

UFPR - Universidade Federal do Paraná Departamento de Matemática CM304 Complementos de Matemática - 2024/1

Lista de Exercícios 1

- 1. Se A significa que Fernanda diz a verdade e B significa que Daniel mente, expresse simbolicamente as seguintes proposições:
 - (a) Fernanda ou Daniel dizem a verdade.
 - (b) Não é verdade que Fernanda ou Daniel mentem.
 - (c) Se Fernanda diz a verdade, então Daniel mente.
 - (d) Se Fernanda mente, então Daniel diz a verdade.
 - (e) Fernanda mente se, e somente se, Daniel diz a verdade.
 - (f) Daniel diz a verdade se, e somente se, Fernanda mente.
 - (g) Não é verdade que se Fernanda mente, então Daniel diz a verdade.
- 2. Escreva a proposição que corresponde a negação de cada uma das proposições a seguir:
 - (a) A caixa está selada ou o leite está azedo.
 - (b) Pepinos são verdes e têm sementes.
 - (c) Se a comida for boa, então o serviço será excelente.
 - (d) Se for caro, então a comida será boa e o serviço será excelente.
 - (e) O processador é rápido, mas a impressora é lenta.
 - (f) O processador é rápido ou a impressora é lenta.
 - (g) Se o arquivo não estiver danificado e o processador for rápido, então a impressora será lenta.
 - (h) Nem a comida é boa e nem o serviço é excelente.
- 3. Determine o valor lógico de cada uma das proposições a seguir:
 - (a) O número 17 é primo.
 - (b) Fortaleza é capital do Maranhão.
 - (c) $(-5)^2 = 25 \text{ e } \sqrt{25} = -5.$
 - (d) 2 (-4) = -2 ou 1 + 3 = 4.
 - (e) Não é verdade que 12 é um número ímpar.
 - (f) Se 0 < 1, então $\sqrt{2} \notin \mathbb{Q}$.
 - (g) Se $\sqrt{3} > 1$, então -1 < -2.
 - (h) $\tan 45^{\circ} = 1$ se, e somente se, $\cos 0^{\circ} = 1$.
 - (i) É falso que 3 + 3 = 6 e 1 + 1 = 3.
 - (j) $(1+5)^0 = 1$ se, e somente se, |3-|-5|| = 8.
 - (k) Para todo $a, b \in \mathbf{Z}$, temos que $(a+b)^2 = a^2 + b^2$.
- 4. Sabendo que os valor-verdade de p,q,r,s são, respectivamente, V,F,V,F. Determine o valor lógico de cada uma das seguintes proposições:
 - (a) $p \land q \longleftrightarrow r \land \neg s$

(e) $(q \wedge r) \wedge s \rightarrow (p \longleftrightarrow s)$

(b) $(p \longleftrightarrow q) \to (s \longleftrightarrow r)$

(f) $p \to \neg q \longleftrightarrow (p \lor r) \land s$

(c) $(\neg p \to q) \to (s \to r)$

(g) $(p \land q) \land (r \land s) \rightarrow p \lor s$

(d) $(p \land q) \lor s \to (p \longleftrightarrow s)$

- (h) $(\neg p \lor s) \lor (\neg s \land r)$
- 5. Construa a tabela-verdade das seguintes proposições:

(a) $(\neg p) \land q$

(d) $p \vee (q \wedge r)$

(g) $\neg (p \rightarrow q)$

(b) $\neg (p \land q)$

(e) $(p \land q) \rightarrow r$

(h) $\neg p \rightarrow \neg q$

(c) $(p \lor q) \land r$

(f) $p \wedge (q \rightarrow r)$

(i) $\neg q \rightarrow \neg p$

6. Se p é uma proposição verdadeira, demonstre que:

- (a) $p \lor q$ é uma tautologia;
- (b) $\neg p \land q$ é uma contradição;
- (c) $p \wedge q$ é equivalente a q;
- (d) $\neg p \lor q$ é equivalente a q.
- 7. Existe uma proposição p tal que $p \land \neg p$ seja uma tautologia?
- 8. Sabendo que a condicional $p \to q$ é verdadeira, determina o valor lógico de:

