Lo strato di collegamento Parte 2

Medium Access Control (MAC)

- Esistono due tipi di collegamenti di rete:
- Collegamento punto-punto (PPP)
 - Impiegato in connessioni telefoniche
 - Collegamenti punto-punto tra Ethernet e host
- Collegamento broadcast (cavo o canale condiviso)
 - Ethernet
 - Wireless LAN 802.11

canale cablato condiviso

RF condivisa (es. 802.11 WiFi)

persone a un cocktail party (rumore, aria condivisi)

- Centinaia o anche migliaia di nodi possono comunicare direttamente su un canale broadcast
 - Si genera una collisione quando i nodi ricevono due o più frame contemporaneamente.
- Protocolli di accesso multiplo
 - Protocolli che fissano le modalità con cui i nodi regolano le loro trasmissioni sul canale condiviso
 - La comunicazione relativa al canale condiviso deve utilizzare lo stesso canale
 - non c'è un canale "out-of-band" per la coordinazione

Protocollo di accesso multiplo ideale

- Se il protocollo opera su un canale broadcast di capacità di R bit/s
 - Quando un nodo deve inviare dati, questo dispone di un banda uguale a R bit/s
 - Quando M nodi devono inviare dati, questi dispongono di un banda uguale a R/M bit/s
 - Il protocollo è decentralizzato
 - non ci sono nodi master
 - non c'è sincronizzazione dei clock
 - Il protocollo è semplice

- Protocolli a suddivisione del canale (canalizzazione statica)
 - Suddivide del canale in "parti più piccole" (slot di tempo, frequenza, codice)
 - le parti vengono allocate ad un nodo per utilizzo esclusivo
- Protocolli ad accesso dinamico
 - Protocolli ad accesso casuale (random access)
 - I canali non vengono divisi e si può verificare una collisione
 - I nodi coinvolti ritrasmettono ripetutamente i pacchetti
 - <u>Protocolli ad accesso controllato</u> (controlled access)
 - Ciascun nodo ha il suo turno di trasmissione, ma i nodi che hanno molto da trasmettere possono avere turni più lunghi.

Medium sharing techniques

Static channelization

Dynamic Medium Access Control

- Canale partizionato
- Allocazione dedicata agli utenti
- Applicazioni
 - Satellite
 - Telefonia cellulare

Controlled access

Random

- Coordinamento preventivo
- Applicazioni
 - Token ring
 - Wireless LANs

- Nessun coordinamento preventivo
- Applicazioni
 - Aloha
 - Ethernet

Protocollo ad accesso controllato Token-Passing

Rete ad anello

- La stazione che detiene il token può trasmettere
- Non sono possibili collisioni

Random Access

Rete a bus

- Una stazione trasmette quando è pronta
- · Possibili collisioni, strategie di ritrasmissione

Protocolli a suddivisione del canale TDMA

- TDMA: accesso multiplo a divisione di tempo.
 - Turni per accedere al canale
 - Suddivide il canale condiviso in intervalli di tempo
 - Gli slot non usati rimangono inattivi
 - Esempio: negli slot 1, 3 e 4 è trasmesso un pacchetto; gli slot 2, 5 e 6 sono inattivi

Protocolli a suddivisione del canale FDMA

- FDMA: accesso multiplo a divisione di frequenza
 - Suddivide il canale in bande di frequenza
 - A ciascuna stazione è assegnata una banda di frequenza prefissata
 - Esempio: le bande 1, 3 e 4 sono utilizzate in trasmissione; le bande 2, 5 e 6 sono inattive

Protocolli ad accesso casuale

- Quando un nodo deve inviare un pacchetto
 - trasmette sempre alla massima velocità del canale, cioè R bit/s
 - nessun coordinamento a priori tra i nodi
- Se due o più nodi trasmettono "contemporaneamente" si ha una "collisione"
- Un protocollo ad accesso casuale definisce
 - Come rilevare un'eventuale collisione
 - Le politiche di ritrasmissione in caso di collisione
- Esempi di protocolli ad accesso casuale
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Prodotto Banda-Ritardo

Prodotto banda ritardo

$$PBR = R \cdot d$$
 (bit)

- R (bit/s): banda del canale
- d (sec): ritardo di propagazione end-to-end
- E' il numero di bit che si trovano contemporaneamente sul canale
 - lunghezza elettrica del canale
- Parametro chiave dei protocolli MAC
 - Il coordinamento tra i nodi richiede l'uso della banda del canale (in modo esplicito o implicito)
 - La difficoltà del coordinamento è legata al prodotto banda-ritardo

