes operaciones recursivamente en cada nodo:

- Atraviese el sub-árbol izquierdo
- Visite la raíz
- Atraviese el sub-árbol derecho

RECORRIDO EN INORDEN:

Secuencia:

$$1 - 3 - 4 - 6 - 7 - 8 - 10 - 13 - 14$$

DEFINIMOS LA FUNCIÓN INORDEN:

```
void InOrden(Nodo *arbol){
  if(arbol == NULL){
     return;
  else{
     InOrden(arbol->izq);
     cout<<arbol->dato<<« - »;
     InOrden(arbol->der);
```

RECORRIDO EN PREORDEN:

(raíz, izquierdo, derecho). Para recorrer un árbol binario no vacío en PreOrden, hay que realizar las siguientes operaciones recursivamente en cada nodo, comenzando con el nodo de raíz:

- Visite la raíz
- Atraviese el sub-árbol izquierdo
- Atraviese el sub-árbol derecho

RECORRIDO EN PREORDEN:

Secuencia:

$$8-3-1-6-4-7-10-14-13$$

DEFINIMOS LA FUNCIÓN PREORDEN:

```
void preOrden(Nodo *arbol){
   if(arbol == NULL){
      return;
   else{
      cout<<arbol->dato<<« - »;
      preOrden(arbol->izq);
      preOrden(arbol->der);
```

RECORRIDO EN POSTORDEN:

IILUUIIILUU LII PUUIUILII.

(izquierdo, derecho, raíz). Para recorrer un árbol binario no vacío en PostOrden, hay que realizar las siguientes operaciones recursivamente en cada nodo:

- Atraviese el sub-árbol izquierdo
- Atraviese el sub-árbol derecho
- Visite la raíz

RECORRIDO EN POSTORDEN:

Secuencia:

$$1-4-7-6-3-13-14-10-8$$

DEFINIMOS LA FUNCIÓN POSTORDEN:

```
void postOrden(Nodo *arbol){
   if(arbol == NULL){
      return;
   else{
      postOrden(arbol->izq);
      postOrden(arbol->der);
     cout<<arbol->dato<<« - »;
```

Semana 12

GRAFOS

PRESENTACIÓN DE LA SESIÓN Logro de la Sesión y Temario

Al término de la sesión, el estudiante aprende algoritmos para grafos, como representarlos y usarlos con eficacia.

 Definiciones, grafos y grafos dirigidos, aplicaciones, representación, matriz de adyacencia, lista de adyacencia, matriz de costos. Recorrido: en amplitud (BFS), en profundidad (DFS), ordenamiento topológico y conectividad.

Reflexiona

• ¿Qué es un grafo?

INTRODUCCION

- Los grafos son estructuras de datos
- Representan relaciones entre objetos
 - Relaciones arbitrarias, es decir
 - No jerárquicas
- Son aplicables en
 - Química
 - Geografía
 - Ing. Eléctrica e Industrial, etc.
 - Modelado de redes
 - De alcantarillado
 - Eléctricas
 - Etc.

DEFINICIÓN

- Un grafo G = (V,A)
- V, el conjunto de vértices o nodos
 - Representan los objetos
- A, el conjunto de arcos
 - Representan las relaciones

$$V = \{1, 4, 5, 7, 9\}$$

$$A = \{(1,4), (5,1), (7,9), (7,5), (4,9), (4,1), (1,5), (9,7), (5,7), (9,4)\}$$

TIPOS DE GRAFOS

V = {C, D, E, F, H} A= {(C,D), (D,F), (E,H), (H,E), (E,C)}

Grafos no dirigidos

- Si los pares de nodos de los arcos
- No son ordenados Ej.: u-v

• Grafos dirigidos

- Si los pares de nodos que forman arcos
- Son ordenados. Ej.: (u->v)

Grafo del ejemplo anterior

OTROS CONCEPTOS

- Arista
 - Es un arco de un grafo no dirigido
- Vertices adyacente
 - Vertices unidos por un arco
- Factor de Peso
 - Valor que se puede asociar con un arco
 - Depende de lo que el grafo represente
 - Si los arcos de un grafo tienen F.P.
 - Grafo valorado

GRADOS DE UN NODO

- En Grafo No Dirigido
 - Grado(V)
 - Numero de aristas que contiene a V

$$Gradoent(D) = 1 y Gradsal(D) = 1$$

- En Grafo Dirigido
 - Grado de entrada, Graden(V)
 - Numero de arcos que llegan a V
 - Grado de Salida, Gradsal(V)
 - Numero de arcos que salen de V

CAMINOS

- Definicion
 - Un camino P en un grafo G, desde Vo a Vn
 - Es la secuencia de n+1 vertices
 - Tal que $(V_i, V_{i+1}) \in A$ para $0 \le i \le n$
 - Longitud de camino
 - El numero de arcos que lo forman
 - Camino Simple
 - Todos los nodos que lo forman son distintos

