Machine Learning

Lecture 04. Logistic Regression

Kien C Nguyen

August 26, 2024

Classification

- Recall from Lecture 1, in a classification problem, the goal is to learn a mapping from inputs \mathbf{x} to outputs y, where $y \in \{0, \dots, C-1\}$, with C being the number of classes.
- If C = 2, this is called binary classification $(y \in \{0, 1\})$
- if C > 2, this is called multiclass classification.

Examples of Binary Classification

- Classify an email as Not Spam / Spam
- In credit scoring, classify a customer as Good / Bad
- In network intrusion detection, classify a connection as Normal / Attack
- Detect the gender (Male / Female) using profile pictures
- Here y can take on only two values, 0 and 1.
- For instance, if we are building an spam classifier for email, then $\{\mathbf{x}_i\}_{i=1}^N$ may be features of an email, and y may be 1 if it is a spam email, and 0 otherwise. 0 is also called the negative class, and 1 the positive class.

Logistic Regression

- Recall that in linear regression, $\hat{y} = \mathbf{w}^T \mathbf{x}$ (Here we let $x_0 = 1$ to simplify the notation).
- Note that \hat{y} is neither upper-bounded nor lower-bounded.
- In logistic regression, we predict the probability that y = 1.
 - Probability that an email is spam
 - Probability that a customer is a Bad customer.

Probability of passing an exam versus hours of study

- A group of 20 students spend between 0 and 6 hours studying for an exam. How does the number of hours spent studying affect the probability that the student will pass the exam?
- We predict the probability that a student passes the exam (y = 1) using the number of hours that student spent.

Source: https://en.wikipedia.org/wiki/Logistic_regression

Probability of passing an exam versus hours of study

Hours	Pass	Hours	Pass
.5	0	2.75	1
.75	0	3	0
1	0	3.25	1
1.25	0	3.5	0
1.5	0	4	1
1.75	0	4.25	1
1.75	1	4.5	1
2	0	4.75	1
2.25	1	5	1
2.5	0	5.5	1

Source: https:

//machinelearningcoban.com/2017/01/27/logisticregression/

Probability of passing an exam versus hours of study

Source: https:

//machinelearningcoban.com/2017/01/27/logisticregression/

- Use a function $\Phi(\mathbf{w}^T\mathbf{x})$
- As this is a probability, we want $0 \le \Phi(\mathbf{w}^T \mathbf{x}) \le 1$
- Sigmoid function (Logistic function)

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Source: https://en.wikipedia.org/wiki/Logistic_regression

Suppose we predict y = 1 if $P\{y = 1\} \ge 0.5$.

$$\sigma(z) \ge 0 \iff \mathbf{w}^T \mathbf{x} \ge 0$$

Predict y = 0 if $P{y = 1} < 0.5 \iff \mathbf{w}^T \mathbf{x} < 0$

Source: Andrew Ng – Machine Learning (Coursera)

Contents

- Loss function
- ② Gradient Descent Algorithm

Recall that the training set is
$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(N)}, y^{(N)}))$$
. where $\mathbf{x}^{(i)}$ is given by $\mathbf{x}^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \dots \\ x_D^{(i)} \end{bmatrix}$ $x_0^{(i)} = 1, \ y^{(i)} \in \{0,1\}$

Loss for each training example

$$L(\hat{y}, y) = \begin{cases} -\log(\Phi(\mathbf{w}^T \mathbf{x})) & \text{if } y = 1 \\ -\log(1 - \Phi(\mathbf{w}^T \mathbf{x})) & \text{if } y = 0 \end{cases}$$
$$= -y\log(\Phi(\mathbf{w}^T \mathbf{x})) - (1 - y)\log(1 - \Phi(\mathbf{w}^T \mathbf{x}))$$

Loss for each training example: y = 1

$$L = 0$$
 when $\Phi(\mathbf{w}^T \mathbf{x}) = 1$
 $L \to \infty$ as $\Phi(\mathbf{w}^T \mathbf{x}) \to 0$

Source: Andrew Ng – Machine Learning (Coursera)

Loss for each training example: y = 0

$$L = 0$$
 when $\Phi(\mathbf{w}^T \mathbf{x}) = 0$
 $L \to \infty$ as $\Phi(\mathbf{w}^T \mathbf{x}) \to 1$

Source: Andrew Ng – Machine Learning (Coursera)