Esempio MAC con due nodi

Calcolo dell'efficienza

- La trasmissione di una frame ha un intervallo di vulnerabilità uguale a 2t_{prop}
 - Il nodo B non deve iniziare la trasmissione un tempo t_{prop} prima e dopo rispetto all'inizio della trasmissione di A
 - R bit rate del canale (bit/s)
 - L lunghezza di una frame (bit)

Efficienza =
$$\rho_{\text{max}} = \frac{L}{L + 2t_{prop}R} = \frac{1}{1 + 2t_{prop}R/L} = \frac{1}{1 + 2a}$$

Throughput Massimo =
$$R_{eff} = \frac{L}{L/R + 2t_{prop}} = \frac{1}{1 + 2a}R$$
 bit/s

Prodotto banda ritardo normalizzato

$$a = \frac{t_{prop}}{L/R}$$

Ritardo di Propagazione

Tempo di trasmissione di una frame

Valori tipici del prodotto banda-ritardo

Distanza	10 Mbit/s	100 Mbit/s	1 Gbit/s	Tipo di rete
1 m	5 × 10 ⁻²	5×10^{-1}	5 × 10	Desk area network (DAN)
100 m	5 × 10 ¹	5×10^2	5×10^3	Local area network (LAN)
10 km	5×10^2	5×10^3	5 × 10 ⁴	Metropolitan area network (MAN)
1000 km	5 × 10 ⁴	5 × 10 ⁵	5 x 10 ⁶	Wide area network (WAN)
100000 km	5×10^6	5×10^7	5×10^8	Global area network

- Max size Ethernet frame= 1500 byte = 12000 bit = $1.2 \cdot 10^4$ bit
- Se aumenta il prodotto banda ritardo l'efficienza di un protocollo MAC diminuisce

Prestazioni di ritardo

Dipendenza da a

Protocollo ALOHA

- Protocollo sviluppato per l'interconnessione tra dipartimenti dell'Università delle Hawaii
 - Un nodo trasmette appena ha una frame pronta
 - Se viene trasmessa più di una frame si ha una collisione (frame persa)
 - Se un nodo non riceve un ACK entro un certo tempo (timeout), il nodo calcola il tempo di ritrasmissione (backoff time)
 - Il nodo ritrasmette allo scadere del backoff time

Modello prestazionale Aloha

Definizioni

- X: frame transmission time (costante)
- S: throughput (numero medio di trame trasmesse con successo in un intervallo di X secondi) (0<5<1)
- G: load (numero medio di tentativi di trasmissione in un intervallo di X secondi)
- P_{succ}: probabilità che una trama sia trasmessa con successo

Si ha

$$S = G \cdot P_{success}$$

Modello prestazionale Aloha

- L'intervallo di vulnerabilità nella trasmissione di una frame è uguale a 2X
- Si consideri che il carico G comprenda anche le trasmissioni

2,7182

- Dividiamo X in n intervalli di durata Δ=X/n
- se p è la probabilità di una trasmissione in un intervallo Δ si ha

$$G = np$$

$$P_{succ} =$$

$$= P[0 \text{ arrivi in } 2X] =$$

$$= P[0 \text{ arrivi in } 2n \Delta] =$$

$$= (1 - p)^{2n} = (1 - \frac{G}{n})^{2n}$$
per $n \to \infty$

$$P_{succ} = e^{-2G}$$

Throughput Aloha

$$S = GP_{success} = Ge^{-2G}$$

Max throughput pmax= 1/2e (18.4%)

Comportamento bimodale

- per valori bassi di G,
 S≈G
- per valori elevati di G,
 5↓0

Le collisioni sono in numero elevato il throughput tende a zero

instabilità

Slotted ALOHA

- Ipotesi
- Tutti i pacchetti hanno la stessa dimensione
- Il tempo è suddiviso in slot;
 ogni slot equivale al tempo di trasmissione di un pacchetto
- I nodi iniziano la trasmissione dei pacchetti solo all'inizio degli slot.
- I nodi sono sincronizzati
- Se in uno slot due o più pacchetti collidono, i nodi coinvolti rilevano l'evento prima del termine dello slot

- Operazioni
- Quando a un nodo arriva un nuovo pacchetto da spedire, il nodo attende fino all'inizio dello slot successivo.
 - Se non si verifica una collisione: il nodo può trasmettere un nuovo pacchetto nello slot successivo
 - Se si verifica una collisione: il nodo la rileva prima della fine dello slot e ritrasmette con probabilità p il suo pacchetto durante gli slot successivi

Slotted ALOHA

- Pro
- Consente a un singolo nodo di trasmettere continuamente pacchetti alla massima velocità del canale
- È fortemente decentralizzato, ciascun nodo rileva le collisioni e decide indipendentemente quando ritrasmettere.
- È estremamente semplice

- Contro
- Una certa frazione degli slot presenterà collisioni e di conseguenza andrà "sprecata"
- Un'alta frazione degli slot rimane vuota, quindi inattiva

L'efficienza dello Slotted Aloha

L'efficienza è definita come la frazione di slot in cui avviene una trasmissione utile in presenza di un elevato numero di nodi attivi, che hanno sempre un elevato numero pacchetti da spedire.

