Прав кръгов цилиндър

Л. В. Йовков

НПМГ "Акад. Л. Чакалов"

Абстракт

Освен известните многостени, с които вече се запознахме, в стереометрията съществуват и други тримерни тела без ръбове. Тези тела са получени чрез въртене около ос и затова се наричат ротационни тела. В предложената тема ние ще се запознаем с едно често срещано на практика ротационно тяло — цилиндъра. Ще представим накратко неговите основни елементи, както и съответните формули за повърхнина и обем. Върху примери ще покажем някои типични ситуации, в които търсим неизвестни елементи на цилиндър. Като допълнение ще изложим и някои идеи за решаване на задачи от комбинации между цилиндър и многостен.

Нека κ е затворена линия без самопресичания в равнината и \vec{n} е дадено направление. Нека още M е точка от кривата κ и l е права през M, успоредна на направлението \vec{n} . Когато M описва κ , всевъзможните прави l описват една повърхнина в пространството — u-линдрична повърхнина (вж. фигура 1). Ако повърхнината е заключена между две успоредни равнини, казваме, че е зададен цилин-дър с управителна κ и образуваща (образувателна) l.

Както при призмите, и тук съществуват прави и наклонени цилиндри.

Фигура 1: Цилиндрична повърхнина

Дефиниция 1 (Прав цилиндър) Цилиндър, за който образуващата е перпендикулярна на равнините на основите.

Дефиниция 2 (Наклонен цилиндър) Цилиндър, за който образуващата не е перпендикулярна на равнините на основите.

Нека управителната крива на цилиндъра е окръжност. Това е единственият тип цилиндри, който се разглежда в курса по елементарна геометрия. Наричаме ги **кръгови цилиндри**.

Дефиниция 3 (Прав кръгов цилиндър) Прав цилиндър, за който управителната крива е окръжност.

Дефиниция 4 (Наклонен кръгов цилиндър) Наклонен цилиндър, за който управителната крива е окръжност.

На фигури 2 и 3 са показани един прав и един наклонен кръгов цилиндър. Техните управителни криви са еднакви окръжности с центрове съответно O и O_1 и радиуси r. При правия кръгов цилиндър от фигура 2 отсечката $OO_1 = h$ е височина и дължината ѝ е равна на дължината на образуващата l. При наклонения кръгов цилиндър от фигура 3 точка H е ортогоналната проекция на точка B_1 върху равнината на долната основа. Тъй като в този случай ΔBHB_1 е правоъгълен, то ще е изпълнено $BB_1 > HB_1$, т. е. l > h. Следователно $l \ge h$ за всеки кръгов цилиндър, като равенство се достига само за прав кръгов цилиндър. Очевидно същото наблюдение е вярно и за цилиндър с произволна управител-

Фигура 2: Прав кръгов цилиндър

на крива. Оттук нататък ние изрично ще предполагаме, освен ако не е указано друго, че цилиндърът е прав кръгов.

Въпросите за пресмятане на повърхнина и обем се поставят аналогично както при многостените. Ако означим с $C=2\pi r$ и $B=\pi r^2$ съответно дължините на окръжностите в основите и лицата на ограничените от тях кръгове, получаваме следните формули:

$$S_{\text{ok.}} = Ch = 2\pi r h, \tag{1}$$

$$S_1 = S_{\text{ok.}} + 2B = 2\pi r(h+r),$$
 (2)

$$V = Bh = \pi r^2 h. (3)$$

Фигура 3: Наклонен крогов цилиндор

Пример 1 (зад. 1, стр. 95, "Сборник по математика за 10. клас", изд. "Анубис", Γ . Кожсухарова, И. Марашева, П. Недевски, Ю. Цветков. София, 2019) Даден е прав кръгов цилиндър с височина h=6 и радиус на основата r=3. Намерете лицето на повърхнината, обема и лицето на осното сечение на цилиндъра.

Решение. Ще използваме чертежа от фигура 2. По формулите (2) и (3) след заместване с числените стойности намираме веднага, че

$$S_1 = V = 54\pi$$
.

