ONLINE MASTERS IN **DATA SCIENCE**

DSC 255 - MACHINE LEARNING FUNDAMENTALS

ℓ_P NORMS

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Measuring distance in \mathbb{R}^m

Usual choice: **Euclidean distance:**

||
$$x - z$$
 || $_2 = \sqrt{\sum_{i=1}^{m} (x_i - z_i)^2}$

Measuring distance in \mathbb{R}^m

Usual choice: **Euclidean distance:**

$$\|x - z\|_{2} = \sqrt{\sum_{i=1}^{m} (x_{i} - z_{i})^{2}}$$

For $p \ge 1$, here is ℓ_p distance:

$$\|x - z\|_{p} = \left(\sum_{i=1}^{m} |x_{i} - z_{i}|^{p}\right)^{1/p}$$

- p = 2: Euclidean distance
- ℓ_1 distance: $||x z||_1 = \sum_{i=1}^{m} |x_i z_i|$
- ℓ_{∞} distance: $\|x z\|_{\infty} = \max_{i} |x_{i} z_{i}|$

Example 1

Consider the all-ones vector (1, 1, ..., 1) in \mathbb{R}^d .

What are its ℓ_2 , ℓ_1 and ℓ_∞ length?

Example 2

In \mathbb{R}^2 , draw all points with

- $\mathbf{1} \ell_2$ length 1
- $2 \ell_1$ length 1
- $3 \ell_{\infty}$ length 1