- Supponiamo N nodi con pacchetti da spedire, ognuno trasmette i pacchetti in uno slot con probabilità p
- La probabilità di successo di un dato nodo = p(1-p)^{N-1}
- La probabilità che un nodo arbitrario abbia successo
 Np(1-p)^{N-1}

- Per ottenere la massima efficienza con N nodi attivi, bisogna trovare il valore p* che massimizza Np(1-p)^{N-1} → p*=1/N
- Per un elevato numero di nodi, ricaviamo che

$$\lim_{N \to \infty} Np * (1 - p*)^{N-1} =$$

$$= \lim_{N \to \infty} (1 - \frac{1}{N})^{N} = \frac{1}{e} = 0,36$$

Nel caso migliore: solo il 36% degli slot sono utilizzatati in modo utile

Throughput Aloha

$$S = GP_{success} = GP[0 \text{ arrivi in } X] = GP[0 \text{ arrivi in } n\Delta] = GP[0 \text{ arrivi in } n\Delta]$$

$$=G(1-p)^n=G(1-\frac{G}{n})^n\to Ge^{-G}$$

Applicazioni slotted Aloha

- Alcuni protocolli permettono la prenotazione di slot per effettuare la trasmissione delle frame
- L'asse dei tempi è suddiviso in cicli
- Ogni ciclo ha una serie di mini-slot per effettuare le prenotazioni
- I nodi usano ilprotocollo slotted Aloha nei mini-slot per effettuare le prenotazioni

Accesso multiplo a rilevazione della portante (CSMA)

- Carrier Sensing Multiple Access
 - Un nodo ascolta prima di trasmettere
 - Se rileva che il canale è libero, trasmette l'intera frame
 - Se il canale è occupato, il nodo aspetta un altro intervallo di tempo
- Analogia: se qualcun altro sta parlando, aspettate finché abbia concluso

CSMA

- Un nodo ascolta il canale prima di trasmettere
 - Se il canale è occupato, attende o applica il backoff (varie opzioni)
 - Se il canale è libero, inizia la trasmissione
 - Intervallo di vulnerabilità è uguale a 2t_{prop} (effetto di cattura del canale)
 - Se avviene una collisione, questa interessa l'intera frame
 - se a>1, nessun guadagno rispetto ai protocolli ALOHA or slotted ALOHA

Algoritmi di persistenza

- Si applicano quando un nodo rivela il canale occupato
 - 1-persistent CSMA
 - Il nodo inizia la trasmissione non appena il canale si libera
 - Basso ritardo e bassa efficienza
 - Non-persistent CSMA
 - Il nodo applica un backoff, quindi effettua un nuovo carrier sensing
 - Alto ritardo e alta efficienza
 - p-persistent CSMA
 - Il nodo attende fino a che Wait il canale si libera, quindi
 - con probabilità p trasmette
 - con probabilità 1-p attende un breve periodo (mini-slot) ed effettua nuovamente il carrier sensing
 - Il ritardo e l'efficienza possono essere modulati

Prestazioni 1-persistent CSMA

· Prestazioni

- Migliori di
 Aloha e slotted
 Aloha per
 piccoli valori di
 a
- Peggiori di Aloha se a > 1

Prestazioni non-persistent CSMA

- Valori di troughput più alto rispetto a 1-persistent per piccoli valori di a
- Peggiori di Aloha se a > 1

CSMA with Collision Detection (CSMA/CD)

- "Ascolta prima di parlare e mentre parli"
 - Rivela le collisioni ed interrompe la trasmissione
 - Un nodo ascolta il canale prima di trasmettere
 - Dopo l'inizio della trasmissione il nodo continua ad ascoltare il canale per rivelare le collisioni
 - Se viene rivelata una collisione, tutti i nodi coinvolti interrompono la trasmissione e rischedulano dopo un intervallo di backoff
- Nel protocollo CSMA, una collisione comporta un periodo di inutilizzazione del canale uguale a al tempo di trasmissione di una frame
- Il protocollo CSMA-CD riduce le durate delel collisioni e quindi aumenta l'efficienza

Rivelazione di una collisione

- Nel caso peggiore i nodi coinvolti nella collisione le rivelano dopo un tempo t=2t_{prop}
 - Minore del tempo di trasmissione di una frame

