A4Q3

Summary

Sometimes, we divide the population into two sub-populations to check if there's a certain relation between two attributes of sub-populations. The test compares the difference of two attributes $a(\mathcal{P}_1)$ and $a(\mathcal{P}_2)$ with a randomly mixed sub-population:

- 1. We usually make an assumption before we compare the difference. We called this assumption the null hypothesis H_0 . For H_0 , we say that \mathcal{P}_1 and \mathcal{P}_2 are drawn randomly from the same population. However, by defining the null hypothesis, we don't say two attribute are equal to each other.
- 2. We then calculate the **discrepancy measure** $D(\mathcal{P}_1, \mathcal{P}_2)$. The measure gives us a general idea that the data is consistent with the null hypothesis or not. There are two ways of measurement location and spread:

Location:
$$D(\mathcal{P}_1, \mathcal{P}_2) = |\bar{y_1} - \bar{y_2}|$$

Spread: $D(\mathcal{P}_1, \mathcal{P}_2) = |\frac{SD(P_1)}{SD(P_2)} - 1|$

- 3. We calculate the observed p-value. p-value is the probability that a randomly mixed sub-population has the discrepancy greater than or equal to the observed discrepancy we calculated above. If the p-value is really small, then we can say H_0 is true, otherwise we are against it.
- 4. By shuffling two sub-populations M times, we record every discrepancy measure and calculate the p-value:

$$p$$
-value = $Pr(D \ge d_{obs}|H_0 \text{ is true}) \approx \frac{1}{M} \sum_{i=1}^{M} I(D(\mathcal{P}_{1,i}^*, \mathcal{P}_{2,i}^*) \ge d_{obs})$

Example

```
## [1] -2723.885 0.824
```

```
set.seed(341)

diffPrice <- sapply(1:5000, FUN = function(...) {
   tmixedPop = mixRandomly(pop)
   c(diffAvePrice(tmixedPop), ratioSDPrice(tmixedPop))
})

par(mfrow = c(1, 2))
high (diffPrice[1, 1] | breaks = "FD" | main = "Pondomly Mixed Populations"</pre>
```

Randomly Mixed Populations

Randomly Mixed Populations

ratio of standard devations

sum(abs(diffPrice) >= abs(diffAvePrice(pop))) / length(diffPrice)

[1] 0.0015

Conclusion: Suppose that the pair $(\mathcal{P}_{mechanical}, \mathcal{P}_{automatic})$ is random draw: the probability of at least as large as the observed value is 0.0015. Therefore, there is a strong evidence against the null hypothesis that the pair $(\mathcal{P}_{mechanical}, \mathcal{P}_{automatic})$ was randomly drawn. We can see in the graph that the data seems to be symmetric around 0, and there are only a few data that have the absolute value greater the real value. It matches the p-value we calculated above.