Camino Antra 4 y 7

P = {**A**, **6**, **9**, **7**}A}

Longitud: 3 – 4ciclo

- Ciclo
 - Camino simple cerrado de long. >= 2
 - □ Donde V₀ = V_n

CONECTIVIDAD

- Grafo No Dirigido
 - Conexo
 - Existe un camino entre cualquier par de nodos

- Grafo Dirigido
 - Fuertemente Conexo
 - Existe un camino entre cualquier par de nodos
 - Conexo
 - Existe una cadena entre cualquier par de nodos

TDA GRAFO

1

- Datos
 - Vertices y
 - Arcos(relacion entre vertices)
- Operaciones
 - void AñadirVertice(Grafo G, Vertice V)
 - Añadir un nuevo vertice
 - void BorrarVertice(Grafo G, Generico clave)
 - Eliminar un vertice existente
 - void Union(Grafo G, Vertice V1, Vertice V2)
 - Unir dos vertices
 - Void BorrarArco(Grafo G, Vertice V1, Vertice V2)
 - Eliminar un Arco
 - bool EsAdyacente(Grafo G, Vertice V1, Vertice V2)
 - Conocer si dos vertices son o no adyacentes

MATRIZ DE ADYACENCIA

Si el grafo fuese valorado, en vez de 1, se coloca el factor de peso

MATRIZ DE ADYACENCIA

- Dado un Grafo G = (V, A)
- Sean los Vertices V = {V0, V1, ... Vn}
 - Se pueden representar por ordinales 0,1,..n
- Como representar los Arcos?
 - Estos son enlaces entre vertices
- Puede usarse una matriz $a_{ij} \begin{cases} 1, \text{ si hay arco} & (Vi, Vj) \\ 0, \text{ si no hay arco} & (Vi, Vj) \end{cases}$

. / .	\					\ -
V_0	0	$\langle 1 \rangle$	(0 \	0	0	0
V_1	1	0	1	0	X0	0
V_2		1	0	1	0	0
V_3		0	1	0	0	0
V_4	0	0	0	0	0	1
V_5	0 🛦	0	0	0	1	0

EL TIPO DE DATO

1

- Los Vertices
 - Se definen en un Arreglo
- Los Arcos
 - Se definen en una Matriz

```
#define MAX 20
typedef int [MAX][MAX] MatrizAdy;
typdef Generico[MAX] Vertices;
typedef struct Grafo{
    Vertices V;
    MatrizAdy A;
    int nvertices;
    bool Dirigido;
};
```

UNIR VERTICE

```
void Union(Grafo G, int v1, int v2){
    G->A[v1][v2] = 1;
    if(!G->dirigido)
        G->A[v2][v1] = 1;
}
```

LISTA DE ADYACENCIA

- Si una matriz
 - Tiene muchos vertices y
 - Pocos arcos
 - La Matriz de Adyacencia
 - Tendra demasiados ceros
 - Ocupara mucho espacio
- Los vertices
 - Pueden formar una lista, no un vector
- Los arcos
 - Son relaciones entre vertices
 - Se pueden representar con una lista x cada vertice

EL TIPO DE DATO

- Cadaverticetiene
 - Contenido
 - Siguiente
 - Una lista de adyacencia
- Cada nodo en la lista de adyacencia
 - Peso del arco
 - Siguiente
 - Una referencia al vertice(arco)

```
typedef struct Vertice{
    Generico contenido;
    LSE *LA;
};
typedef Vertice *Arco;
typedef struct Grafo{
    LSE LVertices;
    bool dirigido;
ζ.
```

ALGUNAS IMPLEMENTACIONES

EJERCICIO

 Complete la implementacion de las operaciones del grafo con lista de adyacencia

RECORRIDOS DEL GRAFO

- Se busca
 - Visitar todos los nodos posibles
 - Desde un vertice de partida D
 - Cualquiera
- Existe dos posibles recorridos
 - En Anchura y
 - En Profundidad

RECORRIDO EN ANCHURA

- Encolar vertice de partida
- Marcarlo como "visitado"
- Mientras la cola no este vacia · Desencolar vertice W
 - Mostrarlo
 - Marcar como visitados
 - Los vertices adyacentes de W
 - Que no hayan sido ya visitados
 - Encolarlos

EJEMPLO

Se Muestra:

D B C H R A T

Cola

T | T | T

RECORRIDO EN PROFUNDIDAD

- Marcar vertice origen V como visitado
- Recorrer en Profundidad
 - Cada vertice adyacente de V
 - Que no haya sido visitado
- Ejemplo

Se Muestra:

DCRHTAB

Pila

ACTIVIDAD

 Escriba la implementacion del recorrido en profundidad de un grafo a partir de un vertice inicial

CONCLUSIONES

- Los árboles binarios son estructuras que permiten una gestión eficiente de la información.
- Las partes de un árbol binario son raíz, hoja y tallo.
- En el caso de la raíz y hojas, se generan de manera recursiva.
- Las operaciones que pueden realizarse son: recorrido, inorden, postorden, preorden.

BIBLIOGRAFÍA BÁSICA

- Ceballos Sierra, F. Microsoft C#: Curso de Programación (2a.ed.) 2014 https://elibronet.eul.proxy.openathens.net/es/lc/upnorte/titulos/106417
- Cesar Liza Avila; Estructura de datos con C/C++

UNIVERSIDAD PRIVADA DEL NORTE