Осното сечение на всеки прав кръгов цилиндър е правоъгълник, който съдържа оста OO_1 . Получаваме, че $S_{ABB_1A_1}=2rh=36$. \square

Пример 2 (зад. 2, стр. 95, "Сборник по математика за 10. клас", изд. "Анубис", Г. Кожухарова, И. Марашева, П. Недевски, Ю. Цветков. София, 2019) Лицето на осното сечение на прав кръгов цилиндър е квадрат с лице 64. Намерете радиуса на основата, височината и лицето на околната повърхнина на цилиндъра.

Решение. Ще използваме отново фигура 2. Тъй като четириъгълникът ABB_1A_1 по условие е квадрат, то $AB=BB_1$, т. е. h=2r. Имаме

$$AB.BB_1 = 64 \Rightarrow (2r)^2 = 64 = 8^2 \Rightarrow r = 4.$$

Следователно h = 8 и $S_{\text{ок.}} = 64\pi$. \square

Пример 3 (зад. 500, стр. 121, "Сборник задачи за 11. – 12. клас с методични указания", изд. "Коала прес", Пенка Рангелова. Пловдив, 2006) Да се намери обемът на прав кръгов цилиндър със:

- а) радиус на основата 3,5 и височина 15;
- **б)** лице на основата 12,56 и височина 5;
- в) периметър на основата 31,4 и височина 2.

Решението извършете самостоятелно!

Пример 4 (зад. 506, стр. 122, "Сборник задачи за 11. – 12. клас с методични указания", изд. "Коала прес", Пенка Рангелова. Пловдив, 2006) Лицето на осното сечене на прав кръгов цилиндър е Q. Намерете лицето на околната му повърхнина.

Решение. Ако r и h са съответно радиусът на основата на цилиндъра и височината му, то имаме (вж. фигура 2) Q=2rh. По формула (1) пресмятаме

$$S_{\text{OK}} = 2\pi rh = Q\pi$$
. \square

Пример 5 (зад. 34.05, стр. 65, "Сборник от задачи по геометрия VII — XII клас. Част втора", изд. "Интеграл", Коста Коларов, Христо Лесов. Добрич, 2007) Лицето на основата на цилиндър се отнася към лицето на осното му сечение както π : 8. Да се намери ъгълът между диагоналите на осното сечение, обърнат към диаметъра на основата.

Решение.

Лесно се доказва, че оста OO_1 на цилиндъра минава през пресечната точка на диагоналите на осното му сечение. Да означим тази пресечна точка с N (вж. фигура 4). От условието $S_{\text{осн.}}: S_{ABB_1A_1} = \pi: 8$ получаваме

$$\frac{\pi r^2}{2rh} = \frac{\pi}{8} \Rightarrow \frac{r}{h} = \frac{1}{4} \Rightarrow h = 4r.$$

От Питагоровата теорема за правоъгълния ΔABB_1 веднага пресмятаме $AB_1=2r\sqrt{5}$, откъдето $AN=BN=r\sqrt{5}$. Сега, ако означим $\angle ANB=x$, остава да определим мярката му, например чрез негова тригонометрична функция. След прилагане на косинусова теорема за ΔABN имаме

Фигура 4

$$(2r)^2 = (r\sqrt{5})^2 + (r\sqrt{5})^2 - 2 \cdot r\sqrt{5} \cdot r\sqrt{5} \cdot \cos x.$$

Решавайки това уравнение относно $\cos x$, намираме $\cos x = \frac{3}{5}$. \square

Пример 6 (зад. 35.06, стр. 71, "Сборник от задачи по геометрия VII-XII клас. Част втора", изд. "Интеграл", Коста Коларов, Христо Лесов. Добрич, 2007) Околната повърхнина на цилиндър е равна на $\frac{2}{3}$ от повърхнината му. Да се намери ъгълът между диагоналите на осното сечение на цилиндъра.

Решението извършете самостоятелно!

Да се спрем и на някои примери, съдържащи комбинации между многостени и цилиндри.