Ethernet

- Lo standard LAN Ethernet LAN è basato sul CSMA-CD
 - 1-persistent CSMA
 - R = 10 Mbit/s
 - $t_{prop} = 51.2 \ \mu s$
 - 512 bit = 64 byte slot
 - distanza massima 2.5 km + 4 repeaters
 - Truncated Binary Exponential Backoff
 - Dopo l'n-ma collisione, il tempo di backoff è scelto tra i valori {0, 1,..., 2^k - 1}, dove k=min(n, 10)

Confronto MAC random access

- For piccoli valori di a: CSMA-CD ha il throughput migliore
- For grandi valori di a: le prestazioni migliori sono di Aloha & slotted Aloha

Protocolli MAC a suddivisione del canale

- Condividono il canale equamente ed efficientemente con carichi elevati
- Inefficienti con carichi non elevati

Protocolli MAC ad accesso casuale

- Efficienti con carichi non elevati: un singolo nodo può utilizzare interamente il canale
- Carichi elevati: eccesso di collisioni

Protocolli ad accesso controllato

Prendono il meglio dei due protocolli precedenti

Protocolli ad accesso controllato

- Protocollo polling
- Un nodo principale sonda "a turno" gli altri.
- In particolare:
 - elimina le collisioni
 - elimina gli slot vuoti
 - ritardo di polling
 - se il nodo principale (master) si guasta, l'intero canale resta inattivo.

slave

Protocolli ad accesso controllato

- Protocollo token-passing
- Un messaggio di controllo circola fra i nodi seguendo un ordine prefissato
- Messaggio di controllo (token)
- In particolare
 - decentralizzato
 - altamente efficiente
 - il guasto di un nodo può mettere fuori uso l'intero canale

Application: Token-Passing Rings

- Il flag delle frame può essere il token
 - Free token = 01111110
 - Busy token = 01111111

I nodi che sono pronti a trasmettere aspettano il token e cambiano il bit finale del flag per convertire il token da free a busy

Il nodo che ha il token trasmette, al termine della trasmissione reinserisce il free token

Metodi di reinserimento del token

Ring latency

 numero di bit che possono essere trasmessi simultaneamente sul ring

Multi-token operation

 Il Free token è trasmesso immediatamente dopo l'ultimo bit di una frame

Single-token operation

- Il Free token è inserito dopo che l'ultimo bit del busy token è ritornato al nodo origine
- Il tempo di trasmissione uguale almeno alla ring latency
- Se la frame è maggiore della ring latency, è equivalente al multi-token operation

Single-Frame operation

- Il Free token è inserito dopo che il nodo emittente ha ricevuto l'ultimo bit della sua frame
- E' equivalent ad aggiungere alla frame un trailer uguale alla ring latency

Throughput del protocollo Token Ring

Definizioni

- т: tempo richiesto ad un bit per circolare nel ring
- T: tempo di trasmissione di una frame

Multi-token operation

- Assumiamo che la rete è caricata al massimo, tutti gli M nodi trasmettono una frame dopo aver ricevuto il token
- Equivale ad un protocollo di tipo polling con un tempo di servizio limitato a X

$$\rho_{\text{max}} = \frac{MT}{\tau + MT} = \frac{1}{1 + \tau / MT} = \frac{1}{1 + a / M}$$

$$a = \frac{\tau}{T}$$
 è la ring latency normalizzata

Throughput del protocollo Token Ring

Single-token operation

• Il tempo di trasmissione di una frame è uguale al massimo tra Тет

$$\rho_{\max} = \frac{MT}{\tau + M \max(T, \tau)} = \frac{1}{\frac{a}{M} + \max(1, a)}$$

Single-frame operation

• Il tempo di trasmissione di una frame è uguale a T+ T

$$\rho_{\max} = \frac{MT}{\tau + M(T + \tau)} = \frac{1}{1 + a(1 + \frac{1}{M})}$$

Throughput del protocollo Token Ring

- Se a < < 1: è accettabile qualsiasi strategia di reinserimento del token
- Se a ≈ 1: è accettabile la modalità single token operation
- Se a >1: è necessaria la modalità multitoken operation

Protocolli MAC: riepilogo

- Cosa si può fare con un canale condiviso ?
 - Suddivisione del canale per: tempo, frequenza, codice.
 - TDM, FDM
 - Accesso casuale
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - Rilevamento della portante: facile in alcune tecnologie (cablate), difficile in altre (wireless)
 - CSMA/CD usato in Ethernet
 - CSMA/CA usato in 802.11
 - Ad accesso controllato
 - Polling con un nodo principale; a passaggio di token
 - Bluetooth, FDDI, IBM Token Ring