Loss function

$$L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} -y^{(i)} log(\Phi(\mathbf{w}^{T} \mathbf{x}^{(i)})) - (1 - y^{(i)}) log(1 - \Phi(\mathbf{w}^{T} \mathbf{x}^{(i)}))$$
$$= -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} log(\Phi(\mathbf{w}^{T} \mathbf{x}^{(i)})) + (1 - y^{(i)}) log(1 - \Phi(\mathbf{w}^{T} \mathbf{x}^{(i)}))$$

We find the $\hat{\mathbf{w}}$ such that

$$\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} L(\mathbf{w}) \tag{1}$$

Once we have $\hat{\mathbf{w}}$, the prediction for a new \mathbf{x} is

$$P\{\hat{y}=1\} = \Phi(\mathbf{w}^T \mathbf{x}) \tag{2}$$

Contents

- Loss function
- 2 Gradient Descent Algorithm

Gradient Descent

Initialize $\mathbf{w} = [0, ..., 0];$ Repeat $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} L(\mathbf{w})$

- η : step size
- $\nabla_{\mathbf{w}} L(\mathbf{w})$: gradient

The update for each w_i :

$$w_j = w_j - \eta \sum_{i=1}^N \left(\Phi(\mathbf{w}^T \mathbf{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
(3)

- Consider a box with only two types of tickets:
 - one has '1' written on it
 - another has '0' written on it.
- Let p be the fraction of the '1' tickets in the box.
- The value of p is unknown.
- Suppose that 100 tickets are drawn from the box and 20 of the tickets are '1'.
- What is the best estimate for the value of p?
- We imagine there are many tickets in the box, so it doesn't matter whether the tickets are drawn with or without replacement.
- In the context of MLE, *p* is the parameter in the model we are trying to estimate.

- We can ask the question: given p, what is the probability that we get 20 tickets with '1' from 100 draws?
- The probability that we get a '1' ticket in each draw is p, and the probability that we get a '0' ticket is (1 p).
- So the probability that we get 20 '1' tickets and 80 '0' tickets in 100 draws is

$$L(p) = P(20 \mid p) = {100 \choose 20} p^{20} (1-p)^{80}$$

- This is a function of the unknown parameter p, called the likelihood function.
- ullet It is the probability of getting the data if the parameter is equal to p.
- The maximum likelihood estimate for the parameter is the value of *p* that maximizes the likelihood function.
- Instead of working with the likelihood function L(p), it is more convenient to work with the logarithm of L :

$$\ln L(p) = 20 \ln p + 80 \ln(1-p)$$

Figure: In(L) vs p

Suppose y_i is a variable encoding the result of the ith draw. We set $y_i = 1$ if the ticket in the ith draw is '1'. We set $y_i = 0$ if the ticket in the ith draw is '0'. After N draws, we have the variables y_1, y_2, \cdots, y_N . The number of '1' tickets in N draws is

$$n_1 = \sum_{i=1}^{N} y_i$$

and so the maximum likelihood estimate for p is

$$p = \frac{n_1}{N} = \frac{1}{N} \sum_{i=1}^{N} y_i = \overline{y}$$

In other words, the maximum likelihood estimate for p is the mean of the y variable from the N draws.

$$L(p) = P(y_1, y_2, \cdots, y_N \mid p) = [p^{y_1}(1-p)^{1-y_1}][p^{y_2}(1-p)^{1-y_2}] \cdots [p^{y_N}(1-p)^{1-y_N}]$$

Using the product notation, we can write

$$L(p) = \prod_{i=1}^{N} p^{y_i} (1-p)^{1-y_i}$$

The log-likelihood is given by

$$\ln L(p) = \sum_{i=1}^{N} [y_i \ln p + (1 - y_i) \ln (1 - p)]$$

References

- [1] Bishop, C. M. (2013). Pattern Recognition and Machine Learning. Journal of Chemical Information and Modeling (Vol. 53).
- [2] Wikipedia Logistic Regression –
- https://en.wikipedia.org/wiki/Logistic_regression
- [3] Vu Huu Tiep Machine Learning Co Ban https:
- //machinelearningcoban.com/2017/01/27/logisticregression/
- [4] Andrew Ng Machine Learning (Coursera) –
- https://www.coursera.org/learn/machine-learning
- [5] University of Illionois Maximum Likelihood and Logistic Regression http://courses.atlas.illinois.edu/spring2016/STAT/STAT200/
- RProgramming/Maximum_Likelihood.html