(a) $\neg q \rightarrow \neg p$

(c) $p \lor r \to q \lor r$

(b) $\neg q \land p$

(d) $p \wedge r \rightarrow q \wedge r$

- 9. Escreva a bicondicional $p \longleftrightarrow q$ como uma proposição equivalente usando:
 - (a) Apenas os conectivos \rightarrow e \land .
 - (b) Apenas os conectivos \land e \neg .
 - (c) Apenas os conectivos \vee e \neg .
- 10. Em cada caso, determine se a proposição é uma tautologia ou uma contradição.
 - (a) $p \to p$
 - (b) $(p \lor \neg p) \to (p \land \neg p)$
 - (c) $p \to p \lor q$
 - (d) $p \wedge q \rightarrow p$
 - (e) $(p \to q) \land \neg q \to \neg p$
 - (f) $\neg (p \lor q) \to (p \longleftrightarrow q)$
- 11. Se p é a proposição $A \to B$, então a recíproca de p e $B \to A$, a inversa de p é $\neg A \to \neg B$ e a contrapositiva de p é $\neg B \to \neg A$. Considere que p é a proposição: "Se eu ganhar na Mega-Sena, então eu comprarei um apartamento." Enuncie, a reciproca, inversa e contrapositiva de p.
- 12. Mostre que as seguintes proposições são contradições construindo suas tabelas-verdade:
 - (a) $p \wedge (p \rightarrow q) \wedge (p \rightarrow \neg q)$
 - (b) $(p \land q) \land \neg (p \lor q)$
 - (c) $p \land q \land \neg (p \longleftrightarrow q \lor r)$
- 13. Usando as letras indicadas para as proposições componentes, escreva as afirmações compostas a seguir em notação simbólica:
 - (a) p: Os preços subirão;
 - q: Haverá muitas casas disponíveis;
 - r: as casas estarão caras.

"Se os preços subirem, então haverá muitas casas disponíveis e caras; mas se as casas não estiverem caras, ainda assim haverá muitas disponíveis."

- (b) p: O trator vence;
 - q: O caminhão vence;
 - r: A corrida será excitante.

"Se o trator ou o caminhão vencer, então a corrida será excitante."

- (c) p: Os coalas serão salvos;
 - q: As mudanças climáticas serão discutidas;
 - r: Os níveis dos oceanos subirão.

"Os coalas só serão salvos se as mudanças climáticas forem discutidas; além disso, não discutir as mudanças climáticas fará com que os níveis dos oceanos subam."

- (d) p: Janete vence;
 - q: Janete perde;
 - r: Janete ficará cansada.

"Janete vai vencer ou, se perder, ficará cansada."

- (e) p: Irá chover;
 - q: Irá nevar;

"Irá chover ou irá nevar, mas não os dois ao mesmo tempo."

- (f) p: Rosas são vermelhas;
 - q: Violetas são azuis;
 - r: Açúcar é doce.

"Rosas são vermelhas, e, se o açúcar for amargo, então ou violetas não são azuis ou açúcar é doce."

- 14. Quatro máquinas A, B, C e D estão conectadas em uma rede de computadores. Receia-se que um vírus de computador possa ter infectado a rede. Seu grupo de segurança de rede fez as seguintes afirmações:
 - i) Se D estiver infectado, então C também está.
 - ii) Se C estiver infectado, A também está.
 - iii) Se D estiver limpo, então B está limpo, mas C está infectado.
 - iv) Se A estiver infectado, então B está infectado ou C está limpo.

Supondo que todas as proposições acima são Verdadeiras, o que podemos concluir? Explique seu argumento.

- 15. Considere o seguinte argumento: José está ou em São Paulo ou em Curitiba, mas não pode estar em ambos os lugares simultaneamente. Se José está em Curitiba, então vai para a aula. Portanto, se José não vai para a aula, ele tem que estar em São Paulo.
 - (a) Represente o anterior argumento simbolicamente usando exatamente três proposições.
 - (b) Prove que é um argumento valido.
- 16. Prove a validade do seguinte argumento:

i.
$$D \to C$$

ii.
$$C \to A$$

iii.
$$\neg D \rightarrow (\neg B \land C)$$

iv.
$$A \to (B \lor \neg C)$$

v.
$$\therefore D \longleftrightarrow (B \vee \neg C)$$

17. Prove a validade do seguinte argumento:

i.
$$P \vee Q$$

ii.
$$\neg (P \land Q)$$

iii.
$$Q \to R$$

iv.
$$\therefore \neg R \to P$$

18. Prova a validade dos seguintes argumentos usando redução ao absurdo:

(a) i.
$$(p \lor q)$$

ii. $\neg q$
iii. $\therefore p$;

(b) i.
$$p \to \neg r$$

ii. $q \to r$
iii. $\therefore \neg (p \land q)$

- 19. Mostre que as seguintes formular não são equivalências tautológicas.
 - (a) $(p \to q) \to r \in p \to (q \to r)$
 - (b) $\neg (p \to q) \in \neg p \to \neg q$
- 20. Considere o seguinte argumento: Se estiver chovendo, não irei ao mercado. Se eu não for ao mercado, ficarei sem comida e terei que ir ao restaurante. Dado que ou terei comida ou não irei ao restaurante, concluo que não esta chovendo.
 - (a) Represente o anterior argumento simbolicamente usando exatamente quatro proposições.
 - (b) Prove que é um argumento valido.