Пример 7 (зад. 527, стр. 123, "Сборник задачи за 11. – 12. клас с методични указания", изд. "Коала прес", Пенка Рангелова. Пловдив, 2006) Диагоналът на осното сечение на прав кръгов цилиндър сключва с основата ъгъл с големина 60°. Лицето на околната повърхнина на правилна шестоъгълна призма, описана около този цилиндър, е 24. Намерете обема на цилиндъра.

Решение.

Нека шестоъгълната призма е $ABCDEFA_1B_1C_1D_1E_1F_1$.

Щом цилиндърът е вписан в нея, то той се допира до всичките ѝ околни стени и основите му са вписаните в правилните шестоъгълници ABCDEF и $A_1B_1C_1D_1E_1F_1$ окръжности (вж. фигура 5). Да означим с M и N допирните точки на долната основа на цилиндъра с ръбовете AF и CD, а с M_1 , N_1 — допирните точки на горната основа на цилиндъра с ръбовете A_1F_1 и C_1D_1 . Отсечките MN и M_1N_1 са диаметри на съответните окръжности, следователно правоъгълникът MNN_1M_1 е диагонално сечение на цилиндъра. Тогава $\angle NMN_1 = 60^\circ$.

Да означим с r радиусите на основите на цилиндъра и с 2x — страните на правилните шестоъгълници. От правоъгълния ΔMNN_1 пресмятаме $NN_1 = MN \tan 60^\circ = 2r\sqrt{3}$.

Фигура 5

Тъй като всички околни стени на призмата са еднакви правоъгълници и сумата от лицата им е 24, то всеки от тях има лице 4. От правоъгълника BCC_1B_1 имаме

$$S_{BCC_1B_1} = BC \cdot CC_1 \Rightarrow BC \cdot 2r\sqrt{3} = 4 \Rightarrow BC = \frac{2}{r\sqrt{3}}.$$
 (4)

Да разгледаме правилния шестоъгълник ABCDEF. Да означим с I центъра на вписаната му окръжност и с L — допирната ѝ точка със страната AB (вж. фигура 6). Понеже $\Delta AMI \simeq \Delta ALI$ (по две страни и прав ъгъл между тях), то $\angle IAM = \angle IAL$ и отсечката AI е ъглополовяща на $\angle A$. Аналогично се доказва, че всяка отсечка, свързваща центъра на вписаната в шестоъгълника окръжност с върховете му, е ъглополовяща на съответния ъгъл. По този начин допирните точки на окръжността със страните на шестоъгълника са техни среди.

Всеки ъгъл в правилния шестоъгълник има градусна мярка 120° . От правоъгълния ΔALI следва, че

$$\tan 60^\circ = \frac{r}{x} = \sqrt{3} \Rightarrow x = \frac{r}{\sqrt{3}}.$$

Тогава

$$AB = 2x = \frac{2r}{\sqrt{3}}. (5)$$

Сега от AB = BC и от изразите (4), (5) получаваме уравнението

$$\frac{2r}{\sqrt{3}} = \frac{2}{r\sqrt{3}}$$

Фигура 6

с единствен положителен корен r=1. По формулата за обем на цилиндър (3) изчисляваме $V=2\pi\sqrt{3}$. \square

Пример 8 (зад. 35.31, стр. 74, "Сборник от задачи по геометрия VII — XII клас. Част втора", изд. "Интеграл", Коста Коларов, Христо Лесов. Добрич, 2007) Около цилиндър е описана призма с обем 480 и околна повърхнина 320. Да се намери лицето на повърхнината на цилиндъра, ако диагоналът на осното му сечение е 10.

Решението извършете самостоятелно!

Пример 9 (зад. 4, стр. 118, "Математика за 12. клас", изд. "Анубис", Ч. Лозанов, Т. Витанов, П. Недевски, Евг. Стоименова, София, 2002; зад. 2, стр. 119, "Сборник задачи за 11. — 12. клас с методични указания", изд. "Коала прес", Пенка Рангелова, Пловдив, 2006) Основата на пирамида е равностранен триъгълник със страна a, един от околните ръбове е перпендикулярен на равнината на основата, а една от околните стени сключва с равнината на основата ъгъл α . В пирамидата е вписан цилиндър, чиято долна основа лежи върху основата на пирамидата, а горната му основа се допира до всички околни стени. Да се намери обемът на цилиндъра, ако височината му е $\frac{a}{2}$.

