机咖食子科投大学

通信电路实验报告

姓名: ____钱景瑞___

学号: <u>20011723</u>

班级: __20083411__

序号: _____05____

实验名称: 压控 LC 电容三点式振荡器设计及仿真

一、 实验目的(10分)

- 1、了解和掌握 LC 电容三点式振荡器电路组成和工作原理。
- 2、了解和掌握压控振荡器电路原理。
- 3、理解电路元件参数对性能指标的影响。
- 4、熟悉电路分析软件的使用。

二、设计要求及主要指标(10分)

- 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。
 - 2、实现电压控制振荡器频率变化。
 - 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。
- 4、振荡频率范围: 50MHz~70MHz, 控制电压范围 3~10V。 5、三极管选用 MPSH10 (特征频率最小为 650MHz, 最大 IC 电流 50mA, 可满足频率范围要求), 直流电压源 12V, 变容二极管选用 MV209。

三、 原理图(20分)

谐振回路中心频率:

$$f_{osc}=rac{1}{2\pi\sqrt{L_{1}C_{\Sigma}}}=rac{1}{2\pi\sqrt{L_{1}(C_{j}+C^{\, \cdot})}}$$

其中 C_j 为变容二极管的等效电容值; $\frac{1}{C_1} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ 。

根据设计要求:

$$f_{osc \; \min} = rac{1}{2\pi \sqrt{L_1 C_{\Sigma_{
m max}}}} = 50 MHz$$

$$f_{osc~ ext{max}} = rac{1}{2\pi \sqrt{L_1 C_{\Sigma ext{min}}}} = 70 ext{MHz}$$

$$C_{\Sigma
m max} - C_{\Sigma
m min} = 20 pF$$

通过计算:

假定
$$L_1=248nH$$
,则 $C_{\Sigma {
m max}}=40pF$, $C_{\Sigma {
m min}}=20pF$ 。

 C_i 取 $10\sim 30pF$, 因此C'的取值约为10pF。

$$C_3$$
取 $15pF$,假定 $rac{C_1}{C_1+C_2}=rac{1}{6}$,

$$\mathbb{X}: \ \frac{1}{C'} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

解得 $C_1 = 30pF$, $C_2 = 150pF$,

四、 仿真结果及计算分析(50分)

3v 时:

10v

控制电 压/V	3	4	5	6	7	8	9	10
振荡频 率/MHz	50.000	54. 000	58. 000	61. 000	63. 500	65. 500	67. 500	69. 500

五、实验收获与体会(10分)

本次实验主要是求解振荡电路的元件值,仔细观察可知 $C_{\Sigma \max}-C_{\Sigma \min}=20pF$,取 $\frac{C_1}{C_1+C_2}$ 为合适的比值即可求出 C_1 , C_2 。在这个过程中,我们需要不断调整该取值,来达到最终好看的效果,这是本实验最难调整的部分之一。另外,电路的连线在本次实验中花费了不少时间,许多点看上去是在一起的但实际上不是。最后选器件时要注意不能选错库,否则要重新选。总体来说,这次的实验比较顺利。