Решение. Да означим пирамидата с MABC, където AB = BC = CA = a са основните ръбове и околният ръб AM е перпендикулярен на равнината на основата (вж. фигура 7). От $MA\bot(ABC)$ следва, че

околните стени MAB и MAC са перпендикулярни на равнината на основата. Следователно околната стена MBC сключва ъгъл α с равнината на основата. Тъй като AB = AC, то MB = MC. Тогава, ако N е средата на BC, имаме $MN\bot BC$ и $AN\bot BC$, т. е. $\angle ANM = \alpha$.

Тъй като височината на цилиндъра е дадена, за да намерим обема му, е достатъчно да намерим радиуса на неговата основа. Нека равнината на горната основа на цилиндъра пресича пирамидата в $\Delta A_1B_1C_1$. Тъй като $(A_1B_1C_1) \parallel (ABC)$, то $\Delta ABC \sim \Delta A_1B_1C_1$. Следователно $\Delta A_1B_1C_1$ е равностранен.

Понеже горната основа на цилиндъра се допира до околните стени на пирамидата, окръжността на горната основа на цилиндъра е вписана в $\Delta A_1B_1C_1$. За да намерим радиуса на тази окръжност, е достатъчно да намерим страната на равностранния $\Delta A_1B_1C_1$. От $\Delta A_1B_1M\sim\Delta ABM$ имаме

Фигура 7

$$\frac{A_1B_1}{AB} = \frac{A_1M}{AM}.$$

От друга страна, от $AA_1\bot(ABC)$ следва, че AA_1 е височината на цилиндъра, т. е. $AA_1=\frac{a}{2}$. От правоъгълния ΔAMN намираме $AM=AN\tan\alpha=\frac{a\sqrt{3}}{2}\tan\alpha$, откъдето

$$A_1B_1 = \frac{AB}{AM}(AM - AA_1) = a\left(1 - \frac{\sqrt{3}}{3}\cot\alpha\right).$$

Сега за радиуса r на вписаната в $\Delta A_1 B_1 C_1$ окръжност имаме

$$r = \frac{\sqrt{3}}{6}A_1B_1 = \frac{a}{6}(\sqrt{3} - \cot \alpha).$$

Окончателно за обема V на цилиндъра получаваме

$$V = \pi r^2 \frac{a}{2} = \frac{\pi a^3}{72} (\sqrt{3} - \cot \alpha)^2.$$

Накрая трябва да установим при какви зависимости между дадените елементи задачата има решение. Тъй като дължините на отсечките

са положителни числа, за да има задачата решение, е необходимо да е изпълнено неравенството $\sqrt{3}-\cot\alpha>0$. Тъй като функцията $\cot\alpha$ е намаляваща в интервала $(0^\circ;\,90^\circ)$, то от неравенството $\cot\alpha<\sqrt{3}$ получаваме $30^\circ<\alpha<90^\circ$. \square

ЗАДАЧИ ЗА САМОСТОЯТЕЛНА РАБОТА

Задача 1 Лицето на повърхнината на прав кръгов цилиндър е 21356,62. Отношението на дължините на радиуса на основата и на височината му е равно на 4 : 5. Намерете дължините на радиуса на основата и на височината на цилиндъра.

Отг.
$$r = 38,88, h = 48,6$$

Задача 2 Радиусът на основата на прав кръгов цилиндър е 4, а лицето на осното му сечение е 72. Намерете обема на цилиндъра.

Отг. 144π

Задача 3 Квадрат със страна 7,8 се върти около едната си страна. Намерете лицето на повърхнината и обема на полученото тяло.

Отг.
$$S_1 = 764, V = 1490$$

Задача 4 Диагонал на правоъгълник сключва ъгъл α с по-дългата му страна. Намерете отношенията на обемите на цилиндрите, получени при въртене на правоъгълника около по-късата и около по-дългата му страна.

Otr. $\cot \alpha$

Задача 5 Развивката на околната повърхнина на прав кръгов цилиндър е квадрат със страна *a*. Намерете обема на цилиндъра.

OTF.
$$\frac{a^3}{4\pi}$$

Задача 6 Развивката на околната повърхнина на прав кръгов цилиндър е правоъгълник с диагонал d, който образува с основата ъгъл α . Намерете обема на цилиндъра.

Ott.
$$\frac{d^3\cos^2\alpha\sin\alpha}{4\pi}$$

Задача 7 Лицето на повърхнината на прав кръгов цилиндър е 1111. Сумата от дължините на радиуса на основата и на височината му е равна на 26,8. Намерете дължините на радиуса и на височината.

Отг.
$$r = 6,598, h = 20,202$$

Задача 8 Диагоналът на осното сечение на прав кръгов цилиндър има дължина, с 25% по-голяма от тази на диаметъра на основата. Намерете лицето на повърхнината на цилиндъра, ако разстоянието между центровете на основите му е 18.

Отг.
$$720\pi$$

Задача 9 Лицето на околната повърхнина на прав кръгов цилиндър е равно на половината от лицето на пълната му повърхнина. Ако диагоналът на осното му сечение е d, намерете лицето на повърхнината на цилиндъра.

Отг.
$$\frac{4}{5}\pi d^2$$

Задача 10 Да се намери отношението на височината и радиуса на цилиндър, околната повърхнина на който е равнолицева на кръга, описан около осното му сечение.

Отг.
$$2(2 \pm \sqrt{3})$$

Задача 11 Около права триъгълна призма с основни ръбове 3, 4 и 5 и обем 18 е описан цилиндър така, че околните ѝ ръбове са образуващи на цилиндъра. Намерете обема на цилиндъра.

Otr.
$$\frac{75}{4}\pi$$

Задача 12 В цилиндър е вписана четириъгълна призма с периметри на околните стени 30, 46, 56 и 64. Да се намери лицето на повърхнината на цилиндъра, ако едното диагонално сечение на призмата съдържа оста на цилиндъра.

Отг.
$$512, 5\pi$$

Задача 13 Околната повърхнина на правилна шестоъгълна призма, вписана в цилиндър, е 45. Да се намери лицето на частта от околната повърхнина на цилиндъра, заключена между два съседни околни ръба на призмата.

OTF. $2,5\pi$

Задача 14 Около цилиндър е описана призма с обем 480 и околна повърхнина 320. Да се намери лицето на повърхнината на цилиндъра, ако диагоналът на осното му сечение е 10.

Otf. 66π

Задача 15 В цилиндър е вписан квадрат така, че върховете му лежат върху окръжностите на основите. Да се намери лицето на квадрата, ако височината на цилиндъра е 2, а радиусът на основата е 7.

Отг. 4 или 100

Задача 16 В цилиндър с радиус 6 и височина 4 дъгата AB между образувателните AA_1 и BB_1 е 120° . Да се намери най-късото разстояние по повърхнината на цилиндъра между точките A и B_1 .

Отг. $4\sqrt{\pi^2+1}$

Литература

- [1] **Г. Кожухарова, И. Марашева, П. Недевски, Ю. Цветков.** "Сборник по математика за 10. клас". Издателство "Анубис". София, 2019
- [2] **К. Коларов**, **Хр.** Лесов. "Сборник от задачи по геометрия VII XII клас". Издателство "Интеграл". Добрич, 2007
- [3] **П. Рангелова.** "Сборник по математика за X клас". Издателство "Коала прес". Пловдив, 2019
- [4] П. Рангелова. "Сборник задачи за 11. 12. клас с методични указания". Издателство "Коала прес". Пловдив, 2006
- [5] Ч. Лозанов, Т. Витанов, П. Недевски, Евг. Стоименова. "Ма тематика за 12. клас — профилирана подготовка". Издателство "Анубис". София, 2002